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1 Revue de la Littérature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

vii



Bibliography 109

viii



List of Figures

1.1 Ransomware’s Workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Ransomware Attacks Timeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Ransomware Detection Mechanisms Summary. . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1 The list of decoy folders used to compute the per-thread score. . . . . . . . . . . . . . . . 42
1.2 k-NN algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.3 DT algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.4 Xorist’s File Traversal Subgraph G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
1.5 An example of similarity matrix S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.6 An example of a dendrogram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.7 Decision Tree Classification Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
1.8 The file system’s traversal velocity of Xorist samples. . . . . . . . . . . . . . . . . . . . . . 50
1.9 The file system’s traversal velocity of Bitman samples. . . . . . . . . . . . . . . . . . . . . 51
1.10 Malicious threads file system’s traversal similarity matrix. . . . . . . . . . . . . . . . . . . 51
1.11 Families Graphical classification dendrogram. . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.1 TeslaCrypt Process IDs Tree where each node contains a corresponding pid, dashed edges
represent the benign processes whereas the red edges represent the TeslaCrypt graph. . . 55

2.2 ML on Ransomware Families. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.3 Bitman Ransome Note. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.4 Ransom Model Graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1 Ransomware Vs Doxware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2 An Example of the Lexicon with the associated Scores. . . . . . . . . . . . . . . . . . . . . 74
3.3 Decoy Folders Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 Tree of Windows’ baseline file system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
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Abstract

Ransomware remains the number one cyberthreat for individuals, enterprises, and governments.
Malware’s aftermath can cause irreversible casualties if the requirements of the attackers are not met in
time. Cyber attackers have a history of mounting attacks on hospitals; for example, the ransomware
attack carried out on the cardiology center of Acadiana in April 2017. Similarly, Ryuk resurgence in
2019 forced Australian health service providers to shut down their services and systems. The goal of
earlier attacks was to gain money. However, these attacks are threatening the lives of millions around
the world in the midst of the COVID-19 pandemic. Besides hospitals, the WannaCry attack in late 2017
affected many enterprises such as FedEx, Nissan, railway companies in Germany, and more than 200 000
computers worldwide. For all the reasons cited above, we focused on ransomware, and we considered it
as an exquisite malicious software that should be scrutinized.

I start the thesis by providing a systematic review of ransomware countermeasures starting from
its deployment on the victim machine until the ransom payment via cryptocurrency. After a thorough
analysis of the white papers and journals collected from the past few years, we define four stages of this
malware attack: Delivery, Deployment, Destruction, and Dealing. Then, we assign the corresponding
countermeasures to each phase of the attack and cluster them according to the techniques used. Once
this step has been accomplished, we noticed that some aspects were not treated previously in the
literature, or there was not a conclusive decision about the provided technique. Accordingly, we present
our countermeasure based on the system level or network level.

The first contribution introduces a ransomware detection technique that serves as an Intrusion
Detection System (IDS). More precisely, it targets crypto-ransomware since it presents a higher threat
than locking ransomware. It is based on a file system exploration before the attack (encryption) takes
place. Indeed, once it is unpacked, ransomware’s payload goal is to explore the file system to find files
to encrypt. As for the exploration phase, threads that traverse the file system behave similarly and
predictably, enabling the possibility of an early detection of the ransomware.

Moving on to the network part, we propose an analysis of various ransomware families based on
the collection of system and network logs from a computer. We delve into analyzing malicious network
traffic generated by these samples to perform a packet-level detection. Our goal is to reconstruct
ransomware’s full activity to check if its network communication is distinguishable from benign traffic.
Then, we examine if the first packet sent occurs before data encryption to alert the administrators or
afterward. We aim to define the first occurrence of the alert raised by malicious network traffic and
where it takes place in a ransomware workflow.

The final contribution of the thesis provides an insight into plausible attacks, especially Doxware (also
called leakware). We present a quantification model that explores the Windows file system in search
of valuable data. It is based on the Term Frequency-Inverse Document Frequency (TF-IDF) solution
provided in the literature for information retrieval. The top n files considered are then exfiltrated over
the Internet to the attacker’s server. Our approach delivers an observation of the evolution of malware
throughout the last years. It enables users to prevent their sensitive information from being exposed to
potential data exfiltration attacks.
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Résumé

Les rançongiciels demeurent la menace informatique principale pour les particuliers, les entreprises
et les gouvernements. Les conséquences de ces attaques peuvent causer des pertes irréversibles si les
exigences des attaquants ne sont pas satisfaites à temps. Les cyber-attaquants ont l’habitude de monter
des attaques contre les hôpitaux ; par exemple, l’attaque menée sur le centre de cardiologie d’Acadiana
en avril 2017. De même, la résurgence de Ryuk en 2019 a forcé les prestataires de services de santé
australiens à arrêter leurs services et systèmes. Les attaques ont pour objectif un gain monétaire.
Cependant, aujourd’hui, des millions de vies sont en jeu. Outre les hôpitaux, l’attaque de WannaCry
fin 2017 a touché de nombreuses entreprises telles que FedEx, Nissan, des compagnies de chemin de
fer en Allemagne et plus de 200 000 ordinateurs dans le monde entier. Pour toutes les raisons citées
ci-dessus, nous nous sommes concentrés sur les rançongiciels, et nous les avons considérés comme un
type de logiciel malveillant qui devrait être surveillé.

Nous commençons la thèse par une analyse systématique des contre-mesures de rançongiciels, depuis
leur déploiement sur la machine victime jusqu’au paiement de la rançon par crypto-monnaie. Après une
analyse approfondie des papiers et des journaux recueillis ces dernières années, nous définissons quatre
étapes pour ce type d’attaque: la distribution, le déploiement, la destruction et la transaction. Ensuite,
nous assignons les contre-mesures correspondantes à chaque phase de l’attaque et les regroupons selon les
techniques utilisées. Une fois cette étape accomplie, nous avons constaté que certains aspects n’étaient
pas traités auparavant dans la littérature, ou il n’y avait pas de décision concluante sur la technique
fournie. En conséquence, nous présentons nos contre-mesures en fonction de leurs implémentation soit
au niveau du système soit au réseau.

La première contribution présente une technique de détection de rançongiciel qui remplit le rôle de
Système de Détection d’Intrusion (IDS). Cette technique est basée sur une exploration du système de
fichiers avant que l’attaque (le chiffrement) n’ait lieu. En effet, le but de la charge utile du rançongiciel
est d’explorer le système de fichiers pour trouver des fichiers à chiffrer. Quant à la phase d’exploration,
les processus qui traversent le système de fichiers se comportent de manière similaire et prévisible,
permettant la possibilité d’une détection précoce du rançongiciel.

Passant à la partie réseau, nous proposons une analyse des différentes familles de rançongiciels
basée sur la collecte des journaux système et réseau d’un ordinateur. Nous nous penchons sur le trafic
réseau malveillant généré par ces échantillons pour effectuer une détection au niveau des paquets. Notre
objectif est de reconstituer l’activité complète du rançongiciel pour vérifier si la communication réseau
se distingue du trafic bénin. Ensuite, nous examinons si le premier paquet envoyé se produit avant le
chiffrement des données pour alerter les administrateurs ou après. Nous visons à définir la première
occurrence de l’alerte déclenchée par le trafic réseau malveillant.

La dernière contribution de la thèse donne un aperçu des attaques plausibles, en particulier les
Doxware (également appelés “leakware”). Nous présentons un modèle de quantification qui explore le
système de fichiers Windows à la recherche de données importantes. Le modèle est basé sur Term
Frequency-Inverse Document Frequency (TF-IDF), une solution fournie dans la littérature pour la
recherche d’information. Les fichiers retrouvés et classés cruciaux sont ensuite exfiltrés sur l’Internet
vers le serveur de l’attaquant. Notre approche permet d’observer l’évolution des logiciels malveillants
au cours des dernières années. Elle permet aux utilisateurs d’éviter que leurs informations sensibles ne
soient exposées à des potentielles attaques d’exfiltration de données.
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Introduction

Malware remains a recurring threat that affected people decades ago and still is in an exponential rise.
The trade-off prevails in what researchers and security analysts try to protect and attackers that always
find a way around. Advances in cybercrime technology, like the dark-web marketplace, help attackers
to buy the required tools to carry out their attacks, facilitating malware’s propagation [2]. Some of the
essential malware families are worms, virus, Trojan horse, logic bombs, and ransomware. This thesis
focuses on ransomware, our main research study.

The first ransomware appeared in 1989. Since 2012, the number of ransomware victims has increased
significantly. Ransomware attacks represent a widespread phenomenon of this decade. Our motivation
to join this arms race against malware is the increased number of attacks in recent years. Besides, the
polymorphism of such ransomware registered by antivirus software led to an undetected/unmitigated
threat in the early stages. Ransomware attacks are no longer affecting users’ data or computers, but they
undermine many public services. For example, a hospital has been hit by ransomware, and its servers
have been encrypted, exposing more than 9k patients [3]. Symantec, one of the leading cybersecurity
companies worldwide, has been able to block in the first half of 2017, 319k ransomware, as shown in
their annual report [4]. According to the latest study completed by Malwarebytes, the top industries
affected by ransomware include but are not limited to consulting, education, manufacturing, retail, and
government [5]. There is a high demand to mitigate the ransomware infection process since the economic
incentive is at risk.Victims infected by ransomware suffer considerable monetary loss. De facto, sixteen
million US dollars are traced back to ransomware payment via Bitcoin over two years [6]. Also, some
ransomware authors create eBay-like auction site for stolen data [7]. It is auctioned to the highest
bidder. Besides, Ransomware-as-a-Service (RaaS) concept provides the required tools for cybercriminals
to carry out their attacks [2]. No prior knowledge of the end-to-end system nor the infrastructure of
the victim’s machine is required using RaaS. It represents a significant reason for this business growth
in the previous years. Even though former operating system targets were mostly Windows computers,
nowadays a more comprehensive range of infected equipment and OS is noticed: MacOS, IoT devices
and Cellphones (Android OS) [8–14]. We chose to analyze ransomware in Windows-based operating
systems since it is the most deployed and used OS worldwide, thus, the most impacted.

Bond et al. state: “The arms race between propagation and defense will continue ad infinitum” [15].
We face several challenges in analyzing Windows ransomware. There is an ongoing work on this sub-
ject. The ransomware life cycle is limited (it can be active today but inactive tomorrow). The use of
cryptocurrency such as bitcoin for the trade is nearly impossible to trace. It remains a valid model since
attackers are peer pressuring victims who are willing to pay any amount to retrieve their data. Evasion
techniques are spreading at a high rate. It is a challenge for antivirus software to adjust to the ongoing
ransomware evolution. This kind of global economy is beneficial for cybercriminals and is fed by people’s
lack of information about spam emails and other mechanisms that enable the spread of ransomware at
a very high rate. Our goal is to restrain file losses if no prior detection was achievable and to evaluate
the possibility of new types of attacks. Researchers are teaming up to prevent ransomware exponential
proliferation and impact on users. Meanwhile, attackers are keeping up the pace too forming an extortion
cartel to share resources and increase the success rate of the attacks, thus, the monetary gain [16].
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Outline
The thesis takes place at IMT Atlantique Bretagne Pays de la Loire engineering school and Inria
research center in Rennes. It is funded by the French government defense called Direction Générale
de l’Armement Maitrise de l’Information (DGA MI). The experiments are carried out in the restricted
area of IMT (zone à régime restrictif ZRR) and in the High Security Laboratory (HSL, Laboratoire
de Haute sécurité LHS). This thesis extends the work achieved by Aurélien Palisse by analyzing the
system and network logs [17]. This thesis offered me the possibility to guide students throughout
various labs including intrusion detection systems, network topology discovery, access control policies,
Android application development, network packets analysis. In addition, I was able to collaborate with
my colleagues and students broadening my research scope.

This thesis is divided into two parts. The literature review is introduced in Part I. An in-depth
look at ransomware’s workflow is proposed in Chapter 1. It includes the initial infection means,
the current detection mechanisms employed to protect the system from such prominent attacks, and
finally, the counter-countermeasures undertaken by attackers preserving the malicious ransomware. A
detailed overview of the proposed techniques developed in the literature is presented in Chapter 2. A
classification of those elements based on ransomware’s workflow is given. To the best of our knowledge,
this aspect was not previously covered in research areas. This survey serves as an entry point to any
person concerned with ransomware’s lifecycle and the actions undertaken to thwart it. We conclude
the Part I by introducing our chosen dynamic analysis platform, and we provide an overview of the
ransomware samples acquired from public databases (Chapter 3).

Part II consists of our contributions divided in three chapters. A ransomware detection technique
that serves as an Intrusion Detection System (IDS) is introduced. It is based on a file system exploration
before the attack (encryption) takes place (Chapter 1). Indeed, once it is unpacked, ransomware’s
payload goal is to explore the file system to find files to encrypt. This search is done from the root of
the file system, or directly from the user’s folder, with a depth-first or a breadth-first search. As for
the exploration phase, threads that traverse the file system behave similarly and predictably, enabling
the possibility of an early detection of ransomware. The method mentioned above can help a user to
protect the confidentiality and availability of his/her data while limiting the probability of an attack and
minimizing losses.

Afterward, a way to spot the same traceability, however, based on network analysis is proposed in
Chapter 2. A mechanism for data filtering based on open source tools is provided. Then, ransomware
models are created via machine learning on network flows. Finally, ransom notes and encrypted files are
evaluated to check whether the detection occurred at a time t inferior at the start of the encryption.
Our work does not represent a real-time based solution, but rather a study on ransomware families to
extract an additional signature besides the visible encryption phase.

Lastly, an insight into plausible attacks, especially Doxware (also called leakware) is proposed. A
quantification model that explores the Windows file system in search of valuable data is presented in
Chapter 3. Our approach delivers an observation of the evolution of malware throughout the last years.
It enables users to prevent their sensitive information from being exposed to potential risks.

An overall analysis of ransomware in the last decade and its impacts on humans and society is
evaluated. We answer the following question on Windows-Based Ransomware: What to Expect/What
is Next?
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1 About Ransomware

Chapter 1 describes the current state of the art of ransomware workflow as one of the most threatening
malware to date. A detailed anatomy of ransomware in presented in section 1. Then, an overview of
the different types of ransomware in the wild and the encryption scheme used is given. The ransomware
attack is divided into four stages based on the information gathered from the literature review and our
experiments carried out in the last three years. Ransomware timeline is shown in section 2, displaying the
evolution of this malware from being a simple scare tactic into encrypting files using robust cryptographic
algorithms. This approach enables a distinct classification of ransomware countermeasures.

1 Ransomware’s Workflow
Ransomware is a malicious software that holds the data of the victims hostage and proceeds with the
release if the ransom payment is made in time. Two types of ransomware can infect a computer nowadays:
a locking or an encrypting ransomware. Locking ransomware does not alter your data but blocks a
person’s access to his/her personal computer. Crypto-ransomware encrypts specific files from the file
system, making recovery impossible if the victim does not have the decryption keys or previously installed
patches [18].

Crypto-ransomware is also divided into subparts. The encryption mechanism is at the root of the
payload of the ransomware. An achievable exchange (key-money) between the attacker and the victim
is only possible if data are not retrievable by any other methods. Therefore, the stronger the encryption
scheme, the less are the chances to recover the locked files. In addition, the key generation must be
irreversible. If the analysts perform reverse engineering on the samples and extract the key generation
algorithm, the business model is going to be unsuccessful.

Outlining accurately any malware behavior and defining its characteristics require both static and
dynamic analysis. Even though every ransomware has its characterization, (samples belonging to the
same family might also slightly diverge), the overall steps performed by any ransomware are similar.
Multiple variations of the ransomware attack have been presented in the literature; they consist of
4, 5, or 6 phases [6, 19–21]. The majority of the ransomware samples can be grouped as follows: a
multi-phased attack compromising 4 phases (Pi, where i is the number of the phase) named the 4 Ds:
Delivery (P1), Deployment (P2), Destruction (P3) and Dealing (P4). The Data Recovery portrayed by
(P5) depends on the victim’s action after the infection. It represents the aftermath of an attack. Some
users refuse to pay the ransom since they have backed up data or due to ethical reasons. The attack is
summarized in Figure 1.1.

Delivery. Initially, the ransomware searches for a vulnerability and relies on all the avail-
able mechanisms to penetrate the target system. Zimba et al. present different means of ransomware
infection (spam, web-server, server message block, macro, backdoor, flash, zero-day vulnerability) [22,23].

Deployment. Once the malware infiltrates the system, it loads all the required libraries to perform
its destructive intent. Some of them might perform a kill switch domain check1 to stop the ransomware

1It is a hardcoded domain name into the malware in case the creator wants it to stop spreading. The ransomware
executable makes a request to this specific domain name, if the connection succeeds, the kill switch takes effect and the
malware stops spreading.
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Infection Vectors: Spam Emails, Self-
Propagation, Drive-By Downloads

P1: Delivery

Environment Preparation
(Needed libraries, System calls)

P2: Deployment

{File System & Network Activity} + Encryption

P3: Destruction

Ransom Payment (Bitcoin or any Cryptocurrency)

P4: Dealing

Data Recovery After Payment

P5: Data Recovery

Figure 1.1: Ransomware’s Workflow.

attack.

Destruction. Then, the querying of volumes on the target machine by alphabetical order begins.
Different file extensions are targeted: .xls, .jpg, .pdf. Some folders can be omitted from the search, such
as ProgramFiles and Windows [24]. After the search, the ransomware tries to communicate with the
Command-and-Control (C&C) to receive some information (encryption keys). The encryption process
begins using API calls to AES or embedded AES encrypting algorithm.

Formerly, attackers opted for symmetric encryption (standard AES). However, through reverse engi-
neering, researchers are able to provide decryption tools for the encrypted files since ransomware authors
used weak crypto [25–27]. Subsequently, attackers relied on the combination of symmetric and asymmet-
ric encryption for an invincible malware design. Each symmetric key is generated locally on the targeted
device and helps to encrypt a specific file or multiple documents (depending on the implemented algo-
rithm). Then, the symmetric key is encrypted with the attacker’s public key and added to the targeted
file [28]. This scheme is known as hybrid cryptography.

Three types of encrypting ransomware or classes exist [29,30]:

• Class A represents the set of ransomware that performs the encryption in-place; it opens the file,
reads its content, performs encryption then closes the file with a possibility of renaming it.

• Class B is a further extension where the file is moved to another directory before performing the
encryption and moved back once the task is accomplished.

• Class C opens the original file, then creates another one to write the enciphered data. The original
file is deleted.

The aim of removing the original files and Microsoft Shadow Volumes is to make data retrieval
impossible. A new entry is created on the Windows registry2 enabling the execution of the ransomware
every time the computer is restarted, ensuring its persistence [33].

Dealing. Finally, the ransom note is displayed to the user providing him/her the steps required to
retrieve the locked files. Mostly, ransomware authors display the ransom note at the end of the infection

2The Windows Registry is a hierarchal database used to store information about the system. The “autostart” locations
allow applications to be launched without any conscious or direct user interaction. Even if victims restart their PC, the
ransomware will re-launch itself at startup, when the user logs into the system [31,32].
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phase since they do not want to be detected/stopped during their destruction process. Usually, ransom
notes are written in the same language of the victims configured PC. They can have many formats
like images, texts, and Hypertext Markup Language (HTML). Ransom notes explain to the users what
happened to their PC and the required procedure to get the decryption keys. They display the following
information:

• If it is not the mother language used by the victim, the attackers propose using https:
// translate. google. com .

• They inform users that all of the files are protected by a strong encryption with RSA 4096, and
decrypting them is only possible with the help of the private key and decrypt program stored on
their “Secret Server”.

• The attackers offer two options: either wait until the price is doubled or start obtaining bitcoin.

• Finally, the attacker provides further instructions via multiple URL addresses like http: //
t54ndnku456ngkwsudqer. wallymac. com/ 68052649D4FFA17 .

Data Recovery. At this stage, the attacker successfully carried out the attack. Paying the ransom or
not remains a debate to date, however, researchers and security agencies strongly recommend not paying
any ransom [34,35]. In fact, if the required sum is paid, the users are supporting the criminals’ business
model and thus partially responsible for the increased number of infected people. Some organizations
possess sensitive data, and no backups, therefore, proceed with the ransom payment. Nonetheless, there
is no guarantee that the attackers are going to give them back the tools (decryptor and the decryption
keys) to restore the data.

The No More Ransom Project helps ransomware victims to get back access to their files [36]. It
is done by providing decryption tools with specific instructions regarding more than 100 ransomware
families. Teslacrypt ransomware authors regretted their actions and released the master decryption key
in 2016 [37].

2 Ransomware Timeline
Putting security on sounder footing, a thorough analysis grants insight into this malicious software and
its potential future targets. Since the early stages of the computer conception, the world had known
numerous attacks. The timeline shown in Figure 1.2 displays a glimpse of ransomware families’ initial
release dates and their targeted systems. It represents the majority of the samples discussed and analyzed
in the literature detailed in the following paragraphs.

2011
Xorist

2013
CryptoLocker

2014
CryptoWall

2015-2016
Fusob

Locky
TeslaCrypt
Cerber/Zerber

2017
WannaCry, Petya

2018
Ryuk

Ransomware Attacks Timeline

1989
PC Cyborg 
Trojan

...

2019

Ryuk V2

2020 
?

2012
Reveton

Figure 1.2: Ransomware Attacks Timeline.
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AIDS Trojan is the first known malware extortion attack developed by Joseph Popp in 1989. It
infects systems through a floppy disk. However, it has a significant pitfall since it encrypts the file’s
name and do not alter its content. Thus, restoring the encrypted files is possible if the extension and
filename encryption tables are known. Following AIDS Trojan, a calm period supervened that lasted for
more than two decades until Xorist ransomware emerged in 2011.

Xorist ransomware targets Windows OS, where encrypted files have diverse extensions (EnCi-
PhErEd, .73i87A, .errorfiles, .xdata, .HELLO, .cryptedx). It also displays a ransom note instructing
the victims on the required steps to retrieve the data. The tradeoff consists of sending an ID via SMS to
a specific phone number. Then, the code received is used by the victim to begin the decryption process.
The 2019 and 2020 versions of Xorist show an evolution in the encryption scheme to avoid detection via
entropy changes using statistical tools.

Over the following years, widespread ransom attacks infect users daily with an average of one attack
every 40 seconds [38]. Many families and subfamilies are created as a medium of polymorphic and
metamorphic malware. Polymorphic and metamorphic malware constantly change their identifiable
features to evade detection. Polymorphic malware maintains the same functional purpose (for example,
encryption), however, metamorphic malware completely re-writes the code by adding new/modified
functionalities.

In 2012, Reveton ransomware begins to spread. It differs from Xorist by using scare tactics to
pressure the victims to pay. For example, its payload displays a warning, revealing that the victim has
been downloading illegal or unlicensed software. In addition, the IP addresses of victims and an actual
footage of their webcam are displayed pushing them to pay. The fine is paid using MoneyPak card.

CryptoLocker ransomware emerges in late 2013. It propagates via infected email attachments
and uses the RSA public-key cryptography for encrypting victims’ files. It is one of the pioneers in
using digital currencies such as Bitcoin for ransom payment to receive the decryption key. Furthermore,
ransomware authors threaten to delete the private key used for encryption if no transfer is made upon
the required deadline.

Shortly after, CryptoWall emerges in the first quarter of 2014. It maintains an asymmetric encryp-
tion scheme similar to CryptoLocker. To prove the efficiency of the attack scheme, attackers provide
victims a free single-use decryption tool that decrypts some files to prove that they hold the encryption
keys, and they are the only ones capable of restoring files [39].

Even though previous ransomware targeted Windows operating systems, Fusob strikes in the mid
of 2015 and continues until March 2016, targeting mobile devices. Similarly to Reveton, scare tactics
are used as extortion means forcing victims to pay. Up to date, at least 22k ransomware samples can
be found crawling online malware databases like VirusTotal and Kaspersky [40]. The extensive analysis
carried out by researchers targets especially ransomware that infected people on a large scale such as
Xorist, CryptoWall. Therefore, an accurate description of each malware sample is not available in the
security blogs, forums, literature review, for example, for the SilentCrypt sample.

Mukesh performs a combination of static and dynamic analysis of the TeslaCrypt ransomware [41].
It is spread via spam emails, especially during late 2015 and mid-2016. Common libraries used by such
ransomware are ole32.dll, kernel32.dll, apphelp.dll. The upgraded model attacks a wider variety of file
extensions (.py, .ptx, .jpeg) even though the initial version of this malware encrypts files related to 40
different games. In May 2016, the master decryption key is released by the attackers.

Locky is discovered at the beginning of 2016. It is delivered by an email attachment or via a
spam campaign. It has a Microsoft document containing malicious macros [42]. Once downloaded,
Locky renames itself to svchost.exe to be considered as a trustworthy application. Also, it creates other
processes to delete the backup files before moving to the encryption phase. It encrypts 164 file types
infecting different categories of users or companies using hybrid cryptography [43].

The initial version of Cerber ransomware is spotted in March 2016. Cerber has a particularity in
the usage of the RaaS business model. RaaS enables launching ransom attacks by novice cybercrimi-
nals, providing them the required tools in exchange for a percentage of the collected money from the
victims [44]. Another particularity of Cerber resides in an increasing ransom sum as time passes. Most
importantly, there is currently no Cerber ransomware decryption tools available online [45]. Some au-
thors classify Zerber as a new variant of Cerber ransomware or a new family [46] that shares specific file
system traversal and network behavior [47, 48], while others believe that it belongs to the same family
having an alternative name [49].

Petya ransomware is first discovered in 2016. Its particularity resides in modifying Windows Master

14



Boot Record (MBR), causing the system to crash. It resurges in June 2017, affecting machines having
different versions of Windows from XP through 8.1 [50].

WannaCry attacks have wider target options. Not only end users are targeted, but agencies are
also affected at a large scale such as FedEx, Renault, in addition to parts of the British National
Health Service (NHS). Kao et al. performs reverse engineering to extract the leading characteristics
of WannaCry ransomware [21]. It is a weaponized malware: sophisticated by design and intended for
malicious purposes. This specific ransomware exploits the MS17-010 vulnerability to inject itself on the
target machine [51]. Then, a kill switch domain is queried; if a successful connection is achieved, the
ransomware stops its payload else, it proceeds with the malicious functionality. Ransomware authors
rely on hybrid encryption to securely lock the files. The original files are deleted or erased. The worm
propagation capability, defined by utilizing the EternalBlue exploit and the DoublePulsar backdoor, is
used in WannaCry attacks [52].

A snapshot of ransomware characteristics is presented in Table 1.1. All ransomware families have
the static IP address used by the C&C in their binaries except for TeslaCrypt that relies on the domain
generation algorithm (DGA) to contact the C&C. The AES is used for all the samples except CryptoWall
that utilizes RSA-2048 bits. The encryption mechanisms used, the infection process, and the type of
platform infected are detailed in [1, 53,54].

Year Family C&C Encryption Changed Infection
Static DGA Symm. Asymm. Extensions Vectors

2011 Xorist X - X - X Spam
2013 CryptoLocker X - X - X Spam & Corrupted web

pages
2014 CryptoWall X - - X X Spam & malicious ads or

sites
2015 TeslaCrypt X X X - X Spam & Phishing
2016 Cerber X - X - X Spam & Fake software
2016 Petya X - X - X Fake software. Worm
2017 WannaCry X - X - X Worm (EternalBlue)

Table 1.1: Ransomware characteristics [1].

3 Conclusion
This overview presents two facts: ransomware attacks target specifically Windows since it is one of the
most used and ergonomic OS worldwide. Also, advanced features are being continuously added to the
payload of the ransomware changing its behavior. However, a shift to IoT, SCADA, and Android devices
is recently noticed [11–14]. We present in the following Chapter 2, ransomware countermeasures that
scale down the success of this ongoing business. They are clustered based on the methodology used. The
categorized countermeasures are assigned to the corresponding ransomware phases.
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2 Ransomware Detection Mechanisms

Chapter 2 presents a systematic literature review of ransomware countermeasures. It describes the
available solutions developed by researchers to protect users’ data. We highlight the fact that this
sequence of events is necessary for administrators. Indeed, it provides an initial alert mechanism to
warn the user of a potential threat. It is crucial since early detection mechanisms such as signature-
based can spare file losses. Thus, it protects the whole infrastructure avoiding later on “a pact with
the devil” [15] to retrieve the encrypted files. The following sections represent the defense mechanism
taxonomy clustered corresponding to each phase of the ransomware workflow, as presented in Fig. 1.1 of
Chapter 1. We gather the existent solutions that cover a specific phase of the intrusion and the methods
deployed. The countermeasures corresponding to each phase are presented in Fig. 2.1 and detailed in
the Delivery, Deployment, Destruction, and Dealing phases.

1 P1: Delivery
Infection vectors are usually hard to trace since researchers do not analyze malware on-the-fly. They
download the malicious samples from online databases and execute them in a Sandbox or bare metal
environment. One of the best defense mechanisms at the delivery stage is to raise awareness about
ransomware cyberthreats, for example, by deleting a suspicious email immediately or filtering spam ones.
These aspects corresponding to the initial phase of the ransomware attack are developed in this part.
Table 2.1 clusters the following studies in five sections. The awareness part includes the best practices to
be taken into consideration as a protection measure on a computer (section 1.1). It is portrayed by a safe
web browsing, having an up-to-date system including the recent patches and frequent backups [55, 56].
A proposition of an incidence response is portrayed in [57] that could involve using software-defined
networking [58]. Data backup is further explained in section 1.2 that is complemented by an access
control list measure in place to protect specific assets on the file system (section 1.3). To enable a clear
restoration point, renaming the Volume Shadow copies executable in Windows is presented in section 1.4.
Finally, the signature-based detection that helps to flag malicious software without their execution on
any system is described in section 1.5.

1.1 Awareness
Han et al. develop a proof of concept to check whether a requested website is SSL certified or not [55].
Their prototype is added as an extension to a popular browser such as Google Chrome. Also, it checks
the downloaded files searching for common ransomware patterns. Moreover, to alert the user of a hidden
threat, a pop-up warning is displayed. Even though their proposed concept relies on raising awareness
strategies to eradicate ransomware’s danger; it is not an exhaustive solution. Similarly, Ganorkar et al.
raise awareness of the plausible threat encountered by a ransomware attack [56]. They show clearly that
a communication is done between the server and the PC of the victim to retrieve the encryption key.

