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Abstract

Dissipative dynamics of open quantum systems and quantum correlations are topics
of great actual interest. The former because of its necessity when describing realistic
systems and the latter because quantum correlations enable, in general, genuine quantum
protocols.

This thesis aims to study physical processes relying on dissipation, also focusing on
quantum correlations and their role in these processes, and on how to use dissipation
to generate quantum correlations. We first introduce the reader to the various topics
treated within the thesis which are connected to various research fields such as open
quantum systems, quantum thermodynamics, quantum optics, and quantum information.
Then, each chapter deals with a different subject.

The first part of the thesis consists of two studies in the context of quantum thermody-
namics. The first study concerns a protocol of work extraction exploiting a single thermal
bath. The work, defined within thermodynamic resource theory, is extracted from a
resource and stored into a bipartite system by turning on and off its internal interaction.
Then, we apply this protocol to two relevant physical systems: two interacting qubits and
the Rabi model. In both cases, we obtain a work extraction comparable with the bare
energies of the systems. In the second study, we investigate quantum thermal machines
based on two-stroke thermodynamic cycles using two baths at different temperatures.
The working fluid is composed of systems with evenly spaced energy levels, and all the
considered interactions are of the exchange type. We maximize the power of two different
cycles, also focusing on the role of the machines waiting time.

In the second part of this thesis, strongly connected to open quantum systems, we
first study the Markovian and non-Markovian dynamics of a driven quantum harmonic
oscillator within the collision model. While this is still a “work in progress” research
project, we already have promising results such as the appearance of a non-adiabatic
time-dependent term in the continuous limit of the Markovian dynamics. Then, we study
the two-photon Dicke model in the bad-cavity limit, considering a quite general setup
comprising finite temperature baths and coherent and incoherent drivings. We manage
to derive an effective master equation for the qubits dynamics and compare it to the
one-photon case. In the two-photon model, we point out an enhancement of the qubits
spontaneous-like emission rate and an increment of the effective temperature perceived by
the qubits. These differences lead to a faster generation of steady states with coherence
and a richer dependence of the collective effects on temperature.
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In the last part of the thesis, we explore the connection between energy and entangle-
ment in an arbitrary finite non-interacting bipartite system, also finding the minimum
energy entangled states (MEESs), i.e., the states having the minimum energy amount
for a given degree of entanglement. We also study how these states can be generated
both through unitary and dissipative processes, finding for the latter that the MEESs are
practically the cheapest ones to produce. Moreover, the MEESs can be connected among
them through local operations and classical communication and seem to have remarkable
connections to quantum thermodynamics and many-body physics. Finally, we analyze
how to use our results to lower the energetic cost of different quantum information
protocols.



Abstract (version française)

La dynamique dissipative des systèmes quantiques ouverts et les corrélations quantiques
sont des sujets de grand intérêt actuel. Le premier en raison de sa nécessité pour décrire
des systèmes réalistes et le second parce que les corrélations quantiques permettent de
réaliser, en général, des protocoles véritablement quantiques.

Cette thèse vise à étudier des processus physiques reposant sur la dissipation, en se
concentrant également sur les corrélations quantiques et leur rôle dans ces processus, et sur
la façon d’utiliser la dissipation pour générer des corrélations quantiques. Tout d’abord,
nous présentons au lecteur les différents sujets abordés dans la thèse qui sont liés à divers
domaines de recherche tels que les systèmes quantiques ouverts, la thermodynamique
quantique, l’optique quantique et l’information quantique. Ensuite, chaque chapitre traite
d’un sujet différent.

Une première partie de la thèse inclut deux études dans le domaine de la thermody-
namique quantique. Une première étude concerne un protocole d’extraction de travail
exploitant un seul bain thermique. Le travail, défini dans la théorie des ressources
thermodynamiques, est extrait d’une ressource et stocké dans un système bipartite en
activant et en désactivant son interaction interne. Ensuite, nous appliquons ce protocole
à deux systèmes physiques pertinents : deux qubits en interaction et le modèle de Rabi.
Dans les deux cas, nous obtenons une extraction de travail comparable aux énergies
nues des systèmes. Dans une seconde étude, nous analysons des machines thermiques
quantiques basées sur des cycles thermodynamiques à deux temps utilisant deux bains
à des températures différentes. Le fluide de travail est composé de systèmes avec des
niveaux d’énergie régulièrement espacés et toutes les interactions considérées sont de type
d’échange. Nous maximisons la puissance de deux cycles différents, en nous concentrant
également sur le rôle du temps d’attente des machines.

Dans une seconde partie de cette thèse, fortement liée aux systèmes quantiques
ouverts, nous étudions d’abord la dynamique Markovienne et non-Markovienne d’un
oscillateur harmonique quantique guidé au sein du modèle collisionnel. Même si ce projet
de recherche est “en cours”, nous avons déjà des résultats prometteurs tels que l’apparition
d’un terme non adiabatique dans la limite continue de la dynamique Markovienne. Ensuite,
nous étudions le modèle de Dicke à deux photons dans la limite de mauvaise cavité, en
considérant un modèle assez général comprenant des bains de température finis et des
pilotages cohérents et incohérents. Nous parvenons à dériver une équation maîtresse
efficace pour la dynamique des qubits et à la comparer au cas à un photon. Dans le
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modèle à deux photons, nous observons une augmentation du taux d’émission de type
spontané des qubits et une augmentation de la température effective perçue par les
qubits. Ces différences conduisent à une génération plus rapide d’états stationnaires avec
cohérence et à une dépendance plus riche des effets collectifs sur la température.

Dans la dernière partie de la thèse, nous explorons la connexion entre l’énergie et
l’intrication quantique dans un système bipartite fini arbitraire sans interaction, trouvant
également les états intriqués d’énergie minimale (MEESs), c’est-à-dire les états ayant la
quantité d’énergie minimale pour un degré donné d’intrication quantique. Nous étudions
également comment ces états peuvent être générés à la fois par des processus unitaires
et dissipatifs, trouvant, pour ces derniers, que les MEESs sont pratiquement les plus
économiques à produire. De plus, les MEESs peuvent être connectés entre eux au moyen
d’opérations locales et de communication classique et semblent avoir des connexions
remarquables avec la thermodynamique quantique et la physique à plusieurs corps.
Enfin, nous analysons comment utiliser nos résultats pour réduire le coût énergétique de
différents protocoles d’information quantique.
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Chapter 1

General introduction

Quantum correlations have been intriguing physicists soon after the full development
of quantum mechanics [1]. Nevertheless, their potential for designing protocols not
feasible with classical systems has been investigated only much later [2]. The list of
protocols employing quantum correlations includes quantum teleportation [3–5], quantum
cryptography [6–8], quantum communication [9], quantum computation [10], and quantum
energy teleportation [11]. The standard theoretical description of these protocols assumes
that no dissipation and decoherence are present in the evolution of quantum systems. In
particular, the absence of decoherence is crucial because its presence tends to deteriorate
correlations between the systems [12, 13] and coherences internal to a single system.

Dissipation and decoherence affect a certain system due to the interaction of that same
system with its surroundings [12]. In classical and quantum mechanics, an isolated system
evolves deterministically and is not subject to dissipation or decoherence. However, while
quantum mechanics theory initially concentrated on the description of isolated systems,
the necessity of keeping into account the unavoidable interaction with the environment
soon became evident [14] since perfectly isolating a system from its surrounding is
impossible in the quantum realm as it is in the classical one1. Non-isolated quantum
systems are called open quantum systems [12], and, over time, different approaches to
describe them were used, but the interest in developing a formal approach encompassing
all kinds of different open systems was initially purely academic. This academic research
culminated in 1976 with the publication of the Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) equation [14–16], which is the most general equation describing an open quantum
system subject to a Markovian dynamics [12].

With the propulsion given by the quest for better isolating a quantum system,
the study of open quantum systems surged in the last decades. Indeed, an improved
comprehension of such systems properties can lead to improvements in devising quantum
systems resistant to dissipation and decoherence. Moreover, the quantum features of the
proposed protocols and their first experimental realizations (see, e.g., Refs. [17] and [4])
lead to huge investments from private industries and public actors. Thanks to the joined
efforts of the public and private scientific community, we are now able to build and

1Even zero-point quantum fluctuations can be sources of dissipation and decoherence.

1



2 CHAPTER 1. GENERAL INTRODUCTION

use the so-called NISQ (Noisy Intermediate-Scale Quantum) devices [18], i.e., devices
in which the amount of decoherence and dissipation is low enough that their quantum
features can actually give them an edge over their classical counterparts. Notably, the
advancements in this regard have been so important that Google, very recently, claimed
that its quantum computer reached the so-called quantum supremacy [19].

Although most efforts aim to reduce the dissipation and decoherence effects on
quantum systems, there are situations in which the interaction with the environment
enables the protocol instead of working against it. Thermal cycles are the archetypal
example of such protocols [20]; the dissipation induced by the heat baths enables the
functioning of a given cycle. Another example is given by the collective behavior of
quantum systems interacting with a common bath, such as in the Dicke model [21], where
a collection of qubits interacts collectively with a single mode of the electromagnetic field,
usually mediated by a cavity [22]. More in general, dissipative processes have been used
to generate quantum correlations and, in particular, entanglement between quantum
systems [23–31].

1.1 In this thesis

This thesis aims to study physical processes relying on dissipation, also focusing on the
role of quantum correlations in these processes and on how to use dissipation to generate
quantum correlations (notably, entanglement). Therefore, this thesis subject situates
in the vast field of open quantum systems, borrowing techniques and topics also from
different physics fields such as quantum thermodynamics, quantum information, and
quantum optics. Since this thesis faces different topics, we will introduce each of them in
a dedicated section of chapter 2, focusing on the aspects more connected to our work.
Let us now briefly describe the content of each chapter of the thesis.

In chapter 2, we will give the reader all the essential tools needed to understand the
rest of the manuscript. Firstly, we will give an introduction to quantum correlations,
paying special attention to entanglement. Secondly, we will quickly review the theory
of open quantum systems, focusing on the topics of interest for the rest of the thesis.
Thirdly we will introduce some concepts about thermodynamic resource theory and
quantum thermal cycles. Finally, we will briefly present other concepts and theoretical
tools that we used during our research.

Chapters 3 and 4 are devoted to the analysis of two different thermodynamic protocols.
In particular, the protocol of chapter 3 consists of the “transfer of work”2 from an external
source to a quantum system of interest. Remarkably, just one thermal bath is sufficient
to enable this process. This protocol will then be applied to two cases consisting of two
interacting qubits and the Rabi model, respectively, thus letting us verify its validity with
typical models studied in the literature. The protocol of chapter 4 consists of a thermal
cycle between two thermal baths at different temperatures. There, we will study the
properties of a cycle based on collisions between non-resonant systems with evenly spaced

2The concept of “transfer of work” will be better detailed in the same chapter 3.
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energy levels, focusing on the case of qubit-qubit and oscillator-oscillator interactions.
Moreover, we will pay great attention to the role of waiting times and their effects on the
maximum power output of such cycles. Then, we will see how the addition of a mediator
system could, in some situations, improve the performance of this cycle. Lastly, we will
compare this cycle (without the mediator) to the quantum Otto cycle with shortcuts to
adiabaticity, a model widely studied in the literature.

Chapter 5 contains the study of the dynamics of a driven quantum harmonic oscillator
within a collision model. In particular, we will study these dynamics both in the
Markovian and non-Markovian case, treating the latter with the Markovian embedding
formalism. In both cases, we can recover some properties of this system usual description,
while other properties are different. The main source of differences comes from the highly
structured reservoir in the collision model. In particular, all the reservoir components
are harmonic oscillators with the same frequency. On the contrary, in the standard case,
the reservoir comprises many harmonic oscillators with different frequencies. Notice that
this chapter refers to an investigation which is still in progress.

In Chapter 6, we will revisit the Dicke model by studying it in the case of two-photon
interaction between qubits and a harmonic oscillator. The model will be studied in a
quite general scenario since we will include a coherent pumping on the oscillator, an
incoherent pumping on the qubits, and an arbitrary temperature bath for both the
oscillator and the qubits3. In particular, we will study this model in the so-called bad
cavity limit, in which the leakage of the cavity is assumed to be so strong that the fast
dynamics of the cavity can be eliminated in order to obtain an effective master equation
for the qubits. Using a novel adiabatic elimination technique [32, 33], we will manage
to obtain this effective equation for both the one- and two-photon couplings. Then, we
will compare them. In the two-photon model, we will see an enhancement of the qubits
spontaneous-like emission rate and an increment of the effective temperature perceived
by the qubits. These differences lead to a faster generation of steady-state coherence and
a richer dependence of the collective effects on temperature.

Chapter 7 deals with minimum energy entangled states. Assuming no interaction
between two subsystems, these are the states characterized by the minimum amount
of energy for a given degree of entanglement. First, we will find the general form of
these states and numerically show that, in most settings, they are extremely rare states.
Nevertheless, they have connections with other physics fields and can be used to enhance
different quantum information protocols from the energetic efficiency point of view. Since
they are extremely rare, it should not be possible, in general, to obtain similar energetic
performance by chance. Then, we will analyze some protocols whose aim is to generate
such states. In particular, we will find three different families of unitary operators
generating these states and five different kinds of interaction Hamiltonians such that
these states constitute the ground state of the system and can, then, be obtained as the
result of zero-temperature thermalization procedures.

3The oscillator and each qubits see their own, non-interacting, thermal bath. Each considered bath is
at the same temperature.
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Finally, we will conclude the thesis with Chapter 8, where we will do the sums of our
work and make considerations on its possible future developments.



Chapter 2

Preliminary background

This introductory chapter aims to give the reader all the instruments necessary to
understand the work done in the rest of the thesis and how it situates in the current
literature. Since this thesis faces different topics, we will introduce each of them in the
respective section, focusing on the aspects more connected to our work.

2.1 Entanglement and quantum correlations

In quantum mechanics, not every pure state can be written as the tensor product of
states of its subsystems. Pure states of this kind are called entangled states [34] and
their structure implies that the entropy of the subsystems states is not zero. Therefore,
while we have maximal information about the system as a whole, we are “objectively”
somewhat ignorant about its subsystems. This is in net contrast to the classical case,
where having maximal information about a system is equivalent to having maximal
information about all of its components. We can then conclude that the correlations in
entangled pure states are of quantum nature.

Even if in this thesis we will particularly focus on the entanglement, it is worth to
notice that entanglement is not the only type of quantum correlation. To see this, let
us denote by ρ the state of a bipartite system S with subsystems A and B. Indeed,
when ρ = ρA ⊗ ρB with ρA ∈ HA and ρB ∈ HB

1, there are no correlations between the
subsystems, while, when ρ 6= ρA ⊗ ρB we say that they are correlated. The standard
way to measure how much two systems are correlated is to calculate the quantity called
mutual information [10]:

S(A : B) ≡ S(ρA) + S(ρB) − S(ρ), (2.1.1)

where S(ρ) is the von Neumann entropy of the state ρ2. Indeed, the mutual information
is equal to zero only when ρ = ρA ⊗ ρB . Classical and quantum correlations can be
discriminated through the use of quantum discord, for which we address the reader to

1HA and HB are, respectively, the Hilbert space of systems A and B.
2See Appendix 2.A.1 for the definition of von Neumann entropy.

5



6 CHAPTER 2. PRELIMINARY BACKGROUND

Refs. [35, 36]. One important point here is that there can be quantum correlations even
if the state ρ is separable3. This implies that entanglement is not entirely responsible for
quantum correlations. However, entanglement remains the most peculiar of quantum
correlations and, after a general introduction to its features and areas of application, we
will see how it can be quantified in the theoretical framework of Local Operations and
Classical Communications (LOCC).

The phenomenon of entanglement is one of the most, if not the most, exotic feature
of quantum mechanics. Its counter-intuitive consequences have been highlighted, for
example, in the famous paper [1] by Einstein, Podolsky and Rosen, whose content is
now known as the EPR paradox. Later, John Bell returned on this question [37], by
providing the famous Bell’s inequality, which paved the way to experimentally test the
so-called non-local features of entanglement. However, the most used inequality in actual
non-locality experiments is the so-called CHSH inequality [38]. Up to now, the Bell and
CHSH inequalities, which hold for classical systems, have always been unmet in quantum
mechanics experiments on non-locality [39–41]. In addition to non-locality, entanglement
can also be a crucial component used to model part of the measurement process [42, 43].

Apart from playing a crucial conceptual role in quantum mechanics, entanglement is
widely considered a resource for quantum technologies since it enables various genuinely
quantum protocols. For example, in the standard quantum teleportation protocol [3–5],
the two parties implementing it share an entangled state at the start of the protocol. Let
us call the two parties Alice and Bob, as it is customary in the quantum information
field. Then, for example, the protocol enables4 Bob and Alice to make a system in Alice
possession go from an arbitrary state to the state of a local system of equal dimension in
Bob possession. Indeed, by doing this, Bob’s local system state changes since quantum
states cannot be cloned [10].

Even quantum computation cannot be realized without entanglement, in the sense
that it would not bring advantage over classical computation [10]. Let us assume of
working with an idealized quantum computer with N qubits, in which the collective
state of the qubits is a pure state. If we do not allow entanglement then the state
must be separable and that means that the state can be characterized by two real
numbers per qubit5. On the other hand, the Hilbert space of N qubits has dimension
dim H = 2N . Therefore, simulating the evolution of N non-entangled and non-entangling
qubits would require much less classical resources than simulating N qubits which can
become entangled.

Other examples of protocols exploiting entanglement consist of quantum cryptogra-
phy [6–8], quantum communication [9], quantum energy teleportation [11], and protocols
with repeated measurements [44–48].

3The state ρ is separable if it can be written as ρ =
∑

i
pi (ρi,A ⊗ ρi,B), where pi are probabilities

(
∑

i
pi = 1) and ρi,A and ρi,A are possibly different local states of systems A and B, respectively. A

separable state is not entangled by definition.
4By only using LOCC operations.
5We are neglecting “global” phase differences among the qubits. In other words, we are associating

just a Bloch sphere to each qubit.
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Although the majority of quantum information protocols rely on two-level systems [10],
d-level systems (qudits) may be more powerful for information processing [49–53]. Indeed,
the higher-dimensionality allows for information-coding with increased density, leading
to a simplification of the design of circuits [54], since the number of logic gates is
reduced. The realization of high-dimensional systems and their control has thus attracted
much attention [55, 56]. Logical operations for qudits have already been implemented
in systems like molecular magnet transistors [57], superconducting systems [58], and
integrated optics [59–61]. In particular, single-qudit gates connected to the generalized
CNOT gate [62], also called controlled-SUM [58], have already been experimentally
implemented [63, 64]6. Moreover, universal quantum computation based on trapped ions
qudits has been suggested to be feasible [65].

Since entanglement has so many applications, the study of suitable protocols to
generate entangled states in a great variety of physical setups has attracted much
attention in the last decades [23, 24, 27–31, 66–75]. These protocols typically exploit
unitary processes [71, 72, 74] and, possibly, measurements [71, 73, 75]. On the other
hand, dissipative processes have been also identified as possible sources of entangled
states, e.g, when the steady states of the dissipative dynamics are entangled [24, 27–31].
In particular, entangled states can be obtained through zero-temperature thermalization
protocols requiring the implementation of suitable interaction terms such that the ground
state of the total Hamiltonian is the desired entangled state.

However, generating quantum states with a certain amount of entanglement usually
requires converting other resources into it, such as coherence [76, 77], non-equilibrium
thermal resources [77], and energy [78, 79]. Among these resources, energy is one of the
most important with regard to the evaluation of the generation cost so that, recently, some
studies dealt with the energy cost of quantum operations [80], including the generation
of correlations [78] and entanglement [81–83].

In this context, efficient ways to generate entangled states of arbitrary dimensions
are desirable and understanding how energy and entanglement are connected can be
crucial in order to design quantum technologies in a more efficient manner [84]. Other
works investigated the energy cost of generating or extracting entanglement [81, 82].
In particular, some entanglement extraction protocols can be optimized by finding a
minimum energy pure state with an assigned entanglement [82]. However, this has been
done for interacting systems and the explicit solution has been found only for a specific
toy model. Our contribution to this topic is given in chapter 7 of this Thesis, where
we introduce what we call minimum energy entangled states (MEESs), i.e., states of a
bipartite non-interacting system which have the minimum possible average energy for a
given amount of entanglement.

Let us now introduce the LOCC framework and how entanglement can be quantified
within it.

6The generalized CNOT gate will be used as a crucial ingredient of some of the protocols proposed in
chapter 7.
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2.1.1 The LOCC framework

Let us suppose that two experimenters have each one access to just one part of a
bipartite system, respectively. Then, physically, they can only do local operations on
their subsystems. Again, as it is customary in quantum information, we will call the
experimenter with access to system A, Alice, and the one with access to system B,
Bob. Assuming that they can avoid dissipation from the environment, their action
on the systems will be described by local unitary operators and local measurements.
Additionally, they can communicate between themselves by classical means. Local unitary
operators have the form UA ⊗ IB and IA ⊗ UB and the measurements that they can do
will be described by generalised measurements, which can be obtained as combinations
of projective measurements and unitary operations [10]. A generalised measurement is
described by a set of operators Ma with the property

∑

a

M †
aMa = I. (2.1.2)

After, the measurement the state of the system is given by [10]

ρa =
MaρM

†
a

Tr
{
MaρM

†
a

} , with probability pa = Tr
{
MaρM

†
a

}
. (2.1.3)

In general, every operation on a quantum system can be described by a map called
quantum operation, or quantum channel in quantum information [10]. A quantum
operation Φ(·) maps a state ρ into the state Φ(ρ), which does not need to be in the same
Hilbert space of ρ. An LOCC quantum channel is a quantum operation obtainable by
composing unitary operations, measurements, and communications allowed in LOCC.

A procedure in LOCC can be divided into rounds. During each round, both parts can
perform any number of local operations but only one of them can send, once, classical
information to the other part. If we take Alice to stay “on the left” and Bob “on the
right”, then if Alice send the information the single round is called one-way right and
one-way left otherwise.

LOCC is an example of quantum resource theory. In general, a resource theory is
a theory in which the possible operations that can be done on a system are restricted
by some constraints and it is supposed that to perform a given protocol some special
states belonging to other systems are unlimitedly available for free (see Ref. [85] for a
general review of quantum resource theories). These external systems in these particular
states are called “free resources” [85, 86]. In the case of LOCC the free resources are
local systems not correlated with the systems of the other parties while the allowed
operations are the LOCC-operations. We will introduce another quantum resource theory
in section 2.3.1.

Regarding pure states, one natural question arises: whether Alice and Bob can obtain
the state |φ〉 from the state |ψ〉 using only operations allowed in the LOCC framework.
We say that a pure state |ψ〉 is LOCC-equivalent to state |ψ′〉, written as |ψ〉 ∼ |ψ′〉, if
one can be obtained from the other just by applying local unitary operators. This is
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possible if and only if their Schmidt coefficients are equal7. Adding measurements and
classical communications to the mix, the set of obtainable states starting from |ψ〉 is
determined by Nielsen’s theorem [10, 87].

2.1.2 Nielsen’s theorem

Nielsen’s theorem is based on the concept of majorization. Suppose x ≡ (x1, . . . , xd) and
y ≡ (y1, . . . , yd) are real d-dimensional vectors. Then, x is majorized by y (x ≺ y) if for
each k in the range 1, . . . , d one has

k∑

j=1

x↓
j ≤

k∑

j=1

y↓
j , (2.1.4)

with equality holding when k = d, and where the ↓ indicates that elements are to be
taken in descending order, so, for example, x↓

1 is the largest element in x1, . . . , xd. The
majorization relation is a partial order on real vectors, with x ≺ y and y ≺ x if and only
if x = y.

Suppose that Alice and Bob share a quantum state |ψ〉 and they want to transform
it in the state |φ〉 through LOCC. Being two pure states, they both have a Schmidt
decomposition7

|ψ〉 =
∑

i

√
λi |aibi〉 , |φ〉 =

∑

i

√
γi |AiBi〉 . (2.1.5)

Define λ and γ as the vectors of the squared Schmidt coefficients of the two states,
respectively.8 Nielsen’s theorem states that the transformation is possible if and only if
λ ≺ γ. The proof of Nielsen’s theorem can be found in Refs. [10] or [87] (the original one).
It is worth notice that there exists a generalization of Nielsen’s theorem due to Vidal [88,
89], which applies for non-deterministic LOCC operations, also called stochastic LOCC
or SLOCC.

Turning back to deterministic LOCC, a first consequence of Nielsen’s theorem is that
the maximum entangled state (suppose NA ≤ NB)

|ψ〉 =
1√
NA

∑

i

|aibi〉 (2.1.6)

is majorized by every other pure state. Therefore, any other pure state can be obtained
from it through LOCC. A second consequence is that the Schmidt number of a state
cannot be increased by LOCC operations. Let us suppose that |ψ〉 has Schmidt number
r and |φ〉 has Schmidt number r + 1, then

r∑

i=1

λi = 1 >
r∑

i=1

γi = 1 − γr+1, (2.1.7)

7See Appendix 2.A.2 for a brief description of the Schmidt decomposition.
8If one of the vectors has more components than the other one, we just add null components to the

vector with less components.
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so λ is not majorized by γ.
Finally, let us connect the Nielsen’s theorem to the so-called entropy of entanglement.

The entropy of entanglement E(|ψ〉) is the von Neumann entropy of one of the two
reduced states of a bipartite system in a pure state9. The opposite of the entropy of
entanglement, i.e., −E(·) is an isotone function, that is a function f : Rd → R such that
y ≻ x =⇒ f(y) ≥ f(x). Isotone functions for LOCC transformations are also called
entanglement monotones. Another important family of entanglement monotones is given
by Tr

(
ρkψ

)
, ∀k ≥ 1, where ρψ is one of the two reduced density matrices obtainable by

tracing on a subsystem the pure state |ψ〉. Therefore, we have

|ψ〉 → |φ〉 =⇒ E(|φ〉) ≤ E(|ψ〉) and Tr
(
ρkψ

)
≤ Tr

(
ρkφ

)
∀ k ≥ 1. (2.1.8)

If the Schmidt number is 2 the decreasing of the entropy of entanglement is also a
sufficient condition for the existence of the LOCC transformation [87]. Moreover, notice
that the second disequality of Eq. (2.1.8) concerns the purity for k = 2. Therefore, even
purity of the subsystems is an entanglement monotone.

In chapter 7 we will find that MEESs10 form a family of states in which, for every
value of the entropy of entanglement, all MEESs with less entropy of entanglement can
be obtained through LOCC so that the decreasing of the entropy of entanglement is a
sufficient condition for the existence of the LOCC transformation even if the dimensionality
of the systems is higher than 2 × 211. In this sense, we will say that MEESs are LOCC-
connected.

2.1.3 Entanglement quantifiers

In the limit of many copies, the majorization requirement for LOCC-transitions can be
relaxed. Let us suppose that Alice and Bob have access to n copies of the state |ψ〉.
Then, in the limit of many copies, it can be shown [90] that Alice and Bob can create m
copies of the state |φ〉 if and only if nE(|ψ〉) ≥ mE(|φ〉)12. This is the reason why the
entropy of entanglement is the standard quantifier for entanglement in bipartite systems
pure states [34, 91, 92].

Regarding mixed states, there is a plethora of entanglement quantifiers (or entan-
glement measures). We address the reader to Refs. [92] for more information. What
interests us is that, following Ref. [92], they have to satisfy the following requirements:

1. An entanglement measure Em(ρ) is a mapping from density matrices into real
positive numbers.

2. Em(ρ) = 0 is the state ρ is separable.

9Alternatively, it can be seen as half of the mutual information [cf. Eqs. (2.1.1) and (2.A.4)].
10Minimum energy entangled states, see chapter 7.
11For a bipartite system with dimensions NA ×NB the Schmidt number of a MEES is min{NA, NB}.
12This proof is made simpler by Nielsen’s theorem [87].
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3. The entanglement measure does not increase under LOCC, i.e., Em(ρ) ≥ Em(Φ(ρ))
where Φ(·) is the quantum channel referring to some LOCC transformation.

4. When applied to pure states, the entanglement measure reduces to the entropy of
entanglement, i.e., Em(|ψ〉〈ψ|) = E(|ψ〉).

Finally, it is also usually required that the entanglement measure is convex, i.e.

Em
(
∑

i

piρi

)
≤
∑

i

piEm(ρi), (2.1.9)

where 0 ≤ pi ≤ 1 and
∑
i pi = 1. The convexity property will be the crucial element to

extend our results on pure states to mixed states in chapter 713.

2.2 Open quantum systems

Quantum systems whose evolution are affected by the interaction with the environment
are called open quantum systems, as opposed to closed ones. Indeed, every system,
quantum or classical, can never be perfectly isolated from its environment, therefore the
study of open quantum systems is ubiquitous and of great importance for the development
of quantum technologies [18].

From a purely theoretical point of view, the evolution of the open system together
with the reservoir could be analytically treated since it is the evolution of a closed system.
In formulas:

ρT (t) = UT (t, t0)ρT (t0)U †
T (t, t0), (2.2.1)

where ρT (t) is the density matrix of the whole quantum system14 and UT (t, t0) its
temporal evolution operator. Since one is usually interested in the dynamics of the open
system alone, one should compute

ρS(t) = V (t, t0)ρS(t0) ≡ TrR
{
UT (t, t0)ρT (t0)U †

T (t, t0)
}
, (2.2.2)

where ρS(t) is the system state and V (t, t0) is the quantum operation above defined.
However, computing ρS(t) in this way is usually impossible because the global system
has too many degree of freedom with complex interactions. Therefore, methods to
approximate the dynamics of ρS(t) have been devised and we refer the reader to Ref. [12]
for a comprehensive survey.

Whatever the kind of interaction with the environment, a quantum operation has
necessarily the following properties [10, 12]:

1. It is linear, i.e., Φ (ρ+ σ) = Φρ+ Φσ.

2. It is positive, i.e., 〈ψ|Φρ|ψ〉 ≥ 0 for each vector |ψ〉 and ρ such that 〈ψ|ρ|ψ〉 ≥ 0.

13See section 7.2
14Including the environmental degrees of freedom.
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3. It is trace preserving: Tr{ρ} = Tr{Φρ}.

4. It is completely positive, i.e., the map In ⊗ Φ is positive for any n15.

Such kind of maps are also called completely-positive trace-preserving (CPTP) maps and,
indeed, all of the above properties can be shown to hold good for the quantum operation
of Eq. (2.2.2) [12].

The physical meaning of complete positivity is related to quantum correlations. Let
us consider two systems A and B, described by the states ρA and ρB and suppose that
we know only what is happening to system A. We assume that they evolve separately so
that we can describe the action of a generic quantum operation as ΦA ⊗ ΦB, where ΦA

and ΦB are positive trace-preserving maps on A and B, respectively. If the initial state
is a product state, then the dynamics is surely physical. However, the two systems could
be correlated, so that ρ 6= ρA ⊗ ρB. In this case we must require complete positivity. In
fact, the operation can be rewritten as the composition of two operations

ΦA ⊗ ΦB = (ΦA ⊗ IB) (IA ⊗ ΦB) , (2.2.3)

where IA and IB are the identity maps in the respective spaces. Whatever the dimension
of both systems, the map ΦA ⊗ ΦB will surely be positive if both ΦA and ΦB are
completely positive. It follows that the map describing the evolution of the system under
our control, i.e., system A, has to be completely positive since we could not know if A is
correlated to another system that is not in our description.

One of the most-common description of an open system dynamics is given in terms
of Markovian master equations, which we will now introduce.

2.2.1 Markovian dynamics

Assuming that at the start of the dynamics ρT (t0) = ρS(t0) ⊗ρB(t0), a common situation
is that in which the open quantum systems dynamics does not affect the dynamics of
the reservoir, i.e., the reservoir has its own dynamics such that, on the time-scale on
which ρS(t) evolves, we can always consider ρB(t) = ρB(t0) and treat the two systems as
uncorrelated. This is called the Born approximation or weak coupling approximation [12].
Moreover, if we also assume that the dynamical effects due to the interaction with the
environment are slow16, the Markov approximation leads us to a Markovian dynamics for
ρS(t) [12]. A Markovian dynamics is a dynamics for which the evolution of a system only
depends on its actual state and not on its past states. This is the reason for which, on
the other hand, a non-Markovian dynamics is connected with the memory of the reservoir
about the past state of the open quantum system.

From the mathematical point of view, if the total system Hamiltonian is time-
independent, the operation V (t, t0) becomes dependent only on the time difference t− t0

15We denote by In the identity operator in an n-dimensional Hilbert space.
16More precisely, one must assume that ρIS(t) is slowly-varying, where ρIS(t) is the density matrix in

the interaction picture. See Ref. [12] for more details.
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and the process is called homogeneous. Hereafter, we set t0 = 0 so that we can just write
V (t). If the dynamics is Markovian, V (t) also assumes the semigroup property [12]

V (t1)V (t2) = V (t1 + t2), t1, t2 ≥ 0. (2.2.4)

Focusing on the case of homogeneous Markovian dynamics, under certain mathematical
conditions [12], the operation V (t) can be cast in the exponential form V (t) = exp(Lt),
where L is the generator of the semigroup, it is called Lindbladian, and may be regarded
as a generalization of the Liouville super-operator [12]. This immediately leads to the
first-order differential equation for the state ρS of system S,

d
dt
ρS(t) = LρS(t). (2.2.5)

The above equation is called Markovian master equation.
For bounded operators, Lindblad proved in Ref. [16] that the most general form of

the generator L is17

L(ρS) = − i

~
[H, ρS ] +

N2
S

−1∑

k=1

γk

(
AkρSA

†
k − 1

2

{
A†
kAk, ρS

})
, (2.2.6)

where H is an Hermitian operator (usually strictly connected with the Hamiltonian HS of
system S), the Ak are arbitrary operators, NS = dim HS

18, and the γk are non-negative
quantities. The second term of Eq. (2.2.6) is also called dissipator and denoted by D(ρS)
so that the master equation can be written as

d
dt
ρS = − i

~
[H, ρS ] + D(ρS). (2.2.7)

With the same time-independent generator L, we can also write the Heisenberg dynamics
of a time-independent operator O in the Schrödinger picture. Its correspondent Heisenberg
picture operator OH(t) evolves according to19

d
dt
OH = L†(OH) =

i

~
[H,OH ] +

N2
S

−1∑

k=1

γk

(
A†
kOHAk − 1

2

{
A†
kAk, OH

})
. (2.2.8)

The above equation is called adjoint master equation.
Although Markovian master equations have proven invaluable for the description of

numerous situations, the interest in non-Markovian dynamics has recently surged due
to the fact that numerous quantum systems exhibit pronounced memory effects [93].
Numerous techniques have been developed to deal with non-Markovian open quantum
systems and to quantify how much a given dynamics is non-Markovian (see, for example,

17We drop the explicit temporal dependence of ρS(t) to lighten the notation.
18HS is the Hilbert space of system S
19We drop the explicit temporal dependence of OH(t) to lighten the notation.
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[94]). Regarding the dynamics, a recent line of research consists in describing the non-
Markovian dynamics of the open system by finding the Markovian dynamics of an enlarged
virtual system [95–97]. This technique is sometimes called “Markovian embedding” [95].
This is particularly true in the case of open systems described through collision models [98,
99]. Finally, regarding the problem of measuring non-Markovianity, many efforts have
been done in the specific case of gaussian dynamics [100, 101]. In particular, the use of
Gaussian dynamics in collision models is an actual active research topic [102, 103] to
which chapter 5 of this thesis belongs. We will briefly introduce collision models in this
section and Gaussian states and dynamics later in this chapter.

2.2.2 Microscopic derivation and phenomenological approach.

To obtain a master equation describing the dynamics of a given open quantum system,
the standard approach is to perform a so-called microscopic derivation [12]. To arrive
at the final result, different approximations such as the Born-Markov approximation
and the secular one [12] can be made based on the physical system at hand. We refer
to Ref. [12] for different possible situations therein described. In particular, the most
common elements20 of most physical setups have been studied within this approach so
that their master equation is available in literature. Master equations derived within
this standard procedure are usually denoted as microscopic master equations. In most
situations, the microscopic master equations are Markovian and have the form given in
Eq. (2.2.6).

When the system at hand is composed of various interacting subsystems, another,
easier, approach called “phenomenological approach” has been pursued in literature. In
this case, one simply uses the Hamiltonian of the system to write the unitary part of
the Lindbladian and adds the dissipators correspondent to each element of the setup
independently. Usually, when the interaction among the subsystems is weak, the master
equation based on this approach gives more or less the same results that the proper
microscopic master equation would have given. An example of the possible differences
between the two approaches is given in Refs. [104, 105]. We denote by phenomenological
master equation the master equations written by making these approximations. The
starting point of chapter 6 is obtained within this approach.

An important property of microscopic master equations is that, in general21, they
lead a multi-partite interacting system to a thermal state at temperature T when the
reservoir is in the thermal state at temperature T and the system-environment coupling
is weak [12]. On the contrary, the phenomenological master equations do not usually
lead to the correct thermal state. For example, in Ref. [104] it leads the system to the
tensor product of the thermal state of its components. It is worth to notice that the
difference between the proper thermal state and the product state of subsystems thermal
states is not significant when the interaction between the subsystems is weak compared
to the energies of the bare subsystems.

20As examples of these common elements we cite the damped harmonic oscillator and the damped
qubit.

21See Ref. [12] for more details on the conditions needed for the thermalization.
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Figure 2.1: This figure illustrates schematically two collision models: a Markovian one
(A) and a non-Markovian one (B). In the non-Markovian one, the intra-bath interactions
are responsible for the memory effects. Panel (C) shows a pictorial representation of the
so-called Markovian embedding.

2.2.3 Collisional models and Markovian embedding.

Another useful framework for describing the dynamics of open quantum systems is the
so-called collision model (CM). In this model, the environment is composed of simple
identical units (also called ancillas) which interact sequentially with the system of interest
and also among themselves. Since both the open quantum system and the units are simple,
the dynamics of their collisions can typically be treated analytically or, at least, the
numerical simulation is feasible. Many different CMs can be constructed. Here, we will
introduce one of the CMs used in Ref. [99] since it is also the one employed in chapter 5.
This model we are going to introduce can be made both Markovian [Fig. 2.1 (A)] and
non-Markovian [Fig. 2.1 (B)]. Since the Markovian case can be seen as sub-case of the
non-Markovian one, we will directly introduce the non-Markovian one.

Let us consider a system S and a possibly infinite number of ancillary systems B1,
B2 and so on. The initial state of the whole system is given by

ρT (0) = ρS(0) ⊗ ρB1 ⊗ ρB2 ⊗ . . . , (2.2.9)

where the initial state of the ancillas are all equal, i.e., ρBn = ρBm for n 6= m. Let us



16 CHAPTER 2. PRELIMINARY BACKGROUND

define the following unitary operators:

US,n = e−(i/~)HSB,nτ , VE,n = e−(i/~)HBB,nτ , (2.2.10)

where τ is the duration of each collision22, HSB,n is the total Hamiltonian during the
interaction S-Bn, and HBB,n is the total Hamiltonian during the interaction Bn−1-Bn.
One also assumes that the states of systems B do not change when they are not involved
in a collision23 and that the time between two subsequent collisions is zero. Now we can
define the first step of this CM and the following ones:

Φ1[ρT (0)] = ρT (1) = US,1ρTU
†
S,1, Φn[ρT (n− 1)] = ρT (n) = US,nVE,nρTV

†
E,nU

†
S,n.

(2.2.11)
By denoting with TrS the trace over all systems but S and Φ(n) = Φn ◦ · · · ◦ Φ1, we get
the state of system S after n steps as

ρS(n) = Λ(n)ρS(0) ≡ TrS {Φ(n)ρT (0)} . (2.2.12)

If we neglect the intra-bath interactions, i.e., we write VE,n = I, it is easy to see that
the dynamics given by Λ(n) is Markovian in the sense that the state ρS(n) depends only
on ρS(n − 1). Otherwise, the dynamics can be non-Markovian. Nevertheless, we can
make use of the Markovian embedding procedure to describe the Markovian dynamics
of an enlarged system and, knowing this, also obtain the non-Markovian dynamics of
system S. In fact [see Fig. 2.1 (C)], it is possible to show that [99]

Λ(n)ρS(0) = TrA
{

Λ̃(n)ρSA(0)
}
, Λ̃(n) = Λ̃n ◦ · · · ◦ Λ̃1, ρSA(0) = ρS(0) ⊗ ρB1 ,

(2.2.13)
where

Λ̃1 = Φ1, Λ̃(n)ρSA(n− 1) = TrBn−1

{
US,nS1,nṼE,nρT Ṽ

†
E,nS1,nU

†
S,n

}
, (2.2.14)

and Sn,m is the standard Hermitian swap operator implying Sn,m(ρn ⊗ ρm)Sn,m =
ρm ⊗ ρn [99] and ṼE,n is equal to VE,n a part from being applied to systems B1 and Bn
instead of Bn−1 and Bn

24.
To sum up, the advantage of using collision models is given by their simplicity and

the physical insight they can provide. Nevertheless, while they can be used to describe
highly ingegnerized baths really composed of units interacting sequentially with the
open system, their connection to realistic bath typically treated within the microscopic
approach is still nebulous.

22The duration of each collision is assumed to be the same for the sake of simplicity.
23This is not the case, for example, if we take ρBi to be a non-equilibrium state subject to the evolution

of its bare Hamiltonian.
24See Eq. (2.2.10).
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2.2.4 Adiabatic elimination in open quantum systems

A common situation encountered in open quantum systems is the case of a bipartite
system in which one subsystem dynamics is fast compared to that of the other one. In
quantum optics, an example of this situation is given by the so-called bad-cavity limit, in
which an optical cavity containing one or more atoms is very leaky. If one is interested
only in the dynamics of the atoms within the cavity, it can perform the so-called adiabatic
elimination on it and find an effective dynamics for the atoms [106, 107]. In Sec. 2.4.2 we
will give more details about this specific physical setup and we will perform the adiabatic
elimination in chapter 6 to compare the cases of one- and two-photon coupling between
the atoms and the cavity. In particular, we will use a very recent technique to perform
the adiabatic elimination [32, 33], which we briefly resume in this section.

To apply this technique we have to treat separately the two subsystems. We call
“system A” the subsystem with fast dynamics and “system B” the one with the slow
dynamics. Moreover, we must assume that the two subsystems interact weakly. As final
requirement, system A has to converge to a unique steady state, which we call ρst

A, when
it is influenced uniquely by its own Lindbladian. For a far more detailed discussion see
Ref. [33].

Following the prescription of Ref. [33], the Lindbladian describing the evolution of
the density matrix of the global system, ρG, is given by:

ρ̇G = LA(ρG) + ǫLB(ρG) − i

~
ǫ[Hint, ρG], (2.2.15)

where ǫ is the quantity which will play the role of perturbative parameter in the expansion
of system B dynamics and each Lindbladian is of the form

Lr(•) = − i

~
[Hr, •] +

∑

n

D
X

(n)
r

(•), (2.2.16)

where r = A, B, and

D
X

(n)
r

(•) = X(n)
r •X†(n)

r − 1
2

{
X†(n)
r X(n)

r , •
}
. (2.2.17)

The interaction Hamiltonian can be written in the general form

Hint = ~c
M∑

k=1

Ak ⊗B†
k, (2.2.18)

where Ak and Bk are not necessarily hermitian and c is a constant with the dimensions
of a frequency.

The goal of the adiabatic elimination procedure is to find the super-operator describing
the dynamics of the reduced density matrix of system B, ρB = TrA {ρG}, as

ρ̇B = LS(ρB) =
∑

m≥0

ǫmLS,m(ρB), (2.2.19)
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and to be able to return back to the global dynamics through

ρG = K(ρB) =
∑

m≥0

ǫmKm(ρB), (2.2.20)

where, at any order in ǫ, LS is a Lindbladian and K is a Kraus map25. In the case
analyzed in chapter 6, we want to obtain a second order equation for the dynamics of
system B since, at first order, the adiabatic elimination will not give rise to dissipative
terms.

Due to the peculiarities of the method employed, the zero-order terms can be chosen
with a certain arbitrariness. Following Ref. [33], the simplest choice is LS,0(ρB) = 0 and
K0(ρB) = ρst

A ⊗ ρB. Then, the first order reduced dynamics is given by [33]

ρ̇B = ǫLS,1(ρB), (2.2.21)

where

LS,1(ρB) = −ic
M∑

k=1

[
TrA

{
Akρ

st
A

}
B†
k, ρB

]
+ LB(ρB). (2.2.22)

The super-operator K1 can be obtained as follows [33]:

K1(ρB) = −ic
M∑

k=1

Fk
(
ρst
A

)
⊗
(
B†
kρB

)
+ h.c. , (2.2.23)

where Fk
(
ρst
A

)
= τ

[JA(Akρst
A) − Tr{Akρst

A}ρst
A

]
, h.c. indicates the hermitian conjugate,

and JA and τ are defined in the following. In general, the JA super-operator has the
form

JA(Z) =
1
τ

∫ ∞

0
etLA (Z − R(Z)) dt+ R(Z), (2.2.24)

where τ > 0 such that −LA (τJA(Z)) = Z − R(Z) and R(Z) = lims→+∞ esLA(Z) =
TrA{Z}ρst

A. Notice that even if it could seem that the results of the procedure depend
on the choice of the parameter τ , for the case we are going to examine in chapter 6 the
value of this parameter will be irrelevant.

In order to find the second order dynamics of system B, it is useful to define two
matrices whose elements are given by

Xk,j = c2
[
Tr
{
Fj
(
ρst
A

)
A†
k

}
+ h.c.

]
, Yk,j =

c2

2i

[
Tr
{
Fj
(
ρst
A

)
A†
k

}
− h.c.

]
. (2.2.25)

The matrix X is Hermitian and positive semi-definite. Then, there exists a non-unique
M ×M matrix Λ such that X = ΛΛ†.

The second order dynamics is given by [33]

ρ̇B = ǫLS,1(ρB) + ǫ2LS,2(ρB), (2.2.26)

25A Kraus map K is a map that can be decomposed as K(ρ) =
∑

i
KiρK

†
i where Ki are operators

such that
∑

i
K†
iK = I [33].
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where

LS,1(ρB) = −i
M∑

k=1

[
TrA

{
Akρ

st
A

}
B†
k, ρB

]
+ LB(ρB),

LS,2(ρB) = −i



M∑

k,j=1

Yk,jBkB
†
j , ρB


+

M∑

p=1

DLp(ρB), Lp =
M∑

j=1

Λ∗
j,pB

†
j . (2.2.27)

2.3 Quantum thermodynamics

Quantum thermodynamics is a vast research field encompassing different areas of physics.
It goes from conceptual topics like typicality [108–110] to more practical ones like
improving the performance of thermal machines [20]. On the one hand, tipicality is a
promising way to explain the emergence of themodynamics from quantum mechanics
without invoking additional axioms. On the other hand, the interest on practical aspects
of quantum thermodynamics has been recently growing due to the experimental advances
and the possible applications in nanoscale devices [111]. For example, an experimental
realization of a quantum thermal machine in which the working fluid consists of a
single atom has been done very recently [112]. Many other platforms for quantum
thermodynamic experiments are described in Ref. [20]. We refer the reader to Refs. [20,
110, 111] for more detailed discussions on both theoretical and experimental aspects of
quantum thermodynamics. Here, we will deal with the more practical-oriented, but still
theoretical, facets concerning thermal machines.

As already anticipated, one of the most intriguing problems concerns the realization of
thermodynamic processes at a quantum level [113–119]. Many results have been recently
obtained inside the theoretical framework of the thermodynamic resource theory (TRT),
which, as the LOCC framework of section 2.1.1, is a quantum resource theory. Among
all the possible quantum processes studied in TRT, work-extraction protocols play a
relevant role [120, 121]. However, most of them are not easy to realize experimentally.
For this reason, various efforts have been done to understand how to design realizable
TRT protocols [122, 123] although most proposals require fine control of the system for
an experimental realization. For example, in a process composed of many steps, it could
be required to turn on and off a specific interaction for an amount of time specific to
each step. We will propose and study a protocol not requiring fine tuning in chapter 3.

Another topic of actual interest is the study of quantum thermodynamic cycles
focusing on the tradeoff between power and efficiency [20, 111, 124, 125], with power
usually increased at the expense of efficiency. A very important result of the nineteenth
century physics consists in the determination of the Carnot efficiency: the efficiency
of a thermal engine operating between two thermal baths at different temperatures is
limited by the Carnot value ηC = 1 − Tc/Th where Th is the temperature of the hot
bath and Tc of the cold one (Th > Tc). However, the Carnot limit is a very general
bound usually attained for ideal machines with vanishing power [20]. For an engine
operating at maximum power, the efficiency is not bounded by a universal value, and its
maximum value is usually model dependent. Often, the efficiency at maximum power
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is limited by the so-called Curzon-Ahlborn efficiency26 ηCA = 1 −
√
Tc/Th [126–132].

However, this limit is not always valid [20, 127–129, 131, 132] and can be surpassed [133,
134]. We will propose and study two thermodynamic cycles in chapter 4, focusing on
the interplay of power and efficiency, and their relation with the waiting times of the
machines implementing the cycles.

Let us now briefly introduce TRT.

2.3.1 Thermodynamic resource theory

In Sec. 2.1.1 we examined the LOCC framework, which allowed us to quantify the amount
of entanglement of a given bipartite system state. The LOCC framework is an example
of quantum resource theory [85]. In general, a resource theory is a theory in which the
possible operations that can be done on a system are restricted by some constraints
and it is supposed that to perform a given protocol some special states belonging to
other systems are unlimitedly available for free (see Ref. [85] for a general review of
quantum resource theories). These external systems in these particular states are called
“free resources” [85, 86]. In the case of LOCC the free resources are local systems not
correlated with the systems of the other parties while the allowed operations are the
LOCC-operations. Here, we introduce the Thermodynamic Resource Theory (TRT), and
refer the reader to Refs. [20, 86] for focused reviews.

