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One of the important problems in hydrodynamics is the study of stationary water waves created by a flow over submerged obstacles. The nature of the obstacle, semi-submerged, completely submerged, piercing one or more than one layer of the flow, obstacle lying on the bottom of the domain, can model different interesting problems in the geophysical fluid dynamics, such as the wave formation in the presence of a boat, of a submarine or of a topography. The mathematical model for this problem is obtained starting from the general Navier-Stokes equations (the details of the derivation are given below). Since we are interested in the study of small amplitude waves when the obstacle is considered a thin body, the problem can be approximated by a linear model. Even if the resulting problem is a linear and stationary system, the mathematical treatment for the model is far from being trivial. There is a lot of literature on the existence of solutions for such linear models, known as linear water waves. Different techniques are used to study the solvability of the problem: one approach is the use of integral equation methods, see [Kochin, 1937, Vainberg and Maz'ya, 1973, Kuznetsov and Maz'ya, 1989, Motygin and McIver, 2009, Kuznetsov et al., 2004].

An alternative variational method, on which we concentrate on what follows, was introduced in [Pagani and Pierotti, 1999a] and [Pagani and Pierotti, 1999b]. This variational approach was used while considering different types of obstacles: semisubmerged (see [Pierotti, 2003, Pagani and Pierotti, 2001, Pierotti, 2002, Gatti and Pierotti, 2003, Pagani and Pierotti, 2004, Pagani and Pierotti, 2006]),
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submerged but not placed on the bottom (see [Pagani and Pierotti, 1999a, Pierotti, 2008, Pagani and Pierotti, 2006]) or placed on the bottom of hollow or protruding type ( [Pierotti, 2006, Pierotti andSimioni, 2008]), see also [Pagani andPierotti, 2006, Pagani, 2006]. One can also use a Fourier approach in order to solve the problem, this technics will be also considered in this thesis.

In all these problems we remark that the main difficulty is that the solvability depends on the forward speed of the flow at infinity U ∞ and several cases have to be distinguished. For an unstratified flow for example, the solvability of the problem depends on U ∞ while compared to a critical value √ gH where g is the gravitational acceleration and H is the depth of the physical domain at infinity. We distinguish two different regimes for this case, a subcritical regime when U ∞ < √ gH and a supercritical regime when U ∞ > √ gH. For the supercritical case the linear problem is coercive in the Sobolev space H 1 , leading to the existence and uniqueness of a solution rapidly decreasing at infinity. The coercivity is lost in the subcritical case, but it can be recovered on an appropriate subspace of H 1 . This loss of coercivity allows, contrary to the supercritical case, the existence of oscillating solutions at infinity. The problem is even more complex in the case of a hollow or of a protruding obstacle, as the size of the obstacle conditions the possible existence of non-trivial solutions (the so-called trapped modes), see [Pierotti, 2006] and [START_REF] Pierotti | The steady twodimensional flow over a rectangular obstacle lying on the bottom[END_REF]. Another degree of complexity for the problem is also added by the presence of the stratification in the fluid, which as we explain in what follows, is quite a pertinent setting for the modelling of geophysical flows (as e.g. the mountain lakes).

In what follows we study a problem modelling steady water-waves generated by an obstacle in an N-layer fluid. As in the classical one-layer Neumann-Kelvin problem, our model is a linearized version of the steady-free surface Euler's equations around a rest state, where we end-up with an elliptic problem involving interface conditions. Depending on the parameters, we will be able to distinguish several regimes that are related to the number of roots for the disperation relation. Starting from the onelayer and two-layer cases, we aim to generalize the methods used in order to solve the N-layer problem.

The motivation to study stratified fluids comes back from [Ekman, 1904], who described the dead-water phenomenon, which translates into a slowing down of the motion of the boats when the fluid presented a stratification. The first mathematical studies on this problem are due to [Lamb, 1916], [START_REF] Sretensky | Waves on the interface between two superposed fluids with application to the "dead-water" phenomenon[END_REF], Introduction [START_REF] Sretensky | On the wave resistance of ships in the presence of internal waves[END_REF], [Hudimac, 1961], [Crapper, 1967]. Since these works, a very rich literature is available on the subject of internal and surface waves in stratified fluids, where the authors considered different aspects of a stratified flow such as finite and infinite depth, presence of a body submerged totally or only partially in one of the layers, etc. A non-exhaustive list of articles treating this subject is given here [START_REF] Keller | Internal and surface wave production in a stratified fluid[END_REF], [Kallen, 1987], [Barber, 1993], [START_REF] Motygin | The wave resistance of a two-dimensional body moving forward in a two-layer fluid[END_REF], [START_REF] Yeung | Waves generated by a moving source in a two-layer ocean of finite depth[END_REF], [START_REF] Gang | Surface effects of internal wave generated by a moving source in a two-layer fluid of finite depth[END_REF], [START_REF] Wei | Waves induced by a submerged moving dipole in a two-layer fluid of finite depth[END_REF], [START_REF] Lynett | Linear analysis of the multi-layer model[END_REF], [START_REF] Ter-Krikorov | Perturbations from a source in a threelayer atmosphere[END_REF], [Vasholz, 2011], [Nguyen and Yeung, 2011a]. There is also a lot of available literature considering the non-stationary linear of nonlinear multi-layer problem, known as the Saint-Venant equation, see e.g. [Audusse, 2005], [Duchêne, 2016], [Duchêne, 2010], [Duchêne, 2011], [Monjarret, 2014], [START_REF] Petcu | An interface problem: The two-layer shallow water equations[END_REF].

Formal derivation of the Neumann-Kelvin model

In this section, we describe how the models studied theoretically in the rest of the thesis can be obtained formally from the incompressible multi-phase Euler equations. 

Introduction Γ f Γ 1 . . . . . . Γ N -1 Γ b Ω 1 Ω 2 . . . Ω N -1 Ω N e 1 e 2 U ∞

The incompressible Euler equations

We will denote (ρ i ) i=1,..,N the density of each layer. Let us consider the momentum conservation equation:

ρ i (∂ t U i + (U i • ∇)U i ) = ∇ • σ i -ρ i ge 2 , in Ω i (1)
where U i and σ i are the fluid velocity and the stress tensor in the i-th component of the fluid. Each layer is considered to be incompressible, we hence have:

∇ • U i = 0 , in Ω i (2)
When the fluid is considered to be inviscid as it is the case here, the inner stress tensor σ i writes:

σ i = P i Id, (3) 
where P i is the pressure in the i-th component of the fluid, which is an unknown of the problem. Equations ( 1)-(2) associated with (3) constitute the classical incompressible Euler equations for a stratified fluid with N layers.

We further assume the flow to be stationary i.e. ∂ t U i = 0. We then obtain the Introduction stationary Euler equations in each domain Ω i :

ρ i (U i • ∇)U i = ∇P i -ρ i ge 2 , (4) 
∇ • U i = 0.

(5)

Boundary conditions

Let us now describe the boundary conditions of the problem:

• The dynamic interface condition imposes the continuity of the pressure across each interface Γ i (we do not consider surface tension effects here):

P i | Γ i = P i+1 | Γ i . (6) 
• The dynamic free-surface condition imposes the pressure to be constant on Γ f . Without loss of generality (the pressure is defined up to a constant) we choose:

P 1 | Γ f = 0 (7) 
• In addition to the above dynamic conditions, we also have the following kinematic condition on Γ f , Γ i and Γ b , which expresses that at steady state, the velocity field must be tangential to each interface:

V i • n| Γ i = 0 , V 1 • n| Γ f = 0 , V N • n| Γ b = 0 . (8)

Upstream conditions

Thoughout this manuscript, we will refer to the limit x 1 → -∞ as the "upstream" limit. We consider that a horizontal current is imposed upstream with the speed U ∞ :

|U (x 1 , x 2 ) -U ∞ e 1 | → 0 , for x 1 → -∞ , uniformly with respect to x 2 (9)

Moreover, the depth of each interface Γ f /i/b is imposed upstream. We will denote the upstream thickness of each layer with (H i ) i=1..N , and the depth of each interface

(d i ) i=1..N -1 .
Assuming each interface to be given by the graph of a function (η i ) i=0..N -1 (η 0 being associated with the free surface Γ f ), we have:

η i (x 1 ) → -d i , for x 1 → -∞ . ( 10 
)
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The graph representation is far from being a self-consistent hypothesis, and in some cases (overturning waves) it cannot be used to represent correctly the interfaces. However, in the limit of small amplitude waves (see [Lannes, 2013], for the case of a single layer fluid) it can be shown that no overturning waves appear spontaneously.

The irrotational flow hypothesis

Let us define the vorticity of the flow in the i-th component of the fluid:

ω i = ∇ × U i . (11) 
By taking the curl of (1), and using the following identity:

(U • ∇)U = 1 2 ∇|U | 2 -U × ω, (12) 
it is possible to show that ω i has to satisfy the equation:

∂ t ω i + (U i • ∇)ω i = (ω i • ∇)U i , in Ω i . (13) 
From the above equation it is clear that ω i = 0 is a solution. Assuming the uniqueness of solutions to the initial value problem, it is then clear that if ω i = 0 initially, then ω i remains zero for all times. The Helmholtz-Hodge theorem states that any curl-free smooth vector field can be expressed as the gradient of a potential. Hence, since ω i = 0, there exists a streamfunction Ψ i such that:

U i = ∇ ∧ Ψ i , (14) 
since U i is also divergence-free in Ω i , Ψ i is harmonic in Ω i

∆Ψ i = 0, in Ω i . (15) 
Using (12) with ω i = 0 and U i = ∇ ∧ Ψ i , and rewriting (4), we obtain:

∇ ρ i 1 2 |∇Ψ i | 2 + gx 2 -P i = 0 , in Ω i , (16) 
which leads to Bernoulli's equation:

P i = ρ i 1 2 |∇Ψ i | 2 + gx 2 + c i , in Ω i . (17) 
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Taking the trace of the pressure P i on Γ i and using the continuity if the pressure (6)

ρ i 1 2 |∇Ψ i | 2 + gx 2 + c i = ρ i+1 1 2 |∇Ψ i+1 | 2 + gx 2 + c i+1 , on Γ i . (18) 
The free surface condition reads:

ρ 1 1 2 |∇Ψ 1 | 2 + gx 2 + c 1 = 0 on Γ f . ( 19 
)
Taking the limit x 1 → -∞, we obtain:

ρ i 1 2 |U ∞ | 2 -gd i + c i = ρ i+1 1 2 |U ∞ | 2 -gd i + c i+1 , (20) 
and

ρ 1 1 2 |U ∞ | 2 + c 1 = 0. (21) 
Moreover, isolines of Ψ i are streamlines, and, at steady state, each interface Γ i must be a streamline. This condition, equivalent to the condition (8) can be translated as the continuity of the streamfunction across each interface:

Ψ i+1 = Ψ i (22) 
Taking the limit x 1 → -∞, we obtain:

Ψ 1 | Γ f = 0 Ψ i | Γ i = -U ∞ d i .
Finally, the condition at the bottom states that the obstacle is also required to be a streamline, hence:

Ψ N | Γ b = -U ∞ d N . (23) 
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Introducing the dimensionless variable Ψi = Ψ i /U ∞ (and dropping the ∼ symbol for the sake of simplicity), we end up with the following free-boundary problem:

Find Γ f , (Γ i ) i=1..N -1 , and (Ψ i ) i=1..N such that:

∆Ψ i = 0 in Ω i (24) |∇Ψ 1 | 2 + 2kx 2 = 1 Ψ 1 = 0 on Γ f (25) ρ k |∇Ψ k | 2 + 2kx 2 k=i+1 k=i = (ρ i+1 -ρ i ) (1 -2kd i ) Ψ i+1 = Ψ i = -d i on Γ i (26) 
Ψ N = -d N on Γ b (27) |∇ ∧ Ψ i (x 1 , •) -e 1 | ∞ → 0 for x 1 → -∞ ( 28 
)
|η i (x 1 ) + d i | → 0 for x 1 → -∞ (29) 
where k = g/U 2 ∞ . Note that condition ( 28) is equivalent to ∂ 1 Ψ i → 0 and ∂ 2 (Ψ ix 2 ) → 0 as x 1 → -∞, uniformly with respect to x 2 . Thanks to the surface condition Ψ 1 = 0 the upstream condition for Ψ i becomes |Ψ i (x 1 , x 2 ) -x 2 | → 0 as x 1 → -∞, uniformly with respect to x 2 .
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we can reformulate the above problem in terms of η i , ψ i :

Find (η i ) i=0,..,N -1 , and (ψ i ) i=1,..,N such that:

∆ψ i = 0
in Ω i (34)

|∇ψ 1 (x 1 , η 0 (x 1 )) + e 2 | 2 + 2k η 0 (x 1 ) = 1

ψ 1 (x 1 , η 0 (x 1 )) = -η 0 (x 1 ) for x 1 ∈ R (35)    ρ j |∇ψ j (x 1 , η i (x 1 ) -d i ) + e 2 | 2 + 2k η i j=i+1 j=i = ρ i+1 -ρ i ψ i+1 (x, η i (x 1 ) -d i ) = ψ i (x 1 , η i (x 1 ) -d i ) = -η i (x 1 )
for x 1 ∈ R (36)

ψ N (x 1 , f (x 1 ) -d N ) = -f (x 1 )
on Γ b (37)

|ψ i (x 1 , •)| ∞ → 0 for x 1 → -∞ (38) η i (x 1 ) → 0 for x 1 → -∞ (39)
Let us now apply a formal linearisation of the above equation with respect to the variable

u = (η i-1 , ψ i , f ) i=1..N
by expanding each equation at first order with respect to these variables, around the zero solution. We have in particular that:

|∇ψ j (x 1 , η i (x 1 ) -d i ) + e 2 | 2 = |∇ψ j (x 1 , η i (x 1 ) -d i )| 2 o(|u|)
+ 2∂ 2 ψ j (x 1 , η i (x 1 ) -d i )

2∂ 2 ψ j (x 1 ,-d i )+o(|u|)

+1

(40)

= 1 + 2∂ 2 ψ j (x 1 , η i (x 1 ) -d i ) + o(|u|) (41) 
also, the same way, we have:

ψ i (x 1 , η i (x 1 ) -d i ) = ψ i (x 1 , -d i ) + o(|u|) . ( 42 
)
Let us introduce (see figure 2):

Ωi = R×] -d i , -d i-1 [ , Γi = R × {-d i } , Γf = R × {0} , Γb = R × {-d N }. Introduction Γf Γ1 . . . . . .
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Γb Find (ψ i ) i=1,..,N such that:
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∆ψ i = 0 in Ωi (43) ∂ 2 ψ 1 -kψ 1 = 0 on Γf (44)    [ρ j (∂ 2 ψ j -kψ j )] j=i+1 j=i = 0 ψ i+1 = ψ i on Γi (45) ψ N (•, -d N ) = -f on Γb (46) |ψ i (x 1 , •)| ∞ → 0 for x 1 → -∞ (47) 
In what follows we will study the existence and uniqueness for a solution of this generalized Neumann-Kelvin problem.

Strategy

The following chapters use mainly two methods for the study of the linear problems that we consider, the variational method and the Fourier transform. Let us start by briefly describing the main steps of the variational approach. The first step is to write the problem under the form of a weak variational formulation, defined on Introduction some appropriate Sobolev spaces. The second step is to show the existence and uniqueness of a weak solution. This step is established by a variational method via the Lax-Milgram theorem and we obtain the existence and uniqueness of a weak solution belonging to some subspace of H 1 , where the choice of this subspace will be determined in order to insure the coercivity of the problem. The last step consists in recovering a classical solution. Here we distinguish different cases, when the weak solution is indeed the solution of the problem or when the variational solution is not harmonic and thus the solution of the original problem is actually formed by a sum between the variational solution and some oscillating/wake solution which will compensate the defect introduced by the laplacian of the variational solution.

The Fourier transform is also used to solve the initial problem. By taking the Fourier transform to the problem and using some standard computations, we will get the solution of the problem in the Fourier form. By applying the inverse Fourier transform, an integral expression is obtained. The integral expression that we get makes appear a dispersion relation that obliges us to deal with its zero points, in order to give a rigorous meaning of the integral. What we call the supercritical case corresponds to the situation when the dispersion relation has no root. The subcritical cases correspond to the situation when the dispersion relation has one, two or more roots, depending on the parameters of the problem (and on the upstream velocity at infinity U ∞ ). The way we treat this singular points for the integral makes appear the explicit form of the variational part and of the oscillatory part of the solution.

Outline of the thesis

The thesis is divided into four chapters. Chapter 1 considers the Neuman-Kelvin problem treating a single layer flow over an obstacle lying on the bottom of the physical domain. We investigate the problem both by the variational and Fourier method and we distinguish between the subcritical and supercritical cases, meaning when the prescribed velocity of the flow upstream at infinity is respectively less or larger than the wave velocity. Numerical simulations illustrate the subcritical and supercritical cases. The wave resistence is also computed and waveless obstacles are obtained in the subcritical case.

Chapter 2 generalizes the case treated in the previous chapter by considering the velocity at upstream infinity as variable, more exactly as a simple step function. As we explain later on, the interest of this case is that it represents a first step into Introduction the treatment, at least numerically, of the nonlinear problem. This context allows the flow to present certain zones where it is supercritical and others where it is subcritical, we call this case a transcritical flow. As in Chapter 1, the treatment of the supercritical regime is immediate, as the variational solution is smoother than just "finite energy" and is hence the unique solution to the initial problem. However, the case of transcritical flow needs handling with more care and we consider here only one of the two possible transcritical situations. The variational solution obtained in the transcritical case will not be a solution of the initial problem since it fails to satisfy the harmonicity condition. The regularization procedure needs to be carried out in order to correct the variational solution and obtain the solution of the original problem.

Chapter 3 considers a two-layer flow with rigid lid approximation at the free surface and we treat the problem both by the variational and Fourier transform method. Using the variational method we can prove the existence and the uniqueness of the solution. The Fourier method allows us to explicitly determine the variational and the wake part of the solution. We also prove that in the presence of a rigid lid, when the density of the upper layer is zero, the interface between the layers behaves exactly as the free surface for the one layer case, this result will be also recovered in a more general setting in Chapter 4. Numerical simulations complete these results.

Chapter 4 concentrates on developing a qualitative theory for multi-layered fluids. We first establish a general theory that could apply to various stationary linear models when the Fourier method is used. Thus, studying different possible cases related to the existence and multiplicity of real roots for the dispersion relation, we give a general treatment for the problem. Then, we apply this theory to the N-layer case with rigid lid and we obtain the exact solution for each layer. We also consider the three-layer case with rigid lid, when the density of the upper layer is zero and we compare the solution at the interfaces with the two-layer case with free surface. Numerical simulations for the two-layer case with free surface illustrate the fluid dynamics for each layer, for the cases when the dispersion relation presents no roots, only one real root or two distinct real roots. For the cases when the dispersion relation presents one or two real roots, and thus the solution is oscillating downstream, we can also construct wakeless obstacles.

Chapter 1

Existence and uniqueness for the linearized two-dimensional single layer problem

In this chapter we consider the wave formation over a regular thin obstacle situated on the bottom of the domain using the Neumann-Kelvin problem introduced previously. This is an easier context than in [Pierotti, 2006] and [START_REF] Pierotti | The steady twodimensional flow over a rectangular obstacle lying on the bottom[END_REF] but has the main interest of allowing us to connect two different approaches: the variational method and the Fourier method. Both of these methods will be used in the next chapters, for problems with different difficulties.

Using the Fourier method, we can also identify the variational solution obtained previously by means of the variational approach, as well as its regularization in order to cancel the singularities of the Laplacian and to finally obtain a harmonic function.

The setting of the problem

In order to investigate the existence of solutions for the Kelvin-Neumann problem in the presence of a thin obstacle on the bottom of the domain, let us consider the two dimensional flow evolving in a fixed strip Ω = {R × (-H, 0)} of constant depth H, whose boundary consists of the free surface Γ f = R × {0} and of the bottom

Γ b = R × {-H} (see figure 1.1).
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Γ f (x 2 = 0) Γ b (x 2 = -H) Ω H x 1 x 2 U ∞ FIGURE 1
.1 -Illustration of the domain and its boundaries in the thin obstacle problem.

The dashed lines represent schematically the free-surface and the bathymetry, which in the case of the linearized problem are not geometrical features but rather functions defined respectively on Γ f and Γ b .

We recall from Introduction the formulation of the single layer Neumann-Kelvin problem for an obstacle lying at the bottom, written in terms of the perturbation stream function ψ:

Find ψ ∈ C 2 (Ω) ∩ C 1 (Ω ∪ Γ f ) ∩ C 0 (Ω ∪ Γ b ), ψ bounded, satisfying: ∆ψ = 0 in Ω, (1.1) 
∂ 2 ψ = kψ on Γ f , (1.2) ψ = U ∞ f on Γ b , (1.3)
|∇ψ| → 0 as x 1 → -∞, (uniformly with respect to x 2 ).

(1.4)

Unless stated otherwise, in the rest of this chapter we will assume that f is a known

C 1 c (Γ b ) function.

Variational Method

In this section, we introduce the variational formulation of the problem and by the Lax-Milgram theorem, we will prove the existence of a unique solution of the problem (1.1) -(1.3) on suitable subsets of H 1 (Ω). As mentionned previously and already seen in the previous works on the variational method, the behavior of the solutions depends critically on the value of the Froude number F r , defined by [START_REF] Kuznetsov | Linear Water Waves[END_REF]. If F r > 1 (supercritical regime) every solution is exponentially decreasing at infinity as it belongs to H 1 . This is not the case when F r < 1 (subcritical regime), as we lose the coercivity of the problem in H 1 and we need to restrict the space in order to use the variational method. The variational solution will not satisfy condition (1.1) as the laplacian presents singularities that 1.2 Variational Method will be eliminated correcting the solution by an oscillating function at infinity. In terms of parameter k, the two regimes are: supercritical for k < 1 H and subcritical for k > 1 H .

F r = U ∞ / √ gH [

Variational formulation of the problem

Let us place ourselves in the case when k < 1 H . We start by defining the lifting function,

ψ = ψ 1 + ψ 0 , (1.5)
where

ψ 0 ∈ H 1 (Ω) and ψ 0 | Γ b = U ∞ f (x 1 ), ψ 1 = 0 on Γ b .
Moreover, we define the following subspace of functions vanishing in the trace sense on Γ b :

V = {ψ ∈ H 1 (Ω), ψ| Γ b = 0}. (1.6)
By the Poincaré inequality (see, e.g. [Brezis, 2010]), the classical H 1 -norm is equivalent on V to the following one:

ψ 2 = Ω |∇ψ| 2 dΩ. (1.7)
Let us take a test function v ∈ V and multiply (1.1) by v, then integrate over Ω. We get:

Ω ∆ψ v dΩ = 0.
(1.8)

Using integration by parts, we have:

Ω ∇ψ • ∇v dΩ -k Γ f ψ v dΓ f = 0, ∀v ∈ V.
(1.9) By (1.5), we obtain the following variational formulation Vp1 for the problem:

Find ψ 1 ∈ V such that for all v ∈ V, the following holds true:

Ω ∇ψ 1 • ∇v dΩ -k Γ f ψ 1 v dΓ f = - Ω ∇ψ 0 • ∇v dΩ + k Γ f ψ 0 v dΓ f .
(1.10)
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We define the bilinear form B : V × V → R as follows: (1.11) and the linear form, L : V → R:

B[ψ 1 , v] = Ω ∇ψ 1 • ∇v dΩ -k Γ f ψ 1 v dΓ f ,
L(v) = - Ω ∇ψ 0 • ∇v dΩ + k Γ f ψ 0 v dΓ f .
(1.12)

Thus, problem (1.10) becomes:

Find ψ 1 ∈ V such that the following holds true:

B(ψ 1 , v) = L(v), ∀ v ∈ V.
(1.13)

Existence and unique solvability in the supercritical case

Theorem 1.2.1. Let us suppose k < 1 H . Then, there exists a unique solution ψ 1 ∈ V of the variational problem (1.13).

We will prove Theorem 1.2.1 using the Lax-Milgram theorem. In order to apply the Lax-Milgram theorem (see, e.g. [Evans, 1997]), we need to show the continuity of B and L, as well as the coercivity of B. Let us first recall the following classical result: Lemma 1.2.2. [START_REF] Dautray | Analyse mathématique et calcul numérique pour les sciences et les techniques[END_REF]. Let Ω be the strip R × (-H, 0), Γ f the free surface and Γ b the flat bottom of the strip. Let υ ∈ H 1 (Ω) such that υ = 0 on Γ b . Then, the following holds:

υ| Γ f 2 L 2 (Γ f ) ≤ H ∇υ 2 L 2 (Ω) , (1.14)
where H is the height of the strip.

Using (1.14), we can now prove Theorem 1.2.1:

Proof. It is immediate to prove that the bilinear form B is continuous on V × V , with 1.2 Variational Method V endowed with the norm (1.7). Indeed, let (ψ 1 , v) ∈ V × V : B[ψ 1 , v] = Ω ∇ψ 1 ∇v dΩ -k Γ f ψ 1 v dΓ f ≤ Ω |∇ψ 1 ||∇v| dΩ + k Γ f |ψ 1 | |v| dΓ f ≤ ∇ψ 1 L 2 (Ω) ∇v L 2 (Ω) + k ψ 1 L 2 (Γ f ) v L 2 (Γ f ) ≤ ψ 1 V v V + kH ∇ψ 1 L 2 (Ω) ∇v L 2 (Ω) ≤ (1 + kH) ψ 1 V v V (1.15)
The continuity of the linear form L follows from the following estimates:

|L(v)| = - Ω ∇ψ 0 • ∇v dΩ + k Γ f ψ 0 v dΓ f ≤ Ω |∇ψ 0 ||∇v| dΩ + k Γ f |ψ 0 | |v| dΓ f ≤ ∇ψ 0 L 2 (Ω) ∇v L 2 (Ω) + k ψ 0 L 2 (Γ f ) v L 2 (Γ f ) ≤ ∇ψ 0 L 2 (Ω) v V + k H ∇ψ 0 L 2 (Ω) ∇v L 2 (Ω) ≤ max ∇ψ 0 L 2 (Ω) , k H ∇ψ 0 L 2 (Ω) v V (1.16)
By Lemma 1.2.2, we have the coercivity of the bilinear form B. Indeed,

B[ψ 1 , ψ 1 ] = Ω |∇ψ 1 | 2 dΩ -k Γ f |ψ 1 | 2 dΓ f ≥ Ω |∇ψ 1 | 2 dΩ -kH Ω |∇ψ 1 | 2 dΩ = (1 -kH) ψ 1 2 V .
(1.17)

Since k < 1 H , the coercivity holds for B. The Lax-Milgram theorem then implies that when k < 1 H (supercritical flows), there exists a unique solution ψ 1 ∈ V satisfying (1.13).

