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ABSTRACT

Among the mobile network challenges, there is data traffic growth, an increasing number
of connected devices, spectrum limitations, and costly infrastructure updates. In this context,
opportunistic D2D communication appears as a solution to offload data, increase capillarity,
deliver content in specific scenarios (e.g., emergency) and foster innovative applications and
services. Previous standards like LTE discussed D2D broadly. Still, recent research remarks
that 5G/6G will be D2D’s real enablers, given the possibility of using human-behavior big data
from users’ devices.

Previous opportunistic D2D forwarding algorithms extracted mobility characteristics for
improving content delivery cost-effectiveness. Nevertheless, most initiatives dealt with tra-
ditional metrics due to constraints, such as limited availability of real traces or the lack of
a human-centered networking vision. Next-generation solutions need a more in-depth vision
of human aspects hidden into datasets. Moreover, scenarios practical to mobile carriers lack
evaluation. To this end, this thesis guides the reader through the whole process for building a
novel Tactful Opportunistic COmmunicaTion Strategy (TOOTS). TOOTS leverages wireless
encounter patterns, temporal, spatial, geographic, and direction awareness to improve cost-
effectiveness content delivery in a mobile networks scenario. The proposal consists of: learning
human-aspect state-of-art best practices; achieving insights to improve strategy’s performance;
using, proposing, and analyzing human-aware metrics; combining metrics and insights into the
strategy targeting an improved performance in a more realistic mobile scenario; and finally,
evaluating the strategy through its strengths and shortcomings. This thesis shows that TOOTS
improved the performance of an opportunistic content delivery scenario in terms of overhead,
delivery rate, and latency by following this process.

First, to achieve the results, we survey the human aspect in networking solutions for over a
decade. We found that there is an evolution in how the human links to networking challenges.
This broader human-aware vision culminates into the Tactful Networking perspective, which
we introduce to follow, including discussions concerning application examples and insights. We
complete the literature review by discussing state-of-art opportunistic forwarding strategies,
including contributions, gaps, and open issues. Second, we discuss a framework for enhancing
raw human data hidden into datasets. A case study with the MACACO dataset validates
the framework through trace characterization results and analysis. Following, we characterize
MACACO, NCCU, and GRM datasets to bring insights and to validate TOOTS. The presented
and analyzed strategy’s metrics come from such datasets’ characterization results and insights.

Third, we introduce TOOTS, targeting cost-effective content delivery in a mobile sce-
nario. Afterward, we present the formal definition for choosing the disseminator nodes problem
(TOOTS’ 1st phase). As motivation, we analyze the overhead and latency of the Epidemic
forwarding. Subsequently, we introduce TOOTS’ two phases: a Tactful Dissemination Policy
and a forwarding algorithm.

Finally, we compare TOOTS’ effectiveness on its phases with enhanced Store-wait-forward,
Epidemic, and Bubble Rap algorithms through real and synthetic traces. Among the main
outcomes, in a scenario with a 30 m range, TOOTS reached a 100% delivery ratio with 28%
and 73% reduced delivery latency, and with 16% and 27% reduced overhead, respectively, in the
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real and synthetic datasets. With a restricted (10 m) range, TOOTS was the fastest strategy
and the only one that delivered 100% of the contents within the real trace.

Consequently, this thesis contributes to addressing the opportunistic content delivery prob-
lem in cellular networks by providing a cost-effective human-aware opportunistic solution. The
strategy can be applied in different scenarios to assist the operator in delivering content with-
out not necessarily using their legacy network, e.g., by exploring the capillarity of their mobile
users, for data offloading and other applications.



RESUME

Parmi les défis liés aux réseaux mobiles, il y a la croissance du trafic de données, un nombre
croissant d’appareils connectés, des limitations de spectre et des mises & jour d’infrastructure

coliteuses. Dans ce contexte, la communication D2D opportuniste apparait comme une solution
pour décharger les données, augmenter la capillarité, fournir du contenu dans des scénarios
spécifiques (par exemple, urgence) et favoriser des innovations.

Les algorithmes de transfert D2D opportunistes précédents ont extrait les métriques tradi-
tionnelles de mobilité pour améliorer la rentabilité de la diffusion de contenu. Les solutions de
nouvelle génération nécessitent une vision plus approfondie des aspects humains cachés dans
les ensembles de données. A cette fin, cette thése guide le lecteur tout au long du processus de
construction d’une nouvelle stratégie tactique de coopération opportuniste (TOOTS). La propo-
sition consiste a: apprendre les meilleures pratiques de pointe sur I'aspect humain; obtenir des
informations pour améliorer les performances de la stratégie; utiliser, proposer et analyser
des métriques sensibles aux humains; combiner des métriques et des apercus dans la stratégie
visant une performance améliorée dans un scénario mobile plus réaliste; et enfin, évaluer la
stratégie a travers ses forces et ses faiblesses. Cette thése montre que TOOTS a amélioré les
performances d’un scénario opportuniste en termes de surcharge, de taux de livraison et de
latence en suivant ce processus.

Pour atteindre les résultats, dans ’étude de 'aspect humain du réseautage, nous avons con-
staté qu’il y avait une évolution dans les liens humains avec les défis du réseau mobile. Cette
vision culmine dans la perspective Tactful Networking, que nous introduisons pour suivre. Nous
complétons la revue de la littérature en discutant des stratégies de transfert opportunistes de
pointe, y compris leurs contributions, leurs lacunes et leurs problémes en suspens. Deuxiéme-
ment, nous discutons d’un cadre pour améliorer les données humaines brutes cachées dans des
ensembles de données. Une étude de cas avec I’ensemble de données MACACO valide le cadre
grace aux résultats de caractérisation des traces et a ’analyse. Ensuite, nous caractérisons les
ensembles de données MACACO, NCCU, et GRM pour apporter des informations et valider
TOQOTS. Les métriques de la stratégie présentées et analysées proviennent des informations de
caractérisation de ces ensembles de données.

Troisiemement, nous introduisons TOOTS, qui vise la diffusion de contenu rentable dans
un scénario mobile. Ensuite, nous présentons la définition formelle du choix du probléme des
nceuds de dissémination (lére phase de TOOTS). En guise de motivation, nous analysons la
surcharge et la latence de la transmission épidémique. Par la suite, nous introduisons les deux
phases de TOOTS: une politique de diffusion avec tact et un algorithme de transmission.

Enfin, nous comparons 'efficacité de TOOTS sur ses phases avec des algorithmes améliorés
Store-wait-forward, Epidemic et Bubble Rap via des traces réelles et synthétiques. Parmi les
principaux résultats, dans un scénario avec une portée de 30 m, TOOTS a atteint un taux de
livraison de 100% avec une latence de livraison réduite de 28% et 73%; et avec 16% et 27%
de frais généraux réduits, respectivement, dans les ensembles de données réels et synthétiques.
Avec une portée limitée (10 m), TOOTS était la stratégie la plus rapide et la seule a livrer
100% du contenu dans la trace réelle.

Par conséquent, cette thése contribue & résoudre le probléme de la livraison de contenu
opportuniste dans les réseaux cellulaires en fournissant une solution opportuniste rentable et



consciente de ’homme. La stratégie peut étre appliquée dans différents scénarios pour aider
I'opérateur & diffuser du contenu sans nécessairement utiliser son ancien réseau, par exemple en
explorant la capillarité de ses utilisateurs mobiles, pour le déchargement de données et d’autres
applications.
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CHAPTER 1

Introduction

As traffic grows exponentially |7, 8, 9], next-generation mobile phone networks (5G) [10] will
have to deal with spectrum bottleneck, higher data rates, lower delay, energy efficiency, and
other significant challenges to serve more users and types of communication. Mobile data
traffic has grown 17-fold over the past five years [8], and mobile offload exceeded cellular traffic
by a significant margin in 2017. From these studies, we can infer that mobile networks would
collapse without using techniques to detour traffic.

Moreover, the mobile data traffic growth links to an increase in the number of subscribers
(70% of the global human population will have access to mobile networks in 2023) and con-
nected devices [9]. For example, there will be 14.7 billion Machine-To-Machine (M2M) con-
nections in 2023, accounting for 50 percent of the traffic. Such increase hardens the already
known connectivity challenges and demands innovative solutions to unburden the legacy net-
works, increase capillarity, or provide connectivity in challenging scenarios (e.g., disasters or
crowded places).

The increase in human subscribers exposes a weakness in previous mobile network stan-
dards, such as LTE: the main concern has always been with network parameters and not with
each user’s goals. For such reason, essential performance requirements had sub-optimal im-
plementations [11]. Furthermore, computing and networking systems design are increasingly
dealing with user expectations. The Multi-Protocol Label Switching (MPLS) and Software-
Defined Networking (SDN) are examples of technologies that assist operators in providing QoS
and QoE services through user-oriented traffic differentiation.

In the last decade, several concepts based on direct user involvement gained attention as
enablers for wireless communications, e.g., User-centric Networks [12], Opportunistic Device-to-
Device Communication (D2D) [13, 14, 15], People-centric networking [16], User-in-the-loop [17]
and Human-in-the-loop [18]. Those initiatives targeted improved networking performance,
fostering new applications, and dealing with LTE/5G challenges such as the ones previously
mentioned [14, 18, 19, 20, 21, 22, 23, 24, 25, 26]. Since these mentioned concepts rely on user
participation, understanding human behavior is essential [4]. Nevertheless, such perception is
not trivial. There are multiple challenges associated with gathering human data, processing,
enriching, modeling, extracting knowledge, analyzing, and validating [3, 4].

The main goal of this thesis was to build an opportunistic communication strategy that
leverages human-aware information to perform cost-effective content delivery in a mobile sce-
nario. This strategy envisages scenarios such as unburdening legacy networks (i.e., data offload-
ing), increasing the network’s capillarity, or providing communication in challenging situations
(e.g., disasters or crowded places). An application example of such a strategy is when a network
operator wants to disseminate multiple popular delay-tolerant contents (e.g., non-critical appli-
cation updates) to its users while saving legacy network resources by leveraging opportunistic
communication. The following sections discuss the problems, existing studies and limitations,
the specific objectives, and this thesis’s technical or conceptual contributions.



2 Chapter 1. Introduction

1.1 Building a Tactful Opportunistic Communication Strategy

Previous work on D2D opportunistic forwarding algorithms tackled the cost-effective and
timely delivery of data [13, 14, 21, 22, 27, 28|, i.e., delivering as many contents as possible
with less overhead and delay. In these scenarios, contents (or messages) are forwarded user-
to-user, from source to destination in an opportunistic fashion (i.e., relying on user devices’
intermittent connectivity).

Most of such initiatives focused on proposing new algorithms that typically consider user
encounters due to individual mobility [13, 14, 21, 22, 27, 28|, points of interest (Pols) [14], and
time-evolving social ties between node pairs [13, 14, 21, 22, 27, 28|. Apart from that, not many
initiatives approximated the evaluation metrics to broader inherent aspects of human mobility
while targeting the Quality of Experience (QoE) of users and the Quality of Service (QoS)
offered by the network [2].

The works mentioned above demonstrate a lack of initiatives beyond traditional techniques
or limited human-mobility features. So, it becomes necessary to identify with more detail and
precision the spatiotemporal routines, related consequences (e.g., wireless encounters), and
movement decisions (e.g., motion direction). Among the challenges that state-of-art work had
in this context were the limited availability of real-world datasets [14, 21] and the lack of a

human-centered vision in computer networking.
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Figure 1.1: Building process of the TOOTS proposal.

Real-world datasets (i.e., with real user information) become essential in these studies, as
they usually deal with aspects of human behavior [29]. The NCCU trace [30] is an example of
a public available real-world dataset that features mobility traits from a population and can
support the design of opportunistic routing algorithms [14].

Conversely, due to the scarcity of datasets with larger populations, several evaluations occur
through synthetic mobility models [14, 29|, such as the Small World in Motion (SWIM) [31]
and the Group Regularity Mobility Model (GRM) [32]. The GRM keeps pairwise contact
properties of real traces and accounts to play the role of group mobility, presenting group
meetings’ regularity and social community structure [32].
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In this thesis, MACACO (33|, NCCU, and GRM datasets are characterized and evaluated
to extract insights and metrics later combined in an opportunistic communication strategy.
The strategy focuses on metrics able to reflect human mobility features. Still, each population
has particular habits that can change the wireless contact dynamics [34]. Thus, such metrics
must be evaluated throughout different populations, while spatiotemporal aspects must fit each
population’s habits.

As previously stated, our main goal was to build a Tactful Opportunistic Communication
strategy for performing cost-effective content delivery in a cellular networks scenario. Within
such goal, we address the following research questions:

e Which lessons can we take from state-of-art opportunistic communication strategies when
dealing with the human aspect?

e What human characteristics peculiarities can we learn from mobility datasets to improve
our strategy’s performance?

e How can we translate the identified peculiarities and characteristics into mobility metrics,
and how can we combine those to reach superior performance in our strategy?

The main contributions of this thesis relate to the full process for developing a tactful
(i.e., human-aware) opportunistic communication strategy able to improve system performance
in terms of cost-effective content delivery. This process (Fig. 1.1) is used for building and
introducing the Tactful Opportunistic COmmunicaTion Strategy (TOOTS). More details are
discussed to follow.

1.2 The Rise of Tactful Networking: A Cornerstone for Future
Mobile Networking Solutions

This thesis started with a deep investigation of the challenges, needs, and types of human
behavior for dealing with networking challenges. In the literature review, we found the User-
centric paradigm, an initiative for user empowerment as an enabler of networking solutions.

Although having the user as the central concern, the first solutions in User-centric Networks
still did not see the user as an individual but rather as a network active element. Hence, fre-
quently, only user features measured from the network point of view were considered, ignoring
the intrinsic ones from human activity, e.g., daily routines and personal preferences.

Further, nowadays, mobile operators, end-user devices, and applications (e.g., social net-
works) gather and store a rich set of individuals’ information. Along with the use of data mining
and analytics, machine learning, and other techniques, this data can bring new possibilities for
modeling networking solutions [3, 4]; tackling solutions for the traffic explosion problem [5, 35];
meeting some 5G/6G requirements [15]; leveraging solutions to expand network capillarity [5],
and helping to achieve a network service closer to user expectations |1, 2, 3, 4, 5].