An operation T (ρ) permitted by TRT and addressed as a Thermal Operation (TO)
has the following structure:

T (ρ) = Trbath

{
U(ρ⊗ ρbath)U †

}
, [H +Hbath, U ] = 0 , (2.3.1)

where H is the Hamiltonian of the system described by the density operator ρ, Hbath

is the Hamiltonian of the free resource (usually called bath) and U is a generic unitary
operator that connects initial and final states of the total system (free resource included).
The free resource (bath) is a system with an arbitrary Hamiltonian, assumed to be in a
thermal state (ρbath) at a given temperature. In a thermal operation the bath is used
only for the duration of the protocol so that the interaction between system and bath
at the end and at the start of the protocol is identically zero. Then, the commutator
[H +Hbath, U ] = 0 assures us that the global system has kept its energy unchanged (not
only the mean value but also the entire distribution). This is needed because the aim of
TRT is to keep track of all the energy terms involved in a possible thermal process and
to find what bounds the constraints of TRT generate.

TRT requirements can be viewed as an axiomatization of thermodynamics. Therefore,
it is possible to recover the thermodynamic laws from the definition of the allowed
operations. This can indeed be done and even generalizations of these laws can be
found [135, 136]. Moreover, regarding the resource interconversion, there exist the

26Most papers in literature denote this efficiency as the Curzon-Ahlborn efficiency. Others name it
the Chambadal-Novikov efficiency or Chambadal-Novikov-Curzon-Ahlborn efficiency. In this thesis, we
will use the more common name.
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analogue of Nielsen’s theorem in TRT, which instead of being based on the concept of
majorization is based on that of thermo-majorization [120].

To define the thermo-majorization, we must first introduce the β-ordering. Consider
a system in the state ρ. We denote by T the temperature of the bath that will be
used to implement the TO and assume that the system Hamiltonian H =

∑
iEi |Ei〉〈Ei|

has no degeneracies27. We denote by p the population vector of ρ, with components
pi = 〈Ei|ρ|Ei〉. By putting in decreasing order the quantities pieβEi , where β = 1/(kBT ),
kB being the Boltzmann constant, we obtain the vector we denote by p↓β , which had the
same components of p but permutated as explained and is called the β-ordered version
of p [86].

Given the vector of thermal populations g, with components gi = 〈Ei|ρth|Ei〉, where
ρth is the thermal state, we can construct its β-ordered version g↓β by checking again
the decreasing order of the quantities pieβEi . Then, we can define the so-called thermo-
majorization curve L(ρ,H, T ), obtained by plotting the set of points whose abscissa and
ordinate are (xi, yi) = (g↓β

i , p↓β
i ) for i going from 1 to N and adding the point (0, 0). Let

us now consider a target state ρ′ with the property [ρ′, H] = 0 and consider its thermo-
majorization curve. The transition through TO from ρ to ρ′ is possible if L(ρ,H, T ) is
always above L(ρ′, H, T ). We then say that ρ thermomajorizes ρ′. In symbols: ρ ≻g ρ

′.
The condition

ρ ≻g ρ
′ =⇒ ∃ TO : ρ → ρ′, (2.3.2)

becomes an “if and only if” when also ρ has the property [ρ,H] = 0 [120].
When the transition ρ → ρ′ cannot be realized there could be situation in which,

instead, the transition ρ ⊗ σ → ρ′ ⊗ σ, where σ is the state of an ancillary system, is
feasible. In this case, we say that the ancillary system acts as a catalyst.

The class of permitted operations is sometimes extended. For example, in Ref. [137]
authors make use of the so-called Gibbs-preserving operation. Considering a system
state and the same system Hamiltonian as an object p = (ρ,H), a transition p → G(p) =
(GH(ρ), G̃(H)) is Gibbs-preserving if there exist a quantum channel GH and the map G̃
mapping Hamiltonians onto Hamiltonians such that

GH
(

e−βH

Tr{e−βH}

)
=

e−βG̃(H)

Tr
{
e−βG̃(H)

} . (2.3.3)

Since G̃(H) can be different from H, Gibbs-preserving operations can be used to analyze
systems where the Hamiltonian changes. In addition, catalytic Gibbs-preserving tran-
sitions can be defined. A transition p → r is a catalytic Gibbs-preserving transition if
there exists an object q such that p⊗ q → r⊗ q is a Gibbs-preserving transition. Further
extension such as marginal-catalytic transitions or correlated-catalytic transitions can be
found in Ref. [138]. What interests us here is that when considering the most general
transitions allowed, there is a single condition for their existence, i.e., that the amount of

27This is just a simplifying assumption to not make the discussion uselessly long. See Ref. [120] for
the case of degenerate Hamiltonians.
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athermality decreases, which for an object p is defined as [138]

∆Fβ(ρ,H) :=
1
β
S(ρ||ρth) = Fβ(ρ,H) − Fβ(ρth, H), (2.3.4)

where Fβ(ρ,H) = Tr{ρH} − kBTS(ρ) is the free energy of the state ρ. Given a certain
temperature at which the systems at hand operate, athermality can then be considered
as a quantifiable resource. Its variation will be used to define a work quantifier that we
will use in chapter 3.

Work quantifiers

Defining work in quantum thermodynamics poses a challenge due to the multistep nature
of work measurements. Indeed, one of the most diffused ways to measure work is the so
called Two Energy Measurement Approach (TEMA) [139, 140], where the experimenter
performs an energy measurement on the system before the protocol starts and another one
when the protocol ends. This approach works fine when the system is in a block-diagonal
state28 at the start of the protocol but does not give intuitive results when the initial
state possess coherences in the Hamiltonian basis [140]. For intuitive results we mean,
for example, that we expect the average work to be given by Tr{H ′ρ′} − Tr{Hρ}, where
ρ, ρ′, H, and H ′ are, respectively, the system states and Hamiltonians at the start and
at the end of the protocol. The problems of these approaches come from the destructive
nature of measurements in quantum mechanics, where a measure has great influence on
the evolution of the system, therefore if two or more measurements are performed only
the first one is not influenced by the other measurements. TRT circumvents the problem
of defining work not by defining it on the basis of what happens to the system doing
work, but by measuring it on another system called battery, the storage of work. In
particular, in chapter 3 we will call R the system doing work and S the storage system.

In Ref. [137], various work quantifiers are analyzed by considering the set of possible
processes described by TRT for a fixed environmental temperature and, moreover,
assuming that they have to respect some axioms built in such a way that the second
law of thermodynamics is automatically satisfied. Among those, in chapter 3, we will
choose the one given as the difference in athermality between the start and the end of
the protocol [cf. Eq. (2.3.4)]. Our specific choice of the work quantifier is motivated by
the fact that, differently from other quantifiers, it can be used even if the resource R
(which can be classical or quantum) and the storage S are correlated at the end of the
process [137, 138]. Therefore, the work will be there defined as:

W = ∆Fβ
(
ρ′
S , H

′
S

)− ∆F (ρS , HS), (2.3.5)

The quantities marked with an apex are related to the end of the process, while those
not marked are related to the start of the process. We remark that this work definition
quantifies how much the athermality amount of a system, given by ∆Fβ(ρ,H), changes

28Block-diagonal means that [ρ,H] = 0, where ρ is the state of the system and H its Hamiltonian.
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after a permitted operation. If H ′
S = HS , Eq. (2.3.5) simplifies to:

W = Fβ
(
ρ′
S , HS

)− Fβ (ρS , HS) . (2.3.6)

Then, at zero temperature and for a not-changing Hamiltonian, the chosen definition of
work coincides with the average energy difference of system S between the start and the
end of the protocol, i.e., with the intuitive definition of work done on a system.

2.3.2 Quantum thermal cycles

Quantum mechanics is becoming more and more necessary in order to describe the
functioning of thermal machines based on nanoscale devices. Thus, many efforts have
been done on characterizing thermodynamic protocols in the quantum domain [20].

We can distinguish the thermodynamic machines functioning between multiple thermal
baths in two main categories: continuous and reciprocating [20]. Continuous machines
are not characterized by cycles. They work in a continuous manner. For example, a
three-level maser can be treated as a continuous thermal machine whose output is in the
form of light [20, 141].

Reciprocating machines are made of a series of strokes constituting a cycle. For
example, the Carnot engine and the Otto engine are reciprocating thermal machines in
which each cycle is constituted of four strokes. Both these cycles have their quantum
counterpart [20, 113]. The quantum Otto cycle is one of the most studied cycles in
literature, also because the Hamiltonian changes happen when the system does not
interact with the bath, thus simplifying its analytical treatment. In particular, in this
thesis we will deal with two-stroke reciprocating machines in Chapter 4.

Let us now describe the quantum Otto cycle as an example of reciprocating machine
to which we will compare one of our owns in chapter 4. We consider a quantum system
S as the so-called working fluid and denote its Hamiltonian at the start of the cycle by
Hh. The four strokes of the cycle are described below.

1. The hot isochore: heat is transferred from the hot bath to the working fluid.

2. The expansion adiabat or the expansion stroke: the Hamiltonian of the working
fluid is changed from Hh to Hc while it is decoupled from the baths.

3. The cold isochore: heat is transferred from the working fluid to the cold bath.

4. The compression adiabat or compression stroke: the Hamiltonian of the working
fluid is changed from Hc to Hh while it is decoupled from the baths.

In practice, the change of Hamiltonian is usually reduced to the change of one of its
parameters, such as the frequency for harmonic oscillators. In this specific case, when
performed adiabatically, the efficiency of the cycle is given by

ηOtto = 1 − ωc
ωh
, (2.3.7)
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being ωc and ωh the frequencies of the harmonic oscillator in the different phases of the
protocol [113]. Notice that, in the adiabatic case, it is not necessary that Hh = (ωh/ωc)Hc

to obtain this efficiency. The only condition is that the populations of the thermal states
adiabatically follow the instantaneous eigenstates during the Hc ↔ Hh changes. In the
case of qubits, the same efficiency can be obtained in the adiabatic case.

The adiabatic Otto cycle, as the ideal Carnot cycle, has vanishing power, because
of the long-time condition for adiabaticity. To obtain a finite power, the cycle must
be performed in finite time, usually at the expense of the efficiency. To improve the
performance of the Otto cycle, the so-called “Shortcuts-to-adiabaticity” (STA) have been
theoretically studied [142–144] for the Otto engine case. In general, STA aims to obtain,
in finite time, the same final state of an adiabatic dynamics starting from the same initial
state. More precisely, consider a time-dependent Hamiltonian H(t); at the start of the
dynamics, with t0 = 0, the state is ρ(0) and the Hamiltonian is H(0). If the Hamiltonian
varies slowly enough the adiabatic theorem can be applied to obtain the dynamics of ρ(t).
In general, however, this is not true. By adding the so-called counter-adiabatic terms to
the Hamiltonian, one can implement a STA technique to try obtaining the same final
state predicted by the adiabatic theorem [145]. Notice that STA techniques have already
been experimentally implemented [146, 147].

Regarding the performances of the Otto cycle with STA, their computation depends
on how one chooses to keep into account the cost of implementing the STA. For example,
in Refs. [143] and [144] the cost is calculated differently. In both cases, however, the
overall performance of the cycle improves with the addition of the STA compared to the
same cycle with the non-adiabatic implementation without STA.

The cycles we will deal with in chapter 4 are a generalization of the two-stroke cycle
introduced in Ref. [134]. There, two qubits are in contact, respectively, with a cold and a
hot bath. The first stroke of the cycle consists in their interaction while the second stroke
consists of their thermalization. Their interaction with the baths is not considered during
the interaction stroke. In Ref. [134], they assume that the thermalization stroke takes so
much time compared to the other one that the optimal interaction is the one maximizing
the work per cycle. They then arrive at the conclusion that this optimal interaction is a
swap between the two qubits. Interestingly, given the frequency of the two qubits (ωc for
the one in contact with the cold bath and ωh for the other), the efficiency of the protocol
is exactly given by Eq. (2.3.7). Moreover, this cycle can surpass the Curzon-Ahlborn
efficiency. Both these results can be found also for our cycles of chapter 429.

2.4 Other topics

Up to now, we have made a brief introduction to quantum correlations, open quantum
systems and quantum thermodynamics. However, the topics treated in this thesis are
connected also to other areas of physics. Therefore, there are some arguments playing a

29More precisely, the surpass of the Curzon-Ahlborn efficiency when operating at maximum power
will be checked only for the qubits case while we will show that the surpass cannot be obtained with
harmonic oscillators.
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substantial role in this thesis but that we have not yet wrote about. Since we do not
deem proper to dedicate a section to each one of them, we introduce them all in this
section.

2.4.1 Gaussian states formalism

In chapter 5 we will study a collision model in which all systems are treated as harmonic
oscillators within the Gaussian formalism. In general, many common quantum systems
employed in experiments can be described as harmonic oscillators and there is a set of
states called Gaussian states which are easy to generate and manipulate [148]. Moreover,
once the state of multiple harmonic oscillators is Gaussian, it remains Gaussian under a
vast class of external drivings and internal interaction Hamiltonians. Finally, Gaussian
states can be used to implement various quantum protocols [148] and can be part of the
so-called Continuous Variable (CV) quantum circuits for computation even if Gaussian
states alone are not sufficient to make quantum computation more powerful than the
classical one [149]. For all these reasons there have been many theoretical efforts for the
characterization of this kind of states [148, 150], giving rise to the Gaussian formalism.
Notable examples of Gaussian states are the coherent states, squeezed states, and thermal
states [148, 150].

Following Ref. [148], any Gaussian state can be written as

ρG =
e−γH

Tr{e−γH} , (2.4.1)

where γ ≥ 0 and H is an Hamiltonian that can be written as

H =
1
2
RRR⊺HHHRRR+RRR⊺RRR. (2.4.2)

Here, RRR = (x1, p1, . . . , xn, pn)⊺ is a 2N -dimensional real vector whose components are the
canonical operator xi (position) and pi (momentum) for the i-th harmonic oscillator of the
system while HHH is a 2N × 2N symmetric and positive definite matrix called “Hamiltonian
matrix”. Pure Gaussian states are included in the description by performing the limit
γ → ∞. When dealing with Gaussian states, however, it is more common to describe it
in terms of the first moments vector RRR and the covariance matrix σσσ:

RRR = 〈RRR〉 , σσσ =
〈{

(RRR−RRR), (RRR−RRR)⊺
}〉

, (2.4.3)

where we used the outer product notation (aaabbb⊺)ij = aibj
30 and, following Ref. [148], we

defined
{aaa,aaa⊺} = aaaaaa⊺ + (aaaaaa⊺)⊺ , [aaa,aaa⊺] = aaaaaa⊺ − (aaaaaa⊺)⊺ . (2.4.4)

In terms of single matrix or vector elements, we can write the above equations as

Ri = 〈Ri〉 , σij = 〈RiRj〉 + 〈RjRi〉 − 2 〈Ri〉 〈Rj〉 . (2.4.5)
30Notice that aaaaaa⊺ 6= (aaaaaa⊺)⊺.
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A Gaussian state is completely characterized by RRR and σσσ. Using this vector notation, the
canonical commutation relation (CCR) [xi, pi] = i~ can be written as [148] [RRRR,RRR

⊺
R] =

i~ΩΩΩ, where ΩΩΩ is the what we call the standard symplectic matrix in 2N dimensions:

ΩΩΩ =
N⊕

1

Ω2, where Ω2 = iσy =

(
0 1

−1 0

)
, (2.4.6)

where σy is the standard Pauli matrix. In general, a matrix SSS is called symplectic if
SSSΩΩΩSSS⊺ = ΩΩΩ.

For a single harmonic oscillator, when we write the vectorRRR in terms of the quadrature
operatorsX = (

√
mω/~)x and P = (

√
1/mω~)p, wherem is the mass and ω the frequency

of the harmonic oscillator, the description made through the covariance matrix simplifies.
In particular, thermal states are given by [150]

RRR = 0, σσσ = coth
(

~ω

2kBT

)
I2 = (2n+ 1) I2, n =

1
e~ω/(kBT ) − 1

, (2.4.7)

while coherent states |α〉 are given by RRR =
√

2(Re{α}, Im{α})⊺ and σσσ = I2. Moreover,
the average number of excitations for of a single harmonic oscillator in a generic Gaussian
state is n = (Tr{σσσ} − 2)/4.

In general, using quadrature operators to write the vector RRR, a complete characteri-
zation of a deterministic Gaussian CP-map can be given by

RRR → XRRR, σσσ → XσσσX ⊺ + Y, Y + iΩΩΩ ≥ iXΩΩΩX ⊺, (2.4.8)

where X and Y are real matrices of the appropriate dimensions, Y is symmetric, and the
last condition is needed for the final state to satisfy the uncertainty condition σσσ+iΩΩΩ ≥ 031.
In the case of isolated systems, the equivalent of the Schrödinger equation is given by:

d
dt
RRR = DDDRRR,

d
dt
σσσ = DDDσσσ + σσσDDD⊺, (2.4.9)

where DDD = ΩΩΩHHH is the so-called drift matrix [151].
Gaussian formalism provides a great simplification regarding tracing out systems. On

the one hand, when describing uncorrelated systems with covariance matrices, one simply
has to make the direct sum of the covariance matrices instead of the tensor product [148,
150]. On the other hand, when tracing out a system possibly correlated to others it is
sufficient to discard all elements of the covariance matrix pertaining to that system [148,
150]. Suppose we have systems A and B described by the total covariance matrix σS .
We can divide it as follows:

σS =

(
σA σAB
σ⊺AB σB

)
, (2.4.10)

where σA is the covariance matrix of system A, σB of system B and σAB keeps count of
their correlations. Tracing out system B means that we just keep σA.

31This is the Gaussian formalism expression of the uncertainty principle in the Robertson-Schrödinger
form [150].
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2.4.2 The Rabi Hamiltonian and the Dicke model

The Rabi Hamiltonian

A qubit interacting with a harmonic oscillator is one of the more common physical
situations studied in literature. One Hamiltonian describing this situation is the so-called
Rabi Hamiltonian [152, 153]:

HRb =
~ωq
2
σz + ~ωhn̂+ ~gσx

(
a† + a

)
, (2.4.11)

where ~ωq is the energy gap between the ground state |g〉 and the excited state |e〉 of the
qubit, ωh is the frequency of the harmonic oscillator32, n̂ is the number operator33, a†

and a are the creation and annihilation operators, and σz and σx are the Pauli matrices.
We will apply the thermodynamic protocol proposed in chapter 3 also to this model.

The Rabi model is very effective for example in cavity QED [22] and in circuit
QED [154]. In the past decades this model has been mainly treated under suitable
approximations such as the rotating wave approximation [12, 22] and the Bloch-Siegert
approximation [155], which hold when the interaction is weak. Recently, a lot of attention
has been devoted, both theoretically and experimentally [152–154, 156–161], to the study
of the Rabi Hamiltonian beyond the weak coupling regime, also in view of the recent
remarkable experimental realizations of physical situations characterized by high values
of the interaction strength [154, 158, 159], and an analytical complete solution has been
found [152, 161]34.

Although the first formal solutions of the Rabi model have been found in Ref. [152],
the alternative derivation given later in [161] is, in our opinion, clearer and is the one
we used to calculate the ground state of the Rabi model in Appendix 3.D. In most
cases, however, when the coupling is weak g ≪ ωq, ωh, one can safely apply the so-called
rotating wave approximation and obtain the simpler Jaynes-Cummings Hamiltonian [22]

HJC =
~ωq
2
σz + ~ωhn̂+ ~g

(
σ−a

† + σ+a
)
, (2.4.12)

where σ− and σ+ are the lowering and raising operators on the qubit, respectively. The
Jaynes-Cummings Hamiltonian has been used, for example, to describe the confinement of
a single qubit in an optical cavity. This may induce modifications of the atom absorption
and emission rates such as the well-known Purcell effect [22].

Alternatively to the rotating-wave approximation, one can rely on the so-called Bloch-
Siegert approximation, valid when g is small compared to Ω = ωq + ωh, even when the
Jaynes-Cummings Hamiltonian is not a good approximation anymore [162]. By defining
the unitary operator

UBS = exp
{

Λ(aσ− − a†σ+) + ξ(a2 − a†2)σz
}
, (2.4.13)

32Typically, ωq ∼ ωh.
33With the number basis given by n̂ |n〉 = n |n〉.
34See also [153] for a review.
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where Λ = g/Ω and ξ = gΛ/(2ωh), one gets the Bloch-Siegert Hamiltonian by calculating
U †

BSHRbUBS up to second order in Λ. The result is [162]

HBS =
~ω̃

2
σz + ~(ωh + µσz)a†a+ ~g(aσ+ + a†σ−), (2.4.14)

where µ = g2/Ω and ω̃q = ωq + µ. The eigenstates of HBS are found to be [162]

|n,+〉 = − sin(θn) |e, n− 1〉 + cos(θn) |g, n〉 , |n,−〉 = cos(θn) |e, n− 1〉 + sin(θn) |g, n〉 ,
(2.4.15)

where

θn = arctan


∆BS

n −
√

(∆BS
n )2 + 4g2n

2g
√
n


 , ∆BS

n = ωh − ωq + 2µn. (2.4.16)

Turning back to the Rabi Hamiltonian, to second order in Λ, the excited eigenstates are
found as

|n,±〉Rb = UBS |n,±〉 , (2.4.17)

while the ground state is given by35

|ψg〉Rb = UBS |g, 0〉 ≃
(

1 − Λ2

2

)
|g, 0〉 − Λ |e, 1〉 + ξ

√
2 |g, 2〉 . (2.4.18)

The Dicke model

Another common studied situation is the one consisting of many qubits interacting with
the same harmonic oscillator. The collective nature of such interactions gives rise to a
rich quantum phenomenology characterized, for example, by the emergence of quantum
phase transitions [21] and by the qualitative modifications of optical properties [163].
Assuming the same frequency for all the qubits and that the distance between the atoms
is much lower than the wavelength of the electromagnetic mode, we can describe this
system with the well known Dicke model [21, 22]:

HRb =
~ωq
2
Jz + ~ωhn̂+ ~gJx

(
a† + a

)
, (2.4.19)

where Jz =
∑
i σ

(i)
z , Jx =

∑
i σ

(i)
x , and σ(i)

z and σ(i)
x are Pauli operators on the i-th qubit.

Even in this case, for low couplings, one can eliminate the so-called counter-rotating
terms J+a

† and J−a. Within this model, a sub and a superradiant regime have been
identified, respectively characterized by the dampening or the amplification of atomic
absorption and emission rates with respect to the independent-emitter case [164]. These
regimes have been extensively studied also in the presence of coherent or incoherent
optical drivings [165–172].

35Both HJC and HBS have the same ground state, i.e., |g, 0〉.
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Besides the fundamental interest, collective quantum phenomena induced by light-
matter interactions can be exploited in a variety of applications. In particular, the
sub and superradiant regimes may be associated to the generation of collective states
of the emitters, which are of great interest for quantum sensing [173, 174], generation
of non-classical states [175], photon storage [176], and excitation transfer [177]. This
phenomenology is of high experimental relevance, as collective light-matter interactions
can be controllably implemented in a broad range of atomic and solid-state quantum
systems, such as cold atoms [178], trapped-ions [179], metamaterials [180], plasmonic
cavities [181], colour centres in diamonds [182], quantum dots [183], and superconducting
circuits [184].

Among the many cases in which the Dicke model has been explored, much attention
has been devoted to the so-called “bad-cavity limit” in which the confined mode is strongly
dampened with respect to the interaction with the atoms [165–168, 170, 171]. In this
context, the effective dynamics of the atoms can be obtained by adiabatically eliminating
the confined mode [32, 33, 106, 107]. Intuitively, the bad-cavity limit consists in assuming
that the cavity which contains the atoms is so leaky that it immediately emits all the
photons it receives from the atoms. In the original treatment of this system [106, 107],
the cavity is considered in contact with an environment at zero temperature so that its
steady state is the ground one. Starting from the atoms state in which all the atoms are
excited, the phenomenon of superradiance is well described within this approach.

Collective emission phenomena have so far been analyzed only for dipolar interactions,
where light and matter are linearly coupled. However, it has been recently predicted that
using atomic or solid-state systems it is possible to implement nondipolar light-matter
couplings, where the linear interaction is inhibited and where quantum emitters and local-
ized bosonic modes interact via the exchange of two excitation quanta. In particular, such
two-photon couplings can be observed by engineering superconducting atom-resonator sys-
tems [185, 186] or by applying analog quantum simulation schemes in trapped-ions [187–
189] or ultracold atoms [190, 191]. Notice that non-dipolar transitions have already been
observed using superconducting artificial atoms [192], and that quantum-simulation tech-
niques have already been experimentally applied to observe the physics of fundamental
dipolar light-matter interaction models in extreme regimes of parameters [191, 193]. On
the dissipative side, two-photon relaxation [194, 195] and pumping [194] have also been
theoretically analyzed and experimentally implemented [196]. The fast-growing interest
in two-photon couplings is motivated by a rich phenomenology, characterized by novel
spectral features [197–202], high-order quantum optical nonlinearities [185, 186, 203],
and quantum phase transitions [204–208]. In turn, this phenomenology can be exploited
in different quantum-information applications [209–211].

The resonant Dicke model with two-photon coupling in the rotating-wave approxima-
tion is described by the Hamiltonian

H2 = ~ωa†a+ ~ωJz + ~g
(
a2J+ + a†2J−

)
. (2.4.20)

We will use it as a starting point for the study conducted in in chapter 6. There, we
will analyze a quite complex setup comprising different external drivings and finite
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temperature baths in the bad-cavity limit.
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2.A Resume of some useful tools in quantum mechanics

This appendix gives a very short resume of some well-known theoretical tools used in
this Thesis.

2.A.1 The von Neumann entropy

To quantify how much information is lacking in a mixed state we can use the von Neumann
entropy [10, 110] defined as follows

S(ρ) ≡ − Tr{ρ ln ρ}, (2.A.1)

where ln is taken in the natural basis. Since the trace is basis-independent we can search
for the basis in which the density matrix is diagonal. In this basis36,

ρ =
N∑

i=1

λi |ψi〉〈ψi| =⇒ S(ρ) = −
∑

i

λi lnλi. (2.A.2)

We can immediately see that the entropy of a pure state is zero37. The maximum entropy
allowed for a system in an Hilbert space of dimension d is obtained for the so-called fully
mixed state: S(Id/d) = ln d, where Id is the identity matrix of dimension d.

We also define the quantum relative entropy between two states ρ and σ:

S(ρ||σ) ≡ Tr{ρ ln ρ} − Tr{ρ ln σ}. (2.A.3)

This quantity is always non-negative and can be infinite. It is zero if and only if ρ = σ. In
practice, this quantity is sometime seen as a measure of the distance between two states,
even if it does not respect all the requirement a proper distance measure necessitates [12].

2.A.2 The Schmidt decomposition

It can be shown [10], that every pure state |ψ〉 of a bipartite system can be written as

|ψ〉 =
∑

i

√
λi |iA〉 ⊗ |iB〉 , (2.A.4)

where the λi > 0,
∑
i λi = 1, and the kets |iA〉 and |iB〉 belong to orthonormal bases in

their respective Hilbert spaces. The numbers
√
λi are called Schmidt coefficients while

the number of Schmidt coefficients is called Schmidt number. A consequence of the
Schmidt decomposition is that the reduced density matrices of both subsystems have the
same eigenvalues and, therefore, the same entropy [see Eq. (2.A.2)].

36The basis is given by the kets |ψi〉 ∈ H with d = dim H.
37In the limit λi → 0, we have that λi lnλi → 0.
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2.A.3 The thermal state

One assumption of thermodynamics is that a system in contact with an environment at
temperature T will reach its thermal state at the same temperature. Here, we recall how
thermal states are characterized in quantum mechanics.

The thermal state of a system with Hamiltonian H and temperature T is described
by the state [12]

ρth =
e−βH

Z
, Z = Tr

{
e−βH

}
, (2.A.5)

where β = 1/(kBT ) is the inverse temperature and kB is the Boltzmann constant. The
term Z, whose inverse acts as a normalization constant in the above equations, is actually
an important quantity called “partition function”. Through it, to calculate the average
energy of the state, its variance, and all the thermodynamic potentials is possible. Here
we cite:

〈E〉 = Tr
{
Hρth

}
= −∂β(lnZ),

〈
(E − 〈E〉)2

〉
=
∂2 lnZ
∂β2

,

F (ρth) = 〈E〉 − kBTS(ρth) = −kBT lnZ, (2.A.6)

where F (ρth) is the von Neumann free energy of the thermal state.



Chapter 3

Thermodynamic protocols: work
extraction

3.1 Introduction

As detailed in section 2.3, one argument of actual interest in the wide context of
quantum thermodynamics consists of work extraction protocols describable within the
thermodynamic resource theory (TRT) framework. In this chapter, we conceive a work-
extraction protocol exploiting a single bath and making use of simple operations which
should be easily implementable without need for fine operations. Indeed, we propose
to extract work from a resource system R to a bipartite quantum system S exploiting
simple operations such as a thermalization process and turning on and off the interaction
between the two subsystems of S. We show that this thermalization protocol gives rise to
a quite efficient single-shot work extraction. To quantify the work extracted, we use the
work quantifier of Eq. (2.3.5). In order to make the procedure cyclic, we show in one of
the considered models how to exploit the result of the thermalization protocol to charge
an external device playing the role of a quantum battery through a quite simple transfer
protocol. We stress that the various parts of the global protocol do not need for a fine
control. For example, the interaction between the two subsystems of S does not need to
last for a precise amount of time but only enough to let system S thermalize, while the
procedures of switching on and off have to be just rapid enough to leave unaltered the
state of the system.

To better appreciate the potentialities of our protocol we apply it to two different
physical scenarios (a two-qubit system and a spin-boson system) described by different
models. The first model can describe the interaction of two spins in an Ising chain [212–
214], while the second is described by the ubiquitous Rabi Hamiltonian (see section 2.4.2).

The chapter is organized as follows. In section 3.2, we describe the thermalization
protocol for an arbitrary bipartite system. In section 3.3, we describe a possible realization
of our protocol in a system consisting of two qubits, while in section 3.4 we consider
a spin-boson system whose interaction is described by the Rabi model. In section 3.4,
we also briefly discuss the possibility to transfer the extracted work to another physical

33



34 CHAPTER 3. THERMODYNAMIC PROTOCOLS: WORK EXTRACTION

Figure 3.1: This figure illustrates schematically the phases of the thermalization protocol
in the presence of a thermal bath (yellow box). At start (t1) the subsystems do not
interact. Then, the interaction is turned on and they thermalize together (from t2 to t3).
Once they have thermalized their interaction can be turned off and the process of work
extraction is completed (t4). If one wants to transfer the extracted work to iterate the
process he does so in the time interval δT t and, after having finished the process (t5), the
experimental setup could have to be reinitialized, from t5 to t′1, where t′1 plays the role of
the initial time of the new cycle.

system, effectively charging a battery. However, we will give more details about this
charging process in Appendix 3.E. Finally, in section 3.5 we provide some conclusive
remarks on our results. Some other details of our analysis can be found in the Appendices.

3.2 Work-extraction protocol

3.2.1 The thermalization protocol

Here, we describe the thermalization protocol in the case S is an arbitrary bipartite
system composed of two subsystems A and B. In order to analyze the protocol we use
as a work quantifier the one described in Eq. (2.3.5). Some comments on the possible
links between this work quantifier and other thermodynamic quantities can be found in
Appendix 3.A.

The protocol can be divided into different phases (see Fig. 3.1). For each phase, we
compute the free energy of system S with the notation Fi = F (ρS(ti), H(ti)), where ρS(ti)
is the state of S at time ti and H(ti) its Hamiltonian1. The free energy is calculated

1Since in this chapter we deal with just one bath at a given temperature, we drop the subscript β
from the free energies [cfr. section 2.3.1] to lighten the notation.
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at temperature T , the fixed temperature of the single bath exploited in the protocol.
Notice that, the presence of the environment is necessary during the thermalization from
t2 to t3. During the other phases it would be enough to assume that the environment is
at disposal if needed. However, in the following analysis we always refer to a realistic
situation where the environment and system S are always interacting. In this case, we
must assume that the interaction is so weak that, overall, whenever we have to take
into account the evolution given by the interaction of S + R with the bath, the total
energy HS +HR +Hbath

2, where HR and Hbath are, respectively, the Hamiltonians of
the resource R and of the bath, is a conserved quantity and results from TRT can be
applied.

At the start of the protocol (t = t1) A and B are non-interacting, non correlated
and spatially separated3. They are both in contact with the same thermal bath at
temperature T so that:

H(t1) = HA +HB = H0, ρS(t1) = ρth
A ⊗ ρth

B ,

F1 = F
(
ρth
A , HA

)
+ F

(
ρth
B , HB

)
, (3.2.1)

where HA(B) is the free Hamiltonian of A(B), ρth
A(B) = e−βHA(B)/Tr

{
e−βHA(B)

}
are the

local thermal states and β = 1/(kBT )4. Then, the interaction between A and B is turned
on exploiting R during a time interval δ1t from t1 to t2 = t1 +δ1t, for example, by bringing
the two subsystems closer. We suppose that the state of system S does not change during
this time. This can be achieved if the turning on of the interaction is doable in a time
interval much smaller than the typical evolution time of system S, during the switching
on procedure, being it coupled to the bath. Defining 〈H〉tn = Tr {ρS(tn)H}, we have:

H(t2) = H0 +HI , ρS(t2) = ρS(t1), F2 = F1 + 〈HI〉t2 , (3.2.2)

HI being the interaction Hamiltonian between A and B.
From time t2 to time t35, A and B thermalize as a whole so that at t3:

H(t3) = H(t2), ρS(t3) = ρth
S , F3 = F

(
ρth
S , H0

)
+ 〈HI〉t3 , (3.2.3)

where ρth
S = e−β(H0+HI)/Tr

{
e−β(H0+HI)

}
is the global thermal state when the interaction

is on. Finally, from time t3 to time t4 = t3 + δ2t we use again system R to turn off the
interaction term between subsystems A and B, for example by spatially separating them,

2In order to apply TRT results one needs that [U,HS +HR +Hbath] = 0 where U is the unitary
operator describing the whole process (see section 2.3.1 for more details).

3The spatial separation is not strictly required, but we think it facilitates the experimental implemen-
tation because it is, usually, easy to turn on and off the interaction between two systems by just joining
and separating them spatially.

4Notice that we are assuming that systems A and B have thermalized independently. This is a
reasonable assumption in many different scenarios, for example in the case when the systems are spatially
separated before turning on the interaction.

5t3 − t2 ≫ τr, where τr is the typical evolution time of system S in this phase.
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and supposing that the state of S remains unaltered. The situation at time t4 is thus
given by

H(t4) = H0, ρS(t4) = ρS(t3), ρA(B)(t4) = TrB(A){ρth
S } = ρrth

A(B), F4 = F (ρth
S , H0).

(3.2.4)
We remark that at t = t4 the reduced states of A and B (we name them reduced thermal
states) are different from the initial ones, which were the local thermal states.

The turning on and off of the interaction requires work from system R while, in
general, R is not involved during the thermalization from t2 to t36. In particular, using
the work definition of Eq. (2.3.5), turning on the interaction costs a quantity WR(t1 → t2),
satisfying (more details in Appendix 3.B):

WR(t1 → t2) ≥ F2 − F3 = 〈HI〉t2 + F1 − F3. (3.2.5)

On the other hand, turning it off costs:

WR(t3 → t4) ≥ F4 − F1 = − 〈HI〉t3 + F3 − F1. (3.2.6)

Then, the minimum amount of work required to system R to make one cycle is 〈HI〉t2 −
〈HI〉t3 = −∆ 〈HI〉. We stress that, during the switchings, system R could lose a certain
quantity of free energy due to dissipative effects, in addition to the required variations of
athermality7. In the following, we identify the amount of athermality lost by R with the
variation of its free energy because we assume that system R never changes Hamiltonian8.

From the point of view of single-shot work extraction, the protocol ends at time t4.
In the next section, we quantify the amount of work extracted and the efficiency of this
process. In order to iterate the process using the same systems A and B, one has to
transfer the extracted work at time t = t4 to an external storage system C. We provide
an example of how to do this at the end of section 3.4 for a specific model. After the
transfer (t = t5 = t4 + δT ), A and B are still in contact with the bath and, after a while,
they will be again in their thermal state. Then, the protocol can be done again from
the start. Notice that resource R is not reinitialized after each iteration of the entire
protocol. We will however use the term cycle to describe the case where we iterate the
process by referring to the cyclic behavior of system S.

3.2.2 Work and efficiency

Using the work definition of Eq. (2.3.5), the extracted work W is equal to F4 − F1:

W = 〈H0〉t4 − 〈H0〉t1 − kBT
[
S(ρth

S ) − S
(
ρth
A ⊗ ρth

B

)]
. (3.2.7)

6Notice that resource R is not explicitly described here. For example, its Hamiltonian is not given. We
assume that R is something that, in some way, turns on and off the interaction between the subsystems
of S. As cited in the text, this could be obtained by changing the distance between A and B.

7See section 2.3.1 for the definition of athermality.
8See Eq. (2.3.6)
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W is thus composed by two parts: one purely energetic and one of entropic nature. The
entropic term appearing in Eq. (3.2.7) comes directly from the adopted definition of work.
Its presence assures the validity of the second law of thermodynamics. Especially for
finite systems, the entropic part can become much more important than the energetic
one for non-vanishing temperatures. An example of this behavior is shown in section 3.3.
At T = 0, instead, W is a simple difference of average energies. We stress that the
work done on a system quantifies the change of athermality of the system, ∆F (ρ,H).
Then, being ∆F (ρ,H) a function of the state and of the Hamiltonian of the system,
it does not depend on the actual evolution that took place. Notice that resource R is
not reinitialized after each iteration of the entire protocol. However, we will use the
term “cycle” to describe the case where we iterate the process by referring to the cyclic
behavior of system S.

The extracted work can be rewritten as

W = ∆F
(
ρrth
A , HA

)
+ ∆F

(
ρrth
B , HB

)
+ kBTS(A : B), (3.2.8)

where S(A : B) = S
(
ρrth
A

)
+ S

(
ρrth
B

)
− S

(
ρth
S

)
is the mutual information9 between A

and B for the state ρth
S , a real non-negative quantity [12]. In particular, the mutual

information term quantifies the amount of correlations between the two subsystems and
its behavior is strongly model-dependent. In Eq. (3.2.8), the only non-local entropic term
is the mutual information as opposed to the local terms S

(
ρrth
A

)
and S

(
ρrth
B

)
. Then, we

can also define the local work

Wl = ∆F
(
ρrth
A , HA

)
+ ∆F

(
ρrth
B , HB

)
, (3.2.9)

which in some cases could be the only accessible work after the protocol. It holds Wl ≤ W ,
that is an already known result of information thermodynamics [215], meaning that the
amount of extracted work benefits of the presence of correlations in the final thermal
state. As can be seen in sections 3.3 and 3.4, the difference between local and global
work can be significant.

The quantity ∆F
(
ρrth
A(B), HA(B)

)
can be written as [86]:

∆F
(
ρrth
A(B), HA(B)

)
= kBTS

(
ρrth
A(B)||ρth

A(B)

)
, (3.2.10)

where S(ρ||σ) = Tr {ρ ln ρ} − Tr {ρ ln σ} is the relative entropy and, even if it does not
have all the properties of a distance measure, it is often used to quantify how much two
density operators are different [12]. Therefore, the more the reduced thermal states are
different from the local ones, the more should be the local work extracted. One then
expects that Wl should typically increase as the strength of the interaction between the
subsystems of S increases.

Another useful way to express the extracted work is through the partition functions
of the systems. Calling ZA(B) the partition function of system A(B) with Hamiltonian

9See section 2.1 for more details on the mutual information.
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HA(B) and ZS the partition function of the total system with interaction on, we can
write:

W = kBT ln
(
ZAZB
ZS

)
− 〈HI〉t3 . (3.2.11)

Through simple algebraic manipulations, we can also write

W = F3 − F2 − ∆ 〈HI〉 , (3.2.12)

where we recall that ∆ 〈HI〉 = 〈HI〉t3 − 〈HI〉t2 . Then,

0 ≤ Wl ≤ W ≤ −∆ 〈HI〉 , (3.2.13)

because F3 has to be always lower or equal to F2.
Using Eq. (3.2.11), it is easy to show that if both subsystems are finite, the high

temperature limit of the extracted work is zero (see Appendix 3.C). This also implies,
using Eq. (3.2.13), that the correlations between two finite subsystems in a thermal state
always go to zero faster than 1/T in the high temperature limit since W → 0.

Following the theorems of TRT, it is in principle always possible to transfer, without
losses, a certain quantity of free energy from one system to another one through thermal
operations. Achieving the maximum efficiency for this transfer may require, for example,
the use of catalysts [86, 120, 137] (see also section 2.3.1). Thus, we define the ideal
efficiency of the process as the work stored in system S divided by the minimum free
energy lost by system R, i.e.

η =
W

−∆ 〈HI〉
=
F3 − F2 − ∆ 〈HI〉

−∆ 〈HI〉
≤ 1. (3.2.14)

In other words, we compare the work that system S gains with the work that system R
would lose in the best-case scenario. This comparison makes sense because TRT assures
us that it exists a thermal operation such that all the work lost by R is gained by S. Of
course, considering the local work Wl, with the annexed efficiency ηl, instead of W , we
get ηl ≤ η.

In Appendix 3.A, we make some comments on the possible links between the work
quantifier of Eq. (2.3.5) and other thermodynamic quantities, focusing on the thermal-
ization protocol presented in this section. As can be seen from Eq. (3.A.5), the ideal
efficiency of this process can be thought of depending explicitly on the entropy production
of the thermalization, from time t2 to t3. With respect to the ideal switching case
[Eq. (3.2.14)], system R could spend more work during the process because of dissipative
effects.

It is worth noting that the extraction of work from R to S may imply the conversion
of different forms of energy. Indeed, R could exploit any kind of possible form of energy
to switch on and off the interaction between A and B, while the form of energy stored in
S would depend on the specific choice of subsystems A and B. As an example of protocol
implementation, we could think of a flying atom entering and exiting from a cavity. In
this case, the internal levels of the flying atom are system A, the cavity is system B
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and the wave function spatial part of the flying atom is the resource R. When the atom
enters or exits, the A-B interaction switches on or off and energy can come from or go to
R. The amount of work paid by system R may also depend on entropy variations and
overall must be positive10. In this specific example, mechanic energy is transformed into
electromagnetic one.

In order to make our analysis more quantitative and better exemplify the level of
efficiency of our work-extraction protocol, we consider two possible realizations associated
to two different models which can be realized in specific physical scenarios of experimental
interest. In the next two sections we consider a two-qubit system and a spin-boson system
described by the Rabi model.

3.3 Two interacting qubits

Here, we consider the case when S consists of two qubits governed by the Hamiltonian11

H = HA +HB +HI , (3.3.1)

where

HA =
~ω

2
σ(A)
z , HB =

~ω

2
σ(B)
z , HI = ~gσ(A)

x σ(B)
x , (3.3.2)

ω is the frequency of each qubit, σA(B)
z and σA(B)

x are Pauli matrices and g is the coupling
frequency.

The extracted work and the efficiency for this model can be computed by using
Eqs. (3.2.11) and (3.2.14) where the partition functions and the average interaction
energy at time t312 are given by

ZA = ZB = 2 cosh(β~ω/2), ZS = 2
[
cosh

(
β~
√
ω2 + g2

)
+ cosh (β~g)

]
, (3.3.3)

and

〈HI〉t3 =
2~g
ZS

[
e−β~ω̃

gN+
(ω̃ − ω) − eβ~ω̃

gN−
(ω̃ + ω) − sinh(β~g)

]
, (3.3.4)

where ω̃ =
√
ω2 + g2 and N± =

(
2ω̃/g2

)
(ω̃ ∓ ω), while 〈HI〉t2 = 0.

At zero temperature, the extracted work and the efficiency assume the simple form:

W (T = 0) = ~ω
g2

ω2 + ωω̃ + g2
, η(T = 0) =

ω

ω + ω̃
. (3.3.5)

Another analytical limit worth mentioning is the g → ∞ limit. In this case we obtain:

W → kBT ln {1 + cosh [~ω/(kBT )]} , η → 0. (3.3.6)

10See Eqs. (3.2.5) and (3.2.6)
11This Hamiltonian can be found, e.g., in Ref. [213].
12Obtained through lengthy but straightforward calculations.
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Figure 3.2: Two-qubit model: extracted work W (a) and efficiency η (b) of the thermal-
ization protocol as a function of the coupling constant, g/ω, for different values of the
temperature of the bath, kBT/(~ω).

The behaviors of W and η as a function of the dimensionless coupling constant g/ω
are plotted in Fig. 3.2, for different temperatures of the bath. We notice that, for every
temperature, increasing g/ω monotonically increases the extracted work. This behavior
agrees with what was predicted in section 3.2.2 for the T = 0 case. In this limit, it holds
W = Wl. Notice that an extraction of work comparable with the typical energies of
the subsystems can be obtained. However, the efficiency also decreases monotonically.
Then, for a given T , a sweet spot for the coupling constant does not seem to exist. On
the contrary, a sweet spot for the temperature does exist. Indeed, as shown in Fig. 3.3,
the most interesting feature of this model is that, given a value of g/ω, the maximal
extraction of work is obtained for a value of temperature such that kBT ∼ ~ω with a
greater efficiency with respect to the zero-temperature case.

The above result is especially clear for high values of g such as g = 2 ω. For
this reason, we plot in Fig. 3.4 various quantities of the protocol as a function of the
temperature, for g = 2 ω. The maximal extraction of total work W is obtained for
kBT ≃ 1.51 ~ω, marked with a grey vertical line in the figure. Around that temperature,
there is a big difference between the total work W and the local one Wl. Their difference
is exactly the mutual information multiplied by kBT . So, a great part of the work is
stored in the correlations between A and B, quantified by the non-local entropic term
kBTS(A : B). Regarding the total extraction, we can notice also how much the global
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Figure 3.3: Two-qubit model: extracted work W (a), and efficiency η (b) of the thermal-
ization protocol as a function of the temperature of the bath, kBT/(~ω), for different
values of the coupling constant, g/ω.
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Figure 3.4: Two-qubit model: comparison of different quantities (each in units of ~ω)
as a function of the bath temperature for g = 2 ω. A grey vertical line is depicted in
correspondence of the peak of the total work Wat kBT ≃ 1.51 ~ω.
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entropic term, kBT
[
S
(
ρth
S

)
− S

(
ρth
A ⊗ ρth

B

)]
, is important in that temperature region13.

On the contrary, for lower values of T , the global entropic term reduces the amount
of extracted work with respect to the energy difference 〈H0〉t4 − 〈H0〉t1 . On the local

level, the local entropic term, kBT
[
S
(
ρrth
A ⊗ ρrth

B

)
− S

(
ρth
A ⊗ ρth

B

)]
, always reduces the

amount of work extracted, independently of the temperature. This difference of behavior
between the local and non-local parts of the entropy explains the quantitative difference
between the local and total extracted work.

3.4 Rabi model

Here, we consider the case in which S consists of a two-level system (subsystem A)
interacting with a harmonic oscillator (subsystem B). The system is governed by the
Rabi Hamiltonian [22]:

HRb = HA +HB +HI , (3.4.1)

where
HA = ~∆σz, HB = ~ωn̂, HI = ~gσx

(
a† + a

)
, (3.4.2)

~∆ is half of the energy distance14 between the ground state |g〉 and the excited state
|e〉 of A, ω is the frequency of B (typically ω ∼ 2∆), n̂ is the number operator (with
the number basis given by n̂ |n〉 = n |n〉), a† and a are the creation and annihilation
operators and σz an σx are Pauli matrices.

Since the analytical solution of the Rabi model is given in terms of series that have to
be truncated [152, 153, 161]15, from a numerical point of view, it is easier to directly do
all the computations numerically without using the analytical solution. In this section, we
report the results of these numerical simulations done with the Python package QuTiP
[216, 217], only dealing with the resonant case ∆ = ω/2. For the zero-temperature case,
we use the analytical solution, checking that it coincides with the numerical simulations
at very low temperatures. A detailed discussion about the ground state of the system,
used for T = 0 case, can be found in Appendix 3.D.

Fig. 3.5 shows how the extracted work and the efficiency as a function of the coupling
parameter g/ω for different values of the bath temperature. We notice a dissimilar
behavior of the Rabi model with respect to the two-qubit one. Overall, the Rabi model
attains a higher value of extracted work and higher efficiency. Contrarily to the two-qubit
case, here increasing the interaction may increase the efficiency, which is always higher
than one half.

As in the two-qubit case, also in the Rabi model, for a given value of the coupling
constant, an ideal value of the temperature exists (see Fig. 3.6). Comparing Figs. 3.3
and 3.6 we notice that the best values of temperature in the Rabi model case are one
order of magnitude lower. In general, given a value of the coupling constant g, there

13We recall that ρS(t3) = ρth
S while ρS(t1) = ρth

A ⊗ ρth
B .

14Here, we are following the notation of Ref. [152] instead of the usual one.
15See section 2.4.2 for the formal solutions of the Rabi model.
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Figure 3.5: Rabi model: extracted work W (a) and efficiency η (b) of the thermalization
protocol as a function of the coupling constant, g/ω, for different values of the bath
temperature, kBT/(~ω).

exist a temperature sweet point where the work is nearly at its maximum and, close
to which, the efficiency has its peak. Among the values reported in the plot, this does
not hold for g = 2 ω. Moreover, the extracted work does not tend to zero for large
temperatures as in the two-qubit case. This is due to the fact that the Rabi Hamiltonian
contains a non-finite and not bounded system (the harmonic oscillator). This means that
a temperature that makes all the levels equally populated so that the thermal state is
practically the identity state does not exist. We also remark that both the work and the
efficiency reach an asymptotic behavior for kBT ∼ 10 ~ω.

