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Chapter 1

Thesis Summary

A predominant application of sequencing technologies is the characterization of

RNA and DNA variations in any biological samples of interests. Various bioinfor-

matics protocols have been developed for such purpose, and most rely on the same

principle, which is the alignment of sequence reads back to a reference genome. This

so-called "mapping" step has several limitations. First, it is not adaptable to species

with no reference available. Second, even for species with available references, such

as humans, the reference is not yet complete with large gaps and unplaced contigs.

Third, several regions in a genome are hard to map due to the presence of repeats,

especially in the case of short-read sequencing. In this thesis, I present mapping-

free protocols for transcriptome and genome analysis. Mapping-free bioinformatic

methods capture variations without using a reference. They do not map reads to the

reference and thus can capture events in hard-to-map regions or regions absent from

the reference genome. Both transcriptomic and genomic variants can be identified

in a much shorter running time comparing to other mapping-based methods. We

apply our protocols to two important applications in cancer genomics: the discov-

ery of tumor biomarkers via RNA sequencing, in the case of lung adenocarcinoma;

and the discovery of somatic mutations, in the case of prostate adenocarcinoma.

In the transcriptome analysis, our mapping-free approach led us to identify novel

signatures in lung cancer from repeat regions as well as a number of previously un-
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reported long-non coding RNA variants. For somatic variant analysis, we developed

a new pipeline, 2-kupl, which takes a pair of raw sequencing data from normal and

tumor samples, or two evolutionarily related samples like 2 bacterial strains. Us-

ing simulated and real-life datasets, we show our pipeline is computationally more

efficient than state-of-the-art mapping-based software, with comparable detection

accuracy and capability to detect novel variants.

Major contributions

• We developed analysis protocols for sequencing data based on k-mers. Our

protocols do not need to map reads to the reference and thus have the capacity

of capturing events in the difficult-to-map regions. Both transcriptomic and

genomic variants can be identified in a much shorter running time comparing

to other mapping-based methods.

• We applied our protocols to two cancer cohorts. The RNA-seq data of Lung

Adenocarcinoma patients and DNA-seq data of Prostate Adenocarcinoma pa-

tients were thoroughly analyzed with our protocols. Novel transcriptional

variants, especially fragments with repeats specific to lung cancer patients,

were identified. Recurrent variants and genes specific to prostate cancer were

identified.

Findings and Insights

• The current mapping-based protocols highly rely on the reference sequence

and thus are not adaptable to species without available reference. Even for

species with available references, such as humans, the reference is not yet

complete and varies across individuals. Therefore, a mapping-free method

without using a reference is an alternative to capture variations.
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• We developed two mapping-free protocols handling RNA-seq and DNA-seq

data. DE-kupl is designed to capture transcriptomic events specific to a cer-

tain phenotype group. 2-kupl is designed to detect variants between matched

samples.

• The two protocols were applied to real world datasets originating from lung

cancer and prostate cancer patients. The highly consistent pattern identified

with DE-kupl using two different lung cancer cohorts indicates the robustness

of the method, with true underlying events being captured by DE-kupl. On

the other hand, with 2-kupl for DNA-seq analysis, the proposed pipeline is

computationally more efficient than state-of-the-art mapping-based software,

with comparable detection accuracy and capability to detect novel variants.
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Chapter 2

Introduction

2.1 High throughput sequencing

2.1.1 History of High Throughput Sequencing (HTS)

Four bases (adenine (A), cytosine (C), guanine (G), and thymine (T)) constitute

the genetic sequence of DNA. Genetic sequences are essential for the survival and

reproduction of organisms. Deciphering genetic sequences is critical for our under-

standing of life. DNA sequencing is the technology to determine the exact order

and type of base pairs in a DNA fragment.

The development of Sanger sequencing enabled researchers to study the exact for-

mulation of the human genome, irrespective of its limitation in throughput and

laborious technical workaround. The first human reference genome was published

in 2001 (Lander et al., 2001). With a typical readout length of 1000 bp, this

project took about ten years and nearly $3 billion to complete. Shortly after that,

the reference genomes of several model organisms were determined (Waterston and

Pachter, 2002; Mikkelsen et al., 2005).

Following the completion of the first human genome, the National Human Genome
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Research Institute (NGHRI) created a DNA sequencing technology initiative aimed

at reducing the cost of a fully human genome sequencing to 1000 USD (Schloss,

2008). A flurry of High-Throughput Sequencing (HTS) technologies emerged, fre-

quented being referred to as Next-Generation Sequencing (NGS) or Massively Par-

allel Sequencing (MPS). Compared with Sanger, HTS technologies can sequence

hundreds of millions of DNA molecules in parallel, yielding shorter reads of DNA

sequence of 50 to a few hundred bases.

To this day, with more advanced Long-Read Single Molecule Real-Time sequencing

platforms available from Pacific Biosciences (Rhoads and Au, 2015) and Oxford

Nanopore Technologies (Laver et al., 2015), HTS technologies have played an es-

sential role in various research and clinical fields. In the next section, different

sequencing technologies and platforms will be described in more detail, covering

their limitations and various use case scenarios, which enables the rationale of this

research work.

2.1.2 High Throughput Sequencing Technology

Next-Generation Sequencing (NGS) refers to the deep, high-throughput, parallel

DNA sequencing technologies developed around three decades after the Sanger DNA

sequencing method (Shendure and Ji, 2008; Sanger et al., 1977). Fueled by technical

developments, basic research and market demand, several generations of NGS plat-

forms have arisen since 2005, including Roche 454 pyrosequencing (Rothberg and

Leamon, 2008), Illumina/Solexa Sequencing By Synthesis (SBS) (Chi, 2008) and

Ion Semiconductor Sequencing (Rusk, 2011). Comparing to the first-generation

Sanger sequencing, NGS generates massive data in a few hours at a significantly re-

duced cost, thus becoming the top choice for large-scale genomic and transcriptomic

studies.

A common first step to most sequencing protocols is library preparation (Van Dijk

et al., 2014). DNA or RNA is first isolated and purified from the test sample. For
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RNA sequencing experiments, RNA is first converted to cDNA by reverse transcrip-

tion. The principle NGS workflow is shown in Fig 1. As a critical step in library

preparation, sequencing adapters are added to the DNA fragments to make the frag-

ment ’visible’ to the sequencing device. To produce sufficient sequencing molecules

in the case of low sample input, a pre-amplification step is normally performed on

the ligation product as a next step. The amplification step creates theoretically

identical copies of the original template, it is partially for this reason duplicated

reads are observed in the data readout, which has to be adjusted accordingly with

respect to the nature of the amplification method applied. The step also brings

in potential thermodynamic bias related to factors like GC content and template

size, which should be considered in the correction and quantification of molecular

features.

During the sequencing step, libraries of prepared templates are loaded onto a reac-

tion interface, frequently termed as flow cell or chip, and are subsequently processed

inside the sequencing device. The identity of each base of a template is read off

from sequential images or periodical changes ion current, concurrently for hundreds

of millions of templates. Eventually, the whole nucleotide sequence of each library

template is consolidated into one single string, a read, and stored in the sequencing

output file. The FASTQ file format is universally used to represent raw sequencing

data, as a de facto standard in the bioinformatics community. This format consists

of four lines for each read, including the sequence and quality score of each base

along the sequence. The quality scores assigned to each base call are referred to as

Phred scores, which correspond to the probability that the sequencer called that

base incorrectly.

Thanks to its unbiased nature and dynamic ranges in profiling bulky nucleic acids,

NGS today is widely applied to investigate all areas of biology, from molecular

biology to genetics, medicine, epidemiology and ecology.
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2.1.3 Applications of NGS

Throughout my thesis I have been interested in two major types of NGS tech-

nologies, which are generally described as "DNA-seq" and "RNA-seq" and whose

main intentions are to characterize genetic variations and RNA expression. There

are many other types of NGS analyses such as Methyl-seq for DNA methylation,

Chip/ATAC-seq for epigenetics and protein-DNA binding, and high dimensional

structural feature (Hi-C) for chromosome 3D conformation. However, I will only

focus here on the two technologies at the core of my thesis work: DNA-seq and

RNA-seq.

2.1.3.1 DNA Sequencing

DNA-seq technologies are used to detect various genetic alterations, including Single-

Nucleotide Variants (SNVs), Insertions and deletions (INDELS), Structural Variants

(SVs) and Copy Number Variants (CNVs).

SNVs refer to substitution of a single nucleotide at a specific position in the genome.

The term SNV is more frequently used to describe somatic mutations in cancer,

while SNPs are germline substitutions and present in the general population. IN-

DELS are classified among small genetic variations, measuring from 1 to 50 bp in

length. INDELS are generally considered more deleterious than SNVs because they

can lead to frameshift mutations when occurring in coding regions. SVs include

various kinds of larger genome variations such as insertions, deletions, duplications,

copy number variants, inversions and translocations. The size of a structural vari-

ant ranges from 50 bp to several Mb. A CNV is a type of structural variant in

which chromosome parts are deleted or duplicated.

These genetic variants can also be divided into two categories, germline and somatic

variants according to their biological origins. Germline mutations occur in gametes

and can be passed onto offspring. Diseases caused by germline mutations are called
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inherited or hereditary disorders. Although germline variants can have negative

effects and cause or increase the risk of rare diseases, and even cancer, most are

silent and only contribute to the genetic diversity of humans. Somatic mutations

occur in non-germinal body cells and cannot be inherited by offspring. They occur

from accumulated damages to the genome in individual cells throughout a person’s

life. Somatic mutations are considered to be the most common cause of cancer.

Diseases that occur because of somatic mutations are referred to as sporadic dis-

orders. However, most somatic mutations are silent and do not have pathological

consequences. Somatic mutations are valuable for clinical diagnostics and precision

medicine given that they are confined in the lesion tissues. Identifying somatic vari-

ants in cancer driver genes carries a high clinical therapeutic value. For instance,

the BRAF gene is a known proto-oncogene involved in the regulation of key cellu-

lar functions. The V600E somatic mutation in BRAF (substitution of valine (V)

by glutamic acid (E) at amino acid 600) causes constitutive BRAF activity, a tu-

mor driving event in several cancers, including melanoma (Maldonado et al., 2003),

lung cancer (Sánchez-Torres et al., 2013), and colorectal cancer (Li et al., 2006).

One drug, Vemurafenib (Bollag et al., 2010) has been shown to be effective for the

treatment of patients harboring V600E mutation. Therefore there is a high clinical

interest in characterizing patients with this mutation to orient them towards Vemu-

rafenib treatment. There are now drugs for a few dozens of somatic mutations of

this kind. Cancer precision medicine seeks to determine such "actionable" somatic

mutations in cancer patients in order to direct them towards adapted treatments.

Somatic variants are identified by comparing Whole Genome Sequencing (WGS),

Whole Exome Sequencing (WES) or Targeted Sequencing (TS) data from matched

normal and tumor tissues (we will present detailed protocols for this later on). In

a clinical setting, only "actionable" genes, for which treatment is available, are of

interest. Thus using TS based on a gene panel is more practical.

WGS provides comprehensive genomic information with a uniform read depth, cap-

turing variants either inside or outside coding regions, to explore the entire genetic

code of an organism. The most successful clinical application of NGS in routine ge-
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netic disease screening is Non-Invasive Prenatal Testing (NIPT). In this application,

low depth WGS assists in determining whether the fetus has inherited chromosomal

defects from its parents.

TS or panel sequencing, on the other hand, is an alternative that involves a target

enrichment step where sequences from specific regions of interest are either directly

amplified or captured before sequencing. TS allows to investigate specific areas of

the genome more rapidly and cost-effectively than WGS. Clinicians have developed

panels containing target genes associated with specific medical questions. WES, is

one of the most commonly used forms of TS, which provides coverage restricted

to all human exons to investigate only the coding sequences of the genome. Since

the exome represents less than 2% of the human genome, it is a cost-effective al-

ternative to WGS for profiling genome-wide variants to study phenotype-genotype

relationships in large population studies.

Genetic predisposition plays a substantial role in multiple disorders, including can-

cers such as breast and ovarian cancer. Genome-wide association studies (GWAS)

aims to dig out the causal relationship between specific genetic variations and dis-

orders. These associations help reveal the abnormality of molecular mechanisms

leading to complex diseases and provide novel disease causal genes and drug tar-

gets. GWAS scans genomes from different individuals and screens genetic markers

that can be used to predict the risk of disease. GWAS studies can be performed

using SNP arrays, WES or WGS. The major advantage of WGS is the ability of

capturing disease-associated loci at any location, including in non-coding regions

of the genome. Although variants in non-coding regions are considered less dele-

terious than in coding regions, they are thought to play important roles in gene

expression regulation. A large number of germline variants associated with rare

Mendelian disorders such as hearing loss, intellectual disabilities and movement

disorders have been captured using WES (Tanaka et al., 2015; Traschütz et al.,

2019; Rabbani et al., 2014). Complex disorders such as heart disease, hypertension,

diabetes, cancer and many others listed in the Online Mendelian Inheritance in Man

(OMIM) database are also under investigation using WES (Tetreault et al., 2015).
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For instance, so far more than 200 genomic loci harboring common variants asso-

ciated with breast cancer risk have been identified by GWAS (Michailidou et al.,

2017; Zhang et al., 2020a). Among the most well-established genetic predispos-

ing mutations, variants in BRCA1 and BRCA2, which participate in the repair of

double-strand DNA breaks by homologous recombination, are responsible for the

accumulation of DNA alterations and final genomic instability (Auguste and Leary,

2017). With such causal variants determined, molecular signatures like mutations

in BRCA1/2 have been widely used in diagnostic screening panels for various types

of cancer in clinical practice (Khatcheressian et al., 2006), especially via targeted

sequencing due to the fact that many complex large genomic rearrangements are

hard to detect via traditional techniques.

Apart from human genomics, DNAs from other organisms are also being widely

studied using HTS. Agrigenomics or agricultural genomics aims at better under-

standing plant biology and improving crops from the genetic level (Hesse and Höf-

gen, 2001). In the past decade, NGS has had an essential impact on agrigenomics.

Since the publication of the first plant genome in 2000, hundreds of new plant

genomes have been sequenced and made available on the NCBI and EBI databases.

One of the major contributions of NGS to agrigenomics is genome-based selection.

Breeders can now more easily design and implement breeding programs to develop

desirable traits such as drought tolerance, disease resistance, and higher yields. Sci-

entists utilize sequencing data for the development of improved crops, enhancing

crop productivity, resilience to climate effects, and nutritional quality (Gedil et al.,

2016).

Metagenome sequencing is a particular type of WGS applied to DNA of mixed

origins (ie. bacterial, plant, animal) extracted from an environmental or medical

sample, which is used by microbiologists to evaluate the diversity and abundance

of microbial species in a sample. Metagenomics (Thomas et al., 2012), also referred

to as environmental and community genomics, is the study of the total genomic

content of a microbial community. The term ‘meta’ implies the purpose of analyz-

ing the mixed collection of DNA or RNA from similar but not identical items. The
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total DNA and/or RNA is isolated from a microbial population without prior cul-

tivation. Then DNA is sequenced and compared with previously known reference

sequences to identify known species or to discover previously unknown species. The

earliest metagenomic studies targeted 16S rRNA genes to genotype and identify the

different species within the environment (Janda and Abbott, 2007). Alternatively,

shotgun metagenomic sequencing (Sharpton, 2014) indiscriminately sequences ge-

nomic DNA from a sample. After reads are assigned to a taxonomic rank using

bioinformatics pipelines, a composition profile of the bacterial population can be

generated. Shotgun metagenomic sequencing also provides data for analyses beyond

taxonomy profiling, such as metabolic pathway analysis.

2.1.3.2 RNA Sequencing

RNA sequencing (RNA-seq) aims at determining the RNA sequence contents in

a sample using NGS. Over the past decade, RNA-seq has become an indispens-

able tool for transcriptome-wide analysis. RNA-seq provides the basic materials

(sequence context and quantitative information) to assess different aspects of the

transcriptome, including gene and transcript expression, alternative splicing and

discovery of new transcripts (Trapnell et al., 2012; Sultan et al., 2008; Robertson

et al., 2010; Trapnell et al., 2013). RNA-seq in principle analyzes all RNA types

in the transcriptome, including mRNA, lincRNA, snoRNA, miRNA, etc. RNA-seq

library preparation differs from DNA-seq as RNAs are highly unstable and need

to be converted into cDNA before amplification. RNA-seq libraries can be either

strand-specific or non-strand-specific. The strand-specific libraries keep the infor-

mation about which DNA strand is transcribed. This information is particularly

valuable for distinguishing antisense transcripts. Stranded RNA-seq provides a

more accurate estimate of transcript expression than non-stranded RNA-seq (Zhao

et al., 2015).

In order to detect and quantify mRNA/gene, highly abundant ribosomal RNAs

(rRNAs) must be removed from the total RNA before sequencing. There are two

12



strategies addressing this issue. The first one is to enrich the polyadenylated (polyA)

RNA transcripts with oligo (dT) primers (Mortazavi et al., 2008). However, this

strategy is not able to capture non-polyA transcripts and partially degraded mR-

NAs. The other strategy is depletion of highly abundant rRNAs through hybridiza-

tion capture followed by magnetic bead separation (O’Neil et al., 2013). The rRNA

depletion strategy provides more information on non-polyA transcripts and de-

graded RNAs but costs more than polyA enrichment.

RNA-seq also plays a role in the study of hereditary disorder research. Across a va-

riety of hereditary disorders, more than half of the patients do not receive a genetic

diagnosis after WES or TS. The main reason is that part of the detected genetic

variations remain of unknown significance (Kremer et al., 2017). With RNA-seq,

limitations of the sequential information can be complemented by integrating RNA

abundance and RNA sequence, including allele-specific expression and alternative

splicing. Genes with expression beyond an expected range are more likely to be

causal genes. The genetic causes of such aberrant expression include rare variants

in the promoters and enhancers and also inside coding regions. Besides, variants lo-

cated at splicing sites may induce splicing changes, leading to abnormal transcripts

and peptides. Aberrant splicing has long been studied as a major cause of hereditary

disorders (Tazi et al., 2009). Nevertheless, detecting aberrant splicing from genetic

sequences is difficult because splicing involves a complex set of cis-regulatory ele-

ments, some of which are inside intronic regions and are thus not covered by WES

or TS (Xiong et al., 2015). Finally, RNA-seq can reflect allele-specific expression,

whereby one allele is silenced and the other allele is expressed. When assuming a

recessive mode of inheritance, genes with a heterozygous variant identified by WES

and WGS are not prioritized. However, allele-specific expression of a heterozygous

variant fits the recessive mode of inheritance assumption. Therefore, detection of

allele-specific expression can help prioritize heterozygous rare variants. Alterations

at the RNA sequence level and the expression levels contribute to at least half of in-

herited human diseases (Jackson et al., 2018). Therefore, transcriptome variations

are also key information for hereditary disease interpretation.
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RNA-seq is also widely applied in the study of somatic variations in cancer. The

most common application of RNA-seq in cancer is the discovery of gene fusions,

which are among the most frequent cancer drivers (Taniue and Akimitsu, 2021).

Cancer cells are also characterized by specific gene expression signatures (Golub

et al., 1999). RNA-seq is now used to characterize cancer gene expression profiles,

but it can also identify new RNA isoforms. Cancer-specific RNA isoforms may

be translated and produce neoantigens that are presented on the surface of tumor

cells. Standard protocols integrate DNA-seq and RNA-seq to screen neoantigens

that are specifically expressed in tumor tissues. Mutated peptides transcribed from

these somatic mutations are then submitted to an epitope presentation prediction

pipeline (Gopanenko et al., 2020). Neoantigens also derive from transcripts from

non-coding regions such as lncRNAs and repeats (Ouspenskaia et al., 2020; Laumont

et al., 2018). However, these regions are rarely investigated to discover neoantigens.

With the explosive growth of samples and sequencing output in this era of big data,

many challenges have emerged on the computational side, concerning data storage,

CPU requirement, replicability, reproducibility, data integration, and interpreta-

tion.

2.2 Standard bioinformatics pipelines for NGS anal-

ysis

2.2.1 RNA-seq workflows

In this thesis, I will focus on the most common applications of RNA-seq, i.e. gene

expression quantification and profiling. A large number of efficient and accurate

software have been developed to address this question. The optimal set of tools to

use will depend on the specific biological question being explored. However, even

within a single application (e.g., finding genes overexpressed in a given condition),

different combinations of tools in the workflow can substantially affect biological

14



raw reads

aligned reads

read count 
matrix

normalized 
matrix

statistic 
model

differential 
genes/transcripts

alignment/mapping
STAR

quantification 
transcript-/gene-level

normalization
RPKM/FPKM/TPM

differential analysis
DESeq2/edgeR/limma

modeling

Step one: 
preprocessing

Step two:
reads alignment

Step three:
quantification

Step four:
Differential expression 

modeling

Figure 2: General workflow of RNA-seq analysis. The workflow is composed of

four main steps: preprocessing, reads alignment, quantification and statistical

modeling

conclusions (Kulkarni and Frommolt, 2017). A typical gene expression profiling

workflow comprises four distinct steps described below and summarized in Figure 2.

2.2.1.1 Step one: Preprocessing of raw sequencing reads

A fair quality control assessment and the corresponding preprocessing of raw se-

quence data are fundamental for optimal downstream RNA-seq data analysis. Qual-

ity control for the raw reads involves estimating the read quality, nucleotide distri-

bution, GC content, handling low-quality bases/reads, trimming adapters from raw

sequencing reads, filtering unwanted sequences, and contamination test (Li et al.,

2015b).

In short read sequencing, the quality of sequential bases steadily declines along the
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sequence. The sequencing quality of the library can be measured by summarizing

the base qualities of all positions across all reads. Analysts can average the quality

of each read and estimate the distribution of all reads quality. There are different

base quality encoding systems according to different sequencing platforms. The

most commonly used one is the Illumina Phred+33 encoding system (Cock et al.,

2010). Under this encoding system, a particular base with a quality score of 30

suggests the probability of a sequencing error at this position is 0.001. Therefore, if

most reads have an average quality over 30, it is generally considered of good quality

and accumulation of random errors at this scale will not affect the performance of

most downstream analyses. Meanwhile, the reads with poor quality are supposed

to be eliminated from the raw reads.

Experts often check the sequence content through the nucleotide distribution by

sequencing cycle. Ideally, the four nucleotides should have a roughly constant

distribution across all cycles. However, in short-read RNA-seq data, nucleotide

contents at the beginning of reads are biased, due to library preparation artifacts.

In RNA-seq analysis, the random hexamers or transposases are used in the library

preparation instead of random primers (Syed et al., 2009). Bias in random hexamers

leads to an unstable nucleotide content at the beginning of sequencing reads, which

impacts the uniformity of the reads along with expressed transcripts (Hansen et al.,

2010). In order to avoid the influence of the bias introduced by random hexamers,

two strategies can be considered. One strategy is trimming the first several bases

to exclude error-rich stretches of RNA-seq reads (Matvienko et al., 2013; Ashrafi

et al., 2012). The other strategy is using specific bias correction models to adjust

for the bias (van Gurp et al., 2013; Hansen et al., 2010).

Nucleotide distribution perse is not a reliable measure of RNA-seq data quality.

For example, if one RNA is overrepresented, then the distribution of bases at each

position will to some degree, be affected by the sequence of that RNA. GC content,

computed as the percentage of G + C in the data, is also subjected to this problem.

GC content varies by species and genomic regions. The GC content of the sequenced

data is expected to be an approximation of the reference sequence. However, in
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RNA-seq data, highly expressed RNAs are often tissue-specific and vary across

samples. The overall GC content is influenced by the total RNA components and

turns out to be unstable among samples. When performing total RNA-seq, RNA

components include mRNA, rRNA, precursor messenger RNA (pre-mRNA), and

several types of non-coding RNA (ncRNA). Thus, the actual GC content depends

on the composition of RNA subtypes. Therefore, nucleotide distribution by cycle

and the GC content are not suitable parameters to assess sequencing quality for

total RNA-seq (Sheng et al., 2017).

Adapter sequences, single-stranded oligonucleotide sequences ligated to RNAs for

cDNA synthesis, should be eliminated from reads (Li and Weeks, 2006). Sometimes

adapters are also sequenced if the inserted size of the fragment is shorter than the

sequencing cycle. Because adapters are artificially introduced and are not part of

the organism’s transcriptome, these sequences should not be counted or utilized for

biological interpretation. Adapter sequences can be trimmed from both ends of the

template readout. It is worth noting that trimming makes the reads shorter. So

one can filter out the entire read if the average quality is below a certain threshold

or the read length is too short. In long RNA-seq data analysis, adapter trimming is

unnecessary because the RNA fragments are long, and the adapters are unlikely to

be sequenced (Sheng et al., 2017). Even with a partial sequencing of the adapter,

the alignment can also be performed because of most aligners’ soft clip functionality

(Au et al., 2017). Another important quality consideration is the sequencing quality

score. Low quality scores may lead to a significant portion of unusable reads.

Reads with a large fraction of low-quality bases are generally trimmed or entirely

removed from the sequencing data before downstream analysis. Available software

for trimming are TagCleaner, Trimmomatic, and cutadapt (Schmieder et al., 2010;

Bolger et al., 2014; Martin, 2011).