Mobile devices are attached to human daily life activities, and therefore communication
architectures based on context and human behavior information are promising for the future.
The ubiquity of these portable user devices opens possibilities for opportunistic device-to-device
communication (D2D), a technology that, among other benefits, can assist in offloading data
from the operator’s network and help to increase its capillarity.
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We argue that the following paradigm shift is necessary: from a network controlling, track-
g, and monitoring networking users to a network perceiving the needs and adapting to in-
herent behaviors of humans behind networking devices. We denominate this paradigm Tactful
Networking [4], and it calls for having, progressively, computer networks and mobile devices
that understand and react to human behavior characteristics. Tactful Networking groups con-
cepts from human behavior research, not only from computer networking but also from other
areas. Examples of individuals’ characteristics to be considered include mobility, personality
traits, temperament traits, humor, character traits, sharing wills, age, socioeconomic status,
and routines, which can be studied to offer a proper human-aware network service.

The study of human behavior is not new in areas such as psychology, physics, and sociology.
Recent advances in data collection/analysis, machine learning, human-computer interaction
and computational social science have shown that human-behavior investigation has also a
vital importance in networking [36],[37],[38].

As for identifying and reaching this thesis’s main goal, we first targeted acquiring tech-
nical background from the investigation of human aspects applied in state-of-art networking
solutions. This investigation culminated in a conceptual contribution, which is the Tactful
Networking paradigm [4]. Tactful Networking background was also essential for reaching the
insights and metrics of the Tactful Opportunistic COmmunicaTion Strategy (TOOTS). The
following section discusses motivations, problems, existing studies, and limitations related to
the Tactful Networking paradigm proposal.

Regarding the investigation of human aspects applied in state-of-art networking solutions,
we address two research questions, i.e.,

e How was the human aspect applied in state-of-art networking research to improve QoS,
QoE, and bring innovative solutions?

e Which human characteristics can we use to leverage networking research for improving
system performance and user experience? In particular, opportunistic D2D algorithms?

Opportunistic networks play an important role as enablers of emerging applications and
high-demanding requirements of the modern and future mobile network generations, such as
5G [10, 39] and 6G [15]. In many of the envisaged scenarios with low-latency, high-speed
data transmission, capillarity expansion, or even with delay-tolerant communication, D2D
communication [40] should benefit from Al techniques boosted by human-aware information
and edge technologies, such as mobile edge computing (MEC) [4, 15].

Among the challenges in this context are the increasing growth in mobile data traffic due to
the emerging machine-to-machine (M2M) and Internet of Things (IoT) applications as well as
the heavy multimedia content consumption and sharing [9]; network spectrum bottlenecks |15,
41]; connecting millions of devices in crowded areas, or expanding the capillarity in remote
locations [41, 42, 43].

1.3 Findings and Thesis Outline

Building on the importance of designing suitable networking solutions leveraging human behav-
ior and its challenges, we summarize each chapter’s main contributions (Fig. 1.2) and outcomes.
At the end of the section, we link each publication with the thesis chapters.
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CHAPTER CHAPTER
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Figure 1.2: Summary of contributions per chapter of this thesis.

Chapter 2: We begin with a Survey on the human aspect in networking research covering
over a decade of initiatives through a timeline. We found that, throughout the years, there
is an evolution in how the human perspective deals with computer networking challenges.
This broader human-aware vision culminates into the Tactful Networking perspective, which
we introduce to follow in the same chapter. We also discuss several application examples of
tactful networking into mobile network concepts, technologies, and communication models.
Among the examples are 5G, IoT, Vehicular Networks, Ultra-dense networks, Information-
centric Networks, SDN, and NFV. Finally, we review state-of-art opportunistic forwarding
strategies and algorithms. Those are related to the main contribution of this thesis, which is
the whole process for developing the Tactful Opportunistic Communication Strategy (TOOTS).

Chapter 3: We first present the datasets used and resume the work applied to those. Then,
we discuss a framework for enhancing raw human data hidden into datasets. Data Management,
analytics, and privacy tasks are discussed through best practices to deal with challenges in this
context, data source examples, and other aspects. As for validating the framework, we then
present a case study with the MACACO dataset with characterization analysis and results.
Finally, we characterize and analyze the NCCU and the GRM datasets. We use those to bring
insights and to validate the tactful opportunistic strategy.

Chapter 4: We translate the knowledge obtained into the proposal of metrics and features
of our strategy (TOOTS). This knowledge consists of:

e A deeper understanding of the human aspect acquired through surveying human-behavior
state-of-art in networking solutions and the Tactful Networking paradigm proposal. We
learned that for trying to reach superior performance in our strategy, identifying and
using inherent aspects of the human users hidden into the datasets were necessary;

e Learning the contributions and shortcomings from the state-of-art forwarding strategies;
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e The insights and characterization results from datasets’ analysis. Those gave us intuitions
for proposing and combining the metrics into a complete strategy for reaching cost-
effective content delivery in a mobile scenario.

We explain the motivations, insights, and goals behind each metric individually and how
they work into the strategy. Then, we describe individually all metrics, including their math-
ematical formulations and characterization results in the three datasets. TOOTS uses a prob-
abilistic approach to learn from past users’ mobility, identifying node behavior through five
different metrics and a time approach feature.

Chapter 5: We introduce TOOTS, a Tactful Opportunistic Communication Strategy for
performing cost-effective content delivery in a cellular networks scenario. We first present
the scenario we used to evaluate TOOTS, followed by the formal definition for the choosing
disseminator nodes problem (TOOTS’ 1st phase). As a motivation to develop the strategy,
we analyze the overhead and latency metrics within the state-of-art Epidemic forwarding.
Finally, we introduce the two phases of TOOTS: a TDP (Tactful Dissemination Policy) and a
Human-aware forwarding algorithm.

Chapter 6: TOQOTS is evaluated in each one of its steps. We start detailing the evaluation
setup, followed by the 1st phase of TOOTS (TDP policy) evaluations through its combination
with state-of-art Store & Wait and Epidemic forwarding algorithms. Results show that the
TDP Policy was able to improve performance. Finally, we compare TOOTS (i.e., the full
proposal) with traditional Bubble Rap and enhanced versions of the latter with TDP, CDP
(Centrality-based Dissemination Policy), and RDP (Random-based Dissemination Policy). Re-
sults show that TOOTS was the fastest strategy and able to deliver 100% of the contents on
both datasets.

Chapter 7: We conclude this thesis, including its limitations, further discussions, out-of-
scope subjects, and outlook. Part of the insights, additional discussions, and open research
opportunities presented in Chap 7 appear in previously published work.

Below we link each publication related to this thesis to their corresponding chapters.

Tutorial & Book Chapter: R. L. Costa, L. N. Sampaio, A. Ziviani, A. C. Viana, Humanos
no ciclo de comunicagao: facilitadores das redes de proxima geragao (Humans in the Commu-
nication Loop: enablers of next-generation networks), in Tutorials Book XXXVI Brazilian
Symposium in Computer Networks & Distributed Systems — SBRC’2018, Brazilian Comput-
ing Society (SBC), May 2018 [1] (Chapters 2, 7).

Invited Paper: R. L. Costa, A. Ziviani, A. C. Viana, L. N. Sampaio, Towards Human-
Aware D2D Communication, in 2nd International Workshop on Urban Computing, part of the
proceedings of the 16th International Conference on Distributed Computing in Sensor Systems
— DCOSS’2020, IEEE, May 2020 [2] (Chapters 3, 4, 5).

Main Track - Conference Paper: R. L. Costa, A. Ziviani, A. C. Viana, L. N. Sampaio,
Extragao e Anélise de Dados Como Suporte a Estratégias de Comunicagao D2D Cientes do
Humano (Data Extraction and Analysis for Supporting Human-Aware D2D Communication
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Strategies), in XXXVIII Brazilian Symposium in Computer Networks & Distributed Systems
— SBRC’2020, Brazilian Computing Society (SBC), December 2020 [3] (Chapters 2, 3, 4).

Survey - Journal Paper: R. L. Costa, A. Ziviani, A. C. Viana, L. N. Sampaio, Tactful
Networking: Humans in the Communication Loop, in Transactions on Emerging Topics in
Computational Intelligence — TETCI Volume: 5, Issue: 1, IEEE, February 2021 [4] (Chapters
2,3, 7).

Main Track - Conference Paper: R. L. Costa, A. Ziviani, A. C. Viana, L. N. Sampaio,
Tactful opportunistic forwarding: What human routines and cooperation can improve?, in 35th
International Conference on Advanced Information Networking and Applications — AINA-2021,
Springer, Advanced Information Networking and Applications, May 2021 [5] (Chapters 4, 5,
6).

Open Call - Journal Paper: R. L. Costa, A. Ziviani, A. C. Viana, L. N. Sampaio, On
Building Human-aware Opportunistic Communication Strategies for Cost-effective Content
Delivery, in Computer Communications — Elsevier (Chapters 4, 5, 6).






CHAPTER 2

Rationale

Our detailed human-aware networking literature survey (Sec. 2.1) brought us the assertion on
the growing importance of the user as a central element to innovative computer networking
solutions. This new understanding level of the user’s human characteristics culminates in
what we denominate Tactful Networking, introduced herein (Sec. 2.2). As for illustrating
the practical relevance of this paradigm to solve challenges, we discuss application examples
(Sec. 2.3) related to network concepts, technologies, and communication models (5G, IoT,
Vehicular Networks, Ultra-dense networks, Information-centric Networks, SDN, and NFV).
Furthermore, focusing on state-of-art opportunistic forwarding strategies, discussions regarding
their scenarios, contributions, and limitations gives essential insights to TOOTS positioning in
this subject (Sec. 2.4).

2.1 The Human Aspect in Networking Research
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approaches, user-centric future internet vision.  management based in user social human-aware privacy and security,  Centric 5G, cooperative D2D social networking-
context, user-centric solutions for 5G. h In-the-loop and ser-in-the-loop  based, ultra-dense networks user i
solutions. h more
h behavior studies, i

y
human-centered 6G, human-aware mobile edge
computing, tactful networking.

Figure 2.1: Timeline with the evolution of user-centric initiatives to human-centered future
network generations.

Literature solutions based on a user-centric design brought more attention not only to
user requirements, expectations, and QoE but also to how user participation can help to
solve challenges in the context of mobile networks. These user-oriented approaches assisted
mobile network design in different challenges, including energy and spectrum efficiency, routing,
computing capacity, and capillarity extension.

The timeline depicted in Fig. 2.1 summarizes the research evolution from user-centric com-
munication to more recent human-aware approaches. We highlight essential works, directions,
milestones, and accomplishments for over a decade. The entire content of this section is pub-
lished in [4], while here we present a resume. This section shows a considerable change towards
understanding the human role in computer networks. This broader view culminates into The
Tactful Networking perspective (Sec. 2.2).
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Survey Methodology: As for surveying the human aspect in networking solutions, we
mapped literature works over 20 different keywords related to: “User-centric” and other works
published in the same direction after that. Among those, “Opportunistic Networks”, “User-
Provided Networks”, “Human-in-the-loop”, “People-Centric”, “Delay-Tolerant Networks”, “User-
in-the-loop”, “Human-centric”, “Social Computing”, and “D2D Communication”. We then pro-
ceeded with literature classification according to several features (e.g., “Mobility & Handover”,
‘Routing”, and “Forwarding Algorithms”). The following paragraphs describe the milestones
and relevant work per year since 2008.

2008: We highlight the “user as provider” concept from user-centric communication [12],
a solution for capillarity extension and data offloading through user participation. The user-
centric main idea was for the user to act as a service/connectivity provider in specific scenarios:
network edge, crowded places, and disasters. Despite many challenges identified [12], most
discussions were still from a network, device, performance, and services perspectives, such as
routing, access control, power consumption, and data privacy.

2009: The user mobility context [44]| was a key topic with discussions about the main mobility
aspects, the limitation of current protocols for user-centric models, and a user-centric future
internet vision. The impact of user-location sensing |45] revealed issues related to control and
privacy. User characteristics such as uncertainty, selfishness, and sensitivity to device resource
consumption assisted incentive mechanisms [46].

2010: The importance of smart devices and online social networks (OSNs) sensing appeared
in [47]. They gather user attributes and social graphs from social networks to infer other users’
characteristics. This kind of sensing involves collecting mobile datasets from user devices
to assist opportunistic routing architectures, such as [48]. They analyze and classify users’
interactions according to their interests and activity. In [49], user contacts are mapped to
social graphs for achieving better DTN routing performance. Studies in user behavior [50],
preferences [51], attributes, satisfaction [52], and context started to be more common.

2011: We highlight social computing studies, such as human social aspects in mobility mod-
eling for improving mobile network operation [53], access control, trust management [54], and
privacy [55]. Among the characteristics considered were similarity of user profiles, reputation,
and friendship history in social networks. User-provided networks/services relying on user-
preferences targeted energy efficiency, QoS [56], among others. Urban computing was linked
with social, spacial, and temporal aspects [57|. In [58], authors affirm future internet will be
user-centric and context-aware. A user-centric architecture for 5G was introduced [59].

2012: Discussions about a socially-driven Internet architectural design were frequent. In [60],
the role of prospective consumers (also services providers) appears as an Internet trend of user
empowerment. Social aspects and other user characteristics appeared in multiple initiatives.
Among those, user cooperation in peer-to-peer systems [61], energy-efficiency topology control
in ad hoc networks [62], QoS-based incentive mechanism for user-centric networks [63], cellular
traffic offloading through community-based opportunistic dissemination [64|, and mobility-
based handover [65].
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2013: Human social ties studies appeared frequently. Challenges and solutions from OppNets
and DTN to Mobile Social Networks (MSNs) are in [66]. Environment, context, reputation,
community check, and other aspects appeared in trust management, cooperative models, and
mobility analysis [67]. In [68], opportunistically created communities are determined not only
by shared interests or contacts but also by mobility-related context like physical location and
co-presence. In [69], user empowerment discussions in data offloading. A self-adaptive sys-
tem for data dissemination in oppnets relying on a recognition heuristic with human-brain-like
decisions is in [70]. Other user characteristics, such as communities, visited locations, friend-
ship, selfishness, people’s daily routines, and others, were used in MSNs, DTN, and routing
initiatives |71, 72].