Before infecting the machine, an attacker should be able to gain access to the latter, fulfilled by
various attack vectors, once tracked down, attacks numbers can be scaled down. Attackers are always
seeking to find optimal ways to invade a target system minimizing the chances of being detected and
therefore stopped. Administrators should be aware of the broad spectrum of possible penetration to
protect the data’s confidentiality, integrity, and availability (CIA).
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Figure 2.1: Ransomware Detection Mechanisms Summary.

The authors in [59] implement a test scenario using Endian, a software-based firewall equipped with
specific functionalities (port blocking, IPs/IDS, content control, mail filtering). The testbed consists of
sending emails attached with malicious PDF files to 150 employees of a pharmaceutical company where
85% were tricked by this fake attack. Infected PDFs enable the simulation of a ransomware attack
without altering the file system of the victim. They state that education remains a fundamental pillar
to protect the assets of a company.

The most common attack vector is the spam email. It is a form of social engineering method that
lures the victim to perform an action like opening an infected PDF, image, etc. Zimba analyzed var-
ious infection vectors such as malicious emails, brute-force authentication credentials, and exploit kits
(EK)1 [20]. He described the attack model of the ransomware that consists of an attacking agent (EK or a
human) using specific assets (resources, open ports, addresses) to perform the required actions (requests
with an expected return) to attain its goals (ransomware payload execution). A graph translated by a
matrix represents these elements. The tested ransomware performed reconnaissance attacks, checking
for available backdoors. Attackers are constantly seeking malware-free intrusions since it requires no

1EKs are “tools used by cybercriminals to perform drive-by-download attacks” [60]. A drive-by download attack
represents the unintended download of a computer software from the Internet.
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actions from the end-user. Ransomware relies on this attack vector to penetrate a system and execute
its payload. Besides using an exploit kit based on the vulnerability fetched [57,58], attackers use various
techniques like drive-by downloads, malvertising to penetrate the target system.

The authors in [61] carry out a comprehensive analysis (system and network-level) of distinct ran-
somware families in a simulated environment. They state that multiple attack vectors exist, such as
social engineering methods, outdated systems, unpatched known vulnerabilities (service message block),
nonexistent antivirus solutions on the target system, and finally, the absence of regular backup.

To cope with all these potential threats, researchers should be aware of the likely system breaches
representing an attacker’s way into the system. Most of the research carried out in this phase represents
an explanation of the ransomware threat rather than developing specific countermeasures or detecting
it.

1.2 Data Backup

Castiglione and Pavlovic show that a better defense is provided when an economic incentive is on the
line. Consequently, strengthening the infrastructure ecosystem is essential to encumber the proliferation
of those crimes [62]. They address an important issue favoring a proper backup regularly: a cost-effective
solution to paying the ransom at a given time. Therefore, they suggest an encryption algorithm using a
One-Time Pad with deletions. It is an effective one since encryption should frequently occur, whereas
decryption is only taken into consideration if an attack arises or the system is down. There must be
a coordination between the servers to keep the data synchronized and up to date, achieving a resilient
distributed storage. Besides, it is immune to ransomware targeted attacks on servers: even if a particular
server is down, others distribute the information among the rest of the nodes having a balanced and
resilient system.

Baykara et al. introduce the safe zone concept where all the critical files are moved to protect
them [63]. Critical data are zipped and stored in this safe zone, and the files are kept open in non-
stop write mode to prevent any alteration by the ransomware. Besides, an integrity check is made to
examine any changes that occur. Their approach is not tested using ransomware. A noticeable drawback
is the single point of failure. Crucial information is detained in a single zone; if attacked, the user
loses everything. In addition, their solution tackles only the availability and integrity of the data: if
the information gets exfiltrated, the confidentiality is compromised. Thus considerable losses affect the
end-user or the company.

1.3 Access Control List (ACL)

Kumari et al. propose a locking file mechanism to prevent any alteration of the data [64]. Their main idea
relies on securing the memory location of confidential files. Their mechanism is divided into three phases.
Initially, an authentication with an input password is required. Then, the file extension is checked before
storing the data; if it is valid, the file is locked and hidden. Certainly, it presents a white list of possible
file manipulation that could be done by a user. However, their solution is not scalable: individuals need
to gain access to their sensitive files regularly. They have to accomplish the same procedure for all the
important files done manually to register them in a safe “database”. Also, they need to authenticate each
time they want to access the files. Moreover, their solution was not tested using ransomware samples.

1.4 Microsoft Volume Shadow Copy (VSS)

Weckstén et al. analyze multiple ransomware samples and conclude that they rely on the tools available
in the infected OS to carry out their attacks [65]. The proposed idea consists of renaming the Volume
Shadow copies (VSS) executable in Windows, so the ransomware will not be able to access or modify it.
They run their experiments in a virtualized environment, and all files are retrieved. If the restoration
point schedule is correctly and frequently configured, malicious attacks can be defeated. As the authors
state, it is a simple solution for unfamiliar users; however, unsustainable.
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1.5 Signature Based Detection (SBD)

The static analysis enables a signature-based code classification. For example, if a malicious piece of code
is found within the executable, an antivirus will drop the complete package. Nevertheless, this mechanism
is not immune to code obfuscation. The behavioral analysis extends this part, where malevolent patterns
are examined. Dynamic analysis limitations are some stealth and anti-debugging techniques [66]. This
part outlines ransomware characteristics extracted mostly from static analysis. Signature-based detection
belongs to the Delivery phase since the payload (encryption) is not executed. The major drawback of
signature-based detection is its inability to detect zero-day attacks. The protection of any system is valid
only after updating the signatures database with the ones published of unseen malware.

Medhat et al. present a static-based framework having a multi-level alert system to detect ran-
somware [67]. Their work relies on the concept of shared patterns/code among ransomware that rep-
resents static features. Four elements are kept: cryptographic signatures, API functions, file keywords,
and file extension. Their detection tool is based on Yara rules [68]. A limitation of their work is the
omission of obfuscated or packed samples representing a significant number of ransomware samples in
the wild.

Subedi et al. utilize reverse engineering tools to provide distinct identifiers for various ransomware
families [54]. For a given ransomware, they extract assembly instruction level, libraries used, and func-
tions called. The association rule mining is deployed for DLLs (Dynamic-Link Library) identification to
construct a known signature (sequence of DLLs) of the malicious software. Cosine similarity is used to
measure the similarity between the frequency vector of the assembly code of a benign and malevolent
software [69]. Their implemented CRSTATIC tool can detect crypto-ransomware without executing the
sample, based on the features provided above.

The authors in [70] focus on distinguishing a benevolent application from ransomware established
on discriminant characteristics of the Portable Executable (PE) file. In the static analysis part, the PE
file is disassembled and unpacked to extract the metadata from the header fields. Accordingly, 60 static
properties are identified to enable an accurate classification (bytes on the last page, pages in file and
relocations in the DOS header; size of optional header in the file header and number of sections) and nine
ransomware specific (presence of packer, DLLs used for network communication, command for registry
modification). Howbeit, if obfuscation was used, the authors performed a dynamic analysis to extract
the rest of the features. The sample is then executed in an isolated environment having the sys-internal
tools in place. An extended analysis revealed suspicious DLLs at run-time, the windows registry changes,
and the alteration of directories.

The work done in [71] performs a comparison between binaries checking for a similarity amongst the
samples. To this end, import hashing, fuzzy hashing, and YARA rules have been used. Even though
each of these methods has its limitation, 92% of similarity was achieved among the same families. Fuzzy
hashing outperformed the rest of the fuzzing algorithms based on time efficiency, memory, and hash/rule
size. A continuation of their work is the analysis of the polymorphic aspect of various samples acquired.
It is done by performing ransomware clustering using the combination of two fuzzy techniques: fuzzy
hashing and FCM clustering method [72]. They are able to aggregate multiple samples of the same
family in different distinct clusters. The accuracy of the clustering varies between the families and the
number of clusters chosen.

2 P2: Deployment

The following step in ransomware mitigation relies on monitoring the API calls. They show the in-
teraction between the malware and the computer of the victim. Many attackers rely on the services
provided by Microsoft Cryptographic API to complete their payload execution, such as random number
generator, AES encryption. Writing a specific code is prone to errors. Thus, attackers prefer to use
built-in services to accomplish their tasks. Therefore, researchers analyzed the API calls, including their
patterns and frequency, to classify processes (section 2.1). Monitoring carefully Windows events helps
to extract patterns to describe the habitual behavior of any user accurately compared to ransomware
(section 2.2). These methods are summarized in Table 2.2.
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Articles Type Approaches Tested Detection/Protection/Prevention Mecha-
nism

Static Dynamic Solution
[55] Awareness - - X Web browser extension to alert users of po-

tential threat
[56] Awareness X X X Best Practices Proposal: Disabling RDP,

frequent backup
[58] Awareness X X X SDN usage to detect and alert the user of

malicious intent
[57] Awareness - - X Proposition of incidence response hacks
[62] Data Backup - X X Providing a Dynamic Distributed Storage
[63] Data Backup X - X Data stored in a Safe Zone System
[64] ACL - - X Authentication + File Locking
[65] VSS - - X Renaming Windows VSS
[67] SBD X - X Yara rules to detect ransomware
[54] SBD X X X Ransomware signature extracted based on

reverse engineering tools
[70] SBD X X X Discriminant characteristics of the Portable

Executable extracted to flag ransomware
[71] SBD X - X Fuzzy hashing to compare binaries and de-

tect ransomware

Table 2.1: Ransomware Detection Mechanisms Overview for the Delivery Phase P1.

2.1 API Calls

Chen et al. monitor the API calls made by ransomware to generate API calls flow graphs (CFG) [73].
It is a proactive solution that provides an early stage detection while the ransomware is still setting
its environment. They improve ransomware detection by analyzing the API call flow graph utilizing
machine learning techniques. They develop their API Monitor tool to gather the calls made during the
experiments executed on a virtual machine. A weighted directed graph represents the sequence of API
calls. The weight corresponds to the frequencies of a specific API 1, followed by API 2. The CFG is
converted to a feature vector where its values are normalized and rescaled from zero to one. Subsequently,
feature selection is performed to retain certain features enabling a distinct separation between malicious
and benevolent software. The Simple Logistic (SL) algorithm outperforms the rest of the classifiers
(decision tree DT, random forest RF, support vector machine SVM).

In a like manner, Maniath et al. rely on the sequence of API calls to flag ransomware behavior.
They utilize a modified version of the Cuckoo sandbox to extract those calls from the JSON report of
157 ransomware samples [74]. The sequence of API calls is converted to a chain of integers (each integer
refers to a specific system call). Missing inputs in the dataset occur because each malware is programmed
to operate distinctly. Thus, to handle those missing inputs (for example, five sequence calls compared
to 200), 0s are appended to the record since they do not influence the record’s value. By applying the
LSTM algorithm (Long Sort-Term Memory), prominent results are achieved.

Takeuchi et al. also rely on the sequence of API calls to depict ransomware-like behavior [75]. Their
contribution is the representation of API calls by a vector where they quantified the sequence of those
API calls (including the number of q-grams in the execution logs). A mapping is performed using n-
grams. For a software using 2 distinct API calls A= a, b, the possible 2-gram would be (a, a), (a, b), (b,
a) and (b, b) . The final vector is [0,1,1,0] since it does not include (a, a) nor (b, b). A major drawback
is that two distinct API call strings can have the same output vector. Therefore, they solve this issue by
adding the count of the performed calls. Since the number of API calls diverges exponentially between
applications, standardized vectors are calculated to have a balanced set. SVM is used to differentiate
between the created vectors belonging to ransomware or to a benign application.

Similarly, Vinayakumar et al. and Hampton et al. analyze ransomware activity considering API
call patterns and their frequency [76, 77]. Tests performed on the sequence of API calls show that
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ransomware identification is possible through its frequency. Additionally, some system calls are made
solely by ransomware (InternetOpen, CryptDeriveKey, CryptGenKey) [77].

Al-Rimy et al. propose a 0-Day aware crypto-ransomware behavioral detection framework [78]. Their
model is divided into three submodules: preprocessing, features engineering, and detection. They do not
rely only on API calls collected during the preprocessing phase for early detection. They added a layer
consisting of data-centric detection (this method focuses on the data using entropy or similarity) and
anomaly detection based on a deviation of normal behavior. However, no tests were performed to prove
the validity nor the accuracy of their framework even though it has promising characteristics.

Al Rimi et al. propose a combination of behavioral and anomaly-based mechanisms to achieve
accurate ransomware detection rate and maintain low false alarms [79]. Cuckoo sandbox is used for the
experiments where all the samples are executed for 5 seconds to collect the API calls information. Each
API call is treated as a feature. Term Frequency–Inverse Document Frequency (TF-IDF) is used to build
a vector for the training and test phase. The vector contains the weight (calculated by applying TF-IDF
formula) of each API. Mutual Information (MI) is adopted to extract significant features. As for the
anomaly-based estimator, only benign software is used to carry out the experiments. This estimator
flags a deviation compared to normal behavior. The fusion of both mechanisms shifted the detection
results providing better classification. In some cases, specific user actions (for example, a mouse click)
trigger the execution of ransomware. Therefore, the duration of 5 seconds is not adequate for API calls
collection.

Al Rimy et al. overcome information limitation in the early phases of a ransomware attack by using
two novel techniques incremental bagging (iBagging) and enhanced semi-random subspace selection
(ESRS) [80]. iBagging represents a progressive stage of the attacks rather than having it all at a specific
time, while the ESRS builds various subspaces maintaining the diversity in each one. Three main
components constitute their mechanism: initially, the subspace creation then features selection and,
finally, the choice of the best combination of base classifiers. Their database consists solely of API calls
captured during the execution of each sample in a sandboxed environment. A pre-encryption boundary
vector represents the stage that occurs just before the attack takes place. For the data subsets, N-gram
and Term Frequency–Inverse Document Frequency (TF-IDF) are employed to decrease the similarity
between two adjacent subsets. Taking into account only 10% of the APIs in the training set, they
achieved higher detection rate using iBagging with ESRS rather than using solely iBagging.

Palisse et al. have implemented a Cryptographic Service Provider [81]. It contains the required
functions for the end-to-end encryption process. This mechanism would help restore encrypted data.
Adopting this method, a user can protect himself from 50% of ransomware attacks. This solution takes
place during the encryption phase, at the end of the infection process of the ransomware. The authors
use bare-metal hosts during the experiments.

2.2 Windows Events
The initial stage of a ransomware is similar to reconnaissance for Advanced Persistent Threats (APT) [82].
Both malware rely on social engineering techniques to perform the required tasks of an attacker (opening
an infected PDF). Ransomware gathers information about the environment (language used, IP addresses,
installed libraries) in order to carry out the attack. The malware executed on the machine proceeds
with a sequence of specific events that is explored by Homayoun et al. [83]. They gather the first 10
seconds of logs collected from any goodware or malware downloaded on their virtual machines. Analyzed
ransomware samples are from three different categories Locky, Cerber, and Teslacrypt. The logs consist
of data gathered from the ProcessMonitor application that has records, including loaded dynamic linked
libraries (D), file system activities (F), and registry activities (R). Thus, the authors converted their data
into a sequential dataset and applied the sequential pattern mining technique Mind the Gap: Frequent
Sequence Mining (MG-FSM). The best features from the maximum sequential pattern are selected: R,
D, and FD (file system to DLL).

Using random forests, authors achieve a clear distinction between the events accomplished by a
goodware versus the ransomware (for example, ransomware applications conduct a wider range of
Registry activities). Their experiments are done on virtual machines. The main advantage of such
solution is the early detection of an infected PC without any prior encryption process. However, any
change in the current analyzed sequence of events would modify the detection rates prone to increased
false positive and negative rates.
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Articles Type Approaches Tested Detection/Protection Mechanism
Static Dynamic Solution

[73–76,79,80] API Calls - X X API Calls sequence &/or frequency
features used to detect ransomware
via applying ML algorithms

[81] API Calls - X X Intercepting calls made to MS-
CAPI

[83] Windows Events - X X Maximal frequent patterns ex-
tracted from (registry, DLL, tran-
sition file to DLL) events then ML
applied to detect ransomware

Table 2.2: Ransomware Detection Mechanisms for the Deployment Phase P2.

3 P3: Destruction
The destruction phase is characterized by the encryption process that affects a significant number of user
files. Initially, researchers flag the malicious communication with the C&C of the attacker that represents
a critical element of the ransomware attack (sections 3.1 and 3.2). Then, the honeypot countermeasures
are developed in section 3.3 to detect ransomware that queries the file system to collect specific file exten-
sions (.doc, .xls, .txt, .jpg). The moving target defense technique that regularly changes file extensions
omitting consequential file types from the ransomware search is presented in section 3.4. Massive opera-
tions, including open, read, and write, portray the encryption phase. Encrypted information has higher
entropy2. The statistical tools adopted in the literature that distinguishes a non-encrypted text from an
encrypted one are discussed in section 3.5. This step consumes resources; therefore, the hardware events
can depict the ongoing ransomware attack (section 3.6). Some authors combine multiple indicators of
compromise to detect malicious behavior (section 3.7). Finally, if no real-time solution can stop the
encryption process, the restoration of keys can save user files (section 3.8). The methods presented in
the destruction phase are summarized in Table 2.3.

3.1 Network Traffic Analysis3

Wang et al. propose a mechanism for remote desktop protocol tracing and tracking down [84]. The
authors resort to cyber deception technology to lure ransomware attacks. They create a deception
environment to log and analyze the actions completed by the attacker. It consists of a login with weak
passwords and known vulnerabilities enabled. The collected information relies on IP addresses, shared
folder path, and clipboard strings. An automated analysis is carried out to filter and obtain the required
results. To accomplish this task, the Markov model is trained to distinguish gibberish words from existing
ones. Windows 7 virtual machines are used for the experiments. The question remains if this traceability
is enough to stop ransom attacks and if it is sufficient to physically traceback the attacker.

The authors in [85] propose a novel detection mechanism of highly survivable ransomware. They
target hybrid ransomware since they represent the highest threat. They define the Highly Survivable
Ransomware as ransomware that infects users; ransomware writers can only reverse the encryption
process and restore the data. Finally, freeing one victim does not include freeing the rest of the targeted
devices. The authors focus their detection mechanism on the public key received from the C&C to
perform the encryption on the infected system. It targets the domain generation algorithm to contact
C&C candidates for key retrieval. They propose a mechanism able to detect DNS requests generated by
domain generation algorithms (DGA [86]). Markov chains are used to define the transitions from one
letter to another. A gibberish query is more likely to be generated by DGA. They added another layer

2Recent Xorist samples encrypt files maintaining an unaltered entropy before and after the encryption.
3A zoom into the types of network intrusion detection systems and the datasets available is presented in section 5.
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of protection by signing the applications. Their detection is completed before the encryption process, so
all files are saved.

Tsen et al. find that ransomware share common communication patterns that enable an early detec-
tion [87]. Their solution based on deep packet inspection is fed to a deep learning algorithm to distinguish
between malicious and benign traffic. The data consist of HTTP requests and raw payloads downloaded
from malware-traffic-analysis.net.

Alhawi et al. perform also supervised learning on the network traffic downloaded from VirusTotal [88]
using Weka [89]. Different ransomware families like Cerber, CryptoWall, and Teslacrypt are included
in the training phase. The features selected for the learning algorithm are protocol type, addresses
and ports (source and destination), the number of packets exchanged, the total number of packets,
time relative to the start of the conversation, and the duration of the conversation flow. Surprisingly,
feature selection did not influence the overall sensitivity and specificity of the detection (for example,
decision trees provided the same results with/without feature selection). Also, there was no separation
between the TCP and UDP protocols, which might lead to an unbalanced dataset. For instance, Zerber
ransomware (7bbb346484186447fb1d085e6942b56b MD5 hash) made up to 40 000 different UDP requests
while TeslaCrypt (05330fff36ad3e359be8bb2b33f09436 MD5 hash) only 2 TCP requests [48]. Besides, an
administrator should know whether this detection occurs before or after the encryption process that was
not discussed in the paper.

The authors in [90] develop a Compromise Detection System (CDS) also based on machine learning
applied to network traffic to detect new variants of ransomware. They perform an analysis of WannaCry
ransomware once with the network configuration enabled and the second without any connection. The
malware contacts the C&C via TOR (The Onion Router), which is complex to trace. Their CDS also
inspects the DNS requests generated by the ransomware using DGA algorithms. In addition, their tool
can interact with a firewall to block the source of compromise, thus restraining the propagation to other
systems on the network.

Almashhadani et al. presume that the majority of ransomware samples can be detected via net-
work communication with the C&C. Having analyzed 4 Locky samples, the authors conclude that the
communication occurs before any payload execution [43]. They analyze multiple features as potential
discriminating characteristics of malicious traffic, including RST, POST, GET, and DNS requests. They
are able to extract 18 detectable features divided into two subsets behavioral (number of HTTP-POSTs,
DNS-NE, and MDN, DNS-NE, MDN, MNBNS ) and non-behavioral parameters (dns-ipv6, dns-ipv4, dns-
time, dns-resp-ttl). However, another classification is taken into consideration for the training algorithm,
whether it is packet level (MDN, DNS-NE, dns-ipv6, dns-ipv4) or flow level (number of HTTP-POSTs,
DNS-NE, and MDN).

Cusack et al. monitor network traffic searching for communication patterns between the victim and
the C&C [91]. Their module consists of two building blocks the stream processing and then the classifier.
They can reduce important features from 28 to 8 that is sufficient for a proper classification (inflow and
outflow number of bytes, length, outflow to inflow packet ratio). Their settings are not tested in a
real-world scenario.

The authors in [92] develop a Software-Defined Networking (SDN) based on common ransomware
patterns as an effective ransomware countermeasure. Even though detecting those signals might come
behindhand; however, they can save other users from being infected by the same executable. They
analyze the two corresponding families CryptoWall and Locky. Although they both communicate via
HTTP requests, some specific characteristics define each malware. Their detection mechanism is solely
based on the size of the data in the three POST messages. Then, for each family, the centroid and the
limit distance (distance square) are established. For an unknown triple, the distance to the centroid
is calculated, and if it is below the limit distance set up previously, a ransomware communication is
encountered. The benign traffic is downloaded from maccdc.org. Tests are performed on Cuckoo guest
with Microsoft Windows 7 to validate the proposed methodology.

Akbanov et al. resort also to SDN as a means of detection and mitigation of ransomware attacks based
on OpenFlow [93]. From their static analysis using Petstudio, both worm and encrypting components of
WannaCry samples use DLLs. The worm component gets the information about the network environ-
ment, while the encrypting one utilizing Windows Cryptographic API is used for keys generation. The
authors are able to find that WannaCry tries to connect to an unregistered domain name via performing
dynamic analysis. If it receives an answer, it stops its execution, else the encryption process begins.
A simple string search can extract two hardcoded IP addresses found in the samples. Besides having
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an initial list of blacklisted IP addresses, the OpenFlow switch of the SDN-based mechanism redirects
the traffic generated by any machine connected to the network. The controller parses and extracts IP
addresses from packets received to compare them to the existent DB (port numbers and IP addresses)
or updates it with a new entry if malicious communication is detected. At the end, the corresponding
traffic is blocked, and propagation opportunities eliminated. Three Windows 7 VMs are used for the
experiments where one is infected. Their mechanism can detect the traffic incoming from the infected
one and blocks it, which makes their approach successful. However, they block only the worm component
rather than stopping an active infection on the PC. Another point worth mentioning as a limitation is
DB poisoning with real/fake IP addresses.

3.2 Network Honeypot
Cabaj et al. use a honeypot technique in addition to an automatic runtime system to analyze and detect
ransomware through the network activity [94]. Their approach is built on virtual machines to download
and test ransomware samples on Windows XP. They reveal that CryptoWall uses domain names rather
than IP addresses. Multiple actions are carried out by the sample, such as getting the IP address of the
victim’s machine and contacting the hardcoded servers. Therefore, by blocking the DNS requests made
by CryptoWall, the authors are able to enumerate all the contacted servers. The parties maintained
encrypted communication. All the proxies hosting malicious scripts are identified.

3.3 File System Honeypot
Monitoring file system activity, apart from system calls, is crucial for an overall detection mechanism.
In fact, if an attacker learns different patterns or sequences of the system calls made to bypass security
measures deployed on the system, an early detection of the malware is improbable.

A honeypot is a resource used by administrators to detect unauthorized access to a system [95].
Lee and Hong introduce a novel mechanism to make efficient decoy files [96]. Two search methods

are extracted from malware’s source codes. The first one consists of performing a search looking for
specific file extension hence .pptx, .docx, .txt. Then, it saves the location of these files, encrypting them
one by one at the end of this process. The second method is encrypting a file as soon as it is found.
Since the search is performed in order or reverse order of Windows-1252 (character encoding of the Latin
alphabet), consequently, decoy files are created using the first or the last character in Windows-1252.
Preferably, they should be located in the parent folder rather than in sub-folders due to ransom traversal
patterns. The size and attributes of decoy folders can be updated to meet the new requirements of the
ransomware in the wild and flag them as soon as possible.

Lee and Hong’s work is complemented by Moore and Al Kossairi et al. investigations [97,98]. Moore’s
work relies on a honeypot folder that a File Server Resource Manager (FSRM) monitors, followed by
changes analysis of the Windows Event Logs. A tiered response to detection is developed based on the
number of modified files. FSRM is a tool that prevents an already executing malware from infecting the
entire file server. The EventSentry makes a warning if an attempt of modification is made to a specific
object. The threshold is defined based on a regular observation of users’ behavior. Any abnormality
noticed is a deviation of double or three times the normal activity. A practical method certainly, however,
it can be bypassed if the malware does not attempt to access these areas.

Whereas Al Kossairi et al. monitor decoy folders by Watching File System Event Handler watcher
applicable only on Windows OS. Decoy folders properties have been identified (variability, differentiability
from benign ones). Low (contains random data) and High (contains fake data) Interaction Decoy files are
used for the proof of concept. They are monitored by Watching File System Event Handler watcher. The
decoy folders are positioned at the beginning of each directory to be first intercepted by the ransomware.
These files contain misleading information about credentials or even IP addresses. They provide an
efficient detection mechanism. However, it is dependent on Find First File & Find Next File functions
used in Windows OS to get the files or search directories. In addition, if an attacker used a reversed
search, the victim would be alerted at the end of the encryption process leaving only the decoy files
intact.

The authors in [99] propose two quality measures to evaluate decoy strategies, the first one is based
on the level of deceptfullness of the method, while the second is related to the efficiency. They state that
a good decoy generation strategy should blend in with the rest of the files on the file system. Thus, the
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file generated will have a high probability of being selected by an attacker. Besides, a user should not
access a file from those generated decoys. They proposed distinguishing decoys using statistical methods
applied to the attributes of the MFT that we will analyze in-depth in Chapter 4.

3.4 Moving Target Defense (MTD)
Lee et al. come up with a mechanism based on MTD applied to file extension to prevent losses on the
victim system, most importantly, without a performance overhead [100]. MTD increases the complexity
of the attack surface. They randomly change 7 file extensions (.docx, .hwp, .pdf, .pptx, .txt, .xlsx,
and.zip) over one iteration to protect them. They randomly generate a four-digit file extension using the
Cryptographically Secure Pseudo-Random Number Generator (CSPRNG), then if it was not previously
used, it replaces the existing extension in the registry. The experiments realized are on VMware with
Windows 7 installed. The overall modification of 1000 files (extension + registry) does not exceed 3.6
seconds. However, two limitations are found in this work, a non-ergonomic work environment, as the
authors stated in addition to the encryption of a specific directory regardless of the file extension. Not
to mention, each file type is associated with its corresponding magic number (pdf: 25 50 44 46 2D, ppt:
D0 CF 11 E0 A1 B1 1A E1, 7-zip: 37 7A BC AF 27 1C) consequently if a ransomware scans just the first
couple of bytes of any file, it can get its format and encrypt it if it belongs to the whitelist of files [101].

3.5 Files Monitoring (Encryption, I/O requests)
Kharaz et al. present a dynamic based approach to detect ransomware by identifying any tampering of
users files in a created artificial environment [102]. Their solution is built on top of Cuckoo Sandbox
using Windows XP as an OS, where each sample runs for 20 minutes. Generating a different artificial
user environment for each run is essential since the malware is not going to be able to fingerprint the user-
generated content. The generated documents should be indistinguishable from normal ones, including
valid content (headers, file archives, passwords, meaningful content), randomly generated directories
with a set of sub-folders, and finally, different time attributes. Monitoring of the file system activity is
performed by converting all the calls to a sequence of I/O requests and returning the file’s entropy in
demand. Also, they identify the common patterns for accessing the files and performing the encryption
based on write and delete requests. Three main classes of attacks are identified: whether the attacker
overwrites the original data by the encrypted one, creates a new encrypted file, and unlinks or deletes
the original one. If more than five created files have higher entropy than the read file option, then a
ransomware is detected. Furthermore, they can detect zero-day ransomware (SilentCrypt) since their
mechanism is based on behavioral analysis. A limitation of their work is new ransomware variants that
could shuffle the data content having a slightly modified entropy; thus, it evades detection.

Palisse et al. create two contributions in their work Data-Aware Defense (DaD) [103]. Unlike previous
test environments based on virtualization techniques, the authors build their platform to perform the
analysis using Clonezilla and Viper. At each run, a clean image of Windows 7 or 10 is loaded, and samples
run for 15 minutes. This automatic analysis enables a larger scope of malware investigation, removing
the possibility of potential evasion techniques used by malware in a virtual machine. Furthermore, they
rely on the chi-square goodness-of-fit test (χ2) to distinguish between encrypted (aka random data) and
non-encrypted files on the system. They develop a kernel driver that captures the I/O requests and
calculates the χ2 of the file being used. If the median of the last 50 operations exceeds a predefined
threshold, an alert is raised, and the thread is stopped. Another advantage is the slight overhead that
does not exceed 12 µs per operation. At most, 70 MB of data was lost. Besides Shannon entropy and χ2,
Mbol et al. rely on Kullback-Liebler divergence to detect randomness of data, in their case, ransomware
encryption [104]. They focus solely on JPEG files. They show that it is impossible to compare an
encrypted versus a non-encrypted file based on Shannon entropy since the output is practically the
same (7.99 versus 7.96). Although it seems to be a prominent solution, the only file type taken into
consideration was JPEG. It represents less than 1% of the entirely possible infected file types [105].
Therefore, an extensive work should be done to compare at least some of the important file types before
and after the encryption process.