Bioinformaticians have also developed protocols to encapsulate the aforementioned

processes into a single package. For instance, the RSeQC package comprises multiple

python and C scripts that comprehensively evaluate the quality of different aspects

of RNA-seq data (Wang et al., 2012).
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2.2.1.2 Step two: Alignment of sequencing reads

The goal of read alignment is to find out where a read originated from. There

are two mapping strategies that consist of mapping to a reference genome or a

reference transcriptome. As mapping to a genome can be achieved independently

of gene annotation, it allows finding new genes and transcripts. It is worth noting

that, in eukaryotes, RNA-seq reads alignment is more challenging than DNA-seq

alignment because of RNA splicing. When aligners attempt to match spliced reads

to the genome, the beginning part matches to one exon and the last part matches

to another exon. So, somehow, the aligner program has to be able to place such

read correctly to figure out exactly where exon/intron borders are. This is quite

difficult for aligners because the distance between two exons can be thousands of

bases long. There are splice site signals, but they are usually too weak to rely on.

Therefore, aligners have to be able to cope with those situations.

In eukaryotes, RNA-seq read alignment is achieved using splice-aware alignment

tools such as STAR (Dobin et al., 2013). In addition to STAR, RNA-seq alignment

has traditionally been accomplished using distinct alignment tools, such as TopHat

(Trapnell et al., 2009), MapSplice (Wang et al., 2010b), SOAPSplice (Huang et al.,

2011), HISAT (Kim et al., 2015) and GSNAP (Wu et al., 2016). All these tools per-

form a spliced alignment allowing for gaps in reads spanning exons or exon borders.

We will take STAR here as an example of the splice-aware mapping strategy. STAR

achieves alignment using three procedures: indexing, seed searching and stitching.

STAR first creates genome indexes using suffix arrays. For each read, STAR then

searches for the longest sequence that exactly matches one or more locations on

the reference genome. These longest matching sequences are called the Maximal

Mappable Prefixes (MMPs). The first MMP of the read that is exactly mapped is

called ‘seed1’. STAR will then search again for only the unmapped part of the read

to find the next MMP, which will be seed2. Seed2 will be extended in case no exact

matching sequence is found in the unmapped part. STAR uses the indexed genome

to efficiently search for the MMPs. Eventually, the seeds are stitched together based
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on the best alignment between the read and the genome.

2.2.1.3 Step three: Quantification of gene expression or transcript abun-

dance

The difference between gene-level and transcript-level quantification is that gene-

level summarizes read counts over genes while transcript-level summarizes read

counts over transcripts. Both gene-level and transcript-level quantification can be

assessed based on the alignment against a reference as mentioned above. The counts

of mapped reads will be used as a surrogate for quantification.

There are typically two strategies to obtain gene-level quantification. The simplest

way is to aggregate raw counts overlapping the features of interest provided in the

annotation file (GTF or GFF) containing the genome coordinates of the genes.

Using alignment files as input, various approaches like featureCounts (Liao et al.,

2014), HTSeq (Anders et al., 2015), or the built-in capability of STAR (Dobin et al.,

2013) can be applied to assess how many fragments fall in the genomic region of

each gene. Gene-level quantification is simple and fast but suffers from various

drawbacks: There is no consensus on the handling of multi-mapping reads. In

general, these reads are discarded when summarizing at the gene level. In addition,

gene-level quantification is oblivious to potentially important compositional changes

that are not represented directly in gene-level read counts (e.g., differential usage

of isoforms) (Van den Berge et al., 2019).

The second strategy is to first perform transcript-level quantification and aggregate

transcript counts to the gene level. In plants or animals, one gene can have several

transcript isoforms that differ by alternative exon usage, transcription start or tran-

scription termination. Transcript-level quantification has remarkable advantages.

First, it allows for improved biological interpretation as it potentially captures

changes in each transcript usage. Second, it enables more accurate quantification of

gene expression (Trapnell et al., 2009, 2010). Third, transcript-level quantification

is more appropriate for modeling and correcting technical biases (Roberts et al.,
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2011).

More accurate downstream analyses are obtained by appropriately modeling of

mean-variance relationship of the feature counts (Pimentel et al., 2017). Despite

the advantages mentioned above, transcript-level quantification is more challenging

than at the gene-level. If a read comes from an area that is common to several

isoforms, one needs to determine which transcript it should be assigned to. The

estimated abundance of transcript isoforms depends on the assignment of these

shared reads.

Leading algorithms developed to tackle this problem use maximum likelihood (ML)

estimate, Bayesian inference or expectation maximization (EM) methods (Zhang

et al., 2016; Trapnell et al., 2010). These algorithms assign ambiguously mapped

reads to the most likely transcript isoforms. Tools employing such probabilistic

approaches can also measure the uncertainty in isoform quantification.

Well-known transcript-level quantification tools include RSEM (Li and Dewey,

2011), CuffLinks (Trapnell et al., 2010) and MMSeq (Turro et al., 2014). These

are based on genome alignment, ie. reads are first aligned to a genome and later

re-allocated to known genes/transcripts based on transcript annotation. An al-

ternative strategy is ’pseudo-alignment’, used by various mapping-free approaches

such as Kallisto (Bray et al., 2016), Sailfish (Patro et al., 2014) and Salmon (Patro

et al., 2017). These methods are detailed in Chapter 2.3.3.

One should consider factors that might influence the number of reads assigned to

a given gene or transcript, such as transcript length, sequencing depth, library

preparation (PCR) and in silico factors (alignment) (Roberts et al., 2011). The

PCR procedure used for cDNA amplification brings additional biases, such as the

GC bias and duplicated reads. In silico factors represent how pipelines deal with

reads that are not uniquely mapped to the genome or transcriptome. Generally,

quantified gene or transcript counts need to be normalized to account for differences

in read depth, gene length and technical biases (Robinson and Oshlack, 2010). Over

the years, researchers have implemented different normalization methods (Abbas-
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Aghababazadeh et al., 2018). The simplest one is CPM that represents the count

per million reads. When the sample is sent to a facility for sequencing, operators

test RNA concentration and load as similar RNA fractions as possible. But read

counts per RNA-seq library are never identical and one needs to account for these

differences. CPM is basically depth-normalized counts but does not account for

the gene length. To address this issue, RPKM and FPKM were proposed. RPKM

is a normalization method used for single-end sequencing. RPKM represents the

number of reads per kilobase of transcript per million reads of a library. When

the RNA-seq data is paired-end, one uses FPKM, where F represents fragments

that are one pair of reads. RPKM and FPKM take both read depth and gene

length into account. Later on, TPM normalization was developed, which stands

for transcripts per million. TPM was proposed as a more accurate measure of

transcript expression as it measures the number of transcripts produced by each

gene, independently of their length, which is particularly important when genes

have multiple isoforms(Trapnell et al., 2013). TPM corrects for the gene length first

and then divides by the scaling factor. TPM is most appropriate for comparing the

proportion of reads mapped to a gene in different samples (Bedre).

2.2.1.4 Step four: Differential expression modeling

Accurate quantification of the expression level of genes or transcripts enables the

identification of genomic features that are expressed differently between conditions.

The statistical power of detecting differential expression depends on several factors,

such as sample size, expression level, expression fold change, sequencing depth, and

dispersion/variability. A statistical model’s ability to detect differential expression

is better when handling samples of large size due to the high signal-to-noise ratio.

High expression level, fold change and sequencing depth make it easier to observe

significant differences between conditions. Depending on the experiment condition,

one should also pay attention to the dispersion/variability of gene expression, which

can be very high in heterogeneous samples such as tumors.
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Lastly, two other factors impacting differential expression analysis are independent

filtering and multiple testing (Bourgon et al., 2010; Dudoit and Van Der Laan,

2007). As genes or transcripts with low read counts are generally not informative,

they can be filtered from the dataset. Multiple testing issues arise when a P-value is

computed for a large number of observations. In a nutshell, when one says ‘P-values

< 0.05 are significant’, one means ‘5% of the time one will report a false positive’.

It becomes problematic when multiple genes or transcripts are tested because of the

type I error. Then, a false discovery rate (FDR) can be computed, which is defined

as the expected proportion of false positives among the declared significant results.

The most commonly used multiple testing correction method calculating FDR is

the Benjamini–Hochberg (BH) procedure (Bogdan et al., 2008).

Several tools are commonly used for differential expression analysis. Some utilize

gene-level expression, whereas others rely on transcript-level estimates. Gene-level

tools typically rely on aligned read counts and use generalized linear models (GLM)

to evaluate genes’ differential expression (Nelder and Wedderburn, 1972). A GLM

models each gene’s expression as a linear combination of explanatory factors (e.g.,

Group, time, patient, etc.). GLM allows the expression value distribution to be

different from the normal distribution.

Statistical models for gene-level analysis include DESeq2 (Love et al., 2014), edgeR

(Robinson et al., 2010) and limma (Law et al., 2014), which provide comparable

results (Seyednasrollah et al., 2015). The most widely used algorithm, DESeq2,

shrinks log fold change estimates toward zero using an empirical Bayes method.

DESeq2 also has an outlier detection method to rule out genes with large abun-

dance in only a few samples. edgeR performs an exact test for negative binomial

distribution using the likelihood ratio test. A minimum CPM cutoff is typically

determined based on the number of genes with FDR lower than 0.05. edgeR rec-

ommends filtering out all genes except those with CPM over cutoff in at least two

samples. Limma is a linear model for microarray and RNA-seq data. It uses an

empirical Bayes method to share information across the genes to provide stable vari-

ance estimation. Limma first creates a design matrix using the explanatory variables
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and applies this to every gene independently. By default, the Benjamini–Hochberg

procedure is used to estimate the FDR.

Tools that model transcript-level expression, such as CuffDiff2 (Trapnell et al.,

2013), EBSeq (Leng et al., 2013) and Ballgown (Frazee et al., 2015), tend to be

more computationally intensive comparing to gene-level methods and provide more

distinctive call sets between different tools (Soneson and Delorenzi, 2013). Cuffd-

iff2 estimates expression at a transcript-level resolution based on a beta negative

binomial model for counts of transcripts. Although Cuffdiff2 performs differential

expression analysis at the transcript level, it reports differential expression at the

gene level. By default, Cuffdiff2 calculates a normalization factor as DESeq2 to

correct sequencing depths and uses the BH procedure to control the FDR. Cuffd-

iff2 addresses count uncertainty due to ambiguous reads that yield false differential

expression signals, especially when genes have similar isoforms. EBSeq was also

developed to detect differential expression at the transcript level. This program

estimates the posterior likelihoods of differential and similar expression via the em-

pirical Bayesian method. EBSeq uses a median normalization procedure similar to

that of DESeq2 to account for the different sequencing depths. A Bayesian FDR es-

timate is produced. Ballgown extracts the abundance estimates for exons, introns,

transcripts or genes, and applies a linear model for differential expression analysis.

Ballgown is less computationally demanding than Cuffdiff2 and EBSeq.

2.2.2 DNA-seq workflows

Our focus here will be on WGS and WES pipelines which are most common now in

human genomics. Both methods enable the discovery of SNVs, INDELS, CNVs and

mutational signatures, which refer to the characteristic combinations of mutations

arising from carcinogenesis and normal somatic mutagenesis processes (Alexandrov

et al., 2015). Furthermore, WGS and WES can be used to find somatic events

when a pair of samples from the same donor is available. With its complete genome

coverage, WGS has the extra benefit of enabling variant discovery in non-coding
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regions such as introns, UTRs and intergenic regions. Furthermore, WGS provides

a better estimation of CNV location and mutational signature due to its denser

coverage. Bioinformatics pipelines for WGS and WES (DNA-seq) data analysis

generally consist of the common steps detailed below.

2.2.2.1 Step one: Alignment of sequencing reads

The first process in a DNA-seq workflow (Figure 3) involves the alignment of se-

quencing reads. Alignment is the process of mapping reads to a reference genome.

Numerous mapping programs for DNA-seq exist, such as BWA (Li and Durbin,

2009), Bowtie2 (Bray et al., 2016), MAQ (Walsh et al., 2008), Stampy (Lunter

and Goodson, 2011), and Novoalign (http://www.novocraft.com). These software

use two main algorithms: the hash-based index search and the Burrows-Wheeler

Transform (BWT).

Hash-tables allow for a rapid search of sequence words in an index. Hash-based

algorithms build a hash table from the NGS reads (MAQ (Walsh et al., 2008),

SHRiMP (Rumble et al., 2009) and ZOOM (Lin et al., 2008)), or from the ref-

erence genome (SOAPv2 (Li et al., 2009b), GSNAP (Wu et al., 2016), Novoalign

(http://novocraft.com/) and PERM (Chen et al., 2009)). After building the hash

table the first group of algorithms use the reference genome to scan the hash table

of NGS reads while the second group of algorithms uses the set of input reads to

scan the hash table of the reference genome.

BWA and Bowtie (Langmead, 2010) use a different technique, the Burrows-Wheeler

transform (BWT), which creates an index that enables fast word search while being

more space-efficient than hash tables. A BWT first reorders subsequences of the

reference genome in a structure called a suffix array. Next, the final BWT index

is created and is used for rapid read placement on the genome. An advantage of

BWT is memory usage: a BWT can fit the entire human genome in less than two

gigabytes of memory. In contrast, MAQ’s spaced seed index may require more

than fifty gigabytes of memory. Furthermore, hash-based algorithms have a speed
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Figure 3: General workflow for DNA-seq analysis. This workflow is compatible

with both WES and WGS technologies. The fastq files undergo quality control,

mapping to the reference and conversion to alignment files in bam format. Mul-

tiple algorithms can be applied to call genomic variants such as SNVs, indels and

SVs from the alignment results
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disadvantage when applied to large genome size and repetitive regions. A lot of

keys in the hash table have thousands of occurrences. Visiting each of them along

the genome is quite slow. In contrast, BWT-based algorithms can tell if the read

has a perfect match in O(l) time, no matter how long or how repetitive the genome

is. Essentially, BWT collapses all the copies of a substring so each sequence can be

aligned to all copies, rather than align to each copy as a hash table does.

Factors limiting alignment accuracy include genetic variants, sequencing errors and

repetitive sequences. First of all, the matching is often not exact because indi-

viduals have variants in their genome relative to the reference genome. Also, the

reads contain sequencing errors. Furthermore, there are regions that are not unique

meaning that many sequences can appear in multiple parts of the genome. So when

aligners try to place the reads from this sort of area, it is difficult to say where they

truly come from. The mapping quality (MAPQ) is thus introduced to represent the

confidence that the read is correctly mapped to the genome. From this stage, align-

ers produce a certain proportion of low MAPQ alignments. Generally, we expect

between 70 and 90% of regular DNA-seq reads to map onto the human genome with

a MAPQ of 20, which means the probability of correct alignment is 0.99 (Conesa

et al., 2016). The other reads with low MAPQ include reads with sequence variants

too complex to be deciphered by aligners, such as large indels (Malde, 2008). When

aligning reads to the reference, variants may introduce gaps that allow aligners to

match more terms than a gap-less alignment can. To obtain an accurate alignment,

aligners will allocate a penalty score to the alignment with gaps. Alignments are

discarded when final scores are below a defined threshold. Another major source

of low-quality reads is the low complexity regions on the genome (Dozmorov et al.,

2015). In some cases, reads overlapping low complexity regions are discarded to

increase the quality and reliability of DNA-seq alignment. Unfortunately, biological

information located in these low MAPQ regions is then lost.

Alignment of sequence reads to a reference genome results in the generation of a

SAM file, which is the universal file format for mapped sequence reads. SAM files

can be compressed to BAM files.
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2.2.2.2 Step two: Post-alignment processing

Aligned reads are post-processed to guarantee the reliability of alignment results

for downstream analysis. Post-processing typically includes duplicate marking, lo-

cal realignment around known indels, and base quality score recalibration (BQSR)

(DePristo et al., 2011). This step is not necessary for RNA-seq since the erroneous

alignments do not significantly affect gene quantification and differential analysis.

However, post-processing is strongly recommended in genome analysis since mis-

aligned reads and low-quality scores have an essential impact on the subsequent

variant calling step. False positives may be introduced if such stochastic and sys-

temic errors are not corrected (DePristo et al., 2011).

Duplicated reads are groups of reads that are identical. They are prevalent in both

WGS and WES and are believed to derive from the PCR amplification process.

The inclusion of duplicated reads introduces erroneous calls since they impact allele

frequency estimates.

Local realignment is essential for detecting indels. Reads harboring indels tend to

have a higher chance of being aligned incorrectly compared to the reads only with

SNVs or without any variant. Studies demonstrated that BWA generated incorrect

alignment for over 15% of reads harboring indels (DePristo et al., 2011). Without

realignment, these misaligned reads lead to spurious variants. Some aligners (such

as Novoalign http://www.novocraft.com/products/novoalign/) and variant callers

(GATK HaplotypeCaller) are capable of indel alignment improvement.

After deduplication and indel realignment, BQSR is recommended to improve the

accuracy of base quality scores before the variant calling step (Cline et al., 2020).

BQSR uses the reference genome of the organism being sequenced and considers

any deviation from the reference as a sequencing error. In this way, it can model

accuracy dependency on genome regions. For example, when there are a series of

identical bases in a read, the sequencer accuracy decreases when calling the next

base whatever that base is. This is one of the biases BQSR looks for. Once BQSR
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has figured out the biases, it corrects the quality scores to adjust for these biases.

BQSR helps generate more accurate quality scores, which leads to more accurate

variant calling in DNA-seq.

Popular tools for performing the above post-processing steps are SAMTOOLS

(Li et al., 2009a), PICARD (http://picard.sourceforge.net/) and GATK (DePristo

et al., 2011).

2.2.2.3 Step three: Variant calling

The variant calling step detects different types of genomic variants, including SNVs,

INDELS, CNVs and large SVs. Here it is vital to distinguish somatic from germline

variants. Somatic variants are present only in somatic cells and are tissue-specific,

while germline variants are inherited mutations presented in the germ cells and are

linked to a patient’s family history.

A germline variant caller generally has a ploidy-based genotyping algorithm built

into it. For instance, one generally expects to see a variant in 50% of reads cov-

ering this site when the variant is heterozygous, or 100% when it is homozygous.

Therefore, the ratio of reads supporting the alternative allele can be used to call

a genotype for a germline variant. However, when handling somatic variants from

tumors, the assumption about which ratio to expect with a variant at a position is

no longer valid. That is because we have to deal with a whole host of other factors

that make somatic variant calling more challenging. First, tumor biopsies are not

pure. Normal admixture in the tumor cells leads to underestimation of variant allele

fraction (VAF). Second, tumors are generally composed of multiple subclones. The

subclonal variants may only occur in any fraction of the cells, meaning that the

VAF might vary from 50% to below 1%. Copy number variants and ploidy changes

shift the distribution of variant fractions even more.

There are many algorithms for calling variants from a DNA-seq alignment file. The

most widely used are SAMTOOLS (Li et al., 2009a), GATK (McKenna et al.,
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2010), MAQ (Li et al., 2008), and SOAPv2 (Li et al., 2009b). Variant callers

export variants in the variant call format (VCF), which contain variant positions and

related statistical information (i.e. quality score, depth, allele frequency, predicted

genotype).

Additional analysis steps are required if matched samples are used (i.e., tumor and

normal tissues from one individual). WES is widely applied in such cases with

the aim to detect in coding sequences somatic variants that impact a particular

phenotype. BAM files need to be generated for both matched samples. Software

are available that take this input for screening somatic variants specific to one

sample. Leading somatic variant calling software include SomaticSniper (Larson

et al., 2012), Strelka (Saunders et al., 2012), VarScan 2 (Koboldt et al., 2012),

MuTect2 (Cibulskis et al., 2013) and MuSE (Fan et al., 2016).

The performance of variant calling software is affected to varying degrees by several

factors (Krøigård et al., 2016). Firstly, somatic variant callers are challenged by the

conflicting needs of detecting true low-frequency mutations and avoiding false posi-

tives. Each caller algorithm presents its own version of this compromise. Next, the

alignment of the sequenced reads significantly influences variant calling accuracy.

Variants falling into low complexity regions such as repeats and variants grouped

in clusters are more difficult to detect correctly. In such cases, a high sequencing

depth results in a higher level of agreement among the different variant callers. Fi-

nally, variant callers tend to present a lower agreement in indel calling compared

to SNV calling, suggesting that indel calling poses greater challenges to the callers

(Krøigård et al., 2016).

2.2.2.4 Step four: Variant annotation

Once variants are identified, they need to be annotated to determine their poten-

tial functional impacts on genes. Variant annotation generally involves retrieving

information about the locus type, allele frequency and variant type. Researchers

usually focus on SNVs and INDELS that occur in coding regions, which account
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for 85% of known disease-causing mutations in Mendelian disorders and plenty of

modifications in complex somatic disorders (Gilissen et al., 2012). The functional

regions include exons, splice sites, and transcription regulatory sites.

The main tools for predicting the consequences of variants are ANNOVAR (Wang

et al., 2010a), Ensembl Variant Effect Predictor (VEP) (McLaren et al., 2016),

SnpEff (Cingolani et al., 2012), PolyPhen-2 (Adzhubei et al., 2010) and SIFT (Ng

and Henikoff, 2003). ANNOVAR is a powerful pipeline that integrates over 4,000

public databases for variant annotation, including 1000-Genomes, dbSNP, and the

NCI-60 human tumor cell line panel exome sequencing data. When variants are

shared by multiple transcripts, ANNOVAR returns only the most deleterious vari-

ant based upon a priority system. VEP determines the effects of regulatory region

variants (SNVs, insertions, deletions, CNVs or structural variants) on genes, tran-

scripts and proteins. For variants shared by more than one transcript, VEP lists

variant classifications in every transcript. SnpEff annotates variants according to

their genomic locations and predicts functional effect using an "interval forest" data

structure (Cormen et al., 2009). The interval forest is a hash of interval trees in-

dexed by chromosome, which is used to extract variants that intersect any interval.

The intervals are retrieved from a Gene transfer format (GTF) file, which could

be downloaded from GENCODE and Ensembl. Each interval tree is composed of

nodes. Each node includes a center point and all intervals overlapping the center

point. The interval forest makes it possible to perform an efficient interval search.

The VCF files containing genomic coordinates of variants are parsed. Each variant

queries the interval forest to find intersecting genomic annotations. SnpEff pre-

dicts variant effects in various genomic regions (intronic, untranslated, upstream,

downstream, splice site, intergenic and coding). In coding regions, effects include

synonymous or non-synonymous amino acid substitutions, start/stop codon gains

or losses, and frameshifts. PolyPhen-2 and SIFT are two leading machine learning

tools for predicting the damaging effects of non-synonymous mutations. PolyPhen-2

uses sequence conservation, structural information and SWISS-PROT annotation to

model and score amino acid substitution. SIFT also predicts whether an amino acid
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substitution affects protein function, but is based only on sequence conservation.

Several studies have shown that these tools do not always provide consistent results.

Comparative analysis showed that the concordance between different annotation

tools was lower than 50% (McCarthy et al., 2014). This inconsistency is explained

of course by the different scoring methods, but also by the way each tool defines non-

coding features. For instance, SnpEff uses 5 kb to define upstream and downstream

regions, while ANNOVAR uses 1 kb. In many other cases, variants in the non-coding

locations are bucketed into the “ignored” category. Therefore, the dependence of

annotation results should be dealt with care in a research context. More work is

required to improve variant annotation, especially for clinical use. Careful thought

needs to be given before deciding on a tool for variant annotation to achieve reliable

interpretations.

2.2.2.5 Step five: Variant filtration and prioritization

In oncology research, germline variants are separated and ruled out from somatic

variants based on their presence in the normal tissues. If no normal tissue is used,

both germline and somatic variants are processed by the same filtration and prior-

itization procedure.

Even with strong experimental design, DNA-seq data often predict many more

candidates with functional effects than verified experimentally. Genes that are fre-

quently mutated in individuals may turn out unrelated to disease. These genes can

be unusually long and thus be more likely to harbor variants or they can be located

in highly polymorphic regions of the genome. Moreover, variants of interest are sub-

ject to false positives due to contamination artifacts, sequencing errors, incorrect

alignment and limitations of scoring models. Assessing candidate variants in the

context of existing biological knowledge, taking known molecular functions into ac-

count, is an important step in producing a manageable variant set for further study.

One powerful screen for variant prioritization is to consider variants significantly

related to a phenotype (for instance a disease status) (Broekema et al., 2020). For
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this purpose, one can integrate different shreds of evidence, including the variant

gene product effect, variant recurrence in the studied population, and gene product

function.

A widely used and efficient method to prioritize variants is recurrence analysis.

The rationale behind recurrence analysis is that, if a variant occurs in multiple

patients independently, it might be a driver variant. If mutations occur in the

same gene more often than expected by chance in a given cancer cohort, it is rea-

sonable to postulate the gene is involved in the genesis of this cancer. Different

resources are available to estimate variant frequencies. The 1000-Genome project

(Siva, 2008) identifies variants with over 1% frequency in the sampled human pop-

ulations. NHLBI-ESP (Auer et al., 2016) discovers heart, lung, and blood disor-

der variants at a frequency lower than 1%. The Exome Aggregation Consortium

(ExAC) (Karczewski et al., 2017) is a data set that compiles the largest exome

sequencing datasets. The cohort includes various diseases besides normal samples.

