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Professeur associé, Université de Gênes et MIT(MaLGa) Rapporteur

Emmanuel Gobet
Professeur, Ecole Polytechnique (CMAP) Directeur de thèse
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de m’avoir soutenue, accompagnée et encouragée dans tous mes choix. Vous nous avez placés
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Préambule

Le traitement des incertitudes est un problème fondamental dans un contexte financier, et plus
précisément d’optimisation de portefeuille. Dans ce contexte, les variables étudiées sont souvent
dépendantes du temps, avec des queues épaisses. Dans cette thèse, on s’intéresse à des outils
permettant de prendre en compte les incertitudes sous ses formes principales : incertitudes
statistiques, incertitudes paramétriques et erreur de modèle, tout en gardant en tête qu’on
souhaite les appliquer à ce contexte.

La première partie est consacrée à l’établissement d’inégalités de concentration, c’est-à-dire
de borne sur la probabilité d’écart à sa moyenne d’un estimateur, dans le cadre de variables
à queues épaisses. L’objectif de ces inégalités est de quantifier quelle confiance on peut donner
à un estimateur basé sur une taille finie d’observations, et leur établissement peut se faire
en respectant le caractère éventuellement non-borné et non-Gaussien des distributions sous-
jacentes, via notamment l’utilisation de normes Orlicz. Dans cette thèse, nous considérons le cas
d’estimateurs à distributions à queues épaisses, et nous établissons une nouvelle norme Orlicz
et de nouvelles inégalités de concentration qui couvrent le cas de la distribution log-normale.

Dans la seconde partie, on traite de l’impact de l’erreur de modèle pour l’estimation de
la matrice de covariance sur des rendements boursiers. Pour respecter une observation quasi-
systématiquement vérifiée sur les marchés qui est que la covariance entre les rendements dépend
du temps, on suppose qu’il existe un processus de covariance instantanée entre les rendements
dont la valeur présente dépend de ses valeurs passées. On peut alors construire explicitement
la meilleure estimée de la matrice de covariance pour un instant et un horizon d’investissement
donnés. En se plaçant dans le contexte du portefeuille minimum variance, on montre qu’avec
grande probabilité, la meilleure estimée de la matrice de covariance (qui est aproximable par
Monte Carlo dans le modèle GARCH) constitue le choix de matrice de covariance qui donne les
meilleures performances.

Dans la troisième partie, on propose de modéliser l’impact des erreurs paramétriques. Lors-
qu’un modèle paramétrique est utilisé, les paramètres du modèle ne sont pas toujours parfaite-
ment connus et bien spécifiés : l’erreur paramétrique est par exemple inhérente à une calibration
de paramètres sur un jeu fini de données. Nous proposons une approche pour exprimer le ratio de
Sharpe et l’allocation de portefeuille en fonction de paramètres d’entrée jugés incertains. Notre
approche passe par l’adaptation d’une technique d’approximation stochastique pour le calcul de
la décomposition en polynômes du chaos de la quantité d’intérêt.

Enfin, dans la dernière partie de cette thèse, on s’intéresse à l’optimisation de portefeuille avec
distribution cible. Cette technique peut être formalisée sans avoir recours à aucune calibration
ou hypothèse de modèle sur les rendements. Nous proposons de trouver ces portefeuilles en
minimisant des mesures de divergence basées sur les fonctions noyau et la théorie du transport
optimal. Ces mesures de divergence peuvent être non-bornées et ont encore peu été étudiées
dans le cas fonction noyau non-bornée. On établit des nouvelles garanties de convergence basées
sur les inégalités de concentration dans ce cas.
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Preamble

The treatment of uncertainties is a fundamental problem in a financial context, and more pre-
cisely in portfolio optimisation. In this context, the variables studied are often time dependent,
with heavy tails. In this thesis, we are interested in tools allowing to take into account uncer-
tainties in its main forms: statistical uncertainties, parametric uncertainties and model error,
keeping in mind that we wish to apply them to this context.

The first part is devoted to the establishment of concentration inequalities, i.e. bounds on
the probability of deviation from the mean of an estimator, in the context of variables with
heavy tails. The objective of these inequalities is to quantify the confidence that can be given
to an estimator based on a finite size of observations, and their establishment can be done by
respecting the possibly unbounded and non-Gaussian character of the underlying distributions,
via the use of Orlicz norms. In this thesis, we consider the case of estimators with heavy-tailed
distributions, and we establish a new Orlicz norm and new concentration inequalities that cover
the case of the lognormal distribution.

In the second part, we discuss the impact of the model error for the estimation of the co-
variance matrix on stock returns. In order to respect a quasi-systematically verified observation
on the markets, which is that the covariance between returns depends on time, we assume that
there is an instantaneous covariance process between the returns whose present value depends
on its past values. One can then explicitly construct the best estimate of the covariance matrix
for a given time and investment horizon. In the context of the minimum variance portfolio,
we show that with high probability, the best estimate of the covariance matrix (which can be
approximated by Monte Carlo method in the GARCH model) is the choice of covariance matrix
that gives the best performance.

In the third part, we propose to model the impact of parametric errors. When a parametric
model is used, the parameters of the model are not always perfectly known and well specified:
the parametric error is for instance inherent to a calibration of parameters on a finite data set.
We propose an approach to express the Sharpe ratio and the portfolio allocation as a function
of input parameters that are considered uncertain. Our approach involves the adaptation of a
stochastic approximation technique for the computation of the polynomial decomposition of the
quantity of interest.

Finally, in the last part of this thesis, we focus on portfolio optimization with target dis-
tribution. This technique can be formalised without the need for any calibration or model
assumptions on returns. We propose to find these portfolios by minimizing divergence measures
based on kernels or optimal transport. Since these divergence measures can be unbounded and
have not been studied much yet in the unbounded kernel case, we establish new convergence
guarantees based on concentration inequalities.
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of Machine Learning Research (JMLR), 21:1–37, 2020.

- [CGL21a] L. Chamakh, E. Gobet, and J.-P. Lemor. Asymptotic analysis of different
covariance matrices estimation for minimum variance portfolio. Submitted.

- [CGL21b] L. Chamakh, E. Gobet, and W. Liu. Orlicz norms and concentration inequalities
for β-heavy tailed random variables Submitted.
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INTRODUCTION

0.1 Context of the PhD

This thesis was carried out within the framework of a Cifre contract in the Global Markets
division of BNP Paribas in the Systematic Strategies and Hybrids (SSH) research team. On
the academic side, the thesis was supervised at the Centre of Applied Mathematics of the École
Polytechnique by Professors Emmanuel Gobet and Zoltán Szabó. Jean-Philippe Lemor, Senior
Quant and head of the SSH team, supervised the thesis for BNPP.

One of the objectives of the SSH team is to ensure the robustness of the systematic strategies
proposed by the BNPP structuring team. A systematic strategy can be defined as an investment
strategy where the allocation rules are contractually fixed at the time of the strategy’s imple-
mentation and executed automatically according to the values taken by a set of state variables
representing the state of the financial market. For example, the mean-variance portfolio strat-
egy, initiated by Markowitz [Mar52], consists of maximising the expectation of the portfolio’s
gain under the constraint of a target volatility: in this case, the state variables are the variance-
covariance matrix of the d underlyings making up the investment universe, and their expected
returns. By denoting C the covariance matrix on the returns of the assets considered (where
we call return the relative variation of the asset price), µ their mean, W the set of constraints
on the allocation vector and σT > 0 the target volatility of the portfolio, the mean-variance
portfolio is the solution of the following problem:

max
w∈W

w>µ (0.1.1)

s.t. w>Cw = σ2
T .

In practice, this portfolio will be reallocated at a predetermined frequency (for example, every
day or every month) by updating the value of these state variables (C and µ in the Markowitz
case). Typically, C and µ are estimated empirically, on a fixed number of past returns (called
the window size of the estimate), and at each new decision on the portfolio, new estimates of C
and µ are calculated (either on the same window size as before - sliding window approach -, or
on all the available historical data).

One of the most popular indicators to evaluate the performance of a strategy is the Sharpe
ratio. By definition, this ratio is equal to the expectation of the returns of the portfolio in excess
of the risk-free rate, renormalized by their volatility.

The question then arises as to whether a good value of the Sharpe ratio1 on the backtest part
has much chance of lasting over time, and whether the Sharpe ratio is robust to small pertur-
bations of its initial parameters, i.e. the parameters of the strategy (window size, recalibration

1Typically, a good Sharpe ratio is greater than 1.



0.1. Context of the PhD 11

(a) S&P500 (b) CAC40

Figure 1 – Plot of daily returns of the S&500 and the CAC40 and the Gaussian distribution of
the same mean and variance.

frequency, etc.), and the historical data, or backtest, of the strategy. To do this, studies called
“robustness tests” are conducted by the SSH team.

It is in this industrial context that this thesis was written. The initial objective of this thesis
was to adapt and apply concentration inequalities to portfolio value variables. Concentration
inequalities allow to have confidence intervals on the difference between an empirical estimator,
measured on a finite number of observations, and its true value. These confidence intervals are
established by respecting the finite nature of the number of observations and depend on the law
of the estimator for a given number of observations. On the other hand, one objective was to
adapt uncertainty quantification techniques for the Sharpe ratio of a strategy, i.e. to find a way
to express the Sharpe ratio as a function of its uncertain parameters.

We first looked at the statistical properties of the financial data to define the assumptions
and framework under which our research should be conducted.

Distribution of returns and time dependence. The theory of the efficient market initiated
at the beginning of the 20th century [Bac00, Fam71], according to which stock market variations
are only white noise, has been widely questioned over the decades. This theory is based on
the idea that in a market of free competition where all the players have the same information,
prices automatically balance themselves independently of the past. In continuous time, this
corresponds to modelling price variations as following a Brownian motion:

St+1 − St = σ(Wt −Wt−1), Wt Brownian motion.

Osborne in 1959 proposed to model the log of price ratios as following a Gaussian distribution
[Osb59], a theory incorporated in the famous Black and Scholes model in 1973 [BS73].

However, and from the inception of these theories, it was clear that the Gaussian assumption
of temporal independence, whether for daily price variations or log returns, was not appropriate.
Indeed, as illustrated in Figures 1 and 2, the distribution of stock returns has heavier tails than
the Gaussian distribution. The histograms of returns (Figure 1) show distributions with a high
peak and tails slightly above the Gaussian distribution. The quantile-quantile plots (Figure 2)
clearly show that the extreme quantiles of the stock returns do not coincide with those of the
Gaussian distribution: the relationship should have been purely linear otherwise (blue points
aligned with red line), but here the empirical quantiles deviate, indicating that the returns
take more extreme values than those that would have been taken by Gaussian returns at an
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Figure 2 – Quantile-quantile plots: quantile of the daily returns of the S&500 and the CAC40
as a function of the quantiles of the Gaussian distribution with reduced centre.

(a) S&P500 (b) CAC40

Figure 3 – Autocorrelation plot on daily returns of the S&P500 and the CAC40 in absolute
value.

equivalent level of probability. Moreover, the assumption of independence over time of the
volatility of returns is called into question by the high values taken by the autocorrelation of
absolute returns Figure 3. Absolute returns can be considered as a proxy for the volatility
of returns. Autocorrelation is defined as the correlation between absolute returns at time t
and their future value at time t + lag: autocorrelation is here non negligible, compared to the
autocorrelation of an independent white noise (see [BD16, Figure 1.13] for the autocorrelation
of a white noise for example).

Mandelbrot was the first to speak about stylised facts, i.e. statistical properties verified
quasi-systematically on stock market returns, in [Man63]. More recently, Cont [Con01] lists
these properties. Among these stylized facts are the non-Gaussianity of daily returns and their
leptokurtic nature, i.e. their tails are heavier than the Gaussian distribution, the time dependence
of the variance of returns, but also the negative skewness of returns, and the volatility cluster
effects.

Outline of the thesis. In what follows we detail the path followed by the thesis, with the
leitmotiv of taking into account uncertainties in the context of heavy-tailed distribution for
financial portfolios.

Our first objective was to focus on concentration inequalities. These inequalities allow us to
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Figure 4 – Plot of volatility measured by sliding window on the daily returns of the S&P500 and
the CAC40.
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Figure 5 – Higher moment pmax on the variance of returns calibrated with the GARCH model.

quantify the deviation between an estimator and its expectation, depending on the number of
observations on which the estimator depends. The presence of heavy tails in financial returns
motivated the work on new concentration inequalities adapted to this context. In the first part
of this thesis, we establish concentration inequalities adapted to α-exponential (Chapter 1), or
lognormal (Chapter 2) variables, which are two examples of heavy-tailed distributions.

In the second step, we were interested in the impact of taking into account the time de-
pendence of the variance in financial returns. The initial question was whether it was better
to consider an adaptive model for the estimation of the covariance matrix C in problems such
as (0.6.1), or whether the simple historical estimation of C was efficient. As illustrated on the
S&500 and the CAC40 (Figure 4), the variance on returns moves over time, which makes it
intuitively preferable to use an adaptive model, such as the GARCH models, rather than a
historical covariance on a sample size that is too large to account for short-term movements in
volatility.

Moreover, the GARCH model implies a heavy-tailed distribution for the returns, and impose the
existence of at most polynomial moments. Figure 5 shows the estimate of the number of finite
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Figure 6 – Quantile quantile plot of correlation calibrated by sliding window between two assets.

moments from the GARCH(1,1) model for 12 financial instruments: the highest finite moment
on these instruments does not exceed 6. The detailed study of these models for the performance
of the minimum variance portfolio constitutes the second part (Chapter 3) of this thesis.

In the third step (Chapter 4), we sought to apply uncertainty quantification techniques to
the financial portfolio setting. In uncertainty quantification, one assumes that some parameters
are uncertain and seeks to “easily” express the solution of a problem in terms of these uncertain
parameters, i.e. without having to solve the initial problem for each value of the uncertain
parameters. Typically, this can be done by evaluating the Polynomial Chaos Expansion (PCE)
of the solution of the problem, i.e. by computing a projection of the function on a polynomial
basis of the uncertain parameter. We have focused on the application of these techniques to the
Sharpe ratio and to portfolio allocations.

In our illustrations, we focused on the impact of uncertainty on the correlation between
assets. In practice, by estimating the correlation using moving averages, over a time interval large
enough to capture the level of “stationary” correlation between two assets, t the distribution of
calibrated correlations is relatively wide and non-uniform, as shown in Figure 6 (quantile quantile
plot against the uniform distribution of the calibrated correlation on 2 financial instruments using
moving averages). It was therefore interesting to quantify its impact.

Finally, the last part of this thesis (Chapter 5) is devoted to portfolio optimisation with
target distribution, via kernel-based and optimal transport theory based divergence measures.
From a financial point of view, the goal of this approach is to build portfolios with thinner
distribution tails and smaller skewness than with traditional portfolio optimization approaches.

The parts of this thesis can be read independently. To guide the reader, and to help him in
his reading choices, we give in the following a summary of each part of the thesis.

0.2 Concentration inequalities for variables with heavy-tails: an
Orlicz norm and Talagrand inequality approach

Context. With the rise in the use of statistical estimators, the study of their behaviour and
their deviation from the mean has become essential. Concentration inequalities allow us to
quantify this deviation as a function of the size of the sample used by the estimator. Given
M ∈ N∗, Y1, . . . , YM a sequence of random variables, generally independent, and F a class of
measurable functions, the concentration inequalities are in the form

∀ε > 0, P

(∣∣∣∣∣ 1

M

M∑
m=1

Ym − EY

∣∣∣∣∣ ≥ ε
)
≤ b(ε,M), (concentration of the sum)
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∀ε > 0, P

(
sup
f∈F

∣∣∣∣∣ 1

M

M∑
m=1

f(Ym)− Ef(Y )

∣∣∣∣∣ ≥ ε
)
≤ B(ε,M), (uniform concentration)

where b and B decrease towards 0 when M is large. In practice, b and B may depend on
the distribution of {Ym}m∈[M ] and the complexity of the F class. These inequalities can be
interpreted as the extent to which at a given M the estimator is concentrated around its mean,
converges quickly to it with M , in the case of worst-case deviation on the F class for B.

Statistical learning theory has contributed to the popularity of these inequalities (see [Vap00,
Chapter 3] and [Bou02]). This theory generally deals with concentration on the (bounded) error
between the prediction of an algorithm and its target value independently of the distribution
of the observations. This is not our framework, since in the financial context, and in many
applications (cf. Chapter 1: application to the concentration of kernel derivatives approximation
via random Fourier features), f is not bounded, and admits a heavy-tailed distribution. The
results dealing with the case of unbounded distributions focus on the Gaussian case or under
strong assumptions on the moment of the type Bernstein condition [BLM13, Section 2.3 and
2.8] not verified for a heavy-tailed distribution. We therefore seek to fill this gap.

By heavy-tailed distributions we mean distributions with tails heavier than the Gaussian or
exponential distribution but less heavy than the fat-tailed Pareto distributions. We can separate
these distributions into two classes:

1. the α-exponential-tailed distributions: E
[
es|Y |

α]
<∞ for an α ∈ (0, 1) and s > 0,

2. the distributions not admitting an α-exponential moment, but all the polynomial moments
(typically the lognormal variables).

Our objective is therefore to establish concentration inequalities in these two cases.

Orlicz-Talagrand: motivation and sketch of proof. Given Ψ : R+ → R+ continuous,
increasing, such that Ψ(0) = 0 (called “Orlicz function”), we define the Ψ-Orlicz norm of a
random variable X taking its values in a Banach space B as:

‖X‖Ψ := inf

{
c > 0 : E

[
Ψ

(
‖X‖B
c

)]
≤ 1

}
. (0.2.1)

Orlicz norms are useful for establishing concentration inequalities because:

1. It is possible to construct a custom Orlicz function with respect to the distribution.

2. The proof scheme for establishing concentration inequalities via Orlicz norms is (relatively)
independent of the chosen Orlicz norm (with inequality being all the more robust as the
Orlicz function is adapted to the distribution).

1. Choice of the function Ψ
To get tight bounds, we look for the Orlicz function with the strongest possible growth verifying
E [Ψ(sX)] <∞ for at least one s > 0. Examples:

• in the α-exponential case, the limit Orlicz function, studied by [Tal89][Ada08], is

Ψα(x) = ex
α − 1,

• To deal with the intermediate case, we introduce the new Orlicz function:

ΨHT
β (x) := exp

(
(ln (x+ 1))β

)
− 1

for a parameter β > 1 (exp(x) and ex are used interchangeably throughout the manuscript).
The log-normal case is covered with β < 2.
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2. General proof scheme
Here for simplicity X ∈ R. We can establish a robust concentration inequality on X such that
‖X‖Ψ <∞ by Markov inequality by exploiting the definition of the Orlicz norm. For example,
in the α-exponential case, by composing by the increasing function Ψα(·/ ‖X‖Ψα) + 1, then
applying the Markov inequality, we have, for ε > 0

P (|X| > ε) = P
(

Ψα

(
|X|
‖X‖Ψα

)
+ 1 > Ψα

(
ε

‖X‖Ψα

)
+ 1

)
Markov
≤

(
E
[
Ψα

(
|X|
‖X‖Ψ

)]
︸ ︷︷ ︸

≤1

+1

)
/

(
Ψα

(
ε

‖X‖Ψα

)
+ 1︸ ︷︷ ︸

=e

εα

‖X‖α
Ψα

)
≤ 2 exp

(
− εα

‖X‖αΨα

)
.

This proof scheme is used in [Ada08, vdGL13]. In practice, X = 1
M

∑M
m=1 Ym or X =

supf∈F
1
M

∑M
m=1 f(Ym). To guarantee b(ε,M) = O(M) and B(ε,M) = O(M), two inequalities

will be fundamental: the Talagrand inequality [Tal89, Theorem 3: Ψ = Ψα] and the maximal
inequality [vW96, Lemma 2.2.2: Ψ convex+ mild growth condition]∥∥∥∥∥∥

∑
m∈[M ]

Ym

∥∥∥∥∥∥
Ψ

≤ CΨ


∥∥∥∥∥∥
∑
m∈[M ]

Ym

∥∥∥∥∥∥
L1(B)

+

∥∥∥∥ max
m∈[M ]

‖Ym‖B

∥∥∥∥
Ψ

 , (0.2.2)

∥∥∥∥ max
m∈[M ]

‖Ym‖B

∥∥∥∥
Ψ

≤ KΨ−1(M) max
m∈[M ]

‖Ym‖Ψ . (0.2.3)

When these inequalities are verified, we easily have b(ε,M) = O(M).
In the uniform case, one might be tempted to apply Talagrand’s inequality directly. But we

would then end up with a term in
∥∥∥∑m∈[M ] supf∈F f(Ym)

∥∥∥
L1(B)

which is difficult to control.

One trick is to use a truncation technique (used by Adamczak [Ada08, Theorem 4] to establish
a large deviation inequality which we have adapted and corrected to establish concentration
inequalities). Let us introduce for a truncation level c > 0 the truncated function Tcf := −c∨f∧c
and the remainder by the truncated function Rcf := f −Tcf . We can then treat separately the
concentration of the truncated part (bounded function: classical problem) and the remainder.

An application of Talagrand’s inequality gives the term:
∥∥∥∑m∈[M ] supf∈F |Rcf(Xm)|

∥∥∥
L1(B)

.

Intuitively, by choosing c large enough, this “remainder” term becomes small. Thanks to the
Hoffman-Jorgensen inequality, we can calibrate c in such a way as to guarantee that this term
is negligible in front of M .

Problems encountered and contributions: In addition to setting up a fairly generic proof
scheme, we have contributed to overcome the following problems:

• In the α-exponential case, the Talagrand inequality (0.2.2) is already available in the
literature [Tal89, Theorem 3], but not the maximal inequality. The general maximal
inequality recalled in (2.2.3) is valid for Orlicz function convex and satisfying additional
mild conditions. We contributed in establishing the maximal inequality for the non-convex
Ψα function.

• In the β-heavy case: ΨHT
β (x) := elnβ (x+1) − 1, since ΨHT

β is convex, the maximal inequality
is verified, but Talagrand’s inequality is not available in the literature. We contributed in
establishing the Talagrand inequality for the non-convex ΨHT

β .

We answer these problems in our work, but will not detail in the introduction the solutions
brought.
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0.3 Asymptotic analysis of the covariance matrix estimation for
the minimum variance portfolio

In this section, we deal with a much more practical problem, which consists in analysing the
impact of taking into account the best estimate of the covariance matrix in the minimum variance
portfolio problem.

The theory of the mean-variance portfolio introduced by Markowitz consists in finding the
portfolio allocation w which minimises w>Cw− γw>µ, where C corresponds to the covariance
matrix on the returns of the assets considered, µ their mean, and γ > 0 the investor’s risk
appetite. In practice, C and µ must be estimated, and by the nature of the problem (explicit
solution depending on the inverse of C) lead to a significant instability of the estimated portfolios.
Many articles deal with the problem of estimating µ [BG91, GHZ13]; we focus here on that of
C with γ = 0.

We place ourselves in the following framework: we consider a universe of d assets, whose
returns follow the conditional law rt|Ft−1

∼ N (0, Vt) with Vt instantaneous covariance matrix,
of maximum polynomial moment pmax. As explained above, a dynamic model of covariance is
consistent with the stylised facts observed on the market. We consider an investment horizon
H; in this case, the best estimate of the realized covariance matrix is

cRCH,t := E

[
1

H

H∑
k=1

rt+kr
>
t+k|Ft

]
=

1

H

H∑
k=1

E [Vt+k|Ft] . (0.3.1)

Generally, the practitioner uses a historical covariance matrix 1
T

∑T
k=1 rt−kr

>
t−k based on past

returns. When the size of the history T tends towards infinity, this estimator tends towards the
stationary covariance matrix of the process. However, when the investment horizon is short and
the instantaneous covariance of the process takes different values from the stationary covariance
matrix (moments of high or low short-term volatility), it is better to use cRCH,t to take into
account the latency effects of the variance.

We consider the problem of the minimum variance portfolio: given a covariance matrix
estimate C, it consists in solving

mv(C) := arg min
w∈W

w>Cw, (0.3.2)

where W ⊂ Rd takes into account the constraints on w (typically,
{

w ∈ Rd :
∑d

i=1wi = 1
}
⊂

W). In this case, the performance metric is the future realised variance and the investor seeks
to make it as small as possible. By denoting the matrix of realized covariance

RCH,tn =
1

H

H∑
k=1

rtn+kr
>
tn+k, (0.3.3)

the realised variances associated to the minimum variance portfolios (0.3.3), allocated on one
hand with the conditional realized covariance (0.3.1), and on the other hand with the fixed
benchmark covariance Vref are written as{

RN,H :=
∑N

n=1 mv(cRCH,tn)>RCH,tn mv(cRCH,tn),

Rref
N,H :=

∑N
n=1 mv(Vref)

>RCH,tn mv(Vref).

Our objective is to show that with high probability, RNH < Rref
N,H , all the more surely as N

grows. Intuitively/asymptotically, we have Rref
N,H −RN,H ≥ 0.
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Figure 7 – P̂(RN,H>R
∞
N,H), for H = 1 (red), H = 5 (blue) and H = 21 (green) as a function

of the number of reshoots N , in log-log scale, for GARCH parameters such as d = 50 and
pmax = 5.05

• Let’s introduce the conditional variance terms:{
cRVN,H :=

∑N
n=1 mv(cRCH,tn)>cRCH,tn mv(cRCH,tn),

cRV ref
N,H :=

∑N
n=1 mv(Vref)

>cRCH,tn mv(Vref).
(0.3.4)

By definition of the minimum variance portfolio, we always have cRVN,H ≤ cRV ref
N,H .

• Moreover, as E [RCH,tn |Ftn ] = cRCH,tn , the difference RN,H−cRVN,H and Rref
N,H−cRV ref

N,H

are centered martingales. Therefore:

1

N
(Rref

N,H −RN,H) =
1

N
(Rref

N,H − cRV ref
N,H)− 1

N
(RN,H − cRVN,H)︸ ︷︷ ︸

1
N
×centered martingales≈0

+
1

N
(cRV ref

N,H − cRVN,H)︸ ︷︷ ︸
≥0

.

Question: Can we prove via a concentration inequality that the probability of RN,H < Rref
N,H

tends rapidly to 0 with the number of rebalancing? As we place ourselves in the framework
where Vt thus rt has few moments (polynomial only, up to the order pmax), it is difficult to
obtain bounds decreasing very quickly.

Based on control of moments of order p of sum of martingale increments (Burkholder’s
inequality [HH80, Theorem 2.10]) and of sum of ergodic process functions (Fort-Moulines in-
equality [FM03, Proposition 2]), under small technical assumptions on Vt, we establish the

following result: for any H ∈ N∗ investment horizon, by denoting `H := E
[
cRV ref

N,H−cRVN,H
N

]
the

performance gap, there exists a constant C > 0 depending on H, pmax, d and Vt such that, for
any N ∈ N∗, number of portfolio reallocations, we have:

P
(
RN,H > Rref

N,H

)
≤ C

`pmax

H

H
pmax

2

N
pmax

2

.

Application with a GARCH-CCC model. Assuming a parametric model on Vt of the
GARCH-Constant Conditional Correlation type and assuming the parameters of the model are
known, we can estimate the optimal covariance matrix by the Monte Carlo technique. Numer-
ically, the evolution of the probability of success tends towards 0 with the number of portfolio
reallocations N (Figure 7).
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Limit investment horizon. When the investment horizon H tends towards infinity, the best
estimate matrix coincides with the stationary covariance matrix. In practice, we observe that
when the investment horizon is of the order of magnitude of the multiple of the half-life of
the process, the performance of the portfolio with estimated covariance degrades until a horizon
where the choice between the covariance matrices produces equitable performances: the investor
is then indifferent between the stationary or the best estimated matrix.

A problem not addressed here is the consideration of parametric uncertainties in the model.
In the following section, we give a method for dealing with parametric uncertainties.

0.4 Treatment of parametric uncertainties for portfolio opti-
mization: a chaos decomposition approach via UQSA al-
gorithm

Understanding how parametric uncertainties perturb the outcome of an optimization problem
is a fundamental problem. The field of uncertainty quantification is dealing with the set of
techniques that allow to quantify this impact.

Let us suppose a parametric model on the inputs of the problem, with an uncertain parameter
θ for which we suppose that we can model the uncertainty via a π law: the inputs Vθ follow a law
depending on an uncertain parameter θ ∼ π. We are looking for a representation of the solution
of the optimisation problem as a function of θ. Assuming that the square function integrable
according to π, for any orthonormal basis of polynomials {Bi}i∈N, we can express the solution
of the optimisation problem z∗(θ) via its projection onto this basis of polynomials:

z∗(θ) =
∑
i≥0

uiBi(θ), ∀θ ∈ Θ ⊂ Rp, and

∫
Θ
Bi(θ)Bj(θ)π(dθ) =

{
0 if i 6= j,
1 else.

(0.4.1)

This is called the chaos polynomial decomposition, and it is one of the most widely used methods
in uncertainty quantification [LMK10]. In practice, a truncated form of (0.4.1) is evaluated, as
the truncation error generally tends quickly towards 0 (generally,

∑
i>m|ui|2 = O(m−δ) with δ

order of differentiability of the z∗ function).
The UQSA algorithm [CFGS20] allows a progressive estimation of the coefficients {ui}i≤mk ,

mk increasing, when the problem is in the form:

z∗(θ) solution of E [H(z∗(θ), Vθ, θ)] = 0, π − a.e., (0.4.2)

In the financial context, we are interested in two cases of application of these techniques:
the uncertainty management for the Sharpe ratio and for portfolio allocation when the financial
growth rates follow an uncertain parametric law.

Sharpe ratio. The Sharpe ratio gives an account of the profitability of a portfolio renormalised
by its risk. By denoting R the return in excess of the risk-free rate of the portfolio, it is written
as

SR =
E [R]√
Var [R]

.

One difficulty in applying the UQSA approach was to find a way to express the Sharpe ratio
as a solution to a problem of the form (4.1.1). This difficulty was overcome by the following
trick. By taking two independent copies of same law R and R̃, we can express the square of the
Sharpe ratio as the zero of a function:

SR2Var [R]− E [R]2 = E

[
SR2 (R− R̃)2

2
−RR̃

]
= 0.
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Figure 8 – Evolution of the total error on the Sharpe ratio approximation in the case mk =
bk + 1cb increasing (blue line) versus mk = m ∈ {10, 30} (dotted lines) as a function of the
number of iterations k.

For our applications, we are interested in the evolution of the Sharpe ratio ratio when the
correlation between assets is uncertain (with a parametric distribution modelled on the empirical
distribution represented via its quantile plot in Figure 6). We illustrate the efficiency of using
UQSA with an increasing number of estimated coefficients according to the iterations in Figure
8: the total error is lower with mk = bk + 1c0.3 increasing rather than at mk fixed.

Portfolio allocation. We are interested in the quantification of the uncertainties for the
portfolio allocation given by

arg min
w∈W

U(w)

where U is convex. Without constraints (W = Rd), the problem can generally easily be put
into the form (4.1.1), by taking the gradient of U and express it as an expectation. We can
then apply the UQSA algorithm to this problem. We would like to deal with the case where W

corresponds to the set of portfolios with positive components (purchase only) and summing to
1:

W≥0 = {w ∈ Rd : wi ≥ 0,

d∑
i=1

wi = 1}.

With constraints, we run into two difficulties:

1. The solution of the minimisation problem is not directly the zero of the gradient of U (one
must introduce Lagrange multipliers and look at the KKT conditions of the problem),

2. Naively solving the problem via a stochastic approximation algorithm does not allow to
stay in W≥0.

We propose to apply a change of variable. By introducing ` : Rd−1 →W such that `(y) = w,
we then propose to solve the problem by y ∈ Rd−1. Numerous techniques known as compositional
data analysis allow to pass from Rd−1 into W>0 = {w ∈ Rd : wi > 0,

∑d
i=1wi = 1}. One of them

is the log-ratio transformation, which consists in taking wi = eyi

1+
∑d−1
j=1 e

yj
, for i = 1, . . . , d − 1,

and wd = 1
1+
∑d−1
j=1 e

yj
. In this thesis, we have devised a new transformation to cover the case

wi = 0 which we called the integral transformation and which is based on the following idea:
given f : R → R+ such that

∫
R f(t)dt = 1, then we can interpret the wi as portions of the

integral of f . By introducing the positive function p : R → R+ such that p(0) = 0, there
therefore exists y ∈ Rd−1 such that:
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w1 =

∫ y1

−∞
f(t)dt,

wi =

∫ y1+p(y2)+···+p(yi)

y1+p(y2)+···+p(yi−1)
f(t)dt,

wd =

∫ ∞
y1+p(y2)+···+p(yd)

f(t)dt.

y1 p(y2) + y1 p(yd−1) + . . . + y1
0.00

0.05

0.10

0.15

0.20

0.25

0.30
w1
w2
wd

We study the cases where f corresponds to the derivative of the sigmoid function x 7→ 1
1+ex ,

and a case with compact support, with f taken as the distribution function of a beta(2, 2) law.

One bottleneck of this approach is that the problem is well posed only in the unsaturated
case, i.e. when w takes its values in the interior of the simplex W>0. When w admits zero
component, the SA formulation can admit multiple solutions, suggesting that this approach
should be improved to tackle these limit cases.

0.5 Portfolio optimization with target distribution: an approach
via divergence measure based on kernel and optimal trans-
port theories

Paradigm shift. So far, we have focused our applications on the mean-variance paradigm,
and we have proposed ways of quantifying or managing the uncertainties, either by a better
estimation of the first moments (best estimate approach of the covariance matrix), or by the
quantification of uncertainty (to see the distribution of the portfolio or the performance knowing
the parametric uncertainties). This is indeed the most widely used paradigm in portfolio con-
struction, although it is known to create unstable portfolios that are very sensitive to parameter
estimation errors.

In practice, however, the asset managers are increasingly moving away from mean-variance
utility approaches towards objective functions or portfolio optimisation methods focused on
portfolio risk management, for example by including fourth-order moments in the objective
function to reduce the excess kurtosis of the portfolio [MZ10] or by using portfolio optimisation
approaches with risk management by asset class [MRT10a, MRT10b].

The minimum divergence approach. It is in this perspective of better taking into account
the high order moments of the portfolio that the approach of the “minimum divergence” portfolio
with target distribution was introduced [CW12, Las19, GLLN20]: given a measure of divergence
D (or semi-metric between distributions), the minimum divergence portfolio is given by

w∗ = arg min
w∈W

D (Pw,PT ) , (0.5.1)

where P = w>R ∼ Pw denotes the portfolio distribution, and PT the investor’s target distribu-
tion. In practice, we assume that we have access to past returns {rn}n∈[N ], and we can estimate
the objective function (5.1.1) empirically, or parametrically. Contrary to the authors quoted, we
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take this approach with a will not to impose a parametric model on the returns, and we would
like as much as possible to be able to explain the objective function according to PT :

w∗ = arg min
w∈W

DPT

(
{w>rn}n∈[N ]

)
.

Questions. In this context, several questions arise: which divergence measure (i.e. distance be-
tween the portfolio distribution and the target distribution) to choose, which target distribution
to consider, and which optimization method would be adequate for this generally non-convex
problem?

Choice of distribution and divergence. We focused on a choice of parametric distributions
of the generalized Gaussian type (distribution on which one can specify the level of kurtosis, or
moment of order 4). This allows us to investigate the tail heaviness of the target distribution
and to aim for a lower kurtosis than the Gaussian distribution. We also consider the asymmetric
Gaussian, on which we can adjust the level of asymmetry, and target a more positive asymmetry
than empirically observed on the returns. We consider divergence measures based on kernels
and on optimal transport. Indeed, we show in this thesis that these divergence measures can be
put into explicit form as a function of the target distribution, when the latter has an explicit
and parametric distribution function, and have already been used in similar problems, as a
replacement for maximum likelihood type methods [BBD+19, BBDG19].

In particular, we consider the Maximum Mean Discrepancy (MMD), which for a kernel
function and two given distributions measures the “distance” between the representations of the
mean of these distributions (or mean embedding) in the Hilbert space associated with the kernel.
We show that the estimation of the MMD with unbounded kernel function (used in practice in
financial applications [BF19]) has the same rate of convergence as the MMD estimators with
bounded kernels.

Two other divergence measures are considered in this work: the Kernel Stein Discrepancy
(KSD) and the Wasserstein distance. They are written explicitly in terms of the log derivative of
the target distribution function for the KSD, and in terms of the inverse of the target distribution
function for the Wasserstein distance.

Intuition and empirical behavior of these portfolios. The chosen divergence measures

satisfy D (Pw,PT ) = 0 if Pw
(d)
= PT and are strictly positive otherwise. In practice, there is

generally no w such that the distributions coincide exactly. The distribution of initial returns
R is likely to have heavier tails than the target distribution. Empirically, we looked at the
case where some components have heavier tails than others. Intuitively, one would expect the
minimum divergence approach to systematically reduce the portfolio weight on this component.
However, if the variance of this component is very high, this is not necessarily the case.

Optimisation on financial data. We have tested our approach on financial data taken from
the Kenneth French library [Fre21]. To minimize our divergence measures, we used the cross-
entropy method [RK04]. This method consists in randomly generating w allocations in the W

set and focusing on the regions of W that minimize the objective function as iterations proceed,
by simply evaluating the function to be minimized at order 0 (no derivative calculations). This
method is particularly suitable for non-convex problems. Our empirical results indicate that a
target distribution with lighter and more positively skewed tails has an impact on the higher
order moments of the portfolio, and that the MMD performs well on our test data.
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Figure 9 – Distribution of portfolio returns based on traditional approaches (minimum variance,
maximum Sharpe ratio) versus minimum MMD approach with skew Gaussian target. The
distribution of the minimum divergence portfolio is slightly less skewed and leptokurtic than
traditional portfolios.

In practice, the approach gives better results under normal economic conditions. Regarding
this work extensions, one approach that could be considered is to take the divergence func-
tion between the empirical and target portfolios as a regularizer added to the global portfolio
optimization objective.



INTRODUCTION (EN FRANÇAIS)

0.6 Contexte de la thèse

Cette thèse a été réalisée dans le cadre d’un contrat Cifre au sein du pôle Global Markets
de BNP Paribas dans l’équipe de recherche en Stratégies Systématiques et Hybrides (SSH).
Côté universitaire, la thèse a été encadrée au Centre de Mathématiques Appliquées de l’École
Polytechniques par les Professeurs Emmanuel Gobet et Zoltán Szabó. Jean-Philippe Lemor,
Quant Senior et chef de l’équipe SSH, a assuré le suivi de la thèse côté BNPP.

Un des objectifs de l’équipe SSH est de s’assurer de la robustesse des stratégies systématiques
proposées par l’équipe de structuration de la BNPP. On entend par stratégie systématique une
stratégie d’investissement où les règles d’allocation sont fixées contractuellement dès la mise en
place de la stratégie et exécutées automatiquement suivant les valeurs prises par un ensemble de
variables d’état représentant l’état du marché financier. Par exemple, la stratégie du portefeuille
moyenne-variance, initiée par Markowitz [Mar52], consiste à maximiser l’espérance de gain du
portefeuille sous contrainte de volatilité cible: les variables d’état sont dans ce cas la matrice de
variance covariance de d sous-jacents constituant l’univers d’investissement, et leur espérance
de rendements. En notant C la matrice de covariance sur les rendements des actifs considérés
(où on appelle rendement la variation relative du prix de l’actif), µ leur moyenne, W l’ensemble
des contraintes sur le vecteur d’allocation w et σT > 0 la volatilité cible du portefeuille, le
portefeuille mean-variance est solution du problème suivant:

max
w∈W

w>µ (0.6.1)

s.c w>Cw = σ2
T .

En pratique, on va réallouer ce portefeuille à une fréquence prédéterminée (tous les jours ou
tous les mois par exemple) en actualisant la valeur de ces variables d’états (C et µ dans le
cas Markowitz). Typiquement, C et µ sont estimés de façon empirique, sur un nombre fixe
de rendements passés (appelée taille de fenêtre de l’estimation), et à chaque nouvelle prise de
décision sur le portefeuille, de nouvelles estimations de C et µ sont calculées (ou bien sur la
fenêtre de même taille que précédemment -approche fenêtre glissante-, ou bien sur l’ensemble
des données historiques disponibles).

Un des indicateurs les plus populaires pour évaluer la performance d’une stratégie est le ratio
de Sharpe. Par définition, ce ratio est égal à l’espérance des rendements du portefeuille en excès
par rapport au taux sans risque, renormalisée par sa volatilité. On se pose alors la question de
savoir si une bonne valeur du ratio de Sharpe2 sur la partie backtest a beaucoup de chance de

2Typiquement, un bon ratio de Sharpe doit être supérieur à 1.
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(a) S&P500 (b) CAC40

Figure 10 – Histogrammes des rendements journaliers du S&P500 et du CAC40 et de la distri-
bution Gaussienne de même moyenne et variance.

perdurer dans le temps et si le ratio de Sharpe est robuste par rapport à de petites perturbations
de ses paramètres initiaux, à savoir les paramètres de la stratégies (taille de fenêtre, fréquence
de recalibration...), et les données historiques, ou backtest de la stratégie. Pour ce faire, des
études appelées “tests de robustesse” sont menées par l’équipe SSH.

C’est dans ce contexte industriel que s’inscrit cette thèse. L’objectif initial de cette thèse était
d’une part d’adapter et d’appliquer des inégalités de concentration à des variables type valeurs
de portefeuille. Les inégalités de concentration permettent d’avoir des intervalles de confiance
sur l’écart entre un estimateur empirique, mesuré sur une réalisation finie d’observations, et sa
vraie valeur. Ces intervalles de confiance sont établis en respectant le caractère fini du nombre
d’observations et dépendent de la loi de l’estimateur à nombre d’observations donné. D’autre
part, un objectif était d’adapter les techniques de quantification d’incertitudes pour le ratio de
Sharpe d’une stratégie, c’est-à-dire trouver une manière d’exprimer le ratio de Sharpe comme
fonction de ses paramètres incertains.

Nous nous sommes d’abord intéressés aux propriétés statistiques des données financières
pour cibler sous quelles hypothèses et cadre devaient s’effectuer nos recherches.

Distribution des rendements et dépendance en temps. La théorie du marché efficient
initiée au début du 20ème siècle [Bac00, Fam71] selon laquelle les variations boursières ne seraient
que bruit blanc a été largement remise en cause au fil des décénies. Cette théorie repose sur l’idée
que dans un marché de libre concurrence où tous les acteurs disposent de la même information, les
prix s’équilibrent automatiquement indépendamment du passé. En temps continu, le modèle de
Bachelier correspond à modéliser les variations de prix comme suivant un mouvement brownien:

St+1 − St = σ(Wt −Wt−1), Wt mouvement brownien.

Osborne en 1959 propose de modéliser le log des ratios de prix comme suivant une loi
Gaussienne [Osb59], théorie incorporée dans le fameux modèle de Black et Scholes en 1973
[BS73].

Cependant, et dès la création de ces théories, il était clair que l’hypothèse Gaussienne et
d’indépendance temporelle, que ce soit pour les variations journalières de prix ou les log ren-
dements, n’était pas adaptée. En effet, comme illustré Figures 10 et 11, la distribution des
rendements boursiers présente des queues plus épaisses que la distribution Gaussienne. Les
histogrammes des rendements (Figure 10) montre des distributions piquées avec des queues
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Figure 11 – Diagrammes quantile-quantile: quantile des rendements journaliers du S&P500 et
du CAC40 en fonction des quantiles de la distribution Gaussienne centrée réduite.

légèrement au-dessus de la distribution Gaussienne. Les diagrammes quantile-quantiles (Figure
11) montrent clairement que les quantiles extrêmes des rendements boursiers ne cöıncident pas
avec ceux de la distribution Gaussienne: la relation aurait dû être purement linéaire sinon (points
bleus alignés avec ligne rouge), or ici les quantiles empiriques s’écartent, signe que les rendements
prenent des valeurs plus extrêmes que celles qu’auraient prises des rendements Gaussiens à un
niveau de probabilité équivalent. Par ailleurs, l’hypothèse d’indépendance dans le temps de la
volatilité des rendements est remise en cause par les valeurs fortes prises par l’autocorrélation
des rendements en valeur absolue Figure 12. Les rendements en valeur absolue peuvent être con-
sidérés comme un proxy de la volatilité des rendements. L’autocorrélation est définie comme la
corrélation entre les rendements en valeur absolue à un instant t et leur valeur future à l’instant
t + lag: l’autocorrélation est ici non négligeable, comparée à l’autocorrélation d’un bruit blanc
indépendant (voir [BD16, Figure 1.13] pour l’autocorrelation d’un bruit blanc par exemple).

(a) S&P500 (b) CAC40

Figure 12 – Autocorrélogramme des rendements journaliers en valeur absolue du S&P500 et du
CAC40.

Mandelbrot est le premier à parler de faits stylisés, c’est-à-dire de propriétés statistiques vérifiées
quasi-systématiquement sur les rendements boursiers, dans [Man63]. Plus récemment, Cont
[Con01] dresse une liste de ces propriétés. Parmi ces faits stylisés figurent la non-Gaussianité
des rendements journaliers et leur caractère leptokurtique, c’est-à-dire leurs queues plus épaisses
que la distribution Gaussienne, la dépendance en temps de la variance des rendements, mais
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aussi l’asymétrie négative des rendements, et les effets de cluster de volatilité.

Plan de la thèse. Dans ce qui suit nous détaillons le cheminement suivi par la thèse, avec
comme leitmotiv la prise en compte des incertitudes dans le contexte distribution à queues
épaisses pour les portefeuilles financiers.

Notre objectif premier était de s’intéresser aux inégalités de concentration. Ces inégalités
permettent de quantifier l’écart entre un estimateur et son espérance, en fonction du nombre
d’observations dont dépend l’estimateur. La présence de queues épaisses dans les rendements
financiers a motivé le travail sur des nouvelles inégalités de concentration adaptées à ce contexte.
Dans la première partie de cette thèse, nous établissons des inégalités de concentration adaptées
aux variables type α-exponentielle (Chapitre 1), ou log-normale (Chapitre 2), qui sont deux
exemples de distributions à queues épaisses.

Dans un second temps, nous nous sommes intéressés à la dépendance temporelle de la vari-
ance dans les rendements financiers et à l’impact de leur prise en compte. La question de départ
était de savoir s’il valait mieux considérer un modèle adaptatif pour l’estimation de la matrice
de covariance C dans des problèmes type (0.8.2), ou si la simple estimation historique de C était
efficace. Comme illustré sur le S&P500 et le CAC40 (Figure 5.9), la variance sur les rendements
bouge avec le temps, ce qui rend intuitivement préférable d’utiliser un modèle adaptatif, type
GARCH, plutôt qu’une covariance historique sur une taille d’échantillon trop élevée pour rendre
compte des mouvements courts termes de la volatilité.

2006 2008 2010 2012 2014 2016 2018 2020 2022
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(a) S&P500
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(b) CAC40

Figure 13 – Tracé de la volatilité mesurée par fenêtre glissante sur les rendements journaliers du
S&P500 et du CAC40.

De plus, les hypothèses de modèle GARCH cöıncident avec la présence de queues de distribu-
tions épaisses, et impose l’existence de moments au plus polynomiaux. On montre Figure 14
l’estimation du nombre de moments finis d’après le modèle GARCH(1,1) pour 12 instruments
financiers: les plus hauts moments finis sur ces instruments ne dépassent pas l’ordre 6. L’étude
approfondie de ces modèles pour la performance du portefeuille variance minimum constitue la
seconde partie (Chapitre 3) de cette thèse.

Dans un troisième temps (Chapitre 4), nous avons cherché à appliquer des techniques de
quantification d’incertitudes pour le portefeuille financier. En quantification d’incertitudes, on
suppose que certains paramètres sont incertains et on cherche à exprimer “facilement” la solu-
tion d’un problème en fonction de ce paramètre incertain, c’est-à-dire sans avoir à résoudre le
problème initial pour chaque valeur du paramètre incertain. Typiquement, cela peut se faire en
évaluant une (approximation de l’)Expansion en Polynômes du Chaos (EPC) de la solution du
problème, c’est-à-dire en calculant une projection de la fonction dans une base de polynômes
du paramètre incertain. Nous nous sommes concentrés sur l’application de ces techniques sur le
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Figure 14 – Plus haut moment pmax sur la variance de rendements calibrés avec le modèle
GARCH.
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Figure 15 – Diagramme quantile quantile: quantiles de la correlation calibrée par fenêtre glissante
entre deux actifs en fonction des quantiles de la loi uniforme.

ratio de Sharpe et l’allocation de portefeuille.

Dans nos illustrations, nous nous sommes concentrés sur l’impact de l’incertitude sur la
corrélation entre des actifs. En pratique, en estimant la corrélation par moyenne mobile, sur un
intervalle de temps assez large pour capter le niveau de corrélation “stationnaire” entre deux
actifs, on s’aperçoit que la distribution des corrélations calibrées est relativement étendue et
non-uniforme, comme montré Figure 15 (diagramme quantile quantile contre la loi uniforme de
la distribution d’une corrélation calibrée sur 2 instruments financiers). Il était donc intéressant
d’en quantifier l’impact.

Enfin, la dernière partie de cette thèse (Chapitre 5) est consacrée à l’optimisation de porte-
feuille avec distribution cible, via des mesures de divergence basées sur les kernel et la théorie du
transport optimal. D’un point de vue financier, le but de cette approche est de construire des
portefeuilles avec des queues de distribution moins épaisses et une asymétrie moindre qu’avec
les approches traditionnelles d’optimisation de portefeuille.

Les parties de cette thèses peuvent être lues de façon indépendante. Pour guider le lecteur,
et lui permettre de l’aider dans ses choix de lecture, nous donnons dans ce qui suit un résumé
de chacune des parties de la thèse.
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0.7 Inégalités de concentration pour les variables à queues
épaisses: une approche par norme Orlicz et inégalité de
Talagrand

Contexte. De par l’essor des techniques d’estimation statistique, l’étude du comportement
des estimateurs statistiques et de leur écart à la moyenne devient primordiale. Les inégalités de
concentration permettent de quantifier cet écart en fonction de la taille de l’échantillon utilisé
par l’estimateur. Etant donnés M ∈ N∗, Y1, . . . , YM suite de variables aléatoires, généralement
indépendantes, et F une classe de fonctions mesurables, les inégalités de concentration se trou-
vent sous la forme:

∀ε > 0, P

(∣∣∣∣∣ 1

M

M∑
m=1

Ym − EY

∣∣∣∣∣ ≥ ε
)
≤ b(ε,M), (concentration de la somme)

∀ε > 0, P

(
sup
f∈F

∣∣∣∣∣ 1

M

M∑
m=1

f(Ym)− Ef(Y )

∣∣∣∣∣ ≥ ε
)
≤ B(ε,M), (concentration uniforme)

où b et B décroissent vers 0 quand M est grand. En pratique, b et B peuvent dépendre de
la distribution des {Ym}m∈[M ] et de la complexité de la classe F . Ces inégalités s’interprètent
comme à quel point à M donné l’estimateur est concentré autour de sa moyenne, converge vite
vers celle-ci avec M , dans le cas pire écart sur la classe F pour B.

La théorie de l’apprentissage statistique a contribué à la popularité de ces inégalités (voir
[Vap00, Chapitre 3] et [Bou02]). Cette théorie traite généralement de concentration sur l’erreur
(bornée) entre la prédiction d’un algorithme et sa valeur cible indépendamment de la distribution
des observations. Ce n’est pas notre cadre de travail, puisque dans un contexte financier, et dans
de nombreuses applications (cf. Chapitre 1: application aux dérivées de kernels), f n’est pas
bornée, et admet une distribution à queues épaisses. Les résultats abordant le cas de distributions
non bornées se focalisent sur le cas Gaussian ou sous de fortes hypothèses sur les moment type
condition de Bernstein [BLM13, Section 2.3 et 2.8] non vérifiée pour une distribution à queues
épaisses. Nous cherchons donc à combler ce vide.

On entend par distribution à queues épaisses les distributions possédant des queues plus
épaisses que la loi Gaussienne ou exponentielle mais moins épaisses que les distributions à queues
lourdes, type Pareto. On peut séparer ces distributions en deux classes:

1. les distributions à queue α-exponentielle: E
[
es|Y |

α]
<∞ pour un α ∈ (0, 1) et un s > 0,

2. les distributions n’admettant pas de moment α-exponentiel, mais tous les moments poly-
nomiaux (typiquement les variables log-normales.

Notre objectif est donc d’établir des inégalités de concentration dans ces deux cas.

Orlicz-Talagrand: motivation et techniques de preuve. Étant donnée Ψ : R+ → R+

continue, croissante, telle que Ψ(0) = 0 (dite” fonction Orlicz “), on définit la norme Ψ-Orlicz
d’une variable aléatoire X prenant ses valeurs dans un espace de Banach B comme:

‖X‖Ψ := inf

{
c > 0 : E

[
Ψ

(
‖X‖B
c

)]
≤ 1

}
. (0.7.1)

Les normes Orlicz sont utiles pour établir des inégalités de concentration car:

1. Il est possible de construire une fonction Orlicz sur-mesure par rapport à la distribution.

2. Le schéma de preuve pour établir des inégalités de concentration par norme Orlicz est
(relativement) indépendant de la norme Orlicz choisie (avec inégalité d’autant plus robuste
que la fonction Orlicz est adaptée à la distribution).
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1. Choix de la fonction Ψ

On va chercher la fonction Orlicz à la croissance la plus forte possible vérifiant E [Ψ(sX)] <∞
pour au moins un s > 0. Exemples:

• dans le cas α-exponentiel, la fonction Orlicz limite, étudiée par [Tal89][Ada08], est donnée
par

Ψα(x) = exp(xα)− 1,

• pour traiter le cas intermédiaire, on introduit la nouvelle fonction Orlicz:

ΨHT
β (x) := exp

(
(ln (x+ 1))β

)
− 1

pour un paramètre β > 1. Le cas log-normal est couvert avec β < 2.

2. Schéma général de preuve

Ici par simplicité on suppose que X ∈ R. On peut établir une inégalité de concentration robuste
sur X telle que ‖X‖Ψ < ∞ par simple inégalité de Markov en exploitant la définition de la
norme Orlicz. Par exemple, dans le cas α-exponentiel, en composant par la fonction croissante
Ψα(·/ ‖X‖Ψα) + 1, puis en appliquant l’inégalité de Markov, on a, pour ε > 0:

P (|X| > ε) = P
(

Ψα

(
|X|
‖X‖Ψα

)
+ 1 > Ψα

(
ε

‖X‖Ψα

)
+ 1

)
Markov
≤

(
E
[
Ψα

(
|X|
‖X‖Ψ

)]
︸ ︷︷ ︸

≤1

+1

)
/

(
Ψα

(
ε

‖X‖Ψα

)
+ 1︸ ︷︷ ︸

=e

εα

‖X‖α
Ψα

)
≤ 2 exp

(
− εα

‖X‖αΨα

)
.

Ce schéma de preuve est utilisé dans [Ada08, vdGL13]. En pratique, X = 1
M

∑M
m=1 Ym

ou X = supf∈F
1
M

∑M
m=1 f(Ym). Pour garantir b(ε,M) = O(M) et B(ε,M) = O(M), deux

inégalités vont être fondamentales: l’inégalité de Talagrand [Tal89, Theorem 3: Ψ = Ψα] et
l’inégalé maximale [vW96, Lemma 2.2.2: pour Ψ convexe + condition de croissance]∥∥∥∥∥∥

∑
m∈[M ]

Ym

∥∥∥∥∥∥
Ψ

≤ CΨ


∥∥∥∥∥∥
∑
m∈[M ]

Ym

∥∥∥∥∥∥
L1(B)

+

∥∥∥∥ max
m∈[M ]

‖Ym‖B

∥∥∥∥
Ψ

 , (0.7.2)

∥∥∥∥ max
m∈[M ]

‖Ym‖B

∥∥∥∥
Ψ

≤ KΨ−1(M) max
m∈[M ]

‖Ym‖Ψ . (0.7.3)

Lorsque ces inégalités sont vérifiées, on a facilement b(ε,M) = O(M).

Dans le cas uniforme, on peut être tenté d’appliquer directement l’inégalité de Talagrand.

Mais on se retrouverait alors avec un terme en
∥∥∥∑m∈[M ] supf∈F f(Ym)

∥∥∥
L1(B)

difficilement

contrôlable.

Une astuce est d’avoir recours à une technique de troncation (utilisée par Adamczak [Ada08,
Theorem 4] pour établir une inégalité de grande déviation que nous avons adaptée et corrigée
pour établir des inégalités de concentration): introduisons pour un niveau de troncation c >
0 la fonction tronquée Tcf := −c ∨ f ∧ c et le reste par la fonction tronquée Rcf := f −
Tcf . On peut alors traiter séparément la concentration de la partie tronquée (fonction bornée:
problème classique) et du reste. Une application de l’inégalité de Talagrand fait apparâıtre

le terme:
∥∥∥∑m∈[M ] supf∈F |Rcf(Xm)|

∥∥∥
L1(B)

. Intuitivement, en choisissant c assez grand, ce

terme de” reste “devient petit. On peut grâce à l’inégalité dite de Hoffman-Jorgensen [LT13,
Proposition 6.8] calibrer c de façon à garantir que ce terme soit négligeable devant M .
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Problèmes rencontrés et contributions. Outre la mise en place d’un schéma assez
générique de preuve, nous avons contribué à combler les problèmes suivants:

• Dans le cas α-exponentiel, l’inégalité de Talagrand (0.7.2) est déjà disponible dans la
littérature [Tal89, Theorem 3], mais la fonction Ψα, non convexe, ne satisfait pas les
hypothèses de l’inégalité maximale (0.7.3). Nous avons contribué à établir cette inégalité
dans le cas α-exponentiel.

• Dans le cas β-heavy, l’inégalité maximale est vérifie pour la fonction convexe ΨHT
β (x) :=

exp
(
(ln (x+ 1))β

)
−1, mais l’inégalité de Talagrand n’est pas disponible dans la littérature:

en se basant sur la preuve de [Tal89, Theorem 3], on a contribué à étendre l’inégalité (0.7.2)
au cas Ψ = ΨHT

β .

Nous répondons à ces problèmes dans notre travail, mais n’allons pas détailler en introduction
les solutions apportées.

0.8 Analyse asymptotique de l’estimation de matrice de covari-
ance pour le portefeuille minimum variance

Dans cette partie, nous traitons d’un problème beaucoup plus pratique, qui consiste à analyser
l’impact de la prise en compte de la meilleure estimée de la matrice de covariance dans le
problème du portefeuille minimum variance.

La théorie du portefeuille moyenne-variance introduite par Markowitz [Mar52] consiste à
trouver l’allocation de portefeuille w qui minimise w>Cw−γw>µ, où C correspond à la matrice
de covariance sur les rendements des actifs considérés, µ leur moyenne, et γ > 0 l’appétence au
risque de l’investisseur. En pratique, C et µ doivent être estimés, et de par la nature du
problème (solution explicite dépendant de l’inverse de C), mènent à une instabilité significative
des portefeuilles estimés. De nombreux articles traitent du problème d’estimation de µ [BG91,
GHZ13]; nous nous focalisons ici sur celle de C avec γ = 0.

On se place dans le cadre suivant: on considère un univers de d actifs, dont les rendements
suivent la loi conditionnelle rt|Ft−1

∼ N (0, Vt) avec Vt matrice de covariance instantanée, de
moment polynomial maximal pmax. Comme expliqué précédemment, un modèle dynamique de
la covariance est cohérent avec les faits stylisés observés sur le marché. On considère un horizon
d’investissement H; dans ce cas, la meilleure estimée de la matrice de covariance réalisée est

cRCH,t := E

[
1

H

H∑
k=1

rt+kr
>
t+k|Ft

]
=

1

H

H∑
k=1

E [Vt+k|Ft] . (0.8.1)

Généralement, le praticien utilise une matrice de covariance historique 1
T

∑T
k=1 rt−kr

>
t−k basée

sur les rendements passés. Quand la taille de l’historique T tend vers l’infini, cet estimateur tend
vers la matrice de covariance stationnaire du processus. Or, lorsque l’horizon d’investissement est
court et que la covariance instantanée du processus prend des valeurs différentes de la matrice de
covariance stationnaire (moments de haute ou basse volatilité court terme), alors il vaut mieux
pour prendre en compte des effets de latence de la variance utiliser cRCH,t.

On considère le problème du portefeuille de variance minimum: étant donnée une matrice
de covariance C, ce problème consiste à trouver l’allocation solution de

mv(C) := arg min
w∈W

w>Cw, (0.8.2)

où W ⊂ Rd tient compte des contraintes sur w (typiquement,
{

w ∈ Rd :
∑d

i=1wi = 1
}
⊂ W).

Dans ce cas, la métrique de performance est la variance réalisée future et l’investisseur cherche
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à ce qu’elle soit la plus petite possible. En posant RCH,tn = 1
H

∑H
k=1 rtn+kr

>
tn+k (matrice de

covariance réalisée), les variances réalisées associées au portefeuille minimum variance (0.8.2)
réalloué d’une part avec la meilleure estimée de matrice de covariance (0.8.1), et d’autre part
avec une matrice de covariance benchmark Vref, s’écrivent comme

{
RN,H :=

∑N
n=1 mv(cRCH,tn)>RCH,tn mv(cRCH,tn),

Rref
N,H :=

∑N
n=1 mv(Vref)

>RCH,tn mv(Vref).

Notre objectif est de montrer qu’avec grande probabilité, RN,H < Rref
N,H , d’autant plus sûrement

que N crôıt. Intuitivement/asymptotiquement, on a bien Rref
N,H −RN,H ≥ 0:

• Introduisons les termes de variance conditionnelle:{
cRVN,H :=

∑N
n=1 mv(cRCH,tn)>cRCH,tn mv(cRCH,tn),

cRV ref
N,H :=

∑N
n=1 mv(Vref)

>cRCH,tn mv(Vref).
(0.8.3)

Par définition du portefeuille de variance minimum, on a toujours cRVN,H ≤ cRV ref
N,H .

• De plus, comme E [RCH,tn |Ftn ] = cRCH,tn , les différence RN,H−cRVN,H et Rref
N,H−cRV ref

N,H

sont des martingales centrées. Donc:

1

N
(Rref

N,H −RN,H) =
1

N
(Rref

N,H − cRV ref
N,H)− 1

N
(RN,H − cRVN,H)︸ ︷︷ ︸

1
N
×martingales centrée≈0

+
1

N
(cRV ref

N,H − cRVN,H)︸ ︷︷ ︸
≥0

.

Question: Peut-on prouver via une inégalité de concentration que la probabilité de RN,H <
Rref
N,H tend rapidement vers 0 avec le nombre de rebalancement? Comme on se place dans le

cadre où Vt donc rt a peu de moments (polynomial uniquement, jusqu’à l’ordre pmax), il est
difficile d’obtenir des bornes décroissant très vite.

En se basant sur des contrôles de moments d’ordre p de somme d’incréments martingale
(inégalité de Burkholder [HH80, Theorem 2.10]) et de somme de fonctions de processus ergodique
(inégalité de Fort-Moulines [FM03, Proposition 2]), sous de petites hypothèses techniques sur
Vt, on établit le résultat suivant: pour tout H ∈ N∗ horizon d’investissement, en notant `H :=

E
[
cRV ref

N,H−cRVN,H
N

]
l’écart de performance, il existe une constante C > 0 dépendant de H, pmax,

d et de Vt telle que, pour tout N ∈ N∗, nombre rebalancements du portefeuille, on a:

P
(
RN,H > Rref

N,H

)
≤ C

`pmax

H

H
pmax

2

N
pmax

2

.

Application avec un modèle GARCH-CCC. En supposant un modèle paramétrique sur
Vt type GARCH-Corrélation Conditionnelle Constante et en supposant les paramètres du modèle
connus, on peut estimer la matrice de covariance optimale par technique de Monte Carlo.
Numériquement, l’évolution de la probabilité de succès tend bien vers 0 avec le nombre de
rebalancements des portefeuilles N (cf Figure 16).
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Figure 16 – P̂(RN,H>R
∞
N,H), pour H = 1 (rouge), H = 5 (bleu) and H = 21 (vert) en fonction

du nombre de rebalancement N , en échelle log-log, pour des paramètres GARCH tels que d = 50
et pmax = 5.05.

Horizon d’investissement limite. Quand l’horizon d’investissement H tend vers l’infini,
la matrice meilleure estimée coincide avec la matrice de covariance stationnaire. En pratique,
on observe que lorsque l’horizon d’investissement est de l’ordre de grandeur du multiple du
temps de demi-vie du processus, les performances du portefeuille avec covariance estimée se
dégradent jusqu’à un horizon où le choix entre les matrices de covariance produit des perfor-
mances équitables: l’investisseur est alors indifférent entre la matrice stationnaire ou meilleure
estimée.

Un problème non traité ici est la prise en compte des incertitudes paramétriques du modèle.
Nous donnons dans la partie suivante une méthode pour traiter les incertitudes paramétriques.

0.9 Traitement des incertitudes paramétriques pour
l’optimisation de portefeuille: une approche par
décomposition du chaos via l’algorithme UQSA

Comprendre comment les incertitudes paramétriques perturbent le résultat d’un problème
d’optimisation est un problème fondamental. Le domaine de la quantification des incertitudes
est l’ensemble des techniques qui permettent de quantifier cet impact.

Supposons un modèle paramétrique sur les entrées du problème, avec un paramètre incertain
θ dont on suppose qu’on peut modéliser l’incertitude via une loi π: les entrées V suivent la loi
µ(θ,dv) et θ ∼ π. On cherche une représentation de la solution du problème d’optimisation en
fonction de θ. En supposant la fonction de carré intégrable selon π, pour toute base orthonormale
de polynômes {Bi}i∈N, on peut exprimer la solution du problème d’optimisation z∗(θ) via sa
projection sur cette base de polynômes:

z∗(θ) =
∑
i≥0

uiBi(θ), ∀θ ∈ Θ ⊂ Rp, et

∫
Θ
Bi(θ)Bj(θ)π(dθ) =

{
0 si i 6= j,
1 sinon.

(0.9.1)

C’est ce qu’on appelle la décomposition en polynôme du chaos, et c’est une des méthodes les plus
utilisées en quantification d’incertitudes [LMK10]. En pratique, on évalue une fome tronquée de
(0.9.1), car l’erreur de troncation tend généralement vite vers 0 (

∑
i>m|ui|2 = O(m−δ) avec δ

ordre de différentiabilité de la fonction z∗).

L’algorithme UQSA [CFGS20] permet une estimation progressive des coefficients {ui}i≤mk ,
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mk croissant, lorsque le problème se met sous la forme

z∗(θ) solution de E [H(z∗(θ), Vθ, θ)] =

∫
V

H(z, v, θ)µ(θ,dv) = 0, π − p.p., (0.9.2)

Dans le contexte financier, on s’est intéressé à deux cas d’application de ces techniques: le
traitement des incertitudes pour le ratio de Sharpe et pour l’allocation de portefeuille lorsque
les taux d’accroissement financiers suivent une loi paramétrique incertaine.

Ratio de Sharpe. Le ratio de Sharpe [Sha66] rend compte de la rentabilité d’un portefeuille
renormalisée par son risque. En notant R le rendement en excès du taux sans risque du porte-
feuille, il s’écrit:

SR =
E [R]√
Var [R]

.

Une difficulté pour appliquer l’approche UQSA a été de trouver un moyen d’exprimer le ratio
de Sharpe comme solution d’un problème de la forme (0.9.2). Cette difficulté a été surmontée
grâce à l’astuce suivante. En prenant deux copies indépendantes et de même loi R, R̃, on peut
exprimer le carré du ratio de Sharpe comme le zéro d’une fonction:

SR2Var [R]− E [R]2 = E

[
SR2 (R− R̃)2

2
−RR̃

]
= 0.

Pour nos applications, on s’est intéressé à l’évolution du ratio de Sharpe lorsque la corrélation
entre les actifs est incertaine (avec une distribution paramétrique calquée sur la distribution
empirique représentée via son quantile plot Figure 15). On illustre l’intérêt d’utiliser UQSA
avec un nombre croissant de coefficients estimés en fonction des itérations en Figure 17: l’erreur
totale est plus faible avec mk = bk + 1c0.3 croissant plutôt qu’à mk fixe.

Figure 17 – Évolution de l’erreur totale sur l’approximation du ratio de Sharpe dans le cas
mk = bk + 1cb croissant (ligne bleue) versus mk = m ∈ {10, 30} (lignes pointillées) en fonction
du nombre d’itérations k.