Once we know the existence of the solution for the variational problem, we need to prove that this solution satisfies our initial problem (1.1) -(1.3). We will first prove Chapter 1. Existence and uniqueness for the linearized two-dimensional single layer problem that the weak solution is harmonic and then we prove that the boundary conditions are satisfied. In order to check (1.1), we take as test function in the variational formulation

v ∈ C ∞ 0 (Ω) ⊂ V : Ω ∇ψ 1 • ∇v dΩ -k Γ f ψ 1 v dΓ f = - Ω ∇ψ 0 • ∇v dΩ + k Γ f ψ 0 v dΓ f . Since v ∈ C ∞ 0 (Ω)
, v is zero on the boundary and thus

k Γ f ψ 1 v dΓ f = 0 and k Γ f ψ 0 v dΓ f = 0. (1.18) hence Ω ∇ψ 1 • ∇v dΩ + Ω ∇ψ 0 • ∇v dΩ = 0.
Since ψ = ψ 1 + ψ 0 and by definition of distributional derivatives, we obtain

-∆ψ, v = ∇ψ, ∇v = 0, ∀v ∈ C ∞ 0 (Ω). (1.19)
Therefore, ∆ψ = 0 in the sense of distributions and thus we obtain that the PDE (1.1) is satisfied in the sense of distributions. Now, let us take a test function v ∈ {v ∈ C ∞ (Ω); v| Γ b = 0} ⊂ V , multiply (1.1) by v and integrate by parts on Ω. We obtain:

Ω ∇ψ∇v dΩ = Γ f n • ∇ψ v dΓ f (1.20)
Furthermore, comparing (1.20) and (1.10), we have

Γ f ∂ 2 ψ v dΓ f = k Γ f ψ v dΓ f ,
which implies that:

Γ f (∂ 2 ψ -kψ) v dΓ f = 0, ∀v ∈ C ∞ c (Γ f ).
(1.21)

Variational Method

We obtain

∂ 2 ψ -kψ = 0 a.e. on Γ f , (1.22) hence condition (1.2) is satisfied. Moreover, condition (1.3) is obtained immediately since ψ 0 = U ∞ f (x 1
) on Γ b and ψ 1 is solution of the variational problem. We now conclude that the PDE is satisfied in the sense of distributions and the boundary conditions are also satisfied, hence for supercritical flows (k < 1 H ) the boundary value problem is uniquely solvable.

The Subcritical Case

Let us now place ourselves in the case k > 1/H (subcritical flows). As previously remarked, the bilinear form B and the linear form L are respectively continuous on V × V and on V . Following the same ideas as in [Pierotti, 2002], we need to study the coercivity of B in the subcritical regime.

Solution of the free problem

For an arbitrary ξ ∈ R, let us divide the domain Ω into two parts, D ξ = (ξ, ∞) × (-H, 0) and Dξ = (-∞, ξ) × (-H, 0) (see figure 1.2).

Γ f (x 2 = 0) Γ b Dξ D ξ x 1 = ξ H U ∞ FIGURE 1.

-Dividing the domain area into two parts

Let us consider the following free problem associated to (1.1)-(1.3):

∆ϑ = 0 in Ω = D ξ ∪ Dξ , (1.23) ∂ 2 ϑ = kϑ on Γ f , (1.24) ϑ = 0 on Γ b . (1.25)
By the separation of variables method, we obtain ϑ as a linear combination of Chapter 1. Existence and uniqueness for the linearized two-dimensional single layer problem elementary solutions:

Oscillatory parts ⇒ S 0 (x 1 , x 2 ) = sin(k 0 x 1 ) sinh (k 0 (x 2 + H)) , C 0 (x 1 , x 2 ) = cos(k 0 x 1 ) sinh (k 0 (x 2 + H)) , (1.26) Evanescent parts ⇒ e ±λnx 1 sin (λ n (x 2 + H)) , n = 1, 2, .... (1.27)
where k 0 is the positive solution of

tanh(k 0 H) = k 0 k , (1.28)
and all the remaining eigenvalues λ n (0

< λ 1 < • • • < λ n < • • • ) are the positive solutions of tan(λH) = λ k .
(1.29)

The oscillating solutions are bounded and the evanescent ones decay rapidly at infinity.

The behavior at infinity

Before starting to study the solvability of the subcritical problem, let us study the behavior of the solution ψ at infinity. We will show that in general, the subcritical flow produces oscillations of wave number k 0 at downstream infinity. The amplitudes of the above oscillations are related to the quantity λ 1 defined in Proposition 1.2.3.

Proposition 1.2.3. Let ψ ∈ H 1 (Ω) be a solution of problem (1.1) -(1.3) and let ξ be chosen big enough such that supp(f ) ⊂ (-ξ, ξ), then we have

sup |x 1 |≥ξ,-H≤x 2 ≤0 e λ 1 |x 1 | |ψ(x 1 , x 2 )| < ∞, (1.30)
where λ 1 is the first positive solution of

tan(λH) = λ k . (1.31)
Proof. To prove this result, we follow the same arguments as [Pierotti, 2002]. Since ψ| D ξ satisfies the boundary condition ψ = 0 at x 2 = -H, then by the separation of variables method, we get that ψ restricted to D ξ has to be a linear combination of the harmonic functions (1.26) and (1.27). Thus, since ψ ∈ L 2 ((ξ, +∞) × (-H, 0)),

Variational Method

one sees that the functions (1.26) and the functions with positive exponents in (1.27) can not appear in the series expansion for ψ, as ψ to decays at infinity. Therefore, we obtain 

ψ(x 1 , x 2 ) = +∞ n=1 c n e -
∂ 2 ψ = kψ on Γ f , (1.35) ψ = 0 on Γ b , (1.36) |∇ψ| → 0 as x 1 → -∞, (uniformly with respect to x 2 ∈ [-H, 0]).
(1.37)

Recall from (1.1)-(1.4) the conditions for a "classical" solution: 

ψ ∈ C 2 (Ω), (1.38) ψ ∈ C 1 (Ω ∪ Γ f ), (1.39) ψ ∈ C 0 (Ω ∪ Γ b ), ( 
Let ξ * ∈ R satisfy ∞ ξ * U ∞ sin (k 0 (x 1 -ξ * )) f (x 1 )dx 1 = - ξ * -∞ U ∞ sin (k 0 (x 1 -ξ * )) f (x 1 )dx 1 (1.42) i.e: ∞ -∞ sin (k 0 (x 1 -ξ * )) f (x 1 )dx 1 = 0, (1.43) which is equivalent to Im   R f (x 1 )e ik 0 (x 1 -ξ * ) dx 1   = 0.
This can be also written in terms of the Fourier transform of function f , provided that f is continuous at k 0 (which can be ensured if we further assume that f ∈ L 1 (R)):

Im f (k 0 )e -ik 0 ξ * = 0.

(1.44)

Let:

ξ * = 1 k 0 Arg( f (k 0 )),

Variational Method

then (1.44) is satisfied. Note that ξ * is not uniquely defined.

Theorem 1.2.5. For any solution ψ ∈ H 1 (Ω) of problem (1.1) -(1.3), the following relation holds:

0 -H sinh (k 0 (x 2 + H)) ψ(ξ, x 2 )dx 2 = H(ξ), (1.45)
where

H(ξ) =          - ∞ ξ U ∞ sin (k 0 (x 1 -ξ)) f (x 1 )dx 1 , for ξ ≥ ξ * , ξ -∞ U ∞ sin (k 0 (x 1 -ξ)) f (x 1 )dx 1 , for ξ ≤ ξ * .
(1.46)

Proof. Let us first remark that due to (1.43), the function H is continuous in ξ * . For a fixed ξ ≥ ξ * , we define the following harmonic function, which is a solution of the free problem (1.23)-(1.25):

Ψ(x 1 , x 2 ; ξ) = sin(k 0 (x 1 -ξ)) sinh(k 0 (x 2 + H)), ∀ξ ≥ ξ * .
(1.47) Applying Green's formula to a finite energy solution ψ of problem (1.1) -(1.3) and

Ψ in D ξ , we obtain ∂D ξ ψ(x 1 , x 2 ) ∂Ψ(x 1 , x 2 ; ξ) ∂n -Ψ(x 1 , x 2 ; ξ) ∂ψ(x 1 , x 2 ) ∂n d(∂D ξ ) = 0. (1.48) Using Proposition 1.2.3, relation (1.48) becomes: 0 -H ψ(ξ, x 2 ) ∂Ψ(ξ, x 2 ) ∂n -Ψ(ξ, x 2 ) ∂ψ(ξ, x 2 ) ∂n dx 2 (1.49) + Γ f \(-∞,ξ) ψ(x 1 , 0) ∂Ψ(x 1 , 0) ∂n -Ψ(x 1 , 0) ∂ψ(x 1 , 0) ∂n dx 1 + Γ b \(-∞,ξ) ψ(x 1 , -H) ∂Ψ(x 1 , -H) ∂n -Ψ(x 1 , -H) ∂ψ(x 1 , -H) ∂n dx 1 = 0, for ξ ≥ ξ * .
(1.50)
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We compute the integral on Γ f \(-∞, ξ) from (1.49) as follows:

Γ f \(-∞,ξ) ψ(x 1 , 0)∂ 2 Ψ(x 1 , 0) -Ψ(x 1 , 0)∂ 2 ψ(x 1 , 0)dx 1 = Γ f \(-∞,ξ) ψ(x 1 , 0)k 0 sin(k 0 (x 1 -ξ)) cosh(k 0 H) -sin(k 0 (x 1 -ξ)) sinh(k 0 H)kψ(x 1 , 0)dx 1 .
Using (1.28), we obtain that the integral on Γ f \(-∞, ξ) is equal to zero.

Next, let us compute the first integral from (1.49). Since Ψ(ξ, x 2 ; ξ) = 0 and

∂ n Ψ = -∂ 1 Ψ on the boundary {ξ} × (-H, 0), we have: 0 -H ψ(ξ, x 2 ) ∂Ψ(ξ, x 2 ) ∂n dx 2 = - 0 -H (ψ(ξ, x 2 )∂ 1 Ψ(ξ, x 2 )dx 2 = - 0 -H (ψ(ξ, x 2 )(k 0 cos(k 0 (x 1 -ξ)) sinh (k 0 (x 2 + H)) dx 2 = -k 0 0 -H ψ(ξ, x 2 ) sinh (k 0 (x 2 + H)) dx 2 . Now let us compute the integral on Γ b \(-∞, ξ). Since Ψ(x 1 , -H) = 0 and ∂ n Ψ = -∂ 2 Ψ on Γ b \(-∞, ξ), we obtain: ∞ ξ ψ(x 1 , -H) ∂Ψ(x 1 , -H) ∂n dx 1 = - ∞ ξ ψ(x 1 , -H)∂ 2 Ψ(x 1 , -H)dx 1 = - ∞ ξ U ∞ f (x 1 )k 0 sin(k 0 (x 1 -ξ)) cosh(k 0 (x 2 + H))dx 1 = -k 0 ∞ ξ U ∞ f (x 1 ) sin(k 0 (x 1 -ξ))dx 1 .
(1.51)

Variational Method

Hence, (1.49) becomes:

0 -H sinh (k 0 (x 2 + H)) ψ(ξ, x 2 )dx 2 = - ∞ ξ U ∞ sin (k 0 (x 1 -ξ)) f (x 1 )dx 1 , for ξ ≥ ξ * .
(1.52)

On the other hand, applying Green's formula on Dξ with ξ ≤ ξ * , we have:

∂ Dξ ψ(x 1 , x 2 ) ∂Ψ(x 1 , x 2 ) ∂n -Ψ(x 1 , x 2 ) ∂ψ(x 1 , x 2 ) ∂n d(∂ Dξ ) = 0. (1.53)
Using the same kind of reasoning as previously, we obtain:

0 -H sinh (k 0 (x 2 + H)) ψ(ξ, x 2 )dx 2 = ξ -∞ U ∞ sin (k 0 (x 1 -ξ)) f (x 1 )dx 1 .
(1.54) Thus, we proved that the relation (1.45), (1.46) holds.

Lemma 1.2.6. For any given function H ∈ H 1 (R), there exists a function ψ 0 satisfying:

ψ 0 ∈ H 1 (Ω), (1.55) ψ 0 (x 1 ) = U ∞ f (x 1 ), on Γ b , (1.56) 0 -H sinh (k 0 (x 2 + H)) ψ 0 (ξ, x 2 )dx 2 = H(ξ), ∀ξ ∈ R.
(1.57)

Proof. Indeed, let χ be a smooth function with supp χ ∈ (-H, 0) such that

0 -H χ(x 2 ) sinh (k 0 (x 2 + H)) dx 2 = 1, (1.58)
where k 0 satisfies (1.28). For every ψ 0 satisfying ψ 0 ∈ H 1 (Ω) and ψ 0 (x 1 , -H) =
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U ∞ f (x 1 ), we define ψ0 (x 1 , x 2 ) = ψ 0 (x 1 , x 2 ) +   H(x 1 ) - 0 -H sinh (k 0 (x 2 + H)) ψ 0 (x 1 , x 2 )dx 2   χ(x 2 ).
(1.59)

We can easily check that ψ0 satisfies (1.55), (1.56), (1.57).

Let us now define the following subset of V :

V * =    ψ ∈ H 1 (Ω) : ψ| Γ b = 0, 0 -H sinh (k 0 (x 2 + H)) ψ(ξ, x 2 )dx 2 = 0 ∀ξ ∈ R    .
(1.60)

One can immediately check that V * is a Hilbert space when endowed with the norm

ψ 2 = Ω |∇ψ| 2 dΩ.
(1.61)

Decomposing ψ = ψ 1 + ψ 0 with ψ 0 chosen as in Lemma 1.2.6, we search for ψ 1 ∈ V * .

The variational formulation Vp2 of our problem can be now formulated as:

Find ψ 1 ∈ V * satisfying Ω ∇ψ 1 • ∇v dΩ -k Γ f ψ 1 v dΓ f = - Ω ∇ψ 0 • ∇v dΩ + k Γ f ψ 0 v dΓ f , ∀ v ∈ V * .
(1.62) 1.2.3.5 Existence and uniqueness for the variational problem in the subcritical case Theorem 1.2.7. Let k > 1 H . There exists a unique solution ψ ∈ V * of the variational problem Vp2.

Proof. For ψ ∈ V * we know that 0 -H sinh (k 0 (x 2 + H)) ψ(ξ, x 2 )dx 2 = 0, ∀ξ ∈ R.
(1.63)

Variational Method

Integrating by parts in (1.63), we obtain

cosh (k 0 (x 2 + H)) ψ(ξ, x 2 ) 0 -H - 0 -H cosh (k 0 (x 2 + H)) ∂ 2 ψ(ξ, x 2 )dx 2 = 0 which implies: cosh(k 0 H)ψ(ξ, 0) = 0 -H cosh (k 0 (x 2 + H)) ∂ 2 ψ(ξ, x 2 )dx 2 , ∀ξ ∈ R. (1.64)
By squaring both sides of (1.64), integrating on Γ f , and using the Cauchy-Schwarz inequality, we have:

k Γ f |ψ| 2 ≤ k cosh 2 (k 0 H) Γ f    0 -H cosh 2 (k 0 (x 2 + H)) dx 2 0 -H |∂ 2 ψ(ξ, x 2 )| 2 dx 2    .
(1.65) Using (1.28), we obtain that:

k Γ f |ψ| 2 ≤ k 0 cosh(k 0 H) sinh(k 0 H) cosh 2 (k 0 H) Γ f    0 -H ( 1 2 + 1 2 cosh (2k 0 (x 2 + H)))dx 2 0 -H |∂ 2 ψ(ξ, x 2 )| 2 dx 2    = 2k 0 sinh(2k 0 H) Γ f    H + 1 4k 0 sinh(2k 0 H) 0 -H |∂ 2 ψ(ξ, x 2 )| 2 dx 2    ≤ 1 2 2k 0 H sinh(2k 0 H) ∇ψ 2 L 2 (Ω) + 1 2 ∇ψ 2 L 2 (Ω) .
Hence, we obtain the following inequality:

k Γ f |ψ| 2 ≤ 1 2 1 + 2k 0 H sinh(2k 0 H) ∇ψ 2 L 2 (Ω) .
(1.66)

Using (1.66), we obtain that for every ψ ∈ V * , the following holds:

Ω |∇ψ| 2 dΩ -k Γ f |ψ| 2 dΓ f ≥ ∇ψ 2 L 2 (Ω) - 1 2 1 + 2k 0 H sinh(2k 0 H) ∇ψ 2 L 2 (Ω)
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≥ 1 2 1 - 2k 0 H sinh(2k 0 H) ∇ψ 2 L 2 (Ω) = 1 2 1 - 2k 0 H sinh(2k 0 H) ψ 2 V * (1.67)
where one can easily check that

1 2 1 - 2k 0 H sinh(2k 0 H) > 0.
(1.68) 

1
∆ψ(x 1 , x 2 ) = λ c(k 0 ) δ x 1 =ξ * (x 1 ) sinh (k 0 (x 2 + H)) ,
(1.69)

where

c(k 0 ) =   0 -H sinh 2 (k 0 (x 2 + H)) dx 2   -1
.

(1.70)

Proof. For a given test function v ∈ C ∞ 0 (Ω), let us define ṽ as follows:

ṽ(x 1 , x 2 ) = v(x 1 , x 2 ) -L(v)(x 1 ) c(k 0 ) sinh (k 0 (x 2 + H)) , (1.71) 
where

L(v)(x 1 ) = 0 -H sinh (k 0 (s + H)) v(x 1 , s)ds (1.72)
1.2 Variational Method and c(k 0 ) is as in (1.70). We can readily check that ṽ ∈ V * and thus we can use it as test function in the variational formulation. This leads to:

Ω ∇ψ(x 1 , x 2 ) • ∇ṽ(x 1 , x 2 ) dΩ -k Γ f ψ(x 1 , x 2 )ṽ(x 1 , x 2 ) dΓ f = 0. (1.73)
Using (1.71) in (1.73), we obtain:

Ω ∇ψ(x 1 , x 2 ) • ∇ [v(x 1 , x 2 ) -L(v)(x 1 ) c(k 0 ) sinh (k 0 (x 2 + H))] dΩ -k Γ f ψ(x 1 , x 2 ) [v(x 1 , x 2 ) -L(v)(x 1 ) c(k 0 ) sinh (k 0 (x 2 + H))] dΓ f = 0. Since v ∈ C ∞ 0 (Ω), Γ f ψ(x 1 , x 2 ) v(x 1 , x 2 )dΓ f = 0,
and we obtain,

Ω ∇ψ(x 1 , x 2 ) • ∇v(x 1 , x 2 )dΩ = Ω ∇ψ(x 1 , x 2 ) • ∇ [L(v)(x 1 ) c(k 0 ) sinh (k 0 (x 2 + H))] dΩ -k Γ f ψ(x 1 , x 2 )L(v)(x 1 ) c(k 0 ) sinh (k 0 (x 2 + H)) dΓ f .
Integrating by parts, we get:

Ω ∇ψ(x 1 , x 2 ) • ∇v(x 1 , x 2 )dΩ = ∂Ω ψ(x 1 , x 2 ) • ∂ n [L(v)(x 1 ) c(k 0 ) sinh (k 0 (x 2 + H))] d(∂Ω) - Ω ψ(x 1 , x 2 ) • ∆ [L(v)(x 1 ) c(k 0 ) sinh (k 0 (x 2 + H))] dΩ -k Γ f ψ(x 1 , x 2 )L(v)(x 1 ) c(k 0 ) sinh (k 0 (x 2 + H)) dΓ f .
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Let us denote by I 1 , I 2 , I 3 the following integrals:

I 1 = ∂Ω ψ(x 1 , x 2 ) • ∂ n [L(v)(x 1 ) c(k 0 ) sinh (k 0 (x 2 + H))] d(∂Ω) (1.74) I 2 = Ω ψ(x 1 , x 2 ) • ∆ [L(v)(x 1 ) c(k 0 ) sinh (k 0 (x 2 + H))] dΩ (1.75) I 3 = k Γ f ψ(x 1 , 0)L(v)(x 1 ) c(k 0 ) sinh (k 0 H) dΓ f .
(1.76)

Decomposing Ω = D ξ * ∪ Dξ * , we can further compute:

I 1 = Γ f ψ(x 1 , 0) ∂ 2 [L(v)(x 1 ) c(k 0 ) sinh (k 0 (x 2 + H))] dΓ f - Γ b ψ(x 1 , -H) ∂ 2 [L(v)(x 1 ) c(k 0 ) sinh (k 0 (x 2 + H))] dΓ b - 0 -H ψ(ξ * + , x 2 ) ∂ 1 L(v)(ξ * + ) c(k 0 ) sinh(k 0 (x 2 + H) dx 2 + 0 -H ψ(ξ * -, x 2 ) ∂ 1 L(v)(ξ * -) c(k 0 ) sinh (k 0 (x 2 + H)) dx 2 .
Using the definition (1.46) for H, we get:

I 1 = R ψ(x 1 , 0) L(v)(x 1 ) c(k 0 ) k 0 cosh (k 0 H) dx 1 - R k 0 ψ(x 1 , -H) L(v)(x 1 ) c(k 0 ) dx 1 + c(k 0 ) H(ξ * -) L (v)(ξ * -) -H(ξ * + ) L (v)(ξ * + ) .
Since H is continuous in ξ * , we obtain:

I 1 = R (ψ(x 1 , 0)k 0 cosh (k 0 H) -k 0 ψ(x 1 , -H)) L(v)(x 1 ) c(k 0 )dx 1 .
For I 2 we proceed as follows:

I 2 = Ω ψ(x 1 , x 2 ) • ∆ [L(v)(x 1 ) c(k 0 ) sinh (k 0 (x 2 + H))] dΩ 1.2 Variational Method = +∞ ξ * 0 -H ψ(x 1 , x 2 ) sinh (k 0 (x 2 + H)) c(k 0 ) ∂ 11 (L(v)(x 1 )) + k 2 0 (L(v)(x 1 )) dΩ + ξ * -∞ 0 -H ψ(x 1 , x 2 ) sinh (k 0 (x 2 + H)) c(k 0 ) ∂ 11 (L(v)(x 1 )) + k 2 0 (L(v)(x 1 )) dΩ = +∞ ξ * H(x 1 )c(k 0 ) ∂ 11 (L(v)(x 1 )) + k 2 0 (L(v)(x 1 )) dx 1 + ξ * -∞ H(x 1 )c(k 0 ) ∂ 11 (L(v)(x 1 )) + k 2 0 (L(v)(x 1 )) dx 1 .
Let us now compute the following integral:

+∞ ξ * H(x 1 )∂ 11 (L(v)(x 1 )) dx 1 = +∞ ξ * H(x 1 )∂ 11   0 -H sinh (k 0 (s + H)) v(x 1 , s)ds   dx 1 .
Integrating by parts:

+∞ ξ * H(x 1 )∂ 11 (L(v)(x 1 )) dx 1 = H(x 1 ) lim a→∞ ∂ 1   0 -H sinh (k 0 (s + H)) v(x 1 , s)ds   a ξ * - +∞ ξ * H (x 1 )∂ 1   0 -H sinh (k 0 (s + H)) v(x 1 , s)ds   dx 1 = -H(ξ * + )∂ 1 L(v)(ξ * + ) - +∞ ξ * H (x 1 )∂ 1 (L(v)(x 1 )) dx 1 .
(1.77)

We integrate by parts again in (1.77), which leads to:

+∞ ξ * H(x 1 )∂ 11 (L(v)(x 1 )) dx 1 = -H(ξ * + )∂ 1 L(v)(ξ * + ) + H (ξ * + ) L(v)(ξ * + ) + +∞ ξ * H (x 1 ) (L(v)(x 1 )) dx 1 .
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Applying the same type of calculations to the remaining integrals over the segment (-∞, ξ * ), we get:

ξ * -∞ H(x 1 )∂ 11 (L(v)(x 1 )) dx 1 =H(ξ * -)∂ 1 L(v)(ξ * -) -H (ξ * -) L(v)(ξ * -) + ξ * -∞ H (x 1 ) (L(v)(x 1 )) dx 1 .
Gathering all these, we find:

I 2 = +∞ ξ * (H (x 1 ) + k 2 0 H(x 1 ))L(v)(x 1 ) c(k 0 )dx 1 + ξ * -∞ (H (x 1 ) + k 2 0 H(x 1 ))L(v)(x 1 ) c(k 0 )dx 1 + H (ξ * + )L(v)(ξ * + ) c(k 0 ) -H (ξ * -)L(v)(ξ * -) c(k 0 ) + H(ξ * -)L (v)(ξ * -) c(k 0 ) -H(ξ * + )L (v)(ξ * + ) c(k 0 ).
We need to compute H (x 1 ) + k 2 0 H(x 1 ). Let us recall the Leibniz integral rule which we use in order to differentiate H:

d dx b(x) a(x) g(t, x)dt = db(x) dx g(b(x), x) - da(x) dx g(a(x), x) + b(x) a(x) ∂g(t, x) ∂x dt.
By the Leibniz integral rule above, we have

H (ξ) = +∞ ξ U ∞ k 0 cos(k 0 (x 1 -ξ))f (x 1 )dx 1 , (1.78) H (ξ) = +∞ ξ U ∞ k 2 0 sin(k 0 (x 1 -ξ))f (x 1 )dx 1 -U ∞ k 0 f (ξ) = k 2 0 +∞ ξ U ∞ sin(k 0 (x 1 -ξ))f (x 1 )dx 1 -U ∞ k 0 f (ξ) 1.2 Variational Method = -k 2 0 H(ξ) -U ∞ k 0 f (ξ). (1.79) Then H (x 1 ) + k 2 0 H(x 1 ) = -U ∞ k 0 f (x 1 )
. Since H continuous in ξ * , we obtain,

I 2 = - ∞ -∞ U ∞ k 0 f (x 1 )L(v)(x 1 ) c(k 0 )dx 1 + (H (ξ * + ) -H (ξ * -))L(v)(ξ * ) c(k 0 ).
Gathering all the terms, we obtain:

Ω ∇ψ(x 1 , x 2 ) • ∇v(x 1 , x 2 )dΩ = I 1 -I 2 -I 3 = ∞ -∞ (ψ(x 1 , 0)k 0 cosh (k 0 H) -k 0 ψ(x 1 , -H)) L(v)(x 1 ) c(k 0 )dx 1 + ∞ -∞ U ∞ k 0 f (x 1 )L(v)(x 1 ) c(k 0 )dx 1 + (H (ξ * -) -H (ξ * + ))L(v)(ξ * ) c(k 0 ) -k ∞ -∞ ψ(x 1 , 0)L(v)(x 1 ) c(k 0 ) sinh (k 0 H) dx 1 . Since ψ(x 1 , -H) = U ∞ f (x 1 ) and k 0 cosh (k 0 H) = k sinh (k 0 H), we obtain: Ω ∇ψ(x 1 , x 2 ) • ∇v(x 1 , x 2 )dΩ = -L(v)(ξ * ) c(k 0 ) H (ξ * + ) -H (ξ * -) .
From the previous computations, we obtain that

H (ξ) = ∞ ξ U ∞ k 0 cos (k 0 (x 1 -ξ)) f (x 1 )dx 1 , for ξ ≥ ξ * ,
which leads to

H (ξ * + ) = lim ξ→ξ * +   ∞ ξ U ∞ k 0 cos (k 0 (x 1 -ξ)) f (x 1 )dx 1   = ∞ ξ * U ∞ k 0 cos (k 0 (x 1 -ξ * )) f (x 1 )dx 1 .
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On the other hand, we have

H (ξ * -) = - ξ * -∞ U ∞ k 0 cos (k 0 (x 1 -ξ * )) f (x 1 )dx 1 .
Thus,

Ω ∇ψ(x 1 , x 2 ) • ∇v(x 1 , x 2 )dΩ = -L(v)(ξ * ) c(k 0 ) ∞ -∞ U ∞ k 0 cos (k 0 (x 1 -ξ * )) f (x 1 )dx 1 .
Using the definition of distributional derivatives, we have

-∆ψ, v = -c(k 0 )U ∞ k 0 ∞ -∞ f (x 1 ) cos (k 0 (x 1 -ξ * )) dx 1 0 -H sinh (k 0 (x 2 + H)) v(ξ * , x 2 )dx 2 .
(1.80)

We finally obtain:

∆ψ(x 1 , x 2 ) = λ c(k 0 ) δ x 1 =ξ * (x 1 ) sinh (k 0 (x 2 + H)) with λ = U ∞ k 0 ∞ -∞ f (x 1 ) cos (k 0 (x 1 -ξ * )) dx 1 .