2014: The potential of spontaneous smartphone networks and cooperative relaying appeared
in different works, making services adaptive to both user and network requirements [73, 74].
Discussions in D2D for 5G included security, privacy, interference management, resource al-
location, and pricing models [75]. In the 5G context, works about reaching a superior user
experience alongside new services and applications [76], green and soft future network rethink-
ing the cell-centric design [77]. Other works included user traffic profile for allocation mech-
anisms |78, user-centric social-aware routing [79|, user-centric communication services [80],
user-provided incentive and reputation [81], QoE/QoS from user preferences [82, 83|, and fu-
ture people-centric networking [84, 85]. The term “User-in-the-loop” appeared in [86].

2015: Human-aspects started to be even more frequent in cooperative networking. We high-
light Human-in-the-loop and User-in-the-loop approaches [20, 87|, considering aspects such
as human intents, psychological states, emotions, and actions inferred through sensory data.
User-centric and user-provided wireless networking proposals are in [88, 89]. They emphasize
people-centric networking, user interests, and social connections in different scenarios. In [90],
a SDN-based 5G architecture relies on user location information. Other works included user-
cooperation, geographical context, and content popularity data offloading [91]|, user-profile
security [92], mobile users crowdsensing [93|, mobility and OSNs [94], and user satisfaction as
a protagonist in networking services [95].

2016: Terms like people-centric [96] kept appearing, reinforcing the importance of under-
standing the human behind a device - an individual sharing contents, experiences, and acting
as a mobile virtual sensor. In |97] appears a UDN architecture closer to user requirements.
In [10], D2D, UDNSs, and big data analytics appear as 5G enablers. Characteristics such as user
preferences, QoE, power status, movements, localization techniques, and geo-analysis appear
in [98]. In [99] authors show that the structural properties of OSNs are similar to social net-
works formed offline. Other works included user-centric QoE prediction [100], human-behavior
ICNs [101], user-centric scheduling for flexible 5G design [102], and opportunistic D2D routing
relying on social group meetings [22].

2017: We highlight human-in-the-loop and user-in-the-loop works, reinforcing the need for
learning, adapting, and steering user behavior to exploit the human factor in future ubiquitous
mobile systems [18, 23|. User preferences or characteristics applied to energy constraints [103];
ultra-dense networks [104], mobile edge networks [105], user-centric context-aware radio access
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selection for 5G [106], user-provided networks with incentive mechanisms [107|, cooperation-
based cache [108], extracting social relations from users’ ratings [109], and cooperative D2D
communication [110]. According to [111]|, we are moving towards the 5G era, witnessing a
transformation in the way networks are designed and behave, with the end-user placed at the
epicenter of any decision.

2018: The trend related to user-centric initiatives, user-in-the-loop, and human-in-the-loop
continued. In [14], spatial and social awareness are combined to outperform state-of-art D2D
opportunistic routing protocols. In [112], a survey on IoT future proposes a four-layer architec-
ture, including a sensing layer. A “human-in-the-loop” 5G system in [113]| combines prediction
from big data analytics centered in user demand with pushing and caching. In [24], data
offloading relies on user participation. They affirm that most previous works ignored user
device constraints. Other works included user reliability propagation based on OSN interac-
tions [114], user-centric D2D content-sharing [115], human-in-the-loop radio resource allocation
for haptic communications [116], user-centric ultra-dense-networks [117], and user-centric co-
operative caching based on network topology, traffic distribution, channel quality, and file
popularity [118].

2019: The human-user context is linked with subjects such as location-based social net-
works [25], urban computing [25], machine learning [119], distributed spectrum sharing in
dynamic networks, wireless virtualization, and handover. Many of these initiatives link to
future 5G. A novel user-centric networking model where each user, based on uncertainty and
their traffic model, can serve as access points for other users in their vicinity is in [120].
In [121], a 5G user-centric wireless access virtualization proposal allows users to benefit from
a set of transmission points selected according to their environment and QoS requirements.
This architecture represents a rupture of the traditional cell-centric scheme. In [26], handover
opportunities in user-centric networks rely on user characteristics such as direction and speed.

2020 - Future: Future generation mobile networks will deal with human context, behavior,
and information, considering aspects such as mobility, interactions, social ties, traffic profile,
personality, and others discussed in the following section. Therefore, based on the discussions
above and throughout the years, network models and solutions link with a new understanding
level where human characteristics are necessary to offer better and more personalized service
through tactful networking.

This section showed how the human aspect in networking research is evolving from a
simplified view of “user as provider” to the use of human context and behavior, including
several different users’ characteristics to solve challenges. This broader human-aware view
consists in part of the background for the proposal of Tactful Networking (next section).

2.2 The Tactful Networking Perspective

Traditionally, the design of computer networks happened from a service-provider perspective.
There is a urgency for a proactive accommodation of human behavior, which refers to the
anticipation of users’ behaviors, allowing the services and the communication systems to adapt
to it proactively [122, 123]. In an Internet that has become essentially mobile [9], it has
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become urgent for networking services to accommodate users’ dynamic behaviors, no matter
how dynamic they are or how uncertain their movements are meant to be. In particular, since
humans nowadays are often carrying and interacting through smart devices, mobile applications
create a digital footprint that directly reflects our routines, interest, and whereabouts. Hence,
our behavior and individual characteristics directly impact how we demand network resources
and what kind of resources are requested.

As a result, we discuss the need for future network design to take human behavioral aspects
into account to optimize network resources, services, and performance. Following, we discuss
the Tactful Networking paradigm, the human behavior aspects that can be extracted and lever-
aged from digital footprints, and literature on behavior analysis. Some of these human-behavior
aspects cited herein appear in solutions described in the previous section. Furthermore, we
deliberate about each human traits’ specific characteristics, also bringing other ones from in-
terdisciplinary research. The Tactful Networking paradigm is a conceptual contribution of this
thesis and is fully published in [4].

2.2.1 The tactful networking concept

The Tactful Networking research paradigm herein discussed is a reference to the objective
of adding perceptive senses to the network by assigning it with the human-like capabilities of
observation, interpretation, and reaction to daily life features and involved entities.

It is valuable to mention that the Tactful Networking concept is not the same as Tactile
Internet [124, 125]. The latter regards research initiatives in which network connectivity aims
to deliver real-time physical tactile experiences remotely. Conversely, being tactful is having or
showing skill and sensitivity in handling with people. It also aggregates diplomacy, perception,
tact, and care. Therefore, a tactful network can be more precisely defined as a network that
considers human behavioral characteristics: (i) to foresee user needs and actions; (ii) to self-
adapt to the inherent heterogeneity and uncertainty of individuals; (iii) while offering a better
quality of experience and improving system efficiency.

Fig. 2.2 illustrates a tactful networking ecosystem where the human element is the epicenter
of future networking solutions. His surroundings feature different aspects of his behavior that
can bring valuable information to the networking domain. Mobility patterns and interactions
are examples applied (Sec. 2.1).

Further, in this section, we discuss more aspects that can bring interesting insights into
networking solutions. Among those, socio-demographic traits, socio-economic traits, and per-
sonality traits. More externally in the figure, we have several (but not limited to the ones herein
listed) computer networking technologies or paradigms that already benefited or can benefit
from the human-behavior data. Besides these and other technologies, new public-focused ser-
vices (e.g., customized advertisement delivery or recommendations) or business models and
opportunities can appear.

Table 2.1 summarizes some human multi-dimensional aspects to be considered. Following
section features ideas behind their usability in tactful networking.

2.2.2 Behavior analysis in the literature

What tactful networking claims to consider are behaviors shaped by the fact that we are
human beings. Some inherent examples are: (i) people habitually act as semi-rational entities,
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Table 2.1: Key human aspects

for tactful networking

Human Aspect

Description

Services or Applications

Context

Relates to the logical or physical context in which an individual inter-
acts. Aspects such as time of the day, weather conditions, location-
based events [126], preferences (e.g., device interfaces, geographical
areas [127], tools, applications), among others, are considered.

Recommendation or customized advertisement services; context-
aware prediction systems (the use of context allows decreasing the
required visiting history of users and improving accuracy prediction).

Interactions

Study the features underlying human physical encounters, such as
regularity [128], similarity [48], contact, or inter-contact duration in
the temporal graph of encounters among individuals.

Interaction-based data offloading [91]; opportunistic applications or
services [129]; proximity-based social networks [130]; prevention of
cybersecurity attacks (e.g., understanding a malware propagation in
mobile wireless networks) as well as of epidemic disease propagation.

Mobility

Accounts for regularity [131], entropy, confinement [132], as well as
time periodicity [133] of visits. Location similarity [134], displacement
profile, important location and routine inference are also related.

Network resource allocation [135] and optimization; content pre-
fetching; urban planning [25]; traffic engineering [136]; prevention of
cybersecurity attacks (e.g., understanding a malware propagation in
mobile wireless networks) as well as of epidemic disease propagation;
crime prediction.

Personality
Traits

Accounts for the OCEAN traits extracted through the Bigh model [6]:
Openness, Conscientiousness, Extraversion, Agreeableness, Neuroti-
cism. Relates to the understanding of the influence that personality
traits may have on individuals’ behaviors (e.g., motion [137], physi-
cal/social relationships [138], preferences) or context.

Recommendation [139, 140] or customised advertisement services;
incentive-based approaches; message propagation; smartphone usage
understanding [37]; trust-management models.

Social Ties

Relates to friendship in on-line social networks [141, 142] and includes
the study of features underlying human social interactions, such as
regularity, periodicity, similarity, centrality, in the graph of social con-
tacts of individuals.

Message propagation [22]; Influence detection; Homophily inference;
Recommendation or customised advertisement services.

Socio-demographic
and socio-economic
traits

Relates to gender [25], age, income [126], family or marital status.

Recommendation or customised advertisement services; incentive-
based approaches; smartphone usage understanding; traffic profile
modeling; traffic engineering; urban planning.

Traffic Profile

Accounts for traffic volume, time periodicity, type of content, interest
(including application, websites, and services).

Recommendation or customized advertisement services; traffic profile
modeling; network resource allocation and optimization; load balanc-
ing.

Others

Any other human behavior facing their actions, habits, interests, pref-
erences, and context in their day-to-day life: e.g., the human inherent
and frequent will of sharing information (e.g., pictures, recommenda-
tions, opinions, arguments, and friendship).

On-line social networks; recommendation systems; pool transporta-
tion (e.g., blablacar, uber); home-sharing (e.g., Airbnb).
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Figure 2.2: Tactful Networking ecosystem where human-related aspects are future mobile-
networks enablers.

routinely moving and interacting within a reduced and predictable geographic landscape [128]
and tending to meet the same people; (ii) people build their life-routine in particular areas that
can also link to their personality and social ties, and (iii) human decision-making process deals
with entropy and uncertainty, led by situations such as conflict, paradozx, and noise [143].
Hereafter, we discuss literature works entitled to capture and analyze human behaviors.

2.2.2.1 Mobility

Understanding human mobility has many applications in several areas, such as the spread of
diseases, city planning, traffic engineering, targeted product advertisements, and networking
resource allocation. Asroutines and habits dictate our life, mobility data is relevant for inferring
behavior. For instance, in modern urban planning, understanding human travel patterns on the
city level is essential. Similarly, mobile operators could better adapt their resource allocation
or service provision if they understand their users’ displacement tendencies. Further, over 24%
of Android applications build their services on top of human-mobility data. All this shows the
importance of deciphering human motion.

Literature works have unraveled interesting properties of underlying large-scale mobility
patterns (Table 2.2).

2.2.2.2 Personality Traits

In recent years, personality prediction has attracted interest from the computer science re-
search community. Technologies, services, or applications can be improved to answer users’
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Table 2.2: Properties of underlying large-scale mobility patterns

Property Literature Works
Recurrence and temporal periodicity of visited locations. [128, 132]
Confinement (a small area an individual visits). [128, 132]
High predictability of human mobility. [134]
Few unique network motifs (i.e., about 17) explaining the [144]
majority of daily human mobility.
Population trip distance and radius of gyration distribution 1132
following a power law.
A very high uniqueness of individual trajectories (i.e., four random
time-stamped locations identify one user among 1.5 million [145]
individuals in 95% of the time).
Few trips to new places outside an individual radius and about [146]
25% of human mobility relating to new places visits.
Tendency to minimize their efforts (i.e., following the shortest path
while moving). This phenomenon repeats independently of countries, [128, 132]
cultures, or transportation means being used.

expectations and needs if such interested users’ personality is known and better understood.
For example, recommendations on new places to visit and novel experiences to seek could
reach individuals more disposed to enjoy the information. Alternatively, online social networks
or crowdsensing applications could better suggest new activities or connect individuals with
similar personalities and interests.

For capturing individuals’ personalities, the research community has been considering the
Big5 personality model [6]. It delineates the OCEAN traits as follows: (i) Openness (to expe-
riences) (O): is associated with intelligence, originality, creativity, and intellectual curiosity;
(ii) Conscientiousness (C): describes self-control, planning, and organizational skills; (iii) Fz-
traversion (E): accounts for assertiveness, positive emotions, and captures the amount of social
stimuli that we search for; (iv) Agreeableness (A): describes empathy, compassion, and altru-
ism; (v) Neuroticism (N): is associated with the tendency of experiencing negative feelings,
anxiety, mood swings, and emotional instability.

Personality traits levels are gathered through questionnaires built for this purpose by psy-
chologists and available online. Figure 2.3 features examples of personality traits levels, ac-
cording to the Big Five model.

Research has studied individual personality traits prediction through datasets since hu-
man migration to the digital environment renders such prediction possible, and personality is
predictive of a wide range of behavioral and social outcomes. Previous work investigates the
relationship between personality and smartphone usage: i.e., if installed applications, calls,
and the proximity of Bluetooth devices can lead to the prediction of the Bigh traits [147, 148|.