Allocation de portefeuille. On s’intéresse à la quantification des incertitudes pour
l’allocation de portefeuille donné par arg minw∈W U(w) où U est convexe. Sans contraintes
(W = Rd), le problème peut généralement facilement se mettre sous la forme (0.9.2), en prenant
le gradient de U et en essayant de l’exprimer comme une espérance. On peut alors appliquer
l’algorithme UQSA sur ce problème. On aimerait traiter du cas où W correspond à l’ensemble
des portefeuilles à composantes positives (achat uniquement) et de somme 1:

W≥0 = {w ∈ Rd : wi ≥ 0,

d∑
i=1

wi = 1}.
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Avec contraintes, on se heurte à deux difficultés:

1. La solution du problème de minimisation n’est pas directement le zéro du gradient de U
(il faut introduire des multiplicateurs de Lagrange et regarder les conditions de KKT du
problème),

2. Résoudre näıvement le problème via un algorithme d’approximation stochastique ne per-
met pas de de rester dans W≥0.

On propose de passer par un changement de variable: on introduit ` : Rd−1 → W

tel que `(y) = w et de résoudre le problème en y ∈ Rd−1. De nombreuses techniques
dites d’analyse de données compositionnelles [PGB11] permettent de passer de Rd−1 dans
W>0 = {w ∈ Rd : wi > 0,

∑d
i=1wi = 1}. Typiquement, la transformation log-ratio: en prenant

wi = eyi

1+
∑d−1
j=1 e

yj
, pour i = 1, . . . , d − 1, wd = 1

1+
∑d−1
j=1 e

yj
. Dans cette thèse, on a confectionner

une nouvelle transformation permettant de couvrir le cas wi = 0 qu’on appelle la transformation
intégrale et qui repose sur l’idée suivante: étant donnée f : R → R+ telle que

∫
R f = 1, alors

on peut interpréter les wi comme des portions de l’intégrale de f . En introduisant la fonction
positive p : R→ R+ telle que p(0) = 0, il existe donc y ∈ Rd−1 tel que:

w1 =

∫ y1

−∞
f(t)dt,

wi =

∫ y1+p(y2)+···+p(yi)

y1+p(y2)+···+p(yi−1)
f(t)dt,

wd =

∫ ∞
y1+p(y2)+···+p(yd)

f(t)dt.

y1 p(y2) + y1 p(yd−1) + . . . + y1
0.00

0.05

0.10

0.15

0.20

0.25

0.30
w1
w2
wd

Sont étudiés les cas où f correspond à la dérivée de la fonction sigmoid, et un cas à support
compact, avec f prise comme la fonction de distribution d’une loi beta(2, 2).

Une limite de cette approche est que le problème est bien posé seulement dans le cas non
saturé, c’est-à-dire lorsque w prend ses valeurs dans l’intérieur du simplexe W>0. Dans le cas
où w admet des composantes nulles, la formulation en problème (0.9.2) peut admettre plusieurs
solutions, suggérant que cette approche ne peut être utilisée telle qu’elle dans ces cas.

0.10 Optimisation de portefeuille avec distribution cible: une
approche via mesure de divergence basée sur les théories
du kernel et du transport optimal

Changement de paradigme. Jusqu’ici, on s’est concentré dans nos applications sur le
paradigme moyenne-variance, et on a proposé des manières de quantifier ou de gérer les in-
certitudes, que ce soit par une meilleure estimation des premiers moments (approche meilleure
estimée de la matrice de covariance), ou par la quantification d’incertitude (pour voir la distri-
bution du portefeuille ou de la performance sachant les incertitudes paramétriques). C’est en
effet le paradigme le plus utilisé dans la construction de portefeuille, bien qu’il soit reconnu pour
créer des portefeuilles instables et très sensibles aux erreurs d’estimation des paramètres.
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Or en pratique, les gestionnaires d’actifs ont de plus en plus tendance à délaisser les approches
type utilité moyenne-variance pour se tourner vers des fonctions objectives ou des méthodes
d’optimisation de portefeuille centrées sur la gestion du risque du portefeuille, par exemple en
incluant les moments d’ordre 4 dans la fonction objective pour diminuer la kurtosis en excès
du portefeuille [MZ10], ou en passant par des approches type optimisation de portefeuille avec
gestion du risque par classe d’actifs [MRT10a, MRT10b].

L’approche divergence minimum. C’est dans cette optique d’une meilleure prise en compte
des moments d’ordres élevés du portefeuille que s’inscrit l’approche du portefeuille” minimum di-
vergence “avec distribution cible [CW12, Las19, GLLN20]: étant donné D mesure de divergence,
le portefeuille minimum divergence est donné par

w∗ = arg min
w∈W

D (Pw,PT ) (0.10.1)

où P = w>R ∼ Pw désigne la distribution du portefeuille, et PT la distribution cible de
l’investisseur. En pratique, on suppose avoir accès à des rendements passés {rn}n∈[N ], et on
peut estimer de façon empirique, ou paramétrique, la fonction objective (0.10.1). Contraire-
ment aux auteurs cités, nous reprenons cette approche avec une volonté de ne pas imposer de
modèle paramétrique sur les rendements, et on aimerait autant que possible pouvoir expliciter
la fonction objective en fonction de PT :

w∗ = arg min
w∈W

DPT

(
{w>rn}n∈[N ]

)
.

Questions. Dans ce contexte, plusieurs questions se posent: quelle mesure de divergence
(c’est-à-dire distance entre la distribution du portefeuille et la distribution cible) choisir, quelle
distribution cible considérer, et quelle méthode d’optimisation serait adéquate pour ce problème
généralement non convexe?

Choix de divergence et de distribution. Nous nous sommes concentrés sur un choix de dis-
tributions paramétriques type Gaussienne généralisée (distribution sur laquelle on peut spécifier
le niveau de kurtosis, ou moment d’ordre 4, ce qui permet de quantifier l’épaisseur de queue
de la distribution cible et viser une kurtosis moins élevée que la loi Gaussienne) et Gaussienne
asymétrique (sur laquelle on peut bouger le niveau d’asymétrie, et cibler une asymétrie plus pos-
itive qu’empiriquement observée sur les rendements), et sur des mesures de divergence basées
sur les noyaux et sur le transport optimal (N.T.O.). En effet, on donne dans cette thèse une
formulation explicite de ces mesures de divergence en fonction de la distribution cible, quand
cette dernière possède une fonction de distribution explicite et paramétrique, ce qui avait déjà
été fait en partie dans des problèmes de minimisation de divergence comme méthode alternative
aux méthodes type maximum de vraissemblance pour estimer cette fois des paramètres d’une
distribution cible donnée [BBD+19, BBDG19].

En particulier, nous avons considéré comme mesure de divergence la discrépance maximale
de la moyenne (ou Maximum Mean Discrepancy (MMD)), qui pour une fonction noyau et
deux distributions données mesure la distance entre les représentations de la moyenne de ces
distributions (ou mean embedding) dans l’espace de Hilbert associé au noyau. Nous démontrons
que l’estimation de la MMD avec fonction noyau non bornée (utilisé en pratique dans des
applications financières [BF19]) a le même taux de convergence que les estimateurs de MMD
avec noyaux bornés.

Deux autres mesures de divergence sont considérées dans ce travail: la discrépance de Stein
avec noyau (Kernel Stein Discrepancy (KSD)) et la distance de Wasserstein. Elles s’écrivent de
façon explicite en fonction de la dérivée du log de la fonction de distribution cible pour la KSD,
et en fonction de l’inverse de la fonction de répartition cible pour la distance de Wasserstein.



Intuition et comportement empirique de ces portefeuilles. Les mesures de divergences

choisies satisfont D (Pw,PT ) = 0 si Pw
(d)
= PT et sont strictement positives sinon. En pratique, il

n’existe généralement pas de w tel que les distributions cöıncident exactement. La distribution
des rendements initiaux R présentant des queues plus épaisses que la distribution cible par
exemple. On a regardé empiriquement le cas où certaines composantes ont des queues plus
épaisses que les autres. Intuitivement, on s’attendrait à ce que l’approche minimum divergence
réduise systématiquement le poids du portefeuille sur cette composante. Or si la variance de
cette composante est très élevée, ça n’est pas forcément le cas.

Optimisation sur données financières. Nous avons testé notre approche sur des données
financières (Librairie Kenneth French [Fre21]). Pour minimiser nos mesures de divergence, nous
avons eu recours à la méthode d’entropie croisée [RK04]. Cette méthode consiste à générer
aléatoirement des allocations w dans l’ensemble W et à se concentrer sur les régions de W qui
minimisent la fonction objective au fur et à mesure des itérations, par simple évaluation de la
fonction à minimiser à l’ordre 0 (pas de calculs de dérivés). Cette méthode est notamment
adaptée aux problèmes non convexes. Nos résultats empiriques indiquent qu’une distribution
cible à queues moins épaisses et plus positivement asymétriques a un impact sur les moments de
plus grand ordre du portefeuille, et que la MMD offre de bonnes performances sur nos données
de test.

Figure 18 – Distribution des rendements de portefeuilles basés sur des approches tradition-
nelles (variance minimum, Sharpe ratio maximum) versus approche MMD minimum avec cible
skew Gaussienne. La distribution du portefeuille divergence minimum est légèrement moins
asymétrique et leptokurtique que les portefeuilles traditionnels.

En pratique, l’approche donne de meilleurs résultats en période de conditions économiques
normales. Une approche qui peut être envisagée est de consider la fonction divergence entre
portefeuille empirique et cible pourrait comme un terme de régularisation ou sous la forme
d’une contrainte d’approches plus traditionnelles.
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CHAPTER 1

CONCENTRATION INEQUALITIES FOR
α-EXPONENTIAL RANDOM FOURIER
FEATURES (RFFS) ON DERIVATIVES

Note. This chapter corresponds to an article written with E. Gobet and Z. Szabó. It has
been published in Journal of Machine Learning Research (JMLR), 21:1–37, 2020, under the
title “Orlicz Random Fourier Features”.

Abstract. Kernel techniques are among the most widely-applied and influential tools in ma-
chine learning with applications at virtually all areas of the field. To combine this expressive
power with computational efficiency numerous randomized schemes have been proposed in the
literature, among which probably random Fourier features (RFF) are the simplest and most
popular. While RFFs were originally designed for the approximation of kernel values, recently
they have been adapted to kernel derivatives, and hence to the solution of large-scale tasks
involving function derivatives. Unfortunately, the understanding of the RFF scheme for the
approximation of higher-order kernel derivatives is quite limited due to the challenging polyno-
mial growing nature of the underlying function class in the empirical process. To tackle this
difficulty, we establish a finite-sample deviation bound for a general class of polynomial-growth
functions under α-exponential Orlicz condition on the distribution of the sample. Instantiating
this result for RFFs, our finite-sample uniform guarantee implies a.s. convergence with tight
rate for arbitrary kernel with α-exponential Orlicz spectrum and any order of derivative.

1.1 Introduction

Kernel machines [TC04, SC08, PR16] form one of the most fundamental tools in machine learning
and statistics with a wide range of successful applications. The impressive modelling power and
flexibility of kernel techniques in capturing complex nonlinear relations originates from the
richness of the underlying Hk function class called reproducing kernel Hilbert space (RKHS,
[Aro50]) associated to a k : X × X → R kernel. Kernels extend the classical notion of inner
product on X = Rd by assuming the existence of a φ : X→ H feature map to a Hilbert space H

such that k(x,x′) = 〈φ(x), φ(x′)〉H for all x,x′ ∈ X. This simple equality (also called the kernel
trick) forms the basis of kernel techniques and enables one to compute inner products implicitly
without direct access to the feature of the points.
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In applications one is often given {xn}Nn=1 samples and is facing with an optimization problem
expressed in terms of function values and derivatives1

min
f∈Hk

l

(
{∂pf(xn)}n∈[N ]

p∈Dn
, ‖f‖2Hk

)
, (1.1.1)

where [N ] = {1, . . . , N}, Dn ⊂ Nd, N := {0, 1, . . .}, l : R1+
∑
n∈[N ] #Dn → R is a loss function,

#Dn is the cardinality of the set Dn, ∂pf(xn) := ∂p1+...+pdf(xn)

∂
p1
x1
···∂pdxd

and the RKHS Hk is char-

acterized by f(x) = 〈f, k(·,x)〉Hk (∀x ∈ X,∀f ∈ Hk) and k(·,x) ∈ Hk (∀x ∈ X).2 The first
property of RKHSs is called the reproducing property, the second one describes basic elements
of Hk; combining the two properties makes the canonical feature map and feature space explicit:
k(x,x′) = 〈φ(x), φ(x′)〉Hk where φ(x) = k(·,x) ∈ Hk.

For example by taking the quadratic loss, Tikhonov regularization, only function values
(Dn = {0},∀n ∈ [N ]) and λ > 0, (1.1.1) reduces to kernel ridge regression

min
f∈Hk

1

N

∑
n∈[N ]

[f(xn)− yn]2 + λ ‖f‖2Hk .

Alternatively, one can get back Hermite learning with gradient data [Zho08, SGZ10] by addi-
tionally including first-order derivatives

min
f∈Hk

1

N

∑
n∈[N ]

(
[f(xn)− yn]2 +

∥∥f ′(xn)− y′n
∥∥2

2

)
+ λ ‖f‖2Hk , λ > 0

where f ′(x) = [∂e1f(x); . . . ; ∂edf(x)] ∈ Rd is the derivative of f , ej ∈ Rd is the jth canonical ba-

sis vector, ‖·‖2 is the Euclidean norm and Dn =
{

0, {ej}dj=1

}
(n ∈ [N ]). Further examples with

function derivatives are semi-supervised learning with gradient information [Zho08], nonlinear
variable selection [RSM+10, RVM+13], learning of piecewise-smooth functions [LLB12], multi-
task gradient learning [YWC12], structure optimization in parameter-varying ARX (autoregres-
sive with exogenous input) processes [DTPL14], or density estimation with infinite-dimensional
exponential families [SFG+17].

An appealing property of RKHSs is that their geometry makes the optimization problem
(1.1.1) defined over function spaces computationally tractable. Indeed, assuming that l is in-
creasing in its last argument, the ∂pf(x) =

〈
f, ∂p,0k(·,x)

〉
Hk

derivative-reproducing property

of kernels and the representer theorem [Zho08] guarantee that the solution of (1.1.1) has a
finite-dimensional parameterization f(·) =

∑
n∈[N ]

∑
p∈Dn an,p∂

p,0k(·,xn) (an,p ∈ R) and it is
sufficient to solve

min
a
l


 ∑
m∈[N ]

∑
q∈Dm

am,q∂
p,qk(xn,xm)


n∈[N ]
p∈Dn

,
∑

n,m∈[N ]
p∈Dn,q∈Dm

an,pam,q∂
p,qk(xn,xm)

(1.1.2)

determined by the ∂p,qk(x,y) := ∂
∑d
i=1(pi+qi)k(x,y)

∂
p1
x1
···∂pdxd∂

q1
y1
···∂qdyd

kernel derivatives; a = (an,p)n∈[N ],p∈Dn ∈

R
∑
n∈[N ] #Dn .
Though kernel methods show impressive modelling power at numerous areas, due to the

implicit computation of feature similarities, this flexibility comes with a computational price.
Several techniques have been developed in the literature to mitigate this computational challenge

1To have derivatives, in the sequel we assume that X = Rd.
2We use the k(·,x) shorthand to denote the function y ∈ X 7→ k(y,x) ∈ R while keeping x ∈ X fixed.
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such as incomplete Cholesky factorization [BJ02], sub-sampling schemes [WS01, DM05, RCR17],
sketching [AM15, YPW17], random Fourier features (RFF, [RR07, RR08]), their quasi-Monte
Carlo [YSAM14], memory-efficient [LSS13, DXH+14, ZMDR19], orthogonal [YSC+16] or struc-
tured [BCC+17] variants.

In this paper we study the RFF technique which is probably the conceptually simplest and
most influential approach.3 By the Bochner theorem [Rud90] a continuous, bounded, shift-
invariant kernel k : Rd × Rd → R can be written as the Fourier transform of a (finite) measure
Λ, called the spectral measure

k(x,y) =

∫
Rd

cos
(
ω>(x− y)

)
dΛ(ω). (1.1.3)

The RFF method uses this representation of k to provide an explicit low-dimensional feature
map approximation for the kernel values and f

k(x,x′) ≈
〈
λ(x), λ(x′)

〉
R2M , f̂w(x) = 〈w, λ(x)〉R2M , (1.1.4)

where the integral representation (1.1.3) with respect to the measure Λ is replaced by an av-
erage over random points; hence the random Fourier feature naming. As a result, one can
estimate w by leveraging fast linear primal solvers. The idea has been successfully used in
various contexts including differential privacy preserving [CMS11], fast function-to-function re-
gression [ONP+15], learning message operators in expectation propagation [JGH+15], causal
discovery [LPMST15, SZV19], independence testing [ZFGS17], prediction and filtering in dy-
namical systems [DHB+17], bandit optimization [LJD+18], or estimation of Gaussian mixture
models [KBGP18].

Similarly to (1.1.4), one can consider RFF-based approximation of kernel derivatives when
solving optimization tasks involving function derivatives [see (1.1.1) and (1.1.2)]. This is
the strategy followed for example by [SSL+15] to fit distributions belonging to the infinite-
dimensional exponential family, which boils down to an optimization problem with third-order
kernel derivatives [SFG+17, Theorem 5].

The focus of this chapter is to study the approximation quality of the RFF-based kernel-
derivative approximation∥∥∥∂̂p,qk − ∂p,qk

∥∥∥
S

:= sup
x,y∈S

∣∣∣∂p,qk(x,y)− ∂̂p,qk(x,y)
∣∣∣ ,

where S ⊂ Rd is a compact set. Despite the large number of successful RFF applications,
quite little is understood theoretically on its approximation quality. Below we provide a brief
summary with particular focus on optimal guarantees and results related to kernel derivatives.

• Kernel values (p = q = 0): The uniform finite-sample bounds [RR07, SS15b] have recently
been improved [SS15a] exponentially in terms of the diameter of the compact set SM (|SM |)

arriving to4
∥∥k − k̂∥∥

SM
= Oa.s.

(√
log |SM |∨

√
logM√

M

)
from

∥∥k − k̂∥∥
SM

= Op
(
|SM |

√
logM√
M

)
, where

∨ denotes the maximum. The result shows that the diameter of the set SM can grow at a
|SM | = eo(M) rate while still getting a consistent estimate; this rate is optimal as shown in the
characteristic function literature [CT83].

• Kernel ridge regression: RFFs have been settled in kernel ridge regression by [RR17] via

showing that using M = o(N) = O
(√

N logN
)

random Fourier features is sufficient to get

O
(

1/
√
N
)

generalization error. Under additional γ-capacity (γ ∈ [0, 1]) and r-range space

3[RR07] won the 10-year test-of-time award at NIPS-2017 as a recognition of the influence of RFFs.
4The classical O(·) notation up to logarithmic factors is denoted by Õ(·); the extension of O(·) in almost sure

and convergence in probability sense are Op(·) and Oa.s.(·).
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conditions (r ≥ 1
2), the same authors showed that even faster, minimax optimal O

(
N
− 2r

2r+γ

)
rates are achievable with M = o(N) = O

(
N

1+γ(2r−1)
2r+γ logN

)
RFFs. The result improves the

originally proved guarantee [RR08] holding under the pessimistic M = O(N) setting. The
sufficiency of similar sub-linear number of RFFs with minimax guarantees was also established in
the kernel least squares setting when applying mini-batched stochastic gradient descent [CRR18].
Recently the analysis of [RR17] has been further sharpened (in terms of the number of required
RFFs, [LTOS19]) by leveraging the notion of effective degrees of freedom.

• Classification with 0-1 loss: In the classification setting with the 0-1 loss and RKHSs,

[GTS18] proved that M = o(N) = Õ
(
N

2
2+c

)
optimized RFF features—optimized in the sense

of [Bac17]—are sufficient to achieve a learning rate of Õ
(
N−

c
2+c

)
provided that the spectrum

of the integral operator associated to the kernel decay polynomially at the rate of λi = O (i−c)
with c > 1.4 The same authors showed that the learning rate can be improved to Õ

(
N−1

)
with

M = Õ
(
lnd(N)

)
RFF-s in case of sub-exponential spectrum, where d denotes the dimension of

the inputs in the classification.

• Kernel PCA: [SS18] have proved that the statistical performance of kernel principal compo-
nent analysis (KPCA) can be matched by M = O(N2/3) (polynomial decay) or M = O(

√
N)

(exponential decay) RFFs, depending on the eigenvalue decay of the covariance operator associ-
ated to the kernel. [UMMA18] derived a similar bound for a streaming KPCA algorithm under
exponential spectrum decay condition.

• Kernel derivatives: If the support of the spectral measure associated to k is either bounded
or it satisfies the Bernstein condition

∫
Rd

∣∣∣∏d
j=1 ω

pj+qj
j

∣∣∣n
(σp,q)n

dΛ(ω) ≤ n!

2
Kn−2, n = 2, 3, . . . (1.1.5)

with some constant K ≥ 1 and σp,q =

√∫
Rd

∣∣∣∏d
j=1 ω

pj+qj
j

∣∣∣2 dΛ(ω), then

∥∥∥∂̂p,qk − ∂p,qk
∥∥∥
SM

= Oa.s.

(√
log |SM |∨

√
logM√

M

)

rate is achievable as shown by [SS15a] and [SS19], respectively. As a practical example, one
can consider for instance the previously mentioned infinite-dimensional exponential (IE) family
fitting problem where the estimation boils to solving a linear equation system with coefficients
made of third-order kernel derivatives (|p + q| = 3). The IE family is defined by a kernel for
which a common choice is the Gaussian; this implies a Gaussian spectrum Λ. Unfortunately, in
this case the bounded support condition is not met. Similarly, the Bernstein condition (1.1.5)
only holds for |p+q| ≤ 2 with the Gaussian kernel, as it can be verified [SS19, Remark ’Higher-
order derivatives’ in Section 3] by making use of the analytical expressions for the absolute
moments of the Gaussian spectrum. These limitations (summarized in Table 1.1) of the popular
random Fourier features technique motivate our work and the study of widely-applied kernels
with unbounded spectral support for the RFF approximation of high-order kernel derivatives. A
consequence of our new estimates in Theorem 1.1 is that the a.s. rates previously obtained under
stringent conditions (on p,q or Λ) are now available for any p,q and any spectral measure Λ
with α-exponential moments (as defined in (1.1.6), α > 0). Because Bernstein condition implies
exponential moments, our result includes the one given by [SS19].

Particularly, assuming additional smoothness on the bounded shift-invariant kernel, its
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Assumption on the spectral measure Conditions Convergence rate

on p,q for
∥∥∥∂p,qk − ∂̂p,qk

∥∥∥
SM

2nd moment exists p = q = 0 Oa.s.
(√

log |SM |∨
√

logM√
M

)
Ref: [SS15a, Th. 1]

bounded support any p,q Oa.s.
(√

log |SM |∨
√

logM√
M

)
Ref: [SS15a, Th. 4]

Bernstein condition small p,q Oa.s.
(√

log |SM |∨
√

logM√
M

)
Ref: [SS19]

Orlicz condition any p,q Oa.s.
(√

log |SM |∨
√

logM√
M

)
Ref: now

Table 1.1 – Summary of RFF guarantees on kernel values and derivatives. Last line: it includes
any measure Λ with a finite α-exponential moment (for some α, c > 0, Eω∼Λ

(
ec‖ω‖

α
2
)
< +∞),

like the Gaussian, the inverse multiquadratic, or the sech kernel, see Corollary 1.3.2. For further
examples see Table 1.2.

derivative satisfies a representation similar to (1.1.3):

∂p,qk(x,y) =

∫
Rd

[
d∏
j=1

ω
pj
j (−ωj)qj

]
c(
∑d
i=1 |pi+qi|)

(
ω>(x− y)

)
︸ ︷︷ ︸

=:fx−y(ω)

dΛ(ω),

where cn is the nth derivative of the cos(·) function. The primary difficulty is to handle the
polynomial growing nature of the

F = {ω 7→ fx−y(ω) : x,y ∈ S}

function class which controls the error
∥∥∂̂p,qk − ∂p,qk

∥∥
S

. We tackle this challenge by imposing
the finiteness of the α-exponential Orlicz norm of the spectral measure (Λ) associated to the
kernel, in other words

∃α > 0, c > 0 such that Eω∼Λ

(
ec‖ω‖

α
2

)
< +∞. (1.1.6)

Kernels with α-exponential Orlicz spectrum include the popular Gaussian, the inverse multi-
quadric, or the sech kernel; for further examples see Table 1.2 and Remark 2(ii). We establish
the consistency and prove finite-sample uniform guarantees of the resulting Orlicz RFF scheme
for the approximation of kernel derivatives at any order, as it is briefly illustrated in the last
line of Table 1.1.

To allow this level of generality, we prove a new finite-sample deviation bound for the em-
pirical process related to a general class of functions f with polynomial growth of the sample
Xm. The distribution of the latter is assumed to have finite α-exponential Orlicz norm and
consequently, the random variables f(Xm) belong to a γ-exponential Orlicz space with index
γ smaller than 1. For deriving such deviation bounds, we have been inspired by the work of
[Ada08] which elegantly combines the [KR05] inequality for truncated variables, the Hoffman-
Jorgensen inequality to deal with sum of residual of truncated variables, and a [Tal89] inequality
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in γ-exponential Orlicz norms for sum of centered random variables. However, our work signif-
icantly differs from that of [Ada08]. First, our aims are different: [Ada08] focuses on getting
large deviation bounds while we are looking for all-scale deviation bounds, which leads to a
different analysis (in the application of Klein-Rio inequalities for instance). Second, we are
concerned by getting upper bounds with quite explicit control. In particular, this requires a
careful treatment of Orlicz-type estimates since the function Ψγ(x) = ex

γ −1 defining the Orlicz
space is not convex for γ < 1 (see Figure 1.1), as opposed to the usual case; see the results in
Section 1.4. We also derive sharp estimates from the Dudley entropy integral bound (Theorem
1.4), which enables us to get a tight dependency w.r.t. the diameter of the parameter space.
Furthermore, we clarify the use of the Talagrand inequality (Theorem 1.2); in [Ada08, Theorem
5] it is seemingly invoked for supremum over functions while it is related to sum over centered
random variables. With this novel finite-sample deviation bound, the analysis of Orlicz RFFs
readily follows, using optimized inequalities.

The paper is structured as follows. Our problem is formulated in Section 1.2. The main result
on the approximation quality of kernel derivatives with random Fourier features is presented in
Section 1.3. Properties of the Orlicz norm are summarized in Section 1.4. Proofs are provided
in Section 1.5. The appendix contains additional technical details (Section 1.A), the definition
of special functions (Section 1.B) and external statements used in the proofs (Section 1.C).

1.2 Problem formulation

In this section we formally define our problem after introducing a few notations.
Notations: Let the set of natural, real and complex numbers, positive integers, positive

reals, non-negative reals and non-positive integers be denoted by N = {0, 1, . . .}, R, C, Z+ =
{1, 2, . . .}, R+ = (0,∞), R≥0 = [0,∞) and Z≤0 = {0,−1,−2, . . .}, respectively. The positive
value of x ∈ R is denoted by (x)+ = x ∨ 0. The Gamma function is Γ(t) =

∫∞
0 xt−1e−xdx for

t ∈ C\Z≤0. For x ∈ R the secant function is sech(x) = 1
cosh(x) . Let aS + b = {as + b : s ∈ S}

where S ⊂ R and a, b ∈ R. For an N ∈ Z+, [N ] = {1, . . . , N}. Let the nth derivative of the cos(·)
function (n ∈ N) be cn = cos(n). For multi-indices p,q ∈ Nd and ω ∈ Rd let |p| =

∑d
j=1 pj ,

ωp =
∏d
j=1 ω

pj
j , ∂pf(x) = ∂|p|f(x)

∂
p1
x1
···∂pdxd

, ∂p,qg(x,y) = ∂|p|+|q|g(x,y)

∂
p1
x1
···∂pdxd∂

q1
y1
···∂qdyd

. The diameter of a compact

set T ⊂ Rd is denoted by |T | = supx,y∈T ‖x− y‖2 < ∞. Let S ⊂ Rd be a Borel set. Let
S∆ = S − S = {a − b : a ∈ S, b ∈ S}. The set of Borel probability measures on S is written as
M+

1 (S). Let the Banach space of real-valued, r-power µ-integrable functions on S (1 ≤ r <∞)

be Lr(S, µ), with ‖f‖Lr(S,µ) =
[∫
S |f(x)|rdµ(x)

] 1
r . We use the shorthand µf =

∫
S f(x)dµ(x)

where µ ∈M+
1 (S) and f ∈ L1 (S, µ). The product measure of µ1, . . . , µM ∈M+

1 (S) is ⊗Mm=1µm;
specifically when all the components coincide we use the shorthand µM = ⊗m∈[M ]µ. The

empirical measure is PM = 1
M

∑M
m=1 δXm with δX being the Dirac measure concentrated on

X and X1, . . . , XM ∼ ⊗Mm=1µm. Let (rn)n∈N be a positive sequence. The boundedness of Xn
rn

almost surely is denoted by Xn = Oa.s.(rn). Let n ∈ R+. We say that an f : Rd → R function is

of polynomial growth of order n (shortly f ∈ FP(n)) if supx∈Rd
|f(x)|

1+‖x‖n2
<∞; FP = ∪n∈R+FP(n).

Let us assume that Ψ : R≥0 → R≥0 is a continuous, strictly increasing mapping, Ψ(0) = 0
and limx→∞Ψ(x) = ∞. The set of Rd-valued random variables having finite Ψ-Orlicz norm

is defined as LΨ =
{

X : ‖X‖Ψ := inf
{
c > 0 : EΨ

(
‖X‖2
c

)
≤ 1
}
< +∞

}
. Throughout the paper

we will be particularly interested in (see Figure 1.1)

Ψα : x ∈ R≥0 7→ ex
α − 1 ∈ R≥0 (α > 0),

in other words in random variables having finite α-exponential Orlicz norm. The fact X ∈ LΨα

is equivalent to the existence of an s > 0 constant such that E
[
es‖X‖

α
2

]
<∞. Random variables
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Figure 1.1 – Ψα for different α values.

X ∈ LΨ2 and X ∈ LΨ1 are called sub-Gaussian and sub-exponential, respectively. For f ∈ FP
and random variable X having α-exponential moment (X ∈ LΨα) Ef(X) <∞. Special functions
are defined in Table 1.4.

We proceed by formally defining our task. Let k : Rd × Rd → R be a continuous, bounded
and shift-invariant kernel. Then, by the Bochner theorem [Rud90] one can assume w.l.o.g. the
existence of a Λ ∈M+

1

(
Rd
)

spectral measure such that

k(x,y) =

∫
Rd

cos
(
ω>(x− y)

)
dΛ(ω)

=

∫
Rd

cos
(
ω>x

)
cos
(
ω>y

)
+ sin

(
ω>x

)
sin
(
ω>y

)
dΛ(ω).

Let p,q ∈ Nd and assume that
∫
Rd |ω

p+q|dΛ(ω) < ∞. In this case ∂p,qk(x,y) exists, and by
the dominated convergence theorem one arrives at

∂p,qk(x,y) =

∫
Rd
∂p cos

(
ω>x

)
∂q cos

(
ω>y

)
+ ∂p sin

(
ω>x

)
∂q sin

(
ω>y

)
dΛ(ω).

The integral can be estimated by Monte-Carlo technique replacing Λ with ΛM = 1
M

∑M
m=1 δωm ,

(ωm)m∈[M ]
i.i.d.∼ Λ:

∂̂p,qk(x,y) =
1

M

M∑
m=1

[
∂p cos

(
ω>mx

)
∂q cos

(
ω>my

)
+ ∂p sin

(
ω>mx

)
∂q sin

(
ω>my

)]
= 〈λp(x), λq(y)〉R2M , (1.2.1)

where λp(x) = 1√
M

[(
∂p cos

(
ω>mx

))
m∈[M ]

;
(
∂p sin

(
ω>mx

))
m∈[M ]

]
∈ R2M ; this is the RFF fea-

ture approximation λp in (1.1.4). For p = q = 0, the construction reduces to the traditional
RFF technique [RR07].

This form implies that our target quantity can be written as∥∥∥∂̂p,qk − ∂p,qk
∥∥∥
S

= sup
z∈S∆

|(ΛM − Λ)(fz)|, fz(ω) = ωp(−ω)qc|p+q|

(
ω>z

)
, (1.2.2)

= sup
f∈F
|(ΛM − Λ)(f)|, F = {fz : z ∈ S∆} , (1.2.3)

thus the problem boils down to the study of supremum of empirical processes with F ⊂ FP(n)

where n = |p + q| + 1. In the next section we detail our main result about the fluctuation of
such processes.
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1.3 Main result

In this section we present our main result on the supremum of empirical processes of polynomial
growth, and specialize it to the approximation quality of RFFs for kernel derivatives. The proofs
are given in Section 1.5.

We investigate the concentration of the supf∈F | 1
M

∑M
m=1 f(Xm)| quantity under the follow-

ing assumptions:
1. Compact parameterization: F = {ft : t ∈ T} where ft : Rd → R is parameterized by a

compact set T ⊂ Rd′ .
2. Lipschitz condition: There exists n ∈ R+ and function L : Rd → R≥0, L ∈ FP(n) such that

2.1. |ft0(x)| ≤ L(x) for some t0 ∈ T ,

2.2. |ft1(x)− ft2(x)| ≤ L(x)ρ (‖t1 − t2‖2) for all x ∈ Rd, t1 ∈ T, t2 ∈ T ,

2.3. with ρ : [0, |T |] → R≥0 continuous strictly increasing mapping with ρ(0) = 0 such that

Iρ(|T |) := ρ (|T |)
∫ 1

0

√
log
(

1 + 2|T |
ρ−1(uρ(|T |))

)
du <∞.

3. Independence, finite α-exponential Orlicz norm:
3.1. (Xm)m∈[M ] are independent Rd-valued random variables; shortly, (Xm)m∈[M ] ∼

⊗m∈[M ]µm with µm ∈M+
1

(
Rd
)
.

3.2. ∃α ∈ R+ such that ‖Xm‖Ψα <∞ for all m ∈ [M ].
4. Centering: E [f(Xm)] = 0 for all f ∈ F and m ∈ [M ].

Under these conditions, our main result is as follows.

Theorem 1.1 (Concentration of processes with polynomial growth). Assume that F and
(Xm)m∈[M ] satisfy Assumptions 1-4 and γ := α

n ≤ 1. Let log stand for the natural logarithm,

βγ := Γ
(

1 + 1
γ

)−γ
, P := ⊗m∈[M ]µm, and ‖L‖L2(W1:M ) :=

√
1
M

∑
m∈[M ] L

2(Xm). Let Ψ
(l)
γ be the

convexification5 of Ψγ, Aγ :=

(
Ψ

(l)
γ

)−1
(1)

Ψ−1
γ (1)

, Bγ :=
(
Ψ

(l)
γ

)−1
(1), Cγ and CD be the constants defined

in (1.C.1) and (1.C.2), and Kγ := 2

(
1
γ
−1
)(
Cγ

[
16Bγ + 2

(
1
γ
−1
)(

1 +Aγ

)]
+ 8Aγ

)
. Then for

any ε > 0 satisfying

ε ≥ 6B, B := 2CD
√
d′
E
[
‖L‖L2(W1:M )

]
√
M

Iρ(|T |), (1.3.1)

we have

P

sup
t∈T

1

M

∑
m∈[M ]

ft(Xm) ≥ ε

 ≤ 2e
−

 Mε

3Kγ‖max1≤m≤M supt∈T |ft(Xm)|‖
Ψγ

γ
+ e
− M ε2

72σ2+84c ε ,(1.3.2)

where

σ2 := sup
t∈T

1

M

M∑
m=1

E
[
f2
t (Xm)

]
,

c := max
1≤m≤M

sup
t∈T
‖ft(Xm)‖Ψγ

 1

βγ
log

6Γ
(

1 + 1
γ

)
max1≤m≤M supt∈T ‖ft(Xm)‖Ψγ

γε


1
γ

∨ 8E
[

max
1≤m≤M

sup
t∈T
|ft(Xm)|

]
∈ [0,+∞).

5The function Ψγ is not convex for γ < 1. We convexify Ψγ and use the Section 1.4(v) based integral control

property holding for convex Ψ-s; for details on Ψ
(l)
γ see Section 1.A.1.
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Remark 1.
(i) Two-sided bound: For P

(
inft∈T

1
M

∑
m∈[M ] ft(Xm) ≤ −ε

)
the same one-sided deviation

bound can be obtained by replacing ft with −ft.
As a result one can estimate P

(
supt∈T

∣∣∣ 1
M

∑
m∈[M ] ft(Xm)

∣∣∣ ≥ ε) by twice the bound above.

(ii) Assumption (3): Assumption (3a) with Assumption (4) is weaker than being i.i.d.: for
example E [ft(Xm)] = 0 holds for Xm = N

(
0, σ2

m

)
and ft(x) = ctx

3, but Xm-s can differ in
their variance.

(iii) Assumption α/n ≤ 1: This condition holds without loss of generality. Indeed, in case of
α/n > 1, one can get a modified (α′, n′) pair satisfying α′/n′ ≤ 1 by either increasing n to
the value n′ = α using that FP(n) ⊂ FP(n′), or by decreasing α to the value α′ = n using
that ‖Xm‖Ψα <∞ implies ‖Xm‖Ψα′ <∞ for any α′ ∈ (0, α).

(iv) Proof-related remarks:
1. Compactness of T : This compactness with the Lipschitz property enables one to control

the covering number of F .
2. Truncated functions: The Lipschitz property of F implies that of the truncated func-

tions: for ∀x ∈ Rd, s and t ∈ T

|Tcft(x)− Tcfs(x)| ≤ |ft(x)− fs(x)| ≤ L(x)ρ (‖t− s‖2) , (1.3.3)

where Tcf(x) := f(x)1|f(x)|≤c + c1f(x)>c − c1f(x)<−c is f soft-thresholded at level c.
3. F ⊂ FP(n): This property is inherited (Section 1.5.4) from L ∈ FP(n) by the Lipschitz

conditions (2a)-(2b).
4. Finiteness of the terms in Theorem 1.1: ‖max1≤m≤M supt∈T |ft(Xm)|‖Ψα

n

and

E [max1≤m≤M supt∈T |ft(Xm)|] are finite (see Section 1.5.4) in Theorem 1.1 by the Lips-
chitz assumption (2a)-(2b), ‖Xm‖Ψα < ∞ (Assumption (3b)) and L ∈ FP(n) (Assump-
tion (2)).

(v) RFF specialization: Assuming that the α-exponential Orlicz condition holds for the spec-
tral measure Λ associated to k (∃α ∈ R+ such that ‖ω‖Ψα < ∞, ω ∼ Λ),6 one can see
(Section 1.5.1) that RFFs are covered by choosing

d′ = d, ft(x)← fz(ω)− Λfz, t← z, T ← S∆, Xm ← ωm,

ρ(u) = uβ, β =
1

1 + (log|S∆|)+
∈ (0, 1], n← |p + q|+β.

While any value of β ∈ (0, 1] would meet the assumptions, allowing β to depend on the
diameter of S∆ enables us to get optimal convergence rates w.r.t. the diameter (see Corollary
1.3.2).
The terms driving the guarantee for RFF can be bounded (Section 1.5.6) as follows: there
is a constant CRFF ∈ R+, depending only on Λ, |p + q|, but not on |S∆| and M , such that

B ≤
CRFF

√
1 + (log|S∆|)+√

M
,

σ2 ≤ CRFF,

max
1≤m≤M

sup
z∈S∆

‖gz(ωm)‖Ψγ ≤ CRFF,∥∥∥∥∥ max
1≤m≤M

sup
z∈S∆

|gz(ωm)|

∥∥∥∥∥
Ψγ

≤ CRFF [log(1 +M)]n/α ,

E

[
max

1≤m≤M
sup
z∈S∆

|gz(ωm)|

]
≤ CRFF [log(1 +M)]n/α .

(1.3.4)

6This requirement implies that
∫
Rd |ω

p+q| dΛ(ω) <∞ and thus the existence of ∂p,qk for any p,q ∈ Nd.
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Using these bounds, our finite-sample uniform guarantee on Orlicz RFFs is as follows.

Corollary 1.3.1 (Orlicz RFFs for kernel derivative approximation). Let k : Rd × Rd → R be
a continuous, bounded, shift-invariant kernel with spectral measure Λ. Suppose that Λ satisfies
the α-exponential Orlicz assumption (∃α ∈ R+ such that ‖ω‖Ψα < ∞, ω ∼ Λ) and let S ⊂ Rd

be a compact set. Let β = 1
1+(log|S∆|)+

∈ (0, 1], let p,q ∈ Nd, n := |p + q|+ β, and assume that

γ := α
n ≤ 1. Let ∂̂p,qk be the RFF estimate of ∂p,qk using (ωm)m∈[M ]

i.i.d.∼ Λ samples as given

in Eq. (1.2.1). Then, there exists a constant C̃ ∈ R+ (depending only on Λ, |p + q|, but not on

S and M) such that for any ε ≥ C̃
√

1+(log|S∆|)+√
M

,

ΛM
(∥∥∥∂̂p,qk − ∂p,qk

∥∥∥
S
≥ ε
)
≤ 2e

− (Mε)γ

C̃ log(1+M) + e

− M ε2

C̃

(
1+ε[log(C̃/ε)∨log(1+M)]1/γ

)
. (1.3.5)

Corollary 1.3.2 (Almost sure convergence for kernel derivative approximation). Let p,q ∈ Nd
and k : Rd × Rd → R be a continuous, bounded, shift-invariant kernel with spectral measure Λ
which satisfies the α-exponential Orlicz assumption for some α > 0. Then, for any sequence of
compact sets (SM )∞M=2 such that (log |SM |)+ = o(M), we have

∥∥∥∂̂p,qk − ∂p,qk
∥∥∥
SM

= Oa.s.

(√
(log |SM |)+ ∨ logM√

M

)
. (1.3.6)

Remark 2.
(i) Spectral measure (Λ) examples: Our result assumes the α-exponential Orlicz property

of the spectral measure Λ associated to k. In Table 1.2 we provide various examples for Λ
(with the relevant case of unbounded support) satisfying this requirement; their relation is
summarized in Figure 1.2. While for the RFF approximation it is not necessary, in many of
these examples the corresponding kernel value can also be computed, see Table 1.3.

(ii) α-exponential Orlicz assumption for tensor product kernels: Using the α-
exponential Orlicz spectral measures of Table 1.2 on R, one can immediately construct
Orlicz spectral measures on Rd. Indeed, assume that (i) k is a product kernel, i.e.
k(x,y) =

∏
i∈[d] ki(xi, yi), Λ = ⊗i∈[d]Λi, and (ii) Λi, the spectral measure associated to

ki, satisfies the αi-exponential Orlicz assumption (αi ∈ R+). Then ω ∼ Λ is α-exponential
Orlicz with α = mini∈[d] αi; see Section 1.A.2.

(iii) α-exponential Orlicz vs. Bernstein assumption: Our result complements [SS19]’s work,

where the authors showed that for d = 1 and spectral densities fλ(ω) ∝ e−ω2`
the Bernstein

condition (and hence fast rates) holds for |p + q| ≤ 2` = α. Indeed, we proved under
the more general α-exponential Orlicz assumption the same a.s. convergence rates for any
arbitrary order (see Corollary 1.3.2) kernel derivatives.

Spectrum Spectral density: fΛ(ω) Parameters α

Gaussian 1√
2πσ

e−
ω2

2σ2 σ > 0 2

Laplace σ
2 e
−σ|ω| σ > 0 1

generalized Gaussian α
2βΓ( 1

α)
e
− |ω|

β

α

α > 0, β > 0 α

variance Gamma
σ2b|ω|b−

1
2K

b− 1
2

(σ|ω|)
√
πΓ(b)(2σ)b−

1
2

σ > 0, b > 1
2 1
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Spectrum Spectral density: fΛ(ω) Parameters α

Weibull (S) s
2λ

(
|ω|
λ

)s−1
e
−
(
|ω|
λ

)s
s > 0, λ > 0 s

exponentiated exponential (S) α
2λ

(
1− e−

|ω|
λ

)α−1
e−
|ω|
λ λ > 0, α > 0 1

exponentiated Weibull (S) αs
2λ

(
|ω|
λ

)s−1
[
1− e−

(
|ω|
λ

)s]α−1

× s > 0, λ > 0, α > 0 s

×e−
(
|ω|
λ

)s
Nakagami (S) mm

Γ(m)Ωm |ω|
2m−1e−

mω2

Ω m ≥ 1
2 , Ω > 0 2

chi-squared (S) 1

2
s
2 +1Γ( s2)

|ω|
s
2
−1e−

|ω|
2 s ∈ Z+ 1

Erlang (S) λs|ω|s−1e−λ|ω|

2(s−1)! s ∈ Z+, λ > 0 1

Gamma (S) 1
2Γ(s)θs |ω|

s−1e−
|ω|
θ s > 0, θ > 0 1

generalized Gamma (S) p/aD

2Γ
(
D
p

) |ω|D−1e
−
(
|ω|
a

)p
a > 0, D > 0, p > 0 p

Rayleigh (S) |ω|
2σ2 e

− ω2

2σ2 σ > 0 2

Maxwell-Boltzmann (S) 1√
2π

ω2e
− ω2

2a2

a3 a > 0 2

chi (S) 1

2
s
2 Γ( s2)

|ω|s−1e−
ω2

2 s > 0 2

exponential-logarithmic (S) − 1
2 log(p)

β(1−p)e−β|ω|
1−(1−p)e−β|ω| p ∈ (0, 1), β > 0 1

Weibull-logarithmic (S) − 1
2 log(p)

αβ(1−p)|ω|α−1e−β|ω|
α

1−(1−p)e−β|ω|α p ∈ (0, 1) , β > 0, α > 0 α

Gamma/Gompertz (S) bseb|ω|βs

2(β−1+eb|ω|)
s+1 b > 0, β > 0, s > 0 bs

hyperbolic secant 1
2sech

(
π
2ω
)

1

logistic e−
ω
s

s
[
1+e−

ω
s

]2 s > 0 1

normal-inverse Gaussian
αδK1(α

√
δ2+ω2)

π
√
δ2+ω2

eδα α > 0, δ ∈ R 1

hyperbolic 1
2δK1(δα)e

−α
√
δ2+ω2

α > 0, δ ∈ R 1

generalized hyperbolic (α/δ)λ√
2πKλ(δγ)

K
λ− 1

2
(α
√
δ2+ω2)(√

δ2+ω2

α

) 1
2−λ

α > 0, λ ∈ R, δ ∈ R 1

Table 1.2 – Kernel spectrum examples in one dimension (d = 1) obeying the α-exponential
Orlicz assumption. ’(S)’ stands for symmetrized. The symmetrization guarantees that the
kernel associated to Λ is real-valued. Last column: Orlicz exponent. For the variance Gamma
distribution the Orlicz exponent follows from the known Ku(z) ∼

√
π/(2z)e−z asymptotics

[BNMR01, page 297] where Ku is the modified Bessel function of the second kind, as defined in

Table 1.4. Notice that the ’normal-inverse Gaussian
δ=σ2α, α→∞−−−−−−−−−→ Gaussian’ limit (see Figure 1.2)

changed the Orlicz exponent from 1 to 2.
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exponentiated
exponential (S)

Weibull
-logarithmic (S)

Gamma/Gompertz (S)

exponentiated
Weibull (S)

exponential
-logarithmic (S)

chi-squared (S) Erlang (S)

Weibull (S)
generalized
Gamma (S)

Gamma (S) Laplace

Rayleigh (S) chi (S) variance Gamma
generalized
Gaussian

hyperbolic secant Maxwell-Boltzmann (S)
normal-inverse

Gaussian
Gaussian

logistic
generalized
hyperbolic

hyperbolic Nakagami (S)

α = 1
β = 1

s = 1

α=1 s = 1

s = 2
s = 1

p = D p = 1

p = 2, a = 2

s ∈ Z+s ∈ Z+/2

s = 2 (σ = 1)

s = 3 (a = 1)

b = 1
α = 1

α = 2
δ=σ2α,

α→∞

λ = − 1
2

δ = 0

λ = 1

m = 1
2m = s

2

Figure 1.2 – Relation of the spectral density examples of Table 1.2. ’(S)’ stands for symmetrized.



1.3. Main result 51

Kernel name Kernel value: k(x, y) Spectrum

Gaussian e−
σ2(x−y)2

2 Gaussian

inverse quadric σ2

σ2+(x−y)2 Laplace

–
√
π

Γ(1/α) 1Ψ1

((
1
α ,

2
α

)
;
(

1
2 ; 1
)
, −[β(x−y)]2

4

)
generalized Gaussiana

inverse multiquadric
[

σ2

σ2+(x−y)2

]b
variance Gamma

–
∑

n∈2N
(−1)

n
2 (x−y)nλn

n! Γ
(
1 + n

s

)
Weibull (S)b

– [1−2i(x−y)]−
s
2 +[1+2i(x−y)]−

s
2

2 chi-squared (S)b

–

[
1− i(x−y)

λ

]−s
+
[
1+

i(x−y)
λ

]−s
2 Erlang (S)b

– [1−θi(x−y)]−s+[1+θi(x−y)]−s

2 Gamma (S)b

– 1− σ(x− y)e−
σ2(x−y)2

2
√

π
2 erfi

(
σ(x−y)√

2

)
Rayleigh (S)b

– 1F1

(
s
2 ; 1

2 ; −(x−y)2

2

)
chi (S)b

–
∑

n∈2N
(−1)

n
2 (x−y)nΓ(nα+1)
− log(p)n!β

α
n

Lin
α

+1(1− p) Weibull-logarithmic (S)b,c

– 1
2 [cΛ(x− y) + cΛ(y − x)], with cΛ(t) = Gamma/Gompertz (S)b

= βs sb
sb−ti 2F1

(
s+ 1;− ti

b + s;− ti
b + s+ 1; 1− β

)
sech sech(x− y) hyperbolic secant

– πs(x−y)
sinh(πs(x−y)) logistic

– e
δ
[
α−
√
α2+(x−y)2

]
normal-inverse Gaussian

–
αK1

(
δ
√
α2+(x−y)2

)
√
α2+(x−y)2K1(δα)

hyperbolic

–

[
α√

α2+(x−y)2

]λ
Kλ

(
δ
√
α2+(x−y)2

)
Kλ(δα) generalized hyperbolic

aThe analytical computation of the characteristic function (and hence the kernel value) was carried out for
α > 1 [PN10].

bIn case of symmetrization (S): k(x, y) = 1
2

[cΛ(x− y) + cΛ(y − x)] where cΛ(t) = Eω∼Λ[eitω] is the character-

istic function of the spectral measure (on R≥0) before symmetrization; i =
√
−1.

cThe characteristic function was obtained by [CP09].

Table 1.3 – Kernel examples for the spectral densities given in Table 1.2. The special functions

1Ψ1, erfi, 1F1, Li, 2F1 and Kλ are defined in Table 1.4.
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1.4 Properties of the Orlicz norm

In this section, for self-containedness we summarize the properties of ‖·‖Ψ which hold indepen-
dently of the convexity/non-convexity of Ψ (unless explicitly required).

Let X,X ′ ∈ Rd be random variables, and assume that Ψ : R≥0 → R≥0 (and similarly Φ
below) is continuous, strictly increasing, Ψ(0) = 0 and limx→∞Ψ(x) =∞.

(i) Normalization: If X ∈ LΨ then E
[
Ψ
(
‖X‖2
‖X‖Ψ

)]
≤ 1.

(ii) Constant: For a λ ∈ R constant ‖λ‖Ψ = |λ|/Ψ−1(1).
(iii) Monotonicity in Ψ: Ψ ≤ Φ implies ‖X‖Ψ ≤ ‖X‖Φ.
(iv) Monotonicity in the argument: If d = 1 and 0 ≤ X ≤ X ′ a.s., then ‖X‖Ψ ≤ ‖X ′‖Ψ.
(v) Finite ‖·‖Ψ implies integrability: If Ψ is convex and X ∈ LΨ, then E [‖X‖2] ≤
‖X‖Ψ Ψ−1(1).

(vi) Generalized triangle inequality: Let X,X ′ ∈ LΨα and α ∈ R+. Then X +X ′ ∈ LΨα and∥∥X +X ′
∥∥

Ψα
≤ 2( 1

α
−1)

+

(
‖X‖Ψα +

∥∥X ′∥∥
Ψα

)
.

(vii) Deviation inequality from ‖·‖Ψ: If X ∈ LΨ then P (‖X‖2 ≥ c) ≤
2

Ψ(c/‖X‖Ψ)+1 for any
c ≥ 0.

(viii) Maximal inequality for ‖·‖Ψα and α ∈ R+: for any sequence (Xm)Mm=1 of random variables
in LΨα , we have ∥∥∥∥ max

m∈[M ]
‖Xm‖2

∥∥∥∥
Ψα

≤ max
m∈[M ]

‖Xm‖Ψα

[
log(1 +M)

log(3/2)

]1/α

.

The proofs of these properties are available in Section 1.A.3.

1.5 Proofs

After introducing a few additional notations, we provide the proofs of our results and remarks
presented in Sections 1.3 and 1.4. External statements used in the proofs are summarized in
Section 1.C.

Notations: For γ ∈ (0, 1] and x ∈ R≥0, let Iγ(x) =
∫ x

0 e
−tγdt be the incomplete

Gamma function. Let (Z,m) be a semi-metric space and ε ∈ R+. The set S ⊆ Z is
said to be an ε-net of Z if for any z ∈ Z there exists s ∈ S such that m(s, z) ≤ ε.
The ε-covering number of Z is defined as the size of the smallest ε-net, i.e., N(ε,m,Z) =

inf
{
` ≥ 1 : ∃s1, . . . , sl ∈ Z such that Z ⊆ ∪`j=1Bm(sj , ε)

}
, where Bm(s, ε) = {z ∈ Z : m(z, s) ≤

ε} is the closed ball with center s ∈ Z and radius ε.

1.5.1 Proof of Remark 1(v)

In view of (1.2.2)-(1.2.3), we need to check Assumptions 1-4 with the parameterized function
class

gz(ω) := fz(ω)− Λfz = ωp(−ω)qc|p+q|

(
ω>z

)
− Λfz, (z ∈ S∆).

Thanks to the α-exponential Orlicz condition on Λ and the i.i.d. property of (ωm)m∈[M ] in
(1.2.1), Assumption 3 is trivially fulfilled. Assumption 4 holds by the definition of gz(·) and
because the distribution of ωm is Λ. Assumption 1 is satisfied since S∆ is a compact set of
Rd. Therefore, it remains to prove Assumption 2, with the existence of n ∈ R+ and L ∈ FP(n).
First, notice that

|fz(ω)| ≤
∏
i∈[d]

|ωi|pi+qi ≤ ‖ω‖|p+q|
2 . (1.5.1)
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• Order: (1.5.1) implies that

|gz(ω)| ≤ |fz(ω)|+ Λ|fz| ≤ ‖ω‖|p+q|
2 + Λ

[
‖ · ‖|p+q|

2

]
=: L1(ω). (1.5.2)

• Lipschitz condition: Let [z1, z2] = {az1 + (1− a)z2 : a ∈ [0, 1]} denote the segment con-
necting z1, z2 ∈ Rd. By using the mean value theorem

|gz1(ω)− gz2(ω)| ≤ max
z∈[z1,z2]

∥∥∥∥∂gz(ω)

∂z

∥∥∥∥
2

‖z1 − z2‖2 , (1.5.3)

∂gz(ω)
∂z = ∂fz(ω)

∂z − Λ∂fz(ω)
∂z with ∂fz(ω)

∂z = ωp(−ω)qc|p+q|+1

(
ω>z

)
ω, and by using similar

computations as before, one gets∥∥∥∥∂gz(ω)

∂z

∥∥∥∥
2

≤ ‖ω‖|p+q|+1
2 + Λ

[
‖ · ‖|p+q|+1

2

]
=: L2(ω). (1.5.4)

As a result, to fulfill Assumption 2, we can take L(ω) = max(L1(ω), L2(ω)) and ρ(u) = u. For
such L, we have n = |p + q|+ 1.
Refined L and ρ: We now derive refined L and ρ, by interpolating different bounds. From
(1.5.2), we can obtain the crude estimate |gz1(ω) − gz2(ω)| ≤ 2L1(ω), which combined with
(1.5.3)-(1.5.4) gives

|gz1(ω)− gz2(ω)| ≤ (2L1(ω))1−β
[
‖z1 − z2‖2 L2(ω)

]β
for any β ∈ (0, 1]. Here we have used that if 0 ≤ x ≤ min(x1, x2) then x ≤ x1−β

1 xβ2 . It follows
that one can take

ρ(u) = uβ, n = |p + q|+ β, L(ω) = max
(
L1(ω), (2L1(ω))1−βLβ2 (ω)

)
∈ FP(n).

For β = 1, we retrieve the former choice of L and ρ. Furthermore, we have

Iρ(|T |) =|T |β
∫ 1

0

√
log

(
1 +

2|T |
(u|T |β)1/β

)
du =|T |β

∫ 1

0

√
log

(
1 +

2

u1/β

)
du < +∞.(1.5.5)

Notice that the advantage of having the additional degree-of-freedom β is two-fold, and it is
striking when β → 0 (compared to β = 1). Firstly, it gives a smaller n, which has a (slight)
positive impact on the control of statistical fluctuations; secondly, the dependence of Iρ(|T |) in
the diameter |T | is smaller through the growth exponent.
To conclude, we have proved that Orlicz RFFs fulfill the assumptions of Theorem 1.1. Later in
Section 1.5.6, we will establish that Iρ(|T |) satisfies a (tight) bound w.r.t.

√
1 + (log|T |)+.

1.5.2 Proof that polynomial growth preserves the exponential Orlicz prop-
erty

We show that ‖f(X)‖Ψγ < ∞ for ‖X‖Ψα < ∞, f ∈ FP(n), n ∈ R+, γ = α
n . Indeed, by the

definition of f ∈ FP(n), there exists C ∈ R+ such that |f(x)| ≤ C(1 + ‖x‖n2 ) for all x ∈ Rd.
Hence for any γ > 0

|f(x)|γ ≤ Cγ (1 + ‖x‖n2 )γ
(∗)
≤ 2(γ−1)+Cγ (1 + ‖x‖nγ2 ) , (1.5.6)

where in (∗) we used that

(a+ b)γ ≤ 2(γ−1)+ (aγ + bγ) , a, b ≥ 0, γ > 0. (1.5.7)

Since X ∈ LΨα there is some s ∈ R+ for which E
[
es‖X‖

α
2

]
< ∞. Combining this property

with (1.5.6) and recalling that nγ = α yields

es
′|f(x)|γ ≤ es′2

(γ−1)+Cγ(1+‖x‖α2 ) ⇒ E
[
es
′|f(X)|γ

]
≤ es′2

(γ−1)+CγE
[
es‖X‖

α
2

]
<∞

with s′ = s

2(γ−1)+Cγ
; this shows that f(X) ∈ LΨγ .
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1.5.3 Proof of Theorem 1.1

By introducing the Rcf(x) := f(x)−Tcf(x) notation of residuals obtained at level c ∈ R+ (the
value of c will be specified later), we bound the target quantity by using the sub-additivity of
supremum

sup
t∈T

1

M

M∑
m=1

ft(Xm)︸ ︷︷ ︸
Tcft(Xm)+Rcft(Xm)

= sup
t∈T

1

M

M∑
m=1

(Tcft(Xm)− E [Tcft(Xm)] + E [Tcft(Xm)] +Rcft(Xm))

≤ sup
t∈T

1

M

M∑
m=1

(
Tcft(Xm)− E [Tcft(Xm)]

)
︸ ︷︷ ︸

Z
Tc

+ sup
t∈T

E

[
1

M

M∑
m=1

Tcft(Xm)

]
︸ ︷︷ ︸

ETc

+ sup
t∈T

1

M

M∑
m=1

Rcft(Xm)︸ ︷︷ ︸
ZRc

.

This means that using c for which ETc ≤ ε
3 ,

P

(
sup
t∈T

1

M

M∑
m=1

ft(Xm) ≥ ε

)
≤ P

(
ZRc ≥ ε/3

)
+ P

(
Z
Tc ≥ ε/3

)
. (1.5.8)

The structure of our proof is as follows.
1. Unbounded part (ZRc): Based on the Talagrand and the Hoffman-Jorgensen inequalities, for

large enough c (referred to as cHJ) we will derive an exponential control over P
(
ZRc ≥ ε/3

)
expressed with ‖max1≤m≤M supt∈T |ft(Xm)|‖Ψγ which is finite by Section 1.5.4.

2. Bounded part (Z
Tc

): We handle this term using the Klein-Rio inequality and the Dudley
entropy integral bound. In addition, this part will give rise to the constraint (1.3.1) on ε.

3. Truncation (ETc): As E[ft(Xm)] = 0, Tcft ≈ ft and E[Tcft(Xm)] ≈ 0 for large c (called
cmin). The ETc ≤ ε

3 requirement can be controlled via the integral form of the expectation of
non-negative random variables and the incomplete Gamma function.

The bounding of the ZRc , Z
Tc

and ETc quantities is detailed in the following sections. Plug-
ging the (1.5.9) and (1.5.11) results of the computations into (1.5.8) gives the final bound (1.3.2).
The ε constraint comes from (1.5.16), provided that c ≥ cmin ∨ cHJ . The constants cmin and
cHJ are defined in (1.5.18) and (1.5.21), respectively.

1.5.3.1 Bounding ZRc

P
(
ZRc ≥ ε/3

)
is bounded as

P
(
ZRc ≥ ε/3

)
≤ P

(
sup
t∈T

M∑
m=1

|Rcft(Xm)| ≥Mε/3

)

(a)

≤ P

(
M∑
m=1

sup
t∈T
|Rcft(Xm)| ≥Mε/3

)
(b)

≤ 2e
−

 Mε/3

‖∑Mm=1 supt∈T |Rcft(Xm)|‖
Ψγ

γ

(c)

≤ 2e
−

 Mε

3Kγ‖max1≤m≤M supt∈T |ft(Xm)|‖
Ψγ

γ
,
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where in (a) we used the the sub-additivity of the supremum, in (b) the deviation inequality
Section (1.4)(vii) was applied, (c) holds by Section 1.5.5 for c ≥ cHJ (the value of cHJ is defined
in Section 1.5.5).

1.5.3.2 Bounding Z
Tc

Below we will invoke the Klein-Rio inequality and control the expectation E
[
Z
Tc
]
.

• Klein-Rio inequality: Let gm,t : x ∈ Rd 7→ Tcft(x) − E [Tcft(Xm)] and let us define the
function classes

TcF [M ] := {gt := (g1,t, . . . , gM,t) : t ∈ T}, TcF := {Tcft : t ∈ T}.

– gm,t ∈ [−2c, 2c] are measurable and bounded functions.
– Centering: by construction E[gm,t(Xm)] = 0 (∀m ∈ [M ]).
– Countability: Since t 7→ ft is continuous, the supt∈T can be restricted to rational numbers

(T ∩Qd), one can take T ← T ∩Qd, and assume that TcF [M ] is countable.
If

E
[
Z
Tc
]
≤ ε/6, (1.5.10)

then the Klein-Rio inequality (Theorem 1.3 where the supt∈T and supf∈TcF [M ] coincide) implies
that

P
(
Z
Tc ≥ ε/3

) (1.5.10)

≤ P
(
Z
Tc − E

[
Z
Tc
]
≥ ε/6

)
≤ e
− M (ε/6)2

2(σ̄2+4cE[ZTc ])+6c ε/6

(1.5.10)

≤ e
− M (ε/6)2

2σ̄2+14cε/6 = e
− M ε2

72σ̄2+84c ε ≤ e−
M ε2

72σ2+84c ε , (1.5.11)

where the weak variance σ̄2 is defined and bounded by

σ̄2 := sup
t∈T

1

M

M∑
m=1

E
[
(Tcft(Xm)− E [Tcft(Xm)])2

]
≤ sup

t∈T

1

M

M∑
m=1

E
[
(Tcft(Xm))2

]
≤ sup

t∈T

1

M

M∑
m=1

E
[
f2
t (Xm)

]
=: σ2.

• Bounding E
[
Z
Tc
]
: We control E

[
Z
Tc
]

in (1.5.10) by the Dudley entropy integral bound.

In this bound the covering number of TcF is estimated by that of the compact set T ⊂ Rd′

with propagation relying on Assumption (2b).
– Dudley entropy integral bound: Slight modification (without absolute value) of [vW96,

Lemma 2.3.1] gives

E
[
Z
Tc
]
≤ 2E [R(X1:M , TcF)] , (1.5.12)

where R(x1:M , TcF) := Eε
[
supt∈T

1
M

∑M
m=1 εmTcft(xm)

]
is the Rademacher average of

TcF , X1:M := (Xm)m∈[M ], x1:M := (xm)m∈[M ], ε :=(εm)m∈[M ] contains independent

Rademacher variables (i.e. P (εm = ±1) = 1
2), and ε is independent of X1:M .

Let Zt(x1:M ) := 1
M

∑M
m=1 εmTcft(xm), so R(x1:M , TcF) = Eε [supt∈T Zt(x1:M )], and define

the pseudo-metric on T as d(t, s) :=
(

1
M

∑M
m=1 [Tcft(xm)− Tcfs(xm)]2

)1/2
.

The {Zt : t ∈ T} process is
∗ separable since it is continuous, and T ⊂ Rd′ is separable,



56 Chapter 1. α-exponential random Fourier features (RFFs)

∗ centered thanks to the Rademacher variables,
∗ sub-Gaussian with respect to M−1/2d: indeed, for any λ ∈ R+ and t, s ∈ T

Eε
[
eλ(Zt−Zs)

]
(a)
=

M∏
m=1

Eεm
[
eεm

λ
M

[Tcft(xm)−Tcfs(xm)]
] (b)

≤
M∏
m=1

e
λ2

2M2 [Tcft(xm)−Tcfs(xm)]2

= e
λ2(M−1/2d(t,s))

2

2 .

In (a) we used the independence of εm-s, (b) follows from Eεm [eaεm ] = cosh(a)
(∗)
≤ e

a2

2

(∀a ∈ R), where (∗) can be obtained from the power series expansion of the cosh(·) and
the exponential function.

Hence Theorem 1.4 can be applied:

R(x1:M , TcF) ≤ CD
∫ ∞

0

√
log
(
N(ε,M−1/2d, T )

)
dε

=
CD√
M

∫ ∞
0

√
log(N(ε, d, T ))dε, (1.5.13)

where we used the N(ε,M−1/2d, T ) = N(M1/2ε, d, T ) identity, and applied an ε̃ = M1/2ε
substitution. We note that the above infinite integral can be truncated at |T |d :=
supt,s∈T d(t, s), the d-diameter of T , since N(ε, d, T ) = 1 for ε ≥ |T |d.

– Covering number: By (1.3.3) one can relate d(t, s) and ‖t− s‖2 as

d(t, s) ≤

[
1

M

M∑
m=1

L2(xm)

]1/2

ρ (‖t− s‖2) := ‖L‖L2(w1:M ) ρ (‖t− s‖2) ,

which implies

N(ε, d, T ) ≤ N

(
ρ−1

(
ε

‖L‖L2(w1:M )

)
, ‖·‖2 , T

)
, (1.5.14)

|T |d ≤ ‖L‖L2(w1:M ) sup
t,s∈T

ρ (‖t− s‖2) ≤ ‖L‖L2(w1:M ) ρ(|T |). (1.5.15)

In the last inequality the increasing property of ρ was exploited. Combining (1.5.14)-(1.5.15)
with the well-known bound [vdG00, Lemma 2.5] on the covering number7 of a compact set
T ⊂ Rd′

N
(
ε′, ‖·‖2 , T

)
≤
(

2|T |
ε′

+ 1

)d′
,∀ε′ > 0,

(1.5.13) can be estimated further as

R(x1:M , TcF) ≤ CD
√
d′√

M

∫ ‖L‖L2(W1:M )ρ(|T |)

0

√√√√√√√log

 2|T |

ρ−1

(
ε

‖L‖L2(w1:M )

) + 1

dε

= CD
√
d′
‖L‖L2(w1:M ) ρ (|T |)

√
M

∫ 1

0

√
log

(
1 +

2|T |
ρ−1 (uρ (|T |))

)
du,

7In our definition of the covering number, in its bound on compact sets in Rd [vdG00, Lemma 2.5] and in the
final Dudley entropy bound [Bar13, Lecture 11, 14] the elements of the ε-net are assumed to belong to the set
covered.
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where we introduced the new variable u = ε
‖L‖L2(w1:M )ρ(|T |) . Substituting this bound into

(1.5.12) we arrive at

E
[
Z
Tc
]
≤ 2CD

√
d′
E
[
‖L‖L2(W1:M )

]
√
M

Iρ(|T |) =: B. (1.5.16)

To guarantee E
[
Z
Tc
]
≤ ε/6, we solve B ≤ ε

6 ; this gives the (1.3.1) bound on ε.

1.5.3.3 Bounding ETc

• Bounding ETc by the incomplete Gamma function (Iγ):

E [Tcft(Xm)]
(a)
= −E [Rcft(Xm)]

(b)

≤ E
[
(−ft(Xm)− c)1ft(Xm)≤−c

]
(c)
=

∫ ∞
c

P (−ft(Xm) ≥ y) dy. (1.5.17)

In (a) we used that Tcft(x) = ft(x)−Rcft(x) and E[ft(Xm)] = 0, (b) follows from

Rcft(x) = [ft(x) + c]1ft(x)≤−c + [ft(x)− c]1ft(x)≥c ≥ [ft(x) + c]1ft(x)≤−c.