Lee et al. propose an extension of the detection system that covers the files in the cloud [106]. Their
technique identifies the encrypted files on the cloud before synchronizing the system and losing the actual
file. They utilize the collision test estimate, the Markov test estimate, and the compression test estimate

26



to measure the uniformity of a specific file. They calculate these statistical values of 6 different file types
(system file, document, image, source code file, executable and compressed files) before and after the
encryption process. Machine learning is used to derive the entropy reference value. The decision tree
is selected as the most suitable classifier to distinguish between an encrypted and a non-encrypted file.
These files thus are not synchronized to the backup system. However, their solution does not tackle the
core of the subject: a ransomware attack is not stopped; they relatively propose a clean system recovery.
In addition, the use of machine learning for statistical tests is skeptical since the values fluctuate around
specific numbers that are theoretically known. Thus, a dynamic change is not seen in these cases that
require the usage of an adaptation algorithm. Furthermore, no real-time tests are made to prove the
accuracy of their end-to-end process.

Agrawal et al. opt for sequence learning module specifically LSTM (Long Short-Term Memory) to
detect ransomware [107]. They incorporate attention to learn ransomware sequence known as Attended
Recent Inputs (ARI). Ransomware has a significant repetition of small local patterns: the encryption
process. They introduce recent input attention within a larger cell. Their dataset consists of 12,500
sequences of ransomware and benign executables for Windows OS. Their proposed algorithm ARI-LSTM
outperforms normal LSTM.

3.6 Hardware Performance Counters (HPC)

Alam et al. present RAPPPER a two-step mechanism based on unsupervised learning to flag malicious
activity. RAPPPER relies on Artificial Neural Network and Fast Fourier Transformation [108]. The
hardware events selected for the study are instruction, cache-references, cache-misses, branches, and
branch-misses. An observation of the hardware performance counter is done so that the tool learns the
normal behavior of the system that is going to be fed to the learning algorithm for further inspection. As
a final step, Fast Fourier Transformation (FFT) is applied to understand the repeatability of data over
time. The experiments are carried out in a Linux Sandbox environment, and a precise threshold is set to
differentiate between malicious ransomware behavior and benign ones. RAPPER can flag ransomware 4
seconds from its launch. No similar approach is proposed for the Windows OS; therefore, it is kept as
an idea for defending victims from potential attacks.

3.7 Multiple Stage/ IOC (indicators of compromise)

Chew et al. propose a behavioral-based approach to detect ransomware to thwart its malicious in-
tent [109]. Their work is based on multiple malware characteristics that represent indicators of compro-
mise. These indicators are based on monitoring file changes by checking the added extensions to the
encrypted files. Besides, an increased file entropy indicates possible encrypted data. Decoy files and Ac-
cess Control List (ACL) Authentication help flagging ransomware if decoys are altered or unauthorized
modification, deletion of a specific folder is noticed. Five seconds interval is maintained to increment
the counter of the comprised action performed by the ransomware. The authors use SigCheck to check
whether the file format has also been encrypted or not to resolve the high entropy problem of zip files and
DLLs. Notwithstanding, ransomware authors are currently sparing the encryption of file headers, so the
false positive rate increases. Windows 8.1 running on Virtual Box is used for the experiments. Results
are satisfactory for all the ransomware families except Petya that triggered a Bluescreen of Death and
encrypted the Master Boot Record.

Kharraz et al. studied 15 different ransomware families released from 2006 until 2014 [110]. They
state that initial attacks were not sophisticated since they used scare tactics rather than encrypting the
file system having irreversible actions. Experiments are performed in a controlled environment using
Cuckoo sandbox. Their analysis is divided into three parts. For the file system activity, the authors
developed a minifilter driver to capture the I/O request to perform the analysis afterward. It is deployed
in the kernel mode to avoid being altered by the ransomware. Then, they look into the encryption
mechanism, searching for standard Windows API calls and libraries used to encrypt a file on the disk
(CryptoAPI). The deletion mechanism is also taken into account since 35% of the samples did not perform
any encryption mechanism. Some samples altered the master boot record (MBR) and made persistent
screen locks. The authors employ multiple mitigation strategies. They consisted of monitoring API
calls, the file system activity (creation, deletion, or encryption of files), and finally using decoy resources

27



that should not have been altered normally by a user. All these elements propose an additional level of
defense against crypto attacks.

Similarly, Scaif et al. develop a detection mechanism based on a set of behavior indicators [29].
Their solution relies on monitoring changes to the magic numbers (it corresponds to the type of the
data stored) of the files, hash similarity measurements taken before and after a modification process, and
Shannon entropy, which increases with encrypted information. As for secondary indicators, they checked
the numbers of actions taken to read/write/delete files. They opt for the union of these indicators to
achieve improved results than using each indicator separately. Cuckoo sandbox is also used for the
experiments. In the worst-case scenario, 30 files are encrypted before an alarm is raised, and the process
is stopped. In the median case, only 0.2% of the files are lost. Continella et al. present ShieldFS, a file
system minifilter driver, that protects users from ransomware attacks [111]. The authors analyze I/O
request packets for benign software and ransomware to set an initial detection threshold that indicates
an ongoing attack. They check if both software interact with the file system in a like manner or not by
taking into consideration the process level activity as well as the system activity. The approach is based
on portraying the habits of normal users, including the entropy of write operations, the frequency of
read, write, and folder-listing operations, dispersion of per-file writes, the fraction of files renamed, and
the file-type usage statistics. Moreover, they scan the memory of processes looking for cryptographic
primitives. Random forest is applied to the features presented above gathered during intervals. These
intervals are defined as the fraction of files accessed by the monitored process. Furthermore, ShieldFS
proposes a remediation aspect that shadows the original file if a malicious behavior is suspected. A
drawback of ShieldFS is the difficulty in distinguishing JPEG files from encrypted files relying solely
on entropy, as discussed in [104]. Besides, if a ransomware equally distributes the tasks on different
processes using multithreading techniques, some files are going to be lost before detecting the malware.

The authors in [112] presented new variants of ransomware attacks that can go unnoticed. For
instance, writing the encrypted data in an SQL database, then deleting all the files. Multithreading
attacks for reading, writing, and removing files to maintain a low variation between the entropy of the
data read and written. A set of features is added to block such attacks (file attributes, path diversity,
rate of creation, modification, size, and mime change). They perform their experiments on real machines
that detect all the ransomware without losing more than 20 files.

3.8 Keys Backup
Lee et al. present a prevention mechanism based on the encryption keys used to restore the data after
the encryption process [113]. They assume that ransomware authors rely on the Microsoft CNG library
to import or generate encryption tools. They develop their ransomware and test the effectiveness of their
solution. They are indeed able to retrieve the keys on a Windows 7 machine. However, if the malicious
software has a built-in cryptographic function or uses Microsoft CryptoAPI, no keys are backed up.

Kolodenker et al. propose PayBreak, a reactive solution that saves the information related to the
symmetric keys generated to decrypt the files locked after the infection process [25]. Their proactive
solution relies on a key escrow that stores the encryption keys securely, where only the user has exclusive
access. Windows 7 is the target machine running on Cuckoo SandBox. Paybreaks consists of three
major components. The crypto function hooking in CryptEncrypt to export the symmetric keys via
CryptExport used or created by Microsoft’s Crypto APIs, then the control is returned to the application.
Further hooks are required to get additional attributes such as the initialization vector and cipher mode.
As for Crypto++ , the memory of each executable is scanned for function signatures, and if a match is
found, a hook is placed. Then, the key vault is used to store the symmetric encryption in an append-
only file protected by a private key created by the user using the same hybrid cryptosystem as the
ransomware. Finally, the file recovery is achieved by testing multiple decryption schemes at different
offsets since the encrypted file contains metadata of the ransomware. Twelve out of twenty families are
successfully defeated. The rest of the samples could be identified by hooking to various statically linked
libraries used during the encryption process.
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Articles Type Approaches Tested Detection/Protection Mecha-
nism

Static Dynamic Solution
[85] Network Analysis - X X DNS requests generated by

DGA detection via Markov
chains

[43,87,89,91] Network Analysis - X X Flagging suspicious communi-
cation via machine learning

[92] Network Analysis - X X SDN mechanism capable of
flagging malicious POST re-
quests

[94,114] Network Honeypot - X X Proposition of using Network
Honeypot

[96] System Honeypot X X X Novel mechanism to make effi-
cient decoy files

[97,98] System Honeypot - X X X Detection via monitoring hon-
eypot folders

[100] MTD - X X MTD applied to file extension
to prevent the encryption pro-
cess

[102] Files Monitoring - X X Monitoring I/O requests and
files’ Shannon entropy for ran-
somware detection

[103] Files Monitoring - X X Chi-squared test to check en-
crypted files

[105] Files Monitoring - X X Kullback-Liebler divergence to
locate JPEG encrypted files

[106] Files Monitoring - X X Ransomware detection (in the
backup system) by applying
ML on file format and entropy

[108] HPC - X X ANN applied on cache events to
flag ransomware

[109] Multiple IOC - X X Monitoring file changes and en-
tropy, manipulation of decoy
files to detect ransomware

[111] Multiple IOC - X X ML applied to the entropy of
write operations, the frequency
of read, write, and folder-listing
operations, dispersion of per-file
writes, the fraction of files re-
named, and the file-type usage
statistics + files recovery

[110] Multiple IOC - X X Monitoring I/O request and
changes in the MFT to detect
ransomware

[29,112] Multiple IOC - X X File attributes, modification,
features used to flag ran-
somware

[25,113] Keys Backup - X X Hooking to Microsoft crypto-
graphic function to restore the
keys and decrypt the files

Table 2.3: Ransomware Detection Mechanisms for the Destruction Phase P3.
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4 P4: Dealing
The final stage in the ransomware attack consists of an exchange between the attacker and the victim. It
is the most critical phase of the intrusion. Indeed, the cyber attacker displays a ransom note indicating
the steps he/she has to follow for the payment to receive the decryption keys. State-of-the-art papers
delve into extracting and clustering the addresses of ransomware found in the blockchain. The goal is to
monitor the bitcoin flow, visualize the transactions, and provide an estimate of the infected people. The
methods presented in the dealing phase are summarized in Table 2.4.

4.1 Bitcoin Tracking
Spagnuolo et al. developed BitIodine, a framework that helps to track the irreversible transactions
publically available on the blockchain [115]. Correlating the information extracted from the blockchain
and its metadata allows an accurate description of the cryptocurrency flow between two addresses.
BitIodine scheme relies on parsing the blocks and transactions found in the .bitcoin folder and exporting
them into a database. Then, a cluster of addresses is based on the multi-input transactions (assuming
multiple input addresses belong to the same wallet) and change (the “unspent” output of a transaction
delivered back to the user). A set of scrapers crawl the web, collecting information associated with the
bitcoin addresses like usernames, physical coins, scammers, and shareholders. Finally, the transaction
and user graphs are generated corresponding to the assembled information above. The classifier labels
each cluster to its corresponding potential owner. Spagnuolo et al. investigate CryptoLocker using
BitIodine. The tool they developed can gather 1467 CryptoLocker addresses belonging to 12 clusters.
This step is carried out by analyzing flows of 0.5, 2, or 10 BTC (bitcoin), the ransom demanded by the
attackers extracted from [116, 117]. Two key elements are presented in BitIodine. It is possible to track
and identify ransomware based on the ransom amount, and multiple clusters can represent the same
family. Different ransomware families can be studied based on these characteristics. Additionally, new
unidentified clusters can be analyzed to check the possibility of classifying them as ransomware.

Kuzuno and Karma propose as well an analytical process environment for bitcoin [118]. It is divided
into four steps. Initially, their mechanism has to find the bitcoin address (target is already known or
search for example via the amount spent and the date). Then, the indexer collects and stores each
transaction ID and Block ID in the private database of the authors. Next, the visualizer displays the
relation between the collected addresses (transactions made). Finally, the clustering process associates
a known address with another that might belong to the same wallet operator. Applying this process
to Cryptolocker’s case, two addresses quickly stood out, since they received 2.0 BTC from many other
addresses.

Similarly, Huang et al. trace financial transactions related to ransomware [6]. The authors collect
the seed addresses (ransom addresses) from real victims or by executing the ransomware. For the real
victims, the authors check public forums such as Bleeping Computer. Once they find the screenshots
of ransom notes, they perform image and or text analysis. As for the experiments carried out to by
synthetic victims (authors executing the ransomware), they are executed for 20 min on four independent
platforms VmRay, VMware-based sandbox, Cuckoo, and Windows XP on a bare-metal machine. To
be able to collect more ransom addresses, clustering and micropayments methods are used. Clustering
by co-spending helps to expend the range of “malicious addresses” if two wallet addresses are used as
the input to the same transaction. Augmenting clustering with micropayments consists of paying 0.001
bitcoins to the ransom address and observe bitcoins flow. To cover the limitations of those two methods
(for example, micropayment did not result in subsequent bitcoin movement), the authors incorporate
the timing of payments.

Harlev et al. focus on predicting if a previously unidentified cluster belongs to one of the following pre-
deïňĄned categories: exchange, gambling, ransomware, etc [119]. To accomplish this step, the authors
apply machine learning algorithms (k-nearest neighbors, random forests, decision tree, extra trees) on
the bitcoin dataset provided by Chainalysis, a bitcoin analysis company [120]. Significant features are
extracted and kept (timestamp of the transaction, the amount of BTC received/sent, total BTC amount
sent to a given cluster, equivalent USD amount at the point in time). In a like manner, Akcora et al.
detect new ransomware addresses using topological data analysis (TDA) and machine learning [121].
TDA helps to extract hidden patterns fundamental elements to distinguish a ransomware transaction in
the blockchain (income, number of addresses, and unique addresses, neighbors).
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The model can predict new ransomware families with 27.53 false positives for each true positive.

Articles Type Approaches Tested Tracking Mechanism
Static Dynamic Solution

[115] Bitcoin Payment Tracking - X X Clustering and visualizing bit-
coin addresses and flows based
on the multi-input transac-
tions and change heuristics

[118] Bitcoin Payment Tracking - X X Ransom addresses traced, then
bitcoin flow visualized; lastly,
addresses are clustered.

[6] Bitcoin Payment Tracking - X X Ransom addresses traced via
clustering by co-spending aug-
mented with micropayments

[119] Bitcoin Payment Tracking - X X Categorize yet-unidentified
clusters via supervised ML

[121] Bitcoin Payment Tracking - X X Extract features related to
ransomware Bitcoin to detect
new addresses associated with
known ransomware families or
new ones.

Table 2.4: Ransomware Detection Mechanisms for the Dealing Phase P4.

5 Network Intrusion Detection System (NIDS) and Datasets
The second contribution of the thesis tackles network communication to detect ransomware. Hence,
this section introduces the types of NIDS found in the literature and the datasets used as a baseline
comparison or for benchmark testing. We conclude by the need for generating our own dataset presenting
ransomware network traffic.

5.1 Types of NIDS
Signature & divergence-based (or anomaly-based) NIDS represent a device or software application that
monitors a network or system for malicious activity or policy violations. It detects, if possible, any
attempt to:

• gain unauthorized access to the system

• compromise network availability

• install malicious applications

Signature-based detection compares the current network traffic to previously well-known malware
patterns called the signature. If any matched signature is noticed, the administrator is alerted to take the
corresponding measures. Howbeit, this strategy is limited since it is not capable of detecting new malware.
Another drawback is the necessity to maintain the malware database up to date and synchronized.

Divergence-based NIDS intricate architecture characterizes this technique. Henceforth, it can
expose new threats or attempts to compromise the system. It sets a baseline for network behavior,
enabling it to identify any abnormality. Any deviation is going to alert the administrator if it exceeds a
threshold. Different types of anomalies exist:

• point anomaly

• contextual anomaly
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• collective anomaly

Therefore, an administrator has to define anomaly’s scope and set various rules based upon the output
of the analysis [122].

5.2 Datasets
Network intrusion detection systems are widely researched and adopted to protect individuals and com-
panies from being attacked. When referring to machine learning in a network environment, an adminis-
trator’s primary concern is the input data that is fed to the algorithm to classify or distinguish between
various classes.

The evolution of the different datasets is presented below. The Knowledge Discovery and Data
Mining (KDD) data have been extensively used to perform those validation tests. The dataset includes
four major categories of attacks: probing, Denial-of-Service (DoS), user-to-root (U2R), and remote-to-
local (R2L) attacks. A set of pattern recognition and machine learning algorithms is carried out on the
KDD dataset to check the improvement of the performance [123].

Since the initial KDD dataset contains 41 features, Olusola et al. select relevant ones using rough set
mathematical tools and discretization based on entropy [124]. They identify the most relevant features
for each type of attack: the wrong fragment for teardrop attack whereas source bytes for the back attack.
Overall, KDD dataset analysis and feature selection was a widespread phenomenon in the first decade of
the 21st century [125–127]. However, it has some problems regarding the distribution of the attacks and
redundant records. Therefore, to solve these issues, Tavallaee et al. create the NSL-KDD dataset [128].
Researchers then shifted their study on the modified version of the KDD dataset [129–131]. Real traffic
traces are available in WITS (https://wand.net.nz/wits/ ), MAWI (https://mawi.wide.ad.jp/mawi/ ), CAIDA
(http://www.caida.org/data/ ) datasets and others [132].

Ring et al. focused literature survey on network-based intrusion detection datasets presents a polished
study about these records [133]. They shed light on five key properties to acquire or generate a proper
dataset. These elements are:

• general information: year of traffic creation, publicly available, normal/attack traffic.
• nature of the data: metadata, format, anonymity.
• data volume: count, duration.
• recording environment: kind of traffic, type of network, complete network.
• evaluation: predefined splits, balanced, labeled.

Nonetheless, these datasets do not contain ransomware traffic except https://www.malware-traffic-
analysis.net/ (1) and https://www.virustotal.com/ (2). (1) provides full capture of network communication,
yet, the sequence of the events performed on the machine of the victims is missing and (2) is not freely
available. Therefore, we proceed by generating our ransomware network traffic.

Stratosphere IPS dataset is used for normal captures only [134]. It contains recent normal traffic
captured from 2013 until 2017. An additional information is the description of the behavior captured,
making the labeling process feasible. Moreover, in the project’s malware section, it contains ransomware
packet capture: it is a means of comparison between the ransomware traces provided by their dataset
and our own generated in a bare-metal platform explained in the following sections.

6 Conclusion
This chapter displays the contributions to combat ransomware from 2012 up to date and gives an insight
into NIDS. The state of the art section is submitted to ACM Computing Surveys. An extensive work
is achieved in the literature covering all the aspects of a ransomware attack from the delivery until
the dealing phase. Blocking ransomware in the delivery phase is not a trivial task. The user is held
responsible (to some extent) at this stage for performing the malicious intent of the attacker, even though
done unknowingly/unwillingly. Therefore, raising awareness reduces the potential risk of being infected
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by a previously unknown malware. API calls are thoroughly studied in the deployment phase. They
are extensively analyzed in all shapes and forms, including their frequency and the n-grams sequence
implemented in the code of the malware. Thus, we focused on the destruction step to provide a prototype
for ransomware detection as soon as it is installed and it has set the required environment on the victim’s
machine. No previous studies have been conducted on the traversal of the malware; consequently, we
present our findings in the second part of the thesis. Besides, we analyze the network communication
and the ransom notes to check the chronology of ransomware events. Finally, we show the presence of a
new threat Doxware that could render victims’ data unavailable to them yet shared with third parties
(for example, competitors). The dealing phase represents the tracking of the ransom amount paid by
the victim. Indeed, it enables labeling and clustering some bitcoin addresses. However, we solely present
future perspectives in this part rather than developing a ransom tracking methodology.
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3 Work Environment, Ransomware Samples and
Evasion

In the previously developed countermeasures, ransomware binaries are mainly executed on virtual ma-
chines. Indeed, VMs are chosen for their simplicity enabling a large scale execution of numerous samples.
Automated dynamic analysis is the adopted approach among researchers. It is impossible to inspect man-
ually all the executables found in the open-source databases. Nevertheless, many malicious samples check
the presence of such environments and try to evade detection. Malware authors use fingerprinting tech-
niques to detect the presence of a controlled environment. Fingerprinting encompasses checking specific
artifacts known in advance by the attackers. It includes but is not limited to registry keys, background
processes, function hooks, or IP addresses. We present in this section the ready for use tools proposed
in the literature for malware detection and show their limitations. However, many of the tested samples
are not running correctly: no encryption is recorded. Indeed, some ransomware samples stop their exe-
cution if they are being run on VMs. One approach to detect malware evasion techniques is to execute
samples on different platforms and observe the behavioral changes. Therefore, we present in this part,
the available tools for malware analysis, and we explain our choices in adopting the bare-metal one.

1 Dynamic Analysis (DA) Tools
The dynamic analysis of ransomware is necessary to save the required logs (API calls, network commu-
nication) for a post mortem examination. Three analysis tools are accessible to scientists to achieve this
step and are presented below.

1.1 Virtual Machine (VM)
A virtual machine provides “an efficient, isolated replica of a computer’s system environment” as defined
by Goldberg in [135]. VMs are limited to the same architecture as the host machine [136]. Resetting
the VM to a clean state requires taking a snapshot before the execution of the malware, which is much
faster than restoring a bare-metal system. However, it is always be possible for a malware to detect a
virtualized environment as the authors state in [137]. Another threat occurs if a malware breaks out the
virtual machine to execute arbitrary code on the host with the privileges of the hypervisor process, also
known as virtual machine escape [138,139]. Common virtual machines are Cuckoo [140], VirtualBox [141]
or VMware [142].

1.2 Hypervisor/Virtual Machine Monitor (VMM)
A VMM is a process that creates and runs virtual machines. Hypervisors are classified into two types.

• Type-1 or bare-metal hypervisors run directly on the host’s hardware to control the hardware
and to manage guest operating systems (for example, Microsoft Hyper-V and Xen).

• Type-2 or hosted hypervisors run on a conventional operating system like any other software
(for example, VMs seen in section 1.1).

VMMs have relatively low overhead and are generally more transparent than other virtualization mech-
anisms [143]. However, VMMs are not immune to hyperjacking, where the attacker takes control over
the hypervisor [144].
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1.3 Bare-Metal (BM)
It is a malware analysis system that is indistinguishable from a real host [145]. The operating system
runs on actual hardware. The particularities of a BM platform are the absence of virtualization and the
efficient environment restore [137]. The main advantage is the inability to differentiate between a user
host and a bare-metal platform. To date, BM is the best tool available for malware studies. However,
some difficulties have arisen, for example, the system-restore technique that may require a reboot after
each run is time and resource-consuming. It is not scalable since each sample is executed on a distinct
machine. Some bare-metal analysis platforms have been proposed in the literature that address malware
evasion methods [137,146,147].

2 What About Evasion?
The percentage of Reveton samples that uses anti-debugging techniques is 74.8%, and anti-VM techniques
is 62.8% acquired from of the investigations carried out by Chen et al. [148]. This experiment shows
that more than 50% of ransomware samples do not encrypt the files or perform their malicious intent if
executed on a VM. We opt to perform our experiments using a bare-metal platform previously developed
by Palisse et al. called MoM [17].

2.1 Chosen Bare-Metal Platform: MoM
MoM uses three open-source tools: Viper, Clonezilla, and Scrapy to perform the automated analysis [17].
It consists of a Linux master server and five test machines: 2 Windows 7 64 bits, 2 Windows 7 32 bits,
and 1 Windows 10 64 bits. Each system image has a realistic environment, including files downloaded
from the Digital Corpora [149]. A variety of file extensions is used, having in total more than 10k user
files.

The platform works as follows.

1. The master machine hosts a Clonezilla server with a configured PXE allowing a network boot.
2. Each run is defined by restoring a clean/uninfected Windows image.
3. At the end of the restore phase, the client is configured to reboot on its local disk.
4. At startup, a python script is downloaded from the master machine. The script contains the

required steps to collect the data or perform specific actions, including malware download.
5. Finally, the data is transmitted via FTP to the master server, and a clean reboot is set up for the

next analysis.

Initially, we test the status of each ransomware sample, checking if it performs the encryption process
or not. After running the sample, a hash function checks the integrity of the user’s files. If it does not
match the reference value, the sample is considered active. Then, for all the active samples, we define
the actions that should be taken by the system to collect the network and system logs (for example,
launching Wireshark, executing the kernel driver).

2.2 Ransomware Samples
The latest ransomware family names are collected from online forums, recently updated malware
databases and scientific papers. Then, a crawler downloads the ransomware samples from two databases
Virus Share [150] and Malwaredb.Malekal [151] (currently down), finally, it is executed on Windows 7 32
bits machines for a period of 2 to 3 minutes. A dump corresponding to this malware behavior is saved
for further post mortem analysis. For scalability reasons, parallel machines are used to perform the tests
as well as an improved disk image distribution. The discrepancy in ransomware samples throughout the
thesis is due in part to inactive ransomware families after an epsilon time of their release.

For example, in our latest campaign launched in January-February 2019, 1054 ransomware were
executed on Windows 7 OS (Table 3.1). Howbeit, 100 ransomware executables are kept for the
analysis phase since they were active (encrypted the files of the victim). An increase of inactive
samples is noticed through the experiments carried out by researchers. In the best case scenario, 76.8%
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of samples are inactive ( [152]). On average, 82.67% of binaries are inactive.

The reasons for inactivity of a given ransomware executable can be one of the following.

• The C&C or the external IP address/domain name is down.
• Inadequate work environment (missing DLLs, unmatched Windows version).
• Ransomware avoid being executed on particular environments (for example, GandCrab avoids

infecting Syrian countries).
• Ransomware suspects being monitored/analyzed (VM or debugging tools).
• The footprint of the test environment is already registered in the attacker’s server.

Family Number of Downloaded Samples Number of Working Samples
Teslacrypt 334 11
Yakes 252 2
Shade 139 56
Cerber 95 11
Deshacop 62 2
Zerber 57 5
TorrenLocker 38 0
Bitman 27 12
Razy 26 0
Locky 24 1
Total 1054 100
Losses 90.54%

Table 3.1: An overview of the active ransomware families (total of 100 active samples from 1054 tested),
ranked in descending order according to their samples number.

3 Conclusion
The investigation of a considerable number of malware samples provides a better insight into its behavior.
Hence, the dynamic analysis draws the workflow of any executed process. The dynamic analysis helps
to provide a targeted solution for ransomware threats to detect it at the early stages. The bare-metal
platform has the highest probability of achieving this exhaustive analysis; therefore, it is chosen for our
experiments. A further investigation is required to indicate the appropriate elements that support the
creation of a realistic environment. They are discussed in the future work, along with the reason for
the inactivity of more than 80% of the executables. We proceed by presenting in the second part of
the thesis, the developed countermeasures in the destruction phase. The first technique is based on the
system level, the second one tackles the network part, finally, we present the plausible threats encountered
by a Doxware attack.
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Part II

Contributions
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1 File System Based Solution for Ransomware
Detection

This Chapter presents a system-based ransomware countermeasure to detect malicious threads carried
out with Aurélien Palisse and Benjamin Bouget. It is a new mechanism that does not rely on previously
used metrics in the literature to detect ransomware such as Shannon’s entropy or system calls. The
per-thread file system traversal is sufficient to highlight the malicious behaviors. To the best of our
knowledge, no previous study has been conducted in this area. The ransomware collection used in our
experiments contains more than 700 active examples of ransomware, that are analyzed in our bare-metal
sandbox environment (section 2.1, Chapter 3, Part I).

Three methods are proposed to flag or cluster malicious ransomware threads. The first one is based
on a decoy score, that is improved by a ML approach (2nd method). Finally, the possibility of identifying
the ransomware family rather than maintaining just a binary classification (malicious or not) is proposed
using graphs (3d method).

1 Need for Dynamic Analysis

Any prevention tool must be able to classify a given binary as suspicious or not. For this purpose, static
or dynamic analysis can be used. Nevertheless, modern malware employs stealthy techniques to remain
undetected on diverse systems making it difficult to analyze. Static analysis may quickly reveal the
presence of obfuscation uncovering a glimpse of beneficial information to the analyst. Malware usually
examines the environment it is operating in. It is equipped with the possibility of altering its behavior
if an ongoing dynamic analysis is detected.

A new defense mechanism against ransomware is developed to avoid ransomware evasion. Our ap-
proach does not rely on code examination, code structure, or access to the system’s calls. A module
that analyses suspicious software behavior is designed while accessing the file system. All ransomware of
our provided collection evaluate users’ data by traversing all folders except for some specific ones. This
traversal represents, thus, a signature of their original code. For this reason, execution traces and, in
particular, traversal’s order are collected.

In the following sections, different models to detect ransomware’s attacks are presented. The novelty
is the need for exclusively one information: file system traversal. Moreover, an accurate classification
can be drawn with these observations. Thus, any binary can be flagged as malicious or not.

2 Decoy score

The first suggested prevention mechanism relies on the idea that ransomware scans specific files and
folders that enable not only their detection but also categorization [96]. Some directories and files are
rarely visited by the user or by one of the system’s regular tools and thus can be considered as a trap.
If a software manipulates these files, it can indicate an illegal and unwanted access. They are referred
to as Decoy Folders. Crypto-ransomware does not attack the files that allow the proper functioning of
the machine. Indeed, the user must be able to use it to pay the ransom.
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2.1 Whitelists and Blacklists
Nowadays, most of the ransomware families available in multiple online databases implement a straight-
forward exploration of the file system. In other words, they explore the file system with well-known
algorithms: depth-first or breadth-first search. Nevertheless, slight differences between them can be
seen. Whitelisting and blacklisting strategies are widely adopted in the literature in several areas. Some
authors rely on these techniques to propose crawling approaches for academic documents search engines
as in [153], while others implement it as a control policy for applications [154]. The core remains the
same regardless of the use case.

Ransomware’s authors embed whitelists and blacklists of folders into malicious binaries. They repre-
sent two ways of filtering access to folders.

• Whitelists represent a set of folders that can be accessed by ransomware. For example, a Cerber
sample especially targets multimedia folders (e.g., C:/program files (x86)/steam/).

• Blacklists are the reverse of whitelists: folders that are omitted and denied from ransomware’s
path. For instance, C:/Windows/ system folders are avoided by malware to let the machine run
normally.

The environment variables allow the attacker to attack users’ documents directly rather than beginning
the exploration from the root as most of the analyzed ransomware does. The above information is used
for ransomware detection.

2.2 Proposed Algorithm
Our suggested solution checks if a thread passes in specific folders. If so, it marks them and then
increments the decoy folder counter. In case a threshold is reached, the thread is recognized as malicious.
The list of decoy folders that are used in our experiments are presented in Figure 1.1. The probability
of having a benign thread that passes through at least 3 of these decoy folders is very low. Therefore,
the counter that keeps track of the accessed repositories enables flagging suspicious behavior.

Recycle bin ; (C:\$Recycle.Bin)
Python ; (C:\Python)
Perf log ; (C:\PerfLogs)
Prog data ; (C:\Prog data)
Prog files ; (C:\Prog files)

Figure 1.1: The list of decoy folders used to compute the per-thread score.

