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Mathematical model for ionic exchanges in renal
tubules: the role of epithelium.

Abstract

This thesis deals with a mathematical model for a particular component of the kidney, the
loop of Henle. We focus our attention on the ionic exchanges that take place in the tubules
of the nephron, the functional unit of this organ. The model explicitly takes into account the
epithelial layer at the interface between the tubular lumen and the surrounding environment
(interstitium) where the tubules are immersed.
The main purpose of this work is to understand the impact of the epithelium (cell membrane)
on the mathematical model, how its role influences it and whether it provides more information
on the concentration gradient, an essential determinant of the urinary concentrating capacity.
In the first part of this transcript, we describe a simplified model for sodium exchanges in the
loop of Henle, and we show the well-posedness of problem proving the existence, uniqueness
and positivity of the solution. This model is an hyperbolic system 5× 5 with constant speeds,
a ’source’ term and specific boundary conditions.
We present a rigorous passage to the limit for this system 5× 5 to a system of equations 3× 3,
representing the model without epithelial layers, in order to clarify the link between them.
In the second part, thanks to the analysis of asymptotic behaviour, we show that our dynamic
model converges towards the stationary system with an exponential rate for large time. In
order to prove rigorously this global asymptotic stability result, we study eigen-elements of an
auxiliary linear operator and its dual. We also perform numerical simulations on the stationary
system solution to understand the physiological behaviour of ions concentrations.

Keywords: Counter-current, transport equation, characteristics, ionic exchanges, station-
ary system, eigenproblem, long-time asymptotics.



Mathematical model for ionic exchanges in
renal tubules: the role of epithelium.

Résumé

Cette thèse est consacrée à plusieurs études reliant un modèle mathématique pour une com-
posante particulière du rein, l’anse de Henle. L’accent est mis sur les échanges ioniques qui ont
lieu dans les tubules du néphron, unité fonctionnelle de cet organe. Le modèle prend explicite-
ment en compte la couche épithéliale à l’interface entre la composante tubulaire et le milieu
environnant (interstice) où les tubules se plongent.
Le but principal de cette thèse est de comprendre si l’épithélium (membrane cellulaire) a un im-
pact sur le modèle mathématique, comment son rôle l’influence et s’il offre plus d’informations
sur le gradient de concentration, un facteur déterminant pour la capacité de concentration de
l’urine.
Dans une première partie du manuscrit, nous décrivons un modèle simplifié pour les échanges
de sodium dans l’anse de Henle, et nous montrons que c’est un problème bien posé en montrant
l’existence, l’unicité et la positivité de la solution. Il s’agit d’un système hyperbolique 5×5 avec
des vitesses constantes, un terme ’source’ et des conditions spécifiques au bord. Ensuite nous
présentons un passage rigoureuse à la limite pour ce système 5× 5 vers un système d’équations
3×3, représentant le modèle sans couche épithéliale, pour clarifier le lien entre les deux modèles.
Dans la deuxième partie, grâce à une analyse du comportement asymptotique, nous montrons
que notre modèle dynamique converge vers le système stationnaire avec un taux de convergence
exponentiel en temps grand. Afin de démontrer rigoureusement ce résultat global de stabilité
asymptotique, nous étudions les éléments propres d’un système auxiliaire avec un opérateur
linéaire et son duale associé. Nous présentons également des simulations numériques sur la so-
lution liée au système stationnaire pour comprendre le comportement des concentrations d’ions
même au niveau physiologique.

Mots-clés : Contre-courant, équation de transport, caractéristiques, échanges ioniques,
système stationnaire, problème éléments spectraux, comportement asymptotique.



Mathematical model for ionic exchanges in
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Sommario

Questa tesi riguarda lo studio di un modello matematico per una particolare componente del
rene, l’ansa di Henle. L’attenzione è rivolta agli scambi ionici che avvengono nei tubuli del
nefrone, unità funzionale di questo organo. Il modello prende in considerazione esplicitamente
lo strato epiteliale nell’interfaccia tra il lume tubolare e l’ambiente circostante (interstizio) dove
sono immersi i tubuli.
Lo scopo principale di questo studio è capire se l’epitelio (membrana cellulare) ha un impatto sul
modello matematico, come il ruolo di questo lo influenza e se fornisce maggiori informazioni sul
gradiente di concentrazione, un fattore determinante della capacità di concentrazione urinaria.
Nella prima parte di questa tesi descriviamo un modello semplificato per gli scambi di sodio
nell’ansa di Henle e dimostriamo che è un problema ben posto, mostrando l’esistenza, l’unicità
e la positività della soluzione. Questo è un sistema 5×5 di tipo iperbolico con velocità costanti,
un termine ’sorgente’ e delle specifiche condizioni al bordo. Successivamente presentiamo un
passaggio al limite rigoroso per questo sistema 5 × 5 verso un sistema di equazioni di 3 × 3,
rappresentante il modello senza strato epiteliale, per chiarire il legame tra i due modelli.
Nella seconda parte, grazie ad un’analisi sul comportamento asintotico, dimostriamo che per
tempi grandi il nostro modello dinamico converge verso il sistema stazionario con un rate espo-
nenziale. Al fine di provare rigorosamente questo risultato globale di stabilità asintotica, studi-
amo gli auto elementi di un sistema ausiliario con un operatore lineare e il suo duale associato.
Presentiamo inoltre delle simulazioni numeriche sulla soluzione relativa al sistema stazionario
per comprendere il comportamento delle concentrazioni ioniche anche a livello fisiologico.

Parole chiave : Controcorrente, equazione di trasporto, scambio ionico, sistema stazionario,
problema auto funzioni, comportamento asintotico.
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Chapter 1

Introduction

My thesis deals with the study of a mathematical model for a particular component of the kid-
ney. We will focus attention on the ionic exchanges within the nephron tubules, the functional
unit of this organ. In recent years many mathematical models have been used to solve and
reconsider questions posed by medicine and biology. This model would give a contribution in
the field of physiological renal transport model. It could be a good starting point to explain
and to understand some mechanisms underlying certain renal pathologies or diseases, caused
by the abnormal transport of ions in the kidney and to elucidate some mechanisms underlying
concentrating mechanism. The goal of this Chapter is not to provide an exhaustive presenta-
tion of the whole architecture of the kidney, but it is to introduce relevant parts and implicated
quantities, emphasizing the important features for mathematical modelling. It will be briefly
described the structure of kidney and its principal functions to have a biological background and
to give a presentation of elements implied in our mathematical model. In this way, a biological
motivation also for the choice of the parameters inside the model is justified.

1.1 Kidney and nephron: biological background

One of the main functions of the kidneys is to filter metabolic wastes and toxins from blood
plasma and excrete them in urine. The kidneys also play a key role in regulating the balance
of water and electrolytes, long-term blood pressure, as well as acid-base equilibrium. In fact,
the cells of the human body in order to survive have to live in an environment with constant
physiological electro-chemical conditions. It means that some quantities such as temperature,
glycemia (blood sugar), concentration of certain ions have to respect and stay in some interval
values. They should not undergo significant changes beyond their optimal value over time. The
external alteration, in particular due to the food contribution, can cause perturbations of this
equilibrium in addition to others factors such as the hour of day, the season, some pathologies or
renal stress. Sometimes this organ could not always guarantee these functions, leading to some
malfunctions and certain diseases. For example, the poor ion transport inside the kidney could
bring about nephrocalcinosis. In renal pathology, this disease is mainly due to the presence of
calcium deposits in the renal parenchyma, as result of an abnormal increase in blood calcium
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Figure 1.1: Kidney and nephron schematic diagram

concentration (hypercalciuria), which often evolves to "kidney failure", [1]. This is just a little
example but clearly and unfortunately, there are many renal diseases related to dysfunction of
ion channels, [19].

On average the kidneys filter about 180 litres of blood a day. Most of them are rejected
in the body, and the remaining part (about 1,5 litres) is excreted in the urine. The kidneys
ensure and partly provide the physiological balance and the blood homostasis. An external
or outer region and an inner region (in depth), respectively the cortex and the medulla, make
up the kidney structure. The cortex contains glomeruli, which are like a capillaries tuft, and
convoluted segments of tubules, whereas the medulla contains tubules and vessels arranged
roughly in parallel, [20]. Approximately the 20% of cardiac blood output is sent to the kidneys
to be filtered. Then, for example, if the blood that arrives is too concentrated in sodium, the
kidney will produce a more concentrated filtrate in sodium than the incoming blood and after it
will reject into the general blood circulation a filtrate less concentrated in sodium. This process
has been called urinary concentration mechanism.

The structural and functional units of the kidney are called nephrons, which number about
1 million in each human kidney, [3]. Blood is first filtered by glomerular capillaries and then
the composition of the filtrate varies as it flows along the different segments of the nephron :
the proximal tubule, the loop of Henle which is formed by a descending limb and an ascending
limb, the distal tubule, and the collecting duct. The reabsorption of water and solutes from
the tubules into the surrounding interstitium (or secretion in the opposite direction) allows the
kidneys to combine urinary excretion to dietary intake, [36]. The main function of the renal
tubules is also to recover most of the glomerular filtrate. ’Otherwise, we would lose all our
blood plasma in less than half an hour!’, citing [20]. The loop of Henle and its architecture play

2



an important role in the concentrated or diluted urine formation.
Despite the development of sophisticated models about water and electrolyte transport in the
kidney, some aspects of the fundamental functions of this organ remain yet to be fully un-
explained, [20]. For example, how a concentrated urine can be produced by the mammalian
kidney when the animal is deprived of water remains not entirely clear. The previous work of M.
Tournus ([46], Chapter 2) confirms the importance of counter-current arrangement of tubules
and it illustrates how this architecture enhances the axial concentration gradient, favouring the
production of highly concentrated urine.
In order to explain how an animal or an human being can produce a concentrated urine and
from what this mechanism depends on, it needs to spend few words on counter-current transport
in the ’ascending’ and ’descending’ tubules, in which the exchanges between the cell membrane
and the environment where tubules are immersed, take place.

1.1.1 Countercurrent Multiplication mechanism

Starting from the work presented in [46], the main purpose of this thesis is to understand
how the role of the epithelium (cell membrane) of renal tubules influences the mathematical
modelling and whether it provides more information on the concentration gradient formation.
We want to track the ionic or molecular concentrations in the tubules and in the interstitium
(this term indicates all the space/environment that surrounds the tubules and blood vessels).
Sometimes we will indicate as lumen the considered limb and as tubule the segment with its
epithelial layer. In physiological common language, the term ’tubule’ refers to the cavity of
lumen together with its related epithelial layer (membrane) as part of it.

The first models about nephron and kidney were developed in the 1950s with the purpose of
explaining the concentration gradient, [12] (or see also [20] in Chap.3). The original reference
of [12] is in German, but a translation of their fundamental article appeared recently. In their
attempt, the authors describe for the first time the urinary concentration mechanism as a
consequence of countercurrent transport in the tubules. This mechanism occurs in the loop of
Henle which consists of two parallel limbs running in opposite directions, as already mentioned
in the descending and ascending limb, separated by the interstitial space of the renal medulla.

As explained in [22], an osmolality gradient could be generated along parallel but with
opposite flows in tubules that are connected by a hair-pin turn. We briefly explain below what
means the countercurrent multiplication mechanism in the nephron, [43]. The movement of a
solute from one tubule to another (called a single effect) amplifies (multiplies or reinforces) the
axial osmolality gradient in the parallel flow. In fact, thanks to this arrangement, a small single
effect will be multiplied into a much larger osmolality difference along the axis of tubular flow,
[44]. In the Hargitay and Kuhn’s model presented in [12], the driving force for the single effect
was the hydrostatic pressure applied to the central ionic channel which produces an osmotic
pressure. However, the authors recognized that the pressures were not high enough to drive such
a process in the kidney. The idea concerning the "hairpin" counterflow system in the loop of
Henle provides an arrangement whereby a small "single effect" could be repeatedly "multiplied"
to produce a large gradient along the axis parallel to the direction of flow. Despite that and
considering the general architecture of the kidney, the point of view gets started to change
around the end of 1980s, [24]. In this study, a simple mathematical model for a single nephron
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developed by C.S. Peskin (unpublished manuscript) has been introduced and described. The
author explains how the tubules distribution and partition may enhance urine concentrating
capability, playing a significant role also in establishing the concentration gradient. Moreover,
it concludes that just the passive concentrating mechanism can not improve the concentrating
capability of a single-nephron model. Furthermore, in the work of J.L. Stephenson [44] it turns
out that the formation of a large axial concentration gradient in the kidney depends mainly on
the different permeabilities in the tubules and on their counterflow arrangement.
In our study it will be described a mathematical model that represents a loop with a descending
limb and an ascending limb and it takes into account passive and active transport mechanisms.
It is possible to find an historical excursus and how these types of models have been developed,
referring to [44]. In order to have a more specific and meticulous introduction to mathematical
models in renal physiology we refers to [20]. In the next paragraph it will be given more details
about different type of membrane transport.

1.1.2 Biological membrane transport

The membrane transport is the property that allows the movement of molecules or ions between
two compartments through a plasma membrane. We briefly describe the various forms of mem-
brane transport as well as their mechanisms, helpful later in the setting-up of our mathematical
model.
Concerning the passive transport, there are different types of movement through cell membrane
such as diffusion, osmosis, electro-diffusion or also known as facilitated diffusion. They are the
simplest ways of transport across membrane and in these cases there is not energy consumption
by the cells. On the other hand, the active transport uses energy to pump or transport sub-
stances across a membrane. The movement of ions in the kidney is a phenomenon of tubular
reabsorption and it can be observed in nephrons, [16], [41].

Passive transport

An example of passive transport is the osmosis, the diffusion of water through a semi-permeable
membrane. It is defined as the number of moles of particles in solution that contains 1 litre
of solution. The water transport is driven by the difference of osmotic pressure of one side to
another.

Osm =
∑

i=solutes

Φiui

where ui is the molar concentration of the solute, Φi is the osmotic coefficient of the solute i
which measure the amount of particles that a solute will give to the solution. Φi is a constant
between 0 and 1, where 1 indicates maximum dissociation. In fact, it can be considered as the
degree of dissociation of the solute. For example, the urea does not dissociate in water then it
has osmotic coefficient equal to 1.
Concerning our mathematical model, we want to focus our attention just to the transepithelial
diffusion process, when the membrane is permeable to a solute. We refer to diffusion as the
biological process in which a substance tends to move from an area of high concentration to
an area of low concentration, [41]. As described also in [46], the diffusive solute flux from
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compartment 1 to compartment 2 (expressed in [mol.m−1.s−1]) is given by:

Jdiffusion = P`(u2 − u1),

where P [m.s−1] is the permeability of the membrane to the considered solute, ` the perimeter
of the membrane, and u1 and u2 are the respective concentrations of the solute in compartments
1 and 2, divided by membrane.

Active transport

The Na+/K+ pump is an important ion pump existing in the membrane of many types of cells,
for instance in the nerve cells to assure the electrical gradient and potential across their cell
membranes. The active solute transport could be described by Michaelis-Menten kinetics which
relates the speed of a chemical reaction to the concentration of considered substance, [31]:

Jpompe = Vm

( u

Km + u

)
,

with Vm maximum active transport rate and the concentration of the substrate at which the
rate of transport is at half the maximum rate Km, or also known as Michaelis constant. The
active transport flow generated by this pump allows a displacement of molecules against the
concentration gradient that require energy consumption (hence the active name) [20], [41].

1.2 Mathematical modelling

The main topic of this thesis is the modelling of water and solutes exchange in the kidney. For
the development of a multi-scale physiological model of renal tubules transport, this basic model
represents an essential step to understand the mechanisms underlying certain pathologies. In a
simplified approach and in order to introduce our mathematical model, we start from the systems
described in the Ph.D. thesis of Magali Tournus [46], where a macroscopic model integrating
molecular and cellular transport processes was developed. In one of her works, it has been
considered an architecture of the kidney consisting of five tubules (three of them represent the
nephron while others represent the vas-recta). All of the tubules are immersed in a common
interstitium and water and solute are exchanged through it. We consider a simplified system for
the nephron, functional unit of the kidney. In this simplified version, the nephron is modelled
by two tubules with the same radius (loop of Henle, countercurrent arrangement). We model
the dynamics of a solute (here, sodium) by the dynamics of its concentration in each tubule.
The lumen of the tubules is separated from the external medium (the interstitium) by a layer
of epithelial cells.
In general, for these types of model it is possible to consider different architectures, for example,
taking into account epithelium or not. For the last option, the ion exchange is modelled by
3 equations (system of PDEs) with constant velocity transport, for example as done in [47].
With regard to the architecture with the epithelium, the number of equations to describe this
phenomenon depends also on the number of ions to be considered. For the base model 5
equations has needed, 7 for the non-constant speed model and 10 for the two-ion model, Na+
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(sodium) and K+ (potassium). We present and study a 5 × 5 semi-linear hyperbolic system,
accounting for the presence of epithelium layers, but composed only of two tubules and it will
be the main object of the following results.
The first spontaneous question that it has been posed concerns the link and the relation in
terms of mathematical properties between the basic model with epithelium (Figure (1.2b)) and
without it (Figure (1.2a)). Supposing these two new epithelial layers, we add two additional
unknown concentrations in the basic system. Therefore, we try to deduce the impact of this
epithelial layer, i.e. of the cell membrane, on the system. In Figure (1.2) we give a representation
of what was mentioned above.

Simplified system and epithelium system

(a) Basic scheme for reduced or simplified
system.

(b) Basic scheme for system with epithelial
layer.

Figure 1.2: Different schematic representations of the loop of Henle.

The model is one-dimensional, with respect to space x ∈ [0, L]. The main parameters and
variables are being described :

• ri : denote the radius for the tubule i ([m]),

• ri,e : denote the radius for the tubule i with accounted epithelial layer,

• P ji (x) : permeability to solute j between the lumen i and the epithelium ([m.s−1]),

• P ji,e(x) : permeability between the epithelium of lumen i and the interstitium,

• αi : volumetric flow rate (flow of water) [m3.s−1],

• J ji (t, x) : flow of solute j entering in the tubule i, [mol/m.s].
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Figure 1.3: Simplified model of loop of Henle.

The unknowns represent ionic concentrations, i.e. uji (t, x) solute j in the tubule or compartment
i ([mol/m3]), qji (t, x) solute j in the epithelium ’near’ tubule i and u0(t, x) in the interstitium.
In the first two Chapters we only consider one generic uncharged solute in two tubules, for this
reason afterwards we will neglect the superscript j.
Now we present a simplified mathematical model of solute transport in the loop of Henle.
Previous mathematical models developed and discussed in [46] and in [48] were based on a
simple renal architecture that did not consider explicitly the epithelial layer separating the
tubule lumen from the surrounding interstitium, and that represented the barrier as a single
membrane. The present model accounts for ion transport between the lumen and the epithelial
cells, and between the cells and the interstitium. The principal aim of this work is to examine
the impact of explicitly considering the epithelium on solute concentration in the loop of Henle.
In our simplified approach, the loop of Henle is represented as two tubules in a counter-current
arrangement, and the descending and ascending limb are considered to be rigid cylinders of
length L lined by a layer of epithelial cells. Water and solute re-absorption from the luminal fluid
into the interstitium proceeds in two steps: water and solutes cross first the apical membrane
(which refers to the cell membrane oriented towards the lumen) at the lumen-cytosol interface
and then the basolateral membrane (which is oriented away from the lumen of the tubule) at
the cytosol-interstitium interface. A schematic representation of the model is given in Figure
1.3.

The energy that drives tubular transport is provided by a Na+/K+-ATPase, an enzyme that
couples the hydrolysis of ATP to the pumping of sodium (Na+) ions out of the cell and potas-
sium (K+) ions into the cell, across the basolateral membrane. The electrochemical potential
gradients resulting from this active transport mechanism in turn drive the passive transport of
ions across other transporters, via diffusion or coupled transport. We assume that the volumet-
ric flow rate in the luminal fluid (denoted by α) remains constant, i.e. there is no transepithelial
water transport. Actually the descending limb is permeable to water, but we will make this
simplifying assumption in order to facilitate the mathematical analysis in our hyperbolic sys-
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tem. Given the counter-current tubular architecture, this flow rate will have a negative value
in the ascending limb. As noted in [20], since the thick ascending limb is water impermeable,
it is coherent to assume α constant but, for example, it may vary in time in other models.

The following model focuses on tubular Na+ transport. The concentration of Na+ ([mol.m−3])
is denoted by u1 and u2, respectively, in the descending and ascending limb lumen, by q1 and
q2 in the epithelial cells of the descending and ascending limbs, respectively, and by u0 in the
interstitium. The permeability to Na+ of the membrane separating the lumen and the epithelial
cell of the descending and ascending limb is denoted by P1 and P2, respectively. P1,e denotes
the permeability to Na+ of the membrane separating the epithelial cell of the descending limb
and the interstitium; the Na+ permeability at the interface between the epithelial cell of the
ascending limb and the interstitium is taken to be negligible.

The concentrations depend on the time t and the spatial position x ∈ [0, L]. The dynamics
of Na+ concentration is given by the following model on (0,+∞)× (0, L)

a1
∂u1

∂t
+ α

∂u1

∂x
= J1, a2

∂u2

∂t
− α∂u2

∂x
= J2, (1.1)

a3
∂q1

∂t
= J3, a4

∂q2

∂t
= J4, a0

∂u0

∂t
= J0. (1.2)

The parameters ai, for i = 0, 1, 2, 3, 4, denote positive constants defined as:

a1 = π(r1)2, a2 = π(r2)2, a3 = π(r2
1,e − r2

1), a4 = π(r2
2,e − r2

2), a0 = π
(r2

1,e + r2
2,e

2

)
.

In these equations, ri, with i = 1, 2, denotes the inner radius of tubule i, whereas ri,e denotes
the outer radius of tubule i, which includes the epithelial layer. The fluxes Ji describe the ionic
exchanges between the different domains. They are modeled in the following way:

Lumen. In the lumen, we consider the diffusion of Na+ towards the epithelium. Then, as
mentioned before we are taking into account the difference between concentration in ep-
ithelial layer and in lumen, multiplied by the perimeter of the membrane and respectively
permeabilities,

J1 = 2πr1P1(q1 − u1), J2 = 2πr2P2(q2 − u2).

Epithelium. We take into account the diffusion of Na+ from the descending limb epithelium
towards both the lumen and the interstitium,

J3 = 2πr1P1(u1 − q1) + 2πr1,eP1,e(u0 − q1).

In the ascending limb (tubule 2), we also consider the active reabsorption that is mediated
by Na+/K+-ATPase, which pumps 3 Na+ ions out of the cell in exchange for 2 K+ ions.

The net flux into the ascending tubule is given by the sum of the diffusive flux from
the lumen and the export across the pump, which is described using Michaelis-Menten
kinetics:

J4 = 2πr2P2(u2 − q2) + 2πr2,eP2,e(u0 − q2)− 2πr2,eG(q2),
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where

G(q2) = Vm

[
q2

KM,2 + q2

]3

. (1.3)

The exponent of G is related to the number of exchanged sodium ions. The affinity of the
pump KM,2, and its maximum velocity Vm, are given positive numbers. We notice that
when q2 → +∞, then G(q2)→ Vm which is in accordance with the biological observation
that the pump can be saturated since the number of carriers is limited. As explained
in [20], the Michaelis-Menten kinetics is one of the simplest and best-known models of
enzyme kinetics. Vm represents the maximum transport rate achieved by the system at
solute concentration q2, and the Michaelis constant KM,2 is the solute concentration at
which the reaction rate is half of Vm. The transport rate increases as q2 increases, but it
levels off and approaches Vm as q2 approaches infinity.

