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Abstract

The research work hereby presented, pretends to contribute with the well-known issue of
dealing with the uncertainty of intermittent renewable sources (solar photovoltaic particularly)
in a microgrid. More specifically, the objective of this work is to evaluate the impacts of
solar photovoltaic production uncertainty in the performance of a microgrid that serves a
smart-building, and to propose, test and validate strategies to deal with it. To tackle this
problematic the work has been divided in three parts.

First, the design and construction of a -laboratory scale- nanogrid (300W peak consump-
tion) has been carried out, along with a control interface to interact with the system and
collect the data. This system is intended to emulate a microgrid that is being deployed in
the Drahi-X Novation Center building (campus of Ecole Polytechnique, Palaiseau, France,
48,7ºN, 2.2ºE), so that it serves as a test-bench for different energy management scenarios.
The system conceived presents a direct-current common-bus architecture, where the power is
freely exchanged among all the elements of the microgrid. The nanogrid is equipped with
a measurements system, disconnection means for every element, as well as the capacity to
control the power transacted by the battery, to some extent. The following of the real-time
-scaled- consumption of the Drahi-X building is also possible. Some remote monitoring
and control capabilities are included, as well as the gathering of some meteorological vari-
ables. Several months of power-flows data were gathered, that served for different analysis
regarding the electrical interactions among elements of the nanogrid. This helped to improve
the understanding of these type of systems in order to propose proper solutions for the
uncertainty issue mentioned above. The nanogrid also served as a pedagogical tool that
allowed many students to get a hands-on knowledge regarding microgrids through several
practical experiences and internship projects that were performed in our laboratory using the
nanogrid. The pedagogical and demonstrative outcomes obtained from the implementation
of the nanogrid are considered very significant objectives for the laboratory as well as for the
interests and future academic career of the author of this work.

In a following step, the topic of solar irradiance forecasts is addressed. Profiting from the
expertise of the SIRTA atmospheric observatory and the Dynamic Meteorologic Laboratory
in the domain of weather forecasting, a collaborative work was performed in order to evaluate
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what is the reliability of readily available day-ahead solar irradiance forecasts which in turn,
will be used to produce predictions of photovoltaic power production. For this, an analogs-
ensembles method is proposed to obtain probabilistic information from the above-mentioned
deterministic forecasts, to evaluate its eventual added value for an energy management sys-
tem. The adapted analogs-ensembles method proposed demonstrated superior performance
with respect to reference -probabilistic- forecasting methods, such as persistence, monthly
climatology and a well-known commercially-available probabilistic forecasting method from
the European Centre for Medium-Range Weather Forecasts (ECMWF). The methods were
evaluated based on the quantile skill score decomposed in reliability, resolution and uncer-
tainty, which are state-of-the-art metrics for probabilistic forecasting assessment. Besides, the
quantile forecasts obtained from the analogs-ensembles proved to be an interesting solution to
reduce forecasting uncertainty, as they provide information about the bias of the forecasting
error. If chosen properly, this feature might be beneficial for the resource scheduling tasks
performed by an energy management system, as proven in the last part of this work.

In the third section (Chapter 4), insights of the previous parts of this work were used in
order to propose energy management strategies with the aim to deal with the uncertainty issue
of PV production. These strategies are meant to favor different services that were chosen as
indicators of performance for the study-case building, namely: the energy cost, the carbon
footprint of the energy, the grid contracted power and the grid commitment. The impact of
such strategies in the performance of the study-case microgrid is evaluated, using different
forecasting approaches. The particularity of the quantile forecasts used (i.e. providing some
degree of certainty regarding the bias of their errors), proved to improve performance on
some of the services proposed, by properly choosing the quantile to be used. It helped in
providing flexibility when facing different production, consumption and pricing scenarios.
The energy management strategies proposed were compared to different reference strategies,
including the case when no microgrid was deployed, in order to have a more meaningful
idea of the real added-value of the strategies proposed and the microgrid deployment. In
general, the EMS strategies and the quantile forecasting method proposed, outperformed
the reference strategies in almost all the scenarios studied. Therefore, the presented work
brought promising answers and elements that are worth putting in practice to further validate
their added value in a real system.
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Résumé

Les travaux de recherche présentés ici sont nés de l’envie de répondre à la question
bien connue de savoir comment l’incertitude des sources renouvelables intermittentes af-
fecte les performances d’un micro-réseau et comment nous pourrions y faire face. C’est
l’un des principaux inconvénients que les sources d’énergie renouvelables intermittentes
doivent surmonter sur leur chemin vers les niveaux de pénétration requis pour contenir le
réchauffement climatique. Par conséquent, trouver une approche adéquate pour traiter cette
question, donnerait à la production distribuée avec des sources d’énergie renouvelables
intermittentes une valeur ajoutée significative dans cette direction. Plus précisément, nous
évaluons l’impact que pourrait avoir sur les performances l’incertitude des prévisions rel-
atives aux ressources solaires dans un micro-réseau équipé de panneaux photovoltaïques
et de batteries pour le stockage d’énergie. En outre, nous voulons proposer des stratégies
pour traiter cette question. Même si plusieurs auteurs ont abordé le sujet sous des angles
différents, les recherches menées ici proposent une approche intégrale où le sujet est abordé
sous trois angles différents.

• Matériel et émulation: le développement d’un micro-réseau à l’échelle du laboratoire
qui permet une meilleure compréhension des interactions électriques qui se produisent
dans un micro-réseau et qui sert d’émulateur au futur micro-réseau Drahi-X

• Le problème de l’incertitude des prévisions: des informations sur l’incertitude des
méthodes de prévision disponibles dans le commerce sont obtenues, et une méth-
ode est proposée pour générer des informations probabilistes à partir de prévisions
déterministes facilement disponibles

• Le problème de la gestion énergétique des micro-réseaux en situation d’incertitude: sur
la base des caractéristiques du futur micro-réseau Drahi-X et des mesures historiques
de la production et de la consommation d’énergie solaire, une stratégie de gestion
énergétique est proposée qui prend en compte les informations probabilistes de la
production solaire. Les impacts sur la performance du micro-réseau sont évalués sur
la base de certains indicateurs de performance qui sont liés à certains services qui
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devraient être fournis par le bâtiment intelligent Drahi-X. Les recherches effectuées
dans le cadre de ce travail tournent autour d’un cas d’étude particulier: le bâtiment
Drahi-X

Le micro-réseau du bâtiment Drahi-X

Situé sur le campus de l’École Polytechnique (Palaiseau, France), le Drahi-X Novation
Center - La fibre Entrepreneur, incubateur et accélérateur de start-ups, est un bâtiment à
vocation tertiaire qui possède principalement des bureaux, des ateliers électroniques, ainsi
que des salles de réunion et de vidéoconférence. Le système de chauffage/refroidissement
est centralisé et électrique (avec des pompes à chaleur), et correspond à la plus grande partie
de la consommation électrique du bâtiment. Le bâtiment est divisé en différentes zones,
avec des panneaux électriques indépendants à partir desquels les données électriques sont
enregistrées. Dans ce travail, nous nous concentrons sur une zone de consommation (zone 1)
qui comprend principalement des bureaux et quelques laboratoires à faible consommation.
Nous avons choisi de travailler exclusivement sur la consommation de la zone 1, afin
de conserver un rapport production/consommation raisonnable en fonction de la capacité
photovoltaïque installée prévue. Ce bâtiment est équipé de panneaux photovoltaïques, de
batteries de stockage d’énergie et de certaines capacités de contrôle qui permettront de mettre
en œuvre et de tester différentes stratégies de gestion de l’énergie. Le but de l’installation
du micro-réseau dans ce bâtiment est principalement de servir de démonstrateur à des fins
d’enseignement et de recherche pour les étudiants de l’Ecole Polytechnique et les externes.
Le critère utilisé pour dimensionner la batterie était de permettre le stockage de deux heures
d’énergie photovoltaïque, si le réseau photovoltaïque fournit sa puissance maximale. Cela a
été jugé suffisant par l’équipe de conception, pour permettre la mise en œuvre de stratégies de
systèmes de gestion de l’énergie qui utilisent le stockage d’énergie, sans le surdimensionner,
puisque le micro-réseau sera connecté au réseau.

En outre, en raison de la nature du bâtiment (secteur tertiaire), la consommation la
plus élevée se produit pendant la journée, ce qui permet d’utiliser directement l’énergie
photovoltaïque sans avoir besoin de la stocker. En plus, selon les calculs, cette taille de
batterie permet d’avoir un taux d’auto-consommation annuel moyen de 85%, tandis que les
15% restants de l’énergie photovoltaïque sont destinés à alimenter le point de chargement
des véhicules électriques. Le taux d’auto-consommation est la proportion de l’énergie
photovoltaïque potentielle (c’est-à-dire disponible) qui est effectivement utilisée dans le
micro-réseau, soit pour alimenter directement la charge, soit pour charger la batterie. Les
chargeurs/inverseurs de chaque batterie permettent de contrôler à distance l’échange d’énergie
de la batterie si on le souhaite, ce qui permet de mettre en place un système de gestion de
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l’énergie. En l’absence de ce dernier, ils disposent d’un système de gestion des batteries
préréglé qui peut prendre en charge la gestion des batteries. Les panneaux solaires disposent
d’optimiseurs de puissance maximale indépendants pour assurer un suivi indépendant de leur
point de fonctionnement optimal. Comme mentionné ci-dessus, le micro-réseau disposera
également d’un point de recharge pour les véhicules électriques, mais étant hors du champ
de cette étude, il n’est pas pris en compte dans ce travail.

Les trois branches utilisées pour aborder le principal problème de recherche de cette
thèse, donnent lieu à trois questions de recherche principales, qui sont la colonne vertébrale
du travail. Ces questions principales donnent lieu, à leur tour, à plusieurs sous-questions
-plus spécifiques- qui sont abordées dans chaque chapitre de cette thèse.

Emuler le micro-réseau d’un bâtiment à l’échelle d’un laboratoire

L’observatoire atmosphérique SIRTA et le Laboratoire de Météorologie Dynamique (LMD)
sont situés sur le campus de l’Ecole Polytechnique, à Palaiseau, France, et ont une longue
expertise dans le domaine de la mesure et de la prévision des ressources solaires (et de la
prévision météorologique en général). Motivés par la création d’un centre de recherche
interdisciplinaire, le SIRTA et le LMD, en association avec d’autres laboratoires, ont lancé
une nouvelle branche de recherche sur les micro-réseaux et ont créé le Laboratoire de
recherche sur les nanoréseaux (NRLAB). L’idée était de trouver différentes applications à
l’ensemble des connaissances et des accès aux données dont ils disposent dans le domaine
de la prévision solaire, dans le but de contribuer à la résolution de l’une des plus grandes
contraintes que connaissent les sources d’énergie renouvelables intermittentes lorsqu’il s’agit
de leur déploiement massif: leur incertitude intrinsèque. C’est ce qui a donné naissance
à cette thèse qui s’inscrit dans cette idée d’explorer les implications que les prévisions
météorologiques et leur incertitude intrinsèque apportent au système de gestion de l’énergie
d’un micro-réseau, et tous les enseignements qui peuvent être tirés de cette expérience.

Dérivée de cette idée fondatrice du NRLAB, la première question de recherche qui s’est
posée était: comment émuler un micro-réseau de la taille d’un bâtiment (avec des panneaux
photovoltaïques et un stockage d’énergie par batterie) avec des capacités de gestion de
l’énergie, afin d’émuler un micro-réseau à échelle réelle au service d’un bâtiment intelligent?

Cela soulève plusieurs questions, telles que: quels sont les aspects clés à prendre en
compte lors de la construction/gestion d’un véritable micro-réseau ? quelles sont les princi-
pales différences entre le travail avec un véritable micro-réseau et le travail avec un système
simulé par ordinateur? comment les flux d’énergie s’équilibrent-ils dans un système, avec
l’architecture proposée ici, et comment peut-on les manipuler? Ces questions répondent
au besoin d’avoir une connaissance pratique plus approfondie des interactions électriques
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complexes -et parfois contre-intuitives- entre les éléments d’un micro-réseau, ainsi que des
contraintes posées par l’incertitude de la production solaire, afin qu’une stratégie appropriée
pour la contrer puisse être développée efficacement. Ce dernier point constitue le premier
objectif général de cette thèse et, par conséquent, la conception, le dimensionnement et la
construction d’un micro-réseau à l’échelle du laboratoire à des fins d’enseignement et de
recherche ont été considérés comme une manière pertinente de commencer ce travail de
recherche.

Avec cet objectif pédagogique en tête, le développement d’un système permettant aux
étudiants de réaliser des projets pratiques autour du thème des micro-réseaux, des énergies
renouvelables et de la gestion de l’énergie était une exigence. Pour atteindre cet objectif, la
capacité à collecter des données de variables météorologiques et de flux d’énergie de tous les
éléments du système était indispensable. De plus, il était envisagé de doter le matériel de
certaines capacités de gestion de l’énergie afin que certaines stratégies de gestion de l’énergie
puissent être testées sur cet établi. Le système a été construit en trois itérations, qui ont été
nécessaires pour résoudre différents problèmes jusqu’à atteindre un niveau acceptable de
fonctionnalité, de précision et de stabilité des mesures. Dès sa conception, le système a été
considéré comme équivalent au micro-réseau qui est déployé dans le batîment du Drahi-X,
pour donner au micro-réseau une plus grande valeur ajoutée en répondant à un cas d’étude
réel.

Le micro-réseau NRLAB à l’échelle du laboratoire (également appelée nanogrid en raison
de sa petite taille), a été dotée de la capacité de suivre en temps réel la consommation du
bâtiment Drahi-X, avec un facteur d’échelle choisi par l’utilisateur et limité à une consom-
mation de pointe de 300W. La consommation est émulée par une charge électronique en
courant continu entièrement contrôlable. Le nanoréseau est équipé d’une batterie lithium-ion
40Ah-12V, et le rapport entre la puissance de pointe photovoltaïque installée et la capacité de
la batterie est équivalent à celui prévu pour le micro-réseau Drahi-X. Il existe également une
source d’énergie contrôlable en courant continu, qui joue le rôle de connexion avec le réseau
électrique, alimentant le nanoréseau en énergie lorsque la production photovoltaïque ne suffit
pas à satisfaire la demande. Le nanoréseau est équipé d’un panneau photovoltaïque de 365Wp
situé sur le toit du laboratoire, comme principale source d’énergie renouvelable. En raison
de la proximité géographique du laboratoire (où le nanogrid est déployé) et du bâtiment
Drahi-X (tous deux situés sur le campus de l’École Polytechnique), on peut considérer que
les conditions météorologiques affectent les deux sites de manière similaire en termes de tem-
pérature et de rayonnement solaire, et qu’ils présentent donc une production photovoltaïque
très similaire. Le nanoréseau est également doté de certaines capacités matérielles de base en
matière de contrôle et de gestion de l’énergie, qui imitent celles prévues pour le micro-réseau
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du Drahi-X. Ces capacités sont les suivantes: contrôle de l’énergie échangée avec la batterie,
connexion/déconnexion de tout élément, collecte de données en temps réel sur l’irradiation
solaire, la vitesse du vent et la température de l’air, ainsi que la tension, le courant et la
puissance de chaque ressource. Une description détaillée des caractéristiques, du principe
de fonctionnement ainsi que de l’évolution du système jusqu’à l’état actuel est présentée au
chapitre 2.

L’incertitude liée à une prévision solaire déterministe

La deuxième question générale, considérée comme un aspect essentiel de cette recherche,
est la suivante: comment extraire les informations relatives à l’incertitude d’une prévision
déterministe commercialement disponible? Cette question répond au besoin de savoir dans
quelle mesure une prévision déterministe donnée, utilisée comme entrée dans le système de
gestion de l’énergie d’un micro-réseau (qui effectue la programmation un jour à l’avance),
est fiable et de trouver un moyen d’exprimer cette information de manière à ce qu’elle puisse
être intégrée dans le système de gestion de l’énergie d’un micro-réseau. Ceci constitue le
deuxième objectif général de cette thèse, qui est développé dans le chapitre 3.

Des questions connexes se posent lorsqu’on aborde cet objectif général, telles que:
comment la précision des prévisions déterministes est-elle liée aux différentes conditions
météorologiques? pouvons-nous proposer une méthode qui fournisse davantage d’informations
(c’est-à-dire probabilistes) concernant la prévision des ressources solaires? quels indica-
teurs et méthodes pouvons-nous utiliser pour mesurer correctement l’efficacité d’une telle
méthode? Pour répondre à ces questions, nous avons profité de l’expertise du observatoire
météorologique SIRTA et le laboratoire de météorologie dynamique (LMD) dans le domaine
des prévisions météorologiques, pour établir un travail de collaboration afin d’évaluer la
fiabilité des prévisions d’irradiation solaire un jour à l’avance, qui seront à leur tour utilisées
pour produire des prévisions de production d’énergie photovoltaïque. Le observatoire SIRTA
a fourni toutes ses installations (également situées sur le campus de l’École Polytechnique)
et l’accès aux données afin de réaliser notre étude.

Avec ce matériel, une approche permettant d’obtenir des informations probabilistes
sur l’irradiation solaire à partir des prévisions numériques et météorologiques disponibles
(ARPEGE de MétéoFrance) a été proposée. Les prévisions sont un élément important
pour une stratégie de gestion de l’énergie, et dans ce cas, l’impact de leur incertitude a
également été étudié. Par conséquent, une approche d’ensembles d’analogues a été mise
en œuvre et adaptée pour ce cas d’étude, de sorte que des informations probabilistes des
prévisions déterministes originales puissent être extraites. L’approche utilise des prévisions à
un jour de l’irradiation solaire horizontale, de la température et de l’humidité relative. Le
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principe de fonctionnement de la méthode des ensembles d’analogues proposée est basé sur
la disponibilité d’une prévision déterministe qui est ensuite comparée à une base de données
de prévisions passées pour le même site, et les prévisions passées les plus "similaires" en
termes de valeurs ponctuelles ainsi que de tendances temporelles à court terme, sont choisies.
Les mesures correspondantes de l’irradiation solaire horizontale pour les prévisions choisies
(également disponibles dans la base de données), sont prises pour conformer l’ensemble des
analogues. À partir de cet ensemble, les 10me et 90me quantiles sont obtenus et comparés
aux méthodes probabilistes de référence, en termes de fiabilité, de résolution et d’incertitude
par le biais du quantile-skill-score. Les résultats montrent une performance supérieure de
la méthode des ensembles d’analogues proposée par rapport aux méthodes de prévision
probabilistes de référence telles que la persistance, la climatologie et même le système de
prévision d’ensemble -disponible dans le commerce- du Centre Européen pour les Prévisions
Météorologiques à Moyen Terme (ECMWF par son nom anglais). De cette manière, les
prévisions quantitatives obtenues à partir des ensembles émis par la méthode des ensembles
des analogues se sont avérées être une bonne source d’informations probabilistes/d’incertitude
des prévisions déterministes utilisées comme intrants de notre approche de prévision. La
méthode produit des ensembles de mesures de l’irradiance horizontale globale correspondant
à des prévisions similaires (c’est-à-dire analogues) à la prévision en cours d’analyse. Des
informations probabilistes sont extraites de ces ensembles sous la forme de prévisions
quantile, qui sont utilisées dans les stratégies de gestion de l’énergie proposées dans la
dernière étape de ce travail.

La gestion énergétique d’un micro-réseau sous l’incertitude de la production solaire

La dernière question de recherche générale de ce travail, qui relie les résultats précédemment
obtenus lors des deux premières étapes de la recherche, est la suivante: quelle pourrait être la
valeur ajoutée de l’inclusion d’informations sur l’incertitude des prévisions de production
photovoltaïque, dans le système de gestion énergétique d’un micro-réseau? Cela donne lieu
à des questions dérivées telles que: à quoi pourrait ressembler un système de gestion de
l’énergie, qui prend en compte les informations sur l’incertitude de la production photo-
voltaïque? Comment différents scénarios et stratégies de gestion de l’énergie (incluant ou
non des informations sur l’incertitude des prévisions) peuvent-ils affecter la performance du
micro-réseau étudié? Et comment le ciblage d’un service (lors de la planification optimale des
ressources du micro-réseau) peut-il avoir un impact sur les autres services choisis pour quan-
tifier les performances? Ces questions sont destinées à contribuer, dans une certaine mesure,
à la réduction des effets négatifs causés par l’incertitude de la production photovoltaïque
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dans un micro-réseau qui dessert un bâtiment intelligent, ce qui est l’objectif principal et
final de cette thèse.

Comme première étape vers la réalisation de cet objectif, nous proposons un système
de gestion de l’énergie qui inclut des informations probabilistes concernant la production
d’énergie photovoltaïque. À cette fin, l’utilisation des prévisions quantitatives proposées dans
la deuxième partie de ce travail est choisie comme moyen d’intégrer des informations sur
l’incertitude de la production photovoltaïque et d’analyser ensuite si cela pourrait apporter
un avantage ou une amélioration en termes de performance. Afin de quantifier l’impact
des stratégies de systèmes de gestion de l’énergie, certains services sont proposés, ainsi
que les indicateurs de performance correspondants. Il s’agit des services que le bâtiment
Drahi-X devrait fournir à ses utilisateurs, une fois que le micro-réseau sera opérationnel.
Quatre services différents sont proposés, à savoir: le coût de l’énergie, l’empreinte carbone,
la puissance contractuelle requise (puissance de pointe du réseau) et l’engagement du réseau.
Sur la base des indicateurs de performance associés, différentes stratégies de gestion de
l’énergie sont proposées et évaluées, portant sur deux services à la fois.

Le système de gestion de l’énergie proposé comprend deux étapes: une étape de pro-
grammation et une étape d’équilibrage. La première étape consiste à utiliser des prévisions
pour générer un profil de puissance du réseau requis par le micro-réseau pour la journée à
venir. Ce profil de réseau programmé est généré en privilégiant un service, à savoir: le coût
de l’énergie, l’empreinte carbone ou la puissance de pointe du réseau. Cela se fait par le biais
d’un algorithme d’optimisation, utilisant soit un algorithme génétique, soit une méthode de
programmation non linéaire.

Le module d’équilibrage est chargé d’assurer l’équilibre entre la production et la con-
sommation dans des conditions réelles de production photovoltaïque, en contrant les erreurs
de prévision. Il accomplit cette tâche en privilégiant toujours le service d’engagement sur
le réseau, ce qui signifie qu’il s’efforce de maintenir le plus longtemps possible le profil
de puissance programmé sur le réseau sans modification. Pour ce faire, elle utilise une
approche fondée sur des règles. L’objectif du service d’engagement sur le réseau est de
donner au gestionnaire de réseau de distribution une certitude quant aux besoins en électricité
du micro-réseau pour le jour suivant. Cela pourrait être réalisé en rendant le micro-réseau
capable de contrecarrer l’incertitude (de la production photovoltaïque dans ce cas) en interne,
avec les ressources disponibles. Cela donnerait aux micro-réseaux une valeur ajoutée intéres-
sante dans un scénario où la production distribuée avec des énergies renouvelables devient
importante par rapport au réseau de distribution.

Différents points sont étudiés dans cette partie, tels que les effets de l’intégration des
prévisions déterministes et probabilistes dans les stratégies des systèmes de gestion de
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l’énergie, les effets de la précision des prévisions, l’interaction entre les services lorsqu’un
service est favorisé par rapport aux autres, ainsi que les effets des saisons. Les résultats
de cette partie montrent la polyvalence de la méthode des ensembles des analogues et des
prévisions quantitatives en maximisant la performance du micro-réseau concernant un service
particulier pour différentes saisons, ainsi que la manière dont d’autres services sont affectés
négativement lorsqu’un service est favorisé. Cependant, il est montré qu’un bon compromis
de performance peut être trouvé entre les différents services, en fonction de la priorité et des
exigences des utilisateurs. En considérant l’erreur de prévision comme composée de deux
parties: l’ampleur et le biais; une analyse a été effectuée concernant la façon dont ces deux
composantes de l’incertitude sont plus ou moins pertinentes selon le service visé.

Les saisons jouent également un rôle dans la performance du micro-réseau, qui peut
être très différente de l’été (saison la plus favorable) à l’hiver (saison la moins favorable).
Différentes prévisions quantitatives doivent être utilisées pour optimiser les performances en
fonction des différentes saisons. Il est démontré qu’en mettant en œuvre certaines capacités
de contrôle de base, telles que le contrôle de l’échange d’énergie de la batterie/du réseau,
comme celui proposé dans la première partie de cette étude, un micro-réseau peut mettre
en œuvre des stratégies de gestion de l’énergie qui peuvent favoriser un service particulier
comme celles proposées ici. Ces stratégies se sont avérées efficaces pour optimiser ces
services, et ont surpassé les stratégies de gestion de l’énergie de référence dans presque tous
les scénarios. L’une des clés de cette réussite a été l’utilisation de prévisions quantitatives,
obtenues par la méthode des ensembles analogiques, qui se sont révélées être un outil utile
pour traiter l’incertitude intrinsèque des prévisions de production d’énergie photovoltaïque.

Ce travail ouvre de nombreuses voies pour des recherches ultérieures, la première étant la
mise en œuvre et l’essai des stratégies de gestion de l’énergie proposées ici dans le nanoréseau
à l’échelle du laboratoire et l’évaluation des contraintes éventuelles lors de la mise en œuvre
des stratégies dans un système réel. Cela permet d’évaluer la faisabilité de leur mise en
œuvre éventuelle dans le micro-réseau Drahi-X. Le développement détaillé de ce sujet est
présenté dans le chapitre 4 de cette thèse.

Chaque chapitre est structuré avec une section d’introduction, où une vue d’ensemble
du sujet particulier est effectuée ainsi qu’une revue de la littérature et la présentation des
principaux objectifs du chapitre. Ensuite, une description de l’étude de cas et des méthodes
suivies pour aborder le problème est décrite. Au cœur de chaque chapitre, les propositions,
les indicateurs et les résultats, avec leur analyse respective, sont présentés. Enfin, une section
où les principales conclusions sur les résultats, ainsi que les perspectives futures pour le sujet
particulier de la section, conclut le corps de chaque chapitre.
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Chapter 1

General introduction

The research work hereby presented, emerges from the urge to answer the well-known
question of how the uncertainty of intermittent renewable sources affect the performance
of a microgrid? and how could we deal with it? This is one of the main drawbacks that
intermittent renewable energy sources (IRES) must overcome on their way towards the levels
of penetration required to contain global warming. Therefore, finding an adequate approach
to deal with this issue, would give distributed generation with IRES a significant added value
in this direction. More specifically, we evaluate what could be the impact in performance
of the uncertainty of solar-resource forecasts in a microgrid (MG) that is provided with
photovoltaic (PV) panels and battery energy storage. Besides, we want to propose strategies
to deal with this issue.

Even when several authors have wandered around the subject from different perspectives
[4–11], the research hereby conducted proposes an integral approach where the subject is
addressed from three different angles:

• Emulation (Hardware): the development of a laboratory-scale MG that permits a better
comprehension of the electrical interactions that happen in a MG and that serves as an
emulator of the Drahi-X future MG

• The forecasting uncertainty problem: uncertainty information of commercially-available
forecasting methods is obtained, and a method is proposed to generate probabilistic
information out of readily-available deterministic forecasts

• The energy management problem of MGs under-uncertainty: based on the characteris-
tics of the future Drahi-X MG and historical measurements of solar production and
consumption, an energy management strategy is proposed that takes into account the
probabilistic information of the solar production. The impacts on the performance of
the MG are evaluated based on some performance indicators that are linked to some
services expected to be provided by the Drahi-X smart-building
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The research performed in this work, spins around a particular study case: the Drahi-X
building. Therefore an overall description of this study case, as well as the information
that have been gathered from this site to perform the present research, is presented in the
following section.

The Drahi-X building microgrid

Located on the campus of the École Polytechnique (Palaiseau, France), The Drahi-X Novation
Center - La fibre Entrepreneur (Figure 1.1 ), a startup incubator and accelerator, is a tertiary-
oriented building that possesses mainly offices, a fablab, electronic workshops, as well as
meeting and video conference rooms. The heating/cooling system is centralized and electric
(with heat pumps), and corresponds to the biggest portion of the electric consumption of the
building. The building is divided in different zones, with independent electrical panels from
which the electrical data is recorded.

Figure 1.1 View of the main entrance of the Drahi-X Novation Center of Ecole Polytechnique

In this work, we focus on one consumption zone (hereafter, zone 1), which has mainly
offices and some low-consumption labs. We chose to work exclusively with the consumption
of zone 1, in order to keep a reasonable production/consumption ratio according to the
expected PV installed capacity. This building is being equipped with PV panels, battery
energy storage and some control capabilities that will allow the implementation and test of
different energy management strategies.

Figure 1.2 presents a simplified illustration of the study case MG, which presents the
following characteristics:

• A 16 kWp rooftop PV array with a 16 kVA 3-phase power inverter

• 3 × BYD Li-Ion battery of 10.5kWh and 9kWp each, 100% depth-of-discharge allowed
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Figure 1.2 Schematic of the future Drahi-X microgrid

• 3 × Victron charger-inverters of 5kVA each (one for each battery pack)

• A 3-phase bi-directional connection with the rest of the building. For the seek of the
study this will be assumed as a 36 kVA connection with the utility grid, as if the MG
(that is, the building zone) was actually an independent building with its own electricity
billing

• A data collection system that allows to record the electrical variables of all elements
with a minimum time resolution of 1 minute

The purpose of installing the MG in this building is mainly to serve as a demonstrator for
teaching and research purposes. The criteria used to size the battery was to allow the storage
of two hours of PV energy, if the PV array delivers its maximum power (i.e 16kW). That was
considered enough by the designing team, to allow the implementation of EMS strategies
that make use of energy storage, without over sizing it, as the MG will be grid-connected.
Besides, due to the nature of the building (i.e. tertiary sector), the highest consumption
happens during the day, which permits to use the PV energy directly without the need to
store it. Moreover, according to the calculations, this battery size allows to have an average
annual self-consumption rate of 85%, while the remaining 15% of PV energy is envisaged
to feed the charging point for electric vehicles. The self-consumption rate (SC) is the
proportion of the potential (i.e. available) PV energy that is actually used in the MG, either
to directly power the load or to charge the battery. The chargers/inverters of each battery
pack allow the remote control of battery power exchange if desired, allowing for an energy



4 General introduction

management system (EMS) to be implemented. In the lack of the latter, they have a preset
battery management system that can take charge of the management of the batteries. The
solar panels have independent maximum power optimizers (DC/DC controllers) to assure
independent tracking of their optimal operation point. As mentioned above, the MG will also
have an electric-vehicle charging point, that is not taken into account in this study.

The three branches used to address the main research problem of this thesis, give rise to
three main research questions, that are the spinal column of the work. These main queries
give, in turn, rise to several -more specific- sub-questions that are tackled in each chapter of
this thesis, as described in the following sections.

1.1 A building-size microgrid emulated in a experimental
lab

The SIRTA atmospheric observatory (https://sirta.ipsl.fr/) and the Dynamic Meteorology
laboratory (https://www.lmd.jussieu.fr/) are located in the campus of Ecole Polytechnique,
Palaiseau, France and have a long expertise in the domain of solar resource measurement
and forecasting (and meteorological forecasting in general). Motivated by the creation of an
interdisciplinary research center (today the Energy4Climate Center), SIRTA and LMD in
association with other laboratories (GeePs, Limsi, LPICM and SAMOVAR) started a new
research branch on microgrids and they created the Nanogrid Research Laboratory (NRLAB).
The idea was to find different applications to all the knowledge and data access they have in
the domain of solar forecasting, with the aim to contribute in the solution of one of the biggest
constraints that renewable energy sources have when it comes to their massive deployment:
their intrinsic uncertainty. That gave rise to this thesis which is framed under this idea of
exploring the implications that weather forecasts and their intrinsic uncertainty brings to MG
systems, and all the learning outcomes that can be obtained from this experience. Derived
from this founding idea of the NRLAB, the first research question that arose was: how to
emulate a building-size microgrid (with PV panels and battery energy storage) with energy
management capabilities, in order to emulate a real-scale microgrid serving a smart-building?

This brings about several -derived- queries such as: what are the key aspects to take into
account when building/managing a real microgrid? what are the main differences between
working with a real microgrid and working with a computer-simulated system? how do
power flows balance in a system, with the architecture as the one hereby proposed, and
how can they be manipulated? These queries respond to a need of having a deeper -hands-
on- knowledge about the intricate -and sometimes counterintuitive- electrical interactions
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between the elements of a MG, as well as the constraints posed by the uncertainty of the solar
production, so that, a proper strategy to counteract it could be effectively developed. The
latter constitutes the first general objective of this thesis and consequently, the conception,
sizing and construction of a laboratory-scale nanogrid for teaching and research purposes
was considered a pertinent way to start this research work.

With this pedagogical target in mind, developing a system that allow students to perform
practical projects around the topic of MGs, renewable energies and energy management was
a requirement. To achieve this goal, the ability to collect data of meteorological variables
and power flows of all the elements of the system was a must. Moreover, it was envisaged
to provide the hardware with some energy management capabilities so that, some energy
management strategies could be tested on this workbench. The system was build through
three iterations, which were required to solve different issues until achieving an acceptable
level of functionality, accuracy and stability of measurements.

Since its conception, the system was thought to be equivalent to the MG that is being
deployed in the Drahi-X startup incubator, to give the MG a higher added-value by responding
to a real study-case. However, it must be recalled that the Drahi-X MG has an AC bus whereas
the nanogrid has a DC bus, therefore, no power inverters are required in the latter. This
simplification was made due to the fact that the NRLAB microgrid was conceived to emulate
the Drahi-X MG mostly in a high-level of energy management (i.e. the test of optimal
power transaction strategies), without entering into the (low-level) technicalities of the power-
converters electronics or control algorithms proper of an AC system. A high-level EMS
dictates power settings that must be followed by the elements they are intended for, regardless
if the power being transacted is AC or DC. For this reason, it was considered that a DC bus
nanogrid was sufficient for the purposes it is intended for.

The laboratory-scale NRLAB microgrid (also called nanogrid due to its small-size,
hereafter called NG), was provided with the ability to follow in real-time, the consumption
of the Drahi-X building, with a scale factor selected by the user and limited to a peak-
consumption of 300W. The consumption is emulated with a fully controllable electronic
DC-load. The NG has a 40Ah-12V lithium-ion battery, and the ratio between the installed
PV peak power and the battery capacity is equivalent to the one projected for the Drahi-X
MG. There is also a DC controllable power source, that plays the role of the connection with
the utility grid, supplying power when the PV production is not enough to satisfy the demand.
However, the power source can only deliver power, therefore a bi-directional connection with
the utility grid could not be emulated with this hardware. The NG is equipped with a 365Wp
poly-crystalline silicon PV panel located in the rooftop of the laboratory, as main source
of renewable energy. Due to the geographical closeness of the laboratory (where the NG is
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deployed) and the Drahi-X building (both are located in the campus of Ecole Polytechnique),
it can be considered that weather conditions affect both sites in a similar way in terms of
temperature and solar-irradiance, hence they would present a very similar PV production. The
NG is also equipped with some basic control and energy management hardware capabilities
that emulate the ones foreseen for the Drahi-X MG. These capabilities are: control of the
power exchange with the battery, connection/disconnection of any resource from the main
bus, real-time data collection of solar irradiance, wind speed and air temperature, as well a
voltage, current and power of every resource. A detailed description of the features, working
principle as well as the evolution of the system up the actual state is presented in Chapter 2.

1.2 The uncertainty associated to a deterministic solar fore-
cast

The second general question, considered a key aspect for this research, is: how to extract
information related to the uncertainty of a readily-available deterministic forecast? This
question responds to the need of knowing how reliable is a given day-ahead solar deterministic
forecast that is used as input in the EMS of a MG (that performs day-ahead scheduling) and
finding a way to express this information in such a way that it can be integrated in the EMS
of a MG. This comprises the second general objective of this thesis, which is developed in
Chapter 3.

Related questions arise when addressing this general objective, such as: how the accuracy
of the deterministic forecasts is related to different weather conditions? can we propose
a method that delivers more (i.e. probabilistic) information regarding the solar-resource
forecast? what indicators and methods can we use to properly measure the effectiveness of
such method?

To answer these questions, we established a collaborative work with the PIMENT labora-
tory of Université de la Reunion in order to evaluate what is the reliability of readily available
day-ahead solar irradiance forecasts, which in turn, will be used to produce predictions of PV
power production. Numerical Weather Prediction (NWP) data from ARPEGE and AROME
where available for this study from a collaboration between SIRTA and MeteoFrance. Fore-
casts are an important input for an energy management strategy, and in this case, also the
impact of their uncertainty was a subject of study. Therefore, an Analogs Ensembles (AnEn)
approach was implemented and adapted for this study-case, so that, probabilistic information
of the original deterministic forecasts could be extracted. The approach uses day-ahead fore-
casts of solar global horizontal irradiance (GHI), air temperature at 2m above the ground (T2)
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and air relative humidity (RH). The working principle of the AnEn method proposed is based
on the availability of a deterministic forecast (of GHI, T2 and RH), that is then compared
with a database of past forecasts for the same site, and the most "similar" past forecasts in
terms of punctual values as well as short-term temporal trends are chosen. The corresponding
measurements of GHI for the chosen forecasts (also available in the database), are taken
to conform the ensemble of analogs. From this ensemble, the 10th and 90th quantiles are
obtained and compared to reference probabilistic methods, in terms of reliability, resolution
and uncertainty through the quantile-skill-score. The results show a superior performance
of the proposed AnEn with respect to benchmark probabilistic forecasting methods such as
persistence, climatology and even the -commercially available- ensemble prediction system
from the European Centre for Medium-Range Weather Forecasts. In this way, quantile fore-
casts obtained from the ensembles issued by the AnEn method, proved to be a good resource
of probabilistic/uncertainty information of the numerical-weather-prediction deterministic
forecasts used as the input of our forecasting approach. It outputs ensembles of past GHI
measurements corresponding to similar (i.e. analogs) forecasts to the current forecast being
analyzed. Probabilistic information is extracted from this ensembles in the form of quantile
forecasts, which are used in the energy management strategies proposed in the last stage of
this work.

1.3 Energy management of a microgrid under solar pro-
duction uncertainty

The last general research question of this work, that links the results previously found
on the first two stages of the research is: what could be the added value of including
information about the uncertainty of PV production forecasts, in the energy management
system of a microgrid? This gives rise to derived queries such as: how could an energy
management system, that takes into account uncertainty information of PV production,
look like? how different energy management scenarios and strategies (including forecast
uncertainty information or not) can affect the performance of the study-case microgrid?
and how targeting one service (when performing the optimal scheduling of resources of the
microgrid), can impact the other services chosen to quantify performance? These questions
are intended to contribute, to some extent, in the reduction of the negative effects caused by
the uncertainty of the PV production in a MG that serves a smart-building, which is the main
and concluding objective of this thesis.
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As a first step towards the achievement of this goal, we propose an EMS that includes
probabilistic information regarding PV power production. For this, the use of the quantile
forecasts proposed in the second part of this work is chosen as the way to integrate information
about the uncertainty of the PV production, and then analyze if that could bring any advantage
or improvement in terms of performance. In order to quantify the impact of the EMS
strategies, some services are proposed, along with their corresponding performance indicators.
These are services that the Drahi-X building is expected to deliver to its users, once the MG
is operational. Four different services are proposed, namely: energy cost, carbon footprint,
required contracted power (grid-peak-power) and grid-commitment. Based on the associated
performance indicators, different energy management strategies are proposed and evaluated,
addressing two services at a time. The proposed energy management system consists of two
stages: a scheduling stage and balancing stage. The former, make use of forecasts to generate
an expected grid power profile required by the MG for the upcoming day. This scheduled
grid profile is generated favoring one service, namely: energy cost, carbon footprint or
grid-peak-power. This is done through an optimization algorithm, using either a genetic
algorithm or a non-linear programming method.