Reconstruction of the harmonic function

We notice from (1.69) that the Laplacian of ψ is not zero but presents a singularity in x 1 = ξ * . We search then for a correction function ψ such that ∆(ψ -ψ) = 0, and ψ -ψ satisfying the boundary conditions (1.2)-(1.3). Let us consider the following function:

ψ(x 1 , x 2 ) =    0, x 1 < ξ * sin(k 0 (x 1 -ξ * )) sinh(k 0 (x 2 + H)), x 1 ≥ ξ * (1.81)
then, we can easily compute

∂ 1 ψ(x 1 , x 2 ) =    0, x 1 < ξ * k 0 cos(k 0 (x 1 -ξ * )) sinh(k 0 (x 2 + H)), x 1 > ξ * .
(1.82)

Variational Method

For a test function υ ∈ C ∞ 0 (Ω), we have the following equality in the sense of distribution,

∂ 2 11 ψ(x 1 , x 2 ), υ(x 1 , x 2 ) = -∂ 1 ψ(x 1 , x 2 ), ∂ 1 υ(x 1 , x 2 ) = - 0 -H ∞ ξ * k 0 cos(k 0 (x 1 -ξ * )) sinh(k 0 (x 2 + H))∂ 1 υ(x 1 , x 2 ) dx 1 dx 2 .
Integrating by parts, we find:

∂ 2 11 ψ(x 1 , x 2 ), υ(x 1 , x 2 ) = - 0 -H [k 0 cos(k 0 (x 1 -ξ * )) sinh(k 0 (x 2 + H))υ(x 1 , x 2 )] ∞ ξ * + ∞ ξ * k 2 0 sin(k 0 (x 1 -ξ * )) sinh(k 0 (x 2 + H))υ(x 1 , x 2 ) dx 1 dx 2 = 0 -H k 0 sinh(k 0 (x 2 + H))υ(ξ * , x 2 ) - ∞ ξ * k 2 0 sin(k 0 (x 1 -ξ * )) sinh(k 0 (x 2 + H))υ(x 1 , x 2 ) dx 1 dx 2 .
Since υ(ξ * , x 2 ) = δ x 1 =ξ * (x 1 ), υ(x 1 , x 2 ) , we obtain:

∂ 2 11 ψ(x 1 , x 2 ), υ(x 1 , x 2 ) = δ x 1 =ξ * (x 1 )k 0 sinh(k 0 (x 2 + H)) -k 2 0 sin(k 0 (x 1 -ξ * )) sinh(k 0 (x 2 + H)), υ(x 1 , x 2 ) .
Proceeding similary, we compute ∂ 2 22 ψ. First, we notice that:

∂ 2 ψ(x 1 , x 2 ) =    0, x 1 < ξ * k 0 sin(k 0 (x 1 -ξ * )) cosh(k 0 (x 2 + H)), x 1 > ξ * .
(1.83)

For a test function υ ∈ C ∞ 0 (Ω), we have the following relation that holds in the sense of distributions:

∂ 2 22 ψ(x 1 , x 2 ), υ = -∂ 2 ψ(x 1 , x 2 ), ∂ 2 υ(x 1 , x 2 ) = - 0 -H ∞ ξ * k 0 sin(k 0 (x 1 -ξ * )) cosh(k 0 (x 2 + H))∂ 1 υ(x 1 , x 2 ) dx 1 dx 2 .
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Integrating by parts, we find:

∂ 2 22 ψ(x 1 , x 2 ), υ(x 1 , x 2 ) = - 0 -H lim a→∞ [k 0 sin(k 0 (x 1 -ξ * )) cosh(k 0 (x 2 + H))υ(x 1 , x 2 )] a ξ * - ∞ ξ * k 2 0 sin(k 0 (x 1 -ξ * )) sinh(k 0 (x 2 + H)) dx 2 = k 2 0 sin(k 0 (x 1 -ξ * )) sinh(k 0 (x 2 + H)), υ(x 1 , x 2 ) .
We finally obtain:

∆ ψ(x 1 , x 2 ), υ(x 1 , x 2 ) = ∂ 2 11 ψ(x 1 , x 2 ) + ∂ 2 22 ψ(x 1 , x 2 ), υ(x 1 , x 2 ) = δ x 1 =ξ * (x 1 )k 0 sinh(k 0 (x 2 + H)), υ(x 1 , x 2 ) .
Hence, the laplacian of ψ satisfies

∆ ψ(x 1 , x 2 ) = δ x 1 =ξ * (x 1 )k 0 sinh(k 0 (x 2 + H)).
(1.84) Furthermore, let us define

ψ(x 1 , x 2 ) = ψ(x 1 , x 2 ) λ c(k 0 ) k 0 .
(1.85)

We get:

∆ ψ(x 1 , x 2 ) = ∆ ψ(x 1 , x 2 ) λ c(k 0 ) k 0 = λ c(k 0 )δ x 1 =ξ * (x 1 ) sinh(k 0 (x 2 + H)). If we define ψ(x 1 , x 2 ) = ψ(x 1 , x 2 ) -ψ(x 1 , x 2 )
, then the following holds:

∆ ψ(x 1 , x 2 ) = 0.
(1.86)

Recovery of the boundary conditions

We need to check if ψ satisfies the boundary conditions (1.2) and (1.3). The boundary condition on Γ b is obtained immediately since ψ 0 = U ∞ f (x 1 ) on Γ b and ψ 1 is the solution of the variational problem. We also have ψ = 0 on Γ b , which allows us to conclude that ψ(x 1 , -H) = U ∞ f (x 1 ).

Fourier Transform Approach

We also need to recover the boundary condition on the free surface

Γ f . Let us take v a test function such that v ∈ C ∞ 0 (Ω) with supp v ⊂ (D ξ ∪ Γ + f )
, where Γ + f is the part of the free surface belonging to D ξ for ξ > ξ * , and let ṽ be defined by (1.71). Since ṽ ∈ V * , thanks to the variational formulation, the following equation holds:

Ω ∇ψ • ∇ṽdΩ = k Γ f ψṽdΓ f (1.87)
Next, we test (1.86) by v. The solution ψ is harmonic on D ξ as it is harmonic everywhere except on the line x 1 = ξ * . Thus, we obtain:

D ξ ∆ψ vdD ξ = 0. (1.88)
Integrating by parts, and since the resulting integral on Γ b is zero, we get:

∞ ξ ∂ 2 ψ(x 1 , 0) vdx 1 = D ξ ∇ψ • ∇vdD ξ .
(1.89)

Using equation (1.71), definition (1.81) and some integral techniques, we recover the boundary condition on Γ f for x 1 > ξ * . Then, by using the same reasoning on Dξ for

ξ < ξ * with a test function v such that v ∈ C ∞ 0 (Ω) with supp v ⊂ ( Dξ ∪Γ - f ), where Γ - f
is the part of the free surface belonging to Dξ , we recover the boundary condition on Γ f for x 1 < ξ * , which allows us to conclude that we recovered the boundary condition almost everywhere on Γ f . Furthermore, ψ satisfies the boundary condition on the free surface. We can now conclude that ψ satisfies problem (1.1)-(1.3) in the sense of distributions. Hence, for subcritical flows (k > 1 H ) the boundary value problem is solved.

Fourier Transform Approach

Variational methods give us the existence of a solution of problem (1.1) -(1.3) implicitly. In what follows we use the Fourier transform method in order to explicitly solve our problem.
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Applying the Fourier transform with respect to x 1 to problem (1.1) -( 1.3), we obtain:

∆ψ = 0 ⇒ ∂ 2 11 ψ(k, x 2 ) + ∂ 2 22 ψ(k, x 2 ) = 0 (1.90) ⇒ (ik) 2 Ψ(k, x 2 ) + ∂ 2 22 Ψ(k, x 2 ) = 0 (1.91) ⇒ -k 2 Ψ(k, x 2 ) + ∂ 2 22 Ψ(k, x 2 ) = 0. (1.92)
For k ∈ R fixed, we obtain the solution of (1.90) represented as a linear combination of hyperbolic functions:

Ψ(k, x 2 ) = A(k) cosh(|k|(x 2 + H)) + B(k) sinh(|k|(x 2 + H)).
(1.93)

Applying also the Fourier transform to the boundary conditions (1.2), (1.3), we get:

∂ 2 Ψ(k, 0) -ν Ψ(k, 0) = 0, (1.94) Ψ(k, -H) = ∞ -∞ U ∞ f (t)e -ikt dt = f (k).
(1.95)

Substituting (1.95) and (1.94) into (1.93), we obtain:

Ψ(k, -H) = A(k) = f (k), (1.96) f (k) (|k| sinh(|k|H) -ν cosh(|k|H)) + B(k) (|k| cosh(|k|H) -ν sinh(|k|H)) = 0. (1.97)
We can find B(k) from (1.97), and thus obtain the Fourier transform Ψ on the free surface:

Ψ(k, 0) = f (k) |k| sinh(|k|H) (|k| coth(|k|H) -ν)
.

(1.98)

By the Fourier inversion theorem, we have

ψ(x 1 , 0) = 1 2π ∞ -∞ g(k) |k| coth(|k|H) -ν e ikx 1 dk (1.99) 1.3 Fourier Transform Approach where g(k) = f (k) |k| sinh(|k|H)
.

(1.100)

The above integrand being even, since g(k) = g(-k) for k > 0, we readily get:

ψ(x 1 , 0) = 1 π Re ∞ 0 g(k) k coth(kH) -ν e ikx 1 dk, (1.101)
with g bounded since |k|(sinh(|k|H)) -1 decays exponentially and f has compact support.

Supercritical case

In the supercritical regime ν < H -1 and thus k coth(kH) -ν > 0. This implies that the integral in (1.101) is well defined as soon as g ∈ H -1 (R), since:

1 k coth(kH) -ν = O(|k| -1 ).
In this particular limit case, we end up with ψ| Γ f ∈ L 2 (R), which is not enough to ensure a H 1 potential in the domain. By setting g ∈ H -1/2 (R), we retrieve a more reasonable notion of solution ψ ∈ H 1/2 (R) (and hence a H 1 weakly harmonic potential in Ω).

Subcritical case

Let us now place our problem in the subcritical regime ν > H -1 . Then, from (1.28) we know that there exists a value k 0 > 0 such that k -ν tanh(kH) = 0, and hence, the integrand has a non-integrable singularity of the type (k -k 0 ) -1 . Let us take a function f as follows:

f (x) = 1 2 cos π 2 (x -1) + 1 , if |x 1 -1| ≤ 2, 0, if |x 1 -1| > 2. (1.102)
We can see in Figure 1.3a that the integrand from (1.101) is not bounded at some point, while in Figure 1.3b we can see that the stream function at the free surface is Chapter 1. Existence and uniqueness for the linearized two-dimensional single layer problem not decaying at infinity but presents oscillating upstream and downstream. The stream function at the free surface

It is however possible to give a sense to (1.101) by considering an vanishing dissipation in the model, which translates into:

ψ ε (x 1 , 0) = 1 π Re ∞ 0 g(k) k coth(kH) -ν -iε e ikx 1 dk (1.103)
Although taking the limit ε → 0 is possible at least formally, it cannot be taken in the L 2 sense. Using Cauchy's integral theorem, we can prove that in the limit ε → 0, we have:

ψ ε (x 1 , 0) = 1 π Re l - ε g(k) k coth kH -ν e ikx 1 dk (1.104)
where l - ε is a complex path avoiding the singularity from below. Let us rewrite (1.104):

ψ ε (x 1 , 0) = 1 π Re l - ε g(k) k coth kH -ν - λ(k 0 ) g(k 0 ) e i(k 0 -k)ξ * k 2 -k 2 0 e ikx 1 dk + 1 π Re l - ε λ(k 0 ) g(k 0 ) e i(k 0 -k)ξ * k 2 -k 2 0 e ikx 1 dk (1.105)
where:

λ(k 0 ) = 2k 0 coth(k 0 H) -k 0 H sinh -2 (k 0 H) .
(1.106)

Fourier Transform Approach

Hence:

lim k→k 0 g(k) k coth kH -ν - λ(k 0 ) g(k 0 ) e i(k 0 -k)ξ * k 2 -k 2 0 < ∞ (1.107) provided g ∈ L 1 (R)
, so that g is continuous. We also assume ξ * ∈ R, its value will be determined later. We split ψ ε into two parts:

ψ ε (•, 0) = ψ var ε (•, 0) + ψ wake ε (•, 0),
where:

ψ var ε (x 1 , 0) = 1 π Re l - ε g(k) k coth kH -ν - λ(k 0 ) g(k 0 ) e i(k 0 -k)ξ * k 2 -k 2 0 e ikx 1 dk
and

ψ wake ε (x 1 , 0) = 1 π Re l - ε λ(k 0 ) g(k 0 ) e i(k 0 -k)ξ * k 2 -k 2 0 e ikx 1 dk.
First, thanks to (1.107), we have ), where:

ψ var ε (•, 0) → ψ var (•, 0) in H 1/2 (R) provided g ∈ H -1/2 (R
ψ var (x 1 , 0) = 1 π Re ∞ 0 g(k) k coth kH -ν - λ(k 0 ) g(k 0 ) e i(k 0 -k)ξ * k 2 -k 2 0 e ikx 1 dk (1.108)
Remark that, in order ψ var to be a real-valued function, it is required that:

g(k 0 )e i(k 0 -k)ξ * = g(k 0 )e i(k 0 +k)ξ * ,
which leads to the condition for ξ * :

+∞ -∞ f (x 1 ) sin(k 0 (x 1 -ξ * )) dx 1 = 0 . (1.109)
Let us now examine ψ wake ε :

ψ wake ε (x 1 , 0) = λ(k 0 ) π Re      g(k 0 ) e ik 0 ξ * l - ε 1 k 2 -k 2 0 e ik(x 1 -ξ * ) dk     
.

(1.110)
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g(k 0 ) e ik 0 ξ * = +∞ -∞ g(x 1 )e -ik 0 (x 1 -ξ * ) dx 1 .
(1.111)

Thanks to (1.109), we hence have:

g(k 0 ) e ik 0 ξ * = +∞ -∞ g(x 1 ) cos(k 0 (x 1 -ξ * )) dx 1 =: α g,k 0 ,ξ * ∈ R (1.112)
and we obtain:

ψ wake ε (x 1 , 0) = λ(k 0 ) α g,k 0 ,ξ * π Re l - ε 1 k 2 -k 2 0 e ik(x 1 -ξ * ) dk.
(1.113)

Let us now calculate:

I = l - ε 1 k 2 -k 2 0 e ik(x 1 -ξ * ) u(k) dk.
(1.114)

First assume that x 1 > ξ * , then, e ik(x 1 -ξ * ) is bounded for k in the upper complex half plane. Then, using Cauchy's integral theorem, we have:

l - ε,R u(k) dk + L + R u(k) dk + Q + R u(k) dk = 2πi Res(u, k 0 ) , (1.115)
where R > 0, l - ε,R , L + R and Q + R are pieces of a quarter circular path enclosing the singularity k 0 (see figure 1.4). We have, as R → ∞:

l - ε,R u(k) dk -→ l - ε u(k) dk , (1.116) L + R u(k) dk = i R 0 1 s 2 + k 2 0 e -s(x 1 -ξ * ) ds -→ i ∞ 0 1 s 2 + k 2 0 e -s(x 1 -ξ * ) ds ,
(1.117)

Q + R u(k) dk = π/2 0 iRe iθ R 2 e 2iθ -k 2 0 e iR(cosθ+i sin θ)(x 1 -ξ * ) dθ -→ 0 ,
(1.118)

Fourier Transform Approach

and finally:

Res(u, k 0 ) = lim k→k 0 (k -k 0 ) u(k) = 1 2k 0 e ik 0 (x 1 -ξ * ) .
(1.119)

Gathering (1.116), (1.117), (1.118), (1.119), we obtain, for x 1 > ξ * :

I = iπ k 0 e ik 0 (x 1 -ξ * ) -i ∞ 0 1 s 2 + k 2 0 e -s(x 1 -ξ * ) ds .
(1.120)

Now assuming x 1 ≤ ξ * , we have e ik(x 1 -ξ * ) bounded for k in the lower complex half plane. Again, using Cauchy's theorem (see figure 1.5), we have:

l - ε,R u(k) dk + L + R u(k) dk + Q + R u(k) dk = 0 , (1.121)
which, using the same arguments as before, gives for x 1 ≤ ξ * :

I = -i ∞ 0 1 s 2 + k 2 0 e -s(x 1 -ξ * ) ds β∈R .
(1.122)
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Gathering (1.120) and (1.122), we obtain:

ψ wake ε (x 1 ) = λ(k 0 ) α g,k 0 ,ξ * π Re      iπ k 0 e ik 0 (x 1 -ξ * ) -iβ x 1 > ξ * -iβ x 1 ≤ ξ *
which can be simplified as:

ψ wake ε (x 1 , 0) = - λ(k 0 ) α g,k 0 ,ξ * k 0 sin(k 0 (x 1 -ξ * )) x 1 > ξ * 0 x 1 ≤ ξ * (1.123)
Hence we can write the solution of problem (1.1) -(1.3) explicitly as follows: Fourier analysis is an entire field of mathematics that talks about how to approximate functions in terms of an infinite series of sines and cosines. The discrete Fourier transform (DFT) is the most essential discrete transform, used to perform the Fourier analysis in many practical applications. The DFT can be interpreted as an approximation to Fourier Series and Fourier Transform. However, DFT does not involve functions of a continuous variable as is the case with the continuous Fourier Transform, but only involves a finite set of data points.

ψ(x 1 , 0) = 1 π Re ∞ 0 g(k) k coth kH -ν - λ(k 0 ) g(k 0 ) e i(k 0 -k)ξ * k 2 -k 2 0 e ikx 1 dk - λ(k 0 ) α g,k 0 ,ξ * k 0 sin(k 0 (x 1 -ξ * )) x 1 > ξ * 0 x 1 ≤ ξ * (1.
We follow [Sing-Long and Bates, 2016], let F = (f j ) j=0,••• ,N -1 , we define the DFT

f n = N -1 j=0 f j e -i 2π N jn , (1.125) 
and

F = ( f n ) n=0,••• ,N -1 .
We will denote the expression of (1.125) as F = DF T (F ).

The inverse DF T (IDF T ) of (1.125) is given by:

f j = 1 N N -1 n=0
f n e i 2π N jn .

(1.126)

We can check as in [START_REF] Tolimieri | Algorithms for Discrete Fourier Transform and Convolution[END_REF] that:

F = IDF T (DF T (F )).
Furthermore, let W = e -i 2π N ,we may write equation (1.125) in matrix form as:

1.4 Numerical study                f 0 f 1 f 2 . . . f N -1                Fourier coefficients =                    1 1 1 1 • • • 1 1 W W 2 W 3 • • • W N -1 1 W 2 W 4 W 6 • • • W 2(N -1) 1 W 3 W 6 W 9 • • • W 3(N -1)
. . .

1 W 2 W 4 W 6 • • • W (N -1) 2                    DFT matrix                f 0 f 1 f 2 . . . f N -1                Data .
(1.127)

The Fourier coefficient in (1.127), has a very important physical meaning that it is the amplitude of the different frequencies of the sine and cosine waves that need to be summed in order to reconstruct the data perfectly. This formulation of the DF T leads to Cooley-Tuckey algorithm [START_REF] Tolimieri | Algorithms for Discrete Fourier Transform and Convolution[END_REF], which allows us to calculate the DF T in a O(N log(N )) computation time. This algorithm is refered as the Fast Fourier Transform (F F T ). This algorithm is optimized when N is chosen as a power of two [START_REF] Sing-Long | Applied fourier analysis and winter 2016 elements of modern signal processing lecture 6 -january 21[END_REF].

Approximation of ψ with the DFT

First we approximate ψ on the free surface in super-critical regime. Let us consider f an integrable function such that supp f ∈ (0, L), then:

f (k) = L 0 f (x)e -ikx dx.
(1.128)

For j = 0, 1, • • • , N -1, let x j = jδ x where δ x = L N .
Using the method of trapezoids, we approximate f (k) as follows:

f (k) δ x N -1 j=0 f (x j )e -ikx j = L N N -1 j=0 f (x j )e -ikj L N .
(1.129)
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Let k n = nδ k where δ k is such that: δ x δ k = 2π/N , hence δ k = 2π/L. Let us denote f i = f (x i ) and f n the approximation of N L f (k n )
with the above formula:

f n = N -1 j=0 f j e -i 2π N jn . (1.130) Denoting F = (f j ) j=0,••• ,N -1 and F = ( f n ) n=0,••• ,N -1
, we have:

F = DF T (F ).
We can now return to the free surface ψ| Γ f (x) that we denote ψ for the sake of simplicity, which is given by (1.99) as:

ψ(x) = 1 π Re +∞ 0 f (k) w(k) e ikx dk.
In the supercritical case, w(k) > 0. Using the same discretization as before:

ψ(x j ) = 1 π Re +∞ 0 f (k) w(k) e ikjδx dk 1 π Re δ k L N N -1 n=0 f n w(k n ) e i 2π N jn = 2Re 1 N N -1 n=0 f n w(k n ) e i 2π N jn .
Denoting ψ j the approximation of ψ(x j ) and ψ = (ψ j ) j=0,••• ,N -1 , we have:

ψ = 2Re IDF T DF T (F ) 1 w(x n ) n=0,••• ,N -1 . (1.131)
Next, let us study the approximation in the subcritical case. Recall the formula for solution ψ on the free surface Γ f from (1.124):

ψ(x) = ψ var (x) + ψ wake (x).
While ψ wake is trivial to approximate, ψ var will be approximate with the method 1.4 Numerical study described in the previous section,

ψ var (x) = 1 π Re ∞ 0 g(k) k coth kH -ν - λ(k 0 ) g(k 0 ) e i(k 0 -k)ξ * k 2 -k 2 0 e ikx dk.
Denoting

a(k) = g(k) k coth kH -ν - λ(k 0 ) g(k 0 ) e i(k 0 -k)ξ * k 2 -k 2 0 and a n = a(k n ) and A = (a k ) k=0,••• ,N -1 .
We get, from the fact that a is designed to remain bounded that ψ var = 2IDF T (A).

Numerical simulations

In this section, we present some numerical simulations for the wave formation over a regular thin obstacle lying on the bottom of the domain, for both the supercritical and subcritical regimes. All the simulations below are realised with Matlab by applying the DFT principle.

Let us start by considering the supercritical case. The first step is to define the bump function which describes the obstacle on the bottom of the strip. Let the depth of the strip be H = 2m. We define the bump function and plot it below: The simulations above illustrate the free surface elevation at the supercritical case (F r > 1) and as expected, we can see that the solution is a smooth function and exponentially vanishing at infinity, both upstream and downstream.

Let us now concentrate on the subcritical case. We fix the following parameters such that we place ourselves in the subcritical regime: the height H = 2m, the Froude number, F r = 0.55, the acceleration of gravity g = 9.81m/s 2 and the constant ν = g/U 2 ∞ . We also need to define several new parameters: k 0 which is the positive solution of the equation k

0 -ν tanh(k 0 H) = 0, λ which is given by λ(k 0 ) = 2k 0 coth(k 0 H) -k 0 H sinh -2 (k 0 H)
and ξ * which is defined such that +∞ -∞ g(x 1 ) sin(k 0 (x 1 -ξ * )) dx 1 = 0 is satisfied. We compute k 0 and ξ * using the Newton method.

Numerical study

By using the FFT formulation, we can compute and simulate the variational solution: We can see in Figure 1.9a, that ψ var vanishes both upstream and downstream, presents a depression over the obstacle and is not differentiable at ξ * . In Figure 1.9b the graphical representation of ψ wake shows that the wake part of the stream function vanishes upstream, oscillates when x > ξ * and is not differentiable at ξ * as well. Hence, summing the variational and the wake contributions ψ = ψ var + ψ wake (see Figures 1.10), we obtain that the stream function at the surface is smooth, vanishes at infinity upstream and oscillates downstream. Chapter 1. Existence and uniqueness for the linearized two-dimensional single layer problem

The wakeless obstacles

In this section we are interested to determine which type of obstacle will eliminate the wake downstream in the subcritical case. This can be obtained by adding an identical obstacle and the distance between the first and second obstacle depends on the wavelength (λ * ) of the wake produced by the first obstacle,

λ * = 2π k 0 . (1.133) If 2n+1 2 λ * (for n = 1, 2, • • • r)
is the distance between the obstacles, then we obtain a wakeless solution downstream (see figure 1.13). On Figure 1.13a and Figure 1.13b, we show in blue the free surface elevation for an obstacle designed to cancel the wake for F r = 0.55 (which we call the target Froude number). Figure 1.13a shows the case when the distance between the two obstacles is half a period. Figure 1.13b shows the case when the distance between the two obstacles is three halves of a period. In both cases, we see the symmetric free surface that decays both upstream and downstream. It is interesting to notice that we still observe a wake for imposed Froude numbers different from the target Froude number. On Figure 1.14 we show in red and green respectively the calculation of the free surface elevation for the same obstacles but with imposed Froude numbers slightly higher and lower than the target Froude number. This shows that a wakeless obstacle is designed to cancel the wake for only one value of the Froude number.

Numerical study

The wave-making resistance

As an application of the information gathered so far, let us examine the wave resistance of a two-dimensional obstacle lying on the horizontal bottom with constant fluid velocity parallel to the free surface. We follow the same arguments as in [Noviani, 2018] and [START_REF] Kuznetsov | Linear Water Waves[END_REF] to define the wave-making resistance. The wave-making resistance is the horizontal component of the force exerted by the fluid on the obstacle. We denote by R w the wave-making resistance:

R w = - Γ b P n 1 ds
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where n 1 = n • e 1 . Using Bernoulli's formula, we can express R w in terms of the velocity potential Φ [START_REF] Kuznetsov | Linear Water Waves[END_REF],

R w = -ρ Γ b |∇Φ| 2 2 n 1 ds.
Using the perturbation potential, Φ = φ + U ∞ x 1 , we get:

R w = - ρ 2 Γ b (|∇φ| 2 + 2U ∞ ∂ 1 φ) n 1 ds (1.134)
Let us introduce, Γ b = {(x 1 , εf (x 1 )); x 1 ∈ R}, with ε > 0 and f is a C 1 function of compact support. Defining the obstacle as a function that depends on ε, we can take ε → 0 and thus obtain the slender case. Thus, rewrite (1.134):

R w = - ρ 2 R (|∇φ(x 1 , εf (x 1 ))| 2 + 2U ∞ ∂ 1 φ(x 1 , εf (x 1 ))) εf (x 1 )dx 1 (1.135)
Since the obstacle depends on ε, the solution of Neuman-Kelvin problem depends on this value as well,

φ = ε φ N K .
Hence, we have formally:

R w = - ρ 2 R ε 2 |∇φ N K (x 1 , εf (x 1 ))| 2 + o(ε 2 ) + 2U ∞ ε∂ 1 φ N K (x 1 , εf (x 1 )) + o(ε) × εf (x 1 ) + o(ε)dx 1 . (1.136)
Neglecting all the terms of order o(ε 2 ), we rewrite (1.136) as follows:

R w = -ρ R U ∞ ε∂ 1 φ N K | Γ b εf (x 1 )dx 1 + o(ε), (1.137)
which in our case the actual shape is given by εf and the actual velocity potential is εφ N K . Since the stream function ψ is the harmonic conjugate of the velocity potential

1.4 Numerical study of the fluid φ, ∂ 1 φ = ∂ 2 ψ ; ∂ 2 φ = -∂ 1 ψ, we get R w = ρ R ∂ 2 ψ(x 1 , -H) ∂ 1 ψ(x 1 , -H)dx 1 , (1.138) 
Let us now take the rectangle

R β = [-β, β] × [-H, 0] with β large enough such that supp f ⊂ [-β, -β], we have R β ∆ψ∂ 1 ψdx 1 dx 2 = 0.
Integrating by parts, we have:

R β ∆ψ∂ 1 ψdx 1 dx 2 = ∂(R β ) ∂ ñψ ∂ 1 ψds - R β ∇ψ • ∂ 1 ∇ψdx 1 dx 2 , = ∂(R β ) ∂ ñψ ∂ 1 ψds - R β ∂ 1 |∇ψ| 2 2 dx 1 dx 2 , = ∂(R β ) ∂ ñψ ∂ 1 ψ - |∇ψ| 2 2 ñ1 ds, (1.139)
where ñ is the outward unit normal vector of R β . The boundary of ∂(R β ) is the border of the rectangle R β which contain the obstacle on the bottom of Γ b . Let b β , t β , l β , r β denote respectively the bottom, top, left, right parts of ∂(R β ). We will use the letter B, T, L, R to denote the corresponding integrals. First, let us see the integration on the bottom:

B = b β ∂ ñψ ∂ 1 ψ - |∇ψ| 2 2 ñ1 ds = - β -β ∂ 2 ψ(x 1 , -H) ∂ 1 ψ(x 1 , -H)dx 1 .
From (1.138) and for β → ∞, we have lim β→∞ B = -R w . For the top part, we get:

T = t β ∂ ñψ ∂ 1 ψ - |∇ψ| 2 2 ñ1 ds = β -β ∂ 2 ψ(x 1 , 0) ∂ 1 ψ(x 1 , 0)dx 1 .
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Using the free surface condition (1.2),

T = β -β kψ(x 1 , 0) ∂ 1 ψ(x 1 , 0)dx 1 = k 2 (ψ(β, 0) 2 -ψ(-β, 0) 2 ).
Using the formula for ψ, given downstream by (1.123), then for β → ∞ we obtain:

T = k 2 A 2 sin 2 (k 0 (β -ξ * )),
where

A = λ(k 0 ) α g,k 0 ,ξ * k 0 ,
with λ(k 0 ) and α g,k 0 ,ξ * satisfy (1.106), (1.112) respectively.