(c) holds by using that for a Z ≥ 0 random variable, E[Z] =
∫∞

0 P (Z ≥ z) dz; we choose
Z = max (0,−ft(Xm)− c). Therefore

ETc = sup
t∈T

E

[
1

M

M∑
m=1

Tcft(Xm)

]
(a)

≤ max
1≤m≤M

sup
t∈T

∫ ∞
c

P (−ft(Xm) ≥ y) dy

(b)

≤ 2 max
1≤m≤M

sup
t∈T

∫ ∞
c

e
−
(

y
‖ft(Xm)‖Ψγ

)γ
dy

(c)
= 2 max

1≤m≤M
sup
t∈T

‖ft(Xm)‖Ψγ

∫ ∞
c

‖ft(Xm)‖Ψγ

e−u
γ
du


(d)
= 2 max

1≤m≤M
sup
t∈T

(
‖ft(Xm)‖Ψγ

[∫ ∞
0

e−u
γ
du−

∫ c
‖ft(Xm)‖Ψγ

0
e−u

γ
du

])
(e)
= 2 max

1≤m≤M
sup
t∈T

(
‖ft(Xm)‖Ψγ

[
Γ

(
1 +

1

γ

)
− Iγ

(
c

‖ft(Xm)‖Ψγ

)])
(f)

≤ 2 max
1≤m≤M

sup
t∈T
‖ft(Xm)‖Ψγ

[
Γ

(
1 +

1

γ

)
− Iγ

(
c

maxm′∈[M ] supt′∈T ‖ft′(Xm′)‖Ψγ

)]
(g)

≤ 2Γ

(
1 +

1

γ

)1−

[
1− e

−βγ
(

c
max1≤m≤M supt∈T ‖ft(Xm)‖Ψγ

)γ] 1
γ

 max
1≤m≤M

sup
t∈T
‖ft(Xm)‖Ψγ

=: B̃,

where (a) holds by taking maximum over m ∈ [M ] and using (1.5.17), (b) follows from the

P (−ft(Xm) ≥ y) ≤ 2e
−
(

y
‖ft(Xm)‖Ψγ

)γ
deviation inequality implied by Section 1.4(vii). (c) was

obtained from a u = y
‖ft(Xm)‖Ψγ

substitution, in (d) we decomposed the integral to have the

incomplete Gamma function appear. (e) is a consequence of the definition of Iγ and the limit

Iγ(x) =

∫ x

0
e−t

γ
dt =

1

γ

∫ x
1
γ

0
u

1
γ
−1
e−udu

x→∞−−−→ 1

γ
Γ

(
1

γ

)
= Γ

(
1 +

1

γ

)
,



58 Chapter 1. α-exponential random Fourier features (RFFs)

where we applied an u = tγ substitution and the Γ(z + 1) = zΓ(z) recursion. (f) comes from
the monotonicity of Iγ (Iγ(x) ≤ Iγ(y) if x ≤ y). (g) follows from applying the lower bound
on Iγ from Theorem 1.5 with x = c

max1≤m≤M supt∈T ‖ft(Xm)‖Ψγ
.

• Additional truncation level bound on c: Guaranteeing B̃ ≤ ε
3 (and thus ETc ≤ ε

3) is
equivalent to choosing c large enough such that

1−

[
1− e

−βγ
(

c
max1≤m≤M supt∈T ‖ft(Xm)‖Ψγ

)γ] 1
γ

≤ ε

6Γ
(

1 + 1
γ

)
max1≤m≤M supt∈T ‖ft(Xm)‖Ψγ

.

Because γ ≤ 1, the function h : x 7→ 1 − (1 − x)
1
γ is concave on [0, 1], and thus it is below

its tangent line computed at (0, h(0)), i.e. 1 − (1 − x)
1
γ ≤ 1

γx. Therefore choosing x =

e
−βγ

(
c

max1≤m≤M supt∈T ‖ft(Xm)‖Ψγ

)γ
it is enough to use c such that

1

γ
e
−βγ

(
c

max1≤m≤M supt∈T ‖ft(Xm)‖Ψγ

)γ
≤ ε

6Γ
(

1 + 1
γ

)
max1≤m≤M supt∈T ‖ft(Xm)‖Ψγ

.

Solving this inequality for c means that

c ≥ cmin := max
1≤m≤M

sup
t∈T
‖ft(Xm)‖Ψγ

 1

βγ
log

6Γ
(

1 + 1
γ

)
max1≤m≤M supt∈T ‖ft(Xm)‖Ψγ

γε


1
γ

.

(1.5.18)

1.5.4 Proof of F ⊂ FP(n) and finite maximal moments

By Assumption (2a)-(2b), the triangle inequality and the monotonicity of ρ, one gets

|ft(x)| ≤ |ft(x)− ft0(x)|+ |ft0(x)| ≤ L(x) [ρ (‖t− t0‖2) + 1] ≤ L(x)[ρ(|T |) + 1],(1.5.19)

for any t ∈ T,x ∈ Rd. The individual statements now can be proved as follows.

• F ⊂ FP(n): By L ∈ FP(n) and (1.5.19), ft ∈ FP(n) for all t ∈ T , in other words F ⊂ FP(n).
• Finiteness of ‖max1≤m≤M supt∈T |ft(Xm)|‖Ψα

n

: Using (1.5.19), we get

max
1≤m≤M

sup
t∈T
|ft(Xm)| ≤ [ρ(|T |) + 1]

M∑
m=1

L(Xm). (1.5.20)

Thanks to Section 1.5.2, each L(Xm) belongs to LΨα
n

. Combining this with the generalized

triangular inequality Section 1.4(vi) gives the claim.
• Finiteness of E [max1≤m≤M supt∈T |ft(Xm)|]: Each L(Xm) is integrable (because L has a

polynomial growth and the distribution of Xm satisfies the α-Orlicz exponential assumption).
Thus, the statement follows from (1.5.20).

1.5.5 Control if c ≥ cHJ

We show that under the assumptions of Theorem 1.1 with

c ≥ cHJ := 8E
[

max
1≤m≤M

sup
t∈T
|ft(Xm)|

]
(1.5.21)
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one has ∥∥∥∥∥
M∑
m=1

sup
t∈T
|Rcft(Xm)|

∥∥∥∥∥
Ψγ

≤ Kγ

∥∥∥∥ max
1≤m≤M

sup
t∈T
|ft(Xm)|

∥∥∥∥
Ψγ

. (1.5.22)

Notice that cHJ is finite by Section 1.5.4. We bound the l.h.s. of (1.5.22):∥∥∥∥∥
M∑
m=1

sup
t∈T
|Rcft(Xm)|

∥∥∥∥∥
Ψγ

=

=

∥∥∥∥∥
M∑
m=1

(
sup
t∈T
|Rcft(Xm)| − E

[
sup
t∈T
|Rcft(Xm)|

]
+ E

[
sup
t∈T
|Rcft(Xm)|

])∥∥∥∥∥
Ψγ

(a)

≤ 2
1
γ
−1

∥∥∥∥∥
M∑
m=1

(
sup
t∈T
|Rcft(Xm)| − E

[
sup
t∈T
|Rcft(Xm)|

])∥∥∥∥∥
Ψγ

+

+

∥∥∥∥∥E
[
M∑
m=1

sup
t∈T
|Rcft(Xm)|

]∥∥∥∥∥
Ψγ


(b)

≤ 2
1
γ
−1

(
Cγ

(
E

[∣∣∣∣∣
M∑
m=1

(
sup
t∈T
|Rcft(Xm)| − E

[
sup
t∈T
|Rcft(Xm)|

])∣∣∣∣∣
]

+

+

∥∥∥∥ max
1≤m≤M

∣∣∣∣sup
t∈T
|Rcft(Xm)| − E

[
sup
t∈T
|Rcft(Xm)|

]∣∣∣∣∥∥∥∥
Ψγ

)
+

+
1

Ψ−1
γ (1)

E

[
M∑
m=1

sup
t∈T
|Rcft(Xm)|

])

=: 2
1
γ
−1
[
Cγ(E1 + E2) +

1

Ψ−1
γ (1)

E3

]
.

In (a) we applied the generalized triangle inequality Section 1.4(iv) and
(

1
γ − 1

)
+

= 1
γ − 1

as γ = α
n ∈ (0, 1]. In (b) the Talagrand inequality (1.C.1) was invoked with the Ym :=

supt∈T |Rcft(Xm)|−E [supt∈T |Rcft(Xm)|] centered variables and B := R, followed by taking the

γ-Orlicz norm of the constant λ := E
[∑M

m=1 supt∈T |Rcft(Xm)|
]

according to Section 1.4(ii).

We continue the derivation with bounding the E1, E2 and E3 terms in (1.5.23).

• Bounding E1:

E1 = E

[∣∣∣∣∣
M∑
m=1

(
sup
t∈T
|Rcft(Xm)| − E

[
sup
t∈T
|Rcft(Xm)|

])∣∣∣∣∣
]

(a)

≤ 2E

[
M∑
m=1

sup
t∈T
|Rcft(Xm)|

]
(b)

≤ 16E
[

max
1≤m≤M

sup
t∈T
|Rcft(Xm)|

]
(c)

≤ 16E
[

max
1≤m≤M

sup
t∈T
|ft(Xm)|

]
(d)

≤ 16

∥∥∥∥ max
1≤m≤M

sup
t∈T
|ft(Xm)|

∥∥∥∥
Ψlγ

(
Ψ(l)
γ

)−1
(1)

(e)

≤ 16

∥∥∥∥ max
1≤m≤M

sup
t∈T
|ft(Xm)|

∥∥∥∥
Ψγ

(
Ψ(l)
γ

)−1
(1),

where in (a) we used the triangle inequality, in (b) we applied the Hoffman-Jorgensen inequal-
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ity (Theorem 1.1; t0 = 0, p = 1, B = R, Ym = supt∈T |Rcft(Xm)|) with

P

 ∑
m∈[M ]

sup
t∈T
|Rcft(Xm)| > 0

 (f)
= P

max
j∈[M ]

∑
m∈[j]

sup
t∈T
|Rcft(Xm)| > 0


= P

(
max

1≤m≤M
sup
t∈T
|ft(Xm)| > c

)
(g)

≤ P
(

max
1≤m≤M

sup
t∈T
|ft(Xm)| ≥ cHJ

)
(h)

≤ 1

8
=

1

2× 4p
with p = 1.

In (f) the non-negativity of Ym was exploited; in (g) c ≥ cHJ was used. We applied the
Markov inequality and the definition of cHJ in (h). (c) holds by |Rcft(Xm)| ≤ |ft(Xm)|. In

(d) and (e) we applied Section 1.4(v) with the convex Ψ
(l)
γ defined in Section 1.A.1 and the

monotonicity property Section 1.4(iii) with Ψ
(l)
γ ≤ Ψγ , respectively.

• Bounding E2:

E2 =

∥∥∥∥ max
1≤m≤M

∣∣∣∣sup
t∈T
|Rcft(Xm)| − E

[
sup
t∈T
|Rcft(Xm)|

]∣∣∣∣∥∥∥∥
Ψγ

(a)

≤
∥∥∥∥ max

1≤m≤M

(
sup
t∈T
|Rcft(Xm)|+ E

[
sup
t∈T
|Rcft(Xm)|

])∥∥∥∥
Ψγ

(b)

≤
∥∥∥∥ max

1≤m≤M
sup
t∈T
|Rcft(Xm)|+ max

1≤m≤M
E
[
sup
t∈T
|Rcft(Xm)|

]∥∥∥∥
Ψγ

(c)

≤ 2
1
γ
−1

(∥∥∥∥ max
1≤m≤M

sup
t∈T
|Rcft(Xm)|

∥∥∥∥
Ψγ

+

∥∥∥∥ max
1≤m≤M

E
[
sup
t∈T
|Rcft(Xm)|

]∥∥∥∥
Ψγ

)
(d)

≤ 2
1
γ
−1

(∥∥∥∥ max
1≤m≤M

sup
t∈T
|Rcft(Xm)|

∥∥∥∥
Ψγ

+
1

Ψ−1
γ (1)

E
[

max
1≤m≤M

sup
t∈T
|Rcft(Xm)|

])

(e)

≤ 2
1
γ
−1

∥∥∥∥ max
1≤m≤M

sup
t∈T
|ft(Xm)|

∥∥∥∥
Ψγ

+

(
Ψ

(l)
γ

)−1
(1)

Ψ−1
γ (1)

∥∥∥∥ max
1≤m≤M

sup
t∈T
|ft(Xm)|

∥∥∥∥
Ψ

(l)
γ


(f)

≤ 2
1
γ
−1

1 +

(
Ψ

(l)
γ

)−1
(1)

Ψ−1
γ (1)

∥∥∥∥ max
1≤m≤M

sup
t∈T
|ft(Xm)|

∥∥∥∥
Ψγ

.

In (a) we used the triangle inequality with the monotonicity Section 1.44, (b) holds by the
sub-additivity of the maximum and again the monotonicity Section 1.44, in (c) we applied

the generalized triangle inequality Section 1.4(iv) and that
(

1
γ − 1

)
+

= 1
γ − 1 as γ ∈ (0, 1],

(d) holds by Section 1.4(ii) with the constant λ = E [max1≤m≤M supt∈T |Rcft(Xm)|], (e) is by
the monotonicity Section 1.44 as |Rcft(Xm)| ≤ |ft(Xm)|, and by Section 1.4(v), (f) follows

from Ψ
(l)
γ ≤ Ψγ combined with the monotonicity Section 1.4(iii).

• Bounding E3: By (b)-(e) of the E1 derivation we have that

E3 = E

[
M∑
m=1

sup
t∈T
|Rcft(Xm)|

]
≤ 8

∥∥∥∥ max
1≤m≤M

sup
t∈T
|ft(Xm)|

∥∥∥∥
Ψγ

(
Ψ(l)
γ

)−1
(1).

By adding the obtained E1, E2 and E3 bounds, we get (1.5.22) with Kγ defined in Theorem 1.1.

1.5.6 Bounding the driving terms of Theorem 1.1 for RFF

We bound the constants of Theorem 1.1 in the RFF case described in Remark 1(v).
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• The term B: It is defined in (1.3.1). Recalling the expression (1.5.5) for Iρ(|T |) and using
the Cauchy-Schwarz inequality for bounding E

[
‖L‖L2(ω1:M )

]
by
√
Eω∼Λ [L2(ω)] gives

B ≤ 2CD
√
d

√
Eω∼Λ [L2(ω)]√

M
|S∆|β

∫ 1

0

√
log
(
1 + 2u−1/β

)
du.

We now aim at showing a tight bound for |S∆|β
∫ 1

0

√
log
(
1 + 2u−1/β

)
du w.r.t. |S∆| with an

appropriate choice of β = β(|S∆|). Indeed, let β = 1
1+(log|S∆|)+

∈ (0, 1]. We start by proving
the bound

Iβ :=

∫ 1

0

√
log
(
1 + 2u−1/β

)
du ≤ 4√

β
, ∀β ∈ (0, 1]. (1.5.24)

By the change of variable t = β log
(

1 + 2u
− 1
β

)
(i.e. u =

(
et/β−1

2

)−β
), we get

Iβ =
2β√
β

∫ ∞
β log(3)

√
t et/β

(et/β − 1)β+1
dt =

2β√
β

∫ ∞
β log(3)

√
t

et(1− e−t/β)β+1
dt.

Using the fact that 1− e−t/β ≥ 2
3 on [β log(3),+∞), we arrive at

Iβ ≤
3β+1

2
√
β

∫ ∞
β log(3)

√
te−tdt

(∗)
≤ 9

2
√
β

Γ

(
3

2

)
≤ 4√

β
,

where the inequality (∗) is obtained by taking β = 1 in 3β+1 and β = 0 in the integral; hence

(1.5.24) is proved. Now, using (1.5.24) with β = 1
1+(log|S∆|)+

and its |S∆|β = e
log|S∆|

1+(log|S∆|)+

implication, we get

|S∆|β
∫ 1

0

√
log
(
1 + 2u−1/β

)
du ≤ 4e

log|S∆|
1+(log|S∆|)+

√
1 + (log|S∆|)+ ≤ 4e

√
1 + (log|S∆|)+,

and therefore

B ≤
8eCD

√
d
√
Eω∼Λ [L2(ω)]

√
1 + (log|S∆|)+√

M
.

• The term σ2: It is defined in Theorem 1.1. Since the variance is bounded by the second
moment, E

[
g2
z(ωm)

]
≤ E

[
f2
z (ωm)

]
. Furthermore, since (ωm)Mm=1 are i.i.d., the previous

expectation can bounded by E
[
‖ω‖2|p+q|

2

]
using (1.5.1). As a result, we get

σ2 ≤ Eω∼Λ

[
‖ω‖2|p+q|

2

]
.

• The term max1≤m≤M supz∈S∆
‖gz(ωm)‖Ψγ with γ = α/n ≤ 1 and n = |p + q| + β: It

appears in the definition of c (in Theorem 1.1). In view of the bound (1.5.2) which is uniform
in z and using property (iv) of Section 1.4, we get

max
1≤m≤M

sup
z∈S∆

‖gz(ωm)‖Ψγ = max
1≤m≤M

sup
z∈S∆

‖ |gz(ωm)| ‖Ψγ ≤
∥∥∥‖ω‖|p+q|

2 + Λ
[
‖ · ‖|p+q|

2

]∥∥∥
Ψα/n

.

• The term
∥∥max1≤m≤M supz∈S∆

|gz(ωm)|
∥∥

Ψγ
: It shows up in the exponential bound (1.3.2).

We invoke the maximal inequality for the γ-Orlicz norm (item (iii) of Section 1.4) with the
previous estimate to obtain∥∥∥∥∥ max

1≤m≤M
sup
z∈S∆

|gz(ωm)|

∥∥∥∥∥
Ψγ

≤
[

log(1 +M)

log(3/2)

]n/α ∥∥∥‖ω‖|p+q|
2 + Λ

[
‖ · ‖|p+q|

2

]∥∥∥
Ψα/n

.
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• The term E
[
max1≤m≤M supz∈S∆

|gz(ωm)|
]
: It appears in the definition of c. Using proper-

ties (iii) and (v) of Section 1.4 and the convexification of Ψγ , we directly get

E

[
max

1≤m≤M
sup
z∈S∆

|gz(ωm)|

]
≤
(

Ψ
(l)
α/n

)−1
(1)

[
log(1 +M)

log(3/2)

]n/α ∥∥∥‖ω‖|p+q|
2 + Λ

[
‖ · ‖|p+q|

2

]∥∥∥
Ψα/n

.

Collecting the different bounds we obtain (1.3.4) by setting

CRFF(n) := max

(
8eCD

√
d
√

Eω∼Λ [L2(ω)],Eω∼Λ

[
‖ω‖2|p+q|

2

]
,

1 ∨
((

Ψ
(l)
α/n

)−1
(1) [log(3/2)]−n/α

)∥∥∥‖ω‖|p+q|
2 + Λ

[
‖ · ‖|p+q|

2

]∥∥∥
Ψα/n

)
.

Long (but standard) computations show that CRFF(n) is uniformly bounded for n ∈ [|p+q|, |p+
q|+ 1], and thus we can set CRFF := supn∈[|p+q|,|p+q|+1]CRFF(n).

1.5.7 Proofs of Corollary 1.3.1 and 1.3.2

Corollary 1.3.1 with the existence of C̃ ∈ R+ is a direct consequence of Theorem 1.1 combined
with Remark 1(v), in particular because CRFF does not depend on S∆ and M , and Kγ can be
bounded uniformly in n ∈ [|p+q|, |p+q|+1]. The Talagrand constant Cγ is uniformly bounded
w.r.t. γ provided that γ is bounded away from 0, see the proof of [Tal89, Theorem 3].

Now let us prove Corollary 1.3.2; set εM =

(√
6C̃∨C̃

)√
(1+[log |(SM )∆|]+)∨log(1+M)

√
M

. Observe that

(i) εM satisfies the lower bound requirement on ε in Corollary 1.3.1;

(ii) by assumption εM → 0 as M → 0 by using that |S∆| ≤ 2|S|;

(iii) therefore

1 + εM

[
log

(
C̃

εM

)
∨ log(1 +M)

]1/γ

≤ 1 + εM

[log

(
C̃

εM

)]1/γ

+ [log(1 +M)]1/γ


≤ 2 + εM [log(1 +M)]1/γ

for M large enough;

(iv) εM ≥

(√
6C̃∨C̃

)√
log(1+M)

√
M

.

As a consequence of (iii) and (iv), setting δM := 1+(log |(SM )∆|)+

log(1+M) ∨1, we get (for M large enough)

M ε2
M

C̃

(
1 + εM

[
log
(
C̃
εM

)
∨ log(1 +M)

]1/γ
) ≥ 6C̃ log(1 +M)δM

C̃

2 +

(√
6C̃∨C̃

)√
δM [log(1+M)]1/2+1/γ

√
M


= 6 log(1 +M)

δM

2 + zM
√
δM

,

where zM =

(√
6C̃∨C̃

)
[log(1+M)]1/2+1/γ

√
M

M→∞−−−−→ 0. Since the function δ ∈ R+ 7→ δ
2+zM

√
δ

is

increasing and δM ≥ 1, we get (for M large enough)

M ε2
M

C̃

(
1 + εM

[
log
(
C̃
εM

)
∨ log(1 +M)

]1/γ
) ≥ 6 log(1 +M)

1

3
.
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On the other hand, using (iv), we easily get (MεM )γ

C̃ log(1+M)
≥

[(√
6C̃∨C̃

)√
log(1+M)

√
M

]γ
C̃ log(1+M)

≥
2 log(1 +M) for M large enough.
To sum up, in view of (1.3.5), we have proved (still for large enough M)

ΛM
(∥∥∥∂̂p,qk − ∂p,qk

∥∥∥
SM
≥ εM

)
≤ 2

(1 +M)2
+

1

(1 +M)2

and by the Borell-Cantelli lemma, we conclude to the a.s. convergence (1.3.6).



APPENDICES

In this section we give additional technical details (Section 1.A), the definition of special functions
(Section 1.B), and external statements used in the proofs (Section 1.C).

1.A Additional proofs

1.A.1 Ψ
(l)
γ , the convexification of Ψγ

In the proof of Theorem 1.1 an integral control with convex Ψ (see Section 1.4(v)) is bene-
ficial/applied. However, Ψγ is not convex for γ ∈ (0, 1). To handle this issue, we convexify
Ψγ(x) = ex

γ − 1 in case of γ ∈ (0, 1) for ’small’ values of the argument.8

• By computing the derivatives of Ψγ we get that it is convex iff x ≥ xγ :=
(

1−γ
γ

) 1
γ
. Indeed,

Ψ′γ(x) = γxγ−1ex
γ
,

Ψ′′γ(x) = γex
γ [

(γ − 1)xγ−2 + xγ−1γxγ−1
]
⇒

Ψ′′γ(x) = 0⇔ x = xγ , Ψ′′γ(x) > 0⇔ x > xγ , Ψ′′γ(x) < 0⇔ x < xγ .

• We also have to make sure that Ψ
(l)
γ , constructed as the line connecting (0, 0) with (x,Ψγ(x))

glued to Ψγ |[x,∞), gives a convex function, for a suitable choice of x. A geometric argument

shows that it is enough to choose x ≥ xγ(> 0) such that

Ψγ(x)

x
≤ Ψ′γ(x) ⇔ ex

γ − 1 ≤ γxγexγ .

Since the r.h.s. is higher order than the l.h.s., the requirement can be satisfied for large enough
x; we can choose

x̃γ := inf
{
x ≥ xγ : ex

γ − 1 ≤ γxγexγ
}
,

and define

Ψ(l)
γ (x) :=

{
Ψγ(x̃γ)
x̃γ

x if x ∈ [0, x̃γ),

Ψγ(x) if x ∈ [x̃γ ,∞).

Notice that by construction Ψ
(l)
γ ≤Ψγ .

8For γ = 1, Ψ
(l)
γ = Ψγ .
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1.A.2 Proof of Remark 2(ii)

ωi ∈ LΨαi
means that Eωi∼Λi

[
esi|ωi|

αi
]
< ∞ for some si ∈ R+ (∀i ∈ [d]). Let α = mini∈[d] αi

and ‖ω‖α :=
(∑

i∈[d] |ωi|α
) 1
α

. Then ‖ω‖2 ≤
√
d supi∈[d] |ωi| ≤

√
d ‖ω‖α (∀ω ∈ Rd). Notice that

|ωi|α ≤ |ωi|αi if |ωi| ≥ 1 and |ωi|α ≤ 1 otherwise, i.e. we have |ωi|α ≤ |ωi|αi + 1 for any ωi ∈ R.
This means that taking s = mini∈[d] si and s̃ := s

dα/2
> 0 gives

‖ω‖α2 ≤ d
α/2 ‖ω‖αα = dα/2

∑
i∈[d]

|ωi|α ≤ dα/2
∑
i∈[d]

(|ωi|αi + 1),

Eω
[
es̃‖ω‖

α
2

]
≤ Eω

[
es
∑
i∈[d](|ωi|αi+1)

]
(∗)
=
∏
i∈[d]

(
Eωi

[
es|ωi|

αi
]
es
)
≤
∏
i∈[d]

(
Eωi

[
esi|ωi|

αi
]
es
)
<∞,

where we used the independence of ωi-s in (∗). We got that Eω∼Λ

[
es̃‖ω‖

α
2

]
<∞ which implies

that ω ∈ LΨα .

1.A.3 Proof of the properties in Section 1.4 about the Orlicz norm

• Properties (i)-(iv): These properties are well-known and directly follow from the definition
of the Orlicz norm.

• Property (v): The case ‖X‖Ψ = 0 gives a trivial inequality and can be discarded. Since Ψ
is bounded from below by an increasing affine function, X ∈ LΨ implies that X is integrable.

Combining (i) with Jensen’s inequality gives Ψ
(
E[‖X‖2]
‖X‖Ψ

)
≤ E

[
Ψ
(
‖X‖2
‖X‖Ψ

)]
≤ 1, and the result

follows.
• Property (vi): It is well-known that the usual triangle inequality holds for α ≥ 1. We now

focus on the case α ∈ (0, 1]. Set c :=
(
‖X‖αΨα + ‖X ′‖αΨα

)1/α
, p := cα

‖X‖αΨα
and q := cα

‖X′‖αΨα
, and

notice that 1
p + 1

q = 1. Then, combining (1.5.7) with γ = α ∈ (0, 1) and the Hölder inequality
with the conjugate exponents (p, q) yields

lim sup
m→+∞

E
[
e

(
m∧‖X+X′‖2

c

)α]
≤ lim sup

m→+∞
E
[
e

(
m∧‖X‖2

c

)α
e

(
m∧‖X′‖2

c

)α]
≤
(

lim sup
m→+∞

E
[
em∧

p‖X‖α2
cα

])1/p(
lim sup
m→+∞

E
[
em∧

q‖X′‖α2
cα

])1/q

item (i)

≤ 21/p21/q = 2.

Therefore, X + X ′ ∈ LΨα and ‖X +X ′‖Ψα ≤ c by the definition of the α-Orlicz norm.

Applying (1.5.7) with γ = 1/α we get c ≤ 2( 1
α
−1)

+
(
‖X‖Ψα + ‖X ′‖Ψα

)
and hence the claimed

result is proved.
• Property (vii): This is a direct consequence of the Markov inequality.
• Property (viii): A similar statement was proved by [vW96, Lemma 2.2.2], but under the

assumption that Ψα is convex (which holds only if α ≥ 1) and without explicit constant. Our
statement is valid for any α > 0 with explicit control.

– A first inequality: Let α ∈ R+. We claim that for any x0 > 0 and any x, y ≥ 1, we have

Ψα

(
x

1/α
0 x

)
Ψα

(
x

1/α
0 y

)
≤ Ψα

(
x

1/α
0

)
Ψα

(
x

1/α
0 xy

)
. (1.A.1)

Because Ψα(x) = Ψ1(xα) where Ψ1(x) =: Ψ(x) = ex − 1, the inequality for α = 1 clearly
implies those for all α > 0. To prove the inequality for α = 1, let x0 and x be fixed, and
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set H(y) = Ψ(x0)Ψ(x0xy)−Ψ(x0x) Ψ(x0y). One has

H ′(y) = x0xΨ(x0)ex0xy − x0Ψ(x0x)ex0y

= x2
0xe

x0ex0x

[
Ψ(x0)

x0ex0
ex0x(y−1) − Ψ(x0x)

x0xex0x
ex0(y−1)

]
,

Ψ(x0)

x0ex0
=

1− e−x0

x0
=

∫ 1

0
e−ux0du ≥

∫ 1

0
e−ux0xdu =

Ψ(x0x)

x0xex0x
,

ex0x(y−1) ≥ ex0(y−1),

where we used x0 > 0, x, y ≥ 1 at the two last inequalities. This shows that H ′(y) ≥ 0,
and since H(1) = 0 we have H(y) ≥ 0 for any y ≥ 1. Consequently, (1.A.1) is proved.

– Final maximal inequality: We follow the arguments of [vW96, Lemma 2.2.2] with slights
modifications. The inequality (1.A.1) can be rewritten as

Ψα(x) ≤ Ψα

(
x

1/α
0

)
Ψα

(
xy/x

1/α
0

)
/Ψα(y), ∀x, y ≥ x1/α

0 . (1.A.2)

Set c = maxm∈[M ] ‖Xm‖Ψα /x
1/α
0 and let y ≥ x1/α

0 .

∗ If
maxm∈[M ] ‖Xm‖2

cy ≤ x
1/α
0 , then we have the crude bound Ψα

(
maxm∈[M ] ‖Xm‖2

cy

)
≤

Ψα

(
x

1/α
0

)
= Ψ(x0).

∗ If
maxm∈[M ] ‖Xm‖2

cy ≥ x1/α
0 , then (1.A.2) yields

Ψα

(
maxm∈[M ] ‖Xm‖2

cy

)
≤ Ψ(x0) Ψα

(
maxm∈[M ] ‖Xm‖2

maxm∈[M ] ‖Xm‖Ψα

)
/Ψα(y)

≤
∑
m∈[M ]

Ψ(x0)Ψα

(
‖Xm‖2/‖Xm‖Ψα

)
/Ψα(y).

Consequently, in both cases we have

Ψα

(
maxm∈[M ] ‖Xm‖2

cy

)
≤ Ψ(x0)

1 +
∑
m∈[M ]

Ψα

(
‖Xm‖2/‖Xm‖Ψα

)
/Ψα(y)

 .
Taking expectation and using Property (i), we arrive at

E
[
Ψα

(
maxm∈[M ] ‖Xm‖2

cy

)]
≤ Ψ(x0)

[
1 +

M

Ψα(y)

]
.

Let us choose x0 such that Ψ(x0) < 1. In this case the choice y = x
1/α
0 ∨Ψ−1

α

(
M

1/Ψ(x0)−1

)
ensures that the above bound is valid and smaller than 1. Consequently, by the definition
of α-Orlicz norm, we get

∥∥maxm∈[M ] ‖Xm‖2
∥∥

Ψα
≤ cy. The choice x0 = log(3/2) satifies

the previous requirement: Ψ(x0) = 1
2 < 1. In this case y = [log(3/2) ∨ log(1 +M)]1/α =

[log(1 +M)]1/α since M ≥ 1. We have obtained the claimed Property (viii).
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1.B Special functions

Name Definition

Modified Bessel function of the first kind Ja(x) =
∑

n∈N
1

n!Γ(n+a+1)

(
x
2

)2n+a

Modified Bessel function of the second kind Ka(x) = π
2
J−a(x)−Ja(x)

sin(aπ)

Fox-Wright generalized hyperbolic function 1Ψ1 ((a,A); (b, B);x) =
∑

n∈N
Γ(a+An)
Γ(b+Bn)

xn

n!

(Imaginary) error function erfi(x) =
∑

n∈N
2√
π

x2n+1

n!(2n+1)

Kummer’s confluent hypergeometric function 1F1(a; b;x) =
∑

n∈N
a(n)

b(n)
xn

n!

Polylogarithm function Lia(x) =
∑

n∈Z+
xn

na

Ordinary hyperbolic function 2F1(a, b; c; z) =
∑

n∈N
a(n)b(n)zn

c(n)n!

Table 1.4 – Definition of special functions. Ja(x),Ka(x): x ∈ R and a is non-integer; when a is
an integer the limit is taken. 1Ψ1 ((a,A); (b, B);x): a ∈ R+, b ∈ R+, x ∈ R, A ∈ R+, B ∈ R+

and 1 + B > A; 1Ψ1 ((a, 1); (b, 1);x) = Γ(a)
Γ(b) 1F1(a; b;x). erfi(x): x ∈ R. 1F1(a; b;x): a ∈ R+,

b ∈ R+, x ∈ R. Lia(x): a ∈ R, x ∈ R, |x| < 1. 2F1(a, b; c; z): a ∈ C, b ∈ C, c ∈ C\Z≤0, z ∈ C
and |z| < 1; for |z| ≥ 1 its analytical continuation is taken. For n ∈ N, a(n) is the rising factorial

of a defined as a(n) = Γ(a+n)
Γ(a) where a ∈ C\Z≤0 and a+ n ∈ C\Z≤0.

1.C External statements

In this subsection we state external statements which were used to derive our results. Below B
stands for a separable Banach space, Lp(B) is the space of B-valued p-integrable functions. The
norm ‖·‖Ψα is defined analogously to Rd by changing ‖·‖2 to ‖·‖B.

Theorem 1.1. (Hoffman-Jorgensen inequality, [LT13, Proposition 6.8]) Let p > 0,
M ∈ Z+, (Ym)m∈[M ] be independent random variables in Lp(B), Sm :=

∑m
j=1 Yj for m ∈ [M ],

t0 = inf
{
t > 0 : P (max1≤m≤M ‖Sm‖B > t) ≤ (2× 4p)−1

}
. Then

E
[

max
m∈[M ]

‖Sm‖pB

]
≤ 2× 4pE

[
max
m∈[M ]

‖Ym‖pB

]
+ 2(4t0)p.

Theorem 1.2. [Tal89, Theorem 3] Let γ ∈ (0, 1]. Then, there is a constant Cγ such that for
all finite sequence (Ym)m∈[M ] of independent, mean zero, integrable random variables in LΨγ (B),
we have ∥∥∥∥∥∥

∑
m∈[M ]

Ym

∥∥∥∥∥∥
Ψγ

≤ Cγ


∥∥∥∥∥∥
∑
m∈[M ]

Ym

∥∥∥∥∥∥
L1(B)

+

∥∥∥∥ max
m∈[M ]

‖Ym‖B

∥∥∥∥
Ψγ

 . (1.C.1)

Theorem 1.3. (Klein-Rio inequality for supremum of empirical process, [KR05,
Theorems 1.1-1.2]) Let M ∈ Z+, c ∈ R+, (Xm)m∈[M ] be independent B-valued random

variables, and F a countable set of f := (f1, . . . , fM ) measurable functions from B into [−c, c]M
such that E [fm(Xm)] = 0 for all m ∈ [M ]. Define Z := supf∈F

1
M

∑
m∈[M ] fm(Xm), σ2 :=

1
M supf∈F E

[∑
m∈[M ] f

2
m(Xm)

]
. Then, for any t ≥ 0 the following right and left-hand sided

deviation inequalities hold

P (Z − E [Z] ≥ t) ≤ e
− M t2

2(σ2+2c E[Z])+3c t , P (Z − E [Z] ≤ −t) ≤ e
− M t2

2(σ2+2c E[Z])+2c t .



Theorem 1.4. (Dudley entropy integral bound)9 Let {Zt : t ∈ T} be a zero-mean separable
stochastic process that is sub-Gaussian w.r.t. a pseudo-metric d on the indexing set T , in other

words for every λ ∈ R E
[
eλ(Zt−Zs)

]
≤ e

λ2d(s,t)2

2 (∀s, t ∈ T ). Then there exists a universal
constant CD such that

E
[
sup
t∈T

Zt

]
≤ CD

∫ ∞
0

√
logN(ε, d, T )dε, (1.C.2)

where N(ε, d, T ) denotes the covering number.

Theorem 1.5. ([Alz97, Theorem 1])10 Let γ ∈ (0, 1], βγ := Γ
(

1 + 1
γ

)−γ
, x ∈ R≥0, Iγ(x) :=∫ x

0 e
−tγdt. Then

(
1− e−βγxγ

) 1
γ ≤ Iγ(x)

Γ(1+1/γ) ≤
(
1− e−xγ

) 1
γ .

9See [vW96, Corollary 2.2.8] for a general statement. Regarding the numerical value of CD, [van16, Corollary
5.25] proves that one can take CD = 12 whereas [Bar13, Lecture 14] suggests a slightly smaller constant CD = 8

√
2.

10The statement here follows by taking the limit of the cited result at γ = 1 and x = 0.



CHAPTER 2

CONCENTRATION INEQUALITIES FOR
β-HEAVY TAILED RANDOM VARIABLES

Note. This chapter corresponds to an article written with E. Gobet and W. Liu. It had been
submitted.

Abstract. We establish a new concentration-of-measure inequality for the sum of independent
random variables with β-heavy tail. This includes exponential of Gaussian distributions (a.k.a.
log-normal distributions), or exponential of Weibull distributions, among others. These distri-
butions have finite polynomial moments at any order but may not have finite α-exponential
moments. We exhibit a Orlicz norm adapted to this setting of β-heavy tails, we prove a new
Talagrand inequality for the sum and a new maximal inequality. As consequence, a bound on
the deviation probability of the sum from its mean is obtained, as well as a bound on uniform
deviation probability.

2.1 Introduction

Understanding how sample statistical fluctuations impact prediction errors is crucial in learning
algorithms. Typically, we are interested in bounding the probability that a sum of random
variables exceeds a certain threshold, essentially in quantifying the deviation of the sum from
its expectation. In other words, we aim at analyzing how fast the sum concentrates around its
expectation. Take the notation [M ] for all integers from 1 to M included. For independent and
centered random variables (Ym)m∈[M ] taking value in a Banach space (B, ‖·‖B), the quantity

of interest takes the form P
(∥∥∥∑m∈[M ] Ym

∥∥∥
B
> ε
)
≤ f(ε,M) for the most explicit and tightest

possible function f . The bounded, sub-Gaussian or the sub-exponential random variables have
been largely covered by the literature (for example, via Bennett and Bernstein inequalities -
see [BLM13] for an extensive review of main concentration inequalities techniques), as well as
the case of alpha-exponential tails [CGS20] (Chapter 1: random variables Y s.t. there exists

α > 0, c > 0, such that E
[
exp
(
‖Y ‖αB
c

)]
< ∞). The fat-tailed case, for which the moment

generating function does not exist but some polynomial moments exist, can be tackled for
example via Burkholder or Fuk-Nagaev type of inequalities [Rio17, Mar17]. These inequalities
are based on the existence and on the bounding of polynomial moments of the random variables.
In this chapter, we focus on the heavy-tailed random variables case, in the limit case when no
α-exponential moment is finite but every polynomial moment exist.
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Orlicz norm. Orlicz norm [KR61] provides a nice tool to study the statistical fluctuations of
an estimator for a given family of distributions. Consider an Orlicz function Ψ : R+ → R+, that
is a continuous non-decreasing function, vanishing in zero and with limx→+∞Ψ(x) = +∞, and
define the Ψ-Orlicz norm of the B-valued random variable Y by

‖Y ‖Ψ := inf

{
c > 0 : E

[
Ψ

(
‖Y ‖B
c

)]
≤ 1

}
. (2.1.1)

With the additional property that Ψ is convex, Orlicz functions are commonly referred to as
”Young functions” (or ”N-functions” as in [KR61]). Van de Geer and Lederer [vdGL13] exhibit
in their work a ”Bernstein-Orlicz” norm (the ”(L)-Bernstein-Orlicz” norm) adapted to sub-
Gaussian and sub-exponential tails and provide deviation inequalities for suprema of functions
of random variables [vdGL13, Theorem 8]. The (L)-Bernstein-Orlicz norm is the ΨL-Orlicz
norm with

ΨL(z) = exp

[(√
1 + 2Lz − 1

L

)2
]
− 1.

Clearly ‖Y ‖ΨL <∞ implies the existence of exponential moment. As shown in Wellner [Wel17],
it is possible to generalize these results to any Orlicz function Ψ(x) = eh(x) − 1 with h convex.
It requires again the existence of exponential moment which is not our framework. We would
like to go beyond and do not assume any α-exponential moment.

As a new Orlicz function able to handle heavy-tail situations, we will consider:

ΨHT
β (x) := exp

(
(ln (x+ 1))β

)
− 1, x ≥ 0, (2.1.2)

for a parameter β > 1. We say that Y is β-heavy tailed if there exists a c > 0 s.t.

E
[
ΨHT
β

(
‖Y ‖B
c

)]
<∞.

Typically, we aim at encompassing situations like Y = exp
(
|G|

2
β

)
where G is a Gaussian random

variable; the case β = 2 corresponds to log-normal tails. See Section 2.2.2 for various examples.
Observe that when (2.1.1) is finite with Ψ = ΨHT

β , Y has finite polynomial moment of order p
for any p > 0, but may not have α-exponential moments. Besides, our β-heavy tailed setting is
closely related to long-tail modelling1, which is used for instance in queuing applications [Asm03,
Chapter 10].

Deviation inequalities for sum via Talagrand and Markov inequalities. What we call
Talagrand inequality is an inequality of type:∥∥∥ ∑

m∈[M ]

Ym

∥∥∥
Ψ
≤ CΨ

(∥∥∥ ∑
m∈[M ]

Ym

∥∥∥
L1(B)

+
∥∥∥ max
m∈[M ]

‖Ym‖B
∥∥∥

Ψ

)
. (2.1.3)

Talagrand [Tal89, Theorem 3] showed that this inequality is satisfied with Ψα(x) := ex
α − 1.

For the sake of presentation, let us consider i.i.d. (Ym)m∈[M ]. The first term is then∥∥∥∑m∈[M ] Ym

∥∥∥
L1(B)

≤ O(
√
M) by Bukholder inequality when B ⊆ R or the more general in-

equality of [Pis16, Proposition 4.35] when B is a Hilbert space or a Banach space of type 2.
When the maximal inequality is satisfied, that is under the form of [vW96, Lemma 2.2.2.],

the second term is bounded by∥∥∥ max
m∈[M ]

‖Ym‖B
∥∥∥

Ψ
≤ KΨΨ−1 (M) max

m∈[M ]
‖Ym‖Ψ .

1typically S(x) := P
(
‖Y ‖B > x

)
= exp

(
−(ln(1 + x))β

)
for which limx→+∞ S(x+ t)/S(x) = 1 for any t > 0.
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Hence, for any ε > 0, denoting X := 1
M

∥∥∥∑m∈[M ] Ym

∥∥∥
B

, thanks to the Markov inequality, the

Talagrand inequality and the two previous norm controls, we get

P (X ≥ ε) ≤
Sect. 2.2.1−((iii))

2

1 + Ψ (ε/‖X‖Ψ)
= 2

1 + Ψ

 εM∥∥∥∑m∈[M ] Ym

∥∥∥
Ψ

−1

≤ 2

(
1 + Ψ

(
εM

C ′Ψ(Ψ−1(M) +
√
M)

))−1

. (2.1.4)

In particular, for Ψ = Ψα, the above inequality simplifies to:

P (X ≥ ε) ≤ 2 exp
(
−C ′α

(
ε
√
M
)α)

.

It is then possible to extend this type of inequality to suprema of functions as done in Chapter
1, in the spirit of [Ada08]. In any case, a key element to derive these concentration inequalities
is the Talagrand inequality (2.1.3).

Contribution. The purpose of this chapter is mainly to establish the Talagrand inequality
for Ψ = ΨHT

β , to tackle β-heavy tailed random variables as a difference with previous contri-
butions available in the literature, and to derive some ready-to-use consequences. Note that
this particular Orlicz function (2.1.2) is not at all part of the general result established by
Talagrand [Tal89, Proposition 12], which states that the inequality (2.1.3) holds for Orlicz
function of the form Ψ(x) := exζ(x) with ζ non-decreasing for x large enough and satisfying

lim supu→+∞
ζ(eu)
ζ(u) < +∞; indeed, in our setting, one easily checks that ζ(x) = x−1 ln

(
ΨHT
β (x)

)
=

x−1(ln
(
exp
(
(ln(x+ 1))β

)
− 1
)
) is decreasing for x large.

Outline. In Section 2.2, we recall the motivating example and define the adapted Orlicz func-
tion. Then we state our main results: Talagrand inequality (Theorem 2.2.2), maximal inequality
(Theorem 2.2.3), pointwise and uniform deviation estimates (Corollary 2.2.4 and Theorem 2.2.5).
Section 2.3 is devoted to the proofs. In all these results, some universal constants appear: we
do not investigate the question of having the best possible constants.

2.2 Motivating examples and main results

In this section we recall the properties of ‖·‖Ψ which hold independently of the convexity of Ψ.
We then give examples of distributions satisfying a β-heavy-tailness property and we present
our main results on sum and supremum of sum of empirical processes with β-heavy tails.

2.2.1 Orlicz norm properties

Although ‖·‖Ψ defined in (2.1.1) may not satisfy in general the triangle inequality, we keep calling
it Orlicz norm for the sake of simplicity. For a given Banach space (B, ‖·‖B) over the field R,
we denote LΨ(B) := {Y : Ω→ B s.t. ‖Y ‖Ψ < +∞} the set of B-valued random variables with
finite Ψ-Orlicz norm. For self-containedness we summarize a few well-known properties of the
‖·‖Ψ norm, for a given Orlicz function Ψ, which hold independently of the convexity of Ψ (unless
explicitly required). See [KR61], or in Chapter 1 Section 1.4.

(i) Normalization: If Y ∈ LΨ(B) then E
[
Ψ
(
‖Y ‖B
‖Y ‖Ψ

)]
≤ 1.

(ii) Homogeneity: If Y ∈ LΨ(B) and c ∈ R then cY ∈ LΨ(B) and ‖cY ‖Ψ = |c| ‖Y ‖Ψ.
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(iii) Deviation inequality: If Y ∈ LΨ(B) then P (‖Y ‖B ≥ c) ≤
2

Ψ(c/‖Y ‖Ψ)+1 for any c ≥ 0.

(iv) If Ψ is convex, ‖·‖Ψ satisfies to the triangle inequality.

2.2.2 Motivating examples of heavy-tailed distributions and adapted Orlicz
norm

In this section we recall the motivating example of this study and we give various examples
satisfying the β-heavy-tailness property.

2.2.2.1 Log-normal distribution

Let Y be a scalar random variable with log-normal distribution, i.e.

ln(Y )
d
= N

(
µ, σ2

)
,

with σ > 0. The distribution of Y admits the density

fY (y;µ, σ) :=
1

σ
√

2πy
e−

(ln y−µ)2

2σ2 1y>0.

Let us investigate what kind of Orlicz function Ψ can be used to have ‖Y ‖Ψ <∞. In particular,
we search for Ψ(x) = exp (ξ(x))−1 such that ξ is non-decreasing, ξ(0) = 0 and limx→+∞ ξ(x) =
+∞ in order to ensure that Ψ(0) = 0 and limx→+∞Ψ(x) = +∞. Let c > 0, observe that

E
[
exp

{(∣∣∣∣ξ( |Y |c
)∣∣∣∣)}] <∞ =⇒ lim inf

x→∞
ξ
(x
c

)
− (lnx)2

2σ2
= −∞. (2.2.1)

Consider the following functions for β > 0:

1. ξβ(x) = (ln (x+ 1))β, x ≥ 0. Note that the case β ≤ 1 is not much interesting in our
setting since it quantifies tails with finite expectation at most (fat tail cases).

2. ξβ(x) = (ln(x+ 1))β(ln(ln(x+ 1) + 1))α, x ≥ 0, α ∈ R. This second case is a scale
refinement of the first case. It is not studied here.

These functions satisfy the necessary condition (2.2.1) if β < 2 and for a large c 2. Fur-
thermore, since for any c > 0, ξβ

(
x
c

)
< ε(lnx − µ)2 for any ε > 0 for x large enough,

E
[
exp
{(∣∣∣ξβ ( |Y |c )∣∣∣)}] < +∞.

2.2.2.2 Other distributions satisfying E
[
exp
{(
ξβ

(
‖Y ‖B
c

))}]
< +∞

The associated Orlicz function ΨHT
β (x) := exp(ξβ(x))− 1 is adapted to other distributions than

just the log-normal distribution. For any random variable X admitting finite α-exponential
moment with α > 1, then Y defined by ln(Y ) = X will admit β-heavy tailed for any 1 < β < α.
We refer to 1.2 in the previous chapter for an exhaustive list of distributions admitting α-
exponential moments. Here are a few examples:

• The Generalized normal distribution with parameters c ∈ R, b > 0, α > 0 has a density

f(x) = cfe
− 1

2

(
|x−c|
b

)α
up to a positive normalization constant cf : it clearly admits a finite

α-exponential moment. Hence Y = exp(X) where X has density f hence admits β-heavy
tails for β < α.

2β = 2 is possible under restriction on σ: if σ < 1√
2
, then lim infx→∞ ξ2 (x)− (ln x)2

2σ2 = −∞.
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• The Skew normal distribution with parameters b ∈ R, c ∈ R, v > 0 has a density

f(x) = cfe
− (x−c)2

2v Φ
(
b(x−c)√

v

)
, where Φ denotes the standard Gaussian cumulative dis-

tribution function and cf is a positive normalization constant: it admits 2-exponential
moment. If X has this density, then Y = exp(X) has β-heavy tails for β < 2.

• The Weibull distribution with parameters λ > 0, k > 0 has a density f(x) =

cfx
k−1e−( xλ)

k

1x≥0 up to a positive normalization constant cf : it has finite k-exponential
moment. Consequently, Y = exp(X) where X has the density as above, admits β-heavy
tails for β < k. Such distributions are used, for instance, for earthquake magnitude mod-
elling [HR99] .

2.2.3 ΨHT
β -Orlicz norm: properties and inequalities

We state different properties of the Orlicz function to be used for β-heavy tailed distribution.
The proof is postponed to Section 2.3.4.

Proposition 2.2.1. For β > 0 define ΨHT
β : R+ → R+ by

ΨHT
β (x) := exp(ξβ(x))− 1 with ξβ(x) := (ln (1 + x))β, x ≥ 0.

The following properties hold:

1. The application β 7→ ΨHT
β defines a group isomorphism between ((0,+∞),×) and ((ΨHT

β :

β > 0), ◦), and in particular, (ΨHT
β )−1 = ΨHT

1/β.

2. For β > 0, ΨHT
β is an Orlicz function.

3. For β > 1, ΨHT
β is convex.

4. For β > 1 (resp. β < 1), the limit as x→ +∞ of ΨHT
β (x)/xk equals to +∞ (resp. 0), for

any k > 0.

As a consequence, the associated ΨHT
β -Orlicz norm satisfies to the triangle inequality for

β > 1.
Hereafter, we mostly restrict the results to the more interesting case β > 1. Let us start

with the Talagrand inequality (2.1.3) for the ΨHT
β -Orlicz norm.

Theorem 2.2.2 (Talagrand type inequality). Let β ∈ (1,+∞). Then there is a universal
constant Kβ,(2.2.2) s.t. for all independent, mean zero, random variables sequence (Ym)m∈[M ]

with Ym ∈ LΨHT
β

(B) for all m ∈ [M ], we have

∥∥∥∥∥∥
∑
m∈[M ]

Ym

∥∥∥∥∥∥
ΨHT
β

≤ Kβ,(2.2.2)


∥∥∥∥∥∥
∑
m∈[M ]

Ym

∥∥∥∥∥∥
L1(B)

+

∥∥∥∥ max
m∈[M ]

‖Ym‖B

∥∥∥∥
ΨHT
β

 . (2.2.2)

We also establish that the general maximal inequality [vW96, Lemma 2.2.2.] (recalled in
Lemma 2.3.7) holds for the ΨHT

β function:

Theorem 2.2.3 (A ΨHT
β maximal inequality). Let β ∈ (1,+∞). Then there exists a universal

constant Cβ,(2.2.3) s.t. for any random variables Y1, . . . , YM in LΨHT
β

(B),∥∥∥∥ max
m∈[M ]

‖Ym‖B

∥∥∥∥
ΨHT
β

≤ Cβ,(2.2.3)(Ψ
HT
β )−1(M) max

m∈[M ]
‖Ym‖ΨHT

β
. (2.2.3)
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Recall that (ΨHT
β )−1(M) = ΨHT

1/β(M). As a consequence of the Talagrand inequality (2.2.2)

and the maximal inequality (2.2.3), by following the same steps as described in (2.1.4), we can
derive the following concentration inequality:

Corollary 2.2.4 (A concentration inequality for sum of independent β-heavy tailed random
variables). Let β ∈ (1,+∞). Assume that B is an Hilbert space or a Banach space of type 2.
Then for any Y1, . . . , YM independent and centered random variables in LΨHT

β
(B), for any ε > 0,

P

 1

M

∥∥∥∥∥∥
∑
m∈[M ]

Ym

∥∥∥∥∥∥
B

≥ ε


≤ 2 exp

− ln

1 +
εM

Kβ,(2.2.2)

(
C(2)1/2µ2

√
M + Cβ,(2.2.3)µΨHT

β
ΨHT

1/β(M)
)
β
 ,

where µΨHT
β

:= maxm∈[M ] ‖Ym‖ΨHT
β

and µ2 := maxm∈[M ]‖Ym‖L2(B), C(2) denotes the universal

constant in the Pisier inequality [Pis16, Proposition 4.35], Kβ,(2.2.2) the Talagrand constant in
(2.2.2) and Cβ,(2.2.3) the maximal inequality constant in (2.2.3).

Recall that ΨHT
1/β(M) goes to infty slowlier than Mk (for β > 1, k > 0) (Proposition 2.2.1-

(4)). Thus, when Y1, . . . , YM are i.i.d. – implying that µΨHT
β

and µ2 do not depend on M – the

above upper bound takes the simple form

2 exp

(
−
(

ln
(

1 +Kε
√
M
))β)

,

for some universal constant K > 0 (depending on µΨHT
β

and µ2).

In addition, the above pointwise estimate can be turned into a uniform deviation estimate.
On the technical side, the strategy consists in splitting the deviation between truncated func-
tions and their residuals. The residuals are handled using Hoffman-Jorgensen inequality [LT13,
Proposition 6.8], following an initial idea from [Ada08], more deeply analysed in Chapter 1.
The ”truncated part” can be handled using Klein-Rio concentration bounds, together with the
Dudley entropy integral bounds. For the latter which is related to the complexity of the space
of functions and their related covering numbers, we choose to describe it using its Vapnik-
Chervonenkis (VC) dimension (see [GKKW02, Theorem 9.4]). For alternative descriptions, see
[vdG00, Sections 2.3 and 2.4] and [NP07]; adaptation of the following result to these other
complexity descriptions is somehow direct and left to the reader.

Theorem 2.2.5 (A uniform concentration inequality for β-heavy tailed random variables). Let
β ∈ (1,+∞). Let (X1, . . . , XM ) be independent random variables taking values in Rd and let
F be a countably-generated class of functions f : Rd 7→ R with envelope F (x) := supf∈F |f(x)|,
such that F (Xm) ∈ LΨHT

β
(R) for any m ∈ [M ] . Set

µΨHT
β

:= max
m∈[M ],f∈F

‖f(Xm)‖ΨHT
β
,

µ̄ΨHT
β

:= max
m∈[M ]

‖F (Xm)‖ΨHT
β
,

µ2 := max
m∈[M ],f∈F

‖f(Xm)‖L2 .

(2.2.4)

Assume that the Vapnik-Chervonenkis dimension VF+ of F+ := {{(x, t) ∈ Rd×R, t ≤ f(x)}; f ∈
F} is finite. Then, there exist two universal constants K1,K2 (depending only on β) such that
for any ε > 0 satisfying the constraint

ε ≥ K1c

√
VF+

M
(2.2.5)
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with

c :=
(
K1ΨHT

1/β(M)µ̄ΨHT
β

)
∨
(
µΨHT

β

(
exp

[(
2 ln+

(
K1µΨHT

β
/ε
))1/β

]
− 1

))
, (2.2.6)

ln+(x) := max(ln(x), 0),

we have

P

sup
f∈F

1

M

∑
m∈[M ]

(f(Xm)− E [f(Xm)]) ≥ ε


≤ 2 exp

−(ln

(
1 +

Mε

K2µ̄ΨHT
β

ΨHT
1/β(M)

))β+ exp

(
− Mε2

K2(µ2
2 + cε)

)
. (2.2.7)

A similar bound holds for lower deviations, i.e. replacing the sup and ≥ ε by inf and ≤ −ε:
it is obtained by changing F into −F in the bounds.

If F is a finite-dimensional vector space, VF+ ≤ dim(F) + 1 [GKKW02, Theorem 9.5].
For i.i.d. (Xm)m, i.e. the µ-parameters (2.2.4) do not depend on M , both the condition

(2.2.6) and the bound (2.2.7) take simple forms in terms of M (without focusing much on the
best constants), which makes the application of Theorem 2.2.5 even more easily applicable.

• The bound (2.2.7) becomes 2 exp

(
−
(

ln

(
1 + Mε

KΨHT
1/β

(M)

))β)
+ exp

(
− Mε2

K(1+cε)

)
for a pos-

itive constant K depending on β and the µ-parameters.

• The equation (2.2.6) becomes simply

c := K1ΨHT
1/β(M), (2.2.8)

with a new constant K1, depending on β and the µ-parameters. In-
deed, from the first term in the definition (2.2.6) of c, one gets that

c ≥ infM≥1

(
K1ΨHT

1/β(M)µ̄ΨHT
β

)
=: c0 > 0, which, from (2.2.5), yields the rough lower

bound ε ≥ K1c0/
√
M . This implies in turn (after tedious computations) that the second

term in the definition (2.2.6) of c cannot be (up to constant) larger than the first term,
hence the equality (2.2.8).

2.3 Proofs

In this section we give the proofs of our main results, namely our adaptation of the Talagrand in-
equality (Theorem 2.2.2 - Subsection 2.3.1), the maximal inequality (Theorem 2.2.3 - Subsection
2.3.2) and then our uniform concentration result (Theorem 2.2.5 - Subsection 2.3.3).

2.3.1 Proof of Theorem 2.2.2

In this section we start by recalling the tools from the Talagrand’s seminal article [Tal89] used to
prove our Talagrand inequality, then we give some technical argument and we prove our adapted
Talagrand’s inequality.

2.3.1.1 Preliminary results

Here, we recall Lemmas 8 and 9 of [Tal89], as well as the ”Basic Estimate”, which will enable us to
prove Theorem 2.2.2. In addition to the independent B-valued random variables (Ym)m∈[M ], we
will need to consider extra independent Rademacher random variables. Everything is defined
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as follows. Let
(

ΩM × Ω′,
∑M ⊗

∑′,P) the basic probability space, where P = P⊗P′ such

that the variables Ym are defined on ΩM and for ω = (ωm)m∈[M ], Ym(ω) depends only on

ωm. Let (εm)m∈[M ] be a set of random variables defined on Ω′ with a Rademacher distribution
independent of (Ym)m∈[M ]. The following inequalities can be proven independently apart from
the context of Orlicz norms.

Lemma 2.3.1 ([Tal89, Lemma 8]). If P
(
maxm∈[M ] ‖Ym‖B ≥ t

)
≤ 1

2 , then

∑
m∈[M ]

P (‖Ym‖B ≥ t) ≤ 2P
(

max
m∈[M ]

‖Ym‖B ≥ t
)
.

Lemma 2.3.2 ([Tal89, Lemma 9]). Set X(r) the r-th largest term of (‖Ym‖B)m∈[M ]. Then

P
(
X(r) ≥ t

)
≤ 1

r!

 ∑
m∈[M ]

P (‖Ym‖B ≥ t)

r

.

Set

µ := E

∥∥∥∥∥∥
∑
m∈[M ]

εmYm

∥∥∥∥∥∥
B

 ,
µ > 0 because the Ym’s are not all zero random variables (to avoid trivial situations). We now
recall a key inequality which, combined with the previous lemmas, will enable us to prove the
announced theorem.

Theorem 2.3.3 ([Tal89, Equation (2.5)]). For k, q positive integers s.t. k ≥ q, u > 0 and
u′ > 0, we have

P

∥∥∥∥∥∥
∑
i∈[M ]

εiYi

∥∥∥∥∥∥
B

≥ 4qµ+ u+ u′

 ≤ 4 exp

(
− u2

64qµ2

)
+

(
K0

q

)k

+ P

∑
r≤k

X(r) > u′


where the constant K0 is a universal constant.

2.3.1.2 Symmetrisation argument for Ψ convex

In the next subsection, because we rely on Theorem 2.3.3, we are going to prove the inequality

(2.2.2) on symmetric random variables first (e.g. variables Ym s.t. εmYm
d
= Ym). The extension

to non-symmetric variables will be direct thanks to Lemma 2.3.5 which establishes an ”equiv-
alence in norms” relationship between the Orlicz norm of the sum of random variables and its
associated Rademacher average.

Lemma 2.3.4. Let Ψ be convex Orlicz function and ‖·‖Ψ the associate Orlicz norm. For any
mean zero random variable Z ∈ LΨ(B), we have ‖Z‖Ψ ≤ ‖Z − Z ′‖Ψ, with Z ′ any B-valued
random variable such that E [Z ′|Z] = 0.

Proof. Let c > 0,

E [Ψ(‖Z‖B /c)]
(a)
= E

[
Ψ

(
‖E [Z − Z ′ | Z]‖B

c

)]
(b)

≤ E
[
Ψ

(
E [‖Z − Z ′‖B | Z]

c

)]
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(c)

≤ E
[
E
[
Ψ

(
‖Z − Z ′‖B

c

)
| Z
]]

= E
[
Ψ

(
‖Z − Z ′‖B

c

)]
where in (a) we use Z ′ has a zero conditional mean, in (b) we use that Ψ is non decreasing and
the triangular inequality holds for the ‖·‖B, in (c) we apply the Jensen inequality. Hence by
taking c = ‖Z − Z ′‖Ψ > 0, the right hand side is smaller than 1 (using Property ((i)) in Section
2.2.1), and therefore ‖Z‖Ψ ≤ c = ‖Z − Z ′‖Ψ.

Lemma 2.3.5. Let Ψ be as in Lemma 2.3.4. Let (Ym)m∈[M ] be a sequence of independent mean-
zero random variables in LΨ(B). Let (εm)m∈[M ] be independent Rademacher random variables,
and let (Y ′m)m∈[M ] be an independent copy of the sequence (Ym)m∈[M ]. Then∥∥∥∥∥∥

∑
m∈[M ]

Ym

∥∥∥∥∥∥
Ψ

≤

∥∥∥∥∥∥
∑
m∈[M ]

Ym −
∑
m∈[M ]

Y ′m

∥∥∥∥∥∥
Ψ

=

∥∥∥∥∥∥
∑
m∈[M ]

εm(Ym − Y ′m)

∥∥∥∥∥∥
Ψ

≤ 2

∥∥∥∥∥∥
∑
m∈[M ]

εmYm

∥∥∥∥∥∥
Ψ

≤ 4

∥∥∥∥∥∥
∑
m∈[M ]

Ym

∥∥∥∥∥∥
Ψ

.

Later on, we will apply these inequalities with Ψ = ΨHT
β and Ψ(x) = x (the associated Orlicz

norm corresponds then to the L1 norm).

Proof. The first inequality comes from the application of Lemma 2.3.4 with Z =
∑

m∈[M ] Ym

and Z ′ =
∑

m∈[M ] Y
′
m. Since εm takes values ±1 independently of Z,Z ′, we have Ym − Y ′m

d
=

Y ′m − Ym
d
= εm(Ym − Y ′m). Since the sequences are independent in m, we obtain the equality

of Lemma 2.3.5. The second inequality is a consequence of the triangular inequality ((iv)) and
the previous identities in distribution. The last inequality is a consequence of the application of
Lemma 2.3.4 with Z =

∑
m∈[M ] εmYm and Z ′ =

∑
m∈[M ] εmY

′
m satisfying

E
[
Z ′|Z

]
= E

E
 ∑
m∈[M ]

εmY
′
m |εm, Ym,m ∈ [M ]

 | Z
 = 0

and of the triangular inequality: ‖Z‖Ψ≤‖Z − Z ′‖Ψ =
∥∥∥∑m∈[M ](Ym − Y ′m)

∥∥∥
Ψ
≤

2
∥∥∥∑m∈[M ] Ym

∥∥∥
Ψ

.

2.3.1.3 Completion of the proof of Theorem 2.2.2

We will denote K a positive constant depending only on β, that may vary from line to line. We
assume that at least one of the Ym’s is not zero a.s., otherwise the announced inequality (2.2.2)
is obvious.

In view of the inequalities of Lemma 2.3.5, it is enough to do the reasoning and show the
inequality (2.2.2) with the variables (εmYm,m ∈ [M ]) instead of (Ym,m ∈ [M ]).

B Rescaling Note that (2.2.2) is invariant by homogeneous rescaling (see Property ((ii)) of
Section 2.2.1), i.e. the inequality remains the same for the random variables Ỹm := εmYm

C for
any C > 0. For the choice

C :=

∥∥∥∥∥∥
∑
m∈[M ]

εmYm

∥∥∥∥∥∥
L1(B)

+

∥∥∥∥ max
m∈[M ]

‖Ym‖B

∥∥∥∥
ΨHT
β

> 0,
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observe that ∥∥∥∥∥∥
∑
m∈[M ]

Ỹm

∥∥∥∥∥∥
L1(B)

≤ 1 and

∥∥∥∥ max
m∈[M ]

∥∥∥Ỹm∥∥∥
B

∥∥∥∥
ΨHT
β

≤ 1, (2.3.1)

therefore the inequality (2.2.2) writes∥∥∥∥∥∥
∑
m∈[M ]

Ỹm

∥∥∥∥∥∥
ΨHT
β

≤ 2K.

Conversely, if the above holds for some K (independent from the Ỹm’s verifying (2.3.1)), then
(2.2.2) holds for the Ym’s. All in all, it means that without loss of generality, we can assume∥∥∥∥∥∥

∑
m∈[M ]

εmYm

∥∥∥∥∥∥
L1(B)

≤ 1 and

∥∥∥∥ max
m∈[M ]

‖Ym‖B

∥∥∥∥
ΨHT
β

≤ 1,

and then show, under these assumptions, the existence of K ∈ R (independent on Ym’s) such
that

E

exp


ξβ


∥∥∥∑m∈[M ] εmYm

∥∥∥
B

K


 ≤ 2.

B Deviation bounds By Property ((iii)) of Section 2.2.1 and since we assumed∥∥maxm∈[M ] ‖Ym‖B
∥∥

ΨHT
β

≤ 1,

P
(

max
m∈[M ]

‖Ym‖B ≥ t
)
≤ 2exp (−ξβ(t)), t ≥ 0.

The function ξβ(·) = (ln (1 + ·))β being continuously increasing from 0 to +∞, there exists
t0 s.t. ξβ(t0) = 2 ln 2 and ∀t ≥ t0, 2 exp (−ξβ(t)) ≤ 1/2; for further use, notice the value

t0 = e(2 ln 2)
1
β − 1. Then applying Lemma 2.3.1, for t ≥ t0, we have∑

m∈[M ]

P (‖Ym‖B ≥ t) ≤ 2P
(

max
m∈[M ]

‖Ym‖B ≥ t
)
≤ 4 exp{(−ξβ(t))}.

Hence Lemma 2.3.2 yields for r ∈ N∗, t ≥ t0

P
(
X(r) ≥ t

)
≤

4r exp{(−rξβ(t))}
r!

. (2.3.2)

Denote β̃ = bβc+ 1 ≥ 2. Equation (2.3.2) yields for t ≥ (eβ̃ − 1)r
β̃
β (notice that t ≥ e2 − 1 ≥ t0

as requested)

P
(
X(r) ≥ tr−

β̃
β

)
≤

4r exp

{(
−r[ln

(
1 + tr

− β̃
β

)
]β
)}

r!
=: f(r, t).

Since β̃/β > 1, the sequence (r
− β̃
β )r≥1 is summable. Set Sβ :=

∑
r≥1 r

− β̃
β < +∞ and g(t) :=

(t/(eβ̃ − 1))β/β̃. From the inclusion {
∑

r≤g(t)X
(r) ≥ tSβ} ⊂

⋃
r≤g(t){X(r) ≥ tr

− β̃
β } and writing

a union bound, we get

P

 ∑
r≤g(t)

X(r) ≥ tSβ

 ≤ ∑
r≤g(t)

f(r, t). (2.3.3)
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We claim that for all 1 ≤ r ≤ g(t)

r1/β ln

(
1 + tr

− β̃
β

)
≥ ln(1 + t). (2.3.4)

This is a consequence of the above lemma applied with ρ = r
1
β ≥ 1 and τ = tr

− β̃
β ≥ eβ̃ − 1.

Lemma 2.3.6. For all ρ ≥ 1 and τ ≥ eβ̃ − 1, we have ρ ln(1 + τ) ≥ ln
(

1 + τρβ̃
)

.

Proof. The function f(ρ) := ρ ln(1 + τ)− ln
(

1 + τρβ̃
)

vanishes at ρ = 1, let us prove that it is

non-decreasing in ρ provided that τ ≥ eβ̃ − 1. Indeed,

f ′(ρ) = ln(1 + τ)− β̃ρβ̃−1τ

1 + ρβ̃τ
.