Interactions and online social ties have also appeared to predict personality traits [137,
149|. In [137], authors reveal how Openness is correlated with check-ins at popular and social
venues, while Neuroticism has a negative correlation with the number of venues visited. The
connection between people’s social networks, the typical locations visited, and Extraversion
is studied in [150]. Finally, [151] predicts Extraversion and Conscientiousness by analyzing
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OPENNESS TO EXPERIENCE CONSCIENTIOUSNESS EXTRAVERSION AGREEABLENESS NEUROTICISM
Degree of intelectual Tendency to be organized, Tendency to seek the Tendency to cooperate, Tendency toward
curiosity, creativity and a goal-driven, and company of others and trustworthy, good- emotional unstability.
preference for novelty. dependable. talk, assertive. natured.

Curious, independent  Hardworking, organized Outgoing, adventurer Uncooperative, critical Calm, secure

LOW HIGH

Practical, prefers routine Impulsive, disorganized Quiet, reserved Helpful, empathetic Anxious, unstable

Figure 2.3: Big Five personality traits [6].

mobile HTTP(S) traffic during weekend nights and weekdays mornings, linking Openness to
visited web pages diversity.

2.2.2.3 Wireless encounters

Understanding user contacts is relevant when designing new opportunistic communication pro-
tocols. In this case, the problem mainly lies in quantifying the contacts’ quality according to
a determined objective and correctly predicting encounters. To that end, among the findings
related to the human aspect, are: (i) he regularity of daily activities [128, 132, 134]; (ii) the
tendency to follow the shortest path to a certain destination [128]; (iii) the very common
short and confined traveled distances [128, 132]; (iv) the prevalence of static phases spent at
a few fixed locations, with rapid transitions among those [152]; (v) the overnight movements
invariance in dwelling places with usually lower contact opportunities [133].

Protocols relying on human motion estimate mobile users’ potential to act as data for-
warders, mainly leveraging sophisticated network analysis metrics such as centrality measures.
In [21, 72], authors derive social-based metrics from users’ connectivity (such as betweenness
centrality and neighborhood similarity) for more efficient opportunistic forwarding decisions
and less overhead. In the same way, opportunistic data offloading relying on direct communi-
cation between devices appeared in [14, 22, 91, 110]. In such works, authors: (i) study how
temporal communities can assist minimizing the delivery delays; (ii) nvestigate the node in-
teractions through centrality measures to derive reliable future communication possibilities, or
(iii) determine the copies amount to be injected in the network to ensure performance.

Finally, although an elevated rate of regularity characterizes human behavior, random
events or decisions can happen. Such situations are hardly predictable and are unlikely to
repeat in the future; they originate from the fact that users are reasonable beings, whose
decisions they take are based on their motivations, which may also change over time [134, 146].
The goal of characterizing random and regular encounters have motivated works, such as [48].
In [48], a finer-grained classifier, is introduced to describe random and social interactions. The
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performed analysis unveils significant differences among the dynamics of users’ interactions,
which authors leveraged to unveil social ties” impact on opportunistic routing.

2.2.2.4 Social ties

Social networks map vertices to individuals, while edges may represent friendship, work in-
teractions, similarity, among others [141]. When building such a network, edges can derive
from explicit information (e.g., declared friendship on Facebook) or from implicit knowledge
inferred from the reciprocate behavior of the vertices (e.g., similarity), a phenomenon called
homophily in the literature of complex network analysis.

Analysis of social networks usually relies on the high predictability of human behaviors [142,
153], mostly driven by routinary activities. Hence, mechanisms such as preferential attachment
and triangle formation model these networks vertices connections [154], leveraging the existence
of communities or highly connected hubs in the network. This high predictability makes social
networks different from random ones, such as the Erdgs and Rényi network [155] (where node
connections are purely stochastic, being determined by a constant probability).

Most recently, location-based social networks (LBSNs) have become relevant data sources
for urban computing [25]. LBSN offers unprecedented geographic and temporal resolutions.
It reflects individual user actions (temporal resolution) at the scale of entire world-class cities
(global geographic resolution). For instance, users who share data in Foursquare, a popular
LBSN, usually have the goal of showing to their friends where they are, while also providing
personalized recommendations of places they visit. Nevertheless, when correctly analyzed for
knowledge extraction, this data can suit for better understanding city dynamics and related
social, economic, and cultural aspects [25, 126].

2.2.2.5 Content demand

Understanding individuals’ content consumption is relevant when looking for solutions: (i) to
manage the recent boost of mobile data usage; (ii) to improve communication services quality
or the design of adaptable networking protocols [156].

Such perception can help to identify traffic congestion periods or fill the gap between the
infrastructure technology’s capacity and the mobile users’ traffic load.

A significant amount of work in the literature analyzes network traffic usage through voice
calls and SMS messages, both extracted from traditional Call Detail Records (CDRs) [157, 158].
Although providing valuable insights, as the CDRs present time irregularity and scarcity of call
traffic, they do not describe realistic data traffic demand patterns. Browsing (visited websites)
behavior has also been applied in user profiling according to their traffic demand [159]. Still,
other works have categorized the actual mobile traffic usage [160, 161]. Among those, [161]
provides a profiling of individual users’ behavior —rather than a network-wide one — and a
precise temporal network usage modeling, i.e., in terms of volume as well the frequency of
traffic demand — rather than only considering total volume of traffic or a normalized volume.
Among the outcomes, authors show: (i) the high day-wise similarity on sessions number, traffic
volume, and inter-arrival time traffic parameters; (ii) such parameters from the same hours on
different days present less variability than the parameters within the same day on different
hours; (iii) the high correlation between upload/download traffic volume; (iv) peak and non-
peak hours can be easily identified when it comes to users’ traffic demands; (v) similar sessions



2.3. Tactful Networking in Mobile Communication 19

number and duration occur when users are grouped by age range, irrespective of the users’
gender; (vi) male participation raises as the user age increases, while the female participation
decreases with the age increase.

More recently, literature works have investigated network usage concerning other users’ be-
havior. In [161, 162], calls/SMS patterns or traffic demand of users and their socio-demographic
factors (e.g., age and gender) are jointly investigated. The relation between content consump-
tion and mobility properties is considered in studies that focus on application interests [163],
data traffic dynamics [164] and service usages [165]. Finally, in [166], authors describe their
investigation on the predictability of mobile data traffic generated by individual users, which
is studied in isolation as well as jointly with mobility. Among the outcomes, authors show:
(i) the possibility for predicting user traffic generation with an upper bound of 85%; (ii) by
knowing the past activities history of an individual, apart of the traffic volume, it is possible to
predict where it will occur with an 88% accuracy in average. This result is possible thanks to
correlations between visited locations and traffic volumes; (iii) including location information
in the prediction process allows forecasting the future consumption of mobile data traffic with
5% higher accuracy, pushing the overall performance from 85% to 90%. Such results indicate a
large space for predicting mobile data traffic and adapting network optimizing solutions based
on the latter, such as caching and prefetching.

This section discussed the Tactful Networking paradigm, including a more granular view
from aspects of human behavior to assist future networking solutions.

2.3 Tactful Networking in Mobile Communication

This section discusses the Tactful Networking paradigm towards mobile network concepts,
technologies, and communication models. More detailed discussions are in [1]. The examples
given here also appear in Fig. 2.2 which shows the Tactful Networking Ecosystem.

2.3.1 5G

The 5G emerged with the premise of providing access to an increasing number of users in a
current scenario of overload and limitations. The challenges range from spectrum allocation
(more efficient reuse and new spectrum) to supporting new applications and device types.

Among the enabling technologies for 5G (i.e., for achieving 5G goals, while maintaining
compatibility with previous generations) [10, 167, 168| are: (i) Wireless Software-defined Net-
works (WSDN); (ii) Network functions virtualization (NFV); (iii) Ultra-densification; (iv) Mo-
bile Cloud Computing; (v) Internet of Things; (vi) Device-to-Device Communication (D2D),
and (vil) Green Communication (sustainable).

According to [4], in the future (both in 5G and in 6G), contextual information and human
behavior data/insights will be combined with technologies such as those cited above to get
closer to the specification, avoiding sub-optimal solutions as in LTE [11]. Figure 2.4 lists some
of the 5G requirements, which can benefit from tactful networking solutions. Below we discuss
which human aspects can apply and how.

5G targets a reduction in energy consumption (1000x/bit) [10] due to the battery lim-
itations of user devices and even more restricted ones (e.g., IoT sensors). D2D relying on
human-aware data can: (i) apply to more efficient resource management; (ii) less energy con-
sumption (short-range connections) and latency; (iii) higher transmission rates; (iv) better
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spectrum reuse (reduced reach), and (v) improved connectivity at the edge, all 5G require-
ments [2, 10]. D2D already appears with loT, V2V, and wearable devices [169]. Human-aware
D2D communication is useful in different 5G scenarios (e.g., data offloading, capillarity exten-
sion, and new applications).

Tactful Networking
Higher Transmission
Rates
10 Gbps (100x higher)
Better Spectrum
i o 1 Reduced Latency
Overhead 1 ms (15x less)
Reduction Y™ A~
' N
Energetic Edge
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Scalability (100x higher)
Technology
Diversity

Human behavior data

Figure 2.4: 5G requirements that may have solutions favored by knowledge of tactful network-
ing information.

5G expects more devices (with different requirements) connections and greater scalability.
Technologies such as IoT, Vehicle Networks, and Autonomous Vehicles bring challenges that
will require changes in the network layers [4, 10]. For example, in the physical layer, the user’s
traffic profile and context can apply for better spectrum reuse. More efficient human-aware
data transmission and signaling mechanisms emerge due to better resource orchestration as the
user (and his intentions) are known. In the network and transport layers, routing algorithms
can rely on mobility, personality traits, and others to reach a higher delivery rate, reduced
latency, and lower overhead. For users on the move, mobility patterns can help in handover
prediction along possible routes, where resources must be reserved.

In terms of management, although the SDN is already a more consolidated technology, the
WSDN still requires many advances [10, 170]. There is a lack of a management framework
capable of managing mobility, the interaction between protocols and technologies, and guar-
anteeing QoS and mobile services provisioning. Social interactions or relationships of trust in
the social context can serve as an input to offer QoS/QoE.

2.3.2 Internet of Things (IoT)

One of the premises of the IoT services is the on-demand availability to their users, at any
time and regardless of location (i.e., connected) [171, 172]. IoT will function as an extension of
current networks [172, 173, 174]. Each object will interact through a network infrastructure and
inter-operate with data and communications services, available resources, and other objects.
Thus, the large amount of data generated and new connected devices will impact the networks.
Data analysis and response to events in many cases will need to be in real-time. Thus, efficient,
context-sensitive, and high-speed networks are essential.
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The tactful networking paradigm is capable of leveraging IoT user data from the sensors
themselves to favor types of communication (e.g., D2D, V2X). The study of the mobility
profile and user routines present in the vicinity serves to choose which nodes have the best
forwarding potential from the IoT sensors (or a relay node) to the cloud. Several works relate
to communication types or resource scheduling that consider the social context, mobility, and
others [175, 176, 177].

Human social ties (e.g., from online social networks) can serve as trust relationships and
as a QoS metric in the communication and data composition from different users’ sensors.
Studying individual routines can help to predict the best moments for capturing or sharing
sensors’ data, keeping them in standby mode in specific time windows (i.e., energy efficiency).
Further, IoT sensors can collect human context data to identify dangerous situations and
stimulate opportunistic communication upon main network infrastructure failure. We conclude
that ToT and tactful networking favor a new perspective of networks and leverage solutions
that will help in people’s daily lives.

2.3.3 Vehicular Networks (VANETS)

Vehicle

House
Moves according ] Incentive Mechanisms to
to driver's == share information could
human-behavior be based on social links
Pedestrian Grid
Acts according to
his/her human
characteristics
Device Infrastructure
Moves according Sending alerts based
to rider's on context. Ex: weather
human-behavior or road conditions

Figure 2.5: Tactful Networking human-behavior data that can leverage V2x networks in pre-

Predicting parking
spots to manage
electric vehicles recharge

dicting situations, favouring interactions, managing resources, creating incentive mechanisms,
establishing trust mechanisms, among others.

VANETS are a special case of MANETs, where vehicles with communication and data pro-
cessing devices can create opportunistic and spontaneous networks while moving [178]. The
communication pattern C-V2X (Cellular-Vehicle to Everything) has emerged with great po-
tential and allows users on the road to communicate using standards such as LTE and 5G [179,
180]. Through sensory information (e.g., weather and road conditions, vehicle status), vehicles
will help their drivers make decisions. In Fig. 2.5, we illustrate visions of how data from the
tactful networking paradigm can favor V2X technology.

Despite the dynamics of these networks, some aspects are recurrent and linked to their
users’ behavior or context. Mobility, for example, is constant but restricted as vehicles travel
on specific roads or streets and are subject to certain conditions such as traffic, signs, and
pedestrian crossing points. The user’s mobility pattern can help to predict future vehicle
positions and handover needs. Despite having a high turnover of nodes, the dynamics of
encounters can be helpful to identify groups that are following a particular route, and that can
interact with each other to deploy opportunistic networks and share data.
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At the network layer, routing protocols must implement strategies to provide constant
communication. They depend on factors such as mobility, data traffic, and road formats.
User mobility analysis can help identify expected traffic and data exchange points at the
intersection of roads. In the future, other sensors shall become part of user devices, including
health monitors. Alarms about the individual’s health status may suggest route changes (e.g.,
to a hospital) or vehicle interruption in case of temporary risk.

2.3.4 Ultra-dense Networks

In the last 50 years, the performance of mobile networks increased 2700 times by reducing the
cell sizes and consequently the communication distance between the pairs [181]. Ultra-dense
networks (UDNs) are essential for 5G/6G [15, 122, 123] and they are formed by: (i) small
cells implanted in high density; (ii) macro base stations; (iii) mobile nodes (e.g., from vehicle
networks); (iv) network control (potentially through SDN; (v) end-user devices. Among the
main challenges in UDNs [182, 183] are: (i) interference Control; (ii) mobility; (iii) resource
management (including energy issues).

