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Introduction
Strongly correlated quantum systems have emerged as a burgeoning field of modern research. First
at equilibrium, where they give rise to exotic phases of matter with fascinating properties, then
when driven out-of and far-from equilibrium, where understanding their dynamics quickly became
a pressing question. Besides the fundamental interest in understanding quantum matter, progress
in this area promises fascinating applications in particular for quantum technologies. Compared
to the equilibrium situation, the physics out-of and far-from equilibrium, which constitutes the
central topic of this thesis, is only in its early stages. When a many-body quantum system is
isolated from its environment, by which mechanism does it dynamically reaches thermal equilib-
rium (if it does), and how can we characterise the behaviour of correlations and the propagation
of quantum information? Hints about such questions concerning transport are usually given by
a precise understanding of the system elementary excitations, and are experimentally probed by
spectroscopic techniques which commonly rely on linear response theory. Historically, transport
properties have been investigated within the realm of linear response theory, and have provided a
crucial understanding of transport coefficients such as the conductivity of materials. In classical
systems, out-of-equilibrium phenomena such as ageing effects in glasses or hydrodynamical insta-
bilities are examples where non-linear effects become relevant. In quantum systems, especially in
the strongly correlated regime, out-of-equilibrium dynamics beyond the linear regime constitutes
a great challenge.

Thanks to the dramatic experimental progress within the past two decades in cooling, trap-
ping and engineering of quantum systems, it became possible to transpose these questions from
solid-state physics to ultracold atoms. The latter can investigate dynamical properties with an
unprecedented accuracy, down to the single-atom and single-site precision. The increased level of
control gave birth to many experimental platforms but also many tools at our disposal, arguably
the most powerful of which to bring a system out-of-equilibrium is the one of a quantum quench.
Two important examples are global and local quenches. In a global quench, the quantum system is
initially prepared in the ground state of a Hamiltonian with some initial parameters, and then one
abruptly changes one of its parameters to induce dynamics. In a local quench, the Hamiltonian
is not changed, but a local perturbation such as a defect is introduced in the initial state so as to
induce dynamics.

We will also focus on non-relativistic theories of quantum physics, which do not set a funda-
mental limit to the speed at which information can propagate. However, such systems do admit
under certain conditions a bound for the spreading of quantum correlations and information. One
dimensional quantum systems offer a privileged playground to investigate such questions. Some
of them are amenable to powerful analytical methods such as bosonisation or the Bethe ansatz
for integrable systems, and provide invaluable exact solutions in the strongly interacting regime.
Another prowess of one dimensional models is that they are often amenable to efficient numerical
simulations, that can be solved up to an arbitrary precision under a reasonable time. An example
of such numerical method which we will use below is the density matrix renormalisation group
(DMRG) algorithm, together with the time-dependent variational principle (TDVP) approach
which simulates the evolution of the out-of-equilibrium system following a quantum quench. We
also emphasise that one dimensional quantum systems, besides being convenient for benchmarking,
also possess intrinsic properties which cannot be directly transposed to their higher dimensional
counterpart. Lastly, in the presence of disorder, particles tend to localise in real-space. This
emergent phenomena gives rise to new dynamical phases of matter with intriguing properties, for
instance admitting gapless excitations while being globally insulating.
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Framework of our study
So far, the propagation of correlations has been studied mainly using Lieb-Robinson bounds.
However, it has recently been realised that the space-time structure of correlation functions con-
tains richer information [Cevolani et al., 2018]. In this thesis, we have studied the information
that can be extracted from these space-time patterns. Our main result is the proposal of a new
spectroscopy based on the analysis of these structures. We show that one can indeed determine
spectral properties about the excitations and in particular reconstruct the full excitation spectrum
in a momentum-resolved manner by a variety of patterns after a local or a global quench. We
also show that quench spectroscopy can be used to determine the phase diagram of disordered
systems. More precisely, the manuscript is organised as follows.

Chapter 1 serves as a general introduction to out-of-equilibrium dynamics and the physics
of ultracold atoms. We present the one dimensional models used in the rest of the thesis (in-
teracting bosons and spin chains) and we discuss their ground state properties as well as the
elementary excitations they admit. We also discuss the main tools to investigate their dynamics
after quantum quenches, analytically (Lieb-Robinson bounds, quasiparticle picture, exact results
on integrable models) as well as numerically (mainly the density-matrix renormalisation group
within the framework of matrix product states). We finally discuss the experimental implementa-
tion of such models, and the tools at disposal to measure their physical properties with a particular
emphasis on spectroscopic methods.

In Chapter 2 we begin by introducing a generalised quasiparticle picture which was proposed
on analytical grounds recently and provides a physical mechanism to explain the propagation of
correlations in lattice quantum systems. We verify this picture based on exact numerical results
and highlight that in general, correlation spreading in lattice quantum systems is twofold. Two
characteristic velocities can be extracted from the dynamics, one of which determines precisely the
value at which information, carried by the excitations of the system, is propagating. These two
velocities are solely determined by the elementary excitations of the model, and they differ when
the energy-momentum relation (dispersion relation) of the quasiparticles is non linear (dispersive).

Chapter 3 builds on the link mentioned in the previous chapter between the after-quench
dynamics and the properties of the elementary excitations of the model. We propose a novel spec-
troscopic method named quench spectroscopy which is capable of reconstructing spectral properties
such as the excitation spectrum from a series of snapshots of the out-of-equilibrium dynamics. We
compare this method to existing ones such as pump-probe spectroscopies, and we argue about
some advantages that quench spectroscopy provides. In particular, it allows to access spectral
properties in a momentum-resolved manner, without requiring a specific calibration for each mo-
mentum value. We address quench spectroscopy in two main scenarios for clean systems, which
are the ones of a global quench and of a local quench. We emphasise the role played by the
observable on spectral properties throughout various examples.

In Chapter 4, we extend quench spectroscopy to disordered systems. We begin this chapter
with a brief introduction to the physics of disordered systems. Using the disordered Bose-Hubbard
chain as an example, we show how quench spectroscopy detects specific spectral signatures within
each phase and allows to detect the emerging phase in the presence of disorder called the Bose
glass. We discuss the Bose glass properties using quench spectroscopy, and the properties of the
elementary excitations in all phases in the presence of disorder. We then define a local spectral
probe and show that it is capable of distinguishing the real-space local structure of each phase.
Such probe based on single-site measurements, can be used to reconstruct the full phase diagram
of the model, as we demonstrate numerically.

Finally we conclude our study in Chapter 5 by providing a summary of the main results and
several possible extensions.
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Technical details and notes for further reading have been moved to Appendices. I have taken
the liberty of adapting the notations of some figures (labels, units, etc) from the literature to fit
more naturally with the discussion and notations used in this thesis. Wherever this is the case, it
is indicated by “Adapted from [X]” in the caption. All rights remain to the authors of the original
publications. Throughout the manuscript we often use natural units such that ~ = 1 and set the
lattice spacing in lattice models to a = 1.
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Résumé en français
Les systèmes quantiques fortement corrélés sont devenus un domaine de recherche moderne en
plein essor. D’abord à l’équilibre, où ils donnent naissance à des phases exotiques de la matière
aux propriétés fascinantes, puis lorsqu’ils sont entraînés hors de l’équilibre et loin de celui-ci, où la
compréhension de leur dynamique est rapidement devenue une question cruciale. Outre l’intérêt
fondamental que présente la compréhension de la matière quantique, les progrès réalisés dans ce
domaine promettent des applications fascinantes, notamment pour les technologies quantiques.
Par rapport à la situation d’équilibre, la physique hors et loin de l’équilibre, qui constitue le sujet
central de cette thèse, n’en est qu’à ses débuts. Lorsqu’un système quantique à plusieurs corps est
isolé de son environnement, par quel mécanisme atteint-il dynamiquement l’équilibre thermique
(s’il y parvient), et comment pouvons-nous caractériser le comportement des corrélations et la
propagation de l’information quantique ? Les indices sur ces questions concernant le transport
sont généralement donnés par une compréhension précise des excitations élémentaires du système,
et sont sondés expérimentalement par des techniques spectroscopiques qui reposent généralement
sur la théorie de la réponse linéaire. Historiquement, les propriétés de transport ont été étudiées
dans le cadre de cette théorie, et ont permis de comprendre les coefficients de transport tels que la
conductivité des matériaux. Dans les systèmes classiques, les phénomènes hors équilibre tels que
les effets du vieillissement dans les verres ou les instabilités hydrodynamiques sont des exemples
où les effets non linéaires deviennent pertinents. Dans les systèmes quantiques, en particulier dans
le régime fortement corrélé, la dynamique hors équilibre au-delà du régime linéaire constitue un
grand défi. Grâce aux progrès expérimentaux spectaculaires réalisés au cours des deux dernières
décennies en matière de refroidissement, de piégeage et d’ingénierie des systèmes quantiques, il est
devenu possible de transposer ces questions de la physique de l’état solide aux atomes ultrafroids.
Ces derniers peuvent étudier les propriétés dynamiques avec une précision sans précédent, jusqu’à
une résolution d’un atome et/ou d’un site unique. Le niveau de contrôle accru a donné naissance
à de nombreuses plateformes expérimentales mais aussi à de nombreux outils à notre disposition,
dont le plus puissant pour amener un système hors d’équilibre est sans doute celui d’un quench
(trempe) quantique.

Jusqu’à présent, la propagation des corrélations a été étudiée principalement à l’aide des bornes
de Lieb-Robinson. Cependant, il a été récemment réalisé que la structure spatio-temporelle des
fonctions de corrélation contient des informations plus riches [Cevolani et al., 2018]. Dans cette
thèse, nous avons étudié l’information qui peut être extraite de ces structures spatio-temporelles.
Notre principal résultat est la proposition d’une nouvelle spectroscopie basée sur l’analyse de ces
structures. Nous montrons qu’il est possible de déterminer les propriétés spectrales des excitations
et en particulier de reconstruire le spectre complet d’excitation d’une manière résolue en vecteur
d’onde, et ce par une étude de la dynamique hors équilibre faisant suite à un quench quantique
local ou global. Nous montrons également que la spectroscopie par quench peut être utilisée pour
déterminer le diagramme de phase de systèmes désordonnés. Plus précisément, le manuscrit est
organisé comme suit.

Le chapitre 1 sert d’introduction générale à la dynamique hors équilibre et à la physique des
atomes ultra-froids. Nous présentons les modèles unidimensionnels utilisés dans le reste de la thèse
(bosons en interaction et chaînes de spin) et nous discutons leurs propriétés à l’état fondamental
ainsi que les excitations élémentaires qu’ils admettent. Nous discutons également des principaux
outils permettant d’étudier leur dynamique après un quench quantique, aussi bien analytique-
ment (bornes de Lieb-Robinson, représentation en terme de quasiparticules, résultats exacts sur
les modèles intégrables) que numériquement (principalement le groupe de renormalisation de la
matrice de densité dans le cadre des états de produits matriciels). Nous discutons enfin de la mise
en œuvre expérimentale de ces modèles et des outils à disposition pour mesurer leurs propriétés
physiques, en mettant l’accent sur les méthodes spectroscopiques.
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Dans le chapitre 2, nous commençons par présenter une image généralisée des quasiparticules
qui a été proposée récemment sur des bases analytiques et qui fournit un mécanisme physique pour
expliquer la propagation des corrélations dans les systèmes quantiques sur réseau. Nous vérifions
cette image sur la base de résultats numériques exacts et mettons en évidence qu’en général, la
propagation des corrélations dans les systèmes quantiques possède une double structure. Deux
vitesses caractéristiques peuvent être extraites de la dynamique, dont l’une détermine précisément
la valeur à laquelle l’information, portée par les excitations du système, se propage. Ces deux
vitesses sont uniquement déterminées par les excitations élémentaires du modèle, et elles diffèrent
lorsque la relation entre l’énergie et le vecteur d’onde (relation de dispersion) des quasi-particules
est non linéaire (dispersive).

Le chapitre 3 s’appuie sur le lien mentionné dans le chapitre précédent entre la dynamique
hors d’équilibre et les propriétés des excitations élémentaires du modèle. Nous proposons une
nouvelle méthode spectroscopique appelée spectroscopie par quench qui est capable de reconstruire
les propriétés spectrales telles que le spectre d’excitation à partir d’une série d’instantanés de la
dynamique hors équilibre. Nous comparons cette méthode aux méthodes existantes, telles que
les spectroscopies pompe-sonde, et nous discutons de certains avantages de la spectroscopie par
quench. En particulier, elle permet d’accéder aux propriétés spectrales d’une manière résolue
en vecteur d’onde, sans nécessiter une calibration spécifique pour chaque valeur. Nous abordons
la spectroscopie par quench dans deux scénarios principaux pour les systèmes en l’absence de
désordre, à savoir ceux d’un quench global et d’un quench local. Nous soulignons le rôle joué par
l’observable sur les propriétés spectrales à travers divers exemples.

Dans le chapitre 4, nous étendons la spectroscopie par quench aux systèmes désordonnés.
Nous commençons ce chapitre par une brève introduction à la physique des systèmes désordonnés.
En utilisant la chaîne de Bose-Hubbard désordonnée comme exemple, nous montrons comment
la spectroscopie par quench détecte des signatures spectrales spécifiques dans chaque phase et
permet de détecter la phase émergente en présence de désordre, appelée le verre de Bose. Nous
discutons des propriétés du verre de Bose en utilisant la spectroscopie par quench, et des propriétés
des excitations élémentaires dans toutes les phases du modèle en présence de désordre. Nous
définissons ensuite une sonde spectrale locale et montrons qu’elle est capable de distinguer la
structure locale de chaque phase dans l’espace réel. Une telle sonde, basée sur des mesures en site
unique, peut être utilisée pour reconstruire le diagramme de phase complet du modèle, comme
nous le démontrons numériquement.

Enfin, nous concluons notre étude dans le chapitre 5 en fournissant un résumé des principaux
résultats et plusieurs extensions possibles.



1
Out-of-equilibrium
dynamics and quantum
simulation of strongly
correlated systems

Quantummechanics primarily focused on weakly interacting systems, for which most properties
can be described essentially by perturbation theory or mean-field approaches. Two of the most
prominent examples, both from a theoretical and an experimental perspective, are given by the
discovery of new states of matter with intriguing properties such as superconductivity (discovered
on mercury by Onnes in 1911; explained by Bardeen-Cooper-Schrieffer theory) and superfluidity
(discovered on helium 4 by Kapitsa in 1937; explained by Bogoliubov-Landau theory). In solid
state physics, electronic properties of metals in three dimensions were successfully described within
Landau’s Fermi liquid theory formalism postulating the existence of long-lived quasiparticles,
adiabatically connecting the interacting system to a non-interacting one.

As soon as strongly interacting systems lurked around the corner, unanswered questions began
to pile up. Some pressing ones are still unanswered to this day, arguably the most important being
the explanation for high temperature superconductivity which would probably guide us towards
ambient temperature and pressure real-world material examples. We will discuss many other
examples in the following. In order to answer them, minimal models have been built, but even
these are extremely difficult to solve. Apart from the hydrogen atom and the harmonic oscillator,
extremely invaluable exact solutions were scarce in the early days of quantum mechanics, and the
more involved many-body problem long remained untouched. The biggest exception is Bethe’s
work, who in 1931 solved the Heisenberg model in one dimension by using an ansatz for the
wave function to compute all eigenstates and eigenfunctions exactly. His work long remained as a
little-known curiosity, before many other exact solutions were found using a similar technique on
one-dimensional systems in the 1960s [Lieb and Liniger, 1963; Lieb et al., 1961; Lieb and Wu, 1968].
All these exactly solvable models are one dimensional ones, and are now referred to as integrable.
Integrability immensely developed in the branch of mathematical physics in the past 50 years, and
initially paved the way for our understanding of strongly correlated quantum systems by providing
exact solutions of quantum models for arbitrary interactions. The behaviour of electrons in the one
dimensional world cannot be described by Fermi liquid theory and is superseded by the Luttinger
liquid theory, proposed by Haldane [F. D. M. Haldane, 1981a, 1981b]. This bosonisation1 procedure
became a pivotal tool since it captures the low-energy physics of one dimensional gapless systems
(for reviews, see [Cazalilla et al., 2011; Giamarchi, 2004; Schulz, 1995]).

One dimensional systems are the prime examples of strongly interacting systems: they admit
a few exact solutions, they can be simulated numerically in an efficient way and they can be easily
realised in current state-of-the-art experiments. Considerable experimental progress in ultracold
atomic physics led to the creation, control and study of interacting many-body quantum systems
with considerable accuracy. Such systems can be decoupled from the environment (isolated) to
a very good approximation and therefore evolve under unitary dynamics. Less sensitive to deco-
herence [Zurek, 2003] than their open counterpart, the closed systems realised experimentally are
good candidates for (universal) quantum simulators, which has become a growing field of quantum

1By linearising the energy-momentum relation close to the Fermi level, collective excitations can be cast into
the bosonic modes of a quantum harmonic oscillator, hence the name.

7
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engineering [Blatt and Roos, 2012; Bloch et al., 2012; Cirac and Zoller, 2012; Georgescu et al., 2014].
Therefore besides the fundamental interest in strongly interacting quantum systems, the growing
field of quantum engineering and quantum computing developed quickly thanks to back-to-back
experimental breakthroughs in the last two-decades. This gives hope towards the realisation of
Feynman’s vision of a universal quantum computer in the distant future, and of reliable large scale
quantum simulators in the near future. The high degree of experimental precision and control
showed that many surprises still hold even at equilibrium, in particular concerning the equilibra-
tion and possible thermalisation of the system at long times. We commonly rely on a statistical
(thermal) ensemble governed by a few variables to predict using statistical physics (or thermody-
namics) the behaviour of a system. The underlying assumption at the foundation of statistical
mechanics, the ergodic hypothesis, remains a subject of ongoing investigations. The related topic
of quantum thermalisation will be briefly introduced below.

In a nutshell, the following introductory chapter attempts to encapsulate the following topics:
why are strongly interacting systems interesting, how can we build them, and finally what are the
tools at our disposal to study and measure them.

1.1 Strongly correlated quantum systems
In this Sec. 1.1, we discuss the various quantum phases and their fascinating properties (ground
state and elementary excitations) for typical quantum models amenable to the strongly correlated
regime and which we will use throughout the manuscript.

1.1.1 Lineland
One dimensional systems constitute the most suitable category of strongly correlated systems.
The first illustration stems from the fact that dimensionality plays an important role in reaching
the strongly interacting regime: on a line, particles cannot pass through each other without collid-
ing. This topological effect has dramatic consequences, for instance forcing excitations to become
collective ones or separating the spin and the charge of electrons [Giamarchi, 2004]. In one dimen-
sion, our main focus will be bosons. This choice is not very restrictive, since here into “bosons”
we include spins-1/2 and spinless fermions. As we will detail below, indeed in one dimension
hard core bosons can be mapped into spins-1/2 using the Holstein-Primakoff transformation, and
to spinless fermions using the Jordan-Wigner transformation. Commonly in one dimension, the
bosonic or fermionic behaviour of the system depends on the interaction regime2. We will also
mostly discuss the zero temperature physics, where any existing phase transition will be driven by
quantum fluctuations rather than thermal ones. Such quantum phase transitions are indicated by
non-analytic singularities in the ground state energy. The reason for this choice is that a D dimen-
sional T = 0 quantum system can be mapped to a D+ 1 dimensional classical one at T > 0, from
which point one can use a theorem named after Mermin, Wagner and Hohenberg, which states
that classical short-ranged systems in D ≤ 2 dimensions at finite temperature [thus also quantum
systems at T = 0 in D ≤ 1 dimensions] cannot break a continuous symmetry. This amounts to
the absence of long-range order and restricts the number of possible phase transitions3.

2For instance, the wave function of hard core bosons is similar (up to an absolute value to preserve the symmetry)
to the one of free fermions given by a Slater determinant. Some of the bosonic correlation functions (involving
an even number of field operators) may be computed from free fermionic ones. This behaviour is referred to as
fermionisation. The funny thing in one dimension is that fermions can be bosonised and bosons fermionised.

3In 3D, bosons undergo Bose-Einstein condensation by spontaneously breaking the continuous U(1) symmetry,
however in 1D the quantum phase fluctuations are always sufficiently strong to prevent the formation of the con-
densate, in agreement with the above mentioned theorem. One dimension admits quasi-condensates, characterised
by small density fluctuations but large phase fluctuations. Of course, not all phase transitions are associated to
a spontaneous symmetry breaking, for instance Berezinskii-Kosterlitz-Thouless (BKT) ones can happen without
contradicting the MWH theorem. The latter also does not apply to discrete symmetries.
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Solving a strongly correlated quantum system in an exact way is often impossible, at the
exception of a few one dimensional examples referred to as integrable. Such noticeable exceptions
include both lattice models (Heisenberg and XY spin chains, or the fermionic Hubbard chain)
and continuum models (the relativistic sine-Gordon model, or the non-relativistic Lieb-Liniger
model discussed below) and can be solved using the machinery of the Bethe ansatz. Other models
can be mapped into free theories (in most cases a free fermionic one using a Jordan-Wigner
transformation, for instance the transverse-field Ising chain). Note however that, excluding the
latter, the computation of correlation functions often requires tremendous work [Korepin et al.,
1997]. Exact numerical methods have been developed in one dimension, noticeably the density
matrix renormalisation group (DMRG), which we will make use of and introduce in Sec. 1.2.4.
This analytical/numerical particular behaviour is the second illustration of the special role played
by one dimensional models.

The third illustration is given by the development of experimental techniques which led to
an unprecedented accuracy in the simulation and control of such systems in condensed matter,
contributing to grow our understanding of strongly correlated quantum matter. Below we begin
by discussing the paradigmatic integrable Lieb-Liniger chain on which we shall illustrate a few
other characteristic properties of the 1D world.

The Lieb-Liniger model The Lieb-Liniger model arises very generally by considering a system
of N ultracold bosons whose interactions can be restricted to two-body processes, of the form
V (xi, xj). Provided that the de Broglie wavelength is much larger than the range of the interatomic
van der Waals potential (therefore at sufficiently low temperature), the latter can be substituted
by an effective contact interaction4 V (xi, xj) = g δ(xi − xj) so that one obtains [Lieb, 1963; Lieb
and Liniger, 1963]

HLL = − ~2

2m

N∑
i=1

∂2

∂x2
i

+ g
∑
i<j

δ(xi − xj), (1.1)

where δ(.) is the delta distribution, m the boson mass, and xi the position of the ith particle in
real space. The constant g is sometimes also written as ~2c/m. The first term of the Hamiltonian
is the kinetic energy of the particles and the second the interaction energy. In the following,
n = N/L stands for the gas density and L the size of the system.

This model captures the rather counter-intuitive fact that in one dimension it is for small
densities that the interactions are the strongest. From Eq. (1.1), if the particles are localised, the
total energy per particle reduces to the kinetic component5 which can be estimated by Ekin ∼
~2n2/D/2m. On the contrary, if the particles are completely delocalised over the system size, the
total energy per particle reduces to the interaction energy Eint ∼ gn. The ratio γ = Eint/Ekin
dictates the transition between the weakly interacting and the strongly interacting regime

γ = mg

~2n(2/D)−1 , (1.2)

and highlights the role played by the dimension to realise strongly interacting systems

γ1D � 1 ⇔ n1D � mg
~2

γ3D � 1 ⇔ n3D �
(

~2

mg

)3
.

(1.3)

In 3D, strongly interacting systems require high density while in 1D, diluted systems are suited
to investigate strongly correlated physics.

4For a detailed exposition of scattering theory, see for instance [Schwabl, 2002], Chap.18.
5At first, this may sound a bit strange. The particles are localised because they strongly repel each other, but

since they are not in contact with one another (their wave function do not overlap), the total interaction energy of
the system is indeed zero.



1 Out-of-equilibrium dynamics and quantum simulation of strongly correlated systems 10

(a) (b)

Fig. 1.1 Exact excitation spectrum of the Lieb-Liniger model computed using the Bethe
ansatz. (a) In the weakly interacting regime, a single type of excitations matters, and they
coincide with the particle-like excitations of the Bogoliubov regime. (b) When the interactions
increase, hole-like excitations are necessary to describe the excitation spectrum which blurs
from a single branch into a continuum. From [Caux and Calabrese, 2006].

As mentioned above, the Lieb-Liniger model is integrable and thus exactly solvable in the sense
that its eigenenergies and eigenfunctions can be computed exactly. Full details about this pro-
cedure within the coordinate Bethe ansatz formalism are given in Appendix 1.A. This approach
is well suited to a numerical study of the model thermodynamics (ground state and excitations
properties) and of the excitation spectrum, which is represented in Fig. 1.1. In the weakly inter-
acting regime, only the particle-like excitations matter, while in the strongly interacting regime,
the hole-like excitations need to be taken into account (see Appendix 1.A for details on the explicit
construction of the excitations).

Exact analytical results can also be obtained from the Bethe ansatz by computing the Tan
contact [Olshanii and Dunjko, 2003; Tan, 2008a, 2008b, 2008c], which is a scalar quantity appearing
in contact interacting models that relates thermodynamical properties to the decay of some cor-
relation functions. The contact is proportional to the total interaction energy of the system, and
can be measured experimentally from the long tail of the momentum distribution in momentum
space. Besides, the scaling of the contact with the interactions and the temperature offers a way
to detect the fermionised regime [H. Yao et al., 2018].

Let us finally mention that the low-energy physics of the Lieb-Liniger model can be accurately
described by bosonisation. This approach is well suited for investigating the behaviour of correla-
tion functions, while avoiding the cumbersome algebraic Bethe ansatz formalism of the quantum
inverse scattering method.

1.1.2 Confining bosons on a chain
While the Lieb-Liniger model was a continuum one, we will now discuss its discrete generalisation.
Slightly anticipating what follows, the motivation for this generalisation is that to reach strong
interactions, one can dilute a one-dimensional system as described above, but a preferable method
is to confine the atoms by trapping them on a lattice.

In second quantisation, using the field operator ψ̂(x) at the position x, a generic two-body
Hamiltonian reads as

Ĥ =
ˆ

dx ψ̂†(x)−~
2∇2

2m ψ̂(x) + 1
2

ˆ
dx dy ψ̂†(x)ψ̂†(y)V (x, y)ψ̂(x)ψ̂(y). (1.4)

On the continuum, it is advantageous to decompose the field operator onto delocalised Bloch
functions. But on a discrete chain, the atoms are more localised on the lattice sites and the basis
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of Wannier functions (linear combinations of the Bloch ones) is more convenient to work with.
As we restrict to low temperatures (alternatively deep lattices), we only retain the lowest-band,
and because the Wannier functions w are very localised around each lattice site, we restrict to
nearest-neighbour interactions so as to write ψ̂(x) = ∑

R w(x − R) âR(x). The only remaining
parameters are the hopping amplitude J > 0 and the on-site interaction energy U > 0 defined as

J =
ˆ

dxw?(x−R)
(
− ~2

2m∇
2 + Vcl(x)

)
w(x−R± 1),

U = 4π~2as

m

ˆ
dx |w(x)|4,

(1.5)

with Vcl(x) a possible external potential (used to confine the system). One then obtains the
Bose-Hubbard model, first introduced by [Fisher et al., 1989], whose Hamiltonian takes the form

ĤBH = −J
∑
R

(
â†RâR+1 + h.c.

)
+ U

2
∑
R

n̂R(n̂R − 1), (1.6)

with â(†)
R the annihilation (creation) operator of a boson at the lattice site R, and n̂R = â†RâR the

corresponding on-site occupation number. Physically, each atom can tunnel from one site to its
neighbour, and if a site hosts more than one boson then they interact. The first term of Eq. (1.6)
represents the kinetic energy, proportional to the tunnelling probability J > 0. The negative sign
in Eq. (1.6) always favours a uniform phase, which for U = 0 delocalises the particles over the
entire lattice. The second term is an on-site interaction term which penalises energetically the
system for high on-site occupation numbers. The operator n̂R(n̂R − 1)/2 counts the number of
pairs of bosons on the site R occupied by nR bosons, as we restricted to two-body interactions.

Depending on the value of the interactions J/U and the filling n̄ = N/La (average particle
density), with a the lattice spacing, there are two important distinct regimes. For integer filling
and J/U sufficiently small, the system enters the Mott-insulator6 (MI) phase. At n̄ = 1 in
1D, the critical value below which we enter the MI phase is (J/U)c = 0.305(2) [Ejima et al.,
2011; Ejima et al., 2012; Kashurnikov and Svistunov, 1996]. In the MI, the ground state has a
fixed number of particles with negligible density fluctuations. Translation invariance imposes that
the on-site occupation number nR are unchanged and do not depend on the chemical potential
µ, so the reduced compressibility κ = ∂n/∂µ identically vanishes. For non-integer filling or
if J/U is large enough, the system reaches a compressible superfluid phase (SF). A transition
between these two regimes can happen when the interactions are varied or when the number of
particles is changed. For fixed particle number, the critical behaviour of the Bose-Hubbard chain
at T = 0 is in the same universality class as the classical bidimensional XY model (an example of
the quantum to classical mapping) which exhibits a Berezinskii-Kosterlitz-Thouless (BKT) phase
transition (in agreement with the Mermin-Wagner-Hohenberg theorem). The transition can also be
crossed at fixed interactions and by varying the particle number (commensurate-incommensurate
transition), and is mean-field like [Fisher et al., 1989] (sometimes also called of the Pokrovsky-
Talapov type [Pokrovsky and Talapov, 1979]). In the grand canonical ensemble, the phase diagram
displays a series of asymmetric Mott lobes that decrease in size as the filling increases. The first
Mott lobe at n̄ = 1 is shown in Fig. 1.2(a). Experimentally, the MI-SF transition was observed in
3D by [Greiner et al., 2002] and will be discussed in Sec. 1.3.

The excitation spectrum of the model is also very different in both phases: while the SF
excitation branch is gapless and linear at the origin, the MI one is gapped (adding a particle into
the system cannot be done below a certain value set by the gap). However, the precise excitation

6The name comes from the fermionic Hubbard model at half-filling (one electron per site). While band theory
would predict the system to be metallic, interactions are making the system insulating. To distinguish from
conventional insulators, the phase was named a Mott insulator as a tribute to Mott (NP 1977).
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Fig. 1.2 (a) Portion of the phase diagram of the Bose-Hubbard chain in the grand canonical
ensemble showing the first Mott lobe at n̄ = 1, from [Kühner et al., 2000]. The solid line is a
strong coupling expansion, the "+" and "×" symbols are QMC data, filled circles and empty
squares are DMRG data. The tip of the Mott lobe is closing exponentially as the transition
is approached, making it challenging to resolve precisely numerically. Dispersion relation of
the elementary excitations (b) in the mean-field SF regime [Eq. (1.7)] and (c) in the strongly
interacting MI [Eq. (1.8)].

spectrum is only known in limiting cases. In the weakly interacting SF regime characterised by
U/(2Jn̄) � 1, the excitations are Bogoliubov quasiparticles (see also Appendix 1.E) with the
excitation spectrum

Ek = 2J
√

2 sin2
(
k
2

) [
2 sin2

(
k
2

)
+ n̄U

J

]
. (1.7)

We plot the dispersion relation of the Bogoliubov quasiparticles in Fig. 1.2(b) for different values
of n̄U/J . The branch is always linear for k → 0, and the linear regime increases with n̄U/J .
Deep in the MI for U > 4(n̄+ 1)J , the Bose-Hubbard chain can be mapped to a fermionic model
which admits two types of excitations [Barmettler et al., 2012]. The full derivation is detailed in
Appendix 1.D, and will be extensively used throughout the manuscript. Here we only quote the re-
sult, which is that in the strongly interacting regime, the elementary excitations are approximately
characterised by doublon-holon pairs and admit the following dispersion relation for n̄ = 1

2Ek = J

√(
U
J
− 6 cos k

)2
+ 32 sin2 k, (1.8)

plotted in Fig. 1.2(c) for different values of U/J .
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Fig. 1.3 (a) Phase diagram of the Heisenberg chain at zero temperature separating the fer-
romagnetic from the antiferromagnetic ground state. (b) Low-energy excitation spectrum in
both cases, either the magnon (FM) or the 2-spinon continuum (AFM).

1.1.3 Spin chains
In some regimes, bosonic models can be mapped to spin chain models, as we will detail in
Sec. 1.3.1.3. Below we discuss two spin chain models which we will make use of throughout
the manuscript: the Heisenberg chain and the transverse-field Ising chain.

Heisenberg chain The Heisenberg spin-1/2 chain was the first exactly solved interacting quan-
tum model: its ground state and elementary excitations were expressed without resorting to any
approximation7. It provides a minimal model of a quantum magnet, and is governed in one
dimension by the Hamiltonian

ĤH = −J
∑
R

(
ŜxRŜ

x
R+1 + ŜyRŜ

y
R+1 + ŜzRŜ

z
R+1

)
, (1.9)

where J is the isotropic spin exchange coupling between nearest neighbours, and ŜαR the spin
operator along the axis α on the lattice site R. The ground state and the low-energy excitations
only depend on the sign of J (its strength |J | sets the energy scale). The Heisenberg chain is a non-
trivial interacting model with a highly degenerate ground state in which all spins are aligned in the
same but arbitrary direction for J > 0 (ferromagnetic order), and in opposite but still arbitrary
direction for J < 0 (antiferromagnetic order) [Fig. 1.3(a)]. Despite its apparent simplicity, finding
the eigenstates and eigenvalues of the model is a difficult task which was performed by Bethe back
in 1931, using an ansatz for the form of the wave function that now bears his name [Bethe, 1931].
The Bethe ansatz solution of this model shares similarities with the Lieb-Liniger model discussed
in Appendix 1.A, with slight modifications due to the additional internal degree of freedom due
to the spin (see for instance [Franchini, 2017] for the derivation).

What about the excitation spectrum of the model? Since spin operators obey the SU(2)
algebra (angular momentum) commutation rules, the spin commutator for two different directions
is an operator (not proportional to the identity). This makes it cumbersome to analytically work
with spin degrees of freedom. Interestingly, spin operators can be mapped to bosonic ones obeying
bosonic commutation relations by the Holstein-Primakoff transformation which for an arbitrary
spin S reads as [Holstein and Primakoff, 1940]

Ŝ+
R =

√
2S − n̂R âR , Ŝ−R = â†R

√
2S − n̂R , ŜzR = S − n̂R , (1.10)

7There cannot be any “small” parameter here anyway, since the only parameter J sets the energy scale.
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where Ŝ±R = ŜxR± iŜ
y
R. This transformation greatly simplifies the interpretation for the excitations

of the model in some regimes. It is most useful if the ground state is sufficiently polarised along
z (thus FM) such that the spin deviation around this axis can be considered small, 〈n̂R〉 � 2S,
meaning that the number of excitations remains small. The Holstein-Primakoff transformation
can then be linearised into

Ŝ+
R = âR , Ŝ−R = â†R , ŜzR = S − n̂R . (1.11)

This semi-classical linear spin-wave theory lets us interpret the low-energy excitations for J > 0
as magnons, with the dispersion relation8

Ek = J(1− cos k), (1.12)

shown in Fig. 1.3(b). Magnons are quantised spin waves and can be interpreted as single spin
flips, i.e. a single b̂ operator [Fig. 1.4(a)]. Importantly, this dispersion relation can be shown to
be exact directly from the Bethe ansatz (without involving the Holstein-Primakoff transformation
and its linear approximation), see for instance [Karbach and Müller, 1997]. Here, the semi-classical
picture from linear spin-wave theory adequately accounts for the quantum reality.

The situation is very much different in the antiferromagnetic case. First, the alternating state
|↑↓↑↓ · · ·〉z is not the ground state (in fact not even an eigenstate), which suggests already the
breaking of the semi-classical picture. In the true ground state, quantum fluctuations play an
important role: the antiferromagnetic order is only preserved locally (the spin-spin correlation
function decays algebraically with the distance and not exponentially, signalling quasi-long range
order) [Fig. 1.4(b)].

The semi-classical picture given by spin-wave theory fails to describe quantitatively the ground
state in the antiferromagnetic case, as well as the excitations. The low-lying excitations are instead
given by a two-spinon continuum9 defined by [des Cloizeaux and Pearson, 1962]

π
2J |sin k| ≤ ω ≤ πJ

∣∣∣sin (k2)∣∣∣. (1.13)

Detailed explanations about the Bethe ansatz procedure to derive this continuum in the antifer-
romagnetic Heisenberg model can be found in [Karbach et al., 1998]. Even though spinons have no
classical interpretation, one may qualitatively think about them as non-local domain walls in the
Néel state [Fig. 1.4(b)]. A spinon is a spin 1/2 particle, and spinons can only be created in pairs
on a chain with an even number of spins. Since a pair is equivalent to a single spin flip of the
chain, the elementary excitations (pairs of spinons) have a spin 1 [Faddeev and Takhtajan, 1981].

Such continuum can be probed by the dynamical structure factor, which can be measured in
a scattering experiment. We will come back to this point later in Sec. 1.3.2.3, but in short, the
picture above is validated.

The transverse-field Ising chain The last model we will discuss is the short-range transverse-
field Ising (TFI) spin-1/2 chain, described by the Hamiltonian

ĤTFI = −J
N−1∑
R=1

σ̂xRσ̂
x
R+1 − h

N∑
R=1

σ̂zR, (1.14)

8The Hamiltonian can be rewritten as a quadratic form Ĥ = −|J |N/4− |J |/2
∑
R

(
â†R+1âR − â

†
RâR + h.c.

)
for

S = 1/2, which can be immediately diagonalised by moving to Fourier space. The modes of the obtained bosonic
harmonic oscillator Ek = J(1− cos k) are the magnons.

9In principle, the 4-spinon contribution should be taken into account as it is not negligible and its region in not
all concluded within the 2-spinon one. However, its major contributions are included in the region defined by the
2-spinon continuum [Mourigal et al., 2013] (Supplemental Material).
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Fig. 1.4 Representation of the excitations for the Hamiltonian Ĥ =
−J

∑
n

(
ŜxnŜ

x
n+1 + ŜynŜ

y
n+1 + ∆ŜznŜzn+1

)
− gµBHŜ

z
n, with J < 0 (antiferromagnetic).

(a) Representation of a magnon excitation in the presence of the external field. The excitation
is the same as in the ferromagnetic isotropic Heisenberg chain (zero field), but it is harder
to picture since all spins except one can be aligned in an arbitrary direction. (b) Top:
representation of the highly degenerate ground state, where only two possible states with the
spins aligned along z are represented. Middle: In the Ising limit, the spin flip excitation in
the antiferromagnetic ground state can be pictured as a pair of counter-propagating non-local
domain walls (spinons). Bottom: the first excited state is approximately represented by
a combination of two and four spinons (higher order contributions are negligible). The
excitation spectrum broadens into a continuum given by the Bethe ansatz [Eq. (1.13)]. From
[Mourigal et al., 2013].

where h is the transverse field, J > 0 the ferromagnetic exchange coupling. The phase diagram
displays a quantum phase transition at h = J which separates a z-polarised paramagnetic phase
(for h > J) from a doubly-degenerate ±x-polarised ferromagnetic phase (for h < J) [Fig. 1.5(a)].
The biggest advantage of this model is that its exact excitation spectrum can be obtained simply by
a mapping to non-interacting spinless fermions using the Jordan-Wigner transformation, followed
by a Bogoliubov transformation [Franchini, 2017]. This yields

Ek = 2
√
h2 + J2 − 2hJ cos k, (1.15)

which we represent in Fig. 1.5(b) for various values of h/J . In the z-polarised phase, the elementary
excitations are local spin flips [Sachdev, 2011]. In contrast, the x-polarized phase is characterized
by topologically non-local domain walls (reminiscent of the ones described in the antiferromagnetic
Heisenberg model). Interestingly, the excitation spectrum in the x-polarized phase can be obtained
from that of the z-polarised phase using the self-dual symmetry of the model.

Duality mapping – The TFI chain admits non-local excitations for h < J , which can be
understood using a self-duality mapping between its two phases (for a review, see [Kogut, 1979],
IV.B.). Our aim is to rewrite the Hamiltonian (1.14). We introduce new variables associated
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Fig. 1.5 (a) Phase diagram of the transverse-field (along z) Ising chain at zero temperature
separating a z-polarised phase for h/J > 1 from a ±x-polarised phase for h/J < 1. (b) Exact
excitation spectrum for h/J > 1. The spectrum for h/J < 1 can be obtained from self-duality
Ek(hJ ) = h

JEk(
J
h ).

to the bonds between spins, labelled by Greek indices α = 1, · · · , N − 1. On each bond, a spin
operator alongside x is introduced with a +1/2 value if the bond is ferromagnetic along z (↑↑ or
↓↓) and −1/2 for an antiferromagnetic one (↑↓ or ↓↑). An example for a given configuration with
N = 6 is shown in Fig. 1.6(a). It corresponds to the introduction of the new set of Pauli matrices

µ̂xα =
α∏
j=1

σ̂zj and µ̂zα = σ̂xi+1σ̂
x
i , (1.16)

which obey the SU(2) algebra. We may then rewrite the initial Hamiltonian as

Ĥ = −h
N−2∑
α=1

µ̂xαµ̂
x
α+1 − J

N−1∑
α=1

µ̂zα − h (σ̂z1 + σzN) . (1.17)

The last term becomes irrelevant in the thermodynamic limit, and the energy spectrum satisfies
Ek(hJ ) = h

J
Ek(Jh ). Up to a global rescaling factor, the effect of the mapping is to swap J and h.

To overcome the difficulty caused by the doubly-degenerate ground state, a gauge may be picked
so that the mapping becomes uniquely defined. Here we choose the first spin to be always up.

For h > J , excitations are spin flips in the original lattice. From the duality mapping, for
h < J , the excitations are also spin flips, but in the reciprocal lattice, which are equivalent to
non-local domain walls in the original one [Fig. 1.6(b)].

(a)
↑ ↑ ↑ ↑ ↑↓

→ → →← ←
(b)

↑ ↑ ↑ ↓ ↓ ↓

→ → →→ ←

Fig. 1.6 (a) Self-duality of the TFI chain, with an original lattice configuration (black) and
the reciprocal lattice configuration (orange). With given boundary conditions, the mapping
is bijective if the value of the first (or last) spin is fixed in real space (gauge choice). (b) A
spin flip in the reciprocal lattice is equivalent to a domain wall in the original one. From [Villa
et al., 2020].
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1.2 Out-of-equilibrium dynamics
We now focus on the out-of-equilibrium evolution, which can be induced by the so-called quantum
quenches (Sec. 1.2.1). At long times after the quench, the system eventually relaxes towards a long-
time steady state. The relaxation process is described in Sec. 1.2.2 and the difficulty of analytically
evaluating the evolution at arbitrary times after the quench is highlighted. Elementary excitations,
or quasiparticles, play a role in the microscopic relaxation process by transporting information and
quantum correlations, as discussed in Sec. 1.2.3. We also briefly introduce Lieb-Robinson bounds,
which give an upper bound to such transport processes. This discussion will be complemented
by the next chapter of the thesis were we discuss our results on correlation spreading. Finally, in
Sec. 1.2.4, we briefly discuss some exact numerical methods used throughout the manuscript to
compute the out-of-equilibrium dynamics.

1.2.1 Quantum quenches
To move a system out-of-equilibrium one can modify one of its parameters: this is called a quantum
quench. We will restrict to sudden quenches where the modification is made instantaneously. We
focus on two different quench protocols, depending whether the Hamiltonian or the quantum state
is modified.

A global quench defines a protocol where a parameter of the Hamiltonian is changed at the
time t = 0 such that Ĥi → Ĥ. The quantum state immediately before the quench (the pre-quench
state) is identical to the one immediately after (the post-quench state). Because the Hamiltonian
is modified, this initial state |ψi〉 = |ψ(t = 0+)〉 = |ψ(t = 0−)〉 evolves as

|ψ(t > 0)〉 = e−iĤt |ψi〉 . (1.18)

We will explain in Sec. 1.3.1 how the system parameters can be controlled in time experimentally
in order to perform global quenches. We will take the initial state to be the ground state of
the pre-quench Hamiltonian, namely |ψi〉 = |ψ0〉. We stress already that the ground state of the
pre-quench Hamiltonian |ψ0〉 should not be confused with the ground state of the post-quench
Hamiltonian governing the time-evolution, which will be denoted by |0〉.

A local quench is a protocol where on the contrary the Hamiltonian is not modified (thus
simply denoted by Ĥ), but a local action is performed on the state at t = 0 (for instance
adding a defect). Denoting by L̂ the associated local operator, the initial state is given by
|ψi〉 = |ψ(t = 0+)〉 = L̂ |ψ(t = 0−)〉. If the action of the operator L̂ on |ψ(t = 0−)〉 does not create
an exact eigenstate of the Hamiltonian Ĥ, the initial state also evolves according to Eq. (1.18).
The difference with the previous case is that the Hamiltonian is unchanged but the initial state
is not prepared in the same manner. In the following, we consider the case |ψ(t = 0−)〉 = |0〉 (the
ground state of the Hamiltonian). Again, the initial state denotes the post-quench state which is
the one relevant for the time-evolution. Both quench protocols are sketched in Fig. 1.7.

Quantum quenches are widely used due to their simplicity and common experimental imple-
mentation, which will be discussed in Sec. 1.3. They also captured a lot of theoretical interest,
as many analytical results have been obtained on exactly solvable models. For instance, the Lut-
tinger model has been investigated by [Cazalilla, 2006; Iucci and Cazalilla, 2009], and provided that
a representation of the eigenstates is known exactly, the time-evolution of local observables can
be computed exactly in the thermodynamic limit for arbitrary times after the quench. Other
exactly solvable models are integrable (Bethe ansatz solvable) ones, on which many results follow-
ing quenches have been obtained already. General analytical results have mostly been obtained
using the quench action [Caux, 2016] (see Sec. 1.2.2) or hydrodynamical approaches [Bertini et al.,
2016; Castro-Alvaredo et al., 2016] which apply for weakly inhomogeneous states and make use of
a quasiparticle picture which we will begin to discuss in Sec. 1.2.3. Most analytical approaches
require an exact representation of eigenstates, which is rather rarely the case. For this reason,
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|ψ0〉= |ψi〉

|ψ(t)〉= e−iĤt |ψi〉

t = 0

Ĥi

Ĥ

t

|ψ0〉

|ψ(t)〉= e−iĤt |ψi〉

|ψi〉= L̂ |ψ0〉

t = 0

Ĥ

t

(a) (b)

Fig. 1.7 The system is prepared in an state |ψ0〉, usually taken as the ground state of a
local Hamiltonian Ĥi. (a) At t = 0, a global quench is performed: the Hamiltonian is
instantaneously changed by modifying one of its parameters, but the quantum state for t = 0−
and t = 0+ are identical. (b) At t = 0, a local quench is performed: the quantum state is
instantaneously changed by the action of a local operator L̂, but the Hamiltonian stays the
same. In both cases, unitary dynamics is induced for t > 0 (the system is isolated immediately
after the quench, so its energy is conserved for t > 0). The initial state refers to the quantum
state immediately after the quench such that |ψi〉 =

∣∣ψ(t = 0+)
〉
.

most quenches investigated analytically start from or end up to free systems. Some approaches
combining analytics and numerics based on the Bethe ansatz have also been used [Caux, 2009].

1.2.2 Equilibration towards a long-time steady state
After a system has been perturbed from equilibrium, we expect it to eventually reach a steady-
state at sufficiently long times. How can we describe such a state? Two main definitions for
relaxation towards equilibrium (equilibration) are used in the literature [Essler and Fagotti, 2016;
Polkovnikov et al., 2011]. The first one focuses on the local relaxation of the system subparts,
and is formalised by the use of reduced density matrices. By tracing out the degrees of freedom
that belong to the complementary subspace Ā of the subsystem A considered, local relaxation is
satisfied if the following limit exists ∀Ā

lim
t→∞

lim
L→∞

ρ̂A(t) = lim
t→∞

lim
L→∞

TrĀ ρ̂(t) = ρ̂A(∞). (1.19)

Then, if the system has relaxed locally, one may ask if the full system has reached a stationary
state. This is the case if a time-independent density matrix ρ̂st (which describes the full system)
can be found such that

lim
L→∞

TrĀ(ρ̂st) = ρ̂A(∞). (1.20)

The dynamics brings the initial state towards a state (often mixed) and remains arbitrarily close
to it for almost all10 times. In this definition of local relaxation, the thermodynamic limit has been
taken first, and then the infinite time limit was considered. The second definition of relaxation
focuses on the long-time average of observables for finite systems, such that the order of the limits
is reversed. In this case, equilibration is defined by the fact that the expectation values of the
physical observables are, again for most times during the evolution, close to their time averaged
value defined by

〈Ô〉eq := lim
T→∞

1
T

ˆ T

0
dt 〈Ô〉t. (1.21)

Namely, the system equilibrates if
1
T

ˆ T

0
dt
[
Tr
(
ρ̂(t)Ô

)
− 〈Ô〉eq

]2
� 〈Ô〉2eq, (1.22)

10This ensures the compatibility with rare fluctuations and quantum recurrences or revivals [Gogolin and Eisert,
2016].
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Fig. 1.8 In the Bose-Hubbard model, the density observable on odd sites quickly relaxes
towards its equilibrium value after a time of a few milliseconds (of the order of h/J) after the
initial state was prepared as a density wave |1010 · · ·〉. From [Trotzky et al., 2012].

which then justifies to name the long-time time-averaged limit of Eq. (1.21) the equilibrium value.
For our purposes (local operators), both definitions should be equivalent. We refer to the above
mentioned references for subtleties. The relaxation towards equilibrium has been observed experi-
mentally on the Bose-Hubbard model (Fig. 1.8). To understand the physical mechanism by which
the system relaxes and about how long it takes, we have to wait until Sec. 1.2.3 where we will
discuss Lieb-Robinson bounds and the associated quasiparticle picture.

After equilibration, naturally follow questions about ergodicity (to what extent can we assim-
ilate a time-average to an ensemble average?) and thermalisation (if the system has relaxed, can
it be described by a Gibbs ensemble?). These topics, not essential for the rest of the thesis, are
addressed in Appendix 1.B.

Describing the steady state analytically Computing the evolution of local observables in
the thermodynamic limit at an arbitrary time after the system was driven out of equilibrium is
a notoriously difficult problem: even when the eigenstates Ĥ |n〉 = En |n〉 are exactly known, the
Hilbert space is too large to attempt a brute force calculation. Since {|n〉} forms a complete basis
we can decompose the initial state as

|ψ0〉 =
∑
n

|n〉 〈n|ψ0〉 =
∑
n

eln〈n|ψ0〉 |n〉 :=
∑
n

e−S(n,ψ0) |n〉 (1.23)

where S(n, ψ0) = −ln 〈n|ψ0〉 is a complex number. The time-evolution of the state is simply

|ψ(t)〉 =
∑
Φ

e−S(n,ψ0)−iEnt |n〉 , (1.24)

and (so far without approximation) the time-average of observables reads as

〈Ô(x, t)〉ψ0 =
∑
n,n′

e−[S?(n,ψ0)+S(n′,ψ0)] ei(En−En′ )t 〈n| Ô(x) |n′〉 . (1.25)

This form is exact but the bottleneck here is the computational cost required by the double sum.
However, most of the terms are vanishingly small, so one can hope to approximate Eq. (1.25) by
a simpler formula. This approach was taken by [Caux and Essler, 2013] and named the “quench
action”. It applies when an exact representation of the eigenstates in terms of a continuum dis-
tribution can be used, typically for Bethe ansatz solvable models. The quench action defines a
measure on the Hilbert space which quantifies the contribution of each eigenstate to the time evo-
lution. Under a few assumptions discussed in Appendix 1.C, the double sum over all eigenstates of
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the quench Hamiltonian [Eq. (1.25)] is reduced to a single one using a saddle point approximation.
In the infinite time limit describing the stationary state, only a single representative eigenstate is
needed to compute the stationary value: the saddle point of the quench action.

1.2.3 Correlation and information spreading
Lieb-Robinson bounds. Immediately after the quench, out-of-equilibrium dynamics is in-
duced. If the system eventually reaches a steady-state, as we have discussed, it is because interac-
tions between its subparts redistribute extensive variables (energy, particle number, etc.). Thanks
to the propagation of information carried by elementary excitations, the subparts of the system
eventually reach equilibrium. In this part I mostly follow the discussion and adopt notations of
the review by [Essler and Fagotti, 2016].

In 1972, Lieb and Robinson showed that the speed at which information can propagate through
local11 correlators in short-range Hamiltonian models is bounded in one dimension, such that the
operator norm of the commutator of two operators at different times is given by [Lieb and Robinson,
1972] ∥∥∥[ÔA(t), ÔB(0)

]∥∥∥ ≤ cmin (|A|, |B|)
∥∥∥ÔA

∥∥∥ ∥∥∥ÔB

∥∥∥ e−(L−v|t|)/ξ. (1.26)

The operators ÔA and ÔB are supported on two regions of size |A| and |B| respectively, distant
of L, and c, v, ξ are just constants. Equation (1.26) tells us how an observable acting on a finite
region can affect another region distant of L after a time t. It shows that information propagation
is exponentially suppressed outside a causal-cone. The Hamiltonian being local (finite-ranged), a
modification of a finite region of the lattice takes a finite time to affect a distant one. The time
it takes, called the activation time t?, is proportional to the distance R between the two regions.
The proportionality constant, homogeneous to a velocity, is called the Lieb-Robinson velocity v.
By representing the value of the correlator on a space-time phase diagram, one obtains a causal-
cone12, representing a ballistic propagation of information through the lattice. From Eq. (1.26),
the information leaking out of the cone is negligible if L � v|t|, or equivalently if |t| � t?. Note
that it is usually very difficult to express the value of v from first principles on a given model.
More importantly, as it is only a bound, the velocity v does not tell us the effective speed at which
information propagates.

Later on, Lieb-Robinson bounds have been used to demonstrate that the build-up of corre-
lations and entanglement also obey similar bounds [Bravyi et al., 2006]. This extension showed
that in non-relativistic quantum mechanics if the evolution is governed by a local Hamiltonian,
information, correlations and entanglement are effectively limited concerning their spreading to
an effective causal-cone. Assuming a state with a finite correlation length χ in which all con-
nected correlation functions13 decay exponentially

∣∣∣〈ÔAÔB〉c
∣∣∣ ≤ c̃ e−L/χ with normalised operators∥∥∥ÔA

∥∥∥, ∥∥∥ÔB

∥∥∥ ≤ 1, [Bravyi et al., 2006] showed that a generic equal-time connected two-point corre-
lator was bounded by ∣∣∣〈ÔA(t)ÔB(t)〉c

∣∣∣ < c′ (|A|+ |B|) e−(L−2v|t|)/(χ+2ξ). (1.27)

We stress again that these bounds do not tell us at which velocity physical information or corre-
lations really propagate, as the bounds are generally not saturated.