The main algorithm is the following:

Algorithm 1 Ransomware Detection
1: procedure
2: def detect suspicious behavior(thread, threshold):
3: label array ← {Decoy Folders}
4: score array ← {false, false, false, false, false}
5: for path ∈ thread.paths do
6: if path ∈ label array then
7: index← label array.index(path)
8: score array[index]← true

9: if evaluate score(score array) > threshold then
10: return is suspicious
11: return is not suspicious

Algorithm 1 checks if a thread passes through specific folders. If so, it marks them and then
increments the decoy folder counter. The number of decoy folders taken into consideration depends on
the analyzed system. In the test environment, five decoys are sufficient to detect ransomware’s activity.
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Since five different decoy folders are considered for the experiments, the initial score array composed
of five elements is set to false (on line 4 of Algorithm 1). The final score is normalized (i.e., divided
by the number of “decoy folders” that is added in the beginning). In case the threshold is reached, the
thread is recognized as malicious. It is unlikely that a regular thread passes through at least 3 of these
decoy folders. This is why the threshold is set to 0.6. If it is lower, some ransomware are not detected
(for example, if a ransomware directly modifies the file, it does not go through the Recycle Bin folder).
Also, many benign threads are going to be flagged. If it is higher, others also escape detection.

3 From Decoy Score to Supervised Learning

In this section, an improvement of the previous classification is made by using a supervised approach.
Thread level granularity is maintained throughout the whole experiment. In addition to the access to
previously mentioned decoy folders in Figure 1.1, other features are taken into consideration to perform
supervised learning on the collected information. The features used to train the classifiers are presented
in Table 1.1.

Paths total Total number of explored paths
Time total The file systems traversal duration
{Decoy folder} paths The number of subfolders explored in the current decoy folder (Updated De-

coy Folders: Recycle bin, Perf log, Windows, Python, Prog data, Prog files,
Recovery)

{Decoy folder} time The timestamp of the first subfolder explored in the current decoy folder

Table 1.1: The list of features used to train the classifiers.

This method is not limited to the file system’s traversal, but overall and per decoy folder velocity is
taken into consideration. It is not sufficient that a thread explores only decoy folders to be marked as
malicious, the time spent in each decoy folder and in total is crucial and needs to be considered for a
better classification.

3.1 Learning Phase

The holdout method is used to evaluate different supervised machine learning models. In order to apply
those algorithms and evaluate their performance, Python is used [155]. More specifically, the scikit-learn
library since it represents an efficient tool for data mining and data analysis, in our case classification
and clustering [156]. Avoiding overfitting on the non-malicious threads is crucial for better results, which
enables us to generalize our model.

The training set consists of partitioned data across all families of ransomware and different types
of benign processes. It is challenging to have the same number of working samples belonging to each
family type since ransomware executables are only active during an attack cycle. For example, the
WannaCry attack lasted from the 12th till the 15th of May 2017. Multiple classifiers are trained: k-
nearest neighbors [157], decision tree [158] and random forest [159].

• k-nearest neighbors (k-NN): It is a type of lazy learning (instance-based learning) where the
generalization of the training data is delayed until the algorithm receives a new input. The hypothe-
ses complexity increases with new data since it is directly constructed from the training instances.
The classification phase consists of choosing a predefined constant k. The unseen record represented
by a vector V is classified based on the nearest distance between V and the k neighbors. Euclidean
distance is used for continuous variables, whereas Hamming distance is adopted for text classifica-
tion. k-NN requires a large dataset, and it is best used when continuously updated/queried. The
large space requirement represented by storing the whole dataset in memory can be reduced by
having fewer attributes or eliminating similar records.
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Figure 1.2: k-NN algorithm.

Figure 1.2 displays scattered points representing ransomware (symbolized by x) and benignware
(symbolized by •) samples. Considering that the chosen number of neighbors k=3, k-NN calculates
the Euclidean distance between the unknown sample (represented by the red triangle) and the rest
of the points. Since the triangle is the closest to three samples belonging to ransomware, it is
classified as ransomware as well.

• Decision tree (DT): The top-down approach is used to build decision trees by choosing the
variable that provides the best split. Multiple DT are provided in the literature that differ on the
metric chosen to perform the split. For example, the classification and regression trees (CART)
method uses Gini Impurity to perform the best split. Gini Impurity is a measure of how often
a randomly chosen element from the set would be incorrectly labeled if it was randomly labeled
according to the distribution of labels in the subset. Gini Impurity is calculated as

G =
C∑

i=1
p(i) · (1− p(i))

In oure case, we have two possible classes ransomware (50% of the records) and benignware (the
other 50% of the records): p(ransomware)=p(benignware)=0.5.

G = p(ransomware) · (1− p(ransomware)) + p(benignware) · (1− p(benignware))
= 0.5 · (1− 0.5) + 0.5 · (1− 0.5)
= 0.5

Considering the blue split in Figure 1.3, since the left branch contains only ransomware and the
right one benignware, Gleft=Gright=0. A Gini Impurity of 0 is the lowest and best possible impurity.
It can only be achieved when everything is the same class. The best split is chosen by maximizing
the Gini Gain, which is calculated by subtracting the weighted impurities of the branches from the
original impurity.
Whereas C4.5 uses relies on information gain (IG). IG represents the smallest number of bits, on
average per symbol, needed to transmit a stream of symbols representing the values of a variable X.
Unlike k-NN, DT requires training the model to perform the required classification, which is time
and resource consuming. It might be prone to overfitting where the trained model is too closely fit
to a limited set of data points.
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Figure 1.3: DT algorithm.

• Random forest (RF): RF is a versatile machine learning method applied to different types
of data. The key concepts that characterize RF are the sampling of training data points when
building trees and the random subsets of features considered when splitting nodes. The correlation
of multiple trees outperforms the output of a singular one. The classification is based on combining
multiple DT using bagging. Bagging helps to reduce the variance of a decision tree. It consists
of selecting random samples with the replacement of the training set and fitting trees to these
samples. Besides, a random subset of the features is selected at each candidate split in the learning
process. The final prediction is made based on a majority voting.

4 File System Traversal Velocity
Another behavioral property is additionally investigated, the execution time of a family. Indeed, the
samples issued from the same families have similar patterns. Each payload can be packed or obfuscated
individually, but the system impact remains the same for a particular family, except for new versions.

5 Graph Similarity
Each ransomware’s file system traversal can be compared to others to know if they belong to the same
family or share some code concerning the exploration of the path. It saves time for the reverse-engineering
task to know at which family belongs to a sample. As a first step, a directed graph of the explored folders
for each sample is built, as displayed in Figure 1.4. Then, the similarity matrix corresponding to the
ransomware dataset is computed, as seen in Figure 1.5. Finally, a classification of the samples is done
based on the similarity matrix using a hierarchical clustering technique, which results in a dendrogram
displayed in Figure 1.6. Hierarchical clustering is used since it merges clusters together which represents
the ransomware samples belonging to the same family.

5.1 Hierarchical Graph
The machines used to collect the data have the same configuration and similar hardware. Each line of
raw data used in the experiment corresponds to the nature of the operation on the file system (read
file and open directory), the thread pid, and a timestamp. This data is sufficient to trace the complete
graph traversal regardless of the write operation which is not taken into consideration at this phase.

Each node represents a file system folder that has been opened by a suspicious thread. File system
traversals are represented as oriented graphs (via time stamps). Edges represent the transition from
parent to child folders. In order to be scalable (i.e., graph size) and generic (i.e., distinct Windows
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installations), subgraphs are created at specific file system levels (e.g., C:/Program Files/). The number
of clusterized sub-folders is stored within the graphs’ edges.

A graph is defined as the tuple G = (V,E, µ, ν) where:

• V the set of nodes

• E the set of edges

• η the set of nodes covered by a ransomware

• θ the set of paired nodes with the number of clusterized sub-folders

• µ : V → η

• ν : E → θ

P D

Device

root

Py

Users

$R.B

Rec

Win

HD

32 379

266

7772

2

28495

8495

HD : HardDiskVolume2
P D : ProgramData
Py : Python26
$R.B : $Recycle.Bin
Rec : Recovery
Win : Windows

Figure 1.4: Xorist’s File Traversal Subgraph G.

Xorist’s subgraph is defined as G = (V,E, µ, ν) where:

• V = {HardDiskVolume2, ProgramData, Users, Recovery, Windows, ... }

• E ={Device→ HD, HD→ Py, HD→ Users, ... }

• η = {HardDiskVolume2, ProgramData, Users, Recovery, Windows, ... }

• θ = {HD→ Users having 7772 traversals. The traversals include the sub-folders of Users like
Desktop, Documents, Music, Pictures,... }

• µ : V → η

• ν : E → θ

Xorist begins the exploration from the root of the Windows file system. 8495 threads pass from
the root to the HardDiskVolume2 (Figure 1.4). Then, threads spread through different folders like the
ProgramData and ProgramData. However, the main target remains the Users folder. More than 90% of
the traversal is located in the Users folder (7772 traversals vs 266 in the Python26 repository).
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5.2 Adjacency Similarity and Classification

A comparison between a given trace (i.e. a graph) with other graphs is needed. The cost to match
two graphs is low if their structure is close. Graph similarity techniques can be classified into three
main categories: edit distance/graph isomorphism, feature extraction, and iterative methods [160]. The
drawback of graph isomorphism is that the algorithms are exponentially resource-consuming and, thus,
not applicable to the large graphs that are of interest to us. The feature extraction approach relies on
graph properties such as degree distribution, diameter, etc. This method scales well but depends on
the chosen metrics; it is possible to get high similarity between two graphs with very different node-set
sizes. Iterative methods are based on the fact that two nodes are similar if their neighborhoods are also
similar. This latter method is chosen using an adjacency similarity algorithm.

Given two graphs G1(η1; E1) and G2(η2; E2) having the same or different number of nodes and edges,
graph similarity determines the degree of similarity (a real number between 0 and 1) between these two
graphs. It counts the number of edges that have the same source and target labels in both graphs. G1
and G2 are considered similar if the real number returned by the dedicated algorithm is close to 1, or
any other threshold predefined by the user (for example, 0.96).

To compute the similarity matrix between all the graphs, Graph-tool is used [161]. It is a free
framework for creating and manipulating graphs. The core of this framework is written in C + +, which
makes it fast even for large graphs. A built-in Graph-tool function computes the adjacency similarity
between two graphs. The labels of vertices are used to build the adjacency matrices and thus make the
comparison. The higher the score is, the higher the similarity.

Figure 1.5 presents the similarity matrix S between various file traversal graph of various ransomware
defined by R = {r1, r2, r3, r4, r5}. The main diagonal of a matrix has the highest score since any
ransomware sample is identical to itself. r2 and r4 do not share any elements concerning the traversal
since their graph similarity is almost equivalent to zero, whereas r2 and r5 might belong to the same
family since their similarity is 0.991.

S =

r1 r2 r3 r4 r5


r1 1 0.238 0.896 0.468 0.991
r2 0.238 1 0.273 0.001 0.991
r3 0.896 0.273 1 0.536 0.423
r4 0.468 0.001 0.536 1 0.513
r5 0.991 0.991 0.423 0.513 1

Figure 1.5: An example of similarity matrix S.

To classify the samples, unsupervised hierarchical clustering over this similarity matrix is used. A
dendrogram represents the classification. It is a visual representation of the compound correlation data.
The individual compounds are arranged along the bottom of the dendrogram and referred to as leaf
nodes. Compound clusters are formed by joining individual compounds or existing compound clusters
with the joining point referred to as a node. The leaves of the tree are the name of the classified
ransomware.

Figure 1.6 shows the clusters formed representing in a different manner the same information conveyed
by the similarity matrix. r2 and r5 are the most similar samples and are grouped together. Similarly, r1
and r3 belong to the same cluster. r2 and r4 are the furthest away.
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Figure 1.6: An example of a dendrogram.

6 Data Collection

Ransomware samples are downloaded from VirusTotal, VirusShare, and MalwareShare. Each sample is
executed on Windows 7/10 machines for 15 minutes. A dump corresponding to this malware behavior
is saved for analysis. The dump contains the folders traversed by the ransomware.
Benign data is collected from various users utilizing their computers for work purposes. The information
gathered corresponds to web browsing, software development, file encryption.
The same information is collected for benign and malicious software: files traversed by threads.

The collected data is represented in the JSON format and provides a complete list of the explored
folders for each userland thread of the system. Similarly to [29, 102, 111], a file system driver is used to
monitor the runtime behavior of each thread.

As previously mentioned, 770 active ransomware are executed on Windows OS, both 7 and 10.
However, 76 ransomware’s binary hash correspond to multiple ransomware categories such as Yakes,
Teslacrypt or Shade and Barys. Therefore, these records are omitted from ransomware family classi-
fication during the supervised learning phase. (1eb412a5f6400eb490a8698dc08129da) MD5 hash is an
example of a sample belonging to different ransomware families. It is labeled by eight anti-virus software
as Yakes and by six as Teslacrypt as analyzed by VirusTotal.

Since the overall database of malware collection contains 694 active ransomware, 417 ransomware
records are used to act as a training set completed with 417 records of benign computer usage.

Benign data is collected on Windows 10 computers where a user is usually surfing the Internet, playing
online games, developing a software, etc. They correspond to an end user’s daily activity. Table 1.2 shows
the distribution of ransomware and benign samples in the training set.

Ransomware Families Samples Benign Applications Samples
Teslacrypt 115 (27.58%) Firefox.exe 53 (12.74%)
Cerber 79 (18.94%) Explorer.exe 47 (11.30%)
Xorist 74 (17.75%) Svchost.exe 37 (8.89%)
Bitman 59 (14.15%) Pnamain.exe 31 (7.45%)
Deshacop 13 (3.12%) Receiver.exe 29 (6.97%)
Zerber 13 (3.12%) Avp.exe 26 (6.25%)
Yakes 13 (3.12%) Mscorsvw.exe 17 (4.09%)
Locky 7 (1.68%) WmiPrvSE.exe 16 (3.85%)
Gpcode 6 (1.44%) BackgroundTask 14 (3.37%)
Rest 38 (9.11%) Rest 146 (35.10%)

Table 1.2: An overview of the active ransomware and goodware families used in the experiments, ranked
in descending order according to their samples number.
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7 Experimental results

7.1 Decoy Folders
The objective of this first detection mechanism is a binary classification of a record: benign or malicious.
Three of the 694 ransomware pass through only the Perf log and Python folders. They belong to Crpytxxx
(1 sample) and Gpcode (2 samples) families. 99.56% of malicious threads are correctly detected. It
highlights the fact that the majority of the ransomware collection begins the file system’s exploration
from the hard disk root.
None of the benign collected threads pass through at least 3 of the selected decoy folders. Eight benign
applications visit the Prog data and the Prog files repositories. They are the SearchProtocol (twice),
explorer.exe, svchost.exe (twice), avp.exe, klnagent.exe and vapm.exe.

7.2 Supervised Learning
All of the supervised learning algorithms are able to distinguish between a ransomware and a benign
application based on the file system traversal, as seen in Table 1.3. Binary classification (benign vs.
ransomware) is efficient in this case. However, to take one step further than the decoy folder detection,
an analysis of ransomware families is carried out. For the Random Forest Classifier, 68.63 % of malicious
records are correctly classified as so: a binary is no longer flagged as benign or malicious, so we can also
identify the family of ransomware (e.g., Locky, Yakes). Indeed, there is a similarity between Bitman and
Teslacrypt ransomware on the one hand, and Zerber and Cerber, on the other hand. The main reason
behind this correlation is that they belong to the same family and most probably behave in similar ways
to traverse the file system and encrypt their files. Decision Tree Classifier achieved a 61.25 % of correct
ransomware classification.

Supervised Learning Algorithm True Positive Rate True Negative Rate False Positive Rate False Negative Rate Training Time (seconds)
K nearest neighbor (n=2) 98.15 98.19 1.81 1.85 0.0039

Decision Tree 100 100 0 0 0.0095
Random Forest 100 100 0 0 0.0611

Table 1.3: Classifiers Performance Metrics.

Figure 1.7 illustrates the decision tree’s rules to perform the split, thus, to classify the records. It is
limited to 4 leaf nodes to be able to represent it. Indeed, a normal application does not regularly pass
through those decoy folders. The majority of benign records have non-negligible values in the Prog Files
time and Windows time. It shows the time spent by some applications such as firefox.exe or explorer.exe
in those decoy folders.

PERF_LOG_time <= 5710.5
samples = 833

value = [59, 79, 1, 3, 13, 1, 1, 6, 6, 7, 1, 7, 1, 1, 416, 1, 1
1, 4, 3, 2, 115, 1, 1, 74, 13, 13, 2]

416
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 416, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

True

nb_paths <= 21238.5
417

[59, 79, 1, 3, 13, 1, 1, 6, 6, 7, 1, 7, 1, 1, 0, 1, 1, 1
4, 3, 2, 115, 1, 1, 74, 13, 13, 2]

False

245
[59, 0, 1, 3, 13, 1, 1, 6, 6, 6, 0, 7, 1, 0, 0, 0, 1, 0

4, 3, 2, 115, 1, 0, 0, 13, 0, 2]

nb_paths <= 22160.5
172

[0, 79, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1
0, 0, 0, 0, 0, 1, 74, 0, 13, 0]

78
[0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 1, 74, 0, 0, 0]

94
[0, 76, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1

0, 0, 0, 0, 0, 0, 0, 0, 13, 0]

Figure 1.7: Decision Tree Classification Parameters.
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The similarity between a Teslacrypt and Bitman’s execution is shown through the records presented
in Table 1.4.

family Bitman Teslacrypt Normal
nb paths 8199 8199 8
time total 996315740 987726399 872039

RECYCLE BIN aggreg 2 2 0
RECYCLE BIN time 1460 3799 0
PERF LOG aggreg 1 1 0
PERF LOG time 4742522 4274485 0
PYTHON aggreg 266 266 0
PYTHON time 4987588 4519400 0

PROG DATA aggreg 188 188 5
PROG DATA time 131810705 132116153 772436

PROG FILES aggreg 0 0 1
PROG FILES time 0 0 455083
WINDOWS aggreg 0 0 2
WINDOWS time 0 0 450114

RECOVERY aggreg 2 2 0
RECOVERY time 131625192 131958939 0

Table 1.4: Benign and Ransom Records.

7.3 File System Traversal Velocity
Figure 1.8 illustrates the file system traversal velocity for the Xorist malware. Figure 1.9 demonstrates
the Bitman malware. We observe that two implementations of the file traversal algorithm exist since
there are two main curve clusters.

Figure 1.8: The file system’s traversal velocity of Xorist samples.

The time unit considered in the graphs is the performance counter value (i.e., OS internal) in units
of processor ticks since the beginning of the session, which is comparable across the analyses. The
speed depends on the ransomware design. The Cerber family searches files in one thread and encrypts
them in another, whereas, the Xorist family uses the same thread to search and encrypt the files.
Moreover, the programming or compiling choices cause some differences at runtime. To conclude, the
velocity indicator provides an additional signature to distinguish between ransomware families. For other
uninfected applications, no multiple file opening is shown.
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Figure 1.9: The file system’s traversal velocity of Bitman samples.

7.4 Ransomware’s Graph
The computation of a subset of the dataset that includes a wider variety of distinct families of pairs of
graphs gives a similarity matrix, as represented in Figure 1.10.

A dozen of ransomware groups (i.e., families) can be seen. Two groups represent 80% of the file
systems traversal distribution. However, 10% of the samples are uncorrelated to others (i.e., the blue
block). The distance matrix shows that ransomware up to date have little diversity concerning the file
system exploration because most of them use the Windows API for accessing the files.

Figure 1.10: Malicious threads file system’s traversal similarity matrix.

A partial view of the dendrogram (12 classified over the ransomware samples) is presented in Fig-
ure 1.11. The families that are close to each other are grouped in the same branch. The TeslaCrypt and
the Bitman families are very close. It can be explained by the fact that they share the same traversal al-
gorithm, whitelists, and blacklists. Another similarity is noticed between Cerber and Zerber ransomware.
The latter can be considered as a simple variant of the first.

8 Limitations & Conclusion
Since ransomware behaves similarly in the file system traversal, more features need to be considered for
family classification. In addition, any software that mimics the behavior of ransomware’s traversal will
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Figure 1.11: Families Graphical classification dendrogram.

be classified as malicious, so our proposal raises false positives. Another limitation occurs when no file
system traversal is done before any encryption. Multithreading techniques also delay the detection of
the ransomware since one thread is used for the files search while the other is immediately encrypting
them. In this first countermeasure, we can detect ransomware behavior based only on monitoring file
system traversal. We conclude that the majority of ransomware start their encryption process from the
root of the hard disk. Machine learning techniques are used to get a precise classification. Based only
on decoy folders, we are able to detect ransomware from various families. The work is published in
ARES conference [47].

At this stage, system based countermeasures are adequately covered in the literature. Therefore, we
decide to shift our focus towards analyzing network events. Our goal is to extract ransomware specific
characteristics to enable its identification, if possible, at an early infection stage, limiting file loss.
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2 Network Based Solution for Ransomware
Detection

This Chapter presents an analysis of various ransomware families based on the collected system and
network logs from a computer. Our goal is to reconstruct ransomware full activity to check if its network
communication is distinguishable from benign traffic. Then, we examine if the first packet sent occurs
before data’s encryption to alert the administrators or afterward. We aim to define the first occurrence
of the alert raised by malicious network traffic and where it takes place in a ransomware workflow.

1 Ransomware Network Traffic Dataset

1.1 Data Generation

Ransomware samples are downloaded and executed on MoM, similarly to the previous experiments
carried out in Chapter 1. The duration of the experiments is two up to three minutes, which is the
time required until the encryption note or encrypted files pop up on the file system. Moreover, the
time constraint is also due to the encryption process involved in the ransomware infection that can also
encrypt the collected information.

Wireshark and Process Monitor executables are launched on Windows OS 7 32 bits as in [83]. Each of
them has an independent task for collecting the following information: Wireshark collects the information
about network activity, whereas Process Monitor gathers the whole system activity (including network
information).

Log formats are presented below:

• PCAP (Packet Capture) File contains data created by Wireshark consisting of the network packet
data generated during a live network capture (source and destination IP address, ports, data
exchanged, length of the data, . . . ). It can be analyzed later on for network intrusion detection
purposes.

• PML (Process Monitor Log) File is created by Process Monitor and contains the log of system
activities (process name, process id (PID), path, . . . ).

1.2 Dataset

All the methods and parsers are developed using Python and shell script. The analysis is performed on
an Ubuntu 16.02 machine.

1054 ransomware are executed on Windows7 OS (table 2.1). Howbeit, 100 ransomware executables
are kept for the machine learning phase since they were active, as discussed previously in Chapter 3 of
Part I. A recap of ransomware families distributions is presented in Table 2.1. Even though only 100
samples are used for experiments, but machine learning is performed on packets. For example, for 12
Bitman samples, we can extract 714 network records. Whereas if we consider the network flow as shown
in [89], we get only 62 malicious records to evaluate.
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Family Samples Number of Working samples
Teslacrypt 334 11
Yakes 252 2
Shade 139 56
Cerber 95 11
Deshacop 62 2
Zerber 57 5
TorrenLocker 38 0
Bitman 27 12
Razy 26 0
Locky 24 1

Table 2.1: An overview of the active ransomware families (total of 100 active samples from 1054 tested),
ranked in descending order according to their samples number.

2 Proposed methodology

This section presents the methodology for ransomware’s session reconstruction. It can be implemented
in a driver as future work to avoid being detected by a ransomware process.

We endeavor to thwart ransomware behavior by analyzing the network traces. The malware analysis
routine consists of executing the ransomware and gathering the needed information. System logs help
to reconstruct the malware session and display the timestamp of the first encryption process. Machine
learning applied to network logs is used for traffic classification to distinguish between malicious and
benign records. Finally, an evaluation is made to check whether malicious traffic detection occurs before
the encryption process or afterward. To accomplish this task, our proposed mechanism is divided into
two main parts: Data Filtering & Session Reconstruction, and Analysis & Model Development. It is
thoroughly explained in the following sections. All the steps are summarized in Ransomware Network
Alert Algorithm (RNA).

Algorithm Ransomware Network Alert
RNA

1: procedure Ransomware Network Alert
2: R ← {R : Ransomware Related}
3: def session reconstruction(PML file, R Hash):
4: process name← {p name:R Hash.exe}
5: R pid← {get PID / p name=R Hash.exe}
6: for pid ∈ PID.PML do
7: if Parent(pid) ∈ R pid then
8: R children← pid
9: R session← {Filter(PML File) having R pid & R children}

10:
11: def getR Network Activity(R session, PCAP File):
12: R Network Activity← {Filter R session}
13: R IP @← {get R IP @ src-dst}
14: R Ports← {get R Ports src-dst}
15: R Net Act← {Filter(Pcap File) having R IP @ & R Ports}
16:
17: Construct R Model
18: if evaluate(Net Act) ∈ R Model then
19: return R Alert
20: return Benign Activity
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2.1 Data filtering
The Process Monitor format contains crucial information for reconstructing the malware session and
activity. However, the first log file contains megabytes of data. It represents the full activity on a
computer: gathered information from all running processes. Initial filtering is required to extract solely
the information of the ransomware session.

In the following section, the preprocessing (filtering) of the collected data (see section 1.1) is
described to gather ransomware activity.

Let P be the ensemble of all the processes running in Windows.
Let p name, p pid, p ppid be respectively the name, the Process IDentifier (PID) and the Parent Process
IDentifier (PPID) of a specific process p.

Ransomware executable names are associated with their MD5 or SHA-256 hash. They represent a
unique identifier, that is known prior to the execution of the ransomware for testing purposes (line 4 of
Algorithm RNA). An initial lookup is made on all the processes of the PML file that have a specific name.
It should be constituted of the concatenation of the (Ransomware MD5Hash or Ransomware SHA256) and
(.exe), a filename extension representing an executable file on Windows. The operator + denotes the
concatenation operation.
Ransomware name = Ransomware MD5Hash + .exe
Ransomware name = Ransomware SHA256 + .exe

Consequently, an association of the name of the running process with the corresponding PID is
achievable. It is a unique decimal number that represents this particular object (line 5 of Algorithm
RNA). The collection of all the PIDs associated with the ransomware is achieved.

R pid =
{
∀p ∈ P / p name = Ransomware name

}
However, any process running on Windows creates different children as threads or new processes to

accomplish its tasks or parallelize the workload. In ransomware’s case, one thread is created for listing
the files, another one for encryption. For this reason, the tree/graph of the current processes is essential
since it displays the relation among all of them (line 20 of Algorithm RNA).

R Children pid =
{
∀p ∈ P / p ppid = R pid

}
At this stage, the identifier of the ransomware process and all the created sub-processes are at our

disposal. The relation between all processes is represented by a directed graph defined as followed
G = (N,E) where: N is the set of nodes containing the PID, E is the set of edges, dashed arrows are
representing benign processes, red arrows are representing ransomware processes.

264

788

3864 4088 2288

3856 3796

4024

1768 1372 1784 4028

Figure 2.1: TeslaCrypt Process IDs Tree where each node contains a corresponding pid, dashed edges
represent the benign processes whereas the red edges represent the TeslaCrypt graph.

Figure 2.1 displays a sub-tree of some subprocesses running on the machines. The red arrow marks
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the beginning of TeslaCrypt’s execution. TeslaCrypt malware creates many processes to accomplish its
tasks, even though having a benign parent and siblings. Therefore, it is essential to build this “relation”
graph (line 16 of Algorithm RNA).

R Activity =
{
∀p ∈ P / p pid = R pid | R Children pid

}
Thus, initial filtering on the PML log file can be performed. It is divided into a malicious log that

consists of all the actions performed by the ransomware and the second file that implies only benign
records (line 10 of Algorithm RNA). The information gathered in the PML file is used to extract only
the network communication from PCAP logs.

2.2 Ransomware Network Session Reconstruction
Since there is a gap between the data provided by the PML and PCAP file, a mapping is needed to
collect exhaustive information from ransomware’s network activity.

The network activity that exists in R Activity acquired in the previous section is basic. It englobes
only source and destination IP addresses, port numbers, and the length of the packet found in the PML
File, whereas additional features can be extracted from a PCAP file such as TCP window size, checksum,
header length.

We proceed by capturing the IP addresses and port numbers (line 13 & 14 of Algorithm RNA) used
during R Activity for the communication with a third party (for example the C&C), then we filter the
PCAP File based on the data obtained previously (line 15 of Algorithm RNA).

The different features found in a PML file with the basic network elements (for instance IP addresses
and ports) are presented in Table 2.2 while detailed and additional characteristics (TCP checksum, flags,
windows size) can be extracted from a PCAP file are shown in Table 2.3.

Features Record #1 Record #2
Time of Day 1/24/2019 5:46 1/24/2019 5:46
Process Name htiyxhpnayrf.exe htiyxhpnayrf.exe
PID 3916 3916
Operation TCP Connect TCP Send
Path tivy-PC:49179 to cr1.toservers.com tivy-PC:49179 to cr1.toservers.com
Event Class Network Network

Detail Length: 0, rcvwin: 66240, seqnum: 0 Length: 896, startime: 768, endtime:
770, seqnum: 0, connid: 0

Table 2.2: PML File.

Features Record #3
IP Src 10.1.1.9
IP Dst 198.12.157.163
TCP Srcport 49209
TCP Dstport 80
TCP Checksum 0x00006ee0
TCP Flags 0x00000002
TCP Hdr len 32
TCP Window size 8192
TCP Len 0
TCP Nxtseq 0

Table 2.3: PCAP File.

2.3 Supervised Machine Learning
The goal of this machine learning step is to develop a model for ransomware detection via network traffic
analysis. Point anomaly represents a suspicious record at a given time t: when a specific data instance
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deviates from the typical pattern. Whereas, collective anomaly represents a collection of similar events
that are abnormal [122]. For example, point anomaly can be flagging Record#1 from Table 2.2 since it is
not similar to benign records. Therefore, it is used for the machine learning process to flag any malicious
network communication established by the ransomware. Its main advantage over collective anomaly is
the early detection of ransomware presence rather than having to analyze packets to expose malicious
behavior.

The supervised approach is practical since labeling the data is possible in our system. Thus, it
enables the detection of other variants of ransomware based on an extrapolation of the data acquired
throughout our experiments (line 17 of Algorithm RNA). Most of the research done in the literature on
network intrusion detection via machine learning uses the following algorithms: decision tree, k-nearest
neighbors, and random forest [162–164]. Therefore, they are adopted to detect ransomware behavior
as a deviation from normal traffic. To perform this classification, Scikit-learn, a free software machine
learning library, is used.