The balancing module is in charge of assuring the balance between production and
consumption under real PV production conditions, counteracting the forecasting errors. It
performs this task always favoring the grid-commitment service, which means, trying to
keep the scheduled grid power profile unmodified, as long as possible. This is performed
through a ruled-based approach. The purpose of the grid commitment service is giving
certainty to the distribution system operator about the power requirements of the MG for
the upcoming day. This could be achieved by making the MG capable of counteracting the
uncertainty (of PV production in this case) internally, with the resources available. This
would give microgrids an interesting added-value in an scenario where distributed generation
with renewables becomes significant with respect to the utility grid.

Different points are studied in this part, such as the effects of integrating deterministic and
probabilistic forecasts in the EMS strategies, the effects of forecasts accuracy, the interaction
between the services when one service is favored over the others, as well as the effects
of seasons. The results of this part show the versatility of AnEn and quantile forecasts in
maximizing the performance of the MG regarding one particular service for different seasons,
as well as how other services are negatively affected when one service is favored. However, it
is shown that a good compromise in performance can be found among the different services,
depending on the priority and requirements of the users. Viewing the forecasting error as
composed by two parts: the magnitude and the bias; an analysis was performed regarding
how these two components of the uncertainty are more or less relevant depending on the
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service that is being targeted. Seasons also show to play a role in the performance of the MG,
which can be very different from summer (most favorable season) to winter (least favorable
season). Different quantile forecasts have to be used to optimize performance for the different
seasons.

It is shown that by implementing some basic control capabilities such as the power
exchange control of the battery/grid, as the one proposed in the first part of this study, a
MG can implement energy management strategies that can favor a particular service as the
ones hereby proposed. These strategies proved to be successful in optimizing those services,
and outperformed the reference energy management strategies in almost every scenario.
A key to this achievement, was the use of quantile forecasts, obtained with the analogs
ensembles method, that proved to be a useful tool to deal with the intrinsic uncertainty of PV
power production forecasts. This work open many pathways for further research, being the
first one, implementing and testing the energy management strategies hereby proposed in
the laboratory-scale nanogrid and to evaluate eventual constraints when implementing the
strategies in a real system. This permits the evaluation of the feasibility for their eventual
implementation in the Drahi-X MG. The detailed development of this topic is presented in
the Chapter 4 of this thesis.

Each chapter is structured with an introductory section, where an overview of the particu-
lar topic is performed as well as a literature review and the presentation of the main objectives
of the chapter. Then, a description of the case-study and the methods followed to tackle the
problem are described. In the core of each chapter, the proposals, indicators and results, with
their respective analysis, are presented. Finally, a section where main conclusions about the
results, as well as future perspectives for the particular topic of the section, concludes the
body of each chapter.





Chapter 2

Experimental nanogrid development
with pedagogical and demonstrator
purposes

2.1 Introduction

In the growing world of renewables and the rising deployment of microgrids (MGs) and
smartgrids (SGs), this subject is being added to the engineering curricula in many universities
around the world, not only for those interested on the management of future electrical
networks, but for all type of professionals. The complex interactions occurring on the
national electricity network are being scaled-down to a prosumer level, thanks to the rise of
microgrids. A prosumer can be any person or entity who is able to consume and produce
electricity, regardless of the power being transacted. MGs allow final users to produce,
trade, consume or sell the totality or a part of the electricity they produce. Besides, MGs
are an interesting platform to increase renewable penetration through distributed generation,
as highlighted in [12]. This makes the subject of microgrids a trans-disciplinary field that
touches professionals from many different areas, passing through politicians and law makers
(e.g. [13]), financial sector (e.g. [14]) as well as the final users (e.g. [15]). Having stated the
importance of this emerging field specially in this crucial moment of humanity regarding
climate change, having a solid base on this vast area for any person working in the energy
sector, is a must.

When talking about low-power distributed generation with IRES, the concept of micro-
grids comes along as the system that is specially conceived to integrate those resources.
According to the US Department of Energy, a MG can be defined as "a group of intercon-
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nected loads and distributed energy resources within clearly defined electrical boundaries
that acts as a single controllable entity with respect to the grid. A microgrid can connect and
disconnect from the grid to enable it to operate in both grid-connected or island-mode" [16].
In simpler words, a MG constitutes a "small" electrical system with similar components and
the same purpose of the utility grid, which is to satisfy a given consumption at every moment,
keeping desirable quality levels of the electricity that is being delivered. However, as the
above definition points out, these type of systems possesses characteristics that differentiate
them from the high-power electric grids (i.e. utility grid). This fact makes the management
of its resources a matter of each particular use case, depending on the available resources and
the needs of the users. As pointed out in figure 2.1, MGs can be connected or non-connected
to the main grid, and this work focus on the former case. The main difference in the man-
agement between connected and not connected microgrids is the fact of having an "infinite"
source of energy at disposal in case is needed (the utility grid, for the grid-connected case),
whereas in the non-connected case the auxiliary energy reserves are limited, and most of the
times, expensive. This fact make non-connected MGs riskier to manage in order to assure
their self-sufficiency at all times. However, to manage the resources of a grid-connected
system must be done carefully as well, in order to avoid interfering with the distribution grid
in terms of stability and energy quality. Figure 2.1 presents a possible classification for MGs
proposed by zia et al. [1]. According to this classification, the system proposed in this work
is a DC, centralized, grid-connected, commercial MG.

Figure 2.1 Microgrids classification. Taken from [1]

Even when there are examples of microgrids already deployed as demonstration projects
that are serving in real-life applications as pointed out in the review performed by barnes
et al. [17], a big percentage of the literature on the subject concentrates on laboratory-
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scale microgrids. Some examples can be found in [18–21] where they study a variety of
aspects such as: the architecture and configuration, availability of different distributed energy
resources (DERs), islanding constraints, test for different storage technologies, test for control
strategies/energy management systems, development and test of power converters, protection
strategies and interactions between different microgrids, just to mention some. The scale of
these type of systems allow their deployment in laboratory facilities to serve as test-bench
for the above-mentioned topics and others, and yet the results can be meaningful for real-life
scale systems. Nevertheless, there are critical points to take into account when passing
from laboratory to real-life scenarios such as meeting network constraints and regulatory
requirements, controllability at the point of common-coupling with utility grid, protection
means, low-voltage ride-through requirements when islanding and acknowledgement of local
consumption, as pointed out by Liang et al. [22].

Acknkowledging the importance of having a laboratory-scale system to perform offline
tests and validations, as highlighted by the authors mentioned above, we have decided to
developed a small-scale demonstrator system, as the starting point of our research work. A
Nanogrid Research Lab (NRLAB) was created where a microgrid (or nanogrid as we call
it due to its low power rating of 300Wp) was built. The NRLAB has been deployed in the
SIRTA-E4C laboratory facilities at the Dynamic Meteorology Laboratory in the campus
of Ecole Polytechnique in Palaiseau, France. Besides its intended research applicability,
it is also conceived with the aim to offer undergraduate, graduate and PhD students the
possibilities to get in touch with this kind of systems in a more realistic hands-on approach,
that was no existent (to the best of our knowledge) in the campus before. This allows a better
comprehension of the working principle, challenges and importance of doing a proper use
of the resources from different points of view. It allows also students to develop practical
projects where they can implement or propose new strategies for energy management and
load scheduling and evaluate its performance. The system has been conceived to be a
small-scale equivalent of the microgrid being installed at the Drahi-X Novation Center on
the campus of the Ecole Polytechnique (see The Drahi-X building microgrid description
in the general introduction of this work). Through some functionalities such as real-time
consumption-following, the laboratory-scale microgrid (hereafter called the nanogrid NG),
permits to explore energy management strategies and scenarios that could be implemented in
the full scale system and evaluate its impacts.

In section 2.2, a summary of the different iterations that the system has had until the
current version is presented, from conception to implementation, performing a thorough
explanation of its functionalities and reasons of each improvement.
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In section 2.3 we present the potential of the NG as a research, demonstration and
pedagogical tool by showing the outcomes obtained with the current version of the system.
Here we expose also its limitations and scope which serves to justify the work performed in
the following chapters of this thesis.

In section 2.4, the different practical exercises that have been performed so far with the
system are explained, and its results debriefed.

Section 2.5 presents a side outcome of the NG, which is a web-based "game" inspired in
the physical system, focused on load-scheduling. It was conceived with the idea that a bigger
number of students could benefit from the learning experience of the nanogrid, as well as to
overcome some of the physical and technical constraints presented by the physical NG.

Finally the conclusions of the work are presented as well as a summary of the main
suggestions for improvement and envisaged uses of the system.

2.2 Materials and methods

The project started with a basic out-of-the-box system build around a commercial solar
charge MPPT controller, which was working in the laboratory when this study started. Being
the system constrained by the limited functionalities and user-interaction allowed by the
charge controller, its potential as a research and pedagogical tool was very limited. This gave
rise to the initiative of building a new system from scratch, conceived since the beginning to
serve as a research and pedagogical tool in the domain of microgrids. That was the ground
base of the present thesis project.

The evolution of the nanogrid

The first iteration of the NRLAB NG consists in a 12Vdc microgrid powered by two photo-
voltaic (PV) panels: a low power (50W) indoor panel enlightened by halogen lamps, and
an external 245W poly-crystalline silicon panel. This first system had a 1.2 kWh lead-acid
battery as energy storage, and a programmable 300Wp electronic DC load. The system
also had an adjustable 600 Wp electronic power source serving as an alternative source of
energy. Hall-effect current sensors were installed whereas the voltages of the elements were
measured using simple voltage dividers built with commercial resistors. The measurements
were gathered by an Arduino-Mega board (https://store.arduino.cc/arduino-mega-2560-rev3)
and managed by a RaspberryPi 3 board (https://www.raspberrypi.org/products/raspberry-
pi-3-model-b/). The monitoring of the system was performed by a Python code running in
the RaspberryPi and the outputs were shown in an interface that was programmed using the
open-source software called Node-Red. The exchange of the data between the Python script
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and the Node-Red interface was performed using an open-source MQTT server. Each branch
of the system (i.e. the electrical connection from the main DC bus to a given element or
resource) had a connection/disconnection relay and an overload fuse, in order to protect the
lines and isolate them from the main DC bus if needed.

This first system, still "rudimentary", presented interesting functionalities such as having
an indoor panel serving as a "solar simulator". This enabled the NG to emulate, in an
automated way, any solar irradiance profile desired, naturally, scaled to the peak power of
the indoor PV panel. The user interface was also developed from scratch, and it allowed to
see in real time the measurements of current, voltage and power for each element, in the
form of integers or time-series plots. Power values were calculated from current and voltage
measurements. It had the option also to connect or disconnect any element remotely, and
even set conditions for its automatic connection/disconnection due to over or under voltage
conditions. Response-time, accuracy, reliability and repeatability of measurements, were the
main drawbacks of this first system, which lead to develop a second version in order to solve
those issues.

Several improvements were implemented in the system for the second version, preserving
the initial idea of developing a NG with remote and automated control capabilities. Two
new elements are added to the second version of the NG: a 480Wh Lithium-ion battery (in
addition to the existing lead-acid unit), and a 500W vertical axis wind turbine. However,
the wind turbine presented some voltage-compatibility issues, and even when some tests
were performed to identify a possible solution of the problem, it was out of the scope of
this work, leading to the decision of leaving its integration to the NG for a later stage. The
setup of the internal PV panel was also improved, in order to decrease its temperature during
operation and making the illumination more uniformly distributed. This allowed the PV
panel to achieve its nominal power when exposed to full illumination of the halogen lights.
Important improvements were made regarding the data gathering: new -laboratory quality-
current and voltage sensors have been installed in order to improve the measurements quality.
Measurements of the initial version of the NG were affected by errors and stability problems,
mainly due to electrical noise and temperature effects. The installation of the new sensors
required the design and fabrication of the electronic circuit boards as well as its calibration.
The system was completely rewired with the aim to reduce the Joule losses and to bear the
increased electrical stress produced in the cables due to the new elements added to the system.
Real-time meteorological information and Drahi-X consumption-following were included
in this iteration of the NG in order to increase the pedagogical and research value of the
system. The software has been significantly changed with respect to the initial version of
the NG with the aim to reduce the stress in terms of computational power of the Raspberry
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Pi and to achieve a faster response. With this in mind, the original script was split in three
different codes: data-management, control and load-control script. The data management
script receives the values of the electrical variables (i.e. current and voltage) measured by the
sensors, through the Arduino-mega board. The power of each element is computed based on
those two variables and all this data is displayed on the web-page interface. The same code is
used to record the gathered data in .txt files. This operation can be performed in real-time or
in a simulated-accelerated mode, where consumption and PV production profiles are given
and by means of the solar simulator, they can be run in an accelerated mode, regardless of
the real weather conditions. This functionality is useful to perform simulations of different
daily profiles in a practical laboratory session. The state-of-charge of the battery is computed
using the coulomb-counting method [23].

The control script has as main task the remote connection/disconnection of each element
of the NG from the main bus, by means of the connecting relays. A safety over/under
voltage disconnection protocol was implemented taking advantage of this functionality. The
load-control script is in charge of setting the power value of the electronic DC-load, with the
possibility to follow a fixed power value set by the user (via the graphical interface) or to
follow the real-time consumption of the Drahi-X building. A proper scale factor can be set
by the user in order to meet the maximum power rating of the electronic load. In this way,
by reducing the data-traffic through the MQTT server and better organizing the information
exchange, the response time of the measurements was significantly improved.

Current version of the nanogrid

Despite the aforementioned improvements achieved in the previous iterations of the NG,
there were still issues to be solved, mainly regarding the quality of measurements. The
Arduino-RaspberryPi configuration that was being used so far, had been conceived in its
origins more as a prototyping platform than a professional measuring system. Besides, being
measurements the base to perform any energy management, it was decided to change the
whole measurements system by a professional data logger device, with the aim to achieve
more accurate, stable and robust measurements.

In order to implement an energy management system (EMS), the system needs to be
controllable and the data collection process must be reliable. Developing an EMS based
on inaccurate measurements will most likely lead to wrong decisions. The CR1000X
professional data-logger from Campbell Scientific (https://www.campbellsci.com/cr1000x),
was chosen to substitute the Arduino-based data-collection system. This device can perform
data collection and saving, along with some basic control functions. With this improvement,
two Python scripts (measurement and control) were eliminated, remaining only the load
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Figure 2.2 Evolution of the NRLAB nanogrid

control script from the previous version of the system. The diagram of the new data-collection
system proposed is shown in Fig. 2.3.

Moreover, the existing -250Wp- solar panel was replaced by a 305Wp poly-crystalline
silicon solar panel (model Q.PEAK-G4.1 305) and installed in the rooftop of the laboratory
building. The existing DC power source had been replaced with similar equipment with the
ability to deliver up to 24Vdc (model VOLTCRAFT DPPS-32-30 1-32VDC 0-30A 960W).
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Figure 2.3 Schematic of the data collection system of the Nanogrid

This was required as the NG was intended to pass from a 12VDC to a 24VDC system, with
the aim to reduce losses. This change required the implementation of a 24V battery pack,
which was build by putting in series two 12V Li-Ion battery units. The third -and current-
version of the NG system is shown in figure 2.4.

Figure 2.4 Physical appearance of the current version of the NRLAB nanogrid

The user interface continues to be based in Node-RED, as the versatility shown so far
by this software for data communication, display and user interaction is considered suitable
for our application. A new configuration was implemented though, in order to connect
Node-RED with the new CR1000X data-logging unit. The appearance of the measurements
tab where the real-time values of all the variables are displayed, is shown in figure 2.5. The
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capabilities of Node-RED to produce real-time plots of the current, voltage and power of the
different elements of the system were successfully adapted to the new measurements system.

Figure 2.5 Monitor and control interface of the nanogrid developed using Node-RED

The possibility of imposing the -scaled- real time consumption of the Drahi-X building is
also a valuable tool for research implemented in this version of the NG, as it allows to emulate
management strategies and observe the response of the different elements under real-life
consumption conditions. The control of the disconnecting relays is now also performed by
the CR1000X data-logger, making use of its digital I/O ports. Using the built-in programming
language provided by Campbell Scientific, the binary activation signals could be sent to these
ports at any moment from the user interface (or a central controller) to remotely open or
close the relays. This feature gives some basic possibilities to perform energy management.
However, due to the nature and configuration of this system, there are some restrictions to be
kept in mind when disconnecting elements, such as the need of the PV controller to have the
battery always connected in order to work properly, or the need to always have the power
source connected when the SoC of the battery is low, so that over-discharge of the battery is
avoided.

In the NRLAB-NG, the element that plays the role of the utility grid (or a genset unit if
emulating an off-grid system) is the power source. In order to implement an efficient EMS,
the remote-control of the power source is mandatory. The power source of the NRLAB-NG
has this capability, more specifically, it allows to limit the output current and to set the
output voltage desired, via 0-5V analog inputs. The CR1000X data-logger is able to send
pulse-width-modulation (PWM) signals through its ports, which are used to generate the
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analog signals required to control the power source. The proper calibration equations were
experimentally found in order to convert between voltage/current values to PWM signals.
This functionality was added in the Node-RED interface, so that the user can input the desired
setting for voltage and current-limit. A schematic that summarizes the evolution process of
the NRLAB NG described above, is presented in figure 2.2.

At the view of the lack of readily-available low-power fully-controllable DC-DC con-
verters on the market, this functionality was used to -indirectly- control the power-exchange
with the battery. In other words, the control of power going/coming to/from the battery,
can be achieved by controlling the power delivered by the power source (i.e. limiting its
current). A maximum-power-point-tracker (MPPT) controller ensures the utilization of the
available PV potential (as long as there is a resource willing to consume it), so that the battery
power is passively dictated by the Ohm and energy conservation laws. Explained differently,
given that the PV production is dictated by the MPPT controller and the consumption is
fixed either by the user or by the Drahi-X consumption, the battery and the power source are
the two elements left to counteract any imbalances between production and consumption.
Due to the configuration of the NG, where all the resources are connected to a common-bus
and are allowed to exchange power freely, the Ohm and conservation-of-energy laws are
the ones that dictate the power flows in the system. When an imbalance occurs between
production and consumption, the lack/surplus of power will split between the battery and
power source according to their voltage levels. For instance, if there is a lack of power (i.e.
more consumption than PV production), the missing power will come from the element that
has the highest voltage between the battery and the power source. Therefore, by changing
the setting voltage of the power source, it could be "decided" from which element we want
the power to come from. By accurately limiting the current of the power source, we could
precisely decide how much power we want the power source to deliver, forcing the battery to
provide the remaining power. This is an example of a situation where we indirectly fix the
power exchange with the battery by means of controlling the power source output. We use
this idea, to develop a simple proportional control algorithm, included in the user interface,
where the user can input a desired value of power for the battery (either charge or discharge)
and the system will automatically make the necessary adjustments of current-limit on the
power source in order to achieve the goal, as long as the state-of-charge of the battery allows
it. The feature is still in progress, as different control strategies must be tested to obtain
a better matching between the set and real-values of power. However, once fully ready, it
promises to give a valuable added value to the NRLAB NG, as this functionality is usually
reserved for expensive high-power top-of-line laboratory equipment, and we are achieving it
with low-cost and easy-to-implement components, for a low-power MG.
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A voltage protection system has also been implemented, which disconnect the battery
from the main bus if the voltage of the battery is lower than a critical threshold (set by the
user). This keeps the battery from over-discharging. A similar mechanism is implemented
when the voltage of the system is higher than the setting voltage of the power source, avoiding
an over-voltage condition, which would make the power source to stop working and enter
the safe-mode.

2.3 Nanogrid data output

The nanogrid web interface is able to produce real-time plots of the voltage, current and
power of the different resources. Figure 2.6 highlights some of the basic aspects of power
systems and the interactions between the different elements in a microgrid. The plot has
been generated for a particular day (2019-10-13), where the system was running without
any human intervention. Aspects such as the self-balancing ability of the system to match
production and consumption, the distribution of power-delivery between the power source
and the battery according to the state of charge of the latter, the curtailment performed by
the MPPT controller when the PV potential is greater than the demand, the priority given to
the load in the use of the available PV energy, among other aspects; can be observed in this
figure. All these points help to have a better comprehension of the underlying laws that rule
and regulate the functioning of a power system like a microgrid.

Figure 2.6 Important learning outcomes embodied in the power plots generated by the
nanogrid interface. Sample day: 2019-10-13

The remote-control of the power source is another very important functionality included
in the NG, as it enabled the control of the battery power, to some extent. It has to be mentioned
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that commercially available DC-DC converters, that could perform this task, were extensively
searched without success. Most commercial devices to perform this kind of forced battery-
power flow were conceived for bigger power levels and mostly AC configurations, hence not
well adapted for the size and purposes of our system. If an energy management system is
to be implemented, the optimal scheduling of battery power is usually required. During the
discharging tests of this functionality presented in figure 2.7(a), different values of power
values were set for the battery (30W, 50W, 70W) for a given period of time each. It is clear
how the battery is able to follow the setting values despite of the load variations. The power
source adjusted automatically its power output (by limiting the current) in order to counteract
those variations so that the battery could follow is setting power value. Something similar
was performed in a charging regime, as shown in figure 2.7(b), where different setting power
values were imposed to the battery (-20W, -40W, -60W), keeping a constant consumption
this time, and evaluating the ability of the system to follow those values. It is interesting to
note that in both cases, the transient response of the system was stable presenting a damped
transition between power levels, despite of the simple proportional control implemented (see
equation 2.1).

∆I =
∆P

Vmeas
∗ k (2.1)

where ∆I is the change in the current limit that the algorithm performs at every control cycle
(mili-seconds), ∆P is the difference between the set and the measured power of the power
source, Vmeas is the measured voltage of the power source and k is the proportional factor,
that in our case has been set to one.

A reasonable variability of the battery power of around 2.8% was obtained, for a fixed
setting value of -60W. This is considered satisfactory taking into account the accuracy of
the remote-control circuitry of the hardware (i.e. the power source). An offset was present
in both, discharge (see figure 2.8(a)) and charge (see figure 2.8(b)) regimes, being more
notorious in the latter. This might be due to the lack of an integral term in the control
algorithm as well as measurements inaccuracy. The offset achieves an average of 30% in
the charging regime at a power setting of -60W. The fact of the bigger error in the charging
regime might be also related to an insufficient voltage difference between the power source
and the battery, that limits the amount of power that can be sent to the latter. The fact that
the output voltage of the power source is manually set (hence, not taken into account in the
control loop), limits the response capability of the system to achieve certain -charging- power
values for the battery. This is a constraint for the proposed control scheme that should be
improved in order to assure a better performance in case of EMS implementations. This
issue contributed with the decision of performing the studies of EMS-strategies, presented in
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Figure 2.7 Tests of the battery power control algorithm in discharge (a) and charge (b) regimes

Chapter 4, in a computer-simulated environment. Besides, this fact could be distracting when
performing demonstrative or pedagogical activities, hence the importance of "the game"
proposed in the section 2.5 of this work.

With the data collected by the interface some indicators can be computed to rate the
performance of the nanogrid under this natural-response (i.e. no EMS) conditions. These
are similar indicators as the ones described by equations 2.3, 2.4, 2.5, 2.6 and 2.7 of section
2.5.3. For the sample day shown in figure 2.6, the NG achieved a self-consumption rate
(equation 2.3) of 73%, which means that 27% of the PV energy available was not used.
A self-sufficiency rate (equation 2.4) of 76% was achieved, meaning that 24% of the load
had to be supplied by the utility grid (i.e. it was delivered by the power source). Here we
remark that, according to the accumulated-energy values (upper-left legend of the plot), there
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Figure 2.8 Offset of the battery power control algorithm in discharge (a) and charge (b)
regimes

was enough PV energy available this day to cover all the energy needs. However, some PV
energy was curtailed, forcing the use of energy from the grid (i.e. power source) to cover the
consumption. This highlights the importance of an energy management system, that could
optimally schedule the power delivery of the battery and power source (based on forecasts of
PV production), in order to make the most of the PV energy available and avoid unnecessary
grid energy requirements. These two aspects are addressed in Chapter 3 (PV forecasts) and
Chapter 4 (EMS strategies) of this thesis.

Besides, if dispatchable loads were present in the microgrid, a load-scheduling (i.e.
demand-side-management) scheme could help the EMS to further improve self-consumption
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and self-sufficiency rates, by adding more flexibility to match the PV-production and con-
sumption. This is one of the motivations to create the software-based microgrid platform
presented in section 2.5.

Following with the same example, the battery SoC was left a 40% higher with respect
to its value a the beginning of the day (battery balance = 60%, as defined in equation 2.5).
This variable is not controlled by the NG and depends only on the daily imbalances between
production and consumption, as pointed out in figure 2.9. This might lead to values of SoC
(at the beginning of each day) that force curtailment or unnecessary power purchase from the
grid. Regarding the battery use (defined in equation 2.6), the battery had to supply 46% of the
total consumption for this particular day, which shows the importance of this resource in the
shifting of solar-energy-utilization throughout the day, specially during night time. The grid
cost indicator (expressed in equation 2.7), if computed for a blue day (see figure 4.1) results
in a value of 90%, while it takes a value of 43% for a red-day, the most expensive according
to the same tariff. This means that the total daily energy cost had the margin to decrease
a 57%, if the energy had been bought at the lowest price possible. This remarks again the
added-value that en EMS could bring in decreasing the operating costs of a microgrid by
optimally scheduling the grid power purchases.

The same power plots puts in evidence some of the limitations of the NG, as remarked in
figure 2.9. Some of these limitations are related with the hardware, for instance having some
inaccuracy in the measurements or not having a proper way to measure Joule losses. This
might cause the mismatches observed in the power balance (i.e. the sum of powers of the
elements does not sum zero as supposed). Other limitations are more software oriented, such
as inaccurate models to estimate the PV potential production or the state of charge of the
battery, and the lack of an energy management system. These might be the cause of the SoC
going out-of-bounds, PV output energy being bigger than the PV available in some points, or
the sub-optimal use of the battery and grid, if seen from an economical point of view.

Moreover, when data collected for larger periods of time was analyzed, some missing
data was discovered (as depicted in figure 2.10), presumably due to unexpected outages of
the data collection system. This would be an important hindrance for the test and validation
of energy management strategies, as the computation of performance indicators must be done
over longer periods of time, so that they are statistically meaningful for research purposes.
This was another reason that motivated the decision of performing the study regarding EMS
strategies presented in Chapter 4, in a computer-simulated environment, as it would be more
meaningful for the purposes of this thesis. However, figure 2.10 shows other interesting
aspects in periods where the load stayed -unintentionally- in a zero or a constant value. This
might have happened due to communication problems with the server in charge of reading
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Figure 2.9 Limitations of the nanogrid revealed by the power plots generated by the interface.
Sample day: 2019-10-13 (as in figure 2.6)

the real-time consumption of the Drahi-X building. In the zero-load period we observe how
the MPPT controller curtails all the PV available, as there is no load to consume it (the
battery is presumably full), therefore the power flows for all the elements are zero. The NG
finds itself in a static state. On the other hand, in the constant-load periods we observe how
the NG enters in a dynamic state where the power flows of the PV, battery and power source
change throughout the day, despite the load being constant. This is due to the fact that the
system responds to the variations in the solar production as it is the priority of the MPPT
controller to favor the usage of the PV energy available.

As a concluding remark we can say that the NRLAB NG has demonstrated to have a
valuable potential as a pedagogical tool, as it was stated in section 2.4. However, it has shown
its limitations as well. First of all, the NG is still in evolution, hence, it has not achieved
the levels of reliability, accuracy, repeatability of measurements, stability and functionalities
expected for a "final" version of the system. Therefore it is comprehensible to see some
mismatches between production and consumption powers, to have limitations in the battery
power control algorithm, or to lack a proper online-algorithm to estimate a realistic SoC of the
battery. This restraints the pedagogical scope of the NG as students cannot perform accurate
analysis based on the outputs of the interface and are limited in terms of user-interaction
possibilities as to test energy or demand-side management strategies. Moreover, due to the
physical size of the NRLAB and the existence of only one NG, the number of students that
can benefit from the system is also limited to 4 or 5 students per session. This gave way to the
emergence of the idea to create a software platform that could simulate, in ideal conditions,
the nanogrid, which is explained in detail in section 2.5.



2.4 Pedagogical outcomes of the nanogrid 27

Figure 2.10 Missing data and constant-load periods from 2019-07-21 to 2019-08-15 due to
unexpected outages of the data collection system or communication problems

2.4 Pedagogical outcomes of the nanogrid

With the capabilities of the third -and current- version of the NRLAB NG, a practical
experience has been develop with the aim to help students discover and understand the basics
about electric power systems, grid interactions as well as microgrids management. The
experience assumes no prior knowledge about the subject from the participants, hence it
was conceived as a very basic/conceptual practice. However, this experience is enough to
show the most important features and possibilities that the NG offer as a didactic tool. The
practical experience is presented in the following sections, which brings out the added value
of the NG as a pedagogic tool.

The text of the full student guide developed for this practical experience can be consulted
in Appendix D.
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2.4.1 Experimental procurement of Joule losses and the equivalent re-
sistance of the circuit

At the beginning of the practice, an introduction is made where the main learning objectives
of the practice are briefly explained and students are guided to make the proper electrical
connections of the elements required for the practical experience (i.e. PV panel, battery,
load and power source). Then, in the first part of the experience, students are familiarized
with the concepts of Joule losses in an electrical system. For this purpose, they are asked to
connect only the power source and the load to the common bus of the NG and to increase
the load from 10W to 90W, taking note of the currents, voltages and powers. With this data,
they perform a plot where, by fitting the experimental curve obtained, they can compute the
approximate equivalent resistance of the circuit Req, that includes all the ohmic losses due to
wiring and the cross-section of the cables. The equation of Joule losses used to compute the
equivalent resistance of the circuit is presented in equation 2.2.

Pjoule = Req · I2 (2.2)

where the units are Watts, Ohms and Amperes respectively for Pjoule, Req and I.
Then, students are asked to confirm the value obtained for the equivalent resistance, by

measuring it directly with a multimeter. Usually they obtained results with a +/-10% of error
margin, which is reasonable taking into account the accuracy of the measurement instrument
used. An example of the fitting obtained by a group of students is shown in figure 2.11, where
the blue curve represent the polynomial fit of the measured power-loss values (difference
between the power delivered by the source and the power consumed by the load), presumably
due to Joule losses. They are asked to confirm this fact by doing the experimental fitting, and
finding the corresponding value for Req, which they further validate by a direct measurement.
The detailed procedure and tables to be filled out for this part of the experience can be found
in the Joule Losses section of the student guide presented in Appendix D.

2.4.2 Understanding the basics of power flows and its manipulation

The core of the practical experience is devoted to understand some basic principles regarding
the electrical interactions between the elements (also called distributed energy resources
or DERs) of an electrical power system, which are exemplified with the nanogrid. More
specifically, the learning objectives addressed in this part are:

• Voltage as a tool to manipulate power flows

• Current limiting as a tool to manipulate power flows

• Impact of load variations in the power flows
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Figure 2.11 Example of the experimental calculation of the equivalent resistance of the circuit
by measuring the power losses due to the Joule effect

• Impact of PV production variations in the power flows

• Natural self-balancing response of an electric power system to variations in production
and consumption

There are some types of electrical loads whose power consumption is voltage-dependent.
In general, any device with a fixed internal resistance that uses the joule effect to produce heat
or light, will vary its consumption if the feeder voltage levels change. Within this category
we can find drying, cooking, electric water-heating and lighting appliances, that altogether
can represent an important percentage of the total consumption in an electric power system.
Therefore, keeping the levels of voltage as constant as possible is one of the variables to keep
an eye on in an electrical system like a MG.

To exemplify this fact, students are asked to branch only the power source and the
programmable electronic load to the NRLAB-NG. Using the different load modes of this
device (e.g. fixed resistance, fixed power) they are able to emulate the voltage dependent
and non-dependent types of loads. Under these scenarios, students are asked to vary either
the voltage of the power source (keeping a constant load power), or the load power (keeping
the output voltage of the power source constant). The response of the system in each case
is noted and its real-life applicability and implications are discussed. For instance, it is
highlighted the fact that voltage variations in a MG can affect consumption (or vice-versa),
hence, the importance of having a voltage control system in any electrical power grid.
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This short demonstration serves to introduce the first main learning outcome, which is
the use of voltage variations in order to manipulate power flows. To exemplify this topic,
students are asked to connect the battery, power source and load to the main bus. The battery
is a non-linear element whose behaviour is not always well understood. By varying the output
voltage of the power source, the battery is taken from a charging to a discharging regime,
to show students how the power exchanged by the battery can be -indirectly- manipulated
by means of voltage variations. The concepts of open circuit voltage (Voc), state-of-charge
(SoC), and the correlation between SoC and Voc are also tackled. The importance of the
battery as an element that can react very quickly to compensate sudden power imbalances in
the grid is also highlighted with this exercise.

An example of this exercise is shown in figure 2.12, where the effects of variations in
the voltage of the power source (yellow curve) over the charging state of the battery are
demonstrated. Results show how the battery can be taken from a discharging to a charging
state by means of setting the output voltage of the power source above or below the Voc of
the battery, which has been previously measured at the beginning of the exercise. In this
figure, the effect of Joule losses can also be observed as the difference in the power values
between the power source and the load (that should be the same when the battery power is
zero, if no Joule losses were present).

Figure 2.12 Effects of power-source-voltage variations in power flows. Only battery, power
source and load are connected to the main bus
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Following this experience, the PV panel is connected to the main bus using a maximum-
power-point-tracker (MPPT) charge controller. The response of this element is also non-linear,
then, it is of interest to observe its interactions with the other elements. By observing its
power response, students can see the maximum power point tracking algorithm working,
its response time, and its reaction to grid voltage/consumption changes. Students are also
asked to try to run the load only with the solar panel connected to the main bus (i.e. no
battery or power source branched). This will pose some problems when sudden changes in
consumption happen, as the MPPT algorithm is not able to respond as fast as required. At
this point, it is explained why a battery is always important in a stand-alone PV system and
why these type of MPPT solar controllers always required a battery to be plugged-in in order
to work properly. Here the different types of charge controllers and inverters are explained,
as well as the different configurations for connection of the elements in a MG either in DC or
AC.

In the concluding section of the experience, the real-time consumption mode is activated.
Here, the actual consumption of the Drahi-X building is imposed in the electronic load,
with a scaling factor of 1%. This is a very valuable feature of the NG because it allows to
test, on a low-power workbench, eventual strategies that respond (even in real-time) to the
consumption of a real -tertiary- building, which brings an extra added-value to the teaching
and research activities performed in the NRLAB. In this part of the practice students are
asked to observe, for a short period of time, the real-time power plots (e.g. figure 2.13), and
take note of the instantaneous interactions, changes and variations in the power and voltages
of the different elements. The idea is to make a recap of all what they have learned up to this
point, and put all these pieces together in order to understand why the flow of power, among
the different elements, behaves the way it does. The way the system naturally arrives to the
equilibrium, assuring the balance between production and consumption is also remarked. At
this final recap, students can ask questions and are allowed to "play" with the setting points
of the load and power source, as well as the connecting relays, and they are asked to try to
predict how the system will react to compensate those perturbations, which is then denied or
confirmed by observing the resulting behaviour of the system in the real-time plots generated
by the interface, as the one shown in figure 2.13.

2.4.3 Recapitulation of learning outcomes

By the end of the session, students are asked to perform a short evaluation to recap the
concepts they have just learned. The evaluation is based almost entirely in plots or figures
obtained from the NG, from where students need to analyze a particular situation and choose
a proper answer. An example of the type of questions present in the evaluation is shown in
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Figure 2.13 Power measurements that illustrate the interactions between the resources of the
microgrid. Sample day:22-06-2018

figure 2.14. In this way, without asking students to perform complicated calculations, the main
concepts studied throughout the demonstrative experience are summarized. Questions are
designed so that students refresh the concepts by using them to determine important indicators
that have been previously reviewed, such as the self-consumption and self-sufficiency rates,
among others. The evaluation is revised along with the students, question by question, to
make sure that all the students have the concepts clear and depart from the practice with
a similar level of understanding. This is particularly important as they will use many of
these concepts in the second part of the practice which is the load scheduling game, that is
explained in a following section of this work. The complete evaluation can be consulted in
Appendix E.

2.5 The load scheduling on-line game

With the idea to expand and complement the possibilities of the physical nanogrid as a
pedagogical tool, an on-line software platform was conceived called "the microgrid game".
It consists on a high-level simulation of a microgrid (i.e. no electrical models included), that
resembles on its architecture and components to the NRLAB nanogrid. The idea behind the
creation of this software is to expose some of the most critical aspects regarding energy and
demand-side management in ideal conditions, so that the technical-issues of the real NG do
not interfere with the desired learning pathway. Even when the acknowledgment of those
issues is in itself a learning outcome for the physical NG, it constraints the possibilities to
perform other types of exercises and analysis where high accuracy, stability, repeatability
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Figure 2.14 Sample question of the quiz, based on plots taken from the nanogrid interface

and the simulation of different scenarios is required. Besides, the proposed platform permits
to reach a bigger number of students during the practical sessions, enabling even remote
connections so that students are not forced to be physically present in the same lecture room
to follow the exercise.

An example of an important topic that has been left aside due to the above-mentioned
limitations of the NG is the load scheduling. This is part of a wider -hot- topic in the
domain of MGs and energy management, called Demand-Side-Management (DSM). As
defined in [24], "Demand-side-management is the planning and implementation of those
electric utility activities designed to influence customer uses of electricity in ways that will
produce desired changes in the utility’s load shape". This is considered a key aspect, enabled
by microgrids, that helps to address the issue of non-dispatchability of renewable energy
sources (RES), as highlighted in the 2019 International Renewable Energy Agency (IRENA)
report [25]. Several authors have studied the DSM subject from a theoretical angle [26],
policy-wise [27], technically [28] and business-model wise [29]. There are also commercially
available software like the System Advisor Model from the National Renewable Energy
Laboratory (SAM-NREL) (https://sam.nrel.gov/) or Homer (https://www.homerenergy.com/
products/pro/index.html) that are more focused on the technical conception, sizing and
economical-feasibility analysis of a microgrid or renewable power-plant project.

In this work, we pretend to tackle the subject more from a pedagogical perspective. At
the moment of writing, few examples of similar projects were found were the focus was
pointed in this direction. Some examples of "ongoing" projects are the ones presented in

https://sam.nrel.gov/
https://www.homerenergy.com/products/pro/index.html
https://www.homerenergy.com/products/pro/index.html
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[30] and [31], but despite the references date from 2017 and 2015, no recent information
was found regarding their actual implementation. A working software was found called
RAPSim (Renewable Alternative Powersystems Simulation) (https://sourceforge.net/projects/
rapsim/). It is a free and open source micro-grid simulation framework intended for better
understanding the power flows behavior in smart microgrids with renewable sources. It is
able to simulate grid-connected or standalone microgrids with solar, wind or other renewable
energy sources. The software calculates the power generated by each source in the microgrid
and then it conducts a power flow analysis. Even when the software could be a useful
pedagogical tool for power-flows analysis, it lacks the load-scheduling or demand-side
management focus that we propose in our approach. We intend to develop three different
exercises or "games", namely: a MG sizing exercise, a MG load-scheduling exercise and a
short evaluation. However, the sizing exercise and the quiz are still under development, so
we will focus on the load-scheduling experience, which has been already tested in several
practical sessions with students.

2.5.1 The game Dashboard

The idea behind the load-scheduling exercise is to understand the objectives, advantages,
challenges and performance indicators that might be related to a DSM scheme. The main
goal of this "game" is to better match renewable production and consumption, with the
aim to increase the self-consumption and reduce storage requirements. This is done by
scheduling the dispatchable load (i.e. the load that can be scheduled at different moments
of the day) according to the renewable production. For this, students can also decide when
they want to buy energy from the utility grid (and how much) and when they prefer to make
use of the energy stored in the battery. Through this daily scheduling exercise, students are
introduced to the kind of tasks performed by an energy management system, which serves to
acknowledge its importance, limitations, constraints and difficulties.

The dashboard of the software platform is where the user interaction occurs. The first
part of this interface, presented in figure 2.15, shows three main plots. In the left plot, the
hourly potential PV production (blue) and the scheduled consumption (red) are shown. The
generator convention is respected, hence, any power being delivered by an element has a
positive sign while any power being consumed will have a negative sign.