In Fig. 3.7 we show the extracted work and other relevant quantities as a function of
the temperature (compare it with Fig. 3.4). Differently from the two-qubit case, here the
peak of work extraction is not due to the entropic term but to the energy term. Indeed,
the peak of work extraction (roughly at kBT ≃ 0.16 ~ω and marked with a grey vertical
line in the figure) is near the peak of the energy difference term. As in the two-qubit
case, the local work rapidly goes to zero starting from kBT ∼ ~ω. In the present case,
however, this is not due to the fact that the reduced thermal states are very similar to
the thermal ones. In this case, the energy difference remains high and the local entropic
term counterbalances it. Then, even if the global entropic term does not seem to play a
significant role, its non-local component (the mutual information) does, by balancing the
local entropic terms and thus avoiding that they take the total work down to zero in the
high-temperature region.
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Figure 3.6: Rabi model: extracted work W (a) and efficiency η (b) of the thermalization
protocol as a function of the bath temperature, kBT/(~ω), for different values of the
coupling constant, g/ω.
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Figure 3.7: Rabi model: comparison of different quantities (each in units of ~ω) as
a function of the bath temperature for g = ω. A grey vertical line is depicted in
correspondence of the peak of the total work Wat kBT ≃ 0.16 ~ω.
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Charging a battery. — In general, the aim of work-extraction protocols is to realize
something useful, e.g. a process that could be seen as the charge of a battery. Here, we
propose a transfer protocol (for the zero-temperature case) that allows for storing the
energy gained by system S into an external harmonic oscillator (system C) which plays
the role of a battery, whose energy can be increased more and more through suitable
cyclic interactions with system S.

The main idea is to imagine that system A is not just a two-level system, but a
three-level system whose intermediate level does not participate to the interaction with
system B. However, system C is resonant with the transition from this intermediate level
to the excited one and interacts with system A through a Jaynes-Cummings Hamiltonian.
In this way, whatever is the population of the ground level of system A, it can only give
energy to system C but not receive it. Moreover, we use, as free resources, a certain
number of systems having the same spectrum of system A, to transfer energy from B to
C. Imagining the role of system R being played by the wave functions spatial part of
each three-level system approaching and then leaving the harmonic oscillator (you could
think of flying atoms and a cavity), we can clearly see that we could not charge system
C by using directly the three-level systems in their initial state at T = 0 (ground state),
i.e. without by first charging them through their interaction with system B. We observe
that in this specific case, then, the resource would have a genuine quantum nature. An
extensive description of this transfer protocol is reported in Appendix 3.E.

In a specific simulation of this transfer protocol (in the deep strong coupling regime,
g > ω, and for one hundred iterations) we obtain a final energy transferred to system C
of the order of one hundred ω with a low standard deviation and a reasonable efficiency
(see table 3.1 of Appendix 3.E).

3.5 Conclusions

In this chapter, we have proposed a work extraction protocol that consists of the ther-
malization of a storage bipartite system S by using a resource system R. Firstly, we have
described the protocol in the general case without referring to a specific implementation.
The protocol we have proposed should be easily implementable as it only requires to
turn on and off the interaction between subsystems A and B of system S. This turning
on/off has to happen quickly without changing the state of system S. Moreover, we have
used thermodynamic resource theory results to define the extracted work W and the
efficiency η. We point out that our results are not in contrast with the second law of
thermodynamics. The work comes from the external resource R while the bath is used
to enable the protocol itself.

Secondly, we have investigated the protocol performances in two models: two inter-
acting qubits and the Rabi model. The entropic terms turn out to play an important
role when the bath temperature (times the Boltzmann constant) is comparable with
the subsystems energies. Indeed, the great difference between local and total extracted
work is due to the correlations between A and B. The extracted work is comparable
with the frequencies of the systems in both cases. Moreover, in the Rabi model case,
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the efficiency we have obtained is always higher than one half. Both these applications
show that simple processes like thermalization and switching on/off interactions between
quantum systems can be fruitfully used for work extraction.

Thirdly, as a proof of principle, we have shown a specific example of how the energy
extracted in the thermalization protocol can migrate to an external work storage system
through a transfer process, making the complete protocol iterable. The whole protocol,
composed of many thermalization protocol iterations plus the transfer protocol, realizes
something like the charge of a battery in a realistic scenario and does not involve fine
operations.

We deem interesting to generalize our study of the Rabi model to the N qubits
scenario. This generalization will allow one to study if the qubits correlations lead to
a greater work extraction. Further studies could suggest how to improve our transfer
protocol, thus paving the way to proposals in specific physical scenarios.
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3.A Work definition, heat and entropy production

Here, we make some comments on what could be the consequences of the adopted work
quantifier [see Eq. (2.3.5)] on the definition of heat and on its connection with the entropy
production. Let us assume that we can use ∆U = Tr {H ′ρ′} − Tr {Hρ} as the internal
energy change in the first law of thermodynamics, ∆U = Q+W . It follows

Q = Tr
{
H ′ρ′th

}
− Tr

{
Hρth

}
+ kBT

[
S
(
ρth
)

− S
(
ρ′th

)
+ S

(
ρ′)− S(ρ)

]
, (3.A.1)

where ρth and ρ′th are the thermal states corresponding, respectively, to H and H ′. When
only the system state changes we have:

∆U = Tr
{
H
(
ρ′ − ρ

)}
, Q = kBT

[
S
(
ρ′)− S(ρ)

]
, (3.A.2)

which seems reasonable as the heat is given by the change of entropy times kBT , T being
the temperature at which the process takes place. On the other hand, when only the
Hamiltonian changes while the state of the system does not, ∆U and Q reduce to:

∆U = Tr
{(
H ′ −H

)
ρ
}
, Q = F

(
ρ′th, H ′

)
− F

(
ρth, H

)
. (3.A.3)

Let us comment now on a possible connection with the entropy production. During a
thermal operation, system and bath together evolve unitarily so that the total entropy
of both systems does not change and we can apply findings of Ref. [218]. There, the
system under analysis is unitarily interacting with one or more thermal baths. To adapt
the equations to our case we will use one single thermal bath. In particular we focus
on a generic time interval with time-independent Hamiltonians, as from t2 to t3 in our
thermalization protocol.

The system and the bath are considered to be in the state ρ(0) = ρS(0) ⊗ ρth
bath at

time t = 0, as we also assume in our case during the thermalization step16. In particular,
the entropy change in the system during the evolution can be decomposed as follows:

∆S(t) = ∆iS(t) + ∆eS(t), (3.A.4)

where ∆iS(t) is the entropy production and ∆eS(t) represents the reversible contribution
to the system entropy due to heat exchanges. More specifically [218], ∆eS(t) = βQbath(t),
where Qbath(t) ≡ 〈Hbath〉t=0 − 〈Hbath〉t represents the heat flow from the reservoir (here
β = 1/kBT ).

We are only interested to what happens at the end of the thermalization protocol,
where TRT imposes the conservation of the total energy (see Appendix 2.3.1), therefore
in this case Qbath(t) is equal to ∆ 〈HS〉t = Tr {HSρS(t)} − Tr {HSρS(0)}. We recall
that free energy is a decreasing monotone of thermal operations, that is F (ρS(0), HS) −
F (ρS(t), HS) ≥ 0. Then, we can show that ∆iS(t) ≥ 017 as follows:

∆iS(t) = −βQbath(t) + ∆S(t) = β

[
−∆ 〈HS〉t +

1
β

∆S(t)
]

= β [F (ρS(0), HS) − F (ρS(t), HS)] ≥ 0.
(3.A.5)

16With t2 in place of t = 0.
17Notice that the positivity of entropy production verifies the second law of thermodynamics.
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Notice that ∆iS(t) = −βW (t), i.e., the entropy production exactly matches the loss of
athermality of system S times the inverse temperature of the environment.

In the other steps of the protocol no entropy is produced because we assume ideal
switchings (i.e., reversible processes) to define the ideal efficiency. Of course, some entropy
is expected to be produced in a realistic implementation even during these operations.

3.B Work expense of system R

Here, we compute the amount of free energy that system R has to lose to turn on the
interaction of system S. Considering the whole system S+R, before the action of system
R we have:

∆F
(
ρR ⊗ ρth

AB, HR +H0

)
= ∆F (ρR, HR) , (3.B.1)

where ρth
AB = ρth

A ⊗ ρth
B . After the action of R, we have:

∆F
(
ρ′
RAB, HR +H0 +HI

) ≥ ∆F
(
ρ′
R, HR

)
+ ∆F

(
ρth
AB, H0 +HI

)
. (3.B.2)

We consider the operation under consideration to be a catalytic Gibbs-preserving transi-
tion so that ∆F (ρ,H) has to decrease or to stay constant [137]18, therefore:

F
(
ρ′
R, HR

)− F (ρR, HR) ≤ ∆F
(
ρth
AB, H0 +HI

)
. (3.B.3)

In the above equation, the equality holds in the best-case scenario. The work expense of
R to perform the switching on is then given by Eq. (3.2.5) while, analogously, one can
obtain Eq. (3.2.6) for the switching off.

3.C High temperature limit of extracted work in finite
systems

If both A and B are finite, in the high temperature limit (β → 0) it holds, at first order
in β, the expansion:

e−βH ≃ I − βH, (3.C.1)

where H is the Hamiltonian of the whole bipartite system and I is the identity in the
whole Hilbert space. We call NA the dimension of subsystem A and NB the dimension of
subsystem B while NS = NANB. Moreover, we use Eq. (3.2.11) written in the following
way:

W =
1
β

ln (ZAZB) − 1
β

ln(ZS) − 〈HI〉t3 . (3.C.2)

18See also section 2.3.1.
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Then, expanding up to first order in β we get

ZA(B) ≃ NA(B) − β TrA(B)

{
HA(B)

}
,

ZAZB ≃ NS − β (NA TrB {HB} +NB TrA {HA}) ,

ln(ZAZB) ≃ lnNS − β

NS
(NA TrB {HB} +NB TrA {HA}) .

(3.C.3)

Similarly
ZS ≃ [ZAZB](1) − β TrS {HI} ,

ln(ZS) ≃ [ln (ZAZB)](1) − β

NS
TrS {HI} ,

(3.C.4)

where the terms [ZAZB ](1) and [ln(ZAZB)](1) are the functions between brackets computed
at first order in β. Lastly, to order zero in β:

〈HI〉t3 = TrS

{
HI

e−β(HA+HB+HI)

ZS

}
≃ TrS {HI}

NS
. (3.C.5)

Then, by considering all the contributions we obtain

lim
β→0

W = 0. (3.C.6)

This result also implies

lim
β→0

1
β
S(A : B) = 0, (3.C.7)

because the global work is always higher or equal than the local one, but they are both
positive and their difference is given by the correlation term.

3.D Rabi Hamiltonian ground state

In this Appendix, we study the ground state of the Rabi model in order to characterize
the protocol at T = 0 for the Rabi model and compare our findings with the numerical
simulations. Here, all the quantities with the tilde are in units of ω to lighten the notation
(X̃ ≡ X/ω).

At T = 0, the entropy terms do not contribute to the free energies and, then, we can
deal with average energies only. As a consequence, W = Wl, which takes the form

W = 〈HA〉t3 + 〈HB〉t3 + ~∆ = ~ν0 − 〈HI〉t3 + ~∆, (3.D.1)

where ~ν0 is the energy of the ground state of the Rabi model. The efficiency is given by

η =
〈HA〉t3 + 〈HB〉t3 + ~∆

− 〈HI〉t3
. (3.D.2)

In order to calculate the quantities in Eqs. (3.D.1) and (3.D.2) we need to study
the ground state and how it is decomposed in the bare basis. To this end we mainly
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follow the approach and the formalism of Ref. [153]. These calculations allow us to
compute numerically, but starting from the formal and analytical solutions, the amount
of extracted work and the efficiency of the protocol.

Following Ref. [153], the ground energy ~ν0 of the ground state of the Rabi Hamitonian
of Eq. (3.4.1) can be calculated by searching for the first zero of the Braak’s function
G−(x) [152, 153, 161], defined by:

G±(x) =
∞∑

n=0

(
1 ∓ ∆̃

x− n

)
fng̃

n = 0, (3.D.3)

where x = ν̃ + g̃2. The factors fn are calculated by recurrence through the following
formulas:

fn =
1
n

[Ω(n− 1)fn−1 − fn−2] , f0 = 1, f1 = Ω(0),

Ω(n) =
1
2g̃

(
n+ 3g̃2 − ν̃ − ∆̃2

n− g̃2 − ν̃

)
.

(3.D.4)

The values of ν for which the Braak’s functions are zero are the eigenvalues of the Rabi
Hamiltonian. The lowest of these eigenvalues is the ground energy of the system.

According to [153], after some easy but lengthy calculations the ground state can be
written as follows:

|ψg〉 =
1

2
√

N
[|e〉 (|φ1〉 + |φ2〉) + |g〉 (|φ1〉 − |φ2〉)] , (3.D.5)

where N is a normalization constant,

〈n|φ1〉 = e−g̃2/2
√
n!

∞∑

m=0

m! em




n∑

k=max(0,n−m)

(−1)k

(m− (n− k))!(n− k)!k!
g̃m−(n−2k)


 ,

em = − ∆̃
m− g̃2 − ν̃0

fm,

(3.D.6)
and 〈n|φ2〉 is equal to 〈n|φ1〉 if one replaces in its expression em with fm.

The parity operator Π = −σz(−1)n̂ commutes with HRb. Thus, it is easy to show
that the ground state of the Rabi Hamiltonian has to be of the form

|ψg〉 =
∞∑

n=0

c2n |g, 2n〉 +
∞∑

n=0

c2n+1 |e, 2n+ 1〉 . (3.D.7)

Indeed, for low values of g̃ the ground state has to contain the component |g, 0〉 so that
all the other components have to be of the same parity. Moreover, for every value of g̃
the ground eigenvalue does not cross with the others eigenvalues, therefore the ground
state has the same parity for each value of g̃. By taking the scalar product of both sides
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of Eq. (3.D.5) with |n〉, odd or even, and comparing with Eq. (3.D.7) one can easily infer
the following equalities:

√
N cn = 〈n|φ1〉 = (−1)n+1 〈n|φ2〉 , ∀n. (3.D.8)

Now we can easily calculate the reduced states and write down the quantities of
interest. First of all, let us observe that

ρrth
B = TrA {|ψg〉〈ψg|} =

1
2N (|φ1〉〈φ1| + |φ2〉〈φ2|) . (3.D.9)

Then, exploiting Eq. (3.D.8), the average energy of the harmonic oscillator can be written
as follows:

〈HB〉t3 =
~ω

N
∞∑

n=0

n|〈n|φ1〉|2. (3.D.10)

Similarly, the reduced state of the two-level system is found to be

ρrth
A = TrB {|ψg〉〈ψg|} =

1
N

[(
∞∑

n=0

|〈2n+ 1|φ1〉|2
)

|e〉〈e| +

(
∞∑

n=0

|〈2n|φ1〉|2
)

|g〉〈g|
]

=

(
∞∑

n=0

|c2n+1|2
)

|e〉〈e| +

(
∞∑

n=0

|c2n|2
)

|g〉〈g| ,

(3.D.11)
and the average energy is

〈HA〉t3 = ~∆

(
2

∞∑

n=0

|c2n+1|2 − 1

)
. (3.D.12)

Concerning the average of the interaction energy 〈HI〉t3 , it can be directly calculated
with the formula:

〈HI〉t3 =
2~g
N

∞∑

n=0

√
n+ 1 〈n+ 1|φ1〉 〈n|φ1〉 , (3.D.13)

or, alternatively, it can be inferred from Eq. (3.D.1) as we already know 〈HA〉t3 and
〈HB〉t3 which we calculated through the knowledge of ν0.

For very low values of g/ω the Jaynes-Cummings approximation can be used [12].
In this case Eq. (3.D.5) becomes |ψg〉 ≃ |g, 0〉. The Bloch-Siegert approximation holds
good for higher values of g/ω (still g/ω ≪ 1) [155]. In this case, at resonance, 2∆ = ω,
Eq. (3.D.5) becomes [cf. Eq. (2.4.18)]

|ψg〉 ≃
(

1 − Λ2

2

)
|g, 0〉 − Λ |e, 1〉 + Λ2

√
2 |g, 2〉 , (3.D.14)

where Λ = g/(2ω).
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3.E An example of transfer protocol

Here, we provide more details on the transfer protocol briefly described at the end of
section 3.4, concerning the Rabi model in the case when the environment is at zero
temperature. First, we suppose that system A, which we previously treated as a two-level
system, is a three-level system whose intermediate third level |u〉 did not participate in
the interaction with system B during the thermalization process. Then, the Hamiltonian
of system A has to be written as follows:

HA =
~ω

2
|e〉〈e| − ~γ |u〉〈u| − ~ω

2
|g〉〈g| , (3.E.1)

where |γ| < ω/2. We also suppose to have at our disposal a number Nc of systems
Di, with the same spectrum of system A, in the ground state |g〉 (these copies are free
resources because they are, initially, in the thermal state at T = 0)19.

The main idea, depicted in figure 3.8, is to use system A and systems Di to charge
system C through interactions modeled with the Jaynes-Cummings Hamiltonian. The
external harmonic oscillator is chosen to be resonant with the transition connecting states
|e〉 and |u〉. The interaction with C will be assumed to involve only these states. By
doing this and taking |γ| < ω/2, we assure that |u〉 is never the ground state in each
part of the thermalization protocol and that the interactions with system C are one-way
energy transfers from systems A and Di to system C.

The Nc systems Di interact with system B through the Jaynes-Cummings Hamilto-
nian:

HJC = ~gB
(
aσ+ + a†σ−

)
, (3.E.2)

where σ+ and σ− are, respectively, the raising and lowering Pauli operators. To analyze
the simplest situation, each copy interacts with the harmonic oscillator for the same time
tB. Turning on this interaction does not require energy because the initial state of the
three-level systems is the ground state and no energy is required also for turning off the
interaction because HJC commutes with the total Hamiltonian. By suitably choosing the
time tB , system B will be nearly depleted and the energy will be stored in the three-level
systems.

Using Eqs. (3.D.5), (3.D.7), and (3.D.8), the reduced density matrix of system B
after the thermalization protocol involving systems A and B can be rewritten as follows:

ρrth
B =

∑

n,m

cncm
2

[
1 + (−1)n+m

]
|n〉〈m| . (3.E.3)

Under the Jaynes-Cummings evolution, a two-level system and a harmonic oscillator in
the state |n+ 1〉 undergo the following transformation [22]:

|g, n+ 1〉 → −i sinαn |e, n〉 + cosαn |g, n+ 1〉 , where αn = gBtB
√
n+ 1. (3.E.4)

19In a realistic implementation, the assumption here is that the temperature T of the environment is
very low with respect to the first energy gap of the systems. Then, they can be safely assumed to be,
initially, in their ground state.
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Figure 3.8: This figure shows the mechanism employing systems Di to move energy from
system B to the external battery, i.e., system C. The picture also shows the energy
level scheme of systems A and Di (we recall that systems Di and system A have the
same spectrum), while the light blue bars over the levels give a representation of how
the populations of the different energy levels change during the transfer. Notice that
the various coupling constants here involved are assumed to be zero before and after the
interaction, and constant during it. This means that the transients of the coupling are
assumed to happen in a very short time.

A simple calculation shows that, after the interaction, the three-level system Di is in a
mixed state without coherences:

ρDi =
∑

n

c2
n

(
sin2 αn−1 |e〉〈e| + cos2 αn−1 |g〉〈g|

)
. (3.E.5)

Moreover, the new state of the cavity is of the same form of Eq. (3.E.3), therefore none
of the three-level systems acquires coherences in the energy basis.

In Fig. 3.9, we plot the efficiency of this energy transfer against the interaction time
tB, for g = 1.6 ω and different values of Nc. This efficiency is defined as the ratio
between the energy acquired by Di and the energy, WB, that was stored in system B,
i.e., η1 =

(
~ω
∑Nc
i=1 pi

)
/WB. Fig. 3.9 shows that a great part of WB (WB ≃ 2.49 ~ω)

can be taken in this way by properly choosing the interaction time tB. For comparison,
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Figure 3.9: This graph shows the efficiency (η1) of the extraction part of the transfer
protocol as a function of the interaction time tB for different values of Nc.

for a Rabi oscillation we have gBtB = 2π. This figure also suggests considering Nc = 8
in view of the fact that increasing this number raises the extracted energy by a very
small amount. Moreover, the quantity of energy extracted in this way seems to be robust
to little variations of tB. We observe that in general the efficiency η1 could be raised
(and/or smaller values of Nc could be used) by choosing different interaction times for
each of the three-level systems. The remaining energy of system B will be dissipated in
the thermal bath.

In order to charge system C, we have then Nc + 1 three-level systems (the system
A and the Nc systems Di) with different excited populations. The system A and the
systems Di interact with system C through:

H ′
JC = ~gC

(
cσ′

+ + c†σ′
−

)
, (3.E.6)

where c (c†) is the annihilation (creation) operator for C, which has Hamiltonian HC =
~ω′n̂c, with n̂c = c†c and ω′ = ω/2 + γ. We recall that this interaction with a system Di

can take place while another three-level system interacts with system B.
For every interaction with system C, the initial state of any Di is of the kind

pe |e〉〈e| + 0 |u〉〈u| + pg |g〉〈g| . (3.E.7)

To compute the Jaynes-Cummings evolution under a time tC , we can make use of the
following transformation, concerning a two-level system in the excited state |e〉 and an
harmonic oscillator in the state |n〉 [22]:

|e, n〉 → cos
(
gCtC

√
n+ 1

)
|e, n〉 − i sin

(
gCtC

√
n+ 1

)
|u, n+ 1〉 . (3.E.8)
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Figure 3.10: This graph shows the efficiency (η2) of the charging part of the transfer
protocol, for N = 100 iterations, as a function of the interaction time tC for Nc = 8,
gBtB = 0.84 and γ = 0.4 ω, which implies ω′ = 0.9 ω. In the graph, the solid line is
the efficiency obtained using the average energy, while the dotted lines represent the
efficiencies obtained using the average energy plus or minus the standard deviation.

Parameters
WA = pa ~ω ≃ 0.44 ~ω WB ≃ 2.49 ~ω

N = 100 Nc = 8
g = 1.6 ω γ = 0.4 ω
Optimal interaction times and results
gBtB = 0.84 gCtC = 0.26
η1 ≃ 0.985 η2 ≃ 0.361
ηT ≃ 0.357 EC ≃ (104.60 ± 3.29) ~ω

Table 3.1: This table shows all the relevant values of the transfer protocol for a specific
choice of the parameters.

It is then easy to show that each number state of the harmonic oscillator transforms as
follows:

|n〉〈n| → γn |n〉〈n| + (1 − γn) |n+ 1〉〈n+ 1| , γn = pe cos2
(
gCtC

√
n+ 1

)
+ pg. (3.E.9)

Then, if the initial state of system C is a state with no coherences in its energy basis, it
will never gain coherences from this interaction. In this case, the initial state of system
C is the ground state |0〉.

Again, to analyze the simplest situation, each three-level system will interact with the
harmonic oscillator for the same time tC . Cycle after cycle, each three-level system meets
system C in a different state, in general, so that the efficiency of this part of the whole
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protocol depends on the number of cycles. After having interacted with system C, the
three-level systems are reinitialized through thermalization and ready to start another
cycle of the global protocol. The average efficiency per cycle of this energy transfer to
system C is equal to the ratio of the energy stored in it after N cycles divided by N and
the total transferable energy of the three-level systems before the interaction:

η2 =
EC/N

~ω
(∑Nc

i=1 pi + pa
) =

ω′

ω

〈n̂C〉 /N(∑Nc
i=1 pi + pa

) , (3.E.10)

where pa is the excited population of system A at the end of the thermalization protocol20.
In Fig. 3.10, we plot the efficiency of this part of the transfer protocol using the

three-level systems of the previous part and one hundred iterations of the whole process
as a function of tC . The plot also shows the behavior of the standard deviation. As
one can see, a maximum efficiency of the order of 50% can be achieved for gCtC ≃ 0.18.
However, by choosing a larger value for tC we can obtain smaller values for the standard
deviation, thus improving the analogy between system C and an ordinary battery, since
C is in a mixed state with a relatively high energy and small standard deviation, e.g.,
EC ≃ (104.60 ± 3.29) ~ω for gCtC = 0.26.

We think that N = 100 is a suitable compromise to show the iterability of the process
while keeping reasonable (at least in principle) the assumption that the dissipation of
system C is negligible. We have also considered other values of N (for example N=25
and N=1000), observing that the results for the efficiency and the standard deviation do
not change qualitatively. We finally observe, from Fig. 3.10, that the optimal interaction
time is much lower than the time of a Rabi oscillation (gCtC = 2π) and that the protocol
is robust to small variations of tC .

An interesting feature emerging from numerical simulations is that if we vary the
populations pi by keeping fixed their sum, the plot in Fig. 3.10 almost does not change,
for N sufficiently high. This means that this result is solid with respect to the number of
copies Nc and to variations of the populations.

The total efficiency of the complete transfer protocol can be calculated as follows:

ηT =
WA + η1WB

WA +WB
× η2. (3.E.11)

In table 3.1 we report the efficiencies η1, η2 and ηT for some specific values of the relevant
parameters, as well as the optimal interaction times (up to the second decimal digit)
found through numerical simulations.

One can also estimate the minimum amount of time a cycle of the complete protocol
takes when considering both the thermalization and the transfer protocol. By neglecting
the A-B interaction switches, we get

T = (t3 − t2) +Nc max {tB, tC} . (3.E.12)

20See Eq. (3.D.11) for our specific model.
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If tB > tC , this result is obtained by considering that when the last three-level system of a
cycle ends its interaction with system B, system A can already be ready to start another
thermalization process, i.e., the next cycle of the complete protocol. If tC > tB , the last of
the copies has to wait Nc interactions of other three-level systems with system C. When
its interaction begins, system A can already start the thermalization protocol. It follows
that for Nc and N not too large, depending on the actual physical implementation, the
dissipative processes of system C during its charge could be effectively negligible, as we
assumed here.





Chapter 4

Thermodynamics protocols:
thermal cycles

4.1 Introduction

As anticipated in section 2.3, much effort has been devoted to the tradeoff between power
and efficiency, with power usually increased at the expense of efficiency. When studying
the power of a discrete quantum heat device, i.e., operating with finite-time strokes, the
time allocated for thermalization typically plays an important role often representing
the main contribution to the waiting time between subsequent strokes. In most cases,
such a waiting time can be so high that all the other cycle steps can be considered
instantaneous [133, 134, 219]. On the other hand, there is an ongoing effort to reduce
the thermalization times, especially within the quantum Carnot cycle [220–223], and to
optimize the power output [224]. In some cases, however, the waiting time is assumed
negligible compared to other times, as done in other proposals of the quantum Otto cycle
employing shortcuts to adiabaticity [142–144], reducing the time necessary to vary the
Hamiltonian of the working fluid.

In this chapter, we propose two quantum thermal machines based on two-stroke
cycles. In both models, two collections of identical quantum systems with constant
and evenly spaced energy levels are initially prepared in equilibrium by bringing them
in contact with a cold and a hot thermal bath, respectively. In the first scheme we
propose, a system of one collection interacts with a system of the other one, and then they
thermalize. The presence of many copies in each collection can change the magnitude of
the effective waiting time with respect to the interaction time. In the second scheme,
the two collections do not interact directly anymore but by means of a mediator system.
The mediator interacts alternately with some systems from one collection and then with
some from the other one. While the mediator interacts with one collection, the systems
of the other collection can interact with their own thermal bath, thus amortizing the
waiting time.

Under the general assumption that the various interactions preserve the number of
excitations, we show that the efficiencies of the two cycles depend only on the Bohr

59
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frequencies of the two collections and are equal to the one of an “equivalent” Otto
cycle1. Remarkably, this is obtained without the need for time intervals where these
Bohr frequencies or energy gaps must be varied. With a specific choice of the interaction
Hamiltonian, we investigate for both models the problem of power optimization, focusing
on the case of qubits and harmonic oscillators. One of the novel aspects of our work
is a detailed analysis of the role of the waiting time between consecutive interactions,
especially in relation to the maximum achievable power, an aspect which has often been
overlooked in the literature. For the first model, we also compare our results with those
of “equivalent” Otto cycles. Concerning the second model, instead, we show that the
presence of a mediator can bring a performance advantage for a specific range of the
waiting time in the correspondent cycle without the mediator. Moreover, a machine with
the mediator system could be more easily implemented, depending on the experimental
platform.

This chapter is organized as follows. In section 4.2, we describe the model without
the mediator, analyze its efficiency, and maximize its power. Then, in section 4.3, we
perform a similar study for the model with the mediator and show that its presence
can lead to performance advantages. In section 4.4, we compare the cycle without the
mediator with quantum Otto cycles which make use of shortcuts to adiabaticity. Finally,
in section 4.5, we briefly state the conclusions of our work, while we provide details of
our analysis and calculations in several Appendices.

4.2 The model without mediator

In this model, depicted in Fig. 4.1, the thermal machine consists of two collections Cc and
Ch of copies of, respectively, quantum systems Sc and Sh, with Hilbert space dimensions,
respectively, Nc and Nh. The systems of the two collections, when non-interacting,
are in contact with a cold bath at temperature Tc and a hot bath at temperature Th,
respectively. The systems Sc and Sh have evenly spaced energy levels so that they can
be characterized, respectively, by the positive frequencies ωc and ωh as shown in Fig. 4.1.
The machine cycle consists of the two following strokes.

1. One system Sc, initially at equilibrium at temperature Tc, interacts for a time τ
with a system Sh, initially at equilibrium at temperature Th.

2. After the interaction or collision, Sc and Sh thermalize again.

In realistic implementations of this kind of thermal machines, there could also be
other times required, for example, to re-initialize the machine. We denote by tw the
waiting time between the end of a collision and the start of the following one. Then, each
cycle lasts τ + tw. Depending on the physical realization, the time tw can vary over a
wide range, from being negligible compared to τ to being much larger than that. For
example, Fig. 4.1 describes a situation similar to that of Refs. [133, 134, 225], in the

1See section 2.3.2.
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Figure 4.1: A scheme of the cycle with no mediator. Couples of systems belonging to
each of the two collections interact for a time τ and then thermalize, sequentially. With
enough couples, the thermalization of each one of them occurs during the collisions of
other couples so that the waiting time tw can be greatly amortized and can become even
negligible compared to the interaction time τ .

case each collection is made of only one system and the interaction time between the
machine systems is assumed to be negligible compared to the waiting time, which at least
comprises the thermalization time. In the opposite case, we assume that both collections
are made of many systems and the interaction between couples of systems is activated
sequentially. Therefore, if there are enough couples, the systems of the first couple are
already practically thermalized when the interaction of the last couple ends2. Even in
the latter case, the waiting time tw can not be deemed exactly zero since an unavoidable
amount of time may be required for the machine between the end of a collision and the
beginning of the following one. Having in mind this scenario, in our analysis we consider
tw as a parameter which can vary.

We notice that a model sharing some similarity with the one we propose in this
section has been very recently investigated [225]. There, differently from here, the time
allocated for the second stroke has a different physical origin being it connected to partial
thermalization by means of a collisional bath.

The free Hamiltonians of the systems of each collection are given by

Hr = ~ωrnr, nr = a†
rar, (4.2.1)

2Strictly speaking, a system requires an infinite time to thermalize at the temperature of the heat
bath it is weakly interacting with [12]. However, after a certain finite time, the system reaches a state
which is practically indistinguishable from a thermal state.
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Engine Refrigerator Heat Pump Thermal Accelerator
Conditions ωc < ωh < ωc (Th/Tc) ωh > ωc (Th/Tc) ωh > ωc (Th/Tc) ωh < ωc

Work and Heat W < 0, Qh > 0, Qc < 0 W > 0, Qh < 0, Qc > 0 W > 0, Qh < 0, Qc > 0 W > 0, Qh > 0, Qc < 0
Efficiency or COP −W/Qh = 1 − ωc/ωh Qc/W = ωc/ (ωh − ωc) −Qh/W = ωh/ (ωh − ωc) −Qc/W = ωc/ (ωc − ωh)

Table 4.1: Working regimes of the cycle. The conditions of the first line are valid
when Nc = Nh and min(〈nc〉th , 〈nh〉th) ≤ 〈nr〉τ ≤ max(〈nc〉th , 〈nh〉th). Regarding
the cycle with mediator (see section 4.3), we also require that Nc = Nm and that
min(〈nm〉ur−1 , 〈nr〉th) ≤ 〈nm〉ur ≤ max(〈nm〉ur−1 , 〈nr〉th) ∀ ur > 0, where Nm is the
dimension of the mediator, nm its number operator, and ur the number of its collisions
with systems Sr (see Appendix 4.B for more details). Notice that the efficiencies η and
the COP do not depend on the dimensions of the systems and the conditions on the time
evolution.

where r = c, h, depending on which kind of system we are describing. The operators ar
and a†

r satisfy

ar |n〉 =
√
n |n− 1〉 , a†

r |n〉 =
√
n+ 1 |n+ 1〉 ,

ar |0〉 = 0, a†
r |Nr − 1〉 = 0. (4.2.2)

The use of the operators ar and a†
r allows us to have a unified formalism whatever the

Hilbert space dimensions of the systems are, including qubits and harmonic oscillators as
special cases. The commutator of ar and a†

r gives
[
ar, a

†
r

]
= I − dr |dr − 1〉〈dr − 1| , (4.2.3)

where I is the identity operator in the Hilbert space of dimension Nr, dr = Nr for any
finite-dimensional case3, while the correct result for the harmonic oscillator case4 is
formally obtained by putting dr = 0.

Regarding the interaction Hamiltonian for the collisions Sc-Sh, we use

HI = ~g
(
a†
cah + aca

†
h

)
, (4.2.4)

where, without loss of generality, the coupling constant g is assumed to be real and
positive. This Hamiltonian, which can be described as “exchange” or “tight-binding” in
solid state and condensed matter physics and as “beam-splitter” in quantum optics, is
widely used in the literature [12, 22], for example, in the case of qubits [71, 226–228] and
harmonic oscillators [229, 230]. Notice that the Hamiltonian of Eq. (4.2.4) preserves the
total excitation number in the system Sc + Sh, i.e.,

[nc + nh, HI ] = 0. (4.2.5)

During the interaction, systems Sc and Sh are considered isolated from the environ-
ments so that the external work W , required to switch on and off the interaction, is equal

3For example, the qubit case is obtained by choosing dr = Nr = 2.
4In the case of harmonic oscillators, we recall that

[
ar, a

†
r

]
= I.
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to the difference in energy before and after the collision:

W = ~ (ωh − ωc) (〈nh〉τ − 〈nh〉th) , (4.2.6)

where 〈nr〉τ and 〈nr〉th are the average number of excitations of the system Sr, after the
interaction and in the thermal state at temperature Tr for the free Hamiltonian of system
Sr, respectively5. In particular, we have 〈nr〉th = Tr{ρth

r nr}, where we have defined the
equilibrium thermal state ρth

r = Z−1
r exp[−Hr/(kBTr)], being Zr = Tr{exp[−Hr/(kBTr)]}

the partition function, and kB the Boltzmann constant. Eq. (4.2.6) clearly shows
that W can be different from zero only when Sc and Sh are not resonant. We also
notice that the number-conserving property of the interaction Hamiltonian implies
〈nh〉τ − 〈nh〉th = 〈nc〉th − 〈nc〉τ . We use the convention that the external work W is
negative in the case of work extraction. Notice that this external work has to be provided
by an external agent turning on and off the interaction. Taking as an example the picture
of figure 4.1, this external agent could be represented by the conveyor belts.

After the interaction, the system Sr (with r = c, h) is put in contact with its thermal
bath at temperature Tr and thermalizes again. In this case, the system exchanges
exclusively heat with its bath equal to

Qr = ~ωr (〈nr〉th − 〈nr〉τ ) . (4.2.7)

An engine is realized when W < 0, a refrigerator or heat pump when W > 0 and
Qc > 0 while a thermal accelerator6 is obtained for W > 0 and Qc < 0, as summarized
in Table 4.1. The consequence of choosing an interaction Hamiltonian preserving the
total excitation number in the systems7 is that the efficiencies and the coefficients of
performance (COPs) of these thermal machines only depend on the frequencies of the
systems Sc and Sh, as reported in Table 4.1. Moreover, under the assumption that
Nc = Nh and that min(〈nc〉th , 〈nh〉th) ≤ 〈nr〉τ ≤ max(〈nc〉th , 〈nh〉th)8, the working
regimes depend only on frequencies and temperatures. In fact, it suffices to notice that,
when Nc = Nh,

ωc
Tc

>
ωh
Th

⇐⇒ 〈nc〉th < 〈nh〉th . (4.2.8)

Notably, the efficiencies and COPs here are the same of the “equivalent” adiabatic Otto
cycle [143, 144], described in section 4.4. We remark that Eqs. (4.2.6) and (4.2.7) and
the results reported in Table 4.1 hold good for any interaction Hamiltonian satisfying
Eq. (4.2.5).

5We point out that, in this chapter, the work is not defined as in chapter 3 since here we refer to a
thermal cycle involving two baths at different temperatures. As a consequence, also the heat is defined
differently here.

6In literature, a thermal accelerator is considered to be a machine which facilitates the natural heat
flow from the hot bath to the cold bath.

7See Eq. (4.2.5).
8In the case of qubits and harmonic oscillators, we have verified that this condition and the analogous

ones in the case with the mediator [see caption of Table (4.1)] are satisfied for Eq. (4.2.4).
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4.2.1 Maximization of power

Here, we solve the problem of maximizing the power of the machine. We remark that all
the maximizations in this chapter are performed at fixed temperatures and couplings.
As a first step, we need to find the average number of excitations in the systems after
the collision. This computation, performed in the Heisenberg picture, is detailed in
Appendix 4.A and gives for a qubit-qubit collision or an oscillator-oscillator one

〈nh〉τ = 〈nc〉th + (〈nh〉th − 〈nc〉th)A, (4.2.9)

with

A =
2δ2 + g2 [1 + cos (2kτ)]

2k2
= 1 − g2

k2
sin2 (kτ) , (4.2.10)

where δ = (ωh − ωc) /2 and k =
√
δ2 + g2. Since the above formulas are exact only in

the cases of qubit-qubit and oscillator-oscillator collisions, every detailed analysis in this
chapter will be done for these cases. However, in all the other cases, we expect these
formulas to be a good approximation when some appropriate conditions are fulfilled (see
Appendix 4.A for more details).

By using Eqs. (4.2.9) and (4.2.10) in Eqs. (4.2.6) and (4.2.7), it is possible to cast
the functional dependence of the power for the various working regimes into a product of
a function f(Tc, Th, ωc, ωh) that depends solely on temperatures and frequencies and a
coefficient V :

PE =
−W
τ + tw

= ~ (ωh − ωc) (〈nh〉th − 〈nc〉th)V,

PR =
Qc

τ + tw
= ~ωc (〈nc〉th − 〈nh〉th)V,

PH =
−Qh
τ + tw

= ~ωh (〈nc〉th − 〈nh〉th)V,

PA =
−Qc
τ + tw

= ~ωc (〈nh〉th − 〈nc〉th)V, (4.2.11)

where

V =
1 −A

τ + tw
=
g2

k2

sin2 (kτ)
τ + tw

. (4.2.12)

In the following, after a first study which applies to all the functioning regimes, we
will deal with the general problem by focusing on the engine regime. In the case of qubits,
we have checked that the qualitative results are the same when studying the figure of
merit for refrigerators, which is the product of the cooling power PR and of the COP, and
is the quantity one usually tries to maximize when optimizing a refrigerator cycle [133,
231].

Maximization with fixed frequencies

We start our investigation on power maximization by studying the case in which both
the temperatures and the frequencies of the systems are fixed, as commonly done in the
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literature (see, for example, Refs. [133, 134, 142–144]). We also consider the coupling
g and the waiting time tw as given parameters and the optimization is performed only
with respect to the collision time τ . In the next subsection, instead, the optimization will
be done also with respect to the frequencies of the systems. Here, since τ only appears
in the term V , we can maximize all the power functions at once by just maximizing V .
Notice that when the frequencies are fixed, maximizing the cooling power is equivalent
to maximizing the figure of merit since the COP only depends on the frequencies. With
this first analysis, we show how much impact the waiting time has on the maximization
of power and the optimal collision time for which it is realized.

The maximization of the term V of Eq. (4.2.12) with respect to the collision time τ
has to be carried out numerically. In Fig. 4.2, we report the optimal value of kτ as a
function of the quantity ktw. We denote the optimal collision time as τ∗ and the term V
calculated for this collision time as Vmax. Moreover, the same plot also shows the value
of V k/g2, which is a function of kτ and ktw, in two cases: for τ = τ∗ and kτ = π/2. The
first case is the value of τ maximizing the power while the second one is the smallest
value that maximizes the work per cycle9. When tw = 0, the optimal collision time
is given by the equation kτ∗ = y∗, where y∗ ≃ 1.16556 is the value of y maximizing
sin2(y)/y, the maximum being equal to α ≃ 0.724611. On the other hand, in the limit
tw → ∞, the maximum of V is simply obtained for kτ = π/2 since the contribution of τ
in the denominator od Eq. (4.2.12) becomes negligible in this limit. We also denote the
time value for which kτ = π/2 as the “swap time” since the states of the two systems
Sc and Sh are practically swapped when g ≫ |δ|. Figure 4.2 shows that the optimal
time drastically changes value when ktw varies in the interval [0.1, 10] and that up to
ktw ∼ 10 the dimensionless optimal time kτ∗ is substantially different from π/2. However,
the advantage in power obtained by using the optimal time instead of the swap one is
significant only up to ktw ∼ 0.1.

Remarkably, the power output is quite resilient to errors in the interaction time, as
can be seen in Fig. 4.3. There, we show how V/Vmax changes as a function of kτ . Small
uncertainties in the collision time around the optimal collision time τ∗ lead to a small
decrease in the output power. The plot also shows that the loss in power obtained by
using the swap time instead of the optimal one increases when tw decreases, becoming
approximately 12% for ktw = 0.01.

The perfect swap between two non-resonant systems10 is often assumed to be a valid
operation in a thermodynamic cycle. One could wonder about the power of a Hamiltonian
capable of exactly implementing a perfect swap and its performance. We analyze this case
in Appendix 4.C for the qubits case, finding that the “swap” Hamiltonian preserves the
number of excitations in a collision, thus leading to the same efficiencies of our interaction
Hamiltonian of Eq. (4.2.4). We compare the performance of the exchange and swap
Hamiltonians by imposing that the difference between the highest and lowest eigenvalues
is the same in the two Hamiltonians (for simplicity, this is done for tw = 0). We find that
the swap Hamiltonian performs better when it is possible to optimize the interaction

9The work per cycle is maximized when kτ = π/2 +mπ, where m is a natural number.
10For example, qubits in Ref. [134].
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Figure 4.2: Optimal collision time τ∗ (black continuous curve), Vmax, i.e., V calculated
at the optimal time τ∗ (blue dashed curve), and V (kτ = π/2), i.e., V calculated at the
swap time (red dotted curve), as functions of the waiting time tw for fixed frequencies
and coupling. Each curve presents its greatest variation when ktw varies in the interval
[0.1, 10]. Regarding τ∗, the two limit values for ktw → 0,∞ are, respectively, y∗ and π/2.

time, while this is not always true if the swap Hamiltonian acts for the appropriate swap
time. For this case, we find for which values of g the exchange Hamiltonian leads to
higher power output than the swap one.

Maximization with respect to frequencies, qubits case

Here, we deal with the problem of maximizing the power output not only with respect to
the collision time but also with respect to the frequencies of the two collections, assuming
that both of them are composed of qubits. Contrary to the previous maximization of the
term V at fixed frequencies, maximizing over frequencies impacts the efficiencies of the
thermal machine and leads to different results for different working regimes. We choose
to make this maximization in the engine case. Similar qualitative results are obtained by
studying the figure of merit for refrigerators.

We start our analysis by observing that, for properly optimizing the power, it is not
sufficient to maximize with respect to ωc/ωh. Therefore, since we cannot use ωc as the
unit frequency, we define the frequency νc = kBTc/~ as a unit measure for frequencies.

In Fig. 4.4, we show the behavior of the normalized maximum power as a function
of the efficiency for different values of the waiting time. Noticeably, the power peaks
are characterized by an efficiency larger than the Curzon-Ahlborn one11 provided a high
enough coupling is employed. Therefore, our model belongs to the class of systems that
may surpass the Curzon-Ahlborn efficiency at maximum power [20, 127–129, 131–134].
Moreover, the curves corresponding to the high coupling limit do not change significantly

11See section 2.3 for a brief introduction to this quantity.
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Figure 4.3: V/Vmax as a function of the collision time τ for fixed frequencies and coupling.
In this case, the ratio is only a function of kτ and ktw. Small errors in the collision time
around τ∗ provoke only a small decrease of V .

when increasing the waiting time tw while the other ones have their peak moving to the
left.

We would like to comment on what the high coupling limit represents in this setting,
where the frequencies can vary. The high coupling limit is obtained when g ≫ |δ| so that
k ≃ g. However, |δ| = |(ωh − ωc)/2| so that the magnitude of δ maximizing the power
depends on Th/Tc even if the temperatures do not directly appear in the term V . Our
numerical simulations suggest that the optimal frequencies are roughly comprised in the
range [νc, (Th/Tc)νc] (the upper bound can be slightly overcome for small values of ηE),
hence a safe condition for the high coupling limit is g ≫ (Th/Tc)νc.

Maximization with respect to frequencies, harmonic oscillators case

In the case of harmonic oscillators, the power peak is not obtained for some specific
finite non-zero values of ωc and ωh, as shown in Appendix 4.D. There, the power is
indeed shown to increase monotonically by decreasing the frequencies while keeping the
temperatures and the efficiency fixed.

When searching for the maximum power, since it is obtained in the limit ωc, ωh → 0,
the high coupling condition (g ≫ |δ|) is always respected so that Vmax is independent
from the frequencies for any finite coupling12. For the same reason (ωc, ωh → 0), the
search for the maximum can be done in the mathematically equivalent high-temperature
limit (kBTr ≫ ~ωr). To find PE of Eq. (4.2.11) in this case, let us write ωh = ωc/(1 −ηE)
and Th = Tc/(1−ηC), where ηC is the Carnot efficiency. Then, after some straightforward

12See Eq. (4.D.8).
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Figure 4.4: Normalized maximum power P̃E(ηE)/PE,max as a function of the efficiency
ηE = 1 − ωc/ωh. For a given ηE , the maximization is done with respect to τ and ωc,
imposing ωh = ωc/(1 − ηE). Each plot shows the same curve for different values of the
coupling g, while they differ for the value of tw. Other parameters are: Nc = Nh = 2
and Th = 10Tc. The two vertical lines indicate, from left to right, the Curzon-Ahlborn
efficiency and the Carnot one. Noticeably, in the high coupling limit, the efficiency at
maximum power is higher than the Curzon-Ahlborn one for every waiting time.



4.3. THE MODEL WITH MEDIATOR 69

calculations, we obtain

PE ≃ kBTc
1 − ηC

ηE(ηC − ηE)
1 − ηE

V. (4.2.13)

When maximizing PE in this limit, we recall that Vmax is independent of the frequencies
and, consequently, of the efficiency ηE . Then, one can just maximize [ηE(ηC−ηE)]/(1−ηE)
in Eq. (4.2.13) finding that the efficiency maximizing the power is the Curzon-Ahlborn
one.

The distinct behavior between qubits and harmonic oscillators stems from the very
different probability distribution of the populations in the thermal states, which, being
both systems characterized by a single frequency, is entirely due to the difference in the
number of levels. It follows that although the Heisenberg dynamics of the observables we
are interested in during the collision is the same, a maximization over frequencies leads to
different results. In particular, the monotonic increase of power obtained by decreasing
the frequencies in the case of oscillators appears to be connected to their capacity of
absorbing an unlimited number of excitations in the limit of vanishing frequencies, in
contrast to finite dimensional systems.

4.3 The model with mediator

As we have seen in the previous section, when the number of couples Sc-Sh at disposal is
large enough, the contribution of the thermalization to the effective waiting time tw can
be eliminated, greatly reducing tw, whose final value will depend, for example, on the
time required by the machine between a collision and the next one. However, for a small
number of couples, the relaxation time cannot be neglected. In this situation, one could
try to improve the setup by adding a mediator system Sm which alternately interacts
with one of the two systems Sc and Sh in order to double the number of collisions, thus
effectively extending the time allocated for the thermalization. This can practically
eliminate the contribution of the thermalization time to the effective waiting time tw,m
for a relatively large number of couples even when this number is not sufficient for the
case without the mediator. Moreover, the addition of a mediator could also modify the
part of the waiting time due to machine requirements. For example, if some amount of
time is required between subsequent collisions, with the presence of the mediator this
time could be suppressed because the interaction Sm-Sh can be turned on as soon as the
Sm-Sc is turned off.

The new setup can be described as follows: we consider a machine composed of the
same components as in the previous section, but with the addition of a central “mediator”
system Sm characterized by the frequency ωm. Moreover, we consider the possibility of
grouping the systems of each collection in order to make the mediator interact, alternately,
with sequences of systems of the same collection. Then, in the most general case, the
cycle consists of the two following strokes.

1. The mediator interacts consecutively with uc systems of the collection Cc, each
collision lasting for a time τc through an interaction Hamiltonian like that of
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Figure 4.5: A scheme of the cycle with the mediator. Here, for each cycle, the mediator
system interacts alternately with a system of collection Cc and then with a system of Ch
(in the general case considered in the text, one can have ur collisions).

Eq. (4.2.4) but with coupling gc and operators am and a†
m

13 instead of, respectively,
g, ah, and a†

h.

2. The mediator interacts consecutively with uh systems of the collection Ch, each
collision lasting for a time τh through an interaction Hamiltonian like that of
Eq. (4.2.4) but with coupling gh and operators am and a†

m instead of, respectively,
g, ac, and a†

c.