Interpretation using the Calabrese-Cardy picture. The latter issues about the exact speed
of propagation as well as the underlying physical mechanism by which information or correlations
are built and then propagate through the lattice were solved by [Calabrese and Cardy, 2006]. They

11An operator is called local if its support remains constant and finite independently of the system size.
12Sometimes referred to as “light-cone”, by analogy with special relativity.
13Defined by 〈ÔAÔB〉c = 〈ÔAÔB〉 − 〈ÔA〉〈ÔB〉.
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Fig. 1.9 (a) At t = 0, the system acts as a source of quasiparticles which start to propagate
at a given velocity v (linear excitation spectrum) in both directions. (b) Information only
propagates within each causal-cone and is negligible outside, for |t| � t?. (c) The causal-cone
between the two regions touch, and the measurements between both regions become correlated
at v = L/2t?. This can be reinterpreted as a correlation emerging from a quasiparticle pair
emitted back to back and traveling at the group velocity v, as schematised in (d). From [Essler
and Fagotti, 2016].

provided a physical interpretation for the emergence of this causal-cone using a quasiparticle
picture (and incidentally also explained the factor of two between information and correlation
bounds) that can be summarised by the following. Immediately after the quench, the initial
state possesses extra energy compared to the ground state of the initial Hamiltonian, and is
therefore highly excited. It acts as a source of quasiparticle excitations, which are emitted from
t = 0+ and then propagate throughout the system. While being initially quantum entangled, the
quasiparticles then propagate semi-classically. Assuming that all excitations propagate with the
same velocity v (which means that the excitation spectrum is linear Ek = vk), the connected
correlation function after a given time t of two regions distant of R is significantly modified only
after the two entangled quasiparticles emitted at t = 0 from the same region have travelled in
opposite directions the distance R/2 in time R/2v. On the contrary, if we were comparing the
values of the operators at t = 0+ and t, the information would be built from a single quasiparticle
having travelled the distance R in time R/v. Incoherent quasiparticles (in the sense that they were
emitted from different points originally) will indeed cause relaxation of local observables (except if
they are conserved quantities) through their interference (dephasing). This picture is summarised
in Fig. 1.9. Note that the quasiparticle picture can be adapted to a non-linear excitation spectrum,
in which case v should be replaced by the fastest group velocity of the signal, V ?

g = maxk ∂kEk.
Despite being justified by conformal field theory arguments, the quasiparticle picture was argued
to be generally valid in higher dimensions. We will discuss throughout the thesis how to extract
physical information from inside the causal-cone of the Calabrese-Cardy picture, the latter of
which will be extended in Sec. 2.1.2.
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1.2.4 Numerical simulations
The Hilbert space is notoriously large, and its size is truly beyond imagination. Say we wish to
represent the state of the arguably simplest interacting quantum system, a chain of N -spins 1/2
without internal degrees of freedom. Storing this quantum state on a classical computer requires
2N numbers encoded on 8 bits and represents for N = 40 already more than 1 Tb of data. Multiply
the number of spins by two and you need more than 1012 Tb [Georgescu et al., 2014]. And the
previous statement did not even mention the dynamics, which in its simplest form requires the
exponentiation (and diagonalisation) of a 280 × 280 square matrix.

The simplest workaround this problem is simply to avoid facing it, by restricting to small
sizes such that exact diagonalisation (ED) of the Hamiltonian can be performed. This technique
suffers the drawback of being limited to small system sizes, but has the advantage of being exact,
straightforward to implement for the dynamics, and valid for arbitrary models. Smart ED imple-
mentations, for instance by exploiting the symmetries of the Hamiltonian, by computing it in a
specific basis as a sparce matrix (Lanczos algorithm) and then (tri)diagonalise it using efficient
routines to reduce data and memory overload, enable to reach system sizes for spin chains with
a magnetic field of about 40 sites [Lüscher and Läuchli, 2009]. For a bosonic model like the Bose-
Hubbard chain, the Hilbert space dimension is dim(H) =

(
N+L−1

N

)
where N is the total number

of bosons and L the system size, which quickly restricts the size and atom number available. The
1 Tb value required to store the quantum state is already reached for N = L = 21.

After the quantum state has been obtained at a given time, generating the time evolution
using ED can be performed efficiently by noticing that the unitary evolution during a small time
step dt can be expanded as a power series

|ψ(t+ dt)〉 = e−iĤdt |ψ(t)〉 =
∞∑
n=0

(−idt)n
n! Ĥn |ψ(t)〉 . (1.28)

For a given precision, the upper bound in the sum can be replaced by a finite value Nsteps, such
that the time evolved state is obtained by applying successively the Hamiltonian to the initial
quantum state. In practice, the convergence is generally not too bad, and the dynamics is usually
not the limiting factor (the diagonalisation is).

In one dimension, reaching larger system size has been possible thanks to the density matrix
renormalisation group (DMRG) approach, initially developed by [White, 1992, 1993] (see [Scholl-
wöck, 2005] for a review), and nowadays understood in the framework of matrix product states
and tensor networks (see [Schollwöck, 2011] for a review). In the following I mostly follow the
pedagogical introduction presented by [Orús, 2014].

Not all the states in the Hilbert space are equally relevant, and their relevance can be quantified
by their entanglement, or more precisely how their entanglement entropy scales with the system
volume. For gapped Hamiltonians with local interactions, it was proven that the low-energy states
have an entanglement entropy which scales like the area of the cut, and not like its volume. In
one dimension, this means that the entanglement entropy of such states obeying the area law is
constant with respect to the system size. Since these states constitute a tiny fraction of the Hilbert
space, but such fraction contains the portion of states relevant for the dynamics (in the sense that
it constitutes the only portion of states explored by the system in a reasonable evolution time),
it becomes important to find a way to target them directly. This is what tensor networks do, in
striking contrast with the wave function language. Given a many-body wave function with all
its coefficients in a given basis, one cannot have any intuition about the entanglement between
its subpartitions. On the contrary, tensor networks represent quantum states (and operators)
from elementary blocks, which are then glued together (contracted) in a way that represents the
structure of the entanglement. Matrix product states (MPS) are a particular tensor network
representation of states as a one dimensional array. The contraction indices between the blocks,
called bond indices, can take different values and the total number of such values is referred to
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Fig. 1.10 From [Orús, 2014]. Structure of the many-body Hilbert space. The portion of
relevant states obeying the area law is represented in red and represent a tiny fraction of it.
When the bond dimension (noted D instead of χ) grows, the explored portion of the area-law
states increases.

as the bond dimension noted χ. The higher the bond dimension, the higher the entanglement
allowed14, but the longer the computational time for a given accuracy. Expectation values of MPS
can also be computed exactly in a polynomial time O(Npχ3) where N is the particle number and
p the number of accessible states (degrees of freedom). Importantly, MPS are dense in the Hilbert
space, which means that, given a sufficient bond dimension, MPS can represent any quantum
state. Note that this is no longer true in higher dimensions [Ge and Eisert, 2016].

Despite their immense advantages, MPS do have one strong limitation. They can only simulate
efficiently gapped systems far from criticality in the sense that the correlation functions of an MPS
always decay exponentially. Gapless phases can be simulated, but the above mentioned theorems
(in particular exactness of the result and its polynomial bound in time) no longer hold, and the
accuracy of the result needs to be checked individually. For instance, the entanglement entropy
of gapless phases often diverges logarithmically with the size of the region (breaking the area law,
but not too strongly such that a simulation is still possible).

In all our numerical simulation for quench dynamics, DMRG is used as a first step to obtain
the ground state of a Hamiltonian which we use to initialise our models in their pre-quench
equilibrium ground state. A time-dependent variational principle (TDVP) algorithm is then used
in a second step, in which we compute the time-evolution following the quench. TDVP is a
dynamical variational procedure strongly related to the DMRG algorithm [Haegeman et al., 2011;
Haegeman et al., 2016], which can efficiently simulate the non-equilibrium dynamics of the systems
we consider. I have been very fortunate to collaborate with J. Despres on the global quench
spectroscopy project [Villa et al., 2019] and then with S.J. Thomson on the extension to local
quenches and disordered systems [Villa et al., 2020; Villa et al., 2021a, 2021b], and I acknowledge
them for the numerical simulations performed using DMRG and TDVP presented in this work.
We acknowledge the package TenPy [Hauschild and Pollmann, 2018] used in part of our TDVP
simulations and the package QuSpin [Weinberg and Bukov, 2017, 2019] used in preliminary ED
simulations.

14In 1D, the entanglement entropy scales as S(L) = −Tr (ρ log ρ) = O(logχ).
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1.3 Ultracold atom quantum simulators
Quantum simulators may be defined as “experimental systems that mimic simple models of some
relevance for applications and/or fundamental understanding, which are computationally very
hard for classical computers to be simulated under reasonable time and memory restrictions, and
allow for a broad control of the parameters and preparation, manipulation and detection of states
of the system” (summarised from [Lewenstein et al., 2012]). They offer various platforms where
theoretical ideas can be tested which as a result motivates additional theoretical studies to investi-
gate the system specificities or exploit them in an original manner (for instance through a quench
spectroscopy as we will discuss in Chap. 3 and 4). In this Sec. 1.3, we discuss the experimental
implementation and measurement of the previously discussed models. This quantum simulation
is paramount to understanding their properties, especially out-of-equilibrium where exact results
are scarce. The basic engineering tools to create and control the system are discussed in Sec. 1.3.1.
The measurement procedures and different probes are discussed separately in Sec. 1.3.2. The dis-
cussion below has been mainly inspired by [Bloch and Greiner, 2005; Lewenstein et al., 2012; Schäfer
et al., 2020] and the series of lectures by [Dalibard, 2012, 2015] (in French).

1.3.1 Creating the system
We begin our discussion by the control over the system in terms of trapping and cooling allowed
by the use of lasers (Sec. 1.3.1.1), and then explain how the interactions can be tuned in particular
using Feshbach resonances or optical lattices (Sec. 1.3.1.2). We finally show the versatility of the
experimental platforms used in quantum simulation (Sec. 1.3.1.3).

1.3.1.1 Trapping and cooling using light
When light interacts with matter, it gives rises to two forces. The first one is conservative (the
dipole force), and can trap the atoms. The sign of its associated potential can be controlled by the
detuning of the laser with respect to the atomic transition to create attractive or repulsive forces.
Microscopically, the ground state experiences a shift of its energy (ac-Stark effect), proportional
to the intensity of the electromagnetic field. When the electric field varies in space, so does the
energy shift, creating a position dependent potential for the atoms used to trap them in so called
optical lattices.

To understand in a simple manner how the trapping works, we neglect the Gaussian profile of
the beam and assimilate it to a classical monochromatic plane wave. The electric field resulting
from the sum of the two counterpropagating incident beams E0 cos(kx± ωt) is thus a standing
wave E(x) = 2E0 cos(kx) cos(ωt). If the amplitude of the field is weak, the induced dipolar
moment can be written as d(ω) = α(ω)E(ω) where α(ω) is the polarisability of the gas. By
averaging over an integer number of periods in time, one can rewrite the interaction potential felt
by the particles as

V (x) = −1
2〈d(ω)E(ω)〉 = −Vlat cos2(kx) with Vlat = Re [α(ω)]E2

0 (1.29)

where Vlat represents the depth of the optical lattice, controlled by the laser intensity I = 2ε0cE2
0 .

By generalising to an arbitrary optical potential V (r), and introducing the spontaneous emission
rate of the excited level Γ, the potential created by the lattice can be rewritten as

V (r) = 3πc2Γ
2ω3

0∆ I(r), (1.30)

where ∆ = ω−ω0 is the detuning between the laser and the (dipolar) atomic two-level transition.
Its associated conservative force is simply F dip(r) = −∇V. A red detuned laser (∆ < 0) attracts
the atoms towards the high intensity region where the potential is minimum. Conversely, a blue
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(a) (b)

Fig. 1.11 Trapping of atoms using light. (a) 1D tubes are created in the orthogonal direction
to the counterpropagating pairs of lasers, which form a 2D optical lattice. From [Bloch, 2005].
(b) Almost arbitrary potentials can nowadays be engineered. From [Barredo et al., 2018].

detuned one (∆ > 0) repels the atoms from such regions since in this case the potential minima
are in the low intensity regions. In practice, to reach deep lattices required for the strongly
interacting regime, it is better to increase the laser power rather than reduce the detuning, since
heating caused by inelastic scattering scales as I(r)/∆2. Overlapping two pairs of lasers with the
same intensity and orthogonal polarisations yields an optical potential of the form

V (x, y) = −Vlat
(
cos2(kx) + cos2(ky)

)
. (1.31)

This form of potential can be used to generate one dimensional tubes along the z direction
[Fig. 1.11(a)]. State dependent optical potentials can be engineered (they depend on the hyperfine
level F , its magnetic state mF and the polarisation of the light from the laser), as well as arbitrary
forms due to the unprecedented controlability achievable in current experiments [Fig. 1.11(b)]. We
also note that disordered potentials can be created by adding to the periodic lattice an optical
speckle pattern, and quasiperiodic potentials can be created from a bichromatic potential by super-
imposing two optical lattices with incommensurate wavelengths [Sanchez-Palencia and Lewenstein,
2010]. This can be used to investigate disordered systems (Chap. 4).

Taking into account the finite width of the Gaussian beam shows that (by a first order Tay-
lor expansion around the center of the beam) harmonic potentials are globally imposed on the
system, and ensure the stability of the tubes. This harmonic potential is defined by its oscilla-
tion frequencies in the transverse ω⊥ and the longitudinal direction of the tubes ωz. Typically,
ωz ∈ [10; 100] Hz whereas ω⊥ ∈ [10; 100] kHz. This additional trapping effect helps to isolate the
system but leads to an inhomogeneous density distribution both within each tube, and between
the tubes during the loading procedure. This inhomogeneity can be accounted for by a local
density approximation which considers a space dependent chemical potential.

The second force arising from the interaction of light on matter is dissipative, and can be
used to cool the atoms using the Doppler effect. Reaching cold enough temperatures (in the
sense that the thermal de Broglie wavelength becomes of the order of the interparticle distance)
is necessary to observe quantum properties. We note that in general, Doppler or subrecoil laser
cooling are not sufficient to enter the quantum regime. They constitute pre-cooling steps and need
to be supplemented by other methods such as evaporative cooling. To this end, alkali atoms such
as 7Li, 23Na, 39K or 87Rb are commonly used in experiments for various reasons. Their closed
optical transitions are in a convenient frequency range to enable both simple laser cooling and
trapping [Grimm et al., 1999]. More importantly, elastic collisions dominate the inelastic two and
three-body collisions, making evaporative cooling efficient [Ketterle et al., 1999]. When sufficiently
low temperatures are reached15, the only relevant scattering process becomes the uniform s-wave
scattering and the interatomic potential can be replaced by an effective contact interaction

V (xi, xj) = 4π~2as

m
δ(xi − xj), (1.32)

15We give orders of magnitude at the end of Sec. 1.3.1.2.
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which only depends on the 3D s-wave scattering length as. Neglecting the external potential
confining the atoms, this can simulate the Lieb-Liniger model, where the strength of interaction
is often rewritten as g ' −2~2/(ma1D) with a1D the 1D s-wave scattering length. This model
has been extensively studied in the last two decades in the cold atom community [Boéris et al.,
2016; Haller et al., 2009; Kinoshita et al., 2004; Meinert et al., 2015]. The Bose-Hubbard model can
also be simulated, by adding to the previous lattices an additional one in the direction of the 1D
tube [Paredes et al., 2004].

1.3.1.2 Tuning the interactions
Interactions can be tuned in many different ways. We focus on three methods in the following and
we discuss their respective advantages and drawbacks. On the Lieb-Liniger model for instance,
the interaction parameter is γ = g/n (Sec. 1.1.1). A first idea is to use ultra-diluted systems in
order to lower n. This approach was demonstrated by [Kinoshita et al., 2004], who reached γ ∼ 5
on the Lieb-Liniger model and observed the fermionisation of the bosonic gas. Another idea is
to change directly g, which in the case |as| � l⊥ =

√
~/(mω⊥)16 may be expressed as [Bergeman

et al., 2003; Olshanii, 1998]
g ' 2~ω⊥as. (1.33)

We avoid modifying ω⊥, which would change the system geometry and in particular the arrange-
ment of the tubes. The interactions are thus modified by changing the scattering length as using
an external magnetic field, making use of Feshbach resonances [Chin et al., 2010]. Generally speak-
ing, a Feshbach resonance reflects the modification of the scattering cross section of an incident
particle on a target if it has the energy to create a quasi-bound state. In the field of ultracold
atoms where collisions happen at almost zero energy, alkalis possess a fine and hyperfine structure
sensitive to the Zeeman coupling (the energy levels are magnetic-field dependent). Therefore it
becomes possible by tuning the magnetic field to couple two internal states with almost the same
energy such that the energy of one level (open channel) coincides with the bound state energy of
the other (closed channel), and when the two levels cross, a resonance appears [Fig. 1.12(a)]. In
short, Feshbach resonances modify the interactions between the atoms of the gas by tuning the
scattering length as.

Most of the time, the values for the resonance B0 determine whether or not it is possible to
use experimentally a Feshbach resonance to change the interactions. This technique is of little
practical use in situations where the value of B0 is too high or if the resonance width ∆ is too
narrow (which is not the case for alkali atoms). In practice though, Feshbach resonances suffer
from an important disadvantage, at least for bosons. When the scattering length diverges close
to the Feshbach resonance, the condensate lifetime also sharply decreases because of larger two
and three body losses, which rapidly leads to the loss of all atoms [Bloch et al., 2008]. In contrast,
for fermionic atoms, close to a Feshbach resonance the condensate lifetime increases. They have
been used to investigate the BEC-BCS crossover of fermionic 6Li atoms [Bartenstein et al., 2004].

Finally, the third technique to vary the interactions is to confine the atoms on an optical lattice.
Historically, the strongly interacting regime necessary to detect the SF-MI phase transition was
entered using this method by [Greiner et al., 2002] following the proposal of [Jaksch et al., 1998].
Using an optical lattice reduces the issues of the condensate lifetime for bosons mentioned in the
Feshbach resonance method. By comparing the expression of the on-site interaction U for the
Bose-Hubbard model with the strength of the contact interaction g in the Lieb-Liniger situation
[Eq. (1.5)], one sees that the localisation imposed by the optical lattice confinement effectively
increases the interaction contribution by a factor

´
dx |w(x)|4 (it also increases the effective mass

m = ~2/(2Ja2) which diminishes the contribution of the kinetic energy, so that the ratio U/J
16For rubidium, even with ω⊥ = 100 kHz one has l⊥ ' 85 nm compared to |as| ' 5 nm. For the full expression,

see the references mentioned.
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(a) (b)

Fig. 1.12 Two methods to tune the interactions. (a) Using a Feshbach resonance to couple
two states with nearly equal energy, using for instance a magnetic field (Zeeman effect). A
resonance appears when the energy difference E between the open channel and the bound state
of the closed channel vanishes, creating a divergence of the scattering length as. The resonance,
centred around B0, is of the form as = abg

(
1− ∆

B−B0

)
with ∆ the resonance width. From

[Chin et al., 2010]. (b) By varying the lattice depth from the laser power. The curve represents
Eq. (1.34) with λ = 1µm and the properties of 87Rb given in the text.

indeed globally increases [Dalibard, 2012]).
In the deep lattice limit (Vlat � Er), the tunnelling can be expressed in terms of experimental

parameters by solving exactly the Mathieu equation and the on-site interaction can be estimated
by approximating the Wannier functions by Gaussian functions [Zwerger, 2003]
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λ
e2
√
Vlat/Er , (1.34)

where Er = ~2k2/2m = h2/2mλ2 is the recoil energy with λ the wavelength of the laser and m
the mass of the trapped atoms. The scattering length for the two states |F = 1,mF = −1〉 and
|F = 2,mF = 2〉 of 87Rb is about 5 nm [Julienne et al., 1997]. The ratio U/J for 87Rb is plotted as a
function of the lattice depth in units of the recoil energy Er in Fig. 1.12(b). The obvious advantage
of this method is that interactions can be varied by tuning the laser power, which controls the
lattice potential depth [see Eq. (1.29)].

Orders of magnitude. Using all the above expressions (for rubidium), we get Er/kB ' 100 nK,
and assuming typically Vlat/Er ∼ 10 such that U/J ∼ 10, we have J/Er ∼ 2× 10−2 and U/Er ∼
2× 10−1. The dynamics is controlled by the tunnelling, and the typical time given by ~/J is on
the millisecond scale (Er ∼ 10−30 J so ~/Er ∼ 10−4 s). This time scale must be compared to the
one during which the system can be considered isolated, about a few hundreds of milliseconds.
The system thus always evolves unitarily in excellent approximation during that time scale, and
particle-loss through heating processes can safely be neglected and the particle number considered
almost constant [Langen et al., 2016]. Finally, the order of magnitude of the temperature required
to enter the strongly interacting regime can be estimated from kBT ∼ J2/U [Lewenstein et al.,
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2012]. Assuming this regime is entered for U/J ∼ 1, we get T ∼ J
U

J
Er

Er
kB
∼ 10 nK, which is the

order of magnitude observed experimentally17.

1.3.1.3 Versatile experimental platforms
All the models introduced in Sec. 1.1 and used throughout the manuscript can be simulated using
lattice ultracold bosons. We have already discussed how to simulate the Lieb-Liniger and the
Bose-Hubbard model. The simulation of spin chain models is very similar due to the mappings
between bosons and spins (Holstein-Primakoff transformation). We start our discussion on this
well-developed experimental platform.

A truncated lattice bosonic model where the local occupation numbers are restricted to 2S+ 1
values can be mapped to a spin model with pseudo-spin S. In the low-filling and hard core regime
(J, µ� U), the occupation numbers are restricted to 0 or 1, which may be mapped to a spin value
|↓〉 and |↑〉 for the hole and the particle respectively, such that the model becomes equivalent to
the XY model with Hamiltonian

ĤXY = −J
∑
R

(
σ̂xRσ̂

x
R+1 + σ̂yRσ̂

y
R+1

)
− µ

∑
R

σ̂zR. (1.35)

The latter is exactly solvable using a Jordan-Wigner transformation [Lieb et al., 1961]. Note that
a similar strategy may be applied for any non-integer filling factor between int(n̄) and int(n̄+ 1).

Many other spin Hamiltonians can be modelled by using a single-band Bose-Hubbard model
with two bosonic species called a and b (Bose-Bose mixtures), whose Hamiltonian reads as [Altman
et al., 2003; Duan et al., 2003; Garcia-Ripoll and Cirac, 2003]

ĤBH,2 =
∑

R,σ=a,b
−Jσ

(
â†R,σâR+1,σ + H.c.

)
+ Uσ

2 n̂R,σ(n̂R,σ − 1) + Uab n̂R,an̂R,b. (1.36)

Starting from the Mott insulator with integer filling (〈n̂R,a〉+〈n̂R,b〉 = 1) in the strongly interacting
limit (Jσ � Uσ, Uab), this Hamiltonian maps to

Ĥeff =
∑
R

−J⊥(σ̂xRσ̂xR+1 + σ̂yRσ̂
y
R+1) + Jz σ̂

z
Rσ̂

z
R+1 − h σ̂zR, (1.37)

by introducing σ̂zR = n̂R,a − n̂R,b, σ̂xR = â†R,aâR,b + â†R,bâR,a, σ̂
y
R = −i(â†R,aâR,b − â

†
R,bâR,a), and the

constants
J⊥ = JaJb

Uab
, Jz = −J

2
a

Ua
− J2

b

Ub
+ (J2

a + J2
b )

2Uab
, h = J2

a

Ua
− J2

b

Ub
. (1.38)

In the particular case where Ja ' Jb ' J and Ua ' Ub ' Uab ' U , one simulates the isotropic
Heisenberg chain, controlled by the super-exchange coupling coefficient J2/U , as can be explained
from a simple second order perturbation theory argument. Note that everything remains identical
if one uses fermionic mixtures instead of bosonic ones, except that the sign of J⊥ is reversed and the
expression for Jz simplifies to (J2

a + J2
b )/(2Uab). It is also possible to use a single species but with

two degenerate internal states (for instance two hyperfine levels). Using 87Rb, most experiments
now chose the two long-lived hyperfine levels |F = 1,mF = −1〉 and |F = 2,mF = −2〉 (mapped to
|0〉 = |↓〉 and |1〉 = |↑〉). This scheme led to the experimental investigation of correlation functions
with single-site resolution including dynamical properties and defect propagation in Heisenberg
and XXZ spin chains [Fukuhara, Kantian, et al., 2013; Fukuhara, Schauß, et al., 2013; Hild et al., 2014;
Weitenberg et al., 2011].

Quantum simulation is not restricted to ultracold atoms, and versatile platforms have emerged
over the past decades, expanding the scope of the systems that can be studied. Among them,

17Strictly speaking, Eq. (1.34) only applies for Vlat � Er, but we use it here since we are only looking for an
order of magnitude.
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trapped cold ions are particularly fruitful ([Blatt and Roos, 2012] for a review), as they are able
to reach the required low temperatures and offer a high degree of control, including the single-
site/atom addressability which we will discuss in Sec. 1.3.2.2.

Quantum magnet models (for instance the transverse-field Ising model) can be realised exper-
imentally using cold ions18 [Blatt and Roos, 2012; Buluta and Nori, 2009; Porras and Cirac, 2004].
After the ions are trapped and cooled by laser beams (magnetic trapping is also possible), the
basic idea is that in each ion, two internal levels play the role of an effective spin. The spin-
spin interactions are usually engineered by state-dependent optical dipole forces (polarisation of
the laser field for instance), similar to the one discussed for ultracold atoms. Alcaline-earth ions
(9Be+,25Mg+,40Ca+ ...) are commonly used in experiments, because the valence-electron spin state
naturally serves as a spin-1/2 (or qubit). Each qubit can be read by a fluorescence measurement
which couples only one of the two internal states to an external short-lived excited level. This
platform is very promising for building a quantum computer since the seminal proposal of [Cirac
and Zoller, 1995], due to its nearly perfect qubit readout (more than 99.99% for 106 trials [Myerson
et al., 2008]). Common quantum magnets models have been successfully realised over the past few
years [Friedenauer et al., 2008; Jurcevic et al., 2015; Lanyon et al., 2011]. Interestingly, this platform
has been used by [Richerme et al., 2014] to simulate the long-range XY model, where the tunnelling
term J is replaced by an algebraically decaying coupling J/|R|α, with α a constant that can be
tuned experimentally. In this experiment, a lanthanide element (171Yb+) was used to encode the
spin value into two hyperfine states. Nowadays, lanthanides elements are also used for their large
dipole magnetic moment, which gave birth to another related platform: dipolar gases. Supersolid
signatures (coexistence of both crystalline and superfluid order) have recently been reported in
experiments on dipolar gases, and the phase diagram mapped out [Chomaz et al., 2019].

This emphasises how all these new platforms are contributing to our understanding of strongly
interacting quantum matter. The latter observations make use of a Feshbach resonance to access
the supersolid phase by changing the interactions through the scattering length, and time-of-flight
measurements were used to probe the density and the phase coherence properties. We discuss
some measurement techniques in the following.

1.3.2 Measuring the system properties
How can we characterise the system that has been created experimentally? Averaged correlation
functions may be accessible using a widely used method, where the atoms expand freely after
switching of the trap (time-of-flight). One then images the density distribution and relates it to
the momentum distribution of the atoms inside the trap (Sec. 1.3.2.1). Local correlations requiring
single-site addressing and single-atom resolution are also discussed (Sec. 1.3.2.2). Another method
to characterise the system is through its excitations. This can be done by perturbing the system
and studying its response using pump-probe spectroscopic techniques (Sec. 1.3.2.3).

1.3.2.1 Time-of-flight
One of the simplest measurements to describe is the one of the momentum distribution, as it is
proportional to the density of the atomic gas after expansion. The gas is initially prepared in an
equilibrium state, and at t = 0, the trap is suddenly switched off and the atoms start to fall due
to gravity. After a large enough time of flight t, they are imaged by light absorption on a CCD
camera. If the atoms can be considered as non-interacting after the release of the trap, the initial
momentum of the atoms in the trap k is related to the time of flight t and the distance travelled
by the atoms r according to k = mr/(~t). The momentum distribution in the initial trapped

18Nowadays, Rydberg atoms also provide a way to simulate spin models directly [Labuhn et al., 2016]. Although
also very interesting (and promising from the point of view of quantum computation [Bernien et al., 2017]), we
will not discuss this platform here and refer to the review [Browaeys and Lahaye, 2020].
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Fig. 1.13 Absorption images of interference patterns for the 3D Bose-Hubbard model, after
release of the trap, for Vlat/Er = 0, 3, 7, 10, 13, 14, 16, 20 (from a to h). Initially superfluid, the
gas progressively enters the Mott insulating phase where its coherence properties completely
disappear. From [Greiner et al., 2002].

state is therefore proportional to the density distribution [Altman et al., 2004]

〈n(k = mr
~t )〉trap ∝ 〈n(r)〉tof . (1.39)

Even if it looks simple, there are two main difficulties with this method. The first one is that
the atoms from the gas are assumed not to interact during the ballistic expansion such that an
unbiased image of the pre-quench atomic distribution is observed. Thus the lattice depth has
to be almost instantaneously set to zero, any parasite external field cancelled, and the free-atom
collision cross section as small as possible (far from Feshbach resonances). The second one is that
during the imaging process, the density measured is averaged over the height of the expanding
cloud so one accesses a column-integrated momentum distribution rather than the momentum
distribution itself.

As an interferometric technique, time-of-flight can be used to measure correlation functions
such as G1(r, r′) = 〈r′| ρ̂1 |r〉, called the one-body correlator, which is sensitive to the existence of
(quasi)-long range order in the system. Absorption images can therefore be used to reveal phase
correlations and distinguish different phases of matter, in particular the superfluid from the Mott
insulator, for instance in the (3D) Bose-Hubbard model as shown in Fig. 1.13.

Two-particle correlation functions, in particular density-density correlations can also be mea-
sured from time-of-flight images [Duan, 2006]. The idea is similar, one uses noise correlations

〈n(k)n(k′)〉trap ∝ 〈n(r)n(r′)〉tof , (1.40)

in order to access the (averaged) connected density-density correlation function19

G2(r) =
ˆ

dr′〈n̂(r + r′)n(r′)〉 −
ˆ

dr′〈n̂(r + r′)〉〈n̂(r′)〉. (1.41)

1.3.2.2 Quantum microscopes
Obtaining single-site resolution is essential to extract local correlations and in particular particle-
particle correlation functions characteristic of the strongly correlated regime. On an optical lattice,
the lattice spacing is set by the laser wavelength according to a = λlat/2, while the minimum size

19Sometimes another definition is used in the literature, with (1+)G2(r) =
´

dr′〈n̂(r + r′)n̂(r′)〉´
dr′〈n̂(r + r′)〉〈n̂(r′)〉 .
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(a) (b)

Fig. 1.14 (a) Example of a (bosonic) quantum gas microscope with single-site adressability.
From [Sherson et al., 2010]. (b) After a quench lowering the lattice depth, excitations build
correlations and the quantum microscope enables the observation of the causal-cone in real
space. Doubly occupied and empty site are indistinguishable due to light-induced collisions.
From [Cheneau et al., 2012].

that can be distinguished by an optical system is set by λ/(2 NA) where NA is the numerical
aperture which defines the angular region over which the system accepts light. The first idea was
to avoid counterpropagating lasers to create the lattice, and make the beams intersect with an
angle θ such that the lattice period is increased to λ/(2 sin(θ/2)) for small angles. This method
was succesfully used to reach single-site resolution for a lattice spacing of about 5µm [Nelson
et al., 2007]. However to reach the strongly interacting regime tunneling and on-site interaction
have to be of the same order of magnitude, and larger than the temperature of the system which
requires to decrease the lattice spacing to about 500 nm. The numerical aperture must then be
high, and the trapped atoms placed as close as possible to the imaging surface of the microscope.
By lithographically producing the lattice using a holographic mask, [Bakr et al., 2009] realised the
first high fidelity site-resolved single-atom detection using bosons. Such microscopes were then
improved on bosonic systems [Endres et al., 2011; Sherson et al., 2010] and extended to spins [Weit-
enberg et al., 2011] (adding state selectivity20) and fermions [Haller et al., 2015]. The latter added
“true” single-atom selectivity, since due to light-induced collisions which emit pairs of atoms, the
bosonic detection is only sensitive to the parity (particle number modulo 2) [Bloch et al., 2012].
Just like the TOF, the imaging scheme of the microscope is often based on a light absorption
imaging onto a CCD camera with pixel size smaller than a [Fig. 1.14(a)].

This single-site addressability led to the direct observation of correlation spreading after a
global quench in the Bose-Hubbard model [Cheneau et al., 2012]. The causal-cone structure dis-
cussed in Sec. 1.2.3 was observed [Fig. 1.14(b)], and interpreted from the quasiparticle picture in
the strongly interacting regime where excitations reduce to doublons and holons (Appendix 1.D).

Very recently, single-atom resolution in momentum space has been demonstrated in two groups
20The microscope can be made spin selective by applying a selective removal procedure of one species (for instance

using Zeeman effect to separate them).
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(a) (b)

Fig. 1.15 Momentum microscope using 4He∗ atoms. (a) Full momentum distribution recon-
structed using a 3D detector. As in Fig. 1.13, the coherence of the SF phase (U/J = 5) is
destroyed when the lattice depth is increased to reach the MI phase (U/J = 100). (b) The
density-density correlation function can be measured with an unprecedented resolution in mo-
mentum space (top). Bunching, characteristic of bosonic atoms in the MI can be observed
(bottom). Adapted from [Carcy et al., 2019].

using excited helium atoms 4He∗ [Carcy et al., 2019; Cayla et al., 2018; Hodgman et al., 2017]. This
technique opens a new path to probe correlations directly in momentum-space (one-point and
two-point functions but also higher order ones) at the single-atom level with an unprecedented
accuracy [Fig. 1.15].

1.3.2.3 Pump-probe spectroscopies
Spectroscopy initially began as the study of the interaction between matter and an external field
excitation (usually electromagnetic). Today, it is more generally understood as a method to probe
the spectrum of matter in order to understand its (band) structure and the properties of its
excitations. Albeit important from a theoretical point of view, spectroscopy is also absolutely
tantamount to the development and implementation of quantum technologies. Formally, one
usually distinguishes two types of excitations in many-body systems. Collective excitations are
responsible for the macroscopic response of the system, and are commonly probed by weakly
perturbating the system around equilibrium. At low momentum transfer, the Kubo formula
derived from linear response theory shows that one can probe the response of the system to the
fluctuations induced by an operator (the pump). The other type of excitations are elementary or
single particle-like excitations, which in contrast are generally probed at high momentum transfer
through inelastic scattering of individual atoms [Lewenstein et al., 2012]. This is the essence of
pump-probe spectroscopies discussed below: the spectral function (first order correlator) probes
individual excitations for the addition or removal of single particles, while the dynamical structure
factor (second order correlator) probes the collective excitations. We will come back to all these
technical details in Sec. 3.1, while here we focus on the experimental point of view for a few
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Fig. 1.16 (a) Experimental scheme of the two-photon Bragg spectroscopy. The laser beams
are shifted by the angle Θ which controls the momentum transfer ~(k1− k2) and the detuning
~(ω1 − ω2) controls the energy transferred to the atoms. The process in energy-momentum
space is represented in (b). Note that the atom internal state is not changed during the process.
From [Ernst et al., 2010].

spectroscopic techniques21. Throughout the thesis, we will expose a new spectroscopic technique,
called quench spectroscopy, which differs from usual pump-probe spectroscopies. To highlight the
differences, we review the pump-probe spectroscopies below.

Two-photon Bragg spectroscopy This is the most frequently used technique in ultracold
atoms: two lasers illuminate an ensemble of atoms so as to induce a two-photon transition where
a photon is absorbed from one beam and emitted into the other. Importantly, the frequency
detuning ω1 − ω2 between the lasers is chosen to be off-resonant with any atomic transition so
as to avoid changing the internal state of the atom22. This frequency shift ω1 − ω2, usually of a
few kHz is detuned by a few GHz from the closest atomic transition, and it controls the energy
absorbed by the atom. Bragg spectroscopy was initially used on Bose-Einstein condensates to
measure properties of the momentum distribution [Stenger et al., 1999] and was soon extended to
measure the Bogoliubov excitation spectrum and associated dynamical struture factor at fixed
momentum transfer [Stamper-Kurn et al., 1999; Steinhauer et al., 2003; Steinhauer et al., 2002].

Importantly, Bragg spectroscopy can be made momentum-resolved. During the scattering pro-
cesses where photons are exchanged between the two lasers, the associated momentum difference
k1−k2 is transferred to the atom. It can be tuned by the angle Θ between the laser fields of wave-
length λ such that k1 − k2 = 4π sin(Θ/2)/λ (Fig. 1.16). Details about the procedure to calibrate
the angle Θ can be found in [Clément et al., 2009], here we simply mention that a non-trivial cali-
bration has to be performed for each value of Θ and is thus rather time-consuming. Nonetheless,
this method is required to access the excitation spectrum over the full Brillouin zone [Clément
et al., 2010; Ernst et al., 2010; Fabbri et al., 2012] [Fig. 1.17(b)].

Lattice modulation spectroscopy This technique, also known as lattice shaking, can be seen
as an application of two-photon Bragg spectroscopy. Rather than induced by a pair of lasers, the
excitation is generated by a modulation of the amplitude of the lattice of the form (in 1D)

V (x, t) = Amod cos(ωmodt) cos2(kx). (1.42)
21The major missing one is probably angle-resolved photoemission spectroscopy [Damascelli, 2004]. The reason

we skip it is that it is limited to electronic systems and thus more useful in solid-state physics than ultracold bosons.
22Bragg spectroscopy is thus different from Raman spectroscopy [Dao et al., 2009], in which the internal state

of the atom is modified by the absorption of a photon.
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(a) (b)

Fig. 1.17 (a) Excitation spectrum at k = 0 of the 1D Bose-Hubbard model measured using lat-
tice modulation spectroscopy, from [Stöferle et al., 2004]. The SF (red, green) displays a broad
spectrum while the MI displays a double-peak structure centred at U and 2U . (b) Momentum-
space resolution of the excitation spectrum of the 2D Bose-Hubbard model measured by Bragg
spectroscopy along the [1,1] direction, from [Ernst et al., 2010]. The SF (gapless) and MI
(gapped) bands can be accurately reconstructed by individually controlling the momentum
through a mechanical modification of the mirrors positions.

This modulation introduces two sidebands, shifted by the energy ~ωmod compared to the laser,
which defines the excitation energy. Advantageously, the excitation energy is thus precisely de-
termined and does not need to be calibrated. One disadvantage of the method is that it does not
give access to momentum space resolution of the excitations (only the k = 0 component of the
spectrum can be obtained). Lattice modulation spectroscopy can investigate the SF-MI phase
transition in the Bose-Hubbard model, and was used by [Stöferle et al., 2004] to measure the exci-
tation spectrum (for k = 0, distinguishing the existence or the absence of a gap) [Fig. 1.17(a)]. A

Fig. 1.18 Excitation spectrum of the cuprate Sr2CuO3 measured through a scattering ex-
periment, and compared to the exact Bethe ansatz result for the AFM Heisenberg model
(the signal amplitude comes from the evaluation of the dynamical structure factor). The frac-
tional spinon excitations continuum given by Eq. (1.13) describes well the collective excitations
probed experimentally. From [Mourigal et al., 2013].
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brief general theoretical description of pump-probe spectroscopies is postponed to Sec. 3.1.

Neutron scattering Historically, the inelastic scattering of neutrons was used to measure the
excitation spectrum of liquid helium [Pitaevskii and Stringari, 2016]. The interaction with the
neutrons can be described by a potential of the form V (r) ∝ as,nn̂(r) which linearly couples
to the density operator n̂ (as,n is the neutron-atom s-wave scattering length). Using the Born-
approximation, it is possible to show that the differential (per unit of energy or frequency ω and
solid angle Ω) inelastic neutron cross section is proportional to the dynamical structure factor,
which is the Fourier transform of the density-density correlation function

d2σ

dΩdω ∝ S(q, ω) =
ˆ

dr dt ei(qr−ωt)〈n̂(r, t)n̂(0, 0〉. (1.43)

The latter quantity is sensitive to the collective excitations of the system, such that neutron
scattering experiments give access to the excitation spectrum. This can be efficiently used for
instance on materials which can be modelled by unidimensional integrable spin chains where
exact results are known [Lake et al., 2013; Mourigal et al., 2013] (Fig. 1.18).

In the following, we will introduce a new spectroscopic technique named quench spectroscopy,
which probes spectral properties from the out-of-equilibrium dynamics induced after a quench.



Appendices
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1.A Exact solution of the Lieb-Liniger model from the
Bethe ansatz

In this part we study the exact analytical resolution of the integrable Lieb-Liniger model at zero
temperature23 by making use of the Bethe ansatz. We start by recalling the procedure to obtain
the Bethe equations, following [Franchini, 2017; Sutherland, 1985]. We then focus on results provided
by the numerical solution of the equations.

1.A.1 The coordinate Bethe ansatz
Interacting many-body systems are difficult to solve because of many-body scattering processes.
Integrable systems are exactly solvable partially because all many-body collisions can be exactly
decomposed as pairs of two-body collisions in a self-consistent manner. At equilibrium, all the
necessary thermodynamic information is therefore contained in the two-body scattering matrix,
which is the key quantity to evaluate.

1.A.1.1 Two particles
We begin with only two bosons, where the Lieb-Liniger Hamiltonian reads as

HLL = − ∂2

∂x2
1
− ∂2

∂x2
2

+ c [δ(x1 − x2) + δ(x2 − x1)] , (1.44)

with c = mg/~2 and we set ~ = 1 = 2m. We look for the spectrum of the Hamiltonian (eigen-
functions and eigenvalues). We shall split the wave function in two sectors, each associated to a
specific ordering of the particles, Q = {x1 ≤ x2} and Q′ = {x2 ≤ x1}. The two particles interact
for x1 = x2 where the two sectors intersect and are equivalent. We introduce the reduced wave
function fQ,Q′ , defined on either Q or Q′, as the restriction of the global wave function ψ to a
specific sector. While f is not a physical quantity (because contrary to ψ, it is not symmetric
under the exchange of the two particles), it is related to the physical wave function by

ψ = fQΘ(x2 − x1) + fQ′ Θ(x1 − x2), (1.45)

where Θ(x) is the Heaviside distribution.
The Bethe ansatz can be thought of as an educated guess for the form of the reduced wave

function in each sector, consisting of a sum of plane waves with unknown amplitudes

fQ = AQ(k1, k2) ei(k1x1+k2x2) + AQ(k2, k1) ei(k2x1+k1x2),

fQ′ = AQ′(k1, k2) ei(k1x2+k2x1) + AQ′(k2, k1) ei(k2x2+k1x1).
(1.46)

For an integrable model, this guess turns out to provide the exact solution – in the sense that it
exhausts the Hilbert space such that all physical solutions are non-diffractive (plane-waves) wave
functions. The amplitudes A and the momenta kj are unknown at this point. By injecting this
ansatz into the Schrödinger equation, we will see how the interactions come into play. We choose
x1 = x2 := x̄ (otherwise the interaction term is always zero and we simply have a free system),
and by discarding the irrelevant global phase prefactor ei(k1+k2)x̄ we get

∂2ψ

∂x2
1

+ ∂2ψ

∂x2
2

=
(
∂2fQ
∂x2

1
+ ∂2fQ

∂x2
2

)
Θ(x2 − x1) +

(
∂2fQ′

∂x2
1

+ ∂2fQ′

∂x2
2

)
Θ(x1 − x2)

− 2
(
∂fQ
∂x1
− ∂fQ
∂x2

)
δ(x2 − x1) + 2

(
∂fQ′

∂x1
− ∂fQ′

∂x2

)
δ(x1 − x2)

+ 2fQ δ′(x2 − x1) + 2fQ′ δ′(x1 − x2).

(1.47)

23The modifications introduced by finite temperature were discussed by [Yang and Yang, 1969].
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When applied to the reduced wave function, we have δ(x1 − x2) = δ(x2 − x1) and δ′(x2 − x1) =
−δ(x1−x2), so the last term vanishes. Physically, this reflects the continuity of the wave function
at the boundary x1 = x2 where the two sectors are equivalent fQ = fQ′ . However, their derivatives
differ due to the discontinuity imposed by the contact interaction. On the boundary, Eq. (1.47)
can be rewritten as

∂2ψ

∂x2
1

+ ∂2ψ

∂x2
2

= −
(
k2

1 + k2
2

)
ψ − 2i(k1 − k2) δ(x1 − x2)

× [(AQ(k1, k2)− AQ(k2, k1)) + (AQ′(k1, k2)− AQ′(k2, k1))] .
(1.48)

The amplitudes coincide on the boundary, so we may eliminate everything related to Q′ such that

ĤLLψ =
(
k2

1 + k2
2

)
ψ

+ 2 δ(x1 − x2) {c(AQ(k1, k2) + AQ(k2, k1)) + i(k1 − k2) [AQ(k1, k2)− AQ(k2, k1)]} .
(1.49)

Something interesting appears: the first term on the first line of Eq. (1.49) is the result we
would expect for a free system of bosons. Because the two bosons are interacting, it is no surprise
that the energy gets modified by the term on the second line. The amplitudes are arbitrary up to
now, but it proves convenient to choose them so as to cancel the term in the second line because
the energies then have the same form as the free system. The interactions are incorporated
directly into the wave function amplitudes, or alternatively in the distribution of quasimomenta
{kj}, provided that

AQ(k1, k2) + AQ(k2, k1) = i(k1 − k2)
c

[AQ(k1, k2)− AQ(k2, k1)] , (1.50)

which can be rewritten by using e−2i arctan(u) = 1−iu
1+iu (for u > 0) as

AQ(k1, k2)
AQ(k2, k1) = k1 − k2 + ic

k1 − k2 − ic
= −1− i(k1 − k2)/c

1 + i(k1 − k2)/c = −e−2i arctan( k1−k2
c ). (1.51)

Necessarily, k1 6= k2. By reductio ad absurdum, the second line of Eq. (1.49) would only be zero if and only
if either c = 0 (trivial non interacting case) or if AQ(k1, k2) = −AQ(k2, k1). The latter is non physical for
k1 = k2 because the global wavefunction ψ identically vanishes. It can further be proven that ∀c > 0, all k’s
are real (absence of bound states in the system) [Lieb and Liniger, 1963].

It is convenient to define a function θ such that
AQ(k1, k2)
AQ(k2, k1) := −eiθ(k1−k2), (1.52)

which by identification with Eq. (1.51) gives

θ(k) = −2 arctan
(
k
c

)
. (1.53)

The dispersion relation has the same form as the one of a non-interacting system provided that
the previous constraint on the amplitudes of the reduced wave functions Eq. (1.53) is satisfied.
The interactions are included into the distribution of the quasimomenta rather than directly
reflected by the form of the dispersion relation. The global wavefunction of the system ψ (up
to a normalisation factor) has been obtained using the Bethe ansatz, as well as the associated
eigenenergies. For this integrable model, it can be shown explicitly that all wavefunctions which
are solutions of the Schrödinger equation are of the form given by the Bethe ansatz, proving the
completeness of the exact solution [Dorlas, 1993].
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1.A.1.2 Many particles
Since the Lieb-Liniger model is integrable, the N -body interaction problem can be factorised
exactly in pairs of 2-body interactions. A necessary condition for a system to be integrable is that
the Yang-Baxter equation holds. Simply put, this equation means that a many-body scattering
can be decomposed as a series of two-body ones, independently of the ordering, so that the
two-particle constraints previously derived can all be satisfied simultaneously and in a consistent
manner. The previous method can then be extended in the following way: a given configuration
of particles specifies their coordinates {xj}, and their quasimomenta {kj} before and after they
rearrange upon scattering, which can be modelled by a given permutation P of N elements. The
Bethe ansatz takes the reduced wave function to be of the form

f(x1, x2, · · · , xN) =
∑
P
AP e

i
N∑
j=1

kPjxj

. (1.54)

For bosons, the global wave function is fully symmetric under the exchange of any pair of particles
so that the solution obtained in a particular sector is the same in any of the N ! sectors.

Consider for simplicity two transpositions T and T ′ which exchange only the two quasimomenta
ki and kj of two particles i and j. From the previous analysis, the two amplitudes AT and AT ′
are related by

AT = ki − kj + ic

ki − kj − ic
AT ′ = −eiθ(ki−kj)AT ′ , (1.55)

as the terms unchanged by the permutations factorise on both sides of the equation. Decomposing
an arbitrary permutation P as successive transpositions, the general case can be decomposed as
products of two-particle exchanges so that by induction

AP = A0 (−1)ε(P) ∏
j<l

(
kPj − kPl + ic

)
, (1.56)

where A0 is the amplitude of the plane wave in the initial sector (without any permutation), and
ε(P) stands for the signature of the permutation P (the minimal number of transpositions to do
to go from the initial sector to the final one). Now that we know the expression for AP – the
constant prefactor A0 is set by the normalisation –, the reduced wave function in Eq. (1.54) can be
expanded, and by symmetry the global wave function ψ can be reconstructed. By construction,
it is an eigenfunction of the Hamiltonian with eigenvalue E = ∑N

j=1 k
2
j . The energy only depends

indirectly on the interaction, through the distribution of quasimomenta {kj}. It is thus crucial to
understand how they are distributed.

1.A.1.3 Distribution of the quasimomenta kj
Universal properties of the model are determined by looking at the thermodynamic limit, in which
the precise choice of boundary conditions becomes irrelevant. For convenience, we choose a system
of size L with periodic boundary conditions (PBC) so that ∀j = 1 · · ·N ,

ψ(x1, · · · , xj + L, · · · , xN) = ψ(x1, · · · , xj, · · · , xN). (1.57)

Decomposing again an arbitrary permutation P into transpositions, we get

eikjL =
∏
l 6=j

(
kj − kl + ic

kj − kl − ic

)
= (−1)N−1

N∏
l=1

eiθ(kj−kl), (1.58)

and by taking the logarithm we find

kjL = 2π
(
Ĩj −

N − 1
2

)
+

N∑
l=1

θ(kj − kl), (1.59)
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where Ĩj are integers from 1 to N . We choose for convenience Ij = Ĩj − (N − 1)/2, which are
integers if N is odd, and half-integers if N is even. This gives the so-called Bethe equations of the
system

kjL = 2πIj +
N∑
l=1

θ(kj − kl), (1.60)

where the two-particle phase shift θ has been defined in Eq. (1.53). Through the choice of the
ensemble {Ij}, we can describe all physical states in a unique way. If {Ij} spans all integers from
1 to N , it describes the ground state of the system. From now on we focus on this case. The
excitations will be described in Sec. 1.A.3.

All kj are distinct in the Bethe equations (the proof is similar to the N = 2 case mentioned in Sec. 1.A.1.1).
In quasimomentum space, the particles cannot have the same quasimomentum, and this property is often
referred to as a Pauli’s exclusion principle (in quasimomentum space). These quasimomenta are a practical
bookkeeping tool, but are not related in a simple manner to the physical momenta of the bosonic particles.

1.A.1.4 The thermodynamic limit
We focus on the repulsive (c > 0) bosonic Lieb-Liniger model, for which the quasimomenta are
all real24 and distinct [Yang and Yang, 1969]. They can therefore be unambiguously ordered. It is
convenient to define a counting function

y(kj) := kj −
1
L

N∑
l=1

θ (kj − kl) , (1.61)

and a quasimomentum density

ρ(kj) := lim
N,L→∞

1
L (kj+1 − kj)

. (1.62)

The advantage of these definitions is transparent in the thermodynamic limit where∑
j

=
∑
j

kj+1 − kj
kj+1 − kj

= L
∑
j

ρ(kj) (kj+1 − kj) −→ L

ˆ
ρ(k) dk. (1.63)

By taking the derivative of the counting function with respect to kj and using the Bethe equations
(1.60), we obtain in the thermodynamic limit

dy
dk = 2πρ(k), (1.64)

where the quasimomenta are now described by the continuous variable k. It is crucial to be able
to organise the kj so that in the thermodynamic limit the counting function y(k) is well defined
(only under this assumption y(kj+1)− y(kj) = 2π/L for the ground state).

Taking the thermodynamic limit of Eq. (1.61), computing its derivative and substituting in
Eq. (1.64) yields

2πρ(k) = 1−
ˆ kmax

kmin

K(k − k′)ρ(k′) dk′, (1.65)

where we defined K(k) := dθ(k)
dk . Equation (1.65) is called the Lieb-Liniger equation [Lieb and

Liniger, 1963]. It is a closed equation for ρ(k), the only unknown parameter of the problem since
θ(k) = −2 arctan (k/c) and thus

K(k − k′) = −2c
c2 + (k − k′)2 . (1.66)

24The fermionic counterpart admits complex valued kj , which describe bound states. The solutions of the Bethe
equations organise into so-called Bethe strings. Such strings are characterised by a root, which is a real number.
Roots can thus be ordered, and a similar procedure applies. All solutions are then reconstructed from the roots.
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With the closed equation (1.65), ρ(k) can be obtained for any value of the interaction, with the
normalisation constraint for the density

n = N

L
=
ˆ kF

−kF

ρ(k) dk. (1.67)

All thermodynamic quantities are then expressed as functions of the quasimomentum density ρ(k),
for instance the ground state energy is given by E0 = L

´ kF
−kF

k2ρ(k) dk. In practice, rather than
expressing all thermodynamic quantities – such as the chemical potential µ, the compressibility κ
or the thermodynamic speed of sound vs,th – as functions of ρ(k), it appears more convenient to
express them through the function

e(γ) := E0

Ln3 = 1
n3

ˆ kF

−kF

k2ρ(k) dk. (1.68)

The reasoning behind this choice is the following [Lieb and Liniger, 1963]. The ground state energy should
be proportional to N to be extensive. With m = 1/2 and ~ = 1, an energy is homogeneous to a (length)−2.
The only choice is thus the form E0 = Nn2× e, where e is a function of dimensionless and intensive variables.
The only variable satisfying both constraints is γ, leading to the definition of e(γ) given above.

In terms of e(γ) and its derivatives with respect to γ, we get

µ = ∂(E0/L)
∂n

∣∣∣∣∣
c,L

= ∂(n3e(γ))
∂n

∣∣∣∣∣
c,L

= n2 [3e(γ)− γe′(γ)] (1.69a)

κ−1
red = 1

n2κ
−1
phys = ∂µ

∂n

∣∣∣∣∣
c,L

= 6ne(γ)− 4nγe′(γ) + nγ2e′′(γ) (1.69b)

vs,th =
[
L

nm

∂2E0

∂L2

]1/2

=
(
κ−1
phys

mn

)1/2

= n√
m

(
6e(γ)− 4γe′(γ) + γ2e′′(γ)

)1/2
. (1.69c)

κred stands for the reduced compressibility, often just called compressibility in the literature.