Since ρβ̃τ ≥ 0 and ρ ≥ 1, we have β̃ρβ̃−1τ

1+ρβ̃τ
≤ β̃

ρ ≤ β̃. Hence, f ′(ρ) ≥ ln(1 + τ) − β̃ ≥ 0. We are

done.

Plugging (2.3.4) into (2.3.3) yields

P

 ∑
r≤g(t)

X(r) ≥ tSβ

 ≤ ∑
r≤g(t)

4r

r!
exp
{(
−[ln(1 + t)]β

)}
≤ exp(4) exp(−ξβ(t)).

Let us recall that µ =
∥∥∥∑m∈[M ] εmYm

∥∥∥
L1(B)

≤ 1. We are now at the point to apply Theorem

2.3.3 with q = deK0e, u = t, u′ = tSβ, 2qµ ≤ t and k = bg(t)c:

P

∥∥∥∥∥∥
∑
m∈[M ]

εmYm

∥∥∥∥∥∥
B

≥ t (Sβ + 3)


≤ P

∥∥∥∥∥∥
∑
m∈[M ]

εmYm

∥∥∥∥∥∥
B

≥ 4qµ+ u+ u′


≤ 4 exp

{(
− t2

64qµ2

)}
+ exp{(−bg(t)c)}+ P

 ∑
r≤g(t)

X(r) ≥ tSβ


≤ 4 exp

{(
− t2

64qµ2

)}
+ exp{(−bg(t)c)}+ exp{(4− ξβ(t))}.

The above inequality is valid for any t ≥ t0 ∨ (2deK0eµ). Besides, in the above upper bound,
the last third is asymptotically the largest one, therefore there exists K > 0 such that

P

∥∥∥∥∥∥
∑
m∈[M ]

εmYm

∥∥∥∥∥∥
B

≥ Kt

 ≤ K exp{(−ξβ(t))}, t ≥ 0.

B Orlicz norm bounds The estimate implies for all c > 0:

E

exp


ξβ

∥∥∥∥∥∥
∑
m∈[M ]

εmYm

∥∥∥∥∥∥
B

/(cK)


−1
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=

∫ ∞
0

exp{(ξβ (t))}ξ′β (t)P


∥∥∥∑m∈[M ] εmYm

∥∥∥
B

cK
≥ t

 dt

≤ K
∫ ∞

0
ξ′β (t) exp{(ξβ (t)− ξβ(ct))}dt. (2.3.5)

Let us check that the above integral is finite for c > 1. Only the integrability at t → +∞ is
questionable. Write

ξβ(t)− ξβ(ct) = (ln(1 + t))β

1−

1 +
ln
(

1+ct
1+t

)
ln(1 + t)

β


≈t→+∞ −β(ln(1 + t))β−1 ln(c).

Therefore, the function to integrate is bounded for t large by (up to constant)

g(t) :=
(ln(1 + t))β−1

(1 + t)
e−

1
2
β(ln(1+t))β−1 ln(c).

We easily check that
∫ +∞

0 g(t)dt =
∫ +∞

0 yβ−1e−
1
2
βyβ−1 ln(c)dy < +∞ since β > 1 and c > 1.

Furthermore, by monotone convergence theorem, the bound (2.3.5) converges to 0 as c →
+∞, consequently

E

exp

ξβ

∥∥∥∑m∈[M ] εmYm

∥∥∥
B

cK

 ≤ 2

for a c = cβ large enough. We have proved that
∥∥∥∑m∈[M ] εmYm

∥∥∥
ΨHT
β

≤ cβK.

2.3.2 Proof of Theorem 2.2.3

We start by recalling the general maximal inequality on which our proof is based.

Lemma 2.3.7 ([vW96, Lemma 2.2.2]). Let Ψ be a convex Orlicz function satisfying

lim sup
x,y→+∞

Ψ(x)Ψ(y)/Ψ(cΨxy) < +∞ (2.3.6)

for some constant cΨ > 0. Then, there is a constant K > 0 such that for any B-valued random
variables Y1, . . . , YM , ∥∥∥∥ max

m∈[M ]
‖Ym‖B

∥∥∥∥
Ψ

≤ KΨ−1(M) max
m∈[M ]

‖Ym‖Ψ .

For β > 1, ΨHT
β is a convex Orlicz function, thus it remains to establish (2.3.6) to get Theorem

2.2.3. We prove that one can take cΨ = 1. Let c ≥ 13 s.t. ΨHT
β (c2) ≥ 1. Let x, y st. x ≥ c and

y ≥ c: then

ΨHT
β (x)ΨHT

β (y) ≤ e(ln(1+x))βe(ln(1+y))β

≤ e(ln(x))β+(ln(y))β−(ln(xy))βe(ln(1+xy))β e2 supz≥c(ln(1+z))β−(ln z)β︸ ︷︷ ︸
:=C(c)

.

3one can take c =
√
e(ln 2)1/β − 1 ≥ 1 for which ΨHT

β (c2) = 1.
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• C(c) is finite: indeed, by standard equivalents, we have that

(ln(1 + z))β − (ln z)β= (ln z)β

[1 +
ln
(
1 + z−1

)
ln(z)

]β
− 1

 ∼z→∞ β
(ln z)β−1

z

which converges to 0 at infinity.

• Notice that (ln(xy))β − (ln(x))β ≥ (ln(y))β for any x, y ≥ 1. Indeed, setting u = lnx ≥ 0,
v = ln y ≥ 0,

(u+ v)β − uβ =

∫ u+v

u
βzβ−1dz ≥

∫ v

0
βzβ−1dz = vβ

(because z 7→ βzβ−1 is increasing since β > 1).

• Last, since e(ln(1+xy))β = ΨHT
β (xy) + 1 ≥ ΨHT

β (c2) + 1 ≥ 2, one has

e(ln(1+xy))β =
e(ln(1+xy))β

e(ln(1+xy))β − 1
ΨHT
β (xy) ≤ 2ΨHT

β (xy).

All in all, we conclude that ΨHT
β (x)ΨHT

β (y) ≤ 2C(c)ΨHT
β (xy), for any x, y ≥ c. We are done.

2.3.3 Proof of Theorem 2.2.5

We follow the strategy of Chapter 1 by truncating the unbounded functions f by a threshold
c, whose impact is analyzed using the Hoffman-Jorgensen inequality [LT13, Proposition 6.8]
and the Talagrand inequality of Theorem 2.2.2. The deviation probability related to the newly
bounded random variables is quantified thanks to the Klein-Rio inequalities [KR05] together
with the Dudley entropy integral bound.

Here are the notations used along this proof. We denote by K a positive constant that may
change from line to line in the computations: this generic constant K may depend on universal
constants and β, but it does not depend on the sample X1, . . . , XM , its size M , nor the class of
functions F , neither ε. For ease of notations, we write a ≤K b when a ≤ Kb.
For a given c > 0, set

Rcf := f − Tcf ,where Tcf := −c ∨ f ∧ c,
TcF := {Tcf : f ∈ F},

T mc f(·) := Tcf(·)− E [Tcf(Xm)] ,

Zc := sup
f∈F

1

M

∑
m∈[M ]

T mc f(Xm).

Note that the function T mc f is centered w.r.t. the distribution of Xm, and bounded by 2c.
Assume that c > 0 and ε > 0 are such that

sup
f∈F

∣∣∣∣∣∣ 1

M

∑
m∈[M ]

E [Rcf(Xm)]

∣∣∣∣∣∣ ≤ ε/4, (2.3.7)

E [Zc] ≤ ε/4. (2.3.8)

By writing f = Rcf + Tcf and using the sub-additivity of the supremum, we easily get

sup
f∈F

1

M

∑
m∈[M ]

(f(Xm)− E [f(Xm)])
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≤ Zc − E [Zc] + sup
f∈F

∣∣∣∣∣∣ 1

M

∑
m∈[M ]

Rcf(Xm)

∣∣∣∣∣∣+ ε/2.

Hence, the probability of deviation in Theorem 2.2.5 is bounded by

P

sup
f∈F

∣∣∣∣∣∣ 1

M

∑
m∈[M ]

Rcf(Xm)

∣∣∣∣∣∣ ≥ ε/4
+ P (Zc − E [Zc] ≥ ε/4) =: (?) + (??).

B Term (?) Owing to the deviation inequality ((iii)) from Section 2.2.1, it is bounded by

P

 ∑
m∈[M ]

sup
f∈F
|Rcf(Xm)| ≥Mε/4



≤ 2 exp

−
ln

 Mε/4∥∥∥∑m∈[M ] supf∈F |Rcf(Xm)|
∥∥∥

ΨHT
β

+ 1



β .

Using the Talagrand inequality of Theorem 2.2.2 and the Hoffman-Jorgensen inequality [LT13,
Proposition 6.8], and following line by line the arguments of Chapter 1 Section 1.5.5 equations
(1.5.21) and (1.5.22), we can show that the above ‖·‖ΨHT

β
norm is bounded by

K

∥∥∥∥ max
m∈[M ]

F (Xm)

∥∥∥∥
ΨHT
β

,

provided that c ≥ 8E
[
maxm∈[M ] F (Xm)

]
. The above arguments are crucial to deal both with the

truncation in c and the sup in f . Furthermore, the maximal inequality (2.2.3) with Ym := F (Xm)
gives that ∥∥∥∥ max

m∈[M ]
F (Xm)

∥∥∥∥
ΨHT
β

≤ Cβ,(2.2.3)Ψ
HT
1/β(M)µ̄ΨHT

β
. (2.3.9)

All in all, we have

c ≥ 8E
[

max
m∈[M ]

F (Xm)

]
=⇒ (?) ≤ 2 exp

−(ln

(
Mε

Kµ̄ΨHT
β

ΨHT
1/β(M)

+ 1

))β .

The above condition on the left hand side is met as soon as

c ≥K ΨHT
1/β(M)µ̄ΨHT

β
,

where we have used E [·] ≤K ‖·‖ΨHT
β

and (2.3.9).

B Term (??) Apply the Klein-Rio inequality [KR05, Theorem 1.1] (we shall use the form
presented in Chapter 1 Theorem 1.3 which directly fits our setting), it shows that (??) is bounded
by

exp

(
− M(ε/4)2

2(σ2 + 4cE(Zc)) + 6c(ε/4)

)
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where σ2 := supf∈F
1
M maxm∈[M ] E

[
(T mc f)2(Xm)

]
. Observe that

σ2 ≤ sup
f∈F

max
m∈[M ]

Var [T mc f(Xm)] ≤ sup
f∈F

max
m∈[M ]

E
[
Tcf2(Xm)

]
≤ µ2

2.

Using in addition the bound (2.3.8) on E(Zc), we get

(??) ≤ exp

(
− Mε2

K(µ2
2 + cε)

)
where K is a universal constant.

B Condition (2.3.7) From Rcf(x) = (f(x)− c)+ − (f(x) + c)−, we easily get

|E [Rcf(Xm)]| ≤
∫ +∞

c
P (|f(Xm)| ≥ z) dz

≤ 2

∫ +∞

c
exp
(
−(ln(z/λ+ 1))β

)
dz

= 2λ

∫ +∞

c/λ
exp
(
−(ln(z + 1))β

)
dz =: 2λI(c/λ)

where λ := µΨHT
β

. A standard calculus shows that

I(y) ∼y→+∞
y

β(ln(y + 1))β−1
exp
(
−(ln(y + 1))β

)
,

and thus

I(y) ≤K exp
(
−(ln(y + 1))β/2

)
=: J (y), ∀y ≥ 0.

This gives

sup
f∈F

∣∣∣∣∣∣ 1

M

∑
m∈[M ]

E [Rcf(Xm)]

∣∣∣∣∣∣ ≤K λ exp
(
− (ln(c/λ+ 1))β/2

)
.

Therefore, to ensure (2.3.7) it is enough to take

c ≥ µΨHT
β

(
exp

(
(2 ln+(KµΨHT

β
/ε))1/β

)
− 1
)

for some constant K > 0. Observe that the use of ln+(.) guarantees that for a deviation ε large
enough, the above lower bound is zero, meaning that any value of c ≥ 0 ensures that (2.3.7)
holds, as it is expected (for large ε).

B Condition (2.3.8) Deriving a bound on the expectation of the supremum follows a standard
routine using Dudley entropy integral bound. For sake of brevity, we closely follow the arguments
of 1.5.3.2, term E

[
Z̄Tc
]

bounding. It gives that

E [Zc] ≤ 2E
[
CD√
M

∫ ∞
0

√
ln(N2(z,dF , TcF))dz

]
(2.3.10)

where dF (f, g) :=
(

1
M

∑M
m=1 |f(Xm)− g(Xm)|2

)1/2
and N2(z,dF , TcF) is the covering number

of TcF with respect to the distance dF with balls of radius z (see [GKKW02, Definition 9.3]).
Actually, since functions in TcF are bounded by c, N2(z, dF , TcF) = 1 for z ≥ 2c and therefore,
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the above integral can be restricted to [0, 2c] without modification. In addition, we have the
following universal upper bound in terms of VC dimension:

0 < z < 2c/4 =⇒ N2(z, dF , TcF) ≤ 3

[
2e

(
2c

z

)2

ln

(
3e

(
2c

z

)2
)]VF+

.

Indeed, the above estimate follows from [GKKW02, Lemma 9.2, Theorem 9.4 with B = 2c and
p = 2, V(TcF)+ ≤ VF+ in the proof of Theorem 9.6]. See [vW96, Theorem 2.6.7] for a variant of
this upper bound. Since N2(z,dF , TcF) is non-decreasing in z, and since we do not pay much
attention to universal constants, we can simply write

0 < z ≤ 2c =⇒ N2(z, dF , TcF) ≤
(
Kc

z

)3VF+

,

for a universal constant K. Plugging this into (2.3.10) readily leads to

E [Zc] ≤ Kc
√

VF+√
M

.

B Conclusion Gathering all the estimates and conditions leads to the statement of Theorem
2.2.5.

2.3.4 Proof of Proposition 2.2.1

Item 1. Observe that ΨHT
1 (x) = x and ΨHT

β1
(ΨHT

β2
(x)) = ΨHT

β1β2
(x) for any x ≥ 0; the property of

group isomorphism readily follows.
Items 2 and 4 are straightforward to verify.
Item 3. ΨHT

β is a C∞-function on (0,∞), with a second derivative equal to

ΨHT
β
′′
(x) =

exp
(

(ln (1 + x))β
)

(ln(1 + x))β−2

(1 + x)2

× β ×
(
β (ln(1 + x))β + (β − 1)− ln(1 + x)

)
︸ ︷︷ ︸

=:g(ln(1+x))

.

The function g is continuously differentiable on R+, strictly positive at 0 (g(0) = β−1 > 0) and
goes to infinity at infinity (since β > 1); the critical points of g′ are solutions to β2yβ−1− 1 = 0,

therefore it is unique (equal to yβ := β
− 2
β−1 ) and corresponds to the minimum of g. Let us

evaluate the sign of g at the minimum:

g(yβ) = βyββ + (β − 1)− yβ =
yβ
β

+ (β − 1)− yβ

= (β − 1)

(
1−

yβ
β

)
= (β − 1)

(
1− 1

β
β+1
β−1

)
> 0.

All in all, we have proved that ΨHT
β
′′
(x) > 0 for any x > 0.

2.4 Conclusion

To conclude, we have extended the Talagrand inequality for an Orlicz norm adapted to variables
with β-heavy tails (Proposition 2.2.1 and Theorem 2.2.2). We have also shown that a maximal
inequality holds (Theorem 2.2.3), which, in combination with the Talagrand inequality, allows for



a concentration inequality for the sum of independent centered β-heavy tailed random variables
(Corollary 2.2.4). Then we have extended this inequality to supremum of functions of random
variables with β-heavy tails (Theorem 2.2.5), by combining previous results with the Hoffman-
Jorgensen, Klein-Rio and Dudley entropy integral inequalities.
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CHAPTER 3

ASYMPTOTIC ANALYSIS OF
DIFFERENT COVARIANCE MATRICES

ESTIMATION FOR MINIMUM
VARIANCE PORTFOLIO

Note. This chapter is based on an article written jointly with E. Gobet and J.-P. Lemor. A
shortened version has been submitted to Frontiers of Mathematical Finance.

Abstract. In dynamic minimum variance portfolio, we study the impact of the sequence of
covariance matrices taken in inputs, on the realized variance of the portfolio computed along a
sample market path. The allocation of the portfolio is adjusted on a regular basis (every H days)
using an updated covariance matrix estimator. In a modelling framework where the covariance
matrix of the asset returns evolves as an ergodic process, we quantify the probability of observing
an underperformance of the optimal dynamic covariance matrix compared to any other choice.
The bounds depend on the tails of the returns, on the adjustment period H, and on the total
number of rebalancing times N . These results provide asset managers with new insights into
the optimality of their choice of covariance matrix estimators, depending on the depth of the
backtest NH and the investment period H. Experiments based on GARCH modelling support
our theoretical results

3.1 Introduction

The mean-variance efficient portfolio theory by Markowitz [Mar52] has had a profound impact on
modern finance. The Markowitz portfolio selection requires estimates of the covariance matrix
and of the average expected returns. The covariance matrix can be either estimated in a non-
parametric way, using sample-based empirical estimation, or in a parametric way, using factor
models for example. In both cases, we may require sliding moving averages on the historical
data.

Yet, the selected allocations are very sensitive to the values of the covariance matrix and
expected returns used for its computation, and small changes in the inputs can lead to large
changes in the allocations [Mic89].
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On the other hand, it is well known that financial data exhibit heteroscedasticity, that is to
say time dependent conditional covariance. This statistical property, referred to as stylized fact
in the financial data setting, has been largely documented in the literature ([?], [EP07]). This
implies that the expected covariance matrix in the near future can be very different from the
average of the expected covariance matrix over a long time horizon. In this work, we aim to
address the problem of the covariance matrix choice only.

In this chapter, we are interested in the forecast of the realized covariance for a specific time
and period of investment. The minimum variance portfolio is the portfolio taking as input a
covariance matrix and giving as output the allocation minimizing the associated variance. The
key quantity is then the realized covariance over the period of investment. We consider a model
for the returns of type

rt|Ft−1
∼ N (0, Vt), (3.1.1)

denoting t the time of investment and H the period of investment, the realized covariance
corresponds to the future matrix 1

H

∑H
k=1 rt+kr

>
t+k. Its best estimation at time t is the conditional

realized covariance:

1

H
E

[
H∑
k=1

rt+kr
>
t+k|Ft

]
=

1

H

H∑
k=1

E [Vt+k|Ft] .

For H = 1, it coincides with the conditional covariance Vt+1; when the period of investment
exceeds the period of observation of the returns (H > 1), this quantity can still be estimated
at time t. In practice, t and H are measured in days and H = 21 would correspond to an
investment over a month (in business days) for example.

Usually, the asset manager might also consider a historical based covariance 1
T

∑T
k=1 rt−kr

>
t−k

based on the past returns. When the backtest size T goes to infinity, this estimator converges
to the stationary covariance matrix V∞.

The purpose of this chapter is to study the impact of the choice of the covariance matrix on
the performance of the strategy.

In particular, we would like to give optimality guarantees under the form of concentration
of measure inequalities of the outperformance of the portfolio based on the conditional realized
covariance, versus any other covariance estimate Vref. In the context of minimum variance in-
vestment, the natural portfolio metric is the realized variance, also called out-of-sample variance
of the portfolio. Our result takes the form of a high probability event over the sums of the
realized variance (RV) for N rebalancing dates of the portfolios:

P

(
N∑
n=1

RV

(
1

H
E

[
H∑
k=1

rtn+kr
>
t+k|Ftn

])
≤

N∑
n=1

RV (Vref)

)
≈ 1− c

(
H

N

)q
where c > 0 is a constant independent from H and N and q is a positive constant depending on
the integrability of the process.

It means that the realized variance of the portfolio based on the conditional realized co-
variance will on the long term be lower than with other covariance with a high probability.
The probability is even higher as the number N of times the portfolio is rebalanced grows,
and decreases with the period of investment H, with a convergence rate increasing with the
integrability of the process. The fact that the probability decreases with H is due to the fact
that as H goes to infinity, the conditional realized covariance tends to the stationary covariance,
which becomes optimal. But as we may illustrate later, the half-life time associated to financial
returns is often larger than the usual order of magnitude for H used by practitioners. Hence,
considering non infinite H as we do is meaningful.

3.1.1 Literature background

Our article falls within the line of the sensitivity analysis for Markowitz allocation articles.
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In Guigues [Gui11] and Kan et al [KZ07], the authors give bounds on the portfolio risk as
function of the variation of the input. In their approach, the metric is the mean-variance utility:
U(w,µ,Σ) = tw′µ − 1

2w>Σw. Using perturbation analysis results from Bonnans and Shapiro
[BS00], Guigues shows that for two pairs of inputs (µ1,Σ1) and (µ2,Σ2), the optimal utilities
difference can be bounded by the norm of the inputs differences:

|U(w∗2,µ2,Σ2)− U(w∗1,µ1,Σ1)| ≤ 1

2
|Σ2 − Σ1|∞ + k|µ2 − µ1|∞,

where w∗ is the portfolio which maximizes the mean-variance utility in w. In Kan and Zhou’s
article, the authors assume a multivariate Gaussian model for the returns and provide bounds
on the expected difference between the utility of the mean variance portfolio with sample based
estimates for µ and Σ versus the optimal utility with the true parameters µ and Σ (also called
population parameters). The bound is linear in the number of assets and proportional to the
inverse of the time of estimation.

Their bound holds on the expected value of the risk whereas in our approach, it is on the
empirical risk, which is closer to practitioners needs.

A first attempt could be to use concentration of measures results for matrices (Tropp [Tro12],
El Karoui [EK18]), and combine them with the aforementioned sensitivity results. But usually,
this approach relies on independence properties between the matrices, which we don’t have since
Vt is a stochastic process, and on high order integrability (like sub-Gaussian tails) which we don’t
have since usually, asset returns have heavy tails.

The optimal horizon-adapted covariance matrix is similar to the one proposed in De Nard et
al [DNLW18]. In this article, the authors compare empirically the performance of the minimum
variance portfolio with different dynamic and static covariance estimation methods, including the
GARCH-Dynamic Conditional Correlation (GARCH-DCC) models for returns or for residuals
of a static factor models. Their experiments show that these two models outperform 10 other
parametric estimation models in term of realized out-of-sample variance, which is in line with
the theoretical results we have obtained in this chapter.

3.1.2 Contribution and outline of this chapter

In this chapter:

• We give guarantees of the optimality of the conditional realized covariance in the minimum
variance portfolio setting in the form of a large deviation inequality, with a convergence
rate polynomially decreasing in the number of rebalancing times of the portfolio,

• We give a scheme for estimating this covariance matrix in the specific GARCH-Constant
Conditional Correlation (GARCH-CCC) model,

• We display results of numerical experiments to illustrate our statements.

Section 3.2 provides a presentation of the problem, introduces the notations and states the
main result of the chapter. In Section 5.A, the proof of the main result is given. In Section 3.4,
we introduce the GARCH-CCC model and verify that it satisfies the conditions of Section 3.2.
Section 5.4 presents the result of the numerical experiments.

3.2 Formulation of the problem

In this section we start by formulating our problem and we introduce our model assumptions
before stating our main result.
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t = 0

(V1)

t = 1

(r1, V2)

t=t1
=H

(rH , VH+1)

t=t1+H−1
=2H−1

(r2H−1, V2H)

t=t1+H
=2H

(r2H , V2H+1)

t

Figure 3.1 – Ilustration of quantities time-dependence in our setting: since rt and Vt+1 are Ft
measurables, they are the known quantities at each time t. The red dots dates correspond to
the rebalancing times.

3.2.1 Problem setup

In this section, we introduce the setting of the problem and we define the variance quantities of
interest in our study.

The model: Consider a pool of d assets, with daily centered returns processes r1,t, . . . , rd,t.
Denote by rt the vector of the returns processes from day t − 1 and t. Let {ηt}t≥0 i.i.d.,
ηt ∼ N (0, Id) the innovations process and Ft = σ{ηs, 0 ≤ s ≤ t} the associated filtration. We
assume that rt is given by:

rt = V
1/2
t ηt, ηt ∼ N (0, Id), t ≥ 1, (3.2.1)

where Vt ∈ Rdxd is a Ft−1 measurable, positive definite matrix. It means that rt|Ft−1
∼ N (0, Vt).

The initial condition V1 is deterministic.

We assume that {Vt}t>1 is square integrable, and we denote pmax ≥ 2 s.t. E [|Vt|pmax ] is finite
for t > 1.

Covariance notation: A given portfolio with the allocation vector w at time Treb and a
holding period of H has the realized variance:

w>

(
H∑
k=1

rTreb+kr
>
Treb+k

)
w = w>RCH,Trebw (3.2.2)

with RCH,Treb denoting the realized covariance over the period of investment. We seek for the
portfolio which minimizes this realized variance.

At the time of the investment, the best estimation of RCH,Treb is:

cRCH,Treb := E [RCH,Treb |FTreb ] =

H∑
k=1

E [VTreb+k|FTreb ]

which we call the conditional realized covariance. Given a covariance matrix C which we assume
to be definite positive, we will consider the following risk optimization under constraints

mv(C) := arg min
w∈W

w>Cw,

where W is the set of constraints containing at least the budget constraint and a maximal

allocation constraint:
{

w = {wi}i∈{1,...,d} ∈ Rd :
∑d

i=1wi = 1, and |wi| ≤ cw, i ∈ {1, . . . , d}
}
⊂

W, cw > 0. We assume that W is closed and convex, which ensures the existence and uniqueness
of mv(C). We aim at showing that mv(cRCH,Treb) is a good FTreb-measurable allocation for
minimizing the realized variance (3.2.2).

We will consider multiple rebalancing times of the portfolio: Treb = t1, . . . , tN , tn+1−tn = H,
t0 = 0.
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Let us introduce the following processes:

RN,H :=
N∑
n=1

mv(cRCH,tn)>RCH,tn mv(cRCH,tn),

cRVN,H :=
N∑
n=1

mv(cRCH,tn)>cRCH,tn mv(cRCH,tn),

Rref
N,H :=

N∑
n=1

mv(Vref)
>RCH,tn mv(Vref),

cRV ref
N,H :=

N∑
n=1

mv(Vref)
>cRCH,tn mv(Vref),

(3.2.3)

with Vref is a deterministic, positive definite covariance matrix which we take as the benchmark
covariance the asset manager considers for his optimization.

• RN,H (resp. Rref
N,H) is the realized variance of the cRCH,tn-based portfolios (resp. the

Vref-based portfolio);

• cRVN,H (resp. cRV ref
N,H) denotes the sum of conditional realized variances of the cRCH,tn-

based portfolios (resp. the Vref-based based portfolio).

For pmax ≥ 2, our main result Theorem 3.2.2 takes the form:

P
(
RN,H < Rref

N,H

)
≥ 1− C

(
H

N

) pmax
2

.

This inequality is of the form of the probability of the realized variance being lower (e.g.
better) for the conditional realized covariance-based portfolio than for the reference covariance-
based portfolio.

The probability bound is polynomially decreasing in N , the number of rebalancing times of
the portfolio and polynomially increasing in H, the investment horizon, with an exponent pmax

2
equal to a quarter of the maximum finite moment of the returns. This relatively slow convergence
(polynomial rather than exponential) stems from the low integrability on the process rt.

The main message of this result is that, on the long-run (N going to infinity), the conditional
realized covariance-based portfolio is outperforming with high probability. For very large H

though, this bound might become loose, since the infinite-horizon estimate of
RCH,Treb

H coincides
with the stationary covariance V∞.

3.2.2 Model assumptions

We recall that we are under the model (3.2.1) for the returns. We are now going to specify the
assumptions on the conditional covariance matrix Vt.

We denote S ⊂ S+ the state space on which Vt takes its values, where S+ is the set of
symmetric positive definite matrices.

Hstat. {Vt}t∈N∗ possesses a strictly stationary and ergodic distribution µ with at least L2 moment
and V∞ :=

∫
S vµ(dv).

HS . {Vt}t∈N is a time homogeneous, aperiodic Lebesgue-irreducible Markov chain1 on the state-
space S.

1We refer the reader to paragraph 3.3.2.1 for reminders on Markov chains elements of language.
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HL. There exist some constant δ ∈ (0, 1), b ∈ R and a measurable function L : S → [1,+∞) s.t.
lim
|x|→∞

L(x) = +∞, and an accessible small set C ⊂ B(S), such that for all V1 ∈ S,

E
[
L(V2)

∣∣V1

]
≤ δL(V1) + b1C(V1).

Hpmax. Under HL, the growth of L at infinity is polynomial of order pmax: ∃cL, CL > 0,
cL|x|pmax ≤ L(x) ≤ CL(1 + |x|pmax).

Hx. {xt}t∈N∗denotes a portfolio allocation process, e.g. a Ft-measurable process with values in
W, hence bounded: P (|xi,t| > cw) = 0 for i ∈ {1, . . . , d}.

As will be shown later in the proof, these assumptions are compatible with the existence of
moment pmax <∞.

3.2.3 Main results

We will call performance gap the quantity `H defined by the expected value of
cRV ref

N,H−cRVN,H
N

under the stationary law:

`H := E

[
cRV ref

N,H − cRVN,H
N

∣∣∣∣V1 ∼ µ

]
.

It is a key quantity since it can be interpreted as a performance gap between the benchmark
and the estimated conditional realized covariance portfolio.

Let us first state a result on the sign of `H .

Proposition 3.2.1 (Non-negativity of the performance gap ). Assume Hstat, HS , HL and
Hpmax.Then, `H is finite, deterministic, and non-negative.

Our main result is the following:

Theorem 3.2.2. Assume that {Vt, t ∈ N∗} satisfies assumptions Hstat, HS , HL and Hpmax.

Assume that `H is strictly positive, then for any N,H ∈ N∗, the processes RN,H , R
ref
N,H defined

in (3.2.3) satisfy:

P
(
RN,H > Rref

N,H

)
≤ C

`pmax

H

H
pmax

2

N
pmax

2

,

where C > 0 depends on H, pmax, d and L.

Comments:

• This inequality is of the form of an upper bound on the probability that the realized
variance is higher (e.g. worse) for the conditional covariance-based portfolio than for the
reference covariance-based portfolio. It is a probability bound on the underperformance
of the estimated covariance based-portfolio versus the reference portfolio.

• It is polynomially decreasing in N , the number of rebalancing times of the portfolio, and
in `H , the performance gap, and at least polynomially increasing in H, the investment
horizon. As we show in the proof of Theorem 3.2.2, the constant C is linear in a quantity

C
(H)
FM on which we provide a bound in Proposition 3.3.6 which has an exponential growth

in H and pmax.

Interpretations:

• As mentioned before, `H can be interpreted as a performance gap between the benchmark
and the estimated conditional realized covariance portfolio. The higher the `H , the more
discriminant the impact of using the estimated realized covariance.
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• When CH/(N`2H) is large, the bound is uninformative. If N � CH/`2H , there is not
enough observations to statistically distinguish which covariance matrix brings the best
performance.

As we show in Lemma 3.2.3, the average performance gap `H/H, when using the estimated
realized covariance versus the stationary covariance V∞, goes to zero when H goes to
infinity.

It means that in the (NH) � C(H/`H)2 regime, the asset manager should not bother
much using a sophisticated estimation for Vt: a good approximation of V∞ is enough.

• When N tends to infinity, the probability goes to zero: this is a concentration of measure
effect, and since the expected realized variance difference `H is non-negative (see Proposi-
tion 3.2.1,) the probability of having a negative empirical difference goes quickly towards
zero. It is coherent with the intuition than with more data, the historical measure of the
realized variance difference will be more likely to be of the same sign than its expected
value.

When H goes to infinity, the average conditional realized covariance converges towards the

mean-value of the process:
cRCH,Treb

H → V∞. If Vref = V∞, we expect that lim
H→∞

`H
H = 0. This is

what is stated in the next Lemma.

Lemma 3.2.3 (Convergence of
`∞H
H to zero). Assume that {Vt, t ∈ N∗} satisfies assumptions

Hstat, HS , HL and Hpmax, and let Vref = V∞. In that case, denote `∞H the performance gap. Then

lim
H→∞

`∞H
H

= 0.

3.3 Proofs and auxiliary results

In this section we start by stating auxiliary concentration results needed to prove our main
Theorem 3.2.2 and we detail the proof of the theorem. Then the proofs of the auxiliary results
are provided.

3.3.1 Proof of Theorem 3.2.2

To show this concentration of measures result, we will need the following auxiliary results (whose
proofs are postponed to Subsections 3.3.2, 3.3.3 and 3.3.4).

Let us first give a hint of the result by rewriting the realized variance difference Rref
N,H−RN,H .

From (3.2.3), the realized variance difference breaks down into:

Rref
N,H −RN,H = Rref

N,H − cRV ref
N,H︸ ︷︷ ︸

Dref
N,H

−(RN,H − cRVN,H︸ ︷︷ ︸
DN,H

) + cRV ref
N,H − cRVN,H︸ ︷︷ ︸
EN,H

. (3.3.1)

From the processes definition, it is easy to see that:

• by the definition of mv(·):
(
mv(Vref)

>cRCH,tn mv(Vref)
)

≥(
mv(cRCH,tn)>cRCH,tn mv(cRCH,tn)

)
so EN,H = cRV ref

N,H − cRVN,H ≥ 0 almost
surely,

• by the definition of cRCH,tn , E [RCH,tn |Ftn ] = cRCH,tn , so Dref
N,H = Rref

N,H − cRV ref
N,H and

DN,H = RN,H − cRVN,H are Ftn-centered martingales which concentrate around zero.

The following result gives a concentration of measure result on EN,H :
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Proposition 3.3.1 (Concentration of measure for the ergodic conditional realized variance).
Assume that {Vt, t ∈ N∗} satisfies assumptions Hstat, HS , HL and Hpmax. Then, for any 2 ≤ q ≤
pmax, there exists Cq,L,H,d > 0 such that:

E [|EN,H −N`H |q] ≤ Cq,L,H,d(NH)q/2.

A direct application via the Markov inequality gives, for any a > 0:

P
(
EN,H
N
− `H > a

)
≤ Cq,L,H,d

(
H

Na2

) q
2

and

P
(
EN,H
N
− `H < −a

)
≤ Cq,L,H,d

(
H

Na2

) q
2

. (3.3.2)

We can also show that `H is non-negative and finite, and as a consequence of the previous
Proposition,

EN,H
N can be shown to converge towards `H :

Proposition 3.3.2 (Convergence of the average conditional realized variance). Assume Hstat,

HS , HL and Hpmax.Then, for `H = E
[
cRV ref

N,H−cRVN,H
N

∣∣∣∣V1 ∼ µ
]

,

•
cRV ref

N,H−cRVN,H
N converges in Lpmax norm towards `H :

cRV ref
N,H − cRVN,H

N

Lpmax−→
N→∞

`H .

• if pmax > 2,
cRV ref

N,H−cRVN,H
N converges almost surely towards `H :

cRV ref
N,H − cRVN,H

N

a.s.−→
N→∞

`H .

We now state the concentration of measure results for the martingale processes of type DN,H

and Dref
N,H .

Lemma 3.3.3. Assume that {Vt, t ∈ N∗} satisfies (3.2.1), Hstat, HS , HL and
Hpmax.Let {xtn} n∈N∗,

tn+1−tn=H
be a portfolio allocation satisfying Hx and DN,H(x) :=∑N

n=1 x>tn (RCH,tn − cRCH,tn) xtn.

Then, there exists Cpmax,d,L > 0 such that:

E [|DN,H(x)|pmax ] ≤ Cpmax,d,L(NH)
pmax

2 .

A direct application of the Markov inequality gives, for any a > 0:

P
(
DN,H(x)

N
> a

)
≤ Cpmax,d,L

(
H

Na2

) pmax
2

, (3.3.3)

and

P
(
DN,H(x)

N
< −a

)
≤ Cpmax,d,L

(
H

Na2

) pmax
2

. (3.3.4)

We can now move to the proof of our main result.
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Proof of Theorem 3.2.2. We aim at showing that RN,H < Rref
N,H with high probability.

From equation (3.3.1), we see that the realized variance difference Rref
N,H −RN,H boils down

to the sum of the martingales Dref
N,H = Rref

N,H − cRV ref
N,H and −DN,H = cRVN,H −RN,H and and

of the ergodic term EN,H = cRV ref
N,H − cRVN,H :

Rref
N,H −RN,H = Dref

N,H −DN,H + EN,H

= N

(
Dref
N,H

N
−
DN,H

N
+

(
EN,H
N
− `H

)
+ `H

)
.

From this equality, we see that if each of the three first terms is higher than − `H
3 , then the sum

plus `H is non-negative:

Dref
N,H

N ≥ − `H
3

−DN,H
N ≥ − `H

3
EN,H
N − `H ≥ − `H

3 ,

⇒ Rref
N,H −RN,H ≥ 0.

This translates into the following inclusion of events:{{
DN,H

N
≤ `H

3

}
∩

{
−
Dref
N,H

N
≤ `H

3

}
∩
{
−
(
EN,H
N
− `H

)
≤ `H

3

}}
⊂
{
RN,H ≤ Rref

N,H

}
.

Taking the complementary, we see that the event
{
RN,H > Rref

N,H

}
is included in an union

of low probability events:{
RN,H > Rref

N,H

}
⊂

{{
DN,H

N
>
`H
3

}
∪

{
Dref
N,H

N
< −`H

3

}
∪
{(
EN,H
N
− `H

)
< −`H

3

}}
.

Hence we can bound the probability of
{
RN,H > Rref

N,H

}
by the sum of the probability of the

three events, on which we know explicit bounds via Lemma 3.3.3 and Proposition 3.3.1.

Bound on the long horizon martingale term: By Lemma 3.3.3, taking a = `H
3 (which is

positive by assumption) in equation (3.3.3), with xtn = mv (cRCH,tn), we have:

P
(
DN,H

N
>
`H
3

)
≤ Cpmax,d,L

(
9H

N`2H

) pmax
2

.

From equation (3.3.4), with xtn = mv (Vref),

P

(
Dref
N,H

N
< −`H

3

)
≤ Cpmax,d,L

(
9H

N`2H

) pmax
2

.

Bound on the long horizon ergodic term: From Proposition 3.3.1, replacing a by `H
3 in

equation (3.3.2) we have:

P
(
EN,H
N
− `H < −`H

3

)
≤ Cpmax,L,H,d

(
9H

N`2H

) pmax
2

.

By union bound, we conclude:

P
(
RN,H > Rref

N,H

)
≤ 3pmax(2Cpmax,d,L + Cpmax,L,H,d)

(
H

N`2H

) pmax
2

.
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3.3.2 Proof of Proposition 3.3.1

The non-trivial part of our Proposition 3.3.1 lies in the fact that we want to highlight both
the N and H dependence. From the conditional realized variance definition, there is a nested
concentration effect, both in N , the number of rebalacing times, and H, the number of days on
which the variance is measured, that we can exploit.

3.3.2.1 Preparatory results

In this paragraph, we state the concentration of measure result for ergodic Markov process that
we will adapt to show our Proposition. We recall also some Markov chain elements of vocabulary.

Concentration of measure for irreducible aperiodic Markov chain: We recall here the
concentration of measure result for irreducible aperiodic Markov chain as stated in Fort and
Moulines article [FM03, Proposition 2].

Proposition 3.3.4 ( [FM03][Proposition 2] ). Let {Vt}t∈N∗ be a φ-irreducible aperiodic Markov
chain on S, and let C ∈ B(S) be an accessible petite set. Assume that there exist some constants
δ ∈ (0, 1), b <∞ and a measurable L : S → [1,+∞), bounded on C, such that

E [L(V2)|V1] ≤ δL(V1) + b1C(V1), ∀V1 ∈ S. (3.3.5)

Let q ≥ 2. Choose M > supC L∨b/
(
1− δ1/q

)q
. Then the set {L ≤ M} is νm-small with

minorizing constant ε > 0 and for any Borel function g : S → Rd′, |g| ≤ L
1
q , it holds that for

all V1 ∈ S, H ≥ 1,

E

[∣∣∣∣ H∑
k=1

(g(Vk+1)− µ(g))

∣∣∣∣q∣∣∣∣V1

]
≤ CFM L(V1)Hq/2,

where CFM = C
(
m+1
ε

)q+1 M2

A2q , A = (1 − δ)1/q − (b/M)1/q and C is a constant which depends
only on q, and µ is the invariant measure associated to {Vt}t∈N∗.

Remark 3. A few remarks on this Proposition and how we will apply it:

• For simplicity, we have denoted CFM the constant C
(
m+1
ε

)q+1 M2

A2q . This constant depends
on the Lyapunov condition (3.3.5) (so on L, δ, b), on the petite set C, on q and on νm and
ε and on the dynamic of {Vt}t∈N. It is hard to quantify it explicitly.

• The proposition is stated for functions g such that |g| ≤ L
1
q . It can be extended to

functions which are bounded in L1/q norm, e.g. such that:
(

supV ∈S
|g(V )|q
L(V )

)1/q
< ∞.

Indeed, denoting g̃ = g/
(

supV ∈S
|g(V )|q
L(V )

)1/q
, then for any V ′ ∈ S,

|g̃(V ′)|q

L(V ′)
=

|g(V ′)|q/L(V ′)

supV ∈S |g(V )|q/L(V )
≤ 1

so |g̃| ≤ L
1
q . We can apply the proposition on g̃ and express it in terms of g:

E

[∣∣∣∣ H∑
k=1

(g(Vk+1)− µ(g))

∣∣∣∣q∣∣∣∣V1

]
≤ CFM

(
sup
V ∈S

|g(V )|q

L(V )

)
L(V1)Hq/2.
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Markov chain elements of vocabulary: We recall the definition of time of first return,
irreducibility, petite set, small set, aperiodicity and accessibilitiy, which can be found in the
Meyn and Tweedie’s Book [MT09, pages 71, 82, 117, 102, 114 and 86]:

Let {Xn, n ∈ N} be a Markov chain on a state space S, P its transition probability. Let
A ⊂ B(S). We denote τA := min{n ≥ 1 : Xn ∈ A} the first return time on A and for x ∈ S,
L(x,A) := P (τA <∞|X0 = x) the probability to access A from a specific x. Given φ a Borelian
measure, we say that Xn is φ-irreducible if φ(A) > 0⇒ L(y,A) > 0 for any y ∈ S.

A petite set is a set C ∈ B(S) such that there is a probability distribution a on N and a
non-trivial measure νa such that ∀x ∈ C,∀A ⊂ B(S),

∑∞
n=0 a(n)Pn(x,A) ≥ νa(A).

A small set is a particular case of a petite set in which a only charges a specific m ∈ N:
the definition becomes: Pm(x,A) ≥ νm(A). When there exists a small set with m = 1 and
ν1(C) > 0, then the chain is called strongly aperiodic.

A set A ⊂ B(S) is said accessible if it can be accessed from any x ∈ S: L(x,A) > 0, ∀x ∈ S.

Concentration of measure for function of lagged Markov chain: motivation Notice

that since {Vt+1, t ∈ N∗} is Markovian, the random variable cRCH,t = E
[∑H

k=1 Vt+k
∣∣Ft] can be

seen as a function of the Ft-measurable Vt+1: cRCH,t = φ(Vt+1). Hence EN,H can be identically
written:

EN,H =
N∑
n=1

mv(Vref)
>cRCH,tn mv(Vref)−mv(cRCH,tn)>cRCH,tn mv(cRCH,tn)

=
N∑
n=1

[mv(Vref)−mv(cRCH,tn)]>cRCH,tn [mv(Vref) + mv(cRCH,tn)]

=
N∑
n=1

x>tnφ(Vtn+1)ytn ,

(3.3.6)

where

xtn = mv(Vref)−mv(cRCH,tn), (3.3.7)

ytn = mv(Vref) + mv(cRCH,tn).

In the following result, we show that the concentration of measure result Proposition 3.3.4
remains valid for function of the lagged chain: g(Vk)→ g(VkH).

Proposition 3.3.5. [Fort Moulines proposition extension to lagged-Markov chains]
Assume that {Vt+1, t ∈ N∗} satisfies assumptions Hstat, HS , HL and Hpmax.Then for any

q ≥ 2, for any Borel function g : S → Rd×d bounded in L1/q-norm, T ∈ N∗, H ∈ N∗, we have:

E

[∣∣∣∣∣
T∑
t=1

(g(VtH+1)− µ(g))

∣∣∣∣∣
q ∣∣∣∣V1

]
≤ C(H)

FM

(
sup
S

|g|q

L

)
L(V1)T q/2, (3.3.8)

where C
(H)
FM is a constant on which we provide a bound in H and q in Proposition 3.3.6.

Proof. Let H ∈ N∗. First, let us show that the lagged Markov chain {VtH+1}t∈N∗ satisfies the
assumptions of Proposition 3.3.4.

1. Irreducibility and aperiodicity of the lagged Markov chain

{VtH+1}t∈N∗ is a Lebesgue-irreducible aperiodic Markov chain on S by application of
Proposition 3.C.3 ([MT09, Proposition 5.4.5]: extension of irreducibility and aperiodicity
of irreducible and aperiod chains) to the chain {Vt+1}t∈N∗ which is Lebesgue-irreducible
and aperiodic by assumption Hstat.



3.3. Proofs and auxiliary results 97

2. Lyapunov condition on the lagged Markov chain

In Meyn and Tweedie’s book, Theorem 3.C.1 ([MT09, Theorem 15.3.4]) states that if
{Vt+1}t∈N∗ satisfies a drift condition HL with a Lyapunov function L and a petite set C,
then {VtH+1}t∈N∗ also satisfies a drift condition with the same Lyapunov function L and
some set C(H) which is petite for the H-skeleton.

In our Proposition 3.C.2, we give a quantitative assessment of the Lyapunov condition for
{VtH+1}t∈N∗ by giving explicitly the constants dH and bH s.t.:

E
[
L(VH+1)

∣∣V1

]
≤ dH L(V1) + bH1C(H)(V1).

Our computation yields:

dH =
1 + δH

2
, C(H) = C ∪

{
x ∈ S

∣∣ |x| ≤ R(H)
}
,

bH = sup
x∈C(H)

(
b
1− δH

1− δ
− 1− δH

2
L(x)

)
,

and R(H) > 0 s.t. for every x ∈ S s.t. |x| > R(H), 1−δH
2 L(x) ≥ b1−δH−1

1−δ .

3. Smallness of the set C(H)

By irreducibility and aperiodicity, petite sets are also small sets [MT09, Theorem 5.5.7]
Since C is included in the new one C(H) (whether in Meyn and Tweedie’s book [MT09,
Lemma 14.2.8] and in our Proposition 3.C.2), it will be enough to show that C is a small
set for {VtH+1}t∈N∗ . A key assumption to prove this result will be that we can consider a
measure associated to C for {Vt+1}t∈N∗ satisfying ν(C) > 0.

Indeed, let us denote νm and ε > 0 the measure and minorizing constant s.t. νm(C) > 0
(w.l.o.g. we can assume that νm(C) = 1) and Pm(x,A) ≥ ενm(A) for any x ∈ C and
A ⊂ B(S). They exist by application of [MT09, Proposition 5.2.4 - (iii)] (existence of a
measure positive on the small set for irreducible chains).

Let us show that C is a small set for {VtH+1}t∈N∗ . Indeed, we can show recursively that
Pmk(x,A) ≥ εkνm(A) for any k ∈ N∗. It is satisfied for k = 1. Let us assume the property
for k ∈ N∗. Then for k + 1:

P (k+1)m(x,A) =

∫
S
Pmk(x, dy)Pm(y,A) ≥ εk

∫
S
νm(dy)Pm(y,A)

≥ εk
∫
C
νm(dy)Pm(y,A)︸ ︷︷ ︸

≥ενm(A)
since y∈C

≥ εk+1 νm(C)︸ ︷︷ ︸
=1

νm(A) = εk+1νm(A).

(3.3.9)

So for k = H, C is a small set for {VtH+1}t∈N∗ . To show that C(H) is a small set for

{VtH+1}t∈N∗ , it suffices to take ν
(H)
m = νm on C and ν

(H)
m = 0 on C(H)\C.

4. Accessibility of the set

Since {VtH+1}t∈N∗ is Lebesgue-irreducible and since λ(C(H)) > 0 (because we have {x ≤
R(H)} ⊂ C(H) with R(H) > 0 so λ(C(H)) ≥ λ({|x| ≤ R(H)) > 0) then by the irreducibility
definition, L(x, C(H)) > 0 for any x ∈ S so C(H) is accessible.

5. Boundedness of the Lyapunov function

L is bounded on C(H) because C(H) ( S is bounded and we have assumed L of polynomial
growth.
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The assumptions of proposition 3.3.4 are verified so by application of the proposition to the
lagged chain {VtH+1}t∈N∗ the announced inequality (3.3.8) is true.

Parameters dependence in H: In this paragraph, we are going to exhibit the dependence

of C
(H)
FM in H and q. From Proposition 3.3.4,

C
(H)
FM = C

(
mH + 1

εH

)q+1 M2
H

A2q
H

,

where AH ,MH , mH and εH depend on the Lyapunov constants and set dH , bH and C(H).

Alternative choice of dH , bH and C(H) uniform in H: Let us show that we can find dmax,
bmax and Cmax independent from H s.t.

E
[
L(VH+1)

∣∣V1 = x
]
≤ dmax L(x) + bmax1x∈Cmax .

From Proposition 3.C.2’s proof, E
[
L(VH+1)

∣∣V1 = x
]

satisfies the inequality (3.C.1):

E
[
L(VH+1)

∣∣V1 = x
]
≤ δH L(x) + b

1− δH−1

1− δ
+ δH−1b1C(x).

We can bound this inequality uniformly in H:

E
[
L(VH+1)

∣∣V1 = x
]
≤ δL(x) +

b

1− δ
+ b1C(x)

=
1 + δ

2
L(x)− 1− δ

2
L(x) +

b

1− δ
+ b1C(x).

Taking Rmax s.t. b
1−δ + b < 1−δ

2 L(x) for |x| > Rmax and Cmax = C ∪ {x ∈ S
∣∣ |x| ≤ Rmax},

E
[
L(VH+1)

∣∣V1 = x
]
≤ 1 + δ

2︸ ︷︷ ︸
dmax

L(x) + sup
x∈Cmax

(
b

1− δ
+ b− 1− δ

2
L(x)

)
︸ ︷︷ ︸

bmax

1x∈Cmax .

Choice of MH and AH uniform in H: By definition,

MH > sup
C(H)

L∨
(
bH
/(

1− d
1
q

H

)q)
,

AH = (1− dH)
1
q −

(
bH
MH

) 1
q

.

(3.3.10)

We can replace bH , dH and C(H) by bmax, dmax and Cmax in (3.3.10) to have MH and AH uniform
in H.

Behavior of mH and εH : By application of Proposition 3.3.4 to {Vt+1, t ∈ N}, {L ≤ M} is
a νm-small set with minorizing constant ε. W.l.o.g., we can assume that Mmax ≥ M . Then, as
we have shown in the proof of Proposition 3.3.5 equation (3.3.9), a νm-small set with minorizing
constant ε for {Vt+1, t ∈ N} is a νm-small set with minorizing constant εH := εH for {VtH+1, t ∈
N}. As we did in the proof of Proposition 3.3.5, we can take νmH = νm on {L ≤ M} and
null on {L ≤ Mmax}\{L ≤ M} so that {L ≤ Mmax} is a νmH small set for {Vt+1, t ∈ N} with
minorizing constant εH .

We give our conclusion in the following proposition:
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Proposition 3.3.6. Under the assumption of Proposition 3.3.5, the constant C
(H)
FM can be upper

bounded by:

C

(
m+ 1

εH

)q+1 Mmax(q)2

Amax(q)2q

where Mmax(q) > supC(max) L∨
(
bmax

/(
1− d

1
q
max

)q)
, and Amax(q) := (1 − dmax)

1
q −(

bmax
Mmax(q)

) 1
q
, Rmax s.t. b

1−δ + b < 1−δ
2 L(x), Cmax = C ∪ {x ∈ S

∣∣ |x| ≤ Rmax}, dmax = 1+δ
2 ,

bmax = supx∈Cmax

(
b

1−δ + b− 1−δ
2 L(x)

)
and ε, m are given by the application of Proposition

3.3.4 on {Vt+1, t ∈ N}, and C depends on q only.

Remark 4. This bound goes to infinity when H and q go to infinity, because

• ε ∈ (0, 1) so 1/εH goes to infinity when H goes to infinity,

•
(

1− d
1
q
max

)
goes to 0 when q goes to infinity, so Mmax(q) goes to infinity when q goes to

infinity.

It means that the control becomes loose when H and q are too large. However, this bound is a
uniform bound which can be far from the minimal constant one could get with a more refined
analysis.

3.3.2.2 Completion of Proof of Proposition 3.3.1

We can now prove our Proposition 3.3.1.

Proof. Let q ∈ [2, pmax], let EN,H be defined by (3.3.6):

EN,H =
N∑
n=1

x>tnφ(Vtn+1)ytn =
N∑
n=1

g(Vtn+1),

φ(Vtn+1) = E

[
H∑
k=1

Vtn+k|Ftn

]
, g(Vtn) = x>tnφ(Vtn+1)ytn ,

with xtn and ytn defined in (3.3.7) by xtn = mv(Vref)−mv(cRCH,tn) and ytn = mv(Vref) +

mv(cRCH,tn). We want to control E [|EN,H −N`H |q] in N and H, where `H = E
[
EN,H
N

∣∣∣∣V1 ∼ µ
]
.

In order to apply Proposition 3.3.4 on EN,H , we have to verify that g(·) is bounded in L1/q

norm. From Hpmax , a function is bounded in L1/q norm if it can be bounded by a polynomial
function of order pmax

q ≥ 1 (because L is larger than one and of polynomial growth of order pmax

at infinity). We are going to show that g(·) is sub-linear. Hence g(·) will be bounded in L1/q

norm.

Sublinearity of g: By triangle inequality, using that |xi,t| ≤ 2cw and |yi,t| ≤ 2cw by their
definition as sum and difference of portfolios in W, for t ∈ N∗,

|g(Vt+1)| ≤ (2cw)2d
H∑
k=1

E
[
|Vt+k|

∣∣Ft] .
To show that g(·) is sub-linear, we will show that each E

[
|Vt+k|

∣∣Vt+1

]
is sub-linear (e.g. linearly

bounded with respect to |Vt+1|). By Markov property, E
[
|Vt+k|

∣∣Ft] = E
[
|Vt+k|

∣∣Vt+1

]
, the

sub-linearity of g(·) will ensue.
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Let k ∈ N∗. By the Jensen inequality in (*) and Hpmax :

E
[
|Vt+k|

∣∣Vt+1

] (∗)
≤
(
E
[
|Vt+k|pmax

∣∣Vt+1

]) 1
pmax

Hpmax

≤
(

1

cL
E
[
L(Vt+k)

∣∣Vt+1

]) 1
pmax

.

By the extended Lyapunov condition (3.C.1) and Hpmax :

E
[
L(Vt+k)

∣∣Vt+1

]
≤ δk−1 L(Vt+1) + b

1− δk−2

1− δ
+ δk−2b︸ ︷︷ ︸

b(k)

≤ δk−1 (CL(1 + |Vt+1|pmax)) + b(k).

Combining these inequalities and applying the inequality (|x|+ |y|)
1

pmax ≤ |x|
1

pmax + |y|
1

pmax ,

E
[
|Vt+k|

∣∣Ft] ≤ ( 1

cL
(δk−1CL|Vt+1|pmax) + δk−1CL + b(k))

) 1
pmax

≤
(
δk−1CL
cL

) 1
pmax

|Vt+1|+

(
b(k) + δk−1CL

cL

) 1
pmax

.

Hence, E
[
|Vt+k|

∣∣∣∣Vt+1

]
is sub-linear, and by linear combination, so is g(·).

Proposition 3.3.5 application: dependence in N : Since g(·) is bounded in L1/q norm,
we can apply the concentration of measure result for lagged chain Proposition 3.3.5 on EN,H :

E
[
|EN,H −N`H |q

∣∣∣∣V1

]
≤ C(H)

FM

(
sup
S

|g − µ(g)|q

L

)
L(V1)N q/2. (3.3.11)

Bound on supS
|g−µ(g)|q
L in terms of H: Let v ∈ S. By g(·) definition:

g(v)− µ(g) = mv(Vref)
>φ(v) mv(Vref)− Eµ

[
mv(Vref)

>φ(V ) mv(Vref)
]

−
(

mv(φ(v))>φ(v) mv(φ(v))− Eµ
[
mv(V )>φ(V ) mv(V )

])
.

Let us denote a the first term:

a = mv(Vref)
> (φ(v)− Eµ [φ(V )]) mv(Vref).

Using that |mv(Vref)i| ≤ cw, i ∈ {1, . . . , d},

|a|q ≤ (cw
2d)q |φ(v)− Eµ [φ(V )]|q . (3.3.12)

We can write the second term as:

b = mv(φ(v))>φ(v) mv(φ(v))− Eµ
[
mv(φ(V ))>φ(V ) mv(φ(V ))

]
.

Notice that, by definition of mv, for any C, C̃ ∈ Sd+,

|mv(C)>C mv(C)−mv(C̃)>C̃ mv(C̃)| ≤ (cw
2d)q|C − C̃|. (3.3.13)

Let C, C̃ ∈ Sd+. Let us assume that mv(C)>C mv(C)−mv(C̃)>C̃ mv(C̃) ≥ 0. Then

mv(C)>C mv(C)−mv(C̃)>C̃ mv(C̃)
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= mv(C)>C mv(C)−mv(C̃)>C mv(C̃)︸ ︷︷ ︸
≤0

+ mv(C̃)>C mv(C̃)−mv(C̃)>C̃ mv(C̃)︸ ︷︷ ︸
=mv(C̃)>(C−C̃) mv(C̃)

≤mv(C̃)>(C − C̃) mv(C̃) ≤ (cw
2d)q|C − C̃|.

Conversely, if mv(C̃)>C̃ mv(C̃)−mv(C)>C mv(C) ≥ 0, then we can do the same reasoning
inverting C and C̃:

mv(C̃)>C̃ mv(C̃)−mv(C)>C mv(C) ≤ mv(C)>(C̃ − C) mv(C) ≤ (cw
2d)q|C − C̃|.

Applying this inequality with C = φ(v) and C̃ = φ(V ), we can bound |b|q:

|b|q ≤ (cw
2d)q |φ(v)− Eµ [φ(V )]|q .

Hence we arrived at the same bound as (3.3.12).

By double conditionning, and invariance of the stationary law: Vt|V1 ∼ µ
(d)
= µ,

Eµ [φ(V )] = Eµ

[
E

[
H∑
k=1

Vt+k|Vt+1 = V

]]
= Eµ

[
H∑
k=1

Vt+k

]
= HV∞.

By the former remark and applying the Jensen inequality,

|φ(v)− Eµ [φ(V )]|q =

∣∣∣∣∣E
[
H∑
k=1

Vt+k −HV∞|Vt+1 = v

]∣∣∣∣∣
q

≤ E

[∣∣∣∣∣
H∑
k=1

Vt+k −HV∞

∣∣∣∣∣
q ∣∣∣∣Vt+1 = v

]
.

We can separate E
[∣∣∣∑H

k=1 Vt+k −HV∞
∣∣∣q ∣∣∣∣Vt+1 = v

]
between the Vt+1 measurable term and

a term of the form sum of function -here the identity function- of Vt+2, . . . , Vt+H conditioned on
Vt+1, i.e. in the right form to apply Proposition 3.3.4 :

E

[∣∣∣∣∣
H∑
k=1

(Vt+k − V∞)

∣∣∣∣∣
q ∣∣∣∣Vt+1 = v

]
≤ 2q−1

(
|v − V∞|q + E

[∣∣∣∣∣
H∑
k=2

(Vt+k − V∞)

∣∣∣∣∣
q ∣∣∣∣Vt+1 = v

])
.

To summarize, we obtain:

|g(v)− µ(g)|q ≤ 22q−1(cw
2d)q

(
|v − V∞|q + E

[∣∣∣∣∣
H∑
k=2

(Vt+k − V∞)

∣∣∣∣∣
q ∣∣∣∣Vt+1 = v

])
.

Proposition 3.3.4 application, dependence in H: Since L(x) ≥ cL|x|pmax for large x, and

since L(x) > 1 for any x ∈ S, supx∈S
|x|q
L(x) is bounded. We can then apply the concentration

of measure result for standard chain Proposition 3.3.4 on the function g̃(Vt+k) = Vt+k and
µ(g̃) = Eµ [Vt+k] = V∞:

E

[∣∣∣∣∣
H∑
k=2

(Vt+k − V∞)

∣∣∣∣∣
q ∣∣∣∣Vt+1 = v

]
≤ CFM sup

v′∈S

|v′|q

L(v′)
L(v)(H − 1)q/2. (3.3.14)
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Hence, there exists a constant cq,d depending on q, d and on the Lyapunov condition HL such
that, for any H ≥ 1:

|g(v)− µ(g)|q

L(v)
≤ 22q−1(cw

2d)q
(
CFM sup

v′∈S

|v′|q

L(v′)
(H − 1)q/2 +

|v − V∞|q

L(v)

)
≤ cq,dHq/2.

For example, cq,d = 22q(cw
2d)q

(
CFM supv′∈S

|v′|q
L(v′) + supv′∈S

|v′−V∞|q
L(v′)

)
.

Combining this upper bound with (3.3.11), we obtain:

E [|EN,H −N`H |q] ≤ Cq,L,H,d(NH)q/2.

3.3.3 Proof of Propositions 3.2.1 and 3.3.2

In this subsection, we are interested in the characterization of `H = Eµ
[
cRV ref

N,H−cRVN,H
N

]
and of

the limit value of
cRV ref

N,H−cRVN,H
N when N goes to infinity.

Proof. The proof goes as follows: first we show the finiteness and non-negativity of `H . The

convergence result will follow from the concentration of measure result on
cRV ref

N,H−cRVN,H
N =

EN,H
N .

• Finiteness

`H is defined as the expectation under the stationary law of a linear combination of quanti-
ties of type mv(Vref)

>E [Vtn+k|Ftn ] mv(Vref) and mv(cRCH,tn)>E [Vtn+k|Ftn ] mv(cRCH,tn),
for k ∈ {1, . . . ,H} and n ∈ {1, . . . , N}.
Since the mv(·) operator is bounded, and since the {Vt}t∈N∗ admit L1 moment by Hstat,
`H is well defined and finite.

• Non-negativity

By definition of the mv(·) mapping,

mv(Vref)
>cRCH,tn mv(Vref) ≥ mv(cRCH,tn)>cRCH,tn mv(cRCH,tn)] a.s.

Hence, summing on n from 1 to N , we have that cRV ref
N,H ≥ cRVN,H almost surely.

Taking the expectation: 0 ≤ Eµ
[
cRV ref

N,H−cRVN,H
N

]
:= `H .

• Convergence of
cRV ref

N,H−cRVN,H
N

From the moment inequality in Proposition 3.3.1,

E
[∣∣∣∣EN,HN − `H

∣∣∣∣pmax
]
≤ Cq,L,H,d

(
H

N

) pmax
2

.

Hence, E
[∣∣∣EN,HN − `H

∣∣∣pmax
]
−→

N→+∞
0 hence the convergence in Lpmax-norm.

From the Markov inequality in Proposition 3.3.1,

P
(∣∣∣∣EN,HN − `H

∣∣∣∣ > a

)
≤ 2CqH

pmax
2

N
pmax

2 apmax
. (3.3.15)
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If pmax > 2, we can apply the Borel-Cantelli Lemma to show that
EN,H
N converges al-

most surely towards `H . Indeed, since pmax > 2, for every a > 0, from (3.3.15),∑∞
N=1 P

(∣∣∣EN,HN − `H
∣∣∣ > a

)
<∞ hence

EN,H
N

a.s.−→
N→+∞

`H .

3.3.4 Proof of Lemma 3.3.3

Proof. Let DN,H(x) :=
∑N

n=1 x>tn (RCH,tn − cRCH,tn) xtn , where x satisfies Hx. To alleviate the
notations, we just write DN,H instead of DN,H(x). We want to control E [|DN,H |q] in N and
H. The difficulty stems from the fact that we want to exhibit the dependence both in N and
H. We are going to rely on a double arguments of martingale: DN,H can be seen as a nested
martingale, in the long time period N , and in the short time period H.

Dependence in N : Denote Xn := x>tn (RCH,tn − cRCH,tn) xtn . Then Xn is Ftn+1-measurable

and DN,H :=
∑N

n=1Xn. By cRCH,tn definition, E [RCH,tn |Ftn ] = cRCH,tn , hence since the xtn
are Ftn-measurable, E [Xn|Ftn ] = 0, so DN,H is a martingale w.r.t. the filtration {Ftn}N+1

n=1 .
Let us apply the Burkholder inequality (3.C.3) on DN,H , martingale with increments Xn:

denoting CBpmax
the Burkholder constant (depending on pmax only), we have:

E [|DN,H |pmax ] ≤ CBpmax
E

∣∣∣∣∣
N∑
n=1

X2
n

∣∣∣∣∣
pmax/2

 .
By convexity inequality on

∣∣∣∑N
n=1X

2
n

∣∣∣pmax/2
,

E [|DN,H |pmax ] ≤ CBpmax
N

pmax
2
−1

N∑
n=1

E [|Xn|pmax ] .

Dependence in H: We can decompose Xn =
∑H

k=1 x>tn
(
rtn+kr

>
tn+k − E

[
Vtn+k

∣∣Ftn])xtn in a

martingale part Yn =
∑H

k=1 Y
tn
k and a remaining part Zn =

∑H
k=1 Z

tn
k , where:

Y tn
k := x>tn

(
rtn+kr

>
tn+k − Vtn+k

)
xtn ,

Ztnk := x>tn
(
Vtn+k − E

[
Vtn+k

∣∣Ftn])xtn , 1 ≤ k ≤ H.

Notice that Ztn1 = x>tn
(
Vtn+1 − E

[
Vtn+1

∣∣Ftn]︸ ︷︷ ︸
=Vtn+1

)
xtn = 0.

By convexity inequality

E [|Xn|pmax ] = E [|Yn + Zn|pmax ] ≤ 2pmax−1 (E [|Yn|pmax ] + E [|Zn|pmax ]) .

Bound on E [|Yn|pmax ]: By the the Burkholder inequality (3.C.3) on Yn and by convexity:

E [|Yn|pmax ] ≤ CBpmax
E

∣∣∣∣∣
H∑
k=1

(
Y tn
k

)2∣∣∣∣∣
pmax

2


≤ CBpmax

H
pmax

2
−1

H∑
k=1

E
[∣∣Y tn

k

∣∣pmax
]
.
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Bound on E [|Zn|pmax ]: Since the xtn components are bounded by cw from assumption Hx,

E [|Zn|pmax ] ≤ (cw
2d)pmaxE

[∣∣∣∣∣
H∑
k=2

Vtn+k − E
[
Vtn+k

∣∣Ftn]
∣∣∣∣∣
pmax]

.

Making appear Eµ [Vt] = E
[
Vtn+k

∣∣Vtn ∼ µ] = V∞, by convexity inequality:

E [|Zn|pmax ] ≤ 2pmax−1(cw
2d)pmax

(
E

[∣∣∣∣∣
H∑
k=2

(Vtn+k − V∞)

∣∣∣∣∣
pmax]

+ E

[∣∣∣∣∣
H∑
k=2

(V∞ − E
[
Vtn+k

∣∣Ftn])
∣∣∣∣∣
pmax])

.

Notice that the second term is bounded by the first one, since the conditional expectation is
non-expansive in Lpmax-norm,

E

[∣∣∣∣∣
H∑
k=2

(E
[
Vtn+k

∣∣Ftn]− V∞)

∣∣∣∣∣
pmax]

= E

[∣∣∣∣∣
H∑
k=2

(Vtn+k − V∞)

∣∣∣∣∣
pmax]

. (3.3.16)

Hence

E [|Zn|pmax ] ≤ 2pmax(cw
2d)pmaxE

[∣∣∣∣∣
H∑
k=2

(Vtn+k − V∞)

∣∣∣∣∣
pmax]

.

As we have done in (3.3.14), we can apply Fort-Moulines Proposition extension (Proposition
3.3.5)) to get the dependence in H:

E

[∣∣∣∣∣
H∑
k=2

(Vtn+k − V∞)

∣∣∣∣∣
q ∣∣∣∣Vtn+1

]
≤ CFM sup

x∈S

|x|q

L(x)
L(Vtn+1)(H − 1)q/2.

So,

E [|Zn|pmax ] ≤ (2cw
2d)pmaxCFM sup

x∈S

|x|q

L(x)
E [L(Vtn+1)|V1]Hq/2.