The potential PV production is computed based on the solar irradiance profile chosen in
the Day type selection tab, in the upper right part of the dashboard. Here, four types of days
are proposed varying from a clear-sky day to fully overcast conditions. The solar profiles are
taken from real measurements of the SIRTA observatory in Palaiseau, France [32]. In this
part of the interface, the user can also choose between two game modes, beginner and expert.

https://sourceforge.net/projects/rapsim/
https://sourceforge.net/projects/rapsim/
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In the beginner mode the PV size is fixed and set to 2kW while the capacity of the battery
is fixed to 6kWh, with a starting SoC of 60%. In the expert mode both, the PV installed
capacity and the battery capacity, can be changed under the "parameters" tab, which allow
for sizing exercises. The first plot (figure 2.15 left) allows users to graphically observe how
well their consumption scheduling is matching the available PV production. The second plot
(figure 2.15 center), shows the potential (blue) and consumed (red) PV energy. Students are
explained that, in order to obtain a high score in the self-consumption indicator (explained
later in the performance indicators section), they must try to consume all the potential PV
energy available. Moreover, in the third plot (figure 2.15 right), they have the resulting SoC
profile which is a direct consequence of the battery power profile which in turn, responds to
the consumption scheduling they have proposed. The amount of time that battery is either
empty or full can be seen in this graph, which gives an interesting feedback in order to
optimize its use. The type of day regarding the grid electricity price can also be selected
here. There are three different price schemes that follow the EDF tempo tariff [33], namely:
white, blue and red days, being the red days the most expensive and the blue days the least
expensive. Each day has a peak period (from 6h to 22h) where the electricity price is higher,
and a "valley" period (from 22h to 6h) when the electricity price is lower.

Figure 2.15 Load scheduling game dashboard. Type of day selection (solar irradiance and
electricity price), PV potential production, scheduled consumption and SoC profiles

Below the previous plots, a graph is displayed where the half-hour cumulative energy of
the four elements of the microgrid is presented (see figure 2.17). Each bar shows the power
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mix that is being used in order to achieve the balance between the production (positive values)
and consumption (negative values), following the priority rules coded for this simulated
microgrid, as depicted in figure 2.16. Those rules are summarized as follows: the MG will
always give priority to the use of the battery, meaning that any excess of energy (i.e. from
PV) will be stored in the battery and any lack of energy required to satisfy the demand will
be supplied by the battery, whenever possible. However, the user can also buy electricity
from the grid at any moment in order to decrease/avoid the use of the energy stored in the
battery. If battery is full and there is still excess of energy coming from PV panels, this will
be curtailed as no grid selling is allowed. If there is a lack of PV energy to satisfy the demand
-and battery cannot supply it-, energy can be bought from the grid in order to fulfill the energy
needs. The amount of power drawn from the grid can be set between zero and 5 kW. The
price of electricity bought from the grid depends on the time of the day and the type-of-day
selected, as it was explained above.

Figure 2.16 Flow diagram of the rules followed by the load-scheduling game

In figure 2.17, the simulated power flows between the resources of the microgrid (PV
panel-blue-, load-red-, battery-orange- and grid-green-) are graphically displayed, which in
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combination with the SoC plot displayed in figure 2.15, help the user to make decisions in
order to improve their proposed scheduling. Situations like the PV curtailment due to an
improper matching between production and consumption can be acknowledged in this plot.

Figure 2.17 Half-hour power flows distribution shown in the dashboard of the load-scheduling
game

2.5.2 The scheduling interactive table

In the third part of the dashboard, the user makes its consumption scheduling making use of
the scheduling interactive table, as depicted in figure 2.18. For every 30-minutes timestep,
the user can decide how to split the required daily consumption of the household appliances
proposed. Each appliance must be used a certain amount of hours during the day, assuming
an hypothetical-average profile of use. This is indicated in the last-right column of the table.
This interactive table allows the user to schedule consumption following certain restrictions,
at the same time that permits to check the compliance with the time of use of each appliance,
maximum feeder power ratings and SoC of the battery. The maximum and minimum SoC
levels of the battery can also be set by the user. The user will be penalized if those limits are
surpassed. The platform will not allow the user to run the simulation until all the requirements
are fulfilled.

There is a based-load that corresponds to the non-dispatchable consumption (e.g. the
refrigerator or the electronic devices that are always plugged), which cannot be modified. The
minimum consumption period that can be selected for each home appliance is 30 minutes, as
mentioned before. Most of the appliances are considered to have a fixed power rate, except
for the water heater that is assumed to have a flexible power setting between zero and its
nominal power. This makes this element very versatile for energy management purposes as it
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Figure 2.18 Scheduling interactive table to perform the daily consumption scheduling. Con-
sumption is discretized in 30 minutes intervals

can be used as storage of thermal energy in the system. It is considered to have negligible
thermal losses, then the total daily-energy required to heat the water can be supplied at any
moment of the day. The only constraint in this case (and for all the other appliances too),
is that the maximum power drawn from the main feeder cannot surpass 5kW at any given
moment.

The daily habits and routine of a person plays an important role in this exercise, which is
also remarked during the explanation of the experience. Students are asked to use the common
sense to schedule the different devices according to a realistic daily routine of a person that is
working from home on that specific day. However, there are as many possibilities as students
in the room, so what for one student might be a normal time to prepare the meal or take a
shower, for other student might be rare or unrealistic. This analysis is part of the debrief that
is performed at the end of the exercise when the results, obtained by the different students,
are compared.

2.5.3 Performance indicators calculation as the game scores

There are several performance indicators that are computed using equations 2.3 to 2.7. Each
one of them is related to a service that the MG provides to the users and could be in itself, an
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optimization objective for the game. There is also an overall performance score that is an
average of those five individual scores, as the example given in figure 2.19 shows.

SELF-CONSUMPTION =
Eused

PV

E potential
PV

∗100 (2.3)

SELF-SUFFICIENCY =
Eused

PV
Eload

∗100 (2.4)

BATTERY BALANCE = 100−
∣∣∣SoC f inal −SoCinitial

∣∣∣ (2.5)

BATTERY USE = 100−
E+

battery

Eload
∗100 (2.6)

GRID COST =
EC@lowest price

grid

ECgrid
∗100 (2.7)

where EX stands for the energy exchanged by the resource X , E+
battery stands for the energy

delivered by the battery (i.e. only on discharge regime), ECgrid is the total cost of the energy
bought to the grid while EC@lowest price

grid represents the total cost of the energy bought to the
grid if bought at the lowest price possible.

The self-consumption score evaluates how much of the potential PV production available
is actually used. Even when an MPPT controller is assumed to be used, when there is not
enough consumption or storage capacity, any PV power available has to be curtailed. This
leads to a self-consumption rate below 100%. Ideally, all the solar potential should be used
at all times in order to maximize the self-consumption. This in turn, will decrease the need
of buying electricity from the grid which has also an impact on the grid cost indicator.

The self-sufficiency score evaluates the amount of the total energy consumption of the
day that was supplied by the PV panels. The closer to 100% the more energy-autonomous
the system is, meaning that less energy has to be bought from the grid.

The SoC of the battery at the end of the day, is a criteria that can be chosen arbitrary
depending on the energy management strategy. It is intended to assure the sustainability and
availability of battery capacity throughout the week. In this case, the SoC at the end of the day
is asked to be left at the same level as it was at the beginning of the day (SoC f inal = SoCinitial ,
60% default value). In this way, every other day will have the same battery capacity available
to perform the daily scheduling. The further the SoC from its target value (either above or
below), the bigger the penalization.

The battery-use score evaluates how much the battery is used throughout the day. It is a
simple way to measure the aging of the battery caused by its profile of use. The more energy
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the battery delivers, the shorter its life will be. Therefore, this variable is to some extent,
contradictory with other services such as self-consumption, because the optimization of one
service is detrimental for the other one. This contradictory nature among some of the scores
is one of the main take-aways of this exercise, which is to show that optimizing for one of
the scores might negatively affect the other ones. This means that there is always a trade-off
to do depending on the objective set for the load scheduling. This subject is also one of the
core topics explored in detail in Chapter 4.

The grid-cost score evaluates the total cost of the electricity bought from the grid,
compared to the cost of buying the same amount of energy at the lowest price possible. If all
the energy was bought during the lowest-price period, the score will be 100%.

The final score is an equally-weighted average of all the previous scores, which in the
case of this practice, is the objective students are asked to maximized. Other indicators such
as solar potential production, energy bought from the grid and battery SoC are presented at
the end of the results summary. An example of the results summary displayed at the end of
the load scheduling game is shown in figure 2.19.

Figure 2.19 Example of the results summary displayed at the end of the load scheduling
game

Students are asked to perform a first scheduling assuming a realistic scenario, but without
doing too much reflection about the scores and the optimal scheduling. After doing this
first run of the game, based on each of the scores obtained, participants are asked to analyze
in which of the scores they obtained the lowest grades, and try to thing about the possible
causes of the results. After this reflection, they are asked to figure out how to improve each
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score in particular and the overall score as well. They make the adjustments they consider
pertinent in the scheduling and then they run the game again to see if they achieve the
expected improvement. The results of the different participants are presented to the rest of
students and they are compared in order to learn the different approaches that each person
took, and the reasons behind. As the last part of the practice, different solar production and/or
electricity price scenarios can be selected, to show how the load scheduling must change in
order to adjust to the new conditions.

The last part of the experience corresponds to a sizing exercise. Students are asked to
find a proper size of PV and battery capacity so that the system can be 100% self-sufficient
under the selected solar potential conditions. As there are many possible combinations to
achieve this goal, the objective here is to compare the different proposals and analyze them
in terms of technical adequacy and economic feasibility. As an improvement for this section,
the cost of the PV panels and battery is expected to be included in the scores, so students
can base their sizing on the final Levelized Cost of the Electricity (LCOE) obtained for each
sizing proposal.

An article is being prepared based on this chapter, that highlights the use of the NG as a
pedagogical and demonstrator tool in the domain of microgrids. The game is expected to
continue its evolution by completing the missing functionalities originally envisaged. The
game can be accessed using the following link: https://www.lmd.polytechnique.fr/trendx/
microgrid/index.html#home

2.6 Conclusions

The NRLAB Nanogrid was developed with the intention to serve several purposes. The first
objective was to help the designer, as part of his PhD formation, to better understand the key
aspects to take into account when building and implementing a real microgrid, with all the
elements it requires to allow for smart functionalities. This objective was achieved through
the three different iterations that had to be made in order to attain a functional system. Each
new version of the system was the result of a in-deep analysis to overcome the challenges
encountered during the construction and implementation of each previous version. The
knowledge acquired after the three iterations is key to fully understand the details of a MG
from its conception to its electrical constraints, which will be very useful for the following
steps of the PhD thesis. Having a deep knowledge of how real systems work, permits to have
a more realistic approach and a better criteria to analyze the results obtained in the following
parts of this research. Therefore, the background knowledge acquired by the author of this

https://www.lmd.polytechnique.fr/trendx/microgrid/index.html#home
https://www.lmd.polytechnique.fr/trendx/microgrid/index.html#home
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work through this learning-by-doing exercise, is considered of great value in the attainment
of the objectives of this thesis.

The NRLAB nanogrid is still under constant improvement and it is still some steps away
to be considered a professional system that could be used to perform high-level research or
highly accurate realistic emulations of real systems. It will probably take several iterations
more to achieve this highest levels of reliability, accuracy and functionalities; but in the
process, it can serve as a very graphical and flexible tool to discover the world of microgrids
which was the main objective for this part of the thesis. Through the number of practices that
have been already performed and students that have performed their graduation projects in
the NRLAB, the system has shown success in the completion of this important objective of
serving as learning-by-doing pedagogical tool. This tool has enabled many students to go
further in subjects related to MGs on their own, guided and motivated by the experience they
have had with nanogrid.

Besides, given the future academic profile to be followed by the author of this work,
the pedagogic application of the system was also of major importance. The development
of a system that serves as an experimental platform, where students from very different
backgrounds could get in touch with the basics regarding microgrids, energy management
and load scheduling was set as an important objective for this part of the project. The system
gives also the possibility to the teachers to propose different practices and exercises suited for
their particular courses and approaches of the subject, which is a valuable tool for someone
that will follow an academic career on this subject.

However, due to the technical constraints encountered during the development of the
nanogrid, we acknowledged its limitations to develop some of the research, demonstrative
and pedagogical activities that were expected for the system. This gave rise to the idea
of creating an ideal software-based environment, without the technical limitations of the
physical nanogrid, that would complement the activities and scope attainable with the
NRLAB nanogrid. The "microgrid game", came to expand the possibilities of the physical
system by allowing a bigger number of students to profit from the experience remotely,
making the project universally accessible. Besides, the combination of both, the game and
the physical system, opens up even greater possibilities regarding experiences and exercises
to tackle the theoretical planning but also the real-time emulation, constraints and limitations
on this vast domain of microgrids, energy and demand-side management.

One of the main take-aways of the game experience discussed with students, is the
importance of forecasts. In the load-scheduling exercise, they can choose the electricity
pricing scheme and the solar PV production, which is useful for the purposes of the game, but
it is an unrealistic scenario. Students are asked to think for a while, how would they perform



2.7 Current and future developments and functionalities 43

the same load-scheduling without knowing beforehand the prices of the electricity or the
solar PV production expected for the day? The first and most common answer given by the
students was: we should use forecasts. This is correct, but then students are questioned about,
what would happen if those forecasts are wrong? how would they manage that uncertainty?
The answers to these questions might not be straight-forward, and having acknowledged its
key role when dealing with the management of resources in a microgrid, the importance
of going further on this topic was evident, and that motivated the study performed in the
Chapter 3 of this thesis.

Another limitation of the load-scheduling game, that was a question posed by several
students, was: what is the ideal scheduling? how would an optimal scheduling look like?
At this point, we did not have an answer to this question. The performance indicators
developed for this game were based on very basic -and sometimes unrealistic- assumptions,
that might be misleading regarding what an optimal scheduling strategy should be, if they
are not properly interpreted. Besides, this game lacks of a proper optimization algorithm
that computes the optimal scheduling (for the pricing and PV production conditions given)
so that it can be used as true reference to compared against the scheduling proposed by
students. This would give this game an important added-value, as without a proper -truly
optimal- reference of performance, the conclusions and analyses that can be performed with
the scheduling proposals of the students are limited. In order to implement such optimization
algorithm, the objectives that want to be favored have to be clearly defined, and as the results
of the game already showed, some of those objectives might even be contradictory. Then,
how to propose a scheduling strategy that leads to an optimal performance? what can be
considered an optimal performance indeed? To find the answers to those important questions,
was the main motivation for the study performed in the fourth and last chapter of this thesis.

2.7 Current and future developments and functionalities

There are still some connectivity problems going on with the CR1000X. This needs to be
solved in order to have a fully reliable system that can be used for research. Every now and
then the unit re-initializes itself, which makes the interface unresponsive for a short period of
time. The important thing is that measurements are not lost in these periods, but any EMS
algorithm that might be running in Node-RED will stop working.

The remote control of the power source needs to be improved. By now, there is always
an off-set between the desired and the real value imposed to the battery power, which makes
this feature not very accurate for the moment. Given that this feature does not work when
the battery reaches a certain SoC (normally above SoC=85% the battery is no longer able to
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follow power charging instructions), the implementation of a precise algorithm to estimate
the real SoC of the battery is a must. This would help not only the battery-power control
feature to work properly, but it is also a key input in the decision-making process of an energy
management system.

However, estimating the SoC of a battery under load (i.e. without being disconnected
from the MG) is not a straightforward matter. Researchers seem not to agree on a generalized
model that can be applied to any Li-Ion battery that accurately estimates its SoC based
only on current and voltage measurements. Some simplified methods such as the coulomb
counting are being implemented and validated with the help of some master students that are
developing their course projects on the laboratory.

The wind turbine is expected to be fully functional in the near future. Problems with its
electrical coupling to the rest of the system have made it unable to produce any energy. A
deeper study and laboratory testing under controlled conditions need to be made in order to
determine the source of the problem and to find a viable solution.

It has been envisaged to enable the system for the testing of demand-side-management
strategies. Establishing the percentage of the load that can be curtailed or shifted throughout
the day, and implementing this functionality to the load control algorithm, would be an
interesting improvement towards a more flexible MG. This would allow the testing of these
type of schemes that are getting more popular as an interesting feature for a microgrid to
further improve performance.

Incorporating real time information regarding grid electricity price and CO2 emissions is
another feature envisaged for the near future, as those can be important aspects to be displayed
in the interface but also important inputs for an energy management system. Automating
the PV, wind and consumption forecasting is another feature to be added to the system in
order to allow for more flexibility, intelligence and autonomy. This feature is considered a
key aspect that the Drahi-X building should posses to become a smart-building.

A more accurate estimation of the Joule losses of the system (e.g. by branch) is another
feature expected to be implemented in the future. Knowing where are the hot-spots regarding
Joule losses in the microgrid and what are the conditions that trigger high-losses, would
be a valuable detail to take into account in the management of the nanogrid. For instance,
this would enable to include Joule-losses-reduction as a criteria in the energy management
strategies.

Regarding the microgrid game, the evaluation section must be properly finished, with
exercises that promote the reflection regarding the most important concepts that want to be
conveyed in every practice. Evaluation should also be sectioned in sizing, load scheduling
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and general knowledge questions, so that students that have done only one game, can be
evaluated accordingly.

The sizing section of the game is under construction, and presents a wide range of
possibilities to be explored in terms of concepts and exercises that can be proposed for
students to understand the world of PV + battery sizing. Here the possibilities are vast, then
the exercises must be well designed to convey the basic concepts of microgrid-sizing that are
required when facing these type of problems.

Regarding the load scheduling game, we are working on defining a more detailed usage
scenario that help students through the scheduling process. Departing from a common usage
scenario for a day, would help them to come up with their particular but yet, realistic proposals
that at the end of the exercise can be fairly compared to each other. The implementation
of an optimization algorithm that, for a given scenario of PV production and electricity
prices, computes the optimal load-scheduling, would be a valuable tool that would serve as
the reference and starting point for the analyses and discussions regarding the scheduling
proposals made by the students. Including economical calculations for the cost of the PV
and battery is also a priority that will make the sizing exercise more meaningful. Accounting
for the aging of the battery according to the usage profile proposed by the students would
be a highly desirable feature to be implemented as well, in order to show students how
the usage of battery affects its life and in turn, the cost of the electricity delivered by the
microgrid. The incorporation of forecasts of PV production is also envisaged as that would
bring out the complications that a realistic scenario of uncertain PV production could pose to
an energy management system, and would open up new possibilities in proposing strategies
to counteract this uncertainty.





Chapter 3

Uncertainty estimation for deterministic
solar irradiance forecasts based on
analogs ensembles

3.1 Introduction

Solar irradiance and more recently, solar PV power production forecasting has been a subject
widely studied due to its increasing importance in the energy sector, as the penetration of PV
power generation in the electric systems around the world is becoming more important. Many
of the electricity markets around the world work with a day-ahead planning-and-scheduling
horizon, which makes day-ahead forecasts a key element for producers, transmission-and-
distribution system operators as well as market agents. These players need to guarantee the
fulfillment of the energy bids and the quality of the electricity in order to avoid penalties and
to assure a satisfactory level of energy quality. Variability of the solar resource comprises
two parts: a predictable one, due to the Sun-Earth geometry aspects, and an atmospheric-
stochastic one, due to the composition of the atmosphere and in particular, clouds. In order to
deal with the latter at day-ahead time horizons, different methods of forecasting are available,
being the deterministic forecasts using Numerical Weather Predictions (NWP) and statistic
adaptations or machine learning techniques the most commonly used [34, 35]. The value of a
probabilistic forecast and/or uncertainty prediction over a simple deterministic forecast stands
out when estimating the optimal level of reserves that need to be allocated to compensate for
solar or wind power imbalance in an electric system, as pointed-out in [36]. Deterministic
forecasts have different degrees of accuracy depending on the meteorological conditions.
For instance, it has been shown that, for clear skies in summer days the accuracy of solar
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irradiance forecasts is better than in cloudy/windy autumn or spring days [37]. Hence,
inferring trustfulness of deterministic forecasts from meteorological conditions is a way to
deal with the intrinsic uncertainty of the IRES in an electric system. This becomes very
important in small-scale electrical systems like microgrids where the penetration of IRES
is very high (sometimes even 100 percent), making them strongly dependent on weather
conditions and its intrinsic uncertainty. Even when energy storage serves as a solution to
deal with the uncertainty and variability on the production side, its limitations in capacity
and cost are still very restrictive, which makes its management a key aspect for a system to
be reliable and feasible from an economic point of view.
The main objective of this part of the work is to obtain uncertainty information associated to
a given deterministic solar irradiance forecast using an Analogs Ensembles (AnEn) method.
Besides, the performance of the AnEn hereby proposed is evaluated using different indicators
and comparing it against several benchmark methods.
In section 3.2, an overview of some of the state-of-the-art methods to forecast solar irradiance
and PV power is presented. Probabilistic forecasts are also tackled, particularly regarding
methods to obtain probabilistic forecasts from deterministic predictions. In section 3.3 we
discuss and define different techniques and performance metrics to evaluate the quality of a
probabilistic forecast. The analog ensemble method is presented in section 3.4, including the
working principle, the considered data-sets, the predictors selection and a sensitivity analysis
on the number of analogs for different training period lengths. Section 3.5 introduces the
methods used as benchmark. In section 3.6, the performance and evaluation results are shown
and discussed. The main conclusions are presented in section 3.7 and future perspectives
for further research on the subject as well as the envisaged applicability of the results are
presented in section 3.8.

3.2 From deterministic to probabilistic forecasts

A thorough and extensive review on the history and recent trends in solar irradiance and
PV power forecasting can be consulted in [38], where they use text mining in order to go
over more than one thousand publications on the topic in an automated manner, covering
most of the aspects related to solar forecasting. Another comprehensive review about PV
power forecasting is performed by Antonanzas et al.[39] where they do a summary of the
main techniques used to issue PV power predictions. They point out that most recent papers
highlight the importance of probabilistic predictions and they incorporate an economic
assessment of the impact of the accuracy of forecasts on the grid. Later on, they perform a
classification of authors according to forecast horizons and origin of inputs. They classify
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forecasting techniques in PV performance models, statistical models (regressive and artificial
intelligence) and hybrid models. Regarding forecast horizons, they study the now-casting,
intra-day, six-hours to day-ahead and two days ahead or longer. A review of the different
metrics used by the researchers to evaluate performance is also performed, in order to enable
fair comparisons among studies. They list typical statistical metrics such as: mean absolute
error (MAE), mean bias error (MBE), root mean square error (RMSE), standard deviation of
errors (SDE), correlation coefficient or the skill score (SS); being RMSE, MAE and MBE the
most commonly used (see section 3.3). They also mention more recent metrics that have been
applied to PV power forecasting and uncertainty estimation such as: skew and kurt which
quantify the skewness (asymmetry in the distribution) and kurtosis (measures if a distribution
is more or less ’tailed’ than a normal distribution). Mean absolute scaled error (MASE) is
proposed as an scale-free and non-sensitive to outliers metric while the Kolmogorov–Smirnov
Integral (KSI) and OVER parameter are non-parametric tests to determine if two data sets
are significantly different, which are used to compare the cumulative density functions of
forecasts and measurements. For uncertainty quantification they mention the Rényi entropy,
that avoid the problem of classical statistical metrics, such as MAE and RMSE, that are
only unbiased if they are based on a Gaussian distribution. They also list some metrics to
characterize the ramps and also some economic metrics to asses the cost of reserves for grid
operators.
There are mainly four different methodologies to produce probabilistic forecasts, as pointed
out by [2], namely:

1. Statistical methods of probabilistic forecasts

2. Statistical-based scenarios

3. Physically-based ensemble forecasts

4. Perturbation-based ensemble forecasts

These methods are depicted in figure 3.1. In this study we focus on methods of the first
category (statistical methods of probabilistic forecasts), where a Probability Distribution
Function (PDF) is statistically generated. As an example of a well known forecast method
within this category, we find the method proposed by Nielsen et al. [40] which is a quantile
regression approach that uses deterministic forecasts of correlated variables to find a PDF
of the wind power production of a wind farm. In this case, previous forecasts are required
and the method can be extended to produce day-ahead or up to 36h-ahead forecasts. This
is an example where the aim is to build a PDF of the predicted variable. There is another
set of methods, this time from the group 4 of figure 3.1 (perturbation-based ensemble
forecasts), that are also commonly used in producing probabilistic forecasts and have been
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Figure 3.1 Overview of the state-of-the-art forecast methodologies to generate probabilistic
forecasts. Classification taken from [2].

used as reference to evaluate other probabilistic forecasting approaches. The ECMWF-EPS
(European Centre for Medium Range Weather Forecasting-Ensemble Prediction System) are
used by Sperati et al. [41] to build a PDF for 0–72h forecast horizons to predict PV power
output of a solar farm. They further used a neural network to reduce the model bias and to
generate a PDF of PV power starting from the ensembles of the correlated meteorological
variables chosen as inputs. To train the models they used about two years of power data from
three different solar plants. It is important to remind that the computational requirements
needed to generate the ECMWF-EPS ensembles is very high, as they are generated through
numerical weather prediction methods. In the aforementioned work they make use of the
persistence ensembles (PeEn) technique as a reference method for comparison and validation.
This method is probably the most common reference model in the solar or wind forecasting
community for short term forecasting and can be used to benchmark other methods [42]. For
a deterministic case, the persistence model supposes that the predicted variable at time t+1
is best predicted by its value at time t. It can also be extended to produce a predictive PDF
for probabilistic benchmarking, which is the case of the study performed by D.Yang [43].
Here, a universal PeEn method is proposed, that gets rid off the problems of interpretability
of current persistence ensemble methods due to its dependence on the model parameters and
forecast setup. The work presented by Yang, is a complete-history method that utilizes the
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entire history of measurements, and forms empirical distributions of the forecasted clear-sky
index (CSI) that only depend on the time of day. Within the first category of statistical
methods, there are other sub-type of probabilistic forecasting methods based on analogs
selection, where the predictive and distribution functions are obtained from an historical
data-set of forecasts and ground measurements. The term “analogs” was already proposed
by Lorenz in 1969 [44] in order to define two weather patterns that are similar to each other.
The present study falls into this sub-category, where some other authors have already worked
on different applications of the method. This is the case in [45] and [46] that applied this
method for deterministic and probabilistic meteorological forecasting, by [47] for wind
power forecast, and by [48] for wind resource assessment. This is also the case of the work
by Alessandrini et al.[49], where they propose an analogs-ensembles method for PV power
forecasting over the 0–72h lead time period. The particularity of this method is that only
a single deterministic forecast is necessary along with an historical data-set of predictions
and observations to produce the predictive PDF, thus the computational power and time
required is way less than the case of the ECMWF-EPS. Studies have been performed to
reduce even further the computational requirements and time of such method, as the one
presented by D.Yang and S.Alessandrini [50]. They propose an exact, non-parametric,
scalable and parallelizable method which is also non-dependant on dimensionality; that
proved to be up to 100 times faster than the brute-force approach. The predictors used by
Alessandrini et al. in their application, predicted by ECMWF-EPS, are: global horizontal
irradiance (GHI), cloud coverage (CC), air temperature (T2), azimuth angle (AZ) and solar
elevation (EL) with a half-width time window equal to 1h and a time resolution of 1h as
well. The set of optimal weights for those predictors is defined by choosing the combination
that minimizes the continuous ranked probability score (CRPS) over the last 60 days of
the training periods. The CRPS is a measure of how good forecasts, that are expressed
as probability distributions, are in matching observed outcomes (see the definition and
discussion in section 3.3). Both, the location and spread of the forecast distribution, are
taken into account in judging how close the distribution is to the observed value. They
compare their outcomes against a quantile regression and a PeEn method to validate their
results, finding that the AnEn performs generally similar or better than the reference methods
specially under certain circumstances such as low solar elevation angles. Badosa et al.[51]
propose also a method to derive a probabilistic forecast of GHI from a deterministic forecast
taken from the AROME NWP forecast model from MeteoFrance. They perform this task
by using a time-dependent stochastic differential equation which models the evolution of
the CSI. The output of the model is a probabilistic distribution from where a probabilistic
forecast or information about the uncertainty of the original deterministic forecast can be
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obtained. There have been other approaches to try to obtain information about the uncertainty
of a given deterministic forecast using analogs-based methods. This is the case of the study
held by Badosa et al.[52] where they investigate the influence of large-scale atmospheric
parameters (synoptic conditions) on the local solar irradiance and its variability at diurnal
time scale. They present an empirical statistical downscaling method based on past analogous
synoptic conditions identification to perform day-ahead solar irradiance forecasts on Reunion
Island to derive forecast reliability. They found that local solar irradiance shows sensitivity
to synoptic wind and relative humidity conditions changes. They also concluded that overall
highest reliability (that is lowest forecasting errors and lowest error variability) is found for
conditions related to highest local daily irradiation; lowest reliability is found for conditions
related to lowest daily irradiation.

The general approach proposed in this study is constructed following some of the prin-
ciples presented in [49], with differences in the predictors used, the method used to obtain
the weights of the predictors, the origin of the deterministic forecasts, the reference methods
considered, the metrics used to evaluate the results as well as the geographical location of
the study case. One of the most significant differences is the normalization of GHI using
the CSI to perform the comparison between the forecast and the possible analogs in the
database, as explained in section 3.4.2. This eliminates the annual and diurnal (deterministic)
solar irradiance variability due to solar trajectory, isolating the effect of clouds, which is the
main focus of this work, as it is the major source of uncertainty in PV power production
forecasting. Besides, state-of-the-art metrics and scores, such as quantile skill score (QSS)
and CRPS Score (CRPSS) as well as sharpness, are used to evaluate the performance of the
AnEn approach against several benchmark ensembles methods, as presented in section 3.3.
Day-ahead is selected as the planning-and-scheduling time horizon due to its pertinence in
current energy markets and distribution-system-operator planning and scheduling schemes.
With this in mind, the AnEn stands out as a suitable method that allows the estimation of un-
certainty due to its versatility as a data post-processing method [46] with low computational
requirements.

3.3 Evaluation metrics considerations

As mentioned by Antonanzas et al.[39] in their review, the most commonly used metrics to
evaluate performance of probabilistic forecasts are RMSE, MAE and MBE (see equations
3.1, 3.2, 3.3).
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where Pi and Oi stand for predictions and observations correspondingly, while n represents
the number of observations. Normalized versions of these indicators are also commonly
considered by dividing each of the above indicators by the mean value of the observations
Oi, as presented in equations 3.5, 3.6 and 3.4.
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In this work, it is important to recall that the probabilistic forecasts of solar irradiance will
take the form of either a Predictive Distribution Function (PDF) or a Cumulative Distribution
Function (CDF), both usually referred as predictive distributions. The predictive distributions
can be summarized by a set of quantiles (also called quantile forecasts) with probability levels
τ spanning the unit interval. Prediction intervals can be inferred from this set of quantile
forecasts. Therefore, for this type of forecasting techniques, there are other metrics that
have been proposed and are considered more adequate to evaluate the skill of probabilistic
forecasts, which are explained in the following sections.

3.3.1 Required properties for skillful probabilistic forecasts

We focus here on the evaluation of the quality of the probabilistic forecasts. Quality measures
the correspondence between forecasts and observations. Three main attributes characterize
the quality of the probabilistic models namely: reliability, resolution and sharpness [53, 54].

Reliability or calibration evaluates the statistical consistency between the forecasts and
the observations. A high reliability is obtained if forecast probability and observed frequency
agree. For example, the nominal coverage rate of the prediction intervals should be equal to
the empirical one (e.g. a 90% prediction interval should cover 90% of the observations).
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Resolution refers to the ability of the probabilistic model to discriminate among different
forecast situations. More precisely, the more distinct the probability distributions for various
forecast situations are from the full climatological distribution, the more resolution the
forecast model has. A high quality probabilistic model should issue reliable forecasts with
high resolution. In other words, high reliability is a necessary but not a sufficient condition
for a high quality probabilistic forecast. The forecast should also exhibit high resolution. For
instance, climatological forecasts are perfectly reliable but exhibit no resolution.

The third property is sharpness, which measures the concentration of the predictive
distribution. As this attribute is independent of the observations, it evaluates only the
informativeness of the forecasts (i.e. how much do the predictive distributions differ from
the climatological forecast in terms of concentration of the distribution). The higher the
sharpness, the more concentrated and informative the distribution is. It differs from the
resolution as sharpness focuses on differences regarding the concentration of the predictive
distributions; while resolution accounts for differences in general between distributions, not
necessarily regarding concentration. Consequently, a probabilistic model can generate sharp
forecasts yet being useless if those probabilistic forecasts are not reliable.

3.3.2 Proposed evaluation framework

Following [55], we propose to use scoring rules like the Continuous Ranked Probability Score
(CRPS) and the Quantile Score (QS) to evaluate the quality of the different models. Detailed
information about the forecasting performance will be obtained through the decomposition
of CRPS and QS into reliability and resolution. Also, for each of these two metrics, we will
calculate the skill scores namely CRPSS (CRPS Skill Score) and QSS (Quantile Skill Score).
Sharpness of the forecasts will be given by the mean size of the central prediction interval
(that is the distance between the quantile with probability level τ = 0.1 and quantile with
probability level τ = 0.9). Finally, it must be stressed that, in this work, we will not rely on
visual diagnostic tools like reliability diagrams to assess qualitatively the reliability property
[55]. Instead, the reliability assessment will be based on the numerical decomposition of the
scoring rules CRPS and QS that provide, in our opinion, a sound quantitative evaluation of
calibration.

Continuous Ranked Probability Score

The CRPS measures the difference between the predicted and observed cumulative distribu-
tions functions (CDF) [56]. It will permit to quantify the overall skill of each method and
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therefore will provide an objective ranking of the probabilistic models. The CRPS reads as:

CRPS =
1
N

N

∑
i=1

∫ +∞

−∞

[
F̂ i

f cst(x)−F i
xobs

(x)
]2

dx, (3.7)

where F̂f cst(x) is the predictive CDF of the predictand x (here GHI) and Fxobs(x) is a
cumulative-probability step function that jumps from 0 to 1 at the point where the pre-
dictand x equals the observation xobs (i.e. Fxobs(x) = 1{x≥xobs}). The squared difference
between the two CDFs is averaged over the N forecast/observation pairs. The CRPS score
rewards concentration of probability around the step function located at the observed value
[53]. In other words, the CRPS penalizes lack of resolution of the predictive distributions
as well as biased forecasts. Notice that the CRPS is negatively oriented (smaller values are
better) and it has the same dimension as the forecasted variable.

Quantile Score

In this work, practical considerations discussed in section 3.6.2 lead us to study the skills
of quantiles with probability levels τ = 0.1 and τ = 0.9. Those quantiles will be taken as
representative of low (pessimistic, conservative) and high (optimistic) irradiance levels. Thus,
QS will be calculated for these two specific probability levels. This score has been considered
adequate to evaluate the quality of these particular quantile forecasts. QS is based on an
asymmetric piece-wise linear function ψτ called the check or pinball loss function. The
check function was first defined in the context of quantile regression [57] and is given by

ψτ(u) =

τu if u ≥ 0

(τ −1)u if u < 0,
(3.8)

with τ representing the quantile probability level.
QS is given by the mean of the check function applied to the N pairs of observations xi

obs

and quantile forecasts for a specific probability level τ i.e, q̂i
τ . QS reads as
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1
N

N

∑
i=1

ψτ

(
xi

obs − q̂i
τ

)
. (3.9)

As for the CRPS, QS is negatively oriented: a lower value indicates a better performance.
In this work, using the quantile score and its decomposition, a sensitivity analysis is conducted
in order to determine the optimal training period needed by the analog method as well as
the optimal number of analogs (see section 3.6.1). In a second step, based on the results of
the previous analysis, a comparison between the AnEn method and two naive forecasting
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methods: monthly climatology (MoCl) and persistence ensembles (PeEn) is made. An
improvement from MoCl and PeEn is expected.

Decomposition of a proper score

As mentioned above, the quality of the probabilistic models will be assessed by means of
numerical scoring rules like CRPS and QS. These two scores are proper scores. Significant
work has been done to demonstrate the crucial point of using proper scoring rules (see
[58] for a detailed discussion regarding proper scores). By definition, a proper scoring
rule obtains the best expected value when the forecast distribution is equal to the true
distribution of probability of the observations. Besides, using proper scoring rules allows the
decomposition of the score into the two important attributes of the quality of a forecasting
probabilistic model namely: resolution and reliability. This permits to understand more
precisely the characteristics of the quality of the forecast. A general theoretical framework
about decomposition of proper scores is available in [59]. The decomposition of a generic
proper score S (say for instance the CRPS or the QS) always follows equation 3.10:

S = Reliability−Resolution+Uncertainty (3.10)

In addition to reliability and resolution, the term uncertainty accounts for the variability
of the observations. It is an indication of the difficulty of forecasting the target variable and
cannot be modified by the forecasting model. It is also worth noting that the uncertainty part
corresponds to the score of the global climatology (GlCl). For scores like CRPS or QS that
are negatively oriented, the goal of a forecasting model is to minimize (resp. maximize) as
much as possible the reliability term, and maximize (resp. minimize) the resolution term.
In fact, a forecasting model with a high resolution term means that the model has captured
the maximum of the variability present in the data (which variability is measured by the
uncertainty term).

Skill Scores

For any scoring rule, it is possible to define a skill score which gauges the skill of a forecasting
method against a reference forecast. In the meteorological community, often the forecast
taken as reference is the climatological forecast distribution. Given a generic score S (for
instance CRPS or QS), and the score of the global climatology (GlCl) denoted here by S, a
generic skill score (SS) for a negatively oriented score is defined by :

SS = 1− S
S

(3.11)
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A skill score is then contained in the interval [−∞,1] and is positively oriented. In this work,
we will use the definition given by Equation 3.11 to compute the CRPSS or the QSS. In other
words, we will use the uncertainty part of the CRPS or the uncertainty part of the QS as the
baseline value (i.e. S) .

Notice that, in the solar forecasting community, the reference model or baseline model is
usually the PeEn when calculating the CRPSS. However, as noted by [43], this definition of
the CRPSS may lead to some misinterpretations of the skill score as the CRPS of the PeEn
model varies according to certain parameters (e.g. number of members of the ensemble,
forecast lead time, etc.). To address this issue, [43] proposed, instead of PeEn, a new baseline
model called the complete-history PeEn (CH-PeEn) model that gives a nearly constant CRPS.

Our approach that consists in using the uncertainty component of the score (that corre-
sponds to the score of the global climatology) is only sensitive to the observations variability
and therefore, for a given location and temporal resolution of the data, does not depend on
any other kind of parameters.

Sharpness evaluation

This indicator can be understood as the ability of a probabilistic forecast to get closer to a
deterministic forecast in the sense that most of the probable outcomes lie well concentrated
around a central value. Smaller values of sharpness would decrease the uncertainty of a
deterministic forecast issued from a probabilistic forecast, which is useful as long as the
outcome is also reliable. Sharpness of the predictive distributions is given by the mean size
of the 80% central prediction interval denoted by δ̄ . For an evaluation set of N forecasts, δ̄

is given by:

δ̄ =
1
N

N

∑
i=1

(q̂τ=0.9 − q̂τ=0.1) . (3.12)

3.4 The Analog Ensemble method retrieval

3.4.1 The Analogs method principle

The workflow principle of the AnEn is shown in figure 3.2, and it lies on the availability
of two data-sets with historical data of ground measurements and forecasts (in our case
from numerical weather predictions). When a new forecast is available, it is compared with
the forecasts database and a certain number of past “similar” forecasts are chosen. The
corresponding ground measurements to those “similar” forecasts are then used to build
the predictive PDF/CDF. The dispersion (sharpness) of this ensemble of points contains
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information about the uncertainty of the deterministic forecast. The AnEn works under
the premise that past predictions that are very similar to a given forecast (in terms of
meteorological conditions), should also exhibit very similar errors. This allows to make the
pertinent corrections to the current forecast, based on the past errors found in the database.