The Genome Aggregation Database (gnomAD) (Karczewski and Francioli, 2017)

has aggregated over 15,000 WGS and over 125,000 WES datasets. Analyses of

this rich resource discovered different types of variants. The potential functional

impacts of these variants are also revealed, which help to identify driver variants

and to prioritize therapeutic strategies. Another widely used resource is dbSNP

(Sherry et al., 2001) that has been processed uniformly and collects a broad scope

of repositories of ‘small’ genetic variation. COSMIC (Forbes et al., 2006) is a ref-

erence set of mutations that have been discovered in cancer genomes. Similar to

dbSNP, COSMIC is also a mixed bag of various studies. COSMIC is especially

powerful in tackling cancer genomes. COSMIC contains both germline and somatic

driver variants, corresponding host genes and cancer types. If a germline or somatic

variant is found in COSMIC, it is more likely to be a driver variant.

Once a mutated (or recurrently mutated) gene is identified, one may start to

build biological and mechanistic hypotheses of what the mutation may be do-

ing. One way of achieving that is by mining medical variant databases. Clin-

Var (www.ncbi.nlm.nih.gov/clinvar/), a public archive reporting association be-
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tween genomic variants and diseases, classifies variants with clinical significance as

disease-causing variants based on supporting evidence. OMIM (http://omim.org) is

another excellent resource that integrates expert-curated and experimental verified

associations between genes and diseases.

To figure out if a gene is activated or repressed by a specific mutation, one can look

at the pathway network context. Gene Ontology (GO) (Consortium et al., 2001),

KEGG (Kanehisa et al., 2004) and REACTOME (Fabregat et al., 2018) may help

determine whether a set of genes contributes to specific functions or pathways.

Besides functional consistency, interactions between candidate genes and known

disease genes can also be considered. The STRING database (Szklarczyk et al.,

2019) is a powerful resource to address this problem (http://string-db.org), which

contains direct (physical) and indirect (functional) interactions between proteins of

5090 organisms.

2.2.3 Limitations of standard RNA-seq and DNA-seq analysis

pipelines

In the standard variant calling pipelines, genomic variants are identified by compar-

ing aligned reads to the reference. Reference genomes are produced from a single

individual or a limited group of individuals. This single reference does not represent

the genomic diversity and polymorphism of a population. This results in reference

bias, where reads from polymorphic regions are not handled correctly and are either

misaligned or discarded as unmapped reads. Incorrect alignments, in turn, lead to

false variant calls.

Several studies have underlined the drawbacks of relying on a reference. Lunter

and Goodson (Lunter and Goodson, 2011) pointed out the bias when dealing with

INDELS. They tested different aligners such as BWA, MAQ, and Stampy on a

heterozygous INDELS. All aligners underestimated indel proportions. Degner and

colleagues (Degner et al., 2009) also aligned reads containing heterozygous SNPs
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to the reference genome using MAQ and found a significant imbalance between

reads with and without the reference allele. Reads containing complex variants are

particularly challenging. For instance, structural variants may span more than 100

kb on the genome. To find these events, variant callers rely on detecting patterns of

discordant read pairs or split reads, which highly depends on the alignment accuracy.

Reads with multiple mutations or gaps are also challenging as their alignment is

highly dependent on aligners’ penalties for gaps and mismatches.

Most organisms on earth still do not have an available reference genome. Although

many species’ genomes have been sequenced and made available, these genomes

are often incomplete. In humans, for instance, the X chromosome was the only

complete human chromosome until 2020 (Miga et al., 2020) and the first complete

human genome including centromeres and telomeres has just been released in May

2021 (Nurk et al., 2021) and is not yet used as a reference. The latest official human

reference genome (HG38) still contains many unsolved regions with low complexity

or repeat sequences (Blaxter, 2010). Pathogenic variants within unsolved regions

are missed when using mapping-based methods. Yet, these regions are functional.

The recently completed genome introduces nearly 200 million bp of novel sequence

containing 115 potentially protein coding genes (Nurk et al., 2021). Studies have

proved the association between these regions and various diseases. For instance,

the shortening of telomeres induces chromosomal instability and causes cancers

(Mathieu et al., 2004).

Another drawback of using one unified reference is ignoring the diversity among

populations. Personalized characteristics exist in each individual’s genome, and a

unified reference genome does not account for this diversity (Sherman et al., 2019).

Sherman et al. analyzed 910 deeply sequenced African individuals and discovered

almost 10% more DNA than the current human genome. A collection of diverse

genomes cannot always cover this issue and is powerless for species without available

reference. Using incomplete or unified references will thus lead to the loss of critical

genetic information.
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Different aligners do not produce the same results. The Alignathon project demon-

strated that over 50% of alignments were inconsistent among 13 WGS aligners (Earl

et al., 2014). Inconsistencies among aligners result in part from the algorithm and

in part from parameters. So far, there is no standard parameter optimization pro-

tocol for mapping-based approaches. Neither default parameters nor alternative

parameters can guarantee alignments are correct at all sites across entire genomes.

Therefore, the quality of downstream analysis relying on the alignments may not

always be guaranteed.

Incorrect alignment has a crucial impact on clinical interpretation. For instance,

the human leukocyte antigen (HLA) genes have the highest diversity of any region

in the genome. It means mapping reads from HLA genes to the correct positions is

quite challenging for aligners. Brandt (Brandt et al., 2015) compared HLA geno-

types from the 1000-Genomes project and found nearly 20% of SNPs identified by

NGS are incorrect. These inaccurate variant-calling results lead to erroneous HLA

genotyping, an essential part of the management of autoimmune diseases and organ

transplant rejection.

While variation in healthy genomes is a challenge to aligners, the situation is even

worse in cancer genomes (Stratton et al., 2009). Genomic instability is the primary

characteristic of most cancers (Jackson and Loeb, 1998). Cancer genomes always

exhibit significant variation in the number and order of genetic elements due to their

high mutational frequency, frequent recombinations, and high heterogeneity. Viral

genomes also suffer from similar issues. A virus genome changes due to mutations,

horizontal gene transfers, and gene gains/losses (Duffy et al., 2008). As cancer

progresses or virus evolves, their genomes become quite different from the reference

genome, which of course impacts alignment.

Yet another problem with mapping-based protocols is related to computer resources:

standard pipelines are memory- and time-consuming. Typically, indexing the hu-

man genome requires nearly 5GB of memory and takes 3 hours of CPU time. Map-

ping and variant calling of a WGS dataset take about 100 hours of CPU-time with
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the leading pipeline. CPU time can be reduced by multi-threading, but at the cost

of greater memory consumption.

Researchers have of course noticed the limitations associated with reference genomes

and have proposed solutions. One approach is to update the reference genome so

that it captures the diversity of the entire population. Mapping and variant call-

ing accuracy improves if reads are aligned to a representative collection of genomes

(pan-genome) rather than a single linear genome (Victor et al., 2018; Sherman and

Salzberg, 2020). The pan-genome is defined as the combination of genomes, con-

taining all representative variants that occur in a species. By sampling a diverse

set of individuals, a generalization of such a representation can be assembled. Ef-

forts have been made to improve the reference through the addition of alternative

loci scaffolds and haplotype sequences (Ballouz et al., 2019). The current human

genome, GRCh38, includes alternative loci for genomic regions with high diversity.

However, using these improved reference genomes is challenging since most aligners

still lack the ability to take into account alternative loci. Furthermore, pan-genome

sequences are often padded by long stretches of bases that are identical to the pri-

mary assembly. This is a problem when using an aligner that is not alternate-locus

aware. Reads will get low MAPQ as they can map to the primary assembly and the

alternative loci. One is unable to call variants from such regions, as reads that can

map to multiple positions are usually dropped by aligners due to the low MAPQ.

Alternatively, a diverse collection of genomes can be represented using pan-genome

graphs (Paten et al., 2017; Li et al., 2020), where each individual genome is identified

as a path in the graph. Polymorphic regions create bubbles indicating diverse

genotypes at the corresponding position in the entire population. A general way to

construct a pan-genome graph is to generate a compacted De Bruijn Graph (cDBG)

composed of different genomes (Beller and Ohlebusch, 2016). The data structure

of cDBG is introduced in Section 2.3.3. The de novo assembly algorithms use

colored cDBG where different colors represent genome paths specific to individual

populations (Iqbal et al., 2012).
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Finally, the accuracy and reliability of alignments depend on software parameters.

These parameters, including substitution matrices, gap penalties and cutoffs for

mutation P-values, are either arbitrarily set by users or left in default mode, which

in any case impacts alignments (Wong et al., 2008). Despite awareness of this

problem, the necessity of optimizing alignment parameters is controversial. Even

though parameters can be tweaked to optimize alignments, no one can be sure the

“better-looking” alignment is the correct one.

Nevertheless, standard pipelines still have dominant positions in many aspects,

particularly in major cancer genomic projects such as Pan-cancer whole-genome

(PCAWG) analyses (The et al., 2020; Priestley et al., 2019). Standard pipelines

enabled systematic documentation of genetic changes at the whole-genome scale

and help discovered cancer drivers. The PCAWG analyses of 2,658 whole-cancer

genomes also reported that no drivers were identified in 5% of tumor patients, sug-

gesting that cancer driver discovery conducted by standard pipelines is not complete

yet (The et al., 2020).

2.3 Mapping-free approaches

In the previous section, we showed that alignment to a reference limits biological dis-

covery since it does not account for the full diversity of genomes and transcriptomes,

and is computationally expensive in most instances. Mapping-free approaches ad-

dress these limitations. Mapping-free approaches refer to any NGS analysis method

that does not rely on the alignment to reference sequences. The main mapping-free

approaches are applied in many fields including reads assembly and read contents

analysis.
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ACGA 2 1 0

CGAG 1 1 1

GAGT 1 1 1

AGTT 1 1 1

GTTA 1 1 1

TTAC 1 1 1
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The k-mer concept

T A C G

A k-mer (k=4)

Figure 4: The concept of k-mers. Each k-mer is a substring of a read with the

equal length of k.

2.3.1 k-mer approaches

An important class of mapping-free methods relies on the concept of k-mers. A

k-mer is a subsequence of fixed size k. For instance, Figure 4 shows a sequence of

length 11 decomposed into seven 4-mers. Generally, the next step is to count the k-

mers. K-mer counts can be used to quantify expression, estimate copy numbers, or

provide statistical support for variant callings. Quantification estimates are much

simpler and faster with k-mers than with sequencing reads. K-mer counts can

be easily computed and queried from raw sequencing reads instead of aligning to

a reference. The k-mer counting procedure is the basis of various mapping-free

applications. We introduce the major k-mer counting strategies in the next section.
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2.3.2 k-mer counting strategies

While k-mer counting may seem an easy task in the above figure, a genome is defi-

nitely much longer and an NGS sequencer output is even longer. Efficient tools have

been developed to address k-mer counting from large sequence files. These tools

can be roughly classified based on their implemented strategies: sorting, hashing,

enhanced suffix array, and memory- or disk-based.

By sorting all k-mers extracted from the dataset, identical k-mers are located at

adjacent positions and thus can be easily counted. Tools based on the sorting

approach include GenomeTester4 (Kaplinski et al., 2015), Turtle (Roy et al., 2014)

and scTurtle (Roy et al., 2014). These tools gather k-mers from the input data

and store them in a temporary array. K-mers are counted after sorting. These

tools also work slightly differently in terms of memory management. For instance,

Turtle compacts identical k-mers in a bucket to free up space. scTurtle also intends

to reduce memory usage. It applies a bloom filter to remove all k-mers with a

single occurrence before sorting and compaction. A Bloom filter is a space-efficient

probabilistic data structure designed to tell whether an element is present in a set in

a rapid and memory-efficient way. Bloom filters have much lower space complexity

than hash tables (Jiang et al., 2018).

Another k-mer counting strategy involves using a hash table where k-mers are stored

as keys, and counts are stored as values. A representative tool in this class is Jellyfish

(Marçais and Kingsford, 2011). For each k-mer, Jellyfish first searches for it in the

hash table. If the k-mer exists, its count is incremented; otherwise, the k-mer is

inserted into the hash table with a count of one. Jellyfish works with multi-threads

and writes the hash table to disk when the hash table is full instead of doubling its

size in memory. A later, more efficient version of Jellyfish called Jellyfish 2 applies

a bloom filter to remove k-mers with a single occurrence.

Suffix arrays (Abouelhoda et al., 2004) are another approach to save memory. This

strategy first divides the sequence into smaller distinct partitions, which are further
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decomposed into k-mers. The k-mers in each partition are counted based on the

longest common prefix constructed from an enhanced suffix array. Finally, a final

count is calculated by merging all distinct partitions. A representative tool in this

class is Tallymer (Kurtz et al., 2008), which was designed to annotate large plant

genomes.

In contrast to these in-memory algorithms, disk-based approaches, of lower mem-

ory requirement, were developed to manipulate large genomes such as the human

genome. Sequences are divided into k-mers and processed in chunks that are further

stored on disk to free up memory. Generally, disk-based approaches first estimate

the number of chunks, the size of the hash table based on disk size and the number

of k-mers. In the next step, k-mers are assigned to a hash table. Once the hash

table is full, k-mers are counted and dumped to disk so the memory is released

and new chunks can be loaded iteratively. Disk-based k-mer counting tools include

KMC2 (Deorowicz et al., 2015), KMC3 (Kokot et al., 2017), KAnalyze (Audano

and Vannberg, 2014) and DSK (Rizk et al., 2013).

K-mer counting is a critical step in mapping-free approaches. A number of bioin-

formatics problems are addressed based on k-mer counting, including expression

quantification, copy number estimation and variant calling. As NGS technologies

develop, projects with tens of thousands of samples become commonplace. Count-

ing and storing such a large volume of data is a great challenge with the standard

pipelines. Memory- and time-efficient k-mer counting approaches provide oppor-

tunities to deal with large-scale genomic datasets with limited memory and disk

size.

The data volume of samples sequenced so far is of great challenge to computers’

storage and processing capacities. As the next-generation and third-generation se-

quencing technology develop, the analytic capabilities are confronting a considerable

challenge due to the computationally intensive alignment step. Mapping-free ap-

proaches significantly improve speed and applicability regarding various analyses,

including expression profiling, genetic variant calling, de novo genome assembly,
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phylogenetic construction, and taxonomic classification in metagenomic studies.

2.3.3 Applications of mapping-free approaches

As an alternative to the main pipeline presented in RNA-seq and DNA-seq, if a

reference genome or transcriptome is not available or cannot be trusted due to large

variations, sequencing reads can be assembled de novo. Assembly tools for DNA-seq

reads include ABySS (Simpson et al., 2009) and SOAPdenovo (Simpson and Durbin,

2012). Assembly tools for RNA-seq reads include StringTie (Pertea et al., 2015),

Trinity (Grabherr et al., 2011), SPAdes (Bankevich et al., 2012), Trans-ABySS

(Robertson et al., 2010), Bridger (Chang et al., 2015) and SOAPdenovo-Trans (Xie

et al., 2014). These de novo transcript assembly tools are particularly useful not only

when the reference is missing or incomplete, but also where aberrant transcripts (for

example, in tumour tissue) are of interest. Because de novo transcriptome assembly

can recover transcripts that are transcribed from regions missing from the known

reference (Mittal and McDonald, 2017; Haas et al., 2019). Novel transcripts can be

discovered that are crucial in cancer research.

The De Bruijn Graph (DBG) (Pevzner et al., 2001) data structure is widely used by

these assemblers and reduces the computational charge by breaking reads into k-

mers (words of size k) and building a directed graph representing overlaps between

k-mers (Miller et al., 2010). In this type of sequence management, the k-mers are

aligned against each other to obtain contiguous genomic sequences. The DBG is

traversed to identify the maximal non-branching paths, which are also called unitigs.

Then all unitigs are compacted into a single vertex. Finally, a compacted De Bruijn

Graph (cDBG) is constructed where nodes are unitigs and edges correspond to (k-

1)-overlaps between two nodes sequences (Chikhi et al., 2016; Marchet et al., 2020).

Compaction is an important data reduction step in most DBG based algorithms.

Once a cDBG is built, reads can be aligned to the graph and depth can be computed

for each path. During this procedure, one can also eliminate unsupported paths that

have no depth at all and may derive from the misassemblies.
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There are important limitations in de novo assembly software. Benchmarking stud-

ies comparing different assemblers show generally low genome integrity, high degrees

of fragmentation and low contig accuracy (Sutton et al., 2019; Limasset et al., 2016)

with these software. These limitations are particularly severe in situations of low

sequencing depth and the presence of genomic repeats. For instance, the human

genome has many repeats longer than NGS reads so that these repetitive regions

cannot be correctly resolved. Furthermore, sequencing errors are inevitable during

the sequencing process. And any sequencing error may introduce new branches

in the assembly process. Genomic repeats and sequencing errors thus increase the

complexity of DBG, which impacts memory requirements as it essentially depends

on the size of the DBG. Thus, de novo assembly is computationally costly and has

never been applied to large-scale studies.

A first-class of mapping-free approaches applied in RNA-seq data are so called

"pseudo-alignment" or "pseudo-mapping" methods aiming at transcript quantifica-

tion (see also Chapter 2.2.1.3). These software first create a k-mer index from the

transcriptome and then estimate the expression of a read using “pseudo-alignment”.

A read’s pseudo-alignment consists of finding the transcript(s) that the read is

compatible with. Contrary to normal read alignment, where aligners specify where

each read aligns, pseudo-alignment is done via a transcriptome DBG. Each node

in the DBG is a k-mer associated with a transcript or set of transcripts, which is

described as a k-compatibility class. In other words, a transcript that contains a

node k-mer would belong to the k-compatibility class of that node. To find the

transcript(s) a read is compatible with, the read is decomposed into k-mers, and

k-mers are hashed to different nodes in the DBG. Then we take the intersection

of all k-compatibility classes that a read is associated with. Finally, the possi-

ble transcript(s) a read comes from are inferred. Grouping reads belonging to the

same transcript allows estimating the expression levels of each transcript. This

pseudo-alignment-based quantification method is 10-100 times faster than standard

alignment-based methods and achieves high consistency with the best performing

alignment-based software (Everaert et al., 2017). Even though the reads include
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new transcripts coming from fusions, mutations, new splicing or novel genes, quan-

tification of the known genes won’t be influenced. An index of known genes is first

constructed by Kallisto or Salmon (Bray et al., 2016; Patro et al., 2017) based on

the transcriptome and then the reads are assigned to transcripts of known genes

based on the index.

Metagenomics has become a primary application of mapping-free approaches. The

two software with the highest accuracy and sensitivity for profiling microbial com-

munities are Kraken (Wood and Salzberg, 2014) and CLARK (Ounit and Lonardi,

2016), which work in a manner similar to pseudo-alignment. These methods first

construct a taxonomy tree from a pre-computed database and then map k-mers

from NGS reads to sequences in the tree, where taxa associated with the read form

a pruned subtree of the general taxonomy tree. Taxonomic labels are assigned to

individual reads applying a lowest common ancestor (LCA) criterion. This classifi-

cation procedure can be performed in large datasets with excellent accuracy, even

with unknown organisms.

Another mapping-free software for transcriptome analysis is DE-kupl, which was

developed in our lab in 2017 (Audoux et al., 2017b). DE-kupl aims at capturing

all k-mer variations in raw RNA sequencing data in a differential analysis setup.

DE-kupl is composed of five main steps: indexing, filtering, differential expression,

k-mer extension and annotation (if a reference genome is provided). First, DE-

kupl applies Jellyfish to index and count k-mers. Second, DE-kupl filters out the

low abundance k-mers representing potential sequencing errors. Then k-mers that

are differentially expressed between two conditions are selected by applying the

limma or DESeq2 methods (Law et al., 2014; Love et al., 2014) using a pipeline

specially adapted to very large data tables. Selected k-mers are assembled into

contigs, which are further annotated by alignment to the reference genome. Since

DE-kupl is reference-free, it enables the capture of any novel RNA or RNA isoform

present in the data at nucleotide resolution, including unmappable transcripts such

as RNAs from repeats and chimeric RNA. Contigs are further annotated and classi-

fied into different event categories, such as SNV, splice, intron, polyA, split, repeat,
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lincRNA, and unmapped. Audoux et al. validated the reproducibility of DE-kupl

using two independent human RNA-seq data sets from the Genotype-Tissue Expres-

sion (GTEx) (Lonsdale et al., 2013) and the Human Protein Atlas (HPA) (Uhlén

et al., 2015). Nearly 80% of the top differential k-mers identified by DE-kupl were

consistent between two datasets. Pinskaya et al identified novel unannotated lncR-

NAs forming a signature of prostate cancer using DEkupl (Pinskaya et al., 2019).

In this thesis, we applied DE-kupl to analyze two lung cancer cohorts and identify

lung cancer associated events (see Chapter 3.1).

iMOKA (Lorenzi et al., 2020) is another mapping-free software that enables com-

prehensive analysis of transcriptome from large cohorts. While DE-kupl finds dif-

ferential events between two conditions, iMOKA aims at making diagnostic and

prognostic classifiers. Some steps in the iMOKA workflow are similar to DE-kupl.

In the first step, iMOKA uses KMC3 to index and count k-mers instead of Jellyfish

(see Chapter 2.3.2 for differences). Then iMOKA screens k-mers using a Bayes

classifier, which evaluates each k-mer individually. In the next step, screened k-

mers are assembled into graphs. Component k-mers in a graph are likely generated

by the same biological event. Next, iMOKA annotates the k-mer graphs by com-

parison to a reference genome as in DE-kupl. The final list of highly informative

k-mers can be explored via a user interface. Finally, iMOKA provides a random

forest classifier that uses filtered k-mer graphs as features. Users can also build a

random forest classifier based solely on specific genomic features such as mutations

or gene expression. Lorenzi et al applied iMOKA to classify breast cancer subtypes

and identify events associated with the response to treatment in ovarian and breast

cancer.

KISSPLICE is a reference-free software that extracts AS events from RNA-seq data

(Kielbassa—Pavlos et al., 2011). KISSPLICE first constructs a cDBG. Sequence

and splicing variations in transcripts generate bubble structures in the cDBG. The

KISSPLICE algorithm detects all the bubble patterns in the cDBG. Then the de-

tected candidate bubbles are processed by filtration and classification. Bubbles

generated by SNPs exhibit two branches of equal length. Bubbles generated by
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AS are characterized by two common sites and a variable part. The common sites

are shared by different isoforms and the variable part indicates an AS. Genomic

indels generate bubbles with similar branch lengths as bubbles generated by splic-

ing events. Finally, sequencing reads are mapped to each branch of the bubble to

estimate the read coherence and depth. Even though KISSPLICE was initially de-

signed for AS detection, it was updated for SNP calling in RNA-seq specifically in

the more recent version (Lopez-Maestre et al., 2016). Two new modules of KISSDE

and KISSPLICE2REFTRANSCRIPTOME (K2RT) were introduced in the latest

version of KISSPLICE. KISSDE finds condition-specific SNPs and K2RT predicts

the amino acid change. KISSPLICE is the first approach toward transcriptome-wide

association studies in non-model species.

Mapping-free approaches are also used for genomic variant calling. Mapping-free

approaches allow direct variant genotyping from sequencing data and are 1-2 orders

of magnitude faster than the standard mapping-based pipelines. Improved speed

and high accuracy make these mapping-free approaches ideal for clinical use, where

large numbers of samples need to be processed in a timely manner. Mapping-free

variant calling tools include DISCOSNP (Uricaru et al., 2015), FastGT (Pajuste

et al., 2017), LAVA (Shajii et al., 2016) and MICADo (Rudewicz et al., 2016). Here

we present DISCOSNP as an example. DISCOSNP can detect isolated SNPs from

raw sequencing data. It is composed of two independent modules, KISSNP2 and

KISSREADS. KISSNP2 detects putative SNPs based on a DBG. Each SNP gen-

erates a bubble structure in the DBG containing couples of paths of length 2k-1.

KISSREADS filters out bubbles covered by no read. These bubbles come from sit-

uations where a sequence is mapped only by the beginning or end of reads. Such

sequence in a DBG path is generated by sets of k-mers that do not pertain to

the same read and thus form a chimeric sequence. KISSREADS also adds depth

and quality information on the remaining bubbles. DiscoSnp++ (Peterlongo et al.,

2017) is an extension of DISCOSNP, which only focuses on isolated SNPs. Dis-

coSNP++ runs much faster and uses less memory than DISCOSNP. DiscoSnp++

is designed for detecting not only SNPs but also small indels from raw sequencing
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data. In Chapter 3.2, I will present our own software for calling somatic variants

from raw sequencing data, called "2-kupl" and compare it with DiscoSNP++.

Phylogenomics is another area where mapping-free approaches play an important

role. Mapping-free methods enable direct phylogeny construction from raw sequenc-

ing data, regardless of genome assembly and alignment. These methods include

AAF (Fan et al., 2015), NGS-MC (Ren et al., 2016) and kSNP (Gardner et al.,

2015). Mapping-free methods have been widely used to infer phylogenetic rela-

tionships among eukaryotes, with resulting trees that were extremely close to trees

created from manually curated NCBI taxonomic databases (Criscuolo, 2019).

2.3.4 Limitations of k-mer and mapping-free approaches

K-mer based approaches analyze all sequences in an NGS dataset, including those

overlapping complex SNVs, SVs and repeats. From this perspective, these ap-

proaches have no false negatives; they retain all biological information. However, it

is sometimes difficult to highlight k-mers of biological interest from the noisy back-

ground. Taking into account k-mer counts and base quality to distinguish bona fide

variants from sequencing errors is a common challenge of these software. Rcorrector

is a software that aims at correcting sequencing errors from RNA-seq data (Song

and Florea, 2015). Rcorrector uses a DBG to compactly represent all trusted k-

mers whose occurrences in the input reads exceed a given threshold. Given the

non-uniform distribution of RNA-seq data, Rcorrector estimates a local threshold

at every position in a read. However, Rcorrector does not take into account the base

quality of input reads. Quake is another error correction program that incorporates

quality values and rates of specific miscalls to detect and correct sequencing errors

in DNA sequencing reads (Kelley et al., 2010). Quake detects many reads poten-

tially containing sequencing errors but it cannot find a valid set of corrections and

pinpoint the errors’ locations. These reads will lead to underestimated estimation

of error probabilities. Adequate sequencing depth is needed for Quake to decide

erroneous and genuine k-mers (e.g. >15X). Thus Quake does not make convincing
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corrections in low depth regions.