Combining the obtained bounds on Zn and Yn, we obtain:

E [|Xn|pmax ] ≤ 2pmax−1

(
CBpmax

mY,n + (2cw
2d)pmaxCFM sup

x∈S

|x|q

L(x)
mL,n

)
H

pmax
2 ,

E [|DN,H |pmax ] ≤ Cpmax,d,L(NH)
pmax

2 ,

where

mY,n :=

∑H
k=1 E

[∣∣Y tn
k

∣∣pmax
]

H
, mL,n :=

∑H
k=1 E

[∣∣Y tn
k

∣∣pmax
]

H
and

Cpmax,d,L := 2pmax−1CBpmax

(
CBpmax

∑N
n=1mY,n

N
+ (2cw

2d)pmaxCFM sup
x∈S

|x|q

L(x)

∑N
n=1mL,n
N

)

are quantities which can be bounded independently from N and H.
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3.3.5 Auxiliary result

In what follows, we prove the Lemma 3.2.3, e.g. that when Vref = V∞, lim
H→∞

`∞H
H = 0.

Proof. Let us first show that
cRCH,Treb

H converges to V∞. Let Treb ≥ 2.
As we did in Lemma 3.3.3 equation (3.3.16), by the non-expansivity of the conditional

expectation in Lp-norm,

E [|cRCH,Treb −HV∞|
pmax ] ≤ E

[∣∣∣∣∣
H∑
k=1

VTreb+k −HV∞

∣∣∣∣∣
pmax]

= E

[
E

[∣∣∣∣∣
H∑
k=1

VTreb+k −HV∞

∣∣∣∣∣
pmax ∣∣∣∣FTreb−1

]]
.

And as done in (3.3.14),

E

[∣∣∣∣∣
H∑
k=1

VTreb+k −HV∞

∣∣∣∣∣
pmax ∣∣∣∣VTreb

]
≤ CFM sup

x∈S

|x|pmax

L(x)
L(VTreb)H

pmax
2 .

Taking the expectation, E [L(VTreb)|V1] is finite by the Lyapunov condition drift HL.
So dividing by Hpmax :

E
[∣∣∣∣cRCH,TrebH

− V∞
∣∣∣∣pmax

∣∣∣∣VTreb] ≤ CFM sup
x∈S

|x|pmax

L(x)
E [L(VTreb)|V1]

1

H
pmax

2

. (3.3.17)

When H goes to infinity, the bound in (3.3.17) goes to zero so
cRCH,Treb

H

Lpmax−→
H→+∞

V∞.

By homogeneity and continuity of the mv operator which is Lipschitz from equation (3.3.13),

and passage to the limit, since
cRCH,Treb

H

Lpmax−→
H→+∞

V∞ with pmax ≥ 2, we have convergence in L1

norm and we can infer:

EV1∼µ

[
mv(V∞)>

cRCH,Treb
H

mv(V∞)−mv

(
cRCH,Treb

H

)> cRCH,Treb
H

mv

(
cRCH,Treb

H

)]
︸ ︷︷ ︸

=
`∞
H
H

−→
H→+∞

0.

3.4 Model specification

We want to specify models satisfying the assumptions (3.2.1), Hstat, HS , HL and Hpmax .

3.4.1 Motivation: GARCH-CCC model

The GARCH-CCC model [Bol90] is one of the simplest extension of GARCH model to the
multidimensional case. For an exhaustive review of multidimensional GARCH, see [BLR06]. In
this chapter, we elaborate our results with the simple GARCH-CCC, presented in [Car01].

This model assumes the following structure for the centered returns rt:

rt = DtΓ
1/2ηt = Dtη̃t,

η̃t = Γ1/2ηt,

Vt = DtΓDt, (3.4.1)

where
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• Dt = Diag (σ1,t, . . . , σd,t),

• {σi,t}1≤i≤d are one-dimensional GARCH volatilities,

• Γ = {ρij}1≤i,j≤d is a positive definite matrix (the Constant Conditional Correlation ma-
trix),

• ηt is a d-dimensional vector with independent components, E [ηi,tηj,t] = 0 ∀i 6= j, E
[
η2
i,t

]
=

1, and ηt independent from Dt.

The original GARCH-CCC assumes a simple GARCH(1,1) volatility recursion for the σi,t:

σ2
i,t = wi + αir

2
i,t−1 + βiσ

2
i,t−1, i = 1, . . . , d, (3.4.2)

where wi, αi, βi ∈ R.

The advantages of the ”initial” GARCH-CCC model is its parsimony: it requires d(d+5)
2

parameters versus d(5d+1)
2 for the interdependent GARCH-CCC with p = q = 1 (3.4.4). The

disadvantage is the strong assumption of constant conditional correlation.

In what follows, we will assume that {ηt}t∈N is a sequence of independent Gaussian vectors.

3.4.2 Stationarity, ergodicity and application of results

In this subsection, we show that the GARCH-CCC satisfies the general model equation (3.2.1)
and the model assumptions Hstat, HS , HL and Hpmax , under the following assumptions and
definition on the parameters:

Hparam. The GARCH-CCC parameters {wi, αi, βi}di=1 and Γ are deterministic and satisfy:

(i) Γ ∈ S+ is a correlation matrix.

(ii) wi > 0, αi > 0 and βi > 0 for all i ∈ {1, . . . , d}.

(iii) 3α2
i + β2

i + 2αiβi < 1 for all i ∈ {1, . . . , d},

qmax ∈ R+ is defined as:

qmax := min
1≤i≤d

arg max
p∈R+

{
E
[
|αiη̃2

i + βi|p
]
< 1
}
, η̃ ∼ N (0,Γ). (3.4.3)

Remark 5. A few remarks on Hparam:

• The condition Hparam(iii) is equivalent to the condition E
[
|αiη̃2

i + βi|2
]
< 1 (using that

E
[
η̃4
i

]
= 3 and E

[
η̃2
i

]
= 1). Hence, it implies that qmax > 2. This condition ensures in

particular αi + βi < 1, hence the existence of a stationary and ergodic solution to the
model, as shown in the section 3.A.2.

• Continuity and evolution in p of E
[
|αiη̃2

i + βi|p
]
:

– By Lp norms growth in p, if q > 0 is s.t. |αiη̃2
i + βi|qq = E

[
|αiη̃2

i + βi|q
]
< 1, then for

0 ≤ p ≤ q,
|αiη̃2

i + βi|p ≤ |αiη̃2
i + βi|q < 1.

– The function g : p 7→ E
[
|αiη̃2

i + βi|p
]

is continuous (for example, by dominated
convergence, for any sequence pn converging to p, g(pn) converges to g(p)).

– The function g(·) goes to infinity when p goes to infinity (because αi > 0), hence we
are sure to have p s.t. g(p) ≥ 1.
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• Since g(·) is continuous, the quantity maxp∈R+

{
E
[
|αiη̃2

i + βi|p
]

: E
[
|αiη̃2

i + βi|p
]
< 1
}

is
equal to 1. To prove the Lyapunov drift condition, we need a p s.t. E

[
|αiη̃2

i + βi|p
]
< 1.

We denote pmax such a p. From Hparam(iii) and the first remark, we can take pmax ≥ 2.

Theorem 3.4.1. Under Hparam, the GARCH-CCC variances process {σ2
t }t∈N satisfies the as-

sumption of Theorem 3.2.2. Hstat, HS , HL and Hpmax.

In what follows, we are going to prove the properties Hstat, HS , HL and Hpmax on the

GARCH-variances process σ2
t , on the stable state-space S =

∏d
i=1

(
wi

1−βi ,+∞
)

.

Proof. Let {σ2}t∈N be a GARCH-CCC variances process.

Hstat: Stationarity and ergodicity: From Theorem 3.A.2 explicit condition (3.A.2), a suf-
ficient condition for stationarity and ergodicity for σ2

t is implied by our assumption Hparam(iii).

HS on σ2
t : By definition, {σ2

t }t∈N∗ is Markovian and time homogeneous. We show in our Corol-

lary 3.A.4 that {σ2
t }t∈N∗ is Lebesgue-irreducible on S =

∏d
i=1

(
wi

1−βi ,+∞
)

. The aperiodicity will

follow from the existence of a small set of positive measure shown below.

HL and Hpmax on σ2
t : For x ∈ S, define

L(x) = 1 +

d∑
i=1

|xi − wi|pmax ,

and ρ = max1≤i≤d E
[
|αiη̃2

i + βi|pmax
]

and δ = 1+ρ
2 .

Then, if σ2
t−1 = x, Ex L(σ2

t ) = 1 + E
∑d

i=1|
(
αiη̃

2
i + βi

)
xi|pmax ≤ 1 + ρ(

∑d
i=1|xi|pmax).

Since lim
|x|→∞

Ex L(σ2
t )

L(x) ≤ ρ, the drift condition Ex L(σ2
t ) ≤ δL(x) is verified for x large enough.

Let R > max1≤i≤d
wi

1−βi s.t. it is verified for |x| > R, C := {x ∈ S| |x| ≤ R} and b :=

supx∈C |Ex L(σ2
t )− δL(x)|, then

Ex L(σ2
t ) ≤ δL(x) + b1x∈C , x ∈ S.

By definition, σ2
t |σ2

t−1 = x follows the same law as {wi + (αiη̃
2
i + βi)xi}, η̃ ∼ N(0,Γ). It

admits a density gx derived explicitly in Subsection 3.A.4 equation (3.A.4).

Properties of gx:

• v 7→ gx(v) is continuous in v for vi > wi + βixi ,

• For (x,v) ∈

(
B(0, R) ∪

d∏
i=1

[
wi

1− βi
,+∞

))
︸ ︷︷ ︸

C

×
(∏d

i=1

[wi+βiR
2 + R

2 ,+∞)
)

=: D, we have

vi − wi − βixi
αixi

≥
wi+βiR

2 + R
2 − wi − βiR
αiR

=
1

2αi

(
1− βi −

wi
R

)
︸ ︷︷ ︸
>0 by R choice

> 0.

This function restricted to D is hence continuous and positive.
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In particular, infx∈C gx(v) > 0 for each v ∈
∏d
i=1

[wi+βiR
2 + R

2 ,+∞).

Let

ν(A) :=

∫
A

inf
x∈C

gx(v)1{
vi>

wi+βiR

2
+R

2

}d
i=1

dv, A ∈ B(S).

For any x ∈ C, P (x, A) =
∫
A gx(v)dv ≥ ν(A) with ν non-null measure with density, hence C

is a petite set.

Since wi+βiR
2 + R

2 < R (because R > wi
1−βi ),

∏d
i=1

[
wi+βiR

2 + R
2 , R

]
is non empty and has a

positive Lebesgue measure and is included in C. Hence:

ν(C) ≥
∫
{
wi+βiR

2
+R

2
<vi<R

}d
i=1

inf
x∈C

gx(v)dv > 0

so C is accessible and as a consequence of [MT09, Aperiodicity definition - page 114], the chain
is aperiodic. Hence the Lyapunov condition is satisfied, with L polynomial in pmax.

Hstat: Existence of L2-moment: From the Lyapunov drift condition, we are ensured to
have finite pmax moments. Since we assumed pmax ≥ 2, it implies the square integrability of the
process {σ2

t }t∈N∗ for any initial condition and under the stationary law.

Bijection between {Vt}t∈N and σ2
t : Since σ2

i,t > 0 on S, there exists a function ΦΓ s.t.

(Vt)i,j =

{
ρijσi,tσj,t if i 6= j,
σ2
i,t else

=: ΦΓ(σ2
t ).

• ΦΓ is bijective,

• ΦΓ is sub-linear: |ΦΓ(σ2
t )| ≤ |Γ||σ2

t |.

By Theorem 3.A.1, if σ2
t admits an ergodic and stationary solution, so is ΦΓ(σ2

t ) = Vt.

Results application:

• By definition of the GARCH-CCC model (3.4.1), {Vt = ΦΓ(σ2
t )}t∈N∗ satisfies (3.2.1).

• If {σ2
t }t∈N∗ satisfies Hstat, HS , HL and Hpmax , then the ergodic concentration results (Propo-

sitions 3.3.5 and 3.3.4) apply to any function g
(
ΦΓ(σ2

t )
)
, g ◦ ΦΓ bounded in L1/q norm,

q ≥ 2.

Since ΦΓ is sub-linear, our Proposition 3.3.1, Lemma 3.3.3 and main result Theorem 3.2.2
apply without any adaptation.

Hence, under parameters condition Hparam, by Theorem 3.4.1 and these remarks, the main
result Theorem 3.2.2 is satisfied with pmax defined in equation (3.4.3).

3.4.3 Additional models

In this subsection, we list additional GARCH models on which it is possible to extend our study.
We first list one-dimensional GARCH models which can be extended to multidimensional model
with a constant correlation matrix. Then we refer to a multidimensional model with inter-
dependence between the GARCH volatilities.
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3.4.3.1 One-dimensional GARCH models

The Threshold GARCH (T-GARCH) and the asymmetric power-GARCH are affine models,
hence we can directly apply our results on them:

• T-GARCH:

σt = w + [α+(ηt−1)+ − α−(ηt−1)− + β]σt−1,

where w,α+, α−, β > 0.

• Power GARCH:

σδt = w +
[
α(|ηt−1| − ζηt−1)δ + β

]
σδt−1,

where w,α, β, δ > 0, |ζ| ≤ 1.

Indeed, we can adapt the assumptions verification taking the same Lyapunov function defined
on σt instead of σ2

t for the T-GARCH, and σδt for the power GARCH.
The following models are of the form σt ≤ a(ηt−1)σγt−1 with γ < 1 if α + β < 1. We can

adapt our results on these models by taking a linear Lyapunov function.

• Exponential GARCH:

lnσ2
t = w + αg(ηt−1) + β lnσt−1,

g(ηt−1) = θηt−1 + ζ(|ηt−1| − E [|ηt−1|] ,
σ2
t = eweαg(ηt−1)(σ2

t−1)β,

with α, β > 0, β < 1 and −ζ < θ < ζ for g to be increasing in |ηt−1| (and θ < 0 for
negative innovation to have more impact than positive ones).

In this model, in the Gaussian innovation case, moments exist at any order [FZ19, p. 79].

• Log-GARCH: the recursion holds on the logarithm of variances:

lnσ2
t = w + α ln rt−1 + β lnσt−1

= w + α ln η2
t−1 + (α+ β) lnσt−1,

σ2
t = ew (ηt−1)α σα+β

t−1 ,

where w,α, β ∈ R.

3.4.3.2 Multidimensional GARCH models

In Francq and Zakoian’s book [FZ19, page 280], the authors define the interdependent GARCH
volatilities model:

σ2
t = w +Art−1

2 +Bσ2
t−1, (3.4.4)

where A,B ∈ Rdxd, w ∈ Rd.
It is possible to adapt our results to this setting.

3.5 Numerical experiments

In this section, we confront our theoretical results to the real probabilities of better perfor-
mance of the realized covariance based portfolio. To do so, we base ourselves on GARCH
fitted parameters on real financial data to have realistic range of parameters (Subsection 3.5.1).
Then we simulate GARCH-CCC based returns and compute the corresponding cRCH,tn and
mv matrices and portfolio, as described in Subsection 3.5.2. Finally, we exhibit the evolution of
P̂(RN,H < R∞N,H) for multiple values of H and N .
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3.5.1 Realistic GARCH values, fiting procedure

We have fitted GARCH-CCC parameters on real financial time series, using a two steps proce-
dure:

1. fit of the one-dimensional GARCH(1,1) models by maximum likelihood (where the ex-
plicit likelihood for one-dimensional GARCH can be found in [EB86] for example) on the
recentered returns (we assumed a fixed drift),

2. fit of the constant conditional correlation on the reconstructed residuals η̃i,t.

The financial time series consist in the 12 components of BNPP QIS Momentum Strategy,
composed of 4 indices consisting in index futures rolling (indices being EuroStoxx50, S&P 500,
Nikkei, HSCEI), 3 indices of rolling of futures of bonds (German Bund, US government bond,
Japanese government bond) and 5 indices of rolling of commodity (on gold, brent, S&P GSCI
excess return, Goldman Sachs US industrial metal ER) fx hedged in euros, from 12/03/1993
until 02/02/2017 (6046 dates).

Minimum Maximum Average Standard-deviation

σ2
∞ 0.060 5.15 1.77 1.44

σ∞,an 4.04 36.02 18.91 9.47

w 0.00032 0.04320 0.0135 0.0137

α 0.0329 0.0955 0.0622 0.0242

β 0.885 0.966 0.931 0.0271

α+ β 0.981 0.998 0.993 0.00182

ρ -22% 82% 10% 22%

pmax 1.83 5.72 3.34 1.22

t1/2 36.2 437.2 135.8 98.52

Table 3.1 – Summary of variance (σ2
∞), GARCH(1,1) parameters (α, β, w), constant conditional

correlation (ρ), highest moment (pmax) and half-life time (t1/2, as defined in (3.5.2)) minimum,
maximum, average and standard-deviation of the calibrated parameters. The variance and
w parameters are expressed in basis points of daily variances, σ∞,an denotes the annualized
volatility and is expressed in percents, t1/2 is expressed in days. α, β and pmax have no dimension.
What we call standard-deviation is the standard-deviation over the estimated quantities.

We give the minimum, maximum, average and standard-deviation of the obtained values
in Table 3.1. In the same Table, we also give the minimum, maximum, average and standard-
deviation of additional quantities computed on the parameters:

• the maximum moment pmax,i, computed on the parameters with formula (3.4.3)

pmax,i := arg max
p∈R+

{
E
[
|αiη̃2

i + βi|p
]
< 1
}
, (3.5.1)

• the half-life t1/2, defined as the average time for the gap between the variance level to its
long-term level to be reduced by one half:

t1/2,i := − ln 2

ln(αi + βi)
, (3.5.2)

• σ2
i,∞ the empirical variance measured on the data.
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We display in Figure 3.2 the obtained values for α, β and pmax.
Comments and interpretation

• The average α is relatively small (0.062) and the average β is relatively high (0.931), and the
sum α+ β is very close to 1. According to Campbell [CLM97, page 483], the α parameter
measures how much a previous shock (high value of an innovation) will propagate to the
future.

• The half-life times are large (because the α + β are close to 1): this phenomena corre-
sponds to the persistence of shocks over time. The average half-life time is 135 days hence
approximately six months. It means that before this horizon, the instantaneous variance
can be far from its expectation under the stationary distribution.

• The wi values are very close to zero since by stationarity condition:

σ2
i,∞ = E

[
ε2i,t
]

= E
[
σ2
i,t

]
=

wi
1− αi − βi

,

they should be of the same order of magnitude than σ2
i,∞(1− αi − βi), and αi + βi ≈ 1.

• We notice that low values of α are associated to high values of β (as shown in Figure 3.2)
and conversely, in such a way that the stationary condition α+ β < 1 is always enforced.

• The average pmax is equal to 3.34, and the minimum is slightly smaller than 2. As shown
in Figure 3.2, most pmax values are higher than 2 which means that the time series have
finite kurtosis.

The estimated parameters show that our approach of considering portfolio with horizon H not
too large (for example: 21 days) and pmax ≥ 2 but of small order is relevant since the average
half-time is very large (more than a month) and the existence of order-2 moments is almost
always verified.

3.5.2 Simulation procedure

In what follows, we describe how we choose the GARCH-CCC parameters and how we estimate
the benchmark covariance V∞ and the realized conditional covariance cRCH,Treb .

• {α,β,Γ} choice

The {αi, βi,Γi,j}di,j=1 are simulated uniformly in the ranges indicated in Table 3.1. The
(αi, βi) are sorted such that the smallest αi are associated to the largest βi. (We enforce
Γ to be definite positive by ensuring or capping its eigen-values to 10−2 and transforming
the matrix to retrieve a 1-diagonal.)

• V∞ estimation

We estimate V∞ as the empirical covariance of the returns over a long range of time,
typically three times the largest half-life time. It amounts to consider a backtest of three
times the largest half-life time. Given the half-life times observed range, the largest life-
time is around 400 business days, hence 1.6 years: 3 times this period corresponds to a
backtest size of 4.8 years.

• cRCH,Treb
estimation

We evaluate the cRCH,Treb via Monte Carlo:

̂cRCH,Treb =

H∑
k=1

Ê [VTreb+k|FTreb ] =
1

Nmc

Nmc∑
n=1

H∑
k=1

V
(n)
Treb+k |FTreb

with
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Figure 3.2 – (α, β, pmax) parameters fitted on 12 financial time series. In orange, we draw the
finite variance area (condition Hparam(iii)), in yellow, we draw the stationary but not finite vari-
ance area. A dot corresponds to one (αi, βi) fitted parameter. Its color indicates its associated
pmax value (as defined in Hparam(pmax)). The color scale to the right corresponds to ranges of
observed values for pmax: lower than 2 values are in dark blue, pmax ∈ [2, 3] is in cyan, higher
values are in green, orange and brown. Most of our fitted parameters are colored in cyan, i.e.
are associated to pmax ∈ [2, 3] values.
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– V
(n)
Treb

= VTreb ,

– V
(n)
Treb+k

obtained by application of the recursion formula on V
(n)
Treb+k

and a generated

r
(n)
Treb+k

∼ N (0, V
(n)
Treb+k−1), for k = 1, . . . ,H.

We took Nmc = 100.

We consider the minimum variance portfolio without constraints: W ={
w = {wi}di=1 ∈ Rd : 1>d w = 1

}
, where 1d is the d-dimensional vector of ones. Then

mv(·) is explicit: for C ∈ Rd×d positive definite matrix, mv(C) = C−11d
1>d C

−11d
. Since we deal with

a non-degenerate GARCH-CCC model, we know that our allocation weights will be bounded
during the length of the experiment. This is why we did not enforce a bound on their norm.

We will place in the following settings:

• d ∈ {10, 50},

• H = 1 (daily rebalancing), H = 5 (weekly), H = 21 (monthly),

• N = 1, . . . , 6× 21/H.

For a daily rebalancing period, we will consider up to N = 126 rebalancing times of the portfolio,
and for monthly time period, up to N = 6 rebalancing times.

For one set of d-dimensional GARCH parameters, we reproduce the following experiment
multiple times (NMC = 104 times):

• We let the multidimensional GARCH evolve during 3 times the maximal half-life time
associated to the d sets of GARCH parameters. We do so in order to reach plausible
GARCH values beyond the burn-in phase of the process. We precise that our results are
valid whatever the starting point and that it is not necessary to reach the stationary regime
for the results to apply.

• Computation of the probabilities: trajectory approach (less independent) ver-
sus by (H,N) approach (more independent).

To do our experiments, we first considered a trajectory approach, consisting in the following
steps:

We start the allocation procedure by initializing our daily, weekly and monthly portfolios:
mv(V1), mv(ĉRC5,1) and mv( ̂cRC21,1). Then for t = 1, . . . , 126,

– We update the daily realized variance Rt,1 and we update the portfolio mv(Vt), and
the realized variance.

– If t is zero modulo 5, we update the weekly realized variance Rt,5 and portfolio with

ĉRC5,t.

– If t is zero modulo 21, we update the monthly realized variance Rt,21 and portfolio

with ̂cRC21,t.

Another more independent (but more time consuming) approach consists in generating a
new GARCH trajectory for each (H,N) pair considered. This is the approach we have
finally taken in the following illustrations (except for the d = 50 experiment).

Hence, we can compute iteratively the empirical probabilities:

P̂(RN,H < R∞N,H) =
1

NMC

NMC∑
N=1

1RN,H<R∞N,H , H ∈ {1, 5, 21}, N = 1, . . . ,
126

H
.
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3.5.3 Empirical probability: impact of pmax and d

We display in Figures 3.3 and 3.4 the evolution of the empirical P
(
RN,H>R

∞
N,H

)
with H and

N , for d = 10 and small versus large pmax (Figure 3.3), and in the other figures, we compare
large dimension (d = 50) versus small dimension (d = 10 ) (Figure 3.4). The time is in business
days. We compare daily (red dots), weekly (blue) and monthly (green) rebalancing times of the
portfolios. On all the experiments, the probabilities decreased towards 0.

3.5.3.1 Impact of pmax

(a) small pmax (b) large pmax

Figure 3.3 – Empirical probabilities P̂(RN,H>R
∞
N,H), for H = 1 (red), H = 5 (blue) and H = 21

(green) as a function of the number of rebalancing times N , in log-log scale, for a set of GARCH
parameters such that d = 10, pmax = 2.8 (left) and pmax = 7 (right). In black dots, we plotted
the tendency line fitted on P̂(RN,H>R

∞
N,H) for H = 5 and N ≥ 5.

In Figure 3.3 we compare at fixed dimension d = 10 the impact of the integrability. For
the figure on the left, it requires more than 7 rebalancing of the monthly or weekly portfolio
to reach a 1% probability level that the GARCH-covariance will outperform the benchmark,
whereas in the large pmax case, the 1% level is reached at the 5th rebalancing of the portfolio.
Practically speaking, it means that for a period of 5 weeks (weakly portfolio) or 5 months
(monthly portfolio), we have a 99% probability that the GARCH-based portfolio has a lowest
realized variance than the benchmark. Since a higher pmax implies lighter tails, the deviation
are less important and it is easier to see the performance gain. For N ≥ 4, the tendency lines
have a slope of −3.4 (small pmax case) versus −3.2 (large pmax case).

Link with Theorem 3.2.2: We observe as expected a decreasing shape of the probability

P
(
RN,H > R∞N,H

)
, but with a concave evolution and not the linear, with a −pmax

2 slope, expected

shape. Our results are not conclusive for N small (the rate of decline is lower than expected).
For N large, we even observe a faster convergence than expected in the small pmax case (slope
of −3.4 instead of −pmax

2 = −1.4). This is an indication that there can be several decay regimes
depending on N value. This is hard to give a clear, quantitative explanation of this phenomena.
It can be argued that our model consists in a vectorized version of multiple unidimensional
GARCH processes, each of them being associated to different tail thickness. Since we deal at
the portfolio variance level, it is possible than GARCH with lighter tails are associated to higher
components in the minimum variance allocation, which could explain this faster than expected
convergence rate. Nonetheless, these results are not in contradiction with our theoretical results.
Indeed, our results can be interpreted as a ”worst-case” bound on the probability, so it is not
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surprising to do better. And the probability levels are lower for the large pmax case, which is
coherent with the bound behavior.

3.5.3.2 Impact of the dimension

(a) large d (b) small d

Figure 3.4 – Empirical probabilities P̂(RN,H>R
∞
N,H), for H = 1 (red), H = 5 (blue) and H = 21

(green) as a function of the number of rebalancing times N , in log-log scale, for a set of GARCH
parameters such that d = 50, pmax = 5.05 (left) and d = 10, pmax = 7.03 (right).

In Figure 3.4, we display the evolution of the empirical P
(
RN,H>R

∞
N,H

)
for large pmax and very

different dimensions: d = 50 (Figure 3.4 (a)) and d = 10 (Figure 3.4 (b)).

Comparing 3.4 (a) and (b), the dimension does not seem to have a strong impact, or might
be compensated by the stronger impact of the large integrability.

In the large dimension case, the tendency line has a slope of −2.6 which is lower than the
theoretical minimum convergence rate of −pmax

2 = −2.025 (hence the convergence is faster than
the theoretical bound).

3.5.3.3 Impact of the number of rebalancing times

In Figure 3.5, we display the histogram of the realized variance difference for a monthly portfolio
with 10 assets and different N . We see that for N = 1, the realized variance difference is almost
centered around 0 but for N ≥ 4, all the distributions are significantly centered on positive
values. Indeed, in our setting (initial condition following approximately the stationary law), the

average realized variance difference is equal to the renormalized performance gap
`∞H
H which is

positive and deterministic as shown in Proposition 3.2.1.
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Figure 3.5 – Histograms of
{
R∞N,H−RN,H

NH

}
N∈{1,6,9,12}

withH = 21 for a set of GARCH parameters

such that d = 10, pmax = 2.8. Here the variance differences are expressed as the difference in
the realized variance over N rebalancing times of the portfolio, in basis points of daily variance.
N = 6 corresponds to a variance difference over a six months, between the benchmark portfolio

and a monthly re-updated portfolio. In black dots, we plot the average of
R∞N,H−RN,H

NH for N = 6
and H = 21.

The x scale is a daily variance measure in basis points. We see that in average, the monthly
portfolio implies a drop of daily variance of 0.02 bps. This variance level has to be put in
perspective: we consider a range of daily variance of [0.06, 5.2] bps in our experiments.

In terms of associated annualized volatility, we can upper bound the volatility difference by
the square-root of the variance difference, which translates to a drop of

√
0.02× 252/104 = 2.2%.

3.5.3.4 Impact of the investment period

As mentioned in the comments and interpretations paragraph following our main result, if we
are in the (NH) � C(H/`H)2 regime, the asset manager should not bother much using a
sophisticated estimation for Vt: a good approximation of V∞ is enough. In this Subsubsection,
we aim at illustrating this comment. In particular, we aim at answering the question: starting
from which investment period H do we have RN,H > R∞N,H in half the cases? For this H
threshold, we are indifferent between the stationary and the conditional realized covariance
matrices.

We are interested in the evolution of P
(
RN,H < R∞N,H

)
for increasing H values. For sake

of simplicity, we consider only one rebalancing of the portfolio (N = 1). For larger N , the
probability levels will be even lower according to the previous experiments and theoretical results,
so N = 1 can be seen as a worst case-scenario.

In Figure 3.6, we display the evolution of P
(
R1,H < R∞1,H

)
with H in months and in log-log

scale, for a universe of 10 assets associated to an integrability of order pmax = 2.8 and a half-life
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of 39 days hence approximately 2 months. As previously observed in Figure 3.3 (same set of
parameters), for H = 21 days (so one month) and N = 1, the probability is 90%. Then the
probability is decreasing with the number of months and it is approximately equal to 1

2 when
H is equal to one-year and a half (18 months). The investment period must therefore be as
long as 9 times the half-life of the process for the stationary covariance to be as efficient as the
GARCH-based covariance.

1 2 4 10 12 18
Investment period in months (H)

52.00%

60.00%

71.00%

75.00%

87.00%
90.00% half-life

Figure 3.6 – Empirical probabilities P̂(R1,H < R∞1,H) as a function of the investment period H
for a set of GARCH parameters such that d = 10, pmax = 2.8, t1/2 = 39 days.

For investment period lower than a year, the GARCH covariance is hence relevant and
efficient.

3.5.4 Tail exponent Hill estimation

From (3.3.3), there is a C > 0 independent from N s.t.

FN,H(y) = P
(
DN,H√
NH

> y

)
≤ C

ypmax
.

In what follows, we are going to compare our estimation of pmax via numerical method on
equation (3.5.1) and the one obtained via estimation of the tail exponent of

DN,H√
NH

. To do so, we

use the Hill estimator.

Hill estimator: The Hill estimator estimates the distribution tail exponent, e.g. the exponent
γ such that its complementary cumulative distribution function F verifies:

F (x) =
`(x)

x1/γ

where lim
x→∞

`(tx)
`(x) = 1 for any t > 0.

For X1, . . . , Xn random variables of cumulative distribution function F , denoting X1,n <
X2,n < · · · < Xn,n the ordered variables, the Hill estimator of order k ∈ N is defined by:

γ̂(k) =
1

k

k−1∑
i=0

(lnXn−i,n − lnXn−k,n).
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It converges in probability towards γ if k increases with n with k/n −→
n→∞

0 (cf [DHF06,

Theorem 3.2.4]) and converges asymptotically under a second order condition, as detailed in
Appendix 3.B.

Reasonable choice of k: Assuming a Fréchet domain of attraction (this is the natural attrac-
tion domain for Pareto-like distributions), we can get an explicit formulation of the asymptotic
variance and minimize it in k. It gives the following optimal k for γ 6= 1:

kopt(γ, n) = 2

(
γ

1− γ
n

) 2
3

. (3.5.3)

The details on how we get this result is postponed to Appendix 3.B. If we expect a certain value
of γ, we can plug it in (3.5.3) to estimate kopt.

−0.000010 −0.000005 0.000000 0.000005 0.000010
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Figure 3.7 – Histogram of
DN,H√
N

for H = 1 and varying N (left) and Hill estimation of 1
pmax

on

104 simulations of
DN,H√
N

for H = 1 and N = 40, (right) with pmax = 2.8 and d = 10 assets (both

figures).

Experiment: We display the histogram of
DN,1√
N

for multiple N and the Gaussian density

(black dots) and the Hill estimator γ̂(kopt(1/pmax, n)) in Figure 3.7. We have computed the Hill
estimator on an increasing number of samples, n ∈ {100, 200, . . . , 10 000} of the renormalized

martingale
DN,1√
N

, N = 40.

Comments:

• From Figure 3.7[left], we see that
√
N is a good renormalization for the DN,1 martingale.

Since we have finite variance, a central limit theorem seems to be verified.

• From Figure 3.7[right], the Hill estimator is overall close to 1/pmax. We plotted the confi-
dence interval associated to the central limit theorem for the Hill estimator (3.B.1). 1/pmax

is inside the confidence interval.

3.6 Conclusion, perspectives

In this chapter, assuming a time-dependent conditional model on the returns of the form rt|Ft−1
∼

N (0, Vt), we give the optimal covariance for a given period and time of investment for the
minimum variance problem. Using a decomposition between a martingale and a positive ergodic
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term, we can show that our covariance-based portfolio has a lower realized variance than any
other benchmark covariance with a high probability, which is increasing with the number of
rebalancing of the portfolio.

We give an explicit recursion scheme for the computation of this covariance matrix for the
specific GARCH-CCC model. This recursion scheme could be adapted to many other models.
We empirically illustrate our result by computing the empirical probability that the realized
variance of our optimal covariance portfolio is smaller than the one with the stationary covariance
matrix. The experiment results are not in contradiction with our theoretical analysis: we verify
the convergence of the GARCH superperformance probability with the number of rebalancing,
at a rate at least equal to pmax

2 in the large N regime.
The question the practitioner may ask is (when) is it relevant to use this more sophisticated

covariance matrix, rather than a simple empirical covariance? Under the assumption that the
model is GARCH with known parameters, we have shown that the performance gap goes to
zero when the investment period goes to infinity and the threshold of the investment period
for both covariances to perform equally well seems to be around 10 times the half-life of the
process. But we do not tackle in this work the fact that in practice, the models have to be fitted,
leading to estimation error on the parameters, not to mention model error. We can advocate
that estimation error can still be tackled by taking into account the Gaussian uncertainty on
the parameters, stemming from the central limit behavior of the parameters when the backtest
size is large enough.



APPENDICES

3.A GARCH properties

In this section we recall general and external ergodicity and Markov chain properties, which we
specify to the GARCH-CCC model.

3.A.1 Ergodicity and stationarity

In this section we recall a general ergodicity property used to prove the GARCH covariance
ergodicity 3.4.2.

Theorem 3.A.1 ([FZ19, Theorem A.1 page 367] ). If (Zt)t∈Z is an ergodic strictly stationary
sequence and if (Yt)t∈Z is defined by

Yt = f(. . . , Zt−1, Zt, Zt+1, . . . ),

where f is a measurable function from R∞ to R, then (Yt)t∈Z is also an ergodic strictly stationary
sequence.

3.A.2 GARCH-CCC ergodicity

In this section, we give a simple sufficient condition for the GARCH-CCC model to be stationary
and ergodic.

Before recalling Francq and Zakoian’s result on the GARCH-CCC stationarity, let us intro-
duce the definition of the top Lyapunov exponent.

The GARCH-CCC model (3.4.1) can be put under the following vector form.

Let zt =

(
r2
t

σ2
t

)
∈ R2d and let Et = Diag

(
η̃2
t

)
. Then zt satisfies the recursion:

zt = bt +Atzt−1,

where bt =

(
Etw
w

)
, At =

(
EtA EtB
A B

)
, (3.A.1)

w = {wi}di=1, A = Diag
(
{αi}di=1

)
, B = Diag

(
{βi}di=1

)
.

The top Lyapunov exponent is defined by [FZ19, Theorem 2.3]]:

γ := lim
t→∞

a.s.
1

t
ln|AtAt−1 . . . A1|.
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Theorem 3.A.2 (Strict stationarity of the CCC model [FZ19, Theorem 10.6]). A necessary and
sufficient condition for the existence of a strict stationary and non-anticipative solution process
for the model (3.4.1) is γ < 0, where γ is the top Lyapunov exponent of the sequence {At, t ∈ Z}
defined in (3.A.1). This stationary and non-anticipative solution, when γ < 0, is unique and
ergodic.

Explicit γ formulation and condition: Notice that γ does not depend on the chosen ma-
tricial norm, because norms are equivalent on the finite dimension space of matrices considered,
and if 1

K |.|2 ≤ |.|1 ≤ K|.|2, K > 0,

− ln(K)

t
+

1

t
ln|AtAt−1 . . . A1|2 ≤

1

t
ln|AtAt−1 . . . A1|1 ≤

ln(K)

t
+

1

t
ln|AtAt−1 . . . A1|2

and by passage to the limit, the term ln(K)
t vanishes when t goes to infinity.

In what follows, we are going to specify an explicit sufficient condition s.t. γ < 0. W.l.o.g.,
we consider as matricial norm the infinite norm: |A| = max1≤i,j≤d|Ai,j |, A ∈ Rd×d.

We can specify the top Lyapunov condition by noticing that At can be written as: At =(
Et
Id

)(
A B

)
, and for 1 ≤ s ≤ t,

(
A B

)(Es
Id

)
= Diag

({
αiη̃

2
s,i + βi)

}d
i=1

)
.

It follows, using the sub-additivity of the infinite norm, that:

ln|AtAt−1 . . . A1| = ln

∣∣∣∣∣
(
Et
Id

) t−1∏
s=1

Diag
({
αiη̃

2
i,s + βi)

}d
i=1

) (
A B

)∣∣∣∣∣
≤ ln

∣∣∣∣(EtId
)∣∣∣∣+ ln

∣∣(A B
)∣∣+

t−1∑
s=1

ln
∣∣∣Diag

({
αiη̃

2
i,s + βi

}d
i=1

)∣∣∣ ,
and by the strong law of large numbers, γ ≤ E ln

∣∣∣Diag
({
αiη̃

2
i + βi

}d
i=1

)∣∣∣, η̃ ∼ N (0,Γ).

Taking as matricial norm the infinite norm, the condition

E ln max
1≤i≤d

(αiη̃
2
i + βi) < 0

is a sufficient condition for γ < 0. It can be verified via numerical evaluation for example.

Easier to verify sufficient conditions: Since for fixed η̃2
i : ln max1≤i≤d(αiη̃

2
i + βi) ≤∑d

i=1 ln
(
αiη̃

2
i + βi

)
, and taking the expectation:

γ ≤ E ln max
1≤i≤d

(αiη̃
2
i + βi) ≤

d∑
i=1

E ln
(
αiη̃

2
i + βi

)
≤ d max

1≤i≤d
E ln

(
αiη̃

2
i + βi

)
,

the following condition is a sufficient condition for γ < 0:

max
1≤i≤d

E ln
(
αiη̃

2
i + βi

)
< 0.

The following condition ensures also the ergodicity condition, as a consequence of the Jensen
inequality on E ln

(
αiη̃

2
i + βi

)
:

αi + βi < 1, i ∈ {1, . . . , d}. (3.A.2)
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3.A.3 Irreducibility and auxiliary results on the GARCH-CCC

In this section, we show the irreducibility of the GARCH-CCC process. A similar result is
available in the Chapters 3 ”Mixing properties of univariate GARCH” and 10 ”Multivariate
GARCH” of Francq and Zakoian’s book [FZ19]. Compared to [FZ19, Chapters 3], we will give
very explicit arguments which are the main adding of this study.

In this subsection, we assume Hparam. The following lemma enables us to prove that S =∏d
i=1

(
wi

1−βi ,+∞
)

is a stable state space, e.g. that from any point x ∈ S, we can reach any

point as close from wi
1−βi as wanted in a finite number of steps.

Lemma 3.A.3. Let x ∈ S =
∏d
i=1

(
wi

1−βi ,+∞
)

. For all c > 0, there exists a finite Nc ∈ N such

that:

P
(
σ2
i,Nc <

wi
1− βi

+ c

∣∣∣∣σ2
0 = x

)
> 0, ∀i = 1, . . . d.

Proof. Applying recursively equation (3.4.2) on σ2
i,N , for σ2

0 = x ∈ S, N ∈ N∗, with η̃n ∼
N (0,Γ), n = 1, . . . , N − 1,

σ2
i,N = wi + (αiη̃

2
i,N−1 + βi)

(
wi + (αiη̃

2
i,N−2 + βi)

(
wi + · · ·+ (αiη̃

2
i,0 + β)σ2

i,0

))
= wi

(
1 + (αiη̃

2
i,N−1 + βi) + · · ·+

N−2∏
n=0

(αiη̃
2
i,N−1−n + βi)

)

+
N−1∏
n=0

(αiη̃
2
i,N−1−n + βi)xi.

(3.A.3)

Case ∀i ∈ {1, . . . , d}, wi
1−βi +c > wi+βixi: By definition, σ2

i,1 = wi+(αiη̃
2
i +βi)xi, η̃ ∼ N (0,Γ):

σ2
i,1 can be seen as a function of η̃2

i ≥ 0. For small values of η̃2
i , with non null probability,

wi + βixi ≤ σ2
i,1 <

wi
1−βi + c: Nc = 1 works.

Case ∃i ∈ {1, . . . , d}, wi
1−βi + c < wi + βixi: Let ε > 0 s.t. αiε

2 + βi < 1. Let us consider the
event {|η̃i,n| < ε, n = 0, . . . , N − 1, i = 1, . . . , d}. From (3.A.3),

σ2
i,N ≤ wi

N−1∑
n=0

(αiε
2 + βi)

n + (αiε
2 + βi)

Nxi

= wi
1− (αiε

2 + βi)
N

1− (αiε2 + βi)
+ (αiε

2 + βi)
Nxi.

This quantity goes to wi
1−(αiε2+βi)

when N goes to infinity. Given c > 0, let us choose ε such

that wi
1−(αiε2+βi)

< wi
1−βi + c

2 .We can take Nc finite such that (αiε
2 + βi)

Ncxi <
c
2 . Then

wi
1−(αiε

2+βi)
Nc

1−(αiε2+βi)
+ (αiε

2 + βi)
Ncxi <

wi
1−βi + c and then

Px

(
σ2
i,Nc ∈

(
wi

1− βi
,

wi
1− βi

+ c

))
≥ P (|η̃i,n| < ε, n = 1, . . . , Nc, i = 1, . . . , d) > 0.

Corollary 3.A.4 (Irreducibility). The Markov process {σ2
t }t∈Z taking values in S is Lebesgue-

irreducible [MT09, Proposition 4.2.1 (ii)], e.g. for any A ⊂ B(S) with strictly positive Lebesgue
measure, for any x ∈ S

Px[arg min{n ≥ 1
∣∣ σ2

n ∈ A} <∞] > 0.
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Proof. Let A ⊂ B(S), λ(A) > 0 (where λ(·) denotes the Lebesgue measure) and x ∈ S.
We define τA := arg min{n ≥ 1

∣∣ σ2
n ∈ A}.

Let c > 0 such that λ
(
A ∩

∏d
i=1( wi

1−βi + c,+∞)
)
> 0. It exists since

• c 7→ λ
(
A ∩

∏d
i=1

(
wi

1−βi + c,+∞
))

is increasing when c decreases,

• lim
c→0

λ
(
A ∩

∏d
i=1

(
wi

1−βi + c,+∞
))

= λ(A) > 0.

Let ε and Nc defined in lemma 3.A.3 s.t. Px

(
σ2
i,Nc
∈
(

wi
1−βi ,

wi
1−βi + c

))
> 0. Then we can

show that Px(τA = Nc + 1) > 0.
Indeed,

Px(σ2
Nc+1 ∈ A) ≥ Px

(
σ2
Nc+1 ∈ A ∩

d∏
i=1

(
wi

1− βi
+ c,+∞

)
, σ2

Nc ∈
d∏
i=1

(
wi

1− βi
,

wi
1− βi

+ c

))

=E
[

P

(
σ2
Nc+1 ∈ A ∩

d∏
i=1

(
wi

1− βi
+ c,+∞

) ∣∣σ2
Nc

)
︸ ︷︷ ︸

p(σ2
Nc

)

1
σ2
Nc
∈
∏d
i=1

(
wi

1−βi
,
wi

1−βi
+c
)],

where p
(
σ2
Nc

)
> 0 for any σ2

Nc
, and

{
σ2
Nc
∈
∏d
i=1

(
wi

1−βi ,
wi

1−βi + c
)}

is of non null probability.

Hence Px(τA = Nc + 1) > 0 and {σ2
t }t∈Z is Lebesgue-irreducible.

3.A.4 GARCH-CCC density

Let ψ be a test function. Let us denote gΓ the density of η̃ ∼ N (0,Γ). We want to compute the
density of the vector η̃2 = {η̃2

i }di=1:

Eψ
(
η̃2
)

=

∫
Rd
ψ
(
{x2

i }di=1

)
gΓ

(
{xi}di=1

)
dx1 . . . dxd

=
∑
si=±
1≤i≤d

∫
Rs1 ...Rsd

ψ
(
{x2

i }di=1

)
gΓ

(
{xi}di=1

)
dx1 . . . dxd.

We denote si = ± sign symbol denoting the part of R interval on which xi is integrated. We
can make a change of variable: denoting

zi =

{
xi if si = +,
−xi if si = −,

and φs s.t. x = φs(z), with s = (s1, . . . , sd) then

Eψ
(
η̃2
)

=
∑
si=±
1≤i≤d

∫
(R+)d

ψ
(
{z2
i }di=1

)
gΓ (φs(z)) dz1 . . . dzd.

Taking ui = zi
2, by change of variable, we retrieve η̃2 density:

Eψ
(
η̃2
)

=
∑
si=±
1≤i≤d

∫
(R+)d

ψ
(
{ui}di=1

)
gΓ

(
φs

(
{
√
ui}di=1

))( d∏
i=1

1

2
√
ui

)
du1 . . . dud.
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Denoting p the density of η̃2,

p(u) =
∑
si=±
1≤i≤d

gΓ

(
φs

(
{
√
ui}di=1

))( d∏
i=1

1

2
√
ui
1ui>0

)
.

Properties: p is continuous and positive on (R∗+)d.
Let us derive the density of σ2

t |σ2
t−1 = x. By definition of σ2

t , it is equal to the density of
{wi + (αiη̃

2
i + βi)xi}di=1, for η̃ ∼ N (0,Γ).

Denoting φ a test function, by the change of variable vi = wi + (αiui + βi)xi,

E
[
φ(σ2

t )|σ2
t−1 = x

]
=

∫
Rd
φ({wi + (αiui + βi)xi}di=1)p(u)du1 . . . dud

=

∫
Rd
φ(v) p

({
vi − wi − βixi

αixi

}) d∏
i=1

1

αixi
1(wi+βixi,+∞)(vi)︸ ︷︷ ︸

gx(v)

dv1 . . . dvd.

Hence

gx(v) := p

({
vi − wi − βixi

αixi

}) d∏
i=1

1

αixi
1(wi+βixi,+∞)(vi). (3.A.4)

3.B Hill estimator

Second order condition: Denoting U(y) = F
−1

(1/y), we say that U satisfies a second order
condition if there exists γ > 0, ρ ≤ 0 and A of constant sign, lim

t→∞
A(t) = 0 s.t.

1

A(t)

[
U(tx)

U(t)
− xγ

]
−→
t→∞

xγ
xρ − 1

ρ
∀x > 0.

Under second order condition, if additionally
√
kA(n/k) −→

n→∞
λ <∞, lim

n→∞
k
n = k(n)

n = 0 and

lim
n→∞

k = +∞, then the Hill estimator satisfies a central limit theorem [DHF06, Theorem 3.2.5]
: √

k(γ̂n − γ)
(d)−→

n→∞
N (λ/(1− ρ), γ2). (3.B.1)

Choice of k to minimize the asymptotic MSE: From [DHF06, equation 3.2.13 p.77], the
asymptotic mean-squared error is given by

asMSE =
γ2

k
+
A2(n/k)

(1− ρ)2
. (3.B.2)

Fraga Alves et al [FAGdHN07] propose an explicit function A and constant ρ in the case of
Fréchet attraction domain in their Example 4.3, for γ 6= 1:

A(t) = −1− γ
2t

and ρ = −1. (3.B.3)

Minimizing the asymptotic MSE for these functions, we get:

kopt = 2

(
γ

1− γ
n

) 2
3

. (3.B.4)

In particular, for k = kopt,
√
kA(n/k) = −

√
2γ <∞, so the central limit theorem (3.B.1) holds.
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Proof. Plugging (3.B.3) in the asymptotic MSE equation (3.B.2), we get:

asMSE =
γ2

k
+

1

4

(
1− γ
2n/k

)2

=
γ2

k
+

(
1− γ

4n

)2

k2.

Its derivative in k is:

∂asMSE

∂k
= −γ

2

k2
+ 2

(
1− γ

4n

)2

k = −γ
2

k2
+

1

23

(
1− γ
n

)2

k

which is positive for k ≥ kopt and negative k ≤ kopt, where kopt zero of ∂asMSE
∂k is given by (3.B.4).

3.C Additional properties

Extension of the Lyapunov condition to the lagged chain: This paragraph is dedicated
to the extension of the Lyapunov condition HL to lagged Markov chains, e.g. the fact that if we
have a Lyapunov condition HL for {Vt}t≥1 then we have HL for lagged chain {VtH}t≥1, H ∈ N∗.

In Meyn and Tweedie’s book, the statement that the extension is possible can be found in
[MT09, Theorem 15.3.4] page 383.

First, let us notice that the notion of H-skeleton and H-lagged Markov chain coincide.
Skeletons are defined page 62 in [MT09] as the chain V (H) with transition law:

P (VtH+1 ∈ A|V1 = x) = P tH(x,A), A ⊂ B(S).

Hence it is the same Markov chain than {VtH+1}t∈N∗ .
Let us recall Meyn and Tweedie’s result:

Theorem 3.C.1 (Extension of HL to lagged processes [MT09, Theorem 15.3.4]). Suppose that
V is a Φ-irreducible and aperiodic. If V satisfied HL with a petite set C then for any H-skeleton,
the function L also satisfies HL for some set C′ which is petite for the H-skeleton.

The Meyn and Tweedie’s result is a qualitative result. In what follows, we give a quan-
titative result on the extension of the Lyapunov condition to lagged Markov chains, in which
the Lyapunov drift condition constants for the lagged process are explicit. In this way, we can
quantify explicitly the dependence of the constant in the lag period H.

Proposition 3.C.2 (Lyapunov condition for lagged Markov chain). Assume that the Lyapunov
drift criteria HL is verified for {Vt, t ∈ N∗}. Then, for any H ∈ N∗, the H-lagged chain
{VnH+1, n ∈ N∗} also satisfies a drift condition:

E
[
L(VH+1)

∣∣V1 = x
]
≤ dH L(x) + bH1x∈C(H) .

where

dH =
1 + δH

2
, C(H) = C ∪

{
x ∈ S

∣∣ |x| ≤ R(H)
}
,

bH = sup
x∈C(H)

(
b
1− δH

1− δ
− 1− δH

2
L(x)

)
,

and R(H) > 0 s.t. for every x ∈ S s.t. |x| > R(H), 1−δH
2 L(x) ≥ b1−δH−1

1−δ .

Proof. Let H ∈ N∗ be fixed. Let P denotes the transition kernel associated to {Vt}: using
standard Markov chain notations, E

[
g(V2)

∣∣V1 = x
]

= Pg(x), E
[
g(VH+1)

∣∣V1 = x
]

= PHg(x).

We want to show that there is a dH ∈ (0, 1), a constant bH and a set C(H) s.t. for all x ∈ S:

PH L(x) ≤ dH L(x) + bH1C(H)(x).
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Let’s apply recursively the initial drift criteria equation HL: P L(x) ≤ δL(x) + b1C(x). We get,
for x ∈ S:

P 2 L(x) ≤ P (δL(x) + b1C(x)) = δP L(x) + bP (x,C)

≤ δ2 L(x) + δb1C(x) + bP (x,C)

≤ δ2 L(x) + b+ δb1C(x),

P 3 L(x) ≤ δ3 L(x) + b+ δb+ δ2b1C(x),

...

PH L(x) ≤ δH L(x) + b
H−2∑
k=0

δk + δH−1b1C(x)

= δH L(x) + b
1− δH−1

1− δ
+ δH−1b1C(x). (3.C.1)

Let dH = 1+δH

2 ∈ (0, 1) since δ ∈ (0, 1). Let R(H) > 0 s.t. for all x ∈ S,
(
|x| > R(H)

)
⇒(

b1−δH−1

1−δ ≤ 1−δH
2 L(x)

)
(it exists since lim

|x|→∞
L(x) = +∞). Let C(H) = C∪{x ∈ S

∣∣ |x| ≤ R(H)}.

Then, outside C(H), using the trick δH = 1+δH

2 − 1−δH
2 , since |x| > R(H),

δH L(x) + b
1− δH−1

1− δ
=

1 + δH

2
L(x) + b

1− δH−1

1− δ
− 1− δH

2
L(x)︸ ︷︷ ︸

≤0

≤ 1 + δH

2
L(x) := dH L(x).

For x ∈ C(H),

PH L(x) ≤ δH L(x) + b
1− δH−1

1− δ
+ δH−1b

= dH L(x) +
(
δH − dH

)
L(x) + b

1− δH−1

1− δ
+ δH−1b.

Making the simplification: b1−δH−1

1−δ + δH−1b = b1−δH
1−δ and δH − dH = δH − 1+δH

2 = −1−δH
2 ,

denoting

bH = sup
x∈C(H)

(
b
1− δH

1− δ
− 1− δH

2
L(x)

)
,

then

PH L(x) ≤ dH L(x) +

(
b
1− δH

1− δ
− 1− δH

2
L(x)

)
≤ dH L(x) + bH . (3.C.2)

Thus the wanted inequality PH L(x) ≤ dH L(x) + bH1C(H)(x) is satisfied.

The following result gives the irreducibility and the aperiodicity of the lagged chain without
giving explicitly a Lyapunov condition as we did in (3.C.2).

Proposition 3.C.3 (Extension of HS to lagged processes [MT09][Proposition 5.4.5 - (iii) page
114). ] Suppose that V is a Φ-irreducible Markov chain. If V is aperiodic then every skeleton is
Φ-irreducible and aperiodic.
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Martingale concentration We recall here the Burkholder’s inequality.

Theorem 3.C.4 (Burkholder’s inequality [HH80, Theorem 2.10] ). Let {Si,Fi, 1 ≤ i ≤ n} be
a real-valued martingale, and 1 < p < ∞. Denoting X1 = S1 and Xi = Si − Si−1, 2 ≤ i ≤ n,
then there exist constants c (p) and CBp depending only on p such that

c (p)E

[∣∣∣∣ n∑
i=1

X2
i

∣∣∣∣p/2
]
≤ E

[∣∣∣∣Sn∣∣∣∣p] ≤ CBp E
[∣∣∣∣ n∑

i=1

X2
i

∣∣∣∣p/2
]

(3.C.3)

where suitable constants are given by c (p)−1 = (18p1/2q)p and CBp = (18pq1/2)p, where p−1 +
q−1 = 1.
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Uncertain quantification for portfolio





CHAPTER 4

UNCERTAIN QUANTIFICATION FOR
PORTFOLIO SHARPE RATIO AND

ALLOCATION

Abstract. In this chapter, application of uncertainty quantification (UQ) techniques via
stochastic approximation (SA) is investigated in the financial portfolio context. We want to
take advantage of the algorithm developed in [CFGS20] which enables one to compute effi-
ciently the Polynomial Chaos Expansion (PCE) of the solution of a zero-expectation problem.
Two main applications are considered: UQSA for the Sharpe ratio of the portfolio and UQSA for
the portfolio allocation. In our applications, we apply this approach to express these quantities
in terms of the correlation considered uncertain.

4.1 Introduction

In this chapter, we are going to apply tools from Uncertainty Quantification (UQ) to the financial
portfolio context. Three main kinds of uncertainty can be mentioned:

• the statistical uncertainty arising from the statistical error inherent in measurements on a
finite number of data;

• the parametric uncertainty which corresponds to parameters mispecification assuming a
parametric model (this is the type of uncertainty we will focus on);

• the structural uncertainty or model error.

In the general UQ setting, we are interested in the propagation of the parametric uncertainty,
modeled by θ taking values in Θ and following a distribution π, on the output of the model z∗(θ).
z∗ and θ are linked through the model function h: h(z∗(θ), θ) = 0, π-a.e. More specifically, we
might be interested in the distribution of the output z∗(θ) or of a function of the output,
QoI (z∗(θ)) (where QoI stands for Quantity of Interest):

θ ∼ π ⇒ z∗(θ), QoI (z∗(θ)) .

In practice, we have access to observable data Dθ and we can assume that they follow
a specific parametric model, so that the variability of the data is encompassed through the
distribution of the data µ(dv, θ). The parameter θ can help us to account for parametric error
as well as measurement error. For example, in finance, data can consist in financial returns
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{Rt(θ), 1 ≤ t ≤ T}. θ can represent a stochastic mean for the returns and account for the
estimation error (for example, by taking θ = µ̂+ σ√

T
N (0, 1) if we assume a Gaussian distribution

for the returns), or following the Black Litterman approach [BL91], can incorporate the asset
manager views in the estimation of the trend (then, θ = E [µ̂|investor views] + Gaussian noise).
The output can be a portfolio allocation and h would represent the gradient of the objective
function that the investor seeks to minimize. The Quantity of Interest could be the Sharpe ratio
or the Value-at-Risk associated to the portfolio.

4.1.1 UQ techniques

To quantify uncertainties, a global sensitivity analysis approach can be used [SRA+08], with
Sobol indices for independent model inputs [Sob01, Owe14], or Shapley values when the inputs
are dependent [OP17]. Another strategy is to use the Chaos analysis of the optimisation problem
with respect to the model inputs [BGP20, CFGS20].

Spectral methods for UQ (see [LMK10] for theory and applications) corresponds to the search
for a spectral projection of the problem (on a stochastic basis). They rely on the fact that when a
function of θ is squared integrable with regards to π, it admits a decomposition on an orthogonal
basis of functions of θ, via Karhunen Loève expansion for example. Polynomial Chaos Expansion
(PCE) corresponds to the case when the basis is formed of orthonormal polynomials {Bi}i∈N:

z∗(θ) =
∑
i≥0

uiBi(θ), ∀θ ∈ Θ ⊂ Rp, and

∫
Θ
Bi(θ)Bj(θ)π(dθ) =

{
0 if i 6= j,
1 else.

Spectral methods are adapted for the case when z∗(θ) is a smooth function of θ, since we are
looking for a projection of z∗ on a basis of polynomial functions. In our application cases, we
will consider cases where z∗(θ) is a smooth function of θ, so the spectral method is relevant.

Using this fact, the aim is to find a good approximation of this expansion. In practice, one
evaluates a truncated version of this infinite sum representation. Then z∗(θ) ≈

∑m
i=0 uiBi(θ)

and QoI (z∗(θ)) ≈ QoI (
∑m

i=0 uiBi(θ)).
The evaluation can be done using non-intrusive techniques (using the underlying model as a

black box and finding the optimal truncated function minimizing the distance to the true output
on specific values of θ ∼ π for which the code has been used), or by taking advantage of the form
of the problem (via Galerkin method for example, by finding specific equations/models satisfied
by the coefficients of the expansion -this method is often applied for problems involving PDEs,
such as in [LMRN+02, BGP20]).

When h takes the form of an expectation,

h(z, θ) = E [H(z, Vθ, θ)] =

∫
V

H(z, v, θ)µ(θ,dv), π − a.e., (4.1.1)

then z∗(θ) can be computed using a Stochastic Approximation (SA) approach. It has been
done by [CFGS20] who have proposed an algorithm to compute efficiently the coefficients of the
projected output.

4.1.2 UQSA setting

We call Uncertainty Quantification Stochastic Approximation (UQSA) setting the class of prob-
lems which can be formulated as a zero-search problem of type E [H(z, V )] = 0, as in usual
Stochastic Approximation (SA) setting, but with random variables V ∼ µ(dv, θ) depending on
an uncertain parameter, and an objective function H which can also depend on θ. In this setting,
z∗(θ) is the zero of (4.1.1).

The UQSA algorithm [CFGS20] (described in Appendix 4.B) is an iterative procedure to find
the decomposition z∗(θ) =

∑
i uiBi(θ) for problems of the form (4.1.1). It is a convenient for-

mulation for problems corresponding to minimization of convex functions, typically in portfolio
optimization when the objective function is convex.
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4.1.3 Explored financial applications

In this chapter, we explore the three following UQ applications for the financial context:

1. UQSA for the Sharpe ratio: the Sharpe ratio is one of the main profitability indices looked
at by investors to measure the interest of an investment. Denoting R the excess return of
the portfolio, the Sharpe ratio is defined as

SR =
E [R]√
Var [R]

.

In the case when we assume an uncertainty on R distribution, the Sharpe ratio is also
uncertain. In this case, z∗(θ) = SR(θ) and we are interested in the distribution of SR(θ).
A difficulty of the approach is to find a way to express the Sharpe ratio as the zero of
an expectation. Once this difficulty has been overcome, it is possible to see the impact of
parameters uncertainty on the distribution of the Sharpe ratio. We give illustrations with
uncertain correlation following non-linear function of a uniform distribution.

2. UQSA for portfolio allocation with constraints: here we are interested in the distribution of
the portfolio allocation when the objective function is known up to uncertain parameters.

We are interested in portfolio optimization of the form:

w ∈W solution of E [F (w, V )] = 0,

where V denotes the assets returns, W ⊂ Rd denotes the set of constraints, and can

correspond for example to the case: W =
{

w ∈ (R+)d : 1Tdw = 1
}

(budget and positivity

constraints). Usual SA algorithms produce sequences in Rd, which are not guaranteed to
stay in W. In order to force the iteration outputs to stay in W, we could have considered
doing projections on W, using à la Chen SA algorithm [CZ86]. For example, in the non-
uncertain context, the update in the SA approach with projection would consist in

wk+1 = ΠW (wk − γk+1H(wk, Vk+1)) ,

where ΠW stands for the Euclidean projection on W. The UQSA algorithm allows for
projection of the expansion coefficients on some convex set

u
(k+1)
i = Π

(
u

(k)
i − γk+1〈H(wk, Vk+1, .), Bi(.)〉π

)
(see Sections 4.2.1 and 4.2.2 to see UQSA notations and iterations equations). But
even if we project the ui on a convex set, we have no guarantee that the whole PCE

approximation
∑

i u
(k)
i Bi(θ) will remain in W. We therefore prefer to stick to an approach

without projection and apply a change of variable ` : Rd−1 → W s.t. w = `(y). This
way, we benefit from the convergence results of the UQSA algorithm. ` : Rd−1 → W s.t.
w = `(y).

In this application case, the output of the problem will be z∗(θ) = y(θ) and the function
of interest is the portfolio allocation w(θ) = `(y(θ)) = QoI(z∗(θ)).

4.2 UQSA algorithm: principle and main assumptions

In this section, we describe the algorithm used in this chapter (Sections 4.2.1 and 4.2.2) and we
give the underlying assumptions under a which a stability and convergence result holds (Section
4.2.3). At the end of this section, we provide the main metrics which will serve to judge the
convergence of the algorithm.
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4.2.1 Principle and notations

When dealing with a problem of type (4.1.1), it is possible to find an approximation z∗(θ) =∑
i≤mk u

(k)
i Bi(θ) using the UQSA algorithm [CFGS20] (described in appendix 4.B). In what

follows, we detail the general notations and PCE theory basics.

Notations: Let V be a metric space endowed with its Borel σ-field, Θ be a subset of Rp,
and H : Rq × V × Θ → Rq. In our applications, q = 1 (Sharpe ratio) or q = d − 1 (portfolio
allocation). Let π be a probability distribution and µ be a transition kernel from Θ to V. We
define the scalar product induced by π by

〈f ; g〉π :=

∫
Θ
f(θ)g(θ)π(dθ), (4.2.1)

for any measurable functions f, g : Θ → R. By extension, for measurable functions f =
(f1, . . . , fq) : Θ→ Rq and g : Θ→ R,we write in vector form

〈f ; g〉π :=

〈f1; g〉π
. . .
〈fq; g〉π

 .

We denote by Lπ2,q the Hilbert space of functions f : Θ → Rq such that the norm ‖f‖π :=√∑q
i=1〈fq; fq〉π is finite.

We consider the following problem:

Finding φ∗ in Lπ2,q such that

∫
V

H(φ∗(θ), v, θ)µ(θ,dv) = 0, π − a.e. (4.2.2)

Polynomial Chaos Expansion: Let {θ → Bi(θ)} be an orthonormal basis of Lπ2,1 for the
scalar product (4.2.1). We denote by l2,q the normed vector space of the Rq-valued sequences
{ui, i ∈ N} with

∑
i≥0 |ui|2 < ∞. As is well known, given an orthonormal basis {Bi, i ∈ N} in

Lπ2 of Lπ2,1, any function φ ∈ Lπ2,q is characterized by a sequence {ui, i ∈ N} in l2,q such that
φ =

∑
i≥0 uiBi.

There is a natural isomorphism Is : l2,q → L2,q given by

φ = Is(u) =
∑
i≥0

uiBi, i.e. ui = 〈φ;Bi〉π for each i ∈ N, (4.2.3)

and a corresponding isometry ‖φ‖π = ‖u‖l2,q .
In this view, the problem (4.2.2) can be restated on l2,q as

Finding u∗ in T∗ where

T∗ :=

u ∈ l2,q;
∫
V

H

∑
i≥0

uiBi(θ), v, θ

µ(θ,dv) = 0, π − a.e.

 .

4.2.2 UQSA algorithm

The SA algorithm consists in the following update of the {u(k)
i }i≤mk :

φ̂(k)(θ) =

mk∑
i=1

u
(k)
i Bi(θ),

u
(k+1)
i = u

(k)
i −

γk+1

Mk+1

Mk+1∑
s=1

H(φ̂(k)(θ(k+1)
s ), V (k+1)

s )Bi(θ
(k+1)
s ), i ≤ mk+1,

(4.2.4)
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where mk and Mk are nondecreasing natural sequences, γk -the step size- is a decreasing nat-

ural sequence, and (θ
(k+1)
s , V

(k+1)
s ), s = 1, . . . ,Mk+1 are independent variables sampled under

π(dθ)µ(θ,dv). We let mk go to infinity while γk goes to zero when k goes to infinity.

4.2.3 Main assumptions and convergence results

For the UQSA algorithm detailed in Appendix 4.B to converge towards φ∗, we need the following
assumptions on the functions H, h and on the sequences γk,mk and Mk used in the algorithm.

HT ∗. The set T ∗ of zeros is compact and non-empty.

Hmk,Mk
. {mk, k ≥ 1} and {Mk, k ≥ 1} are deterministic sequences of positive integers; {γk, k ≥

1} is a deterministic sequence of positive real numbers such that, for some κ > 0,∑
k≥1

γk =∞,
∑
k≥1

γ1+κ
k <∞,

∑
k≥1

γ2
k

Qmk
Mk

<∞,
∑
k≥1

γ1−κ
k qmk <∞

where the sequences {qm,m ∈ N} and {Qm,m ∈ N} are defined by

qm = sup
u∗∈T ∗

∑
i>m

|ui|2, Qm = sup
θ∈Θ

∑
i≤m
|Bi(θ)|2.

Hint. ∀z ∈ Rq, ∫
Θ

∫
V

|H(z, v, θ)|µ(θ,dv)π(dθ) <∞.

∀z ∈ Rq, θ ∈ Θ, h(z, θ) =
∫
V
H(z, v, θ)µ(dv, θ) exists. For any φ ∈ Lπ2,q, the mapping h(φ(.), .) :

θ 7→ h(φ(θ), θ) is in Lπ2,q. The mapping φ 7→ h(φ(.), .) from Lπ2,q into itself is continuous.

Hsep. For π-almost every θ, for any zθ, z
∗
θ ∈ Rq such that h(zθ) 6= 0 and h(z∗θ) = 0,

〈zθ − z∗θ , h(zθ, θ)〉 > 0.

Hquad. ∃CH > 0, ∀z ∈ Rq,

sup
θ∈Θ

∫
V

|H(z, v, θ)|2µ(θ,dv) ≤ CH(1+|z|2).

Hcoerc. ∀B > 0, ∃CB > 0, ∀(φ, φ∗) ∈ Lπ2,q × Is(T∗) such that ‖φ− φ∗‖π≤ B,∫
Θ

(φ− φ∗)(θ).h(φ(θ), θ)π(dθ) ≥ CB min
φ∈T ∗
‖φ− φ‖2π.

Remarks

• Assumptions HT ∗ , Hint, Hsep and Hquad are similar to the one required for standard SA
algorithm to converge (see [RM51] for a reference on the Robbins Monro algorithm), as
well as the assumption Hmk,Mk

for the γk sequence. These assumptions allow to apply the
Robbins-Siegmund Lemma [RS71] to show the convergence of the algorithm. Typically,
these assumptions are satisfied when h(., θ) can be expressed as the gradient of a convex
function, with appropriate choice of sequences.

• The coercivity assumption Hcoerc will be satisfied for non-degenerated quadratic minimiza-
tion problem.

• Assumption Hmk,Mk
adds some restriction on the choice of the basis {Bi(.)}i∈N (if we deal

with unbounded Θ, unbounded functions, such as Hermite polynomials, will be prohibited).
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• As we will see later in our applications, condition Hmk,Mk
can be made explicit by taking

γk,mk and Mk in the form kα, α ∈ R.