1.A.2 Numerical solution and dimensionless equations
Equation (1.65) with the constraint (1.67) cannot be solved analytically, except in the weakly
interacting regime (where a Bogoliubov expansion can be used) or the strongly interacting one
(where a strong coupling expansion using fermionisation can be used) [Ristivojevic, 2014]. For
arbitrary interactions, a numerical solution is necessary. As we focus on the ground state, the
integration bounds on the quasimomentum are symmetric and the cutoff is set by the Fermi
momentum25 kF such that kmax = kF = −kmin. It is convenient to work with dimensionless
parameters so we define the following variables

x = k/kF, α = c/kF, γ = c/n, (1.70)

and we call g(x) the rescaled quasimomentum density. In dimensionless form the main equations
are

n

kF
= α

γ
=
ˆ 1

−1
g(x) dx (1.71a)

2πg(x) = 1 +
ˆ 1

−1

2αg(y) dy
α2 + (x− y)2 (1.71b)

e(γ) = γ3

α3

ˆ 1

−1
x2g(x) dx. (1.71c)

25We work with bosons, but there is a Fermi sea in quasimomentum space as mentioned in Sec. 1.A.1.3.
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Initialise α = c/kF
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Initialise γ = c/n
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n

Thermodynamic
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(a) (b)

Fig. 1.19 Flowchart of (a) the naive algorithm and (b) the one we use to compute thermody-
namic quantities in the Lieb-Liniger model. The difficult part of each algorithm is represented
in red.

The system of equations (1.71) depends only on 3 parameters: α, γ and g(x). From the equations,
it seems that fixing α is the simplest choice: one can then solve Eq. (1.71b) alone to get g(x),
and finally use Eq. (1.71a) to get γ. This procedure is summarised in Fig. 1.19(a). However,
fixing γ is most convenient numerically, since all thermodynamic quantities depend on the single
interaction parameter γ and it is crucial to have a controlled range for γ to compute e′(γ) and
e′′(γ) accurately. Therefore, we set γ, and then solve simultaneously Eq. (1.71a) and (1.71b) to
get α and g(x). The density is then obtained from Eq. (1.71a).

The function e(γ) does not depend on α, contrary to what could be deduced from a quick look at Eq. (1.71c).
Equation (1.71a) can be used to rewrite Eq. (1.71c) as

e(γ) =
´ 1
−1 x

2g(x) dx[´ 1
−1 g(x) dx

]3 . (1.72)

Since g(x) only depends on α from Eq. (1.71b), using Eq. (1.71a) again, we can express γ as a unique function of
α. Importantly, this function is analytic and bijective on the region [0;∞[ as discussed by [Lieb and Liniger,
1963]. Choosing γ over α is also physically more satisfactory, since the density n is easier to interpret (and
more meaningful experimentally) than the Fermi quasimomentum kF.

The principle of the algorithm we used to solve the equations numerically is illustrated on the
flowchart in Fig. 1.19(b). The numerical results obtained for the equation of state by solving the
Bethe equations are given in Fig. 1.20. It is fruitful to compare the exact result given by the Bethe
ansatz to the two limit cases where the interactions are infinitely weak (Bogoliubov) or infinitely
strong (Tonks-Girardeau). In both cases, one can show that µBG = 2γn2 and µTG = (πn)2 with
the convention ~ = 1 = 2m (see [Lieb and Liniger, 1963] for a derivation of these expressions). The
Bethe ansatz exactly interpolates between these two regimes.

1.A.3 The spectrum of elementary excitations
Now that we know how to describe thermodynamic properties of the ground state, what about
excited states? The elementary excitations of the model conserve the number of particles, and can
be of two types, easier to interpret in the fully fermionised regime [Lieb, 1963]. The first type of
excitation in quasimomentum space amounts to remove a particle at kF, and place it at kp > kF.
The energy of this elementary excitation is ε1 = k2

p − k2
F and its quasimomentum p = kp − kF.

The excitation spectrum of this branch is then given by ε1(p) = p2 + 2kF|p| where p ∈]−∞; +∞[.
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Fig. 1.20 Results for thermodynamic quantities (log scale) using the Bethe ansatz approach
for the Lieb-Liniger model (a) for the chemical potential and (b) the compressibility. For
hard core bosons µ/n2 = π2 and n3κ = 1/(2π2): the gas is fermionised (black). Recall that
EF = (πn)2 (Fermi energy) and vF = πn (Fermi momentum), in the strongly interacting regime
with ~ = 1 = 2m. In the weakly interacting regime, the Bogoliubov prediction µ/n2 = 2γ
(green), or the weakly interacting expansion (blue) are recovered.

The second type is obtained by taking a particle from 0 < kh < kF to kF
26. The energy of this

elementary excitation is εh = k2
F− k2

h and its momentum p = kF− kh so that ε2(p) = −p2 + 2kF|p|
where p ∈ [−kF; kF]. Below we discuss how these elementary excitations are modified for finite
interactions.

The calculation below can be performed in two conceptually different ways. Lieb’s method [Lieb, 1963]
considers that the quasimomenta kj initially belong to the N − 1 particle ground state; whereas in Yang and
Yang’s method [Yang and Yang, 1969], they belong to the N particle ground state. The values of ∆kj are
different in the two cases, and the backflow definitions differ. Lieb does not include the chemical potential in
the energy contrary to Yang and Yang. Ultimately both methods are equivalent.

1.A.3.1 Lieb’s representation of the elementary excitation
One method to parametrise the excitations is the one of [Lieb, 1963]. To describe the excited
state containing a type-I excitation, we note k?N the quasimomentum of the excited particle. In
the presence of the excitation, the Bethe equations for N particles are modified: the remaining
quasimomenta redistribute in the presence of interactions, and we denote this new distribution
using the superscript “?”. The Bethe equations give for j ∈ [1;N − 1]

k?jL =
N∑
l=1

θ(k?j − k?l ) + 2πI?j =
N−1∑
l=1

θ(k?j − k?l ) + θ(k?j − k?N) + 2πI?j , (1.73a)

k?NL =
N∑
l=1

θ(k?N − k?l ) + 2πI?N , (1.73b)

where we isolated the contribution of the excited particle j = N . This appears convenient because
I?N is arbitrary, but for j ∈ [1;N − 1], I?j ∈ [−(N − 1)/2; ((N − 1)/2)− 1] (Fig. 1.21). The ground
state of a system with N − 1 particles obeys the following Bethe equations ∀j ∈ 1 · · ·N − 1

kjL =
N−1∑
l=1

θ(kj − kl) + 2πIj, (1.74)

where in this case Ij ∈ [−(N − 2)/2; (N − 2)/2]. To compare how the quasimomenta redistribute
26Rigorously kF + 2π/L, but we disregard finite size corrections in the thermodynamic limit.
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(a) (b)

Fig. 1.21 Lieb’s representation of the excitations with N = 5. (a) Represents a N −1 particle
ground state (green) and a N -particle excited state (red) for infinite interactions (red and green
line were slightly shifted for visibility). Since θ = 0, Ij ∝ kj . Except for the added particle
j = N , the quasimomenta and the associated quantum numbers between the two states are
simply shifted by a constant factor (I?j − Ij = −1/2). The ground state with N − 1 particles
has a total momentum P = ∑

j kj = 0 while for the N -particle excited state containing a
single type-I excitation P = k?N − kF. (b) Same for finite interactions (θ 6= 0), where we also
indicated the N -particle ground state (blue). The quasimomenta are now related in a non-
trivial way, k?j = kj + ∆kj where ∆kj � kj can be evaluated from the backflow function. As
finite interactions modify the quasimomentum distribution, P > k?N − kF.

due to the interactions after the excited particle is introduced, we take the difference between
Eq. (1.73a) and (1.74). We define the change in quasimomentum ∆kj = k?j − kj, such that

∆kjL =
N−1∑
l=1

[
θ(k?j − k?l )− θ(kj − kl)

]
+ θ(k?j − k?N) + 2π(I?j − Ij)

=
N−1∑
l=1

(∆kj −∆kl)K(kj − kl) + θ(k?j − k?N)− π,
(1.75)

where in the second equality we used that for j ∈ [1;N − 1], I?j − Ij = −1/2 (Fig. 1.21), and a
first order Taylor expansion θ(k?j − k?l ) = θ(kj − kl) + (∆kj −∆kl)K(kj − kl) where K(kj − kl) =
−2c/(c2 + [kj − kl]2). Putting everything together

∆kjL
{

1− 1
L

N−1∑
l=1

K(kj − kl)
}

= −
N−1∑
l=1

∆kl K(kj − kl) + θ(k?j − k?N)− π. (1.76)

Using the derivative of Eq. (1.61) to simplify the left-hand side and limiting to first order such
that θ(k?j − k?N) ' θ(kj − k?N) we get

2πρ(kj)∆kjL = −π + θ(kj − k?N)−
N−1∑
l=1

∆kl K(kj − kl). (1.77)

To account for the redistribution of quasimomenta between the excited state and the ground state,
it proves convenient to define the backflow function

J(kj) :=
k?j − kj
kj+1 − kj

= ∆kjLρ(kj). (1.78)
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In the thermodynamic limit, Eq. (1.77) can be rewritten as

2πJ(k) = −π + θ(k − k?)−
ˆ kF

−kF

J(k′)K(k − k′) dk′. (1.79)

In dimensionless form, and by writing explicitly the kernel we finally get

J(x) = −1
2 −

1
π

arctan
(
x− x?

α

)
+ α

π

ˆ 1

−1

J(y) dy
α2 + (x− y)2 . (1.80)

This last equation is crucial: solving it gives us the energy-momentum picture of the excitations.
Indeed, the total momentum of the excited state is given by

P =
N−1∑
j=1

k?j + k?N =
N−1∑
j=1

∆kj + k?N
TL−→ k? +

ˆ kF

−kF

J(k) dk, (1.81)

where we used that ∑N−1
j=1 kj = 0 (ground state with N − 1 particles).

In the limit c → ∞, both θ(k) and K(k) are zero. Eq. (1.79) gives a constant backflow J(k) = −1/2. The
momentum of the excited state is then P = k? − kF as expected.

In dimensionless form it reads as

P

n
= γ

α

(
x? +

ˆ 1

−1
J(x) dx

)
, (1.82)

where we rescaled the momentum by the inverse of a length (the density) since ~ = 1. The energy
difference between the excited state and the ground state can also be computed from the backflow

∆E =
N−1∑
j=1

k? 2
j + k? 2

N −E0(N) = −µ+ 2
N−1∑
j=1

kj∆kj + k? 2
N

TL−→ −µ+ k? 2 + 2
ˆ kF

−kF

kJ(k) dk, (1.83)

where in the second equality we used that µ = E0(N)− E0(N − 1) and neglected a second order
term in (∆kj)2.

In the limit c → ∞ where J(k) = −1/2, we have ∆E = k? 2
N − µ. In the fully fermionised regime, µ = k2

F
(~ = 1 = 2m), such that ∆E = k? 2

N − k2
F as expected.

In dimensionless form we get

∆E
n2 = − µ

n2 +
(
γ

α

)2
(
x? 2 + 2

ˆ 1

−1
xJ(x) dx

)
, (1.84)

where we rescaled the energy by a momentum squared (since m = 1/2), hence by the inverse of
a density squared. The curve ∆E/n2 = f(P/n) defines the dispersion relation of the excitations.
For a given value of the interactions γ (α in rescaled units), the backflow equation given by
Eq. (1.80) is solved numerically, and then using Eq. (1.82) and Eq. (1.84) the dispersion relation
can be constructed. Such elementary excitations are sometimes referred to as particle-like, but
it should be explicit from their construction that they conserve particle number by adding both
a particle above the Fermi surface and a hole at the Fermi surface. We will thus prefer to call
them type-I excitation, as in [Lieb, 1963]. After numerically solving the linear integral equation
Eq. (1.80) to get the backflow, it is possible to compute the dispersion relation using Eq. (1.82)
and (1.84) for different values of γ. The result is shown in Fig. 1.22. There also exists a branch for
type-II excitations: a hole in created inside the Fermi sea and a particle is added at the Fermi level
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Fig. 1.22 Exact dispersion relation of the (a) type-I excitation and (b) type-II excitation in the
Lieb-Liniger model obtained by Bethe ansatz, for different values of the interaction parameter.
The data agrees with results found by [Lieb, 1963].

to conserve the number of particles. We will not give further details about this branch, further
details can be found for instance in [Lieb, 1963]. We simply point out that they can be found by
solving a similar (up to some signs) integral equation

J(x) = 1
2 + 1

π
arctan

(
x− x?

α

)
+ α

π

ˆ 1

−1

J(y) dy
α2 + (x− y)2 , (1.85)

with the definitions 

P

n
= γ

α

(
−x? +

ˆ 1

−1
J(x) dx

)
∆E
n2 = µ

n2 +
(
γ

α

)2
(
−x? 2 + 2

ˆ 1

−1
xJ(x) dx

)
.

(1.86)

We may also calculate the speed of sound from the excitation spectrum using vs,ex = limp→0
∂ε
∂p
.

The result is equivalent to the one obtained by the thermodynamic relation [Eq. (1.69c)], namely
vs,th = vs,ex. This result is not general but specific to the Lieb-Liniger model and the structure
of its Bethe equations (see [Korepin et al., 1997], Appendix I.3.). In Fig. 1.23 we show the speed
of sound obtained from the Bethe ansatz, and compare with two known limits in the Bogoliubov
weakly interacting regime. For stronger interactions, the speed of sound reaches a constant value,
equal to the Fermi velocity, and we recover the fermionisation of the bosonic gas.
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Fig. 1.23 Speed of sound obtained numerically from the exact Bethe ansatz method for the
Lieb-Liniger model (a) in linear scale, (b) in log-log scale. The Bogoliubov result vs = 2nγ1/2

(green curve) and the weak coupling expansion vs = 2n[γ − ( 1
2π )γ3/2]1/2 (blue curve, see [Ris-

tivojevic, 2014]) are recovered for small interactions. For strong interactions, the fermionisation
can be observed as the speed of sound is equal to the Fermi velocity vF/n = 2π (independent
of γ, black line), with ~ = 1 = 2m.

1.A.3.2 Yang-Yang’s alternative representation of the elementary excitations
In this final section, we show an alternative parametrisation of the elementary excitations given
by [Yang and Yang, 1969]. Physically, we may consider an excitation to be the move of a particle
(labelled by an index α) with quasimomentum kα, initially somewhere inside the Fermi sea (not
necessarily at the Fermi level) to an arbitrary value above the Fermi level, written k?α. Formally,
the Bethe equations will be obtained by taking directly the difference with the N particle ground
state (instead of N − 1 as in Lieb’s representation). The equations for the momentum and
energy of the excited state will be modified, so as the backflow, because the excitations are
parametrised in a different way. Of course, in the end, all physical observables are identical within
both representations.

The Bethe equations for N particles in the ground state and in the excited state read as kjL = ∑
l θ(kj − kl) + 2πIj,

k?jL = ∑
l θ(k?j − k?l ) + 2πI?j .

(1.87)

Since we create a single excitation, I?j = Ij except for j 6= α. Therefore, ∀j 6= α we have

∆kjL =
∑
l

(∆kj −∆kl)K(kj − kl) =
∑
l 6=α

(∆kj −∆kl)K(kj − kl) + θ(k?j − k?α)− θ(kj − kα). (1.88)

To first order, θ(k?j − k?α) = θ(kj − k?α) + ∆kjK(kj − k?α) ' θ(kj − k?α) + ∆kjK(kj − kα), such that

∆kjL
(

1− 1
L

∑
l

K(kj − kl)
)

= 2πρ(kj)∆kjL

= −
∑
l 6=α

∆klK(kj − kl) + θ(kj − k?α)− θ(kj − kα).
(1.89)

Defining the backflow using Eq. (1.78) (for j 6= α), we get in the thermodynamic limit

2πJ(k) = θ(k − k?α)− θ(k − kα)−
ˆ kF

−kF

J(k′)K(k − k′) dk′. (1.90)

The momentum of the excited state is defined as

P =
∑
j

k?j = k?α +
∑
j 6=α

(kj + ∆kj) = k?α − kα +
∑
j 6=α

∆kj, (1.91)
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(a) (b)

Fig. 1.24 Yang-Yang’s representation of the excitations for N = 5. (a) Ground state (blue)
and excited state (red) with N particles for infinite interactions. Both distributions coincide
except for the moved particle α but we slightly shifted the blue one to improve visibility.
The quasimomenta cannot redistribute (θ = 0) and kj = k?j and Ij = I?j except for j = α.
The kj are linearly related to the Ij . In the ground state P = 0, and for the excited state
P = k?α − kα. (b) For finite interactions, the quasimomenta k?j for j 6= α redistribute and are
non-trivially related to the ground state distribution by k?j = kj + ∆kj where ∆kj � kj . As
finite interactions modify the quasimomentum distribution, P > k?α − kα.

where we used that for the ground state ∑j kj = 0. Similarly, the energy difference between the
excited state and the ground state reads as

∆E =
∑
j

k? 2
j −

∑
j

k2
j = k? 2

α − k2
α + 2

∑
j 6=α

kj ∆kj (1.92)

where we neglected a second order term in ∆k2
j . Therefore in the thermodynamic limit and using

the definition of the backflow we get

P = k?α − kα +
ˆ kF

−kF

J(k) dk,

∆E = k?2α − k2
α + 2

ˆ kF

−kF

kJ(k) dk.
(1.93)

In this representation, in the limit where c→∞, Eq. (1.90) yields J(k) = 0 since θ(k) and K(k) both vanish.
Equation (1.93) then reduces to P = k?α − kα and ∆E = k?2

α − k2
α.

The advantage of this representation is transparent from the previous remark in the strongly
interacting regime. The removed particle with quasimomentum kα can be interpreted as a hole,
and the added one with quasimomentum k?α as a particle. This allows to construct the full
excitation spectrum of the Lieb-Liniger model in an efficient way. The elementary excitations
considered by Lieb correspond to one choice of either kα = kF (type-I excitation, particle-like) or
k?α = kF (type-II excitation, hole-like).
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1.B Quantum ergodicity and thermalisation of the long-
time steady state

Questions about the definition of quantum ergodicity and thermalisation date back to the foun-
dations of quantum statistical mechanics and were first asked by Schrödinger and von Neu-
mann [Goldstein et al., 2010]. We will only scratch the surface of this fundamental subject here.
The following discussion is built upon [D’Alessio et al., 2016; Essler and Fagotti, 2016; Gogolin and
Eisert, 2016; Linden et al., 2009; Polkovnikov et al., 2011] to which we refer for more details.

By which mechanism does an isolated27 system equilibrate and thermalise? As the Schrödinger
equation is linear and deterministic, a system initially in a pure state remains pure at all times
and its global entropy vanishes. Is it still possible to build thermal ensembles following Jaynes’
principle of maximum entropy? It turns out that such issues are resolved by considering a partition
of the global system, and requiring equilibration and/or thermalisation on a local subsystem, the
remaining part acting as an effective environment. While it is true that an isolated quantum
system initially in a pure state cannot relax towards equilibrium globally, its subsystems can
individually reach it. In stark contrast with classical statistical mechanics, individual states can
be described by statistical properties. For instance, even when a system is described by a pure
state, its subparts can be described by mixed states. The complete knowledge of the behaviour
of the full quantum system is not equivalent to the complete knowledge of all its subparts, due
to the presence of entanglement. Concerning the role played by ergodicity, once again quantum
statistical mechanics differs from its classical counterpart. The ergodic hypothesis lies at the
foundation of classical statistical mechanics, and follows as a consequence of the stronger mixing
condition, referring to the dense exploration of the phase space and the notion of chaos. But the
quantum analogue of the mixing condition is never satisfied [Lebowitz and Penrose, 1973; Penrose,
1979]. Finding a quantum analogue to classical chaos is still a work in progress, although recent
experiments suggested connections between regions admitting classical chaotic dynamics and high
bipartite entanglement entropy (Fig. 1.25). We elaborate on such points in the following.

Ergodicity – We denote by ρ̂ the density matrix of the system, which acts on a complex-
valued configurational space (the Hilbert space) and represents quantum states. By definition,
the expectation value of an observable Ô in the ensemble of states described by ρ̂ at time t is
〈Ô〉t = Tr

[
ρ̂tÔ

]
. For isolated systems, we know that the density matrix evolves through the

Schrödinger-Von Neumann equation i∂tρ̂t = [Ĥ, ρ̂t], which implies that if Ĥ is not explicitly time-
dependent, the evolution is unitary ρ̂t = e−iĤtρ̂0eiĤt, and then by decomposing on the eigenstates

〈Ô〉t = Tr
[
Ô e−iĤtρ̂0 eiĤt

]
=
∑
n,m

ρnm0 〈m| Ô |n〉 ei(Em−En)t. (1.94)

We can now insert this into Eq. (1.21) to obtain

〈Ô〉eq =
∑
n,m

ρnm0 〈m| Ô |n〉
[

lim
T→∞

1
T

ˆ T

0
dt ei(Em−En)t

]
. (1.95)

The term within brackets is non-zero only when Em = En, such that

〈Ô〉eq = Tr
[
ρ̂diagÔ

]
, (1.96)

where ρ̂diag is called the diagonal ensemble and in the absence of degeneracies it has zero off-
diagonal elements. At its core, ergodicity is used to make an ensemble average match with a
long-time average, and we might be at first satisfied with Eq. (1.96). But this definition of

27Isolated systems allow to investigate the fundamental principles of thermalisation. Otherwise, if the system is
in contact with a thermal reservoir, how did the reservoir reached thermal equilibrium in the first place?
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(a) (b)

Fig. 1.25 (a) Connection between classical chaotic dynamics and states with high bipartite
entanglement entropy, in a three-qubit system with interaction strength κ. (b) When the
system starts in a high entanglement entropy state, its dynamics is almost perfectly ergodic,
in contrast with an initial low entanglement state. From [Neill et al., 2016].

ergodicity is too naive, as all quantum systems (with non-degenerate energy levels) would be
ergodic. The proper definition is the following: a system is ergodic if its equilibrium value can be
computed in the microcanonical ensemble. A quantum system having discrete energy levels, the
quantum definition of the microcanonical ensemble has to be coarse-grained on an intermediate
energy scale (we take a shell of energy dE between E and E + dE, and we denote as Γ(E) the
subset of states of the Hilbert space belonging to this shell) which contains N microstates, namely
ρ̂mc(E) = ∑

α∈Γ(E)
1
N |ψα〉 〈ψα|. Interestingly, the equivalence ρ̂diag ∼ ρ̂mc does not hold at the level

of microstates (as in the classical case) but only at the level of observables. Indeed, assume that
for any initial condition in Γ(E) written as |ψ0〉 = ∑

α∈Γ(E) cα |ψα〉, the long time average is given
by ρ̂mc(E). Then, for non-degenerate states, requiring ρ̂mc = ρ̂diag at the level of states would
imply

∀α ∈ Γ(E), 1
N

= |cα|2. (1.97)

Unfortunately now, this condition is too restrictive to define ergodicity. Instead, the equivalence
has to hold at the level of observables, such that

Tr
[
ρ̂diagÔ

]
= Tr

[
ρ̂mcÔ

]
. (1.98)

Proving that a system is not ergodic is doable by finding one observable which violates the ensemble
equivalence (Fig. 1.25). Proving the equivalence of Eq. (1.98) is not possible for all observables.
In practical cases, the “relevant” observables can be restricted to local ones to simplify the proof.

Thermalisation– Standard statistical mechanics addresses the behaviour of many-body sys-
tems at thermal equilibrium, where an ensemble description can be used to describe the system
only in terms of a few variables. One thus forgets about the microscopic details of the systems and
only focuses on some relevant macroscopic parameters (for instance, the global magnetisation of
a chain instead of the individual spin projection along a given axis). In a thermal ensemble, it is
the external world (environment) which acts as a reservoir and fixes the average energy (and pos-
sibly the average number of particles) of the system through a Lagrange multiplier β = 1/T (and
possibly µ/T where µ is the chemical potential). Such Gibbsian ensembles maximise the entropy
under the constraints fixed by the environment, and are commonly constructed as such [Jaynes,
1957]. A system is therefore called thermal if its equilibrium expectation values can be described
by a Gibbs ensemble. The macroscopic system is then described by mixed states, which consist of
statistical ensembles of pure states. In the thermodynamic limit and for short-ranged systems, all
Gibbs ensembles are equivalent. Therefore in the quantum regime, ergodicity and thermalisation
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(a) (b)

Fig. 1.26 (a) For a generic (non-integrable) system, the initial state (black) eventually re-
laxes to stationary state described by any usual Gibbs ensemble. The discrepancy between
microcanonical and canonical is a finite size effect. (b) The quenched state of the integrable
Tonks-Girardeau gas does not relax to a thermal stationary state. Its properties can be de-
scribed by the GGE, whereas usual Gibbs ensembles (grand canonical) fail. From [Rigol et al.,
2008; Rigol et al., 2007].

are often used indistinguishably [Abanin et al., 2019] (for the subtleties, see the introduction of
[D’Alessio et al., 2016]).

When a system is driven out of equilibrium and eventually relaxes to a steady state, is it possi-
ble to predict whether such state will be thermal or not? The answer turns out to depend whether
or not the system is integrable. Integrability in the quantum regime is loosely defined [Caux and
Mossel, 2011; Gogolin et al., 2011], here we will focus on the definition implying the existence of
an extensive number of conserved and mutually commuting algebraically independent operators.
Generic (non integrable) systems, for instance an isolated one which has only its average energy
as a conserved quantity, will locally relax to a stationary state described by a Gibbs ensemble
[Fig. 1.26(a)]. The fact that independently of the microscopic details, generic systems thermalise
was interpreted from the eigenstate thermalisation hypothesis (ETH). Its idea dates back to [Jensen
and Shankar, 1985] and was further developed in [Deutsch, 1991] and [Srednicki, 1994]. It can be
summarised in the following way: in a sufficiently small energy window and for few body ob-
servables, 〈n| Ô |n〉 does not vary significantly with the chosen eigenstate |n〉. Furthermore, the
off-diagonal elements 〈n| Ô |n′〉 are exponentially small (with the number of degrees of freedom).
Mathematically, for a given initial state |ψ(t)〉 = ∑

nCne−iEnt |n〉, the expectation value of an
observable Ô at time t reads as

〈Ô〉t = 〈ψ(t)| Ô |ψ(t)〉 =
∑
n

|Cn|2 〈n| Ô |n〉+
∑
n 6=m

C?
nCm ei(En−Em)t 〈n| Ô |m〉 (1.99)

and after dephasing at long time in the absence of degeneracies the last term vanishes. The ETH
assumes that 〈n| Ô |n〉 is independent of the eigenstate n within the energy window covered by
the initial state, and since ∑n |Cn|

2 = 1, the equilibrium value is given by the thermal averaged
independently of the initial state. A comparison with the classical thermalisation is shown in
Fig. 1.27. In both situations, the initial state is essentially irrelevant at long times, either because
of chaos in a classical system or because all eigenstates are essentially equivalent in the quantum
case according to the ETH. Essentially, thermalisation hides the information about the initial
state. The unitary evolution cannot erase information, but entanglement simply transports it to
subparts of the system such that it cannot be recovered from local measurements [Nandkishore and
Huse, 2015].

Not all systems thermalise, and for instance the ETH does not apply to integrable systems.
This was verified by the quantum Newton cradle experiment [Kinoshita et al., 2006]: a one di-
mensional ultracold gas was split using a Bragg pulse sequence is two opposite directions from
the center of the trap, then they oscillate, recombine and interact twice for each period. Even
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Fig. 1.27 Thermalisation in (a) classical and (b) quantum mechanics. Due to chaos, in
classical physics, the system evolves to a completely different state, and looses memory of its
initial state. In quantum physics, every eigenstate of the Hamiltonian holds information about
the thermal state it relaxes to. This eigenstate thermalisation hypothesis (ETH) holds for
generic systems, but not integrable ones. From [Rigol et al., 2008].

after a large number of oscillations, the two clouds did not thermalise. The fact that integrable
systems are very peculiar is due to the presence of additional conservation laws and associated
local or quasi-local conserved quantities which prevent the system from thermalising by strongly
constraining its dynamics. Even though the out-of-equilibrium system eventually relaxes locally
towards a steady state, it is generally non-thermal. This can be observed in numerical simulations
where Gibbs ensembles and the diagonal ensemble do not yield the same prediction [Fig. 1.26(b)].

To describe the quasi-stationnary state reached at long times by integrable systems, a gen-
eralised Gibbs ensemble (GGE)28 [Rigol et al., 2008; Rigol et al., 2007] can be constructed in the
same spirit as Jaynes, by using all local (and quasi-local) conserved quantities as constraints and
maximising the entropy with respect to them. The GGE has proven helpful to understand the
properties the non-thermal steady state reached at long times in integrable systems that were
put out of equilibrium. In practice though, constructing the GGE is difficult, and initial explicit
examples focused on free cases or systems that can be mapped to free ones (Tonks-Girardeau
gas, quadratic Hamiltonians) where the conservation laws are linearly related to the occupation
number. More involved situations have been considered recently ([Vidmar and Rigol, 2016] and
references therein).

28The literature sometimes refers to generalised thermalisation to indicate thermalisation to a generalised Gibbs
ensemble. I will rather call the system non thermal.
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1.C Details about the quench action
In this Appendix, we detail the procedure behind the quench action, following [Bucciantini, 2016;
Caux, 2016; Caux and Essler, 2013]. The goal is to approximate Eq. (1.25) which is our starting
point.

Assumption 1: Weak operators. Local operators generally do not change too much the state
they are acting on, so that the matrix elements 〈n| Ô(x) |n′〉 are rapidly decaying functions of the
difference between the two states |n〉 and |n′〉. The only non-zero matrix elements are such that
|n′〉 ∼ |n+ e〉, meaning that theses states only differ by a small number of excitations. When this
assumption holds, the operator Ô is said weak29. Eq. (1.25) then reduces to

〈Ô(x, t)〉ψ0 =
∑
n

∑
e

e−[S?(n,ψ0)+S(n+e,ψ0)] ei(En−En+e)t 〈n| Ô(x) |n+ e〉 . (1.100)

Assumption 2: Averaging procedure. Universal properties hold in the thermodynamic limit,
where the expectation values of observables depend on macroscopic variables, but are not sensitive
to the microscopic details of the system. For example, microscopic states are specified by the value
of each quantum number (say the quasimomentum of each particle); which in the thermodynamic
limit, becomes a quasimomentum distribution. During this averaging procedure, some information
is lost and to account for the degeneracy at the macroscopic level an entropy has to be defined.
The Yang-Yang entropy30 measures how many microscopic states are represented by the same
macroscopic quasimomentum density. We may then recast one sum in Eq. (1.25) as a functional
integral over the quasimomentum density |n〉 → |ρ〉 , ∑

n
→
´
Dρ eSYY

ρ . Formally, we introduce
δEe and δSe, the microscopic differences (sub-extensive) in energy and overlap logarithm between
the macroscopic states |ρ〉 and |ρ+ e〉 such that

Eρ − Eρ+e = δEe

S?(ρ, ψ0) + S(ρ+ e, ψ0) = 2Re [S(ρ, ψ0)] + δSe(ρ, ψ0)
(1.101)

and Eq. (1.100) becomes

〈Ô(x, t)〉ψ0

〈ψ0|ψ0〉
=

´
Dρ e−(2Re[S(ρ,ψ0)]−SYY

ρ )∑
e
e−δSe(ρ,ψ0)−iδEet 〈ρ| Ô(x) |ρ+ e〉

´
Dρ e−(2Re[S(ρ,ψ0)]−SYY

ρ ) . (1.102)

The important quantity is SQA(ρ, ψ0) = 2Re [S(ρ, ψ0)]− SYY
ρ named the quench action. It is

extensive, real-valued and bounded from below (due to state normalisation). It can be interpreted
as an equivalent of the free energy for out-of-equilibrium dynamics.

Assumption 3: Saddle point approximation. Eq. (1.102) can be further simplified since the
states |ρ〉 and |ρ+ e〉 differ only by a small shift in quantum numbers. Explicitly, δSe(ρ, ψ0) and
δEe being sub-extensive (contrary to Re [S(ρ, ψ0)] and Eρ), they do not shift the saddle point of
the numerator with respect to the one in the denominator. Because the operator Ô is also local,
the matrix elements 〈ρ| Ô(x) |ρ+ e〉 are not exponential in system size, so the saddle point is
not shifted either (when this approximation holds, Ô is refered to as a “thermodynamically finite
operator” [Caux, 2016]). The term containing the sum over excitations can then be pulled out of
the integral, and since the normalization factor cancels with the numerator, one gets

〈Ô(t)〉 = 1
2
∑
e

(
e−iδEet−δSe 〈ρS| Ô |ρS + e〉+ eiδEet−δS?e 〈ρS + e| Ô |ρS〉

)
, (1.103)

29Ô is weak if it produces finite Shannon entropy modifications on the state it acts on, and thus has a subextensive
operator entropy [Caux, 2016].

30In the Lieb-Liniger model, it is defined by SYY
ρ = L

´
dk(ρ+ρh) ln(ρ+ ρh)−ρ ln ρ−ρh ln ρh where we introduced

the quasimomentum density for the holes ρh and dropped the k-dependency to simplify the notations.
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where the saddle point distribution ρS is determined by

δSQA [ρ, ψ0]
δρ

(ρS) = 0. (1.104)

This equation states that in the thermodynamic limit, the expectation value of local operators
is determined in a good approximation by the quasimomentum distributions close to the saddle
point one (they differ by a small amount of particle-hole excitations). The stationary state reached
at t→∞ can be computed using the stationary phase approximation which reads δ(δEe)

δρ
= 0 hence

lim
t→∞
〈Ô(x, t)〉 = 〈ρS| Ô(x) |ρS〉 . (1.105)

Only a single state, the fixed point of the quench action, eventually matters to describe the
stationary value of local observables. This quench action approach has been used to describe
quench dynamics of integrable models such as the transverse-field Ising model [Caux and Essler,
2013] or the Lieb-Liniger model [De Nardis et al., 2014], starting for specific initial states where the
overlaps could be evaluated in a simple way. Other examples are discussed in the review [Caux,
2016].
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1.D Excitations in the strongly interacting Mott insulator
We will discuss extensively the excitations in the strongly interacting Mott insulator throughout
the thesis, here we recall the steps of the derivation presented by [Barmettler et al., 2012]. Deep in
the Mott phase, density fluctuations are strongly suppressed, and the local Hilbert space can be
truncated to 3 states, noted |n̄+m〉R wherem = −1, 0, 1 refers to the particle number modification
from the background. Particle and holes from the homogeneous n̄ Mott insulator can be written
in terms of 2 auxiliary bosonic operators b̂R,σ which are linked to the original bosonic operators
âR according to

â†R =
√
n̄+ 1 b̂†R,+ +

√
n̄ b̂R,−. (1.106)

These auxiliary operators locally act on |n̄〉R as

b̂†R,± |n̄〉R = |n̄± 1〉R ,
b̂R,± |n̄〉R = 0,

(1.107)

and they obey bosonic commutation relations. From Eq. (1.106) and (1.107), adding a physical
particle can be interpreted by the superposition (with different weights due to the Bose enhance-
ment factor) of a particle and the removal a hole. To preserve the restriction to the local Hilbert
space, for instance â†R |n̄+ 1〉R = 0, the hard core constraint

(
b̂†R,σ

)2
=
(
b̂R,σ

)2
= 0 must be

enforced and double occupancies eliminated n̂R,+n̂R,− = 0.
We now make use of a mapping between strongly interacting bosons and spinless fermions due

to Jordan and Wigner [Jordan and Wigner, 1928]. It consists in fermionising the auxiliary bosons, to
automatically account for the hard core constraint. Up to a phase only relevant for commutation
relations, b̂R,σ ∼ ĉR,σ. The operator ĉ†+ creates a doublon whereas ĉ†− creates as a holon. Pauli’s
exclusion principle ensures that

(
ĉ†R,σ

)2
= 0, while the second constraint n̂R,+n̂R,− = 0 is assumed

to hold in order to work with the effective quadratic Hamiltonian in momentum space

ĤUF =
∑
k,σ=±

eσ(k)ĉ†k,σ ĉk,σ +
∑
k

Q(k)
(
ĉ†k,+ĉ

†
−k,− − ĉ−k,−ĉk,+

)
, (1.108)

with

e+(k) = −2J(n̄+ 1) cos k + U
2 ,

e−(k) = −2Jn̄ cos k + U
2 ,

Q(k) = 2iJ
√
n̄(n̄+ 1) sin k.

(1.109)

Being quadratic, the effective Hamiltonian can be diagonalised by a Bogoliubov transformation.
The elementary excitations of the effective model are Bogoliubov quasiparticles which are linear
combinations of the doublons and holons

γ̂†k,± = u(k)ĉ†k,± ± v(k)ĉ−k,∓ (1.110)

with

u(k) = u(−k) = u?(−k) = 1 +O
(
J2

U2

)
v(k) = −v(−k) = −v?(k) = 2i J

U

√
n̄(n̄+ 1) sin k +O

(
J3

U3

)
.

(1.111)

Because in the hard core limit we have γ̂†k,± = ĉ†k,± (pure doublons and holons), we will refer to the
quasiparticle created by the operator γ̂†k,+ as a d-Bogoliubon and the one created by the operator
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γ̂†k,− as a h-Bogoliubon. In terms of these Bogoliubons, the Hamiltonian becomes a simple sum of
quantum harmonic oscillators

ĤUF =
∑
k,σ=±

Eσ(k)γ̂†k,σγ̂k,σ with E±(k) = ∓J cos k + ω(k). (1.112)

The quantity 2ω(k) = U − 2J(2n̄ + 1) cos k + O
(
J2

U2

)
represents the energy of a pair of two

distinct quasiparticles with opposite momenta. Specifically for n̄ = 1, the excitation spectrum is
parametrised by

E±(k) = ∓J cos k + 1
2

√
(U − 6J cos k)2 + 32J2 sin2 k. (1.113)

There are thus two branches (modes), in the strongly interacting regime and both of them are
gapped. We emphasise that strictly speaking only in the hard core regime (such that u(k) = 1
and v(k) = 0) these elementary excitations coincide with the doublons and holons. In general,
the elementary excitations are to be understood as superpositions of doublons and holons with
different weights.
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1.E Density-phase representation of the field operator
We briefly recall how the field operator should be expanded in one dimension in comparison to
the three dimensional case, following [Natu and Mueller, 2013a; Ristivojevic and Matveev, 2016].
Generally speaking, a two-body contact Hamiltonian can be cast into the following form

Ĥ = ~2

2m

ˆ
dx (∇Ψ̂†)(∇Ψ̂) + g

2

ˆ
dx (Ψ̂†Ψ̂)2, (1.114)

and is expected to give an approximation to describe bosonic systems at low temperatures. To
recover the Lieb-Liniger model31 one should expand the field operator onto Bloch functions (plane
waves). Here we want to discuss the weakly interacting regime, called the Bogoliubov regime,
where g � ~2n/m with n the mean density32. To approximate the Hamiltonian (1.114) in the
weakly interacting regime, in 3D one expands Ψ̂(x) = ∑

k e−ikxâk and separates the density of
bosons into a condensed component n0 = 〈ak=0〉2 and a non-condensed part characterised by

âk 6=0 = ukb̂k + v?k b̂
†
−k, (1.115)

where b̂
(†)
k are the annihilation (creation) operator of a Bogoliubon and uk and vk obey the

Bogoliubov-de Gennes equations. Their expression can be found by expanding up to quadratic or-
der the Hamiltonian in terms of Bogoliubons and then diagonalising it by cancelling the cross-terms
involving b̂(†) 2. The problem in one dimension is that the assumption underlying this development,
namely that the number of Bogoliubons is small compared to the condensed number of atoms,
breaks down. Indeed a quasi-condensate in 1D is characterised by small density fluctuations but
a divergence of phase fluctuations which prevent long-range order.

The solution is to formally write the field operator in terms of a density and a phase Ψ̂ = eiφ̂
√
ρ̂

with
[
ρ̂(x), φ̂(y)

]
= −iδ(x− y) (such that the field operator obeys bosonic commutation relation).

If we only care about the low energy physics, where the phase gradient ∇φ̂ and the density
variation from the mean value δρ̂ = ρ̂− ρ0 remain small, then an expansion to lowest order in the
operators allows to rewrite the Hamiltonian (1.114) as

Ĥ = ~2

2m

ˆ
dx

(
ρ0(∇φ̂)2 + (∇ρ̂)2

4ρ0

)
+ g

2

ˆ
dx ρ̂2. (1.116)

We recognise in the first term (kinetic energy) a quantum harmonic oscillator, and in fact what
we just discussed is nothing but a hydrodynamic Luttinger liquid representation (bosonisation)
of the Hamiltonian. If the last term representing the interaction energy is negligible (Bogoliubov
approximation), the excitations can be understood as Bogoliubons (which are the modes of the
previously discussed harmonic oscillator, emerging from phase and density fluctuations of the field
operator). These modes can be formally represented as

δρ̂k
2√ρ0

+ i
√
ρ0 φ̂k = ukb̂k + v?k b̂

†
−k, (1.117)

and from there we can recover the common expression (1.115) in 3D.
Substituting Eq. (1.117) into the Hamiltonian (1.116) and retaining only the quadratic terms in

b̂(†), the usual 3D Bogoliubov Hamiltonian is recovered (up to the substitution ρ0 → n). Therefore
the dispersion relation is of the form Ek =

√
εk(εk + 2gn) with ε = (~k)2/2m on the continuum

and εk = 4J sin(k/2)2 together with gn = Un̄ on a lattice.
31For Bose-Hubbard, one expands the field operator onto the Wannier functions and restrict to the lowest-band.
32On a lattice, this condition reads as U/(2Jn̄)� 1 (see Sec. 2.2.2 for details).





2 Correlation spreading
Before possibly reaching an equilibrium steady state, a system brought out of equilibrium

undergoes some relaxation dynamics. Such dynamics can be understood from a quasiparticle
picture introduced by [Calabrese and Cardy, 2006] which explains how information and correlations
are transferred throughout the system. This picture allows to interpret the bounds for the speed
at which information [Lieb and Robinson, 1972] or correlations [Bravyi et al., 2006] propagate in
short-ranged one dimensional lattice models. But more importantly, this picture gives a value
to the correlation spreading governed by the maximum velocity of the elementary excitations
(quasiparticles) of the microscopic underlying model.

We begin this chapter by discussing early investigations and following questions that emerged
from them soon after the numerical and experimental verifications of the quasiparticle picture.
These studies first demonstrated the ballistic propagation of correlations, as well as the oscillatory
behaviour of the correlation functions inside the causality cone. Some questions emerged about the
quantitative value for the correlation spreading velocity, and led [Cevolani et al., 2018] to propose
an extended quasiparticle picture which resolved observed inconsistencies and provided a complete
physical picture for the correlation spreading (Sec. 2.1). We then discuss the first observation of
a generic twofold structure in numerically exact t-MPS simulations for various phases and models
and for different observables (Sec. 2.2). The latter section closely follows our publication [Despres
et al., 2019], which validates the extended quasiparticle picture also beyond the mean-field regime.
We finally discuss related works and perspectives, particularly with regard to long-range models
which have received increased attention recently.

2.1 A short review of correlation spreading in short-ranged
lattice models

In the early years when quantum simulators became accessible, measurements of the correlation
spreading were conducted, both experimentally and numerically.

2.1.1 Early studies of the out-of-equilibrium dynamics
A detailed preliminary study of correlation spreading was performed by [Läuchli and Kollath, 2008]
on the Bose-Hubbard chain using both exact diagonalisation (ED) with L = 14 sites and the
density-matrix renormalisation group (DMRG) with L = 32 sites. The dynamics of the density-
density correlation function was studied, often after rather strong quenches (in the sense that a
quantum phase transition is crossed during the quench) for instance from (U/J)i = 2 (SF) to
(U/J)f = 40 (MI) as shown in Fig. 2.1(a). The expected light-cone like structure is clearly visible,
and its speed may be extracted from a fit and compared to known analytical results. Interestingly,
the extracted velocities appear consistent with microscopic well-established results, depending on
the regime [Fig. 2.1(b)]. In the weakly interacting regime γ = U/(2Jn̄) . 2, a comparison with
the sound velocity was made with (i) a mapping to the continuum limit of the Lieb-Liniger model
[Lieb, 1963]; in the strongly interacting MI a comparison was used with (ii) the dispersion relation
of a particle-hole excitation computed using a slave-particle approach from [Huber et al., 2007];
and finally in the strongly interacting SF at low filling the velocity can be compared to (iii) the
sound velocity of an effective fermionic model with attractive correlated hopping [Cazalilla, 2003,

59
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(a) (b)

Fig. 2.1 (a) Dynamics of the density-density correlation function, after a quench from (U/J)i =
2 (SF) to (U/J)f = 40 (MI) at fixed n̄ = 1, computed using ED with L = 14. (b) The velocities
extracted from the numerical data by a linear fit of the causal-cone front (points for unit filling,
squares close to half filling) are compared to different theoretical predictions given in Eq. (2.1).
The velocities given here correspond to half of the signal propagation, in order to facilitate the
comparison with v?g = maxk ∂kEk from the quasiparticle picture. The initial state is always
(U/J)i = 2. From [Läuchli and Kollath, 2008].

2004]. All respective expressions are summarised below

(i) vs = 2Jn̄√γ
√

1−√γ/2π with γ = U/(2Jn̄),

(ii) vg = ∂k

[
1
2

√
U2 − 4J(2n̄+ 1)U cos k + 4J2 cos2 k

]
,

(iii) vf = 2J sin(πn̄) [1− 8n̄J cos(πn̄)/U ] .

(2.1)

This comparison suggested that the quasiparticle interpretation was correct also beyond the critical
region described by the conformal field theory. We will use again the models described above and
comment further on the microscopic velocities present in Eq. (2.1) in Sec. 2.2.

[Manmana et al., 2009] investigated the correlation spreading using the DMRG algorithm on a
chain of spinless fermions at half-filling on larger systems (up to L = 50 sites) with Hamiltonian

Ĥ = −J
∑
R

(
ĉ†R+1ĉR + h.c.

)
+ V n̂Rn̂R+1. (2.2)

A phase transition at (V/J)c = 2 separates a Luttinger liquid (LL) regime for V/J < 2 from
a charge density-wave (CDW) insulating one for V/J > 2. In the Luttinger phase, the model
can be mapped to the XXZ chain using a Jordan-Wigner transformation. The latter model is
integrable and exactly solvable using the Bethe ansatz, and enables a quantitative comparison with
the velocity of the correlation spreading. The time-evolution of the density-density correlation
function after a quench starting from (V/J)i = 10 displays a light-cone pattern represented in
Fig. 2.2(a). By extracting the light-cone velocity from the local maxima of the equal-time density
correlation function [Fig. 2.2(b)], the propagation is found to be consistently smaller than the
maximal possible velocity predicted by the quasiparticle picture. Although the Calabrese-Cardy
picture qualitatively agrees with the observations, the authors note that “the propagation does
not take place with the maximal possible velocity [..., and] there appear to be small corrections to
a horizon velocity obtained from the exactly known velocity of charge excitations”. This reduced
apparent velocity was attributed to the contribution of lower-velocity excitations created by the
strong quench which excites high-energy modes.
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u

V

(a) (b)

Fig. 2.2 (a) Dynamics of the density-density correlation function, after a quench from (V/J)i =
10 (CDW) to (V/J)f = 0 (free fermions), 2 (critical) or 5 and 20 (CDW), computed using
DMRG with L = 50 sites. (b) Extracted velocity u according to the final interaction value V
and comparison with the Bethe ansatz exact result in the LL regime. Adapted from [Manmana
et al., 2009].

Let us now come back to the Bose-Hubbard model. [Läuchli and Kollath, 2008] suggested that
“the value of the observed signal velocity might depend on the initial state”, in contrast to the
Calabrese-Cardy prediction. To close the debate, it was necessary to perform weak quenches and
estimate the uncertainties on the fitted causal-cone velocity, in particular due to finite size effects.
This was undertaken by [Carleo et al., 2014], who investigated in particular the superfluid phase at
unit filling using a time-dependent variational Monte Carlo (t-VMC) algorithm. They concluded
that after weak quenches which do not abruptly cross a phase transition, the propagation velocity
was independent of the initial state. They also noted that the correlation propagating is always
clearly supersonic throughout the SF phase [Fig. 2.3(b)], even for weak quenches for instance
from (U/J)i = 1 to (U/J)f = 1.1. The elementary excitations at low-energy which propagate the
correlations do not seem to be phononic modes (or at least not with the velocity expected from
Luttinger liquid theory). However, by extracting the propagation speed from the local maxima
of the space-time correlation pattern vinst(R) = 2

t?(R+1)−t?(R−1) [reaching a constant value after
a few time steps, see inset in Fig. 2.3(a)], the authors conclude that the maximum velocity of
the excitations v?g is not reached. This suggested that the conformal field theory results used
to demonstrate the quasiparticle picture may apply only close to the critical point, where all
the characteristic velocities match [Fig. 2.3(b)]. This apparent mismatch between the extracted
velocity and the maximum group velocity expected from the Lieb-Robinson bound is explained
below in Sec. 2.1.2.

The first experimental verification of light-cone like spreading was performed by [Cheneau et
al., 2012] on the Bose-Hubbard chain mentioned previously [Fig. 1.14(b)]. They explored the
MI regime, with quenches from (U/J)i = 40 to (U/J)f = 9, 7 and 5 at n̄ = 1. The velocities
were extracted from the local maxima close to the correlation edge [Fig. 2.4(a)]. In this case, the
fitted velocities (Fig. 2.4(b), blue points) are in fair agreement with the Calabrese-Cardy prediction
within experimental uncertainties (green area). Note, however, that the data were taken in the MI
regime for values of (U/J)f such that the characteristic velocities (of the local maxima close to the
edge and of the edge itself) are almost indistinguishable within experimental accuracy. This last
point will be important in the following. As a final point on this introductory part, we also mention
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Fig. 2.3 (a) Light-cone like dynamics of the density-density correlation 〈n̂(R, t)n̂(0, t)〉 −
〈n̂(R, 0)n̂(0, 0)〉 in the Bose-Hubbard chain after a quench at unit filling from (U/J)i = 2 to
(U/J)i = 4. (b) Extracted velocity for different final interaction values (U/J)f , compared with
twice the sound velocity 2vs and twice the maximum excitation velocity (group velocity), here
noted 2vm. Adapted from [Carleo et al., 2014].

Fig. 2.4 Experimental observation of light-cone-like spreading of correlations on the Bose-
Hubbard chain. (a) Velocities extracted from the local maxima. (b) Comparison between the
experimental values and the numerical simulation prediction (shaded green). From [Cheneau
et al., 2012].

that light-cone spreading of correlation has also been studied experimentally on spin chain models
(simulated using ultracold bosons) by [Fukuhara, Schauß, et al., 2013]. Specifically, the isotropic
Heisenberg chain was modelled. They validated the Calabrese-Cardy picture by observing free
magnons propagating at the maximal speed Jexa/~ consistent with the prediction v?g = maxk ∂kEk
from the exact Bethe ansatz dispersion relation of the excitations Ek = Jex(1− cos k) with Jex the
super-exchange coupling.

2.1.2 Generalisation of the quasiparticle picture
A generic form for the correlation spreading. The propagation velocities for the corre-
lation spreading were addressed in a systematic way by [Cevolani et al., 2018], who pointed out
that the propagation velocity of the local maxima close to the edge differs in general from the
propagation velocity of the edge of the causal-cone itself. Building on a series of closely related
works using mean-field arguments [Cevolani et al., 2015, 2016], they proposed that correlators after
a global quantum quench in a translation invariant system can be cast into the following generic
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(a) (b)

Fig. 2.5 Computation of the analytical expression (2.3) using the expression for F(k) derived
for (a) a quench in the mean-field SF from (Un̄/J)i = 1 to (Un̄/J)f = 0.5 and (b) a quench in
the strongly interacting MI from (U/J)i = ∞ to (U/J)f = 18 at n̄ = 1 where the observable
is the one-body correlator. The insets illustrate how the phase velocity Ek/k and the group
velocity ∂kEk are determined from the excitation spectrum Ek, at k? where Vg(k). From
[Cevolani et al., 2018].

form (in arbitrary dimensions D)

G(R, t) = g(R)−
ˆ

BZ

dk
(2π)DF(k)ei(k ·R+2Ef

kt) + ei(k ·R−2Ef
kt)

2 . (2.3)

Equation (2.3) represents the propagation of two waves with energy Ef
k (which only depend on

the final state reached by the quench) propagating in opposite directions with a given momentum
dependent weight F(k). This function F(k) also depends on the specific observable under con-
sideration and on the initial pre-quench state, and thus hides the complexity of the non-generic
behaviour of the dynamics. In specific regimes and for some observables, the function F(k) can be
expressed analytically and gives access to the out-of-equilibrium dynamics by computing Eq. (2.3).
On the Bose-Hubbard chain, for a quench in the SF phase from (Un̄/J)i = 1 to (Un̄/J)f = 0.5 and
choosing the one-body correlator as an observable, they obtained the space-time pattern showed
in Fig. 2.5(a). For a quench in the MI phase at unit filling from (U/J)i =∞ to (U/J)f = 18 they
obtained the one displayed in Fig. 2.5(b) with the same observable (we refer to the publication
for the expressions of F(k) in both cases). We stress that these results rely on the evaluation
of Eq. (2.3), where both F(k) and Ef

k are determined analytically from approximate methods
(mean-field theory or a strong coupling expansion). We observe in Fig. 2.5 a complex spike-like
pattern, which can be decomposed into two main parts. A ballistic causal cone (solid green line)
is visible, outside which correlations decay exponentially, as expected from the Calabrese-Cardy
picture. More interestingly, a second feature appears where local maxima start to propagate bal-
listically from the cone edge (dashed blue lines). For each feature, a velocity can be extracted from
a linear fit, and its value is given by the inverse of the slope in units of Ja/~. Clearly, two distinct
velocities emerge, one for the local maxima Vm and one for the correlation edge VCE. [Cevolani
et al., 2018] showed that the velocity of the local maxima can be related to the phase velocity of the
quasiparticles Vϕ(k) = Ek/k, which is a sole property of the dispersion relation of the elementary
excitations Ek. In general, if the dispersion relation Ek is not linear (that is if it is dispersive),
Vϕ(k) differs from the group velocity Vg(k) = ∂kEk which characterises the physical propagation of
information in a given medium (see Appendix 2.A for a brief reminder about the notion of group
and phase velocities in a general context). We will show below that only a single quasimomentum,
noted k?, is relevant to understand this twofold pattern, and it corresponds to the maximum of the
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(a) (b)

Fig. 2.6 Quasiparticle interpretation for the correlation spreading. The correlation edge prop-
agates at the velocity VCE, related to the group velocity of the fastest excitations by VCE = 2V ?

g .
Local maxima around the edge propagate at Vm related to the phase velocity of the fastest
quasiparticles Vm = 2V ?

ϕ . See also the insets in Fig. 2.5. Adapted from [Despres et al., 2019].

group velocity accessible to the system, namely k? = maxk Vg(k). The fact that Vg(k?) 6= Vm(k?) is
responsible for the twofold structure. In the mean-field SF regime [Fig. 2.5(a)], the phase velocity
is smaller than the group velocity (see the slopes in the inset). On the contrary, in the strongly
interacting MI phase [Fig. 2.5(b)], the phase velocity is larger than the group velocity (see again
the slopes in the inset). We stress that the latter case does not contradict the Calabrese-Cardy
interpretation of the Lieb-Robinson bound since physical information is not transported by the
phase velocity.