Figure 3.2 Diagram that sketches the working principle of the AnEn method

3.4.2 Considered datasets

Several forecasts are available, including two different NWP forecasting models (AROME,
with 1.3 km resolution, and ARPEGE, with 7 km resolution) from MeteoFrance, with
different grid points and for different variables such as relative humidity (RH), air temperature
measured at two meters above ground level (T2) and global solar horizontal irradiance (GHI);
all with the same time resolution of one hour. The aforementioned forecasts are retrieved
for the site of Ecole Polytechnique (Palaiseau, France), while ground measurements for the
same site are obtained from the SIRTA atmospheric observatory [32] for the years 2016 to
2018, with the same time resolution. For this work we considered the forecasts released
every 12 hours, at noon (whose target day is the next day D+1) and at midnight (whose
target day is the same day D). In other words, for a given day we take the forecast run at
noon of the day before (hereafter, referred to D+1) and the midnight run (D) of the same
day. We use the sub-index p1 and p2 for the AROME forecasts in figure 3.3 to refer to the
two closest grid points to the case study location. Clear-sky GHI estimations were computed
using the empirical model proposed by [51]. Then the CSI is computed as a ratio between
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the current GHI (forecasted or measured) and the clear-sky GHI value. The database is split
in two periods: 2016-2017 correspond to the historical database used by the AnEn to find
the analogs; and the year 2018 is used as the test period over which all the performance
indicators are computed. The comparison between the current and past forecasts is made
using CSI so that similarity is evaluated only in terms of cloud effects.

3.4.3 Predictors selection

In order to estimate the relevance of the different inputs (predictors) available and to estimate
their degree of correlation with the desired output (measured GHI), the RReliefF algorithm
is used [60, 61]. This is a feature selection algorithm based on the original relieF algorithm
[62, 63] that is adapted for regression problems. The scoring procedure of this method is
based on the identification of feature value differences between nearest neighbors instance
pairs, but instead of requiring the exact knowledge of whether two instances belong to the
same class or not (like in the original relief algorithm), they work with a kind of probability
that the predicted values of two instances (samples) are different. With the version of this
algorithm that is implemented in Matlab®, weights are assigned to each predictor. In this
work, in addition to GHI, also the air temperature (T2) and the air relative humidity (RH)
are also considered based on its correlation with the measured GHI and their seasonal and
day-type signature. The weights assigned to the different predictor variables available are
shown in figure 3.3. After the first sweep of the RReliefF algorithm with all the predictor
variables available (GHI, RH and T2) the forecasting model ARPEGE-D is showing overall
the highest correlation in GHI, which is the most relevant predictor variable, followed by
air temperature (T2) and relative humidity (RH). Therefore, ARPEGE-D is chosen as the
forecasting model to be used in the rest of the study. Then, a second sweep of the RRelieff
algorithm is performed taking only the forecasts from ARPEGE-D and the final weights are
found, namely 0.415, 0.322 and 0.263 corresponding to GHI, T2 and RH, respectively. These
weights are used in the similarity criteria score given by equation 3.13. The results of the
first screening regarding the correlation of different forecast variables from different sources
(ARPEGE-D and D+1, AROME-D and D+1) are presented in figure 3.3.

3.4.4 Similarity criteria for analog selection

A variation of the score proposed in [46], given in Eq. 3.13, is used as the similarity criteria
to rank the historical forecasts on the database. The algorithm chooses hours in the data base,
that are similar to the hour of the forecast day that is being analyzed, in terms of absolute
value and temporal trend. From each day in the database, only the hour with the most similar
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Figure 3.3 Correlation weights of the predictors obtained with the RReliefF algorithm.

SZA is compared with the current forecast hour. In this way, the computation time is highly
reduced as only one hour per day of the database is retrieved. Besides, this serves as a
pre-similarity screening as it assures that only equivalent hours in terms of solar position are
being compared, regardless of differences in the solar trajectory due to the intrinsic annual
variability. In order to do this, a time window of t±w is used to evaluate the similarity of the
current hour; where t is the current hour and w is the number of hours before-and-after t that
will conform the time window. The idea is to find past forecasts that were predicting similar
(punctual) values but also similar temporal trends for the forecasted quantity. In this case, the
parameters to be optimized are the time window tw and the number of samples that conform
the ensembles. The score is given by:

∥Ft ,At ′∥=
Nv

∑
i=1

Wi

σ f i

√√√√ t+w

∑
j=t−w

(Fi,t+ j −Ai,t ′+ j)2 (3.13)

where ∥Ft ,At ′∥ is the euclidean length (i.e. similarity score) between the forecast for time
t and the analog forecast at time t’ in the database, Wi is the weight of the ith variable, Nv

is the number of variables, σ fi is the standard deviation of the time series of past forecasts
of a given variable i, Fi,t+ j is the forecast of the ith variable at time t+j, Ai,t ′+ j is an analog
forecast sample of the ith variable at time t’+j and w is the number of hours before and after
the target hour that conform the time window, which has a lenght of 2w+1. Based on the
work of S. Alessandrini and L. Monache [49][45] where they perform a sensitivity analysis
for different parameters of the AnEn method, w=1 producing a time window of 3 hours is
chosen for the rest of this study as it showed the best results. The sensitivity of the number
of members is performed in section 3.6.1.
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3.5 Benchmark methods

3.5.1 Climatology and persistence

Global climatology (GlCl) and persistence ensembles (PeEn) are typical reference methods
used in meteorology to evaluate the performance of forecasting algorithms or to generate
basic forecasts [64, 65]. The GlCl method produces a forecast of the long term average
weather, and requires a knowledge of the history of the weather. The idea is that for a given
forecast hour, all the past observations available for the same site and hour are taken to
create an ensemble of points where any value of the studied variable should fall in, if the
database of past observations is representative enough. On the other hand, the persistence
forecasting works under the premise that the average value of a variable for the next time
step is simply equal to the average value of the same variable for the current time step (i.e.
GHI value at hour h+1 is supposed to be equal to its value at hour h). A variation can be
applied to produce ensemble-type forecasts, where instead of only taking into account the
immediate past time step, several past samples from a time series are taken to produce an
ensemble of points. In our case, for a given hour h, the values of the same hour for the past n
days, are taken to generate the persistence ensemble, where n is the same number of samples
used in the AnEn method. Once an ensemble is produced, a deterministic or probabilistic
forecast can be issued to serve as a reference to evaluate the performance of other forecasting
methods.

3.5.2 Monthly Climatology

A variation of the global climatology, the monthly climatology (MoCl) model, is developed
to obtain uncertainty estimations of the deterministic forecasts of GHI given by ARPEGE.
This method has the advantage of taking into account the seasonal changes, hence improving
the resolution with respect to the GlCl. A MoCl ensemble is obtained for every hour of the
day (daytime only), of every day of a given month, that is available in the database. Here,
the same database utilized for the AnEn is used, but split per months. It means that from the
two-years database, one climatology ensemble is built for every month of the year. Given
that there are two years of training data, there is approximately 60 members for every hour
of the day (i.e. there are approximately 60 points in the data base that correspond to the same
hour of the same month), that are used to build up the monthly ensemble. All the methods
previously discussed are tested for the same one-year test-period data and compared with the
GHI ground measurements to evaluate their performance, in the same way as for the AnEn.
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3.5.3 ECMWF ensembles

ECMWF produces commercially available ensembles forecast for different meteorological
variables. Accepting the findings from chaos theory about the sensitivity of the prediction to
uncertainties in the initial conditions, they run in parallel a set, or ensemble, of predictions
from different but similar initial conditions. The ECMWF Ensemble Prediction System
(EPS) provides a practical tool for estimating how these small differences could affect the
forecast. The ECMWF weather prediction model is run 51 times from slightly different
initial conditions and produces an ensemble of points with a 3h time resolution. To take
into account the effect of uncertainties in the model formulation, each forecast is made
using slightly different model equations. The 51 scenarios can be combined into an average
forecast (the ensemble-mean) or into a small number of alternative forecasts (the clusters), or
they can be used to compute probabilities of possible future weather events [66].
Raw ensemble forecasts are of great help for probabilistic forecasting, but they are known to
be unreliable and in general underdispersive ([67]). This is why post-processing is needed
to improve the quality of forecasting and especially reliability. Here the Non-homogeneous
gaussian regression ("NGR") scheme has been chosen, as it is a very common and widely
used post-processing model (see for example [68] for an introduction of NGR model or [69]
for a comparison with other statistical calibration models). The NGR is a parametric model
which creates a normal probability density function defined by:

N (a+
M

∑
k=1

(bkXk),c+dV 2) (3.14)

where M is the number of members in the ensemble, a, b1...M,c and d are parameters to be set
from the training period, and V 2 is the variance of the ensemble. In this study, the parameters
have been defined by minimizing the CRPS value over the training period.

3.6 Results

3.6.1 Performance of the AnEn regarding the number of members

Whereas for a classical ensemble prediction system (EPS), adding a member can be prob-
lematic because the calculation cost increases, in the case of analog ensemble, it is possible
to choose the optimal number of members of the ensemble to increase the skills of the
forecasting model, without having any extra "cost" in terms of computation time. Here a
study has been conducted for the determination of the best number of members, according to
the quality of the final forecast.



3.6 Results 63

Nine different AnEn forecasts have been produced independently corresponding to 10 to
90 members. Intuitively the optimal number of members should depend on the size of the
training database, so this work has been done in two different cases with different length of
the training period to take in consideration the impact of the size of the training database on
the optimal number of members:

case 1 : training period length of 1 year
case 2 : training period length of 2 years

For each case, the skill scores of the different forecasts have been calculated, and this
calculation has been done for two quantiles with probability levels: τ = 0.1 and τ = 0.9. The
results of QSS, reliability and resolution are shown on figure 3.4.

From the QSS values, it is seen that the AnEn has better skills than the GlCl being the
spread of QSS values bigger for τ = 0.1 than for τ = 0.9, as values range between 0.36-0.44
for all cases for τ = 0.1 and between 0.55-0.58 for τ = 0.9. As expected, using a larger
training database leads to a better forecast skills. Indeed, for every number of members, the
skill score is higher for 2 years of training. These results also show that the score for the
quantile τ = 0.1 is more sensitive to the number of members than for τ = 0.9.
An optimal number of members is found around 50-60, for which QSS is generally maximized
(with exception of τ = 0,9 and one year database, where it starts decreasing around 30
members). Beyond this optimal number, the skill score decreases at a rate which depends on
the length of the training period. This rate is higher for case 1 (1 year training database) with
respect to case 2 (2 years training database).
To explain why adding more members decreases the quality of the forecast, it is necessary to
study the decomposition of the score. Notice that the uncertainty term is not discussed here
as it only depends on the climatology. On the contrary the results of reliability terms and
resolution term are studied below.

The reliability is similar for cases 1 and 2 but most of the time better for case 2. Above
all, the reliability continues to increase when increasing the number of members for case 2,
as shown in figure 3.4. However, this does not explain why the global performance decrease
for large numbers of members.

As the resolution terms of the decomposition tends to decrease as the number of members
increase, this explains why the global performance decreases for large numbers of members.
Moreover, the resolution decreases more quickly for case 1 for τ = 0.9, and it explains the
slope difference of skill score for cases 1 and 2. A less contrast is observed for τ = 0.1
(figure 3.4(e)), which makes case 1 and case 2 be also more similar in terms of QSS (figure
3.4(a)).
Adding more members can be thought as building a forecast closer from climatology in a way
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(a) QSS : quantile 0.1 (b) QSS : quantile 0.9

(c) reliability : quantile 0.1 (d) reliability : quantile 0.9

(e) resolution : quantile 0.1 (f) resolution : quantile 0.9

Figure 3.4 Quantile skill score, reliability and resolution of the quantiles with nominal
probabilities 0.1 and 0.9 of the AnEn as a function of the number of members
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that if the number of members was equal to the length of the training period, the resolution
would be 0 W/m2.

3.6.2 Ensembles dispersion analysis and interpretation

At the view of the results of the previous section, the AnEn is hereafter constructed with
60 members and a training period of 2 years. The obtained ensembles are meant to contain
information about the uncertainty of the deterministic forecast for which the ensembles are
created. It is then thought that the dispersion of the points (also called sharpness), is directly
linked to the degree of uncertainty of the deterministic forecast; ensembles whose points are
very spread out from each other would correspond to a deterministic forecast that is very
uncertain, and vice-versa. An example of this is presented in figure 3.5, where the ensembles
of analogs corresponding to two different days showing low (a) and high (b) dispersion are
plotted along with the ground measurements. It is expected that for the day (a), a higher
accuracy (i.e. less uncertainty) of the deterministic forecast (used to generate the ensembles)
can be achieved in comparison with day (b). A very uncertain deterministic forecast means

Figure 3.5 Ensembles of analogs obtained with the proposed AnEn method for 03-08-2018
(a) and 07-06-2018 (b) for the site of École polytechnique. The forecasts (yellow curve)
correspond to the day-ahead NWP outputs from the ARPEGE model

a forecast whose probability to be correct or close to the real value is low, and vice-versa.
This should be confirmed by the deterministic forecast errors for contrasted days, like those
presented in figure 3.5.

Table 3.1 show the rRMSE, rMAE and rMBE values for these two example days, as well
as the mean values for the normalized sharpness (see equation 3.12). It is confirmed in this
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case that the day with lower dispersion (03-08-2018) present much lower error and mean
normalized sharpness values than the day with higher dispersion (07-06-2018).

Table 3.1 Relative errors for two sample days with different degrees of uncertainty. The
normalized sharpness refers to the inter-quantile range between τ = 0.1 and τ = 0.9 obtained
with the AnEn method

Sample Day rRMSE rMBE rMAE Normalized Sharpness CSI

03-08-2018 0.022 -0.018 0.019 0.318 0.924
07-06-2018 0.272 -0.186 0.207 0.930 0.690

Figure 3.6 Percentile 10 (τ = 0.1) and 90 (τ = 0.9) for ensembles generated with the AnEn
method (a), the MoCl (b), the PeEn (c) and the GlCl (d) for 03-08-2018

This normalized sharpness (from τ = 0.1 to τ = 0.9) is used in this work to represent the
dispersion of the ensembles for all the considered methods. The two quantiles are chosen as
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a compromise between leaving out the outliers and well capture the uncertainty, which is
reflected in how narrow or broad this envelope is. An illustration of this for all considered
methods for day 03-08-2018 can be seen in figure 3.6, where the envelopes for ensembles
obtained with different methods are plotted, and the differences in the spread of the envelopes
can be clearly observed. This suggests a different skill of each method to distinguish between
forecasts with different degrees of uncertainty. In this example day, the envelopes generated
with the AnEn method show the narrowest resolution, giving a more accurate idea of the
possible values that the solar irradiance can have during this day (which ended up being
a clear-sky day as shown by its higher CSI value). This relationship between uncertainty
(through normalised sharpness) and accuracy (through the forecast error of the mean of the
ensembles) is shown in Fig 3.7 for the case of the AnEn method. A clear trend of larger
errors for larger normalised sharpness values (that is, larger spread of the ensembles) is seen
in general.

Figure 3.7 Forecast errors (rMAE) of the ensemble mean as a function of normalized
sharpness in boxplot representation for the AnEn method. The green line represents the
median and the boxplot limits are the quantiles τ = 0.25 to τ = 0.75

3.6.3 Forecasts comparison

In order to have an objective measure of this Analog Ensemble forecasting, a comprehensive
comparison between AnEn and other forecasts has been conducted. The three selected
forecasts are the PeEn forecast, the MoCl and the ECMWF-EPS (see section 3.4).
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The comparison with ECMWF ensemble forecast has to be made separately, because the
timestep of ECMWF ensemble forecast is 3 hours, which is different from other forecasts. In
a first step, we propose a comparison between AnEn, MoCl and PeEn.
For each forecast, the quantile skill score of quantiles with probability levels τ = 0.1 and
τ = 0.9 has been computed, and the comprehensive decomposition of the obtained scores
has been obtained. The results are shown in Table 3.2.

Table 3.2 Decomposition indicators of the AnEn, PeEn and MoCl

Quantile 0.1

AnEn PeEn MoCl

Quantile Skill Score 0.44 0.20 0.16
reliability (W/m2) 0.47 2.05 0.29
resolution (W/m2) 12.05 6.00 4.57
uncertainty (W/m2) 25.65 25.65 25.65

Quantile 0.9

AnEn PeEn MoCl

Quantile Skill Score 0.75 0.58 0.62
reliability (W/m2) 0.28 0.65 0.43
resolution (W/m2) 35.43 29.28 30.11
uncertainty (W/m2) 49.30 49.30 49.30

CRPS

AnEn PeEn MoCl

CRPS Skill Score 0.67 0.43 0.44
reliability (W/m2) 0.77 3.23 2.63
resolution (W/m2) 93.04 62.26 63.73
uncertainty (W/m2) 138.93 138.93 138.93

The results of the MoCl justify the choice of splitting the climatology data by month and
by hours. This really simple idea brings a large improvement in the result, it maintains the
level of reliability, but increases the resolution. The PeEn method has a strong problem of
reliability. The results show that the AnEn has the best results, combining the best resolution
and the good reliability of the MoCl. Sharpness is another indicator that has been used to
compare the different methods.

The results of the hourly values of sharpness of the AnEn, MoCl and PeEn are shown in
figure 3.8. In this figure, a common tendency that relates sharpness and solar irradiance is
noted (i.e. sharpness values follow approximately a tendency that resembles the daily solar
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Figure 3.8 Comparison of the hourly sharpness for different forecasting methods

irradiance curve). Besides, it is clear how AnEn outperform the other two reference methods,
showing an improvement (i.e. reduction in the sharpness indicator) of around 200W/m2

at 13h00, when this indicator presents its highest values. However, it must be recalled that
having a good performance on this indicator is beneficial only if the forecasting method (e.g.
the AnEn) proves to be also reliable.

Sharpness dependence on day type

Figure 3.9 Normalized sharpness vs the daily CSI for the PeEn, MoCl and AnEn methods.
The colorscale represents the rMAE for the ARPEGE-D deterministic forecast
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In figure 3.9 the normalized sharpness (normalized with respect to the ensemble mean)
for the PeEn, MoCl and AnEn is shown as a function of the CSI and the rMAE of the
ARPEGE-D deterministic forecast. In the case of PeEn (left plot), the normalized sharpness
does not show clear correlation neither with the CSI nor with the rMAE, as the dispersion
of the data suggests. This confirms that the this method is not able to discern between days
with different degrees of forecast uncertainty (i.e. easier/difficult days to forecast). On the
other hand, the rMAE seems to be correlated only with the CSI, where the smallest values of
rMAE correspond to the highest values of CSI (rMAE less than 0.1 for CSI values above
0.8). This correspond to mostly to clear sky days.

The same applies for the plot of the MoCl (center plot), where a similar correlation
between rMAE and CSI is observed. For the MoCl there is not clear correlation either
between the normalized sharpness and the CSI or the rMAE. The "discrete" shape of the
plot (i.e. horizontal lines), is due to the way the MoCl ensembles are built. There is one
ensemble for each month of the year (as explained in section 3.5.2), hence the existence of 12
-discrete- sharpness values. On the contrary, the AnEn (right plot) is the only method where a
correlation between the normalized sharpness and the CSI, as well as the rMAE is observed.
This means that the method is able to differentiate, to some extent, between forecasts with
different degrees of uncertainty. However, it is interesting to note that the correlation can be
seen only for values of CSI higher than 0.4. For smaller values, the normalized sharpness
is not able to discern between different uncertainty conditions. There is almost a linear
correlation between the normalized sharpness and CSI (for CSI values greater than 0.4), and
three different sections regarding rMAE can be identified. Sharpness values lower than 0.6
present the lowest rMAE, sharpness values between 0.6 and 1.1 present intermediate rMAE
values and for sharpness values above 1.1 the biggest values of rMAE are found. This is also
evident in figure 3.7. Therefore, the superior resolution of the AnEn (ability to differentiate
between weather conditions that lead to forecasts with different degrees of uncertainty) with
respect to the reference methods (PeEn and MoCl) is clearly stated in figure 3.9.

Comparison with calibrated ECMWF ensemble prediction system

The same comparison has then been conducted with the ECMWF-EPS forecasts (post-
processed through the NGR model), hereafter called NGR. An extra step has been necessary,
as the temporal resolution of ECMWF ensemble forecast is 3 hours, when the resolution
of AnEn forecast is 1 hour. Thus the AnEn forecast has been recomputed with a temporal
resolution of 3 hours. The results of AnEn and NGR for the quantiles 0.1 and 0.9 are
presented respectively in table 3.3.
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Table 3.3 Different scores and their reliability and resolution components for AnEn and NGR
models

Quantile 0.1

AnEn NGR

Quantile Score 13.0 21.6
reliability (W/m2) 1.4 6.2
resolution (W/m2) 12.4 9.9

Quantile 0.9

AnEn NGR

Quantile Score 16.4 26.0
reliability (W/m2) 3.6 7.7
resolution (W/m2) 37.9 29.3

CRPS

AnEn NGR

CRPS 42.9 62.5
reliability (W/m2) 8.7 10.6
resolution (W/m2) 98.5 80.7

The table shows better scores for AnEn method for all indicators, which might seem
surprising given the fact that the NGR calibration model is generally a proven good post-
processing model ([67]). It is important to remark that the change in the time resolution (i.e.
from 1h to 3h), changes the scores of the AnEn (i.e. reliability and resolution), as confirmed
when comparing these two indicators in tables 3.2 and 3.3.

A common way to confirm the superior performance obtained according to the QS and
CRPS, is to compare the forecasting errors (measured by the rMAE) issued from deterministic
forecasts inferred from the mean of each distribution. Even though it is not itself a proper
score, it relies on the fact that a forecasting method that is more reliable and presents a better
resolution, would produce more accurate deterministic forecasts. Indeed, the rMAE of the
mean value of AnEn is 0.20 when the rMAE of the mean value of the NGR model is 0.28.
This confirms the difference in the scores seen on table 3.3. As explained in 3.4.3 and 3.6.1,
the mean value of NGR distribution is calculated from the mean of EPS forecast of day
D-1, while the mean of Analog Ensemble forecast is driven by ARPEGE-D forecast. The
importance of having a reliable predictor of the mean of the distribution is crucial. In the
light of these results, it is certain that the process of choice of the best predictor has a great
importance and it is one of the main reasons of the superiority of AnEn against NGR.
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An article containing the main findings of this chapter has been submitted to the Renew-
able Energy Journal and it is currently under review.

3.7 Conclusions

A new Analog Ensemble Method (AnEn) for day-ahead probabilistic forecast of global hori-
zontal irradiance is presented and discussed. During the set up of the AnEn, it is found that
the best performance of the analogs method is obtained with approximately 60 analogs and
when the three predictor variables (GHI, RH, T2) are used. However the variable that showed
to have the biggest correlation and the biggest impact on the GHI forecasting performance is
the GHI itself, with a correlation weight of 41,5% followed by temperature with 32.2% and
relative humidity with a 26,3%.
The deterministic forecast used to generate the ensembles (i.e ARPEGE vs EPS-D1) is an
important aspect to obtain a good performance of the AnEn. The AnEn seems to be more
sensible than reference methods such as GlCl and PeEn, in detecting different uncertainty
conditions, in other words, has a better resolution. Moreover, the spread of the members (that
is the sharpness indicator) is a good indicator of the expected forecast error and it shows
clear dependence on day-type for the case of AnEn. Hence, it can be concluded that the
analog ensembles method is able to estimate to some extent the degree of uncertainty of a
deterministic solar irradiance forecast from the ARGEPE NWP model of MeteoFrance, and
sharpness has shown to be a good (deterministic) indicator of such uncertainty.
MoCl presents an improvement in resolution with respect to GlCl of more than 54% accord-
ing to the CRPS, proving to be a not-so-naive and easy-to-implement reference method that
can be useful when evaluating the performance of novel forecasting methods of solar GHI.
In the AnEn, using the SZA to search for a single-similar-SZA point per day, results in a
decrease of more than 80% in computational time.
For this case study, AnEn has proven to produce uncertainty estimation with much less
computational burdens and better performance than the commercial probabilistic forecasting
algorithms from ECMWF. Even when AnEn rely on the availability of deterministic forecasts
obtained from NWP, the computational time of the latter is less than that required to generate
the ECMWF ensembles. In addition, it has been shown that AnEn outperforms a model-
output-statistics-corrected version of the raw ECMWF-EPS. Besides, the computational
time required by the AnEn is not dependent on the number of members chosen to build the
ensemble of analogs, which gives the method a great flexibility for choosing the desired
(optimal) number of members, for a particular case study.
Overall, the AnEn showed superiority in performance according to the QSS and CRPS
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with respect to all the benchmark methods hereby presented for the particular case study.
According to the QSS indicator, AnEn performs near 21% better for τ=0.1 and near 54%
better for τ=0.9 with respect to PeEn. With respect to MoCl, the AnEn improvement in
performance is around 63% for τ=0.1 and 17% for τ=0.9. Regarding CRPS, AnEn performs
more than 34% better than both, PeEn and MoCl.
When compared to NGR forecasts, AnEn performs more than 34% better for both quantiles
(τ=0.1 and τ=0.9) according to the QS and more than 31% better according to the CRPS
indicator.
All these good reliability, resolution and sharpness indicators, backup the AnEn as a viable
method to be used either for uncertainty estimation of a deterministic forecast or for proba-
bilistic forecasting of solar GHI.
Quantile forecasts present an interesting feature which is the capability to decouple the
magnitude and bias of their forecasting error. Therefore, depending on the chosen quantile,
one can have different degrees of certainty on each component (e.g. one can have more
certainty regarding the sign of the bias), which gives this method of forecasting an interesting
added value, that might be useful in the energy management system of a microgrid.

3.8 Future perspectives

A similar approach of the AnEn used in this study could be extended to other geographical
locations to see if the results can be extrapolated to different study cases. The utilization
of the AnEn method to forecast the PV power output directly, could be also interesting
to explore, in order to bypass the conversion uncertainties due to the PV panels and the
controller/inverter. Otherwise, the solar GHI must be converted to actual PV output power,
as there are losses in the transit through the solar panels (mainly due to temperature and
soiling) and the inverter/controller (due to the efficiency of the device). There are also joule
losses due to the resistance of the electric conductors, among others. So a proper model
should be found so that the results from this work can be translated to PV output power of a
PV+Battery microgrid, as this is the input required to perform its energy management and
resource scheduling tasks.
Another possibility that could be explored is to use the AnEn to derive uncertainty infor-
mation of the electric consumption as well. In this way, the energy management system of
a microgrid could be fed with the uncertainty of the net load (load - variable renewables
production) which is the case in a real system. This would account for the two main sources
of uncertainty in a microgrid, the IRES and the electric consumption. Eventually this could
permit to make better allocation of resources during planning. In order to achieve this, a fair
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way to add the uncertainty from production and consumption sides should be found.
The envisaged use of the results of this work is to incorporate the information about un-
certainty of GHI forecast into the EMS of a microgrid that performs day-ahead optimal
scheduling. This with the aim to determine to what extent this can improve the performance of
a small-scale microgrid in terms of different performance indicators such as self-consumption,
CO2 emissions and operation costs, among others. Given the fact that the analogs ensembles
method is able to estimate uncertainty of a deterministic forecast to some extent, a practi-
cal yet useful/meaningful way to include this information in the decision-making and/or
optimization process of the energy management system must be found.



Chapter 4

Forecasts and energy management in a
microgrid: Impact on services provided
by a smart building

4.1 Introduction

The energy management of MGs is still an open research topic, and the variety of approaches
is extensive [1, 70]. Regarding grid-connected MGs, several approaches have been studied
and proposed by several authors for their EMS. In the review performed by basu et al.[71],
they highlight the importance of strategic deployment of the distributed energy resources
(DERs) as the base-ground to a successful EMS strategy. If any benefit from a MG wants
to be obtained, a proper technology selection and sizing of DERs, for the particular site of
deployment, has to be performed. Without this important first-step properly done, is not
certain that an EMS can bring benefits for the users of a MG with respect to a scenario without
DERs and/or a MG. However, there is no recipe to assure neither an optimal choice of DERs
technology nor to perform their sizing. It depends on many factors, having at its core the
purpose of the installation and client needs. This suggests that there is always a chance that an
EMS will have to deal with a non-optimally designed MG. The International Electro-technical
Commission in the standard IEC 61970, related to Energy Management System application
program interface in power systems management, defines an EMS as: “a computer system
comprising a software platform providing basic support services and a set of applications
providing the functionality needed for the effective operation of electrical generation and
transmission facilities so as to assure adequate security of energy supply at minimum cost”
[72]. A typical EMS of a MG usually consists of: modules to perform decision making
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strategies, modules of DERs/load forecasting, human machine interfaces, supervisory control
and data acquisition, among others. The techniques commonly used to perform EMS vary
from case to case, and as mentioned by [1], the supervisory control architecture of an EMS
can be divided into two types, namely, centralized and decentralized. A decentralized EMS
architecture has a central controller that sends and receives all the information to DERs in
real-time. Each DER, having its own controller, proposes and "bargains" current and future
demand or generation requests with the central controller until the global and local objectives
are achieved. In this work we focus on a centralized control type. In a centralized EMS
approach, the central controller gathers all the information such as power generation of DERs,
cost-function, meteorological data, and energy consumption, etc. Then, the centralized EMS
determines the optimal power/energy scheduling of DERs, according to a specific objective
set by the user. Finally, the central controller sends these decisions to all the DERs controllers,
that will follow these directions without any "questioning".

At the core of a centralized EMS we find the working objective(s). It is related to a
given service that the system is required to assure and/or optimize. A service provided
by a MG could be defined as any action performed by the system that will improve to
some extent the well-being (in the broadest sense of the word) of the users. In order to
achieve the working objective, two main branches can be identified: Optimization-Based
(OB-EMS) and Rule-Based (RB-EMS) methods [73]. The latter can assure attaining the
working objective but cannot guarantee an optimal performance, whereas the former can
achieve optimal or quasi-optimal performance for a given service. The optimization can be
done using several algorithms, as mentioned by [1, 74]. We can find linear and nonlinear
programming methods, dynamic and stochastic programming, meta-heuristic approaches and
also machine learning/artificial intelligence techniques.

Due to its nature, a RB-EMS is normally meant to react to real-time conditions applying
the rules it has been programmed with, in order to assure the proper balance between
production and consumption. Rules can be conceived to favor a particular service as a
secondary objective. Under this working scheme, this system does not perform time-ahead
scheduling, hence does not require forecasts to work. However, if a forecast is given, this
approach could also issue a time-ahead scheduling. On the other hand, an OB-EMS normally
requires a forecast (at least of production and consumption), to be able to issue an optimal
action to be followed. The optimization horizon can vary from seconds or minutes (intra-
hour) to hours (inter-hour) or days (day-ahead). For intra-day optimization, the time horizon
can be fixed or receding (i.e. it gets shorter as the day passes). This is the case presented by
[75], where they proposed a two-stage EMS for a MG serving a building. Each stage has
a different time horizon, the first being day-ahead, and the second, one-hour-ahead, and it
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uses a receding horizon. Each stage has different optimization objectives, and the results of
the first stage are used as constraints for the second stage. The optimization objectives can
vary a lot, but as pointed out by Ahmad et al. [74], some of the most common are: carbon
emissions, capital and operational costs, energy storage cost and load shedding costs, among
others.

Scheduling and unit commitment approaches

At utility scale, it is known that power producers that participate in the energy market,
are asked by the Transmission System Operator (TSO) to issue in advance (usually day-
ahead) their expected power output for the upcoming day [76, 77]. If they do not fulfill
their projected production they are penalized correspondingly to their deviation from the
committed bids. This is done by the TSO in order to reduce the uncertainty in the production
side, so that it can plan and perform their "optimal" Unit Commitment (UC) at regional or
national level for the next day. Unit commitment is the coordination of the production of a
set of electrical generators in order to achieve some common target, usually match the energy
demand at minimum cost.

When production comes from intermittent renewables, the uncertainty can be very high
due to their intrinsic stochastic nature linked to the weather conditions. The less uncertainty
from the producers, the better the TSO can perform the UC and hence, reduce costs and
pollution while assuring reliable and high-quality energy. The problem of uncertainty related
to IRES and MGs, in the distribution network, has been recognized [8] and efforts are being
done in order to deal with it. For instance, Gholami et al. [9] develop a mathematical
model for the optimal scheduling of MGs incorporating proper representations of prevail-
ing uncertainties. Alternatively, Majzoobi et al. [78] have proposed a flexibility-oriented
microgrid optimal scheduling model, to coordinate the MG net load with the aggregated
consumers/prosumers net load in the distribution network, with a focus on ramping issues
(i.e. sudden increments of power). In their work, they start posing the question of how a
MG can offer ancillary services to the utility grid, for which, the management of uncertainty
is very important. Their results showed that the grid operator can efficiently leverage the
flexibility of existing MGs in distribution networks to address some of the most pressing
flexibility-associated challenges, while removing the need for costly investments in the
generation and distribution facilities.

Other authors like Deckmyn et al. [79], have proposed a model that aims to schedule
the power among different MG units while minimising the operating costs together with
the CO2 emissions produced. The model involves the simultaneous optimisation of the fuel
costs and the CO2 emissions of the local thermal generators. The MGs are able to work in
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both grid-connected or islanded modes, and they scheduled the power exchange with the
grid, taking into account the local power generation profiles, market conditions and possible
congestion in the distribution grid, in order to further minimise the MG operating costs.
They found that the environmental optimisation without congestion management results in
a reduction of 11.4% in CO2 emissions and an increase of 46.5% in microgrid operating
costs, whereas purely economic UC without congestion management results in a reduction
of 34.7% in MG operating costs and an increase of 48.8% in CO2 emissions.

In the same line, authors like Ferruzzi [80] have tackle a similar problem of day-ahead
optimal bidding taking into account the uncertainty of IRES in low-voltage grid-connected
residential MGs. Their approach proposes a prosumer which aggregates the capacity of
different components (DERs) and buys or sells, for each hour, power from/to the grid. One of
the main contributions of this paper claimed by the authors is the use of uncertainty evaluation
to make decisions using an Analogs Ensembles (AnEn) method. They obtain the probability
density function (PDF) out of the ensembles, in order to obtain the expected utility, which
represents the average weighted utilities associated with each possible outcome probability,
where each weight is determined by the respective outcome probability. In their work, the
participation of the MG in the ancillary services market was not considered because it usually
cannot satisfy the requirements of minimum power, according to the authors. However, they
recognize that when there are more microgrid aggregations and consequently more prosumer
aggregations, the MG participation in this market could be considered. The main focus of
that work was to provide a risk bidding strategy for the day-ahead energy market to determine
optimal economic choices for the management of a grid-connected residential MG.

In contrast with the above mentioned studies, at the core of the hereby proposed EMS
strategy, we aim at providing one specific service for the TSO: grid-commitment. It consists
in broadcasting to the TSO, one day-ahead, the hourly power-exchange profile that will be
required by the MG, and engage (as far as possible) to follow it. However, this scheduled grid
profile has been generated in a first stage of the EMS, with a different objective (i.e. energy
cost reduction, CO2 emissions reduction, grid-peak-power reduction). This means that, in
a first stage, the MG is "selfish" and looks for its own benefit with the first optimization
objective, but once it has generated the grid profile, the second stage of the EMS gives priority
to the TSO, as the main beneficiary of the second objective, which is the grid-commitment.
This proposal is explained with more details in section 4.5.

A scheduling strategy requires forecasts as an input, and different forecasting methods
have been used in the field of energy management for MGs. Some studies directly consider
solar generation predictions without considering weather forecasts, while others also receive
the information from forecast services ([6, 5]), or compute it from local power measurements
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by applying time-series forecasting techniques such as, auto-regressive [81], persistence [82]
or ANN [6]. In all these cases, the weather conditions are implicit in the information, but
no meteorological variable is directly considered. In other cases, the forecasts of PV power
output are directly obtained from weather forecasts, by applying models to transform the
meteorological data into output power estimations. These models can be based on real PV
panels [83] or theoretical equations of PV generation [84]. Overall, they assume that PV
production is fundamentally dependent on irradiance and temperature. Some approaches
compute solar irradiance from other parameters such as the clear sky index [85], sky cover
[86] or sky clearness [87], rather than forecasting it directly. The scheduling horizons of the
forecasts vary from 72 hours to 15 minutes, depending on the EMS strategy used, however
the 24-hour horizon is the most common. The time resolution of those forecasts vary from 3
hours to 15 minutes, being one hour the most common resolution [11].

Regarding the uncertainty, normal distribution is the most frequent option to describe
these errors. Some adjustments based on the expectation and the standard deviation are
commonly referenced, but they lack of numerical values (e.g. [85]). Other studies assume that
forecast errors are well described by a uniform distribution. Sechilariu et al. modelled solar
generation forecasts by considering a random error of 10% during a 24h-ahead forecasting
period [88]. In other approaches, a linear increase with the forecasting horizon as well as
different levels of prediction errors are assumed [10]. In their study, for a maximum horizon
of 24h-ahead, the error was assumed to be 6% for the lowest level and 30% for the highest
one. Similar considerations were accounted in [4], but in this case, a range of 8–24% was
associated with the 24h-ahead errors. Other methods such as the beta distribution and Monte
Carlo method, are used to simulate scenarios of solar generation, as in [89]. Maximum error
bounds are proposed by Mohan et al. assuming a constant value of 20% for a 24h-ahead
period [90], and by Li et al., by assuming constant bounds of 10% for the same scheduling
horizon [91]. A different approach proposed by Shimomachi et al. divides solar forecasts in
three categories (fine, cloudy and rainy) and the uncertainty is estimated according to the
observed occurrence of these categories, when each of them is predicted [7].

A thorough summary of the different forecasting techniques used for energy management
of MGs, including scheduling horizons, time resolution, input variables as well as uncertainty
models used, can be found in table 1 of the review performed by A. Aguera-Perez et al.[11].

Microgrids and energy management systems in smart-buildings

When an EMS is implemented in a building equipped with some DERs, it can bring along
some degree of autonomy or "intelligence", allowing the building to make some decisions by
itself, in order to optimize a given objective. The definition of smart-building (SB) is very
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wide, as it covers from the "architectural" conception and construction, to its capabilities to
gather information and automatically respond to it. Buckman [92] defines a smart-building
as "a building which totally controls its own environment" which does not suggest user
interaction at all. Of course, achieving this "full intelligence" is far from realistic, as
nowadays it is usually the case that some interaction between users and the building is
required for its operation. Wang et al. [93] mention that a smart-building "address both
intelligence and sustainability issues by using computer and intelligent technologies, to
achieve the optimal combinations of overall comfort level and energy consumption. They
also utilize IRES to reduce the impact on natural environment".

In our case, this definition aligns better with the objectives of our case-study, where
the implementation of a MG equipped with an EMS, targets both, the comfort of users and
the environmental impact of the building, to some extent. In summary, at the view of the
above definitions, a smart-building can be thought as an interactive unit that, besides its
basic function of providing shelter to its occupants (i.e. the basic service it offers), it can
also improve their well-being or comfort in a variety of areas. This task can be achieved
by collecting and responding to data in an autonomous or semi-autonomous manner in
order to fulfill an objective. Therefore, a building that is equipped with solar panels, energy
storage and some capabilities to defer or control some loads has the potential to become a
"smart-building", but without any central control or EMS, this objective will not be achieved
on its own. In other words, including some DERs to a building is a necessary, but not a
sufficient condition, to grant a better performance.