Interstitium.

J0 = 2πr1,eP1,e(q1 − u0) + 2πr2,eP2,e(q2 − u0) + 2πr2,eG(q2).

Afterwards the constant 2πr2,e will be included in the parameter Vm and replace the parameter
Vm with Vm,2 := 2πr2,eVm.
We model the dynamics of a solute by the evolution of its concentration in each tubule. Then
the transport of solute and its exchange are modelled by a hyperbolic PDE system at constant
speed with a non-linear transport term and with specific boundary conditions which make the
model interesting. To sum up, the dynamics of the ionic concentrations is given by the following
model : 

a1∂tu1(t, x) + α∂xu1(t, x) = J1(t, x)

a2∂tu2(t, x)− α∂xu2(t, x) = J2(t, x)

a3∂tq1(t, x) = J3(t, x)

a4∂tq2(t, x) = J4(t, x)

a0∂tu0(t, x) = J0(t, x)

u1(t, 0) = ub(t); u1(t, L) = u2(t, L) t > 0

u1(0, x) = u0
1(x); u2(0, x) = u0

2(x); u0(0, x) = u0
0(x);

q1(0, x) = q0
1(x); q2(0, x) = q0

2(x).

(1.4)

The simplified model without epithelium is similar but there are not two epithelial layers and
then the two additional unknown concentrations q1, q2 :

a1∂tu1(t, x) + α∂xu1(t, x) = 2πr1P1(u0 − u1)

a2∂tu2(t, x)− α∂xu2(t, x) = 2πr2P2(u0 − u2)−G(u2)

a0∂tu0(t, x) = 2πr1P1(u1 − u0) + 2πr2P2(u2 − u0) +G(u2).

(1.5)

After introducing these models, one of the objectives is to understand if there is a link
between the two models and to answer the question: what is it the role of the epithelial layer?
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The first goal of this work is to study the effects of epithelium region in the mathematical
model. We notice with a formal computation that if the value of permeability grows, the model
"behaves" in the same way as the system without epithelium.
We neglect for a moment the constants ai, with i = 0, 1, 2, 3, 4, and we consider the case where
the permeability between the lumen and the epithelium is large. We simplify the notation
2πri,ePi,e = Ki with i = 1, 2 and 2πr1P1 = k1 = 2πr2P2 = k2 and we set k = k1 = k2 → ∞,
i.e. when Pi → ∞, with i = 1, 2 . For this purpose we set k = k1 = k2 = 1

ε and we let ε go to
0. We introduce formally this limit using the parameter ε :

∂tu
ε
1 + α∂xu

ε
1 = k(qε1 − uε1) (1.6a)

∂tu
ε
2 − α∂xuε2 = k(qε2 − uε2) (1.6b)

∂tq
ε
1 = k(uε1 − qε1) +K1(uε0 − qε1) (1.6c)

∂tq
ε
2 = k(uε2 − qε2) +K2(uε0 − qε2)−G(qε2) (1.6d)

∂tu
ε
0 = K1(qε1 − uε0) +K2(qε2 − uε0) +G(qε2). (1.6e)

Formally when Pi −→ ∞, we expect the concentrations uε1 and qε1 to converge to the same
concentration. Physically, this means fusing the epithelial layer with the lumen. The same
happens for uε2 → u2 and qε2 → u2. We denote u1, respectively u2, the limit of (uε1)ε and (qε1)ε,
respectively (uε2)ε and (qε2)ε. Adding equations (1.6a) and (1.6c) of system and adding equations
(1.6b) and (1.6d), we obtain the system

∂tu
ε
1 + ∂tq

ε
1 + α∂xu

ε
1 = K1(uε0 − qε1)

∂tu
ε
2 + ∂tq

ε
2 − α∂xuε2 = K2(uε0 − qε2)−G(qε2).

Passing formally to the limit Pi →∞, we arrive at

2∂tu1 + α∂xu1 = K1(u0 − u1) (1.7)
2∂tu2 − α∂xu2 = K2(u0 − u2)−G(u2), (1.8)

coupled to the equation for the concentration in the interstitium obtained by passing into the
limit in equation (1.6e)

∂tu0 = K1(u1 − u0) +K2(u0 − u2) +G(u2). (1.9)

In the first part of this thesis we are going to study the semi-linear first order system depending
on the parameter ε > 0. In order to connect the problem (1.6) with the reduced or limit
system, we will have to make some assumptions about the non linear term G(q2) and boundary
conditions.
What does it mean that the model "behaves" in the same way as the system without epithelium?
First of all, we need to define in some sense a solution of system (1.6).
In the framework of non linear hyperbolic systems and of conservation laws, a weak solution, in
the sense of distributions, does not guarantee the uniqueness of the solution and therefore also
the well-posedness of problem, [42]. In our case, the hyperbolic system is semi-linear with a
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linear operator and a source term, then it is not necessary to introduce an entropic formulation
and the concept of entropy solutions, [18]. In Chapter 2 it has been showed that the weak
solution of model without epithelium can be rigorously derived by assuming that permeabilities
between the lumen region and the epithelium are large (P1, P2 →∞) in the epithelium model.
The equations (1.7), (1.8), (1.9) describe the same concentrations dynamics in the system
without epithelium which is similar to that previously studied in [46] and [47]. Then, this 3× 3
system (1.5) may be considered as a good approximation of the larger system.
In this setting our problem and the used techniques could be inserted in some way in the
context of relaxation problem. The semi-linear relaxation where the principal part of considered
operator is linear and with constant coefficients, was introduced by Jin and Xin [15], with the
propose of building robust numerical schemes. The authors construct a linear hyperbolic system
to approximate the original non linear system with a small dissipative correction. They take
into account a Cauchy problem 1-D of the form: ∂

∂tu + ∂
∂xf(u) = 0, (t, x) ∈ R+ × R with

initial data u(0, x) = u0(x) and then a linear system (relaxation system) as :

∂tu+ ∂xv = 0;

∂tv + a∂xu = −1

ε
(v − f(u))

with a positive constant and choosing initial data as u(0, x) = u0(x), v(0, x) = v0(x) =
f(u0(x)). This particular choice of initial condition avoids to introduce an initial layer through
the relaxation system. The initial condition is said to be ’well-prepared’, i.e. the state is already
in the equilibrium state at the beginning. The same approach could be used to prevent a bound-
ary layer in case of boundary-value problems even if sometimes this choice is not consistent with
the physical aspects of model. Some examples of boundary value problems for systems with
relaxation are discussed in [33], [35]. In [49] is given an important contribution to the study of
relaxation approximations for boundary value problems but in the general entropy formulation.
A general overview for mathematical results on hyperbolic relaxation problems can be found in
[32].

In the second part of this transcript we focus on the analysis of solutions to stationary
problem related to (1.6). We show that the dynamic system converges as time goes to infinity
to the steady state solution. Thanks to spectral theory arguments, we can also prove convergence
with an exponential rate.
Here, we give just a workflow idea used to prove the above-mentioned result, following the same
approach in [37] and [39]. We will introduce a ’toy equation’ with u solution of dynamic ’model’
and ū solution of stationary:{

∂tu(t, x) + α∂xu(t, x) = q(t, x)− u(t, x)

+α∂xū(x) = q̄(x)− ū(x).
(1.10)

In order to have a exponential rate convergence we are going to look for

|u(t, x)− ū(x)| ∼ e−λtN(x), |q(t, x)− q̄(x)| ∼ e−λtQ(x), λ ∈ R+.
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It will allow us to say that |u(t, x) − ū(x)| → 0 when t → ∞ in some norm and space defined
at later stage.

Then, if we subtract the first line with the second of (1.10), we formally can compute and
obtain:

∂t(e
−λtN(x)) + α∂x(e−λtN(x)) = e−λtQ(x)− e−λtN(x)

−λe−λtN(x) + αe−λt∂xN(x) = e−λtQ(x)− e−λtN(x)

α∂xN(x) = λN(x) +Q(x)−N(x)

α∂xN(x)− (Q(x)−N(x)) = λN(x).

Setting LN(x) = α∂xN(x)− (Q(x)−N(x)) this means that we are going to search the eigen-
functions and eigenvalues of linear operator L, i.e. LN = λN .
We use a similar approach for 5 × 5 system (3.4) in Chapter 3 introducing an auxiliary linear
operator related to our system with its boundary and initial conditions. Let us introduce the
eigen-problem of an auxiliary stationary linear system and its dual,

∂xU1(x)
−∂xU2(x)

0
0
0

 = λU(x) +AU(x); U(x) =


U1

U2

Q1

Q2

U0

 (1.11)


−∂xϕ1(x)
∂xϕ2(x)

0
0
0

 = λΦ(x) + tAΦ(x); Φ(x) =


ϕ1

ϕ2

φ1

φ2

ϕ0

 (1.12)

with related matrix defined by

A =


−k 0 k 0 0
0 −k 0 k 0
k 0 −k −K1 0 K1

0 k 0 −k − g 0
0 0 K1 g −K1

 .
The constants k,K1 have already been defined and the constant g > 0 will be chosen later. For
a given λ, the function U is the right eigenvector solving (1.11) and Φ is the left one, associated
with the dual operator and solving (1.12). Roughly speaking, the system (1.11) is in some sort,
a linearised version of the starting stationary system where the derivative of the non-linearity
is replaced by a positive constant g. Moreover, the systems are complemented with boundary
and a normalization conditions as will be clarified in (B.2.2). The normalization condition∫ L

0 (U1 + U2 + Q1 + Q2 + U0) dx = 1, will ensure the uniqueness of the solution U . Then,
one of the main tool to study the asymptotic behaviour of our dynamic system concentrations
u = (u1, u2, q1, q2, u0) when t→∞ is the existence of these eigenelements (λ,U ,Φ) solutions of
above-defined auxiliary system. We report the most significant result of Chapter 3 :
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Theorem 1.2.1 (Long time behaviour). The solution to the dynamical problem denoted by
u(t, x) = (u1, u2, q1, q2, u0) converges as time t goes to +∞ towards ū(x) = (ū1, ū2, q̄1, q̄2, ū0),
the unique solution to the related stationary problem, in the following sense

lim
t→+∞

‖u(t)− ū‖L1(Φ) = 0,

with the space

L1(Φ) =
{

u : [0, L]→ R5; ‖u‖L1(Φ) :=

∫ L

0
|u(x)| · Φ(x) dx <∞

}
,

where Φ = (ϕ1, ϕ2, φ1, φ2, ϕ0) is defined in Proposition 1.2.1 below.
Moreover, if we assume that there exist µ0 > 0 and C0 such that |ub(t) − ūb| ≤ C0e

−µ0t

for all t > 0, then there exist µ > 0 and C > 0 such that we have the convergence with an
exponential rate

‖u(t)− ū‖L1(Φ) ≤ Ce−µt. (1.13)

The scalar product used in this latter claim means :∫ L

0
|u(x)| · Φ(x) dx =∫ L

0

(
|u1|ϕ1(x) + |u2|ϕ2(x) + |q1|φ1(x) + |q2|φ2(x) + |u0|ϕ0(x)

)
dx.

Proposition 1.2.1. Let g > 0 be a constant. There exists a unique (λ,U ,Φ), with λ ∈ (0, λ−),
solution to the eigenproblem (1.11)–(1.12) where

λ− =
(2K1 + k)−

√
4K2

1 + k2

2
.

Moreover, we have U(x) > 0, Φ(x) > 0 on (0, L) and φ2 < ϕ0.

The definition of the left eigenvector Φ and its role will be better clarified later.

1.3 Thesis structure

We will present a general overview of the main objectives that have been pursued in this thesis
and the main results obtained in each chapter.
The transcript is divided into three chapters and two appendices.
In the first Chapter the mathematical model has been introduced, explaining briefly the bio-
logical processes that the system describes.
The Chapter 2 deals entirely with the rigorous passage to the limit in semi-linear hyperbolic
5× 5 system, accounting for the presence of epithelium layers, towards a system of 3 equations,
related to sodium exchanges in a kidney nephron. In this simplified version, the nephron is
modelled by a counter-current architecture of two tubules and the ionic exchanges occur in the
interface between the tubules and the epithelium and in the interface between the epithelium
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and the interstitium. In order to clarify the link between both models, we show that model
without epithelium can be rigorously derived by assuming that the permeabilities between the
lumen region and the epithelium are large. A priori estimates with respect to parameter ε
(accounting for permeability) and a L∞ bound need to prove this result, investigated in [27].
In addition, the estimates on time derivatives are necessary with a more subtle approach due
to boundary conditions (3.17) of system and to take care of the initial layers. The dynamic
problem is well-posed proving the existence and uniqueness of the weak solution. The Chapter
2 is currently being elaborated into a draft paper.
In the Chapter 3, we still study a mathematical model describing the transport of sodium in a
fluid circulating in a counter-current tubular architecture, which constitutes a simplified model
of the loop of Henle in a kidney nephron. We present the stationary system solution and we
explore numerical simulations to describe the results dealing with a particular choice of pa-
rameters. Our dynamic model for t → +∞, converges towards the stationary system with an
exponential rate. In order to prove rigorously this convergence, we study the eigenelements of
an auxiliary linear operator and its dual. The solution related to the stationary system has
been explicitly presented and numerical simulations have been performed to understand also
the physiological behaviour of the system.
At the end, some mathematical tools and theorems utilized in the proofs have been included in
the Appendices.
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Chapter 2

Reduction of a model for ionic
exchanges in kidney nephron

This chapter refers to the working paper [27], in collaboration with Nicolas Vauchelet and Vuk
Milišić.
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2.1 Introduction

We consider a simplified model for ionic exchange in the kidney nephron. In this simplified
version, we focus on the mechanisms involved in the loop of Henle, a component of nephron.
The ionic exchanges occur at the interface between the tubules and the epithelium and at the
interface between the epithelium and the interstitium. A schematic representation for the model
is given in Figure 2.1.
We present the following semi-linear hyperbolic system with (t, x) ∈ (0,+∞)× (0, L) :

∂tu1 + α∂xu1 = J1 = 2πr1P1(q1 − u1)

∂tu2 − α∂xu2 = J2 = 2πr2P2(q2 − u2)

∂tq1 = J1,e = 2πr1P1(u1 − q1) + 2πr1,eP1,e(u0 − q1)

∂tq2 = J2,e = 2πr2P2(u2 − q2) + 2πr2,eP2,e(u0 − q2)−G(q2)

∂tu0 = J0 = 2πr1,eP1,e(q1 − u0) + 2πr2,eP2,e(q2 − u0) +G(q2)

u1(t, 0) = ub(t); u1(t, L) = u2(t, L) t > 0

u1(0, x) = u0
1(x); u2(0, x) = u0

2(x); u0(0, x) = u0
0(x);

q1(0, x) = q0
1(x); q2(0, x) = q0

2(x)

(2.1)

We recall and describe used frequently symbols below :

• ri : denote the radius for the lumen i ([m]).

• ri,e : denote the radius for the tubule i with epithelium layer.

• Ionic concentrations ([mol/m3]) :
ui(t, x) : solute in the lumen i,
qi(t, x) : solute in the epithelium ’near’ lumen i
u0(t, x) : solute in the interstitium.

• Permeabilities ([m/s]):
Pi : between the lumen and the epithelium,
Pi,e : between the epithelium and the interstitium.

The non-linear term representing active transport is usually described using Michaelis-
Menten kinetics:

G(q2) = Vm,2

(
q2

kM,2 + q2

)3

kM,2, Vm,2 ∈ R+. (2.2)

In the tubule 2, the transport of solute both by the passive diffusion and the active reabsorption
uses Na+/K+-ATPases pumps, which exchange 3 Na+ ions for 2 K+ ions.
In each tube, the fluid (mostly water) is assumed to flow at constant rate α and here we only
consider one generic uncharged solute in two tubules as in Figure 2.1.

We consider the following assumptions :
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Figure 2.1: Schematic representation of the loop of Henle model.

Assumption 1: We assume that the initial solute concentrations are non-negative and
uniformly bounded in L∞(0, L) and in total variation :

0 ≤ u0
1, u

0
2, q

0
1, q

0
2, u

0
0 ∈ BV (0, L) ∩ L∞(0, L). (2.3)

Assumption 2: Boundary conditions of system are the following:

0 ≤ ub ∈ BV (0, T ) ∩ L∞(0, T ). (2.4)

The space BV is the space of the bounded variation functions, notice that such functions have
a trace on the boundary (see e.g. [7]). Hence the boundary condition u2(t, L) = u1(t, L) is
well-defined.

Assumption 3: Regularity and boundedness of G. We assume that the non-linear function
modelling active transport in the ascending limb (tubule 2) is an odd and Lipschitz-continuous
function with respect to its argument :

∀x ≥ 0, G(−x) = −G(x), G(x) ≤ ‖G‖∞, 0 ≤ G′(x) ≤ ‖G′‖∞. (2.5)

We notice that the function G defined on R+ by the expression in (2.2) may be straightforwardly
extended by symmetry on R by a function satisfying (2.5). We know by classical results [7] that
a Lipschitz function is almost everywhere differentiable, then it allows us to use the notation
G′. The pump described with this term carries the solute from the lumen of the thick ascending
limb toward the interstitium. It has been justified the biological meaning of its mathematical
assumptions with the fact that the pump can be saturated because the number of transporters
is limited. Moreover, we notice that G(0) = 0 which means that there is no transport in the
absence of solute, that is reasonable.
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To simplify our notation in (2.1), we set 2πri,ePi,e = Ki, i = 1, 2 and 2πriPi = ki , i = 1, 2.
The orders of magnitude of k1, k2 are the same even if their values are not definitely equal, we
may assume to further simplify the analysis that k1 = k2 = k. We consider the case where the
permeability between the lumen and the epithelium is large and we set, k1 = k2 = 1

ε for ε� 1.
Then, we investigate the limit ε→ 0 in the following system :

∂tu
ε
1 + α∂xu

ε
1 =

1

ε
(qε1 − uε1) (2.6a)

∂tu
ε
2 − α∂xuε2 =

1

ε
(qε2 − uε2) (2.6b)

∂tq
ε
1 =

1

ε
(uε1 − qε1) +K1(uε0 − qε1) (2.6c)

∂tq
ε
2 =

1

ε
(uε2 − qε2) +K2(uε0 − qε2)−G(qε2) (2.6d)

∂tu
ε
0 = K1(qε1 − uε0) +K2(qε2 − uε0) +G(qε2). (2.6e)

Formally, when ε → 0, we expect the concentrations uε1 and qε1 to converge to the same
concentration. The same happens for uε2 → u2 and qε2 → u2. We denote u1, respectively u2,
the limit of (uε1)ε and (qε1)ε, respectively (uε2)ε and (qε2)ε. Adding equations (2.6a) and (2.6c) of
system (2.6) and adding equations (2.6b) and (2.6d), we obtain the system

∂tu
ε
1 + ∂tq

ε
1 + α∂xu

ε
1 = K1(uε0 − qε1)

∂tu
ε
2 + ∂tq

ε
2 − α∂xuε2 = K2(uε0 − qε2)−G(qε2).

Passing formally to the limit ε→ 0, we arrive at

2∂tu1 + α∂xu1 = K1(u0 − u1) (2.7)
2∂tu2 − α∂xu2 = K2(u0 − u2)−G(u2), (2.8)

coupled to the equation for the concentration in the interstitium obtained by passing into the
limit in equation (2.6e)

∂tu0 = K1(u1 − u0) +K2(u2 − u0) +G(u2). (2.9)

This system is complemented with the initial and boundary conditions

u1(0, x) = u0
1 + q0

1, u2(0, x) = u0
2 + q0

2, u0(0, x) = u0
0(x), (2.10)

u1(t, 0) = ub(t), u2(t, L) = u1(t, L). (2.11)

Finally, we recover a simplified system for only three unknowns. From a physical point of view
this means fusing the epithelial layer with the lumen. When we consider the limit of infinite
permeability it turns out to merge the lumen and the epithelium into a single domain. The
main purpose of this work is to make this formal computation rigorous. More precisely, the
main result reads,
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Theorem 2.1.1. Let T > 0 and L > 0. We assume that initial data and boundary conditions
satisfying assumptions (2.3), (2.4), (2.5).
Then, the weak solution (uε1, u

ε
2, q

ε
1, q

ε
2, u

ε
0) of system (2.6) converges, as ε goes to zero, to the

weak solution of reduced (or limit) problem (2.7)–(2.9) complemented with (2.10)–(2.11). More
precisely,

uεi −−−→
ε→0

ui i = 0, 1, 2, strongly in L1([0, T ]× [0, L]),

qεj −−−→
ε→0

uj j = 1, 2, strongly in L1([0, T ]× [0, L]),

where (u1, u2, u0) is the unique weak solution of limit problem (2.7)–(2.9).

The aim of this Chapter is to clarify the link between both models. In particular, we show
that when the permeability between the epithelium and the lumen is large, then system 3×3 of
(2.7), (2.8), (2.9) may be considered as a good approximation of the larger system (2.1). The
system can be seen as a particular case of the above-mentioned model introduced and studied
in [46] and [47].

Definition 2.1.1. Let u0
1(x), u0

2(x), q0
1(x), q0

2(x), u0
0(x) ∈ BV (0, L) ∩ L∞(0, L) and u1(t, 0) =

ub(t) ∈ BV (0, T ) ∩ L∞(0, T ).
We define U(t, x) = (u1(t, x), u2(t, x), q1(t, x), q2(t, x), u0(t, x)) weak solution of system (2.6)
for each fixed ε > 0 if

1. for all ϕi, ψj ∈ S with i = 0, 1, 2 j = 1, 2 and with

S = {φ ∈ C1([0, T ]× [0, L]), φ(T, x) = 0}
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it satisfies:

∫ T

0

∫ L

0
uε1(∂tϕ1 + α∂xϕ1) +

1

ε
(qε1 − uε1)ϕ1 dxdt+

+

∫ T

0
(uεb(t)ϕ1(t, 0)− uε1(t, L)ϕ1(t, L)) dt+

∫ L

0
uε1(0, x)ϕ1(0, x) dx = 0∫ T

0

∫ L

0
uε2(∂tϕ2 − α∂xϕ2) +

1

ε
(qε2 − uε2)ϕ2 dxdt+

+

∫ T

0
(uε2(t, 0)ϕ2(t, 0)− uε2(t, L)ϕ2(t, L)) dt+

∫ L

0
uε2(0, x)ϕ2(0, x) dx = 0∫ T

0

∫ L

0
qε1(∂tψ1) +K1(uε0 − qε1)ψ1 −

1

ε
(qε1 − uε1)ψ1 dxdt+

+

∫ L

0
qε1(0, x)ψ1(0, x) dx = 0∫ T

0

∫ L

0
qε2(∂tψ2) +K2(uε0 − qε2)ψ2 −

1

ε
(qε2 − uε2)ψ2 −G(qε2)ψ2 dxdt+

+

∫ L

0
qε2(0, x)ψ2(0, x) dx = 0∫ T

0

∫ L

0
uε0(∂tϕ0) +K1(qε1 − uε0)ϕ0 +K2(qε2 − uε0)ϕ0 +G(qε2)ϕ0 dxdt+

+

∫ L

0
uε0(0, x)ϕ0(0, x) dx = 0.