To understand the patterns of Fig. 2.5, it is fruitful to approximate Eq. (2.3) in the infinite
time and space limit at fixed ratio R/t by making use of the saddle point approximation. In one
dimension, the stationary phase is given by the solution of ∂k(kR ∓ 2Ekt) = R ∓ 2∂kEkt = 0.
It defines the group velocity as Vg(k) = ∂kEk|k = ±R/2t. Assuming Vg(k) is bounded by V ?

g =
Vg(k?), and defining t? = R/(2V ?

g ) we see that for t < t? there is no stationary phase such that
G(R, t) vanishes. The time t?, referred to as the activation time, corresponds to the minimal time
required for the correlations to spread between two points distant of R. We will show below that
it can be interpreted from the generalised quasiparticle picture as the arrival time at the points
±R/2 of a wave packet carrying correlations which originated from the middle point 0. On the
contrary, for t > t? there is a solution to the stationary phase and the correlation function in
Eq. (2.3) may be simplified in 1D as

G(R, t) ∝ F(k?)
(|∂2

kEk|k=k? |t)
1/2 cos

(
k?R− 2Ek?t+ π

4

)
, (2.4)

(see Appendix 2.A for the detailed derivation).

Physical picture. The following intuitive physical representation can be built from Eq. (2.4).
Immediately after the global quench, a bunch of quasiparticle excitations are emitted from all
points in the system in pairs, where the pairs have different velocities but the two particles forming
a pair have opposite velocity [Fig. 2.6(a), where for clarity we only represent a single emission from
the point 0 but it should be understood that the same applies to all points]. All pairs are emitted
with different velocities (different green colors), but only the fastest ones build a correlation over
a distance R at a time t? (dark green). It corresponds to the first pair which induces a correlation
between two points R and R′, was emitted from the central point (R + R′)/2 and travelled with
the fastest group velocity. The other quasiparticles propagate slower and did not yet build any
correlation. Taking into account all pairs emitted from all points, the signal close to the edge results
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from the propagation of a wave packet [Fig. 2.6(b)]. Since all quasiparticle pairs were initially
emitted from spatially distinct points, their interferences lead through dephasing to a blurring of
the inside of the cone (far from the edge). Close to the correlation edge, local maxima propagate at
a speed Vm = 2V ?

ϕ = 2Ek?/k? [Eq. (2.4)] related to the phase velocity of the fastest quasiparticles
and the edge of the cone itself propagates at a velocity VCE = 2V ?

g = 2 ∂kEk|k=k? [Eq. (2.4)] related
to the group velocity of the fastest quasiparticles. The correlation at a distance R and a time t
is thus built from a coherent superposition of the contributions of the various quasiparticles. In
the vicinity of the CE, only the fastest quasiparticles, i.e. those with a quasimomentum k close
to k? contribute. It creates a sine-like signal at the driving spatial frequency k?, whose extrema
move at twice the phase velocity. The dispersion around k? then modulates the sine-like signal
by an envelope moving at the CE velocity. This behaviour is reminiscent of the propagation of
a coherent wave packet in a dispersive medium, among which the propagation of water waves in
deep water mentioned in Appendix 2.A.

This generalised quasiparticle picture shed new light on the early results discussed in Sec. 2.1.1.
In general, the local maxima are more visible than the edge, and the former are the ones measured.
However, when the underlying excitations of the many-body system have a non-linear dispersion
relation, the phase velocity and the group velocity differ, and so do the velocities of the local
maxima and of the edge. The study of [Carleo et al., 2014] where large system sizes have been
investigated allows for a quantitative comparison, and it turns out that the fitted velocities are
in excellent agreement with 2Vϕ(k?) but differ significantly from 2Vg(k?). Far from the transition,
the two velocities are sufficiently different to make the distinction clear [Fig. 2.3(b)]. In the
other early numerical investigations, the quantitative comparison is not possible because of small
system sizes leading to finite size effects and consequently important uncertainties, especially
considering that the investigated regimes often correspond to the ones where both velocities are
approximately equal. The strongly correlated MI was investigated by [Läuchli and Kollath, 2008],
but the combination of strong quenches and/or small system sizes probably explains why the
twofold structure was not observed. This is also the case for the experimental work of [Cheneau
et al., 2012] on the Bose-Hubbard chain, since the values of (U/J)f are close to the transition where
the velocities are almost identical.

In conclusion, a complex dynamics, characterised by two characteristic velocities can be ob-
served for the correlation spreading in lattice models. The velocity of the edge and of the local
maxima are related to properties of the elementary excitations through the group and phase veloc-
ity. This effect was not present in the original picture of Calabrese and Cardy since they restricted
to a linear excitation spectrum where dispersion is absent and thus both velocities are identical.

Range of applicability. Is the generic form discussed previously and its associated physical
picture general, or are there cases where they do not apply?

The scope and wide range of applicability of the generic form (2.3) was unveiled throughout
a series of works [Cevolani et al., 2015, 2016; Cevolani et al., 2018], but had been demonstrated
explicitly on specific models and phases before. This includes the short-ranged Bose-Hubbard
model both in the mean-field SF where γ = U/(2Jn̄) � 1 [Natu and Mueller, 2013b] and in the
strongly interacting MI where U > 4J(n̄ + 1) [Barmettler et al., 2012]. It can also be extended to
long-range models such as a fermionic hopping model [Buyskikh et al., 2016], various spin models
such as the XY and the XXZ models also in 2D [Frérot et al., 2017, 2018] and the transverse field
Ising chain [Buyskikh et al., 2016; Hauke and Tagliacozzo, 2013] (at least in the strongly polarised
phases where linear spin-wave results hold). This extension requires a little care, because the
group velocity may be unbounded, however the generic form Eq. (2.3) can still be used (except in
the instantaneous regime where Ef

k is unbounded). The previous results also apply to short-ranged
spin chains, which can be considered as the limit of their long-range equivalent when the range of
interactions 1/|R|α decays to zero with α > D+1. Similar results have also been obtained on spin
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lattices of various geometries in their strongly polarised phases [Menu and Roscilde, 2018]. Last
but not least, the generic form also applies to the exactly solvable model of a chain of coupled
quantum harmonic oscillators, where the exact equal-time two-point correlation function can be
cast in the form [Calabrese and Cardy, 2006]

〈φ(R, t)φ(0, t)〉 − 〈φ(R, 0)φ(0, 0)〉 =
ˆ

BZ
ddkF(k) eikR

[
1− cos

(
2Ef

kt
)]
, (2.5)

with explicitly F(k) = (Ei 2
k − Ef 2

k )/(Ei
kE

f 2
k ) and Ei,f

k the initial or final single-particle dispersion
relation respectively.

Even if the range of applicability of the generic form is very large, it is not completely general.
First, the form applies only for translation invariant initial states and systems, therefore for global
quenches in clean systems. We will explain this from a more fundamental point of view when we
will discuss quench spectroscopy in Chap. 3. Second, we will also show in Sec. 2.2.3 that the generic
form does not apply to the density-density correlation function G2(R, t) in the strongly interacting
MI phase of the Bose-Hubbard chain. This is a very peculiar situation where the twofold structure
reduces to a single one. Third, the excitation spectrum of the elementary excitations should have
a well-defined excitation branch, namely at a given value of k should correspond a single value of
Ek. We will explicitly show a counterexample in the strongly interacting SF phase of the Bose-
Hubbard chain where the excitation spectrum rather takes the form of a continuum, and therefore
the generic form cannot be used to understand the dynamical properties (Sec. 2.2.4). We will also
come back to this specific example in Sec. 3.2.2.2.

2.2 Observation of a generic twofold structure
One of the aims of the following section is to validate the previously discussed generalised quasi-
particle picture which explains the coexistence of several signals related to the non-linearity of the
quasiparticle excitation spectrum and which are governed by different scaling laws. In particular,
we will quantitatively check the predictions Vm = 2V ?

ϕ = 2Ek?/k? and VCE = 2V ?
g = 2 ∂kEk|k=k?

using numerically exact t-MPS simulations, without requiring the use of the generic form (2.3) and
the analytical input of the dispersion relation Ef

k. We closely follow1 the presentation of our pub-
lication [Despres, 2019] in the following. Our results are particularly important as the generalised
quasiparticle picture was established in specific regimes (for instance within a mean-field approx-
imation) and as such ignores potentially important dynamical effects among which quasiparticle
collisions and finite lifetime.

In the following, we induce out-of-equilibrium dynamics by performing a global quench: we
initialise our system in its ground state for some parameters (U/J)i for a fixed filling n̄, and at t = 0
the Hamiltonian is modified instantaneously by changing the interaction ratio to (U/J)f 6= (U/J)i.
We consider a variety of quenches in order to span the phase diagram, sketched in Fig. 2.7. We
investigate correlation spreading through two observables: the one-body correlation function

G1(R, t) = 〈â†(R, t)â(0, t)〉 − 〈â†(R, 0)â†(0, 0)〉, (2.6)

representing phase fluctuations, and the two-body connected correlation function

G2(R, t) = 〈n̂(R, t)n̂(0, t)〉 − 〈n̂(R, 0)n̂(0, 0)〉 − [〈n̂(R, t)〉〈n̂(0, t)〉 − 〈n̂(R, 0)〉〈n̂(0, 0)〉] , (2.7)

representing density fluctuations.
Such observables are commonly measured in experiments using time-of-flight and light absorp-

tion imaging as mentioned in Sec. 1.3.2. Some of the results below simulate properties of gapless
phases where, as discussed in Sec. 1.2.4, the convergence of the MPS is not guaranteed. A careful

1Like with all papers I authored, I have not hesitated to paraphrase sentences whenever appropriate.
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Fig. 2.7 Schematic phase diagram and quenches considered (arrows) including one in the
mean-field SF regime (red), one in the strongly interacting MI (full purple), one in the strongly
interacting superfluid at low filling (pink) and one in the SF phase close to the transition at
fixed unit filling (empty purple). Adapted from [Despres et al., 2019].

analysis of the numerical cutoff (local Hilbert space dimension and bond dimension) has been
systematically performed to certify the convergence of the results in all phases considered, and is
summarised in Appendix 2.B.

2.2.1 The superfluid mean-field regime
We begin our investigation on the superfluid mean-field regime, where the generalised quasiparticle
picture and the generic form of Eq. (2.3) are expected to hold. In this regime characterised by a
small interaction parameter γ = U/(2Jn̄) � 1, we observe the space-time correlation pattern of
G2(R, t) for a quench (red arrow in Fig. 2.7) with fixed n̄ = 5 from (U/J)i = 0.2 to (U/J)f = 0.1
(thus γi = 0.02 to γf = 0.01). We display the result in Fig. 2.8(a). It clearly shows a spike-like
structure, characterised by two different velocities. Firstly, a series of parallel extrema move along
straight lines corresponding to a constant propagation velocity Vm (the dashed blue lines show fits
for two of these minima). Secondly, the various local extrema start at different activation times
t?(R), aligned along a straight line with a different slope (solid green line), corresponding to a
constant velocity VCE. The latter defines the correlation edge (CE) beyond which the correlations
are suppressed.

The same analysis holds for the G1 function, as shown in Fig. 2.8(b) for the same quench. The
values of the correlation edge (~VCE/J = 4.4(3)) and maxima (~Vm/J = 3.3(2)) velocities obtained
using linear fits agree with those found for the G2 function within less than 10%. This agreement
between the spreading velocities for different correlation functions was found in all regimes, and is
consistent with the prediction that these velocities are characteristic of the microscopic excitation
spectrum and not of the details of the macroscopic observable. However, the full space-time
pattern depends on the correlation function. In this phase, the signal for G1 is less sharp than
the one for G2. This may be attributed to the long-range phase correlations present in the initial
state, which blur the space-time signal observed from the correlation function.

By conducting a systematic analysis for various quenches within this SF mean-field regime
and tracking the local extrema and the activation time, we extracted the velocities Vm and VCE
from the t-MPS simulations. In Fig. 2.9(b), we report the results of the analysis following the G2
observable which has the clearest space-time pattern and thus reduces fitting uncertainties. We
can quantitatively compare the extracted velocities to the predicted values, as in this regime the
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(b)

RR
Fig. 2.8 Twofold structure in the space-time pattern for a quench within the mean-field SF
phase (n̄ = 5, from (U/J)i = 0.2 to (U/J)f = 0.1) for the observable (a) G2 and (b) G1. The
best fits for the correlation edge velocity (solid green) and the local maxima (dashed blue) are
represented. Adapted from [Despres et al., 2019].

excitation spectrum Ek is known, therefore V ?
g and V ?

ϕ can be computed. In the mean-field regime,
we have already mentioned that the elementary excitations of the system are Bogoliubov quasi-
particles with the dispersion relation Ek =

√
εk(εk + 2n̄U) with εk = 4J sin2(k/2) the dispersion

relation of the free-particle tight-binding model2. The relevant velocities are

Vϕ(k) =

√
εk(εk + 2n̄U)

k
, Vg(k) = 2J sin k (εk + n̄U)√

εk(εk + 2n̄U)
, Vs = lim

k→0
Vg(k) =

√
2Jn̄U. (2.8)

The next step is to find k? defined as the value for which Vg(k) is maximum. The analytical
expression for k? is not very informative, and we do not reproduce it here. It is simpler to collect
it numerically for a given parameter (Un̄/J) and plot Vϕ(k?), Vg(k?) and Vs (in units of J/~) as
a function of this parameter [Fig. 2.9(a)]. The fact that our results are in excellent agreement
(within the fitting errorbars) with the above theory yielding VCE = 2V ?

g and Vm = 2V ?
ϕ validates

this physical picture [Fig. 2.9(b)]. Neither of the two velocities coincide with a soundlike mode.
Essentially, the after quench out-of-equilibrium dynamics in this regime is beyond the Luttinger
liquid description, except when approaching the Mott transition.

We recover the velocities mentioned in [Carleo et al., 2014]. Note however, that the propaga-
tion velocity of the maxima should not be assimilated to the light-cone velocity, as we already
highlighted in Sec. 2.1.2.

2.2.2 Strongly correlated phases at unit filling
We now focus on the strongly correlated regime γ ∼ 1 at fixed unit filling in both phases. In the
SF, we quench from (U/J)i = 1 to (U/J)f < (U/J)c ' 3.3 below the critical point (open purple
points and arrow in Fig. 2.7). In the MI, we quench from (U/J)i = ∞ to (U/J)f > (U/J)c (full
purple points and arrow in Fig. 2.7). We display in Fig. 2.10 our t-MPS results for the spreading
of two different correlators: G1 (upper row, index 1) and G2 (lower row, index 2). Quenches are
performed in the SF (to (U/J)f = 0.5, panel a) and in the MI slightly beyond the transition (to
(U/J)f = 8, panel b) and in the strongly interacting regime (to (U/J)f = 24, panel c). In all
cases, except for G2 in the strongly interacting MI (panel c2, see discussion in Sec. 2.2.3), we find

2Putting back the lattice spacing a, the correspondence between the Lieb-Liniger and the Bose-Hubbard model
in the long wavelength limit where the lattice becomes irrelevant gives Ja2 = ~2/2m. Expanding εk at low momenta
(i.e. taking the lattice spacing to zero), we recover εk = (~k)2/2m.
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Fig. 2.9 Mean-field SF regime (n̄ = 5 so γf < 3/50� 1 for (U/J)f < 3). (a) Predicted values
for twice the maximum group velocity of the quasiparticles 2V ?

g , twice their associated phase
velocity 2V ?

ϕ and comparison with twice the sound velocity 2Vs in the mean-field (Bogoliubov)
regime. (b) Comparison between the extracted velocities from the fits and the microscopic
predictions from the excitation spectrum VCE ' 2V ?

g (green) and Vm ' 2V ?
ϕ (blue). The

white points correspond to a different initial value (Un̄/J)i = 2 (1 for the other points, all for
n̄ = 5). The good agreement within errorbars confirms the quasiparticle picture in this regime.
Adapted from [Despres et al., 2019].

a twofold spike-like structure. The velocities Vm and VCE extracted from linear fits as before (blue
and green points respectively), are plotted in panels d both for G1 and G2 and show similar results.
Again this is consistent with the prediction that these velocities only depend on the microscopic
excitation spectrum and not the specific observable under consideration.

In the SF regime at unit filling for (U/J)f < (U/J)c the results compare very well with the
predictions 2V ?

ϕ and 2V ?
g found from the Bogoliubov dispersion relation (Fig. 2.10, panels d for

(U/J)f ≤ 3.5). Surprisingly, the agreement is fair up to the critical point where γc ' 1.6 far
beyond the validity condition of Bogoliubov theory γ � 1. We interpret this agreement for rather
high values of γ by noting that k? decreases from π/2 ' 1.6 down to ' 1 at the critical point with
unit filling. The physics is then increasingly dominated by long wavelengths which are soundlike
modes, as confirmed in Fig. 2.9(a) where all velocities converge towards a single value given by
the speed of sound.

Moreover, the speed of sound at γ ∼ γc is well approximated by its Bogoliubov expression as
we show now. In the long wavelength limit, the lattice discretisation of the Bose-Hubbard model
may be disregarded and the latter maps onto the continuous Lieb-Liniger model which we recall
has the following Hamiltonian

ĤLL = ~2

2m

− N∑
i=1

∂2

∂x2
i

+ 2c
∑
i<j

δ(xi − xj)
 . (2.9)

The many-body wave function ψ(x1, · · · , xN) can be discretised on an infinitesimal lengthscale
(the lattice spacing) a� xi such that from a Taylor expansion

∂2ψ

∂x2
i

' 1
a2 [ψ(xi + a) + ψ(xi − a)− 2ψ(xi)] . (2.10)

We recover the Bose-Hubbard Hamiltonian by taking the limit a → 0 at fixed Ja2 = ~2/2m.
Indeed, the first two terms from the right hand side of Eq. (2.10) represent the tunnelling of
the particle i at xi to one of its neighbour distant of a, and the last term may be reabsorbed
in the definition of the chemical potential. The delta interaction of the Lieb-Liniger model for
|xi±1 − xi| = a → 0 becomes the on-site interaction of the Bose-Hubbard model, with U =
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Fig. 2.10 Correlation spreading for n̄ = 1 of G1(R, t) (panels 1) and G2(R, t) (panels 2),
respectively in (a) the SF regime to (U/J)f = 0.5, and the MI regime to (b) (U/J)f = 8
and (c) (U/J)f = 24. Initial values are (U/J)i = 1 for the SF and (U/J)i = ∞ for the MI.
(d) The extracted velocity of the correlation edge (green, full line) matches with twice the
group velocity of the fastest quasiparticles computed from the known dispersion relation, and
the velocity of the local maxima (dashed blue lines) with twice the phase velocity of the fastest
quasiparticles, irrespective of the observable. From [Despres et al., 2019].

~2c/ma = g/a. As we have detailed in Appendix 1.A, the Lieb-Liniger model is exactly solvable
from the Bethe ansatz and its thermodynamic sound velocity may be conveniently expressed from
the dimensionless function e(γ) as

vs :=
√√√√ L

mn

∂2EGS

∂L2

∣∣∣∣∣
N,S

= ~n
m

√
3 e(γ)− 2γe′(γ) + 1

2γ
2e′′(γ), (2.11)

which using the small γ expansion3 becomes e(γ) = γ[1− (4/3π)√γ] such that4

vs '
~n
m

√
γ(1−√γ/4π). (2.12)

3Surprisingly, this simpler expression gives an excellent approximation of the exact numerical Bethe ansatz
result up to γ ' 10 (see Fig. 1.23 from Appendix 1.A).

4This result can be recovered by Taylor expanding to lowest order the expression (i) from Eq. (2.1).
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Using the correspondence between the two models, γ = U/(2Jn̄) and Vs = vs/a is given by

~Vs

J
'
√

2Jn̄U
1− 1

4π

√
U

2Jn̄

 . (2.13)

Up to the critical point, the lowest order correction to the mean-field result Vs =
√

2Jn̄U is less
than 10%. This can explain the good agreement between the exact numerical simulations and
the analytic formula, valid in the mean-field regime. Close the critical point, where the results
from conformal field theory apply, the physics is dominated by soundlike modes and the numerical
results for Vm and VCE are consistent with the exact Bethe ansatz value (or the mean-field result)
given at (U/J)f = 3.5 by 2Vs ' 4.7 (5.3) consistent with what we observed from the fits where
Vm ' VCE ' 4.7 for G2 (5.3 for G1).

The spreading velocities do not show any divergence when crossing the Mott-U transition and
numerically we cannot distinguish the two features for (U/J)f ∈ [3.5; 6] (Fig. 2.10, panels d).
Deeper in the MI however, we recover the double structure on the observable G1 where this time
Vm > VCE in contrast to the SF regime. Such observations can be interpreted from the fact that the
known excitations in the strongly interacting MI are pairs of a d-Bogoliubon and a h-Bogoliubon
(approximately doublon-holon pairs). The pair has a dispersion relation for n̄ = 1 given by5

2Ek =
√

(U − 6J cos k)2 + 32J2 sin2 k. (2.14)

The value of k? is monotonously increasing from 0 at U/J = 6 to π/2 at U/J = ∞. From the
analytical expression of the dispersion relation we once again compute the predicted values for
2V ?

ϕ and 2V ?
g , and the comparison with the spreading velocities Vm and VCE fitted from the t-MPS

results yields very good agreement for both observables (Fig. 2.10, panels d for (U/J)f ≥ 6). This
agreement validates the quasiparticle picture also in this strongly interacting regime.

Yet, the G2 correlations behave surprisingly in the Mott phase. For not too strong interactions
above the transition (U/J)f ∈ [6; 9], we find a twofold structure consistent with that found for G1.
In contrast, the signal for G2 blurs when entering deeper in the MI regime, and we are not able
to identify two distinct features for (U/J)f ≥ 9. We discuss this peculiar situation in Sec. 2.2.3.

2.2.3 Loss of the double structure
The density-density correlation G2 in the strongly interacting Mott phase provides an explicit
example for the rare situation where the twofold structure disappears by reducing to a single one.
This example is insightful since it can be fully explained analytically by resorting to a strong
coupling expansion of the correlation functions. Following [Barmettler et al., 2012] (to which we
refer for more details), within the strongly interacting Mott phase the density-density correlation
function is of the form

G2(R, t) ' −2
(∣∣∣g+,+

2 (R, t)
∣∣∣2 +

∣∣∣g+,−
2 (R, t)

∣∣∣2) , (2.15)

where both terms involve a correlator between the fermionic doublons and holons

g+,+
2 (R, t) = 1

2π

ˆ
BZ

dk e−ikR 〈ĉ†k,+ĉk,+〉 '
8J2

πU2

ˆ
BZ

dk e−ikR sin2(k) [cos(2Ekt)− 1] ,

g+,−
2 (R, t) = 1

2π

ˆ
BZ

dk e−ikR 〈ĉk,+ĉ−k,−〉 '
√

2J
πU

ˆ
BZ

dk e−ikR sin(k)
[
e−2iEkt − 1

]
,

(2.16)

5The derivation of this expression can be found in Appendix 1.D. Note that it differs by a constant factor of
32J2 under the square root from the expression (ii) given in Eq. (2.1).
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Fig. 2.11 Analytical space-time pattern expected for G2(R, t) in the strongly interacting
regime. (a) −2 Re(g+,−

2 )2. (b) −2 Im(g+,−
2 )2. (c) −2

∣∣∣g+,−
2

∣∣∣2 = −2 Re(g+,−
2 )2 − 2 Im(g+,−

2 )2.
The maxima “propagating” with Vm ' 0 can be seen in (a) and (b) (vertical lines), but are
much harder to detect on the full correlation function in (c). In this rare situation, a onefold
structure is observed [compare with the simulation Fig. 2.10(c2)]. From [Despres et al., 2019].

where 2Ek ' U−6J cos k for n̄ = 1 by Taylor expanding Eq. (2.14) to first order in J/U . Note that
the two correlators in Eq. (2.16) have a different scaling with J/U . Since their square is involved
in the correlation function, when U/J is large enough, one has to a very good approximation
G2(R, t) ' −2

∣∣∣g+,−
2 (R, t)

∣∣∣2. The expression for g+,−
2 (R, t) can be rewritten by recognising the

derivative of a Bessel function, and using their properties we can simplify it as

g+,−
2 (R, t) ∝ J

U

R

t

ˆ
BZ

dk
2π

(
ei(2Ekt+kR) + ei(2Ekt−kR)

)
. (2.17)

Because of the square modulus involved in the correlation function, the gap (2Ek = gap+ 2Ek,eff)
becomes irrelevant and everything goes as if the dispersion relation was the effective gapless one
2Ek,eff ' −6J cos k. Thus k? ' π/2 so that first, 2V ?

g = 6J/~ in excellent agreement with the
fitted values of VCE [Fig. 2.10(d2)]. Second, this yields 2V ?

ϕ ' 0, also consistent with the fact that
we do not observe a double structure. It is difficult to notice that Vm ' 0 in the full correlation
function because the maxima of the (square of the) real and imaginary part of g2 are exactly
shifted by π/2, such that we lose this signature in the modulus squared G2 ' −2

∣∣∣g+,−
2

∣∣∣2. This
disappearance of the vertical lines in the full space-time pattern can be observed in Fig. 2.11. In
the intermediate regime where (U/J)f ∈ [6; 9], the contribution of

∣∣∣g+,+
2

∣∣∣2 increases and the double
structure reappears.

2.2.4 Strongly interacting superfluid regime at low filling
Last but not least, we investigate the strongly interacting SF regime where 0 < n̄ < 1 and γ � 1.
At equilibrium, the low-energy physics is known to be well-captured by the Luttinger liquid theory.
This bosonisation method describes the system as harmonic oscillator modes which all propagate
with the same characteristic sound velocity Vs. For various fillings between 0 and 1, we once again
quench the interaction parameter to (U/J)f = 50 (pink arrow in Fig. 2.7), and simulate using
t-MPS the resulting dynamics. By extracting the relevant velocities from the observed dynamics,
represented in Fig. 2.12, we observe that they do not coincide (especially at low-filling) in contrast
to the harmonic fluid description. Therefore we observe an out-of-equilibrium signature in the
dynamics beyond the Luttinger liquid description. Since the latter is only valid at low-energies,
one may wonder if this could be attributed to a strong quench effect which excited higher energy
modes. To verify this, we extracted the velocities starting from two different initial states, either
at (U/J)i = 1 (full points) or (U/J)i = 40 (empty points). Within errorbars, we observe a
similar behaviour. This suggests that the dynamics always involves the full excitation branch and
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Fig. 2.12 Velocities extracted from the correlation spreading of G2 in the strongly interacting
SF regime at low filling. Filled points start from (U/J)i = 1 and open ones from (U/J)i = 40
and both end up at (U/J)f = 50. We represent the velocity of the correlation edge (green), the
local maxima (blue) as well as (twice) the sound velocity given by Eq. (2.18) (dashed yellow
line) or directly computed from MPS (yellow squares). From [Despres et al., 2019].

in particular the high momentum part which lies beyond the phonon regime. As suggested by
the observation of two different velocities, the low-energy description of the Luttinger liquid is
insufficient to capture the after quench dynamics.

It is also fruitful to compare our result with the precise value for the sound velocity of the
harmonic fluid description, which can be computed by mapping the Bose-Hubbard model in the
strongly interacting limit to a model to spinless fermions with attractive interactions [Cazalilla,
2003, 2004]. The derivation of both the fermionic mapping and the calculation of the speed of
sound is detailed in Appendix 2.C. We only quote here the result6

2Vs '
4Ja
~

sin(πn̄)
[
1− 8J

U
n̄ cos(πn̄)

]
, (2.18)

represented by the dashed yellow line in Fig. 2.12. We have independently checked the validity of
this approximation from the energy of the first excited state in our exact MPS simulations (yellow
squares) and found excellent agreement. At low filling, the two characteristic velocities VCE and
Vm strongly differ, which suggests that the usual Luttinger approach is insufficient to describe
the spreading of correlations even upon renormalisation of the effective sound velocity. Close
to half-filling, all velocities merge, consistent with the early observations by [Läuchli and Kollath,
2008]. Finally, the two velocities extracted from the dynamics almost coincide in the vicinity of
the commensurate-incommensurate transition to the MI and reach the value 6J/~ but strongly
differ from the speed of sound. This is consistent with the observed disappearance of the twofold
structure and the value we found deep in the MI exactly at n̄ = 1.

We will come back to the question about the nature of the excitations in the strongly interacting
SF regime clearly beyond the phononic regime in Sec. 3.2.2.2.

2.2.5 Extension to long-range systems
We conclude this chapter by briefly discussing related works and extensions, especially concerning
the spreading of correlations in long-range models. The analysis discussed until now also applies
to long-range models especially spin chains in regimes where linear spin wave theory captures

6Note that a typo slipped into the expression mentioned in the text of [Despres et al., 2019], but the expression
used for the figure of that publication and in the thesis is the correct one.
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Fig. 2.13 Correlation spreading regimes in the long-range transverse-field Ising chain for
two-point correlators (global quenches), local observables (local quenches) and the bipartite
entanglement entropy (EE) throughout the phase diagram. All situations appear from sub-
ballistic, ballistic, and super-ballistic spreading (see main text). From [Schneider et al., 2021].

the relevant dynamical behaviour, for instance the long-range transverse-field Ising chain (the
tunnelling term is replaced by ∑R<R′ J/|R−R′|

α) [Buyskikh et al., 2016; Cevolani et al., 2018], or
spin models in higher dimensions such as XXZ [Frérot et al., 2017] or XX [Frérot et al., 2018].

We focus now on the long-range transverse-field Ising chain. For α > 2 (causal regime), the
system is effectively short-ranged and the previously discussed quasiparticle picture is unchanged:
the correlations spread ballistically with VCE = 2V ?

g and Vm = 2V ?
ϕ . However other regimes display

different physics. First, for α < 1 (instantaneous regime), Ek features an infrared divergence
(k → 0) and therefore V ?

g =∞ leading to an instantaneous spreading of correlations. Second, when
1 < α < 2 (quasilocal regime), Ek is bounded but its derivative diverges as kα−2. Nonetheless,
a weak form of causality emerges: the spin-spin two-point correlators display a quasilocal cone
with algebraic leaks (instead of the exponential decay for short-range systems) and a complex
internal structure. A correlation edge separating the causal and non-causal regions can still be
defined, but the cone is “bending” with its boundaries defined by t ∼ RβCE with βCE > 1 leading
to a sub-ballistic correlation spreading. Local maxima are also found close to the cone edge,
and propagate ballistically according to t ∼ Rβm with βm = 1. Therefore in long-range systems,
richer behaviours can be observed. The recent investigation of [Schneider et al., 2021] showed that
single-point functions i.e. local observables such as the local magnetisation 〈Ŝz(R, t)〉 possess an
edge that generally spreads sub-ballistically (βCE > 1). In contrast, the local maxima spread
super-ballistically (βm < 1) and not ballistically like for the two-point spin-spin correlators. A
summary of all cases is shown in Fig. 2.13.

Finally, even though we have not mentioned it yet, the propagation of entanglement (often
the bipartite Von-Neumann entropy or more general measures defined by Rényi entropies) is also
interesting to investigate. Recent observations from [Schneider et al., 2021] always find a ballistic
propagation in the quasi-local regime, independently of the interaction regime.

Overall, it is found that correlation spreading is generally twofold, and the physical information
propagates at the velocity given by the edge of the cone. For short-range systems, the latter can be
related to the group velocity of the excitations. Although we investigated the widely used short-
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ranged Bose-Hubbard chain, we emphasise that our results equally apply to many other models
with arbitrary statistics, including long-range ones and in higher dimensions. This suggests that
using quenches, one is able to link a measurement following the dynamics (the velocity of the
edge and of the local maxima close to it) to a fundamental property of the excitations. Indeed, a
single point from the excitation spectrum can be extracted from the analysis close to the cone (see
insets in Fig. 2.5). Can we extract more information from the internal cone dynamics or do the
interferences between the quasiparticles created through dephasing erase any interesting physics?
Extracting such information is possible, and we extensively discuss how to perform such quench
spectroscopies to probe the properties of the excitations in the following chapters.



Appendices
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2.A Phase and group velocities and the wake-pattern in
classical physics

2.A.1 General comments on dispersion
Definition of phase and group velocities. A physical signal (or a quasiparticle) may be
described in terms of a wave packet of the form (in complex notation)

s(x, t) =
ˆ ∞
−∞
F(k) ei(kx−ωt) dk, (2.19)

where ϕx,t(k) = kx−ωt is the phase of a single wavelength component of s(x, t) and it is important
to stress that ω is implicitly dependent on k (dispersion relation). Phase and group velocities are
general notions from the physics of waves. Two neighbouring points in (x, t) and (x+ dx, t+ dt)
have the same phase at a given k if ϕx+dx,t+dt = ϕx,t which yields k dx−ω dt = 0. We thus define
the phase velocity as

vϕ = dx
dt = ω

k
, (2.20)

which is the velocity of a single frequency component constituting the wave packet. It refers to
the abstract concept of a Fourier component, however since only the wave packet has a physical
reality, the phase velocity does not correspond to the speed at which an information propagates.
Transporting information requires a modulation of the signal, where the information is encoded
on a carrier.

In a dispersive medium, the wave packet gets deformed through the propagation, but it is
nonetheless possible to define a quantity to characterise at what speed information spreads: this is
the group velocity. Assume that the wave packet is maximum around the value (k?, ω?). Expanding
around the maximum we write k ' k? + ∆k and ω ' ω? + ∆k dω

dk

∣∣∣
k=k?

such that

s(x, t) ' ei(k?x−ω?t)F(k?)
ˆ
D(k?)

exp
(
i∆k

[
x− t dω

dk

∣∣∣∣∣
k=k?

])
d(∆k), (2.21)

where D(k?) is a small region centered around k?. The interpretation of this equation is that the
crest of the wave packet propagates at the speed (group velocity)

vg = dω
dk

∣∣∣∣∣
k?

. (2.22)

This notion is only well-defined if the expansion of the wave packet around its maximum can
be restricted to first order, which requires that vg � ∆k

2
d2ω
dk2

∣∣∣
k?
. This condition can be satisfied

by considering a sufficiently narrow wave packet, and/or if the medium itself in which the waves
propagate is not very dispersive with respect to the given wave packet (centred around k?).

Saddle point approximation of the signal. We wish to approximate Eq. (2.19) at long time
and long distances with fixed ratio x/t. The biggest contribution to the integral is given by the
stationary value ∂kϕ|k=k? = 0. Expanding around the maximum we get

ϕ(k) = ϕ(k?) + σ2 with σ2 = 1
2(k − k?)2 ∂

2ϕ

∂k2

∣∣∣∣∣
k=k?

(2.23)

and therefore the real-part of the signal is given by

s(x, t) ≈
√√√√ 2∣∣∣ ∂2ϕ

∂k2

∣∣∣
k=k?

∣∣∣
ˆ ∞
−∞
F(k?) cos

(
ϕ(k?) + σ2

)
dσ =

√√√√ 2π∣∣∣ ∂2ϕ
∂k2

∣∣∣
k=k?

∣∣∣F(k?) cos
[
ϕ(k?) + π

4

]
.

(2.24)
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Noting that ∂2ϕ
∂k2

∣∣∣
k=k?

= −t ∂2ω
∂k2

∣∣∣
k=k?

we recover Eq. (4) from [Cevolani et al., 2018].
In the situation where ∂2ω

∂k2

∣∣∣
k=k?

= 0 (this happens for instance when the dispersion relation is
cosine like), the expansion should be performed to the next non-zero order such that

ϕ(k) = ϕ(k?) + σ̃3 with σ̃3 = 1
6(k − k?)3 ∂

3ϕ

∂k3

∣∣∣∣∣
k=k?

(2.25)

such that the real-part of the signal is given by

s(x, t) ≈
 6∣∣∣ ∂3ϕ

∂k3

∣∣∣
k=k?

∣∣∣
1/3 ˆ ∞

−∞
F(k?) cos

(
ϕ(k?) + σ̃3

)
dσ̃ = Γ(1/3)√

3

 6∣∣∣ ∂3ϕ
∂k3

∣∣∣
k=k?

∣∣∣
1/3

F(k?) cosϕ(k?).

(2.26)

2.A.2 The wake pattern in classical hydrodynamics in 2D
The observed space-time correlation pattern in the quantum case is reminiscent of the wake pattern
which can be observed if a disturbance [a boat or a duck, see Fig. 2.14(a)] moves at constant speed
on top of the water. This analogy with classical 2D hydrodynamics, may be thought of as the
result of a mapping between a D dimensional quantum system and a D + 1 dimensional classical
one. The hydrodynamical wake pattern was discovered and explained by Kelvin, by introducing
the stationnary phase approximation of integrals [Havelock, 1908; Kelvin, 1887]. To my knowledge,
the quantum analogy sparked interest only very recently [Kolomeisky and Straley, 2018; Wampler
et al., 2020].

As a small aside, let us comment a bit more this analogy. Lengthy calculations of fluid dynamics
can be avoided by making use of an intuitive geometrical derivation proposed by [Crawford, 1984].
We recall that the dispersion relation of water waves in deep water is ω =

√
gk where g is the

acceleration by gravity, from which we get vg/vϕ = 1/2. Now suppose that a duck, initially at the
point B1 [see Fig. 2.14(b) for all the notations used below], emits at t = 0 a wave packet centred
around the wavelength λ. The duck then moves at a constant speed and when it reaches the point
B2, the wave packet that was emitted when the duck was in B1 travelled and reached the point
W. Where will we observe the strongest signal? Because vg/vϕ = 1/2, the answer is at the point
G in the middle of B1W where constructive interferences appear. The position of G, and thus
the dominant wake angle can be found by maximising the value of θ with respect to the distance
B1G at fixed B2W. The angle φ can be obtained as a side product in order to characterise the full
wake-pattern (see [Crawford, 1984] for details).

Note that this complex wake-pattern is the consequence of the non-linear dispersion relation of
water waves in deep water, and is reminiscent of the one observed in the quantum case. However,

(a) (b)

Fig. 2.14 (a) Observation of the wake-pattern. Note the wave crests towards the edge of the
cone. From Wikipedia. (b) Scheme of the wake-pattern and definition of the angles (θ, φ) used
in the text. The duck swims along the line B1B2. From [Crawford, 1984].
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let us point out some important differences with the quantum case. In the classical case the
perturbation is generated from a single point moving on the medium. In the referential of the
duck, the pressure point is fixed at any time and the medium is moving. But this is different from
the quantum case, where after the global quench, quasiparticle pairs are emitted from all points
in the system, then interfere and give the spike-like structure of correlation spreading. The next
difference is that the angles do not quite have the same interpretation. On water, the edge (formed
by the transverse wave crests) propagates with a speed (in units of the velocity of the duck) of
tan(θ) where θ = arctan

(√
2
)
− arctan

(
1/
√

2
)
' 19.3 ◦ and the maxima (formed by the diverging

wave crests close to the edge) propagates at 1/ tan(φ− θ) with φ − θ = arctan
(
1/
√

2
)
' 35.3 ◦.

Therefore, the obtained ratio reads as

VCE

Vm
= 1√

2
tan

(
arctan

(√
2
)
− arctan

(
1/
√

2
))

= 1
4 . (2.27)

If the picture were the same as in the quantum case, we would have

VCE

Vm
= vg

vϕ
= 1

2 . (2.28)
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2.B Convergence of the MPS results
We summarise here the discussion that can be found in the Supplementary Material of [Despres
et al., 2019] about the convergence of the MPS results, especially in gapless phases where the
convergence of the numerical results needs to be checked in each case.

Two cutoff parameters are particularly important: the dimension of the local Hilbert space,
which relates to the maximum of bosons allowed on each site, and the bond dimension, which limits
the entanglement allowed between each subpart of the system. The lower the bond dimension,
the smallest the region of the full Hilbert space gets represented, the faster the simulation but the
lower the accuracy of the results. It can be formally defined as the maximum rank of the Schmidt
matrix decomposition of the many-body state represented as a tensor product.

Concerning the local Hilbert space dimension, the mean-field SF is the most demanding regime.
A good estimator for the maximum number of bosons allowed per site is given by 1−∑nmax

m=0 P (m) ≤
10−2 where P (m) is the probability that m bosons occupy a given lattice site, which is nearly
Poissonian so that P (m) ' n̄me−n̄/m!. For the filling n̄ = 5 we used, this requires nmax ≥ 12. In
the SF phase at unit filling close to the transition, this yields nmax = 5. In the strongly interacting
phases, both for the MI phase with U/J ≥ 15 and the strongly interacting SF at low fillings, the
value nmax = 2 proves sufficient.

About the bond dimension, the calculations are run for several values of χ until the correlation
functions G1(R, t) and G2(R, t) do not sensibly vary upon increasing χ. Unless otherwise specified,
values of χ = 300 are always used, except for the strongly interacting phases (MI and SF at low
filling) where χ = 100 is enough.
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2.C Mapping the Bose-Hubbard model to a Luttinger liq-
uid

In this Appendix, we recall the steps required to map the strongly interacting Bose-Hubbard
Hamiltonian for a filling n̄ < 1 to spinless fermions with attractive interactions and how to
compute the sound velocity from the latter model. Such results have been obtained by [Cazalilla,
2003, 2004], here we detail some important steps of the derivation. We choose the notations such
that

ĤBH =
∑
R

−J
(
â†RâR+1 + h.c.

)
+ U

2 n̂R(n̂R − 1), (2.29)

where âR and â†R are respectively the annihilation and creation operators of a boson on site R.
We will show that for n̄ < 1 and U/J � 1, this model maps to

ĤF =
∑
R

−J
(
ĉ†R+1ĉR −

2J
U
ĉ†R+1n̂RĉR−1 + h.c.

)
− 4J2

U
n̂R+1n̂R +O

(
J3

U2

)
, (2.30)

where ĉR and ĉ†R are respectively fermionic annihilation and creation operators on site R.

2.C.1 The derivation of the effective fermionic Hamiltonian
In the strongly interacting regime and for n̄ < 1, the local Hilbert space can be restricted to
two states, containing 0 or 1 boson (since a state with 2 bosons on a site would have a much
higher energy U). We split the full Hilbert space into two complementary subspaces and call P
the projector onto states where ∀R, nR ≤ 1 and Q = 1− P the orthogonal projector onto higher
occupancy states. We have PQ = QP = 0, P 2 = P and Q2 = Q. We want to find the effective
Hamiltonian within the subspace HP such that ĤeffP |ψ〉 := EP |ψ〉. The Schrödinger equation
reads as (P +Q) Ĥ (P +Q) |ψ〉 = E |ψ〉 . Multiplying both sides on the left either by Q or by P
yields to (

QĤP +QĤQ
)
|ψ〉 = EQ |ψ〉 ,(

PĤP + PĤQ
)
|ψ〉 = EP |ψ〉 .

(2.31)

Isolating Q |ψ〉 from the first equation gives Q |ψ〉 =
(
E −QĤQ

)−1
QĤP |ψ〉 and putting it back

into the second equation in (2.31) we get

ĤeffP |ψ〉 := EP |ψ〉 =
[
PĤP + PĤQ

(
E −QĤQ

)−1
QĤP

]
|ψ〉 . (2.32)

To lowest order in energy (E = 0) we finally obtain

Ĥeff = PĤP − PĤQ
(
QĤQ

)−1
QĤP, (2.33)

which is Eq. (6) from [Cazalilla, 2003].
The highest order correction in (QĤQ)−1 is the lowest order correction from QĤQ. But this

lowest order correction to Ĥ belonging to the Q sector is coming from virtual processes where one
site is occupied by two particles, and therefore to lowest order QĤQ ' U IQ such that

Ĥeff = PĤP − 1
U
PĤQĤP. (2.34)

It becomes apparent from Eq. (2.34) that P always projects Ĥ either to the left or to the right.
The only term that can survive this process is the tunnelling which can be rewritten using periodic
boundary conditions as

−J
∑
R

[
â†R+1âR + â†RâR+1

]
= −J

∑
R

[
â†R+1 + â†R−1

]
âR, (2.35)
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such that the effective Hamiltonian is

Ĥeff = −J
∑
R

P
(
â†R+1âR + â†RâR+1

)
P − J2

U

∑
R

P
[
â†R+1 + â†R−1

]
âRQ â

†
R [âR+1 + âR−1]P, (2.36)

which is valid up to first order in J/U . This is Eq. (7) from [Cazalilla, 2003]. Note that the virtual
processes have a double occupancy on the site R. The other states with a local occupancy of
1 are already counted in the first term. To avoid overcounting, the projector Q has to select
the states with double occupancy and remove single occupancies, so that Q = n̂R − 1. Using
commutation relations, we rewrite âR(n̂R − 1)â†R = n̂R(n̂R + 1) so that eventually the effective
bosonic Hamiltonian becomes

Ĥeff = −J
∑
R

P
(
â†R+1âR + â†RâR+1

)
P − J2

U

∑
R

P
[
â†R+1 + â†R−1

]
[âR+1 + âR−1] n̂R(n̂R + 1)P.

(2.37)

Mapping to fermions. To get rid of the projector P , one maps the bosons to fermionic particles
which can have either 0 or 1 local occupancies making use of the Jordan-Wigner transformation

âR = exp
iπ ∑

R′<R

n̂R′

 ĉR, (2.38)

and n̂R = â†RâR = ĉ†RĉR. The tunneling term is not modified so that PĤP = −J∑R

(
ĉ†R+1ĉR + ĉ†RĉR+1

)
.

This is Eq. (8) from [Cazalilla, 2003].

To see this, note that

â†R+1âR = ĉ†R+1 exp
(
−iπ

∑
R′<R+1

n̂′R

)
exp

(
iπ
∑
R′<R

n̂′R

)
ĉR = ĉ†R+1 exp (−iπn̂R) ĉR (2.39)

Expanding in power series the exponential shows that all terms with non zero power of n̂R bring at least one
ĉR operator to the right. Then one has at least 2 operators ĉR in â†R+1âR to the right, which always gives zero
because we restricted to the subspace where a state cannot be occupied more than once. This means that the
exponential can be replaced by the identity operator, and therefore ∀R, â†R+1âR = ĉ†R+1ĉR.

The remaining part can be simplified by noting that since n̂R = 0 or 1, n̂R(n̂R+1) = 2n̂R. Beware
of the Jordan-Wigner phase which imposes that â†R+1n̂RâR−1 = −ĉ†R+1n̂RĉR−1. Using translation
invariance, the final Hamiltonian can be written in the form

ĤF =
∑
R

−J
(
ĉ†R+1ĉR −

2J
U
ĉ†R+1n̂RĉR−1 + h.c.

)
− 4J2

U
n̂R+1n̂R +O

(
J3

U2

)
. (2.40)

2.C.2 Calculating the Luttinger parameters from the effective Hamil-
tonian
The following part details the results from [Cazalilla, 2004]. We start from Eq. (2.40) and we
want to compute the Luttinger parameter K and the speed of sound vs, defined from the density
stiffness vN and the phase stiffness vJ as K =

√
vJ/vN and vs = √vJvN with

vN = L

π~
∂2EGS

∂N2

∣∣∣∣∣
φ=0

, vJ = Lπ

~
∂2EGS

∂φ2

∣∣∣∣∣
φ=0

. (2.41)

Both derivatives are taken at fixed L, and EGS is the energy of the ground state for the interacting
Hamiltonian. However, restricting to first order in J/U , EGS can be expressed as the sum of the
average over the non-interacting ground state of the effective Hamiltonian.



2 Correlation spreading 83

The difficult part is to compute the average of the J/U component of ĤF, called Ĥint,

〈Ĥint〉0 = 2J2

U

∑
R

(
〈ĉ†R+1ĉ

†
RĉRĉR−1〉0 + 〈ĉ†R−1ĉ

†
RĉRĉR+1〉0

)
− 4J2

U

∑
R

〈ĉ†RĉRĉ
†
R+1ĉR+1〉0, (2.42)

where we noted 〈· 〉0 the average over the non-interacting ground state of Ĥ0. We can then use
Wick’s theorem, and say for R = 1 we get

〈ĉ†2ĉ
†
1ĉ1ĉ0〉0 = −〈ĉ†2ĉ1〉0〈ĉ†1ĉ0〉0 + 〈ĉ†2ĉ0〉0〈ĉ†1ĉ1〉0 := f2f0 − f 2

1 ,

〈ĉ†0ĉ
†
1ĉ1ĉ2〉0 = 〈ĉ†0ĉ2〉0〈ĉ†1ĉ1〉0 − 〈ĉ†0ĉ1〉0〈ĉ†1ĉ2〉0 := f−2f0 − f 2

−1,

〈ĉ†0ĉ0ĉ
†
1c1〉0 = 〈ĉ†0ĉ0〉0〈ĉ†1ĉ1〉0 − 〈ĉ†0ĉ1〉0〈ĉ†1ĉ0〉0 := f 2

0 − f−1f1.

(2.43)

We chose R = 1 but all the terms from 1 to L are the same due to translation invariance, thus

〈Ĥint〉0 = 2J2

U
L
[
f0 (f2 + f−2)−

(
f 2

1 + f 2
−1

)]
− 4J2

U
L
[
f 2

0 − f1f−1
]
, (2.44)

where the lattice spacing is set to a = 1. To finally get EGS (to lowest order) one adds the
tight-binding contribution −JL(f1 + f−1). In the above equations we have defined

fR = 〈ĉ†R+R′ ĉR′〉 = 1
L

∑
k

e−ikR
eβ(ε0(k)−µ) + 1 , (2.45)

where ε0(k) = −2J cos k is the tight-binding dispersion relation. If we introduce a twist in the
boundary conditions as ĉR+L = eiφĉR, at zero temperature Eq. (2.45) simplifies into

fR(φ, T = 0) = e−iφR/L
L

sin(πn̄R)
sin(πR/L) . (2.46)

Details of the calculation for vN . We are only concerned about the thermodynamic limit
L→∞, and in the end we will take the situation where φ = 0 (no phase twist). To alleviate the
notations, we denote by a dot the derivatives with respect to N (at fixed L, thus n̄ = N/L varies).
We have

fR ∼
sin(πn̄R)

πR
, ḟR ∼

cos(πn̄R)
L

, f̈R ∼ −πR
sin(πn̄R)

L2 , (2.47)

such that

ËGS = 2J2

U
L
[
f̈0(f2 + f−2) + 2ḟ0(ḟ2 + ḟ−2) + f0(f̈2 + f̈−2)− 2f1f̈1 − 2f−1f̈−1 − 2ḟ 2

1 − 2ḟ 2
−1

]
− 4J2

U
L
[
2f0f̈0 + 2ḟ 2

0 − 2ḟ1ḟ−1 − f1f̈−1 − f−1f̈1
]
− JL(f̈1 + f̈−1).

(2.48)

Putting everything together gives

ËGS = 2J2

U
L
[ 4
L2 cos(2πn̄)− 4π

L2 n̄ sin(2πn̄) + 4
L2 sin2(πn̄)− 4

L2 cos2(πn̄)
]

− 4J2

U
L
[ 2
L2 −

2
L2 cos2(πn̄) + 2

L2 sin2(πn̄)
]

+ 2Jπ
L

sin(πn̄),

= 2Jπ
L

sin(πn̄) + 8J2

UL
[cos(2πn̄)− 1− πn̄ sin(2πn̄)] .

(2.49)

Using trigonometric identities and the definition (2.41) we finally obtain

vN = 2Ja
~

sin(πn̄)
(

1− 8J
Uπ

[sin(πn̄) + πn̄ cos(πn̄)]
)
. (2.50)



2 Correlation spreading 84

Details of the calculation for vJ . The steps are similar, we now denote by a dot the deriva-
tives with respect to φ and taking after the derivatives φ = 0 we get in the thermodynamic
limit

fR ∼
sin(πn̄R)

πR
, ḟR ∼

−iR
L

fR, f̈R ∼
−R2

L2 fR. (2.51)

We substitute into Eq. (2.48) the previous expressions and noting that f0 = n̄ thus ḟ0 = f̈0 = 0 it
simplifies into

ËGS = J

L
(f1 + f−1) + 2J2

UL

[
−4n̄(f2 + f−2) + 4(f 2

1 + f 2
−1)

]
, (2.52)

where the term in front of 4J2/U cancels exactly. We end up with

ËGS = 2J
L

sin(πn̄)
π

+ 16J2

UL

[
− n̄ sin(2πn̄)

2π + sin2(πn̄)
π

]
. (2.53)

Using trigonometric formulas it simplifies into

ËGS = 2J
πL

sin(πn̄)
(

1 + 8J
U

[−n̄ cos(πn̄) + sin(πn̄)]
)
, (2.54)

and finally using the definition in Eq. (2.41) we obtain

vJ = 2Ja
~

sin(πn̄)
[
1− 8J

Uπ
(− sin(πn̄) + πn̄ cos(πn̄))

]
. (2.55)

Final expressions for K and vs. This last step is simply a Taylor expansion retaining only
the highest order terms which gives

vs = √vJvN '
2Ja
~

sin(πn̄)
[
1− 8J

U
n̄ cos(πn̄)

]
, K =

√
vJ
vN
' 1 + 8J

Uπ
sin(πn̄). (2.56)
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Invaluable insights to characterise a system can be obtained from the low-energy physics. While

the behaviour of the ground state characterises the phase diagram, the elementary excitations on
top of it govern a variety of fundamental phenomena among which the electronic conductivity
of metals, superconducting properties of type-I superconductors, superfluid properties and even
quantum fluctuations leading to the absence of long-range order in one dimension. Low-lying
excitations are often described in terms of quasiparticles. Just to name a few examples (see [Wölfle,
2018] for many others), we shall mention magnons and pairs of spinons in spin chains, Bogoliubov
particle-hole pairs or doublon-holon pairs in the lattice Bose gas, phonons to describe thermal
excitations on a lattice or the sound propagation in superfluids, to which we could add rotons
in superfluids and Bose-Einstein condensates with spin-orbit coupling at higher momenta, and
polaritons in strongly coupled optical cavities. Besides improving our fundamental understanding
of quantum models, knowledge of the elementary excitations is paramount to the development
of any quantum technology as they play a role as we have seen in the transport of quantum
correlations and information.

Spectroscopy literally means observation of the (energy) spectrum, and is thus the principal
technique for achieving this goal. From an experimental point of view, as discussed in Sec. 1.3.2.3,
the generic method to measure the excitations properties is to weakly perturb the system by
a pump and observe how it reacts using a probe. Such techniques include inelastic scattering
experiments and photo-emission, Raman, Bragg or lattice modulation spectroscopies and will
be generically referred to as pump-probe spectroscopies in the following. From a theoretical
point of view, the elementary excitations describe the response of the system to a weak external
perturbation and are captured within the linear response theory formalism. The weak coupling
between the external probe and the system is essential to make sure that the measured properties
are characteristic of the system and independent of the external perturbation. We briefly review
the analytical framework of pump-probe spectroscopies in Sec. 3.1.