Next, for the integration on the left side of the rectangle, we have:

L = l β ∂ ñψ ∂ 1 ψ - |∇ψ| 2 2 ñ1 ds = 1 2 0 -H (∂ 2 ψ(-β, x 2 )) 2 -(∂ 1 ψ(-β, x 2 )) 2 dx 2 .
From the asymptotic condition (1.4), the integration L vanishes as β → ∞. The remaining term is the integral on the right part of the rectangle R β . For this, let us see the solution ψ as x 1 → +∞,

ψ(x 1 , x 2 ) = O(e -|x 1 | ) + A sinh(k 0 (x 2 + H)) sinh(k 0 H) sin(k 0 (x 1 -ξ * )) 1 {x 1 >ξ * } , (1.140) 
where O(e -|x 1 | ) is uniform with respect to x 2 . Thus, we have

R = r β ∂ ñψ ∂ 1 ψ - |∇ψ| 2 2 ñ1 ds = 1 2 0 -H (∂ 1 ψ(β, x 2 )) 2 -(∂ 2 ψ(β, x 2 )) 2 dx 2 .
By (1.140), we get:

R = 1 2 0 -H Ak 0 sinh(k 0 (x 2 + H)) sinh(k 0 H) cos(k 0 (β -ξ * )) 2 -Ak 0 cosh(k 0 (x 2 + H)) sinh(k 0 H) sin(k 0 (β -ξ * )) 2 dx 2 1.4 Numerical study = A 2 k 2 0 2 sinh 2 (k 0 H) cos 2 (k 0 (β -ξ * )) cosh(k 0 (x 2 + H)) sinh(k 0 (x 2 + H)) 2k 0 - H 2 - x 2 2 0 -H -sin 2 (k 0 (β -ξ * )) cosh(k 0 (x 2 + H)) sinh(k 0 (x 2 + H)) 2k 0 + H 2 + x 2 2 0 -H = A 2 k 2 0 2 sinh 2 (k 0 H) cosh(k 0 H) sinh(k 0 H) 2k 0 cos 2 (k 0 (β -ξ * )) -sin 2 (k 0 (β -ξ * )) - H 2 .
Since k 0 satisfies (1.28), k 0 cosh(k 0 H) = k sin(k 0 H) which leads to:

R = k 4 A 2 cos 2 (k 0 (β -ξ * )) -sin 2 (k 0 (β -ξ * )) - A 2 k 2 0 H 4 sinh 2 (k 0 H) .
Summing B, T, L, and R, we get

R w = k 2 A 2 sin 2 (k 0 (β -ξ * )) + k 4 A 2 cos 2 (k 0 (β -ξ * )) -sin 2 (k 0 (β -ξ * )) - A 2 k 2 0 H 4 sinh 2 (k 0 H) = k 4 A 2 - A 2 k 2 0 H 4 sinh 2 (k 0 H) .
We obtain that the wave-making resistance is proportional to the square of the amplitude of the wave generated by the obstacle downstream:

R w = k sinh 2 (k 0 H) -k 2 0 H 4 sinh 2 (k 0 H) A 2 .
(1.141)

By (1.112), the amplitude A depends on the velocity of the flow at upstream infinity U ∞ (see also (1.100), (1.95)). Since F r = U ∞ / √ gH so it can be said that R w also depends on the Froude number. The Figure 1.15 shows a plot of the wave-making resistance (R w ) vs the Froude number (F r).

On Figure 1.15, since the wave-making resistance varies with the strength of the speed, initially the value of R w is very small. With further increase in speed, at Froude numbers approaching 0.4, the value of R w begins to increase more and more rapidly.

Chapter 1. Existence and uniqueness for the linearized two-dimensional single layer problem In the previous simulation for the wakeless obstacle, we obtained wakeless solutions for F r * = 0.55 by adding an obstacle identical to the initial one, at the distance 2n+1 2 λ * (see Figure 1.13). Figure 1.16 shows the value of the wave-making resistance to be minimal for F r * = 0.55. Below the target value F r * , the optimal regime shows no large peak before F r * . A very high peak of resistance was reached for Froude number values higher than F r * . 

Chapter 2

Existence and uniqueness for a transcritical case in the single layer problem

Setting of the problem

A natural question in the study of the steady flow of an inviscid fluid though a channel over an obstacle lying on the bottom is the behavior of the flow when the prescribed velocity at upstream infinity U ∞ varies. The variation of the velocity may induce changes in the regime, passing from a supercritical regime in certain parts of the domain, characterized by a Froude number smaller than one (equivalently,

k(x 1 ) = g U 2 ∞ (x 1 ) < 1 H
), to a subcritical regime, when the Froude number is superior

to one (k(x 1 ) > 1 H
). This setting envolves important technical difficulties but has the main interest of being a step forward towards the understanding of the non-linear free-boundary problem.

In what follows we assume the usual hypothesis, i.e. irrotational and divergencefree flow, inviscid fluid considered in a two-dimensional strip Ω = {R × (-H, 0)} of constant depth H, whose boundary consists of the free surface Γ f = R × {0} and of the bottom Γ b = R × {-H}. We intend to discuss the existence, uniqueness and regularity of the solution for the Neumann-Kelvin problem in the presence of a regular bottom, when we approximate the Bernoulli condition at the free surface

∂ 2 ψ = k(x 1 )ψ by ∂ 2 ψ = k(x 1 )ψ + h, with h ∈ L 2 (R)
and k a step function given by Chapter 2. Existence and uniqueness for a transcritical case in the single layer problem (see Figure 2.1):

k(x 1 ) = k ∞ , for |x 1 | ≥ x 0 , k * , for |x 1 | ≤ x 0 . (2.1) k * k ∞ k ∞ x 1 x 2 x 1 = -x 0 x 1 = x 0 FIGURE 2.1 -k as a simple step function
The advantage of this simplified problem is that it opens the possibility towards numerical approximations for the nonlinear problem.

In terms of the stream function, the Neumann-Kelvin problem reads as follows:

Find ψ satisfying:

             ∆ψ = 0 in Ω, ∂ 2 ψ = kψ + h on Γ f , ψ = U ∞ f on Γ b , ∇ψ → 0 for x 1 → -∞, (2.2) (2.3) (2.4) (2.5)
where f ∈ C 1 0 (R) is a regular function describing the obstacle at the bottom of the domain.

In order to introduce the variational formulation of the problem, let us define the following splitting of the stream function,

ψ = ψ 1 + ψ 0 , (2.6)
where ψ 0 is a lifting function satisfying

ψ 0 ∈ H 1 (Ω), ψ 0 | Γ b = U ∞ f
and the remaining unknown part ψ 1 is such that ψ 1 = 0 on Γ b . Moreover, we define the subspace of functions with vanishing trace on Γ b :

V = {ψ ∈ H 1 (Ω), ψ| Γ b = 0}.
(2.7)

Supercritical Case

This subspace is a Hilbert space when equipped with the norm:

ψ 2 = Ω |∇ψ| 2 dΩ. (2.8)
Let us take a test function v ∈ V , multiply (2.2) with v and integrate over Ω. We can now state:

Variational formulation of the problem

Find ψ 1 ∈ V such that for all v ∈ V , ψ 1 satisfies:

Ω ∇ψ 1 • ∇v dΩ - Γ f kψ 1 v dΓ f = - Ω ∇ψ 0 • ∇v dΩ + Γ f kψ 0 v dΓ f + Γ f h v dΓ f .
(2.9) Different values of the step function will produce different regimes: subcritical, supercritical or transcritical (meaning that the flow presents zonal differences in regime). In terms of the variational formulation (2.9), the change in values for k affects the coercivity of the problem.

In what follows we study two cases: In Section 2.2 we study the supercritical case for which, as expected, we prove that the problem has a unique solution decaying at infinity both downstream and upstream. In Section 2.3 we consider a transcritical case, more exactly we study the case when the flow is supercritical on a bounded part of the domain Ω 1 = [-x 0 , x 0 ] × [-H, 0] and subcritical on the remaining part of the channel Ω 2 . In this case the weak solution obtained by means of Lax-Milgram theorem on a restriction of H 1 (Ω) is not a harmonic function and thus a correction is required in order to obtain the solution of the initial Neumann-Kelvin problem. We thus conclude that the transcritical case allows the presence of downstream oscillating solutions. The mathematical arguments that we use follow closely the works [Pierotti, 2006] and [START_REF] Pierotti | The steady twodimensional flow over a rectangular obstacle lying on the bottom[END_REF], where the authors considered the wave formation respectively over a submerged hollow or a rectangle obstacle lying on the bottom.

Supercritical Case

Let us place ourselves in the supercritical case, where k ∞ < 1 H and k * < 1 H . We can Chapter 2. Existence and uniqueness for a transcritical case in the single layer problem prove the following result:

Theorem 2.2.1. Let us suppose k ∞ < 1 H and k * < 1 H . Then, there exists a unique solution ψ 1 ∈ V of the variational problem (2.9).

Proof. We define the bilinear form B : V × V → R as follows:

B[ψ 1 , v] = Ω ∇ψ 1 • ∇v dΩ - Γ f kψ 1 v dΓ f ,
(2.10) and the linear form, L : V → R:

L(v) = - Ω ∇ψ 0 • ∇v dΩ + Γ f kψ 0 v dΓ f + Γ f h v dΓ f . (2.11)
Then, the variational problem (2.9) reads as:

Find ψ 1 ∈ V such that B(ψ 1 , v) = L(V ) for all v ∈ V .
We can easily check that the bilinear form B is continuous on V × V , with V endowed with the norm (2.8). Indeed, if (ψ 1 , v) ∈ V × V , then:

B[ψ 1 , v] = Ω ∇ψ 1 ∇v dΩ - Γ f kψ 1 v dΓ f ≤ Ω |∇ψ 1 ||∇v| dΩ + k ∞ Γ f \[-x 0 ,x 0 ] |ψ 1 | |v| dx 1 + k * x 0 -x 0 |ψ 1 | |v| dx 1 .
Using the Cauchy-Schwarz inequality, we have

B[ψ 1 , v] ≤ ∇ψ 1 L 2 (Ω) ∇v L 2 (Ω) + (k ∞ + k * ) ψ 1 L 2 (Γ f ) v L 2 (Γ f ) ≤ (1 + (k ∞ + k * )C 1 ) ψ 1 V v V .
(2.12)

The continuity of the linear form L follows from the estimates:

|L(v)| = - Ω ∇ψ 0 • ∇v dΩ + Γ f kψ 0 v dΓ f + Γ f h v dΓ f ≤ Ω |∇ψ 0 ||∇v| dΩ + Γ f |kψ 0 | |v| dΓ f + Γ f |h| |v| dΓ f ≤ ∇ψ 0 L 2 (Ω) ∇v L 2 (Ω) + (k ∞ + k * ) ψ 0 L 2 (Γ f ) v L 2 (Γ f ) + h L 2 (Γ f ) v L 2 (Γ f ) 2.3 Transcritical case ≤ ∇ψ 0 L 2 (Ω) v V k + (k ∞ + k * ) C 1 ∇ψ 0 L 2 (Ω) ∇v L 2 (Ω) + C 2 h L 2 (Γ f ) ∇v L 2 (Ω) ≤ ∇ψ 0 L 2 (Ω) + (k ∞ + k * ) C 1 ∇ψ 0 L 2 (Ω) + C 2 h L 2 (Γ f ) v V .
(2.13)

The coercivity of B follows immediately from the continuity the trace function (see Lemma 1.2.2):

B[ψ 1 , ψ 1 ] = Ω |∇ψ 1 | 2 dΩ - Γ f k|ψ 1 | 2 dΓ f ≥ Ω |∇ψ 1 | 2 dΩ -k ∞ H Ω 1 |∇ψ 1 | 2 dΩ 1 -k * H Ω 2 |∇ψ 1 | 2 dΩ 2 = (1 -k * H) ψ 1 2 Ω 1 + (1 -k ∞ H) ψ 1 2 Ω 2 ≥ min{1 -k ∞ H, 1 -k * H} ψ 1 2 V .
(2.14)

The existence and uniqueness of the solution in H 1 (Ω) follows by the Lax-Milgram theorem.

By taking as test function a smooth function with compact support in Ω, we can get that ψ is harmonic in Ω in the sense of distributions. The condition on the free surface can be also obtained immediately by testing (2.2) by an appropriate smooth function with compact support in Ω that vanishes on Γ b .

Furthermore, the boundary condition on the bottom is obtained immediately since ψ 0 = U ∞ f on Γ b and ψ 1 is the solution of the variational problem, so it cancels on Γ b .

Transcritical case

In this Section we study the case when k ∞ > 1 H and k * < 1 H , which induces a transcritical regime to the flow, as the flow is supercritical on Ω 1 and subcritical on

Ω 2 .
Using the separation of variables method, we can compute the independent solutions of the free problem in Ω 1 as:

S 0 (x 1 , x 2 ) = sin(µ ∞ x 1 ) sinh (µ ∞ (x 2 + H)) ,
(2.15)

C 0 (x 1 , x 2 ) = cos(µ ∞ x 1 ) sinh (µ ∞ (x 2 + H)) , (2.16) 
e ±θnx 1 sin (θ n (x 2 + H)) , n = 1, 2, ....

(2.17)
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tanh(µ ∞ H) = µ ∞ k ∞ , (2.18)
and all the remaining eigenvalues θ n (0

< θ 1 < • • • < θ n < • • • ) are the positive solutions of tan(θH) = θ k ∞ . (2.19)
The independent solutions S 0 and C 0 satisfy the following boundary condition on the free surface for |x 1 | > x 0 :

∂ 2 S 0 (x 1 , 0) -k(x 1 )S 0 (x 1 , 0) = µ ∞ sin(µ ∞ x 1 ) cosh (µ ∞ H) -k * sin(µ ∞ x 1 ) sinh (µ ∞ H) = c(µ ∞ ) sin(µ ∞ x 1 ), ∂ 2 C 0 (x 1 , 0) -k(x 1 )C 0 (x 1 , 0) = µ ∞ cos(µ ∞ x 1 ) cosh (µ ∞ H) -k * cos(µ ∞ x 1 ) sinh (µ ∞ H) = c(µ ∞ ) cos(µ ∞ x 1 ), where c(µ ∞ ) = µ ∞ cosh (µ ∞ H) -k * sinh (µ ∞ H).
Thus, S 0 and C 0 satisfy the free boundary condition on Γ f , with h from condition (2.3) taken respectively as follows:

h s (x 1 ) = c(µ ∞ ) sin(µ ∞ x 1 ), for x 1 ∈ (-x 0 , x 0 ) 0, for |x 1 | > x 0 , (2.20)
for S 0 , and

h c (x 1 ) = c(µ ∞ ) cos(µ ∞ x 1 ), for x 1 ∈ (-x 0 , x 0 ) 0, for |x 1 | > x 0 , (2.21) for C 0 .
Lemma 2.3.1. Let ψ be a finite energy solution of problem (2.2) -(2.5). Then, ψ satisfies the following relation:

0 -H sinh (µ ∞ (x 2 + H)) ψ(ξ, x 2 )dx 2 = H(ξ), (2.22)
where

H(ξ) =          - ∞ ξ U ∞ sin (µ ∞ (x 1 -ξ)) f (x 1 )dx 1 , for ξ > x 0 , ξ -∞ U ∞ sin (µ ∞ (x 1 -ξ)) f (x 1 )dx 1 , for ξ < -x 0 .
(2.23)

Proof. Let us define, for a fixed |ξ| ≥ x 0 , a harmonic function:

Ψ(x 1 , x 2 ; ξ) = sin(µ ∞ (x 1 -ξ)) sinh(µ ∞ (x 2 + H)), ∀|ξ| ≥ x 0 .
(2.24)

Considering ξ > x 0 and applying Green's formula on

D + ξ = {(x 1 , x 2 ) ∈ Ω | x 1 > ξ} to the couple (ψ, Ψ)
, where ψ is a finite energy solution of problem (2.2) -(2.5) and Ψ is given by (2.24), we obtain:

∂D + ξ ψ(x 1 , x 2 ) ∂Ψ(x 1 , x 2 ; ξ) ∂n -Ψ(x 1 , x 2 ; ξ) ∂ψ(x 1 , x 2 ) ∂n d(∂D + ξ ) = 0 (2.25)
which implies:

0 -H ψ(ξ, x 2 ) ∂Ψ(ξ, x 2 ) ∂n -Ψ(ξ, x 2 ) ∂ψ(ξ, x 2 ) ∂n dx 2 (2.26) + ∞ x 0 ψ(x 1 , 0) ∂Ψ(x 1 , 0) ∂n -Ψ(x 1 , 0) ∂ψ(x 1 , 0) ∂n dx 1 + ∞ x 0 ψ(x 1 , -H) ∂Ψ(x 1 , -H) ∂n -Ψ(x 1 , -H) ∂ψ(x 1 , -H) ∂n dx 1 = 0, ∀ξ ≥ x 0 .
Taking into account the boundary conditions satisfied by Ψ on the free surface, we obtain:

0 -H ψ(ξ, x 2 ) ∂Ψ(ξ, x 2 ) ∂n dx 2 = - 0 -H (ψ(ξ, x 2 )∂ 1 Ψ(ξ, x 2 )dx 2 = -µ ∞ 0 -H ψ(ξ, x 2 ) sinh (µ ∞ (x 2 + H)) dx 2 ,
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∞ ξ ψ(x 1 , -H) ∂Ψ(x 1 , -H) ∂n dx 1 = - ∞ ξ ψ(x 1 , -H)∂ 2 Ψ(x 1 , -H)dx 1 = -µ ∞ ∞ ξ U ∞ f (x 1 ) sin(µ ∞ (x 1 -ξ))dx 1 .
(2.27)

Returning to (2.26), we obtain:

0 -H sinh (µ ∞ (x 2 + H)) ψ(ξ, x 2 )dx 2 = - ∞ ξ U ∞ sin (µ ∞ (x 1 -ξ)) f (x 1 )dx 1 , ∀ξ ≥ x 0 .
(2.28) Using Green's formula on D - ξ = {(x 1 , x 2 ) ∈ Ω | x 1 < ξ}, for ξ < -x 0 , we also have:

∂D - ξ ψ(x 1 , x 2 ) ∂Ψ(x 1 , x 2 ) ∂n -Ψ(x 1 , x 2 ) ∂ψ(x 1 , x 2 ) ∂n d(∂D - ξ ) = 0, (2.29)
which, by the same arguments as above, leads to:

0 -H sinh (µ ∞ (x 2 + H)) ψ(ξ, x 2 )dx 2 = ξ -∞ U ∞ sin (µ ∞ (x 1 -ξ)) f (x 1 )dx 1 , ∀ξ ≤ -x 0 .
(2.30)

Let us remark that the condition (2.22) is non-homogeneous. In what follows, we construct a lifting function that allows us to consider the variational formulation of the problem (2.9) on a restriction of H 1 (Ω) satisfying the homogeneous version of condition (2.22). The existence of an appropriate lifting function is given by the following result: Lemma 2.3.2. For any given H ∈ H 1 (R\[-x 0 , x 0 ]) there exists ψ 0 ∈ H 1 (Ω) such that:

ψ 0 (x 1 ) = U ∞ f (x 1 ), on Γ b , (2.31) 2.3 Transcritical case 0 -H sinh (µ ∞ (x 2 + H)) ψ 0 (ξ, x 2 )dx 2 = H(ξ), ∀ |ξ| > x 0 .
(2.32)

Proof. Let χ be a smooth function with supp χ ∈ (-H, 0) such that

0 -H χ(x 2 ) sinh (µ ∞ (x 2 + H)) dx 2 = 1, (2.33)
where µ ∞ satisfies (2.18). For every ψ 0 satisfying ψ 0 ∈ H 1 (Ω) and

ψ 0 (x 1 , -H) = U ∞ f (x 1 ), we define ψ0 (x 1 , x 2 ) = ψ 0 (x 1 , x 2 ) +   H(x 1 ) - 0 -H sinh (µ ∞ (x 2 + H)) ψ 0 (x 1 , x 2 )dx 2   χ(x 2 ).
(2.34)

We can easily check that ψ0 belongs to H 1 (Ω) and satisfies (2.31), (2.32). Now, let us define,

V * =    ψ ∈ H 1 (Ω) : ψ| Γ b = 0, 0 -H sinh (µ ∞ (x 2 + H)) ψ(ξ, x 2 )dx 2 = 0 ∀ |ξ| ≥ x 0    .
(2.35)

V * is a Hilbert space when endowed with the norm

ψ 2 = Ω |∇ψ| 2 dΩ.
(2.36)

By decomposing ψ = ψ 1 + ψ 0 with ψ 0 chosen as in Lemma 2.3.2, such that

0 -H sinh (µ ∞ (x 2 + H)) ψ 0 (x 1 , x 2 )dx 2 = H(x 1 ), (2.37) we have 0 -H sinh (µ ∞ (x 2 + H)) ψ 1 (x 1 , x 2 )dx 2 = 0.
(2.38)
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We can now state the variational formulation of the problem under the form:

Find ψ 1 ∈ V * such that for all v ∈ V * the following relation holds:

Ω ∇ψ 1 • ∇v dΩ - Γ f kψ 1 v dΓ f = - Ω ∇ψ 0 • ∇v dΩ + Γ f kψ 0 v dΓ f + Γ f h v dΓ f .
(2.39)

Existence of a unique variational solution

Property (2.22) gave us a hint on the choice of a subspace of H 1 (Ω) on which the coercivity of the variational problem may hold for this transcritical regime. We can now prove the following result:

Theorem 2.3.3. Let us suppose k ∞ > 1 H and k * < 1 H .
Then, there exists a unique solution ψ 1 ∈ V * of the variational problem (2.39).

Proof. Exactly as in the supercritical case, we can verify the continuity of the bilinear form B on V * × V * and of the linear form L on V * . It remains to prove the coercivity of the bilinear form B on V * × V * . For ψ ∈ V * , we have 0 -H sinh (k 0 (x 2 + H)) ψ(ξ, x 2 )dx 2 = 0, ∀|ξ| ≥ x 0 .

(2.40)

Integrating by parts, we have

cosh (k 0 (x 2 + H)) ψ(ξ, x 2 ) 0 -H - 0 -H cosh (k 0 (x 2 + H)) ∂ 2 ψ(ξ, x 2 )dx 2 = 0 which implies: cosh(k 0 H)ψ(ξ, 0) = 0 -H cosh (k 0 (x 2 + H)) ∂ 2 ψ(ξ, x 2 )dx 2 .
(2.41)

Squaring both sides of (2.41), integrating on Γ f and using Cauchy-Schwarz inequality, we have:

k ∞ Γ f \[-x 0 ,x 0 ] |ψ| 2 ≤ 1 2 1 + 2µ ∞ H sinh(2µ ∞ H) ∇ψ 2 L 2 (Ω 1 ) .
(2.42)

Transcritical case

Using (2.42), we obtain:

B(ψ, ψ) = Ω |∇ψ| 2 dΩ - Γ f k(x 1 )|ψ| 2 dΓ f ≥ ∇ψ 2 L 2 (Ω) - 1 2 1 + 2µ ∞ H sinh(2µ ∞ H) ∇ψ 2 L 2 (Ω 1 ) -k * H ∇ψ 2 L 2 (Ω 2 ) = 1 2 1 - 2µ ∞ H sinh(2µ ∞ H) ∇ψ 2 L 2 (Ω 1 ) + (1 -k * H) ∇ψ 2 L 2 (Ω 2 ) ≥ C 1 ψ 2 V * , (2.43)
for every ψ ∈ V * , where

C 1 = min 1 2 1 - 2µ ∞ H sinh(2µ ∞ H) , 1 -k * H (2.44)
is a strictly positive constant.

Using the Lax-Milgram theorem, we can now prove the existence and uniqueness of a variational solution for problem (2.39).