In UDNs, mobility studies can apply to predict the selection /re-selection of a base station
(handover/handoff) and assist in resource allocation. At the edge, human-aware D2D algo-
rithms can increase capillarity and assist in data offloading. Other aspects such as detecting
people’s concentration in similar time windows/space, encounter dynamics, and context can
optimize the micro-cells positioning and predict resource allocation. Further, since most of
the consumption on cellular networks links to base stations (about 60% to 80%) [182], users’
regularity and usage patterns can help dynamic capacity dimensioning of base stations, just
as already happens in data centers, increasing energy efficiency [184].

2.3.5 Information-centric Networks

Information-Centered Networks (ICN) rely on a consumption/requisition model centered on
the content holder and name-based routing. The ICNs offer native support for mobility, content
security, non-connection oriented communication, and caching in the network layer [185, 186,
187]. For such reason, tactful networking information gives possibilities for offering a better
network service in ICNs from: the identification of behavior patterns of content producers,
seeking to minimize the effects of handoff (e.g., content unavailability [188, 189]); (ii) the use
of cache policies according to the users’ mobility and context; (iii) choosing the cache location
from daily routines.

The problem of producer mobility is one of the most attacked in ICN [187, 190, 191, 192].
Nevertheless, a human-aware ICN model that predicts producer’s displacement is a possible
solution. Such a model makes it possible to implement opportunistic storage techniques on the
network and prioritize storage and maintenance in the domain of that content from the mobile
producer, based on a specific cache policy.

In [187, 193, 194], authors propose ICN on cellular networks, keeping the most popular
content at the edge (base stations) and grouping users with similar interests. Despite the gains
in hit rates with this approach, they adopt the same cache policies, regardless of the users’
patterns. Therefore, performance may vary [195]. Human-behavior patterns can assist these
proposals in choosing the most appropriate cache policies to meet groups and, thus, increase
the content hit rate in general.
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The cache location of an ICN can also influence the hit rate and, consequently, the service.
Predicting users’ mobility and routines can make content available in strategic locations and
increase the hit rate. In the same vein, proposals in VANETSs implement proactive caches
in strategic locations, aiming at content distribution [187, 196]. On the other hand, traffic
monitoring and data analysis are not enough to decide optimal cache and content replicas
location in scenarios in which caches are stored on the network. In mobility scenarios strongly
characterized by highly dynamic environments, this problem becomes even more evident. For
these reasons, it is necessary to use short-term contextual information, involving not only
nodes’ availability and content popularity, but aspects from users’ habits and routines.

2.3.6 SDN & NFV

Software-Defined Networking (SDN) [197] and Network Function Virtualization (NFV) [198]
created a great impact not only from the data centers operational point of view, but also
bringing possibilities to next generation communication models, concepts, and architectures
like 5G, VANETs, and D2D. SDN enables networks management by software through the
separation of control and data plans. With the advent of SDN, it becomes possible to al-
locate on-demand resources and services, and to provide on-demand management network
applications. A paramount element in the SDN architecture is the controller. Those are cen-
tral entities that coordinate network provisioning and automate its configuration. NFV is a
paradigm that opens the possibility to virtualize networking functions (e.g., routers, firewalls)
replacing dedicated hardware devices with software-based network devices or servers.

Several well-known challenges in SDN can apply tactful networking solutions. Among
those, we can cite the placement of SDN controllers, which is critical for the network func-
tioning. Inappropriate controller placement can affect network in terms of latency, energy
efficiency, resiliency, to cite a few. Recent work [199] remark mobility-aware placement of
SDN controllers as a promising open issue for investigation. In this context, user mobility
data and traffic profiles can provide insightful information for on-demand controller placement
and network resources management. In VANETSs, we know that there is a human behind a
vehicle, which follows his/her paths based on aspects previously mentioned. Human mobil-
ity (e.g., social encounters, displacements), personality traits, and emotional traits can assist
SDN-VANETS [200] to predict disconnection situations, for coordinating opportunistic routing
and forwarding among vehicles, on-demand topology deployment, controller placement, trust
management, and so on. In fact, there is already a multitude of research investigating tactful
networking-related aspects to solve challenge in the context of SDN-VANETS [200]. The use
of Al and machine learning based on human-aware big data opens opportunities also in SDN
and NFV [198].

Since the use of network resources include human users, they can vary in time and space.
Managing these resources is a complex task, since these users traffic profiles can be influenced
by different human traits. As with SDN, tactful networking can assist in solving challenges in
NFV. Identifying human traffic profiles, behavior, routines, and other characteristics of mobile
users assists in NFV resources management and allocation. Human-aware data is essential to
predict network congestion situations to virtualized resources, among other challenges [198,
201].

Following, in the next section, we outline and discuss state-of-art opportunistic forwarding
strategies and algorithms. Throughout the contributions and shortcomings from previous work,
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along with a broader view of the human aspect from the Tactful Networking Paradigm, we
developed a Tactful Opportunistic COmmunicaTion Strategy (TOOTS).

2.4 Opportunistic Forwarding Strategies and Algorithms

Table 2.3: Properties from opportunistic forwarding algorithms

Algorithm | Probabilistic Social Displacement | Direction | Human-Aware Pol
(Encounters) Awareness Awareness | Time Approach | Awareness

Bubble Rap X

dLIFE X X X

SCORP X

GROUPS-Net X X

SAMPLER X X
TOOTS X X X X X

The state-of-art opportunistic forwarding algorithms extracted metrics or decision factors
from real-world or synthetic mobility datasets [14, 21, 22, 27, 29]. Human mobility hidden
into the datasets is dynamic but shows regularity [133, 202] of visited locations [128], en-
counters [203], displacements [204], time [128, 202], space [202, 204], and other aspects [205].
Despite the high predictability of human mobility [134, 206], there is a challenge in choosing
the forwarders through the combination of human-aware decision factors in the context of
opportunistic forwarding.

Bubble Rap: A social-aware forwarding algorithm for delay-tolerant networks (DTN) [21].
It relies on two characteristics extracted from human mobility: centrality, which is related to
social bounds (i.e., encounters), and community detection, defined as a socially connected set of
people with meaningful relationships. Bubble Rap outperformed Prophet [207], a state-of-art
probabilistic routing protocol that relies on wireless encounters’ history and transitivity.

Despite the vast contributions and bringing attention to social-aware algorithms, Bubble
Rap evaluations occurred through small scenarios, as the available traces at the time had less
than 100 nodes. Furthermore, the algorithm community detection feature requires calibration
and demands expensive computing, not suitable for realistic scenarios. Despite these short-
comings, Bubble Rap is the most popular social-aware forwarding algorithm, still used as a
benchmark with recent research [14, 22, 208].

When it comes to the scenario, Bubble Rap was intended for a Pocket Switched Net-
work [209], a type of DTN that uses possible contacts between users to communicate without
a legacy network. Therefore, the main intention was to deliver (i.e., forward) content from
source to destination with improved performance in terms of delivery rate, delivery cost (i.e.,
overhead), and hop distribution for deliveries (i.e., number of hops necessary to deliver the
content). In the emulation of the scenario, they divided the original traces into discrete se-
quential contact events. For each event, the emulator makes a forwarding decision based on
the proposed algorithm.

dLife: This social-aware forwarding algorithm brought attention to the observation of
more granular human mobility [27]. The algorithm captures contact information (duration
and degree) throughout daily hour periods to reflect human activities with more precision.
The results from the evaluation of dLife showed improved delivery rate, delivery delay, and
overhead.
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Nevertheless, the evaluation of dLife suffered from the same lack of availability of more
widespread traces as Bubble Rap. Other shortcomings were non-realistic settings on the eval-
uation, such as small (1 kB-100 kB) content size for offloading and nodes with 11Mbps/100m
interfaces.

The envisaged scenario for dLife exploits user devices’ ubiquity by allowing them to use
a free short-range spectrum to exchange data whenever a contact occurs (i.e., two nodes are
in the communication range). As in Bubble Rap, the goal was to deliver content from source
to destination with improved performance. In the case of dLife, the evaluation metrics were
delivery rate, delivery latency, and overhead.

SCORP: An opportunistic routing protocol that exploits nodes’ social proximity in terms
of contact’s duration and interest in a given content [28]. According to the authors, there is a
higher probability for users with similar habits to show interest in similar content. Furthermore,
more frequent and more prolonged duration contacts can allow faster data forwarding, avoiding
possible interruptions due to topology change. SCORP forwards a message when the next node
is interested in the content, or the latter has a strong bond with other nodes interested in the
content.

Despite the contributions, SCORP evaluations occurred through small datasets available at
the time (a real trace with 36 nodes and a synthetic with 150 nodes). With that said, SCORP’s
performance in larger scenarios is unknown. Furthermore, the distribution of interest among
the network users, the size of the contents (1 kb-100 kb), and the nodes’ buffer size (2 MB)
evaluated lack more realistic settings.

SCORP envisages an opportunistic data delivery in dense urban scenarios through direct
communication between content producers and consumers. Despite the assumption about
scenario density, as previously said, the evaluations occurred with tiny populations. SCORP’s
goal in the proposed scenario was to show improved performance in terms of delivery rate,
delivery latency, and delivery cost (i.e., overhead given by the number of replicas of a content).

GROUPS-NET: A social-aware forwarding strategy that relies on the regularity of group
meetings [22]. This algorithm is parameter-calibration-free and does not require community de-
tection. Compared to Bubble Rap in a larger scenario, GROUPS-NET improved the overhead
with a similar delivery rate.

Despite the contributions, the algorithm relies on a group-to-group path centralized cal-
culation every-time a given content needs to be forwarded opportunistically from a source to
a destination. In real-world larger populations, performing these calculations is challenging.
Finally, GROUPS-NET also requires validations in other datasets than campus, where the
mobility is more restricted.

According to the authors, GROUPS-NET is a multi-hop opportunistic D2D forwarding
algorithm to perform cost-effective content delivery in large-scale scenarios. The algorithm
can deliver content directly between pairs (i.e., origin and destination randomly selected), i.e.,
without the base station, enabling bandwidth offloading. Despite envisaging the algorithm for
large-scale scenarios, due to dataset availability, the evaluations occurred with only one larger
trace (Dartmouth [210], with 1200 users). Cost-effectiveness evaluation occurred in terms of
delivery ratio and the number of transmissions (i.e., overhead).

SAMPLER: This forwarding algorithm [14] relies on social-aware, spatial-aware, and
individual mobility extracted from a real-world dataset NCCU. SAMPLER had competitive
results and some performance improvements (delay, overhead, and delivery rate) in comparison
with Bubble Rap. This work brought attention to the possibility of investigating other features
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from human mobility to achieve cost-effectiveness in opportunistic forwarding.

Nevertheless, SAMPLER requires parameters calibration, the deployment of static relay
points, and calculating social communities. Furthermore, there is a lack of description details in
the scenario and simulation settings, making it difficult to reproduce the algorithm evaluations
for comparison. Other shortcomings relate to the lack of more realistic assumptions on the
evaluation (e.g., authors consider any contact duration sufficient for forwarding a content).
Parameters such as content time-to-live (TTL) and content-size are also not considered.

SAMPLER targets cost-effectiveness delivery of delay-tolerant content in scenarios where
opportunistic forwarding applies for high data rate transmissions among nearby users. The
algorithm’s context brings the possibility of offloading traffic while the evaluations focus on
the algorithm’s cost-effectiveness.

2.4.1 TOOTS positioning

According to the initiatives discussed herein, we found that learning from human routines hid-
den into mobility datasets is essential to develop improved opportunistic networking solutions.
This work’s first insights came through analyzing and discussing how the human aspect is part
of the state-of-art solutions.

Differently from state-of-art, in this work, we format our metrics and decision factors with
a more precise link with time. Our algorithm relies on different human activities present in
human mobility over periods of the day. In previous work [2], we confirmed that human mobility
varies according to different periods of the day. Among the human-mobility features considered
are the routines (i.e., spatiotemporal patterns), related consequences (e.g., encounters, Pol
visiting), and displacement (e.g., the quantity of movement and motion direction). TOOTS
relies on probabilistic spatiotemporal aspects (i.e., characteristics that are most likely to be
repeated and are time-window correlated), social information (i.e., wireless contacts), Pol
awareness (related to network cells), and individual’s mobility (displacement and direction
awareness). In Table 2.3, we resume the properties of the state-of-art solutions discussed
herein.

Generic insights, metrics, and decision factors might not suit different kinds of popula-
tions. Aspects such as culture, environment, node density, and urban transportation planning
can impact a population’s mobility (including the contact dynamics). Each population has
particular and common characteristics, calling for the need to evaluate datasets of different
kinds with proper temporal aspects chosen accordingly. For such reason, to know better our
studied populations, in Sec 3.4 and Sec 3.5, we characterize the MACACO, NCCU, and GRM
datasets. Complementing this analysis, in Chap. 4, we present the strategy’s metrics and show
their characterization results.

2.5 Summary

In this chapter we first viewed how literature works dealt with the human aspect within net-
working solutions over the last decade. The main finding is the growing importance of the user
as a central element to innovative computer networking solutions. This new understanding
level of user’s human characteristics culminate in what we denominate Tactful Networking,
introduced herein.
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The Tactul Networking concept puts the human in the foreground of future networking
solutions. This research paradigm is a reference to the objective of adding perceptive senses to
the network by assigning it with the human-like capabilities of observation, interpretation, and
reaction to daily life features and involved entities. Tactful Networking gathers different human-
traits applied in previous works added to other insights from interdisciplinary research to bring
benefits to future networking solutions. Among those are mobility, personality traits, social
ties, socio-demographic traits, and content demand. Complementing the Tactful Networking
paradigm presentation, we discussed insights on how human-aware data can leverage networks
concepts, technologies, and communication models (5G, IoT, Vehicular Networks, Ultra-dense
networks, Information-centric Networks, SDN, and NFV). These discussions feature insights
for future work regarding the tactul networking paradigm.