Under the aforementioned assumptions, the following stability and convergence theorem
applies:

Theorem 4.2.1 ([CFGS20] Theorem 1). Assume assumptions HT ∗, Hmk,Mk
, Hint, Hsep and

Hquad. Let {(θ(k)
s , V

(k)
s ), 1 ≤ s ≤ Mk, k ≥ 1} be i.i.d. random variables with distribution

π(dθ)µ(θ,dv). Let u(k) and φ̂(k) be the outputs of the USA Algorithm (cf. (4.2.4)).
Stability. For any φ∗ ∈ Is(T∗), lim

k→+∞
‖φ̂(k) − φ∗‖π exists, is finite a.s., and we have

sup
k≥0

E
[
‖φ̂(k) − φ∗‖2π

]
< +∞.

Convergence. In addition, under the additional assumption Hcoerc, there exists a random
variable φ∗ taking values in Is(T∗) such that

lim
k→+∞

‖φ̂(k) − φ∗‖π = 0 a.s. and, for any p ∈ (0, 2), lim
k→+∞

E
[
‖φ̂(k) − φ∗‖pπ

]
= 0.

4.2.4 Applications: convergence metrics

In practice, in our applications, we will monitor the following error metrics. We wil consider
situations when we know φ∗ explicitly. for the sake of checking the theoretical results. At

iteration k, the UQSA algorithm provides us with an approximation φ̂(k) =
∑mk

i=1 u
(k)
i Bi of φ∗

(mk coefficients are evaluated, where {mk}k∈N∗ is a sequence satisfying Hmk,Mk
).

The Mean Squared Error (MSE) at iteration k is defined as: MSE(k) = E
[
‖φ̂(k) − φ∗‖2π

]
.

It can be decomposed as the sum of two errors: MSE(k) =
(
E(k)
SA

)2
+
(
E(k)
TR

)2
, where

• ESA is the stochastic approximation error:
(
E(k)
SA

)2
= E

[∑mk
i=0|u

(k)
i − u∗i |2

]
,

• ETR is the truncation error:
(
E(k)
TR

)2
=
∑

i>mk
|u∗i |2.

In practice, we will evaluate the MSE (and analogously the SA and truncation errors) on
multiple macro-runs of the algorithm: for NMSE ∈ N∗ (typically, NMSE = 50),

M̂SE
(k)

=
1

NMSE

NMSE∑
n=1

‖φ̂(k)
n − φ∗‖2π.

We call total error the square root of the MSE.
Practical computations:

• The term ‖φ̂(k)
n − φ∗‖2π can be approximated by Monte Carlo simulations: for KΘ ∈ N∗

large, θ1, . . . , θKΘ

i.i.d.∼ π,

‖φ̂(k)
n − φ∗‖2π≈

1

KΘ

KΘ∑
l=1

|φ̂(k)
n (θl)− φ∗(θl)|2.

• When the {u∗i }i∈N cannot be computed explicitly but φ∗ can, we can take advantage of
its definition (4.2.3) and approximate them by numerical integration or by Monte Carlo

approximation. For KΘ ∈ N∗ large, θ1, . . . , θKΘ

i.i.d.∼ π, i ∈ N,

u∗i = 〈φ∗, Bi〉π =

∫
Θ
φ∗(θ)Bi(θ)π(dθ) ≈ 1

KΘ

KΘ∑
l=1

φ∗(θl)Bi(θl).
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• Whether the u∗i are exactly known or approximated, it is possible to evaluate the SA error

via
(
Ê(k)
SA

)2
= 1

NMSE

∑NMSE
n=1

∑mk
i=0|u

(k)
i,n − u∗i |2.

• The truncation error can be obtained by evaluation of ‖φ∗(k) − φ∗‖2π, where φ∗(k) denotes
the truncated true function: φ∗(k) =

∑
i≤mk u

∗
iBi, via numerical integration or Monte

Carlo approximation.

4.3 UQSA for the Sharpe ratio

In this section, we propose an SA scheme to evaluate the Sharpe ratio, and we provide illustration
assuming a log-normal distribution for the portfolio returns. We start by recalling the definition
of the Sharpe ratio and by motivating the UQSA application to this portfolio metric.

4.3.1 Definition and motivation

We place ourselves in the following setting:

• Let us consider a universe of d assets. Let Ri denote the return of asset i between time 0
and 1.

• The strategy allocation {wi}1≤i≤d is fixed, given by an optimization routine (we could
consider that we do not have access to the algorithm and that everything is done in a
black box). In this Section, there is no uncertainty analysis on w. We look at the
uncertainty on the Sharpe ratio only. We consider w that depends on the uncertainty in
the next section. In our experiments, we will focus on a particular choice of w: we will
take w as the tangent portfolio as defined below in Subsubsection 4.3.4.1.

• The return of the portfolio is R =
∑d

i=1wiRi.

The Sharpe ratio [Sha66] is one of the main profitability indices that investors monitor to
evaluate an investment. It measures the profitability gap between a risky portfolio and a non-
risky portfolio, by unity of risk (where the risk is namely the standard deviation of the portfolio).
We give a mathematical definition of the Sharpe Ratio.

Definition 4.3.1 (Sharpe ratio). Denoting r the risk free rate, the Sharpe ratio is defined as
the difference between the expected portfolio return E [R] and the risk free rate, divided by the
standard deviation of the portfolio return:

SR =
E [R]− r√

Var [R]
.

To simplify the notation, we assume that we deal with risk-free rate adjusted portfolio returns
”R = R−r”. In practice, the Sharpe ratio is estimated on realized values of the portfolio returns,
as the ratio of the portfolio return empirical mean over the empirical standard deviation. In this
section, a single investment period is considered. Portfolio returns are calculated from portfolio
values as R = V1−V0

V0
, where V1 denotes the portfolio value at time 1.

We are interested in the distribution of SR(θ) when the returns distribution is known up to
an uncertain parameter θ ∈ Θ (in practice, we will assume an uncertain distribution on the asset
returns Ri, and with fixed allocation w, so that the portfolio return distribution is inferred from
the assets returns distribution). Let π be a probability distribution over Θ, µ be a transition
kernel from Θ to V s.t. θ ∼ π and Rθ ∼ µ(θ,dv). This θ parameter enables to take into account
the model error/measurement uncertainty/sensitivity to small perturbation.
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The Sharpe ratio is then an uncertain function:

SR(θ) =
E [Rθ]√
Var [Rθ]

on which we want to estimate a projection SR(θ) ≈
∑

i uiBi(θ).

Motivation for a study on the Sharpe ratio uncertainty in the fixed w setting: Here
we assume that the portfolio weights w are fixed, given by a black-box for example, and we
are interested in the fluctuations of the Sharpe ratio due to the uncertainty on Rθ. This is a
coherent approach since in practice, an investor fixes its allocation using a value of θ he believes
is ”correct” (a historical θ for example) but in reality, the true θ might deviate from the assumed
θ. It is an important question for the investor to know if his estimated Sharpe ratio is not too
optimistic.

This question has been tackled in the literature for example in [Bro93]. In this article,
Broadie illustrates how much the estimated efficient frontier (the one we can wrongly assumed
is correct) is far away and too optimistic compared to the true efficient frontier. The efficient
frontier corresponds to the set of attainable portfolio mean and standard-deviation (e.g. such
that there is an allocation w realizing this mean and standard-deviation) which are efficient,
meaning we cannot increase the portfolio expected return without increasing its variance. In
[BEKL18], a similar experiment is done. Both experiments assumed a Gaussian distribution for
the returns.

Many authors tried to define the distribution of the Sharpe ratio under specific assumption
for the assets returns. In [Lo02], assuming autocorrelated returns, the asymptotic distribution
(when the backtest size goes to infinity) is derived. More recently, under Gaussian distribution,
[Ben19] shows that the Sharpe ratio calculated on T Gaussian returns follows a non centered
Student distribution, with non-centrality parameter proportional to the true Sharpe ratio:

√
T ŜR ∼ Student√T SR(d− 1).

Using these results, it is possible to test for the significativity of the Sharpe ratio. Since in
practice, multiple Sharpe ratio can be evaluated on the same data sets, classical tests would be
biased (it is the data snooping effect, occurring when ”a given set of data is used more than
once for purposes of inference or model selection” [Whi00]). This is why approaches based on
multiple testing [RW05, HL14] and bootstrap [BBLdPZ16] are advocated in the literature.

Our approach is more general in the sense that we can assume any parametric distribution
for the assets returns and have access to the distribution of the Sharpe ratio.

Motivation for a UQSA approach: We advocate that a UQSA approach for the Sharpe
ratio is relevant for the following reasons:

• The Sharpe ratio is not necessarily explicit if the moment of the portfolio returns are not
available in closed form, or hard to compute explicitly: an SA scheme for the Sharpe ratio
would be relevant when we can simulate the asset returns Ri but not compute explicitly
their moments. For example, in the GARCH model, which is a model on the conditional
distribution of the returns, the moments can be hard to get in closed form.

• Here we are interested in the distribution of the Sharpe ratio assuming an uncertainty on
the returns model. The relationship between the Sharpe ratio and θ can be complex. This
is why a PCE and more particularly a UQSA approach is relevant.



138 Chapter 4. UQSA for portfolio Sharpe ratio and allocation

4.3.2 SA scheme for the Sharpe ratio

Naive approach: A naive approach would consist in estimating separately the mean and
the variance. For example, one can estimate sample estimates µ̂θn , σ̂

2
θn

for multiple values of
θ ∈ {θ1, . . . , θN} and fit a PCE approximation of these quantities via regression:

• Using that µθ = E
[
Rθ
]
, σ2

θ = E
[(
Rθ − E

[
Rθ
])2]

, given {Rθt , t ≤ T}, θ ∈ {θ1, . . . , θN}, for

each θ ∈ {θ1, . . . , θN}, we have a sample estimate of µθ and σθ:

µ̂θ =
1

T

T∑
t=1

Rθt , σ̂2
θ =

1

T

T∑
t=1

(Rθt − µ̂2
θ)

2.

• Then to have an estimation for any θ, we can do a regression.

For a given loss function `, minimization in ui, vi of:

1

N

N∑
n=1

`

(
µ̂θn −

∑
i

uiBi(θn)

)
,

1

N

N∑
n=1

`

(
σ̂2
θn −

∑
i

viBi(θn)

)
.

Then, under the condition that
∑

i viBi(θ) > 0, an approximation for the Sharpe ratio would

be:
∑
i uiBi(θ)√∑
i viBi(θ)

.

This approach is a batch, non-sequential method: all quantities are calculated once and for
all, and it can be computationally heavy if the sample size is large. Alternatively, a sequential
approach may be preferred such that at any time, an approximation of the Sharpe ratio is
available and can be improved, while being guaranteed to converge. Such a sequential approach
is given by UQSA.

One can also use UQSA algorithm twice, separately on the mean and the variance. These
approaches require a two-steps estimation, multiplying the source of approximation error and
making it more difficult to quantify. This was not the preferred approach. An application of
UQSA for a single function H whose zero would give the Sharpe ratio was preferred.

SA formulation for the squared Sharpe ratio: Denoting µθ = E [Rθ] and σθ =
√

Var [Rθ],
notice that the Sharpe ratio is the solution of the equation xσθ − µθ = 0. Since the standard-
deviation is not elicitable1 (cannot be written as an expectation), the Sharpe ratio cannot be
expressed directly as the zero of the expectation of a function. But the squared Sharpe ratio
can, as shown in the following lemma:

Lemma 4.3.1. Let R and R̃ be independent and identically distributed portfolio returns. Denote

H(x,R, R̃) = x
R2 + R̃2

2
− (1 + x)RR̃.

Then the unique solution x∗ such that f(x∗) = E
[
H(x∗, R, R̃)

]
= 0 is the squared Sharpe

ratio.

Proof. Let’s notice that if R is a scalar random variable and R̃ is an independent copy of R:

1See [Tas14, Slide 23] for a reference on the non-elicitability of the standard-deviation. The variance is also not
formally elicitable [Bre17, Example 1.18] but it is conditionally elicitable [EKT15, Lemma 3.5] or jointly elicitable
with the mean [Bre17, Example 1.23], because there exists a bijection between the two first moments of a random
variable and the pair (mean, variance).
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• Var [R] = E
[

(R−R̃)2

2

]
,

• E [R]2 = E
[
RR̃
]
.

Using expectation formulation of the variance and the squared mean, we get the announced H
function:

x = SR2 =
E [R]2

Var [R]
⇔ xVar [R]− E [R]2 = 0,

⇔ xE

[
(R− R̃)2

2

]
− E

[
RR̃
]

= 0,

⇔ E

[(
x
R2 + R̃2

2
− (1 + x)RR̃

)]
= 0.

The Sharpe ratio is then: SR =
√
x∗(θ)sign (µθ).

In what follows, by economic rational, we will assume that µθ > 0 and that we deal with
positive Sharpe ratios.

4.3.3 UQSA assumptions verification

Let

H(x,Rθ, R̃θ) = x
(Rθ − R̃θ)2

2
−RθR̃θ,

h(x, θ) = ERθ,R̃θ
[
H(x,Rθ, R̃θ)

]
= xVarRθ [Rθ]− (ERθ [Rθ])

2 . (4.3.1)

We will use the following notations:

• ERθ denotes the expectation under the law of Rθ at fixed θ: ERθf(Rθ) =
∫
V
f(v)µ(θ,dv).

• ERθ,θ denotes the expectation under µ(θ,dv)⊗ π: ERθ,θf(Rθ) =
∫

Θ

∫
V
f(v)µ(θ,dv)π(dθ).

Under the following assumptions on Rθ, we are going to show that the UQSA algorithm is
in the good conditions to converge with the function H:

Hunif,2. ERθ,θ
[
R2
θ

]
<∞ and infθ∈Θ VarRθ [Rθ] ≥ vinf , vinf > 0,

Hunif, 4. ERθ
[
R4
θ

]
<∞ and supθ ERθ

[
R4
θ

]
<∞.

Proposition 4.3.2. Let H(x,Rθ, R̃θ) = x (Rθ−R̃θ)2

2 − RθR̃θ. Under assumptions Hunif,2 and
Hunif, 4, under appropriate choice of sequence γk,mk and Mk satisfying Hmk,Mk

, the UQSA
stability and convergence theorem applies.

The approximate solution converges in π-norm to SR2
θ:

‖xk − SR2‖π → 0 a.e. (4.3.2)

Remark 6. This result is just the application of UQSA stability theorem 4.2.1. For k large
enough, xk(θ) ≥ 0, and we can take yk(θ) =

√
xk(θ).

The convergence result (4.3.2) implies that xk → SR2 π-a.e. along a subsequence. Under
the assumption, sign (µθ) > 0, yk converges to the Sharpe ratio, still along a subsequence.

Proof. We are going to show that the assumptions of the stability and convergence theorem are
satisfied.
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HT ∗ From Lemma 4.3.1, the zero of h is unique hence HT ∗ is satisfied.

Hint Since ERθ,θ
[
R2
θ

]
< ∞ by assumption Hunif,2, and since H is quadratic in Rθ, R̃θ, H is

integrable, and h exists.

From assumption Hunif, 4, supθ ERθR2
θ ≤ (supθ ERθR4

θ)
1/2 <∞, so h is uniformly bounded

in θ:

h(x, θ) = xVarRθ [Rθ]− (ERθ [Rθ])
2 ,

|h(x, θ)| ≤ 2 sup
θ

ERθR
2
θ(1 + |x|).

So, h is linear in x, with a coefficient uniformly bounded in θ, so for any φ ∈ Lπ2,q, the
mapping h(φ(·), ·) : θ 7→ h(φ(θ), θ) is in Lπ2,q and is continuous.

Hsep Let x∗(θ) =
(
µθ
σθ

)2
the zero of h defined in (4.3.1). Notice that h can be rewritten as: for

x ∈ R, h(x, θ) = σ2
θ(x − x∗(θ)), where σ2

θ ≥ vinf > 0 from assumption Hunif,2. It is then
easy to see that, for x 6= x∗(θ) the separation condition (x− x∗θ)h(z, θ) = σ2

θ(x− x∗θ)2 > 0
is satisfied.

Hquad By convexity inequality, we have

sup
θ∈Θ

∫
V×V
|H(x, v, ṽ)|2µ(θ,dv)µ(θ,dṽ) = sup

θ
ERθ,R̃θ

∣∣∣∣∣x(Rθ − R̃θ)2

2
−RθR̃θ

∣∣∣∣∣
2

≤2 sup
θ∈Θ

ERθ,R̃θ

∣∣∣∣∣(Rθ − R̃θ)2

2

∣∣∣∣∣
2

|x|2 + 2 sup
θ

ERθ,R̃θ
∣∣∣RθR̃θ∣∣∣2

≤4 sup
θ∈Θ

ERθ
[
R4
θ

]
|x|2 + 2 sup

θ∈Θ
ERθ

[
R4
θ

]
≤C(1 + |x|2),

with C = 6 supθ∈Θ ERθ
[
R4
θ

]
<∞ from assumption Hunif, 4.

Hcoerc For φ ∈ Lπ2,1, h(φ, θ) = σ2
θ(φ(θ)− x∗(θ)) hence∫

Θ
(φ− x∗)(θ).h(φ(θ), θ)π(dθ) =

∫
Θ
σ2
θ(φ− x∗)2(θ)π(dθ)

(∗)
≥ vinf

∫
Θ

(φ− x∗)2(θ)π(dθ) = vinf‖φ− x∗‖2π,

where we have used assumption Hunif,2 in (∗). So Hcoerc is satisfied.

The assumption Hmk,Mk
will depend on the specific choices of π and µ.

In practice, we choose the sequences under the form: γk ∼ k−a,mk ∼ kb,Mk ∼ kp,
In general, we can find δ,∆ s.t. qm ∼ m−δ, Qm ∼ m∆. The assumption Hmk,Mk

gives
conditions on a,b and p:

0 < a ≤ 1, 2− δb < 2a, b∆ + 1 < 2a+ p (4.3.3)
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Example:

• When dealing with uniform θ ∼ U [−1, 1], the adapted polynomials are the Legen-
dre polynomials {Pi}i∈N [CFGS20] (then

∫
[−1,1] PiPjdπ = δi,j

2
2i+1). The orthonor-

mal Legendre polynomials {Bi}i∈N are defined as Bi =
√

2i+1
2 Pi, where |Pi| ≤ 1 so

Qm = supθ∈Θ

∑
i≤m|Bi(θ)|2 = O(m2): ∆ = 2.

• δ depends of the same order than the regularity of x∗(θ).

• Constraints on a, b, p with very regular z∗(θ) and Legendre basis:

0 < a ≤ 1, 2b+ 1 < 2a+ p.

4.3.4 Applications: log-normal returns and specific weights

In this subsection, we are going to detail a use case of UQSA for the Sharpe ratio. We place
ourselves in the case when the assets values follow a Black Scholes model, and are correlated
with a constant correlation ρ.

The sub-section is organized as follows:

1. First, we recall the optimal (or tangent) portfolio formula. This is the fixed portfolio
we will consider in our experiments. Under a condition on the returns first moments
(”1>d C

−1µ > 0”), we can ensure that the Sharpe ratio is positive in the tangent portfolio.

2. Secondly, we remind the formulation of the returns moments under Black Scholes model.
This allows us to have an explicit formulation of the Sharpe ratio, which will help us to
compute the error metrics in our experiments.

3. Then we give the results of our experiments: assuming the correlation uncertain, we fix
the allocation as the tangent portfolio for a specific correlation level and see the evolution
of the uncertain Sharpe ratio with this fixed allocation.

Setting: We are interested in the value of a portfolio starting at value 1 after one period. We
consider a universe of d assets, whose price Si1 at period 1 follows a Black Scholes model with
unique uncertain correlation ρ = f(θ), θ ∼ π, f : Θ → [−1, 1]. The portfolio value with given
allocation wi and asset value Si1 is:

V1 =
d∑
i=1

wiS
i
1, Si1

(d)
= eµi+

σ2
i
2
−σiW i

1 , (4.3.4)

where W1 ∼ N (0,Γ), Γi,j =

{
ρ if i 6= j,
1 else.

The Sharpe ratio is then computed on the period 1 return V1−V0
V0

= V1 − 1, playing the role
of Rθ in the previous section.

4.3.4.1 Tangent (or maximal Sharpe ratio) portfolio

In this subsection, we recall the formula for the tangent portfolio and we give the condition
under which it is associated to a positive Sharpe ratio.

Definition 4.3.2 (Tangent portfolio). Let a vector µ ∈ Rd (mean vector) and a positive definite
matrix C ∈ Rd×d (covariance matrix) such that sign(1>d C

−1µ) > 0 be given. The tangent
portfolio is defined by

wtgt(µ, C) := arg max
w∈Rd,w>1d=1

w>µ√
w>Cw

=
C−1µ

1>d C
−1µ

.
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The tangent Sharpe ratio is then:

SRtgt := max
w,w>1d=1

w>µ√
w>Cw

=
√
µ>C−1µ.

A derivation of and discussion around the tangent portfolio is given in [Cha11] for example.
The tangent portfolio is named after the fact that it corresponds to the intersection between the
tangent line above the efficient frontier (EF) passing through the origin. The minimum variance
portfolio corresponds to the left-most extremity of the efficient frontier. Its return has the same
sign as 1>d C

−1µ. When this return is negative, there is no ”positive” tangent line to the EF.
This portfolio corresponds to the portfolio with maximum ratio mean/volatility when

sign
(
1>d C

−1µ
)
> 0. The condition sign

(
1>d C

−1µ
)
> 0 is necessary for the return of the

tangent portfolio to be positive. In what follows, so that the approach is meaningful (to fit
our sign (µθ) > 0 assumption and by economic rationale), we will assume that 1>d C

−1µ > 0.

Remark 7. What we see from the tangent portfolio formula is that the allocation will take more
extreme position as 1>d C

−1µ tends to zero. We explicit this phenomenon in dimension 2.

For C =

(
σ2

1 ρσ1σ2

ρσ1σ2

√
1− θ2σ2

2

)
, then

C−1 =
1

(1− ρ2)σ2
1σ

2
2

(
σ2

2 −ρσ1σ2

−ρσ1σ2 σ2
1

)
(4.3.5)

and

wtgt =
C−1µ

1>d C
−1µ

=
1

µ1σ2
2 + µ2σ2

1 − ρ(µ1 + µ2)σ1σ2

(
µ1σ

2
2 − ρµ2σ1σ2

µ2σ
2
1 − ρµ1σ1σ2

)
. (4.3.6)

From C−1 definition (4.3.5), 1>d C
−1µ = 1

(1−ρ2)σ2
1σ

2
2
(µ1σ

2
2 + µ2σ

2
1 − ρ(µ1 + µ2)σ1σ2).

Let ρlim value of ρ for which 1>d C
−1µ = 0.

1>d C
−1µ = 0⇔ 1

(1− ρ2
lim)σ2

1σ
2
2

(µ1σ
2
2 + µ2σ

2
1 − ρlim(µ1 + µ2)σ1σ2) = 0

⇔ µ1σ
2
2 + µ2σ

2
1 − ρlim(µ1 + µ2)σ1σ2 = 0, ρlim 6= ±1

⇔ ρlim =
µ1σ

2
2 + µ2σ

2
1

(µ1 + µ2)σ1σ2
, ρlim 6= ±1.

(4.3.7)

If ρlim ∈ (−1, 1), at ρ = ρlim, the denominator in (4.3.6) goes to zero so the tangent portfolio
takes ”infinite” values. This is why in practice, constraints on allocation are added to prevent
from these extreme positions. From (4.3.7), we see that if c(ρ) := µ1σ

2
2 +µ2σ

2
1−ρ(µ1 +µ2)σ1σ2

is different from 0 for any ρ ∈ (−1, 1), then 1>d C
−1µ is different from 0. In particular, since c(ρ)

is a decreasing function of ρ, if lim
ρ→1

c(ρ) = c(1) > 0, then 1>d C
−1µ 6= 0 for any ρ ∈ (−1, 1).

4.3.4.2 Benchmark: explicit Sharpe ratio under Black Scholes model

In this subsection, we make explicit R two first moments in the Black Scholes model and derive
the explicit Sharpe ratio. This will serve as a benchmark in our experiments.

Lemma 4.3.3 (Sharpe ratio formula - one period Black Scholes model). Let us denote µ ∈ Rd
and C ∈ Rd×d the vector and matrices defined by

µi = (eµi − 1) , Ci,j =

{
eµi+µj (eρσiσj − 1) if i 6= j, i, j ∈ [d],

e2µi(eσ
2
i − 1) else .

(4.3.8)

Then E [R] = w>µ and Var [R] = w>Cw, and the Sharpe ratio is given by SR(ρ) = w>µ√
w>Cw

.
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Proof. Let us denote Γ ∈ Rd×d, Γi,j =

{
ρ if i 6= j,
1 else,

the correlation matrix. In the Black

Scholes model (4.3.4), for W1 ∼ N (0,Γ), we have:

V1 =
d∑
i=1

wiS
i
1 =

d∑
i=1

wie
µi−

σ2
i
2

+σiW
i
1 , V0 = 1, R

(d)
=
V1 − V0

V0
= V1 − 1.

Using the generating moment of the Gaussian distribution (E
[
eλG
]

= e
λ2

2 , ∀λ ∈ R, G ∼
N (0, 1)),

E [V1] = E

[
d∑
i=1

wie
µi−

σ2
i
2

+σiW
i
1

]
=

d∑
i=1

wie
µi .

To compute the variance, we first compute E
[
V 2

1

]
:

E
[
V 2

1

]
=

d∑
i,j=1

wiwje
µi+µj−

σ2
i +σ2

j
2 E

[
eσiW

i
1+σjW

j
1

]
,

where (W i
1,W

j
1 ) is a Gaussian vector of covariance

(
1 ρ
ρ 1

)
if i 6= j, hence, using the generating

moment of the Gaussian vector E
[
eλ
>X
]

= e
λ>Cλ

2 , ∀λ ∈ R2, X ∼ N (0, C), C ∈ R2×2,

E
[
eσiW

i
1+σjW

j
1

]
=

{
e
σ2
i +σ2

j+2ρσiσj

2 if i 6= j,

e2σ2
i else.

After simplification:

E
[
V 2

1

]
=
∑
i,j∈[d]
i 6=j

wiwje
µi+µj+ρσiσj +

∑
i∈[d]

w2
i e

2µi+σ
2
i ,

Var [V1] =
∑
i,j∈[d]
i 6=j

wiwje
µi+µj (eρσiσj − 1) +

∑
i∈[d]

w2
i e

2µi(eσ
2
i − 1).

Using that R
(d)
= V1−V0

V0
= V1 − 1, we retrieve E [R] = w>µ and Var [R] = w>Cw with the µ

and C defined in (4.3.8).

4.3.5 Experiments

To apply the UQSA for Sharpe ratio technique, we need:

• V θ1 −V0

V0
to have finite 2 and 4 order moments,

• finite second order moment in θ.

Since V θ
1 is a sum of geometric Brownian motions, with ρ = f(θ) bounded, this is verified.

In this experiments section, we take d = 2, S1
0 = S2

0 = 1, µ1 = 3.5%, µ2 = 5%, σ1 = 8% and

σ2 = 10%. Let µ and C as defined in (4.3.8). By (4.3.7), 1>C
−1
µ is a decreasing function of ρ.

For ρ = 1, 1>C
−1
µ ≈ 6.8 > 0 so for any ρ ∈ (−1, 1), 1>C

−1
µ > 0 and the tangent portfolio is

the maximum Sharpe ratio portfolio for any ρ ∈ (−1, 1).



144 Chapter 4. UQSA for portfolio Sharpe ratio and allocation

Sharpe ratio with fixed allocation: We place in the case when the investor considers a high
correlation (ρ = 90%) and allocates his portfolio along the associated tangent portfolio. The
allocation can then take extreme position. In our setting, w(90%) ≈ (−0.8, 1.8). The UQ for
Sharpe ratio allows to quantify how much the Sharpe ratio will move if the assumed correlation
ρ = 90% is mis-specified.

We take the following approach: the investor has a good confidence on his assumed cor-
relation ρ = 90% but is still interested in the evolution of the Sharpe ratio in a neighbor-
hood [ρmin, ρmax], ρmin ≤ ρ ≤ ρmax close to ρ. In our following experiments, we have taken:
ρmin = 80%, ρmax = 99%.

4.3.5.1 Choice of uncertainty function

In our setting, the Sharpe ratio is a rather quadratic, smooth function of ρ, as shown in Figure
4.1: taking a uniform uncertainty θ = ρ would be relatively simple.

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Correlation
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SR(0.9)

Figure 4.1 – Plot of SR(ρ) as a function of the correlation ρ.

An empirical based approach for estimating the uncertain function: We want to find

a sensible function f such that ρ
(d)
= f(θ), θ ∼ U [−1, 1].

If ρ follows a certain distribution of cumulative distribution function F , then ρ has the same
distribution than q

(
1+θ

2

)
where q := F−1 is the quantile function and 1+θ

2 ∼ U [0, 1].
To get an idea of what would be a good quantile function for ρ, an empirical study was

conducted on financial data (BNPIMAD time series, d = 9 assets, n = 19 years of data). The
correlation between each pair of assets was estimated on T = 5 years of data, with a sliding
window W = 6 months (first estimation at time 0 on the first 5 years of data, then estimation at
time 6 months on 5 years of data, ... until the last estimation on the last 5 years of data, hence
nW = n−T

W = 29 estimations of each ρi,j , i, j ∈ {1, . . . , d}. We plot in Figure 4.2 the empirical

quantile functions, defined on {ρ(1) ≤ · · · ≤ ρ(nW )} as:

q(x) =
1

nW

nW∑
k=1

ρ(k)1 k−1
nW
≤x< k

nW

, x ∈ [0, 1].

The quantile function plot is equivalent to a Q-Q plot of the correlation distribution against the
uniform distribution on [0, 1].

Some empirical quantile plots are given in Figure 4.2. The shape of the graph can vary but
there are three main shapes:

1. almost linear shape (meaning that all the correlation range is equiprobable),

2. hill shape (multiple values are possible but clear plateau on the most likely values),
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3. succession of slightly increasing, almost plateau portions of graph, followed by strong
growth shape: there are multiple likely values and unlikely range of values.

We choose to focus on this third, more challenging shape. In order to reproduce this shape,
we rely on convex combination of incomplete Beta functions:

Fα,β(x) =
1

B(α, β)

∫ x

0
tα−1(1− t)β−1dt, x ∈ [0, 1],

F l,sα,β(x) = Fα,β

(
x− l
s

)
x ∈ [l, l + s], (rescaled incomplete Beta)

(4.3.9)

where B denotes the Beta function. These functions have the property to take their values
between 0 and 1 and could be interpreted as cumulative distribution functions. This class of
functions was chosen because they allow for great flexibility of shape, as illustrated in Figure
4.3.
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(b) hill shape
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(c) weak growth/strong growth
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Figure 4.2 – Empirical quantile function for 4 pairs of correlation estimated on T = 5 years of
data, with a sliding window W = 6 months.
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Figure 4.3 – Plot of Beta incomplete function, for (α, β) = (5, 2) (a) and (α, β) = (2, 5) (b). We
see that for large α (respectively β), the function is flat near zero (resp. 1).

Our uncertainty function takes the form of a convex combination of (possibly rescaled) Beta

incomplete functions {F li,siαi,βi
}nBi=1 such that:

ρ
(d)
≈ fβ(θ) = ρmin + (ρmax − ρmin)

nB∑
i=1

λiF
li,si
αi,βi

(
1 + θ

2

)
,

nB∑
i=1

λi = 1, θ ∼ U [−1, 1].

In Figure 4.4, we present a convex combination of incomplete Beta function that fits well
the Figure 4.2 weak growth/strong growth shape.
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λ =[2,1,1,1]/5

Figure 4.4 – Plot of convex combination of Beta incomplete functions with parameters indicated
in the plot legend.

4.3.5.2 Evolution and approximation of the uncertain Sharpe ratio

In this subsection, we illustrate how the Sharpe ratio evolves with the chosen uncertainty func-
tion, and how the truncation error decreases with the number of coefficients.

Sharpe ratio approximation and truncation error convergence rate - Beta combi-
nation uncertainty: In this paragraph, we discuss the convergence rate of the truncation
error.
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For the Beta combination uncertainty presented in Figure 4.4, the Sharpe ratio is a rather
smooth function of θ, as seen from the Figure 4.5.
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(a) θ 7→ fβ(θ)
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Figure 4.5 – Plot of θ 7→ fβ(θ) (a) and θ 7→ SR (fβ(θ)) (b).

In Figure 4.6 (a), we show how fast we can approximate the function SR2(fβ(θ)) with an
increasing number of coefficients in the Legendre basis. The coefficients used for the approxima-
tion are computed via numerical integration: u∗i =

∫
[−1,1] SR2(fβ(θ))Bi(θ)π(dθ). The obtained

coefficients are shown in the plot of Figure 4.6 (b). We see that we need at least 20 coefficients
to properly approximate the function.
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Figure 4.6 – (a): Evolution of SR(f(θ)) approximation for different values of m in
{5, 10, 15, 20, 25} (with coefficients computed via integration). (b): Evolution of the coefficients
u∗i , i ∈ {0, . . . , 15}.
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Figure 4.7 – (a): Truncation error ETR :=
(∑

i>m(u∗i )
2
)1/2

= ‖φ∗ −
∑

i≤m u
∗
iBi‖π computed

via integration as a function of the number of coefficients m in log-log scale, and the associated
tendency line. (b): a and b frontier, for the value of δ obtained via truncation error convergence
rate estimation.

In Figure 4.7 (a), we display the truncation error ETR for increasing mk as a function of
the number of iterations k. The regression slope of log(ETR) on log k is equal to −1.8, which
corresponds to a relatively slow convergence speed.

Remark 8. This rate of convergence was to be expected given the regularity of the function
fβ. For projection on Legendre polynomials, the convergence rate of the truncation error of a
function r-differentiable is of order O(mr). This is shown for example in [WX12]. Here, the
incomplete Beta functions (4.3.9) are defined as primitive of polynomial functions in tα−1, tβ−1,
defined on [0, 1]. Hence, they are continuously differentiable until the order min(α−1, β−1) and
piecewise differentiable at the order min(α, β). For our choice of function shown in Figure 4.4,
the minimum α/β parameter is equal to 2, hence we could expect a convergence rate between 1
and 2.

Frontier estimation: This rate gives the δ parameter needed in equations (4.3.3) to derive
the limiting values for a, b and p. Fixing p equals to 0 (constant inner Monte Carlo number of
simulations), we display the corresponding a, b frontiers in Figure 4.7 (b) for δ = 1.5 (absolute
regression slope) and ∆ = 2 (Legendre basis increase rate). The frontiers correspond to the

values of b between the lines x 7→ 2a−p−1
∆ = 2a−1

2 and x 7→ 2(1−a)
δ = 4(1−a)

3 .

Numerical precision threshold: On the Figure 4.7 (a), we display the truncation error
until the 32th coefficient approximation. We can see that the truncation error starts exploding
from the 28/30-th coefficient. This is due to the fact that the estimation error is important for
coefficients of high order. Indeed, from component 20 onward, the value of the coefficient falls
below 10−8 which is the numerical precision associated to the integration method we used (scipy
nquad function). In our experiments, we will rely only the first 20 estimated coefficients.

4.3.5.3 Impact of hyperparameters

In the numerical experiments that follow, we compare the performance of the algorithms with
different choices of mk,Mk and γk sequences. The comparison relies on root-mean-square errors,
approximated with 15 independent runs of the algorithms.

When running the UQSA algorithm, we take Mk = M = 100 simulations at each iteration.
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Impact of increasing dimension: In this paragraph, we discuss the role of the sequence
{mk, k ∈ N} and we illustrate the convergence rate of the total error, when the sequence {mk, k ∈
N} is increasing.

In Figure 4.8, we plot the evolution of the total error for different possibilities of fixed
dimensions mk = m ∈ {10, 30} versus the evolution with slowly increasing dimension mk =
bk + 1cb, b = 0.3. For b = 0.3 and K = 104, we obtain mK ≈ Kb ≈ 16 coefficients. Here, the
step size is taken equal to 0.95.

Figure 4.8 – In the case of increasing mk (solid blue line) and mk = m ∈ {10, 30} (dotted line)
the total error ‖φ̂(k) − φ∗‖π as a function of the number of iterations k.

We observe that the total error is much larger with fixed mk = 10 or 30 in the burn-in phase.
The total error is greater the larger the fixed m. By trying to fit simultaneously all the m
coefficients, the performance is worse than with the sequential, increasing dimension approach.

The first iterations are associated to larger values of the step size γk. With the increasing
dimension approach, only the first coefficients, which are also the largest, are estimated, and
can benefit from the large values of the step size.

Additionally to the total error, we plot in the following figures the truncation error levels as
a function of the iteration

ETR =

∥∥∥∥∥φ∗ −
mk∑
i=1

u∗iBi

∥∥∥∥∥
π

,

previously computed and graphed (as a function of mk) in Figure 4.7. For fixed mk = m, it is
then a constant. We plot also the case m = 3 and b = 0.15 (mk slowly increasing). For the fixed
m approach, the total error must stay above this fixed level of truncation error, while for the
increasing mk approach, the truncation error will keep decreasing.
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100 101 102 103 104
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100  m=3
 m=10
 m=30

(a) m ∈ {3, 10, 30}

(b) b = 0.3 (c) b = 0.15

Figure 4.9 – In the case of increasing mk (solid blue line) and mk = m ∈ {10, 30} (dotted line)
the total error ‖φ̂(k) − φ∗‖π and truncation error, fixed mk = m ∈ {3, 10, 30} (up) or increasing
mk = bk + 1cb, b ∈ {0.15, 0.3} (down) as a function of the number of iterations k.

We can make the following comments:

• For fixed m: the error is further from the truncation error the larger the fixed m.

• For increasing mk

– In the smaller b = 0.15 case, the total error is closer to its truncation limit than in
the case with faster mk growth.

– Each time a new coefficient starts being approximated by the algorithm, the total
error makes a small jump, and the statistical error (difference between the total error
and the truncation error) makes a big jump. For example, on Figure 4.9[(c)], we can
see such a jump at iteration 100: the total error increases then decreases again.

– The total error has more variance (we filled the confidence intervals with the same
color and more transparency in Figure 4.8 and 4.9[(b) and (c)]) but converges better.
This is in line with the stability theorem of [CFGS20][Theorem 1] since we are in a
case when the assumptions of the theorem are satisfied.

In the following Figures 4.11 and ??, we display how the Sharpe ratio can be approximated
via both methods, at iteration k ∈ {1000, 5000, 10 000}, for small b and fixed m in Figure 4.11,
larger b and m in Figure ??.

• In our experiments, we chose to consider a polynomial basis of functions to approximate the
function SR2(fβ(θ)), hence the approximation are under the form of linear combinations



4.3. UQSA for the Sharpe ratio 151

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Θ

0.44

0.46

0.48

0.50

Sh
ar
pe

 ra
tio

True 
m=3
b=0.15

(a) k = 1000

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Θ

0.44

0.45

0.46

0.47

0.48

0.49

0.50

0.51

0.52

Sh
ar
pe

 ra
tio

True 
m=3
b=0.15

(b) k = 5000
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(c) k = 10 000

Figure 4.10 – Approximation of the Sharpe ratio - mixture uncertainty, increasing number of
iterations, a = 0.95, b = 0.15, mk = kb versus mk = 3.
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Figure 4.11 – Approximation of the Sharpe ratio - mixture uncertainty, increasing number of
iterations, a = 0.95, b = 0.3, mk = kb versus mk = 3.

of increasing order polynomials. For the approximation with small b and m, since the
approximation is a linear combination of polynomials of order smaller or equal to 3, it has
a rather smooth shape but does not capture the changes in convexity of the true function.

• Conversely, for large m and b, the approximation is of the form of a linear combination of
polynomials with much higher order. For b = 0.15, mk = 7 for k = 1000. This explains
the oscillations in the representation of the approximations.

• The oscillation are far less present in the increasing mk approximation of the function
(even if the number of coefficients is equal to 7, 12 then 15 for the final iteration). This
reflects the interest of considering a progressive estimation of the coefficients, and shows
that in our specific example the convergence works even in infinite norm, and not only in
L2(π) norm as guaranteed by the stability theorem.
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Figure 4.12 – The total error E as a function of the number of iterations, for different values of
a in {0.85, 0.9, 0.95}.

Impact of the step size parameter a: In this experiment, we set b = 0.3 and p = 0. The
admissible values of a are in the range (0.775, 1.). We have tested a ∈ {0.85, 0.9, 0.95}. We
display in Figure 4.12 the total error as a function of iterations k for different values of a. We
can see that the convergence improves with increasing a. This might be due to the fact that too
low value for a leads to more instable estimation, and since the function is rather smooth, high
values of a are preferable.

4.3.6 Conclusion to UQ for the Sharpe ratio section

In this section, we proposed a SA formulation for the Sharpe ratio, in order to apply the
UQSA algorithm to quantify parameter uncertainty on the Sharpe ratio. For the sake of clarity,
while using a realistic example, we have settled on an allocation of type tangent portfolio and
portfolio values following a Black Scholes model with uncertain correlation. A realistic example
of a distribution on correlations was sought. The impact of the choice of UQSA hyperparameters
was explored and the efficiency of the sequential algorithm considered in its increasing dimension
approach has been highlighted.

In the next section, we will focus on the impact of uncertainty on portfolio allocation. For
our future experiments, we will only consider examples with increasing dimension approach.

4.4 UQSA for the portfolio allocation

This section is devoted to our applications of the UQSA algorithm to portfolio allocation.

4.4.1 Portfolio optimization as SA problem

In this section, we consider portfolio optimization problem of type arg minw∈W U(w), where W

denotes the convex set of constraints. We will deal with U convex, which has a unique solution
w∗. For example, for the minimum-variance problem, given a covariance matrix C ∈ Rd×d,

UMV (w) :=
1

2
w>Cw. (4.4.1)

We are interested in the following set of constraints:

W1 =
{

w ∈ Rd : 1Tdw = 1
}

(budget constraint),

W
≥0
1 =

{
w ∈ (R+)d : 1Tdw = 1

}
(budget and positivity constraints). (4.4.2)
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We say that the solution w∗ := arg min
w∈W≥0

1
U(w) is unsaturated if it does not saturate

the positivity constraint, e.g. for any i ∈ {1, . . . , d}, w∗i > 0. In this case, the solution on W
≥0
1

and W1 are the same. Noticing that the budget constraint amounts to take wd = 1−
∑d−1

i=1 wi,
w∗ is then the zero of the gradient of U in (w1, . . . , wd−1). In our proposed approach, we are
going to focus on cases when w∗ is unsaturated.

Reparametrization of the problem. We would like to apply the UQSA algorithm on the
problem solution w∗(θ) subject to small perturbations modeled through θ. It is not possible
to consider directly a UQSA approach on w∗(θ) because when computing iteratively the PCE
expansion of w∗(θ), there is no guarantee that the expansion stays in W. This is why we propose
to consider a parameterization ` : Rd−1 → W

≥0
1 such that for any w ∈ W, there is a y ∈ Rd−1

such that w = `(y), and do the UQSA approach on the unconstrained vector y. The problem
then becomes:

y∗ ∈ Rd−1 solution of E [H(y∗, R)] = 0d−1, where E [H(y∗, R)] = ∇U(`(y)).

R denotes the returns random variables whose distribution depends on an uncertain param-
eter θ. The approach we propose in this section relies on the following assumption: w∗(θ) is
unsaturated for any θ ∈ Θ.

Many mappings have already been designed in the literature. The field focusing on the
representation of vectors in the simplex is referred to as Compositional Data Analysis (CDA)
[PGB11]. For example, the log-ratio transformation offers a one-to-one mapping from Rd−1 to
W>0

1 = W ∩ (R∗+)d, by taking wi = eyi

1+
∑d−1
j=1 e

yj
, for i = 1, . . . , d− 1, wd = 1

1+
∑d−1
j=1 e

yj
.

We propose a new transformation allowing for 0 component wi, that we call ”integral-
transformation” and relying in the following idea: given p : R → R+ such that p(0) = 0
and f : R→ R+ such that

∫
R f = 1, then one can interpret the wi as portions of the integral of

f . There exists y ∈ Rd−1 such that:

w1 =

∫ y1

−∞
f(t)dt,

wi =

∫ y1+p(y2)+···+p(yi)

y1+p(y2)+···+p(yi−1)
f(t)dt,

wd =

∫ ∞
y1+p(y2)+···+p(yd)

f(t)dt.

y1 p(y2) + y1 p(yd−1) + . . . + y1
0.00

0.05

0.10

0.15

0.20

0.25

0.30
w1
w2
wd

In the following subsection, we give a condition on ` to guarantee that y∗ can be defined as a
zero gradient problem and correspond to w∗ up to transformation and we give specific integral
transformation examples for which this condition is satisfied. Finally, we show illustration of
our integral-based approach and we advocate for the use of polynomial-based transformation
rather than sigmoid-based transformations.

4.4.2 Allocation model

Before expanding on possible transformation functions `, we are going to give the condition
that our transformation function must satisfy in order to preserve the solution existence and
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convexity of the problem.

4.4.2.1 Convexity preservation

In this subsection, we want to show under which condition a convex objective function remains
convex after transformation. We say that ` is a transformation function if for any w ∈ W

≥0
1 ,

there exists a y ∈ Rd−1 such that y = `(w).
We start by giving the gradient and Hessian of the transformed problem.

Lemma 4.4.1 (Explicit gradient and Hessian). Let ` : Rd−1 →W the transformation function
and U : W→ R+ the objective function.

The gradient of U(`(y)) with regards to y is given by

∇yU (`(y)) = D(`)∇xU,

where D(`) is the ` Jacobian and ∇xU is the ”lagged” original gradient:

D(`) =

{
∂`j(y)

∂yi

}
1≤j≤d−1,
1≤i≤d−1

, ∇xU =

 ∂x1U − ∂xdU
...

∂xd−1
U − ∂xdU

 .

The Hessian of U(`(y)) with regards to y is given by

H(y) = {∂yiyjU}d−1
i,j=1 = D2(`)∇xU +D(`)HUD(`)>,

where D2(`) = {∂yiyj`}d−1
i,j=1 and HU = {∂xixjU − ∂xixdU − ∂xdxjU + ∂xdxdU}

d−1
j,j=1 is the

”lagged”original Hessian.

Proof. By Chain rule, for i ∈ {1, . . . , d}, using the fact that the last component of ` is equal

to 1 −
∑d−1

i=1 `i, ∂yiU =
∑d−1

j=1
∂`j(y)
∂yi

∂xjU −
∑d−1

j=1
∂`j(y)
∂yi

∂xdU where ∂xjU denotes the partial

derivative of U w.r.t. the j-th component. Denoting D(`) =
{
∂`j(y)
∂yi

}
1≤j≤d−1,
1≤i≤d−1

the ` Jacobian,

we get the announced formula. Likewise, we obtain the Hessian formula.

Corollary 4.4.2. Let ` : Rd−1 → W be a transformation function and U : W → R+ a convex
objective function. Assume that there exists w∗ := arg min

w∈W≥0
1
U(w) = arg minw∈W1

U(w)

and that D(`) is invertible in y such that w∗ = `(y).Then,

y∗ s.t. ∇xU(`(y∗)) = 0d−1 ⇔ `(y∗) = w∗ = arg min
w∈W≥0

1

U(w)

and U(`(.)) is convex around y∗.

Proof. Denoting HU = {∂xixjU}di,j=1 the Hessian of U , it is easy to see that:

• If HU is positive semi-definite, then the Lagged Hessian HU defined in Lemma 4.4.1 is
positive semi-definite. Indeed, we can notice that for x ∈ Rd−1,

x>HUx = (x1, . . . , xd−1,−
d−1∑
i=1

xi)HU (x1, . . . , xd−1,−
d−1∑
i=1

xi)
> > 0.

• If D(`) is invertible and ∇yU (`(y∗)) = 0d−1, since ∇yU (`(y∗)) = D(`)∇xU , then

∇xU (`(y∗)) = 0d−1 and the Hessian simplifies to H(y∗) = D(`(y∗))HUD(`(y∗))>. So
if HU (`(y∗)) is positive semi-definite, then H (`(y∗)) is positive semi-definite.
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Equality of w∗ and `(y∗): In the unsaturated case, the Lagrangian of the problem is: U(w)−
λ0(w>1d − 1). Deriving with regards to w, we get: ∇xU = λ01d which is equivalent to the
condition ∇xU = 0d−1.

Since we deal with a convex problem, ∇xU(w) = 0d−1 is a necessary and sufficient condition
for w to be the unique minimizer of U .

By uniqueness of w∗ satisfying ∇xU = 0d−1,

• if y∗ satisfies ∇xU(`(y∗)) = 0d−1, then w∗ = `(y∗) is U unique minimizer.

• Conversely, for w∗ unique minimizer of U , denoting y∗ its pre-image by `, ∇xU(`(y∗)) =
∇xU(w∗) = 0d−1.

4.4.2.2 Transformation functions

In what follows, we are going to present two main transformation functions, reproducing strictly
positive weights W>0

1 = {w ∈ (R∗+)d : 1>d w = 1} or non-negative allocations in W
≥0
1 , and check

the invertibility of the associated Jacobian matrix.

Log-ratio transform We recall the log-ratio transformation presented in the previous sub-
section:  wi = `i(y) = eyi

1+
∑d−1
j=1 e

yj
, for i = 1, . . . , d− 1,

wd = 1−
∑d−1

j=1 `j(y) = 1
1+
∑d−1
j=1 e

yj
.

It is called log-ratio transformation because the invert transformation is defined by: yi = ln
(
wi
wd

)
,

i = 1, . . . , d−1. We can verify the invertibility of D(`) by computing its associated determinant.
The proof is postponed to Appendix 4.A.

Lemma 4.4.3 (Invertibility of log-ratio derivatives matrix). In the log-ratio transformation, the
transformation derivatives matrix D(`) is defined by

D(`) =


`1 − `21 −`1`2 . . . −`1`d−1

−`1`2 `2 − `22 . . . −`2`d−1
...

. . .
...

−`1`d−1 . . . . . . `d−1(1− `d−1)

 . (4.4.3)

The matrix D(`) is invertible, as a consequence of the strict positivity of its determinant given
by:

det(D(`)) =
d−1∏
i=1

`i

(
1−

d−1∑
i=1

`i

)
.

A limit of the log-ratio transformation is that it does not allow zero component. This is why
we proposed the ”integral approach”. Indeed, we are interested in cases when the allocation
is almost saturated. In our experiment section, we will compare both approach (0 component
allowed by the transformation or not) in an almost saturated case.



4.4. UQSA for the portfolio allocation 157

A particular and novel CDA approach: the integral transformation. Let w =
(w1, . . . , wd) ∈W

≥0
1 such that

H∀ < 1. ∀i ∈ {1, . . . , d}, wi < 1.

H∃ 6= 0. ∃i, j ∈ {1, . . . , d}, i 6= j, wi 6= 0 and wj 6= 0.

Definition 4.4.1 (Integral approach). Let F : R → [0, 1] strictly increasing surjective, contin-
uously differentiable function, let 1 = {x ∈ R : F ′(x) 6= 0} (”support of the distribution”),
and let B = [0, sup I − inf I] if 1 is bounded, B = R+ else. Let p : R → R+ surjective on B,
attaining 0 (∃t, p(t) = 0) be given. Then for any w ∈ W

≥0
1 satisfying assumptions H∀ < 1 and

H∃ 6= 0, there exist y1, y2, . . . , yd−1 ∈ Rd−1 s.t.:
w1 = F (y1),
wi = F (y1 + p(y2) + · · ·+ p(yi))− F (y1 + p(y2) + · · ·+ p(yi−1)), i = 2, . . . , d− 1,
wd = 1− F (y1 + p(y2) + · · ·+ p(yd−1)).

Introducing the notation zi = y1 + p(y2) + · · ·+ p(yi), so that zi = zi−1 + p(yi), w is written
in a more compact way: 

w1 = F (z1)
wi = F (zi)− F (zi−1), i = 2, . . . , d− 1,
wd = 1− F (zd).

Remark 9. F satisfying the conditions of Definition 4.4.1 can be seen as the primitive of a
function of integral one. As illustrated in Figure 4.13, the allocation w (positive vector summing
to one) can be seen as portions of an integral summing to one.

The positivity of the function p enforces to have increasing cumulative weights: F (zi−1) =
w1 + · · · + wi−1 ≤ w1 + · · · + wi = F (zi−1 + p(yi)). If zi−1 ∈ 1, a necessary condition for
zi−1 + p(yi) ∈ 1 is to have inf 1+p(yi) ≤ sup1, which is enforced if p is surjective on B.

This representation allows for zero-valued components while enforcing
∑d

i=1wi = 1.

We start by giving an example with F taken as the sigmoid function: when d = 2, this
transformation coincides with the log-ratio transform. For general d, contrary to the log-ratio
transform, the intermediary components wi, i ∈ {2, . . . , d− 1} can be equal to 0. This transfor-
mation corresponds to a distribution with unbounded support.

Example (Transformation function F with unbounded support: sigmoid transformation ). The
couple of functions:

• F (t) = 1
1+e−t (sigmoid function, represented in Figure 4.13),

• p(t) = t2n, n ∈ N∗,

enable to represent W
≥0
1 with non null first and last components.

The problem which can arise when using exponential-based/unbounded support trans-
formation is that the y can take very large values, especially when wi is close to 0 or 1:

y1 = F−1(w1) = ln
(

w1
1−w1

)
goes to −∞ (resp. +∞) when w1 goes to 0 (resp. 1). It might be

difficult to approximate the associated y∗(θ) via UQSA.

This is why we propose the following bounded-support, polynomial-based transformation.

Example (Transformation function F with bounded support: Polynomial (Beta) Transforma-
tion). Let F ′(t) = 6t(1− t)10≤t≤1 the Beta(2, 2) density. Then
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Figure 4.13 – Illustration of the integral approach: the allocation can be seen as portions of the
area under the curve of a function with integral equal to one. Hence taking the primitive F of
the integral-one function enables to have a nice representation for the allocation. The plots are
done with F corresponding to the sigmoid function.



4.4. UQSA for the portfolio allocation 159

• F (t) =


3t2 − 2t3 if 0 ≤ t ≤ 1,
0 if t < 0,
1 if t > 1.

We can enforce p(yi) ∈ I = [0, 1) by taking the following p function, surjective from R to
I.

• p :

{
R→ [0, 1]
t 7→ tanh

(
t2n
) .

We can take w1 = F (p(y1)) (instead of F (y1), y1 ∈ R) to enforce w1 ∈ (0, 1).

In the integral transformation case, D(`) is an upper triangular matrix given by:

D(`) =


F ′(z1) F ′(z2)− F ′(z1) . . . F ′(zd−1)− F ′(zd−2)

0 p′(y2)F ′(z2) . . . p′(y2)(F ′(zd−1)− F ′(zd−2))
...

. . .
...

p′(yd−2)F ′(zd−2) p′(yd−2)(F (zd−1)− F ′(zd−2))
0 . . . 0 p′(yd−1)F ′(zd−1)

 .

Indeed, retaking the notation zi = y1 + p(y2) + · · ·+ p(yi), and wi = F (zi)− F (zi−1),

• for j > i > 1,
∂wj
∂yi

=
∂F (zj)−F (zj−1)

∂yi
= p′(yi)(F

′(zj)− F ′(zj−1)),

• for j = i > 1,
∂wj
∂yi

=
∂F (zj)−F (zj−1)

∂yi
= p′(yi)F

′(zi) ,

• for j > i = 1,
∂wj
∂y1

=
∂F (zj)−F (zj−1)

∂y1
= F ′(zj)− F ′(zj−1), and for i = j = 1, it gives F ′(y1),

• for j < i,
∂wj
∂yi

= 0.

If we take w1 = F (p(y1)), we have to multiply the first line by p′(y1).

Invertibility of D(`): the eigenvalues of D(`) are {F ′(z1), p′(y2)F ′(z2), . . . , p′(yd−1)F ′(zd−1}
so since F ′ > 0, D(`) is invertible as long as p′(yi) 6= 0. For y∗ = `−1(w∗), this is well verified
since we deal with unsaturated solutions. Non-uniqueness of y representation: we deal
with positive function p, that can take the value 0 in a finite t. With this definition, there are
multiple y ∈ Rd−1 corresponding to the same w through `. For example, for the symmetric
function p considered in our examples, if w = `(y), replacing yi by −yi for i ∈ {2, . . . , d − 1}
leads to the same w.

4.4.3 Application

This section is devoted to numerical experiments on PCE and UQSA for portfolio allocation.

4.4.3.1 UQSA assumptions verification

In this subsection, we focus on the quadratic objective function UMV (w) given in (4.4.1). We
place ourselves in the small perturbation, unsaturated setting:

Hpert. for any θ ∈ Θ, the solution w(θ) := arg min
w∈W≥0

1
UMV
θ (w) = 1

2w>Cθw is unsaturated.

We will consider a transformation function ` satisfying invertibility of its Jacobian D(`).

We start by specifying the HMV function such that E
[
HMV (y(θ), Rθ, R̃θ)

]
= 0d−1 for

`(yθ) = arg min
w∈W≥0

1
UMV
θ (w) and we check the validity of UQSA assumptions under mild

assumptions on Rθ.
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Gradient of the transformed quadratic objective. In the following lemma, we specify
the minimum-variance objective lagged gradient. In the unsaturated convex setting, a zero of
this lagged gradient in y gives the minimum in w = `(y) of the objective so this lagged-gradient
could be used to build our HMV function.

Lemma 4.4.4 (Lagged gradient for the minimum-variance objective). Let Γ = {Ci,j − Ci,d −
Cd,j + Cd,d}d−1

i,j=1 and C̃ = {(Ci,d − Cd,d)}d−1
i=1 . Denote `(y) = (`1(y), . . . , `d−1(y)). The lagged

gradient ∇xUMV = {∂iUMV − ∂dUMV }d−1
i=1 is

∇xUMV = Γ`+ C̃,

and the lagged Hessian is the positive definite matrix Γ.

Proof. It is easy to see that ∇xUMV = Cw. The lagged gradient is then (Cw)i − (Cw)d.
Replacing w by `(y) and using that wd = 1−

∑d−1
i=1 wi = 1−

∑d−1
i=1 `i(y), we get the announced

formula.

As a consequence, by Lemma 4.4.1, ∇yUMV = D(`)
[
Γ`+ C̃

]
and UMV (`(y)) is convex

around y∗ such that `(y∗) = w∗.

HMV function choice for the ` transformation: Let R, R̃ i.i.d. vector of asset returns

of covariance matrix C. Let i, j ∈ {1, . . . , d}. Using the fact that Ci,j = E
[
RiRj −RiR̃j

]
, we

denote Γ(R, R̃) and C̃(R, R̃) the matrix and vector replacing Ci,j by RiRj − RiR̃j in Γ and C̃

defined in Lemma 4.4.4. Then E
[
Γ(R, R̃)

]
= Γ and E

[
C̃(R, R̃)

]
= C̃.

We take as function HMV :

HMV (y, R, R̃) = D(`)
[
Γ(R, R̃)`(y) + C̃(R, R̃)

]
,

where `(y) = (`1(y), . . . , `d−1(y)).

Assumptions verification: In the general D(`)-invertible case, we can show that the UQSA
assumptions are satisfied at least at the neighborhood of the optimal solution, under some mild
assumptions on Rθ and `. ‖·‖ will denote indifferently the Euclidean norm on Rd−1 or the
Euclidean-subordinated matrix norm.

Hunif R. ERi,θ
[
R4
i,θ

]
<∞ and supθ ERi,θ

[
R4
i,θ

]
<∞, 1 ≤ i ≤ d .

Hunif Γ. For any θ ∈ Θ, Γθ := ERθ,R̃θΓ(Rθ, R̃θ) is positive definite, with minimum eigenvalue
uniformly bounded from below in θ ∈ Θ by γ > 0.

HD(`). The Jacobian of the transformation function is at most linear in y: there exists C` such
that:

‖D(`(y))‖ ≤ C`(1 + ‖y‖).

H ε, y∗. There exists ε > 0, θ0 ∈ Θ and y∗(θ0), y∗(θ0) = `(w∗θ0)), such that

• For any θ ∈ Θ, there is a unique y∗(θ) ∈ B(y∗(θ0), ε) s.t. y∗(θ) = `(w∗θ)) (small pertur-
bation setting).

• For any y ∈ B(y∗(θ0), ε), D(`(y)) is invertible.

• For any y ∈ B(y∗(θ0), ε), for any θ ∈ Θ, 〈∇yUMV
θ (`(y)),y − y∗〉π ≥ c‖y −

y∗‖2π (strong convexity) where ∇yUMV
θ = D(`)

(
Γθ`(y)− C̃θ

)
.

Remark 10. Assumption H ε, y∗ interpretation:
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• In practice, there might be multiple y ∈ Rd−1 such that y = `(w∗(θ)). H ε, y∗ assumes
that there is only one such y in B(y∗(θ0), ε).

• D(`(y∗(θ))) invertibility is rather a consequence of Hpert: since w∗(θ) is unsaturated, by
` choice, D(`(y∗(θ))) is invertible.

• Under assumptions Hpert and Hunif Γ, the local strong convexity condition can be seen
as a consequence of the strict positivity of D(`)ΓθD(`)> eigenvalues. Indeed, under these
assumptions, D(`)’s eigenvalues are non-null and Γθ’s are strictly positive, so D(`)ΓθD(`)>

is symmetric positive definite. In what follows, we will assume the strongest assumption
H ε, y∗ only (and not Hunif Γ).

Let us assume Hpert, Hint, HD(`) and H ε, y∗ . In what follows, we are going to show that the
UQSA assumptions hold at least on B(y∗(θ0), ε).

HT ∗ For any θ ∈ Θ, by convexity of the objective function UMV
θ (w) = 1

2w>Cθw, the solution
w∗(θ) exists, is unique and unsaturated from assumption Hpert. From H ε, y∗ , there is a

unique y∗(θ) ∈ B(y∗(θ0), ε) such that E
[
HMV (y∗(θ), Rθ, R̃θ

]
= 0 π-a.e. so T∗ is compact.

Hint By Hunif R, at fixed θ ∈ Θ, ERi,θR2
i,θ is finite. Since HMV is quadratic in Ri,θ, H

MV is in-

tegrable, and hMV (y, θ) = ERθ,R̃θH
MV (y, Rθ, R̃θ) exists. Denoting Γθ := ERθ,R̃θΓ(Rθ, R̃θ)

and C̃θ := ERθ,R̃θ C̃(Rθ, R̃θ), we have, for any arbitrary y ∈ Rd−1

hMV (y, θ) = D(`) ERθ,R̃θ
(

Γ(R, R̃)`(y) + C̃(R, R̃)
)

= D(`)
(

Γθ`(y) + C̃θ

)
.

By HD(`), ‖hMV (y, θ)‖ is at most linear in ‖y‖. From assumption Hunif R, ERi,θR2
i,θ is

uniformly bounded in θ, so ‖Γθ‖ and ‖C̃θ‖ are uniformly bounded in θ. By ` definition,
‖`‖ ≤ 1. So there exists a CΘ,` > 0,

‖hMV (y, θ)‖ ≤ C` sup
θ∈Θ
‖Γθ‖(1 + ‖y‖) + sup

θ∈Θ
‖C̃θ‖ ≤ CΘ,`(1 + ‖y‖).

So ‖hMV (y, θ)‖ is bounded by a linear function in ‖y‖ with a coefficient uniformly bounded
in θ, so φ 7→ hMV (φ(.), .) is a continuous function from Lπ2,d−1 to Lπ2,d−1.

Hquad Similarly, by Hunif R and by HD(`), we can find a constant CΘ,` > 0 such that:

sup
θ∈Θ

ERθ,R̃θ‖H
MV (y, Rθ, R̃θ)‖2 ≤ CΘ,`(1 + ‖y‖).

Hsep, Hcoerc The separability and coercivity assumptions consist in verifying that 〈hMV (y, .),y−y∗〉π ≥
c‖y − y∗‖2π for some constant c > 0. With our choice of hMV function, hMV (y, θ) =
∇yUMV

θ . By the strict convexity assumption H ε, y∗ [Bullet 3], such a constant exists and
we verify well the coercitivity and separation assumptions.

Remark 11. We could have rigorously quantified an ε value and specified a use case in which the
strict convexity holds on B(y∗(θ0), ε). It has not been done but the heuristic arguments given
above show that UQSA assumptions are locally verified.

4.4.3.2 Experiments

In this subsection, we apply the transformation technique on UMV . Our aim is twofold:

1. we want to know which transformation function is the most relevant/efficient to do the
PCE of the transformed function `−1(w),
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2. we would like a transformation which deals well with almost saturated solutions.

We focus on the uncertainty on the correlation. In the three assets case, the covariance

matrix writes: C = Diag (σ1, σ2, σ3)

1 ρ ρ
ρ 1 ρ
ρ ρ 1

Diag (σ1, σ2, σ3) . In our applications, we took

(σ1, σ2, σ3) = [10, 11, 12]% and R ∼ N (0d, C).

Allocation, choice of admissible ρ values: By focusing on the quadratic objective, the
optimal allocation takes the explicit form: w∗ = C−11

1>C−11
. We focused on the case ρ ∈ [20, 77]%,

for which w3(77%) ≈ 0 (almost saturated solution). We show in Figure 4.18 the evolution on w
on this range of correlation.

0.2 0.3 0.4 0.5 0.6 0.7
Correlation

0.0

0.2

0.4

0.6

0.8

1.0

w1
w2
w3

Figure 4.14 – Evolution of allocation w∗ = (w1, w2, w3) components as a function of ρ for
ρ ∈ [20, 77]%

Choice of transformation functions: We focus on the following transformation functions:

• log-ratio transformation;

• integral approach transformations:

– sigmoid-polynomial: F (z) = 1
1+e−z , p(t) = t2;

– beta-polynomial: F (z) = 3z2 − 2z3, p(t) = t2;

– beta-hyperbolic-tangent: F (z) = (3z2 − 2z3) if z ∈ [0, 1], 0 if z < 0, 1 else, p(t) =
tanh

(
t2
)
;

Remark 12. These choices of p function satisfy HD(`) assumption, because p′(t) is at most
linear in t and the other terms appearing in D(`) are bounded.

• sum transformation (y = (w1, . . . , wd−1)).

Choice of uncertainty function: We retake the incomplete Beta function combination fβ
as taken in the Sharpe ratio study:

ρ=fβ(θ) = ρmin + (ρmax − ρmin)

nB∑
i=1

λiF
li,si
αi,βi

(
1 + θ

2

)
,

with nB, λi, li, si, αi and βi as given in Figure 4.4 and ρmin = 20%, ρmax = 77%.
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PCE components and truncation error study: In the following figures, we plot the coef-
ficients estimation as well as the truncation error for the different transformation functions.
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Figure 4.15 – Evolution of the coefficients u∗i = (u∗i,1, u
∗
i,2) of `(y∗(θ)) projection on the Legendre

basis for different transformation functions.

We can make the following comments:

• As seen in Figure 4.15[(a) and (b)], in the log-ratio and the sigmoid transformations, the
coefficients are of different signs and the significant coefficients are more numerous than in
the beta or the sum transformation. With the log-ratio and the sigmoid transformations,
the UQSA algorithm will have difficulties in estimating the largest order coefficients, be-
cause their estimation starts when the value of the step size is relatively small (increasing
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dimension approach) whereas the u∗i profiles for the beta-based and sum transformations
are more suited to the UQSA algorithm.

• As shown on Figure 4.16, the beta transformations and the sum transformation have a
smaller truncation error (but a higher variance for the coefficients of order higher than 30).
Less coefficients are needed to estimate y with these transformations. The convergence
rate of the truncation error is equal to 2.2 which is approximately in line with the expected
2 convergence rate (order of differentiability of the uncertainty function).

1016×100 2×101 3×101
10−4

10−3

10−2

10−1

TRsigmoid_pol
TRlog_ratio
TRbeta_tanh
TRbeta_pol
TRsum
y= −2.205 x−0.137

Figure 4.16 – Truncation error ETR :=
(∑

i>m‖u∗i ‖22
)1/2

= ‖y∗ −
∑

i≤m u
∗
iBi‖π computed via

integration, as a function of the number of coefficients m in log-log scale, and the associated
tendency line, for y∗(θ) = `−1(w∗(θ)), for various choices of `.

In Figure 4.17, we display the approximation of the true allocation function for the log-ratio
and the beta-polynomial transformations. We observe that approximately 20 coefficients are
needed to approximate well the true function. We see that in the log-ratio transformation, the
second component of w is less well approximated than with the beta transformation.
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Figure 4.17 – Evolution of w∗(θ) approximation as a function of ρ = fβ(θ) for different values
of m in {5, 10, 15, 20, 25} (with coefficients computed via integration) for the log-ratio and the
beta polynomial transformation function.
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Figure 4.18 – True function approximation with UQSA, obtained after transformation on y∗

approximation, a = 0.9, b = 0.2, K = 5000.
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Figure 4.19 – Total error evolution with UQSA, obtained after transformation on y∗ approxi-
mation, a = 0.9, b = 0.2, K = 5000.
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Figure 4.20 – y∗(θ) approximation with UQSA, a = 0.9, b = 0.2, K = 5000.