Our analysis addresses point anomaly subdivided in two, whether TCP or UDP protocol is used.
Each packet is different from the other and presents few common features, such as IP addresses and
ports. Whereas, for the collective anomaly, the conversation flow is used. Each row in the list displays
the statistical values for exactly one conversation (ports, addresses, duration, and packets exchanged).
This work has already been covered in the literature in [89].

Since the overall database of malware collection contains 100 active ransomware, we used the per-
centage split method (70/30) for each family’s training and test set. It splits our dataset into random
train and test subsets. The first one contains 70% of the data, while the second one 30%.

The separation between TCP and UDP training is made since the number of UDP communication
outweighs the TCP ones, making our dataset unbalanced.

For network log extraction as a CSV file from the PCAP, many features provided by the Wireshark
community exist. Filtering the PCAP file is possible by extracting 243 fields from the TCP proto-
col or 29 from the UDP protocol (e.g., https: // www. wireshark. org/ docs/ dfref/ t/ tcp. html ).
Nonetheless, many fields have non-existent values for all the records. Therefore, they are removed.

The features used for training UDP workflow are:
IP and Port source/destination, Protocol, UDP checksum, and length.

The features used for training TCP workflow are:
frame.len, ip.src, ip.dst, ip.proto, ws.col.Protocol, tcp.srcport, tcp.dstport, tcp.ack, tcp.analysis.ack rtt,
tcp.analysis.acks frame, tcp.analysis.bytes in flight, tcp.analysis.initial rtt, tcp.analysis.push bytes sent,
tcp.checksum, tcp.flags, tcp.hdr len, tcp.len, tcp.nxtseq, tcp.window size, tcp.window size scalefactor.

Data preprocessing can have a significant impact on the performance of various ML algorithms [165].
It handles, among other things, missing values and categorical variables. An intervention is needed since
classification models can not handle these elements on their own. In our samples, empty values are
replaced by zero, as for the IP addresses and flags, they are transformed into integers. Overall, the whole
dataset consists of solely numerical values.

3 Experimental results
UDP Results
For the Cerber and Zerber samples, we achieve a 100% detection rate using any of the decision tree,
random forest, or k-nearest neighbors. The difference is explicit. More than 16000 UDP packets are sent
through incremental IP addresses with the same length in seconds. Additionally, the same information
is being transmitted to all those different servers or zombies. The protocol used is solely UDP, very rare
in a typical user environment, and is blocked in some companies. Moreover, it is comparable to a Denial
of Service (DoS) attack due to the important number of contacted servers via UDP that is not common
in normal behavior in just a few seconds.

The Udhisapi.dll module provides support in hosting compliant Universal Plug and Play (UPnP
devices). We assume that it can be used to discover and communicate with UPnP devices across the
network, such as other personal computers, printers, and mobile devices that broaden the attack vectors
for ransomware.
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TCP Results
The results of the other samples are presented in Tables 2.4 to 2.8.

Supervised Learning Algorithm TPR TNR FPR FNR Training Time (seconds)
k-nearest neighbors (n=2) 99.56 98.13 1.86 043 0.004

Decision Tree 100 100 0 0 0.01
Random Forest 100 99.79 0.2 0 0.03

Table 2.4: Bitman Classifiers Performance Metrics (12 samples).

Supervised Learning Algorithm TPR TNR FPR FNR Training Time (seconds)
k-nearest neighbors (n=2) 100 99.97 0.02 0 0.13

Decision Tree 100 100 0 0 0.16
Random Forest 100 100 0 0 0.24

Table 2.5: Cerber Classifiers Performance Metrics (11 samples).

Supervised Learning Algorithm TPR TNR FPR FNR Training Time (seconds)
k-nearest neighbors (n=2) 100 99.99 1.4*10e-2 0 3.76

Decision Tree 100 100 0 0 1.02
Random Forest 100 100 0 0 1.57

Table 2.6: Shade Classifiers Performance Metrics (56 samples).

Supervised Learning Algorithm TPR TNR FPR FNR Training Time (seconds)
k-nearest neighbors (n=2) 99.31 97.88 2.11 0.68 0.004

Decision Tree 99.31 99.34 0.65 0.68 0.009
Random Forest 100 100 0 0 0.035

Table 2.7: TeslaCrypt Classifiers Performance Metrics (11 samples).

Supervised Learning Algorithm TPR TNR FPR FNR Training Time (seconds)
k-nearest neighbors (n=2) 100 100 0 0 1.59

Decision Tree 100 100 0 0 0.15
Random Forest 100 100 0 0 0.32

Table 2.8: Zerber Classifiers Performance Metrics (5 samples).

Supervised Learning Algorithm TPR TNR FPR FNR Training Time (seconds)
k-nearest neighbors (n=2) 38.35 98.11 1.88 61.64 8.02

Decision Tree 98.46 100 0 1.53 0.54
Random Forest 95.7 100 0 4.29 0.7

Table 2.9: Zero-Day Classifiers Performance Metrics.
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Decision tree provide the best results in terms of (true | false) (positive | negative) rate and training
time. They spare potential overfitting problems by using random forest. As for the k-nearest neighbors,
since IP addresses are huge numbers (could go up to 4 billion), they have a higher weight than TCP
flags (maximum value 32).

The experiments prove that machine learning classifiers can flag ransomware network traffic for both
UDP and TCP records as in signature-based detection.

A benchmark comparison is possible with the proposed work in [89]. The authors perform machine
learning algorithms on protocols regardless if they were TCP or UDP based. However, we separate them
since UDP records outweigh TCP ones to have a balanced dataset. In addition, raw features are used,
such as described in section 2.3. It means that any record or communication can be flagged without
delaying the alert mechanism that relies on having n malicious conversation flows. Decision trees lead
to more accurate results (98.46% vs 97.10% in [89]).

3.1 Zero-Day Ransomware Detection
The conducted experiments are divided into two parts. Signature-based ransomware detection explained
in the sections above where the training and the testing are performed on samples from a specific
ransomware RA, RB, . . . , RN (see Figure 2.2, Part a).

Figure 2.2: ML on Ransomware Families.

Nevertheless, to detect zero-day attacks, an administrator should test on new variants of ransomware.
To implement this task, training is carried out on malware samples that appeared earlier or at the
beginning of 2016. As for the tests, they are executed on different ransomware families excluded from
the training set (see Figure 2.2, Part b).

Since a similarity is noticed between some Zerber and Cerber samples, in addition to TeslaCrypt and
Bitman, we split our training and test set as followed:

• training set families: TeslaCrypt, Cerber, Shade (our dataset),
• test set families: Spora (15), GlobeImposter (2), Jaff (8), Matrix (3) (downloaded from www.

malware-traffic-analysis. net ).

Since test samples did not figure in the training set, we have 98.46 % as true positive rate and 100%
as a true negative rate (table 2.9). They still represent a high value since the strategy of requests sent
between the victim, and the C&C is shared among the majority of ransomware families.

3.2 Alert Time
Encrypted files as well as ransom notes serve as evidence that characterizes the presence of ransomware.
If the detection based on analyzing network traffic occurs before the beginning of the encryption process,
files losses are spared. Consequently, it is essential to recapture the time of the last packet sent and
the start of ransom notes. For example, after Cerber’s network communication, it creates nine different
threads, and the encryption process takes place immediately after that. It leaves some nanoseconds for
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the prevention mechanism to make a decision (blocking or killing the process, freezing the PC) before
any file loss. Table 2.10 shows that the first alert, a network UDP send request, appeared before the
ransom note #DECRYPT MY FILES#.html.

Time of Day Operation Path
15:45:09,81792 UDP Send orfeas-PC:54673 → 85.93.63.255:6892
15:45:12,89509 CreateFile C:\...\#DECRYPT MY FILES#.html
15:45:12,89919 CreateFile C:\Py27\Lib\...\t56G mZZIH.cerber

Table 2.10: Snippet of Cerber PML File, MD5 hash: 534da47881eba8a6d3cf676e6c89d1be.

Table 2.11 presents the percentage of samples that made a communication with the server before
an obvious ransom note or encrypted file (RansomAlert). For Bitman and TeslaCrypt families, only
1 sample communicated with the C&C before it displays a ransom note. It means that the detection
mechanism based only on network traffic is not appropriate for those families. Howbeit, network traffic
detection for Shade ransomware is efficient and will spare file losses for victims.

Ransomware Family tCommunication < tRansomAlert Percentage
Bitman 1 8.33% (1/12)
Cerber 7 100% (7/7)
Shade 55 100% (55/55)

TeslaCrypt 1 7.69% (1/11)
Yakes 0 0% (0/2)
Zerber 2 66.67% (2/3)

Table 2.11: Encryption Alert.

Since each sample provides a distinct ransom note or a specific file extension representing the
ransomware, all the PML files are analyzed manually to extract the required information.

Bitman’s ransom note description is presented in Figure 2.3. Examples of Bitman ransom notes
names are given below:

• Recovery+ysddu.png,

• +-HELP-RECOVER-+bjkkl-+.png,

• ReCoVeRy +ioigp.png,

• help recover instructions+drl.txt,

• +-HELP-RECOVER-+wnonv-+.png.

Some Cerber samples kill the Process Monitor process several times during their execution, so the
retrieved PML file is corrupted. Therefore, a difference is found between the number of active samples in
Table 2.1 and in Table 2.11. To scale down any possible error, we did not consider those ten truncated
samples in the Alert Analysis because the acquired data was incomplete.

3.3 Results Overview
Based on the timeline mentioned in the context displayed in Figure 1.2 Part I and on the network traffic,
ransomware has evolved throughout the years and is polymorphic. Previous samples used to communicate
via non-encrypted HTTP traffic (TCP requests), then other families moved to GET requests. Shade
ransomware, for example, uses only TLS protocol for its communication. In addition to that, it was
one of the pioneers for IPv6 communication. In 2016, UDP communication emerged. Based on the
data gathered, new variants of ransomware can be detected if the divergence between new samples and
existing ones are low. However, many cases are covered in our work. Attackers have to work on covert
channels for exfiltrating information or keep encrypted communication similar to benign applications.
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NOT YOUR LANGUAGE? USE https://translate.google.com
What happened to your files ?
All of your files were protected by a strong encryption with RSA4096
More information about the encryption keys using RSA4096 can be found here:
http://en.wikipedia.org/wiki/RSA_(cryptosystem)
How did this happen ?
!!! Specially for your PC was generated personal RSA4096 Key , both public and private.
!!! ALL YOUR FILES were encrypted with the public key, which has been transferred to
your computer via the Internet.
!!! Decrypting of your files is only possible with the help of the private key and decrypt program ,
which is on our Secret Server
What do I do ?
So , there are two ways you can choose: wait for a miracle and get your price doubled,
or start obtaining BITCOIN NOW! , and restore your data easy way
If You have really valuable data, you better not waste your time,
because there is no other way to get your files,
except make a payment
For more specific instructions, please visit your personal home page,
there are a few different addresses pointing to your page below:
* http://t54ndnku456ngkwsudqer.wallymac.com/68052649D4FFA17
* http://po4dbsjbneljhrlbvaueqrgveatv.bonmawp.at/68052649D4FFA17
* http://hrfgd74nfksjdcnnklnwefvdsf.materdunst.com/68052649D4FFA17
If for some reasons the addresses are not available, follow these steps
1 Download and install tor-browser: http://www.torproject.org/projects/torbrowser.html.en
2 After a successful installation, run the browser
3 Type in the address bar: xlowfznrg4wf7dli.onion/68052649D4FFA17
4 Follow the instructions on the site

Figure 2.3: Bitman Ransome Note.

Tests are also performed on 18 samples from Cerber, Zerber, TeslaCrypt, and Bitman without any
Internet connection. The encryption still took place. Nonetheless, we know that the keys are gen-
erated locally, enabling us to retrieve them via a simple hook to Windows Crypto API or is hard-
coded in ransomware’s executable, highly unlikely. Two identical ransomware samples are found in
Bitman/TeslaCrypt and two others in Cerber/Zerber. It denotes a resemblance between those fami-
lies. For example, 2d2c589941dd477acc60f6b8433c3562 MD5 hash is flagged as Bitman by 7 anti-virus
companies and as TeslaCrypt by 8 other anti-virus companies [88]. They are kept for signature-based
detection (no duplicate records in the same family since it appears just once) but removed from the
zero-day analysis.

100% detection rate is attained. As a result, its validity needs to be checked: based on which criteria
a separation is achievable.

Decision Tree (UDP Samples)

This supervised learning algorithm also provides exquisite results. Notwithstanding, the output of this
separation graph generated by the decision tree is based only on the initial victim communication pro-
tocol. Therefore, it is not a reliable method for distinguishing benign traffic from malicious one based
only on one characteristic.

Decision Tree (TCP Samples)

Similarities among decision trees of multiple ransomware families using TCP for communication are
noticed. The separation is mainly done based on those characteristics: tcp.window size scalefactor ,
tcp.hdr len, IP source and IP destination (Figure 2.4).
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• tcp.window size scalefactor: All benign samples have the value of -2 or 0 for the scalefactor whereas
ransomware records contains 0, 128, 256 or 1024 as values.

• tcp.hdr len: All benign samples have 20 bytes as header length whereas ransomware records header
length can be wither 20, 32, 48 or 56 bytes.

• IP source and destinations serve as blacklisted addresses.

tcp.window_size_scalefactor ≤ 16.0
gini = 0.411

samples = 1666
value = [1184, 482]

tcp.hdr_len ≤ 26.0
gini = 0.153

samples = 1292
value = [1184, 108]

True

gini = 0.0
samples = 374
value = [0, 374]

False

ip.dst ≤ 3421226368.0
gini = 0.036

samples = 1198
value = [1176, 22]

ip.src ≤ 167805320.0
gini = 0.156

samples = 94
value = [8, 86]

(...) (...) (...) (...)

Figure 2.4: Ransom Model Graph.

4 Is There A Correlation Between System & Network Logs?
To sum up, from the system and network log analysis, we can extract the following information about
ransomware.

• Ransomware’s file system traversal starts at the root of Windows file system.

• Ransomware passes through specific folders and skips others to preserve the functionality of the
computer. By this mean, the victim can see the ransom note and thus, proceed to the ransom
payment if found necessary.

• Ransomware samples belonging to the same family can diverge in some aspects. For example, some
explore the file system, then proceed with the encryption. Others parallelize their work tasks: one
thread is responsible for files hunt while the other encrypts the found one immediately.

• Ransomware traffic presents specific characteristics that make a benign/malicious categorization
possible. Hence, IP addresses and port numbers can be relevant indicators, thus, blacklisted to
prevent or scale down ransomware propagation.

• In some cases, ransomware contacts the C&C before the encryption process.

Based on the provided information above and the information gathered from the literature, we investigate
a possible correlation between those logs to have a higher probability of detecting ransomware at early
stages.

To have a deeper understanding of ransomware samples, we look into the findings of the work carried
out in [166] and in [167]. They offer a detailed dynamic analysis of PrincessLocker and Spora ransomware.
The only information conveyed to the C&C of the attacker consists of two values: the ID of the victim
and the number of files that were encrypted. There is no additional information that could be extracted,
used, or combined to have a stronger defense mechanism.

Besides, having prior knowledge of a specific system event does not imply the occurrence of the
network communication as seen in the ransomware generated PML files. To date and based on the
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literature review and our experiments, we found no evidence expressing the explicit correlation between
system and network logs. This semantic gap can be explained by no evident association amongst them,
but, the combination of both types of logs provides a robust defense mechanism. This merged solution
integrates multiple sequential events, as seen in section 3.7 of Chapter 2 of Part I.

5 Conclusion
In this work, we are able to detect ransomware through network traffic monitoring. We conclude that
the majority of ransomware behave similarly. We found some common patterns among various families.
To get a precise ransomware detection, we use machine learning techniques.

To sum up, network alerts represent a first suspicion means informing the user of the presence of a
potential ransomware. However, some drawbacks exist. This first alarm can take place after the creation
of encrypted files or ransom notes as we noticed in some families. In addition, few elements are needed for
a classification, we have underfitting problems (Zerber samples), prone to adversarial attacks. Besides,
only decision tree among the tested algorithms provided high detection rates for zero-day attacks. For all
the reasons mentioned above, Network Alerts should be backed up with system data to provide a general
detection mechanism, working on all types of ransomware. The work is published in FPS conference [48].

The diverse and abundant solutions developed previously cover meticulously ransomware attacks.
The existent gaps found in these countermeasures can be patched by combining multiple components,
just like in the random forest, to make precise predictions than any individual model would have.

Surfing the latest security trends, we bumped into an article on Bleeping Computer that discusses
a malware that steals confidential military, and financial files [168]. It is somehow related to Ryuk
ransomware. The sample performs a lookup on all PDF and XLS files, especially those containing
words like “fraud”, “hack”, “tank”, “defence”, “military”, “checking”, “classified”, “secret”, “clandestine”,
“undercover”. Any file that matches those strings is then uploaded via FTP to a remote server. We
decided to explore the feasibility of such an attack in a basic user environment and provide ways to delay
or stop the executable if possible. These elements are discussed in Chapter 3.
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3 From Ransomware to Doxware

To compete in this arms race against security breaches, we propose an insight into plausible attacks,
especially Doxware (also called leakware). The work is accomplished in collaboration with my colleague
Renzo Navas, and my students Charles Berti, and Guillaume Deboisdeffre. We present a quantification
model that explores the Windows file system in search of valuable data. It is based on the term frequency-
inverse document frequency (TF-IDF) solution provided in the literature for information retrieval. The
highest-ranked files will be then exfiltrated over the Internet to the attacker’s server. Besides, we imple-
mented honeypot files and folders to test the validity of our proposal. We conclude by presenting future
perspectives in this area with the possible counter-countermeasures that can be taken by an attacker to
bypass current detection mechanisms. Our approach delivers an observation of the evolution of malware
throughout the last years.

1 From Data Encryption to Data Exfiltration

1.1 Where to Find Sensitive Data and How to Track It?
Google Scholar provides more than 5 million research papers regarding data sensitivity. It is not limited
to a particular field but represents a common concern for a myriad of sectors (healthcare, telecom,
automotive, energy). For example, mental health care is a delicate subject that could ruin a person’s
reputation under malicious manipulation. Therefore, attackers tend to target personal information
since it intimidates the victims driving them to pay the ransom in exchange of keeping the information
private. Netherlands data breach proves previous hypothesis since it came mostly from the medical
sector (29%) [169].

Sensitive information depends on the equipment being used. For instance, Yang et al. in [170]
consider that the following items represent significant data on Android OS: Unique Device ID, Location,
Phone number, Contact book, SMS messages, and Calendar. These items carry a considerable advantage
since each cell phone possesses them, and any application could access them via simple API calls. Taint
analysis detects flows upcoming from known and predefined sources (for instance, IMEI of a cellphone)
to untrusted sinks like the Internet [171]. Tracking data is, therefore, a straightforward process in
Android devices having the predefined sources previously known and Internet the only untrusted sink.
Taint analysis applied to applications that behold the identified sensitive information helps limiting
data leakage. TaintDroid framework developed by Enck et al. allows users to monitor how third-party
smartphone applications handle their private data in realtime [172]. It uses dynamic taint analysis
to track the propagation of tainted data at different levels: instruction level, message-level between
applications, and file-level. Original data can be transformed, for example, by writing its content in a
pixel bitmap. However, TaintDroid issues warning reports if tainted data is leaked by an application,
even if it was transformed since the taint is propagated through these side channels [173]. A similar
tool developed by Sun et al. enables a multilevel information flow tracking by utilizing registers for
taint storage, having only a 15% overhead on the CPU [174]. It presents an enhancement of TaintDroid
formerly developed in terms of taint storage and resource consumption [172]. Considerable research is
being conducted in this field as in [173,175–177].
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Data’s value is translated by the measure taken by a company to protect it. For instance, Zhu et al.
provide TaintEraser, a new tool that tracks sensitive user data as it flows through applications [178].
They are one of the pioneers in developing data protection from leakage on Windows OS. Their taint
propagation is based on instruction and function level. They evaluate their solution on Notepad,
Yahoo!Messenger and the Internet Explorer where they presented accurate results based on taint
propagation. However, TaintEraser can be bypassed via data transfer in shared memory. Loginova et
al. suggest to use cryptographic software to carry out on-the-fly encryption [179]. They state that it
represents the most effective approach to overcome data leakage and to protect the information.

On Android OS, attackers know what they are looking for and where to find it, like extracting the
victim’s GPS location. Yet, these sensitive elements cannot be predefined on a computer level. Indeed,
confidential data is only relevant to a particular end-user. For instance, it could be a project for a student
or a painting for an artist. Data exists in a variety of formats and are stored in different locations for
each user. We analyze in the following parts to which extent data localization is possible on a computer
and if it is comparable to mobile devices, and how is the exfiltration carried out.

1.2 Data exfiltration
Data exfiltration is an attack that occurs when a malware’s author carries out an unauthorized data
transfer. Researchers have long been interested in this domain since it can threaten a company or
individual’s well-being. Giani et al. reveal that the bandwidth constraints depend not only on the
amount of data exchanged but also on the media being used [180]. Indeed, since 2006 little has changed.
Leakage methods remain the same (FTP, SSH, email...).

Data can be in one of the following states: in use (by an application), in transit (being sent over the
network), or at rest (stored in a database). Countermeasures protecting data, regardless of the state,
are clustered by Ulla et al. into three main categories [181].

• Preventive solutions prevent an attacker from stealing data. It represents a proactive measure
taken by administrators to resist against exfiltration attacks.

– Data classification techniques categorize data based on the sensitivity level. For example, data
can be classified using a binary metric (sensitive/non-sensitive), or several categories can be
considered, such as highly confidential, confidential, restricted, and public [182,183].

– Access control policies ensure that only legitimate users have access to the requested resources.
It is enforced by authentication and authorization mechanisms [184,185].

– Encryption mechanisms protect the confidentiality of the data. Even if attackers acquire
encrypted data, no information can be extracted or analyzed from the ciphertext [186,187].

– Cyber deception techniques mislead the attacker into considering the he/she is in hold of
sensitive data or is attacking an actual server [188,189].

• Detective techniques aim to detect the leaks. Unlike the preventive category, detective counter-
measures are reactive since they can not only detect, but also, stop an attack.

– Content inspection searches for predefines keywords, hashes, or patterns in the network traffic.
A security breach is defined by a matched signature, then, the administrators are alerted [190,
191].

– Anomaly-based detection compares known patterns of a network or a host and constructs a
model to represent it. Any deviation or any resurgence of an unexpected pattern represents
a potential attack (see section 5, Chapter 2, Part I).

• Investigative solutions do not help recover the leaked data. However, they identify key-elements
that help protecting the current environment. It is accomplished by knowing when, how, and who
is responsible for this data exfiltration.

– Watermarking techniques tackle specifically the integrity of the data. It is used to protect
copyrights and the non-repudiation of the data. Watermarking consists in adding a signature
to the sensitive data to be able to track it and verify that it remains intact [192].
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– Probabilistic forensics reconstructs the actions undertaken by an attacker to penetrate the
system. Traces or logs are acquired from the system as well as metadata. This digital forensic
includes approaches to prevent data being copied to an un-authorized USB device [193,194].

– Counter-intelligence operation helps to track back an attack towards an attacker. However,
most of the approaches proposed in the literature have not been tested [195].

There is an analogy between the countermeasures developed for exfiltration and ransomware attacks.
In fact, the preventive countermeasures correspond to the delivery phase. The detective techniques
correspond to the deployment and the destruction phase. Finally, the investigative solutions can be
mapped to the transaction done via bitcoin.

Data are important to any entity. Therefore, we endeavor to check the possibility of sensitive data
exfiltration and its repercussions on the system. We evaluate a possible Doxware attack since, by
definition, it manipulates documents to leak information.

2 Context

2.1 From Ransomware To Doxware
Figure 3.1 presents ransomware and Doxware workflow. Four main stages appear in both malware (phases
P1, P2, P3, and P4). The only difference resides in “valuable files hunting” followed by an exfiltration
of the acquired data (phases D-P2 and D-P3). In fact, ransomware attack scope and losses are confined
in a users setting: the data remains on the PC, yet, it is encrypted. With a previous backup, end-users
can restore all their files. Nonetheless, in a Doxware attack, the damage is beyond repair since once the
information is out to the digital world, any person has access to it. To the best of our knowledge, no
previous studies were made on this specific type of malware, and it was only mentioned by researches as
an advanced threat [196–199].

Similarly to ransomware, Doxware’s attack vectors are mainly phishing/spam emails or unpatched
security vulnerabilities on a visited website or on the victim’s system [23,200]. Then, once it is infiltrated
on the system, it checks if the required libraries with the appropriate versions are installed on the
computer to perform its destructive intents. Afterwards, an exploration of the file system is made to
search for example, for military and financial files like in [168]. Specific file types are encrypted (texts,
images, and documents) using AES-256 or RSA-2048. Finally, a ransom is demanded to receive the
decryption keys and to avoid sensitive information exposure. Besides, some malware authors create
eBay-like auction site for stolen data [7].

Our proposed approach focuses on the file evaluation for score computation.

2.2 Data Formats Choice
Different data formats exist nowadays that are stored on a computer. They can be classified into four
main categories.

1. Textual Documents represent files that contain mostly data in the form of a sequence of words
or alphabetic characters. For example, contracts, agreements, company’s balance sheet, medical
records.

2. Pictures are designs or representations made by various means (such as painting, drawing, or
photography). For instance, Magnetic Resonance Imaging (MRI), gradient descent convergence,
trip pictures.

3. Videos represent a recording of a motion picture made digitally or on videotape (movies, video
clip, news).

4. Some files have the combination of two or all the categories of previously mentioned types such as
a PDF file (it contains paragraphs as well as images).
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Infection Vectors: Spam Emails, Self-
Propagation, Drive-By Downloads

P1: Delivery

Environment Preparation
(Needed libraries, System calls)

P2: Deployment

Exploration of the File Sys-
tem Looking for Profitable Files

D-P2: Exploration

Data Leakage via Covert Channels

D-P3: Data Leakage

{File System & Network Activity} + Encryption

P3: Destruction

Ransom Payment or Extortion

P4: Dealing

Figure 3.1: Ransomware Vs Doxware.

Nearly all processing methods in the literature for face recognition or body detection are based on machine
learning algorithms [201,202]. Some additional information is mandatory to be able to recognize bodies,
clothes, poses. Many drawbacks reside in these approaches, such as their weight since they embed
complex algorithms requiring considerable computation power. This means many false positives cannot
be tolerated for the attacker since the transfer of large files is easily detectable. Sending a 50 Mb video that
does not encompass sensitive information represents a massive loss for the attacker. For example, many
packets are transmitted over the network and cannot go unnoticed. Therefore, a compromise between
efficiency and stealthiness is needed. For all the reasons cited above, we develop a proof of concept in
the following sections based on textual document analysis. It serves as a method for identifying files that
belong to predefined topics. Contracts are chosen as a baseline for the rest of this chapter.

2.3 Natural Language Processing (NLP) and Information Retrieval (IR)
The field of NLP encompasses many topics that help to convert, to some extent, a text into a data struc-
ture. Statistics, probability, and machine learning were previously used to analyze textual documents.
Recently, deep learning techniques are adopted to extract even more refined results in a shorter time due
to advances in computational power and parallelization [203]. NLP is adopted in various domains. Hence,
a medical NLP is used by Friedman et al. to extract molecular pathways from journal articles [204].
Stenetorp et al. rely on NLP to develop a Web-based tool for text annotation [205]. Another example
worth mentioning is the application of the NLP on hate speech detection presented by Schmidt et al.
in [206] or Al-Hassan et al. in [207].

Information retrieval is defined in an academic field of study as follows: “Information retrieval (IR) is
finding material (usually documents) of an unstructured nature (usually text) that satisfies an informa-
tion need from within large collections (usually stored on computers)” [208]. NLP techniques have been
used in IR, however, since only few improvements are noticed [209], we focus on presenting the following
two state-of-the art techniques used for IR.

• Bag-Of-Words (BOW) is a simple method used for object categorization. The idea relies on re-
grouping words by their occurrences.
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Let us take as an example the following sentence: “Ransomware is an epidemic that affects the
lives of individuals and the development of companies.”
The output of BOW represents pairs of the words found in the sentence and their occurrences
presented in Table 3.1.

Word Number of Occurrences
ransomware, is, an, epidemic, that, affects, lives, of,
individuals, and, development, of, companies

1

the 2

Table 3.1: BOW table.

Nevertheless, this technique has some well-known flaws. Some words, existent in any kind of doc-
uments (“the”, “an”, “always”, “being”) called stop words, are not representative of the document
itself compared to others. Their frequency might exceed relevant elements. Hence, this technique is
backed up by the TF-IDF transformation addressing the problem encountered in BOW [210,211].

• TF-IDF has the Bag-Of-Words as a basis but with an improved layer. A corpus of files is needed
because the process compares documents one to another. Better specificities of the documents can
be extracted if there are many specimens as a baseline.

– TF represents the raw count (frequency) of a given term t in a document d.

tf(t,d)=ft,d

– IDF represents the value carried by the word. IDF score is the logarithm of the number of
documents divided by the number of documents that contain the word t. When the number
of times a word is present in a document is significant, the value obtained in the logarithm
is very close to 1, so idft is close to 0. The idft,D coefficient highlights rare words found only
in few documents. Even though not frequent enough, they are significant and are spotted by
having a higher score [212,213].

idf(t,D) = log
(

|D|
|{d ∈ D : t ∈ d}|

)
where:
|D| is the total number of the documents in the corpus

– TF-IDF is used as a weighting factor to reflect the importance of a word in a given document
or corpus. It is calculated as

tfidf(t,d,D) = tft,d · idft,D

3 Content Analysis Proposal
It is possible to extract multiple keywords representing a document based on the previous observations
and the literature techniques discussed in section 2.3. We make use of this information to check to which
extent sensitive data can be disclosed by applying straightforward IR techniques.

3.1 Target Threat Model
The goal of the adversary is to extract sensitive data from a system represented by a personal computer
in this analysis. The attacker develops a malicious application that is executed on this system, and once
the required information is identified, it is sent through the network to third-party server controlled by
the adversary.

We assume that the user installs the malicious application on his computer without prior knowledge
of its functionalities or intents. Also, we assume that no counter-measures are in place to protect user’s
private data.
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We focus on the evaluation algorithm that helps to determine and/or to classify data as sensitive or
not. The proposed evaluation algorithm depends on some parameters of the document that the program
is analyzing. It is divided into two parts.