Finally, we outlined and discussed state-of-art opportunistic forwarding strategies and al-
gorithms. This subject plays a major role in this thesis, as one of the main contributions of
this thesis is a tactful opportunistic communication strategy (TOOTS). The main findings in
this concern were:

e Next-generation solutions will need to pay attention to human peculiarities hidden into
mobility datasets and how these characteristics link with time;

e There is a need to characterize and identify aspects related to the studied populations,
i.e., calling for the necessity to make proper population analysis to apply personalized
insights to the metrics of each solution;

e There is a need to discuss other scenarios for opportunistic D2D algorithms’ while eval-
uating those strategies with more realistic settings.






CHAPTER 3

Extracting Knowledge from Mobility
Datasets

Studying and characterizing datasets were essential for reaching the main goal of this thesis.
The MACACO, NCCU, and GRM traces are presented and correlated with the work we applied
on their manipulation. A framework for enhancing raw human data with best practices to
deal with datasets challenges appears herein as a conceptual contribution. The knowledge
acquired through this framework was relevant to manipulate the traces and extract insights. We
validate the framework through a case study with the MACACO dataset. Finally, MACACO,
NCCU, and GRM datasets are analyzed, while their characterization results come along with

discussions.
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Figure 3.1: Work applied to the datasets used in this thesis.
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3.1 Presenting the Datasets

As for acquiring insights, building and evaluating our opportunistic communication strategy,
we worked with three mobility datasets: MACACO [33], NCCU [30], and GRM [32]. Figure 3.1
resumes the work applied to manipulate these datasets. Detailed discussions and results from
such work are in Sec. 3.3 — Sec. 3.5. The described tasks in the figure are part of the discussions
from the tactful networking framework for extracting human information hidden into datasets
(Sec. 3.2). Following, a brief description of the datasets:

MACACO: A spatiotemporal personal dataset collected through an Android mobile phone
application. The application gathers the data related to the user’s digital activities such as
available network connectivity (i.e., Bluetooth, APs, cell towers), battery availability, and
visited GPS locations. These activities are logged with a fixed periodicity of 5 minutes for 99%
of the measurements. The 1% occasional longer gaps are due to system background jobs and
settings of the specific operating system version. Authors remark that the 5-minute sampling
approach differs from those employed by popular GPS tracking projects, such as MIT Reality
Mining [211] or GeoLife [212], where users’ positions are sometimes irregularly sampled.

The regular sampling in MACACO data grants a neater and more comprehensive overview
of a user’s movement patterns. The full dataset covers about 190 users from six countries
(including Brazil), spanning 2014 to 2018. After selecting a population and filtering out “bad
users” (i.e., with insufficient data), 34 users were left. Despite MACACO being essential for
extracting the first insights for our strategy, due to such a limited number of users available, we
decided to evaluate our proposal throughout other larger datasets (NCCU and GRM) presented
to follow.

NCCU: Is a real-world mobility trace featuring 115 users’ displacements inside the campus
of the National Chengchi University (NCCU) in China over two weeks. This campus measures
3764 m x 3420 m. The NCCU dataset came through an Android app named NCCU Trace
Data, which recorded GPS data, application usage, Wi-Fi access points, and Bluetooth devices
in proximity. According to the authors, considering the consumption of a smart handheld
device, the app was configured to collect data every 10 minutes, store it locally and upload it
to a server every day. In case of GPS data loss (e.g., due to weak indoor signal), they used
interpolation between available coordinates (also discussed in the MACACO case study to
follow). In NCCU’s mobility model, each user (i.e., student) can have a sporadic schedule on a
daily basis. The users can move to any area of the campus and stay in each location according
to their schedule. Information about how the users move inside the campus (e.g., walking, by
car) was not available. NCCU also collected users’ data throughout questionnaires, including
gender, grade, majors, personal interests, places on campus they would go most frequently,
Facebook ID, and Facebook usage behavior. Despite this varied amount of data collected, only
the anonymized coordinates of the 115 users are publicly available.

GRM: The GRM dataset comes from a synthetic mobility model (Group Regularity Mobility
Model). According to the authors, this dataset can capture social (i.e., encounters) regularity
from its users. The authors made available GRM synthetic mobility traces with 100, 1000, and
2000 users’ movements inside an area of 1500 m x 1500 m. In this work, we use the version
with 1000 users to simulate a larger-scale network. The GRM model receives as input a social
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network which can be a real social network or a synthetic one generated by a social network
model. This social network applies for defining the nodes that will be present in the groups
of users. Additionally, GRM receives as input the simulation configurations for the dataset,
including the dataset area, duration (e.g., two weeks), amount of nodes, and the number of
groups. Finally, GRM’s last input is a set of statistical parameters which can be extracted, for
example, from other real datasets.

Before discussing the results of datasets manipulation, in the next section, we dig into
the framework. We make a few statements correlating the framework with the datasets’ ma-
nipulations to build our strategy (TOOTS). Those important statements are called TOOTS
positioning.

3.2 A Framework for Extracting Human Information Hidden
Into Datasets
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Figure 3.2: Tactful networking framework tackling management and analysis of human-
behavior information to assist future network architectures.

We discussed why human-behavior data should become essential for future generations
of mobile network architectures and models throughout the previous chapter. Nevertheless,
the “transformation” of raw data describing human behavior (usually collected through smart
devices or social networks) into helpful knowledge requires multiple iterations.

Figure. 3.2 depicts a general framework to process and preserve the privacy of human-
behavior raw data as a means of considering the tactful networking concept in current network-
ing architecture and paradigms. The framework features Data Management, Data Analytics,
and Data Privacy, which are discussed below along with its sub-tasks.
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TOOTS positioning:

1. We keep all framework main tasks here as a guide to future work in this context. Never-
theless, to be practical and attain the purpose of this work, we resume some out-of-the-
scope task discussions and specify those that we applied to the datasets’ manipulation.
The full framework discussions appear in [3, 4];

2. Since all the datasets used in this thesis were already collected and available, the Acqui-
sition and Storage tasks were unnecessary for our manipulations;

3. The Processing and Modeling tasks applied to the three datasets;

4. The Enrichment task is applied only in MACACO since NCCU and GRM are ready to
import in the simulator.

Below we resume all framework Data Management tasks.

Acquisition (Data Management): Human behavior analysis requires data availability,
sometimes from multiple sources. Among the examples of the sources, we can cite specific
APIs (streaming-based or request-based), web crawlers, online social networks, mobile crowd-
sensing applications, infrastructure-based sniffers, mobile devices sensory data [213|, mobile
crowdsensing datasets (acquired through specific smartphone applications, e.g., MACACO
and NCCU), operator-collected datasets (CDRs [156]), wireless networks measurements logs,
and surveys (e.g., Big Five[214]). Particularities and challenges from the examples above are
in [4].

Storage, Processing, and Enrichment (Data Management): After acquired, data must
be stored, processed, and enriched. In human behavior information, a possibly large amount
of data needs secure, scalable, and fault-tolerant storage platforms. Large-scale distributed
data computation is an essential aspect for data processing, as real-time and multiple parallel
requests are frequent. As processing steps, associating and integrating data may be required:
Where diverse data sources regrouping different data types (e.g., posts, media, location, actions,
traits, and gestures) are simultaneously exploited to extract useful information. Moreover, data
may present gaps, inconsistent information, semantic errors, or missing entries. Hence, data
cleaning and enrichment responsible for normalization, spurious data detection, geographical
and temporal interpolation, among others, may be necessary to make up missing data and
to fill the gaps, while limiting biasing the raw data. As examples, we could cite processes
such as time discretization, to reduce the temporal resolution of CDR Datasets and make
the data appear complete [134, 145, 204], trajectory reconstruction [133], to infer positions
of the users at timestamps where the original data does not provide such information, and
user filtering [204, 215] to eliminate those with not enough mobility information. Finally,
dimensional reduction of multi-dimensional data may also be necessary before analysis, where
feature selection has proven effectiveness.

Modeling (Data Management): Finally, data must be modeled in a format helping the
extraction of spatio-temporal information or relation between different components of the data.
Graphs have been the most used data format to model behaviors related to people’s spatio-
temporal association with environment and ties (i.e., interactions or social ties). Herein, a
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vertex in a graph can represent users in a network or their visited places [14, 48, 216]|. At the
same time, edges would connect vertex when there is an encounter between users, or when a
user sequentially visits locations [217]. Spatio-temporal trajectories or time series of chronolog-
ically ordered points are other examples of formats in data modeling: e.g., modeling collected
geographic data from human mobility as a set of spatio-temporal trajectories, representing
data generated by a moving individual in geographical spaces [14, 127|. Below we discuss data
analytics, including knowledge extraction/analysis and data validation.

TOOTS positioning:

5. We performed Knowledge Extraction and Analysis tasks in MACACO, NCCU, and GRM
datasets;

6. MACACO dataset has one exception here with the validation task since we decided to
skip using this trace in the simulations due to its limited number of users.

Below we resume all framework Data Analytics tasks.

Knowledge Extraction and Analysis (Data Analytics): These are fundamental to find
new insights on data. The process should typically be continuous to foster the adaptive ca-
pability of the whole system. Understanding data properties and the kind of problem to be
addressed are part of knowledge extraction. Among the techniques, we can mention pattern
detection and modeling, correlation and causality among associated entities, behavior profil-
ing, data classification or clustering, data changes or irregularity detection and modeling, to
cite a few. Here, machine learning techniques, artificial intelligence, HCI methods, time series
modeling, sophisticated networking metrics, statistics, and empirical analysis have become es-
sential tools. More recently, visualization techniques [218] have become very popular: Due to
the complexity of big data, such techniques make data more accessible, understandable, and
usable. Among the advantages, we can mention the possibility for: quick and clear information
understanding; easy identification of emerging trends allowing a fast action based on what is
seen; visual identification of relationships or patterns; analysis at various levels of detail.

When it comes to human-behavior diverse spatio-temporal information, there are chal-
lenges related to data association. Discovering association and relationships between datasets,
detecting unusual objects, and classifying them are essential. Machine learning approaches
are common in knowledge extraction with different intentions [219, 220]|. Artificial Intelligence
(AI) also applies in this context. Knowledge extraction can also occur through user activity in
their social networks (e.g., spatial, geographical, emotional, and personality traits information)
to leverage networking resource management and user prediction [126]. Data mining, natural
language processing, and other techniques can be applied to extract users’ information. These
processes should typically be continuous with repeated iteration cycles to foster the whole
system’s adaptive behavior while gaining new insights, discovering mistakes, and reconsidering
decisions.

Validation (Data Analytics): Data validation consists of verifying data correctness and
usefulness. It intends to provide guarantees for the fitness, accuracy, and consistency of any
input into an application or system. A used model validation technique for assessing how
the results will generalize to an independent data set is cross-validation in statistical analysis.
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Another widespread data validation method is the crossing of data (usually incomplete or
reduced) with what is called a ground truth data (i.e., typically official or completed data).
Among ground truth examples are the CENSUS data or surveys with low-error margins, or
more fine-grained datasets (e.g., GPS datasets used to validate CDR trajectory reconstruction
techniques). Ground truth data may not be available for all situations. In this case, repeating
more experiments might be necessary, or using a simulation environment as support to validate
the use of specific data in multiple scenarios or under varying conditions.

After the validation, it is necessary to shape the information for the development of services
and applications. These final products are expected to help operators develop enhanced human-
aware networking solutions to match user expectations more naturally.

TOOTS positioning:

7. Although our awareness on privacy needs, this aspect is out-of-the-scope of this thesis
and was not applied to any of the datasets;

8. We skip the privacy deliberations from here and bring some of them in Chap 7. Please
refer to [4] for all privacy discussions within the framework.

Below we resume Data Privacy within the frawmework.

Data Privacy: As we trod along the smart-devices, online services, and big data era, user-
data privacy must be guaranteed to support applications and innovation while not harming
individual rights and security. This data varies in different aspects, such as quantity, diversity,
and quality [4]. As Data Privacy is crucial for the Tactful Networking paradigm evolution,
proper techniques must suit the type of data to be stored and analyzed.

3.3 Framework Case Study

As for illustrating and evaluating the framework’s methodology, we present a case study with
MACACO. As described in the previous section, MACACO manipulations required more
framework tasks than NCCU and GRM. For such reason, we choose MACACO here but remind-
ing that the framework is general and the other datasets also passed through its manipulations.
Following, we summarize the efforts applied to MACACO.

Selecting spatial coverage and filtering out “bad” users: In the processing and enrich-
ment phases, the first challenge was to select a subset of users with common spatial characteris-
tics, since we aimed to analyze their routines and contact dynamics (later explained). There is
a contact when two network nodes are in a communication range at the same temporal instant.
We identified a population of 62 users (Students, researchers, and administrative staff) in two
universities (UFMG and PUC-MG in Brazil) where lectures were held during the day and at
night. For the sake of simplicity in the performed spatial analysis, we choose to use here users
from the same country, i.e., 62 users. Our selection occurred by mapping user mobility trails
to geographical coordinates from the city of Belo Horizonte and the Metropolitan Region. We
removed 28 users because they had little (sparse) data or inconsistent information, for example,
zeroed GPS measurements, and excessive duplicated entries.
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Grouping observation periods: Each user collection period (in which he used the applica-
tion) is unique. As mentioned, the trace has data between 2014 and 2018. We discarded data
before 05/22/2015, as the request interval changed from 1 to 5 minutes on that date. Aiming
to select four weeks of data (20 working days), we filtered the “best” working days for each
user, excluding holidays. This technique gives the chance to compare activities by days of the
week since the selected population shares a social context (attends one of the Universities).

Identifying important locations: We inferred a “HOME LOCATION” selecting users who
stayed in the city of Belo Horizonte and the Metropolitan region during the night, from 02:00
to 06:00, that is, when most people are at home. We also checked the data from 10:00 to
21:00 to identify presence on the UFMG or PUC-MG (“WORK LOCATION”) campus from
morning till night.

Filling spatiotemporal Gaps: During the dataset acquisition, temporal gaps come from
disabling the app (intentionally, or by lack of battery). In order to fill these gaps, we performed
mobility inference according to different criteria. For those in the period from 02:00 to 06:00,
we applied each user “HOME LOCATION” (the most frequent during the 20 days on that
time window). We applied linear geodesic interpolation in the remaining gaps throughout the
day. Given two pairs of coordinates, each pair associated with a time instant, the intermediate
points (latitude and longitude) are calculated recursively.

