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Abstract

In sequential learning (or repeated games), data is acquired and treated on the fly and an al-

gorithm (or strategy) learns to behave as well as if it got in hindsight the state of nature, e.g.,

distributions of rewards. In many real life scenarios, learning agents are not alone and interact,

or interfere, with many others. As a consequence, their decisions have an impact on the others

and, by extension, on the generating process of rewards. We study how sequential learning algo-

rithms behave in strategic environments, when facing and interfering with each other. This thesis

considers different problems, where interactions between learning agents arise and it proposes

computationally efficient algorithms with good performance (small regret) guarantees for these

problems.

When agents are cooperative, the difficulty of the problem comes from its decentralized

aspect, as the different agents take decisions solely based on their observations. In this case,

we propose algorithms that not only coordinate the agents to avoid negative interference with

each other, but also leverage the interferences to transfer information between the agents, thus

reaching performances similar to centralized algorithms. With competing agents, we propose

algorithms with both satisfying performance and strategic (e.g., ε-Nash equilibria) guarantees.

This thesis mainly focuses on the problem of multiplayer bandits, which combines differ-

ent connections between learning agents in a formalized online learning framework. Both for

the cooperative and competing case, algorithms with performances comparable to the central-

ized case are proposed. Other sequential learning instances involving multiple agents are also

considered in this thesis. We propose a strategy reaching centralized performances for decen-

tralized queuing systems. In online auctions, we suggest to balance short and long term rewards

with a utility/privacy trade-off. It is formalized as an optimization problem, that is equivalent to

Sinkhorn divergence and benefits from the recent advances on Optimal Transport. We also study

social learning with reviews, when the quality of the product varies over time.
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Chapter 1

Introduction (version française)

1.1 Apprentissage en jeux répétés . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Bandits stochastiques à plusieurs bras . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Modèle et bornes inférieures . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.2 Algorithmes de bandits classiques . . . . . . . . . . . . . . . . . . . . 15

1.3 Aperçu et Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1 Apprentissage en jeux répétés

Les jeux répétés formalisent les différentes interactions se produisant entre des joueurs (ou

agents) participant à un jeu de manière répétée, à l’aide d’outils de théorie des jeux (Aumann et

al., 1995; Fudenberg and Maskin, 2009). De nombreuses applications motivent ce type de prob-

lème, dont les enchères pour les publicités en ligne, l’optimisation du trafic dans des réseaux

de transport, etc. Face à la recrudescence d’algorithmes d’apprentissage dans notre société,

il est crucial de comprendre comment ceux-ci intéragissent. Alors que les paradigmes clas-

siques d’apprentissage considèrent un seul agent dans un environnement fixe, cette hypothèse

semble erronée dans de nombreuses applications modernes. Des agents intelligents, qui sont

stratégiques et apprennent leur environnement, en effet intéragissent entre eux, influençant large-

ment l’issue finale. Cette thèse explore différentes interactions possibles entre des agents intel-

ligents dans un environnement stratégique et décrit les stratégies qui mènent typiquement à de

bonnes performances dans ces configurations. Aussi, elle quantifie les différentes inefficiences

en bien-être social qui résultent à la fois des considérations stratégiques, et d’apprentissage.

9



10 Chapter 1. Introduction (version française)

Les jeux répétés sont généralement formalisés comme suit. À chaque tour t ∈ [T ] :=
{1, . . . , T}, chaque joueurm ∈ [M ] choisit individuellement une stratégie (un montant d’enchère

par exemple) sm ∈ Sm où Sm est l’espace de stratégie. Le joueur m reçoit alors le gain (pos-

siblement bruité) d’espérance umt (sss), où umt est sa fonction de gain associée à l’instant t et

sss ∈
∏M
m=1 Sm est le profil stratégique de l’ensemble des joueurs. Dans la suite de cette thèse,

s−ms−ms−m représente le vector sss privé de sa m-ième composante.

Un joueur apprenant choisit à chaque nouveau tour sa stratégie, en fonction des ses précé-

dentes observations. Celles-ci peuvent en effet permettre d’estimer l’environnement du jeu, c’est

à dire les fonctions d’utilité umt , ainsi que le profil de stratégie des autres joueurs s−ms−ms−m.

Maximiser son propre gain dans un environnement fixé à un joueur est au cœur des théories

d’apprentissage et d’optimisation. Cela devient encore plus délicat lorsque plusieurs joueurs in-

téragissent entre eux dans des jeux répétés. Deux types d’interaction majeures entre ces joueurs

sont possibles. Premièrement, le gain d’un joueur à chaque tour ne dépend pas seulement de sa

propre action, mais également des actions des autres agents, et même potentiellement des issues

des tours précédents. Dans ce cas, les joueurs peuvent soit rivaliser, ou bien coopérer, selon la

nature du jeu. Deuxièmement, les joueurs peuvent aussi partager (dans une certaine mesure)

leurs observations entre eux, influençant leur estimation de l’environnement du jeu. Cela peut

soit accélérer l’apprentissage, ou biaiser l’estimation des différents paramètres.

Interaction dans les gains. Généralement, les fonctions de gain ut dépendent du profil com-

plet de stratégie des joueurs sss. Les objectifs des différents joueurs peuvent alors être antag-

onistes, puisqu’un profil donnant un gain conséquent à un certain joueur peut mener à des

gains infimes pour un autre joueur. Le cas extrême correspond aux jeux à somme nulle pour

deux joueurs, où les fonctions d’utilité vérifient u1 = −u2. Dans ce cas, les joueurs rivalisent

entre eux et tentent de maximiser leurs gains individuels. Dans un jeu à un seul tour (non

répété), les équilibres de Nash caractérisent des profils de stratégie intéressants pour des joueurs

stratégiques. Un joueur déviant unilatéralement d’un équilibre de Nash subit, par définition, une

diminution de gain.

Définition 1.1 (Equilibre de Nash). Un profil de stratégie sss est un équilibre de Nash pour le jeu

à un tour défini par les fonctions d’utilité (um)m∈[M ] si

∀m ∈ [M ],∀s′ ∈ Sm, um(s′, s−ms−ms−m) ≤ um(sm, s−ms−ms−m).

Dès lors ques les fonctions d’utilité um sont concaves et continues, l’existence d’un équilibre

de Nash est garantie par le théorème de point fixe de Brouwer. C’est par exemple le cas si Sm
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est l’ensemble des distributions de probabilité sur un ensemble fini (qui est appelé ensemble
d’action dans la suite).

Cette première considération stratégique mène à une première inefficience dans les décisions

des joueurs, puisqu’ils maximisent leur gain individuel, au détriment du gain collectif. Le prix

de l’anarchie (Koutsoupias and Papadimitriou, 1999) mesure cette inefficience comme le ratio

de bien-être social entre la meilleure situation collective possible et le pire équilibre de Nash.

Bien qu’atteindre la meilleure situation collective semble illusoire pour des agents égoïstes,

considérer le pire équilibre de Nash peut être trop pessimiste. Le prix de la stabilité mesure

plutôt cette inefficience comme le ratio de bien-être social entre la meilleure situation possible

et le meilleur équilibre de Nash.

Apprendre les équilibres de jeux répétés est donc crucial, puisqu’ils reflètent le comporte-

ment des agents connaissant parfaitement leur environnement. En particulier, c’est au cœur de

nombreux problèmes en informatique et en économie (Fudenberg et al., 1998; Cesa-Bianchi

and Lugosi, 2006). Une seconde inefficience vient de cette considération, puisque les joueurs

doivent apprendre leur environnement et peuvent interférer l’un avec l’autre, ne convergeant po-

tentiellement pas ou vers un mauvais équilibre. Les équilibres corrélés sont définis similairement

aux équilibres de Nash, lorsque les stratégies (sm)m sont des distributions de probabilité dont

les réalisations jointes peuvent être corrélées. Il est connu que lorsque les fonctions d’utilité

sont constantes dans le temps umt = um, si tous les agents suivent des stratégies sans regret

interne, leurs actions convergent en moyenne vers l’ensemble des équilibres corrélées (Hart and

Mas-Colell, 2000; Blum and Monsour, 2007; Perchet, 2014). Cependant, on en sait beaucoup

moins lorsque les fonctions d’utilité umt dépendent aussi des issues des tours précédents, comme

dans le cas des systèmes de queues décentralisés, étudié dans le Chapitre 7.

De plus, déterminer un équilibre de Nash peut-être trop coûteux en pratique (Daskalakis et

al., 2009). C’est même le cas dans des jeux à somme nulle à deux joueurs, quand l’ensemble

d’action est continu. Par exemple dans le cas d’enchères répétées, une action d’enchère est une

fonction R+ → R+ qui à chaque valeur d’objet associe un montant d’enchère. Apprendre les

équilibres dans ce type de jeu semble alors déraisonnable et répondre de manière optimale à la

stratégie de l’adversaire peut mener à une course à l’armement sans fin entre les joueurs. Nous

proposons à la place au Chapitre 8 d’équilibrer entre le revenu à court terme obtenu en misant

de manière avide, et le revenu à long terme en maintenant une certaine asymétrie d’informations

entre les joueurs, qui est un aspect crucial des jeux répétés (Aumann et al., 1995).

Dans d’autres cas (par exemple l’allocation de ressources pour des réseaux radios ou infor-

matiques), les joueurs ont intérêt à coopérer entre eux. C’est par exemple le cas si les joueurs

répartissent équitablement le gain collectif entre eux, ou s’ils ont des intérêts communs en raison
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des fonctions d’utilité (considèrez par exemple un jeu avec un prix d’anarchie égal à 1).

Dans les bandits à plusieurs joueurs, qui est l’axe de la Partie I, les joueurs choisissent un

canal de transmission. Mais si certains joueurs utilisent le même canal à un certain instant, une

collision se produit et aucune transmission n’est possible sur ce canal. Dans ce cas, les joueurs

ont intérêt à se coordonner entre eux pour éviter les collisions et efficacement transmettre sur

les différents canaux. En plus d’apprendre l’environnement du jeu, la difficulté vient aussi de la

coordination entre les joueurs, tout en étant décentralisés et ayant une communication limitée,

voire impossible. Lorsque les tours sont répétés, il devient cependant incertain si les joueurs

ont réellement intérêt à coopérer aveuglément. En particulier, un joueur pourrait avoir intérêt à

perturber le processus d’apprentissage des autres joueurs pour s’accorder le meilleur canal de

transmission. Ce type de comportement peut malgré tout être prévenu, comme montré dans le

Chapitre 6, en utilisant par exemple des stratégies punitives.

La coopération entre les joueurs semble encore plus encouragée dans les systèmes de queues

décentralisés. Dans ce problème, les fonctions d’utilité dépendent aussi des issues des tours

précédents. Leur conception assure que si un joueur a accumulé un plus petit gain que les

autres joueurs jusqu’ici, il devient alors favorisé dans le futur et a la priorité sur les autres

joueurs lorsqu’il accède à un serveur. Par conséquent, les joueurs ont aussi intérêt à partager

les ressources entre eux, afin de ne pas dégrader leurs propres gains futurs.

Interaction dans les observations. Même lorsque les fonctions d’utilité ne dépendent pas

des actions des autres joueurs, i.e. umt ne dépend que de sm, les joueurs peuvent intéragir en

partageant des informations/observations entre eux. Dans ce cas, les joueurs n’ont pas intérêt à

être compétitifs et ils partagent leurs informations uniquement pour que tous puissent apprendre

plus vite l’environnement du jeu. Un tel phénomène apparaît par exemple dans le cas de bandits

distribués, décrit en Section 3.6.1. Ce problème est similaire aux bandits à plusieurs joueurs, à

l’exception de deux différences: il n’y a pas de collision ici, comme les fonctions d’utilité ne

dépendent pas des actions des autre joueurs; et les joueurs sont assignés à un graphe et peuvent

envoyer des messages à leurs voisins dans ce graphe. Ils peuvent donc envoyer leurs observations

(ou une agrégation de ces observations) à leurs voisins, ce qui permet d’accélérer le processus

d’apprentissage.

Même dans le cas général de jeux où les fonctions d’utilité dépendent du profil de stratégie

complet sss, les joueurs coopératifs peuvent partager certaines informations afin d’accélérer l’apprentissage.

C’est typiquement ce qui nous permet d’atteindre une performance quasi-centralisée dans le

problème de bandits à plusieurs joueurs dans les Chapitres 4, 5 et 6.

Lorsque les joueurs coopèrent, le but est généralement de maximiser le revenu collectif.

Comme expliqué ci-dessus, une inefficience d’apprentissage peut alors apparaître en raison des
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différentes interactions entre les joueurs. Lorsqu’ils sont centralisés, c’est à dire qu’un agent

central contrôle unilatéralement les décisions des autres joueurs, le problème est équivalent à

un cas à un seul joueur et cette inefficience vient simplement de la difficulté d’apprentissage

du problème. Mais lorsque les joueurs sont décentralisés, i.e. leurs décisions sont prises in-

dividuellement sans se concerter avec les autres, des difficultés supplémentaires apparaissent.

Par exemple, les observations/décisions ne peuvent être mutualisées. Le but principal dans ces

situations est alors de savoir si cette décentralisation apporte un coût supplémentaire, c’est à dire

si le meilleur bien-être social possible dans le cas décentralisé est plus petit que dans le cas cen-

tralisé. C’est en particulier l’objectif des Chapitres 4 et 7, qui montrent que la décentralisation

n’a globalement pas de coût, respectivement pour les problèmes de bandits à plusieurs joueurs

homogènes et les systèmes séquentiels de queues. Le Chapitre 5 suggère également que ce coût

est au maximum de l’ordre du nombre de joueurs pour le problème de bandits à plusieurs joueurs

hétérogènes.

L’apprentissage social considère un problème différent de jeux répétés, où à chaque tour,

un seul nouveau joueur ne joue que pour ce tour. Il choisit son action afin de maximiser son

revenu espéré, en se basant sur les actions des précédents joueurs (et potentiellement un re-

tour supplémentaire). Des comportements dits “de troupeau” peuvent alors se produire, où les

agents n’apprennent jamais correctement leur environnement et finissent par prendre des déci-

sions sous-optimales pour toujours. Ce type de problème illustre donc habilement comment des

agents peuvent prendre des décisions optimales à court terme, menant à de très mauvaises sit-

uations collectives. Le Chapitre 9 montre à l’inverse que cette inefficience d’apprentissage est

largement réduite lorsque les joueurs observent les revues des précédents consommateurs.

1.2 Bandits stochastiques à plusieurs bras

Les problèmes étudiés dans cette thèse sont complexes, puisqu’ils combinent des considérations

d’apprentissage et de théorie des jeux. Le cadre d’apprentissage séquentiel et tout particulière-

ment de Bandits à plusieurs bras semble parfaitement adapté. Tout d’abord, il définit un prob-

lème formel et relativement simple d’apprentissage, pour lequel des résultats théoriques sont

connus. De plus, son aspect séquentiel est similaire aux jeux répétés, et de nombreuses connex-

ions existent entre les jeux répétés et les bandits (voir par exemple Cesa-Bianchi and Lugosi,

2006). Le problème de bandits est effectivement un cas particulier de jeux répétés, où un seul

joueur joue contre la nature, qui génère les revenus de chaque bras.

Les bandits ont d’abord été introduits pour les essais cliniques (Thompson, 1933; Robbins,

1952) et ont été récemment popularisés pour ses applications aux systèmes de recommandation
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en ligne. De nombreuses variations ont également été développées ces dernières années, incluant

les bandits contextuels, combinatoriaux ou lipschitziens par exemple (Woodroofe, 1979; Cesa-

Bianchi and Lugosi, 2012; Agrawal, 1995).

Cette section décrit rapidement le problème de bandits stochastiques, ainsi que les résultats

et algorithmes principaux pour ce problème classique. Ceux-ci inspireront les algorithmes et

résultats proposés tout au long de cette thèse. Nous renvoyons le lecteur à (Bubeck and Cesa-

Bianchi, 2012; Lattimore and Szepesvári, 2018; Slivkins, 2019) pour des revues complètes des

bandits.

1.2.1 Modèle et bornes inférieures

À chaque instant t ∈ [T ], l’agent tire un bras π(t) ∈ [K] parmi un ensemble fini d’actions, où T

est l’horizon du jeu. Lorsqu’il tire le bras k, il observe et reçoit le gain Xk(t) ∼ νk de moyenne

µk = E[Xk(t)], où νk ∈ P([0, 1]) est une distribution de probabilité sur [0, 1]. Cette observation

Xk(t) est alors utilisée par l’agent pour choisir le bras à tirer aux prochains tours.

Les variables aléatoires (Xk(t))t=1,...,T sont indépendantes, identiquement distribuées et

bornées dans [0, 1] dans la suite. Cependant, les résultats présentés dans cette section sont aussi

valides dans le cas plus général de variables sous-gaussiennes.

Dans la suite, x(k) désigne la k-ième statistique ordonnée du vecteur xxx ∈ Rn, i.e., x(1) ≥
x(2) ≥ . . . ≥ x(n). Le but de l’agent est de maximiser son revenu cumulé. De manière équiva-

lente, il minimise son regret, défini comme la différence entre le revenu maximal espéré obtenu

par un agent connaissant a priori les distributions des bras et le revenu réellement accumulé par

l’agent jusqu’à l’horizon T . Formellement, le regret est défini par

R(T ) = Tµ(1) − E
[
T∑
t=1

µπ(t)

]
,

où l’espérance est sur les actions π(t) de l’agent.

Le joueur n’observe que le gain Xk(t) du bras tiré et pas ceux associés aux bras non-tirés.

À cause de ce retour dit “bandit”, le joueur doit équilibrer entre l’exploration, c’est à dire

estimer les moyennes des bras en les tirant tous sufisamment, et l’exploitation, en tirant le bras

qui apparaît comme optimal. Ce compromis est au cœur des problèmes de bandits et est aussi

crucial dans les jeux répétés, comme il oppose élégamment revenus à court terme (exploitation)

et long terme (exploration).

Une configuration de problème est fixée par les distributions (νk)k∈[K].

Definition 1.1. Un agent (ou algorithme) est asymptotiquement fiable si pour toute configura-

tion de problème et α > 0, R(T ) = o (Tα).
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Le revenu cumulé est de l’ordre de µ(1)T pour un algorithme asymptotiquement fiable. Le

regret est alors un choix de mesure plus fin, puisqu’il capture le terme du deuxième ordre du

revenu cumulé dans ce cas.

Déterminer le plus petit regret atteignable est une question fondamentale du problème de

bandits. Tout d’abord, Théorème 1.1 borne inférieurement le regret atteignable dans le problème

de bandits stochastiques classique.

Théorème 1.1 (Lai and Robbins 1985). Considérons une configuration de problème avec νk =
Bernoulli(µk). Alors, tout algorithme asymptotiquement fiable a un regret asymptotique borné

comme suit

lim inf
T→∞

R(T )
log(T ) ≥

∑
k:µk<µ(1)

µ(1) − µk
kl
(
µ(1), µk

) ,
où kl (p, q) = p log

(
p
q

)
+ (1− p) log

(
1−p
1−q

)
.

Une borne inférieure similaire existe pour des distributions générales νk, mais cette version

plus simple suffit à notre propos. La borne inférieure ci-dessus est asymptotique pour une con-

figuration fixée et est dite configuration-dépendante. Cependant, le regret maximal à l’instant T

sur toutes les configurations possibles peut toujours être linéaire en T . Cela correspond au pire

cas, où la configuration considérée est la pire, pour l’horizon fini fixé égal à T . Lorsque l’on fait

référence à cette quantité, on parle alors de regret minimax, qui est borné inférieurement comme

suit.

Théorème 1.2 (Auer et al. 1995). Pour tous les algorithmes et horizons T ∈ N, il existe toujours

une configuration telle que

R(T ) ≥
√
KT

20 .

1.2.2 Algorithmes de bandits classiques

Cette section décrit les algorithmes de bandits classiques suivants: ε-greedy, Upper Confidence

Bound (UCB), Thompson Sampling et Explore-then-commit (ETC). La plupart des algorithmes

dans le reste de la thèse sont inspirés de ceux-ci, comme ils sont relativement simples et offrent

de bonnes performances. Des bornes supérieures de leur regret sont données sans preuve; elles

s’appuient principalement sur l’inégalité de concentration suivante, qui permet de borner l’erreur

d’estimation de la moyenne empirique d’un bras.

Lemme 1.1 (Hoeffding 1963). Pour des variables aléatoires indépendantes (Xs)s∈N dans [0, 1]:

P
(

1
n

n∑
s=1

Xs − E[Xs] ≥ ε
)
≤ e−2nε2 .
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Les notations suivantes sont utilisées dans le reste de la section:

• Nk(t) =
∑t−1
s=1 1 (π(s) = k) est le nombre de tirages du bras k jusqu’à l’instant t;

• µ̂k(t) =
∑t−1

s=1 1(π(s)=k)Xk(t)
Nk(t) est la moyenne empirique du bras k avant l’instant t;

• ∆ = min{µ(1) − µk > 0 | k ∈ [K]} est l’écart de sous-optimalité et représente la

difficulté du problème.

Algorithme ε-greedy

L’algorithme ε-greedy décrit par Algorithme 1.1 est définie par une suite (εt)t ∈ [0, 1]N. Chaque

bras est d’abord tiré une fois. Ensuite à chaque tour t, l’algorithme explore avec probabilité εt,

auquel cas un bras est aléatoirement de manière uniforme. Sinon, l’algorithme exploite, i.e., le

bras avec la plus grande moyenne empirique est tiré.

Algorithme 1.1: ε-greedy

Entrées: (εt)t ∈ [0, 1]N
1 pour t = 1, . . . ,K faire tirer le bras t

2 pour t = K + 1, . . . , T faire
{

tirer k ∼ U([K]) avec probabilité εt;
tirer k ∈ arg maxi∈[K] µ̂i(t) sinon.

Quand εt = 0 pour tout t, l’algorithme est appelé greedy (ou glouton), puisqu’il tire toujours

de manière “gloutonne” le meilleur bras empirique. L’algorithme greedy entraîne généralement

un regret de l’ordre de T , comme le meilleur bras peut-être sous-estimé dès son premier tirage

et n’est alors plus tiré.

En choisissant une suite (εt) appropriée, on obtient alors un regret sous-linéaire, comme

donné par le Théorème 1.3.

Théorème 1.3 (Slivkins 2019, Théorème 1.4). Pour une certaine constante universelle positive

c0, l’algorithme ε-greedy avec probabilités d’exploration εt =
(
K log(t)

t

)1/3
a un regret borné

par

R(T ) ≤ c0K log(T )1/3T 2/3.

Si l’écart de sous-optimalité ∆ = min{µ(1) − µk > 0 | k ∈ [K]} est connu, la suite

εt = min(1, CK∆2t) pour une constante suffisamment large C donne un regret configuration-

dépendant logarithmique en T .
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Algorithme UCB

Comme expliqué ci-dessus, choisir naïvement le meilleur bras empirique entraîne un regret con-

sidérable. Contrairement à greedy, l’algorithme UCB choisit le bras k maximisant µ̂k(t)+Bk(t)
à chaque instant, où le terme Bk(t) est une certaine borne de confiance. UCB, donné par

l’Algorithme 1.2 ci-dessous, biaise donc positivement les estimées des moyennes des bras.

Grâce à cela, le meilleur bras ne peut être sous-estimée (avec grande probabilité), évitant donc

les situations d’échec de l’algorithme greedy décrites ci-dessus.

Algorithme 1.2: UCB

1 pour t = 1, . . . ,K faire tirer le bras t
2 pour t = K + 1, . . . , T faire tirer k ∈ arg maxi∈[K] µ̂i(t) +Bi(t)

Théorème 1.4 borne le regret de l’algorithme UCB avec son choix de borne de confiance le

plus commun.

Théorème 1.4 (Auer et al. 2002a). L’algorithme UCB avec Bi(t) =
√

2 log(t)
Ni(t) verifie les bornes

de regret configuration-dépendante et minimax suivantes, pour certaines constantes universelles

positives c1, c2

R(T ) ≤
∑

k:µk<µ(1)

8 log(T )
µ(1) − µk

+ c1, (1.1)

R(T ) ≤ c2

√
KT log(T ).

L’algorithme UCB a donc un regret configuration-dépendant optimal, à une constante multi-

plicative près, et lorsque les moyennes des bras ne sont pas arbitrairement proches de 0 ou 1. En

utilisant des bornes de confiance plus fines, un regret configuration-dépendant optimal est en fait

possible pour UCB (Garivier and Cappé, 2011). Dans la suite de cette thèse, une borne similaire

à l’Équation (1.1) est dite optimale à un facteur constant près par abus de notation.

Algorithme Thompson sampling

L’algorithme Thompson sampling décrit par Algorithme 1.3 adopte un point de vue Bayésien.

Pour une distribution a posteriori ppp des moyennes des bras µµµ, il échantillonne aléatoirement un

vecteur θ ∼ ppp et choisit un bras dans arg maxk∈[K] θk. La distribution a posteriori est alors

mise à jour en utilisant le gain observé, selon la règle de Bayes.

Théorème 1.5 (Kaufmann et al. 2012). Il existe une fonction f , dépendant uniquement du

vecteur des moyennes µµµ telle que pour toute configuration et ε > 0, le regret de l’algorithme
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Algorithme 1.3: Thompson sampling

1 ppp = ⊗Kk=1U([0, 1]) // Uniforme a priori

2 pour t = 1, . . . , T faire
3 Échantillonner θ ∼ ppp
4 Tirer k ∈ arg maxk∈[K] θk
5 Mettre à jour pk comme la distribution a posteriori de µk
6 fin

Thompson sampling est borné comme suit

R(T ) ≤ (1 + ε)
∑

k:µk<µ(1)

µ(1) − µk
kl
(
µk, µ(1)

) log(T ) + f(µµµ)
ε2 .

Bien qu’il vienne d’un point de vue Bayésien, Thompson sampling atteint des performances

fréquentistes optimales, lorsqu’il est initialisé avec une distribution uniforme a priori. La preuve

de cette borne supérieure est délicate. Échantillonner selon la distribution a posteriori ppp peut être

coûteux en terme de calcul à chaque tour. Cependant, dans certains cas comme des gains binaires

ou gaussiens, la mise à jour et l’échantillonnage de la distribution a posteriori est très simple.

Dans le cas général, une substitution de la distribution a posteriori peut être utilisée, à partir des

cas binaires et gaussiens. L’intérêt de ce type d’algorithmes pour les bandits combinatoriaux est

illustré par Perrault et al. (2020), bien que ce travail n’est pas discuté dans cette thèse.

Algorithme Explore-then-commit

Alors que les algorithmes ci-dessus combinent exploration et exploitation à chaque instant,

l’algorithme ETC sépare clairement les deux en phases distinctes. D’abord, tous les bras sont ex-

plorés. Seulement une fois que le meilleur bras est détecté (avec grande probabilité), l’algorithme

commence sa phase d’exploitation et tire ce bras jusqu’à l’horizon final T .

Séparer de manière distincte exploration et exploitation entraîne un plus grand regret. En

particulier, si tous les bras sont explorés le même nombre de fois (exploration uniforme), la

borne configuration-dépendante croît en 1
∆2 .

Pour remédier à cela, l’exploration est adaptée à chaque bras comme décrit dans Algo-

rithme 2.4. Cette version plus fine de l’algorithme ETC est appelée éliminations successives

(Perchet and Rigollet, 2013). Un bras k est éliminé lorsqu’il est détecté comme sous-optimal,

c’est à dire quand il existe un bras i tel que µ̂k + Bk(T ) ≤ µ̂i − Bi(T ), pour des bornes de

confiances Bi(t). Quand cette condition est vérifiée, le bras k est moins bon que le bras i avec

grande probabilité; il n’est alors plus joué. Avec cette exploration adaptative, le regret devient

optimal à un facteur près comme donné par Théorème 1.6.
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Algorithme 1.4: Éliminations successives

1 A ← [K] // bras actifs

2 tant que #A > 1 faire
3 tirer tous les bras dans A une fois
4 pour tout k ∈ A tel que µ̂k +Bk(T ) ≤ maxi∈A µ̂i −Bi(T ) faire A ← A \ {k}
5 fin
6 répéter tirer le seul bras dans A jusqu’à t = T

Théorème 1.6 (Perchet and Rigollet 2013). Algorithme 1.4 avec Bi(t) =
√

2 log(T )
Ni(t) a un regret

borné comme suit

R(T ) ≤ 324
∑

k:µk<µ(1)

log(T )
µ(1) − µk

,

R(T ) ≤ 18
√
KT log(T ).

En plus d’avoir une regret plus large qu’UCB et Thompson sampling (d’un facteur constant),

l’algorithme éliminations successives nécessite la connaissance a priori de l’horizon T . Con-

naître l’horizon T n’est pas trop restrictif dans les problèmes de bandits (Degenne and Perchet,

2016a) et cette connaissance est donc supposée dans le reste de cette thèse. D’un autre côté, cet

algorithme a l’avantage d’être simple car les phases d’exploration et d’exploitation sont claire-

ment séparées, ce qui sera utile pour le problème de bandits à plusieurs joueurs en Partie I.

1.3 Aperçu et Contributions

Le but de cette thèse est d’étudier les jeux répétés avec des agents apprenant et décentral-

isés. Pour la majorité des problèmes considérés, le but est de fournir de bonnes stratégies

d’apprentissage séquentiel, par exemple des algorithmes avec un faible regret. Pour des raisons

pratiques, les calculs faits par ces algorithmes doivent être efficaces, ce qui est assuré et illustré

par des expériences numériques dans la plupart des cas.

La formalisation des bandits pour étudier les relations entre plusieurs agents apprenant

amène au problème de bandits à plusieurs joueurs, qui est le principal problème de cette thèse

et en particulier de la Partie I. La Partie II quant à elle considère différents problèmes indépen-

dants, afin d’explorer les différents types d’interactions qui peuvent intervenir entre des agents

apprenant. Le contenu de chaque chapitre est décrit ci-dessous.

Partie I, Multiplayer Bandits

Cette partie s’intéresse au problème de bandits à plusieurs joueurs.
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Chapitre 3, Multiplayer bandits: a survey. Ce chapitre présente le problème de bandits à

plusieurs joueurs et étudie de manière exhaustive l’état de l’art en bandits à plusieurs joueurs,

incluant les Chapitres 4, 5 et 6, ainsi que des travaux ultérieurs par différents auteurs.

Chapitre 4, SIC-MMAB: Synchronisation Involves Communication in Multiplayer Multi-
Armed Bandits. Bien que les joueurs soient décentralisés, ils peuvent toujours communiquer

implicitement entre eux en utilisant les informations de collision comme des bits. Cette ob-

servation est ici exploitée pour proposer un algorithme décentralisé qui renforce les collisions

entre les joueurs pour établir une communication entre eux. Un regret similaire aux algorithmes

centralisés optimaux est alors atteint. Bien que quasi-optimal en théorie, cet algorithme n’est

pas satisfaisant, puisqu’un tel niveau de communication est très coûteux en pratique. Nous sug-

gérons que la formulation usuelle des bandits à plusieurs joueurs mène vers ce type d’algorithme

et en particulier l’hypothèse statique, selon laquelle les joueurs commencent et terminent tous

le jeu au même moment. Nous étudions ensuite un nouveau problème dynamique et proposons

un algorithme avec un regret logarithmique dans ce cas, sans utiliser de communication directe

entre les joueurs.

Chapitre 5, A Practical Algorithm for Multiplayer Bandits when Arm Means Vary Among
Players. Ce chapitre considère le cas hétérogène, où les moyennes de chaque bras varient selon

le joueur. Pour atteindre l’appariement optimal entre joueurs et bras, un niveau minimum de

communication est nécessaire entre les joueurs. Ce chapitre propose donc un algorithme efficace

pour le cas hétérogène à la fois en terme de regret et de calcul. Cela est réalisé en renforçant les

collisions parmi les joueurs et en améliorant le protocole de communication initialement proposé

dans le Chapitre 4.

Chapitre 6, Selfish Robustness and Equilibria in Multi-Player Bandits. Alors que la ma-

jorité des travaux sur le problème de bandits à plusieurs joueurs supposent des joueurs coopérat-

ifs, ce chapitre considère le cas de joueurs stratégiques, maximisant leur revenu individuel cu-

mulé de manière égoïste. Les algorithmes existants ne sont pas adaptés à ce contexte, comme

un joueur malveillant peut facilement interférer avec l’exploration des autres joueurs afin de

largement augmenter son propre revenu.

Nous proposons donc un premier algorithme, ignorant les collisions après l’initialisation,

qui est à la fois un O (log(T ))-équilibre de Nash (robuste aux joueurs égoïstes) et a un regret

collectif comparable aux algorithmes non-stratégiques. Lorsque les collisions sont observées,

les algorithmes existants peuvent en fait être adaptées en stratégies Grim-Trigger, qui sont aussi

des O (log(T ))-équilibres de Nash, tout en maintenant des garanties de regret similaires aux
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algorithmes coopératifs originaux. Avec des joueurs hétérogènes, l’appariement optimal ne peut

plus être atteint et nous minimisons alors une notion adaptée et pertinente de regret.

Partie II, Other learning instances

Cette partie étudie des problèmes indépendants qui illustrent les différents types d’interaction

entre des agents apprenant décrits en Section 1.1.

Chapitre 7, Decentralized Learning in Online Queuing Systems. Ce chapitre étudie le

problème séquentiel de systèmes de queues, initalement motivé par le routage de paquets dans

les réseaux informatiques. Dans ce problème, les queues reçoivent des paquets selon différents

taux et envoient répététivement leurs paquets aux serveurs, chacun d’entre eux ne pouvant traiter

au plus qu’un seul paquet à la fois. La stabilité du système (i.e., si le nombre de paquets restants

est borné) est d’un intérêt vital et est possible dans le cas centralisé dès lors que le ratio entre taux

de service et taux d’arrivée est strictement plus grand que 1. Avec des joueurs égoïstes, Gaitonde

and Tardos (2020a) ont montré que les queues minimisant leur regret sont stables lorsque ce ratio

est plus grand que 2. La minimisation du regret cependant mène à des comportements à court

terme et ignore les effets long terme dûs à la propriété de report propre à cet exemple de jeu

répété. En revanche, lorsque les joueurs minimisent des coûts à long terme, Gaitonde and Tar-

dos (2020b) ont montré que tous les équilibres de Nash sont stables tant que le ratio des taux est

plus grand que e
e−1 , qui peut alors être vu comme le prix de l’anarchie pour ce jeu. Cependant,

le coût d’apprentissage reste inconnu et nous soutenons dans ce chapitre qu’un certain niveau de

coopération est nécessaire entre les queues pour garantir la stabilité avec un ratio plus petit que 2
lorsqu’elles apprennent. Par conséquent, nous proposons un algorithme d’apprentissage décen-

tralisé, stable pour tout ratio plus grand que 1, ce qui implique que la décentralisation n’entraîne

pas de coût supplémentaire ici.

Chapitre 8, Utility/Privacy Trade-off as Regularized Optimal Transport. Dans les enchères

pour la publicité en ligne, le comissaire-priseur et les enchérisseurs sont répététivement en con-

currence. Déterminer les équilibres de Nash est ici trop coûteux en terme de calcul, comme les

espaces d’action sont continus. S’adapter aux nouvelles stratégies des autres joueurs mène à

une course à l’armement entre le comissaire-priseur et les enchérisseurs. À la place, ce chapitre

propose d’équilibrer naturellement le revenu à court terme, en maximisant sa propre utilité de

manière avide, et le revenu à long terme en cachant certaines informations privées dont la di-

vulgation pourrait être exploitée par les autres joueurs. Ce problème est formalisé par un cadre

Bayésien de compromis entre utilité et confidentialité, dont on montre qu’il est équivalent à un
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problème de minimisation de divergence de Sinkhorn. Cette équivalence permet de calculer ce

minimum efficacement, en utilisant les différents outils développés par les théories de transport

optimal et d’optimisation.

Chapitre 9, Social Learning in Non-Stationary Environments. Ce chapitre considère l’apprentissage

social avec revues, où des consommateurs hétérogènes et Bayésiens décident l’un après l’autre

d’acheter un objet de qualité inconnue, en se basant sur les revues de précédents acheteurs. Les

précédents travaux supposent que la qualité de l’objet est constante dans le temps et montrent

que son estimée converge vers sa vraie valeur sous de faibles hypothèses. Ici, nous considérons

un modèle dynamique où la qualité peut changer par moments. Le coût supplémentaire dû à la

structure dynamique se révèle être logarithmique en le taux de changement de la qualité, dans

le cas de caractéristiques binaires. Cependant, l’écart entre les modèles statique et dynamique

lorsque les caractéristiques ne sont plus binaires demeure inconnu.
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2.1 Learning in repeated games

Repeated games formalize the different interactions occurring between players (or agents) re-

peatedly taking part in a game instance, using game theoretical tools (Aumann et al., 1995;

Fudenberg and Maskin, 2009). Many applications derive from this kind of problem, including

bidding for online advertisement auctions, resource allocation in radio or computer networks,

minimizing travelling time in transportation networks, etc. Facing the surge of learning algo-

rithms in our society, it is of crucial interest to understand how these algorithms interact. While

the classical learning paradigms consider a single agent in a fixed environment, this assumption

seems inaccurate in many modern applications. Smart agents, which are strategic and learn their

environment, indeed interact between each other, highly influencing the final outcome. This

thesis aims at exploring these different possible interplays between learning agents in a strategic

environment and at describing the typical strategies that yield good performances in these set-

tings. It also measures the different inefficiencies in social welfare stemming from both strategic

23
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and learning considerations.

Repeated games are generally formalized as follows. At each round t ∈ [T ] := {1, . . . , T},
each player m ∈ [M ] individually chooses a strategy (a bidding amount for example) sm ∈ Sm

where Sm is the strategy space. She then receives a possibly noisy reward of expectation umt (sss)
where umt is her associated reward function at time t and sss ∈

∏M
m=1 Sm is the strategy profile

of all players. In the following, s−ms−ms−m represents the vector sss, except for its m-th component.

A learning player chooses at each new round her strategy based on her past observations.

These observations can indeed help in estimating both the game environment, i.e., the utility

functions umt , and the other players strategy profile s−ms−ms−m.

Maximizing one’s sole reward in a single player, fixed environment is at the core of optimiza-

tion and learning theories and becomes even more intricate when several players are interacting

with each other in repeated games. Two major types of interaction between these players can

happen. First, the reward of a player at each round does not solely depend on her action, but

also on other agents’ actions and even potentially on past outcomes. In this case, players can

either compete or cooperate, depending on the game’s nature. Secondly, players can also share

(to some extent) their observations with each other, influencing their estimation of the game

environment. This can either lead to a faster global learning, or bias the parameters estimations.

Interaction in outcomes. Generally, the reward functions ut depend on the complete strategy

profile of the players sss. The different players objectives might then be antagonistic, as any

strategy profile yielding a large reward for some player can yield a low reward for another

player. The extreme case corresponds to zero-sum games for two players, where the utility

functions verify u1 = −u2. In this case, players compete with each other and aim at maximizing

their individual reward. In a single round game, Nash equilibria characterize interesting strategy

profiles for strategic players. A player unilaterally deviating from a Nash equilibrium indeed

suffers a decrease in her reward.

Definition 2.1 (Nash equilibrium). A strategy profile sss is a Nash equilibrium for the single round

game defined by the utility functions (um)m∈[M ] if

∀m ∈ [M ],∀s′ ∈ Sm, um(s′, s−ms−ms−m) ≤ um(sm, s−ms−ms−m).

As soon as the utility functions um are concave and continuous, the existence of a Nash

equilibrium is guaranteed by Brouwer fixed point theorem. It is for instance the case if Sm is

the set of probability distributions over some finite set (which is called the action space in the

following).
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This strategic consideration thus leads to a first inefficiency in the players’ decisions, as

they maximize their individual reward, at the expense of the collective reward. The price of

anarchy (Koutsoupias and Papadimitriou, 1999) measures this inefficiency as the social welfare

ratio between the best possible collective situation and the worst Nash equilibrium. Although

reaching the best collective outcome might be illusory for selfish agents, considering the worst

Nash equilibrium might be too pessimistic. Instead, the price of stability (Schulz and Moses,

2003) measures the inefficiency by the social welfare ratio between the best possible situation

and the best Nash equilibrium.

Learning equilibria in repeated games is thus of crucial interest, as they nicely reflect the

behavior of agents perfectly knowing their environment. It is in particular at the core of many

problems in computer science and economics (Fudenberg et al., 1998; Cesa-Bianchi and Lugosi,

2006). A second inefficiency stems from this consideration, as players need to learn their envi-

ronment and might interfere with each other, potentially converging to no or bad equilibria. A

correlated equilibrium is defined similarly to a Nash equilibrium, when the strategies (sm)m are

probability distributions whose joint realizations can be correlated. It is known that when the

utility functions are constant in time umt = um, if all agents follow no internal regret strategies,

their actions converge in average to the set of correlated equilibria (Hart and Mas-Colell, 2000;

Blum and Monsour, 2007; Perchet, 2014). Yet little is known when the utility functions umt
also depend on the outcomes of previous rounds as in decentralized queuing systems, which are

studied in Chapter 7.

Moreover, computing a Nash equilibrium might be too expensive in practice (Daskalakis et

al., 2009). It is even the case in two players zero-sum games when the action space is continuous.

For example in repeated auctions, a bidding action is a function R+ → R+ which for every

item value, returns some bidding amount. Learning equilibria in this kind of game thus seems

unreasonable and optimally responding to the adversary’s strategy leads to an endless arm race

between the players. We instead propose in Chapter 8 to balance between the short term revenue

earned by greedily bidding, and the long term revenue by maintaining some level of information

asymmetry between the players, which is a crucial aspect of repeated games (Aumann et al.,

1995).

In other cases (e.g., resource allocation in radio or computer networks), the players have an

interest in cooperating with each other. This for example happens if players equally split their

collective reward, or if they have common interests by design of the utility functions (assume

for example a game with a price of anarchy equal to 1).

In multiplayer bandits, which is the focus of Part I, the players choose a channel for trans-

mission. But if several players query the same server at some time step, a collision occurs and no
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transmission happens on this channel. In this case, the players have interest in coordinating with

each other to avoid collisions and efficiently transmit on the different channels. Besides learning

the game environment, the difficulty here comes from coordinating the players with each other,

while being decentralized and limited in communication. When repeating the rounds, it however

becomes unclear whether players have an interest in blindly cooperating. Especially, a player

could have an interest in disturbing the learning process of other players in order to grant oneself

the best transmitting channel. This kind of behavior can however be prevented here as shown in

Chapter 6 using, for example, Grim-Trigger strategies.

Cooperation between the players seems even more strongly enforced in decentralized queu-

ing systems. In this problem, the utility functions also depend on the outcomes of previous

rounds. Their design actually ensures that if some player cumulated a smaller reward than the

other players, she gets favored in the future and is prioritized over the other players when query-

ing some server. Consequently, players also have interest in sharing the resources with each

other, to not degrade their future own rewards.

Interaction in observations. Even when the reward functions are independent of the other

players’ actions, i.e., umt only depends on sm, players can interact by sharing some informa-

tion/observations with each other. In that case, players have no interest in competing and they

only share their information to improve each other’s estimation of the game environment. Such a

phenomenon for example happens in distributed bandits, described in Section 3.6.1. This prob-

lem is similar to the multiplayer bandits except for two features: there are no collisions here, as

the utility functions do not depend on each other’s action, and players are assigned to a graph

and can send messages to their neighbours. They can thus send their observations (or an aggre-

gated function of these observations) to their neighbours, which allows to speed up the learning

process.

Even in general games where the utility functions depend on the whole strategy profile sss,

cooperative players can share some level of information in order to improve the learning rate.

This is typically what allows to reach near centralized performances in the multiplayer bandits

problem in Chapters 4 to 6.

When players are cooperating, the goal is generally to maximize the collective reward. As

explained above, some learning inefficiency might emerge because of the different interactions

between the players. When they are centralized, i.e., a central agent unilaterally controls the

decisions of all the players, this is equivalent to the single player instance and this inefficiency

solely comes from the learning difficulty of the problem. But when the players are decentralized,

that is their decisions are individually taken without consulting with each other, additional diffi-

culties arise, e.g., the observations/decisions cannot be mutualized. The main question in these
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settings is thus generally whether decentralization yields some additional cost, i.e., whether the

maximal attainable social welfare in the decentralized setting is smaller than in the centralized

setting. This is especially the focus of Chapters 4 and 7, which show that decentralization has

roughly no cost in homogeneous multiplayer bandits and online queuing systems, respectively.

Chapter 5 also suggests that this cost scales at most with the number of players in heterogeneous

multiplayer bandits.

Social learning considers a different instance of repeated games, where at each round, a new

single agent plays for this sole round. A player chooses her action to maximize her expected

reward, based on the former players’ actions (and potentially an additional feedback). Situations

of herding can then happen, where the agents never learn correctly their environment and end up

taking suboptimal decisions for ever. This problem instance thus nicely illustrates how myopic

agents can take decisions leading to bad collective situations. Chapter 9 on the other hand shows

that this learning inefficiency is largely mitigated under mild assumptions when players observe

the reviews of the previous consumers.

2.2 Stochastic Multi-Armed Bandits

The problems studied in this thesis are intricate as they combine both game theoretical and

learning considerations. The framework of sequential (or online) learning and especially Multi-
Armed Bandits (MAB) seems well adapted. On the first hand, it defines a formal and rather

simple instance of learning, for which theoretical results are known. On the other hand, its

sequential aspect is similar to repeated games and many connections exist between repeated

games and MAB (see e.g., Cesa-Bianchi and Lugosi, 2006). MAB is indeed a particular instance

of repeated games, where a single agent plays against the nature, which generates the rewards

of each arm.

MAB was first introduced for clinical trials (Thompson, 1933; Robbins, 1952) and has been

recently popularised thanks to its applications to online recommendation systems. Many exten-

sions have also been developed in the past years, such as contextual, combinatorial or lipschitz

bandits for example (Woodroofe, 1979; Cesa-Bianchi and Lugosi, 2012; Agrawal, 1995).

This section shortly describes the stochastic MAB problem, as well as the main results and

algorithms for this classical instance, which will give insights for the proposed algorithms and

results all along this thesis. We refer the reader to (Bubeck and Cesa-Bianchi, 2012; Lattimore

and Szepesvári, 2018; Slivkins, 2019) for extensive surveys on MAB.
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2.2.1 Model and lower bounds

At each time step t ∈ [T ], the agent pulls an arm π(t) ∈ [K] among a finite set of actions,

where T is the game horizon. When pulling the arm k, she observes and receives the reward

Xk(t) ∼ νk of mean µk = E[Xk(t)], where νk ∈ P([0, 1]) is a probability distribution on [0, 1].
This observation Xk(t) is then used by the agent to choose the arm to pull in the next rounds.

The random variables (Xk(t))t=1,...,T are independent, identically distributed and bounded

in [0, 1] in the following. Yet, the results presented in this section also hold for the more general

class of sub-gaussian variables.

In the following, x(k) denotes the k-th order statistics of the vector xxx ∈ Rn, i.e., x(1) ≥
x(2) ≥ . . . ≥ x(n). The goal of the agent is to maximize her cumulated reward. Equivalently,

she aims at minimizing her regret, which is the difference between the maximal expected reward

of an agent knowing beforehand the arms’ distributions and the actual earned reward until the

game horizon T . It is formally defined as

R(T ) = Tµ(1) − E
[
T∑
t=1

µπ(t)

]
,

where the expectation holds over the actions π(t) of the agent.

The player only observes the reward Xk(t) of the pulled arm and not those associated to the

non-pulled arms. Because of this bandit feedback, the player must balance between exploration,

i.e., estimating the arm means by pulling all arms sufficiently, and exploitation, by pulling the

seemingly optimal arm. This trade-off is at the core of MAB and is also crucial in repeated

games, as it nicely opposes short term (exploitation) with long term (exploration) rewards.

A problem instance is fixed by the distributions (νk)k∈[K].

Definition 2.2. An agent (or algorithm) is asymptotically consistent if for every problem instance

and α > 0, R(T ) = o (Tα).

The cumulated reward is of order µ(1)T for an asymptotically consistent algorithm. The

regret is instead a more refined choice of measure, since it captures the second order term of the

cumulated reward in this case.

Determining the smallest achievable regret is a fundamental question for bandits problem.

First, Theorem 2.1 lower bounds the achievable regret in the classical stochastic MAB.

Theorem 2.1 (Lai and Robbins 1985). Consider a problem instance with Bernoulli distributions

νk = Bernoulli(µk), then any asymptotically consistent algorithm has an asymptotic regret
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bounded as follows

lim inf
T→∞

R(T )
log(T ) ≥

∑
k:µk<µ(1)

µ(1) − µk
kl
(
µ(1), µk

) ,
where kl (p, q) = p log

(
p
q

)
+ (1− p) log

(
1−p
1−q

)
.

A similar lower bound holds for general distributions νk, but this simpler version is sufficient

for our purpose. The above lower bound holds asymptotically for a fixed instance and is referred

to as an instance dependent bound. However, the maximal regret incurred at time T over all

the possible instances might still be linear in T . This corresponds to the worst case, where the

considered instance is the worst for the fixed, finite horizon T . When specifying this quantity,

we instead refer to the minimax regret, which is lower bounded as follows.

Theorem 2.2 (Auer et al. 1995). For all algorithms and horizon T ∈ N, there exists a problem

instance such that

R(T ) ≥
√
KT

20 .

2.2.2 Classical bandit algorithms

This section describes the following classical bandit algorithms: ε-greedy, Upper Confidence

Bound (UCB), Thompson Sampling and Explore-then-commit (ETC). Most algorithms in the

following chapters will be inspired from them, as they are rather simple and yield good per-

formances. Upper bounds of their regret are provided without proofs; they mostly rely on the

following concentration inequality, which allows to bound the estimation error of the empirical

mean of an arm.

Lemma 2.1 (Hoeffding 1963). For independent random variables (Xs)s∈N in [0, 1]:

P
(

1
n

n∑
s=1

Xs − E[Xs] ≥ ε
)
≤ e−2nε2 .

The following notations are used in the remaining of this section

• Nk(t) =
∑t−1
s=1 1 (π(s) = k) is the number of pulls on arm k until time t;

• µ̂k(t) =
∑t−1

s=1 1(π(s)=k)Xk(t)
Nk(t) is the empirical mean of arm k before time t;

• ∆ = min{µ(1) − µk > 0 | k ∈ [K]} is the suboptimality gap and represents the hardness

of the problem.
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ε-greedy algorithm

The ε-greedy algorithm described in Algorithm 2.1 is defined by a sequence (εt)t ∈ [0, 1]N.

Each arm is first pulled once. Then at each round t, the algorithm explores with probability εt,

meaning it pulls an arm chosen uniformly at random. Otherwise, it exploits, i.e., it pulls the best

empirical arm.

Algorithm 2.1: ε-greedy algorithm

input: (εt)t ∈ [0, 1]N
1 for t = 1, . . . ,K do pull arm t

2 for t = K + 1, . . . , T do
{

pull k ∼ U([K]) with probability εt;
pull k ∈ arg maxi∈[K] µ̂i(t) otherwise.

When εt = 0 for all t, it is called the greedy algorithm, as it always greedily pulls the best

empirical arm. The greedy algorithm generally incurs a regret of order T , as the best arm can be

underestimated after its first pull and never be pulled again.

Appropriately choosing the sequence (εt) instead leads to a sublinear regret, as given by

Theorem 2.3.

Theorem 2.3 (Slivkins 2019, Theorem 1.4). For some positive universal constant c0, ε-greedy

algorithm with exploration probabilities εt =
(
K log(t)

t

)1/3
has a regret bounded as

R(T ) ≤ c0K log(T )1/3T 2/3.

If the suboptimality gap ∆ = min{µ(1) − µk > 0 | k ∈ [K]} is known, choosing the se-

quence εt = min(1, CK∆2t) for a sufficiently large constant C leads to a logarithmic in T instance

dependent regret.

Upper confidence bound algorithm

As explained above, greedily choosing the best empirical arm leads to a considerable regret.

The UCB algorithm instead chooses the arm k maximizing µ̂k(t) + Bk(t) at each time step,

where the term Bk(t) is some confidence bound. UCB, given by Algorithm 2.2 below, thus

positively bias the empirical means. Thanks to this, the best arm cannot be underestimated with

high probability, thus avoiding the failing situations of the greedy algorithm described above.

Algorithm 2.2: UCB algorithm

1 for t = 1, . . . ,K do pull arm t
2 for t = K + 1, . . . , T do pull k ∈ arg maxi∈[K] µ̂i(t) +Bi(t)
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Theorem 2.4 bounds the regret of the UCB algorithm with its most common choice of con-

fidence bound.

Theorem 2.4 (Auer et al. 2002a). The UCB algorithm with Bi(t) =
√

2 log(t)
Ni(t) verifies the fol-

lowing instance dependent and minimax bounds, for some positive universal constants c1, c2

R(T ) ≤
∑

k:µk<µ(1)

8 log(T )
µ(1) − µk

+ c1, (2.1)

R(T ) ≤ c2

√
KT log(T ).

The UCB algorithm thus has an optimal instance dependent regret, up to some constant

factor, when the arm means are bounded away from 0 and 1. Using finer confidence bounds,

an optimal instance dependent regret is actually reachable for the UCB algorithm (Garivier and

Cappé, 2011). In the following of this thesis, regret bounds similar to Equation (2.1) are said

optimal up to constant factors by abuse of notation.

Thompson sampling algorithm

The Thompson sampling algorithm described in Algorithm 2.3 originally adopts a Bayesian

point of view. From some posterior distribution ppp on the arm means µµµ, it samples the vector

θ ∼ ppp and pulls an arm in arg maxk∈[K] θk. It then updates its posterior distribution using the

observed reward, according to the Bayes rule.

Algorithm 2.3: Thompson sampling algorithm

1 ppp = ⊗Kk=1U([0, 1]) // Uniform prior

2 for t = 1, . . . , T do
3 Sample θ ∼ ppp
4 Pull k ∈ arg maxk∈[K] θk
5 Update pk as the posterior distribution of µk
6 end

Theorem 2.5 (Kaufmann et al. 2012). There exists a function f depending only on the means

vector µµµ such that for every problem instance and ε > 0, the regret of Thompson sampling

algorithm is bounded as

R(T ) ≤ (1 + ε)
∑

k:µk<µ(1)

µ(1) − µk
kl
(
µk, µ(1)

) log(T ) + f(µµµ)
ε2 .

Despite coming from a Bayesian point of view, it thus reaches optimal frequentist perfor-

mances, when initialized with a uniform prior. Proving this upper bound is rather intricate.
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Sampling from the posterior distribution ppp might be computationally expensive at each time

step. Yet in special cases, e.g., binary or gaussian rewards, the posterior update is very simple.

In the general case, a proxy of the exact posterior can be used, by deriving results from the

binary or gaussian case. The interest of Thompson sampling for combinatorial bandits is well

illustrated in (Perrault et al., 2020), although this work is not discussed in this thesis.

Explore-then-commit algorithm

While the above algorithms combine exploration and exploitation at each round, the ETC algo-

rithm instead clearly separates both in two distinct phases. It first explores all the arms. Only

once the best arm is detected (with high probability), it enters the exploitation phase and pulls

this arm until the final horizon T .

Distinctly separating the exploration and the exploitation phase leads to a larger regret

bound. Especially, if all the arms are explored the same amount of time (uniform exploration),

the instance dependent bound scales with 1
∆2 .

Instead, the exploration is adapted to each arm as described in Algorithm 2.4. This finer

version of ETC is referred to as Successive Eliminations (Perchet and Rigollet, 2013). An arm

k is eliminated when it is detected as suboptimal, i.e., when there is some arm i such that

µ̂k +Bk(T ) ≤ µ̂i−Bi(T ), for confidence bounds Bi(T ). When this condition holds, the arm k

is worse than the arm i with high probability; it is thus not pulled anymore. With this adaptive

exploration, the regret bound is optimal up to some constant factor as given by Theorem 2.6.

Algorithm 2.4: Successive Eliminations algorithm

1 A ← [K] // active arms

2 while #A > 1 do
3 pull all arms in A once
4 for all k ∈ A such that µ̂k +Bk(T ) ≤ maxi∈A µ̂i −Bi(T ) do A ← A \ {k}
5 end
6 repeat pull only arm in A until t = T

Theorem 2.6 (Perchet and Rigollet 2013). Algorithm 2.4 with Bi(t) =
√

2 log(T )
Ni(t) has a regret

bounded as

R(T ) ≤ 324
∑

k:µk<µ(1)

log(T )
µ(1) − µk

,

R(T ) ≤ 18
√
KT log(T ).

Besides yielding a larger regret than UCB and Thompson sampling (of constant order), Suc-

cessive Eliminations requires a prior knowledge of the horizon T . Knowing the horizon T is
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not too restrictive in bandits problem (Degenne and Perchet, 2016a) and is thus assumed in the

remaining of this thesis. On the other hand, Successivation Eliminations has the advantage of

being simple since it clearly separates both exploration and exploitation, which will be useful

for multiplayer bandits in Part I.

2.3 Outline and Contributions

The goal of this thesis is to study repeated games with decentralized learning agents. For most

of the considered problems, it aims at providing good sequential learning strategies, e.g., small

regret algorithms. For practical reasons, these strategies have to be computationally efficient,

which is ensured and illustrated by numerical experiments in most of the cases.

Using the MAB formalization to study relations between multiple learning agents leads to

the multiplayer bandits problem, which is the main focus of this thesis and particularly of Part I.

On the other hand, Part II considers different and independent problems, exploring the different

types of interactions that can happen between learning agents. The content of each chapter is

described below.

Part I, Multiplayer Bandits

This part focuses on the problem of multiplayer bandits.

Chapter 3, Multiplayer bandits: a survey. This chapter introduces the problem of multi-

player bandits and extensively reviews the multiplayer bandits literature, including Chapters 4

to 6 and subsequent works by different authors.

Chapter 4, SIC-MMAB: Synchronisation Involves Communication in Multiplayer Multi-
Armed Bandits. Although players are decentralized, they can still implicitly communicate

with each other using collision information as bits. This observation is here leveraged to pro-

pose a decentralized algorithm that enforces collisions between players to allow communication

between them. It then achieves a regret bound similar to the smallest achievable regret in the

centralized case. Although theoretically efficient, this algorithm is not satisfying, as such a level

of communication is very costly in practice. We suggest that the usual formulation of the mul-

tiplayer bandits leads to this kind of algorithm and in particular the static assumption, which

assumes that all players start and end the game at the same time. We then study a new dynamic

setting and propose a logarithmic regret algorithm for this setting, using no direct communica-

tion between the players.
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Chapter 5, A Practical Algorithm for Multiplayer Bandits when Arm Means Vary Among
Players. This chapter considers the heterogeneous case, where the arm means vary among

the players. Reaching the optimal matching between the players here requires some minimal

level of communication among them. This chapter thus proposes an efficient algorithm for the

heterogeneous case, both in terms of regret and computation, by enforcing collisions between

the players and improving the communication protocol proposed in Chapter 4.

Chapter 6, Selfish Robustness and Equilibria in Multi-Player Bandits. While the multi-

player bandits literature mostly focuses on cooperative players, this chapter considers the case

of strategic players, selfishly maximizing their individual cumulated reward. Existing algorithms

are not adapted to this setting, as a malicious player can easily interfere with the exploration of

the other players in order to significantly increase her own reward.

We thus propose a first algorithm, ignoring the collision information after some initialization,

which is both a O (log(T ))-Nash equilibrium (robust to selfish players) and has a collective

regret comparable to non strategic algorithms. When collisions are observed, existing algorithms

can actually be adapted to Grim Trigger strategies, which are also O (log(T ))-Nash equilibria,

while maintaining the regret bounds of the original cooperative algorithms. With heterogeneous

players, reaching the optimal matching becomes hopeless and we instead minimize an adapted

and relevant notion of regret.

Part II, Other learning instances

This part studies independent problems illustrating the different types of interaction between

learning agents described in Section 2.1.

Chapter 7, Decentralized Learning in Online Queuing Systems. This chapter studies the

problem of online queuing systems, originally motivated by packet routing in computer net-

works. In this problem, queues receive packets at different rates and repeatedly send packets

to servers, each of them treating at most one packet at a time. The stability of the system (i.e.,

whether the number of remaining packets is bounded) is of crucial interest and is possible in

the centralized case as long as the ratio between service rates and arrival rates is larger than 1.

With selfish players, Gaitonde and Tardos (2020a) showed that queues minimizing their regret

are stable when this ratio is above 2. Regret minimization however leads to myopic behaviors,

ignoring the long term effects due to the carryover feature proper to this repeated game instance.

By contrast, when minimizing long term costs, Gaitonde and Tardos (2020b) showed that all

Nash equilibria are stable as long as the ratio of rates is larger than e
e−1 , which can then be seen
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as the price of anarchy of the considered game. Yet the cost of learning remains unknown and

we argue in this chapter that some level of cooperation is required between the queues to ensure

stability with a ratio below 2 when learning. As a consequence, we propose a decentralized

learning strategy, that is stable for any ratio of rates larger than 1, implying that decentralization

yields no additional cost here.

Chapter 8, Utility/Privacy Trade-off as Regularized Optimal Transport. In online adver-

tisement auctions, the auctioneer and the bidders are repeatedly competing. Determining the

Nash equilibria is here too costly in terms of computation, as the action spaces are continuous.

Adapting to the new strategies of the other players leads to an arm race between the auctioneer

and the bidders. This chapter instead proposes to naturally balance between short term reward,

earned by greedily maximizing one’s utility, and long term reward by hiding some private in-

formation whose disclosure could be leveraged by the other players. This problem is generally

formalized as a Bayesian framework of utility/privacy trade-off, which is shown to be equivalent

to Sinkhorn divergence minimization. This equivalence leads to efficient computations of this

minimum, using the different tools developed in Optimal Transport and optimization theories.

Chapter 9, Social Learning in Non-Stationary Environments. This chapter considers so-

cial learning with reviews, where heterogeneous Bayesian consumers decide one after the other

whether to buy an item of unknown quality, based on the previous buyers’ reviews. Previous

works assume the item quality to be constant in time and show that its estimate converges to

its true value under mild assumptions. We here consider a dynamical model where the quality

might change at some point. The additional cost due to the dynamical structure is shown to

be logarithmic in the changing rate of the quality, in the case of binary features. Yet, the gap

between static and dynamical models when the features belong to more complex sets remains

unknown.
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3.1 Introduction

The problem of multiplayer bandits has known a recent interest. Motivated by cognitive radio

networks, it considers multiple decentralized players on a single Multi-Armed Bandits instance.

When several of them pull the same arm at some round, a collision occurs and causes a decrease

in the received reward, which makes the problem much more intricate.

Many works on multiplayer bandits thus emerged, considering different models, objectives

or algorithmic techniques. Because of the recency of the problem, the large diversity of the lit-

erature and the different communities involved (learning theory and communication networks),

gathering and structuring altogether the existing works remains missing.

The goal of this survey is thus multiple. It first aims at placing the current state of the art

in multiplayer bandits. It also aims at contextualizing altogether the existing works, according

to their studied models, their objectives and used techniques. Finally, this survey also provides

comprehensive explanations of the main existing algorithms and results.

For the sake of conciseness, this survey does not provide detailed proofs, but simple insights,

of the different presented results1. Similarly, it does not extensively describe the mentioned

algorithms but only describes them as simple and clear as possible.

Section 3.2 first presents the motivations leading to the design of the multiplayer bandits

model. The most classical version of multiplayer bandits is then described in Section 3.3, along

with a first base study including the centralized case and a lower bound of the incurred regret.

Section 3.4 then presents the different results known for this model. In particular, collision in-

formation can be abusively used to reach regrets similar to the centralized case. Section 3.5

then presents the several practical considerations that can be added to the model, in the hope

of leading to more natural algorithms. Finally, Section 3.6 mentions the Multi-agent bandits,

Competing bandits and Queuing Systems problems, which all bear similarities with Multiplayer

bandits, either in the model or in the used algorithms. Tables 3.3 and 3.4 in Section 3.7 summa-

rize the main results presented in this survey.

3.2 Motivation for cognitive radio networks

The concept of cognitive radio has been first developed by Mitola and Maguire (1999) and can

be defined as a radio capable of learning its environment and choosing dynamically the best

wireless channels for transmission. Especially, cognitive radio should lead to a more efficient

bandwidth usage rate. The concept of cognitive radio thus covers many different applications.

1The detailed proofs can be found in the corresponding cited papers.
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Two major cognitive radio models appear to be closely related to multiplayer bandits and each

of them still represent several different applications. We refer the reader to (Zhao and Sadler,

2007) for a survey on different cognitive radio models.

A first common approach to cognitive radio is Opportunistic Spectrum Access (OSA),

which considers licensed bands, where Primary Users (PU) have preferential access to desig-

nated channels (e.g., frequency bands). In practice, many of these bands remain largely unused

and Secondary Users (SU) then have the possibility to access these channels when let free by

the PUs. Assuming the SUs are equipped with a spectrum sensing capacity, they can first sense

the presence of a PU on a channel to give priority to PUs. If no PU is using the channel, SUs can

then decide to transmit on this channel. Such devices yet have limited capabilities; in particu-

lar, they proceed in a decentralized network and cannot sense different channels simultaneously.

This last restriction justifies the bandit feedback assumed in the considered models.

The second model related to multiplayer bandits is for Internet of Things (IoT) networks,

where the devices have even lower power capabilities and thus cannot sense the presence of

another user before transmitting. Moreover, there is no more licensed bands and all devices are

then SUs (no PU). Still, these devices can perform some form of learning as they determine

afterwards whether their transmission was successful. As a consequence, models for OSA and

IoT still share strong similarities, as shown in Section 3.3.1.

Using a Multi-Armed bandits model for cognitive radios was first suggested by Jouini et al.

(2009), Jouini et al. (2010), and Liu and Zhao (2008). In these first attempts in formalizing

the problem, a single SU (player) repeatedly chooses among a choice of K channels (arms) for

transmission. The success of transmission is then given by a random variable Xk(t) ∈ {0, 1},
where the sequence (Xk(t))t can be i.i.d. (stochastic model) or a Markov chain for instance. A

successful transmission corresponds to Xk = 1, against Xk = 0 if transmission failed, e.g., the

channel was occupied by a PU. The goal of the SU is then to maximize its number of transmitted

bits, or in bandits lingo, to minimize its regret.

Shortly after, Liu and Zhao (2010) extended this model to multiple SUs, taking into account

the interaction between SUs in cognitive radio networks. The problem becomes more intricate as

SUs interfere when transmitting on the same channel. The event of multiple SUs simultaneously

using the same channel is called a collision.

Different proof-of-concepts later justified the use of Reinforcement Learning, and especially

Multi-Armed bandits model, for both OSA (Robert et al., 2014; Kumar et al., 2018b) and IoT

networks (Bonnefoi et al., 2017). We refer to (Marinho and Monteiro, 2012; Garhwal and

Bhattacharya, 2011) for surveys on the different research directions for cognitive radios and

to (Jouini, 2012; Besson, 2019) for more details on the link between OSA and Multi-Armed
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bandits.

3.3 Baseline problem and first results

This section describes the classical model of multiplayer bandits and gives first results, which

are inferred from the centralized case.

3.3.1 Model

This section describes the general multiplayer bandits problem, with several variations of ob-

servation and arm means setting, as well as notations used all along this survey. Harder, more

realistic variations are discussed in Section 3.5. The model and notations described here will be

used in the remaining of Part I.

We consider a bandit problem with M players and K arms, where M ≤ K. To each

arm-player pair is associated an i.i.d. sequence of rewards (Xm
k (t))t∈[T ], where Xm

k follows

a distribution in [0, 1] of mean µmk . At each round t ∈ [T ] := {1, . . . , T}, all players pull

simultaneously an arm. We denote by πm(t) the arm pulled by player m at time t, who receives

the individual reward

rm(t) := Xm
πm(t)(t) · (1− ηπm(t)(t)),

where ηk(t) = 1 (# {m ∈ [M ] | πm(t) = k} > 1) is the collision indicator.

The players are assumed to know the horizon T and use a common numbering of the arms.

A matching π ∈ M is an assignment of players to arms, i.e., mathematically, it is a one to

one function π : [M ]→ [K]. The (expected) utility of a matching is then defined as

U(π) :=
M∑
m=1

µmπ(m).

The performance of an algorithm is measured in terms of collective regret, which is the

difference between the maximal expected reward and the algorithm cumulative reward:

R(T ) := TU∗ −
T∑
t=1

M∑
m=1

E[µmπm(t) · (1− ηπm(t)(t))],

where U∗ = maxπ∈M U(π) is the maximal utility. In the following, the problem difficulty is

related to the suboptimality gap ∆ where

∆(π) := U∗ − U(π)
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and ∆ := min {∆(π) | ∆(π) > 0} .

In contrast to the classical bandits problem where only the received reward at each time step

can be observed, algorithms might differ in the information observed at each time step, which

leads to four different settings2, described in Table 3.1 below.