This model and its functioning are illustrated in Fig. 4.5 in the particular case uc = uh = 1,
which we will argue to be the best performing case. We assume that, before the interaction
with Sm, the state of the systems Sr14 is always described by the corresponding thermal
state and that the interacting systems are initially not correlated.

Ideally, as said above, the advantage of this scheme compared to the previous one is
that the effective waiting time can be reduced even more. In particular, by comparing
the two models in the case uc = uh = 1, we can expect that tw,m ≃ 0 when tw . τ∗

m,
where τ∗

m is the optimal collision time of the model with the mediator (computed in
the case tw,m = 0), since tw,m ≃ max{0, tw − τ∗

m}. For simplicity, within this model, we
consider the cases when one can effectively neglect the waiting time, i.e., when tw,m = 0.

13Operators am and a†
m satisfy the same conditions of Eq. (4.2.2).

14As in the preceding section, r can stand both for c or h.
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Besides a possible performance advantage, the addition of a mediator could make
the experimental implementation of the model easier. In fact, with the mediator, one
needs only to turn on and off the interactions between different systems and a single
one, which is always the same, instead of doing it between systems taken from the two
collections. For example, moving systems around can present some difficulties in some
specific applications. By using the mediator, it is sufficient to move it from one collection
to the other instead of always trying to move a different system from each collection.

Assuming excitation-preserving interactions, we obtain the same results for the
efficiencies of the previous model15. If all the systems are of the same type and the
conditions on the time evolution due to the collisions reported in Table 4.1 are fulfilled,
the same conditions on the frequencies for the working regimes are obtained again.

4.3.1 Maximization of power

Maximization with fixed frequencies

Analogously to the analysis presented in section 4.2, we keep fixed the two bath tempera-
tures and the coupling constants, and we start by maximizing the power output with
respect to the collision time with fixed frequencies.

In Appendix 4.E we report the detailed calculations showing that the values of the
power for the setup with the mediator are the same of Eq. (4.2.11) with the substitution
V → Vm where

Vm =
[1 − (Ac)uc ][1 − (Ah)uh ]

(ucτc + uhτh) [1 − (Ac)uc(Ah)uh ]
, (4.3.1)

and the quantities Ar, with r = h, c, are the equivalent of the quantity A of Eq. (4.2.10)
with the substitutions g → gr, δ → δr = (ωr − ωm)/2, k → kr =

√
g2
r + δ2

r , and τ → τr.
Each of these quantities concerns the collisions Sr-Sm and is analogous to those of the
model without the mediator. However, despite this similarity, it is too difficult to maximize
exactly Eq. (4.3.1) or to obtain a simple general numerical solution as for Eq. (4.2.12).
To simplify the problem we assume that uc = uh≡ um and gc = gh ≡ gm. In this case,
numerical simulations show that the maximum of Vm is obtained for τc = τh ≡ τm and
ωm = ω̄ ≡ (ωc +ωh)/2, leading to −δc = δh = δm ≡ (ωh −ωc)/4 and τc = τh ≡ τm. With
these assumptions, Ac = Ah ≡ Am and we can cast the term Vm in the simplified form

Vm =
1 − (Am)um

2umτm[1 + (Am)um ]
. (4.3.2)

Numerical simulations show that the maximum power is achieved when system Sm
makes just one collision with each collection corresponding to um = 116. In this case, Vm
further simplifies to

Vm =
g2
m sin2(kmτm)

2τm
[
2k2

m − g2
m sin2(kmτm)

] . (4.3.3)

15See Table 4.1 for the results and Appendix 4.B for a detailed discussion on how to obtain them in
the case with the mediator.

16See Appendix 4.E for additional considerations.
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Figure 4.6: Normalized term Vm/Vm,max, Vm,max being the maximum of Vm in the case
um = 1 (for the same value of gm), as a function of time for fixed frequencies and
temperatures. The various curves refer to different values of the coupling gm with respect
to the detuning term δm = (ωh − ωc)/4. Moreover, for each choice of gm, we plot three
times the term Vm with um assuming the values 1, 2, and 4 (curves with the same gm
are plotted with the same style). Increasing um always lowers the power of the machines.
When gm = 0.01δm the three curves practically coincide. We remark that the positions
of the peaks move when the ratio gm/δm varies.

We stress that in the following numerical study we always impose gc = gh = gm and
τc = τh = τm.

Figure 4.6 shows that, as in the no-mediator case, the protocol is resilient to small
errors in the collision times. Differently from the no-mediator case, the optimal value
of kmτm cannot be made independent on gm and δm because Eqs. (4.3.2) and (4.3.3)
cannot be written as a single-variable function of kmτm. In fact, Figure 4.6 shows how
the peak of Vm moves to the right with increasing gm. Figure 4.6 also shows that multiple
collisions decrease the performance and that when gm ≪ |δm| the loss in power for doing
multiple collisions is negligible.

Hereafter, we only deal with the case um = 1, which seems to give the best performance.
In the two limiting cases of small and large coupling, it is easy to see from Eq. (4.3.3) that
the no-mediator (with g = gm) cycle with tw = 0 greatly outperforms the version with
the mediator in terms of maximum power17. Moreover, numerical simulations confirm
that this remains valid for any value of gm. However, the cycle with the mediator can
perform better when tw > 0 but tw,m = 0, as shown in Fig. 4.7. There, the term Vmax

is plotted against the waiting time tw. We observe a parameter zone where tw . τ∗
m

17Compare with Eq. (4.2.12). We recall that, for this comparison, tw,m = tw = 0.
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Figure 4.7: Vmax of the model without mediator against the waiting time tw with ωh = 5ωc
and g = gm = ωc. The vertical line indicates the optimal interaction time in the model
with the mediator, while the horizontal line indicates the term Vm,max. The zone where
Vmax is lower than Vm,max and tw . τ∗

m indicates a power advantage of the model with
the mediator compared to the model without it (for tw > τ∗

m the assumption tw,m = 0 is
not justified in general).

and Vm,max > Vmax in which the system with mediator performs better than the system
without it. We recall that for tw > τ∗

m the assumption tw,m = 0 is not justified, in general.

Maximization with respect to frequencies, qubits case

In the previous section, we have seen with a specific example that there are configurations
in which the cycle with the mediator can offer performance advantages compared to the
cycle without it. However, we have observed this behavior by choosing specific frequencies
for the collections. In this subsection, we show that the advantage remains if we maximize
both cycles not only with respect to the collision time but also over the frequencies. To
do so, we focus on the engine working regime in the case in which all the systems are
qubits.

Figure 4.8 shows the variation of the efficiency in the optimal configuration of
frequencies and collision times as a function of the coupling g = gm, for the fixed
temperature ratio Th/Tc = 10. In this plot, the waiting time of the cycle without the
mediator is assumed equal, for each value of g, to the optimal time of the cycle with
the mediator, i.e., tw = τ∗

m. Under this assumption, the efficiency of the system with
the mediator is always larger than or equal to that of the cycle without it. Regarding
the power output, the top-left inset shows the ratio of the two power maximum outputs,
P

(m)
E,max/PE,max, where P (m)

E,max is the maximum power in the model with the mediator.
We can see that around g = νc the cycle with the mediator also outputs more power than
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Figure 4.8: The continuous blue line refers to the efficiency at maximum power, η̃E , as
a function of the coupling g (g = gm in this plot) for the cycle with the mediator. The
maximization is over frequencies and collision time. The frequency νc = kBTc/~ is the
measure unit and Th = 10Tc. The horizontal line indicates the Curzon-Ahlborn efficiency
for the given temperatures. The red dashed line refers to the efficiency at maximum
power in the same case of the continuous blue line but for the cycle without the mediator
and tw = τ∗

m. The top-left inset shows the ratio of the maximum power in the cycle with
the mediator over the maximum power in the cycle without the mediator (here too with
tw = τ∗

m). The bottom-right inset shows tw or, equivalently for this plot, τ∗
m as a function

of the coupling g. The graph shows that there can be performance advantages in using
the mediator when tw ∼ τ∗

m.

the cycle without it, thus providing a complete performance advantage. The bottom-right
inset shows the optimal time of the collision in the cycle with the mediator as a function
of the coupling18.

In Fig. 4.9, we analyze more in detail the case with g = gm =νc by letting tw vary.
Regarding the efficiency at maximum power, the cycle with the mediator provides an
appreciably higher value provided that the waiting time in the cycle without the mediator
is not negligible. Regarding the power, instead, the waiting time tw has to be a significant
fraction of τ∗

m in order to provide an advantage. As before, it must be taken into
consideration that for tw > τ∗

m the assumption tw,m = 0 is not justified, in general.

18Equivalently, it shows the waiting time used for the cycle without the mediator as a function of the
coupling.
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Figure 4.9: Efficiency at maximum power η̃E (continuous blue line) and maximum power
PE,max (dashed red line) of the model without the mediator as a function of the waiting
time tw with Th = 10Tc and g = gm = νc (we recall that tw,m = 0). The vertical line
indicates the optimal collision time in the model with the mediator, while the horizontal
lines indicate, respectively, the efficiency at maximum power (continuous line) and the
maximum power (dashed line) in the same model. The plot shows that the model with
the mediator can have performance advantages.

4.4 Comparison with the quantum Otto cycle

In this section, we compare the power of the cycle we have studied in section 4.2 with
that of another cycle intensely studied in the literature, the so-called quantum Otto
cycle [113, 232–234], described in section 2.3.2.

To compare it with our model without the mediator, we denote ~ωc the energy
separation of the eigenstates of the system when it is in contact with the cold thermal
bath and ~ωh when in contact with the hot thermal bath. If the expansion and compression
strokes can be performed adiabatically19, the efficiency of the Otto cycle is given by the
same formulas of Table 4.1 for engines and refrigerators [113, 143, 144]. However, in
real applications, the expansion and compression strokes last a finite driving time so
that the cycle cannot be performed perfectly adiabatically: the states of the system at
the end of the expansion and compression strokes are not the same as in the adiabatic
case. Therefore, the power output and the efficiency decrease. To counter this limitation,
various techniques called shortcuts to adiabaticity (STA) have been applied during
finite-time expansion and compression stages to maintain constant the populations of
the energy eigenstates [142–144]. However, the STA require an additional cost which
increases as the driving time decreases [142–145, 235–237]. In the two Otto cycles we
consider below, the cost for the STA implementation is computed differently in the two

19Requiring, then, an infinite time.
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Figure 4.10: Power PE as a function of the total cycle time, which is equal to the collision
time τ in our model without the mediator and to twice the driving time in Ref. [143]
(tw is assumed to be negligible compared to τ), for the parameters given in the inset
and in the legend, in the case of qubits. The continuous red line is the power obtained
in the Otto cycle with STA. The dotted black line is the power in an ideal Otto cycle
without friction, i.e., an Otto cycle in which one makes the adiabatic approximation (AD
line). The dashed purple line, the continuous green line, and the dotted grey line (all
three oscillating) refer to the power obtained with our model without the mediator, for
various fixed coupling strengths g. The dashed blue line is the ensemble of the peaks of
the oscillating lines for all the values of g (see text). The maximum power of the Otto
cycle with STA (≃ 9.68 · 10−4

~ν2
c , indicated in the plot by a continuous horizontal line)

can be obtained in our model for g ≃ 0.173νc.

cases, according to the original works, which can be found, respectively, in Refs. [143]
and [144].

The same efficiency of the ideal Otto cycle has been found also in other cycles
comprising working substances made of non-resonant components, see for example [134,
230, 238]. Before comparing the Otto cycle and our cycle without the mediator we
comment on what could physically motivate the fact that the ideal Otto cycle and our
cycle have the same efficiency. As shown in Sec. 4.2, the efficiency of our cycle only
depends on the frequencies ωc and ωh. If we consider the limit in which the interaction g
goes to infinity and gτ = π/2, the collision gives place to a swap between the particles.
Therefore, the state of the system belonging to collection Cc goes to the system of
collection Ch and viceversa. This is equivalent to performing at once the expansion and
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compression strokes adiabatically because, in this case, the states remain unaltered while
the Hamiltonian changes. In our case, instead, the two Hamiltonians are not altered
but the corresponding systems swap the states. After the collision, in our cycle, both
systems thermalize, thus performing at once the equivalent of the two isothermal strokes
of the Otto cycle. To conclude, since there is a region of parameters in which the ideal
Otto cycle and our cycle give rise to the same “dynamics of the states”, they give rise to
the same efficiency. Then, since this efficiency, in our cycle, is dependent only on the
frequencies, the equality holds also when the two models are not so directly correspondent.
Overall, the connection between the two models can be then linked to the conversion or
exchange of excitations through the Hamiltonian of Eq. (4.2.4) between non-resonant
systems at frequencies ωc and ωh.

We start by comparing a qubit-powered engine fixing the same energy separations
and temperatures of Ref. [143]. Fig. 4.10 shows various curves of power as functions of
the total cycle time, which we denote with τ since, being the waiting times assumed to
be negligible for all the curves20, it coincides with the collision time τ . With respect
to the model of Ref. [143], τ corresponds to twice the driving time. The continuous
red line shows the power of the non-adiabatic quantum Otto engine improved by the
STA developed in Ref. [143]. Instead, the dotted black line is the power that one would
obtain if the adiabatic approximation worked even for finite times (AD line). The dashed
purple line, the continuous green line, and the dotted grey line (all three oscillating)
give, respectively, the power PE of our cycle without mediator21 as a function of τ for
different values of the coupling g. The quantity g∗ is obtained by searching for the value
of g such that the peak of power in our model is roughly equal to that of the STA cycle.
Finally, the dashed blue line represents the collection of the maximum values of the
oscillating lines for all coupling strengths. In other words, it is the parametric curve
(τ∗(g), PE,max(g)), reported in the plot with appropriate units, where τ∗(g) is the optimal
collision time given the coupling g, satisfying kτ∗(g) = y∗22.

This plot shows that in our model one does not need to have g ≫ ωc, ωh to make
the maximum power comparable with that of the quantum Otto cycle. Indeed, in this
example, when g ≃ 0.173νc, our cycle gives roughly the same peak of power output of the
Otto cycle while maintaining the efficiency of an ideal Otto cycle. Moreover, our design
does not require the control of time-dependent Hamiltonians, needed to implement Otto
cycles with STA.

Figure 4.10 also shows that for large values of g, the local peaks of the power approach
the values obtainable in the adiabatic limit. This stems from the fact that the power
of the ideal Otto Cycle without friction23 is equal to that of Eq. (4.2.11) with V = 1/τ
[143] and that, when kτ = π/2 +mπ, where m is a natural number, V = g2/(k2τ)24.

Figure 4.11 shows the same kind of comparison in the refrigerator case but for
harmonic oscillators, as in Ref. [144]. Instead of the power, we have plotted the figure of

20As done in Ref. [143].
21Compare with Eq. (4.2.11).
22See section 4.2.1.
23Without friction here indicates an Otto cycle which we treated as adiabatic even for finite times.
24Compare with Eq. (4.2.12), recalling that here tw = 0.
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Figure 4.11: Figure of merit χ as a function of the total cycle time, which is equal to
the collision time τ in our model without the mediator and to twice the driving time in
Ref. [144] (tw is assumed to be negligible compared to τ), for the parameters given in
the inset and in the legend, in the case of quantum harmonic oscillators. The continuous
red line is the figure of merit obtained in the Otto cycle with STA. The dotted black
line is the figure of merit in an ideal Otto cycle without friction, i.e., an Otto cycle in
which one makes the adiabatic approximation (AD line). The dashed purple line, the
continuous green line, and the dotted grey line (all three oscillating) refer to the figure of
merit obtained with our model without the mediator, for various fixed coupling strengths
g. The dashed blue line is the ensemble of the peaks of the oscillating lines for all the
values of g [see part of the text concerning the same line in Fig. 4.10]. The maximum
figure of merit of the Otto cycle with STA (≃ 19.77 · 10−3

~ν2
c , indicated in the plot by a

continuous horizontal line) can be obtained in our model for g ≃ 0.207νc.
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merit χ = ǫRPR, where ǫR is the COP and PR = Qc/τ is the cooling power. Analogously
to the previous comparison, the condition g ≫ ωc, ωh is not needed to obtain the same
peak value of χ obtained in the quantum Otto cycle. Note that for g ≥ √

ωcωh ≃ 0.224νc
the interaction Hamiltonian between two harmonic oscillators leads to an instability25.

4.5 Conclusions

In this chapter, we have considered two different versions of a two-stroke quantum thermal
machine. In both versions of the machine, two collections of identical systems with evenly
spaced energy levels can be put in contact, respectively, with a cold and a hot thermal
bath. Since the energy levels are evenly spaced, we can characterize each system by using
a single frequency. In the first version we have examined, a collection system interacts
with a system of the other collection, and then they both thermalize. In the second
version, we have added a mediator system that interacts alternately with one or more
systems of each collection.

Under the assumption that the interaction Hamiltonian conserves the total excitation
number, we have proved that the efficiency depends only on the two collection frequencies
in both versions of the cycle.

In section 4.2, we have investigated the problem of power maximization in the cycle
without the mediator. In particular, we have explored the effect of the waiting time on
the optimal collision time and the optimal frequencies. Maximizing over the frequencies
has shown that exceeding the Curzon-Ahlborn efficiency is possible when using qubits
while it is not with harmonic oscillators.

In section 4.3, we have added the mediator. We have shown that its addition can
bring performance advantages when the corresponding cycle waiting time, without the
mediator, is of the same order as the collision time. In most other cases, the cycle without
the mediator performs better. However, there could be experimental platforms where
the implementation of the cycle without the mediator results to be easier.

Finally, in section 4.4, our cycle without the mediator is compared to two examples of
Otto cycles enhanced by shortcuts to adiabaticity. This investigation has shown that high
coupling (g ≫ ωc, ωh) is not needed in our model to obtain a power output comparable
to that of the Otto cycle with shortcuts to adiabaticity at maximum power.

25See Appendix 4.F.
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4.A Dynamics of a collision

In this Appendix, we describe in detail the dynamics of a collision between two systems
governed by the Hamiltonian HT = Hc +Hh +HI , equal to

HT = ~

[
ωcnc + ωhnh + g

(
a†
cah + aca

†
h

)]
. (4.A.1)

To this aim we compute, in the Heisenberg picture, the time evolution of the number
operator for a system Sh, which we denote as (nh)H(t). In order to do this, we first
calculate the commutators of the following operators

nh = a†
hah, nc = a†

cac,

A+ = aha
†
c + a†

hac, A− = aha
†
c − a†

hac, (4.A.2)

obtaining

[nh, A+] = −A−, [nc, A+] = A−,

[nh, A−] = −A+, [nc, A−] = A+,

[A+, A−] = 2 [nh (1 − dcBc) − nc (1 − dhBh)] , (4.A.3)

where Br = |Nr − 1〉〈Nr − 1|. Notice that when dc = dh = 0, 2 (two-harmonic oscillator
and two-qubit cases) one finds [A+, A−] = 2 (nh − nc), which gives rise to a closed algebra
of commutators. In the following, we solve the dynamics analytically using this form of
the commutator [A+, A−]. However, we will give some comments about the validity of
the solutions in the general case. We observe that the commutator [A+, A−] has not the
above simplified form in the case of the Jaynes-Cumming model where a qubit interacts
with a harmonic oscillator so that the analytic solution of the dynamics presented in the
remainder of this Appendix cannot be applied to this case.

By using [A+, A−] = 2 (nh − nc) and by rewriting the total Hamiltonian of the system
as

HT = ~ (ωcnc + ωhnh + gA+) , (4.A.4)

we obtain the following commutators

[HT , nh]/~ = gA−, [HT , nc]/~ = −gA−,

[HT , A+]/~ = (ωc − ωh)A−,

[HT , A−]/~ = (ωc − ωh)A+ + 2g (nh − nc) . (4.A.5)

Within this assumption, the operator (nh)H(t) in the Heisenberg picture can be expressed
by

(nh)H (t) = fh(t)nh + fc(t)nc + f+(t)A+ + f−(t)A−, (4.A.6)

where fh(0) = 1 and fc(0) = f+(0) = f−(0) = 0. The evolution of a generic operator O
in the Heisenberg picture is given by the Heisenberg formula

ȮH(t) = (i/~)[HT , OH(t)], (4.A.7)
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where the corresponding operator O is a time-independent operator in the Schrödinger
picture. By inserting Eq. (4.A.6) into Eq. (4.A.7) we obtain the following system of
differential equations





ḟh(t) = 2igf−(t),

ḟc(t) = −2igf−(t),

ḟ+(t) = −2iδf−(t),

ḟ−(t) = −2iδf+(t) + ig [fh(t) − fc(t)] ,

(4.A.8)

which together with the boundary conditions given just after Eq. (4.A.6) have the
solutions 




fh(t) = 2δ2+g2[1+cos(2kt)]
2k2 ,

fc(t) = g2[1−cos(2kt)]
2k2 ,

f+(t) = gδ[1−cos(2kt)]
2k2 ,

f−(t) = ig sin(2kt)
2k ,

(4.A.9)

where we recall that δ = (ωh − ωc) /2 and k =
√
g2 + δ2.

Now, we can calculate the value of 〈(nh)H(t = τ)〉 = 〈nh〉τ after the interaction time
τ . In particular, we focus on the case treated in the main text of this chapter, where both
systems are initially in a thermal state. It follows that at the beginning of the collision
〈A+〉0 = 〈A−〉0 = 0 and we get

〈nh〉τ = fh(τ) 〈nh〉th + fc(τ) 〈nc〉th . (4.A.10)

Noticing that fc(τ) = 1 − fh(τ) and denoting A ≡ fh(τ), we can write

〈nh〉τ = 〈nc〉th + (〈nh〉th − 〈nc〉th)A. (4.A.11)

Let us now comment on the approximate validity of the above solution when
[A+, A−] 6= 2 (nh − nc) (i.e., when the condition one of the two conditions dc = dh = 0 or
dc = dh = 2 is not satisfied). In fact, we expect that when a system with evenly spaced
energy levels is big enough and its higher energy levels are approximately empty during
the dynamics, this system should be a good approximation of a harmonic oscillator.
Then, if both systems satisfy this requirement, we expect that the solution found above
describes the dynamics of the operators quite well. However, one situation in which the
above dynamics is surely wrong is when δ = 0 and max(〈nc〉th , 〈nh〉th) > min(Nc, Nh)
because at some point we would have a system with more excitations than levels, which
is absurd. In general, we expect that the dynamics of Eq. (4.A.11) is a good description
if 〈Br〉 ≃ 0 during the whole evolution.

4.B Functioning regimes and efficiency of the cycle with
mediator

In this Appendix, we analyze the efficiencies and energy fluxes of the cycle with the
mediator described in section 4.3. This is done directly for the steady cycle.
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After ur26 collisions with systems Sr, the difference in internal energy of system Sm
is given by the change of its average excitation number multiplied by the energy gap, i.e.,

∆Ur = ~ωm
(
〈nm〉ur − 〈nm〉0r

)
, (4.B.1)

where 〈nm〉ur is the average number of excitations in system Sm after ur collisions with
systems Sr while 〈nm〉0r

is the same quantity before the first collision. The internal
energy change of systems Sr can be regarded as heat because, after their collision, these
systems will thermalize again by being in contact with one thermal bath. By considering
the heat positive when energy flows from the bath to the system and taking into account
the conservation of the total excitation number, heat is given by

Qr = −~ωr

ur∑

i=1

(
〈nr〉ir − 〈nr〉th

)
=

ωr
ωm

∆Ur, (4.B.2)

where 〈nr〉ir is the average excitation number of system Sr after the collision with system
Sm, which has already done ir−1 collisions, and 〈nr〉th is the same quantity in the thermal
state at temperature Tr, ρth

r . Finally, by exploiting the first law of thermodynamics, we
find that the work done in ur collisions is given by

Wr = ∆Ur −Qr = ~ (ωm − ωr)
(
〈nm〉ur − 〈nm〉0r

)
. (4.B.3)

Then, by using 〈nm〉0c
= 〈nm〉uh and 〈nm〉0h

= 〈nm〉uc , the total work in a cycle is
given by

W = Wc +Wh = ~ (ωc − ωh)
(
〈nm〉uh − 〈nm〉uc

)
. (4.B.4)

Alternatively, since in a cycle ∆Uc + ∆Uh = 0, we can write

Qc = −ωc
ωh
Qh, W = −

(
1 − ωc

ωh

)
Qh, (4.B.5)

from which it is easy to obtain the efficiencies of Table 4.1.
Regarding the frequency conditions, to obtain them we must also impose two condi-

tions for the collisions Sm-Sr. On the one hand, the system Sm has to acquire excitations
if it has less than Sr and vice versa. On the other hand, the system which had less
excitations cannot have, after the collision, more than the other one had. In this case, it
holds 〈nm〉uh > 〈nm〉uc ⇐⇒ 〈nh〉th > 〈nc〉th. Then, if Nc = Nh, the sign of Eq. (4.B.4)
is completely determined by the value of the ratios ωc/Tc and ωh/Th since the number of
excitations in the mediator system has to be between 〈nc〉th and 〈nh〉th once the steady
cycle has been reached.

26As always, r = c, h.
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4.C Comparison with a perfect swap Hamiltonian

In our setting, when the parameter g is very high (g ≫ δ), the collision between two
systems approximately results in a swap operation. One could wonder if a Hamiltonian
that generates the swap operation outperforms the exchange one proposed in section 4.2.
In this Appendix, we investigate this question for the case of two qubits.

In order to find a swap Hamiltonian, we first write a swap operation. Using the basis
{|1c, 1h〉 , |1c, 0h〉 , |0c, 1h〉 , |0c, 0h〉}, where |1r〉 is the excited state of qubit r and |0r〉 is
the ground one, we choose the following swap operator:

USWAP =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


. (4.C.1)

The Hamiltonian which generates this unitary evolution after a swap time t = tS is

HSWAP =
i~

tS
ln(USWAP) =

π~

2tS




0 0 0 0
0 −1 1 0
0 1 −1 0
0 0 0 0


, (4.C.2)

which has spectrum σ(HSWAP) = {−π~/tS , 0, 0, 0} and commutes with the total number
operator, thus implying the same efficiencies of the exchange Hamiltonian (for the same
frequencies) even when not performing a complete swap. Notice that we assume that
during the collision the free Hamiltonian of the colliding systems are suppressed and the
dynamics is governed only by the Hamiltonian HSWAP. After a collision lasting τS , the
swap Hamiltonian leads to the new populations

〈nc〉τS = 〈nc〉th cos2
(
πτS
2tS

)
+ 〈nh〉th sin2

(
πτS
2tS

)
,

〈nh〉τS = 〈nh〉th cos2
(
πτS
2tS

)
+ 〈nc〉th sin2

(
πτS
2tS

)
. (4.C.3)

By inserting the above equations into Eqs. (4.2.6) and (4.2.7) we get the same formulas
of Eq. (4.2.11) but with the term V substituted by

VS =
1

τS + tw
sin2

(
πτS
2tS

)
. (4.C.4)

To make a fair comparison we choose the parameter tS of the swap Hamiltonian so
that the difference between maximum and minimum eigenvalues are equal to the same
quantity in the case of the Hamiltonian of Eq. (4.A.1), which has matrix form

HT = ~




2ω̄ 0 0 0
0 ωc g 0
0 g ωh 0
0 0 0 0


, (4.C.5)
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and the spectrum of which is σ(HT ) = {2~ω̄, ~(ω̄ + k), ~(ω̄ − k), 0}, where we recall
that ω̄ = (ωc + ωh)/2, k =

√
δ2 + g2, and δ = (ωh − ωc) /2. The difference between

maximum and minimum eigenvalues for the swap Hamiltonian is just π~/tS while for
our Hamiltonian is 2~ω̄ if g≤√

ωcωh and 2~k if g ≥ √
ωcωh. Then, for the two cases, we

have tS = π/(2ω̄) and tS = π/(2k), respectively. In both cases, if the collision time of
the swap Hamiltonian can be optimized, the swap interaction outperforms the exchange
one since, for |δ| > 0, if tS = π/(2ω̄), which occurs when ω̄ > k,

k2

g2
max
τ

V =
sin2(kτ∗)

τ∗ + tw
<

sin2(kτ∗)

(k/ω̄)τ∗ + tw
=

sin2(ω̄τ ′)

τ ′ + tw
≤ max

τS

sin2(ω̄τS)

τS + tw
= max

τS
VS ,

(4.C.6)
where τ ′ = (k/ω̄)τ∗, while, if tS = π/(2k),

max
τS

VS = max
τS

sin2(kτS)

τS + tw
>
g2

k2
max
τ

sin2 (kτ)

τ + tw
= max

τ
V. (4.C.7)

With respect to a perfect swap situation with switching time τS = tS , the time-
optimized exchange Hamiltonian can give a higher power output. We show this in the
case tw = 0. In the case tS = π/(2ω̃), one gets that Vmax > VS(τS = tS) implies

g >

√
2ω̄
(
ω̄ +

√
ω̄2 + α2π2δ2

)

απ
, (4.C.8)

where α is the maximum value of sin2(x)/x, i.e., α ≃ 0.7246. Numerically, one can see
that the condition g ≤ √

ωcωh can be satisfied together with the above one only when
ωh/ωc roughly lies in the interval [0.4832, 2.0697]. Regarding the ratio Vmax/VS(τS = tS),
recalling that tS = π/(2ω̄) for g ≤ √

ωcωh, one gets

Vmax

VS(τS = tS)
=
απ

2

g2

kω̄
≤ απ

ωcωh
2ω̄2

. (4.C.9)

Regarding the case tS = π/(2k), one gets

Vmax > VS(τS = tS) ⇐⇒ g >

√
2

απ − 2
|δ| ≃ 2.6898|δ|, (4.C.10)

and
Vmax

VS(τS = tS)
=
απ

2

g2

k2
≃ 1.1382

g2

k2
. (4.C.11)

4.D The power of a harmonic oscillator couple is not
frequency bounded

In this Appendix, we show, for the case of harmonic oscillators, that the power increases
monotonically by decreasing the frequencies while keeping fixed their ratio and the
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temperatures. In order to do this, we start by writing ωh = ωc/(1 − ηE) and Th =
Tc/(1 − ηC) so that we can write the maximum power for the engine for a given ωc as

P̃E = kBTc
ηE

1 − ηE
f(x)Vmax, (4.D.1)

where
f(x) = x [coth(lx) − coth(x)] , (4.D.2)

x = ~ωc/(2kBTc), and l = (1 − ηC)/(1 − ηE).
In order to show that the maximum power is obtained in the limit x → 0, we prove

that ∂xP̃E < 0 ∀ x > 0. The derivative of P̃E takes the form

∂xP̃E = kBTc
ηE

1 − ηE
[(∂xf(x))Vmax + f(x)∂xVmax] . (4.D.3)

We start by analyzing the term

∂xf(x) = coth(lx) − coth(x) + x
[
csch2(x) − l csch2(lx)

]
, (4.D.4)

which can be shown to be negative for every x > 0. Indeed, we can rewrite the above
function as

∂xf(x) = b(lx) − b(x), b(x) =
sinh(x) cosh(x) − x

sinh2(x)
. (4.D.5)

Since 0 ≤ l ≤ 1 we can find the sign of ∂xf(x) by understanding the behavior of b(x). If
b(x) is always increasing, it follows that ∂xf(x) is always negative. Then, we calculate
the derivative of b(x):

∂xb(x) =
2

sinh2(x)
[x coth(x) − 1] , (4.D.6)

which is always positive because

x coth(x) − 1 > 0, ∀ x > 0. (4.D.7)

Thus, since Vmax > 0, we have shown that the first term in the square brackets of
Eq. (4.D.3) is negative.

Concerning the second term in the square brackets of Eq. (4.D.3), since f(x) >
0 ∀ x > 0, we could show that it is negative by proving that ∂xVmax < 0 ∀ x > 0. Writing
ωh = ωc/(1 − ηE), the quantity k can be cast in the form

k =

√

g2 +
(
ωc
2

ηE
1 − ηE

)2

, (4.D.8)

which makes evident that k increases when ωc does, i.e., ∂xk > 0 ∀x > 0. Then, we can
just study27

∂kVmax = ∂k

(
g2

k

sin2(z)
z + ktw

)
, (4.D.9)

27See Eq. (4.2.12).
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where z = kτ∗ is the value for which V is maximized for given k and tw. For tw = 0,
z = y∗28 so that ∂kz = 0 and the disequality ∂kVmax < 0 reduces to − sin2(y∗) < 0 which
is, indeed, true. For tw > 0 we can write

∂kVmax = −g2

k2

sin2(z)
z + ktw

+
g2

k
∂k

(
sin2(z)
z + ktw

)
, (4.D.10)

where the first term is negative since k > 0 and y∗ < z < π/2. The second term can be
rewritten as

g2tw
k

∂(ktw)

(
sin2(z)
z + ktw

)
, (4.D.11)

and one can numerically check that is negative for ktw > 0. Then, ∂kVmax < 0 follows
and, being ∂xP̃E composed by the sum of two negative quantities multiplied by a positive
one, it also follows that ∂xP̃E < 0 ∀ x > 0.

4.E Maximization of power in the cycle with the mediator

In this Appendix, we deal with the problem of maximizing the power of the cycle with the
mediator, when the frequencies of the collections, the temperatures, and the couplings
are fixed. To this aim, we must first find the stationary values of the average excitation
number of system Sm in the steady cycle.

We already know, from Appendix 4.A that the result of each collision between system
Sm and system Sr is described by the analogous of Eq. (4.A.11) if 〈A−〉0 = 〈A+〉0 = 0 at
the beginning of the collision under examination (we recall that this solution is exact
only for the cases of qubits and harmonic oscillators).

We notice that this condition is always satisfied since systems Sr are in a thermal
state before their collision. Then, one can easily prove by induction that for ur collisions
of the same duration the evolution is given by

〈nm〉ur = 〈nr〉th +
(
〈nm〉0r

− 〈nr〉th

)
Aurr , (4.E.1)

where Ar is defined below Eq. (4.3.1). If the duration time of the collisions can vary, the
term Aurr becomes

Aurr −→
ur∏

i=1

Ar (τr,i) , (4.E.2)

where τr,i denotes the duration of the i-th collision.
Turning back to the case of equal-time collisions, we can find the steady cycle values

of 〈nm〉uh and 〈nm〉uc by solving the following simultaneous equations:

〈nm〉uh = 〈nh〉th +
(
〈nm〉uc − 〈nh〉th

)
Auhh ,

〈nm〉uc = 〈nc〉th +
(
〈nm〉uh − 〈nc〉th

)
Aucc , (4.E.3)

28See section 4.2.1.
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which lead to Eq. (4.3.1) using Eqs. (4.2.11) and (4.B.4).
Even if we cannot provide an analytical proof that one collision is the best option,

performance-wise, we can provide an argument for why we strongly believe so. In the
cycle with the mediator, the work is connected to the change of internal energy of system
Sm [cf. Eqs. (4.B.1), (4.B.2), and (4.B.3)]. Then, instead of showing that uc = uh = 1 is
optimal for maximizing Eq. (4.3.1) we show that the maximization of |∆Ur|/(urτr) is
obtained for ur = 1. From Eqs. (4.B.1) and (4.E.1) we get

|∆Ur(1)|
τr

− |∆Ur(ur)|
urτr

= ~ωm
∣∣∣〈nr〉th − 〈nm〉0r

∣∣∣
(

1 −Ar
τr

− 1 −Aurr
urτr

)
, (4.E.4)

where ur ≥ 2 and ∆Ur(ur) indicates ∆Ur after ur collisions. If Ar = 0, the above quantity
is positive, while it is zero for Ar = 1. By deriving the above quantity with respect to Ar,
we can see that the derivative is always non-positive for Ar ∈ [0, 1]29. This means that
when all the other parameters are fixed, the energy exchange rate with one collision is
maximized for ur = 1. We remark that the above argument refers only to one stroke of
the cycle, and then it is not a proof that the maximization of the entire cycle involving a
proper maximization of the term Vm [Eq. (4.3.1)] is obtained for uc = uh = 1. However,
Fig. 4.6 and other numerical simulations suggest that this is indeed the case.

We finally remark, in the case of qubits and harmonic oscillators30, that in the limit
case of a great number of collisions between the mediator and systems of a collection, the
mediator steady state has the same average number of excitations of the thermal state
of the collection systems31. It is also possible to show that these states have the same
populations level by level, as already predicted for harmonic oscillators in Ref. [239].

4.F Coupling limit for quantum harmonic oscillators

Here, we discuss the physical limit with respect to the coupling of the total Hamiltonian
in the case of harmonic oscillators.

When considering the interaction of two harmonic oscillators, the term g cannot be
too high because, otherwise, one of the so-called normal frequencies becomes negative and
this translates into a total Hamiltonian not bounded from below [148, 240]. Referring to
the Gaussian formalism [148], this translates into the requirement of positive definiteness
for the “Hamiltonian matrix”. Assuming the exchange interaction of Eq. (4.2.4), the
total Hamiltonian is given by Eq. (4.A.1) and its “Hamiltonian matrix”32 reads

~




ωh 0 g 0
0 ωh 0 g
g 0 ωc 0
0 g 0 ωc


. (4.F.1)

29This is the interval where Ar is confined. See Eq. (4.2.10) and the comment below Eq. (4.3.1).
30Here, we implicitly assume systems of the same kind both for the mediator and the collection.
31Compare with Eq. (4.E.1).
32The Hamiltonian matrix is given with respect to the quadrature operators, see Ref. [148] and

section 2.4.1.
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The doubly degenerate eigenvalues of the above matrix are

λ±

~
=
ωh + ωc

2
±
√
δ2 + g2, (4.F.2)

thus leading to the condition g <
√
ωcωh to avoid non-positive normal frequencies.

However, if the two systems are not real harmonic oscillators but many-level ones, the
highest levels of which are practically unoccupied during the whole dynamics, they are
very well approximated by harmonic oscillators and this problem can be avoided.



Chapter 5

Driven quantum harmonic
oscillator in a non-Markovian
collisional environment

In this chapter, we analyze the non-Markovian dynamics of a driven harmonic oscillator
in a collisional environment1. The reservoir is composed of harmonic oscillators with
frequency ωB and all of the bath units are described by the covariance matrix σσσB

2.
Furthermore, we assume that the variation timescale of the open system frequency is
large compared to the timescale of a collision so that each collision occurs between
two time-independent harmonic oscillators, i.e., the open system frequency is assumed
constant during a collision. Notice that the results of this chapter are still preliminary.

5.1 Description of the system

The collision model (CM) considered in this chapter works as that described in sec-
tion 2.2.3. Here, both the system of interest (system S) and the bath units (systems Bi)
are harmonic oscillators.

The Hamiltonian of the harmonic oscillator constituting the open quantum system of
interest is

HS =
p2
S

2mS
+

1
2
mSω

2
S(t)x2

S , (5.1.1)

where pS is the momentum operator, mS is the mass, xS is the position operator and
ωS(t) is the time-dependent frequency3. We can rewrite it using the so-called quadrature
operators XS(t) and PS(t) and use them to define the annihilation and creation ladder

1See section 2.2.3.
2See section 2.4.1.
3We recall that the canonical commutation relation (CCR) reads [xS , pS ] = i~.
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operators a and a†:

XS(t) =

√
mSωS(t)

~
xS , PS(t) =

√
1

~mSωS(t)
pS , a(t) =

XS(t) + iPS(t)√
2

.

(5.1.2)
Notice that the canonical commutation relation (CCR) for the quadrature operators
assumes the form [XS(t), PS(t)] = i and that these operators are time-dependent. The
Hamiltonian of Eq. (5.1.1) can now be rewritten as

HS =
~ωS(t)

2

(
X2
S(t) + P 2

S(t)
)
, (5.1.3)

and the time-dependence of the quadrature operators can be cast in the form

XS(t′) =

√
ωS(t′)
ωS(t)

XS(t), PS(t′) =

√
ωS(t)
ωS(t′)

PS(t). (5.1.4)

We also write the form of the operators LS and CS . The former is the Lagrangian while
the latter is the position-momentum correlation [234]. Together, they can be used to
quantify the coherence CS of the harmonic oscillator [234]

LS =
~ωS(t)

2

(
P 2
S(t) −X2

S(t)
)
, CS =

~ωS(t)
2

{PS(t), XS(t)},

CS =
1

~ωS(t)

√〈
L2
S

〉
+
〈
C2
S

〉
. (5.1.5)

The Hamiltonian HB,n of the n-th bath harmonic oscillator is

HB,n =
~ωB

2
(XB,n + PB,n) , (5.1.6)

where XB,n and PB,n are the quadrature operators of the n-th bath harmonic oscillator
and ωB is their frequency. Finally, for the interaction Hamiltonian between S and Bn we
choose a beam-splitter interaction:

HI,n = ~g (XS(t)XB,n + PS(t)PB,n) , (5.1.7)

where XB,n and PB,n are the quadrature operators for the n-th unit of the bath. A
similar interaction describes the intra-bath collisions with the substition of g with gB,
XS(t) with XB,n−1, and PS(t) with PB,n−1.

We assume that both the system and the bath units can be fully described within the
Gaussian state formalism and that they have zero first moment. Therefore, covariance
matrices are sufficient to describe their states.
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5.2 Dynamics of a collision

In this section, we analyze the dynamics of a collision. Since the interaction Hamiltonians
have the same form both for S-Bn and Bn−1-Bn collisions4, we omit the subscript n and
analyze a generic S-B collision. Moreover, since we assume that the driving of system S
is slow compared to the timescale of a collision, we use as value for ωS(t) its value at the
start of the collision and denote it simply by ωS5.

We can directly write (we will omit the subscript zero and others to lighten the
notation) the whole Hamiltonian as

H = HS +HB +HI =
1
2
RRR⊺HHHRRR, (5.2.1)

where

HHH = ~




ωS 0 g 0
0 ωS 0 g
g 0 ωB 0
0 g 0 ωB


, RRR =




XS

PS
XB

PB


. (5.2.2)

In order to simplify calculations it is better to rewrite the Hamiltonian matrix HHH as
follows

HHH = ~ωI4 + ~

(
δ g
g −δ

)
⊗ I2, (5.2.3)

where ω = (ωS + ωB)/2 and δ = (ωS − ωB)/2. The doubly degenerate eigenvalues of
this matrix are ~λ± with λ± = ω ±

√
δ2 + g2. Therefore, to be a positive definite matrix

we must impose ω2 > δ2 + g2. We recall that6, given an Hamiltonian matrix HHH, the
equation of motion for the covariance matrix σσσ(t) is given by:

∂

∂t
σσσ(t) = DDDσ(t) + σ(t)DDD⊺, (5.2.4)

where DDD = ΩΩΩHHH/~7. Notice that, when HHH is symmetric, DDD is antisymmetric if and only if
[ΩΩΩ,HHH] = 0. In our case, this condition is satisfied.

Starting the dynamics at t = 0, the formal solution of Eq. (5.2.4) at time t = τ can
be immediately written as

σσσ(τ) = eτDDDσσσ(0)eτDDD
⊺

. (5.2.5)

In general, however, Eq. (5.2.5) cannot be easily calculated because the matrix DDD is not
diagonal. Notice that assuming ωS to be time-independent during the collision is not
equivalent to assuming that we can expand eτDDD in a Taylor series.

4The Bn−1-Bn collisions will be used to introduce non-Markovianity in the model.
5In the same vein, we write XS and PS without the explicit time dependence.
6See Eq. (2.4.9)

7The matrix ΩΩΩ is what we call the standard symplectic matrix. In two dimensions ΩΩΩ = Ω2 =

(
0 1

−1 0

)
,

while in four dimensions ΩΩΩ = Ω2 ⊕ Ω2 = I2 ⊗ Ω2. See section 2.4.1 for more details.
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One standard way to perform the calculation required by Eq. (5.2.5) by means of
symplectic diagonalization can be found in Ref. [148]. Here, we follow instead another
route. We write the drift matrix DDD as:

DDD = ωΩΩΩ + gXXX + δZZZ, ΩΩΩ = I2 ⊗ Ω2, XXX = σx ⊗ Ω2, ZZZ = σz ⊗ Ω2, Ω2 =

(
0 1

−1 0

)
,

(5.2.6)
where σx and σz are the standard Pauli operators. By also defining YYY = σy ⊗ Ω2, where
σy is the standard Pauli operator, and recalling that [A⊗B,C ⊗B] = [A,C] ⊗B2 one
can get the following relations:

[XXX,YYY ] = 2iZZZΩΩΩ, [YYY ,ZZZ] = 2iXXXΩΩΩ, [ZZZ,XXX] = 2iYYYΩΩΩ. (5.2.7)

Moreover, matrices XXX, YYY , and ZZZ commute with ΩΩΩ. Then, let use define the matrix
AAA = (g/k)XXX + (δ/k)ZZZ where k =

√
g2 + δ2. Since AAA2 = −I4 we can compute the

exponential:
eτkAAA = I4 cos(τk) +AAA sin(τk). (5.2.8)

Lastly, since [AAA(t),ΩΩΩ] = 0 and DDD = ωΩΩΩ + kAAA we get:

KKK(τ) ≡ eτDDD(t) = [cos(ωτ)I4 + sin(ωτ)ΩΩΩ] × [cos(kτ)I4 + sin(kτ)AAA] . (5.2.9)

The above matrix can be rewritten by composing 2 × 2 blocks8, i.e.,

KKK(τ) =

(
K+(τ) K1(τ)
K1(τ) K−(τ)

)
, K1(τ) = −g

k
(a(τ)I2 − b(τ)Ω2) , (5.2.10)

K+(τ) =
(
c(τ) − δ

k
a(τ)

)
I2 +

(
d(τ) +

δ

k
b(τ)

)
Ω2, (5.2.11)

K−(τ) =
(
c(τ) +

δ

k
a(τ)

)
I2 +

(
d(τ) − δ

k
b(τ)

)
Ω2, (5.2.12)

where

a(τ) = sin(ωτ) sin(kτ), b(τ) = cos(ωτ) sin(kτ),

c(τ) = cos(ωτ) cos(kτ), d(τ) = sin(ωτ) cos(kτ). (5.2.13)

When the two colliding oscillators are resonant, i.e., δ = 0, one has that AAA = XXX and
the operator KKK(τ) greatly simplifies. In particular, for gτ = π/2 one gets

KKK(π/(2g)) = [cos(πω/(2g))I4 + sin(πω/(2g))ΩΩΩ]XXX, (5.2.14)

which is, up to local rotation matrices, a swap operator9. We can also derive the free
evolution of system S by setting g = 0. Lengthy but straightforward calculations lead to
US(τ) ≡ K+(τ) = cos(ωSτ)I2 + sin(ωSτ)Ω2.

8Doing this requires lengthy but straightforward calculations.
9The standard swap can be obtained by setting also ω = g.
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5.3 Markovian dynamics in the continuous limit

Here we derive the Markovian master equation for the dynamics of system S, therefore
we do not consider the intra-bath collisions. The map describing the evolution of system
S during a collision is given by10

σS(t+ τ) = TrB {KKK(t, τ) (σS(t) ⊕ σB)KKK(t, τ)⊺} ,
= K+(t, τ)σS(t)K⊺

+(t, τ) +K1(t, τ)σBK
⊺
1 (t, τ), (5.3.1)

where σS(t) and σB are, respectively, the covariance matrix of system S at the start of the
collision and the initialized state of each bath unit. If we want to keep into account the
fact that ωS(t) is time-dependent we must update the frequency by applying a suitable
operator to σS(t). If we consider this update to happen after the collision, i.e., this
update is the last operation in a step of the CM, we can see that this is done by

σS(t+ τ) → T (t, τ)σS(t+ τ)T (t, τ), where T (t, τ) =




√
ωS(t+τ)
ωS(t)

0

0
√

ωS(t)
ωS(t+τ)


,

(5.3.2)
by checking Eq. (5.1.4). Then, the entire step is given by

σS(t+ τ) = TrB {TTT (t, τ)KKK(t, τ) (σS(t) ⊕ σB)KKK(t, τ)⊺TTT (t, τ)} . (5.3.3)

where TTT (t, τ) = T (t, τ) ⊕ I2. Alternatively, one could consider to do the update before

the next collision. In this case, the entire step would be described by

σS(t+ τ) = TrB {KKK(t, τ)TTT (t− τ, τ) (σS(t) ⊕ σB)TTT (t− τ, τ)KKK(t, τ)⊺} . (5.3.4)

A common trick [230] to obtain a continuous master equation from a CM is to
substitute the interaction coupling g with

√
h/τ and then make the limit limτ→0(σS(t+

τ) − σS(t))/τ11. Expanding up to first order in τ the quantities K+(t, τ), K1(t, τ), and
T (t, τ) one obtains12

σ̇S = ωS(t)[Ω2, σS(t)] +
∂tωS(t)
2ωS(t)

{σz, σS(t)} − hσS(t) − hΩ2σBΩ2. (5.3.5)

Here, the origin of the term ∂tωS(t)/ωS(t) comes from including the matrices T (t, τ) in
the derivation. The result is the same if we consider doing the update both after the
collision or before. Since in this limit each collision is practically instantaneous, the
requirement that ωS(t) does not change during a collision should be always satisfied.
Then, we could think that Eq. (5.3.5) is a nonadiabatic Markovian master equation.

10In this section we write the explicit temporal dependence of the various quantities such as KKK(t, τ).
11Notice that, in this way, g is a function of the collision duration τ while h is not.
12For completeness, we report here K1(t, τ) ≃

√
hτΩ2, K+(t, τ) ≃ I2 + ωS(t)τΩ2 − (h/2)τI2, and

T (t, τ) ≃ I2 + τ∂tωS(t)/(2ωS(t))σz.
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Indeed, if ωS(t) varies slowly, the term ∂tωS(t)/ωS(t) should be negligible. When this is
not true, the dynamics of the system changes quite sensibly, as we will show in section 5.5.