After manipulating the data, we modeled it for our research goals. Evaluating the contacts
is essential in an opportunistic communication strategy [13, 14, 21, 22, 27, 28]. Their occurrence
(or not), duration, frequency, and other characteristics directly impact the success or the failure
of such a strategy. Since we targeted a tactful opportunistic communication strategy, our data
modeling and the first analysis in the MACACO dataset (to follow) relates to the contact
dynamics. As a starting point, we also decided to evaluate centrality degree [14] and radius of
gyration [14], two traditional mobility metrics. We chose those since both showed correlation
with improving cost-effectiveness (i.e., performance) in state-of-art strategies to deliver content
opportunistically [14, 21, 22, 29]. Despite starting with two traditional metrics, we calculated
those with a novel time approach (described in Chap 4).

Data modeling: We built contact graphs to study user social behavior dynamics. To iden-
tify the contacts, we calculate their occurrence and duration through each user location data
(coordinates) associated with its timestamps. Based on geodesic calculations, the proximity up
to 30m (i.e., the average range of WiFi Direct) is detected. As there is no clock synchronization
for each measurement of each node, we applied sliding windows of 5 minutes. For example,
the initial window for a user w on a day d is from 00:00:00 to 00:05:00. If two nodes u and v
were in the range within that time frame, and on the same day d, the contact occurred. If they
remained in range in the next time window, that is, from 00:05:00 to 00:10:00, the contact
duration increments. As a result of this process, we generated three contact graphs:

e (i) a graph per period where the vertices are users, and there is an edge between a random
user u and v if they were in contact;

e (ii) a graph per period where the vertices are users, and there is a weighted edge between
a random user u and v accounting for the number of times they were in contact;
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Figure 3.3: Percentage of time in contact (total and per period) analysis of MACACO dataset.

e (iii) a graph per period where the vertices are users, and there is a weighted edge between
a random user u and v accounting for their total contact duration.

From these graphs, we plotted charts with unique and total contacts number, users’ per-
centage of time in contact, average, and maximum contact duration (more details to follow).
Furthermore, to evaluate the radius of gyration metric, we modeled the dataset into individual
trajectories, i.e., which accounts for users’ displacements identified by GPS measurements. In
the following section, we present the characterization results and analysis of MACACO.

3.4 MACACO Dataset Analysis and Characterization Results

In Fig. 3.3(a) and Fig. 3.3(b), we evaluate overall user contact duration. In the first, we
see about 40% of the trace with less than 5% of the time in contact. This result brought
an insight: the periods of low contact incidence (e.g., when users go home) should create a
significant impact on this graph. Thus, if we evaluate the trace and work with metrics with
a more precise link with time, there is a potential to reach better results. With that said,
we divided the day in periods (further explained in Sec. 4.1) to reflect the user activities at
different moments of the day. In Fig. 3.3(b) we evaluate the percentage of time in contact per
period. In this graph, we find higher percentages of time in contact during the “EE” and “E”
periods.

In Fig. 3.4(a) and Fig. 3.4(b), we evaluate average and maximum contact duration. We
discarded the minimum contact duration evaluation due to the uncertainty resulting from the
lack of clock synchronization. There is a heterogeneity of information in each period, which
reinforces our intuition that human beings behave differently according to the context and time
of day, therefore directly impacting metrics coefficients. In Fig. 3.4(a), we find almost 80% of
users without contacts in the “M” period. There are only about 10% of contacts with a longer
duration (15 to 40 minutes). In the “A” period, the duration increases. About 70% of users
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Figure 3.4: Contact duration (average and maximum) analysis of MACACO dataset.

have contacts. “A” and “EE” periods are interesting to study metrics related to geographic
science, as people make higher displacements when they return home or go to University, for
example. In the “EE” period, about 80% of users get in contact, with about 50% of contacts
lasting at least 20 minutes. The same applies to the next period (“E”), with a higher occurrence
of contact number and duration of 5 to 200 minutes (Fig. 3.4(b)). In the “N” period, there are
fewer contacts incidence and shorter duration, since most people tend to be at home and do
not share a social context at this time. This finding would be different in a trace where users
live on the same campus, for example. Our claim reinforces here: knowing more about the
humans behind the devices can lead to more proper solutions.

In Fig. 3.5(a), we plot a Cumulative Distribution Function (CDF) with the number of
unique contacts. The “EM” period has zero contacts (and so removed from some other plots),
while the “M” and “N” periods have a shallow contact occurrence. In the same figure, we see
about 70% of users with at least five unique contacts during “EE” and “E”. In comparison with
Fig. 3.5(b), where we plot the CDF for the total contacts, we see higher coefficients, which is
justified by the users’ routines (in this case, repeating social links). During “EE”, more than
20% of users have 200-320 contacts.

In addition to the contact dynamics analysis, we extracted the centrality degree and radius
of gyration metrics to evaluate their distribution. In Fig. 3.6(a), we see how the user’s “pop-
ularity” (given by node Centrality Degree, which accounts for user contacts) [14] correlates
with time (i.e., varies according to the period of the day). In Fig. 3.6(b), we plot the Radius
of Gyration (in meters), which accounts for node displacements concerning a center of mass.
This plot distribution shows more significant displacements in the “M” and “A” periods. As
in the Centrality Degree analysis (Fig. 3.6(a)), the coefficients differ per period, following our
intuition.

Discussion Summary: Judging the contact duration, we find a high percentage (about 80%
in “EE”, and 90% in “E”) of users with average contact persistence of at least five minutes. We
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Figure 3.5: Contact number (unique and total) analysis of MACACO dataset.
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Figure 3.6: Metrics analysis extracted from MACACO dataset.

consider it as an interesting finding for transferring data opportunistically. For example, in a
D2D strategy relying on Bluetooth interfaces, transferring 4MB takes approximately 18 sec.
(apart from establishing a connection). A reasonable contact persistence also leads to saving
device resources (e.g., battery) avoiding re-starting transmissions due to disconnections.
Regarding contact (unique, total, and percentage of the time) analysis, we found that
the “EE” and “E” periods are the best to evaluate opportunistic communication services or
protocols through the MACACO dataset. In those periods, we see not only a higher number
of unique contacts but more repeating social links, with a higher duration. On the other hand,
the lack of contacts during “EM”, and the low incidence in the “N”, and “M” periods could result
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in higher delivery delays, and depending on message TTL, reduced delivery rate. Suppose a
message creation happens during “E”, but finding the destination node opportunistically is not
possible the same day. Due to zero or very low contact-incidence in the upcoming periods,
the delivery chance reduces. Further, due to MACACOQO’s amount of users, we must use other
datasets to evaluate larger scenarios.

Our centrality degree analysis helped to identify some popular users from the dataset in
each period. As previously said, this metric is frequently applied for increasing the perfor-
mance of opportunistic strategies. In a real scenario, this is a problem, as choosing the higher
centrality degree nodes too often drains their resources and confronts system feasibility. The
Radius of Gyration extracted from MACACO shows confinement depending on the period.
We see a higher ROG in periods in which people are possibly going from home to work (or the
opposite). In contrast, we see higher confinement during work or class periods (i.e., the dataset
features researchers, and students). Understanding these characteristics assists in identifying
the best periods for stimulating D2D content delivery. In the following section we analyze and
characterize NCCU and GRM datasets.

3.5 NCCU and GRM Datasets Analysis and Characterization

Results
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Figure 3.7: Contact duration and centrality degree evaluation on the NCCU and GRM datasets.

As with MACACO, the first analysis herein performed is of pairwise contact information.
Previous work usually evaluated only one contact range (e.g., 10 m which is is commonly
referred as the D2D bluetooth range [14]). As for evaluating how changing the contact range
can impact in the results of the opportunistic strategy, and how they link to datasets social
aspects, in this work, two contact ranges are analyzed: 10 m and 30 m. The first, analog
to a Bluetooth range (widely used in state-of-art), and the latter as an average range for
WiF1i Direct, which works with up till 200 m communication range [221]. Figure 3.7(a) plots a
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Complementary Cumulative Distribution Function (CCDF) of the aggregated contact duration
per day on both datasets. That is, for each unique pair of users that gets into contact, we
sum all their contact durations and divide by the number of days evaluated (i.e., 11) in each
dataset. In Sec. 6.1, we present the evaluation setup and detail how the 11 days of data from
the traces are used. In Fig. 3.7(a), we see that NCCU has longer contact durations when the
contact-range is higher (30 m), while in the GRM trace the behavior looks quite similar for
both ranges. The aggregated contact-duration per day in GRM dataset is shorter, with only
average 5% of those with over 10 minutes. This dataset characteristic can impact a forwarding
strategy’s effectiveness if, for example, there is less bandwidth available and bigger size contents
to forward opportunistically.

Following in the contact analysis, Fig. 3.7(b) shows the evaluation of the traditional mobility
metric Centrality Degree (CD) [21] in both datasets. The plot shows the nodes’ normalized
CD as the total amount of unique contacts during 11 days of mobility data. We find higher CD
nodes in the real-world dataset (NCCU), while the coefficients on the GRM trace are lower,
with maximum degree at 0.4. A forwarding strategy strongly dependent on CD as a metric
or decision factor might have reduced performance through this dataset. The plot also shows
that with a higher range (30 m), the overall CD increases, which means that more encounters
occur in both datasets. Nevertheless, a substantial increase in the contact durations is only
observed in NCCU (as seen in. Fig 3.7(a)).
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Figure 3.8: Centrality degree from content-generation to time-to-live and radius of gyration
evaluation on NCCU and GRM datasets.

In Fig. 3.8(a), we analyzed the CD from the time the contents are generated (8" day)
till the last day of simulation (11*" day, i.e., the time-to-live — TTL). As expected, this plot
shows lower CD on both datasets. That happens due to the smaller amount of days analyzed,
reducing potential encounters guided by user routines and displacements. The results from
Fig. 3.8(a) highlight the need for combining other kinds of metrics than centrality for achieving
better performance and timely delivery in an opportunistic forwarding scenario. Finally, in
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Fig. 3.8(b), we analyze another traditional mobility metric, the Radius of Gyration (RG).
RG accounts for node displacement within the geographic space of the datasets (i.e., NCCU
and GRM). The results show that due to the restricted area of the datasets, the RG of avg.
80% of the population is low (up to 300 meters) in both datasets. This finding brings insight
into the possible need to combine other metrics when forwarding the content to a more distant
geographical area where the destination node is. The real trace NCCU has users with a slightly
higher RG than GRM. In Chap. 4 we analyze the RG per period in both datasets and extract
further insights.

In the next chapter, we present the metrics and the temporal approach later combined in

TOOTS.

3.6 Summary

We introduced and captured features and insights from three mobility datasets: MACACO,
NCCU, and GRM. Their manipulations occurred throughout best practices learned from our
discussions of a general framework to enhance human-aware hidden information. Furthermore,
we validated the framework through a case study with MACACO since this dataset required
more manipulation tasks than the others. Among the advantages of NCCU and GRM concern-
ing MACACO were the higher amount of users and the fact that these datasets are ready to
import at the ONE simulator. All traces were characterized and analyzed in terms of contacts
and two traditional mobility metrics (centrality degree and radius of gyration). Among the
main outcomes and lessons learned are:

e Depending on the dataset (i.e., population dynamics), periods of low (or zero) contact
incidence can occur throughout the day. That can lead towards increased delivery delays
or even expiring content time-to-live. Thus, we need to look at the time with more
granularity instead of fixed time windows (e.g., last 24h) as previous work did [14, 21];

e Humans behave differently throughout the day. Thus, we decided to divide the time
into different periods for more precision. Our contact evaluation plots show heteroge-
neous results per period, which reinforces our intuition and impacts directly the metrics’
coefficients;

e In MACACQO, the “EE” and “E” periods are when more users share a similar context, with
about 80%, and 90% of users with average contact persistence of at least five minutes.
Unraveling this kind of information is relevant for thinking about the strategy. For
example, these periods are better to stimulate opportunistic content delivery of delay-
tolerant content;

e Selecting users with more persistent contacts can reduce transmission interruptions and
save device resources (e.g., battery). For such reason, in our Tactful Dissemination Policy
(later explained), we consider contact duration;

e There are specific periods of the day with more user displacement (i.e., the radius of
gyration differs by period). That is interesting to study geographic science metrics.
Choosing more mobile nodes can help to take the content to consumers farther from the
origin. For such reason, we decided to use the radius of gyration as part of TOOTS;
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Users “popularity” given by centrality degree correlates with time, i.e., user high or low
centrality degree depends on his/her social context at each period;

Relying strongly on the user centrality degree (as in some state-of-art works) might be
a mistake since the popular users do not vary too much. That would drain the popular
users’ resources (e.g., battery, processing, storage) in realistic scenarios. For such reason,
we use other kinds of metrics in TOOTS;

Due to very low contact incidence in certain periods and a very limited number of users,
we decided to skip the MACACO dataset to validate the strategy;

State-of-art opportunistic strategies evaluate only one communication range [13, 14, 21,
22, 27, 28]. Results from NCCU and GRM show that varying the contact range impacts
on the social metrics (e.g., centrality) and possibly on strategy’s cost-effectiveness (con-
firmed after). To the best of our knowledge, TOOTS is the first opportunistic strategy
that brings results and discussions from varying contact range (10 m and 30 m);

The NCCU nodes have a much higher centrality degree than GRM’s. That highlights
the need for combining others than social metrics for cost-effective content delivery in
different populations;

NCCU and GRM have a restricted area (i.e., campus). For such reason, the users’ average
radius of gyration in both datasets is lower than on MACACO. Knowing the population
is necessary for proposing better solutions.



CHAPTER 4
Extracting & Evaluating
Human-Aware Features & Metrics

TOQOTS combines mobility metrics and one temporal feature targeting improved performance.
Herein, the components of the strategy are motivated, described, and analyzed within the three
datasets.
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Figure 4.1: Features and metrics for reaching TOOTS cost-effectiveness content delivery in a
mobile scenario.