Setting Full sensing Statistic
sensing

Collision
sensing

No sensing

Feedback ηπm(t)(t) and
Xm
πm(t)(t)

Xm
πm(t)(t) and
rm(t)

ηπm(t)(t) and
rm(t)

rm(t)

Table 3.1: Different observation settings considered. Feedback represents the observation of
player m for round t

The different settings can be motivated by different applications, or purely for theoretical

purposes. For example, statistic sensing models the OSA problem, where SUs first sense the

presence of a PU before transmitting on the channel; while no sensing models IoT networks,

where devices have more limited capacities as explained in Section 3.2.

The no sensing setting is obviously the hardest one, since a 0 reward can either corresponds

to a low channel quality or a collision with another player.

This description corresponds to the heterogeneous setting, where the arm means vary among

the players. In practice, it can be due to several factors such as the presence of devices of

heterogeneous nature (especially in modern IoT networks) or the spatial aspect that may affect

signals quality.

In the following, the easier homogeneous setting is also considered, in which the arm means

are common to all players, i.e., µmk = µk for all m, k ∈ [M ] × [K]. In this case, the maximal

expected reward is given by

max
π∈M

U(π) =
M∑
k=1

µ(k),

which largely facilitates the learning problem.

The statistics (Xm
k (t)) can be either common or different between homogeneous players

depending on the literature. In the following, we consider by default common statistics between

players (i.e., Xm
k (t) = Xk(t)) and precise when otherwise. Note that this has no influence in

both collision and no sensing settings.

2Bubeck and Budzinski (2020) also consider a fifth setting where only Xm
πm(t)(t) is observed in order to com-

pletely ignore collision information.
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3.3.2 Centralized case

To set baseline results, first consider in this section the easier centralized model, where all players

in the game described in Section 3.3.1 are controlled by a common central agent. It becomes

trivial for this central agent to avoid collisions between players as she unilaterally decides the

arms they pull. The difficulty is thus only to learn which is the optimal matching π in this

simplified setting.

Bandits with multiple plays. In the homogeneous setting where the arm means do not vary

across players, the centralized case reduces to bandits with multiple plays, where a single player

has to pull M arms among a set of K arms at each round. Anantharam et al. (1987a) introduced

this problem long before multiplayer bandits and provided an asymptotic lower bound for this

problem, given by Theorem 3.1 below.

Komiyama et al. (2015) later showed that a Thompson Sampling (TS) based algorithm

reaches this exact regret bound in the specific setting of multiple plays bandits.

Combinatorial bandits. More generally, multiple plays bandits as well as the heterogeneous

centralized setting are particular instances of combinatorial bandits (Gai et al., 2012), where the

central agent plays an action (representing several arms) a ∈ A and receives r(µµµ, a) for reward.

We here consider the simple case of linear reward r(µµµ, a) =
∑
k∈a µk.

In the homogeneous case,A was all the subsets of [K] of size M . In the heterogeneous case

however, MK arms are considered instead of K (one arm per pair (m, k)) and A represents the

set of matchings between players and arms.

Chen et al. (2013) proposed the CUCB algorithm, which yields a O
(
M2K

∆ log(T )
)

re-

gret in the heterogeneous setting (Kveton et al., 2015). While CUCB performs well for any

correlation between the arms, Combes et al. (2015) leverages the independence of arms with

ESCB to reach a O
(

log2(M)MK
∆ log(T )

)
regret in this specific setting. ESCB however suf-

fers from computational inefficiencies in general, as it requires to compute upper confidence

bounds for every action. Thompson Sampling strategies remedy this problem, while still hav-

ing O
(

log2(M)MK
∆ log(T )

)
regret for independent arms (Wang and Chen, 2018). Degenne and

Perchet (2016b) and Perrault et al. (2020) respectively extended ESCB and combinatorial TS

for the intermediate case of neither independent nor fully correlated arms.

3.3.3 Lower bound

This section describes the different lower bounds known in multiplayer bandits, which are de-

rived from the centralized case.
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As mentioned in Section 3.3.2, Anantharam et al. (1987a) provided a lower bound for the

centralized homogeneous setting. This setting is obviously easier than the decentralized homo-

geneous multiplayer problem, so that this bound also holds for the latter.

Definition 3.1. An algorithm is asymptotically consistent if for every instance (given byµµµ,K,M )

and for every α > 0, R(T ) = o (Tα).

Theorem 3.1 (Anantharam et al. 1987a). For any asymptotically consistent algorithm and any

instance of homogeneous multiplayer bandits where arms follow Bernoulli distributions such

that µ(M) > µ(M+1),

lim inf
T→∞

R(T )
log(T ) ≥

∑
k>M

µ(k) − µ(M)

kl
(
µ(M), µ(k)

) .
Combes et al. (2015) proved a lower bound for general combinatorial bandits, depending

on a problem constant c(µµµ,A), determined as the solution of an optimization problem. Luckily

for the specific case of matchings, its value is simplified. Especially, for some heterogeneous

problem instances, any asymptotically consistent algorithm regret is Ω
(
KM

∆ log(T )
)

.

Note that the lower bound is tight in the homogeneous case, i.e., an algorithm matches this

regret bound, while there remains a log2(M) gap between the known lower and upper bounds in

the heterogeneous setting. In the centralized case, studying the heterogeneous setting is already

more intricate than the homogeneous one. This difference seems even larger when considering

decentralized algorithms as shown in the following sections.

It was first thought that the decentralized problem was harder than the centralized one, and

especially in the homogeneous setting that an additional M factor, the number of players, would

appear for all decentralized algorithms (Liu and Zhao, 2010; Besson and Kaufmann, 2018a).

This actually only holds if the players do not use any information from the collisions with other

players (Besson and Kaufmann, 2019), but as soon as the players use this information, only the

centralized bound holds.

3.4 Reaching centralized optimal regret

This section shows how this collision information has been used in the literature, from a coor-

dination tool to a communication tool between players, until reaching a near centralized perfor-

mance in theory. In the following, all algorithms are written from the point of view of a single

player to highlight their decentralized aspects.
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3.4.1 Coordination routines

The main challenge of multiplayer bandits comes from additional loss due to collisions between

players. The players cannot try solely to minimize their individual regret without considering the

multiplayer environment, as they would encounter a large amount of collisions. In this direction,

Besson and Kaufmann (2018a) studied the behavior of the SELFISH algorithm, where players

individually follow a UCB algorithm. Although it yields good empirical results on average,

players appear to incur a linear regret in some runs. Section 4.C proves the inefficiency of

SELFISH for machines with infinite precision. It yet remains to be proved for machines with

finite precision.

The first attempts at proposing algorithms for multiplayer bandits considered the homoge-

neous setting, as well as the existence of a pre-agreement between players (Anandkumar et al.,

2010). If players are assumed to have distinct ranks j ∈ [M ] beforehand, the player j then

just focuses on pulling the j-th best arm. Anandkumar et al. (2010) proposed a first algorithm

using an ε-greedy strategy. Instead of targeting the j-th best arm, players can instead rotate in

a delayed fashion on the M -best arms. For example, when player 1 targets the k-th best arm,

player j targets the kj-th best arm where kj = k + j − 1 (mod M). Liu and Zhao (2010) used

a UCB-strategy with rotation among players.

This kind of pre-agreement among players is however undesirable, and many works instead

suggested that the players use collision information for coordination. Especially, a significant

goal of multiplayer bandits is to orthogonalise players, i.e., reach a state where all players pull

different arms and no collision happens.

A first routine for orthogonalisation, called RAND ORTHOGONALISATION is given by Al-

gorithm 3.1 below. Each player pulls an arm uniformly at random among some set (the M -best

arms or all arms for instance). If she encounters no collision, she continues pulling this arm until

receiving a collision. As soon as she encounters a collision, she then restarts sampling uniformly

at random. After some time, all players end pulling different arms with high probability. Anand-

kumar et al. (2011) and Liu and Zhao (2010) used this routine when selecting an arm among the

set of the M largest UCB indexes to limit the number of collisions between players.

Avner and Mannor (2014) used a related procedure with an ε-greedy algorithm, but instead

of systematically resampling after a collision, players resample only with a small probability p.

When a player gives up an arm by resampling after colliding on it, she marks it as occupied and

stops trying to pull it for a long time.

Rosenski et al. (2016) later introduced a faster routine for orthogonalisation, MUSICAL

CHAIRS described by Algorithm 3.2. Players sample at random as RAND ORTHOGONALI-

SATION, but as soon as a player encounters no collision, she remains idle on this arm until the
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end of the procedure, even if she encounters new collisions afterwards. This routine is faster

since players do not restart each time they encounter a new collision.

Rosenski et al. (2016) used this routine with a simple Explore-then-Commit (ETC) algo-

rithm. Players first pull all arms log(T )/∆2 times so that they know the M best arms after-

wards, while sampling uniformly at random. Players then play musical chairs on the set of M

best arms and remain idle on their attributed arm until the end. Joshi et al. (2018) proposed a

similar strategy, but used MUSICAL CHAIRS directly at the beginning of the algorithm so that

players rotate over the arms even during the exploration, avoiding additional collisions.

Algorithm 3.1: RAND ORTHOGO-
NALISATION

input: time T0, set S
1 ηk(0)← 1
2 for t ∈ [T0] do
3 if ηk(t− 1) = 1 then
4 Sample k ∼ U(S)
5 end
6 Pull arm k

7 end

Algorithm 3.2: MUSICAL CHAIRS

input: time T0, set S
1 stay← False
2 for t ∈ [T0] do
3 if not(stay) then
4 Sample k ∼ U(S)
5 end
6 Pull arm k
7 if ηk(t) = 0 then
8 stay← True
9 end

Besson and Kaufmann (2018a) adapted both routines with a UCB strategy. They show that

even in the statistic sensing setting where collisions are not directly observed, these routines can

be used for orthogonalisation. Lugosi and Mehrabian (2018) even used MUSICAL CHAIRS with

no sensing, but require the knowledge of a lower bound of µ(M). Indeed, for arbitrarily small

means, observing only zeros on an arm might not be due to collisions. While the ETC algo-

rithm proposed by Rosenski et al. (2016) assumes the knowledge of ∆, Lugosi and Mehrabian

(2018) removed this assumption by instead using a Successive Accept and Reject (SAR) algo-

rithm (Bubeck et al., 2013)3 with epochs of increasing sizes. At the end of each epoch, players

eliminate the arms that appear suboptimal and accept arms that appear optimal. The remaining

arms still have to be explored in the next phases. To avoid collisions on accepted arms, players

proceed to MUSICAL CHAIRS at the beginning of each new epoch.

Kumar et al. (2018a) proposed an ETC strategy based on MUSICAL CHAIRS. However,

they do not require the knowledge of M when assigning the M best arms to players, but instead

use a scheme where players improve their current arm when possible.

3It is a direct extension of the Successive Eliminations algorithm, that eliminates suboptimal arms similarly and
accept optimal arms as soon as they appear among the top-M arms (with high probability).
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With a few exceptions (Avner and Mannor, 2014; Kumar et al., 2018a), the presented algo-

rithms require the knowledge of the number of players M at some point, as the players must

exactly target the M best arms. While some of them assume M to be a priori known, others es-

timate it. Especially, uniform sampling rules are useful here, since the number of players can be

deduced from the collision probability (Anandkumar et al., 2011; Rosenski et al., 2016; Lugosi

and Mehrabian, 2018). Indeed, assume all players are sampling uniformly at random among all

arms. The probability to collide for a player at each round is exactly 1− (1− 1/K)M−1. If this

probability is estimated tightly enough, the number of players is then exactly estimated.

Joshi et al. (2018) proposed another routine to estimate M . If all players except one are

orthogonalized and rotate over the K arms while the remaining one stays idle on a single arm,

the number of collisions observed by this player during a window of K rounds is then M − 1.

Joshi et al. (2018) also proposed this routine with no sensing, in which case some lower bound

on µ has to be known similarly to (Lugosi and Mehrabian, 2018).

Heterogeneous setting. All the previous algorithms reach a sublinear regret in the homoge-

neous setting. Reaching the optimal matching in the heterogeneous setting is yet much harder

with decentralized algorithms and the first works on this topic thus only proposed solutions

reaching Pareto optimal matchings. A matching is Pareto optimal if no player can change her

assigned arm to increase her expected reward, without decreasing the expected reward of any

other player.

Avner and Mannor (2019) and Darak and Hanawal (2019) both proposed algorithms with

similar ideas to reach a Pareto optimal matching. First, the players are orthogonalized. The time

is then divided in several windows. In each window, with small probability p, a player becomes

a leader. The leader then suggests to switch with the player pulling her currently preferred arm

(in UCB index). If this player refuses, the leader then tries to switch for her second preferred

arm, and so on. This algorithm thus finally reaches a Pareto optimal matching when all arms are

well estimated.

3.4.2 Enhancing communication

The works of Section 3.4.1 used collision information as tool for coordination, i.e., to avoid

collisions between players. Yet, a richer level of information seems required to reach the optimal

allocation in the heterogeneous case. Indeed, the sole knowledge of other players preferences

order is not sufficient to compute the best matching between players and arms. Instead, players

need to be able to exchange detailed information on their arm means.

For this purpose, Kalathil et al. (2014) assumed that players were able to send real numbers
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to each others at some rounds. The players can then proceed to a Bertsekas Auction algorithm

(Bertsekas, 1992) by bidding on arms to end up with the optimal matching. Especially, the

algorithm works in epochs of doubling size. Each epoch starts by a decision phase, where

players bid according to UCB indexes of their arms. After this phase, players are attributed an

ε-optimal matching for these indexes and pull this matching for the remaining of the epoch. This

algorithm was later improved and adapted to ETC and Thompson sampling strategies (Nayyar

et al., 2016).

Although these works provide first algorithms with a sublinear regret in the heterogeneous

setting, they assume undesirable communication possibilities between players. Actually, this

kind of communication is possible through collision observations. In the following of this sec-

tion, we consider the collision sensing setting if not specified, so that a collision is systematically

detected.

Communication via Markov chains.

Bistritz and Leshem (2020) adapted a Markov chain dynamic (Marden et al., 2014) for multi-

player bandits to attribute the best matching to players. Here as well the algorithm works with

epochs of increasing sizes. Each epoch is divided in an exploration phase where players esti-

mate the arm means; a Game of Thrones (GoT) phase, in which players follow a Markov chain

dynamic to determine the best estimated matching; and an exploitation phase where players pull

the matching attributed by the GoT phase. This algorithm reaches a log1+δ(T ) regret for any

choice of parameter δ > 0 and even with several optimal matchings.

The main interest of the algorithm comes from the GoT phase, described in Algorithm 3.3,

which allows the players to determine the best matching using only collision information. In this

phase, players follow a decentralized game, where they tend to explore more when discontent

(state D) and still explore with a small probability when content (state C). When the routine

parameters ε and c are well chosen, players tend to visit more often the best matching according

to the estimated means µ̂jk so far. In particular, each player, while content, pulls her assigned arm

in the optimal matching most often. This phase thus allows to estimate the optimal matching

between arms and players as proved by Bistritz and Leshem (2020).

Youssef et al. (2020) extended this algorithm to the multiple plays setting, where each player

can pull several arms at each round.

This algorithm is a very elegant way to assign the optimal matching to decentralized players.

However, it suffers from a large dependency in other problem parameters than T , as the GoT

phase requires the Markov chain to reach its stationary distribution. Moreover, the algorithm

requires a good tuning of the GoT parameters ε and c, which depends on the suboptimality gap
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Algorithm 3.3: Game of Thrones subroutine
input: time T0, starting arm at, player j, parameters ε and c

1 St ← C; umax ← maxk∈[K] µ̂
j
k

2 for t = 1, . . . , T0 do

3 if St = C then pull k with probability

{
1− εc if k = at

εc/(K − 1) otherwise
4 else pull k ∼ U([K])
5 if k 6= at or ηk(t) = 1 or St = D then

6 at, St ←

k,C with probability µ̂j
k
ηk(t)

umax
εumax−µ̂jkηk(t)

k,D otherwise
7 end
8 return arm the most played, that resulted in being content

∆.

Collision Information as bits.

In Chapter 4, we suggest with SIC-MMAB algorithm that the collision information ηk(t) can

be interpreted as a bit sent from a player i to a player j, if they previously agreed that at this

time, player i was sending a message to player j. For example, a collision represents a 1 bit,

while no collision a 0 bit.

Such an agreement is possible if the algorithm is well designed and different ranks in [M ]
are assigned to the players. These ranks are here assigned using an initialization procedure that

first orthogonalises the players with Musical chairs. The number of players M and different

ranks are then estimated in a timeO
(
K2), using a procedure close the one of Joshi et al. (2018)

described in Section 3.4.1.

Homogeneous setting. After this initialization, the SAR based algorithm runs in epochs of

doubling size. Each epoch is divided in an exploration phase, where players pull accepted

arms and arms to explore. In the communication phase, players then send to each other their

empirical means (truncated up to a small error) in binary, using collision information as bits.

From then, players have shared all their statistics, and can accept/eliminate in common the opti-

mal/suboptimal arms. These epochs go on, until M arms have been accepted. The players then

pull these arms until T , with no collision.

Note that the communication regret of SIC-MMAB can directly be improved by using a

leader gathering all the information and giving the arms to pull to other players, as done in

Chapter 5.
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As the players share their statistics altogether, we show that the centralized lower bound was

achievable with decentralization, contradicting first intuitions. The algorithm however presents

an additional MK log(T ) regret due to the initialization. Wang et al. (2020) later improved

this initialization, so that its regret is only of order K2M2. Their algorithm thus matches the

theoretical lower bound for the homogeneous setting.

Theorem 3.2 (Wang et al. 2020). DPE1 algorithm, in the homogeneous with collision sensing

setting such that µ(M) > µ(M+1), has an asymptotic regret bounded as

lim sup
T→∞

R(T )
log(T ) ≤

∑
k>M

µ(k) − µ(M)

kl
(
µ(M), µ(k)

) .
Wang et al. (2020) also improved the communication regret, using a leader who is the only

player to explore, and tells to the other players which arms to explore. Verma et al. (2019) also

proposed to adapt SIC-MMAB with a leader who is the only one to explore the arms.

Shi et al. (2020) extended the SIC-MMAB algorithm to the no sensing case using Z-channel

coding. It yet requires the knowledge of a lower bound of the arm means µmin. Indeed, while

a collision is detected in a single round with collision sensing, it can be detected with high

probability in log(T )
µmin

rounds with no sensing. The suboptimality gap ∆ is also assumed to be

known here, to fix the number of sent bits at each epoch (while p bits are sent after the epoch p

in SIC-MMAB) .

Huang et al. (2021) overcome this issue by proposing a no sensing algorithm without ad-

ditional knowledge of problem parameters. In particular, it neither requires prior knowledge

of µmin nor has a regret scaling with 1
µmin

. Such a result is made possible by electing a good

arm before the initialization. The players indeed start the algorithm with a procedure, such that

afterwards, with high probability, they have elected an arm k, which is the same for all players

and they have a common lower bound of µk, which is of the same order as µ(1). Thanks to this,

the players can then send information on this arm in O
(

log(T )
µ(1)

)
rounds. This then makes the

communication regret independent from the means µk, since the regret generated by a collision

is at most µ(1). After electing this good arm, the algorithm similar to the one by Shi et al. (2020),

with a few modifications to ensure that players only communicate on the good arm k.

Yet the communication cost remains large, i.e., of order KM2 log(T ) log
(

1
∆

)2
, as sending

a bit requires a time of order log(T ) here. Although this term is often smaller than the explo-

ration (centralized) regret, it can be much larger for some problem parameters. Reducing this

communication cost thus remains left for future work.
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Heterogeneous setting. The idea of considering collision information as bits sent between

players can also be used in the heterogeneous setting. Indeed, this allows the players to share

their estimated arm means, and then computes the optimal matching. If the suboptimality gap

∆ is known, a natural algorithm (Magesh and Veeravalli, 2019b) estimates all the arms with

a precision ∆/(2M). All players then communicate their estimations, compute the optimal

matching and stick to it until T .

When ∆ is unknown, Tibrewal et al. (2019) proposed an ETC algorithm, with epochs of

increasing sizes. Each epoch consists in an exploration phase where players pull all arms; a

communication phase where players communicate their estimated means; and an exploitation

phase where players pull the best estimated matching.

Chapter 5 extends SIC-MMAB to the heterogeneous setting, besides improving its com-

munication protocol with the leader/follower scheme mentioned above. The main difficulty is

that players have to explore matchings here. But exploring all matchings lead to a combina-

torial regret and computation time of the algorithm. Players instead explore arm-player pairs

and the SAR procedure thus accept/reject pairs that are sure to be present/absent in the optimal

matching.

With a unique optimal matching, similarly to SIC-MMAB, exploration ends at some point

and players start exploiting the optimal matching. In the case of several optimal matchings, we

provide a log1+δ(T ) regret algorithm for any δ > 0, using longer exploration phases.

3.4.3 No communication

The previous section showed how the collision information can be leveraged to enable commu-

nication between players. These communication schemes are yet often unadapted to the reality,

for different reasons given in Section 3.5. In particular, while the communication cost is small

in T , it is large in other problem parameters such as M , K and 1
∆ . These quantities can be

large in real cognitive radio networks and the communication cost of algorithms presented in

Section 3.4.2 is then significant.

Some works instead focus on which level of regret is possible with no collision information

at all in the homogeneous setting. Naturally, they assume a pre-agreement between players, who

know beforehand M and are assigned different ranks in [M ].

The algorithm of Liu and Zhao (2010), presented in Section 3.4.1, provides a first algorithm

using no collision information. In Chapter 6, we reach the regret bound M
∑
k>M

µ(k)−µ(M)
kl(µ(M),µ(k)) ,

adapting the exploitation phase of DPE1 to this setting. Especially, this instance dependent

bound is optimal among the class of algorithms using no collision information (Besson and

Kaufmann, 2019).
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Despite being asymptotically optimal, this algorithm suffers a considerable regret when the

suboptimality gap ∆ is close to 0. It indeed relies on the fact that if the arm rankings of the

players are the same, there is no collision, while the complementary event appears an order 1
∆2

of rounds.

Bubeck et al. (2020a) instead focused on reaching a
√
T log(T ) minimax regret without

collision information. A preliminary work (Bubeck and Budzinski, 2020) proposed a first ge-

ometric solution for two players and three arms, before being extended to general numbers of

players and arms with combinatorial arguments. Their algorithm has 0 collision with high prob-

ability, using a colored partition of [0, 1]K , where a color gives a matching between players and

arms. Thus, the estimation µ̂µµj of all arms by a player gives a point in [0, 1]K and consequently,

an arm to pull for this player. The key of the algorithm is that for close points in [0, 1]K , different

matchings might be assigned, but they do not overlap, i.e., if players have close estimations µ̂µµj

and µ̂µµi, they still pull different arms. Such a coloring implies that for some regions, players might

deliberately pull suboptimal arms, but at a small cost, to avoid collisions with other players.

Unfortunately, the algorithm of Bubeck et al. (2020a) still suffers a dependency MK11/2 in

the regret, which grows considerably with the number of channels K.

3.5 Towards realistic considerations

Section 3.4 proposes algorithms reaching very good regret guarantees for different settings.

Most of these algorithms are yet unrealistic, e.g., a large amount of communication occurs

between the players, while only a very small level of communication is possible between the

players in practice. The fact that good theoretical algorithms are actually bad in practice empha-

sizes that the model of Section 3.3.1 is not well designed. In particular, it might be too simple

with respect to the real problem of cognitive radio networks.

Section 3.4.3 suggests that this discrepancy might be due to the fact that the number of

secondary users and channels (M and K) is actually very large, and the dependency on these

terms is as significant as the dependency in T . This kind of question even appears in the bandits

literature for a single player (and a very large number of arms). Recent works showed that the

greedy algorithm actually performs very well in this single player setting, confirming a behavior

that might be observed in some real cases (Bayati et al., 2020; Jedor et al., 2021).

This section proposes other reasons for this discrepancy. Several simplifications are removed

in the multiplayer model, hoping that good theoretical algorithms in these new settings are also

reasonable in practice. First, the stochasticity of the rewardXk is questioned in Section 3.5.1 and

replaced by either Markovian, abruptly changing or adversarial rewards. The current collision
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model is then relaxed in Section 3.5.2. It instead considers a more realistic and difficult model

where players only observe a decrease in reward when colliding. Section 3.5.3 considers non-

collaborative players, which can be either adversarial or strategic. A dynamic setting, where

secondary users do not enter or leave the network at the same instant, is finally considered in

Section 3.5.4.

3.5.1 Non-stochastic rewards

Most existing works in multiplayer bandits assume that the rewards Xk(t) are stochastic, i.e.,

they are drawn according to the same distribution at each round. This assumption might be too

simple for the problem of cognitive radio networks, and other settings can instead be adapted

from the bandits literature. It has indeed been the case for markovian rewards, abruptly changing

rewards and adversarial rewards, as described in this section.

Markovian rewards.

A first more complex model is given by markovian rewards. This model is rather natural in the

licensed band paradigm, where the presence probability of a primary user on a band might be

conditioned on its presence in the previous step. A primary user might indeed uses the band in

blocks, in which case the probability of occupation of a band for the next round is larger if it is

already occupied. In this model introduced by Anantharam et al. (1987b), the reward Xj
k of arm

k for player j follows an irreducible, aperiodic, reversible Markov chain on a finite space. Given

the transition probability matrix P jk , if the last observed reward of arm k for player j is x, then

player j will observe x′ on this arm for the next pull with probability P jk (x, x′).

Given the stationary distribution pjk of the Markov chain represented by P jk , the expected

reward of arm k for player j is then equal to

µjk =
∑
x∈X

xpjk(x),

where X ⊂ [0, 1] is the state space. The regret then compares the performance of the algorithm

with the reward obtained by pulling the maximal matching with respect to µ at each round.

Anantharam et al. (1987b) proposed an optimal centralized algorithm for this setting, based

on a UCB strategy. Kalathil et al. (2014) later proposed a first decentralized algorithm for this

setting. Their algorithm follows the same lines as the algorithm described in Section 3.4.2 for the

stochastic case. Recall that it uses explicit communication between players to assign the arms

to pull. The only difference is that the UCB index has to be adapted to the markovian model.

The uncertainty is indeed larger in this setting, and the regret is thus larger as well. Bistritz and
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Leshem (2020) also showed that the GoT algorithm can be directly extended to this model, with

a proper tuning of its different parameters.

In a more recent work, Gafni and Cohen (2021) instead consider a restless Markov chain,

i.e., the state of an arm changes according to the Markov chain at each round, even when it is not

pulled. Using an ETC approach, they were thus able to reach a stable matching in a logarithmic

time. Their algorithm yet assumes the knowledge of the suboptimality gap ∆ and the uniqueness

of the stable (Pareto optimal) matching. The main difficulty of the restless setting is that the

exploration phase has to be carefully done in order to correctly estimate the expected reward of

each arm. This adds a dedicated random amount of time at the start of every exploration phase.

Abruptly changing rewards.

Although markovian rewards are closer to the reality, the resulting algorithms are very similar

to the stochastic case. Indeed, the goal is still to pull the arm with the expected mean overall,

while the change is just on its reward distribution.

A stronger model assumes instead that the expected rewards abruptly change over time, e.g.,

the mean vector µ is piecewise constant with the time, and each change is a breakpoint. It still

illustrates the fact that primary users might occupy the bands in blocks, but it here uses a harder,

frequentist point of view. Even in the single player case, this problem is far from being solved

(see e.g. Auer et al., 2019; Besson et al., 2020).

Wei and Srivastava (2018) considered this setting for the homogeneous multiplayer bandits

problem. Assuming a pre-agreement on the ranks of players, they propose an algorithm with

regret of order T
1+ν

2 log(T ) where the number of breakpoints is O (T ν). Players use UCB

indices computed on sliding windows of length O
(
t

1−ν
2
)

, i.e., they compute the indices using

only the observations of the last t
1−ν

2 rounds. Based on this, player k either rotates on the top-M

indices or focuses on the k-th best index to avoid collisions with other players.

Adversarial rewards.

The hardest model for rewards is the adversarial case, where the rewards are fixed by an adver-

sary. Although this model might be less motivated by cognitive radios, it has a strong theoretical

interest, as it considers the worst case sequence of generated rewards. In this case, the goal is to

provide a minimax regret bound that holds under any problem instance. For the homogeneous

stochastic case, we show in Chapter 4 that SIC-MMAB algorithm has a K
√
T log(T ) regret.

Bubeck et al. (2020b) showed that for an adaptive adversary, who chooses the rewardsXk(t)
of the next round based on the previous decisions of the players, the lower bound is linear with
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T . The literature thus focuses on an oblivious adversary, who chooses beforehand the sequences

of adversarial rewards Xk(t).

Bande and Veeravalli (2019) proposed a first algorithm based on the celebrated EXP.3 al-

gorithm. The EXP.3 algorithm pulls the arm k with a probability proportional to e−ηSk where

η is the learning rate and Sk is an estimator of
∑
s<tXk(s). Not all the terms of this sum are

observed, justifying the use of an estimator. To avoid collisions, Bande and Veeravalli (2019)

run EXP.3 in blocks of size
√
T . In each of these blocks, the players start by pulling with respect

to the probability distribution of EXP.3 until finding a free arm, thanks to collision sensing. Af-

terwards, the player keeps pulling this arm until the end of the block. This algorithm yields a

regret of order T 3/4. Dividing EXP.3 in blocks thus degrades the regret by a factor T 1/4 here.

Alatur et al. (2020) proposed a similar algorithm, with a leader-followers structure. At the

beginning of each block, the leader communicates to the followers the arms they have to pull for

this block, still using the probability distribution of EXP.3. Also, the size of each block is here

of order T 1/3, leading to a better regret scaling with T 2/3.

Shi and Shen (2020) later extended this algorithm to the no sensing setting. They introduce

the attackability of the adversary, which is the length of the longest possible sequence ofXk = 0
on an arm. Knowing this quantity W , a bit can indeed be correctly sent in time W + 1. When

the attackability is of order Tα and α is known, the algorithm of Alatur et al. (2020) can then be

adapted and yields a regret of order T
2+α

3 .

The problem is much harder when α is unknown. In this case, the players estimate α by

starting from 0 and increasing this quantity by ε at each communication failure. To keep the

players synchronized with the same estimate of α, the followers then report the communication

failure to the leader. These reports are crucial and can also fail because of 0 rewards. Shi and

Shen (2020) here use error detection code and randomized communication rounds to avoid such

situations.

Bubeck et al. (2020b) were the first to propose a
√
T regret algorithm for the collision sens-

ing setting, but only with two players. Their algorithm works as follows: a first player follows

a low switching strategy, e.g., she changes the arm to pull after a random number of times of

order
√
T , while the second player follows a high-switching strategy, given by EXP.3, on all

the arms except the one pulled by the first player. At each change of arm for the first player, a

communication round then occurs so that the second player is aware of the choice of the first

one.

This algorithm requires a shared randomness between the players, as the first player changes

her arm at random times. Yet, the players can choose a common seed during the initialization,

avoiding the need for this assumption.
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Bubeck et al. (2020b) also proposed a T 1− 1
2M algorithm for the no sensing setting. For two

players, the first, low-switching player runs an algorithm on the arms {2, . . . ,K} and divide the

time in fixed blocks of length of order
√
T . Meanwhile on each block, the high-switching player

runs EXP.3 on an increasing set St starting from St = {1}. At random times, this player pulls

arms not in St and adds them in the set St if they get a positive reward. The arm pulled by the

first player is then never added to St.

For more than two players, Bubeck et al. (2020b) generalize this algorithm using blocks of

different size for different players.

3.5.2 Different collision models

As shown in Section 3.4.2, the collision information allows communication between the different

players. The discrepancy between the theoretical and practical algorithms might then be due to

the collision model, which is here too strict as a collision systematically corresponds to a 0.

Non-zero collision reward. Depending on the used transmission protocol, the presence of

several users on the same channel does not necessarily lead to an absence of transmission in

practice, but only in a decrease of its quality. Moreover, the number of secondary users can

exceed the number of channels. This harder setting was introduced by Tekin and Liu (2012). In

the heterogeneous setting, when player j pulls an arm k, the expectation of the random variable

Xj
k(t) also depends on the total number of players pulling this arm. The problem parameters are

then given by the functions µjk(m) which are the expectation of Xj
k when exactly m players are

pulling the arm k. Naturally, the function µjk is non-increasing in m. The regret then compares

the cumulative reward with the one obtained by the best allocation of players through the dif-

ferent arms. Note that in this problem, there is no need to assume M ≤ K anymore as several

players can be assigned to the same arm without leading to 0 rewards on this arm.

Tekin and Liu (2012) proposed a first ETC algorithm, when players know the suboptimality

gap of the problem and always observe the number of players pulling the same arm as they do.

These assumptions are pretty strong and are not considered in the more recent literature.

Bande and Veeravalli (2019) also proposed an ETC algorithm, still with the prior knowledge

of the suboptimality gap. During the exploration, players pull all arms at random. The main

difficulty is that when players observe a reward, they do not know how many other players are

also pulling this arm. Bande and Veeravalli (2019) overcome this issue by assuming that the

decrease in mean rewards with the number of players is large enough with respect to the noise

in the reward. As a consequence, the observed rewards on a single arm can then be perfectly

clustered, where each cluster exactly corresponds to the observations for a given number of
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players pulling the arm.

In practice, this assumption is actually very strong and means that the observed rewards

are almost noiseless. Magesh and Veeravalli (2019a) instead assume that all the players have

different ranks. Thanks to this, they can coordinate their exploration, so that all players can

explore each arm k with a known and fixed number of players m pulling it. Exploring for

all arms and all numbers of players m then allows the players to know their own expectations

µjk(m) for each k and m. From there, the players can reach the optimal allocation using a Game

of Thrones routine similar to Algorithm 3.3. This work thus extended the known results for this

routine to the harder setting of non-zero rewards in case of collision.

Bande et al. (2021) recently used a similar exploration for the homogeneous setting. In this

case, the allocation routine is not even needed as players can compute the optimal allocation

solely based on their own arm means.

When the arm mean is exactly inversely proportional, i.e., µjk(m) = µj
k
(1)
m , Boyarski et al.

(2021) exploit this assumption to defer a simple O
(
log3+δ(T )

)
regret algorithm. During the

exploration phase, all players first pull each arm k altogether and estimate µjk(M). From there,

they add a block where they pull the arm 1 with probability 1
2 , allowing to estimate M and thus

the whole functions µjk. The optimal matching is then assigned following a GoT subroutine.

Competing bandits. A recent stream of literature considers another collision model where

only one of the pulling players gets the arm reward, based on preferences of the arm. This

setting, introduced by Liu et al. (2020b), was initially not motivated by cognitive radio networks

and is thus discussed later in Section 3.6.2. An asymmetric collision model is also used for

decentralized queuing systems, which are discussed in Section 3.6.3 and studied in Chapter 7.

3.5.3 Non-collaborative players

Assuming perfectly collaborative players might be another oversimplification of the usual mul-

tiplayer bandits model. A short survey by Attar et al. (2012) presents the different security chal-

lenges for cognitive radio networks. Roughly, these threats are divided into two types: jamming

attacks and selfish players, which both appear as soon as players are no more fully cooperative.

Jammers. Jamming attacks can happen either from agents external to the network, or directly

within the network. Their goal is to deteriorate the performance of other agents as much as

possible. In the first case, it can be seen as malicious manipulations of the rewards generated on

each arm. Wang et al. (2015) then propose to consider the problem as an adversarial instance

and use EXP.3 algorithm in the centralized setting.
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Sawant et al. (2019) on the other side consider jammers directly within the network. The

jammers thus aim at causing a maximal loss of the other players by either pulling the best

arms or creating collisions. Without any restriction on the jammers’ strategy, they can perfectly

adapt to the other players’ strategy and cause tremendous losses. Because of this, the jammers’

strategy is restricted to pulling at random the top J-arms for any J ∈ [K], either in a centralized

(no collision between jammers) or decentralized way. The players then use an ETC algorithm,

where the exploration aims at estimating the arm means, but also both the number of players and

the number of jammers. Afterwards, they exploit by sequentially pulling the top J-arms where

J is chosen to maximize the earned reward.

Fairness. A first attempt at preventing from selfish behaviors is to ensure fairness of the al-

gorithms, as noted by Attar et al. (2012). A fair algorithm should not favor some player with

respect to another. In the homogeneous setting, a first definition of fairness is to guarantee the

same expected rewards to all players (Besson and Kaufmann, 2018a). Note that all symmetric

algorithms (i.e., no prior ranking of the players) ensure this property. A stronger notion would

be to guarantee the same asymptotic rewards to all players without expectation4, which can still

be easily reached by making the players sequentially pull all the top-M arms in the exploitation

phase.

The notion of fairness becomes complex in the heterogeneous setting, since it can be an-

tagonistic to the maximization of the collective reward. Bistritz et al. (2021) consider max-min

fairness, which is broadly used in the resource allocation literature. Instead of maximizing the

sum of players’ rewards, the goal is to maximize the minimal reward earned by each player at

each round. They propose an ETC algorithm which determines the largest possible γ such that

all players can earn at least γ at each round. For the allocation, the players follow a specific

Markov chain to determine whether players can all reach some given γ. If instead the objective

is for each player j to earn at least γj for some known and feasible vector γγγ, there is no need to

explore which is the largest possible γ and the regret becomes constant.

Selfish players. While jammers try to cause a huge loss to other players at any cost, selfish

players have a different objective: they maximize their own individual reward. In the algorithms

mentioned so far, a selfish player could largely improve her earned regret at the expense of the

other players. Chapter 6 proposes algorithms robust to selfish players, being a O(log(T ))-Nash

equilibrium. Without collision information, we adapt DPE1 without communication between

the players. The main difficulty comes from designing a robust initialization protocol to assign

4This notion is defined ex post, as opposed to the previous one which is ex ante.
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ranks and estimate M . With collision information, we even show that robust communication

based algorithms are possible, thanks to a Grim Trigger strategy which punishes all players as

soon as a deviation from the collective strategy is detected. The centralized performances are

thus still possible with selfish players.

Reaching the optimal matching might not be possible in the heterogeneous case because

of the strategic feature of the players. Instead, we focus on reaching the average reward when

following the Random Serial Dictatorship algorithm, which has good strategic guarantees in this

setting (Abdulkadiroğlu and Sönmez, 1998).

Brânzei and Peres (2019) consider a different strategic multiplayer bandits game. First, their

model is collisionless and players still earn some reward when pulling the same arm. Also, they

consider two players and a one armed bandit game, with a prior over the arm mean. Players

observe both their obtained reward and the choice of the other player.

They then compare the different Nash equilibria when players are either collaborative (max-

imizing sum of two rewards), neutral (maximizing their sole reward) and competitive (maximiz-

ing the difference between their reward and the other player’s reward). Players tend to explore

more when cooperative and less when competitive. A similar behavior is intuitive in the classi-

cal model of multiplayer bandits as selfish players would more aggressively appropriate the best

arms to keep them for a long time.

3.5.4 Dynamic case

Most of the multiplayer algorithms depend on a high level of synchronisation between the play-

ers. In particular, they assume that all players respectively start and end the game at times t = 1
and t = T . This assumption actually makes the problem much simpler because it allows a

high level of synchronisation, while being unrealistic since secondary users enter and leave the

network at different time steps.

The dynamic model thus proposes a weaker level of synchronisation: the time step division

remains global and shared by all players, but players enter and leave the bandits instance at

different (unknown) times. This is different from asynchronicity, which corresponds to a het-

erogeneous time division between players and has been very little studied in theory (Bonnefoi

et al., 2017).

The MEGA algorithm of Avner and Mannor (2014) was the first proposed algorithm to deal

with this dynamic model. The exact same algorithm as the one described in Section 3.4.1 still

reaches a regret of order NT
2
3 in this case, where N is the total number of players entering or

leaving the network.

In general, N is assumed to be sublinear in T as otherwise players would enter and leave
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the network too fast to learn the different problem parameters. Rosenski et al. (2016) propose to

divide the game duration into
√
NT epochs of equal size and run independently the MUSICAL

CHAIRS algorithm on each epoch. The number of failing epochs is at most N and their total

incurred regret is thus of order
√
NT . Finally, the total regret by this algorithm is of order√

NT K2 log(T )
∆2 .

This technique can be used to adapt any static algorithm, but it requires the knowledge of

the number of entering/leaving players N , as well as a shared clock between players, to remain

synchronized on each epoch. Because it also works in time windows of size
√
T , the algorithm

of Bande and Veeravalli (2019) in the adversarial setting still has T
3
4 regret guarantees in the

dynamic setting.

On the other hand, Bande and Veeravalli (2019) and Bande et al. (2021) propose to adapt

their static algorithms, with epochs of linearly increasing size. Players do not need to know N

here, but instead need a stronger shared clock, since they also need to know in which epoch they

currently are.

Besides requiring some strong assumption on either players’ knowledge or synchronisation,

this kind of technique also leads to large dependencies in T . Players indeed run independent

algorithms on a large number of time windows and thus suffer a considerable loss when summing

over all the epochs.

To avoid this kind of behavior, Chapter 4 considers a simpler dynamic setting, where players

can enter at any time but all leave the game at time T . We propose a no sensing ETC algorithm,

which requires no prior knowledge and no further assumption. The idea is that exploring uni-

formly at random is robust to the entering/committing of other players. The players then try to

commit on the best known available arm. This algorithm leads to a NK log(T )
∆2 regret.

On the other hand, the algorithm by Darak and Hanawal (2019) recovers from the event

of entry/leave of a player after some time depending on the problem parameters. However,

if enter/leave events happen in a short time window, the algorithm has no guarantees. This

algorithm is thus adapted to another simpler dynamic setting, where the events of entering or

leaving of a new player are separated from a minimal duration.

3.6 Related problems

This section introduces related problems that have also been considered in the literature. All

these models consider a bandits game with multiple agents with some level of interaction be-

tween the agents. Because of these similarities with multiplayer bandits, methods and techniques

mentioned in this survey can be directly used or adapted to these related problems.
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The widely studied problem of multi-agent bandits is first mentioned. Section 3.6.2 then

introduces the problem of competing bandits, motivated by matching markets. Section 3.6.3

finally discusses the problem of queuing systems, motivated by packet routing to servers.

3.6.1 Multi-agent bandits

The multi-agent bandits problem (also called cooperative bandits and distributed bandits) in-

troduced by Awerbuch and Kleinberg (2008) considers a bandit game played by M players.

Motivated by distributed networks where agents can share their cumulated information, players

here encounter no collision when pulling the same arm: their goal is to collectively determine

the best arm. While running a single player algorithm such as UCB already yields regret guaran-

tees, players can improve their performance by collectively sharing some information. The way

players can communicate yet remains limited: they can only directly communicate with their

neighbours in a given graph G.

This problem has been widely studied in the past years, and we do not claim to provide an

extensive review of its literature.

Many algorithms are based on a gossip procedure, which is widely used in the more general

field of decentralized computation. Roughly, a player i updates its estimates x̂i by averaging

(potentially with different weights) the estimates x̂j of her neighbors j. Mathematically, the

estimated vector x̂̂x̂x is updated as follows:

x̂̂x̂x← Px̂̂x̂x,

where P is a communication matrix. To respect the communication graph structure, Pi,j > 0 if

and only if the edge (i, j) is in G. P thus gives the weights used to average these estimates.

Szorenyi et al. (2013) propose an ε-greedy strategy with gossip based updates, while Land-

gren et al. (2016) propose gossip UCB algorithms. Their regret decomposes in two terms: a

centralized term approaching the regret incurred by a centralized algorithm and a term, which is

constant in T but depends on the spectral gap of the communication matrix P , which can be seen

as the delay to pass a message along the graph with the gossip procedure. Improving this graph

dependent term is thus the main focus of many works. Martínez-Rubio et al. (2018) propose a

UCB algorithm with gossip acceleration techniques, improving upon previous work (Landgren

et al., 2016).

Another common procedure is to elect a leader in the graph, who sends the arm (or distri-

bution) to pull to the other players. In particular, Wang et al. (2020) adapt the DPE1 algorithm

described in Section 3.4.2 to the multi-agent bandits problem. The leader is the only exploring
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player and sends her best empirical arm to the other players. Besides having an optimal regret

bound in T , the second term of the regret due to communication scales with the diameter of the

graph G. Moreover, this algorithm only requires for the players to send 1-bit messages at each

time step, while most multi-agent bandits work assume that the players can send real messages

with infinite precision.

In the adversarial setting, Bar-On and Mansour (2019) propose to elect local leaders who

send the distribution to play to their followers, based on EXP.3. Instead of focusing on the

collective regret as usually done, they provide good individual regret guarantees.

Another line of work assumes that a player observes the rewards of all her neighbors at each

time step. Cesa-Bianchi et al. (2019b) even assume to observe rewards of all players at distance

at most d, with a delay depending on the distance of the player. EXP.3 with smartly chosen

weights then allows to reach a small regret in the adversarial setting.

More recent works even assume that the players are asynchronous, i.e., players are active at

a given time step with some activation probability. This is for example similar to the model by

Bonnefoi et al. (2017) in the multiplayer setting. Cesa-Bianchi et al. (2020) then use an Online

Mirror Descent based algorithm for the adversarial setting. Della Vecchia and Cesari (2021)

extended this idea in the combinatorial setting, where players can pull multiple arms.

Similarly to multiplayer bandits, the problem of multi-agent bandits is wide and many di-

rections remain to be explored. For instance, Vial et al. (2020) recently proposed an algorithm

that is robust to malicious players. While malicious players cannot create collisions on purpose

here, they can still send corrupted information to their neighbors, leading to bad behaviors.

3.6.2 Competing bandits

The problem of competing bandits was first introduced by Liu et al. (2020b), motivated by decen-

tralized learning processes in matching markets. This model is very similar to the heterogeneous

multiplayer bandits: they only differ in their collision model. Here, arms also have preferences

over players: j �k j′ means that the arm k prefers being pulled by the player j over j′. When

several players pull the same arm k, only the top-ranked player for arm k gets its reward, while

the others receive no reward. Mathematically the collision indicator is thus defined as:

ηjk(t) = 1
(
∃j′ �k j such that πj

′(t) = k
)
.

As often in bipartite matching problems, the goal is thus to reach a stable matching be-

tween players and arms. A matching is stable if every unmatched pair (j, k) would prefer to be

matched. Mathematically, this corresponds to the following definition.
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Definition 3.2. A matching π : [M ] → [K] is stable if for all j 6= j′, either µjπ(j) > µjπ(j′) or

j′ �π(j′) j and for all unmatched arms k, µjπ(j) > µjk.

Several stable matchings can exist. Two different definitions of individual regret then appear.

First the optimal regret compares with the best possible arm for player j in a stable matching,

noted kj :

Rj(T ) = µj
kj
T −

T∑
t=1

µj
πj(t) · (1− η

j
πj(t)(t)).

Similarly, the pessimal regret is defined with respect to the worst possible arm for player j

in a stable matching, noted kj :

Rj(T ) = µjkj
T −

T∑
t=1

µj
πj(t) · (1− η

j
πj(t)(t)).

Liu et al. (2020b) propose a centralized UCB algorithm, where at each time step, the players

send their UCB indexes to a central agent. This agent computes the optimal stable matching

based on these indexes using the celebrated Gale Shapley algorithm and the players then pull

according to the output of Gale Shapley algorithm. Although being natural, this algorithm only

reaches a logarithmic regret for the pessimal definition, but can still incur a linear optimal regret.

Cen and Shah (2021) showed that a logarithmic optimal regret is reachable for this algorithm,

if the platform can also choose transfers between the players and arms. The idea is to smartly

choose the transfers, so that the optimal matching is the only stable matching when taking into

account these transfers.

Liu et al. (2020b) also propose an ETC algorithm reaching a logarithmic optimal regret.

After the exploration, the central agent computes the Gale Shapley matching which is pulled

until T . A decentralized version of this algorithm is even possible, as Gale Shapley can be run in

times N2 in a decentralized way when observing the collision indicators ηjk. This decentralized

algorithm yet requires prior knowledge of ∆. Basu et al. (2021) extend this algorithm without

knowing ∆, but the regret is then of order log1+ε(T ) for a parameter ε.

Liu et al. (2020a) also propose a decentralized UCB algorithm with a collision avoidance

mechanism. Yet their algorithm requires for the players to observe the actions of all other play-

ers at each time step and only incurs a pessimal regret of order log2(T ), besides having an

exponential dependency in the number of players.

Because of the difficulty of the general problem, even with collision sensing, another line of

work focuses on simple instances of arm preferences. For example, when players are globally

ranked, i.e., all the arms have the same preference orders �k, there is a unique stable matching.
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Moreover, it can be computed with the Serial Dictatorship algorithm, where the first player

chooses her best arm, the second player chooses her best available arm and so on. In particular

for this case, the algorithm of Liu et al. (2020a) yields a log(T ) regret with no exponential

dependency in other parameters.

Using this simplified structure, Sankararaman et al. (2020) also propose a decentralized

UCB algorithm with collision avoidance mechanism. Working in epochs of increasing size,

players mark as blocked the arms declared by players of smaller ranks and only play UCB on

the unblocked arms. Their algorithm yields a regret bound close to the lower bound, which is

shown to be at least of order Rj(T ) = Ω
(
max

(
(j−1) log(T )

∆2 , K log(T )
∆

))
for some instance5.

The first term in the max is the number of collisions encountered with players of smaller ranks,

while the second term is the usual regret in single player stochastic bandits.

Serial Dictatorship can lead to the unique stable matching even in more general settings

than globally ranked players. In particular, this is the case when the preferences profile satisfy

the uniqueness consistency. Basu et al. (2021) then adapt the aforementioned algorithm to this

setting, by using a more subtle collision avoidance mechanism.

3.6.3 Queuing systems

Gaitonde and Tardos (2020a) extended the queuing systems introduced by Krishnasamy et al.

(2016) to the multi-agent setting. Similarly to competing bandits, this problem might benefit

from multiplayer bandits approaches.

In this model, players are queues with arrival rates λi. At each time step, a packet is gener-

ated within the queue i with probability λi and the arm (server) k has a clearing probability µk.

This model assumes some asynchronicity between the players as they have different arrival

rates λi. Yet it remains different from the usual asynchronous setting (Bonnefoi et al., 2017), as

players can play as long as they have remaining packets.

When several players send packets to the same arm, it only treats the oldest received packet

and clears it with probability µk, i.e., when colliding, only the queue with the oldest packet gets

to pull the arm. A queue is said stable when its number of packets grows almost surely as o (t).

A crucial quantity of interest is the largest real η such that

η
k∑
i=1

λ(i) ≤
k∑
i=1

µ(i) for all k ∈ [M ].

In the centralized case, stability of all queues is possible if and only if η > 1.

5Optimal and pessimal regret coincide here as there is a unique stable matching.
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Gaitonde and Tardos (2020a) study whether a similar result is possible in the decentralized

case where players are strategic. They first show that if players follow suitable no regret strate-

gies, stability is reached if η > 2. Yet, for smaller values of η, no regret strategies can still lead

to unstable queues.

In a subsequent work (Gaitonde and Tardos, 2020b), they claim that minimizing the regret is

not a good objective as it leads to myopic behaviors of the players. Players here might prefer to

be patient, as there is a carryover feature over the rounds. The issue of a round indeed depends

on the past as a server treats the oldest packet sent by a player. A player thus can have interest in

letting the other players to clear their packets, as it guarantees her to avoid colliding with them

in the future.

To illustrate this point, Gaitonde and Tardos (2020b) consider the following patient game:

all players have perfect knowledge of λ and µ and play a fixed probability distribution ppp. The

cost incurred by a player is then the asymptotic value limt→+∞
Qit
t , where Qit is the age of the

oldest remaining packet of player i at time t.

Theorem 3.3 (Gaitonde and Tardos 2020b). If η > e
e−1 and all players follow a Nash equilib-

rium of the patient game described above, the system is stable.

When players are patient, the limit ratio η where the system is stable is thus smaller. Yet this

result holds only without learning consideration. Whether such a result is valid when players

follow learning strategies remained an open question.

In Chapter 7, we argue that even patient learners might be unstable for η < 2, if they

selfishly minimize some (patient) form of regret. In the light of this result, assuming cooperation

between the learning agents seem required for stability with small values of η. We thus propose

a first decentralized learning strategy that is stable as long as η > 1, thus being comparable to

centralized strategies. Moreover, this algorithm converges to a correlated Nash equilibrium of

the patient game described above.

3.7 Summary table

Tables 3.3 and 3.4 below summarize the theoretical guarantees of the algorithms presented in

this survey. Unfortunately, some significant algorithms such as GoT (Bistritz and Leshem, 2020)

are omitted, as the explicit dependencies of their upper bounds with other problem parameters

than T are unknown and not provided in the original papers.

Algorithms using baselines different from the optimal matching in the regret definition are

also omitted, as they can not be easily compared with other algorithms. This includes algorithms
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taking only a stable matching as baseline in the heterogeneous case, or algorithm which are

robust to jammers for instance.

Here is a list of the different notations used in Tables 3.3 and 3.4.

∆ = min{U∗ − U(π) > 0 | π ∈M}
∆(m,k) = min{U∗ − U(π) > 0 | π ∈M and π(m) = k}
∆(M) = mink≤M µ(k) − µ(k+1)

δ arbitrarily small positive constant

µ(k) k-th largest mean (homogeneous case)

M number of players simultaneously in the game

M set of matchings between arms and players

N total number of players entering/leaving the game (dynamic)

attackability length of longest time sequence with successive Xk(t) = 0
rank different ranks are attributed beforehand to players

T horizon

U(π) =
∑M
m=1 µ

m
π(m)

U∗ = maxπ∈M U(π)

Model Reference Prior knowledge Extra consideration Upper bound

Centralized CUCB [83] M -
M∑
m=1

K∑
k=1

M log(T )
∆(m,k)

Centralized CTS [237] M Independent arms
M∑
m=1

K∑
k=1

log2(M) log(T )
∆(m,k)

Coll. sensing dE3 [176] T,∆,M communicating players M3K2 log(T )
∆2

Coll. sensing D-MUMAB[165] T,∆ unique optimal matching M log(T )
∆2 + KM3 log( 1

∆ ) log(T )
log(M)

Coll. sensing ELIM-ETC [61] T δ = 0 if unique optimal matching
K∑
k=1

M∑
m=1

(
M2 log(T )

∆(m,k)

)1+δ

Table 3.3: Summary of presented algorithms in the heterogeneous setting. The last column
provides the asymptotic upper bound, up to some universal multiplicative constant.
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Model Reference Prior knowledge Extra consideration Upper bound

Centralized MP-TS [141] M -
∑
k>M

log(T )
µ(M)−µ(k)

Full sensing SIC-GT [58] T O (log(T ))-Nash equilibrium
∑
k>M

log(T )
µ(M)−µ(k)

+MK2 log(T )

Stat. sensing MCTOPM [44] M - M3
∑

1≤i<k≤K

log(T )
(µ(i)−µ(k))2

Stat. sensing RR-SW-UCB# [238] T,M , rank O (T ν) changes of µµµ K2M
∆2 T

1+ν
2 log(T )

Stat. sensing
SELFISH-ROBUST

MMAB [58] T O (log(T ))-Nash equilibrium M
∑
k>M

log(T )
µ(M)−µ(k)

+ MK3

µ(K)
log(T )

Coll. sensing MEGA [25] - - M2KT
2
3

Coll. sensing MC [198] T, µ(M)−µ(M+1) - MK log(T )
(µ(M)−µ(M+1))2

Coll. sensing SIC-MMAB [59] T -
∑
k>M

log(T )
µ(M)−µ(k)

+MK log(T )

Coll. sensing DPE1 [235] T -
∑
k>M

log(T )
µ(M)−µ(k)

Coll. sensing C&P[7] T Adversarial rewards K
4
3M

2
3 log(M)

1
3 T

2
3

Coll. sensing [72] T , rank, two players Adversarial rewards K2
√
T log(K) log(T )

No sensing [162] T,M - MK log(T )
(µ(M)−µ(M+1))2

No sensing [162] T,M, µ(M) - MK2

µ(M)
log2(T ) +MK

log(T )
∆

No sensing [211] T, µ(K),∆ -
∑
k>M

log(T )
µ(M)−µ(k)

+M2K
log( 1

∆ ) log(T )
µ(K)

No sensing [127] T -
∑
k>M

log(T )
µ(M)−µ(k)

+MK2 log( 1
∆ )2 log(T )

No sensing A2C2 [210] T,M , α
Adversarial rewards
attackabilityO (Tα) M

4
3K

1
3 log(K)

2
3 T

2+α+δ
3

No sensing [71]
M , rank

shared randomness No collision with high proba MK
11
2
√
T log(T )

No sensing [72] M , rank Adversarial rewards MK
3
2 T 1− 1

2M
√

log(K)
No sensing

No zero collision (M ≥ K) [31] T,M,∆ Small variance of noise KM
∆2 e

M−1
K−1 log(T )

No sensing
No zero collision (M ≥ K) [32] M, rank - M3K

∆2 log(T )

Dynamic, coll. sensing DMC [198] T,∆(M) - M
√
K log(T )T
∆2

(M)

Dynamic, coll. sensing [31] T
Adversarial rewards
N = O

(√
T
) KK+2√

K log(K)
T

3
4 +NK

√
T

Dynamic, no sensing DYN-MMAB[59] T All players end at T MK log(T )
∆2

(M)
+ M2K log(T )

µ(M)

Table 3.4: Summary of presented algorithms in the homogeneous setting. The last column
provides the asymptotic upper bound, up to some universal multiplicative constant.
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SIC-MMAB: Synchronisation Involves
Communication in Multiplayer
Multi-Armed Bandits

This chapter presents a decentralized algorithm that achieves the same performance as a
centralized one for homogeneous multiplayer bandits, by “hacking” the standard model with
a communication protocol between players that deliberately enforces collisions, allowing
them to share their information at a negligible cost. This motivates the introduction of a
more appropriate dynamic setting without sensing, where similar communication protocols
are no longer possible. However, we show that the logarithmic growth of the regret is still
achievable for this model with a new algorithm.
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This chapter considers the homogeneous multiplayer bandits problem introduced in Sec-

tion 3.3.1 and presents the following contributions.

With collision sensing, Section 4.1 introduces a new decentralized algorithm that is “hack-

ing” the setting and induces communication between players through deliberate collisions. The

regret of this algorithm, called SIC-MMAB, reaches asymptotically (up to some universal con-

stant) the lower bound of the centralized problem, contradicting the previously believed lower

bounds. SIC-MMAB relies on the unrealistic assumption that all users start transmitting at the

very same time. It therefore appears that the assumption of synchronization has to be removed

for practical considerations.

Without synchronization or collision observations, Section 4.2 proposes the first algorithm

with a logarithmic regret. The dependencies in the gaps between arm means yet become quadratic.

We compare empirically SIC-MMAB with MCTOPM (Besson and Kaufmann, 2018a) on a

toy example in Section 4.A. Especially, it nicely illustrates how SIC-MMAB scales better with

the suboptimality gap and also confirms its smaller minimax regret bound.

Besson and Kaufmann (2018a) studied the SELFISH algorithm, consisting in unilaterally

following UCB algorithm, and conjectured that it leads to a linear regret with positive (constant)

probability. We prove this conjecture for agents with infinite calculus precision. Yet the question

remains open for machines with finite precision.

4.1 Collision Sensing: achieving centralized performances by com-
municating through collisions

In this section, we consider the Collision Sensing model of Section 3.3.1 and prove that the

decentralized problem is almost as complex, in terms of regret growth, as the centralized one.

When players are synchronized, we provide an algorithm with an exploration regret similar

to the known centralized lower bound (Anantharam et al., 1987a). This algorithm strongly

relies on the synchronization assumption, which we leverage to allow communication between

players through observed collisions. The communication protocol is detailed and explained

in Section 4.1.2. This result also implies that the two lower bounds provided in the literature

(Besson and Kaufmann, 2018a; Liu and Zhao, 2010) are unfortunately not correct. Indeed, the

factor M that was supposed to be the cost of the decentralization in the regret should not appear.

Let us describe our algorithm SIC-MMAB. It consists of several phases.
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1. The initialization phase first estimates the number of players and assigns ranks among

them.

2. Players then alternate between exploration phases and communication phases.

(a) During the p-th exploration phase, each arm is pulled 2p times and its performance is

estimated in a Successive Accepts and Rejects fashion (Perchet and Rigollet, 2013;

Bubeck et al., 2013).

(b) During the communication phases, players communicate their statistics to each other

using collisions. Afterwards, the updated common statistics are known to all players.

3. The last phase, the exploitation one, is triggered for a player as soon as an arm is detected

as optimal and assigned to her. This player then pulls this arm until the final horizon T .

4.1.1 Some preliminary notations

Players that are not in the exploitation phase are called active. We denote, with a slight abuse of

notation, by [Mp] the set of active players during the p-th phase of exploration-communication

and by Mp ≤ M its cardinality. Notice that Mp is non increasing because players never leave

the exploitation phase.

Each arm among the top-M ones is called optimal and each other arm is sub-optimal. Arms

that still need to be explored (players cannot determine whether they are optimal or sub-optimal

yet) are active. We denote, with the same abuse of notation, the set of active arms by [Kp] of

cardinality Kp ≤ K. By construction of our algorithm, this set is common to all active players

at each stage.

Our algorithm is based on a protocol called sequential hopping (Joshi et al., 2018). It consists

of incrementing the index of the arm pulled by a specific player m: if she plays arm πm(t) at

time t, she will play πm(t+1) = πm(t)+1 (mod [Kp]) at time t+1 during the p-th exploration

phase.

4.1.2 Description of our protocol

As mentioned above, the SIC-MMAB algorithm consists of several phases. During the commu-

nication phase, players communicate with each other. At the end of this phase, each player thus

knows the statistics of all players on all arms, so that this decentralized problem becomes similar

to the centralized one. After alternating enough times between exploration and communication

phases, sub-optimal arms are eliminated and players are fixed to different optimal arms and will

exploit them until stage T . The complete pseudocode of SIC-MMAB is given by Algorithm 4.6.
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Initialization phase

The objective of the first phase is to estimate the number of players M and to assign internal
ranks to players. First, players follow the Musical Chairs algorithm (Rosenski et al., 2016), de-

scribed by Algorithm 4.1 below, during T0 := dK log(T )e steps in order to reach an orthogonal
setting, i.e., a position where they are all pulling different arms. The index of the arm pulled by

a player at stage T0 will then be her external rank.

Algorithm 4.1: MusicalChairs Protocol
input: [Kp] (active arms), T0 (time of procedure)

1 Initialize Fixed← −1
2 for T0 time steps do
3 if Fixed = −1 then
4 Sample k uniformly at random in [Kp] and play it in round t
5 if ηk(t) = 0 (rk(t) > 0 for No Sensing setting) then Fixed← k // player

stays in arm k if no collision

6 end
7 else Play Fixed
8 end
9 return Fixed // External rank

The second procedure, given by Algorithm 4.2, determines M and assigns a unique internal

rank in [M ] to each player. For example, if there are three players on arms 5, 7 and 2 at t = T0,

their external ranks are 5, 7 and 2 respectively, while their internal ranks are 2, 3 and 1. Roughly

speaking, the players follow each other sequentially hopping through all the arms so that players

with external ranks k and k′ collide exactly after a time k+k′. Each player then deduces M and

her internal rank from observed collisions during this procedure that lasts 2K steps.

Algorithm 4.2: Estimate_M Protocol
input: k ∈ [K] (external rank)

1 Initialize M̂ ← 1, j ← 1 and π ← k // estimates of M and the internal rank

for 2k time steps do
2 Pull π
3 if ηπ(t) = 1 then hatM ← hatM + 1 and j ← j + 1 // increases if

collision

4 end
5 for 2(K − k) time steps do
6 π ← π + 1 (mod K) and pull π // sequential hopping

7 if ηπ(t) = 1 then hatM ← hatM + 1 // increases if collision

8 end
9 return hatM, j
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In the next phases, active players will always know the set of active players [Mp]. This is

how the initial symmetry among players is broken and it allows the decentralized algorithm to

establish communication protocols.

Exploration phase

During the p-th exploration phase, active players sequentially hop among the active arms for

Kp2p steps. Each active arm is thus pulled 2p times by each active player. Using their internal

rank, players start and remain in an orthogonal setting during the exploration phase, which is

collision-free.

We denote by Bs = 3
√

log(T )
2s the error bound after s pulls and by Nk(p) (resp. Sk(p)) the

centralized number of pulls (resp. sum of rewards) for the arm k during the p first exploration

phases, i.e., Nk(p) =
∑M
j=1N

j
k(p) where Nm

k (p) is the number of pulls for the arm k by player

m during the p first exploration phases. During the communication phase, quantized rewards

S̃mk (p) will be communicated between active players as described in Section 4.1.2.
After a succession of two phases (exploration and communication), an arm k is accepted if

#
{
i ∈ [Kp]

∣∣ µ̃k(p)−BNk(p) ≥ µ̃i(p) +BNi(p)

}
≥ Kp −Mp,

where µ̃k(p) =
∑M

m=1 S̃
m
k (p)

Nk(p) is the centralized quantized empirical mean of the arm k1, which is

an approximation of µ̂k(p) = Sk(p)
Nk(p) . This inequality implies that k is among the top-Mp active

arms with high probability. In the same way, k is rejected if

#
{
i ∈ [Kp]

∣∣ µ̃i(p)−BNi(p) ≥ µ̃k(p) +BNk(p)

}
≥Mp,

meaning that there are at least Mp active arms better than k with high probability. Notice that

each player j uses her own quantized statistics S̃jk(p) to accept/reject an arm instead of the exact

ones Sjk(p). Otherwise, the estimations µ̃k(p) would indeed differ between the players as well

as the sets of accepted and rejected arms. With Bernoulli distributions, the quantization becomes

unnecessary and the confidence bound can be chosen as Bs =
√

2 log(T )/s.

Communication phase

In this phase, each active player communicates, one at a time, her statistics of the active arms

to all other active players. Each player has her own communicating arm, corresponding to her

internal rank. When the player j is communicating, she sends a bit at a time step to the player

l by deciding which arm to pull: a 1 bit is sent by pulling the communicating arm of player

1For a player m already exploiting since the pm-th phase, we instead use the last statistic S̃mk (p) = S̃mk (pm).
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l (a collision occurs) and a 0 bit by pulling her own arm. The main originality of SIC-MMAB

comes from this trick which allows implicit communication through collisions and is used in

subsequent papers as explained in Section 3.4.2. In an independent work, Tibrewal et al. (2019)

also proposed using similar communication protocols for the heterogeneous case.

As an arm is pulled 2n times by a single player during the n-th exploration phase, it has been

pulled 2p+1− 1 times in total at the end of the p-th phase and the statistic Sjk(p) is a real number

in [0, 2p+1− 1]. Players then send a quantized integer statistic S̃jk(p) ∈ [2p+1− 1] to each other

in p + 1 bits, i.e., collisions. Let n = bSjk(p)c and d = Sjk(p) − n be the integer and decimal

parts of Sjk(p), the quantized statistic is then n + 1 with probability d and n otherwise, so that

E[S̃jk(p)] = Sjk(p).

Algorithm 4.3: Receive Protocol
input: p (phase number), l (own internal rank), [Kp] (active arms)

1 s← 0 and π ← index of l-th active arm
2 for n = 0, . . . , p do
3 Pull π
4 if ηπ(t) = 1 then s← s+ 2n // other player sends 1
5 end
6 return s (statistic sent by other player)

Algorithm 4.4: Send Protocol
input: l (player receiving), s (statistics to send), p (phase number), j (own internal

rank), [Kp] (active arms)
1 s← 0 and π ← index of the l-th active arm
2 m← binary writing of s of length p+ 1, i.e., s =

∑p
n=0mn2n

3 for n = 0, . . . , p do
4 if mn = 1 then Pull the l-th active arm // send 1
5 else Pull the j-th active arm // send 0
6 end

An active player can have three possible statuses during the communication phase:

1. either she is receiving some other players’ statistics about the arm k. In that case, she

proceeds to Receive Protocol (see Algorithm 4.3).

2. Or she is sending her quantized statistics about arm k to player l (who is then receiving).

In that case, she proceeds to Send Protocol (see Algorithm 4.4) to send them in a time

p+ 1.

3. Or she is pulling her communicating arm, while waiting for other players to finish com-

municating statistics among them.
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Communicated statistics are all of length p + 1, even if they could be sent with shorter

messages, in order to maintain synchronization among players. Using their internal ranks, the

players can communicate in turn without interfering with each other. The general protocol for

each communication phase is described in Algorithm 4.5 below.