• Lexical Generation. The first part is related to the attacker characterized by generating intelli-
gent lexicons to focus on the subjects/topics he/she wants to exfiltrate. This is accomplished by
relying on the TF-IDF methodology applied on a corpus of documents.

• The second part concerns the victim side, where the attacker evaluates victims documents to send
them over the network.

– Document Content Evaluation. It includes assigning a score to each document based on
the keywords or lexicon generated previously.

– Metadata Evaluation. In addition, metadata is analyzed to extract further information
about the evaluated files.

To sum up, the analysis program consists of 3 modules to accomplish these tasks: Lexical Genera-
tion, Document Content Evaluation, and Metadata Evaluation. They are thoroughly explained
in the next sections.

3.2 Chosen Corpus: Contracts
Leakware or Doxware is a vast subject and can be interpreted in many ways, whether it infects a personal
or a professional machine, an individual user, or a company. Our preference from among choices is the
evaluation of professional documents since they can be found on both machines. Textual documents can
be saved in various types of extensions (.txt, .docx, .pdf, .rtf , .wpd, .odt...).
Existent tools for word extraction are not applicable on a PDF file containing a scanned document. A
possible solution is evaluating them as images, and extracting their content with the help of an Optical
Character Recognition (OCR) and Tesseract (an open-source OCR engine). Each page of the PDF
document is converted into a .png image. The ratio of PDF to image can be 1/30, a memory consuming
process. The program gets importantly less stealthy having a longer processing time compared to .txt.
Therefore, we restrain the study domain to .txt, .docx extensions, documents being one of the most
targeted files [214].

To carry out the IR process, a corpus of textual documents is required. Contracts are chosen as a
topic to represent the sensitive information that is exfiltrated by the attacker. To do so, various files are
downloaded from onecle.com and contractsfinder.service.gov.uk. Three types of contracts are chosen for
the corpus:

• investment agreements

• marketing agreements

• partnership agreements

The terms “investment”, “marketing”, and “partnership” are explicitly marked in the documents.
Additional documents are gathered from Google Scholar, online courses, and forums.

The same procedure can be carried out on other topics that convey as well critical information like
medical records, biometric data, and political opinions. Thus, the database that contains the pairs of
keywords and topics can be extended.

3.3 Lexical Generation
On the attacker’s machine, a pre-processing is made for lexicons generation of any requested subject.
The topic represents the files that the attacker is searching for on the victim’s machine.

Initially, TF-IDF transformation is applied to the union of documents in the corpus. The top -n (n
is a given integer that represents the wanted number of significant words) results represent the words
having the highest score for each document.
Table 3.2 and Table 3.3 present the ten (n=10) words having the highest TF-IDF score.
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Word TF-IDF Score for Doc.1
company 0.3980
section 0.3771

agreement 0.3324
1look 0.2689

purchaser 0.240
shares 0.2290
shall 0.2220
date 0.1773

material 0.1550
closing 0.1508

Table 3.2: TF-IDF Scores for Document 1.

Word TF-IDF Score for Doc.2
company 0.5583

buyer 0.4851
shall 0.2415

agreement 0.2166
section 0.2137

acquisition 0.1297
stock 0.1274

securities 0.1106
voting 0.1100

proposal 0.1094

Table 3.3: TF-IDF Scores for Document 2.

The next step relies on creating a function that associates each word in the lexicon to an importance
“score”. Let wi be a word that represents the target subject. Let n be the number of words taken into
consideration by a document (top n words with highest TF-IDF score). The word wi has a pi,j position
in the document j, the corpus contains N documents. Its value is built as following.

Sc(wi, j) = n− pi,j

n

As a result, the total score Sci is:

Sci = 1
N
·

n∑
j=1

Sc(wi, j) = 1
N
·

n∑
j=1

n− pi,j

n

Sci is divided by n for normalization purposes so that any word can have a maximum score of 1. For
example, the word “agreement” is the 3d keyword having the highest TF-IDF score in the first document,
however, in the second document it is ranked as the 4th most important word.

Sc(agreement,Doc.1) = 10− 2
10 = 0.8

Sc(agreement,Doc.2) = 10− 3
10 = 0.7

The final score is divided by the number of documents considered to maintain the values between 0
and 1.

Sc(agreement,Docs) = 0.8 + 0.7
2 = 0.75

A part of the investment agreement lexicon produced for those two documents is presented in Ta-
ble 3.4.

At the end of this step, three lexicons are generated, each representing “investment”, “marketing”,
or “partnership” agreements. It is created by applying the total score on the N documents of the chosen
corpus.

3.4 Document Content Evaluation
The lexicons are already embedded in the malware source code on the victim’s side. They are used to
process a content score which is combined with a metadata score for a final evaluation score.

At first, a dictionary containing every word of the document with its number of occurrences is
extracted. The initial value of the content score is 0.
Let CS be this content score, Sci the score of the word i of the lexicon being studied created previously,
n the number of words in the lexicon and occi the number of occurrences of the word i in the document
analyzed.

CS =
n∑

i=1
Sci · occi
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Word Score
company 1
section 0.75

agreement 0.75
1look 0.35

purchaser 0.3
shares 0.25
shall 0.6

acquisition 0.25
buyer 0.45
stock 0.2

securities 0.15

Table 3.4: Score of Words.

Let us consider a document composed of the following sentence: “Party B promises to commence the
relevant applications under the Project within 15 days following the execution of this agreement.” The
content evaluation is presented in Table 3.5 and in the following equation.

Word Number of Occurrences Lexicon Score
party 1 0

promises 1 0
commence 1 0
relevant 1 0

applications 1 0
the 3 0

following 1 0
execution 1 0
agreement 1 0.75

Table 3.5: Content Evaluation.

CS = 1 · 0 + 1 · 0 + 1 · 0 + 1 · 0 + 1 · 0 + 3 · 0 + 1 · 0 + 1 · 0 + 1 · 0.75
= 0.75

The content score is calculated for each of the three previously generated lexicons. The highest score
is retained, followed by a division by the size of the document. This division helps to maintain the same
probability to have important documents regardless of the size if they carry the same information.

CSfinal = 1
document size

·max (CSinvestment,CSmarketing,CSpartnership)

We select randomly 36 documents that do not contain any information about contracts such as medical
records, statistics, state-of-the-art of ransomware, etc. and we compare the scores to the 36 contracts in
our corpus. The minimum (Min), the maximum (Max), the average (Avg), and the standard deviation
(σ) of the obtained scores are presented in Table 3.6.

Statistics Random Non Decoy Files Important Files
Min 0.503 1.31
Max 5.66 7.698
Avg 1.653 4.29
σ 2.045 1.359

Table 3.6: Statistics of the Scores of Random and Important Files.
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3.5 Metadata Analysis
Metadata is “a set of data that describes and gives information about other data”. This information is
stored in various file types and its analysis describes the considered document.

Fifteen metadata can be accessed and extracted from a Word document. Those are author, category,
comments, content status, created, identifier, keywords, language, last modified by, last printed, modified,
revision, subject, title, and version. These details are useful for an attacker to determine if the analyzed
file is important to the user. It is accomplished by checking the date of creation and modification. In
fact, old files are of no interest for exfiltration whereas recent files used by end-users carry relevant
information. In addition, the multiple revision of a file indicates that the user is manipulating this
document, therefore, it contains pertinent information.

Most of the cited metadata analyzed are not filled in (the content is null). Some metadata have to
be manually annotated like keywords to support searching and indexing, as well as the comments part
to describe the content of the resource. Therefore, the only features kept and the most relevant ones are:
the number of revisions, created, and last printed.

• If more than 1 revision is made, the metadata score is incremented by 5.

• If the document is created in 2019 (the timeline where the experiments were made), the metadata
score is incremented by 1.

• Additionally, if the document is printed in 2019, the metadata score is incremented by 2.

3.6 Proposal Summary
This section summarizes the previous steps taken to achieve a complete scan of the file system of the
victims computer in search if valuable files, more specifically, contracts. It is portrayed by the algo-
rithm Valuable File Hunting (VFHA).

1. Initially, the lexicons are generated based on the contract topic (line 2 in VFHA).

2. Then, the parsing of the target file system is made searchings for .txt and .docx extensions (line 9
in VFHA).

3. The file score is calculated as following.

(a) The content of .txt file is extracted, and vocabulary analyzed. Each word is compared with
a lexicon previously created that contains recurrent and relevant words in a contract based
document.

(b) The same procedure is done for the .docx files. However, an additional step is made for the
metadata analysis. The significant metadata are the number of revisions, creation date, and
the date when it was last printed. They are added to the total sum representing the value of
a document (line 3 and 9 in VFHA).

4. “Summarize” step: Each document has a total score that has been assigned, so the list of tuples
(path, score) is sorted according to the value obtained, where the attacker chooses which ones
he/she wants to extract. For instance the first 50 files (line 23 and 24 in VFHA).

4 Proposal Analysis

4.1 Created Lexicons
The chart presented in Figure 3.2 shows the most common words in a contract document. They are:
“shall”, “partnership”, “agreement” and also “section”. Indeed, the corpus gathered is previously iden-
tified as a contract type document, which is an advantage allowing us to perform a relatively simple
algorithm to determine whether a document belongs to this category or not, although law documents
also acquire an important score and may also be as valuable as a contract.
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Algorithm Valuable File Hunting VFH
1: procedure Algorithm 1
2: Topic Lexicon← { lexicon generator (Corpus having the same Topic: Contract) }
3: def analyse content(File f):
4: for word ∈ f do
5: if word ∈ Topic Lexicon then
6: f score += score(word) * number occurrences
7: return f score/len(f)
8:
9: def analyse metadata(File f):

10: if f.core properties.revision > 1 then
11: f metadata score += 5
12: else if f.created == "2019" then
13: f metadata score += 1
14: else if f.lastprinted == "2019" then
15: f metadata score += 2
16: return (f metadata score)
17:
18: Parse the File System
19: if FileExtension ∈ .txt or .docx then
20: FileList← {Analyse MetaData and Content}
21: else
22: Continue;
23: Sort FileList by highest Score
24: Send n first valuable files to the attacker’s server (future work)

Figure 3.2: An Example of the Lexicon with the associated Scores.

4.2 Test Bench Results
A Windows 7 Virtual Machine is created for the proof of concept. It holds 50 noise documents and 10
contracts are added. After running the algorithm, 15 files are selected. Among those, there were six
false positives, where 5 are the noise files and 1 is the Windows configuration file.

For example, a Python “README.txt” note is the following: “This directory exists so that 3rd
party packages can be installed here. Read the source for site.py for more details.”. It contains a single
occurrence of the keyword party. However, the final score depends on the file size. Since it is only 121
bytes, relatively small compared to other texts on the file system, therefore, it is associated with a high
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score.

The noise documents are the following:

• Storm.docx represents a documentation of Storm a free and open source distributed real-time
computation system.

• Food-processing.docx is a review of the efforts and inventions in field of emerging food processing
technologies since their inception to present day.

• TF-IDF.docx is an article explaining the TF-IDF formula and its advantages.

• Csquotes.docx provides explanation about the csquotes package used in Latex.

• Localization-bieber.docx represents the special string used in Latex.

Document Keywords
Storm.docx “section”, “application”, “online”, and “programs”
Food-processing.docx “company”, “material”, “date”, and “investment”
TF-IDF.docx “section”, “documents”, “management”, and “limited”
Csquotes.docx “section”, “closing”, “boundary”, and “units”
Localization-bieber.docx “company”, “article”, “series”, and “advance”

Table 3.7: Retrieved Keywords from the Noise Documents.

Specific Windows file system path can be removed from the file traversal, in addition to
“README.txt” related documents to gain better results. A limitation of extracting keywords from doc-
uments using solely TF-IDF is the absence of the semantic context. As seen previously, a “README”
document or documentation can contain some specific keywords like “party”, however, is not relevant
to contracts. Table 3.7 shows some selected keywords contained in the noise documents. Even though
different contexts and semantics are considered (food processing or latex explanation), they still carry
some information related to contracts. Therefore, the use of the sequence of n-keywords for a given topic
provides an accurate context of the document being analyzed, reducing false positives.
Besides, since each word is considered independently, multiple scores can be attributed to the same root
of the keyword. For example, “parties” score is 0.1062 whereas “party” score is 0.2804. It is convenient to
reduce inflected (or derived) words to their root form and remove inflectional endings to assign a unique
score to the root of the word. Those two concepts are defined as Stemming and Lemmatization [215–217].

5 Protecting User Assets
Protection against malware attacks, especially zero-days, is a challenge for all researchers. Residual risk
remains: de facto, despite various countermeasures employed by a party, an attacker can always find a
way to penetrate the system (he/she still risks to be detected). If committed, anyone can reach their
malicious intent. However, our goal is to complicate the intrusion task and to identify it if possible.
Users should know the existent vulnerabilities to see what patches can be used to circumvent malevolent
attacks. Some countermeasure can be deployed by users to protect their data from being exfiltrated.

1. Honeypot Folders: They can be created in any environment, regardless of the operating system
used. Since Doxware traverses the whole file system looking for assets, any process or thread that
passes through this lure folder can be immediately flagged then stopped. A drawback would be
malware’s multi-threading techniques, it can still be exposed but after a certain epsilon time.

2. Data Tainting: Sensitive data in a computer is extremely private and depends on the end-users,
unlike Android OS (IMEI, GPS location,... existent on all mobiles). Therefore, a general protection
model is impossible to develop in real life. However, each individual can add a layer, a taint, on his
preferred/sensitive information. Thus, each exfiltration attempt over the network can be detected.
Nonetheless, the explosion of tainted data may slow down the system.
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3. Data Encryption: It remains a robust way adopted by the global community. Indeed, brute-forcing
the encryption key takes decades. Even though an attacker acquired the encrypted files, he/she
cannot menace the victims or blackmail them since no access to the decrypted data is possible.

We investigate the Honeypot Folders technique in the particular case of a Doxware attack to leak
important files (contracts).

6 Honeypot in the case of a Doxware attack
In this section, we propose a honeypot-based countermeasure against Doxware attacks. First, a recapit-
ulate of recent work done in the literature to stop ransomware using honeypot techniques is presented
(previously discussed in section 3.3, Chapter 2, Part I). Then, a combination of honeypot folders and
files to detect and mitigate file exfiltration (Doxware) attacks is proposed. Finally, an evaluation of the
implemented proposal is done having further discussion.

6.1 Honeypot Key Elements
• An essential aspect to take into consideration while generating decoys is the location of the honeypot

files and folders. After performing a static analysis of 11 ransomware samples, the authors in [96]
conclude that they traverse the file system in the following order:

1. C:/User/USER NAME/Documents
2. C:/
3. C:/User/USER NAME/Desktop
4. C:/User/USER NAME/Favorites

• Since, the traverse can be in order or reverse order of Windows-1252, folders names should be
created accordingly to increase the chances of being accessed first. Consequently, attacks can be
stopped rapidly after their initial execution. This information is useful since Doxware represents
ransomware upgraded version (section 6.2.1).

• Two types of decoy files exist Low and High Interaction. Low interaction decoy files contain
arbitrary data to detect ransomware’s actions on the documents, whereas high interaction
decoy files contain false information to confuse the attacker and lead him to further deception
mechanisms implemented on the system [98]. The latter is used in the use case since Doxware
tackles the content of files. The generated decoy content relies on lexicons frequency distribution
(section 6.2.2).

6.2 Proposal Overview
Our honeypot-based proposal relies on the generation of decoy folders and files. The procedure for
decoy folder name generation is described in section 6.2.1. The process for decoy file content generation
is described in section 6.2.2. We implement and evaluate our proposal, and offer some discussion in
Section 6.3.

6.2.1 Decoy Folder Name Generation

As stated in section 6.1, three crucial elements need to be considered while developing and deploying
honeypot folders: their name, location, and content.
Applications, including ransomware, carry out file operations by calling two Windows APIs, FindFirstFile
and FindNextFile [218]. Thus, the following decoy name generation methodology is used to be the first
folder selected in the file system traversal.

1. All the repositories in a specific path are sorted by ascending order. Then, the first and last folder
are chosen in the list.
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2. To create the corresponding honeypot folder, the first character in the chosen folder is selected,
and represented in hexadecimal. Then, a subtraction or addition is performed to embody the first
and the last folders that are traversed by malicious processes in the case of a Doxware attack.

3. The string is appended to a random word extracted from “The Brown Corpus” [219]. The first
character allowed by Windows-1052 is chosen for naming repositories that is the space character
(0x20) and the last one, which is the letter Å" (0x9e).

Figure 3.3 displays a list of the names of all files in the current working directory “Desktop”. The
first folder is “2020” and the last one “Work-Documents”. They are selected as a baseline for generating
decoy folders names.

FirstGeneratedDecoyName = concat( , , (hex(2)− 1), randomString)
= concat( , , 1, general)
= 1general

Figure 3.3: Decoy Folders Generation.

6.2.2 Decoy File Content Generation

Honeypot (or Decoy) Files are used as a proactive countermeasure against the Data exfiltration attack
(i.e., Doxware malware) proposed in this section. It serves as a complementary measure to the Honeypot
Folders detailed in 6.2.1.

Rationale. Before any attack, honeypot files that semantically resemble relevant, targeted documents
are generated and stored. Those files contain no meaningful information. However, an attacker as
advanced as the one of section 3 (i.e., using the VFH Algorithm) will flag those files as valuable and
exfiltrate them. Hence, data with real sensitive information are less likely to be exfiltrated, as the attacker
is not prioritizing them.

Honeypot Files Generation. Our proposal assumes that the VFH Algorithm is partially known.
The file generation is based on the construction of a lexicon (section 3.3) that corresponds to the subject
of the files we want to protect. A lexicon consist of n tuples (wordi, weighti) i ∈ {1, ..., n}. A weighti
has a value between 0 and 1, but the sum of all weights is not 1. We propose to normalize them so this
sum equals 1. This normalized weight pi now can be interpreted as the relative frequency of wordi in the
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given lexicon. With pi the probability mass function (pmf) of word taken as a discrete random variable
W is constructed. Finally, a Honeypot File HF consists of a succession of N independent and identically
distributed word random variables HF = {W1,W2, ...,WN}.

Note. HFs constructed this way do not guarantee the maximum value according to the VFH
Algorithm. The maximum value is obtained by the repetition of the single word with the highest weight.
However, HFs generated with our proposal (i.e., independent and lexicon-based distributed) is more
diverse and semantically complex, providing a better resemblance to reality than a single-word-repetition
approach.

The decoy generation proposal is resumed in Algorithm Decoy Folders Creation (DFC).

Algorithm Decoy Folders Creation DFC
1: procedure Algorithm 1
2: def Create Decoy(Path path):
3: folders← {sorted Windows 1252 Order(GetFolders)}
4: GenerateDecoyNames(folders) # Section 6.2.1
5: for f ∈ DecoyFolders do # We generate decoy files inside the folders
6: GenerateDecoyFiles() # Section 6.2.2
7: return DecoyFoldersPath
8:
9: Monitor Decoy Folders

10: if changeOccured (DecoyFolders and / or DecoyFiles) then
11: ALERT!!!
12: else
13: Continue;

6.3 Evaluation and Discussion
Implementation and Evaluation. We implemented a proof of concept of our proposal in Python 3
that generates Decoy Folder and Files as specified previously.

Initially, 500 decoy files of different length containing from 50 to 8000 words are generated. The
score of each of the generated files is calculated as described in section 3.4. The minimum (Min), the
maximum (Max), the average (Avg), and the standard deviation (σ) of the obtained scores are presented
in Table 3.8.

Statistics 50-Words 200-Words 500-Words 1000-words 2000-Words 4000-Words 8000-Words
Min 13.316 15.734 16.715 17.438 17.787 17.9 18.259
Max 36.626 32.336 31.465 30.106 29.482 29.259 29.026
Avg 23.692 23.357 23.071 23.031 23.035 22.979 22.999
σ 4.717 4.133 3.967 3.963 3.935 3.892 3.888

Table 3.8: Statistics of the Scores of Different Decoy Files.

Regardless of the size and the number of words generated, the score of a specific file fluctuate in
general around the value 23. If the number of the words per file increases, the minimum value increases
too since the document contains more and more essential lexicons that represent an important file. The
maximum value decreases since it takes into consideration the size of the data.

Discussion. The combination of having distributed decoy folders in different paths and a rich,
readable content provides protection in two levels: the first one helps to flag any suspicious process
passing through those decoys (it is not restricted to Doxware attacks). The content helps to mislead the
attackers into believing that they possess valuable data.
If the attackers perform a recursive lookup in alphabetical order for specific files, they are instantly
blocked since they passed through decoys. The Watchdog observer raises an alert immediately.
Considering the attackers were able to bypass decoy folders, the data they would have collected revolves
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mainly about keywords extracted from the contracts lexicon, which do not represent information of
value for any given individual or company.

7 Conclusion
We discussed the potential danger of sensitive data localization and quantification that can be carried
out by Doxware malware. Windows OS is the target system throughout the experiments. A proof of
concept is developed based on contract topic and passwords hunt. State-of-the-art methods are used,
such as TF-IDF and Bag of Words, in addition to a document’s metadata. The associated score of each
document is calculated then normalized. Few samples of files regarding the same topic are needed to
identify new target topics. The work is published in CRiSIS conference [220], extended in a journal
published in [221] . New options can be added as building bricks such as PDF and Images analysis,
which will strengthen the offensive invasion from the attacker’s point of view. Reducing false positive
rate can be done by eliminating the Windows system path and choosing randomly N last visited files in
Windows’ Quick Access. Threats arising from this cyber warfare are exponential.

The ongoing work examines the strategies of various commercial anti-ransomware tools when they
generate decoy files and is detailed in the following section. Additionally, future work is presented
concerning Windows-based ransomware countermeasures as well as Android OS. We present the short-
comings of the latter.
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4 Honeypot Ransomware Detection

Honeypot techniques have an undeniable potential in protecting users’ data, yet, the generation of these
repositories is not a trivial task. Re-designing decoys generation of the deception-based techniques
improves the protection of the data of users, as mentioned in [99].

This Chapter presents the work in progress regarding the limitations of honeypot techniques. We
evaluate the effectiveness of the decoy strategies of three commercial anti-ransomware tools. We describe
their workflow process and their limitation that helps to construct robust schemes of honeypot files.
Then, we analyze the features of the Master File Table (MFT) for a possible classification between decoy
files and benign user files.

1 Ransomware Detection Tools

Different experiments are carried out to evaluate the configuration of the generated decoys. The configu-
ration includes but is not limited to the number of files, their types, their location and the name assigned
to the developed decoys. Then, a straightforward technique is presented to bypass the commercial tools
presenting their limitation.

1.1 Environment Setup

Three baseline Windows 10 virtual machines are created that have the same configuration and the same
tree of the file system presented in Figure 4.1.

Each folder displayed in the tree below contains a collection of PDF and JPG files. The PDF corpus
is composed of articles and papers downloaded from Google Scholar, online forums, online courses, open-
source books, contracts collected over the past two years. The images are downloaded by scrawling the
WEB using keywords (top Google search queries in the US for 2020 and elements related to computer
security) using Google images download [222].

1.2 Anti-Ransomware Tools

1.2.1 Padvish AntiCrypto 1.5.155.1123

It is a free tool developed by Amnpardaz Software Company [223]. It detects all types of ransomware
since it relies on the behavioral aspect of the ransomware that is the encryption. Based on the AV-
Test performed on this product, a 100% detection rate was achieved for real-world ransomware [224].
However, 50% of the simulated attacks had at least one file encrypted.

Padvish AntiCrypto proceeds by creating the following folders:

1. C:\!!AntiCrypto!!

2. C:\Users\decoy\Desktop\!!AntiCrypto!!

3. C:\Users\decoy\Documents\!!AntiCrypto!!
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Figure 4.1: Tree of Windows’ baseline file system.

Path Permission #C Files #PDF #Doc #Txt #Js #Jpg
1-3 Not Hidden 20 4 4 4 4 4

Table 4.1: Padvish Decoy Files Characteristics.

In total, 60 files are created, 20 in each of the presented directories above (Table 4.1). Each record
has a unique name composed of 5 characters (capital letters).

When a recursive lookup listing the documents available on the file system is made, Padvish Crypto
does not raise any alert. Nonetheless, if the encrypt function is called from the cryptography library of
Python, AntiCrypto stops the process. So Padvish relies on the combination of decoy files and hooking
to Python’s cryptography library to stop ransomware. However, it does not detect the encryption made
by Python binding to the Networking and Cryptography (NaCl) library.

1.2.2 CyberReason RansomFree 2.4.2.0

It is developed by CyberReason and relies in part on decoy folders/files to detect ransomware. However,
it is not available since November 2018.

It proceeds by creating the following folders:

1. C:\Akdocuments
2. C:\Users\Ak6opr
3. C:\Users\Q9dsm
4. C:\Users\decoy\Documents\Bsettingsettings62
5. C:\Users\decoy\Documents\Wstores129
6. C:\Users\decoy\Desktop\0K, this directory is for Ransomware detection (just leave it here)
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Path Permission #C Files #JPG #PEM #DOC/X #RTF #XLS #MDB #SQL #TXT
1 Not Hidden 10 1 1 2 1 2 1 1 1

2-6 Hidden 10 1 1 2 1 2 1 1 1

Table 4.2: RansomFree 2.4.2.0 Decoy Files Characteristics.

In total, 60 files are created, 10 in each of the presented directories above (Table 4.2). Even though
the same configuration is applied to all of the directories, different files are created in each one of them.

During the tests made having the countermeasure in place, it did not detect/stop any encryption on
the file system.

1.2.3 AntiRansom V3

It is developed by Yago Jesus and is based on honeypot folders to detect ransomware similarly to
RansomFree 2.4.2.0.

It proceeds by creating the following folder:

1. C:\Users\decoy\40JdLhZ4jP

Path Permission #C Files #PDF #XLS
1 Hidden 37181 17031 20150

Table 4.3: AntiRansom V3 Decoy Files Characteristics.

Table 4.4 compares the three ransomware detection mechanisms.

Characteristics Detection Tools
AntiCrypto RansomFree AntiRansom

The directories/files are created in different locations? X X 7

The directories created start with a special character? X 7 7

Distinct repository configuration is put in place? 7 7 7

The created files have comprehensible names? 7 X 7

Different file formats are considered? X X X
The files are unusable (damaged) files? X X X
More than 100 files are created? 7 7 X
An alert is raised when honeypot files accessed? 7 7 7

Table 4.4: Ransomware Detection Mechanisms Overview.

1.3 Bypassing Decoy Folders
To bypass the decoy folders presented in Section 1.1, skipping the first and the last directory in each path
is sufficient, as presented in the following algorithm Bypassing Decoys. None of the previous tools stops
the encryption process of the script, making the files unavailable. Ransomware or any other potential
malware evade the honeypot mechanisms implemented.

Algorithm Bypassing Decoys BD
1: procedure Algorithm 1
2: def Encrypt Directory (Path path):
3: folders← {sorted Directories In Alphabetical Order}
4: int skipFirstNdirectories=SFD
5: int kipLastNdirectories=SLD
6: for i in range(SFD, len(folders)-SLD): do
7: EncryptUserFiles()
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2 Classification Decoy/Non Decoy

2.1 MFT
The Master File Table (MFT) is a database that stores the information about all the files and directories
on a New Technology File System (NTFS) volume. Each user or system file is mapped to one or
multiple records on the MFT and can contain one or more attributes. Parsing an MFT helps to retrieve
information about file attributes (such as read-only and archive), time stamps (such as file creation and
last modified), and the path on the file system.

Previous analysis carried out on the MFT helped detecting ransomware attacks. Kharraz et al.
propose monitoring the changes in the MFT since data destruction is done by a ransomware, but it
is represented by an unallocated memory space rather than overwriting it with random information
enabling victims files recovery [110,225].

Petya ransomware authors proceed with the encryption of the MFT to minimize the chance of recov-
ering the files [22,226]. This work analyzes the features of an MFT for a possible decoy file identification.

2.2 Objective
The goal of this initial analysis is to check the possibility of efficiently detecting honeypot folders/files
on a Windows computer. Machine learning is used on the features extracted from the Master File Table
(MFT) via the execution of the Mft2Csv application [227] on the three virtual machines. The holdout
method is used to evaluate different supervised ML models. Each entry in the MFT file contains 124
features. They describe the files’ attributes (creation, modification, and last accessed time), permission
(hidden or not), the path on the file system, its offset from the beginning of the MFT file, etc.

Some features do not contain valuable information (NaN or the same value for all the records) or
fluctuate between 2 values (0 or 1), therefore, they are deleted. Then as well, redundant columns having
the same value for all the records are deleted.

2.3 Supervised Learning Results
Two test bench are considered in this section.

• The first test bench consists in adding the user baseline files to the system. Afterwards, the
commercial tools are deployed on a separate virtual machine. Once all the decoys are generated,
the Mft2Csv application is executed.

• The second test bench is an extension of the first one, where additional user files embedded in a
directory are added.

2.3.1 Test Bench Number 1

Supervised Learning Algorithm True Positive Rate True Negative Rate False Positive Rate False Negative Rate
K nearest neighbor (n=2) 100 100 0 0

Decision Tree 100 100 0 0
Random Forest 100 100 0 0

Table 4.5: AntiCrypto Classifiers Performance Metrics

The testbed 1 consists in installing the ransomware countermeasure software after deploying the user
files. There is a 100% distinction between the generated decoy file and a normal one based on the two
features using decision trees. Those features are:

1. SI USN: $STANDARD INFORMATION of Update Sequence Number (USN is a 64-bit number
in Microsoft that increases whenever an object is changed).

2. SI ATime: $STANDARD INFORMATION of the File Modified Time.
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Since all decoy files are created at the same time, they are placed one after the other in the log file,
which is not the case for the user files distributed over time. In addition, the update sequence number
is incremented since changes (file creation) occured in the file system (Table 4.6).

SI USN Feature User Files AntiCrypto Honey Files
Min 11828560 20673776
Max 19396568 20756112
Avg 16267941.84 20725948.57
σ 2205923.41 35456.22

Table 4.6: SI USN variations for different file types.

Another important feature that enables the classification is SI ATime. Considering the software is
installed after the baseline configuration of the files on the file system, the creation and modification
time associated to those records are higher than the user files.

2.3.2 Test Bench Number 2

The second test bench relies on having the baseline system, and adding the honeypot files. Eventually,
the end-user downloads, creates, and writes new files.

A new folder 05-04-2020 is created that contains the same content as RwDetection, with modified
sub-folders names.

Each set contains 50% of the records from previously generated folders (Figure 4.1), and 50% of the
05-04-2020 folder.