(2.12)

With regard to existence and uniqueness of the solution, in [47] and [46], the authors propose
a semi-discrete scheme related to numerical algorithm with a priori bounds to show the existence
of solution in [0, L]. We propose the standard approach based on fixed point theorem and we
consider the system with fixed ε > 0. We report the following existence theorem:

Theorem 2.1.2 (Existence). With previous assumptions (2.3), (2.4), (2.5) and for every fixed
ε > 0, there is a unique weak solution in (L∞([0, T ];L1(0, L)∩L∞(0, L)))5 to the problem (2.6).

2.2 Existence and uniqueness

We report our system as the following:

∂tU +A∂xU = BU + C; C =


0
0
0

−G(q2)
G(q2)

 , (2.13)
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B =


−1
ε 0 1

ε 0 0
0 −1

ε 0 1
ε 0

1
ε 0 −1

ε −K1 0 K1

0 1
ε 0 −1

ε −K2 K2

0 0 K1 K2 −K1 −K2

 , U =


u1

u2

q1

q2

u0

 , (2.14)

with coefficient A = diag(α,−α, 0, 0, 0).
We prove the existence using the Banach-Picard fixed point theorem. We consider a small
T > 0 (to be chosen later) and the map T : E → E with E = L∞([0, T ], B) Banach space and
B = L1(0, L)5. For a given function Ũ ∈ E, with Ũ = (ũ1, ũ2, q̃1, q̃2, ũ0), we define U := T (Ũ)
solution of the following problem:

∂tu1 + α∂xu1 = 1
ε (q̃1 − u1) x ∈ (0, L), t > 0

∂tu2 − α∂xu2 = 1
ε (q̃2 − u2)

∂tq1 = 1
ε (ũ1 − q1) +K1(ũ0 − q1)

∂tq2 = 1
ε (ũ2 − q2) +K2(ũ0 − q2)−G(q̃2)

∂tu0 = K1(q̃1 − u0) +K2(q̃2 − u0) +G(q̃2)

u0
1(x), u0

2(x), q0
1(x), q0

2(x), u0
0(x) ∈ BV (0, L) ∩ L∞(0, L)

u1(t, 0) = ub(t) ≥ 0 ∈ BV (0, T ) ∩ L∞(0, T );

u2(t, L) = u1(t, L) t > 0

(2.15)

For every fixed ε > 0, it is possible to define u1 and u2 with the method of characteristics.
For instance, u1(t, x) satisfies:

u1(t, x) =


u0

1(x− αt)e−
t
ε +

1

ε

∫ t

0
e−

t−s
ε q̃1(x− α(t− s), s) ds, x > αt

ub

(
t− x

α

)
e−

x
εα +

1

αε

∫ x

0
e−

1
αε

(x−y)q̃1

(
t− x− y

α
, y

)
dy, x < αt

(2.16)

with u0
1(x), ub(t) initial and boundary condition. It is possible to built u2(t, x) in the same way

using u0
2(x) and the boundary condition u2(t, L) = u1(t, L) that it is well-defined thanks to

(2.16).
In addition, it is possible also define easily the other quantities satisfying :

q1(t, x) = q0
1(x)e−( 1

ε
+K1)t +

∫ t

0
e−( 1

ε
+K1)(t−s)

(1

ε
ũ1 +K1ũ0

)
(s, x) ds,

q2(t, x) = q0
2(x)e−( 1

ε
+K2)t +

∫ t

0
e−( 1

ε
+K2)(t−s)

(1

ε
ũ2 +K1ũ0 −G(q̃2)

)
(s, x) ds,

u0(t, x) = u0
0(x)e−(K1+K2)t +

∫ t

0
e−(K1+K2)(t−s)

(
K1q̃1 +K2q̃2 +G(q̃2)

)
(s, x) ds.

Thanks to previous assumptions, the map T is an endomorphism of E.
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Proof. The proof relies on a fixed point argument inspired by [29] and it is a straightforward
adaptation from [37]. The map T is well defined thanks to the method of characteristics and
also the trace u2(t, L) is well-defined in L1(0, L) thanks to u1(t, x) definition above. Before
proving that the map T is a contractive map in the following Banach space

E = L∞([0, T ], B) || · ||E = sup
t∈(0,T )

|| · ||B,

we report a simple a priori bounds result for the solution.
- Multiplying formally by sgn each function of system (2.15) we get :

∂t|u1|+ α∂x|u1| ≤ 1
ε (|q̃1| − |u1|)

∂t|u2| − α∂x|u2| ≤ 1
ε (|q̃2| − |u2|)

∂t|q1| ≤ 1
ε (|ũ1| − |q1|) +K1(|ũ0| − |q1|)

∂t|q2| ≤ 1
ε (|ũ2| − |q2|) +K2(|ũ0| − |q2|) + |G(q̃2)|

∂t|u0| ≤ K1(|q̃1| − |u0|) +K2(|q̃2| − |u0|) + |G(q̃2)|

(2.17)

because by the 4th equation of system and since sgn(G(q̃2)) = sgn(q̃2) by definition, we have
−G(q̃2)sgn(q̃2) = −|G(q̃2)| and for the last one we have G(q̃2)sgn(u0) ≤ |G(q̃2)|.
Adding all equations of system above and integrating in [0, L], we obtain:

d

dt

∫ L

0
(|u1|+ |u2|+ |u0|+ |q1|+ |q2|) ≤ α|u1(t, 0)|+ 1

ε

∫ L

0
(|ũ1|+ |ũ2|+ |q̃1|+ |q̃2|) dx+

(K1 +K2)

∫ L

0
|ũ0| dx+K1

∫ L

0
|q̃1| dx+K2

∫ L

0
|q̃2| dx+ 2µ

∫ L

0
|q̃2| dx,

(2.18)

since u1(t, L) = u2(t, L) and non-linear term assumption (2.5) with µ = ||G||∞.
Setting ||U(t, x)||L1 =

∫ L
0 (|u1|+ |u2|+ |q1|+ |q2|+ |u0|)(t, x) dx and integrating with respect to

time, we obtain:

||U(t, x)||L1 ≤ ||U(0, x)||L1 + α

∫ T

0
|ub(s)| ds+ η

∫ T

0
||Ũ(t, x)||L1 dt, (2.19)

with η = K1 +K2 + 2µ+ 1
ε > 0, constant.

- Then, for given function (Ũ , W̃ ) ∈ E2, we define U := T (Ũ), W := T (W̃ ) and the function
U = U −W satisfies for Ũ = Ũ − W̃ :

||T (Ũ)− T (W̃ )||L1(0,L) = ||U −W ||L1(0,L) ≤ η
∫ T

0
||Ũ − W̃ ||L1(0,L). (2.20)

Then, we get :
||U||E ≤ ηT ||Ũ ||E , (2.21)

which means that as soon as T < 1/η, T is a strict contraction in the Banach space E and this
proves the existence of a unique fixed point. We can iterate the operator on [T, 2T ], [2T, 3T ] . . . ,
since the condition on T does not depend on the iteration. With this iteration process, we have
built a solution to (2.13).
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2.3 Uniform a priori estimates

In order to show the principal result of this Chapter we need to establish some uniform a priori
estimates. The strategy of the proof of Theorem 2.1.1 relies on a compactness argument. In
this Section we will omit the exponent ε in all quantities to simplify the notation.

2.3.1 Non-negativity and L1 ∩ L∞ estimates

The following lemma establishes that all concentrations of system are non-negative and this is
consistent with the biological interpretation. For the sake of simplicity, in this section we obmit
ε in the system (2.6).

Lemma 2.3.1 (Nonnegativity). Let U(t, x) be a weak solution of system (3.4) such that the
assumptions (2.3), (2.4), (2.5) hold. Then for all (t, x) ∈ (0, T )×(0, L), U(t, x) is non-negative,
i.e. u1(t, x), u2(t, x), q1(t, x), q2(t, x), u0(t, x) ≥ 0.

Proof. We are going to prove that the negative part of our functions vanishes. Using Stampac-
chia method and following the same approach of [38], we formally multiply each equation of
system (2.6) by corresponding indicator function as follows:

(∂tu1 + α∂xu1)1{u1<0} = 1
ε (q1 − u1)1{u1<0}

(∂tu2 − α∂xu2)1{u2<0} = 1
ε (q2 − u2)1{u2<0}

(∂tq1)1{q1<0} = 1
ε (u1 − q1)1{q1<0} +K1(u0 − q1)1{q1<0}

(∂tq2)1{q2<0} = 1
ε (u2 − q2)1{q2<0} +K2(u0 − q2)1{q2<0} −G(q2)1{q2<0}

(∂tu0)1{u0<0} = K1(q1 − u0)1{u0<0} +K2(q2 − u0)1{u0<0} +G(q2)1{u0<0}.

We remember that for each function u we can define positive and negative part as u+ =
max(u, 0), u− = max(−u, 0). It is possible also to write in the distribution sense:

u−i = −ui1{ui<0} ∂tu
−
i = −∂tui1{ui<0}, i = 0, 1, 2.

The same is true for other functions qj with j = 1, 2.
Taking into account the fact that:

qi1{ui<0} = (q+
i − q

−
i )1{ui<0} ≥ −q−i , i = 1, 2,

since q−i 1{ui<0} is zero or positive by definition of negative part, we obtain :

∂tu
−
1 + α∂xu

−
1 ≤ 1

ε (q−1 − u
−
1 )

∂tu
−
2 − α∂xu

−
2 ≤ 1

ε (q−2 − u
−
2 )

∂tq
−
1 ≤ 1

ε (u−1 − q
−
1 ) +K1(u−0 − q

−
1 )

∂tq
−
2 ≤ 1

ε (u−2 − q
−
2 ) +K2(u−0 − q

−
2 ) +G(q2)1{q2<0}

∂tu
−
0 ≤ K1(q−1 − u

−
0 ) +K2(q−2 − u

−
0 )−G(q2)1{u0<0}.

Adding all equations, the inequality reads

∂t(u
−
1 + q−1 + q−2 + u−2 + u−0 ) + α∂x(u−1 − u

−
2 ) ≤ G(q2)(1{q2<0} − 1{u0<0}). (2.22)
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By assumption (2.5), we have sgn(G(q2)) = sgn(q2) with [G(q2)]+ = G(q+
2 ) and [G(q2)]− =

G(q−2 ). Thus,

[G(q2)]− = G(q2)1{G(q2)<0} = G(q2)1{q2<0}, G(q2)1{u0<0} ≥ −G(q−2 ).

With these relations we can conclude G(q2)(1{q2<0} − 1{u0<0}) ≤ 0.
Then integrating (2.22) on interval [0, L] , we get:

d

dt

∫ L

0
(u−1 + q−1 + q−2 + u−2 + u−0 )(t, x) dx ≤ α(u−2 (t, L)− u−2 (t, 0)− u−1 (t, L) + u−1 (t, 0)).

Since u−1 (t, L) = u−2 (t, L) thanks to condition (2.4), it follows:

d

dt

∫ L

0
(u−1 + q−1 + q−2 + u−2 + u−0 )(t, x) dx ≤ αu−1 (t, 0) = αu−b (t).

As supposed in (2.4), the negative part of ub is zero and as supposed in (2.3) also initial condition
are non negative, then u−1 (0, x), q−1 (0, x), q−2 (0, x)u−2 (0, x), u−0 (0, x) should be necessarily equal
to zero.
We can deduce the non-negativity of solutions and it concludes the proof.

Lemma 2.3.2 (L∞ bound). Let (u1, u2, q1, q2, u0) be a solution in
(
L∞([0, T ]; (L1∩L∞)(0, L))

)5
to (2.6). Assume that (2.3), (2.4), (2.5) hold, then the solution satisfies: for a.e. (t, x) ∈
(0, T )× (0, L),

0 ≤ u0 ≤ κ(1 + t), 0 ≤ ui ≤ κ(1 + t), 0 ≤ qi ≤ κ(1 + t), i = 1, 2,

0 ≤ u2(t, 0) ≤ κ(1 + t), 0 ≤ u1(t, L) ≤ κ(1 + t),

where the constant κ ≥ max
{
‖G‖∞, ‖ub‖∞, ‖u0

0‖∞, ‖u0
i ‖∞, ‖q0

i ‖∞, i ∈ {1, 2}
}
.

Proof. We use the same method as in previous Lemma but now for the functions

wi = (ui − κ(1 + t)), i = 0, 1, 2, zj = (qj − κ(1 + t)), j = 1, 2.

We can also rewrite positive part of functions wi, zj as:

w+
i := (ui − κ(1 + t))+ = (ui − κ(1 + t))1{wi≥0} = (ui − κ(1 + t))1{ui≥κ(1+t)},

z+
j := (qj − κ(1 + t))+ = (qj − κ(1 + t))1{zj≥0} = (qj − κ(1 + t))1{qj≥κ(1+t)}.

From system (2.6) and using the fact that

zj1{wi≥0} = z+
j 1{wi≥0} − z−j 1{wi≥0} ≤ z+

j , wi1{zj≥0} ≤ w+
i ,

we get 

∂tw
+
1 + κ1{w1≥0} + α∂xw

+
1 ≤ 1

ε (z+
1 − w

+
1 )

∂tw
+
2 + κ1{w2≥0} − α∂xw+

2 ≤ 1
ε (z+

2 − w
+
2 )

∂tz
+
1 + κ1{z1≥0} ≤ 1

ε (w+
1 − z

+
1 ) +K1(w+

0 − z
+
1 )

∂tz
+
2 + κ1{z2≥0} ≤ 1

ε (w+
2 − z

+
2 ) +K2(w+

0 − z
+
2 )−G(q2)1{z2≥0}

∂tw
+
0 + κ1{w0≥0} ≤ K1(z+

1 − w
+
0 ) +K2(z+

2 − w
+
0 ) +G(q2)1{w0≥0}.

(2.23)
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Adding all equations, we deduce

∂t(w
+
1 + w+

2 + z+
1 + z+

2 ) + α∂x(w+
1 − w

+
2 ) ≤ − κ1{w0≥0}

+G(q2)(1{w0≥0} − 1{z2≥0}).

Integrating with respect to x yields

d

dt

∫ L

0
(w+

1 + w+
2 + z+

1 + z+
2 + w+

0 )(t, x) dx

≤ α(w+
2 (t, L)− w+

2 (t, 0)− w+
1 (t, L) + w+

1 (t, 0)) +

∫ L

0
(G(q2)− κ)1{w0≥0} dx,

where we use the fact that G(q2) ≥ 0 from assumption (2.5) since q2 ≥ 0 from previous Lemma.
From the boundary conditions in (2.1), we have for all t ≥ 0, w+

2 (L) = [u2(L) − κ(1 + t)]+ =
[u1(L)− κ(1 + t)]+ = w+

1 (L). Then,

d

dt

∫ L

0
(w+

1 + w+
2 + z+

1 + z+
2 + w+

0 )(t, x) dx+ αw+
2 (t, 0)

≤ α(ub(t)− κ(1 + t))+ + (‖G‖∞ − κ)

∫ L

0
1{w0≥0} dx.

If we choose arbitrary constant κ ≥ max {‖G‖∞, ‖ub‖∞}, it implies:

d

dt

∫ L

0
(w+

1 + w+
2 + z+

1 + z+
2 + w+

0 )(t, x) dx+ αw+
2 (t, 0) ≤ 0,

which allows us to obtain the estimates provided κ large enough. In this case it has been showed
the vanishing of positive part to conclude in other words that:

ui − κ(1 + t) ≤ 0, i = 0, 1, 2; qj − κ(1 + t) ≤ 0, j = 1, 2.

For the last estimate on u1(t, L), we add the first and the third inequalities in system (2.23)
and integrate on (0, L),

d

dt

∫ L

0
(w+

1 + z+
1 ) dx+ αw+

1 (t, L) ≤ αw+
1 (t, 0) +K1

∫ L

0
(w+

0 − z
+
1 ) dx

− κ
∫ L

0
(1{w1≥0} + 1{z1≥0}) dx.

Integrating on (0, T ) and since we have proved above that w+
0 = 0 and z+

1 = 0, we arrive at

α

∫ T

0
w+

1 (t, L) dt ≤ α
∫ T

0
w+

1 (t, 0) dt = 0,

for κ ≥ ‖ub‖∞.
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Lemma 2.3.3 (L1 estimate). Let T > 0 and let (u1, u2, q1, q2, u0) be a weak solution of system
(3.4) in

(
L∞([0, T ]; (L1 ∩ L∞)(0, L))

)5
. We define:

H(t) =

∫ L

0
(|u1|+ |u2|+ |u0|+ |q1|+ |q2|)(t, x) dx.

Then, under hypothesis (2.3), (2.4), (2.5) the following a priori estimate, uniform in ε > 0,
holds:

H(t) ≤ α‖ub‖L1(0,T ) +H(0), ∀t > 0.

Moreover the following inequalities hold:∫ T

0
|u2(t, 0)| dt ≤ ‖ub‖L1(0,T ) +

1

α
H(0),

and ∫ T

0
|u1(t, L)| dt ≤

∫ L

0
(|u0

1(x)|+ |q0
1(x)|) dx+ CT

with C > 0 constant.

Proof. Since from Lemma 2.3.1 all concentrations are non-negative, we may formally write from
system (2.6) 

∂t|u1|+ α∂x|u1| = 1
ε (|q1| − |u1|)

∂t|u2| − α∂x|u2| = 1
ε (|q2| − |u2|)

∂t|q1| = 1
ε (|u1| − |q1|) +K1(|u0| − |q1|)

∂t|q2| = 1
ε (|u2| − |q2|) +K2(|u0| − |q2|)− |G(q2)|

∂t|u0| = K1(|q1| − |u0|) +K2(|q2| − |u0|) + |G(q2)|.

(2.24)

Otherwise, to obtain the absolute value without having non-negativity of functions, we should
have formally multiplied by the sign of each concentrations respectively. Adding all equations
in (2.24) and integrating on (0, L), we get, recalling the boundary condition u1(t, L) = u2(t, L),

d

dt
H(t) + α|u2(t, 0)| = α|u1(t, 0)| = α|ub(t)|. (2.25)

Integrating now with respect to time, we obtain:

H(t) + α

∫ t

0
|u2(s, 0)| ds ≤ α

∫ t

0
|ub(s)| ds+H(0). (2.26)

with H(t) previously defined. It gives the first two estimates of the Lemma. Finally, to obtain
the last inequality, we add equations (2.6a) and (2.6c) and integrate on (0, L) to get

d

dt

∫ L

0
(|u1|+ |q1|) dx+ α|u1(t, L)| ≤ α|ub(t)|+K1

∫ L

0
|u0| dx.

Since we have shown that
∫ L

0 |u0| dx ≤ H(t) < ∞, we can conclude after integrating with
respect to time.
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2.3.2 Time derivatives estimates

The estimates about time derivatives are more subtle due to boundary conditions. In order to
take care of the initial layers, we introduce an auxiliary system. When ε → 0 the concentra-
tions u1, q1 and u2, q2 approach very quickly each other becoming roughly speaking the same.
Introducing this following system we can evaluate this ’difference’ between them. It follows,

∂tũ1 = q̃1 − ũ1

∂tũ2 = q̃2 − ũ2

∂tq̃1 = ũ1 − q̃1

∂tq̃2 = ũ2 − q̃2,

(2.27)

with initial conditions

ũ1(0, x) = q0
1 − u0

1, ũ2(0, x) = q0
2 − u0

2, q̃1(0, x) = 0, q̃2(0, x) = 0.

Actually, this system may be solved explicitly and we obtain

ũi(t) =
1

2
(q0
i − u0

i )(1 + e−2t); q̃i(t) =
1

2
(q0
i − u0

i )(1− e−2t), i = 1, 2. (2.28)

In addition, we introduce the following quantities

U1 = u1 + ũ1( tε , x)

U2 = u2 + ũ2( tε , x)

Q1 = q1 + q̃1( tε , x)

Q2 = q2 + q̃2( tε , x)

U0 = u0.

(2.29)

The next purpose will be to prove the uniform bounds on the time derivatives of these functions
with the following arguments,

Proposition 2.3.1. Let T > 0. Under hypothesis (2.3), (2.4), (2.5), we set:

H̃t(t) =

∫ L

0

(
|∂tU1|+ |∂tU2|+ |∂tQ1|+ |∂tQ2|+ |∂tU0|

)
(t, x) dx,

with functions U1, U2, U0, Q1, Q2 as defined in (2.29). Then, it holds:∫ T

0
H̃t(t) dt+

∫ T

0
|∂tU2(t, 0)| dt ≤ C.

Moreover, we have ∫ T

0
|∂tU1(t, L)| dt ≤ C. (2.30)

As a consequence, we deduce the following estimates on the time derivatives:
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Corollary 2.3.1 (Time derivatives estimates). Let T > 0, under above assumptions, there
exists a constant CT > 0 such that we have the following uniform estimates :∫ L

0
(|∂tu1|+ |∂tu2|+ |∂tu0|+ |∂tq1|+ |∂tq2|)(t, x) dx ≤ CT (2.31)∫ T

0
|u2,t(t, 0)| dt ≤ CT , (2.32)∫ T

0
|u1,t(t, L)| dt ≤ CT . (2.33)

Proof of Proposition 2.3.1. From system (2.6) and the functions defined in (2.29), we deduce

∂tU1 + ∂xU1 = 1
ε (Q1 − U1) + ∂xũ1( tε , x)

∂tU2 − ∂xU2 = 1
ε (Q2 − U2)− ∂xũ2( tε , x)

∂tQ1 = 1
ε (U1 −Q1) +K1(u0 −Q1) +K1q̃1( tε , x)

∂tQ2 = 1
ε (U2 −Q2) +K2(u0 −Q2) +K2q̃2( tε , x)−G(q2)

∂tu0 = K1(Q1 − u0) +K2(Q2 − u0)−K1q̃1( tε , x)−K2q̃2( tε , x) +G(q2)

(2.34)

with following initial and boundary conditions:

U1(t, 0) = u1(t, 0) + ũ1(t, 0) = ub(t) + ũ1( tε , 0), t ∈ (0, T ),
U2(t, L) = U2(t, L) + ũ2( tε , L), t ∈ (0, T ),
U1(0, x) = u1(0, x) + ũ1(0, x) = q0

1(x), x ∈ (0, L),
U2(0, x) = u2(0, x) + ũ2(0, x) = q0

2(x),
Q1(0, x) = q1(0, x) + q̃1(0, x) = q0

1(x),
Q2(0, x) = q2(0, x) + q̃2(0, x) = q0

2(x).

(2.35)

Taking the derivative with respect to time in system (2.34), we compute

∂tU1,t + ∂xU1,t = 1
ε (Q1,t − U1,t) + 1

ε∂xũ1,t

∂tU2,t − ∂xU2,t = 1
ε (Q2,t − U2,t)− 1

ε∂xũ2,t

∂tQ1,t = 1
ε (U1,t −Q1,t) +K1(u0,t −Q1,t) + 1

εK1q̃1,t

∂tQ2,t = 1
ε (U2,t −Q2,t) +K2(u0,t −Q2,t) + 1

εK2q̃2,t −G′(q2)q2,t

∂tu0,t = K1(Q1,t − u0,t) +K2(Q2,t − u0,t)− 1
εK1q̃1,t − 1

εK2q̃2,t +G′(q2)q2,t.