Algorithm 4.5: Communication Protocol
input: s (personal statistics of previous phases), p (phase number), j (own internal

rank), [Kp] (active arms), [Mp] (active players)

1 For all k, sample s̃[k] =
{
bs[k]c+ 1 with probability s[k]− bs[k]c
bs[k]c otherwise

// quantize

2 Define Ep := {(i, l, k) ∈ [Mp]× [Mp]× [Kp] | i 6= l} and set S̃j ← s̃
3 for (i, l, k) ∈ Ep do // Player i sends stats of arm k to player l

4 if i = j then Send (l, s̃[k], p, j, [Kp]) // sending player

5 else if l = j then S̃i[k]← Receive(p, j, [Kp]) // receiving player

6 else
7 for p+ 1 rounds do pull j-th active arm // wait while others communicate

8 end
9 end

10 return S̃

At the end of the communication phase, all active players know the statistics S̃jk(p) and so

which arms to accept or reject. Rejected arms are removed right away from the set of active arms.

Thanks to the assigned ranks, accepted arms are assigned to one player each. The remaining

active players then update both sets of active players and arms as described in Algorithm 4.6,

Line 21.

This communication protocol uses the fact that a bit can be sent with a single collision.

Without sensing, this can not be done in a single time step, but communication is still somehow

possible. A bit can then be sent in log(T )
µ(K)

steps with probability 1 − 1
T . Using this trick, two

different algorithms relying on communication protocols were proposed No Sensing setting in

the conference version of this chapter (Boursier and Perchet, 2019).

Regret bound of SIC-MMAB

Theorem 4.1 bounds the expected regret incurred by SIC-MMAB and its proof is delayed to

Section 4.B.1.

Theorem 4.1. With the choice T0 = dK log(T )e, for any given set of parameters K, M and µµµ
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such that the arm means are distinct, µ(1) > µ(2) > . . . > µ(K), the regret is bounded as

R(T ) ≤ c1
∑
k>M

min
{

log(T )
µ(M) − µ(k)

,
√
T log(T )

}
+ c2KM log(T )

+ c3KM
3 log2

(
min

{
log(T )

(µ(M) − µ(M+1))2 , T

})
where c1, c2 and c3 are universal constants.

Algorithm 4.6: SIC-MMAB algorithm
input: T (horizon)

1 Initialization Phase:
2 Initialize Fixed← −1 and T0 ← dK log(T )e
3 k ←MusicalChairs ([K], T0)
4 (M, j)← Estimate_M (k) // estimated number of players and internal rank

5 Initialize p← 1; Mp ←M ; [Kp]← [K] and S̃, s,N← Zeros(K) // Zeros(K) returns a vector

of length K containing only zeros

6 while Fixed= −1 do

7 Exploration Phase:
8 π ← j-th active arm // start of a new phase

9 for Kp2p time steps do
10 π ← π + 1 (mod [Kp]) and play π in round t // sequential hopping

11 s[π]← s[π] + rπ(t) // Update individual statistics

12 end

13 Communication Phase:
14 S̃p ← Communication( s, p, j, [Kp], [Mp]) and S̃l ← S̃l

p for every active player l
15 N [k]← N [k] +Mp2p for every active arm k

16 Update Statistics: // recall that Bs = 3
√

log(T )
2s here

17 Rej← set of active arms k verifying #
{
i ∈ [Kp] |

M∑
l=1

S̃l[i]

N [i] −BN [i] ≥

M∑
l=1

S̃l[k]

N [k] +BN [k]
}
≥Mp

18 Acc← set of active arms k verifying #
{
i ∈ [Kp] |

M∑
l=1

S̃l[k]

N [k] −BN [k] ≥

M∑
l=1

S̃l[i]

N [i] +BN [i]
}
≥ Kp−Mp

19 if Mp − j + 1 ≤ length(Acc) then Fixed← Acc[Mp − j + 1] // exploit

20 else // update all the statistics

21 Mp ←Mp − length(Acc) and [Kp]← [Kp] \ (Acc ∪ Rej)
22 end
23 p← p+ 1
24 end

25 Exploitation Phase: Pull Fixed until T
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The first, second and third terms respectively correspond to the regret incurred by the ex-

ploration, initialization and communication phases, which dominate the regret due to low prob-

ability events of bad initialization or incorrect estimations. Notice that the minmax regret scales

with O(K
√
T log(T )).

Experiments on synthetic data are described in Section 4.A. They empirically confirm that SIC-

MMAB scales better than MCTopM (Besson and Kaufmann, 2018a) with the gaps ∆, besides

having a smaller minmax regret.

4.1.3 In contradiction with lower bounds?

Theorem 4.1 is in contradiction with the two lower bounds by Besson and Kaufmann (2018a)

and Liu and Zhao (2010), however SIC-MMAB respects the conditions required for both. It was

thought that the decentralized lower bound was Ω
(
M
∑
k>M

log(T )
µ(M)−µ(k)

)
, while the centralized

lower bound was already known to be Ω
(∑

k>M
log(T )

µ(M)−µ(k)

)
(Anantharam et al., 1987a). How-

ever, it appears that the asymptotic regret of the decentralized case is not that much different from

the latter, at least if players are synchronized. Indeed, SIC-MMAB takes advantage of this syn-

chronization to establish communication protocols as players are able to communicate through

collisions. The subsequent paper by Proutiere and Wang (2019) later improved the communi-

cation protocols of SIC-MMAB to obtain both initialization and communication costs constant

in T , confirming that the lower bound of the centralized case is also tight for the decentralized

model considered so far.

Liu and Zhao (2010) proved the lower bound “by considering the best case that they do not

collide”. This is only true if colliding does not provide valuable information and the policies just

maximize the losses at each round, disregarding the information gathered for the future. Our al-

gorithm is built upon the idea that the value of the information provided by collisions can exceed

in the long run the immediate loss in rewards (which is standard in dynamic programming or

reinforcement learning for instance). The mistake of Besson and Kaufmann (2018a) is found

in the proof of Lemma 12 after the sentence “We now show that second term in (25) is zero”.

The conditional expectation cannot be put inside/outside of the expectation as written and the

considered term, which corresponds to the difference of information given by collisions for two

different distributions, is therefore not zero.

These two lower bounds disregarded the amount of information that can be deduced from colli-

sions, while SIC-MMAB obviously takes advantage from this information.

Our exploration regret reaches, up to a constant factor, the lower bound of the centralized

problem (Anantharam et al., 1987a). Although it is sub-logarithmic in time, the communication

cost scales with KM3 and can thus be predominant in practice. Indeed for large networks, M3
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can easily be greater than log(T ) and the communication cost would then prevail over the other

terms. This highlights the importance of the parameter M in multiplayer MAB and future work

should focus on the dependency in both M and T instead of only considering asymptotic results

in T . The communication scheme of SIC-MMAB is improved in Chapter 5, which reduces its

total cost by a factor larger than M .

Synchronization is not a reasonable assumption for practical purposes and it also leads to

undesirable algorithms relying on communication protocols such as SIC-MMAB. We thus claim

that this assumption should be removed in the multiplayer MAB and the dynamic model should

be considered instead. However, this problem seems complex to model formally. Indeed, if

players stay in the game only for a very short period, learning is not possible. The difficulty to

formalize an interesting and nontrivial dynamic model may explain why most of the literature

focused on the static model so far.

4.2 Without synchronization, the dynamic setting

In the previous section, it was crucial that all exploration/communication phases start and end

at the same time for the SIC-MMAB algorithm. The synchronization assumption we leveraged

was the following.

Assumption 4.1 (Synchronization). Player i enters the bandit game at the time τi = 0 and stays

until the final horizon T . This is common knowledge to all players.

From now on, we no longer assume that players can communicate using synchronization.

This assumption is clearly unrealistic and should be alleviated, as radios do not start and end

transmitting simultaneously.

We instead assume in the following that players do not leave the game once they have started,

as formalized by Assumption 4.2 below.

Assumption 4.2 (Quasi-Asynchronization). Players enter at different times τi ∈ {0, . . . , T −1}
and stay until the final horizon T . The τi are unknown to all players (including i).

Yet, we mention that our results can also be adapted to the cases when players can leave the

game during specific intervals or share an internal synchronized clock (Rosenski et al., 2016). If

the time is divided in several intervals, DYN-MMAB can be run independently on each of these

intervals as suggested by Rosenski et al. (2016). In some cases, players will be leaving in the

middle of these intervals, leading to a large regret. But for any other interval, every player stays

until its end, thus satisfying Assumption 4.2.
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With quasi-asynchronicity2, the model is dynamic and several variants already exist (Rosen-
ski et al., 2016). Denote by M(t) the set of players in the game at time t (unknown but not
random). The total regret is then defined for the dynamic model (it is also valid for the static
one) by:

R(T ) :=
T∑
t=1

#M(t)∑
k=1

µ(k) − Eµ

 T∑
t=1

∑
m∈M(t)

rm(t)

 .
In this section, Assumption 4.2 holds. At each stage t = tj + τj , player j does not know t

but only tj (duration since joining). We denote by T j = T − τj the (known) time horizon of

player j. We also consider the more difficult No Sensing setting in this section.

4.2.1 A logarithmic regret algorithm

As synchronization no longer holds, we propose the DYN-MMAB algorithm, relying on differ-

ent tools than SIC-MMAB. The main ideas of DYN-MMAB are given in Section 4.2.2, while its

thorough description is given in 4.2.3.

The regret incurred by DYN-MMAB in the dynamic No Sensing model is given by Theo-

rem 4.2 and its proof is delayed to Section 4.B.2. We also mention that DYN-MMAB leads to

a Pareto optimal configuration in the more general problem where users’ reward distributions

differ (Avner and Mannor, 2014; Avner and Mannor, 2015; Avner and Mannor, 2019; Bistritz

and Leshem, 2018).

Theorem 4.2. In the dynamic setting, the regret incurred by DYN-MMAB is upper bounded as

follows:

R(T ) = O

M2K log(T )
µ(M)

+ MK log(T )
∆2

(M)

 ,
where M = #M(T ) is the total number of players in the game and ∆(M) = min

i=1,...,M
(µ(i) −

µ(i+1)).

4.2.2 A communication-less protocol

DYN-MMAB’s ideas are easy to understand but the upper bound proof is quite technical. This

section gives some intuitions about DYN-MMAB and its performance guarantees stated in Theo-

rem 4.2. A more detailed description is given in Section 4.2.3 below.

A player will only follow two different sampling strategies: either she samples uniformly at

random in [K] during the exploration phase; or she exploits an arm and pulls it until the final

2We prefer not to mention asynchronicity as players still use shared discrete time slots.
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horizon. In the first case, the exploration of the other players is not too disturbed by collisions

as they only change the mean reward of all arms by a common multiplicative term. In the

second case, the exploited arm will appear as sub-optimal to the other players, which is actually

convenient for them as this arm is now exploited.

During the exploration phase, a player will update a set of arms called Occupied ⊂ [K]
and an ordered list of arms called Preferences ⊂ [K]. As soon as an arm is detected as

occupied (by another player), it is then added to Occupied (which is the empty set at the be-

ginning). If an arm is discovered to be the best one amongst those that are neither in Occupied

nor in Preferences, it is then added to Preferences (at the last position). An arm is

active for player j if it was neither added to Occupied nor to Preferences by this player

yet.
To handle the fact that players can enter the game at anytime, we introduce the quantity

γj(t), the expected multiplicative factor of the means defined by

γj(t) = 1
t

t+τj∑
t′=1+τj

E
[
(1− 1

K
)mt′−1

]
,

where mt is the number of players in their exploration phase at time t. The value of γj(t) is

unknown to the player and random but it only affects the analysis of DYN-MMAB and not how it

runs.

The objective of the algorithm is still to form estimates and confidence intervals of the per-

formances of arms. However, it might happen that the true mean µk does not belong to this

confidence interval. Indeed, this is only true for γj(t)µk, if the arm k is still free (not exploited).

This is the first point of Lemma 4.1 below. Notice that as soon as the confidence interval for the

arm i dominates the confidence interval for the arm k, then it must hold that γj(t)µi ≥ γj(t)µk
and thus arm i is better than k.

The second crucial point is to detect when an arm k is exploited by another player. This de-

tection will happen if a player receives too many 0 rewards successively (so that it is statistically

very unlikely that this arm is not occupied). The number of zero rewards needed for player j to

disregard arm k is denoted by Ljk, which is sequentially updated during the process (following

the rule of Equation (4.1) in Section 4.2.3), so that Ljk ≥ 2e log(T j)/µk. As the probability of

observing a 0 reward on a free arm k is smaller than 1 − µk/e, no matter the current number

of players, observing Ljk successive 0 rewards on an unexploited arm happens with probability

smaller than 1
(T j)2 .

The second point of Lemma 4.1 then states that an exploited arm will either be quickly

detected as occupied after observing Ljk zeros (if Ljk is small enough) or its average reward will

quickly drop because it now gives zero rewards (and it will be dominated by another arm after a



80
Chapter 4. SIC-MMAB: Synchronisation Involves Communication in Multiplayer Multi-Armed

Bandits

relatively small number of pulls). The proof of Lemma 4.1 is delayed to Section 4.B.2.

Lemma 4.1. We denote by r̂jk(t) the empirical average reward of arm k for player j at stage

t+ τj .

1. For every player j and arm k, if k is still free at stage t+ τj , then

P
[
|r̂jk(t)− γ

j(t)µk| > 2

√
6 K log(T j)

t

]
≤ 4

(T j)2 .

We then say that the arm k is correctly estimated by player j if |r̂jk(t) − γj(t)µk| ≤
2
√

6 K log(T j)
t holds as long as k is free.

2. On the other hand, if k is exploited by some player j′ 6= j at stage t0 +τj , then, condition-

ally on the correct estimation of all the arms by player j, with probability 1 − O
(

1
T j

)
:

• either k is added to Occupied at a stage at most t0 + τj +O
(
K log(T )

µk

)
by player

j,

• or k is dominated by another unoccupied arm i (for player j) at stage at most

O
(
K log(T )

µ2
i

)
+ τj .

It remains to describe how players start exploiting arms. After some time (upper-bounded

by Lemma 4.10 in Section 4.B.2), an arm which is still free and such that all better arms are

occupied will be detected as the best remaining one. The player will try to occupy it, and this

happens as soon as she gets a positive reward from it: either she succeeds and starts exploiting it,

or she fails and assumes it is occupied by another player (this only takes a few number of steps,

see Lemma 4.1). In the latter case, she resumes exploring until she detects the next available

best arm. With high probability, the player will necessarily end up exploiting an arm while all

the better arms are already exploited by other players.

4.2.3 DYN-MMAB description

This section thoroughly describes DYN-MMAB algorithm. Its pseudocode is given in Algo-

rithm 4.7 below.

We first describe the rules explaining when a player adds an arm to Occupied or Preferences.

An arm k is added to Occupied (it may already be in Preferences) if only 0 rewards have

been observed during a whole block of Ljk pulls on arm k for player j. Such a block ends when

Ljk observations have been gathered on arm k and a new block is then restarted. Ljk is an esti-

mation of the required number of successive 0 to observe before considering an arm as occupied
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Algorithm 4.7: DYN-MMAB algorithm
input: T j (personal horizon)

1 p← 1, Fixed← −1 and initialize Preferences, Occupied as empty lists
2 N,Ntemp,S,Stemp ← Zeros(K) and define L as a vector of K elements equal to∞
3 rinf [k]← 0 and rsup[k]← 1 for every arm k // Initialize the confidence

intervals

4 while Fixed = −1 do // Bj(t) = 2
√

6 K log(T j)
t

here

5 Pull k ∼ U([K]); N temp[k]← N temp[k] + 1 and N [k]← N [k] + 1
6 Stemp[k]← Stemp[k] + rk(t) and S[k]← S[k] + rk(t)
7 For all arms i, rinf [i]←

(
S[i]
N [i] −B

j(t)
)

+
and rsup[i]← min

(
S[i]
N [i] +Bj(t), 1

)
8 L[k]← min

(
2e log(T j)
rinf [k] , L[k]

)
9 if k = Preferences[p] and rk(t) > 0 then Fixed← k // no collision on

the arm to exploit

10 if Preferences[p] ∈ Occupied then p← p+ 1 // exploited by another

player

11 if Stemp[k] = 0 then // k is occupied

12 Add k to Occupied ; Reset Stemp[k], N temp[k]← 0
13 end
14 if for some active arm i and all other active arms l, rinf [i] > rsup[l] then
15 Add i to Preferences (last position) // i is better than all other

active arms

16 end
17 if ∃l 6∈ Preferences[1 : p] such that rinf [l] > rsup[Preferences[p]] then
18 Add Preferences[p] to Occupied// the mean of the available best

arm has significantly dropped

19 end
20 end

21 Pull Fixed until T j // Exploitation phase

with high probability. Its value at stage t+τj , Ljk(t), is thus constantly updated using the current

estimation of a lower bound of µk:

Ljk(t+ 1)← min

 2e log(T j)(
r̂jk(t+ 1)−Bj(t+ 1)

)
+

, Ljk(t)

 and Ljk(0) = +∞, (4.1)

where r̂jk(t) is the empirical mean reward on the arm k at stage t + τj , Bj(t) = 2
√

6 K log(T j)
t ,

x+ = max(x, 0) and 2e log(T j)
0 = +∞. This rule is described at Line 12 in Algorithm 4.7.

An active arm k is added to Preferences (at last position) if it is better than all other
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active arms, in term of confidence interval. This rule is described at Line 14 in Algorithm 4.7.

Another rule needs to be added to handle the possible case of an arm in Preferences

already exploited by another player. As soon as an arm k in Preferences becomes worse (in

terms of confidence intervals) than an active arm or an arm with a higher index in Preferences,

then k is added to Occupied. This rule is described at Line 18 in Algorithm 4.7.

Following these rules, as soon as there is an arm in Preferences, player j tries to occupy

the p-th arm in Preferences (starting with p = 1), yet she still continues to explore. As soon

as she encounters a positive reward on it, she occupies it and starts the exploitation phase. If

she does not end up occupying an optimal arm, this arm will be added to Occupied at some

point. The player then increments p and tries to occupy the next available best arm. This point

is described at lines 9-10 in Algorithm 4.7. Notice that Preferences can have more than p

elements, but the player must not exploit the q-th element of Preferences with q > p yet as

it can lead the player in exploiting a sub-optimal arm.
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4.A Experiments

We compare in Figure 4.1 the empirical performances of SIC-MMAB with the MCTopM algo-

rithm(Besson and Kaufmann, 2018a) on generated data3. We also compared with the MusicalChairs

algorithm (Rosenski et al., 2016), but its performance was irrelevant and out of scale. This is

mainly due to its scaling with 1/∆2, besides presenting large constant terms in its regret. Also,

its main advantage comes from its scaling with M , which is here small for computational rea-

sons. All the considered regret values are averaged over 200 runs. The experiments are run

with Bernoulli distributions. Thus, there is no need to quantize the sent statistics and a tighter

confidence bound Bs =
√

2 log(T )
s is used.

Figure 4.1a represents the evolution of the regret for both algorithms with the following

problem parameters: K = 9, M = 6, T = 5 × 105. The means of the arms are linearly

distributed between 0.9 and 0.89, so the gap between two consecutive arms is 1.25× 10−3. The

switches between exploration and communication phases for SIC-MMAB are easily observable.

A larger horizon (near 40 times larger) is required for SIC-MMAB to converge to a constant

regret, but this alternation between the phases could not be visible for such a value of T .

Figure 4.1b represents the evolution of the final regret as a function of the gap ∆ between

two consecutive arms in a logarithmic scale. The problem parametersK,M and T are the same.

Although MCTopM seems to provide better results with larger values of ∆, SIC-MMAB seems to

have a smaller dependency in 1/∆. This confirms the theoretical results claiming that MCTopM

scales with ∆−2 while SIC-MMAB scales with ∆−1. This can be observed on the left part of

Figure 4.1b where the slope for MCTopM is approximately twice as large as for SIC-MMAB.

Also, a different behavior of the regret appears for very low values of ∆ which is certainly due

to the fact that the regret only depends on T for extremely small values of ∆ (minmax regret).

3The code is available at https://github.com/eboursier/sic-mmab.
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Figure 4.1: Performance comparison between SIC-MMAB and MCTopM algorithms.

4.B Omitted proofs

4.B.1 Regret analysis of SIC-MMAB

In this section, we prove the regret bound for SIC-MMAB algorithm given by Theorem 4.1. In

what follows, the statement “with probability 1 − O(δ(T )), it holds that f(T ) = O(g(T ))"

means that there is a universal constant c ∈ R+ such that f(T ) ≤ cg(T ) with probability at least

1− cδ(T ). We also denote ηm(t) = ηπm(t)(t) in the following for conciseness.

We first decompose the regret as follows:

R(T ) = E[Rinit +Rcomm +Rexplo], (4.2)

where

Rinit = Tinit

M∑
k=1

µ(k) −
Tinit∑
t=1

M∑
m=1

µπm(t)(1− ηm(t)) with Tinit = T0 + 2K,

Rcomm =
∑

t∈Comm

M∑
m=1

(µ(m) − µπm(t)(1− ηm(t))) with Comm the set of communication steps,

Rexplo =
∑

t∈Explo

M∑
m=1

(µ(m) − µπm(t)(1− ηm(t))) with Explo = {Tinit + 1, . . . , T} \ Comm.

A communication step is defined as a time step where a player is communicating statistics,

i.e., using Send Protocol. These terms respectively correspond to the regret due to the initializa-

tion phase, the communication and the regret of both exploration and exploitation phases. Note

that the terms Rinit, Rcomm and Rexplo are here random variables.
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Initialization analysis

The initialization regret is obviously bounded by M(T0 + 2K) as the initialization phase lasts

T0 + 2K steps. Lemma 4.2 provides the probability to reach an orthogonal setting at time T0. If

this orthogonal setting is reached, the initialization phase is successful. In that case, the players

then determine M and a unique internal rank using Algorithm 4.2. This is shown by observing

that players with external ranks k and k′ will exactly collide at round T0 + k + k′.

Lemma 4.2. After a time T0, all players pull different arms with probability at least 1 −
M exp

(
−T0
K

)
.

Proof. As there is at least one arm that is not played by all the other players at each time step,

the probability of having no collision at time t for a single player j is lower bounded by 1
K . It

thus holds:

P
[
∀t ≤ T0, η

j(t) = 1
]
≤
(

1− 1
K

)T0

≤ exp
(
−T0
K

)
.

For a single player j, her probability to encounter only collisions until time T0 is at most

exp
(
−T0
K

)
. The union bound over the M players then yields the desired result.

Exploration regret

This section aims at proving Lemma 4.3, which bounds the exploration regret.

Lemma 4.3. With probability 1−O
(
K log(T )

T +M exp
(
−T0
K

))
,

Rexplo = O
(∑
k>M

min
{ log(T )
µ(M) − µ(k)

,
√
T log(T )

})
.

The proof of Lemma 4.3 is divided in several auxiliary lemmas. It first relies on the correct-

ness of the estimations before taking the decision to accept or reject an arm.

Lemma 4.4. For each arm k and positive integer n, P[∃p ≤ n : |µ̃k(p)− µk| ≥ BNk(p)] ≤ 4n
T .

Proof. For each arm k and positive integer n, Hoeffding inequality gives the following, classical

inequality in MAB: P[∃p ≤ n : |µ̂k(p) − µk| ≥
√

2 log(T )
Tk(p) ] ≤ 2n

T . It remains to bound the

estimation error due to quantization.

Notice that
∑M
j=1(S̃jk − bS

j
kc) is the sum of M independent Bernoulli at each phase p.

Hoeffding inequality thus also claims that P[|
∑M
j=1(S̃jk(p) − S

j
k(p))| ≥

√
log(T )M

2 ] ≤ 2
T . As

Nk(p) ≥ M , it then holds P[∃p ≤ n : |µ̃jk(p) − µ̂
j
k(p)| ≥

√
log(T )
2Nk(p) ] ≤ 2n

T . Using the triangle

inequality with this bound and the first Hoeffding inequality of the proof yields the final result.
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For both exploration and exploitation phases, we control the number of times an arm is

pulled before being accepted or rejected.

Proposition 4.1. With probability 1 − O
(
K log(T )

T +M exp
(
−T0
K

))
, every optimal arm k is

accepted after at mostO
(

log(T )
(µk−µ(M+1))2

)
pulls during exploration phases, and every sub-optimal

arm k is rejected after at most O
(

log(T )
(µ(M)−µk)2

)
pulls during exploration phases.

Proof. With probability at least 1−M exp
(
−T0
K

)
, the initialization is successful, i.e., all players

have been assigned different ranks. The remaining of the proof is conditioned on that event.

As there are at most log2(T ) exploration-communication phases, |µ̃k(p) − µk| ≤ BNk(p)

holds for all arms and phases with probability 1 − O
(
K log(T )

T

)
thanks to Lemma 4.4. The

remaining of the proof is conditioned on that event.

We first consider an optimal arm k. Let ∆k = µk − µ(M+1) be the gap between the arm k

and the first sub-optimal arm. We assume ∆k > 0 here, the case of equality holds considering
log(T )

0 =∞. Let sk be the first integer such that 4Bsk ≤ ∆k.

With Nk(p) =
∑p
l=1Ml2l the number of times an active arm has been pulled after the p-th

exploration phase, it holds that

N(p+ 1) ≤ 3N(p) as Mp is non-increasing. (4.3)

For some p ∈ N, T (p− 1) < sk ≤ T (p) or the arm k is active at time T . In the second case, it

is obvious that k is pulled less than O(sk) times. Otherwise, the triangle inequality for such a p,

for any active sub-optimal arm i, yields µ̃k(p)−BNk(p) ≥ µ̃i(p) +BNi(p).

So the arm k is accepted after at most p phases. Using the same argument as in (Perchet

et al., 2015), it holds sk = O
(

log(T )
(µk−µ(M+1))2

)
, and also for Nk(p) thanks to Equation (4.3).

Also, k can not be wrongly rejected conditionally on the same event, as it can not be dominated

by any sub-optimal arm in term of confidence intervals.

The proof for the sub-optimal case is similar if we denote ∆k = µ(M) − µk.

In the following, we keep the notation tk = min
{

c log(T )
(µk−µ(M))2 , T

}
, where c is a universal

constant such that with the probability considered in Proposition 4.1, the number of exploration

pulls before accepting/rejecting k is at most tk.

For both exploration and exploitation phases, the decomposition used in the centralized case

(Anantharam et al., 1987a) holds because there is no collision during these two types of phases

(conditionally on the success of the initialization phase):

Rexplo =
∑
k>M

(µ(M) − µ(k))N
explo
(k) +

∑
k≤M

(µ(k) − µ(M))(T explo −N explo
(k) ), (4.4)
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where T explo = #Explo and N explo
(k) is the centralized number of time steps where the k-th

best arm is pulled during exploration or exploitation phases.

Lemma 4.5. With probability 1−O
(
K log(T )

T +M exp
(
−T0
K

))
, the following hold simultane-

ously:

i) for a sub-optimal arm k, (µ(M) − µk)N
explo
k = O

(
min

{
log(T )

µ(M)−µk
,
√
T log(T )

})
.

ii)
∑
k≤M

(µ(k) − µ(M))(T explo −N explo
(k) ) = O

( ∑
k>M

min
{

log(T )
µ(M)−µ(k)

,
√
T log(T )

})
.

Proof. i) From Proposition 4.1, N explo
k ≤ O

(
min

{
log(T )

(µ(M)−µk)2 , T

})
with the considered

probability, so (µ(M) − µk)N explo
k = O

(
min

{
log(T )

(µ(M)−µk) , (µ(M) − µk)T
})

. The function

∆ 7→ min
{

log(T )
∆ , ∆T

}
is maximized for ∆ =

√
log(T )
T and its maximum is

√
T log(T ).

Thus, the inequality min
{

log(T )
∆ , ∆T

}
≤ min

{
log(T )

∆ ,
√
T log(T )

}
always holds for ∆ ≥ 0

and yields the first point.

ii) We (re)define the following: t̂k the number of exploratory pulls before accepting/rejecting

the arm k, Ml the number of active player during the l-th exploration phase, N(p) =
p∑
l=1

2lMl

and p̂T the total number of exploration phases.

N(p) describes the total number of exploration pulls processed at the end of the p-th explo-

ration phase on every active arm for p < p̂T . Since the p̂T -th phase may remain uncompleted,

N(p̂T ) is then greater that the number of exploration pulls at the end of the p̂T -th phase.

With probability 1 − O
(
K log(T )

T +M exp
(
−T0
K

))
, the initialization is successful, every

arm is correctly accepted or rejected and t̂k ≤ tk for all k. The remaining of the proof is

conditioned on that event. We now decompose the proof in two main parts given by Lemmas 4.6

and 4.7 proven below.

Lemma 4.6. Conditionally on the success of the initialization phase and on correct estimations

of all arms:

∑
k≤M

(µ(k) − µ(M))(T explo −N explo
(k) ) ≤

∑
j>M

∑
k≤M

p̂T∑
p=1

2p(µ(k) − µ(M))1min(t̂(j),t̂(k))>N(p−1).

Lemma 4.7. Conditionally on the success of the initialization phase and on correct estimations
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of all arms:

∑
k≤M

p̂T∑
p=1

2p(µ(k) − µ(M))1min(t̂(j),t̂(k))>N(p−1) ≤ O
(

min
{ log(T )
µ(M) − µ(j)

,
√
T log(T )

})
.

These two lemmas directly yield the second point in Lemma 4.5.

Proof of Lemma 4.6. Let us consider an optimal arm k. During the p-th exploration phase, there

are two possibilities:

• either k has already been accepted, i.e., t̂k ≤ N(p − 1). Then the arm k is pulled the

whole phase, i.e., Kp2p times.

• Or k is still active. Then it is pulled 2p times by each active player, i.e., it is pulled Mp2p

times in total. This means that it is not pulled (Kp −Mp)2p times.

From these two points, it holds that N explo
k ≥ T explo −

p̂T∑
p=1

2p(Kp −Mp)1t̂k>N(p−1).

Notice that Kp −Mp is the number of active sub-optimal arms. By definition, Kp −Mp =∑
j>M

1t̂(j)>N(p−1). We thus get that N explo
k ≥ T explo −

∑
j>M

p̂T∑
p=1

2p1min(t̂(j),t̂k)>N(p−1).

The double sum actually is the number of times a sub-optimal arm is pulled instead of k.

This yields the result when summing over all optimal arms k.

Proof of Lemma 4.7. Let us define Aj =
∑
k≤M

p̂T∑
p=1

2p(µ(k) − µ(M))1min(t̂j ,t̂(k))>N(p−1) the cost

associated to the sub-optimal arm j. Lemma 4.7 upper bounds Aj for any sub-optimal arm j.

Recall that t(k) = min
(

c log(T )
(µ(k)−µ(M))2 , T

)
for a universal constant c. The proof is condi-

tioned on the event t̂(k) ≤ t(k), so that if we define ∆(p) =
√

c log(T )
N(p−1) , the inequality t̂(k) >

N(p− 1) implies µ(k) − µ(M) < ∆(p). We also write pj the first integer such that t̂j ≤ N(pj).

It follows:

Aj ≤
∑
k≤M

pj∑
p=1

2p∆(p)1t̂(k)>N(p−1)

≤
pj∑
p=1

∆(p) (N(p)−N(p− 1)) as
∑
k≤M

1t̂(k)>N(p−1) = Mp.

= c log(T )
pj∑
p=1

∆(p)
( 1

∆(p+ 1) + 1
∆(p)

)( 1
∆(p+ 1) −

1
∆(p)

)
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≤ (1 +
√

3)c log(T )
pj∑
p=1

( 1
∆(p+ 1) −

1
∆(p)) thanks to Equation (4.3).

≤ (1 +
√

3)c log(T ) 1
∆(pj + 1) by convention,

1
∆(1) = 0.

By definition of pj , we have tj ≥ N(pj − 1). Thus, ∆(pj) ≥
√

c log(T )
tj

and Equation (4.3)

gives ∆(pj + 1) ≥
√

c log(T )
3tj . It then holds Aj ≤ (3 +

√
3)
√
c tj log(T ). The result follows

since tj = O
(
min

{ log(T )
(µ(M)−µj)2 , T

})
.

Using the two points of Lemma 4.5, along with Equation (4.4), yields Lemma 4.3.

Communication cost

We now focus on the Rcomm term in Equation (4.2). Lemma 4.8 states it is negligible compared

to log(T ) and has a significant impact on the regret only for small values of T .

Lemma 4.8. With probability 1−O
(
K log(T )

T +M exp
(
−T0
K

))
, the following holds:

Rcomm = O
(
KM3 log2

(
min

{ log(T )
(µ(M) − µ(M+1))2 , T

}))
.

Proof. As explained in Section 4.1.2, the length of the communication phase p ∈ [P ] is at most

KM2(p + 1), where P is the number of exploration phases. The cost of communication is

then smaller than KM3∑P
p=1(p+ 1) = O

(
KM3P 2). Proposition 4.1 in Section 4.B.1, claims

with the considered probability that P is at most O
(

log
(

min
{

log(T )
(µ(M)−µ(M+1))2 , T

}))
, which

yields Lemma 4.8.

Total regret

The choice T0 = dK log(T )e along with Lemmas 4.2, 4.3 and 4.8 claim that a bad event occurs

with probability at most O
(
K log(T )

T + M
T

)
. The average regret due to bad events is thus upper

bounded by O(KM log(T )). Using these lemmas along with Equation (4.2) finally yields the

bound in Theorem 4.1.

4.B.2 Regret analysis of DYN-MMAB

Auxiliary lemmas

This section is devoted to the proof of Theorem 4.2. It first proves the first point of Lemma 4.1.
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Proof of Lemma 4.1.1. We first introduce Zt := Xk(t + τj)(1 − ηk(t + τj))1πj(t+τj)=k and

pt := E[Zt]. Notice that pt ≤ 1
K because 1πj(t+τj)=k is a Bernoulli of parameter 1

K in the

exploration phase. Chernoff bound states that:

P
[ t∑
t′=1

(Zt′ − E[Zt′ ]) ≥ tδ
]
≤ min

λ>0
e−λtδ E

[ t∏
t′=1

eλ(Zt′−E[Zt′ ])
]
.

By convexity, eλz ≤ 1 + z(eλ − 1) for z ∈ [0, 1]. It thus holds:

E
[
eλ(Zt−E[Zt])

]
≤ e−λpt

(
1 + pt(eλ − 1)

)
≤ e−λptept(eλ−1) as 1 + x ≤ ex.

≤ ept(eλ−1−λ) ≤ e
eλ−1−λ

K as pt ≤
1
K

and eλ − 1− λ ≥ 0.

It can then be deduced:

P
[ t∑
t′=1

(Zt′ − E[Zt′ ]) ≥ tδ
]
≤ min

λ>0
e−λtδet

eλ−1−λ
K . For λ = log(1 +Kδ) :

≤ exp
(
− t

K
h(Kδ)

)
with h(u) = (1 + u) log(1 + u)− u.

Similarly, we show for the negative error: P
[ t∑
t′=1

(Zt′−E[Zt′ ]) ≤ −tδ
]
≤ exp

(
− t
Kh(−Kδ)

)
.

Either t ≤ 16
3 K log(T j) and the desired inequality holds almost surely, or Kδ < 1 with

δ =
√

16 log(T j)
3tK . As h(x) ≥ 3x2

8 for |x| < 1, it then holds

P
[∣∣∣ t∑
t′=1

(Zt′ − E[Zt′ ])
∣∣∣ ≥ tδ] ≤ 2e−

3t(Kδ)2
8K and after multiplication with

K

t
:

P
[∣∣∣K
t

t+τj∑
t′=1+τj

Xk(t′)(1− ηk(t′))1πj(t′)=k − γj(t)µk
∣∣∣ ≥

√
16K log(T j)

3t

]
≤ 2

(T j)2 . (4.5)

Chernoff bound also provides a confidence interval on the number of pulls on a single arm:

P
[∣∣∣N j

k(t)− t

K

∣∣∣ ≥
√

6t log(T j)
K

]
≤ 2

(T j)2 . (4.6)

From Equation (4.6), it can be directly deduced that P
[
|KN

j
k

(t)
t −1| ≥

√
6K log(T j)

t

]
≤ 2

(T j)2 .

As r̂jk(t) ≤ 1,

P
[∣∣∣KN j

k(t)
t

r̂jk(t)− r̂
j
k(t)

∣∣∣ ≥
√

6K log(T j)
t

]
≤ 2

(T j)2 . (4.7)
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As KNj
k

(t)
t r̂jk(t) = K

t

t+τj∑
t′=1+τj

Xk(t′)(1− ηk(t′))1πj(t′)=k, using the triangle inequality with

Equations (4.5) and (4.7) finally yields P
[
|r̂jk(t)− γj(t)µk| ≥ 2

√
6 K log(T j)

t

]
≤ 4

(T j)2 .

The second point of Lemma 4.1 is proved below.

Proof of Lemma 4.1.2. The previous point gives that with probability 1 − O
(
K
T j

)
, player j

correctly estimated all the free arms until stage T . The remaining of the proof is conditioned

on this event. We also assume that t0 is the first stage where k is occupied for the proof. The

general result claimed in Lemma 4.1 directly follows.

When t0 is small, the second case will happen, i.e., the number of pulls on the arm k is small

and its average reward can quickly drop to 0. When t0 is large, γj(t)µk is tightly estimated so

that Ljk is small. Then, the first case will happen, i.e., the arm k will be quickly detected as

occupied.

a) We first assume t0 ≤ 12K log(T j). The empirical reward after N j
k(t) ≥ N j

k(t0) pulls is

r̂jk(t) = r̂j
k
(t0)Nj

k
(t0)

Nj
k

(t)
, because all pulls after the stage t0 + τj will return 0 rewards. However,

using Chernoff bound as in Equation (4.6), it appears that if t0 ≤ 12K log(T j) then N j
k(t0) ≤

18 log(T j) with probability 1−O
(

1
T j

)
, so r̂jk(t) ≤

18 log(T j)
Nj
k

(t)
.

Conditionally on the correct estimations of the arms, there is at least an unoccupied arm

i with µi ≤ µk. Therefore with ti = 72Ke log(T j)
µ2
i

, as ti ≥ 12K log(T j), Chernoff bound

guarantees that the following holds, with probability at least 1− 2
T j

,

3ti
2K ≥ N

j
k(ti) ≥

ti
2K = 36e log(T j)

µ2
i

. (4.8)

This gives that r̂jk(ti) ≤
µi
2e . After stage τj + d′K log(T j)

µ2
i

, where d′ is some universal constant,

the error bounds of both arms are upper bounded by µi
8e . The confidence intervals would then

be disjoint for the arms k and i. So k will be detected as worse than i after a time at most

O
(
K log(T )

µ2
i

)
as T j ≤ T .

b) We now assume that 12K log(T j) ≤ t0 ≤ 24λK log(T j)
µ2
k

with λ = 16e2. It still holds

r̂jk(t) = r̂j
k
(t0)Nj

k
(t0)

Nj
k

(t)
. Correct estimations of the free arms are assumed in this proof, so in

particular

r̂jk(t) ≤
(µk +Bj(t0))T jk (t0)

T jk (t)
. (4.9)

As in Equation (4.8), it holds that N j
k(t0) ≤ 3t0

2K with probability 1 − O
(

1
T j

)
and thus
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Bj(t0) ≤ 6
√

log(T j)
Nj
k

(t0)
. Also, N j

k(t) ≥ d log(T j)
2µiµk for t = dK log(T j)

µ2
i

. Equation (4.9) then becomes

r̂jk(t) ≤
µkN

j
k(t0)

N j
k(t)

+ Bj(t0)N j
k(t0)

N j
k(t)

≤ 36λ
d
µi +

6
√
N j
k(t0) log(T j)
N j
k(t)

≤
(

36λ
d

+ 72
√
λ

d

)
µi.

Thus, for a well chosen d, the empirical reward verifies r̂jk(t) ≤
µi
2e . We then conclude as

for the first case that the arm k would be detected as worse than the free arm i after a time

O
(
K log(T )

µ2
i

)
.

c) The last case corresponds to t0 > 24λK log(T j)
µ2
k

. It then holds Bj(t0) ≤ µk√
λ

= µk
4e .

By definition, Ljk ≤
2e log(T j)
r̂j
k
−Bj(t)

. Conditionally on the correct estimation of the free arms,

it holds that γj(t)µk − 2Bj(t) ≤ r̂jk − Bj(t) ≤ µk. So with the choice of Ljk described by

Equation (4.1), as long as k is free,

2e log(T j)
µk

≤ Ljk ≤ 2e log(T j)
γj(t)µk − 2Bj(t)

≤ 2e2 log(T j)
µk − 2eBj(t) .

(4.10)

AsBj(t0) ≤ µk
4e , it holds that Ljk(t0) ≤ 4e2 log(T j)

µk
. Since Ljk is non-increasing by definition,

this actually holds for all t larger than t0.

From that point, Equation (4.8) gives that with probability 1 − O
(

1
T j

)
, the arm k will be

pulled at least 2Ljk times between stage t0 + 1 and t0 + 24KLjk with probability 1 − O
(

1
T j

)
.

Thus, a whole block of Ljk pulls receiving only 0 rewards on k happens before stage t0+24KLjk.

The arm k is then detected as occupied after a time O
(
K log(T j)

µk

)
from t0, leading to the

result.

Lemma 4.9. At every stage, no free arm k is falsely detected as occupied by player j with

probability 1−O
(
K
T j

)
.

Proof. As shown above, with probability 1−O
(
K
T j

)
, player j correctly estimated the average

rewards of all the free arms until stage T . The remaining of the proof is conditioned on that

event. As long as k is free, it can not become dominated by some arm that was not added to

Preferences before k, so it can not be added to Occupied from the rule given at lines 17-18

in Algorithm 4.7.
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For the rule of Line 12, Equation (4.10) gives that

Ljk(t
′) ≥ 2e log(T j)

µk
at each stage t′ ≤ t. (4.11)

As in Section 4.B.1, the probability of detecting L successive 0 rewards on a free arm k is

then smaller than
(
1− µk

e

)L ≤ exp
(
−Lµk

e

)
.

Using this along with Equation (4.11) yields that with probability 1−O
(

1
(T j)2

)
, at least one

positive reward will be observed on arm k in a single block. The union bound over all blocks

yields the result.

Finally, Lemma 4.10 yields that, after some time, each player starts exploiting an arm while

all the better arms are already occupied by other players.

Lemma 4.10. We denote ∆(k) = min
i=1,...,k

(µ(i) − µ(i+1)). With probability 1−O
(
K
T j

)
, it holds

that for a single player j, there exists kj such that after a stage at most tkj + τj , she is exploiting

the kj-th best arm and all the better arms are also exploited by other players, where tkj =

O
(
K log(T )

∆2
(kj)

+ kj
K log(T )
µ(kj)

)
.

Proof. Player j correctly estimates all the arms until stage T , with probability 1−O
(
K
T j

)
. The

remaining of the proof is conditioned on that event. We define ti = cK log(T j)
∆2

(i)
+ i cK log(T j)

µ(i)
for

some universal constant c and kj (random variable) defined as

kj = min
{
i ∈ [K] | i-th best arm not exploited by another player at stage ti + τj

}
. (4.12)

k∗j (kj-th best arm) is the best arm not exploited by another player (than player j) after the

stage tkj + τj . The considered set is not empty as M ≤ K.

Lemma 4.9 gives that with probability 1 − O
(
K
T j

)
, k∗j is not falsely detected as occupied

until stage T . All arms below k∗j will be detected as worse than k∗j after a time dK log(T j)
∆2

(kj)
for

some universal constant d.

By definition of kj , any arm i∗ better than k∗j is already occupied at stage ti+τj . Lemma 4.1,

gives that with probability 1 − O
(

1
T j

)
, either i∗ is detected as occupied after stage ti + τj +

d′K log(T j)
µ(i)

or dominated by k∗j after stage d2K log(T j)
∆2

(kj)
+ τj for some universal constants d′ and

d2.

Thus the player detects the arm k∗j as optimal and starts trying to occupy k∗j at a stage at most

t̃ = max
(
tkj−1 + d′K log(T j)

µ(kj)
,max(d, d2)K log(T j)

∆2
(kj)

)
+ τj with probability 1 −O

(
K
T j

)
(where

t0 = 0).
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Using similar arguments as for Lemma 4.9, player j will observe a positive reward on k∗j
with probability 1 − O

(
1
T j

)
after a stage at most t̃ + d′2K log(T j)

µ(kj)
for some constant d′2, if kj is

still free at this stage. With the choice c = max(d, d2, d
′ + d′2), this stage is smaller than tkj

and k∗j is then still free. Thus, player j will start exploiting k∗j after stage at most tkj with the

considered probability.

Regret in dynamic setting

Proof of Theorem 4.2. Lemma 4.10 states that a player only needs an exploration time bounded

as O
(
K log(T )

∆2
(k)

+ kK log(T )
µ(k)

)
before starting exploiting, with high probability. Furthermore, the

better arms are already exploited when she does so. Thus, the exploited arms are the top-M

arms. The regret is then upper bounded by twice the sum of exploration times (and the low

probability events of wrong estimations), as a collision between players can only happen with at

most one player in her exploitation phase.

The regret incurred by low probability events mentioned in Lemma 4.10 is inO(KM2) and

is thus dominated by the exploration regret.

4.C On the inefficiency of SELFISH algorithm

A linear regret for the SELFISH algorithm in the No Sensing model has been recently conjectured

(Besson and Kaufmann, 2018a). This algorithm seems to have good results in practice, although

rare runs with linear regret appear. This is due to the fact that with probability p > 0 at some

point t, both independent from T , some players might have the same number of pulls and the

same observed average rewards for each arm. In that case, the players would pull the exact same

arms and thus collide until they reach a tie breaking point where they could choose different

arms thanks to a random tie breaking rule. However, it was observed that such tie breaking

points would not appear in the experiments, explaining the linear regret for some runs. Here we

claim that such tie breaking points might never happen in theory for the SELFISH algorithm when

the rewards follow Bernoulli distributions, if we add the constraint that the numbers of positive

rewards observed for the arms are all different at some stage. This event remains possible with

a probability independent from T .

Proposition 4.2. For s, s′ ∈ N with s 6= s′:

∀n ≥ 2, t, t′ ∈ N,
s

t
+

√
2 log(n)

t
6= s′

t′
+

√
2 log(n)

t′
.

Proof. First, if t = t′, these two quantities are obviously different as s 6= s′.
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We now assume s
t +

√
2 log(n)

t = s′

t′ +
√

2 log(n)
t′ with t 6= t′.

This means that
√

2 log(n)
t −

√
2 log(n)

t′ is a rational, i.e., for some rational p, log(n)(t + t′ −
2
√
tt′) = 2p.

It then holds log(n)
√
tt′ = log(n) t+ t′

2 − p,

tt′ log2(n) = log2(n)( t+ t′

2 )2 − p(t+ t′) log(n) + p2,

log2(n)( t− t
′

2 )2 − p(t+ t′) log(n) + p2 = 0.

Since ( t−t′2 )2 6= 0 and all the coefficients are in Q here, this would mean that log(n) is an

algebraic number. However, Lindemann–Weierstrass theorem implies that log(n) is transcen-

dental for any integer n ≥ 2. We thus have a contradiction.

The proof is only theoretical as computer are not precise enough to distinguish rationals from

irrationals. The advanced arguments are not applicable in practice. Still, this seems to confirm

the conjecture proposed by Besson and Kaufmann, 2018a: a tie breaking point is never reached,

or at least not before a very long period of time.

However, if the players are not synchronised (dynamic setting or asynchronous setting) or

if they are using confidence bounds of the form
√

ηm log(n)
t where ηm is some variable proper

to player m, this proof does not hold anymore. It thus remains unknown, whether slightly

modifying the SELFISH algorithm could lead to interesting regret guarantees.
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A Practical Algorithm for Multiplayer
Bandits when Arm Means Vary Among
Players

For the more challenging heterogeneous setting, arms may have different means for differ-
ent players. This chapter proposes a new and efficient algorithm that combines the idea of
leveraging forced collisions for implicit communication and that of performing matching
eliminations. We present a finite-time analysis of our algorithm, giving the first sublinear
minimax regret bound for this problem, and prove that if the optimal assignment of play-
ers to arms is unique, our algorithm attains the optimal O (log(T )) regret, solving an open
question raised at NeurIPS 2018 by Bistritz and Leshem (2018).
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This chapter studies the heterogeneous collision sensing model described in Section 3.3.1,

for which each arm has a possibly different mean for each player.

Bistritz and Leshem (2018) proposed an algorithm with regret bounded by O
(
log2+κ(T )

)
(for any constant κ), proved a lower bound of Ω(log T ) for any algorithm, and asked if there is

an algorithm matching this lower bound. We propose a new algorithm for this model, M-ETC-

Elim, which depends on a hyperparameter c, and we upper bound its regret byO
(
log1+1/c(T )

)
for any c > 1. We also bound its worst-case regret byO

(√
T log T

)
, which is the first sublinear

minimax bound for this problem. Moreover, if the optimal assignment of the players to the arms

is unique, we prove that instantiating M-ETC-Elim with c = 1 yields regret at mostO (log(T )),

which is optimal and answers affirmatively the open question mentioned above in this particular

case. We present a non-asymptotic regret analysis of M-ETC-Elim leading to nearly optimal

regret upper bounds, and also demonstrate the empirical efficiency of this new algorithm via

simulations.

This chapter is structured as follows. In Section 5.1, we present our contributions and put

them in perspective by comparison with the literature. We describe the M-ETC-Elim algorithm

in Section 5.2 and upper bound its regret in Section 5.3. Finally, we report in Section 5.4 results

from an experimental study demonstrating the competitive practical performance of M-ETC-

Elim.

5.1 Contributions

We propose an efficient algorithm for the heterogeneous multiplayer bandit problem achiev-

ing (quasi) logarithmic regret. The algorithm, called Multiplayer Explore-Then-Commit with

matching Elimination (M-ETC-Elim), is described in detail in Section 5.2. It combines the idea

of exploiting collisions for implicit communication, initially proposed in Chapter 4 for the ho-

mogeneous setting (which we have improved and adapted to our setting), with an efficient way

to perform “matching eliminations.”

M-ETC-Elim consists of several epochs combining exploration and communication, and

may end with an exploitation phase if a unique optimal matching has been found. The algorithm

depends on a parameter c controlling the epoch sizes and enjoys the following regret guarantees.
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Theorem 5.1. (a) The M-ETC-Elim algorithm with parameter c ∈ {1, 2, . . . } satisfies

R(T ) = O

MK

(
M2 log(T )

∆

)1+1/c
 .

(b) If the maximum matching is unique, M-ETC-Elim with c = 1 satisfies

R(T ) = O
(
M3K log(T )

∆

)
.

(c) Regardless of whether the optimal matching is unique or not, M-ETC-Elim with c = 1
satisfies the minimax regret bound

R(T ) = O
(
M

3
2

√
KT log(T )

)
.

We emphasize that we carry out a non-asymptotic analysis of M-ETC-Elim. The regret

bounds of Theorem 5.1 are stated with the O(·) notation for the ease of presentation and the

hidden constants depend on the chosen parameter c only. In Theorems 5.2, 5.3 and 5.4 we

provide the counterparts of these results with explicit constants.

A consequence of part (a) is that for a fixed problem instance, for any (arbitrarily small)

κ, there exists an algorithm (M-ETC-Elim with parameter c = d1/κe) with regret R(T ) =
O
(
(log(T ))1+κ). This quasi-logarithmic regret rate improves upon theO

(
log2(T )

)
regret rate

of (Bistritz and Leshem, 2018). Moreover, we provide additional theoretical guarantees for M-

ETC-Elim using the parameter c = 1: an improved analysis in the presence of a unique optimal

matching, which yields logarithmic regret (part (b)); and a problem-independent O
(√
T log T

)
regret bound (part (c)), which supports the use of this particular parameter tuning regardless of

whether the optimal matching is unique. This is the first sublinear minimax regret bound for this

problem.

To summarize, we present a unified algorithm that can be used in the presence of either a

unique or multiple optimal matchings and get a nearly logarithmic regret in both cases, almost

matching the known logarithmic lower bound. Moreover, our algorithm is easy to implement,

performs well in practice and does not need problem-dependent hyperparameter tuning.

5.1.1 Context and related work

Our algorithm also leverages the ideas of arm elimination and communication through collisions

developed in Chapter 4, with the following enhancements. In our new communication protocol,

the followers only send each piece of information once, to the leader, instead of sending it to the

M − 1 other players. Then, while we used arm eliminations (coordinated between players) to
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reduce the regret in Chapter 4, we cannot employ the same idea for our heterogeneous problem,

as an arm that is bad for one player might be good for another player, and therefore cannot be

eliminated. M-ETC-Elim instead relies on matching eliminations.

As mentioned in Chapter 3, the fully distributed heterogeneous setting was first studied by

Bistritz and Leshem (2018), who proposed the Game-of-Thrones (GoT) algorithm and proved

its regret is bounded by O
(
log2+κ(T )

)
for any given constant κ > 0, if its parameters are “ap-

propriately tuned’.’ In a more recent work (Bistritz and Leshem, 2020), the same authors provide

an improved analysis, showing the same algorithm (with slightly modified phase lengths) enjoys

quasi-logarithmic regret O
(
log1+κ(T )

)
. GoT is quite different from M-ETC-Elim: it proceeds

in epochs, each consisting of an exploration phase, a so-called GoT phase and an exploitation

phase. During the GoT phase, the players jointly run a Markov chain whose unique stochas-

tically stable state corresponds to a maximum matching of the estimated means. A parameter

ε ∈ (0, 1) controls the accuracy of the estimated maximum matching obtained after a GoT

phase. Letting c1, c2, c3 be the constants parameterizing the lengths of the phases, the improved

analysis of GoT (Bistritz and Leshem, 2020) upper bounds its regret by Mc32k0+1 + 2(c1 +
c2)M log1+κ

2 (T/c3 + 2) . This upper bound is asymptotic as it holds for T large enough, where

“how large” is not explicitly specified and depends on ∆.1 Moreover, the upper bound is valid

only when the parameter ε is chosen small enough: ε should satisfy some constraints (Equations

(66)-(67)) also featuring ∆. Hence, a valid tuning of the parameter ε would require prior knowl-

edge of arm utilities. In contrast, we provide in Theorem 5.2 a non-asymptotic regret upper

bound for M-ETC-Elim, which holds for any choice of the parameter c controlling the epoch

lengths. Also, we show that if the optimal assignment is unique, M-ETC-Elim has logarithmic

regret. Besides, we also illustrate in Section 5.4 that M-ETC-Elim outperforms GoT in prac-

tice. Finally, GoT has several parameters to set (δ, ε, c1, c2, c3), while M-ETC-Elim has only

one integral parameter c, and setting c = 1 works very well in all our experiments.

If ∆ is known, an algorithm with similar ideas to M-ETC-Elim with O (log T ) regret was

presented independently in the work of Magesh and Veeravalli (2019b).

Finally, the independent work of Tibrewal et al. (2019) studies a slightly stronger feedback

model than ours: they assume each player in each round has the option of “observing whether

a given arm has been pulled by someone,” without actually pulling that arm (thus avoiding

collision due to this “observation”), an operation that is called “sensing.” Due to the stronger

feedback, communications do not need to be implicitly done through collisions and bits can be

broadcast to other players via sensing. Note that it is actually possible to send a single bit of

information from one player to all other players in a single round in their model, an action that
1(Bistritz and Leshem, 2020, Theorem 4) requires T to be larger than c3(2k0 − 2), where k0 satisfies Equa-

tion (16), which features κ and ∆.
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requiresM−1 rounds in our model. Still, the algorithms proposed by Tibrewal et al. (2019) can

be modified to obtain algorithms for our setting, and M-ETC-Elim can also be adapted to their

setting. The two algorithms proposed by Tibrewal et al. (2019) share similarities with M-ETC-

Elim: they also have exploration, communication and exploitation phases, but they do not use

eliminations. Regarding their theoretical guarantees, a first remark is that those proved in Tibre-

wal et al. (2019) only hold in the presence of a unique optimal matching, whereas our analysis

of M-ETC-Elim applies in the general case. The second remark is that their regret bounds for

the case in which ∆ is unknown (Theorems 3(ii) and 4) feature exponential dependence on the

gap 1/∆, whereas our regret bounds have polynomial dependence. Finally, the first-order term

of their Theorem 4 has a quadratic dependence in 1/∆, whereas our Theorem 5.1(b) scales

linearly, which is optimal and allows us to get the O
(√

log(T )T
)

minimax regret bound for

M-ETC-Elim.

The best known lower bound in the centralized heterogeneous setting is Ω
(
KM

∆ log(T )
)

as explained in Section 3.3.3 (Combes et al., 2015). Moreover, a minimax lower bound of

Ω(M
√
KT ) was given by Audibert et al. (2014) in the same setting. These lower bounds show

that the dependency in T,∆ and K obtained in Theorem 5.1(b),(c) are essentially not improv-

able, but that the dependency inM might be. However, finding an algorithm whose regrets attain

the available lower bounds for combinatorial semi-bandits is already hard even without the extra

challenge of decentralization.

5.2 The M-ETC-Elim Algorithm

Our algorithm relies on an initialization phase in which the players elect a leader in a distributed

manner. Then a communication protocol is set up, in which the leader and the followers have

different roles: followers explore some arms and communicate to the leader estimates of the arm

means, while the leader maintains a list of “candidate optimal matchings” and communicates to

the followers the list of arms that need exploration in order to refine the list, i.e. to eliminate some

candidate matchings. The algorithm is called Multiplayer Explore-Then-Commit with matching

Eliminations (M-ETC-Elim for short). Formally, each player executes Algorithm 5.1 below.

Algorithm 5.1: M-ETC-Elim with parameter c
Input: Time horizon T , number of arms K

1 R,M ←− INIT(K, 1/KT )
2 if R = 1 then LEADERALGORITHM(M) else FOLLOWERALGORITHM(R,M)

M-ETC-Elim requires as input the number of arms K (as well as a shared numbering of the

arms across the players) and the time horizon T (the total number of arm selections). However,
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if the players know only an upper bound on T , our results hold with T replaced by that upper

bound as well. If no upper bound on T is known, the players can employ a simple doubling trick

(Besson and Kaufmann, 2018b): we execute the algorithm assuming T = 1, then we execute it

assuming T = 2 × 1, and so on, until the actual time horizon is reached. If the expected regret

of the algorithm for a known time horizon T is R(T ), then the expected regret of the modified

algorithm for unknown time horizon T would be R′(T ) ≤
∑log2(T )
i=0 R2i ≤ log2(T )×R(T ).

Initialization. The initialization procedure, similar to the initialization of SIC-MMAB de-

scribed in Section 4.1.2. It first outputs for each player a rank R ∈ [M ] as well as the value

of M , which is initially unknown to the players. This initialization phase relies on a “musical

chairs” phase after which the players end up on distinct arms, followed by a “sequential hopping”

protocol that permits them to know their ordering. For the sake of completeness, the initializa-

tion procedure is described in detail in Section 5.A. It corresponds to the same initialization as

SIC-MMAB and the following lemma has thus already been proven in Section 4.B.1.

Lemma 5.1. Fix δ0 > 0. With probability at least 1− δ0, if the M players run the INIT(K, δ0)
procedure, which takes K log(K/δ0) + 2K − 2 < K log(e2K/δ0) many rounds, all players

learn M and obtain a distinct ranking from 1 to M .

Communication Phases. Once all players have learned their ranks, player 1 becomes the

leader and other players become the followers. The leader executes additional computations,

and communicates with the followers individually, while each follower communicates only with

the leader.

The leader and follower algorithms, described below, rely on several communication phases,

which start at the same time for every player. During communication phases, the default behavior

of each player is to pull her communication arm. It is crucial that these communication arms are

distinct: an optimal way to do so is for each player to use her arm in the best matching found

so far. In the first communication phase, such an assignment is unknown and players simply

use their ranking as communication arm. Suppose at a certain time the leader wants to send a

sequence of b bits t1, . . . , tb to the player with ranking i and communication arm ki. During the

next b rounds, for each j = 1, 2, . . . , b, if tj = 1, the leader pulls arm ki; otherwise, she pulls

her own communication arm k1, while all followers stick to their communication arms. Player

i can thus reconstruct these b bits after these b rounds, by observing the collisions on arm ki.

The converse communication between follower i and the leader is similar. The rankings are also

useful to know in which order communications should be performed, as the leader successively

communicates messages to the M − 1 followers, and then the M − 1 followers successively

communicate messages to the leader.
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Note that in case of unreliable channels where some of the communicated bits may be lost,

there are several options to make this communication protocol more robust, such as sending each

bit multiple times or using the Bernoulli signaling protocol of Tibrewal et al. (2019). Robustness

has not been the focus of our work.

Leader and Follower Algorithms. The leader and the followers perform distinct algorithms,

explained next. Consider a bipartite graph with parts of size M and K, where the edge (m, k)
has weight µmk and associates player m to arm k. The weights µmk are unknown to the players,

but the leader maintains a set of estimated weights that are sent to her by the followers, and

approximate the real weights. The goal of these algorithms is for the players to jointly explore

the matchings in this graph, while gradually focusing on better and better matchings. For this

purpose, the leader maintains a set of candidate edges E , which is initially [M ]×[K], that can

be seen as edges that are potentially contained in optimal matchings, and gradually refines this

set by performing eliminations, based on the information obtained from the exploration phases

and shared during communication phases.

M-ETC-Elim proceeds in epochs whose length is parameterized by c. In epoch p = 1, 2, . . . ,
the leader weights the edges using the estimated weights. Then for every edge (m, k) ∈ E , the
leader computes the associated matching π̃m,kp defined as the estimated maximum matching
containing the edge (m, k). This computation can be done in polynomial time using, e.g., the
Hungarian algorithm (Munkres, 1957). The leader then computes the utility of the maximum
matching and eliminates from E every edge for which the weight of its associated matching is
smaller by at least 4Mεp, where

εp :=
√

log(2/δ)
21+pc , with δ := 1

M2KT 2 . (5.1)

The leader then forms the set of associated candidate matchings C := {π̃m,kp , (m, k) ∈ E} and

communicates to each follower the list of arms to explore in these matchings. Then exploration

begins, in which for each candidate matching every player pulls its assigned arm 2pc times and

records the received reward. Then another communication phase begins, during which each

follower sends her observed estimated mean for the arms to the leader. More precisely, for each

explored arm, the follower truncates the estimated mean (a number in [0, 1]) and sends only the
pc+1

2 most significant bits of this number to the leader. The leader updates the estimated weights

and everyone proceeds to the next epoch. If at some point the list of candidate matchings C
becomes a singleton, it means that (with high probability) the actual maximum matching is

unique and has been found; so all players jointly pull that matching for the rest of the game (the

exploitation phase).
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Possible Exploitation Phase. Note that in the presence of several optimal matchings, the play-

ers will not enter the exploitation phase but will keep exploring several optimal matchings, which

still ensures small regret. On the contrary, in the presence of a unique optimal matching, they are

guaranteed to eventually enter the exploitation phase.2 Also, observe that the set C of candidate

optimal matchings does not necessarily contain all potentially optimal matchings, but all the

edges in those matchings remain in E and are guaranteed to be explored.

The pseudocode for the leader’s algorithm is given below, while the corresponding follower

algorithm appears in Section 5.A. In the pseudocodes, (comm.) refers to a call to the commu-

nication protocol.

Procedure LeaderAlgorithm(M) for the M-ETC-Elim algorithm with parameter c
Input: Number of players M

1 E ←− [M ]× [K] // list of candidate edges

2 µ̃mk ←− 0 for all (m, k) ∈ [M ]× [K] // empirical estimates for utilities

3 for p = 1, 2, . . . do
4 C ←− ∅ // list of associated matchings

5 π∗p ←− arg max
{∑M

n=1 µ̃
n
π(n) : π ∈M

}
// using Hungarian algorithm

6 for (m, k) ∈ E do
7 π̃m,kp ←− arg max

{∑M
n=1 µ̃

n
π(n) : π(m) = k

}
// using Hungarian algorithm

8 if
∑M
n=1

{
µ̃nπ∗p(n) − µ̃

n

π̃m,kp (n)

}
≤4Mεp then add π̃m,kp to C

9 else remove (m, k) from E
10 end
11 for each player m = 2, . . . ,M do
12 Send to player m the value of size(C) // (comm.)

13 for i = 1, 2, . . . , size(C) do
14 Send to player m the arm associated to player m in C[i] // (comm.)

15 end
16 Send to player m communication arms of the leader and player m, namely π̃∗p(1) and

π̃∗p(m)
17 end
18 if size(C) = 1 then pull for the rest of the game the arm assigned to player 1 in the unique

matching in C // enter the exploitation phase

19 for i = 1, 2, . . . , size(C) do
20 pull 2pc times the arm assigned to player 1 in the matching C[i] // exploration

21 end
22 for k = 1, 2, . . . ,K do
23 µ̃1

k ←− empirically estimated utility of arm k if it was pulled in this epoch, 0 otherwise
24 end
25 Receive the values µ̃m1 , µ̃

m
2 , . . . , µ̃

m
K from each player m // (comm.)

26 end

2This different behavior is the main reason for the improved regret upper bound obtained when the optimal
matching is unique.
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5.3 Analysis of M-ETC-Elim

We may assume that K ≤ T , otherwise all parts of Theorem 5.1 would be trivial, since R(T ) ≤
MT always. Theorem 5.2 provides a non-asymptotic upper bound on the regret of M-ETC-Elim.

Theorem 5.2. Let πm,k be the best suboptimal matching assigning arm k to player m, and

∆(k,m) its associated suboptimality gap, namely,

πm,k ∈ arg max {U(π) | π(m) = k and U(π) < U?}

and ∆(m,k) := ∆(πm,k) = U∗ − U(πm,k).

For all c ≥ 1, let T0(c) := exp
(

2
cc

logc(1+ 1
2c )

)
. For all T ≥ T0(c), the regret of M-ETC-Elim

with parameter c is upper bounded as3

R(T ) ≤ 2 +MK log(e2K2T ) + 6M2K log2(K)(log2 T )1/c

+ e2MK(log2 T )1+1/c + 2M3K log2(K)√
2− 1

√
log(2M2KT 2)

+ 2
√

2
3− 2

√
2
M2K

√
log(2M2KT 2) log2(log(T ))

+ 2
√

2− 1√
2− 1

∑
(m,k)∈[M ]×[K]

(
32M2 log(2M2KT 2)

∆(m,k)

)1+1/c

,

i.e.,

R(T ) = O

∑
m,k

(
M2 log(T )

∆(m,k)

)1+1/c

+MK(log2 T )1+1/c

 .

The first statement of Theorem 5.1(a) easily follows by lower bounding ∆(m,k) ≥ ∆ for all

m, k. Parts (b) and (c) of Theorem 5.1 similarly follow respectively from Theorems 5.3 and 5.4

in Sections 5.C.1 and 5.C.2, with proofs similar to that of Theorem 5.2 presented below.

The constant T0(c) in Theorem 5.2 equals 252 for c = 1 but becomes large when c increases.

Still, the condition on T is explicit and independent of the problem parameters. In the case of

multiple optimal matchings, our contribution is mostly theoretical, as we would need a large

enough value of c and a long time T0(c) for reaching a prescribed log1+o(1)(T ) regret. However,

in the case of a unique optimal matching (common in practice, and sometimes assumed in other

papers), for the choice c = 1, the logarithmic regret upper bound stated in Theorem 5.3 is valid

for all T ≥ 1. Even if there are several optimal matchings, the minimax bound of Theorem 5.4

gives an O
(√
T log T

)
regret bound that is a best-possible worst-case bound (also known as the

3log(·) and log2(·) here denote the natural logarithm and the logarithm in base 2, respectively.
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minimax rate), up to the
√

log T factor. Hence M-ETC-Elim with c = 1 is particularly good,

both in theory and in practice. Our experiments also confirm that for c = 1, 2 the algorithm

performs well (i.e., beats our competitors) even in the presence of multiple optimal matchings.

5.3.1 Sketch of Proof of Theorem 5.2

The analysis relies on several lemmas with proofs delayed to Section 5.C.3. Let Cp denote the

set of candidate matchings used in epoch p, and for each matching π let Ũp(π) be the utility of

π that the leader can estimate based on the information received by the end of epoch p. Let p̂T
be the total number of epochs before the (possible) start of the exploitation phase. As 2p̂cT ≤ T ,

we have p̂T ≤ log2(T ). Recall that a successful initialization means all players identify M and

their ranks are distinct. Define the good event

GT :=
{

INIT(K, 1/KT ) is successful and

∀p ≤ p̂T ,∀π ∈ Cp+1, |Ũp(π)− U(π)| ≤ 2Mεp
}
. (5.2)

During epoch p, for each candidate edge (m, k), player m has pulled arm k at least 2pc times

and the quantization error is smaller than εp. Hoeffding’s inequality and a union bound over

at most log2(T ) epochs (see Section 5.C.3) together with Lemma 5.1 yield that GT holds with

large probability.

Lemma 5.2. P (GT ) ≥ 1− 2
MT .

If GT does not hold, we may upper bound the regret by MT . Hence it suffices to bound

the expected regret conditional on GT , and the unconditional expected regret is bounded by this

value plus 2.