The dissimilarity between two NGS samples calculated based on alignment-free

methods is most likely overestimated compared to genome-based calculation (Tang

et al., 2019). The overestimation tends to be more severe in NGS datasets with low

sequencing depth. In real cases, feature vectors from two NGS samples differ due

to the stochastic distribution of reads along the genomes. Therefore, the measured

dissimilarity between two NGS samples sampled from the same genome can be

greater than zero. The bias introduced by overestimated dissimilarity between

NGS samples is a common problem for all alignment-free methods since it results

from the intrinsic stochastic distribution of short reads.

Pseudo-mapping RNA-seq quantification also has limitations. A study has com-

pared the accuracy of pseudo-mapping methods Kallisto (Bray et al., 2016) and

Salmon (Patro et al., 2017), mapping-based methods HISAT2+featureCounts (Kim

et al., 2015) and a customized pipeline TGIRT-map, for the quantification of vari-

ous transcripts (Wu et al., 2018). The study showed that both mapping-based and

pseudo-mapping quantification approaches performed similarly for most protein-

coding genes. However, accuracy was lower with Kallisto and Salmon for lowly-

expressed genes or small RNAs. Kallisto and Salmon did not perform well for

quantifying short genes with abundant biological variations and tended to underes-

timate their expression relative to mapping-based approaches.

In the field of DNA-seq variant calling, mapping-free methods do not outperform

mapping-based methods for variant detection, even though the former were able to

detect specific variants, such as SVs (Khorsand and Hormozdiari, 2021). A strength

of mapping-based methods is they can use more information to call a variant. In-

deed, alignments to references provide information such as genomic positions, vari-

ant types, nucleotide/amino acid substitutions and related database records, and

potential functional effects. Besides, mapping-based approaches can use haplotype

information, such as in the haplotypecaller algorithm used by GATK, which enables

strong checks for false positive SNVs.
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While mapping-based approaches are still the leading solutions for most biolog-

ical problems, the development of mapping-free approaches is still in its infancy

and holds considerable potential for improvement. Most published articles about

mapping-free approaches are evaluated with individually selected and simulated

datasets. The absence of well-defined benchmarks covering various genetic events

and sequence divergence prevents users from choosing the best tool. In contrast,

mapping-based approaches benefit from well-validated benchmarks.

Nevertheless, mapping-free algorithms rapidly extend their application range. Is-

sues of sequencing data processing and storage seem to be particularly well ad-

dressed by the mapping-free methods and this is increasingly important with the

development of sequencing technologies, as larger sequence datasets are generated

and need to be processed and stored. With their higher computational efficiency

and capacity to detect a wider diversity of variants, mapping-free approaches are

becoming exciting complements to standard mapping-based pipelines.

2.4 Thesis objectives

My general goal in this thesis was to exploit the power of reference-free approaches

to discover novel variations in cancer transcriptomes and genomes. We aimed to

discover novel events from unannotated and difficult-to-map regions that potentially

play causal roles in tumorigenesis. When the thesis started, my host laboratory had

recently published DE-kupl, a reference-free software for the discovery of differential

events between sets of RNA-seq of experiments (see Chapter 2.3.3). DE-kupl had

been used only on small datasets. My first goal was to test its ability to find

differential events in a large cancer dataset of several hundreds of samples and to

assess the replicability of found events.

We then questioned whether a similar approach could be applied to variant analysis

in the context where two samples need to be compared (a normal and a mutated

sample). This is a very common problem, yet no reference-free software existed for
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this specific question. We also started from the premises of DE-kupl (i.e. perform-

ing k-mer counts in the samples to be compared) but the following part needed

to be completely remodeled since the problem was not anymore quantitative as in

RNA-seq analysis, but qualitative, that is to find events that were specific to the

mutated/tumor sample. We thus developed a specific pipeline to address this par-

ticular aspect. The resulting software, 2-kupl, is presented in Chapter 3.2. Since

this is a novel software, we paid special attention to the benchmark part. We in-

volved different datasets from bacteria and humans and different software in the

comparisons.
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Chapter 3

Results

3.1 The contribution of uncharted RNA sequences

to tumor identity in lung adenocarcinoma

YunfengWANG12, Haoliang Xue1, Marine Aglave1, Antoine Lainé 1, Mélina Gallopin1,
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3.1.1 Contribution

Our group previously developed a mapping-free software, DE-kupl, that processes

raw sequencing data of RNA-seq and detects transcriptional events associated with

a specific phenotype. The objective of this paper was to evaluate its ability to find

reproducible differential events in a large-scale dataset. To do so, I compared the
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results of differential analyzes performed at gene-level and using DE-kupl in different

cancer datasets. I used two lung cancer datasets and one prostate cancer dataset

as a control. Part of my development was aimed at comparing DE-kupl contigs

found in different datasets. While comparing gene lists from different analyses is

trivial, comparing unmapped contigs is not since there is no identifier to link two

contigs. Therefore, I constructed a graph-based approach to decide if two contigs

correspond to the same local event. If the answer is yes, this contig is considered

as shared between two datasets.

The result demonstrates that DE-kupl identifies replicable sets of gene- and contig-

level events between cohorts with the same phenotype regardless of sequencing

platforms and donor populations. We also investigated in depth transposable ele-

ments (TE) and other novel events detected by DE-kupl. Lung cancer subsets with

different levels of TE expression, possibly due to genome instability, were identified.

Candidate neoantigens were screened from intron and intergenic regions. We also

showed the association between various transcriptional events and the overall sur-

vival prognosis. In summary, we revealed a diversity of tumor-specific RNAs that

could not be identified by standard mapping-based approaches. We proved DE-kupl

as a stable and robust method for the exhaustive capture of transcriptional events.

3.1.2 Introduction

Over a period of 20 years, cancer transcriptomics has transformed our understand-

ing of tumor biology and led to improved tools for tumor typing, diagnostic and

outcome prediction (Gollub and Prowda, 1999; Parker et al., 2009; Margolin and

Lindblom, 2006). While first generation transcriptome analysis was based on DNA

microarrays with a focus on protein-coding genes, the current generation relies on

RNA-seq data, which promises to deliver a more comprehensive view of gene ex-

pression. However, in spite of its potential for transcript discovery, cancer RNA-seq

data is still utilized mostly to quantify the expression of annotated genes listed in a

reference transcriptome. This ignores a wide array of mRNA isoforms, non-coding
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RNAs, endogenous retroelements and transcripts from exogenous viruses and bac-

teria (Morillon and Gautheret, 2019). The quantity of information left unexploited

in non-canonical transcripts remains unknown. A number of studies have started

to address this question using publicly available cancer RNA-seq data, focusing

on specific transcript classes such as splice variants (Kahles et al., 2018; Vitting-

Seerup and Sandelin, 2019), lncRNAs (Iyer et al., 2015), snoRNAs (Gong et al.,

2017), bacterial RNA (Ouchenir et al., 2017) or viral RNA (Zapatka et al., 2020).

Other neglected sources of RNA diversity are the so-called blacklisted regions of the

genome that are too variable or repeated to be properly analyzed by conventional

approaches (Amemiya et al., 2019). To our knowledge, no attempt has been made

to extract and evaluate at once all this non-standard RNA information from tumor

RNA-seq data. We think this approach could be particularly valuable in cancer,

since every individual tumor harbors a unique transcriptome that departs from that

of normal tissues in multiple, unpredictable ways.

Recently we introduced a computational method, DE-kupl (Audoux et al., 2017b),

that performs differential analysis of RNA-seq data at the k-mer level. As this

method is reference-free and mapping-free, it identifies any novel RNA or RNA

isoform present in the data at nucleotide resolution, including poorly mapped tran-

scripts such as RNAs from repeats and chimeric RNA. Here we set ourselves to

evaluate all non-reference events discovered by DE-kupl in a comparison of normal

vs. tumor samples using lung adenocarcinoma (LUAD) as a test case. To mit-

igate false positives events inherent to gene expression profiling (Ioannidis, 2005;

Michiels et al., 2007), we focused on events that were replicated in two indepen-

dent datasets. This required the development of a dedicated protocol to identify

shared events in unmapped RNA sequences. Results revealed a collection of novel

tumor-specific unannotated lincRNAs, intron retentions and splicing events. Most

strikingly, a collection of endogenous retroelements (EREs) form a major class of

tumor defining transcripts. We also identified a subset of events with no expression

in normal tissues which could be candidate neoantigens. Finally, we identified a

set of transcript variants potentially related to survival. We would like to suggest

52



DE-kupl as a promising, comprehensive approach to cancer transcript profiling.

3.1.3 Materials and Methods

3.1.3.1 Datasets

LUAD-TCGA: 582 lung RNA-seq samples were downloaded from the TCGA database

with permission, including 524 lung adenocarcinoma (LUAD) tissues and 58 ad-

jacent normal tissues (Network et al., 2014). LUAD-SEO: The LUAD RNA-seq

dataset of Seo et al. (Seo et al., 2012) was downloaded from the SRA database

(accession: ERP001058). This dataset contains fastq files of 87 LUAD and 77 adja-

cent normal tissues. Only the 77 paired normal and tumor samples were analyzed.

PRAD-TCGA: For control, 557 Prostate RNA-seq datasets were downloaded from

TCGA with permission, including 505 prostate adenocarcinoma (PRAD) and 52

normal controls (Abeshouse et al., 2015). For the TCGA datasets, raw bam files

were converted to fastq format files using Picard tools (version of 2.18.16).

3.1.3.2 DE-kupl pipeline

DE-kupl was applied to the three datasets with the same parameters: in the filter-

ing steps, k-mers with abundance fewer than 5 (min_recurrence_abundance) and

present in no more than 10 samples (min_recurrence) were ruled out, and k-mers

exactly mapping to the main transcript of each gene were removed as in the origi-

nal DE-kupl procedure (Audoux et al., 2017b). In order to focus on non-canonical

transcripts, we masked all k-mers pertaining to the main transcript of each Gen-

code gene as in (Audoux et al., 2017b). Normalization factors for k-mer counts

were computed as the median of the ratios of sample counts by counts of a pseudo-

reference obtained by taking the geometric mean of each k-mer across all samples.

In the following, we will use these counts as a proxy to represent the expression of

the corresponding RNA fragment.
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For DE analysis, the version of DESeq2 available at the time of the experiment

was too slow for dealing with hundreds of samples and we found the faster “T-test”

option to lack sensibility. Hence we applied Limma Voom (Ritchie et al., 2015) to

millions of k-mers using a chunk-based strategy (suppl. methods). This was found

to perform 10 times faster than DESeq2. The performances of DESeq2, Limma

Voom and T-test for DE evaluation have been evaluated before (De Paepe, 2015).

Evaluations of k-mer counts were log-transformed and Limma Voom was used to

calculate log fold-changes and P-values. Retention thresholds for log2 fold changes

and P-values were 1 and 0.05, respectively. All k-mers passing the filtering process

above were merged into contigs and the contig table was saved as output. GC-

contents in "up" and "down" contigs in the PRADtcga dataset were verified and

did not present any bias (Table S1). High-quality contigs (topctg) were considered

as contigs with counts>10 in at least 15% of the smallest class (Normal or Tumor).

Gene-level expression was measured using Kallisto v0.43.02 and Gencode v34 tran-

scripts, followed by summing TPM values of transcripts from the same gene. Gene-

level DE analysis was performed using Limma and the same normalization pro-

cedure as above. Downstream analyses were conducted using R version 3.5.2.

Heatmaps were drawn using the complexHeatmap package (Gu et al., 2016).

3.1.3.3 Shared event identification

Contigs from distinct DE-kupl analyses were decomposed into their constituent k-

mer lists and a graph was constructed using the NetworkX Python package (Hagberg

et al., 2008), with k-mers as nodes and shared k-mers as edges. Contigs correspond-

ing to the same local event are expected to form a fully connected subgraph or clique

(Fig S1). We thus extracted all cliques to identify shared contigs. Hereafter we use

the ∩ operator to represent contigs shared between two datasets.
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3.1.3.4 Contig annotation

A uniform annotation procedure was applied to contigs from each independent

analysis (LUADtcga, LUADseo, PRADtcga) and to shared contigs (LUADtcga ∩

LUADseo and LUADtcga ∩ PRADtcga). Initially, differential contigs were mapped

and annotated with DE-kupl annotation (https://github.com/Transipedia/dekupl).

Briefly, DE-kupl annotation maps contigs to the human genome and reports in-

tronic, exonic or intergenic status, CIGAR string, IDs of mapped or neighboring

genes, Differential Usage (DU) status. A new repeat annotation field (“rep_type”)

was added based on Blast alignments of contigs to the DFAM repeat database

(Hubley et al., 2016) (see Suppl. Methods). The results of DEkupl-annot were then

loaded into R and submitted to further filtering and classification into event cate-

gories. Firstly, a count filter was applied to retain only contigs with a count of 10

in at least 15% of the smallest class (Normal or Tumor). Then a set of criteria was

applied to classify contigs into event classes comprising SNV, intronic, splices, split,

lincRNA, polyA, repeat and unmapped, as described in Table S3. Since the TCGA

datasets in this study are unstranded, antisense events were not called. Differential

usage (i.e. the relative change in expression of a local event relative to the expres-

sion of the host gene) was also evaluated for each event mapped to an annotated

gene. Besides the transcriptional categories, we also produced a new category of

"neo", which includes contigs that are only expressed in tumor tissues but silent in

normal tissues. All categories of contigs involved in this study were further selected

from the topctg.

3.1.3.5 Functional enrichment on intron retention events

Candidate intron retention events were identified based on the DE-kupl DU P-value

(computed by comparing the expression or the contig with that of the host gene).

Significant pairs of intron retention and host gene were selected. To illustrate the

biological functions of all these intron retention events with DU, we performed the

Gene Ontology biological process analysis using the clusterProfiler R package (Yu
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et al., 2012).

3.1.3.6 Sample clustering based on repeats

We used the K-means algorithm (MacQueen et al., 1967) to cluster LUAD pa-

tients into two main subgroups based on the expression of contigs matching AluSx,

L1P1_orf2 and L1P3_orf2 repeats. Clusters were then analyzed for enrichment

in clinical features, immune infiltration, Tumor Mutational Burden (TMB) and

Copy Number Variants (CNVs). Clinical features and immune infiltration were in-

cluded to analyze the potential differences between clusters. LUAD driver genes

were retrieved from the COSMIC Cancer Gene Census (CGC) list (Sondka et al.,

2018). Oncoplots were drawn using the maftools R package (Mayakonda et al.,

2018). The estimated TMB for each patient was computed using the total number

of non-synonymous mutations from the MAF file by 38 that is the estimated size

of the whole exome. Thus the unit of TMB is the number of somatic mutations per

megabase of interrogated exome sequence. The level 3 CNVs data was downloaded

from TCGA, which provides a mean copy number estimate of segments covering the

whole genome (inferred from Affy SNP 6.0). We visualized the CNV frequency dis-

tribution among 23 human chromosomes using the copynumber R package (Nilsen

et al., 2012). The ratio of gain and loss for each patient was estimated by the frac-

tion of segments indicating CNVs. Heatmap representations were produced with

ComplexHeatmap (Gu et al., 2016).

3.1.3.7 Survival analysis based on event classes

Since the LUADseo dataset doesn’t include survival information, we only performed

the survival analysis based on the LUADtcga dataset. The clinical information in-

cluding overall survival time and status was downloaded from the GDC portal

(https://portal.gdc.cancer.gov/projects/TCGA-LUAD). We performed both uni-

variate Cox regression and multivariate Cox regression on each event class to assess

the prognosis value of the differential events. Survival analysis was performed using
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the survival and survminer R packages (Therneau and Lumley, 2015; Kassambara

et al., 2017). Hazard ratios (HR) and P-values were calculated for each contig. Con-

tigs with HR>1 and P-value<0.05 were considered as potential risk factors. For

multivariate Cox regression, contigs were initially selected by cox-lasso regression

using the glmnet R package (Friedman et al., 2010) applied independently to each

contig class. The multivariate model was then constructed using selected. Patients

were divided into high and low-risk groups based on the median value of all risk

scores for representation in Kaplan–Meier (KM) curves (Kaplan and Meier, 1958).

3.1.3.8 Unsupervised cluster analysis

We applied Principal Component Analysis (PCA) and hierarchical clustering to

each event class. PCA analysis was performed with the factoextra R package (Kas-

sambara et al., 2017). Heatmap views were obtained using ComplexHeatmap (Gu

et al., 2016).

3.1.3.9 Sequence alignment views

To facilitate event visualization, we created "metabam" alignment files for tumor

and normal tissues from each cohort. To this aim, we randomly sampled 1M reads

from each fastq file of each subcohort and aligned the aggregated reads to the

genome (GRCh38) using STAR (Dobin et al., 2013) with default parameters. BAM

files were visualized using Integrative Genomics Viewer (IGV) (Robinson et al.,

2011).
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3.1.4 Results

3.1.4.1 Gene-level vs contig-level differential events

We performed tumor vs. normal differential expression (DE) analysis on two in-

dependent Lung adenocarcinoma RNA-seq datasets, from TCGA (LUADtcga) and

Seo et al. (LUADseo) and on a prostate adenocarcinoma dataset from TCGA

(PRADtcga) as a control. Each dataset was submitted to a conventional, gene-

level, DE analysis and a k-mer level DE analysis where all k-mers from annotated

genes were first removed and the resulting DE k-mers were assembled into contigs

(Fig 1A).

While the number of differential genes in the three comparisons ranged from 6,000

to 9,000, the number of differential k-mers was about a thousand times larger (2 to

12 millions). Assembly of k-mers into contigs reduced this number to about 400,000

differential contigs in each analysis (Fig 1B). For simplification, we will use terms

over-/under-expression when referring to contig counts with significant differences

as per the DE analysis.

We next compared the DE genes and contigs discovered in independent datasets to

identify shared DE events. While this process is trivial for genes, it is not for contigs,

since contigs found in each dataset have no standard identifier that could be used

to relate them. We thus implemented a graph analysis procedure that identified

shared contigs based on their common k-mers (Fig 1A, Fig S1). A final annotation

step identified contigs belonging to different categories (repeats, lincRNAs, splice

variant, polyadenylation variants, split RNAs, tumor-exclusive or “neo” RNAs) as

described in Table S3 and Methods. The numbers of shared elements slightly differ

between LUADtcga and LUADseo because a minority of elements are in a 2-to-1

or 1-to-2 relationship in the contig graph. When not specified, numbers of elements

will be given for the LUADtcga cohort.

Overall 160,610 differential contigs were shared between the two LUAD analyses
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Figure 1: (A). Computational pipeline used to infer differential contigs in each

tumor/normal cohort, followed by extraction of shared contigs and annotation.

(B). Sizes of RNA-seq cohorts analyzed and numbers of differential events ob-

served. (C). Summary statistics of differential contigs identified as shared be-

tween the LUADtcga and LUADseo analyzes. (D). Number of differential genes, k-

mers and contigs in each independent analysis and shared between analyzes. On

each row, lateral areas represent differential genes/k-mers/contigs found in each

independent analysis and the central area represents shared differential genes/k-

mers/contigs. Contigs are classified into different annotation groups.
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(Fig 1C). Over these, 120,822 contigs were considered of sufficient quality based

on counts and occurrence in a minimal number of samples (see Methods). 83% of

shared contigs were overexpressed in tumors vs. only 17% underexpressed (Fig 1C).

3.1.4.2 Event replicability

The replicability of differential event was generally lower for k-mer or contigs than

for genes. Fig 1D shows the number of DE genes and contigs shared by the two

independent LUAD analyzes, with contigs binned by annotation class. About 44%

of DE genes (3032 genes) were shared by the two LUAD analyses, compared to an

average of 15% for DE contigs (repeats: 3.2%, unmapped RNAs: 10%, alternative

polyAs: 13%, lincRNAs: 14%, alternative splices: 20%, retained introns: 20%).

Although the ratio of shared events was relatively low for k-mer analysis, it was

considerably higher than when comparing two unrelated pathologies (LUADtcga

∩ PRADtcga, Fig 1D), and this applied to all event classes. This indicates that,

although k-mer based DE events are noisy, a significant subset is replicable in

independent studies. Furthermore, we observed a strong correlation between the

fold-change value of DE contigs and the likelihood to be shared between cohorts

(Fig S2), demonstrating the non-randomness of high scoring, non-reference events.

3.1.4.3 DE contig localization, hypervariable genes

The majority of shared contigs are genic (83%) including intronic (45%) and 32%

carry SNVs or INDELS (Fig 2). These characteristics are induced by the initial

filter that removed k-mers matching reference transcripts, but retained any intronic

or SNV-carrying k-mer. Therefore a large number of SNV and intronic contigs are

just "passenger" events of DE genes.

More than 400 genes were matched by 35 or more contigs. We classified these

genes into two categories: for 296 genes, most contigs matched introns and were

up-regulated in tumors (Fig 2A, B, Table S5). These mostly correspond to the
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aforementioned "passenger" events. The second category is composed of 107 genes

we refer to as “hypervariable” as they tend to yield a large number of contigs

carrying SNVs, INDELS and larger rearrangements (Fig 2A, C, Table S5). The

largest class of hypervariable genes are IGK, IGL and IGH immunoglobulin genes,

which was expected given their inherent variability due to V(D)J segment recom-

bination and their expression by plasma B-cells which are abundant in the tumor

immune infiltrate (Thorsson et al., 2018), hence are seen as up-regulated in tu-

mors. Interestingly, those IG sequence variants are found expressed in different

patients and across the two cohorts, suggesting our approach can be used to profile

immunoglobulin repertoires, as performed recently with other RNA-seq datasets

(Mandric et al., 2020). To evaluate the accuracy of DE-kupl contigs from IG genes,

we selected all contigs mapped to one arbitrary IG gene (IGHV: 100 contigs) and

aligned them to IGHV contigs from the International ImMunoGeneTics Information

System (IMGT) (Lefranc et al., 2009). Ninety out of 100 contigs had significant

matches in the corresponding IMGT category extending over 90% of the contig

length (Table S6).

Other hypervariable loci were found in surfactant protein (SFTP) and Mucin genes

which are known to harbor a high level of polymorphism (Imielinski et al., 2017;

Swallow et al., 1987). We observed polymorphism not only in the form of SNPs,

but also in the form of splicing variations. Five SFTP genes alone combine over

9000 SNVs and 800 splice sites contigs, while 12 Mucin genes harbour 1324 contigs

including 42 splice variants (Fig S3A-B, Table S5). While SFTP contigs were all

underexpressed in tumors, Mucin contigs were mostly overexpressed (Table S5).

Mucins are immunogenic (Swallow et al., 1987) and are important biomarkers for

prognosis (Ning et al., 2020) and drug resistance (Aithal et al., 2018). Therefore

the existence of recurrent mucin variants overexpressed in tumors should be taken

into account in the development of these biomarkers and therapies. Finally, we also

observed hypervariability in CEACAM5 and KR19, two other prognostic biomark-

ers and/or immunotherapy targets (Wang et al., 2019; Thistlethwaite et al., 2017)

(Fig S3C, Table S5).
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LUADtcga ⋂ LUADseo

Figure 2: General properties of shared DE contigs in LUAD. (A) UpsetR plot of ma-

jor contig categories based on mapping location and presence of SNV or INDELS.

(B) 45 top genes by number of mapped contigs in the circled intronic category.

(C) 45 top genes by number of mapped contigs in the circled exonic+SNVindel

category. Numbers of contigs mapped to each gene are indicated.

3.1.4.4 Intron retention and other intronic events

We found intronic contigs with Differential Usage (DU) in 313 host genes, 290 (93%)

of which were up-regulated in tumors (Table S4). 70% of the host genes were also

up-regulated, thus the apparent overexpression of these intronic sequences may have

been confounded by overexpression of host genes. However, 30% of host genes were

not overexpressed, and in 103 cases, intron and host gene expressions varied in oppo-

site directions (93 introns up and 10 introns down). Our annotation pipeline did not

differentiate intron retentions (as shown for example in Fig S4) from transcription

units occurring within introns (example in Fig S5). We observed intron retention

events in lung cancer drivers EGFR and MET (Fig S6 and Fig S7). In EGFR, the

retained intron was located between exons 18 and 19, just upstream of the principal

oncogenic EGFR mutations located in exons 19-21. Intron retention before exon 19

would likely produce a truncated form of EGFR compatible with oncogenic activa-

tion. Fig 3A shows the 20 intronic events with the most significant DU P-values. All
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Figure 3: Intronic event analysis. (A) Log2FC values of the top 20 intronic events

(DU). Red and blue colors represent the expression fold change of intronic contigs

and host genes, respectively. (B) Gene Ontology functional enrichment. Color

represents the P-values and size represents the ratio of genes.

show opposite directions of intron and gene expression. Gene Ontology enrichment

analysis indicates genes with intronic events are enriched for inflammation and im-

mune response pathways involving neutrophil and T cells. Fig 3B, suggesting these

events may come from regulations in the tumor microenvironment rather than in

the tumor itself.