In this work, we propose some basic services for our study-case SB, based on the
added value they provide to its users and other actors. We tackle the problem of propos-
ing some EMS strategies targeted to provide those services. The services proposed are:
grid-commitment, grid-peak-power, energy-cost and carbon-footprint. The definition of
these services is explained in detail in section 4.5. For DERs and MGs, services like grid-
commitment or grid-peak-power -introduced in the current work- are not common. This is
mostly due to the scale and current penetration of MGs which is not significant respect to util-
ity grids. But if we imagine a penetration scenario of IRES, that for 2050 could achieve more
than 60% according to some studies [94, 95] (being distributed generation a non-negligible
percentage of it), the capacity to deliver those services could have an important added value,
in terms of operational, economic and environmental benefits [96, 97]. Other scenario where,
being able to offer a time-ahead power/energy scheduled profiles (e.g. the grid-commitment
service hereby proposed), could give a significant added value to a MG, is the case when
MGs are able to participate in the electricity markets. This is pointed out by [80], where they
propose that a MG can offer not only base-load generation but also ancillary services. In
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general, at the point where the aggregated power coming from MGs will have the potential
to cause quality and stability problems to the utility/European grid, DERs uncertainty and
variability would pass from being a matter of the MG owner only, to a larger-scale concern
for the TSOs. So if we agree on the latter statement, making the uncertainty "invisible" to
the TSO by dealing with it internally (within the electrical boundaries of the MG), would
give distributed generation (based on IRES) a great competitive advantage with respect to
their current standing point. That is the motivation and main objective of this work.

In section 4.2, a breakdown of the research questions and objectives searched in this
chapter is presented, followed by section 4.3 that explains the use case and data utilized in
the study. Section 4.5 explains the novel proposal of EMS to tackle the issue including an
explanation of the methodology followed to validate its usefulness. Section 4.6 presents all
the scenarios, results and analysis, that were performed in order to answer to the research
questions. Finally, in section 4.7, a summary of the main conclusions is presented, as well as
some possible pathways envisaged for further research on the subject.

4.2 Objectives

The main purpose of this work is to explore how a building, that has been equipped with
PV panels, battery energy storage and a data acquisition system, can offer services like
grid-commitment and grid-peak-power reduction (whose main beneficiary is the TSO), or
other more common services such as energy cost or carbon footprint reduction, mainly meant
to benefit building users. We want to explore if those services can be further enhanced by
the implementation of a central control or EMS that takes into account the PV production
forecasts. In relation with that, we want to analyze how the uncertainty of those forecasts can
affect the performance of the building regarding the services it provides.

In order to answer that question, the statement can be broken down in several points that
tackle each of the main queries associated to this general objective. They are summarized as
follows:

1. What services could be provided by a smart-building and what would be the added
value of providing those services? how could we measure the performance associated
with those services?

2. After having chosen the services considered more pertinent for the purposes of this
study, how would an EMS strategy look like, that could provide those services?

3. Once an EMS strategy has been proposed, what would be its impact in performance
(related to the services being evaluated), with respect to the baseline case (no EMS)?
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4. Since deterministic forecasts (of photovoltaic production) are part of the proposed
EMS strategy, how the accuracy of those forecasts can affect the performance of the
EMS, regarding the services being evaluated? The analysis of the accuracy of the
forecasts for the test period year is presented in Chapter 3

5. Can probabilistic forecasts help the EMS to obtain further improvements in perfor-
mance? how? to what extent?

6. Since we are proposing an EMS strategy that can favor different services, how optimiz-
ing for one service affects the performance of the other services? Is it possible to find
an EMS that yields a good compromise in performance for all services?

7. Given that a building is exposed to different conditions related to seasons (e.g. different
weather conditions, production, pricing and consumption patterns), in what manner
and to what extent it affects the performance of the proposed EMS and the final
performance of the SB regarding the services under study?

The following sections are devoted to answer each of the aforementioned questions, by
taking the Drahi-X future microgrid as the model for the simulations in order to evaluate and
validate the proposals made throughout this work.

4.3 Use case description

Similarly to the previous chapters of this work, the study presented in this part is based on the
study-case microgrid of the Drahi-X startup incubator, described in the general introduction
(see chapter 1). This building is being equipped with a MG that is expected to be operational
in the coming months, and that will allow the implementation and test of energy management
strategies as well as the collection of data required for their validation. The simulations
performed throughout this work are all performed based in data-sets of this study-case
building and site, that were described in section 3.4.2 of Chapter 3. The expected PV output
power of the Drahi-X building is obtained using the NWP (ARPEGE-D) GHI forecasts and
ground measurements obtained for the study-case site. With this data, a factor is applied
that matches the expected peak-power of the PV-array with the standard solar irradiance
conditions (i.e. 1000W/m2). This factor does not take into account temperature, shading
or tilting effects. Even when this is not a realistic assumption, it was decided to assume
such simplification for several reasons. First, It must be mentioned that at the moment of
performing this study, the layout, tilting angle or type of PV panels that were going to be
used in the Drahi-X microgrid was still unknown. Therefore, doing assumptions on these
parameters would have lead to a non-realistic scenario anyways. Besides, one of the main
objectives of this work is to study the effects of the uncertainty of the solar resource over a
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MG, therefore GHI was used in Chapter 3 as output variable. For consistency and to be able
to compare and use the results of Chapter 3 in this chapter, GHI must be used as well. In this
way, the effects of the solar resource uncertainty are isolated, without interference from other
sources of uncertainty such as temperature effects, shading and tilting effects or conversion
efficiencies of the power converters, that are out of the scope of this work. Last but not least
important, it is well known that the factor that has the greater influence by far in photovoltaic
production is the solar irradiance, therefore obtaining the PV power production by using a
scale factor for the GHI was considered still meaningful for the purposes and scope of this
study.

Persistence -deterministic- forecasts (PE) for PV power output are used as a naive
benchmark forecasting method. The forecast is obtained by simply assuming that the
average-hourly PV production profile for the day D+1 is the same as the real PV production
profile of day D. Perfect -deterministic- forecasts (PF) are considered also as a benchmark
forecasting method, and as its name suggests, it consists on assuming that the forecast of a
given variable is actually the real (measured) value of that variable. This is used for PV power
output, and represents the best possible forecast to compare against. Besides the NWP, PF and
PE forecasts, the probabilistic forecasting approach called quantile forecasting, developed
in Chapter 3, is used as a novel forecasting method in the domain of MG scheduling. The
base for this forecasting strategy are the ensembles of analogs, that are obtained from a
database of measurements and deterministic (i.e. NWP) forecasts of the desired variable
[98], as explained in Chapter 3. Once the ensembles are obtained (day-ahead) for each hour
of the next day, different quantiles are obtained (from AnEnτ=0.1 to AnEnτ=0.9), that are
used as deterministic forecasts. The idea of using this type of forecasting is to decrease the
uncertainty of a deterministic forecast by "forcing" the bias of the forecasting errors to lean
in a known direction.

The forecasting errors are made up of two parts: the magnitude and the bias, the latter
being an indicator of the forecast being over or under estimative. By using quantile fore-
casting, we are able to know in average, the bias of the error, decreasing in this way its
overall uncertainty. This extra information about the forecasting errors can be helpful for
the EMS, as under certain circumstances (i.e. a particular season and/or service) it could
be more beneficial to use over-estimative forecasts, while in other circumstances it might
be better to use the opposite approach. This is considered a novel way to deal with the
intrinsic uncertainty of the PV production, without the heavy computational burdens of
commonly-used probabilistic optimization methods, such as stochastic programming, which
has been used to deal with uncertainty in an EMS of a MG [6], but it is usually demanding in
terms of computational resources. Our forecasting approach, gives the EMS an interesting
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capability of adaptation to different climatic conditions as well as target services, in order
to obtain the best performance possible in every situation, with very light computational
requirements.

As mentioned in the description of the study-case in the introduction of this work, the
data of electrical consumption is taken from zone 1 of the Drahi-X building for the test
period. The data is formatted with a time resolution of one hour, meaning that we assume an
hourly-average power consumption profile. Intra-hour power fluctuations are neither captured
nor taken into account, meaning that we consider a constant power value of consumption
for each hour of the day. The prices of the electricity are assumed those of EDF (Electricité
de France) for the Tempo tariff [33]. The prices vary according to three different types of
days: blue, white and red. The color of the day is determined as the year progresses and is
broadcast by EDF the day before around 12h00. Their pricing scheme is shown in figure
4.1. For each type of day there are two different prices: peak-hour (HP) that goes from
06h00 to 22h00, and non-peak hour (HC) that covers from 22h00 to 06h00. There is also a
contracted power monthly fee that has to be paid according to the peak power required from
the grid. This contract is annual, meaning that once a given peak power has been contracted,
the corresponding monthly fee will be the same throughout the year.

Figure 4.1 EDF Tempo pricing schedule [33]

The data of the CO2 content of the electricity from the utility grid, is taken from the
transmission system operator in France, RTE (Réseau de Transport d’Électricité) [99]. They
supply real-time and historical data of the energy generation mix and CO2 footprint of the
electricity being produced at every moment of the year. The data has 30 min time steps and
was also averaged out to 1-hour time resolution. The annual distribution of the type of days
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according to the tempo tariff, as well as the grid electricity CO2 content for the test period
are depicted in figure 4.2.

Figure 4.2 Hourly grid electricity prices and CO2 content during the test period

It is important to mention that in this work (as implemented by authors like Ferruzzi et al.
[80]), the forecasts of electric consumption, prices and carbon footprint of the electricity from
the utility grid, are always assumed perfect (i.e. the forecast values always matches the real
values). This is done with the purpose of isolating the effects of the PV power production and
being able to evaluate "independently" its impact upon the EMS strategies. This allows us to
study in depth and draw conclusions regarding the effects of its uncertainty in the performance
of the SB services, by eliminating possible interference from the uncertainty brought by
other stochastic variables. Even when this is not a realistic scenario, by understanding the
effects of one stochastic variable (i.e. PV power production), we could comprehend some
general mechanisms by which uncertainty can affect the performance of the SB, and this
knowledge could be applied when integrating other stochastic variables into the game, such
as the electrical consumption or the electricity prices.

In this study, a generator convention has been used, hence for any DER, positive values of
power mean power being delivered by it, while negative values mean power being consumed
by the DER.
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4.4 Services and performance indicators

According to the definitions presented in section 4.1, we can call services, to the objective-
oriented "actions" that a smart-building can perform (autonomously or semi-autonomously),
with the help of a central control system or EMS. The type of services a SB can provide
depends on the degree of automation or "intelligence" of the building and the type and amount
of data that it is able to collect. In our study-case, based on the envisaged hardware capabilities
of the Drahi-X building, we have chosen four services that are considered representative for
the purposes of this study. The reduction in the cost of the energy consumed by the users of
the MG/SB (EC) as well as its carbon footprint (CO2), are two of the services chosen, which
are well known and commonly used as optimization objectives for EMS strategies, as shown
in tables 3, 4 and 5 of the comprehensive review performed by ahmad et al. [74]. The other
two services we propose, are not common for low-power MGs (they are not even mentioned
in the cited review), which are: the day-ahead power commitment with the utility grid or
grid-commitment (GC), and the reduction of the grid contracted power or grid-peak-power
(GPP). Figure 4.3 presents a summary of the services being considered, as well as the main
beneficiaries and their added value.

4.4.1 Service 1: Reduction in energy costs

The first service proposed, is the ability of the SB to provide electricity to its users at a
competitive cost with respect to the utility grid. It is always at the top of the list when
talking about optimization objectives for EMS in MGs (see [74]). Its added value can be
thought as being able to offer electricity at a lesser cost than the utility grid. That would
increase the "financial well-being" of the users of the building. The associated indicator that
allows to quantify this service (i.e. its performance indicator), would be the average cost of
electricity. This indicator is computed as shown in equation 4.1, its units are C/kWh and
will be hereafter represented by the symbol EC.

EC =
1

ET
load

·
H

∑
h=1

(
Eh

grid ·C
h
grid +Eh

batt ·C
h
batt +Eh

pv ·Ch
pv

)
(4.1)

where ET
load represents the total energy consumed by the load during the test period, Eh

grid is
the energy bought from the utility grid, Eh

batt is the energy delivered by the battery (battery
discharging), Eh

pv stands for the PV output energy, while Ch
X represents the cost of the energy

of the DER X , at the hour h. This cost can be either the nominal cost (see equation 4.4
for battery and equation 4.7 for PV), or a corrected cost (see equation 4.6 for battery and
equation 4.9 for PV).
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Figure 4.3 Value chain of four services provided by a smart-building
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The sum of the costs over the H hours of the test period divided by the total energy
consumption yield the average cost of the energy consumed by the users of the MG. The cost
of the energy coming from the grid Cgrid is considered known beforehand for every hour of
the test period, and its values can be seen in figure 4.2.

The nominal cost of the energy delivered by the battery Ch
batt , computed in equation 4.4,

is adjusted using an adapted version of the approach proposed by Muenzen et al. [3]. They
find an experimental model to estimate the full-cycle-equivalent cycling life (CL) of a Li-Ion
battery, as a function of the average state-of-charge (SoCave) and depth-of-discharge (DoDave)
of each charge-discharge cycle of the battery. In other words, they found an experimental
equation to estimate how much the nominal cycling life of the battery is reduced due to the
profile of use. With this reduction on battery life, the nominal cost of the energy coming from
the battery is adjusted accordingly. The model to estimate CL is presented in equation 4.2.

CL(DoDave,SoCave) = q+
( u

2v
(s+100u)−200t

)
·DoDave

+s ·SoCave + t ·DoD2
ave +u ·DoDave ·SoCave + v ·SoC2

ave

(4.2)

where DoDave is the average depth-of-discharge of all the charge-discharge cycles of the
battery throughout the test period, while SoCave is the average state-of-charge of the battery
throughout the same test period. The values of the experimental coefficients of the model are
presented in table 4.1.

Table 4.1 Experimental coefficients for equation 4.2 [3]

Coefficient q u v s t
Value 1471 0.3369 -2.295 214.3 0.6111

A maximum CLmax ≈ 6468 cycles can be found for a DoDave = 0% and a SoCave ≈ 45%,
which is just a theoretical maximum, as a DoDave = 0 would imply not using the battery
at all. Figure 4.4 suggests that, performing short (i.e. small DoD) charge/discharge cycles
is more beneficial for the battery life, as well as staying around mid-range state-of-charge
values.

The DoDave is computed as the average change in the SoC of the discharging cycles of
the battery, as presented in equation 4.3.

DoDave =
1
H

H

∑
h=1

(
SoCh −SoCh−1

)
(4.3)

where H is the number of discharging cycles during the test period, and SoCh is the state-of-
charge of the battery at hour h expressed as percentage of the nominal battery capacity.
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Figure 4.4 Cycling life of a Li-Ion battery as a function of its SoCave (blue) and DoDave
(orange) [3]

The SoCave is computed simply as average state-of-charge of the battery during the test
period, also expressed in percentage of the nominal capacity of the battery. The nominal cost
for the use of the battery is computed using equation 4.4.

Cnom
batt =

CAPEXbatt

TOEmin
(4.4)

where CAPEXbatt stands for the capital expenditure (the retail price) of the battery, while the
TOEmin stands for the minimum through-output energy of the battery or the minimum energy
that the manufacturer guarantees the battery will deliver during its lifetime (see table 4.2).
The TOEmin is computed for specific test conditions set by the manufacturer of the battery.

In our case, we assume that TOEmin is computed for the nominal battery cycling life
CLmax. Therefore, when CL decreases, that causes TOE to decrease accordingly, increasing
the cost of the energy delivered by the battery in the same proportion. The correction factor
for the reduction in the battery cycling life BLR, is presented in equation 4.5.

BLR =
CL

CLmax
(4.5)

where CL is the equivalent battery cycling life obtained with equation 4.2, while CLmax is the
maximum battery cycling life according to figure 4.4.

Then, the factor BLR is used to adjust the nominal cost of the battery presented in equation
4.4 to obtain the corrected battery cost. This is expressed in equation 4.6.
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Ccorr
batt =

Cnom
batt

BLR
(4.6)

Then, for a given EMS strategy, the equivalent BLR can be computed in order to obtain
the corrected battery cost Ccorr

batt . This cost is considered constant for the entire test period.
For the sake of simplicity, we consider that these average use conditions of the battery are
kept throughout all its lifetime, so that the reduction of its cycling life is consistent with the
calculations. An analogous approach as the one presented in equations 4.4, 4.5 and 4.6 can
be followed to obtain the average cost of PV energy, Cpv. The nominal cost of the energy
delivered by the PV panels Cnom

pv , can be obtained with the equation 4.7.

Cnom
pv =

CAPEXpv

TOEexp
(4.7)

where CAPEXpv stands for the capital expenditure (the retail price) of the PV array (without
taking into account the balance-of-system costs), while TOEexp represents the expected
through-output-energy, which is computed based on the historical PV output power measure-
ments of the study-case site and the warranted life and output-power of the PV panels given
by the manufacturer (see table 4.2). In the meantime, an equivalent to the BLR can be found
for the PV power production, that is related to the reduction in the through output energy due
to curtailment. This is called PV curtailment factor (PVCF ) and is expressed in equation 4.8.

PVCF =
E potential

pv −Ecurtailed
pv

E potential
pv

=
Ereal

pv

E potential
pv

(4.8)

where E potential
pv is the potential output energy of the PV installation during the test period

for the given GHI conditions, while the Ecurtailed
pv represent the total curtailed energy during

the test period. In this case, for a particular EMS strategy, the results of equation 4.8 are
extrapolated as if the PV curtailment policy were to be repeated every year for the entire life
of the PV installation. Under this assumption, equation 4.6 can be rewritten to compute the
corrected cost of the energy delivered by the PV panels as in equation 4.9.

Ccorr
pv =

Cnom
pv

PVCF
(4.9)

4.4.2 Service 2: Reduction in electricity carbon footprint

The CO2 content of the electricity being consumed by the users of the SB is also a common
optimization objective searched when performing energy management in MGs, specially
because in small electrical systems like a MG, the carbon footprint could be very high



4.4 Services and performance indicators 91

Table 4.2 TOE, CAPEX and embedded carbon emissions used to compute the nominal cost
and CO2 per kW/h of the energy delivered by the battery and PV panels

TOE(kWh) CAPEX(C) ECO2(kgCO2e) COnom
2 (gCO2/kWh) Cnom(C/kWh)

PV (16kWp) 581000 [32] 9265 [100] 19520 [101] 33 0.016
Battery (32kWh) 98100 [102] 20208 [102] 2300 [103] 23 0.210

due to the embedded CO2 emissions contained in the PV panels and the battery, hence the
importance of doing a proper utilization of the resources. Its added value can be understood
as the ability of the SB to provide electricity with less CO2 content than the electricity
coming from the utility grid. The seemingly obvious indicator, used to quantify this service,
is the equivalent amount of grams of CO2 per unit of energy consumed in the MG. This
performance indicator can be computed in a similar way as it was presented at equation 4.1
for the EC indicator. Its units are gCO2/kWh and will be designated hereafter as CO2. The
equivalent mathematical expression to compute its value is presented in equation 4.10.

CO2 =
1

ET
load

·
H

∑
h=1

(
Eh

grid ·CO2
h
grid +Eh

batt ·CO2
h
batt +Eh

pv ·CO2
h
pv

)
(4.10)

where ET
load represents the total energy consumed by the load during the test period, Eh

grid is
the energy bought from the utility grid, Eh

batt is the energy delivered by the battery (battery
discharging), Eh

pv stands for the PV output energy while CO2
h
X represents the CO2 content,

in gCO2/kWh, of the energy coming from the corresponding DER X . It can be either the
nominal value (see equation 4.11 for battery and equation 4.12 for PV), or the corrected
value (see equation 4.13 for battery and equation 4.14 for PV). The carbon footprint of the
utility-grid energy (CO2

h
grid) is considered known beforehand, and its values for each hour h

of the test period are presented in figure 4.2.
Following a similar method as the one presented for EC, we can compute the nominal

values for the CO2 content of the energy delivered by the battery and PV, based on their
embedded carbon emissions shown in table 4.2.

CO2
nom
batt =

ECO2batt

TOEmin
(4.11)

CO2
nom
pv =

ECO2 pv

TOEexp
(4.12)

where ECO2X stands for the embedded CO2 emissions expelled to the atmosphere during
the manufacturing process of the DER X . The corresponding corrected values for the CO2

content of battery CO2
h
batt and PV energy CO2

h
pv, are computed by changing the capital cost
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CAPEXX in equations 4.4 and 4.7, and replacing it with the embedded CO2 emissions during
manufacturing. In these way, we obtain the relations to compute the corrected values for the
CO2 content of battery and PV energy, as presented in equations 4.13 and 4.14.

CO2
corr
batt =

ECO2batt

TOEmin · CL
CLmax

=
CO2

nom
batt

BLR
(4.13)

CO2
corr
pv =

ECO2 pv

TOEexp ·
E potential

pv −Ecurtailed
pv

E potential
pv

=
CO2

nom
pv

PVCF
(4.14)

The coefficients BLR and PVCF are the same as for the calculations of EC (see equations 4.5
and 4.8), as well as the TOEmin and TOEexp.

In order to compute the Through-Output-Energy (TOE), the expected annual PV pro-
duction is obtained for the study-case site. This calculation is based upon historical GHI
measurements during the test period (≈ 1 year). This annual energy output is then ex-
trapolated for the number of years that PV panels are expected to last, according to the
manufacturer (30 years with a 0.26% annual degradation given by the manufacturer). In
this way, the -average- total energy that the PV array is expected to deliver throughout its
lifetime (TOE) is obtained. Regarding the TOE value for the battery, it is the minimum
-warranted- energy that the battery will deliver during its lifetime, regardless of its profile of
use, according to the manufacturer. The CAPEX costs are based on -average- retail prices
in Europe for PV panels and Lithium-ion batteries, for the capacity requirements of the
Drahi-X MG. Regarding the embedded CO2 emissions (greenhouse gases emitted through the
manufacturing process, including extraction of raw materials), several studies were consulted
and the values were taken from the ones that seemed more adapted to the European case, and
to the manufacturing sites of the type of PV panels and batteries expected to be used in the
Drahi-X MG. A summary of the CAPEX and embedded CO2 emissions of the battery and
PV panels, as well as their nominal energy-cost, is presented in table 4.2. The costs do not
include balance-of-system expenses. The references used to obtain the TOE, CAPEX and
embedded CO2 emissions (ECO2) are presented in table 4.2. With the aforementioned values,
this table is completed using equations 4.11 and 4.12 to obtain the nominal values of CO2

content per kWh of energy delivered by the battery and PV panels, respectively. In a similar
manner, equations 4.4 and 4.7 are used to obtain the nominal cost per kWh delivered by the
battery and PV panels, respectively.
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4.4.3 Service 3: Day-ahead grid power commitment

This service can be thought as the ability of the SB to issue -beforehand-, an hourly-averaged
power profile for the upcoming day. This information could be used by the TSO to better plan
and perform their optimal UC, in an scenario where the penetration of distributed generation
with renewables will be representative. The added value of this service lies on the capacity of
the MG+EMS of dealing internally with the uncertainty associated with the IRES production
and consumption, by using the energy storage and the curtailment of excess PV energy. A MG
with such capacity, would be seen, from the TSO point of view, as a deterministic-demand
unit, whose power requirements are known one day-ahead, which would allow the TSO to
take that into account for its UC scheduling. The associated performance indicator used to
quantify this grid-commitment service, is computed as the absolute difference between the
hourly scheduled and real grid energy profiles. This indicator is normalized with respect to
the total-absolute amount of energy scheduled to be exchanged with the grid during the test
period. It will be called hereafter GC and it is expressed as a percentage, where 100% means
a perfect match between scheduled and forecasted grid power profiles and 0% represents a
deviation equivalent to the scheduled energy to be exchanged with the grid during the test
period. This can be more clearly observed in equation 4.15.

GC = 100 ·

1− 1

∑
H
h=1

∣∣∣∆t ·Pschh
grid

∣∣∣
H

∑
h=1

∆t ·
∣∣∣Prealh

grid −Pschh
grid

∣∣∣
 (4.15)

where Prealh
grid and Pschh

grid are the average-hourly real and scheduled power values exchanged
with the grid. Both sums are performed over the total number of hours H of the test period.

The equation 4.15 can be expressed in a more simple way as in equation 4.16

GC
100

= 1−GoCN = 1− GoC

∑
H
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grid
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∑
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∣∣∣Prealh
grid −Pschh

grid

∣∣∣
∑

H
h=1

∣∣∣Pschh
grid

∣∣∣ (4.16)

where GoCN stands for grid-off-commitment (normalized) power and GoC stands for grid-
off-commitment power (Not normalized).

4.4.4 Service 4: Reduction of grid peak power

If the SB-MG surpasses a certain power threshold Ppeak
grid , the utility grid must be ready to

deliver that power, even if it is required only few hours of the year. This forces the TSO to
have expensive fast-responding generation units idling, that will be required a very small
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percentage of time. Having these idling plants ready to respond to high power peaks, can
increase significantly the cost and the carbon footprint of the grid electricity. Therefore, the
service hereby proposed is meant to decrease these peak power requirements from the MG,
an its general added value, if thought in a high MGs penetration scenario, is the reduction of
the required installed capacity in the utility grid, or even the reduction in the regional power
exchanges required to satisfy the consumption peaks, which in turn implies a reduction in the
cost and carbon footprint of the utility grid electricity. The performance indicator chosen to
quantify this service corresponds to required contracted power according to the EDF-Tempo
tariff (see figure 4.1)[33]. This is directly conditioned by the maximum (i.e. peak) power
in which a given EMS strategy incurs during the test period, hence its designation as the
grid-peak-power, hereafter mentioned as GPP. The lower the GPP, the lower the required
contracted power, hence, the lower the annual fee to be paid by the SB users. This is translated
in a decrease on the final cost and carbon footprint of the electricity consumed by the users
of the MG.

4.5 Proposed two-step energy management system

Performing energy management consists, in simple words, on actively deciding what re-
sources of a MG are dispatched at what moment and with what power, in order to assure
the proper functioning of the MG (the balance between production and consumption), and
maybe, to favor a secondary objective(s). In order to do that, a system that makes decisions
is required, as well as a hardware that allows the execution of those instructions. This
process has to be performed at every moment (i.e. in real-time), otherwise the system risks to
suffer a blackout. However, sometimes it might be required to plan this real-time resources-
dispatching in advance, and for a given window of time. The reasons why sometimes, this
time-ahead planning is required, could vary. For instance, to perform the optimization of a
variable over a longer period of time, could be beneficial. Some studies have shown that,
under certain circumstances, the performance of longer optimization horizons improve and
outperform shorter horizons [104]. Another example are day-ahead energy markets. There,
producers are asked to make their energy bids one day in advance, so that the TSO can
make its arrangements to guarantee the consumption for next day (unit commitment), at
a lower cost [77, 76]. Taking a real-time reactive-only approach in this case, would be
risky for the stability of the grid, as power plants cannot start/respond instantaneously to
consumption variations, and this would probably also increase the cost of electricity. This
fact could suggest that some services can be provided only if time-ahead planning/scheduling
is performed. This is the case of the grid-commitment service explained in section 4.4.3. For
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the above reason, we decided to propose in this work a two-stage EMS strategy, where we
separate the day-ahead scheduling from the real-time power balancing. This allows to favor
two different objectives (services), one favored by the scheduling module (SCH) and the
other favored by the real-time balancing module (BAL).

In more detail, in a first stage of the EMS, an optimal scheduling is performed, where
three different strategies (with three different objectives) are possible: energy-cost, CO2

emissions or grid-peak-power. We call these objectives the Target Objectives or TOs. During
the scheduling stage, only one TO is targeted (i.e. set as optimization objective), depending on
the strategy chosen. By definition, all the other services that are not being targeted are called
Non-Target Objectives or NTOs. During this first scheduling stage, the grid-commitment
service cannot be targeted. A summary of the scheduling strategies along with their objective
functions is presented in table 4.4. The main beneficiaries of these TOs can be seen in figure
4.3.

In the second stage of the EMS, once the scheduling module has generated a given grid
and battery profiles (i.e. scheduled profiles) -while favoring one of the possible TOs-, it
broadcasts the scheduled grid profile to a second module called: the balancing module (BAL).
This module targets only one objective: the grid-commitment. This module runs in real-time
and therefore it is in charge of compensating the forecasting errors of the PV production,
by following the rules described in figure 4.7. These rules are explicitly meant to favor
the grid-commitment. This means that, the BAL module will modify the scheduled battery
profile or perform PV curtailment, in order to preserve the scheduled grid profile untouched,
as long as physical constraints allow it (i.e. available capacity on the battery). A schematic
of the proposed strategy can be seen in figure 4.5.

This proposal is different to common multi-objective optimization EMS approaches,
where the optimal compromise between the different objectives is searched simultaneously
during the optimization execution [105, 106]. In contrast, our proposal targets a different
objective (i.e. service) in each one of the two stages, (in a "cascade" approach), and using
different methods (optimization-based, rule-based). That makes the optimization problem
easier to formulate and solve, compared to a multi-objective one. But the main reason why
this approach was chosen, is because the grid-commitment, by its nature, cannot be favored
in a first EMS stage, as it requires a previously scheduled profile to be followed. Therefore,
it is a service that can only be favored during a second (real-time/balancing) stage, where it
can be set as the criteria to decide which DERs power profiles are modified to compensate
the forecasting errors, while assuring the balance between production and consumption.
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Figure 4.5 Two-stage EMS proposal

4.5.1 The optimization algorithms

Two different optimization algorithms, namely a genetic algorithm (GA) and a non-linear
programming algorithm (NLP) are used in the scheduling module to optimize the different
services that can be targeted in this stage. The basics and implementation details of those
methods, for the problem in question, are explained in the following sections.

Genetic Algorithm

In computer science, a genetic algorithm (GA) is a meta-heuristic method inspired by the
process of natural selection that belongs to the larger class of evolutionary algorithms.
Genetic algorithms are commonly used to generate quasi-optimal solutions to optimization
and search problems by relying on biologically inspired operators such as mutation, crossover
and selection [107].

The proposed genetic algorithm is composed of a population of 1000 candidates solutions
(called individuals) to the optimization problem, which are evolved toward better solutions.
Each individual has a set of properties (its chromosomes) which can be mutated and altered.
In our case, an individual contains 24 chromosomes, being each of them the average-hourly
power of the battery. Their values are limited to the maximum power of the battery (±27kW).
The evolution starts from a population of 1000 -randomly generated- individuals. In an
iterative process (after 300 iterations), the algorithm converges to a solution, presumably
quasi-optimal. The population created in each iteration is called a generation. In each
generation, the fitness of every individual in the population is evaluated. The fitness score is
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the value of the objective function in the optimization problem being solved (see equations
4.18, 4.19). The 100 more-fit individuals (i.e. the ones with the lowest "cost" dictated by the
objective function) are selected from the current population, and they are called the "parents"
of the new generation.

The GA objective function is presented in equations 4.18 or 4.19, depending on the
service that is being optimized. In each generation, the SoC profile of the battery is computed
for each individual, and a term in the objective function is included that severely penalizes the
individuals that provoke the SoC to go out-of-bounds (i.e. out of [0%,100%]). In equations
4.18 and 4.19, this term is composed by two elements: the cost factor K, and the number
of times that SoC is out-of-bounds for a given individual (SoCout). The initial SoC of the
battery is set to 50%. In order to have the same margin every day to compensate over and
under estimations of PV power production, as well as to assure sustainability of the SoC
throughout the week (i.e. that battery does not accumulate or lose charge as days pass), the
optimization algorithms are meant to leave the battery with the same SoC of 50% by the
end of the day. Therefore, another term is included in equations 4.18 and 4.19, to penalize
individuals that provoke deviations from the desired SoC by the end-of-the-day (EoD). This
term is composed by: the cost factor L and the deviation from the desired SoC by the EoD,
SoCdev. Individuals are also penalized if they send back energy to the grid, as the idea of the
study-case MG is to foster self-consumption. Therefore, even when in real-life conditions
the cost of sending energy back to the utility grid is zero, we include a term with a small cost
to penalize this action, in order to favor charging the battery with any PV surplus available,
as long as possible. This term is composed by: the cost factor M, and the energy sent to the
utility grid (Ph

grid < 0). When the grid delivers power (Ph
grid > 0), this term is not taken into

account (M = 0).
Once the 100 parents with the best fitness score have been chosen (mating pool), they

will create the next 1000 members of the next generation through the combination of their
genomes (crossover) and mutation. The crossover is performed among every adjacent pair
of parents on the mating pool. Among a pair of parents, their genome (composed of 24
chromosomes) is split in a randomly-selected position, in two parts, called A and B sections.
Then, the section A of the first parent joins the section B of the second parent, giving origin
to a new offspring. This new individual has then, a genome that is a combination of the
genome of its parents. Besides the crossover, with the aim to avoid local-optima solutions,
a mutation process is performed to every individual of the offspring generation. It consists
on randomly selecting one chromosome of the individual (i.e. the battery hourly-average
power of a -randomly selected- hour of the day), and replacing it with a random value within
the battery power limits ([-27kW,+27kW]). The whole process is repeated as many times as
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required for a pair of parents, so that they will generate their offspring quota (new individuals)
such that, among all the pairs of parents of the mating pool, the offspring of 1000 members
of the next generation is created, in an equal proportion. The parents of each generation,
are also part of the new generation, which means that after the first generation, every new
generation will have 1100 members. The new generation of candidate solutions is then used
in the next iteration of the algorithm. The algorithm terminates after 300 iterations, and the
fittest individual is chosen as the quasi-optimal solution of the algorithm. A flow diagram of
the GA hereby explained is presented in figure 4.6.

Figure 4.6 Flow diagram of the genetic algorithm

The selection of the penalizing weights K, L and M was done following a priority order,
where the least-desirable situation (physically impossible) is when the battery-SoC goes
out-of-bounds, hence, it has the highest weight (K = 1 · 106). The second least-favorable
situation is when the battery-SoC, by the EoD, is different from the desired value. This
situation is physically possible, but highly undesirable, hence its has the second highest
weight (L = 5), The most "benevolent" situation is when, due to a surplus on PV production,
energy is sent back to the utility grid. This situation is undesired only when the battery
can accept charge, as self-consumption should be favored. However, if the battery is full,
sending the surplus to the utility grid is the only solution, as during the scheduling stage no
PV curtailment is possible. This situation is penalized by the smallest factor (M = 1 ·10−5).
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The values of those weights were obtained using a random search (taking into account the
priority order previously mentioned), and comparing the output of the GA (i.e. the 24-hour
battery power profile) with a reference case. The reference case is a hypothetical day where
there is no electrical consumption. Therefore, if we minimize the energy-cost, the optimal
solution is when all the PV production of the day is sent directly to the utility grid (i.e. the
battery power profile of the entire day equals zero).

We recall, as remarked in table 4.4, that the scheduling module does not perform PV
curtailment, hence, any PV surplus has to be either sent to the battery or to the utility grid.
The performance is evaluated based on the closeness of the battery power profile produced by
the GA (for a given combination of weights K, L and M) to an all-zero profile. The number
of iterations, size of the initial population, the probability of a mutation to occur, the number
of chromosomes to be mutated, as well as the number of parents per generation (mating-pool
size), are called the hyper-parameters of the problem, and they were chosen performing a
parameter-by-parameter sensitivity exploration. Each combination of hyper-parameters was
scored based on the closeness of its output with respect to the reference case, in an analogous
manner as per the penalization weights K, L and M. A summary of the penalization weights
and hyper-parameters obtained is shown in table 4.3.

Table 4.3 Summary of the penalization weights and hyper-parameters chosen for the genetic
algorithm formulation

Penalization weights

K 1 ·106

L 5
M 1 ·10−5

Hyper-parameters

# of Iterations 300
Population size 1000

Mutation
100%

probability
# of mutating

1
chromosomes

Mating pool size
100(# of parents)

It was of interest to test the implementation and performance of a GA to solve our
optimization problem for EC and CO2 due to its versatility to treat non-linear objective
functions. In our problem formulation, the fact that the energy of the battery and utility grid
have different costs depending on their flow direction (i.e. only delivered energy has a cost),
makes our problem non-linear. Besides, we wanted to evaluate the possibility of including
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the correction factor of the battery cycling life (equation 4.5) in the objective function, which
is also non-linear. Due to time constraints, this implementation could not be included. In
following subsections, the minimization problem of the energy-cost (EC) and the carbon
footprint of the energy (CO2), that were performed using the genetic algorithm, are described.

Non-linear programming

Non-linear programming (NLP) is the process of solving an optimization problem where
some of the constraints or the objective function are nonlinear [108]. A typical formulation
of a NLP problem can be expressed as in equation 4.17.

minimize f (x)
x

subject to:
gi(x)< 0 for each i ∈ {1, ...,m}
h j(x) = 0 for each j ∈ {1, ..., p}

x ∈ X
(4.17)

where n, m and p are positive integers, X is a subset of the real coordinate space Rn, f , gi and
h j are real-valued functions on X for each i ∈ {1, ...,m} and for each j ∈ {1, ..., p}, with at
least one of f , gi and h j being non-linear. A non-linear maximization problem is defined in a
similar way.

Quadratic programming is a particular type of non-linear programming [109], and can be
defined as the process of solving a linearly constrained, quadratic optimization problem, that
is, the problem of optimizing (minimizing or maximizing) a quadratic function of several
variables subject to linear constraints on these variables. Contrary to heuristic methods such
as the GA, quadratic programming methods do not require the tuning of hyper-parameters,
which diminish the setting-up time and the uncertainty of obtaining sub-optimal solutions.
It suffices to follow the standard structure of this type of method when performing the
statement of the problem, and the computer solver will find the optimal solution, if feasible.
An example of the statement of the problem is shown for the GPP, where this algorithm is
used, as presented in section 4.5.2.
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4.5.2 The scheduling module

The scheduling module (SCH) of the EMS hereby proposed, performs a day-ahead (D-
1) scheduling of the grid average-hourly power requirements for the next day (D). The
result of the scheduling is a 24h grid power profile. Three different services are proposed
as optimization objectives in this stage: the cost of the electricity, the CO2 content and
the grid-peak-power. To perform the optimization, two different methods were used, a
genetic algorithm and a non-linear programming approach called least-squares quadratic
programming. Each method present characteristics that make them more suitable for different
optimization objectives (i.e. objective function formulations), as will be discussed in the next
sections.

Energy cost minimization

The energy-cost (hereafter called EC), is the first service minimized using the above-
mentioned GA. The costs of the battery and PV energy, included in the objective function
(see equation 4.18), correspond to the constant non-corrected nominal values Cnom, presented
in table 4.2. The correction due to battery-life reduction and PV curtailment, expressed in
equations 4.6 and 4.9, is computed once the grid power profile for the entire test period has
been generated. This has to be this way since, as expressed in equations 4.2 and 4.8, a prior
grid profile is required to compute the correction factors BLR and PVCF . The optimization
problem, including the objective function and its constraints, is expressed in the set of
equations 4.18.
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min
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batt ≤ 100%

0 kW ≤ Ph
batt ≤ 27 kW

(4.18)

where Ph mppt
pv is the maximum possible PV power output of hour h (i.e. the power delivered

by the maximum power point tracker -MPPT- controller), which depends on the GHI of that
hour. The factors M, L and K represent respectively the penalizing weights of: the power
sent to the grid (Ph

grid<0), the deviation from the desired SoC at the end of the day (SoCdev)
and SoC values that go out-of-bounds (SoCout), for a given battery profile, as previously
explained in this section. The power of the battery is capped at 27kW as it is the maximum
power that the battery pack being installed in the Drahi-X MG has, as described in section 1.