Suppose that GT happens. First, the regret incurred during the initialization phase is upper

bounded by MK log(e2K2T ) by Lemma 5.1. Moreover, the gap between the best estimated

matching of the previous phase and the best matching is at most 2Mεp−1 during epoch p. Each

single communication round then incurs regret at most 2 + 2Mεp−1, the first term being due

to the collision between the leader and a follower, the second to the gap between the optimal

matching and the matching used for communication. Summing over all communication rounds

and epochs leads to Lemma 5.3 below.

Lemma 5.3. The regret due to communication is bounded by

3M2K log2(K)p̂T + 2c
√

2
3− 2

√
2
M2K

√
log(2/δ)

+MK(p̂T )c+1 + 2M3K log2(K)√
2− 1

√
log(2/δ).
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For large horizons, Lemma 5.4 bounds some terms such as p̂T and (p̂T )c. When c = 1,

tighter bounds that are valid for any T are used to prove Theorems 5.1(b) and 5.1(c).

Lemma 5.4. For every suboptimal matching π, let P (π) := inf{p ∈ N : 8Mεp < ∆(π)}. The

assumption T ≥ T0(c) implies that for every matching π, ∆(π)2P (π)c ≤
(

32M2 log(2M2KT 2)
∆(π)

)1+ 1
c .

Also, 2c ≤ 2 log2(log(T )), p̂T ≤ 2(log2 T )1/c and (p̂T )c ≤ e log2 T .

Hence for T ≥ T0(c), we can further upper bound the first three terms of the sum in
Lemma 5.3 by

6M2K log2(K)(log2 T )1/c + e2MK(log2 T )1+1/c

+ 2
√

2
3− 2

√
2
M2K

√
log(2/δ) log2(log(T )). (5.3)

It then remains to upper bound the regret incurred during exploration and exploitation phases.

On GT , during the exploitation phase the players are jointly pulling an optimal matching and

no regret is incurred. For an edge (m, k), let ∆̃m,k
p := U? − U(π̃m,kp ) be the gap of its as-

sociated matching at epoch p. During epoch p, the incurred regret is then
∑
π∈Cp ∆(π)2pc =∑

(m,k)∈E ∆̃m,k
p 2pc .

Recall that πm,k is the best suboptimal matching assigning arm k to player m. Observe that
for each epoch p > P (πm,k), since GT happens, πm,k (and any worse matching) is not added
to Cp; thus during each epoch p > P (πm,k), the edge (m, k) is either eliminated from the set of
candidate edges, or it is contained in some optimal matching and satisfies ∆̃m,k

p = 0. Hence, the
total regret incurred during exploration phases is bounded by

∑
(m,k)∈[M ]×[K]

P (πm,k)∑
p=1

∆̃m,k
p 2p

c

. (5.4)

The difficulty for bounding this sum is that ∆̃m,k
p is random since π̃m,kp is random. However,

∆̃m,k
p can be related to ∆(πm,k) by ∆̃m,k

p ≤ εp−1
ε
P (πm,k)

∆(πm,k). A convexity argument then

allows us to bound the ratio εp−1
ε
P (πm,k)

, which yields Lemma 5.5, proved in Section 5.C.3.

Lemma 5.5. For every edge (m, k), if p < P (πm,k) then ∆̃m,k
p 2pc ≤ ∆(πm,k) 2P (πm,k)c

√
2P (πm,k)−(p+1) .

By Lemma 5.5,
∑P (πm,k)
p=1 ∆̃m,k

p 2pc is upper bounded by
(∑∞

p=01/
√

2p
)
∆(πm,k)2P (πm,k)c+

∆̃m,k
P (πm,k)2

P (πm,k)c . As π̃m,k
P (πm,k) is either optimal or its gap is larger than ∆(πm,k), Lemma 5.4

yields

∆̃m,k
P (πm,k)2

P (πm,k)c ≤
(

32M2 log(2M2KT 2)
∆(πm,k)

)1+1/c
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in both cases. Therefore, we find that

P (πm,k)∑
p=1

∆̃m,k
p 2p

c

≤ 2
√

2− 1√
2− 1

(
32M2 log(2M2KT 2)

∆(πm,k)

)1+1/c

.

Plugging this bound in (5.4), the bound (5.3) in Lemma 5.3 and summing up all terms yields

Theorem 5.2.

5.3.2 Proof of Theorem 5.1(b), Unique Optimal Matching

The reader may wonder why can we obtain a better (logarithmic) bound if the maximum match-

ing is unique. The intuition is as follows: in the presence of a unique optimal matching, M-

ETC-Elim eventually enters the exploitation phase (which does not happen with multiple opti-

mal matchings), and we can therefore provide a tighter bound on the number of epochs before

exploitation phase compared with the one provided by Lemma 5.4. More precisely, in that case

we have p̂T ≤ log2
(
64M2∆−2 log(2M2KT 2)

)
. Moreover, another bound given by Lemma 5.4

can be tightened when c = 1 regardless of whether the optimal matching is unique or not:

∆(π)2P (π) ≤ 64M2 log(2M2KT 2)/∆(π).These two inequalities lead to Theorem 5.1(b), proved

in Section 5.C.1.

5.3.3 Proof of Theorem 5.1(c), Minimax Regret Bound

Using the definition of the elimination rule, on GT we have ∆̃m,k
p ≤ 8Mεp−1. Directly summing

over these terms for all epochs yields an exploration regret scaling with
∑
m,k

√
tm,k, where

tm,k roughly corresponds to the number of exploration rounds associated with edge (m, k).

This regret is maximized when all tm,k are equal, which leads to the sublinear regret bound of

Theorem 5.1(c). See Section 5.C.2 for the rigorous statement and proof.

5.4 Numerical Experiments

We executed the following algorithms:M-ETC-Elim with c = 1 and c = 2, GoT (the latest ver-

sion Bistritz and Leshem, 2020) with parameters4 δ = 0, ε = 0.01, c1 = 500, c2 = c3 = 6000
and Selfish-UCB, a heuristic studied by Besson and Kaufmann (2018a) in the homogeneous set-

ting which often performs surprisingly well despite the lack of theoretical evidence. In Selfish-

UCB, each player runs the UCB1 algorithm of Auer et al. (2002a) on the reward sequence

4These parameters and the reward matrix U1 are taken from the simulations section of (Bistritz and Leshem,
2020).
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Figure 5.1: R(T ) as a function of T with reward matrices U1 (left) and U2 (right) and Bernoulli rewards.

(rm(t))∞t=1.5 We experiment with Bernoulli rewards and the following reward matrices, whose

entry (m, k) gives the value of µmk :

U1 =


0.1 0.05 0.9
0.1 0.25 0.3
0.4 0.2 0.8

 , U2 =



0.5 0.49 0.39 0.29 0.5
0.5 0.49 0.39 0.29 0.19
0.29 0.19 0.5 0.499 0.39
0.29 0.49 0.5 0.5 0.39
0.49 0.49 0.49 0.49 0.5


Figure 5.1 reports the algorithms’ regrets for various time horizons T , averaged over 100 inde-

pendent replications. The first instance (matrix U1, left plot) has a unique optimal matching and

we observe that M-ETC-Elim has logarithmic regret (as promised by Theorem 5.1) and largely

outperforms all competitors. The second instance (matrix U2, right plot) is more challenging,

with more arms and players, two optimal matchings and several near-optimal matchings. M-

ETC-Elim with c = 1 performs the best for large T as well, though Selfish-UCB is also compet-

itive. Yet there is very little theoretical understanding of Selfish-UCB, and it fails badly on the

other instance. Section 5.B contains additional experiments corroborating our findings, where

we also discuss practical aspects of implementing M-ETC-Elim.

5Note that this sequence is not i.i.d. due to some observed zeros that are due to collisions.



Appendix

5.A Description of the Initialization Procedure and Followers’ Pseu-
docode

The pseudocode of the INIT(K, δ0) procedure, already presented in Chapter 4, is presented in

Algorithm 5.2 for the sake of completeness.

Next, we present the pseudocode that the followers execute in M-ETC-Elim. Recall that

(comm.) refers to a call to the communication protocol.

5.B Practical Considerations and Additional Experiments

5.B.1 Implementation Enhancements for M-ETC-Elim

In the implementation of M-ETC-Elim, the following enhancements significantly improve the

regret in practice (and have been used for the reported numerical experiments), but only by

constant factors in theory, hence we have not included them in the analysis for the sake of

brevity.

First, to estimate the means, the players are better off taking into account all pulls of the arms,

rather than just the last epoch. Note that after the exploration phase of epoch p, each candidate

edge has been pulledNp :=
∑p
i=1 2ic times. Thus, with probability at least 1−2 log2(T )/(MT ),

each edge has been estimated within additive error ≤ ε′p =
√

log(M2TK)/2Np by Hoeffd-

ing’s inequality. The players then truncate these estimates using b := d− log2(0.1ε′p)e bits,

adding up to 0.1ε′p additive error due to quantization. They then send these b bits to the

leader. Now, the threshold for eliminating a matching would be 2.2Mε′p rather than 4M ×√
log(2M2KT 2)/21+pc (compare with line 8 of the Leaderalgorithm presented on page 103).

The second enhancement is to choose the set C of matchings to explore more carefully. Say

that a matching is good if its estimated gap is at most 2.2Mε′p, and say an edge is candidate

(lies in E) if it is part of some good matching. There are at most MK candidate edges, and we

109
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Algorithm 5.2: INIT, the initialization algorithm
Input: number of arms K, failure probability δ0
Output: Ranking R, number of players M
// first, occupy a distinct arm using the musical chairs algorithm

1 k ←− 0
2 for T0 := K log(K/δ0) rounds do // rounds 1, . . . , T0

3 if k = 0 then
4 pull a uniformly random arm i ∈ [K]
5 if no collision occurred then k ←− i // arm k is occupied

6 else
7 pull arm k
8 end
9 end
// next, learn M and identify your ranking

10 R←− 1
11 M ←− 1
12 for 2k − 2 rounds do // rounds T0 + 1, . . . , T0 + 2k − 2
13 pull arm k
14 if collision occurred then
15 R←− R+ 1
16 M ←−M + 1
17 end
18 end
19 for i = 1, 2, . . . ,K − k do // rounds T0 + 2k − 1, . . . , T0 +K + k − 2
20 pull arm k + i
21 if collision occurred then
22 M ←−M + 1
23 end
24 end
25 for K − k rounds do // rounds T0 +K + k − 1, . . . , T0 + 2K − 2
26 pull arm 1
27 end

need only estimate those in the next epoch. Now, for each candidate edge, we can choose any

good matching containing it, and add that to C. This guarantees that |C| ≤ MK, which gives

the bound in Theorem 5.1. But to reduce the size of C in practice, we do the following: initially,

all edges are candidate. After each exploration phase, we do the following: we mark all edges

as uncovered. For each candidate uncovered edge e, we compute the maximum matching π′

containing e (using estimated means). If this matching π′ has gap larger than 2.2Mε′p, then it is

not good hence we remove e from the set of candidate edges. Otherwise, we add π′ to C, and

moreover, we mark all of its edges as covered. We then look at the next uncovered candidate



5.B. Practical Considerations and Additional Experiments 111

Procedure Followeralgorithm(R,M) for the M-ETC-Elim algorithm with parameter c
Input: Ranking R, number of players M

1 for p = 1, 2, . . . do
2 Receive the value of size(C) // (comm.)

3 for i = 1, 2, . . . , size(C) do
4 Receive the arm assigned to this player in C[i] // (comm.)

5 end
6 Receive the communication arm of the leader and of this player
7 if size(C) = 1 // (enter exploitation phase)

8 then
9 pull for the rest of the game the arm assigned to this player in the unique

matching in C
10 end
11 for i = 1, 2, . . . , size(C) do
12 pull 2pc times the arm assigned to this player in the matching C[i]
13 end
14 for k = 1, 2, . . . ,K do
15 µ̂Rk ←− empirically estimated utility of arm k if arm k has been pulled in this

epoch, 0 otherwise
16 Truncate µ̂Rk to µ̃Rk using the pc+1

2 most significant bits
17 end
18 Send the values µ̃R1 , µ̃

R
2 , . . . , µ̃

R
K to the leader // (comm.)

19 end

edge, and continue similarly, until all candidate edges are covered. This guarantees that all the

candidate edges are explored, while the number of explored matchings could be much smaller

than the number of candidate edges, which results in faster exploration and a smaller regret in

practice.

To reduce the size of C even further, we do the following after each exploration phase: first,

find the maximum matching (using estimated means), add it to C, mark all its edges as covered,

and only then start looking for uncovered candidate edges as explained above.

5.B.2 Other Reward Distributions

In our model and analysis, we have assumed Xm
k (t) ∈ [0, 1] for simplicity (this is a standard

assumption in online learning), but it is immediate to generalize the algorithm and its analysis

to reward distributions bounded in any known interval via a linear transformation. Also, we

can adapt our algorithm and analysis to subgaussian distributions with mean lying in a known

interval. A random variable X is σ-subgaussian if for all λ ∈ R we have E[eλ(X−EX)] ≤
eσ

2λ2/2. This includes Gaussian distributions and distributions with bounded support. Suppose
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for simplicity that the means lie in [0, 1]. Then the algorithm need only change in two places:

first, when the followers are sending the estimated means to the leader, they must send 0 and 1 if

the empirically estimated mean is< 0 and> 1, respectively. Second, the definition of εp must be

changed to εp :=
√
σ2 log(2/δ)/2pc−1. The only change in the analysis is that instead of using

Hoeffding’s inequality which requires a bounded distribution, one has to use a concentration

inequality for sums of subgaussian distributions(see e.g., Wainwright, 2019, Proposition 2.5).

We executed the same algorithms as in Section 5.4 with the same reward matrices but with

Gaussian rewards with variance 0.05. The results are somewhat similar to the Bernoulli case and

can be found in Figure 5.2.

Figure 5.2: Numerical comparison of M-ETC-Elim, GoT and Selfish-UCB on reward matrices
U1 (left) and U2 (right) with Gaussian rewards and variance 0.05. The x-axis has logarithmic
scale in both plots. The y-axis has logarithmic scale in the right plot.

The reason we performed these Gaussian experiments is to have a more fair comparison

against GoT. Indeed, the numerical experiments of Bistritz and Leshem (2020) rely on the same

reward matrix U1 and Gaussian rewards.

5.C Omitted proofs

5.C.1 Regret Analysis in the Presence of a Unique Maximum Matching

In Theorem 5.3 below we provide a refined analysis of M-ETC-Elim with parameter c = 1 if

the maximum matching is unique, justifying the O
(
KM3

∆ log(T )
)

regret upper bound stated

in Theorem 5.1(b). Its proof, given below, follows essentially the same line as the finite-time

analysis given in Section 5.3, except for the last part. Recall that log(·) denotes the natural

logarithm and log2(·) denotes logarithm in base 2.

Theorem 5.3. If the maximum matching is unique, for any T > 0 the regret of the M-ETC-Elim
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algorithm with parameter c = 1 is upper bounded by

2 +MK log(e2K2T ) + 3M2K log2(K) log2

(
64M2 log(2M2KT 2)

∆2

)
+MK log2

2

(
64M2 log(2M2KT 2)

∆2

)
+ 4
√

2− 2
3− 2

√
2
M3K log2(K)

√
log(2M2KT 2) + 2

√
2− 1√
2− 1

∑
(m,k)∈[M ]×[K]

64M2 log(2M2KT 2)
∆(πm,k) .

Proof. The good event and the regret incurred during the initialization phase are the same as

in the finite-time analysis given in Section 5.3. Recall the definition of P , which is P (π) =
inf{p ∈ N : 8Mεp < ∆(π)}. When there is a unique optimal matching, if the good event

happens, the M-ETC-Elim algorithm will eventually enter the exploitation phase, so p̂T can be

much smaller than the crude upper bound given by Lemma 5.4. Specifically, introducing π′ as

the second maximum matching so that ∆(π′) = ∆, we have, on the event GT ,

p̂T ≤ P (π′) ≤ log2

(
64M2 log(2M2KT 2)

∆2

)
.

Plugging this bound in Lemma 5.3 yields that the regret incurred during communications is
bounded by

3M2K log2(K) log2

(
64M2 log(2M2KT 2)

∆2

)
+MK log2

2

(
64M2 log(2M2KT 2)

∆2

)
+2M3K log2K√

2− 1
√

log(2/δ) + 2
√

2
3− 2

√
2
M2K

√
log(2/δ).

Also, for c = 1 and ever matching π, the definition of εp in (5.1) gives

P (π) ≤ 1 + log2

(
32M2 log(2M2KT 2)

∆(π)2

)
.

In particular, ∆(π)2P (π) ≤ 64M2 log(2M2KT 2)
∆(π) . Using the same argument as in Section 5.3, the

regret incurred during the exploration phases is bounded by

2
√

2− 1√
2− 1

∑
(m,k)∈[M ]×[K]

64M2 log(2M2KT 2)
∆(m,k)

.

Summing up the regret bounds for all phases proves Theorem 5.3.

5.C.2 Minimax Regret Analysis

In Theorem 5.4 below we provide a minimax regret bound for M-ETC-Elim with parameter

c = 1, justifying the O
(
M

3
2
√
KT log(T )

)
regret upper bound stated in Theorem 5.1(c).
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Theorem 5.4. For all T , the regret of the M-ETC-Elim algorithm with parameter c = 1 is upper
bounded by

2 +MK log(e2K2T ) + 3M2K log2(K) log2 (T ) +MK log2
2 (T )

+ 4
√

2− 2
3− 2

√
2
M3K log2(K)

√
log(2M2KT 2) + 8√

2− 1
K

1
2M

3
2
√
T log(2M2KT 2).

Note that the above regret bound is independent of the suboptimality gaps.

Proof. The good event and the regret incurred during the initialization phase are the same as in

the finite-time analysis given in Section 5.3. Furthermore, using Lemma 5.3 stated therein and

since p̂T ≤ log2(T ), the regret incurred during the communication phases is bounded by

3M2K log2(K) log2 (T ) +MK log2
2 (T ) + 4

√
2− 2

3− 2
√

2
M3K log2(K)

√
log(2M2KT 2).

We next bound the exploration regret. Fix the edge (m, k), and let P̃m,k be the last epoch in

which this edge is explored. If this edge belongs to an optimal matching, i.e., if πm,k is optimal,

we instead define P̃m,k as the last epoch in which the pulled matching π̃m,kp associated with

(m, k) is suboptimal. In either case, the contribution of the edge (m, k) to the exploration regret

can be bounded by
∑P̃m,k

p=1 ∆̃m,k
p 2p.

Fix an epoch p ≤ P̃m,k. Recall that Cp contains at least one actual maximum matching,

which we denote by π?. Also, let π̃?p denote the maximum empirical matching right before the

start of epoch p. Since (m, k) is candidate in epoch p, we have

∆̃m,k
p = U∗ − Ũp−1(π?p) + Ũp−1(π?p)− Ũp−1(π̃m,kp ) + Ũp−1(π̃m,kp )− U(π̃m,kp )

≤ (U? − Ũp−1(π?)) + (Ũp−1(π̃?p)− Ũp−1(π̃m,kp ) + (Ũp−1(π̃m,kp )− U(π̃m,kp ))

≤ 2Mεp−1 + 4Mεp + 2Mεp−1

≤ 8Mεp−1 = 8M

√
log(2/δ)

2p ,

so, the contribution of the edge (m, k) to the exploration regret can further be bounded by

P̃m,k∑
p=1

∆̃m,k
p 2p ≤ 8M

√
log(2/δ)

P̃m,k∑
p=1

√
2p
 <

8
√

2M
√

log(2/δ)√
2− 1

√
2P̃

m,k

.

To bound the total exploration regret, we need to sum this over all edges (m, k).

Note that during each epoch p = 1, 2, . . . , P̃m,k, there are exactly 2p exploration rounds
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associated with the edge (m, k). Since the total number of rounds is T , we find that

∑
(m,k)∈[M ]×[K]

P̃m,k∑
p=1

2p ≤ T,

and in particular, ∑
(m,k)∈[M ]×[K]

2P̃m,k ≤ T,

hence by the Cauchy-Schwarz inequality,

∑
(m,k)∈[M ]×[K]

√
2P̃m,k =

∑
(m,k)∈[M ]×[K]

√
2P̃m,k ≤

√
MKT,

so the total exploration regret can be bounded by

8
√

2M
√

log(2/δ)√
2− 1

∑
(m,k)∈[M ]×[K]

√
2P̃

m,k

≤ 8
√

2M
√

log(2/δ)√
2− 1

√
MKT,

completing the proof of Theorem 5.4.

5.C.3 Proofs of Auxiliary Lemmas for Theorems 5.2 and 5.3

Proof of Lemma 5.2

We recall Hoeffding’s inequality.

Proposition 5.1 (Hoeffding’s inequality Hoeffding, 1963, Theorem 2). Let X1, . . . , Xn be in-

dependent random variables taking values in [0, 1]. Then for t ≥ 0 we have

P
(∣∣∣∣ 1n∑Xi − E

[ 1
n

∑
Xi

]∣∣∣∣ > t

)
< 2 exp(−2nt2).

Recall the definition of the good event

GT =
{

INIT(K, 1/KT ) is successful and ∀p ≤ p̂T , ∀π ∈ Cp+1, |Ũp(π)− U(π)| ≤ 2Mεp
}
.

and recall that εp :=
√

log(2/δ)/2pc+1 and δ = 1/M2KT 2. LetH be the event that INIT(K, 1/KT )
is successful for all players. Then,

P (GcT ) ≤ P (Hc) + P
(
H happens and ∃p ≤ p̂T , ∃π ∈M with candidate edges such that |Ũp(π)− U(π)| > 2Mεp

)
≤ 1
KT

+ P
(
H happens and ∃p ≤ log2(T ), ∃π ∈M with candidate edges such that|Ũp(π)− U(π)| > 2Mεp

)
,
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where we have used that p̂T ≤ log2(T ) deterministically.

Fix an epoch p and a candidate edge (m, k). We denote by µ̂mk (p) the estimated mean of

arm k for player m at the end of epoch p and by µ̃mk (p) the truncated estimated mean sent to the

leader by this player at the end of epoch p.

By Hoeffding’s inequality and since this estimated mean is based on at least 2pc pulls, we

have

P (|µ̂mk (p)− µmk | > εp) < δ.

The value µ̃mk (p) ∈ [0, 1] which is sent to the leader uses the (pc + 1)/2 most significant bits.

The truncation error is thus at most 2−(pc+1)/2 < εp, hence we have

P (|µ̃mk (p)− µmk | > 2εp) < δ.

Given the event H that the initialization is successful, the quantity Ũp(π) is a sum of M values

µ̃mk (p) for M different edges (m, k) ∈ [M ]× [K]. Hence, we have

P
(
H happens and ∃π ∈M with candidate edges such that |Ũp(π)− U(π)| > 2Mεp|

)
≤ P (∃ candidate edge (m, k) such that |µ̃mk (p)− µmk | > 2εp) ≤ KMδ.

Finally, a union bound on p yields

P (GcT ) ≤ 1
KT

+ log2(T )KMδ ≤ 1
MT

+ 1
MT

,

completing the proof of Lemma 5.2

Proof of Lemma 5.3

For each epoch p, the leader first communicates to each player the list of candidate match-

ings. There can be up to MK candidate matchings, and for each of them the leader commu-

nicates to the player the arm she has to pull (there is no need to communicate to her the whole

matching) which requires log2K bits, and there are a total of M players, so this takes at most

M2K log2(K) many rounds.6

At the end of the epoch, each player sends the leader the empirical estimates for the arms she
has pulled, which requires at most MK(1 + pc)/2 many rounds. As players use the best esti-
mated matching as communication arms for the communication phases, a single communication
round incurs regret at most 2 + 2Mεp−1, since the gap between the best estimated matching
of the previous phase and the best matching is at most 2Mεp−1 conditionally to GT (we define

6Strictly speaking, the leader also sends her communication arm and the size of the list she is sending, but there
are at most MK −M + 1 candidate matchings, as the best one is repeated M times. So, this communication still
takes at most M2K log2 K many rounds.
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ε0 :=
√

log(2/δ)
2 ≥ 1

2 ). The first term is for the two players colliding, while the term 2Mεp−1 is
due to the other players who are pulling the best estimated matching instead of the real best one.
With p̂T denoting the number of epochs before the (possible) start of the exploitation, the total
regret due to communication phases can be bounded by

Rc ≤
p̂T∑
p=1

(
2M2K log2(K) +MK(1 + pc)

)
(1 +Mεp−1)

≤ 3M2K log2(K)p̂T +MK(p̂T )c+1 +M2K

p̂T∑
p=1

(2M log2(K) + (1 + pc)) εp−1.

We now bound the sum as:

p̂T∑
p=1

(2M log2(K) + (1 + pc)) εp−1 = 2M log2(K)
√

log(2/δ)
p̂T−1∑
p=0

1
√

21+pc +
√

log(2/δ)
p̂T−1∑
p=0

1 + (p+ 1)c
√

21+pc

≤ 2M log2(K)
√

log(2/δ)
∞∑
n=1

1
√

2n
+
√

log(2/δ)
∞∑
n=1

n2c
√

2n

≤ 2M log2(K)
√

log(2/δ) 1√
2− 1

+
√

log(2/δ) 2c
√

2
(
√

2− 1)2
,

completing the proof of Lemma 5.3.

Proof of Lemma 5.4

The assumption T ≥ exp(2
cc

logc(1+ 1
2c ) ) gives log2(log T )1/c ≥ c

log(1+1/2c) . In particular, (log2 T )1/c ≥
c. We will also use the inequality

(x+ 1)c ≤ ec/xxc, (5.5)

which holds for all positive x, since (x+ 1)c/xc = (1 + 1/x)c ≤ exp(1/x)c = exp(c/x).

Using a crude upper bound on the number of epochs that can fit within T rounds, we get

p̂T ≤ 1 + (log2 T )1/c. As (log2 T )1/c ≥ c ≥ 1 we have p̂T ≤ 2(log2 T )1/c. Also (5.5) gives

(p̂T )c ≤ e log2 T .

Also, 2 log2(log(T )) ≥ 2cc ≥ 2c. It remains to show the first inequality of Lemma 5.4.

Straightforward calculations using the definition of εp in (5.1) give

P (π) ≤ 1 + L(π)1/c, where L(π) := log2

(
32M2 log(2M2KT 2)

∆(π)2

)
.

We claim that we have

P (π)c ≤
(

1 + 1
2c

)
L(π). (5.6)
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Indeed, since ∆(π) ≤ M , we have L(π)1/c > (log2 log T )1/c ≥ c
log(1+1/2c) and so (5.5)

with x = L(π)1/c gives (5.6). Hence,

∆(π)2P (π)c ≤ ∆(π)
(

32M2 log(2M2KT 2)
∆(π)2

)1+1/2c

≤
(

32M2 log(2M2KT 2)
∆(π)

)1+1/c

,

(5.7)

completing the proof of Lemma 5.4.

Proof of Lemma 5.5

For brevity we define, for this proof only, ∆ := ∆(πm,k), P := P (πm,k) and ∆p := ∆̃m,k
p .

First, ∆ > 8MεP by definition of P . Also, ∆p ≤ 8Mεp−1 for every p ≤ P − 1, otherwise the

edge (m, k) would have been eliminated before epoch p. It then holds

∆p ≤
εp−1
εP

∆ =
√

2P
c−(p−1)c∆. (5.8)

It comes from the convexity of x 7→ xc that (p+ 1)c + (p− 1)c − 2pc ≥ 0, and thus

P c + (p− 1)c − 2pc ≥ P c − (p+ 1)c ≥ P − (p+ 1).

It then follows

pc + P c − (p− 1)c

2 ≤ P c + p+ 1− P
2 .

Plugging this in (5.8) gives

2pc∆p ≤
2P c

√
2P−(p+1) ∆,

completing the proof of Lemma 5.5.



Chapter 6

Selfish Robustness and Equilibria in
Multi-Player Bandits

While the cooperative case where players maximize the collective reward (obediently fol-
lowing some fixed protocol) has been mostly considered, robustness to malicious players
is a crucial and challenging concern of multiplayer bandits. Existing approaches consider
only the case of adversarial jammers whose objective is to blindly minimize the collective
reward.

We shall consider instead the more natural class of selfish players whose incentives are to
maximize their individual rewards, potentially at the expense of the social welfare. We
provide the first algorithm robust to selfish players (a.k.a. Nash equilibrium) with a loga-
rithmic regret, when the arm performance is observed. When collisions are also observed,
Grim Trigger type of strategies enable some implicit communication-based algorithms and
we construct robust algorithms in two different settings: the homogeneous (with a regret
comparable to the centralized optimal one) and heterogeneous cases (for an adapted and
relevant notion of regret). We also provide impossibility results when only the reward is
observed or when arm means vary arbitrarily among players.
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In most of the multiplayer bandits literature, as well as in Chapters 4 and 5, a crucial (yet

sometimes only implicitly stated) assumption is that all players follow cautiously and metic-

ulously some designed protocols and that none of them tries to free-ride the others by acting

greedily, selfishly or maliciously. The concern of designing multiplayer bandit algorithms ro-

bust to such players has been raised (Attar et al., 2012), but only addressed under the quite

restrictive assumption of adversarial players called jammers. Those try to perturb as much as

possible the cooperative players (Wang et al., 2015; Sawant et al., 2018; Sawant et al., 2019),

even if this is extremely costly to them as well. Because of this specific objective, they end up

using tailored strategies such as only attacking the top channels.

We focus instead on the construction of algorithms with “good” regret guarantees even if one

(or actually more) selfish player does not follow the common protocol but acts strategically in

order to manipulate the other players in the sole purpose of increasing her own payoff – maybe

at the cost of other players. This concept appeared quite early in the cognitive radio literature

(Attar et al., 2012), yet it is still not understood as robustness to selfish player is intrinsically

different (and even non-compatible) with robustness to jammers, as shown in Section 6.1.1. In

terms of game theory, we aim at constructing (ε-Nash) equilibria in this repeated game with

partial observations.

This chapter is organized as follows. Section 6.1 introduces notions and concepts of selfishness-
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robust multiplayer bandits and showcases reasons for the design of robust algorithms. Besides its

state of the art regret guarantees when collisions are not directly observed, Selfish-Robust

MMAB, presented in Section 6.2, is also robust to selfish players. In the more complex settings

where only the reward is observed or the arm means vary among players, Section 6.3 shows that

no algorithm can guarantee both a sublinear regret and selfish-robustness. The latter case is due

to a more general result for random assignments. Instead of comparing the cumulated reward

with the best collective assignment in the heterogeneous case, it is then necessary to compare it

with a good and appropriate suboptimal assignment, leading to the new notion of RSD-regret.

When collisions are always observed, Section 6.4 proposes selfish-robust communication

protocols. Thanks to this, an adaptation of the work of Boursier and Perchet (2019) is possible

to provide a robust algorithm with a collective regret almost scaling as in the centralized case.

In the heterogeneous case, this communication – along with other new deviation control and

punishment protocols – is also used to provide a robust algorithm with a logarithmic RSD-regret.

Our contributions are thus diverse: on top of introducing notions of selfish-robustness, we

provide robust algorithms with state of the art regret bounds (w.r.t. non-robust algorithms) in

several settings. This is especially surprising when collisions are observed, since it leads to a

near centralized regret. Moreover, we show that such algorithms can not be designed in harder

settings. This leads to the new, adapted notion of RSD-regret in the heterogeneous case with

selfish players and we also provide a good algorithm in this case. These results of robustness

are even more intricate knowing they hold against any possible selfish strategy, in contrast to the

known results for jammer robust algorithms.

6.1 Problem statement

In this section, we introduce concepts and notions of robustness to selfish players (or equilibria

concepts) in the problem of multiplayer bandits introduced in Section 3.3.1.

6.1.1 Considering selfish players

As mentioned above, the literature focused on adversarial malicious players, a.k.a. jammers,

while considering selfish players instead of adversarial ones is as (if not more) crucial. These

two concepts of malicious players are fundamentally different. Jamming-robust algorithms must

stop pulling the best arm if it is being jammed. Against this algorithm, a selfish player could

therefore pose as a jammer, always pull the best arm and be left alone on it most of the time. On

the contrary, an algorithm robust to selfish players has to actually pull this best arm if jammed
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by some player in order to “punish” her so that she does not benefit from deviating from the

collective strategy.

We first introduce some game theoretic concepts before defining notions of robustness. Each

player j follows an individual strategy (or algorithm) sj ∈ S which determines her action at each

round given her past observations. As in Section 2.1, we denote by (s1, . . . , sM ) = s ∈ SM

the strategy profile of all players and by (s′, s−js−js−j) the strategy profile given by s except for the

j-th player whose strategy is replaced by s′. Let Rewj
T (sss) be the cumulative reward of player

j when players play the profile sss. As usual in game theory, we consider a single selfish player

– even if the algorithms we propose are robust to several selfish players assuming M is known

beforehand (its initial estimation can easily be tricked by several players).

Definition 6.1. A strategy profile sss ∈ SM is an ε-Nash equilibrium if for all s′ ∈ S and
j ∈ [M ]:

E[RewjT (s′, s−js−js−j)] ≤ E[RewjT (sss)] + ε.

This simply states that a selfish player wins at most ε by deviating from sj . We now introduce

a more restrictive property of stability that involves two points: if a selfish player still were to

deviate, this would only incur a small loss to other players. Moreover, if the selfish player wants

to incur some considerable loss to the collective players (e.g., she is adversarial), then she also

has to incur a comparable loss to herself. Obviously, an ε-Nash equilibrium is (0, ε)-stable.

Definition 6.2. A strategy profile s ∈ SM is (α, ε)-stable if for all s′ ∈ S, l ∈ R+ and i, j ∈
[M ]:

E[RewiT (s′, s−js−js−j)] ≤ E[RewiT (s)]− l =⇒ E[RewjT (s′, s−js−js−j)] ≤ E[RewjT (sss)] + ε− αl.

6.1.2 Limits of existing algorithms.

This section explains why existing algorithms are not robust to selfish players, i.e., are not even

o (T )-Nash equilibria. Besides justifying the design of new appropriate algorithms, this provides

some first insights on the way to achieve robustness.

Communication between players. Many recent algorithms rely on communication protocols

between players to gather their statistics. Facing an algorithm of this kind, a selfish player

would communicate fake statistics to the other players in order to keep the best arm for herself.

In case of collision, the colliding player(s) remains unidentified, so a selfish player could mod-

ify incognito the statistics sent by other players, making them untrustworthy. A way to make

such protocols robust to malicious players is proposed in Section 6.4. Algorithms relying on

communication can then be adapted in the Full Sensing setting.
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Necessity of fairness An algorithm is fair if all players asymptotically earn the same reward

a posteriori (or ex post) and not only in expectation (ex ante). As already noticed (Attar et

al., 2012), fairness seems to be a significant criterion in the design of selfish-robust algorithms.

Indeed, without fairness, a selfish player tries to always be the one with the largest reward .

For example, against algorithms attributing an arm among the top-M ones to each player

(Rosenski et al., 2016; Besson and Kaufmann, 2018a; Boursier and Perchet, 2019), a selfish

player could easily rig the attribution to end with the best arm, largely increasing her individual

reward. Other algorithms work on the basis of first come-first served (Boursier and Perchet,

2019). Players first explore and when they detect an arm as both optimal and available, they pull

it forever. Such an algorithm is unfair and a selfish player could play more aggressively to end

her exploration before the others and to commit on an arm, maybe at the risk of committing on a

suboptimal one (but with high probability on the best arm). The risk taken by the early commit

is small compared to the benefit of being the first committing player. As a consequence, these

algorithms are not o (T )-Nash equilibria.

6.2 Statistic sensing setting

In the statistic sensing setting whereXk and rk are observed at each round, the Selfish-Robust

MMAB algorithm provides satisfying theoretical guarantees.

6.2.1 Description of Selfish-Robust MMAB

Algorithm 6.1: Selfish-Robust MMAB

Input: T, γ1 := 13
14 , γ2 := 16

15
1 β ← 39; M̂, tm ← EstimateM (β, T )
2 Pull k ∼ U(K) until round γ2

γ1
tm // first waiting room

3 j ← GetRank (M̂, tm, β, T )
4 Pull j until round

(
γ2

γ2
1β

2K2 + γ2
2
γ2

1

)
tm // second waiting room

5 Run Alternate Exploration (M̂, j) until T

A global description of Selfish-Robust MMAB is given by Algorithm 6.1. The pseu-

docodes of EstimateM, GetRank and Alternate Exploration are given by Proto-

cols 6.1, 6.2 and Algorithm 6.2 in Section 6.A for completeness.

EstimateM and GetRank respectively estimate the number of players M and attribute

ranks in [M ] among the players. They form the initialization phase, while Alternate

Exploration optimally balances between exploration and exploitation.
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Initialization phase

Let us first introduce the following quantities:

• T jk (t) = {t′ ≤ t | πj(t′) = k and Xk(t′) > 0} are rounds when player j observed ηk.

• Cjk(t) = {t′ ∈ T jk (t) | ηk(t′) = 1} are rounds when player j observed a collision.

• p̂jk(t) = #Cj
k
(t)

#T j
k

(t)
is the empirical probability to collide on the arm k for player j.

During the initialization, the players estimateM with large probability as given by Lemma 6.1

in Section 6.A.1. Players first pull uniformly at random in [K]. As soon as #T jk ≥ n for all

k ∈ [K] and some fixed n, player j ends the EstimateM protocol and estimates M̂ as the

closest integer to 1 + log(1 −
∑

k
p̂j
k
(tM )

K )/ log(1 − 1
K ). This estimation procedure is the same

as the one of Rosenski et al. (2016), except for the following features:

i) Collisions indicators are not always observed, as we consider statistic sensing here. For

this reason, the number of observations of ηk is random. The stopping criterion mink #T jk (t) ≥
n ensures that players don’t need to know µ(K) beforehand, but they also do not end EstimateM

simultaneously. This is why a waiting room is needed, during which a player continues to pull

uniformly at random to ensure that all players are still pulling uniformly at random if some

player is still estimating M .

ii) The collision probability is not averaged over all arms, but estimated for each arm indi-

vidually, then averaged. This is necessary for robustness as explained in Section 6.A, despite

making the estimation longer.

Attribute ranks. After this first procedure, players then proceed to a Musical Chairs (Rosen-

ski et al., 2016) phase to attribute ranks among them as given by Lemma 6.2 in Section 6.A.1.

Players sample uniformly at random in [M ] and stop on an arm j as soon as they observe a

positive reward. The player’s rank is then j and only attributed to her. Here again, a waiting

room is required to ensure that all players are either pulling uniformly at random or only pulling

a specific arm (corresponding to their rank) during this procedure. During this second waiting

room, a player thus pulls the arm corresponding to her rank.

Exploration/exploitation

After the initialization, players know M and have different ranks. They enter the second phase,

where they follow Alternate Exploration, inspired by Proutiere and Wang (2019). Player

j sequentially pulls arms inMj(t), which is the ordered list of her M best empirical arms, un-

less she has to pull her M -th best empirical arm. In that case, she instead chooses at random
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between actually pulling it or pulling an arm to explore (any arm not inMj(t) with an upper

confidence bound larger than the M -th best empirical mean, if there is any).

Since players proceed in a shifted fashion, they never collide whenMj(t) are the same for

all j. Having differentMj(t) happens in expectation a constant (in T ) amount of times, so that

the contribution of collisions to the regret is negligible.

6.2.2 Theoretical results

This section provides theoretical guarantees of Selfish-Robust MMAB. Theorem 6.1 first

presents guarantees in terms of regret. Its proof is given in Section 6.A.2.

Theorem 6.1. The collective regret of Selfish-Robust MMAB is bounded as

R(T ) ≤M
∑
k>M

µ(M) − µ(k)

kl(µ(k), µ(M))
log(T ) +O

(
MK3

µ(K)
log(T )

)
.

It can also be noted from Lemma 6.3 in Section 6.A.2 that the regret due to Alternate

Exploration is M
∑
k>M

µ(M)−µ(k)
kl(µ(k),µ(M))

log(T ) + o (log(T )), which is known to be optimal

for algorithms using no collision information (Besson and Kaufmann, 2019). Alternate

Exploration thus gives an optimal algorithm under this constraint, if M is already known

and ranks already attributed (as the O(·) term in the regret is the consequence of their estima-

tion).

On top of good regret guarantees, Selfish-Robust MMAB is robust to selfish behaviors

as highlighted by Theorem 6.2 (whose proof is deterred to Section 6.A.2).

Theorem 6.2. There exist α and ε satisfying

ε =
∑
k>M

µ(M)−µ(k)
kl(µ(k),µ(M))

log(T ) +O
(
µ(1)
µ(K)

K3 log(T )
)
, α = µ(M)

µ(1)

such that playing Selfish-Robust MMAB is an ε-Nash equilibrium and is (α, ε)-stable

These points are proved for an omniscient selfish player (knowing all the parameters before-

hand). This is a very strong assumption and a real player would not be able to win as much by

deviating from the collective strategy. Intuitively, a selfish player would need to explore sub-

optimal arms as given by the known individual lower bounds. However, a selfish player can

actually decide to not explore but deduce the exploration of other players from collisions.

6.3 On harder problems

Following the positive results of the previous section (existence of robust algorithms) in the

homogeneous case with statistical sensing, we now provide in this section impossibility results
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for both no sensing and heterogeneous cases. By showing its limitations, it also suggests a

proper way to consider the heterogeneous problem in the presence of selfish players.

6.3.1 Hardness of no sensing setting

Theorem 6.3. In the no sensing setting, there is no individual strategy s such that for all problem

parameters (M,µµµ), if all players follow the strategy s, R(T ) = o (T ) and (s, s, . . . , s) is an

ε(T )-Nash equilibrium with ε(T ) = o (T ).

Proof. Consider a strategy sss verifying the first property and a problem instance (M,µµµ) where

the selfish player only pulls the best arm. Letµ′µ′µ′ be the mean vectorµµµwhere µ(1) is replaced by 0.

Then, because of the considered observation model, the cooperative players can not distinguish

the two worlds (M,µµµ) and (M − 1,µ′µ′µ′). Having a sublinear regret in the second world implies

o (T ) pulls on the arm 1 for the cooperative players. So in the first world, the selfish player

will have a reward in µ(1)T − o (T ), which is thus a linear improvement in comparison with

following sss if µ(1) > µ(2).

Theorem 6.3 is proved for a selfish players who knows the means µµµ beforehand, as the

notion of Nash equilibrium prevents against all possible strategies, which includes committing

to an arm for the whole game. The knowledge of µµµ is actually not needed, as a similar result

holds for a selfish player committing to an arm chosen at random when the best arm is K times

better than the second one. The question of existence of robust algorithms remains yet open if

we restrict selfish strategies to more reasonable algorithms.

6.3.2 Heterogeneous model

We consider the full sensing heterogeneous model described in Section 3.3.1 in this section.

A first impossibility result

Theorem 6.4. If the regret is compared with the optimal assignment, there is no strategy sss such

that, for all problem parameters µµµ, R(T ) = o (T ) and s is an ε(T )-Nash equilibrium with

ε(T ) = o (T ).

Proof. Assume sss satisfies these properties and consider a problem instance µµµ such that the self-

ish player unique best arm j1 has mean µj(1) = 1/2 and the difference between the optimal

assignment utility and the utility of the best one assigning arm j1 to j is 1/3.

Such an instance is of course possible. Consider a selfish player j playing exactly the strategy

sj but as if her reward vector µjµjµj was actually µ′jµ′jµ′j where µj(1) is replaced by 1 and all other µjk by
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0, i.e., she fakes a second world µ′µ′µ′ in which the optimal assignment gives her the arm j1. In this

case, the sublinear regret assumption of sss implies that player j pulls j1 a time T − o (T ), while

in the true world, she would have pulled it o (T ) times. She thus earns an improvement at least

(µj(1) − µ
j
(2))T − o (T ) w.r.t. playing sj , contradicting the Nash equilibrium assumption.

Random assignments

We now take a step back and describe “relevant” allocation procedures for the heterogeneous

case, when the vector of means µjµjµj is already known by player j.

An assignment is symmetric if, when µjµjµj = µiµiµi, players i and j get the same expected utility,

i.e., no player is a priori favored1. It is strategyproof if being truthful is a dominant strategy for

each player and Pareto optimal if no player can improve her own reward without decreasing the

reward of any other player. Theorem 6.4 is a consequence of Theorem 6.5 below.

Theorem 6.5 (Zhou 1990). ForM ≥ 3, there is no symmetric, Pareto optimal and strategyproof

random assignment algorithm.

Liu et al. (2020b) circumvent this assignment problem with player-preferences for arms.

Instead of assigning a player to a contested arm, the latter decides who gets to pull it, following

its preferences.

In the case of random assignment, Abdulkadiroğlu and Sönmez (1998) proposed the Ran-

dom Serial Dictatorship (RSD) algorithm, which is symmetric and strategyproof. The algorithm

is rather simple: pick uniformly at random an ordering of the M players. Following this order,

the first player picks her preferred arm, the second one her preferred remaining arm and so on.

Svensson (1999) justified the choice of RSD for symmetric strategyproof assignment algorithms.

Adamczyk et al. (2014) recently studied efficiency ratios of such assignments: if Umax denotes

the expected social welfare of the optimal assignment, the expected social welfare of RSD is

greater than U2
max/eM while no strategyproof algorithm can guarantee more than U2

max/M . As

a consequence, RSD is optimal up to a (multiplicative) constant and will serve as a benchmark

in the remaining.
Instead of defining the regret in comparison with the optimal assignment as done in the

classical heterogeneous multiplayer bandits, we are indeed going to define it with respect to
RSD to incorporate strategy-proofness constraints. Formally, the RSD-regret is defined as:

RRSD(T ) := TEσ∼U(SM )

[ M∑
k=1

µ
σ(k)
πσ(k)

]
−

T∑
t=1

M∑
j=1

E[rjπj(t)(t)],

1The concept of fairness introduced above is stronger, as no player should be a posteriori favored.
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with SM the set of permutations over [M ] and πσ(k) the arm attributed by RSD to player σ(k)
when the order of dictators is (σ(1), . . . , σ(M)). Mathematically, πσ is defined by:

πσ(1) = arg max
l∈[M ]

µ
σ(1)
l and πσ(k + 1) = arg max

l∈[M ]
l 6∈{πσ(l′) | l′≤k}

µ
σ(k+1)
l .

6.4 Full sensing setting

This section focuses on the full sensing setting, where both ηk(t) andXk(t) are always observed

as we proved impossibility results for more complex settings. As seen in the previous chapters,

near optimal algorithms leverage the observation of collisions to enable some communication

between players by forcing them. Some of these communication protocols can be modified to

allow robust communication. This section is structured as follows. First, insights on two new

protocols are given for robust communications. Second, a robust adaptation of SIC-MMAB is

given, based on these two protocols. Third, they can also be used to reach a logarithmic RSD-

regret in the heterogeneous case.

6.4.1 Making communication robust

To have robust communication, two new complementary protocols are needed. The first one

allows to send messages between players and to detect when they have been corrupted by a

malicious player. If this has been the case, the players then use the second protocol to proceed to

a collective punishment, which forces every player to suffer a considerable loss for the remaining

of the game. Such punitive strategies are called “Grim Trigger” in game theory and are used to

deter defection in repeated games (Friedman, 1971; Axelrod and Hamilton, 1981; Fudenberg

and Maskin, 2009).

Back and forth messaging

Communication protocols in the collision sensing setting usually rely on the fact that collision

indicators can be seen as bits sent from a player to another one as follows. If player i sends

a binary message mi→j = (1, 0, . . . , 0, 1) to player j during a predefined time window, she

proceeds to the sequence of pulls (j, i, . . . , i, j), meaning she purposely collides with j to send

a 1 bit (reciprocally, not colliding corresponds to a 0 bit). A malicious player trying to corrupt

a message can only create new collisions, i.e., replace zeros by ones. The key point is that the

inverse operation is not possible.
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If player j receives the (potentially corrupted) message m̂i→j , she repeats it to player i.

This second message can also be corrupted by the malicious player and player i receives m̃i→j .

However, since the only possible operation is to replace zeros by ones, there is no way to trans-

form back m̂i→j to mi→j if the first message had been corrupted. The player i then just has to

compare m̃i→j with mi→j to know whether or not at least one of the two messages has been

corrupted. We call this protocol back and forth communication.

In the following, other malicious communications are possible. Besides sending false in-

formation (which is managed differently), a malicious player can send different statistics to the

others, while they need to have the exact same statistics. To overcome this issue, players will

send to each other statistics sent to them by every player. If two players have received different

statistics by the same player, at least one of them automatically realizes it.

Collective punishment

The back and forth protocol detects if a malicious player interfered in a communication and,

in that case, a collective punishment is triggered (to deter defection). The malicious player

is yet unidentified and can not be specifically targeted. The punishment thus guarantees that

the average reward earned by each player is smaller than the average reward of the algorithm,

µM := 1
M

∑M
k=1 µ(k).

A naive way to punish is to pull all arms uniformly at random. The selfish player then gets

the reward (1 − 1/K)M−1µ(1) by pulling the best arm, which can be larger than µM . A good

punishment should therefore pull arms more often the better they are.

During the punishment, players pull each arm k with probability 1 −
(
γ

∑M

l=1 µ̂
j
(l)(t)

Mµ̂j
k
(t)

) 1
M−1

at least, where γ = (1− 1/K)M−1. Such a strategy is possible as shown by Lemma 6.13 in

Section 6.B. Assuming the arms are correctly estimated, i.e., the expected reward a selfish player

gets by pulling k is approximately µk(1− pk)M−1, with pk = max
(
1−

(
γ µMµk

) 1
M−1 , 0

)
.

If pk = 0, then µk is smaller than γµM by definition; otherwise, it necessarily holds

that µk(1 − pk)M−1 = γµM . As a consequence, in both cases, the selfish player earns at

most γµM , which involves a relative positive decrease of 1 − γ in reward w.r.t. following the

cooperative strategy. More details on this protocol are given by Lemma 6.21 in Section 6.C.3.

6.4.2 Homogeneous case: SIC-GT

In the homogeneous case, these two protocols can be incorporated in the SIC-MMAB algorithm

of Chapter 4 to provide SIC-GT, which is robust to selfish behaviors and still ensures a regret

comparable to the centralized lower bound.
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The communication protocol of SIC-MMAB was improved by choosing a leader and com-

municating all the information only to this leader. A malicious player would do anything to be

the leader. SIC-GT avoids such a behavior by choosing two leaders who either agree or trigger

the punishment. More generally with n + 1 leaders, this protocol is robust to n selfish players.

The detailed algorithm is given by Algorithm 6.3 in Section 6.C.1.

Initialization. The original initialization phase of SIC-MMAB has a small regret term, but it

is not robust. During the initialization, the players here pull uniformly at random to estimate

M as in Selfish-Robust MMAB and then attribute ranks the same way. The players with

ranks 1 and 2 are then leaders. Since the collision indicator is always observed here, this esti-

mation can be done in an easier and better way. The observation of ηk also enables players to

remain synchronized after this phase as its length does not depend on unknown parameters and

is deterministic.

Exploration and Communication. Players alternate between exploration and communication

once the initialization is over. During the p-th exploration phase, each arm still requiring explo-

ration is pulled 2p times by every player in a collisionless fashion. Players then communicate

to each leader their empirical means in binary after every exploration phase, using the back and

forth trick explained in Section 6.4.1. Leaders then check that their information match. If some

undesired behavior is detected, a collective punishment is triggered.

Otherwise, the leaders determine the sets of optimal/suboptimal arms and send them to ev-

eryone. To prevent the selfish player from sending fake statistics, the leaders gather the empirical

means of all players, except the extreme ones (largest and smallest) for every arm. If the selfish

player sent outliers, they are thus cut out from the collective estimator, which is thus the av-

erage of M − 2 individual estimates. This estimator can be biased by the selfish player, but a

concentration bound given by Lemma 6.17 in Section 6.C.2 still holds.

Exploitation. As soon as an arm is detected as optimal, it is pulled until the end. To en-

sure fairness of SIC-GT, players will actually rotate over all the optimal arms so that none of

them is favored. This point is thoroughly described in Section 6.C.1. Theorem 6.6, proved in

Section 6.C, gives theoretical results for SIC-GT.

Theorem 6.6. Define α = 1−(1−1/K)M−1

2 and assume M ≥ 3.

1. The collective regret of SIC-GT is bounded as

R(T ) = O
( ∑
k>M

log(T )
µ(M) − µ(k)

+MK2 log(T ) +M2K log2
( log(T )

(µ(M) − µ(M+1))2

))
.
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2. There exists ε satisfying

ε = O
( ∑
k>M

log(T )
µ(M) − µk

+K2 log(T ) +MK log2
( log(T )

(µ(M) − µ(M+1))2

)
+ K log(T )

α2µ(K)

)
such that playing SIC-GT is an ε-Nash equilibrium and is (α, ε)-stable.

6.4.3 Semi-heterogeneous case: RSD-GT

The punishment strategies described above can not be extended to the heterogeneous case, as

the relevant probability of choosing each arm would depend on the preferences of the malicious

player which are unknown (even her identity might not be discovered). Moreover, as already

explained in the homogeneous case, pulling each arm uniformly at random is not an appropriate

punishment strategy2. We therefore consider the δ-heterogeneous setting, which allows pun-

ishments for small values of δ as given by Lemma 6.24 in Section 6.D.3. The heterogeneous

model was justified by the fact that transmission quality depends on individual factors such as

localization. The δ-heterogeneous assumption relies on the idea that such individual factors are

of a different order of magnitude than global factors (as the availability of a channel). As a

consequence, even if arm means differ from player to player, these variations remain relatively

small.

Definition 6.3. The setting is δ-heterogeneous if there exists {µk; k ∈ [K]} such that for all j

and k, µjk ∈ [(1− δ)µk, (1 + δ)µk].

In the semi-heterogeneous full sensing setting, RSD-GT provides a robust, logarithmic RSD-

regret algorithm. Its complete description is given by Algorithm 6.4 in Section 6.D.1.

Algorithm description

RSD-GT starts with the exact same initialization as SIC-GT to estimate M and attribute ranks

among the players. The time is then divided into superblocks which are divided into M blocks.

During the j-th block of a superblock, the dictators ordering3 is (j, . . . ,M, 1, . . . , j− 1). More-

over, only the j-th player can send messages during this block.

Exploration. The exploring players pull sequentially all the arms. Once player j knows her

M best arms and their ordering, she waits for a block j to initiate communication.

2Unless in the specific case where µj(1)(1− 1/K)M−1 < 1
M

∑M

k=1 µ
j
(k).

3The ordering is actually (σ(j), . . . , σ(j − 1)) where σ(j) is the player with rank j after the initialization. For
sake of clarity, this consideration is omitted here.
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Communication. Once a player starts a communication block, she proceeds in three succes-

sive steps as follows:

1. she first collides with all players to signal the beginning of a communication block. The

other players then enter a listening state, ready to receive messages.

2. She then sends to every player her ordered list of M best arms. Each player then repeats

this list to detect the potential intervention of a malicious player.

3. Finally, players who detected the intervention of a malicious player signal to everyone the

beginning of a collective punishment.

After a communication block j, every one knows the preferences order of player j, who is now

in her exploitation phase, unless a punishment protocol has been started.

Exploitation. While exploiting, player j knows the preferences of all other exploiting players.

Thanks to this, she can easily compute the arms attributed by the RSD algorithm between the

exploiting players, given the dictators ordering of the block.

Moreover, as soon as she collides in the beginning of a block while not intended (by her),

this means an exploring player is starting a communication block. The exploiting player then

starts listening to the arm preferences of the communicating player.

Theoretical guarantees

Here are some insights to understand how RSD-GT reaches the utility of the RSD algorithm,

which are rigorously detailed by Lemma 6.25 in Section 6.D.3. With no malicious player, the

players ranks given by the initialization provide a random permutation σ ∈ SM of the players

and always considering the dictators ordering (1, . . . ,M) would lead to the expected reward of

the RSD algorithm. However, a malicious player can easily rig the initialization to end with

rank 1. In that case, she largely improves her individual reward w.r.t. following the cooperative

strategy.

To avoid such a behavior, the dictators ordering should rotate over all permutations of SM ,

so that the rank of the player has no influence. However, this leads to an undesirable com-

binatorial M ! dependency of the regret. RSD-GT instead rotates over the dictators ordering

(j, . . . ,M, 1, . . . , j − 1) for all j ∈ [M ]. If we note σ0 the M -cycle (1 . . .M), the considered

permutations during a superblock are of the form σ ◦ σ−m0 for m ∈ [M ]. The malicious player

j can only influence the distribution of σ−1(j): assume w.l.o.g. that σ(1) = j. The permu-

tation σ given by the initialization then follows the uniform distribution over Sj→1
M = {σ ∈
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SM | σ(1) = j}. But then, for m ∈ [M ], σ ◦ σ−m0 has a uniform distribution over Sj→1+m
M .

In average over a superblock, the induced permutation still has a uniform distribution over SM .

So the malicious player has no interest in choosing a particular rank during the initialization,

making the algorithm robust.

Thanks to this remark and robust communication protocols, RSD-GT possesses theoretical

guarantees given by Theorem 6.7 (whose proof is deterred to Section 6.D).

Theorem 6.7. Consider the δ-heterogeneous setting and define r = 1−( 1+δ
1−δ )

2(1−1/K)M−1

2 and

∆ = min
(j,k)∈[M ]2

µj(k) − µ
j
(k+1).

1. The RSD-regret of RSD-GT is bounded as: RRSD(T ) = O
(
MK∆−2 log(T )+MK2 log(T )

)
.

2. If r > 0, there exist ε and α satisfying

• ε = O
(
K log(T )

∆2 +K2 log(T ) + K log(T )
(1−δ)r2µ(K)

)
,

• α = min
(
r
(

1+δ
1−δ

)3 √log(T )−4M√
log(T )+4M

, ∆
(1+δ)µ(1)

,
(1−δ)µ(M)
(1+δ)µ(1)

)
such that playing RSD-GT is an ε-Nash equilibrium and is (α, ε)-stable.



Appendix

6.A Missing elements for Selfish-Robust MMAB

This section provides a complete description of Selfish-Robust MMAB and the proofs of

Theorems 6.1 and 6.2.

6.A.1 Thorough description of Selfish-Robust MMAB

In addition to Section 6.2, the pseudocodes of EstimateM, GetRank and Alternate

Exploration are given here. The following Protocol 6.1 describes the estimation ofM using

the notations introduced in Section 5.

Protocol 6.1: EstimateM
Input: β, T

1 tm ← 0
2 while mink #T jk (t) < β2K2 log(T ) do
3 Pull k ∼ U(K); Update #T jk (t) and #Cjk(t) ; tm ← tm + 1
4 end

5 M̂ ← 1 + round
( log(1− 1

K

∑
k
p̂j
k
(tM ))

log(1− 1
K )

)
// round(x) = closest integer to x

6 return M̂, tm

Since the duration tjm of EstimateM for player j is random and differs between players,

each player continues sampling uniformly at random until γ2
γ1
tjm, with γ1 = 13

14 and γ2 = 16
15 .

Thanks to this additional waiting room, Lemma 6.1 below guarantees that all players are sam-

pling uniformly at random until at least tjm for each j.

The estimation of M here tightly estimates the probability to collide individually for each

arm. This restriction provides an additional M factor in the length of this phase in comparison

with (Rosenski et al., 2016), where the probability to collide is globally estimated. This is how-

ever required because of the Statistic Sensing, but if ηk was always observed, then the protocol

from Rosenski et al. (2016) would be robust.

134
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Indeed, if we directly estimated the global probability to collide, the selfish player could pull

only the best arm. The number of observations of ηk is larger on this arm, and the estimated

probability to collide would thus be positively biased because of the selfish player.

Afterwards, ranks in [M ] are attributed to players by sampling uniformly at random in [M ]
until observing no collision, as described in Protocol 6.2. For the same reason, a waiting room

is added to guarantee that all players end this protocol with different ranks.

Protocol 6.2: GetRank
Input: M̂, tjm, β, T

1 n← β2K2 log(T ) and j ← −1
2 for tjm log(T )/(γ1n) rounds do
3 if j = −1 then
4 Pull k ∼ U(M̂); if rk(t) > 0 then j ← k // no collision

5 else Pull j
6 end
7 return j

The following quantities are used to describe Alternate Exploration in Algorithm 6.2:

• Mj(t) =
(
lj1(t), . . . , ljM (t)

)
is the list of the empirical M best arms for player j at

round t. It is updated only each M rounds and ordered according to the index of the arms,

i.e., lj1(t) < . . . < ljM (t).

• m̂j(t) is the empirical M -th best arm for player j at round t.

• bjk(t) = sup{q ≥ 0 | N j
k(t)kl(µ̂jk(t), q) ≤ f(t)} is the kl-UCB index of the arm k for

player j at round t, where f(t) = log(t) + 4 log(log(t)), N j
k(t) is the number of times

player j pulled k and µ̂jk is the empirical mean.

6.A.2 Proofs of Section 6.2

Let us define αk := P(Xk(t) > 0) ≥ µk, γ1 = 13
14 and γ2 = 16

15 .

Regret analysis

This section aims at proving Theorem 6.1. This proof is divided in several auxiliary lemmas

given below. First, the regret can be decomposed as follows:

R(T ) = E[Rinit +Rexplo], (6.1)
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Algorithm 6.2: Alternate Exploration

Input: M , j
1 if t = 0 (mod M) then Update µ̂j(t), bj(t), m̂j(t) andMj(t) = (l1, . . . , lM )
2 π ← t+ j (mod M) + 1
3 if lπ 6= m̂j(t) then Pull lπ // exploit the M − 1 best empirical arms

4 else
5 Bj(t) = {k 6∈ Mj(t) | bjk(t) ≥ µ̂

j
m̂j(t)(t)} // arms to explore

6 if Bj(t) = ∅ then Pull lπ

7 else Pull

{
lπ with proba 1/2
k chosen uniformly at random in Bj(t) otherwise // explore

8 end

where

Rinit = T0

M∑
k=1

µ(k) −
T0∑
t=1

M∑
j=1

µπj(t)(1− ηj(t)) with T0 =
(

γ2
γ2

1β
2K2 + γ2

2
γ2

1

)
max
j
tjm,

Rexplo = (T − T0)
M∑
k=1

µ(k) −
T∑

t=T0+1

M∑
j=1

µπj(t)(1− ηj(t)).

Lemma 6.1 first gives guarantees on the EstimateM protocol. Its proof is given in Sec-

tion 6.A.2.

Lemma 6.1. If M − 1 players run EstimateM with β ≥ 39, followed by a waiting room

until γ2
γ1
tjm, then regardless of the strategy of the remaining player, with probability larger

than 1− 6KM
T , for any player:

M̂ j = M and
tjmα(K)
K

∈ [γ1n, γ2n],

where n = β2K2 log(T ).

When M̂ j = M and tjmα(K)
K ∈ [γ1n, γ2n] for all cooperative players j, we say that the

estimation phase is successful.

Lemma 6.2. Conditioned on the success of the estimation phase, with probability 1 − M
T , all

the cooperative players end GetRank with different ranks j ∈ [M ], regardless of the behavior

of other players.

The proof of Lemma 6.2 is given in Section 6.A.2. If the estimation is successful and all

players end GetRank with different ranks j ∈ [M ], the initialization is said successful.



6.A. Missing elements for Selfish-Robust MMAB 137

Using the same arguments as Proutiere and Wang (2019), the collective regret of the Alternate

Exploration phase can be shown to be M
∑
k>M

µ(M)−µ(k)
kl(µ(M),µ(k))

log(T ) + o (log(T )). This re-

sult is given by Lemma 6.3, whose proof is given in Section 6.A.2.

Lemma 6.3. If all players follow Selfish-Robust MMAB:

E[Rexplo] ≤M
∑
k>M

µ(M) − µ(k)

kl(µ(M), µ(k))
log(T ) + o (log(T )) .

Proof of Theorem 6.1. Thanks to Lemma 6.3, the total regret is bounded by

M
∑
k>M

µ(M) − µ(k)
kl(µ(M), µ(k))

log(T ) + E[T0]M + o (log(T )) .

Thanks to Lemmas 6.1 and 6.2, E[T0] = O
(
K3 log(T )
µ(K)

)
, yielding Theorem 6.1.

Proof of Lemma 6.1

Proof. Let j be a cooperative player and qk(t) be the probability at round t that the remain-

ing player pulls k. Define pjk(t) = P[t ∈ Cjk(t) | t ∈ T jk (t)]. By definition, pjk(t) =
1 − (1 − 1/K)M−2(1 − qk(t)) when all cooperative players are pulling uniformly at random.

Two auxiliary Lemmas using classical concentration inequalities are used to prove Lemma 6.1.

The proofs of Lemmas 6.4 and 6.5 are given in Section 6.A.2.

Lemma 6.4. For any δ > 0,

1. P
[∣∣∣∣#Cjk(TM )

#T j
k

(TM )
− 1

#T j
k

(TM )
∑
t∈T j

k
(TM ) p

j
k(t)

∣∣∣∣ ≥ δ ∣∣∣ T jk (TM )
]
≤ 2 exp(−#T j

k
(TM )δ2

2 ).

For any δ ∈ (0, 1) and fixed TM ,

2. P
[∣∣∣∣#T jk − αkTM

K

∣∣∣∣ ≥ δαkTMK ]
≤ 2 exp(−TMαkδ

2

3K ).

3. P
[∣∣∣∣∑TM

t=1(1
(
t ∈ T jk

)
− αk

K )pjk(t)
∣∣∣∣ ≥ δαkTMK ]

≤ 2 exp
(
−TMαkδ

2

3K

)
.

Lemma 6.5. For all k, j and δ ∈ (0, αkK ), with probability larger than 1− 6KM
T ,

∣∣∣∣p̂jk(tjm)− 1
tjm

tjm∑
t=1

pjk(t)
∣∣∣∣ ≤ 2

√√√√ 6 log(T )
n
(
1− 2

√
3

2β2 (1 + 3
2β2 )

) + 2

√
log(T )
n

.

And for β ≥ 39:
tjmα(k)
K

∈
[13

14n,
16
15n

]
.
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Let ε = 2
√

6 log(T )

n

(
1−2
√

3
2β2 (1+ 3

2β2 )
) + 2

√
log(T )
n and pjk = 1

tjm

∑tjm
t=1 p

j
k(t) such that with prob-

ability at least 1− 6KM
T ,

∣∣p̂jk− pjk∣∣ ≤ ε. The remaining of the proof is conditioned on this event.

By definition of n, ε = 1
K f(β) where f(x) = 2

x

√
6

1−2
√

3
2x2 (1+ 3

2x2 )
+ 2/x. Note that

f(x) ≤ 1
2e for x ≥ 39 and thus ε ≤ 1

2Ke for the considered β.

The last point of Lemma 6.5 yields that tjm ≤
γ2
γ1
tj
′
m for any pair j, j′. All the cooperative

players are thus pulling uniformly at random until at least tjm, thanks to the additional waiting

room. Then,

1
K

∑
k

(1− pjk(t)) = (1− 1/K)M−2(1− 1
K

∑
k

qk(t)) = (1− 1/K)M−1.

When summing over k, it follows:

1
K

∑
k

(1− pjk)− ε ≤
1
K

∑
k

(1− p̂jk) ≤ 1
K

∑
k

(1− pjk) + ε

(1− 1/K)M−1 − ε ≤ 1
K

∑
k

(1− p̂jk) ≤ (1− 1/K)M−1 + ε

M − 1 +
log(1 + ε

(1−1/K)M−1 )
log(1− 1/K) ≤

log
(

1
K

∑
k(1− p̂

j
k)
)

log(1− 1/K) ≤M − 1 +
log(1− ε

(1−1/K)M−1 )
log(1− 1/K)

M − 1 +
log(1 + 1

2K )
log(1− 1/K) ≤

log
(

1
K

∑
k(1− p̂

j
k)
)

log(1− 1/K) ≤M − 1 +
log(1− 1

2K )
log(1− 1/K)

The last line is obtained by observing that ε
(1−1/K)M−1 is smaller than 1

2K .

Observing that max
(

log(1−x/2)
log(1−x) ,−

log(1+x/2)
log(1−x)

)
< 1/2 for any x > 0, the last line implies:

1 +
log

(
1
K

∑
k(1− p̂

j
k)
)

log(1− 1/K) ∈ (M − 1/2,M + 1/2).

When rounding this quantity to the closest integer, we thus obtain M , which yields the first

part of Lemma 6.1. The second part is directly given by Lemma 6.5.

Proof of Lemma 6.2

The proof of Lemma 6.2 relies on two lemmas given below.

Lemma 6.6. Conditionally on the success of the estimation phase, when a cooperative player j
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proceeds to GetRank, all other cooperative players are either running GetRank or in a wait-

ing room4, i.e., they are not proceeding to Alternate Exploration yet.

Proof. Recall that γ1 = 13/14 and γ2 = 16/15. Conditionally on the success of the estimation

phase, for any pair (j, j′), γ2
γ1
tjm ≥ tj

′
m. Let tjr = tjm

γ1K2β2 be the duration time of GetRank for

player j. For the same reason, γ2
γ1
tjr ≥ tj

′
r . Player j ends GetRank at round tj = γ2

γ1
tjm + tjr and

the second waiting room at round γ2
γ1
tj .