After each restart, the tools presented above update the folders by maintaining the same configuration
and creating new files. Hence, their timestamp is modified and corresponds to the boot time. Thus, in
the second testbed scenario, the 100% classification is based on the creation and modification time of
the files/folders (SI ATime and SI Mtime features).

Discussion
Decoy elements act as bait alerting users if they are modified. So they retain some specific characteristics
throughout their deployment and post-production phase. These features are the creation and modifica-
tion time, or the same last accessed or modification time. Therefore, relying solely on the SI USN feature
to detect decoy components is not an ergonomic solution since each system has its sequence of numbers.
It is impossible to know a priori these numbers. File categorization is possible by inspecting the creation
time and last modification time of each one of them to avoid skipping the first and last folder of each
directory. If these timestamps are identical, then a decoy file is detected. Using Algorithm Bypassing
Decoys V2, we could encrypt all the files without any alert risen from the software presented previously.

Algorithm Bypassing Decoys V2 BD2
1: procedure Algorithm 2
2: def Encrypt Directory (Path path):
3: ctime = creation time
4: atime = last accessed time
5: mtime = last modified time
6: folders← { sorted Directories In Alphabetical Order }
7: for f in path do
8: if f.getctime() == f.getmtime() then
9: pass

10: else if f.getatime() == f.getmtime() then
11: pass
12: else
13: EncryptUserF iles()

85



3 Decoy Files Recommendations
• Generally, ransomware accesses various directories to establish a proper environment for the encryp-

tion. After analyzing the logs of 90 ransomware samples found in [48] , ReadFile events occur in the
following folders : C:\$Mft, C:\ProgramData\, C:\Python27\, C:\Recovery\, C:\$Recycle.Bin\.
Therefore, decoy files can be placed in those folders, and if they are accessed in a short period, a
potential threat is discovered. This setup should be integrated with the generation of decoys in the
most used directories (Desktop, Documents, Pictures, Downloads).

• It is crucial to generate more than two decoy folders in each directory, that represent the first and
the last folder traversed since they can be easily bypassed. The name of these decoys should be
created in a way that increases their probability of being accessed first. Ideally, one in the beginning
and at the end of each directory should be produced, combined with randomly distributed folders.

• Some ransomware authors encrypt files having a minimum size (for example, 20kb). Therefore,
decoy files should have this minimum size as a baseline with variations. Having more than 100
files in each decoy folder is not mandatory since the file monitor will flag any modification attempt
within a predefined threshold, thus blocking the malicious threads and processes. Hence, if a process
modifies two files of the decoys generated, it will not be stopped (threshold=2 files). However, if
more than two elements are altered, the process will be terminated.

• Timestamps of decoys should be modified, especially the creation, the last accessed, and modified
time. By doing that, the generated files blend in seamlessly in the file system.

4 Conclusion
Needless to say that the deployment of a honeyfile structure protects to some extent end-users from
any attacks, in our case, ransomware. Besides their location on the file system, it is essential to
generate decoy folders with adequate names. However, there is no guarantee that the decoy will be
traversed at the beginning of the infection process. Distributed repositories should be placed in the file
system containing n randomly generated files to maximize the chances of succeeding using honeypot
methodology. The main limitation of the tools available is their predictability in generating files in order
and reverse order of Windows-1252 (character encoding of the Latin alphabet). Thus, being bypassed
by spiking the first and last folder.

Honeypot techniques do not represent an ultimate countermeasure for ransomware or any other
type of malware or attacks. They should be coupled with key elements specific to ransomware to
flag malicious behavior (encryption, the number of Input/Output requests, the usage of cryptographic
libraries, blacklisted IP addresses).

A dynamic and personalized decoy folder generator can be considered as a prototype. It provides a
considerable advantage over standard generators that are easily bypassed. Our proposal is divided as
follows:

• The initial phase consists of automatically analyzing the considered file system. It includes checking
the number of files distributed in each directory, the file types considered (.pptx, .jpg, .txt), the
files attributes (last created, modified, accessed, name, size). Based on these acquired elements, a
graph representing the studied environment is constructed. It defines the location of these decoys,
how folders are nested, and the distribution of the files with the adjusted attributes.

• The generated graph serves as an input to the moving target defense technique. Thus, the com-
plexity of the attack increases in an ever-changing environment. The new files incorporated into
the file system are crafted to have a higher probability of being modified first. Introducing the
randomness aspect into our generator algorithm increases the chances of detecting ransomware at
early stages, even if multithreading or a delayed attack strategy is in place.
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5 Future Perspectives and Conclusion

1 Future Perspectives

The anti-ransomware ecosystem constantly follows the rules of cat-and-mouse, therefore, ongoing research
is necessary to keep track of the metamorphic and polymorphic behavior. We present in the section,
two different types of perspectives. The first one is related to Windows Ransomware workflow, and the
second one tackles Android OS.

1.1 Windows-Based Ransomware Countermeasures Roadmap

A thorough analysis of the existing work in the literature mapped by inspecting actual gaps and provid-
ing research perspectives in this area are essential for the establishment of successful countermeasures.
Therefore, we complement our final step of the thesis by presenting future challenges and research propo-
sitions to offer an exhaustive surface of possible ransomware countermeasures. They are associated to
the four phases of the ransomware attack as discussed in Chapter 2 of Part I.

1.1.1 P1: Delivery

The aftermath of an attack depends on the existing mechanisms installed before any infection to pro-
tect the assets of a company. The delivery phase is responsible for the subsequent file losses during a
ransomware attack. Research work is limited at this stage since any action taken by a user will trigger
ransomware execution. Since phishing emails remain at the core of most malware attacks [20], further
research on email classification will reduce the number of infected people significantly [228, 229]. Reg-
ular backups have to be put in place, stored on a different device, not accessible by ransomware, and
disconnected from the internet. Signature-based detection has a limitation in detecting zero-day attacks.
Obfuscated or packed malware should be dealt with instead of omitting samples from the analysis like
in [67, 70] or classifying them directly as malicious software [230]. For example, in [231], the authors
propose the version identification of packed malware.

1.1.2 P2: Deployment

An extensive work targeting the detection of suspicious API calls is achieved. API calls are analyzed from
several perspectives. Their frequency, sequence, and total number are among multiple features taken into
account as input variables for ML algorithms. At this stage, a discrepancy between datasets is noticeable
since different samples have been analyzed throughout the experiments. It would be valuable for the
research community to share the dataset produced by the authors to have later on a benchmark to validate
or not future developed solutions. Moreover, a refined multiclass classification of ransomware samples can
be studied to enhance actual binary classification (trustworthy application versus ransomware). Finally,
the extracted specific ransomware patterns can be compared to other types of malware to highlight the
divergence or the similarity. This clusterization facilitates applying an active response to each type of
attack, containing the threat shortly after the intrusion.
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1.1.3 P3: Destruction

The destruction phase represents a race against the clock. Indeed, attackers are encrypting files mas-
sively while real-time deployed countermeasures are analyzing the environment changes to block potential
threats.
Some of the developed techniques do not propose an evaluation of the resources consumed during the
real-time analysis (overhead) nor the performance impacts on the system. These kinds of evaluations
should be addressed in future studies.
An important number of ransomware samples seen in the analyzed papers did not launch the malicious
intent defined by the encryption process. A further investigation would indicate if the creation of a
realistic environment (saved credentials, browser history, and realistic decoy files including images and
documents [111]) is sufficient to trigger the ransomware attacks.
An online repository can be made containing the list of the blacklisted IP addresses of the C&C servers
to prevent ransomware spreading. It addition, it can be updated regularly by trusted users who have
predefined roles. This part englobes a web crawler that surfs malware databases downloading the latest
ransomware samples, executing them in a confined or bare-metal environment, and extracting the re-
quired data to update the existing catalog of ransomware specifications.
Many statistical tools have been proposed in the literature identifying the randomness aspect of data
(Chi-squared test, Kullback-Liebler divergence, Shannon’s entropy), thus, capable of detecting encryp-
tion. However, Shannon’s entropy is not efficient in differentiating between an image, a zipped file,
or an encrypted one raising the false-positive rates. Besides, the Chi-squared test can be bypassed by
bytes permutation, as shown in [101]. Consequently, future studies can evaluate the impact of different
encryption schemes on the randomness of data. Consequently, an accurate classification of ransomware
and a trustworthy application is achievable based on the most suitable statistical tool (including machine
learning), or, if there are no, newly developed algorithms.

1.1.4 P4: Dealing

At this stage, the attacker has completed his/her tasks. Encrypted files represent a mass casualty. Few
countermeasures mentioned above (for example, a possible key retrieval) are capable of recovering the
data if there is no backup in place. Therefore, analyzing the initial infection phase is fundamental to
prevent information loss. An essential aspect of ransomware workflow is the ransom note that displays
the instructions for the victims to retrieve the decryption keys. To date and to the best of our knowledge,
there are no papers published discussing ransomware detection or tracking via processing the text avail-
able in the ransom note beside the ongoing work in [232]. Blockchain is the principal technology chosen
by cyberattackers since they can distribute their attacks or perform transaction pseudo-anonymously
with enhanced privacy discussed in [233]. Semi-autonomous blockchain-based ransomware is developed
by Delgado-Mohatar et al. presenting alarming facts about the usage of smart contracts, among others, if
criminals will have a tight grip on this technology [234]. The automation helps to process payments and
release decryption keys without the need of human operators. Further research work should endeavor to
propose ”patches” for possible blockchain breaches.
Lastly, covering the interactions between researchers and law enforcement agencies and the economic
part would provide all the elements to constitute and end-to-end ransomware solution. The RAMSES
project brings a positive initiative for ransomware tracking [235].

1.2 Mobile Ransomware

Mobile ransomware presents a major concern for end-users since they rely on their devices to accomplish
their daily tasks. Currently, a mobile device is equivalent to a database containing massive sensitive
information, including contacts, emails, pictures, passwords, and credit cards. Therefore, it is essential
to tackle mobile ransomware defense mechanisms found in the literature. We divided them based on the
mechanisms used to detect ransomware (sections 1.2.1 and 1.2.2). The proposed solutions are developed
on the Android OS. Finally, we present the shortcomings of mobile ransomware in section 1.2.3.
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1.2.1 API Calls

Maiorca et al. statically analyze the Dalvik bytecode to extract API packages found. Using API pack-
ages reduces the number of features needed for classification [236]. APIs contained in the invoke-type
instructions are checked to see if they belong to system packages. The occurrences of each system API
package in the Android app are counted. They serve as an input vector for the random forest learning
algorithm. The mobile ransomware samples are gathered from HelDroid (public database) and Virus-
Total (private database since the ransomware samples are not publicly available). R-PackDroid can
be reliably used to discriminate between applications (benign, malware, and ransomware) based solely
on the system APIs. However, since static analysis is used, it is not immune to dynamically loaded
libraries or encrypted classes found in the executables. Besides, the authors did not mention the type of
ransomware considered during the experiments (scareware, crypto or locking ransomware).

Similarly, Abdullah et al. collect system calls for each executed Android application [237]. VirusTotal
is used to download malicious applications. The testing dataset of benign applications is downloaded from
Google Play Store. A vector containing a set of features represents each application. Existing features
are represented by the integer ”1” in the vector whereas missing ones by ”0”. Fifty-two system calls are
selected for the training phase (getpid, chmod, read, bind, gettimeofday, etc.). Random forest, J48, and
näıve Bayes are used as classification algorithms. They successfully detect ransomware instances.

1.2.2 Multiple IOC (indicators of compromise)

DNA-Droid developed in [238] includes static and dynamic analysis needed for the detection module.
The prototype is based on a combination of three components. Text classification is used for extracting
extortion strings to detect ransomware. Based on the strings and sentences extracted, the APK content
is categorized by topic (encrypt 20%, lock 40%, money 20%, porn 5%, and threat 15%). The image
classification module detects logos used by the attackers to lure the victim into paying the ransom. The
logos consist of well-known brands or agencies (Google, IKEA, Department of Justice). The API calls and
permissions module extracts the list of permissions from the AndroidManifest.xml, and by decompiling
the APK, it obtains API methods used in the app. Deep Auto Encoder is used to provide the score of
the app’s maliciousness: a value between 0 (benign) and 1(malicious). Then if an application is marked
as malicious, a dynamic analysis is performed to validate or reject the previous decision. It is based on
the sequence of API calls collected during the execution of the application. Multiple sequence alignment
is used to distinguish between various ransomware families based on the collected APIs. Ransomware
samples are collected from R-PackDroid, HellDroid, and Contagio. The benign dataset is composed of
goodware samples downloaded from the Google Play store. The authors successfully detect ransomware,
especially in the second round (dynamic analysis) during the first five minutes. Nonetheless, the number
of lost/encrypted files is not mentioned.

Andronio et al. focus on analyzing Android APK files for classifying samples as scareware, locking,
or encrypting ransomware [14]. Natural language processing (NLP) supervised classifier is used to de-
tect threatening sentences. The dataset consists of the strings extracted from disassembling ransomware
binaries. Then, FlowDroid, a static taint analysis, is used to detect unsolicited file-encryption opera-
tions (reading external storage and encrypting functions). Attackers can lock the mobile by calling the
lockNow() function with administrator privileges. Another method consists of creating an Immortal
Activity or dialog, disabling the home, back, and close functionality. By inspecting the source code of an
executable, this information can be flagged. Threatening text should be found as well as a locking and/or
an encrypting activity to detect ransomware. A diverse set of datasets is used during the experiments.
They include AndRadar, AndroTotal, MalGenome, and VirusTotal datasets. The language barrier is a
limitation as described by the authors since they search for threatening text in English. Another limi-
tation is the evasion mechanism that does not detect the dynamically loaded libraries required to carry
out the attacks.

Ferrante et al. present mobile ransomware detection mechanisms based on the combination of static
(code inspection without running the malware) and dynamic approach (analyzing the behavior of the
malware) [239]. They state that there is limited work in the literature addressing mobile ransomware.
The authors extract pairs (2-grams) of opcodes found in trusted and malicious applications. They
perform a feature selection to reduce the number of pairs from 1012 to 50 2-grams. Then, supervised
machine learning (J48, NaiveBayes, and Logistic Regression) is applied to the 2-grams reduced feature
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vector to classify malicious/trusted applications. To propose a runtime detection, Ferrante et al. use
a lightweight method to monitor memory, CPU and network usage, and statistics on system calls. A
sliding window is adopted to define the scope of ransomware/trusted application in the runtime behavior.
Benign applications are downloaded from Google Play Store, whereas ransomware is taken from a free
database HelDroid. The combination of both static and dynamic analysis provides full coverage against
Android ransomware. However, their set of malicious applications is not limited to crypto-ransomware
but contains also locking ransomware and ransomware using scare tactics.

Articles Type Approaches Tested Detection/Protection Mechanism
Static Dynamic Solution

[236] API Calls X X X Random forest applied to the occurrences of
system API packages in the Android apps
to classify the executables as ransomware,
malware, or trusted.

[237] API Calls X X X Random forest, J48, and näıve bayes are
applied to fifty-two collected system calls
to detect ransomware samples.

[238] Multiple IOC X X X Applying ML on static (threatening texts,
logos and API methods found in the APK)
and dynamic features (sequence of API
calls) to detect Android ransomware.

[14] Multiple IOC X X X Applying NLP to extract threatening texts
and tracking encrypting functions and
locking heuristics to detect Android ran-
somware.

[239] Multiple IOC X X X Applying ML on op-codes (static approach)
and memory, CPU and network usage,
and statistics on system calls (dynamic ap-
proach) for ransomware detection

Table 5.1: Mobile Ransomware Detection Mechanisms.

1.2.3 Discussion

Ransomware affects mobile devices too. Being a different type of operating system, we investigate the
current state of the art in mobile ransomware to check if there are any similarities in the methodology
used for ransomware detection. Most of the countermeasures proposed in the literature, including R-
PackDroid, HELDROID, and DNA-Droid, analyze different ransomware types (scareware, encrypting,
and locking ransomware) and are not limited to crypto-ransomware. Therefore, we do not have an
exact percentage of mobile crypto-ransomware in the wild. HELDROID relies on taint analysis to detect
encryption activity in Android devices using FlowDroid. Many techniques have been proposed to this
end, especially monitoring/tracking user activity or sensitive information like Scandroid, TaintDroid
[172, 240] and others [241–243]. However, current literature is not abundant with mobile ransomware
journals or papers, as stated in [236, 238]. Even in the latest survey released in 2020 about ransomware
in Windows and Android platforms, only six papers were mentioned related to mobile ransomware [244].
More general malware-oriented papers are reviewed. Most surveys classify mobile ransomware detection
based on static, dynamic, or hybrid analysis [237, 239, 245, 246]). Model checking is also used to detect
Android ransomware [247]. There is still no extensive coverage of mobile ransomware, as stated in
Kaspersky’s report released in 2016 and 2017. The most dangerous mobile ransomware examples (Fusob
or Small) did not encrypt users’ files but blocked access to the device. Besides, Kaspersky Lab experts do
not believe that crypto-ransomware for mobile will undergo any noticeable development in the future due
to the security features implemented recently into the Android OS, which limits the ability of third-party
apps to get unlimited access to users’ files [248, 249]. Therefore, we decided to focus solely on Windows
ransomware in the current thesis. We will propose another classification scheme for Android ransomware
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once the literature will be abundant with the proposed solutions.

2 Conclusion
This thesis focuses on Windows-based ransomware that resurged in the second decade of the 20th
century. We divided it into two parts. The first one introduces ransomware as well as its workflow
and the timeline of recent attacks. We break down the ransomware intrusion into four phases Delivery,
Deployment, Destruction, and Dealing. Then, we associate the evaluated countermeasures developed in
the literature to each of those presented phases. This classification provides the scope of the possible
solutions as well as their limitations for future contributions in this field. The second part consists of
three contributions. The system based contribution analyzes the file system traversal of the threads to
provide a refined granularity for accurate ransomware detection. It is complemented by a network traffic
examination between the PC of the victim and the server of the attacker to spot specific ransomware
related malicious records. Finally, we evaluate a modified version of ransomware, called Doxware, by
generating important lexicons regarding a subject and checking to which extent sensitive documents
can be exfiltrated via text processing algorithms.

Let’s come back to our main question on Windows-Based Ransomware: What is Next?

Even though ransomware has been studied thoroughly, we can not assert that this research area is
“complete”. In fact, new malware and ransomware emerge continually making the developed counter-
measures inadequate to detect those new properties.

Numerous techniques exist to create a polymorphic version of an existent code. The authors in [61]
cited NOPs operation and code obfuscation, multi-staged attack, polymorphic blending, conversion to
metamorphic code, and sandbox evasion. By using these techniques, the future polymorphic and meta-
morphic ransomware can become untraceable and undetectable.

Genc et al. delved into analyzing current solutions’ weaknesses and projected themselves in the future
for an anticipation of potential ransomware attacks [101]. Indeed, the authors presented seven evasion
techniques based on the most robust countermeasure employed in the cyberwar against ransomware. For
key creation that bypasses the use pseudo-random number generator, they can be created directly from
the file itself using Convergent Encryption, and memory dump will retrieve only the key being used at
this specific momentum. Another counter-counter measure of file identification is skipping the first 5120
bytes of any given document, thus preventing the alteration of the magic bytes and the triggering of the
alert. To evade statistical tools used to calculate the entropy or any other characteristics of the files,
a simple permutation of the bytes will leave the score intact. Nevertheless, using reverse engineering
techniques applied to the binary, researchers can obtain the permutation algorithm used.

Sechel assessed the effectiveness of AVs in ransomware’s pandemic to disclose the code obfusca-
tion [28]. He mentioned that advanced stealthiness techniques are rarely applied during the different
phases of infection since the user will eventually know that his system was under attack. To perform
evasion techniques, ransomware authors relied on packers and cryptor (compressing and encrypting the
executables). The overall detection rate by VirusTotal for 11 different crypto-ransomware is 83.72%.
Then, he obfuscated his source code using Themida that enables several protection features (memory
guard, resource encryption, monitor blockers, exiting silently when debugger detected). The initial
detection rate was 32.58%, jumped to 44.95% the following day due to an update of the VirusTotal
database. Cuckoo sandbox was able to correctly identify four samples as ransomware, while the rest
were malicious software based on network communication and code injection. There is no doubt that
these techniques can hinder detection and/or classification by various AVs.

Besides computers, ransomware attack surface is increasing. Different types of equipments are
targeted. IoT devices are known to have some drawbacks due to the limited resources provided in
the hardware, the defective architecture since the point of failure affects the network [250]. Also, a
ransomware attack is successfully carried out on a Canon DSLR camera [251]. The list increases with
ransomware impact on SCADA systems [252]. Ransomware authors are improving their techniques and
adjusting them based on the countermeasures developed in the literature. These attacks remain the
number one concern for industries since economic incentive is on the line.
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Ransomware attacks are evolving, and their authors find multiple ways to bypass some of the current
detection mechanisms. We conclude that one specific applied countermeasure whether it is located
on the system or network level is not sufficient to prevent any file loss. Some files will be eventually
encrypted before an alert has risen, or the proposed solutions have some limitations that could be easily
bypassed. Therefore, the ultimate solution does not exist. Researchers must combine different aspects
of the ransomware behavior for building a safe countermeasure.
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A Extended French Résumé

Les cyber-attaquants ont l’habitude de monter des attaques contre les hôpitaux ; par exemple, l’attaque
menée sur le centre de cardiologie d’Acadiana en avril 2017. Les attaques SamSam à la fin de l’année 2018
ont ciblé un large éventail de secteurs, mais le secteur de la santé a été de loin le plus touché. De même, la
résurgence de Ryuk en 2019 a forcé les prestataires de services de santé australiens à arrêter leurs services
et systèmes. Les attaques ont pour objectif un gain monétaire. Cependant, aujourd’hui, des millions de
vies sont en jeu. Outre les hôpitaux, l’attaque de WannaCry fin 2017 a touché de nombreuses entreprises
telles que FedEx, Nissan, des compagnies de chemin de fer en Allemagne et plus de 200 000 ordinateurs
dans le monde entier. Pour toutes les raisons citées ci-dessus, nous nous sommes concentrés sur les
rançongiciels, et nous les avons considérés comme un type de logiciel malveillant qui devrait être surveillé.

Cette thèse est divisée en deux parties. La revue de la littérature est présentée dans la partie I.
Un examen approfondi du flux de travail des logiciels de rançon est proposé. Il comprend les vecteurs
d’infection, les mécanismes de détection actuels utilisés pour protéger le système contre ces attaques, et
enfin, les contre-mesures prises par les attaquants qui leur permettent de contourner les mécanismes de
détection employés par les administrateurs.

1 Revue de la Littérature
Un rançongiciel est un logiciel malveillant qui retient les données des victimes en otage et procède à la
libération si le paiement de la rançon est effectué à temps. De nos jours, deux types de rançongiciels
peuvent infecter un ordinateur : un rançongiciel qui verrouille l’accès à l’ordinateur ou un rançongiciel de
chiffrement. Le premier ne modifie pas les données mais bloque l’accès d’une personne à son ordinateur
personnel. Ainsi, il est possible de récupérer des données, tandis que le rançongiciel de chiffrement chiffre
des fichiers spécifiques sur le système.

La description précise du comportement d’un logiciel malveillant et la définition de ses car-
actéristiques nécessitent une analyse statique et dynamique. Même si chaque rançongiciel possède
ses propres caractéristiques (les échantillons appartenant à la même famille peuvent aussi légèrement
diverger), les étapes globales effectuées par tout logiciel de rançon sont similaires. De multiples
variantes de l’attaque par rançon ont été présentées dans la littérature ; elles consistent de 4, 5 ou 6
phases [6, 19–21]. La majorité des exécutables peuvent être regroupés comme suit : une attaque multi-
phases comprenant 4 phases (Pi, où i est le numéro de la phase): la distribution (P1), le déploiement
(P2), la destruction (P3) et la transaction (P4). La restauration des données décrite par (P5) dépend de
l’action de la victime après l’infection. Elle représente les conséquences d’une attaque. Certains utilisa-
teurs refusent de payer la rançon pour des raisons éthiques. L’attaque est schématisée dans la Figure A.1.

P1: Distribution. Dans un premier temps, le rançongiciel recherche une vulnérabilité et s’appuie
sur tous les mécanismes disponibles pour pénétrer le système cible. Zimba et al. présentent différents
moyens d’infection par le logiciel rançon (emails spam, macros, porte dérobée, vulnérabilité “zero-
day”) [22,23].

P2: Déploiement. Une fois que le logiciel malveillant s’infiltre dans le système, il charge toutes les
librairies nécessaires pour réaliser sa charge utile.
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Vecteurs d’infection : Emails Spam, Autopropagation

P1: Distribution

Configuration de l’Environnement
(Librairies requises, Appels système)

P2: Déploiement

{Activités Système & Réseau} + Chiffrement

P3: Destruction

Paiement de la Rançon
(Bitcoin ou toute autre Cryptomonnaie)

P4: Transaction

Restauration des Données après Paiement

P5: Restauration

Figure A.1: Mode Operatoire du Rançongiciel.

Destruction. Ensuite, l’interrogation des divers volumes sur la machine cible par ordre alphabétique
commence. Différentes extensions de fichiers sont visées : .xls, .jpg, .pdf. Certains dossiers peuvent être
omis de la recherche, tels que ProgramFiles et Windows [24]. Après la recherche, le rançongiciel tente
de communiquer avec le système de commande et de contrôle (C&C) pour recevoir des informations
(clés de chiffrement). Le processus de chiffrement commence par des appels système à l’algorithme de
chiffrement AES.

Auparavant, les attaquants optaient pour un chiffrement symétrique (AES standard). Cependant,
grâce à la rétro-ingénierie, les chercheurs sont en mesure de fournir des outils de déchiffrerement pour
les fichiers chiffrés puisque les auteurs de rançongiciel ont utilisé un chiffrement faible [25–27]. Par
la suite, les attaquants se sont appuyés sur la combinaison de chiffrement symétrique et asymétrique
pour concevoir un logiciel malveillant invincible. Chaque clé symétrique est générée localement sur la
machine cible visée et permet de chiffrer un fichier spécifique ou plusieurs documents (selon l’algorithme
mis en œuvre). Ensuite, la clé symétrique est chiffrée avec la clé publique de l’attaquant et ajoutée au
fichier ciblé [28]. Ce schéma est connu sous le nom de cryptographie hybride.

Il existe trois types de rançongiciel ou classes de chiffrement [29,30] :

• Classe A représente l’ensemble de rançongiciel qui effectuent le chiffrement sur place ; ouvreture
du fichier, lecture du contenu, chiffrement puis fermeture du fichier avec possibilité de le renommer.

• Classe B est une autre extension où le fichier est déplacé vers un autre répertoire avant d’effectuer
le chiffrement et remis dans le répertoire d’origine une fois la tâche accomplie.

• Classe C ouvre le fichier original, puis en crée un autre pour écrire les données chiffrées. Le fichier
d’origine est supprimé.

Transaction. Enfin, la note de rançon est affichée à l’utilisateur en lui indiquant les étapes nécessaires
pour récupérer les fichiers verrouillés. La plupart du temps, les auteurs de rançongiciel affichent la note
de rançon à la fin de la phase d’infection car ils ne veulent pas être détectés/arrêtés pendant le processus
de destruction. Habituellement, les notes de rançon sont rédigées dans la même langue que celle du
PC configuré par les victimes. Elles peuvent avoir plusieurs formats comme des images, des textes et le
langage de balisage hypertexte (HTML). Les notes de rançon expliquent aux utilisateurs l’attaque qui
s’est produite et la procédure requise pour obtenir les clés de déchiffrement.
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Restauration. À ce stade, l’attaquant a réussi à accomplir l’attaque. Le paiement ou non de la
rançon reste un débat à ce jour, cependant, les chercheurs et les agences de sécurité recommandent
fortement de ne pas payer la rançon [34,35]. En fait, si la somme requise est payée, les utilisateurs sou-
tiennent le modèle économique des criminels et sont donc partiellement responsables de l’augmentation
du nombre de personnes infectées. Certaines organisations possèdent des données sensibles, et comme
elles ne disposent pas de sauvegardes adéquates, elles procèdent au paiement de la rançon. Néanmoins,
rien ne garantit que les attaquants leur rendront les outils (outil et clés de déchiffrement) pour restaurer
les données. Le projet No More Ransom aide les victimes de rançongiciel à récupérer l’accès à leurs
fichiers [36].

Une analyse approfondie permet de comprendre le fonctionnement de ces programmes malveillants
et leurs future cibles. La chronologie des attaques par rançongiciel est présentée dans la Figure A.2.
Elle donne un aperçu des diverses familles de rançongiciel, les dates de diffusion ainsi que leurs systèmes
d’exploitation cibles. Elle représente la majorité des échantillons examinés et analysés dans la littérature.

2011
Xorist

2013
CryptoLocker

2014
CryptoWall

2015-2016

2017
WannaCry
 Petya

2018
Ryuk

Chronologie des Attaques par Rançongiciel

1989
PC Cyborg 
Trojan

...

2019

Ryuk V2

2020 

2012
Reveton

Fusob

Cerber

Ransom32

Tycoon

Maze

Nefilim

...

Figure A.2: Chronologie des Attaques par Rançongiciel.

Cet aperçu présente deux faits: les attaques par rançongiciel ciblent spécifiquement Windows
car c’est l’un des systèmes d’exploitation le plus utilisé et les plus ergonomique. En outre, des
fonctionnalités avancées sont continuellement ajoutées à la charge utile du logiciel de rançon, modifiant
son comportement. Cependant, on a récemment remarqué un passage aux appareils IoT, SCADA et
Android [11–14]. Nous présentons par la suite les contre-mesures de rançongiciel qui réduisent le succès
de cette activité. Elles sont regroupées en fonction de la méthodologie utilisée et leur appartenance aux
différentes phases de la taxonomie de l’attaque. Une classification de techniques développées dans la
littérature est présentée dans la partie suivante. À notre connaissance, cet aspect n’était pas couvert
auparavant dans les domaines de recherche.

P1: Distribution. Les vecteurs d’infection sont généralement difficiles à tracer car les logiciels
malveillants ne sont pas analysés à la volée. Les échantillons de logiciels malveillants sont téléchargés à
partir de bases de données publiques et exécutés dans un environnement “Sandbox” ou “bare-metal”.
L’un des meilleurs mécanismes de défense à ce stade consiste à la sensibilisation aux cyber-menaces
liées au rançongiciel, par exemple en supprimant immédiatement un courrier électronique suspect. La
partie sensibilisation comprend les meilleures pratiques à prendre en considération comme mesure de
protection sur un ordinateur. Elle est illustrée par un système à jour comprenant les derniers correctifs
et des sauvegardes fréquentes [55,56]. La sauvegarde des données est détaillée ensuite qui est complétée
par une mesure de contrôle d’accès mise en place pour protéger des dossiers spécifiques sur le système
de fichiers. Pour permettre un point de restauration, le renommage des exécutables Volume Shadow
Copies dans Windows est présenté. Enfin, la détection par signature qui permet de dépister les logiciels
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malveillants sans qu’ils ne soient exécutés est décrite.