We can formally multiply each equation respectively by sgn(Ui,t) and sgn(Qj,t), with i = 1, 2, 0
and j = 1, 2, as in [33]. It implies

∂t|U1,t|+ ∂x|U1,t| ≤ 1
ε (|Q1,t| − |U1,t|) + |1ε∂xũ1,t|

∂t|U2,t| − ∂x|U2,t| ≤ 1
ε (|Q2,t| − |U2,t|) + |1ε∂xũ2,t|

∂t|Q1,t| ≤ 1
ε (|U1,t| − |Q1,t|) +K1(|U0,t| − |Q1,t|) + |1εK1q̃1,t|

∂t|Q2,t| ≤ 1
ε (|U2,t| − |Q2,t|) +K2(|U0,t| − |Q2,t|) + |1εK2q̃2,t|
+|G′(q2)1

ε q̃2,t| −G′(q2)|Q2,t|
∂t|U0,t| ≤ K1(|Q1,t| − |U0,t|) +K2(|Q2,t| − |U0,t|) + |1εK1q̃1,t|

+|1εK2q̃2,t|+ |G′(q2)1
ε q̃2,t|+G′(q2)|Q2,t|.

(2.36)
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Indeed, we justify 4th and 5th inequalities of previous system with underlying arguments. On
the one hand, we have

−G′(q2)q2,tsgn(Q2,t) = −G′(q2)
(
Q2,t(t, x)− 1

ε
q̃2,t

( t
ε
, x
))
sgn(Q2,t)

= −G′(q2)|Q2,t(t, x)|+G′(q2)
1

ε
q̃2,t

( t
ε
, x
)
sgn(Q2,t)

≤ −G′(q2)|Q2,t|+
1

ε
|G′(q2)q̃2,t|.

On the other hand

−G′(q2)q2,tsgn(U0,t) = −G′(q2)
(
Q2,t(t, x)− 1

ε
q̃2,t

( t
ε
, x
))
sgn(U0,t)

≤ G′(q2)|Q2,t|+
1

ε
|G′(q2)q̃2,t|,

where we use for the last inequality that G is non-decreasing from assumption (2.5). Summing
all equations and integrating on (0, L), we obtain

d

dt
H̃t(t) + |U2,t(t, 0)| ≤ F1(t) + F2(t) + F3(t) + F4(t), (2.37)

where
F1(t) = |U2,t(t, L)| − |U1,t(t, L)|; F2(t) = |U1,t(t, 0)|;

F3(t) =

∫ L

0

∣∣∣1
ε
∂xũ2,t

( t
ε
, x
)∣∣∣ dx+

∫ L

0

∣∣∣1
ε
∂xũ1,t

( t
ε
, x
)∣∣∣ dx;

F4(t) = 2K1

∫ L

0

∣∣∣1
ε
q̃1,t(

t

ε
, x)
∣∣∣ dx+ 2(‖G′‖∞ +K2)

∫ L

0

∣∣∣1
ε
q̃2,t(

t

ε
, x)
∣∣∣ dx.

Integrating (2.37) in time, we get

H̃t(t) +

∫ T

0
|U2,t(t, 0)| dt ≤

∫ T

0
(F1(t) + F2(t) + F3(t) + F4(t)) dt+ H̃t(0). (2.38)

Let us consider each term of the right hand side of (2.38) separately:

• F1: Because of boundary condition u2,t(t, L) = u1,t(t, L) and

ũ1,t(t) = e−2t(u0
1 − q0

1), ũ2,t(t) = e−2t(u0
2 − q0

2), (2.39)

(see (2.28)), we can conclude by definition (2.29) and the change of variable τ = t
ε that∫ T

0
(|U2,t(t, L)| − |U1,t(t, L)|) dt ≤

∫ T

0

∣∣∣1
ε

(ũ2,t − ũ1,t)(
t

ε
, L)
∣∣∣ dt

≤
∫ T

ε

0
|(ũ2,t − ũ1,t)(τ, L)| dτ

≤ 1

2

(
‖u0

1 − q0
1‖∞ + ‖u0

2 − q0
2‖∞

)
.
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• F2: Thanks to assumptions (2.3) and since∫ T

0

∣∣∣1
ε
ũ1,t(

t

ε
, x)
∣∣∣ dt =

∫ T
ε

0
|(u0

1(x)− q0
1(x))e−2τ | dτ,

from the expression of ũ1,t in (2.39) and the change of variable τ = t
ε , we get∫ T

0
|U1,t(t, 0)| dt ≤

∫ T

0
|u′b(s)| ds+

∫ T
ε

0
|(u0

1(x)− q0
1(x))e−2τ | dτ

≤
∫ T

0
|u′b(s)| ds+

1

2
‖u0

1 − q0
1‖∞.

• F3: With the change of variable τ = t
ε , we have, using again (2.39),∫ T

0

∫ L

0

∣∣∣1
ε
∂xũi,t(

t

ε
, x)
∣∣∣ dxdt =

∫ T
ε

0

∫ L

0
|∂xũi,t(τ, x)| dxdτ

≤ 1

2
‖∂x(u0

i − q0
i )‖L1(0,L),

which is uniformly bounded thanks to assumption on the initial data in (2.3).

• F4: as above, we have∫ T

0

∫ L

0

∣∣∣1
ε
q̃i,t(

t

ε
, x)
∣∣∣ dxdt =

∫ T
ε

0

∫ L

0
|q̃i,t(τ, x)| dxdτ

≤ 1

2
‖q0
i − u0

i )‖L1(0,L),

thanks to the fact that ∂tq̃i(τ, x) = (q0
i (x)− u0

i (x))e−2τ with i = 1, 2.

We still have to control the term H̃t(0) in (2.38), where

H̃t(0) =

∫ L

0
(|U1,t(0, x)|+ |U2,t(0, x)|+ |Q1,t(0, x)|+ |Q2,t(0, x)|+ |U0,t(0, x)|) dx.

Therefore, we bound each term of the right-hand side separately.

• For the first term, we use the first equation of (2.34) to write

∂tU1(0, x) =
1

ε
(Q1(0, x)− U1(0, x)) + ∂xũ1(0, x)− ∂xU1(0, x).

Recalling thatQ1(0, x) = q0
1(x) and U1(0, x) = q0

1(x) as defined in (2.35) we get: ∂tU1(0, x) =
∂x(q0

1(x)− u0
1(x))− ∂xU1(0, x) = −∂xu0

1(x), then∫ L

0
|∂tU1(0, x)| dx ≤

∫ L

0
|∂xu0

1(x)| dx <∞,

since u0
1(x) belongs to BV (0, L) (see assumption (2.3)).



Uniform a priori estimates 31

• For the second term, by 2nd equation of system (2.34) with initial condition in (2.35), we
get

∂tU2(0, x) =
1

ε
(Q2(0, x)− U2(0, x)) + ∂xũ2(0, x) + ∂xU2(0, x).

As above, recalling that Q2(0, x) = q0
1(x) and U2(0, x) = q0

2(x), it implies∫ L

0
|∂tU2(0, x)| dx ≤

∫ L

0
|∂xu0

2(x)| dx.

• For the third term, by 3rd equation of system (2.34), we have

∂tQ1(0, x) =
1

ε
(U1(0, x)−Q1(0, x)) +K1(u0(0, x)−Q1(0, x)) +K1q̃1(0, x),

Then with the initial conditions chosen for ũi and q̃i, we get∫ L

0
|∂tQ1(0, x)| dx ≤ K1

∫ L

0
|(u0

0(x)− q0
1(x))| dx <∞.

• From the 4th equation of system (2.34), we have ∂tQ2(0, x) = 1
ε (U2(0, x) − Q2(0, x)) +

K2(u0(0, x)−Q2(0, x)) +K2q̃2(0, x)−G(q2), which implies∫ L

0
|∂tQ2(0, x)| dx ≤ K2

∫ L

0
|(u0

0(x)− q0
2(x))| dx+ ‖G‖∞.

• Finally, with the last equation in (2.34) we get ∂tU0(0, x) = K1(Q1(0, x) − U0(0, x)) +
K2(Q2(0, x)− u0(0, x))−K1q̃1(0, x)−K2q̃2(0, x) +G(q2). It implies∫ L

0
|∂tU0(0, x)| dx ≤ K1‖q0

1 − u0
0‖L1(0,L) +K2‖q0

2 − u0
0‖L1(0,L) + ‖G‖∞.

We conclude from (2.38) and the above calculations that

H̃t(t) +

∫ T

0
|U2,t(t, 0)| dt ≤ H̃t(0) +

∫ t

0
(F1 + F2 + F3 + F4)(s) ds <∞.

Finally, to recover (2.30) we add the 1st and 3rd inequalities in (2.36) and integrate on
(0, T )× (0, L),∫ L

0
(|U1,t(T, x)| − |U1,t(0, x)|) dx+

∫ L

0
(|Q1,t(T, x)| − |Q1,t(0, x)|) dx

+

∫ T

0
(|U1,t(t, L)| − |U1,t(t, 0)|) dt ≤

≤
∫ T

0

∫ L

0

(
K1(|U0,t(t, x)| − |Q1,t(t, x)|) +

K1

ε
|q̃1,t(t, x)|+ 1

ε
|∂xũ1,t(t, x)|

)
dxdt.
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Then, we get

∫ L

0
(|U1,t(T, x)|+ |Q1,t(T, x)|) dx+

∫ T

0
|U1,t(t, L)| dt

≤
∫ T

0
|U1,t(t, 0)| dt+

∫ L

0
(|U1,t(0, x)|+ |Q1,t(0, x)|) dx

+

∫ T

0

∫ L

0

(
K1|U0,t(t, x)|+ K1

ε
|q̃1,t(t, x)|+ 1

ε
|∂xũ1,t(t, x)|

)
dxdt.

We have already proved that the second term of the right-hand side is bounded. It has also
been showed above that U0,t is uniformly bounded in L1((0, T )× (0, L)).
From (2.35), we have U1,t(t, 0) = u′b(t) + 1

ε ũ1,t(
t
ε , 0), see also in term F2. As above, we use

ũ1 and q̃1 expressions and a change of variable to bound each term of the right hand side. It
concludes the proof of Proposition 2.3.1.

Proof of Corollary 2.3.1. We recall the expressions

U1 = u1 + ũ1, U2 = u2 + ũ2, U0 = u0, Q1 = q1 + q̃1, Q2 = q2 + q̃2.

By triangle inequality we have for i = 1, 2,

‖∂tui‖L1([0,T ]×[0,L]) ≤ ‖∂tUi‖L1([0,T ]×[0,L]) +
1

ε
‖∂tũi(t/ε, x)‖L1([0,T ]×[0,L]),

‖∂tqi‖L1([0,T ]×[0,L]) ≤ ‖∂tQi‖L1([0,T ]×[0,L]) +
1

ε
‖∂tq̃i(t/ε, x)‖L1([0,T ]×[0,L]).

The first terms of the right hand side are bounded from Proposition 2.3.1. For the second terms,
we have, as above,∫ T

0

∫ L

0

1

ε

∣∣∣∂tq̃i( t
ε
, x)
∣∣∣ dxdt =

∫ T

0

∫ L

0

∣∣∣1
ε

(q0
i (x)− u0

i (x))e−2 t
ε

∣∣∣ dxdt <∞,∫ T

0

∫ L

0

1

ε

∣∣∣∂tũi( t
ε
, x)
∣∣∣ dxdt =

∫ T

0

∫ L

0

∣∣∣1
ε

(u0
i (x)− q0

i (x))e−2 t
ε

∣∣∣ dxdt <∞.
Furthermore, the expression in (2.38) leads us to∫ T

0
|U2,t(t, 0)| dt ≤ CT .

By triangle inequality, it implies (2.32).
To recover (2.33), we notice that by definition of U1 and using again triangle inequality, we

get

|u1,t(t, L)| ≤ |U1,t(t, L)|+ 1

ε
|ũ1,t(

t

ε
, L)| ≤ |U1,t(t, L)|+ 1

ε
e−

2t
ε ‖q0

1 − u0
1‖L∞ .

Integrating with respect to time as previously done in similar term and using (2.30) allows us
to conclude the proof.
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Lemma 2.3.4 (Space derivatives estimates). Let T > 0. Let us assume that (2.3), (2.4),
(2.5) hold. Then, the space derivatives of functions u1, u2 satisfy the following uniform in ε
estimate : ∫ L

0
(|∂xu1(t, x)|+ |∂xu2(t, x)|) dxdt ≤ CT ,

for some nonnegative constant CT .

Proof. Adding equation (2.6a) with (2.6c) and also (2.6b) with (2.6d) we get

α∂xu1 = K1(u0 − q1)− ∂tu1 − ∂tq1,

−α∂xu2 = K2(u0 − q2)− ∂tu2 − ∂tq2 −G(q2).

Using Corollary 2.3.1 and (2.5), the right hand sides are uniformly bounded in L1([0, L] ×
[0, T ]).

2.4 Convergence

In this section, we prove the main result of this Chapter.
Proof of Theorem 2.1.1. The proof is divided into several steps.

1st step. Convergence.
From Lemma 2.3.2, Lemma 2.3.3 and Corollary (2.3.1), we deduce that the sequences (uε1)ε and
(uε2)ε are uniformly bounded in L∞ ∩BV ((0, T )× (0, L)). Thanks to the Helly’s theorem (see
[5], [25] or also [14]), we deduce that, up to extraction of a subsequence,

uε1 −−−→
ε→0

u1 strongly in L1([0, T ]× [0, L]),

uε2 −−−→
ε→0

u2 strongly in L1([0, T ]× [0, L]),

with limit function u1, u2 ∈ L∞ ∩BV ((0, T )× (0, L)).
By equations (2.6a), we know that:

‖qε1 − uε1‖L1 ≤ Cε(‖∂tuε1‖L1 + ‖∂xuε1‖L1),

which tends to zero as ε goes to 0 thanks to the bounds in Corollary 2.3.1 and Lemma 2.3.4.
Therefore, qε1 −−−→

ε→0
u1 strongly in L1((0, T )× (0, L)) (up to an extraction). Basically,

||qε1 − u1||L1 = ||qε1 − uε1 + uε1 − u1||L1 ≤ ||qε1 − uε1||L1 + ||uε1 − u1||L1 .

By the same token, we can deduce qε2 −−−→
ε→0

u2 strongly in L1((0, T )×(0, L)) (up to an extraction).
Moreover, since G is Lipschitz-continuous, when ε goes to zero, we have

‖G(qε2)−G(u2)‖L1((0,T )×(0,L)) −→ 0.

For the convergence of uε0, let us first denote u0 a solution to the equation

∂tu0 = K1(u1 − u0) +K2(u2 − u0) +G(u2).
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We recall that sgn(uε − u0)∂t(u
ε
0 − u0) = ∂t|uε0 − u0| in the sense of distributions. Then,

taking the last equation of system (2.6), subtracting by this latter equation and multiplying by
sgn(uε0 − u0), we get

∂t|uε0 − u0| ≤ K1|qε1 − u1|+K2|qε2 − u2|+ (K1 +K2)|u0 − uε0|+ |G(qε2)−G(u2)|
≤ K1|qε1 − u1|+K2|qε2 − u2|+ (K1 +K2)|u0 − uε0|+ ‖G′‖∞|qε2 − u2|.

Using a Grönwall Lemma, we get, after an integration on [0, L],∫ L

0
|uε0 − u0|(t, x) dx ≤

∫ L

0
e(K1+K2)t|u0 − uε0|(0, x) dx

+K1

∫ L

0

∫ T

0
e(K1+K2)(t−s)|qε1 − u1|(s, x) dsdx

+ (‖G′‖∞ +K2)

∫ L

0

∫ T

0
e(K1+K2)(t−s)|qε2 − u2|(s, x) dsdx.

By previous arguments, we conclude that

uε0 −−−→
ε→0

u0 strongly in L1((0, T )× (0, L)).

For the boundary terms, we deduce from (2.32) and (2.33) and Lemma 2.3.2 and Lemma
2.3.3, that the sequences (uε1(t, L))ε and (uε2(t, 0))ε are uniformly bounded in L∞ ∩ BV (0, T ).
Hence, by Helly’s compactness theorem, we may extract subsequence, still denoted (uε1(t, L))ε
and (uε2(t, 0))ε, which converge strongly in L1(0, T ). We denote by u1

L and u2
0 their respective

limits.

2nd step. Limiting system.
We pass to the limit into the weak formulation of system (2.6). Let ϕ1 and ψ1 be two test
functions such that ϕ1(T ) = ψ1(T ) = 0. For the first and the third equation in system (2.6),
we have

−
∫ T

0

∫ L

0
uε1(∂tϕ1 + α∂xϕ1) dxdt =

∫ T

0
(ub(t)ϕ1(t, 0)− uε1(t, L)ϕ1(t, L)) dt

+

∫ L

0
u0

1(x)ϕ1(0, x) dx+

∫ T

0

∫ L

0

1

ε
(qε1 − uε1)ϕ1 dxdt,

−
∫ T

0

∫ L

0
qε1∂tψ1 dxdt =

∫ L

0
q0

1(x)ψ1(0, x) dx−
∫ T

0

∫ L

0

1

ε
(qε1 − uε1)ψ1 dxdt

+K1

∫ T

0

∫ L

0
(uε0 − qε1)ψ1 dxdt.

Taking ϕ1 = ψ1 and adding the two equations,

−
∫ T

0

∫ L

0
( (uε1 + qε1)∂tϕ1 + uε1α∂xϕ1) dxdt =

∫ T

0
(ub(t)ϕ1(t, 0)− uε1(t, L)ϕ1(t, L)) dt

+

∫ L

0
u0

1(x)ϕ1(0, x) dx+

∫ L

0
q0

1(x)ϕ1(0, x) dx+K1

∫ T

0

∫ L

0
(uε0 − qε1)ϕ1 dxdt,
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then we may pass to the limit ε→ 0 in the resulting identity thanks to the above results of
convergence and we obtain

−
∫ T

0

∫ L

0
u1(2∂tϕ1 + α∂xϕ1) dxdt =

∫ T

0
(ub(t)ϕ1(t, 0)− u1

L(t)ϕ1(t, L)) dt

+

∫ L

0
(u0

1(x) + q0
1(x))ϕ1(0, x) dx+K1

∫ T

0

∫ L

0
(u0 − q1)ϕ1 dxdt.

This is the weak formulation of solution to system (2.7) with initial condition (2.10) and bound-
ary condition u1(t, L) = u1

L.
By the same token for the second and fourth equations in the weak formulation of system

(2.6), for any test functions ϕ2 and ψ2 such that ϕ2(T ) = ψ2(T ) = 0, we have

−
∫ T

0

∫ L

0
uε2(∂tϕ2 + α∂xϕ2) dxdt =

∫ T

0
(uε2(t, 0)ϕ2(t, 0)− uε1(t, L)ϕ2(t, L)) dt

+

∫ L

0
u0

2(x)ϕ2(0, x) dx+

∫ T

0

∫ L

0

1

ε
(qε2 − uε2)ϕ2 dxdt,

−
∫ T

0

∫ L

0
qε2∂tψ2 dxdt =

∫ L

0
q0

2(x)ψ2(0, x) dx−
∫ T

0

∫ L

0

1

ε
(qε2 − uε2)ψ2 dxdt

+K2

∫ T

0

∫ L

0
(uε0 − qε2)ψ2 dxdt−

∫ T

0

∫ L

0
G(qε2)ψ2 dxdt.

Taking ϕ2 = ψ2 and adding the two equations, we may pass to the limit ε→ 0 in the resulting
identity thanks to the above results of convergence, we obtain

−
∫ T

0

∫ L

0
u2(2∂tϕ2 + α∂xϕ2) dxdt =

∫ T

0
(u2

0(t)ϕ2(t, 0)− u1
L(t)ϕ2(t, L)) dt

+

∫ L

0
(u0

2(x) + q0
2(x))ϕ2(0, x) dx+K2

∫ T

0

∫ L

0
(u0 − q2)ϕ2 dxdt

−
∫ T

0

∫ L

0
G(q2)ϕ2 dxdt.

This is the weak formulation of (2.8) with initial conditions (2.10) and boundary conditions
u2(t, L) = u1

L. Passing to the limit in the weak formulation of the equation for uε0 is straight-
forward. Therefore, we recover (2.7)-(2.8) with initial and boundary conditions (2.10)-(2.11).
Finally, since the solution to this latter system is unique, we deduce that the whole sequence
converges. It concludes the proof of Theorem 2.1.1.



Chapter 3

On the role of the epithelium in a
model of sodium exchange in renal
tubules

The results presented in this Chapter follow by the collaboration with Aurélie Edwards, Vuk
Milišić and Nicolas Vauchelet, [26].
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Figure 3.1: Simplified model of loop of Henle. q1/q2 and u1/u2 denote solute concentration in
the epithelial layer and lumen of the descending/ascending limb, respectively.

3.1 Introduction

As already explained in the Introduction, one of the main functions of the kidneys is to filter
metabolic wastes and toxins from plasma and excrete them in urine. The kidneys also play a
key role in regulating the balance of water and electrolytes, long-term blood pressure, as well
as acid-base equilibrium. The structural and functional units of the kidney are called nephrons,
which number about 1 million in each human kidney [3].

Blood is first filtered by glomerular capillaries and then the composition of the filtrate varies
as it flows along different segments of the nephron : the proximal tubule, Henle’s loop (which is
formed by a descending limb and an ascending limb), the distal tubule, and the collecting duct.
In this study we present a simplified mathematical model of solute transport in Henle’s loop.
In our simplified approach, the loop of Henle is represented as two tubules in a counter-current
arrangement, the descending and ascending limb are considered to be rigid cylinders of length
L lined by a layer of epithelial cells. Water and solute reabsorption from the luminal fluid
into the interstitium proceeds in two steps : water and solutes cross first the apical membrane
at the lumen-cytosol interface and then the basolateral membrane at the cytosol-interstitium
interface, [52]. A schematic representation of the model is given in Figure 3.1.

The energy that drives tubular transport is provided by Na+/K+-ATPase, an enzyme that
couples the hydrolysis of ATP to the pumping of sodium (Na+) ions out of the cell and potas-
sium (K+) ions into the cell, across the basolateral membrane. The electrochemical potential
gradients resulting from this active transport mechanism in turn drive the passive transport
of ions across other transporters, via diffusion or coupled transport. We refer to diffusion as
the biological process in which a substance tends to move from an area of high concentration
to an area of low concentration [41, 45]. As described in the Introduction 1, in the absence of
electrical forces, the diffusive solute flux from compartment 1 to compartment 2 (expressed in
[mol.m−1.s−1]) is given by:

Jdiffusion = P`(u2 − u1),
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where P [m.s−1] is the permeability of the membrane to the considered solute, ` the perimeter
of the membrane, and u1 and u2 are the respective concentrations of the solute in compartments
1 and 2.

We assume that the volumetric flow rate in the luminal fluid (denoted by α > 0) remains
constant, i.e. there is no transepithelial water transport. The present model focuses on tubular
Na+ transport. We recall the main variables and parameters:

• u1 and u2, denote respectively the concentration of Na+ ([mol.m−3]) in the lumen of the
descending and ascending limb,

• q1 and q2 are the concentration of Na+ respectively in the epithelial cells of the descending
and ascending limbs

• u0 in the interstitium,

• P1 and P2 denote respectively the permeability to Na+ of the membrane separating the
lumen and the epithelial cell of the descending and ascending limb,

• P1,e denotes the permeability to Na+ of the membrane separating the epithelial cell of the
descending limb and the interstitium.