As γ2
γ1
tj ≥ tj

′
, this yields that when a player ends GetRank, all other players are not

running Selfish-Robust MMAB yet. Because γ2
γ1
tjm ≥ tj

′
m, when a player starts GetRank,

all other players also have already ended EstimateM. This yields Lemma 6.6.

Lemma 6.7. Conditionally on the success of the estimation phase, with probability larger

than 1− 1
T , cooperative player j ends GetRank with a rank in [M ].

Proof. Conditionally on the success of the estimation phase and thanks to Lemma 6.5, tjr =
tjm

γ1K2β2 ≥ K log(T )
α(K)

. Moreover, at any round of GetRank, the probability of observing ηk(t) = 0
is larger than α(K)

M . Indeed, the probability of observing ηk(t) is larger than α(K) with Statistic

sensing. Independently, the probability of having ηk = 0 is larger than 1/M since there is at

least an arm among [M ] not pulled by any other player. These two points yield, as M ≤ K:

P[player does not observe ηk(t) = 0 for tjr successive rounds] ≤
(

1−
α(K)
M

)tjr
≤ exp

(
−
α(K)t

j
r

M

)

≤ 1
T

Thus, with probability larger than 1 − 1
T , player j observes ηk(t) = 0 at least once during

GetRank, i.e., she ends the procedure with a rank in [M ].

Proof of Lemma 6.2. Combining Lemmas 6.6 and 6.7 yields that the cooperative player j ends

GetRank with a rank in [M ] and no other cooperative player ends with the same rank. Indeed,

when a player gets the rank j, any other cooperative player has either no attributed rank (still

running GetRank or the first waiting room), or an attributed rank j′. In the latter case, thanks

to Lemma 6.6, this other player is either running GetRank or in the second waiting room,

meaning she is still pulling j′. Since the first player ends with the rank j, this means that she did

not encounter a collision when pulling j and especially, j 6= j′.

Considering a union bound among all cooperative players now yields Lemma 6.2.
4Note that there is a waiting room before and after GetRank.
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Proof of Lemma 6.3

Let us denote T j0 =
(

γ2
γ2

1β
2K2 + γ2

2
γ2

1

)
tjm such that player j starts running Alternate Exploration

at time T j0 . This section aims at proving Lemma 6.3. In this section, the initialization is assumed

to be successful. The regret due to an unsuccessful initialization is constant in T and thus

o (log(T )). We prove in this section, in case of a successful initialization, the following:

E[Rexplo] ≤M
∑
k>M

µ(M) − µ(k)
kl(µ(M), µ(k))

log(T ) + o (log(T )) . (6.2)

This proof follows the same scheme as the regret proof from Proutiere and Wang (2019),

except that there is no leader here. Every bad event then happens independently for each indi-

vidual player. This adds a M factor in the regret compared to the follower/leader algorithm5

used by Proutiere and Wang (2019). For conciseness, we only give the main steps and refer to

the original Lemmas in (Proutiere and Wang, 2019) for their detailed proof.

We first recall useful concentration Lemmas which correspond to Lemmas 1 and 2 in (Proutiere

and Wang, 2019). They are respectively simplified versions of Lemma 5 in (Combes et al., 2015)

and Theorem 10 in (Garivier and Cappé, 2011).

Lemma 6.8. Let k ∈ [K], c > 0 and H be a (random) set such that for all t, {t ∈ H} is

Ft−1 measurable. Assume that there exists a sequence (Zt)t≥0 of binary random variables,

independent of all Ft, such that for t ∈ H , πj(t) = k if Zt = 1. Furthermore, if E[Zt] ≥ c for

all t, then: ∑
t≥1

P[t ∈ H | |µ̂jk(t)− µk| ≥ δ] ≤
4 + 2c/δ2

c2 .

Lemma 6.9. If player j starts following Alternate Exploration at round T j0 + 1:

∑
t>T j0

P[bjk(t) < µk] ≤ 15.

Let 0 < δ < δ0 := mink
µ(k)−µ(k+1)

2 . Besides the definitions given in Section 6.A.1, define

the following:

• M∗ the list of the M -best arms, ordered according to their indices.

• Aj = {t > T j0 | Mj(t) 6=M∗}.

• Dj = {t > T j0 | ∃k ∈Mj(t), |µ̂jk(t)− µk| ≥ δ}.

• Ej = {t > T j0 | ∃k ∈M∗, b
j
k(t) < µk}.

5Which is not selfish-robust.
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• Gj = {t ∈ Aj \ Dj | ∃k ∈M∗ \Mj(t), |µ̂jk(t)− µk| ≥ δ}.

Lemma 6.10. If player j starts following Alternate Exploration at round T j0 + 1:

E[#(Aj ∪ Dj)] ≤ 8MK2(6K + δ−2).

Proof. Similarly to Proutiere and Wang (2019), we have (Aj ∪ Dj) ⊂ (Dj ∪ Ej ∪ Gj). We can

then individually bound E[#Dj ], E[#Ej ] and E[#Gj ], leading to Lemma 6.10. The detailed

proof is omitted here as it exactly corresponds to Lemmas 3 and 4 in (Proutiere and Wang,

2019).

Lemma 6.11. Consider a suboptimal arm k and define Hjk = {t ∈ {T j0 + 1, . . . , T} \ (Aj ∪
Dj) | πj(t) = k}. It holds

E
[
#Hjk

]
≤ log T + 4 log(log T )

kl(µk + δ, µ(M) − δ)
+ 4 + 2δ−2.

Lemma 6.11 can be proved using the arguments of Lemma 5 in (Proutiere and Wang, 2019).

Proof of Lemma 6.3. If t ∈ Aj ∪ Dj , player j collides with at most one player j′ such that

t 6∈ Aj′ ∪ Dj′ .
Otherwise, t 6∈ Aj ∪ Dj and player j collides with a player j′ only if t ∈ Aj′ ∪ Dj′ . Also,

she pulls a suboptimal arm k only on an exploration slot, i.e., instead of pulling the M -th best

arm. Thus, the regret caused by pulling a suboptimal arm k when t 6∈ Aj ∪ Dj is (µ(M) − µk)
and this actually happens when t ∈ Hjk.

This discussion provides the following inequality, which concludes the proof of Lemma 6.3

when using Lemmas 6.10 and 6.11 and taking δ → 0.

E
[
Rexplo] ≤ 2

M∑
j=1

E
[
#(Aj ∪ Dj)

]
︸ ︷︷ ︸

collisions

+
∑
j≤M

∑
k>M

(µ(M) − µ(k))E
[
#Hjk

]
︸ ︷︷ ︸

pulls of suboptimal arms

.

Proof of Theorem 6.2

Proof. 1. Let us first prove the Nash equilibrium property. Assume that the player j is deviating

from Selfish-Robust MMAB and define E = [T0]∪
( ⋃
m∈[M ]\{j}

(Am∪Dm)
)

with the defi-

nitions of T0,Am andDm given in Section 6.A.26. Thanks to Lemmas 6.1 and 6.2, regardless of

6The max of T0 is here defined over all m ∈ [M ] \ {j}.
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the strategy of the selfish player, all other players successfully end the initialization after a time

T0 with probability 1−O(KM/T ). The remaining of the proof is conditioned on this event.

The selfish player earns at most µ(1)T0 during the initialization. Note that Alternate

Exploration never uses collision information, meaning that the behavior of the strategic

player during this phase does not change the behaviors of the cooperative players. Thus, the

optimal strategy during this phase for the strategic player is to pull the best available arm. Let

j be the rank of the strategic player7. For t 6∈ E , this arm is the k-th arm of M∗ with k =
t + j (mod M) + 1. In a whole block of length M in [T ] \ E , the selfish player then earns at

most
∑M
k=1 µ(k).

Over all, when a strategic player deviates from Alternate Exploration, she earns at
most:

E[RewjT (s′, s−js−js−j)] ≤ µ(1)(E [#E +M)] + T

M

M∑
k=1

µ(k).

Note that we here add a factor µ(1) in the initialization regret. This is only because the true

loss of colliding is not 1 but µ(1). Also, the additional µ(1)M term is due to the fact that the last

block of length M of Alternate Exploration is not totally completed.

Thanks to Theorem 6.1, it also comes:

E[RewjT (sss)] ≥ T

M

M∑
k=1

µ(k) −
∑
k>M

µ(M) − µ(k)

kl(µ(k), µ(M))
log(T )−O

(
µ(1)

K3

µ(K)
log(T )

)
.

Lemmas 6.2 and 6.10 yield that E[#E ] = O
(
K3 log(T )
µ(K)

)
, which concludes the proof.

2. We now prove the (α, ε)-stability of Selfish-Robust MMAB. Let ε′ = E[#E ] + M .

Note that this value is independent from the strategy of the deviating player j, since the setsAm

and Dm are independent from the actions of the player j. This is a consequence of the statistic

sensing assumption.

Consider that player j is playing a deviation strategy s′ ∈ S such that for some other player
i and l > 0:

E[RewiT (s′, s−js−js−j)] ≤ E[RewiT (sss)]− l − (ε′ +M).

We will first compare the reward of player j with her optimal possible reward. The only way for

the selfish player to influence the sampling strategy of another player is in modifying the rank

attributed to this other player. The total rewards of cooperative players with ranks j and j′ only

differ by at most ε′ + M in expectation, without considering the loss due to collisions with the

selfish player.
7If the strategic player has no attributed rank, it is the only non-attributed rank in [M ].
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The only other way to cause regret to another player i is then to pull πi(t) at time t. This

incurs a loss at most µ(1) for player i, while this incurs a loss at least µ(M) for player j, in

comparison with her optimal strategy. This means that for incurring the additional loss l to the

player i, player j must suffer herself from a loss µ(M)
µ(1)

compared to her optimal strategy s∗. Thus,

for α = µ(M)
µ(1)

:

E[Rewi
T (s′, s−js−js−j)] ≤ E[Rewi

T (sss)]−l−(ε′+M) =⇒ E[Rewj
T (s′, s−js−js−j)] ≤ E[Rewj

T (s∗, s−js−js−j)]−αl

The first point of Theorem 6.2 yields for its given ε: E[Rewj
T (s∗, s−js−js−j)] ≤ E[Rewj

T (sss)] + ε.

Noting l1 = l + ε′ +M and ε1 = ε+ α(ε′ +M) = O(ε), we have shown:

E[RewiT (s′, s−js−js−j)] ≤ E[RewiT (sss)]− l1 =⇒ E[RewjT (s′, s−js−js−j)] ≤ E[RewjT (sss)] + ε1 − αl1.

Auxiliary lemmas

This section provides useful Lemmas for the proof of Lemma 6.1. We first recall a useful version

of Chernoff bound.

Lemma 6.12. For any independent variables X1, . . . , Xn in [0, 1] and δ ∈ (0, 1):

P
(∣∣∣∣ n∑

i=1
Xi − E[Xi]

∣∣∣∣ ≥ δ n∑
i=1

E[Xi]
)
≤ 2e−

δ2
∑n

i=1 E[Xi]
3 .

Proof of Lemma 6.4. 1. This is an application of Azuma-Hoeffding inequality on the variables

1
(
t ∈ Cjk(TM )

)
| t ∈ T jk (TM ).

2. This is a consequence of Lemma 6.12 on the variables 1
(
t ∈ T jk

)
.

3. This is the same result on the variables 1
(
t ∈ T jk

)
pjk(t) | Ft−1 where Ft−1 is the filtration

associated to the past events, using
∑TM
t=1 E[1

(
t ∈ T jk

)
pjk(t) | Ft−1] ≤ TMαk

K .

Proof of Lemma 6.5. From Lemma 6.4, it comes:

• P
[
∃t ≤ T,

∣∣∣p̂jk(t)− 1
#T j

k

∑
t′∈T j

k
pjk(t′)

∣∣∣ ≥ 2
√

log(T )
#T j

k

]
≤ 2

T ,

• P
[
∃t ≤ T,

∣∣∣K#T j
k

αkt
− 1

∣∣∣ ≥ √6 log(T )K
αkt

]
≤ 2

T , (6.3)
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• P
[
∃t ≤ T,

∣∣∣ Kαkt∑t′∈T j
k
pjk(t′)−

1
t

∑
t′≤t p

j
k(t′)

∣∣∣ ≥ √6 log(T )K
αkt

]
≤ 2

T .

Noting that
∑
t′∈T j

k
pjk(t′) ≤ #T jk , Equation (6.3) implies:

P

∃t ≤ T, ∣∣∣∣ Kαkt
∑
t′∈T j

k

pjk(t
′)− 1

#T jk

∑
t′∈T j

k

pjk(t
′)
∣∣∣∣ ≥

√
6 log(T )K

αkt

 ≤ 2
T
.

Combining these three inequalities and making the union bound over all the players and

arms yield that with probability larger than 1− 6KM
T :

∣∣∣∣p̂jk(tjm)− 1
tjm

∑
t≤tjm

pjk(t)
∣∣∣∣ ≤ 2

√
6 log(T )K
αkt

j
m

+ 2

√√√√ log(T )
#T jk (tjm)

. (6.4)

Moreover, under the same event, Equation (6.3) also gives that

T jk (tjm) ∈
[
αkt

j
m

K
−

√
6αktjm log(T )

K
,
αkt

j
m

K
+

√
6αktjm log(T )

K

]
.

Specifically, this yields n ≤ αkt
j
m

K +
√

6αktjm log(T )
K , or equivalently tjmαk

K ≥ n−2
√

3 log(T )
2

√
n+ 3 log(T )

2 .

Since n = β2K2 log(T ), this becomes tjmαk
K ≥ n(1 − 2

√
3

2β2K2

√
1 + 3

2β2K2 ) and Equa-

tion (6.4) now rewrites into:

∣∣∣∣p̂jk(tjm)− 1
tjm

∑
t≤tjm

pjk(t)
∣∣∣∣ ≤ 2

√√√√ 6 log(T )
n
(
1− 2

√
3

2β2K2 (1 + 3
2β2K2 )

) + 2

√
log(T )
n

Also, n ≥ αkt
j
m

K −
√

6 log(T )αktjm
K for some k, which yields t

j
mαk
K ≤ n(1+ 3

β2K2 +2
√

3
2β2K2

√
1 + 3

2β2K2 ).

This relation then also holds for t
j
mα(K)
K . We have therefore proved that:

n

(
1− 2

√
3

2β2

√
1 + 3

2β2

)
≤
tjmα(k)
K

≤ n
(

1 + 3
β2 + 2

√
3

2β2

√
1 + 3

2β2

)
.

For β ≥ 39, this gives the bound in Lemma 6.5.

6.B Collective punishment proof

Recall that the punishment protocol consists in pulling each arm k with probability at least

pjk = max
(
1 −

(
γ

∑M

l=1 µ̂
j
(l)

Mµ̂j
k

) 1
M−1

, 0
)

. Lemma 6.13 below guarantees that such a sampling

strategy is possible.
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Lemma 6.13. For pk = max
(
1−
(γ∑M

l=1 µ̂
j
(l)

Mµ̂j
k

) 1
M−1

, 0
)

with γ =
(
1− 1

K

)M−1
:
∑K
k=1 pk ≤ 1.

Proof. For ease of notation, define xk := µ̂jk, xM :=
∑M

l=1 x(l)
M and S := {k ∈ [K] | xk >

γxM} = {k ∈ [K] | pk > 0}. We then get by concavity of x 7→ −x−
1

M−1 ,

∑
k∈S

pk = #S ×

1− (γxM )
1

M−1
∑
k∈S

(xk)−
1

M−1

#S

 , (6.5)

≤ #S ×
(

1−
(
γxM
xS

) 1
M−1

)
with xS = 1

#S
∑
k∈S

xk. (6.6)

We distinguish two cases.

First, if #S ≤M , we then getMxM ≥ #SxS because S is a subset of theM best empirical

arms. The last inequality then becomes

∑
k∈S

pk ≤ #S
(

1−
(
γ

#S
M

) 1
M−1

)
.

Define g(x) = γ
M − x(1− x)M−1. For x ∈ (0, 1]:

g(x) ≥ 0 ⇐⇒ γ

xM
≥ (1− x)M−1,

⇐⇒ 1−
(

γ

xM

) 1
M−1
≤ x,

⇐⇒ 1
x

(
1−

(
γ

xM

) 1
M−1

)
≤ 1.

Thus, g( 1
#S ) ≥ 0 implies

∑
k∈S pk ≤ 1. We now show that g is indeed non negative on

[0, 1]. x(1 − x)M−1 is maximized at 1
M and is thus smaller than 1

M (1 − 1/M)M−1, and using

the fact that 1
M (1− 1/M)M−1 ≤ γ

M for our choice of γ, we get the result for the first case.

The other case corresponds to #S > M . In this case, the M best empirical arms are all in S

and thus xM ≥ xS . Equation (6.6) becomes:

∑
k∈S

pk ≤ #S
(
1− γ

1
M−1

)
≤ K(1− (1− 1/K)) = 1.

6.C Missing elements for SIC-GT

In this whole section, M is assumed to be at least 3.
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6.C.1 Description of the algorithm

This section provides a complete description of SIC-GT. The pseudocode of SIC-GT is given

in Algorithm 6.3 and relies on several auxiliary protocols, which are described by Algorithms 6.3

to 6.9.

Algorithm 6.3: SIC-GT
Input: T, δ

1 M, j ← Initialize (T,K) and punish← False
2 OptArms ← ∅, Mp ←M , [Kp]← [K] and p← 1
3 while not punish and #OptArms < M do
4 for m = 0, . . . ,

⌈
Kp2p
Mp

⌉
− 1 do

5 ArmstoPull← OptArms ∪
{
i ∈ [Kp]

∣∣ i−mMp (mod Kp) ∈ [Mp]
}

6 for M rounds do
7 k ← j + t (mod M) + 1 and pull i the k-th element of ArmstoPull
8 if N j

i (p) ≤ 2p then Update µ̂ji // N j
i pulls on i by j this phase

9 if ηi = 1 then punish← True // collisionless exploration

10 end
11 end
12 (punish,OptArms, [Kp],Mp)← CommPhase (µ̂j , j, p,OptArms , [Kp],Mp)
13 p← p+ 1
14 end

15 if punish then PunishHomogeneous (p)
16 else // exploitation phase

17 k ← j + t (mod M) + 1 and pull i, the k-th arm of OptArms
18 if ηi = 1 then punish← True
19 end

Protocol 6.5: ReceiveMean
Input: j, p

1 µ̃← 0
2 for n = 0, . . . , p do
3 Pull j
4 if ηj(t) = 1 then µ̃← µ̃+ 2−n
5 end
6 return µ̃ // sent mean

Protocol 6.6: SendMean
Input: j, l, p, µ̃

1 m← dyadic writing of µ̃ of length
p+ 1, i.e., µ̃ =

∑p
n=0mn2−n

2 for n = 0, . . . , p do
3 if mn = 1 then Pull l // send 1
4 else Pull j // send 0
5 end

Initialization phase. The purpose of the initialization phase is to estimate M and attribute

ranks in [M ] to all the players. This is done by Initialize, which is given in Algorithm 6.3.

It simply consists in pulling uniformly at random for a long time to infer M from the probability
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Protocol 6.3: Initialize
Input: T,K

1 ncoll ← 0 and j ← −1
2 for 12eK2 log(T ) rounds do Pull k ∼ U(K) and ncoll ← ncoll + ηk // estim. M

3 M̂ ← 1 + round
(
log

(
1− ncoll

12eK2 log(T )

)
/ log

(
1− 1

K

))
4 for K log(T ) rounds do // get rank

5 if j = −1 then
6 Pull k ∼ U(M̂); if ηk = 0 then j ← k
7 else Pull j
8 end
9 return (M̂, j)

of collision. Then it proceeds to a Musical Chairs procedure so that each player ends with a

different arm in [M ], corresponding to her rank.

Exploration phase. As explained in Section 6.4.2, each arm that still needs to be explored

(those in [Kp], with Algorithm 6.3 notations) is pulled at least M2p times during the p-th ex-

ploration phase. Moreover, as soon as an arm is found optimal, it is pulled for each remaining

round of the exploration. The last point is that each arm is pulled the exact same amount of time

by every player, in order to ensure fairness of the algorithm, while still avoiding collisions. This

is the interest of the ArmstoPull set in Algorithm 6.3. At each time step, the pulled arms are

the optimal ones and Mp arms that still need to be explored. The players proceed to a sliding

window over these arms to explore, so that the difference in pulls for two arms in [Kp] is at most

1 for any player and phase.

Communication phase. The pseudocode for a whole communication phase is given by CommPhase

in Protocol 6.4. Players first quantize their empirical means before sending them in p bits to each

leader. The protocol to send a message is given by Protocol 6.6, while Protocol 6.5 describes

how to receive the message. The messages are sent using back and forth procedures to detect

corrupted messages.

After this, leaders communicate the received statistics to each other, to ensure that no player

sent differing ones to them.

They can then determine which arms are optimal/suboptimal using RobustUpdate given

by Protocol 6.7. As explained in Section 6.4.2, it cuts out the extreme estimates and decides

based on the M − 2 remaining ones.

Afterwards, the leaders signal to the remaining players the sets of optimal and suboptimal

arms as described by Protocol 6.8. If the leaders send differing information, it is detected by at
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Protocol 6.4: CommPhase
Input: µ̂j , j, p,OptArms, [Kp],Mp

1 punish← False
2 for K rounds do // receive punishment signal

3 Pull k = t+ j (mod K) + 1; if ηk = 1 then punish← True
4 end

5 µ̃jk ←

2−p
(
b2pµ̂jkc+ 1

)
with proba 2pµ̂jk − b2pµ̂

j
kc

2−pb2pµ̂jkc otherwise
// quantization

6 for (i, l, k) ∈ [M ]× {1, 2} × [K] such that i 6= l do // i sends µ̃ik to l

7 if j = i then // sending player

8 SendMean (j, l, p, µ̃jk) and q ← ReceiveMean (j, p) // back and forth

9 if q 6= µ̃jk then punish← True // corrupted message

10 else if j = l then µ̃ik ← ReceiveMean (j, p) and SendMean (j, i, p, µ̃ik)
11 else Pull j // waiting for others

12 end
13 for (i, l,m, k) ∈ {(1, 2), (2, 1)} × [M ]× [K] do // leaders check info match

14 if j = i then SendMean (j, l, p, µ̃mk )
15 else if j = l then
16 q ← ReceiveMean (j, p); if q 6= µ̃mk then punish← True // info differ

17 else Pull j // waiting for leaders

18 end
19 if j ∈ {1, 2} then (Acc, Rej)← RobustUpdate (µ̃, p,OptArms , [Kp],Mp)
20 else Acc, Rej← ∅ // arms to accept/reject

21 (punish, Acc)← SignalSet (Acc, j, punish)
22 (punish, Rej)← SignalSet (Rej, j, punish)
23 return (punish,OptArms ∪ Acc, [Kp] \ (Acc ∪ Rej) ,Mp −#Acc)

least one player.

If the presence of a malicious player is detected at some point of this communication phase,

then players signal to each other to trigger the punishment protocol described by Protocol 6.9.

Exploitation phase. If no malicious player perturbed the communication, players end up hav-

ing detected the M optimal arms. As soon as it is the case, they only pull these M arms in a

collisionless way until the end.

6.C.2 Regret analysis

This section aims at proving the first point of Theorem 6.6, using similar techniques as in (Bour-

sier and Perchet, 2019). The regret is first divided into three parts:



6.C. Missing elements for SIC-GT 149

Protocol 6.7: RobustUpdate
Input: µ̃, p,OptArms , [Kp],Mp

1 Define for all k, ik ← arg maxj∈[M ] µ̃
j
k and ik ← arg minj∈[M ] µ̃

j
k

2 µ̃k ←
∑
j∈[M ]\{ik,ik} µ̃

j
k and b← 4

√
log(T )

(M−2)2p+1

3 Rej← set of arms k verifying # {i ∈ [Kp] | µ̃i − b ≥ µ̃k + b} ≥Mp

4 Acc← set of arms k verifying # {i ∈ [Kp] |µ̃k − b ≥ µ̃i + b} ≥ Kp −Mp

5 return (Acc, Rej)

Protocol 6.8: SignalSet
Input: S, j, punish

1 length_S← #S // length of S for leaders, 0 for others

2 for K rounds do // leaders send #S
3 if j ∈ {1, 2} then Pull length_S
4 else
5 Pull k = t+ j (mod K) + 1
6 if ηk = 1 and length_S 6= 0 then punish← True // receive different info

7 if ηk = 1 and length_S = 0 then length_S← k

8 end
9 for n = 1, . . . , length_S do // send/receive S

10 for K rounds do
11 if j ∈ {1, 2} then Pull n-th arm of S
12 else
13 Pull k = t+ j (mod K) + 1; if ηk = 1 then Add k to S
14 end
15 end
16 if #S 6= length_S then punish← True // corrupted info

17 return (punish, S)

R(T ) = E[Rinit +Rcomm +Rexplo], (6.7)

where

Rinit = Tinit

M∑
k=1

µ(k) −
Tinit∑
t=1

M∑
j=1

µπj(t)(1− ηj(t)) with Tinit = (12eK2 +K) log(T ),

Rcomm =
∑

t∈Comm

M∑
j=1

(µ(j) − µπj(t)(1− ηj(t))) with Comm the set of communication steps,

Rexplo =
∑

t∈Explo

M∑
j=1

(µ(j) − µπj(t)(1− ηj(t))) with Explo = {Tinit + 1, . . . , T} \ Comm.
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Protocol 6.9: PunishHomogeneous
Input: p

1 if communication phase p starts in less than M rounds then
2 for M +K rounds do Pull j // signal punish to everyone

3 else for M rounds do Pull the first arm of ArmstoPull as defined in Algorithm 6.3
4

5 γ ← (1− 1/K)M−1 and δ = 1−γ
1+3γ ; Set µ̂jk, S

j
k, s

j
k, n

j
k ← 0

6 while ∃k ∈ [K], δµ̂jk < 2sjk(log(T )/njk)1/2 + 14 log(T )
3(nj

k
−1)

do // estimate µk

7 Pull k = t+ j (mod K) + 1
8 if δµ̂jk < 2sjk(log(T )/njk)1/2 + 14 log(T )

3(nj
k
−1)

then

9 Update µ̂jk ←
nj
k

nj
k
+1
µ̂jk +Xk(t) and njk ← njk + 1

10 Update Sjk ← Sjk + (Xk)2 and sjk ←
√

Sj
k
−(µ̂j

k
)2

nj
k
−1

11 end

12 pk ←
(

1−
(
γ

∑M

l=1 µ̂
j
(l)(t)

Mµ̂j
k
(t)

) 1
M−1

)
+

; p̃k ← pk/
∑K
l=1 pl // renormalize

13 while t ≤ T do Pull k with probability pk // punish

A communication step is defined as a round where any player is using the CommPhase

protocol. Lemma 6.14 provides guarantees about the initialization phase. When all players cor-

rectly estimate M and have different ranks after the protocol Initialize, the initialization

phase is said successful.

Lemma 6.14. Independently of the sampling strategy of the selfish player, if all other players

follow Initialize, with probability at least 1 − 3M
T : M̂ j = M and all cooperative players

end with different ranks in [M ].

Proof. Let qk(t) = P[selfish player pulls k at time t]. Then, for each cooperative player j during

the initialization phase:

P[player j observes a collision at time t] =
K∑
k=1

1
K

(1− 1/K)M−2(1− qk(t))

= (1− 1/K)M−2(1−
∑K
k=1 qk(t)
K

)

= (1− 1/K)M−1

Define p = (1 − 1/K)M−1 the probability to collide and p̂j =
∑12eK2 log(T )

t=1 1
(
η
πj(t)=1

)
12eK2 log(T ) its
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estimation by player j. The Chernoff bound given by Lemma 6.12 gives:

P
[∣∣∣p̂j − p∣∣∣ ≥ p

2K

]
≤ 2e−

p log(T )
e

≤ 2/T

If
∣∣p̂j − p∣∣ < p

2K , using the same reasoning as in the proof of Lemma 6.1 leads to 1+ log(1−p̂j)
log(1−1/K) ∈

(M − 1/2,M + 1/2) and then M̂ j = M . With probability at least 1− 2M/T , all cooperative

players correctly estimate M .

Afterwards, the players sample uniformly in [M ] until observing no collision. As at least

an arm in [M ] is not pulled by any other player, at each time step of this phase, when pulling

uniformly at random:

P[ηπj(t) = 0] ≥ 1/M.

A player gets a rank as soon as she observes no collision. With probability at least 1 −
(1 − 1/M)n, she thus gets a rank after at most n pulls during this phase. Since this phase lasts

K log(T ) pulls, she ends the phase with a rank with probability at least 1− 1/T . Using a union

bound finally yields that every player ends with a rank and a correct estimation ofM . Moreover,

these ranks are different between all the players, because a player fixes to the arm j as soon as

she gets attributed the rank j.

Lemma 6.15 bounds the exploration regret of SIC-GT and is proved in Section 6.C.2. Note

that a minimax bound can also be proved as done in Chapter 4.

Lemma 6.15. If all players follow SIC-GT, with probability 1−O
(
KM log(T )

T

)
,

Rexplo = O
(∑
k>M

log(T )
µ(M) − µ(k)

)
.

Lemma 6.16 finally bounds the communication regret.

Lemma 6.16. If all players follow SIC-GT, with probability 1−O
(
KM log(T )

T + M
T

)
:

Rcomm = O
(
M2K log2

(
log(T )

(µ(M) − µ(M+1))2

))
.

Proof. The proof is conditioned on the success of the initialization phase, which happens with

probability 1−O
(
M
T

)
. Proposition 6.1 given in Section 6.C.2 yields that with probability 1−

O
(
KM log(T )

T

)
, the number of communication phases is bounded byN = O

(
log

(
log(T )

(µ(M)−µ(M+1))2

))
.

The p-th communication phase lasts 8MK(p + 1) + 3K + K#Acc(p) + K#Rej(p), where
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Acc and Rej respectively are the accepted and rejected arms at the p-th phase. Their exact def-

initions are given in Algorithm 6.7. An arm is either accepted or rejected only once, so that∑N
p=1 #Acc(p) + #Rej(p) = K. The total length of Comm is thus bounded by:

#Comm ≤
N∑
p=1

8MK(p+ 1) + 3K +K#Acc(p) +K#Rej(p)

≤ 8MK
(N + 2)(N + 1)

2 + 3KN +K2

Which leads to Rcomm = O
(
M2K log2

(
log(T )

(µ(M)−µ(M+1))2

))
using the given bound for N .

Proof of Theorem 6.6. Using Lemmas 6.14 to 6.16 and Equation (6.7) it comes that with prob-
ability 1−O

(
KM log(T )

T

)
:

RT ≤ O

(∑
k>M

log(T )
µ(M) − µ(k)

+M2K log2
(

log(T )
(µ(M) − µ(M+1))2

)
+MK2 log(T )

)
.

The regret incurred by the low probability event isO(KM2 log(T )), leading to Theorem 6.6.

Proof of Lemma 6.15

Lemma 6.15 relies on the following concentration inequality.

Lemma 6.17. Conditioned on the success of the initialization and independently of the means

sent by the selfish player, if all other players play cooperatively and send uncorrupted messages,

for any k ∈ [K]:
P[∃p ≤ n, |µ̃k(p)− µk| ≥ B(p)] ≤ 6nM

T

where B(p) = 4
√

log(T )
(M−2)2p+1 and µ̃k(p) is the centralized mean of arm k at the end of phase p,

once the extremes have been cut out. It exactly corresponds to the µ̃k of Protocol 6.7.

Proof. At the end of phase p, (2p+1 − 1) observations are used for each player j and arm k.

Hoeffding bound then gives: P
[∣∣∣µ̂jk(p)− µk∣∣∣ ≥ √ log(T )

2p+1

]
≤ 2

T . The quantization only adds an

error of at most 2−p, yielding for every cooperative player:

P

∣∣∣µ̃jk(p)− µk∣∣∣ ≥ 2

√
log(T )
2p+1

 ≤ 2
T

(6.8)
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Assume w.l.o.g. that the selfish player has rank M . Hoeffding inequality also yields:

P

∣∣∣∣ 1
M − 1

M−1∑
j=1

µ̂jk(p)− µk
∣∣∣∣ ≥

√
log(T )

(M − 1)2p+1

 ≤ 2
T
.

Since
∑M−1
j=1 2p(µ̃jk(p)−µ̂

j
k(p)) is the difference betweenM−1 Bernoulli variables and their

expectation, Hoeffding inequality yields P
[∣∣∣ 1
M−1

∑M−1
j=1 (µ̃jk − µ̂

j
k(p))

∣∣∣ ≥ √ log(T )
(M−1)2p+1

]
≤ 2

T

and:

P

∣∣∣∣∣∣ 1
M − 1

M−1∑
j=1

µ̃jk(p)− µk

∣∣∣∣∣∣ ≥ 2
√

log(T )
(M − 1)2p+1

 ≤ 4
T
. (6.9)

Using the triangle inequality combining Equations (6.8) and (6.9) yields for any j ∈ [M−1]:

P

∣∣∣ 1
M − 2

∑
j′∈[M−1]
j′ 6=j

µ̃jk(p)− µk
∣∣∣ ≥ 4

√
log(T )

(M − 2)2p+1

 ≤ P
[
M − 1
M − 2

∣∣∣ 1
M − 1

∑
j′∈[M−1]

µ̃jk(p)− µk
∣∣∣

+ 1
M − 2

∣∣∣µ̃jk(p)− µk∣∣∣ ≥ 4
√

log(T )
(M − 2)2p+1

]

≤ P

∣∣∣ 1
M − 1

M−1∑
j=1

µ̃jk(p)− µk
∣∣∣ ≥ 2

√
log(T )

(M − 1)2p+1


+ P

∣∣∣µ̃jk(p)− µk∣∣∣ ≥ 2

√
log(T )
2p+1


≤ 6
T
. (6.10)

Moreover by construction, no matter what mean sent the selfish player,

min
j∈[M−1]

1
M − 2

∑
j′∈[M−1]
j′ 6=j

µ̃jk(p) ≤ µ̃k(p) ≤ max
j∈[M−1]

1
M − 2

∑
j′∈[M−1]
j′ 6=j

µ̃jk(p).

Indeed, assume that the selfish player sends a mean larger than all other players. Then her

mean as well as the minimal sent mean are cut out and µ̃k(p) is then equal to the right term.

Conversely if she sends the smallest mean, µ̃k(p) corresponds to the left term. Since µ̃k(p) is

non-decreasing in µ̃Mk (p), the inequality also holds in the case where the selfish player sends

neither the smallest nor the largest mean.

Finally, using a union bound over all j ∈ [M − 1] with Equation (6.10) yields Lemma 6.17.
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Using classical MAB techniques then yields Proposition 6.1.

Proposition 6.1. Independently of the selfish player behavior, as long as the PunishHomogeneous

protocol is not used, with probability 1 − O
(
KM log(T )

T

)
, every optimal arm k is accepted

after at most O
(

log(T )
(µk−µ(M+1))2

)
pulls and every sub-optimal arm k is rejected after at most

O
(

log(T )
(µ(M)−µk)2

)
pulls during exploration phases.

Proof. The fact that the PunishHomogeneous protocol is not started just means that no cor-

rupted message is sent between cooperative players. The proof is conditioned on the success of

the initialization phase, which happens with probability 1−O
(
M
T

)
. Note that there are at most

log2(T ) exploration phases. Thanks to Lemma 6.17, with probability 1 − O
(
KM log(T )

T

)
, the

inequality |µ̃k(p)− µk| ≤ B(p) thus holds for any p. The remaining of the proof is conditioned

on this event. Especially, an optimal arm is never rejected and a suboptimal one never accepted.

First consider an optimal arm k and note ∆k = µk − µ(M+1) the optimality gap. Let pk be

the smallest integer p such that (M − 2)2p+1 ≥ 162 log(T )
∆2
k

. In particular, 4B(pk) ≤ ∆k, which

implies that the arm k is accepted at the end of the communication phase pk or before.

Necessarily, (M − 2)2pk+1 ≤ 2·162 log(T )
∆2
k

and especially, M2pk+1 = O
(

log(T )
∆2
k

)
. Note that

the number of exploratory pulls on arm k during the p first phases is bounded by M(2p+1 + p)8,

leading to Proposition 6.1. The same holds for the sub-optimal arms with ∆k = µ(M)−µk.

In the following, we keep the notation tk = c log(T )
(µk−µ(M))2 , where c is a universal constant,

such that with probability 1 − O
(
KM
T

)
, every arm k is correctly accepted or rejected after a

time at most tk. All players are now assumed to play SIC-GT, e.g., there is no selfish player.
Since there is no collision during exploration/exploitation (conditionally on the success of the
initialization phase), the following decomposition holds (Anantharam et al., 1987a):

Rexplo =
∑
k>M

(µ(M) − µ(k))T explo
(k) +

∑
k≤M

(µ(k) − µ(M))(T explo − T explo
(k) ), (6.11)

where T explo = #Explo and T explo
(k) is the centralized number of pulls on the k-th best arm during

exploration or exploitation.

Lemma 6.18. If all players follow SIC-GT, with probability 1−O
(
KM log(T )

T

)
, it holds:

• for k > M , (µ(M) − µ(k))T
explo
(k) = O

(
log(T )

µ(M)−µ(k)

)
.

8During the exploration phase p, each explored arm is pulled between M2p and M(2p + 1) times.
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•
∑
k≤M (µ(k) − µ(M))(T explo − T explo

(k) ) = O
(∑

k>M
log(T )

µ(M)−µk

)
.

Proof. With probability 1−O
(
KM log(T )

T

)
, Proposition 6.1 yields that every arm k is correctly

accepted or rejected at time at most tk. The remaining of the proof is conditioned on this event

and the success of the initialization phase. The first point of Lemma 6.18 is a direct consequence

of Proposition 6.1. It remains to prove the second point.

Let p̂k be the number of the phase at which the arm k is either accepted or rejected and let

Kp be the number of arms that still need to be explored at the beginning of phase p and Mp be

the number of optimal arms that still need to be explored. The following two key Lemmas are

crucial to obtain the second point.

Lemma 6.19. Under the assumptions of Lemma 6.18:

∑
k≤M

(µ(k) − µ(M))(T explo − T explo
(k) ) ≤

∑
j>M

∑
k≤M

min(p̂(k),p̂(j))∑
p=1

(µ(k) − µ(M))2p
M

Mp
+ o (log(T )) .

Lemma 6.20. Under the assumptions of Lemma 6.18, for any j > M :

∑
k≤M

min(p̂(k),p̂(j))∑
p=1

(µ(k) − µ(M))2p
M

Mp
≤ O

(
log(T )

µ(M) − µ(j)

)
.

Combining these two Lemmas with Equation (6.11) finally yields Lemma 6.15.

Proof of Lemma 6.19. Consider an optimal arm k. During the p-th exploration phase, either k

has already been accepted and is pulled M
⌈
Kp2p
Mp

⌉
times; or k has not been accepted yet and is

pulled at least 2pM , i.e., is not pulled at most M
(⌈

Kp2p
Mp

⌉
− 2p

)
times. This gives:

(µ(k) − µ(M))(T explo − T explo
(k) ) ≤

p̂k∑
p=1

(µ(k) − µ(M))M
(⌈

Kp2p

Mp

⌉
− 2p

)
,

≤
p̂k∑
p=1

(µ(k) − µ(M))M
(
Kp2p

Mp
− 2p + 1

)
,

≤ p̂k(µ(k) − µ(M))M +
p̂k∑
p=1

(µ(k) − µ(M))(Kp −Mp)
M

Mp
2p.

We assumed that every arm k is correctly accepted or rejected after a time at most tk. This

implies that p̂k = o (log(T )). Moreover,Kp−Mp is the number of suboptimal arms not rejected

at phase p, i.e., Kp −Mp =
∑
j>M 1

(
p ≤ p̂(j)

)
and this proves Lemma 6.19.
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Proof of Lemma 6.20. For j > M , define Aj =
∑
k≤M

∑min(p̂(k),p̂(j))
p=1 (µ(k) − µ(M))2p MMp

. We

want to show Aj ≤ O
(

log(T )
µ(M)−µ(j)

)
with the considered conditions. Note N(p) = M(2p+1 − 1)

and ∆(p) =
√

c log(T )
N(p) . The inequality p̂(k) ≥ p then implies µ(k) − µ(M) < ∆(p), i.e.,

Aj ≤
∑
k≤M

p̂(j)∑
p=1

2p∆(p)1
(
p ≤ p̂(k)

) M
Mp

=
p̂(j)∑
p=1

2p∆(p)M

≤
p̂(j)∑
p=1

∆(p)(N(p)−N(p− 1))

The equality comes because
∑
k≤M 1

(
p ≤ p̂(k)

)
is exactly Mp. Then from the definition of

∆(p):

Aj ≤ c log(T )
p̂(j)∑
p=1

∆(p)
( 1

∆(p) + 1
∆(p− 1)

)( 1
∆(p) −

1
∆(p− 1)

)

≤ (1 +
√

2)c log(T )
p̂(j)∑
p=1

( 1
∆(p) −

1
∆(p− 1)

)
≤ (1 +

√
2)c log(T )/∆(p̂(j))

≤ (1 +
√

2)
√
c log(T )N(p̂(j))

By definition, N(p̂(j)) is smaller than the number of exploratory pulls on the j-th best arm and

is thus bounded by c log(T )
(µ(M)−µ(j))2 , leading to Lemma 6.20.

6.C.3 Selfish robustness of SIC-GT

In this section, the second point of Theorem 6.6 is proven. First Lemma 6.21 gives guarantees

for the punishment protocol. Its proof is given in Section 6.C.3.

Lemma 6.21. If the PunishHomogeneous protocol is started at time Tpunish by M − 1
players, then for the remaining player j, independently of her sampling strategy:

E[Rewj
T |punish] ≤ E[Rewj

Tpunish+tp ] + α̃
T − Tpunish − tp

M

M∑
k=1

µ(k),

with tp = O
(

K
(1−α̃)2µ(K)

log(T )
)

and α̃ = 1+(1−1/K)M−1

2 .

Proof of the second point of Theorem 6.6 (Nash equilibrium). First fix Tpunish the time at which

the punishment protocol starts if it happens (and T if it does not). Before this time, the selfish
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player can not perturb the initialization phase, except by changing the ranks distribution. More-

over, the exploration/exploitation phase is not perturbed as well, as claimed by Proposition 6.1.

The optimal strategy then earns at most Tinit during the initialization and #Comm during the

communication. With probability 1 − O
(
KM log(T )

T

)
, the initialization is successful and the

concentration bound of Lemma 6.5 holds for each arm and player all the time. The following is

conditioned on this event.

Note that during the exploration, the cooperative players pull every arm the exact same

amount of times. Since the upper bound time tk to accept or reject an arm does not depend on

the strategy of the selfish player, Lemma 6.18 actually holds for any cooperative player j:

∑
k≤M

(
µ(k) − µ(M)

)(T explo

M
− T j(k)

)
= O

 1
M

∑
k>M

log(T )
µ(M) − µk

 , (6.12)

where T j(k) is the number of pulls by player j on the k-th best arm during the exploration/exploitation.

The same kind of regret decomposition as in Equation (6.11) is possible for the regret of the self-

ish player j and especially:

R
explo
j ≥

∑
k≤M

(µ(k) − µ(M))
(
T explo

M
− T j(k)

)
.

However, the optimal strategy for the selfish player is to pull the best available arm during

the exploration and especially to avoid collisions. This implies the constraint T j(k) ≤ T explo −∑
j 6=j′ T

j′

(k). Using this constraint with Equation (6.12) yields T
explo

M −T j(k) ≥ −
∑
j 6=j′

T explo

M −T j
′

(k)
and then

R
explo
j ≥ −O

∑
k>M

log(T )
µ(M) − µk

 ,
which can be rewritten as

Rewexplo
j ≤ T explo

M

M∑
k=1

µ(k) +O

∑
k>M

log(T )
µ(M) − µk

 .
Thus, for any strategy s′ when adding the low probability event of a failed exploration or initial-

ization,

E[Rewj
tp+Tpunish

(s′, s−js−js−j)] ≤ (Tinit + #Comm + tp +O(KM log(T )))

+ E[Tpunish]− Tinit −#Comm
M

∑
k≤M

µ(k) +O

∑
k>M

log(T )
µ(M) − µk

 .
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Using Lemma 6.21, this yields:

E[Rewj
T (s′, s−js−js−j)] ≤ (Tinit + #Comm + tp +O(KM log(T )))

+ E[Tpunish]− Tinit −#Comm
M

∑
k≤M

µ(k) +O

∑
k>M

log(T )
µ(M) − µk


+ α̃

T − E[Tpunish]
M

M∑
k=1

µ(k).

The right term is maximized when E[Tpunish] is maximized, i.e., when it is T . We then get:

E[RewjT (s′, s−js−js−j)] ≤ T

M

∑
k≤M

µ(k) + ε,

where ε = O
(∑

k>M
log(T )

µ(M)−µk
+K2 log(T )+MK log2

(
log(T )

(µ(M)−µ(M+1))2

)
+ K log(T )

(1−α̃)2µ(K)

)
.

Proof of the second point of Theorem 6.6 (stability). Define E the bad event that the initializa-

tion is not successful or that an arm is poorly estimated at some time. Let ε′ = TP[E ] +
E[#Comm | ¬E ] +K log(T ). Then ε′ = O

(
KM log(T ) +KM log2

(
log(T )

(µ(M)−µ(M+1))2

))
.

Assume that the player j is playing a deviation strategy s′ such that for some other player i

and l > 0:

E[Rewi
T (s′, s−js−js−j)] ≤ E[Rewi

T (sss)]− l − ε′

First fix Tpunish the time at which the punishment protocol starts. Let us now compare s′

with the individual optimal strategy for player j, s∗. Let ε′ take account of the communication

phases, the initialization and the low probability events.

The number of pulls by each player during exploration/exploitation is given by Equation (6.12)

unless the punishment protocol is started. Moreover, the selfish player causes at most a collision

during exploration/exploitation before initiating the punishment protocol, so the loss of player i

before punishment is at most 1 + ε′.

After Tpunish, Lemma 6.21 yields that the selfish player suffers a loss at least

(1− α̃)T−Tpunish−tp
M

∑M
k=1 µ(k), while any cooperative player suffers at most T−Tpunish

M

∑M
k=1 µ(k).

The selfish player then suffers after Tpunish a loss at least (1 − α̃)((l − 1) − tp). Define

β = 1− α̃. We just showed:

E[Rewi
T (s′, s−js−js−j)] ≤ E[Rewi

T (sss)]−l−ε′ =⇒ E[Rewj
T (s′, s−js−js−j)] ≤ E[Rewj

T (s∗, s−js−js−j)]−β(l−1)+βtp

Moreover, thanks to the second part of Theorem 6.6, E[Rewj
T (s∗, s−js−js−j)] ≤ E[Rewj

T (sss)] + ε
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with ε = O
(∑

k>M
log(T )

µ(M)−µk
+K2 log(T )+MK log2

(
log(T )

(µ(M)−µ(M+1))2

)
+ K log(T )

(1−α̃)2µ(K)

)
. Then

by defining l1 = l + ε′, ε1 = ε+ βtp + βε′ + 1 = O(ε), we get:

E[Rewi
T (s′, s−js−js−j)] ≤ E[Rewi

T (sss)]− l1 =⇒ E[Rewj
T (s′, s−js−js−j)] ≤ E[Rewj

T (sss)] + ε1 − βl1.

Proof of Lemma 6.21.

The punishment protocol starts by estimating all means µk with a multiplicative precision of δ.

This is possible thanks to Lemma 6.22, which corresponds to Theorem 9 in (Cesa-Bianchi et al.,

2019a) and Lemma 13 in (Berthet and Perchet, 2017).

Lemma 6.22. Let X1, . . . , Xn be n-i.i.d. random variables in [0, 1] with expectation µ and

define S2
t = 1

t−1
∑t
s=1(Xs −Xt)2. For all δ ∈ (0, 1), if n ≥ n0, where

n0 =
⌈

2
3δµ log(T )

(√
9 1
δ2 + 961

δ
+ 85 + 3

δ
+ 1

)⌉
+ 2 = O

( 1
δ2µ

log(T )
)

and τ is the smallest time t ∈ {2, . . . , n} such that

δXt ≥ 2St (log(T )/t)1/2 + 14 log(T )
3(t− 1) ,

then, with probability at least 1− 3
T :

1. τ ≤ n0,

2. (1− δ)Xτ < µ < (1 + δ)Xτ .

Proof of Lemma 6.21. The punishment protocol starts for all cooperative players at Tpunish. For

δ = 1−γ
1+3γ , each player then estimates each arm. Lemma 6.22 gives that with probability at least

1− 3/T :

• the estimation ends after a time at most tp = O
(

K
δ2µ(K)

log(T )
)

,

• (1− δ)µ̂jk ≤ µk ≤ (1 + δ)µ̂jk.

The following is conditioned on this event. The last inequality can be reversed as µk
1+δ ≤

µ̂jk ≤
µk

1−δ . Then, this implies for every cooperative player j

1− pjk ≤
(
γ

(1 + δ)
∑M
m=1 µ(m)

(1− δ)Mµk

) 1
M−1

.
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The expected reward that gets the selfish player j by pulling k after the time Tpunish + tp is

thus smaller than γ 1+δ
1−δ

∑M

m=1 µ(m)
M .

Note that γ 1+δ
1−δ = 1+γ

2 = α̃. Considering the low probability event given by Lemma 6.22

adds a constant term that can be counted in tp. This finally yields the result of Lemma 6.21.

6.D Missing elements for RSD-GT

6.D.1 Description of the algorithm

This section provides a complete description of RSD-GT. Its pseudocode is given in Algo-

rithm 6.4. It relies on auxiliary protocols described by Algorithms 6.3 and 6.10 to 6.14.

Initialization phase. RSD-GT starts with the exact same initialization as SIC-GT, which is

given by Algorithm 6.3, to estimate M and attribute ranks among the players. Afterwards, they

start the exploration.

In the remaining of the algorithm, as already explained in Section 6.4.3, the time is divided

into superblocks, which are divided into M blocks of length 5K + MK + M2K. During the

j-th block of a superblock, the dictators ordering for RSD is (j, . . . ,M, 1, . . . , j−1). Moreover,

only the j-th player can send messages during this block if she is still exploring.

Exploration. The exploiting players sequentially pull all the arms in [K] to avoid collisions

with any other exploring player. Yet, they still collide with exploiting players.

RSD-GT is designed so that all players know at each round the M preferred arms of all

exploiting players and their order. The players thus know which arms are occupied by the

exploiting players during a block j. The communication arm is thus a common arm unoccupied

by any exploiting player. When an exploring player encounters a collision on this arm at the

beginning of the block, this means that another player signaled the start of a communication

block. In that case, the exploring player starts Listen, described by Algorithm 6.11, to receive

the messages of the communicating player.

On the other hand, when an exploring player j knows her M preferred arms and their order,

she waits for the next block j to initiate communication. She then proceeds to SignalPreferences,

given by Algorithm 6.13.

Communication block. In a communication block, the communicating player first collides

with each exploiting and exploring player to signal them the start of a communication block as

described by Algorithm 6.12. These collisions need to be done in a particular way given by
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Algorithm 6.4: RSD-GT
Input: T, δ

1 M̂, j ← Initialize (T,K); state← “exploring” and blocknumber← 1
2 Let πππ be a M×M matrix with only 0 // πjk is the k-th preferred arm by j

3 while t < T do
4 blocktime← t (mod 5K +MK +M2K) + 1
5 if blocktime = 1 then // new block

6 blocknumber← blocknumber (mod M) + 1; bjk(t)←
√

2 log(T )/N j
k(t)

7 Let λj be the ordering of the empirical means: µ̂j
λj
k

(t) ≥ µ̂j
λj
k+1

(t) for each k

8 if (blocknumber, state) = (j,“exploring”) and
∀k ∈ [M ], µ̂j

λj
k

− bj
λj
k

≥ µ̂j
λj
k+1

+ bj
λj
k+1

9 then πj ← λj ; state← SignalPreferences (πππ, j) // send Top-M arms

10 end
11 (l, comm_arm)← ComputeRSD (πππ, blocknumber) // j pulls lj

12 if state = “exploring” then
13 Pull lj and update µ̂j

lj

14 if lj = comm_arm and ηlj = 1 then // received signal

15 if blocktime > 4K then state← “punishing”
16 else (state, πblocknumber)← Listen (blocknumber, state,πππ, comm_arm)
17 end

18 if state = “exploiting” and ∃i, k such that πik = 0 then
19 Pull lj // arm attributed by RSD algo

20 if lj 6∈ {li|i ∈ [M ] \ {j}} and ηlj (t) = 1 then // received signal

21 if blocktime > 4K then state← “punishing”
22 else (state, πblocknumber)← Listen (blocknumber, state,πππ, comm_arm)
23 end

24 if state = “exploiting” and ∀i, k, πik 6= 0 then // all players are exploiting

25 Draw inspect ∼ Bernoulli(
√

log(T )/T )
26 if inspect = 1 then // random inspection

27 Pull li with i chosen uniformly at random among the other players
28 if ηli = 0 then state← “punishing” // lying player

29 else
30 Pull lj ; if observed two collisions in a row then state← “punishing”
31 end
32 if state = “punishing” then PunishSemiHetero (δ)
33 end

SendBit so that all players correctly detect the start of a communication block. These players

then repeat this signal to ensure that every player is listening.
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Protocol 6.10: ComputeRSD
Input: πππ, blocknumber

1 taken_arms← ∅
2 for s = 0, . . . ,M − 1 do
3 dict← s+ blocknumber− 1(mod M) + 1 // current dictator

4 p← min{p′ ∈ [M ] | πdict
p′ 6∈ taken_arms} // best available choice

5 if πdict
p 6= 0 then ldict ← πdict

p and add πdict
p to taken_arms

6 else ldict ← t+ dict (mod K) + 1 // explore

7 end
8 comm_arm← min[K] \ taken_arms
9 return (l, comm_arm)

The communicating player then sends to all players her M preferred arms in order of

preferences. Afterwards, each player repeats this list to ensure that no malicious player in-

terfered during communication. As soon as some malicious behavior is observed, the start of

PunishSemiHetero, given by Protocol 6.14, is signaled to all players.

Exploitation. An exploiting player starts each block j by computing the attribution of the RSD

algorithm between the exploiting players given their known preferences and the dictatorship

ordering (j, . . . , j−1). She then pulls her attributed arm for the whole block, unless she receives

a signal.

A signal is received when she collides with an exploring player, while unintended9. If it

is at the beginning of a block, it means that a communication block starts. Otherwise, she just

enters the punishment protocol. Note that the punishment protocol starts by signaling the start

of PunishSemiHetero to ensure that every cooperative player starts punishing.

Another security is required to ensure that the selfish player truthfully reports her prefer-

ences. She could otherwise report fake preferences to decrease another player’s utility while her

best arm remains uncontested and thus available. To avoid this, RSD-GT uses random inspec-

tions when all players are exploiting. With probability
√

log(T )/T at each round, each player

checks that some other player is indeed exploiting the arm she is attributed by the RSD algo-

rithm. If it is not the case, the inspecting player signals the start of PunishSemiHetero to

everyone by colliding twice with everybody, since a single collision could be a random inspec-

tion. Because of this, the selfish player can not pull another arm than the attributed one too often

without starting a punishment scheme. Thus, if she did not report her preferences truthfully, this

also has a cost for her.

9She normally collides with exploring players. Yet as she knows the set of exploring players, she exactly knows
when this happens.
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Protocol 6.11: Listen
Input: blocknumber, state,πππ, arm_comm

1 ExploitPlayers = {i ∈ [M ] | πi1 6= 0}; λ← πblocknumber

2 if λ1 6= 0 then state← “punishing” // this player already sent

3 while blocktime ≤ 2K do Pull t+ j(mod K) + 1
4 if blocktime = 2K then SendBit (comm_arm,ExploitPlayers, j) // repeat

signal

5 else while blocktime ≤ 4K do Pull t+ j(mod K) + 1
6
7 for K rounds do
8 if state = “punishing” then Pull j // signal punishment

9 else
10 Pull k = t+ j(mod K) + 1 ; if ηk = 1 then state← “punishing”
11 end

12 for n = 1, . . . ,MK do // receive preferences

13 Pull k = t+ j(mod K) + 1
14 m← dn/Ke // communicating player sends her m-th pref. arm

15 if ηk = 1 then
16 if λm 6= 0 then state← “punishing” // received two signals

17 else λm ← k

18 end

19 for n = 1, . . . ,M2K do // repetition block

20 m←
⌈
n (mod MK)

K

⌉
and l← d n

MK e // l repeats the m-th pref.

21 if j = l then Pull λm
22 else
23 Pull k = t+ j (mod K) + 1
24 if ηk = 1 and λm 6= k then state← “punishing” // info differs

25 end
26 if # {λm 6= 0 | m ∈ [M ]} 6= M then state← “punishing” // did not send all

27 return (state, λ)

6.D.2 Regret analysis

This section aims at proving the first point of Theorem 6.7. RSD-GT uses the exact same ini-

tialization phase as SIC-GT, and its guarantees are thus given by Lemma 6.14. Here again, the

regret is decomposed into three parts:

RRSD(T ) = E[Rinit +Rcomm +Rexplo], (6.13)
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Protocol 6.12: SendBit
Input: comm_arm,ExploitPlayers, j

1 if ExploitPlayers = ∅ then j̃ ← j

2 else j̃ ← min ExploitPlayers
3 for K rounds do Pull t+ j̃(mod K) + 1 // send bit to exploiting players

4 for K rounds do Pull comm_arm // send bit to exploring players

Protocol 6.13: SignalPreferences
Input: πππ, j, comm_arm

1 ExploitPlayers = {i ∈ [M ] \ {j} | πi1 6= 0}; λ← πj // λ is signal to send

2 state← “exploiting” // state after the protocol

3 SendBit (comm_arm,ExploitPlayers, j) // initiate communication block

4 for 2K rounds do Pull t+ j(mod K) + 1 // wait for repetition

5 for K rounds do // receive punish signal

6 Pull t+ j(mod K) + 1; if ηk = 1 then state← “punishing”
7 end

8 for n = 1, . . . ,MK do pull λd nK e // send k-th preferred arm

9 for n = 1, . . . ,M2K do // repetition block

10 m←
⌈
n (mod MK)

K

⌉
and l← d n

MK e // l repeats the m-th pref.

11 if j = l then Pull λm
12 else
13 Pull k = t+ j (mod K) + 1
14 if ηk = 1 and λm 6= k then state← “punishing” // info differs

15 end
16 return state

where

Rinit = TinitEσ∼U(SM )

[ M∑
k=1

µ
σ(k)
πσ(k)

]
−

Tinit∑
t=1

M∑
j=1

µj
πj(t)(1− η

j(t)) with Tinit = (12eK2 +K) log(T ),

Rcomm = #CommEσ∼U(SM )

[ M∑
k=1

µ
σ(k)
πσ(k)

]
−

∑
t∈Comm

M∑
j=1

µj
πj(t)(1− η

j(t)),

Rexplo = #ExploEσ∼U(SM )

[ M∑
k=1

µ
σ(k)
πσ(k)

]
−

∑
t∈Explo

M∑
j=1

µj
πj(t)(1− η

j(t))

with Comm defined as all the rounds of a block where at least a cooperative player uses Listen

protocol and Explo = {Tinit + 1, . . . , T} \ Comm. In case of a successful initialization, a single

player can only initiate a communication block once without starting a punishment protocol.
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Protocol 6.14: PunishSemiHetero
Input: δ

1 if ExploitPlayers = [M ] then collide with each player twice
2 else // signal punishment during rounds 3K + 1, . . . , 5K of a block

3 for 3K rounds do Pull t+ j(mod K) + 1
4 SendBit (comm_arm,ExploitPlayers, j)
5 end

6 α←
(

1+δ
1−δ

)2
(1− 1/K)M−1 and δ′ = 1−α

1+3α

7 Set µ̂jk, S
j
k, v

j
k, n

j
k ← 0

8 while ∃k ∈ [K], δ′µ̂jk < 2sjk(log(T )/njk)1/2 + 14 log(T )
3(nj

k
−1)

do // estimate µjk

9 Pull k = t+ j (mod K) + 1
10 if δ′µ̂jk < 2sjk(log(T )/njk)1/2 + 14 log(T )

3(nj
k
−1)

then

11 Update µ̂jk ←
nj
k

nj
k
+1
µ̂jk +Xk(t) and njk ← njk + 1

12 Update Sjk ← Sjk + (Xk)2 and sjk ←
√

Sj
k
−(µ̂j

k
)2

nj
k
−1

13 end

14 pk ←
(

1−
(
α

∑M

l=1 µ̂
j
(l)(t)

Mµ̂j
k
(t)

) 1
M−1

)
+

; p̃k ← pk/
∑K
l=1 pl // renormalize

15 while t ≤ T do Pull k with probability pk // punish

Thus, as long as no punishment protocol is started: #Comm ≤ M(5K + MK + M2K) =
O(M3K).

Denote by ∆j = mink∈[M ] µ
j
(k)−µ

j
(k+1) the level of precision required for player j to know

her M preferred arms and their order. Proposition 6.2 gives the exploration time required for

every player j:

Proposition 6.2. With probability 1−O
(
K
T

)
and as long as no punishment protocol is started,

the player j starts exploiting after at most O
(
K log(T )

(∆j)2 +M3K
)

exploration pulls.

Proof. In the following, the initialization is assumed to be successful, which happens with prob-

ability 1−O
(
M
T

)
. Moreover, Hoeffding inequality yields:

P

∀t ≤ T, ∣∣∣µ̂jk(t)− µjk(t)∣∣∣ ≥
√√√√2 log(T )

N j
k(t)

 ≤ 2
T

whereN j
k(t) is the number of exploratory pulls on arm k by player j. With probability 1−O

(
K
T

)
,

player j then correctly estimates all arms at each round. The remaining of the proof is condi-

tioned on this event.
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During the exploration, player j sequentially pulls the arms in [K]. Denote by n the smallest

integer such that
√

2 log(T )
n ≤ 4∆j . It directly comes that n = O

(
log(T )
(∆j)2

)
. Under the considered

events, player j then has determined her M preferred arms and their order after Kn exploratory

pulls. Moreover, she needs at most M blocks before being able to initiate her communication

block and starts exploiting. Thus, she needs at most O
(
K log(T )

(∆j)2 +M3K
)

exploratory pulls,

leading to Proposition 6.2.

Proof of the first point of Theorem 6.7. Assume all players play RSD-GT. Simply by bounding

the size of the initialization and the communication phases, it comes:

Rinit +Rcomm ≤ O
(
MK2 log(T )

)
.

Proposition 6.2 yields that with probability 1 − O
(
KM
T

)
, all players start exploitation after at

most O
(
K log(T )

∆2

)
exploratory pulls.

For p =
√

log(T )/T , with probabilityO(p2M) at any round t, a player is inspecting another

player who is also inspecting or a player receives two consecutive inspections. These are the only

ways to start punishing when all players are cooperative. As a consequence, when all players

follow RSD-GT, they initiate the punishment protocol with probability O
(
p2MT

)
. Finally, the

total regret due to this event grows as O
(
M2 log(T )

)
.

If the punishment protocol is not initiated, players cycle through the RSD matchings of

σ◦σ−1
0 , . . . , σ◦σ−M0 where σ0 is the classicalM -cycle and σ is the players permutation returned

by the initialization. Define U(σ) =
∑M
k=1 µ

σ(k)
πσ(k), where πσ(k) is the arm attributed to the k-th

dictator, σ(k), as defined in Section 6.3.2. U(σ) is the social welfare of RSD algorithm when

the dictatorships order is given by the permutation σ. As players all follow RSD-GT here, σ is

chosen uniformly at random in SM and any σ ◦ σ−k0 as well. Then

Eσ∼U(SM )

[
1
M

M∑
k=1

U(σ ◦ σ−M0 )
]

= Eσ∼U(SM ) [U(σ)] .

This means that in expectation, the utility given by the exploitation phase is the same as the

utility of the RSD algorithm when choosing a permutation uniformly at random. Considering the

low probability event of a punishment protocol, an unsuccesful initialization or a bad estimation

of an arm finally yields:

Rexplo ≤ O
(
MK log(T )

∆2

)
.

Equation (6.13) concludes the proof.
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6.D.3 Selfish-robustness of RSD-GT

In this section, we prove the two last points of Theorem 6.7. Three auxiliary Lemmas are first

needed. They are proved in Section 6.D.3.

1. Lemma 6.23 compares the utility received by player j from the RSD algorithm with the

utility given by sequentially pulling her M best arms in the δ-heterogeneous setting.

2. Lemma 6.24 gives an equivalent version of Lemma 6.21, but for the δ-heterogeneous

setting.

3. Lemma 6.25 states that the expected utility of the assignment of any player during the

exploitation phase does not depend on the strategy of the selfish player. The intuition

behind this result is already given in Section 6.4.3.

In the case of several selfish players, they could actually fix the joint distribution of (σ−1(j), σ−1(j′)).

A simple rotation with aM -cycle is then not enough to recover a uniform distribution over

SM in average. A more complex rotation is then required and the dependence inM would

blow up with the number of selfish players.

Lemma 6.23. In the δ-heterogeneous case for every player j and permutation σ:

1
M

M∑
k=1

µj(k) ≤ Ũj(σ) ≤ (1 + δ)2

(1− δ)2M

M∑
k=1

µj(k),

where Ũj(σ) := 1
M

∑M
k=1 µ

j

π
σ◦σ−k0

(σk0◦σ−1(j)).

Following the notation of Section 6.3.2, πσ(σ−1(j)) is the arm attributed to player j by RSD

when the dictatorship order is given by σ. Ũj(σ) is then the average utility of the exploitation

when σ is the permutation given by the initialization.

Lemma 6.24. Recall that γ = (1− 1/K)M−1. In the δ-heterogeneous setting with δ < 1−√γ
1+√γ ,

if the punish protocol is started at time Tpunish by M − 1 players, then for the remaining player
j, independently of her sampling strategy:

E[RewjT |punishment] ≤ E[RewjTpunish+tp ] + α̃
T − Tpunish − tp

M

M∑
k=1

µj(k),

with tp = O
(

K log(T )
(1−δ)(1−α̃)2µ(K)

)
and α̃ = 1+( 1+δ

1−δ )
2
γ

2 .
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Lemma 6.25. The initialization phase is successful when all players end with different ranks in
[M ]. For each player j, independently of the behavior of the selfish player:

Eσ∼successful initialization

[
Ũj(σ)

]
= Eσ∼U(SM )

[
µjπσ(σ−1(j))

]
.

where Ũj(σ) is defined as in Lemma 6.23 above.

Proof of the second point of Theorem 6.7 (Nash equilibrium). First fix Tpunish the beginning of

the punishment protocol. Note s the profile where all players follow RSD-GT and s′ the indi-

vidual strategy of the selfish player j.

As in the homogeneous case, the player earns at most Tinit + #Comm during both initial-

ization and communication. She can indeed choose her rank at the end of the initialization, but

this has no impact on the remaining of the algorithm (except for a M3K term due to the length

of the last uncompleted superblock), thanks to Lemma 6.25.

With probability 1−O
(
KM+M log(T )

T

)
, the initialization is successful, the arms are correctly

estimated and no punishment protocol is due to unfortunate inspections (as already explained in

Section 6.D.2). The following is conditioned on this event.

Proposition 6.2 holds independently of the strategy of the selfish player. Moreover, the

exploiting players run the RSD algorithm only between the exploiters. This means that when all

cooperative players are exploiting, if the selfish player did not signal her preferences, she would

always be the last dictator in the RSD algorithm. Because of this, it is in her interest to report as

soon as possible her preferences.
Moreover, reporting truthfully is a dominant strategy for the RSD algorithm, meaning that

when all players are exploiting, the expected utility received by the selfish player is at most the
utility she would get by reporting truthfully. As a consequence, the selfish player can improve her
expected reward by at most the length of a superblock during the exploitation phase. Wrapping
up all of this and defining t0 the time at which all other players start exploiting:

E
[
RewjTpunish+tp(s′, s−js−js−j)

]
≤ t0 + (Tpunish + tp − t0)Eσ∼U(SM )

[
µjπσ(σ−1(j))

]
+O(M3K).

with t0 = O
(
K log(T )

∆2 +K2 log(T )
)

. Lemma 6.24 then yields for α̃ = 1+( 1+δ
1−δ )

2
α

2 :

E
[
RewjT (s′, s−js−js−j)

]
≤ t0+(Tpunish+tp−t0)Eσ∼U(SM )

[
µjπσ(σ−1(j))

]
+α̃

T − Tpunish − tp
M

M∑
k=1

µj(k)+O(M3K).