3.1.4.5 Novel tumor-specific lincRNAs

The lincRNA category is of particular interest as it contains novel RNAs that do

not map any annotated gene. Especially, tumor-specific lincRNAs can be a source

of novel biomarkers or neoantigens. Hereafter counts are given for LUADtcga, and

in parenthesis for LUADseo. Overall we identified 885 (662) DE lincRNA elements.

83% (63%) were overexpressed in tumors and 73% (74%) were also annotated as

repeats. The average length of contigs annotated as lincRNA was 137 nt (189 nt),

however actual transcription units were generally longer as most were composed of

multiple contigs, as shown in the examples in Fig S8 and Fig S9. No more than one

third of the flanking genes of lincRNA contigs were differentially expressed, indi-
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cating that lincRNA expression was most often independent from that of flanking

genes.

3.1.4.6 Expressed Repeats

The dominant paradigm on endogenous retroelements (EREs) expression is that

EREs are mainly expressed in germline and embryonic stem cells while they are re-

pressed in differentiated somatic cells. However recent studies showed expression of

EREs in somatic cells is more common and heterogeneous than expected(Larouche

et al., 2020). Repeat-containing reads are difficult to analyze by RNA-seq standard

pipelines due to ambiguity in the alignment process. We thus questioned whether

our alignment-free procedure could help reveal these events.

From the initial set of 50572 contigs annotated as repeats (Fig 1C), we selected a

high quality subset of 10341 contigs over 60 bp in size and with expression above

a set threshold (see Methods). Of these, 87.7% were up-regulated in tumors and

12.3% were down-regulated (Table S4).

Table 1 shows the distribution of contigs per repeat family. Most repeats correspond

to LINE-1 and Alu family sequences. The most frequent repeat overall is L1P1, a

LINE-1 of the L1Hs family which is the only retrotransposition-competent EREs

in the human genome (Rangwala et al., 2009). L1P1/L1Hs elements, as well as

human endogenous retrovirus (HERV) were almost exclusively over-expressed in

tumors, suggesting tumor-specific activation of these elements. In contrast, Alu

elements, which are often expressed as part of protein coding genes, were either

over- or under-expressed in tumors.

To investigate the expression status of various types of repeats from a global perspec-

tive, we drew the expression heatmap of the top 60 types of repeats that contribute

more contigs among the whole repeat types. For each type of repeats, we first

selected the most representative contig with the highest absolute value of log2FC.

Then we collected 60 contigs corresponding to 60 repeat types. The heatmap graphs
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Table 1: Summary of top 20 repeat types with the most contigs from LUADtcga

rep_type contigs Up in tumor Down in tumor SNVs protein_coding lncRNA

L1P1_orf2 755 754 1 568 233 166

AluSx 455 369 86 250 299 60

FLAM_C_1_143 316 252 64 128 216 38

L1P3_orf2 302 288 14 189 109 82

AluJb 276 227 49 119 189 28

LSU-rRNA_Hsa 264 259 5 249 51 185

AluSz6 174 143 31 74 115 25

AluSp 147 105 42 84 85 18

PRIMA4-int 123 92 31 38 92 8

L1PB_orf2 118 116 2 44 52 26

L1P1_5end 115 115 0 70 39 32

MIR_1_262 111 98 13 10 90 15

AluJr4 110 90 20 47 69 20

AluY 110 79 31 68 59 12

L1HS_5end 109 109 0 65 31 19

L1PREC2_orf2 106 103 3 37 29 32

HERVH 105 96 9 30 19 52

AluSz 104 91 13 61 62 13

L1M3_orf2 89 88 1 5 49 16

AluJr 86 66 20 30 48 14

of LUADseo and LUADtcga can be seen in Fig 4A-B.

To identify repeats most contributing to tumor identity, we submitted the repeat

expression matrix to Principal component analysis and ranked contigs according

to their contribution to each PCA axis. We selected the top 20 contigs from the

first three axis and plotted their expression (Fig 4C-D). The repeats that most con-

tributed to PCA axes were L1P1 and LSU-rRNA. These repeats displayed a highly

heterogeneous expression, especially in tumor tissues, delineating clear tumor sub-

groups with high or low L1P1 and LSU-rRNA expression in both LUAD datasets.

LSU-rRNA (rRNA large subunit) had different behavior in LUADtcga (almost al-

ways overexpressed in tumors) and LUADseo (either over- or under-expressed in

tumors). This inconsistency suggests that LSU-rRNA quantification may be af-

fected by sample or library preparation procedures, without completely excluding

a biological origin.

To further investigate repeat-based patient subgroups, we performed clustering of
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Figure 4: Expression of repeat-containing contigs. Contig expression level is rep-

resented from blue (lowest) to red (highest). (A-B) Top up-/down-regulated con-

tig (ranked by fold change) for each repeat type. (C-D) Contigs most contributive

to sample clustering. PC_1-3 indicate top contigs from PCA axes 1-3. (A-C) LU-

ADseo dataset. (B-D) LUADtcga dataset.
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tumors based on the most frequent repeat elements in Table 1: AluSx, L1P1_orf2,

and L1P3_orf2 (as FLAM repeats are a family of Alu-like monomers that give birth

to the left arms of the Alu elements, we did not account for FLAM_C_1_143).

K-means clustering with k varying from 2 to 4 groups consistently found two major

subgroups: subgroup 1 ("repeat-low") displayed generally low expression of Alu

and L1 repeats compared to subgroup 2 ("repeat-high") (Fig 5A).

We tested the repeat subgroups for enrichment in clinical and molecular features.

We observed no difference between subgroups in terms of age, gender, tumor stage,

overall survival (OS), and vital status, but found more smokers in the repeat-high

group (Wilcoxon P=0.02). We then assessed the immune cell contents of samples

based on gene expression using CIBERSORT. The repeat-high subgroup had lower

proportions of dendritic cells, macrophages, mast cells, monocytes and CD4+ T

cells and overall immune content than the repeat-low subgroup (Fig 5B).

We further related the two repeat subgroups with somatic variations obtained for

TCGA patients Fig 6. Patients in the repeat-high group were more frequently mu-

tated in drivers CSMD3, TP53, PTPRD, PTPRT, GRIN2A, EPHA3, and MB21D2

(Fig 6A, Fisher P<0.05) and had a significantly higher TMB (Wilcoxon P=1.5e-07)

(Fig 6B). In addition, patients of the repeat-high group tend to present a higher

ratio of CNVs than other patients (Wilcoxon P=5.5e-05 for gain; P=0.019 for loss)

(Fig 6C). In summary, "repeat-high" tumors associate with lower immune infil-

tration, more frequent smoking, and higher genome instability than "repeat-low"

tumors.

In addition to the annotated repeats, DE-kupl identified 4762 contigs (4497 up, 265

down) with multiple genome hits but no match in the DFAM repeat database (Table

S4, Suppl. files). Notable sources of unannotated repeats are Mucins, immunoglob-

ulins and multicopy gene families such as NBPF and TBC1. These repeats are

shared between two cohorts and thus represent robust events of (mostly) overex-

pressed RNA fragments in tumors that would hardly be noticed in regular RNA-seq

analysis due to their low mappability.
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Figure 5: Clustering of TCGA patients into two subgroups based on Alu and L1P1

repeat expression. (A) Heatmap of repeat expression, grouped by Alu and L1

classes. Subgroups were defined by K-means. (B) Variation of immune features

between subgroups. The red and blue represent the repeat-high and repeat-low

subgroups, respectively. P-values are computed by Wilcoxon test.
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Figure 6: Somatic mutations in the two repeat subgroups in LUADtcga cohort.

(A) Fraction of patients with driver mutations for 20 COSMIC LUAD drivers. (B)

Mutational burden. Red and blue represent the repeat-high and repeat-low sub-

groups, respectively. (C) CNV frequency distribution between two subgroups.

Lightblue and orange represent amplification and deletion of segments. Red and

blue represent repeat-high and repeat-low subgroups.
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3.1.4.7 Neoantigen candidates

Genome instability in tumors generates a large amount of transcript alterations

(mutations, aberrant mRNAs and lncRNA isoforms, chimeras) which, if translated,

can produce peptides recognized as neoantigens by the immune system, triggering

antitumor immune response. These novel tumor-specific antigens are the object

of active investigation for immunotherapy and tumor vaccine development. Proto-

cols for neoantigen discovery usually start from a list of nonsynonymous somatic

mutations identified from WES or WGS libraries and whose expression is con-

firmed by RNA-seq. Candidate mutated peptides are then submitted to an epitope

presentation prediction pipeline (Gopanenko et al., 2020). This protocol predicts

neoantigens from annotated and mappable regions. However, neoantigens can be

produced from any transcript, including non-coding ones such as lncRNAs and re-

peats (Ouspenskaia et al., 2020; Laumont et al., 2018). Therefore we thought our

reference-free approach could be a good source for such elements.

We considered as neoantigen candidates DE-kupl contigs with zero expression in

normal tissues. To focus on candidates shared by several patients, we further re-

quested neoantigen candidates to be expressed in at least 15% of tumor samples.

This selected 2375 contigs in the LUADtcga dataset and 1507 in the LUADseo

dataset. Candidate neoantigens were mostly found in categories SNVs, introns, re-

peats and lincRNA (Table 2). There were 469 candidate neoantigen repeats in LU-

ADtcga (hereafter "neo-repeats") (Table S4). Fig 7 shows the expression heatmap

of these neo-repeats in the LUADtcga and LUADseo datasets. Expression in normal

tissues of the LUADseo cohort was not always zero as this was not a prerequisite.

Of 469 neo-repeats in the LUADtcga dataset, only 71 (15%) were also silent in all

normal tissues of the LUADseo dataset. We define these contigs which are silent in

normal samples in both cohorts as strictly tumoral.

Other major types of neoantigen candidates included SNVs (1235 in LUADtcga,

132 strictly tumoral). Other strictly tumoral contigs included 29 intronic and 50

lincRNA sequences (Table 2). The capacity of some of these strictly tumoral contigs
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Table 2: Number of candidate neoantigens in different categories.

category LUADtcga LUADseo shared neos

Repeats 469 599 71

SNVs 1235 1383 132

Introns 405 440 29

lincRNAs 164 260 50

to be translated and processed by the epitope presenting machinery remains to be

evaluated.

3.1.4.8 Novel RNA elements as prognostic indicators

To discover new RNA elements associated with prognosis, we obtained overall sur-

vival (OS) data for the TCGA cohort and performed univariate Cox regression on

shared DE contigs of each class. 45 contigs were significantly related to OS after

multiple testing adjustment (Table S7, Table 3). OS-related contigs are mostly

enriched in repeats (P=1.419e-05, Fisher’s exact test). Four human endogenous

retrovirus (HERV) elements are included in the top 10 most significant OS-related

repeats. HERV elements were also among the top tumor-specific repeats in Ta-

ble 1. OS-related repeats also include 21 Alu and L1 family elements (AluSx and

L1P3_orf2), but these are of different types than the L1 and Alu elements found

to distinguish tumor and normal tissues in our above PCA analysis.

We then performed multivariate Cox regression using sets of contigs selected by lasso

regression within each category, with repeats separated into 3 subgroups (Table S8).

Kaplan–Meier representations are shown in Fig 8. Models based on annotated and

simple repeats had the best prognostic power (log-rank P=2e-16, 2e-13, respec-

tively). The "annotated repeat model" was based on 12 contigs, including 6 L1 and

3 HERV, reinforcing the relevance of these repeats for prognosis.
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Figure 7: Expression heatmap of candidate neoantigen in repeats. "Neo-repeats"

were screened from LUADtcga and validated using LUADseo. (A) Expression of

neo-repeats in the LUADtcga dataset (B) Expression of neo-repeats in the LUADseo

dataset.

Table 3: Survival significant events in univariate Cox regression

event class OS-related hazard ratio>1 hazard ratio<1 Enrichment P-value

repeat 35 16 19 1.419e-05

lincRNA 5 3 2 0.22

SNV 1 0 1 0.37

splice 3 1 2 0.002

split 1 0 1 0.33
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Figure 8: KM curves for multivariate survival models per class of event. Patients

in high and low-risk groups are shown in red and blue, respectively. Repeat events

were separated into annotated, new and simple repeats. Six categories with more

lasso-selected contigs were also included (Table S8). Category "split" is not shown

as it contains only one contig after lasso selection.
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3.1.4.9 Noise from errors in highly expressed genes

The number of DE contigs in our analysis is at least an order of magnitude higher

than the number of differentially expressed genes. One possible reason is DE-kupl

identifies local events, which means each contig corresponds to one isolated event,

except when two variants occur closely with a distance smaller than k. Therefore,

a longer gene composed of multiple exons and introns may contribute to more DE

contigs. Another possible reason is the high expression levels of genes. If a gene

is highly expressed in tumors, it has a higher chance to introduce more variants

that can be detectable by statistical methods. To evaluate this effect, we computed

correlations between numbers of contigs and expression of host genes. Fig 9A shows

genes with higher expression induce more contigs. However, when considering only

shared contigs, the correlation coefficient is strongly reduced (Fig 9B), suggesting

shared contigs are substantially less noisy than total contigs.

To figure out which type of event is most affected by highly expressed genes, we

selected the 1% most highly expressed genes and grouped their derived contigs

into different classes (Fig 9D). We found that novel repeats account for a larger

proportion than the other events. The events introduced by highly expressed genes

are strongly enriched in the novel repeats with a Fisher exact test P-value of 7.533e-

11. The category of SNVs whose ratio is 3.1% in the pie graph is also significantly

enriched (P-value = 1.459e-06). Despite a high ratio of 12.2%, the category of

annotated repeats is not significantly enriched due to its large number. No matter

annotated or novel repeats, they have multiple hits on the genome. Therefore it is

reasonable that these repeats are correlated with highly expressed genes. From this

perspective, the high expression estimates of genes may also be due to the inclusion

of repeat regions, which leads to an over-estimation of gene counts.
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Figure 9: Noise from highly expressed genes. (A) Correlation of gene expression

and numbers of contigs in the total contig list (B) Correlation of gene expression

and numbers of shared contigs (C) MA-plot showing the correlation between gene

expression and fold change. (D) Percentage of contigs contributed by the top 1%

highly expressed genes. Gene expression are log- and size-normalized. Red lines

show linear regressions. R and P-values are computed with Pearson correlation.
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Figure 10: Principal component analysis of samples based on transcriptional

events. Each panel represents one transcriptional category. The normal and tu-

mor samples are marked using blue and yellow, respectively. Confidence ellipses

were added around each group.

3.1.4.10 Event-based sample clustering

To investigate whether the different event classes could efficiently classify tumor

and normal tissue, we performed PCA analysis of samples using each class of contig

(Fig 10). Tumor and normal tissues could be clearly separated based on SNV,

splice, intron, and lincRNA event classes alone. On the other hand, event classes of

repeat, polyA, split and unmapped did not achieve clear separation of tumor and

normal tissues. This phenomenon is consistent in both cohorts.
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3.1.5 Discussion

Using reference-free analysis of LUAD RNA-seq data, we identified a large set of

unannotated RNA variations that were replicated in two independent LUAD co-

horts. We classified these variations based on their genomic location, mapping

structure and repeat content. In this article we did not systematically analyze all

contig classes but focused instead on hypervariable genes, repeats, lincRNAs and

intronic elements. Besides these, a number of splice variants, chimeras, exogenous

(non-human) sequences were found differentially expressed and could be pursued

further.

A defining class of variation involved the expression of endogenous repeats. The

expression of L1 and Alu repeats defined two major tumor subgroups. The subgroup

with higher L1/Alu expression was associated with more frequent mutations in P53,

a higher mutational and copy number burden and a reduced immune cell infiltrate.

This is consistent with the previous finding that involved P53 in the control of

retrotransposition (Jung et al., 2018) and correlated L1 retrotransposition with a

repressed immune environment (Jung et al., 2018; Zhang et al., 2020b). TE mobility

can also lead to genome instability. Random TE integrations result in insertional

mutagenesis and genomic structural variants including CNVs (Lee et al., 2012).

Besides their capacity to stratify patients, expressed repeats had significant prognos-

tic power. Multivariate signatures composed HERV and L1 expression, or of simple

repeat expression separated patients into clear survival groups. HERV expression

has been sporadically involved in various cancer types (Bannert et al., 2018), and

was recently associated with poor prognosis in colorectal cancer (Golkaram et al.,

2021).

A limitation of our approach for TE analysis is that transcripts are not fully as-

sembled and thus the nature of elements, whether expressed as fully functioning

retroelements or as part of mRNA or lncRNAs cannot be systematically established.

Nonetheless, a fraction of DE contigs are long enough to enable unambiguous map-
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ping on the human genome, hence their origin could be further explored, including

if coming from novel insertion events.

Another area where reference-free approaches have a high discovery potential is the

detection of neoantigens for the development of antitumor therapies and for patient

orientation in immunotherapy. We found potential sources of shared neoantigens in

repeats, lncRNAs and splice variants of mRNAs. Tumor-specific neoantigens have

previously been identified from repeats and supposedly non-coding regions using

mapping-based strategies (Smith et al., 2019; Laumont et al., 2018). However, we

think our approach has more potential as it collects all events independently of their

origin, including from unmappable or profoundly rearranged regions. Therefore we

have a better chance to uncover sources of neoepitopes whatever their origin. A

next obvious step would be to evaluate all TSA candidates for presentation by the

MHC class I complex. We focused here on shared events found in at least 15% of

tumors, therefore these candidates are of particular interest since their targeting by

antitumor therapy would potentially benefit more patients.

Reference-free analysis has other benefits. First, it is by essence an integrative

method as it combines genomic and transcriptomic variation into a single expression

matrix that can be analyzed in multiple ways. An attractive application of such

matrices is for building predictive models integrating multiple event classes. We

(Nguyen et al., 2021) and others (Lorenzi et al., 2020) have initiated this kind

of approach with very promising results. Second, reference-free methods could be

particularly attractive in meta-transcriptomics projects where RNAs are captured

from an environment containing unknown bacterial, archaeal or eukaryotic species.

Our protocol guarantees that any RNA that is specific to a sample subset will be

captured independently of its origin.

Future developments could use paired normal-tumor samples to systematically col-

lect all tumor-specific events at the patient level, using a simple k-mer count filter

instead of differential expression statistics. A recent alternative for patient level

variant detection is Mintie (Cmero et al., 2020) which performs de novo assembly
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of reads from a tumor sample and differential expression analysis of the assembled

transcripts against a reference transcriptome.
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3.1.6 Additional Files
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analysis #1
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analysis #2

shared contigs 
from analysis #1graph of common k-mers
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from analysis #2
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Figure S1: The graph-based protocol detecting shared contigs between TCGA and

SEO datasets

Table S1. Nucleotide contents of DE-kupl contigs for the TCGA LUAD dataset

Table S2. Description of event categories extracted from DE-kupl-annot tables

Table S3. General characteristics of contigs shared between LUADtcga and LUAD-

seo

Table S4. Summary statistics for all event categories in contigs shared between

LUADtcga and LUADseo

Table S5. Genes with more than 35 mapped contigs (shared LUAD contigs. Col-

ored columns indicate ratio of contigs in said categories)

Table S6. Blast results of 100 contigs mapped to IGHV genes

Table S7. Univariate Cox regression results of all categories

Table S8. Multivariate Cox regression results of all categories
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SEO datasets
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Figure S3: Hypervariable genes in our analysis
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Figure S7: The IGV view of an intron retention in gene MET
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Figure S8: IGV view of a lincRNA element overexpressed in tumors. Each frame

shows a metabam file composed of randomly sampled reads corresponding to the

subcohort indicated on the left panel
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Figure S9: IGV view of a lincRNA element overexpressed in tumors. Each frame

shows a metabam file composed of randomly sampled reads corresponding to the

subcohort indicated on the left panel
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3.2 2-kupl: mapping-free variant detection from DNA-

seq data of matched samples
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3.2.1 Contribution

This article was accepted for publication at BMC Bioinformatics on May 11, 2021.

Herein, I developed a mapping-free approach called 2-kupl for calling somatic vari-

ants from two matched samples using DNA-seq data. I built the framework of

2-kupl composed of two parallel paths and each module inside. The two paths are

aimed at detecting isolated mutations and all other types of variants. The indels,

structural variants and multiple mutations are handled by the second path.

In 2-kupl, I introduced two new concepts that are “cs-kmers” and “ct-kmers”. The

cs-kmers refer to the case-specific k-mers that are only present in the case sample. A

ct-kmer refers to the counterpart k-mer of each cs-kmer with only one mismatch. A

minimizer-based hash table is applied to index cs-kmers and match to ct-kmers. The

mutant contigs and the corresponding putative references can be obtained through

assembling cs-kmers and ct-kmers parallelly. By aligning the mutant contig to the

corresponding putative reference, 2-kupl can decide the variant type and relative

position without using the reference genome. Meanwhile, statistics such as allele

frequency can be estimated based on the counts of cs-kmers and ct-kmers, which is

parallelizable.
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I also implemented the second path for detecting variants other than single muta-

tions. The cs-kmers corresponding to such variants can be retained and merged to

mutant contigs. However, no ct-kmers can be matched due to violation of the "one

mismatch" principle. I utilized a thirt-party software of BBDUK to retrieve reads

and infer the reference, which is also parallelizable.

I downloaded the simulated datasets to evaluate the performance of 2-kupl. Other

mapping-free approaches and standard mapping-based approaches are involved and

compared with 2-kupl. The comparison demonstrates that 2-kupl performs bet-

ter than mapping-free variant callers. 2-kupl also achieves close accuracy as the

leading mapping-based variant callers but with much shorter running time. Fi-

nally, I applied 2-kupl on large-scale prostate cancer patients to detect recurrent

variants/genes and novel events missed by canonical pipelines. The source code of 2-

kupl is publically available in the Github repository https://github.com/yunfengwang0317/2-

kupl.

3.2.2 Introduction

Searching for genomic variants is a fundamental aspect of medical research, whether

in the study of Mendelian diseases or of somatic, cancer-related alterations (Li et al.,

2017). While certain variants result in gene dysfunction and disease (MacArthur

et al., 2014), others are largely asymptomatic but give rise to neoantigens rele-

vant to immune escape and therapeutic efficacy or treatment (Jiang et al., 2019).

Genome variants are also of interest in microbiology to analyze the differences be-

tween microbial strains (Shiloach et al., 2010) and reveal mechanisms underlying

phenotypes. In this study, we address the problem of finding genomic differences

between a matching pair of high throughput DNA sequencing (DNA-seq) datasets

from the same individual (human somatic variation) or from two bacterial strains.

Genomic variants include mutations, indels and structural variants (SV). Mutations

and indels can alter genes by disrupting the genetic code, while SVs, by pulling

86



distant regions together or splitting one region into segments, can create chimeric

genes or have a broader impact on whole chromosomal regions (Hurles et al., 2008).

Variants are typically detected by whole-genome (WGS) or whole-exome (WES)

sequencing through comparison with reference sequences. Aligners such as BWA

(Li and Durbin, 2009) are first applied to map reads to the reference sequences. The

variant calling step then detects differences between mapped reads and the reference.

Popular variant callers include MuTect2 (Benjamin et al., 2019), VarScan (Koboldt

et al., 2012), somaticsniper (Larson et al., 2012) and MuSE (Fan et al., 2016).

Based on variants observed between two sequence samples and a common reference

genome, these programs can then infer differences between the two samples (e.g.,

in MuTect2’s somatic mode).

Reference-based variant calling has well-known limitations. Aligners may encounter

difficulties while handling reads with low mapping qualities (Li et al., 2008), origi-

nating from repeat regions, low complexity regions or complex variants. These reads

of low mapping quality are usually discarded. Furthermore, some species have no

reliable reference, which is common in microbes (Loeffler et al., 2020).

Alternative approaches to variant calling involve mapping-free protocols (Audano

et al., 2018). These methods do not rely on a reference genome and can directly

predict variants from the raw fastq file. A typical strategy is to use a de Bruijn graph

(DBG) (Compeau et al., 2011). A DBG is constructed using k-mers (subsequences

of fixed size k) decomposed from the sequence reads. The occurrence of k-mers

harboring a mutant allele and a wild type allele generates a bubble structure in

the DBG. Variant callers developed based on DBGs include DiscoSNP++ (Uricaru

et al., 2015) and Lancet (Narzisi et al., 2017). DBG-based methods also introduce

new issues. First, complex genomic variants and repeats may result in complicated

graphs that are difficult to parse (Iqbal et al., 2012). Second, short contigs may

be discarded at the post-processing step, where branch pruning may cause many

false negatives. Furthermore, sequences assembled by k-mers without variants have

little contribution if the purpose is detecting variants. Only reconstructing the

active regions spanning the variants is more efficient than considering all k-mers
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(Audano et al., 2018). Although it is possible to extend DBG-based methods to

SV detection, the lack of sensitivity to local events makes these approaches less

suitable for finding variants in ambiguous regions, such as repeats (Heydari et al.,

2019). This motivates the need for a method to detect variants in arbitrary genome

regions directly from DNA-seq data.

We present 2-kupl, a k-mer-based bioinformatics pipeline that compares matched

case and control samples to discover case-specific variants. 2-kupl identifies sequence

fragments (contigs) specific to the mutant dataset and their wild-type counterpart

in the control dataset. This operation is done without relying on a reference genome.