In this study the Na+ permeability at the interface between the epithelial cell of the ascending
limb and the interstitium is taken to be negligible, i.e. P2,e = 0. The re-absorption or secre-
tion of ions generates electrical potential differences across membranes but here the impact of
transmembrane potentials on Na+ transport is not taken into account.

The concentrations depend on the time t and the spatial position x ∈ [0, L]. The dynamics
of Na+ concentration is given by the following model on (0,+∞)× (0, L)

a1
∂u1

∂t
+ α

∂u1

∂x
= J1, a2

∂u2

∂t
− α∂u2

∂x
= J2, (3.1)

a3
∂q1

∂t
= J3, a4

∂q2

∂t
= J4, a0

∂u0

∂t
= J0. (3.2)

The parameters ai, for i = 0, 1, 2, 3, 4, denote positive constants defined as:

a1 = πr2
1, a2 = πr2

2, a3 = π(r2
1,e − r2

1), a4 = π(r2
2,e − r2

2), a0 = π
(r2

1,e + r2
2,e

2

)
. (3.3)

In these equations, ri, i = 1, 2, denotes the inner radius of tubule i, whereas ri,e denotes the
outer radius of tubule i, which includes the epithelial layer. The fluxes Ji describe the ionic
exchanges between the different domains modeled in the following way:

J1 = 2πr1P1(q1 − u1), J2 = 2πr2P2(q2 − u2),

J3 = 2πr1P1(u1 − q1) + 2πr1,eP1,e(u0 − q1),

J4 = 2πr2P2(u2 − q2)− 2πr2,eG(q2),

J0 = 2πr1P1,e(q1 − u0) + 2πr2,eG(q2).
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In the ascending limb (tubule 2), we also consider the active reabsorption that is mediated by
Na+/K+-ATPase, which pumps 3 Na+ ions out of the cell in exchange for 2 K+ ions. The pump
is described using the Michaelis-Menten kinetics, [16]:

G(q2) = Vm

[
q2

KM,2 + q2

]3

.

The dynamics of ionic concentrations is given by the following model:

a1∂tu1(t, x) + α∂xu1(t, x) = J1(t, x)

a2∂tu2(t, x)− α∂xu2(t, x) = J2(t, x)

a3∂tq1(t, x) = J3(t, x)

a4∂tq2(t, x) = J4(t, x)

a0∂tu0(t, x) = J0(t, x).

(3.4)

We set the boundary conditions :

u1(t, 0) = ub(t), u2(t, L) = u1(t, L), t > 0, (3.5)

where ub is a given function in L∞(R+) ∩ L1
loc(R+), which is such that limt→∞ ub(t) = ūb for

some positive constant ūb > 0.
Finally, the system is complemented with initial conditions

u1(0, x) = u0
1(x), u2(0, x) = u0

2(x), u0(0, x) = u0
0(x),

q1(0, x) = q0
1(x), q2(0, x) = q0

2(x).

We simplify the notation as already explained and we will refer to this as the dynamic system
and then (3.4) reads :

a1∂tu1 + α∂xu1 = k(q1 − u1) (3.6a)

a2∂tu2 − α∂xu2 = k(q2 − u2) (3.6b)

a3∂tq1 = k(u1 − q1) +K1(u0 − q1) (3.6c)

a4∂tq2 = k(u2 − q2)−G(q2) (3.6d)

a0∂tu0 = K1(q1 − u0) +G(q2). (3.6e)

with

G(q2) = Vm,2

[
q2

KM,2 + q2

]3

, Vm,2 := 2πr2,eVm. (3.7)

The existence and uniqueness of vector solution u = (u1, u2, q1, q2, u0) to this system are in-
vestigated in the Chapter 2 and in [27]. Several previous works have neglected the epithelium
region (see e.g. [47, 46]). The first goal of this work is to study the effects of this region in the
mathematical model. The main indicator quantifying these effects is the parameter k which
accounts for the permeability between the lumen and the epithelium. Then, we analyse the de-
pendency between the concentrations and k. In the absence of physiological perturbations, the
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concentrations are very close to the steady state, thus it seems reasonable to consider solutions
of (3.6) at equilibrium, which leads us to study the system :

+α∂xū1 = k(q̄1 − ū1)

−α∂xū2 = k(q̄2 − ū2)

0 = k(ū1 − q̄1) +K1(ū0 − q̄1)

0 = k(q̄2 − ū2)−G(q̄2)

0 = K1(q̄1 − ū0) +G(q̄2)

ū1(L) = ū2(L), ū1(0) = ūb.

(3.8)

Section 3.2 concerns the analysis of solutions to stationary system (3.8). In particular, we
study their qualitative behaviour and their dependency with respect to the parameter k. Our
mathematical observations are illustrated by some numerical computations.

The second aim of the paper is to study the asymptotic behaviour of the solutions of (3.6).
In Theorem 3.3.1, we show that they converge as t goes to +∞ to the steady state solutions
solving (3.8). Section 3.3 is devoted to the statement and the proof of this convergence result.
Finally, an Appendix provides some useful technical lemmas.

3.2 Stationary system

In this section, after proving basic existence and uniqueness results, we investigate how solutions
of (3.8) depend upon the parameter k. We recall that it includes also the permeability parameter
as k = ki with ki := 2πriPi, i = 1, 2. In order to study the qualitative behaviour of these
solutions, we then perform some numerical simulations.

3.2.1 Stationary solution

We first show existence and uniqueness of solutions to the stationary system:

Lemma 3.2.1. Let ūb > 0. Let G be a C2 function, uniformly Lipschitz, such that G′′ is
uniformly bounded and G(0) = 0 (e.g. the function defined in (3.7)). Then, there exists an
unique vector solution to the stationary problem (3.8).

Moreover, if we assume that G > 0 on R+, then we have the following relation

q̄2 < ū < q̄1 < ū0.

Proof. Summing up all the equations of system (3.8), we deduce that α(∂xū1−∂xū2) = 0. From
the boundary condition ū1(L) = ū2(L), we obtain ū1 = ū2 = ū. Therefore, we may simplify
system (3.8) in 

α∂xū = k(ū− q̄2)

2ū = q̄1 + q̄2

0 = k(ū− q̄1) +K1(ū0 − q̄1)

0 = k(ū− q̄2)−G(q̄2)

0 = K1(q̄1 − ū0) +G(q̄2).

(3.9)
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Parameters Description Values
L Length of tubules 2 · 10−3 [m]
α Water flow in the tubules 10−13 [m3/s]
ri Radius of tubule i = 1, 2 10−5 [m]
ri,e Radius of epithelium layer i = 1, 2 1.5 · 10−5 [m]
K1 2πr1,eP1,e ∼ 2π · 10−11 [m2/s]
k = ki 2πriPi, i = 1, 2 changeable [m2/s]
Vm,2 Rate of active transport ∼ 2πr2,e10−5 [mol.m−1.s−1]
KM,2 Pump affinity for sodium (Na+) 3, 5 [mol/m3]
ūb Initial concentration in tubule 1 140 [mol/m3]

Table 3.1: Frequently used parameters

By the fourth equation of (3.9), ū = q̄2 + G(q̄2)
k , inserted into the first equation, it gives ∂xū =

G(q̄2)
α . We obtain a differential equation satisfied by q̄2,

∂xq̄2 =
G(q̄2)(

α+ α
kG
′(q̄2)

) , (3.10)

with α, k positive constants and provided with the condition q̄2(0) that satisfies

q̄2(0) +
G(q̄2(0))

k
= ūb. (3.11)

We first remark that q̄2(0) 7→ q̄2(0) + G(q̄2(0))
k is a C2 increasing function which takes the value

0 at 0 and goes to +∞ at +∞. Thus, for any ūb > 0 there exists a unique q̄2(0) > 0 solving
(3.11).

By assumption, G′ and G′′ are uniformly bounded, thus we check easily that the right-hand
side of (3.10) is uniformly Lipschitz. Therefore, the Cauchy problem (3.10)–(3.11) admits a
unique solution, which is positive (by uniqueness since 0 is a solution).

Then, other quantities are computed thanks to the relations:

ū = q̄2 +
G(q̄2)

k
, q̄1 = q̄2 +

2G(q̄2)

k
, ū0 =

( 1

K1
+

2

k

)
G(q̄2) + q̄2. (3.12)

Moreover, by the fourth and fifth equations of system (3.9) and since G(q̄2) > 0, we im-
mediately deduce that q̄2 < ū and q̄1 < ū0. Using the second equation of (3.9), we obtain the
claim.

3.2.2 Numerical simulations of stationary solutions

We approximate numerically solutions of (3.9). Numerical values of the parameters (cf Table
3.1) are extracted from Table 2 in [13] and Table 1 in [23]. Taking into account these quantities
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allow us to have the numerical ranges of the constants and the solution results in a biologically
realistic framework. Following the proof of Lemma 3.2.1, we first solve (3.11) thanks to a
Newton method. Then, we solve (3.10) with a fourth order Runge-Kutta method. Finally, we
deduce other concentrations u, q1, u0 using (3.12).

(a) Concentration profiles with permeability
Pi = 2 · 10−7 [m/s].

(b) Concentrations in 2D with Pi = 2 · 10−7.
Length of lumen on vertical axis.

(c) Concentration profiles with permeability
Pi = 2 · 10−5 [m/s].

(d) Concentrations in 2D with Pi = 2 · 10−5.
Length of lumen on vertical axis.

Figure 3.2: Concentration profiles for Vm,2 = 2πr2,e10−5 and different permeability values.

Results from Figures 3.2a and 3.2c show that in all compartments, concentrations increase
as a function of depth (x-axis). Physiologically, this means that the fluid is more concentrated
towards the hairpin turn (x = L) than near x = 0, because of active transport in the ascending
limb. It can also be seen that Na+ concentration is higher in the central layer of interstitium
and lower in the ascending limb epithelium owing to active Na+ transport from the latter to the
central compartment, described by the non-linear term G(q2). Furthermore, Figure 3.2b and
Figure 3.2d highlight that increasing the permeability value homogenizes the concentrations in
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the tubules and in the epithelium region. Taking a very large permeability value is equivalent
to fusing the epithelial layer with the adjacent lumen, such that luminal and epithelial concen-
trations become equal. It is proved rigorously in Chapter 2 that this occurs in the dynamic
system (3.6). This is derived and explained formally also in Appendix B.1.

Figures 3.3 and 3.4 depict the impact of permeability P1 = P2 = P on concentration
profiles for various pump rates Vm,2. Axial profiles of luminal concentrations are shown in
Figures 3.3a and 3.4a, considering different values of the permeability between the lumen and
the epithelium. The fractional increase in concentration (FIC) is shown in Figures 3.3b and
3.4b : for each permeability value (plotted on the horizontal axis), we compute the following
ratio (shown on the vertical axis):

FIC(ū) := 100
ū(L)− ū(0)

ū(0)
, (3.13)

where ū(L) is the concentration in the tubular lumen 1, 2 at x = L and ū(0) the concentration
at x = 0. This illustrates the impact of permeability on the axial concentration gradient. We
observe that this ratio depends also strongly on the value of Vm,2.

(a) Axial concentrations in the lumen for dif-
ferent values of permeability.

(b) Fractional increase in concentration as a
function of permeability.

Figure 3.3: Concentration profiles for Vm,2 = 2πr2,e · 10−5 [mol.m−1.s−1].

The permeability range (numerically P ∈ [10−8, 10−5], equispaced 50 values between these)
encompasses the physiological value which should be around 10−7 m/s. As shown in Figures
3.3b and 3.4b, the FIC increases significantly with P until it reaches a plateau : indeed, as
diffusion becomes more rapid than active transport (that is, pumping by Na+/ K+-ATPase),
the permeability ceases to be rate-limiting. As shown by comparing Figures 3.3b and 3.4b,
the FIC is strongly determined by the pump rate Vm,2 : if P ∈ [10−8, 10−6], Na+ concentra-
tion along the lumen increases by less than 12% if Vm,2 = 2πr2,e10−5, and may reach 120%
if Vm,2 = 2πr2,e10−4. This raise is expected since concentration differences are generated by
active transport ; the higher the rate of active transport, the more significant these differences.
Conversely, in the absence of pumping, concentrations would equilibrate everywhere. In regards
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to the axial gradient, the interesting numerical results are in Figure (3.4a) and (3.4b). We ob-
serve that the axial gradient increases with increasing permeability when the latter is varied
within the chosen range. Therefore this indicates that taking into account the epithelial layer
in the model has a significant influence on the axial concentration gradient.

Moreover, numerical results also confirm that : ū1 = ū2 = u < q̄1 < ū0 as reported in
Lemma 3.2.1. We recall that we assume a constant water flow α which allows us to deduce
ū1 = ū2. As noted above, the descending limb is in fact very permeable to water and α should
decrease significantly in this tubule, such that ū1 differs from ū2, except at the hairpin turn at
x = L. On the other hand, the last equation of system (3.9) implies that q̄1 < ū0, meaning that
the concentration of Na+ is lower in the epithelial cell than in the interstitium, as observed in
vivo, [2].

With the expression of G in (3.7), equation (3.11) reads

q̄2(0) +
Vm,2
k

(
q̄2(0)

KM,2 + q̄2(0)

)3

= ūb. (3.14)

In order to better understand the behaviour of the axial concentration gradient shown in Figures
(3.3b), (3.4b), we compute the derivative of (3.14) with respect to the parameter Vm and with
respect to k respectively:

∂q̄2(0)

∂Vm
+

1

k
G′(q̄2(0))

∂q̄2(0)

∂Vm
+

1

k

( q̄2(0)

KM,2 + q̄2(0)

)3
= 0,

∂q̄2(0)

∂k
+

1

k
G′(q̄2(0))

∂q̄2(0)

∂k
− 1

k2
G(q̄2(0)) = 0.

Then, we get
∂q̄2(0)

∂Vm
=

− 1
k

1 + 1
kG
′(q̄2(0))

( q̄2(0)

kM + q̄2(0)

)3 ≤ 0,

∂q̄2(0)

∂k
=

1
k2
G(q̄2(0))

1 + 1
kG
′(q̄2(0))

≥ 0,

because G is a monotone non-decreasing function and q2(0) is positive.
We observe from numerical results (see Figures 3.2a, 3.2c, 3.3a, and 3.4a) that the gradient

of u is almost constant. Thus, we may make the approximation

∂xū ∼ ∂xū(0) =
G(q̄2(0))

α
. (3.15)

Its derivatives with respect to Vm,2 and k are both non negative :

∂

∂k
[∂xū] ∼ G′(q̄2(0))

α

( G(q̄2(0))
k2

1 + 1
kG
′(q̄2(0))

)
≥ 0,

∂

∂Vm
[∂xū] ∼ 1

α

( q̄2(0)

KM + q̄2(0)

)3( 1

1 + 1
kG
′(q̄2(0))

)
≥ 0.
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(a) Axial concentrations in the lumen for dif-
ferent values of permeability.

(b) Percentage of concentration gradient as a
function of permeability.

Figure 3.4: Concentration profiles for Vm,2 = 2πr2,e · 10−4 [mol.m−1.s−1]

(a) Percentage of concentration gradient 2D in
tubules

(b) Percentage of concentration gradient pro-
jection

Figure 3.5: Percentage of concentration gradient 2D with range Vm,2 ∈ 2πr2,e · (10−5, 10−4)
[mol.m−1.s−1] (x−axis) and P ∈ 2 · (10−8, 10−5) (y−axis)
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It means that the axial concentration gradient is an increasing function both with respect to
the rate of active transport Vm,2 and to the permeability k.

Indeed in Fig. 3.5, we perform numerical simulations varying both P and Vm,2 and observe
that the ratio (3.13) increases monotonically with respect to both parameters.

3.2.3 Limiting cases: k →∞, and k → 0

Numerical results show that above a certain high value of permeability, the epithelial concen-
tration in tubule 2 seems to reach a plateau (see Figures 3.3b and 3.4b). There are two different
regimes : one for large values of permeabilities, one for small values of permeabilities, and a
fast transition between them.

In the large permeabilities asymptotic, we may approximate system (3.9) by the limiting
model k = +∞. In this case, (3.12) reduces to

ū = q̄2, q̄1 = q̄2, ū0 =
G(q̄2)

K1
+ q̄2.

for all x ∈ (0, L). This is understandable from a formal point of view, also taking into account
computations in Appendix (B.1) for the stationary system (3.8). In this case, the gradient
concentration is directly proportional to Vm,2 :

∂xq̄2 =
G(q̄2)

α+ α
kG
′(q̄2)

−→
k→+∞

G(q̄2)

α
= ∂xū.

From (3.10), the Cauchy problem reduces to

∂xq̄2(x) =
G(q̄2)

α
, q̄2(0) = ūb.

Additionally, it is clear that the higher pump value, the more the FIC will increase, as observed
in Figure 3.4b.

On the other hand for small values of permeability, we obtain formally

∂xq̄2 −→
k→0

0, ∂xū =
G(q̄2)

α
.

Therefore in a neighbourhood of the value P ∼ 10−8, the concentration gradient tends to be
constant and for this reason we notice a plateau.

3.3 Long time behaviour

This section is devoted to the main mathematical result of this paper concerning the long time
asymptotics of solutions to (3.6) towards solutions to the stationary system (3.8) as time goes to
+∞. We first state the main result and the assumptions needed. Then, we introduce eigenele-
ments of an auxiliary linear system and its dual problem. Using these auxiliary functions, we
are able to show the convergence when the time variable goes to +∞. A similar approach was
considered in [47] following ideas from [39].
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3.3.1 Statement of the main result

Before stating the main result, we provide and recall the mathematical assumptions (2.3), (2.4),
(2.5) on the initial and boundary data
Assumption 3.3.1. We assume that the initial solute concentrations are non-negative and uni-
formly bounded in L∞(0, L) and in the total variation :

0 ≤ u0
1, u

0
2, q

0
1, q

0
2, u

0
0 ∈ BV (0, L) ∩ L∞(0, L). (3.16)

Assumption 3.3.2. The boundary condition of system (3.6) is such that

0 ≤ ub ∈ L∞(R+) ∩ L1
loc(R+), lim

t→+∞
|ub − ūb| = 0, (3.17)

for some constant ūb > 0.
BV is the space of functions with bounded variation, we notice that such functions have

a trace on the boundary (see e.g. [7]); hence the boundary condition u2(t, L) = u1(t, L) is
well-defined.
Assumption 3.3.3. Regularity and boundedness of G. We assume that the non-linear function
modelling active transport in the ascending limb (tube 2) is a bounded and Lipschitz-continuous
function on R+ :

∀x ∈ R+, 0 ≤ G(q2) ≤ ‖G‖∞, 0 ≤ G′(q2) ≤ ‖G′‖∞. (3.18)

We notice that G defined by (3.7) satisfies straightforwardly (3.18).
We now state the main result.

Theorem 3.3.1 (Long time behavior). Under above-mentioned Assumptions 3.3.1, 3.3.2 and
3.3.3, the solution to the dynamical problem (3.6) denoted by u(t, x) = (u1, u2, q1, q2, u0) con-
verges as time t goes to +∞ towards ū(x), the unique solution to the stationary problem (3.8),
in the following sense

lim
t→+∞

‖u(t)− ū‖L1(Φ) = 0,

with the space

L1(Φ) =
{

u : [0, L]→ R5; ‖u‖L1(Φ) :=

∫ L

0
|u(x)| · Φ(x) dx <∞

}
,

where Φ = (ϕ1, ϕ2, φ1, φ2, ϕ0) is defined in Proposition 3.3.1 below.
Moreover, if we assume that there exists µ0 > 0 and C0 such that |ub(t) − ūb| ≤ C0e

−µ0t

for all t > 0, then there exist µ > 0 and C > 0 such that we have the convergence with an
exponential rate

‖u(t)− ū‖L1(Φ) ≤ Ce−µt. (3.19)

The scalar product used in the latter claim means :∫ L

0
|u(x)| · Φ(x) dx =∫ L

0

(
|u1|ϕ1(x) + |u2|ϕ2(x) + |q1|φ1(x) + |q2|φ2(x) + |u0|ϕ0(x)

)
dx.

The definition of the left eigenvector Φ and its role are given hereafter.
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3.3.2 The eigen-problem

In order to study the long time asymptotics of the time dependent system (3.6), we consider
the eigen-problem associated with a specific linear system [37, 47]. This system is, in some sort,
a linearized version of the stationary system (3.8) where the derivative of the non-linearity is
replaced by a constant g. When these eigenelements (λ,U ,Φ) exist, the asymptotic growth rate
in time for a solution u of (3.6) is given by the first positive eigenvalue λ and the asymptotic
shape is given by the corresponding eigenfunction U .

Let us introduce the eigenelements of an auxiliary stationary linear system

∂xU1 = λU1 + k(Q1 − U1)

−∂xU2 = λU2 + k(Q2 − U2)

0 = λQ1 + k(U1 −Q1) +K1(U0 −Q1)

0 = λQ2 + k(U2 −Q2)− gQ2

0 = λU0 +K1(Q1 − U0) + gQ2,

(3.20)

where g is a positive constant which will be fixed later. This system is complemented with
boundary and a normalization condition :

U1(0) = 0, U1(L) = U2(L),

∫ L

0
(U1 + U2 +Q1 +Q2 + U0) dx = 1. (3.21)

We also consider the related dual system :

−∂xϕ1 = λϕ1 + k(φ1 − ϕ1)

∂xϕ2 = λϕ2 + k(φ2 − ϕ2)

0 = λφ1 + k(ϕ1 − φ1) +K1(ϕ0 − φ1)

0 = λφ2 + k(ϕ2 − φ2) + g(ϕ0 − φ2)

0 = λϕ0 +K1(φ1 − ϕ0),

(3.22)

with following conditions :

ϕ1(L) = ϕ2(L), ϕ2(0) = 0,

∫ L

0
(U1ϕ1 + U2ϕ2 +Q1φ1 +Q2φ2 + U0ϕ0) dx = 1. (3.23)

For a given λ, the function U := (U1, U2, Q1, Q2, U0) is the right eigenvector solving (3.20), while
Φ := (ϕ1, ϕ2, φ1, φ2, ϕ0) is the left one, associated with the adjoint operator. The following result
shows the existence of a positive eigenvalue and some properties of eigenelements. We underline
that in order to make the proof easier, we consider the case k = k1 = k2 but the same result
could be extended to the more general case where k1 6= k2.

Proposition 3.3.1. Let g > 0 be a constant. There exists a unique (λ,U ,Φ) with λ ∈ (0, λ−)
solution to the eigenproblem (3.20)–(3.23), where

λ− =
(2K1 + k)−

√
4K2

1 + k2

2
.

Moreover, we have U(x) > 0, Φ(x) > 0 on (0, L) and φ2 < ϕ0.



Long time behaviour 49

In order to prove this result, we will divide the proof in two steps : Lemmas 3.3.1 and 3.3.2
respectively. Proposition 3.3.1 is a direct consequence of these two Lemmas. We start with the
direct problem :

Lemma 3.3.1 (The direct problem). There exists a unique λ > 0 such that the direct problem
(3.20)-(3.21) admits a unique positive solution U = (U1, U2, Q1, Q2, U0) on (0, L), and 0 < λ <
λ−.