It can be observed that the costs of grid and battery energy are zero when these resources
consume energy. This is done this way because, in the case of the battery, the TOEmin given
by the manufacturer refers to delivered energy, while in the case of the grid energy, our
study-case SB is not paid if energy is sent back to the grid. The optimization is supposed to
be performed once a day (at midnight) when the PV output power forecasts for the next day
become available. The SoC of the battery is constrained to be left, by the end of each day, at
the same value as it was at the beginning of it, which in this study is set to 50%.
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Carbon footprint minimization

The second service that can be optimized during the scheduling is the CO2 content of the
energy consumed in the MG (hereafter called CO2). This variable is also minimized using
the GA approach, as for the EC. Therefore, the CO2 content of the energy coming from the
grid is considered known beforehand for every hour of the test period (see figure 4.2). The
formulation of the problem is analogous to the one presented in equation 4.18. The complete
formulation of the problem is presented in equation 4.19.

min
Pbatt

∆t ·∑24
h=1(P

h
grid ·CO2

h
grid +Ph

batt ·CO2
h
batt +Ph

pv ·CO2
h
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batt ≤ 27 kW

(4.19)

where CO2 content of the battery and PV energy included in the objective function, cor-
respond to the constant non-corrected nominal values COnom

2 , presented in table 4.2. The
corrections due to battery-life reduction and PV curtailment, expressed in equations 4.13 and
4.14, are computed once the grid power profile for the entire test period has been generated,
for the same reasons exposed for the EC minimization. The factors M, L and K represent
respectively the penalizing weights of: the power sent to the grid (Ph

grid<0), the deviation
from the desired SoC at the end of the day (SoCdev) and SoC values that go out-of-bounds
(SoCout), for a given battery profile, as previously explained in this section.
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Grid peak power minimization

The third service that was envisaged to be optimized by the scheduling module was the
required contracted power or grid-peak-power (hereafter called GPP). Due to the nature of
its objective function, the minimization of the GPP hereby proposed, falls into the category
of quadratic programming problems, therefore the NLP method, described in section 4.5.1,
was considered suitable to optimize this service. The simple formulation, convergence speed,
as well as its ability to find true optimal solutions, made us prefer this method over the GA to
optimize this service. The formulation of the optimization problem is presented in equation
4.20. We observe that the same physical constraints as for the GA formulation are present in
this problem (see equations 4.18 and 4.19).

min
Pgrid ,Pbatt

∑
24
h=1(P

h
grid

2 +Ph
batt

2)
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(4.20)

We note that here there are no costs associated to the power values, as the algorithm is
only meant to minimize the peaks of power themselves, trying to make the profile as smooth
as possible. As deduced from its objective function, the method minimizes the power peaks
of the grid and the battery simultaneously, reducing not only the required contracted power,
but also the depth-of-discharge of the battery, which might lead to extended battery life.
There is no associated costs to the grid or battery power, as the power profile itself suffices
for the optimizer to obtain the required results. As for the EC and CO2, once the algorithm
generates the resulting grid and battery profiles for the entire test period, all the performance
indicators can be computed and the grid profile is used as the input for the balancing module.
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4.5.3 The balancing module

Since the scheduling is performed using day-ahead PV output power forecasts, it is expected
to have errors on the forecasted PV power output. The battery is an element that allows to
compensate those forecasting errors to some extent, but due to its limited capacity, it could
eventually happen that the scheduled grid profiles cannot be followed as expected. In this
situation, modifications to the power profiles must be done in order to assure the balance
between production and consumption, which is at the end, the most important task to be
assured by any MG. This task is performed by the balancing module (BAL) of the EMS.
However, while fulfilling the objective just mentioned, another service is favored in this stage
of the EMS: the grid-commitment (GC).

Grid commitment

The GC is a service targeted by the BAL module through a set of rules that are meant to favor
this service as long as the physical constraints allow it. This means that, any unexpected
PV surplus will be stored in the battery, or any lack of PV power to supply the load, will be
supplied by the battery, as long as possible. The rules can be summarized as follows:

• The balancing module receives the average-hourly grid power profile issued by the
scheduling module

• By taking into account the potential (mppt) PV power output and real consumption,
the BAL module generates the corresponding power profile for the battery, by using
the energy conservation equation 4.21

• In the case when the battery gets full and there is potential PV power surplus, it is
curtailed by the controller as needed

• In the opposite case, when there is lack of PV power to satisfy the demand and battery
is empty, the BAL module takes this missing energy from the grid. This is, as a last
resource, the only moment when the BAL module modifies the commited grid profile

Ph
batt =−(Ph

grid +Ph
pv +Ph

load)

(4.21)

In our case, the BAL module performs this operation off-line, as we are working with
past data. But in a real-time implementation, we should take some considerations so that
the above mentioned rules can be actually applied to a real system. A flow diagram of the
working principle of the BAL module explained above is presented in figure 4.7.
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Figure 4.7 Working principle of the balancing strategy GCmax. The output of the scheduling
module (Pscheduled

grid ), the consumption (Pload) and the real PV output (Pmppt
pv ) are the inputs of

this module

As it is noted in the rules described above, this module favors the GC service, always
assuring the proper balance between production and consumption. In this way, after applying
the two-staged EMS, we will have favored two different objectives: GC during the BAL
stage and a second objective (i.e. EC, CO2 or GPP) assured during the SCH stage.

A summary of the EMS strategies proposed in this work, including the nomenclature,
services favored, working/optimization objectives as well as the possible forecasts to be used,
is presented in table 4.4.

4.5.4 Reference strategies

It is important to compare the results with basic strategies that allow to highlight the added
value (or not) of a given proposal. Therefore, in this work we compare the proposed EMS
strategies against three different -basic- reference strategies that are considered meaningful
to validate the contribution of our proposals.

The first EMS strategy that is envisaged to be implemented in the Drahi-X building is a
basic rule-based balancing-strategy that privileges the use of all the available PV potential
(self-consumption) and the battery use. Therefore, this strategy is used as a benchmark in
this work to compare the performance of the proposed EMS approaches, and it is designated
as PVBmax. This strategy follows simple rules: the PV potential available is either used to
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Table 4.4 Proposed EMS strategies

EMS strategy Type Algorithm Target objective Objective function / Rules Possible forecasts
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supply the consumption or to charge the battery. In the case that there is a surplus of PV, that
cannot be absorbed neither by the battery nor by the demand, it is sent back to the utility grid.
On the contrary, if the PV potential production is not sufficient to satisfy the demand, the
strategy will use any energy stored in the battery before making use of the grid. This strategy,
even when conceived as a balancing strategy, can also perform scheduling if a forecast of
the PV production is given, instead of the real PV production. Therefore, we use this as a
reference strategy for both, balancing only (PVBmax), and scheduling (PVBmax-NWP); as
presented in table 4.5. A flow diagram representing the working principle of the strategy is
presented in figure 4.8. It has to be noted that, in a real-case implementation of this strategy,
the flow of actions presented should be repeated every time the state of the system changes
(i.e. SoC, Pload, Ppv).

4.6 Performance evaluations

This section presents the main results of this chapter, divided in five sections according to
different queries that were posed in order to answer the main research question related to
this chapter which is: what could be the added value of including information about the
uncertainty of photovoltaic production forecasts, in the energy management system of a
microgrid?

A sequential analysis has been followed that unfolds, in a logical order, the different
topics, issues and unknowns required to answer the main research query. This methodology
also helps to deliver and highlight the most important messages and takeaways of the chapter,
by guiding the reader throw the different sub-questions, tables, figures and main conclusions
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Figure 4.8 Flow diagram of the reference PVBmax strategy. It works as a balancing strategy
if real PV-production (Pmppt

pv ) is given, while it performs scheduling if PV forecasts are
provided instead (P f orecast

pv )

of each sub-section. This is graphically shown in figure 4.9, where the blue boxes contain the
specific questions (in most of the cases derived from the results of the previous subsection),
while in the green boxes the answers to the questions and the most important takeaways from
each subsection are pointed out. The detailed results of each specific topic are presented
through sections 4.6.1 to 4.6.5.

4.6.1 Added value of scheduling

Scheduling can be defined as the planning of the use of resources in a MG, for a given
window of time in the future. Therefore, derived from this statement, the first advantage
of performing scheduling does not requires numbers to be proven. There are services that
simply, cannot be offered by a SB, if time-ahead scheduling is not performed. This is the
case of the grid-power-commitment, that due to its intrinsic objective of broadcasting a grid
power profile for a window of time in the future (e.g. day-ahead), it requires scheduling to be
performed beforehand, hence the use of forecasts as well. Therefore, if the EMS of a MG/SB
is not equipped with a scheduling module, it cannot offer this service, just to mention an
example.

In order to further evaluate the added value of performing scheduling in the study-case
MG with the strategies presented in section 4.5, a comparison with three different reference
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Figure 4.9 Reasoning flow followed in section 4.6 to tackle the main queries required to
answer the main research question of Chapter 4

cases has been proposed, and the results presented in table 4.5. This table summarizes
the results of three reference strategies and the three proposed EMS scheduling strategies,
according to the four performance indicators (i.e. EC, CO2, GPP and GC). This is very
important, as some studies in the field focus only on developing new functionalities or
proposing new EMS strategies, but when it comes to the analysis of results, they lack the
benchmark against basic reference cases such as no MG and/or no EMS implementation.
This is important when justifying the necessity or showing the added value of having a
MG and/or implementing an EMS strategy. The first reference case, and maybe the most
obvious, is when we assume that there is no MG deployed (NO MG in table 4.5), therefore
all the consumption is supplied by the utility grid. The second and third strategies used as
reference are the PVBmax balancing strategy and the PVBmax-NWP scheduling strategy, that
are presented in detail in section 4.5.3. A summary of the proposed strategies (scheduling and
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balancing), including the type of algorithm used, the target objective as well as the reference
to the objective function equations (when applicable), is presented in table 4.4.

The idea in this section of the study is to observe if the proposed optimization-based
scheduling strategies, are able to yield a better performance in the services they are meant to
favor, with respect to the reference strategies. In this part, NWP forecast is chosen for all the
EMS scheduling strategies in order to simulate a realistic scenario where a -commercially
available- deterministic forecast is used. The performance in each service (i.e. EC, CO2
and GPP) is computed for the entire test period. The output of all scheduling strategies,
pass through the balancing module GCmax, after which the performance indicators are
computed, as shown in table 4.5. Here, the performance indicators of the four services
(i.e. EC, CO2, GPP and GC) are computed for the three reference strategies and the three
proposed scheduling strategies (using the NWP forecasts). Values in bold represent the best
performance obtained for each indicator.

Table 4.5 Impact in performance of the proposed EMS Scheduling Strategies. NWP forecasts
used for all strategies

Performance
NO MG

No Scheduling EMS scheduling strategies
Indicator (PVBmax) PVBmax-NWP ECmin-NWP CO2min-NWP GPPmin-NWP

EC (C/kWh) 0.193 0.184 0.195 0.169 0.175 0.177
CO2 (gCO2/kWh) 61 67 69 66 64 64

GPP (kW) 30 18 30 30 30 18
GC (%) – – 97.3 99.1 98.5 99.1

However, to enrich and facilitate the analysis and the comparison of the proposed strate-
gies against the reference strategies (which can be more valuable than just analyzing the
absolute values obtained for the indicators), table 4.6 was constructed, where the percentage
difference of the proposed scheduling strategies with respect to each reference strategy (for
all performance indicators) is computed. In this table, the positive/negative bias represents
a relative increase/decrease of the corresponding performance indicator with respect to the
best result obtained. The percentage with respect to the best result of the GPP indicator,
represents the percentage-difference in terms of the annual fee that must be paid depending
on the contracted power required, as it was considered more meaningful for the purposes of
the comparison of this indicator.

Regarding the ECmin strategy, it actually manages to reduce the cost of the electricity with
respect to all the reference cases. The maximum reduction of 13.3% is achieved with respect
to the rule-based scheduling strategy PVBmax, which is understandable as this strategy is
not conceived neither to perform scheduling nor to target the energy-cost reduction in its
rules. When the PVBmax is used as a balancing strategy, it obtains the best performance
among the reference strategies considered (-8.1%), but still worse than the ECmin-NWP
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Table 4.6 Performance of the optimization-based scheduling strategies with respect to the
reference cases. NWP forecasts used for all strategies

Proposed Strategy Reference strategy Performance
strategy NO MG PVBmax PVBmax-NWP indicator

ECmin-NWP -12.4% -8.1% -13.3% EC (C/kWh)
– – +1.8% GC (%)

CO2min-NWP +4.9% -4.5% -7.2% CO2 (gCO2/kWh)
– – +1.2% GC (%)

GPPmin-NWP -30.2% -0.0% -30.2% GPP (C)
– – +1.8% GC (%)

optimization-based strategy. An important reduction of 12.4% is also obtained by the latter
with respect to the case when no MG is present. It is interesting to note the high cost of the
energy when no microgrid is present (higher than the white and blue days of tempo tariff),
which is the result of a very high consumption during the red days, that happens in winter.
This has a heavy weight on the calculation of the average price of the energy during the test
period, which brings its value above the average of the white and blue days (see figure 4.1
for tempo tariff). This remarks the superiority in performance that brings implementing the
ECmin scheduling strategy, as it optimally schedules the requirements of electricity from the
utility grid when the prices are more favorable while using the energy stored in the battery in
the opposite situation.

Regarding the CO2min strategy, that aims to reduce the CO2 content of the energy, there is
an interesting result with respect to the "NO MG" reference case, where the CO2min strategy
actually produces an increase of 4.9% in CO2 emissions. To explain this situation, it is
helpful to review the figure 4.2 and table 4.2 where we find the CO2 content of the energy
coming from the grid, PV and battery. According to figure 4.2, the average grid CO2 content
for the test period is around 56 gCO2/kWh, with a mode of 33 gCO2/kWh, a minimum of
19 gCO2/kWh and a maximum of 128 gCO2/kWh. On the other hand, according to table
4.2, the energy produced by the PV panels and stored in the battery will have, at least, a CO2

content of 56 gCO2/kWh. This value most likely will be higher most of the time, due to the
corrections that are performed, as presented in equations 4.13 and 4.14. Therefore, one could
state that in a country like France, where the electricity matrix is quite low in CO2 content
compared to the rest of Europe [110], if a MG is to be deployed with the aim to reduce CO2

emissions, thorough calculations must be performed that take into account the embedded
CO2 emissions of the PV panels and battery, to make sure that an actual reduction in CO2

emissions can be achieved. Regarding the other two reference cases, where the PVBmax

strategy is used to perform balancing and scheduling, reductions of 4.5% and 7.2% are
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achieved correspondingly in the CO2 emissions, when the CO2min strategy is implemented
with the NWP forecasts. In this case again, we observe that the PVBmax performs better
when used as a balancing strategy, which is for what it has been conceived.

Regarding the third service studied, which corresponds to the grid-peak power reduction,
the GPPmin-NWP strategy is able to reduce the required contracted power with respect to
the NO MG and the PVBmax-NWP strategies, but not with respect to the PVBmax balancing
strategy. In order to explain this, we should remind that PVBmax gives priority to the use of
battery over the use of the grid. Then, when used as a balancing strategy, it compensates
differences between production and consumption giving priority to the battery as much as
possible. Therefore, it is reasonable to think that the highest power peaks are going to be
suffered by the battery, and not the grid. On the other hand, strategies like ECmin or CO2min

use the grid at will in order to fulfill their target objectives, regardless of the grid power peaks
they might produce. In the case when no MG is deployed, as all the consumption is supplied
by the grid, the GPP is directly related to the consumption peaks during the test period. The
maximum reduction of the annual fee (due to the required contracted power) of 30.2% is
achieved with respect to the NO MG and PVBmax-NWP strategies. If this reduction on the
annual fee is expressed in terms of its impact in the average price of electricity (for the test
period), this difference would represent, for instance, a decrease of approximately 1.4%, if
the price obtained with the ECmin strategy (0.169 C/kWh) is taken as reference.

Figure 4.10 State-of-charge resulting from the battery power profile generated by the (a)
GPPmin, the (b) PVBmax and the ECmin scheduling strategies, using the NWP forecasts

Regarding the grid-commitment (GC) service, by definition, it can only be offered when
scheduling is performed. Therefore, from the reference strategies, only the the PVBmax-NWP
can offer the grid-commitment. As seen in table 4.6, it obtains a worse performance than the
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three optimization-based strategies. Even when the output from all the scheduling strategies
(including the PVBmax reference strategy) pass through the BAL module -that favors the GC-,
it seems that the strategy followed by PVBmax, which gives priority to the use of available PV
and battery energy, is not favorable for the grid-commitment. This would be the consequence
of the battery being not able to compensate the forecasting errors, according to the rules
followed by the GCmax balancing strategy (see figure 4.7), which in turn would be the result
of the battery being scheduled to spend more time in its extreme SoC states (i.e. 0% or
100%). This leaves the battery less chances to compensate forecasting errors, hence, the grid
must take on the task.

This is confirmed by the results shown in figure 4.10(a) and 4.10(b), were the SoC during
the test period for the GPPmin-NWP and the PVBmax-NWP scheduling strategies is shown
respectively. It confirms the previous statements as we see that for the former strategy, the
battery spends more time on its extreme SoC values (particularly 0% during winter months -
blue zones), which makes it unable to counteract for forecasting errors. This makes the grid
compensate for those errors instead (a greater number of times), forcing it to deviated from its
scheduled profile, hence the inferior performance on GC for the PVBmax strategy. In general,
from tables 4.5 and 4.6 we cannot conclude that the proposed scheduling strategies always
bring an improvement in performance with respect to the reference strategies. However, we
must remind that NWP might not be the most suited forecasting method for the proposed
strategies (fact that will be confirmed later, see table 4.10). Therefore, it would be more fair to
present the results of table 4.6 using the best suited forecasting method for all the scheduling
strategies, which is what table 4.7 shows. In this table, a quantile forecast expressed like:
AnEnτ=x1:x2 means that any probability level (i.e. quantile) between x1 and x2 produces the
same -optimal- performance with the strategy being used.

Table 4.7 Performance of the optimization-based scheduling strategies with respect to the
reference cases. The best-suited forecasting method for each strategy is used

Proposed Strategy Reference strategy Performance
strategy NO MG PVBmax PVBmax– indicator

ECmin-AnEnτ=0.5 -14.5% -10.3% -8.8% (AnEnτ=0.1:0.2) EC (C/kWh)
CO2min-AnEnτ=0.3 +3.3% -6.0% -1.6% (AnEnτ=0.1) CO2 (gCO2/kWh)
GPPmin-AnEnτ=0.4 -36.5% -9.0% -36.5% (AnEnτ=0.1:0.9) GPP (C)

Here we can see that, with the exception of the CO2min strategy, that is still outperformed
by the NO MG reference case for the reasons mentioned above, all the proposed scheduling
strategies outperform all the reference strategies in the services they target. This shows how
the scheduling method proposed in this work brings an added value to the MG in terms of
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performance, as long as the proper forecasting method for each strategy is chosen. This
conclusion brings out a question: what does it mean "a proper forecasting method"? What
characteristics define it? The answer to this question is addressed in the following section.

The complete results of all performance indicators of all the scheduling strategies with
all the forecasting methods used in this work, can be consulted in Appendix B.

4.6.2 Impact of deterministic forecasts uncertainty

At the heart of a scheduling strategy there is always a PV production forecast. An EMS that
performs scheduling of DERs, for a given window of time in the future, requires forecasts
as inputs, for the target time-window, in order to perform its task. But forecasts are never
100% accurate, then, their intrinsic uncertainty becomes an important subject to be studied as
presumably, this will have an effect on the final performance obtained from a given scheduling
strategy. Besides, this characteristic would define what a proper forecasting method is, as
questioned in the previous section. As we aim to isolate and analyze the effects of the
uncertainty of the solar resource, we utilize only PV production forecasts, while considering
the other variables (such as energy consumption and electricity prices) deterministic and
known beforehand. The -annual- relative errors of all the forecasting methods used in this
work can be consulted in table A.1, where the differences between the absolute error and
the bias, between the different forecasting methods, is noticeable. The ability to "swing"
between these two components gives quantile forecasts a particular added value when it
comes to their utilization as the input forecasts for an EMS, as explained below.

Recalling the statistical definition of quantile, what the deterministic quantile forecasts
(studied in Chapter 3) say is: if a given quantile τ with probability level x is used as a
prediction (i.e. x f cast = τx), there will be x% of probability that the bias (i.e. the forecasting
error) is positive, being the bias computed as the difference between the forecast value
and the observation (i.e. B = x f cast − xobs). This is an interesting characteristic of the
quantile forecasting method as it allows the decomposition of the forecasting error E f cast

in two components, namely: the -absolute- magnitude (quantified by its MAE) and a bias
(quantified by its MBE). Quantile forecasting allows us to choose (to some extent) between
the absolute magnitude and the bias of the forecasting error, which can be beneficial in an
application where having a bias in a given direction is more beneficial than having it in the
other direction (or not having it at all). Therefore, we are going to explore if the services
proposed in this work can benefit from this feature, in order to allow the EMS to enhance
the performance on those services. For this, the three EMS scheduling strategies used in
the section 4.6.1, are also used in this section, along with some -representative- forecasting
methods. The aim is to evaluate the differences in performance (regarding the studied
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services) when using forecasting methods that present errors with different characteristics
in terms of magnitude (absolute error) and bias. The results are obtained for the entire test
period and are summarized in table 4.8. In this table, the GC indicator is also included, as
grid-commitment is a common service to all the scheduling strategies (ECmin, CO2min and
GPPmin), assured by the balancing module (BAL). We show here the results of using a very
pessimistic forecast (AnEnτ=0.1), a very optimistic forecast (AnEnτ=0.9), an unbiased forecast
(PE), a low-bias high-accuracy forecast (NWP) and a perfect forecast (PF).

Table 4.8 Impact in performance of different types of forecasts

Scheduling Performance AnEnτ=0.1 AnEnτ=0.9 PE NWP PF
Strategy Indicator (Pesimistic Forecast) (Optimistic Forecast) (Unbiased Forecast1) (Reference Forecast) (Most Accurate Forecast)

ECmin
EC (C/kWh) 0.297 0.217 0.176 0.169 0.154

GC (%) 99.9 92.1 96.2 99.1 100

CO2min
CO2 (gCO2/kWh) 73 89 65 64 63

GC (%) 99.9 88.1 94.3 98.5 100

GPPmin
GPP (kW) 15 18 15 18 15

GC (%) 99.7 90.8 95.3 99.1 100

As states in table 4.8, the best results (bold values) for all indicators are obtained with
the most accurate forecast PF, with a 100% of GC for the three scheduling strategies as well
as the smallest values for EC, CO2 and GPP. This is consequent as the optimal strategies
found during scheduling are being strictly followed when a perfect forecast is used, hence the
optimal performance is achieved. However, this scenario is unrealistic as having a perfect PV-
power forecast is most likely unachievable. With this in mind, it makes sense to compare the
results obtained with realistic forecasting methods, with respect to the PF (as the theoretical
best performance achievable), in order to quantify the possible effects of the differences in
accuracy. This is observed in table 4.9 where the performance of the three EMS strategies,
regarding all performance indicators, is presented as a percentage with respect to the PF
results. In this table, the positive/negative bias represents a relative increase/decrease of the
corresponding performance indicator with respect to the result obtained using a PF. The
percentage of the GPP indicator, represents the percentage-difference in terms of the annual
fee that must be paid depending on the contracted power required, as it was considered more
meaningful for the purposes of the comparison of this indicator. The annual fee that must be
paid depending on the required contracted power can be consulted in figure 4.1.

Regarding the ECmin strategy, we observe some correlation with the bias of the forecasting
error, as EC presents its highest (worst) value with the most pessimistic forecast (AnEnτ=0.1),
followed by the most optimistic forecast (AnEnτ=0.9) and the low-bias high-absolute-error
forecast (PE). It seems that this service requires low-bias and low-absolute-error forecasts
to yield its best performance, as it is the case when using the NWP and PF. The difference

1Aside from the perfect forecast (PF)
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Table 4.9 Impact in performance of different forecasting methods with respect to a perfect
forecast

Scheduling
Service

AnEnτ=0.1 AnEnτ=0.9 PE NWP
Strategy (Most Pessimistic Forecst) (Most Optimistic Forecst) (Most Unbiased Forecast) (Commercial Forecast)

ECmin
Energy Cost +92.8% +41.0% +14.3% +9.7%

Grid Commitment -0.1% -7.9% -3.8% -0.9%

CO2min
Carbon Footprint +15.9% +41.2% +3.2% +1.6%
Grid Commitment -0.1% -11.9% -5.7% -1.5%

GPPmin
Contracted Power 0% +9.8% 0% +9.8%
Grid Commitment -0.3% -9.2% -4.7% -0.9%

between the best and the worst strategies (ECmin-PF and ECmin-AnEnτ=0.1 respectively)
are as high as 92.8%, as stated in table 4.9, which represent an increase in the price of the
electricity of 0.14 C/kWh. However, it must be remarked that the smallest cost obtained
(using ECmin-PF) is about 0.154 C/kWh, which is competitive with the tempo tariff only in
the peak hours of the white and red days, where the electricity price is higher than this value.
This remarks the importance of optimally deciding when to store/use energy from the battery,
and when is better to buy the energy directly from the utility grid, in order to optimize this
service.

Regarding the CO2 indicator, the highest value is obtained with the most optimistic
forecast (AnEnτ=0.9) forecast, which is 41.2% higher than the reference PF case, followed by
the AnEnτ=0.1 approach (+15.9%), the persistence approach (+3.2%) closing with the NWP
forecasting method that presents only an increase of +1.6% with respect to the reference
PF approach. There is a clear difference here between the results of the quantile forecasts
(AnEnτ=0.1,AnEnτ=0.9) and the other two forecasting methods (PE, NWP), which suggests
that this service is favored by low-bias forecasts.

The carbon footprint when using the CO2min-PF strategy, is 63 gCO2/kWh (see table
4.8), which is higher than the mean and the mode of the carbon footprint associated to the
electricity coming from the utility grid. This fact helps to explain the results obtained in table
4.5, that show that the average CO2 content is higher when a MG is deployed, due to the high
embedded CO2 emissions of the battery and the solar panels.

Regarding the GPPmin strategy, the behavior is a little bit different. In this case, the
smallest contracted power (i.e. the best performance) is obtained for the most pessimistic
(AnEnτ=0.1), most unbiased (PE) and most accurate (PF) forecasts, at the same time. From
this fact, it could be concluded that optimistic forecasts such as AnEnτ=0.9, are not favorable
for the grid-peak-power service. This might result from the fact that, under-estimative (or
unbiased) forecasts, are more likely to have errors that result in battery getting fully charged,
hence, promoting the PV curtailment. When this happens, the scheduled -smooth- grid
profile produced by the GPPmin strategy remains less modified. A similar situation happens
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when the PF is used, as it does not produce changes to the scheduled grid profile. This is not
the case when using the NWP forecasts, as it has a more over-estimative tendency compared
to PE or AnEnτ=0.1. For this indicator, the use of the AnEnτ=0.9 and NWP forecasts, leads to
an increase of 9.8% in the annual fee.

A similar phenomena occurs with the grid-commitment for the three scheduling strategies,
where the AnEnτ=0.1 forecast, being the most pessimistic, presents the best results. This
seems to confirm the fact that under-estimative (i.e pessimistic) PV power forecasts, favor
the grid-commitment service. The latter throws an interesting conclusion regarding the
effect of forecasts accuracy: highly optimistic or pessimistic forecasts (such as AnEnτ=0.9 or
AnEnτ=0.1), do affect negatively the performance in some services like EC or CO2 content,
that seem to be rather favored by low-bias forecasts (e.g. PE or NWP). On the other hand,
a service like grid-commitment seems to be favored by pessimistic forecasts, while the
grid contracted power, while not presenting a clearly defined behaviour, seems to prefer
avoiding optimistic forecasts. Besides, even when it does not target the GC, the ECmin

scheduling strategy seems to be overall the most favorable for this service, as it is the strategy
that manages the battery in such a way that leaves more capacity on it to compensate the
forecasting errors (i.e. in average, SoC is closer to 50%). An example of this -using NWP
forecasts- can be seen in figure 4.10 (c), where the ECmin strategy shows less white and blue
areas (100% and 0% SoC states, respectively) than the GPPmin and the PVBmax strategies.

With the previous results in mind, an EMS seems to be able to favor some services
by using different forecasting approaches that present errors with different ratios between
absolute magnitude and bias. This suggests that it does not exist an unique proper forecasting
method as such, as it is dependent on the service being targeted. Therefore, if the most
suitable forecasts are used for each service, how well can the EMS perform? To what extent
can we improve performance in the services proposed? We try to find the answer to this
question in the next section

4.6.3 Contribution of using quantile forecasts

It must be recalled that an optimization-based EMS, such as the ones proposed in this work,
require deterministic forecasts of PV production. Therefore, quantile forecasts are a way to
provide the EMS with a deterministic forecast that has intrinsic probabilistic information
embedded. More specifically, the most valuable information that we can extract from a
quantile forecasts is the bias with respect to the real value. This information reduces the
overall uncertainty of the forecast (composed by its absolute magnitude and sign/direction
related to the bias), and allows the EMS to take measurements to counteract the error. A
complete description of the AnEn method and quantile forecasts used in this section can be
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found in Chapter 3. The results presented in figure 4.11 include the PV costs, reduction in
the expected TOE of the PV array due to curtailment, as well as the correction in battery
cycling life according to equation 4.2. In other words, the electricity cost and CO2 content
for the battery and PV energy is affected by the profile of use, following equations 4.6, 4.9,
4.13 and 4.14.

The results shown in figure 4.11(a) are obtained with the ECmin scheduling strategy,
while the ones of figure 4.11(b) are obtained with the CO2min scheduling strategy. In both
plots, the battery life is presented as a gray curve that represents the battery cycling life as
a percentage of the nominal cycling life (i.e. the maximum possible cycling life), as it was
depicted in figure 4.4. The first remark coming out of figures 4.11, is that the values are
higher than the ones seen in figures C.1 for both, EC and CO2 indicators. This figure (found
in Appendix C) contains the results of the ECmin and CO2min strategies computed for the
different forecasting methods, using the nominal cost/CO2-content for the battery energy
(equations 4.4 and 4.11)) without any correction for cycling-life reduction. Besides, the
results shown in this figure do not account for any cost/CO2-content for the energy coming
from the PV panels. Therefore, figure 4.11 present a more realistic scenario as they take into
account the costs associated to the PV panels, corrections for life reduction of the battery
and curtailment of PV power. However, they continue to be approximations for a particular
study-case that should not be taken as a rule for other study-cases.

It seems that in both cases, the reduction in battery life, plays a major role in the behaviour
of both EC and CO2 indicators, as they find its minimum value where the battery life is
maximum. In both cases, the quantile forecasts permit to obtain a better performance
(however marginal) than NWP, being EC and CO2 2.4% and 0.7% less than the values
obtained using NWP, respectively. It is important to remark than the best performance for the
EC is obtained using the AnEnτ=0.5 forecast, while the lowest carbon footprint is found using
the AnEnτ=0.3 quantile forecast. This is important because it remarks the fact that not always
the most accurate forecast yields the best performance in every service. Quantile forecasts
give us the versatility to adapt to each service, allowing the EMS scheduling module to obtain
a performance beyond of which, it could provide if a unique-deterministic forecast were
used.

Regarding the minimization of the contracted power observed in figure 4.12(a), quantiles
forecasts below AnEnτ=0.4, allow a reduction of 16.6% with respect to the NWP forecasts.
Above AnEnτ=0.5, the performance is the same for both, quantile forecasts and NWP, that
allow a contracted power of 18kW, according to the tempo tariff. This fact can be explained
as for higher quantiles, the grid-commitment decreases (i.e. the grid off-commitment power
increases), meaning that more unexpected deviations from the scheduled grid profile occur.
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Figure 4.11 Impact of probabilistic forecasts in (a) the energy cost (EC) using the ECmin
scheduling strategy and in (b) the carbon footprint (CO2) using the CO2min scheduling
strategy. Results include correction for projected battery cycling life reduction (relative to
nominal) and PV curtailment



120
Forecasts and energy management in a microgrid: Impact on services provided by a smart

building

Figure 4.12 Impact of probabilistic forecasts in (a) the grid contracted power (GPP) using the
GPPmin scheduling strategy and in (b) the grid-commitment (GC) and self-consumption rate
(SC) using the CO2min scheduling strategy. Results include correction for projected battery
cycling life reduction (relative to nominal) and PV curtailment
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Whereas, for lower quantiles, the GC is higher, meaning that the MG is able to stick to the
scheduled grid profile, which was expressly meant to be smooth, as assured by the GPPmin

scheduling strategy. This is observed in figure 4.13. Adding to the latter, we observe that the
grid use (gray curve in figure 4.12), increase with the quantile, which might also be related
to higher grid power deviations. The grid usage is defined as the total -absolute- energy
exchanged by the grid during the test period.

Figure 4.13 PV power curtailment and grid off-commitment power for AnEnτ=0.1 -pessimistic-
(a) and AnEnτ=0.9 -optimistic- (b) quantile forecasts, using the GPPmin scheduling strategy.
Power values are hourly averages

If we look at the grid-commitment in figure 4.12(b) (GC-orange curve), it presents a
pseudo-parabolic decrease with the increase of the quantile. In contrast, we observe that the
self-consumption (SC-gray curve) increases following also a pseudo-parabolic pattern. This
can be simply explained as follows: over-estimative forecasts (i.e. high quantiles) provoke
errors that have to be counteracted by the grid, as it foresees more PV production than the
actual. Therefore, all the PV power available is used (SC=100%), but the grid deviates from
its scheduled profile to compensate the errors (which implies lower GC). On the other hand,
for under-estimative forecasts (i.e. low quantile forecasts), there will be excess of PV power
that is counteracted by means of PV power curtailment (i.e. lower SC), when the battery is
full. In the latter case, the MG is able to follow closely the scheduled grid power profile,
yielding the highest values of GC. The highest performance (GC = 100%) is obtained with the
AnEnτ=0.1 quantile forecast (that is, at the same time, the least accurate), and it outperforms
NWP by 1.5%. If PV costs are neglected (embedded CO2, CAPEX and corrections due to
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curtailment), as well as the battery cycling life corrections presented in equations 4.6 and
4.13, the behaviour observed in figures 4.11 change significantly. The analysis of this case
can be found in Appendix C.

In this section, we realized the advantage of the quantile forecasts, that give us the
flexibility to “choose” between absolute magnitude and bias (in a given direction) of the
forecasting errors, in order to optimize the performance for a particular service. Using these
results we managed to improve the performance of the services (independently) to a certain
extent, and we found the best combinations of scheduling-strategy + forecasting-method for
each service. However, given that the best combination of scheduling-strategy + forecasting-
method is different for each service, when we chose to optimize one service, what is the
impact over the other services? Can we find a strategy that produces a good performance for
all services? This question is tackled in the following section.

4.6.4 How optimizing for one service affect the others

This section can be considered the core of this chapter, as it tackles one of the main objectives
of the study, which is to explore if the fact of performing optimal scheduling for a particular
service, affect the performance of the other services. If so, it would be of interest to know
in which way and to what extend those other services are affected. In order to answer this
question, the best combination of scheduling strategy plus forecast, for each one of the
services, is run for the test period (along with the BAL module). In this way, the performance
of each scheduling strategy regarding its target and not-target services can be cross-compared,
to see the impact among the different strategies.

All these results are summarized in table 4.10, where the numbers in bold represent the
best values obtained for each service, and the positive/negative bias represents a relative
increase/decrease of the corresponding performance indicator with respect to the best result
obtained. In this table, the percentage with respect to the best result of the GPP indicator,
represents the percentage-difference in terms of the annual fee that must be paid depending
on the contracted power required, as it was considered more meaningful for the purposes of
the comparison of this indicator.

There are two main results to take away from this table, being the first one the fact that
the best performance in each service, is obtained when using the scheduling-strategy-plus-
forecast that targets that service. This validates the usefulness of the proposed scheduling
strategies, as they allow to produce improvements in performance in every service studied.
The second interesting fact, and related to the previous one, is that a scheduling strategy
always under-performs for those services it does not target. This is more clearly seen in table
4.10. For instance, in the case of EC, the best performance (0.165 C/kWh) is obtained with
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the ECmin-AnEnτ=0.5 scheduling strategy. Its performance in the other services is always
sub-optimal. Regarding CO2, the best performance is obtained with the CO2min-AnEnτ=0.3

strategy (63 gCO2/kWh), and the GPPmin-AnEnτ=0.4 yields the best performance in GPP (15
kW). Regarding the grid-commitment, it is not favored by any scheduling module, but by
the balancing module, that is present for all the scheduling strategies. However, based on
the results obtained for the test period, it was found that the ECmin-AnEnτ=0.1 combination,
produced the best annual performance for this service, among the different strategies.

Another important fact that comes back again in this results, is that in order to obtain
the best performance in each service, different (quantile) forecasts must be used, that are
not always the more accurate. That highlights the importance of the versatility provided
by use of the quantile forecasts obtained with the AnEn method, that outperform results
obtained with the reference NWP forecasts. Now, it is reasonable to wonder if it is possible
to find a strategy that produces a good compromise, in terms of performance, among all
services. It is true that, sometimes, the price to pay in order to achieve the best performance
in one -target- service is big (regarding the remaining services), and the superiority in the
target service might be marginal, with respect to the other strategies. For instance, if we
take the ECmin-AnEnτ=0.1 strategy, it yields the best performance for the grid-commitment
service, with a value of 99.9%. However, the advantage in performance of this indicator
with respect to the other strategies is not huge, as the worst performer in this indicator is
the ECmin-AnEnτ=0.5 strategy, which under-performs by only 1.2%. At the same time, the
"price" in terms of performance, that the MG has to pay if it chooses the ECmin-AnEnτ=0.1

strategy to obtain the best GC performance, is very significant regarding the other services,
with values up to +66.5% in carbon footprint, +80% regarding EC or -57.4% in GPP. At the
view of the above, it might not worth it to use the ECmin-AnEnτ=0.1 strategy, and rather it
would be more beneficial to choose another one that produces a better compromise among all
services. If we observe the strategy that presents the smallest under-performance values of
all, is the GPPmin-AnEnτ=0.4. So we could say that this strategy presents the best compromise
for all the services, followed by the ECmin-AnEnτ=0.5 strategy.

In order to complete this study, we present in table 4.11 a similar analysis as the one
presented in table 4.10, but using a perfect forecast for all the scheduling strategies. This was
considered valuable to be included in the discussion given that, though unrealistic, by default
the perfect forecast is the best forecasting method for all the scheduling strategies. This
allows a more uniform and fair comparison of the real impact that targeting one service has in
the performance of the other services (regardless of the effects introduced by the forecasting
methods), when performing energy management. In table 4.11 the numbers in bold represent
the best values obtained for each service, and the positive/negative bias represents a relative
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Table 4.10 Impact of targeting one service during the scheduling over the non-targeted
services. Quantile forecasts used

EMS ECmin −AnEnτ=0.5 CO2min −AnEnτ=0.3 GPPmin −AnEnτ=0.4 ECmin −AnEnτ=0.1

Intended to:
Minimize EC Minimize CO2 Minimize GPP Minimize EC

favor GC favor GC favor GC favor GC

Performance indicator
% respect % respect % respect % respect
to the best: to the best: to the best: to the best:

EC (C/kWh) 0.165 0.0 0.173 +4.8 0.177 +7.3 0.297 +80.0
CO2 (gCO2/kWh) 65 +3.3 63 0.0 64 +1.9 105 +66.5

GPP (kW) 30 +57.4 30 +57.4 15 0.0 30 +57.4
GC (%) 98.7 -1.2 99.4 -0.5 99.3 -0.6 99.9 0.0

increase/decrease of the corresponding performance indicator with respect to the best result
obtained.

Regarding the energy-cost, the results show a similar behaviour, regarding the scheduling
strategies, when using a PF as when using quantile forecasts. This means that, the best
results of the EC indicator are obtained when the ECmin strategy is used, followed by the
results obtained with the CO2min and GPPmin strategies, respectively. This confirms that
this service is sensitive to the scheduling strategy used, and it obtains its best performance
when (ECmin) is used, as expected. Moreover, this service shows sensitivity regarding the
forecasting method used, as overall, results obtained with PF (table 4.11) are lower than the
ones obtained with quantile forecasts (table 4.10).

The grid-peak-power service also shows its sensitivity to the scheduling strategy, demon-
strated by the GPP indicator, that shows better results when using the scheduling strategy
that targets this service (i.e. CO2min). On the contrary, it does not seem to be that sensitive to
the forecasting method used, as the results obtained in table 4.10 and 4.11 are the same for
this indicator. The percentage with respect to the best result obtained for this indicator, is
expressed as the percentage-difference in terms of the annual fee that must be paid depending
on the contracted power required, as it was considered more meaningful for the purposes of
this comparison.