Our goal in this chapter is to introduce a novel method named quench spectroscopy, developed
in Sec. 3.2 and 3.3. Quench spectroscopy uses the out-of-equilibrium dynamics following a quantum
quench in order to unveil spectral properties about the excitations of the system. Importantly, in
contrast to standard pump-probe spectroscopies, quench spectroscopy uses equal-time observables
and grants access to momentum-resolved spectral properties through a series of snapshots. For
convenience we will distinguish two complementary protocols for quench spectroscopy, depending
whether a global or a local quench is performed. Alternatively as we will see, this choice can be
made according to whether one has access to one-point functions or two-point correlators for the
observable.

This alternative and versatile method is already accessible experimentally thanks to the con-
siderable progress made recently in the time-resolved control and the out-of-equilibrium dynamics
of ultracold many-body quantum systems. It also circumvents the formidable task of computing
or measuring the dynamic structure factor or the single-particle Green’s function, which both
involve two-point correlators at different times in an equilibrium ensemble. In contrast as we will
show below, quench spectroscopy advantageously uses the out-of-equilibrium dynamics in order
to involve the simpler equal-time correlators. Out-of-equilibrium, we will define a generalised
spectral function named the quench spectral function (QSF) which will be main tool to reveal the
spectral properties among which the excitation spectrum.
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3.1 Review of standard pump-probe spectroscopies
Before we jump into the uncharted territory of quench spectroscopy, we begin by reviewing the
analytical foundations of pump-probe spectroscopies. We will focus on the points where the
difference is most striking in order to emphasise in which way quench spectroscopy offers an
alternative method. Alternatively, it is possible to begin directly by quench spectroscopy in
Sec. 3.2 and Sec. 3.3 and finish by Sec. 3.1.

3.1.1 Response function in the linear regime
Many references exist for pump-probe spectroscopy and linear response theory. For this part I
mainly used [Pitaevskii and Stringari, 2016; Pottier, 2012; Tong, 2012].

Close to equilibrium (Kubo formula). To observe the spectrum of a system characterised
by the Hamiltonian Ĥ0 at t→ −∞, one method is to introduce a weak perturbation Ĥpert(t). Let
us see how an operator Ô in the Heisenberg picture changes when the Hamiltonian is modified
from Ĥ0 to Ĥ = Ĥ0 + Ĥpert. For that we evaluate 〈Ô(t)〉φ = Tr

(
ρ0(t)Û †(t)Ô(t)Û(t)

)
where Û(t)

is the unitary time-evolution operator and φ(t) is called the source of the perturbation, say for
instance a magnetic field. Restricting to first order in perturbation theory, the time evolution
operator is

U(t, t0) = T exp
(
−i
ˆ t

t0

Ĥpert(t′) dt′
)
' 1̂− i

ˆ t

t0

Ĥpert(t′) dt′. (3.1)

We can use this to relate the expectation value of a probed observable Ô(t) in the presence of the
linear perturbation to the one in its absence

〈Ô(t)〉φ ' 〈Ô(t)〉0 − i
ˆ t

t0

〈
[
Ô(t), Ĥpert(t′)

]
〉0 dt′. (3.2)

Now to make further progress, one has to assume a particular form of the perturbation, namely
that it is proportional to the source

Ĥpert(t) = φ(t)P̂ (t), (3.3)

where the operator P̂ is called the pump and generates the perturbation. Within the linear
response regime, the expectation value of an operator changes linearly with the source (in Fourier
space) and the proportionality constant defines the response function tensor χ. Assuming time
translation symmetry,

〈Ô(t)〉φ − 〈Ô(t)〉0 =
ˆ ∞
−∞

χÔ,P̂ (t− t′)φ(t′) dt′. (3.4)

Finally, making use of causality, Eq. (3.2) with Eq. (3.3) are compatible with Eq. (3.4) if

χÔ,P̂ (t− t′) = −iθ(t− t′)〈
[
Ô(t), P̂ (t′)

]
〉0. (3.5)

This is the celebrated Kubo formula. The importance of this result comes from the fact that it
links a non-equilibrium quantity (the response function on the left-hand side) with an equilibrium
average (the expectation value of the non-equal time correlator on the right-hand side is evaluated
in the absence of the perturbation, thus at equilibrium). This result only holds at first order in
perturbation theory.
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Spectral functions and the quantum fluctuation-dissipation theorem. Let us specify
to the common situation where the equilibrium ensemble average 〈· · ·〉0 previously mentioned is
the canonical one. Before the perturbation is turned on, the system is thus at thermal equilibrium
and described by the density matrix diagonal in the energy eigenbasis of Ĥ0 noted {|n〉} such that
ρ̂0 = e−βĤ0 = (1/Z)∑n e−βEn |n〉 〈n| with Z = ∑

n e−βEn and β the inverse temperature. Note
that since we are at equilibrium,

[
ρ̂0, Ĥ0

]
= 0. In the frequency domain, Eq. (3.5) becomes

χÔ,P̂ (ω) = −i
ˆ ∞

0
dt eiωt Tr

(
e−βĤ0

[
Ô(t), P̂ (0)

])
. (3.6)

Using a completeness relation with the eigenbasis of Ĥ0 we get

χÔ,P̂ (ω) = −i
ˆ ∞

0
dt eiωt

∑
m,n

e−βEn
[
〈n| Ô |m〉 〈m| P̂ |n〉 ei(En−Em)t − 〈n| P̂ |m〉 〈m| Ô |n〉 e−i(En−Em)t

]
,

(3.7)
which can be rewritten as1

ImχÔ,P̂ (ω) = −π
∑
m,n

〈n| Ô |m〉 〈m| P̂ |n〉 δ(ω + En − Em) e−βEn(1− e−βω). (3.8)

The imaginary part of the response function diverges at the discrete resonant frequencies ω =
Em − En. One usually defines the following quantity

SÔ,P̂ (ω) = 2π
∑
m,n

e−βEn 〈n| Ô |m〉 〈m| P̂ |n〉 δ(ω + En − Em) (3.9)

as the spectral function, which is proportional to the imaginary part of the response function

ImχÔ,P̂ (ω) = −1
2(1− e−βω)SÔ,P̂ (ω). (3.10)

Equation (3.10) is a quantum fluctuation-dissipation theorem since the dissipation (captured by
the imaginary part of the response function) in part created by intrinsic quantum fluctuations
is proportional to the fluctuations in frequency space of the correlation function (see below how
the spectral function is related to the dynamics). Because of causality, only the imaginary part is
required to characterise the full response function (Kramers-Kronig relations). Therefore, spectral
functions characterise the full response of the system in the linear regime. At zero temperature,
spectral functions give access to the full energy spectrum of the model (at least if the choice of
the pump and the probe is such that they can couple the eigenstates of the unperturbed system
to its ground state).

3.1.2 Spectral functions, dynamics and excitations
Another insightful definition of spectral functions follows from the point of view of time-dependent
correlation functions. The discussion below will be closely followed to define the quench spectral
function (QSF) for quench spectroscopy (Sec. 3.2.1) which can be understood as the substitute
for the spectral function in quench spectroscopy (3.9).

For now, we assume a system at equilibrium so that it is described by a generic density
matrix ρ̂ of the diagonal form ρ̂ = ∑

n ρ
nn |n〉 〈n|. We consider a generic non-equal time correlator

CÔ,P̂ (x,y; t, t′) = Tr
[
ρ̂ Ô(x, t)P̂ (y, t′)

]
where x and y are spatial coordinates. To extract the time

dependence, we expand the observables in the Heisenberg representation, for instance Ô(t) =
1Use the Feynman prescription ω → ω + iε to remove divergences, then the formula limε→0(x − a + iε)−1 =

p.v.(x− a)−1 − iπδ(x− a) with p.v. the principal value and rename the indices n and m in the second term.
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eiĤt Ô e−iĤt where we write Ô(0) = Ô and we assumed for simplicity that Ĥ does not depend
explicitly on time. Then

CÔ,P̂ (x,y; t, t′) =
∑
n,m,p

〈p| ρnn |n〉 〈n| eiĤtÔ(x)e−iĤt |m〉 〈m| eiĤt′P̂ (y)e−iĤt′ |p〉 ,

=
∑
n,m,p

ρnn δp,n ei(En−Em)t ei(Em−Ep)t′ 〈n| Ô(x) |m〉 〈m| P̂ (y) |p〉 ,

=
∑
n,m

ρnn ei(En−Em)(t−t′) 〈n| Ô(x) |m〉 〈m| P̂ (y) |n〉 .

(3.11)

By taking the space-time Fourier transform, one recognises the definition of the spectral func-
tion (3.9), namely

FT
[
CÔ,P̂ (x− y; t− t′)

]
= SÔ,P̂ (k;ω). (3.12)

The space-time Fourier transform of a non-equal time correlator is a spectral function. This high-
lights the importance of a non-equal time correlator for pump-probe spectroscopies. In Sec. 3.2.1,
we will show that the simpler equal time correlators are sufficient in quench spectroscopy.

Alternatively, the need for a non-equal time correlator can be observed by noting that

CÔ,P̂ (t, t) := Tr
(
ρ̂Û†ÔÛ Û†P̂ Û

)
= Tr

(
Û ρ̂Û†ÔP̂

)
= Tr

(
ρ̂ÔP̂

)
:= CÔ,P̂ (0, 0) (3.13)

where in the second equality we used that Û Û† = 1 and the cyclicity of the trace, and in the third we used
that at equilibrium

[
ρ̂, Ĥ

]
= 0⇒

[
ρ̂, Û

]
= 0.

Finally, we note that the interpretation of the spectral functions simplifies at zero tempera-
ture, where only the ground state |n〉 = |0〉 is populated. In practice, the choice P̂ = Ô† is very
common2. When a system can be described by a translation invariant Hamiltonian, the total mo-
mentum P̂ is a conserved quantity, and thus commutes with the Hamiltonian

[
Ĥ, P̂

]
= 0. Each

energy eigenstate has a well defined momentum P̂ |n〉 = P n |n〉, thus for any operator Ô transla-
tion invariance of the system imposes that 〈n| Ô(R) |m〉 = ei(Pm−Pn)R 〈n| Ô(0) |m〉. Therefore for
a translational invariant system the spectral function becomes

S(k;ω)T=0 = (2π)D+1∑
m

|〈0| Ô(0) |m〉|2 δ(Em − ω)δ(Pm − k). (3.14)

The spectral function is sharply peaked at each resonant energy Em and each momentum Pm

corresponding to the energy and momentum (ω,k) injected by the pump. By scanning in (ω,k),
this technique can be used to reconstruct the excitation spectrum. To observe a signal, the choice
of the operator Ô (therefore the pump and the probe) is crucial to couple the eigenstates |m〉 to
the vacuum. We stress that in Eq. (3.14), the eigenstates refer to the unperturbed Hamiltonian
(the one at equilibrium, before the perturbation was adiabatically turned on), and the probed
transition energies refer to the eigenvalues of this unperturbed Hamiltonian. This is only the case
because we restricted to the linear regime.

Two particular spectral functions, corresponding to two choices of the pump and the probe
are very important from a practical point of view. To write down the expressions in their most
familiar form, we specify to the canonical ensemble.

2If P̂ is a unitary operator, the probe should be chosen so as to contain a term which “reverses the pump”,
namely Ô ∼ P̂−1. As we will see in Sec. 3.3.2.1, the same strategy will apply to quench spectroscopy where the
role of the pump is played by the local quench.
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Single-particle spectral function. The single-particle spectral function is defined by choosing
Ô = âk the annihilation operator of a single particle and P̂ = â†k the creation operator of a single
particle

A(k, ω) = 2π
∑
n,m

e−βEn
Z
|〈m| âk |n〉|2δ(ω − Em + En). (3.15)

It corresponds to the space-time Fourier transform of the imaginary part of the retarded Green’s
function (up to an irrelevant constant prefactor of −2). Importantly, for any quadratic Hamilto-
nian of the form Ĥ = ∑

k Ekγ̂
†
kγ̂k, the retarded Green’s function can be computed exactly and the

associated spectral function is given by A(k, ω) = 2πδ(ω − Ek). Any broadening relates to the
behaviour of the interactions beyond the quadratic regime.

Dynamical structure factor. The dynamical structure factor is defined by the choice Ô =
n̂k = ∑

q â
†
k+qâq and P̂ = n̂†k = n̂−k, and is associated to a two-particle process

S(k, ω) = 2π
∑
n,m

e−βEn
Z
|〈m| n̂k |n〉|2δ(ω − Em + En). (3.16)

It corresponds to the space-time Fourier transform of the density-density correlation function.

Excitations in many-body systems. A distinction is sometimes made in the literature be-
tween individual single-particle excitations and many-body collective ones. This distinction is
useful from a practical point of view, since by their choice of observables, photo-emission spec-
troscopies are only sensitive to single-particle excitations while neutron scattering experiments
or Bragg spectroscopies are sensitive to two-particle excitations. Also generally speaking, the
dynamical structure factor probes the response at low momentum (large distances, hence the col-
lective excitations) while the single-particle spectral function probes the higher momentum part
(response at short distances, hence single-particle excitations). However, this distinction should
not be understood at the formal level. For instance, a magnon can be understood as a single
localised defect on an polarised spin chain or alternatively as a delocalised spin wave.

Another reason behind this distinction comes from solid-state physics (and in general fermionic
systems, especially Fermi liquids), where the quasiparticle excitations are often restricted to be
individual fermionic excitations while collective excitations refer to the bosonic ones. Throughout
the thesis we deal with bosonic systems where the distinction is not very useful. Both types of
excitations are elementary excitations that can be represented by quasiparticles with arbitrary
statistics, and will thus be detectable using quench spectroscopy.

3.2 Global quench spectroscopy
The following section is mostly based on our publication [Villa et al., 2019], where we show how
the full low-lying excitation spectrum of a correlated quantum system can be extracted from
equal-time correlators following a global quench. To the best of our knowledge, the first idea of
quench spectroscopy dates back to the work of [Gritsev et al., 2007] who proposed to use quenches
to identify the transition energies in the frequency domain alone. Our work importantly extends
such study by linking the resonances in momentum to the ones in frequency. We aim at providing
a complete framework of the technique, by generalising previous results using power spectrum
analysis of density ripples in one-dimensional quasicondensates [Schemmer et al., 2018] and spin
correlations in two-dimensional models with flatbands [Menu and Roscilde, 2018]. This global
quench spectroscopy project has been a collaboration with J. Despres, to whom I am in particular
indebted for the t-MPS numerical simulations reproduced below.
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3.2.1 The quench spectral function (QSF)
We begin by defining the quench spectral function (QSF), which probes spectral properties follow-
ing the dynamics after a quantum quench. Here we focus on global quenches, where a parameter
of the Hamiltonian is changed instantaneously at t = 0 from Ĥi to Ĥ.

In quench spectroscopy, the initial state (immediately after the quench) is an out-of-equilibrium
excited state. As a consequence, the initial density matrix is no longer equivalent to a Gibbs
ensemble and thus ρnmi is not proportional to δnm anymore. This has to be contrasted with
standard pump-probe spectroscopies where the correlation functions are evaluated (at linear order)
with reference to an equilibrium ensemble in the absence of the external perturbation (the pump).
We will show that this additional difficulty is actually what makes quench spectroscopy capable
of dealing with the simpler equal-time correlators to unveil spectral properties.

Definition. The initial state is out of equilibrium, and the off-diagonal coherences ρn′ni with
n 6= n′ are now non-vanishing. An arbitrary two-point correlator then reads as3

G(x,y; t, t′) :=Tr
[
ρ̂iÔ

†
1(x, t)Ô2(y, t′)

]
,

=
∑

n,n′,m,p

〈p| ρn′ni |n′〉 〈n| eiĤtÔ
†
1(x)e−iĤt |m〉 〈m| eiĤt′Ô2(y)e−iĤt′ |p〉 ,

=
∑
n,n′,m

ρn
′n

i ei(Ent−En′ t′) e−iEm(t−t′) 〈n| Ô†1(x) |m〉 〈m| Ô2(y) |n′〉 .

(3.17)

Note that the basis {|n〉} used above is the one of the post-quench Hamiltonian Ĥ governing the
dynamics. In Eq. (3.17) we may set t = t′ and still probe non-trivial dynamical properties from
equal-time correlators. Extracting explicitly the spatial dependence, it becomes

G(x,y; t, t) =
∑
n,n′,m

ρn
′n

i ei(En−En′ )t eiPm(x−y) ei(Pn′y−Pnx) 〈n| Ô†1 |m〉 〈m| Ô2 |n′〉 . (3.18)

To make use of translation invariance of the system (we consider a clean system and assume
periodic boundary conditions4), we move to relative coordinates R = x − y and r = (x + y)/2.
Importantly, the initial state is also translational invariant, because the state immediately after the
quench is the ground state of the initial (pre-quench) Hamiltonian which is translational invariant,
so that

G(R, r; t, t) = 1
LD

ˆ
drG(r + R

2 , r −
R
2 ; t, t) = G(R; t, t), (3.19)

which simplifies as

G(R; t, t) = 1
LD

∑
n,n′,m

ρn
′n

i 〈n| Ô
†
1 |m〉 〈m| Ô2 |n′〉 ei(En−En′ )t ei(2Pm−Pn′−Pn)R/2

ˆ
dr ei(Pn′−Pn)r

=
(

2π
L

)D ∑
n,n′,m

ρn
′n

i 〈n| Ô
†
1 |m〉 〈m| Ô2 |n′〉 ei(En−En′ )t ei(Pm−Pn)R δ(P n′ − P n).

(3.20)

We observe that translation invariance of both the system and the initial state is crucial to fix
the unknown momentum of the intermediate state Pm as a function of a single momentum P n

3We now note G for the two-point correlator instead of C to highlight the difference with the previous situation in
pump-probe spectroscopies where the correlation functions were evaluated with respect to an equilibrium ensemble.

4In the thermodynamic limit, the specific choice of boundary conditions is irrelevant as the boundary effects are
negligible.
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(equivalently P n′). By now taking a space-time Fourier transform, we define the quench spectral
function (QSF) after global quenches in homogeneous systems as

G(k;ω) :=
ˆ

dR dt e−i(kR+ωt) G(R; t, t)

= (2π)2D+1

LD
∑
n,n′,m

ρn
′n

i 〈n| Ô
†
1 |m〉 〈m| Ô2 |n′〉 δ(En − En′ − ω)δ(Pm − P n − k)δ(P n′ − P n).

(3.21)

The expression (3.21) is at the core of the global quench spectroscopy technique. The dynamical
selection rule in energy ω = En − En′ applies regardless of the nature of the eigenstates, pro-
vided that the operators Ô†1 and Ô2 couple the eigenstates |n〉 and |n′〉 indirectly through |m〉.
The transition energies En − En′ are identified with the resonance frequencies ω, as in standard
spectroscopy. Importantly, the link between the excitation momentum and its energy allows to
reconstruct spectral features with momentum resolution as we show in the following.

Weak global quenches. We are mostly interested in the low-lying excitations of the system.
To this end, it will prove sufficient to consider weak quenches, where the initial state remains
sufficiently close to the ground state such that

ρ̂i ' ρ00
i |0〉 〈0|+

∑
n6=0

ρ0n
i |0〉 〈n|+ ρn0

i |n〉 〈0| . (3.22)

We stress that |0〉 is the vacuum of quasiparticle excitations, i.e. the ground state of the post-
quench Hamiltonian Ĥ. It should not to be confused with the ground state of Ĥi, which for a
global quench we always take as our initial state |ψi〉 (Fig. 1.7). For a pure initial state close to
the ground state, |ψi〉 ' |0〉+∑

n6=0 εn |n〉, and in Eq. (3.22) we have ρn0
i = (ρ0n

i )∗ = εn � 1. The
weak quench assumption requires the ground state of the initial Hamiltonian to be “not too far
from” the ground state of the final Hamiltonian (up to a finite number of low-energy excitations).
It is clearly violated if the quench crosses a phase transition, a situation avoided throughout the
manuscript. For weak quenches, the lowest order terms ρn′ni correspond to either n = 0 or n′ = 0
and the QSF given by Eq. (3.21) simplifies into

G(k;ω) ' (2π)D+1∑
m

ρ00
i 〈0| Ô

†
1 |m〉 〈m| Ô2 |0〉 δ(ω)δ(Pm − k)

+ (2π)2D+1

LD
∑
n,m

ρn0
i δ(P n) 〈0| Ô†1 |m〉 〈m| Ô2 |n〉 δ(En + ω)δ(Pm − k)

+ (2π)2D+1

LD
∑
n,m

ρ0n
i δ(P n) 〈n| Ô†1 |m〉 〈m| Ô2 |0〉 δ(En − ω)δ(Pm − k).

(3.23)

For symmetry reasons, the momentum of the ground state is P 0 = 0. The first term in Eq. (3.23)
is space and time independent and thus irrelevant for the dynamics. The last two terms include a
resonance at negative and positive frequencies, respectively, associated to the Dirac distributions
δ(En ± ω). In the following, we focus on the positive frequency sector where only the last term is
relevant.

Probing the excitation spectrum. We now detail how Eq. (3.23) allows to probe the ex-
citation spectrum in a momentum-resolved manner in a single shot. The goal is to remove the
dependence in n,m and refer to quantities that depend on k or ω only. To do so, we use the fact
that the excitations above the ground state can be cast in terms of quasiparticles. Most operators
of interest only create or annihilate a single quasiparticle excitation, and as a consequence the
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intermediate states |m〉 can also be restricted to single quasiparticle excitations. We will provide
specific examples in the last part of this section.

The term δ(Pm − k) then imposes that |m〉 = γ̂†k |0〉 ≡ |k〉, where γ̂
†
k is the creation operator

of a quasiparticle of momentum k. Owing to the term δ(P n), the first non-zero contribution
is given by states |n〉 composed of two quasiparticles5 with opposite momenta such that |n〉 =
γ̂†qγ̂

†
−q |0〉. For now q is arbitrary, and neglecting the interactions between the quasiparticles

En = Eq + E−q. By decomposing the action of the operators at low energy as (see examples
below) Ô1 = ∑

k1(αk1 γ̂k1 +ᾱk1 γ̂
†
k1

) and similarly Ô2 = ∑
k2(βk2 γ̂k2 +β̄k2 γ̂

†
k2

), the positive frequency
component of the QSF (3.23) reads as

G(k;ω > 0) =
∑

q,k1,k2

ρ
0;(q,−q)
i ᾱk1 β̄k2 〈0| γ̂qγ̂−qγ̂

†
k1
γ̂†k |0〉 〈0| γ̂kγ̂

†
−k2
|0〉 δ(Eq + E−q − ω). (3.24)

Using (anti-)commutation rules γ̂uγ̂†v = δu,v ± γ̂†vγ̂u (for bosonic and fermionic quasiparticles
respectively), we get

G(k;ω > 0) = ρ
0;(k,−k)
i β̄k (ᾱ−k + ᾱk) δ(Ek + E−k − ω). (3.25)

If the excitation branch is symmetric for the exchange k→ −k (parity symmetry), then En = 2Ek
and finally

G(k;ω > 0) = F(k) δ(2Ek − ω), (3.26)
where the coefficient F(k) depends on the operators Ô1 and Ô2, and on the quench through
the initial density matrix coefficients between the ground state and the first excited states [see
Eq. (3.25)]. Eq. (3.26) justifies the interpretation of the QSF as a direct probe of the excitation
spectrum, through the resonance frequencies ω = 2Ek. Through the QSF, the study of the
correlation spreading after a global quench allows to unravel the excitation spectrum of the post-
quench Hamiltonian. We will present numerical evidence of this statement in Sec. 3.2.2.

Specific examples of operators. We argue below that the form of the operators Ô1 and Ô2
used to derive the simple form (3.26) of the QSF encapsulates most of the situations of practical
interest and we provide a (non-exhaustive) list of examples.

First, consider the one-body correlation function

G1(R, t) = 〈â†(R, t)â(0, t)〉 = 1
LD

∑
x

〈â†(x+R, t)â(x, t)〉 =
∑
k

e−ikR〈â†k(t)âk(t)〉, (3.27)

where âk = ∑
x e−ikxâx is the annihilation operator of a particle with momentum k. This ob-

servable is the Fourier transform of the momentum distribution and can be measured by the
time-of-flight and absorption imaging methods discussed in Sec. 1.3.2.1. The function G1(R, t) is
an example of the equal-time correlator G(R; t, t) where Ô1 = Ô2 = âk. Let us now discuss how
the operators Ôj may be represented in terms of the single-quasiparticle operators. For instance,
the Bogoliubov quasiparticles representing the collective excitations of a Bose-Einstein condensate
are related to the particle operators by

âk = ukγ̂k + vkγ̂
†
−k, (3.28)

where uk and vk are the solutions of the Bogoliubov-De Gennes equations [Pitaevskii and Stringari,
2016] (Appendix 1.E). A similar linear expression relating single-particle operators to single-
quasiparticle operators also holds for the elementary excitations in the strongly interacting Mott

5The quasiparticle statistics can be arbitrary, but for fermions in order to obey Pauli’s exclusion principle, an
additional spin index σ should be introduced. To lighten the notations, such index is kept implicit here.
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phase of the Bose-Hubbard model (Appendix 1.D). In both cases, a quasiparticle of momentum
k representing a particle excitation dressed by other particles or holes is associated to an anni-
hilation operator γ̂k, which is a linear combination of the operators âk and â†k. Reciprocally, the
operators âk are linear combinations of the operators γ̂k and γ̂†k. Hence, the operator Ôj can only
create or annihilate a single quasiparticle as assumed to derive Eq. (3.26).

More generally, higher-order operators can be cast in a similar form with generic hydrodynamic
formulations. Consider for instance the two-body correlation function

G2(R, t) = 〈n̂(R, t)n̂(0, t)〉 = 1
LD

∑
x

〈n̂(x+R, t)n̂(x, t)〉 =
∑
k

e−ikR〈n̂k(t)n̂−k(t)〉. (3.29)

The latter expression can also be written as∑k eikR〈n̂†k(t)n̂k(t)〉 and shows that G2(R, t) is another
example of equal-time correlatorG(R; t, t) with Ô1 = Ô2 = n̂k. In the superfluid phase, the density
operator may be expanded as n̂ = n0 +δn̂ where n0 is a classical field and δn̂ represents the density
fluctuations. The operator δn̂ can be written, in momentum space as [Pitaevskii and Stringari, 2016]

δn̂k = Ak
(
b̂k + b̂†k

)
. (3.30)

Similar to the one-body correlation function, the two-body correlation function can be decomposed
in quasiparticle operators. To give a concrete example, the hydrodynamic formulation may be
used to describe a weakly interacting Bose gas, where within Bogoliubov theory one finds

Ak = uk + vk, (3.31)

and the quantities uk and vk are again solutions of the Bogoliubov-De Gennes equations. This
applies to both condensates [Pitaevskii and Stringari, 2016] and quasi-condensates [Mora and Castin,
2003; Popov, 2001]. More generally, the hydrodynamic formulation may be applied to many corre-
lated systems. For instance, a similar form holds for 1D Luttinger liquids [Giamarchi, 2004]. We
finally note that the phase operator, conjugate of the density operator, can also be expanded in
terms of single-quasiparticle operators. We refer to Appendix 1.E for further details.

Finally, for spin models in a polarised phase, the Holstein-Primakoff transformation can be
used to map each spin operator onto bosonic operators if the deviation of the spin with respect
to the mean-field ground state remains small (〈â†RâR〉 � 1 for a spin 1/2). In the direction
orthogonal to the polarisation axis the mapping is [Auerbach, 1994; Holstein and Primakoff, 1940]

ŜxR ' 1
2

(
âR + â†R

)
. (3.32)

In terms of these bosonic variables, the Hamiltonian is quadratic and can therefore be diagonalised
by introducing the linear Bogoliubov transformation in the form of Eq. (3.28). To conclude, in
many situations the relevant operators are linear in the quasiparticle annihilation and creation
operators. The quench spectral function associated to G1(R, t) in quench spectroscopy and the
single-particle spectral function used in pump-probe spectroscopies both correspond to the choice
of the operator âk (both for the quench/pump and the probe). The same remark applies to the
QSF of G2(R, t) and the dynamical structure factor with the choice of n̂k.

Quench spectroscopy therefore offers an alternative technique to probe the spectrum. Its main
advantage over standard spectroscopies is that it uses the simpler equal-time correlators that can
be measured in a single snapshot of the dynamics. By repeating the same quench but capturing
the dynamics at a different time, the space-time pattern can be reconstructed, and a space-time
Fourier transform then yields the full momentum reconstruction of the excitation spectrum over the
Brillouin zone. This avoids the tedious scan over the momentum and each individual calibration
for instance of the angle between the mirrors in two-photon Bragg spectroscopy.
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3.2.2 Probing excitation spectra from global quench dynamics
In this section, we test numerically quench spectroscopy. We simulate the post-quench dynamics of
the system and then compute the associated QSF to detect the full low-lying excitation spectrum.
We demonstrate the method on one-dimensional lattice models (bosonic and spin chains) with
short and long-range interactions, however it equally applies in higher dimensions, on different
models such as continuous ones, or for different statistics such as correlated fermions. In addition
to the results presented in our publication [Villa et al., 2019], I included some exact diagonalisation
simulations (mainly for comparison purposes).

3.2.2.1 Benchmarks on the Bose-Hubbard chain
We begin by benchmarking quench spectroscopy in two regimes where the excitation spectrum is
known, the mean-field superfluid regime and the strongly interacting Mott insulator.

Superfluid in the mean-field regime (Bogoliubov). We initialise the system in its ground
state computed with DMRG at fixed n̄ = 5, and at t = 0 we suddenly quench the interaction
strength from (U/J)i = 0.2 to (U/J)f = 0.1. Here and in the following, the t-MPS simulation
parameters are L = 96 lattice sites, and an evolution time of tJ/~ = 10, comparable to state-of-the-
art experiments on this model [Trotzky et al., 2012]. To put some numbers, with a typical tunnelling
rate of J/~ ∼ 100 Hz this requires the system to remain isolated during at least 100 ms. The bond
dimension and the local dimension of the Hilbert space are increased until convergence of the
numerical results (Appendix 2.B). This phase corresponds to the mean-field SF (U/(2Jn̄) � 1),
where elementary excitations are Bogoliubov quasiparticles with the following dispersion relation

Ek = 2J
√

2 sin2(k2 )
[
2 sin2(k2 ) + n̄U

J

]
, (3.33)

gapless and linear for k → 0. The after-quench dynamics is displayed in Fig. 3.1, for the con-
nected density-density correlation function G2(R, t) and the one-body density matrix G1(R, t),
both averaged over the initial state. The twofold structure for the correlation spreading can be
observed, especially in G2(R, t) as discussed in Sec. 2.2.1. By taking the Fourier transform of each
space-time pattern we obtain the associated QSF. Here and throughout the thesis, we show its
normalised modulus. To improve visibility, we sometimes remove the ω = 0 component (time-
independent part) irrelevant for the dynamics, and cut off the colorbars after a fraction of their
maximum value [e.g. Fig. 3.1(d)]. Each QSF displays a sharp resonance along the line ω = 2Ek,
in excellent agreement with the prediction of Eq. (3.26) where the excitation spectrum Ek is given
by Eq. (3.33).

In the space-time pattern of G1(R, t), the linear cone is barely visible. Nonetheless, the QSF
is also capable of extracting the excitation spectrum Ek with a reasonable accuracy. This shows
the efficiency of quench spectroscopy to probe the excitation spectrum in a many-body quantum
system, for different choices of the observable.

Strongly interacting Mott insulator. We again initialise the system in its ground state for
n̄ = 1 at (U/J)i = 25, and at t = 0 we quench the interaction ratio to (U/J)f = 26. We probe G1
and the following dynamics is represented in Fig. 3.2(a) (the double structure discussed in Chap. 2
is visible in the inset). Taking the space-time Fourier transform we compute the QSF and display
the result in Fig. 3.2(b), where we rescaled the energies ω by U rather than J for convenience. The
resonance of the QSF is in excellent agreement with twice the expected excitation spectrum as
predicted by Eq. (3.26), the latter of which in the strongly interacting MI can be simply understood
as a superposition of doublon-holon pairs with dispersion relation (Appendix 1.D)

2Ek ' J

√(
U
J
− 6 cos k

)2
+ 32 sin2 k. (3.34)
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Fig. 3.1 (a) Space-time pattern of G2(R, t) (absolute value) following a global quench in
the mean-field SF at fixed n̄ = 5 from (U/J)i = 0.2 to (U/J)f = 0.1. (b) Modulus of the
associated QSF (normalised) and comparison with twice the expected Bogoliubov spectrum
Eq. (3.33) (red line). Same for (c) and (d) with G1(R, t) instead. The space-time pattern
is more blurred, but the excitation spectrum can still be reconstructed from the QSF (note
however the cutoff on the colorbar to 20% of the maximum to improve visibility). The ω = 0
component (irrelevant for the dynamics) and the spatial average k = 0 have been removed to
improve visibility. Adapted from [Villa et al., 2019].
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Fig. 3.2 Strongly interacting MI from (U/J)i = 25 to (U/J)f = 26 at fixed n̄ = 1. (a) Signal
observed for G1. (b) Associated QSF modulus, and comparison with dispersion relation for a
pair of excitations (3.34) (red line). Adapted from [Villa et al., 2019].

It is important to stress here that due to the global quench, a pair of excitations with opposite
momenta is emitted. To ensure particle number conservation, these reduce in the strongly inter-
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acting regime to a doublon and a holon excitation. The QSF computed after a global quench
is not sensitive to the individual excitations, but rather to their indissociable pair [Eq. (3.26)].
This will contrast to local quench spectroscopy which follows the dynamics after local quenches,
as discussed in Sec. 3.3.

In this regime, we note that probing G1(R, t) is essential because G2(R, t) leads to a faint
signal in real space. This can be understood qualitatively since the ground state in the strongly
interacting MI is nearly an eigenstate of the local density operator. Thus the couplings with the
excited states 〈m| n̂ |0〉 in the last line of Eq. (3.23) (positive frequency component of the QSF)
are strongly suppressed. For the detailed discussion of the suppression of density fluctuations in
this phase, we refer back to Sec. 2.2.3.

3.2.2.2 The strongly interacting superfluid regime
Having validated the approach in well-known regimes, we now explore using quench spectroscopy
the more involved strongly interacting superfluid phase with U/J � 1 and non-integer filling,
where the excitation spectrum is not known analytically. More precisely, the model may be mapped
to an effective fermionic model and the speed of sound evaluated (Appendix 2.C), but as we have
discussed previously in Sec. 2.2.4, the speed of sound does not match with the velocities extracted
from the dynamics. Therefore, the excitation spectrum possesses modes beyond the phononic
regime which are beyond the Luttinger regime, and another approach needs to be developed to
understand such higher energy modes. We will show how for low fillings and strong interactions,
an approximate Bethe ansatz approach may be used to describe the observed spectrum.

To reach the strongly interacting regime, we quench the interaction parameter from (U/J)i =
40 to (U/J)f = 50 at fixed fillings between 0 < n̄ < 1. We display in Fig. 3.3 the modulus of the
QSF for four characteristic values, with fillings n̄ = 0.1, 0.2, 0.5 and 0.9 respectively. The speed
of sound predicted by the effective Luttinger theory (Appendix 2.C) is represented by the dashed
blue line, and the result obtained from the approximate Bethe ansatz approach is represented
by the red dash-dotted envelope. We already note that at small fillings, the approximate Bethe
ansatz approach accounts very well for the resonances observed in the QSF, and therefore captures
correctly the observed excitation spectrum. Surprisingly, the prediction remains acceptable for
n̄ . 0.5, but becomes worse and worse as the filling increases, as shown for n̄ = 0.9. We will
interpret this in the following by explaining how the approach is built.

Approximate Bethe ansatz. The Lieb-Liniger model (continuum counterpart of the Bose-
Hubbard model) can be solved exactly using the Bethe ansatz and the excitation spectrum com-
puted (Appendix 1.A). However, in a lattice some positions at the local minima of the lattice
potential are privileged, and this breaks integrability. More precisely, the integrability breaking
can be related to the presence of triply occupied sites allowed by the bosonic statistics and which
cannot be properly accounted for by the Bethe ansatz [Choy and Haldane, 1982; F. Haldane, 1980;
Sutherland, 2004]. However, for strong interactions and low filling, such highly occupied sites be-
come less probable, and one can hope to evaluate approximately thermodynamic quantities using
the Bethe ansatz. We focus here on the essential elements of the approach and postpone the
technical details to Appendix 3.A. It was first noted by [Krauth, 1991] that for 0 < n̄ < 1 and
U/J � 1 this approximate Bethe ansatz method could accurately describe ground state properties,
assuming the following approximate Bethe equations to hold

kjL = 2πIj +
N∑
l=1

θ (sin kj − sin kl) , (3.35)

with the two-particle phase shift defined by θ(k) = −2 arctan
(

2J
U
k
)
. In Eq. (3.35), kj refers to the

quasimomentum of the particle j, and Ij its quantum number, which is an integer assuming N is
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Fig. 3.3 Normalised QSF modulus of G2 in the strongly interacting superfluid regime for a
quench from (U/J)i = 40 to (U/J)f = 50 with (a) n̄ = 0.1 (b) n̄ = 0.2, (c) n̄ = 0.5 and (d)
n̄ = 0.9. The dashed dotted red line marks the envelope predicted by the approximate Bethe
ansatz approach and the blue line gives the speed of sound predicted by the effective Luttinger
model. A dotted violet line highlights the phononic mode appearing at high filling. Adapted
from [Villa et al., 2019].

odd. In the ground state, the particles are ordered such that the quantum numbers Ij are real,
equidistant and monotonously increasing with j.

What we propose is to take the approximation further in order to describe the behaviour of
the excitations. The latter require to add and remove particles from the ground state, so we can
already expect that the validity regime found above for the ground state properties will be more
restricted, typically n̄ � 1 and U/J ≫ 1 so that the triply occupied sites are almost irrelevant
also for the excitations in the thermodynamic limit. Similarly to the Lieb-Liniger model, the
excitations can be built by moving a particle (denoted by the index j = α) from within the Fermi
sea above it. The Fermi level in quasimomentum space has quasimomentum kF. To build an
excitation, the distribution of quantum numbers Ij is unchanged compared to the ground state
∀j 6= α, except that Ij=α becomes I?α 6= Iα (the label “?” marks the excitation). After this move,
all quasimomenta redistribute in quasimomentum space due to interactions between the particles,
such that ∀j 6= α, ∆kj = k?j − kj. We want to compute the energy and momentum difference
between the excited state and the ground state, defined by

P =
N∑
j=1

k?j − kj

∆E =
N∑
j=1

[
−2J cos k?j

]
− [−2J cos kj] .

(3.36)
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Taking the difference of Eq. (3.35) for the ground state and the first excited state, and restricting
to lowest order in ∆kj � kj, we can show that in the thermodynamic limit6

2πJ(k) = U

J

ˆ kF

−kF

J(k′) cos k′ dk′(
U
2J

)2
+ [sin k − sin k′]2

+ θ(sin k − sin k?α)− θ(sin k − sin kα), (3.37)

where J(kj) = ∆kj/(kj+1 − kj). This function, called the backflow, accounts for the relative
redistribution due to interactions (at lowest order) in the excited state compared to the original
spacing in the ground state. Equation (3.37) can be solved numerically to obtain the backflow for
a given interaction value and particle number. This function can then be used to compute the
energy and momentum since by expanding Eq. (3.36) to lowest order in ∆kj, using the backflow
definition and moving to the thermodynamic limit

P = k?α − kα +
ˆ kF

−kF

J(k) dk

∆E
J

= −2 [cos(k?α)− cos(kα)] + 2
ˆ kF

−kF

J(k) sin k dk.
(3.38)

These particle-hole excitations form a continuum ∆E(P ) for −kF < kα < kF and kF < k?α < π
(by symmetry −π < k?α < −kF for P < 0). The envelope of 2∆E(P )/J is represented by the
dash-dotted red line in Fig. 3.3 for the associated parameters, and shows excellent agreement
with the resonances observed in the QSF at low filling. The excitations after the global quench
can therefore be thought of as pairs of particle-hole excitations (i.e. pairs of pairs) propagating
through the lattice. It appears that the backflow contribution is relatively small in the strongly
interacting regime, so that, to a good approximation, the pairs of excitations do not interact much
with each other (fermionised regime). At half-filling, the excitation continuum of the particle-
hole pair merges into a single branch near the origin, whose velocity coincides with the speed
of sound Vs = 2Ja/~ found by mapping the Bose-Hubbard chain in this regime to an effective
Luttinger liquid model (Appendix 2.C). For higher fillings, typically n̄ & 0.5, the agreement with
the approximate Bethe ansatz breaks down. This is expected as three-body (or more than three)
collisions become relevant and considerably alter the quasi-integrability of the model. A sound-like
mode also emerges at high filling (see Fig. 3.3(d), dotted violet line) but its velocity 2V ' 4.8Ja/~
is significantly different from the one of the phonon pair 2Vs = 1.4Ja/~ predicted by the mapping
to the effective fermionic model (see Appendix 2.C for the derivation and the expression of the
speed of sound). While the physical nature this branch remains to be determined, we note that
its observation is consistent with the emergence of a unique characteristic velocity, faster that the
speed of sound, in the vicinity of the causal cone (Fig. 2.12).

Effect of the lattice on the dynamics. It is fruitful to compare the previous results with
the continuum limit corresponding to the integrable Lieb-Liniger model. This comparison allows
to understand to what extent the lattice affects the underlying dynamics of the excitations.

In Fig. 3.4 we superimpose the excitation spectrum predicted by the previously discussed
approximate Bethe ansatz approach on the lattice model (dash-dotted red line), together with
the equivalent continuum excitation spectrum (γ = U/(2Jn̄), dashed blue line) discussed in Ap-
pendix 1.A. As expected, the comparison highlights that the lattice is crucial to the system
dynamics, whatever the filling, especially to reproduce the breaking of convexity of the excitation
continuum at higher momenta.

6For the full derivation, see Appendix 3.A.
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Fig. 3.4 Same as Fig. 3.3(a) and 3.3(b) with a comparison between the predicted excitation
spectrum from the Bethe ansatz on the Lieb-Liniger model (blue) and the approximate Bethe
ansatz on the Bose-Hubbard chain (red). Adapted from [Villa et al., 2019].

3.2.2.3 Spin chains
Quench spectroscopy can be used to unravel spectral properties in various models, here we investi-
gate the transverse-field Ising chain, first with short-ranged interactions where an exact analytical
solution for the excitation spectrum is known, and then we will discuss the challenging quasi-local
regime in the presence of long-range interactions. In both cases, we show that quench spectroscopy
can reconstruct the excitation spectrum efficiently.

Transverse-field Ising chain (short-ranged). This model has been already discussed in
Sec. 1.1.3 to which we refer for details. We simply recall its Hamiltonian7

Ĥ = J
∑
R<R′

σ̂xRσ̂
x
R′ − h

∑
R

σ̂zR (3.39)

and its exact excitation spectrum

Ek = 2J
√

1 + (h
J

)2 + 2h
J

cos k. (3.40)

This model offers a simple example because we can guess the observables that yield the excitation
spectrum. From the Holstein-Primakoff transformation in the strongly z-polarised phase, we know
that Ŝ±R = â

(†)
R /2 such that σ̂xR = â†R+ âR and σ̂yR = i

(
â†R − âR

)
are both linear in the quasiparticle

operators and can be used to unravel the excitation spectrum. We report in Fig. 3.5 the space-time
pattern of the observable 〈σ̂y(R, t)σ̂y(L/2, t)〉 from a quench within the z-polarised phase where
hi = 3.3 to hf = 3, and J = ±1. This simulation is performed on a chain of length L = 17 sites
using exact diagonalisation. The spectral maxima visible in the QSF match well with the expected
excitation spectrum (red line). Despite visible finite size effects, an accurate reconstruction of the
excitation spectrum is possible from the QSF. Choosing the observable 〈σ̂x(R, t)σ̂x(L/2, t)〉 also
yields similar results (not shown), as expected from the mapping above.

Long-range interactions. In the long range case, the Hamiltonian reads8

Ĥ =
∑
R<R′

J

|R−R′|α
σ̂xRσ̂

x
R′ − h

∑
R

σ̂zR. (3.41)

7I apologise for changing the sign of the nearest-neighbour interaction term throughout this part. Beware that
it changes a sign below the square root for the excitation spectrum, and thus its concavity.

8As the notations used here differ from [Villa et al., 2019] by a factor of 2 in front of the nearest-neighbour
interaction term J , I have redrawn the figures to match the notations in the thesis.
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Fig. 3.5 (a) Space-time pattern of 〈σ̂y(R, t)σ̂y(L/2, t)〉 computed by exact diagonalisation on
a short-range transverse-field Ising chain with L = 17 and periodic boundary conditions. The
global quench performed, using the conventions of Eq. (3.41) is with J = −1 and hi = 3.3 to
hf = 3. Only a fourth of the total evolution time is represented to highlight the different veloc-
ities for the propagation of the local maxima (dashed blue) and of the correlation edge (green).
The associated slopes represent 2v?ϕ and 2v?g from the quasiparticle picture. (b) Associated
QSF and comparison with twice the analytical excitation spectrum (red) of Eq. (3.41). (c) and
(d) are identical but with J = 1 (antiferromagnetic order). Note the different propagation
fronts of the local maxima close to the edge compared to J = −1 (ferromagnetic order).

For h/J � 1, using linear spin-wave theory one can show that [Cevolani et al., 2016; Hauke and
Tagliacozzo, 2013]

Ek ' 2J
√

h
J

[
h
J

+ 2Pα(k)
]
, (3.42)

where Pα(k) = FT
[

1
|R|α

]
. We numerically simulate using t-MPS the dynamics of the transverse

spin-spin correlation function 〈δŜx(R, t)δŜx(0, t)〉 with δŜx(R, t) = Ŝx(R, t) − 〈Ŝx(R, t)〉 for a
L = 48 sites chain after global quenches in the quasi-local regime with the interaction power-law
coefficient α = 1.8, from (h/J)i = 100 to (h/J)f = 40 and to (h/J)f = 2. We then take the space-
time Fourier transform to compute the QSF and we display our results in Fig. 3.6. Similar results
are obtained for 〈δŜy(R, t)δŜy(0, t)〉 (not shown). We observe an excellent agreement between 2Ek
computed from linear spin-wave theory in the strongly polarised regime and the resonances of the
QSF. Closer to the critical point, where the polarisation along z is not as pronounced, a sharp line
is still observed in the QSF, suggesting that well-defined quasiparticles can still be defined in this
regime. Even though the spectrum strongly deviates from the linear spin-wave result of Eq. (3.42),
especially close to the edges of the Brillouin zone, one may compare with a guess based on the
exact short-range result given by Ek ' 2J

√
1 + (h

J
)2 + 2h

J
Pα(k), which shows good agreement with

the QSF. A deviation only appears at short k, which is to be expected considering the finite size
of the system. This suggests a small change in the linear spin-wave excitation spectrum that
becomes relevant near the critical point.
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Fig. 3.6 (a) Space-time pattern of the absolute value of the spin-spin connected correlation
function 〈δŜx(R, t)δŜx(0, t)〉 with δŜx(R, t) = Ŝx(R, t)−〈Ŝx(R, t)〉 computed from t-MPS with
L = 48 for the long-range transverse-field Ising model for a quench in the quasi-local regime
α = 1.8 from (h/J)i = 100 to (h/J)f = 40. (b) Normalised modulus of the QSF, in excellent
agreement with twice the excitation spectrum (3.41) (red line). (c) and (d) are similar but for
a quench from (h/J)i = 100 to (h/J)f = 2 (the critical point is slightly below (h/J)c ' 1.4 in
our units [Koffel et al., 2012]). The maximum of the QSF does not agree well with twice the
expected linear-spin wave spectrum (red line), but is in rather good agreement with a guess
based on the exact short-range result (dashed blue). Adapted from [Villa et al., 2019].

An aside on the weak quench hypothesis. One may wonder whether the weak quench
assumption (necessary to explain why the QSF was able to unravel the excitation spectrum) is
still valid for the quenches used in Fig. 3.6 (especially the second one). We have tested this
assumption using exact diagonalisation by comparing with quenches having a lower amplitude,
from (h/J)i = 44 to (h/J)f = 40 and from (h/J)i = 2.2 to (h/J)f = 2. We display our results
in Fig. 3.7. Even though the system size used is small (L = 13 sites) and finite size effects
are important, the results found for the QSF are similar to the ones obtained using DMRG. By
comparing the weak and strong quenches, only very small differences can be found, barely visible
for the quench closer to the critical point. This highlights the important property that the QSF
is not very sensitive to the initial state, as expected since it probes the excitation spectrum of
the final Hamiltonian (the one governing the time evolution). Of course, this is also because we
normalise it and the numerical errors are negligible. In experiments, the stronger the quench,
the easier it will be to detect a signal and thus the lower the uncertainty on the QSF. This also
shows that the weak quench hypothesis is not a binding assumption. As long as we do not cross
any phase transition, in most cases the initial state (ground state of the pre-quench Hamiltonian)
remains close to the ground state of the post-quench Hamiltonian governing the dynamics, and
the weak quench hypothesis holds.
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Fig. 3.7 QSF computed from exact diagonalisation simulations on a chain of size L = 13.
(a) Same parameters as Fig. 3.6(b) and (b) for a weaker quench starting from (h/J)i = 44.
(c) Same parameters as Fig. 3.6(d) and (d) for a weaker quench from (h/J)i = 2.2 to (h/J)f = 2.

3.2.3 Link with the generic form of two-point correlators after a global
quench
Last but not least, we conclude this part about global quench spectroscopy by highlighting the
connection between the QSF and the generic form of equal-time two-point correlators after a
global quench which we recall reads as

G(R, t) = g(R)−
ˆ dk′

(2π)D F(k′)ei(k
′R+2Ef

k′ t) + ei(k
′R−2Ef

k′ t)

2 . (3.43)

The generality of such form was realised by [Cevolani et al., 2015, 2016; Cevolani et al., 2018],
demonstrated on translation invariant quadratic models after a global quench and expected to be
more generally valid. Our previous discussion of the QSF explains why such form captures well
the dynamics after global quenches. Indeed, taking the space-time Fourier transform of Eq. (3.43)
immediately yields (up to an irrelevant term for the dynamics only modifying the ω = 0 behaviour
of the QSF)

G(k, ω) ∝
ˆ

dk′ δ(k′ − k)F(k′)
[
δ(2Ef

k′ − ω) + δ(2Ef
k′ + ω)

]
∝ F(k)

[
δ(2Ef

k − ω) + δ(2Ef
k + ω)

]
,

(3.44)

which is simply Eq. (3.26). The previous discussion of the QSF also reveals in which regimes the
generic form can be expected to hold, since the QSF and the generic form are two sides of the
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same coin. First, the initial state has to be translation invariant (implicitly assumed by [Cevolani
et al., 2016] since the initial state was the ground state of the translation invariant pre-quench
Hamiltonian). But it is also important that the observables Ô1 and Ô2 linearly couple to the
quasiparticle excitations. As we argued, this is very often (but not always) the case.

Resolution of quench spectroscopy. Equation (3.43) has another practical advantage, some-
how allowing for an easier discussion of the resolution of our method both in space and time.
Indeed, the signal probed in experiments or numerical simulations is finite, in contrast to the
generic form which is valid in the thermodynamic limit. To account for finite size effects both in
space and time, we may convolve the QSF with a step function both in space and in time such
that the quench spectral function we probe is rather9

G̃(k, ω) = e iωT2
ˆ L/2

−L/2
dR
ˆ T

0
dtG(R, t) e−i(kR+ωt). (3.45)

Inserting Eq. (3.43) in (3.45) and making use of standard properties of the Fourier transform
we end up with

G̃(k, ω) =
ˆ
B

dq F(q)
2 L sinc

(
(k−q)L

2

) [
e−iEqT T sinc

(
(ω+2Eq)T

2

)
+ eiEqT T sinc

(
(ω−2Eq)T

2

)]
. (3.46)

This expression allows to estimate the resolution of quench spectroscopy from the typical width
of the sinc function, close to π. Therefore the resolution of the method is about ∆k ' 2π/L in
momentum and similarly ∆ω ' 2π/tmax in frequency [Villa et al., 2019]. For the values given in
Sec. 3.2.2, tmax = 10~/J and J/~ = 100 Hz, this gives a frequency resolution for the spectrum of
about 10 Hz.

3.3 Local quench spectroscopy
In Sec. 3.2, we showed how the excitation spectrum of a translation invariant many-body quantum
system could be obtained from the dynamics of equal-time correlators following a global quench.
After the sudden weak global quench, the system generates a bunch of low-lying quasiparticle
excitations and follows an out-of-equilibrium dynamics. Spectral properties of the elementary
excitations can be uncovered by Fourier transforming the two-point equal-time correlator which
defines the quench spectral function (QSF) and displays divergences in frequency at twice the
excitation spectrum. Importantly, a global quench preserves translation invariance such that the
use of two-point correlators was required to probe the excitation spectrum.

In contrast, local quenches break the translation invariance of the initial state. We will show
that spectral properties can still be revealed, this time by following the dynamics of the sim-
pler one-point observables (acting on a single lattice site). This makes local quench spectroscopy
an experimentally promising technique, already within the reach of current-generation experi-
ments [Fukuhara, Kantian, et al., 2013; Fukuhara, Schauß, et al., 2013]. A particularly interesting
point is that despite the fact that the excitations can be extended, the full dynamical pattern of a
well-chosen local probe can prove sufficient to reconstruct spectral properties throughout the full
Brillouin zone. This avoids to explicitly construct the excitation site by site in order to measure
its properties, as performed recently by [Jurcevic et al., 2015]. We will benchmark the approach on
a variety of spin and particle one-dimensional models, but as for global quench spectroscopy, the
method applies equally well to different models or higher-dimensional systems.

This local quench spectroscopy project is the result of a collaboration, and I would like to
particularly thank S.J. Thomson who performed all the t-MPS numerical simulations presented

9The factor e iωT
2 compensates the shift due to the non-symmetric time integration domain. It will not matter

in the final expression where we compute the modulus of the QSF.
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below. Throughout this section, we closely follow our publication [Villa et al., 2020]. In Sec. 3.3.1
we highlight the differences between local and global quench spectroscopies, which lead us to
a redefinition of the QSF. We show that the non-equilibrium dynamics following a single local
quench out of the ground state is sufficient to unveil spectral properties. As in any spectroscopic
method, the choice of the observable is crucial, and the local quench protocol required to probe the
spectrum is discussed in Sec. 3.3.2. The next three sections explicitly use local quench spectroscopy
on various models to probe different properties of the excitations: the excitation spectrum in
Sec. 3.3.3, the transition energies in Sec. 3.3.4 and additional information on higher energy excited
states with different types of excitations in Sec. 3.3.5.