Proof. Summing all equations in (3.20) we find that :

U ′1 − U ′2 = λ(U1 + U2 +Q1 +Q2 + U0). (3.24)

Integrating with respect to x and using condition (3.21), we obtain U2(0) = λ. By the fourth
equation in (3.20), we find directly:

Q2(x) =
kU2(x)

k + g − λ
=

U2(x)

1 + 1
k (g − λ)

. (3.25)

Putting this expression into the second equation in (3.20), we find

−U ′2 = U2

(
λ+

λ− g
1 + 1

k (g − λ)

)
,

Solving the latter equation, we deduce that

U2(x) = U2(0)e
−λx+

∫ x
0

−λ+g
1+ 1

k
(g−λ)

dy
= λe(−λ+η(λ))x;

with η(λ) :=
−λ+ g

1 + 1
k (g − λ)

.
(3.26)

Using the fifth equation of system (3.20) we recover

U0(x) =
K1

K1 − λ
Q1(x) +

g

K1 − λ
Q2(x).

We inject this into the third equation to obtain

Q1(x)

(
k − λ− K1λ

K1 − λ

)
=

gK1

K1 − λ
Q2(x) + kU1(x).

Thanks to (3.25) we write also:

Q1(x)

(
k − λ− K1λ

K1 − λ

)
=

K1g

K1 − λ
1

(1 + 1
k (g − λ))

U2(x) + kU1(x).

Taking into account the first equation of system (3.20), we obtain :

U ′1(x) = cλU1(x) + kλ
g

1 + 1
k (g − λ)

U2(x), (3.27)
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where we simplify notations by introducing :

kλ :=
k K1
K1−λ

k − λ− K1λ
K1−λ

, cλ := λ+
k(λ+ K1λ

K1−λ)

k − λ− K1λ
K1−λ

. (3.28)

The denominator k − λ− K1λ
K1−λ vanishes for

λ± =
(2K1 + k)±

√
4K2

1 + k2

2
.

Obviously limλ→λ− kλ = +∞ and we also have that 0 < λ− < min(K1, k).
Now we solve directly the ODE (3.27) with its initial condition, we get

U1(x) =
λgkλ

1 + 1
k (g − λ)

ecλx − e(η(λ)−λ)x

cλ + λ− η(λ)
.

We are looking for a λ > 0 such that boundary condition U1(L) = U2(L) is satisfied, in other
words U1(L)

U2(L) = 1, namely

F (λ) :=
gkλ

1 + 1
k (g − λ)

(
e(cλ+λ−η(λ))L − 1

cλ + λ− η(λ)

)
= 1, (3.29)

where we recall that kλ, cλ are defined in (3.28) and η(λ) in (3.26). We remark immediately
that for λ = 0 in (3.28), we have k0 = 1, c0 = 0. Then,

F (0) = 1− exp
(
− gL

1 + g
k

)
< 1.

We notice that for kλ, cλ > 0, F (λ) is a continuous increasing function with respect to λ since
the product of increasing and positive functions is still increasing (see Appendix (B.2.1) for
more details). Moreover limλ→λ− F (λ) = +∞. Then it exists a unique λ ∈ (0, λ−) such that
F (λ) = 1. Moreover, for 0 < λ < λ− < min(k,K1), the functions U1, U2, Q1, Q2, U0 are positive
on [0, L].

Lemma 3.3.2 (The dual problem). Let λ and U be as in Lemma (3.3.1). Then, there exists Φ :=
(ϕ1, ϕ2, φ1, φ2, ϕ0), the unique solution of dual problem (3.22)–(3.23) with ϕ1, ϕ2, φ1, φ2, ϕ0 > 0.
Moreover, we have φ2 < ϕ0.

Proof. By the fifth equation of system (3.22) we have directly :

ϕ0 =
K1

K1 − λ
φ1.

Replacing this expression in the third equation we obtain

(k − λ− K1λ

K1 − λ
)φ1 = kϕ1.
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Then,

ϕ0(x) =
k K1
K1−λ

k − λ− K1λ
K1−λ

ϕ1(x) = kλϕ1(x),

where kλ is defined in (3.28). Using the first equation of (3.22), we have

−ϕ′1 = ϕ1

(
λ+ k

(
λ+ K1λ

K1−λ

k − λ− K1λ
K1−λ

))
.

Integrating, we obtain

ϕ1(x) = ϕ1(0)e−λxe−βx, β = βλ =
λk(2K1 − λ)

λ2 − 2K1λ− λk +K1k
. (3.30)

We easily check that β > 0 if 0 < λ < λ− < K1.
As shown in details in the Appendix B.2.2, for all x ∈ (0, L), (U1ϕ1)′ − (U2ϕ2)′ = 0. Inte-

grating, we get U1(x)ϕ1(x)− U2(x)ϕ2(x) = U1(0)ϕ1(0)− U2(0)ϕ2(0) = 0, thanks to boundary
conditions U1(0) = 0 and ϕ2(0) = 0. (Notice also that taking x = L in this latter relation, and
using the boundary condition U1(L) = U2(L) 6= 0, we recover ϕ1(L) = ϕ2(L).) Therefore, we
get

ϕ2(x) =
U1(x)

U2(x)
ϕ1(x) ∀x ∈ [0, L]. (3.31)

Using the fourth equation in (3.22) and thanks to (3.31), we obtain

0 = λφ2 + k
U1

U2
ϕ1 − kφ2 + gϕ1

(
K1

K1 − λ
· k

k − λ− K1λ
K1−λ

)
,

which allows to compute φ2 :

φ2(x) =
kU1(x)
U2(x)ϕ1(x)

k − λ+ g
+

g

k − λ+ g
kλϕ1(x).

Each function depends on the first component of Φ, i.e. ϕ1(x), and to sum up, the following
relation has been obtained:

ϕ1(x) = ϕ1(0)e−λxe−βx

ϕ2(x) = U1(x)
U2(x)ϕ1(x)

φ1(x) = ϕ1(x)

(
k

k−λ− K1λ
K1−λ

)
φ2(x) = 1

k−λ+g

(
kU1(x)
U2(x) + gkλ

)
ϕ1(x)

ϕ0(x) = kλϕ1(x),

(3.32)

where kλ, β are defined in (3.28) and (3.30). Hence the sign of Φ depends on the sign of ϕ1(0),
the other quantities and constants being positive for λ ∈ (0, λ−) and g > 0 by assumption.
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Then, we use the normalization condition (3.23) and (3.32) in order to show the positivity of
ϕ1(0). It implies that

ϕ1(0)

∫ L

0
e−λxe−βx

[
2U1(x) +Q1(x)

(
k

k − λ− K1λ
K1−λ

)
+

+
Q2(x)

k + g + λ

(
k
U1(x)

U2(x)
+ gkλ

)
+ kλU0(x)

]
dx = 1.

The integral on the left hand side is positive, thanks to properties of functions previously defined.
Given that ϕ1(0) is constant and all other quantities positive, we can conclude that ϕ1(0) > 0.

We are left to prove that the quantity φ2 − ϕ0 is negative. Using (3.32), we rewrite :

φ2 − ϕ0 =
kkλϕ1(x)

k − λ+ g

(
1

kλ

U1

U2
+
λ

k
− 1

)
.

From the explicit expression of U1 and U2, we have

φ2 − ϕ0 =
kλϕ1(x)

1 + 1
k (g − λ)

∫ x0 g

1+ 1
k

(g−λ)
e−cλ(y−x)e(−λ+η(λ))y dy

e(−λ+η(λ))x
+
λ

k
− 1


=

kλϕ1(x)

1 + 1
k (g − λ)

[
g

1 + 1
k (g − λ)

[1− e−cλx−λx+η(λ)x

cλ + λ− η

]
+
λ

k
− 1

]
,

where we recall the notation η(λ) = −λ+g

1+ 1
k

(g−λ)
. We set

H(x) :=
g

1 + 1
k (g − λ)

[1− e−cλx−λx+η(λ)x

cλ + λ− η(λ)

]
. (3.33)

We have
φ2 − ϕ0 < 0 ⇐⇒ H(x) +

λ

k
− 1 < 0.

We observe that H(0) = 0 and H(L) = 1
kλ

thanks to (3.29). Moreover, H(L) < 1 − λ
k for

λ ∈ (0, λ−). Indeed, we have

λ < k − k

kλ
,

which holds if and only if λ2−K1λ−kλ
K1

< 0 which is true on (0, λ−), since λ− < k by definition.
Moreover, it is clear that H is an increasing function on [0, L] for λ ∈ (0, λ−). Then H(x) ≤
H(L) < 1− λ

k . This concludes the proof.

3.3.3 Proof of Theorem 3.3.1

Now we are ready to prove Theorem 3.3.1. We set di(t, x) := |ui(t, x) − ūi(x)| i = 0, 1, 2 and
δj := |qj(t, x)− q̄j(x)|, j = 1, 2 with ūi, q̄i satisfying (3.8) and ui, qi solving (3.6).



Long time behaviour 53

We subtract component-wise (3.6) to (3.8). Then we multiply each of the entries by sign(ui−
ūi) or sign(qj − q̄j) respectively. We obtain the following inequalities :

a1∂td1 + α∂xd1 ≤ k(δ1 − d1)

a2∂td2 − α∂xd2 ≤ k(δ2 − d2)

a3∂tδ1 ≤ k(d1 − δ1) +K1(d0 − δ1)

a4∂tδ2 ≤ k(d2 − δ2)− Ĝ
a0∂td0 ≤ K1(δ1 − d0) + Ĝ,

(3.34)

with Ĝ := |G(q2)−G(q̄2)|. We have used also the monotonicity of G (see (3.18)). We set

M(t) :=

∫ L

0
(a1d1ϕ1 + a2d2ϕ2 + a3δ1φ1 + a4δ2φ2 + a0d0ϕ0) dx,

with a1, a2, a3, a4, a5 positive constants as defined in (3.3). Multiplying each equation of (3.34)
by the corresponding dual function ϕi, φi, adding all equations and integrating with respect to
x, we obtain :

d

dt
M(t) ≤

∫ L

0

(
k(δ1 − d1)ϕ1 + k(δ2 − d2)ϕ2 + k(d1 − δ1)φ1 +K1(d0 − δ1)φ1

+ k(δ2 − d2)φ2 − Ĝφ2 +K1(δ1 − d0)ϕ0 + Ĝϕ0

)
dx+ α

∫ L

0
(∂xd2ϕ2 − ∂xd1ϕ1) dx.

Integrating by parts the last integral, we can simplify the latter inequality into

d

dt
M(t) ≤ α

(
d2(t, L)ϕ2(L)− d2(t, 0)ϕ2(0) +

∫ L

0
d2(t, x)(∂xϕ2) dx

)
+

− α
(
d1(t, L)ϕ1(L)− d1(t, 0)ϕ1(0)−

∫ L

0
d1(t, x)(∂xϕ1) dx

)
+

+

∫ L

0

(
k(δ1 − d1)ϕ1 + k(δ2 − d2)ϕ2 + k(d1 − δ1)φ1 +K1(d0 − δ1)φ1

+ k(δ2 − d2)φ2 − Ĝφ2 +K1(δ1 − d0)ϕ0 + Ĝϕ0

)
dx.

We now use the dual system (3.22) as ∂xϕ1 = −λϕ1 + k(ϕ1−φ1), ∂xϕ2 = λϕ2 + k(φ2−ϕ2)
and we recall below the last three equations of system (3.22) with changed sign and multiplied
respectively by δ1, δ2, d0, such as :

0 = −λφ1δ1 − k(ϕ1 − φ1)δ1 −K1(ϕ0 − φ1)δ1

0 = −λφ2δ2 − k(ϕ2 − φ2)δ2 − g(ϕ0 − φ2)δ2

0 = −λϕ0d0 −K1(φ1 − ϕ0)d0.
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The latter inequality becomes

d

dt
M(t) ≤ −λ

∫ L

0
(d1ϕ1 + d2ϕ2 + δ1φ1 + δ2φ2 + d0ϕ0) dx+ d2(L)ϕ2(L)− d1(L)ϕ1(L)

+ d1(0)ϕ1(0)− d2(0)ϕ2(0) +

∫ L

0
−Ĝ(φ2 − ϕ0) dx+

∫ L

0
k(δ1 − d1)ϕ1 dx+

∫ L

0
k(δ2 − d2)ϕ2 dx

+

∫ L

0
k(d1 − δ1)φ1 dx+

∫ L

0
K1(d0 − δ1)φ1 dx+

∫ L

0
k(δ2 − d2)φ2 dx+

∫ L

0
K1(δ1 − d0)ϕ0 dx

+

∫ L

0
k(φ1−ϕ1)δ1+K1(φ1−ϕ0)δ1 dx+

∫ L

0
k(φ2−ϕ2)δ2+g(φ2−ϕ0)δ2 dx+

∫ L

0
K1(ϕ0−φ1)d0 dx.

Using the conditions in (3.21) and in (3.23), we obtain

d

dt
M(t) ≤ −λ

max{a1, a2, a3, a4, a0}
M(t) + d1(t, 0)ϕ1(0) +

∫ L

0
(gδ2 − Ĝ)(φ2 − ϕ0) dx.

To simplify the notation we set λ̄ = −λ
max{a1,a2,a3,a4,a0} .

Since G is Lipschitz-continuous and by assumption (3.18), Ĝ ≤ gδ2 with g = ‖G′‖∞. With
this choice of g, we apply Proposition 3.3.1 and deduce that the quantity (φ2−ϕ0) is negative.
Then,

d

dt
M(t) + λ̄M(t) ≤ d1(t, 0)ϕ1(0).

Thanks to (3.17) and applying Gronwall’s lemma, we conclude that

M(t) ≤M(0)e−λ̄t + ϕ1(0)

∫ t

0
d1(s, 0)eλ̄(s−t) ds. (3.35)

Moreover, from (3.17), we have d1(s, 0) = |ub(t)− ūb| → 0 as t→ +∞. Then, for every ε > 0,
it exists t̄ > 0 such that d1(s, 0) < ε for each s > t̄. Then for every t ≥ t̄, we have∫ t

0
d1(s, 0)eλ̄(s−t) ds ≤

∫ t̄

0
d1(s, 0)eλ̄(s−t) ds+ ε

∫ t

t̄
eλ̄(s−t) ds

≤ eλ̄(t̄−t)
∫ t̄

0
d1(s, 0) ds+

ε

λ̄
.

The first term of the right hand side is arbitrarily small at t goes to +∞. Hence, we have proved
that for any ε > 0 there exists τ large enough such that for every t ≥ τ ,

M(t) ≤M(0)e−λ̄t + Cε.

Since M(t) = ‖u(t)− ū‖L1(Φ), it proves the convergence as stated in Theorem 3.3.1.
Finally, if we assume that there exists positive constants µ0 and C0 such that |ub(t)− ūb| ≤

C0e
−µ0t, then from (3.35) we deduce

M(t) ≤M(0)e−λ̄t + C0ϕ1(0)
e−µ0t − e−λ̄t

λ̄− µ0
≤ Ce−min{λ̄,µ0}t.



Long time behaviour 55

3.3.4 Comments

In the proof just concluded, it should be pointed out an interesting property of the system: the
coupling of the equations in the model. Without this kind of structural symmetry, it would be
difficult to draw the same conclusions. This property is reflected also in the eigen-problem of the
auxiliary linear system and in the specific boundary conditions (3.5). Thanks to this coupling
structure, for example, we can conclude for eigenelements of dual problem (3.22)-(3.23) that
φ2 − ϕ0 < 0, then φ2 < ϕ0 which is not due and expected in general. This feature of model
(’couplage’ ) allows us to eliminate in the calculus certain terms paired with each other and then
to conclude with the reached inequality (3.35).
As stated in [20] Chap.3, the water and solute flows are tightly coupled in the kidney. The
transepithelial solute fluxes may be driven by electrochemical potential gradients, by pumps
(i.e., active transport), or via coupled transport systems, both in the case of single-barrier
modelling assumption and in that of a two-membrane representation. Therefore this choice of
modelling is also closely related to the ionic exchange mechanisms within the nephron and to
the homeostatic functions to maintain a certain balance in the cells environment, which is the
key role of the kidneys.



Chapter 4

Study of a two-ion model

”All models, no matter how realistic, are always ’wrong’ in that they are less complex than the
real system. Failure of the model to explain observed results forces us to further refine the

model and teaches us something more about the system.”
[17]

The Na/K-ATPase is a transmembrane enzyme that moves 3 Na+ ions out of the cell for every
2 K+ ions pumped into the cell spending energy. The cells would not be able to maintain high
intracellular levels of Na+ and low levels of Na+ without this active transport pump. In this
study we try to make a little more realistic the mathematical model by ’enriching’ it.
In the previous Chapters only one uncharged solute has been considered in two tubules, here
we take into account simplified system at equilibrium with epithelium layer and 2 ions, Na
(sodium) and K (potassium). For this reason we are going to present a system accounting for
two solutes adding five equations of previous studied system. As suggested in [20] Chap. 8, the
flux of Na+ ions across the pump can be expressed as:

JNaKNa = Vm

(
qNa2

ks + qNa2

)3(
uK0

kp + uK0

)2

,

where the constant Vm is the maximum flux of sodium ions at steady state and ks, kp are related
to the association and dissociation kinetic constants for enzymatic reaction, i.e. the affinity of
the pumps. The intracellular/epithelial concentrations are described by qi with i = 1, 2 and the
u0 refers to extracellular/interstitial solute concentration in the fluid. Whereas for K+ ions the
flux can be expressed as:

JNaKK = −2

3
JNaKNa .

4.1 Sodium-potassium system

The following system describes the sodium and potassium exchanges in the loop of Henle
through transport mechanisms in the renal tubules. In the absence of physiological pertur-
bations, the concentrations are very close to the steady state of the system, then also in this
case we are going to consider solutions at equilibrium :

56
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+α∂xu
Na
1 = 2πr1P

Na
1 (qNa1 − uNa1 )

−α∂xuNa2 = 2πr2P
Na
2 (qNa2 − uNa2 )

0 = 2πr1P
Na
1 (uNa1 − qNa1 ) + 2πr1,eP

Na
1,e (uNa0 − qNa1 )

0 = 2πr2P
Na
2 (uNa2 − qNa2 ) + 2πr2,eP

Na
2,e (uNa0 − qNa2 )−G(qNa2 , uK0 )

0 = 2πr1,eP
Na
1,e (qNa1 − uNa0 ) + 2πr2,eP

Na
2,e (qNa2 − uNa0 ) +G(qNa2 , uK0 )

+α∂xu
K
1 = 2πr1P

K
1 (qK1 − uK1 )

−α∂xuK2 = 2πr2P
K
2 (qK2 − uK2 )

0 = 2πr1P
K
1 (uK1 − qK1 ) + 2πr1,eP

K
1,e(u

K
0 − qK1 )

0 = 2πr2P
K
2 (uK2 − qK2 ) + 2πr2,eP

K
2,e(u

K
0 − qK2 ) + 2

3G(qNa2 , uK0 )

0 = 2πr1,eP
K
1,e(q

K
1 − uK0 ) + 2πr2,eP

K
2,e(q

K
2 − uK0 )− 2

3G(qNa2 , uK0 )

uNa1 (L) = uNa2 (L), uK1 (L) = uK2 (L),

uNa1 (0) = ūNa, uK1 (0) = ūK

(4.1)

At equilibrium we will consider PK2,e = 0, PNa2,e = 0 which means to ignore the diffusion of Na+

and K+ from the ascending limb epithelium towards interstitium which is negligible according
to physiological behaviour. In order to simplify the notation, we set K = 2πri, i = 1, 2, Ke =
2πri,ePi,e and PNa1 = PK2 = P. It should be noted that also in this case we consider the radius
of tube being the same since the orders of magnitude are the same. It leads us to study the
behaviour of concentrations satisfying these equations:

+α∂xu
Na
1 = KP (qNa1 − uNa1 )

−α∂xuNa2 = KP (qNa2 − uNa2 )

0 = KP (uNa1 − qNa1 ) +KNa
e (uNa0 − qNa1 )

0 = KP (uNa2 − qNa2 )−G(qNa2 , uK0 )

0 = KNa
e (qNa1 − uNa0 ) +G(qNa2 , uK0 )

+α∂xu
K
1 = KP (qK1 − uK1 )

−α∂xuK2 = KP (qK2 − uK2 )

0 = KP (uK1 − qK1 ) +KK
e (uK0 − qK1 )

0 = KP (uK2 − qK2 ) + 2
3G(qNa2 , uK0 )

0 = KK
e (qK1 − uK0 )− 2

3G(qNa2 , uK0 )

(4.2)

with the non linear term related to active transport defined as:

G(qNa2 , uK0 ) = Vm

(
qNa2

ks + qNa2

)3(
uK0

kp + uK0

)2

. (4.3)

The exponent 3 is related to the number of exchanged sodium ions, whereas the exponent 2
relates to the exchanged potassium ions. In this case the source term (4.3) accounting for
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the active transport in the system links the sodium epithelial concentration in the ascending
limb with the potassium concentration in the interstitum. It is noteworthy that the function
G(qNa2 , uK0 ) realise the coupling in the two-ion model. Therefore it follows that without this
coupling term, the problem (4.1) would reduce to two independent and equal models for a single
ion species with the same structural feature as (3.8), in Chap. 3 of this thesis.
The unknowns of system depend on (t, x) and the model is one-dimensional with respect to
the space x ∈ [0, L]. The unknowns represent ionic concentrations of sodium and potassium in
different compartments as showed in Figure (3.1). We summarize them hereafter :

uNai (t, x) : Na in the tubule or compartment i, with i = 1, 2
qNai (t, x) : Na in the epithelium ’near’ tubule i
uNa0 (t, x) : Na in the interstitium
uKi (t, x) : K in the tubule i
qKi (t, x) : K in the epithelium ’near’ tubule i
uK0 (t, x) : K in the interstitium.

Lemma 4.1.1. Let be uNa, uK > 0. Let G be a C2 function, uniformly Lipschitz and G(0) = 0
(as defined in (4.3).) Then there exists an unique vector solution to the stationary problem
(4.5). Moreover, assuming that G > 0 the following relations hold

qNa2 < uNa < qNa1 < uNa0 qK2 > uK , qK1 > uK0 , qK2 > uK0 . (4.4)

Proof. Summing the first five equations of system (4.5a)-(4.5e) and then the others (4.5f)-
(4.5j), we deduce that : α(∂xu

Na
1 − ∂xuNa2 ) = 0 and α(∂xu

K
1 = ∂xu

K
2 ). Recalling the conditions

uNa1 (L) = uNa2 (L) and uK1 (L) = uK2 (L), we obtain uNa1 = uNa2 = uNa and uK1 = uK2 = uK . We
may simplify system as previously done for stationary model in Section 3.2.1. It follows,

2uNa = qNa1 + qNa2 (4.5a)

α∂xu
Na =

K

ε
(uNa2 − qNa2 ) (4.5b)

0 =
K

ε
(uNa − qNa1 ) +KNa

e (uNa0 − qNa1 ) (4.5c)

0 =
K

ε
(uNa − qNa2 )−G(qNa2 , uK0 ) (4.5d)

0 = KNa
e (qNa1 − uNa0 ) +G(qNa2 , uK0 ) (4.5e)

+ α∂xu
K
1 =

K

ε
(qK1 − uK1 ) (4.5f)

− α∂xuK2 =
K

ε
(qK2 − uK2 ) (4.5g)

0 =
K

ε
(uK1 − qK1 ) +KK

e (uK0 − qK1 ) (4.5h)

0 =
K

ε
(uK2 − qK2 ) +

2

3
G(qNa2 , uK0 ) (4.5i)
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0 = KK
e (qK1 − uK0 )− 2

3
G(qNa2 , uK0 ). (4.5j)

In the above-mentioned system we consider the permeabilities P ji = P as 1
ε , with i = 1, 2 and

j = Na,K.
If we insert the 4th equation of system (4.5) , uNa2 = qNa2 + ε

KG(qNa2 , uK0 ), in 2nd equation
(4.5b), it gives :

α∂x

(
qNa2 +

ε

K
G(qNa2 , uK0 )

)
= G(qNa2 , uK0 ).