From Eq. (5.3.5) we can also directly derive the equation for the average number of
excitations, 〈n(t)〉, in the harmonic oscillator13. We get

〈ṅS(t)〉 = h [〈nB〉 − 〈nS(t)〉] +
∂tωS(t)
4ωS(t)

Tr{σzσS(t)}. (5.3.6)

The equation above shows that if we can neglect the nonadiabatic term the dynamics
of the average excitation number is independent of the frequency ωS(t) and the actual
bath units state. For example, if σB would describe a pure squeezed state with the
same average excitation number of a certain thermal state, the dynamics of 〈nS(t)〉
would be exactly the same. We have checked numerically that this is not true when the
time-dependent term is considered.

Notice that in the time-independent case, Eq. (5.3.5) has the same structure of the one
reported in Ref. [148] for a diffusive Gaussian dynamics14 and that when σB = (2n+ 1)I2,
i.e., the bath units are in a thermal state, the master equation reduces to

σ̇S = ωS [Ω2, σS(t)] − hσS(t) + h(2n+ 1)I2, (5.3.7)

which is the equation for thermal diffusion [148]. Moreover, when the bath is thermal,
calculating thermodynamic quantities from the master equation becomes easy. In fact,
since the interaction Hamiltonian of Eq. (5.1.7) preserves the total number of excitations,
the heat flux can be calculated as Q̇ = ~ωB 〈ṅS(t)〉15. Indeed, in the Markovian case, the
energy variations of the bath units are reabsorbed in the bath itself after the interaction.
Regarding the rate of internal energy variation, it is given by

d
dt

(~ωS(t) 〈nS(t)〉) = ~ωS(t)
[
〈ṅS(t)〉 +

ω̇S(t)
ωS(t)

〈nS(t)〉
]
. (5.3.8)

Therefore, by exploiting the first law of thermodynamics, W = U −Q, we find

Ẇ = ~(ωS(t) − ωB) 〈ṅS(t)〉 + ω̇S(t) 〈nS(t)〉 . (5.3.9)

Another way to find a master equation starting from a CM is to find a Lindbladian
interpolating the discrete CPTP map induced by the CM [239, 241, 242]. This method,
however, has been developed assuming time-independent CMs. Following Ref. [242], we
start from Eq. (5.3.1) and we must expand to second order in τ , around τ = 0, the matrices
P = K+(τ) and R = K1(τ)σBK

⊺
1 (τ) so that we can write them as P ≃ I2 + τP1 + τ2P2

and R ≃ 02 + τR1 + τ2R2
16. This is done in Appendix 5.A. Then, we can calculate the

following matrices at first order in τ :

A ≃ P1 + τ(P2 − (1/2)P 2
1 ), C ≃ R1 + τ [R2 − (1/2)(P1R1 +R1P

⊺
1 )] . (5.3.10)

13The average number of excitations is given by 〈nS(t)〉 = (Tr{σS(t)} − 2)/4. See section 2.4.1.
14See page 144 of Ref. [148]. In particular, using its notation, A = ωSΩ2 − h/2.
15This is true even if ωS(t) varies in time.
16We denote by 0n the zero square matrix of dimension n.
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The explicit form of these matrices is

A ≃ ωSΩ2 +
τ

2
g2
I2, C ≃ −τg2Ω2σBΩ2. (5.3.11)

Finally, the master equation is [242]:

σ̇S(t) = AσS(t) + σS(t)A⊺ + C = ωS [Ω2, σS(t)] − τg2σS(t) − τg2Ω2σBΩ2, (5.3.12)

which is equal to the time-independent case of Eq. (5.3.5) by setting g2τ = h.
If we abuse of the formalism developed in Refs. [239, 241, 242], we can also calculate

the time-dependent case. The difference is that now P ≡ T (t, τ)K+(t, τ). Calculations
are detailed in Appendix 5.A while the final result is

A ≃ ωSΩ2 +
ω̇S
2ωS

σz +
τ

2

[
ω̇Sσx −

(
ω̇2
S

4ω2
S

+ g2

)
I2 +M2(t)

]
, C ≃ −τg2Ω2σBΩ2.

(5.3.13)
The matrix M2(t) is given in Appendix 5.A and contains second derivatives of the
frequency ωS(t). In this case, one can obtain Eq. (5.3.5) by setting again g2τ = h and
performing, only then, the limit τ → 0.

5.4 Non-Markovian dynamics

Here we study a non-Markovian version of the CM studied in the preceding section. Non-
Markovianity is introduced by allowing intra-bath interactions preceding the collision with
system S, as explained in section 2.2.3. In order to analyze this non-Markovain dynamics,
we will make use of the Markovian embedding technique described in section 2.2.3.

We denote by σσσL the covariance matrix of system L, comprising subsystems S and
B1, while we denote by σσσL,n the covariance matrix including also the n-th bath unit
involved in the dynamics in a given moment. Since B1 will not be discarded because of
the Markovian embedding, we rename it A, standing for ancilla. The starting state of L
is then given by σS(0) ⊕ σA(0) = σS(0) ⊕ σB. After the first collision of duration τ , i.e.,
the S-A collision and the frequency update, the state is described by

σσσL(τ) = TTT (0, τ)KKK(0, τ)σσσL(0)KKK⊺(0, τ)TTT (0, τ). (5.4.1)

Then, for the second and subsequent steps of the CM we must first consider the intra-bath
collision, whose duration and coupling strength we denote by, respectively, τB and gB.
These steps are described by

σσσL(t+ τB + τ) = TrB {ΦΦΦ(t, τB, τ) (σσσL(t) ⊕ σB)ΦΦΦ⊺(t, τB, τ)} , (5.4.2)

with

ΦΦΦ(t, τB, τ) = TTT (t+ τB, τ) (KKK(t+ τB, τ) ⊕ I2)TTT (t, τB) (I2 ⊕SSS) (US(t, τB) ⊕KKKB(t, τB)) ,
(5.4.3)

where KKKB(t, τ) is the same of KKK(t, τ) with the substitution of g with gB and ωS(t) with
ωB

17, and SSS implements the swap between A and the bath unit after their interaction18.
17Notice that this is a resonant interaction so that what we would call δB is zero.
18See section 2.2.3. Here, the explicit form of SSS is SSS = σx ⊗ I2.
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Notice that σσσL(t) can contain correlations between the subsystems S and A. We write

σσσL(t) =

(
σS(t) σC(t)
σ⊺C(t) σA(t)

)
, (5.4.4)

where σC(t), a 2 × 2 matrix, is zero only for uncorrelated states [150].
The explicit form of Eq. (5.4.3) is derived in Appendix 5.B and is

σσσL(t+ τB + τ) = UUU(t, τB, τ)σσσL(t)UUU⊺(t, τB, τ) + ΦΦΦB(t, τB, τ)

(
σB σB
σB σB

)
ΦΦΦ⊺
B(t, τB, τ),

(5.4.5)
where, with t′ = t+ τB and 02 being the 2 × 2 null matrix,

UUU(t, τB, τ) = TTT (t′, τ)KKK(t′, τ)TTT (t, τB)

(
US(t, τB) 02

02 KB
1 (t, τB)

)
, (5.4.6)

and

ΦΦΦB(t, τB, τ) =

(
T (t′, τ)K1(t′, τ)KB

− (t, τB) 02

02 K−(t′, τ)KB
− (t, τB)

)
. (5.4.7)

The evolution of system L is more complex than that of S in the Markovian case,
even if the dynamics of L is Markovian too. However, if the bath is thermal and ωS(t) is
time-independent, we can easily see that the σσσL = σB ⊕ σB is a fixed point of the map.
Indeed, the intra-bath interaction gives rise to no dynamics at all and the swap operation
swaps to equal states. Then, the same is true for the S-A interaction. Therefore, since
all parts of one step do not change anything, we conclude that σσσL(t) = σB ⊕ σB implies
σσσL(t+ τB + τ) = σσσL(t).

In order to obtain a Markovian continuous master equation for σσσL, the trick of making
the interaction dependent on the collision duration does not work because of divergent
terms for τ → 0. We could also think of applying the formalism of Ref. [242], neglecting
that here we would not obtain P0 = I4 and R0 = 0. We tried this route and even this
did not work. Therefore, at the moment, we can just describe the discrete dynamics.

The discrete dynamics described by Eq. (5.4.5) is Markovian for the enlarged system
L. We can quantify how much it is non-Markovian on system S by using the Gaussian
quantifier defined in Ref. [101] for continuous Gaussian maps and adapted for discrete
ones in Ref. [102]. In order to do this, we write the state of L after n steps. We define
t0 = 0, t1 = τ , and tn = τ + (n− 1)(τ + τB)19. Then we recast the evolution of σσσL(t) as

σσσL(tn) = XXXnσσσL(0)XXX⊺
n + YYY n, (5.4.8)

in order to obtain a similar equation for σS20:

σS(tn) = XnσS(0)X ⊺
n + Yn. (5.4.9)

19We must distinguish between the first step and the others because in the first step there is no
intra-bath interaction and swap.

20The step-wise equivalent of Eq. (2.4.8).
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First, we introduce the symbols

UUU0 = TTT (0, τ)KKK(0, τ), UUUn = UUU(τ + n(τ + τB), τ, τB), UUUn→m = UUUm−1UUUm−2 . . .UUUn,
(5.4.10)

with UUUn→m = I4 when m ≤ n. Then, we can write

XXX0 = I4, XXX1 = UUU0, XXXn = UUU1→nUUU0 (5.4.11)

and

YYY 0 = YYY 1 = 0, YYY n =
n∑

i=2

[
UUU i→nΦΦΦB(tn−1, τB, τ)

(
σB σB
σB σB

)
ΦΦΦ⊺
B(tn−1, τB, τ)UUU⊺

i→n

]
.

(5.4.12)
Finally, since σσσL(0) = σS(0) ⊕ σB, we get

Xn = (XXXn)1,1, Yn = (XXXn)1,2σB [(XXXn)2,1]⊺ + (YYY )1,1, (5.4.13)

where the subscripts refer to the 2 × 2 block matrices. For example, [(XXXn)2,1]⊺ is the
transpose of the lower right block matrix of XXXn.

Now, following Ref. [102] we can quantify the non-Markovianity of the process by
finding the eigenvalues of the Hermitian matrix Λn:

Λn = Yn,n−1 − i

2
Ω +

i

2
Xn,n−1ΩX ⊺

n,n−1,

Xn,n−1 = XnX −1
n−1, Yn,n−1 = Yn − Xn,n−1Yn−1X ⊺

n,n−1. (5.4.14)

Naming λn,± the eigenvalues of Λn we have that the punctual non-Markovianity at step
n is given by

Nn =
∑

±

|λn,±| − λn,±
2

. (5.4.15)

while the total one is NT (n) ≡ ∑n
i=1 Nn.

5.5 Analysis of the dynamics

In this section, we analyze the various dynamics found in the previous sections.
We start by investigating the role of the nonadiabatic time-dependent term in

Eq. (5.3.5), by also comparing the resulting master equation with the original discrete
dynamics. This is done for the average number of excitations in Fig. 5.1 when the bath
unit state is thermal. There, we can see that including the nonadiabatic time-dependent
term in the Markovian continuous master equation is necessary to fit well the discrete
curve calculated by using Eq. (5.3.3). Moreover, the difference between the complete form
of the dynamics computed through Eq. (5.3.13) and the dynamics given by Eq. (5.3.5) is
not very high for the case here shown. However, if we change the parameters the accord
between interpolating curves and the discrete points can get worse. We remark that for
the average excitation number the actual form of the bath unit state is not important in
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Figure 5.1: Average number of excitations as a function of time. Bath units are in the
thermal state with two average excitations, i.e., σB = 5I2. The blues circles indicate the
dynamics given by the discrete model of Eq. (5.3.3). The “Trick, nonadiabatic” dashed
curve is obtained by numerically solving the master equation of Eq. (5.3.5) while “Trick,
adiabatic” is obtained by solving the same equation without considering the nonadiabatic
term ∂tωS(t)/(2ωS(t)){σz, σS(t)}. The curve denoted by “Grimmer, nonadiabatic” is
obtained by numerically solving Eq. (5.3.12), using the coefficients given in Eq. (5.3.13).
Here, the agreement between continous curves and discrete dynamics is good. However,
if we employ a non-thermal bath and consider a time-dependent ωS(t) the agreement is
worse.

the time-independent case, as shown in Eq. (5.3.6). However, it is if one considers the
nonadiabatic time-dependent term and, for some reasons that we do not understand yet,
when the bath is not in a thermal state, the agreement between the continuous equations
and the discrete dynamics is not good as when the bath is thermal.

In the same vein, we plot in Fig. 5.2 the purity of system S as a function of time.
As in Fig. 5.1, there is a good agreement between the continuous curves with the
time-dependent term and the discrete points calculated iteratively through Eq. (5.3.3).
However, variations for purity are much lower with respect to the average excitation
number case. Moreover, as for the average excitation number, when the bath is not
thermal and we consider the time-dependent term, the agreement between continous and
discrete dynamics is not so good anymore.
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Figure 5.2: Purity as a function of time. Bath units are in the thermal state with
two average excitations, i.e., σB = 5I2. The blues circles indicate the dynamics given
by the discrete model of Eq. (5.3.3). The “Trick, nonadiabatic” dashed curve is ob-
tained by numerically solving the master equation of Eq. (5.3.5) while “Trick, adiabatic”
is obtained by solving the same equation without considering the nonadiabatic term
∂tωS(t)/(2ωS(t)){σz, σS(t)}. The curve denoted by “Grimmer, nonadiabatic” is obtained
by numerically solving Eq. (5.3.12), using the coefficients given in Eq. (5.3.13). The same
comments of Fig. 5.1 regarding the agreement between continuous and discrete dynamics
apply here.

Regarding the non-Markovian case, we start by analyzing a situation in which ωS(t)
is time-independent, in order to focus on the non-Markovian effects. One could think that
the higher is the product gBτB the higher the non-Markovianity is. However, since the
interaction gives rise to a complete swap21 of the colliding particles when gBτB = π/2+nπ
with n ∈ N

22, the maximum of non-Markovianity is attained for these values. Then, the
effect of non-Markovianity can be seen by observing for different values of gBτB ranging
from zero to π/2. Moreover, in order to solely focus on the effect of the non-Markovianity
we choose τB = 0.01τ so that the time used for the intra-bath collision is negligible and
serves only to the purpose of giving rise to the non-Markovian effects

Figs. 5.3 and 5.4 show, respectively, the average excitation number and purity of
system S as a function of time. As for the Markovian case, we choose the state of the bath

21We recall that the intra-bath collision is resonant.
22We include the case n = 0.
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Figure 5.3: Average number of excitations as a function of time for various values of gBτB ,
with ωBτB = 0.001. The blue continuous and thick curve corresponds to gBτB = 0.001,
the dashed red one to gBτB = 0.5, the dot-dashed green one to gBτB = 0.75, the more
dashed orange one to gBτB = 1, the thin purple one to gBτB = 1.25, and the black dotted
one to gBτB = 1.5. As expected, the more gBτB approaches π/2, the more the dynamics
shows non-Markovian oscillations. Notice that the overall effect of increasing gBτB is to
increase the relaxation time.

units to be thermal. We notice that, for thermal bath, the steady state of σS(t) is the
same of the Markovian dynamics, i.e., σB . This stems from the fact that σσσL = σB ⊕σB is
a fixed point of the discrete map and that we have checked numerically that the dynamics
makes σL converge to that state. The two figures show the typical fluctuations due to
non-Markovian dynamics for high enough gBτB. Moreover, we observe that the overall
effects of increasing the non-Markovian nature of the dynamics is to effectively raise the
relaxation time of the system. This becomes intuitive by considering that in the case
gBτB = π/2 the effective dynamics of system L is unitary so that system S cannot have
a steady state. Therefore, the more gBτB approaches π/2 the more system S will take to
reach its steady state.

Finally, Fig. 5.5 shows the plot of the non-Markoviniaty quantifier defined in Eq. (5.4.15)
as a function of time, again for a thermal bath. By comparing it with Figs. 5.3 and
5.4 we see that the peaks of non-Markovianity corresponds to the fluctuations. These
graphs confirm the presence of non-Markovianity in the map and are independent of the
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Figure 5.4: Purity as a function of time for various values of gBτB, with ωBτB = 0.001.
This plot legend and the parameters we have used are the same of Fig. 5.3.

initial state chosen for S. If, for example, we had chosen σS(t = 0) = σB we would not
have a dynamics at all since σS is already in the steady state and, therefore, we would
see no fluctuations. Nevertheless, Fig. 5.5 would show these non-zero non-Markovianity
values, indicating that there exist initial states for which it is possible to see the typi-
cal non-Markovianity induced fluctuations. This property will be useful in the case of
time-dependent non-Markovian dynamics in order to discriminate between fluctuations
induced by non-Markovianity and those induced by the variation of ωS(t).

5.6 Conclusions

In this chapter, we have firstly described through the Gaussian formalism the Markovian
dynamics of a harmonic oscillator, denoted by S, in contact with a collisional environment
made of harmonic oscillators. Using the collision model, we have derived a time-dependent
continuous master equation containing a nonadiabatic term, the study of which seems to
be promising. We have also checked that similar results are obtained using two different
methods to derive this continuous master equation.

Secondly, we have studied the system in the non-Markovian case by introducing the
non-Markovianity through intra-bath collisions. In order to study the system dynamics,
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Figure 5.5: Quantifier of non-Markovianity as a function of time for various values of
gBτB, with ωBτB = 0.001. This plot legend and the parameters we have used are the
same of Fig. 5.3.

we have made use of the Markovian embedding technique, thus studying the Markovian
dynamics of an enlarged system L comprising system S and an ancilla A. At the moment,
we have been able to compute only the discrete dynamics of system L.

Lastly, we have studied different properties of the dynamics induced by the equations
found for the Markovian and the non-Markovian cases. We have verified the goodness of
the techniques employed for the Markovian dynamics and found the typical signatures of
non-Markovianity for the non-Markovian dynamics. On the one hand, our plots for the
Markovian case show that the time-dependent term obtained in the continuous equation
is necessary to well interpolate the discrete dynamics even if the same techniques do not
work as well when the state of the bath is not thermal. On the other hand, we have
argued about how the non-Markovianity quantifier could be used in the time-dependent
non-Markovian case to discriminate between effects induced by non-Markovianity and
those induced by the temporal variations of system S frequency.

We deem that these first preliminary results are encouraging. Indeed, the collision
models let us to explore dynamics regimes which are usually difficult to deal with.

In addition to what we exposed in this chapter, we are currently working with Gabriele
De Chiara and Heather Leitch at Queen’s University Belfast to study a similar setup
in which there are two collisional reservoirs: one cold and one hot. The aim is to study
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a continuous thermal machine whose working fluid is made of one or more harmonic
oscillators with time-dependent frequencies. Although we are just dealing with Markovian
dynamics in this case, when we will have completed the study of the non-Markovian
dynamics in the setup exposed in this chapter, i.e., a single harmonic oscillator in contact
with a single collisional bath, we could try to extend the study of the above described
thermal machine to the non-Markovian regime.
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5.A Taylor expansions of the collision matrices

In this section, we give details about the perturbative expansion of the matrix KKK(τ),
defined in Eq. (5.2.10), up to second order in τ for τ → 0. We first analyze the time-
independent case and fix the starting time of the collision at t = 0. Then, with an abuse
of the methods described in Ref. [242], we also treat the expansion of the time-dependent
terms in Eq. (5.3.3).

First of all, we expand all the coefficients defined in Eq. (5.2.13):

a(τ) ≃ ωkτ, b(τ) ≃ kτ, c(τ) ≃ 1 − ω2 + k2

2
τ2, d(τ) ≃ ωτ. (5.A.1)

Then, we can easily calculate the matrices at second order:

K1(τ) ≃ gτΩ2 − ωgτ2
I2,

K+(τ) ≃ I2 + ωSτΩ2 −
(
ω2
S + g2

) τ2

2
I2,

K−(τ) ≃ I2 + ωBτΩ2 −
(
ω2
B + g2

) τ2

2
I2. (5.A.2)

Finally, we can expand to second order Eq. (5.3.1). We get

K+(τ)σSK
⊺
+(τ) ≃ σS + ωSτ [Ω2, σS ] −

(
ω2
S + g2

)
τ2σS − ω2

Sτ
2Ω2σSΩ2,

K1(τ)σBK
⊺
1 (τ) ≃ −g2τ2Ω2σBΩ2. (5.A.3)

Now, we can write the rate of variation of σS during a collision, up to second order
in τ :

σ(τ) − σS(0)
τ

≃ ωS [Ω2, σS ] −
(
ω2
S + g2

)
τσS − ω2

SτΩ2σSΩ2 − g2τΩ2σBΩ2. (5.A.4)

We obtain the time-independent version of Eq. (5.3.5) if we set g2τ = h and, then, we
take the limit τ → 0.

When adding the time-dependent terms to the calculations, i.e., by considering also
the matrices T (t, τ), to obtain the interpolated master equation we must only modify the
expansion of K+(τ) into the expansion of T (t, τ)K+(t, τ). The expansion of T (t, τ) gives

T (t, τ) ≃ I2 + τ
ω̇S(t)
2ωS(t)

σz +
τ2

2
M2(t), (5.A.5)

where

M2(t) =
1

4ω2
S(t)

(
2ωS(t)ω̈S(t) − ω̇2

S(t) 0
0 3ω̇2

S(t) − 2ωS(t)ω̈S(t)

)
. (5.A.6)

Therefore, we obtain

T (t, τ)K+(t, τ)≃I2 +τ

(
ωS(t)Ω2 +

ω̇S(t)
2ωS(t)

σz

)
+
τ2

2

(
ω̇S(t)σx−

(
ω2
S(t) + g2

)
I2 +M2(t)

)
.

(5.A.7)
Finally, the matrix A can be now calculated and is reported in Eq. (5.3.13).
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5.B Computation of a full non-Markovian step

In this section, we give some details about the calculation to obtain Eq. (5.4.5).
First, performing the explicit matrix multiplication of Eq. (5.4.3), we find the explicit

form of ΦΦΦ(t, τB, τ), which is


T (t′, τ)K+(t′, τ)U ′

S(t, τB) T (t′, τ)K1(t′, τ)KB
1 (t, τB) T (t′, τ)K1(t′, τ)KB

− (t, τB)
K1(t′, τ)U ′

S(t, τB) K−(t′, τ)KB
1 (t, τB) K−(t′, τ)KB

− (t, τB)
02 KB

+ (t, τB) KB
1 (t, τB)


,

(5.B.1)
where t′ = t+ τB and U ′

S(t, τB) = T (t, τB)US(t, τB). Now, we rewrite ΦΦΦ(t, τB, τ) as

ΦΦΦ(t, τB, τ) =



a b c
d e f
02 g h


, (5.B.2)

and calculate Eq. (5.4.2):

σσσL(t+ τB + τ)1,1 = aσSa
⊺ + bσLb

⊺ + cσBc
⊺ + aσCb

⊺ + bσ⊺Ca
⊺,

σσσL(t+ τB + τ)1,2 = aσSd
⊺ + bσLe

⊺ + cσBf
⊺ + aσCe

⊺ + bσ⊺Cd
⊺,

σσσL(t+ τB + τ)2,1 = dσSa
⊺ + eσLb

⊺ + fσBc
⊺ + dσCb

⊺ + eσ⊺Ca
⊺,

σσσL(t+ τB + τ)2,2 = dσSd
⊺ + eσLe

⊺ + fσBf
⊺ + dσCe

⊺ + eσ⊺Cd
⊺. (5.B.3)

The exact same result can be obtained by calculating

σσσL(t+ τB + τ) =

(
a b
d e

)
σσσL(t)

(
a⊺ d⊺

b⊺ e⊺

)
+

(
c 02

02 f

)(
σB σB
σB σB

)(
c⊺ 02

02 f⊺

)
. (5.B.4)

We can substitute back the correct entries for ΦΦΦ(t, τB, τ) and rearrange the term to
obtain

σσσL(t+ τB + τ) = UUU(t, τB, τ)σσσL(t)UUU⊺(t, τB, τ) + ΦΦΦBQσBΦΦΦ⊺
B, (5.B.5)

where Qσ ≡ σ ⊗ (I2 + σx),

UUU(t, τB, τ) = TTT (t′, τ)KKK(t′, τ)

(
U ′
S(t, τB) 02

02 KB
1 (t, τB)

)
, (5.B.6)

and

ΦΦΦB =

(
T (t′, τ)K1(t′, τ)KB

− (t, τB) 02

02 K−(t′, τ)KB
− (t, τB)

)
. (5.B.7)





Chapter 6

Two-photon interaction effects in
the bad-cavity limit

In section 2.4.2, we discussed about the importance and relevance of the Dicke model in
actual experimental platforms and technological setups. In particular, we also argued
about the recent applications of the two-photon Dicke model and some of its different
features compared to the usual dipolar one. We also discussed about the application of
the adiabatic elimination for the dipolar Dicke model in the bad-cavity limit.

In this chapter, we deal with the two-photon Dicke model by studying the dynamics of a
damped harmonic oscillator (HO) interacting with an ensemble of qubits in the bad-cavity
limit and, as already said, in the case of a two-photon coupling. By applying a recently-
developed approach to perform adiabatic elimination in open quantum systems [32,
33]1, we derive an effective master equation for the qubits that takes into account the
coupling with finite-temperature baths as well as coherent and incoherent optical drivings.
Our analytical and numerical analysis of the time evolution and steady-state behavior
unveils a novel collective phenomenology induced by nondipolar light-matter interactions.
Compared to the dipolar case, the two-photon coupling introduces the possibility to
enhance the absorption and emission processes, and leads to a higher resilience of sub
and superradiance with respect to the baths temperature.

6.1 Physical models

We study a system composed of a damped HO interacting via a resonant Jaynes-Cummings
Hamiltonian with N qubits in the bad cavity limit [33, 106, 107], comparing the one-
photon (1ph) and two-photon (2ph) interaction cases. The two models are described by
the Hamiltonians

Hl = ~ωa†a+
l~ω

2
Jz + ~g

[
alJ+ +

(
a†
)l
J−

]
, (6.1.1)

1See also section 2.2.4.

107



108
CHAPTER 6. TWO-PHOTON INTERACTION EFFECTS IN THE BAD-CAVITY

LIMIT

where l = 1 for the 1ph case and l = 2 for the 2ph one, ω is the frequency of the HO and
lω the one of the qubits2, g is the coupling parameter between the HO and the qubits, a
and a† are the usual annihilation and creation operators of a HO, while Jz =

∑N
i=1 σ

(i)
z

and J± =
∑N
i=1 σ

(i)
± , where σz, σ−, and σ+ are, respectively, the z-Pauli, the lowering, and

the raising operators of a qubit. The ground and the excited energy levels of each qubit
are indicated, respectively, by |g〉 and |e〉. In Appendix 6.A, we provide an example of a
possible implementation with superconducting circuits of the Hamiltonian of Eq. (6.1.1)
for the case l = 2, by generalizing the study done in Ref. [243] to the case of more than
one qubit.

Moreover, we suppose that the HO and each qubit are each in contact with an
independent thermal bath at temperature T (equal for all baths) and that a resonant
coherent pumping on the HO and an incoherent local pumping on the qubits are available.
In the interaction picture, using a phenomenological approach [12, 244, 245], the master
equation for the global density matrix ρG is

ρ̇G = −ig
[
alJ+ +

(
a†
)l
J−, ρG

]
+ LHO(ρG) + LQ(ρG), (6.1.2)

where LHO(•) and LQ(•) are dissipators acting, respectively, on the HO and on the
qubits, given by

LHO(•) = − i
[(
β∗a+ βa†

)
, •
]

+ k [(1 + n̄ω,T ) Da (•) + n̄ω,TDa† (•)] ,

LQ(•) =
N∑

i=1

[
γloc (1 + n̄lω,T ) D

σ
(i)
−

(•) + (γlocn̄lω,T + P ) D
σ

(i)
+

(•)

]
, (6.1.3)

where DX(•) = X •X† − 1
2{X†X, •}, k and γloc are the relaxation rates of, respectively,

the HO and each qubit due the local couplings with their own thermal baths (γloc is
assumed to be the same for all the qubits), β characterizes the interaction between the
HO and the coherent field, P quantifies the action of the incoherent pumping on each
qubit, and n̄ω,T = [e~ω/(kBT ) − 1]−1, kB being the Boltzmann constant. Moreover, the
coherent pumping is treated in the rotating-wave approximation, being |β| ≪ ω. The
phenomenological approach is justified because we consider the qubits and the HO weakly
coupled (g ≪ ω) [12], the HO weakly coupled to its bath (k ≪ ω) [12], and the external
coherent field resonant with the HO [244].

6.2 Adiabatic Elimination

By applying a recently-introduced adiabatic elimination technique [32, 33] we have been
able to derive an effective master equation for the reduced density matrix of the qubits,
ρ = TrHO{ρG}3:

ρ̇ = −ig
[
αlJ+ + (α∗)l J−, ρ

]
+ LQ(ρ) + γl

[
nlDJ+ (ρ) + (1 + nl) DJ−

(ρ)
]
, (6.2.1)

2Because of the two different values of l, the interaction is resonant in both cases.
3See section 2.2.4 for a resume of this technique and Appendix 6.B for the detailed derivation
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where we recall that l = 1 for the 1ph case and l = 2 for the 2ph one, and

α = −2iβ
k
, γ1 =

4g2

k
, n1 = n̄ω,T , γ2 = γ1

(
1 + 2n1 + 4|α|2

)
, n2 = n1

n1 + 4|α|2

1 + 2n1 + 4|α|2
.

(6.2.2)
As expected, even in the 2ph case the adiabatic elimination gives rise to collective

dissipative terms4. Notice that, although Eq. (6.2.1) retains its formal structure when
changing l, the effective parameters αl, γl, and nl coming from the adiabatic elimination
depend differently in the two models on the physical parameters g, β, k, ω, and T [see
Eq. (6.2.2)]. This results in profound physical differences between the 1ph case and the
2ph one, leading to novel effects specific to the 2ph case. In particular, we can identify
three main modifications. A first evident difference regards the dependence of the unitary
driving term on α, which is linear in the 1ph case and quadratic in the 2ph one. An even
more striking difference concerns the collective relaxation rate γl which, only in the 2ph
case, depends on the parameters characterizing the state of the HO at order zero, n1 and
α5. Finally, the coherent pumping increases the temperature of the effective collective
bath seen by the qubits, generated by the adiabatic elimination of the HO. In particular,
setting n2 = n̄2ω,T ∗ = [e2~ω/(kBT

∗) − 1]−1, the temperature of this collective bath is

T ∗ =
2~ω

kB

[
log

(
e2~ω/(kBT ) − 2

1 + 4|α|2 (e~ω/(kBT ) − 1
) + 2

)]−1

. (6.2.3)

Notice that when α = 0 the temperature of this collective bath would be the same of
the original bath of the HO (T ∗ = T ). The peculiar form of γ2 and n2, especially their
quadratic dependence on |α|, can be useful to manipulate the dynamics of the qubits,
possibly enhancing their absorption and emission processes.

The equivalence of the master equation mathematical structure for the two models,
highlighted by Eq. (6.2.1), can be made explicit. In particular, given the physical
parameters in the 2ph model

g, β, k, ω, T, P, γloc, (6.2.4)

contained in the effective parameters α, n1, n2, n̄2ω,T , the dynamics to which they give rise
can be obtained in the 1ph model by different proper choices of the physical parameters.
Denoting with an apex the effective quantities for this “simulation” in the 1ph model we
get

g′

√
k′

=
g
√

1 + 2n1 + 4|α|2
√
k

, n′
1 ≡ nω′,T ′ = n2, γ′

loc = γloc
1 + n̄2ω,T

1 + n2
,

α′
√
k′ =

α2
√
k√

1 + 2n1 + 4|α|2
, P ′ = P − (n2 − n̄2ω,T )

γloc

1 + n2
. (6.2.5)

4The dissipative terms due to adiabatic elimination are those containing γl in Eq. (6.2.1).
5Notice that the state of the HO is a thermal coherent state at order zero. See Appendix 6.B.
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We remark, however, that this mapping between the two models is a mathematical
mapping and that there are situations in which the dynamics obtained in one model is
not obtainable in the other one. For example, when the incoherent pumping is absent
in the 2ph model, since n2 > n̄2ω,T [see Eqs. (6.2.3) and (6.B.30)], in the 1ph model we
could need P ′ < 0 to simulate the 2ph model, and this does not correspond to the case
of an incoherent pumping term. Indeed, the physical reason for this incompatibility is
the temperature-modifying effect of the coherent driving taking place only in the 2ph
model [cf. Eq. (6.2.3)].

We finally comment on the validity of the adiabatic elimination approximation which,
in our setting, relies on the much higher rate of losses of the HO compared to its exchanges
with the qubits and requires stronger conditions than just g ≪ k. For example, for the
1ph coupling with one qubit, if the HO is in a Fock state with ñ excitations and the qubit
is in the ground state, the “Rabi oscillations” have angular frequency g

√
ñ, leading to the

condition g
√
ñ ≪ k while, in the 2ph case, the same reasoning leads to g

√
ñ(ñ− 1) ≪ k.

In our dynamics and at order zero6, the HO is in a thermal coherent state with an average
number of excitations n̄ = |α|2 + n̄ω,T . Then, we can roughly estimate the validity of the
adiabatic elimination by using this value for ñ in the above conditions. In general, we
expect the approximation to not work properly also when P & k since in this case the
qubits emission would compete with the HO losses.

In the following, we discuss the physical consequences of the differences between the
1ph and 2ph models. In order to check the validity of the adiabatic elimination, we will
show in several figures numerical simulations of the full model of Eq. (6.1.2).

6.3 Coherent driving effects: faster dynamics and robust
steady-state coherence

In order to focus on the effects due to the coherent pumping on the HO, let us consider
the case of zero temperature and no local incoherent pumping on the qubits. For T = 0
and P = 0, Eq. (6.2.1) simplifies and γ2 = γ1(1 + 4|α|2). Then, the quadratic dependence
of γ2 on |α| can be exploited to make the system reach much faster its steady state in
the 2ph case. This is shown in Fig. 6.1, comparing the dynamics of a one qubit system
for the two models.

Turning back to the general case with finite T and P , in the case when system B
consists of just one qubit, its dynamics is described by the master equation

ρ̇ = −ig
[
αlσ+ + α∗lσ−, ρ

]
+
[
Γ

(−)
l Dσ− (ρ) + Γ

(+)
l Dσ+ (ρ)

]
, (6.3.1)

where Γ
(−)
l = γloc(1 + n̄lω,T ) + γl(1 + nl) and Γ

(+)
l = γlocn̄lω,T + γlnl + P . The density

6See Eqs. (6.B.5) and (6.B.6).
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Figure 6.1: Time evolution of the excited state population of one qubit, ρee, with physical
parameters β = 1.25k (so that |α| = 2.5), γloc = 0, g = 0.01k, T = 0, and P = 0.
The dot-dashed blue line and the continuous red line are the curves obtained by using
the effective model of Eq. (6.2.1) for, respectively, the 1ph and 2ph models. Empty
markers show discrete points obtained from the numerical simulation of the full model of
Eq. (6.1.2). These empty markers closely follow the corresponding continuous curve. In
the 2ph model the steady state is clearly reached much faster.

matrix elements of the steady state ρst are found to be7

ρst
ee =

4g2|α|2l + Γ(+)
l

(
Γ(−)
l + Γ(+)

l

)

8g2|α|2l +
(
Γ(−)
l + Γ(+)

l

)2 , ρst
eg =

2igαl
(
Γ(+)
l − Γ(−)

l

)

8g2|α|2l +
(
Γ(−)
l + Γ(+)

l

)2 , (6.3.2)

being for any ρ, ρgg = 1 − ρee and ρge = ρ∗
eg.

An interesting limit case is obtained when |α| is high enough that every term not
containing it can be safely neglected. In the 1ph case, the result of this operation is

ρst
ee =

1
2
, ρst

eg = 0. (6.3.3)

In the 2ph case, this limit leads to

Γ(−)
2 ≃ 16(1 + n1)|α|2g2/k, Γ(+)

2 ≃ 16n1|α|2g2/k, (6.3.4)

so that

ρst
ee =

1 + 64n1 (1 + 2n1) (g/k)2

2 + 64 (1 + 2n1)2 (g/k)2 , ρst
eg = ei(2φ−π

2 ) 4g/k

1 + 32 (1 + 2n1)2 (g/k)2 , (6.3.5)

7Hereafter, we use the notation 〈x|ρ|y〉 = ρxy.
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Figure 6.2: Steady state excited populations and coherences of one qubit as functions
of |α| with γloc = 0, g = 0.01k, T = 0, and P = 0. The various empty markers show
discrete points computed with the full model of Eq. (6.1.2). These empty markers closely
follow the corresponding continuous curve, even if, as predicted, the error induced by the
effective model increases as |α| increases. The inset shows a zoom of the 2ph steady-state
coherence for 2 ≤ |α| ≤ 2.5. Both the full and the effective model predict a very low
variation of the coherence in this range of |α|.

where we have used the notation α = |α|eiφ. The case represented in Fig. 6.2 is the
zero-temperature and no pumping one8, for which Eq. (6.3.5) becomes

ρst
ee =

1
2 + 64(g/k)2

, ρst
eg = ei(2φ−π

2 ) 4g/k
1 + 32(g/k)2

. (6.3.6)

In this case, the maximum of
∣∣∣ρst
eg

∣∣∣ is obtained for g/k = 1/(4
√

2) ≃ 0.177. However, for
this value of g/k we are not anymore in the bad-cavity limit.

Fig. 6.2 and Eqs. (6.3.2) and (6.3.5) show that non-diagonal steady states in the
bare basis, that is presenting coherences, can be obtained. In particular, for the case
analyzed in Fig. 6.2, non negligible coherences are obtained when g is sufficiently high9.
By comparing the two models, one can see that great differences arise for |α| & 1. In this
regime, indeed, the 2ph interaction allows one to generate steady states in much shorter
time, as one can evince from Fig. 6.1, and with higher coherences. Moreover, the steady
state does not change much for little variations of α when |α| is high enough. This is

8In formulas, T = 0 and P = 0.
9Indeed, g has to be not so high to move the model outside of the validity range of the adiabatic

elimination.
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Figure 6.3: Jcorr of the steady state of two qubits as a function of T (n̄ω,T in the plot)
and P/k in the 1ph and 2ph cases for g = 0.01k, γloc = 10−4k, and α = 0. The horizontal
lines correspond to the value P = P ∗ ≡ γloc + γ1 = 5 × 10−4k, where both models give
exactly Jcorr = 0 at zero temperature. The 2ph model exhibits a richer dependence on
temperature including stronger subradiance and superradiance at higher temperatures.
Note that the extremal values that Jcorr may assume in the two-qubit case are −1 and 1.

due to the fact that when γloc is negligible, the steady state depends only on the ratio
γl/(g|α|l), which in the 2ph case does not tend to zero but to 16g/k [cf. Eq. (6.3.4)]. For
example, when γloc = 0 and g = 0.01k, the steady state coherences for 2 ≤ |α| ≤ 2.5
are very close, as shown in the inset of Fig. 6.2. Therefore, it is possible to rapidly
generate non-diagonal steady states resilient to intensity fluctuations of the coherent
driving. We stress that the generation of steady-state coherence is relevant since, in
general, it is considered as a resource for quantum technologies [246]. In particular, it has
been recently shown that non-diagonal steady states can find applications in quantum
metrology protocols that can be enhanced by generating these states faster [247, 248].

6.4 Temperature resilience of collective phenomena

Let us now consider the case of no coherent pumping, in order to focus on the emergence
of correlations due to the collective dissipative terms. For α = 0, in Eq. (6.2.1) the
unitary term disappears, γ2 = γ1(1 + 2n1), and n2 = n2

1/(1 + 2n1) = 1/[e2~ω/(kBT ) − 1].
This particular setting has been used [167, 168] to study the emergence of sub and
superradiant steady states as functions of the incoherent pumping parameter P when
T = 0. The quantity Jcorr = 〈J+J−〉 − ∑

i=1〈σ(i)
+ σ

(i)
− 〉 is used to characterize these

collective phenomena. In particular, Jcorr > 0 indicates the occurrence of superradiance
while Jcorr < 0 of subradiance.

Let us start by studying the steady state of two qubits in the case α = 0. The
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Figure 6.4: (a) Jcorr of the steady state of four qubits as a function of P , for g = 0.01k,
γloc = 10−4k, T such that n̄ω,T = 1, and α = 0. Here, Jcorr is plotted for the 1ph (for
both ω and 2ω) and 2ph cases. (b) Steady Jcorr of four qubits as a function of T (n̄ω,T in
the plot), for g = 0.01k, γloc = 10−4k, and α = 0, for P = P ∗ ≡ γloc +γ1 = 5×10−4k and
P = 1.5P ∗ (see legend). The 1ph (ω and 2ω) and 2ph cases are compared. In both plots,
Jcorr is always zero for P = P ∗ in the 1ph case and the various empty markers indicate
discrete points computed with the full model of Eq. (6.1.2), i.e., without performing the
adiabatic elimination. These empty markers closely follow the corresponding continuous
curve. Note that the extremal values that Jcorr may assume in the four-qubit case are
−2 and 4.
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analytical form of Jcorr is10:

Jcorr =
Pγl(1 +Rl)(P − γl − γloc)

(P + γlocRl)
3 + 3γlRl (P + γlocRl)

2 + γ2
l

[
2γlocR

3
l + P

(
1 +Rl + 2R2

l

)] , (6.4.1)

where Rl = 1+2nl. The sign of Jcorr in Eq. (6.4.1) depends only on P −γl−γloc, which is
temperature dependent only in the 2ph case. When T = 0, there is no difference between
the 1ph and the 2ph models because γ2 = γ1. In contrast, the two models behave very
differently for T 6= 0, as shown in Fig. 6.3 where we plot the steady value of Jcorr in the
two models as functions of the incoherent pumping and the baths temperature in the
case of two qubits, for g = 0.01k and γloc = 10−4k. A more varied dependence of the
collective phenomena on temperature in the 2ph case is observed due to the increase
of the collective dissipation rate γ2 with the temperature. In particular, remarkable
differences are observed when P is close to P ∗ ≡ γ1 + γloc, since for this value of P ,
in the 1ph case, Jcorr = 0 for any T , while this is not the case in the two 2ph case
[cf. Eq. (6.4.1)]. This behavior of the sign of Jcorr has been confirmed in all the other
simulations that we have done (up to six qubits). This means that for P = P ∗, since γ2

increases with temperature, subradiance is observed for any temperature different from
zero in the 2ph case. One could wonder if part of these differences arise just because
the qubits in the 2ph model have frequency 2ω so that, for the same temperature, they
interact with local baths by means of a lower average excitation number. To check the
extent of this effect we have also looked at the same plot using the frequency 2ω for the
qubits and the HO for the 1ph case finding only a partial reduction of the differences
between the two models. An example of this issue is treated for a specific example in
Fig. 6.4.

A different behavior of collective phenomena is still present in the case of a larger
number of qubits, as exhibited in Fig. 6.4(a), where the plot of Jcorr in the steady state
as a function of the incoherent pumping for four qubits at a fixed temperature (n̄ω,T = 1)
clearly shows relevant differences in the two models, especially for the subradiance. In
particular, in the 2ph case, a higher peak of both super and subradiance can be reached,
even when the frequency of the qubits and of the HO in 1ph case is set equal to 2ω.
A more striking different behavior of the two models can be obtained by studying the
dependence of the steady value Jcorr on T for specific values of the pump, as shown in
Fig. 6.4(b). For P = P ∗ no subradiance nor superradiance are visible in the 1ph case,
while in the 2ph case a strong subradiance may be observed. An even more interesting
case is obtained for P > P ∗. In this case, the system displays superradiance at T = 0
in both models while it follows very different paths, depending on the model, when
the temperature increases. In the 1ph model, Jcorr is always positive and tends to zero
for increasing temperature whereas, in the 2ph model, there is a temperature T ′ such
that P < γ2 + γloc for T > T ′. Therefore, in the 2ph model, the system can go into a
subradiant zone inaccessible through the 1ph interaction at fixed pumping.

10The same quantity with α > 0 can be found analytically. In particular, using MATHEMATICA, we
have found the analytical form of the two-qubits steady state. However, since the resulting formula for
Jcorr is very cumbersome we do not report it here.
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6.5 Conclusions

In this chapter, we have studied a setup composed of a damped harmonic oscillator (HO)
interacting with N qubits via a two-photon coupling in the bad-cavity limit. Moreover,
we have considered the presence of finite temperature baths, a coherent pumping on
the HO, and an incoherent pumping on the qubits, comparing the two-photon coupling
case to the one-photon one. We have successfully applied a novel adiabatic elimination
technique in the two-photon model to obtain a reduced master equation governing the
qubits collective evolution.

The effective master equation governing the qubits dynamics presents two fundamental
differences compared to the dipolar case. The first one consists of an enhancement of the
spontaneous-like emission rate, which includes a thermal contribution and a quadratic
term in the coherent driving. The second one consists of an increased temperature of the
effective bath experienced by the qubits.

We have individuated two main consequences of this novel phenomenology. First, it
makes it possible to accelerate the generation of non-diagonal steady states. Second, we
can observe a drastic change in the temperature-dependent behavior of quantum collective
phenomena, leading to a stronger resilience of these phenomena to high temperatures.

We remark that the models here studied can be feasibly implemented with both
atomic and solid-state existing quantum technologies, as discussed in section 2.4.2. In
particular, in Appendix 6.A we provide an example of a possible implementation with
superconducting circuits of the two-photon coupling Hamiltonian of Eq. (6.1.1) for the
case l = 2.
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Figure 6.5: (a) Sketch of the circuit QED scheme: a SQUID resonator (brown), coupled
through linear inductive elements (green) with flux qubits (cyan). An arbitrary number
of flux qubits can in principle be coupled with the SQUID resonator. For the sake of
simplicity, the variables φ̂i1, φ̂i2 and φ̂i3, of the elements composing the flux qubits are
explicitly shown only for the qubit in the middle.

6.A Circuit model

In this section, we provide a detailed description of a superconducting quantum circuit
scheme that can implement the two-photon Jaynes-Cumming Hamiltonian used in
Eq. (6.1.1) for l = 2. Indeed, in the framework of circuit QED [249] it is possible
to engineer artificial atoms that are nonlinearly coupled with a single-mode quantum
resonator [185, 243]. We follow the derivation proposed in Ref. [243] for the case of
one qubit, generalizing it to the multiqubit case. Our scheme is depicted in Fig. 6.5
and it consists of an arbitrary number of flux qubits [250, 251] coupled to a single
superconducting quantum interference device (SQUID) resonator. For each qubit the
coupling is realized via an inductance and the values of the coupling inductances are
assumed to be the same for all the qubits. The SQUID is used in the linear regime so
that, for the considered energy scales, it supports a quantum harmonic resonator mode.
However, as shown in the following, the intrinsic nonlinearity of the device can lead to
a dynamics governed by a two-photon coupling between the artificial atoms and the
resonator. We will first derive an effective Lagrangian model of the circuit, and we will
then quantize the corresponding Hamiltonian.

6.A.1 Lagrangian

Our starting point is the Lagrangian of the system [249],

LTOT = LSQUID +
∑

i

[
LiFQ + LiL

]
, (6.A.1)

where the index i runs over the flux qubits and where the different contributions of the
SQUID, the flux qubits (FQ), and the coupling inductances (L) are given by

LSQUID =
C

2
φ̇2
a +

C

2
φ̇2
b + EJ

[
cos

(
φa
φ0

)
+ cos

(
φb
φ0

)]
, (6.A.2)
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LiFQ =
C̃

2

[
(φ̇i1)2 + (φ̇i3)2

]
+
ηC̃

2
(φ̇i2)2 + ẼJ

[
cos

(
φi1
φ0

)
+ cos

(
φi3
φ0

)
+ η cos

(
φi2
φ0

)]
,

(6.A.3)

LiL = −(φiL)2

2L
. (6.A.4)

Here, EJ denotes the Josephson energy and C the capacitance of the Josephson junctions
(JJ) a and b composing the SQUID, which are assumed to be identical. As for the flux
qubits, ẼJ and C̃ are the Josephson energy and capacitance of the JJs labeled by 1 and 3,
while η is a parameter, smaller than one, used to quantify the corresponding values ηẼJ
and ηC̃ for the second JJ. The coupling inductances between each flux qubit and the
SQUID are also assumed to be identical with value L. Finally, all the variables denoted
with a φ are the generalized fluxes associated to each element of the circuit [249], and we
have defined the reduced magnetic flux quantum as φ0 = Φ0/(2π) = ~/(2e), where e is
the electron charge.

We now define symmetric and anti-symmetric SQUID variables as φ+ = φa+φb
2 and

φ− = φa−φb
2 and apply the flux-quantization rule [249, 252] to the SQUID loop, obtaining

φa − φb =
∑
i φ

i
L + φext

s , where φext
s is the external magnetic flux flowing through the

SQUID loop. We can then rewrite the anti-symmetric variable in terms of the phases

φiL of the coupling inductances obtaining φ− =
∑
i
φi
L

2 + φext
s

2 . We consider a constant
external flux implying φ̇ext

s = 0. Straightforward calculations allow us to rewrite the
SQUID Lagrangian as,

LSQUID = Cφ̇2
+ +

C

4
(φ̇tot
L )2 + 2EJ cos

(
φtot
L + φext

s

2φ0

)
cos

(
φ+

φ0

)
, (6.A.5)

where we have defined φtot
L =

∑
i φ

i
L. Now, we turn our focus on the circuit elements

composing the flux qubits, and we define φip = φi1+φi3
2 and φim = φi1−φi3

2 . We denote with
φext
q the external flux on each qubit, which is taken to be the same for all flux qubits, and

which is defined in the opposite direction with respect to φext
s . The flux-quantization rule

for the qubit loop, φi1 − φi2 − φi3 = −φiL − φext
q , allows us to eliminate the phase variable

of the second junction of each qubit: φi2 = 2φim + φiL + φext
q . We take also the external

flux biasing the flux qubit to be constant implying φ̇ext
q = 0, so we can write

LiFQ = C̃(φ̇ip)
2 + C̃(φ̇im)2 +

ηC̃

2

(
2φ̇im + φ̇iL

)2
+

ẼJ

[
2 cos

(
φip
φ0

)
cos

(
φim
φ0

)
+η cos

(
2φim + φiL + φext

q

φ0

)]
. (6.A.6)

We now take a perturbative approach based on the assumption that the coupling
inductances are chosen to be so small that the following approximations are justified. In
particular, we perform two main approximations: (1) we linearize the Lagrangian with
respect to the coupling-inductance phase variables divided by φ0, that is we expand to first
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order in φiL/φ0, and then (2) we perform an adiabatic elimination of the corresponding
degrees of freedom. Notice that this adiabatic elimination concerns only the detail of
the circuit design and it is not related with the adiabatic elimination performed on the
quantum model considered in the main text of this chapter. To simplify the notation, let
us define the gauge-invariant phase variables ϕj = φj/φ0, where φj denotes generically
the flux variable of any circuit element. We also define the frustration parameters
fs = φext

s /φ0 and fq = φext
q /φ0.