Thanks to Lemma 6.23, Eσ∼U(SM )
[
µjπσ(σ−1(j))

]
≥
∑M

k=1 µ
j
(k)

M . We assume δ < 1−(1−1/K)
M−1

2

1+(1−1/K)
M−1

2

here, so that α̃ < 1. Because of this, the right term is maximized when Tpunish is maximized,

i.e., equal to T . Then:
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E
[
Rewj

T (s′, s−js−js−j)
]
≤ TEσ∼U(SM )

[
µjπσ(σ−1(j))

]
+ t0 + tp +O(M3K).

Using the first point of Theorem 6.7 to compare TEσ∼U(SM )
[
µjπσ(σ−1(j))

]
with Rewj

T (sss)
and adding the low probability event then yields the first point of Theorem 6.7.

Proof of the second point of Theorem 6.7 (stability). For p0 = O
(
KM+M log(T )

T

)
, with proba-

bility at least 1− p0, the initialization is successful, the cooperative players start exploiting with
correct estimated preferences after a time at most t0 = O

(
K2 log(T ) + K log(T )

∆2

)
and no pun-

ishment protocol is started due to unfortunate inspections. Define ε′ = t0 + Tp0 + 7M3K.
Assume that the player j is playing a deviation strategy s′ such that for some i and l > 0:

E
[
RewiT (s′, s−js−js−j)

]
≤ E

[
RewiT (sss)

]
− l − ε′

First, let us fix σ the permutation returned by the initialization, Tpunish the time at which the

punishment protocol starts and divide l = lbefore punishment + lafter punishment in two terms: the

regret incurred before the punishment protocol and the regret after. Let us now compare s′

with s∗, the optimal strategy for player j. Let ε take account of the low probability event of

a bad initialization/exploration, the last superblock that remains uncompleted, the time before

all cooperative players start the exploitation and the event that a punishment accidentally starts.

Thus the only way for player i to suffer some additional regret before punishment is to lose it

during a completed superblock of the exploitation. Three cases are possible:

1. The selfish player truthfully reports her preferences. The average utility of player i during

the exploitation is then Ũi(σ) as defined in Lemma 6.25. The only way to incur some additional

loss to player i before the punishment is then to collide with her, in which case her loss is at

most (1 + δ)µ(1) while the selfish player’s loss is at least (1− δ)µ(M).

After Tpunish, Lemma 6.24 yields that the selfish player suffers a loss at least (1−α̃)T−Tpunish−tp
M

∑M
k=1 µ

j
(k),

while any cooperative player i suffers a loss at most (T −Tpunish)Ũi(σ). Thanks to Lemma 6.23

and the δ-heterogeneity assumption, this term is smaller than T−Tpunish
M

(
1+δ
1−δ

)3∑M
k=1 µ

j
(k).

Then, the selfish player after Tpunish suffers a loss at least (1−α̃)(1−δ)3

(1+δ)3 lafter punish − tp.

In the first case, we thus have for β = min( (1−α̃)(1−δ)3

(1+δ)3 ,
(1−δ)µ(M)
(1+δ)µ(1)

):

E[Rewj
T (s′, s−js−js−j)|σ] ≤ E[Rewj

T (s∗, s−js−js−j)|σ]− βl + tp.

2. The selfish player never reports her preferences. In this case, it is obvious that the utility re-

turned by the assignments to any other player is better than if the selfish player reports truthfully.
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Then the only way to incur some additional loss to player i before punishment is to collide with

her, still leading to a ratio of loss at most
µj(M)
µi(1)

.

From there, it can be concluded as in the first case that for β = min( (1−α̃)(1−δ)3

(1+δ)3 ,
(1−δ)µ(M)
(1+δ)µ(1)

):

E[Rewj
T (s′, s−j)|σ] ≤ E[Rewj

T (s∗, s−j)|σ]− βl + tp.

3. The selfish player reported fake preferences. If these fake preferences never change the issue

of the ComputeRSD protocol, this does not change from the first case. Otherwise, for any block

where the final assignment is changed, the selfish player does not receive the arm she would get

if she reported truthfully. Denote by n the number of such blocks, by Nlie the number of times

player j did not pull the arm attributed by ComputeRSD during such a block before Tpunish and

by lb the loss incurred to player i on the other blocks.

As for the previous cases, the loss incurred by the selfish player during the blocks where the

assignment of ComputeRSD is unchanged is at least (1−δ)µ(M)
(1+δ)µ(1)

lb.

Each time the selfish player pulls the attributed arm by ComputeRSD in a block where the
assignment is changed, she suffers a loss at least ∆. The total loss for the selfish player is then
(w.r.t. the optimal strategy s∗) at least:

(1− α̃)
T − Tpunish − tp

M

M∑
k=1

µj(k) +
( n
M

(Tpunish − t0)−Nlie

)
∆ +

(1− δ)µ(M)

(1 + δ)µ(1)
lb.

On the other hand, the loss for a cooperative player is at most:

T − Tpunish

M

(
1 + δ

1− δ

)3 M∑
k=1

µj(k) + n

M
(Tpunish − t0)(1 + δ)µ(1) + lb.

Moreover, each time the selfish player does not pull the attributed arm by ComputeRSD,

she has a probability p̃ = 1 − (1 − p
M−1)M−1 ≥ p

2 for p =
√

log(T )
T , to receive a random

inspection and thus to trigger the punishment protocol. Because of this, Nlie follows a geometric

distribution of parameter p̃ and E[Nlie] ≤ 2
p .

When taking the expectations over Tpunish and Nlie, but still fixing σ and n, we get:

lselfish ≥ (1− α̃)T − E[Tpunish]− tp
M

M∑
k=1

µj(k) +
(
n

M

(
E[Tpunish]− t0

)
− 2/p

)
∆ +

(1− δ)µ(M)
(1 + δ)µ(1)

lb,
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l ≤
T − E[Tpunish]

M

(1 + δ

1− δ

)3 M∑
k=1

µj(k) + n

M
(E[Tpunish]− t0)(1 + δ)µ(1) + lb.

First assume that n
M (E[Tpunish]− t0) ≥ 4

p . In that case, we get:

lselfish ≥ (1− α̃)T − E[Tpunish]− tp
M

M∑
k=1

µj(k) + n

2M (E[Tpunish]− t0)∆ +
(1− δ)µ(M)
(1 + δ)µ(1)

lb,

l ≤
T − E[Tpunish]

M

(1 + δ

1− δ

)3 M∑
k=1

µj(k) + n

M
(E[Tpunish]− t0)(1 + δ)µ(1) + lb.

In the other case, we have by noting that (1 + δ)µ(1) ≤ 1+δ
1−δ

∑M
k=1 µ

j
(k):

lselfish ≥ (1− α̃)T
(

1− 4M√
log(T )

− tp

)
1
M

M∑
k=1

µj(k) +
(1− δ)µ(M)
(1 + δ)µ(1)

lb,

l ≤ T
(

1 + 4M√
log(T )

)
1
M

(1 + δ

1− δ

)3 M∑
k=1

µj(k) + lb.

In both of these two cases, for β̃ = min
(

(1− α̃)
(

1+δ
1−δ

)3 √log(T )−4M√
log(T )+4M

; ∆
(1+δ)µ(1)

; (1−δ)µ(M)
(1+δ)µ(1)

)
:

lselfish ≥ β̃l − tp

Let us now gather all the cases. When taking the previous results in expectation over σ, this

yields for the previous definition of β̃:

E[Rewi
T (s′, s−js−js−j)] ≤ E[Rewi

T (sss)]−l−ε′ =⇒ E[Rewj
T (s′, s−js−js−j)] ≤ E[Rewj

T (s∗, s−js−js−j)]−β̃l+tp+t0.

Moreover, thanks to the second part of Theorem 6.7, E[Rewj
T (s∗, s−js−js−j)] ≤ E[Rewj

T (sss)] + ε,

with ε = O
(
K log(T )

∆2 +K2 log(T ) + K log(T )
(1−δ)r2µ(K)

)
. Then by defining l1 = l+ ε′, ε1 = ε+ tp +

t0 + β̃ε′ = O(ε), we get:

E[Rewi
T (s′, s−js−js−j)] ≤ E[Rewi

T (sss)]− l1 =⇒ E[Rewj
T (s′, s−js−js−j)] ≤ E[Rewj

T (sss)]− β̃l1 + ε1.
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Auxiliary lemmas

Proof of Lemma 6.23. Assume that player j is the k-th dictator for an RSD assignment. Since

only k − 1 arms are reserved before she chooses, she earns at least µj(k) after this assignment.

This yields the first inequality:

Ũj(σ) ≥
∑M
k=1 µ

j
(k)

M

Still assuming that player j is the k-th dictator, let us prove that she earns at most
(

1+δ
1−δ

)2
µj(k).

Assume w.l.o.g. that she ends up with the arm l such that µjl > µj(k). This means that a dictator

j′ before her preferred an arm i to the arm l with µjl > µj(k) ≥ µ
j
i .

Since j′ preferred i to l, µj
′

i ≥ µ
j′

l . Using the δ-heterogeneity assumption, it comes:

µjl ≤
1 + δ

1− δµ
j′

l ≤
1 + δ

1− δµ
j′

i ≤
(1 + δ

1− δ

)2
µji ≤

(1 + δ

1− δ

)2
µj(k)

Thus, player j earns at most
(

1+δ
1−δ

)2
µj(k) after this assignment, which yields the second inequal-

ity of Lemma 6.23.

Proof of Lemma 6.24. The punishment protocol starts for all cooperative players at Tpunish. De-

fine α′ =
(

1+δ
1−δ

)2
γ and δ′ = 1−α′

1+3α′ . The condition r > 0 is equivalent to δ′ > 0.

As in the homogeneous case, each player then estimates each arm such that after tp =
O
(

K log(T )
(1−δ)·(δ′)2µ(K)

)
10 rounds, (1 − δ′)µ̂jk ≤ µjk ≤ (1 + δ)µ̂jk with probability 1 −O (KM/T ),

thanks to Lemma 6.22. This implies that for any cooperative player j′:

1− pj
′

k ≤

γ (1 + δ′)
∑M
m=1 µ

j′

(m)

(1− δ′)Mµj
′

k


1

M−1

≤

γ 1 + δ′

1− δ′
(1 + δ

1− δ

)2
∑M
m=1 µ

j
(m)

Mµjk

 1
M−1

The last inequality is due to the fact that in the δ-heterogeneous setting, µ
j
k

µj
′
k

∈ [
(

1−δ
1+δ

)2
,
(

1+δ
1−δ

)2
].

Thus, the expected reward that gets the selfish player j by pulling k after the time Tpunish + tp is

smaller than γ 1+δ′
1−δ′

(
1+δ
1−δ

)2
∑M

m=1 µ
j
(m)

M .

10The δ-heterogeneous assumption is here used to say that 1
µ
j

(K)
≤ 1

(1−δ)µ(K)
.
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Note that γ 1+δ′
1−δ′

(
1+δ
1−δ

)2
= α̃. Considering the low probability event of bad estimations of

the arms adds a constant term that can be counted in tp, leading to Lemma 6.24.

Proof of Lemma 6.25. Consider the selfish player j and denote σ the permutation given by the

initialization. The rank of player j′ is then σ−1(j′). All other players j pull uniformly at random

until having an attributed rank. Moreover, player j does not know the players with which she

collides. This implies that she can not correlate her rank with the rank of a specific player, i.e.,

Pσ [σ(k′) = j′|σ(k) = j] does not depend on j′ as long as j′ 6= j.

This directly implies that the distribution of σ|σ(k) = j is uniform over Sj→k
M . Thus, the

distribution of σ ◦ σ−l0 |σ(k) = j is uniform over Sj→k+l (mod M)
M and finally for any j′ ∈ [M ]:

Eσ∼successful initialization

[
1
M

M∑
l=1

µj
π
σ◦σ−l0

(σl0◦σ−1(j))

∣∣∣∣ σ(k) = j

]
= 1
M

M∑
l=1

E
σ∼U

(
Sj→lM

) [µj′πσ(σ−1(j′))

]
,

= 1
M

M∑
l=1

1
(M − 1)!

∑
σ∈Sj→lM

µj
′

πσ(σ−1(j′)),

= 1
M !

∑
σ∈SM

µj
′

πσ(σ−1(j′)).

Taking the expectation of the left term then yields Lemma 6.25.
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Chapter 7

Decentralized Learning in Online
Queuing Systems

Motivated by packet routing in computer networks and resource allocation in radio net-
works, online queuing systems are composed of queues receiving packets at different rates.
Repeatedly, they send packets to servers, each of them treating only at most one packet at a
time. In the centralized case, the number of accumulated packets remains bounded (i.e., the
system is stable) as long as the ratio between service rates and arrival rates is larger than
1. In the decentralized case, individual no-regret strategies ensures stability when this ratio
is larger than 2. Yet, myopically minimizing regret disregards the long term effects due to
the carryover of packets to further rounds. On the other hand, minimizing long term costs
leads to stable Nash equilibria as soon as the ratio exceeds e

e−1 . Stability with decentralized
learning strategies with a ratio below 2 was a major remaining question. We first argue that
for ratios up to 2, cooperation is required for stability of learning strategies, as selfish min-
imization of policy regret, a patient notion of regret, might indeed still be unstable in this
case. We therefore consider cooperative queues and propose the first learning decentralized
algorithm guaranteeing stability of the system as long as the ratio of rates is larger than 1,
thus reaching performances comparable to centralized strategies.
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7.1 Introduction

As explained in Chapter 2, inefficient decisions in repeated games can stem from both strategic

and learning considerations. First, strategic agents selfishly maximize their own individual re-

ward at others’ expense, which is measured by the price of anarchy in the pessimistic case and

the price of stability in the optimistic one.

Many related results are known in classical repeated games (see e.g., Cesa-Bianchi and Lu-

gosi, 2006; Roughgarden, 2010), where a single game is repeated over independent rounds (but

the agents strategies might evolve and depend on the history). Motivated by packet routing in

computer networks, Gaitonde and Tardos (2020a) introduced a repeated game with a carryover

feature: the outcome of a round does not only depend on the actions of the agents, but also on

the previous rounds. They consider heterogeneous queues sending packets to servers. If several

queues simultaneously send packets to the same server, only the oldest packet is treated by the

server.

Because of this carryover effect, little is known about this type of game. In a first paper,

Gaitonde and Tardos (2020a) proved that if queues follow suitable no-regret strategies, a ratio

of 2 between server and arrival rates leads to stability of the system, meaning that the number of

packets accumulated by each queue remains bounded. However, the assumption of regret mini-

mization sort of reflects a myopic behavior and is not adapted to games with carryover. Gaitonde

and Tardos (2020b) subsequently consider a patient game, where queues instead minimize their

asymptotic number of accumulated packets. A ratio only larger than e
e−1 then guarantees the sta-

bility of the system, while a smaller ratio leads to inefficient Nash equilibria. As a consequence,

going below the e
e−1 factor requires some level of cooperation between the queues. This result

actually holds with perfect knowledge of the problem parameters and it remained even unknown

whether decentralized learning strategies can be stable with a ratio below 2.

We first argue that decentralized queues need some level of cooperation to ensure stability

with a ratio of rates below 2. Policy regret can indeed be seen as a patient alternative to the regret

notion. Yet even minimizing the policy regret might lead to instability when this ratio is below 2.
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An explicit decentralized cooperative algorithm called ADEQUA (A DEcentralized QUeuing

Algorithm) is thus proposed. It is the first decentralized learning algorithm guaranteeing stability

when this ratio is only larger than 1. ADEQUA does not require communication between the

queues, but uses synchronisation between them to accurately estimate the problem parameters

and avoid interference when sending packets. Our main result is given by Theorem 7.1 below,

whose formal version, Theorem 7.5 in Section 7.3, also provides bounds on the number of

accumulated packets.

Theorem 7.1. If the ratio between server rates and arrival rates is larger than 1 and all queues

follow ADEQUA, the system is strongly stable.

The remaining of the chapter is organised as follows. The model and existing results are

recalled in Section 7.2. Section 7.3 argues that cooperation is required to guarantee stability of

learning strategies when the ratio of rates is below 2. ADEQUA is then presented in Section 7.4,

along with insights for the proof of Theorem 7.1. Section 7.5 finally compares the behavior

of ADEQUA with no-regret strategies on toy examples and empirically confirms the different

known theoretical results.

7.1.1 Additional related work

Queuing theory includes applications in diverse areas such as computer science, engineering,

operation research (Shortle et al., 2018). Borodin et al. (1996) for example use the stability the-

orem of Pemantle and Rosenthal (1999), which was also used by Gaitonde and Tardos (2020a),

to study the problem of packet routing through a network. Our setting is the single-hop particular

instance of throughput maximization in wireless networks. Motivated by resource allocation in

multihop radio problem, packets can be sent through more general routing paths in the original

problem. Tassiulas and Ephremides (1990) proposed a first stable centralized algorithm, when

the service rates are known a priori. Stable decentralized algorithms were later introduced in

specific cases (Neely et al., 2008; Jiang and Walrand, 2009; Shah and Shin, 2012), when the re-

wards Xk(t) are observed before deciding which server to send the packet. The main challenge

is then of coordination, where queues avoid collisions with each other. The proposed algorithms

are thus not adapted to our setting, where both coordination between queues and learning the

service rates are required. We refer the reader to (Georgiadis et al., 2006) for an extended survey

on resource allocation in wireless networks.

Krishnasamy et al. (2016) first considered online learning for such queuing systems model,

in the simple case of a single queue. It is a particular instance of stochastic multi-armed bandits,

a celebrated online learning model, where the agent repeatedly takes an action within a finite
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set and observes its associated reward. This model becomes intricate when considering multiple

queues, as they interfere when choosing the same server. It is then related to the multiplayer

bandits problem studied in Part I.

The collision model is here different as one of the players still gets a reward. It is thus even

more closely related to competing bandits (Liu et al., 2020b; Liu et al., 2020a), where arms

have preferences over the players and only the most preferred player pulling the arm actually

gets the reward. Arm preferences are here not fixed and instead depend on the packets’ ages.

While collisions can be used as communication tools between players in multiplayer bandits, this

becomes harder with an asymmetric collision model as in competing bandits. However, some

level of communication remains possible (Sankararaman et al., 2020; Basu et al., 2021). In

queuing systems, collisions are not only asymmetric, but depend on the age of the sent packets,

making such solutions unsuited.

While multiplayer bandits literature considers cooperative players, Chapter 6 showed that

cooperative algorithms could be made robust to selfish players. On the other hand, competing

bandits consider strategic players and arms as the goal is to reach a bipartite stable matching

between them. Despite being cooperative, ADEQUA also has strategic considerations as the

queues’ strategy converges to a correlated equilibrium of the patient game described in Sec-

tion 7.2.

An additional difficulty here appears as queues are asynchronous: they are not active at

each round, but only when having packets left. This is different from the classical notion of

asynchronicity (Bonnefoi et al., 2017), where players are active at each round with some fixed

probability. Communication schemes in multiplayer bandits rely on this synchronisation as-

sumption. While such a level of synchronisation is not available here, some lower level is still

used to avoid collisions between queues and to allow a limited exchange of information between

them.

7.2 Queuing Model

We consider a queuing system composed of N queues and K servers, associated with vectors of

arrival and service rates λ,µ, where at each time step t = 1, 2, . . . , the following happens:

• each queue i ∈ [N ] receives a new packet with probability λi ∈ [0, 1], that is marked with

the timestamp of its arrival time. If the queue currently has packet(s) on hold, it sends one

of them to a chosen server j based on its past observations.

• Each server j ∈ [K] attempts to clear the oldest packet it has received, breaking ties

uniformly at random. It succeeds with probability µj ∈ [0, 1] and otherwise sends it back
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to its original queue, as well as all other unprocessed packets.

At each time step, a queue only observes whether or not the packet sent (if any) is cleared

by the server. We note Qit the number of packets in queue i at time t. Given a packet-sending

dynamics, the system is stable if, for each i in [N ], Qit/t converges to 0 almost surely. It is

strongly stable, if for any r, t ≥ 0 and i ∈ [N ], E[(Qit)r] ≤ Cr, where Cr is an arbitrarily large

constant, depending on r but not t. Without ambiguity, we also say the policy or the queues are

(strongly) stable. Naturally, a strongly stable system is also stable (Gaitonde and Tardos, 2020a).

Without loss of generality, we assume K ≥ N (otherwise, we simply add fictitious servers

with 0 service rate). The key quantity of a system is its slack, defined as the largest real number

such that:
k∑
i=1

µ(i) ≥ η
k∑
i=1

λ(i), ∀ k ≤ N.

We also denote by P ([K]) the set of probability distributions on [K] and by ∆ the margin of

the system defined by

∆ := min
k∈[N ]

1
k

k∑
i=1

(µ(i) − λ(i)). (7.1)

Notice that the alternative system where λ̃i = λi + ∆ and µ̃k = µk has a slack 1. In that sense,

∆ is the largest margin between service and arrival rates that all queues can individually get in

the system. Note that if η > 1, then ∆ > 0. We now recall existing results for this problem,

summarized in Figure 7.1 below.

Theorem 7.2 (Marshall et al. 1979). For any instance, there exists a strongly stable centralized

policy if and only if η > 1.

Theorem 7.3 (Gaitonde and Tardos 2020a, informal). If η > 2, queues following appropriate

no regret strategies are strongly stable.

For each N > 0, there exists a system and a dynamic s.t. 2 > η > 2 − o(1/N), all queues

follow appropriate no-regret strategies, but they are not strongly stable.

In the above theorem, an appropriate no regret strategy is a strategy such that there exists

a partitioning of the time into successive windows, for which the incurred regret is o (w) with

high probability on each window of lengthw. This for example includes the EXP3.P.1 algorithm

(Auer et al., 2002b) where the k-th window has length 2k.

The patient queuing game G = ([N ], (ci)ni=1,µ,λ) is defined as follows. The strategy space

for each queue is P ([K]). Let p−i ∈ (P ([K]))N−1 denote the vector of fixed distributions for

all queues over servers, except for queue i. The cost function for queue i is defined as:

ci(pi,p−i) = lim
t→+∞

T it /t,
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where T it is the age of the oldest packet in queue i at time t. Bounding T it is equivalent to

bounding Qit.

Theorem 7.4 (Gaitonde and Tardos 2020b, informal). If η > e
e−1 , any Nash equilibrium of the

patient game G is stable.

η

No stable
strategies

Stable centralized strategies

Stable no regret policies

Stable NE without learning

Stable decentralized strategies

0 1 e
e−1

2

Figure 7.1: Existing results depending on the slack η. Our result is highlighted in red.

7.3 The case for a cooperative algorithm

According to Theorems 7.3 and 7.4, queues that are patient enough and select a fixed random-

ization over the servers are stable over a larger range of slack η than queues optimizing their

individual regret. A key difference between the two settings is that when minimizing their re-

gret, queues are myopic, which is formalized as follows. Let πi1:t = (πi1, ..., πit) be the vector

of actions played by the queue i up to time t and let νit(πi1:t) be the indicator that it cleared a

packet at iteration t, if it played the actions πi1:t until t. Classical (external) regret of queue i

over horizon T is then defined as:

Rext
i (T ) := max

p∈P([K])

T∑
t=1

Eπ̃t∼p[νit(πi1:t−1, π̃t)]−
T∑
t=1

νit(πi1:t).

Thus minimizing the external regret is equivalent to maximizing the instant rewards at each

iteration, ignoring the consequences of the played action on the state of the system. However, in

the context of queuing systems, the actions played by the queues change the state of the system.

Notably, letting other queues clear packets can be in the best interest of a queue, as it may give

it priority in the subsequent iterations where it holds older packets. Since the objective is to

maximize the total number of packets cleared, it seems adapted to minimize a patient version of

the regret, namely the policy regret (Arora et al., 2012), rather than the external regret, which is

defined by

R
pol
i (T ) := max

p∈P([K])

T∑
t=1

Eπ̃1:t∼⊗ti=1p
[νit(π̃1:t)]−

T∑
t=1

νit(πi1:t).
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That is, Rpol
i (T ) is the expected difference between the number of packets queue i cleared and

the number of packets it would have cleared over the whole period by playing a fixed (possibly

random) action, taking into account how this change of policy would affect the state of the

system.

However, as stated in Proposition 7.1, optimizing this patient version of the regret rather than

the myopic one could not guarantee stability on a wider range of slack value. This suggests that

adding only patience to the learning strategy of the queues is not enough to go beyond a slack

of 2, and that any strategy beating that factor 2 must somewhat include synchronisation between

the queues.

Proposition 7.1. Consider the partition of the time t = 1, 2, . . . into successive windows, where

wk = k2 is the length of the k-th one. For any N ≥ 2, there exists an instance with 2N queues

and servers, with slack η = 2−O
(

1
N

)
, s.t., almost surely, each queue’s policy regret is o (wk)

on all but finitely many of the windows, but the system is not strongly stable.

Sketch of proof. Consider a system with 2N queues and servers with λi = 1/2N and µi =
1/N−1/4N2 for all i ∈ [2N ]. The considered strategy profile is the following. For each k ≥ 0,

the kth time window is split into two stages. During the first stage, of length dαwke, queues 2i
and 2i + 1 both play server 2i + t (mod 2N) at iteration t, for all i ∈ [N ]. During the second

stage of the time window, queue i plays server i + t (mod 2N) at iteration t. This counter

example, albeit very specific, illustrates well how when the queues are highly synchronised, it

is better to remain synchronized rather than deviate, even if the synchronisation is suboptimal in

terms of stability. The complete proof is provided in Section 7.C.1.

Queues following this strategy accumulate packets during the first stage, and clear more

packets than they receive during the second stage. The value of α is tuned so that the queues

still accumulate a linear portion of packets during each time window. For those appropriate α,

the system is unstable.

Now suppose that queue i deviates from the strategy and plays a fixed action p ∈ P ([K]).

In the first stage of each time window, queue i can clear a bit more packets than it would by not

deviating. However, during the second stage, it is no longer synchronised with the other queues

and collides with them a large number of times. Because of those collisions, it will accumulate

many packets. In the detailed analysis, we demonstrate that, in the end, for appropriate values

of α, queue i accumulates more packets than it would have without deviating.

According to Theorem 7.4, the factor e
e−1 can be seen as the price of anarchy of the problem,

as for slacks below, the worst Nash equilibria might be unstable. On the other hand, it is known

that for any slack above 1, there exists a centralized stable strategy. This centralized strategy

actually consists in queues playing the same joint probability at each time step, independently
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from the number of accumulated packets. As a consequence, it is also a correlated equilibrium

of the patient game and 1 can be seen as the correlated price of stability.

All these arguments make the case for cooperative decentralized learning strategies when η

is small.

7.4 A decentralized algorithm

This section describes the decentralized algorithm ADEQUA, whose pseudocode is given in Al-

gorithm 7.1. Due to space constraints, all the proofs are postponed to Section 7.C.2. ADEQUA

assumes all queues a priori know the numberN of queues in the game and have a unique rank or

id in [N ]. Moreover, the existence of a shared randomness between all queues is assumed. The

id assumption is required to break the symmetry between queues and is classical in multiplayer

bandits without collision information. On the other side, the shared randomness assumption is

equivalent to the knowledge of a common seed for all queues, which then use this common seed

for their random generators. A similar assumption is used in multiplayer bandits (Bubeck et al.,

2020a).

ADEQUA is inspired by the celebrated ε-greedy strategy. With probability εt = (N +
K)t−

1
5 , at each time step, queues explore the different problem parameters as described below.

Otherwise with probability 1 − εt, they exploit the servers. Each queue i then sends a packet

to a server following a policy solely computed from its local estimates λ̂i, µ̂i of the problem

parameters λ and µ. The shared randomness is here used so that exploration simultaneously

happens for all queues. If exploration/exploitation was not synchronized between the queues, an

exploiting queue could collide with an exploring queue, biasing the estimates λ̂i, µ̂i of the latter.

Algorithm 7.1: ADEQUA
input: i ∈ [N ] (queue id), functions φ, ψ

1 for t = 1, . . . ,∞ do
2 P̂ ← φ(λ̂, µ̂) and Â← ψ(P̂ )
3 Draw ω1 ∼ Bernoulli((N +K)t−

1
5 ) and ω2 ∼ U(0, 1) // shared randomness

4 if ω1 = 1 then EXPLORE(i) // exploration

5 else Pull Â(ω2)(i) // exploitation

6 end

Exploration. When exploring, queues choose either to explore the servers’ parameters µk or

the other queues’ parameters λi as described in Algorithm 7.2 below. In the former case, all

queues choose different servers at random (if they have packets to send). These rounds are used
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to estimate the servers means: µ̂ik is the empirical mean of server k observed by the queue i for

such rounds. Thanks to the shared randomness, queues pull different servers here, making the

estimates unbiased.

In the latter case, queues explore each other in a pairwise fashion. When queues i and j

explore each other at round t, each of them sends their most recent packet to some server k,

chosen uniformly at random, if and only if a packet appeared during round t. In that case, we

say that the queue i explores λj (and vice versa). To make sure that i and j are the only queues

choosing the server k during this step, we proceed as follows:

• queues sample a matching π between queues at random. To do so, the queues use the

same method to plan an all-meet-all (or round robin) tournament, for instance Berger

tables (Berger, 1899), and choose uniformly at random which round of the tournament

to play. If the number of queues N is odd, in each round of the tournament, one queue

remains alone and does nothing.

• the queues draw the same number l ∼ U([K]) with their shared randomness. For each

pair of queues (i, j) matched in π, associate k(i,j) = l + min(i, j) (mod K) + 1 to this

pair. The queues i and j then send to the server k(i,j).

As we assumed that the server breaks ties in the packets’ age uniformly at random, the queue

i clears with probability (1 − λj
2 )µ, where µ = 1

K

∑K
k=1 µk. Thanks to this, λj is estimated by

queue i as:

λ̂ij = 2− 2Ŝij/µ̃i, (7.2)

where µ̃i =
∑K

k=1 N
i
kµ̂
i
k∑K

k=1N
i
k

, N i
k is the number of exploration pulls of server k by queue i and Ŝij is

the empirical probability of clearing a packet observed by queue i when exploring λj .

Remark 7.1. The packet manipulation when exploring λj strongly relies on the servers tie

breaking rules (uniformly at random). If this rule was unknown or not explicit, the algorithm

can be adapted: when queue i explores λj , queue j instead sends the packet generated at time

t − 1 (if it exists), while queue i still sends the packet generated at time t. In that case, the

clearing probability for queue i is exactly (1 − λj)µ, allowing to estimate λj . Anticipating the

nature of the round t (exploration vs. exploitation) can be done by drawing ω1 ∼ Bernoulli(εt)
at time t− 1. If ω1 = 1, the round t is exploratory and the packet generated at time t− 1 is then

kept apart by the queue j.

To describe the exploitation phase, we need a few more notations. We denote by BK the

set of bistochastic matrices (non-negative matrices such that each of its rows and columns sums

to 1) and by SK the set of permutation matrices in [K] (a permutation matrix will be identified

with its associated permutation for the sake of cumbersomeness).
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Algorithm 7.2: EXPLORE

input: i ∈ [N ] // queue id

1 k ← 0
2 Draw n ∼ U([N +K]) // shared randomness

3 if n ≤ K then // explore µ

4 k ← n+ i (mod K) + 1
5 Pull k ; Update Nk and µ̂k
6 else // explore λ

7 Draw r ∼ U([N ]) and l ∼ U([K]) // shared randomness

8 j ← rth opponent in the all-meet-all tournament planned according to Berger tables
9 k ← l + min(i, j) (mod K) + 1

10 if k 6= 0 and packet appeared at current round then // explore λj on server k

11 Pull k with most recent packet ; Update Ŝj and λ̂j according to Equation (7.2)
12 end
13 end

A dominant mapping is a function φ : RN × RK → BK which, from (λ, µ), returns a

bistochastic matrix P such that λi < (Pµ)i for every i ∈ [N ] if it exists (and the identity matrix

otherwise).

A BvN (Birkhoff von Neumann) decomposition is a function ψ : BK → P(SK) that

associates to any bistochastic matrix P a random variable ψ(P ) such that E[ψ(P )] = P ; stated

otherwise, it expresses P as a convex combination of permutation matrices. For convenience,

we will represent this random variable as a function from [0, 1] (equipped with the uniform

distribution) to SK .

Informally speaking, those functions describe the strategies queues would follow in the cen-

tralized case: a dominant mapping gives adequate marginals ensuring stability (since the queue

i clears in expectation (Pµ)i packets at each step, which is larger than λi by definition), while

a BvN decomposition describes the associated coupling to avoid collisions. Explicitly, the joint

strategy is for each queue to draw a shared random variable ω2 ∼ U(0, 1) and to choose servers

according to the permutation ψ(φ(λ, µ))(ω2)

Exploitation. In a decentralized system, each queue i computes a mapping Âi := ψ(φ(λ̂i, µ̂i))
solely based on its own estimates λ̂i, µ̂i. A shared variable ω2 ∈ [0, 1] is then generated uni-

formly at random and queue i sends a packet to the server Âi(ω2)(i). If all queues knew exactly

the parameters λ, µ, the computed strategies Âi would be identical and they would follow the

centralized policy described above.

However, the estimates (λ̂i, µ̂i) are different between queues. The usual dominant map-

pings and BvN decompositions in the literature are non-continuous. Using those, even queues
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with close estimates could have totally different Âi, and thus collide a large number of times,

which would impede the stability of the system. Regular enough dominant mappings and BvN

decompositions are required, to avoid this phenomenon. The design of φ and ψ is thus crucial

and appropriate choices are given in the following Sections 7.4.1 and 7.4.2. Nonetheless, they

can be used in some black-box fashion, so we provide for the sake of completeness sufficient

conditions for stability, as well as a general result depending on the properties of φ and ψ, in

Section 7.A.

Remark 7.2. The exploration probability t−
1
5 gives the smallest theoretical dependency in ∆ in

our bound. A trade-off between the proportion of exploration rounds and the speed of learning

indeed appears in the proof of Theorem 7.1. Exploration rounds have to represent a small

proportion of the rounds, as the queues accumulate packets when exploring. On the other hand,

if queues explore more often, the regime where their number of packets decreases starts earlier.

A general stability result depending on the choice of this probability is given by Theorem 7.6 in

Section 7.A.

Yet in Section 7.5, taking a probability t−
1
4 empirically performs better as it speeds up the

exploration.

7.4.1 Choice of a dominant mapping

Recall that a dominant mapping takes as inputs (λ, µ) and returns, if possible, a bistochastic

matrix P such that

λi <
∑K
k=1 Pi,kµk for all i ∈ [N ].

The usual dominant mappings sort the vector λ and µ in descending orders (Marshall et al.,

1979). Because of this operation, they are non-continuous and we thus need to design a regular

dominant mapping satisfying the above property. Inspired by the log-barrier method, it is done

by taking the minimizer of a strongly convex program as follows

φ(λ, µ) = arg min
P∈BK

max
i∈[N ]

− ln
( K∑
j=1

Pi,jµj − λi
)

+ 1
2K ‖P‖

2
2. (7.3)

Although the objective function is non-smooth because of the max operator, it enforces

fairness between queues and leads to a better regularity of the arg min.

Remark 7.3. Computing φ requires solving a non-smooth strongly convex minimization prob-

lem. This cannot be computed exactly, but a good approximation can be quickly obtained using

the scheme described in Section 7.B. If this approximation error is small enough, it has no im-

pact on the stability bound of Theorem 7.5. It is thus ignored for simplicity, i.e., we assume in

the following that φ(λ, µ) is exactly computed at each step.
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As required, φ always returns a matrix P satisfying that λ < Pµ if possible, since otherwise

the objective is infinite (and in that case we assume that φ returns the identity matrix). Moreover,

the objective function is 1
K -strongly convex, which guarantees some regularity of the arg min,

namely local-Lipschitzness, leading to Lemma 7.1 below .

Lemma 7.1. For any (λ, µ) with positive margin ∆ (defined in Equation (7.1)), if ‖(λ̂− λ, µ̂−
µ)‖∞ ≤ c1∆, for any c1 <

1
2
√
e+2 , then

‖φ(λ̂, µ̂)− φ(λ, µ)‖2 ≤
c2K

∆ ‖(λ̂− λ, µ̂− µ)‖∞,

where c2 = 4
(1−2c1)/

√
e−2c1 . Moreover, denoting P̂ = φ(λ̂, µ̂), it holds for any i ∈ [N ],

λi ≤
∑K
k=1 P̂i,kµk −

(
1−2c1√

e
− 2c1

)
∆.

The first property guarantees that if the queues have close estimates, they also have close

bistochastic matrices P̂ . Moreover, the second property guarantees that each queue should clear

its packets with a margin of order ∆, in absence of collisions.

7.4.2 Choice of a Birkhoff von Neumann decomposition

Given a bistochastic matrix P̂ , Birkhoff algorithm returns a convex combination of permutation

matrices P [j] such that P̂ =
∑
j z[j]P [j]. The classical version of Birkhoff algorithm is non-

continuous in its inputs. Yet it can be smartly modified as in ORDERED BIRKHOFF, described

in Algorithm 7.3, to get a regular BvN decomposition defined as follows for any ω ∈ (0, 1):

ψ(P )(ω) = P [jω] (7.4)

where P =
∑
j z[j]P [j] is the decomposition returned by ORDERED BIRKHOFF algorithm

and jω verifies
∑
j≤jω

z[j] ≤ ω <
∑

j≤jω+1
z[j].

For a matrix P in the following, its support is defined as supp(P ) = {(i, j) | Pi,j 6= 0}.
Obviously Eω∼U(0,1)[ψ(P )(ω)] = P and permutations avoid collisions between queues. The

difference with the usual Birkhoff algorithm happens at Line 4. Birkhoff algorithm usually

computes any perfect matching in the graph induced by the support of P̂ at the current iteration.

This is often done with the Hopcroft-Karp algorithm, while it is here done with the Hungarian

algorithm with respect to some cost matrix C. Although using the Hungarian algorithm slightly

increases the computational complexity of this step (K3 instead of K2.5), it ensures to output

the permutation matrices P [j] according to a fixed order defined below.
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Algorithm 7.3: ORDERED BIRKHOFF

input: P̂ ∈ BK (bistochastic matrix), C ∈ RK×K (cost matrix)
1 j ← 1
2 while P̂ 6= 0 do
3 Ci,k ← +∞ for all (i, k) 6∈ supp(P̂ ) // remove edge (i, k) in induced graph

4 P [j]← HUNGARIAN(C) // matching with minimal cost w.r.t. C

5 z[j]← min(i,k)∈supp(P [j]) P̂i,k
6 P̂ ← P̂ − z[j]P [j] and j ← j + 1
7 end
8 return (z[j], P [j])j

Definition 7.1. A cost matrix C induces an order ≺C on the permutation matrices defined, for

any P, P ′ ∈ SK by

P ≺C P ′ iff
∑
i,j Ci,jPi,j <

∑
i,j Ci,jP

′
i,j .

This order might be non-total as different permutations can have the same cost. However,

if C is drawn at random according to some continuous distribution, this order is total with

probability 1. The order≺C has to be the same for all queues and is thus determined beforehand

for all queues.

Lemma 7.2. Given matrices C ∈ RK×K and P ∈ BK , ORDERED BIRKHOFF outputs a

sequence (z[j], P [j])j of length at most K2, such that

P =
∑
j z[j]P [j], where for all j, z[j] > 0 and P [j] ∈ SK .

Moreover if the induced order ≺C is total, z[j] is the j-th non-zero element of the sequence

(zl(P ))1≤l≤K! defined by

zj(P ) = min
(i,k)∈supp(Pj)

(
P −

j−1∑
l=1

zl(P )Pl
)
i,k

(7.5)

where (Pj)1≤j≤K! is a ≺C-increasing sequence of permutation matrices, i.e., Pj ≺C Pj+1 for

all j.

Lemma 7.2 is crucial to guarantee the regularity of ψ, given by Lemma 7.3.

Lemma 7.3. Consider ψ defined as in Equation (7.4) with a cost matrix C inducing a total

order ≺C , then for any bistochastic matrices P, P ′∫ 1

0
1
(
ψ(P )(ω) 6= ψ(P ′)(ω)

)
dω ≤ 22K2‖P − P ′‖∞.
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Lemma 7.3 indeed ensures that the probability of collision between two queues remains

small when they have close estimates. Unfortunately, the regularity constant is exponential in

K2, which yields a similar dependency in the stability bound of Theorem 7.5. The existence of a

BvN decomposition with polynomial regularity constants remains unknown, even without com-

putational considerations. The design of a better BvN decomposition is left open for future work

and would directly improve the stability bounds, using the general result given by Theorem 7.6

in Section 7.A.

7.4.3 Stability guarantees

This section finally provides theoretical guarantees on the stability of the system when all queues

follow ADEQUA. The success of ADEQUA relies on the accurate estimation of all problem

parameters by the queues, given by Lemma 7.9 in Section 7.C.2. After some time τ , the queues

have tight estimations of the problem parameters. Afterwards, they clear their packets with a

margin of order ∆, thanks to Lemmas 7.1 and 7.3. This finally ensures the stability of the

system, as given by Theorem 7.5.

Theorem 7.5. For any η > 1, the system where all queues follow ADEQUA, for every queue i

and any r ∈ N, there exists a constant Cr depending only on r such that

E[(Qit)r] ≤ CrKN
(

N
5
2K

5
2 25K2

(min(1,Kµ)λ)
5
4 ∆5

)r
, for all t ∈ N.

As a consequence, for any η > 1, this decentralized system is strongly stable.

Despite yielding an exponential dependency in K2, this anytime bound leads to a first de-

centralized stability result when η ∈ (1, e
e−1), which closes the stability gap left by previous

works. Moreover it can be seen in the proof that the asymptotic number of packets is much

smaller. It actually converges, in expectation, to the number of packets the queues would accu-

mulate if they were following a stable centralized strategy from the beginning. As already noted

by Krishnasamy et al. (2016) for a single queue, the number of packets first increases during the

learning phase and then decreases once the queues have tight enough estimations, until reaching

the same state as in the perfect knowledge centralized case. This is empirically confirmed in

Section 7.5.

7.5 Simulations

Figures 7.2 and 7.3 compare on toy examples the stability of queues, when either each of them

follows the no-regret strategy EXP3.P.1, or each queue follows ADEQUA. For practical con-
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siderations, we choose the exploration probability εt = (N + K)t−
1
4 for ADEQUA, as the

exploration is too slow with εt of order t−
1
5 .

These figures illustrate the evolution of the average queue length on two different instances

with N = K = 4.

In the first instance shown in Figure 7.2, for all i ∈ [N ], λi = (N + 1)/N2. Moreover

µ1 = 1 and for all i ≥ 2, µi = (N − 1)/N2. Here η < 2 and no-regret strategies are known

to be unstable (Gaitonde and Tardos, 2020a). It is empirically confirmed as the number of

packets in each queue diverges when they follow EXP3.P.1. Conversely, when the queues follow

ADEQUA, after a learning phase, the queues reach equilibrium and all succeed in clearing their

packets.

In the second instance shown in Figure 7.3, for all i ∈ [N ], λi = 0.55 − 0.1 · i and µi =
2.1λi. Here η > 2 and both strategies are known to be stable, which is again empirically

confirmed. However, ADEQUA requires more time to learn the different parameters, suggesting

that individual no-regret strategies might be better on easy instances where η > 2.
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Figure 7.2: Hard instance, η < 2.
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Figure 7.3: Easy instance, η > 2.



Appendix

7.A General version of Theorem 7.5

ADEQUA is described for specific choices of the functions φ and ψ given by Sections 7.4.1

and 7.4.2. It yet uses them in a black box fashion and different functions can be used, as long as

they verify some key properties. This section provides a general version of Theorem 7.5, when

the used dominant mapping and BvN decomposition respect the properties given by Assump-

tions 7.1 and 7.2.

Assumption 7.1 (regular dominant mapping). There are constants c1, c2 > 0 and a norm ‖ · ‖
on RK×K , such that if ‖(λ̂− λ, µ̂− µ)‖∞ ≤ c1∆, then

‖φ(λ̂, µ̂)− φ(λ, µ)‖ ≤ Lφ · ‖(λ̂− λ, µ̂− µ)‖∞.

Moreover, P̂ = φ(λ̂, µ̂) is bistochastic and for any i ∈ [N ],

λi ≤
∑K
k=1 P̂i,kµk − c2∆.

Assumption 7.2 (regular BvN decomposition). Consider the same norm ‖ · ‖ as Assumption 7.1

on RK×K . For any bistochastic matrices P, P ′∫ 1

0
ψ(P )(ω)dω = P

and
∫ 1

0
1
(
ψ(P )(ω) 6= ψ(P ′)(ω)

)
dω ≤ Lψ · ‖P − P ′‖.

Lemmas 7.1 and 7.3 show that the functions described in Sections 7.4.1 and 7.4.2 verify

Assumptions 7.1 and 7.2 with the constants Lφ and Lψ respectively of order K
∆ and 22K2

with

the norm ‖·‖∞. Designing a dominant mapping and a BvN decomposition with smaller constants

Lφ and Lψ is left open for future work. It would lead to a direct improvement of the stability

bound, as shown by Theorem 7.6.

190
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Theorem 7.6. Assume all queues follow ADEQUA, using an exploration probability εt = xt−α

with x > 0, α ∈ (0, 1) and functions φ and ψ verifying Assumptions 7.1 and 7.2 with the

constants Lφ, Lψ. The system is then strongly stable and for any r ∈ N, there exists a constant

Cr such that:

E[(Qit)r] ≤ Cr

 xr/α

∆r/α
+KN

(
N2KL2

φL
2
ψ

min(1,Kµ)λ∆2x

) r
1−α

 , for all t ∈ N

The proof directly follows the lines of the proof of Theorem 7.5 in Section 7.C.2 and is thus

omitted here. From this version, it can be directly deduced that α = 1
5 gives the best dependency

in ∆ for ADEQUA. Moreover the best choice for x varies with r. When r → ∞, it actually is

x = N
2
5K

3
5 2

4
5K

2
for ADEQUA. The choice x = N + K is preferred for simplicity and still

yields quite similar problem dependent bounds.

7.B Efficient computation of φ

As mentioned in Section 7.4.1, computing exactly φ(λ̂, µ̂) is not possible. Even efficiently

approximating it is not obvious, as the function to minimize is neither smooth nor Lipschitz. We

here describe how an approximation of φ can be efficiently computed with guarantees on the

approximation error.

First define the empirical estimate of the margin ∆:

∆̂ := min
k∈[N ]

1
k

(
k∑
i=1

µ̂(i) − λ̂(i)

)
.

It can be computed in time O (N log(N)) as it only requires to sort the vectors λ̂ and µ̂. If

∆̂ ≤ 0, then the value of the optimization problem is +∞ and any matrix can be returned.

Assume in the following ∆̂ > 0. Similarly to the proof of Lemma 7.1, it can be shown that the

value of the optimization problem is smaller than− ln(∆̂/
√
e). Noting by BK the set ofK×K

bistochastic matrices, the optimization problem given by Equation (7.3) is then equivalent to

arg min
P∈X

g(P ), (7.6)

where

X =
{
P ∈ BK | ∀i ∈ [N ],

∑K
j=1 Pi,jµj − λi ≥ ∆̂√

e

}
,

and g(P ) = maxi∈[N ]− ln(
∑K
j=1 Pi,jµj − λi) + 1

2K ‖P‖
2
2.
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Thanks to this new constraint set, the objective function of Equation (7.6) is now (
√
e

∆ + 1)-

Lipschitz. We can now use classical results for Lipschitz strongly convex minimization to obtain

convergence rates of order 1
t for the projected gradient descent algorithm (see e.g., Bubeck,

2014, Theorem 3.9). These results yet assume that the projection on the constraint set can

be exactly computed in a short time. This is not the case here, but it yet can be efficiently

approximated using interior point methods (see e.g., Bubeck, 2014, Section 5.3), which has a

linear convergence rate. If this approximation is good enough, similar convergence guarantees

than with exact projection can be shown similarly to the original proof.

Algorithm 7.4 then describes how to quickly estimate φ(λ̂, µ̂), where Π̂X returns an ap-

proximation of the orthogonal projection on the set X and ∂g is a sub-gradient of g. It uses

an averaged value of the different iterates, as the last iterate does not have good convergence

guarantees.

Algorithm 7.4: Compute φ
input: function g, constraint set X , P 0 ∈ X

1 P, P̂ ← P 0

2 for t = 1, . . . , n do
3 P ← Π̂X

(
P − 2N

(t+1)∂g(P )
)

// approximated projection

4 P̂ ← t
t+2 P̂ + 2

t+2P

5 end
6 return P̂

In practice, the approximation can even be computed faster by initializing P 0 in Algo-

rithm 7.4 with the solution of the previous round t− 1.

7.C Omitted Proofs

7.C.1 Unstable No-Policy regret system example

Lemma 7.4. Consider the system where the queues play according to the policy described in

Algorithm 7.5 over successive windows of length wk = k2. If α > 1 − d
N−d , the system is not

stable.

Proof. Note that the system is equivalent to a system where each queue or pair of queue would

always pick the same server. For simplicity, the analysis deals with that equivalent system.

Also, wlog, we analyse the subsystem with the two first queues and the two first servers. Let{
Bi
t

}
i∈[n],t≥1 be the independent random variables indicating the arrival of a packet on queue i

at time t,
{
Sit
}
i∈[n],t≥1 be the indicators that server j would clear a packet at iteration ` if one
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Algorithm 7.5: Unstable No-policy regret system example
input: wk, N , α, λ = (1/N, . . . , 1/N), µ = (2(N − d)/N2, . . . , 2(N − d)/N2)

1 for k = 1, . . . ,∞ do
2 for t = 1, . . . , dαwke do
3 Queues 2i and 2i+ 1 play server 2i+ t (mod N) // stage 1

4 end
5 for t = dαwke+ 1, . . . , wk do
6 Queue i plays server i+ t (mod N) // stage 2

7 end
8 end

were sent to it. For each queue i ∈ [N ] and t ≥ 0, we have by Chernoff bound

Pr
(∣∣∣∣∣∑̀

t=1
Bi
t − λi`

∣∣∣∣∣ ≥ √` ln(`)
)
≤ 2
`2
.

The same holds for each queue, thus the probability that this event happens for queue 1 or queue

2 is at most, 4
`2 . As it is summable in `, The Borel-Cantelli Lemma implies that, for large enough

`, almost surely, for any i ∈ [2]:

∑̀
`=1

Bi
t = λi`± Õ

(√
`
)
, (7.7)

where Õ hides poly-log factors in `

Let Wk =
∑k
i=1wi. Note that Wk = Θ

(
k3) = Θ

(
w

3/2
k

)
. Again by Chernoff bound and

Borel-Cantelli, for large enough k, almost surely, for any i ∈ {1, 2}:

Wk−1+dαwke∑
t=Wk−1

Sit = µiαwk ± Õ (√wk) ,
Wk∑

t=Wk−1+dαwke
Sit = µi(1− α)wk ± Õ (√wk) . (7.8)

Thus, for any large enough k, the total number of packets in both queues at time Wk is

almost surely lower bounded as:

Q1
Wk

+Q2
Wk
≥

Wk∑
t=1

(B1
t +B2

t )−
Wk∑
t=1

S1
t −

k∑
l=1

 Wl∑
t=Wl−1+dαwle

S2
t

 (7.9)

≥
[ 2
N
− 2(N − d)

N2 − (1− α)2(N − d)
N2

]
Wk − Õ

(
W

2/3
k

)
(7.10)

≥2 [α(N − d)− (N − 2d)]
N2 Wk − Õ

(
W

2/3
k

)
(7.11)

which is a diverging function of Wk. Note that this result also holds for any pair of queues
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(2i− 1, 2i), with i ∈ [N/2].

Lemma 7.5. Consider the same setting as in Lemma 7.4. For any i ∈ [N ] and large enough k,

queue i clears (
N − d
N2 + (1− α)N − d

N2 + o(1)
)
wk

packets almost surely over window wk.

Proof. The proof starts by showing that for any large enough t, all the queues hold roughly

the same number of packets. Then, as they receive roughly the same number of packets over a

time window and we can compute the approximate total number of packets cleared, the results

follows.

Let T ti be the age of the oldest packet in queue i at time t. By Chernoff bound,

P(|T ti −NQti| ≥ N
√
t ln(t)) ≤ 2

t2
.

Thus, using the Borel-Cantelli lemma, for any queue i, almost surely, for all large enough k and

all t ∈ [Wk−1 + 1,Wk],

|T ti −NQti| ≤ N
√
t ln(t) = Õ(w3/4

k ). (7.12)

For any (i, j) ∈ [N ]2, define

φ+
t (i, j) :=

(
Qit −Q

j
t − 2N

√
t ln(t)

)
+

and φ−t (i, j) :=
(
Qit −Q

j
t + 2N

√
t ln(t)

)
−
.

Let Cit be the indicator function that queue i clears a packet at iteration t. Note that for any

large enough t, φ+
t (i, j) is a supermartingale. Indeed,

E[φ+
t+1(i, j)|φ+

1:t(i, j)] ≤φ
+
t (i, j) + E[Bi

t −B
j
t |φ+

1:t(i, j)]− E[Cit − C
j
t |φ+

1:t(i, j)]

≤φ+
t (i, j).

The second inequality comes from Equation (7.12), that implies that for any large enough t,

if φ+
t (i, j) is strictly positive, queue i holds the oldest packet and thus clears one with higher

probability than queue j. By the same arguments, φ−t (i, j) a submartingale. Also, |φ+
t+1(i, j)−

φ+
t (i, j)| ≤ 2(N + 1) for any t ≥ 0, and the same holds for φ−t (i, j). Let τij be the stopping

time of the smallest iteration after which Equation (7.12) always holds for queues i and j. By

Azuma-Hoeffding’s inequality,

Pr
(
φ+
` (i, j)− φ+

τij (i, j) ≥ 3(N + 1)
√
` ln(`)

)
≤ 2
`2
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and

Pr
(
φ−` (i, j)− φ+

τij (i, j) ≤ −3(N + 1)
√
` ln(`)

)
≤ 2
`2
.

This, together with a union bound and Borel-Cantelli’s Lemma implies that almost surely,

for any large enough t, for any (i, j) ∈ [N ]2

Qit −Q
j
t = Õ

(√
t
)
. (7.13)

This with Equation (7.9) implies that for any large enough k, for any i ∈ [N ], almost surely,

QiWk
≥ [α(N − d)− (N − 2d)]

N2 Wk − Õ
(
W

2/3
k

)
.

This means that for any large enough k, every queue holds at least one packet over the whole

windowwk. This and Equation (7.8) is already enough to show that for any time-windowwk, for

any large enough k, the total number of packets cleared by every couple of queues (2i− 1, 2i),

i ∈ [N/2] is:

2
(
N − d
N2 + (1− α)N − d

N2

)
wk + Õ (√wk) .

During time window wk, according to Equation (7.7), both every queue receives αwk/N +
Õ
(
w

3/4
k

)
packets almost surely for any large enough k. Equation (7.13) implies that for any

i ∈ [N/2]
Q2i−1
Wk
−Q2i

Wk
= Õ

(
w

3/4
k

)
and Q2i−1

Wk−1
−Q2i

Wk−1 = Õ
(
w

3/4
k

)
.

Therefore, over each time-window wk, for any large enough k, each queue clears(
N − d
N2 + (1− α)N − d

N2 + o(1)
)
wk

packets almost surely.

Lemma 7.6. Consider again the system where the queues play according to the policy described

in Algorithm 7.5 over successive windows of length wk = k2. If α < 1− 1
N−1 , the queues have

no policy regret in all but finitely many of the windows.

Wlog, let us consider that queue 1 deviates, and plays at every iteration a server chosen from

the probability distribution p = (p1, ..., pN ), with pi the probability to play server i. To upper

bound the number of packets queue 1 clears over each time window, we can assume it always

has priority over queue 2 and ignore it in the analysis.

Before proving Lemma 7.6, we prove the following technical one.

Lemma 7.7. Consider that a queue deviates from the strategy considered in Lemma 7.6 and

plays at every iteration a server chosen from the probability distribution p = (p1, ..., pN ), with
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pi the probability to play server i. For any large enough k, almost surely, the number of packets

the deviating queue clears of the first stage of the kth window is(1
2 + 1

N

) 2(N − d)
N2 αwk + Õ

(
w

3/4
k

)
.

Proof. The proof starts by showing that for any large enough t, every non-deviating queue holds

approximately the same number of packets.

First note that for any large enough t, Equation (7.12) still holds surely for any queue i. For

any (i, j) ∈ {3, . . . , N}2, define

φ+
` (i, j) :=

(
Qid`Ne −Q

j
d`Ne − 4N

√
d`Ne ln(d`Ne)

)
+

and

φ−` (i, j) :=
(
Qid`Ne −Q

j
d`Ne + 4N

√
d`Ne ln(d`Ne)

)
−
.

For any interval [d`Ne, d(` + 1)Ne] where Equation (7.12) holds for queues 1, i and j, if

φ+
` (i, j) is strictly positive, then

E

d(`+1)Ne∑
t=d`Ne

Cjt − Cit
∣∣∣∣φ+

1:t(i, j)

 ≤ 0.

Indeed, if φ+
` (i, j) is strictly positive and Equation (7.12) holds, queue i holds the oldest packets

throughout the interval. Also, queue i and queue j collide with queue 1 the same number of

times over the interval in expectation, and if at one iteration of the interval, queue 1 holds

an older packet than queue i, it holds an older packet than queue j over the whole interval.

Thus φ+
` (i, j) is a submartingale. By the same arguments, φ+

` (i, j) is a supermartingale. Also,

|φ+
`+1(i, j) − φ+

` (i, j)| ≤ 4(N + 1)2 and the same holds for φ−` (i, j). Finishing with the same

arguments used to prove Equation (7.13), almost surely, for any (i, j) ∈ {3, . . . , N}2,

Qit −Q
j
t = Õ

(√
t
)
. (7.14)

We now show that for any large enough t, queue 1 can not hold many more packets than the

non-deviating queues. Define

φ+
t :=

(
Q1
t −max

i≥3
Qit − 2N

√
t ln(t)

)
+
.

Once again, at every iteration where φ+
t is strictly positive and Equation (7.12) holds, queue 1

holds the oldest packet and thus has priority on whichever server it chooses. This implies that

for any large enough t, φ+
t is a supermartingale. It also holds that for any t ≥ 0, |φ+

t+1 − φ
+
t | ≤
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2(N + 1). Thus, with the same arguments used to prove Equation (7.13), almost surely,(
Q1
t −max

i≥3
Qit

)
+

= Õ
(√

t
)
. (7.15)

With that at hand, we prove that for any large enough k, queue 1 doesn’t get priority often

over the other queues during the first stage of the kth window. For any i ∈ {2, . . . , N/2}, pose:

ψi` = 1
2
(
Q2i−1
d`Ne +Q2i

d`Ne

)
−Q1

d`Ne −
2(N − d)
N3 (d`Ne −Wk−1)

For any ` s.t. {d`Ne; d(`+ 1)N − 1e} is included in the first phase of a window, we have

d(`+1)Ne−1∑
t=d`Ne

E
[
C1
t

∣∣∣∣ψ+
1:`(i, j)

]
≥
d(`+1)Ne−1∑
t=d`Ne

E
[
Sti1{queue 1 and only queue 1 picks server i}

∣∣∣∣ψ+
1:`(i, j)

]

≥ N − d
N

+ 2(N − d)
N2

as well as

d(`+1)Ne−1∑
t=d`Ne

E
[1

2
(
C2i
t + C2i−1

t

) ∣∣∣∣ψ+
1:`(i, j)

]
≤
d(`+1)Ne−1∑
t=d`Ne

E
[1

2S
t
i+t (mod N)

∣∣∣∣ψ+
1:`(i, j)

]

≤ N − d
N

.

Those two inequalities imply:

E[ψi`+1|ψ+
1:`(i, j)] =ψ+

` (i, j) +
d(`+1)Ne−1∑
t=d`Ne

E
[1

2(B2i
t −B2i−1

t )−B1
t

∣∣∣∣ψ+
1:`(i, j)

]

−
d(`+1)Ne−1∑
t=d`Ne

E
[1

2(C2i
t − C2i−1

t )− C1
t

∣∣∣∣ψ+
1:`(i, j)

]
− 2(N − d)

N2

≥ψ+
` (i, j).

Thus, for any ` s.t. {d`Ne; d(` + 1)N − 1e} is included in the first phase of a window, ψi` is

a submartingale. Moreover, for any ` ≥ 0, |ψi`+1 − ψi`| ≤ 3N . Thus, by Azuma-Hoeffding’s

inequality, for any ` s.t.{d`Ne; d(`+ 1)N − 1e} ⊂ [Wk−1,Wk−1 + αwk],

Pr
(
ψi` − ψiWk

≤ −6N
√
`N ln(`N)

)
≤ 1

(`N)2 .

Borel-Cantelli’s lemma implies, that for any large enough ` s.t.{d`Ne; d(` + 1)N − 1e} ⊂
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[Wk−1,Wk−1 + αwk], almost surely:

ψi` ≥ ψiWk
− 6N

√
`N ln(`N).

This and Equation (7.15) applied at t = Wk, imply that for any large enough k, for any t ∈
[Wk−1,Wk−1 + αwk],

1
2
(
Q2i−1
t +Q2i

t

)
≥Q1

d`Ne + 2(N − d)
N3 (t−Wk−1) + ψiWk

− Õ(
√
t)

≥Q1
d`Ne + 2(N − d)

N3 (t−Wk−1)− Õ(w3/4
k ).

This and Equation (7.12) imply that during the first stage of the time window, queue 1 holds

younger packets than any other queues i ≥ 3 after at most Õ(w3/4
k ) iterations.

By Chernoff bound and the Borel-Cantelli lemma again, for any large enough k, almost

surely, the number of packets queue 1 clears during the first stage of the kth window on servers

where it does not collide with other queues is:

Wk−1+αwk∑
t=Wk−1+1

N∑
i=1

Sti1{queue 1 and only queue 1 picks server i} = (1
2 + 1

N
)2(N − d)

N2 αwk + Õ (√wk) .

Since we have shown that for any large enough k, almost surely, queue 1 does not have

priority over the other queues after at most Õ(w3/4
k ) iterations, for any large enough k, almost

surely, the number of packets queue 1 clears of the first stage of the kth window is(1
2 + 1

N

) 2(N − d)
N2 αwk + Õ

(
w

3/4
k

)
.

We are now ready to prove Lemma 7.6.

Proof. By Chernoff bound and the Borel-Cantelli lemma, almost surely for any large enough k,

the number of packets queue 1 clears during the second stage of the window on servers where it

does not collide with other queues is:

Wk−1∑
t=Wk−1+αwk

N∑
i=1

Sti1{queue 1 and only queue 1 picks server i} = 4(N − d)
N3 (1− α)wk + Õ (√wk) .

(7.16)
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Suppose that during the second stage of the window, queue 1 never gets priority over another

queue. In that case, according to equation Equation (7.16) and Lemma 7.7, for any large enough

k, almost surely, the total number of packets cleared by queue 1 during the time window is(
α

2 + 2− α
N

) 2(N − d)
N2 wk + Õ(w3/4

k ).

For any large enough k, if α ≤ 1 − 1
N−1 this is smaller than the number of packets queue 1

would have cleared had it not deviated, according to Lemma 7.5.

On the other hand, suppose that queue gets priority over some other queue i at some iteration

τ of the second stage of the window. In that case, at that iteration, queue 1 holds the oldest

packets, which, according to Equation (7.12), implies

Qτ1 > Qτi − Õ(w3/4
k )

During the second stage of the window, for any i ≥ 3, γit :=
(
Qti −Qt1 − 2N

√
t ln(t)

)
+

is a

supermartingale with bounded increments for any t where Equation (7.12) holds for queues 1
and i. Indeed, in that case, if γit is strictly positive, queue i holds an older packet than queue 1,

and thus, whether they collide or not, it has a higher probability to clear a packet than queue 1.

Thus, by Azuma-Hoeffding and the Borel-cantelli lemma again, for any large enough k, almost

surely,

QWk
i −QWk

1 ≤ Qτi −Qτ1 + Õ(w3/4
k ).

Thus it holds that QWk
1 ≥ QWk

i − Õ(w3/4
k ) for any i ≥ 2. This and Equation (7.15) imply that

all the queues clear approximately the same number of packets over those time windows for any

large enough k almost surely. Thus queue 1 clears[
(2− α)(N − 2) + (α+ 4− 2α

N
)
] (N − d)

(N − 1)N2wk + Õ
(
w

3/4
k

)
packets almost surely, which again is smaller than the number of packets it would have cleared

had it not deviated.

Thus, the deviating queue clears almost surely less packets by time window than it would

have had it not deviated on all but finitely many of the time windows, which implies that it has

no policy regret on all but finitely many of the time windows.
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7.C.2 Proofs of Section 7.4

Proof of Lemma 7.1

We want to show that if ‖(λ̂− λ, µ̂− µ)‖∞ ≤ c1∆, then

‖φ(λ̂, µ̂)− φ(λ, µ)‖2 ≤
c2K

∆ ‖(λ̂− λ, µ̂− µ)‖∞, (7.17)

with the constants c1, c2 given in Lemma 7.1.

Recall that φ is defined as

φ(λ, µ) = arg min
P∈BK

f(P, λ, µ),

where BK is the set of K ×K bistochastic matrices and f is defined as:

f(P, λ, µ) := max
i∈[N ]

− ln(
K∑
j=1

Pi,jµk − λi) + 1
2K ‖P‖

2
2

Let P ∗ and P̂ ∗ be the minimizers of f with the respective parameters (λ, µ) and (λ̂, µ̂). They

are uniquely defined as f is 1
K strongly convex.

As the property of Lemma 7.1 is symmetric, we can assume without loss of generality that

f(P ∗, λ, µ) ≥ f(P̂ ∗, λ̂, µ̂).

Given the definition of ∆, we actually have the bound

− ln(∆) + 1
2 ≥ f(P ∗, λ, µ) ≥ − ln(∆).

The lower bound holds because the term in the ln is at most ∆ for at least one i. For the

upper bound, some matrix P ensures that the term in the ln is at least ∆ for all i and ‖P‖22 ≤ K.

Similarly for P̂ ∗, it comes:

− ln((1− 2c1)∆) + 1
2 ≥ f(P̂ ∗, λ̂, µ̂) ≥ − ln((1 + 2c1)∆).

As a consequence, it holds for any i ∈ [N ]:

− ln

 K∑
j=1

P̂ ∗i,jµ̂j − λ̂i

 ≤ f(P̂ ∗, λ̂, µ̂)

≤ − ln((1− 2c1)∆/
√
e)

K∑
j=1

P̂ ∗i,jµ̂j − λ̂i ≥ (1− 2c1)∆/
√
e.



7.C. Omitted Proofs 201

Note that for any i ∈ [N ],

K∑
j=1

P̂ ∗i,jµ̂j − λ̂i ≤
K∑
j=1

P̂ ∗i,jµj − λi + 2‖(λ̂− λ, µ̂− µ)‖∞.

It then yields the second point of Lemma 7.1:

K∑
j=1

P̂ ∗i,jµj − λi ≥
(
(1− 2c1)/

√
e− 2c1

)
∆

Moreover, it comes

− ln

 K∑
j=1

P̂ ∗i,jµ̂j − λ̂i

 ≥ − ln

 K∑
j=1

P̂ ∗i,jµj − λi

− ln
(

1 + 2‖(λ̂− λ, µ̂− µ)‖∞∑K
j=1 P̂

∗
i,jµj − λi

)

≥ − ln

 K∑
j=1

P̂ ∗i,jµj − λi

− 2‖(λ̂− λ, µ̂− µ)‖∞
((1− 2c1)/

√
e− 2c1) ∆

Recall that for a 1
K -strongly convex function g of global minimum x∗ and any x:

‖x− x∗‖2 ≤ 2K(g(x)− g(x∗))

As a consequence, it comes:

f(P̂ ∗, λ̂, µ̂) ≥ f(P̂ ∗, λ, µ)− 2‖(λ̂− λ, µ̂− µ)‖∞
((1− 2c1)/

√
e− 2c1) ∆

≥ f(P ∗, λ, µ)− 2‖(λ̂− λ, µ̂− µ)‖∞
((1− 2c1)/

√
e− 2c1) ∆ + 1

2K ‖P
∗ − P̂ ∗‖2.

Equation (7.17) then follows.

Proof of Lemma 7.2

The coefficient Ci,j is replaced by +∞ as soon as the whole weight Pi,j is exhausted. Thanks

to this, the HUNGARIAN algorithm does return a perfect matching with respect to the bipar-

tite graph with edges (i, j) where there remains some weight for Pi,j . Because of this, it can

be shown following the usual proof of Birkhoff algorithm (Birkhoff, 1946) that the sequence

(z[j], P [j]) is indeed of length at most K2 and is a valid decomposition of P .

Now assume that ≺C is a total order. At each iteration j of HUNGARIAN algorithm, denote
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P̃ j = P −
∑j−1
s=1 z[s]P [s] the remaining weights to attribute.

Let lj be such that P [j] = Plj for any iteration j of HUNGARIAN algorithm.