UQSA first experiment - increasing dimension and beta-polynomial transformation:
In Figure 4.19, we represent the evolution of the total error for one launch of the algorithm.
The approximation of the true function with the coefficients after 5000 iterations are plotted
in Figure 4.18. We see that the shape of the true function is well captured except for the
second component, which is under-estimated for θ close to 1. The output of UQSA algorithm is
displayed in Figure 4.20 against the true y∗(θ) function. We have a better convergence in infinite
norm for y than for its transformation w. The UQSA results with sigmoid transformation (not
displayed) are far more instable.

4.4.4 Conclusion to UQ for portfolio analysis section

In this section, we have explored an approach to tackle the problem of portfolio allocation
with uncertainty using UQSA algorithm based on change of variable techniques. We have
empirically illustrated the use of different changes of variable, or ”transformation functions”.
We propose a new CDA transformation that we call the integral approach. Within this class of
transformations, bounded support, polynomial-based transformations seem more suited to our
problem than sigmoid based transformations.

In the current setting, our approach has a limited scope of applicability since we can guar-
antee the optimality of the solution found by the transformed problem only in cases when the
optimal solution lies in the interior of the simplex. When the solution is saturated and lies in
the boundary of the simplex, then defining a smooth transformation `(·) appears hopeless, while
keeping a unique y∗. Such a reparametrization approach is presumably not appropriate for satu-
rated problem and we leave to further research the investigation of alternative parametrizations.



APPENDICES

In this appendices section, we give the proof that the log-ratio transformation is well defined
(Section 4.A) and we give additional explanations on the UQSA algorithm (Section 4.B).

4.A Proof of Lemma 4.4.3

In the log-ratio transformation, `j(y) = eyj

1+
∑d−1
i=1 e

yi
for j ∈ {1, . . . , d− 1} so

∂`j
∂yi

=


eyi

1+
∑d−1
k=1 e

yk
− eyi

(1+
∑d−1
k=1 e

yk )2
eyi = `i − `2i if i = j,

− eyj

(1+
∑d−1
k=1 e

yk )2
eyi = −`i`j else,

so D(`) is given by (4.4.3). We denote by det(D(`)) the determinant of the D(`) matrix. We
start by simplifying a little det(D(`)): multiplying each column by 1

`i
, which amounts to multiply

the determinant by
∏d−1
i=1 `i, we get:

det(D(`)) =

d−1∏
i=1

`i

∣∣∣∣∣∣∣∣∣∣
1− `1 −`1 . . . −`1
−`2 1− `2 . . . −`2

...
. . .

. . .
...

−`d−1
. . . −`d−1 1− `d−1

∣∣∣∣∣∣∣∣∣∣
.

Multiplying each row by 1
`i

, which amounts to multiply the determinant by
∏d−1
i=1 `i, we get:

det(D(`)) =

d−1∏
i=1

`2i

∣∣∣∣∣∣∣∣∣∣

1−`1
`1

−1 . . . −1

−1 1−`2
`2

. . . −1
...

. . .
. . .

...

−1
. . . −1

1−`d−1

`d−1

∣∣∣∣∣∣∣∣∣∣
.

We proceed by induction. We denote det(D(`))∏d−1
i=1 `

2
i

=: D(`1, . . . , `d−1). Our induction hypothesis

writes:

D(`1, . . . , `d−1) =
1−

∑d−1
i=1 `i∏d−1

i=1 `i
. (Hd)
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• For d = 3, D(`1, `2) =

∣∣∣∣∣1−`1`1
−1

−1 1−`2
`2

∣∣∣∣∣ = 1−`1−`2
`1`2

.

• Let d ∈ N∗, d ≥ 3, be given. Let us assume (Hd) and let us show (Hd+1).

Developing along the last column:

D(`1, . . . , `d) =
1− `d
`d
D(`1, . . . , `d−1) + 1∆d−1,d − 1∆d−2,d + · · ·+ (−1)d+2∆1,d

where ∆i,j denotes the (i, j) minor associated to the determinant D(`1, . . . , `d).

Each minor ∆d−i,d consists in a last row containing only ”−1”, a diagonal containing{
1−`k
`k

}
1≤k≤d−i−1

, and for i > 1, terms just above the diagonal in
{

1−`k
`k

}
d−i+1≤k≤d−1

and

−1 everywhere else.

Subtracting the last row to the other rows (which amounts to add +1 on every row except
the last) makes appear ”0” and makes the calculation straightforward. For example, for
i = 1, subtracting the last row in (∗):

∆d−1,d =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1−`1
`1

−1 . . . −1

−1 1−`2
`2

. . . −1
...

. . .
...

1−`d−2

`d−2
−1

−1
. . . −1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣
(∗)
=

∣∣∣∣∣∣∣∣∣∣∣∣

1
`1

0 . . . 0

0 1
`2

. . . 0
...

. . .
...

1
`d−2

0

−1
. . . −1 −1

∣∣∣∣∣∣∣∣∣∣∣∣
= −

d−2∏
i=1

1

`i
.

Likewise, we find: ∆d−2,d =
∏d−1
i=1,i 6=d−2

1
`i

, ∆d−3,d = −
∏d−1
i=1,i 6=d−3

1
`i
, . . .

Putting under the same denominator:

D(`1, . . . , `d) =
(1− `d)(1−

∑d−1
i=1 `i)− `d`d−1 − `d`d−2 − · · · − `d`1∏d

i=1 `i

=
1−

∑d
i=1 `i∏d

i=1 `i
.

4.B UQSA algorithm: a projection approach

In this subsection, we give the intuition underlying the UQSA algorithm.
Note that the problem (4.1.1) is equivalent to finding φ∗ ∈ Lπ2,q such that

∫
Θ

∫
V

H

∑
j≥0

ujBj(θ), v, θ

µ(θ,dv)

Bi(θ)π(dθ) = 0q, ∀i ∈ N.

Note also that the SA approach for a single θ corresponds to the update:

φ̂(k+1)(θ) = φ̂(k+1)(θ)− γk+1H(φ̂(k)(θ), Vk+1, θ).

Integrating in θ and V the equation above gives the following update equation of the φ̂(k+1)

components, u
(k+1)
i :

u
(k+1)
i = u

(k)
i − γk+1

∫
Θ×V

H(φ̂(k)(θ), v, θ)Bi(θ)µ(θ,dv)π(dθ), i ≤ m.
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The SA algorithm consists in the following update of the sequence, replacing the integral by
a Monte Carlo approximation:

u
(k+1)
i = u

(k)
i −

γk+1

Mk+1

Mk+1∑
s=1

H(φ̂(k)(θ(k+1)
s ), V (k+1)

s )Bi(θ
(k+1)
s ), i ≤ mk+1,

where mk and Mk are nondecreasing integer sequences converging to ∞ and (θ
(k+1)
s , V

(k+1)
s , s =

1, . . . ,Mk+1) independent variables sampled under π(dθ)µ(θ,dv).
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CHAPTER 5

K.O.T. PORTFOLIO OPTIMIZATION
WITH TARGET DISTRIBUTION

Note. This chapter corresponds to a work in progress with Z. Szabó.

Abstract. Portfolio optimization is one of the most important task in finance. The aim
is to create an investment portfolio matching the investor’s preference. Minimum divergence
portfolio consists in finding the portfolio which fits the best the ideal target portfolio distribution
the investor has in mind. Previous applications focused on the Kullback-Leibler or f -divergence
measures, with model assumptions on the historical returns possibly erroneous and uncompatible
with the targeted distribuion. In this chapter, we investigate the minimum kernel and optimal
transport (K.O.T.) divergences-based portfolios, with parametric distributions allowing to target
light tails or positively skewed distributions, which are generally appealing properties from the
investor’s point of view. Our approach is model-free on the returns. In this chapter, we compute
explicit forms of these divergence metrics in terms of the target distribution. In the kernel-
based Maximum Mean Discrepancy (MMD), we establish new convergence guarantees in case
of bounded kernels as well as for unbounded exponential kernels, when the MMD estimator is
explicit in the target distribution. The approach is illustrated through numerical experiments.

5.1 Introduction

Portfolio optimization [FKPF12] is among the most fundamental and important tasks in finance.
In this chapter we show how kernel techniques and optimal transport can be leveraged to de-
sign efficient portfolio optimization schemes, and present novel theoretical results reducing the
uncertainty in the estimates of the objectives which can also be of independent interest.

In portfolio optimization the goal is to find an allocation in line with the preferences of an
investor. In practice, the task can be formulating for instance by optimizing a concave utility
function encoding the investor’s priorities [Mer71]. However, oftentimes there is a significant
gap between the investor’s targeted and the realized portfolio distributions. Traditional portfolio
optimization schemes (such as mean-variance optimization; [Mar52]) take into account the first
two moments of the portfolio distribution which can be insufficient since financial returns are
generally not Gaussian and exhibit non-zero excess skewness and kurtosis [Con01]. Approaches
considering the smoothing of the mean-variance utility function [Jor86, LW03, KFCF14] and
the inclusion of higher order moments [MZ10] have become more and more dominant. Though
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these techniques relax the mean-variance paradigm, they are restricted to considering finite
many moments of the portfolio distribution only.

These encouraging directions to match the investors’ preferences have been recently super-
seded by the so-called target distribution technique [CW12, Las19], where the goal is to find
a portfolio weight w ∈ W ⊆ Rd by minimizing the discrepancy (measured in the sense of a
divergence D) between the associated portfolio return distribution P = w>R ∼ Pw and the
investor’s target distribution of portfolio returns PT :

w∗ = arg min
w∈W

D (Pw,PT ) . (5.1.1)

The domain W expresses the constraints on the portfolio weights; for instance budget (W1), or
budget with non-negativity constraints (W≥0

1 ) can be formulated as

W1 =

w ∈ Rd :
d∑
j=1

wj = 1

 , W
≥0
1 =

w ∈
(
R≥0

)d
:

d∑
j=1

wj = 1

 . (5.1.2)

[CW12] made use of φ-divergences (D(P,Q) = Dφ(P,Q) =
∫
R φ
(

dP
dQ(x)

)
dx where P is assumed

to be absolutely continuous with respect to Q ( dP
dQ denotes the corresponding Radon-Nikodym

derivative), with specific focus on power divergences.1 Particularly, the authors proved and used
the dual representation

Dφ(Pw,PT ) = sup
P : supp(P)=supp(PT )

dφ(Pw,PT ,P), (5.1.3)

dφ(Pw,PT ,P) =

∫
R
φ

(
dP

dPT
(x)

)
dPT (x) +

∫
R
φ′
(

dP
dPT

(x)

)
dPw(x)−

∫
R
φ′
(

dP
dPT

(x)

)
dP(x)

to determine the optimal portfolio weights with supp denoting the support of its argument.

[Las19] specialized the φ-divergence framework to Kullback-Leibler divergence when φ(x) =
x log(x)−x+ 1, and assumed PT to be a generalized normal (GN) distribution with pdf fT (t) =

2
− γ+1

γ γ
βΓ(1/γ) e

− 1
2

(
|t−α|
β

)γ
(α ∈ R, β > 0, γ > 0). With this specific choice, he showed (Proposition 5.1)

that (5.1.1) is equivalent to

w∗ = arg min
w∈W

1

2βγ
EP∼Pw [|P − α|γ ]−H(P ), (5.1.4)

where H(P ) denotes the Shannon differential entropy of P . By further assuming that P is a
mixture of Gaussian distribution (MoG) EP∼PP [|P − α|γ ] takes a closed form expressed via the
Kummer’s confluent hypergeometric function [Las19, Proposition 5.4].

Despite the pioneering nature of these contributions, they unfortunately suffer from serious
computational and modelling bottlenecks: the first approach [CW12] requires ad-hoc heuristics
for encoding the constraints in (5.1.3), the second work [Las19] needs strong parametric assump-
tions (GN) in addition to the slight incompatibility of the GN and MoG assumptions. It is also
worth mentioning the related approach of [GLLN20] who proposed an optimal-transport based
technique to reach a target terminal wealth distribution in the continuous time setting. Their
goal was to find the portfolio allocation path wt, from time t = 0 to some horizon H, by mini-
mizing the integral over the time horizon of a given cost function f augmented with a penalty
term of the form D(PwH ,PT ). The penalization aims at steering the terminal distribution of the
portfolio PH = w>HRH towards the pre-defined target distribution PT . Similarly to [Las19], one
of the discrepancy measures D was chosen to be the Kullback-Leibler divergence. The returns

1In this case φ(x) = xγ−1−γ(x−1)
γ(γ−1)

where γ ∈ R.
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were assumed to follow the Black-Scholes model with time-dependent drift and volatility, which
again falls under the umbrella of parametric portfolio return distributions.

In order to mitigate these severe shortcomings, in this chapter we propose to use alterna-
tive divergence measures based on kernels and optimal transport: Maximum Mean Discrepancy
(MMD, [SGSS07, GBR+12]), Kernel Stein Discrepancy (KSD, [CSG16, LLJ16]) and Wasserstein
distance (WAD, [Vil08, PC19]). There are various reasons which motiviate the choice of these
discrepancy measures. They are flexible in terms of the target distribution: Stein discrepancy
requires the knowledge of the pdfs up to normalizing constant only, the Wasserstein distance can
be written explicitly as a function of the inverse cdf (see (5.2.6)), the mean embedding (which
form the basis of MMD) can be computed analytically for different target distribution and kernel
pairs (as it will be detailed in Section 5.3.1). Successful applications demonstrating the prac-
ticality of these discrepancy measures include for instance model criticism [LDG+14, KKK16],
two-sample [HBM07, GBR+12], independence [GFT+08, PBSP18] and goodness-of-fit testing
[LLJ16, CSG16, JXS+17, GM17, HM18, GWJ+20, GLHL20, BLY21], portfolio valuation [BF19],
statistical inference of generative models [BBDG19] and post selection inference [YUFT18],
causal discovery [MPJ+16, PBSP18], generative adversarial networks [DRG15, LSZ15, BSAG18],
assessing and tuning MCMC samplers [GM15, GM17, HM18, GRM20], or designing Monte-Carlo
control functionals for variance reduction [OGC17, OCBG19, SKN+20], among many others.

Our contributions are two-fold:

1. on the theoretical side: (i) we compute analytically the mean embedding (the underlying
representation of probability measures used in MMD) for various target distribution -
kernel pairs (Section 5.3.1). (ii) We show (Theorem 5.2) that such analytical knowledge
leads to better concentration properties of MMD estimators, (iii) extend the result to the
case of unbounded kernels (Theorem 5.3; recently motivated in finance for instance by
[BF19]), and (iv) present minimax lower bounds (Theorem 5.4).

2. on the practical front: we demonstrate that the flexibility of considered measures result in
more efficient portfolios in terms of skewness and kurtosis (Section 5.4-5.5), which provides
a novel application of these divergence measures.

The chapter is organized as follows: in Section 5.2 we formulate our problem after introduc-
ing a few notations. Section 5.3 is devoted to our main theoretical contributions with focus on
explicit mean-embedding functions and concentration results. The numerical efficiency of our
approach is demonstrated on simulated data (Section 5.4) and on real-world financial bench-
marks (Section 5.5). Conclusions are drawn in Section 5.6. The proofs of our major results are
collected in Section 5.A. In Section 5.B tools which are useful for practical implementation are
gathered. Section 5.C contains external statements used in our proofs.

5.2 Problem formulation and optimization

In this section we formulate our problem: we define the divergence measures used in our portfolio
optimization objective functions, we describe their estimators and the optimization applied.

Notations: Natural numbers are denoted by N = {0, 1, . . .}. We use the shorthand N∗ =
{1, 2, . . .} for positive integers. For N ∈ N∗, [N ] = {1, . . . , N}. Positive reals are denoted
by R+. The vector of ones in Rd is 1d; the transpose of a vector v is denoted by v>. The
beta function for α ∈ R+ and β ∈ R+ is defined as B(α, β) =

∫ 1
0 t

α−1(1 − t)β−1dt. The
minimum of a, b ∈ R is denoted by a ∧ b; their maximum is a ∨ b. Given (Ls)s∈[S] ⊂ R,
the associated order statistics are L(1) ≤ . . . ≤ L(S). The indicator function of a set S is
1S : 1S(s) = 1 if s ∈ S, 1S(s) = 0 otherwise. Let mQ and σQ denote the expectation and
the standard deviation of a random variable with distribution Q. The skewness is defined

as the standardized third moment ζQ = Ex∼Q
[
((x−mQ)/σQ)3

]
. The excess kurtosis is the
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standardized fourth moment κQ = Ex∼Q
[
((x−mQ)/σQ)4

]
− 3. The notation bn = O(an) (resp.

bn = o(an)) means that ( bnan )n∈N is bounded (resp. limn→∞
bn
an

= 0). For random variables

Xn = Oa.s(an) (resp. Xn = oa.s(an)) means that
(
Xn
an

)
n∈N

is bounded (resp. converges to zero)

almost surely. Φ refers to the cdf of the standard normal distribution: Φ(x) =
∫ x
−∞ e

− t
2

2 dt.
The uniform distribution on the interval [a, b] is denoted by U [a, b]. Let X be a non-empty
set. A function K : X × X → R is called kernel if there exists a feature map ϕ from X to a
Hilbert space H such that K(x, y) = 〈ϕ(x), ϕ(y)〉H for all x, y ∈ X. While the feature map
and the Hilbert space might not be unique one can always take the reproducing kernel Hilbert
space (RKHS) HK associated to K. HK is a Hilbert space of X → R functions characterized
by two properties: K(x, ·) ∈ HK (∀x ∈ X) and f(x) = 〈f,K(x, ·)〉HK (∀x ∈ X, f ∈ HK).2

The first property describes the basic elements of HK , the second one is called the reproducing
property; combining the two properties makes the canonical feature map and feature space
explicit: K(x, y) = 〈ϕ(x), ϕ(y)〉HK where ϕ(x) = K(·, x) ∈ HK . The closed unit ball of HK is

denoted by BK =
{
f ∈ HK : ‖f‖HK ≤ 1

}
. Throughout the chapter the kernel K is assumed

to be measurable, and X = R. Let M+
1 (R) denote the set of Borel probability measures on R. A

divergence is a mapping D : M+
1 (R)×M+

1 (R)→ R≥0 measuring the discrepancy between two
probability distributions P and Q ∈M+

1 (R). For two vectors a ∈ Rd1 and ∈Rd2 , [a; b] ∈ Rd1+d2

denotes their concatenation.

Having introduced these notations, let us now define our divergences of interest.

• Maximum Mean Discrepancy (MMD) [SGSS07, GBR+12]: For a given kernel K with
associated RKHS HK , let

µK(P) =

∫
R
K(x, ·)dP(x) ∈ HK

denote the mean embedding [BTA04, SGSS07] of the probability distribution P ∈ M+
1 (X);

the integral is meant in Bochner sense. The MMD of two distributions P,Q ∈ M+
1 (X) is a

semi-metric defined by

MMDK (P,Q) = ‖µK(P)− µK(Q)‖HK = sup
f∈BK

[Ex∼Pf(x)− Ey∼Qf(y)] ,

=
√
Ex∼PEx′∼PK(x, x′) + Ey∼QEy′∼QK(y, y′)− 2Ex∼PEy∼QK(x, y), (5.2.1)

where the second form (supf∈BK ) encodes that the discrepancy of two probability distributions
is measured by their maximal mean discrepancy over BK . It also shows that MMD belongs
to the class of integral probability metrics [Zol83, Mül97].
The mean embedding and MMD are well-defined when Ex∼P

√
K(x, x) <∞. MMD is metric

if and only if the kernel is characteristic [FGSS08, SGF+10]; examples of characteristic kernels
include the Gaussian, Laplacian, Matérn, inverse multiquadrics or the B-spline kernel.

• Kernel Stein Discrepancy (KSD): The Kernel Stein Discrepancy (KSD, [CSG16, LLJ16])
is defined for probability distributions admitting continuously differentiable pdfs. Assume that
P and Q have pdf-s p and q, and we are given a kernel K : X×X→ R. Let the Stein operator

be defined as (Sqf)(x) : R→ R, (Sqf)(x) = [q(x)f(x)]′

q(x) = [log q(x)]′f(x) + f ′(x) = 〈f, ξq(x, ·)〉K
with

ξq(x, ·) = [log q(x)]′K(x, ·) +
∂K(x, ·)
∂x

.

2The shorthand K(·, x) stands for the function y ∈ X 7→ K(y, x) ∈ R while keeping x ∈ X fixed.
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KSD is defined as

TK(P,Q) = sup
f∈BK

[Ex∼Q(Sqf)(x)− Ex∼P(Sqf)(x)] = sup
f∈BK

〈
f,Ex∼Pξq(x, ·)︸ ︷︷ ︸

=:gP,Q

〉
HK

= ‖gP,Q‖HK ,

(5.2.2)

where the first form shows the close resemblance to MMD (f is changed to Sqf), and the
2nd equality follows from the fact that Ex∼Q(Sqf)(x) = 0 and by the symmetry of BK

(f ∈ BK ⇒ −f ∈ BK). Let us define the Stein kernel

hq(x, y) = sq(x)sq(y)K(x, y) + sq(y)∂xK(x, y) + sq(x)∂yK(x, y) +
∂2K(x, y)

∂x∂y
. (5.2.3)

IfK is c0-universal [SFL11], Ex∼PEy∼Phq(x, y) <∞, and Ex∼Q [(log p(x))′ − (log q(x))′]2 <∞,
TK(P,Q) = 0 iff P = Q. Moreover, the squared KSD can be reformulated in terms of
expectations

T2
K(P,Q) = Ex∼PEy∼Phq(x, y) (5.2.4)

similarly to MMD in (5.2.1).

• Finite set Stein discrepancy (FSSD): Let us assume that we are given J locations V =
{vj}j∈[J ] ⊂ R, consider the Stein witness function gP,Q defined in (5.2.2), and let X ⊂ R. By

changing the RKHS norm to ‖·‖L2(V) one gets the FSSD measure [JXS+17] of P,Q ∈M+
1 (X):

FSSDK(P,Q) = ‖g‖L2(V) =

√√√√ 1

J

∑
j∈[J ]

g2
P,Q(vj). (5.2.5)

If the vj locations are sampled from a measure ν which is absolutely continuous w.r.t. the
Lebesgue measure, X is a connected open set, k is real analytic, in addition to the standard
KSD requirements, then it is known [JXS+17, Theorem 1] that for any J ∈ N∗, ν-almost
surely FSSDK(P,Q) = 0 iff P = Q.

• Wasserstein distance (WAD): Let p ≥ 1. The Wasserstein distance [PC19] of the proba-
bility measures P,Q ∈M+

1 (R) is defined as

Wp(P,Q) =

[
inf

J∈C(P,Q)

∫
R2

|x− y|p dJ(x, y)

]1/p

=

(∫ 1

0

∣∣∣F−1
P (t)− F−1

Q (t)
∣∣∣p dt

)1/p

=
∥∥∥F−1

P − F−1
Q

∥∥∥
Lp([0,1])

, (5.2.6)

where C(P,Q) denotes the set of all joint measures (so-called couplings) whose marginals are
P and Q, F−1

P and F−1
Q are the inverse cdfs of P and Q, and Lp([0, 1]) refers to the real-valued

p-power Lebesgue-integrable functions on [0, 1].

Having defined the divergence measures to the minimum-divergence portfolio optimization
(5.1.1), we now turn to their empirical estimation. In our application, one estimates the diver-
gence between P = Pw,N (empirical portfolio returns) and Q = PT (explicit target distribution).

Particularly, one has access to samples {rn}n∈[N ]
i.i.d.∼ PR, and the goal is to solve

arg min
w∈W

D̂ (Pw,N ,PT ) ,

where Pw,N denotes the empirical measure associated to the samples {w>rn}n∈[N ]
i.i.d.∼ Pw, and

D̂ is the estimated divergence with D = MMDK , TK , FSSDK or Wp. The empirical versions of
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Divergence D Estimator D̂

MMD (5.2.1) M̂MD
2

K,e (Pw,N ,PT ) = 1
N(N−1)

∑
i,j∈[N ]
i 6=j

K
(
w>ri,w

>rj
)

+ Et∼PTµK(PT )(t)

− 2
N

∑
i∈[N ] µK(PT )(w>ri)

KSD (5.2.4) T̂
2
K,V (Pw,N ,PT ) = 1

N2

∑
i,j∈[N ] hPT

(
w>ri,w

>rj
)

FSSD (5.2.5) F̂SSD
2

K(Pw,N ,PT ) = 2
N(N−1)

∑
i<j ∆

(
w>ri,w

>rj
)
a

WAD (5.2.6) Ŵp(Pw,N ,PT ) =
[

1
N

∑
j∈[N ]

∣∣∣(w>r)(j) − F−1
PT

(
j
N

)∣∣∣p] 1
p

a∆ is defined as ∆(a, b) = τ(a)>τ(b), τ(a) = [ξq(a, vj)]j∈[J]/
√
J ∈ RJ .

Table 5.1 – Semi-explicit MMD, KSD, FSD and WAD estimators.

Divergence D Estimator D̂ Complexity

MMD (5.2.1) M̂MD
2

K,e (Pw,N ,PT ) O
(
N2
)

KSD (5.2.4) T̂
2
K,V (Pw,N ,PT ) O

(
N2
)

FSSD (5.2.5) F̂SSD
2

K(Pw,N ,PT ) O(N)

WAD (5.2.6) Ŵp(Pw,N ,PT ) O (N log(N))

Table 5.2 – Semi-explicit MMD, KSD, FSD and WAD estimators and their complexity.

(5.2.1), (5.2.4), (5.2.5) and (5.2.6) are summarized in Table 5.1, in the semi-explicit setting (i.e.
having access to µK(PT ), hPT , ∆ and F−1

PT respectively).
Let us consider the case of MMD in more detail. The discrete version of (5.2.1) lead to the

U and V-statistics based estimators which we elaborate in the following.
Given i.i.d. samples {xi}i∈[N ] ∼ P and {yi}i∈[M ] ∼ Q, one can estimate the squared MMD

by using V- or U-statistics as

M̂MD
2

K,V (PN ,QM ) = ‖µK(PN )− µK(QM )‖2K = ‖µK(PN )‖2HK + ‖µK(QM )‖2HK
− 2 〈µK(PN ), µK(QM )〉HK

=
1

N2

∑
i,j∈[N ]

K (xi, xj) +
1

M2

∑
i,j∈[M ]

K (yi, yj)−
2

NM

∑
i∈[N ]

∑
j∈[M ]

K (xi, yj) ,

(5.2.7)

M̂MD
2

K,U (PN ,QM ) =
1

N(N − 1)

∑
i,j∈[N ]
i 6=j

K (xi, xj) +
1

M(M − 1)

∑
i,j∈[M ]
i 6=j

K (yi, yj)

− 2

NM

∑
i∈[N ]

∑
j∈[M ]

K (xi, yj) , (5.2.8)

where PN = 1
N

∑
n∈[N ] δxn and QM = 1

M

∑
m∈[M ] δym denote the empirical measures. The

estimator M̂MD
2

K,V (PN ,QM ) is non-negative, M̂MD
2

K,U (PN ,QM ) is unbiased; both have com-
putational complexity O

(
(N +M)2

)
. This gives rise in our context to the estimators

M̂MD
2

K,V (Pw,N ,PT,M ) =
1

N2

∑
i,j∈[N ]

K
(
w>ri,w

>rj

)
+

1

M2

∑
i,j∈[M ]

K (ti, tj)
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− 2

NM

∑
i∈[N ]

∑
j∈[M ]

K
(
w>ri, tj

)
,

M̂MD
2

K,U (Pw,N ,PT,M ) =
1

N(N − 1)

∑
i,j∈[N ]
i 6=j

K
(
w>ri,w

>rj

)
+

1

M(M − 1)

∑
i,j∈[M ]
i 6=j

K (ti, tj)

− 2

NM

∑
i∈[N ]

∑
j∈[M ]

K
(
w>ri, tj

)
. (5.2.9)

If the mean embedding µK(Q) can be computed in closed-form, one can alternatively estimate
the squared MMD using the plugin idea of (5.2.7), or that of (5.2.8) as

M̂MD
2

K,e,V (PN ,Q) = ‖µK(PN )− µK(Q)‖2K
= ‖µK(PN )‖2HK + ‖µK(Q)‖2HK − 2 〈µK(PN ), µK(Q)〉HK
=

1

N2

∑
i,j∈[N ]

K (xi, xj) + Ey∼QµK(Q)(y)− 2

N

∑
i∈[N ]

µK(Q)(xi),(5.2.10)

M̂MD
2

K,e,U (PN ,Q) =
1

N(N − 1)

∑
i,j∈[N ]
i 6=j

K (xi, xj) + Ey∼QµK(Q)(y)

− 2

N

∑
i∈[N ]

µK(Q)(xi). (5.2.11)

We call these estimators semi-explicit MMD estimators. Particularly, in our application with
xi = w>ri for the U-statistic variant (which we will use in our numerical experiments; we
dropped the U subscript) this means

M̂MD
2

K,e (Pw,N ,PT ) =
1

N(N − 1)

∑
i,j∈[N ]
i 6=j

K
(
w>ri,w

>rj

)
+ Et∼PTµK(PT )(t)

− 2

N

∑
i∈[N ]

µK(PT )(w>ri). (5.2.12)

There are multiple motivations to use the semi-explicit MMD estimators: (i) they reduce the
computational time fromO

(
(N +M)2

)
toO

(
N2
)
, and (ii) they give rise to better concentration

properties (detailed in the next section).

To optimize the divergence objectives we tailor the cross-entropy method (CEM; [RK04])
to the task. Generally, the true (5.1.1) and similarly the estimated objective functions might
not be convex. In order to tackle this challenge, we use CEM for the optimization

max
w∈W

L(w) := −D̂ (Pw,N ,PT ) , or max
w∈W

L(w) := −D̂ (Pw,N ,PT,M ) . (5.2.13)

The CEM technique is a zero-order optimization approach constructing a sequence of pdfs
f
(
· ;θ(t)

)
which gradually concentrates around the optimum as t → ∞. The idea of the CEM

method is generating samples, followed by adaptively updating f
(
· ;θ(t)

)
based on maximum

likelihood estimate (MLE) relying on the top ρ-percent of the samples (elite in L-sense), and
smoothing; for details see Alg. 1.

To generate portfolio weights in W = W1, one can apply the normal distribution N(m,Σ)
in Rd−1 as a parametric distribution family in CEM. In this case θ = (m,Σ). In accordance
with the constraint W1, (i) CEM estimates ŵ−d := [ŵj ]j∈[d−1], (ii) the final estimate is ŵ =[
ŵ−d; 1− 1>d−1ŵ−d

]
and (iii) during the optimization the goodness of a sample w is evaluated
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Algorithm 1 Maximization of L with CEM

1: Input: Initial value θ(0) > 0, quantile parameter ρ > 0, smoothing parameter β ∈ (0, 1],
sample size S ∈ N∗.

2: for all t = 1, 2, . . . , T do

3: Generate samples: (ws)s∈[S]
i.i.d.∼ f

(
· ;θ(t−1)

)
.

4: Evaluate performance: Ls = L(ws), s ∈ [S].
5: Set level: γt = L(d(1−ρ)Se) // (1− ρ)-quantile of {L(ws)}s∈[S].

6: Estimate new parameter: θ̃(t) = arg maxθ∈Θ
1
S

∑
s∈[S] 1{L(ws)≥γt} log [f (ws;θ)] // MLE

on the elite.
7: Smoothing: θ(t) = (1− β)θ(t−1) + βθ̃(t).
8: Output: ŵ = Ew∼f(· ;θ(T ))w.

(Line 4) via
[
w; 1− 1>d−1w

]
∈ Rd. Line 6 in Alg. 1 takes the form of the empirical mean and

covariance matrix of the elite:

m̃(t) =

∑
s∈[S] 1{L(ws)≥γt}ws∑
j∈[S] 1{L(wj)≥γt}

, Σ̃(t) =

∑
s∈[S] 1{L(ws)≥γt}

(
ws − m̃(t)

) (
ws − m̃(t)

)>∑
j∈[S] 1{L(wj)≥γt}

.

Remark: In case of other constraints (W 6= W1), one can similarly apply the CEM technique,
by either relying on a parametric transformation ` : Rd−1 →W such that w = `(y), or by using
distributions adapted directly to W (for example, when W = W

≥0
1 , the Dirichlet distribution

can be applied).

5.3 Results

This section is dedicated to our theoretical results. In Section 5.3.1 we prove analytical mean em-
beddings for various kernel-distribution pairs; in Section 5.4 we will illustrate them numerically.
We show improved concentration results for MMD estimators using this analytical knowledge
and extend the analysis to unbounded kernels in Section 5.3.2.

5.3.1 Analytical formulas for mean embedding

In this section we show how the mean embedding can be computed in closed-form for the
(K,Q) = (Gaussian-exponentiated, Gaussian) and (Matérn, beta) kernel-distribution pairs, fol-
lowed by a discussion to existing works. The proofs of our results are available in Section 5.A.
The considered kernels are defined in Table 5.3 with their relation illustrated in Fig. 5.1. The
target distributions are defined in Table 5.4; their relation is depicted in Fig. 5.2. The studied
kernels generalize the widely-used Gaussian, Laplacian and exponential ones; the beta distribu-
tion extends the uniform one (in which case α = β = 1).

Let us recall the U-statistic based MMD estimator from (5.2.12):

M̂MD
2

K,e (Pw,N ,PT )

=
1

N(N − 1)

∑
i,j∈[N ]
i 6=j

K
(
w>ri,w

>rj

)
︸ ︷︷ ︸
can be estimated from {rn}n∈[N ]

i.i.d.∼ PR

+Et∼PTµK(PT )(t)︸ ︷︷ ︸
independent of w,
it can be discarded

− 2

N

∑
i∈[N ]

µK(PT )(w>ri).

The analytical knowledge of the mean embedding µK(PT )(x) = Ey∼PTK(x, y) can be leveraged
in the 3rd term of this estimator, this is what we focus on in the sequel. Our results are as
follows.
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Kernel K(x, y) Parameters

Gaussian-exponentiated e−a(x−y)2+bxy a ≥ 0, b ≥ 0

Matérn σ2
0e
−
√

2p+1|x−y|
σ

p!
(2p)! σ0 ∈ R+, σ ∈ R+, p ∈ N

×
∑p

i=0
(p+i)!
i!(p−i)!

(
2
√

2p+1|x−y|
σ

)p−i
Gaussian e−

(x−y)2

2c2 c ∈ R+

Laplacian e−λ|x−y| λ ∈ R+

exponential ebxy b ∈ R+

Table 5.3 – Kernel definitions; their relation is illustrated in Fig. 5.1.

Gaussian
exponentiated

Matérn

exponential Gaussian Laplacian

b=0, a= 1
2c2

a = 0
p→∞, σ0 = 1 p = 0, σ0 = 1, σ = 1

λ

Figure 5.1 – Relation of the kernels in Table 5.3.

Distribution q(x) Parameters

skew Gaussian 2(2πv)−1/2e−
(x−m)2

2v Φ
(
s(x−m)√

v

)
s ∈ R, m ∈ R, v ∈ R+

Gaussian 1√
2πσ2

e−
(x−m)2

2σ2 m ∈ R, σ ∈ R+

beta 1
B(α,β)x

α−1(1− x)β−1 1[0,1](x) α ∈ R+, β ∈ R+

uniform 1[0,1](x)

Table 5.4 – Target distributions; their relation is illustrated in Fig. 5.2.

skew Gaussian beta

Gaussian uniform

s=0, v=σ2 α = β = 1

Figure 5.2 – Relation of the target distributions in Table 5.4.
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Lemma 5.3.1 (Mean embedding: Gaussian target - Gaussian-exponentiated kernel). Let the

target distribution be Gaussian q(x) = 1√
2πσ2

e−
(x−m)2

2σ2 , the kernel be Gaussian-exponentiated

K(x, y) = e−a(x−y)2+bxy where m ∈ R, σ ∈ R+ a ≥ 0, b ≥ 0. Then the mean embedding µK(Q)
can be computed analytically as

µK(Q)(x) =
e
−a(x−m)2

1+2aσ2 +
2bmx+b(b+4a)σ2x2

2(1+2aσ2)

√
1 + 2aσ2

. (5.3.1)

Lemma 5.3.2 (Mean embedding: beta target - Matérn kernel). Let the target distribution be
beta q(x) = 1

B(α,β)x
α−1(1 − x)β−1 1[0,1](x) with α ∈ R+, β ∈ R+, and let the kernel be Matérn

with half-integer ν (ν = p+ 1
2 , p ∈ N), σ0 ∈ R+, σ ∈ R+

K(x, y) = σ2
0e
−
√

2p+1|x−y|
σ

p!

(2p)!

p∑
i=0

(p+ i)!

i!(p− i)!

(
2
√

2p+ 1|x− y|
σ

)p−i
.

Then the mean embedding µK(Q) can be analytically computed as

µK(Q)(x) =
σ2

0

B(α, β)

p!

(2p)!

p∑
i=0

(p+ i)!

i!(p− i)!

(
2
√

2p+ 1

σ

)p−i
×

p−i∑
k=0

(
p− i
k

)
xk
[
(−1)p−i−ke−

√
2p+1x
σ E

√
2p+1
σ

1 ((0 ∨ x) ∧ 1, p− i− k + α− 1, β − 1)

+ (−1)ke
√

2p+1x
σ E

√
2p+1
σ

2 ((0 ∨ x) ∧ 1, p− i− k + α− 1, β − 1)

]
,

where for a, b > −1, Eλ1 and Eλ2 are defined as

Eλ1 (z, a, b) =

∫ z

0
ya(1− y)beλydy, Eλ2 (z, a, b) =

∫ 1

z
ya(1− y)be−λydy

and can be evaluated using Lemma 5.B.1.

Table 5.5 summarizes our results, which we complement with a few remarks:

• Relation to previous work:

– The mean embedding of the Gaussian distribution with Gaussian kernel is [SZS+08]

µK(Q)(x) =
c√

σ2 + c2
e
− (x−m)2

2(σ2+c2) , (5.3.2)

which follows as a specific case of Lemma 5.3.1 by choosing b = 0, a = 1
2c2

, and noticing

that 1
1+2aσ2 = 1

1+σ2

c2

= c2

σ2+c2
and a

1+2aσ2 = 1
2(σ2+c2)

.

– The mean-embedding for the skew Gaussian distribution with the Gaussian kernel
K(x, y) = e−a(x−y)2

is [Ken98, Section 9.2]

µK(Q)(x) =
2√

1 + 2av
Φ

(
2as
√
v(x−m)

(1 + 2av)
√

1 + 2av + s2

)
e−

a(x−m)2

1+2av . (5.3.3)

Choosing s = 0 and v = σ2 in the skew Gaussian distribution, and reparameterizing the
Gaussian kernel as a = 1

2c2
, again gives the mean embedding for the Gaussian target

and Gaussian kernel.
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Q K µK(Q)

Gaussian Gaussian-exponentiated Lemma 5.3.1
beta Matérn Lemma 5.3.2
Gaussian Gaussian Lemma 5.3.1 ⇒ (5.3.2): [SZS+08] ⇐ [Ken98]
skew Gaussian Gaussian (5.3.3): [Ken98]
beta Laplacian Lemma 5.3.2 ⇒ (5.3.4)

Table 5.5 – Summary of obtained analytical mean embedding results.

• Specific case of beta target - Laplacian kernel: The Matérn kernel specializes to the Lapla-
cian one with σ0 = 1 and σ = 1

λ (see Fig. 5.1). Hence, Lemma 5.3.2 implies that the mean
embedding of the beta target (α ∈ R+, β ∈ R+) and Laplacian kernel (λ ∈ R+) is

µK(Q)(x) =
1

B(α, β)

[
e−λxEλ1 ((0 ∨ x) ∧ 1, α− 1, β − 1) + eλxEλ2 ((0 ∨ x) ∧ 1, α− 1, β − 1)

]
,

(5.3.4)

where Eλ1 and Eλ2 can be evaluated using Lemma 5.B.1.

In the next section we show how the analytic knowledge of the mean embedding results in
better concentration properties of the MMD estimators.

5.3.2 Concentration of semi-explicit MMD

In this section, we show that explicit mean embedding, in case of both bounded and unbounded
kernels, leads to better concentration properties of the MMD estimator; the proofs are detailed
in Section 5.A. We start by recalling the concentration of the classical U-statistic based MMD
estimator for bounded kernels (Theorem 5.1), followed by presenting our result (Theorem 5.2)
for the semi-explicit MMD. We generalize the statement to unbounded kernels in Theorem 5.3
and show lower bounds in Theorem 5.4.

Theorem 5.1 (Concentration of M̂MD
2

K,U (P,Q), bounded kernel [GBR+12, Theorem 10]).
Assume that 0 ≤ K(x, x′) ≤ B for all (x, x′), and let ε > 0. Then

P
(

M̂MD
2

K,U (P,Q)−MMD2
K (P,Q) > ε

)
≤ e−

bN2 cε2
8B2 ,

and the same bound holds for the deviation of −ε below.

Using the analytical knowledge of µK(Q) leads to tighter concentration properties as it is
shown by our next result.

Theorem 5.2 (Concentration of M̂MD
2

K,e,U (P,Q), bounded kernel). Assume that A ≤
K(x, x′) ≤ B for all (x, x′), and let ε > 0. Then

P
(

M̂MD
2

K,e,U (P,Q)−MMD2
K (P,Q) > ε

)
≤ e−

bN2 cε2
2(B−A)2 + e

− Nε2

8(B−A)2

and the same bound holds for the deviation below with −ε.

Remarks:
• The proof relies on rewriting the difference M̂MD

2

K,e,U (P,Q)−MMD2
K (P,Q) as a sum of two

U-statistics, followed by applying twice the Hoeffding inequality for U-statistics and union
bounding.
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• Compared to the bound in Theorem 5.1 for M̂MD
2

K,U (P,Q) with A = 0, we gain in terms of

constant in front of Nε2 in the exponent: we have 1
4B2 and 1

8B2 instead of 1
16B2 . This means

that the estimator using the analytical knowledge of µK(Q) brings a factor of 2 improvement
in the exponent.

In Theorem 5.2 the deviation of the estimator M̂MD
2

K,e,U (P,Q) was captured for bounded
kernels. Our next theorem extends the result to the unbounded exponential kernel.

Theorem 5.3 (Concentration of M̂MD
2

K,e,U (P,Q), exponential kernel). Let us consider the

exponential kernel K(x, y) = ebxy (b > 0) with probability measures P and Q satisfying

Ex∼Peλx
2
<∞ and Ex∼Qeλx

2
<∞ ∀λ ∈ R. (5.3.5)

Let the number of samples N taken from P be even. Then for any p ≥ 2, there exists a universal
constant C = Cp,P,K > 0 such that for any ε > 0

P
(

M̂MD
2

K,e,U (P,Q)−MMD2
K (P,Q) > ε

)
≤ C

εpNp/2
,

and the same bound holds for the deviation below with −ε.

Remarks:
• In Theorem 5.3, we showed convergence guarantees for the semi-explicit MMD estimator

with the exponential kernel. The proof relies on combining concentration results for U-
statistics and martingales. One could use similar ideas to cover the two-sample MMD es-

timator M̂MD
2

K,U (P,Q) for the exponential kernel.

• Assumption (5.3.5): This condition holds for instance for generalized normal distributions
(see Table 5.10) with parameter γ > 2. Indeed, for γ = 2 + κ, κ > 0, the pdf of the

generalized normal distribution with parameters α, β and γ is proportional to e
− 1

2
|x−α|2+κ

β .
Hence, Ex∼Peλx

2
<∞ for any λ ∈ R and (5.3.5) is satisfied. Indeed,

– Ex∼Peλx
2 ≤ 1 for any λ ≤ 0 as for λ = 0 one has Ex∼Peλx

2
= 1 and λ ∈ (−∞, 0] 7→ Ex∼Peλx

2

is increasing in λ.

– For λ > 0, for x large enough, there exists a constant c > 0 such that λx2 − 1
2
|x−α|2+κ

β ≤
−c|x|2+κ. Taking the exponential, this quantity is integrable so

Ex∼Peλx
2 ∝

∫
R
e
λx2− 1

2
|x−α|2+κ

β dx ≤
∫
R
e−c|x|

2+κ
dx <∞.

• Convergence of M̂MD
2

K,e,U (P,Q): Theorem 5.2 means the Oa.s
(

1√
N

)
convergence of the

estimator M̂MD
2

K,e,U (P,Q) for bounded kernels. Theorem 5.3 implies the same convergence
for the unbounded exponential kernel. Indeed, for any κ > 0, one can find p such that κp > 2.

Taking εN =
(

1√
N

)1−κ
in the Borel-Cantelli lemma, using Theorem 5.3 and that in this case

1
εpNN

p/2 = N
1
2 (1−κ)p

Np/2 = N−
κp
2 , one arrives at

∑
N∈N∗

P
(

M̂MD
2

K,e,U (P,Q)−MMD2
K (P,Q) > εN

)
≤
∑
N∈N∗

Cp

N
κp
2

<∞.

• Convergence of M̂MD
2

K,e,V (P,Q): In order to understand the convergence be-

haviour of M̂MD
2

K,e,V (P,Q), let us rewrite M̂MD
2

K,e,V (P,Q) − MMD2
K (P,Q) in terms

of M̂MD
2

K,e,U (P,Q) − MMD2
K (P,Q). By the definition of M̂MD

2

K,e,V (P,Q) and
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M̂MD
2

K,e,U (PN ,Q) [see (5.2.10)-(5.2.11)], the two estimators only differ in their first terms
which we denote as

T V1 :=
1

N2

∑
i,j∈[N ]

K (xi, xj) , TU1 :=
1

N(N − 1)

∑
i,j∈[N ]
i 6=j

K (xi, xj) .

These two terms are closely related; let us write T V1 in terms of TU1

T V1 =
1

N2

 ∑
i,j∈[N ]
i 6=j

K (xi, xj) +
∑
i∈[N ]

K (xi, xi)



=
N(N − 1)

N2︸ ︷︷ ︸
1− 1

N

 1

N(N − 1)

∑
i,j∈[N ]
i 6=j

K (xi, xj)


︸ ︷︷ ︸

TU1

+
1

N2

∑
i∈[N ]

K (xi, xi)

which means that T V1 =
(
1− 1

N

)
TU1 + 1

N2

∑
i∈[N ]K (xi, xi). Denoting the the second and

third common terms of M̂MD
2

K,e,V (P,Q) and M̂MD
2

K,e,U (P,Q) by T2 := Ey∼QµK(Q)(y) and

T3 := − 2
N

∑
i∈[N ] µK(Q)(xi), we hence have

M̂MD
2

K,e,V (P,Q)−MMD2
K (P,Q)

= T V1 + T2 + T3 −MMD2
K (P,Q)

=

(
1− 1

N

)
TU1 + T2 + T3 −MMD2

K (P,Q) +
1

N2

∑
i∈[N ]

K (xi, xi)

=

(
1− 1

N

)[
TU1 + T2 + T3 −MMD2

K (P,Q)
]︸ ︷︷ ︸

M̂MD
2

K,e,U (P,Q)−MMD2
K(P,Q)

+
T2

N
+
T3

N
− MMD2

K (P,Q)

N
+

1

N2

∑
i∈[N ]

K (xi, xi) .

This implies that

M̂MD
2

K,e,V (P,Q)−MMD2
K (P,Q)

=

(
1− 1

N

)[
M̂MD

2

K,e,U (P,Q)−MMD2
K (P,Q)

]
+ oa.s

(
1√
N

)
(5.3.6)

as T2 and T3 are constants, and 1
N

∑
i∈[N ]K (xi, xi) converge to a constant by the law of large

numbers.
Since M̂MD

2

K,e,U (P,Q)−MMD2
K (P,Q) = Oa.s

(
1√
N

)
, (5.3.6) means that M̂MD

2

K,e,V (P,Q)−

MMD2
K (P,Q) = Oa.s.

(
1√
N

)
also holds.

• Convergence of M̂MDK,e,V (P,Q): Considering the estimator without square, since

Oa.s
(

1√
N

)
(∗)
=
∣∣∣M̂MD

2

K,e,V (P,Q)−MMD2
K (P,Q)

∣∣∣
=
∣∣∣M̂MDK,e,V (P,Q)−MMDK (P,Q)

∣∣∣ [ M̂MDK,e,V (P,Q)︸ ︷︷ ︸
≥0 from (5.2.10)

+ MMDK (P,Q)︸ ︷︷ ︸
≥0

]
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≥
∣∣∣M̂MDK,e,V (P,Q)−MMDK (P,Q)

∣∣∣MMDK (P,Q)

one gets that
∣∣∣M̂MDK,e,V (P,Q)−MMDK (P,Q)

∣∣∣ = Oa.s
(

1√
N

)
by using in (∗) the previously

established convergence M̂MD
2

K,e,V (P,Q)−MMD2
K (P,Q) = Oa.s.

(
1√
N

)
.

It is known [TSS16, Theorem 2] that the rate 1√
N

for bounded continuous radial kernels of

the form K(x, y) =
∫∞

0 e−t(x−y)2
dν(t) with ν bounded non-negative measure is optimal in the

two-sample setting for the class of probability measures with infinitely differentiable density.
We prove that a similar result holds for the considered one-sample setting and unbounded
exponential kernel.

Theorem 5.4 (Minimax rate for one-sample MMD estimators, exponential kernel). Let us
consider the exponential kernel K(x, y) = ebxy (b > 0). Let P be the set of all Borel probability
measures P on R for which µk(P) is well-defined, in other words Ex∼P

√
K(x, x) < ∞ for all

P ∈ P. Let {xn}n∈[N ]
i.i.d.∼ P. Then

inf
M̂MDN

sup
P,Q∈P

P
(∣∣∣M̂MDN −MMDK (P,Q)

∣∣∣ ≥ c√
N

)
≥ max

e−a2b
2

4
,
1−

√
a2b
2

2


for some finite constant c > 0, arbitrary constant a > 0, and M̂MDN runs over all the estimators
using the samples {xn}n∈[N ].

Remarks:
• Theorem 5.4 shows that MMDK (P,Q) with K being the exponential kernel cannot be esti-

mated at a rate faster than 1√
N

by any M̂MDN estimator for all P,Q ∈ P. The fact that the

rate 1√
N

is achievable was shown in Theorem 5.3.

• The proof relies on the Le Cam’s method (as [TSS16]). The main technical difference and
challenge which were resolved are that using the unbounded exponential kernel one requires
a dedicated MMD computation (resolved separately in Lemma 5.A.2), and with this need the
parameter dependence of MMD becomes more intricate.

• The condition Ex∼P
√
K(x, x) < ∞ appearing in the definition of P can only be milder than

(5.3.5), since the former is a specific case of (5.3.5) with λ = b
2 . In fact, (5.3.5) is more

restrictive as it can be seen for instance for Gaussian distributions P = N
(
m,σ2

)
. Indeed, in

this case a standard calculation shows that Ex∼P
√
K(x, x) = e

m2

1−bσ2 1√
1−σ2b

which is finite (or

equivalently P ∈ P) iff σ2 < 1/b. However, Ex∼Peλx
2 ∝ 1√

1−2λσ2
which is finite iff λ < 1

2σ2 ;

in other words the Gaussian distributions N
(
m,σ2

)
do not obey (5.3.5). This suggests that

Theorem 5.3 might also hold under milder conditions.
In this section, we have shown the theoretical advantages of using explicit mean embedding

when available. In the next sections, we demonstrate the improved convergence of the semi-
explicit MMD on simulated (Section 5.4) and on real-world (Section 5.5) portfolio benchmarks.

5.4 Experiments on simulated data

In this section we demonstrate the efficiency of the investigated portfolio optimization scheme
on simulated data. We designed two sets of experiments:

1. Advantage of semi-explicit MMD: Recall that our objective (5.2.13) can be written as
divergence minimization over the portfolio weights

min
w∈W

L(w) := D̂ (Pw,N ,PT ) , or min
w∈W

L(w) := D̂ (Pw,N ,PT,M ) .
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PT K µK(PT )

Gaussian Gaussian (5.3.2)
Gaussian exponential (5.3.1)
beta Laplacian (5.3.4)

Table 5.6 – Summary of the investigated target distribution (PT ) - kernel (K) pairs, with the
associated analytical mean embeddings.

In the first three experiments (Section 5.4.1), we investigate the practical benefits of the
explicit knowledge of the mean embedding on the objective L. Our goal is two-fold: to
numerically illustrate the improved concentration properties (Theorem 5.2) of the semi-
explicit MMD estimators on the objective L; the experiments also enable one to focus
on the best performing (target distribution, kernel) pairs on the real-world benchmarks
(Section 5.5). The investigated (target distribution, kernel) pairs with the underlying
explicit mean embeddings are summarized in Table 5.6. The rational behind these selected
pairs are as follows:

• the Gaussian-Gaussian case corresponds to a standard choice,

• the exponential kernel is a popular example of unbounded kernels,

• the first two experiments relying on Gaussian target (and hence unbounded support)
is complemented with the beta target distribution having bounded support.

In addition to MMD, in our first experiment we also include the KSD measure for illus-
tration. The experiments are well-specified in the sense that there exists an optimal w∗

such that D(Pw∗ ,PT ) = 0.4

2. Misspecified setting: The goal of this experiment (Section 5.4.2) is to go one step further,
and study the impact of misspecification, in other words when D(Pw∗ ,PT ) 6= 0.

In these experiments, we will consider two-dimensional returns (d = 2) with budget con-
straints W = W1 defined in (5.1.2).

5.4.1 Advantage of semi-explicit MMD

This section is dedicated to the illustration of the advantage of the closed-form knowledge of
mean embedding. We will consider two different settings: in the first case the return R ∈ R2

will be normally distributed, in the second case R will consist of beta random variables. In both
cases, the components of the random variable R are independent, either normal or beta, and R
can be specified by its mean and its covariance. In order to guarantee that the problem is well-
specified, we assume that there exists an optimal portfolio w∗ ∈W, and the target distribution
PT is chosen to be equal to the distribution of (w∗)>R ∈ R, in other words PT = Pw∗ . Given w∗

and R, the resulting distribution of the portfolio return (w∗)>R is normal in the first case, linear
combination of beta in the second case. Denoting by mR and ΣR the mean and covariance of
R, the mean and the variance of the (w∗)>R distribution can be computed as

m = w∗>mR and σ2 = w∗>ΣRw∗. (5.4.1)

In our experiments, we chose

mR =

[
0.02
0.04

]
, ΣR =

[
0.01 0

0 0.03

]
, w∗ =

[
0.2
0.8

]
.
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Gaussian returns, Gaussian kernel: In this experiment, we assume that the distribution of

R ∈ R2 is Gaussian, and we consider the Gaussian kernel K(x, y) = e−
(x−y)2

2c2 with c > 0. Let us
detail the estimators used: the two-sample MMD, the semi-explicit MMD and the KSD one.

• Two-sample MMD: Let us recall the formula of the two-sample MMD estimator (5.2.11):

M̂MD
2

K,U (Pw,N ,PT,M ) =
1

N(N − 1)

∑
i,j∈[N ]
i 6=j

K
(
w>ri,w

>rj

)
+

1

M(M − 1)

∑
i,j∈[M ]
i 6=j

K (ti, tj)

− 2

NM

∑
i∈[N ]

∑
j∈[M ]

K
(
w>ri, tj

)
.

Replacing K by its analytical form, one obtains that

M̂MD
2

K,U (Pw,N ,PT,M ) =
1

N(N − 1)

∑
i,j∈[N ]
i 6=j

e−
(w>ri−w>rj)

2

2c2 +
1

M(M − 1)

∑
i,j∈[M ]
i 6=j

e−
(ti−tj)

2

2c2

− 2

NM

∑
i∈[N ]

∑
j∈[M ]

e−
(w>ri−tj)

2

2c2 .

• Semi-explicit MMD: The semi-explicit MMD estimator (5.2.12) is recalled here:

M̂MD
2

K,e (Pw,N ,PT ) =
1

N(N − 1)

∑
i,j∈[N ]
i 6=j

K
(
w>ri,w

>rj

)
+ Et∼PTµK(PT )(t)

− 2

N

∑
i∈[N ]

µK(PT )(w>ri).

We can replace K by its analytical value and from (5.3.2) it known that µK(PT )(x) =

c√
σ2+c2

e
− (x−m)2

2(σ2+c2) . One can obtain the second term of the squared MMD Et∼PTµK(PT )(t)

via standard integration. Indeed, since PT is normal with mean m and standard deviation

σ, by definition Et∼PTµK(PT )(t) =
∫
R µK(PT )(t) 1√

2πσ2
e−

(t−m)2

2σ2 dt which can be simplified

by recognizing the integral of a normal distribution3:

Et∼PTµK(PT )(t) =
c√

c2 + 2σ2
.

The explicit MMD then takes the form

M̂MD
2

K,e (Pw,N ,PT ) =
1

N(N − 1)

∑
i,j∈[N ]
i 6=j

e−
(w>ri−w>rj)

2

2c2 +
c√

c2 + 2σ2

− 2

N

∑
i∈[N ]

c√
σ2 + c2

e
−(w>ri−m)

2

2(σ2+c2) .

3This formula can be obtained by noticing that − (t−m)2

2(σ2+c2)
− (t−m)2

2σ2 = − (t−m)2(c2+2σ2)
2σ2(σ2+c2)

. Denoting by

s2 = σ2(σ2+c2)

c2+2σ2 , one gets that Et∼PT µK(PT )(t) = c√
σ2+c2

∫
R

1√
2πσ2

e
− (t−m)2

2s2 dt = c√
c2+2σ2

∫
R

1√
2πs2

e
− (t−m)2

2s2 dt =

c√
c2+2σ2

.
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Figure 5.3 – Boxplots of the objective values for Gaussian returns (PR) and Gaussian kernel

(K). Plotted: w1 7→ M̂MD
2

K,U (Pw,N ,PT,M ) , M̂MD
2

K,e (Pw,N ,PT ) , T̂
2
K,U (Pw,N ,PT ), with port-

folio weight w = [w1; 1− w1]. The optimal portfolio weight is w∗ = [w∗1; 1− w∗1] with w∗1 = 0.2.
Left: N = 100 samples. Right: N = 5× 103 samples.

• KSD: The KSD estimator can be computed using the partial derivatives of K (given in
Table 5.11), the score function of PT in the hq formula (5.2.3), followed by the form of

T̂
2
K,U (Pw,N ,PT ) in (5.2.4); see Lemma 5.A.1 for the detailed computation. The resulting

estimator is

T̂
2
K,U (Pw,N ,PT )

=
1

N(N − 1)

∑
i,j∈[N ]
i 6=j

[(
w>ri −m

) (
w>rj −m

)
σ4

−
(
w>ri −w>rj

)2 (
σ2 + c2

)
σ2c4

+
1

c2

]
e−

(w>ri−w>rj)
2

2c2 .

We illustrate the evolution of the various objectives as a function of w = [w1; 1 − w1] by
varying the value of w1 in the set {0.1, 0.15, 0.2, . . . , 0.4}. We consider two different situations:
one is the large-sample case (N = M = 5000), the other is the small-sample case (N = M = 100).

We evaluate the objectives on samples {ri}i∈[N ]
i.i.d.∼ N (mR,ΣR) and {ti}i∈[M ]

i.i.d.∼ N
(
m,σ2

)
where m and σ2 are defined in (5.4.1). The kernel bandwidth c was taken to be equal to
the standard deviation of {w>ri}i∈[N ] for each w = [w1; 1 − w1]. In order to investigate the
robustness of the estimators, we report the median values, quartiles and extreme values of the
estimators as a function of the weight w1 using 15 repetitions. The corresponding summary
statistics are available in Fig. 5.3. As the figure shows the estimated MMD and Stein objectives
follow a U-shape as a function of w1 and take their minimum at w∗1 = 0.2. Notice that the scale
on the y-axis is different for the MMD estimators (l.h.s.) and for the Stein estimator (r.h.s.); the
latter increases more rapidly as we move away from w∗1 = 0.2. In accordance with Theorem 5.2
the semi-explicit MMD estimator shows improved concentration properties, and this behaviour
is particularly emphasized in the small-sample regime.
Gaussian returns, exponential kernel: In this experiment, we follow the same assumption
of Gaussian returns, but we consider the unbounded exponential kernel K(x, y) = ebxy with
b > 0. The two-sample MMD estimator is calculated via (5.2.11). The semi-explicit MMD
objective (5.2.12) is obtained by using the explicit mean embedding µK(PT )(x) given in Lemma
5.3.1 and by the relation

Et∼PTµK(PT )(t) =
e

bm2

1−bσ2√
1− (bσ2)2

,
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Figure 5.4 – Boxplots of the objective values for Gaussian return (PR) and exponential kernel

(K). Plotted: w1 7→ M̂MD
2

K,U (Pw,N ,PT,M ) and w1 7→ M̂MD
2

K,e (Pw,N ,PT ), with portfolio
weight w = [w1; 1 − w1]. The optimal portfolio weight is w∗ = [w∗1; 1 − w∗1] with w∗1 = 0.2.
Right: left zoomed in.
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Figure 5.5 – Comparison of the histogram of the portfolio returns (w∗)>R (with R having beta
components) and one-dimensional beta target distribution with the same mean and variance on
104 samples. Right: left zoomed in.

which is derived later in (5.A.3). We chose b = 1
2σ̂2 with σ̂ being the standard deviation of

{w>ri}i∈[N ] for each w = [w1; 1− w1]. The evaluation is made on N = M = 104 samples, with
50 repetitions for each w1.

The resulting median values, quartiles and extreme values of the estimators are summarized
in Fig. 5.4. The figure shows that (i) again the semi-explicit MMD estimator has better con-
centration properties than the two-sample MMD one, (ii) the U-shape of the objective values
is less pronounced with the exponential kernel, (iii) by zooming in to the estimated objectives
curves they still take their minimum around the optimal weight w∗1 = 0.2.

beta returns, Laplacian kernel: In this experiment the return variable R ∈ R2 has compo-
nents with beta distribution, and the kernel is the Laplacian K(x, y) = eλ|x−y| with λ > 0. The
parameters of the beta target distribution are set by moment matching (recalled in Table 5.12)
applied to (5.4.1).4

In the M̂MD
2

K,U (Pw,N ,PT,M ) and semi-explicit M̂MD
2

K,e (Pw,N ,PT ) estimators [(5.2.9) and
(5.2.12)], we discard the 2nd terms which are independent of w; hence the objective values can

4Notice that in this case, we are not in the well-specified setting since the sum of two beta distributions is not
a beta distribution, but the approximation resulting from moment matching is quite accurate; see Fig. 5.5 for an
illustration.
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Figure 5.6 – Boxplots of the objective values for beta return (PR) and Laplacian kernel (K).

Plotted: w1 7→ M̂MD
2

K,U (Pw,N ,PT,M ) and w1 7→ M̂MD
2

K,e (Pw,N ,PT ), with portfolio weight
w = [w1; 1− w1]. The optimal portfolio weight is w∗ = [w∗1; 1− w∗1] with w∗1 = 0.2.

easily take negative values. We chose λ = 1
2σ̂ with σ̂ being the standard deviation of {w>ri}i∈[N ]

for each w = [w1; 1 − w1]. The evaluation was carried out using N = M = 104 samples. The
boxplots of the resulting objective values as a function of the portfolio weight w1 derived from
15 repetitions are summarized in Fig. 5.6. As it can be seen, the analytical knowledge of the
mean embedding is again beneficial: the objective values obtained using the semi-explicit MMD
estimator follow a more emphasized U-shape behaviour.

These experiments demonstrate the efficiency of the proposed technique. Our theoretical
and numerical results show that the semi-explicit MMD has improved concentration property
compared to the two-sample MMD estimator. The Gaussian kernel leads to more pronounced
U-shape of the objectives than the unbounded kernel, and suggests easier optimization. The
unbounded support of Gaussian targets is better motivated in finance compared to the bounded
one of the beta target. Hence we keep the Gaussian target for our subsequent numerical studies.
The next subsection is dedicated to the exploration of the efficiency of our technique in the
misspecified setting.

5.4.2 Misspecified setting

In this section, we study the impact of misspecification, in other words when D(Pw∗ , PT ) 6= 0. In
particular, we investigate the case when d = 2, the target distribution is Gaussian, and the first
coordinate R1 of the returns R = [R1;R2] ∈ R2 is generalized normal5, its second coordinate
R2 is normal. We assume that there exists an initial portfolio w0 = [x; 1− x] ∈W. The target
distribution PT is chosen to be equal to the distribution of (w0)>R ∈ R with γ = 2. Our goal
is to study the impact on the estimated optimal portfolio

w∗ := [x∗; 1− x∗] := arg min
w∈W

D (Pw,N ,PT )

as a function of the heavy-tailness parameter γ < 2 when the underlying w is changed slightly,
and to explore if x∗ turns into smaller than x (less weight is allocated on the heavy-tailed compo-
nent) or if x∗ becomes higher than x (more weight is allocated on the heavy-tailed component).
Denoting by ε > 0 the measure of local perturbation, and by w−0 = [(x − ε); 1 − (x − ε)] and
w+

0 = [x+ ε; 1− (x+ ε)] the corresponding portfolio weights, let

wmin := [xmin; 1− xmin] := arg min
w∈{w−0 ,w0,w

+
0 }
D (Pw,N ,PT )

5Generalized normal distributions include Gaussians with γ = 2 and they correspond to heavy-tailed distribu-
tions when γ < 2.
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be the weight with the lowest divergence among these 3 allocations. The sign of the optimal
allocation variation is sign (∆x) = sign (x∗ − x) = sign

(
xmin − x

)
. In our experiments, the

heavy-tailness parameter was chosen to be γ = 1 (which gives rise to the Laplace distribution),
we used the semi-explicit MMD as divergence estimator with sample size N = 104, and we set

ε = 0.1. The mean mR =

[
m1

m2

]
and the covariance matrix ΣR =

[
σ2

1 0
0 σ2

2

]
of R was generated

randomly from mi ∼ U [0.01, 0.05] and σ2
i ∼ U [0.01, 0.06]. The initial portfolio weight w = [x; 1−

x] was varied by changing x ∈ {0, 0.1, 0.2, . . . , 0.9, 1}. Let
[
∆m,∆σ2

]
:=
[
m2 −m1;σ2

2 − σ2
1

]
and

∆γ = 1−2 = −1. Fig. 5.7 illustrates 104 pairs of (∆m,∆σ2) colored by the associated sign of ∆x
∆γ ;

each subfigure corresponds to a specific choice of weight x. Positive sign of ∆x
∆γ means that the

optimal allocation turns to be less concentrated on the heavy-tailed component (∆x < 0) when
the initial return distribution has one component with heavier tails than the target (∆γ < 0).
Conversely, negative sign of ∆x

∆γ shows that the new allocation becomes more concentrated on
the heavy-tailed component.

As it can be seen in the figure, there is no systematic decrease of the allocation associated
to the heavy-tailed component, rather there is an interplay between the variance variation ∆σ2

and the initial value x, without ∆m affecting the results. For low values of x (x ≤ 0.4) heavy-
tailness has limited impact, for ”balanced” initial portfolios (0.5 ≤ x ≤ 0.7) and ∆σ2 > 0 we
retrieve the expected lower weight on heavy-tailed component, for larger x and negative ∆σ2

the new optimal portfolio becomes more concentrated on the heavy-tailed component. These
experiment show that larger variance or concentration lead to more weight on the heavy-tailed
component. One can explain this phenomena using the fact that heavy-tailed distributions with
high variance have more extreme values, which affect the divergence matching.

5.5 Experiments on financial time series

In this section, we demonstrate the efficiency of the investigated target distribution technique for
portfolio optimization. The considered datasets, rebalancing, performance measures and target
distributions are summarized in Section 5.5.1, followed by the numerical studies in Section 5.5.2.

5.5.1 Datasets, rebalancing, performance measures, target distributions

This section summarizes the neccessary ingredients of the numerical experiments.

Datasets: We selected 2 representative portfolio datasets (see Table 5.7) from the Kenneth
French’s library [Fre21] (also used in the recent extensive numerical study carried out by [Las19]).
The 6BTM benchmark is based on the size, book-to-market and operating profitability perfor-
mance indicators. The dataset components are built as the linear combination of stock returns
from the NYSE market equity sorted by two main indicators. For example, the first component
of 6BTM corresponds to a linear combination of small size (or market equity) and high book-
to-market ratio (or low growth), small meaning belonging to the the first half (size criteria)
and 70 − 100% percentile (book-to-market ratio criteria) bucket; see Fig. 5.8 for an illustra-
tion of the price evolution of 2 components of this benchmark. For this dataset the portfolio
size is d = 6. Our second portfolio dataset is referred to as 10Ind, and it corresponds to the
linear combination of stock returns by sector of activity, with portfolio size d = 10. The vari-
ance of the components of the two datasets is illustrated in Fig. 5.9. As the figure shows the
variance is more balanced in the 6BTM than on the 10Ind dataset; in case of the latter the
higher variance components correspond to Energy, HighTech and Durables. According to our
misspecification study (Section 5.4.2), the target distribution technique is expected to perform
better on the 6BTM dataset. The average excess kurtosis is 15.1 for the 6BTM and 14.5 for the
10Ind benchmark. The average skewnesses are negative, equal to −0.58 and −0.37, respectively.
These statistics corresponds to a heavy-tailed and negatively-skewed setting. In Fig. 5.10, we
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Figure 5.7 – Plots of randomly simulated (∆µ,∆σ) pairs colored by their associated sign of ∆x
∆γ .