Laplacian of the variational solution

Once the existence and uniqueness of a weak variational solution is obtained, we need to verify if it also satisfies the initial problem (2.2)-(2.5). Following closely the same arguments as in [Pierotti, 2002], we can show that the weak solution ψ provided by Theorem 2.3.3 is not harmonic throughout Ω and it satisfies: Theorem 2.3.4. If ψ ∈ V * is the unique solution of (2.39) given by Theorem 2.3.3, then there exist real constants λ + , λ -such that

∆ψ(x 1 , x 2 ) = [λ + δ(x 1 -x 0 ) + λ -δ(x 1 + x 0 )] sinh (µ ∞ (x 2 + H)) .
(2.45)

Proof. Let v be any smooth function with compact support v ∈ C ∞ 0 (Ω). In order to facilitate the computations, let us define the following operator:

L(v)(x 1 ) = c(µ ∞ ) -1 0 -H sinh (µ ∞ (s + H)) v(x 1 , s)ds,
(2.46)

Chapter 2. Existence and uniqueness for a transcritical case in the single layer problem where

c(µ ∞ ) = 0 -H sinh 2 (µ ∞ (x 2 + H)) dx 2 = H 2 sinh(2µ ∞ H) 2µ ∞ H -1 .
(2.47)

For any smooth function v such that

0 -H v(±x 0 , x 2 ) sinh (µ ∞ (x 2 + H)) dx 2 = 0, (2.48)
we define:

ṽ(x 1 , x 2 ) =    v(x 1 , x 2 ) -L(v)(x 1 ) sinh (µ ∞ (x 2 + H)) , |x 1 | ≥ x 0 v(x 1 , x 2 ), |x 1 | ≤ x 0 .
(2.49)

It is immediate to check that ṽ is a continuous function and ṽ ∈ V * . Thus, we can use ṽ as a test function in the variational formulation:

Ω ∇ψ(x 1 , x 2 ) • ∇ṽ(x 1 , x 2 ) dΩ - Γ f (k(x 1 )ψ(x 1 , x 2 ) + h(x 1 )) ṽ(x 1 , x 2 ) dΓ f = 0, which implies: Ω 1 ∇ψ(x 1 , x 2 )•∇ [v(x 1 , x 2 ) -L(v)(x 1 ) sinh (µ ∞ (x 2 + H))] dΩ 1 + Ω 2 ∇ψ(x 1 , x 2 )•∇v(x 1 , x 2 ) dΩ 2 -k ∞ Γ f \[-x 0 ,x 0 ] ψ(x 1 , x 2 ) [v(x 1 , x 2 ) -L(v)(x 1 ) sinh (µ ∞ (x 2 + H))] dx 1 -k * x 0 -x 0 ψ(x 1 , 0)v(x 1 , 0) dx 1 - R h(x 1 )v(x 1 , 0) dx 1 = 0. Since v ∈ C ∞ 0 (Ω), we get: Ω ∇ψ(x 1 , x 2 ) • ∇v(x 1 , x 2 )dΩ = Ω 1 ∇ψ(x 1 , x 2 ) • ∇ [L(v)(x 1 ) sinh (µ ∞ (x 2 + H))] dΩ 1 2.3 Transcritical case -k ∞ Γ f \[-x 0 ,x 0 ] ψ(x 1 , x 2 )L(v)(x 1 ) sinh (µ ∞ (x 2 + H)) dx 1 . (2.50)
Integrating by parts in (2.50), we have:

Ω ∇ψ(x 1 , x 2 )•∇v(x 1 , x 2 )dΩ = ∂Ω 1 ψ(x 1 , x 2 )•∂ n [L(v)(x 1 ) sinh (µ ∞ (x 2 + H))] d(∂Ω 1 )
-

Ω 1 ψ(x 1 , x 2 ) • ∆ [L(v)(x 1 ) sinh (µ ∞ (x 2 + H))] dΩ 1 -k ∞ Γ f \[-x 0 ,x 0 ] ψ(x 1 , 0)L(v)(x 1 ) sinh (µ ∞ H) dx 1 . (2.51)
Proceeding as in the proof of Theorem 1.2.8, we get

Ω ∇ψ(x 1 , x 2 ) • ∇v(x 1 , x 2 )dΩ = -   L(v)(x 0 ) ∞ x 0 U ∞ µ ∞ cos (µ ∞ (x 1 -x 0 )) f (x 1 )dx 1 +L(v)(-x 0 ) -x 0 -∞ U ∞ µ ∞ cos (µ ∞ (x 1 + x 0 )) f (x 1 )dx 1   . (2.52)
For every test function v satisfying (2.48), we have L(v)(x 0 ) = L(v)(-x 0 ) = 0, which leads to:

Ω ∇ψ(x 1 , x 2 ) • ∇v(x 1 , x 2 )dΩ = 0.
(2.53)

In order to show that (2.45) holds, we first check that

Ω ∇ψ(x 1 , x 2 ) • ∇v(x 1 , x 2 )dΩ = -λ + 0 -H v(x 0 , x 2 ) sinh (µ ∞ (x 2 + H)) dx 2 (2.54) for every v ∈ C ∞ 0 (Ω) with supp v ⊂ Ω ∩ {x 1 > -x 0 }. Let us introduce a smooth function η 0 with compact support in Ω ∩ {x > -x 0 } and such that 0 -H η 0 (x 0 , x 2 ) sinh (µ ∞ (x 2 + H)) dx 2 = 1.
(2.55)
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Then, for any v ∈ C ∞ 0 (Ω), we define the function

v 0 (x 1 , x 2 ) = v(x 1 , x 2 ) -η 0 (x 1 , x 2 ) 0 -H v(x 0 , x 2 ) sinh (µ ∞ (x 2 + H)) dx 2 , (2.56)
which belongs to C ∞ 0 (Ω) and satisfies (2.48). Using v 0 as a test function, relation (2.53) becomes:

Ω ∇ψ(x 1 , x 2 ) • ∇v(x 1 , x 2 )dΩ = Ω ∇ψ(x 1 , x 2 ) • ∇η 0 (x 1 , x 2 )dΩ 0 -H v(x 0 , s) sinh (µ ∞ (s + H)) ds,
which implies that (2.54) holds with

λ + = - Ω ∇ψ(x 1 , x 2 ) • ∇η 0 (x 1 , x 2 )dΩ.
Proceeding similarly for smooth functions with compact support in Ω ∩ {x < x 0 , }, we can also show that there exists a real constant λ -such that

Ω ∇ψ(x 1 , x 2 ) • ∇v(x 1 , x 2 )dΩ = -λ - 0 -H v(x 0 , x 2 ) sinh (µ ∞ (x 2 + H)) dx 2 .
(2.57)

We can now conclude that (2.45) holds.

Reconstruction of a harmonic function

Since the weak solution ψ is not harmonic, we need to remove the singularities of the laplacian in order ψ to be a solution of the initial problem (2.2).

Lemma 2.3.5. Let ψ ∈ V * be the unique solution given by Theorem 2.3.3. Then, the following function ψ:

ψ(x 1 , x 2 ) =          ψ + λ - µ∞ Φ0 , x 1 < -x 0 , ψ, |x 1 | ≤ x 0 , ψ -λ + µ∞ Ψ0 , x 1 > x 0 ,
(2.58)
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is harmonic (in the sense of distributions) and satisfies the same boundary conditions as ψ, where

Φ0 (x 1 , x 2 ) = sin(µ ∞ (x 0 + x 1 )) sinh(µ ∞ (x 2 + H)), (2.59) Ψ0 (x 1 , x 2 ) = sin(µ ∞ (-x 0 + x 1 )) sinh(µ ∞ (x 2 + H)).
(2.60)

Proof. Let us compute the laplacian, in the sense of distributions, for the following function:

ψ(x 1 , x 2 ) =          λ - µ∞ Φ0 , x 1 < -x 0 , 0, |x 1 | ≤ x 0 , -λ + µ∞ Ψ0 , x 1 > x 0 ,
(2.61)

For a test function υ ∈ C ∞ 0 (Ω), we have:

∂ 2 11 ψ(x 1 , x 2 ), υ(x 1 , x 2 ) = -∂ 1 ψ(x 1 , x 2 ), ∂ 1 υ(x 1 , x 2 ) = - 0 -H -ξ * -∞ λ -cos(µ ∞ (x 1 + ξ * )) sinh(µ ∞ (x 2 + H))∂ 1 υ(x 1 , x 2 ) dx 1 + ∞ ξ * λ + cos(µ ∞ (x 1 -ξ * )) sinh(µ ∞ (x 2 + H))∂ 1 υ(x 1 , x 2 ) dx 1 dx 2 .
Straightforward computations lead to:

∂ 2 11 ψ(x 1 , x 2 ), υ(x 1 , x 2 ) = - 0 -H λ -sinh(µ ∞ (x 2 +H))υ(-x 0 , x 2 )+ -x 0 -∞ λ -µ ∞ sin(µ ∞ (x 1 +x 0 )) sinh(µ ∞ (x 2 +H))υ(x 1 , x 2 ) dx 1 +λ + sinh(µ ∞ (x 2 +H))υ(x 0 , x 2 )- ∞ x 0 λ + µ ∞ sin(µ ∞ (x 1 -x 0 )) sinh(µ ∞ (x 2 +H))υ(x 1 , x 2 ) dx 1 dx 2 .
Similarly,

∂ 2 22 ψ(x 1 , x 2 ), υ(x 1 , x 2 ) = -∂ 2 ψ(x 1 , x 2 ), ∂ 2 υ(x 1 , x 2 )
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= - 0 -H -ξ * -∞ λ -sin(µ ∞ (x 1 + ξ * )) cosh(µ ∞ (x 2 + H))∂ 2 υ(x 1 , x 2 ) dx 1 + ∞ ξ * λ + sin(µ ∞ (x 1 -ξ * )) cosh(µ ∞ (x 2 + H))∂ 2 υ(x 1 , x 2 ) dx 1 dx 2 ,
which leads to:

∂ 2 22 ψ(x 1 , x 2 ), υ(x 1 , x 2 ) = - 0 -H - -x 0 -∞ λ -µ ∞ sin(µ ∞ (x 1 + x 0 )) sinh(µ ∞ (x 2 + H))υ(x 1 , x 2 ) dx 1 + ∞ x 0 λ + µ ∞ sin(µ ∞ (x 1 -x 0 )) sinh(µ ∞ (x 2 + H))υ(x 1 , x 2 ) dx 1 dx 2 .
Gathering these computations, we obtain:

∆ ψ(x 1 , x 2 ), υ(x 1 , x 2 ) = ∂ 2 11 ψ(x 1 , x 2 ) + ∂ 2 22 ψ(x 1 , x 2 ), υ(x 1 , x 2 ) = [-λ + δ(x 1 -x 0 ) -λ -δ(x 1 + x 0 )] sinh (µ ∞ (x 2 + H)) , υ(x 1 , x 2 ) . Hence ∆ ψ(x 1 , x 2 ) = -[λ + δ(x 1 -x 0 ) + λ -δ(x 1 + x 0 )] sinh (µ ∞ (x 2 + H)) .
(2.62) Thus, defining

ψ = ψ + ψ, (2.63)
we obtain that ψ is harmonic.

Regularization and unique solvability of the problem

Since the function ψ oscillates at infinity both upstream and downstream, ψ does not satisfy the asymptotic condition (2.5). We need to get rid of the unwanted waves upstream and construct nontrivial, continuous and bounded solutions of the homogeneous problem (2.2)-(2.5). To this aim, we introduce a pair of variational solutions ψ s and ψ c and exploit their properties. Let ψ s and ψ c by the variational
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solutions of (2.39) satisfying the following boundary conditions on the free surface:

∂ 2 ψ s -k * ψ s = h s and ∂ 2 ψ c -k * ψ c = h c , ∀ x 1 ∈ (-x 0 , x 0 ), (2.64) 
where h s and h c are respectively given by (2.20), (2.21). Using the symmetry properties of the data and the uniqueness of the variational solution, we can easily prove the following properties of ψ s and ψ c : Lemma 2.3.6. If ψ s and ψ c are the variational solutions given by Theorem 2.3.3 satisfying conditions (2.64), then ψ s (-

x 1 , x 2 ) = -ψ s (x 1 , x 2 ), ψ c (-x 1 , x 2 ) = ψ c (x 1 ,
x 2 ) and ψ s , ψ c satisfy (2.45) with respectively λ + = -λ -:= λ s and λ + = λ -:= λ c .

Let us modify ψ s and ψ c as in (2.58), with λ s and λ c the corresponding coefficients, in order to obtain the harmonic functions ψs and ψc :

ψs (x 1 , x 2 ) =          ψ s -λ s µ∞ sin(µ ∞ (x 1 + x 0 )) sinh(µ ∞ (x 2 + H)), x 1 < -x 0 ψ s , |x 1 | ≤ x 0 ψ s -λ s µ∞ sin(µ ∞ (x 1 -x 0 )) sinh(µ ∞ (x 2 + H)), x 1 > x 0 ,
(2.65)

ψc (x 1 , x 2 ) =          ψ c + λ c µ∞ sin(µ ∞ (x 1 + x 0 )) sinh(µ ∞ (x 2 + H)), x 1 < -x 0 ψ c , |x 1 | ≤ x 0 ψ c -λ c µ∞ sin(µ ∞ (x 1 -x 0 )) sinh(µ ∞ (x 2 + H)), x 1 > x 0 .
(2.66)

Functions ψs,c are now harmonic but still have heterogeneous boundary conditions. In order to get the homogeneous boundary conditions, let us set

ζ s 0 = ψs -S 0 , ζ c 0 = ψc -C 0 .
(2.67) Furthermore, ζ s,c 0 have respectively the same symmetry properties as ψ s,c and oscillate at infinity both upstream and downstream. To deal with the upstream oscillations of ψ, we are searching the solution as a linear combination of ψ and ζ s,c 0 . Let us define

ω = ψ + aζ s 0 + bζ c 0 , (2.68)
where we need to choose a and b such that ω satisfies (2.5).
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Let us remark that for x 1 < -x 0 , we have:

ω =ψ + λ - µ ∞ (cos(µ ∞ x 0 )S 0 + sin(µ ∞ x 0 )C 0 ) + a ψ s - λ s µ ∞ (cos(µ ∞ x 0 )S 0 + sin(µ ∞ x 0 )C 0 ) -S 0 + b ψ c + λ c µ ∞ (cos(µ ∞ x 0 )S 0 + sin(µ ∞ x 0 )C 0 ) -C 0 =ψ + aψ s + bψ c + S 0 λ - µ ∞ cos(µ ∞ x 0 ) -a λ s µ ∞ cos(µ ∞ x 0 ) -a + b λ c µ ∞ cos(µ ∞ x 0 ) + C 0 λ - µ ∞ sin(µ ∞ x 0 ) -a λ s µ ∞ sin(µ ∞ x 0 ) -b + b λ c µ ∞ sin(µ ∞ x 0 ) .
Taking into account that the variational solutions ψ, ψ s , and ψ c are H 1 functions which exponentially vanish at infinity upstream and downstream, and imposing that the coefficients of the oscillatory terms (S 0 , C 0 ) vanish, one can get the system:

   [λ s cos(µ ∞ x 0 ) + µ ∞ ] a -λ c cos(µ ∞ x 0 )b = λ -cos(µ ∞ x 0 ) λ s sin(µ ∞ x 0 )a -[λ c sin(µ ∞ x 0 ) -µ ∞ ] b = λ -sin(µ ∞ x 0 ).
(2.69) By a simple calculation, we get that system (2.69) has a unique solution given by

a = λ -cos(µ ∞ x 0 ) ∆ , b = λ -sin(µ ∞ x 0 ) ∆ (2.70)
provided that the discriminant of the system is non-zero, where the discriminant is given by:

∆ = µ ∞ + λ s cos(µ ∞ x 0 ) -λ c sin(µ ∞ x 0 ). (2.71)
From the calculations above, the asymptotic expression of ω as x 1 → ∞ is given by a linear combination of terms which characterize the decay at infinity downstream belonging to the variational solution and oscillatory terms:

ω = O e -θ 1 |x 1 | + 1 ∆ (AS 0 + BC 0 ) , (2.72)
where
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A = - cos(µ ∞ x 0 ) µ ∞ [µ ∞ (λ + + λ -) + λ s cos(µ ∞ x 0 )(λ + + λ -) -λ c sin(µ ∞ x 0 )(λ + -λ -)] ,
(2.73) and

B = sin(µ ∞ x 0 ) µ ∞ [µ ∞ (λ + -λ -) + λ s cos(µ ∞ x 0 )(λ + + λ -) -λ c sin(µ ∞ x 0 )(λ + -λ -)] .
(2.74)

In order to be able to study the solvability of the problem, we need to use the asymptotic expansions for ζ s 0 and ζ c 0 defined by (2.67). One can easily check that ζ s 0 has the following asymptotic representation, as x 1 → ±∞:

ζ s 0 = ψs -S 0 = ψ s - λ s µ ∞ sin(µ ∞ (x 1 ± x 0 )) sinh(µ ∞ (x 2 + H)) -sin(µ ∞ x 1 ) sinh(µ ∞ (x 2 + H)) = ψ s + [A s sin(µ ∞ x 1 ) ± B s cos(µ ∞ x 1 )] sinh(µ ∞ (x 2 + H)), (2.75) 
where

A s = - λ s µ ∞ cos(µ ∞ x 0 ) + 1 ; B s = λ s µ ∞ sin(µ ∞ x 0 ).
(2.76)

Similarly for ζ c 0 ,

ζ c 0 = ψ c + [±A c sin(µ ∞ x 1 ) + B c cos(µ ∞ x 1 )] sinh(µ ∞ (x 2 + H)), for x 1 → ±∞, (2.77)
where

A c = - λ c µ ∞ cos(µ ∞ x 0 ); B c = λ c µ ∞ sin(µ ∞ x 0 ) -1 . (2.78)
Let us also remark that ψ s and ψ c are harmonic functions and are rapidly decreasing as |x| → ∞.

We are now able to prove the main result concerning the unique solvability for the transcritical regime that we considered:

Theorem 2.3.7. Let us suppose k * < 1 H , k ∞ > 1 H , h ∈ L 2 (-x 0 , x 0 ) and f ∈ C 1 0 (R) be given. If the following condition holds: µ ∞ = -λ s cos(µ ∞ x 0 ) + λ c sin(µ ∞ x 0 ),
(2.79)
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Proof. The existence of a solution was already proved above. Indeed, as long as condition (2.79) holds, we can construct a solution ω as in (2.68).

It remains to prove the uniqueness of the solution. Let us suppose that ψ 0 is a solution of problem (2.2)-(2.5) with h = 0 and f = 0. Solving an eigenvalue problem and using the asymptotic condition (2.5), we obtain the following asymptotic expansions for ψ 0 in the regions (R, +∞) × (-H, 0) and (-∞, -R) × (-H, 0), with R > x 0 :

ψ 0 (x 1 , x 2 ) = [A 0 sin(µ ∞ x 1 ) + B 0 cos(µ ∞ x 1 )] sinh(µ ∞ (x 2 + H)) + +∞ n=1 a n e -θnx 1 sin(µ ∞ (x 2 + H)) (2.80) for (x 1 , x 2 ) ∈ (R, +∞) × (-H, 0), and 
ψ 0 (x 1 , x 2 ) = +∞ n=1 b n e +θnx 1 sin(µ ∞ (x 2 + H)) (2.81) for (x 1 , x 2 ) ∈ (-∞, -R) × (-H, 0)
, where A 0 and B 0 are real constants and θ n , µ ∞ are respectively given by (2.19) and (2.18). We now apply Green's formula to the couples (ψ 0 , ζ s 0 ) and (ψ 0 , ζ c 0 ) in a bounded rectangle (-R, R) × (-H, 0) with R > x 0 . Letting R → ∞, we get:

lim R→∞ 0 -H ζ s 0 (R, x 2 )∂ 1 ψ(R, x 2 ) -ψ(R, x 2 )∂ 1 ζ s 0 (R, x 2 ) dx 2 = 0, (2.82) lim R→∞ 0 -H ζ c 0 (R, x 2 )∂ 1 ψ(R, x 2 ) -ψ(R, x 2 )∂ 1 ζ c 0 (R, x 2 ) dx 2 = 0.
(2.83) Using (2.75) and (2.80) into (2.82), we obtain:

lim R→∞ µ ∞ A s A 0 sin(µ ∞ R) cos(µ ∞ R) -A s B 0 sin 2 (µ ∞ R) + A 0 B s cos 2 (µ ∞ R) -B 0 B s sin(µ ∞ R) cos(µ ∞ R) -A s A 0 sin(µ ∞ R) cos(µ ∞ R) -A s B 0 cos 2 (µ ∞ R)
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+ A 0 B s sin 2 (µ ∞ R) + B 0 B s sin(µ ∞ R) cos(µ ∞ R) 0 -H sinh 2 (µ ∞ (x 2 + H))dx 2 = 0,
which, by some "Pythagorean" identities, becomes:

µ ∞ (A 0 B s -B 0 A s ) 0 -H sinh 2 (µ ∞ (x 2 + H))dx 2 = 0.
(2.84)

Similarly, using (2.77) and (2.81) into (2.83), we obtain:

µ ∞ (A 0 B c -B 0 A c ) 0 -H sinh 2 (µ ∞ (x 2 + H))dx 2 = 0.
(2.85)

Hence, we have the relations:

A 0 B s -B 0 A s = A 0 B c -B 0 A c = 0.
(2.86) Relation (2.86) is equivalent to A 0 = B 0 = 0, as long as the following condition holds:

A s B c -A c B s = 0.
(2.87)

Taking into account (2.76) and (2.78), condition (2.87) is equivalent to:

λ c sin(µ ∞ x 0 ) -λ s cos(µ ∞ x 0 ) = µ ∞ .
(2.88)

We proved that ψ 0 = 0 and thus the uniqueness of the solution, as long as condition (2.79) holds.

At this point we proved the conditional unique solvability of the problem. The unique solvability has been proved in different contexts, as for example in the subcritical regime for a cylinder semisubmerged in a heavy fluid [Pierotti, 2003] or for the two-dimensional flow in a channel of constant depth, when a rectangular obstacle lies on the bottom [START_REF] Pierotti | The steady twodimensional flow over a rectangular obstacle lying on the bottom[END_REF]. We believe that a similar treatment for our case would be possible, as we obtain the same kind of condition for the unique solvability. However, at this point we are unable to overcome the technical difficulties that are typical to the transcritical regime. This is an issue to Chapter 2. Existence and uniqueness for a transcritical case in the single layer problem explore for future research.

Chapter 3

Linear analysis of the steady water waves over an obstacle lying on the bottom for two-layer case with rigid lid approximation

The purpose of this chapter is to study the wave formation in the context of a stratified fluid of finite depth, when an obstacle is lying on the bottom of the fluid, under the rigid-lid approximation.

The study of the dynamics of stratified fluids is of high interest in oceanography, as well as in atmospheric studies, as the geophysical fluids can present a stratified character. The first rigorous studies on a stratified flow date back in the '60s, starting with the pioneering works of Sretensky [START_REF] Sretensky | On the wave resistance of ships in the presence of internal waves[END_REF] and Hudimac [Hudimac, 1961]. In [Hudimac, 1961], the author studied the wave formation in the case of a moving body in a statified fluid of infinite depth, the fluid being composed of two layers of different densities. The moving body is first illustrated by a simple source placed in the upper layer of a two-layers fluid and then a thin body is approximated by a distribution of sources. Six years later, [Crapper, 1967] considered the case of a pressure point moving over the surface of a two-layers fluid of infinite depth. The article underlined the effect of the stratification on the creation of waves though the existence of waves of two modes in a two-layer fluid, i.e. the surface-wave mode and the internal-wave mode.

As mentioned previously, in this chapter we consider the rigid-lid approach, Chapter 3. Linear analysis of the steady water waves over an obstacle lying on the bottom for two-layer case with rigid lid approximation which is a simplification commonly used in the study of stratified density fluids in oceanography. One assumes that surface displacements are negligible compared to internal displacement. The article of [Duchene, 2013] offers a precise justification for this estimate in the case of the Saint-Venant equations, which model two layers of shallow water in the rigid-cover and free-surface configurations for fully nonlinear waves.

The simplified model that we consider in what follows allows us to prove the unique solvability of the problem, both by means of the variational method and of the Fourier method. As in the single-layer case treated in Chapter 1, the Fourier method gives us the explicit form of the solution with its variational and wake parts.

Problem setting

As announced, we start by considering the case of a two-layered flow in a two dimensional channel, in the presence of a tiny, regular obstacle on the bottom of the domain, in the rigid lid case. The fluids are incompressible and inviscid, the flow is irrotational. Each layer is characterised by distinct velocities and densities, with (ρ 2 > ρ 1 ), an illustration of the physical domain is given in Figure 3.1.

Γ i (x 2 = 0) Γ f Γ b Ω 1 Ω 2 H 1 H 2 x 1 x 2 U ∞ FIGURE 3.1 -Geometrical setting of two-layer case
The problem, written in terms of the stream function ψ, reads as follows:

Find (ψ 1 , ψ 2 ) such that ∆ψ 1 = 0 in Ω 1 , (3.1) ∆ψ 2 = 0 in Ω 2 , (3.2) ψ 1 = 0 on Γ f , (3.3) ρ 1 (∂ 2 ψ 1 -νψ 1 ) = ρ 2 (∂ 2 ψ 2 -νψ 2 ) on Γ i , (3.4) 3.2 Variational method ψ 1 = ψ 2 on Γ i , (3.5) ψ 2 = U ∞ f (x 1 ) on Γ b , (3.6) |∇ψ 1 | → 0 |∇ψ 2 | → 0 as x 1 → -∞,
(uniformly with respect to x 2 ). (3.7)

The parameter ν equals g/U 2 ∞ , where g is the gravitational acceleration and U ∞ is the the velocity at infinity upstream for the whole flow.

Variational method

Variational formulation

As already mentioned, for the two-layer case with rigid lid approximation, we prove the unique solvability first by the variational method. The first step, before giving the variational formulation, is to introduce a lifting function in order to homogenise the boundary conditions. Let us take ( ψ 1 , ψ 2 ) regular enough, such that

ψ 1 = ψ 2 on Γ i , ρ 1 (∂ 2 ψ 1 -ν ψ 1 ) = ρ 2 (∂ 2 ψ 2 -ν ψ 2 ) on Γ i , ψ 1 = 0 on Γ f and ψ 2 = U ∞ f (x 1 ) on Γ b .
Then, writing ψ m = ψ m + ψ m , for m = 1, 2, the initial problem (3.1)-(3.6) becomes:

Find (ψ 1 , ψ 2 ) such that ∆ψ 1 = r 1 in Ω 1 , (3.8) ∆ψ 2 = r 2
in Ω 2 , (3.9)

ψ 1 = 0 on Γ f , (3.10) ρ 1 (∂ 2 ψ 1 -νψ 1 ) = ρ 2 (∂ 2 ψ 2 -νψ 2 ) on Γ i , (3.11) ψ 1 = ψ 2 on Γ i , (3.12) ψ 2 = 0 on Γ b , (3.13) |∇ψ 1 | → 0 |∇ψ 2 | → 0 as x 1 → -∞, (uniformly with respect to x 2 ). (3.14)
Let us introduce the following function space

V = {(ψ 1 , ψ 2 ) ∈ H 1 (Ω 1 ) × H 1 (Ω 2 ), ψ 1 | Γ f = 0, ψ 2 | Γ b = 0, ψ 1 = ψ 2 on Γ i },
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(ψ 1 , ψ 2 ) 2 V = Ω 1 |∇ψ 1 | 2 dΩ 1 + Ω 2 |∇ψ 2 | 2 dΩ 2 . (3.15)
We consider the test function (s 1 , s 2 ) ∈ V , multiply equations (3.8) and (3.9) respectively by s 1 and s 2 , then integrate over Ω 1 and Ω 2 . From a linear combination of the resulting equations, we obtain:

ρ 1 Ω 1 ∇ψ 1 ∇s 1 dΩ 1 + ρ 2 Ω 2 ∇ψ 2 ∇s 2 dΩ 2 -(ρ 2 -ρ 1 )ν Γ i ψ 1 s 1 dΓ i = -ρ 1 Ω 1 g 1 s 1 dΩ 1 -ρ 2 Ω 2 g 2 s 2 dΩ 2 .
Thus, the variational formulation reads as:

Find (ψ 1 , ψ 2 )∈ V such that for all (s 1 , s 2 )∈ V the following holds: B[(ψ 1 , ψ 2 ); (s 1 , s 2 )] = L(s 1 , s 2 ), (3.16)
where

B[(ψ 1 , ψ 2 ); (s 1 , s 2 )] = ρ 1 Ω 1 ∇ψ 1 ∇s 1 dΩ 1 + ρ 2 Ω 2 ∇ψ 2 ∇s 2 dΩ 2 -(ρ 2 -ρ 1 )ν Γ i ψ 1 s 1 dΓ i , and 
L(s 1 , s 2 ) = -ρ 1 Ω 1 r 1 s 1 dΩ 1 -ρ 2 Ω 2 r 2 s 2 dΩ 2 .

The supercritical case

Let us now consider the supercritical case, meaning when (ρ 2 -ρ 1 )ν < ρ 1 H 1 + ρ 2 H 2 . We can prove the following result on the existence and uniqueness of a weak solution:

Theorem 3.2.1. Let us suppose that (ρ 2 -ρ 1 )ν < ρ 1 H 1 + ρ 2 H 2 .
Then, there exists a unique solution (ψ 1 , ψ 2 ) ∈ V of the variational problem (3.16).