We compare the accuracy and CPU-requirements of 2-kupl with that of other vari-

ant calling software using both simulated and real DNA-seq datasets. We analyze

the nature of novel variants detected by 2-kupl and potential reasons for their ab-

sence in conventional protocols. We also use 2-kupl to detect recurrent variants in

prostate adenocarcinoma (PRAD) WES samples from the TCGA project (Tomczak

et al., 2015). Finally, we evaluate 2-kupl precision in bacterial WGS data. Overall,

we demonstrate that 2-kupl is a practical and powerful alternative for the discovery

of genomic variants in hard-to map regions or species with no reliable reference.

3.2.3 Materials and Methods

3.2.3.1 Outline of 2-kupl pipeline

The general pipeline is presented in Fig 1. The input is composed of DNA-seq data

from two matched samples. Samples typically correspond to control/normal/wild-

type and a case/tumor/mutant-type. For cancer data, we strongly recommend

using as a control of a distant tissue such as white blood cells rather than adjacent

normal tissues, as the later can be contaminated by tumor cells and 2-kupl only

considers variant sequences that are absent in the control dataset. Sequence types

can be either single-end or paired-end sequencing reads. 2-kupl then identifies

pairs of case-specific k-mers (cs-kmers) and counterpart k-mers (ct-kmers). 2-kupl
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Figure 1: Overall workflow of 2-kupl. This flowchart describes the analysis pro-

cess of 2-kupl, including the input and output file format and function of each

module.

returns predicted variants exclusive to the case sample, including mutations, indels

and structural variations. Variant statistics including cs-count, coverage, allele

frequency and variant P-value are computed. A variant file and an alignment file

are produced. 2-kupl accepts multiple threads and uses 10 threads by default.

2-kupl is developed purely in Python. The main dependencies include Jellyfish

(Marçais and Kingsford, 2011) and GSNAP (Wu et al., 2016). Other depen-

dent python libraries and instructions can be found from the Github repository

https://github.com/yunfengwang0317/2-kupl

3.2.3.2 Data cleaning

Low quality sequences are trimmed with Cutadapt (Chen et al., 2014) (parameter

‘–quality-cutoff’ = 10). As Cutadapt does not remove low-quality bases within the

central part of reads, we implemented an overriding function that replaces each

low-quality base (Phred score <10) with N. This procedure is applied to both case

and control libraries.

3.2.3.3 k-mer indexing and counting

Jellyfish is used to index and quantify k-mers from both case and control with

options k=31 and -C (canonical k-mers). As Jellyfish removes k-mers containing
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Ns, none of the low-quality bases is present in the k-mer list. The generated k-

mers subsequently undergo two filtering steps. First, k-mers with counts below

a user-specified cutoff (default=3) are removed. These low abundance k-mers are

assumed to result from sequencing errors or off-target regions in the case of WES

data. Second, k-mer lists from case and control are compared and only case-specific

k-mers (cs-kmers) are retained.

3.2.3.4 Matching counterparts of cs-kmers

For each cs-kmer harboring a point mutation, there should exist a counterpart k-

mer (ct-kmer) from the control dataset with only one base substitution (Hamming

distance =1), which can be considered as a product of the wild type sequence. Note

that Hamming distance=1 only considers substitutions. Hence single nucleotide

insertions and deletions are rejected at this step and will be treated later with

unmatched k-mers. Finding the matched ct-kmer for each cs-kmer should allow us

to infer the variation without reference sequences. We initially build a hash table

where the keys are the continuous 15 bases from each side of cs-kmers. For each

15-bases key, we create a bucket of all k-mers starting or ending with the key. Then

we survey the buckets and seek all k-mer pairs with a hamming distance of one in

the same bucket. We thus generate all k-mer pairs (ki, kj) with a hamming distance

of one. For any pair of k-mers with a Hamming distance of one, if one k-mer comes

from the cs-kmer list and the other comes from the control, this pair of k-mers is

considered to be matched. Otherwise, we allocate the cs-kmers to the “unmatched

k-mers” group. These unmatched k-mers either contain variants of more than one

nucleotide (multiple mutations, indels and structural variants) or come from low

coverage regions. The schematic workflow is shown in Fig 2.

3.2.3.5 Assembly of cs-kmers into mutant contigs

cs-kmers are assembled into mutant contigs that correspond to variants and their

local context. The assembly process is done using the “mergeTag” function from
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Figure 2: Procedure for matching cs-kmers to ct-kmers. Long rectangles represent

one 31-mer. Short rectangles (keys) represent the head or tail 15 bp of a cs-kmer.

Color changes indicate sequence differences.

DEkupl (Audoux et al., 2017a) (https://github.com/Transipedia/dekupl). Two k-

mers overlapping by k-i bases are merged iteratively with i ranging from 30 to 25

(min_overlap parameter is set to 25 by default). The merging process is interrupted

when no k-mers can be added or ambiguity occurs (two different overlapping k-mers

are encountered).

3.2.3.6 Inferring reference contigs

We use two distinct procedures for reference sequence determination, depending on

whether or not sufficient ct-kmers are available to build a reference contig.

For each mutant contig, if more than half of its component k-mers are matched, all

the ct-kmers are merged by the python package pydna (Pereira et al., 2015). The

resulting mutant contigs correspond to isolated mutations. Merged contigs pro-

duced by ct-kmers can be regarded as putative references. For each pair of mutant

and reference contig, we then define two values representing counts of supporting

k-mers for the mutant allele (cs-count) and supporting k-mers for both mutant
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and reference alleles (coverage). The cs-count is computed from the median k-mer

count of cs-kmers and coverage is calculated from the sum of the median count of

cs-kmers and ct-kmers. Herein, we select the median count instead of the mean

count because mean values are more sensitive to high-count k-mers from repeats or

copy number amplification regions.

For mutant contigs in which less than half of the k-mers are paired, we consider that

a reference cannot be assembled from paired-kmers. A procedure was implemented

to retrieve the reference from the original reads. Reads with at most one mismatch

to any k-mer from the mutant contig are retrieved from the control fastq file using

BBDUK (Bushnell, 2018). These reads are then assembled by CAP3 (Huang and

Madan, 1999). In this way, we can infer the putative reference for each contig

and evaluate coverage based on the number of reads retrieved by BBDUK. The cs-

kmers in these contigs have no matching ct-kmers and contigs are thus considered

to contain multiple mutations, indels and structural variants.

3.2.3.7 Filtering low-quality variants

The cs-count and coverage substantially impact the reliability of events called by

2-kupl. For instance, a sequencing error could be repeatedly generated in a region of

high coverage. Besides, sequencing errors may, by chance, be detected as mutations

with high allele frequency in low coverage regions. Thus, false positives are intro-

duced due to either high cs-count in high coverage regions or high allele frequency in

low coverage regions. However, coverage varies between whole-genome sequencing

(WGS) and whole-exome sequencing (WES) data. WGS does not use an upfront

enrichment step so it generates a more uniform coverage of the genome. On the

other hand, the enrichment steps involved in WES lead to non-uniform coverage,

generating coverage ‘hot’ and ‘cold’ spots (Wang et al., 2017). 2-kupl provides sev-

eral criteria for users to evaluate call reliability. A Fisher’s exact test P-value is

calculated based on the cs-count and coverage in case and matched control libraries

for each variation. A Phred quality score is subsequently computed as −10log10P.
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Users can specify cutoffs for cs-count, coverage, allele frequency and Phred to filter

false positives. Default cutoffs for cs-count, coverage, allele frequency and Phred

are set to 3, 10, 0.05 and 5, respectively.

3.2.3.8 VCF format export

Events identified by 2-kupl are exported as a variant call format (VCF) file (Danecek

et al., 2011). 2-kupl outputs the contig harboring the variation and the correspond-

ing putative reference without the variation for each event. If users provide an

available reference, the mutant contig is mapped to this reference using GSNAP

(Wu et al., 2016). After the mapping process, actual chromosome and position

information are provided in the VCF file. Besides the VCF file, 2-kupl also exports

an alignment of each contig and its putative reference obtained using the pairwise2

python package (Cock et al., 2009). Contigs corresponding to indels and structural

variants are further mapped to reference by BLAST (McGinnis and Madden, 2004)

(default parameters) which we found better suited to fragmented alignments.

3.2.3.9 Comparison with other software

We compared 2-kupl with three other tools. DiscoSNP++ (Uricaru et al., 2015) is

designed for detecting SNVs and small indels from fastq files without using reference.

DiscoSNP++ first generates a DBG of two matched samples pooled together (Li

et al., 2012) and detects variants based on searching bubbles in the graph. The con-

text contigs can be extracted from DBG bubbles that correspond to local variants.

As DiscoSNP++ calls variants in each sample rather than specific to one sample, we

applied cutoffs to DiscoSNP++ allele frequencies (AF) to extract case-specific calls

as found by 2-kupl. After testing multiple combinations, DiscoSNP++ achieved the

best performance when AF cutoffs for both case and control samples were set to

0.05. Lancet (Narzisi et al., 2017) relies on localized colored DBG to detect somatic

variants in paired samples. K-mers shared by two matched samples or specific to

either of them are marked in different colors in the DBG. In this way, Lancet is able
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to detect case-specific events. It is worth mentioning that Lancet uses bam format

files as input so it also leverages the reference before variant detection. We also

compared 2-kupl with the leading reference-based GATK-MuTect2 pipeline (Ben-

jamin et al., 2019). GATK-MuTect2 takes mapped sequence files as input, detects

variants based on the reference and compares the variants of two matched sam-

ples to identify case-specific variants (somatic mode). Version hg38 of the human

genome was used in all reference-based procedures. To make runtime comparisons

fair, we took the mapping procedure into account in Lancet and GATK-MuTect2.

Alignment was performed using BWA with default parameters. Thus all four pro-

tocols started with fastq files. To evaluate the dependency of 2-kupl running time

on the number of k-mers, we ignored the part up to k-mer counting. Mapped reads

were visualized with the Integrative Genomics Viewer (IGV) (Robinson et al., 2011)

2.6.2 on hg38.

3.2.3.10 Simulated WES analysis

We downloaded simulated WES data from Meng and Chen (Meng and Chen, 2018).

This dataset was developed based on the NA12878 pilot genome (Zook et al., 2016)

(reference data set of 5.4 million phased human variants validated by genetic inher-

itance from sequencing a three-generation 17-member pedigree). The authors used

BAM-Surgeon (Ewing et al., 2015) to select genomic loci and introduce random

SNV and indel spike-ins, and generated 2x100nt reads WES files at 230X coverage.

For our benchmark, we used a tumor sample described by authors as one of the most

complicated, NA12878_79_snv_indel_sorted.bam (with four sub-populations, ex-

pected variant allele frequency (VAFs) of 0.5, 0.35, 0.2 and 0.1). Picard was used

to convert bam files to fastq format files with default parameters. 2-kupl was run

using default parameters on pairs of simulated normal-tumor fastq files.
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3.2.3.11 Simulated WGS analysis

A simulatedWGS dataset containing two matched samples was generated by DWGSM(Li,

2011), with a mean coverage of 50X across available positions. The rates of mu-

tations in case and control group samples were set as 0.0001 and 0, respectively.

The fraction of indels in all variants was restricted to 20%. The expected VAF

ranged from 0.1 to 0.5. All other parameters were set as default values. Besides the

mutations and indels, the simulated WGS dataset also included structural variants

including deletions, duplications and translocations longer than 50 bp. DWGSM

generates fastq format files that are directly used as input for 2-kupl.

3.2.3.12 TCGA-PRAD data analysis

Matched normal-tumor WES data of 498 patients from TCGA-PRAD (Prostate

Adenocarcinoma) (Abeshouse et al., 2015) were retrieved with permission from db-

GAP (Tryka et al., 2014). BAM files were converted to paired-ends fastq files using

Picard tools with default parameters. 2-kupl somatic variant calls were obtained for

each normal/tumor pair using default parameters. Detailed analysis of variant call-

ing was performed on the TCGA-PRAD sample with the highest tumor mutational

burden (barcode TCGA-ZG-A9ND).

2-kupl results on the TCGA-PRAD dataset were compared to variant calls down-

loaded from the GDC portal. Briefly, the GDC portal workflow uses BWA to map

reads to the human genome and determines variants with five state of the art variant

callers, as described here: https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/.

We used the maftools R package (Mayakonda et al., 2018) to retrieve variants pre-

dicted using the GATK-MuTect2 pipeline and filtered against a “panel of normals”.

This mutation dataset is hereafter referred to as the “GDC portal” dataset.

To remove putative germline variants from 2-kupl results, we built a boolean matrix

representing the presence of each k-mer in each normal sample. Any k-mer present

in at least two normal samples was excluded. Retained recurrent variants were
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considered as tumor-specific (Suppl. Table S1). Mutations detected by 2-kupl and

absent in the GDC portal variants were considered as 2-kupl specific. To verify

whether calls absent in GDC portal variants were not discarded at earlier stages of

the GDC portal pipeline, we also retrieved the protected MAF file containing all

unfiltered variants called by the MuTect2 workflow.

The oncoplot graph for GDC portal variants (Fig 7B) was drawn using maftools.

To obtain recurrently mutated genes by 2-kupl, we aggregated variants belonging

to the same gene in 2-kupl results and constructed a gene-level occurrence matrix

that was fed to maftools (Fig 7C). Recurrent variants from 2-kupl and the GDC

Portal were also compared with a comprehensive prostate cancer dataset from 200

whole-genome sequences and 277 whole-exome sequences from localized prostate

tumours(Fraser et al., 2017) (Suppl. Table S2)

Recurrently mutated genes were annotated using a collection of 1404 PRAD-related

genes collected from CLINVAR (Landrum et al., 2018), COSMIC (Bamford et al.,

2004), DISEASE (Pletscher-Frankild et al., 2015), KEGG (Kanehisa et al., 2017),

OMIM (Hamosh et al., 2005), PheGenl (Ramos et al., 2014) and driver predictions

by Martincorena et al. and Armenia et al. (Martincorena et al., 2017; Armenia

et al., 2018) (Suppl. Table S3).

3.2.3.13 Bacterial genome analysis

We obtained WGS fastq files from the Pseudomonas aeruginosa PAO1Or wild-type

strain and 24 phage-tolerant mutants (Latino, 2016). Mutations in the phage-

tolerant variants were previously validated by mapping of the WGS raw sequences

to the PAO1Or genome (Genbank accession LN871187) and confirmed by PCR

amplification and Sanger sequencing. We used one control WGS file and 21 mutant

WGS files corresponding to 26 validated variants. Detailed variants (Suppl. Table

S4) include seven mutations, 13 small indels and six large deletions longer than 100

bp. 2-kupl was run using default parameters on every mutant WGS file compared

to the control WGS file.
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3.2.4 Results

3.2.4.1 A novel algorithm for detecting variants between two DNA-seq sam-

ples

We developed 2-kupl to predict variants between pairs of matched DNA-seq li-

braries. Input libraries consist of a “case” and a “control” sample such as a pair of

tumor and normal tissues from one patient or a pair of mutant and wild-type bacte-

rial strains. Data can be either WGS or WES. 2-kupl extracts case-specific k-mers

(cs-kmers) and matching control k-mers (ct-kmers) corresponding to a putative mu-

tant and reference sequences and merges them into contigs. As 2-kupl begins with

a shortlist of cs-kmers, the number of k-mers considered from unaltered regions and

non-specific variants is drastically reduced compared with DBG-based methods (see

Methods). If a reference genome is provided, 2-kupl can also align contigs to the

reference and generate genomic coordinates just like with mapping-based methods.

3.2.4.2 Performance on simulated WES data

We first applied 2-kupl to the detection of somatic mutations in a simulated hu-

man cancer WES dataset containing a known number of spliked-in mutations and

indels. We compared 2-kupl with three other software, including two mapping-

free methods (DiscoSNP++ and Lancet) and the leading mapping-based pipeline

GATK-MuTect2. Results are summarized in the first column of Table 7. The num-

ber of cs-kmers to process is reduced by nearly 20% after data cleaning by 2-kupl.

88.6% of cs-kmers were matched to ct-kmer, corresponding to predicted point mu-

tations or indels. We evaluated mutations and indel calls by 2-kupl and concur-

rent methods (Table 1). For mutation calling, 2-kupl performed better than the

other mapping-free methods in terms of F1 score (Table 1). Lancet and GATK

achieved better recall than 2-kupl, but Lancet also introduced more false positives.

2-kupl had a higher recall for calling indels than DiscoSNP++ and Lancet but
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Table 1: Comparison of four approaches on mutations using simulated WES data

mutations 2-kupl DiscoSNP++ Lancet GATK-MuTect2

True Positive 581 373 604 689

False Positive 45 3 126 2

False Negative 241 530 218 133

Recall 0.71 0.41 0.73 0.84

FDR 0.07 0.01 0.17 0.003

Precision 0.93 0.99 0.83 0.997

F1 score 0.80 0.58 0.78 0.91

Table 2: Comparison of four approaches on indels using simulated WES data

indels 2-kupl DiscoSNP++ Lancet GATK-MuTect2

True Positive 42 29 40 49

False Positive 16 1 44 26

False Negative 39 52 41 32

Recall 0.52 0.36 0.49 0.60

FDR 0.27 0.03 0.52 0.35

Precision 0.72 0.97 0.47 0.65

F1 score 0.60 0.52 0.48 0.63

was outperformed by DiscoSNP++ in FDR and precision (Table 2). Expectedly,

GATK-MuTect2 outperformed all mapping-free approaches regardless of variant

types. DiscoSNP++ did not perform as well as others in terms of recall ratio due

to the different usage. DiscoSNP++ first pooled together two samples and screened

case-specific variants afterwards. This procedure contributes to eliminate many false

positives but also leads to ignoring some low frequency variants exclusively present

in the case sample. Lancet performed well in terms of recall but at a high cost of

false positives. As expected, most false positives had few reads containing the alter-

native allele, which is frequent with Lancet. The high recall and high rate of false

positives produced by Lancet are consistent with the conclusions of Meng and Chen

(Meng and Chen, 2018). The GATK-MuTect2 pipeline outperformed all mapping-

free approaches when calling mutations. The use of a reference sequence and the

Haplotype Caller algorithm gives GATK-MuTect2 a clear advantage. Even though

2-kupl got a relatively lower recall than GATK-MuTect2, it had better control of

the false positives and got a higher precision when calling indels (Table 2).
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Figure 3: Running time and performance with different types of variants. . (A)

Overall running times of four software. The time consumed by each process in

four protocols is marked in different colors. (B) Running times of 2-kupl for

different numbers of cs-kmers. The line with dots represents the exact running

time corresponding to certain number of cs-kmers. The solid line is the fitted line,

and the shaded background is the confidence interval.

Another advantage of 2-kupl is the short running time (Fig 3A). 2-kupl took 1.6

hours to analyze the simulated WES data with default parameters. DiscoSNP++

took 2.54 hours to call variants from both case and control samples. Both Lancet

and GATK-MuTect2 require prior mapping of reads to the human genome (which

takes 3.17 hours), explaining in part their longer runtimes.

To evaluate 2-kupl run time dependency on the number of cs-kmers, we ran 2-kupl

on datasets with different numbers of cs-kmers (Fig 3B). Running time increased

linearly with the number of cs-kmers. Each additional 10,000 cs-kmers increased

the running time by nearly 50 seconds.
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Figure 4: Robustness of 2-kupl using different parameters. The x-axis indicates

the min_cs-count parameter and the y-axis represents the corresponding ratio or

number. The thresholds of coverage and cs-count are denoted as min_cov and

min_cs-count, respectively. The trend lines under different min_cov parameters

are represented by four colors.

We estimated the performance of 2-kupl under different parameter combinations.

Coverage and cs-count thresholds (‘mim_cov’ and ‘min_cs-count’, respectively)

were varied from 3 to 9. Results are shown in Fig 4. The min_cs-count parame-

ter was negatively related to recall and positively related to false negatives. The

min_cov parameter was inversely related to F1 score, recall, FDR, and true posi-

tives. Precision reached an inflection point when min_cs-count was set to 4.

3.2.4.3 Performance on simulated WGS data

We further benchmarked 2-kupl on a simulated WGS dataset with an average read

depth of 50X (vs. 230 in WES). For mutation calls, 2-kupl and GATK-MuTect2

achieved the same recall ratio of 0.86 (Table 3). The precision of 2-kupl was slightly

lower than GATK-MuTect2 but still above 0.9. For indels, the recall of 2-kupl

dropped to 0.82 (Table 4). The false positive call rates of 2-kupl increased with
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Table 3: Comparison of 2-kupl and GATK-MuTect2 on mutations using simulated

WGS data

mutations 2-kupl GATK-MuTect2

True Positive 13835 13920

False Positive 1248 30

False Negative 2220 2135

Recall 0.86 0.86

FDR 0.08 0.002

Precision 0.91 0.99

F1 score 0.89 0.93

WGS data relative to WES data due to the lower coverage of WGS. A limitation of

2-kupl is that false signals can not be ruled out by allele frequency in low coverage

regions. Also, k-mers may be incorrectly considered as cs-kmers when there is not

enough reads covering the locus in the control sample.

The simulated WGS dataset contained 157 SVs (deletions, duplications, and translo-

cations longer than 50bp). Expectedly, GATK-MuTect failed to detect the majority

of SVs (Table 5). We thus compared 2-kupl with Delly, a software that finds struc-

tural variants based on aligned reads (Rausch et al., 2012). Overall 2-kupl had a

slightly lower precision and recall than Delly (Table 5). We investigated 22 SVs

missed by Delly and captured by 2-kupl. We found these reads were left unmapped

by BWA due to multiple hits in the genome and thus could not be assessed by

Delly. An advantage of 2-kupl here is that all k-mers covering SV junctions are

kept and assembled regardless of mapping status. Furthermore, 2-kupl is capable

of detecting small variants in the same run.

3.2.4.4 Assessing 2-kupl on a real normal-tumor WES dataset

To assess 2-kupl results on actual WES data, we applied 2-kupl on one WES dataset

of matched tumor and normal tissues from the TCGA-PRAD dataset. We first com-

pared 2-kupl and GDC portal somatic variant calls (see Methods) on the TCGA

patient with the highest tumor mutational burden. The numbers of k-mers, contigs
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Table 4: Comparison of 2-kupl and GATK-MuTect2 on indels using simulated WGS

data

indels 2-kupl GATK-MuTect2

True Positive 3315 3620

False Positive 504 108

False Negative 750 445

Recall 0.82 0.89

FDR 0.13 0.02

Precision 0.84 0.96

F1 score 0.84 0.92

Table 5: Comparison of 2-kupl, GATK-MuTect2 and Delly on structural variants

using simulated WGS data

mutations 2-kupl GATK-MuTect2 Delly

True Positive 133 49 135

False Positive 27 0 16

False Negative 24 108 22

Recall 0.85 0.3 0.86

FDR 0.17 0 0.11

Precision 0.83 1 0.89

F1 score 0.84 0.47 0.88
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Table 6: Number of mutations and indels detected by 2-kupl and GDC portal

variants

2-kupl GDC portal variants overlap

mutation 3607 3093 319

indel 151 823 8

total 3758 3916 327

Table 7: Number of k-mers and contigs after applying 2-kupl on two matched

libraries

simulated WES TCGA-ZG-A9ND WES

all k-mers(Tumor/Normal) 465,718,268/465,610,133 184,233,006/177,517,776

raw cs-kmers 23599 393525

cleaned cs-kmers 18439 291350

matched cs-kmers 16914 240360

all contigs 1245 106426

mutations 1026 9901

indels 112 1105

unmapped 0 58

low confidence 107 312

and variants obtained by 2-kupl are shown in the second column of Table 7. Muta-

tion calls by 2-kupl and GDC portal variants are shown in Table 6. Although total

call numbers were similar, only 327 calls ( 9%) were shared by the two approaches,

including 319 mutations and 8 indels. Among the variants detected by 2-kupl, 193

(5.13%) mapped to noncoding regions and 101 (2.7%) were annotated as repeats by

RepeatMasker (de Koning et al., 2011). 2-kupl also captured 57 (1.5%) unmapped

variants. 173 2-kupl variants (4.6%) were mapped to low mappability “blacklist”

regions (Amemiya et al., 2019). In spite of the small general overlap of 2-kupl and

GDC portal variants, the two methods have a much stronger agreement on high

scoring 2-kupl calls (Fig. S1A). Of note, mutation calls obtained on on the same

sample by four different mapping-based protocols also show poor consistency (Fig.

S1B).

We further analyzed mutations specific to 2-kupl. These calls may have been re-

jected in GDC portal variants for a number of valid reasons, including low mapping

quality, location in short tandem repeats or presence in normal samples. A real
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(A)

(B)

Figure 5: IGV views of variant calls in TCGA-PRAD WES dataset. The two cen-

tral tracks show aligned reads from the tumor (top) and normal (bottom) WES

library. The lower track shows gene annotation and 2-kupl contigs. (A) A likely

false-positive call by 2-kupl at a position of low mapping quality (B) A likely true

positive within a repeat region. Reads in transparent color have low MAPQ (map-

ping quality) values (<10).

“miss” by the reference-based pipeline should be recorded only when reads could

not possibly be aligned to the genome while they indeed contained a valid muta-

tion.

Fig 5A shows a case of false positives introduced due to artifactual cs-kmers. Gen-

erally, k-mers harboring a mutation present in both tumor and normal tissues are

supposed to be ruled out. However, erroneous tumor-specific “cs-kmers” can escape

the filtering process if the same k-mer in the normal tissue happens to be low quality

and is discarded.