Since
∂xG(qNa2 , uK0 ) =

∂G

∂qNa2

∂xq
Na
2 +

∂G

∂uK0
∂xu

k
0,

we obtain the following equation:

∂xq
Na
2

(
α+

εα

K

∂G

∂qNa2

)
+ ∂xu

K
0

(
εα

K

∂G

∂uK0

)
= G(qNa2 , uK0 ). (4.6)

We consider now the part of system where the potassium concentrations are involved (4.5f)-
(4.5j) to get a second relation between ∂xq2 and ∂xu0 in order to reduce our problem to a
non-linear 2 × 2 system of ODEs. By (4.5j) we recover directly qK1 = uK0 + 2

3K1,e
G(qNa2 , uK0 ).

As already mentioned, uK1 = uK2 = uK and then

2uK = qK1 + qK2 . (4.7)

Since (4.5i) we know also that uK = qK2 − 2ε
3KG(qNa2 , uK0 ). We can rewrite qK2 = qK1 +

4ε
3KG(qNa2 , uK0 ) and inject here the previous expression of qK1 . We can recover the following
relation,

qK2 = uK0 + (
2

3K1,e
+

4ε

3K
)G(qNa2 , uK0 ).

We replace these two expressions, qK1 , qK2 in (4.7) to get

uK = uK0 +
( 2

3K1,e
+

2ε

3K

)
G(qNa2 , uK0 ). (4.8)

Summing (4.5f), (4.5h), (4.5j) we obtain : α∂xuK = −2
3G(qNa2 , uK0 ) and finally

∂xq
Na
2

(
γα

∂G

∂qNa2

)
+ ∂xu

K
0

(
γα

∂G

∂uK0
+ α

)
= −2

3
G(qNa2 , uK0 ), (4.9)

with positive constant γ =
2

3K1,e
+

2ε

3K
.

Combining equations (4.6), (4.9), the problem is reduced to solve this non-linear system of
ODEs:

M

[
∂xq

Na
2

∂xu
K
0

]
=

[
G(qNa2 , uK0 )

−2
3G(qNa2 , uK0 )

]
, M =

α+ αε
K

∂G
∂qNa2

αε
K

∂G
∂uK0

αγ ∂G
∂qNa2

α+ αγ ∂G
∂uK0
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with det(M) = α2
(

1 + γ ∂G
∂uK0

+ ε
K

∂G
∂qNa2

)
6= 0 and provided with the initial condition for

qNa2 (0) and uK0 (0) that satisfy :

qNa2 (0) +
ε

K
G(qNa2 (0), uK0 (0))− uNa2 (0) = 0, (4.12)

uK0 (0) + γG(qNa2 , uK0 )− uK1 (0) = 0. (4.13)

We are going to solve : [
∂xq

Na
2

∂xu
K
0

]
= M−1

[
G(qNa2 , uK0 )

−2
3G(qNa2 , uK0 )

]

which it reads 

∂xq
Na
2 =

G(qNa2 , uK0 )
(

(γ + 2ε
3K ) ∂G

∂uK0
+ 1
)

α
(

1 + γ ∂G
∂uK0

+ ε
K

∂G
∂qNa2

)

∂xu
K
0 =

−G(qNa2 , uK0 )
(

(γ + 2ε
3K ) ∂G

∂qNa2
+ 2

3

)
α
(

1 + γ ∂G
∂uK0

+ ε
K

∂G
∂qNa2

)
(4.14)

with ∂G
∂qNa2

and ∂G
∂qK2

defined below:

∂G

∂qNa2

= 3Vmks

(
(qNa2 )2

(ks + qNa2 )4

)(
uK0

kp + uK0

)2

,

∂G

∂uK0
= 2Vmkp

(
uK0

(kp + uK0 )3

)(
qNa2

ks + qNa2

)3

.

Moreover, by the equations (4.5d), (4.5e) and (4.5i), (4.5j) of system and since G > 0, we
immediately deduce the relation between concentrations as (4.4) in the claim and to conclude.
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Parameters Description Values
L Length of tubules 2 · 10−3[m]

α Water flow in the tubules 10−13[m3/s]

ri Radius of tubule i = 1, 2 10−5[m]

K = k1 = k2 2πri, i = 1, 2 2π10−5[m]

ri,e Radius of epithelium layer i = 1, 2 1.5 · 10−5[m]

ke = KNa
e = KK

e 2πr1,eP
Na
1,e = 2πr1,eP

K
1,e ∼ 10−11[m/s]

kNaM = ks Pump affinity for sodium (Na) 3, 5[mol/m3]

kKM = kp Pump affinity for potassium (K) 1[mol/m3]

uNa1 (0) Na initial concentration in tubule 1 140[mol/m3]

uK1 (0) K initial concentration in tubule 1 10[mol/m3]

Vm,2 Rate of active transport changeable

PNa2,e = PK2,e Permeability between the epithelium 2 and the interstitium 0[m/s]

Table 4.1: Frequently used parameters in two-ion model

4.1.1 Numerical results

We approximate numerically concentrations of (4.5) starting from looking for the solution of
(4.14). Numerical values of the parameters (cf Table 4.1) are extracted from Table 2 in [13]
and Table 1 in [23], as in previous Chapter. Taking into account these quantities allow us to
have the numerical ranges of the constants and the solution results in a biologically realistic
framework. Following the previous computations, we first solve (4.12) and (4.13) thanks to a
Newton method. Then, we solve (4.14) with a fourth order Runge-Kutta method. Finally, we
deduce other concentrations about sodium uNa, qNa1 , uNa0 and potassium uK , qK1 , q

K
2 using their

above expressions depending respectively on qNa2 and uK0 .
Results from Figures 4.1a and 4.1b show that in all compartments, Na concentrations in-

crease as a function of depth (x-axis). It means that the sodium fluid is more concentrated
towards the hairpin turn (x = L) than near x = 0. Whereas in Figures 4.1c and 4.1d we ob-
serve an opposite behaviour for the potassium. We can note that also in this two-ion model the
Na+ concentration is higher in the central layer of interstitium and lower in the ascending limb
epithelium owing to active Na+ transport from the latter to the central compartment, described
by the non-linear term G. Furthermore, also in this larger system it should be highlighted that
increasing the permeability value homogenizes the sodium concentrations in the tubules and in
the epithelium region. It could be easily verified by formal computation in the concentrations
expressions defined before. Moreover, numerical results also confirm the relations :

qNa2 < uNa < qNa1 < uNa0 , qK2 > uK , qK1 > uK0 , qK2 > uK0 .

as reported in Lemma 4.1.1. The Na/K pump spends energy to pump potassium into their
cells and sodium out. The Na+ concentration inside the cells (epithelial membrane/epithelium)
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(a) Sodium concentration profiles with perme-
ability Pi = 2 · 10−7 [m/s].

(b) Concentrations in 2D with Pi = 2 · 10−7.
Length of lumen on vertical axis.

(c) Potassium concentration profiles with per-
meability Pi = 2 · 10−7 [m/s].

(d) Concentrations in 2D with Pi = 2 · 10−7.
Length of lumen on vertical axis.

Figure 4.1: Concentration profiles with Vm,2 = 2πr2,e10−5 for sodium and potassium concen-
trations
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is much lower than in the extracellular (luminal/interstitial) fluid, whereas it is the opposite
behaviour for K+. We would like the concentrations to be of the following orders of magnitude:

• uNa1 , uNa2 , uNa0 (extracellular fluid/tubules and interstitial sodium fluid respectively) should
be of the order of 140 mM,

• qNa1 , qNa2 (intracellular fluid/epithelial fluid) should be of the order of 10 mM,

• the opposite behaviour, with respect to sodium, in potassium concentrations, uK1 , uK2 , uK0
should be of the order of 10mM,

• qK1 , q
K
2 (intracellular fluid/epithelial potassium fluid) should be of the order of 140 mM.

This relation in our model does not occur, as showed in the results of Figure (4.1). It means
that we can not draw more conclusions with respect to a biologically consistent framework and
coherent with a physiological point of view.

4.2 Comments and remarks

This chapter does not aim to add remarkable results from a mathematical point of view but to
show some numerical simulations carried out for a slightly more enlarged system and to suggest
some changes to improve the model. In fact, it helps to highlight some weaknesses of the model
and its limits. Adding another solute does not really help to approach the real physiological
behaviour. Taking into account the same boundary conditions and studying the stationary
system, we point out, also in this case, that the concentrations in the two tubules are the
same. Actually, the concentrations in tubule 1 and 2 must have a difference, i.e. uNa1 6= uNa2 ,
uK1 6= uK2 . It would be more appropriate to choose two values of parameters (for example
α1 6= α2 for sodium and αK1 6= αK2 for potassium), both constant, or to set this parameters
depending on space and time variable. One of these attempts in this direction, i.e. in different
setting of α was presented by [48] and reported in [46].
Taking into account the physiological explanations in [20], a possible more complete description
for a one-ion model without epithelium could be,

ai
∂
∂tui(t, x) + ∂

∂x(αi(t, x)ui(t, x)) = Ji(t, x)

a0
∂
∂tu0(t, x) = J0(t, x)

∂
∂xαi(t, x) = JVi (t, x),

(4.15)

where JVi (t, x) refers to the water flow through tubule i and for the parameters and the variables
we refer to Section 1.2. As explained in [20] Chap. 3, the water flow in a renal tubule i depends
on the osmotic pressure and osmosis; in particular for a only one solute represented in the
model, it could be expressed as follows,

JVi (t, x) = 2πriLi,pRTσiφi(ui − u0)
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where 2πri is the length of membrane related to tubule of radius i, Li,pRTσi(ui−u0) is the
osmotic pressure with (ui−u0) the difference in concentration of the considered solute between
the two sides of the membrane and Li,p is the membrane permeability of tubule i to water.
In general, if we consider a membrane that is permeable to water but impermeable to a given
solute, the osmotic pressure exerted by that solute can be approximated by RTσi(ui − u0)
where R is the universal gas constant (62.36 · 10−3 mmHg ·K−1 ·mM−1) and T is the absolute
temperature. A small concentration gradient can still exert a substantial osmotic pressure.
Given the above considerations, a possible model in the counter-current mechanism and counter-
flows description could be

a1
∂
∂tu1(t, x) + ∂

∂x(α1(t, x)u1(t, x)) = 2πr1(u0 − u1)

a2
∂
∂tu2(t, x)− ∂

∂x(α2(t, x)u2(t, x)) = 2πr2(u0 − u2)−G(u2)

a0
∂
∂tu0(t, x) = 2πr1(u1 − u0) + 2πr2(u2 − u0) +G(u2)

∂
∂xα1(t, x) = 2πr1L1,pRTσ1φ1(u1 − u0)
∂
∂xα2(t, x) = 0,

(4.16)

The last equation is due to the fact that the tubule 1 is highly permeable to water and tubule
2 is impermeable to water, that means L2,p = 0 and consequently JV2 (t, x) = 0. In general,
the solute flow (for uncharged solute) should take into account diffusion, active transport but
also convection. In these solute fluxes J1, J2, the simplest case was considered. However in
this mathematically more interesting case, as you can notice, the epithelium does not appear.
A possible subject of future and in-depth studies could be the model accounting for charged
solutes and electrical forces.



Chapter 5

Conclusion and outlook

In this thesis we present a simplified mathematical model of solutes transport in Henle’s loop.
The model accounts for ion transport between the lumen and the epithelial cells, and between
the cells and the interstitium. The aim of this work is to evaluate the impact of explicitly
considering the epithelium on predicted solute concentration gradients in the loop of Henle and
to examine this impact on solute concentrations. In the last years, several research groups
have developed sophisticated models of water and electrolyte transport in the kidney. We can
broadly divide these models in two categories: (a) detailed cell-based models that incorporate
cell-specific transporters and predict the function of small populations of nephrons at steady-
state ([34]; [50]; [21]; [51]; [6]), and (b) macroscale models that describe the integrated function
of nephrons and renal blood vessels but without accounting for cell-specific transport mecha-
nisms ([46], [47]; [48]; [30]; [8]; [4]; [11]; [10]). These latter models do not consider explicitly the
epithelial layer separating the tubule lumen from the surrounding interstitium, and represent
the barrier as a single membrane.
In the second Chapter, after introducing the biological background, the mathematical aspects
and difficulties to explore, we present a rigorous passage to the limit for P → +∞. Physically,
studying this limit means studying what happens to the model by ’removing’ the epithelial
layer, assuming that the tubules are directly in contact with the surrounding environment (in-
terstitium). This result ensures the consistency between the ’reduced’ model (3-eq. system)
and the ’epithelial’ model (5-eq. system), but also rigorously explains and makes explicit the
link between two possible descriptions of the same physical phenomenon with different levels of
complexity.
On the other hand, the model we have been studying is quite far from how the kidneys actually
work. For this reason it is not reasonable to conclude that the 5-equation model is sufficient to
describe the sodium fluxes and the counter-current mechanism, very important for the urinary
concentration capacity in mammals, [22]. Furthermore, based on this study, it could be reckless
any other suggestions on the order of magnitude of permeability, for example for a comparison
between the ’normal/healthy’ cases and the pathological ones in kidneys. In fact, the 3 equation
system had already given a proper representation of the counter-current mechanism, but it is
not sufficient to give other suggestions about sodium fluxes in clinical cases and for the descrip-
tion of the entire phenomenon. In order to look after a more appropriate analysis that could be
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explicitly applied to physiological conditions, the first step would be to take into account the
water flow and the fluid reabsorption in the descending tubule. Then, the second one would
have to consider the electrical forces that apply to ions such as sodium and potassium, and that
modulate the flows (in other words, the flows depend not only on concentration gradients but
also on electrical potential).
In the third Chapter, we recall the model describing the transport of sodium in a simplified
version of the Henle’s loop in a kidney nephron. From a modelling point of view, it seems
important to take into account the epithelium in the counter-current tubular architecture since
we observe that it may strongly affect the solute concentration profiles in a specific range of
permeabilities and parameters.
It turns out that the main limitation of the model is to not consider the re-absorption of water
in descending limb. Indeed, in Section 3.2, we study the steady state solution and the assump-
tion of a constant rate α and the boundary conditions lead to ū1(x) = ū2(x), i.e. the luminal
concentrations of sodium are the same in both tubules for every x ∈ (0, L). Conversely, in vivo,
the concentrations in lumen 1 and 2 are different due to the constitutive differences between
the segments and presence of membrane channel proteins, for example the aquaporins. The
thin descending limb of Henle’s loop has low permeability to ions and urea, while being highly
permeable to water. The thick ascending limb is impermeable to water, but it is permeable to
ions. For this reason, a possible extension of the model shall assume that α is not constant but
space-dependent. A first step could be, for instance, to take two different values of α for the
first and second equation of the model (3.6), α1 and α2. From the mathematical viewpoint, this
choice slightly changes the structure of the hyperbolic system : for example, conservation of
certain quantities should not be that easy to prove. As noted in [20] and already underlined in
the Introduction, since the thick ascending limb is water impermeable, it is coherent to assume
α constant but in other models it may vary in time.

Furthermore, this assumption about α has a relevant influence on other factors. As already
pointed out, the relation between q̄1 and ū0 is biologically correct and consistent, this means
that in vivo the concentration of Na+ in the epithelial cell (intracellular) is lower than in
interstitium. The intracellular concentrations (epithelium, q̄1 and q̄2) are usually of the order
of 10mM whereas the extracellular ones (therefore in the lumen and in the interstitium) are of
the order of 140mM.
There are also other types of source terms in the interstitium that could be added, accounting for
blood vessels and/or collecting ducts. In this case, the last equation (3.6e) of the dynamic system
should include a term that accounts for interstitium concentration storage or accumulation
and for secretion-reabsorption of water and solutes, but the impact of adding such complex
mechanisms in the model remains to be assessed.

In the study presented in Chap.3 of this thesis, we focused our attention on the axial concen-
tration gradient and the FIC, previously defined in Section (3.2), which are significant factors
in the urinary concentration mechanism, [22, 20]. The axial gradient is an important determi-
nant of urinary concentration capacity. When water intake is limited, mammals can conserve
water in body fluids by excreting solutes in a reduced volume of water, that is, by producing
a concentrated urine. The thick ascending limb plays an essential role in urine concentration
and dilution, [40] : the active reabsorption of sodium without parallel reabsorption of water
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generates an interstitial concentration gradient in the outer medulla that in turn drives water
reabsorption by the collecting ducts, thereby regulating the concentration of final urine.
In summary, our model confirms that the active trans-epithelial transport of sodium from the
ascending limbs into the surrounding environment is able to generate an osmolality gradient.
Our model indicates that explicitly accounting for the 2-step transport across the epithelium
significantly impacts the axial concentration gradient within the physiological range of param-
eters values considered here. Thus, representing the epithelial layer as two membrane in series,
as opposed to a single-barrier representation, may provide a more accurate understanding of
the forces that contribute to the urinary concentrating mechanism. Therefore, the system gives
a contribution in the field of physiological renal transport model and it could be a good start-
ing point to elucidate and to better understand some mechanisms underlying concentrating
mechanism and related to the normal or abnormal ions transport in the kidney.



Appendix A

Chapter 2 tools

”I hate T.V. I hate it as much as peanuts.
But I can’t stop eating peanuts .”

[14]

A.1 Preliminaries and general notation

There are several definitions of the functions with bounded variation, especially in the one-
dimensional case, we report here just some of these referring to [9] and [25].

Definition A.1.1. Let be Ω ⊂ RN be an open set and let u ∈ L1(Ω). Define∫
Ω
|Du| = sup

{∫
Ω
u div(g) dx : g ∈ C1

0 (Ω;Rn); |g(x)| ≤ 1; x ∈ Ω

}
Definition A.1.2. A function u ∈ L1(Ω) is said to have bounded variation in Ω if

∫
Ω |Du| <∞.

We define BV (Ω) as the space of all functions in L1(Ω) with bounded variation.

Definition A.1.3. Let u ∈ L1(Ω); we say that u is a function of bounded variation in Ω if the
distributional derivative of u is representable by a finite Radon measure in Ω, i.e. if:∫

Ω
u
∂ϕ

∂xi
dx = −

∫
Ω
ϕ dDiu = −

∫
Ω
ϕ dλi ∀ϕ ∈ C∞c (Ω) i = 1, .., N

The vector space of all functions of bounded variation in Ω is denoted by BV (Ω).

Definition A.1.4. Let (a, b) be a bounded or unbounded interval. A map u : (a, b) → RN
defined at every point x ∈ (a, b) is called a function with bounded variation in one variable if
its total variation is finite:

TV (u; (a, b)) = sup{
q∑

k=1

|u(xk)− u(xk−1)|; a ≤ x0 < x1.. < xq ≤ b} <∞.

68
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An equivalent definition is given as follows. A function u : (a, b) → RN defined almost
everywhere for the Lebesgue measure, belongs to BV ((a, b);RN ) if its distributional derivative
∂xu is a bounded measure, the total variation of u being then:

TV (u; (a, b)) = sup
ϕ∈C1

c (a,b)

∫ b
a u∂xϕ dx

‖ϕ‖L∞

A.2 Tools

All computations done in this paper may be done rigorously thanks to a regularization process,
as explained for example in [28]. We recall that if u is a BV (0, L) function, we can define its
truncature for instance as: uδ = u(1− χδ) + cχδ with χδ which takes value 1 in x ∈ [0, δ] and c
real constant. Then, we can also define:

uδ,ν = (u(1− χδ) + cχδ) ∗ φν , (A.1)

with φν standard regularizing convolution kernel. Furthermore, a standard property of the BV
function (see [7] or [53]) allows us to write that:

‖u ∗ φν‖BV ≤ ‖u‖BV ,

for all sufficiently small ν > 0 and u ∈ BV , the regularization does not increase the norm.
We also recall following result in [28] describing the behaviour of BV-norm for truncated and
regularized function of BV space:

∀γ > 0 ∃βγ s.t. ∀δ < βγ , TV (uδ) ≤ TV (u) + |u(0)− c|+ γ.

We want pass to the limit in the regularization parameter with uniform estimates to prove
that the obtained estimates hold uniformly respect to the regularization and truncation proce-
dure and therefore, fulfil the previous results.

We consider the regularized and truncated initial data of the problem (3.6):

uδ,ν1 (0, x), uδ,ν2 (0, x), qδ,ν1 (0, x), qδ,ν2 (0, x), uδ,ν0 (0, x),

and uδ,νb (t), all defined as in (A.1).
The system (3.6) admits a unique smooth solution when the initial data is regularized and
truncated, i.e. ∃ (uδ,ν1 , uδ,ν2 , qδ,ν1 , qδ,ν2 , uδ,ν0 )δ,ν>0 approximating family which solves (3.6) with
corresponding and regular initial and boundary data.

We notice that the previous (a priori) estimates still hold true passing to the limit uniformly
in δ and ν.

Lemma A.2.1. For truncated and regularized functions uδ,ν1 (0, x), uδ,ν2 (0, x), qδ,ν1 (0, x), qδ,ν2 (0, x),
uδ,ν0 (0, x), and uδ,νb (t) and for every fixed ε > 0 there exists a unique vector solution U δ,ν so-
lution to (3.6) and U δ,ν ∈ C∞. Moreover, if U is a weak solution associated to the data
u1(0, x), u2(0, x), q1(0, x), q2(0, x), u0(0, x), and ub(t), then we have U δ,ν → U in L1 when
δ, ν → 0.
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A.2.1 Contraction property

We will present briefly the contraction property, using the notation di(t, x) = |u1−ū1|, i = 0, 1, 2
and δj(t, x) = |qj − q̃j |, j = 1, 2. We subtract line i of system (3.4) for ui, qj and ūi, q̄j and we
multiply by sgn(ui− ūi) and in line j we multiply by sgn(qj − q̄j) respectively, [37]. We obtain
the following inequalities :

∂td1 + α∂xd1 ≤ k(δ1 − d1)

∂td2 − α∂xd2 ≤ k(δ2 − d2)

∂tδ1 ≤ k(d1 − δ1) +K1(d0 − δ1)

∂tδ2 ≤ k(d2 − δ2) +K2(d0 − δ2)− gδ2

∂td0 ≤ K1(δ1 − d0) +K2(δ2 − d0) + gδ2.

(A.2)

In the last and the 4th equation of system, we use that −G(q2)sgn(q2) = −|G(q2)| (since
for assumption on the non-linear term sgn(G(q2)) = sgn(q2). For the last one we recall
G(q2)sgn(u0) ≤ |G(q2)| and gδ2 = g|q2 − q̄2|. G is nondecreasing in q2 and it holds,

sgn(G(q2(t, x))−G(q̄2(t, x)))[G(q2(t, x))−G(q̄2(t, x))] = |G(q2)−G(q̄2)| ≤ gδ2(t, x).

Adding all equations of system above, we obtain:

∂t(d1 + d2 + d0 + δ1 + δ2) ≤ α(∂xd2 − ∂xd1).