Magenta: ∆x
∆γ < 0. Blue: ∆x

∆γ > 0. Green: ∆x
∆γ = 0. The subfigures correspond to different x

weights.



194 Chapter 5. K.O.T. portfolio optimization with target distribution

Dataset Abbreviation d

6 Fama-French portfolios of firms sorted by size and book-to-market 6BTM 6
10 industry portfolios representing the US stock market 10Ind 10

Table 5.7 – Financial datasets used in our empirical study. They are composed of daily value-
weighted arithmetic returns from January 1980 to December 2020. Total number of samples:
N = 10318.
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Figure 5.8 – Price evolution associated to the first and last component of the 6BTM datasets.
The prices (Pt) are calculated from returns (rt) data as Pt = Pt−1(1+rt) where we fixed P0 = 1.

display the evolution of the returns of the 6BTM and 10Ind portfolios. One can notice periods
of high and low volatility; the periods of high volatility occur at the same time points in the
two datasets. To study the dependence of the target distribution technique on market condi-
tions (low-volatility and high-volatility periods, corresponding to normal economic conditions
and potential crisis periods), the datasets were split in two sub-samples. The considered quan-
titative criteria to distinguish these two regimes consists in comparing the semi-annual average
variance to the average variance over the 41 years of data, as displayed in Fig. 5.10(c). When
the annual variance is larger than 1.5 times the long-term average variance, we say that we are
in a high-volatility/crisis period. There are 7 buckets out of 71 (specified by the rolling window
approach detailed below) that this criteria considers to be highly volatile.

Rebalancing, performance measures: For a fair numerical comparison we use the same
rebalancing methodology as [Las19] in his recent extensive study. An estimation window of 5
years and a rolling window (interval on which the output statistics are computed) of six months
were considered. On our 41 years of data, it makes 71 buckets on which the out-of-sample
performance of the portfolio is evaluated in terms of kurtosis and skewness. Our benchmark
portfolio allocation strategies with their abbreviations are listed in Table 5.8. They correspond
to the best-performing traditional and minimum divergence portfolio of the recent report [Las19,
Section 5.7.3].

Target distributions: In practice, financial returns exhibit positive excess kurtosis and neg-
ative skewness. These properties are referred to as stylized facts [Con01]. Hence the returns
cannot be considered Gaussian or elliptical (and hence described solely by their mean and vari-
ance). Considering standard concave and increasing utility maximisation framework [Mer71]
it can be showed that investors prefer higher skewness and lower kurtosis.6 Targeting lighter-

6More generally, the investor’s preference direction is positive (negative) for positive (negative) values of every
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Figure 5.9 – Variance of the component returns of the 6BTM (a) and the 10Ind dataset (b).
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Figure 5.10 – Superposition of the component returns of the 6BTM (a) and the 10Ind dataset
(b). In (c) the semi-annual variance of the 6BTM returns is shown. There are volatility clusters
in 1988, 2000, 2007 and 2020 (due to financial crisis/inflation/Covid-19) in both datasets.
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Portfolio Abbreviation Reference

sample minimum variance portfolio MV [JM03]
Bayes-Stein maximum Sharpe ratio portfolio MSR [Jor86]
minimum Kullback-Leibler portfolio with Gaussian target KLa [Las19] (5.1.4)

aIn case of using the KL divergence with Gaussian target, the objective function simplifies to (see [Las19,
Prop. 5.1] with γ = 2) w∗ = arg minw∈W

1
2σ2
T
EP∼Pw [(P − mT )2] − H(P ) where denotes the Shannon entropy

of P , which can be estimated using m-estimator, and 1
2σ2
T
EP∼Pw [(P −mT )2] can be estimated using P sample

moments.

Table 5.8 – State-of-the-art portfolios [Las19].

Divergence (D) Target distribution (Q)

semi-explicit MMDa Gaussian
MMD with low-rank approximationb Gaussian, generalized normal, skew Gaussian
KSD Gaussian
FSSD Gaussian, generalized normal, skew Gaussian
WAD with p = 1 Gaussian, generalized normal, skew Gaussian
WAD with p = 2 Gaussian, generalized normal, skew Gaussian
KL Gaussian

aWe use the shorthand ’MMD explicit’ for this estimator in the figures.
bThe low-rank approximation is implemented using incomplete Cholesky decomposition.

Table 5.9 – Tested divergence - target distribution pairs.

tailed distribution (via for example generalized normal distribution) or more positively skewed
distributions (for instance with skew Gaussian target) should have a favorable impact regarding
the out-of-sample moments of the minimum-divergence portfolio compared to traditional mean-
variance portfolios. In our numerical studies, we are going to focus on three families of target
distributions: (i) the Gaussian distribution for which explicit mean embedding is available for
various kernel choices (see Table 5.5), (ii) the generalized normal distribution with parameter γ
allowing to target negative excess kurtosis when chosen γ > 2, (iii) the skew Gaussian distribu-
tion with parameter c allowing to target positive skewness with c > 0. In the latter two cases, we
chose light-tailed generalized normal (γ = 4), and positively skewed skew Gaussian distribution
(s = 1, in this case the excess kurtosis is 0.0617 by Table 5.12, hence very close to 0) as targets.
We fixed the target mean and standard deviation as given by the maximum Sharpe ratio portfo-
lio (in sample mean and standard-deviation associated to the maximum Sharpe ratio allocation).
We summarize in Table 5.9 our choices of target distributions and divergences, noting that the
linear-time FSSD provides a faster alternative to the quadratic-time KSD divergence.

5.5.2 Numerical studies

In this section, the out-of-sample kurtosis and skewness of our divergence-based portfolios versus
the traditional minimum variance and maximum Sharpe ratio portfolios are compared, across
different datasets and economic conditions. Kurtosis is investigated in Section 5.5.2.1, we focus
on skewness in Section 5.5.2.2; in these sections the low and high-volatity regimes are studied
separately. Section 5.5.2.3 provides an overall assessment with low and high-volatility periods
merged.

In our experiments, we made use of the KGOF and ITE toolbox packages [Sza14, Sza14]

odd central moment and negative for every even central moment [SH80].
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Figure 5.11 – OOS kurtosis values in the low-volatility regime. Left: baselines (MV, MSR).
Right: proposed minimum divergence portfolios with skew Gaussian (1st column) and general-
ized normal (2nd column) target. 1st row: 6BTM dataset. 2nd row: 10Ind benchmark.

when computing the FSSD and the two-samples MMD divergence measures.

5.5.2.1 Kurtosis impact

In this section, the impact on the portfolio kurtosis is investigated. We report the out-of-
sample (OOS) excess kurtosis values for the different divergence objectives considered, and
compare them to the traditional minimum variance portfolio (MV) and the maximum Sharpe
ratio (MSR) portfolio. Lower kurtosis is an indication of less heavy tails, and this is what is
usually advantageous from financial point of view, in other words more negative (or at least
closer to zero) excess kurtosis corresponds to better performing portfolio.

Normal economic conditions: The OOS kurtosis values with generalized normal and skew
Gaussian targets are summarized in Fig. 5.11. For both datasets, the MMD-based divergences
give lower median kurtosis than the WAD-based portfolios and the traditional portfolios, and
the lower quartile for most divergence based portfolios is lower than that of the traditional
portfolios.

In Fig. 5.12, we provide the barplots of the number of buckets (time periods) on which a given
objective-target pair achieved the lowest kurtosis across all the objectives; they are sorted by
increasing efficiency and we show the 5 winners. On the 6BTM dataset, the 5 winners correspond
to light-tailed target distributions (skew or generalized normal) with similar performance. On
the 10Ind benchmark, MMD with skew Gaussian target performs the best, followed by the
minimum KL approach using Gaussian target (which has heavier tails than the skew Gaussian
distribution). This (i) means that light-tailed targets are not predominant here, and the reason
for this can be that the 10Ind dataset is a more heterogeneous than 6BTM as it can be seen
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Figure 5.12 – The five top objective-target pairs in kurtosis sense. Regime: low-volatility.
Ordering: from worst (left) to best (right). (a): 6BTM dataset. (b): 10Ind benchmark.

from the variance barplots in Fig. 5.9.

High-volatility conditions: In high-volatility scenarios on both datasets the results are more
diverse, see Fig. 5.13. For the 6BTM benchmark, MMD with skew Gaussian target and FSSD
with generalized normal target lead to relatively small kurtosis. On the 10Ind dataset, WAD
(p = 1) with generalized normal target also seems to perform well.

Considering the Gaussian target (which gives rise to analytical divergence computations and
targets with 0 kurtosis which is lower than the average 14− 15 kurtosis value of the datasets),
the OOS kurtosis values obtained for various divergences are summarized in Fig. 5.14. In the
high-volatility regime Fig. 5.14(b), the semi-explicit MMD and the KSD portfolios give more
concentrated kurtosis values compared to the low-rank MMD approximation; this phenomenon
can be explained due to the lack of sampling needed from the target distribution. These effects
are less pronounced in the low-volatility regime, see Fig. 5.14(a).

5.5.2.2 Skewness impact

In this section, the impact on the portfolio skewness is investigated. We report the OOS excess
skewness values for the different divergence objectives considered, and compare them to the
traditional minimum variance portfolio (MV) and the maximum Sharpe ratio (MSR) portfolio.
Higher skewness is an indication of less negatively skewed distribution, and this is what is usually
beneficial from financial perspective, in other words more positive (or at least closer to zero)
excess skewness is interpreted as better performing portfolio.

Normal economic conditions: The OOS skewness values with generalized normal and skew
Gaussian targets are summarized in Fig. 5.15. For both datasets, the skew Gaussian target with
either MMD or FSSD divergence give the highest median skewness and the lower quartile for
most divergence based portfolios is higher than that of the traditional portfolios. The latter
behaviour is particularly apparent on the 6BTM benchmark with the generalized normal target.

In Fig. 5.16, we provide the barplots of the number of buckets on which a given objective-
target pair achieved the highest skewness across all the objectives; we show the 5 winners.
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Figure 5.13 – OOS kurtosis boxplots in the high-volatility regime. Left: baselines (MV, MSR).
Right: proposed minimum divergence portfolios with skew Gaussian (1st column) and general-
ized normal (2nd column) target. 1st row: 6BTM benchmark. 2nd row: 10Ind dataset.
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Figure 5.14 – OOS kurtosis values for minimum divergence portfolios with the Gaussian target.
Period: low-volatility (a), high-volatility (b). Dataset: 10Ind.
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Figure 5.15 – OOS skewness values in the low-volatility regime. Left: baselines (MV, MSR).
Right: proposed minimum divergence portfolios with skew Gaussian (1st column) and general-
ized normal (2nd column) target. 1st row: 6BTM dataset. 2nd row: 10Ind benchmark.
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Figure 5.16 – The five top objective-target pairs in skewnesss sense. Regime: low-volatility.
Ordering: from worst (left) to best (right). (a): 6BTM dataset. (b): 10Ind benchmark.
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Figure 5.17 – OOS skewness boxplots in the high-volatility regime. Left: baselines (MV, MSR).
Right: proposed minimum divergence portfolios with skew Gaussian (1st column) and general-
ized normal (2nd column) target. 1st row: 6BTM benchmark. 2nd row: 10Ind dataset.
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On both datasets, the top performers correspond to light-tailed target distributions (skew or
generalized normal). We also see that the WAD objective with p = 1 is performing well on the
6BTM dataset.
High-volatility conditions: In high-volatility scenarios on both datasets the results are more
diverse, see Fig. 5.17. The skewness of traditional portfolios is not necessarily negative. As for
the kurtosis, the target-distribution portfolio approach seems to have more impact in normal
economic conditions. For the 6BTM benchmark, MMD-based objectives give a larger median
skewness than the traditional portfolios. On the 10Ind dataset, only FSSD with generalized
normal target succeeds in beating the traditional portfolios, but with quite a large margin in
terms of the upper quartile.

5.5.2.3 Merged results

In this section, we comment the barplots of Fig. 5.18 corresponding to the number of buckets
on which a given objective-target pair achieved the highest kurtosis or skewness across all the
objectives, across all the buckets (with low and high volatility scenarios merged).

For both benchmarks, the clear winners are
• MMD with skew Gaussian target (orange, present in all 4 subfigures),
• FSSD with generalized normal target (dark red, present in 3 subfigures, 1st/2nd place in 2 of

them),
• Wasserstein distance (p = 1) with generalized normal target (mauve, present in 3 subfigures,

1st/2nd position in 2 cases),
• Kullback-Leibler divergence with Gaussian target (grey), especially on the 10Ind dataset.

The good performance of the WAD divergence (with p = 1) might be due to the outlier-
robust character of L1-based objective functions. Overall, the best performing portfolios are in
majority associated to light-tail distribution targets, except for the KL-Gaussian which performs
well on the 10Ind dataset. The final barplots in Fig. 5.18 show more homogeneity on the 6BTM
datasets (in terms of kurtosis), many objective functions are performing similarly.

5.6 Conclusion

In this chapter, we focused on kernel-based divergence measures and their application in fi-
nancial portfolio optimization using the target distribution framework. We showed that prior
knowledge available on target distribution leads to analytical forms for the mean embedding
(Lemma 5.3.1 and Lemma 5.3.2) and improved MMD concentration properties for bounded ker-
nels (Theorem 5.2). Motivated by recent financial studies relying on unbounded kernels [BF19],
using the Burkholder inequality we proved that the 1/

√
N rate (with N denoting the sample

size) of MMD estimators can be extended to unbounded kernels (Theorem 5.3); we illustrated
the idea for the exponential kernel. We showed matching minimax lower bounds (Theorem 5.4)
under slightly more restrictive conditions.

We illustrated the effectiveness of the resulting semi-explicit MMD estimator over the classi-
cal two-sample MMD estimator not relying on the knowledge of mean embedding on simulated
examples. We demonstrated the proposed kernel-based divergence framework in real-world port-
folio optimization problems. According to our numerical experiences, the suggested technique

• performs favorably compared to classical portfolio optimization scheme on balanced portfolios
in normal economic conditions,

• MMD and KSD with light-tailed targets often improves the out-of-sample skewness and kur-
tosis of the portfolio.

Our preliminary results on alternative statistics show that the information theoretical tech-
nique can have slightly higher turnover than traditional schemes, which makes it an ideal can-
didate as a regularizer added to the global portfolio optimization objective.
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Figure 5.18 – The five top objective-target pairs. Regime: low and high-volatility merged.
Ordering: from worst to best in skewness sense (1st column) and kurtosis sense (2nd column).
1st row: 6BTM benchmark. 2nd row: 10Ind dataset.



APPENDICES

5.A Proofs

This section contains the proofs of theoretical results. In Section 5.A.1 we give the proofs of
the two analytical mean embedding results (Lemma 5.3.1 and Lemma 5.3.2), accompanied by
two additional lemmas used in Section 5.4.1 and in the proof of Theorem 5.4, respectively.
Section 5.A.2 is dedicated to the proof of our concentration results (Theorem 5.2, Theorem 5.3,
Theorem 5.4).

5.A.1 Proofs of auxiliary statements

In this section we prove Lemma 5.3.1 and Lemma 5.3.2. These proofs are accompanied by two
additional auxiliary statements (Lemma 5.A.1 and Lemma 5.A.2). Lemma 5.A.1 is on the Stein
kernel for the Gaussian distribution - Gaussian kernel, Lemma 5.A.2 is about MMD for the
Gaussian distribution and the exponential kernel. The former is used in the KSD computation
in Section 5.4.1; latter is applied in the reasoning of Theorem 5.4.

Proof. (Lemma 5.3.1; mean embedding: Gaussian target - Gaussian-exponentiated kernel)
Our target quantity is

µK(Q)(x) =

∫
R

1√
2πσ2

e−
(y−m)2

2σ2 e−a(x−y)2+bxydy.

Completing the square, one gets

(y −m)2

2σ2
+ a(x− y)2 − bxy =

(y −m)2 + 2σ2a(x− y)2 − 2σ2bxy

2σ2

=

(
1 + 2aσ2

)
y2 − 2

(
m+ 2aσ2x+ bσ2x

)
y + 2aσ2x2 +m2

2σ2

=
(1 + 2aσ2)

2σ2︸ ︷︷ ︸
=: 1

2σ∗2

(
y2 − 2

m+ 2aσ2x+ bσ2x

1 + 2aσ2︸ ︷︷ ︸
=:m∗

y

)
+

2aσ2x2 +m2

2σ2

=
1

2σ∗2

[
(y −m∗)2 −m∗2

]
+

2aσ2x2 +m2

2σ2

=
1

2σ∗2
(y −m∗)2−(m+ 2aσ2x+ bσ2x)2

2σ2(1 + 2aσ2)
+

2aσ2x2 +m2

2σ2︸ ︷︷ ︸
=:−c∗

.
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Bringing the two terms in c∗ to common denominator, after simplification on arrives at

c∗ =

(
m+ 2aσ2x+ bσ2x

)2 − (2aσ2x2 +m2
) (

1 + 2aσ2
)

2σ2 (1 + 2aσ2)

=
4aσ2mx− 2aσ2(m2 + x2) + bσ2x

(
bσ2x+ 4aσ2x+ 2m

)
2σ2(1 + 2aσ2)

=
−2aσ2(m− x)2 + bσ2x

(
bσ2x+ 4aσ2x+ 2m

)
2σ2 (1 + 2aσ2)

= −a(x−m)2

1 + 2aσ2
+

2bmx+ bσ2(b+ 4a)x2

2(1 + 2aσ2)
.

This means that our target quantity can be rewritten as

µK(Q)(x) =

∫
R

1√
2πσ2

e
− 1

2σ∗2
(y−m∗)2+c∗

dy =
σ∗

σ
ec
∗
∫
R

1√
2π(σ∗)2

e
− 1

2σ∗2
(y−m∗)2

dy︸ ︷︷ ︸
=1

=
e
−a(x−m)2

1+2aσ2 +
2bmx+b(b+4a)σ2x2

2(1+2aσ2)

√
1 + 2aσ2

.

Proof. (Lemma 5.3.2; mean embedding: beta target - Matérn kernel) Our target quantity is

µK(Q)(x)

=
σ2

0

B(α, β)

∫ 1

0
e−
√

2p+1|x−y|
σ

p!

(2p)!

p∑
i=0

(p+ i)!

i!(p− i)!

(
2
√

2p+ 1|x− y|
σ

)p−i
yα−1(1− y)β−1 1

y∈[0,1]
dy

(∗)
=

σ2
0

B(α, β)

p!

(2p)!

p∑
i=0

(p+ i)!

i!(p− i)!

(
2
√

2p+ 1

σ

)p−i [ ∫ (0∨x)∧1

0
(x− y)p−iyα−1(1− y)β−1e−

√
2p+1(x−y)

σ dy

+

∫ 1

(0∨x)∧1
(y − x)p−iyα−1(1− y)β−1e−

√
2p+1(y−x)

σ dy

]
.

where in (∗) we applied the decomposition trick: for f : R→ R and x ∈ R,∫ 1

0
f(|x− y|)dy =

∫ (0∨x)∧1

0
f(x− y)dy +

∫ 1

(0∨x)∧1
f(y − x)dy.

Using the binomial formula (x − y)p−i =
∑p−i

k=0

(
p−i
k

)
(−1)p−i−kxkyp−i−k and (y − x)p−i =∑p−i

k=0

(
p−i
k

)
yp−i−k(−x)k, one can rewrite the two integrals as∫ (0∨x)∧1

0
(x− y)p−iyα−1(1− y)β−1e−

√
2p+1(x−y)

σ dy =

=

p−i∑
k=0

(
p− i
k

)
(−1)p−i−kxk

∫ (0∨x)∧1

0
yp−i−kyα−1(1− y)β−1e−

√
2p+1(x−y)

σ dy

=

p−i∑
k=0

(
p− i
k

)
(−1)p−i−kxke−

√
2p+1x
σ

∫ (0∨x)∧1

0
yp−i−k+α−1(1− y)β−1e

√
2p+1y
σ dy︸ ︷︷ ︸

E

√
2p+1
σ

1 ((0∨x)∧1,p−i−k+α−1,β−1)

,
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and ∫ 1

(0∨x)∧1
(y − x)p−iyα−1(1− y)β−1e−

√
2p+1(y−x)

σ dy =

=

p−i∑
k=0

(
p− i
k

)
(−x)k

∫ (0∨x)∧1

0
yp−i−kyα−1(1− y)β−1e−

√
2p+1(y−x)

σ dy

=

p−i∑
k=0

(
p− i
k

)
(−x)ke

√
2p+1x
σ

∫ 1

(0∨x)∧1
yp−i−k+α−1(1− y)β−1e−

√
2p+1y
σ dy︸ ︷︷ ︸

E

√
2p+1
σ

2 ((0∨x)∧1,p−i−k+α−1,β−1)

,

Hence,

µK(Q)(x) =
σ2

0

B(α, β)

p!

(2p)!

p∑
i=0

(p+ i)!

i!(p− i)!

(
2
√

2p+ 1

σ

)p−i
×

p−i∑
k=0

(
p− i
k

)
xk
[
(−1)p−i−ke−

√
2p+1x
σ E1 ((0 ∨ x) ∧ 1, p− i− k + α− 1, β − 1)

+ (−1)ke
√

2p+1x
σ E2 ((0 ∨ x) ∧ 1, p− i− k + α− 1, β − 1)

]
.

Lemma 5.A.1 (Stein kernel: Gaussian target - Gaussian kernel). Let the target distribution

and the kernel be Gaussian: q(x) = 1√
2πσ2

e−
(x−m)2

2σ2 , K(x, y) = e−
(x−y)2

2c2 with σ ∈ R+ and c ∈ R+.

Then

ξq(x, y) =

(
m− x
σ2

+
y − x
c2

)
e−

(x−y)2

2c2 ,

hq(x, y) =

[
(x−m)(y −m)

σ4
− (x− y)2(σ2 + c2)

σ2c4
+

1

c2

]
e−

(x−y)2

2c2 .

Proof. (Lemma 5.A.1; Gaussian target - Gaussian kernel) Using that

sq(x) = [log q(x)]′ =

[
−(x−m)2

2σ2

]′
= −x−m

σ2
,

∂K(x, y)

∂x
= −e−

(x−y)2

2c2
x− y
c2

= −∂K(x, y)

∂y
by symmetry,

∂2K(x, y)

∂x∂y
=

∂

∂y

(
−e−

(x−y)2

2c2
x− y
σ2

)
= e−

(x−y)2

2c2

[
−(x− y)2

c4
+

1

c2

]
we obtain the statement

ξq(x, y) = sq(x)K(x, y) +
∂K(x, y)

∂x
= −x−m

σ2
e−

(x−y)2

2c2 − e−
(x−y)2

2c2
x− y
c2

=

(
m− x
σ2

+
y − x
c2

)
e−

(x−y)2

2c2 ,

hq(x, y) = sq(x)sq(y)K(x, y) + sq(y)∂xK(x, y) + sq(x)∂yK(x, y) +
∂2K(x, y)

∂x∂y

=

(x−m)

σ2

(y −m)

σ2
+

(
−y −m

σ2
+
x−m
σ2

)
︸ ︷︷ ︸

=x−y
σ2

(
−x− y

c2

)
− (x− y)2

c4
+

1

c2

 e− (x−y)2

2c2
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=

[
(x−m)(y −m)

σ4
− (x− y)2(σ2 + c2)

σ2c4
+

1

c2

]
e−

(x−y)2

2c2 .

Lemma 5.A.2 (Explicit MMD: Gaussian target - exponential kernel). Let P = N (m0, σ
2) and

Q = N (m1, σ
2) with m0,m1 ∈ R and σ > 0. Let K(x, y) = ebxy with 0 < b < 1

2σ2 . Then
MMDK (P,Q) can be computed analytically as

MMDK (P,Q) =

(
1√

1− r2

[
e
bm2

0
1−r + e

bm2
1

1−r − 2e
br(m2

0+m2
1)+2bm0m1

2(1−r2)

])1/2

,

where r = bσ2.

Proof. (Lemma 5.A.2) By definition

[MMDK (P,Q)]2 = Ex∼PµK(P)(x) + Ex∼QµK(Q)(x)− 2Ex∼PµK(Q)(x). (5.A.1)

Below we compute the value of the individual terms.

• Term Ex∼PµK(Q)(x): The value of µK(Q)(x) can be obtained by Lemma 5.3.1 with a = 0:

µK(Q)(x) = e
2bm1x+b2σ2x2

2 .

Hence, by using the notation r = bσ2 we have

Ex∼PµK(Q)(x) =

∫
R
e

2bm1x+b2σ2x2

2
e−

(x−m0)2

2σ2

√
2πσ2

dx =

∫
R
e
−x

2

2

[
1
σ2−(bσ)2

]
+x
(
bm1+

m0
σ2

)
− m2

0
2σ2

1√
2πσ2

dx

=

∫
R
e−

x2

2σ2 (1−r2)+ x
σ2 (rm1+m0)− m2

0
2σ2

1√
2πσ2

dx.

Completing the square, we have

x2
(
1− r2

)
− 2x(rm1 +m0) =

(
1− r2

)(
x− rm1 +m0

1− r2

)2

− (rm1 +m0)2

1− r2
,

(rm1 +m0)2

1− r2
−m2

0 =
1

1− r2

[
(rm1 +m0)2 −m2

0(1− r2)
]

=
1

1− r2

[
(rm0)2 + (rm1)2 + 2rm0m1

]
.

This means that our target quantity can be rewritten as

Ex∼PµK(Q)(x) =
e

(rm0)2+(rm1)2+2rm0m1
2σ2(1−r2)

√
1− r2

∫
R
e−

(1−r2)
(
x− rm1−m0

1−r2

)2

2σ2

√
1− r2

√
2πσ2

dx︸ ︷︷ ︸
=1

(∗)
=

1√
1− r2

e
(bσ2m0)

2
+(bσ2m1)

2
+2bσ2m0m1

2σ2(1−r2)

(∗∗)
=

1√
1− r2

e
br(m2

0+m2
1)+2bm0m1

2(1−r2) (5.A.2)

where in (∗) and (∗∗), we have used r = bσ2, factorized by σ2 then replaced bσ2 by r.
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• Term Ex∼PµK(P)(x): This term can be computed by specializing (5.A.2) to m0 = m1 and
using that 1− r2 = (1− r)(1 + r):

Ex∼PµK(P)(x) =
1√

1− r2
e

2brm2
0+2bm2

0
2(1−r2) =

1√
1− r2

e
2bm2

0(r+1)

2(1−r2) =
1√

1− r2
e
bm2

0
1−r . (5.A.3)

• Term Ex∼QµK(Q)(x): Analogously to Ex∼PµK(P)(x) we have

Ex∼QµK(Q)(x) =
1√

1− r2
e
bm2

1
1−r . (5.A.4)

Substituting the obtained analytical forms (5.A.2), (5.A.3) and (5.A.4) to (5.A.1) we arrive at

[MMDK (P,Q)]2 =
1√

1− r2

[
e
bm2

0
1−r + e

bm2
1

1−r − 2e
br(m2

0+m2
1)+2bm0m1

2(1−r2)

]
.

5.A.2 Proof of concentration results (Theorem 5.2, Theorem 5.3, Theo-
rem 5.4)

In the section we prove Theorem 5.2, Theorem 5.3, and Theorem 5.4.

Proof. (Theorem 5.2; concentration of M̂MD
2

K,e,U (P,Q), bounded kernel) By the definition

of M̂MD
2

K,e,U (P,Q) and MMD2
K (P,Q), they have the term Ey∼QµK(Q)(y) in common, hence

their difference writes as

M̂MD
2

K,e,U (P,Q)−MMD2
K (P,Q)

(a)
=

1

N(N − 1)

∑
i,j∈[N ]
i 6=j

K(xi, xj)

︸ ︷︷ ︸
=:U2

−Ex,x′∼PK(x, x′)︸ ︷︷ ︸
EU2

−2

[
1

N

∑
i∈[N ]

µK(Q)(xi)︸ ︷︷ ︸
=:U1

−Ex∼PµK(Q)(x)︸ ︷︷ ︸
EU1

]

= U2 − EU2 − 2(U1 − EU1) (5.A.5)

by using in (a) that U1 and U2 are U-statistics. The kernel of U1 is h1(x) = µK(Q)(x), the
kernel of U2 is h2(x, x′) = K(x, x′). Since by assumption the kernel K is lower bounded by A
and upper bounded by B, the same property holds for h1 and h2. Hence applying the Hoeffding
bound for U-statistics (Theorem 5.1), for any t > 0

P (U1 − EU1 < −t) = P ((−U1)− E(−U1) > t) ≤ e−
2Nt2

(B−A)2 ,

P (U2 − EU2 > t) ≤ e−
2bN2 ct2
(B−A)2 . (5.A.6)

Returning to our target quantity M̂MD
2

K,e,U (P,Q)−MMD2
K (P,Q), for any ε > 0{

M̂MD
2

K,e,U (P,Q)−MMD2
K (P,Q) > ε

}
(5.A.5)

= {U2 − EU2 − 2(U1 − EU1) > ε}
(a)

⊆
{
U2 − EU2 >

ε

2

}
∪
{
U1 − EU1 < −

ε

4

}
, (5.A.7)

where the inclusion A ⊆ B ∪ C in (a) is equivalent to B̄ ∩ C̄ ⊆ Ā; the latter holds as{
U2 − EU2 ≤ ε

2

}
∩
{
−2(U1 − EU1) ≤ ε

2

}
⊆ {U2 − EU2 − 2(U1 − EU1) ≤ ε}. Using (5.A.7) and

the bound (5.A.6) with t = ε
2 for U2 and t = ε

4 for U1 one arrives at
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P
(

M̂MD
2

K,e,U (P,Q)−MMD2
K (P,Q) > ε

)
≤ P

(
U2 − EU2 >

ε

2

)
+ P

(
U1 − EU1 < −

ε

4

)
≤ e−

2bN2 cε2
22(B−A)2 + e

− 2Nε2

42(B−A)2 = e
− b

N
2 cε2

2(B−A)2 + e
− Nε2

8(B−A)2 .

To establish the bound in < −ε, we can use a similar union bounding argument as in (5.A.7):{
M̂MD

2

K,e,U (P,Q)−MMD2
K (P,Q) < −ε

}
= {U2 − EU2 − 2(U1 − EU1) < −ε}

(b)

⊆
{
U2 − EU2 < −

ε

2

}
∪
{
−2(U1 − EU1) < −ε

2

}
(5.A.8)

=
{
−U2 − E−U2 >

ε

2

}
∪
{
−(U1 − EU1) < −ε

4

}
,

where the inclusion A ⊆ B ∪ C in (b) is equivalent to B̄ ∩ C̄ ⊆ Ā; the latter holds as{
U2 − EU2 ≥ − ε

2

}
∩
{
−2(U1 − EU1) ≥ − ε

2

}
⊆ {U2 − EU2 − 2(U1 − EU1) ≥ −ε}. Using (5.A.8)

and the bound (5.A.6) replacing U1 by −U1 and U2 by −U2, with t = ε
2 for U2 and t = ε

4 for U1

we arrived at

P
(

M̂MD
2

K,e,U (P,Q)−MMD2
K (P,Q) > ε

)
≤ P

(
(−U2)− E(−U2) >

ε

2

)
+ P

(
(−U1)− E(−U1) < −ε

4

)
≤ e−

2bN2 cε2
22(B−A)2 + e

− 2Nε2

42(B−A)2 = e
− b

N
2 cε2

2(B−A)2 + e
− Nε2

8(B−A)2 .

Proof. (Theorem 5.3; concentration of M̂MD
2

K,e,U (P,Q), exponential kernel)

MMD2
K (P,Q) is well-defined since Ex∼P

√
K(x, x) = Ex∼Pe

bx2

2 and Ex∼Q
√
K(x, x) =

Ex∼Qe
bx2

2 are finite by assumption (5.3.5), using it with λ = b
2 .

Similarly to the proof of Theorem 5.2, we write the difference between M̂MD
2

K,e,U (P,Q) and

MMD2
K (P,Q) in terms of two U -statistics

M̂MD
2

K,e,U (P,Q)−MMD2
K (P,Q)

=
1

N(N − 1)

∑
i,j∈[N ]
i 6=j

K(xi, xj)

︸ ︷︷ ︸
=:T2

−Ex,x′∼PK(x, x′)︸ ︷︷ ︸
ET2

−2

[
1

N

∑
i∈[N ]

µK(Q)(xi)︸ ︷︷ ︸
=:T1

−Ex∼PµK(Q)(x)︸ ︷︷ ︸
ET1

]

= T2 − ET2 − 2(T1 − ET1)

with T1 having the kernel h1(x) = µK(Q)(x) and T2 using the kernel h2(x, x′) = K(x, x′). We
establish a concentration result on T1 − ET1 and T2 − ET2 separately, and combine them with
the union bound:{

M̂MD
2

K,e,U (P,Q)−MMD2
K (P,Q) > ε

}
= {T2 − ET2 − 2(T1 − ET1) > ε}

⊆
{
T2 − ET2 >

ε

2

}
∪
{
−2(T1 − ET1) >

ε

2

}
=
{
T2 − ET2 >

ε

2

}
∪
{
T1 − ET1 < −

ε

4

}
. (5.A.9)

Below let p ≥ 2 denote a fixed constant. By assumption Ñ := N
2 ∈ N∗.
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• Bound on T2: Let us introduce the notation V for the sum of independent processes

V (x1, x2, . . . , xN ) = K(x1, x2) +K(x3, x4) + · · ·+K(xN−1, xN ).

With this notation our target quantity T2 can be rewritten [Pit17] as

T2 =
1

N(N − 1)

∑
i,j∈[N ]
i 6=j

K(xi, xj) =
2

N

 1

N !

∑
σ∈SN

V (xσ1 , . . . , xσN )

 , (5.A.10)

where SN denotes the set of permutations of [N ]. Then for any t > 0

P (T2 − ET2 > t) = P

 1

N(N − 1)

∑
i 6=j

K(xi, xj)− Ex,x′∼PK(x, x′) > t


(a)

≤
E
∣∣∣ 1
N(N−1)

∑
i 6=jK(xi, xj)− Ex,x′∼PK(x, x′)

∣∣∣p
tp

(b)
=

E
∣∣∣ 2
N

1
N !

∑
σ∈SN V (xσ1 , . . . , xσN )− Ex,x′∼PK(x, x′)

∣∣∣p
tp

(c)
=

(
2

Nt

)p
E

∣∣∣∣∣∣ 1

N !

∑
σ∈SN

[
V (xσ1 , . . . , xσN )− N

2
Ex,x′∼PK(x, x′)

]∣∣∣∣∣∣
p

(d)

≤
(

2

Nt

)p 1

N !

∑
σ∈SN

E
∣∣∣V (xσ1 , . . . , xσN )− N

2
Ex,x′∼PK(x, x′)︸ ︷︷ ︸

Mσ
Ñ

∣∣∣p.(5.A.11)

(a) comes from the generalized Markov’s inequality (Lemma 5.C.1) by choosing φ(x) := |x|p
and I = R. In (b) we applied (5.A.10). Pulling out

(
2
N

)p
gives (c). (d) follows from the

Jensen inequality by applying it to the argument of the expectation with the convex function
x 7→ |x|p.
Let us introduce the notation Mσ

Ñ
= V (xσ1 , . . . , xσN ) − N

2 Ex,x′∼PK(x, x′) in (5.A.11). One
can expand MÑ as a sum of centered independent processes:

Mσ
Ñ

= K(xσ1 , xσ2) +K(xσ3 , xσ4) + · · ·+K(xσN−1 , xσN )︸ ︷︷ ︸
Ñ=N/2 terms

−ÑEx,x′∼PK(x, x′)

=
∑
k∈[Ñ]

[
K(xσ2k−1

, xσ2k
)− Ex,x′∼PK(x, x′)

]︸ ︷︷ ︸
=:Yk

.

Similarly, let us denote Mσ
n =

∑
k∈[n] Yk, n ∈

[
Ñ
]
. By definition EYk = 0 for all k ∈ [n],

which implies that Mσ
n is a martingale w.r.t. the filtration Fn = σ

(
(Yk)k∈[n]

)
:

E (Mσ
n |Fn−1) = E( Mσ

n−1︸ ︷︷ ︸
Fn−1−measurable

+ Yn︸︷︷︸
independent from Fn−1

|Fn−1) = Mσ
n−1 + E(Yn)︸ ︷︷ ︸

0

= Mσ
n−1.

Hence, we can apply the Burkholder’s inequality (Theorem 5.2) on the martingale
{(Mσ

n ,Fn)}n∈Ñ ; it ensures the existence of a constant Cp > 0 such that

E
∣∣∣Mσ

Ñ

∣∣∣p ≤ CpE
∑
k∈Ñ

Y 2
k

p/2

= Cp

(
Ñ
)p/2

E

 1

Ñ

∑
k∈Ñ

Y 2
k

p/2



5.A. Proofs 211

(a)

≤ Cp

(
Ñ
)p/2

E

 1

Ñ

∑
k∈[Ñ]

|Yk|p


︸ ︷︷ ︸

=:mp=Ex,x′∼P|K(x,x′)−Ex,x′∼PK(x,x′)|p

, (5.A.12)

where in (a) we applied the Jensen inequality to the argument of the expectation
with the convex function x 7→ xp/2. Moreover, mp is finite since by assumption

(5.3.5) with λ = bp, Ex∼P|K(x, x)|p = Ex∼Pepbx
2

< ∞ and Ex,x′∼P |K(x, x′)|p ≤√
Ex∼P|K(x, x)|pEx′∼P|K(x′, x′)|p. By (5.A.12) we arrive at

E

∣∣∣∣∣∣
∑
k∈Ñ

[
K(xσk , xσk+1

)− Ex,x′∼PK(x, x′)
]∣∣∣∣∣∣
p

= E
∣∣∣Mσ

Ñ

∣∣∣p ≤ Cpmp

(
Ñ
)p/2

which combined with (5.A.11) gives that for any t > 0

P (T2 − ET2 > t) ≤
(

2

Nt

)p 1

N !

∑
σ∈SN

Cpmp

(
N

2

)p/2
= Cpmp

(
2

Nt2

)p/2
. (5.A.13)

Note: The same bound holds for −t

P (T2 − ET2 < −t) ≤ Cpmp

(
2

Nt2

)p/2
, (5.A.14)

by changing K to −K in all the previous steps.

• Bound on T1: Applying the generalized Markov’s inequality (Lemma 5.C.1) with φ(x) :=
|x|p, one can bound the probability P(T1−ET1 > t) in terms of E|T1−ET1|p for any t > 0 as

P(T1 − ET1 > t) = P

 1

N

∑
n∈[N ]

µK(Q)(xn)− Ex∼PµK(Q)(x) > t


≤

E
∣∣∣ 1
N

∑
n∈[N ] µK(Q)(xn)− Ex∼PµK(Q)(x)

∣∣∣p
tp

=
1

(Nt)p
E
∣∣∣ ∑
n∈[N ]

[µK(Q)(xn)− Ex∼PµK(Q)(x)]

︸ ︷︷ ︸
=:SN

∣∣∣p. (5.A.15)

SN is a sum of centered independent random variables and T1−ET1 = 1
N SN . By introducing

the notation Zk = µK(Q)(xk) − Ex∼PµK(Q)(x), Sn =
∑

k∈[n] Zk is a martingale w.r.t. the

filtration Fn := σ
(
(Zk)k∈[n]

)
. Hence, one can apply the Burkholder’s inequality (Theorem

5.2) on {(Sn,Fn)}n∈[N ]: it ensures the existence of a constant Cp > 0 such that

E |SN |p ≤ CpE

∑
n∈[N ]

Z2
n

p/2

= CpN
p
2E

 1

N

∑
n∈[N ]

Z2
n

p/2

(a)

≤CpN
p
2E

 1

N

∑
n∈[N ]

|Zn|p
 = CpN

p
2E|ZN |p

= CpN
p/2 Ex′∼P|µK(Q)(x′)− Ex∼PµK(Q)(x)|p︸ ︷︷ ︸

m′p

, (5.A.16)
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where in (a) we applied the Jensen inequality with the convex function φ(x) := xp/2. Let us
show the finiteness of m′p.
Proof (finiteness of m′p):

– Let us first notice that assumption (5.3.5) (i.e., Ex∼Peλx
2
< ∞ and Ex∼Qeλx

2
< ∞ for all

λ ∈ R) implies that

Ex∼P,y∼Qeλxy <∞ ∀λ ∈ R+. (5.A.17)

Indeed, taking λ′ ∈ R+ and using the inequality xy ≤ x2+y2

2 for any x, y ∈ R, one gets

Ex∼P,y∼Qeλ
′xy ≤ Ex∼P,y∼Qe

λ′
2 (x2+y2). (5.A.18)

By the independence of x ∼ P and y ∼ Q, the r.h.s. of (5.A.18) equals to

Ex∼Pe
λ′
2
x2Ey∼Qe

λ′
2
y2

which is finite by using (5.3.5) with λ = λ′

2 .

– Let us show that m′p ≤ 2pEx∼P,y∼Qepbxy. Indeed,

m′p = Ex′∼P|µK(Q)(x′)− Ex∼PµK(Q)(x)|p
(a)

≤ 2p−1Ex′∼P
(
|µK(Q)(x′)|p + |Ex∼PµK(Q)(x)|p

)
(b)

≤ 2pEx′∼P|µK(Q)(x′)|p (c)
= 2pEx′∼P|Ex∼QK(x, x′)|p

(d)

≤ 2pEx′∼PEx∼Q|K(x, x′)|p

(e)
= 2pEx′∼P,x∼Qepbxx

′
, (5.A.19)

where (a) follows from the convexity inequality |a + b|p ≤ 2p−1(|a|p + |b|p) for any a, b ∈
R, p ≥ 1 and the linearity of the integral, in (b) we applied the Jensen inequality with the
convex function φ(x) := xp, in (c) the definition of µK(Q)(x) was used, (d) follows from the
Jensen inequality, (e) is implied by the fact that K(x, x′) = ebxx

′
. Applying (5.A.17) with

λ = bp > 0 (as b > 0 and p ≥ 2) implies that Ex′∼P,x∼Qepbxx
′
< ∞ which guarantees the

finiteness of m′p by (5.A.19).
Substituting the bound (5.A.16) to (5.A.15), one gets that for any t > 0

P(T1 − ET1 > t) ≤ 1

(Nt)p
E |SN |p ≤ Cpm′p

1

(Nt2)p/2
. (5.A.20)

Note: the same bound holds for the deviation below with −t

P(T1 − ET1 < −t) ≤ Cpm′p
1

(Nt2)p/2
(5.A.21)

by changing T1 to −T1 in the reasoning above.
Using in (5.A.9) the bound (5.A.21) for T1 with t = ε

4 and the bound (5.A.13) for T2 with
t = ε

2 one gets

P
(

M̂MD
2

K,e,U (P,Q)−MMD2
K (P,Q) > ε

)
≤ P

(
T2 − ET2 >

ε

2

)
+ P

(
T1 − ET1 < −

ε

4

)
≤ Cpmp

(
22 × 2

Nε2

) p
2

︸ ︷︷ ︸
(2
√

2)p

εpNp/2

+Cpm
′
p

4p

εpNp/2
≤ 1

εpNp/2

[
Cpmp(2

√
2)p + Cpm

′
p4
p
]

︸ ︷︷ ︸
=:C=:Cp,P,K

.

The lower deviation bound with −ε follows by using the bound (5.A.14) for T2 with t = ε
2 and

the bound (5.A.20) for T1 with t = ε
4

P
(

M̂MD
2

K,e,U (P,Q)−MMD2
K (P,Q) < −ε

)
≤ P

(
T2 − ET2 < −

ε

2

)
+ P

(
T1 − ET1 >

ε

4

)
≤

Cp,P,K

εpNp/2
.
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Proof. (Theorem 5.4) Let D = (xn)n∈[N ]
i.i.d.∼ P ∈ P and let M̂MDN denote any estimator of

MMDK (P,Q) based on D. We are interested in the worst-case error (among all P,Q ∈ P) of

the best estimator M̂MDN , in other words our target quantity is

inf
M̂MDN

sup
P,Q∈P

PN
(
|M̂MDN −MMDK (P,Q) |≥ s

)
, s > 0,

where PN denotes the N -times product measure of P. Particularly, our goal is to show that
s = c√

N
is a possible (hence optimal) rate, with some finite constant c > 0. Let us define a

parameteric class of distributions PΘ, domain X, and functional F

PΘ :=
{

[N
(
m,σ2

)
]N : (m,σ) ∈ Θ

}
, Θ :=

{
(m,σ) ∈ R×

(
0,

1√
b

)}
,

X = RN , F (θ) = MMDK (Pθ,Q)

which we will use to invoke Theorem 5.3. Here Pθ := N
(
mP, σ

2
)

where θ := (mP, σ) ∈ Θ and
a fixed Q = N

(
mQ, σ

2
)

is taken with θQ = (mQ, σ) ∈ Θ.7 First, let us notice that PΘ ⊂ P
since Ex∼P

√
K(x, x) <∞ means that σ2 < 1

b
8. Using this inclusion one gets the following lower

bound (which translated to a lower bound on the target quantity by taking the infimum over

M̂MDN )

sup
P,Q∈P

PN
(
|M̂MDN −MMDK (P,Q) |≥ s

)
≥ sup

θ,θQ∈Θ
PNθ
(
|M̂MDN −MMDK

(
Pθ,QθQ

)
|≥ s

)
≥ sup
θ∈Θ

PNθ
(
|M̂MDN −MMDK

(
Pθ,QθQ

)
|≥ s

)
, ∀θQ ∈ Θ, (5.A.22)

which means that for any fixed θQ ∈ Θ we are in the realm of Theorem 5.3. To apply the theorem,

one needs (i) an upper bound on DKL

(
Q⊗NθQ ,P⊗Nθ

)
, and (ii) a lower bound on |F (θ)− F (θQ)|.

This is what we compute in the following.

• Upper bound on DKL

(
Q⊗NθQ ,P⊗Nθ

)
: Let p and q denote the pdf of Pθ and QθQ . Then the

Kullback-Leibler divergence can be computed as

DKL

(
Q⊗NθQ ,P⊗Nθ

)
=

∫
RN

log

(∏
n∈[N ] q(xn)∏
n∈[N ] p(xn)

) ∏
j∈[N ]

q(xj) dx1 . . . dxN

=
∑
n∈[N ]

∫
RN

log

(
q(xn)

p(xn)

) ∏
j∈[N ]

q(xj) dx1 . . . dxN︸ ︷︷ ︸∫
R

log

(
q(xn)

p(xn)

)
dq(xn)︸ ︷︷ ︸

DKL

(
QθQ

,Pθ

)
∏
j∈[N ],j 6=n

∫
R
q(xj)dxj︸ ︷︷ ︸

=1

=
∑
n∈[N ]

DKL

(
QθQ ,Pθ

)

(a)
= N

(mP −mQ)2

2σ2
=

a2

2σ2
=: α, (5.A.23)

where in (a) we used Lemma 5.C.2, and in (b) we assumed that

mP = mQ +
a√
N

(5.A.24)

for some a > 0.

7Notice that the variance parameter of Pθ and QθQ are chosen to be identical.

8A standard calculation shows that if P = N (m,σ), Ex∼P
√
K(x, x) = e

m2

1−bσ2 1√
1−σ2b

which is finite iff σ2 < 1/b.
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• Lower bound on |F (θ) − F (θQ)|: Since F (θQ) = MMDK (Q,Q) = 0, it is sufficient to
compute F (θ) = MMDK

(
Pθ,QθQ

)
. By Lemma 5.A.2, one has

[F (θ)]2 =
1√

1− r2

[
e
bm2

P
1−r + e

bm2
Q

1−r − 2e
bc(m2

P+m2
Q)+2bmPmQ

2(1−r2)

]
(5.A.25)

where r = bσ2. We are going to show that

[
MMDK

(
Pθ,QθQ

)]2 ≥ (2K)2

N
(5.A.26)

for some constant K > 0. Let x = a√
N

, in other words mP = mQ + x (in accordance with

(5.A.24)); we are going to rewrite the squared MMD in (5.A.26) as a function of x = mP−mQ.
To do so we will apply a Taylor expansion of the squared MMD around x = 0. By introducing
the notation

f1(x) := e
b(mQ+x)2

1−r = e
bm2

P
1−r , f2(x) := e

2b(1+c)xmQ+bcx2

2(1−r2) ,

our target quantity writes as

[
MMDK

(
Pθ,QθQ

)]2
=

1√
1− r2

[
f1

(
a√
N

)
+ f1(0)− 2f1(0)f2

(
a√
N

)]
. (5.A.27)

Indeed, by substituting mP = mQ + x in the third term of (5.A.25), one gets

e
bc(m2

P+m2
Q)+2bmPmQ

2(1−r2) = e

bc

[
(mQ+x)

2
+m2

Q

]
+2b(mQ+x)mQ

2(1−r2)

= e
2bcm2

Q+2bm2
Q

2(1−r2)︸ ︷︷ ︸
e

2b(c+1)m2
Q

2(1−r)(1+c)

e
bc(2xmQ+x2)+2bxmQ

2(1−r2) = e
bm2

Q
1−r︸ ︷︷ ︸
f1(0)

e
2b(1+c)xmQ+bcx2

2(1−r2)︸ ︷︷ ︸
f2(x)

.

Let us first form the second-order Taylor expansion of f1 and f2 around x = 0; for this
approximation the derivatives are

f ′1(x) = f1(x)

[
2b

1− r
(mQ + x)

]
, f ′′1 (x) = f1(x)

(
2b

1− r
+

[
2b

1− r
(mQ + x)

]2
)
,

f ′2(x) = f2(x)

(
bmQ
1− r

+
bcx

1− r2

)
, f ′′2 (x) = f2(x)

[
bc

1− r2
+

(
bmQ
1− r

+
bcx

1− r2

)2
]
,

which means that for x = 0 one has

f ′1(0) = f1(0)
2bmQ
1− r

, f ′′1 (0) = f1(0)

[
2b

1− r
+

(
2b

1− r
mQ

)2
]
,

f ′2(0) = f2(0)︸ ︷︷ ︸
=1

bmQ
1− r

, f ′′2 (0) = f2(0)︸ ︷︷ ︸
=1

[
bc

1− r2
+

(
bmQ
1− r

)2
]
.

Consequently, the 2nd-order Taylor expansion of f1 and f2 takes the form

f1

(
a√
N

)
= f1(0) + f1(0)

2bmQ
1− r

a√
N

+ f1(0)

[
2b

1− r
+

(
2b

1− r
mQ

)2
]
a2

2N
+ O

(
a2

2N

)
,
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f2

(
a√
N

)
= 1 +

bmQ
1− r

a√
N

+

[
bc

1− r2
+

(
bmQ
1− r

)2
]
a2

2N
+ O

(
a2

2N

)
.

Using these expansions in (5.A.27), the f1(0) and f1(0)
2bmQ
1−r

a√
N

terms simplify and one gets

[
MMDK

(
Pθ,QθQ

)]2
=

1√
1− r2

f1(0)

([
2b

1− r
+

(
2bmQ
1− r

)2
]
− 2

[
rb

1− r2
+

(
bmQ
1− r

)2
]

︸ ︷︷ ︸
=

2b

1− r︸ ︷︷ ︸
=

2b(1+c)

1−r2

− 2rb
1−r2

+2
(
bmQ
1−r

)2

)
a2

2N
+ O

(
a2

2N

)

=
1√

1− r2
f1(0)

[
2b

1− r2
+ 2

(
bmQ
1− r

)2
]
a2

2N
+ O

(
a2

2N

)
.

This means that the term in a2

2N will be smaller than the remaining term O
(
a2

2N

)
for large

enough N . Hence there exists a constant K > 0 such that

[
MMDK

(
Pθ,QθQ

)]2 ≥ (2K)2

N
.

Hence we have that

|F (θ)− F (θQ)| = |F (θ)| ≥ 2K√
N

:= 2s. (5.A.28)

By using the derived bounds (5.A.23) and (5.A.28), Theorem 5.3 can be applied with α = a2

2σ2

and s = K√
N

, and the bound (5.A.22) implies that

inf
M̂MDN

sup
P,Q∈P

P
(
|M̂MDN −MMDK (P,Q) |≥ K√

N

)
≥ max

e− a2

2σ2

4
,
1−

√
a2

2σ2

2

 .

Since the bound is valid for any σ for which σ2 < 1
b , by continuity one can also take the limit

σ2 = 1
b for which the lower bound is maximized and writes as

max

e−a2b
2

4
,
1−

√
a2b
2

2

 .

5.B Implementation tools

This section is about tools which are useful from practical perspective. Section 5.B.1 is about
the evaluation of Eλi , Section 5.B.3 contains the moments of various distributions, Section 5.B.2
contains score functions and kernel derivatives.
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5.B.1 Truncated evaluation of Eλ
i

Lemma 5.B.1 (Infinite sum formulation of Eλ1 and Eλ2 , and truncation error control). For z ∈
[0, 1], a > −1, b > −1, let Eλ1 (z, a, b) =

∫ z
0 y

a(1−y)beλydy and Eλ2 (z, a, b) =
∫ 1
z y

a(1−y)be−λydy.
Then we have the following infinite sum formulation:

Eλ1 (z, a, b) =

∞∑
k=0

λk

k!
Binc (a+ k + 1, b+ 1, z) ,

Eλ2 (z, a, b) =

∞∑
k=0

(−λ)k

k!
[B (a+ k + 1, b+ 1)−Binc (a+ k + 1, b+ 1, z)] .

Let K ∈ N be fixed and let us denote the truncated Eλ1 and Eλ2 by

Eλ,tr1 =
K∑
k=0

λk

k!
Binc (a+ k + 1, b+ 1, z) ,

Eλ,tr2 =

K∑
k=0

(−λ)k

k!
[B (a+ k + 1, b+ 1)−Binc (a+ k + 1, b+ 1, z)] .

Then the following bounds hold for the truncation errors

Eλ1 − E
λ,tr
1 ≤ λK+1eλz

(K + 1)!
Binc (a+K + 2, b+ 1, z) := Eλ,tr1 ,

Eλ2 − E
λ,tr
2 ≤ (−λ)K+1e−λz

(K + 1)!
[B (a+K + 2, b+ 1)−Binc (a+K + 2, b+ 1, z)] := Eλ,tr2 .

Remarks:

• Since the first two arguments of the beta and incomplete beta functions are positive, these
functions are bounded by 1 and the ratio λK+1

(K+1)! drives the error bounds E tr1 and E tr2 . By the

Stirling formula (K + 1)! = O
(

(K + 1)(K+ 3
2

)
)

. This means that to control E tr1 and E tr2 , K

should be chosen at least of the same order of magnitude than λ.

• We show in Fig. 5.19 the evolution of Eλ,tr1 and Eλ,tr2 for different values of λ and a as a
function of the level of truncation K. As anticipated in the previous remark, the sum starts
to converge for K of the same order of magnitude of λ. The function Eλ,tr2 takes a few more
iterations to converge.

Proof. (Lemma 5.B.1) For z ∈ [0, 1], a > −1 and b > −1, let

Eλ1 (z, a, b) =

∫ z

0
ya(1− y)beλydy, Eλ2 (z, a, b) =

∫ 1

z
ya(1− y)be−λydy.

The infinite sum formulations follow from the exponential series expansions eλy =
∑∞

k=0
(λy)k

k!

and e−λy =
∑∞

k=0
(−λy)k

k! :

Eλ1 (z, a, b) =

∫ z

0
ya(1− y)beλydy =

∫ z

0
ya(1− y)b

∞∑
k=0

(λy)k

k!
dy =

∞∑
k=0

λk

k!

∫ z

0
ya+k(1− y)bdy︸ ︷︷ ︸

Binc(a+k+1,b+1,z)

,

Eλ2 (z, a, b) =

∫ 1

z
ya(1− y)b+1e−λydy =

∞∑
k=0

(−λ)k

k!

∫ 1

z
ya+k(1− y)bdy
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Figure 5.19 – Evolution of Eλ,tri for i ∈ [2] and for various truncation levels (K).
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=

∞∑
k=0

(−λ)k

k!

[∫ 1

0
ya+k(1− y)bdy︸ ︷︷ ︸
B(a+k+1,b+1)

−
∫ z

0
ya+k(1− y)bdy︸ ︷︷ ︸

Binc(a+k+1,b+1,z)

]
.

Let us now fix K ∈ N, and truncate Eλ1 (z, a, b) and Eλ2 (z, a, b) to the first K + 1 terms:

Eλ,tr1 =

K∑
k=0

λk

k!
Binc (a+ k + 1, b+ 1, z) ,

Eλ,tr2 =
K∑
k=0

(−λ)k

k!
[B (a+ k + 1, b+ 1)−Binc (a+ k + 1, b+ 1, z)] .

By the Taylor-Lagrange theorem, in case of

• Eλ1 : for any y ∈ [0, z] there is a yK ∈ (0, y) such that

eλy =
K∑
k=0

(λy)k

K!
+ eλyK

(λy)K+1

(K + 1)!
.

• Eλ2 : for any y ∈ [z, 1] there is a y′K ∈ (0, y) such that

e−λy =
K∑
k=0

(−λy)k

K!
+ e−λy

′
K

(−λy)K+1

(K + 1)!
.

Hence, the truncation errors can be bounded as

Eλ1 − E
λ,tr
1 =

∫ z

0
ya(1− y)beλyK

(λy)K+1

(K + 1)!
dy

(a)

≤
∫ z

0
ya(1− y)−1/2eλz

(λy)K+1

(K + 1)!
dy

=
λK+1eλz

(K + 1)!

∫ z

0
ya+K+1(1− y)bdy︸ ︷︷ ︸
Binc(a+K+2,b+1,z)

,

Eλ21 − E
λ,tr
21 =

∫ 1

z
ya(1− y)be−λy

′
K

(−λy)K+1

(K + 1)!
dy

(b)

≤
∫ 1

z
ya(1− y)be−λz

(−λy)K+1

(K + 1)!
dy

=
(−λ)K+1

(K + 1)!
e−λz

∫ 1

z
ya+K+1(1− y)bdy

=
(−λ)K+1

(K + 1)!
e−λz


∫ 1

0
ya+K+1(1− y)bdy︸ ︷︷ ︸
B(a+K+2,b+1)

−
∫ z

0
ya+K+1(1− y)bdy︸ ︷︷ ︸
Binc(a+K+2,b+1,z)


=

(−λ)K+1

(K + 1)!
e−λz [B (a+K + 2, b+ 1)−Binc (a+K + 2, b+ 1, z)] ,

where in (a) we used that eλyK ≤ eλz and in (b) that e−λy
′
K ≤ e−λz.

5.B.2 Score functions and kernel derivatives

The KSD and FSSD measures (see (5.2.4) and (5.2.5)) and their empirical counterparts rely on
the functions ξq and hq functions which can be readily obtained from the score function sq(x),

kernel K(x, y) and the associated derivatives ∂K(x,y)
∂x and ∂2K(x,y)

∂x∂y . Table 5.10 and Table 5.11
provide these ingredients.
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Distribution q(x) sq(x) Parameters

Gaussian 1√
2πσ2

e−
(x−m)2

2σ2 −x−m
σ2 m ∈ R, σ ∈ R+

GN9 2
− γ+1

γ γ
βΓ(1/γ) e

− 1
2

(
|x−α|
β

)γ
−γ|x−α|γ−1

2βγ sign (x− α) β, γ ∈ R+, α ∈ R

SG10 2(2πv)−1/2e−
(x−m)2

2v Φ
(
s(x−m)√

v

)
−x−m

v + e
− s(x−m)√

v

Φ
(
s(x−m)√

v

) s√
2πv

s,m ∈ R, v ∈ R+

beta 1
B(α,β)x

α−1(1− x)β−1 1[0,1](x)
(
α−1
x + β−1

x−1

)
1[0,1](x) α, β ∈ R+

Table 5.10 – Distributions and their score functions.

Kernel K(x, y) ∂K(x,y)
∂x

∂2K(x,y)
∂x∂y Parameters

Gaussian e−
(x−y)2

2c2 e−
(x−y)2

2c2
(
−x−y

c2

)
e−

(x−y)2

2c2

[
− (x−y)2

c4
+ 1

c2

]
c ∈ R+

Laplaciana e−λ|x−y| e−λ|x−y| [−λsign (x− y)] −λ2e−λ|x−y| λ ∈ R+

Table 5.11 – Kernels and their derivatives.

aIn columns 2-3, it is assumed that x 6= y.

5.B.3 Moments of various distributions

Table 5.12 contains moments expressed as a function of the parameters for various target dis-
tributions.

5.C External statements

This section contains external statements used in our proofs.

Lemma 5.C.1 (Generalized Markov’s inequality; (2.1) in [BLM13]). Let φ denote a nonde-
creasing and nonnegative function defined on I ⊆ R and let Y denote a random variable taking

Distribution (Q) mQ σ2
Q ζQ κQ

Gaussian m σ2 0 0

GN α β241/γ Γ(3/γ)
Γ(1/γ) 0 Γ(5/γ)Γ(1/γ)

Γ(3/γ)2 − 3a

SGb m+ δ
√

2v
π v

(
1− 2δ2

π

)
4−π

2

(
δ
√

2/π
)3

(1−2δ2/π)3/2
c 2(π − 3)

(
δ
√

2/π
)4

(1−2δ2/π)2

beta α
α+β

αβ
(α+β)2(α+β+1)

2 (β−α)
√
α+β+1

(α+β+2)
√
αβ

6 (β−α)2(α+β+1)−αβ(α+β+2)
αβ(α+β+2)(α+β+3)

aIn the GN case, the excess kurtosis κQ is negative if γ > 2.
bWe denote δ = s√

1+s2
where s is one of the parameters of the SG distribution; its sign indicates if the

distribution has a positive or a negative excess skewness.
cIn the SG case, the excess skewness ζQ is positive if s > 0.

Table 5.12 – Moments of the target distributions.



220 Chapter 5. K.O.T. portfolio optimization with target distribution

values in I. Then Markov’s inequality implies that for every t ∈ I with φ(t) > 0

P (Y ≥ t) ≤ Eφ(Y )

φ(t)
.

Theorem 5.1 (Hoeffding inequality for U-statistic; [Hoe63], [Pit17]). Assume we have n i.i.d.
samples {Xi}i∈[n] ∼ P. Let Inm be the set m-tuples chosen without repetition from [n]. Suppose
that h : Rm → R is bounded: a ≤ h(x1, . . . , xm) ≤ b for all (x1, . . . , xm). We denote mh =
Eh(X1, . . . , Xm) and its U-statistic based estimator Un = 1

(nm)

∑
(i1,...,im)∈Inm h(Xi1 , . . . , Xim).

Then, for any ε > 0

P (Un −mh > ε) ≤ e−
2b nm cε2
(b−a)2 ,

and the same deviation bound holds for −ε below, i.e. P (Un −mh < −ε) ≤ e
− 2b nm cε2

(b−a)2 .

Theorem 5.2 (Burkholder’s inequality; Theorem 2.10 in [HH80]). Assume that {(Si,Fi)}i∈[n]

is a martingale sequence and its filtration, 1 < p <∞. Let the associated martingale increments
be denoted by X1 = S1 and Xi = Si−Si−1, 2 ≤ i ≤ n. Then there exist a constant Cp depending
on p such that

E
∣∣∣∣Sn∣∣∣∣p ≤ CpE∣∣∣∣ n∑

i=1

X2
i

∣∣∣∣p/2.
Lemma 5.C.2 (Kullback-Leibler divergence for univariate Gaussian variables; page 13 in
[Duc07]). Let P = N (mP, σP), Q = N (mQ, σQ), mP,mQ ∈ R, σP, σQ ∈ R>0. Then

DKL (P,Q) = log

(
σQ
σP

)
+
σ2
P + (mQ −mP)2

2σ2
Q

− 1

2
.

Theorem 5.3 (Theorem 2.2 in [Tsy09]). Let X and Θ denote two measurable spaces. Let
F : Θ → R be a functional. Let PΘ = {Pθ : θ ∈ Θ} be a class of probability measures on X

indexed by Θ. We observe the data D distributed according Pθ ∈ PΘ with some unknown θ. The
goal is to estimate F (θ). Let F̂ := F̂ (D) be an estimator of F (θ) based on D. Assume that there
exist θ0, θ1 ∈ Θ such that |F (θ0) − F (θ1)| ≥ 2s > 0 and DKL (Pθ1 ,Pθ0) ≤ α with 0 < α < ∞.
Then

inf
F̂

sup
θ∈Θ

Pθ
(
|F̂ − F (θ)| ≥ s

)
≥ max

(
e−α

4
,
1−

√
α/2

2

)
.

Note: Typically X, D and Pθ depend on the sample size N .
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Titre : Quantification des incertitudes en gestion d’actifs: méthodes à noyaux et fluctuations statistiques

Mots clés : Queues épaisses ; Inégalité de concentration ; Méthodes à noyau ; Estimation de la matrice de
covariance ; Théorie du portefeuille ; Quantification d’incertitudes.

Résumé : Le traitement des incertitudes est un
problème fondamental dans le contexte financier.
Les variables étudiées sont souvent dépendantes du
temps, avec des queues de distribution épaisses.
Dans cette thèse, on s’intéresse à des outils per-
mettant de prendre en compte les incertitudes sous
ses formes principales: incertitudes statistiques, pa-
ramétriques et erreur de modèle, tout en gardant en
tête qu’on souhaite les appliquer à ce contexte.
La première partie est consacrée à l’établissement
d’inégalités de concentration dans le cadre de va-
riables à queues épaisses. L’objectif de ces inégalités
est de quantifier quelle confiance on peut donner
à un estimateur basé sur une taille finie d’observa-
tions. Dans cette thèse, nous établissons de nouvelles
inégalités de concentration, qui couvrent notamment
le cas d’estimateur à distribution log-normale.
Dans la seconde partie, on traite de l’impact de l’er-
reur de modèle pour l’estimation de la matrice de
covariance sur des rendements boursiers, sous hy-
pothèse qu’il existe un processus de covariance ins-
tantanée entre les rendements dont la valeur présente

dépend de sa valeur passée. On peut alors construire
explicitement la meilleure estimée de la matrice de
covariance pour un instant et un horizon d’investis-
sement donnés, et montrer qu’elle fournie la variance
réalisée la plus faible avec grande probabilité dans le
cadre du portefeuille minimum variance.
Dans la troisième partie, on propose une approche
pour estimer le ratio de Sharpe et l’allocation de por-
tefeuille lorsqu’ils dépendent de paramètres jugés in-
certains. Notre approche passe par l’adaptation d’une
technique d’approximation stochastique pour le cal-
cul de la décomposition en polynômes du chaos de la
quantité d’intérêt.
Enfin, dans la dernière partie de cette thèse, on
s’intéresse à l’optimisation de portefeuille avec dis-
tribution cible. Cette technique peut être formalisée
sans avoir recours à aucune hypothèse de modèle sur
les rendements. Nous proposons de trouver ces por-
tefeuilles en minimisant des mesures de divergence
basées sur les fonctions noyau et la théorie du trans-
port optimal.

Title : Quantifying uncertainty in asset management: Kernel methods and statistical fluctuations

Keywords : Heavy tails; Concentration inequality; Kernel methods; Covariance matrix estimation; Portfolio
theory; Uncertainty Quantification.

Abstract : The treatment of uncertainties is a fun-
damental problem in the financial context, and more
precisely in portfolio optimisation. The variables stu-
died are often time dependent, with heavy tails. In this
thesis, we are interested in tools allowing to take into
account uncertainties in its main forms: statistical un-
certainties, parametric uncertainties and model error,
keeping in mind that we wish to apply them to the fi-
nancial context.
The first part is devoted to the establishment of
concentration inequalities for variables with heavy tai-
led distributions. The objective of these inequalities is
to quantify the confidence that can be given to an esti-
mator based on observations of finite size. In this the-
sis, we establish new concentration inequalities which
include the case of estimators with log-normal distri-
bution.
In the second part, we discuss the impact of the mo-
del error for the estimation of the covariance matrix
on stock returns, under the assumption that there is
an instantaneous covariance process between the re-
turns whose present value depends on its past values.

One can then explicitly construct the best estimate of
the covariance matrix for a given time and investment
horizon, and we show that this estimate gives the best
performance with high probability in the minimum va-
riance portfolio framework.
In the third part, we propose an approach to estimate
the Sharpe ratio and the portfolio allocation when they
depend on parameters considered uncertain. Our ap-
proach involves the adaptation of a stochastic ap-
proximation technique for the computation of the po-
lynomial decomposition of the quantity of interest.
Finally, in the last part of this thesis, we focus on port-
folio optimization with target distribution. This tech-
nique can be formalised without the need for any
model assumptions on returns. We propose to find
these portfolios by minimizing divergence measures
based on kernels or optimal transport. Since these di-
vergence measures can be unbounded and have not
been studied much yet in the unbounded kernel case,
we establish new convergence guarantees based on
concentration inequalities.
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