It can now be shown by induction that

P̃ j = P −
lj∑
l=1

zl(P )Pl.

where zl(P ) are defined by Equation (7.5). Indeed, by definition

P̃ j+1 = P̃ j − z[j + 1]P [j + 1]

= P̃ j − z[j + 1]Plj+1

The HUNGARIAN algorithm returns the minimal cost matching with respect to the modified

cost matrix C where the coefficients i, k such that P̃ ji,k = 0 are replaced by +∞. Thanks

to this, Plj+1 is the minimal cost permutation matrix Pl (for ≺C) such that P̃ ji,k > 0 for all

(i, k) ∈ supp(Pl).

This means that for any l < lj+1

min
(i,k)∈supp(Pl)

(P̃ j)i,k = 0.

Using the induction hypothesis, this implies that zl(P ) = 0 for any lj < l < lj+1. And finally,

this also implies that zlj+1(P ) = z[j + 1].

This finally concludes the proof as P̃ j = 0 after the last iteration.

Proof of Lemma 7.3

For z and z′ the respective decompositions of P and P ′ defined in Lemma 7.2, then

∫ 1

0
1
(
ψ(P )(ω) 6= ψ(P ′)(ω)

)
dω = Pω∼U(0,1)

(
ψ(P )(ω) 6= ψ(P ′)(ω)

)
.

In the following, note A = ψ(P ) and A′ = ψ(P ′). It comes

∫ 1

0
1
(
ψ(P )(ω) 6= ψ(P ′)(ω)

)
dω =

K!∑
n=1

P(A = Pn and A′ 6= Pn)

= 1
2

K!∑
n=1

P(A = Pn and A′ 6= Pn) + 1
2

K!∑
n=1

P(A′ = Pn and A 6= Pn)
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= 1
2

K!∑
n=1

vol

n−1∑
j=1

zj(P ),
n∑
j=1

zj(P )

	
n−1∑
j=1

zj(P ′),
n∑
j=1

zj(P ′)

 ,
where vol denotes the volume of a set and A 	 B = (A \ B) ∪ (B \ A) is the symmetric

difference of A and B. The last equality comes from the expression of ψ with respect to the

coefficients zj(P ), thanks to Lemma 7.2.

It is easy to show that

vol ([a, b]	 [c, d]) ≤ (|c− a|+ |d− b|)1 (b > a or c > d) .

The previous equality then leads to

∫ 1

0
1
(
ψ(P )(ω) 6= ψ(P ′)(ω)

)
dω ≤ 1

2

K!∑
n=1

∣∣∣∣∣∣
n−1∑
j=1

zj(P )− zj(P ′)

∣∣∣∣∣∣+
∣∣∣∣∣∣
n∑
j=1

zj(P )− zj(P ′)

∣∣∣∣∣∣
 ·

1
(
zn(P ) + zn(P ′) > 0

)
≤

K!∑
n=1

∣∣∣∣∣∣
n∑
j=1

zj(P )− zj(P ′)

∣∣∣∣∣∣1 (zn(P ) + zn(P ′) > 0
)
.

(7.18)

The last inequality holds because
∑k
j=1 zj(P )− zj(P ′) is counted twice when zk(P ) + zk(P ′)

is positive: when n = k and for the next n such that the elements are counted in the sum.

Thanks to Lemma 7.2, only 2K2 elements zj(P ) and zj(P ′) are non-zero. Let kn be the

index of the n-th non-zero element of (zs(P )+zs(P ′))1≤s≤K!. Note that zs(P ′) can be non-zero

while zs(P ) is zero (or conversely). Let also

(ikn , jkn) ∈ arg min
(i,j)∈supp(Pkn )

Pi,j −
∑
l<kn

zl(P )1 ((i, j) ∈ supp(Pkn))

(i′kn , j
′
kn) ∈ arg min

(i,j)∈supp(Pkn )
P ′i,j −

∑
l<kn

zl(P ′)1 ((i, j) ∈ supp(Pkn))

It then comes, thanks to Lemma 7.2

zkn(P )− zkn(P ′) ≤ Pi′
kn
,j′
kn
− P ′i′

kn
,j′kn
−
∑
l<kn

(zl(P )− zl(P ′))1
(
(i′kn , j

′
kn) ∈ supp(Pkn)

)
≤ Pi′

kn
,j′
kn
− P ′i′

kn
,j′
kn
−
∑
l<n

(zkl(P )− zkl(P
′))1

(
(i′kn , j

′
kn) ∈ supp(Pkn)

)
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The second inequality holds, because for l′ 6∈ {kl | l < 2K2}, the term in the sum is zero by

definition of the sequence kl.

A similar inequality holds for zkn(P ′)− zkn(P ), which leads to

|zkn(P )− zkn(P ′)| ≤ ‖P − P ′‖∞ +
∑
l<n

|zkl(P )− zkl(P
′)|.

By induction, it thus holds

|zkn(P )− zkn(P ′)| ≤ 2n−1‖P − P ′‖∞.

We finally conclude using Equation (7.18)

∫ 1

0
1
(
ψ(P )(ω) 6= ψ(P ′)(ω)

)
dω ≤

K!∑
n=1

∣∣∣∣∣∣
n∑
j=1

zj(P )− zj(P ′)

∣∣∣∣∣∣1 (zn(P ) + zn(P ′) > 0
)

≤
∑
n=1

∣∣∣∣∣∣
kn∑
j=1

zj(P )− zj(P ′)

∣∣∣∣∣∣
≤
∑
n=1

∣∣∣∣∣
n∑
l=1

zkl(P )− zkl(P
′)
∣∣∣∣∣

≤
2K2−1∑
n=1

n∑
j=1

2j−1‖P − P ′‖∞

≤ 22K2‖P − P ′‖∞.

In the fourth inequality, the last term of the sum is ignored. It is indeed 0 as z and z′ both

sum to 1.

Proof of Theorem 7.5

First recall below a useful version of Chernoff bound.

Lemma 7.8. For any independent variables X1, . . . , Xn in [0, 1] and δ ∈ (0, 1),

P
(

n∑
i=1

Xi ≤ (1− δ)
n∑
i=1

E[Xi]
)
≤ e−

δ2
∑n

i=1 E[Xi]
2 .

We now prove the following concentration lemma.

Lemma 7.9. For any time t ≥ (N +K)5 and ε ∈ (0, 1
4),

P
(
|µ̂ik(t)− µk| ≥ ε

)
≤ 3 exp

(
−λi

(
t

4
5 − 1

)
ε2
)
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P
(
|λ̂ij(t)− λj | ≥ ε

)
≤ 6 exp

(
−λiKµ

t
4
5 − 1
145 ε2

)
.

Proof.

Concentration for µ̂. Consider agent i in the following and denote by Nk(t) the number of

exploratory pulls of this agent on server k at time t. By definition, the probability to proceed to

an exploratory pull on the server k at round t is at least λi min(t−
1
5 , 1

N+K ). The term λi here

appears as a pull is guaranteed if a packet appeared at the current time step. Yet the number of

exploratory pulls might be much larger in practice as queues should accumulate a large number

of uncleared packets at the beginning.

For t ≥ (N +K)5, it holds:

t∑
n=1

min(n−
1
5 ,

1
N +K

) =
(N+K)5∑
n=1

1
N +K

+
t∑

n=(N+K)5+1
n−

1
5

≥ (N +K)4 +
∫ t

(N+K)5
x−

1
5 dx− 1

≥ 1
4
(
5t

4
5 − (N +K)4 − 4

)
≥ t

4
5 − 1.

Lemma 7.8 then gives for Nk(t):

P (Nk(t) ≤ (1− δ)E[Nk(t)]) ≤ exp
(
−δ

2E[Nk(t)]
2

)

P
(
Nk(t) ≤ (1− δ)λi

(
t

4
5 − 1

))
≤ exp

−λiδ2
(
t

4
5 − 1

)
2

 .
Which leads for δ = 1

2 to

P
(
Nk(t) ≤

λi
2
(
t

4
5 − 1

))
≤ exp

(
−λi

t
4
5 − 1

8

)
. (7.19)

The number of exploratory pulls and the observations on the server k are independent.

Thanks to this, Hoeffding’s inequality can be directly used as follows

P
(
|µ̂ik(t)− µk| ≥ ε | Nk(t)

)
≤ 2 exp

(
−2Nk(t)ε2

)
.
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Using Equation (7.19) now gives the first concentration inequality for ε ≤ 1
4 ≤

1
2
√

2 :

P
(
|µ̂ik(t)− µk| ≥ ε

)
≤ 2 exp

(
−λi

(
t

4
5 − 1

)
ε2
)

+ exp
(
−λi

t
4
5 − 1

8

)
≤ 3 exp

(
−λi

(
t

4
5 − 1

)
ε2
)
.

Concentration for λ̂. Consider agent i in the following. First show a concentration inequal-

ity for µ̃. Denote by N(t) the total number of exploratory pulls on servers proceeded by player

i at round t, i.e., N(t) =
∑K
k=1Nk(t). Similarly to Equation (7.19), it can be shown that

P
(
N(t) ≤ λiK

t
4
5 − 1

2

)
≤ exp

(
−λiK

t
4
5 − 1

8

)
.

Lemma 7.8 then gives for δ ∈ (0, 1):

P (|µ̃− µ| ≥ δµ) ≤ 2 exp
(
−λiKδ2µ

t
4
5 − 1

8

)
+ exp

(
−λiK

t
4
5 − 1

8

)

≤ 3 exp
(
−λiKδ2µ

t
4
5 − 1

8

)
.

Note that |µ̃− µ| ≤ δµ implies | 1µ −
1
µ̃
| ≤ δ

(1−δ)µ . So this gives the following inequality:

P
(∣∣∣∣ 1µ − 1

µ̃

∣∣∣∣ ≥ δ

(1− δ)µ

)
≤ 3 exp

(
−λiKδ2µ

t
4
5 − 1

8

)
. (7.20)

A concentration bound on Ŝij can be shown similarly for any δ ∈ (0, 1)

P
(∣∣∣∣Ŝij(t)− (1− λj

2 )µ
∣∣∣∣ ≥ δµ) ≤ 3 exp

(
−λiKδ2µ

t
4
5 − 1

8

)
. (7.21)

Now recall that the estimate of λj is defined by λ̂j = 2 − 2Ŝij
µ̃

. We then have the following

identity:

λ̂j − λj = 2( 1
µ̃
− 1
µ

)Ŝij + 2
µ

(
(1− λj

2 )µ− Ŝij
)
.

Since Ŝj ∈ [0, 1], it yields for ε ≤ 1
4 and x ∈ (0, 1):

P
(∣∣∣λ̂ij(t)− λj∣∣∣ ≥ ε) ≤ P

(∣∣∣∣2( 1
µ̃
− 1
µ

)Ŝij
∣∣∣∣ ≥ xε or

∣∣∣∣ 2µ
(

(1− λj
2 )µ− Ŝj

)∣∣∣∣ ≥ (1− x)ε
)
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≤ P
(∣∣∣∣ 1µ̃ − 1

µ

∣∣∣∣ ≥ xε

2Ŝij
| Ŝij ≤ (1 + 1− x

8 )µ
)

+ P
(∣∣∣∣Ŝij(t)− (1− λj

2 )µ
∣∣∣∣ ≥ (1− x)µε

2

)

≤ P
(∣∣∣∣ 1µ̃ − 1

µ

∣∣∣∣ ≥ δ

(1− δ)µ for δ = 4xε
9

)
+ P

(∣∣∣∣Ŝij(t)− (1− λj
2 )µ

∣∣∣∣ ≥ (1− x)µε
2

)
Taking x = 9

17 leads to 4x
9 = 1−x

2 and thus, using Equations (7.20) and (7.21):

P
(∣∣∣λ̂ij(t)− λj∣∣∣ ≥ ε) ≤ 6 exp

(
−λiK

( 8
17

)2
µ
t

4
5 − 1
32 ε2

)

≤ 6 exp
(
−λiKµ

t
4
5 − 1
145 ε2

)

In the following, let c1 = 0.1 and c2 = 4
(1−2c1)/

√
e−2c1 ≈ 14. For a problem instance, let the

good event Et at time t be defined as

Et :=
{
‖(λ̂i − λ, µ̂i − µ)‖∞ ≤

0.1∆2

2c222K2KN
, ∀i ∈ [N ]

}
.

As ∆ is smaller than 1, the right hand term in the definition of Et is smaller than c1∆. Thanks

to Lemmas 7.1 and 7.3, Et then guarantees that any player will collide with another player with

probability at most 0.1∆, i.e., , ∀i ∈ [N ],

Pω∼U(0,1)
(
∃j ∈ [N ], Âit(ω) 6= Âjt (ω) | Et

)
≤ 0.1∆.

Moreover, thanks to Lemma 7.1, under Et,

λi ≤
K∑
k=1

P̂i,kµk −
(1− 2c1√

e
− 2c1

)
∆.

These two last inequalities lead to the following lemma.

Lemma 7.10. For t ≥ 25K5

0.085∆5 , denote byHt the history of observations up to round t. Then

E
[
Sit | Et,Ht

]
≥ λi + 0.1∆.

Proof. This is a direct consequence of the following decomposition:

E
[
Sit | Et,Ht

]
≥

proba to exploit︷ ︸︸ ︷
(1− (N +K)t−

1
5 )


proba to clear︷ ︸︸ ︷
P̂i,kµk −

collision proba︷ ︸︸ ︷
P
(
∃j ∈ [N ], Âit(ω) 6= Âjt (ω)∃ | Et

)
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≥ (1− (N +K)t−
1
5 )(λi +

(1− 2c1√
e
− 2c1

)
∆− 0.1∆)

≥ (1− (N +K)t−
1
5 )(λi + 0.18∆).

The last inequality is given by c1 = 0.1 and it leads to

E
[
Sit | Et,Ht

]
≥ λi + 0.18∆− (N +K)t−

1
5 .

For t ≥ 25K5

0.085∆5 , the last term is smaller than 0.08∆, giving Lemma 7.10.

Define the stopping time

τ := min
{
t ≥ 25K5

0.085∆5 | ∀t ≥ s, Es holds

}
. (7.22)

Lemma 7.11. With probability 1, τ < +∞ and for any integer r ≥ 1,

E[τ r] = O
(
KN

(
N

5
2K

5
2 25K2

(min(1,Kµ)λ)
5
4 ∆5

)r)
,

where the O notation hides constant factors that only depend on r.

Proof. Define for this proof t0 =
⌈

25K5

0.085∆5

⌉
. By definition, if Et does not hold for t > t0, then

τ ≥ t. As a consequence, for any t > t0 and thanks to Lemma 7.9:

P(τ ≥ t) ≤ P(¬Et)

≤ (3eKN + 6eN2) exp
(
−ct

4
5
)
,

where c = c0
min(1,Kµ)λ∆4

N2K224K2 for some universal constant c0 ≤ 1. Note that
∑∞
t=0 P(τ = t) < +∞

by comparison. Borel-Cantelli lemma then implies that τ is finite with probability 1.

We can now bound the moments of τ :

E[τ r] = r

∫ ∞
0

tr−1P (τ ≥ t) dt

≤ tr0 + (3eKN + 6eN2)r
∫ ∞

0
tr−1e−ct

4
5 dt.

Using the change of variable u = ct
4
5 , it can be shown that∫ ∞

0
tr−1e−ct

4
5 dt = 5

4c
− 5r

4 Γ
(5r

4

)
,
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where Γ denotes the Gamma function. It finally allows to conclude:

E[τ r] = O
(
K5r

∆5r +KNc−
5r
4

)

= O
(
KN

(
N

5
2K

5
2 25K2

(min(1,Kµ)λ)
5
4 ∆5

)r)
.

Let Xt be a random walk biased towards 0 with the following transition probabilities:

P(Xt+1 = Xt + 1) = p, P(Xt+1 = Xt − 1|Xt > 0) = q,

P(Xt+1 = Xt|Xt > 0) = 1− p− q, P(Xt+1 = Xt|Xt = 0) = 1− p,
(7.23)

and X0 = 0.

Lemma 7.12. The non-asymptotic moments of the random walk defined by Equation (7.23) are

bounded. For any t > 0, r > 0:

E [(Xt)r] ≤
r!

(ln (q/p))r .

Proof : Let π be the stationary distribution of the random walk. It verifies the following

system of equations:
π(z) = pπ(z − 1) + qπ(z + 1) + (1− p− q)π(z), ∀z > 0

π(0) = (1− p)π(0) + qπ(1)∑
π(z) = 1

which gives:

π(z) = q − p
q

(
p

q

)z
.

Equivalently, π(z) = P(bY c = z) with Y an exponential random variable of parameter ln(q/p).

This gives:

EX∼π [(X)r] ≤ r!
(ln (q/p))r .

Let X̃t be the random walk with the same transition probabilities as Xt and X̃0 ∼ π. For

any t > 0, X̃t ∼ π. Moreover, for any t > 0, X̃t stochasticaly dominates Xt, which terminates

the proof. �

Proof of Theorem 7.5. For τ the stopping time defined by Equation (7.22), Lemma 7.11 bounds

its moments as follows
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E[τ r] = O
(
KN

(
N

5
2K

5
2 25K2

(min(1,Kµ)λ)
5
4 ∆5

)r)
.

Let

pi = λi(1− λi − 0.1∆) and qi = (λi + 0.1∆)(1− λi).

Let Xi
t be the random walk biased towards 0 with parameters pi and qi, with Xi

t = 0 for any

t ≤ 0. According to Lemma 7.10, past time τ , Qit is stochastically dominated by the random

process τ +Xi
t−τ . Thus, for any t > 0, for any r > 0

E[
(
Qti

)r
] ≤ max(1, 2r−1)

(
E[τ r] + E[(Xi

t−τ )r]
)

= O
(
KN

(
N

5
2K

5
2 25K2

(min(1,Kµ)λ)
5
4 ∆5

)r
+ 1

ln(qi/pi)r

)

= O
(
KN

(
N

5
2K

5
2 25K2

(min(1,Kµ)λ)
5
4 ∆5

)r
+ ∆−r

)

= O
(
KN

(
N

5
2K

5
2 25K2

(min(1,Kµ)λ)
5
4 ∆5

)r)
.



Chapter 8

Utility/Privacy Trade-off as
Regularized Optimal Transport

Strategic information is valuable either by remaining private (for instance if it is sensitive)
or, on the other hand, by being used publicly to increase some utility. These two objectives
are antagonistic and leaking this information by taking full advantage of it might be more
rewarding than concealing it. Unlike classical solutions that focus on the first point, we con-
sider instead agents that optimize a natural trade-off between both objectives. We formalize
this as an optimization problem where the objective mapping is regularized by the amount
of information revealed to the adversary (measured as a divergence between the prior and
posterior on the private knowledge). Quite surprisingly, when combined with the entropic
regularization, the Sinkhorn loss naturally emerges in the optimization objective, making it
efficiently solvable via better adapted optimization schemes. We empirically compare these
different techniques on a toy example and apply them to preserve some privacy in online
repeated auctions.
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8.1 Introduction

In many economic mechanisms and strategic games involving different agents, asymmetries of

information (induced by a private type, some knowledge on the hidden state of Nature, etc.) can

and should be leveraged to increase one’s utility. When these interactions between agents are

repeated over time, preserving some asymmetry (i.e., not revealing private information) can be

crucial to guarantee a larger utility in the long run. Indeed, the small short term utility of publicly

using information can be overwhelmed by the long term effect of revealing it (Aumann et al.,

1995).

Informally speaking, an agent should use, and potentially reveal some private information

only if she gets a subsequent utility increase in return. Keeping this information private is no

longer a constraint (as in other classical privacy concepts such as differential privacy Dwork

et al., 2006) but becomes part of the objective, which is then to decide how and when to use

it. For instance, it might happen that revealing everything is optimal or, on the contrary, that a

non-revealing policy is the best one. This is roughly similar to a poker player deciding whether

to bluff or not. In some situations, it might be interesting to focus solely on the utility even if

it implies losing the whole knowledge advantage, while in other situations, the immediate profit

for using this advantage is so small that playing independently of it (or bluffing) is better.

After a rigorous mathematical formulation of this utility vs. privacy trade-off, it appears that

this problem can be recast as a regularized optimal transport minimization. In the specific case

of entropic regularization, this problem has received a lot of interest in the recent years as it

induces a computationally tractable way to approximate an optimal transport distance between

distributions and has thus been used in many applications (Cuturi, 2013). Our work showcases

how the new Privacy Regularized Policy problem benefits in practice from this theory.
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Private Mechanisms. Differential privacy is the most widely used private learning framework

(Dwork, 2011; Dwork et al., 2006; Reed and Pierce, 2010) and ensures that any single element

of the whole dataset cannot be retrieved from the output of the algorithm. This constraint is often

too strong for economic applications (as illustrated before, it is sometimes optimal to disclose

publicly some private information). f -divergence privacy costs have thus been proposed in

recent literature as a promising alternative (Chaudhuri et al., 2019). These f -divergences, such

as Kullback-Leibler, are also used by economists to measure the cost of information from a

Bayesian perspective, as in the rational inattention literature (Sims, 2003; Matějka and McKay,

2015; Maćkowiak and Wiederholt, 2015). It was only recently that this approach has been

considered to measure “privacy losses” in economic mechanisms (Eilat et al., 2019). This model

assumes that the designer of the mechanism has some prior belief on the unobserved and private

information. After observing the action of the player, this belief is updated and the cost of

information corresponds to the KL between the prior and posterior distributions of this private

information.

Optimal privacy preserving strategies with privacy constraints have been recently studied

in this setting under specific conditions (Eilat et al., 2019). Loss of privacy can however be

directly considered as a cost in the overall objective and an optimal strategy reveals information

only if it actually leads to a significant increase in utility. Meanwhile, constrained strategies

systematically reveal as much as allowed by the constraints, without incorporating the additional

cost of this revelation.

Optimal Transport. Finding an appropriate way to compare probability distributions is a ma-

jor challenge in learning theory. Optimal Transport manages to provide powerful tools to com-

pare distributions in metric spaces (Villani, 2008). As a consequence, it has received an increas-

ing interest these past years (Santambrogio, 2015), especially for generative models (Arjovsky et

al., 2017; Genevay et al., 2018; Salimans et al., 2018). However, such powerful distances often

come at the expense of heavy and intractable computations, which might not be suitable to learn-

ing algorithms. It was recently showcased that adding an entropic regularization term enables

fast computations of approximated distances using Sinkhorn algorithm (Sinkhorn, 1967; Cuturi,

2013). Since then, the Sinkhorn loss has also shown promising results for applications such as

generative models (Genevay et al., 2016; Genevay et al., 2018), domain adaptation (Courty et

al., 2014) and supervised learning (Frogner et al., 2015), besides having interesting theoretical

properties (Peyré and Cuturi, 2019; Feydy et al., 2019; Genevay et al., 2019).

Contributions and organization of the chapter. The new framework of Privacy Regularized

Policy is motivated by several applications, presented in Section 8.2 and is formalized in Sec-
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tion 8.3. This problem is mathematically formulated as some optimization problem (yet even-

tually in an infinite dimensional space), which is convex if the privacy cost is an f -divergence,

see Section 8.4. Also, if the private information space is discrete, this problem admits an op-

timal discrete distribution. The minimization problem then becomes dimensionally finite, but

non-convex.

If the Kullback-Leibler divergence between the prior and the posterior is considered for the

cost of information, the equivalence with a Sinkhorn loss minimization problem is shown in

Section 8.5. Although non-convex, this new problem formulation allows different optimization

techniques developed in Section 8.6 to efficiently compute partially revealing policies. Finally,

with a linear utility cost, the problem is equivalent to the minimization of the difference of

two convex functions. Using the theories of these specific problems, different optimization

methods can be compared, which illustrates the practical aspect of our new model. This is done

in Section 8.7, where we also compute partially revealing strategies for repeated auctions.

8.2 Some Applications

Our model is motivated by different applications described in this section: online repeated auc-

tions and learning models on external servers.

8.2.1 Online repeated auctions

When a website wants to sell an advertisement slot, firms such as Google or Criteo take part in

an auction to buy this slot for one of their customer, a process illustrated in Figure 8.1. As this

interaction happens each time a user lands on the website, this is no longer a one-time auction

problem, but repeated auctions where the seller and/or the competitor might observe not just one

bid, but a distribution of bids. As a consequence, if a firm were bidding truthfully, seller and

other bidders would have access to its true value distribution µ. This has two possible downsides.

First, if the value distribution µwas known to the auctioneer, she could maximize her revenue

at the expense of the bidder utility (Amin et al., 2013; Amin et al., 2014; Feldman et al., 2016;

Golrezaei et al., 2019), for instance with personalized reserve prices. Second, the auctioneer can

sometimes take part in the auction and becomes a direct concurrent of the bidder (this might be

a unique characteristic of online repeated auctions for ads). For instance, Google is both running

some auction platforms and bidding on some ad slots for their client. As a consequence, if the

distribution µ was perfectly known to some concurrent bidder, he could use it in the future, by

bidding more or less aggressively or by trying to conquer new markets.

It is also closely related to online pricing or repeated posted price auctions. When a user
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Figure 8.1: Online advertisement auction system.

wants to buy a flight ticket (or any other good), the selling company can learn the value distribu-

tion of the buyer and then dynamically adapts its prices in order to increase its revenue. The user

can prevent this behavior in order to maximize her long term utility, even if it means refusing

some apparently good offers in the short term (in poker lingo, she would be “bluffing”).

As explained in Section 8.3.1 below, finding the best possible long term strategy is in-

tractable, as the auctioneer could always adapt to the bidding strategy, leading to an arm race

where the bidder and the auctioneer successively adapt to the other one’s strategy. Such an

arm race is instead avoided by trading-off between the best possible response to the auctioneer’s

fixed strategy as well as the leaked quantity of information. The privacy loss here aims at bound-

ing the incurred loss in bidder’s utility if the auctioneer adapts her strategy using the revealed

information.

8.2.2 Learning through external servers

Nowadays, several servers or clusters allow their clients to perform heavy computations re-

motely, for instance to learn some model parameters (say a deep neural net) for a given training

set. The privacy concern when querying a server can sometimes be handled using homomorphic

encryption (Gilad-Bachrach et al., 2016; Bourse et al., 2018; Sanyal et al., 2018), if the cluster

is designed in that way (typically a public model has been learned on the server). In this case,

the client sends an encrypted testing set to the server, receives encrypted predictions and locally

recovers the accurate ones. This technique, when available, is powerful, but requires heavy local

computations.

Consider instead a client wanting to learn a new model (say, a linear/logistic regression or

any neural net) on a dataset that has some confidential component. Directly sending the training

set would reveal the whole data to the server owner, besides the risk of someone else observing

it. The agent might instead prefer to send noised data, so that the computed model remains close

to the accurate one, while keeping secret the true data. If the data contain sensitive information
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on individuals, then differential privacy is an appropriate solution. However, it is often the case

that the private part is just a single piece of information of the client itself (say, its margin, its

current wealth or its total number of users for instance) that is crucial to the final learned model

but should not be totally revealed to a competitor. Then differential privacy is no longer the

solution, as there is only a single element to protect and/or to use. Indeed, some privacy leakage

is allowed and can lead to much more accurate parameters returned by the server and a higher

utility at the end; the Privacy Regularized Policy aims at computing the best dataset to send to

the server, in order to maximize the utility-privacy trade-off.

8.3 Model

We first introduce a simple toy example in Section 8.3.1 giving insights into the more general

problem, whose formal and general formulation is given in Section 8.3.2.

8.3.1 Toy Example

Suppose an agent is publicly playing an action x ∈ X to minimize a loss x>ck, where ck is some

vector. The true type k ∈ [K] is only known to the agent and drawn from a prior p0. Without

privacy concern, the agent would then solve for every k: minx∈X x>ck.
Let us denote by x∗k the optimal solution of that problem. Besides maximizing her reward, the

agent actually wants to protect the secret type k. After observing the action x taken by the agent,

an adversary updates her posterior distribution of the hidden type px.

If the agent were to play deterministically x∗k when her type is k, then the adversary could

infer the true value of k based on the played action. The agent should instead choose her action

randomly to hide her true type to the adversary. Given a type k, the strategy of the agent is then

a probability distribution µk over X and her expected reward is Ex∼µk
[
x>ck

]
. In this case, the

posterior distribution after playing the action x is computed using Bayes rule and if the different

µk have overlapping supports, then the posterior distribution is no longer a Dirac mass, i.e., some

asymmetry of information is maintained.

The agent aims at simultaneously minimizing both the utility loss and the amount of infor-

mation given to the adversary. A common way to measure the latter is given by the Kullback-

Leibler (KL) divergence between the prior and the posterior (Sims, 2003): KL(px, p0) =∑K
k=1 log

(
px(k)
p0(k)

)
px(k), where px(k) = p0(k)µk(x)∑K

l=1 p0(l)µl(x)
. If the information cost scales in util-

ity with λ > 0, the regularized loss of the agent is then x>ck + λKL(px, p0) instead of x>ck.
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Overall, the global objective of the agent is the following minimization:

min
µ1,...,µK

K∑
k=1

p0(k)Ex∼µk
[
x>ck + λKL(px, p0)

]
.

In the limit case λ = 0, the agent follows a totally revealing strategy and deterministically plays

x∗k given k. When λ = ∞, the agent focuses on perfect privacy and looks for the best action

chosen independently of the type: x ⊥⊥ k. It corresponds to a so called non-revealing strategy in

game theory and the best strategy is then to play arg minx x>c[p0] where c[p0] =
∑K
k=1 p0(k)ck.

For a positive λ, the behavior of the player will then interpolate between these two extreme

strategies.

This problem is related to repeated games with incomplete information (Aumann et al.,

1995), where players have private information affecting their utility functions. Playing some

action leaks information to the other players, who then change their strategies in consequence.

The goal is then to control the amount of information leaked to the adversaries in order to

maximize one’s own utility. In practice, it can be impossible to compute the best adversarial

strategy, e.g., the player is unaware of how the adversaries would adapt. The utility loss caused

by adversarial actions is then modeled as a function of the amount of revealed information.

8.3.2 General model

We now introduce formally the general model sketched by the previous toy example. The agent

(or player) has a private type y ∈ Y drawn according to a prior p0 whose support can be infinite.

She then chooses an action x ∈ X to maximize her utility, which depends on both her action and

her type. Meanwhile, she wants to hide the true value of her type y. A strategy is thus a mapping

Y → P(X ), where P(X ) denotes the set of distributions over X ; for the sake of conciseness,

we denote by X|Y ∈ P(X )Y such a strategy. In the toy example, this mapping was given by

k 7→ µk. The adversary observes her action x and tries to infer the type of the agent. We assume

a perfect adversary, i.e., she can compute the exact posterior distribution px.

Let c(x, y) be the utility loss for playing x ∈ X with the type y ∈ Y . The cost of information

is cpriv(X,Y ) where (X,Y ) is the joint distribution of the action and the type. In the toy example

given in Section 8.3.1, the utility cost was given by c(x, k) = x>ck and the privacy cost was the

expected KL divergence between px and p0. The previous frameworks aimed at minimizing the

utility loss with a privacy cost below some threshold ε > 0, i.e., minimize E(x,y)∼(X,Y )
[
c(x, y)

]
such that cpriv(X,Y ) ≤ ε. Here, this privacy loss has some utility scaling with λ > 0, which

can be seen as the value of information. The final objective of the agent is then to minimize the
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following loss:

inf
X|Y ∈P(X )Y

E(x,y)∼(X,Y )
[
c(x, y)

]
+ λ cpriv(X,Y ). (8.1)

As mentioned above, the cost of information is here defined as a measure between the posterior

px and the prior distribution p0 of the type, i.e., cpriv(X,Y ) = Ex∼XD(px, p0) for some function

D1. In the toy example of Section 8.3.1, D(px, p0) = KL(px, p0), which is a classical cost of

information in economics.

For a distribution γ ∈ P(X ×Y), we denote by π1#γ (resp. π2#γ) the marginal distribution

of X (resp. Y ): π1#γ(A) = γ(A × Y) and π2#γ(B) = γ(X × B). In order to have a simpler

formulation of the problem, we remark that instead of defining a strategy by the conditional

distribution X|Y , it is equivalent to see it as a joint distribution γ of (X,Y ) with a marginal

over the type equal to the prior: π2#γ = p0. The remaining of the chapter focuses on the

problem below, which we call Privacy Regularized Policy. With the privacy cost defined as

above, the minimization problem (8.1) is equivalent to

inf
γ∈P(X×Y)
π2#γ=p0

∫
X×Y

[c(x, y) + λD(px, p0)] dγ(x, y). (PRP)

8.4 A convex minimization problem

In this section, we study some theoretical properties of the Problem (PRP). We first recall the

definition of an f -divergence.

Definition 8.1. D is an f -divergence if for all distributions P,Q such that P is absolutely

continuous w.r.t. Q, D(P,Q) =
∫
Y f

(
dP (y)
dQ(y)

)
dQ(y) where f is a convex function defined on

R∗+ with f(1) = 0.

The set of f -divergences includes common divergences such as the Kullback-Leibler diver-

gence (t log(t)), the reverse Kullback-Leibler (− log(t)) or the Total Variation distance (0.5|t−
1|).

Also, the min-entropy defined by D(P,Q) = log (ess sup dP/dQ) is widely used for pri-

vacy (Tóth et al., 2004; Smith, 2009). It corresponds to the limit of the Renyi divergence

ln
(∑n

i=1 p
α
i q

1−α
i

)
/(α − 1), when α → +∞ (Rényi, 1961; Mironov, 2017). Although it is

not an f -divergence, the Renyi divergence derives from the f -divergence associated to the con-

vex function t 7→ (tα − 1)/(α − 1). f -divergence costs have been recently considered in the

computer science literature in a non-Bayesian case and then present the good properties of con-

vexity, composition and post-processing invariance (Chaudhuri et al., 2019).
1We here favor ex-ante costs as they suggest that the value of information can be heterogeneous among types.
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In the remaining of this chapter, D is an f -divergence. (PRP) then becomes a convex mini-

mization problem.

Theorem 8.1. If D is an f -divergence, (PRP) is a convex problem in γ ∈ P(X×Y)2.

Proof. The constraint set is obviously convex. The first part of the integral is linear in γ. It thus

remains to show that the privacy loss is also convex in γ. As D is an f -divergence, the privacy

cost is
cpriv(γ) :=

∫
X×Y

D (px, p0) dγ(x, y)

=
∫
X

∫
Y
f
( dγ(x, y)

dγ1(x)dp0(y)
)
dp0(y)dγ1(x),

where γ1 = π1#γ. For t ∈ (0, 1) and two distributions γ and µ, we can define the convex

combination ν = tγ + (1 − t)µ. By linearity of the projection π1, ν1 = tγ1 + (1 − t)µ1.

The convexity of cpriv actually results from the convexity of the perspective of f defined by

g(x1, x2) = x2f(x1/x2) (Boyd and Vandenberghe, 2004). It indeed implies

f
( dν

dν1dp0

)
dν1 ≤ tf

( dγ
dγ1dp0

)
dγ1 + (1− t)f

( dµ
dµ1dp0

)
dµ1.

The result then directly follows when summing over X × Y .

AlthoughP(X×Y) has generally an infinite dimension, it is dimensionally finite if both sets

X and Y are discrete. A minimum can then be found using classical optimization methods. In

the case of bounded low dimensional spaces X and Y , they can be approximated by finite grids.

However, the size of the grid grows exponentially with the dimension and another approach is

needed for large dimensions of X and Y .

8.4.1 Discrete type space

We assume here that X is an infinite action space and Y is of cardinality K (or equivalently,

p0 is a discrete prior of size K), so that p0 =
∑K
k=1 p

k
0δyk . For a fixed joint distribution γ, let

the measure µk be defined for any A ⊂ X by µk(A) = γ(A × {yk}) and µ =
∑K
k=1 µk =

π1#γ. The function pk(x) = dµk(x)
dµ(x) , defined over the support of µ by absolute continuity, is

the posterior probability of having the type k when playing x. The tuple (µ, (pk)k) exactly

2It is convex in a usual sense and not geodesically here.
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determines γ. (PRP) is then equivalent to:

inf
µ,(pk(·))

pk≥0,
∑K

l=1 p
l(·)=1

∑
k

∫
X

[
pk(x)c(x, yk) + λpk0f

(
pk(x)
pk0

) ]
dµ(x)

such that for all k ≤ K,
∫
X
pk(x)dµ(x) = pk0.

(8.2)

For fixed posterior distributions pk, this is a generalized moment problem on the distribution µ

(Lasserre, 2001). The same types of arguments can then be used for the existence and the form

of optimal solutions.

Theorem 8.2. If the prior is dicrete of size K, for all ε > 0, (PRP) has an ε-optimal solution

such that π1#γ = µ has a finite support of at most K + 2 points.

Furthermore, if X is compact and c(·, yk) is lower semi-continuous for every k, then it also

holds for ε = 0.

Proof. For ε > 0, let (pk)k and µ be an ε-optimal solution. We define
g0(x) :=

∑
k

[
pk(x)c(x, yk) + λpk0(x)f

(
pk(x)
pk0

) ]
,

gk(x) := pk(x) for k ∈ {1, . . . ,K}.

Let αj(µ) =
∫
X gjdµ for j ∈ {0, . . . ,K}. The considered solution µ is included in a convex

hull as follows:

(αj(µ))0≤j≤K ∈ Conv{(gj(x))0≤j≤K / x ∈ X}.

So by Caratheodory theorem, there are K + 2 points xi ∈ X and (ti) ∈ ∆K+2 such that

αj(µ) =
∑K+2
i=1 tigj(xi) for any j. Let µ′ =

∑K+2
i=1 tiδxi . We then have αj(µ′) = αj(µ) for

all j, which means that (µ′, (pk)k) is also an ε-optimal solution of the problem (8.2) and the

support of µ′ is of size at most K + 2.

Now assume that X is compact and the c(·, yk) are lower semi-continuous. The first part of

Theorem 8.2 that we just proved leads to Corollary 8.1, which is given below and claims that

(PRP) is equivalent to its discrete version given by equation (8.3). We consider the formulation

of equation (8.3) in the remaining of the proof.

Define hk(γi) :=
(∑K

m=1 γi,m
)
f

(
γi,k

pk0
∑K

m=1 γi,m

)
, with the conventions f(0) = lim

x→0
f(x) ∈

R ∪ {+∞} and hk(γi) = 0 if
∑K
m=1 γi,m = 0.

The privacy cost is then the sum of the hk(γi) for all k and i. The case ε = 0 comes from

the lower semi-continuity of the objective function, as claimed by Lemma 8.1 proven below.

Lemma 8.1. For any k in {1, . . . ,K}, hk is lower semi-continuous.
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Let (γ(n), x(n))n be a feasible sequence whose value converges to this infimum. By compac-

ity, we can assume after extraction that (x(n), γ(n)) → (x, γ). As c(·, yk) and hk are all lower

semi-continuous, the infimum is reached in (γ, x).

Proof of Lemma 8.1. f is convex and thus continuous on R∗+. If lim
x→0+

f(x) ∈ R, then f can be

extended as a continuous function on R+ and all the hk are thus continuous.

Otherwise by convexity, lim
x→0+

f(x) = +∞. Thus, hk is continuous at γi as soon as γi,j > 0

for every j. If γi,k = 0, but the sum
∑K
l=1 γi,l is strictly positive, then hk(γi) = +∞; but as

soon as ρ→ γ, we also have an infinite limit.

If
∑K
l=1 γi,l = 0, then lim inf

ρ→γ
f
(

ρi,k
pk0
∑
l

ρi,l

)
∈ R∪{+∞}. This term is multiplied by a factor

going to 0, so lim inf
ρ→γ

hk(ρi) ≥ 0 = hk(γi). Finally, hk is lower semi-continuous in all the

cases.

If the support of γ is included in {(xi, yk) | 1 ≤ i ≤ K + 2, 1 ≤ k ≤ K}, it can be denoted

it as a matrix γi,k := γ({(xi, yk)}).

Corollary 8.1. In the case of a discrete prior, (PRP) is equivalent to:

inf
(γ,x)∈R(K+2)×K

+ ×XK+2

∑
i,k

γi,k c(xi, yk) + λ
∑
i,k

γi,kD(pxi , p0)

such that ∀k ≤ K,
∑
i

γi,k = pk0.
(8.3)

Proof. Theorem 8.2 claims that (PRP) is equivalent to the problem of Corollary 8.1 if we also

impose xi 6= xj for i 6= j. The value of problem (8.3) is thus lower than the value of (PRP) as

we consider a larger feasible set. Let us consider a redundant solution (γ, x) with xi = xj for

i 6= j. It remains to show that a non redundant version of this solution has a lower value.

The functions hk defined in the proof of Theorem 8.2 are convex as the perspectives of

convex functions (Boyd and Vandenberghe, 2004). Also, they are obviously homogeneous of

degree 1. These two properties imply that the hk are subadditive. Thus, let (γ′, x′) be defined

by 
γ′l,k := γl,k for any l 6∈ {i, j},

γ′i,k := γi,k + γj,k,

γ′j,k := 0

and

x
′
l := xl for any l 6= j,

x′j ∈ X \ {xl | 1 ≤ l ≤ K + 2}.

The subadditivity of hk implies hk(γ′i) + hk(γ′j) ≤ hk(γi) + hk(γj) for any k. The other terms
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in the objective function will be the same for (γ, x) and (γ′, x′). It thus holds

∑
i,k

γi,kc(xi, yk) + λ
∑
i,k

pk0hk(γi) ≥
∑
i,k

γ′i,kc(x′i, yk) + λ
∑
i,k

pk0hk(γ′i).

(γ′, x′) is in the feasible set of the problem of Corollary 8.1 and we removed a redundant

condition from x. We can thus iteratively construct a solution (γ̃, x̃) until reaching non redun-

dancy. We then have (γ̃, x̃) a non redundant solution with a lower value than (γ, x), i.e., allowing

redundancy does not change the infimum.

Although it seems easier to consider the dimensionally finite problem given by Corollary 8.1,

it is not jointly convex in (γ, x). No general algorithms exist to efficiently minimize non-convex

problems. We refer the reader to (Horst et al., 2000) for an introduction to non-convex optimiza-

tion.

The next sections reformulate the problem to better understand its structure, leading to opti-

mization methods reaching better local minima.

8.5 Sinkhorn Loss minimization

Formally, (PRP) is expressed as Optimal Transport Minimization for the utility cost c with a reg-

ularization given by the privacy cost. This section considers the Kullback-Leibler divergence for

privacy cost. In this case, the problem becomes a Sinkhorn loss minimization, which presents

computationally tractable schemes (Peyré and Cuturi, 2019). If the privacy cost is the KL di-

vergence between the posterior and the prior, i.e., f(t) = t log(t), then the regularization term

corresponds to the mutual information I(X;Y ), which is the classical cost of information in

economics.

The Sinkhorn loss for distributions (µ, ν) ∈ P(X )× P(Y) is defined by

OTc,λ(µ, ν) := min
γ∈Π(µ,ν)

∫
c(x, y)dγ(x, y)

+ λ

∫
log

( dγ(x, y)
dµ(x)dν(y)

)
dγ(x, y),

(8.4)

where Π(µ, ν) = {γ ∈ P(X ×Y) | π1#γ = µ and π2#γ = ν}. Problem (PRP) with the privacy

cost given by the Kullback-Leibler divergence is actually a Sinkhorn loss minimization problem.

Theorem 8.3. Problem (PRP) with D = KL is equivalent to

inf
µ∈P(X )

OTc,λ(µ, p0). (8.5)
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Proof. Observe that dγ(x,y)
dµ(x) is the posterior probability dpx(y), thanks to Bayes rule. The reg-

ularization term in equation (8.4) then corresponds to D(px, p0) as p0 = ν and D = KL here.

The minimization problem given by equation (8.4) is thus equivalent to equation (PRP) with

the additional constraint π1#γ = µ. Minimizing without this constraint is thus equivalent to

minimizing the Sinkhorn loss over all action distributions µ.

While the regularization term is usually only added to speed up the computations of optimal

transport, it here directly appears in the cost of the original problem since it corresponds to

the privacy cost! An approximation of OTc,λ(µ, ν) can then be quickly computed for discrete

distributions using Sinkhorn algorithm (Cuturi, 2013), described in Section 8.5.1.

Notice that the definition of Sinkhorn loss sometimes differs in the literature and instead uses∫
log (dγ(x, y)) dγ(x, y) for the regularization term. When µ and ν are both fixed, the optimal

transport plan γ remains the same. As µ is varying here, these notions yet become different.

For this alternative definition, a minimizing distribution µ would actually be easy to compute. It

is much more complex in our problem because of the presence of µ in the denominator of the

logarithmic term.

With a discrete prior, we can then look for a distribution µ =
∑K+2
j=1 αjδxj . In case of a

continuous prior, it could still be approximated using sampled discrete distributions as previously

done for generative models (Genevay et al., 2018; Genevay et al., 2019).

Besides being a new interpretation of Sinkhorn loss, this reformulation allows a better un-

derstanding of the problem structure and reduces the dimension of the considered distributions.

8.5.1 Computing Sinkhorn loss

It was recently suggested to use the Sinkhorn algorithm, which has a linear convergence rate,

to compute OTc,λ(µ, ν) for distributions µ =
∑n
i=1 αiδxi and ν =

∑m
j=1 βjδyj (Knight, 2008;

Cuturi, 2013). With K the exponential cost matrix defined by Ki,j = e−
c(xi,yj)

λ , the unique

matrix γ solution of the problem (8.4) has the form diag(u)Kdiag(v). The Sinkhorn algorithm

then updates alternatively u ← α/Kv and v ← β/K>u (with component-wise division) for n

iterations or until convergence.

8.6 Minimization schemes

Despite the equivalence between (PRP) and the minimization of Sinkhorn loss given by equa-

tion (8.5), minimizing this quantity remains an open problem. This section suggests different

possible optimization methods in this direction.
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8.6.1 Optimization methods

Convex minimization over a distribution set. Problems (PRP) and (8.5) are both of the form

min
µ∈P(X )

J(µ), (8.6)

with J convex. Although solving such a problem is unknown in general, some methods are

possible in specific cases (see e.g., Chizat and Bach, 2018, for a short overview).

For polynomial costs, this problem can be solved using generalized moment approaches

(Lasserre, 2001), but the complexity explodes with the degree of the polynomial.

P(X ) is the convex hull of Dirac distributions on X , so Frank-Wolfe algorithm might be

a good choice (Jaggi, 2013), especially to guarantee sparsity of the returned distribution using

away-steps technique (Guélat and Marcotte, 1986; Clarkson, 2010). Unfortunately, the Franke-

Wolfe algorithm requires at each step to solve a subproblem, which is here equivalent to

arg max
x∈X

∑
y∈Y

p0(y) exp
(
g(y)− c(x, y)

ε

)
,

where g depends on the previous optimization step. This problem is computationally intractable

for most cost functions, making Frank-Wolfe methods unadapted to our problem.

Non-convex minimization. Minimizing over the set of distributions remains solved only for

specific cases. The most common approach instead approximates problem (8.6) by discretizing

it as

min
x∈Xm
α∈∆m

J

(
m∑
i=1

αiδxi

)
. (8.7)

Although this dimensionally finite problem is not convex, recent literature has shown the

absence of spurious local minima for a large number of particles m (over-parameterization).

These results yet hold only under restrictive conditions on the loss function and problem struc-

ture (Li and Yuan, 2017; Soudry and Hoffer, 2017; Soltanolkotabi et al., 2018; Venturi et al.,

2018; Chizat and Bach, 2018), which are adapted to optimization with neural networks. None

of these conditions are satisfied here, making the benefit from over-parameterization uncertain.

The empirical results in Section 8.7.2 yet suggest that such a phenomenon might also hold in

our setting.

In general, reaching global optimality in non-convex minimization is intractable (Hendrix

and Boglárka, 2010; Sergeyev et al., 2013), so we only aim at computing local minima. In

practice, RMSProp and ADAM are often considered as the best algorithms in such cases, as

they tend to avoid bad local minima thanks to the use of specific momentums (Hinton et al.,
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2012; Kingma and Ba, 2014). They yet remain little understood in theory (Reddi et al., 2019;

Zou et al., 2019).

Minimax formulation. Note that the dual formulation (Peyré and Cuturi, 2019, Proposition

4.4) of Equation (8.4) allows the following formulation of the optimization problem (8.5):

min
µ∈P(X )

max
f∈C(X )
g∈C(Y)

〈
µ, f

〉
+
〈
p0, g

〉
− λ

〈
µ⊗ p0, exp ((f ⊕ g − c)/λ)

〉
, (8.8)

where
〈
µ, f

〉
:=
∫
X f(x)dµ(x) for a distribution µ and a continuous function f on X , µ⊗ p0 is

the product distribution and f ⊕g(x, y) = f(x)+g(y). This corresponds to a minimax problem

of the form minx maxy ψ(x, y) where ψ(·, y) is convex for any y and ψ(x, ·) is concave for any

x. Such problems appear in many applications and have been extensively studied. We refer to

(Nedić and Ozdaglar, 2009; Chambolle and Pock, 2016; Thekumparampil et al., 2019; Lin et al.,

2020) for detailed surveys on the topic.

As we are considering the discretized problem (8.7), we are actually in the nonconvex-

concave setting where ψ is nonconvex on its first variable and concave on its second. Algorithms

with theoretical convergence rates to local minima have been studied in this specific setting

(Rafique et al., 2018; Lin et al., 2019; Nouiehed et al., 2019; Thekumparampil et al., 2019;

Lu et al., 2020; Ostrovskii et al., 2020; Lin et al., 2020). Most of them alternate (accelerated)

gradient descent on x and gradient ascent on y, while considering a regularized version ψε of ψ.

Their interests are mostly theoretical as ADAM and RMSProp on the first coordinate instead

of gradient descent should converge to better local minima in practice, similarly to nonconvex

minimization. In practice, they still provide good heuristics as shown in Section 8.7.2.

On minimizing Sinkhorn divergence. Ballu et al. (2020) recently proposed a method to solve

the minimization problem (8.5). Unfortunately, they consider discrete distributions and focus on

reducing the dependency in the size of their supports. More importantly, this method adds a

regularization term ηKL(µ, β) for some reference measure β and requires this regularizer to be

more significant than the one originally in the Sinkhorn loss, i.e., η ≥ λ. While this does not

add any trouble when considering regimes where both are close to 0, we here consider fixed λ,

potentially far from 0 as explained in Section 8.5. The scaling factor η thus cannot be negligible,

making this method unadapted to our case.
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8.6.2 Different algorithms

Using these previous formulations, we propose several algorithms to solve the optimization

problem (8.5), which are compared experimentally in Section 8.7.2. As explained above, we

consider the discrete but non-convex formulation:

min
x∈Xm
α∈∆m

OTc,λ

(
m∑
i=1

αiδxi , p0

)
. (8.9)

We first consider ADAM and RMSProp algorithms for this problem. Note that the gradient of

the Sinkhorn loss (Feydy et al., 2019) is given by∇OTc,λ(µ, ν) = (f, g), where f and g are the

solutions of the dual problem given by equation (8.8), i.e., (f, g) = λ(ln(u), ln(v)) where u and

v are the vectors computed by the Sinkhorn algorithm presented in Section 8.5.1. The gradient of

OTc,λ can then only be approximated, as it is the solution of an optimization problem. Luckily,

first order optimization methods can still be used with inexact gradients (Devolder et al., 2014).

Two approximations of the gradient are possible.

Analytic Differentiation: ∇OTc,λ(µ, ν) is approximated by (f (n), g(n)), which are the dual

variables obtained after n iterations of the Sinkhorn algorithm.

Automatic Differentiation: the gradient is computed via the chain rule over the successive op-

erations processed during the Sinkhorn algorithm.

These two methods have been recently compared by Ablin et al. (2020) and showed to roughly

perform similarly for the same computation time.

For each optimization step, the gradient∇OTc,λ is approximated by computing (u(k+1)
t , v

(k+1)
t )←

(α/Kv(k)
t , β/K>u

(k+1)
t ) for n iterates. However, if the distribution µt did not significantly

change since the last step, the gradient does not change too much as well. Instead of starting the

Sinkhorn algorithm from scratch (u(0)
t = 111), we instead want to use the last optimization step

(u(0)
t = u

(n)
t−1) to converge faster. Note that this technique, which we call warm restart, cannot

be coupled with automatic differentiation as it would require nt backpropagation operations for

the optimization step t.

The iteration step (u, v)← (α/Kv, β/K>u) actually corresponds to a gradient ascent step

on (f, g) in the minimax formulation given by equation (8.8). The warm restart technique then

just corresponds to alternating optimization steps between the primal and dual variables, which

is classical in minimax optimization.

To summarize, here are the different features of the optimization scheme to compare in

Section 8.7.2.
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Optimizer: the general used algorithm, i.e., ADAM, RMSProp or accelerated gradient descent

(AGD).

Differentiation: whether we use automatic or analytic differentiation.

Warm restart: whether we use the warm restart technique, which is only compatible with an-

alytic differentiation.

8.7 Experiments and particular cases

In this section, the case of linear utility cost is first considered and shown to have relations with

DC programming. The performances of different optimization schemes are then compared on a

simple example. Simulations based on the Sinkhorn scheme are then run for the real problem

of online repeated auctions. The code is publicly available at github.com/eboursier/

regularized_private_learning.

8.7.1 Linear utility cost

Section 8.4 described a general optimization scheme for (PRP) with a discrete type prior. Its

objective is to find local minima, for a dimensionally finite, non-convex problem, using classical

algorithms (Wright, 2015). However in some particular cases, better schemes are possible as

claimed in Sections 8.5 and 8.6 for the particular case of entropic regularization. In the case

of a linear utility with any privacy cost, it is related to DC programming (Horst et al., 2000).

A standard DC program is of the form minx∈X f(x) − g(x), where both f and g are convex

functions. Specific optimization schemes are then possible (Tao and An, 1997; Horst and Thoai,

1999; Horst et al., 2000). In the case of linear utility costs over a hyperrectangle, (PRP) can be

reformulated as a DC program stated in Theorem 8.4.

Theorem 8.4. IfX =
d∏
l=1

[al, bl] and c(x, y) = x>y, define φ(y)l := (bl−al)yl/2 and hk(γi) :=(∑K
m=1 γi,m

)
f
( γi,k

pk0
∑K

m=1 γi,m

)
. Then (PRP) is equivalent to the following DC program:

min
γ∈R(K+2)×K

+

λ
∑
i,k

pk0hk(γi)−
K+2∑
i=1

∥∥∥∥∥
K∑
k=1

γi,kφ(yk)
∥∥∥∥∥

1

,

such that for all k ≤ K,
K+2∑
i=1

γi,k = pk0.

github.com/eboursier/regularized_private_learning
github.com/eboursier/regularized_private_learning
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Proof. Let ψ be the rescaling of X to [−1, 1]d, i.e., ψ(x)l := 2xl−bl−al
bl−al . Then, c(x, y) =

ψ(x)Tφ(y) + η(y) where φ(y)l := (bl − al)y
l

2 and η(y) =
d∑
l=1

al+bl
bl−al y

l. The problem given by

Corollary 8.1 is then equivalent to minimizing

∑
i,k

γi,k(x>i φ(yk) + η(yk)) + λ
∑
i,k

pk0hk(γi),

for x ∈ [−1, 1]d×(K+2). Because of the marginal constraints,
∑
i,k
γi,kη(yk) =

∑
k
pk0η(yk). This

sum does not depend neither on x nor γ, so that the terms η(yk) can be omitted, i.e., we minimize

∑
i

x>i

(∑
k

γi,kφ(yk)
)

+ λ
∑
i,k

pk0hk(γi).

It is clear that for a fixed γ, the best xi corresponds to xli = −sign(
∑
k
γi,kφ(yk)l) and the

term x>i

(∑
k
γi,kφ(yk)

)
then corresponds to the opposite of the 1-norm of

∑
k
γi,kφ(yk), i.e., the

problem then minimizes

−
∑
i

‖
∑
k

γi,kφ(yk)‖1 + λ
∑
i,k

pk0hk(γi).

More generally, if the cost c is concave and the action space X is a polytope, optimal actions

are located on the vertices of X . In that case, X can be replaced by the set of its vertices and

the problem becomes dimensionally finite. Unfortunately, for some polytopes such as hyper-

rectangles, the number of vertices grows exponentially with the dimension and the optimization

scheme is no longer tractable in large dimensions.

8.7.2 Minimize Sinkhorn loss on the toy example

This section compares empirically different ways of minimizing the Sinkhorn loss as described

in Section 8.6.2. We consider the linear utility loss c(x, y) = x>y over the space X = [−1, 1]d

and the Kullback-Leibler divergence for privacy cost, so that both DC and Sinkhorn schemes are

possible. The comparison with DC scheme is available in Section 8.7.3.

We optimized using well tuned learning rates. The prior pk0 is chosen proportional to eZk for

any k ∈ [K], where Zk is drawn uniformly at random in [0, 1] and K = 100. Each yki is taken

uniformly at random in [−1, 1] and is rescaled so that ‖yi‖1 = 1. The values are averaged over

200 runs.
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Figure 8.2 compares the different features described at the end of Section 8.6.2 for different

problem parameters. As suggested by Ablin et al. (2020), the algorithms perform similarly with

automatic and analytic differentiation. However, the analytic differentiation allows to use the

warm restart technique which, coupled with RMSProp, yields better performances as shown in

Figure 8.2.
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Figure 8.2: Comparison of different features for Sinkhorn minimization.
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Figure 8.3: Influence of number of actions m.

Figure 8.3 on the other hand studies the influence of the chosen number of actions3, which

is the parameter m in equation (8.9). As expected, the larger the number of actions, the better.

Note that for λ = 0.5, increasing the number of actions has no real influence after m ≥ 153.

The global minimum might always be reached in this case; and this minimum does not de-

pend on m as soon as it is greater than K + 2, thanks to Theorem 8.2. It yet remains unkown

whether the reached minima are global minima when the number of actions tends to infinity

(over-parameterization).

8.7.3 Comparing methods on the toy example

We now compare the performance of Sinkhorn minimization with different algorithms on the

toy example described in Section 8.7.2 for m = K + 2 actions.
3The comparison is done with RMSProp and warm restart, since it yields the best results for a fixed number of

actions.



230 Chapter 8. Utility/Privacy Trade-off as Regularized Optimal Transport

Different methods exist for DC programming and they compute either a local or a global

minimum. We here choose the DCA algorithm (Tao and An, 1997) as it computes a local

minimum and is thus comparable to the other considered schemes. Figure 8.4 compares the best

Sinkhorn scheme in Section 8.7.2 with DCA and PRP method, which uses ADAM or RMSProp

optimizers for the minimization problem (8.3).
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Figure 8.4: Comparison of optimization schemes. lr is the learning rate used for DC.

The DC method finds better local minima than the other ones. This was already observed in

practice (Tao and An, 1997) and confirms that it is more adapted to the structure of the problem,

despite being only applicable in very specific cases such as linear cost on hyperrectangles. Also,

the PRP method converges to worse spurious local minima as it optimizes in higher dimensional

spaces than the Sinkhorn method. We also observed in our experiments that PRP method is more

sensitive to problem parameters than Sinkhorn method.

The Sinkhorn method seems to perform better for larger values of λ. Indeed, given the

actions, the Sinkhorn method computes the best joint distribution for each iteration and thus

performs well when the privacy cost is predominant, while DCA computes the best actions

given a joint distribution and thus performs well when the utility cost is predominant. It is thus

crucial to choose the method which is most adapted to the problem structure as it can lead to

significant improvement in the solution.

8.7.4 Utility-privacy in repeated auctions

For repeated second price auctions following a precise scheme (Leme et al., 2016), there exist

numerical methods to implement an optimal strategy for the bidder (Nedelec et al., 2019). How-

ever, if the auctioneer knows that the bidder plays such a strategy, he can still infer the bidder’s

type and adapt to it. We thus require to add a privacy cost to avoid this kind of behavior from

the auctioneer as described in Section 8.2.1.

For simplicity, bidder’s valuations are assumed to be exponential distributions, so that the
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private type y is the parameter of this distribution, i.e., its expectation: y = Ev∼µy [v]. Moreover,

we assume that the prior p0 over y is the discretized uniform distribution on [0, 1] with a support

of size K = 10; let {yj}j=1,...,K be the support of p0.

In repeated auctions, values v are repeatedly sampled from the distribution µyj and a bidder

policy is a mapping β(·) from values to bids, i.e., she bids β(v) if her value is v. So a type yj and

a policy β(·) generate the bid distribution β#µyj , which corresponds to an action in X in our

setting. As a consequence, the set of actions of the agent are the probability distributions over R+

and an action ρi is naturally generated from the valuation distribution via the optimal monotone

transport map denoted by βij , i.e., ρi = βij#µyj (Santambrogio, 2015). In the particular case of

exponential distributions, this implies that βji (v) = βi(v/yj) where βi is the unique monotone

transport map from Exp(1) to ρi. The revenue of the bidder is then deduced for exponential

distributions (Nedelec et al., 2019) as

r(βi, yj) = 1− c(βi, yj)

= Ev∼Exp(1)
[(
yjv − βi(v) + β′i(v)

)
G
(
βi(v)

)
1βi(v)−β′i(v)≥0

]
,

whereG is the c.d.f. of the maximum bid of the other bidders. We here consider a single truthful

opponent with a uniform value distribution on [0, 1], so that G(x) = min(x, 1). This utility is

averaged over 103 values drawn from the corresponding distribution at each training step and

106 values for the final evaluation.

Considering the KL for privacy cost, we compute a strategy (γ, β) using the Sinkhorn

scheme yielding the best results in Section 8.7.2. Every action βi is parametrized as a single

layer neural network of 100 ReLUs. Figure 8.5a represents both utility and privacy as a function

of the regularization factor λ.

Naturally, both the bidder revenue and the privacy loss decrease with λ, going from revealing

strategies for λ ' 10−3 to non-revealing strategies for larger λ. They significantly drop at

a critical point near 0.05, which can be seen as the cost of information here. There is a 7%

revenue difference4 between the non revealing strategy and the partially revealing strategy shown

in Figure 8.5b. The latter randomizes the type over its neighbors and reveals more information

when the revenue is sensible to the action, i.e., for low types yj here. This strategy thus takes

advantage from the fact that the value of information is here heterogeneous among types, as

desired in the design of our model.

Figure 8.6 shows the most used action for different types and λ. In the revealing strategy

(λ = 0), the action significantly scales with the type. But as λ grows, this rescaling shrinks so

4Which is significant for large firms such as those presented in Figure 8.1 besides the revenue difference brought
by considering non truthful strategies (Nedelec et al., 2019).
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that the actions perform for several types, until having a single action in the non-revealing strat-

egy. This shrinkage is also more important for large values of yj . This confirms the observation

made above: the player loses less by hiding her type for large values than for low values and she

is thus more willing to hide her type when it is large.

Besides confirming expected results, this illustrates how the Privacy Regularized Policy is

adapted to complex utility costs and action spaces, such as distributions or function spaces.



Chapter 9

Social Learning in Non-Stationary
Environments

Potential buyers of a product or service, before making their decisions, tend to read reviews
written by previous consumers. We consider Bayesian consumers with heterogeneous pref-
erences, who sequentially decide whether to buy an item of unknown quality, based on
previous buyers’ reviews. The quality is multi-dimensional and may occasionally vary over
time; the reviews are also multi-dimensional. In the simple uni-dimensional and static set-
ting, beliefs about the quality are known to converge to its true value. This chapter extends
this result in several ways. First, a multi-dimensional quality is considered, second, rates
of convergence are provided, third, a dynamical Markovian model with varying quality is
studied. In this dynamical setting the cost of learning is shown to be small.
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9.1 Introduction

In our society many forms of learning do not stem from direct experience, but rather from ob-

serving the behavior of other people who themselves are trying to learn. In other words, people

engage in social learning. For instance, before deciding whether to buy a product or service,

consumers observe the past behavior of previous consumers and use this observation to make

their own decision. Once their decision is made, this becomes a piece of information for future

consumers. In the old days, it was common to consider a crowd in a restaurant as a sign that

the food was likely good. Nowadays, there are more sophisticated ways to learn from previous

consumers. After buying a product and experiencing its features, people often leave reviews

on sites such as Amazon, Tripadvisor, Yelp, etc. When consumers observe only the purchasing

behavior of previous consumers, there is a risk of a cascade of bad decisions: if the first agents

make the wrong decision, the following agents may follow them thinking that what they did was

optimal and herding happens. Interestingly enough, this is not necessarily the effect of bounded

rationality. It can actually be the outcome of a Bayesian equilibrium in a game with fully rational

players. It seems reasonable to conjecture that, if consumers write reviews about the product that

they bought, then social learning will be achieved. This is not always the case when consumers

are heterogeneous and the reviews that they write depend on the quality of the object but also on

their idiosyncratic attitude towards the product they bought.

Consumers also tend to give higher value to recent reviews. As highlighted in a survey

(Murphy, 2019) run on a panel of a thousand consumers, “48% of consumers only pay attention

to reviews written within the past two weeks,” and this trend is growing over time. A justification

for this behavior may be that customers perceive the quality of the product that they consider

buying as variable over time. The more recent the review, the more informative it is about the

current state of the product. This chapter considers a dynamical environment and shows that,

under some conditions, the outcome of the learning process in stationary and non-stationary

environments are overall comparable.
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9.1.1 Main contribution

We consider a model where heterogeneous consumers arrive sequentially at a monopolistic mar-

ket and—before deciding whether to buy a product of unknown quality—observe the reviews

(e.g., like/dislike) provided by previous buyers. Consumers are Bayesian and buy the product

if and only if their expected utility of buying is larger than 0 (the utility of the outside option).

Each buyer posts a sincere review that summarizes the experienced quality of the product and

an idiosyncratic attitude to it. Ifrach et al. (2019) studied this model in the case where the intrin-

sic quality of the product is one-dimensional, fixed over time, and can assume just two values;

they studied conditions for social learning to be achieved. We extend their results in two main

directions. First, we allow the quality to be multidimensional, i.e., to have different features

that consumers experience and evaluate. Second, we consider a model where the quality can

occasionally change over time.

We start examining a benchmark model where the quality is actually static and we provide

rates of convergence for the posterior distribution of the quality. We then move to the more

challenging dynamical model where quality may change over time. The criterion that we use in

this dynamical setting is the utility loss that a non-informed consumer incurs with respect to a

fully informed consumer, who at every time knows the true quality of the product. We show that

the learning cost is a logarithmic factor of the changing rate of the quality.

Table 9.1 below summarizes the proved bounds for the different settings. In the analysis we

also consider the case of imperfect learners, who are not aware of the dynamical nature of the

quality, and we quantify the loss they incur.

Type of model Utility Loss Tight Bound

stationary O (Md) 3

dynamical O (Md ln(2/η)ηT ) 3

Table 9.1: Bounds summary, where the reward function is M -Lipschitz and d is the dimension
of the quality space. In a non-stationary environment, the quality changes with probability η at
each round, while the utility loss is summed over T rounds.

9.1.2 Related literature

The problem of social learning goes back to Banerjee (1992) and Bikhchandani et al. (1992)

who considered models where Bayesian rational agents arrive at a market sequentially, observe

the actions of the previous agents, and decide based on their private signals and the public

observations. These authors showed that in equilibrium, consumers may herd into a sequence of
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bad decisions; in other words, social learning fails with positive probability. Smith and Sørensen

(2000) showed that this learning failure is due to the fact that signals are bounded. In the presence

of unbounded signals that can overcome any observed behavior, herding cannot happen.

Different variations of the above model have been considered, where either agents observe

only a subset of the previous agents (see e.g., Çelen and Kariv, 2004; Acemoglu et al., 2011;

Lobel and Sadler, 2015), or the order in which actions are taken is not determined by a line,

but rather by a lattice (Arieli and Mueller-Frank, 2019). A general analysis of social learning

models can be found in (Arieli and Mueller-Frank, 2021).

A more recent stream of literature deals with models where agents observe not just the

actions of the previous agents, but also their ex-post reaction to the actions they took. For

instance, before buying a product of unknown quality, consumers read the reviews written by

the previous consumers. In particular, Besbes and Scarsini (2018) dealt with some variation of a

model of social learning in the presence of reviews with heterogeneous consumers. In one case,

agents observe the whole history of reviews and can use Bayes rule to compute the conditional

expectation of the unknown quality and learning is achieved. In the other case they only observe

the mean of past reviews. Interestingly, even in this case, learning is achieved and the speed

of convergence is of the same order. Ifrach et al. (2019) studied a model where the unknown

quality is binary and the reviews are also binary (like or dislike). They considered the optimal

pricing policy and looked at conditions that guarantee social learning. Correa et al. (2020) also

considered the optimal dynamic pricing policy when consumers have homogeneous preferences.

A non-Bayesian version of the model was considered by Crapis et al. (2017), where mean-field

techniques were adopted to study the learning trajectory.