P2: Déploiement. L’étape suivante pour limiter l’impact des attaques par rançongiciel repose
sur l’inspection des appels API. Ils montrent l’interaction entre le logiciel malveillant et l’ordinateur de
la victime. De nombreux attaquants s’appuient sur les services fournis par l’API cryptographique de
Microsoft pour compléter l’exécution de leur charge utile, tels que le générateur de nombres aléatoires,
le chiffrement AES. L’écriture d’un code spécifique est susceptible de contenir des erreurs. Ainsi, les
attaquants préfèrent utiliser des services intégrés pour accomplir leurs tâches. Par conséquent, les
chercheurs ont analysé les appels API, y compris leurs modèles et leur fréquence, pour classer les
processus. La surveillance des événements Windows permet d’extraire des modèles pour décrire le
comportement habituel de tout utilisateur par rapport à un rançongiciel.

P3: Destruction. La phase de destruction est caractérisée par le processus de chiffrement qui
affecte un nombre important de fichiers des utilisateurs. Dans un premier temps, la communication
malveillante avec le C&C de l’attaquant est signalée qui représente un élément critique de l’attaque de
rançongiciel. Ensuite, les contre-mesures du pot de miel sont développées pour détecter le rançongiciels
qui parcours le système de fichiers pour collecter des extensions de fichiers spécifiques (.doc, .xls,
.txt, .jpg). “Moving target defense” présente une technique de défense qui modifie régulièrement
les extensions de fichiers en omettant les types de fichiers recherchés par le logiciel de rançon. Des
opérations massives, notamment l’ouverture, la lecture et l’écriture, illustrent la phase de chiffrement.
Les informations chiffrées ont une entropie plus élevée1. Les outils statistiques adoptés dans la littérature
qui distinguent un texte non chiffré d’un texte chiffré sont aussi examinés. Certains auteurs combinent
plusieurs indicateurs de compromission pour détecter les comportements malveillants. Enfin, si aucune
solution temps réel ne peut arrêter le processus de chiffrement, il n’y a aucune garantie sur la possibilite
de restaurer les clés de chiffrement utilisés par l’attaquant.

P4: Transaction. La dernière étape de l’attaque du rançongiciel consiste en un échange entre
l’attaquant et la victime. C’est la phase la plus critique de l’intrusion. En effet, le cyber-attaquant
affiche une note de rançon indiquant les étapes que l’utilisateur doit suivre pour le paiement afin
de recevoir les clés de déchiffrement. Les papiers de l’état de l’art se penchent sur l’extraction et le
regroupement des adresses de rançongiciel trouvés dans la blockchain. L’objectif est de surveiller le flux
de bitcoins, de visualiser les transactions et de fournir une estimation des personnes infectées.

Un travail approfondi est réalisé dans la littérature couvrant tous les aspects d’une attaque de
rançongiciels depuis la livraison jusqu’à la phase de distribution. Le blocage d’un rançongiciel pendant
la phase de livraison n’est pas une tâche triviale. L’utilisateur est tenu responsable (en partie) à
ce stade de l’exécution de l’intention malveillante de l’attaquant, même si elle a été réalisée sans le
savoir ou sans le vouloir. Par conséquent, la sensibilisation réduit le risque potentiel d’être infecté
par un logiciel malveillant encore inconnu. Les appels API font l’objet d’une étude approfondie lors
de la phase de déploiement. Ils sont analysés en profondeur sous toutes leurs formes, y compris leur
fréquence et la séquence de n-grammes implémentée dans le code du logiciel malveillant. Ainsi, nous
nous sommes concentrés sur l’étape de destruction afin de fournir un prototype pour la détection des
logiciels malveillants dès qu’il sont installés et qu’ils ont mis en place l’environnement requis sur la
machine de la victime. Aucune étude préalable n’a été menée sur la traversée du logiciel malveillant ;
par conséquent, nous présentons nos observations dans la deuxième partie de la thèse. En outre, nous
analysons la communication réseau et les notes de rançon pour vérifier la chronologie des événements liés
au logiciel de rançon. Enfin, nous présentons la présence d’une nouvelle menace Doxware qui pourrait
rendre les données des victimes indisponibles pour eux mais ainsi partagées avec des tiers (par exemple,
des concurrents).

Nous concluons la partie de revue en présentant la plateforme d’analyse dynamique que nous avons
choisie, et nous donnons un aperçu des échantillons de rançongiciel acquis dans les bases de données
publiques.

1Les échantillons récents de la famille Xorist chiffrent les fichiers en maintenant une entropie inaltérée après le chiffrement.
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Dans les contre-mesures développées précédemment, les binaires de rançon sont principalement
exécutés sur des machines virtuelles. En effet, les machines virtuelles sont choisies pour leur simplicité
permettant l’exécution à grande échelle de nombreux échantillons. L’analyse dynamique automatisée est
l’approche adoptée par les chercheurs. Il est impossible d’inspecter manuellement tous les exécutables
trouvés dans les bases de données open-source. Néanmoins, de nombreux échantillons malveillants
vérifient la présence de tels environnements et tentent d’échapper à la détection. Les auteurs de logiciels
malveillants utilisent des techniques d’empreintes digitales pour détecter la présence d’un environnement
contrôlé. La prise d’empreintes digitales consiste à vérifier des caractéristiques spécifiques connues
à l’avance par les attaquants. Elle comprend les clés de registre, les processus en arrière-plan, les
hook de fonction ou les adresses IP. Cependant, de nombreux échantillons testés ne fonctionnent pas
correctement : aucun chiffrement n’est enregistré. En effet, certains échantillons de rançongiciel arrêtent
leur exécution s’ils sont exécutés sur des machines virtuelles. Une approche pour détecter les techniques
d’évasion des logiciels malveillants consiste à exécuter les échantillons sur différentes plateformes et à
observer les changements de comportement. Nous expliquons nos choix pour l’adoption de la plate-forme
bare-metal.

Bare-Metal (BM). Il s’agit d’un système d’analyse des logiciels malveillants qui ne peut pas
être distingué d’un véritable hôte [145]. Le système d’exploitation fonctionne sur du matériel réel.
Les particularités d’une plate-forme BM sont l’absence de virtualisation et la restauration efficace de
l’environnement [137]. À ce jour, la plate-forme BM est le meilleur outil disponible pour l’étude des
logiciels malveillants. Cependant, certaines difficultés sont apparues, par exemple, la technique de
restauration du système qui peut nécessiter un redémarrage après chaque exécution est consommatrice
de temps et de ressources. Elle n’est pas extensible puisque chaque échantillon est exécuté sur une
machine distincte. Certaines plate-formes d’analyse bare-metal ont été proposées dans la littérature qui
traitent des méthodes d’évasion des logiciels malveillants [137,146,147].

Le pourcentage d’échantillons Reveton qui utilisent des techniques anti-débugging est de 74,8%, et
les techniques anti-machine virtuelle de 62,8% acquises lors des enquêtes menées par Chen et al. [148].
Cette expérience montre que plus de 50% des échantillons de rançon ne chiffrent pas les fichiers ou ne
réalisent pas leur intention malveillante s’ils sont exécutés sur une machine virtuelle. Nous avons choisi
de réaliser nos expériences en utilisant une plateforme bare-metal précédemment développée par Palisse
et al. appelée MoM [17].

Dans un premier temps, nous testons le statut de chaque échantillon de rançongiciel, en vérifiant
s’il effectue le processus de chiffrement ou non. Après avoir exécuté l’échantillon, une fonction de
hachage vérifie l’intégrité des fichiers de l’utilisateur. Si elle ne correspond pas à la valeur de référence,
l’échantillon est considéré comme actif. Ensuite, pour tous les échantillons actifs, nous définissons les
actions qui doivent être prises par le système pour collecter les journaux du réseau et du système (par
exemple, lancer Wireshark, exécuter le pilote du noyau).

Les noms des familles de rançongiciel les plus récents sont recueillis sur des forums en ligne, dans
des bases de données de logiciels malveillants récemment mises à jour et dans des articles scientifiques.
Ensuite, un logiciel de balayage (crawler) télécharge les échantillons de rançon à partir de deux bases de
données : Virus Share [150] et Malwaredb.Malekal [151] (actuellement en panne). Enfin, il est exécuté
sur des machines Windows 7 32 bits pendant une durée de 2 à 3 minutes. Un dump correspondant àu
comportement du logiciel est enregistré pour une analyse post mortem plus approfondie. Des machines
parallèles sont utilisées pour effectuer les tests. La différence entre les échantillons de rançon présente
dans les expériences tout au long de la thèse est dû en partie aux familles de rançon inactives après un
temps epsilon de leur diffusion.

Par exemple, dans notre dernière campagne lancée en janvier-février 2019, 1054 rançongiciels ont été
exécutés sur le système d’exploitation Windows 7. Cependant, 100 exécutables sont conservés
pour la phase d’analyse puisqu’ils sont actifs (chiffrement des fichiers de la victime). Une
augmentation des échantillons inactifs est constatée à travers les expériences menées par les chercheurs.
Dans le meilleur des cas, 76,8% des échantillons sont inactifs ( [152]). En moyenne, 82,67% des binaires
sont inactifs.
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Les raisons de l’inactivité d’un exécutable de rançongiciel donné peuvent être l’une des suivantes.

• Le C&C ou l’adresse IP/nom de domaine externe est en panne.
• Environnement de travail inadéquat (DLLs manquantes, version Windows non adaptée).
• Le Ransomware évite d’être exécuté sur des environnements particuliers (par exemple, GandCrab

évite d’infecter les pays syriens).
• Le Ransomware suspecte d’être surveillée/analysée (VM ou outils de débogage).
• L’empreinte de l’environnement de test est déjà enregistrée dans le serveur de l’attaquant.

L’étude d’un nombre considérable d’échantillons de logiciels malveillants permet de connâıtre davan-
tage leur comportement. Ainsi, l’analyse dynamique permet d’établir le déroulement de tout processus
exécuté. L’analyse dynamique contribue à fournir une solution ciblée pour les menaces de logiciels de
rançon afin de les détecter aux premiers stades. Laplate-forme bare-metal a la plus grande probabilité
de réaliser cette analyse exhaustive ; c’est la raison pour laquelle elle a été choisie dans le cadre de
nos expériences. Une enquête plus approfondie est nécessaire pour indiquer les éléments appropriés qui
soutiennent la création d’un environnement réaliste. Ces éléments sont examinés dans les travaux futurs,
ainsi que la raison de l’inactivité de plus de 80% des exécutables. Nous procédons en présentant dans la
deuxième partie de la thèse, les contre-mesures développées dans la phase de destruction. La première
technique est basée au niveau du système, la seconde aborde la partie réseau, enfin, nous présentons les
menaces plausibles rencontrées par une attaque Doxware.
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2 Contributions
La partie II est constituée des contributions réparties en trois chapitres.

Tout d’abord, une technique de détection de rançongiciel qui sert de système de détection d’intrusion
(IDS) est présentée. Elle est basée sur une exploration du système de fichiers avant que l’attaque
(chiffrement) n’ait lieu. En effet, le but de la charge utile du rançongiciel est d’explorer le système de
fichiers pour trouver les fichiers à chiffrer. Cette recherche se fait depuis la racine du système de fichiers,
ou directement depuis le dossier de l’utilisateur, avec une recherche en profondeur ou en largeur. Comme
pour la phase d’exploration, les “threads” qui traversent le système de fichiers se comportent de manière
similaire et prévisible, ce qui permet une détection rapide du rançongiciel. Certains répertoires et fichiers
sont rarement visités par l’utilisateur ou par un des outils habituels du système et peuvent donc être
considérés comme un piège. Si un logiciel manipule ces fichiers, il peut indiquer un accès illégal. Ils
sont appelés “dossiers de leurre”. Les rançongiciels n’attaquent pas les fichiers qui permettent le bon
fonctionnement de la machine. En effet, l’utilisateur doit pouvoir l’utiliser pour payer la rançon. La
solution proposée consiste à vérifier si un “thread” passe dans les dossiers de leurre. Si c’est le cas, il
les marque et incrémente ensuite le compteur de dossiers de leurre. Si un seuil est atteint, le “thread”
est reconnu comme malveillant. La liste des dossiers de leurres qui sont utilisés dans nos expériences est
présentée dans la Figure A.3.

Recycle bin ; (C:\$Recycle.Bin)
Python ; (C:\Python)
Perf log ; (C:\PerfLogs)
Prog data ; (C:\Prog data)
Prog files ; (C:\Prog files)

Figure A.3: La liste des dossiers de leurres utilisés pour le calcul du score.

Ensuite, une amélioration de la classification précédente est faite en utilisant une approche super-
visée. En plus de l’accès aux dossiers de leurres mentionnés précédemment, d’autres caractéristiques
sont prises en considération pour effectuer un apprentissage supervisé sur les informations collectées. Les
caractéristiques utilisées pour former les classificateurs sont les suivantes: le nombre total de répertoires
explorés, la durée de traversée du système de fichiers, le nombre de sous-dossiers explorés dans le dossier
de leurre actuel et finalement, le temps passé dans le premier sous-dossier exploré dans le dossier de leurre
actuel. Les paramètres utilisés pour l’apprentissage des classificateurs sont présentés dans le tableau A.1.

Répertoires Explorés Nombre total de répertoires explorés
Durée de Traversée Durée de traversée du système de fichiers
Sous-dossiers Explorés Le nombre de sous-dossiers explorés dans le dossier de leurre actuel (Dossiers

de leurres actualisés: Recycle bin, Perf log, Windows, Python, Prog data,
Prog files, Recovery)

Temps Passé Le temps passé dans le premier sous-dossier exploré dans le dossier de leurre
actuel

Table A.1: La liste des paramètres utilisés pour l’entrâınement des classificateurs.

Le parcours du système de fichiers de chaque rançongiciel peut être comparé à celui des autres pour
savoir s’ils appartiennent à la même famille ou s’ils partagent un code concernant l’exploration du
chemin. Dans un premier temps, un graphe orienté des dossiers explorés pour chaque échantillon est
construit. Ensuite, la matrice de similarité correspondant à l’ensemble de données du logiciel de rançon
est calculée. Enfin, une classification des échantillons est effectuée sur la base de la matrice de similarité
en utilisant une technique de regroupement hiérarchique, qui donne un dendrogramme.
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Un graphe est défini comme le tuple G = (V,E, µ, ν) où:

• V l’ensemble des nœuds

• E l’ensemble des arêtes

• η l’ensemble des nœuds couverts par un rançongiciel

• θ l’ensemble des nœ couplés avec le nombre de sous-dossiers regroupés

• µ : V → η

• ν : E → θ

étant donné deux graphes G1(η1 ; E1) et G2(η2 ; E2) ayant le même nombre ou un nombre
différent de nœuds et d’arêtes, la similarité des graphes détermine le degré de similarité (un nombre
réel entre 0 et 1) entre ces deux graphes. Elle compte le nombre d’arêtes qui ont les mêmes source
et destination dans les deux graphes. G1 et G2 sont considérés comme similaires si le nombre réel
retourné par l’algorithme dédié est proche de 1, ou de tout autre seuil prédéfini par l’utilisateur (par
exemple, 0,96). Pour calculer la matrice de similarité entre les différents graphes, on a recours à Graph-
tool [161]. Pour classifier les échantillons, on utilise un regroupement hiérarchique non supervisé sur
cette matrice de similarité. Les feuilles de l’arbre représentent le nom des familles des divers échantillons.

Trois des 694 logiciels de rançon ne passent que par les dossiers Perf log et Python. Ils appartien-
nent aux familles Crpytxxx (1 échantillon) et Gpcode (2 échantillons). 99,56% des threads malveillants
sont correctement détectés. Cela met en évidence le fait que la majorité de la collection de rançongiciel
commence l’exploration du système de fichiers à partir de la racine du disque dur.
Aucun des fils bénins collectés ne passe par au moins 3 des dossiers de leurres sélectionnés. Huit ap-
plications bénignes visitent les dossiers Prog data et Prog files. Il s’agit de SearchProtocol (deux fois),
explorer.exe, svchost.exe (deux fois), avp.exe, klnagent.exe et vapm.exe.

Tous les algorithmes d’apprentissage supervisé sont capables de faire la distinction entre un logiciel
rançon et une application bienveillante en fonction de la traversée du système de fichiers. La classification
binaire (bénin contre rançongiciel) est efficace dans ce cas.

Figure A.4: Classification des familles via un dendrogramme.

Les familles qui sont proches les unes des autres sont regroupées dans une même branche. Les
familles TeslaCrypt et Bitman sont semblables (Figure A.4). Cela peut s’expliquer par le fait qu’elles
partagent le même algorithme de traversée. Une autre similitude est constatée entre les logiciels de
rançon Cerber et Zerber. Ce dernier peut être considéré comme une simple variante du premier.

La deuxième contribution permet de repérer la même traçabilité des logiciels de rançon mais basée
sur l’analyse du réseau. Un mécanisme de filtrage des données dans les fichiers PML et PCAP permet
de reconstruire la session du rançongiciel. Ensuite, des modèles appropriés sont créés par apprentissage
supervisé sur les flux réseau. Enfin, les notes de rançon et les fichiers chiffrés sont évalués pour vérifier
si la détection s’est produite à un moment t inférieur au début du chiffrement.

Les noms des exécutables des rançongiciels sont associés à leur signature MD5 ou SHA-256. Ils
représentent un identifiant unique, qui est connu avant l’exécution du logiciel rançon. Une première
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recherche est effectuée sur tous les processus lancés qui ont un nom spécifique. Le nom doit être constitué
de la concaténation de (Ransomware MD5Hash ou Ransomware SHA256) et (.exe).

Par conséquent, il est possible d’associer le nom du processus en cours avec l’identificateur de processus
(PID) correspondant. Il s’agit d’un nombre décimal unique qui représente cet objet particulier. La
collecte de tous les PIDs associés au logiciel de rançon est alors réalisée. Tout processus s’exécutant sous
Windows crée de nouveaux processus pour accomplir ses tâches ou pour paralléliser la charge de travail.
Dans le cas du rançongiciel, un “thread” est créé pour lister des fichiers, un autre pour le chiffrement.
Pour cette raison, le graphe des processus en cours est essentiel puisqu’il affiche la relation entre tous ces
processus.

Ainsi, un premier filtrage du fichier PML peut être effectué. Il est divisé en un journal malveillant qui
comprend toutes les actions effectuées par le logiciel de rançon et un second fichier qui n’implique que
des enregistrements bénins. Les informations recueillies dans le fichier PML sont utilisées pour extraire
uniquement la communication réseau des journaux du PCAP.

L’activité de réseau acquise précédemment dans la session du rançongiciel est basique. Elle n’englobe
que les adresses IP source et destination, les numéros de port et la longueur du paquet trouvé dans le
fichier PML, tandis que des caractéristiques supplémentaires peuvent être extraites d’un fichier PCAP
telles que la taille de la fenêtre TCP, la longueur de l’en-tête. Nous procédons en capturant les adresses
IP et les numéros de port utilisés par le rançongiciel, puis nous filtrons le fichier PCAP en fonction des
données obtenues précédemment.

L’apprentissage supervisé permet de créer différents modèles pour détecter le trafic réseau suspicieux.
L’analyse est subdivisée en deux parties en fonction du protocole utilisé (TCP ou UDP).

Finalement, les fichiers chiffrés ainsi que les notes de rançon servent de preuves qui caractérisent
la présence d’un logiciel de rançon. Si la détection basée sur l’analyse du trafic réseau a lieu avant le
début du processus de chiffrement, les pertes de fichiers sont épargnées. Par conséquent, il est essentiel
de retrouver l’heure du dernier paquet envoyé et du début des notes de rançon. Cela laisse quelques
nanosecondes au mécanisme de prévention pour prendre une décision (bloquer le processus ou geler le
PC) avant toute perte de fichier.

L’arbre de décision fournit les meilleurs résultats en termes de (vrai | faux) (positif | négatif) et temps
d’apprentisage. Il permet d’éviter les problèmes potentiels d’overfitting en utilisant une forêt d’arbres
décisionnels.

Les logiciels de rançon ont évolué au fil des ans et sont polymorphes. Les échantillons précédents
communiquaient via un trafic HTTP non chiffré (requêtes TCP), puis d’autres familles sont passées aux
requêtes GET. Shade ransomware, par exemple, utilise uniquement le protocole TLS pour sa commu-
nication. En outre, il a été l’un des pionniers de la communication IPv6. En 2016, la communication
UDP a vu le jour. Sur la base des données recueillies, de nouvelles variantes de rançongiciel peuvent
être détectées si la divergence entre les nouveaux échantillons et les échantillons existants est faible.
Cependant, de nombreux cas sont couverts par nos travaux.

Des tests sont également effectués sur 18 échantillons de Cerber, Zerber, TeslaCrypt et Bitman sans
aucune connexion Internet. Le chiffrement a quand même eu lieu. Néanmoins, les clés sont générées
localement, ce qui nous permet de les récupérer par un simple hook à la Cypto API de Windows ou
sont codées en dur dans l’exécutable de ransomware, ce qui est très peu probable. Deux échantillons
identiques de ransomware se trouvent dans Bitman/TeslaCrypt et deux autres dans Cerber/Zerber. Cela
dénote une ressemblance entre ces familles. Par exemple, le MD5 2d2c589941dd477acc60f6b8433c3562
est signalé comme Bitman par 7 antivirus et comme TeslaCrypt par 8 autres [88]. Ils sont conservés
pour la détection basée sur la signature (pas d’enregistrements en double dans la même famille car elle
n’apparâıt qu’une seule fois) mais sont retirés de l’analyse “zero day”.

Comme chaque échantillon fournit une note de rançon distincte ou une extension de fichier spécifique
représentant le logiciel de rançon, tous les fichiers PML sont analysés manuellement pour extraire les
informations requises.

Des exemples de noms de notes de rançon de Bitman sont donnés ci-dessous :

• Recovery+ysddu.png,
• +-HELP-RECOVER-+bjkkl-+.png,
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• ReCoVeRy +ioigp.png,
• help recover instructions+drl.txt,
• +-HELP-RECOVER-+wnonv-+.png.

Enfin, nous proposons un aperçu des attaques plausibles, en particulier le Doxware (appelé aussi
leakware). Un modèle de quantification qui explore le système de fichiers Windows à la recherche de
données importantes est présenté. Notre approche fournit une observation de l’évolution des logiciels
malveillants au cours des dernières années.

L’algorithme d’évaluation construit dépend de certains paramètres du document que le programme
analyse. Il est divisé en deux parties. La première partie est liée à l’attaquant et est caractérisée par
la génération de lexiques intelligents pour se concentrer sur les sujets que l’attaquant veut exfiltrer.
La deuxième partie concerne les victimes, où l’attaquant évalue les documents pour les envoyer sur
le réseau. Le programme d’analyse se compose de 3 modules pour accomplir ces tâches : Génération
lexicale, évaluation du contenu des documents, et évaluation des métadonnées.

Dans un premier temps, la transformation TF-IDF est appliquée à l’union des documents dans le
corpus pour créér le lexique représentent ces documents. L’étape suivante repose sur la création d’une
fonction qui associe chaque mot du lexique à un “score”. Les lexiques sont déjà intégrés dans le code
source du logiciel malveillant du côté de la victime. Ils sont utilisés pour traiter le contenu des dossiers
analysés qui est combinée à une score de métadonnées pour obtenir l’évaluation finale. C’est ainsi
que l’attaquant peut récupérer les documents les plus importants qui se trouvent sur l’ordinateur de la
victime.

Ensuite, nous proposons une contre-mesure basée sur le pot de miel contre les attaques de doxware.
Une combinaison de dossiers et de fichiers de pot de miel permet de détecter et d’atténuer les attaques
par exfiltration de fichiers.

Generation des Éléments de Leurre:

• Généralement, le logiciel de rançon accède à divers répertoires pour établir un environnement
approprié pour le chiffrement. Après l’analyse des journaux des 90 échantillons de rançongiciel
trouvés dans [48], les événements ReadFile se produisent dans les dossiers suivants : C:\$Mft,
C:\ProgramData\, C:\Python27\, C:\Recovery\, C:\$Recycle.Bin\. Par conséquent, des fichiers
leurres peuvent être placés dans ces dossiers, et si on y accède dans un court laps de temps, une
menace potentielle est découverte. Cette configuration doit être intégrée à la génération des leurres
dans les répertoires les plus utilisés (Bureau, Documents, Images, Téléchargements).

• Il est crucial de générer plus de deux dossiers leurres dans chaque répertoire, qui représentent le
premier et le dernier dossier parcouru puisqu’ils peuvent être facilement contournés. Le nom de
ces leurres doit être créé de manière à augmenter la probabilité qu’ils soient consultés en premier.
Idéalement, il faudrait en produire un au début et à la fin de chaque répertoire, combiné à des
dossiers distribués de manière aléatoire.

• Certains auteurs de ransomware chiffrent des fichiers ayant une taille minimale (par exemple, 20kb).
Par conséquent, les fichiers leurres doivent avoir cette taille minimale comme référence avec des
variations. Il n’est pas obligatoire d’avoir plus de 100 fichiers dans chaque dossier leurre, car le
moniteur de fichiers signalera toute tentative de modification dans un seuil prédéfini, bloquant ainsi
les fils et processus malveillants. Ainsi, si un processus modifie deux fichiers des leurres générés, il
ne sera pas arrêté (seuil=2 fichiers). Cependant, si plus de deux éléments sont modifiés, le processus
sera arrêté.

• L’horodatage des leurres doit être modifié, en particulier la création, le dernier accès et l’heure de
modification. Ainsi, les fichiers générés se dissimulent de manière transparente dans le système de
fichiers.

Cette thèse porte sur les logiciels de rançon basés sur Windows qui ont resurgi dans la deuxième
décennie du XXème siècle. Même si les logiciels de rançon ont fait l’objet d’une étude approfondie,
nous ne pouvons pas affirmer que ce domaine de recherche est “complet”. En fait, de nouveaux logiciels
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malveillants et de nouveaux logiciels de rançon apparaissent continuellement, ce qui rend les contre-
mesures développées inadéquates pour détecter ces nouvelles propriétés.

Outre les ordinateurs, les attaques par des logiciels de rançon sont de plus en plus fréquentes.
Différents types d’équipements sont visés. Les dispositifs d’IoT sont connus pour présenter certains
inconvénients, en raison des ressources limitées fournies par le matériel et de leur architecture ayant un
point de défaillance unique, deviennent de plus en plus ciblés [250]. De plus, une attaque par rançon est
menée avec succès sur un appareil photo numérique Canon [251]. La liste se multiplie avec l’impact des
rançongiciel sur les systèmes SCADA [252]. Les auteurs de ces logiciels malveillants améliorent leurs
techniques et les adaptent en fonction des contre-mesures développées dans la littérature. Ces attaques
restent la préoccupation primaire des industries puisque la réputation et la perte matérielle sont en jeu.

Nous concluons qu’une contre-mesure spécifique appliquée, qu’elle soit située au niveau du système ou
du réseau, ne suffit pas à prévenir toute perte de fichiers. Certains fichiers seront finalement chiffrés avant
qu’une alerte ne soit déclenchée, ou les solutions proposées présentent certaines limitations qui pourraient
être facilement contournées. Par conséquent, une solution ultime n’existe pas. Les chercheurs doivent
combiner différents aspects du comportement du logiciel de rançon pour élaborer une contre-mesure
adéquate.
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Titre : Analyse de Logs pour les Besoins de Détection de Logiciels Malveillants

Mot clés : Rançongiciel, Logs Système & Réseaux, Détection, Doxware

Résumé : Les rançongiciels demeurent la me-
nace informatique principale pour les particu-
liers, les entreprises et les gouvernements. Les
conséquences de ces attaques peuvent cau-
ser des pertes irréversibles si les exigences
des attaquants ne sont pas satisfaites à temps.
Cette thèse cible les rançongiciels Windows. Ils
affectent les données des utilisateurs sauve-
gardées sur les ordinateurs ainsi que de nom-
breux services publics. Quatre étapes de l’at-
taque des rançongiciels sont définies : infec-
tion, déploiement, destruction et transaction.
Les contre-mesures sont regroupées selon les
techniques utilisées et attribuées à chaque
phase de l’attaque. Cette thèse présente trois
contributions. Le premier mécanisme de détec-
tion est situé dans la couche du système de

fichiers. Il est basé sur la traversée du sys-
tème qui permet d’exposer les comportements
malveillants. Cette thèse propose également
une analyse du trafic réseau. Les échantillons
sont collectés pour une détection au niveau
des paquets. Une étude des notes de ran-
çon est faite pour situer la contre-mesure ré-
seau dans l’étape appropriée de l’intrusion. La
dernière contribution donne un aperçu des at-
taques, particulièrement des Doxware. Un mo-
dèle de quantification qui explore le système de
fichiers Windows à la recherche de données
importantes est présenté et complémenté par
les pots de miels pour protéger les fichiers sen-
sibles. Enfin, cette thèse offre des perspectives
permettant d’établir un meilleur plan d’action
pour les chercheurs.

Title: Log Analysis for Malicious Software Detection

Keywords: Ransomware, System & Network Logs, Detection, Doxware

Abstract: Ransomware remains the number
one cyberthreat for individuals, enterprises,
and governments. Malware’s aftermath can
cause irreversible casualties if the requirements
of the attackers are not met in time. This thesis
targets Windows ransomware. It affects users’
data and undermines many public services.
Four stages of this malware attack are defined:
delivery, deployment, destruction, and dealing.
The corresponding countermeasures are as-
signed to each phase of the attack and clus-
tered according to the techniques used. This
thesis presents three contributions. The first de-
tection mechanism is located in the file sys-
tem layer. It is based on the system traversal
that is sufficient to highlight the malicious be-

havior. This thesis proposes also an analysis of
the network traffic. It is generated by collected
ransomware samples to perform a packet-level
detection. A study of the ransom notes is made
to define where it takes place in a ransomware
workflow. The last contribution provides an in-
sight into plausible attacks, especially Doxware.
A quantification model that explores the Win-
dows file system in search of valuable data is
presented. It is based on the term frequency-
inverse document frequency solution provided
in the literature for information retrieval. Hon-
eypot techniques are also used to protect the
sensitive files of the users. Finally, this thesis
provides future perspectives granting a better
roadmap for researchers.
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