A slightly different behavior is presented by the CO2 reduction service, which seems
to be more sensitive to the forecasting method, than to the scheduling strategy. This is
demonstrated in table 4.11 by the fact that the same value for the CO2 indicator is obtained
for the three scheduling strategies. On the contrary, differences are found with respect to
table 4.10 where other forecasting methods were used. However, it is important to note that,
the AnEnτ=0.3 forecast produced the same performance on this indicator as when using a PF.
This remarks the added value of quantile forecasts when optimizing for this service, as it
allows to obtain the same performance as the one obtained with an ideal -Perfect- forecast.
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A similar behaviour is presented by the grid-commitment service that shows to be
sensitive to the forecasting method more than to the scheduling strategy used. This is
confirmed by the differences on the results obtained using quantile forecasts (table 4.10)
and using PF (table 4.11), where the latter results outperform the former. It is important to
remark here that when using PF, the GC obtains the best performance possible (100%) for the
three scheduling strategies. This shows the non-sensitivity of this service to the scheduling
strategy as expected, because this service is not targeted during the scheduling but during
the balancing stage. However, it is clear that if the balancing module receives an unfeasible
power profile proposal from the scheduling module (due to differences between forecast
-scheduling- and real -balancing- PV-production), it might need to modify the scheduled
grid profile, which is the reason why in table 4.10 the GC indicator obtained is different for
each scheduling strategy and does not attain the 100% with any of them. Contrary to that,
when PF are used, the optimal scheduled grid power profile generated by the scheduling
module is rigorously followed during the balancing stage (because PV-production conditions
are the same in both stages), then no modification of this profile is needed, hence the 100%
performance of the GC.

Table 4.11 Impact of targeting one service during the scheduling over the non-targeted
services. Perfect forecasts used

EMS ECmin −PF CO2min −PF GPPmin −PF

Intended to:
Minimize EC Minimize CO2 Minimize GPP

favor GC favor GC favor GC

Performance indicator
% respect % respect % respect
to the best: to the best: to the best:

EC (C/kWh) 0.154 0.0 0.171 +11.0 0.173 +12.3
CO2 (gCO2/kWh) 63 0.0 63 0.0 63 0.0

GPP (kW) 30 +57.4 30 +57.4 15 0.0
GC (%) 100 0.0 100 0.0 100 0.0

From this section we conclude that targeting one service (with its best scheduling-
strategy + forecasting-method) affects negatively the performance on the other services
(i.e. the best performance of each service is only achieved when the best combination of
scheduling-strategy + forecasting-method for that particular service is used). However, a
good compromise can be found with some combinations that yield satisfactory performance
for all services. At the view of the above we wonder: can these results be affected by
different seasonal conditions? How can these best combinations of "scheduling-strategy +
forecasting-method" be adapted for each season? Could we further improve performance by
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applying seasonal EMS strategies rather than annual strategies? The answers to these queries
are tackled in the following section.

4.6.5 Seasonal performance optimization and analyses

As every building is exposed to different conditions that have a seasonal behaviour (i.e.
different degrees of accuracy of the PV forecasts, different PV production and consumption
patterns, different prices of electricity and CO2 content), the last question that arises regarding
this analysis is: how much these seasonal effects, to which a SB is exposed, can affect either
positively or negatively its performance? In order to answer this question we use in the first
part NWP forecasts as reference with the three optimization-based scheduling strategies,
and observe its performance for summer and winter (most and least accurate seasons for the
NWP forecasts). The relative errors of the NWP approach for the different seasons of the
year are shown in table 4.13. The relative errors of all the forecasting methods used in this
work computed for every season of the year, as well as the annual results, are presented in
Appendix A.

The results of the simulations for this part are summarized in table 4.12. In this table, the
performance indicators of three of the services analyzed (EC, CO2 and GC) are presented
for the ECmin-NWP and CO2min-NWP scheduling strategies. The GPPmin strategy is not
considered as the required contracted power GPP must be computed over the entire year,
making it irrelevant if computed for one season. NWP forecasts are used as a reference
-commercially available- forecasting method. Results are computed for winter and summer,
which are contrasting seasons in terms of forecasting accuracy, as well as in electricity
consumption, electricity prices and carbon footprint of grid electricity. The best performance
of each indicator is highlighted in bold.

Table 4.12 Performance obtained with the scheduling strategies using NWP in summer and
winter

Performance indicator Winter performance Summer performance

ECmin −NWP

EC (C/kWh) 0.240 (+150%) 0.096
GC (%) 99.5 (+1.1%) 98.4

CO2min −NWP

CO2 (gCO2/kWh) 59 (+5.3%) 56
GC (%) 99.3 (+1.9%) 97.4
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Looking at the ECmin-NWP strategy, its performance in EC is 150% worse in winter than
in summer, which can be explained by the higher solar irradiance during summer (and a
lower consumption), that allows to cover a high percentage of the consumption using the
PV energy, which is cheaper. Besides, the grid usage is higher during winter (orange/red
colors in figure 4.14(a)), and the prices of the grid electricity are higher during winter as well
(see figure 4.2). This strategy seems to demand high power from the grid towards midnight
during some winter days, as depicted by the purple/white points that we find in figure 4.14(a)
between January and march. This responds to the fact that the strategy has used all the energy
stored in the battery during the day (as it is cheaper to use the battery in this period of the
year when red days happen), therefore, it takes advantage at 22h (when electricity becomes
cheaper according to the tempo tariff) to bring back the SoC of the battery to the required
value of 50%, before midnight. The other strategies presented in figure 4.14(b),(c) do not
present this behaviour, as they do not respond to the daily electricity pricing scheme of the
tempo tariff.

The CO2min-NWP strategy presents a similar behaviour for the CO2 indicator, where
the performance in winter is 5.3% worse than in summer. If we take into account the fact
that in winter, the use of the grid is higher (see figure 4.14(b)), due to both, less PV power
availability and higher electrical consumption (see figure 4.14(d)), it is reasonable to have
higher carbon footprint during winter; taking into account that the CO2 content of the grid
electricity is higher in this period of the year (see figure 4.2).

Even when the GPP indicator is not included in table 4.12, it is interesting to note the
smoother color transitions (specially remarked in winter months) of the GPPmin strategy
(4.14(c)), with respect to the ECmin strategy (4.14(a)) and the CO2min strategy (4.14(b)).
This brings out the proper performance of the GPPmin strategy when smoothing the grid and
battery power profiles.

It is interesting to note that, for the two scheduling strategies, the performance in the
grid-commitment service is slightly better in winter than in summer, contrary to the other
services analyzed above. Figure 4.15 presents the grid off-commitment power (GoC in
equation 4.16) for the (a) ECmin-NWP, (b) CO2min and (c) GPPmin strategies. From this
figure we remark that the grid off-commitment power does not vary significantly throughout
the year for any of the three scheduling strategies, as noted by the uniformity of the colors
in the color plots. Values surrounding zero predominate for the three strategies, with some
negative -greenish/blueish- values slightly concentrated towards the summer months. This
slight increase in the GoC during summer, might be due to the fact that NWP forecasts tend
to over-estimate a little bit in this period (i.e. positive value of rMBE for summer in table
4.13). As it was discussed in section 4.6.3, the forecasting errors caused by over-estimative
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Figure 4.14 Grid power for the ECmin-NWP (a), CO2min-NWP (b) and GPPmin-NWP (c)
scheduling strategies, as well as the consumption (d) for the test period. Power values are
hourly averages

forecasts are compensated by the grid, which implies a higher GoC (i.e. smaller GC). But
what it does change in an important proportion between both seasons, is the overall power
exchanged by the grid (see figure 4.14). This is significantly higher during winter, and since
this is the value by which the GoC is normalized (according to equation 4.16), it is reasonable
to obtained lower values of the normalized grid-off-commitment power (GoCN in equation
4.16), which in turns produces higher values of grid-commitment (GC).

Figure 4.15 Grid off-commitment power for the ECmin-NWP (a), CO2min-NWP (b) and
GPPmin-NWP (c) scheduling strategies during test period. Power values are hourly averages
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As a second analysis, we take the best EMS strategy (i.e. best combination of scheduling
strategy and quantile forecast) based on their performance for each service and for each
season of the year. The summary of these strategies is presented in table 4.14. In this table,
when a quantile forecast has two quantiles (e.g. AnEnτ=10:90), it means that any quantile from
AnEnτ=0.1 to AnEnτ=0.9 yields the same (optimal) results for that strategy. It is already very
interesting to note how, for a given scheduling strategy, the forecasts that produce the best
results can be so different between seasons. For instance, if we use the CO2min scheduling
strategy, we require the AnEnτ=0.1 forecast in autumn to obtain the best results, whereas in
summer or spring, is the AnEnτ=0.4 forecast the one that yields the best performance. In
contrast, when using the GPPmin strategy, any quantile forecast will produce the optimal
performance in autumn, while is the AnEnτ=0.2 only in winter, who produces the best results.
The versatility of using quantile forecasts for energy management is again highlighted here,
as it permits to customize an EMS according to a particular service and season of the year,
to obtain optimal performance. The strategies described in table 4.14 are run for each
season, and the results are summarized in table 4.15. The values in parenthesis represent the
percentage difference with respect to case when the same scheduling strategies are run using
the -reference- NWP forecasts.

Table 4.13 Relative errors of NWP forecasts in different seasons

rMAE rRMSE rMBE

Summer 0.182 0.382 -0.012
Winter 0.316 0.787 0.004
Spring 0.235 0.465 0.024

Autumn 0.298 0.736 -0.041

We observe in these results that, most of the scheduling strategies that use quantile
forecasts, achieved a better performance than the same scheduling strategies using NWP
forecasts. The exception is the GPP during spring, summer and autumn, where there is no
improvement, and the carbon footprint in summer that presented a marginal increase when
using quantile forecasts. Even when some of the improvements are marginal, there are some
others that are significant, such as the carbon footprint in autumn, that decreased 24.1%
or the GPP in winter that decreased 16.7% when using quantile forecasts instead of NWP.
This supports the added value of using quantile forecasts in energy management to obtain
better performance by customizing the EMS strategy to different operating conditions and
requirements.

Regarding the seasonality differences, we see clearly that, with the exception of grid-
commitment (that achieved a 100% in all seasons), for the rest of services (i.e. EC, CO2 and
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GPP), the performance is always better in summer and spring and worst during winter and
autumn. It must be recalled that several factors play a role in the differences in performance
for the different services. Common to all of them, there is the annual variations in the
consumption patterns, as observed in figure 4.14(d). There is also the annual variability in
PV output power (i.e. PV power availability), as shown in figure 4.16, where the intensity in
the PV power available (e.g. red colors in summer months represent higher power available)
as well as the longer duration of the night during winter months (i.e. more blue area in winter
months), is a factor that clearly impacts the performance of a system powered by photovoltaic
panels.

As mentioned previously, the accuracy of the forecasts also changes throughout the year,
as seen in the tables of Appendix A. Besides the above mentioned aspects (common to all
scheduling strategies), ECmin and CO2min are affected by the variations of the prices and
CO2 content of the electricity coming from the grid, as seen in figure 4.2. The sum of the
effects of all these aspects, condition the response of the different scheduling strategies that
try to find a way to achieve their goals under these constraints. In general, based on the
results obtained, we can affirm that they succeed.

Figure 4.16 Daily available PV power during the test period (hourly average values)

Table 4.14 Best combinations of scheduling strategy and forecasting method for the different
seasons and services

Performance indicator Best Winter EMS Best Spring EMS Best Summer EMS Best Autumn EMS

EC (C/kWh) ECmin −AnEnτ=0.6 ECmin −AnEnτ=0.5 ECmin −AnEnτ=40:50 ECmin −AnEnτ=50:60
CO2 (gCO2/kWh) CO2min −AnEnτ=0.3 CO2min −AnEnτ=0.4 CO2min −AnEnτ=0.4 CO2min −AnEnτ=0.1

GPP (kW) GPPmin −AnEnτ=0.2 GPPmin −AnEnτ=20:30 GPPmin −AnEnτ=10:80 GPPmin −AnEnτ=10:90
GC (%) ECmin −AnEnτ=0.2 ECmin −AnEnτ=10:20 ECmin −AnEnτ=0.1 ECmin −AnEnτ=0.1

A third question that arises after the results presented so far in this section, is if adopting
a seasonal EMS strategy (i.e. using the strategies of table 4.14 during the corresponding
season) produce better results, by the end of the test period, than using a unique EMS strategy
for each service (i.e. EMS strategies of table 4.10) during the entire test period. The values
in parenthesis of the seasonal strategies represent their percentage performance with respect
to the case when the best annual-strategy for each service is used.

The results are summarized in table 4.16, where we can observe that for the grid-
commitment, the seasonal strategy presents only a marginal improvement of 0.1% over
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Table 4.15 Seasonal performance using the strategies of table 4.14. Values in parenthesis
respresent performance with respect to the performance obtained when using NWP

Performance indicator Winter Spring Summer Autumn

EC (C/kWh) 0.236 (-1.7%) 0.114 (-2.6%) 0.091 (-5.2%) 0.173 (-2.2%)
CO2 (gCO2/kWh) 58 (-2.1%) 53 (-0.6%) 56 (+1.1%) 89 (-24.1%)

GPP (kW) 15 (-16.7%) 12 (0%) 9 (0%) 15 (0%)
GC (%) 100 (+0.4%) 100 (+1.8%) 100 (+1.6%) 100 (+0.1%)

the annual strategy. Similarly, for the grid-peak-power there is no difference between both
approaches. On the other hand, we have a marginal decrease of 0.5% in the CO2 content for
the seasonal strategy respect to the annual strategy, whereas the energy-cost experience a
more significant reduction of 9.1% if the seasonal strategy is used. We can conclude then
that the seasonal strategy presents an overall better performance with respect to the annual
strategy. At the view of the results presented in table 4.14, where it is clearly stated that for
the different seasons of the year, different forecasting methods should be used in order to
obtain the optimal performance. Therefore, an annual strategy, that makes use of a single
forecast throughout the test period, is expected to under-perform a seasonal strategy.

Table 4.16 Performance obtained using a seasonal and an annual energy management strategy

Performance indicator
EMS strategy

Seasonal Annual

EC (C/kWh) 0.150 (-9.1%) 0.165
CO2 (gCO2/kWh) 62.8 (-0.5%) 63.1

GPP (kW) 15 (0%) 15
GC (%) 100 (+0.1%) 99.9

We can then conclude that seasonal effects such as: prices of electricity, CO2 content,
accuracy of forecasts, consumption and production patterns, do affect the performance in the
services under study. There are seasons that present conditions that allow better performance
(summer, spring) than others (winter, autumn). Best seasonal strategies are different than
annual strategies and we proved that using seasonal strategies yield better performance than
using annual strategies in some services such as the energy-cost, while for other services it
seems to be indifferent (e.g. GPP).

The complete information about the annual and seasonal performance for all the EMS
strategies proposed in this study, can be found in Appendix B. At the moment of writing, an
article containing the most important findings of this chapter is being prepared.
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4.7 Conclusions

There are several subjects that have been tackled in this chapter, as well as several conclusions
to draw. Based on the results of section 4.6.1, we can affirm that an EMS with optimization-
based scheduling strategies, as the ones hereby proposed, is able to outperform the different
reference strategies in every service, with improvements up to 50% in some cases, with the
exception of the carbon footprint, where having no MG produces, in average, 4.9% less
carbon emissions. From this result, it is important to remark that, taking into account the
embedded CO2 emissions of the battery and PV panels, as well as the electricity mix of
the country, play an important role in defining if the implementation of a MG can provide
reductions in CO2 emissions or not.

According to what is presented in section 4.6.2, we can state that more accurate forecasts
result in a better performance, particularly for EC and CO2 indicators. However, PF is not a
realistic scenario, as most likely we will always have forecasting errors. Then, comparing
a realistic -more accurate- forecast such as NWP, with a less accurate forecast such as
AnEnτ=0.1, in an annual base, shows that for some services (i.e. grid-commitment and
grid-peak-power), the most accurate forecast does not produce the best performance. This
fact is supported if we see the seasonal analysis presented in section 4.6.5, where in order to
obtain optimal performance in the different seasons of the year, different quantile forecasts
must be used. It seems that for some services, the fact of knowing the sense of the forecasting
error (i.e. if it is an under or over-estimative forecast) is more beneficial than having a very
accurate forecast.

The results presented in section 4.6.3 suggest that all services are sensitive to the forecast
quantile used and the optimum quantile depends on the service. In this way, quantile forecasts
allow to customize the EMS strategies to different services and weather conditions. The
EMS tends to counteract the errors of pessimistic forecasts via PV curtailment, while it
compensates the errors of optimistic forecasts mostly using the grid. Hence, if a service such
as GC is the optimization objective, pessimistic forecasts (i.e. quantiles less than AnEnτ=0.5)
produce the best results. In an annual-based analysis, quantile forecasts permit to obtain
better performance in EC, CO2 and GC, however, the improvement is mostly marginal. At
the same time, in a seasonal-based analysis, the advantages of using quantile forecasts can be
more significant, achieving improvements in performance of 16.7% for GPP during winter or
24.1% for CO2 emissions during autumn, with respect to the base-case NWP forecasts. We
also realized the importance of including the cost and embedded carbon content of the energy
delivered by the battery and PV panels in the calculations, as well as the significance of
correcting those values based on the battery-cycling-life reduction and PV power curtailment.
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Those aspects showed to have an important impact not only in the magnitude of the resulting
values of performance, but also in their behaviour.

In section 4.6.4, we observed how the best service indicator is found when the scheduling
optimization is oriented for that service. This implies that when the scheduling strategy
optimizes for one service (i.e. its target service), the system will under-perform in the
other services (i.e. the non-targeted services). Results of tables 4.10 and 4.11 show how the
energy-cost is sensitive to both, scheduling strategy and forecasting method used, whereas the
grid-peak-power seems to be sensitive to the scheduling strategy only. Regarding the carbon
footprint reduction, this service seems to be more sensitive to the forecasting method than to
the scheduling strategy. This is demonstrated in table 4.10 by the fact that the same value
for the CO2 indicator is obtained for the three scheduling strategies. A similar behaviour
is presented by the grid-commitment service that shows to be sensitive to the forecasting
method more than to the scheduling strategy used, as confirmed by the better performance
obtained when using PF. As this service is targeted during the balancing stage, it is reasonable
to think that it is less sensitive to the scheduling strategy, and that is the reason why, when
using PF, the same performance (i.e. GC=100%) is obtained for all the strategies.

In the search of a strategy that presents a good compromise in performance among all
services, we observe that targeting the grid-commitment is the most expensive decision,
as it is the one that affects more negatively the other services. In other words, if we use
the ECmin-AnEnτ=0.1 scheduling strategy that yields the best results for GC (99.9%), the
under-performance in the other services is particularly high (much higher than the other
scheduling strategies). This is due to the massive PV curtailment provoked by the use of a
very pessimistic forecast (AnEnτ=0.1). This seems not be worth it, as the improvement on the
GC indicator is marginal compared to the performance obtained in this indicator using the
other strategies (e.g. 1.2% improvement maximum). Therefore, a good compromise to obtain
fairly good performance in all services, seems to be the GPPmin-AnEnτ=0.4 strategy, followed
by the ECmin-AnEnτ=0.5 strategy. However, the selection of the strategy that produces the
best compromise among all services, will depend on the order of priority among the services
dictated by the final user.

Results of section 4.6.5 tells us that the best accuracy of forecasts and performance of
EC, CO2 and GPP is obtained in summer and spring while the worst performance is obtained
in winter and autumn. Winter is particularly the season when the price of the electricity is the
highest, while autumn is the period when the energy is more loaded with CO2. It is important
to remark that there are several variables such as: consumption and PV production profiles,
electricity prices and carbon footprint of the grid electricity, that vary throughout the year
and in this way, they condition the performance achieved by the EMS strategies. Isolating
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the effects of each of those variables is out of the scope of this study, however it would be of
interest to perform this study in a further stage of the research. As quantile forecasts allow to
customize the scheduling optimization for each season of the year, the implementation of a
seasonally-adapted EMS strategy might be plausible. However the results for this study-case,
demonstrated that a seasonal EMS strategy is beneficial only regarding the energy-cost,
where a decrease of up to 7.3% can be achieved. This strategy actually produces a marginal
increase in the carbon content of 1.6% with respect to the annual strategy, while performance
in contracted power (GPP) and grid-commitment (GC) are practically unaffected by the
chosen strategy.

4.8 Perspectives for further research

This work, opens up many pathways for further research, in order to deepen into the subjects
tackled in this chapter. For instance, the exploration of different services in a SB such as
thermal comfort, would be of interest as it plays an important role in any building. Users
expect the building to provide them with a temperature that allows the proper development of
the activities, being at the same time (cooling/heating), the aspect that represent the biggest
percentage of the electrical consumption in our study-case building, and it might be the case
for many others.

To assess the impact that the implementation of a demand-side-management strategy in
the SB could have, would be of interest to evaluate not only its feasibility but also its eventual
contribution with the services presented in this study. The integration of this new service into
the scheduling and balancing strategies would be an interesting subject to deepen into.

In this work, the initial state-of-charge of the battery was set to 50%. In order to
have the same margin every day to compensate over and under estimations of PV power
production. But given that we are using forecasts, which are known beforehand to either
over or under-estimate PV production, it would be interesting to explore how different levels
of initial and final state-of-charge of the battery complement different quantile forecasts, as
under-estimative forecasts might benefit from lower states-of-charge, while over-estimative
forecasts might benefit from higher states-of-charge.

Regarding to leave the the proposed EMS strategy also meany, it would be of major
interest to implement optimization in the balancing module. In this study it was based on rules,
so eventually the contribution provided by this module could be boosted if an optimization
strategy, either with receding horizon and/or rolling horizon, is implemented. For this, the
use of intra-day PV output power forecasts would be of interest to study, with the view
to further improve the performance of the balancing module. An interesting collaborative
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strategy should be implemented in this case in order to assure the agreement between the
optimization objectives of the scheduling and balancing modules. The comparison of the
results with other EMS approaches such as decentralized/agent-based, would be an important
step to validate the usefulness and performance of the strategy.

In this work, the electrical consumption was considered known beforehand as well as the
CO2 content of the grid electricity. In reality, these two variables are stochastic variables,
therefore they should be foreseen. Developing forecasts strategies for these variables (e.g.
using the AnEn for these variables too), would be very interesting in order to be closer to
a system that can be implemented in a real-life case, where forecasts of all the stochastic
variables, can be generated when required.

It would be also interesting to discretize the seasonal analysis by months, to see if this
can boost the performance of the seasonal EMS strategy. If positive results were obtained, it
would be interesting to implement a seasonal EMS strategy in the study-case SB.

After having completed the hardware installation in the Drahi-X building, it would be
of interest to actually implement an EMS as the one proposed in this work, to see what are
the practical constraints encountered, and the feasibility of implementing it in real-life. If
the implementation of such a system is successful, it would be very interesting to observe if
the output and performance obtained in this work match the ones obtained during real-life
operation.





Chapter 5

General conclusions and perspectives

As the world is leaning headlong towards a renewable-energy based energy matrix, due to
the delicate breaking point we are living regarding global warming, all the efforts aligned
in this direction are welcome, in order to prepare this renewable-energy transformation. As
it is mostly recognized by the scientific community, the limited dispatchability, variability
and uncertainty of the intermittent renewable energy sources, are the main hindrances that
are keeping these type of energy sources from a massive deployment. From this urge to
find solutions to deal with the mentioned hitches, emerged this research project that in a
transversal approach tackles the subject from the hardware, resource-forecasting and energy-
management sides, trying to profit from their complementarity in order to find meaningful
and applicable solutions to the aforementioned issue.

As the new NRLAB (Nanogrid Research Laboratory) was being created as part of an
interdisciplinary research initiative with the aim to have a tool for pedagogical, research and
demonstrative applications in the field of renewable energy production, building a physical
microgrid that could support those activities was considered a pertinent starting point for
this project. This part of the work was devoted to the conception, construction and testing
of a laboratory-scale nanogrid, with data collection, communication, user-interfacing and
energy-management capabilities that would allow the attainment of the objectives.

Three iterations were required to achieve a reasonable level of functionality, each of
them revealing challenges and sometimes unexpected issues that had to be analyzed in
order to find a proper solution. We can state that this improvement process, which involved
diving into different areas (such as metrology, power systems, basic and power electronics,
applied engineering, meteorology, physics, cost-estimation and budgeting, material purchase,
interdisciplinary team-work, students tutorship, among others) allowed a lot of constructive
and useful outcomes, which makes good results of this part of the work.
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Not only a laboratory-scale nanogrid with the potential to serve as a testbench for a
real-size microgrid was attained, but from its very conception phase produced demonstrative
and pedagogical deliverables from which many students profited from, including the author
of this work. In the technical part, key aspects regarding measurements collection and
accuracy, power flows control, PV forecasting, costs and technical constraints regarding
energy management were clearly identified, which helped not only to achieve the objectives
of this part, but also to motivate and guide the studies to be performed in the following stages.

The difficulties posed by some of the technical constraints encountered during the de-
velopment of the physical system lead to the creation of a web-based interactive game,
inspired in the physical nanogrid, that came to expand the scope by allowing to explore the
load-scheduling and demand-side-management schemes, giving at the same time, access
to a bigger number of students to profit from this pedagogical experience. The several
practical exercises performed throughout the last 3 years with this game, as well as with
the physical nanogrid, proved that both are complementary tools that are useful to address
complex systemic questions on microgrids and energy management.

The game threw insights regarding the importance of forecasts as the base to perform
any resource-scheduling in a microgrid, that confirmed the importance of performing the
study developed in the second part of this thesis. The main motivation of this section was
to propose a method to extract information regarding the uncertainty of readily-available
deterministic forecasts from numerical weather predictions (NWP). As it was observed that
forecasts are the base for any type of time-ahead scheduling, we came up with the hypothesis
that having some probabilistic information regarding the forecasts being used, could provide
an added value when performing energy management of a microgrid that could be reflected
in an improvement in performance.To achieve this goal, an adapted analogs-ensembles
method was proposed, that was calibrated for the site of Ecole Polytechnique, where a
microgrid was being deployed on a tertiary building (the Drahi-X Novation Center). This
method showed not only its versatility in producing statistically meaningful probabilistic
information from commercially-available deterministic forecasts, but proved to outperform
benchmark methods such as monthly-climatology, persistence or a calibrated output of the
well-known ensemble prediction system produced by the European Centre for Medium-
Range Weather Forecasts (ECMWF). Moreover, the use of quantile forecasts, extracted from
the ensembles generated by our adapted analogs-ensembles method, provided a interesting
tool to integrate the uncertainty information contained in the ensembles distributions, into an
energy management system of a microgrid.

In a following stage, an energy management scheme was developed, envisaging its
eventual application in the Drahi-X microgrid, that allows the integration of the probabilistic
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information of the forecasts produced in the previous part of this work. Making use of some
of the insights obtained in Chapter 3, several objectives were established as "services" to
be offered by a smart-building (i.e. the Drahi-X, in our case study application), to study
the impacts in performance when targeting each of them. The services proposed were:
energy cost, carbon footprint, grid peak power and grid commitment. While energy cost
and carbon footprint are common services used by the scientific community when it comes
to the performance evaluation of energy management strategies, the grid peak power and
the grid commitment were found to be little explored in the domain of microgrids. In
particular, the grid commitment is considered to have a great potential in the facilitation of
renewables to be massively deployed -through distributed generation-, as it gets rid off the
uncertainty problem in the utility-grid side, by dealing and counteracting it internally with the
resources available in the microgrid. The energy management strategies proposed in this part,
present a two-stage structure that allows not only to favor the grid-commitment by default,
but also to target another service among the three remaining objectives (i.e. energy cost,
carbon footprint, grid peak power). The results have shown the efficacy of these strategies,
along with the use of quantile forecasts, to improve performance with respect to reference
scenarios with basic -or nonexistent- energy management strategies, as the one planned to be
implemented in the Drahi-X microgrid at its first stage (by the second half of 2020). The
analysis performed yielded interesting results regarding the antagonism among some of those
services, as well as possible strategies to find a good compromise among all of them, which
was one important objective set for this section. The value of quantile forecasting as a mean
to integrate probabilistic/uncertainty information of forecasts into an energy management
system, and to produce further enhancements in performance was also verified.

Due to the time-limited nature of a PhD, several subjects were opened-up to the discussion
but no time was available to go into details or even exploring them at all, leaving space for
future research through other PhD thesis or post-doctoral projects. We classify these related
research pathways in four five main axes:

• Implementation of -at least some- of the energy management strategies developed in
Chapter 4 in the NRLAB nanogrid

• Complementing the day-ahead scheduling strategies hereby proposed with intra-
day/real-time optimal energy management to further enhance performance

• Complementing those strategies with demand-side-management schemes as the ones
explored with the game in Chapter 2

• Finding quantitative indicators for human satisfaction in different aspects related to
human “comfort”, so that it can be included in the decision-making process of the
energy management system
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• Implementation of those strategies in a real-size (e.g. Drahi-X) microgrid

The subject is vast, then the contribution of this work is humble. However, after the
several steps followed throughout the evolution of this research, by putting all the results
together, the presented work brought promising answers to the research questions addressed
and brought out interesting elements that are worth putting in practice to dive further into
this challenging and important topic.
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Appendix A

Seasonal forecasting errors

In this section, the relative errors (rMAE, rRMSE, rMBE) are computed for all the forecasting
methods used in this work, for the entire test period (annual forecasting errors), as well as for
each season of the year. This appendix has been referenced in chapter 4.

Table A.1 Annual forecasting errors

Forecast rMAE rRMSE rMBE

PF 0.000 0.000 0.000
PE 0.372 0.816 -0.001

NWP 0.219 0.503 -0.002
AnEnτ=0.1 0.384 0.766 -0.354
AnEnτ=0.2 0.278 0.585 -0.205
AnEnτ=0.3 0.225 0.493 -0.098
AnEnτ=0.4 0.203 0.461 -0.015
AnEnτ=0.5 0.200 0.466 0.054
AnEnτ=0.6 0.210 0.498 0.117
AnEnτ=0.7 0.234 0.551 0.178
AnEnτ=0.8 0.270 0.623 0.240
AnEnτ=0.9 0.329 0.728 0.316
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Table A.2 Winter forecasting errors

Forecast rMAE rRMSE rMBE

PF 0 0 0
PE 0.628 1.499 -0.012

NWP 0.316 0.787 0.004
AnEnτ=0.1 0.498 1.178 -0.467
AnEnτ=0.2 0.368 0.895 -0.285
AnEnτ=0.3 0.305 0.757 -0.146
AnEnτ=0.4 0.283 0.717 -0.029
AnEnτ=0.5 0.288 0.739 0.077
AnEnτ=0.6 0.315 0.824 0.18
AnEnτ=0.7 0.371 0.96 0.287
AnEnτ=0.8 0.452 1.138 0.411
AnEnτ=0.9 0.595 1.409 0.578

Table A.3 Spring forecasting errors

Forecast rMAE rRMSE rMBE

PF 0 0 0
PE 0.39 0.751 -0.008

NWP 0.235 0.465 0.024
AnEnτ=0.1 0.422 0.74 -0.398
AnEnτ=0.2 0.314 0.566 -0.25
AnEnτ=0.3 0.251 0.462 -0.133
AnEnτ=0.4 0.223 0.419 -0.038
AnEnτ=0.5 0.218 0.421 0.044
AnEnτ=0.6 0.228 0.453 0.121
AnEnτ=0.7 0.256 0.513 0.195
AnEnτ=0.8 0.302 0.594 0.271
AnEnτ=0.9 0.374 0.709 0.362
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Table A.4 Summer forecasting errors

Forecast rMAE rRMSE rMBE

PF 0 0 0
PE 0.29 0.581 0.008

NWP 0.182 0.382 -0.012
AnEnτ=0.1 0.317 0.547 -0.278
AnEnτ=0.2 0.225 0.421 -0.14
AnEnτ=0.3 0.184 0.37 -0.05
AnEnτ=0.4 0.168 0.356 0.014
AnEnτ=0.5 0.166 0.362 0.064
AnEnτ=0.6 0.173 0.379 0.106
AnEnτ=0.7 0.186 0.406 0.144
AnEnτ=0.8 0.202 0.438 0.178
AnEnτ=0.9 0.227 0.48 0.215

Table A.5 Autumn forecasting errors

Forecast rMAE rRMSE rMBE

PF 0 0 0
PE 0.471 1.142 0.018

NWP 0.298 0.736 -0.041
AnEnτ=0.1 0.479 1.109 -0.459
AnEnτ=0.2 0.359 0.871 -0.295
AnEnτ=0.3 0.297 0.742 -0.166
AnEnτ=0.4 0.271 0.691 -0.064
AnEnτ=0.5 0.266 0.683 0.03
AnEnτ=0.6 0.279 0.714 0.119
AnEnτ=0.7 0.311 0.78 0.21
AnEnτ=0.8 0.367 0.885 0.31
AnEnτ=0.9 0.464 1.065 0.435





Appendix B

Performance results

In this section, the results of all the scheduling strategies proposed in chapter 4 are presented.
Calculations are performed using all the forecasting methods available, for all the seasons
of the year as well as for the entire test period (annual results). This appendix has been
referenced in chapter 4.

Table B.1 Performance indicators, annual results (Scheduling strategy: ECmin)

GC EC CO2 G>9* G>12* G>15* G>18* G>30*
(%) (C/kWh) (gCO2/kWh) (%) (%) (%) (%) (%)

AnEnτ=0.1 99.9 0.297 105 8.3 3.8 1 0.4 0
AnEnτ=0.2 99.9 0.224 83 8.6 3.7 1.1 0.4 0
AnEnτ=0.3 99.7 0.183 70 9.1 3.6 0.9 0.4 0
AnEnτ=0.4 99.4 0.168 66 9.3 3.5 1 0.4 0
AnEnτ=0.5 98.7 0.165 65 9.5 3.7 1 0.4 0
AnEnτ=0.6 97.8 0.17 67 9.7 3.6 1 0.4 0
AnEnτ=0.7 96.6 0.181 71 9.6 3.7 1.1 0.5 0
AnEnτ=0.8 94.9 0.197 76 9.4 3.7 1.1 0.5 0
AnEnτ=0.9 92.1 0.217 82 9.3 3.5 1 0.5 0

NWP 99.1 0.169 66 9.7 3.8 1.1 0.5 0
PE 96.2 0.176 67 9.4 3.8 1.1 0.4 0
PF 100 0.154 63 9.8 3.7 1 0.4 0

*G > X : Percentage of time that grid -absolute- power surpasses X kW during test period
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Table B.2 Performance indicators, annual results (Scheduling strategy: CO2min)

GC EC CO2 G>9 G>12 G>15 G>18 G>30
(%) (C/kWh) (gCO2/kWh) (%) (%) (%) (%) (%)

AnEnτ=0.1 99.9 0.206 73 8.6 4 1 0.1 0
AnEnτ=0.2 99.7 0.183 66 8.7 3.9 0.9 0.2 0
AnEnτ=0.3 99.4 0.173 63 8.9 3.9 1 0.1 0
AnEnτ=0.4 98.8 0.174 64 9.4 3.8 0.8 0.1 0
AnEnτ=0.5 97.8 0.183 66 9.4 3.9 1 0.2 0
AnEnτ=0.6 96.3 0.196 70 9.4 3.9 0.9 0.2 0
AnEnτ=0.7 94.4 0.213 75 9.2 3.9 1 0.2 0
AnEnτ=0.8 91.8 0.231 81 9.3 3.9 0.9 0.2 0
AnEnτ=0.9 88.1 0.259 89 9.5 3.8 0.9 0.3 0

NWP 98.5 0.175 64 9.6 4 1 0.3 0
PE 94.3 0.181 65 9.6 4.1 1 0.2 0
PF 100 0.171 63 9.2 3.9 0.9 0.2 0

Table B.3 Performance indicators, annual results (Scheduling strategy: GPPmin)

GC EC CO2 G>9 G>12 G>15 G>18 G>30
(%) (C/kWh) (gCO2/kWh) (%) (%) (%) (%) (%)

AnEnτ=0.1 99.7 0.255 87 5.6 0.9 0 0 0
AnEnτ=0.2 99.8 0.21 74 5.4 0.8 0 0 0
AnEnτ=0.3 99.7 0.185 67 5.3 0.8 0 0 0
AnEnτ=0.4 99.3 0.177 64 5.2 0.8 0 0 0
AnEnτ=0.5 98.6 0.179 65 5.3 0.9 0.1 0 0
AnEnτ=0.6 97.5 0.186 67 5.4 0.9 0.1 0 0
AnEnτ=0.7 96 0.198 71 5.5 0.9 0.1 0 0
AnEnτ=0.8 93.9 0.213 76 5.6 1 0.1 0 0
AnEnτ=0.9 90.8 0.232 82 5.7 1 0.1 0 0

NWP 99.1 0.177 64 5.3 0.9 0.1 0 0
PE 95.3 0.182 65 5.7 1 0 0 0
PF 100 0.173 63 5.3 0.8 0 0 0
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Table B.4 Performance indicators, annual results (Scheduling strategy: PV Bmax)

GC EC CO2 G>9 G>12 G>15 G>18 G>30
(%) (C/kWh) (gCO2/kWh) (%) (%) (%) (%) (%)

AnEnτ=0.1 99.9 0.181 64 8.8 4.1 1 0.1 0
AnEnτ=0.2 99.5 0.181 65 9.1 4 0.9 0.1 0
AnEnτ=0.3 98.8 0.187 67 9.4 3.9 0.8 0.1 0
AnEnτ=0.4 97.8 0.195 69 9.7 3.9 0.8 0.1 0
AnEnτ=0.5 96.4 0.205 72 9.9 4 0.8 0.1 0
AnEnτ=0.6 94.6 0.215 76 10 4 0.8 0.1 0
AnEnτ=0.7 92.4 0.226 79 10.1 4.1 0.7 0.1 0
AnEnτ=0.8 89.7 0.238 83 10.3 4.2 0.7 0.1 0
AnEnτ=0.9 86 0.255 88 10.4 4.2 0.7 0.1 0

NWP 97.3 0.195 69 9.9 4.1 0.8 0.1 0
PE 92.9 0.194 68 10.1 4.2 0.9 0.1 0
PF 100 0.184 67 9.7 3.7 0.7 0.1 0

Table B.5 Performance indicators, autumn results (Scheduling strategy: ECmin)

GC EC CO2 G>9 G>12 G>15 G>18 G>30
(%) (C/kWh) (gCO2/kWh) (%) (%) (%) (%) (%)

AnEnτ=0.1 100.0 0.259 126 5.6 1.1 0.3 0
AnEnτ=0.2 99.9 0.21 103 5.2 1.2 0.3 0
AnEnτ=0.3 99.9 0.187 93 5.3 0.9 0.3 0.1
AnEnτ=0.4 99.8 0.177 89 5.3 0.9 0.4 0.1
AnEnτ=0.5 99.7 0.173 87 5.3 0.9 0.3 0.1
AnEnτ=0.6 99.6 0.173 87 4.9 1 0.4 0
AnEnτ=0.7 99.5 0.177 89 5.2 1 0.6 0
AnEnτ=0.8 99.3 0.187 93 4.9 1.2 0.5 0.1
AnEnτ=0.9 98.8 0.202 100 4.6 1 0.4 0

NWP 99.8 0.177 88 5.6 1 0.5 0
PE 99.4 0.181 89 5.3 1.3 0.5 0
PF 100.0 0.165 85 5.3 1 0.3 0
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Table B.6 Performance indicators, autumn results (Scheduling strategy: CO2min)

GC EC CO2 G>9 G>12 G>15 G>18 G>30
(%) (C/kWh) (gCO2/kWh) (%) (%) (%) (%) (%)

AnEnτ=0.1 100.0 0.194 89 6.5 1 0.1 0
AnEnτ=0.2 99.8 0.209 96 6 1 0.3 0
AnEnτ=0.3 99.4 0.23 106 6 1.1 0.3 0
AnEnτ=0.4 98.8 0.249 115 6 1 0.3 0
AnEnτ=0.5 98.1 0.275 127 6 1.2 0.5 0.1
AnEnτ=0.6 97.0 0.297 136 5.8 1 0.4 0.1
AnEnτ=0.7 95.6 0.316 145 5.8 1.2 0.5 0.1
AnEnτ=0.8 94.0 0.34 156 5.5 1 0.3 0
AnEnτ=0.9 91.5 0.367 169 5.3 0.9 0.5 0.1