Certain 2-kupl specific mutations are possibly true positives discarded by mapping-
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based protocols due to their location within a repeat region. Fig 5B shows such a

potential somatic mutation. The mutation is located within a ribosomal RNA gene

that is repeated multiple times in the genome and further contains a C-rich repeat

(represented in lower cases). Reads generated from these repetitive regions are given

low MAPQ values by mappers and variants in these regions are then discarded by

variant callers.

Among unmapped 2-kupl calls, only one has a Phred score in the top 5% (Fig. S2).

The mutant sequence and its inferred reference are shown in Fig. S3. The mutant

contig is covered by 0 and 47 reads in the Normal and Tumor sample, respectively

while the reference is covered by 88 and 65 reads in the Normal and Tumor sample,

respectively (Fig 6). The sequence maps to a centromeric repeat of Chr22, with

three mismatches. The mapping procedure would thus miss this highly significant

variant.

3.2.4.5 Recurrent mutations in TCGA-PRAD

Recurrence across patients is a powerful criterion for distinguishing drivers from

passenger mutations (Pon and Marra, 2015; Greenman et al., 2007; Goncearenco

et al., 2017) and has been used to discover drivers and define molecular subtypes

of prostate cancer (Barbieri et al., 2012). We applied 2-kupl to each pair of Nor-

mal/Tumor samples in the complete PRAD WES dataset (N=498) and identified

3211 recurrent variants (suppl. Table S1). For comparison we retrieved from the

GDC portal recurrent variants predicted for the same dataset (GATK-MuTect2

pipeline, see Methods). Among 3734 recurrent variants in the GDC portal, 854

were shared with 2-kupl recurrent variants (suppl. Table S1). We further compared

the recurrent variants to a comprehensive dataset of recurrent prostate cancer mu-

tations from Fraser et al. (Fraser et al., 2017) based on 200 whole-genome and

277 whole-exome sequences from multiple sources. Comparisons were restricted to

exonic regions. Within the 48 recurrent mutations in exonic regions from Fraser et

al, a similar number was shared with 2-kupl or the GDC-portal (22 and 21, respec-
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Figure 6: An unmapped somatic variant from a TCGA-PRAD patient. Only reads

matching the central k-mer of the tumor-specific variant or its inferred counter-

part are shown. Reads from the tumor and normal samples are distinguished. The

position of variation is highlighted.

106



tively) (Suppl. Table S2). Among recurrent mutations specific to 2-kupl, we note

the one found at chr14:37592023 within an exon of FOXA1, a putative prostate

cancer driver (Martincorena et al., 2017), in three TCGA-PRAD patients.

We further compared 2-kupl calls to GDC portal variants at the level of genes

(Detailed in Method section). The GDC portal reported 6944 genes mutated in

two or more patients, vs. 14137 recurrent genes by 2-kupl. Enrichment analysis

shows a good convergence of the most frequently mutated genes by the two meth-

ods (Fig 7A). Fig 7B,C show oncoplot views of the top 20 genes according to the

GDC portal and 2-kupl, respectively, showing eight shared genes. Both gene lists

are contaminated by long (TTN) or highly polymorphic genes (Mucins) whose re-

currence is an artifact due to higher mutation counts. Although many software are

available to account for those effects (Li et al., 2015a), we purposely analyze the

uncorrected list of genes here. Among the top 20 mutated genes by 2-kupl and

GDC portal, 7 and 9 genes, respectively, are known prostate cancer-related genes.

Among those, UBR4, DNAH5 and LRP1 were only detected by 2-kupl. When

considering the top 50 recurrently mutated genes according to 2-kupl and GDC

portal, 19 and 23, respectively, are cancer-related. Among those, HSPG2, DNAH3,

UBR4, COL6A3, CABIN1, IGF2R, PTPRF, DNAH5, HTT and TRRAP were only

detected by 2-kupl.

UBR4 contains 48 2-kupl mutations, more than any other gene. Fig. S4 shows

read alignment at this gene for patient TCGA-EJ-7125 who carries the most UBR4

mutations (8/48 mutations). While seven of these mutations are absent in GDC

portal variants, all can be visually validated as tumor-specific mutations as per the

IGV display (Fig. S4 A-G).

Besides recurrent mutations and indels, we found 20 genes with 43 recurrent struc-

tural variants predicted in at least two patients (suppl. Table S1). All these pre-

dicted variants can be supported by at least one read from the tumor library. Three

recurrent structural variants map to prostate cancer genes SH2B3, ATP10A and

FOXA1 (Fig 8). Variants in gene ATP10A and SH2B3 have exactly the same junc-
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Figure 7: Recurrently mutated genes in the TCGA-PRAD WES dataset. (A) Enrich-

ment analysis of recurrent genes. The vertical bars are the common recurrently

mutated genes (altered in at least ten patients) between GDC portal and 2-kupl.

The x axis represents the recurrent genes found by 2-kupl sorted by frequency.

The smooth curve reflects the degree to which the common genes are overrepre-

sented in the whole 2-kupl recurrent genes. (B) The 20 genes with the highest

mutational frequency detected in GDC portal variants. (C) The top 20 recurrent

genes with the highest mutational frequency detected by 2-kupl.
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Figure 8: Recurrent structural variants mapping to three prostate cancer genes.

In each track, lines represent the genome sequence (top), annotated genes, and

variant contigs identified in different patients.

tions in at least two patients. As the three variants in gene FOXA1 impact on the

same exon, we grouped them as one same recurrent event despite not representing

the exact same variation. All these recurrent structural variants are longer than

10bp. State-of-the-art procedures usually miss such variants at the mapping stage.

3.2.4.6 Performance on bacterial WGS data

2-kupl can be applied to pairwise comparisons of DNA-seq datasets in any species.

We present here an application to bacterial whole genome sequences. A frequent

problem in bacterial genetics is identifying mutations in strains for which no reliable

reference genome is available. We investigated the performance of 2-kupl on 21

DNA-seq datasets from a Pseudomonas aeruginosa strain, in which 26 variants had

been previously identified and confirmed by geneticists (see Methods).

About 141 variant contigs were predicted on average for each pair of WT/mutant

strains, with an average running time of 10 minutes (Fig 9A,B). Score ranking by 2-

kupl and DiscoSNP++ allowed a clear separation of TP from FP (Fig 9C,D). True
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Figure 9: Performance of 2-kupl on bacterial DNA-seq datasets. (A) Number of

cs-kmers, contigs and variants are shown for each bacterial sample. (B) Running

time of 2-kupl on each sample is shown for different steps. (C) Distribution of

Phred scores computed by 2-kupl in TP and FP events. (D) Distribution of Dis-

coSNP++ score ranks in TP and FP events.

positive calls were ranked first in 19 out of 19 mutant samples by 2-kupl and in 16

out of 16 samples by DiscoSNP++. Compared with Phred scores used in 2-kupl,

DiscoSNP++ scales the rank scores from zero to one and thus the true positive

variants are more concentrated.

2-kupl could recall all true positive variants, including SNVs and large deletions

longer than 100 bp, while DiscoSNP++ missed three large deletions (555 bp, 213

bp and 109 bp, suppl. Table S4). Meanwhile, DiscoSNP++ obtained 129 false

positives vs. 45 for 2-kupl (Table 8). Therefore 2-kupl had the best recall and

precision on this dataset, especially for large indels.

3.2.5 Discussion

Most variant detection protocols rely on reference genomes. However, even for

species with a high-quality reference genome such as humans, depending on a ref-
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Table 8: comparison between 2-kupl and DiscoSNP++ on the bacteria DNA-seq

data

2-kupl DiscoSNP++

True Positive 26 23

False Positive 45 129

False Negative 0 3

Recall 1 0.88

FDR 0.64 0.85

Precision 0.36 0.15

F1 score 0.52 0.26

erence is subject to limitations. Genomes contain large numbers of highly variable,

repetitive or otherwise unmappable regions, which are unsolvable by short-read

sequencing techniques. Hundreds of unsolved regions remain in telomeres and cen-

tromeres, also known as ‘dark matter’ (Blaxter, 2010). The X chromosome is the

only complete human chromosome as of today (Miga et al., 2020). Pathogenic

variants within these unannotated regions are easily missed by mapping-based ap-

proaches due to low mapping quality, especially with low depth in whole-genome

sequencing. Furthermore, the human genome varies across individuals and popu-

lations and a single reference genome does not account for this diversity (Sherman

et al., 2019).

2-kupl is able to detect variants, including mutations, indels and structural variants,

without relying on a reference genome. Based on matched DNA-seq data, 2-kupl

captures case-specific k-mers and counterpart k-mers (i.e. without the variation)

into the same bucket. Sequence contigs harboring a local variation and its putative

reference are inferred through the assembly of k-mers in each bucket.

To control artifacts induced by sequencing errors, 2-kupl takes both base quality and

coverage into account. The general sequencing error rate in short-read NGS data is

larger than 0.1% (Ma et al., 2019). It is worth consuming computing resources and

running time to remove these 0.1% artifacts because these sequencing errors result

in large numbers of artifactual cs-kmers. To reduce the impact from low-quality

bases, we combine Cutadapt and an ‘OverrideN’ function that flags low quality
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bases in the mid part of reads. This significantly reduces the number of cs-kmers

and speeds up the computing procedure.

We compared the performance of 2-kupl with that of three competing methods

in terms of running time, recall and precision. 2-kupl outperformed mapping-free

methods DiscoSNP++ and Lancet in terms of recall or precision but did not reach

the performance of the state-of-the-art alignment-based GATK-MuTect2 on human

data.

DiscoSNP++ suffers from limitations of DBG data structures in regions with se-

quencing errors, genomic variants and repeats (Heydari et al., 2019). Efficient

solutions searching for bubbles from such complicated structures are still under de-

velopment. Furthermore, short contigs may be discarded within the post-process,

cutting branches, for instance (Medvedev et al., 2011). In our bacterial DNA-seq

analysis, DiscoSNP++ missed three validated large deletions.

Lancet has a higher recall ratio than 2-kupl but also introduces more false positives.

Furthermore, Lancet missed variants from repetitive regions and is not able to detect

fusions from distant regions.

2-kupl has a higher F1 score than DiscoSNP++ and Lancet and performs better

in terms of recall ratio or precision than either of them. Expectedly, 2-kupl did

not outperform GATK-MuTect2 on WES data. First, GATK-MuTect2 uses a so-

phisticated Bayesian model to estimate a genotype’s likelihood given the observed

sequence reads that cover the locus. When GATK-MuTect2 encounters a region

showing signs of variation, it discards the existing mapping information and com-

pletely reassembles the reads in that region. This allows GATK-MuTect2 to be

more accurate when calling regions that are traditionally difficult to call. Despite

slightly fewer true positives, 2-kupl also detects fewer false positives than GATK-

MuTect2. It is worth mentioning that 2-kupl has the lowest time complexity among

the four methods.

By applying 2-kupl to the TCGA-PRAD patients, we were able to detect recur-
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rent mutations and indels missed by the GDC portal’s GATK-MuTect2 pipeline.

Reads in these regions have either low mapping qualities or multiple hits and were

discarded in the GDC portal pipeline. Mapping-based methods all suffer from this

issue and are powerless when faced with low complexity regions. 2-kupl identified

recurrent mutations and recurrently mutated genes in high agreement with GATK-

MuTect2. Mutated genes were enriched in PRAD-related genes, some of which

specific to 2-kupl. As an example, we visually confirmed multiple 2-kupl-specific

mutations in UBR4. Recurrent variants detected from the unmappable regions by

2-kupl provide insights into potential novel somatic variants even though the locus

of origin of the contig sometimes cannot be determined.

Standard variant calling pipelines may miss mutations for multiple reasons: low

allele frequencies, tumor contamination, ambiguities in short read alignment, inad-

equate sequencing depth, high GC content, sequencing errors and ambiguities in

short read alignment. Different programs are affected by these factors to varying

degrees. As a consequence, the mutations called by different pipelines are not con-

sistent (Hwang et al., 2015). 2-kupl is not affected by some of these sources (GC

content, alignment artifacts and mappability) and can detect a number of recurrent

mutations (ie. potential driver events) that are not found by standard pipelines.

Several natural directions exist for extending 2-kupl. First, 2-kupl lacks sensitivity

in detecting structural variants. All cs-kmers covering the junction are retained

and extended to contigs. Unfortunately, neither the ct-kmers nor the reads are eas-

ily obtained when considering a hamming distance of one. A structural variation

can be detected only if enough supporting reads are covering at least one side of

the variation. Focusing on the cs-kmers regardless of ct-kmers could address this

problem but at the cost of more false positives. A second limitation occurs when

control samples are contaminated with tumor cells, which is relatively frequent in

tissue biopsies. To address this problem, 2-kupl includes a parameter representing

a k-mer count threshold in the control sample. However, a fixed contamination

threshold may introduce unwanted non-specific variants. Future works should eval-

uate probabilistic approaches to address this issue.

113



3.2.6 Conclusion

In conclusion, the identification of different kinds of variants, using DNA-seq data,

remains challenging. The leading protocols developed for DNA-seq highly rely on

the reference. In general, the methods that align sequencing data to the refer-

ence (mapping-based methods), perform better than do the mapping-free methods.

However, 2-kupl can capture events falling into the difficult-to-map regions, and can

perform better than other mapping-free protocols. 2-kupl is the fastest tool in the

comparison with other methods because the mapping procedure is not included.

The high agreement in top ranking variants by 2-kupl and GDC portal variants

indicates the capacity of using 2-kupl as an extension and supplementation of the

mapping-based methods. New recurrent variants and genes relevant to prostate

cancer are captured by 2-kupl.

3.2.7 Additional Files

Table S1. This supplementary table includes recurrent SNVs, SVs and mutated

genes identified by 2-kupl.

Table S2. Comparison with the Fraser et al’s recurrent PRAD mutations.

Table S3. Prostate cancer related genes collected from various resources.

Table S4. True positive variants in the bacterial WGS data.

Table S5. 2-kupl detected structural variants that are missed by Delly.
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Figure S1: The distribution of shared SNVs in 2kupl and consistency of four

mapping-based protocols.
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Figure S3: Alignment of the mutant contig and inferred reference from one un-

mapped event.

Figure S4: IGV views of UBR4 mutations occurred on patient of TCGA-EJ-7125
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Chapter 4

Discussion and Perspectives

4.1 A new stratification of lung cancer patients with

potential therapeutic benefits

The advent of precision medicine with targeted therapeutic options with compan-

ion diagnostics and immunotherapy is revolutionizing the treatment in oncology,

especially in lung cancer. Accurate classification of tumor sub-types is an essential

step for personalized treatment of cancer. Many studies have further divided LUAD

patients into subgroups based on gene expression, mutation profiles, and immune

signatures (Hu et al., 2019; Ding et al., 2020; Xu et al., 2020). To our knowledge,

no study has ever used data originated from repetitive regions to define LUAD

subgroups. In fact, the complex variation in repetitive regions is a direct indicator

of genome instability. For instance, Alu repeats are shown to be associated with

many microsatellite instabilities, which plays a critical role in oncogenesis (Arcot

et al., 1995). Repeats also impact genomes by inducing small variants, recombina-

tory events, gene conversion, and abnormal gene expression (Batzer and Deininger,

2002). Therefore, patients with different repeat characteristics may present diverse

immune responses or prognosis.
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In Chapter 3.1.4.6, we applied DE-kupl to identify differentially expressed RNA

elements in two independent LUAD cohorts. We identified a large set of differential

RNA elements that were recurrent in both datasets, including SNVs, intronic events,

splice events, repeats and others. We classified patients into two subgroups based on

the Alu and L1P repeats: the two principal repeat types in the whole set of repeats

with differential expression. Despite no significant differences in survival status,

gender, age, or tumor stage, we observed differences in immune cell contents between

the two subgroups. Patients in the "high repeat" subgroup had lower immune

infiltration levels, consistent with previous observations that an immunosuppressed

environment favors transposable element activity (Zhang et al., 2020b; Jung et al.,

2018). The "high repeat" group also had a higher mutation and CNV burden,

suggesting repeat activation may be a cause of genomic instability in LUAD. It is

also consistent with the previous conclusions that repeats can cause variations at the

transcriptome and genome levels (Lanciano and Cristofari, 2020; Payer and Burns,

2019). Generally, patients with high TMB benefit from immunotherapy. However,

we found that the subgroup of LUAD patients with high TMB presents a lower

level of immune infiltration. It implies the need of new stratification especially in

high TMB patients to indicate their sensitivity to immunotherapy.

The identification of new patient groups with different levels of immune response

and genome instability is important for immunotherapy (Litchfield et al., 2021).

Therefore we hope our approach could serve as a basis for new patient stratification

schemes that would take into account repeats along with more conventional infor-

mation such as mutation burden, immune checkpoint expression or tumor clonality.

4.2 Candidate neoantigens for vaccine development

The discovery of tumor-specific antigens, or neoantigen, is a key step towards the de-

velopment of cancer vaccines. Canonical strategies for screening candidate neoanti-

gens consist of several main steps that primarily rely on DNA-seq and RNA-seq

data (Gopanenko et al., 2020). First, tumor-specific variants are selected from the
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DNA-seq data using variant callers such as GATK. Second, the expression of se-

lected variants in the tumor is verified in the RNA-seq data. Finally, the peptides

translated from tumor-specific variants are evaluated for presentation by the MHC

class I complex (Gopanenko et al., 2020).

The initial steps of neoantigen prediction rely on alignment to the reference. This

strategy can guarantee the security and applicability of candidate neoantigens.

However, mapping-based protocols neglect a wide diversity of possible neoantigens.

Variants located within unannotated regions of the current human genome are ex-

cluded. Variants in low complexity regions such as repeats are difficult to detect by

mapping-based callers. Complex variants such as aggregated mutations or struc-

tural variants are also challenging to detect because aligners often discard these

reads due to the low alignment score. Furthermore, if WES data is used for antigen

prediction, variants in intronic regions or noncoding regions are not included. Yet,

it has been shown that all these regions can be translated and form neoantigens

(Ouspenskaia et al., 2020; Laumont et al., 2018).

In Chapter 3.1.4.7, we identified candidate neoantigen-forming RNAs in exons, in-

trons, lincRNAs and repeats. Exonic candidates are relatively simple to discover

by standard alignment-based protocols. To our knowledge, there has not been

any research systematically evaluating the potential of intronic, intergenic and re-

peat regions producing neoantigens. DE-kupl is capable to screen multiple types

of tumor-specific events at once. High-quality candidates for neoantigen formation

shared by two LUAD datasets were extracted. These tumor-specific events are

all recurrently transcribed in at least 15% of LUAD patients, which makes them

valuable as a source of "public neoantigens" for vaccine development.
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4.3 The potential therapeutic value of novel events

as drug targets

Drug target discovery efforts have been increasing over the past decades in response

to decreased efficacy due to tolerance of existing drugs. While most drug targets to

date have been proteins, a growing diversity of miRNAs and lincRNAs are now con-

sidered as potential targets (Ling et al., 2013). However, standard alignment-based

methods limit the screening of novel RNAs that could serve as targets. We dis-

covered different types of transcriptional events using DE-kupl (and genetic events

using 2-kupl) which cannot be identified by standard methods. Although we have

not thoroughly explored the medicinal properties of these events, we hope our work

provides new insights for expanding the scope of drug target screening.

4.4 Novel recurrent variants in difficult-to-map re-

gions

There are large numbers of difficult-to-map regions in the genome that are not cov-

ered with standard NGS strategies and may contain clinically important variants.

These regions include multicopy pseudogenes or other repetitive genomic regions.

Addressing these difficult-to-map regions has been a challenging problem to over-

come by standard protocols. Since the early characterizations of mobile endogenous

retroviruses, numerous repetitive DNA sequences have been discovered to comprise

the majority of the human genome. The human genome has domesticated many

repetitive elements as regulators of transcription and genome organization (Ishak

and De Carvalho, 2020). Cancers usurp repetitive elements to disturb transcrip-

tional networks and promote genome instability. This thesis work found recurrent

RNA elements expressed from these difficult-to-map regions, which are transcribed

in multiple tumor samples and lowly expressed or even silent in all normal tissues.

The occurrence of these events in multiple patients from independent populations
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indicates the presence of common unidentified oncogenic mechanisms.

In Chapter 3.2, we identified recurrent somatic variants in prostate adenocarcinoma

patients with our newly developed in-house software 2-kupl. 2-kupl achieved high

concordance with the standard alignment-based variant callers such as GATK. In

addition, 2-kupl detected numerous somatic variants from the difficult-to-map re-

gions, most of which were not detectable by GATK. For instance, 2-kupl identified

novel mutations in some key genes, suggesting their mutation rates may be underes-

timated by standard methods. Furthermore, 2-kupl detected structural variants, in

which case reads covering the SV junctions are either unmapped or have multiple

hits on the genome and thus are normally discarded by standard variant callers.

Dedicated SV callers also miss SVs when their supporting reads are not properly

aligned. Still, recurrent SVs hidden in these difficult-to-map regions are potentially

disease-related (Levy-Sakin et al., 2019).

There are still a lot of poorly explored regions in the human genome beyond refer-

ence annotation. Mapping-free approaches were developed to uncover the genetic

information within these regions. However, their accuracy remains generally lower

than that of standard protocols. Furthermore, mapping-free approaches are not al-

ways computationally cheaper (e.g. de novo assembly). Therefore, one should not

expect these methods to become a substitute for standard protocols in the short

term. However, our results show that reference/alignment-free methods can read-

ily complement standard methods. Integrating alignment-free and alignment-based

methods to comprehensively answer biological and clinical questions could bring

better understanding of the transcriptome.

4.5 Perspectives

During this thesis, extensive DNA and RNA sequencing data have been analyzed

by our proposed alignment free protocols. Among the discoveries, transposable

elements are found to be active in tumors and can be used to define patient sub-
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groups. Generally, most TEs are supposed to be silent in human somatic cells due

to the inhibitory effect of DNA hypermethylation. One possible mechanism of TE

activation is the reduced DNA methylation that promotes TE expression. There-

fore, looking into the epigenetic alterations in tumors might establish new links to

causal factors for TEs activation, such variants could also be used for classification

of cancer subtypes and earlier screening of cancer.

One of the most remarkable advantages of k-mer based methods is the excellent com-

putational efficiency for querying and quantification of specific sequence segments.

Novel data structures now allow to query large RNA-seq or DNA-seq datasets at

the k-mer level in very fast time (Marchet et al., 2020, 2021). An area where such

techniques could prove invaluable is non-invasive qualitative and quantitative test-

ing from liquid biopsies for tumor early screening, in which case extremely large

volume of sequencing data are needed to capture the pathogenic mutations of ultra

low fraction.

The way DNA is packaged inside the nucleus of a cell differs between healthy and

tumor cells. The nuclei of healthy cells package DNA in a well-organized manner

with strict supervision and repairability. By contrast, nuclei of tumor cells are

disorganized and, as a consequence, abnormal DNA is released into the blood.

The released cell free DNA carries rich and potentially diagnostic enabling genetic

information, which is one of the most active areas in transnational medicine.

A number of large cohort studies, conducted by academic and industrial organiza-

tions, such as Grail, are actively pursuing circulating DNA screening for early tumor

detection. Using k-mer approaches to investigate the circulating DNA screening

specificity of various tumor types or using tissue or subtype specific k-mer signa-

tures to distinguish tumors of different types. In routine clinical diagnostic testing

or screening, a panel of pre-selected and clinical validated cancer specific k-mers

could be used as a new option for rapid analytical pipeline in liquid biopsies.

Alignment-free protocols are a powerful supplement and extension of standard

mapping-based methods. From a biological point of view, integrating both strate-
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gies can more comprehensively discover phenotype-related genetic information. In

future works, further integration of mapping-based and mapping-free approaches

could assist in the systematically and comprehensively discovery of key oncogenic

mechanisms.
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Résumé en français

Introduction

Historique du séquençage à haut débit (HTS)

Les séquences génétiques composées des bases adenine (A), cytosine (C), guanine

(G), et thymine (T) sont le fondement de la reproduction des organismes. Le

déchiffrement de ces séquences est essentiel à la compréhension du vivant. Le

séquençage de l’ADN est la technologie qui permet de déterminer l’ordre exact

et le type des paires de bases dans un fragment d’ADN.

Après l’achèvement du premier génome humain, le National Human Genome Re-

search Institute a lancé une initiative de technologie de séquençage de l’ADN visant

à réduire le coût du séquençage d’un génome humain à 1000 USD (Schloss, 2008).

Une vague de technologies de séquençage à haut débit (HTS) a émergé, souvent ap-

pelée séquençage de nouvelle génération (NGS) ou séquençage massivement parallèle

(MPS). Ces technologies peuvent séquencer des centaines de millions de molécules

d’ADN en parallèle, produisant des lectures ou "reads" courts de 50 de quelques

centaines de bases.

Alimentées par les développements techniques, la recherche fondamentale et la de-

mande du marché, plusieurs générations de plates-formes NGS ont vu le jour depuis

2005. Par rapport au séquençage Sanger de première génération, le NGS génère des

données massives en quelques heures à un coût considérablement réduit, devenant

124



ainsi le premier choix pour études génomiques et transcriptomiques à grande échelle.