(1) First, we assume that the flux variables φiL are small with respect to the reduced
magnetic flux quantum, so that Eq.(6.A.5) and Eq.(6.A.6) can be linearized with respect
to the variables ϕiL. Thus, from Eq. (6.A.5) we obtain

LSQUID = Cφ̇2
+ +

C

4

(
φ̇tot
L

)2
+ 2EJ

[
cos

(
fs
2

)
− sin

(
fs
2

)
ϕtot
L

2

]
cos (ϕ+) . (6.A.7)

Then, by linearizing Eq.(6.A.6) with respect to each ϕiL we obtain,

LiFQ = Liqubit +
ηC̃

2

[(
φ̇iL

)2
+ 4φ̇iLφ̇

i
m

]
+ ηẼJ sin

(
2ϕim + fq

)
ϕiL, (6.A.8)

where Liqubit denotes the standard Lagrangian of the i-th flux qubit [250, 251],

Liqubit = C̃
(
φ̇ip

)2
+ (1 + 2η) C̃

(
φ̇im

)2
+ ẼJ

[
2 cos

(
ϕip

)
cos

(
ϕim

)
+ η cos

(
2ϕim + fq

)]
.

(6.A.9)
(2) Now, we perform the adiabatic elimination on the degrees of freedom of the

coupling inductances. These inductances appear in the following terms of the total
Lagrangian [see Eqs. (6.A.4), (6.A.7), and (6.A.8)]:

1
2



(
C + 2ηC̃

2

)
∑

i

(
φ̇iL

)2
− 1
L

∑

i

(
φiL

)2
+
C

2

∑

i6=j

φ̇iLφ̇
j
L




−EJ sin
(
fs
2

)∑

i

φiL cos (ϕ+)

+2ηC̃
∑

i

φ̇iLφ̇
i
m + ηẼJ

∑

i

ϕiL sin
(
2ϕim + fq

)
. (6.A.10)

The first line corresponds to N interacting harmonic oscillators. Given the high symmetry
of the coefficients, it is easy to find the normal frequencies [253], which are given by

ω−
L =

√√√√
1

L
(
ηC̃ +NC/2

) , ω+
L =

√
1

LηC̃
, (6.A.11)

where the frequency ω+
L has degeneracy N − 1. Here, L is assumed to be so small that

the frequency ω−
L (which is clearly smaller than ω+

L ) is much larger than the relevant
characteristic frequencies of the other elements of the circuit. Moreover, the interaction
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of the inductances with the other elements of the circuit is such that, if L is small enough,
we can adiabatically eliminate the variables corresponding to the inductances by setting
φ̇iL = 0.

To simplify the notation let us define the following parameters:

S = EJ sin
(
fs
2

)
, Ωi

m = −ηẼJ sin
(
2ϕim + fq

)
. (6.A.12)

Imposing φ̇iL = 0 in the Euler-Lagrange equation

∂

∂φiL
LTOT − d

dt
∂

∂φ̇iL
LTOT = 0, (6.A.13)

we obtain the dependence of φiL on the remaining dynamic variables,

ϕiL =
φiL
φ0

= − 1
2EL

[
S cos(ϕ+) + Ωi

m

]
, (6.A.14)

where EL = φ2
0/(2L). Therefore,

ϕtot
L =

1
φ0

∑

i

φiL = − 1
2EL

[
SN cos(ϕ+) +

∑

i

Ωi
m

]
, (6.A.15)

where N is the total number of TLSs.
Before replacing the variables, in order to simplify the expressions, we also define

K = 2EJ cos
(
fs
2

)
. (6.A.16)

Within the above approximations, the total Lagrangian is then obtained adding Eqs. (6.A.7),
(6.A.8) and (6.A.4), and it can be written as,

LTOT = Cφ̇2
+ +

[
K − Sϕtot

L

]
cos (ϕ+) +

∑

i

[
Liqubit − Ωi

mϕ
i
L − EL(ϕiL)2

]
.

Finally, by replacing ϕiL and ϕtot
L by means of, respectively, Eqs. (6.A.14) and (6.A.15)

we obtain,

LTOT = Cφ̇2
+ +K cos (ϕ+) +

NS2

4EL
cos2(ϕ+)

+
S cos(ϕ+)

2EL

∑

i

Ωi
m +

1
4EL

∑

i

(
Ωi
m

)2
+
∑

i

Liqubit. (6.A.17)
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6.A.2 Hamiltonian

The system Hamiltonian HTOT can be derived implementing the Legendre transformation,
i.e.,

HTOT = ϕ̇p+ +
∑

j

ϕ̇jpp
j
p +

∑

j

ϕ̇jmp
j
m − LTOT, (6.A.18)

where we use the standard definition of conjugate variables

p+ = ∂LTOT/∂ϕ̇+ = 2Cφ2
0ϕ̇+,

pjp = ∂LTOT/∂ϕ̇
j
p = 2C̃φ2

0ϕ̇
j
p,

pjm = ∂LTOT/∂ϕ̇
j
m = 2(1 + 2η)C̃φ2

0ϕ̇
j
p. (6.A.19)

We replace now the classical variables with quantum operators and we start using
the hat formalism to avoid confusion. The total Hamiltonian can be written as

ĤTOT = ĤSQUID +
∑

i

Ĥ i
FQ + ĤI . (6.A.20)

The SQUID Hamiltonian is given by

ĤSQUID =
p̂2

+

4Cφ2
0

−K cos (ϕ̂+) − NS2

4EL
cos2(ϕ̂+). (6.A.21)

The Hamiltonian Ĥ i
FQ is given by the standard flux qubit Hamiltonian Ĥ i,st

FQ , plus a
correction proportional to the small parameter L [since EL = φ2

0/(2L)],

Ĥ i
FQ = Ĥ i,st

FQ − (Ω̂i
m)2

4EL
, (6.A.22)

where

Ĥ i,st
FQ =

(p̂ip)
2

4C̃φ2
0

+
(p̂im)2

4C̃φ2
0(1 + 2η)

− ẼJ
[
2 cos

(
ϕ̂ip

)
cos

(
ϕ̂im

)
+ η cos

(
2ϕ̂im + fq

)]
.

It is well known that the standard flux qubit Hamiltonian has a strongly nonlinear
eigenspectrum [250, 251]. As a result, for the relevant energy scale, the system dynamics
is constrained in the lowest two-level subspace [250, 251]. In the next section we discuss
the role of the additional term −(Ω̂i

m)2/(4EL), and we show that it does not induce state
leakage outside the low-energy subspace so that each flux qubit can be considered as a
two-level system (TLS). In the following, the two states of the low-energy subspace for
the i-th TLS are denoted as |0〉i and |1〉i and the Hamiltonian of each TLS is ~ωqσ̂

i
z/2,

where ωq is the common transition frequency of the TLSs and σ̂iz is the usual z-Pauli
operator.

The last term in Eq. (6.A.20) corresponds to the nondipolar coupling Hamiltonian:

ĤI = − S

2EL
cos (ϕ̂+)

∑

i

Ω̂i
m. (6.A.23)

We show in the following that, in a broad regime of parameters, such nondipolar coupling
can be reduced to a two-photon interaction plus an additional correction to the flux qubit
Hamiltonian.
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6.A.3 Effective model

We now assume that the phase of the SQUID junctions is small compared to the reduced
magnetic flux quantum, ϕ+ = φ+/φ0 ≪ 1. This is a standard approximation [249] which
is valid when the SQUID operates in the linear regime, that is in the limit of large
Josephson energy for the two Josephson junctions, a and b, of the SQUID. Expanding up
to second order the cosines and discarding constant terms in Eq. (6.A.21) we obtain,

ĤSQUID =
p̂2

+

4φ2
0C

+

(
K +

NS2

2EL

)
ϕ̂2

+

2
, (6.A.24)

Similarly, we obtain from Eq. (6.A.23)

ĤI = − S

2EL

∑

i

Ω̂i
m +

S

2EL

ϕ̂2
+

2

∑

i

Ω̂i
m, (6.A.25)

where the first term is a free energy term of the qubit, while the second term is the origin
of the nondipolar coupling.

We now introduce the standard ladder operators â and â† of the quantum harmonic
oscillator corresponding to the SQUID Hamiltonian of Eq. (6.A.24) in

ϕ̂+ =

√
~ωcLeff

2φ2
0

(
â† + â

)
, p̂+ = i

√
~φ2

0

2ωcLeff

(
â† − â

)
, (6.A.26)

where we have defined

Leff =
φ2

0(
K + NS2

2EL

) , ωc =

√
1

2CLeff
=

1
~

√

4EC

(
K +

NS2

2EL

)
, (6.A.27)

and where we have introduced the charging energy EC = e2/(2C) [we recall that
φ0 = ~/(2e)]. Equation (6.A.24) can be then rewritten as

ĤSQUID = ~ωcâ
†â, (6.A.28)

where we have used [â, â†] = 1 and we have again disregarded constant terms.
Now, we redefine the total free Hamiltonian of a flux qubit as the sum of Eq. (6.A.22)

and of the i-th element of the first term in Eq. (6.A.25),

Ĥ i
FQ = Ĥ i,st

FQ −
[

1
4EL

(
Ω̂i
m

)2
+

S

2EL
Ω̂i
m

]
, (6.A.29)

which corresponds to the standard Hamiltonian of a flux qubit plus two corrections. In
the first two energy levels subspace we can write [250, 251]

Ω̂i
m = −ηẼJ 〈0|i sin

(
2ϕ̂im + fq

)
|1〉i σ̂ix = −ηẼJT (fq)σ̂ix, (6.A.30)
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where σ̂ix is the usual x-Pauli operator and the transition amplitude T (fq) is the same
for all the qubits because we have set a homogeneous fq and the operator ϕ̂im has
the same form for all qubits. Notice that the first correction, proportional to (Ω̂i

m)2,
corresponds to a constant energy offset, since (Ω̂i

m)2 ∝ I in the two-level subspace, being
I the identity operator in a two-dimensional Hilbert space, and can be then disregarded.
The second one, proportional to Ω̂i

m, can be compensated by a small adjustment of the
frustration parameter fq leading to a renormalization of the qubit-cavity coupling [250,
251]. Therefore, these additional terms do not modify the behavior of the flux qubit, and
so the latter can be faithfully modelized as a TLS. In this limit, the Hamiltonian of a
flux qubit is then redefined as

Ĥ i
FQ =

~ωq
2
σ̂iz. (6.A.31)

Finally, we redefine the interaction Hamiltonian as given by only the second term in
Eq. (6.A.25), which corresponds to the nondipolar interaction Hamiltonian between the
TLSs and the resonator mode,

ĤI = ~g2

(
â† + â

)2∑

i

σ̂ix, (6.A.32)

where we have defined the two-photon coupling strength g2 as

g2 =
S

4~EL

√√√√
EC(

K + NS2

2EL

)ηẼJT (fq). (6.A.33)

Now, we consider the resonant case by setting ω ≡ ωc = ωq/2 and we redefine for
this case the total system Hamiltonian ĤTOT up to second order in ϕ̂+ as the sum of
Eqs. (6.A.28), (6.A.31), and (6.A.32), obtaining

ĤTOT = ~ωâ†â+ ~ωĴz + ~g
(
â+ â†

)2 (
Ĵ+ + Ĵ−

)
, (6.A.34)

where g ≡ g2, Ĵz =
∑
i σ̂

(i)
z , and Ĵ± =

∑
i σ̂

(i)
± , as in the main text of this chapter, being

σ̂
(i)
+ and σ̂(i)

− the usual raising and lowering operators for a TLS. Notice that, as shown in
Ref. [243], the fourth-order corrections here neglected have a negligible impact on the
system dynamics and spectral features.

Going to the interaction picture through the unitary operator Û0 = exp
{

−iĤ0t/~
}

,

where Ĥ0 = ~ωâ†â+ ~ωĴz, the interaction Hamiltonian becomes ĤI,int = Û †
0ĤIÛ0, with

ĤI,int/(~g) =
(
â†
)2
Ĵ− + â2Ĵ++

+ e2iωt
[(

2â†â+ 1
)
Ĵ+

]
+ e−2iωt

[(
2â†â+ 1

)
Ĵ−

]
+

+ e4iωt
(
â†
)2
Ĵ+ + e−4iωtâ2Ĵ−. (6.A.35)

For the regime of the parameters we explore in the main text of this chapter (where g ≪ ω),
the ubiquitous rotating-wave approximation (RWA) can be applied to Eq. (6.A.34) and
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Qubit parameters

ẼJ/h = 200 GHz ẼC/h = ẼJ/(80h) = 2.5 GHz η = 0.8 fq/(2π) = 0.485

Resonator and inductances parameters

EJ/h = 13 GHz EC/h = 1 GHz EL/h = 2.5 × 104 GHz fs/(2π) = 0.1

Resulting parameters

ωc/(2π) ≈ 10 GHz ωq/(2π) ≈ 20 GHz g2 ≈ 10−4ωc ω−
L /(2π) ≈ 415 GHz

Table 6.1: This table reports an example of circuit parameters able to implement the
two-photon coupling model of the main text of this chapter in the case of four TLSs, i.e.,
for N = 4 [we have defined ẼC = e2/(2C̃)]. The resulting parameters are also reported.
Notice the use of the non-reduced Planck’s constant h for quantifying energies. The
parameters chosen for the flux qubit have been taken from an example of Ref. [250]
on the basis of the standard flux qubit Hamiltonian Ĥ i,st

FQ . Notice that, because of

the two additional terms in Eq. (6.A.29) with respect to Ĥ i,st
FQ , the parameter values

should be slightly calibrated in a real experimental realization in order to obtain the
resonance ωq = 2ωc. Regarding the number T (fq) which appears in the formula for g2

of Eq. (6.A.33), we have used T (fq) = 0.8. This value has been calculated for similar
circuit parameters in the code used for Ref. [243]. We remark that, to implement our
model, only the order of magnitude of g2 is important, not its exact value.

(6.A.35), neglecting all the terms oscillating in the interaction picture. We can thus
redefine the total Hamiltonian as the two-photon Jaynes-Cumming Hamiltonian used in
Eq. (6.1.1) for l = 2 (we remark that in the main text of this chapter and in the following
sections of the Appendices of this chapter the operators are not anymore marked by the
“hat”):

ĤTOT = ~ωâ†â+ ~ωĴz + ~g

[
â2Ĵ+ +

(
â†
)2
Ĵ−

]
. (6.A.36)

An analysis of the RWA in an analogous context can be found in [187].
To conclude this section, let us provide an example of a set of physical parameters

that matches the required regime. We consider a system composed of 4 TLSs, as in the
case of Fig. 6.4. Notice that all model parameters can be analytically derived, except
for the flux qubit frequency which has been taken by an example of Ref. [250], where
the same values for the flux qubit circuit parameters have been used. The values of
the various parameters are summarized in Table 6.1, which has been constructed as
follows. First, we have taken the flux qubit circuit parameters from Ref. [250], where the
resulting frequency of the flux qubit is also given, ωq/(2π) ≈ 20 GHz. Then, we have
searched for a configuration of the resonator and inductances parameters (EJ , EC , EL,
and fs) giving us leading to ωc/(2π) ≈ 10 GHz for the harmonic oscillator, well within
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the working range of circuit QED devices [249]. For the number T (fq) appearing in the
expression for g2 of Eq. (6.A.33), we have used the value T (fq) = 0.8, which has been
calculated for similar circuit parameters in the code used for Ref. [243]. Regarding the
inductances, from Eq. (6.A.14) one can estimate by excess the expectation value of the
operator associated to the variable ϕiL finding in modulus ≈ 0.0026, which is consistent
with the linearization procedure we have performed with respect to the variables ϕiL.
Morevoer, this choice of the circuit parameters leads to a value of the lowest inductances
characteristic frequency ω−

L well above the relevant energy scale, being ω−
L more than 20

times larger than the flux qubits frequency 11. It follows that the adiabatic elimination
we have made concerning the variables φiL, φ̇iL = 0, is well justified. Finally, we have
g2 ≈ 10−4ωc, that is g2 ≈ 0.01k (this is the value considered in all the figures of the
main text of this chapter) if we take k = 0.01ωc, where k is the dissipation rate of the
harmonic oscillator due to the interaction with its environment.

Concerning the flux qubits, the parameters are taken from Ref. [250] on the basis of the
standard flux qubit Hamiltonian Ĥ i,st

FQ , i.e., the Hamiltonian of Eq. (6.A.29) without the
two additional terms. It follows that the parameter values should be slightly calibrated in
a real experimental realization in order to obtain the resonance ωq = 2ωc. However, the
engineering of flux qubit is a well-developed area of research and their effective frequency
can be finely tuned in various ways, also adding additional elements to the circuit [249].
Even if the values of Table 6.1 do not exactly match those that would be used for our
circuit, are a good indicator of the experimental values that would be in fact necessary,
especially considering that g2 ≪ ωc, ωq so that the interaction does not sensibly modify
the frequency of the flux qubits.

We stress out that the values used in Table 6.1 are commonly implemented in nowadays
experiments [249] and that the proposed circuit design does not require any further
improvement over standard circuit-QED technology.

6.B Adiabatic elimination of the harmonic oscillator

Here, we apply the general method described in section 2.2.4 to the one-photon (1ph)
and the two-photon (2ph) models considered in section 6.1. In particular, the starting
point for this application is Eq. (6.1.2), which describes the global dynamics of the two
models and is given in the interaction picture. In the Schrödinger picture, the models
are described by the equation

ρ̇G,S = − i

~
[Hl, ρG,S ] + LHO,S(ρG,S) + LQ,S(ρG,S), (6.B.1)

11For convenience of the reader, we report in this note the formulas for the inductances normal
frequencies in terms of the energetic circuit parameters:

ω−
L =

4
√

2

~

√
ECẼCEL

NẼC + 2ηEC
, ω+

L =
4

~

√
ẼCEL
η

.

These formulas are equivalent to those of Eq. (6.A.11).
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where ρG,S is the global density matrix in the Schrödinger picture, l = 1 for the 1ph case
and l = 2 for the 2ph one, Hl is given in Eq. (6.1.1), and

LHO,S (•) = − i
[(
β∗aeiωt + βa†e−iωt

)
, •
]

+ k [(1 + n̄ω,T ) Da (•) + n̄ω,TDa† (•)] ,

LQ,S(•) =
N∑

i=1

[
γloc (1 + n̄lω,T ) D

σ
(i)
−

(•) + (γlocn̄lω,T + P ) D
σ

(i)
+

(•)

]
. (6.B.2)

The passage from the Schrödinger picture to the interaction one is, indeed, necessary to
apply the adiabatic elimination method since the bare dynamics of both the qubits and
the harmonic oscillator (HO) is much faster than all other dynamics so that to separate
the system into a fast and a slow part is not possible. Moreover, neglecting the interaction
between the two subsystems, the steady state of the HO does not exist because of the
time dependent part in the Hamiltonian describing the action of the coherent driving.
The unitary operator used to move from the Schrödinger picture to the interaction one
[i.e., from Eq. (6.B.1) to Eq. (6.1.2)] is

Ul(t) = e
i
~
H0,lt, (6.B.3)

where

H0,l = ~ωa†a+
l~ω

2
Jz. (6.B.4)

In this section, we denote the reduced density matrix of the HO with ρA in order to
maintain the notation of section 2.2.4, while we call the reduced density matrix of the
qubits ρ, without suffixes, in order to have the same notation of section 6.2.

As explained in section 2.2.4, we first need to obtain the steady state of the HO when
it does not interact with the qubits. This steady state is equal to [33]

ρst
A = D(α)ρth

AD(−α), (6.B.5)

where D(α) = eαa
†−α∗a, α = −2iβ

k , and

ρth
A =

1

1 + n̄ω,T

∞∑

n=0

(
n̄ω,T

1 + n̄ω,T

)n
|n〉〈n| . (6.B.6)

In other words, ρst
A is a thermal coherent state obtained by applying to the thermal state

with energy ~ωn̄ω,T the displacement operator corresponding to the coherent state in
which the HO would be at zero temperature.

We choose to use as perturbative parameter ǫ the quantity g/k so that ǫ = g/k. With
this choice, we can write

Hint = ~k

[
alJ+ +

(
a†
)l
J−

]
, (6.B.7)

where c = k [cf. Eq. (2.2.18)]. Moreover, LQ = ǫLB. Therefore, at first order in g/k we
get12

ǫLS,1(ρ) = −ig
[
αlJ+ + (α∗)l J−, ρ

]
+ LQ(ρ), (6.B.8)

12See Eq. (2.2.22) with A1 = al, A2 =
(
a†
)l

, B†
1 = J+, and B†

2 = J−.
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since, using aD(α) = αD(α) +D(α)a,

Tr
{
alρst

A

}
= Tr

{
αal−1ρst

A +D(α)aρth
AD(−α)

}

= Tr
{
αal−1ρst

A

}
+ Tr

{
aρth

A

}

= Tr
{
α2al−2ρst

A

}
+ αTr

{
aρth

A

}

=
...

= αl,

Tr
{(
a†
)l
ρst
A

}
=
(
Tr
{
alρst

A

})∗
= (α∗)l . (6.B.9)

To obtain the second order dynamics we need the super-operators Fk. In this case,
there are only two of them:

F1

(
ρst
A

)
=
∫ ∞

0
etLA

[(
al − αl

)
ρst
A

]
dt , F2

(
ρst
A

)
=
∫ ∞

0
etLA

[((
a†
)l

− (α∗)l
)
ρst
A

]
dt .

(6.B.10)
In order to calculate the matrix elements Xi,j and Yi,j of Eq. (2.2.25) we just need to

compute terms like Tr
{
F1ρ

st
A

(
a†
)l}

so that finding the explicit form of the operators

Fk is not necessary. Since Tr
{
Fi
(
ρst
A

)}
= 0, one can, for example, write

Tr
{
F1ρ

st
A

(
a†
)l}

= Tr
{(
a†
)l ∫ ∞

0
etLA

[
(al − αl)ρst

A

]
dt
}

= Tr
{[(

a†
)l

− (α∗)l
] ∫ ∞

0
etLA

[
(al − αl)ρst

A

]
dt
}

= Tr
{[

(al − αl)ρst
A

] ∫ ∞

0
etL

†
A

[(
a†
)l

− (α∗)l
]

dt
}
, (6.B.11)

where L†
A is the adjoint Lindblad operator [12, 33]13. In the same way, one obtains the

following quantities

Tr
{
F1ρ

st
A

(
a†
)l}

= Tr
{[

(al − αl)ρst
A

] ∫ ∞

0
etL

†
A

[(
a†
)l

− (α∗)l
]

dt
}
,

Tr
{
F1ρ

st
Aa

l
}

= Tr
{[

(al − αl)ρst
A

] ∫ ∞

0
etL

†
A

(
al − αl

)
dt
}
,

Tr
{
F2ρ

st
A

(
a†
)l}

= Tr
{[((

a†
)l

− (α∗)l
)
ρst
A

] ∫ ∞

0
etL

†
A

[(
a†
)l

− (α∗)l
]

dt
}
,

Tr
{
F2ρ

st
Aa

l
}

= Tr
{[((

a†
)l

− (α∗)l
)
ρst
A

] ∫ ∞

0
etL

†
A

(
al − αl

)
dt
}
. (6.B.12)

The above formulas (and the resulting master equation) are valid for any l but, from
now on, we will deal explicitly with the l = 1, 2 cases because otherwise calculations

13See also Eq. (2.2.8).
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become needlessly cumbersome. The result obtained in the case l = 1 is already known in
literature [33]. Nevertheless, we think that reporting here its derivation with this method
can be helpful.

6.B.1 The 1ph case

For l = 1 it is possible to write etL
†
Aa = f0(t) + f1(t)a, with f0(0) = 0 and f1(0) = 1.

The adjoint master equation for the operator etL
†
Aa reads [12, 33]

d
dt
f0(t) +

d
dt
f1(t)a = −k

2
f1(t)a+ α

k

2
f1(t), (6.B.13)

whose solution, f0(t) = α
(
1 − e− k

2
t
)

and f1(t) = e− k
2
t, implies

etL
†
A (a− α) = e− k

2
t (a− α) . (6.B.14)

We recall that etL
†
Ar = r, where r is a constant. Analogously, we can write etL

†
Aa† =

f̃0(t) + f̃1(t)a† and solve the associated differential equations. The solutions are equal to
the ones for f0(t) and f1(t) with the substitution α → α∗. It follows that

etL
†
A

(
a† − α∗

)
= e− k

2
t
(
a† − α∗

)
. (6.B.15)

Now, we can calculate the elements of the X and Y matrices. Using Eqs. (6.B.14) and
(6.B.15) in Eq. (6.B.12), we obtain for l = 1 (hereafter n1 = n̄ω,T = [e~ω/(kBT ) − 1]−1)

Tr
{
F1ρ

st
Aa

†
}

=
2

k
n1, Tr

{
F1ρ

st
Aa
}

= 0, Tr
{
F2ρ

st
Aa

†
}

= 0, Tr
{
F2ρ

st
Aa
}

=
2

k
(1 + n1) .

(6.B.16)
By inserting Eq. (6.B.16) in Eq. (2.2.25), we then have

X = 4k

(
n1 0
0 1 + n1

)
, Y =

(
0 0
0 0

)
. (6.B.17)

We can set Λ =
√
X thus obtaining in Eq. (2.2.27):

L1 = Λ∗
1,1J+ + Λ∗

2,1J− =
√

4kn1J+, L2 = Λ∗
1,2J+ + Λ∗

2,2J− =
√

4k (1 + n1)J−.
(6.B.18)

Eventually, using Eqs. (2.2.26) and (6.B.8), we obtain as equation for the second order
dynamics of the qubits

ρ̇ = −ig[αJ+ + α∗J−, ρ] + LQ(ρ) + γ1
[
n1DJ+(ρ) + (1 + n1) DJ−

(ρ)
]
, (6.B.19)

where γ1 = 4g2/k.
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6.B.2 The 2ph case

The derivation of the reduced dynamics for l = 2 proceeds analogously to the l = 1
case, but it is more involved. We can write etL

†
Aa2 = h0(t) + h1(t)a + h2(t)a2, with

h0(0) = h1(0) = 0 and h2(0) = 1. The adjoint master equation for the operator etL
†
Aa2

reads
d
dt
h0(t) +

d
dt
h1(t)a+

d
dt
h2(t)a2 =

αk

2
h1(t) +

[
αkh2(t) − k

2
h1(t)

]
a−kh2(t)a2, (6.B.20)

whose solution, h0(t) = α2e−kt
(
e
k
2
t − 1

)2
, h1(t) = 2αe−kt

(
e
k
2
t − 1

)
, and h2(t) = e−kt,

implies
etL

†
A

(
a2 − α2

)
= e−kt (a− α)2 + e− k

2
t [2α (a− α)] . (6.B.21)

Analogously, we can write etL
†
A(a†)2 = h̃0(t)+h̃1(t)a†+ h̃2(t)(a†)2 and solve the associated

differential equations. The solutions are equal to the ones for h0(t), h1(t), and h2(t) with
the substitution α → α∗:

etL
†
A

[(
a†
)2

− (α∗)2
]

= e−kt
(
a† − α∗

)2
+ e− k

2
t
[
2α∗

(
a† − α∗

)]
. (6.B.22)

Now, we can calculate the elements of the X and Y matrices. After straightforward but
lengthy calculations, using Eqs. (6.B.21) and (6.B.22) in Eq. (6.B.12) and the following
equalities

D(−α)(a− α) = aD(−α), D(−α)(a† − α∗) = a†D(−α),
(
a2 − α2

)
D(α) = D(α) (a+ 2α) a,

[(
a†
)2

− (α∗)2
]
D(α) = D(α)

(
a† + 2α∗

)
a†,

Tr
{(
a†
)2
a2ρth

A

}
= 2(n1)2, Tr

{
a2
(
a†
)2
ρth
A

}
= 2(1 + n1)2, (6.B.23)

we obtain, for l = 2,

Tr
{
F1ρ

st
A

(
a†
)2
}

=
2
k

[
(n1)2 + 4|α|2n1

]
, Tr

{
F1ρ

st
Aa

2
}

= Tr
{
F2ρ

st
A

(
a†
)2
}

= 0,

Tr
{
F2ρ

st
Aa

2
}

=
2
k

[
(1 + n1)2 + 4|α|2 (1 + n1)

]
. (6.B.24)

Then, the X and Y matrices are easily obtained by inserting Eq. (6.B.24) in Eq. (2.2.25):

X = 4k

(
(n1)2 + 4|α|2n1 0

0 (1 + n1)2 + 4|α|2 (1 + n1)

)
, Y =

(
0 0
0 0

)
. (6.B.25)

Eventually, using Eq. (2.2.26) and setting Λ =
√
X as in the 1ph case, the second order

dynamics of the qubits reads

ρ̇ = −ig
[
α2J+ + (α∗)2 J−, ρ

]
+ LQ(ρ)

+ γ1

[ (
4|α|2n1 + (n1)2

)
DJ+(ρ) +

(
4|α|2 (1 + n1) + (1 + n1)2

)
DJ−

(ρ)

]
. (6.B.26)
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The above equation can be rewritten by operating the following substitutions

γ1

[
4|α|2n1 + (n1)2

]
→ γ2n2

γ1

[
4|α|2 (1 + n1) + (1 + n1)2

]
→ γ2 (1 + n2) , (6.B.27)

where

n2 = n1
n1 + 4|α|2

1 + 2n1 + 4|α|2
, γ2 = γ1

(
1 + 2n1 + 4|α|2

)
. (6.B.28)

In this way, the 2ph model reduced master equation becomes

ρ̇ = −ig
[
α2J+ + (α∗)2 J−, ρ

]
+ LQ(ρ) + γ2

[
n2DJ+ + (1 + n2) DJ−

]
ρ. (6.B.29)

Notice that the quantity n2 can also be written as

n2 = n̄2ω,T +
4n1|α|2

1 + 2n1 + 4|α|2
1 + n1

1 + 2n1
, (6.B.30)

which is another way to display what is shown in Eq. (6.2.3), i.e., the fact that the
effective temperature of the collective bath as seen by the qubits is higher than the actual
temperature T due to the action of the external coherent field on the harmonic oscillator.



Chapter 7

Minimum energy entangled states

As detailed in section 2.1, many quantum information processes rely on entanglement.
Their energetic efficiency can be improved by studying the connection between entangle-
ment and energy. In addition to the potential application, a connection between these
two quantities can be of interest in itself.

In this chapter, we investigate for an arbitrary finite bipartite system the connection
between local energy and entanglement in the case of discrete local Hamiltonians. Firstly,
for any given amount of entanglement, we look for the range of possible values for the
local energy and search for quantum states that reach, respectively, the lower and the
upper bounds on the local energy and we denote them, respectively, by minimum energy

entangled states (MEES) and maximum energy entangled states (MaxEESs). The search
for these extremal states1 is first conducted for pure states and, then, the obtained results
are extended to mixed states. Secondly, we point out the formal connection between
MEESs and MaxEESs and thermal states, we show how MEESs naturally appear as
ground states of some many-body systems and that both MEESs and MaxEESs are
LOCC-connected. Then, we present various proposals to generate MEESs efficiently,
through unitary or dissipative dynamics. Indeed, MEESs are the cheapest states to
generate unitarily but we also show that the energetic cost generation of MEESs is
practically the minimum one for all classes of dissipative dynamics we study. Finally, we
show how the utilization of MEESs in some quantum information protocols can decrease
their energetic cost.

The chapter is organized as follows. Firstly, in section 7.1 we find the form of MEESs
and MaxEESs. Secondly, in section 7.2 we show that they are extremal states even when
considering mixed states. We do this by using some general properties of entanglement
quantifiers for mixed states. Thirdly, section 7.3 explores the connection of these entangled
states with thermodynamics, many-body physics, and LOCC transformations. Then, in
section 7.4, unitary transformation approaches to the generation of MEESs are discussed

1Both MEESs and MaxEESs.
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while, in section 7.5, different approaches based on zero-temperature thermalization
processes are explored. In section 7.6 we present a detailed comparison of the various
methods based on zero-temperature thermalization focusing on a 3 × 4 system. Finally,
in section 7.7 we provide examples of how MEESs can be used to decrease the energetic
cost of some quantum information protocols and, in section 7.8, we give some conclusive
remarks. We provide details of our analysis and explicit calculations in several Appendices.

7.1 Pure states saturating entanglement energy bounds

7.1.1 Definition of the problem

We consider a bipartite system A-B composed of two arbitrary quantum systems A and
B, with local Hamiltonian H = HA + HB, where NA and NB are the dimensions of,
respectively, HA and HB, being NA ≤ NB. HA and HB can be written as

HX =
NX−1∑

n=0

Xn |Xn〉〈Xn| , X = A,B, (7.1.1)

where X0 ≤ X1 ≤ · · · ≤ XNX−1. The above local Hamiltonian H suitably describes
systems at the start and at the end of most quantum protocols, in which the possible
interaction between the subsystems takes place only during the protocol.

We will first consider the case of pure states. In order to quantify the degree of
entanglement of a pure state |ψ〉 of system A-B, we use the entropy of entanglement, that
is regarded as the standard entanglement measure for pure states [91, 92] and is equal to
the Von Neumann entropy of one of the reduced states, i.e., E(|ψ〉) = S(TrA(B){|ψ〉〈ψ|}),
where S(ρ) = − Tr{ρ ln ρ}2.

Every pure state of system A-B can be rewritten according to its Schmidt decompo-
sition3 as [10]

|ψ〉 =
NA−1∑

i=0

√
λi |aibi〉 , (7.1.2)

where 〈ai|aj〉 = 〈bi|bj〉 = δij ,
∑NA−1
i=0 λi = 1, and 0 ≤ √

λNA−1 ≤ · · · ≤
√
λ1 ≤

√
λ0 ≤ 1.

Accordingly, E (|ψ〉) = −∑i λi lnλi.

7.1.2 Minimum energy entangled states (MEESs)

For each value of entanglement, E , multiple sets of squared Schmidt coefficients such
that the correct amount of entanglement is attained can be found. Therefore, let us
concentrate on one of these sets, ~λ ≡ {λi}NA−1

i=0 . In Appendix 7.A, we prove the following
theorem.

2See also section 2.1.3.
3See also Appendix 2.A.2.
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Theorem 7.1.1. For any bipartite system with Hamiltonians HA and HB of the form of

Eq. (7.1.1), given a fixed set of squared Schmidt coefficients ~λ ≡ {λi}NA−1
i=0 with λi ≤ λj

for i > j, no pure state can have less energy than the state

∣∣∣ψ~λ
〉

=
NA−1∑

i=0

√
λi |AiBi〉 =

NA−1∑

i=0

√
λi |Ei〉 , (|Ei〉 ≡ |AiBi〉). (7.1.3)

Moreover, if both HA and HB do not have degeneracies and λi < λj for i > j, the above

state is the only pure state with that energy up to phase factors on the basis kets.

The main idea of the above theorem proof is that, being |ψ〉 =
∑NA−1
i=0

√
λi|aibi〉 any

other pure state with the same Schmidt coefficients of |ψ~λ〉, it holds

〈ψ|H|ψ〉 −
〈
ψ~λ

∣∣∣H
∣∣∣ψ~λ

〉
=

NA−1∑

i=0

λi∆i ≥ 0, (7.1.4)

where ∆i = 〈aibi|H|aibi〉 − 〈AiBi|H|AiBi〉.
Now that we have found the states having minimum energy for a given set of Schmidt

coefficients, we can search for the MEESs. The state given in Eq. (7.1.3) has energy
equal to

E~λ ≡
〈
ψ~λ

∣∣∣H
∣∣∣ψ~λ

〉
=

NA−1∑

i=0

λiEi, Ei = Ai +Bi. (7.1.5)

To minimize E~λ by varying ~λ, we use the following bijection4:

∣∣∣ψ~λ
〉

=
NA−1∑

i=0

√
λi |Ei〉 ↔ ρ̃~λ =

NA−1∑

i=0

λi |Ei〉〈Ei| , (7.1.6)

from which we get E(|ψ~λ〉) = S(ρ̃~λ). Moreover, after introducing

H̃ =
NA−1∑

i=0

Ei |Ei〉〈Ei| , (7.1.7)

we can express the average energy in terms of the density operator ρ̃~λ because 〈ψ~λ|H|ψ~λ〉 =
Tr{H̃ρ̃~λ}. Thus, the problem of minimizing E~λ with respect to ~λ for a given degree of
entanglement E is equivalent to find the diagonal density matrix ρ̃g that minimizes energy
when its entropy S = E is fixed.

Let us suppose that the ground energy level of H̃ is degenerate with degeneration dg.
Then, trivially, when the entropy is lower or equal to ln dg, the minimum energy of ρ̃g is
E0 so that the corresponding MEES has to be found inside the degenerate subspace of
energy E0. In the other case, i.e., E > ln dg, we show in the following that the solution is
given by

ρ̃g =
e−βgH̃

Zg
, where Zg = Tr

{
e−βgH̃

}
, (7.1.8)

4The bijection is valid up to phase factors on the kets |Ei〉.



134 CHAPTER 7. MINIMUM ENERGY ENTANGLED STATES

and βg is the non-negative solution of the equation:
(

−βg
∂

∂βg
+ 1

)
lnZg = E . (7.1.9)

Suppose that it exists a state σ̃g with the same entropy of ρ̃g but lower energy. To
each state ρ we can associate a functional formally equivalent to the free energy5:

F (ρ, H̃, βg) = Tr
{
H̃ρ
}

− 1
βg
S(ρ). (7.1.10)

Then, it holds

F (σ̃g, H̃, βg) − F (ρ̃g, H̃, βg) = Tr
{
H̃σ̃g

}
− Tr

{
H̃ρ̃g

}
< 0, (7.1.11)

but also, as ρ̃g is the thermal state with inverse temperature βg,

F (σ̃g, H̃, βg) − F (ρ̃g, H̃, βg) =
1
βg
S(σ̃g||ρ̃g) > 0, (7.1.12)

where S(ρ||σ) = Tr {ρ (ln ρ− ln σ)}6, which is always positive for σ 6= ρ [12]. Therefore,
σ̃g cannot exist.

It is straightforward to prove that Eq. (7.1.9) always has a unique non-negative
solution, because entropy is a continuous and strictly decreasing function of βg7, and,
moreover, the thermal state assumes the minimum and maximum values of entropy in
the two limit cases βg = 0 (E = lnNA) and βg → ∞ (E → ln dg).

On the basis of Eqs. (7.1.6) and (7.1.8), we finally get:

|ψg〉 =
1√
Zg

NA−1∑

i=0

e−
βg

2
Ei |AiBi〉 , (7.1.13)

as one possible MEES. Its energy can be easily calculated as Eg = −∂βg lnZg. Note
that a whole family of pure states with this amount of local energy and this entropy of
entanglement can be easily constructed from Eq. (7.1.13) by multiplying kets by single
phase factors:

1√
Zg

NA−1∑

i=0

e−
βg

2
Eieiθi |AiBi〉 , with θi ∈ [0, 2π[. (7.1.14)

Because of the theorem 7.1.1, we can say that this family comprehends all the lowest
energy pure states if the two local Hamiltonians HA and HB have no degeneracies8. If
at least one of the Hamiltonians has degeneracies, other states are valid. For example,
suppose that Am = Am+1. Then, the state obtained from Eq. (7.1.13) by swapping |Am〉

5See Eq. (2.A.3).
6This is the relative entropy defined in Appendix 2.A.1.
7This is shown later in Eq. (7.2.4).
8We recall that λi = exp {−βgEi} /Zg, therefore the condition λi > λj for i < j is satisfied.
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Figure 7.1: βg (orange solid line) and βe (blue dashed line) as functions of the entropy
of entanglement (normalized), in the inversed arbitrary units of the local Hamiltonians,
whose spectra are: σ(HA) = {0, 2, 4} and σ(HB) = {0, 1, 6, 9}.

with |Am+1〉 is still a MEES. In general, every state that can be obtained from the state
of Eq. (7.1.13) through the application of energy preserving unitary operators of the form
UA ⊗ UB is one of the lowest energy states.

We stress that Eq. (7.1.9) can be solved numerically in a straightforward way and
that, in the two-qubit case, analytical expressions can be found9. Moreover, we remark
that our treatment is valid for every finite NA and NB , even immensely large. Therefore,
on a physical ground, we conjecture that our analysis holds good even for discrete Hilbert
spaces of infinite dimensions, as in the case of two harmonic oscillators.

7.1.3 Maximum energy entangled states

MaxEESs can be easily obtained by searching for the MEESs when considering the
Hamiltonians H̄A(B) = −HA(B). Hence, if E > ln de, where de is the lowest of the
degeneracies of the maximum eigenvalues of HA and HB, a maximum energy state is
given by

|ψe〉 =
1√
Ze

NA−1∑

i=0

e
βe
2

(Ai+Bi+∆) |AiBi+∆〉 , (7.1.15)

where ∆ = NB − NA, Ze =
∑NA−1
i=0 eβe(Ai+Bi+∆), and βe is the positive solution of the

equation (−βe∂βe + 1) lnZe = E . Similarly to the minimum energy case, the energy
of |ψe〉 can be easily calculated as Ee = ∂βe lnZe. Moreover, the same considerations
made for the minimum energy case about the uniqueness of the state hold good here. If

9We will do this explicitly later in this section.
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E ≤ ln de, then the maximum energy is ANA−1 + BNB−1 and a maximum energy pure
state can be searched in the eigenspace of the highest possible energy.

In general, βg and βe are different, as can be seen in Fig. 7.1, where we plot βg and
βe as functions of E , for a specific 3 × 4 system. However, it is possible to show that
βg = βe when the local spectra eigenvalues are symmetric with respect to a rotation10.
This symmetry is automatically satisfied in the case of two qubits examined later in this
section.

We finally observe that the minimization (maximization) process we have developed
can be easily extended to any other couple of local observables. Indeed, whatever is the
local operator O = OA +OB we want to minimize (maximize) for an assigned value of
entanglement, we can simply assume that HX = OX .

7.1.4 Closed expressions for a two-qubit system

Here, we apply our general results to the case of two qubits, i.e., to the case NA = NB = 2.
By using the purity P 11 of one of the reduced states instead of the entropy of entanglement
E as entanglement quantifier, it is possible to obtain through straightforward calculations
closed analytical expressions both for the MEESs and MaxEESs and for the energy
bounds using Eqs. (7.1.13) and (7.1.15). This is possible thanks to the fact that for a
two-qubit system the von Neumann entropy and the purity can be bijectively connected.
Starting from |ψg〉 =

√
λ|E0〉+

√
1 − λ|E1〉 and imposing (1−λ)/λ = exp[−βg(E1 − E0)],

one can easily obtain

βg = − ln[(1 − λ)/λ]
E1 − E0

, where λ = (1 +
√

2P − 1)/2. (7.1.16)

Analogously, one can find βe = βg. Moreover, we can express the energy bounds as
Eg = λE0 + (1 − λ)E1 and Ee = (1 − λ)E0 + λE1.

7.2 Extension to mixed states

We now show that the bounds derived in section 7.1 are still valid even when we extend
the analysis to mixed states.

First, we need to prove that the lowest energy as a function of the entanglement E
is monotonically increasing and convex12. In the following, 〈H〉 = 〈ψg|H|ψg〉 = Eg and
all the other expectation values refer to the state |ψg〉 as a function of βg. Moreover,
we consider βg > 0 as the case βg = 0 is obtained only in the extremal case E = lnNA.
Then, in the following we consider ln dg < E < lnNA. First of all, we calculate

∂

∂βg
〈H〉 =

(
∂βgZg

)2

Z2
g

−
∂2
βg
Zg

Zg
. (7.2.1)

10In other words, a real constant C exists such that the spectra σ{HA(B)} = −σ{HA(B)} + C.
11The purity of a state ρ is equal to P (ρ) = Tr{ρ2}, see also Eq. 2.1.8.
12Indeed, we will also prove analogous properties for the highest energy.
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Figure 7.2: Representation of the energy-entanglement relation for a mixed state obtained
as a convex sum of four pure states. The assigned energy value (obtained as the average
of the energies of the pure states) and the possible values of entanglement (from zero
to the average of the entanglement values of the single pure states) identify a segment.
This segment always lies between the curves of minimum and maximum energy because
of their monotonicity and convexity properties.

One can easily check that
∂nβgZg

Zg
= (−1)n 〈Hn〉 . (7.2.2)

Then,
∂

∂βg
〈H〉 = 〈H〉2 −

〈
H2
〉
< 0, (7.2.3)

since the states |ψg〉 are never eigenstates of H for the consider interval of E . If we derive
Eq. (7.1.9) with respect to βg we thus obtain

∂βgE = βg∂βg 〈H〉 < 0. (7.2.4)

This means that E(βg) is invertible for E > ln dg. Then, we can use the theorem on the
derivative of the inverse function to show that 〈H〉 is a monotone function of E :

∂E 〈H〉 = ∂βg 〈H〉 × ∂Eβg =
∂βg 〈H〉
∂βgE

=
1
βg

> 0. (7.2.5)

We can now calculate the second derivative of 〈H〉 respect to E :

∂2
E 〈H〉 = ∂E

(
1
βg

)
= − 1

β2
g

× ∂Eβg > 0. (7.2.6)
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Concerning the maximum energy decreasing monotonicity and concavity with respect
to the entanglement, they follow from the fact that the maximum energy is found as the
minimum for the Hamiltonian −(HA +HB).

Contrarily to the pure state case, a standard entanglement quantifier does not exist [34].
However, as reported in section 2.1.3, it is generally required that the convexity property
is satisfied [91, 92], i.e., for any arbitrary quantifier Em

ρ =
∑

i

piρi =⇒ Em(ρ) ≤
∑

i

piEm(ρi), (7.2.7)

where pi ≥ 0 ∀i and
∑
i pi = 1. In addition, we make the standard assumption that Em

applied to pure states is equal to the entropy of entanglement [92].
Every mixed state can be written as a combination of pure states, ρ =

∑
i pi|ψi〉〈ψi|.

Thus, every mixed state has energy equal to Tr {Hρ} =
∑
i pi〈ψi|H|ψi〉 and entanglement

Em(ρ) ≤ ∑
i piEi, where Ei = Em(|ψi〉). Since we proved that the curve Eg(E) (Ee(E)) is

increasing and convex (decreasing and concave), the following chain of relations holds:

Tr {Hρ} ≥
∑

i

piEg(Ei) ≥ Eg

(
∑

i

piEi
)

≥ Eg(Em(ρ)). (7.2.8)

Analogously, it holds that Tr {Hρ} ≤ Ee(Em(ρ)). It follows that, in an energy-entanglement
graph, every mixed state can be found on a segment that is entirely between the minimum
and maximum energy curves. In Fig. 7.2 an example of this situation is clearly shown.

We finally observe that our analysis extends to other entanglement quantifiers with
the following properties13:

1. they are in a one-to-one relation with the entropy of entanglement when the domain
of application is restricted to pure states;

2. they have the convexity property14;

3. the minimum (maximum) energy curve is monotonically increasing (decreasing)
and convex (concave).

This claim becomes intuitive if one thinks that all these requirements let one make the
same reasoning done before, with the substitution of the quantifier E with Em when
applied to pure states, i.e., calculating the energy curves with respect to E(Em). Indeed,
considering as new quantifier Em a bijective function of the quantifier E is equivalent to
apply a transformation along the x-axis to the energy-entanglement graphs. Therefore,
the results on the mixed states obtained with the standard assumptions still apply if this
transformation conserves the convexity and concavity of the two energy curves15 and the
chain of relations of Eq. (7.2.8) becomes:

Tr {Hρ} ≥
∑

i

piEg(E(Ei)) ≥ Eg

(
∑

i

piE(Ei)
)

≥ Eg(E(Em(ρ))). (7.2.9)

13Notice that all these properties together are a weaker version of the standard assumptions made
before.

14See Eq. (7.2.7).
15That is, point 3 in the list of properties.
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7.3 Connections with thermodynamics, entanglement
Hamiltonian, and LOCC

In this section, we comment about connections MEESs and MaxEESs have with thermo-
dynamics, many-body physics, and local operations and classical communication (LOCC)
theory.

7.3.1 Connection with thermodynamics

MEESs and MaxEESs are characterized by coefficients that can be directly linked to
the Boltzmann factors of a fictitious thermal state and, as a consequence, their energy
can be calculated through their fictitious partition function. This is worth mentioning
because entanglement and thermodynamics are believed to be conceptually connected
in the context of typicality [110, 254] and they have various formal analogies when
treated within resource theories such as LOCC and thermodynamic resource theory
(TRT) [34, 120, 255]. In fact, a connection with thermodynamics has been also found in
the study conducted in Ref. [78]. There, the authors dealt with the problem of creating
the maximum amount of correlations16 by employing a limited amount of energy, through
the application of a unitary operator. They considered non-interacting bipartite systems
starting from thermal product states. Since the mutual information is twice the entropy
of entanglement in the zero temperature limit, their problem coincides with our search
for the MEESs. Indeed, they have found that to maximize the correlations one has
to generate states of the form of Eq. (7.1.13). Their proof relies on the concept of
passive states17, thus providing an additional link between our results and the field of
thermodynamics.