NWP 98.5 0.255 117 6.2 1.2 0.6 0
PE 95.9 0.241 111 5.8 1 0.3 0
PF 100.0 0.295 136 6.1 1 0.4 0.1

Table B.7 Performance indicators, autumn results (Scheduling strategy: GPPmin)

GC EC CO2 G>9 G>12 G>15 G>18 G>30
(%) (C/kWh) (gCO2/kWh) (%) (%) (%) (%) (%)

AnEnτ=0.1 100.0 0.239 110 0.3 0 0 0
AnEnτ=0.2 100.0 0.208 96 0.3 0 0 0
AnEnτ=0.3 100.0 0.192 89 0.3 0 0 0
AnEnτ=0.4 99.9 0.187 87 0.3 0 0 0
AnEnτ=0.5 99.8 0.186 86 0.4 0 0 0
AnEnτ=0.6 99.6 0.19 88 0.3 0 0 0
AnEnτ=0.7 99.3 0.197 92 0.3 0 0 0
AnEnτ=0.8 98.9 0.21 98 0.3 0 0 0
AnEnτ=0.9 97.9 0.229 106 0.3 0 0 0

NWP 99.9 0.187 87 0.4 0 0 0
PE 99.0 0.188 87 0.5 0 0 0
PF 100.0 0.184 86 0.3 0 0 0
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Table B.8 Performance indicators, autumn results (Scheduling strategy: PV Bmax)

GC EC CO2 G>9 G>12 G>15 G>18 G>30
(%) (C/kWh) (gCO2/kWh) (%) (%) (%) (%) (%)

AnEnτ=0.1 99.9 0.245 112 6.3 0.7 0.1 0
AnEnτ=0.2 99.6 0.288 132 6.2 0.7 0.1 0
AnEnτ=0.3 99.1 0.333 155 6.1 0.7 0.1 0
AnEnτ=0.4 98.5 0.374 175 5.9 0.6 0.1 0
AnEnτ=0.5 97.7 0.413 194 5.7 0.6 0.1 0
AnEnτ=0.6 96.6 0.447 211 5.6 0.6 0.1 0
AnEnτ=0.7 95.2 0.476 225 5.5 0.5 0.1 0
AnEnτ=0.8 93.6 0.502 238 5.6 0.5 0.1 0
AnEnτ=0.9 91.1 0.517 245 5.4 0.5 0.1 0

NWP 98.2 0.381 178 6.1 0.6 0.1 0
PE 95.6 0.332 154 5.8 0.5 0.1 0
PF 100 0.517 246 5.4 0.5 0.1 0

Table B.9 Performance indicators, spring results (Scheduling strategy: ECmin)

GC EC CO2 G>9 G>12 G>15 G>18 G>30
(%) (C/kWh) (gCO2/kWh) (%) (%) (%) (%) (%)

AnEnτ=0.1 100.0 0.279 99 1.9 0 0 0
AnEnτ=0.2 100.0 0.193 75 2.4 0 0 0
AnEnτ=0.3 99.9 0.138 61 3.4 0 0 0
AnEnτ=0.4 99.6 0.116 55 4.1 0 0 0
AnEnτ=0.5 98.0 0.114 54 5 0 0 0
AnEnτ=0.6 95.5 0.12 57 5.1 0 0 0
AnEnτ=0.7 92.5 0.139 62 5.1 0.1 0 0
AnEnτ=0.8 87.8 0.163 69 5 0.1 0 0
AnEnτ=0.9 81.2 0.189 77 4.9 0.1 0 0

NWP 98.2 0.117 55 5.8 0 0 0
PE 92.2 0.123 57 5.1 0 0 0
PF 100.0 0.095 52 5.2 0 0 0
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Table B.10 Performance indicators, spring results (Scheduling strategy: CO2min)

GC EC CO2 G>9 G>12 G>15 G>18 G>30
(%) (C/kWh) (gCO2/kWh) (%) (%) (%) (%) (%)

AnEnτ=0.1 99.8 0.199 74 1.9 0 0 0
AnEnτ=0.2 99.8 0.151 61 2.1 0 0 0
AnEnτ=0.3 99.7 0.126 55 2.7 0 0 0
AnEnτ=0.4 98.8 0.118 53 3.7 0 0 0
AnEnτ=0.5 96.5 0.12 53 3.9 0 0 0
AnEnτ=0.6 93 0.13 56 4.5 0.1 0 0
AnEnτ=0.7 88.7 0.146 61 4.4 0 0 0
AnEnτ=0.8 82.5 0.163 65 4.5 0.1 0 0
AnEnτ=0.9 74.4 0.192 74 4.7 0 0 0

NWP 97 0.12 53 4.5 0 0 0
PE 88.9 0.124 54 3.8 0.1 0.1 0
PF 100 0.11 51 3.9 0 0 0

Table B.11 Performance indicators, spring results (Scheduling strategy: GPPmin)

GC EC CO2 G>9 G>12 G>15 G>18 G>30
(%) (C/kWh) (gCO2/kWh) (%) (%) (%) (%) (%)

AnEnτ=0.1 99.6 0.217 78 0.3 0 0 0
AnEnτ=0.2 99.8 0.165 64 0.1 0 0 0
AnEnτ=0.3 99.8 0.134 57 0.1 0 0 0
AnEnτ=0.4 99.2 0.122 54 0.2 0 0 0
AnEnτ=0.5 97.3 0.123 54 0.4 0 0 0
AnEnτ=0.6 93.9 0.131 57 0.5 0 0 0
AnEnτ=0.7 89.7 0.145 61 0.7 0 0 0
AnEnτ=0.8 84.3 0.161 65 0.9 0 0 0
AnEnτ=0.9 76.4 0.18 71 0.9 0 0 0

NWP 97.4 0.123 54 0.3 0 0 0
PE 89.8 0.127 55 0.3 0 0 0
PF 100 0.114 52 0.2 0 0 0
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Table B.12 Performance indicators, spring results (Scheduling strategy: PV Bmax)

GC EC CO2 G>9 G>12 G>15 G>18 G>30
(%) (C/kWh) (gCO2/kWh) (%) (%) (%) (%) (%)

AnEnτ=0.1 99.8 0.137 56 2 0 0 0
AnEnτ=0.2 99.3 0.123 53 2.6 0 0 0
AnEnτ=0.3 98.2 0.118 52 3.6 0 0 0
AnEnτ=0.4 96.2 0.118 53 4.5 0 0 0
AnEnτ=0.5 93.4 0.121 54 5.1 0 0 0
AnEnτ=0.6 89.2 0.126 55 5.5 0 0 0
AnEnτ=0.7 83.8 0.131 56 6 0 0 0
AnEnτ=0.8 78 0.14 59 6.1 0 0 0
AnEnτ=0.9 70.8 0.152 62 6.6 0 0 0

NWP 94.7 0.121 53 4.9 0 0 0
PE 84.8 0.125 54 5.1 0 0 0
PF 100 0.108 51 4.6 0 0 0

Table B.13 Performance indicators, summer results (Scheduling strategy: ECmin)

GC EC CO2 G>9 G>12 G>15 G>18 G>30
(%) (C/kWh) (gCO2/kWh) (%) (%) (%) (%) (%)

AnEnτ=0.1 100 0.173 83 0.3 0 0 0
AnEnτ=0.2 99.4 0.121 68 1.6 0 0 0
AnEnτ=0.3 98.7 0.097 62 2.5 0 0 0
AnEnτ=0.4 98 0.091 61 3.2 0.1 0 0
AnEnτ=0.5 96.5 0.091 62 3.5 0.3 0 0
AnEnτ=0.6 94.7 0.096 63 3.9 0.3 0 0
AnEnτ=0.7 92.6 0.103 65 4.2 0.5 0 0
AnEnτ=0.8 90.4 0.111 68 4.1 0.4 0 0
AnEnτ=0.9 87.1 0.119 71 3.8 0.4 0 0

NWP 98.4 0.096 62 3.1 0.1 0 0
PE 91.7 0.103 63 3.6 0.6 0 0
PF 100 0.073 59 3.7 0.2 0 0
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Table B.14 Performance indicators, summer results (Scheduling strategy: CO2min)

GC EC CO2 G>9 G>12 G>15 G>18 G>30
(%) (C/kWh) (gCO2/kWh) (%) (%) (%) (%) (%)

AnEnτ=0.1 99.9 0.138 66 0.2 0 0 0
AnEnτ=0.2 98.9 0.112 59 1.1 0 0 0
AnEnτ=0.3 97.9 0.1 57 1.6 0 0 0
AnEnτ=0.4 96.5 0.098 56 2.2 0.1 0 0
AnEnτ=0.5 94 0.1 57 2.4 0.1 0 0
AnEnτ=0.6 91.2 0.104 58 2.3 0.2 0 0
AnEnτ=0.7 88.1 0.108 60 2.2 0.2 0 0
AnEnτ=0.8 84.6 0.115 62 2.7 0.3 0 0
AnEnτ=0.9 80.7 0.126 65 2.9 0.2 0 0

NWP 97.4 0.098 56 2.1 0 0 0
PE 86.7 0.103 59 2.6 0.4 0 0
PF 100 0.091 54 2.3 0.2 0 0

Table B.15 Performance indicators, summer results (Scheduling strategy: GPPmin)

GC EC CO2 G>9 G>12 G>15 G>18 G>30
(%) (C/kWh) (gCO2/kWh) (%) (%) (%) (%) (%)

AnEnτ=0.1 99.9 0.142 70 0 0 0 0
AnEnτ=0.2 99.3 0.114 62 0 0 0 0
AnEnτ=0.3 98.6 0.102 59 0 0 0 0
AnEnτ=0.4 97.4 0.1 58 0 0 0 0
AnEnτ=0.5 95.3 0.101 59 0 0 0 0
AnEnτ=0.6 92.8 0.104 60 0 0 0 0
AnEnτ=0.7 89.9 0.109 62 0 0 0 0
AnEnτ=0.8 86.6 0.113 63 0 0 0 0
AnEnτ=0.9 82.6 0.119 65 0.1 0 0 0

NWP 98 0.101 58 0 0 0 0
PE 88.8 0.107 61 0 0 0 0
PF 100 0.093 57 0 0 0 0
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Table B.16 Performance indicators, summer results (Scheduling strategy: PV Bmax)

GC EC CO2 G>9 G>12 G>15 G>18 G>30
(%) (C/kWh) (gCO2/kWh) (%) (%) (%) (%) (%)

AnEnτ=0.1 99.5 0.111 58 0.3 0 0 0
AnEnτ=0.2 98.7 0.104 56 1.7 0 0 0
AnEnτ=0.3 96.7 0.101 55 2.6 0 0 0
AnEnτ=0.4 95.1 0.101 55 3.3 0.3 0 0
AnEnτ=0.5 93.4 0.101 56 3.8 0.5 0 0
AnEnτ=0.6 91.2 0.102 57 4 0.7 0 0
AnEnτ=0.7 88.7 0.104 57 4.5 0.9 0 0
AnEnτ=0.8 85.9 0.107 58 4.8 0.9 0 0
AnEnτ=0.9 83 0.112 59 4.9 1 0 0

NWP 95.1 0.101 55 3.1 0.3 0 0
PE 88.1 0.105 58 3.4 0.6 0 0
PF 100 0.096 54 4 0.4 0 0

Table B.17 Performance indicators, winter results (Scheduling strategy: ECmin)

GC EC CO2 G>9 G>12 G>15 G>18 G>30
(%) (C/kWh) (gCO2/kWh) (%) (%) (%) (%) (%)

AnEnτ=0.1 99.9 0.325 82 22.1 11.2 3.5 1.4 0.1
AnEnτ=0.2 100 0.278 71 21.2 10.8 3.7 1.6 0
AnEnτ=0.3 99.8 0.251 65 21.8 10.5 3.2 1.3 0
AnEnτ=0.4 99.6 0.24 62 21.1 10.1 3.6 1.5 0
AnEnτ=0.5 99.3 0.237 62 21.2 10.3 3.5 1.6 0.1
AnEnτ=0.6 99 0.236 61 21.2 9.8 3.4 1.5 0.1
AnEnτ=0.7 98.5 0.244 63 20.5 10 3.6 1.7 0.2
AnEnτ=0.8 97.7 0.254 66 20.3 10.2 3.5 1.6 0
AnEnτ=0.9 96.3 0.272 70 20.4 9.8 3.4 1.9 0

NWP 99.5 0.24 62 21.6 10.5 3.8 1.6 0.1
PE 98.3 0.251 64 20.6 10.2 3.6 1.5 0.2
PF 100 0.229 60 21.2 10.4 3.5 1.5 0
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Table B.18 Performance indicators, winter results (Scheduling strategy: CO2min)

GC EC CO2 G>9 G>12 G>15 G>18 G>30
(%) (C/kWh) (gCO2/kWh) (%) (%) (%) (%) (%)

AnEnτ=0.1 99.9 0.269 65 22.3 11.5 3.4 0.5 0
AnEnτ=0.2 99.9 0.246 60 21.7 11.1 3.1 0.4 0
AnEnτ=0.3 99.7 0.237 58 21.4 11.2 3.1 0.3 0
AnEnτ=0.4 99.4 0.237 59 21.7 10.7 2.8 0.3 0
AnEnτ=0.5 99.1 0.246 61 21.8 11.2 3.1 0.4 0
AnEnτ=0.6 98.6 0.259 64 21.5 10.9 3.1 0.4 0
AnEnτ=0.7 97.8 0.276 68 20.9 10.8 3.3 0.5 0
AnEnτ=0.8 96.7 0.297 73 20.9 11 2.9 0.5 0
AnEnτ=0.9 94.8 0.331 81 21.2 10.6 3 0.6 0

NWP 99.3 0.24 59 22.1 11.3 3.2 0.6 0
PE 97.8 0.247 60 21.9 11.2 3.1 0.5 0
PF 100 0.237 59 21 10.6 3 0.5 0

Table B.19 Performance indicators, winter results (Scheduling strategy: GPPmin)

GC EC CO2 G>9 G>12 G>15 G>18 G>30
(%) (C/kWh) (gCO2/kWh) (%) (%) (%) (%) (%)

AnEnτ=0.1 99.4 0.297 71 16.2 3.7 0 0 0
AnEnτ=0.2 99.9 0.266 64 16 3.4 0 0 0
AnEnτ=0.3 99.8 0.251 61 15.5 3.2 0.1 0 0
AnEnτ=0.4 99.6 0.247 60 15.3 3.2 0.2 0 0
AnEnτ=0.5 99.4 0.249 61 15.3 3.4 0.2 0 0
AnEnτ=0.6 99 0.257 62 15.7 3.6 0.4 0 0
AnEnτ=0.7 98.4 0.268 65 15.7 3.7 0.4 0 0
AnEnτ=0.8 97.5 0.285 69 15.8 4 0.5 0 0
AnEnτ=0.9 96 0.31 75 16 4.1 0.6 0 0

NWP 99.6 0.247 60 15.6 3.4 0.2 0 0
PE 97.6 0.251 61 16.4 3.9 0.1 0 0
PF 100 0.246 60 15.5 3.3 0.1 0 0
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Table B.20 Performance indicators, winter results (Scheduling strategy: PV Bmax)

GC EC CO2 G>9 G>12 G>15 G>18 G>30
(%) (C/kWh) (gCO2/kWh) (%) (%) (%) (%) (%)

AnEnτ=0.1 99.9 0.354 83 22.9 12.1 3.9 0.3 0
AnEnτ=0.2 99.6 0.431 101 22.3 11.5 3.2 0.2 0
AnEnτ=0.3 99.2 0.523 124 21.7 11.2 2.9 0.2 0
AnEnτ=0.4 98.5 0.616 146 21.5 11.2 2.9 0.2 0
AnEnτ=0.5 97.7 0.709 168 21.5 10.9 2.9 0.2 0
AnEnτ=0.6 96.6 0.779 185 21.2 10.7 2.8 0.2 0
AnEnτ=0.7 95.3 0.847 201 20.9 10.5 2.8 0.2 0
AnEnτ=0.8 93.5 0.882 210 20.9 10.5 2.7 0.2 0
AnEnτ=0.9 90.9 0.91 216 20.8 10.3 2.7 0.2 0

NWP 98.2 0.631 149 21.9 11.3 3.1 0.4 0
PE 95.7 0.425 100 22.2 11.4 3.4 0.2 0
PF 100 0.913 217 20.8 10.3 2.7 0.2 0





Appendix C

Energy cost and carbon footprint

In this section, the main results and a short analysis is presented, when the energy cost (EC)
and the carbon footprint (CO2) indicators are computed without taking into account any PV
associated costs or corrections for battery cycling-life reduction. This is an extension of the
results presented in section 4.6.3 of chapter 4.

Figures C.1(a) and C.1(b), show the performance results regarding the energy cost and
CO2 content of the energy, when using different quantile forecasts. For the energy cost, the
ECmin scheduling strategy is used, whereas for the carbon footprint, the corresponding CO2min

strategy is applied during the scheduling. The BAL module is common to all scheduling
strategies, as usual. These results are obtained with the nominal -constant- values of TOE
and embedded CO2 emissions for the battery only, without the corrections of equations 4.6
and 4.13. This means that, the total energy delivered by the battery throughout its life (TOE),
is considered constant, no matter how the EMS use this resource. PV costs and embedded
CO2 are not taken into account in these results.

Figure C.1(a) suggest a decreasing correlation between the energy cost and the quantile
used as forecast, with the exception of the quantile AnEnτ=0.1. In general, the greater the
quantile the less the battery is used (i.e. battery is empty more time during the year), due
to the over-estimative forecasts, therefore the cost decreases, as the electricity coming from
battery has a high cost compared to the grid electricity.

In the lower quantiles, we observe an interesting fact that doesn’t follow the above-
mentioned logic. First of all, the battery use (i.e. total energy exchange by the battery
during the test period) tends to decrease. This happens because the battery is used mostly to
store the PV surplus, and if the EMS receives very pessimistic forecasts (i.e. low quantile
forecasts), it will not schedule the battery to charge, as it will "think" that there will be almost
no PV surplus to be stored. Now, if the battery use is less, and the higher use of battery
was mentioned before to be the cause of an increase in the electricity cost, we wonder why
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Figure C.1 Impact of probabilistic forecasts in (a) the energy cost (EC) using the ECmin
scheduling strategy and in (b) the carbon footprint (CO2) using the CO2min scheduling
strategy. Results without correction for battery cycling life reduction. No PV costs taken into
account
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for lower quantiles the cost continue to grow? The reason lies in the fact that, when very
under-estimative forecasts are used, there will be big errors that will have to be counteracted
by means of curtailment of PV power, which in turns implies buying more energy from the
grid, that compared to the PV energy is much more expensive. As a summary, we could
say that the decrease in cost of the "right" part of figure C.1(a) is mostly due to less use of
battery, while the increase of cost on the "left" part of the graph, is mostly due to a high PV
curtailment.

These results can be confirmed in figures C.2(a) and C.2(b), where the PV curtailed power
and the SoC of the battery, for the entire test period and hours of the day (left axis), is shown,
for forecasts AnEnτ=0.1 and AnEnτ=0.9, respectively. These results were obtained with the
ECmin scheduling strategy. There, is clear how for the AnEnτ=0.1 forecast, the amount of
PV power curtailed is higher, as well as the overall use of the battery that spends more time
with a high SoC. This means that the battery has more energy stored ready to be delivered to
the load. On the contrary, in figure C.2(b) for the AnEnτ=0.9 forecast, the PV curtailment is
practically zero, and the overall SoC of the battery is low throughout the test period.

It is interesting to note here the difference in the behaviour between the winter and the
summer months. For the AnEnτ=0.1 forecasts, battery reaches its highest SoC values in the
summer as well as the PV curtailment (due to a surplus of PV output power). On the other
hand, in figure C.2(b) (AnEnτ=0.9 forecast), it is worth to mention that the battery seems to be
full more time during winter, which might be counter-intuitive as in winter there is less solar
irradiation. But this is the result of the EMS, that charges the battery during early morning
hours, when the electricity is cheaper, in order to use that energy during the peak hours when
the electricity is more expensive, specially during the "red-days" according to tempo tariff
(see figure 4.1). During these days, the prices of electricity during peak hours can be almost
3 times higher than the cost of the electricity coming from the battery. In conclusion, the
ECmin strategy is able to decrease both, the use of the battery and the EC.

Regarding the performance in carbon footprint, figure C.1(b) shows a different behaviour,
where a minimum of CO2 is found for the AnEnτ=0.4 forecast, but it is still higher than the
one obtained using NWP forecasts. It is important to recall that in the results presented in
figure C.1, the battery life correction and the PV CO2 content are not taken into account.
This explains why for lower quantiles, when the curtailment of PV is high, the CO2 contents
increases up to 3.2%, as more energy from the grid and battery must be used. The slight
increase up to 0.9% for higher quantiles, might be due to the decrease in the grid commitment,
which cause the MG to buy grid electricity in sub-optimal moments, when the CO2 content
might be higher. This is clearly seen in figure C.3, where the PV curtailment and the grid
off-commitment(i.e. the difference between the scheduled and real grid power profiles)
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Figure C.2 PV power curtailment and SoC of battery for AnEnτ=0.1 -pessimistic- (a) and
AnEnτ=0.9 -optimistic- (b) quantile forecasts, using the ECmin scheduling strategy. Power
values are hourly averages

is presented for the test period and all hours of the day (left axis), for the AnEnτ=0.1 and
AnEnτ=0.9 quantile forecasts.

Figure C.3 PV power curtailment and grid off-commitment power for AnEnτ=0.1 -pessimistic-
(a) and AnEnτ=0.9 -optimistic- (b) quantile forecasts, using the CO2min scheduling strategy.
Power values are hourly averages



Appendix D

Student guide for practical session with
the NRLAB nanogrid (january 2018)

The complete guide of the practical experience proposed to the students using the nanogrid
is presented in this section. All the exercises, indications as well as tables to be filled out
by the students during the practice are included. This complements the presentation of the
pedagofical outcomes of the nanogrid presented in chapter 2.
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Microgrids Lab 
 

The general objective of the next experiences is to understand some basics about microgrids 
(particularly PV-powered microgrids). We will study some issues that one must face during its 
operation (such as Joule losses and temperature-related losses) as well as how the power flows 
behave and how we can control them. In the last part, we will play a game to study the 
importance of the consumption planning and management in order to make the most of the solar 
energy and to decrease the overall cost of the system. 

DC Power Flows and Joule Losses 
 
Objective: Understand the behavior of DC power flows in a microgrid and explore basic ways to 
control them. Study the effects of joule loses within a microgrid. 

Connections 

Check and understand the connections of the components as depicted in Figure 1. Make sure 
that both, power source and variable load are turned off before connection. To 
connect/disconnect any branch of the system use the relays provided for that purpose. You can 
operate them from the software interface or manually using the switch located next to each 
relay. 

 
Figure 1. Connections Sketch 
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Joule Losses 

Joule losses play an important role in any electrical system, especially in a PV-powered 
microgrid, where the main goal is to make the most of solar energy by maximizing efficiency 
and reducing losses as much as possible. In building-size microgrids, these losses can account 
for a high percentage of the total solar production, decreasing the overall efficiency of the 
system, hence, making it more expensive. For this reason, we are going to observe how much 
power we are losing in a small-scale system in the form of heat (Joule losses). 
 
Procedure 
Connect the power source and variable load branches. Make sure the other 2 branches are 
disconnected. Turn on the power source and adjust the current limit to 20 Amps and the output 
voltage to 13 Volts. Then, turn on the variable load and increase the consumption in steps of 
10 Watts (from 0 up to 90 Watts) taking note of the voltage, current and power at every step in 
the load and power source. You can create a table to write down the measurements as follows: 
 

Table 1. Power source-Load branch and joule losses calculation 

LOAD POWER SOURCE JOULE LOSSES 

 

P(W) V(V) I(A) V(V) I(A) P(W) P Loss                                                                      
(W) 

P Loss 
(%) 

“R” Branch 
resistance 

(Ohm) 

10         

20         

30         

40         

50         

60         

70         

80         

90         

 
Are there differences between the measurements in the load and power source in terms of 
voltage, power or current? You can plot power vrs current and voltage vrs power  (including 
load and power-source in the same plot) to help observing any difference.  Current should be 
the same for both, load and power source, as they are connected in series.  
If you find differences in power and/or voltage, how could you explain each of those differences? 
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From the previous measurements, we are going to obtain the joule losses in this branch of the 
system (from power source to load). For this, subtract the power being consumed by the load  
to the power coming from the battery, as follows: 
 

𝐽𝑜𝑢𝑙𝑒 𝑙𝑜𝑠𝑠(𝑊)  =  𝑃𝑝𝑜𝑤𝑒𝑟 𝑠𝑜𝑢𝑟𝑐𝑒  −  𝑃𝑙𝑜𝑎𝑑  (1) 

 
Besides, we are going to express the previous losses as a percentage of the power being 
delivered by the power source.  This is the amount of power that we are wasting in the form of 
heat. That can be computed from the data in table 1 using equation 2 as: 
 

𝐽𝑜𝑢𝑙𝑒 𝑙𝑜𝑠𝑠(%)  = 100 ∗ 𝐽𝑜𝑢𝑙𝑒 𝑙𝑜𝑠𝑠(𝑊) / 𝑃𝑝𝑜𝑤𝑒𝑟 𝑠𝑜𝑢𝑟𝑐𝑒 (2) 

 
Finally, find the equivalent resistance ‘R’ of this branch of the circuit (from the power source to 

the load)  for each load condition using equation 3: 
𝐽𝑜𝑢𝑙𝑒 𝑙𝑜𝑠𝑠𝑒𝑠(𝑊)  =  𝑅 ∗ 𝐼2    

𝑅 (𝑂ℎ𝑚𝑠) =  𝐽𝑜𝑢𝑙𝑒 𝑙𝑜𝑠𝑠𝑒𝑠(𝑊) / 𝐼2  (3) 
 

Use equations (1),(2) and (3) to complete table 1. 
 
Obtain the average value of the branch  resistance ‘R’ for the data in table 1. 
 
Use a spreadsheet software (like Microsoft Excel) to plot Joule losses(W) vrs load-current. With 
this plot you can verify the quadratic behavior of the Joule losses dictated by the theory 
according to equation 3. 
 

Temperature effect on solar panels 
 
Another important aspect that decreases the efficiency of PV-powered microgrids is the 
temperature. In general, with an increase of panel temperature it comes a reduction in the output 
power of the panel under equal solar irradiance. In other words, the PV panel will produce less 
power as it  heats up. We are going to find the dependency between the output power and the 
panel temperature as well as the percentage of power that is lost due to this effect. 
 
Procedure 
Connect the relays of the PV panel, load and battery branches and disconnect the relay of the 
power source branch. Fix the load to 50W. 
Start the fan of the solar simulator in the maximum speed. Turn on the halogen lights and using 
the dimmer adjust the irradiance so that we have an output power of 50W (2kW with the scale 
factor)  coming from the PV panel. 
Note: Do this step as quickly as possible because once the lights are on the PV panel will start 
to heat up. 
 
Start immediately to take measurements of PV panel output-power and panel temperature 
every 20 seconds during the first 3 minutes, every 30 seconds for the next 3 minutes and 
every minute during the next 4 minutes. You can use the laser thermometer to take the 
temperature measurements.  
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You can then proceed to fill up columns 2 and 3 of table 3. 
 

Table 3. PV panel temperature dependence 

Time Panel temperature 
(°C) 

PV output power (W) Power loss (%) 

0    

20s    

40s    

1min    

1min20s    

1min40s    

2min    

2min20s    

2min40s    

3min    

3min30s    

4min    

4min30s    

5min    

5min30s    

6min    

7min    

8min    

9min    

10min    

 
Measured Irradiance (W/m2):___________________ 
 
After finishing the previous step, you can compute the percentage of power that is lost due to 
the heating of the PV panel. This is computed as a ratio between the instantaneous power at 
time t and the power when the PV panel was ‘cold’ (t=0). Use equation 4 for that calculation and 
fill up the last column of table 3. 
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𝑃𝑜𝑤𝑒𝑟 𝑙𝑜𝑠𝑠(%)  = 100 ∗  
𝑃𝑉𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑜𝑤𝑒𝑟@𝑡=0 − 𝑃𝑉 𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑜𝑤𝑒𝑟@𝑡

𝑃𝑉 𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑜𝑤𝑒𝑟@𝑡=0
 (4) 

 
Use a spreadsheet software (like Microsoft Excel) to plot the PV output power vrs panel 
temperature. Make a fitting curve for the data (choose the type of fit that adjust better to the 
data) and find its equation. This equation will give you and approximation of the power output 
of the PV panel as a function of its temperature. 
What would be the output power if the panel reaches 90 °C? what would be the percentage of 
power loss in this case? do you think is possible to reach this temperature for a solar panel 
installed in real conditions?. Do a quick research in internet to find out what are the temperatures 
that PV panels can reach in different environments. 
 
 

Power flows 

 
An (electrical) power flow could be defined as the flow of electrical power between two ‘nodes’ 

that are interconnected in an electrical system. Understanding how power flows behave in an 
electrical system and how they can be ‘manipulated’ is important to understand the role of the 

energy management system (EMS) of a microgrid. The EMS optimizes the operation of the 
microgrid (based in costs and losses, among others), and to achieve this goal it has to 
manipulate the power flows. 
 

Management control: the power source voltage  

 
In a DC microgrid like the one in our lab the power flows management is achieved with the 
voltage control. In particular, the power source voltage is the degree of freedom that is left to 
the manager. Let’s see the voltage control principle through the following experiment.  
To start, make sure all the branches are disconnected. Turn on the adjustable power source 
make sure output voltage is set to 12V and the current limit to 20A. Now connect the branches 
of the power source, battery and load. Fix the load value to 40 Watts. 
Decrease or increase the output voltage of the power source so that you get zero power 
flowing from the power source.  
At this point, the power source is “floating” on the microgrid (it is turned on and connected, but 

it does not delivers any power). We will call this the “floating point” of the power source. 
 
From this point, we will start taking measurements in table 2. First, increase the output voltage 
of the adjustable power source in fix steps of 0.2V until you get a power of 40 Watts flowing to 
the battery. At this point you should also have another 40 Watts flowing to the load, all delivered 
by the power source.  
 
Note: for the power source and the battery compute the power as P = V * I 
 

Table 2. Power flows: variable power source - fixed load (voltage control) 
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Power source Battery Load 

 

Measurement 
Number. 

V(V) I(A) P(W) V(V) I(A) P(W) V(V) I(A) P(W) 

0          

1          

2          

3          

4          

5          

6          

7          

8          

9          

10          

Note: Is better to take the measurements directly in excel  
 
To support your results, make the plots of  V , P and I vrs measurement number. 
You can do one graph for each variable (one for V, one for P and one for I) including the 3 
gauges in the same graph. 
 
From the previous graphs, identify the point where the battery starts getting charged (the point 
where the power flow to the battery changes sign). Take a look on the voltages before and after 
this point. What can you note? Who imposes the voltage of the system(voltage on the load)  
before and after this point?  
 
Besides, From where is the power flowing in the system when the battery is charging? and when 
the battery is discharging? (identify these points on the graphs). 
 
Based on the previous results, what is the condition required for the battery to get discharged? 
charged? (assume a constant load) 
From the last experience, in general, what was the mechanism utilized to manipulate/control the 
power flows of the battery and power source? 
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Load and PV volatility  

 
During a real life operation of a microgrid of our kind (offgrid, with PV+battery+gen set) one have 
to face two events that challenge the offer-demand equilibrium:  

- Solar PV power variability (stochastic and cloud-driven) 
- Load demand peaks and changes 

 
Let’s simulate (in the following subsections A, B and C) these two events with our lab set and 
note how the system reacts.  
 
 
A - Variable power source - fixed load (Current control) 
 
Now, from the last point (when we had 40W flowing to the battery and 40W flowing to the load), 
decrease the current limit of the power source until the point where the current limit equals the 
actual current value. We will start taking measurements from this point.  
Decrease the current limit in fixed steps of 0.5A and take measurements at each point until you 
get zero current flowing from the power source. Fill up table 5. 
 
 

Table 5. Power flows: variable power source - fixed load (current control) 

Power source Battery Load 

 

Measurement 
Number. 

V(V) I(A) P(W) V(V) I(A) P(W) V(V) I(A) P(W) 

0          

1          

2          

3          

4          

5          

6          

7          

8          

9          

10          

11          
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12          

13          

14          

15          

16          

17          

18          

19          

20          

Note: You can take the measurements directly in excel 
 
To support your results, make the plots of  V , P and I vrs measurement number. 
You can do one graph for each variable (one for V, one for P and one for I) including the 3 
gauges in the same graph. 
Identify the point where the power flowing to the battery changes sign. How do voltages behave 
before and after this point compared to the behaviour obtained in the previous exercise? are 
they different? 
From where to where is the power flowing in the system when the battery is charging? and when 
the battery is discharging? (identify these points on the graphs). 
 
It is interesting to note that even when the output voltage of the power source was not changed, 
we managed to manipulate the power flows of the system. What was the mechanism used to 
manipulate the power flows in this case? what are the differences, advantages or disadvantages 
of this method compared to the voltage control studied in section A.1? 
 
B - Variable load - fixed and “unlimited” power source 
Set the nominal load to 50 Watts. Increase again the current limiting knob of the power source 
to 20A. Adjust the voltage of the power source so that you have 25 watts flowing from the 
battery and the other 25 watts flowing from the power source. Let’s call this point the ‘Middle 

Point (MP)’. 
 
Then, bring the load to zero and start increasing it steps of 10 Watts until reaching 100W 
nominal (use the built-in gauge of the load to set nominal values). Take measurements at every 
step and fill up table 6. 
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Table 6. Power flows: Variable load - fixed and “unlimited” power source 

Power source Battery Load 

 

Nominal 
load (W) 

V(V) I(A) P(W) V(V) I(A) P(W) V(V) I(A) 

0          

10          

20         

30         

40         

50(MP)         

60         

70         

80         

90         

100         

 
Plot V vrs nominal load and  P vrs nominal load. Include the 3 gauges in each graph. 
Does the battery ever get charged according to the plots? at which point (nominal load) does 
this occur?  is there any other interesting remarks that you can extract from the plots? 
 
Does the 50%-50% splitting of the power (the one we had in the middle point) continues for all 
the measurements ‘above’ or ‘below’ the middle point? if not, what do you think is the reason?  
 
C - Variable load - fixed and limited power source 
 
We will repeat the procedure of the previous exercise but now we are going to limit the power 
source. This is a realistic situation as the PV panels in a microgrid have a maximum power they 
can deliver, and this is often surpassed by the demand. 
 
Let’s come back to the ‘middle point (MP)’ used in the last exercise using the same procedure. 
After reaching this point (half of the load-power delivered by the battery and half by the power 
source), let’s decrease the current limit of the power source until the point where the current 
limit equals the actual current value. This will be the new current limit of the power source (the 
power source cannot deliver more current/power than this). 
This simulates a PV array for instance, given that its output power is limited by the solar 
irradiance it receives at any given moment. 
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Follow the same procedure performed in the last exercise. Bring the load to zero and start 
increasing it steps of 10 Watts until reaching 100W. Take measurements at every step and fill 
up table 7.  
 

Table 7. Power flows: Variable load - fixed and “limited” power source 
 

Power source Battery Load 

 

Nominal 
load (W) 

V(V) I(A) P(W) V(V) I(A) P(W) V(V) I(A) 

0          

10          

20         

30         

40         

50(MP)         

60         

70         

80         

90         

100         

 
Plot V vrs nominal load and  P vrs nominal load. Include the 3 gauges in each graph in the 
same way you did for the previous exercise. 
 
Compare the results of the plots with the ones of the previous exercise, before and after the 
middle point MP.  Are there any significant differences between them? how would you explain 
them? 
 
 
D-Real time PV production (Demonstrative exercise) 
 
In this section, the tutor will run the microgrid in real time (either with the external solar panel or 
with a simulated irradiance profile in the solar simulator) and you will observe the real-time 
curves of power for the different elements of the system.   
From these curves, many information can be extracted and analyzed as different situations or 
scenarios regarding irradiance and load occur, changing completely the state of the system 
(voltage, losses, power flows, etc) 
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When a change in the system occur (in load and/or irradiance) try to observe how the system 
passively (without any intervention from your part) compensates and adjusts itself so that the 
balance between generation and consumption is assured. Try different irradiance scenarios 
(simulated ones) and also the real PV production with the exterior PV panel and see the reaction 
of the system. You can manually play with the load, leave it constant or use a predefined load 
profile. 
You can also play with power source (either voltage level or the current limiter) to observe how 
you can provoque also changes in the natural state of the system regarding power flows and 
voltage levels. 
 
Try to provoke a situation when the total production of the system is not enough to 
supply the load and see what happens?  
how can you keep the voltage of the load constant under variations of the load and PV power? 
What would happen if you did not have the power source? and if you did not have the battery 
either? (just PV and load). Try these scenarios in real time and see what happens. 
What difficulties can you see in managing and controlling a power system like this? and a bigger 
one? 
 
 
 
 
 





Appendix E

Learning outcomes evaluation of the
practical session with the NRLAB
nanogrid (january 2018)

In this appendix, a sample of the evaluation applied to the students at the end of the practical
experience described in chapter 2 is presented. After solving the quizz individually, the
solution is performed step by step and a final discussion is favored in order to bring out the
main learning outcomes of the session.
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1-How can you increase the power that 
goes from the battery to the load ?

Decreasing voltage of the power source

Both of them

None of them

Increasing voltage of the power source

2-If the Voc of battery is 12V and the voltage 
of the power source is 12.5, what will happen?

Power source and battery will provide the load

Power source provide the load and 
Charge the battery

Power source provide the load only

Only battery will provide the load

3-Given a constant power generation of 2kW, 
how much energy is generated in 30 minutes?

0.5 kWh

1 kWh

2 kWh

4-In a 12V DC system, how much energy would 
produce a source that supply 5 A during 4 hours?

240 Wh

20Ah@12Vdc

Both are correct

5-What consumes more energy: a 1200W heater 
during 1 minute or a 50 W light during 1h?

The heater

The light

Both consume the same
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6-The consumption in an islanded house is 10kWh on a particular 
day. If you have a battery of 5kWh (full at the beginning of the 
day), how much PV power should you install in order to be 100% 
self-sufficient? 

5 kWh

5 kW

Depends on the irradiance of the day

7-In a given day, your PV panels produced 10 kWh. If you have an 
empty battery at the beginning of the day of 10 kWh and you 
want to leave it at 50% SoC by the end of the day. What is the 
maximum load that you can afford during that day?

5 kW

1 kW during 5 hours

Depends on the irradiance of the day

8-Was the PV generation enough to cover the consumption
needs on that day?

Yes

No

Only in the 
morning

+ Energy delivered
- Energy consumed

9-What happened with all the PV potential energy that was 
not used (above the magenta curve) ?

It was injected to 
grid

It was charged in 
the battery

It was curtailed by 
the MPPT controller
and then lost

10-What would be the minimum size of battery required to 
use all the PV potential?

2275 Wh

9042 Wh

6767 Wh

11-How much was the PV generation compared to the PV 
potential on that day?

>50%

<50%

<10%



7/1/2020
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12-Why did the PV generation suddenly drop in the middle of 
the morning?

clouds blocked
suddenly the Sun

the battery got full and 
less PV power could
be then consumed

the load consumption
suddenly decreased

13-Why before 9am, most of the load was supplied by the power source 
and after 5pm that was entirely done with the battery (even though both 
the power source and the battery where connected all the time)?

The power source can 
deliver more power than 
the battery

The power source 
can deliver more 
energy than the 
battery

the battery was 
discharged before 9am 
and charged after 6pm

14-Which day had the highest PV energy consumed ?

The first day The second day Both days were similar

15-Why did the power source started to generate electricity around 00h on 
the second day?

The open-circuit 
voltage of the battery
went below the 
voltage of the power 
source

The battery got
discharged

Both answers are 
correct

16-On the second day the PV generation suddenly decreased around noon 
because

clouds blocked
suddenly the Sun

the battery got full and 
less PV power could
be then consumed

the load consumption
suddenly decreased

17-After these two days, the State of Charge of the Li-ion battery

increased decreased remained the same
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