3.3.1 The need for a new definition of the QSF for local quenches
Motivations and differences with the global quench. We first recall that in a local quench,
the Hamiltonian of the system is unchanged but the initial state is modified at t = 0 by a local
operator L̂ acting on the ground state of the Hamiltonian such that for t = 0+, |ψi〉 = L̂ |0〉.
For the moment, the specific operator L̂ under consideration does not matter. However, it is
important to note that the quench spectral function (QSF) introduced in Sec. 3.2.1 for global
quantum quenches is not suited to local quenches since the initial state is no longer translational
invariant. We first extend the derivation of the QSF without assuming translational invariance of
the initial state to an equal-time correlator between the operators Ô1(x, t) and Ô2(y, t) such that

G(x,y; t) : = 〈Ô1(x, t)Ô2(y, t)〉
=

∑
n,n′,m

ρn
′n

i ei(En−En′ )t ei(Pm−Pn)x ei(Pn′−Pm)y 〈n| Ô1 |m〉 〈m| Ô2 |n′〉 . (3.47)

Assuming only translation invariance of the system, we change to relative variables R = x − y
and r = (x+ y)/2, such that

G(R, r; t) =
∑
n,n′,m

ρn
′n

i ei(En−En′ )t ei(Pn′−Pn)r ei(2Pm−Pn−Pn′ )R/2 〈n| Ô1 |m〉 〈m| Ô2 |n′〉 . (3.48)

Importantly, as the initial state breaks translation invariance, we no longer have 1
LD

´
drG(r,R; t) =

G(R; t). Taking the Fourier transform would give

G(k,k′;ω) :=
ˆ

dR dr e−i(kR+k′r) dt eiωtG(R, r; t)

= (2π)2D+1 ∑
n,n′,m

ρn
′n

i δ(En − En′ + ω) 〈n| Ô1 |m〉 〈m| Ô2 |n′〉

× δ(Pm − Pn′
2 −

Pn
2 − k) δ(P n′ − P n − k′).

(3.49)

Equation (3.49) is valid for an arbitrary quench, as long as the system is translation invariant. For
a global quench, the initial state is usually taken to be the ground state of the initial Hamiltonian
and is therefore also translational invariant. Therefore we can integrate over r so as to remove
the dependence over k′ [formally k′ = 0 in Eq. (3.49)]. This imposes the additional selection rule
P n = P n′ and Eq. (3.49) reduces to Eq. (3.21) which is the QSF obtained in the global quench
case. In striking contrast, for a local quench, the translation invariance of the initial state is
broken, the crucial selection rule which links P n′ with the momentum of the intermediate state
Pm is missing due to the presence of an additional momentum k′, and the excitation spectrum
generally cannot be obtained in a simple manner from two-point correlators.

QSF for local quenches. The issue previously mentioned can be circumvented if we define
the QSF using one-point functions instead of two-point correlators. We study the post-quench
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dynamics of a one-point observable Ô(x, t) at a given position x and time t > 0, and compute
the expectation value G(x; t) = 〈Ô(x, t)〉 = Tr

[
ρ̂iÔ(x, t)

]
which, using translation invariance of

the system, becomes

G(x; t) =
∑
n,n′

ρn
′n

i ei(En−En′ )t ei(Pn′−Pn)x 〈n| Ô |n′〉 . (3.50)

The QSF for local quenches is defined by the space-time Fourier transform of Eq. (3.50) as

G(k, ω) :=
ˆ

dx dt e−i(kx−ωt) G(x; t)

= (2π)D+1 ∑
n,n′

ρn
′n

i 〈n| Ô |n′〉 δ(En′ − En − ω) δ(P n′ − P n − k).
(3.51)

Equation (3.51) will be the basis of the following analysis. We recover the key elements from
spectroscopy, that is the emergence of frequency and momentum resonances corresponding to
elementary excitations between two eigenstates n ↔ n′ with resonances in frequency at ω =
En′ −En and in momentum at k = P n′ −P n, corresponding to the Dirac functions in Eq. (3.51).

Why didn’t we use a one-point function for the global quench? For a global quench, a
one-point observable is not able to probe the excitation spectrum for k 6= 0 because of translation
invariance (of both the system and the initial state) which cancels any position dependence. The
proof follows the one used to derive Eq. (3.50). Translation invariance of the system imposes that
G(x, t) = (1/LD)

´
dx G(x, t) is independent of x. It yields the selection rule δ(P n − P n′) and

the exponential term giving the momentum dependence vanishes.

3.3.2 Choosing the initial state and the observable
3.3.2.1 General strategy
As for global quench spectroscopy, the local quench spectroscopy strategy follows from the expres-
sion of the QSF in Eq. (3.51), and is easier to understand for weak quenches which generate only
low-energy excitations. Starting from the ground state, we apply a local operator L̂ which acts
on a single site chosen to be the centre of the chain. The system being translational invariant, the
eigenstates have a well-defined momentum (

[
Ĥ, P̂

]
= 0). This localisation in momentum space

translates into a delocalisation of eigenstates in real space over the full system. Reciprocally,
the action of the operator L̂ being local in real space, it acts over various eigenstates in momen-
tum space. The initial state created is therefore a superposition of all low-lying excited states
|ψi〉 = L̂ |0〉 = ∑

m cm |m〉.
The excitation spectrum may be probed under two main conditions. First, the initial state

must overlap with both the ground state and the low-lying excited states, such that the coherences
ρn
′0

i (or ρ0n
i ) are non-zero. This condition reads as

ρn
′0

i = 〈n′|ψi〉 〈ψi|0〉 = 〈n′| L̂ |0〉 〈0| L̂† |0〉 6= 0. (3.52)

The condition ρn′0i 6= 0 was generally satisfied by performing a weak global quench in global quench
spectroscopy. In the local quench case the initial state has to be constructed explicitly with this
condition in mind, and the operator L̂ has to be picked accordingly. We will show below that it is
particularly easy for a spin chain where the rotation of a single spin to satisfy this condition, but
it can become quite involved for a particle model. Second, the delta distributions in energy and
momentum from Eq. (3.51) must select the transition between the ground state and the excited
states. Assuming that |n〉 = |0〉 is the ground state (P n = 0 and En = 0), we want that for each
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eigenstate |n′〉, the QSF displays a resonance at k = P n′ and ω = En′ . This condition can be
satisfied using an observable such that

〈0| Ô |n′〉 6= 0. (3.53)

From Eq. (3.52) and (3.53), we can derive a general simple rule to explain how to choose the
observable to probe the spectrum. Since the system is isolated, we may naturally expect the
operations on the quantum state to be unitary (L̂† = L̂−1). We will encounter more subtle cases
in the following, but for now we restrict to such simple case. The ground state can then be
decomposed as |0〉 = L̂† |ψi〉 = ∑

m cmL̂
† |m〉 and substituting it into Eq. (3.53) gives

〈0| Ô |n′〉 =
∑
m

c?m 〈m| L̂Ô |n′〉 6= 0. (3.54)

A sufficient condition is to choose Ô such that it contains L̂−1, i.e. the observable contains a
term which corresponds to an operator which “reverses” the quench we performed with the local
operator L̂. This is reminiscent of the common choice in pump-probe spectroscopy where the pump
and the probe are related by P̂ † = Ô, although here we established this argument on a stronger
footing. In order to choose L̂ now, we need to remind ourselves that the density matrix coherences
ρn
′0

i in Eq. (3.52) must be non-vanishing. Again a sufficient condition is to take L̂ ∝ 1̂+ P̂ , where
P̂ couples the ground state to the first excited manifold of states |n′〉, namely 〈0| L̂† |0〉 ∝ 1 and
〈n′| L̂ |0〉 ∝ 〈n′| P̂ |0〉 6= 0. This corresponds to the initial state being the superposition of the
ground state and the first excited states.

If the local quench cannot be described by the action of a unitary operator, the same argument
applies by substituting L̂ with (L̂−1)† in Eq. (3.54). The simple condition for Ô becomes

(
(L̂−1)†

)−1

and is less intuitive. This condition is sufficient but not unique, and we will show in the following
that the general intuition that the observable should reverse the quench remains valid with only
minor modifications.

3.3.2.2 Examples of local quench protocols
We now discuss experimentally realistic quenches suitable for local quench spectroscopy, applicable
to both spin and particle models.

Spin models. A single spin 1/2 may be pictured in three equivalent ways: as a point on the
complex circle (Hilbert space representation)

|ψ〉 = cos
(
θ
2

)
|↑〉z + eiφ sin

(
θ
2

)
|↓〉z ; (3.55)

as a unitary vector u = (sin θ cosφ, sin θ sinφ, cos θ) living on the Bloch sphere [Fig. 3.8(a)]; finally
by a matrix from the SU(2) algebra

M = u · σ̂ =
(

cos θ e−iφ sin θ
eiφ sin θ − cos θ

)
, (3.56)

where σ̂ is the vector of Pauli matrices. The last two representations are convenient in order to
represent the action of a local operator (particularly the Bloch sphere picture for visualisation and
the SU(2) matrix representation for computations using Pauli matrices). We represent a local
quench by the rotation of a single spin on the site S (we choose the centre of the chain), with an
angle α around an arbitrary axis n. After such a rotation, the state of the spin is described on
the Bloch sphere by the vector

u′ = cosαu+ (1− cosα)(n ·u)n+ sinα (n× u). (3.57)
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Fig. 3.8 (a) Parametrisation on the Bloch sphere of an arbitrary spin-1/2 state pointing along
u (green) with the polar and azimuthal angles (θ, φ). (b) Example of a local quench for a spin
model. Initially aligned along z, the central spin (red arrow) is rotated around the axis y by
an angle π/2 to point along x. From [Villa et al., 2020].

Since Pauli matrices are the generators of rotations and using the properties of the SU(2) algebra,
a rotation of an angle α around n can be represented by the action of the following operator

R̂n(α) = e−iα2 n · σ̂ = cos
(
α
2

)
1̂− i sin

(
α
2

)
n · σ̂, (3.58)

where 1̂ the identity matrix operator. In this representation, the rotated state (initial state) is
represented by M ′ = R̂n(α)MR̂−1

n (α). For any angle α 6= π, the rotation operator satisfies both
Eq. (3.52) and (3.53): this is our operator L̂. In the transverse-field Ising and Heisenberg chains
discussed below, we will rotate the central spin around the axis y by an angle θ = π/2, which
corresponds to φ = 0 and θ = α in Eq. (3.55) and (3.56). On the Ising chain, for h � J the
ground state is z-polarised and to a good approximation [Fig. 3.8(b)]

|0〉 ' |↑〉⊗Ns

|ψi〉 = L̂ |0〉 ' |↑〉⊗S−1 ⊗
[
cos
(
θ
2

)
|↑〉S + sin

(
θ
2

)
|↓〉S

]
⊗ |↑〉⊗Ns−S ,

(3.59)

where Ns is the total number of spins. Since in this regime the elementary excitations are su-
perposition of single spin flips, by rotating the central spin by π/2 we build the initial state as
a coherent superposition of the ground state and the low-lying excitations. In the ferromagnetic
Heisenberg model [Eq. (1.9)], the ground state is highly degenerate due to global rotational in-
variance. To break this degeneracy in order to define a unique ground state, we numerically add
a small magnetic field along z with strength hz = −10−2J to the first site of the chain. Then the
post-quench initial state is also well approximated by Eq. (3.59).

Particle models In particle models, such as the Bose-Hubbard chain, local quenches consist in
introducing defects at a single site. In contrast to spin models, these quenches are non-unitary
as they do not conserve the total particle number. In the superfluid we start from the ground
state and then remove all particles in the centre. In the Mott insulating phase, we also start from
the ground state (close to the homogeneous state with n̄ particles per site when U/J � 1), and
remove or add one particle in the centre.

3.3.3 Extracting excitation spectra
We now demonstrate how local quench spectroscopy can be used to obtain the excitation spectrum.
We begin with the analytical insight from the quasiparticle picture and then discuss the numerical
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simulation results.

Analytical insight We investigate weak quenches which populate the low-lying excited states of
the system, such that |n′〉 = γ̂†q |0〉 contains a single quasiparticle excitation over the ground state
|0〉 with momentum q. At this point, q is arbitrary and may even represent the ground state if
q = 0. Quasiparticles can be indifferently fermionic or bosonic, with [γ̂q, γ̂†q′ ]± = δq,q′ respectively.
For simplicity, we assume that a single type of excitations can be created by the system, but
the following expressions can be easily adapted to the case of multiple types of excitations (for
instance as in the Mott-insulating phase of the Bose-Hubbard model) by adding an extra index σ
with [γ̂q,σ, γ̂†q′,σ′ ]± = δq,q′δσ,σ′ . The QSF in Eq. (3.51) can be simplified by noting that the delta
distribution in momentum sets P n = q − k such that

G(k;ω) = 2π
ˆ
ρq;q−k
i 〈q − k| Ô |q〉 δ(Eq−k − Eq + ω) dq, (3.60)

where we switched to an integral representation valid in the thermodynamic limit. This expression
shows that all transitions between quasiparticles with momentum difference ±k are probed at low-
energy. To probe the excitation spectrum, the transition n′ ↔ 0 (or n ↔ 0) should be targeted,
and only one of the two eigenstates should contain one quasiparticle, the other one being the
vacuum. Just as for the global quench, a non-zero QSF is obtained if the observable couples
linearly to the quasiparticles, namely

Ô =
∑
p

Apγ̂p + Āpγ̂
†
p. (3.61)

This observable is the simplest choice for coupling the ground state to the low-lying excitations,
and therefore is expected to capture the low-energy physics. Substituting the expression (3.61) in
the term 〈q − k| Ô |q〉, we obtain as expected a non-zero contribution only if q = 0, in which case

〈q − k| Ô |q〉 =
∑
p

Āp 〈0| γ̂−kγ̂†p |0〉 = Ā−k, (3.62)

or if q = k, in which case

〈q − k| Ô |q〉 =
∑
p

Ap 〈0| γ̂pγ̂†q |0〉 = Ak. (3.63)

Finally, the QSF simplifies into

G(k;ω) = 2π
[
Ak ρ

k;0
i δ(ω − Ek) + Ā−k ρ

0;−k
i δ(ω + E−k)

]
. (3.64)

The positive frequency component displays resonances at the energy Ek for an observable of the
form (3.61). If several types of excitation σ are present, an additional sum over σ is added to
Eq. (3.64) showing that the local QSF is sensitive to individual excitations.

Numerical simulations results We now demonstrate local quench spectroscopy on the various
models introduced in Sec. 1.1. We use t-MPS based algorithms with open boundary conditions to
simulate the local quench in the centre of the chain. This choice minimises boundary effects, but is
not a strict requirement as we have obtained similar results on different sites. We then probe the
following dynamics after a total evolution time tmaxJ/~ = 10. Since the frequency resolution of
quench spectroscopy is inversely proportional to the maximum evolution time, a better resolution
can be obtained by increasing the latter. We choose a bond dimension χ = 256 and system size
L = 47 sites. Convergence of the numerical result has been checked by varying the bond dimension
and the system size similarly as in Appendix 2.B. Note that while our simulations display small
finite size effects in the form of reflections at the boundaries in the real-space data, we find that
a small number of reflections are not an issue and do not qualitatively alter the QSF.
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Fig. 3.9 (a) Space-time pattern of 〈σ̂y(R, t)〉 in the short-ranged transverse-field Ising chain
after the rotation of the central spin by θ = π/2 around y with h/J = 3 (z-polarised phase).
(b) Corresponding normalised modulus of the QSF, whose maxima are in excellent agreement
with the exact excitation spectrum given by Eq. (1.15) (red line). (c) and (d) are identical
except that h/J = 1.1, close to the critical point. From [Villa et al., 2020].

TFI chain We follow the local quench protocol discussed in Sec. 3.3.2.2 and rotate the central
spin around y by θ = π/2 such that the spin points along x (Fig. 3.8). Because σ̂y is the generator
of the rotation around y, we probe 〈σ̂y(R, t)〉 where the average is over the initial state. We
display in Fig. 3.9 the space-time pattern and the corresponding QSF after a local quench in the
z-polarised phase, first with h/J = 3 and then with h/J = 1.1 (the critical point is at (h/J)c = 1).
In both cases the spectrum given by Eq. (1.15) with the Hamiltonian (1.14) can be accurately
reconstructed.

In the x-polarised phase, the low-lying excitations are known to be non-local domain walls,
and as such their excitation branch cannot be probed using local quench spectroscopy. In this
regime, global quench spectroscopy is more appropriate to probe the properties of the low-lying
excitations. However, the duality mapping (Sec. 1.1.3) reveals that a single spin flip is equivalent to
a pair of domain walls, and therefore local quench spectroscopy is sensitive to pairs of excitations,
as we will show in Sec. 3.3.5.1.

Interestingly, similar results can be obtained by probing 〈σ̂x(R, t)〉. This highlights that the
criterion we discussed in Sec. 3.3.2.1 to pick the observable for observing the spectrum gives an
insight but is not necessarily the only valid choice. The fact that 〈σ̂x(R, t)〉 also leads to the
observation of the spectrum can be understood following the same argument as for the global
quench spectroscopy (Sec. 3.2.2.3). To probe the spectrum, an observable of the form (3.61) has
to be found. In the strongly polarised phase along z, corresponding to h/J � 1, linear spin-wave
theory and the Holstein-Primakoff transformation tell us that the transverse magnetisations σ̂x
or σ̂y are good choices. Indeed, spin-wave excitations are created by the spin raising operator
σ̂+ = σ̂x + iσ̂y which couples the ground state to the first excited state, while the spin lowering
operator σ̂− = σ̂x − iσ̂y destroys an excitation and annihilates the ground state. Therefore their
linear combination formed by the transverse magnetisations are of the form (3.61) and thus can
probe the excitation spectrum. The numerics and the argument for the observable reversing the
quench show that the argument remains beyond the regime 〈γ̂†γ̂〉 � 1, even very close above the
critical point for h/J → (h/J)c = 1.
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Fig. 3.10 (a) Space-time pattern of 〈σ̂y(R, t)〉 in the Heisenberg ferromagnetic chain after the
rotation of the central spin by θ = π/2 around y. (b) Corresponding normalised modulus of the
QSF, whose maxima are in excellent agreement with the exact magnon excitation spectrum
Ek = 4J(1− cos k) (red line) for Ĥ = −J∑R σ̂R·σ̂R+1. From [Villa et al., 2020].

The Holstein-Primakoff representation also explains why the longitudinal magnetisation σ̂z

cannot probe the spectrum. It can be cast as σ̂z = 2γ̂†γ̂ − 1 and therefore is not of the required
form (3.61) to probe the spectrum. However, we will show in Sec. 3.3.4 that it can be used to
probe the transition energies between energy levels within the same manifold.

Heisenberg chain The Heisenberg chain is interesting for studying local quench spectroscopy
for various reasons. First, its excitation spectrum is exactly known from the Bethe ansatz, and
consists of magnons in the ferromagnetic regime. The spectrum has been obtained using pump-
probe spectroscopies from the dynamical structure factor in inelastic neutron scattering exper-
iments [Lake et al., 2013; Mourigal et al., 2013], but unless one adds an additional parameter to
the Hamiltonian which the global quench sets to zero, it cannot be obtained from global quench
spectroscopy (the Hamiltonian only has a single parameter, the nearest-neighbour exchange cou-
pling J). Second, while the excitation spectrum is known, there is no explicit representation of
the excitations in real-space, and therefore there is no a priori simple choice for the observable.
Despite the latter issue, using the same quench protocol as for the transverse-field Ising chain, we
are able to probe the magnon excitation branch as shown in Fig. 3.10. The resonances observed
in the QSF are in excellent agreement with the exact dispersion relation of magnons predicted by
the Bethe ansatz and represented by the red line. Since here once again the quench performed
is a unitary operation, choosing an observable which reverses the quench probes the spectrum.
This shows that the explicit construction of elementary excitations is not required for local quench
spectroscopy to unveil the spectrum.

An exception to this rule is the Heisenberg antiferromagnet, as its low-lying excited states are
pairs of spinons (non-local domain walls) and therefore cannot be probed by rotating a single
spin. From a more fundamental point of view, such low-lying excited states are protected by a
symmetry which cannot be broken by a unitary operation.

BH chain The Bose-Hubbard chain is insightful for two main reasons. First, as a particle model,
the local quench protocol differs as the addition or removal of a particle is no longer a unitary
operation and the criterion for the observable reversing the quench needs to be adapted. Second,
deep in the Mott-insulating regime two types of excitations coexist. Global quench spectroscopy
used two-point correlators and was only sensitive to the pair of excitations. In contrast, we
will see that local quench spectroscopy which uses one-point functions can probe the excitations
individually.

We start by investigating the mean-field SF regime which hosts Bogoliubov excitations with
the excitation spectrum given by Eq. (3.33) for γ = U/(2Jn̄)� 1. As discussed in global quench
spectroscopy, a hydrodynamic formulation in this regime shows that the density fluctuations
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Fig. 3.11 (a) Space-time pattern of 〈n̂(R, t)〉 in the Bose-Hubbard chain in the mean-field SF
after preparing the system in the ground state with U/J = 2 and n̄ ' 1.4, then removing all
particles from the centre. (b) Corresponding normalised modulus of the QSF, whose maxima
are in good agreement with the Bogoliubov excitation spectrum (3.33) (red line). (c) and (d)
are similar but the filling is n̄ ' 3.0. The strong signal around k = 0 signals quasi long-range
order (the k = 0 component itself has been removed for visibility). From [Villa et al., 2020].

operator has the required form (3.61) to probe the spectrum, namely in momentum space δn̂k ∼
γ̂k+γ̂†k. After initialising the system in its ground state, we remove all particles from the central site
at t = 0. We display the following space-time evolution of the on-site density and its corresponding
QSF for γ ' 0.7 and γ ' 0.3 in Fig. 3.11. The branches displayed by the QSF are in good
agreement with the spectrum expected from Bogoliubov theory. For smaller values of γ, the
agreement with the Bogoliubov spectrum improves but the convergence of the numerical results
is more demanding.

We now move to the strongly interacting MI phase at n̄ = 1 which contains two types of
excitations propagating with different velocities. Summarising Appendix 1.D, they can be un-
derstood by restricting the local Hilbert space to the three values {0; 1; 2} and introducing the
fermionic doublons and holons. The physical bosons on the chain are rewritten as superpositions
of doublons and holons â†R =

√
n̄+ 1ZR,+ĉ†R,+ +

√
n̄ ZR,−ĉR,− with ZR,± the Jordan-Wigner phase

factor preserving the commutation rules. In the strongly interacting regime where density fluc-
tuations are small, the elementary excitations are Bogoliubov quasiparticles, linear combinations
of the fermionic doublons and holons γ̂†k,± = u(k)ĉ†k,± ± v(k)ĉ−k,∓. At zero order in J/U , one has
u(k) = 1 and v(k) = 0 such that the elementary excitations reduce to pure doublons and holons
(and not linear combinations of them as in the more general case).

The most natural idea for a local quench would be to add or remove one particle from the central
site, which would create both a doublon and a holon (see expression above for â†R). However, in the
strongly interacting regime, the ground state is homogeneous (for unit filling |111 · · ·〉) and thus
a state such as |1 · · · 101 · · ·〉 or |1 · · · 121 · · ·〉 is orthogonal to it. The necessary condition (3.53)
to probe the excitation spectrum is not satisfied. One cannot use either the local density n̂(R, t)
in this regime, since it also does not satisfy the condition (3.53) to couple the ground state and
the first excited state manifold. However, as we will show in Sec. 3.3.4, the density in this regime
provides complementary information about the quasiparticles.
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Fig. 3.12 (a) Space-time pattern of 〈(â+ â†)(R, t)〉 in the Bose-Hubbard chain in the strongly
interacting MI phase after preparing the system in its ground state and changing the central
site to be a coherent superposition of Fock states (|0〉+ |1〉)/

√
2 with U/J = 20 at unit filling.

(b) Corresponding normalised modulus of the QSF, whose maxima is in excellent agreement
with holon-like band (dashed cyan). (c) and (d) are similar but the central site is prepared in
the coherent superposition (|1〉+ |2〉)/

√
2, which probes the doublon-like band instead (dashed

red). From [Villa et al., 2020].

Just as for the rotation operator in spin systems, we have to prepare a superposition state using
a local quench operator such that for instance L̂ |111 · · ·〉 ∝ |111 · · ·〉+ |101 · · ·〉 i.e. L̂ ∝ 1̂+ âL/2.
We then pick the observable to reverse the quench, so to add a particle in the centre (plus its
hermitian conjugate for it to be hermitian) such that Ô(R, t) = â(R, t) + â†(R, t).

We numerically start from the ground state at unit filling and then change the central site
to be in a coherent superposition of Fock states (|0〉 + |1〉)/

√
2. The dynamics of the observable

〈(â + â†)(R, t)〉 together with the resulting QSF is displayed in Fig. 3.12(a,b). A sharp branch
can be observed, which matches well with the holon branch (cyan line). The doublon line is
represented for reference as the red line, which shows that the local QSF is only sensitive to the
individual excitations. Alternatively, one can probe the doublon branch alone, by adding one
particle such that the central site is in the coherent superposition of Fock states (|1〉+ |2〉)/

√
2 as

showed in Fig. 3.12(c,d).
As this procedure does not conserve the total number of particles in the system, both the

preparation of the state and the measurement of the observable will be challenging. This can be
experimentally realised in a double-species Bose-Hubbard model, where for instance the bosons
have two different internal hyperfine states (labelled |↑〉 and |↓〉) which can be individually ad-
dressed. By applying an appropriate laser pulse, it is possible to locally prepare a boson in the
required coherent superposition of both hyperfine states [Mandel et al., 2003; Trotzky et al., 2008;
Trotzky et al., 2010]. Rather than measuring the bare creation or annihilation operator, the ex-
periment will instead probe the “spin-flip” operator (â†↓â↑ + â†↑â↓)(R, t) associated to transitions
between the two hyperfine states. This operator has previously been reconstructed from measure-
ments [Trotzky et al., 2012]. As discussed in Sec. 1.3.1.3, the two-species Bose-Hubbard model is
equivalent in the strongly interacting limit with unit filling to an effective pseudo-spin Hamilto-
nian. The previously mentioned local quench realises a unitary rotation of the pseudo-spin and
the required operator again reduces to a transverse magnetisation, precisely as we discussed in
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the case of spin chains.

3.3.4 Probing transition energies
Are there realistic examples of observables which are not in the form (3.61), and if they do not
probe the excitation spectrum, can they reveal complementary information about the excitations?
Extending the scope of local quench spectroscopy, we will indeed show how energy transitions
between excited states within the same excitation manifold can also be probed. As previously,
we begin by a general analytical argument and then demonstrate it using numerical simulations.
We also highlight a possible pitfall: the observation of a well-defined branch does not imply that
it is the excitation spectrum. This will be explained analytically when the dispersion relation
possesses a generic cosine-like shape.

Analytical insight We still restrict to weak quenches populating the low-energy levels close to
a given level (here for simplicity we specifically choose the ground state, but the argument could
be generalised to an arbitrary state). Therefore we start back from the expression (3.60). If we
want to probe the transition energies within the same manifold, now both q and q − k must be
non-zero, and the observable has to couple the energy levels. The simplest form (with the lowest
possible number of quasiparticles) of such observable conserves the quasiparticle number and is

Ô =
∑
p,p′ 6=0

Bp,p′ γ̂†pγ̂p′ . (3.65)

Therefore we get
〈q − k| Ô |q〉 =

∑
p,p′ 6=0

Bp,p′ δq,pδq−k,p′ = Bq,q−k, (3.66)

where we discarded an irrelevant k = 0 term. Substituting into the QSF (3.60) we obtain

G(k;ω) = 2π
ˆ
Bq,q−k ρ

q;q−k
i δ(Eq−k − Eq + ω) dq. (3.67)

If we define for convenience the function (we now restrict to one dimension for simplicity)

gk(q, ω) = Eq−k − Eq + ω, (3.68)

and write q?k(ω) its ω-dependent zeros, we see that for ∀q?k(ω),∂qgk(q)|q=q?
k
(ω) 6= 0, we can rewrite

Eq. (3.67) as

G(k, ω) = 2π
∑
q?
k
(ω)
|∂qgk(q?k(ω))|−1

ˆ
Bq,q−k ρ

q;q−k
i δ(q − q?k(ω)) dq

= 2π
∑
q?
k
(ω)
Bq?,q?−k ρ

q?;q?−k
i |∂qgk(q?k(ω))|−1 .

(3.69)

The function gk(q, ω) refers to the energy differences, and is in general analytic, but a divergence
in the QSF can be observed if ∂qgk(q?k(ω))→ 0. We show below that an algebraic divergence can
appear along specific lines k → ω(k), which are not to be confused with the excitation spectrum.

The special case of a cosine-like dispersion relation Let us consider a cosine-like dispersion
relation, of the form

Ek = ∆− v cos k, (3.70)
where ∆−v is the gap at k = 0, and v the maximum group velocity. This form is very common in
lattice models and is valid for instance for the ferromagnetic Heisenberg chain, for the transverse-
field Ising chain far from the critical point (h� J or h� J), or in the strongly interacting Mott
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Fig. 3.13 Normalised modulus of the QSF predicted by Eq. (3.74). Algebraic divergences
appear along the lines ω = ±2v sin(k/2).

insulator for the Bose-Hubbard chain. For this form of excitation spectrum, Eq. (3.69) can be
evaluated explicitly.

We first find the expression for q?k(ω). Using trigonometric identities, the energy difference
appearing in the energy selection rule of the QSF (3.67) can be rewritten as Eq − Eq−k =
−2v sin

(
k
2

)
sin
(
k
2 − q

)
. The zeros of gk(q, ω) are then given by

sin
(
k
2

)
sin

[
k
2 − q

?
k(ω)

]
= − ω

2v . (3.71)

This equation has solutions provided ω ≤ |2v sin
(
k
2

)
|, and we find for k 6= 0

q?k(ω) = k

2 + arcsin
(

ω/2v
sin(k/2)

)
. (3.72)

Second, we evaluate the derivative of the argument of the delta energy selection rule at the points
where this argument is zero

∂qgk(q)|q=q?
k
(ω) = −2v sin

(
k
2

)
cos

[
arcsin

(
ω/2v

sin(k/2)

)]
= −2v sin

(
k
2

)√√√√1−
(

ω/2v
sin(k/2)

)2

. (3.73)

Using Eq. (3.69) we finally get

G(k, ω) =
Bq?

k
(ω),q?

k
(ω)−k ρ

q?k(ω);q?k(ω)−k
i∣∣∣2v sin

(
k
2

)∣∣∣
√√√√1−

(
ω/2v

sin(k/2)

)2
∼

1−
(

ω

2v sin(k/2)

)2
−1/2

. (3.74)

Therefore, the QSF displays an algebraic divergence10 along the lines

ω = ±2v sin
(
k
2

)
. (3.75)

For reference, we plot the QSF predicted by Eq. (3.74) with Bq?
k
(ω),q?

k
(ω)−k ρ

q?k(ω);q?k(ω)−k
i = 1 as a

contour plot in Fig. 3.13. We will explicitly observe this shape throughout the following numerical
results when the spectrum is cosine-like [Eq. (3.70)] and the observable conserves the number of
quasiparticles and is of the form (3.65).

10Except for pathological cases where the numerator cancels for all k and ω satisfying Eq. (3.75).
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Fig. 3.14 (a) An algebraic divergence of the QSF can appear if the excitation spectrum (red
line) changes convexity in the Brillouin zone. It results from the interference of two different
wave packets propagating with the same group velocity (dashed green line), and corresponds
to frequencies such that ω = Eq? − Eq?−k (blue arrow), where the notation q? is short for
q?k(ω). (b) Excitation spectrum of the transverse-field Ising model far from the critical point
(h/J)c = 1 where it is in good approximation cosine-like (green, also red) and close to it where
it significantly deviates (blue). Even when the spectrum deviates from the cosine-like shape,
it always changes convexity and there exists two points at different momenta with the same
velocity satisfying Eq. (3.76). From [Villa et al., 2020].

Interpretation of the divergence The algebraic divergences of the QSF along the lines where
∂qgk(q?k(ω)) = 0 [Eq. (3.69)] can be interpreted using the quasiparticle picture. Going back to the
definition (3.68) of the function gk, and recalling that vg = ∂kEk is the excitation group velocity,
the algebraic divergences correspond to

v?g(q?k(ω)− k) = v?g(q?k(ω)). (3.76)

This equality is satisfied if two different wave packets, formed by quasiparticles created by the
quench, propagate which the same group velocity and interfere [Fig. 3.14(a)]. This situation can
only happen if the excitation spectrum Ek changes its convexity somewhere in the Brillouin zone.
The previously mentioned example of the cosine-like dispersion relation is a prime example of such
situation where the convexity changes in the middle of the Brillouin zone for k = π/2. In this
case, for any k ∈ [−π; π], there always exists q?k(ω) ∈ [0;π] (given by q?k(ω) = π/2 + k/2), which
satisfies the condition (3.76). For a more general spectrum, this condition can be satisfied on a
finite range of values, as showed in Fig. 3.14(b) for the transverse-field Ising spectrum even close
to the critical point (h/J)c = 1 where the spectrum deviates from the cosine-like shape.

Numerical results We numerically test the previously discussed theory on various models, by
choosing observables of the form (3.65). We now assume the excitation spectrum of the models
to be known, obtained for instance from the procedure discussed in Sec. 3.3.3.

Heisenberg chain We start with the ferromagnetic Heisenberg chain, with the spectrum given
by Ek = 4J(1 − cos k) which is an example of the cosine-like form (3.70). We still initialise the
system in its ground state and rotate the spin around the axis y by an angle θ = π/2, and now
we probe the local magnetisation along z, 〈σ̂z(R, t)〉. The spin variables can conveniently be
expanded into bosonic operators using the Holstein-Primakoff transformation, and to lowest-order
σ̂zR = 2γ̂†Rγ̂R−1̂. Such observable conserves the number of quasiparticles and obeys the form (3.65),
up to an irrelevant constant term. The result of the numerical simulation is shown in Fig. 3.15, in
excellent agreement with the expected divergences previously mentioned along ω = ±2v sin(k/2)
with v = 4J (blue line). The excitation spectrum is represented in Fig. 3.15 (dashed red) in order
to emphasise that the observed divergence of the QSF comes from the energy transitions, not the
excitation spectrum.
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Fig. 3.15 (a) Space-time pattern of 〈σ̂z(R, t)〉 in the ferromagnetic Heisenberg chain after
preparing the system in its ground state and rotating the central spin around y by π/2. (b) Cor-
responding normalised modulus of the QSF. An algebraic divergence probing energy transitions
is observed along ω = 8J sin(k/2) (blue line) in agreement with the prediction of Eq. (3.75).
It differs from the excitation spectrum (dashed red line). From [Villa et al., 2020].

TFI chain We now investigate the transverse-field Ising chain, using the same local quench
protocol and the same observable 〈σ̂z(R, t)〉, which also conserves the quasiparticle number and
obeys the form (3.65). The result of the numerical simulation is represented in Fig. 3.16 for two
typical values of h/J , one deep in the z-polarised phase where h/J = 3 and another closer to
the critical point at h/J = 1.1. Far from the critical point, to lowest order in J/h the excitation
spectrum (1.15) is cosine-like, with v = 2J from Eq. (3.70). This explains the excellent agreement
between the observed divergence of the QSF and the prediction of Eq. (3.75) represented by the
solid blue line in Fig. 3.16(b).

Closer to the critical point, the spectrum deviates from the cosine-like form, however since the
spectrum is known we can extract numerically the maxima of Eq−k − Eq (which are the same as
the ones of the function gk introduced previously) with respect to q at fixed k. Such points are
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Fig. 3.16 (a) Space-time pattern of 〈σ̂z(R, t)〉 in the transverse-field Ising chain with h/J = 3
after preparing the system in its ground state and rotating the central spin around y by π/2.
(b) Corresponding normalised modulus of the QSF, in excellent agreement with the algebraic
divergence coming from energy transitions ω = ±4J sin(k/2) (blue line). The excitation spec-
trum is given for reference (dashed red). (c,d) are similar to (a,b) but with h/J = 1.1 close to
the critical point. In (d), Eq. (3.75) is indistinguishable from the numerical extraction of the
maxima with respect to q of the function gk(q, ω) (blue line). From [Villa et al., 2020].
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responsible for the algebraic divergence observed in the QSF [Eq. (3.76)], and are represented by
the blue line in Fig. 3.16(d). Incidentally, they are almost indistinguishable from the excitation
spectrum itself (red line), as well as (perhaps even more surprisingly) Eq. (3.75). Once again, the
excellent agreement obtained supports the validity of the more general expression (3.69).

BH chain We finally discuss the Bose-Hubbard model in the strongly interacting Mott insu-
lating phase, where the excitations reduce to simpler doublons and holons. The density observ-
able n̂(R, t) = â†R(t)âR(t) can be decomposed in terms of the doublon and holon excitations as
n̂(R, t) = (n̄ + 1)ĉ†R,+(t)ĉR,+(t) + n̄ĉR,−(t)ĉ†R,−(t). Deep in the Mott phase, the true elementary
excitations approximately reduce to the doublon and the holon, such that the density reduces to
the form (3.65). Since the dispersion relation of each excitation is cosine-like, with the doublon
propagating at twice the velocity of the holon for n̄ = 1 due to the Bose enhancement factor, we
expect to observe two lines from the energy differences ω = ±2v sin(k/2) with v = 2J for the
holon and v = 4J for the doublon. This is indeed confirmed numerically by Fig. 3.17. To improve
the visibility of the QSF, it is interesting to reduce the numerical noise when computing the space-
time Fourier transform by multiplying the space-time signal by a filtering window (for instance
the commonly chosen bell-shaped Hann function). This technique known in signal processing as
apodisation can be used to improve the spectral features probed by the QSF. All credit for this
idea goes to S.J. Thomson, I simply mention it here to show explicitly one striking example with
Fig. 3.17(c) where the improvement is much visible. Even though we did not use them in the
early publications [Villa et al., 2019; Villa et al., 2020], these filtering techniques can be efficiently
used in quench spectroscopy to enhance the visibility of the signals.

3.3.5 Extracting additional information from the QSF
In addition to the excitation spectrum or transition energies, local quench spectroscopy can also
be a tool to explore other less standard properties of excitations. This section highlights the
versatility of local quench spectroscopy, especially the fact that in principle any transition can be
targeted depending on the choice of the observable, including higher excited state manifolds.

c

Fig. 3.17 (a) Space-time pattern of the density 〈n̂(R, t)〉 in the Bose-Hubbard chain in the
strongly interacting Mott phase with U/J = 75 and n̄ = 1. The initial state is the ground state
where a particle has been displaced from the central site to its neighbour. (b) Corresponding
normalised modulus of the QSF, whose algebraic divergences are in excellent agreement with
the resonant energy transitions ω = ±2v sin(k/2) with v = 2J for the holon (dashed blue line)
and v = 4J for the doublon (dashed red line). The ω = 0 component has been removed to
improve visibility. From [Villa et al., 2020]. (c) Same as (b) but after an apodisation of the
space-time pattern using a Hann window to reduce numerical artefacts of the numerical Fourier
transform. The long-time average instead of the time average has been removed for visibility.
I thank S.J. Thomson for this last figure.
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3.3.5.1 Probing non-local excitations of the transverse-field Ising chain
Until now we have mainly focused on the z-polarised phase of the transverse-field Ising chain, where
the low-lying excitations are represented by spin flips. Exploiting the self-duality of the model,
we know that in the x-polarised phase, the excitations are spin flips in the reciprocal lattice, and
correspond to pairs of counter-propagating domain walls (Sec. 1.1.3). While an individual domain
wall is non-local and thus cannot be excited individually by a local quench, a pair corresponding
to the second excited manifold can be probed using local quench spectroscopy.

Analytical insight To probe the properties of states containing two domain walls excitations,
we should find an observable that couples the transitions n ↔ 0, with |n′〉 = |0〉 the ground
state and 〈n| containing two quasiparticles with arbitrary momenta k1 and k2. The choice of
the observable is dictated by the condition 〈n| Ô |n′〉 6= 0, and the simplest form of observable
satisfying such requirement is

Ô =
∑
p,p′

Cp,p′ γ̂†pγ̂
†
p′ . (3.77)

The same argument applies by reversing the role of n and n′, in which case the observable an-
nihilates two quasiparticles instead of creating them. From the QSF given in Eq. (3.51), the
momentum selection rule sets P n = −k, such that without loss of generality we may choose
k1 = −k − q and k2 = q with q being arbitrary for now. The matrix elements of the observable
simplify as

〈n| Ô |n′〉 =
∑
q,p,p′

Cp,p′ 〈0| γ̂−k−qγ̂qγ̂†pγ̂
†
p′ |0〉 =

∑
q,p,p′

Cp,p′δp,qδp′,−k−q ± (p↔ p′), (3.78)

where the sign depends on the quasiparticle statistics (+ for bosonic ones and - for fermionic
ones), and En = E−k−q + Eq. The QSF finally becomes

G(k;ω) = 2π
ˆ (

Cq,−k−q ρ
0;(−k−q,q)
i ± C−k−q,q ρ0;(q,−k−q)

i

)
δ(E−k−q + Eq + ω) dq. (3.79)

The alternative choice for the observable annihilating two quasiparticles (with the roles of n and n′
reversed) can be obtained by changing (k, ω)→ (−k,−ω) and the energy selection rule becomes
δ(Ek−q + Eq − ω).

To understand the nature of the divergences that may appear in Eq. (3.79), and owing to
the similarities with Eq. (3.67) for the transitions energies, we follow a similar derivation as in
Sec. 3.3.4 and study the behaviour of the function g̃k(q, ω) = E−k−q + Eq + ω (equivalently one
may use Ek−q +Eq −ω which eventually leads to the same conclusion). We write the zeros of the
function g̃k(q, ω) as g̃k(q̃?k(ω)) = 0, which for a spectrum of the form Ek = ∆− v cos k are

q̃?k(ω) = −k2 + arccos
(

ω + 2∆
2v cos(k/2)

)
, (3.80)

and exist within the interval ω ∈ [2∆− 2v cos(k/2); 2∆ + 2v cos(k/2)]. Equation (3.69) still holds
for g̃k(q, ω) now, and the algebraic divergence of the QSF appear for ∂qg̃k|q=q̃?

k
(ω) explicitly given

for the cosine-like spectrum by

∂qg̃k|q=q̃?
k
(ω) = −2v cos

(
k
2

)√√√√1−
(

ω + 2∆
2v cos(k/2)

)2

. (3.81)

Therefore we observe a continuum bounded by sharp upper and lower boundaries defined for
positive frequencies by

ω = 2∆± 2v cos
(
k
2

)
. (3.82)
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Fig. 3.18 (a) Space-time pattern of the transverse magnetisation 〈σ̂z(R, t)〉 in the x-polarised
phase. The initial state is the ground state where the central spin as been rotated around y by
θ = π/2. (b) Corresponding normalised modulus of the QSF displaying a sharp signal within
the energy continuum Eq + Eq−k with arbitrary q (envelope in dotted green). A weak signal
resulting from the energy transitions Eq−Eq−k (dotted blue) is also barely visible. From [Villa
et al., 2020].

This result is well known for instance for the isotropic Heisenberg chain, where the 2-magnon
continuum computed from the Bethe ansatz lies within a continuum with boundaries 2J [1 ±
cos(k/2)] [Karbach and Müller, 1997], consistently with the picture above since the excitation spec-
trum is given by a cosine-like form with ∆ = v = J . The boundaries of this continuum can
also be obtained from a geometrical point of view as a consequence of the global concavity of the
single magnon dispersion relation, and are given by 2Ek/2 (lower boundary) and 2Eπ−k/2 (upper
boundary) [Barnes, 2003].

Numerical results We keep the same local quench protocol, but since the ground state is
within the x-polarised phase when we rotate the central spin around y by π/2, it points along −z.
To avoid numerical issues with the degeneracy of the ground state, we apply a small symmetry-
breaking field on the first site of the chain with amplitude hx = −10−2J in the x-direction.

For h/J = 0.5, we probe the transverse magnetisation 〈σ̂z(R, t)〉 and compute the associated
QSF in Fig. 3.18. The boundaries observed in the QSF for the two-excitation continuum matches
very well with the ones predicted by evaluating numerically the derivative with respect to q of
g̃k(q, ω) at q = q̃k(ω) (dashed green line). It turns out that for h/J = 0.5, we are sufficiently far
from the critical point such that the spectrum is approximately given by Ek ' 2h − 2J cos(k).
Therefore the continuum boundaries can be approximated by Eq. (3.82) with ∆ = 2J and v = 2h
(recall that in the dual phase the roles of h and J are reversed, see below). This is even more
visible if we move further away from the critical point, as shown in Fig. 3.19(b) for h/J = 0.2.
Let us now explain why σ̂z can probe such 2-excitations continuum. We will make use of the
self-duality mapping of the model already discussed in Sec. 1.1.3. We start from the Hamiltonian
of the form Ĥ = ∑

j −Jσ̂xj σ̂xj+1−hσ̂zj . Thanks to the duality mapping, we may write σ̂zj = µ̂xα+1µ̂
x
α

in the reciprocal lattice, where the µ̂’s are Pauli matrices. Using the linearised Holstein-Primakoff
transformation, µ̂xj = âj+â†j such that σ̂zj =

(
âj + â†j

) (
âj+1 + â†j+1

)
. Moving to momentum-space,

such observable contains a term of the form (3.77) which reveals the 2-excitation continuum. Note
that it also contains a term of the form (3.65) which probes the energy differences and that we
already discussed in Sec. 3.3.4. One last subtlety is that the Hamiltonian now reads in terms
of the new Pauli matrices as Ĥ = ∑

α−hµ̂xαµ̂xα+1 − Jµ̂zα. Therefore it is the same Hamiltonian
as the original one, but with the roles of h and J reversed. The 2-excitation boundaries in the
x-polarised phase are therefore given (far from the critical point) by 4J±4h cos(k/2) for the upper
and lower edge of the continuum respectively. Similarly, the continuum from energy differences,
barely visible in Fig. 3.18 has an upper edge given by 2v sin(k/2) with v = 2h. Closer to the
critical point, the continuum envelope gets distorted compared to the simple form (3.82), but it
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Fig. 3.19 (a) Space-time pattern of 〈σ̂z(R, t)〉 after preparing the system in its ground state
for h/J = 0.2 and rotating the central spin by θ = −π/2 around y (such that it points along
+z). Periodic boundary conditions are used and L = 15 sites. (b) Associated normalised QSF
modulus. The 2-excitation continuum is well approximated by Eq. (3.82) since far from the
critical point the spectrum is almost cosine-like. (c,d) Are similar but with h/J = 0.8. Closer
to the critical point, the continuum envelope of Eq + Eq−k deviates from the previous simple
analytical form but can be determined numerically (dashed green). The energy transitions are
also visible below the continuum.

can still be obtained numerically since the spectrum is exactly known. We show such an example
in Fig. 3.19(d) for h/J = 0.8 (dashed green). Several lines from the energy transitions are also
visible below the 2-excitation continuum.

It proves interesting to compare the results obtained for the probe 〈σ̂z(R, t)〉 with the ones that
can be obtained from the dynamical structure factor in pump-probe spectroscopy at both zero
and finite temperature. However, to keep our focus purely on quench spectroscopy, we postpone
this discussion to Appendix 3.B.

3.3.5.2 Two-excitation continuum in the Bose-Hubbard chain
The observation of the signal from the 2-excitation continuum is not restricted to the transverse-
field Ising model, and can also be observed on the Bose-Hubbard chain. In the strongly interacting
Mott insulating phase, the true elementary excitations (see Appendix 1.D) are the Bogoliubons

γ̂†k,± = ukĉ
†
k,± ± vkĉ−k,∓, (3.83)
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Fig. 3.20 (a) Space-time pattern of the density 〈n̂(R, t)〉 in the Bose-Hubbard chain in the
Mott phase with U/J = 20 and n̄ = 1. The initial state is the ground state where a particle has
been moved from the central site to its neighbour. (b) Corresponding normalised modulus of
the QSF on the region showing the 2-excitation continuum whose boundaries are in excellent
agreement with the predicted algebraic divergences (dashed green). This signal is extremely
weak (see cutoff on the colorbar).

and the full expression of the density is (removing the time dependence to lighten the notations)

n̂(R) = â†RâR = (n̄+ 1)ĉ†R,+ĉR,+ + n̄ ĉR,−ĉ
†
R,−

= (n̄+ 1)
∑
p,p′

ei(p′−p)R
[
upup′ γ̂

†
p,+γ̂p′,+ − vpvp′ γ̂−p,−γ̂†−p′,− + upvp′ γ̂

†
p,+γ̂

†
−p′,− − vpup′ γ̂−p,−γ̂p′,+

]
+ n̄

∑
p,p′

ei(p−p′)R
[
upup′ γ̂p,−γ̂

†
p′,− − vpvp′ γ̂

†
−p,+γ̂−p′,+ − upvp′ γ̂†−p,+γ̂†p′,− + vpup′ γ̂p,−γ̂−p′,+

]
,

(3.84)

where we inverted Eq. (3.83) to write ĉ†k,± = ukγ̂
†
k,± ∓ vkγ̂−k,∓. By relabelling a few indices we

conveniently rewrite the on-site density in the compact form

n̂(R) =
∑
p,p′

Cuu
pp′ γ̂

†
p,+γ̂p′,+ + Cvv

pp′ γ̂−p,−γ̂
†
−p′,− + Cuv

pp′ γ̂
†
p,+γ̂

†
−p′,− + Cvu

pp′ γ̂−p,−γ̂p′,+, (3.85)

where the prefactors are interaction dependent through the Bogoliubov-De Gennes functions u
and v. In Sec. 3.3.4, we focused on the very strongly interacting regime (U/J = 75 in Fig. 3.17)
such that up ' 1 and vp ' 0 in excellent approximation. Thus, only Cuu

pp′ 6= 0 in Eq. (3.85) and we
recover the form (3.65) probing energy differences. When the interactions are a little less strong,
vp = O(J/U) and the coefficients Cuv

pp′ and Cvu
pp′ start to become relevant. Since these terms are of

the form (3.77), the density also probes a signal coming from the pair of two different excitations.
The signal observed in the QSF can be understood by generalising Eq. (3.51) to this specific

situation. We take |n′〉 to be the ground state, while 〈n| contains two elementary excitations with
momentum k1 and k2. For simplicity, we focus on the contribution ∑

p,p′ C
uv
p,p′ γ̂

†
p,+γ̂

†
−p′,−. (The

same reasoning applies to ∑p,p′ C
vu
pp′ γ̂p,−γ̂−p′,+ by reversing the role of n and n′). The momentum

selection rule on the eigenstate 〈n| imposes only the momentum of the pair of the excitations
k1 + k2 to be −k, so without loss of generality we choose k1 = −k − q and k2 = q with q being
arbitrary. The matrix elements of the observable are given by

〈n| Ô |n′〉 =
∑
q,p,p′
〈0| γ̂−k−q,+γ̂q,−Cuv

p,p′ γ̂
†
p,+γ̂

†
−p′,− |0〉 =

∑
q,p,p′

Cuv
p,p′δ−k−q,pδq,−p′ = Cuv

−k−q,q, (3.86)

and since the energy of the eigenstate n is En = E+
−k−q + E−q , finally the QSF is

G(k, ω) ∝
ˆ
ρ

0;(−k−q,q)
i Cuv

−k−q,q δ(E+
−k−q + E−q − ω) dq. (3.87)
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The contribution of the term Cvu is similar by changing n ↔ n′. The consequence of Eq. (3.87)
is that a continuum (q is arbitrary) appears around the gap U , with a sharply defined envelope
that corresponds to the lines where the function E+

−k−q + E−q − ω tends to zero. These algebraic
divergences of the QSF are similar to the ones discussed from Eq. (3.69). We display the result of
the numerical post-quench dynamics of 〈n̂(R, t〉 together with the corresponding QSF in Fig. 3.20.
Since the expressions for E±(k) are known [for n̄ = 1, see by Eq. (1.113)], we can evaluate the
boundaries of the predicted continuum and we represent them by the dashed green lines. They
show an excellent agreement with the QSF. The amplitude of such signal is extremely weak,
which shows the sensitivity of the QSF and the predictive power of a careful quench spectroscopy
analysis. Indeed here, the smallness of the signal in comparison with the energy differences comes
from the fact that Cuv

pp′ � Cuu
pp′ in the expression of the density (3.85) since U � J .

In conclusion, we have proposed in this chapter a general scheme to study the spectral prop-
erties of the excitations by following the out-of-equilibrium dynamics after a quantum quench in
translation invariant systems. As for any spectroscopic technique, in quench spectroscopy the
choice of the observable determines the spectral properties that can be studied: excitation spec-
trum, energy transitions or higher excited states. The probed quantity can be understood by
decomposing the observable in terms of quasiparticles. The common example to many lattice
models of a cosine-like excitation spectrum has been detailed analytically, since it offers a simple
interpretation of the observed continua.

After a global quench, since translation invariance of the initial state is preserved, two-point
correlators are necessary to probe spectral properties. After a local quench which break the
translation invariance of the initial state, the simpler one-point functions can be used. In both
cases, and in contrast to standard pump-probe spectroscopies, the study of the out-of-equilibrium
dynamics allows to probe equal-time correlators, such that the quench spectral function can be
reconstructed from snapshots of the dynamics. This grants a momentum-resolved spectroscopy
over the full Brillouin zone without requiring any external calibration for each value of the mo-
mentum. Another advantage of the method is its simplicity: after a global quench, a bunch of
excitations are automatically generated throughout the system. Local quenches also offer a sim-
pler tool compared to alternative methods by avoiding to explicitly construct the excitation, here
only a single local quench can probe the entire spectrum.

Here we focused on one-dimensional systems to make use of efficient tensor network numerical
simulations in order to benchmark the method, but the technique should equally apply to higher
dimensions and different models (especially fermions, not considered here). We chose our dy-
namical parameters to match with the resolution that can already be accessed by state-of-the-art
experiments either using local quenches [Fukuhara, Kantian, et al., 2013; Fukuhara, Schauß, et al.,
2013; Jurcevic et al., 2015] or global ones [Trotzky et al., 2012]. We note however that values up to
tmax = 100~/J are now being used in experiments [Kohlert et al., 2019; Rispoli et al., 2019], which
would probe spectral properties with an unprecedented resolution.



Appendices



3 Quench spectroscopy 124

3.A Approximate Bethe ansatz for the Bose-Hubbard model
While the Lieb-Liniger model is integrable and can be solved exactly using the Bethe ansatz (Ap-
pendix 1.A), its lattice counterpart, the Bose-Hubbard model, breaks integrability for a finite
value of the interaction parameter U/J [Sutherland, 2004]. Nonetheless, we discuss below how in
the strongly interacting regime at low filling, an approximate approach based on the Bethe ansatz
can reasonably describe the dynamics of the low-energy excitations.

3.A.1 Validity regime of the Bethe ansatz approach
The integrability breaking of the Bose-Hubbard chain for finite interactions can be related to the
presence of multiply occupied states containing at least 3 bosons on a single site [Choy and Haldane,
1982; F. Haldane, 1980]. Such states, allowed by the bosonic statistics, violate the consistency
condition that three-body scattering can be decomposed into a product of two-body scattering
independently of the ordering. The model is not integrable, Bethe ansatz states do not cover the
full Hilbert space. Worse, the states described by the ansatz may be unphysical, in the sense that
they may not obey the Schrödinger equation.