Proof. By an immediate computation we can check that the bilinear form B is

3.2 Variational method continuous on V × V : B[(ψ 1 , ψ 2 ); (s 1 , s 2 )] ≤ ρ 1 Ω 1 ∇ψ 1 |∇s 1 | dΩ 1 + ρ 2 Ω 2 ∇ψ 2 |∇s 2 | dΩ 2 + (ρ 2 -ρ 1 )ν Γ i ψ 1 |s 1 | dΓ i ≤ ρ 1 ∇ψ 1 L 2 (Ω 1 ) ∇s 1 L 2 (Ω 1 ) + ρ 2 ∇ψ 2 L 2 (Ω 2 ) ∇s 2 L 2 (Ω 2 ) + (ρ 2 -ρ 1 )ν ψ 1 L 2 (Γ i ) s 1 L 2 (Γ i ) ≤ (ρ 1 + ρ 2 + C(ρ 2 -ρ 1 )ν) (ψ 1 , ψ 2 ) V (s 1 , s 2 ) V , with C a positive constant.
The continuity on V of the linear form L is also immediate:

|L(s 1 , s 2 )| ≤ ρ 1 Ω 1 |r 1 ||s 1 | dΩ 1 + ρ 2 Ω 2 |r 2 ||s 2 | dΩ 2 ≤ ρ 1 r 1 L 2 (Ω 1 ) + ρ 2 r 2 L 2 (Ω 1 ) (s 1 , s 2 ) V .
We need to determine the coercivity of the bilinear form B:

B[(ψ 1 , ψ 2 ); (ψ 1 , ψ 2 )] = ρ 1 Ω 1 |∇ψ 1 | 2 dΩ 1 + ρ 2 Ω 2 |∇ψ 2 | 2 dΩ 2 -(ρ 2 -ρ 1 )ν Γ i |ψ 1 | 2 dΓ i
Using Lemma 1.2.2 on the continuity of the trace operator, we obtain:

Γ i |ψ 1 | 2 dΓ i ≤ H 1 Ω 1 |ψ 1 | 2 dΩ 1 , Γ i |ψ 1 | 2 dΓ i = Γ i |ψ 2 | 2 dΓ i ≤ H 2 Ω 2 |ψ 2 | 2 dΩ 2 . Hence Γ i |ψ 1 | 2 dΓ i ≤ θH 1 ∇ψ 1 2 L 2 (Ω 1 ) + (1 -θ)H 2 ∇ψ 2 2 L 2 (Ω 2 ) , ∀ θ ∈ [0, 1].
(3.17) Using (3.17), we obtain that for all θ ∈ [0, 1]:

B[(ψ 1 , ψ 2 ); (ψ 1 , ψ 2 )] ≥ ρ 1 ∇ψ 1 2 L 2 (Ω 1 ) + ρ 2 ∇ψ 2 2 L 2 (Ω 2 ) -(ρ 2 -ρ 1 )νθH 1 ∇ψ 1 2 L 2 (Ω 1 ) -(ρ 2 -ρ 1 )ν(1 -θ)H 2 ∇ψ 2 2 L 2 (Ω 2 ) ≥ min {ρ 1 -(ρ 2 -ρ 1 )νθH 1 , ρ 2 -(ρ 2 -ρ 1 )ν(1 -θ)H 2 } (ψ 1 , ψ 2 ) 2 V .
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(ρ 2 -ρ 1 )ν < ρ 1 H 1 + ρ 2 H 2 ,
the coercivity holds.

The subcritical case

Variational formulation in subcritical case

Let us now suppose that

(ρ 2 -ρ 1 )ν > ρ 1 H 1 + ρ 2 H 2 .
In this case, we need to restrict the function space on which we consider the variational problem in order to achieve the coercivity of the bilinear form. We proceed analogously to the single layer case. We divide the domain

Ω 1 ∪ Ω 2 into four parts (see figure 3.2), D + ξ * 1 = (ξ * , ∞) × (H 1 , 0), D - ξ * 1 = (-∞, ξ * ) × (H 1 , 0), D + ξ * 2 = (ξ * , ∞) × (-H 2 , 0), D - ξ * f (x 1 ) sin (k 0 (x 1 -ξ * )) dx 1 = 0.
(3.18)

Γ i (x 2 = 0) Γ f Γ b D - ξ * 1 D + ξ * 1 D - ξ * 2 D + ξ * 2 x 1 = ξ * x 1 x 2 FIGURE 3.2 -The physical domain
Let us consider the associated free problem:

∆υ 1 = 0 in Ω 1 , (3.19 
)

∆υ 2 = 0 in Ω 2 , (3.20) ρ 1 (∂ 2 υ 1 -νυ 1 ) = ρ 2 (∂ 2 υ 2 -νυ 2 ) on Γ i , (3.21) 
υ 1 = υ 2 on Γ i , (3.22 
)

υ 1 = 0 on Γ f , (3.23 
)

υ 2 = 0 on Γ b . (3.24)
By the separation of variables method, we obtain υ 1 as a linear combinations of the solutions:

S 1 (x 1 , x 2 ) = sin(k 0 x 1 ) sinh (k 0 (x 2 -H 1 )) , (3.25) C 1 (x 1 , x 2 ) = cos(k 0 x 1 ) sinh (k 0 (x 2 -H 1 )) , (3.26) 
e ±λnx 1 sin (λ n (x 2 -H 1 )) , n = 1, 2, .... (3.27)
and υ 2 as a linear combinations of the solutions:

S 2 (x 1 , x 2 ) = sin(k 0 x 1 ) sinh (k 0 (x 2 + H 2 )) , (3.28) C 2 (x 1 , x 2 ) = cos(k 0 x 1 ) sinh (k 0 (x 2 + H 2 )) , (3.29) 
e ±λnx 1 sin (λ n (x 2 + H 2 )) , n = 1, 2, .... (3.30) 
where k 0 is the unique positive solution of

(ρ 2 -ρ 1 )ν = k 0 (ρ 1 coth(k 0 H 1 ) + ρ 2 coth(k 0 H 2 )) . (3.31)
and all the remaining eigenvalues λ n (0

< λ 1 < • • • < λ n < • • • ) are the positive solutions of (ρ 2 -ρ 1 )ν = λ (ρ 1 cot(λH 1 ) + ρ 2 cot(λH 2 )) . (3.32) Theorem 3.2.2. For any ψ 1 ∈ H 1 (Ω 1 ) and ψ 2 ∈ H 1 (Ω 2 ) satisfying problem (3.1) - (3.6
), the following relation holds:

ρ 1 H 1 0 ψ 1 (ξ, x 2 ) sinh (k 0 (x 2 -H 1 )) dx 2 + ρ 2 α(k 0 ) 0 -H 2 ψ 2 (ξ, x 2 ) sinh (k 0 (x 2 + H 2 )) dx 2 = H(ξ), (3.33) 
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H(ξ) =          -ρ 2 α(k 0 )U ∞ ∞ ξ sin (k 0 (x 1 -ξ)) f (x 1 )dx 1 , for ξ ≥ ξ * , ρ 2 α(k 0 )U ∞ ξ -∞ sin (k 0 (x 1 -ξ)) f (x 1 )dx 1 , for ξ ≤ ξ * , (3.34) and α(k 0 ) = - sinh(k 0 H 1 ) sinh(k 0 H 2 ) .
Proof. For any fixed point ξ ≥ ξ * , let us introduce the following functions, satisfying the free surface problem:

Ψ 1 (x 1 , x 2 ; ξ) = sin(k 0 (x 1 -ξ)) sinh(k 0 (x 2 -H 1 )), (3.35) Ψ 2 (x 1 , x 2 ; ξ) = α(k 0 ) sin(k 0 (x 1 -ξ)) sinh(k 0 (x 2 + H 2 )), (3.36) 
where k 0 satisfies (3.31) and α(k

0 ) = - sinh(k 0 H 1 ) sinh(k 0 H 2 ) .
Given a finite energy solution (ψ 1 , ψ 2 ) of problem (3.1) -(3.6), we apply Green's formula to the couples of functions (ψ m , Ψ m ) in D + ξ * m with m = 1, 2. We obtain

∂D + ξ * m ψ m (x 1 , x 2 ) ∂Ψ m (x 1 , x 2 ; ξ) ∂n -Ψ m (x 1 , x 2 ; ξ) ∂ψ m (x 1 , x 2 ) ∂n d(∂D + ξ * m ) = 0. (3.37)
Using the boundary conditions, we get: For m = 1:

H 1 0 ψ 1 (ξ, x 2 ) ∂Ψ 1 (ξ, x 2 ) ∂n dx 2 + ∞ ξ ψ 1 (x 1 , 0) ∂Ψ 1 (x 1 , 0) ∂n -Ψ 1 (x 1 , 0) ∂ψ 1 (x 1 , 0) ∂n dx 1 = 0, 3.2 Variational method which implies -k 0 H 1 0 ψ 1 (ξ, x 2 ) sinh (k 0 (x 2 -H 1 )) dx 2 -k 0 ∞ ξ ψ 1 (x 1 , 0) sin(k 0 (x 1 -ξ)) cosh(k 0 H 1 ))dx 1 - ∞ ξ sin(k 0 (x 1 -ξ)) sinh(k 0 H 1 ))∂ 2 ψ 1 (x 1 , 0)dx 1 = 0. (3.38) For m = 2: ∞ ξ (ψ 2 (x 1 , 0)∂ 2 Ψ 2 (x 1 , 0) -Ψ 2 (x 1 , 0)∂ 2 ψ 2 (x 1 , 0)) dx 1 - 0 -H 2 ψ 2 (ξ, x 2 )∂ 1 Ψ 2 (ξ, x 2 )dx 2 - ∞ ξ ψ 2 (x 1 , -H 2 )∂ 2 Ψ 2 (x 1 , -H 2 )dx 1 = 0,
from which we get:

∞ ξ (k 0 ψ 2 (x 1 , 0) sin(k 0 (x 1 -ξ)) cosh(k 0 H 2 )) -sin(k 0 (x 1 -ξ)) sinh(k 0 H 2 )∂ 2 ψ 2 (x 1 , 0)) dx 1 -k 0 0 -H 2 ψ 2 (ξ, x 2 ) sinh (k 0 (x 2 + H 2 )) dx 2 -k 0 ∞ ξ ψ 2 (x 1 , -H 2 ) sin(k 0 (x 1 -ξ))dx 1 = 0.
(3.39) Multiplying (3.38) by ρ 1 , (3.39) by ρ 2 and adding the resulting equations, we have:

-ρ 1 k 0 H 1 0 ψ 1 (ξ, x 2 ) sinh (k 0 (x 2 -H 1 )) dx 2 -k 0 ρ 1 ∞ ξ ψ 1 (x 1 , 0) sin(k 0 (x 1 -ξ)) cosh(k 0 H 1 ))dx 1 -ρ 1 ∞ ξ sin(k 0 (x 1 -ξ)) sinh(k 0 H 1 ))∂ 2 ψ 1 (x 1 , 0)dx 1 -k 0 α(k 0 )ρ 2 ∞ ξ ψ 2 (x 1 , -H 2 ) sin(k 0 (x 1 -ξ))dx 1
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+ α(k 0 )ρ 2 ∞ ξ (k 0 ψ 2 (x 1 , 0) sin(k 0 (x 1 -ξ)) cosh(k 0 H 2 )) -sin(k 0 (x 1 -ξ)) sinh(k 0 H 2 )∂ 2 ψ 2 (x 1 , 0)) dx 1 -k 0 α(k 0 )ρ 2 0 -H 2 ψ 2 (ξ, x 2 ) sinh (k 0 (x 2 + H 2 )) dx 2 = 0.
Using (3.5),(3.4),(3.31), we obtain:

ρ 1 H 1 0 ψ 1 (ξ, x 2 ) sinh (k 0 (x 2 -H 1 )) dx 2 + ρ 2 α(k 0 ) 0 -H 2 ψ 2 (ξ, x 2 ) sinh (k 0 (x 2 + H 2 )) dx 2 = -ρ 2 α(k 0 ) U ∞ ∞ ξ f (x 1 ) sin(k 0 (x 1 -ξ))dx 1 = H(ξ), ∀ξ ≥ ξ * .
Using similar arguments for any fixed point ξ ≤ ξ * , we also obtain:

ρ 1 H 1 0 ψ 1 (ξ, x 2 ) sinh (k 0 (x 2 -H 1 )) dx 2 + ρ 2 α(k 0 ) 0 -H 2 ψ 2 (ξ, x 2 ) sinh (k 0 (x 2 + H 2 )) dx 2 = ρ 2 α(k 0 ) U ∞ ξ -∞ f (x 1 ) sin(k 0 (x 1 -ξ))dx 1 = H(ξ), ∀ξ ≤ ξ * .
For any given H ∈ H 1 (R), we can construct a lifting function (

ψ 1 , ψ 2 ) ∈ H 1 (Ω 1 )× H 1 (Ω 2 ) satisfying ψ 1 = ψ 2 on Γ i , ψ 1 = 0 on Γ f , and ψ 2 = 0 on Γ b , such that: ρ 1 H 1 0 ψ 1 (ξ, x 2 ) sinh (k 0 (x 2 -H 1 )) dx 2 + ρ 2 α(k 0 ) 0 -H 2 ψ 2 (ξ, x 2 ) sinh (k 0 (x 2 + H 2 )) dx 2 = H(ξ).
(3.40) Thus, writing ψ m = ψ m + ψ m , with m = 1, 2, we search for (ψ 1 , ψ 2 ) in the class of

Variational method

functions satisfying

ρ 1 H 1 0 ψ 1 (ξ, x 2 ) sinh (k 0 (x 2 -H 1 )) dx 2 + ρ 2 α(k 0 ) 0 -H 2 ψ 2 (ξ, x 2 ) sinh (k 0 (x 2 + H 2 )) dx 2 = 0,
meaning which belongs to the following subspace of H 1 (Ω 1 ) × H 1 (Ω 2 ):

V * = (ψ 1 , ψ 2 ) ∈ H 1 (Ω 1 ) × H 1 (Ω 2 ) ψ 1 | Γ f = 0, ψ 2 | Γ b = 0, ψ 1 = ψ 2 on Γ i , ρ 1 
H 1 0 ψ 1 (ξ, x 2 ) sinh (k 0 (x 2 -H 1 )) dx 2 +ρ 2 α(k 0 ) 0 -H 2 ψ 2 (ξ, x 2 ) sinh (k 0 (x 2 + H 2 )) dx 2 = 0, ∀ξ ∈ R (3.41)
This subspace is equipped with the norm:

(ψ 1 , ψ 2 ) 2 V = Ω 1 |∇ψ 1 | 2 dΩ 1 + Ω 2 |∇ψ 2 | 2 dΩ 2 . (3.42) 
We can now state the variational formulation of the problem:

Find (ψ 1 , ψ 2 )∈ V * such that B[(ψ 1 , ψ 2 ); (s 1 , s 2 )] = L(s 1 , s 2 ), ∀(s 1 , s 2 ) ∈ V, (3.43) 
where

B[(ψ 1 , ψ 2 ); (s 1 , s 2 )] = ρ 1 Ω 1 ∇ψ 1 ∇s 1 dΩ 1 + ρ 2 Ω 2 ∇ψ 2 ∇s 2 dΩ 2 (3.44) -(ρ 2 -ρ 1 )ν Γ i ψ 1 s 1 dΓ i , and 
L(s 1 , s 2 ) = -ρ 1 Ω 1 r 1 s 1 dΩ 1 -ρ 2 Ω 2 r 2 s 2 dΩ 2 . (3.45)
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(ρ 2 -ρ 1 )ν > ρ 1 H 1 + ρ 2 H 2 .
Then, there exists a unique solution (ψ 1 , ψ 2 ) ∈ V * of the variational problem (3.43).

Proof. One can easily show the continuity of the bilinear form B and of the linear form L. It remains to show the coercivity of the bilinear form

B on V * × V * . If (ψ 1 , ψ 2 ) ∈ V * , then: ρ 1 H 1 0 ψ 1 (ξ, x 2 ) sinh (k 0 (x 2 -H 1 )) dx 2 +ρ 2 α(k 0 ) 0 -H 2 ψ 2 (ξ, x 2 ) sinh (k 0 (x 2 + H 2 )) dx 2 = 0.
(3.46) Integrating by parts in (3.46) and using the fact that ψ 1 (ξ, 0) = ψ 2 (ξ, 0), we get:

ψ 1 (ξ, 0) (α(k 0 )ρ 2 cosh(k 0 H 2 ) -ρ 1 cosh(k 0 H 1 )) = ρ 1 H 1 0 cosh (k 0 (x 2 -H 1 )) ∂ 2 ψ 1 (ξ, x 2 )dx 2 + ρ 2 α(k 0 ) 0 -H 2 cosh (k 0 (x 2 + H 2 )) ∂ 2 ψ 2 (ξ, x 2 )dx 2
Using (3.31), the definition of α(k 0 ) and the Cauchy-Schwarz inequality, we have:

| sinh(k 0 H 1 )| (ρ 2 -ρ 1 )ν k 0 ψ 1 (ξ, 0) ≤ ρ 1   H 1 0 cosh 2 (k 0 (x 2 -H 1 )) dx 2   1/2   H 1 0 ∂ 2 ψ 1 (ξ, x 2 ) 2 dx 2   1/2 + ρ 2 α(k 0 )   0 -H 2 cosh 2 (k 0 (x 2 + H 2 )) dx 2   1/2   0 -H 2 ∂ 2 ψ 2 (ξ, x 2 ) 2 dx 2   1/2 . (3.47)
Let us denote:

m 1 = H 1 0 cosh 2 (k 0 (x 2 -H 1 )) dx 2 = H 1 2 + sinh(2k 0 H 1 ) 4k 0 m 2 = 0 -H 2 cosh 2 (k 0 (x 2 + H 2 )) dx 2 = H 2 2 + sinh(2k 0 H 2 ) 4k 0 .

Variational method

By squaring (3.47) and integrating over R, we get:

sinh 2 (k 0 H 1 ) (ρ 2 -ρ 1 ) 2 ν 2 k 2 0 R ψ 1 (ξ, 0) 2 dξ ≤ ρ 2 1 m 1 R H 1 0 ∂ 2 ψ 1 (ξ, x 2 ) 2 dx 2 dξ + ρ 2 2 α(k 0 ) 2 m 2 R 0 -H 2 ∂ 2 ψ 2 (ξ, x 2 ) 2 dx 2 dξ +2ρ 1 ρ 2 √ m 1 √ m 2 α(k 0 ) R   H 1 0 ∂ 2 ψ 1 (ξ, x 2 ) 2 dx 2   1/2   0 -H 2 ∂ 2 ψ 2 (ξ, x 2 ) 2 dx 2   1/2 dξ (3.48)
Hence we get

(ρ 2 -ρ 1 )ν ψ 1 (•, 0) 2 L 2 (Γ i ) ≤ β 1 ∇ψ 1 2 L 2 (Ω 1 ) + β 2 ∇ψ 2 2 L 2 (Ω 2 ) + β 3 ∇ψ 1 L 2 (Ω 1 ) ∇ψ 2 L 2 (Ω 2 ) (3.49) 
where

β 1 = k 2 0 ρ 2 1 m 1 sinh 2 (k 0 H 1 )(ρ 2 -ρ 1 )ν β 2 = k 2 0 α(k 0 ) 2 ρ 2 2 m 2 sinh 2 (k 0 H 1 )(ρ 2 -ρ 1 )ν β 3 = 2k 2 0 ρ 1 ρ 2 √ m 1 √ m 2 α(k 0 ) sinh 2 (k 0 H 1 )(ρ 2 -ρ 1 )ν .
Using (3.49), we have:

B[(ψ 1 , ψ 2 ); (ψ 1 , ψ 2 )] = ρ 1 ∇ψ 1 2 L 2 (Ω 1 ) + ρ 2 ∇ψ 2 2 L 2 (Ω 2 ) -(ρ 2 -ρ 1 )ν ψ 1 2 L 2 (Γ i ) ≥ (ρ 1 -β 1 ) ∇ψ 1 2 L 2 (Ω 1 ) + (ρ 2 -β 2 ) ∇ψ 2 2 L 2 (Ω 2 ) -β 3 ∇ψ 1 L 2 (Ω 1 ) ∇ψ 2 L 2 (Ω 2 ) (3.50)
The expression in the RHS of (3.50) can be seen as a quadratic form. Thanks to the fact that in the supercritical case we have

(ρ 2 -ρ 1 )ν > ρ 1 H 1 + ρ 2
H 2 , we obtain that the discriminant of the quadratic expression is strictly negative. This implies that there exists a positive constant ε > 0 such that

B[(ψ 1 , ψ 2 ); (ψ 1 , ψ 2 )] ≥ ε ∇ψ 1 2 L 2 (Ω 1 ) + ∇ψ 2
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Laplacian of variational solution

We are now in a position to show the recovery the initial system of PDE.

Theorem 3.2.4. Let us suppose (ρ 2 -ρ 1 )ν > ρ 1 H 1 + ρ 2 H 2 . If (ψ 1 , ψ 2 ) ∈ V *
is the unique solution given by Theorem 2.3.3, then there exists a real constant λ such that

∆ψ 1 (x 1 , x 2 ) = λ α(k 0 ) c(k 0 ) δ x 1 =ξ * (x 1 ) sinh (k 0 (x 1 -H 1 )) , (3.51) ∆ψ 2 (x 1 , x 2 ) = λ α(k 0 ) 2 c(k 0 ) δ x 1 =ξ * (x 1 ) sinh (k 0 (x 1 + H 2 )) . (3.52) Proof. Let us take two test functions v m ∈ C ∞ 0 (Ω m ) with m = 1, 2.
In order to prove that the variational solution satisfies the initial problem, we need to define a test function (v 1 , v 2 ) belonging the subspace V * as follows:

v 1 (x 1 , x 2 ) = v 1 (x 1 , x 2 ) -L(v 1 , v 2 )(x 1 )c(k 0 ) sinh(k 0 (x 2 -H 1 )), (3.53) 
v 2 (x 1 , x 2 ) = v 2 (x 1 , x 2 ) -α(k 0 )L(v 1 , v 2 )(x 1 )c(k 0 ) sinh(k 0 (x 2 + H 2 )), (3.54) 
where

L(v 1 , v 2 )(x 1 ) = ρ 1 H 1 0 v(x 1 , x 2 ) sinh (k 0 (x 2 -H 1 )) dx 2 + ρ 2 α(k 0 ) 0 -H 2 v(x 1 , x 2 ) sinh (k 0 (x 2 + H 2 )) dx 2 and c(k 0 ) =   ρ 1 H 1 0 sinh 2 (k 0 (x 2 -H 1 )) dx 2 + ρ 2 α(k 0 ) 2 0 -H 2 sinh 2 (k 0 (x 2 + H 2 )) dx 2   -1
.

One can readily check that (v 1 , v 2 ) ∈ V * . Thus, the variational formulation holds:

ρ 1 Ω 1 ∇ψ 1 ∇v 1 dΩ 1 + ρ 2 Ω 2 ∇ψ 2 ∇v 2 dΩ 2 -(ρ 2 -ρ 1 )ν Γ i ψ 1 v 1 dΓ i = 0.
(3.55)

Variational method

Substituting (3.53),(3.54) into (3.55) and using v 1 ∈ C ∞ 0 (Ω 1 ), we obtain:

ρ 1 Ω 1 ∇ψ 1 (x 1 , x 2 ) • ∇v 1 (x 1 , x 2 )dΩ 1 + ρ 2 Ω 2 ∇ψ 2 (x 1 , x 2 ) • ∇v 2 (x 1 , x 2 )dΩ 2 = ρ 1 Ω 1 ∇ψ 1 (x 1 , x 2 ) • ∇ [L(v 1 , v 2 )(x 1 ) c(k 0 ) sinh (k 0 (x 2 -H 1 ))] dΩ 1 + ρ 2 α(k 0 ) Ω 2 ∇ψ 2 (x 1 , x 2 ) • ∇ [L(v 1 , v 2 )(x 1 ) c(k 0 ) sinh (k 0 (x 2 + H 2 ))] dΩ 2 + (ρ 2 -ρ 1 )ν Γ i ψ 1 (x 1 , 0)L(v 1 , v 2 )(x 1 ) c(k 0 ) sinh(k 0 H 1 ) dΓ i .
Integrating by parts, we get:

ρ 1 Ω 1 ∇ψ 1 (x 1 , x 2 ) • ∇v 1 (x 1 , x 2 )dΩ 1 + ρ 2 Ω 2 ∇ψ 2 (x 1 , x 2 ) • ∇v 2 (x 1 , x 2 )dΩ 2 = ρ 1 ∂Ω 1 ψ 1 (x 1 , x 2 ) • ∂ n [L(v 1 , v 2 )(x 1 ) c(k 0 ) sinh (k 0 (x 2 -H 1 ))] d(∂Ω 1 )
-

Ω 1 ψ 1 (x 1 , x 2 ) • ∆ [L(v 1 , v 2 )(x 1 ) c(k 0 ) sinh (k 0 (x 2 -H 1 ))] dΩ 1 + ρ 2 α(k 0 ) ∂Ω 2 ψ 2 (x 1 , x 2 ) • ∂ n [L(v 1 , v 2 )(x 1 ) c(k 0 ) sinh (k 0 (x 2 + H 2 ))] d(∂Ω 2 ) -ρ 2 α(k 0 ) Ω 2 ψ 2 (x 1 , x 2 ) • ∆ [L(v 1 , v 2 )(x 1 ) c(k 0 ) sinh (k 0 (x 2 + H 2 ))] dΩ 2 + (ρ 2 -ρ 1 )ν Γ i ψ 1 (x 1 , 0)L(v 1 , v 2 )(x 1 ) c(k 0 ) sinh(k 0 H 1 ) dΓ i .
We proceed similarly as for the single layer problem. For ξ ≥ ξ * , we have:

H(ξ) = -ρ 2 α(k 0 )U ∞ ∞ ξ sin (k 0 (x 1 -ξ)) f (x 1 )dx 1 , (3.56) 
H (ξ) = ρ 2 α(k 0 ) +∞ ξ U ∞ k 0 cos(k 0 (x 1 -ξ))f (x 1 )dx 1 , (3.57) 
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H (ξ) = ρ 2 α(k 0 ) +∞ ξ U ∞ k 2 0 sin(k 0 (x 1 -ξ))f (x 1 )dx 1 -U ∞ k 0 f (ξ) = k 2 0 +∞ ξ U ∞ sin(k 0 (x 1 -ξ))f (x 1 )dx 1 -U ∞ k 0 f (ξ) = -k 2 0 H(ξ) -ρ 2 α(k 0 )U ∞ k 0 f (ξ), (3.58) 
where H is continuous at ξ * . We get

ρ 1 Ω 1 ∇ψ 1 (x 1 , x 2 ) • ∇v 1 (x 1 , x 2 )dΩ 1 + ρ 2 Ω 2 ∇ψ 2 (x 1 , x 2 ) • ∇v 2 (x 1 , x 2 )dΩ 2 = (H (ξ * -) -H (ξ * + ))L(v 1 , v 2 )(ξ * )c(k 0 ) = -L(v 1 , v 2 )(ξ * )c(k 0 )ρ 2 α(k 0 ) +∞ -∞ U ∞ k 0 cos(k 0 (x 1 -ξ))f (x 1 )dx 1 .
From the definition of L, we obtain

Ω 1 ∇ψ 1 (x 1 , x 2 ) • ∇v 1 (x 1 , x 2 )dΩ 1 = -c(k 0 )ρ 2 α(k 0 ) +∞ -∞ U ∞ k 0 cos(k 0 (x 1 -ξ * ))f (x 1 )dx 1 H 1 0 v(x 1 , x 2 ) sinh (k 0 (x 2 -H 1 )) dx 2 ,
and

Ω 2 ∇ψ 2 (x 1 , x 2 ) • ∇v 2 (x 1 , x 2 )dΩ 2 = -c(k 0 )ρ 2 α(k 0 ) 2 +∞ -∞ U ∞ k 0 cos(k 0 (x 1 -ξ * ))f (x 1 )dx 1 0 -H 2 v(x 1 , x 2 ) sinh (k 0 (x 2 + H 2 )) dx 2 .
Thus, the following relations hold in the distribution sense:

-∆ψ 1 , v 1 = -c(k 0 )α(k 0 )λ H 1 0 v(x 1 , x 2 ) sinh (k 0 (x 2 -H 1 )) dx 2 , 3.2 Variational method -∆ψ 2 , v 2 = -c(k 0 )α(k 0 ) 2 λ 0 -H 2 v(x 1 , x 2 ) sinh (k 0 (x 2 + H 2 )) dx 2 ,
where

λ = ρ 2 U ∞ k 0 ∞ -∞ f (x 1 ) cos (k 0 (x 1 -ξ * )) dx 1 . (3.59)
We obtain (3.51) and (3.52).