It is also interesting to consider the limit case of Eq. (7.1.13) when BNA−1 = BNA−2 =
· · · = B0. In this case, the reduced state of A, ρAg ≡ TrB{|ψg〉〈ψg|}, is equal to

ρAg =
1
Zg

NA−1∑

i=0

e−βgAi |Ai〉〈Ai| , Zg =
NA−1∑

i=0

e−βgAi , (7.3.1)

which is a thermal state with respect to HA at temperature T = 1/(kBβg), where kB is
the Boltzmann constant. This result can be easily obtained without using Eq. (7.1.13)
since in this limit the problem reduces to find the minimum energy state for a fixed
entropy of subsystem A.

7.3.2 Many-body systems with minimal energy states as ground
states

Our results also present connections with some studies based on the entanglement
Hamiltonian formalism, which has been proved to be useful to get various insights in

16Quantified by mutual information, as explained in section 2.1.
17States the energy of which cannot be lowered by unitary operations.
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solid-state physics research [256–260]. It consists of writing the full-rank density matrix18

of a system as ρ = exp(−H), where H is called “entanglement Hamiltonian” [258, 259].
In our case, in fact, when NA = NB, the reduced states of |ψg〉 are19

ρA(B)
g =

1
Zg
e−βg TrB(A){H̃}. (7.3.2)

Thus, the reduced states have been easily written in the entanglement Hamiltonian
formalism with HA(B) = βg TrB(A){H̃}20. In addition, whenever the first NA eigenvalues
of Hamiltonian HB are simply connected with the eigenvalues of HA, it is easy to write
down the entanglement Hamiltonian form of subsystem A only in terms of HA when the
system is in a MEES. For example, when HB = αHA, the entanglement Hamiltonian is
given by HA = βg(1 + α)HA.

Now, we prove that some relevant many-body systems have ground states21 belonging
to the family of MEESs. Following Ref. [258], we consider a bipartite system with
Hamiltonian HT = HA + HB + HI , where HI is the interaction Hamiltonian between
subsystems A and B and we suppose that HI ≫ HA +HB , so that the local Hamiltonian
HA + HB can be treated as a perturbation. If HI has a non-degenerate ground state
|ψ0〉, perturbation theory gives

∣∣ψ′
0

〉
= |ψ0〉 −

NANB−1∑

k=1

|ψk〉
〈ψk|(HA +HB)|ψ0〉

Vk − V0
, (7.3.3)

where |ψ′
0〉 is the perturbed ground eigenstate of HT at first order, |ψk〉 are the eigenstates

of HI , and Vk the eigenvalues. In Ref. [258], the following result has been proved. If:

1. there is only one positive energy ∆ such that 〈ψk|(HA +HB)|ψ0〉 = 0 except when
Vk − V0 = ∆,

2. 〈ψk|HA|ψ0〉 = 〈ψk|HB|ψ0〉 for each k,

3. TrB{|ψ0〉〈ψ0|} ∝ I (this requires NA ≤ NB and implies that |ψ0〉 is maximally
entangled),

then

ρ′
A = TrB{

∣∣ψ′
0

〉〈
ψ′

0

∣∣} =
e−HA

Z
=

1
Z

exp
(

− 4
∆
HA

)
, (7.3.4)

where Z = TrA{e−HA} assures correct normalization.

18A full-rank density matrix has every eigenvalue strictly higher than zero.
19We define ρBg ≡ TrA{|ψg〉〈ψg|}.
20This can be done for ρAg even when NA < NB by limiting the trace on B to the first NA basis

vectors |Bi〉.
21More precisely, these ground states are not exact since they are obtained by making certain

assumptions and approximations.
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The systems analyzed in Ref. [258], indeed, satisfy the above conditions, but also
have the same dimension and HA = HB. Therefore, a MEES on these systems takes the
form

|ψg〉 =
1√
Zg

NA−1∑

i=0

e−βgAi |AiBi〉 , (7.3.5)

since Ei = Ai +Bi = 2Ai. The reduced state of system A is then given by

ρA =
1
Zg

exp(−2βgHA). (7.3.6)

By comparing the above equation with Eq. (7.3.4), one sees that the ground states of
these systems are MEESs with βg = 2/∆. This can be seen also using in Eq. (7.3.2) the
fact that TrB(A){H̃} = 2HA(B).

7.3.3 Minimum (maximum) energy entangled states are
LOCC-connected

Here, we show that MEESs are connected by LOCC operations and that the same holds
for MaxEESs. Nielsen’s theorem22 states that a pure state |ψ〉 can be converted to a
pure state |φ〉 through LOCC if and only if ~λψ ≺ ~λφ23, where ~λψ is the vector of the
eigenvalues of one of the reduced states of the subsystems for a given state of the total
bipartite system [10]. In other words, putting the eigenvalues in non-increasing order, for
every N ≤ NA

N−1∑

j=0

λψi ≤
N−1∑

j=0

λφi . (7.3.7)

We now show that the above majorization condition is satisfied between two MEESs24

when the starting one has not less entanglement than the final one. If the two MEESs
have the same entanglement, then they have the same parameter βg. In this case the
majorization condition is trivially satisfied. Then, let us analyze the case when the two
states have a different βg.

We define as follows the sum of the first N elements of the vector ~λψg(βg):

λN (βg) =
∑N−1
i=0 e−βgEi

Zg
, (7.3.8)

22We introduced Nielsen’s theorem in section 2.1.2. However, we restate it here for the reader’s
convenience.

23One says that ~λφ majorizes ~λψ, see section 2.1.2.
24See Eq. (7.1.13).



142 CHAPTER 7. MINIMUM ENERGY ENTANGLED STATES

where, we recall, Ei = Ai +Bi. Then, we can show that ∂βλN (βg) ≥ 0 ∀N :

Z2
g∂βgλN (βg) =

(
N−1∑

i=0

e−βgEi

)

NA−1∑

j=0

Eje
−βgEj


−



NA−1∑

j=0

e−βgEj



(
N−1∑

i=0

Eie
−βgEi

)

=

(
N−1∑

i=0

e−βgEi

)

N−1∑

j=0

Eje
−βgEj +

NA−1∑

j=N

Eje
−βgEj


+

−


N−1∑

j=0

e−βgEj +
NA−1∑

j=N

e−βgEj



(
N−1∑

i=0

Eie
−βgEi

)

=

(
N−1∑

i=0

e−βgEi

)

NA−1∑

j=N

Eje
−βgEj


−



NA−1∑

j=N

e−βgEj



(
N−1∑

i=0

Eie
−βgEi

)

=
N−1∑

i=0

NA−1∑

j=N

(Ej − Ei) e−βg(Ei+Ej) ≥ 0, (7.3.9)

where the last equality holds because Ej ≥ Ei by definition. This means that βg >
β′
g =⇒ λN (βg) ≥ λN (β′

g) ∀N , thus proving the majorization condition25. We recall that
βg increases as the entanglement decreases. Analogously, one can show that MaxEESs
can be obtained from one another through LOCC if the starting state has not less
entanglement than the final one.

This result has an immediate consequence: for any arbitrary pure state of the bipartite
system one can easily individuate a family of LOCC-connected pure states including the
state at hand. Every pure state can be written as follows

|ψ〉 =
r−1∑

i=0

√
λi |aibi〉 , λ0 ≥ λ1 ≥ . . . λr−1 > 0, (7.3.10)

where we used the Schmidt decomposition of |ψ〉 having Schmidt rank r. Since Nielsen’s
theorem does not depend on the space containing the two states we want to connect by
LOCC [10], we can consider two local Hermitian operators OA and OB of dimension r
such that:

|ψ〉 =
1√
ZO

r−1∑

i=0

e−
βg

2
(ai+bi) |aibi〉 , (7.3.11)

where ai(bi) are the eigenvalues of the local operator OA(B) with eigenstates |a(b)i〉, and
1/

√
ZO is a normalization factor. These Hermitian operators have eigenstates determined

by the Schmidt decomposition of |ψ〉, but their eigenvalues are only constrained by the
condition

ai + bi = − 1
βg

(lnλi + lnZO) . (7.3.12)

25The equality sign holds only when E0 = E1 = · · · = ENA−1
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By also requiring that OA and OB have non-decreasing eigenvalues, the state |ψ〉 can
be regarded as a state analogous to a MEES, in an Hilbert space of dimension r2, with
respect to the average of an entire family of operators O = OA +OB. It is easy to see
that the same state can be considered as a state analogous to a MaxEES with respect to
the average of operators O′ = −O.

Since we have shown that MEESs and MaxEESs are, respectively, LOCC-connected
among themselves, this also holds for the states minimizing and maximizing the average
of O or O′. It follows that, for any given pure state, one can immediately write down
a family of states that are connected to it. For example, starting from the state of
Eq. (7.3.10), corresponding to a given βg, one can obtain through LOCC the following
states

∣∣∣ψ′(β′
g)
〉

=
1√
ZO

r−1∑

i=0

e−
β′
g

2
(ai+bi) |aibi〉 , (7.3.13)

where β′
g > βg. On the other hand, the state of Eq. (7.3.10) can be obtained by the

above states with β′
g < βg.

The family of states LOCC-connected to an arbitrary state is unique26. Indeed,
changing the value of βg or adding additive constants to the Hermitian operators OA
and OB does not change the family of reachable states27. Moreover, seeing the state |ψ〉
as a MaxEES determines the exact same family of LOCC-connected states as seeing it as
a MEES since every MEES of Eq. (7.3.13) can be seen as a MaxEES because O′ = −O.

Another consequence of the fact that MEESs are LOCC-connected is that if two distant
parties share a MEES having more entanglement than needed, they can recover, with
certainty, the maximum amount of local energy compatible with the needed entanglement.

7.4 Unitary generation of MEESs

In this section, we provide three explicitly constructed unitary operators which implement
the transition |E0〉 → |ψg〉28. These operators can be easily decomposed into other
ones. Despite the fact that these three operators share a similar mathematical structure,
they strongly differ in their physical implementation because the first one, US , can be
decomposed as a product of non-local simple operators while the other two, ŨA and
ŨB, are compositions of simple local unitary operators and a single generalized CNOT
gate [62] applied as last operation.

Before stating the explicit forms of these unitary operators, it is worth commenting
about the energy distribution of the pure states corresponding to the same amount of
entanglement. We have made several numerical simulations finding, in all the studied

26Up to local unitary operators.
27See Eqs. (7.3.11) and (7.3.13).
28The state |E0〉 is the most natural choice for the starting state since, in many cases, it can be easily

obtained as the result of an approximate zero-temperature thermalization. Indeed, if the energy gaps
between the ground and the first excited level of the Hamiltonian HA +HB is much higher than kBT ,
where T is the temperature of the bath, the steady state of the dynamics, i.e., the thermal state at
temperature T is a very good approximation of the ground state.
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Figure 7.3: Distribution of 109 randomly generated pure states with respect to the
entropy of entanglement and the local energy in a 1000 × 1000 grid. The Hamiltonians
have spectra: σ(HA) = {0, 2, 4} and σ(HB) = {0, 1, 6, 9} in arbitrary units. Both the
entanglement and the energy are normalized with respect to their maxima.

configurations, that the density of states in the proximity of the bounding curves is
extremely low, except for the two-qubit case and highly degenerate cases. In fact, the
main part of the states occupy the intermediate region, and the discrepancy between the
peripheral and central densities becomes higher and higher as the dimensionality of the
systems increases. We report here, as an example, the density of states corresponding to
two local Hamiltonians having spectra given by σ(HA) = {0, 2, 4} and σ(HB) = {0, 1, 6, 9}
in arbitrary units. In particular, in Fig. 7.3 we show the two curves defining the energy
bounds for assigned entanglement and the distribution of a large number of randomly
generated pure states [261]29. It is well visible that the majority of the states lies in the
central zone, while none of the generated states is very close to the bounding curves.
This circumstance allows one to better appreciate the relevance of MEESs and unitary
operators able to generate them. Indeed, in an entanglement generation process, one
can choose to generate the state |ψg〉 having the lowest energy for the desired amount of
entanglement, instead of any of all the other states which require more energy. We finally
observe that the randomly generated states numerically satisfy the known theoretical
expected averages both in entanglement and energy [110, 262, 263].

7.4.1 A global unitary transformation

We obtain the operator US as a change of basis between the eigenbasis of the Hamiltonian
H0 and a new basis obtained by applying the Gram-Schmidt orthogonalization process to

29The behavior of βg and βe for the same system is shown in Fig. 7.1.
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the set of linearly independent vectors {|φ〉 , |E1〉 , . . . , |ENA−1〉}, where |φ〉 has the form

|φ〉 =
NA−1∑

i=0

eiθi
√
λi |Ei〉 . (7.4.1)

The rest of the basis, i.e., all the vectors |AiBj〉 with i 6= j, are left unchanged. By
varying the state |φ〉, a family of unitary operators is obtained. This procedure, presented
in detail in Appendix 7.B for a more general case, here leads to the vectors

∣∣∣φSk
〉

=
γk |Ek〉 − ei(θ0−θk)

√
λ0λk |E0〉 −∑NA−1

i=k+1 e
i(θi−θk)

√
λkλi |Ei〉√

γkγk−1
, (7.4.2)

where 1 ≤ k ≤ NA − 1, γk = 1 −∑k
i=1 λi, and γ0 = 1.

Denoting
∣∣∣φS0

〉
= |φ〉, the unitary operator US takes the form

US =
NA−1∑

k=0

∣∣∣φSk
〉〈
Ek
∣∣∣+

NA−1∑

i=0

NB−1∑

j=0,j 6=i

|AiBj〉〈AiBj | . (7.4.3)

By choosing |φ〉 = |ψg〉, this family of operators provides an explicit construction for an
operator making the |E0〉 → |ψg〉 transition.

Interestingly, the operator US can be decomposed as the product of simple non-local
operators30

US =
NA−1∏

i=1

US,i, (7.4.4)

where, for 1 ≤ i < NA,

US,i =

√
γi
γi−1

(|E0〉〈E0| + |Ei〉〈Ei|)+
√

λi
γi−1

(
eiθi |Ei〉〈E0| − e−iθi |E0〉〈Ei|

)
+I⊥,i, (7.4.5)

while, for i = NA,
US,NA = eiθ0 |E0〉〈E0| + I − |E0〉〈E0| , (7.4.6)

being I the identity operator on the whole Hilbert space and

I⊥,i =
∑

j 6=0,i

|Ej〉〈Ej | +
NA−1∑

i=0

NB−1∑

j=0,j 6=i

|AiBj〉〈AiBj | (7.4.7)

the identity operator on the subspace perpendicular to the one spanned by |E0〉 and
|Ei〉. From a practical point of view, this may not be the best way to decompose the
operator US , as it implies the application of NA − 1 two-qudit gates, followed by a phase
change. However, a similar decomposition is very fruitful for the MSSG unitary operators
described in the next subsection. Since each component of the above decomposed form

30See Appendix 7.B for the proof.
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of the operator US acts on the whole Hilbert space of system S, we refer to it also as the
global unitary operator, as opposed to the MSSG31 ones.

Even if in this section we concentrate on the generation of MEESs for a fixed
entanglement, we remark that by applying the Gram-Schmidt procedure to the set
{|ψ〉 , |A0B1〉 , |A0B2〉 , . . . , |ANA−1BNB−1〉}, the resulting family of operators can describe
any transition from |E0〉 to almost any state |ψ〉 of the Hilbert space of system S. A
solvable exception is the case when the target state is orthogonal to the initial state |E0〉32.
Anyway, the simple form of the MEESs allow the unitary operators to be simpler when
connecting |E0〉 to one of them compared to when the target state is arbitrary. Indeed,
the Schmidt decomposition of a MEES involves only the states |Ei〉, as in Eq. (7.4.1),
where every coefficient λi is a simple function of the same parameter βg. Moreover, the
target MEES can be chosen with all the phases equal to zero. In general, in the case of
an arbitrary target state the resulting unitary operator will be represented by a NS ×NS

matrix of non-trivial elements as opposed to the smaller number of non-trivial NA ×NA

elements of the matrix associated to Eq. (7.4.3) which holds for target states like those of
Eq. (7.4.1). The possibility to generate practically every state will be used in section 7.5
to compare the behavior of the MEESs to all the other states in the zero-temperature
thermalization approach.

7.4.2 Mostly single-system gates (MSSG) unitary transformations

Another unitary transformation mapping |E0〉 to an arbitrary state |φ〉 of the form of
Eq. (7.4.1) is the one composed as follows33. A local unitary operator UA acts as the
previous operator US of Eq. (7.4.3) but on system A, i.e.,

UA =
NA−1∑

k=0

∣∣∣φAk
〉〈
Ak
∣∣∣ , (7.4.8)

where each
∣∣∣φAk

〉
is equal to

∣∣∣φSk
〉

of Eq. (7.4.2) with the substitution |Ei〉 → |Ai〉.
Applying UA to |A0〉 induces the following transition

|A0〉 → |Ag〉 =
NA−1∑

i=0

eiθi
√
λi |Ai〉 . (7.4.9)

Exactly like US , even UA can be decomposed as a sequence of elementary two-dimensional
rotations followed by a local phase change,

UA =
NA∏

i=1

UA,i, (7.4.10)

31We recall that MSSG stands for mostly single-system gates.
32The states which have zero projection on |E0〉 can indeed be obtained by means of simple modifications

of the method. See the relevant discussion in Appendix 7.B.
33The particular case |φ〉 = |ψg〉 is obtained when

√
λi = e−

βg
2
Ei/
√
Zg.
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where, for 1 ≤ i < NA,

UA,i=

√
γi
γi−1

(|A0〉〈A0| + |Ai〉〈Ai|) +

√
λi
γi−1

(
eiθi |Ai〉〈A0|−e−iθi |A0〉〈Ai|

)
+
∑

j 6=0,i

|Aj〉〈Aj | ,

(7.4.11)
while, for i = NA,

UA,NA = eiθ0 |A0〉〈A0| +
NA−1∑

i=1

|Ai〉〈Ai| . (7.4.12)

After having obtained |Ag〉, a single instance of the generalized CNOT gate [62] can
be applied to obtain |φ〉. For the CNOT gate we use the following form34,

UGA =
NA−1∑

i,j=0

|AiBi⊕j〉〈AiBj | +
NA−1∑

i=0

NB−1∑

j=NA

|AiBj〉〈AiBj | , (7.4.13)

where i ⊕ j = (i + j) mod NA. Therefore, the final unitary operator is given by
ŨA = UGAUA. The main advantage of using this technique is that, being UA local, only
a single standard two-qudit gate has to be used to construct ŨA. Moreover, we have
provided an explicit decomposition of UA in terms of elementary operations.

A similar procedure can be implemented by applying on system B a local unitary
operator UB acting on system B analogously to how UA acts on system A35 and then
using a CNOT gate, UGB , defined analogously to UGA by reversing the role of qudits A
and B for the first NA levels of both systems, i.e.,

UGB =
NA−1∑

i,j=0

|Ai⊕jBj〉〈AiBj | +
NA−1∑

i=0

NB−1∑

j=NA

|AiBj〉〈AiBj | . (7.4.14)

In this case, the final unitary operator is given by ŨB = UGBUB. We remark that,
contrarily to US36, the operators ŨA and ŨB do not allow to move from |E0〉 to any other
state. In fact, by construction only states such as those of Eq. (7.4.1) can be obtained37.

The implementation of ŨA and ŨB in quantum circuits is expected to be largely
simplified by the fact that they are given in terms of simple two-level local rotations and
a local change of phase on a subsystem, and, subsequently, of a generalized CNOT gate
on the bipartite system.

We finally observe that the decompositions of the three unitary operators provided in
this section are given in terms of operators that never lower the energy of system S. This

34In Ref. [62] the CNOT gate is given for a bipartite system composed of two qudits with the same
dimensions. Here, we have used what seemed to us the most natural extension of the CNOT gate operator,
i.e., using system B as a qudit of dimension NA. Therefore, we apply the CNOT gate such that it involves
only the first NA levels of both systems.

35In particular, the operator UB acts as UA on the first NA levels of system B, while leaving unvaried
the others.

36Or its modified form for target states orthogonal to |E0〉, detailed in Appendix 7.B.
37In this case too, the procedure should be modified in the case of target states orthogonal to |E0〉.
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could be useful towards an efficient implementation of these operators since the apparatus
implementing the unitary operators never has to recover energy from system S during
the process. Moreover, we remark that these unitary protocols can be used even if the
starting state ρ is not exactly the ground state |E0〉 but a good approximation of it, i.e.,
such that the fidelity F (ρ, |E0〉〈E0|) is very near one. The fidelity for an arbitrary mixed
state σ and an arbitrary pure state |ϕ〉〈ϕ| is equal to F = 〈ϕ|σ|ϕ〉. Indeed, one can easily
check that for any suitable unitary operator U generating the required state U |E0〉, the
final fidelity is equal to the initial one since F (UρU †, U |E0〉〈E0|U †) = F (ρ, |E0〉〈E0|).

7.5 MEESs generation through zero-temperature
thermalization

In this section, we consider a different way to generate the states |ψg〉 exploiting a
zero-temperature thermalization protocol. This protocol consists in turning on a suitable
interaction between systems A and B, each of which had already thermalized to its own
thermal state, while they are also weakly coupled to a common bath at zero temperature.
Since T = 0 and we consider the ground level to be non-degenerate the thermal states
correspond to the respective ground states. After the thermalization takes place, the
coupling with the bath is suppressed and the interaction between A and B is turned off.
In particular, here we make the assumption that the phases of turning on and off the
interaction are so rapid that the state of the system is practically constant during the
corresponding time intervals.

We considered this kind of protocols in the thermodynamic context of work extraction
from a resource in chapter 3, where the efficiency of such protocols has been discussed.
At zero temperature, the ideal efficiency and the expended energy of this protocol is
given by

η =
〈ψ|H0|ψ〉 − E0

Eexp
, Eexp = 〈E0|HI |E0〉 − 〈ψ|HI |ψ〉 , (7.5.1)

where HI is the interaction term that we turn on and off and |ψ〉 is the ground state of
the Hamiltonian H = H0 +HI . In the above formula for η, the numerator represents
the energy stored in system S at the end of the protocol minus the initial one, while
the denominator is the minimum amount of expended energy to turn on and off the
interaction. Therefore, we can call the denominator alone Eexp, standing for “expended
energy”. If our only concern is to maximize the entanglement production with respect
to the used energy, then it is more important to minimize Eexp instead of maximizing
η. We stress that this quantity represents the minimum energy required to perform the
thermalization protocol. It corresponds to the actual amount of expended energy only in
the ideal case when all energy losses take place only during the thermalization of the
system.

To produce a MEES, |ψg〉, we need to find an interaction Hamiltonians HI making
|ψg〉 the ground state of the Hamiltonian H = H0 +HI . As an example, let us do this
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by hand in the case of two qubits. The two-qubit Hamiltonian is

H0 =
~ωA

2
σAz +

~ωB
2
σBz , (7.5.2)

where σXz is the z-Pauli matrix of qubit X (X = A,B). As basis for H0 we use
|00, 01, 10, 11〉, where, for each qubit, σXz |1〉 = |1〉 and σXz |0〉 = − |0〉. We choose an
interaction term such that new Hamiltonian H = H0 +HI is given by:

H =
~ωA

2
σAz +

~ωB
2
σBz +

~g

2

(
σAx σ

B
x − σAy σ

B
y

)
. (7.5.3)

Let us define ω = (ωA+ωB)/2 and δA = (ωA−ωB)/2, then the matrix of the Hamiltonian
H in the basis {|00〉 , |01〉 , |10〉 , |11〉} is

H = ~




−ω 0 0 g
0 −δA 0 0
0 0 δA 0
g 0 0 ω


. (7.5.4)

The eigenstates and the corresponding eigenvalues are:

|ψe〉 = sin γ |00〉 + cos γ |11〉 , λe =~

√
ω2 + g2, |ψ+〉 = |10〉 , λ+ = ~δA,

|ψg〉 = cos γ |00〉 − sin γ |11〉 , λg = − ~

√
ω2 + g2, |ψ−〉 = |01〉 , λ− = −~δA,

(7.5.5)
where tan γ = g

ω+
√
ω2+g2

. The state |ψg〉 has always the lowest energy. By properly

choosing g, one can obtain any linear combination38 of |11〉 and |00〉 desired, i.e., one
can obtain a MEES at any given entanglement.

In the following two subsections, we deal with the problem of finding some suitable
interaction Hamiltonians leading to the desired ground state through methods that can
work for any bipartite system.

7.5.1 A simple and a modified simple approach

The easiest total Hamiltonian leading to the desired MEES through a zero-temperature
thermalization is

Hsi
S = −VS |ψg〉〈ψg| , (7.5.6)

where VS > 0. This Hamiltonian has |ψg〉 as non-degenerate ground state and a degenerate
excited subspace of dimension NS − 1. The interaction term needed to obtain this
Hamiltonian is

Hsi
I = −VS |ψg〉〈ψg| −H0. (7.5.7)

From the mathematical point of view, the parameter VS can assume any positive
value. However, absolute zero temperature is never physically attainable. Therefore, VS

38Up to phase factors.
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must be high enough so that, for a sufficiently low temperature, the energy gap between
the ground state and the excited states is high enough to make good the zero-temperature
approximation. In particular, with this Hamiltonian one also has to consider the high-
degeneration of the excited level. In the thermal state, the population ratio between the
ground state and the degenerate excited level is

pe
pg

= (NS − 1)e−βVS , (7.5.8)

where β = 1/ (kBT ) is the inverse temperature, kB is the Boltzmann constant, and T
is the temperature of the bath. Therefore, the larger the subsystems A and B are the
higher VS has to be in order to make the above ratio sufficiently small, consistently with
the zero-temperature approximation.

The Hamiltonian of Eq. (7.5.6) can be improved by considering that |ψg〉 has not
all the components in the bare basis, but only NA components. For simplicity, let us
consider that A0 = B0 = 0 and A1, B1 > 0. Then, one could use the following interaction
term:

H̃si
I = −VM |ψg〉〈ψg| −

NA−1∑

i=0

Ei |Ei〉〈Ei| , (7.5.9)

where VM > 0. By using this interaction term, the total Hamiltonian Hsi
M = H0 + H̃si

I

has again |ψg〉 as its ground state but the degeneracy of the first excited level is only
NA − 1.

Let us define ∆ = min(A1, B1). Now, we make the assumption that the first excited
level of H0 is non-degenerate and that the other excited levels are enough higher than the
first one so that the condition e−β∆ ≪ 1 implies that the zero-temperature approximation
for H0 is valid. The value of VX39 such that the population ratio between the ground
and first excited level is the same for H0 and for Hsi

X
40 results equal to

VX ≃ ∆
[
1 +

ln(NX − 1)
β∆

]
, (7.5.10)

where NS has already been defined as NS = NANB and NM = NA. When VX has such
value, we can be certain that the zero-temperature approximation holds also after having
turned on the interaction term.

When using this interaction term to enable the protocol41, its efficiency and the
expended energy for the generation of a MEES |ψg〉 are easily obtained from Eq. (7.5.1)
as

η =
Eg
Eexp

, Eexp = Eg + VX (1 − λ0) , (7.5.11)

where we recall that the energy of the MEESs, Eg, is given under Eq. (7.1.13) and where
λ0 can be computed from Eq. (7.1.14). For the generation of states |φ〉 having the form

39Where X = S,M depending on which case is analyzed.
40Compare with Eq. (7.5.8).
41Again with A0 = B0 = 0 for simplicity.
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of Eq. (7.4.1), Eq. (7.5.11) holds by replacing Eg with the energy of the state |φ〉 and
using for λ0 its actual value for this state.

We notice that, using Eq. (7.5.7), any arbitrary state of system S can be generated as
the result of the thermalization by replacing |ψg〉 with the desired state |ψ〉. Therefore, it
is possible to compare how MEESs behave with respect to all the other states. We already
know from section 7.1.2 that, for a fixed amount of entanglement, 〈ψ|H0|ψ〉 is minimized
by |ψg〉. On the other hand, for a fixed entanglement, VX (1 − λ0) is minimized by taking
the largest possible value of λ0. Therefore, from a mathematical point of view, the states
which minimize Eexp for a given entanglement are not the MEESs. However, in all the
simulations we have run, as in the example shown in section 7.6, the Eexp associated
to the MEESs result to be very close to the real minima of Eexp so that in practical
applications one can directly choose to generate the MEESs if the aim is to minimize the
expended energy. Specializing to the case of Eq. (7.5.9), we have been able to find the
analytical solution for the states minimizing Eexp, as shown in Appendix 7.C. We also
remark that using this simple modified approach, only states like those of Eq. (7.4.1) can
be obtained by replacing |ψg〉 with |φ〉 in Eq. (7.5.9).

7.5.2 A unitary transformation approach

Another way to obtain a new Hamiltonian having |ψg〉 as its ground state is to apply
a transformation of the kind UH0U

† to the original Hamiltonian H0, with a unitary
operator U such that U |E0〉 = |ψg〉. This has the advantage that when both systems A
and B can be considered in their ground state, i.e., the zero-temperature approximation
is well satisfied for both of them, then it will be valid also after the turning on of the
interaction term since a unitary transformation does not change the spectrum of the
Hamiltonian H0. It follows that the zero-temperature thermalization will bring the
system to the new ground state |ψg〉. Within this approach, the interaction term assumes
the form:

HI = UH0U
† −H0. (7.5.12)

We already know three different unitary operators assuring the requested transition,
U |E0〉 = |ψg〉, from section 7.4. In the next two subsections we describe the interaction
Hamiltonians that they generate.

HI from the global unitary operator

Applying the unitary operator US of Eq. (7.4.3) in Eq. (7.5.12), one can obtain the
explicit form of HI

42. Here, we report the results in the case of target states of the form
of Eq. (7.4.1) by only focusing on the NA ×NA terms that are non trivial, i.e., all the
terms of the kind |AiBi〉〈AjBj |. The remaining part of the matrix is just filled with
zeroes. Denoting X0 = 〈E0|HI |E0〉 /λ0, where

〈E0|HI |E0〉 = E0(λ0 − 1) + λ0

NA−1∑

i=1

λiEi
γiγi−1

, (7.5.13)

42This is done in Appendix 7.D for a general target state |ψ〉.
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Xi ≡ E0 − Ei
γi−1

+
i−1∑

k=1

λkEk
γkγk−1

, for 1 ≤ i ≤ NA − 1, (7.5.14)

and Λi,j = ei(θi−θj)
√
λiλj , we arrive at the matrix of HI ,

HI =




Λ0,0X0 Λ0,1X1 Λ0,2X2 . . . Λ0,nXn

Λ1,0X1 Λ1,1X1 Λ1,2X1 . . . Λ1,nX1

Λ2,0X2 Λ2,1X1 Λ2,2X2 . . . Λ2,nX2
...

...
...

. . .
...

Λn,0Xn Λn,1X1 Λn,2X2 . . . Λn,nXn



, (7.5.15)

where n = NA − 1.
Using Eqs. (7.4.2), (7.4.3), (7.5.1), and (7.5.12), and setting E0 = 0, the efficiency of

the thermalization protocol for target states like those of Eq. (7.4.1) results to be equal
to43

η =
∑NA−1
i=1 λiEi
ESexp

, ESexp =
NA−1∑

i=1

λiEi

[
1 +

λ0

γiγi−1

]
. (7.5.16)

One can also show that the expended energy ESexp cannot be higher than 2ENA−1
44.

HI from the MSSG unitary operators

Other two interaction terms can be obtained by the application of the local unitaries UA
and UB of section 7.4.2, together with the, respective, generalized CNOT gate. Since the
two MSSG operations have the same structure, we will concentrate on the case of ŨA.

The operator UA acts on |Ai〉 as US acts on |Ei〉, therefore one can write the matrix
UAHAU

†
A +HB as45

NA−1∑

i,j=0

NB−1∑

k=0

[
δi,j (Ai +Bk) + Λi,jXA

i,j

]
|AiBk〉〈AjBk| , (7.5.17)

where XA
i,j refers to the correspondent Xα of the matrix of Eq. (7.5.15) with all the Ei

replaced by Ai46, δi,j is the Kronecker delta, and

α =

{
max(i, j), if ij = 0,

min(i, j), if ij 6= 0.
(7.5.18)

43For more details, see Appendix 7.E, where the computation is performed for an arbitrary state |ψ〉.
44See Appendix 7.E for the derivation of this inequality in a more general case.
45See Eqs. (7.5.12) and (7.5.15).
46The coefficients λi remain the same, even for the case of a MEES [Eq. (7.1.13)].
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Then, applying the generalized CNOT gate UGA and subtracting the original Hamiltonian
H0, we obtain

HI =
NA−1∑

i,j,k=0

{[
δi,j (Bk −Bi⊕k) + Λi,jXA

i,j

]
|AiBi⊕k〉〈AjBj⊕k|

}

+
NA−1∑

i,j=0

NB−1∑

k=NA

Λi,jXA
i,j |AiBk〉〈AjBk| . (7.5.19)

Even for this approach, we can calculate the efficiency of the thermalization protocol
and the expended energy for target states like those of Eq. (7.4.1)47. Setting A0 = B0 = 0,
we get

η =
∑NA−1
i=1 λiEi
EAexp

, EAexp =
NA−1∑

i=1

[
λi

(
Ei +

λ0Ai
γiγi−1

)]
. (7.5.20)

Notice that the MSSG approach based on ŨA is always more efficient than the global
one when aiming at the same state, since

ESexp − EAexp = λ0

NA−1∑

i=1

λiBi
γiγi−1

≥ 0, (7.5.21)

while the numerators of the efficiencies are the same in the two cases. This conclusion
also holds for the MSSG approach based on ŨB, for which a formula analogous to the
one of Eq. (7.5.20) applies, where the quantities Ai and Bi are swapped.

With regard to which approach is more efficient between the two possible MSSG
approaches, the answer is model dependent, as it strongly depends on the spectra of both
local Hamiltonians. In this case, the difference is given by

EBexp − EAexp = λ0

NA−1∑

i=1

λi (Bi −Ai)
γiγi−1

. (7.5.22)

As we will see in the example of section 7.6, which of the two approaches requires
more energy depends also on how much entanglement is demanded.

7.6 Analysis of the zero-temperature thermalization
protocols for a three by four system

The simpler system to which we could apply the thermalization protocol is a system
composed of two qubits. However, the two-level structure makes most results trivial
and not meaningful in general so that the analysis of this section is devoted to a bigger
system case. For completeness, in Appendix 7.G we report all the explicit formulas for a
two-qubit system.

47See Appendix 7.F for the calculations.
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Figure 7.4: Distribution of randomly generated pure states with respect to the entropy
of entanglement, E , and the efficiency of the protocol (a) or the amount of energy
used to create them (b). For these plots, the thermalization protocol is based on the
simple approach. The relevant Hamiltonians have spectra: σ(HA) = {0, 2, 4} and
σ(HB) = {0, 1, 6, 9} in arbitrary units. Both the entanglement and the expended energy
are normalized to one, respectively, with respect to ln(3) and 2 max σ(H0). Each graph
is the result of an interpolation of 109 random states distributed in a 1000 × 1000 grid,
which covers the whole range of values (even those not shown on the graph; e.g., the grid
of efficiency goes from zero to one). The colors correspond to log10(1 + c), where c is the
number of states in each grid element. In the bar legend, we report the value of 1 + c, so
that, e.g., 1 corresponds to the case of counting equal to zero. The blue lines give the
position of the MEESs. Regarding the efficiency, we notice that it is quite high for every
state and that the MEESs are among the worst ones. However, regarding the expended
energy, they are much cheaper than the vast majority of all the possible pure states that
can be generated.

In section 7.4 we analyzed a 3 × 4 system with spectra σ(HA) = {0, 2, 4} and
σ(HB) = {0, 1, 6, 9} in arbitrary units. Here, we analyze the thermalization protocol
applied to the same system, focusing on the behaviour of the MEESs with respect to all
the other states that every specific interaction Hamiltonian we devised could produce.

Let us start from analyzing the simple case interaction of Eq. (7.5.7). Since in
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Figure 7.5: Same plots of Fig. 7.4 but with the thermalization protocol based on the
modified simple approach. Here, we have used a different set of states with respect to the
case of Fig. 7.4, since the modified simple approach cannot generate all the states but
only those having the form of Eq. (7.4.1). In particular, we have randomly generated
109 pure states of this latter kind. As in Fig. 7.4, the efficiency is quite high for every
generated state, with the MEESs being among the worst ones but also costing less than
the vast majority of all the possible pure states that can be obtained.

Eq. (7.5.6) |ψg〉 can be replaced by any pure state of system S, any state can be obtained
through a zero-temperature thermalization associated to Hsi

S . Fig. 7.4 shows two plots
relating the entanglement of 109 randomly generated pure states to, respectively, their
generation efficiency η and their energy cost Eexp. The MEESs, represented by the blue
lines, are not the best ones with respect to the efficiency, but, in general, they cost much
less than the vast majority of all the possible pure states that can be generated. In effect,
even if they are not the states mathematically minimizing the expended energy, numerical
solutions of the minimization problem show, in all systems that we have simulated, that
they are very close to them.

With the interaction Hamiltonian of the modified simple approach of Eq. (7.5.9), since
VM < VS

48, we get an higher efficiency compared to the one we could get by reaching

48See Eq. (7.5.10)
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the same states with the non-modified simple approach49. However, the modified simple
approach lets us to obtain only states like those of Eq. (7.4.1). Fig. 7.5 shows the same
two plots of Fig. 7.4 but using a sample of 109 randomly generated states that can be
obtained through the modified simple approach. Indeed, the difference of the sample
set is the main responsible for the great difference between the distributions of Fig. 7.4
and Fig. 7.5. Even in this case, the MEESs, represented by the blue lines, are not the
best ones with respect to the efficiency. Regarding the expended energy, they are still
among the cheapest states, but the distribution accumulates on the boundaries contrarily
to the case of Fig. 7.4(b). By zooming enough in the graph50, it is possible to see that
some of the generated states are cheaper than the MEESs. We recall that, in this case
only, we were able to find a simple analytical solution of the minimization problem,
reported in Appendix 7.C. As in the simple approach case of Fig. 7.4, the solutions of
the minimization problem show, in all systems that we have simulated, that MEESs
are very close to the states minimizing the expended energy. We also notice that the
maximum value of the efficiency with respect to the normalized entanglement starts to
change around ln(2)/ ln(3) ≃ 0.631. This is probably due to the fact that to obtain a
certain degree of entanglement without involving all three states (|E0〉 , |E1〉, and |E2〉)
is not possible when E > ln(2)51.

Moving to the results of the unitary approach, Fig. 7.6 shows the same two plots of
Fig. 7.4 but in the case when the interaction Hamiltonian is obtained through US . Notice
how the state distribution of Fig. 7.6 is qualitatively similar to that of Fig. 7.4. This is
due to the fact that the plots in the two figures have been made based on the same kind
of sample set. In general, a comparison with all the other figures of this section suggests
that the global unitary approach is the less performing.

Fig. 7.7 shows the same plots of previous figures in the case when the interaction is
obtained through ŨA. As for the modified simple approach, only states with a Schmidt
decomposition in the |Ei〉 basis can be obtained through this approach52. Indeed, again
for this reason, the distribution is completely different with respect to approaches that
can give any state as result. In general, the efficiencies are higher compared to the
ones obtained with the global approach. This is probably connected to the fact, proved
analytically, that when the MSSG and global unitary approaches generate the same state,
the MSSG ones are more efficient53. However, even in this case, the MEESs are not
among the best ones but they lie very near the lower border of the Eexp-E distribution.

The same plots for the unitary approach on system B, reported in Fig. 7.8, give
different results for the efficiency but similar for the expended energy. We can deal with
this case by using directly the operator ŨB derived in section 7.4.2, even if we did not
report explicitly the interaction Hamiltonian needed for implementing the thermalization
protocol in section 7.5.2. In this case, for low entanglement, the efficiencies of the MEESs
are practically the highest ones. Other simulations suggest that this probably depends

49See Eq. (7.5.11).
50And using a thinner line for the MEESs.
51We recall that, in the plot, the entanglement value is normalized to one.
52See Eq. (7.4.1).
53See Eq. (7.5.21) and the comment below it regarding the same approach but based on ŨB .
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Figure 7.6: Same plots of Fig. 7.4 but with the thermalization protocol based on the
transformation of H0 through US . Here, the same states of Fig. 7.4 have been used.
Compared to Fig 7.4, the efficiency is remarkably lower, but in this case the MEESs are
among the best ones. As in all the other figures, they are cheaper than the vast majority
of all the possible pure states that can be generated.

on the fact that between the two subsystems A and B, system B is the one with the
lowest energy gap between the ground and the first excited state and the highest energy
gap between the first and the second excited states. In fact, within the MSSG unitary
approaches, the energy spectrum of the local system of interest is more important than
the energy spectrum of the other one54. Since for low entanglement, two states in the
decomposition are approximately sufficient, we can (heuristically) expect that the weight
of the third state has to be marginal. Indeed, considering the spectrum of system B and
the weights implied by a thermal distribution, the second excited state in MEESs is very
low populated for low entanglement, thus leading to high efficiencies. As for the modified
simple approach, we can also see in Fig. 7.7 and 7.8 that the maximum of the efficiency
with respect to the entanglement starts declining roughly at ln(2)/ ln(3), we think, for
the same reasons given in the case of Fig. 7.5.

Finally, Fig. 7.9 shows both efficiency and expended energy for all of the analyzed
processes but focusing only on the generation of MEESs. Here, we can see that at low

54See Eq. (7.5.20).
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Figure 7.7: Same plots of Fig. 7.4 but with the thermalization protocol based on the
transformation of H0 through ŨA. Here, the same states of Fig. 7.5 have been used.
With respect to the unitary global approach of Fig. 7.6, the efficiency is generally higher.
The MEESs result to be cheaper to generate than the vast majority of all the possible
pure states that can be obtained. The striking difference in the distribution comes from
the difference of the sample set of states.

entanglement values the most efficient approach to produce a certain MEES is the MSSG
unitary approach on system B. For higher entanglement values, the best approach seems
to be given by the modified simple one. The plots also make clear that the two simple
approaches behave the same for MEESs, with the difference originating only from the
fact that VS > VM . We also notice that the two MSSG approaches cross at a certain
point. This is probably due to the fact the, towards higher entanglement values, the
second excited level of both subsystems becomes more important. Therefore, the only
positive term in the sum of Eq. (7.5.22), i.e., the last one becomes higher. As predicted
analytically, the global unitary approach always performs worse than the MSSG ones.

7.7 Application of MEESs to quantum technologies

Our results on the entanglement-energy connections can be particularly relevant in
protocols exploiting partially entangled qudits. Although maximally entangled states
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Figure 7.8: Same plots of Fig. 7.4 but with the thermalization protocol based on the
transformation of H0 through ŨB. Here, the same states of Figs. 7.5 and 7.7 have been
used. This is the only case in which MEESs practically attain the maximum efficiency,
even if only for the low entanglement zone. Concerning the expended energy, the MEESs
are cheaper to generate than the vast majority of all the possible pure states that can be
generated.

are requested in many applications, non-maximally entangled states have been proven
useful in quantum technologies, for example in processes involving two-mode squeezed
states [150, 264], in quantum telecloning of qudits [265], and in probabilistic quantum
teleportation [266]. In the last two cases, our results allow one to implement the procedure
by exploiting less expensive entangled states, through the direct utilization of MEESs or
of Theorem 7.1.1.

Our results also permit to identify bounds in the production of pure entangled states
within the framework of TRT55, which has recently drawn a lot of attention [86, 120]. Its
goal is to study what states are reachable through thermal operations given an arbitrary
starting state ρ and an environment at temperature T . Since the energy amount of
reachable states from the state ρ is bounded, when TRT is equipped with our results, it
lets us individuate which are the reachable pure states with the maximum allowed degree
of entanglement. Indeed, allowing the use of catalysts [86], the state we search is one of

55See section 2.3.1.
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Figure 7.9: Comparison of the five approaches analyzed in section 7.6. For both plots,
we report the normalized entropy of entanglement E on the X-axis. On the Y-axis, we
report, respectively, the efficiency (a) and the normalized expended energy (b). As in
Fig. 7.4, the entanglement and the expended energy are normalized, respectively, with
respect to ln(3) and 2 max σ(H0). Depending on how much entanglement is required,
the most efficient states to generate can be obtained through the MSSG approach based
on ŨB or the modified simple approach. We also observe that, as predicted analytically,
the modified simple approach always performs better than the non-modified one and
that the unitary approach based on US is worse than the other two for any value of the
entanglement.

our minimum energy states with energy equal to Tr{ρ(HA +HB)} − kBTS(ρ).
In the following, we analyze more in detail some applications of MEESs to quantum

technologies.

7.7.1 Increasing the energy efficiency of quantum protocols exploiting
partial entanglement

Here, we show how Theorem 7.1.1 can be used to increase the energy efficiency of certain
protocols.
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In most quantum protocols exploiting partially entangled pure states, the quality
of the protocols only depends on the Schmidt coefficients of the entangled states used,
where the quality of the protocol is quantified by quantities such as the fidelity of the
result obtained with respect to the desired one or the success probability of the protocol.
For a fixed set of Schmidt coefficients, Theorem 7.1.1 provides states having the lowest
local energy. Therefore, for a given protocol with some possible contraints, once the
Schmidt coefficients maximizing the quality of the protocol are given, Theorem 7.1.1
naturally applies allowing one to allocate the least possible amount of energy on the two
subsystems.

For example, in Ref. [266], Alice wants to teleport a qudit of dimension d to Bob
using a partially entangled state which she shares with Bob. Their shared state is given
by

|ψ〉 =
d−1∑

i=0

√
λi |aibi〉 , (7.7.1)

where 0 ≤ √
λNA−1 ≤ · · · ≤

√
λ1 ≤

√
λ0 ≤ 1. The optimal mean fidelity of the quantum

teleportation is given by [266]

f̄ =
1

d+ 1


1 +

(
d−1∑

i=0

√
λi

)2

 . (7.7.2)

Among the states at fixed entropy of entanglement, maximizing the fidelity selects some
sets of Schmidt coefficients. Theorem 7.1.1 provides the states with the lowest energy
for each of these sets. In particular, if we call the Schmidt coefficients belonging to
an optimal set,

√
γi, where i < j =⇒ γi ≥ γj . Then, the state having the lowest local

energy with these Schmidt coefficients is

|ψOpt〉 =
d−1∑

i=0

√
γi |AiBi〉 . (7.7.3)

More in general, Theorem 7.1.1 can greatly simplify maximization problems involving
energy bounds since, for the states identified by the theorem, it allows to associate to
every squared Schmidt coefficient λi the energy Ei = Ai +Bi. Indeed, using the same
example as before, if, for instance, the energy of the shared state provided to Alice and
Bob is bounded from above by Ec, the optimization problem reads

{
〈ψ|(HA +HB)|ψ〉 ≤ Ec,

max|ψ〉 f̄(|ψ〉),
(7.7.4)

while, using Theorem 7.1.1 it can be cast in the simplified form
{∑d−1

i=0 λiEi ≤ Ec,

max~λ f̄(~λ).
(7.7.5)

The search in Eq. (7.7.5) is much simpler since it is limited to the minimum energy states
(for fixed ~λ) selected by Theorem 7.1.1.
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7.7.2 Producing more entanglement with less energy

In the LOCC asymptotic limit, n copies of a state |φ〉 can be converted to m copies of a
state |φ′〉 if and only if nE(|φ〉) ≥ mE(|φ′〉), with n,m → ∞, thus making the entropy
of entanglement the quantifier of the resource entanglement [10]56. Here, we show how
producing partially entangled minimum energy states can increase the production of the
resource entanglement with respect to the energy spent for generating it, in the LOCC
asymptotic limit.

Suppose that we have at our disposal a great number of copies of systems A and
B in their ground states with Hamiltonians, respectively, HA and HB. We want to
increase the production of entanglement between systems A and B with respect to
the energy we have to provide to them. For example, let us analyze the same system
considered in several figures of this chapter, such as Figs. 7.1 and 7.3: systems A and
B have Hamiltonians with spectra given by σ(HA) = {0, 2, 4} and σ(HB) = {0, 1, 6, 9}
in arbitrary units and, initially, all the systems are in their ground state. To generate
a maximally entangled state, we need to give to the bipartite system at least 13/3 of
energy in arbitrary units. On the other hand, a minimum energy state with energy equal
to one half of the latter (13/6) has an entanglement equal to roughly ≃ 0.861 times the
maximal one. Therefore, creating two states of minimal energy with energy equal to 13/6
we provide the systems with the same amount of energy but generate about 72% more of
the resource entanglement.

We can turn this into a maximization problem. When both HA and HB have
degeneracies in their lowest eigenvalue, the problem is trivial since there are entangled
states with ground state energy. Generating n MEESs with entanglement E costs
ET = nEg(E)57 of energy and the total amount of entanglement generated is

ET = nE = ET
E

Eg(E)
. (7.7.6)

Therefore, we want to maximize the ratio E/Eg. Using Eq. (7.2.5) we find

∂

∂E

(
E
Eg

)
=

1
Eg

[
1 − E

βgEg

]
< 0, ∀E > 0, (7.7.7)

since E = βgEg +ln[Zg] and Zg(E) > 158. Therefore, one can generate more entanglement
with the same amount of disposable energy by producing many copies of minimum energy
states with lower energy.

7.7.3 Two-mode squeezed states of two harmonic oscillators

Here, we show that two-mode squeezed states of two harmonic oscillators are MEESs. In
section 7.1.2, we conjecture that our main result on the minimum energy states holds

56See also section 2.1.3.
57For simplicity, we set A0 = B0 = 0.
58See Eq. (7.1.9) and use Eg = −∂βg lnZg.
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good even for discrete infinite systems. Then, if this conjecture is correct, two-mode
squeezed states are minimum energy states for a given entanglement, as shown in the
following.