Regardless, in a pioneering work [Krauth, 1991] argued that the Bethe ansatz gives an ap-
proximative but acceptable solution for thermodynamic quantities if n̄ < 1. He interpreted the
agreement by noting that for sufficiently strong interactions, the density fluctuations are small
enough such that the states containing more than two particles on a single site become less
and less probable and therefore do not contribute significantly to the thermodynamic properties.
On small systems, we may estimate the contribution of such states using exact diagonalisation
(Fig. 3.21). At low filling n̄ � 1 and sufficiently strong interactions U � J , states involving
multiply-occupied sites with three bosons or more are very unlikely. To give a number, we will
show below that the approximate Bethe ansatz approach gives an acceptable approximation for
thermodynamic quantities in the ground state if U > 8J with n̄ < 1.

3.A.2 Bethe equations and thermodynamic properties
The strategy to derive the Bethe equations for the Bose-Hubbard chain is very similar to the one
detailed for the Lieb-Liniger case (Sec. 1.A.1.3). We first obtain the two-particle phase shift, from
which we express the approximate Bethe equations for U � J and n̄� 1. We then explain how
to extract thermodynamic quantities and test the approximation by comparing to other methods.
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Fig. 3.21 Contribution wn = ∑
α |〈n|α〉|

2 of the Fock states |α〉 with at least 3 bosons on at
least one site to the eigenstate |n〉 which refers to (a) the ground state and (b) the first excited
state. This result has been computed using ED on a L = 10 sites system for the interaction
values U/J = 5, 10, 20, 50, 100. For all but the weakest interactions, such highly occupied states
do not contribute much to the low-energy physics.
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Fig. 3.22 Representation of the different sectors in the plane (x1, x2). The frontier between the
two sectors (red line) represents the interaction region. The tunnelling term of the Hamiltonian
can induce a move in the sector Q (blue) or the sector Q′ (green). In these two regions the
wave function is given by the ansatz (3.89).

3.A.2.1 The two-particle phase shift
The goal of this subsection is to derive the two-particle phase shift θ12 initially obtained by [Krauth,
1991]. The result is given by Eq. (3.94). We focus on the simplest case of two particles, labelled
by an index j = 1, 2 and located at the sites xj. The Schrödinger equation reads as

ĤBH ψ(x1, x2) =− J [ψ(x1 + 1, x2) + ψ(x1 − 1, x2) + ψ(x1, x2 + 1) + ψ(x1, x2 − 1)]
+ U

2 [δ(x1 − x2) + δ(x2 − x1)]ψ(x1, x2) = E ψ(x1, x2).
(3.88)

We denote by fQ,Q′ the restriction of the wave function to one of the two sectors Q = {x1 < x2}
or Q′ = {x1 > x2} and we make the following ansatz for the reduced wave function in each sector

fQ = AQ(k1, k2) ei(k1x1+k2x2) + AQ(k2, k1) ei(k2x1+k1x2),

fQ′ = AQ′(k1, k2) ei(k1x2+k2x1) + AQ′(k2, k1) ei(k2x2+k1x1).
(3.89)

The continuity of the wave function imposes that on the boundary x1 = x2, fQ = fQ′ . We then
determine whether the wave function belongs to the sector Q or Q′ (Fig. 3.22) and write

ĤBHψ = −J
[
AQ′(k1, k2) eik2 ei(k1x2+k2x1) + AQ′(k2, k1) eik1 ei(k2x2+k1x1)

+ AQ′(k1, k2) e−ik1 ei(k1x2+k2x1) + AQ′(k2, k1) e−ik2 ei(k2x2+k1x1)

+ AQ(k1, k2) e−ik1 ei(k1x1+k2x2) + AQ(k2, k1) e−ik2 ei(k2x1+k1x2)

+ AQ(k1, k2) eik2 ei(k1x1+k2x2) + AQ(k2, k1) eik1 ei(k2x1+k1x2)
]

+ U
(
AQ(k1, k2) ei(k1x1+k2x2) + AQ(k2, k1) ei(k2x1+k1x2)

)
.

(3.90)

Our goal is now to determine the amplitude coefficients. Since we work with bosons, the
global wave function must be symmetric under the exchange of two particles which imposes that
AQ(k1, k2) = AQ′(k1, k2) (which we now simply write A12) and AQ(k2, k1) = AQ′(k2, k1) (which we
now simply write A21). Furthermore, we are only interested in the value of the wave function on
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the boundary x1 = x2 where the interaction term is non-vanishing, so we take x1 = x2 = x̄. Up
to an irrelevant phase factor ei(k1+k2)x̄, Eq. (3.90) simplifies into

ĤBHψ = −J
[
A12 e−i(k1−k2) + A21 ei(k1−k2) + A12 e−i(k1−k2) + A21 ei(k1−k2)

]
+U (A12 + A21) . (3.91)

Now we impose that the energy is of the form −2J [cos(k1) + cos(k2)] (which corresponds to the
hard core limit where U →∞ and the model can be mapped to free fermions) such that

Eψ = −J
[
eik1 + e−ik1 + eik2 + e−ik2

]
(A12 + A21) . (3.92)

To satisfy the Schrödinger equation (Eq. (3.91) and (3.92) are equal), the following constraint has
to be satisfied

A12
[
U + J

(
eik1 − e−ik1

)
− J

(
eik2 − e−ik2

)]
= A21

[
−U + J

(
eik1 − e−ik1

)
− J

(
eik2 − e−ik2

)]
,

(3.93)
which can be expressed as

A12

A21
=
i(sin k1 − sin k2)− U

2J
i(sin k1 − sin k2) + U

2J
:= −eiθ12 , with θ12 = −2 arctan

[
2J
U

(sin k1 − sin k2)
]
. (3.94)

As mentioned by [Krauth, 1991], this expression can be obtained directly by using the phase-shift
of the Lieb-Liniger model θ12 = −2 arctan((k1 − k2)/c) and the mapping c = U/(2Ja); k → sin k.
The explicit derivation above ensures that no factor such as cos k appear (this will be the case for
the excitations where the result cannot be simply derived from the continuum limit).

3.A.2.2 Approximate Bethe equations
For strong interactions and at low filling, we may neglect the integrability breaking and assume
that the N -particles system can be described approximately by the following Bethe equations

eikjL = (−1)N−1
N∏
l=1

eiθjl . (3.95)

Taking the logarithm, we write it as

kjL = 2πIj +
N∑
l=1

θjl, (3.96)

with Ij = Ĩj−
(
N−1

2

)
∈ N for N odd (half-integers for N even) and Ĩj ∈ [0;N ] in the ground state.

Importantly, just as in the continuum case, the ground state can be described by the ordered
and equidistant quantum numbers Ĩj. To describe the thermodynamic properties, we define the
counting function

y(kj) := kj −
1
L

N∑
l=1

θjl, (3.97)

so that

dy
dkj

= 1− 1
L

N∑
l=1

−2× 2J
U

cos kj
1 +

[
2J
U

(sin kj − sin kl)
]2 = 1 + U

J
cos kj

1
L

N∑
l=1

1(
U
2J

)2
+ (sin kj − sin kl)2

:= y(kj+1)− y(kj)
kj+1 − kj

=
2π
L

(Ij+1 − Ij)
kj+1 − kj

= 2πρ(kj).

(3.98)
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Therefore in the thermodynamic limit we obtain

2πρ(k) = 1 + U

J
cos k

ˆ kF

−kF

ρ(k′) dk′(
U
2J

)2
+ (sin k − sin k′)2

. (3.99)

Introducing the reduced variables

α = U

2JkFa
, γ = U

2Jna , (3.100)

the set of coupled equations we need to solve numerically is

α

γ
=
ˆ 1

−1
g(x) dx (3.101a)

g(x) = 1
2π + α

π
cos(kFx)

ˆ 1

−1

g(y) dy
α2 + 1

k2
F

[sin(kFx)− sin(kFy)]2
. (3.101b)

In the continuum limit a→ 0, we recover the equations of the Lieb-Liniger model.

3.A.2.3 Generating function of thermodynamic properties
In the Lieb-Liniger model, only a single parameter, α = c/kF, was required to solve the Bethe equa-
tions (1.71). Equivalently but more conveniently, we chose the parameter γ. In the discrete case
now, we need to specify independently two parameters {α; kF} to solve the set of equations (3.101).
This additional parameter comes from the additional length scale due to the discretisation (the
lattice spacing, set to one in the following). Physically, it proves more convenient to specify inde-
pendently the two parameters {U/J ; kF}. By analogy with the generating function e(γ), defined
by Eq. (1.68), we define the generating thermodynamic function e(U/J ; kF) as11

e(U/J ; kF) = E0/J

n̄3 = −2kF

n̄3

ˆ 1

−1
cos(kFx)g(x) dx. (3.102)

From this choice of variables we can express in a compact form all thermodynamic quantities, since
they are defined at fixed U/J and system size L. To lighten the notations, we write e = e(U/J ; kF)
and all derivatives below are implicitly taken at fixed U/J and L such that

µ/J = ∂(E0/J)
∂n̄

= 3n2e+ n3 ∂e

∂kF

(
∂n

∂kF

)−1

(3.103a)

κ−1
phys = n2∂µ

∂n
= 6n3e+ 6n4 ∂e

∂kF

(
∂n

∂kF

)−1

+ n5
(
∂n

∂kF

)−2
 ∂2e

∂k 2
F
− ∂e

∂kF

∂2n

∂k 2
F

(
∂n

∂kF

)−1
 .
(3.103b)

To compute e(U/J, kF) numerically, we fix some initial parameters (U/J, kF) and immediately
obtain α. We then solve the Bethe equations by successive iterations to obtain the rescaled
quasimomentum density g(x), and then the filling n̄. From there we can compute the generat-
ing thermodynamic function e(U/J, kF), and then any thermodynamic function in particular the
chemical potential µ and the compressibility κ. The algorithm used is adapted from the one
discussed for the Lieb-Liniger model, and its basic steps are represented in Fig. 3.23.

11In the continuum limit, one recovers the definition (1.68) up to a factor 2/n̄2. This is because the ground
state energies between the two models are shifted by 2J . Also note that e(U/J ; kF) remains only a function of
γ = U/2Jn̄, but γ now depends on both variables U/J and kF.
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Initialise
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Thermodynamic
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Fig. 3.23 Flowchart of the algorithm used to compute thermodynamic quantities in the Bose-
Hubbard chain. The equations used are (3.101), (3.102) and (3.103).

3.A.3 Numerical results using the Bethe ansatz
Once the parameters (U/J, kF) are fixed, we can solve iteratively the approximate Bethe equations
to evaluate the dimensionless quasimomentum density g(x) and the filling n̄. The correspondence
between kF and n̄ is shown in Fig. 3.24(a). As expected, in the strongly interacting regime we
recover the fermionised result kF ' πn̄. A physically acceptable solution of the Bethe equations
is obtained if n(kF) is a strictly monotonic function such that n(kF) = kF

´ 1
−1 g(x) dx is bijective.

A pathological region appears for high fillings n̄ ' 1 and weak interactions U/J < (U/J)c. The
interaction value threshold below which the approximate Bethe ansatz breaks down at n̄ = 1
can be determined analytically as (U/J)c = 2

√
3 ' 3.46 [Krauth, 1991]. This is confirmed by

our numerical results, where for interactions below this threshold value, negative values of the
(rescaled) quasimomentum density g(x) can be observed [Fig. 3.24(b)].

Of course requiring that the (rescaled) quasimomentum density is positive for all values is
a necessary but not sufficient condition for the results to be physically meaningful. To assess
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Fig. 3.24 (a) By specifying the Fermi quasimomentum kF, we obtain a unique value of the
filling n̄ only if U/J > (U/J)c and n̄ < 1. Otherwise, the solution given by the approximate
Bethe ansatz is not physically acceptable. While the precise value of (U/J)c can be determined
to an arbitrary accuracy, here we simply show that 3.3 < (U/J)c < 3.6 (see inset). (b) Rescaled
quasimomentum density g(x) := ρ(k/kF) for different interaction values, close to n̄ = 1. For
very large interactions, g(x) ' 1/2π (fermionised regime). Generally, the quasiparticles localise
in quasimomentum space around k = 0. Below (U/J)c, the approximate Bethe ansatz breaks
down as the quasimomentum density takes negative values (see inset).
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Fig. 3.25 (a) Chemical potential and (b) reduced compressibility as a function of the filling for
different interaction values. The plateau around n̄ = 1 does not refer to the Mott transition.
As shown by the inset, it corresponds to a region where the approximate Bethe ansatz approach
is no longer valid. Such states yield a negative compressibility (inset in b).

the quality of the approximation, we need to compare to known exact results. In the regime
where the Bethe ansatz can a priori be used, we obtain the equation of state of the system µ =
f(n̄) [Fig. 3.25(a)] and other thermodynamic quantities, for instance the reduced compressibility
[Fig. 3.25(b)]. For (U/J)c = 2

√
3 ' 3.46 at n̄ = 1, the compressibility diverges and crosses zero.

Negative compressibilities are not physical, and this shows that such divergence does not signal
the SF-MI phase transition (found using exact methods to be at (U/J)c = 3.3(1) [Ejima et al.,
2011; Ejima et al., 2012; Kashurnikov and Svistunov, 1996]), as it appears inside the unphysical regime
with negative quasimomentum densities.

3.A.4 Assessing the quality of the approximation
Since the model is not integrable, we want to know how good the approximate Bethe ansatz
is for calculating thermodynamic quantities. We expect the approach to become worse at high
filling where the multiply occupied sites play an increasingly important role (Sec. 3.A.1). The
most binding criterion is for n̄ = 1, where we collect the value of the chemical potential for each
value of the interaction U/J > (U/J)c and reconstruct the lower part of the first Mott lobe from
the approximate Bethe ansatz. The structure of the lobe is well established and allows for a
comparison with exact results (Fig. 3.26).

We compare our result to two models: first, a troncated model where at most two bosons
per site are allowed [Kashurnikov and Svistunov, 1996; Kashurnikov et al., 1998] and second the full
model12. As expected, the truncation of the Hilbert space has a dramatic effect especially at high
filling and low interactions. For instance, the critical point of the SF-MI transition (U/J)c at
n̄ = 1 is lowered by a factor of 5 in the reduced model [Kashurnikov et al., 1998], and the Mott lobe
structure is strongly modified compared to the full model close to the tip of the lobe (Fig. 3.26).
A discrepancy shows that multiply occupied states contribute significantly to the thermodynamic
properties of the system. We first note that in the region n̄ < 1 and U/J > 8, the predictions
of the full and reduced model become equivalent, and they further agree with the approximate
Bethe ansatz result. The model is “quasi integrable”, in the sense that the ansatz form describes
well the solutions that are relevant for the ground state thermodynamic properties of the system.

When the interactions are reduced, the ansatz misses physical solutions of the Schrödinger
equation that contribute significantly to the thermodynamic properties. More surprisingly, a
discrepancy is also visible with the reduced model. This suggests that the form of the ansatz does
not capture all the relevant solutions with at most two particles per site. In this regime where

12Any DMRG data is obtained by imposing a cutoff on the dimension of the local Hilbert space. The full model
means that increasing the cutoff yields the same result.
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Fig. 3.26 First Mott lobe obtained by the approximate Bethe ansatz (full red line) compared
with the Quantum Monte-Carlo data from [Kashurnikov et al., 1998] (blue triangles) for the
reduced model and the DMRG data from [Kühner et al., 2000] (green circles) for the full
model. On the region of strong interactions (U/J > 8) all approaches coincide. For weaker
interactions, significant discrepancies between the predictions appear.

n̄ ' 1 and U/J < 8, the approximate Bethe ansatz should not be used.

3.A.5 Excitations and the excitation spectrum
Now that we have studied the ground state properties in the thermodynamic limit, we investigate
the low-lying excited states. Following the procedure described for the Lieb-Liniger model, we
describe how the quasimomenta redistribute when an excitation is created. Our goal is to obtain
an equation for the backflow function J(k) and use it to express the predicted excitation spectrum.

3.A.5.1 Derivation of the backflow equation
Physically, an excitation which conserves the particle number corresponds to the removal of a
particle α from within the Fermi sea in quasimomentum space, and its placement above it. By
definition, the equations for the N -particle ground state and the N -particle excited state are13

kjL = 2πIj +
N∑
l=1

θ (sin kj − sin kl) ,

k?jL = 2πI?j +
N∑
l=1

θ
(
sin k?j − sin k?l

)
.

(3.104)

We now want to know how the other quasimomenta kj with j 6= α redistribute after this move of
the particle α. Thus we define ∆kj = k?j − kj, assuming that ∆kj � kj, and look for an equation
on ∆kj. Since we only create one excitation, I?j = Ij for j 6= α. Then, for j 6= α, by taking the
difference between the two equations (3.104) we get

∆kjL =
N∑
l=1

[
θ(sin k?j − sin k?l )− θ(sin kj − sin kl)

]
,

'
∑
l 6=α

[∆kj cos kj −∆kl cos kl]K(sin kj − sin kl)

+ θ(sin kj − sin k?α) + ∆kj cos kjK(sin kj − sin k?α) + θ(sin kj − sin kα),

(3.105)

13From a technical point of view, we consider below Yang-Yang like excitations, and not Lieb like ones (see
details in Sec. 1.A.3 on the Lieb-Liniger model).
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where we defined
K(sin kj − sin kl) := −U/J(

U
2J

)2
+ [sin kj − sin kl]2

. (3.106)

To first order, we have ∆kj cos kjK(sin kj − sin k?α) ' ∆kj cos kjK(sin kj − sin kα). We include
this term so as to complete the sum over l in Eq. (3.105), and by regrouping the terms in ∆kj on
the left-hand side we get

∆kjL
[
1− cos kj

L

N∑
l=1

K(sin kj − sin kl)
]

= −
∑
l 6=α

∆kl cos klK(sin kj − sin kl)

+ θ(sin kj − sin k?α)− θ(sin kj − sin kα).
(3.107)

The term inside the brackets on the left is equal to 2πρ(kj) from the Bethe equation (3.98). In
the thermodynamic limit, we finally get

2πJ(k) = U

J

ˆ kF

−kF

J(k′) cos k′ dk′(
U
2J

)2
+ [sin k − sin k′]2

+ θ(sin k − sin k?α)− θ(sin k − sin kα), (3.108)

which can be written in dimensionless form by setting α = U
2JkF as

J(x) = α

π

ˆ 1

−1

cos(kFy)J(y) dy

α2 + 1
k2

F
[sin(kFx)− sin(kFy)]2

+ 1
π

arctan
[

sin(kFx
?
α)− sin(kFx)
αkF

]
− 1
π

arctan
[

sin(kFxα)− sin(kFx)
αkF

]
.

(3.109)

This is the backflow equation we were looking for. Note that, up to a global shift of ±π when one
adds or remove a particle in quasimomentum space, the Lieb-like excitations can be described by
setting either xα = 1 with x?α ∈]− π;−1[∪ ]1; π[ (type-I) or x?α = 1 and −1 ≤ xα < 1 (type-II).

3.A.5.2 Expression of the momentum and energy of the excited state
The momentum and energy difference between the first excited state and the ground state can be
written as functions of the backflow function. The momentum difference is

P :=
N∑
j=1

k?j =
∑
j 6=α

(kj + ∆kj) + k?α
TL−→ k?α − kα +

ˆ kF

−kF

J(k) dk, (3.110)

where we have used that ∑N
j=1 kj = 0 in the ground state, and the energy difference is

∆E := −2J
N∑
j=1

cos k?j + 2J
N∑
j=1

cos kj ' −2J(cos k?α − cos kj) + 2J
∑
j 6=α

∆kj sin kj

TL−→ −2J (cos k?α − cos kα) + 2J
ˆ kF

−kF

J(k) sin k dk,
(3.111)

where we neglected a second order term in the energy redistribution. In dimensionless form we
finally have

P = kF

[
(x?α − xα) +

ˆ 1

−1
J(x) dx

]
,

∆E
J

= −2 [cos(kFx
?
α)− cos(kFxα)] + 2kF

ˆ 1

−1
J(x) sin(kFx) dx.

(3.112)
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Fig. 3.27 Excitation spectrum continuum predicted by the approximate Bethe ansatz for the
Bose-Hubbard chain, with U/J = 10 for different values of the filling n̄.

We can numerically obtain the excitation spectrum ∆E = f(P ) with x?α ∈] − π
kF

;−1[∪ ]1; π
kF

[
and −1 < xα < 1. We solve the backflow equation (3.109) for a given set {U/J ; kF} and then
reconstruct the full excitation continuum from Eq. (3.112). The result is shown in Fig. 3.27. As
discussed in Sec. 3.2.2.2, the envelope of the obtained continuum is in excellent agreement at low
filling with the spectral intensities observed in global quench spectroscopy (Fig. 3.3).
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3.B Comparison between the dynamical structure factor
and the QSF

The dynamical structure factor is defined for a finite temperature T (with kB = 1) as

S(k, ω) = 2π
∑
n,m

e−En/T
Z

∣∣∣〈m| Ŝzk |n〉∣∣∣2 δ(ω − Em + En), (3.113)

with Z = ∑
n e−En/T . At zero temperature it reduces to

S(k, ω) = 2π
∑
m

∣∣∣〈m| Ŝzk |0〉∣∣∣2 δ(ω − Em), (3.114)

where the ground state energy has been chosen such that E0 = 0. Equivalently, for a spin model
it represents the space-time Fourier transform of the non-equal time spin-spin correlator (here
along z). To evaluate Eq. (3.113), we decompose the eigenstates of the system (Latin indices
{|n〉} on the basis where the spin value along z on each site is fixed as either 1/2 or −1/2 (Greek
indices {|α〉}), such that |n〉 = ∑

α 〈α|n〉 |α〉 := ∑
α cα,n |α〉 . Such basis is advantageous since

〈α| ŜzR |β〉 = 〈
{
Sz1 · · ·Szdim(H)

}
α
| ŜzR |

{
Sz1 · · ·Szdim(H)

}
β
〉 = δα,βS

z
R(α), (3.115)

which is simply the expectation value of the spin along z on site R for the state α. Furthermore,
by diagonalising the Hamiltonian numerically, we get all overlaps cα,n exactly and we may evaluate
the matrix elements of the observable as [Roth and Burnett, 2004]

〈m| Ŝzk |n〉 =
L∑

R=1
e−2iπkR/L

dim(H)∑
α

c?α,ncα,mS
z
R(α). (3.116)

For a spin-1/2 chain, this overlap coefficient requires the evaluation of L× 2L terms. In addition,
we need to evaluate this overlap 2L times at T = 0 and 2L × 2L times at finite temperature to
compute the dynamical structure factor. The brute-force computation is therefore numerically
very costly and since we only aim at a qualitative comparison we shall restrict to small sizes where
exact diagonalisation can be used. Numerically, we also replace the delta distribution by a smooth
Gaussian function δ(x) → 1√

2πσ2 e−
x2

2σ2 and we choose the variance σ such that the full width at
half maximum (FWHM) 2

√
2 ln(2)σ coincides with the resolution of quench spectroscopy 2π/tmax.

Combining all the steps above, we evaluate first Eq. (3.114) and display our results in Fig. 3.28
at zero temperature for L = 8.

Comparing with the result obtained in quench spectroscopy using the QSF (Fig. 3.19), we
see that the dynamical structure factor also allows to reconstruct the 2-particle continuum (its
boundaries are represented by the same dashed green lines). A striking difference however with
the QSF is that the signal from the energy differences is not visible at all, despite the observable
being the same. This is because at zero temperature, there is a single sum over the Hilbert space
and only the transitions to the ground state are allowed, so the energy transitions between two
excited levels Em−En are absent and we only have Em−E0. The fact that the dynamical structure
factor is not sensitive to such transitions is due to its vanishing off-diagonal coherences, and thus
the fact that such quantity is defined with respect to an equilibrium ensemble, in contrast to the
QSF where the initial state is out of equilibrium in the eigenbasis that controls the dynamics. As
we have discussed for quench spectroscopy, the observable Ŝzk cannot couple to the first excited
state manifold, so the spectrum is not observed and the signal we see here comes from the coupling
between the second excited manifold with two quasiparticle excitations and the ground state.

We also compute the dynamical structure factor at finite temperatures from T = 10−2J to 10J
with L = 5 using Eq. (3.113). We represent our results in Fig. 3.29.
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Fig. 3.28 Normalised dynamical structure factor at T = 0 computed using exact diagonali-
sation for the TFI model with periodic boundary conditions and L = 8 sites (a) h/J = 0.2
and (b) h/J = 0.8. The direct ground state transition has been forbidden numerically to en-
hance visibility. To facilitate comparison with quench spectroscopy, the frequency broadening
of the delta function approximated by a Gaussian with variance σ is chosen such that its full
width at half maximum (FWHM) equal to 2

√
2 ln(2) coincides with the resolution of quench

spectroscopy 2π/tmax, with (a) tmax = 20J−1 and (b) tmax = 10J−1.

When the temperature increases, the transitions between two excited levels Em − En become
possible, and just as for the QSF we observe a signal below the 2-excitation continuum coming
from such energy transitions. The higher the temperature, the more transition lines are observed.
This suggests that the role played by temperature in pump-probe spectroscopy is similar to the
role played by the strongness of the quench in quench spectroscopy, stronger quenches exciting
more and more energy levels and allowing additional transition lines to appear in the QSF.
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Fig. 3.29 Normalised dynamical structure factor at finite temperature T for h/J = 0.8 com-
puted using exact diagonalisation for the TFI model with periodic boundary conditions and
L = 5 sites. The temperatures are (a) T = 0.01J (b) T = 0.1J (c) T = 1J and (d) T = 10J .
The transitions between identical eigenstates (which contribute to the ω = 0 signal) have been
forbidden numerically to improve visibility.



4 Quench spectroscopy for
disordered systems

In the previous chapters, we have only discussed translation invariant clean systems. On the one
hand, they constitute an approximation to the physical reality – albeit a very good one in ultracold
atoms where the system can be very well isolated from external perturbations and prepared so
as to contain almost no defect. On the other hand, thanks to the degree of control ultracold
systems offer, this platform can simulate solid state systems where disorder is almost impossible
to avoid. Including disorder leads to the emergence of new physical effects, including for instance
the existence of new phases of matter and a modification of the behaviour of the excitations
which tend to localise in real-space. We introduce briefly the physics of disordered systems and
its motivations in Sec. 4.1. We then specialise to a prime example of a disordered system, the
Bose-Hubbard chain with on-site disorder. We detail the properties of the new phase of matter
named the Bose glass which competes with the Mott insulator (Sec. 4.2). This phase has resisted
unambiguous detection, in particular from the experimental point of view. We discuss the already
obtained achievements and existing detection methods. Finally we investigate the generalisation
of quench spectroscopy to disordered systems where translation invariance is broken (Sec. 4.3). We
first expose the general strategy for a quench spectroscopy in the presence of disorder, and then
we apply it to the disordered Bose-Hubbard chain. We will explain how the spectral properties
are affected in comparison to the clean case discussed in the previous chapter. Using numerical
simulations, we demonstrate that quench spectroscopy can be used in particular to unambiguously
detect the Bose glass phase using a single probe. We show how to extract information about the
underlying excitations of the system within each phase across various regimes, and eventually
reconstruct the phase diagram of the model.

Throughout the following we focus on time-independent random potentials1 affecting the sys-
tem as a whole. This excludes the presence of controlled localised defects which can be understood
as local quenches performed on clean systems (Sec. 3.3). While we focus on random disorder, we
will also briefly mention quasi-random potentials due to their practical relevance, as they can be
engineered using bichromatic optical lattices with incommensurate wavelengths.

4.1 Why are disordered systems interesting?
Many reviews exist on disordered systems, throughout the following I mainly used [Abanin et al.,
2019; Alet and Laflorencie, 2018; Nandkishore and Huse, 2015; Sanchez-Palencia and Lewenstein, 2010].
In the following, we will call a system disordered if it can be described by a Hamiltonian model
that has at least one parameter that is a time-independent random variable with a probability
distribution. Arguably the key physical notion for disordered systems is localisation, which am-
biguously refers to at least three distinct concepts. At low energy, in the absence of disorder but
in the presence of interactions, particles on a lattice can localise to the minima of the potential
created by the optical lattice. This Mott transition, as discussed in previous chapters, has nothing
to do with disorder. Below, we discuss two other localisation concepts which only appear in the
presence of disorder: Anderson localisation in non-interacting systems at low energies (Sec. 4.1.1)
and many-body localisation in interacting systems at high energies (Sec. 4.1.2).

1Sometimes referred to as quenched (or frozen-in) random disorder. We will avoid this terminology to avoid
confusion with the quantum quenches performed.
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Fig. 4.1 In the sole presence of disorder (no interaction), the global wave function localises
on a finite region in real space, and decays exponentially fast from the centre of such region
(Anderson localisation). This phenomenon leads to the absence of diffusive transport on large
distances, which can be interpreted from a semi-classical picture of random scatterers leading
to a dephasing of the global wave function. From [Aspect and Inguscio, 2009].

4.1.1 Anderson localisation
Since the seminal work of [Anderson, 1958], disorder is known to be able to affect dramatically
quantum systems. The phenomenon of Anderson localisation refers to the exponential decay of the
single-particle wave function (non-interacting system) in the presence of a random potential such
that |ψ(r)|2 ∼ exp(−r/lloc) with r = ‖r‖. The disorder localises the single-particle wave function
in real space on a finite region of typical linear size lloc called the localisation length. Diffusive
transport is suppressed for distances larger than the localisation length and the system becomes
globally insulating. This phenomenon is not restricted to quantum physics and is ubiquitous in
the physics of waves, and can be interpreted from a semi-classical picture where random scatterers
prevent the propagation of the wave (function) [Fig. 4.1].

Localisation originates from constructive interferences at short distances and destructive ones
at long distances. In a disordered medium, a wave gets scattered on the impurities. The rescat-
tered wavelets lead to a constructive interference that increase the probability of return to the
origin emission point, thus decreasing global transport. It can be demonstrated rigorously from
renormalisation theory that the transport stops completely in one and two dimensions, and in three
dimensions at sufficiently low energy. In one dimension, localisation surprisingly appears even for
an infinitesimal amount of disorder2. Within ultracold atoms, a significant boost occurred after
realising that Anderson localization can be directly observed and the localisation length measured
in the expansion of a Bose-Einstein condensate, taking advantage of the bounded momentum dis-
tribution in the Thomas-Fermi regime [Lugan et al., 2009; Piraud et al., 2011; Sanchez-Palencia et al.,
2007]. The Anderson localisation was thus unambiguously observed for the first time by [Billy
et al., 2008; Roati et al., 2008] in 1D and by [Jendrzejewski et al., 2012; Semeghini et al., 2015] in 3D.

Reliable methods are therefore required to distinguish localised from delocalised states and
characterise the properties of the underlying quantum phases. A particularly pressing ques-
tion (especially in the presence of interactions, see below) concerns the characterisation of the
localisation-delocalisation transition induced by the disorder. Are all the states from the energy
spectrum localised or is there a finite energy threshold (called the mobility edge) which sepa-
rates localised from delocalised states? If so, how does the mobility edge varies with the system

2For weak disorder, the localisation length lloc is generally large and can be larger than the system size. The
system then appears delocalised, and a larger system size is required to realise that it is not.
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parameters, the type of disorder or the dimensionality? Such questions, stimulated by experi-
ments [Lüschen et al., 2018; Sbroscia et al., 2020; Semeghini et al., 2015] regained theoretical interest
recently in one [Li et al., 2017; H. Yao et al., 2019] and higher dimensions [Gautier et al., 2021; Szabó
and Schneider, 2020].

4.1.2 Quantum glasses and many-body localisation
Do interactions always play with the disorder to reinforce localisation? As insulators are more
the exception than the rule, we already expect that combining interactions with disorder will lead
to non-trivial effects. The interplay between disorder and interactions is pivotal to understand
transport properties in solid-state materials, where electrons interact via the Coulomb interaction
(and with phonons at finite temperature). The study of this question led to the discovery of new
phases of matter and physical effects which are still active fields of modern research.

First of all, given a certain disordered interacting many-body system, does it always have
localised excited states? When they exist, such states are insulators at finite temperature and
are said many-body localised (MBL). MBL phases are intriguing because they do not thermalise.
This is reminiscent of integrable systems which escape thermalisation because their dynamics is
constrained by an extensive set of quasi-local conserved quantities that prevent energy redistri-
bution. Similarly, MBL phases exhibit a form of integrability, where conserved quantities emerge
from localised operators (l-bits) and explain the breakdown of thermalisation [Nandkishore and
Huse, 2015]. The statistical properties of integrable models at long times can be described by a
generalised Gibbs ensemble, as we discussed in Appendix 1.B. [Inglis and Pollet, 2016] provided
evidence for a similar phenomenon with MBL states, where the ensemble is built using local inte-
grals of motion from the l-bits. However there are some differences between MBL states and the
ones accessible to integrable systems. Integrable systems are fragile with respect to perturbations,
and they eventually thermalise in the presence of a weak term that breaks integrability (such as
a harmonic trap used to confine ultracold atoms). In contrast, MBL phases are robust phases of
matter (at least when isolated from the environment and in low dimension). They retain memory
of their initial state at long times and may be good candidates for quantum storage devices. Fi-
nally, the thermal-MBL transition is dynamical, meaning that dynamical probes are necessary to
observe it. It cannot be described by equilibrium statistical mechanics and strongly differs from
standard localisation transitions like the Mott transition.

A second active topic is the one of quantum glasses, which are emergent phases in the presence
of disorder3. The adjective “glassy” was originally used to describe a non-equilibrium phase whose
Helmholtz free energy potential landscape is very complicated and includes many local minima
where the system remains trapped into and thus never thermalises. We will study a specific
example in the following on the disordered Bose-Hubbard model called the Bose glass. Although
glassy phases share some properties with MBL ones (breaking of thermalisation, slow dynamics),
the important difference is that quantum glasses are low temperature phases, thus in particular
zero temperature ones, and therefore are accessible to the ground state of the system. They do not
possess any clear spatial order (exponential decay of correlation functions) and do not break any
physical symmetry and thus prove challenging to detect unambiguously experimentally. Quantum
glasses often possess intriguing properties, for instance by being simultaneously insulating and
admitting gapless excitations. This is rather uncommon, because usually transport is ensured by
the elementary excitations and if the latter can be created at arbitrarily low energies, the system
is not expected to be insulating. The twist is that transport is suppressed globally, but not locally.

Glassy phases often exhibit rare spatial domains referred to as Griffiths regions. The probability
of appearance of such regions decays exponentially with their size, and they are characterised by

3Disorder is a necessary condition, although it may not be sufficient (for instance in spin glasses, frustration is
also known to play a role).



4 Quench spectroscopy for disordered systems 138

Fig. 4.2 For rare disorder realisations, Griffiths regions might occur. Here we considered
random-box disorder (uniform probability distribution where ∆j ∈ [−∆

2 ; ∆
2 ]). A weakly coupled

region (compared to the typical average regions) can be observed towards the centre.

the fact that they strongly differ from the typical regions by being either more strongly coupled
or more weakly coupled than them. An example of such rare region in a particular disorder
realisation is illustrated in Fig. 4.2. These regions, first discovered on classical spin systems, lead
to non-analytic behaviours in certain thermodynamic quantities (for instance the free energy) even
below the critical point [Griffiths, 1969; McCoy, 1969]. Their occurrences are essentially equivalent
to a strongly-coupled localised defect, which governs the relaxation time and thus controls the
dynamics. Since some properties of disordered systems are dictated by very rare events, it becomes
necessary to consider a large number of disorder realisations (samples) in order to capture the
correct physics. Indeed, the behaviour of a single disorder realisation may differ from the typical
behaviour of the system and therefore averaging over the disorder samples is necessary. Lastly,
some systems are said self-averaging, which means that essentially considering a system of double
linear size 2L is equivalent to considering two disorder realisations of a system of linear size L.
This is formally the case if for a large number of disorder realisations Ns, the relative variance of
the disorder average X of the quantity X goes to zero, i.e. (X2 −X2)/X2 → 0. This enables us
to replace numerically the costly large system size limit with a large number of disorder samples
for a smaller system. Such property is usually ensured far from critical points.

Last but not least, it has been suggested recently that the two topics of MBL and quantum
glasses may be in fact intertwined: the glassy ground state and the excitations atop being adiabat-
ically connected (when the temperature is increased) to the MBL of highly excited states [Abanin
et al., 2019]. We certainly hope that the development of additional spectral techniques such as
disordered quench spectroscopy can help to shed light on this question.

4.2 The disordered Bose-Hubbard model
We now focus on the disordered Bose-Hubbard model, especially in one dimension, and discuss
the properties of the new quantum glassy phase that appears called the Bose glass.

4.2.1 The Bose glass
The disordered Bose-Hubbard model is a prototypical example of a disordered system. The
most common type of disorder affects the on-site energy levels, such that the one dimensional
Hamiltonian reads as

Ĥ =
∑
j

[
−J

(
â†j âj+1 + h.c.

)
+ U

2 n̂j (n̂j − 1) + Vjn̂j

]
. (4.1)
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(a) (b)

Fig. 4.3 (a) Renormalisation group flow in the presence of disorder on the bosonic chain, and
the separatrix between the two localised phases and the delocalised superfluid. From [Gia-
marchi and Schulz, 1987]. (b) Sketch of the phase diagram in the grand canonical ensemble
for increasing disorder strength ∆. Each frontier of the lobe shrinks as ∆/2U , such that for
∆ ≥ U the Mott lobes disappear entirely. From [Fallani et al., 2007].

There exists two main types of disorder, corresponding to different choices for the distribution of
variables Vj. Random box disorder corresponds to the choice Vj = −µ+∆j in the grand-canonical
ensemble (and simply ∆j in the canonical one), where ∆j is a random number on every site picked
within the uniform distribution

[
−∆

2 ; ∆
2

]
. The value ∆ will be referred to as the disorder strength.

This type of disorder can be approximated experimentally from light speckle patterns [Billy et al.,
2008; Clément et al., 2005; Clément et al., 2006; Sanchez-Palencia and Lewenstein, 2010] or engineered
exactly using a spatial light modulator [Choi et al., 2016]. Another common choice of disorder is
the quasi-random disorder, generated from quasiperiodic potentials, for instance using two optical
lattices with an incommensurate4 wavevector ratio r = k1/k2. The disorder distribution is in this
case symmetric and given by Vj = (∆/2) cos (2πrj + φ) , where φ is a random phase in [−π; π[.

[Giamarchi and Schulz, 1987] showed from a renormalisation group analysis of the bosonised
chain that the presence of disorder implies the existence of two localised phases. The shape of
the phase diagram from the flow equations of the renormalisation group picture is represented in
Fig. 4.3(a), where K is the Luttinger parameter which controls the asymptotic power-law decay
of the correlation functions (and is interaction dependent) and D is the disorder strength. The
disorder is responsible for the appearance of a new localised phase called the “charge-density glass”,
which is a strongly disordered phase as the solutions of the renormalisation group equations flow
towards infinite disorder. This phase was later named Bose glass (BG) and further investigated in
the milestone paper by [Fisher et al., 1989]. They argued on general grounds that the BG always
intervenes between the MI and the superfluid (SF) if the disorder is random and its associated
probability distribution is bounded. A sketch of the phase diagram in the grand canonical ensemble
where the number of particles is not fixed is represented in Fig. 4.3(b) for different increasing
disorder values. The fact that a direct MI-SF transition is prevented for random bounded disorder
distributions was later on formalised by [Pollet et al., 2009] and is now known as the “theorem of
inclusions”. The Griffiths regions mentioned previously prevent the direct SF-MI transition, as
close to the critical region, arbitrarily large SF puddles appear in the system. An intuitive physical
picture for the BG is the one of isolated SF puddles on top of a MI uniform background. In
dimensions higher than one, the transition from the BG to either the SF or the MI is a percolation
transition: SF puddles are starting to connect each other and when they do, long-range coherence
is restored and the system becomes superfluid.

Similarly to a true superfluid, the BG possesses gapless excitations, a finite compressibility and
4Probably from aesthetic considerations, the irrational number r is often chosen in theoretical works as a precious

mean r(n) = (
√
n2 + 4− n)/2, with n = 1 the golden mean being the most common.
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(a) (b)

Fig. 4.4 Sketch in the atomic limit (J = 0) for (a) weak and (b) strong disorder. Each site
is represented by a two-level system (black, red) separated by an energy U . (a) MI ground
state at n̄ = 1 in the absence of weak disorder ∆ < U . The excitations are gapped and cost
an energy U −∆ > 0. (b) For stronger disorder ∆ ≥ U at n̄ = 1, gapless excitations start to
appear for U = ∆ (magenta) together with gapped ones still present (green). In this regime,
the MI is always destroyed in favour of the BG. From [Villa et al., 2021a].

(very often) a finite but small condensate fraction. The existence of gapless excitations can be
understood in the atomic limit from the following picture (Fig. 4.4). Start from the MI phase in
the absence of disorder where all particles are localised and all sites are occupied by a single atom.
Then increase the disorder: the on-site energies shift by ∆j ∈ [−∆

2 ; ∆
2 ], such that two arbitrary

sites may have an energy mismatch within [−∆; ∆]. When a boson is moved from the site with
the highest on-site energy to the lowest one, such site becomes doubly occupied. If ∆ = U , the
state considered initially and the one obtained with a double-occupancy have the same energy.
Gapless excitations can be created, this localised state becomes a BG rather than staying a MI.

Similarly to a true MI, the BG is a localised phase, globally insulating. It also hosts gapped
excitations, has a zero superfluid density and no long range order (its correlation function are
decaying exponentially on a scale set by the correlation length). Thanks to its intriguing properties,
summarised at zero temperature in Tab. 4.1, the BG can be distinguished from the SF and the
MI. Note that a comparison between several probes is necessary to distinguish all three phases
from thermodynamic quantities (the compressibility κ and the superfluid density ρs for instance
are sufficient) . Nonetheless the corresponding phase diagram can be reconstructed, for instance
from the measurement of standard probes such as the compressibility and the superfluid density,
as we review below in Sec. 4.2.2.

gapless excit. κ ρs fc insulator
SF 3 O(1) O(1) O(1) 7

BG 3 0+ 0 0+ 3

MI 7 0 0 0 3

Tab. 4.1 Properties of the different phases in the disordered Bose-Hubbard model. The
(reduced) compressibility κ = ∂n/∂µ can be measured using quantum gas microscopes or
via trap squeezing [Roscilde, 2009]. Time-of-flight absorption imaging is used to measure the
condensate fraction fc. The interference pattern of Bragg peaks reveals the quasi long-range
order in the SF in one dimension 〈Ψ̂†(x)Ψ̂(0)〉 ∼ |x|−1/2K (in contrast to 〈Ψ̂†(x)Ψ̂(0)〉 ∼ e−|x|/ξ
in the MI), from which the superfluid density ρs can be extracted using (π/K)2 = m/(ρsκ).
The BG is gapless but globally insulating: the excitations occur only locally and stay localised.
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Fig. 4.5 (a) Excitation spectrum at k = 0 for a small disorder strength (equivalent to ∆/U =
0.14) corresponding to the MI. The peak centred around U/h ' 1.9 kHz corresponds to the
frequency of the lattice modulation ν. A second peak at twice this frequency is also present.
(b) Same for a larger disorder strength (∆/U ' 1), the excitation spectrum flattens which
suggests the formation of a BG. The chemical potential is in both cases µ/U = 2.8, such
that domains with up to 3 atoms per sites are possible. The trapping frequency along the
tubes is νx = 75 Hz such that J/U ' 0.04 (strongly interacting regime). The dashed line is
a model predicting the inhomogeneous broadening of the MI resonances due to the disorder
distribution. Adapted from [Fallani et al., 2007].

4.2.2 Detecting the Bose glass and probing the phase diagram
Before discussing the method we propose, we briefly review the existing literature. For convenience,
we begin with experimental works before discussing theoretical ones.

Experimental signatures of the BG. [Fallani et al., 2007; Guarrera et al., 2007] experimentally
investigated the Bose-Hubbard chain with quasi-random disorder by making use of a bichromatic
lattice. The authors measured the excitation spectrum at zero momentum using lattice modulation
spectroscopy5. The phase coherence properties were characterised from the interference pattern
observed after the time-of-flight. Starting from the MI phase and increasing the disorder, the
state reached possesses both vanishing long-range coherence and a flat density of excitations,
which suggests the formation of a BG (Fig. 4.5).

[Meldgin et al., 2016] followed another route to detect the BG using quantum quenches of
speckle disorder from an initial disorder strength ∆ slowly ramped down to zero, at fixed U/J .
This experiment investigates the SF-BG transition from the dynamical behaviour induced by the
excitations. The authors investigated the 3D Bose-Hubbard model, at small interaction strength
where the MI phase is not present. Because of the trap, the density varies throughout the system
and the BG phase is expected to appear at the edges of the system for sufficiently high disorder.
By quenching slowly across the BG-SF phase transition, both phases can be distinguished from
the amount of vortex-type excitations created (none in the SF, rare ones in the BG). Such vortices
modulate the optical density measured by a time-of-flight. A few points from the phase diagram
have been reconstructed from this method, and qualitatively agree with QMC calculations. This
method distinguishes the SF from the BG essentially from the long-range coherence properties,
but remains to be adapted to also tell apart the BG from the MI.

Determination of the phase diagram. We now discuss theoretical approaches used to obtain
the phase diagram of the disordered Bose-Hubbard chain. We discuss both random box disorder
and quasi-random disorder, since the two phase diagrams are qualitatively different. Generally,

5We discussed it in Sec. 1.3.2.3 as it was used by [Stöferle et al., 2004] to investigate the excitation spectrum
of the clean system. The amplitude modulation of the lattice was rather strong (30%), and t-DMRG simulations
beyond the linear regime [Kollath et al., 2006] are necessary to quantitatively explain the experimental results.
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(a) (b)

Fig. 4.6 (a) Phase diagram at n̄ = 1 for the disordered Bose-Hubbard chain with random
box disorder drawn from [−∆/2; ∆/2] with the notations of Eq. (4.1). The BG-SF transition
is identified from the points at which the Luttinger parameter is equal to its critical value
Kc = 3/2 and the BG-MI transition is identified from Egap = ∆, where Egap is obtained from
the clean system. (b) Same with quasi-random disorder, from DMRG results (L = 35) from
[Roux et al., 2008]. The purple area represents a localised region appearing as gapped, with a
gap value below numerical resolution (finite size effects).

determining the full phase diagram is very costly numerically because it requires disorder averaging
over a reasonable number of samples. To reduce the numerical cost by reducing the size of the
Hilbert space, it is common to work in the canonical ensemble where the number of particles is
fixed. We will focus on n̄ = 1 where three phases coexist: SF, BG and MI.

In the presence of random disorder, a piece of the phase diagram for n̄ = 1 was first6 captured
using quantum Monte-Carlo (QMC) simulations by [Prokof’ev and Svistunov, 1998] on a L = 100
sites system [Fig. 4.6(a), blue points]. Recent results from [Gerster et al., 2016] using tensor
networks methods (green points, up to L = 128) and [Z. Yao et al., 2016] using a combination of
QMC and the Giamarchi-Schulz renormalisation group flow equations (red points, up to L = 192)
confirmed the obtained shape. The region for U/J < 2 is very costly numerically, since it requires
to allow for a large maximal number of bosons per site, and therefore a large Hilbert space. A
small discrepancy is visible around the tip of the SF lobe where the disorder is strongest. This is
probably a finite size effect, since we expect the SF lobe to shrink for larger systems, as observed
in Fig. 4.6(a).

Quasi-random disorder, which can be engineered experimentally using bichromatic lattices also
allows for a BG phase. Reconstruction of the full phase diagram has been performed by [Roux
et al., 2008] using DMRG simulations on a L = 35 sites chain, by comparing five different probes
(Luttinger parameter, superfluid density, condensate fraction, correlation length, one-particle en-
ergy gap). The obtained phase diagram is represented in Fig. 4.6(b). Some differences with the
random case are striking. First, the presence of quasi-random disorder (for which the theorem
of inclusions is no longer valid) authorises a direct SF-MI transition. Second, at arbitrarily low
interactions, there exists a disorder threshold ∆/J = 4 that has to be overcome to destabilise the
delocalised phase and induce localisation. Third, for fixed interactions around U/J = 6, increasing
the disorder leads to consecutively MI-SF-BG-SF-BG phases, so there exists a rather unexpected

6A previous attempt was made using DMRG by [Pai et al., 1996], but the proposed phase diagram was not
consistent with the theorem of inclusions and exact renormalisation group results from [Giamarchi and Schulz,
1987] by showing a direct SF-MI transition. A second attempt was made by [Rapsch et al., 1999] using DMRG
(L = 50), but the predicted diagram significantly differs from the shape nowadays admitted [Fig. 4.6(a)].
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Fig. 4.7 Fourier transform of the single-particle Green’s function in the strongly interacting
regime J/U = 0.05 with µ/U = 0.45 (inside the first Mott lobe, at n̄ = 1) in the presence of
quasi-random disorder for different disorder strengths (a) ∆/J = 4, (b) ∆/J = 8, (c) ∆/J = 12.
The artificial broadening parameter was set to J . (d) Evolution of the gap g (lowest energy
value of the spectral function) in units of U as a function of the interaction for different disorder
strengths. A vanishing gap signals the BG. Adapted from [Knap et al., 2010].

“re-entrant” SF. To distinguish the SF from the BG or the MI, the authors propose to study the
momentum distribution n(k), easily obtained by a time-of-flight measurement. This probe was
further investigated by [Roscilde, 2008] in trapped systems, who showed that to distinguish the
BG from the SF, in addition to the momentum distribution, the noise correlations (Fourier trans-
form of the density-density correlation function) could also be used in time-of-flight experiments.
However such global probes cannot reveal the local structure of the BG phase and its superfluid
puddles.

Excitations and localisation properties. We now briefly comment two early publications
that analysed the BG from the point of view of the elementary excitations in quasimomentum
space rather than from global thermodynamic properties.

[Knap et al., 2010] studied the behaviour of the single-particle spectral function, which is the
Fourier transform of the single-particle Green’s function (commonly abbreviated “spectral func-
tion”) using a numerical variational cluster approach. The authors observed that increasing the
disorder leads to a broadening of the spectral function, as shown in Fig. 4.7. The spectral func-
tion is sensitive to both types of excitations in the MI phase (approximately pure doublons and
pure holons in the strongly interacting regime explored in the publication). When the disorder
is increased, the value of the gap shrinks to zero, and most of the spectral weight accumulates
towards k = 0, suggesting the progressive formation of a quasicondensate. By assessing the point
at which gapless excitations occur, the value of the MI-SF transition can be estimated.
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Fig. 4.8 Dynamical structure factor of the disordered Bose-Hubbard chain computed using
exact diagonalisation on a L = 14 sites chain for unit filling at (a) quasi-random disorder
and (b) random-box disorder. The expected phases from the phase diagrams in Fig. 4.6 have
been added in the top-left corners (for the quasiperiodic potential at V/J = 10, the phase is
expected to be BG but is very close to the SF boundary). Adapted from [Roux et al., 2013].

Another type of spectral function commonly used in pump-probe spectroscopies is the dy-
namical structure factor. As a momentum-resolved probe, it can reveal the presence of gapless
excitations and their localisation properties inside the BG phase. [Roux et al., 2013] investigated
such probe in both quasiperiodic potentials and random box disorder, commensurate and incom-
mensurate fillings and various regimes of interaction and disorder. The authors showed that the
dynamical structure factor reveals the localisation properties of the excitations, by leading to a
broadening of spectral features in quasimomentum at large disorder strength and high energies.
The situation at unit filling is represented in Fig. 4.8 for two interaction values (U/J = 2 and
U/J = 10) and increasing disorder strengths (V = ∆ with our notations). For a quasiperiodic
potential, the main effect of localisation is to induce the formation of mini-gaps in the spectral
features, while in the random disordered case it induces a broadening leading to blurred spectral
features. This confirms that different localisation mechanisms are at play between random and
quasi-random disorder [Roux et al., 2008]. For high disorder, the BG phase is entered. It possesses
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a finite excitation weight at zero momentum (for U/J = 2 and ∆/J = 20 in the quasi-disordered
case, the gapless excitations have very little spectral weight but are nonetheless present [Roux
et al., 2013]). The plot at U/J = 10 and ∆/J = 20 shows the coexistence of SF-like features and
MI-like features, in agreement with the intuitive picture of the BG phase being constituted of SF
puddles on top of a MI background.

4.3 Disordered quench spectroscopy of the Bose-Hubbard
chain

In this section, adapted from our recently submitted results [Villa et al., 2021a, 2021b], we extend
quench spectroscopy to disordered systems. As an illustrative well-known example, we focus on
the disordered Bose-Hubbard chain. This project is the result of a collaboration, and a spe-
cial acknowledgment is due to S.J. Thomson who performed the DMRG and TDVP simulations
presented below.

Two striking differences appear compared to the clean case, both related to the fact that
the disorder is breaking translation invariance of the system. First, disordered systems are more
involved numerically. Computing physical properties requires disorder averaging over Ns � 1
samples to obtain representative results of the disorder distribution including rare occurrences.
Typically we take between 10 to 25 disorder samples. In the following, we simulate chains with
L = 47 sites. Second, since translation invariance of the system is broken, we revise the quench
protocol and the definition of the QSF in Sec. 4.3.1. In Sec. 4.3.2, we evaluate the phase diagram
in the grand-canonical ensemble from standard probes, which will be useful in the following to
independently verify our results obtained from quench spectroscopy. We show in Sec. 4.3.3 our
numerical simulations and explain how quench spectroscopy can distinguish the three phases SF-
BG-MI of the disordered Bose-Hubbard chain using a single probe, and discuss the behaviour of
the excitations within each phase. Finally, we reconstruct the full phase diagram of the model
using quench spectroscopy in Sec. 4.3.4.

4.3.1 Quench protocol and QSF for disordered systems
How can we adapt the quench protocol to disordered systems, i.e. what should we choose for
the observable and for the type of quench? We still want to focus on the out-of-equilibrium
dynamics of equal-time observables following a quench. If we are to investigate the excitations
from their spectral properties, we already know that the BG is a Griffiths phase, constituted of
local regions that can be either SF-like or MI-like. Performing global quenches is more intuitive as
the system generates its own excitations, in contrast to local quenches where the excitations are
targeted individually and the quench protocol for the initial state is more demanding. In clean
systems, local quenches had the advantage of being able to probe spectral properties from one-
point functions while global quenches required two-point correlators. The difference between the
two was the breaking of translational invariance of the initial state (Sec. 3.3.1). In the presence of
disorder, translation invariance of the system is broken, and we have to generalise the definition
of the QSF. We show below that in the presence of disorder one gets the best of both worlds,
allowing to use global quenches and any observable (one-point functions or two-point correlators)
to probe spectral properties.