Construction the correction function

From Theorem 3.2.4 we know that the laplacian of ψ m is not zero for m = 1, 2, thus the variational solution is not solution for the original problem. We search then for a correction function ψ m such that ∆(ψ m -ψ m ) = 0. Let us consider:

ψ1 (x 1 , x 2 ) =    0, x 1 < ξ * sin(k 0 (x 1 -ξ * )) sinh(k 0 (x 2 -H 1 )), x 1 ≥ ξ * (3.60)
One can immediately check that the following holds in the sense of distributions:

∆ ψ1 (x 1 , x 2 ) = δ x 1 =ξ * (x 1 )k 0 sinh(k 0 (x 2 -H 1 )).
(3.61)

Let us define

ψ 1 (x 1 , x 2 ) = ψ1 (x 1 , x 2 ) λ c(k 0 ) α(k 0 ) k 0 , (3.62) then ∆ ψ 1 (x 1 , x 2 ) = λ c(k 0 )δ x 1 =ξ * (x 1 ) sinh(k 0 (x 2 -H 1 )). Now, taking ψ1 (x 1 , x 2 ) = ψ 1 (x 1 , x 2 ) -ψ 1 (x 1 , x 2 ), we obtain ∆ ψ1 (x 1 , x 2 ) = 0. Setting ψ2 (x 1 , x 2 ) =    0, x 1 < ξ * α(k 0 ) sin(k 0 (x 1 -ξ * )) sinh(k 0 (x 2 + H 2 )), x 1 ≥ ξ * (3.63)
and proceeding similarly, we obtain ∆ ψ2 (x 1 , x 2 ) = 0 for ψ2 (x 1 , x 2 ) = ψ 2 (x 1 , x 2 ) -

ψ 2 (x 1 , x 2 ) and ψ 2 (x 1 , x 2 ) = ψ2 (x 1 , x 2 ) λ c(k 0 ) α(k 0 ) 2 k 0
. It is immediate that the following boundary conditions hold: ψ1 = 0 on Γ f , Chapter 3. Linear analysis of the steady water waves over an obstacle lying on the bottom for two-layer case with rigid lid approximation ψ1 = ψ2 on Γ i and ψ2 = 0 on Γ b . In order to check the boundary condition at the interface, let us consider the test functions v m ∈ C ∞ 0 (D + ξm ∪Γ + i ), with compact support in D + ξm , for m = 1, 2, with ξ > ξ * . Equations (3.53), (3.54) ensure that (v 1 , v 2 ) ∈ V * and thus we can use (v 1 , v 2 ) as test function in the variational formulation:

ρ 1 D + ξ 1 ∇ψ 1 ∇v 1 dD + ξ 1 + ρ 2 D + ξ 2 ∇ψ 2 ∇v 2 dD + ξ 2 -(ρ 2 -ρ 1 )ν Γ i ψ 1 v 1 dΓ i = 0. (3.64)
The variational solution (ψ 1 , ψ 2 ) is such that ψ m are harmonic in D + ξm , since they are harmonic everywhere except on the line x 1 = ξ * . Thus, multiplying ∆ψ m respectively by ρ m v m , for m = 1, 2 and integrating over D + ξm , we get:

ρ 1 ∂D + ξ 1 ∂ n ψ 1 v 1 d(∂D + ξ 1 ) + ρ 2 ∂D + ξ 2 ∂ n ψ 2 v 2 d(∂D + ξ 2 ) = ρ 1 D + ξ 1 ∇ψ 1 ∇v 1 dD + ξ 1 + ρ 2 D + ξ 2 ∇ψ 2 ∇v 2 dD + ξ 2 .
Using (3.53),(3.54),(3.64), we have

-ρ 1 ∞ ξ ∂ 2 ψ 1 (x 1 , 0)v 1 (x 1 , 0) dx 1 + ρ 2 ∞ ξ ∂ 2 ψ 2 (x 1 , 0)v 2 (x 1 , 0) dx 1 = (ρ 2 -ρ 1 )ν ∞ ξ ψ 1 (x 1 , 0) [v 1 (x 1 , 0) -L(v 1 , v 2 )(x 1 ) sinh(k 0 (x 2 -H 1 ))] dx 1 + ρ 1 D + ξ 1 ∇ψ 1 ∇ [L(v 1 , v 2 )(x 1 ) sinh(k 0 (x 2 -H 1 ))] dD + ξ 1 + ρ 2 α(k 0 ) D + ξ 2 ∇ψ 2 ∇ [L(v 1 , v 2 )(x 1 ) sinh(k 0 (x 2 + H 2 ))] dD + ξ 2 .
Using the definition of H, we finally obtain:

-ρ 1 ∞ ξ ∂ 2 ψ 1 (x 1 , 0)v 1 (x 1 , 0) dx 1 + ρ 2 ∞ ξ ∂ 2 ψ 2 (x 1 , 0)v 2 (x 1 , 0) dx 1 = 3.3 Fourier transform method (ρ 2 -ρ 1 )ν ∞ ξ ψ 1 (x 1 , 0)v 1 (x 1 , 0)dx 1 , ∀ ξ > ξ * . Since ψ 1 (x 1 , 0) = ψ 2 (x 1 , 0), we obtain ∞ ξ ρ 1 (∂ 2 ψ 1 (x 1 , 0) -νψ 1 (x 1 , 0)) v 1 (x 1 , 0) dx 1 = ∞ ξ ρ 2 (∂ 2 ψ 2 (x 1 , 0) -νψ 2 (x 1 , 0)) v 2 (x 1 , 0) dx 1 ,
for all ξ > ξ * . Using the same type of arguments on D - ξ 1 and D - ξ 2 , with ξ < ξ * , one can get as well that:

ξ -∞ ρ 1 (∂ 2 ψ 1 (x 1 , 0) -νψ 1 (x 1 , 0)) v 1 (x 1 , 0) dx 1 = ξ -∞ ρ 2 (∂ 2 ψ 2 (x 1 , 0) -νψ 2 (x 1 , 0)) v 2 (x 1 , 0) dx 1 .
for all ξ < ξ * . We thus obtain that the boundary condition on Γ i is satisfied almost everywhere. From (3.60),(3.63) we know that ( ψ1 , ψ2 ) satisfies the boundary condition on Γ i and thus:

ρ 1 ∂ 2 ψ 1 (x 1 , 0) -νψ 1 (x 1 , 0) = ρ 2 ∂ 2 ψ 2 (x 1 , 0) -νψ 2 (x 1 , 0) , a.e. x 1 ∈ R.
Remarking that the uniqueness of the initial problem (3.1)-(3.6) is classical, one can thus conclude on the unique solvability of the problem.

Fourier transform method

Let us consider the study of problem (3.1)-(3.6) through the means of the Fourier transform method. Applying the Fourier transform with respect to x 1 to equations (3.1) and (3.2), we obtain:

-k 2 Ψ m (k, x 2 ) + ∂ 2 22 Ψ m (k, x 2 ) = 0, for m = 1, 2.
For all k ∈ R, the Fourier coefficients Ψm , with m = 1, 2, are of the following form:

Ψ 1 (k, x 2 ) = A (1) (k) cosh(k(x 2 -H 1 )) + B (1) (k) sinh(k(x 2 -H 1 )), ∀ x 2 ∈ (0, H 1 ) (3.65)
Chapter 3. Linear analysis of the steady water waves over an obstacle lying on the bottom for two-layer case with rigid lid approximation

Ψ 2 (k, x 2 ) = A (2) (k) cosh(k(x 2 + H 2 )) + B (2) (k) sinh(k(x 2 + H 2 )), ∀ x 2 ∈ (-H 2 , 0). (3.66)
Applying the Fourier transform to the boundary conditions (3.4)-(3.6), we obtain:

ρ 1 (∂ 2 Ψ 1 (k, x 2 ) -ν Ψ 1 (k, x 2 )) = ρ 2 (∂ 2 Ψ 2 (k, x 2 ) -ν Ψ 2 (k, x 2 )) on Γ i , Ψ 1 (k, x 2 ) = Ψ 2 (k, x 2 ) on Γ i , Ψ 1 (k, x 2 ) = 0 on Γ f , Ψ 2 (k, x 2 ) = ∞ -∞ U ∞ f (t)e -ikt dt = f (k) on Γ b .
After some basic computations, we obtain

A (1) (k) = 0, A (2) (k) = f (k): B (1) (k) = f (k)ρ 2 k (sinh(kH 2 ) -cosh(kH 2 ) coth(kH 2 )) sinh(kH 1 ) (kρ 1 coth(kH 1 ) + kρ 2 coth(kH 2 ) -(ρ 2 -ρ 1 )ν) ,
and

B (2) (k) = -f (k) coth(kH 2 ) -B (1) (k) sinh(kH 1 ) sinh(kH 2 ) .
Since we are interested in the motion of the fluid at the interface, let us consider the Fourier transform of the stream function on Γ i :

Ψ 1 (k, 0) = -B (1) (k) sinh(kH 1 ) = f (k)ρ 2 k sinh(kH 2 ) 1 k (ρ 1 coth(kH 1 ) + ρ 2 coth(kH 2 )) -(ρ 2 -ρ 1 )ν .
Let us denote

g(k) = f (k)ρ 2 k sinh(kH 2 ) ,
then, at least formally, we have:

ψ 1 (x 1 , 0) = 1 2π ∞ -∞ g(k) e ikx 1 k (ρ 1 coth(kH 1 ) + ρ 2 coth(kH 2 )) -(ρ 2 -ρ 1 )ν dk.
(3.67)

Fourier transform method

Since g(k) = g(-k) for all k > 0, the integrand in (3.67) is even with respect to k and we get:

ψ 1 (x 1 , 0) = 1 π Re ∞ 0 g(k) e ikx 1 k (ρ 1 coth(kH 1 ) + ρ 2 coth(kH 2 )) -(ρ 2 -ρ 1 )ν dk. (3.68)
Let us start by placing ourselves in the supercritical case, meaning when ρ 2 -

ρ 1 )ν > ρ 1 H 1 + ρ 2 H 2 .
Since tanh(x) < x for all positive values of x, we notice that:

(ρ 2 -ρ 1 )ν < ρ 1 H 1 + ρ 2 H 2 < ρ 1 coth(kH 1 ) + ρ 2 coth(kH 2 ). (3.69)
Thus, the denominator of the integrand in (3.68) is always positive and the integral is well defined for g ∈ H -1 (R), since:

1 k (ρ 1 coth(kH 1 ) + ρ 2 coth(kH 2 )) -(ρ 2 -ρ 1 )ν = O(|k| -1 ).
Supposing f ∈ H -1/2 (R), we recover a solution ψ(•, 0) ∈ H 1/2 (R).

In the subcritical case, meaning when (ρ 2 -ρ 1 )ν> ρ 1 H 1 + ρ 2 H 2 , one can prove that there exists a unique positive solution k 0 such that

k 0 (ρ 1 coth(k 0 H 1 ) + ρ 2 coth(k 0 H 2 )) -(ρ 2 -ρ 1 )ν = 0.
Consequently, the integrand in (3.68) has a nonintegrable singularity for k = k 0 . By a similar argument as for the single layer case, we rewrite (3.68) as an integral over a complex path l - ε which avoids the singularity from below: (3.70) where:

ψ 1,ε (x 1 , 0) = 1 π Re l - ε g(k) k (ρ 1 coth(kH 1 ) + ρ 2 coth(kH 2 )) -(ρ 2 -ρ 1 )ν - λ(k 0 ) g(k 0 ) e i(k 0 -k)ξ * k 2 -k 2 0 ] e ikx 1 dk + 1 π Re l - ε λ(k 0 ) g(k 0 ) e i(k 0 -k)ξ * k 2 -k 2 0 e ikx 1 dk,
λ(k 0 ) = 2k 0 ρ 1 coth(k 0 H 1 ) -k 0 H 1 ρ 1 sinh -2 (k 0 H 1 ) + ρ 2 coth(k 0 H 2 ) -k 0 H 2 ρ 2 sinh -2 (k 0 H 2 ) .
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lim k→k 0 g(k) k (ρ 1 coth(kH 1 ) + ρ 2 coth(kH 2 )) -(ρ 2 -ρ 1 )ν - λ(k 0 ) g(k 0 ) e i(k 0 -k)ξ * k 2 -k 2 0 < ∞, (3.71) provided g ∈ L 1 (R), so that g is continuous and ξ * ∈ R is satisfying +∞ -∞ g(x) sin(k 0 (x -ξ * )) dx = 0 .
(3.72)

We split ψ 1,ε (•, 0) in two parts:

ψ 1,ε (•, 0) = ψ var 1,ε (•, 0) + ψ wake 1,ε (•, 0)
where:

ψ var 1,ε (x 1 , 0) = 1 π Re l - ε g(k) k (ρ 1 coth(kH 1 ) + ρ 2 coth(kH 2 )) -(ρ 2 -ρ 1 )ν - λ(k 0 ) g(k 0 ) e i(k 0 -k)ξ * k 2 -k 2 0 e ikx 1 dk and 
ψ wake 1,ε (x 1 , 0) = 1 π Re l - ε λ(k 0 ) g(k 0 ) e i(k 0 -k)ξ * k 2 -k 2 0 e ikx 1 dk.
Owing to (3.71), we have ), where:

ψ var 1,ε (•, 0) → ψ var 1 (•, 0) in H 1/2 (R) provided g ∈ H -1/2 (R
ψ var 1 (x 1 , 0) = 1 π Re ∞ 0 g(k) k (ρ 1 coth(kH 1 ) + ρ 2 coth(kH 2 )) -(ρ 2 -ρ 1 )ν - λ(k 0 ) g(k 0 ) e i(k 0 -k)ξ * k 2 -k 2 0 e ikx 1 dk
(3.73) Remark that, in order ψ var 1 (•, 0) to be a real-valued function, it is required that:

g(k 0 )e i(k 0 -k)ξ * = g(k 0 )e i(k 0 +k)ξ *
which leads to the condition for ξ * : +∞ -∞ g(x 1 ) sin(k 0 (x 1 -ξ * )) dx 1 = 0 .

(3.74)

Fourier transform method

Let us now examine ψ wake 1,ε (•, 0):

ψ wake 1,ε (x 1 , 0) = λ(k 0 ) π Re      g(k 0 ) e ik 0 ξ * l - ε 1 k 2 -k 2 0 e ik(x 1 -ξ * ) dk      .
(3.75)

Clearly:

g(k 0 ) e ik 0 ξ * = +∞ -∞
g(x 1 )e -ik 0 (x 1 -ξ * ) dx 1 .

(3.76)

Thanks to (3.74), we hence have:

g(k 0 ) e ik 0 ξ * = +∞ -∞ g(x 1 ) cos(k 0 (x 1 -ξ * )) dx 1 =: α g,k 0 ,ξ * ∈ R. (3.77)
and we obtain:

ψ wake 1,ε (x 1 , 0) = λ(k 0 ) α g,k 0 ,ξ * π Re l - ε 1 k 2 -k 2 0 e ik(x 1 -ξ * ) dk.
(3.78) Using Cauchy's integral theorem to overcome the singularity, we obtain:

ψ wake 1,ε (x 1 , 0) = - λ(k 0 ) α g,k 0 ,ξ * k 0 sin(k 0 (x 1 -ξ * )) x 1 > ξ * 0 x 1 ≤ ξ * (3.79)
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ψ 1 (x 1 , 0) = 1 π Re ∞ 0 g(k) k (ρ 1 coth(kH 1 ) + ρ 2 coth(kH 2 )) -(ρ 2 -ρ 1 )ν - λ(k 0 ) g(k 0 ) e i(k 0 -k)ξ * k 2 -k 2 0 e ikx 1 dk - λ(k 0 ) α g,k 0 ,ξ * k 0 sin(k 0 (x 1 -ξ * )) x 1 > ξ * 0 x 1 ≤ ξ * . ( 3 

Numerical Simulations

In the two-layer case with rigid lid approximation we supposed that the surface waves are neglectable and thus we will show the simulation of the internal wave on the interface. We can illustrate the interface between the two layers of the fluid, in supercritical and subcritical regime, using the same DFT approach as in Chapter 1. In all the numerical simulations below, the obstacle is given by the function:

f (x) = 1 2 cos π 2 (x -1) + 1 , if |x 1 -1| ≤ 2, 0, if |x 1 -1| > 2. (3.81)
Let us see the simulation of solution on the interface ψ 1 | Γ i (x, 0) in supercritical case which is given by (3.68). Taking parameters for gravitational acceleration g = 9.81m/s2, at depth H 1 = 1m, H 2 = 2m. For this numerical simulation, we take a big difference of density between first and second layer. The first layer will be filled with a very light fluid (ρ 1 = 460kg/m 3 ) otherwise the second layer will be a heavy fluid (ρ 2 = 1850kg/m 3 ). The ν coefficient will be taken such that it satisfies

(ρ 2 -ρ 1 )ν < ρ 1 H 1 + ρ 2 H 2 .
As seen at the beginning of this chapter, in the supercritical regime the solution on the interface is a smooth function exponentially vanishing at infinity, both upstream and downstream (see Figure 3.3).

Taking the appropriate parameters such that to ensure the subcritical regime ((ρ 2 -ρ 1 )ν > ρ 1 H 1 + ρ 2 H 2 ), we obtain that the internal wave is smooth, vanishes at infinity upstream and oscillates downstream (see Figure 3.4). Taking the distance between two identical obstacles to be 2n+1 2 2π k 0 for n = 1, 2, • • • r, we have the same phenomenon appearing as for the single layer case, meaning the wake at the interface is vanishing upstream and downstream at infinity (see Figure 3.5). The result is not surprising as the construction of an waveless obstacle is deeply related to the linear nature of the problem.

Chapter 3. Linear analysis of the steady water waves over an obstacle lying on the bottom for two-layer case with rigid lid approximation Linear analysis of the steady water waves over an obstacle lying on the bottom of a multi-layer fluid

Introduction

The purpose of this chapter is to study the steady two-dimensional flow over a regular obstacle placed on the bottom of the domain when the fluid is multilayered due to a stratification phenomenon. In each layer the fluid is incompressible, inviscid and irrotational, being characterized by distinct densities and velocities. This physical context is quite realistic, as the stratification appears due to cooling, heating or mixing of river water into saltwater, provoking variations in temperature or salt concentration.

The study of wave formation for multi-layer flows is a problem of high interest for the geophysical fluid dynamics community, lot of literature being dedicated to the subject since 1904, when Ekman described the so-called dead-water phenomenon (see [Ekman, 1904].) In his PhD thesis, Ekman studied experimentally the origin of the dead-water phenomenon, which manifests in practice by the appearance of wavemaking resistance during the motion of a boat, due to the internal waves generated at the interface between the two-layer of fluid, while the free surface seems to remain still.

Chapter 4. Linear analysis of the steady water waves over an obstacle lying on the bottom of a multi-layer fluid

The theoretical study of the internal wave resistance for a multi-layer fluid is classically based on the assumption that the moving body behaves like a source (or several sources) moving at constant velocity. The first computations in this direction are due to [Lamb, 1916], [START_REF] Sretensky | Waves on the interface between two superposed fluids with application to the "dead-water" phenomenon[END_REF], [Hudimac, 1961], where by means of Fourier method, the Green function of a source placed in one of the layers was computed. A more general case, when the body is not approximated by sources, was considered by [START_REF] Motygin | The wave resistance of a two-dimensional body moving forward in a two-layer fluid[END_REF], where the unique solvability for the potential velocity in the case of a two-layer fluid in an infinite domain, when the body is totally submerged in one of the layers, was proved. Several cases have been treated during the past decades: finite and infinite depth, large or confined physical domain, two or three-dimensional domain, see, e.g. [START_REF] Miloh | Dead water effects of a ship moving in stratified seas[END_REF], [START_REF] Liu | Effects of currents on superand sub-harmonic waves in a two-fluid system[END_REF], [START_REF] Nguyen | Unsteady three-dimensional sources for a two-layer fluid of finite depth and their applications[END_REF], [Nguyen and Yeung, 2011a].

As mentioned above, in what follows we consider a slightly different context, as we are interested in the steady water waves for the case of a multi-layer fluid in a finite depth domain, in the presence of a fixed, rigid obstacle on the bottom of the domain. In Sections 4.5 and 4.3 we study the more general cases of two-layer and N -layer fluids with the free surface. In this context, the computations are too elaborated to allow us the use of the variational method. However, the Fourier method gives us a general treatment of the problem once the dispersion relation associated with it and the roots of the dispersion relation are known.

General framework

As mentioned previously, the mathematical study of the wave formation using a linear, stationary model defined in a channel can be tackled by the use of the Fourier method and becomes equivalent to solving the matrix equation:

M(k) X(k) = F(k),
where M is a known matrix, X is the vector of unknowns and F is the Fourier transform of the forcing term.

Thus, supposing that M is an invertible matrix those inverse is

M -1 (k) = 1 det(M)
C T (k), C = cofactor matrix, (4.1)

General framework

the unknown X is given by the inverse Fourier transform:

X(x) = 1 π Re ∞ 0 M -1 (k) F(k) e ikx dk (4.2) = 1 π Re ∞ 0 1 det(M(k)) C T (k) F(k) e ikx dk, (4.3) 
where we used

F(k) = F(-k), M(k) = M(-k).
When det(M(k)) = 0, we need to give a meaning to (4.3). In what follows, we study the case when the dispersion relation det(M(k)) = 0 admits real roots and we distinguish between the cases when all roots are distinct or some are multiple roots.

Dispersion relation with real distinct roots

Let us first suppose that the dispersion relation admits a singularity k 0 . In order to give a sense to (4.3), we compute X as the limit as → 0 of:

X (x) = 1 π Re l - 1 det(M(k)) C T (k) F(k) e ikx dk, (4.4) 
where l -is a complex path avoiding the singularity k 0 from below (see Chapter 1 and Figure 1.4).

Let us now suppose that the dispersion relation admits n real distinct roots, k 1 , . . . , k n and let us denote G(k) = C T (k) F(k) and w(k) = det(M(k)). In order to get rid the singularities, we can rewrite (4.4):

X (x) = 1 π Re ∞ 0 G(k) w(k) - n j=1 2k j G(k j ) e i(k j -k)ξ * j w (k j )(k 2 -k 2 j ) e ikx dk + n j=1 1 π Re 2k j G(k j )e ik j ξ * j w (k j ) l - j, e ik(x-ξ * j ) k 2 -k 2 j dk. (4.5)
where l - j, is a path avoiding from below the singularity k j and ξ * j is given by

+∞ -∞ F(x) sin(k j (x -ξ * j )) dx = 0, for j = 1, 2, • • • , n. (4.6)
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G(k j )e i(k j -k)ξ * j = G(k j )e i(k j +k)ξ * j , for j = 1, 2, • • • , n (4.7)
has to be required in order X to be a real-valued function, which leads to condition (4.6). By similar arguments as in Chapter 1, we can check that

lim k→k j G(k) w(k) - n j=1 2k j G(k j ) e i(k j -k)ξ * j w (k j )(k 2 -k 2 j ) < ∞ , ∀ j = 1, 2, . . . , n. (4.8)
We can split X into two parts, corresponding to the variational and oscillating solution:

X var (x) = 1 π Re ∞ 0 G(k) w(k) - n j=1 2k j G(k j ) e i(k j -k)ξ * j w (k j )(k 2 -k 2 j )
e ikx dk (4.9) and

X wake (x) = n j=1 1 π Re 2k j G(k j ) e ik j ξ * j w (k j ) l - e ik(x-ξ * j ) k 2 -k 2 j dk.
(4.10)

Note that function X var is well-defined, thanks to (4.8). Thanks to (4.6), we have:

α G,k j ,ξ * j := G(k) e ik j ξ * j = +∞ -∞ G(x) cos(k j (x -ξ * j )) dx for j = 1, 2, • • • , n, (4.11) hence: X wake (x) = n j=1 1 π Re 2k j α G,k j ,ξ * j w (k j ) l - j, e ik(x-ξ * j ) k 2 -k 2 j dk.
(4.12) Expression (4.12) allows us to immediately compute X wake , as soon as we have:

I = l - j, e ik(x-ξ * j ) k 2 -k 2 j u(k)
dk, for j = 1, 2, . . . , n. (4.13)

In Figures 1.4 and 1.5, we illustrate the type of paths that we consider in order to compute (4.13) by means of the Cauchy integral formula. By similar calculations 4.2 General framework as in Chapter 1, we get:

X wake (x) = - n j=1 2 α G,k j ,ξ * j w (k j ) sin(k j (x -ξ * j )), x > ξ * j 0, x ≤ ξ * j .
(4.14)

Since X = X var + X wake , we obtain the solution for the case when det(M) = 0 has real distinct roots as follows:

X(x) = 1 π Re ∞ 0 G(k) w(k) - n j=1 2k j G(k j ) e i(k j -k)ξ * j w (k j )(k 2 -k 2 j ) e ikx dk - n j=1 2 α G,k j ,ξ * j w (k j ) sin(k j (x -ξ * j )), x > ξ * j 0, x ≤ ξ * j (4.15)

Dispersion relation admitting a root of multiplicity m bigger than one

We will investigate the case when one of the roots of det(M) = 0 has multiplicity

m > 1, meaning w(k 0 ) = w (k 0 ) = • • • = w (m-1) (k 0 ) = 0. Thus, lim k→k 0 w(k) (k -k 0 ) m = w (m) (k 0 ). (4.16)
By the same kind of reasoning as before, the integration in (4.3) can be interpreted as the limit when → 0 of X , with:

X (x) = 1 π Re ∞ 0 G(k) w(k) - (2k 0 ) m G(k 0 ) e i(k 0 -k)ξ * 0 w (m) (k 0 )(k 2 -k 2 0 ) e ikx dk + 1 π Re (2k 0 ) m G(k 0 ) e ik 0 ξ * 0 w (m) (k 0 ) l - e ik(x-ξ * 0 ) (k 2 -k 2 0 ) m dk. (4.17)
As previously in (4.6), ξ * 0 is defined by:

+∞ -∞ F(x) sin(k 0 (x -ξ * 0 )) dx = 0. (4.18)
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lim k→k 0 G(k) w(k) - (2k 0 ) m G(k 0 ) e i(k 0 -k)ξ * 0 w (m) (k 0 )(k 2 -k 2 0 ) < ∞ . (4.19)
As before, X (x) can be split as two parts:

X var = 1 π Re ∞ 0 G(k) w(k) - (2k 0 ) m G(k 0 ) e i(k 0 -k)ξ * 0 w (m) (k 0 )(k 2 -k 2 0 ) m e ikx dk (4.20)
and

X wake (x) = 1 π Re (2k 0 ) m G(k 0 ) e ik 0 ξ * 0 w (m) (k 0 ) l - e ik(x-ξ * 0 ) (k 2 -k 2 0 ) m dk.
(4.21) Function X var is well defined by (4.19) then, X var → X var . Let us denote:

α G,k 0 ,ξ * 0 := G(k) e ik 0 ξ * 0 = +∞ -∞ G(x) cos(k 0 (x -ξ * 0 )) dx for j = 1, 2, • • • , n.
hence:

X wake (x) = 1 π Re (2k 0 ) m α G,k 0 ,ξ * 0 w (m) (k 0 ) l - e ik(x-ξ * 0 ) (k 2 -k 2 0 ) m dk. (4.22)
We need to compute the following integral:

I = l - e ik(x-ξ * 0 ) (k 2 -k 2 0 ) m u(k) dk (4.23)
Using Cauchy's residue theorem and working on the same closed contour as in Chapter 1 (see Figure 1.4), we have that for x > ξ * 0 :

l - ,R u(k) dk + L + R u(k) dk + Q + R u(k) dk = 2πi Res(u, k 0 ) . (4.24)
For R → ∞ we have:

l - ,R u(k) dk -→ l - u(k) dk , (4.25) 4.2 General framework L + R u(k) dk = i R 0 (-1) m (s 2 + k 2 0 ) m e -s(x-ξ * 0 ) ds -→ i ∞ 0 (-1) m (s 2 + k 2 0 ) m e -s(x-ξ * 0 ) ds, (4.26) Q + R u(k) dk = π/2 0 iRe iθ (R 2 e 2iθ -k 2 j ) m e iR(cos(θ)+i sin(θ))(x-ξ * 0 ) dθ -→ 0. (4.27)
The residue at a singular point of multiplicity m at k = k 0 is given by:

Res(u, k 0 ) = 1 (m -1)! lim k→k 0 d m-1 dk m-1 [(k -k 0 ) m u(k)] = 1 (m -1)! lim k→k 0 d m-1 dk m-1 e ik(x-ξ * 0 ) (k + k 0 ) m .
Using the Leibniz rule, we get:

Res(u, k 0 ) = m-1 j=0 m -1 j (-1) m-j-1 (i(x -ξ * 0 )) j e ik(x-ξ * 0 ) (2k 0 ) -(2m-j-1) (2m -j -2)! ((m -1)!) 2
(4.28)

Gathering (4.25), (4.26), (4.27), (4.28), for x > ξ * 0 , we obtain:

I = 2πi Res(u, k 0 ) -i ∞ 0 (-1) m (s 2 + k 2 0 ) m e -s(x-ξ * 0 ) ds. (4.29)
Now, for x ≤ ξ * 0 , we have that e ik(x-ξ * 0 ) bounded for k in the lower complex half plane. Using Cauchy's theorem, since u is analytic everywhere inside the closed contour (see figure 1.5), we have: (4.30) which gives that for x < ξ * 0 :

l - ,R u(k) dk + L - R u(k) dk + Q - R u(k) dk = 0,
I = -i ∞ 0 (-1) m (s 2 + k 2 0 ) m e -s(x-ξ * 0 ) ds β∈R . (4.31)
Chapter 4. Linear analysis of the steady water waves over an obstacle lying on the bottom of a multi-layer fluid Gathering (4.29) and (4.31), we obtain:

X wake (x) = 1 π (2k 0 ) m α G,k 0 ,ξ * 0 w (m) (k 0 ) Re 2πi Res(u, k 0 ) -iβ, x > ξ * 0 -iβ, x < ξ * 0
which can be simplified as:

X wake (x) = 2(2k 0 ) m α G,k 0 ,ξ * 0 w (m) (k 0 ) (x), x > ξ * 0 0, x < ξ * 0 , (4.32) 
where

(x) = m-1 j=0 m -1 j (-1) m-j-1 (x-ξ * 0 ) j (2k 0 ) -(2m-j-1) (2m -j -2)! ((m -1)!) 2 sin k 0 (x -ξ * 0 ) + (j+2)π 2 .
(4.33) Hence, when the dispersion relation admits a root of multiplicity m > 1, the solution is given by:

X(x) = 1 π Re ∞ 0 G(k) w(k) - (2k 0 ) m G(k 0 ) e i(k 0 -k)ξ * 0 w (m) (k 0 )(k 2 -k 2 0 ) m e ikx dk + 2(2k 0 ) m α G,k 0 ,ξ * 0 w (m) (k 0 ) (x), x > ξ * 0 0, x < ξ * 0 .
(4.34)

N -layer case without free surface condition

In this section we study the wave formation in an N -layered fluid, in the presence of an obstacle on the bottom of the domain and of a rigid lid boundary condition at the surface. The physical justification of this N -layer hypothesis comes from the fact that the two-layer model might be too simplified for certain stratification phenomena. As [START_REF] Hüttemann | Baroclinic solitary water waves in a two-layer fluid system with diffusive interface[END_REF] pointed out, the two-layer model supposes a sharp interface between the layers of different density but in reality this interface is rather diffuse and presents continuous variations in density. In their experiments, Hüttemann and Hutter set up a stratified fluid presenting two layers, the upper one of fresh water and the lower one of salted water and they showed the existence of higher order solitary waves, which are provoked by the presence of The form of a piecewise linear transition writes as follows:

ρ(z) =      ρ 1 , for -h 1 + 0.5 * d < z < 0, ρ(z) = ρ 1 -(ρ 2 -ρ 1 ) d (h 1 -0.5 * d + z), for -h 1 -0.5 * d < z < -h 1 + 0.5 * d, ρ 2 , for -H < z < -h 1 -0.5 * d, ( 4 
.35) and a sigmoidal density function written as:

ρ(z) = 0.5(ρ 1 + ρ 2 ) exp (ρ 2 -ρ 1 ) (ρ 2 + ρ 1 ) tanh -2 d (z + h 1 ) , (4.36)
where according to the experiment in [START_REF] Hüttemann | Baroclinic solitary water waves in a two-layer fluid system with diffusive interface[END_REF], H = 0.15m, h1 = 0.112m, d = 0.024m, ρ 1 = 1000 kg/m 3 , ρ 2 = 1022.5 kg/m 3 . In our study, we approximate the variations of the density by an N -layer model. The physical domain is a channel of depth H and each layer is characterized by the height z i and the density ρ i , with i = 1, . . . , N . The function ρ(z) = ρ i for z ∈ (-z i , z i-1 ) is a piecewise constant approximation for the continuous variations of Chapter 4. Linear analysis of the steady water waves over an obstacle lying on the bottom of a multi-layer fluid the density. See figure 4.2 for the geometrical setting.

Γ f (z = 0) Γ 1 Γ 2 Γ N -1 z 1 z 2 z j z N Γ b (z = -H) ρ 1 ρ 2 ρ N x z U ∞ FIGURE 4.2 -
The geometrical setting of the N-layer case.

The problem is written in terms of the stream function ψ as follows: Find ψ

j , j = 1, 2, • • • , N such that ∆ψ j = 0, for j = 1, 2, • • • , N
in Ω j , (4.37)

ψ 1 = 0 on Γ f (4.38) ρ j (∂ z ψ j -νψ j ) = ρ j+1 (∂ z ψ j+1 -νψ j+1 ), for j = 1, 2, • • • , N -1 on Γ j , (4.39) ψ j = ψ j+1 , for j = 1, 2, • • • , N -1 on Γ j , (4.40) ψ N = U ∞ f (x) on Γ b . (4.41) |∇ψ j | → 0 as x → -∞, for j = 1, 2, • • • , N. (4.42)
The parameter ν equals g/U 2 ∞ , where g is the gravity acceleration and the fluid velocity at infinity upstream is supposed to be the same in all layers and equal to U ∞ .

Fourier transform approach

Let us consider the Fourier transform on ψ j , j = 1, 2, • • • , N , in x, hence we get:

∆ψ j = 0 ⇒ ∂ 2 xx ψ j (k, z) + ∂ 2 zz ψ j (k, z) = 0 ⇒ -k 2 Ψ j (k, z) + ∂ 2 zz Ψ j (k, z) = 0. (4.43)

N -layer case without free surface condition

For k ∈ R, z ∈ (-H, 0), we get the solution of PDE:

Ψ j (k, z) = A (j) (k) cosh |k| z + j i=1 z i + B (j) (k) sinh |k| z + j i=1 z i .
(4.44)

Fourier transform on the boundary conditions (4.38)-(4.41) are:

Ψ 1 (k, z) = 0 on Γ f , ρ j (∂ z Ψ i (k, z) -ν Ψ j (k, z)) = ρ j+1 (∂ z Ψ j+1 (k, z) -ν Ψ j+1 (k, z)) on Γ i , Ψ j (k, z) = Ψ j+1 (k, z) on Γ i , Ψ n (k, z) = ∞ -∞ U ∞ f (t)e -kt dt = f (k) on Γ b .
We thus obtain:

1. Condition on the free surface:

Ψ 1 (k, 0) = A (1) (k) cosh (|k|z 1 ) + B (1) (k) sinh (|k|z 1 ) = 0.
2. Condition at the bottom of the channel Chapter 4. Linear analysis of the steady water waves over an obstacle lying on the bottom of a multi-layer fluid

Ψ N (k, -H) = A (N ) (k) = f (k).

Condition on the interface

Ψ j k, - j i=1 z i = Ψ j+1 k, - j i=1 z i ⇒ A (j) (k) -A (j+1) (k) cosh(|k|z j+1 ) -B (j+1) (k) sinh(|k|z j+1 ) = 0, ρ j ∂ z Ψ j k, - j i=1 z i -ν Ψ j k, - j i=1 z i = ρ j+1 ∂ z Ψ j+1 k, - j i=1 z i -ν Ψ j+1 k, -
The problem reduces to solving a linear system of 2N unknowns A (j) (k) and B (j) (k) for j = 1, . . . , N , that can be written in the matrix form: (4.45) where

M 2N ×2N A B 2N ×1 = F 2N ×1 ,
A B 2N ×1 =                       A (1) (k) A (2) (k) A (3) (k) . . . A (N ) (k) B (1) (k) B (2) (k) . . . B (N -1) (k) B (N ) (k)                       , F 2N ×1 =                       0 0 0 . . . f (k) 0 0 . . . 0 0                      
, and M is a block matrix

M = P Q R S (4.46) with P =          cosh(kz 1 ) 0 0 • • • 0 1 -cosh(kz 2 ) 0 • • • 0 0 1 -cosh(kz 3 ) • • • 0 . . . • • • . . . . . . . . . 0 0 • • • 1 -cosh(kz N )          N ×N
4.3 N -layer case without free surface condition

Q =          sinh(kz 1 ) 0 0 • • • 0 0 -sinh(kz 2 ) 0 • • • 0 0 0 -sinh(kz 3 ) • • • 0 . . . • • • . . . . . . . . . 0 0 • • • 0 -sinh(kz N )          N ×N R =                -ρ 1 ν -ρ 2 (k sinh(kz 2 ) -ν cosh(kz 2 )) 0 • • • 0 0 -ρ 2 ν -ρ 3 (k sinh(kz 3 ) -ν cosh(kz 3 )) • • • 0 . . . • • • . . . . . . . . . 0 0 • • • -ρ N -1 ν -ρ N (k sinh(kz N ) -ν cosh(kz N )) 0 0 • • • • • • 1                N ×N S =                -ρ 1 k -ρ 2 (k cosh(kz 2 ) -ν sinh(kz 2 )) 0 • • • 0 0 -ρ 2 k
-ρ 3 (k cosh(kz 3 ) -ν sinh(kz 3 )) 

0 0 • • • -ρ N -1 k -ρ N (k cosh(kz N ) -ν sinh(kz N )) 0 0 • • • • • • 1                N ×N
.

We investigate the dynamics at the interfaces between the layers by seeking the solution: 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

X(k) =               Ψ 1 k, - 1 i=1 z i Ψ 2 k, - 2 i=1 z i . . . Ψ N k, - N i=1 z i               N ×1 =            1 0 • • • 0 0 0 • • • 0 0 1 • • • 0 0 0
0 0 • • • 1 0 0 • • • 0            U N ×2N A B 2N ×1
   3×6 ; F =            0 0 0 0 0 f (k)            6×1 ;
4.4 Three-layer case with zero density on the first layer and thus the vector of unknowns is given by:

X(k) = U 3×6 M -1 6×6 F 6×1        k 2 ρ 3 f (k) sinh(kz 2 ) sinh(kz 3 )w(k) k ρ 3 f (k) (k coth(kz 2 )-ν) sinh(kz 3 )w(k) f (k)        3×1 .
We formally obtain ψ 1 x, - In what follows we intend to verify the validity of Remark 3.3.1 for the multi-layer case. Thus, we will compare solution (4.57)-(4.58) to the solution of the two-layer case with free surface condition.

Chapter 4. Linear analysis of the steady water waves over an obstacle lying on the bottom of a multi-layer fluid 4.5 The two-layer case with free surface condition

Problem setting

In this Section we consider a more realistic physical setting, meaning the two-layer problem with the free condition. The physical domain is exactly as for the case with rigid lid approximation (see Figure 4.4): where ν = g/U 2 ∞ , with g is the gravitational acceleration and U ∞ is the velocity at infinity upstream for both fluids.

Γ i Γ f (z = 0) Γ b Ω 1 Ω 2 z 1 z 2 x z U ∞ U ∞

The Fourier transform

A fairly general approach is to apply the Fourier transform in x to the problem (4.63)-(4.67) and get:

-k 2 Ψ m (k, z) + ∂ 2 zz Ψ m (k, z) = 0, for m = 1, 2.

The two-layer case with free surface condition

For k ∈ R, we obtain that the Fourier coefficients are of the form: Applying the Fourier transform to the boundary conditions (4.64)-(4.67), we also obtain:

Ψ 1 (k, z) = A 1 (k)
∂ z Ψ 1 (k, 0) -ν Ψ 1 (k, 0) = 0, ρ 1 (∂ z Ψ 1 (k, -z 1 ) -ν Ψ 1 (k, -z 1 )) = ρ 2 (∂ z Ψ 2 (k, -z 1 ) -ν Ψ 2 (k, -z 1 )), Ψ 1 (k, -z 1 ) = Ψ 2 (k, -z 1 ), Ψ 2 (k, -z 1 -z 2 ) = ∞ -∞ U ∞ f (t)e -ikt dt = f (k).
After some simple manipulations, we obtain that A 1 (k) = f (k) cosh(|k|z 2 ) + B 2 (k) sinh(|k|z 2 ), A 2 (k) = f (k), while B 1 (k) and B 2 (k) satisfy the following system of equations, written here in matrix form: 

The dispersion relation admits no roots

In the case when w has no roots, the integrals in (4.71) and (4.72) are well defined for g j ∈ H -1 (R), j = 1, 2 since:

1 ρ 2 (|k| coth(|k|z 1 ) -ν)(|k| coth(|k|z 2 ) -ν) -ρ 1 (ν 2 -k 2 ) = O(|k| -2 ).
Now, for j = 1, 2 let us comment on the required regularity on g j in order to obtain ψ j ∈ H 1 (Ω j ). If g j ∈ H s (R), then (1 + |k| 2 ) s/2 g j ∈ L 2 (R). Since

ψ 1 (k, 0) = g 1 (k) w(k) , ψ 2 (k, -z 1 ) = g 2 (k) w(k)
we get (1 + |k| 2 ) s+2 2 ψ j ∈ L 2 (R) hence ψ 1 (•, 0), ψ 2 (•, -z 1 ) ∈ H s+2 (R), which leads to ψ j ∈ H 1/2 (R) as soon as g j ∈ H -3 2 (R).

The dispersion relation admits real distict roots

If the dispersion relation admits real roots, we need to give a meaning to (4.71) and (4.72). In Figure 4.5, we can see that w(k) = 0 can admit one root and two distinct roots. Let us first consider the case then the dispersion relation has one root k 0 , meaning w(k 0 ) = 0. Using general formula (4.15) with g 1 (k), g 2 (k) given by (4.73), (4.74), we obtain: where ξ * 0 and α g i ,k 0 ,ξ * 0 respectively satisfy (4.6) and (4.11).

ψ 1 (x, 0) = 1 π Re ∞ 0 g 1 (k) w(k) - 2k 0 g 1 (k 0 ) e i(k 0 -k)ξ * 0 w (k 0 )(k 2 -k 2 0 ) e ikx dk - 2 α g 1 ,k 0 ,ξ * 0 w (k 0 ) sin(k 0 (x -ξ * 0 )), x > ξ * 0 0, x ≤ ξ * 0 , ( 
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Next, consider the case when the dispersion relation admits two real distinct roots, k 1 < k 2 (w(k j ) = 0 for j = 1, 2). Using general formula (4.15) and relations (4.73), (4.74), (4.6) and (4.11), we obtain: In this section, we present a numerical simulation corresponding to the setting of two layer case with free surface condition over thin obstacle lying on the horizontal bottom. We approximate the calculation of the integration (4.78)-(4.79) by applying the trapezoidal rule. Using the same kind of reasoning with numerical solution in Chapter 1, we realize the simulations by applying the DFT principle.

ψ 1 (x, 0) = 1 π Re ∞ 0 g 1 (k) w(k) -
We illustrated three cases related to the number of roots of the dispersion relation (4.75). The function of the obstacle is given as the bump function in (1.102):

f (x) = 1 2 cos π 2 (x -1) + 1 , if |x 1 -1| ≤ 2, 0, if |x 1 -1| > 2.
(4.80)

The first case is when the dispersion relation does not admit any root. Taking the gravitational acceleration g = 9.81, and all the other parameters as in Figure 4.5a (ρ 1 = 930, ρ 2 = 1000, F r = 1.37, z 1 = 1.2, z 2 = 0.9), we can simulate the free surface elevation (blue line) and the internal wave (red line) in the supercritical regime (see 4.6 Numerical simulations for the two layer case with free surface The third case corresponds to the existence of two distinct roots for the dispersion relation. We fix the following parameters (ρ 1 = 1000, ρ 2 = 4000, F r = 0.32, z 1 = 1.5, z 2 = 2) such that we have two roots of dispersion relation (4.75), k 1 = 1.26; k 2 = 2.2. Figure 4.8 represents this case, where we illustrate the free surface elevation (blue line) and the internal wave (red line). We can notice that the displacements of the interfaces are anti-symmetric. In this section we are interested in constructing certain obstacles that are wakeless at downstream infinity, as we did for the one-layer case. The wake appears in the presence of one or two roots for the dispersion relation. For the case of a single root k 0 , we exploit again the linear structure of the problem and we cancel the oscillations at downstream infinity by adding an identical obstacle at a distance of 2n+1 2 P, n = 1, 2, ..., with P = 2π k 0 . Figure 4.9 illustrates the free surface (blue line) and the internal (red line) wave for this case and we can see that the oscillations vanish downstream infinity.
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 1 FIGURE 1 -Schematic depiction of the domains involved in the nonlinear multi-layer fluid problem

FIGURE 2 -

 2 FIGURE 2 -Schematic depiction of the domains involved in the linear multi-layer fluid problem
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  FIGURE 1.3 -Subcritical case F r < 1: (a) Integrand of (1.101) in the Fourier space (b)

  124)In formula (1.124) we explicitly have the part in ψ corresponding to the variational solution and the correction part which allows to have ψ a harmonic function. Let a function f as in (1.102). Figure1.6 gives us the real part and the imaginary part of the integrand in (1.124), we can see that the integrand vanishes at infinity.

  FIGURE 1.6 -The integrand of the stream function for the subcritical case

FIGURE 1

 1 FIGURE 1.7 -Bump function

  FIGURE 1.9 -Subcritical case: (a) The variational solution (b) The wake

  FIGURE 1.10 -Subcritical case: Illustration of the stream function as a sum of the variational and the wake contributions

FIGURE 1 .

 1 FIGURE 1.11 -The free surface elevation for subcritical cases F r < 1

FIGURE 1 .

 1 FIGURE 1.12 -The free surface elevation in four different Froude numbers ilustrated in a strip of depth H = 2m

  FIGURE 1.13 -Free surface elevation in a strip through the wakeless obstacles with λ * = 3.8117: (a) wakeless obstacles for n = 1, H = 2, F r = 0.55 (b) wakeless obstacles for n = 2, H = 2, F r = 0.55

FIGURE 1 .

 1 FIGURE 1.14 -Free surface elevation of a wakeless obstacle (λ * = 3.8117, n = 2) in three different Froude numbers

FIGURE 1 .

 1 FIGURE 1.15 -Dependence of the wave resistance coefficient R w on the Froude number F r in the subcritical regime.

FIGURE 1 .

 1 FIGURE 1.16 -Wave-making resistance for wakeless obstacle the target Froude number F r * = 0.55 (indicated with a dot).

  Let us notice that taking ρ 1 = 0 in (3.80), we obtain exactly formula (1.124) giving the stream function for the case of a single layer fluid with free surface. We conclude that the two-layer Kelvin-Neumann problem into the rigid-lid appoximation with zero upper density reduces to the case of the single-layer problem.
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 33 FIGURE 3.3 -The interface between the two layers of fluid over a bottom obstacle, in supercritical regime (ρ 1 = 460, ρ 2 = 1850, H 1 = 1, H 2 = 2, ν = 0.8)

FIGURE 3 . 5 -

 35 FIGURE 3.5 -Internal wave over wakeless obstacle for two-layer case with rigid lid approximation in sub-critical regime

4. 3 N

 3 -layer case without free surface condition the diffuse interface. In order to compare the experimental results with analytic computations, the authors modeled the transition layer by two types of transition functions: (i) piecewise linear transition (Figure4.1a) and (ii) sigmoidal fit(Figure 4.1b). A rigid lid is also assumed in the theoretical computations, as the experiments showed very small perturbations at the level of the free surface.

  (a) a piecewise linear transition (b) a sigmoidal fit
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 41 FIGURE 4.1 -The density profile

  A (j) (k)ρ (j) ν -A (j+1) (k)ρ (j+1) (|k| sinh(|k|z j+1 ) -ν cosh(|k|z j+1 ) + B (j) (k)ρ (j) |k| -B (j+1) (k)ρ (j+1) (|k| cosh(|k|z j+1 ) -ν sinh(|k|z j+1 ) = 0, for j = 1, 2, • • • , N -1.

FIGURE 4 . 3 -

 43 FIGURE 4.3 -The logarithm of the condition number of M as a function of U ∞ and k

  3 f (k) sinh(kz 2 ) sinh(kz 3 ) (4.60)g 2 (k) = k ρ 3 f (k) (k coth(kz 2 ) -ν) sinh(kz 3 ) . (4.61)andw(k) = ρ 3 (k coth(kz 2 ) -ν)(k coth(kz 3 ) -ν) -ρ 2 (ν 2 -k 2 ). (4.62)The rigorous meaning of formulas (4.57)-(4.59) is obtained as in Section 4.2, the discussion is done with respect to the roots of the dispersion relation w(k) = 0.
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 44 FIGURE 4.4 -The geometrical setting for two-layer case.

  cosh(|k|(z + z 1 )) + B 1 (k) sinh(|k|(z + z 1 )), z ∈ (-z 1 , 0), (4.69) and Ψ 2 (k, z) = A 2 (k) cosh(|k|(z + z 1 + z 2 )) + B 2 (k) sinh(|k|(z + z 1 + z 2 )), ∀ z ∈ (-z 1 -z 2 , -z 1 ).(4.70)

  |k|z 1 )-ν sinh(|k|z 1 ) sinh(|k|z 2 ) (|k| sinh(|k|z 1 )-ν cosh(|k|z 1 ))ρ 1 |k| -ρ 1 ν sinh(|k|z 2 ) -ρ 2 (|k| cosh(|k|z 2 )-ν sinh(|k|z 2 )) k) cosh(|k|z 2 ) (|k| sinh(|k|z 1 )-ν cosh(|k|z 1 )) f (k)ρ 1 ν cosh(|k|z 2 ) +ρ 2 (|k| sinh(|k|z 2 )-ν cosh(|k|z 2 ))least formally, the Fourier coefficients for the stream function at the free surface and at the interface between the two fluids, we obtain: two-layer case with free surface condition

  1 (k j ) e i(k j -k)ξ * j w (k j )(k 2 -k 2 j ) 2 (k j ) e i(k j -k)ξ * j w (k j )(k 2 -k 2 j )

Figure

  Figure 4.6).
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 46 FIGURE 4.6 -Free surface elevation and internal wave over a bottom obstacle, in the supercritical regime of two layer case with free surface condition

  Figure 4.7 shows that the free surface elevation (blue line) and the internal wave (red line) vanish at infinity upstream and oscillate downstream. The two wakes oscillate identically in phase with different amplitudes.
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 47 FIGURE 4.7 -Free surface and internal interface over bottom obstacle (one root for the dispersion relation)

FIGURE 4 . 8 -

 48 FIGURE 4.8 -Free surface and internal interface over bottom obstacle (two roots for the dispersion relation)
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This derivation is formal, which means that assume the existence of smooth solutions for all the equations presented below, and we neglect terms simply through their formal order in the equations. For the sake of generality, we consider a N -layered fluid, with a varying bathymetry. We will not consider detached obstacles since these are not present in the following chapters.Let us consider a N-layered fluid consisting in N open strip-shaped domains denoted (Ω i ) i=1,..,N (numbered from top to bottom). Let us denote Γ i = Ω i ∩ Ω i+1 , Γ f the free surface, and Γ b the bottom of the domain. Note that Γ f and Γ i for i = 1..N (depicted in blue in Figure1) are unknowns of the problem, while Γ b (depicted in red in Figure1) is supposed to be known.

= (-∞, ξ * ) × (-H 2 , 0) for ξ * ∈ R satisfying ∞ -∞

Chapter 4. Linear analysis of the steady water waves over an obstacle lying on the bottom of a multi-layer fluid

where

C T (k), C = cofactor matrix. (4.48)

Since U(k) = U(-k), F(k) = F(-k), M(k) = M(-k) then we can write formally have:

(4.49)

The meaning of (4.49) follows from the general considerations in Section 4.2.

Numerical illustration of the different regimes

Let us consider a set of parameters as in [START_REF] Hüttemann | Baroclinic solitary water waves in a two-layer fluid system with diffusive interface[END_REF]. We place ourselves in the case where the density profile is given by a sigmoid function.

Let us investigate numerically the number of solutions for the dispersion relation det(M(k)) = 0 depending on the upstream imposed velocity U ∞ . Instead of explicitly computing the roots, we consider the condition number of the matrix M as a function of the wavenumber k and U ∞ . Loci of large condition number indicate parameter values for which the determinant of M is close to 0 (see Figure 4.3). In Figure 4.3, we can notice that velocity values inferior to U 1 correspond to the case when the dispersion relation has no roots (corresponding to the super-critical case), for velocity values between U 1 and U 2 the dispersion relation has one root, while for values superior to U 3 we can see the presence of at least two roots. This shows that the relation dispersion can admit several distinct roots, but this does not rule out the possibility of multiple roots. We can also remark that the critical velocities that we observed above are asymptotes for large values of the wavelength. This suggests that the study of models based on a long wave approximation is useful for the discrimination of the different flow regimes. This is a classical result in the onelayer, case in which the velocity of long waves distinguishes the sub and super-critical regimes. 

where

with the dispersion function given by:

and we took into account the fact that g j (k) = g j (-k), j = 1, 2 for k > 0. The formulas above are exactly the same as (4.61) and (4.62), obtained for the three-layer case with rigid lid and zero density, which proves that Remark 3.3.1 is still true when the number of layers of fluid is augmented.

The meaning/existence of the integral in (4.71) and (4.72) is discussed below, for each of the cases: the dispersion relation w(k) = 0 has no real root, has single or multiple roots. See Figure 4.5 for an illustration of possible cases on different configurations of ρ 1 , ρ 2 , ν, z 1 , z 2 . The situation is different for the case when we have two distinct roots for the dispersion relation. Taking into account (4.78), (4.79), we see that the wake is of the form w * (x 1 ) = A sin(k 1 x 1 ) + B sin(k 2 x 1 ), where

with i = 1, 2 associated to ψ i . Taking into account the linearity of the problem, the first oscillation sin(k 1 x 1 ) is cancelled by shifting the obstacle exactly as in the case of a single root for the dispersion i.e. a distance of p 1 π k 1 , where p 1 is an odd integer. Then, the remaining oscillation is cancelled by shifting the resulting obstacle by a distance that is an odd multiple of the half-period p 2 π k 2 . In Figure 4.10, the wakeless obstacles cancel the oscillation downstream by setting p 1 = p 2 = 1. In Figure 4.11, we produce another set of wakeless obstacles by setting different values of p 1 and p 2 .