Integrating in the space [0, L]:

d

dt

∫ L

0
(d1 + d2 + d0 + δ1 + δ2)(t, x) dx ≤ α(d2(t, L)− d2(t, 0)− d1(t, L) + d1(t, 0)).

Since u1(t, L) = u2(t, L), we can simplify and get:

d

dt

∫ L

0
(d1 + d2 + d0 + δ1 + δ2)(t, x) dx ≤ αd1(t, 0)− αd2(t, 0). (A.3)

It implies:
d

dt

∫ L

0
(d1 + d2 + d0 + δ1 + δ2)(t, x) dx ≤ αd1(t, 0).

Integrating now with respect to time, we obtain:∫ L

0
(d1(t, x) + d2(t, x) + d0(t, x) + δ1(t, x) + δ2(t, x)) dx ≤ α

∫ T

0
d1(t, 0) dt+∫ L

0
(d1(0, x) + d2(0, x) + d0(0, x) + δ1(0, x) + δ2(0, x)) dx,

which implies,∫ L

0
(|u1 − ū1|+ |u2 − ū2|+ |u0 − ū0|+ |q1 − q̄1|+ |q2 − q̄2|)(t, x) dx ≤ α

∫ T

0
|(u1 − ū1)|(t, 0) dt+

+

∫ L

0
(|u1 − ū1|+ |u2 − ū2|+ |u0 − ū0|+ |q1 − q̄1|+ |q2 − q̄2|)(0, x) dx.

(A.4)
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A.3 Definition of weak solutions: 3× 3 system

We recall the 3 × 3 system with simplified notation k1 = 2πr1P1 and k2 = 2πr2P2, constants
related to biological parameters:

∂tu1 + α∂xu1 = k1(u0 − u1)

∂tu2 − α∂xu2 = k2(u0 − u2)−G(u2)

∂tu0 = k1(u1 − u0) + k2(u2 − u0) +G(u2),

(A.5)

with related initial and boundary conditions:

u1(t, 0) = ub(t); u1(t, L) = u2(t, L) t ≥ 0,

u1(0, x) = u0
1(x); u2(0, x) = u0

2(x); u0(0, x) = u0
0(x).

Definition A.3.1. We call U(t, x) = (u1, u2, u0) weak solution of system (A.5), if for all
ϕ1, ϕ2, ϕ0 ∈ S with S = {ϕ ∈ C1([0, T ]× [0, L]), ϕ(T, x) = 0}, it satisfies following equalities:



∫ T

0

∫ L

0
u1(∂tϕ1 + α∂xϕ1) dxdt+

∫ T

0

∫ L

0
k1(u0 − u1)ϕ1 dxdt+

+

∫ T

0
ub(t)ϕ1(t, 0)− u1(t, L)ϕ1(t, L) dt+

∫ L

0
u1(0, x)ϕ1(0, x) dx = 0,∫ T

0

∫ L

0
u2(∂tϕ2 − α∂xϕ2) dxdt+

∫ T

0

∫ L

0
k2(u0 − u2)ϕ2 dxdt+

+

∫ T

0
u2(t, 0)ϕ2(t, 0)− u2(t, L)ϕ2(t, L) dt+

∫ L

0
u2(0, x)ϕ2(0, x) dx−

∫ T

0

∫ L

0
G(u2)ϕ2 dxdt = 0,∫ T

0

∫ L

0
u0(∂tϕ0) dxdt−

∫ T

0

∫ L

0
k1(u0 − u1)ϕ0 dxdt−

∫ T

0

∫ L

0
k2(u0 − u2)ϕ0 dxdt+

+

∫ L

0
u0(0, x)ϕ0(0, x) dx+

∫ T

0

∫ L

0
G(u2)ϕ0 dxdt = 0.

(A.6)



Appendix B

Chapter 3 tools

B.1 Large permeability asymptotic

In this section we consider the case where the permeability between the lumen and the epithe-
lium is large, i.e. when Pi → ∞, with i = 1, 2 in the definition of constants k1 and k2. For
this purpose, we set k = k1 = k2 = 1

ε and we let ε go to 0. Physically, this means fusing the
epithelial layer with the lumen.

Rewriting (3.6) in this perspective gives

∂tu
ε
1 + α∂xu

ε
1 =

1

ε
(qε1 − uε1) (B.1a)

∂tu
ε
2 − α∂xuε2 =

1

ε
(qε2 − uε2) (B.1b)

∂tq
ε
1 =

1

ε
(uε1 − qε1) +K1(uε0 − qε1) (B.1c)

∂tq
ε
2 =

1

ε
(uε2 − qε2)−G(qε2) (B.1d)

∂tu
ε
0 = K1(qε1 − uε0) +G(qε2). (B.1e)

We expect the concentrations uε1 and qε1 to converge to the same quantity. The same happens
for uε2 → u2 and qε2 → u2. We denote u1, respectively u2, the limit of uε1 and qε1, respectively uε2
and qε2. Adding (1.6a) to (B.1c) and (B.1b) to (B.1d), we obtain

∂tu
ε
1 + ∂tq

ε
1 + α∂xu

ε
1 = K1(uε0 − qε1)

∂tu
ε
2 + ∂tq

ε
2 − α∂xuε2 = −G(qε2).

Passing formally to the limit ε→ 0, we arrive at

2∂tu1 + α∂xu1 = K1(u0 − u1) (B.2)
2∂tu2 − α∂xu2 = −G(u2), (B.3)
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coupled to the equation for the concentration in the interstitium obtained by passing into the
limit in equation (B.1e)

∂tu0 = K1(u1 − u0) +G(u2). (B.4)

The equations (B.2), (B.3), (B.4) describe the same concentration dynamics in a system without
epithelium, previously studied in [46] and [47]. The formal computation above shows that this
3 × 3 system may be considered as a good approximation of the larger system (3.6) for large
permeabilities.

Such a convergence result may be proved rigorously and it is investigated in Chapter 2. It
relies on specific a priori estimates and the introduction of an initial layer.

B.2 Technical results

B.2.1 Function F (λ)

In this subsection we prove that the function F (λ) which appears in the proof of Lemma 3.3.1
is a monotonic function. First let’s recall it

F (λ) :=
gkλ

1 + 1
k (g − λ)

(
e(cλ+λ−η(λ))L − 1

cλ + λ− η(λ)

)
. (B.5)

Lemma B.2.1. The function F defined by (B.5) is monotonically increasing on (0, λ−).

Proof. The product of positive increasing functions is increasing.

• λ 7→ kλ = K1k
λ2−2K1λ−kλ+kK1

is a positive and increasing function if λ ∈ (0, λ−). Indeed
∂kλ
∂λ =

−2λkK1+2kK2
1+k2K1

(λ2−2K1λ−kλ+kK1)2
is positive for 0 < λ < K1 + k

2 and λ− < K1 by definition.

• We set f1(λ) := g

1+ 1
k

(g−λ)
; if λ < g+k the function f1 is positive since g > 0 by hypothesis

and it is also increasing since ∂
∂λ
f1(λ) =

g
k

(1+ 1
k

(g(y)−λ))2
> 0, and λ− ≤ k

2 .

• The function x 7→ ex−1
x is increasing on R+ and the function λ 7→ cλ+λ−η(λ) is increasing

on (0, λ−). Indeed, we have straightforwardly

cλ + λ− η(λ) = 2λ+ 2k +
k2

k − λ− K1λ
K1−λ

+
k2

k + g − λ
.

B.2.2 Relation between direct and dual system

We recall the eigenelements problem written as below:
∂xU1(x)
−∂xU2(x)

0
0
0

 = λU(x) +AU(x); U(x) =


U1

U2

Q1

Q2

U0

 (B.6)
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−∂xϕ1(x)
∂xϕ2(x)

0
0
0

 = λΦ(x) + tAΦ(x); Φ(x) =


ϕ1

ϕ2

φ1

φ2

ϕ0

 (B.7)

with related matrix defined by

A =


−k 0 k 0 0
0 −k 0 k 0
k 0 −k −K1 0 K1

0 k 0 −k − g 0
0 0 K1 g −K1

 .

Multiplying (B.6) on the left by tΦ, we deduce

ϕ1∂xU1 − ϕ2∂xU2 = λtΦU + tΦAU .

Taking the transpose of (B.20) and multiplying on the right by U , we also have

−∂xϕ1U1 + ∂xϕ2U2 = λtΦU + tΦAU .

As a consequence, we deduce the relation

(U1ϕ1)′ − (U2ϕ2)′ = 0, ∀x ∈ [0, L]. (B.8)

Since U1(L) = U2(L) in (3.21) and by initial conditions U1(0) = 0, ϕ2(0) = 0, then also
ϕ1(L) = ϕ2(L), as set in (3.23). It means that (U1ϕ1) = (U2ϕ2) ∀x ∈ [0, L]. Thanks to this
relation, we can consider in our previous computation:

ϕ2(x) =
U1(x)

U2(x)
ϕ1(x), ∀x ∈ [0, L].

B.3 A simpler case: 3× 3 system without epithelium.

In this section we introduce a simpler system 3× 3 describing a countercorrent architecture but
without taking into account the epithelial layers and the ionic exchanges through them.

Then we will introduce the eigenelements problem related to the non linear stationary
problem:  ∂xN1(x)

−∂xN2(x)
0

−AN(x) = λN(x); N(x) =

N1

N2

N0

 (B.9)

−∂xϕ1(x)
∂xϕ2(x)

0

− tAΦ(x) = λΦ(x); Φ(x) =

ϕ1

ϕ2

ϕ0

 (B.10)
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with related matrix defined as:

A =

 k1 0 −k1

0 k2 + g(x) −k2

−k1 −k2 − g(x) k1 + k2

 , tA =

 k1 0 −k1

0 k2 + g(x) −k2 − g(x)
−k1 −k2 k1 + k2

 (B.11)

It is easy to verify that following relation between "direct" and "dual" system holds: ∂xN1(x)
−∂xN2(x)

0

 ·
ϕ1

ϕ2

ϕ0

−
−∂xϕ1(x)
∂xϕ2(x)

0

 ·
N1

N2

N0

 = 0 (B.12)

If we set

D =

 ∂xN1(x)
−∂xN2(x)

0

 , D∗ =

−∂xϕ1(x)
∂xϕ2(x)

0

 ,
we can rewrite

DU −AU − λU = 0, D∗Φ− tA− λΦ = 0.

Multiplying the first by U and the second by Φ,

DU · Φ−AU · Φ− λU · Φ = D∗ΦU − tAΦ · U − λΦ · U

we verify the following relation,

DU · Φ−D∗Φ · U = AU · Φ−A∗Φ · U = U ·A∗Φ−A∗Φ · U = 0

B.3.1 Existence of eigenelements: case 3× 3

We consider the non linear stationary problem:
∂xū1 = k1(ū0 − ū1)

−∂xū2 = k2(ū0 − ū2)−G(ū2)

0 = k1(ū1 − ū0) + k2(ū2 − ū0) +G(ū2)

ū1(0) = u0
1 ū1(L) = ū2(L)

(B.13)

We state the first eigenelement problem for a given continuous function g(x) > 0:
∂xN1 = λN1 + k1(N0 −N1)

−∂xN2 = λN2 + k2(N0 −N2)− g(x)N2

0 = λN0 + k1(N1 −N0) + k2(N2 −N0) + g(x)N2

(B.14)

wtih following conditions:

N1(0) = 0; N1(L) = N2(L);

∫ L

0
(N1(x) +N2(x) +N0(x)) dx = 1 (B.15)
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In case k2 = 0: 
∂xN1 = λN1 + k1(N0 −N1)

−∂xN2 = λN2 − g(x)N2

0 = λN0 + k1(N1 −N0) + g(x)N2

(B.16)

We sum all equations:
N ′1 −N ′2 = λ(N1 +N2 +N0).

Integrating with respect to x, since (B.15) holds, we obtain that λ = N2(0).
By 2nd equation we get immediately:

N2(x) = N2(0)e−
∫ x
0 (λ−g(σ) )dσ.

By 3rd equation we get:

• if λ = k1, then N1 = −g(x)
k1
N2,

• if λ 6= k1 then N0(x) = g(x)
k1−λN2(x) + k1

k1−λN1

Putting the last expression in the 1st equation, we get:

N ′1 −
2k1 − λ
k1 − λ

=
k1g(x)

k1 − λ
N2(x),

N1(x) =
k1λ

k1 − λ

∫ x

0
e

2k1−λ
k1−λ

λ(x−y)
g(y)e−λy+

∫ y
0 g(σ) dσ. (B.17)

We recall the fact that N1(L) = N2(L). We have to check that the boundary condition is
satisfied, i.e. N1(L)

N2(L) = 1:

F (λ) =
k1

k1 − λ

∫ L

0
e

(
2k1−λ
k1−λ

)λ(L−y)
g(y)eλ(L−y)−

∫ L
y g(σ) dσ dy = 1. (B.18)

With λ = 0, F (0) =
∫ L

0 g(y)e−
∫ L
y g(σ) dσ dy < 1, because of:

0 < F (0) =
[
e
∫ L
y g(σ) dσ

]L
0

= 1− e−
∫ L
0 g(σ) dσ < 1.

For λ < k1, it easy to verify that F (λ) > 0 and increasing continuos function. Since the
product of positive increasing function is still increasing, we can study each component in the
integral as function of λ and conclude. Moreover limλ→k1 F (λ) = +∞. Then, there ∃ a unique
λ ∈ (0, k1) which fulfills F (λ) = 1. In addition, it exists N1, N2, N0 ≥ 0 unique solution of
system (B.16).
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Relation between direct and dual system

We recall the eigenelements problem written as below: ∂xN1(x)
−∂xN2(x)

0

 = λN(x) +AN(x); N(x) =

N1

N2

N0

 (B.19)

−∂xϕ1(x)
∂xϕ2(x)

0

 = λΦ(x) + tAΦ(x); Φ(x) =

ϕ1

ϕ2

ϕ0

 (B.20)

with related matrix defined as:

A =

−k1 0 k1

0 −k2 − g(x) k2

k1 k2 + g(x) −k1 − k2

 , tA =

−k1 0 k1

0 −k2 − g(x) k2 + g(x)
k1 k2 −k1 − k2

 (B.21)

 ∂xN1(x)
−∂xN2(x)

0

 ·
ϕ1

ϕ2

ϕ0

−
−∂xϕ1(x)
∂xϕ2(x)

0

 ·
N1

N2

N0

 = 0 (B.22)

The previous relation leads us to: N ′1ϕ1−N ′2ϕ2 +ϕ′1N1−ϕ′2N2 = 0,, that implies (N1ϕ1)′ =
(N2ϕ2)′. Since N1(L) = N2(L) (B.15) and by initial conditions N1(0) = 0, ϕ2(0) = 0, then
also ϕ1(L) = ϕ2(L). It means that (N1ϕ1) = (N2ϕ2) ∀x ∈ [0, L]. Thanks to this relation, we
can consider:

ϕ2(x) =
N1(x)

N2(x)
ϕ1(x).

In the case 5× 5 investigated in this work, the same relation reads:

λΦU + tMΦU = λUΦ +MUΦ, (B.23)
(U1ϕ1)′ − (U2ϕ2)′ = 0 ∀x ∈ [0, L], (B.24)

with U = (u1, u2, q1, q2, u0), Φ = (ϕ1, ϕ2, φ1, φ2, ϕ0) and

M =


λ− k1 0 k1 0 0

0 λ− k2 0 k2 0
k1 0 λ− k1 −K1 0 K1

0 k2 0 λ− k2 − g 0
0 0 K1 g λ−K1

 , (B.25)

tM =


λ− k1 0 k1 0 0

0 λ− k2 0 k2 0
k1 0 λ− k1 −K1 0 K1

0 k2 0 λ− k − g g
0 0 K1 g λ−K1

 . (B.26)
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Dual problem: case 3× 3

We consider now dual system associated to (B.16) with g > 0 continuous function and k2 = 0
case: 

−∂xϕ1 = λϕ1 + k1(ϕ0 − ϕ1)

∂xϕ2 = λϕ2 + g(x)(ϕ0 − ϕ2)

0 = λϕ0 + k1(ϕ1 − ϕ0)

(B.27)

with following condition:

ϕ2(0) = 0, ϕ1(L) = ϕ2(L)

∫ L

0
(N1ϕ1 +N2ϕ2 +N0ϕ0) dx = 1.

By 3rd equation of (B.27) : ϕ0(x) = k1
k1−λϕ1(x).

Putting the expression for ϕ0 in the 1st of (B.27), we obtain:

−ϕ′1(x) =

(
k1λ

k1 − λ
+ λ

)
ϕ1(x).

Then,

ϕ1(x) = ϕ1(0)e
−
(
k1λ
k1−λ

+λ
)
x
. (B.28)

All functions depend on ϕ1(x):

ϕ1(x) = ϕ1(0)e
−
(
λk1
k1−λ

+λ
)
x

ϕ2(x) =
N1(x)

N2(x)
ϕ1(x)

ϕ0(x) =
k1

k1 − λ
ϕ1(x)

To prove their positivity, we need to know the sign of ϕ1(0). We use the normalization
condition and previous expressions:∫ L

0 2N1(x)ϕ1(x) +N0(x)ϕ0(x) dx = 1,∫ L

0
ϕ1(0)

(
2N1 +N0

k1

k1 − λ

)
e
−(

λk1
k1−λ

+λ)x
dx = 1. (B.29)

All quantities are positive for λ < k1, then the constant ϕ1(0) > 0.

Now we are ready to prove long time behaviour Theorem for this 3 × 3 case. We set
di(t, x) := |ui(t, x)− ūi(x)| i = 0, 1, 2 with ūi satisfying stationary system (B.30) and ui solving
the dynamic system (B.31).

α∂xū1 = k1(ū0 − ū1)

−α∂xū2 = k2(ū0 − ū2)−G(ū2)

0 = k1(ū1 − ū0) + k2(ū2 − ū0) +G(ū2)

ū1(0) = u0
1 ū1(L) = ū2(L)

(B.30)
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a1∂tu1 + α∂xu1 = k1u0 − u1)

a2∂tu2 − α∂xu2 = k2(u0 − u2)−G(u2)

a0∂t = k1(u1 − u0) + k2(u2 − u0) +G(u2)

u1(0, x) = u0
1(x) u1(t, L) = u2(t, L) u(t, 0) = ub(t)

(B.31)

We subtract component-wise (B.31) to (B.30). Then we multiply each of the entries by
sign(ui − ūi) respectively. We obtain the following inequalities :

a1∂td1 + α∂xd1 ≤ k1(d0 − d1)

a2∂td2 − α∂xd2 ≤ k2(d2 − d0)− Ĝ
a0∂td0 ≤ k1(d1 − d0) + Ĝ,

(B.32)

with Ĝ := |G(u2)−G(ū2)|. We have used also the monotonicity of G (by definition). We recall
that a1, a2, a0, α are positive constants. We set

M(t) :=

∫ L

0
(a1|u1 − ū1|ϕ1 + a2|u2 − ū2|ϕ2 + a0|u0 − ū0|ϕ0) dx.

In the case k2 = 0, multiplying each equation of (B.32) by the corresponding dual function ϕi,
adding all equations and integrating with respect to x, we obtain :

d

dt
M(t) ≤ α

∫ L

0
(∂xd2ϕ2−∂xd1ϕ1) dx+

∫ L

0

(
k1(d0−d1)ϕ1+k1(d1−d0)ϕ0−Ĝϕ2+Ĝϕ0

)
dx.

Integrating by parts the first integral, we can simplify the latter inequality into

d

dt
M(t) ≤ α

(
d2(t, L)ϕ2(L)− d2(t, 0)ϕ2(0) +

∫ L

0
d2(t, x)(∂xϕ2) dx

)
+

− α
(
d1(t, L)ϕ1(L)− d1(t, 0)ϕ1(0)−

∫ L

0
d1(t, x)(∂xϕ1) dx

)
+

+

∫ L

0

(
k1(d0 − d1)ϕ1 + k1(d1 − d0)ϕ0 − Ĝϕ2 + Ĝϕ0

)
dx.

then, using the dual system equations in (B.27) and the boundary condition d1(t, L) = d2(t, L) ∀t >
0

d

dt
M(t) ≤ α

∫ L

0
d2(t, x)(λϕ2 + g(ϕ0 − ϕ2)) dx+ αd1(t, 0)ϕ1(0)+

+ α

∫ L

0
d1(t, x)(−λϕ1 − k1(ϕ0 − ϕ1)) dx+

∫ L

0
α d0(t, x)(−λϕ0 − k1(ϕ1 − ϕ0)) dx.

since αd0(t, x)(−λϕ0 − k1(ϕ1 − ϕ0)) = 0, thanks to the last equation of (B.27) and since
d1(t, L)ϕ1(L) = d2(t, L)ϕ2(L) thanks to the boundary condition on u1, u2 and relation between
direct and dual system.
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1

α

d

dt
M(t) ≤ −λ

∫ L

0
(d1ϕ1 + d2ϕ2 + d0ϕ0) dx + d1(t, 0)ϕ1(0) +

∫ L

0
(gd2 − Ĝ)(ϕ2 − ϕ0) dx.

Then, we obtain

1

α

d

dt
M(t) ≤ −λM(t) + d1(t, 0)ϕ1(0) +

∫ L

0
(gd0 − Ĝ)(ϕ2 − ϕ0) dx.

SinceG is Lipschitz-continuous and by assumption and definition of it, Ĝ ≤ gd0 with g = ‖G′‖∞.
With this choice of g and we deduce also the negativity of quantity (ϕ2 − ϕ0) .

1

α

d

dt
M(t) ≤ − λ

max{a1, a2, a0}
M(t) + d1(t, 0)ϕ1(0) +

∫ L

0
(gd0 − Ĝ)(ϕ2 − ϕ0) dx.

Then, with λ̄ = λ
max{a1,a2,a0} ,

1

α

d

dt
M(t) + λ̄M(t) ≤ d1(t, 0)ϕ1(0).

Thanks to (3.17) and applying Gronwall’s lemma, we conclude that

M(t) ≤ αM(0)e−λ̄t + αϕ1(0)

∫ t

0
d1(s, 0)eλ̄(s−t) ds. (B.33)

Moreover, as in (3.17), we are supposing also in this case d1(s, 0) = |ub(t)− ūb| → 0 as t→ +∞.
Then, for every ε > 0, it exists t̄ > 0 such that d1(s, 0) < ε for each s > t̄. Then for every t ≥ t̄,
we have ∫ t

0
d1(s, 0)eλ̄(s−t) ds ≤

∫ t̄

0
d1(s, 0)eλ̄(s−t) ds+ ε

∫ t

t̄
eλ̄(s−t) ds

≤ eλ̄(t̄−t)
∫ t̄

0
d1(s, 0) ds+

ε

λ̄
.

The first term of the right hand side is arbitrarily small at t goes to +∞. Hence, we have proved
that for any ε > 0 there exists τ large enough such that for every t ≥ τ ,

M(t) ≤M(0)e−λ̄t + Cε.

Since M(t) = ‖u(t) − ū‖L1(Φ), it proves the convergence as stated in Theorem 3.3.1. Finally,
if we assume that there exists positive constants µ0 and C0 such that |ub(t) − ūb| ≤ C0e

−µ0t,
then from (B.33) we deduce

M(t) ≤M(0)e−λ̄t + C0ϕ1(0)
e−µ0t − e−λ̄t

λ̄− µ0
≤ Ce−min{λ̄,µ0}t.
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