To gain insight on how the QSF definition should be extended, we again begin by emphasising
the role played by translation invariance. For convenience, we denote by {|ν〉} (Greek indices)
the disorder dependent eigenstates of the post-quench Hamiltonian and {|n〉} (Latin indices) the
corresponding eigenstates of the clean system (∆ = 0). Let us consider that our observable is a
one-point function Ô(x, t). Translation invariance is broken by the disorder, such that

[
Ĥ, P̂

]
6=

0, namely the energy eigenstates are no longer momentum eigenstates. For a single disorder



4 Quench spectroscopy for disordered systems 146

realisation, the dynamics are given by

G(x; t) = Tr
[
ρ̂i Ô(x, t)

]
= Tr

[
ρ̂i eiĤte−iP̂ x Ô eiP̂ xe−iĤt

]
= Tr

[
e−iĤtρ̂i eiĤte−iP̂ x Ô eiP̂ x

]
,

(4.2)

where Ô is short for Ô(0, 0) and we used the cyclicity of the trace in the last line. By decom-
posing on the energy eigenbasis and inserting a completeness relation we obtain without any
approximation

G(x; t) =
∑
ν′,ν

ρν
′ν

i ei(Eν−Eν′ )t 〈ν| e−iP̂ x Ô eiP̂ x |ν ′〉 . (4.3)

Importantly, while for a clean system we had that the energy eigenstates were also momentum
eigenstates, and therefore

〈n| eiP̂ x Ô eiP̂ x |n′〉 = ei(Pn′−Pn)x. (4.4)
Additionally, if the initial state is also translation invariant (as for a global quench), G(x; t) = G(t)
no longer depends on x and one-point functions cannot probe momentum-resolved properties for
k 6= 0 as discussed in Sec. 3.3.1. In the disordered case however, the equivalent of Eq. (4.4) does
not hold, namely we do not obtain ei(P ν′−P ν)x 〈ν| Ô |ν ′〉 because the energy eigenstates are no
longer momentum eigenstates. Consequently, we no longer obtain the selection rule in momentum
that associated the frequency resonances to the momentum ones and yielded the sharp spectral
lines in the clean system. In the presence of disorder, the QSF can be defined for a one-point
observable as

G(k;ω) = 2π
∑
ν,ν′

ρν
′ν

i δ(Eν′ − Eν − ω)
ˆ

dx e−ikx 〈ν| e−iP̂ x Ô eiP̂ x |ν ′〉 , (4.5)

where implicitly the eigenstates and the initial density matrix depend on the specific disorder
realisation.

To gain further insight on the role played by the disorder, in the following we restrict to first
order in perturbation theory assuming weak disorder (∆� U), such that the disorder dependent
eigenstates and energies are related to their clean counterpart by

|ν〉 = |n〉+
∑
m 6=n
D?nm |m〉 with Dnm := 〈n| Ĥpert |m〉

En − Em
= −D?mn,

Eν = En +Dn with Dn = 〈n| Ĥpert |n〉 .
(4.6)

Importantly, the clean eigenstates are translational invariant. We also assume that the initial
density matrix can be decomposed as ρ̂i = ρ̂i,(0) + δρ̂i where ρ̂i,(0) refers to the clean system.
Making use of Eq. (4.6) and using that the clean energy eigenstates are also eigenstates of the
momentum operator, the QSF (4.5) becomes

G(k;ω) ' (2π)D+1 ∑
n′,n

δ (En′ − En − ω +Dn′ −Dn)

×
[
δ(P n′ − P n − k) 〈n| Ô |n′〉

δρn′ni +
∑
m6=n′

ρmni,(0)Dn′m +
∑
m 6=n

ρn
′m

i,(0)D?nm


+ ρn

′n
i,(0)

 ∑
m 6=n′

δ(Pm − P n − k) 〈n| Ô |m〉D?n′m +
∑
m 6=n

δ(P n′ − Pm − k) 〈m| Ô |n′〉Dmn

].
(4.7)
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For clarity, we regrouped on the second line the terms where the initial density matrix coherences
are of first order in the disorder perturbation and in the last line the terms where the expectation
value of the observable over the eigenstates is of first order. Note that Eq. (4.7) shows that a non-
zero QSF may be obtained using one-point functions. This is because the addition of disorder,
which breaks translation invariance of the initial state and of the system, prevents the momentum
selection rules δ(P n′ − P n − k) δ(P n′ − P n) as highlighted above. This is also the reason why
the zeroth order term (disorder independent) vanishes and thus is not present in Eq. (4.7). The
final step is to disorder average this result over several disorder samples. This last step cannot
be derived analytically in full generality here, but we shall describe the qualitative features of the
obtained QSF starting from the result obtained above for a single disorder realisation.

First, the resonances in energy are shifted compared to the clean system due to the additional
terms Dn′ −Dn inside the energy selection rule. For a single disorder realisation, this results in a
modification of the effective energy gap, visible in the numerical results. After disorder averaging,
this results in a frequency broadening of the transitions. Second, the disorder dresses the initial
density matrix coefficients for a single disorder realisation such that the intensity of each branch
is randomly weighted. Indeed the momentum selection rule in the second line of Eq. (4.7) are not
modified at first order in perturbation theory with respect to the clean system, but their prefactor
is explicitly disorder dependent. After disorder averaging over a reasonable number of samples, we
recover smooth spectral features (Fig. 4.11). Third and most importantly, the disorder broadens
the spectral features in momentum space by modifying the momentum selection rule [last line in
Eq. (4.7)]. Such terms depend on an intermediate state |m〉 whose momentum Pm is not specified.
However, it should be noted that Dnm diverges as (En − Em)−1 so we generally expect to find
the sharper features for |m〉 close in energy to |n〉 or |n′〉 for each term respectively. Making this
argument more quantitative goes beyond the perturbative calculation presented here. Nonetheless,
this simple calculation captures the essential features (shift of the effective energy gap, random
weight of the spectral features for a single disorder realisation, broadening in momentum space)
that will be observed in our numerical results.

What about two-point correlators? Choosing different types of observables is relevant since
they lead to the observation of different spectral properties. Thus, let us briefly discuss equal-time
two-point correlators which for a single disorder realisation may be cast in the form

G(x,y; t) := Tr
[
ρ̂i Ô1(x, t)Ô2(y, t)

]
=

∑
ν,ν′,µ

ρν
′ν

i ei(Eν−Eν′ )t 〈ν| e−iP̂ x Ô1 eiP̂ (x−y) |µ〉 〈µ| Ô2 eiP̂ y |ν ′〉 . (4.8)

Moving to the relative variables x = r+ R
2 , y = r− R

2 and taking the space-time Fourier transform
we obtain the QSF as

G(k,k′;ω) = 2π
∑
ν,ν′,µ

ρν
′ν

i δ(Eν′ − Eν − ω)

×
ˆ

dR e−ikR
ˆ

dr e−ik′r 〈ν| e−iP̂ (r+R2 ) Ô1 eiP̂R |µ〉 〈µ| Ô2 eiP̂ (r−R2 ) |ν ′〉 .
(4.9)

Starting from this expression, if we use again perturbation theory, the lowest order term where
both the initial state and the system are translation invariant is reminiscent of the term obtained
in the clean case and reads as7∑

n,n′,m

ρn
′n

i,(0) δ(En′ − En − ω +Dn′ −Dn) 〈n| Ô1 |m〉 〈m| Ô2 |n′〉 δ(Pm − P n − k) δ(P n′ − P n).

(4.10)
7When both the system and the initial state are translation invariant, the two-point correlator can only depend

on R = x− y and not on r = (x+ y)/2, which is equivalent to set the associated Fourier variable k′ = 0.
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Assuming a weak quench such that P n = 0, the intermediate state can be restricted to a single-
quasiparticle excitation Pm = k and eventually we recover that the state |n′〉 contains a pair of
quasiparticles with opposite quasimomentum such that P n′ = 0 as well. This term is the one
discussed in global quench spectroscopy displaying resonances at twice the excitation spectrum in
the absence of disorder. Here the energy selection rule is modified but we still expect to observe a
sharp signal around for ω ' 2Ek. Besides, the QSF also contains first order terms in the disorder
such as ∑

n,n′,m

δρn
′n

i,(0) δ(En′ − En − ω +Dn′ −Dn) 〈n| Ô1 |m〉 〈m| Ô2 |n′〉

× δ(Pm − Pn′
2 −

Pn
2 − k) δ(P n′ − P n − k′).

(4.11)

Still for a weak quench such that P n = 0, we see that the intermediate state can no longer
be restricted to a single-quasiparticle excitation Pm = k. This is because the disorder breaks
explicitly translation invariance of the initial state such that the QSF is now a function of two
quasimomenta k and k′. When translation invariance is preserved, the spatial dependence only on
x−y ensures that the QSF depends on a single quasimomentum, k. Note that this is also true after
disorder averaging if one assumes that the disorder is homogeneous, i.e. its statistical properties
are independent of the reference point. This eventually leads to the condition P n = P n′ , whose
consequence is that only pairs of excitations were observable after weak quenches. Now in the
presence of disorder, the QSF contains terms that can probe the excitation spectrum directly (as
opposed to twice the excitation spectrum).

In the following we will apply quench spectroscopy to the disordered Bose-Hubbard chain, and
show how it can be used to distinguish between the three phases of the model (SF,BG,MI) and
eventually reconstruct the full phase diagram using a single probe. Before, we briefly recall the
standard numerical method used to reconstruct the phase diagram. The latter will be useful in
the following to compare with quench spectroscopy.

4.3.2 A benchmark: the phase-diagram from standard probes
We shall restrict to diagonal box disorder with ∆j ∈ [−∆/2; ∆/2] and start our investigation by
fixing the disorder strength to a weak/intermediate value ∆/U = 0.25. We also work in the grand
canonical ensemble where the number of particles can be varied via the chemical potential.

As we have discussed in Sec. 4.2.2, the phase diagram at fixed density n̄ = 1 in the (∆/J, U/J)
plane is by now well-established [Fig. 4.6(a)]. While the phase diagram of the Bose-Hubbard
model in the (µ/U, J/U) plane (therefore for variable densities) in the presence of random-box
disorder is also well-established in higher dimensions, the only investigation to our knowledge in
one dimension is the one from [Scalettar et al., 1991] for ∆/U = 0.5. The phase diagram can
be obtained numerically by combining several standard probes that distinguish all three phases
(Tab. 4.1). We computed it using DMRG for ∆/U = 0.25 on a L = 47 sites chain with Ns = 15
disorder samples and show the result in Fig. 4.9. This phase diagram will serve as a benchmark
to the quench spectroscopy results.

The BG-SF transition is identified from the change in the spatial decay of the one-body cor-
relator g1(i, j) averaged over distances r = |i− j| from exponential to algebraic. If the decay is
algebraic, in log-log scale this function matches an affine function. If the decay is exponential, the
same applies in semi-log scale. To estimate the quality of a fit, we evaluate Pearson’s correlation
coefficient. This coefficient is computed from the ratio of the covariance of two variables divided
by their respective standard deviation and in our case provides an estimate of the correlation be-
tween the data and the fit function. By definition, it is always between -1 and 1, an absolute value
of 1 meaning that the fit function is perfectly correlated with the data. By comparing Pearson’s
correlation coefficient of the two fits, we can quantitatively assess whether the decay is algebraic
or exponential and distinguish between the SF and the BG. The colorbar in Fig. 4.9 indicates
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Fig. 4.9 Phase diagram of the disordered Bose-Hubbard chain in the grand-canonical ensemble
for random-box disorder with a disorder strength ∆/U = 0.25, computed by DMRG (L = 47,
Ns = 15). The Bose glass phase surrounds the Mott insulator and the superfluid. The boundary
of the MI-BG transition (black) is obtained by measuring the deviation from one of the average
density (gray points), and the boundary of the BG-SF transition (cyan) from the spatial decay
of the one-body correlator (algebraic in the SF, exponential in the BG). The colorbar indicates
the ratio of the Pearson’s correlation coefficients for an algebraic fit and an exponential one,
and the cyan points indicate the closest value below 1. The red arrows represent the quenches
considered in Fig. 4.10. From [Villa et al., 2021b].

the value of the ratio between the Pearson’s correlation coefficients for an algebraic fit and an
exponential fit, so that the BG-SF transition corresponds to a ratio of 1. Pearson’s correlation
coefficient had been used recently in our group [H. Yao et al., 2020] to distinguish the MI from
the SF and the normal fluid at finite temperature. Finally, to detect the BG-MI transition, we
use another probe: the behaviour of the averaged density which is integer only in the MI phase.
Probing the compressibility (only zero in the MI) is also possible.

4.3.3 Spectral properties of the excitations within each phase
We now investigate the spectral properties throughout the phase diagram using quench spec-
troscopy. We perform a global quench of the tunnelling from Ji to Jf = 0.9Ji, at fixed disorder
strength ∆/U = 0.25 and while conserving the particle number throughout the quench (we move
along iso-filling lines in the phase diagram, such that the chemical potential also varies between the
pre-quench state and the post-quench one). We will explore different regimes for various densities
and values of the on-site interaction U . We begin by discussing the one-body correlator before
studying the on-site density.

The one-body correlator. In the clean system, the one-body correlator g1(R, t) unveils the
excitation spectrum in both the SF and the MI. For weak disorder, we expect this observable to also
probe the excitation spectrum in these phases, based on the perturbative arguments presented in
Sec. 4.3.1. Following the quench protocol described above, we represent the QSF of 〈â†(R, t)â(0, t)〉
averaged over Ns = 15 disorder realisations at fixed U = 10Ji in Fig. 4.10. The four quenches
are represented schematically by the red arrows in Fig. 4.9, and the final values of the chemical
potential are indicated within each panel.
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Fig. 4.10 QSF of g1(R, t) after a global quench of the tunnelling Jf = 0.9Ji such that U/Ji = 10
becomes U/Jf , at fixed disorder strength ∆/U = 0.25 for four different initial values of the
chemical potential (a) µ/U = 0.15 (BG), (b) µ/U = 0.5 (MI), (c) µ/U = 0.65 (BG) and
(d) µ/U = 0.95 (SF). The final values of the chemical potential are indicated on each panel,
and each quench is represented by a red arrow in Fig. 4.9. The excitation spectrum is revealed
within each phase. In (b) the dashed red line represents the excitation spectrum from the pair
of d-Bogoliubon and h-Bogoliubon (which reduce to pure doublon and holon respectively in
the strongly interacting regime). In (d) the dashed cyan line is a linear fit of the lower edge of
the QSF, whose value can be used to extract the speed of sound. From [Villa et al., 2021b].

In Fig. 4.10(b), we observe a gapped signal. The same parameters in the clean system would
correspond to the middle of the Mott lobe. Since the disorder strength is rather weak, we may com-
pare the signal with the excitation spectrum of the pair of elementary excitations (d-Bogoliubon
and h-Bogoliubon which reduce to a pure doublon and a pure holon for strong interactions)
Ek,+ +E−k,− = 2Ek, which we represent by the dashed red line. We find an good agreement with
the observed spectral intensity, therefore we conclude that this region is still MI in the presence
of disorder. This is consistent with the phase diagram given in Fig. 4.9. Interestingly, the energy-
gap in units of U for the clean system is about 1− 6Jf/U in the strongly interacting regime (0.46
here) and matches well with the observation of the QSF in the presence of disorder. This is to be
contrasted with the expected value 1−∆/U (0.75 here) in the atomic limit.

This first simple example allows to illustrate many general features that we will encounter
again in the following. The presence of random disorder causes broadening of the spectral features,
similarly as for other spectroscopic techniques (Sec. 4.2.2) and analytical insights from first order
perturbation theory (Sec. 4.3.1). Most of the spectral weight is also concentrated around k = 0. It
appears that higher momenta are significantly more scattered and affected by the disorder. This
is physically intuitive as the disorder affects the on-site energies of the system, and therefore plays
an important role on small length scales (small spatial wavelengths) which translate into large
momenta. Spectral features are less affected close to k = 0 (are thus more visible) because the
global effect of the disorder is less important than the local one. For instance, a localised state on
the clean system (MI) stays localised in the presence of disorder (MI or BG) and a delocalised one
(SF) stays delocalised. The disorder does not modify the global behaviour of the system, but only
its local properties (through the excitations for instance). This is, as we saw, what makes the BG
so difficult to detect using global probes. Scattering is also known to be screened by the presence of
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Fig. 4.11 QSF of the one-body correlator after a quench of the tunnelling Jf = 0.9Ji at fixed
U/Ji = 7.5 with µ/U = 0.15 (BG phase). (a) Represents a single disorder realisation while (b)
shows the same result after applying a window function (Hann) to the data before taking the
Fourier transform. (c) and (d) are the result of (a) and (b) respectively after averaging over
Ns = 15 samples. From [Villa et al., 2021a].

repulsive interactions in the phonon regime at low k which strongly suppresses localisation [Lugan
et al., 2007; Lugan and Sanchez-Palencia, 2011]. This can explain why the spectral features at more
strongly affected towards higher k.

We highlight that in all our numerical results, we remove the long-time average (in order
to isolate the fluctuations due to the excitations from the time-independent background) before
computing the QSF of a single disorder realisation. We also apply a bell-shaped Hann window
so as to smooth the discontinuities from the start and the end of the sampled space-time data
and reduce the associated numerical artefacts appearing in the numerical Fourier transform. Such
apodisation method can also be used efficiently in quench spectroscopy for clean systems, as shown
in Fig. 3.17. We finally take the modulus of the QSF and average over Ns samples and finally
normalise the result. The full numerical procedure used in the disordered case can be viewed in
Fig. 4.11, where we distinguish the effect of each processing step.

In Fig. 4.10(d), we observe a gapless signal linear close to the origin. In the clean system for the
same parameters we would expect a SF phase, and this is still the case in the presence of disorder,
in agreement with the phase diagram in Fig. 4.9. A strong signal appears along k = 0, suggesting
the presence of quasi long-range order characteristic of the SF. We will further analyse this phase
in the following, and in particular extract the velocity of the soundlike mode and compare it to
the sound velocity of a related model. This will provide further evidence for a SF phase.

Lastly, Fig. 4.10(a) and Fig. 4.10(c) display intermediate spectral features, with the coexistence
of gapped and gapless spectral weight and the absence of a well defined linear branch at low energy
(particularly clear in the first case). In the clean system for the same parameters, this corresponds
to a MI. In the presence of disorder, gapless excitations appear without signature of a soundlike
mode, suggesting the formation of the BG phase. This identification, purely from the dynamics of
the system using quench spectroscopy, is once again consistent with the phase diagram computed
using standard thermodynamic probes in Fig. 4.9. Here, using a single probe and global quenches
we are able to probe the properties of the excitations and qualitatively distinguish all three phases
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Fig. 4.12 Analysis of the QSF of g1: the existence of gapless excitations through the modulus
of G(0, 0) (green points, left axis) allows to precisely distinguish the MI from the BG and the
finite velocity of a soundlike mode (blue points, right axis) allows to distinguish the BG from
the SF phase. The blue line is a spline ajustement to guide the eye and the dashed yellow
line is the comparison with Eq. (4.12) expected in the strongly interacting regime for the clean
system (here in the region 1 < n̄ < 2) with (a) U/Ji = 10 and (b) U/Ji = 7.5 after a quench of
the tunneling to Jf = 0.9Ji at fixed disorder strength ∆/U = 0.25. From [Villa et al., 2021b].

from the behaviour of the elementary excitations probed by the QSF, as detailed below.
The MI-BG transition can be detected from the existence of gapless excitations which are

present in the BG but absent in the MI. As emphasised by [Fallani et al., 2007], “rigorously speaking
the BG phase should be characterised by a gapless spectrum, [but] detecting the absence of a
gap is technically challenging [...]. It would require a measurement of excitability at arbitrarily
small energies, [which] cannot be accomplished with the modulation technique that works well
only for frequencies much larger than the reciprocal of the modulation time, starting from a few
hundreds Hz”. In quench spectroscopy, the resolution is set by the maximum evolution time
available, and is ultimately limited by the time during which the system remains isolated. With
current generation experiments, a resolution down to the Hz is possible, and would make a very
accurate determination of the transition and circumvent such issue. Quench spectroscopy also
probes spectral properties in the full momentum space, not only the k = 0 part, which helps to
distinguish all phases. Detecting gapless excitations is indeed tantamount to distinguish a true
BG from a strongly inhomogeneous MI.

Still choosing the one-body correlator as an observable, we extract the modulus of its QSF at
the origin |G(0, 0)| for two vertical cuts through the phase diagram at U/Ji = 10 and U/Ji = 7.5
in Fig. 4.12 (green points, left axis). When |G(0, 0)| starts to significantly deviate from zero marks
the transition from the gapped MI to the gapless BG. We find an excellent agreement with the
size of the BG region obtained from the phase diagram in Fig. 4.9, reproduced as the gray area
in Fig. 4.12.

The BG-SF transition can be detected by the existence of a finite soundlike mode close to
k = 0 (present in the SF but not in the BG). The presence of weak disorder facilitates the fitting
procedure as the broadening of the spectral features is less significant. We always fit the lower
edge of the spectral signal obtained from the disorder averaged QSF by an affine function, and
we extract its slope. We represent the velocity of such linear mode in Fig. 4.12 by the blue points
(right axis). The fitted slope may be equal to zero, meaning that the signal is featureless at low
energy and a soundlike mode is absent, suggesting a BG rather than a SF. The µ/U value for
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Fig. 4.13 Extracted velocities from the soundlike mode in the QSF of the one-body correlator
in the clean system (blue points) and comparison with the speed of sound given by Eq. (4.12)
(dashed yellow line), for two interaction values at U/Ji = 10 and U/Ji = 7.5. Below the first
Mott lobe (µ/U . 0.2, 0 < n̄ < 1) while above it (µ/U & 0.6, 1 < n̄ < 2). Aside from a few
outliers around µ/U ' 0.6 due to fitting difficulties, the agreement is excellent. This suggests
that the small discrepancy with the model observed in the disordered case in Fig. 4.12 is caused
by the disorder rather than the finite value of the interactions (recall that Eq. (4.12) is exact
in the hard core limit). From [Villa et al., 2021b] (Supplemental Material).

which a linear mode appears matches very well with the predicted width of the BG region in
Fig. 4.9 (again marked by the gray region for each panel in Fig. 4.12).

It proves interesting to compare the value of the extracted velocity from the QSF to a model
predicting the behaviour of the sound velocity in the strongly interacting SF regime. As the effect
of disorder is screened around k = 0, as a first approximation we may compare to a clean model.
When the filling is smaller than 1, the expression of the sound velocity is found by the fermionic
mapping detailed in Appendix 2.C, which in the hard core regime reads as Vs = 2J sin(πn̄).
However, we also explore a strongly interacting SF regime above the first lobe where the filling is
higher than one. In the hard core regime, we apply a similar logic and reduce to the Hilbert space
to two sites, so as to study an effective tight-binding model where the SF with filling 1 < n̄ < 2
can be thought of as a uniform homogeneous background with n̄ = 1 on top of which lies fermionic
excitations such that 0 < n̄f < 1 where n̄f = n̄− 1 is the average density of the spinless fermions
(n̄f = n̄ if 0 < n̄ < 1). The elementary excitations of this simpler model consist of particle-
hole pairs, with individual momenta given by kp ∈] − π;−kF] ∪ [kF; π[ and kh ∈ [−kF; kF] with
kF = πn̄f . The excitation spectrum can be constructed as E(kp; kh) = −2bJ(cos kp − cos kh)
where we introduced b the Bose enhancement factor, given by b = 1 for 0 < n̄ < 1 and b = 2 for
1 < n̄ < 2. The spectrum can be rewritten by introducing k = kp−kh using trigonometric formulas
as E(k; kh) = 4bJ sin(k/2) sin(k/2 + kh). Close to the origin k = 0, we have kp ' kh ' kF.
Therefore the spectrum is soundlike with a sound velocity generally given by Vs = 2bJ sin(kF)
which reads as

Vs = 2J sin(πn̄) if 0 < n̄ < 1,
Vs = 4J sin(π(n̄− 1)) if 1 < n̄ < 2.

(4.12)

We plot Eq. (4.12) as the dashed orange line in Fig. 4.12 and we find a good agreement with the
velocities extracted from the linear mode observed in the QSF (blue points). The small discrepancy
observed should be attributed to the disorder rather than the finite interaction value, although
both effects are expected to renormalise the sound velocity towards lower values [Cazalilla, 2004;
Gaul et al., 2009]. To check for this effect we compare the velocities given by Eq. (4.12) (derived
in the hard core regime) with the velocities extracted from the QSF but this time in the clean
system and we show the result in Fig. 4.13. Within the errorbars, the agreement is very good.
This suggests that the observed reduction of the sound velocity visible in Fig. 4.12 is due to the
presence of the disorder rather than the strong but finite value of the interactions.

Finally, we note that the strongest signal probed by the QSF of the one-body correlator in the
disordered regime is the excitation spectrum Ek rather than twice the excitation spectrum 2Ek
as in the clean system (even though the latter signal is still present). This has to do with the
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Fig. 4.14 QSF of n̂(R, t) after a global quench of the tunnelling from Ji to Jf = 0.9Ji at
fixed U = 7.5Ji and ∆/U = 0.25, for different values of the final chemical potential indicated
in each panel. Contrary to the one-body correlator presented in Fig. 4.10, here the QSF of
the density reveals the energy transitions in the gapless phases and a continuum inside the
two-excitation continuum in the MI. In (c) the dashed gray line represents the envelope of the
pair of a d-Bogoliubon and a h-Bogoliubon with different momenta. In (a,e) the dashed blue
line represents ω = 4bJ sin(k/2) [Eq. (4.17)], with the Bose enhancement factor equal to b = 1
in (a) where the filling is n̄ ∼ 0.6, and to b = 2 in (e) where the filling is n̄ ∼ 1.6. From [Villa
et al., 2021a].

fact that the disorder breaks translation invariance of both the system and the initial state, as
discussed at the end of Sec. 4.3.1 based on the perturbative expression of the QSF.

The on-site density. We now change our observable and choose a one-point function, the
simplest of which is the on-site density n̂(R, t) that can be measured experimentally using quantum
gas microscopes with single-site resolution (Sec. 1.3.2.2). Following the same numerical procedure
(quench of the tunnelling from Ji to Jf = 0.9Ji at fixed disorder strength ∆/U = 0.25 in the
grand-canonical ensemble), we display the behaviour of the QSF of the density in Fig. 4.14 for
U = 7.5Ji and different values of the chemical potential. The phases deduced from the previous
analysis of g1 (or from the following analysis of n̂) are indicated for reference on top of each panel.
Here the QSF of the density shows a gapped signal in the MI, and sharp gapless spectral features
in the SF, which appear linear close to the origin. Once again, the spectral features in the BG are
intermediate between both phases, with the signal similar to the SF more visible but significantly
blurrier towards the origin.

Importantly, the spectral features observed in both the SF and the MI are not the excitation
spectrum. As we discuss in the following, the signal in the SF is caused by resonances of energy
transitions in the SF and energy sums in the MI. We already encountered a similar behaviour in
local quench spectroscopy where translation invariance of the initial state was broken explicitly by
the quench. The gapped signal in the MI phase can be understood from the quasiparticle picture
detailed in Sec. 3.3.5.2. The signal observed is caused by the pair of two different excitations
with different quasimomentum coupling to the ground state, and the predicted envelope from
the clean system is represented by the dashed gray line in Fig. 4.14(c). It is satisfactory that the
spectral intensity of the signal is well-contained within this envelope, up to the expected additional
broadening caused by the disorder. However, a sharp feature is visible inside this continuum (that
also differs from the excitation spectrum) whose nature remains to be elucidated and requires
more investigation.

Similarly to the discussion presented in Sec. 3.3.4, we expect the QSF of the density in the SF
phase to display resonances around the energy differences ω ' Eq − Eq−k. Indeed, we intuitively
expect the density to couple eigenstates with the same number of excitations. This interpretation
is also in agreement with Eq. (4.7), where the condition ω = Eq − Eq−k is broadened by the
disorder. This leads to algebraic divergences in the QSF, which are reminiscent of the ones we
obtained from the energy transitions for a cosine-like dispersion relation in Sec. 3.3.4. Adopting
the same notations, we define the function gk(q, ω) = Eq − Eq−k − ω and denote by q?k(ω) its
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ω-dependent zeros. We expect the divergences of the QSF to come from the values such that
∂qgk(q?k(ω))→ 0 [Eq. (3.69)]. As discussed above, in the strongly interacting regime the excitation
spectrum continuum can be approximated by

Ek = 4bJ sin
(
k
2

)
sin
(
k
2 + kh

)
, (4.13)

where kh is fixed and b is the Bose enhancement factor given by b = 1 for 0 < n̄ < 1 and b = 2 for
1 < n̄ < 2. First, using trigonometric identities, we rewrite the function gk exactly as

gk(q, ω) = 4bJ sin
(
k
2

)
sin
(
q − k

2 + kh
)
− ω, (4.14)

such that the zeros of gk(q, ω) are given by

q?k(ω)− k
2 + kh = arcsin

(
ω

4bJ sin(k/2)

)
. (4.15)

Second, we evaluate the derivative of the argument of the delta energy selection rule at the points
where this argument is zero

∂qgk(q)|q=q?
k
(ω) = 4bJ sin

(
k
2

)
cos
(
q?k(ω)− k

2 + kh
)

= 4bJ sin
(
k
2

)√√√√1−
(

ω

4bJ sin(k/2)

)2

. (4.16)

So eventually the QSF is expected to display algebraic divergences along the lines

ω = ±4bJ sin
(
k
2

)
. (4.17)

We represent these lines in dashed blue in Fig. 4.14(a) where the filling is about n̄ ' 0.6 such
that b = 1, and in Fig. 4.14(e) where the filling is about n̄ ' 1.6 such that b = 2. In both situations
we find an excellent agreement with the observations from the QSF. Such sharp signals, linear
close to k = 0 and with apparent velocity 2bJ (independent of the filling) should not be confused
with the excitation spectrum with sound velocity 2bJ sin(kF) (explicitly dependent on the filling
through kF). This highlights once again the subtle role played by the observable in spectroscopy.
We note that the BG phase shares spectral features of both the SF and the MI. However the well
defined algebraic divergences in the SF phase are significantly blurrier in the BG. Consequently,
the density can be used to distinguish the three phases, as we will show in Sec. 4.3.4.

Increasing the disorder strength. Finally, we investigate the effect of an increasing disorder
strength on the observed spectral features. To retain only two variable parameters, we fix the filling
to n̄ = 1. We recall that the phase diagram was given in Fig. 4.6(a). To briefly summarise the
results obtained thus far, the QSF of the one-body correlator g1 probes the excitation spectrum,
while the QSF of the density n̂ probes a gapped signal caused by the energy sum of a pair of
excitations in the MI and a gapless signal caused by the energy transitions in the SF.

We perform quenches with a fixed tunnelling J and we vary the on-site interaction from
Uf = 9J to Ui = 0.9Uf . We consider different disorder strengths (now measured in units of the
tunnelling), and we represent the result for the QSF of both the density (top row) and the one-
body correlator (bottom row) in Fig. 4.15. On the first panels with weak/intermediate disorder
we recover the spectral features discussed previously. By increasing the disorder, we gradually
observe the closing of the Mott gap and eventually the system becomes gapless and enters the
BG phase. Within the same phase and for weak disorder (compare panels (a,b) in the MI for
instance), we observe a broadening of the resonance in frequency due to the disorder in agreement
with the perturbative expressions from Sec. 4.3.1 that broaden the energy selection rule after
disorder averaging compared to the clean case due to the disorder dependent term Dn′ − Dn.
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Fig. 4.15 QSF of the one-body correlator (top row) and of the density (bottom row) at fixed
n̄ = 1 for increasing disorder strengths. The quench is performed on the interaction strength
to Uf/J = 9 starting from the ground state at Ui = 0.9Uf . Spectral features broaden with
increasing disorder, and the transition from gapped excitations in the MI to gapless ones in
the BG is directly visible. The red dashed line indicates the excitation spectrum of the clean
system in the MI, the dashed gray envelope indicates the two-excitation continuum in the MI
and the dotted blue line marks the divergence observed in the SF and approximates well the
outer envelope of the signal in the BG. From [Villa et al., 2021a].

We also note a gradual reduction of the gap, but ultimately the existence of the BG phase is a
non-perturbative effect and perturbation theory is not expected to account for the existence of
gapless excitations.

Qualitatively, the transition to the BG can be observed using either the QSF of g1 as the
excitation spectrum becomes gapless (top row in Fig. 4.15) or the QSF of n̂ (bottom row in
Fig. 4.15) which also becomes gapless at the transition as it contains the gapless energy transitions
also observed in the SF phase instead of solely the gapped energy sums observed in the MI. Below,
we show how to quantitatively use quench spectroscopy in order to reconstruct the full phase
diagram of the model.

4.3.4 Reconstructing the phase diagram from the excitations dynamics
Using the QSF (momentum-space) We can use the previous results on the QSF of the
one-body correlator g1 to detect the MI-BG transition from the existence of gapless excitations
(extracted from the value of |G(0, 0)|) and the BG-SF transition from the existence of a finite speed
of sound. We already demonstrated it in the grand canonical ensemble for two cuts at U = 10Ji
and U = 7.5Ji in Fig. 4.12. The predicted boundaries agreed well within the errorbars with the
ones predicted using the phase diagram computed from standard probes (Fig. 4.9). Reconstructing
the entire phase diagram in the grand canonical ensemble using this method is computationally
demanding. Furthermore, when the gap of excitations drops below our numerical resolution (which
depends on the maximum time accessible to the dynamics), the BG-MI boundary becomes difficult
to extract. This may be problematic close to the lobe tip. Here, we rather reconstruct the entire
phase diagram in the canonical ensemble for n̄ = 1.

Quenching the on-site interaction Uf from Ui = 0.9Uf at fixed tunnelling J (set to 1), we
compute the QSF of the one-body correlator and extract the velocity of the lower edge of the
signal. Examples of fits performed are shown in Fig. 4.16. For weak and intermediate disorder,
we generally find that the procedure reliably distinguishes between the SF and the BG. The ob-
tained boundary is in excellent agreement within the errorbars to the one obtained using standard
methods [Fig. 4.6(a)]. However, for stronger disorder the fit procedure is more difficult and we
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Fig. 4.16 Examples for the QSF of g1 at n̄ = 1 at weak, intermediate and strong disorder, for
(a-c) U/J = 3 and (d-f) U/J = 4.5. (d) is close to the MI-BG boundary and is not a SF phase
(Vs = 0 due to the broadened signal around ω = 0). (c) and (f) illustrates the difficulties in
the fit of the lower edge at strong disorder. While (c) is identified as a BG with no speed of
sound, (f) is very close to the transition and is identified as a SF.

may only estimate qualitatively the SF-BG boundary. Close to the SF-BG transition, the size
of the superfluid puddles becomes of the order of the system size, and the spectral features in
momentum space of the BG closely resemble the ones of the SF. Therefore, our fitting algorithm
may incorrectly fit an existing finite soundlike mode and we expect to overestimate the size of
the SF region. A larger time resolution would help to resolve more accurately the region close to
the origin. A larger system size would also help to distinguish the spectral features between a SF
and a BG in this region. Therefore we emphasise that the limiting factor here is the finite evolu-
tion time and finite size in our numerical simulations, and is not a fundamental limitation of the
quench spectroscopy method. We display the shape of the obtained phase diagram in Fig. 4.17.
The extracted BG-MI boundary is represented by a dark blue line, which is dotted whenever the
energy gap in the disordered system drops below our numerical resolution such that we can no
longer distinguish the existence of gapless excitations. When this is the case, we rather estimate
the transition from the condition Egap(∆ = 0) = ∆ where Egap(∆ = 0) is obtained from the
QSF analysis of the clean system. The predicted SF-BG boundary is represented by a light blue
line, intended as a guide to the eye to the points which for the upper part of the lobe mark the
first value of ∆/J at fixed U/J where a soundlike mode is present, and similarly the first value
of U/J at fixed ∆/J for the lower part of the lobe. At strong disorder, the boundary is only in
qualitative agreement with the expected transition represented by the magenta line based on the
results obtained by [Gerster et al., 2016]. The fits of the lower-edge of the spectral features are very
demanding at high disorder strength, making it difficult to reconstruct the full shape of the lobe
using such method for the system size and finite evolution time we use in our numerical simula-
tions. In the following, we propose an alternative approach, which is significantly less sensitive
to finite size effects in order to reconstruct quantitatively the entire phase diagram using quench
spectroscopy.

Using the local spectral function (real-space) The features in momentum space are almost
identical close to the transition between the SF and the BG and in particular at strong disorder,
however we expect the spectral features in real-space to be more distinguishable as the BG exhibits
locally gapped MI regions or gapless SF regions. As we target local properties, we choose our
observable to be the on-site density. Instead of computing the space-time Fourier transform of the
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Fig. 4.17 Phase diagram of the Bose-Hubbard chain at n̄ = 1 reconstructed from the QSF of
the one-body correlator. The MI-BG transition (dark blue line) is obtained from the closing
of the energy gap of the QSF, and the dashed dark blue line is an estimate of the transition
based on the condition Egap(∆ = 0) = ∆ (where the energy gap is measured from the QSF of
the clean system) which we use when we can no longer clearly resolve the gap in the disordered
system. The SF-BG transition is reconstructed from an interpolation of the first point after
which we no longer find a finite soundlike mode (light blue line). The upper boundary of the
SF-BG transition at strong disorder is only a qualitative estimate due to the fit difficulties
to extract the speed of sound. The magenta dotted line represents the expected boundary
based on the results from [Gerster et al., 2016] and the dashed gray line the scaling ∆ ∼ U3/4

expected in the weakly interacting regime. The red diamond indicates the transition in the
clean system. From [Villa et al., 2021a].

dynamics, we only compute the Fourier transform in time, which leaves us with spatial information
about the phases which constitute the system. This local spectral function (LSF) is defined as

G(R,ω) = 2π
∑
ν,ν′

ρν
′ν

i δ(Eν′ − Eν − ω) 〈ν| Ô(R) |ν ′〉 . (4.18)

While the LSF is not very informative for translational invariant clean systems, it reveals the
inhomogeneous spatial structure when disorder is present. We begin the study in the weak disorder
regime ∆/U = 0.25, after a quench of the tunnelling from Ji to Jf = 0.9Ji in the grand canonical
ensemble. We take strong interactions U = 10Ji in order to distinguish all three phases by simply
changing the initial value of the chemical potential. For a single disorder realisation, we display
a cut of the LSF in the centre of the chain in Fig. 4.18(a-c) within each phase. In the MI, the
density probes a signal from the two-excitation continuum and shows a maximum for non-zero
energy reflecting the existence of locally gapped excitations. In the SF, we expect to probe a
gapless signal from the QSF of the density, which is therefore gapless. The BG resembles the SF
signal but shows secondary maxima at finite energy suggesting the coexistence of locally gapped
and gapless excitations. Before extracting the excitation peak, we use a Gaussian convolution
to smooth the observed signal (dashed green line). To identify the phases, we then identify the
regions which are locally SF or locally MI by computing G(R,ω) for each lattice site. For a single
disorder sample, we define a lengthscale ξ, which measures the typical size of the identified local
MI regions (equivalently, ξ measures the typical distance between the SF puddles). When ξ ∼ 0,
the system is globally SF, whereas for ξ ∼ L the system is globally MI. When 0 < ξ < L, the
system is a BG, and we expect ξ to vary continuously across the transition. By averaging over
Ns = 15 disorder samples, we compute the average value of ξ/L and its standard deviation and
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Fig. 4.18 (a-c) LSF of the density for a single disorder realisation representative of each phase
at U = 10Ji with (a) µ/U = 0.525 corresponding to the MI with a gapped spectral feature, (b)
µ/U = 0.625 corresponding to the BG with the coexistence of a gapped and gapless features
and (c) µ/U = 0.82 corresponding to the SF with a gapless signal. (d) Evolution of the
characteristic length ξ (rescaled by the length L) which tells apart the three phases and allows
reconstruction of the phase diagram. It measures the typical size of the MI regions so that
ξ/L = 0 in the SF, 0 < ξ/L < 1 in the BG and ξ/L = 1 in the MI. Results are averaged
over Ns = 15 samples for Jf/U = 0.09 and 0.12 and Ns = 25 samples for Jf/U = 0.18 and
0.225. The errorbars indicate the standard deviation of ξ/L across the samples (large in the
BG, close to zero in the SF and MI). The gray area represents the BG region expected from
Fig. 4.9. From [Villa et al., 2021b].

we represent its evolution for 4 different vertical cuts through the phase diagram in Fig. 4.18(d).
Because the BG is a Griffiths phase, the standard deviation of ξ is large, which means that among
the disorder samples the average number of MI regions varies substantially. This can also be used
to distinguish the BG from the other two phases. Due to the finite size, we need at least one
site locally SF-like or MI-like such that 1/L ≤ ξ/L ≤ 1 − 1/L corresponds to the BG. Together
with the computed values of ξ/L, we represent in Fig. 4.18(d) the BG regions as identified from
the phase diagram of Fig. 4.9 (gray areas). For all but the smallest interactions close to the tip
of the lobe, the agreement between the predicted boundaries is excellent. Close to the tip of
the lobe, a larger system size is ultimately necessary to distinguish the two gapless phases for
which the values of ξ/L remain very small (note the vertical axis to 0.1 instead of 1 in the violet
curve at Jf/U = 0.225). Numerically, working in the grand canonical ensemble is very costly, and
reconstructing the full phase diagram from this method is computationally prohibitive. In the
following, we move back to the canonical ensemble where n̄ = 1 to demonstrate that the full phase
diagram can be reconstructed from the LSF.

We follow the same procedure, performing a weak quench over the ground state for a given set
of parameters, compute the LSF of the density for a given disorder realisation on each site, smooth
the signal using a Gaussian convolution to extract the energy of the peak and repeat for all lattice
sites to evaluate ξ/L. We then average over all disorder samples to obtain the average value of
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Fig. 4.19 Phase diagram of the Bose-Hubbard chain at n̄ = 1 reconstructed from the spacing
between SF-like regions ξ/L obtained from the analysis of the LSF of the density (L = 47,
Ns = 10). The SF corresponds to ξ/L ' 0, the MI to ξ/L ' 1 and the BG to 0 < ξ/L < 1.
The full lines are parametric fits to the data points as guides to the eye. The estimated
boundary for the SF-BG transition is in excellent agreement with the results presented in
Fig. 4.6(a) (the result from [Gerster et al., 2016] is indicated by the dotted magenta line). The
MI-BG boundary is obtained from the first points for which ξ/L < 1− 1/L. We also represent
the expected scaling U3/4 at vanishingly small interactions (dashed gray), the result obtained
using Egap(∆ = 0) = ∆ from the QSF of the one-body correlator in Fig. 4.17 (dotted black).
From [Villa et al., 2021a].

ξ/L and the associated standard deviation. Finally, we repeat this for all points in the phase
diagram (∆/J, U/J) using a 32×32 grid. We display our final result in Fig. 4.19, averaged over 10
disorder realisations. The SF phase is identified as the white region where ξ/L ' 0, the MI phase
corresponds to the dark blue region where ξ/L ' 1, the BG corresponds to the intermediate case.
The SF-BG boundary is reconstructed by scanning horizontally (vertical boundary, right side of
the lobe) and vertically (top of the lobe) and extracting the first value for which ξ/L 6= 0 within
the errorbars. The black line represents a parametric fit through the points. For reference, we also
indicate the boundaries obtained from the analysis of the QSF (Fig. 4.17). The boundaries are
dotted when our numerical frequency resolution (including the additional broadening due to the
Gaussian convolution) is not sufficient and therefore we no longer clearly resolve the transition.
The obtained phase diagram is in quantitative agreement with the one computed from standard
numerical methods [Fig. 4.6(a)], and offers a more reliable and substantially less involved method
compared to the one based on the QSF where the phases were distinguished from their spectral
features in quasimomentum space. The agreement with the phase diagram obtained on much
larger system sizes is even surprising given the fact that we generally expect to underestimate the
size of the BG region, as a phase appears delocalised if its correlation length is larger than the
system size.

We also emphasise that in principle, for a large enough system, a single disorder realisation
would suffice to reconstruct the phase diagram. The most interesting feature of this method is
its immediate implementation in experiments: it only requires the ability to perform controlled
global quantum quenches and the use of quantum microscopes with on-site resolution to measure
the density operator from a series of snapshots of the experiment.



5 Conclusions and
perspectives

In this thesis, we have investigated the spreading of correlations in interacting quantum lattice
models. We showed that the space-time spreading of quantum correlations is generally twofold,
and the two characteristic velocities can be related to fundamental properties of the elementary
excitations and depend on the underlying model. When the dispersion relation of the quasiparticles
is non-linear, the two velocities have to be distinguished. Only the velocity of the correlation edge
is linked to the fastest group velocity of the excitations and relates to the speed at which physical
information propagates.

We then proposed a novel spectroscopic method called quench spectroscopy which uses the
out-of-equilibrium space-time correlation pattern of equal-time observables (one-point functions
or two-point correlators) obtained after a quantum quench (either local or global) in order to
unveil spectral properties of the excitations with momentum resolution. We discussed the quench
protocol in different phases and regimes for various models (Bose-Hubbard chain, Heisenberg chain,
transverse-field Ising chain for short and long-range interactions in the quasi-local regime). We also
detailed the role played by the observable on the probed spectral properties. Importantly, quench
spectroscopy can be used to reconstruct the dispersion relation of the elementary excitations.
Additionally, we warned that the observation of a well-defined excitation branch is not necessarily
a signature of the excitation spectrum, and we provided various specific examples as well as a
general analytical argument based on a cosine-like excitation spectrum to illustrate this. We also
discussed the experimental implementation and advantages of the method compared to standard
pump-probe spectroscopies.

Finally we extended our study to disordered systems and in particular we showed that quench
spectroscopy can unambiguously detect the Bose glass phase of the Bose-Hubbard model in various
regimes. Specific spectral features highlight the different types of excitations present within each
phase of the model. We showed how a single probe, the QSF of the one-body correlator, can
be used to locate both the MI-BG boundary from the existence of gapless excitations and the
SF-BG boundary from the existence of a well-defined soundlike mode. Additionally, a local probe
(the on-site density) can identify the real-space distribution of the isolated superfluid puddles
constituting the Bose glass. Such a local spectral function was used to quantitatively reconstruct
the full phase diagram of the disordered model.

To conclude let us mention a few outlooks. From the point of view of correlation spreading, a
connection between the quasiparticle picture and hydrodynamic theory is desirable. The quasipar-
ticle picture is semi-classical, and the role played by entanglement remains to be included in the
description. It would also be interesting to pursue the analogy regarding classical hydrodynamical
theory, in particular as the Kelvin wake-pattern bears some similarities with the quantum result
which sparked interest recently (Appendix 2.A). The focus towards the propagation of entangle-
ment, especially in long-range systems, is also of interest. Recent observations revealed a generic
ballistic spreading of entanglement in the quasi-local regime of long-range models [Schneider et al.,
2021].

From the quench spectroscopy perspective, a first experimental implementation of the tech-
nique would be suitable. Today, quantum gas microscopes allow the measurements of local on-site
observables, and we also discussed the one-body correlator which is accessible through time-of-
flight measurements. As the frequency resolution of quench spectroscopy is set by the inverse of
the maximum time available for the dynamics, it would allow to experimentally obtain spectral
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properties with an unmatched accuracy.
In disordered systems, we showed results for one type of disorder drawn from a random-box

distribution, usually implemented experimentally from speckle patterns or spatial light modula-
tors. Another type of disorder is quasi-random disorder, which is experimentally highly relevant
and can be created by superimposing an additional lattice with incommensurate lattice spacing r
(the wavelengths of the two lasers used to create the lattices are incommensurate). A few dramatic
changes are expected, in particular, the shape of the phase diagram is strongly modified as we
showed in the main text (for vanishing interactions there exists a threshold value in the disorder
strength to localise the particles; the theorem of inclusions no longer holds such that a direct SF-
MI transition is allowed). More importantly, there exists specific values of the quasi-momentum
such as k? = 2π(1−r) which are known to display strong satellite peaks in the behaviour of specific
observables [Roscilde, 2008; Roux et al., 2008]. Such additional resonances may slightly complicate
the numerical analysis, work to investigate such question is currently in progress.

Recently, [Gautier et al., 2021; H. Yao et al., 2020] proposed quasi-periodic potentials with low
amplitude in order to alleviate the finite temperature constraint that has up to now limited
the observation of the Bose glass and its associated physical behaviour. Despite the fact that
we benchmarked quench spectroscopy on lattice models where numerically exact solutions are
available, it also applies to continuum models and it would be interesting to see what can be
learned from these models.

We have also focused on weak quenches around the ground state (zero temperature), however
quench spectroscopy may also be adapted to investigate higher excited states (high temperature).
Recently, this topic emerged in the context of many-body localisation in order to investigate the
mobility edge (lowest energy value in the spectrum above which all states are delocalised) [Naldesi
et al., 2016; R. Yao and Zakrzewski, 2020]. Besides, it would be interesting to extend disordered
quench spectroscopy so as to study the existence and properties of many-body localised phases.
A prime example is the quantum transverse field Ising chain, whose Hamiltonian reads as Ĥ =
−∑i<j Jijσ̂

x
i σ̂

x
i+1−hiσ̂zi , where the on-site magnetic fields hi are randomly drawn from a bounded

probability distribution, with disorder strength h. This model has been studied experimentally by
[Smith et al., 2016] on a trapped ions platform for a long-range chain (Jij = 1/|i− j|α) of 10 spins.
They found evidence of a MBL phase by measuring in particular the longitudinal magnetisation
〈σ̂zi 〉 starting from the staggered Néel state |↑↓↑ · · ·〉z, and observing whether the magnetisation
relaxes towards a thermal state. A MBL state emerged when the disorder strength was ramped up.
It would be interesting to investigate the consequence of MBL on the observed spectral properties,
as they depend upon the nature of the excitations generated by the system. Quench spectroscopy
could also be a tool to investigate the existence of MBL in higher dimensions, in particular in light
of recent experiments indicating evidence of MBL states in the two-dimensional Bose-Hubbard
model [Choi et al., 2016]. In the latter experiment, times up to tmaxJ/~ = 190 were used, well
beyond the maximum time we used in our numerical simulations and would allow for an excellent
resolution of spectral properties. So far evidence for MBL has been provided from thermodynamic
properties, in particular as regards thermalisation of the long-time steady state. An extension of
quench spectroscopy to higher energies in order to characterise MBL directly from the localisation
of its excitations is desirable.
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Titre : Dynamique hors de l’équilibre et spectroscopie par quench de modèles quantiques ultrafroids à N -corps

Mots clés : quench quantique, cône de lumière, propagation des corrélations, systèmes désordonnés, verre de
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Résumé : Les atomes ultrafroids sont devenus une
plateforme polyvalente pour réaliser et contrôler des
systèmes quantiques fortement corrélés. Les méthodes
spectroscopiques sont les outils courants pour son-
der les propriétés des excitations qui contrôlent les
phénomènes dynamiques de transport. Dans cette
thèse, nous développons une nouvelle méthode de
spectroscopie par quench qui utilise la dynamique hors
équilibre générée par un quench quantique pour four-
nir des informations sur les excitations résolues en vec-
teur d’onde. Nous testons la méthode sur des modèles
unidimensionnels où des simulations numériques per-
formantes et exactes par le groupe de renormalisation
de la matrice densité sont disponibles. Premièrement,
nous analysons la structure spatio-temporelle des
corrélations quantiques hors équilibre dans les modèles
sur réseau. Celle-ci présente une forme de cône de
lumière avec une structure double. Deux vitesses ca-
ractéristiques peuvent être extraites des corrélations
proches du bord du cône, dont une donne la vi-
tesse de propagation des corrélations quantiques.
Ces deux vitesses dépendent des propriétés dyna-
miques du spectre d’excitation du modèle sous-jacent.
Deuxièmement, nous discutons comment la spectrosco-

pie par quench peut être utilisée pour reconstruire les
propriétés spectrales à partir des corrélations spatio-
temporelles de simples observables ou corrélateurs à
temps égaux. Ceci offre la possibilité de reconstruire
la relation de dispersion des excitations à partir d’ins-
tantanés de l’expérience obtenus à l’aide de micro-
scopes quantiques, en évitant les fastidieux balayage
et étalonnage en vecteur d’onde nécessaires dans les
méthodes pompe-sonde standard. Nous étudions des
quenchs globaux et locaux sur des systèmes non-
désordonnés, et discutons du rôle joué par l’obser-
vable sur les caractéristiques spectrales. La méthode
générale est illustrée sur divers exemples incluant le
modèle de Bose-Hubbard et des modèles de chaı̂nes de
spin, dans diverses phases, régimes et pour différentes
observables. Troisièmement, nous étendons la spec-
troscopie par quench aux systèmes désordonnés. En
prenant comme exemple la chaı̂ne de Bose-Hubbard
désordonnée, nous montrons à l’aide d’une seule sonde
comment la méthode peut distinguer sans ambiguı̈té le
verre de Bose de l’isolant de Mott et du superfluide. En
utilisant une sonde spectrale à résolution spatiale, nous
reconstruisons également le diagramme de phase com-
plet du modèle.

Title : Out-of-equilibrium dynamics and quench spectroscopy of ultracold many-body quantum systems

Keywords : quantum quench, light-cone dynamics, correlation spreading, disordered systems, Bose glass, excita-
tion spectrum

Abstract : Ultracold atoms have emerged as a ver-
satile platform to realise and control strongly-correlated
quantum systems. Spectroscopic methods are the com-
mon tools to probe the properties of the excitations
which control dynamical transport phenomena. In this
thesis, we develop a novel spectroscopic method named
quench spectroscopy that uses the out-of-equilibrium
dynamics generated by a quantum quench to grant
momentum-resolved information about the excitations.
We benchmark the method on one-dimensional models
where efficient density matrix renormalisation group nu-
merical simulations are available. First, we analyse the
out-of-equilibrium space-time pattern of quantum corre-
lations in lattice models following a quantum quench. It
displays a generic light-cone like pattern with a twofold
structure. Two characteristic velocities can be extracted
from the correlations close to the cone edge, one of
which gives the velocity for the propagation of quantum
correlations throughout the system. Both of these velo-
cities can be related to dynamical properties of the ex-

citation spectrum of the underlying model. Second, we
discuss how quench spectroscopy reconstructs spectral
properties from space-time patterns using simple equal-
time observables or correlators. It allows to reconstruct
the full dispersion relation from a series of snapshots
of the experiment using quantum gas microscopes, and
avoids the tedious scan and calibration in momentum
necessary in standard pump-probe methods. We inves-
tigate both global and local quenches on clean systems,
and discuss the role played by the observable on the
spectral features. We discuss the implementation on va-
rious examples including the Bose-Hubbard model and
spin chain models in various phases, regimes and for
different observables. Third, we extend quench spectro-
scopy to disordered systems. Using as an example the
disordered Bose-Hubbard chain, we show using a single
probe how the method can unambiguously tell apart the
Bose glass from the Mott insulator and the superfluid.
Using a spatially-resolved spectral probe, we also re-
construct the full phase diagram of the model.
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