Consider two harmonic oscillators with Hamiltonians HA = ~ωAa
†a and HB = ~ωBb

†b,
where ωA(B) is their frequency and a†(b†) and a(b) are the usual creation and annihilation
operators. In this case, the state of Eq. (7.1.13) takes the form (up to phase factors):

|ψg〉 =
√

1 − e−βg~ω
∞∑

n=0

e−
βg~ω

2
n |nAnB〉 , (7.7.8)

where ω = ωA + ωB and |nA(B)〉 are number states in the Fock basis.
A two-mode squeezed state is obtained by applying the following unitary operator on

a vacuum state [150, 267]:

Usq = exp
[
r
(
e−iφab− eiφa†b†

)]
, r > 0, φ ∈ [0, 2π[, (7.7.9)

which, by naming |ψsq〉 = Usq|0A0B〉, leads to

|ψsq〉 =
1

cosh(r)

∞∑

n=0

[
−eiφ tanh(r)

]n
|nAnB〉 . (7.7.10)

We recall that this kind of states are also Gaussian states59 and are often used in quantum
optics laboratories for various tasks, usually exploiting their entanglement [150]. They can
be generated, for instance, through four-wave mixing optical parametric oscillator [268].

One can easily check that60

|ψg〉 = |ψsq〉 ⇐⇒ βg~ω = − ln
[
tanh2(r)

]
. (7.7.11)

Then, if our conjecture holds good, every two-mode squeezed state is also a minimum
energy state for a couple of harmonic oscillators. Therefore, these states, extensively
exploited in quantum optics laboratories [150, 264, 267, 268], are the most energetically
convenient states to generate in order to obtain a certain amount of entanglement.

7.8 Conclusions

In this chapter, we have found the minimum and maximum allowed local energy of an
arbitrary finite bipartite system for a given amount of entanglement. We have also found
the explicit form of a family of minimum and maximum energy states, which we called,
respectively, minimum energy entangled states (MEESs) and maximum energy entangled
states (MaxEESs). This analysis also holds for mixed states when using entanglement
quantifiers with the convexity property, a requirement met by almost all entanglement
quantifiers [92]. These extremal states have a formal connection with thermal states

59See section 2.4.1 for an introduction to the Gaussian formalism.
60Up to phase factors.
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and are LOCC-connected, in the sense exposed in section 7.3.3. Furthermore, we have
shown that MEESs naturally emerge as the ground state of some interacting many-body
systems.

After having characterized MEESs, we have proposed several protocols to generate
them. Some of these protocols are based on the direct use of unitary operators, while
others exploit a zero-temperature thermalization for their realization. Moreover, we have
numerically investigated the energy distribution of entangled pure states, finding, in all
the studied configurations, that the probability of randomly generating states with a
fixed entanglement close to the energy bounds is extremely low except for the two-qubit
case and highly degenerate cases. This implies the advantage of using unitary operators
that can specifically generate MEESs.

Regarding the proposed generation methods, on the one hand, we have provided three
different unitary operators connecting the ground state of S to an arbitrary MEES. While
the first operator, US , can be decomposed as the product of non-local operators, the
others, ŨA and ŨB , can be decomposed as the product of simple two-level local rotations
and a local change of phase on a subsystem, and, subsequently, a generalized CNOT gate
on the bipartite system. Therefore, the implementation of these unitary transformations
in quantum circuits should be easier with respect to the case of US . On the other hand,
we have identified five different interaction Hamiltonians that, added to the free ones,
make it possible to generate MEESs through a zero-temperature thermalization process.
Two of these processes are based on what we have called a simple and a modified simple
approach, while the others are based on the unitary operators previously identified, US ,
ŨA, and ŨB.

We have then compared the efficiency of these zero-temperature generation processes
as well as the expended energy to run them, both in general and in the case of a specific
3 × 4 system, complex enough to unveil the difference between the various protocols. In
doing so, we have exploited the relevant fact that our protocols can also generate states
different from the MEESs. Through a detailed comparison, we have identified, in the
specific 3 × 4 system, which the best-performing protocols are. Depending on how much
entanglement is required and the spectra of the systems, the better approaches are, in
general, one between those based on ŨA and ŨB, or the modified simple one. Even if
the MEESs are not the states minimizing the expended energy to run the generation
protocol, we have numerically found, in all systems we have simulated, that they are very
close to the optimal states. Therefore, in general, MEESs are cheaper to generate than
the vast majority of the other states. Concerning an experimental implementation of
the corresponding interaction Hamiltonians, one can easily find the matrix for all five
approaches and realize which is the easiest to implement.

MEESs can be important in quantum technologies since, fixed the degree of entangle-
ment necessary for a certain application, they belong to the class of states whose unitary
generation requires the lowest energy cost. Such an identification appears even more
important also in the light of our numerical simulations, showing that the energies of the
majority of the states with a fixed entanglement lie quite far from the energy bounds.
Finally, we stress that Theorem 7.1.1 can bring by itself great practical advantages in
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optimization problems depending exclusively on the Schmidt coefficients, given some
energy constraints, as discussed in detail in section 7.7.1.
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7.A Lowest energy state for a given set of Schmidt
coefficients

Here, we prove Theorem 7.1.1, to this aim we will need four lemmas.

Lemma 7.A.1. Consider two sets of real quantities {pi}N−1
0 and {Ei}N−1

0 , where 0 ≤
pi ≤ A ∀i and

∑N−1
i=0 pi = MA, with M ≤ N, A ∈ R

+. Then,

N−1∑

i=0

piEi ≥
N−1∑

i=0

p↓
iE

↑
i ≥ A

M−1∑

i=0

E↑
i , (7.A.1)

where
{
p↓
i

}N−1

0
is the set {pi}N−1

0 with the elements put in decreasing order and
{
E↑
i

}N−1

0

is the set {Ei}N−1
0 with the elements put in increasing order. Moreover, if the set {Ei}N−1

0

has no repeated values and at least one pi > 0 with i ≥ M , then

N−1∑

i=0

piEi > A
M−1∑

i=0

E↑
i . (7.A.2)

Proof. In the first part of the proof we show that
∑N−1
i=0 piEi ≥ ∑N−1

i=0 p↓
iE

↑
i . Without

loss of generality, we can first put the pi in decreasing order and continue to use Ei to
indicated the elements of the permutated set. Then, if En < Em, with m < n we have

N−1∑

i=0

p↓
iEi ≥

N−1∑

i6=n,m

p↓
iEi + p↓

mEn + p↓
nEm. (7.A.3)

The possibility of iterating this procedure concludes the first part of the proof.
For the second part of the proof, we consider the two sets already in the correct order

(decreasing for the pi and increasing for the Ei) and we avoid the arrows to lighten the
notation. We consider the following iterative procedure. If p0 + pN−1 < A, we write

N−1∑

i=0

piEi ≥
N−2∑

i=1

piEi + (p0 + pN−1)E0 =
N−2∑

i=0

qiEi, (7.A.4)

and repeat the procedure with the new set {qi}N−2
0 , where qi = pi ∀ 1 ≤ i ≥ N − 2 and

q0 = p0 + pN−1. Also, notice that the above inequality becomes strict if EN−1 > E0 and
pN−1 > 0. Otherwise, we have p0 + pN−1 = A+ p̃N−1 ≥ A and

N−1∑

i=0

piEi =
N−2∑

i=1

piEi + p0E0 + (A− p0)EN−1 + p̃N−1EN−1

≥
N−2∑

i=1

piEi +AE0 + p̃N−1EN−1 = AE0 +
N−1∑

i=1

p̃iEi, (7.A.5)
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where, in the new set {p̃i}N−1
1 , p̃i = pi ∀ 1 ≤ i ≤ N − 2 and we recall that p̃N−1 =

p0 + pN−1 −A. In this case, the next step has to be done on
∑N−1
i=1 p̃iEi.

The step represented by Eq. (7.A.4) conserves the sum of the pi, i.e.,
∑N−1
i=0 pi =∑N−2

i=0 qi, while in Eq. (7.A.5),
∑N−1
i=0 pi =

∑N−1
i=1 p̃i +A. At each step of the procedure,

we lose an element of the sum. Thus, at the end of the procedure, only the terms AEi
produced by the steps such as the one of Eq. (7.A.5) survive. The number of times this
kind of step takes place is equal to M because of the hypothesis

∑N−1
i=0 pi = MA and, in

the end, we will get A
∑M−1
i=0 Ei, which concludes the proof of the validity of Eq. (7.A.1).

The particular case of no degeneracies in the set {Ei}N−1
0 and at least one pi > 0 with

i ≥ M follows by considering that, in this case, at least one passage of Eq. (7.A.4) or of
Eq. (7.A.5) with the strict inequality has to be performed.

Lemma 7.A.2. Consider an Hamiltonian of the form H =
∑N−1
i=0 Ei|Ei〉〈Ei|, where

Ei ≤ Ej for i < j and a set of orthonormal vectors on the same Hilbert space {|ai〉}M−1
i=0 .

It holds that
M−1∑

i=0

〈ai|H|ai〉 ≥
M−1∑

i=0

Ei ∀M ≤ N. (7.A.6)

Moreover, if the spectrum of the Hamiltonian is non degenerate, the equality sign is

obtained if and only if we can write |ai〉 =
∑M−1
n=0 αi,n|En〉 ∀i.

Proof. Let us start by considering that

M−1∑

i=0

〈ai|H|ai〉 =
N−1∑

n=0

pnEn, (7.A.7)

where pn =
∑M−1
i=0 |〈En|ai〉|2 ≤ 1. Moreover,

∑N−1
n=0 pn = M . Then, because of lemma

7.A.1
N−1∑

i=0

pnEn ≥
M−1∑

n=0

En, (7.A.8)

which concludes the first part of the proof. The second part follows by considering that
if a ket |ai〉 exists such that it cannot be obtained as a linear combination of the first
M energy eigenvectors, then at least one pn > 0 with n ≥ M exists. Then, because of
lemma 7.A.1 the above inequality is strict. On the other hand, if the conditions on the
kets |ai〉 are valid, the equality sign of Eq. (7.A.8) is trivially obtained.

Let us now consider a set of D real numbers {∆i}D−1
0 such that

∑N−1
i=0 ∆i ≥ 0, ∀N ≤

D. The following lemmas (7.A.3 and 7.A.4) are valid.

Lemma 7.A.3. Given a set of real non-negative numbers λi such that λi ≤ λj for i > j
then

N−1∑

i=0

λi∆i ≥ 0, ∀N ≤ D. (7.A.9)
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Proof. We show this by induction. Obviously, λ0∆0 ≥ 0. Suppose that the lemma is true
for M < D, that is

N−1∑

i=0

λi∆i ≥ 0, ∀N ≤ M < D. (7.A.10)

We have to analyze
λ0∆0 + . . . λM−1∆M−1 + λM∆M ≥ 0. (7.A.11)

If ∆M is non-negative, the result is trivial. If ∆M is negative we have

λ0∆0 + · · · + λM−1∆M−1 + λM∆M ≥ λ0∆0 + . . .︸ ︷︷ ︸
True

+λM−1(∆M−1 + ∆M ). (7.A.12)

If (∆M−1 + ∆M ) ≥ 0, Eq. (7.A.11) is satisfied. Otherwise, we go on and consider

λ0∆0 + . . .︸ ︷︷ ︸
True

+λM−2(∆M−2 + ∆M−1 + ∆M ) ≥ 0. (7.A.13)

In the worst case we arrive at

λ0

(
M∑

i=0

∆i

)
≥ 0, (7.A.14)

which is true by hypothesis. This concludes the proof.

Lemma 7.A.4. Given a set of real positive numbers λi such that λi < λj for i > j, if

there exists i0 = mini {i : ∆i > 0} then

N−1∑

i=0

λi∆i > 0, ∀ (i0 + 1) ≤ N ≤ D. (7.A.15)

Proof. Of course, λi0∆i0 > 0. Then, we can repeat the reasoning of the proof of lemma
7.A.3, keeping into account that when one inequality such as that of Eq. (7.A.12) has to
be considered, it will be a strict inequality.

Now we are ready to prove theorem 7.1.1.

Proof. Let be |ψ〉 =
∑NA−1
i=0

√
λi|aibi〉 an arbitrary pure state with the given set of

Schmidt coefficients. Let us calculate:

〈ψ|H|ψ〉 −
〈
ψ~λ

∣∣∣H
∣∣∣ψ~λ

〉
=

NA−1∑

i=0

λi∆i, (7.A.16)

where

∆i = 〈aibi|H|aibi〉 − 〈AiBi|H|AiBi〉 = 〈ai|HA|ai〉 −Ai + 〈bi|HB|bi〉 −Bi. (7.A.17)

Because of lemma 7.A.2,
N−1∑

i=0

∆i ≥ 0, ∀ N ≤ NA. (7.A.18)
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Then, because of lemma 7.A.3,
∑NA−1
i=0 λi∆i ≥ 0 and the first part of the theorem is

proven.
For the second part of the theorem, because of lemma 7.A.4, the energy of the

arbitrary state |ψ〉 is equal to the energy of |ψ~λ〉 if and only if ∆i = 0 for each i. Starting
from ∆0, the only way to make it zero is to set |a(b)0〉 = |A(B)0〉, up to phase factors,
because A(B)0 is the lowest eigenvalue. Then, the only way to set ∆1 = 0 is to set
|a(b)1〉 = |A(B)1〉, up to phase factors, because this ket has to be orthogonal to |a(b)0〉.
The continuation of this reasoning leads to the conclusion of the proof.

7.B Construction of the unitary operator in the general
case

Theorem 7.B.1. Be {|ei〉}N−1
i=0 a basis for an N−dimensional Hilbert space and be

|ψ0〉 =
∑N−1
i=0 eiθi

√
λi |ei〉 an arbitrary normalized state with λ0 > 0, λi ≥ 0 ∀i ≥ 1, and∑

i λi = 1. The following states, together with |ψ0〉, form another basis:

|ψk〉 =

(
γk |ek〉 − ei(θ0−θk)

√
λ0λk |e0〉 −

N−1∑

i=k+1

ei(θi−θk)
√
λkλi |ei〉

)
/
√
γkγk−1, (7.B.1)

where 1 ≤ k ≤ N − 1, γk = 1 −∑k
i=1 λi = λ0 +

∑N−1
i=k+1 λi, and γ0 = 1.

Proof. First we prove that any two states of the set are orthogonal. We start by
considering n > k ≥ 1:

〈ψn|ψk〉 ∝ e−i(θk−θn)
√
λkλn


λ0 − γn +

N−1∑

i=n+1

λi




= e−i(θk−θn)
√
λkλn (λ0 − γn + γn − λ0) = 0. (7.B.2)

Indeed, the same holds for 1 ≤ n < k. In the same manner, it is easy to show that
〈ψ0|ψk〉 = 0 ∀k. Lastly, we prove that the states are normalized:

γkγk−1 〈ψk|ψk〉 = γ2
k + λk


λ0 +

N−1∑

i=k+1

λi


 = γ2

k + λkγk = γk (γk + λk) = γkγk−1.

(7.B.3)

We remark that when λk = 0, |ψk〉 = |ek〉.
Theorem 7.B.1 lets us write down a unitary operator connecting two arbitrary states.

Suppose we want to obtain state |ψ′〉 from state |ψ〉. As first step, we define the operator

U(|ψ〉) =
N−1∑

i=0

|ψi〉〈ei| , (7.B.4)
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which maps the state |e0〉 to |ψ0〉 = |ψ〉. If λ0 = 0, the state |ψN−1〉61 cannot be properly
defined since, e.g., γN−1 = 0. However, we can write the target state with respect to
the basis {|ẽi〉}N−1

i=0 in which |ẽi∗〉 = |e0〉 and |ẽ0〉 = |ei∗〉, where i∗ is any index value
such that λi∗ > 0, while for i 6= 0, i∗, |ẽi〉 = |ei〉. Accordingly, we write the states of
Theorem 7.B.1 and the corresponding new Ũ(|ψ〉) with respect to this new basis. Then,
before Ũ(|ψ〉), we apply another unitary operator, USWAP, which swaps the states |e0〉
and |ei∗〉. In this way, when λ0 = 0, we can define U(|ψ〉) as U(|ψ〉) = Ũ(|ψ〉)USWAP,
thus assuring the transition |e0〉 → |ψ〉.

By applying the same reasoning to |ψ′〉, i.e., |ψ′〉 = U(|ψ′〉) |e0〉, with the proper
modification if for the state |ψ′〉, λ0 = 0, one gets

∣∣ψ′〉 = U(
∣∣ψ′〉)U †(|ψ〉) |ψ〉 . (7.B.5)

The transition from |e0〉 to |ψ〉 can be obtained in another way, i.e., by exploiting the
composition of elementary two-dimensional rotations. We can write

UR (|ψ〉) ≡
N∏

i=1

Ui (|ψ〉) , (7.B.6)

where, for 1 ≤ i < N62,

Ui =

√
γi
γi−1

(|e0〉〈e0| + |ei〉〈ei|) +
∑

j 6=0,i

|ej〉〈ej | +

√
λi
γi−1

(
eiθi |ei〉〈e0| − e−iθi |e0〉〈ei|

)
,

(7.B.7)
while, for i = N ,

UN = eiθ0 |e0〉〈e0| +
N−1∑

j=1

|ei〉〈ei| . (7.B.8)

To compute the action of UR we first compute the action of its constituents (1 ≤ i < N)
for k = 0 and k > 0:

Ui |e0〉 =

√
γi
γi−1

|e0〉 + eiθi

√
λi
γi−1

|ei〉 ,

Ui |ek〉 =





√
γk
γk−1

|ek〉 − e−iθk
√

λk
γk−1

|e0〉 , i = k,

|ek〉 , i 6= k.
(7.B.9)

Let us start by studying the action of UR on the state |e0〉. By applying the first
n− 1 matrices Ui63, the amplitude of |e0〉 goes to

√
γn−1 while that of |en〉 remains zero.

Then, the application of the n-th Ui matrix makes the amplitude of |e0〉 go to
√
γn and

that of |en〉 from zero to
√
γn−1e

iθn

√
λn
γn−1

= eiθn
√
λn, (7.B.10)

61And others if there exist other null λi in addition to λ0.
62Hereafter we drop the argument |ψ〉 to lighten the notation.
63That is, with i going from 1 to n− 1 in Eq. (7.B.6).



7.C. MINIMIZATION OF THE EXPENDED ENERGY IN THE MODIFIED SIMPLE

THERMALIZATION PROTOCOL 171

which is the final amplitude of |en〉 in the state |ψ〉, and will remain unvaried by the
action of the subsequent unitaries Ui with i > n. The application of all unitaries but UN
brings the amplitude of |e0〉 to

√
γN−1 =

√
λ0. Therefore, since UN correctly changes

the phase of |e0〉, it follows that UR |e0〉 = |ψ〉.
We can also calculate UR |ek〉. First, we notice that

UR |ek〉 =
N∏

i=k

Ui |ek〉 , (7.B.11)

since the application of the first k − 1 matrices make no effect. Then,

N−1∏

i=k

Ui |ek〉 =
N−1∏

i=k+1

Ui

(√
γk
γk−1

|ek〉 − e−iθk

√
λk
γk−1

|e0〉
)
,

=

√
γk
γk−1

|ek〉 − e−iθk

√
λk
γk−1

N−1∏

i=k+1

Ui |e0〉 . (7.B.12)

This last term can be computed too:

N−1∏

i=k+1

Ui |e0〉 =
N−1∏

i=k+2

Ui

(√
γk+1

γk
|e0〉 + eiθk+1

√
λk+1

γk
|ek+1〉

)
,

=
√
γN−1

γk
|e0〉 +

N−1∑

i=k+1

eiθi

√
λi
γk

|ei〉 . (7.B.13)

Eventually, we get64

UR |ek〉 =

√
γk
γk−1

|ek〉 − ei(θ0−θk)

√
λ0λk
γkγk−1

|e0〉 −
N−1∑

i=k+1

ei(θi−θk)

√
λkλi
γkγk−1

|ei〉 , (7.B.14)

which is equal to Eq. (7.B.1). Therefore, we have just shown how the matrix U (|ψ〉)
is explicitly decomposable as a product of elementary two-dimensional rotations, i.e.,
U (|ψ〉) = UR (|ψ〉).

7.C Minimization of the expended energy in the modified
simple thermalization protocol

Here, we show how to find the states minimizing Eexp for a fixed entanglement E in the
modified simple approach of section 7.5.1 using the interaction Hamiltonian of Eq. (7.5.9).
Since this Hamiltonian can only generate states belonging to the subspace generated by

64Also using γN−1 = λ0.
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the kets |Ei〉, any target state has the form of Eq. (7.4.1). Therefore, we can rewrite the
formula of Eexp

65 as follows:

Eexp =
NA−1∑

i=1

λiEi + VM (1 − λ0) =
NA−1∑

i=1

λi (Ei + VM ) . (7.C.1)

The minimization problem can be now easily solved by considering the coefficients λi as
the coefficients of a thermal state with respect to a fictitious Hamiltonian with eigenvalues
Ẽi = Ei + VM and Ẽ0 = 066. By doing so we get

λ̃i =
e−βcẼi

∑NA−1
j=0 e−βcẼj

, (7.C.2)

where βc is obtained by requiring that

−
NA−1∑

i=0

λ̃i ln λ̃i = E . (7.C.3)

7.D Construction of the interaction matrix obtained
through a unitary transformation

In the zero-temperature limit, dissipation can be used to generate pure states. If a system
is described by a Hamiltonian H0 with a non-degenerate lowest eigenvalue, dissipation
due to the interaction with a zero-temperature bath will generally lead to the ground
state of the system [12]. Let us call {ei}N−1

i=0 an eigenbasis for H0. For any desired
state |ψ〉 (for simplicity, we only consider states with λ0 > 0), by using a proper unitary
operator U(|ψ〉) defined as in Eq. (7.B.4), it is possible to write an Hermitian operator
H ′(|ψ〉) = U(|ψ〉)H0U

†(|ψ〉) such that |ψ〉 is the ground state of H ′:

H ′(|ψ〉) = U(|ψ〉)H0U
†(|ψ〉) =

N−1∑

i=0

ei |ψi〉〈ψi| , (7.D.1)

where ei runs over all the eigenvalues of H0, i.e., with respect to the notation of the main
text of this chapter, ei is a shorthand for all combinations of Aj +Bk, for all Aj and Bk,
and with e0 = E0 = A0 +B0. Writing H ′ = H0 +HI

67, we obtain

HI =
N−1∑

i=0

ei

(
|ψi〉〈ψi| − |ei〉〈ei|

)
. (7.D.2)

65See Eq. (7.5.11), where we set E0 = 0 for simplicity of notation.
66See section 7.1.2.
67We drop the explicit dependence on |ψ〉 to lighten the notation.
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We can explicitly find the coefficients of the Hamiltonian HI by calculating U(|ψ〉)ik =
〈ei|U(|ψ〉)|ek〉 = 〈ei|ψk〉68. For k ≥ 1, using Eq. (7.B.1), we get:

〈ei|ψk〉 =





−ei(θ0−θk)
√

λ0λk
γkγk−1

, i = 0,

0, 0 < i < k,√
γk
γk−1

, i = k,

−ei(θi−θk)
√

λiλk
γkγk−1

, i > k.

(7.D.3)

Let us start from the diagonal elements. For j = 0 we get

〈e0|HI |e0〉 = e0(λ0 − 1) + λ0

N−1∑

i=1

λiei
γiγi−1

, (7.D.4)

while for j > 0 we have

〈ej |HI |ej〉 = λj


e0 − ej

γj−1
+

j−1∑

k=1

λkek
γkγk−1


 . (7.D.5)

Since HI is an Hermitian matrix, it suffices to continue the calculations by analyzing
the j > i ≥ 0 case. For j > i = 0 we get

〈e0|HI |ej〉 = ei(θ0−θj)
√
λ0λj


e0 − ej

γj−1
+

j−1∑

k=1

λkek
γkγk−1


, (7.D.6)

while for j > i > 0 we have

〈ei|HI |ej〉 =
N−1∑

k=0

ek 〈ei|ψk〉 〈ψk|ej〉 = ei(θi−θj)
√
λiλj

(
e0 − ei

γi−1
+

i−1∑

k=1

λkek
γkγk−1

)
.

(7.D.7)
By focusing on the case in which the target states are like those of Eq. (7.4.1), we get

Eq. (7.5.15).

7.E Efficiency and expended energy for the global
unitary approach

In this Appendix, we obtain the general formulas for the efficiency and expended energy
of the global unitary approach by using their definition of Eq. (7.5.1).

By using Eqs. (7.D.1), (7.D.2), and (7.D.3) in Eq. (7.5.1), we get

η =
e0 (λ0 − 1) +

∑N−1
i=1 λiei

2e0(λ0 − 1) +
∑N−1
i=1 λiei [1 + λ0/ (γiγi−1)]

. (7.E.1)

68Compare with Eq. (7.B.4).
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If we set e0 = 0, which can always be done by adding a constant term to H0, we get

η =
∑N−1
i=1 λiei∑N−1

i=1 λiei [1 + λ0/ (γiγi−1)]
, (7.E.2)

which makes clear that η < 1, as it should be. When considering target states like
those of Eq. (7.4.1), the efficiency of Eq. (7.E.2) and the denominator therein appearing
become, respectively, the efficiency and the energy expense reported in Eq. (7.5.16).

Now, we prove that ESexp [see Eq. (7.5.1)] cannot be higher than 2(eN−1 − e0) in the
global unitary approach:

ESexp = 〈e0|HI |e0〉 − 〈ψ|HI |ψ〉
= 〈e0|(HI +H0 −H0)|e0〉 − 〈ψ|(HI +H0 −H0)|ψ〉
= 〈e0|UH0U

†|e0〉 − e0 − 〈ψ|UH0U
†|ψ〉 + 〈ψ|H0|ψ〉

= 〈e0|
(
UH0U

† + U †H0U
)
|e0〉 − 2e0 ≤ 2eN−1 − 2e0, (7.E.3)

where the last inequality comes from the invariance of the spectrum for unitary transfor-
mations.

7.F Efficiency and expended energy in the MSSG unitary
approaches

Here, we want to calculate the quantities of Eq. (7.5.1) in the case of the states obtainable
within the MSSG unitary approaches, i.e., states |φ〉 of the form of Eq. (7.4.1). In
these approaches, a state |φ〉 is obtained by applying UA or UB to |E0〉 and then the
corresponding generalized CNOT gate69 is applied to the resulting state on system S.
Let us focus on the UA case, where

HI = UGAUAH0U
†
AU

†
GA

−H0. (7.F.1)

First, we notice that UGA |A0Bi〉 = U †
GA

|A0Bi〉 = |A0Bi〉. Therefore, using also

Eqs. (7.4.8) and (7.D.3) applied to the calculation of
〈
Ai
∣∣∣ψAk

〉
, we obtain

〈E0|HI |E0〉 = 〈A0|UAHAU
†
A|A0〉 +B0 − E0 = A0 (λ0 − 1) + λ0

NA−1∑

i=1

λiAi
γiγi−1

. (7.F.2)

Then, we calculate

〈φ|HI |φ〉 = E0 (1 − λ0) −
NA−1∑

i=1

λiEi. (7.F.3)

69See Eqs. (7.4.13) and (7.4.14).
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Eventually, the expended energy in this case is equal to

EAexp =
NA−1∑

i=1

[
λi

(
Ei +

λ0Ai
γiγi−1

)]
− (A0 + E0) (1 − λ0) . (7.F.4)

Now, we show that the expended energy within the global approach is higher that in
the MSSG unitary approaches when they generate the same state |φ〉. The expended
energy in the global approach can be written as70

ESexp =
NA−1∑

i=1

λiEi

[
1 +

λ0

γiγi−1

]
− 2E0 (1 − λ0) , (7.F.5)

and the difference between ESexp and EAexp is equal to

ESexp − EAexp = λ0

NA−1∑

i=1

λiBi
γiγi−1

−B0 (1 − λ0) . (7.F.6)

Since we can set B0 = 0 without changing the above quantity, we conclude that the MSSG
version of the protocol always performs better than the global one. The derivation of EBexp

is similar since, analogously to the previous case, UGB |AiB0〉 = U †
GB

|AiB0〉 = |AiB0〉,
and leads to the same expression of Eq. (7.F.4) with the quantities Ai and Bi swapped
between them.

To complete the analysis we also write the difference regarding the expended energy
in the two MSSG approaches:

EBexp − EAexp = λ0

NA−1∑

i=1

λi (Bi −Ai)
γiγi−1

− (B0 −A0) (1 − λ0) . (7.F.7)

In this case, which approach is better depends both on the target state and the spectra
of HA and HB.

7.G Explicit calculations for two qubits

In this Appendix, we explicitly calculate the three unitary transformations proposed in
section 7.4 and the interaction Hamiltonians proposed in section 7.5 for the archetypical
example of a bipartite system composed of two qubits, having as free Hamiltonians

HA =
~ωA

2
σAz , HB =

~ωB
2
σBz , (7.G.1)

where σXz is the z-Pauli matrix of qubit X (X = A,B). As basis for H0 we use
{|00〉 , |01〉 , |10〉 , |11〉}, where, for each qubit, σXz |1〉 = |1〉 and σXz |0〉 = − |0〉. Let

70Compare with Eq. (7.E.1) applied to a state |φ〉.
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us define ω = (ωA + ωB) /2, then the MEES for a two qubit system, as reported in
section 7.1.4, and considering arbitrary phases, is given by

|ψg〉 = eiθ0
√
λ |00〉 + eiθ1

√
1 − λ |11〉 , where λ =

1
1 + e−2β~ω

. (7.G.2)

Starting from Eqs. (7.4.3), (7.4.8), (7.4.13), and (7.4.14)71, straightforward calcula-
tions for US , ŨA = UGAUA, and ŨB = UGBUB give

US =




eiθ0
√
λ 0 0 −ei∆θ

√
1 − λ

0 1 0 0
0 0 1 0

eiθ1
√

1 − λ 0 0
√
λ


, (7.G.3)

ŨA =




eiθ0
√
λ 0 −ei∆θ

√
1 − λ 0

0 eiθ0
√
λ 0 −ei∆θ

√
1 − λ

0 eiθ1
√

1 − λ 0
√
λ

eiθ1
√

1 − λ 0
√
λ 0


, (7.G.4)

and

ŨB =




eiθ0
√
λ −ei∆θ

√
1 − λ 0 0

0 0 eiθ1
√

1 − λ
√
λ

0 0 eiθ0
√
λ −ei∆θ

√
1 − λ

eiθ1
√

1 − λ
√
λ 0 0


, (7.G.5)

where ∆θ = θ0 − θ1. We can see, explicitly, that the three unitary operators proposed in
section 7.4 are different.

Regarding the thermalization approach, we can immediately write down the interaction
Hamiltonian obtained through the simple approach:

Hsi
I =




~ω − VSλ 0 0 −ei∆θVS
√
λ (1 − λ)

0 ~δA 0 0
0 0 ~δB 0

−e−i∆θVS
√
λ (1 − λ) 0 0 −VS(1 − λ) − ~ω


, (7.G.6)

where δA = (ωA − ωB) /2 and δB = (ωB − ωA) /2. For comparison, the modified simple
approach leads to

H̃si
I =




~ω − VMλ 0 0 −ei∆θVM
√
λ (1 − λ)

0 0 0 0
0 0 0 0

−e−i∆θVM
√
λ (1 − λ) 0 0 −VM (1 − λ) − ~ω


, (7.G.7)

which lacks the diagonal terms ~δA et ~δB.

71Notice that UB is defined analogously to what done in Eq. (7.4.8).
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Turning to the zero-temperature approach based on the global unitary transformation,
the use of US leads to

HS
I = 2~ω




1 − λ 0 0 −ei∆θ
√
λ (1 − λ)

0 0 0 0
0 0 0 0

−e−i∆θ
√
λ (1 − λ) 0 0 λ− 1


. (7.G.8)

Even if this Hamiltonian is similar to that of Eq. (7.G.7), it is not the same one. This
was predictable since the modified simple approach changes the spectrum of H0 while
all unitary ones do not. Moreover, it does not exist a number c such that H̃si

I = cHS
I so

that the two Hamiltonians cannot describe the same physics even with a rescaling of the
energy.

Moving to the MSSG thermalization approaches, the use of ŨA leads, for HA
I /(~ωA),

to



1 − λ 0 0 −ei∆θ
√
λ (1 − λ)

0 1 − λ −ei∆θ
√
λ (1 − λ) 0

0 −e−i∆θ
√
λ (1 − λ) λ− 1 + ωB

ωA
0

−e−i∆θ
√
λ (1 − λ) 0 0 λ− 1 − ωB

ωA


,

(7.G.9)
while the use of ŨB for HB

I /(~ωB) to



1 − λ 0 0 −ei∆θ
√
λ (1 − λ)

0 λ− 1 + ωA
ωB

−e−i∆θ
√
λ (1 − λ) 0

0 −ei∆θ
√
λ (1 − λ) 1 − λ 0

−e−i∆θ
√
λ (1 − λ) 0 0 λ− 1 − ωA

ωB


.

(7.G.10)
Since all of these interaction Hamiltonians are different72, we can conclude that the five
methods give rise to physically different interactions.

At the beginning of section 7.5, the following interaction Hamiltonian was proposed
to make |ψg〉 the ground state

Hemp
I =

~g

2

(
σAx σ

B
x − σAy σ

B
y

)
, (7.G.11)

where σXi are Pauli operators on system X with i = x, y. The matrix structure of this
operator is

Hemp
I = ~g




0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0


, (7.G.12)

which lacks the diagonal terms present in all the general approaches we provided. There-
fore, the methods that we presented in this chapter cannot be used to obtain this empirical
Hamiltonian.

72Even considering rescaling.





Chapter 8

Conclusions and perspectives

In this Thesis, we have dealt with different setups in which dissipation or quantum corre-
lations (or both) play an important role. The content of this Thesis can be summarized
as follows. After providing the necessary background and context (chapter 2), we have
concentrated on thermodynamic setups in the first part of the thesis (chapters 3 and 4).
In particular, in chapters 3, we have studied a work extraction protocol onto a bipartite
system exploiting a single bath using a work quantifier from thermodynamic resource
theory (TRT), which has turned out to be connected with the internal correlations of the
system, and two-stroke thermal cycles based on non-resonant exchange Hamiltonians,
where we have taken into account the role of the waiting times, i.e., of the required
relaxation times plus other times inherent to the specific machine at hand. In the second
part (chapters 5 and 6), we have focused on the open dynamics of two different systems:
a driven harmonic oscillator in a possibly non-Markovian collisional environment and
the Dicke model with two-photon coupling in the bad-cavity limit. For the former,
which is still in the work in progress phase, we have been able to derive a nonadiabatic
Markovian master equation in the continuous limit of the collision model while, for the
non-Markovian case, we have made its computation easier by exploiting the Markovian
embedding technique. For the latter, we have found, for the first time, an effective master
equation describing the collective dynamics of the qubits in a quite general setup, and
we have shown how the new features of this dynamics can bring advantages with respect
to the correspondent one-photon dynamics, for example, by strengthening the collective
quantum effects called superradiance and subradiance. Finally, in the last part of the
thesis (chapter 7), we have connected the entanglement and the energy of non-interacting
arbitrary bipartite systems, also identifying what we have called the minimum energy
entangles states (MEESs), i.e., the states having the minimum amount of energy for a
given amount of entanglement, and showing methods to generate them. These states
turn out to be connected to other, apparently unrelated, physics fields, and we show how
they can be used to improve the energetic efficiency of different quantum information
protocols.

Let us now discuss our results more in detail and focus on future research that can stem
from them. In chapter 3, we have analyzed the work extraction from a resource system

179
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R to a bipartite storage system S, based on the thermalization of the latter. We have
first described this without referring to a specific implementation, argued that it should
be easily implementable because of its simplicity, and used TRT results to quantify the
extracted work W and the efficiency η. We have then applied this protocol to two models:
a simple two-qubit system and a system described by the Rabi Hamiltonian. In both
cases, entropic terms turned out to play an important role when the temperature (times
the Boltzmann constant) is comparable with the subsystems energies. Moreover, we have
shown that a great part of the extracted work is stored in the bipartite system internal
correlations. Notably, the extracted work is comparable with the systems frequencies,
and, in the Rabi model case, the efficiency is always higher than one half. Finally, as
a proof of principle, we have shown how the energy extracted after one cycle of the
thermalization protocol (single-shot extraction protocol) can be transferred to an external
work storage system through a transfer process, which makes the complete protocol
iterable. Thus, we have pointed out that simple processes like thermalization and the
switching on/off of interactions between quantum systems can be exploited as a potential
resource for thermal machines. We believe it would be interesting to generalize our study
of the Rabi model to the case of N qubits interacting with a harmonic oscillator. This
will allow one to study if the correlations built among the qubits allow for a greater work
extraction. Finally, further studies could suggest how to improve our transfer protocol
and pave the way to proposals in specific physical scenarios.

In chapter 4, we have examined two different two-stroke quantum thermal machines.
In both, two collections of identical systems with evenly spaced non-variable energy levels
can be put in contact, respectively, with a cold and a hot thermal bath. Because of the
evenly spaced energy levels, we can characterize each system through a single frequency.
In the first version, a system of a collection interacts with a system of the other one, and
then they thermalize. In the second one, we have added a mediator system that interacts
alternately with one or more systems of each collection. Assuming that the interaction
Hamiltonian conserves the number of excitations during the interaction, we have shown
that the efficiency depends only on the frequencies of the two collections in both versions
of the cycle. We have then analyzed the problem of power maximization in the cycle
without the mediator, focusing on the high impact of the waiting time on the optimal
collision time and the optimal frequencies. When maximizing over the frequencies, we
have shown that it is possible to exceed the Curzon-Ahlborn efficiency when using qubits
while it is not possible with harmonic oscillators. Next, we have added the mediator, and
we have shown that its addition can bring performance advantages when the waiting time
of the corresponding cycle without the mediator is of the same order of the collision time.
In most other cases, the cycle without mediator performs better. However, there could
be experimental platforms where it is easier to implement the cycle with the mediator.
Finally, we have compared the first version of our cycle with two examples of Otto cycles
enhanced by shortcuts to adiabaticity. The comparison has shown that one does not
need high coupling (g ≫ ωc, ωh)1 to obtain a power output comparable to that of the

1Here, g is the coupling strength during the collision between the systems of the two collections while
ωc and ωh are, respectively, the frequencies of the cold and hot collections.
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Otto cycle with shortcuts to adiabaticity at maximum power. Future research directions
include the possibility of multiple mediators with or without time-dependent frequencies.

In chapter 5, we have dealt with a driven harmonic oscillator in contact with a
collisional environment which can be studied both in the Markovian and non-Markovian
cases. To investigate this setup, we employed the Gaussian state formalism, assuming
all the first moments equal to zero. In the Markovian case, we have managed to derive
a nonadiabatic master equation in the continuous limit of the collision model by using
two different techniques leading to similar results. In the non-Markovian case, we
have made use of the Markovian embedding technique to compute the dynamics of
the open quantum system, which we have then studied for the non-driven harmonic
oscillator case. Moreover, we have used a quantifier of non-Markovianity developed
specifically for harmonic oscillators in Gaussian states and showed that it presents peaks
of non-Markovianity in correspondence of the usual non-Markovian oscillations of the
excitation number of the open system. This quantifier should let us to distinguish between
fluctuations due to non-Markovianity and those due to the driving when studying the
driven harmonic in the non-Markovian case. Although the results of this work are
still partial, we deem they are encouraging since they seem to well reflect other results
found in literature for non-collision models and include the appearance of a nonadiabatic
time-dependent term in the master equation we have derived in the Markovian case.

Chapter 6 deals with the two-photon Dicke model in the bad-cavity limit. In particular,
we have studied the case of a damped harmonic oscillator interacting with N qubits via a
two-photon coupling in the bad-cavity limit in the presence of finite temperature baths, a
coherent pumping on the harmonic oscillator, and an incoherent pumping on the qubits,
comparing it to the one-photon coupling case. We have succeeded in applying a recent
adiabatic elimination technique in the two-photon model to derive a reduced master
equation governing the collective evolution of the qubits. This presents two fundamental
differences compared to the dipolar case: an enhancement of the spontaneous-like emission
rate, including a thermal contribution and a quadratic term in the coherent driving,
and an increased temperature of the effective bath experienced by the qubits. This
novel phenomenology makes it possible to accelerate the generation of non-diagonal
steady states and to observe a drastic change of the temperature-dependent behavior
of quantum collective phenomena, leading to a stronger resilience of these phenomena
to high temperatures. We finally remark that the models here investigated can be
feasibly implemented with both atomic and solid-state existing quantum technologies (see
section 2.4.2). In particular, we have provided an example of a possible implementation
with superconducting circuits of the two-photon coupling Hamiltonian (see Appendix 6.A).
Different research lines can be seen as natural extensions of this work. First of all, finding
the approximate dynamics of the harmonic oscillator in the presence of the qubits can
help us describe the harmonic oscillator output in experiments. Secondly, a direct
generalization of our results would consist of deriving the qubits effective dynamics when
they are not resonant with the harmonic oscillator. Lastly, the limit of a large number of
qubits could be explored to see if there are significant differences compared to the dipolar
Dicke model in the same limit.
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Finally, chapter 7 is entirely dedicated to the connection between energy and entan-
glement, with a focus on the MEESs. There, we have found the minimum and maximum
permitted energy of an arbitrary finite and non-interacting bipartite system for a given
quantity of entanglement, and we have called the states saturating the lower bounds
MEESs. Next, we have proposed several protocols to generate MEESs. Three of these
protocols are based on the direct use of unitary operators, while five others exploit
a zero-temperature thermalization for their realization. The usefulness of generating
MEESs through unitary operations is first confirmed by a numerical investigation about
the energy distribution of entangled pure states. We have found that, in all the studied
configurations, MEESs are extremely rare except for the two-qubit case and bipartite
systems with a highly degenerate spectrum. Notably, two of the unitary protocols can be
decomposed as the product of simple two-level local rotations and of a local change of
phase on a subsystem and, subsequently, a generalized CNOT gate on the bipartite system.
Therefore, these implementation of these two unitary transformations in quantum circuits
should be easier compared to another unitary transformation that we have identified,
based on a global approach. On the other hand, for the five different zero-temperature
thermalization based protocols, we have compared their performances when applied to
MEESs and generic target states, showing that MEESs practically represent the best
target states in terms of the energy cost for their generation. MEESs can be important
in quantum technologies since, fixed the degree of entanglement necessary for a certain
application, they allow one to convert in entanglement the least amount of energy. They
appear even more important in the light of our numerical simulations, showing that the
energy required for the energy-entanglement conversion is higher for the majority of
states. A natural but difficult extension of this research consists of finding the MEESs
for the general case of interacting bipartite systems.

To conclude, we believe that the results presented in this Thesis shed light on various
aspects of how dissipative processes can be treated and exploited, and on the interplay
between quantum correlations and other physical parameters in both isolated and open
quantum systems. In different parts of the Thesis we have made connections among the
various topics investigated in the Thesis. However, further interlacing among them can
be sought off, for example by searching for generation of MEESs through structured
collisional environments or by trying to obtain MEESs as the output of a thermal cycle.
Collision models could be also used to obtain another point of view on the two-photon
Dicke model, by re-visiting the same model of chapter 6 with the substitution of the
phenomenological approach with a collisional one.
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La dynamique dissipative des systèmes quantiques ouverts et les corrélations quantiques sont des sujets de grand intérêt actuel. 
Le premier en raison de sa nécessité pour décrire des systèmes réalistes et le second parce que les corrélations quantiques 
permettent de réaliser, en général, des protocoles véritablement quantiques.
Cette thèse vise à étudier des processus physiques reposant sur la dissipation, en se concentrant également sur les corrélations 
quantiques et leur rôle dans ces processus, et sur la façon d'utiliser la dissipation pour générer des corrélations quantiques. Tout 
d'abord, nous présentons au lecteur les différents sujets abordés dans la thèse qui sont liés à divers domaines de recherche tels 
que les systèmes quantiques ouverts, la thermodynamique quantique, l'optique quantique et l'information quantique. Ensuite, 
chaque chapitre traite d'un sujet différent.
Une première partie de la thèse inclut deux études dans le domaine de la thermodynamique quantique. Une première étude 
concerne un protocole d'extraction de travail exploitant un seul bain thermique. Le travail, défini dans la théorie des ressources 
thermodynamiques, est extrait d'une ressource et stocké dans un système bipartite en activant et en désactivant son interaction 
interne. Ensuite, nous appliquons ce protocole à deux systèmes physiques pertinents : deux qubits en interaction et le modèle de 
Rabi. Dans les deux cas, nous obtenons une extraction de travail comparable aux énergies nues des systèmes. Dans une seconde 
étude, nous analysons des machines thermiques quantiques basées sur des cycles thermodynamiques à deux temps utilisant 
deux bains à des températures différentes. Le fluide de travail est composé de systèmes avec des niveaux d'énergie 
régulièrement espacés et toutes les interactions considérées sont de type d'échange. Nous maximisons la puissance de deux 
cycles différents, en nous concentrant également sur le rôle du temps d'attente des machines.
Dans une seconde partie de cette thèse, fortement liée aux systèmes quantiques ouverts, nous étudions d'abord la dynamique 
Markovienne et non-Markovienne d'un oscillateur harmonique quantique guidé au sein du modèle collisionnel. Même si ce projet 
de recherche est "en cours", nous avons déjà des résultats prometteurs tels que l'apparition d'un terme non adiabatique dans la 
limite continue de la dynamique Markovienne. Ensuite, nous étudions le modèle de Dicke à deux photons dans la limite de 
mauvaise cavité, en considérant un modèle assez général comprenant des bains de température finis et des pilotages cohérents 
et incohérents. Nous parvenons à dériver une équation maîtresse efficace pour la dynamique des qubits et à la comparer au cas 
à un photon. Dans le modèle à deux photons, nous observons une augmentation du taux d'émission de type spontané des qubits 
et une augmentation de la température effective perçue par les qubits. Ces différences conduisent à une génération plus rapide 
d’états stationnaires avec cohérence et à une dépendance plus riche des effets collectifs sur la température.
Dans la dernière partie de la thèse, nous explorons la connexion entre l'énergie et l'intrication quantique dans un système 
bipartite fini arbitraire sans interaction, trouvant également les états intriqués d'énergie minimale (MEESs), c'est-à-dire les états 
ayant la quantité d'énergie minimale pour un degré donné d’intrication quantique. Nous étudions également comment ces états 
peuvent être générés à la fois par des processus unitaires et dissipatifs, trouvant, pour ces derniers, que les MEESs sont 
pratiquement les plus économiques à produire. De plus, les MEESs peuvent être connectés entre eux au moyen d'opérations 
locales et de communication classique et semblent avoir des connexions remarquables avec la thermodynamique quantique et la 
physique à plusieurs corps. Enfin, nous analysons comment utiliser nos résultats pour réduire le coût énergétique de différents 
protocoles d'information quantique.

Titre : Processus assistés par dissipation et corrélations quantiques
Thermodynamique quantique, Travail, Modèles collisionnels , 
Interaction à deux-photons, Élimination adiabatique, Intrication quantique.

Mots clés :

Dissipative dynamics of open quantum systems and quantum correlations are topics of great actual interest. The former because 
of its necessity when describing realistic systems and the latter because quantum correlations enable, in general, genuine 
quantum protocols.
This thesis aims to study physical processes relying on dissipation, also focusing on quantum correlations and their role in these 
processes, and on how to use dissipation to generate quantum correlations. We first introduce the reader to the various topics 
treated within the thesis which are connected to various research fields such as open quantum systems, quantum 
thermodynamics, quantum optics, and quantum information. Then, each chapter deals with a different subject.
The first part of the thesis consists of two studies in the context of quantum thermodynamics. The first study concerns a protocol 
of work extraction exploiting a single thermal bath. The work, defined within thermodynamic resource theory, is extracted from a 
resource and stored into a bipartite system by turning on and off its internal interaction. Then, we apply this protocol to two 
relevant physical systems: two interacting qubits and the Rabi model. In both cases, we obtain a work extraction comparable 
with the bare energies of the systems. In the second study, we investigate quantum thermal machines based on two-stroke 
thermodynamic cycles using two baths at different temperatures. The working fluid is composed of systems with evenly spaced 
energy levels, and all the considered interactions are of the exchange type. We maximize the power of two different cycles, also 
focusing on the role of the machines waiting time.
In the second part of this thesis, strongly connected to open quantum systems, we first study the Markovian and non-Markovian 
dynamics of a driven quantum harmonic oscillator within the collision model. While this is still a "work in progress" research 
project, we already have promising results such as the appearance of a non-adiabatic time-dependent term in the continuous 
limit of the Markovian dynamics. Then, we study the two-photon Dicke model in the bad-cavity limit, considering a quite general 
setup comprising finite temperature baths and coherent and incoherent drivings. We manage to derive an effective master 
equation for the qubits dynamics and compare it to the one-photon case. In the two-photon model, we point out an enhancement 
of the qubits spontaneous-like emission rate and an increment of the effective temperature perceived by the qubits. These 
differences lead to a faster generation of steady states with coherence and a richer dependence of the collective effects on 
temperature.
In the last part of the thesis, we explore the connection between energy and entanglement in an arbitrary finite non-interacting 
bipartite system, also finding the minimum energy entangled states (MEESs), i.e., the states having the minimum energy amount 
for a given degree of entanglement. We also study how these states can be generated both through unitary and dissipative 
processes, finding for the latter that the MEESs are practically the cheapest ones to produce. Moreover, the MEESs can be 
connected among them through local operations and classical communication and seem to have remarkable connections to 
quantum thermodynamics and many-body physics. Finally, we analyze how to use our results to lower the energetic cost of 
different quantum information protocols.

Titre : Dissipation-assisted processes and quantum correlations
Quantum thermodynamics, Work, Collision models,
Two-photon interaction, Adiabatic elimination, Entanglement.
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