Papanastasiou and Savva (2017) studied a market where strategic consumers can delay their

purchase anticipating the fact that other consumers will write reviews in the meanwhile. They

examined the implication on pricing of this strategic interaction between consumers and a mo-

nopolist. Feldman et al. (2019) examined the role of social learning from reviews in the monop-

olist’s design of a product in a market with strategic consumers. Kakhbod and Lanzani (2021)

studied heterogeneity of consumers’ reviews and its impact on social learning and price competi-

tion. Maglaras et al. (2020) considered a model of social learning with reviews where consumers

have different buying options and a platform can affect consumers’ choice by deciding the or-

der in which different brands are displayed. Park et al. (2021) dealt with the effect of the first

review on the long-lasting success of a product. Chen et al. (2021) considered the issue of bias

in reviews from a theoretical viewpoint. They quantified the acquisition bias and the impact on

the rating of an arriving customer, characterized the asymptotic outcome of social learning, and

we show the effect of biases and social learning on pricing decisions.

The speed of convergence in social learning was considered by Rosenberg and Vieille (2019)
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in models where only the actions of the previous agents are observed and by Acemoglu et al.

(2017) when reviews are present. This last paper is the closest to the spirit of this chapter.

Learning problems in non-stationary environment have been considered, for instance, by

Besbes et al. (2015) and Besbes et al. (2019) in a context where the function that is being learned

changes smoothly, rather than abruptly as in our model in Section 9.4.

9.1.3 Organization of the chapter

Section 9.2 introduces the model of social learning from consumer reviews. Section 9.3 studies

the stationary setting where the quality is fixed. Section 9.4 introduces the dynamical setting,

where the quality changes over time. Section 9.5 consider a model with naive consumers and

shows that knowledge of the dynamical structure is crucial for the consumer utility.

Section 9.A contains additional proofs and Section 9.B studies the continuous model where

the quality space Q is convex.

9.2 Model

We consider a model of social learning where consumers read reviews before making their pur-

chase decisions. A monopolist sells a product of unknown quality to consumers who arrive

sequentially at the market. The quality may vary over time, although variations are typically

rare. The quality of the product at time t is denoted by Qt and the set of possible qualities is

Q = {0, 1}d. For a vector x, we denote by x(i) its i-th component, i.e., Q(i)
t represents the i-th

feature of the product at time t and has a binary value (low or high).

The prior distribution of the quality at time 1 is π1. Consumers are indexed by the time of

their arrivals t ∈ N\{0}. They are heterogeneous and consumer t has an idiosyncratic preference

θt ∈ Θ for the product. This preference θt is private information. These preferences are assumed

to be i.i.d. according to some known distribution. In game-theoretic terms, θt could be seen as

the type of consumer t. The sequences of preferences θt and of qualities Qt are independent.

A consumer who buys the product posts a review in the form of a multi-dimensional nu-

merical grade. The symbol Zt denotes the review posted by consumer t. The notation Zt = ∗
indicates that consumer t did not buy the product. We call Ht := {Z1, . . . , Zt−1} the history

before the decision of consumer t. We setH1 := ∅.

Since the preferences are independent of the quality, a no-purchase decision does not carry

any information on the quality. As a consequence, the historyHt is informationally equivalent to

the reduced history H̃t that includes only the reviews of the buyers up to t−1. This differentiates

this model from the classical social learning models, where consumers have private signals that
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are correlated with the quality.

Based on the historyHt of past observations and her own preference θt, consumer t decides

whether to buy the product. In case of purchase, she receives the utility ut := r(Qt, θt) where r

is the reward function. A consumer who does not buy the product gets ut = 0.

Bayesian rationality is assumed, so consumer t buys the product if and only if her conditional

expected utility of purchasing is positive, that is, if and only if E[r(Qt, θt) | Ht, θt] > 0.

Consumer t then reviews the product by giving the feedback Zt = f(Qt, θt, εt) ∈ Z ⊂ Rd

where εt are i.i.d. variables independent from θt. Also, the feedback function is assumed to take

a finite number of values in Rd and to be of the form

f(Q, θ, ε) = (f (i)(Q(i), ε, θ))i=1,...,d .

In words, for each different featureQ(i) of the qualityQ, consumers provide a separate feedback.

Previous works (Acemoglu et al., 2017; Ifrach et al., 2019) consideredZ = {0, 1} as the reviews

were only the likes or dislikes of consumers. This model allows a more general and richer

feedback, such as ratings on a five-star scale for each feature, or even sparse feedback where

consumers do not necessarily review each feature.

In a model without noise εt, the learning process is much simpler, as already noted by Ifrach

et al. (2019). Indeed, in this case, a single negative review rules out many possibilities as it

means that the quality was overestimated. To depict a more interesting learning process, we

consider noise, which corresponds to variations caused by different factors, e.g., fluctuations in

the product quality or imperfect perception of the quality by the consumer.

In the following, πt denotes the posterior distribution of Qt given Ht and, for any i ∈ [d],
π

(i)
t (q(i)) = P[Q(i)

t = q(i) | Ht] is the i-th marginal of the posterior.

We also introduce the function G and its componentwise equivalent G(i), defined as

G(z, π, q) = P[Zt = z | πt = π,Qt = q], (9.1)

G(i)(z(i), π, q(i)) = P[Z(i)
t = z(i) | πt = π,Q

(i)
t = q(i)]. (9.2)

In the following, we also use the notations

G(z, π) = Eq∼π[G(z, π, q)], (9.3)

G(i)(z(i), π) = Eq∼π[G(i)(z(i), π, q(i))]. (9.4)

The following two assumptions will be used in the sequel.

Assumption 9.1 (Purchase guarantee). The reward function r is monotonic in each feature q(i)

and for any q ∈ Q, Pθt
(
r(q, θt) > 0

)
> 0, i.e., there is always a fraction of consumers who buy
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the product.

Assumption 9.1 excludes situations where consumers stop buying if the expected quality

becomes low. Without this condition, social learning fails with positive probability (Acemoglu

et al., 2017; Ifrach et al., 2019).

Assumption 9.2 (Identifiability). For any i ∈ [d], any quality posterior π ∈ P(Q) and quality

q(i), we have G(i)( · , π, q(i)) > 0. Moreover, for q(i) 6= q′(i), there exists some z ∈ Z such that

G(i)(z(i), π, q(i)) 6= G(i)(z(i), π, q′(i)).

Assumption 9.2 is needed to distinguish different qualities based on past reviews. The posi-

tivity of G is required to avoid trivial situations. The case of G = 0 for some variables is similar

to the absence of noise εt, as a single observation can definitely rule out several possibilities.

An interesting choice of reward function is, for instance, r(Q, θ) = 〈Q, θt〉 where 〈 · , · 〉 is

the scalar product. In this case, θ(i)
t is the weight that customer t gives to feature i of the service.

In practice, customers might also only focus on the best or worst aspects of the service,

meaning their reward might only depend on the maximal or minimal value of the Q(i)’s. The

ordered weighted averaging operators (Yager, 1988) model these behaviors. In an additive

model similar to the classical case in the literature, this leads to a reward function r(Q, θ) =∑n
i=1w

(i)(Q+ θ)(σ(i)) where σ is a permutation such that (Q+ θ)(σ(i)) is the i-th largest com-

ponent of the vector (Q(i) + θ(i))i=1,...,d. If w(i) = 1/d for all i, this is just an average of all

features’ utilities. When w(1) = 1 and all other terms are 0, consumers are only interested in the

maximal utility among all features.

Much of the existing literature has focused on the following unidimensional setting

r(Q, θ) = Q+ θ − p,

f(Q, θ, ε) = sign (Q+ θ + ε− p) ,

where p is an exogenously fixed price. Since consumers review separately each feature of the

service, the feedback function is a direct extension of the above unidimensional setting. It is

then of the form

f (i)(Q(i), ε, θ) = sign
(
Q(i) + θ(i) + ε(i) − p(i)

)
, (9.5)

for some constant price p(i).

Having a sparse feedback is very common on platform reviews, where consumers only re-

view a few features. This case can be modeled by

f (i)(Q(i), ε, η, θ) = sign
(
Q(i) + θ(i) + ε(i) − p(i)

)
ξ(i), (9.6)
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with ε ∈ Rd and ξ ∈ {0, 1}d. Although the noise vector is here given by the tuple (ε, ξ) instead

of ε alone, this remains a specific case of our model.

A multiplicative model can also be considered where the relevant quantity is Q(i)θ(i), rather

than Q(i) + θ(i). This model is very similar to the additive one when using a logarithmic trans-

formation.

9.3 Stationary Environment

As mentioned before, our aim is to consider a model where the quality of the product may oc-

casionally change over time. As a benchmark, we start considering the case where the quality

is constant: Qt = Q1 for all t ∈ N. We will leverage this case, when dealing with the dy-

namic model of variable quality. In the unidimensional case Q = {0, 1}, Ifrach et al. (2019)

showed that the posterior almost surely converges to the true quality, and Acemoglu et al. (2017)

showed an asymptotic exponential convergence rate. Besides extending these results to the mul-

tidimensional model, this section shows anytime convergence rates of the posterior. The study

of convergence rates in social learning is just a recent concern (Acemoglu et al., 2017; Rosen-

berg and Vieille, 2019), despite being central to online learning (Bottou, 1999) and Bayesian

estimation (Ghosal et al., 2000). Moreover, convergence rates are of crucial interest when facing

a dynamical quality. The main goal of this section is thus to lay the foundation for the analysis

of Section 9.4.

The posterior update is obtained using Bayes’ rule for any q ∈ Q,

πt+1(q) = G (Zt, πt, q)
G (Zt, πt)

πt(q). (9.7)

Theorem 9.1 below gives a convergence rate of the posterior to the true quality. Similarly to

Acemoglu et al. (2017, Theorem 2), it shows an exponential convergence rate. While their result

yields an asymptotic convergence rate, we provide an anytime, but slower, rate with similar as-

sumptions. We focus on anytime rates as they are highly relevant in the model with a dynamical,

evolving quality considered in Section 9.4.

Theorem 9.1. For q 6= q′, we have

E[πt+1(q′) | Q = q] ≤ exp
(
− tδ4

2γ2 + 4δ2

)
1

maxi∈[d] π
(i)
1 (q(i))

,

where δ := min
i∈[d],π∈P(Q)

∑
z∈Z
|G(i)(z(i), π, 1)−G(i)(z(i), π, 0)| (9.8)
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and γ := 2 max
i∈[d],π∈P(Q),z∈Z

∣∣∣∣∣ln
(
G(i)(z(i), π, 1)
G(i)(z(i), π, 0)

)∣∣∣∣∣ . (9.9)

Notice that δ is the minimal total variation between Z(i)
t conditioned either on (π,Q(i)

t = 1)
or (π,Q(i)

t = 0). Thanks to Assumption 9.2, both δ and γ are positive and finite. This guarantees

an exponential convergence rate of the posterior as πt(q) = 1−
∑
q′ 6=q πt(q′).

Proof of Theorem 9.1. Assume without loss of generality Q(i)
1 = 1. The proof of Theorem 9.1

follows directly from the following inequality, which we prove in the following:

E[π(i)
t+1(0) | Q(i)

1 = 1] ≤ exp
(
− tδ4

2γ2 + 4δ2

)
1

π
(i)
1 (1)

. (9.10)

Similarly to (9.7), we have the Bayesian update

π
(i)
t+1(q(i)) =

G(i)
(
Z

(i)
t , πt, q

(i)
)

G(i)
(
Z

(i)
t , πt

) π
(i)
t (q(i)). (9.11)

This leads by induction to

ln

π(i)
t+1(1)
π

(i)
t+1(0)

 = ln
(
π

(i)
1 (1)
π

(i)
1 (0)

)
+

t∑
s=1

ln

G(i)
(
Z

(i)
s , πs, 1

)
G(i)

(
Z

(i)
s , πs, 0

)
 .

In the following, we use the notation KL (µ, ν) for the Kullback-Leibler divergence between

the distributions µ and ν, which is defined as

KL (µ, ν) = Ex∼µ
[
ln
(
µ(x)
ν(x)

)]
. (9.12)

Define now

Xt := ln
(
G(i)(Z(i)

t , πt, 1)
G(i)(Z(i)

t , πt, 0)

)
−KL

(
G(i)(·, πt, 1), G(i)(·, πt, 0)

)
. (9.13)

Notice that E[Xt | Ht, Q(i)
1 = 1] = 0. Also, by definition of γ, Xt ∈ [Yt, Yt + γ] almost surely

for some Ht-measurable variable Yt. Azuma-Hoeffding’s inequality (see, e.g., Cesa-Bianchi

and Lugosi, 2006, Lemma A.7) then yields for any λ ≥ 0:

P
[

t∑
s=1

Xs ≤ −λ
∣∣∣Q(i)

1 = 1
]
≤ exp

(
−2λ2

tγ2

)
,
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which is equivalent to

P

π(i)
t+1(0)
π

(i)
t+1(1)

≥ exp
(
λ−

t∑
s=1

KL
(
G(i)(·, πs, 1), G(i)(·, πs, 0)

) )π(i)
1 (0)
π

(i)
1 (1)

∣∣∣Q(i)
1 = 1

 ≤ exp
(
−2λ2

tγ2

)
.

(9.14)

By Pinsker’s inequality (see, e.g., Tsybakov, 2009, Lemma 2.5), we have

KL
(
G(i)(·, πs, 1), G(i)(·, πs, 0)

)
≥ δ2/2,

so Equation (9.14) becomes

P
[
π

(i)
t+1(0) ≥ exp

(
λ− tδ2(1, 0)

2
)π(i)

1 (0)
π

(i)
1 (1)

∣∣∣Q(i)
1 = 1

]
≤ exp

(
−2λ2

tγ2

)
,

where we used the fact that π(i)
t+1(1) ≤ 1. This then yields

E[π(i)
t+1(0) | Q(i)

1 = 1] ≤ exp
(
λ− tδ2

2

)
π

(i)
1 (0)
π

(i)
1 (1)

+ P
[
π

(i)
t+1(0) ≥ exp

(
λ− tδ2/2

)
| Q(i)

1 = 1
]

≤ exp
(
λ− tδ2

2

)
π

(i)
1 (0)
π

(i)
1 (1)

+ exp
(
−2λ2

tγ2

)
.

Let x = tγ2/4 and y = tδ2/2. Setting λ = −x+
√

2xy + x2 equalizes the exponential terms:

E[π(i)
t+1(0) | Q(i)

1 = 1] ≤ (1 + π
(i)
1 (0)
π

(i)
1 (1)

) exp
(
−x− y +

√
x2 + 2xy

)

≤ 1
π

(i)
1 (1)

exp
(
− y2

2(x+ y)
)
.

The second inequality is given by the convex inequality

√
a−
√
a+ b ≤ − b

2
√
a+ b

, for a = x2 + 2xy and b = y2.

From the definitions of x and y, this yields

E[π(i)
t+1(0) | Q(i)

1 = 1] ≤ 1
π

(i)
1 (1)

exp
(
− tδ4

2γ2 + 4δ2

)
.

We conclude by noting that π(i)
t (q′(i)) ≥ πt(q′).
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9.4 Dynamical Environment

We now model a situation where the quality Q may change over time. We consider a general

Markovian model given by the transition matrix P . Moreover, at each time step, the quality

might change with probability at most η ∈ (0, 1):

P
(
Qt+1 = q′ | Qt = q

)
= Pq,q′ ,

with P (q, q) ≥ 1− η for all q ∈ Q.
(9.15)

The use of a Markovian model is rather usual in such dynamical models. Assuming that

the diagonal terms of the transition matrix P are large ensures that changes of quality are rare.

Consumers thus have some time to learn the current quality of the product.

Studying the convergence of the posterior is irrelevant, as the quality regularly changes.

Instead, we measure the quality of the posterior variations in term of the total utility loss

RT :=
T∑
t=1

E[r(Qt, θt)+ − ut], (9.16)

also known as “regret”. The first term r(Qt, θt)+ corresponds to the utility a consumer would

get if she knew the quality Qt, whereas ut is the utility she actually gets.

Lemma 9.1. If r is M -Lipschitz in its first argument for any θ ∈ Θ, i.e., |r(q, θ) − r(q′, θ)| ≤
M‖q − q′‖1 for any q, q′ ∈ Q, we have

RT ≤M
d∑
i=1

T∑
t=1

E[1− π(i)
t (Q(i)

t )].

Lemma 9.1, proved in Section 9.A.1, shows that bounding the cumulated estimation error∑T
t=1 E[1− π(i)

t (Q(i)
t )] for each coordinate is sufficient to bound the total regret.

We consider in this section consumers who have perfect knowledge of the model, i.e., they

know that the quality might change following (9.15). Recall that the prior is assumed uniform

on Q. If G is defined as in (9.1), the posterior update is given by

πt+1(q) =
∑
q′∈Q

P (q, q′)G (Zt, πt, q′)
G (Zt, πt)

πt(q′). (9.17)

The effect of the old reviews is mitigated by the multiplications with the transition matrix P .

Consumers thus value more recent reviews in this model, as wished in its design. By induction,
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the previous inequality leads to the following expression.

πt+1(q) =
∑

(qs)∈Qt
qt+1=q

π1(q1)
t∏

s=1
P (qs, qs+1)G(Zs, πs, qs)

G(Zs, qs)
(9.18)

This expression is more complex than the one in the stationary case, leading to a more intricate

proof of error bounds. We actually bound the estimation error for a simpler, imperfect bayesian

estimator, which directly bounds the true utility loss, by optimality of the bayesian estimator.

Theorem 9.2 below shows that the cumulated loss is of order ln(2/η)ηT . Perfect learners,

who could directly observe Qt−1 before making the decision at time t, would still suffer a loss

of order ηT as there is a constant uncertainty η about the next step quality. Theorem 9.2 thus

shows that the cost of learning is just a logarithmic factor in the dynamical setting.

Theorem 9.2. If r is M -Lipschitz, then RT = O (Md ln (2/η) ηT ).

Moreover, if ηT = Ω(1), there is some M -Lipschitz reward r and some transition matrix P

verifying the conditions of Equation (9.15) such that RT = Ω(Md ln(2/η)ηT ).

The hidden constants in the O (·) and Ω(·) above only depend on the values of δ and γ

defined in Theorem 9.1.

The proof of Theorem 9.2 is divided into two parts: first, the upper boundRT = O (Md ln(2/η)ηT )
and, second, the lower bound RT = Ω (Md ln(2/η)ηT ). The proof of the lower bound is post-

poned to Section 9.A.2.

The assumption ηT = Ω(1) guarantees that changes of quality actually have a non-negligible

chance to happen in the considered time window. Without it, we would be back to the stationary

case. In the extreme case ηT ≈ 1, the error is thus of order ln(T ) against 1 in the stationary

setting. This larger loss is actually the time needed to achieve the same precision in posterior

belief anew after a change of quality. Indeed, let the posterior be very close to the true quality

q, i.e., πt(q′) ≈ 0 for q′ 6= q; if the quality suddenly changes to q′, it will take a while to have a

correct estimation again, i.e., to get πt(q′) ≈ 1.

Proof of the Upper Bound.

In order to prove thatRT = O (Md ln(2/η)ηT ), we actually show the result marginally on each

dimension, i.e., for any i ∈ [d]

T∑
t=1

1− π(i)
t (q(i)) = O (ln(2/η)ηT ) . (9.19)
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Lemma 9.1 then directly leads to the upper bound. To prove Equation (9.19), we first con-

sider anotherHt-measurable estimator defined for any i by

π̃
(i)
1 = π

(i)
1 and π̃

(i)
t+1(q(i)) = (1− 2η)G

(i)(Z(i)
t , πt, (q(i)))

G(i)(Z(i)
t , πt)

π̃
(i)
t (q(i)) + η. (9.20)

The estimator π̃t can be seen as the bayesian estimator, for the worst case of transition matrix,

where each feature i changes with probability η at each step. As perfect bayesian consumers’

decisions minimize the utility loss among the classes of Ht measurable decisions, having an

O (ln(2/η)ηT ) error for π̃(i)
t directly yields Equation (9.19).

We consider small η in the following, as the bound trivially holds for η larger than some

constant.

To prove Equation (9.19), we partition N∗ into blocks [t(i)k + 1, t(i)k+1] of fixed quality (for the

i-th coordinate) and show that the error of π̃(i)
t on each block individually is O (ln(2/η)):

t
(i)
1 := 0 and t

(i)
k+1 := min

{
t > t

(i)
k | Q

(i)
t+1 6= Q

(i)
t
(i)
k

+1

}
. (9.21)

We only aim at bounding the estimation error on a single block k. In the rest of the proof, we

assume w.l.o.g. that Q(i)
t = 1 on this block.

Define the stopping time

τ
(i)
k := min

({
t ∈ [t(i)k + 1, t(i)k+1]

∣∣∣ π̃(i)
t (1)
π̃

(i)
t (0)

≥ 1
}
∪ {t(i)k+1}

)
. (9.22)

This is the first time1 in block k where the posterior belief of the true quality (for π̃(i)
t ) exceeds

the one of the wrong quality. The error on the block is then decomposed as the terms before τ (i)
k ,

which contribute to at most 1 per timestep, and the terms after τ (i)
k . Lemma 9.2 bounds the first

part.

Lemma 9.2. For any k,

P
[
τ

(i)
k − t

(i)
k ≥ 2 + 2γ2 + 4δ2

δ4 ln
(1
η

)]
≤ η,

where δ and γ are defined as in Theorem 9.1.

Proof of Lemma 9.2. As a consequence of the posterior update of π̃t given by Equation (9.20),

1It is set as the largest element of the block if such a criterion is never satisfied.
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for t+ 1 ≤ τ (i)
k ,

π̃
(i)
t+1(0) ≤ G(i)(Z(i)

t , πt, 0)
G(Zt, πt)

π̃t(0) and π̃
(i)
t+1(1) ≥ G(i)(Z(i)

t , πt, 1)
G(Zt, πt)

π̃t(1).

We then get by induction

π̃
(i)
t+1(0)
π̃

(i)
t+1(1)

≤ 1
η

t∏
s=t(i)

k
+1

G(i)(Z(i)
s , πs, 0)

G(i)(Z(i)
s , πs, 1)

, (9.23)

as π̃(i)
t
(i)
k

+1
(1) ≥ η. For n =

⌈
2γ2+4δ2

δ4 ln
(

1
η

)⌉
, it has been shown in the proof of Theorem 9.1

that:

P

 t
(i)
k

+n∏
s=t(i)

k
+1

G(Z(i)
s , πs, 0)

G(Z(i)
s , πs, 1)

> η
∣∣∣ π

t
(i)
k

+1, ∀s ∈ [t(i)k + 1, t(i)k + n], Q(i)
s = 1

 ≤ η.

Note that by definition of τ (i)
k ,

π̃
(i)

τ
(i)
k

(0)

π̃
(i)

τ
(i)
k

(1)
≤ 1. The above concentration inequality and (9.23) imply

that P[τ (i)
k − t

(i)
k ≥ n+ 1] ≤ η.

In Lemma 9.3 below we show that, past this stopping time τ (i)
k , the quantity 1/π̃(i)

t (1) cannot

exceed some constant term in expectation.

Lemma 9.3. For any k ∈ N∗ and t ∈ [τ (i)
k , t

(i)
k+1],

E
[

1
π̃

(i)
t (Q(i)

t )

∣∣∣ τ (i)
k , (t(i)n )n

]
≤ 2.

Proof of Lemma 9.3. By definition of G(i) and the posterior update, given by Equations (9.2)

and (9.20) respectively, we have

E

 1
π̃

(i)
t+1(1)

∣∣∣ Q(i)
t = 1,Ht

 =
∑

z(i):z∈Z

G(i)(z(i), π
(i)
t , 1)h

(
G(i)(z(i), πt)

G(i)(z(i), πt, 1)π̃(i)
t (1)

)
,

with h(x) = 1
η + 1−2η

x

. (9.24)

Note that h is concave on R∗+, so by Jensen’s inequality:

E

 1
π̃

(i)
t+1(1)

∣∣∣ Q(i)
t = 1,Ht

 ≤ h( 1
π̃

(i)
t (1)

)
. (9.25)
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Lemma 9.3 then follows by induction

E

 1
π̃

(i)
t+τ (i)

k
+1

(1)

∣∣∣ τ (i)
k ,∀s ∈ [τ (i)

k , t+ τ
(i)
k ], Q(i)

s = 1



≤ E

h
 1
π̃

(i)
t+τ (i)

k

(1)

 ∣∣∣ τ (i)
k ,∀s ∈ [τ (i)

k , t+ τ
(i)
k ], Q(i)

s = 1



≤ h

E
 1
π̃

(i)
t+τ (i)

k

(1)

∣∣∣ τ (i)
k ,∀s ∈ [τ (i)

k , t+ τ
(i)
k ], Q(i)

s = 1




≤ h (2) = 2.

The first inequality is a direct consequence of Equation (9.25), the second is Jensen’s inequal-

ity again, while the third one is obtained by induction using the fact that h is increasing and

π̃
(i)
τ

(i)
k

(1) ≥ 1
2 .

Similarly to the proof of Theorem 9.1, Azuma-Hoeffding’s inequality on a single block leads to

E
[
t−1∏
s=n

G(i)(Z(i)
s , πs, 0)

G(i)(Z(i)
s , πs, 1)

∣∣∣πn,∀s ∈ [n, t− 1], Q(i)
s = 1

]
≤ exp

(
− (t− n)δ4

2γ2 + 4δ2

)
. (9.26)

Also, note that Equation (9.20) leads to

G(i)(Z(i)
t , πt, 1)

G(i)(Z(i)
t , πt)

≤
π̃

(i)
t+1(1)

(1− 2η)π̃(i)
t (1)

.

By induction, we get

t−1∏
s=n

G(i)(Z(i)
s , πs, 1)

G(i)(Z(i)
s , πs)

≤ 1
π̃

(i)
n (1)(1− 2η)t−n

. (9.27)

Multiplying the left hand side of (9.26) by the left hand side of (9.27), we obtain

E
[
t−1∏
s=n

G(i)(Z(i)
s , πs, 0)

G(i)(Z(i)
s , πs)

∣∣∣ πn, ∀s ∈ [n, t− 1], Q(i)
s = 1

]
≤ (1− 2η)−(t−n)

π̃
(i)
n (1)

exp
(
− (t− n)δ4

2γ2 + 4δ2

)
.

(9.28)
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Similarly to Equation (9.18), starting from n0 ≥ 1, for the i-th coordinate it can be shown that

π̃
(i)
t+1(q(i)) = (1− 2η)t−n0+1π̃(i)

n0 (q(i))
t∏

s=n0

G(i)
(
Z

(i)
s , πs, q

(i)
)

G(i)
(
Z

(i)
s , πs

)
+ η

t−n0∑
s=0

(1− 2η)s
t∏

l=t−s+1

G(i)(Z(i)
l , πl, q

(i))
G(i)(Z(i)

l , πl)
.

DefineAt
τ

(i)
k

:=
{
∀s ∈ [τ (i)

k , τ
(i)
k + t], Q(i)

s = 1
}

. Combining this formula with Equation (9.28),

we obtain

E
[
π̃

(i)
τ

(i)
k

+t
(0) | H

τ
(i)
k

, At
τ

(i)
k

]
≤
π̃

(i)
τ

(i)
k

(0)

π̃
(i)
τ

(i)
k

(1)
exp

(
− tδ4

2γ2 + 4δ2

)

+ 2η
t−1∑
s=0

E

 1
π̃

(i)
τ

(i)
k

+t−s
(1)

∣∣∣H
τ

(i)
k

, At
τ

(i)
k

 exp
(
− sδ4

2γ2 + 4δ2

)
.

Thanks to Lemma 9.3,

E

 1
π̃

(i)
τ

(i)
k

+t−s
(1)

∣∣∣H
τ

(i)
k

, At
τ

(i)
k

 ≤ 2 and
π̃

(i)
τ

(i)
k

(0)

π̃
(i)
τ

(i)
k

(1)
≤ 1,

so that

E
[
π̃

(i)
τ

(i)
k

+t
(0) | H

τ
(i)
k

, At
τ

(i)
k

]
≤ exp

(
− tδ4

2γ2 + 4δ2

)
+ 4η

t−1∑
s=0

exp
(
− sδ4

2γ2 + 4δ2

)

≤ exp
(
− tδ4

2γ2 + 4δ2

)
+ 4η

1− exp
(
− δ4

2γ2+4δ2

) . (9.29)

Finally, the estimation error for π̃(i)
t incurred during the block k is at most

τ
(i)
k − t

(i)
k +

t
(i)
k+1−t

(i)
k
−1∑

t=0

exp
(
− tδ4

2γ2 + 4δ2

)
+ 4η

1− exp
(
− δ4

2γ2+4δ2

)
,

i.e., it is of order τ (i)
k − t

(i)
k + η(t(i)k+1 − t

(i)
k ). Lemma 9.2 then yields

E[τ (i)
k − t

(i)
k | (tn)n] ≤ 2 + 2γ2 + 4δ2

δ4 ln
(1
η

)
+ η(t(i)k+1 − t

(i)
k ).
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Thus in expectation, given (tn)n, the estimation error of Q(i)
t over the block k for π̃t is of

order ln(2/η) + η(t(i)k+1 − t
(i)
k ). Note that t(i)k+1 − t

(i)
k is stochastically dominated by a geometric

distribution of parameter η. In expectation the number of blocks counted before T is thusO (ηT )
and summing over all these blocks yields

T∑
t=1

E[1− π̃(i)
t (Q(i)

t )] = O (ln(2/η)ηT ) .

When summing over all coordinates, this implies that the regret incurred by the estimator π̃t is

of order O (Md ln(2/η)ηT ). Since the exact estimator πt minimizes the expected utility loss

among the class of allHt-measurable estimators, the upper bound follows.

Proof of the Lower Bound.

The proof of the lower bound is postponed to Section 9.A.2. The idea is that the posterior cannot

converge faster than exponentially on a single block. Thus, if the posterior converged in the last

block, e.g., πt(q′) ≈ η in a block of quality q, then it would require a time ln(2/η) before

πt(q′) ≥ 1/2 in the new block of quality q′, leading to a loss at least ln(2/η) on this block.

9.5 Naive Learners

In Section 9.4 we showed that learning occurs for Bayesian consumers who are perfectly aware

of the environment, and especially of its dynamical aspect. In some learning problems, Bayesian

learners can still have small regret, despite having an imperfect knowledge of the problem pa-

rameters or even ignoring some aspects of the problem.

This section shows that awareness of the problem’s dynamical structure is essential here. In

particular, naive learners incur a considerable utility loss.

In the following, we consider the setting described in Section 9.4 with naive learners, i.e.,

consumers who are unaware of possible quality changes over time. As a consequence, their

posterior distribution πnaive
t follows the exact same update rule as in the stationary case:

πnaive
t+1 (q) = G(Zt, πnaive

t , q)
G(Zt, πnaive

t )
πnaive
t (q).

The regret for naive learners is then

T∑
t=1

E
[
r(Qt, θt)+ − unaive

t

]
,
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where unaive
t = r(Qt, θt)1

∑
q∈Q

πnaive
t (q)r(q, θt) ≥ 0

 .
unaive
t is the utility achieved by naive learners who make their decisions based on πnaive

t .

Theorem 9.3 below states that the utility loss for naive learners is non-negligible, i.e., of

order T , which displays the significance of taking into account the dynamical structure of the

problem in the learning process.

Theorem 9.3. If ηT = Ω(1), then there is some M -Lipschitz reward r and some transition

matrix P verifying the conditions given by Equation (9.15) such that

Rnaive
T = Ω(MdT ).

The proof of Theorem 9.3 can be found in Section 9.A.3 and bears similarities with the proof

of the lower bound in Theorem 9.2. The posterior of naive learners converges quickly to the true

quality on a single block. Because of this, after a change of quality, it takes a long time before

the posterior belief of naive learners becomes accurate again with respect to the new quality.



Appendix

9.A Omitted proofs

This section contains detailed proofs of lemmas and theorems postponed to the Appendix.

9.A.1 Proof of Lemma 9.1

The inequality actually holds individually for each term of the sum when conditioned on πt, i.e.,

E[r(Qt, θt)+ − ut | πt] ≤ M
∑d
i=1(1 − π(i)

t (Q(i)
t )), which directly implies Lemma 9.1. By

definition, ut = r(Qt, θt)1
(∑

q∈Q πt(q)r(q, θt) ≥ 0
)

and so it comes

r(Qt, θt)+ − ut = r(Qt, θt)

1 (r(Qt, θt) ≥ 0)− 1

∑
q∈Q

πt(q)r(q, θt) ≥ 0


= r(Qt, θt)

(
1

r(Qt, θt) ≥ 0 ≥
∑
q∈Q

πt(q)r(q, θt)


− 1

∑
q∈Q

πt(q)r(q, θt) ≥ 0 ≥ r(Qt, θt)

)

≤

∣∣∣∣∣∣r(Qt, θt)−
∑
q∈Q

πt(q)r(q, θt)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
q∈Q

πt(q)(r(Qt, θt)− r(q, θt))

∣∣∣∣∣∣
≤
∑
q∈Q

πt(q) |r(Qt, θt)− r(q, θt)|

≤M
∑
q∈Q

πt(q)‖Qt − q‖1

= M
d∑
i=1

(1− π(i)
t (Q(i)

t )).

251
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9.A.2 Proof of the lower bound of Theorem 9.2

In this proof we consider the following transition matrix:

P (q, q) = 1− η and P (q,111− q) = η,

i.e., all the features change simultaneously with probability η at each round. We also assume

that the prior is only split between the vectors 000 and 111, i.e., the features are either all 0 or all 1.

If we take the reward function r(q, θ) = M
∑d
i=1 qi + θi, then the regret scales as

RT = Ω
(
M

d∑
i=1

T∑
t=1

E[1− π(i)
t (Q(i)

t )]
)

= Ω
(
Md

T∑
t=1

E[1− πt(Qt)]
)
. (9.30)

In this model, we thus have the following posterior update

πt+1(111) = (1− 2η)G(Zt, πt,111)
G(Zt, πt)

πt(111) + η. (9.31)

This proof uses a partitioning in blocks as follows

t1 := 0 and tk+1 := min {t > tk | Qt+1 6= Qtk+1} . (9.32)

Consider the block k and assume w.l.o.g. that Qt = 111 for this block. Define the stopping

time

τk := min
({
t ∈ [tk + 1, tk+1]

∣∣∣ πt(111) ≥ 1
2
}
∪ {tk+1}

)
, (9.33)

and similarly for τk+1 (with 000).

The estimation error incurred during blocks k and k+1 is at least (τk − tk + τk+1 − tk+1) /2.

Given the posterior update, πt+1(111) ≤ cπt(111) where c = 1 + maxπ,z G(z,π,111)
G(z,π,000) . As a con-

sequence, τk+1 − tk+1 ≥ min
(
− ln(2πtk+1 (000))

ln(c) , tk+2 − tk+1

)
. Assume in the following that

tk+2 − tk+1 ≥ − ln(2η)
ln(c) , so that we actually have τk+1 − tk+1 ≥ −

ln(2πtk+1 (0))
ln(c) .

We now bound ln(πtk+1(000)) in expectation. By concavity of the logarithm,

E[ln(πtk+1(000)) | (tn)n, τk] ≤ ln
(
E[πtk+1(000) | (tn)n, τk]

)
.

Note that the estimator π̃t in the proof of the upper bound is similar to πt for the transition
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matrix considered here. Equation (9.29) then yields

E[πtk+1(000) | (tn)n, τk] ≤ exp
(
−(tk+1 − τk)δ

4

2γ2 + 4δ2

)
+ η

1− exp
(
− δ

4

2γ2+4δ2

) ,
where

δ := min
π∈P(Q)

∑
z∈Z
|G(z, π,111)−G(z, π,000)| and γ := 2 max

π∈P(Q),z∈Z

∣∣∣∣ln(G(z, π,111)
G(z, π,000)

)∣∣∣∣ .
And so, with tk+2 − tk+1 ≥ − ln(η)

ln(c) ,

E[τk − tk + τk+1 − tk+1 | (tn)n, τk] ≥ τk − tk + Ω

− ln

exp
(
−(tk+1 − τk)δ

4

2γ2 + 4δ2

)
+ η

1− exp
(
− δ

4

2γ2+4δ2

)


+


≥ τk − tk + Ω

((
− ln (η)− 1

η
exp

(
−(tk+1 − τk)δ

4

2γ2 + 4δ2

))
+

)
.

Where we used the convex inequality − ln(x+ y) ≥ − ln(x)− y/x.

When looking at the variations of the right hand side with τk, it is minimized either when

τk = tk or when the second term is equal to 0, i.e., tk+1 − τk = Ω(ln(1/η)). Finally this yields

when tk+2 − tk+1 ≥ − ln(2η)
ln(c) :

E[τk − tk + τk+1 − tk+1 | (tn)n] ≥ Ω
(

min
(

ln(1/η)− 1
η

exp
(
−(tk+1 − tk)δ

4

2γ2 + 4δ2

)
,

ln(1/η) + tk+1 − tk
))
.

(9.34)

Case ηT ≥ 32. Recall that tk+1− tk are i.i.d. geometric variables of parameter η. Lemma 9.4

below provides some concentration bound for the sum of such variables. Its proof is given at the

end of the section.

Lemma 9.4. Denote by Y (n, p) the sum of n i.i.d. geometric variables of parameter p. We have

the following concentration bounds on Y (n, p):

1. For k ≤ 1 and kn/p ∈ N, P[Y (n, p) < kn/p] ≤ exp
(
− (1−1/k)2kn

1+1/k

)
.

2. For k ≥ 1 and kn/p ∈ N, P[Y (n, p) > kn/p] ≤ exp
(
− (1−1/k)2kn

2

)
.
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Let β ∈ [1
4 ,

1
2 ] such that βηT ∈ 2N and note that 1 (tk+1 − tk ≥ x) follows a Bernoulli

distribution of parameter smaller than (1 − η)dxe. We then have the following concentration

bounds:

P

βηT∑
k=1

tk+1 − tk > T

 ≤ exp
(
−(1− β)2ηT

2

)
≤ exp

(
−ηT8

)
≤ e−4. (9.35)

and

P

βηT/2∑
k=1
1

(
t2k+1 − t2k ≥

1
η

)
1

(
t2k+2 − t2k+1 ≥ −

ln(2η)
ln(c)

)
≤ βηT

4 (1− η)
1
η
− ln(2η)

ln(c)


≤ exp

−βηT (1− η)
1
η
− ln(2η)

ln(c)

16

 .
(9.36)

The first bound is a direct consequence of Lemma 9.4 while the second one is an application

of Chernoff bound to Bernoulli variables of parameter (1 − η)d
1
η
e−b ln(2η)

ln(c) c. Recall that we only

consider small η. We can thus assume that η is small enough so that 1
η ≥ −

ln(2η)
ln(c) . The second

bound then becomes:

P

βηT/2∑
k=1

1

(
t2k+1 − t2k ≥

1
η

)
1

(
t2k+2 − t2k+1 ≥ −

ln(2η)
ln(c)

)
≤ βηT

4 (1− η)
2
η

 ≤ exp

−βηT (1− η)
2
η

16

 .
Note that for any x ∈ (0, 1

2), e−3 ≤ (1− x)2/x, so that the last inequality implies for η ≤ 1
2

P

βηT/2∑
k=1

1

(
t2k+1 − t2k ≥

1
η

)
1

(
t2k+2 − t2k+1 ≥ −

ln(η)
ln(c)

)
≤ βηT

4 e−3

 ≤ exp
(
−βηTe

−3

16

)

≤ exp
(
−7e−3

8

)
.

Now note that e−4 + e−
7e−3

8 < 1 so that neither the event in Equation (9.35) nor in Equa-

tion (9.36) hold with some constant probability. In that case, Equation (9.35) means that the βηT

first blocks fully count in the regret. Equation (9.36) implies that Equation (9.34) holds for at

least Ω(ηT ) pairs of blocks and for each of them, the incurred error is at least Ω(ln(1/η)). This

finally implies that LT = Ω(ln(1/η)ηT ) and similarly for the regret. We conclude by summing

over all the coordinates.

Case ηT ≤ 32. Since ηT = Ω(1), we can consider a constant c0 > 0 such that ηT > c0.

In that case, the desired bound can actually be obtained on the two first blocks only. Assume
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w.l.o.g. for simplicity that T is a multiple of 4.

P (t1 − t0 ∈ [T/4, T/2] and t2 − t1 ∈ [T/4, T/2]) =
(
(1− η)T/4 − (1− η)T/2

)2

= e
T
2 ln(1−η)(1− e

T
4 ln(1−η))2

= e−
ηT
2 (1− e−ηT/2)2.

With a positive probability depending only on c0, the two first blocks are completed before

T , t1 − t0 ≥ T/4 and t2 − t1 ≥ T/4. Assuming w.l.o.g. that η is small enough so that

T/4 ≥ − ln(2η)
ln(c) , Equation (9.34) then gives that the loss incurred during the two first blocks is

Ω (ln(1/η)). As ηT = O (1) in this specific case, this still leads to

T∑
t=1

E[1− πt(Qt)] = Ω (ln(1/η)ηT ) .

This allows to conclude using Equation (9.30).

Proof of Lemma 9.4. Note that the probability that the sum of n i.i.d. geometric variables of pa-

rameter p are smaller than kn/p is exactly the probability that the sum of kn/p i.i.d. Bernoulli

variables are larger than n. We can then use the Chernoff bound on these kn/p Bernoulli vari-

ables. The same reasoning also leads to the second inequality.

9.A.3 Proof of Theorem 9.3

This proof uses the block partitioning given by Equation (9.32) and the same transition matrix

and reward as in Section 9.A.2. It relies on intermediate results given by Lemma 9.5. Its proof

can be found below.

Lemma 9.5. For any t ∈ [tk + 1, tk+1],

1. πnaive
t (Qt) ≤ ct−tkπnaive

tk
(Qt);

2. E
[
ln(πnaive

t (q)) | (tn)n, πnaive
tk

, Qt 6= q
]
≤ −(t− tk) δ4

2γ2+4δ2 − ln(πnaive
tk

(Qt));

3. P
[

ln(πnaive
t (q))−E

[
ln(πnaive

t (q)) | (tn)n, πnaive
tk

]
≥ λγd

√
t− tk|(tn)n, πnaive

tk

]
≤ exp

(
−2λ2);

where c = maxπ,z,q,q′ G(z,π,q)
G(z,π,q) .

Consider two successive blocks k and k+1, where the quality is q on the block k and q′ on the

block k + 1. Similarly to the proof of Theorem 9.2, define τk+1 = min
(
{t ∈ [tk+1 + 1, tk+2] |

πnaive
t (q′) ≥ 1/2} ∪ {tk+2}

)
. We define τk similarly.
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The first point of Lemma 9.5 implies that τk+1−tk+1 ≥ min
(
tk+2−tk+1,

− ln(2)−ln(πnaive
tk+1

(q′))
ln(c)

)
.

Moreover, thanks to the second and third points of Lemma 9.5, with probability at least

1− e−2λ2
for some λ > 0,

− ln(πnaive
tk+1 (q′)) ≥ (tk+1 − tk)

δ4

2γ2 + 4δ2 + ln(πnaive
tk

(q))− λγd
√
tk+1 − tk. (9.37)

Either πnaive
tk

(q) ≥ exp
(
−(tk+1 − tk) δ4

4γ2+8δ2

)
, in which case the two first terms in Equa-

tion (9.37) are larger than (tk+1 − tk) δ4

4γ2+8δ2 .

Otherwise, πnaive
tk

(q) ≤ exp
(
−(tk+1 − tk) δ4

4γ2+8δ2

)
. Using the first point of Lemma 9.5,

this yields that for the − ln(2)
ln(c) +(tk+1−tk) δ4

(4γ2+8δ2) ln(c) first steps of the block k, πnaive
t (q) ≤ 1

2 ,

i.e., τk − tk ≥ − ln(2)
ln(c) + (tk+1 − tk) δ4

(4γ2+8δ2) ln(c) .

So we can actually bound the error in expectation:

E[τk+1 − tk+1 + τk − tk|(tn)n] ≥(1− e−2λ2) min
(
tk+2 − tk+1,

δ4 (tk+1 − tk)
(4γ2 + 8δ2) max(1, ln(c))

)

− ln(2) + λγd
√
tk+1 − tk

ln(c) .

(9.38)

Case η ≥ 32. Consider β ∈ [1
4 ,

1
2 ] such that βηT ∈ 2N∗. As tk+1 − tk are dominated by

geometric variables of parameter η, we can show similarly to Equations (9.35) and (9.36) in the

proof of Theorem 9.2 that

1. P
[∑βηT

k=1 tk+1 − tk > T
]
≤ e−4;

2. P
[∑βηT/2

k=1 1
(
t2k+1 − t2k ≥ 2

η

)
1
(
t2k+2 − t2k+1 ≥ 2

η

)
≤ βηT

4 (1− η/2)
4
η

]
≤ exp

(
−7e−3

8

)
.

Similarly to the proof of Theorem 9.2, the sum of these two probabilities is below 1, so that

none of these two events can happen with probability Ω(1). When it is the case, the first point

yields that the βηT first blocks totally count in the estimation error before T . The second point

implies, thanks to Equation (9.38), that the estimation loss is Ω(T ) in this case.

Case ηT ≤ 32. Since ηT = Ω(1), we can consider a constant c0 > 0 such that ηT >

c0. Similarly to the case ηT ≤ 32 in the proof of Theorem 9.2, we can show that with a

positive probability depending only on c0, the two first blocks are completed before T and
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min(t1 − t0, t2 − t1) ≥ T/4. In that case, Equation (9.38) yields that the estimation loss

incurred during the two first blocks is Ω(T ), which leads to a regret Ω(MdT ).

Proof of Lemma 9.5.

1) This is a direct consequence of the posterior update given by Equation (9.7).

2) Jensen’s inequality gives that

E
[
ln(πnaive

t (q)) | (tn)n, πnaive
tk

]
≤ ln

(
E
[
πnaive
t (q) | (tn)n, πnaive

tk

])
.

Theorem 9.1 claims that

E
[
πnaive
t (q) | (tn)n, πnaive

tk

]
≤ exp

(
−(t− tk)

δ4

2γ2 + 4δ2

)
1

πnaive
tk

(Qt)
,

leading to the second point.

3) Recall that ln(πnaive
t (q)) = ln(πnaive

tk
(q)) +

∑t−1
s=tk ln

(
G(Zs,πs,q)
G(Zs,πs)

)
and that ln

(
G(Zs,πs,q)
G(Zs,πs)

)
∈

[Ys, Ys + γd] for some variable Ys. The third point is then a direct application of Azuma-

Hoeffding’s inequality as used in the proof of Theorem 9.1.

9.B Continuous quality

We consider in this section the continuous case whereQ is some continuous set and show that, in

the dynamic model described by Equation (9.15), the regret is upper bounded by O
(
Mη1/4T

)
and lower bounded by Ω(Mη1/2T ) when the reward function is M -Lipschitz. Closing the gap

between these two bounds is left open for future work.

9.B.1 Continuous model

In the whole section, the quality spaceQ is a convex and compact subset of Rd. Assumption 9.1

is specific to the discrete model and we use an equivalent assumption in the continuous case.

Assumption 9.3 (Purchase guarantee, continuous case). The function r is non-decreasing in

each feature q(i) and there is some q ∈ Rd such that ∀i ∈ [d], q ∈ Q, q(i) ≤ q(i) and

Pθt
(
r(q, θt) > 0

)
> 0.

In the continuous case, an additional assumption is required to get fast convergence of the

posterior.
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Assumption 9.4 (Monotone feedback). For any i ∈ {1, . . . , d} and πt ∈ P(Q), G(i)(z(i), πt, ·)
defined by Equation (9.2) is continuously differentiable and strictly monotone in q(i) for some

z ∈ Z .

This assumption guarantees that for two different qualities, the distributions of observed

feedbacks are different enough. Note that Gi does not have to be strictly monotone in q(i) for

all z ∈ Z , but only for one of them. For instance in the sparse feedback model, the probability

of observing z(i) = ∗ indeed does not depend on the quality as it corresponds to the absence of

review. Requiring the monotonicity only for some zi is thus much weaker than for all of them.

9.B.2 Stationary environment

Consider as a warmup in this section the static case Qt = Q1 for all t ∈ N. The arguments from

Section 9.3 cannot be adapted to this case for two reasons. First, the pointwise convergence was

shown using the fact that the posterior was upper bounded by 1, but a similar bound does not

hold for density functions. Second, even the pointwise convergence of the posterior does not

give a good enough rate of convergence for the estimated quality. Instead, we first show the

existence of a “good” non-Bayesian estimator. The Bayes estimator will also have similar, if not

better, performances as it minimizes the Bayesian risk.

We first show the existence of a good non-Bayesian estimator. Define Lt(z) as the empirical

probability of observing the feedback z, i.e., Lt(z) = 1
t

∑t−1
s=1 1 (Zs = z). Also define for any

posterior π and quality q:

ψ(π, q) := (z 7→ G(z, π, q)) , (9.39)

whereG is defined by Equation (9.1). The function ψ(π, q) is simply the probability distribution

of the feedback, given the posterior π and the quality q.

Lemma 9.6. Under Assumptions 9.3 and 9.4,

E
[∥∥∥ψ†t+1

(
Lt+1

)
−Q

∥∥∥2

2

]
= O (1/t) ,

where

ψt+1( · ) := 1
t

∑t
s=1 ψ(πs, · )

and

ψ
†
t+1
(
Lt+1

)
:= arg min

Q∈Q
‖Lt+1 − ψt+1(Q)‖22

= arg min
Q∈Q

∑
z∈Z

(Lt+1(z)− ψt+1(Q)(z))2.
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The † operator is a generalized inverse operator, i.e., f † is the composition of f−1 with the

projection on the image of f . For a bijective function, it is then exactly its inverse.

The arg min above is well defined by continuity of ψt+1 and compactness of Q. Assump-

tion 9.4 implies that ψt+1 is injective. Thanks to this, the function ψ†t+1 is well defined.

Here Lt+1 is the empirical distribution of the feedback. The function ψ†t+1 then returns the

quality that best fits this empirical distribution.

Proof. Note that Lt+1(z) = 1
t

∑t
s=1 1 (Zs = z), where E [1 (Zs = z) | Hs, Q] = G(z, πs, Q).

As we consider the variance of a sum of martingales, we have

E
[(
Lt+1(z)− ψt+1(Q)(z)

)2 ∣∣∣ Q] = 1
t2

t∑
s=1

Var(1 (Zs = z) | Q, πs).

From this, we deduce a convergence rate 1/t:

E
[
‖Lt+1 − ψt+1(Q)‖22

∣∣∣Q] ≤ 1
t2

t∑
s=1

∑
z∈Z

Var(1 (Zs = z) | Q, πs)

≤ 1
t2

t∑
s=1

∑
z∈Z

P(Zs = z | Q, πs) = 1
t
. (9.40)

As G(i) is strictly monotone in q(i) and continuously differentiable on Q for some z(i),

the absolute value of its derivative in q(i) is lower bounded by some positive constant. As a

consequence, for some λ > 0,

∀q, q′ ∈ Q, ‖q − q′‖ ≤ λ‖ψt+1(q)− ψt+1(q′)‖. (9.41)

For Q̂ = ψ
†
t+1(Lt+1) = arg minQ∈Q ‖Lt+1 − ψt+1(Q)‖2, it follows

E
[
‖Q̂−Q‖22

∣∣∣Q] ≤ λE [‖ψt+1(Q̂)− ψt+1(Q)‖22
∣∣∣Q]

≤ 2λE
[
‖Lt+1 − ψt+1(Q̂)‖22

∣∣∣Q]+ 2λE
[
‖Lt+1 − ψt+1(Q)‖22

∣∣∣Q]
≤ 4λE

[
‖Lt+1 − ψt+1(Q)‖22

∣∣∣Q] ≤ λ

t
.

The third inequality is given by the definition of Q̂ as a minimizer of the distance to Lt+1, and

Lemma 9.6 follows thanks to Equation (9.40).

In the sequel we use the notation Mt = E[Q | Ht]. Lemma 9.6 gives a non-Bayesian

estimator that converges to Q at rate 1/t in quadratic loss. Using arguments similar to Besbes

and Scarsini, 2018, this implies thatMt
a.s.−−→ Q, thanks to a result from Le Cam and Yang, 2000.

Theorem 9.4 yields a different result: Mt converges to Q at a rate 1/
√
t in average.
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Theorem 9.4. Under Assumptions 9.3 and 9.4, then E
[
‖Mt+1 −Q‖1

]
= O

(√
d/t
)

.

The hidden constant in the O (·) above depends only the parameter λ appearing in Equa-

tion (9.41), which depends on the functionsG(i). The above bound directly leads to aO
(√

d/t
)

regret when the reward is M -Lipschitz (for the 1-norm).

Note that the rate O
(√

d/t
)

is the best rate possible even if the reviews report exactly

Q + εt. Indeed, the best estimator in this case is the average quality 1
t

∑
s<t(Q + εs), which

behaves as a Gaussian variable with a variance of order 1/t by the central limit theorem on each

coordinate. The error E
[
‖Mt+1 −Q‖

]
is then of the same order as the square root of the trace

of the covariance matrix of Mt+1, i.e.,
√
d/t.

Proof. A characterization of the Bayes estimator is that it minimizes the Bayesian mean square

error among allHt-measurable functions. In particular,

E
[
‖Mt+1 −Q‖22

]
≤ E

[∥∥∥ψ†t+1
(
Lt+1

)
−Q

∥∥∥2

2

]
.

Thanks to Lemma 9.6, this term is O (1/t) and Theorem 9.4 then follows by comparison of the

1 and 2-norms.

9.B.3 Dynamical environment

We now consider the dynamical setting given by Equation (9.15). The Markov chain is here

continuous, but the quality still has a probability to stay the same 1− η at each round. As in the

stationary case, we first expose a satisfying non-Bayesian estimator, implying similar bounds on

the posterior distribution.

In the stationary case, our non-Bayesian estimator comes from the empirical distribution of

the feedback. As highlighted by Equation (9.18), with a dynamical quality, recent reviews have

a larger weight in the posterior. This leads to the following adapted discounted estimator for

η1 ∈ (0, 1):

Lη1
t (z) := η1

∑t−1
s=1(1− η1)t−s−11 (Zs = z) . (9.42)

Lemma 9.7 below bounds the mean error for the estimator Lη1
t .

Lemma 9.7. Under Assumptions 9.3 and 9.4, for η1 = √η,

T∑
t=1

√
E
[∥∥∥Lη1

t (z)− ψt,η1(Qt)
∥∥∥2

2

]
= O

(
η1/4T

)
,
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where

ψt,η1(Q)(z) := η1

t−1∑
s=1

(1− η1)t−s−1G(z, πs, Q).

Proof. First fix the qualities (Qs)s and blocks (tn)n defined as in Equation (9.32). Note that

G(z, πt, Qt) is exactly the expectation of 1 (Zt = z) givenHt andQt. Similarly to the stationary

case, we have

E

(Lη1
t (z)− η1

t−1∑
s=1

(1− η1)t−s−1G(z, πs, Qs)
)2 ∣∣∣∣ (Qs)s

 = η2
1

t−1∑
s=1

(1− η1)2(t−s−1)Var(1 (Zs = z) | Qs).

When summing over all z ∈ Z , we get the following inequality

E
[∥∥∥Lη1

t − η1

t−1∑
s=1

(1− η1)t−s−1G(·, πs, Qs)
∥∥∥2∣∣∣∣ (Qs)s

]
≤ η2

1
1− (1− η1)2 ≤ η1. (9.43)

For t ∈ [ti + 1, ti+1], we can relate the expected value of Lη1
t (z) to ψt,η1(Qt)(z):

(
η1

t−1∑
s=1

(1− η1)t−s−1G(z, πs, Qs)− ψt,η1(Qt)(z)
)2

= η2
1

( t−1∑
s=1

(1− η1)t−s−1 (G(z, πs, Qs)−G(z, πs, Qt))
)2

= η2
1

( ti∑
s=1

(1− η1)t−s−1 (G(z, πs, Qs)−G(z, πs, Qt))
)2

≤ (1− η1)2t−2(ti+1). (9.44)

The second equality holds because Qs = Qt for s > ti by definition of the blocks. In the last

inequality, we used the fact that G has values in [0, 1], besides comparing the partial sum with

(1− η1)t−(ti+1)/η1. This finally gives, for h(t) := max ({t′ < t | Qt′ 6= Qt} ∪ {0}),

E
[(
η1

t−1∑
s=1

(1− η1)t−s−1G(z, πs, Qs)− ψt,η1(Qt)(z)
)2 ∣∣∣ (Qs)s

]
≤ (1− η1)2(t−h(t)−1).

(9.45)

When reversing the time, note that t−h(t)−1 is the minimum between a geometric variable

of parameter η and t− 1. It follows

E
[(
η1

t−1∑
s=1

(1− η1)t−s−1G(z, πs, Qs)− ψt,η1(Qt)(z)
)2
]
≤ η

∞∑
s=0

(1− η)s(1− η1)2s

≤ η

1− (1− η)(1− η1)2
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≤ η

η + η1 − η1η
. (9.46)

Noting that 2x2 + 2y2 ≥ (x+ y)2, we can now use Equations (9.43) and (9.46) to bound the

total error on a round:

E
[(
Lη1
t (z)− ψt,η1(Qt)(z)

)2
]
≤ 2η1 + 2η

η + η1 − η1η
.

The error on a single round is of order O
(
η1 + η

η+η1

)
in average; and for η1 = √η, it is

then O
(√
η
)

in average. Summing the square root of this term over all rounds finally yields

Lemma 9.7.

Theorem 9.5. If the reward is M -Lipschitz (for the 1-norm), the regret of Bayesian consumers

in the dynamical continuous case is bounded as RT = O
(
M
√
dη1/4T

)
under Assumptions 9.3

and 9.4.

As in the stationary case, the hidden constant in the O (·) above depends only the parameter

λ appearing in Equation (9.41).

Proof of Theorem 9.5 . Similarly to the stationary setting, the error of the Bayesian estimator

can be bounded by the error of the non-Bayesian one since the former is the minimizer of the

quadratic loss among allHt-measurable functions:

E
[∥∥E [Qt | Ht]−Qt

∥∥2] ≤ E
[∥∥∥ψ†t,η1(Lη1

t )−Qt
∥∥∥2]

.

Thanks to Assumption 9.4, ψt,η1 verifies Equation (9.41) for some constant λ > 0 independent

from η1 and T for any t ≥ 1
η1

. As we consider ηT = Ω(1), the 1
η1

first terms in the loss

are negligible compared η1/4T . The convergence rate is thus preserved when composing with

ψ
†
t,η1 . Theorem 9.5 then follows using Lemma 9.7 and Jensen’s inequality as in the proof of

Theorem 9.4.

In contrast to the discrete case, determining a tight bound in the continuous case remains

open for the dynamical setting. Note that the total error is of order at least M
√
dηT . Indeed,

in the stationary case, no estimator converges faster than a rate
√
d/t. As the length of a block

is around 1/η, the loss per block is thus Ω
(√

d/η
)

. Thanks to this, a tight bound should be

between M
√
dηT and M

√
dη1/4T .

A reason for such a discrepancy between the discrete and continuous case might be that the

analysis is not tight enough. Especially, the considered non-Bayesian estimators might have a

much larger regret than the Bayesian estimator.
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On the other hand, reversing the posterior belief after a change of quality already takes a

considerable amount of time in the discrete case and causes a loss ln(1/η) against 1 in the

stationary case. Here as well, reversing this belief might take a larger time, causing a loss η−
3
4

per block, against η−
1
2 in the stationary case. Showing a tighter lower bound is yet much harder

than for the discrete case, as working directly on the Bayesian estimator is more intricate.

Lemma 9.7 uses the non-Bayesian estimator Lη1
t with the parameter η1. Quite surprisingly,

√
η seems to be the best choice for the parameter η1, despite η being the natural choice. Fig-

ure 9.1 below confirms this point empirically on a toy example. The code used for this ex-

periment can be found in the supplementary material. The experiment considers the classical

unidimensional setting with:

r(Q, θ) = Q+ θ,

f(Q, θ, ε) = sign(Q+ θ + ε).

Here, Q = [0, 1], η = 10−4 and θ and ε both have Gaussian distributions. The Markov Chain is

here given as follows Qt+1 = Qt with probability 1− η

Qt+1 = Xt+1 otherwise,

where (Xt) is an i.i.d. sequence of random variables drawn from the uniform distribution on

[0, 1].
Computing the exact posterior Mt = E [Qt | Ht] is intractable, so we remedy this point by

assuming Mt = 1 all the time. This simplification does not affect the experiments run here as

ψt,η1 uses Mt only to determine the population of potential buyers.

A larger η1 allows to forget faster past reviews and thus gives a better adaptation after a

quality change. However, a larger η1 also yields a less accurate estimator in stationary phases.

The choice η2/3 seems to be the best trade-off in Figure 9.1. The optimal choice of η1 does

not only depend on η but also on the distributions of θ and ε. In the considered experiments, η is

thus not small enough to ignore these other dependencies. Figure 9.1 yet illustrates the trade-off

between small variance and fast adaptivity when tuning η1.
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Figure 9.1: Behavior of Lη1 for different η1.

Value of η1η1η1 η1/3 η1/2 η2/3 η

Error 10166 4780 3060 6462

(a) Estimation error of Lη1 . The error is
∑T
t=1

√
E
[∥∥Lη1

t − ψt,η1(Qt)
∥∥2

2

]
for T = 105, where the ex-

pectation is estimated by averaging over 2000 instances.
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(b) Tracking of ψt,η1(Qt)(1) by Lη1
t (1) over a single instance.



Conclusion

This thesis considered several instances of interacting learning agents and studied how they

might behave to maximize either their earned individual reward in the case of selfish agents or

the total social welfare in the case of cooperative agents.

In the latter case, we showed that decentralized agents could still reach performances sim-

ilar to centralized algorithms, implying a negligible cost of decentralization. In particular, we

proposed algorithms comparable to centralized ones in multiplayer bandits using collision infor-

mation as a medium of communication between the players. In the homogeneous case, Chapter 4

proved that the optimal centralized performance is also reachable for decentralized agents. We

also proposed in Chapter 5 the first log(T )-regret algorithm in the heterogeneous setting. Simi-

larly, Chapter 7 proposed the first stable decentralized algorithm when the ratio between service

and arrival rates is larger than 1, which is also the criterion of stability for centralized algorithms.

The existence of decentralized strategies comparable to centralized algorithms might be due

to an oversimplification in the considered models. For example in multiplayer bandits, the pro-

posed algorithms use undesirable communication schemes in practice. Future work on these

topics should work on lifting unrealistic model assumptions to avoid such behaviors. Several of

these directions for multiplayer bandits were mentioned in Chapter 3 and include the following:

more limited feedback (no sensing), different collision models, non-stochasticity of the reward,

non-collaborative players or asynchronicity of the players.

Except for this last consideration, algorithms relying on similar communication schemes

also yield good performances in these harder models. For instance, the gap between no sensing

and collision sensing was recently almost closed (Huang et al., 2021). Also, Chapter 6 proposed

an algorithm robust to selfish players that still reach a regret comparable to the centralized case,

through the use of a Grim Trigger strategy. Assuming selfish players actually extended the gap

between homogeneous and heterogeneous setting, as the optimal allocation is no more reachable

and the existence of Grim Trigger strategies is only known with a limited level of heterogeneity.

We thus believe that the most crucial and oversimplifying assumption is the synchronicity of

the players. We propose in Chapter 4 a first log(T ) regret algorithm in a particular dynamic

265
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setting, yet a lot remains to be found in either more general dynamic or asynchronous settings,

where players do not share common time slots. Our algorithms indeed heavily rely on this

synchronisation assumption to coordinate the communication schemes between the different

players, allowing to transmit messages between them perfectly.

In queuing systems, even selfish players have interest in cooperating, as the decentralized

strategy proposed in Chapter 7 is a correlated equilibrium of the patient game introduced by

Gaitonde and Tardos (2020b). Here again, the synchronisation assumption is widely used to

allow the queues to accurately estimate both the clearing probabilities of the servers and the

arrival rates of the other queues. While the model already presents some level of asynchronicity,

studying a more asynchronous and/or dynamic model also forms a main focus of future work

for this problem, for example through the use of adapted Glauber dynamics (see e.g., Shah and

Shin, 2012).

The other problems considered in this thesis raised different issues that also help to grasp

the different levels of interplay that might occur between multiple learning agents.

In Chapter 8, we proposed heuristics for balancing short term (greedily bidding) and long

term costs (concealing private information) in repeated online auctions. We formalized a new

utility-privacy trade-off problem to compute strategies revealing private information only if it

induces a significant increase in utility. For classical Bayesian costs, it benefits from recent ad-

vances in Optimal Transport. It yet leads to a non-convex minimization problem for which the

computation of global minima remains open. We believe that this work is a step towards the de-

sign of optimal utility vs. privacy trade-offs in economic mechanisms as well as for other appli-

cations. Its numerous connexions with recent topics of interest (optimization, optimal transport)

motivate a better understanding of them as future work.

Motivated by the behavior of consumers on review platforms, Chapter 9 was a first attempt

to use a change-point framework for social learning in online markets with reviews when the

qualities of a product vary over time. We provided a tight bound of the utility loss when the

quality space is {0, 1}d. For more general quality spaces (e.g., continuous), determining the

incurred regret is a much harder problem. Many other directions also remain open for review

based markets. For instance, it would be interesting to study a model with a slowly drifting

quality, rather than abrupt changes. This work only focused on the consumer side, but the seller

can also adaptively set the price of the item. What is a good seller strategy in this case? The

selling platform can also design the format of the feedback given by the consumers. Determining

the format which allows the best possible convergence rate might also be of great interest in

practice. Considering perfect Bayesian consumers might be unrealistic. In reality, consumers

have limited computation capacity or can be risk averse, leading to different behaviors. Studying
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the effects of these limitations is also of great interest.

Finally, this thesis grasped only in a small part the kind of interactions that might happen

between learning agents. The observed behaviors highly depend on the considered model as

illustrated all along this thesis. Many questions then remain open and we believe that the ques-

tions mentioned above are among the most interesting and major questions to better understand

sequential learning in strategical environments.
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Titre: Apprentissage séquentiel dans un environnement stratégique

Mots clés: Apprentissage séquentiel, Bandits à plusieurs joueurs, Théorie des jeux, Jeux répétés

Résumé: En apprentissage séquentiel (ou jeux
répétés), les données sont acquises et traitées à la
volée et un algorithme (ou stratégie) apprend à se
comporter aussi bien que s’il avait pu observer l’état
de nature, par exemple les distributions des gains.
Dans de nombreuses situations réelles, de tels agents
intelligents ne sont pas seuls et interagissent ou in-
terfèrent avec d’autres. Ainsi, leurs décisions ont
un impact direct sur les autres agents et indirecte-
ment sur leurs propres gains à venir. Nous étudions
de quelle manière les algorithmes d’apprentissage
séquentiel peuvent se comporter dans des environ-
nements stratégiques quand ils sont confrontés à
d’autres agents.

Cette thèse considère différents problèmes où
certaines interactions entre des agents intelligents

apparaissent, pour lesquels nous proposes des algo-
rithmes efficaces en termes de calcul avec de bonnes
garanties de performance (faible regret).

Lorsque les agents sont coopératifs, la difficulté
du problème vient de son aspect décentralisé, étant
donné que les agents prennent leurs décisions en
se basant seulement sur leurs propres observations.
Dans ce cas, les algorithmes proposés non seule-
ment coordonnent les agents afin d’éviter des inter-
férences entre eux, mais ils utilisent également ces
interférences pour transférer de l’information entre
les agents. Cela permet d’obtenir des performances
comparables aux meilleurs algorithmes centralisés.
Avec des agents en concurrence, nous proposons des
algorithmes avec des garanties satisfaisantes, à la fois
en terme de performance et de stratégie (ε-équilibre
de Nash par exemple).

Title: Sequential Learning in a strategical environment

Keywords: Online Learning, Multiplayer bandits, Game Theory, Repeated Games

Abstract: In sequential learning (or repeated
games), data is acquired and treated on the fly and
an algorithm (or strategy) learns to behave as well
as if it got in hindsight the state of nature, e.g., dis-
tributions of rewards. In many real life scenarios,
learning agents are not alone and interact, or in-
terfere, with many others. As a consequence, their
decisions have an impact on the other and, by ex-
tension, on the generating process of rewards. We
aim at studying how sequential learning algorithms
behave in strategic environments, when facing and
interfering with each others. This thesis thus con-
siders different problems, where some interactions

between learning agents arise and provides computa-
tionally efficient algorithms with good performance
(small regret) guarantees.

When agents are cooperative, the difficulty of
the problem comes from its decentralized aspect, as
the different agents take decisions solely based on
their observations. In this case, we propose algo-
rithms that not only coordinate the agents to avoid
negative interference with each other, but also lever-
age the interferences to transfer information between
the agents, thus reaching performances similar to
centralized algorithms. With competing agents, we
propose algorithms with both satisfying performance
and strategic (e.g., ε-Nash equilibria) guarantees.

Université Paris-Saclay
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