Dans mon introduction, je présente les deux technologies NGS les plus utilisées:

DNA-seq et RNA-seq. Le DNA-seq est utilisé pour détecter les variations géné-

tiques, telles que les Single-Nucleotide Variants, les insertions et délétions, les vari-

ants structuraux et les variants de nombre de copies. Le séquençage d’ARN (RNA-

seq) vise à déterminer le contenu en séquences d’ARN d’un échantillon à l’aide de

NGS. Au cours de la dernière décennie, le RNA-seq est devenu un outil indispens-

able pour l’analyse du transcriptome. Le RNA-seq fournit les matériaux de base

pour évaluer différents aspects du transcriptome, y compris l’expression des gènes et

des transcrits, l’épissage alternatif et la découverte de nouveaux transcrits (Trapnell

et al., 2012; Sultan et al., 2008; Robertson et al., 2010; Trapnell et al., 2013).

Les chaînes de traitement ou "pipelines" informatiques utilisés pour l’analyse des

données NGS souffrent de plusieurs limitations. Dans les pipelines DNA-seq, les

variants génomiques sont identifiés en comparant les reads alignés à une référence.

Les reads avec de multiples mutations ou delétions sont difficiles à traiter car leur

alignement dépend fortement des aligneurs. De plus, bien que les génomes de nom-

breuses espèces aient été séquencés et mis à disposition, ces génomes sont souvent

incomplets et la plupart des organismes n’ont toujours pas de génome de référence

disponible. Un autre inconvénient de l’utilisation d’une référence est d’ignorer la

diversité au sein des populations. Des différences importantes existent entre les

génomes des individus, et un génome de référence unique ne rend pas compte de

cette diversité (Sherman et al., 2019). Enfin différents aligneurs produisent des

alignements différents. Par conséquent, la qualité des analyses reposant sur ces

alignements ne peut pas être garantie. Un autre problème avec les protocoles basés

sur l’alignement est lié aux ressources informatiques : les pipelines standard sont

gourmands en mémoire et en temps.

Les chercheurs sont conscients des limites du passage par un génome de référence

et ont proposé des solutions. Une approche consiste à incorporer dans le génome

de référence la diversité de l’ensemble de la population. Le pan-génome est défini
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comme la combinaison de génomes contenant tous les variants représentatifs qui

se produisent dans une espèce. La précision des alignemnts et des prédictions de

variants s’améliore si les reads sont alignés sur une collection représentative de

génomes (pan-génome) plutôt que sur un seul génome linéaire (Victor et al., 2018;

Sherman and Salzberg, 2020).

Alternativement, une collection diversifiée de génomes peut être représentée à l’aide

de graphes pan-génomiques (Paten et al., 2017; Li et al., 2020), où chaque génome

individuel est identifié comme un chemin dans le graphe. Les régions polymor-

phes créent des bulles indiquant divers génotypes à la position correspondante dans

l’ensemble de la population.

Néanmoins, les pipelines standard occupent toujours une position dominante, en

particulier dans les grands projets de génomique du cancer tels que le Pan Cancer

Analysis of Whole Genome (PCAWG) (The et al., 2020; Priestley et al., 2019). Ces

pipelines ont permis d’identifier les changements génétiques à l’échelle du génome

entier et de découvrir de nouveaux gènes causatifs ou "driver" du cancer.

Les principaux objectifs de ma thèse sont d’exploiter la puissance des approches

sans alignement pour découvrir de nouvelles variations dans les transcriptomes et

les génomes du cancer dans des régions difficiles à cartographier ou des régions

absentes du génome de référence. Pour atteindre cet objectif, j’ai eu deux projets.

Dans le projet sur l’analyse des variants génomiques, j’ai développé un logiciel

sans alignement (2-kupl) pour identifier des variants à partir de deux échantillons

d’ADN-seq appariés. Dans l’autre projet concernant le transcriptome, j’ai appliqué

DE-kupl pour trouver des événements liés au phénotype cancéreux dans deux jeux

de données indépendants de cancer du poumon, afin de décrouvrir de nouvelles

caractéristiques des ARN tumoraux.
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Résultats

La contribution de séquences d’ARN inexplorées à l’identité tu-

morale dans l’adénocarcinome pulmonaire

Sur une période de 20 ans, la transcriptomique du cancer a transformé notre com-

préhension de la biologie des tumeurs et a produit des outils performants pour le

typage des tumeurs, le diagnostic et la prédiction des résultats (Gollub and Prowda,

1999; Parker et al., 2009; Margolin and Lindblom, 2006). Alors que l’analyse tran-

scriptomique de première génération était basée sur des puces à ADN en mettant

l’accent sur les gènes codant pour les protéines, la génération actuelle s’appuie sur les

données RNA-seq, qui promettent de fournir une vue plus complète de l’expression

des gènes. Cependant, malgré son potentiel de découverte de transcrits, les don-

nées de RNA-seq du cancer sont encore utilisées principalement pour quantifier

l’expression de gènes annotés répertoriés dans un transcriptome de référence. Cela

ignore un large éventail d’isoformes d’ARNm, d’ARN non codants, de rétroéléments

endogènes et de transcrits de virus et de bactéries exogènes (Morillon and Gautheret,

2019). La quantité d’informations laissées inexploitées dans les transcriptions non

canoniques reste inconnue. Un certain nombre d’études ont commencé à répon-

dre à cette question en utilisant des données RNA-seq de cancer publiquement

accessibles, en se concentrant sur des classes de transcrits spécifiques telles que

les variantes d’épissage (Kahles et al., 2018; Vitting-Seerup and Sandelin, 2019),

les lncRNAs (Iyer et al., 2015), les snoRNAs (Gong et al., 2017), ARN bactériens

(Ouchenir et al., 2017) ou ARN viraux (Zapatka et al., 2020). D’autres sources nég-

ligées de diversité d’ARN sont les régions dites sur liste noire du génome qui sont

trop variables ou répétées pour être correctement analysées par des approches con-

ventionnelles (Amemiya et al., 2019). À notre connaissance, aucune tentative n’a

été faite pour extraire et évaluer à la fois toutes ces informations d’ARN non stan-

dard à partir des données de RNA-seq tumoral. Nous pensons que cette approche

pourrait être particulièrement utile dans le cancer, car chaque tumeur individuelle
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abrite un transcriptome unique qui s’écarte de celui des tissus normaux de plusieurs

manières imprévisibles.

Récemment, nous avons introduit une méthode de calcul, DE-kupl (Audoux et al.,

2017b), qui effectue une analyse différentielle des données RNA-seq au niveau k-

mer. Comme cette méthode est sans référence et sans alignement, elle identifie tout

nouvel ARN ou isoforme d’ARN présent dans les données à la résolution nucléo-

tidique, y compris les transcrits mal cartographiés tels que les ARN de répétitions

et l’ARN chimérique. Les résultats ont révélé une collection de nouveaux lincARN

non annotés spécifiques à une tumeur, des rétentions d’intron et des événements

d’épissage. Plus frappant encore, une collection de rétroéléments endogènes (ERE)

forme une classe majeure de transcrits définissant la tumeur. Nous avons également

identifié un sous-ensemble d’événements sans expression dans les tissus normaux qui

pourraient être des néoantigènes candidats. Enfin, nous avons identifié un ensemble

de variants de transcription potentiellement liés à la survie. Nous aimerions sug-

gérer DE-kupl comme une approche prometteuse et complète pour le profilage des

transcrits du cancer.

Nous avons pu montrer qu’une classe de variation déterminante est formée des

répétitions endogènes. L’expression des répétitions L1 et Alu définit deux sous-

groupes tumoraux majeurs. Le sous-groupe avec une expression L1/Alu plus élevée

était associé à des mutations plus fréquentes dans P53, à une charge de mutation

et de nombre de copies plus élevée et à un infiltrat de cellules immunitaires réduit.

Ceci est cohérent avec la découverte précédente impliquant P53 dans le contrôle de

la rétrotransposition (Jung et al., 2018) et corrélant la rétrotransposition L1 avec

un environnement immunitaire réprimé (Jung et al., 2018; Zhang et al., 2020b). La

mobilité des TE peut également conduire à une instabilité du génome. Les intégra-

tions de TE aléatoires entraînent une mutagenèse insertionnelle et des variations

structurelles génomiques, y compris les CNV (Lee et al., 2012).

Outre leur capacité à stratifier les patients, les répétitions exprimées démontrent un

pouvoir pronostique important. Des signatures multivariées composées d’expression

128



de HERV et L1, ou d’une simple expression répétée séparent les patients en groupes

de survie clairs. L’expression de HERV a été sporadiquement impliquée dans divers

types de cancer (Bannert et al., 2018), et a récemment été associée à un mauvais

pronostic dans le cancer colorectal (Golkaram et al., 2021).

Un autre domaine où les approches sans référence ont un potentiel de découverte

élevé est la détection de néo-antigènes pour le développement de thérapies antitu-

morales et pour l’orientation des patients en immunothérapie. Nous avons trouvé

des sources potentielles de néoantigènes partagés dans les répétitions, les ARNnc

et les variantes d’épissage des ARNm. Des néoantigènes spécifiques de la tumeur

ont déjà été identifiés à partir de répétitions et de régions supposées non codantes

à l’aide de stratégies basées sur la cartographie (Smith et al., 2019; Laumont et al.,

2018). Cependant, nous pensons que notre approche a plus de potentiel car elle

collecte tous les événements indépendamment de leur origine, y compris des régions

non cartographiables ou profondément réarrangées. Par conséquent, nous avons

une meilleure chance de découvrir des sources de néoépitopes quelle que soit leur

origine.

L’analyse sans référence présente d’autres avantages. Premièrement, il s’agit par

essence d’une méthode intégrative car elle combine la variation génomique et tran-

scriptomique en une seule matrice d’expression qui peut être analysée de plusieurs

manières. Une application intéressante de telles matrices est la construction de

modèles prédictifs intégrant plusieurs classes d’événements. Nous (Nguyen et al.,

2021) et d’autres (Lorenzi et al., 2020) avons initié ce type d’approche avec des

résultats très prometteurs. Deuxièmement, les méthodes sans référence pourraient

être particulièrement intéressantes dans les projets de méta-transcriptomique où

les ARN sont capturés dans un environnement contenant des espèces bactériennes,

archéennes ou eucaryotes inconnues. Notre protocole garantit que tout ARN spéci-

fique à un sous-ensemble d’échantillons sera capturé indépendamment de son orig-

ine.
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2-kupl: détection de variants sans cartographie à partir des don-

nées DNA-seq des échantillons appariés

La recherche de variants génomiques est un aspect fondamental de la recherche

médicale, que ce soit dans l’étude des maladies mendéliennes ou des altérations so-

matiques liées au cancer (Li et al., 2017). Alors que certaines variations entraînent

un dysfonctionnement génétique et une maladie (MacArthur et al., 2014), d’autres

sont en grande partie asymptomatiques mais donnent lieu à des néoantigènes perti-

nents pour l’échappement immunitaire et l’efficacité thérapeutique ou le traitement

(Jiang et al., 2019). Les variations du génome présentent également un intérêt en

microbiologie pour analyser les différences entre les souches microbiennes (Shiloach

et al., 2010) et révéler les mécanismes sous-jacents aux phénotypes. Dans cette

étude, nous abordons le problème de trouver des différences génomiques entre une

paire de jeux de séquences DNA-seq à haut débit provenant du même individu

(variation somatique humaine) ou de deux souches bactériennes.

Les variations génomiques comprennent les mutations, les indels et les variations

structurelles (SV). Les mutations et les indels peuvent altérer les gènes en pertur-

bant le code génétique, tandis que les SV, en rapprochant des régions distantes ou

en divisant une région en segments, peuvent créer des gènes chimériques ou avoir

un impact plus large sur des régions chromosomiques entières (Hurles et al., 2008).

Les variants sont généralement détectés par séquençage du génome entier (WGS)

ou de l’exome entier (WES) par comparaison avec des séquences de référence. Des

aligneurs tels que BWA (Li and Durbin, 2009) sont d’abord appliqués pour aligner

les reads aux séquences de référence. L’étape de détection de variant identifie alors

les différences entre les reads alignés et la référence. Les outls de détection de

variants les plus utilisés sont MuTect2 (Benjamin et al., 2019), VarScan (Koboldt

et al., 2012), somaticsniper (Larson et al., 2012) et MuSE (Fan et al., 2016). Sur la

base des variations observées entre deux échantillons de séquence et un génome de

référence commun, ces programmes peuvent déduire des différences entre les deux

échantillons (par exemple, avec le mode somatique de MuTect2).
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L’La détection de variants basé sur des références a des limitations bien connues.

Les aligneurs peuvent rencontrer des difficultés lors de la gestion des reads avec

de faibles qualités d’alignement (Li et al., 2008), provenant de régions répétées, de

régions de faible complexité ou de variantes complexes. Ces reads de faible qualité

d’alignement sont généralement ignorés. De plus, certaines espèces n’ont pas de

référence fiable, ce qui est courant chez les microbes (Loeffler et al., 2020).

Nous présentons 2-kupl, un pipeline bioinformatique basé sur les k-mer qui compare

des échantillons cas / contrôle appariés pour découvrir des variations spécifiques au

cas. 2-kupl identifie les fragments de séquence (contigs) spécifiques à un jeu de

données (cas) et absents du jeu de données de contrôle. Cette opération se fait

sans s’appuyer sur un génome de référence. Nous comparons la précision et les

besoins CPU de 2-kupl avec celles d’autres logiciels de détection de variantes en

utilisant des jeux de données DNA-seq simulés et réels. Nous analysons la nature des

nouvelles variations détectées par 2-kupl et les raisons potentielles de leur absence

dans les protocoles conventionnels. Nous utilisons également 2-kupl pour détecter

des variations récurrentes dans les données de séqeune d’exome d’adénocarcinome de

la prostate (PRAD) du projet TCGA (Tomczak et al., 2015). Enfin, nous évaluons

la précision de 2-kupl dans les données bactériennes WGS. Dans l’ensemble, nous

démontrons que 2-kupl est une alternative pratique et puissante pour la découverte

de variations génomiques dans des régions difficiles à cartographier ou des espèces

sans référence fiable.

En conclusion, l’identification de différents types de variants, à l’aide de données

DNA-seq reste un défi. Les principaux protocoles développés pour le DNA-seq

s’appuient fortement sur la référence. En général, les méthodes qui alignent les

données de séquençage sur une référence fonctionnent mieux que les méthodes sans

alignement. Cependant, 2-kupl peut capturer des événements tombant dans les

régions difficiles à mapper et peut fonctionner mieux que d’autres protocoles sans

alignement. 2-kupl est l’outil le plus rapide dans notre comparaison avec d’autres

méthodes, car il économise la procédure d’alignement. La forte concordance entre les

variations de haut score prédites par 2-kupl et des prédictions obtenues sur le portail
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officiel GDC indique la capacité d’utiliser 2-kupl comme extension et complément

des méthodes conventionnelle. De nouvelles ou des variations récurrentes et de

nouveaux gènes pertinents pour le cancer de la prostate sont capturés par 2-kupl.

Discussion

L’avènement de la médecine de précision avec ses options thérapeutiques ciblées, et

celui de l’immunothérapie révolutionnent actuellement le traitement en oncologie,

notamment dans le cancer du poumon.

La classification précise des sous-types tumoraux est une étape essentielle pour le

traitement personnalisé du cancer. De nombreuses études ont subdivisé les pa-

tients LUAD en sous-groupes en fonction de l’expression des gènes, des profils de

mutation et des signatures immunitaires (Hu et al., 2019; Ding et al., 2020; Xu

et al., 2020). À notre connaissance, aucune étude n’avait jamais utilisé des données

provenant de régions répétitives pour définir des sous-groupes LUAD. En effet, la

variation complexe des régions répétitives est un indicateur direct de l’instabilité

du génome. Par exemple, les répétitions Alu sont associées à de nombreuses insta-

bilités microsatellites, qui jouent un rôle essentiel dans l’oncogenèse (Arcot et al.,

1995). Les répétitions ont également un impact sur les génomes en induisant de

petites variations, des événements de recombinaison, des conversions géniques et

une expression génique anormale (Batzer and Deininger, 2002). Par conséquent, les

patients présentant des caractéristiques de répétition différentes peuvent présenter

des réponses immunitaires ou des pronostics divers.

Dans le chapitre 3.1.4.6, nous avons appliqué DE-kupl pour identifier des éléments

d’ARN exprimés de manière différentielle dans deux cohortes LUAD indépendantes.

Nous avons identifié un grand nombre d’éléments d’ARN différentiels qui étaient

récurrents dans les deux jeux de données, dont des SNV, des événements intron-

iques, des événements d’épissage, des répétitions, etc. Nous avons classé les patients

en deux sous-groupes sur la base des répétitions Alu et L1P : les deux principaux
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types de répétitions dans l’ensemble des répétitions avec expression différentielle.

Malgré l’absence de différences significatives dans la survie, le sexe, l’âge ou le

stade de la tumeur, nous avons observé des différences dans le contenu en cellules

immunitaires entre les deux sous-groupes. Les patients du sous-groupe "à répétition

élevée" présentaient des niveaux d’infiltration immunitaire plus faibles, ce qui est

cohérent avec les observations précédentes selon lesquelles un environnement im-

munodéprimé favorise l’activation des éléments transposables (Zhang et al., 2020b;

Jung et al., 2018). Le groupe "à répétition élevée" présentait également une charge

de mutation et de CNV plus élevée, ce qui suggère que l’activation répétée peut être

une cause d’instabilité génomique dans LUAD. Ceci est également cohérent avec les

conclusions précédentes selon lesquelles les répétitions peuvent provoquer des vari-

ations aux niveaux du transcriptome et du génome (Lanciano and Cristofari, 2020;

Payer and Burns, 2019). Généralement, les patients avec une charge mutationnelle

(TMB) élevée sont plus aptes à bénéficier d’une immunothérapie. Cependant, nous

avons constaté que le sous-groupe de patients LUAD avec une TMB élevée présente

un niveau d’infiltration immunitaire plus faible. Cela implique la nécessité d’une

nouvelle stratification en particulier chez les patients à TMB haute, pour prédire

leur sensibilité à l’immunothérapie.

La découverte d’antigènes spécifiques de tumeurs, ou néo-antigènes, est une étape

clé vers le développement de vaccins contre le cancer. Les stratégies canoniques

de criblage des néo-antigènes candidats consistent en plusieurs grandes étapes qui

reposent sur les données DNA-seq et RNA-seq (Gopanenko et al., 2020). Les pre-

mières étapes de la prédiction des néoantigènes reposent sur un alignement sur le

génome de référence. Cependant, ces protocoles classiques négligent une grande

diversité de néoantigènes possibles.

Dans le chapitre 3.1.4.7, nous avons identifié des ARN candidats à la production

de néoantigènes dans les exons, les introns, les lincARN et les répétitions. À notre

connaissance, il n’y existait pas auparavant de travaux évaluant aussi systématique-

ment que le notre le potentiel des régions introniques, intergéniques et répétées à la

production de néoantigènes.
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Il existe un grand nombre de régions difficiles à analyser dans le génome hu-

main et qui ne sont par conséquent pas couvertes par les stratégies NGS standard

alors qu’elle peuvent contenir des variations cliniquement importantes. Ces régions

comprennent notamment des pseudogènes multicopies, télomères, centromère ou

d’autres régions génomiques répétitives. Aborder ces régions difficiles à cartogra-

phier est un problème difficile à surmonter avec les protocoles standard. Ce travail

de thèse a trouvé des éléments d’ARN récurrents exprimés à partir de ces régions.

De plus, ces ARN sont transcrits dans de multiples échantillons de tumeurs et

faiblement exprimés voire silencieux dans tous les tissus normaux. La survenue

de ces événements chez plusieurs patients de populations indépendantes indique la

présence de mécanismes oncogènes communs non identifiés.

Dans le chapitre 3.2, nous avons identifié des variations somatiques récurrentes chez

les patients atteints d’adénocarcinome de la prostate avec notre nouveau logiciel 2-

kupl. 2-kupl atteint une concordance élevée avec les logiciels de détection de variants

standard basés sur l’alignement, tels que GATK-Mutect.

Notre programme 2-kupl détecte de nombreuses variations somatiques dans les ré-

gions difficiles à cartographier, dont la plupart ne sont pas détectables par GATK-

Mutect. Par exemple, 2-kupl identifie de nouvelles mutations dans certains gènes

de cancer, suggérant que leurs taux de mutation pourrait être sous-estimé par les

méthodes standard. De plus, 2-kupl détecte des variations structurales. Avec les

méthodes classiques de détection de variants, les reads couvrant les jonctions de ces

variations ne sont pas correctment alignés ou ont plusieurs alignements possibles

sur le génome et sont donc rejetés par les logiciels de détection de variants. Les

logiciels spécialisés dans la détection de variants structuraux manquent également

les variants lorsque les reads de support ne sont pas correctement alignés. Pourtant,

les variations structurales récurrentes cachés dans ces régions difficiles à analyser

sont potentiellement liées à la maladie (Levy-Sakin et al., 2019).

Il reste encore beaucoup de régions mal explorées dans le génome humain au-delà

des régions annotées dans les bases de référence. Des approches sans alignement ont
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ici été développées pour éclairer l’information génétique présente dans ces régions.

Cependant, leur précision reste généralement inférieure à celle des protocoles stan-

dards. De plus, dans l’offre générale de logiciels de bioinformatique, les approches

sans alignement sont souvent perrçues comme coûteuses en calcul (par exemple,

l’assemblage de novo est très couteux). Il ne faut donc pas s’attendre à ce que

ces méthodes se substituent à court terme aux protocoles standards. Cependant,

nos résultats montrent que les méthodes sans référence/alignement peuvent facile-

ment compléter les méthodes standard. L’intégration de méthodes sans alignement

et basées sur l’alignement pour répondre de manière exhaustive aux questions bi-

ologiques et cliniques pourrait à terme apporter une meilleure compréhension du

génome et du transcriptome.
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Titre : l’analyse du génome et du transcriptome par des méthodes sans référence
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Résumé : Les comportements et les phéno-
types des animaux sont en partie intégrés dans
les molécules génétiques de la vie: l’ARN et
l’ADN. En déchiffrant les informations cachées
dans ces molécules, nous pouvons lever un voile
sur les mystères de la biologie. Le séquençage de
nouvelle génération (NGS) est un outil puissant
pour décoder les molécules d’ADN et d’ARN
à très grande échelle. Le NGS a considérable-
ment élargi notre compréhension de tous les do-
maines de la biologie, de la biologie molécu-
laire à la génétique, la médecine, l’écologie
et l’épidémiologie. Une pierre angulaire de
l’analyse des données NGS est la comparaison
avec un génome de référence. Bien que les scien-
tifiques utilisent un génome de référence par es-
pèce, la croissance explosive de la production de
séquençage a remis en question ce point de vue
en montrant que les séquences réelles d’ADN et
d’ARN sont beaucoup plus diversifiées.

Dans cette thèse, nous proposons de nouveaux
protocoles bioinformatiques pour l’analyse NGS
qui ne reposent pas sur une référence. Nos
projets visent à exploiter la puissance des ap-
proches sans alignement pour découvrir de nou-

velles variations dans les transcriptomes et les
génomes du cancer dans des régions difficiles
à cartographier ou des régions absentes du
génome de référence. Nous avons appliqué cette
stratégie pour découvrir de nouveaux événe-
ments liés au phénotype à partir de cohortes de
cancer à grande échelle. Du point de vue de
l’analyse du génome, nous avons découvert de
nouvelles variantes récurrentes de patients at-
teints de cancer de la prostate. Sur la base de
l’analyse du transcriptome, nous avons décou-
vert des événements de non-référence avec une
haute réplicabilité.

Nous démontrons qu’un grand nombre de nou-
veaux événements pertinents pour les maladies
peuvent être découverts sans alignement. Ces
nouveaux événements non référencés ne néces-
sitent pas de connaissance a priori du génome
humain ou du transcriptome et présentent des
valeurs pronostiques significatives et un poten-
tiel de production de néoantigènes. De plus,
ces nouveaux événements non référencés im-
pliqués dans le risque de cancer pourraient orien-
ter les biologistes vers de nouveaux mécanismes
d’oncogenèse.



Title : Transcriptome and Genome Analysis based on Alignment-free Protocols

Keywords : Cancer, Bioinformatic, Transcriptome, Genome, Sequence alignment

Summary : Animal’s behaviors and pheno-
types are in part embedded in the genetic
molecules of life: RNA and DNA. By decipher-
ing the information hidden in these molecules,
we can peek into the mysteries of biology. Next
generation sequencing (NGS) was developed as
a powerful tool for decoding DNA and RNA
molecules on a very large scale. NGS has consid-
erably broadened our understanding of all areas
of biology, from molecular biology to genetics,
medicine, ecology and epidemiology. A corner-
stone of NGS data analysis is the comparison
with a reference genome. Although scientists
use one reference genome per species, the explo-
sive growth of sequencing output has challenged
this view by showing that actual DNA and RNA
sequences are much more diverse.

In this thesis, we propose new bioinformatics
protocols for NGS analysis that do not rely on a
reference. Our projects aim to exploit the power

of alignment-free approaches to discover novel
variations in cancer transcriptomes and genomes
in hard-to-map regions or regions absent from
the reference genome. We applied this strategy
to uncover novel phenotype-related events from
large-scale cancer cohorts. From the perspec-
tive of genome analysis, we uncovered novel re-
current variants from prostate cancer patients.
Based on transcriptome analysis, we discovered
non-reference events with high replicability.

We demonstrate that a large number of novel
events relevant to diseases can be discovered in
the manner of alignment-free. These novel non-
reference events do not require a priori knowl-
edge of the human genome or transcriptome and
present significant prognostic values and poten-
tial to produce neoantigens. In addition, these
novel non-reference events involved in cancer
risk may orient biologists towards new oncogen-
esis mechanisms.
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