This chapter discusses the features and metrics of TOOTS, our strategy for cost-effective
content delivery in mobile networks. These metrics came from the combination of a broader
view of the human aspect (i.e., tactful networking paradigm), ideas, results, or gaps from state-
of-art, and the insights from the characterization of MACACO, NCCU, and GRM datasets.
In Fig. 4.1 we resume these metrics, their goal within the strategy, and how they work in a
“high level” explanation.

TOOTS works by learning from past users’ mobility to identify human behavior extracted
from NCCU and GRM datasets. The first feature of the strategy is a human-aware time
approach (Sec 4.1) that identifies routines from human mobility according to the period (time)
of the day. We justify this feature from the notion that humans are most likely to repeat their
routines in each period (e.g., their social links, displacements, staying/leaving Pols). Second,
we feature the mobility metric Radius of Gyration (Sec. 4.2), which we use to select more
mobile nodes inside a cell when we aim to take the content to a farther area. Third, we present
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the Centrality Degree (Sec 4.3), which applies for identifying nodes with higher forwarding
potential (i.e., popularity given by their encounters) in a network cell. Fourth, we present
the Sojourn Time metric (Sec 4.4), which targets identifying users that stay more time on the
same cell of a consumer. Fifth, the Destination Proximity metric (Sec 4.5) targets knowing how
close a given user reaches towards the consumer’s cell. Finally, Geographic Direction Awareness
(Sec 4.6) targets some uncertainty, checking the last 30 minutes of user displacement to find
out if he/she is moving towards a given cell.

Below we detail each feature/metric, including their mathematical formulations and results
from their characterization on the datasets. They are later combined precisely in the TOOTS’
Tactful Dissemination Policy (TDP) and human-aware forwarding algorithm (Chap. 5) to reach
our research goals.

4.1 Human-Aware Time Approach: Identifying Routines from
Human Mobility

Previous research showed that human mobility has recurrence and temporal periodicity [128,
202, 204]. This regularity in the human mobility brings low entropy to our movements [205]
and make those predictable [134, 202]. With that said, through the study of predictable
characteristics from human mobility (e.g., encounters, spatio-temporal regularity), network
resource management and communication models (e.g., opportunistic communication) can be
leveraged [4]. However, the human mobility profile changes throughout the time of the day, and
the circumstance (e.g., when we are at home, at the transportation, or at work). Therefore, this
work proposes a closer relationship of the mobility metrics with the human temporal aspect.
Previous work showed different approaches when dealing with time to calculate their metrics
or decision factors. Usually the time windows are chosen from the last 24 hours or the last 6
hours of mobility [14, 21].

Table 4.1: Proposed temporal division.

# Period Time Interval
EM | Early Morning | 06:00:00 - 09:59:59
M Morning 10:00:00 - 13:59:59

A Afternoon 14:00:00 - 17:59:59
EE | Early Evening | 18:00:00 - 20:59:59
E Evening 21:00:00 - 23:59:59
N Night 00:00:00 - 05:59:59

In our proposal (i.e., Table 4.1), the day is divided into six different duration periods. This
temporal division was adopted to reflect heterogeneous mobility-profiles along the day from
the users inside a campus (i.e., from real-world dataset NCCU). Note that depending on the
population analyzed, the time windows might change to reflect users’ activity and so more
precise research results.

The time windows from our proposal are justified by correlating periods with more displace-
ments or longer confinements. For example, during “EM” we expect to capture most users’
home-work displacement, and confinement at work and shorter lunch-time displacements dur-
ing “M”. The intention is to increase the accuracy of the metrics and decision factors of the
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strategy, calculating those through a closer look into the human routines throughout the day.
These periods can be reshaped whenever necessary.

In the following sections, we present the metrics and their evaluations based on the proposed
temporal division. All plots show heterogeneity among the periods, especially in the real-world
NCCU dataset. These results cope with our intuition to calculate metrics based on different
periods of the day to reflect human mobility with more precision.

4.2 Coverage Area as Radius of Gyration

The Radius of Gyration (RG) [14, 128, 202] is used to quantify the mobility (i.e., in meters or
kilometers) from an individual in relation to a center of mass, which is also obtained from his
movements throughout a geographical space. In this work, we use RG to select more mobile
nodes inside a given network cell (detailed in Sec. 5.1. Differently from previous proposals, the
strategy herein learns by each period p € (EM, M, A, EE, E,N) in a week k and applies this
knowledge in the week k+1. Therefore, Apg,(u) in the Eq. 4.1 is the average RG of each node
u in period p. The days of the week k are represented from 7 = 1 to d, where d is equal the
number of previous days (7). The amount of location points (coordinates) recorded is given
by N, l; is a location (x,y) at index j, and Iy, is the user’s center of mass. We consider that
every u has a set L, = (I1,[2, ...,1,) of locations per period p of the “learning” week k. Each
location [ has coordinates (x,y) in a given instant, that is | = (z,y).

iy RGi(u)

Arg, (u) = B E— where RGy(u) =
| X | X (4.1)
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Figure 4.2: Radius of gyration evaluation on NCCU and GRM datasets.
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Following in our analysis, we plot in Fig. 4.2 the users’ Radius of Gyration for both datasets.
As NCCU dataset features user movements inside a Campus, the RG inside the area is more
restricted. The same applies to GRM, which features movements inside a 1500 m x 1500 m
area. The RG coeflicients would be much higher if we evaluate for example a dataset with
human users in a full metropolitan area, where higher displacements (e.g., home to work)
are expected. Fig. 3.8(b) also reveals that NCCU users are more mobile than GRM users. In
Fig. 4.2, we analyze users’ RG per period on both datasets. As expected, there is heterogeneity
in each period. The RG per period on NCCU Dataset (Fig. 4.2(a)) varies more, while on GRM
(Fig. 4.2(b)) the difference is smoother. In Fig. 4.2(b), we see that the GRM dataset lacks
different mobility profiles found throughout the day on the real-world dataset. From these
plots we learn about when the users are more mobile in each dataset. Identifying more mobile
nodes can assist in taking decisions on a forwarding strategy, such as in [14].

4.3 Social-Awareness as Centrality Degree

The Centrality Degree (CD) [21, 22, 29, 35, 222] is a state-of-art mobility metric used to
measure users’ social bonds (i.e., his encounters). A user with higher CD has further encounters
and is commonly referred as “more popular” [14|. As with the RG metric, we calculate the
CD by each period p € (EM,M,A,EFE,E,N) in a week k and apply this knowledge in
the week k + 1. Therefore, in the Eq. 4.2, Acp,(u) is the average CD of a user u during
p € (EM,M,A EE,E,N). The days of the week k are represented from ¢ = 1 to d, where
d is equal the number of previous days (7). Finally, n is equal to the number of users (e.g.,
115 on NCCU trace), while e, ,) is equal 1 if exists an edge between two nodes u and v in a
period p. We consider that the network is a dynamic contact graph Gy = (V, Ey). The set of
users is V, while E is the set of edges (contacts) detected, and t € (1,2, ...,a) and a < 604, 800
seconds (i.e., the learning time in seconds for week k). An edge e € E; exists between two
network nodes if at an instant ¢, the distance between them is less or equal the maximum
communication range, which means, there is a contact. As previously stated, this work uses
two communication ranges: 10 m and 30 m.

d 1 n
-, CD 1 Cluw
Acp,(u) = —Z’*I y p(u),whe're CDp(u) = Zvnl_el( )

In Fig. 4.3 and Fig. 4.4, we analyze the CD per period on NCCU and GRM datasets,
respectively. These plots complement the analysis from the previous section, and reinforce

(4.2)

our insights related to our temporal division proposal. From what we know about the human
perspective, our social behavior (in terms of contacts) differs depending on aspects such as the
time of the day, routines, or activities. Fig. 4.3 certifies that and reveals also how raising the
contact range impacts differently in each time window. For example, in the “N” period, the
impact is smaller, as in this same time window, the users are expected to be more stationary.
Nevertheless, in the “M” period, when the contact range is increased to 30 m, there is a
substantial increase in the CD, where 80% of the users inside the campus have at least 0.7 CD.
In Fig. 4.4(a) and Fig. 4.4(b), we see the same phenomenon observed in the RG analysis: GRM
dataset users show more similar behavior independent of the period of the day. Furthermore,
in this dataset, increasing the contact range to 30 m still keeps the nodes with much lower CD

than on NCCU.
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Figure 4.3: Centrality degree analysis with varying contact range on NCCU dataset.
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Figure 4.4: Centrality degree analysis with varying contact range on GRM dataset.

4.4 Sojourn Time

We define the Sojourn Time (ST) [223] as the quantity of time that a user stays inside the
limits of a network cell (given its range). In TOOTS, the ST is used when the strategy aims
to identify nodes which stay more time in the same cell as a user who is interested in a content
(i.e., he is the destination). The original cell sizes from the mobile operators in the area of
the real-world dataset NCCU are enourmous in relation to both traces’ area. Therefore, we
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analyzed the space, and divided the area of both datasets in nine cells (“A” to “I”).

Using the same method as with previous metrics, we calculate the ST of u (user) in each cell
c € (e1,c9,...,¢p) per period p € (EM,M,A, EFE,E,N) in a week k and apply this knowledge
in the week k 4+ 1. Therefore, in the Eq. 4.3, AST; (u) is the average ST in minutes of u in
¢ during p. The days of the week k are represented from ¢ = 1 to d, where d is equal the
number of previous days (7). The duration (minutes) is increased when the consecutive pair of
coordinates is inside the geographic area covered by the cell (i.e., (z,y) € ¢’s domain). A?(u),.
is the total time ¢ spent by w during p, inside cell c.

S STE(w);

Agre(u) = = where STy (u) = A} (u). (4.3)
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Figure 4.5: Sojourn time in cell “D” per period (minutes) on MACACO dataset.

Our first analysis in relation to the Sojourn Time metric occurred through MACACO
dataset. In Fig. 4.5, we plot a CDF of the ST in one of the “busiest” cells from MACACO
dataset. This plot shows that more nodes stay in cell “D” (ranging from “A” to “I”) during the
periods “A”, “EE”, and “E”. During more confined periods (e.g., work, or homestay), for most
users, the number of visited cells is smaller, the Sojourn Time into the confined cell is higher,
while the ROG is restricted.

Continuing our ST analysis, in Fig. 4.6, we plot a heatmap with the average minutes per
day and per period for NCCU and GRM datasets. We see that NCCU (Fig. 4.6(a)) has some
cells with very low average ST per day while GRM which is a more dense dataset in number
of users show less heterogeneity. From the heatmap we also indentify where users spend more
time during the “N” period in NCCU Campus. This information, along with other techniques,
can assist in identifying if a given user stays in the Campus overnight. In Fig. 4.6(b), we see
that the GRM users are more distributed along the geographical space. On the other hand, as
they are less mobile, they tend to visit a more limited number of cells.
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Figure 4.6: Cell heatmap with the average minutes per day and per period on NCCU and
GRM datasets.

4.5 Destination Proximity as Geographical Awareness

In TOOTS, this novel metric uses geographical science for discovering how close a given user
reaches to a network cell (based on its location as a Pol). Using the same method as with
previous metrics, we calculate the MP of w (user) towards each cell ¢ € (c1,ca,...,¢,) per
period p € (EM,M,A,EE,E,N) in a week k and apply this knowledge in the week k + 1.
The days of the week k are represented from ¢ = 1 to d, where d is equal the number of previous
days (7). Therefore, in the Eq. 4.4, AMP;(u) is the average MP in meters of u in ¢ during p. A
geodesic formula is applied to calculate the distance between node u and each cell Pol (i.e., the
cell center coordinates). In |minac(u)| we find the shortest distance (i.e., A;) between node u
and cell ¢, given all pair of u’s coordinates in p. Depending on the coordinates system used in
the dataset, the geodesic distance formula might change.

S MBj(u): . _
Arps(u) = ! g P, where MPS(u) = [minag(u)| (4.4)

As to illustrate this metric findings, in Fig. 4.7, we plot the MP on cell “D” for MACACO
dataset. The plot shows that during “EE” and “E”, about 40% of users are inside or close to
the cell. Through the MP metric we also can identify the amount of users inside or close to
cell “D” during working periods from “M” to “E”. Examining the “EE”, and “E” periods, we
see users getting away from the cell, precisely at the time they suppose to leave the campus.
Identifying those users and their HOME LOCATION is relevant if we need to take a content
from the campus to a specific area, for example. Looking through the “N”, and “EM” periods,
we also identify how far the users live from the campus, as they are more likely to stay at
“HOME LOCATION” during “N” and part of “EM”. Fig. 4.8 plots the MP on the cell “B” for
NCCU and GRM datasets. Cell “B” was chosen as it features more users activity (according to
the ST analysis). Fig. 4.8(a) shows a high percentage of users inside or very close to this cell,
and as the previous analysis, more heterogeneity per period of the day. The GRM analysis
(Fig. 4.8(b)) repeats the behavior of previous plots, showing smooth differences per period of
the day. Proximity can bring interesting insights when aiming to reach a neighboring cell.
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Figure 4.7: Destination proximity to cell “D” per period (in km) on MACACO dataset.

1 1
0.8 0.8
0.6 0.6
[T L
a a
O (@]
0.4 04
0.2 0.2
0 Destination Proximity - Cell B (m) 0 Destination Proximity - Cell B (m)
0 200 400 600 800 0 300 600 900 1200 1500
—06:00-09:59-EM —10:00-13:59 - M —06:00-09:59-EM —10:00-13:59-M
14:00 - 17:59 - A 18:00 - 20:59 - EE 14:00 - 17:59 - A 18:00 - 20:59 - EE
—21:00-23:59-E —00:00 - 05:59 - N —21:00-23:59 - E —00:00 - 05:59 - N
(a) Destination proximity (NCCU) (b) Destination proximity (GRM)

Figure 4.8: Destination proximity per period (in m) analysis on NCCU and GRM datasets.

4.6 Geographic Direction Awareness

In this novel metric of instant mobility, we check if for a node u, its recent displacement was
towards a cell ¢. The metric calculates the mode (i.e., the most common result from a set)
of the geodesic directions between u’s pairs of coordinates and the cell center coordinates in
the last 30 minutes. In a condition of TOOTS’ algorithm, nodes u and v check their recent
displacement direction towards ¢ and compare the results (more details in the next section).
As the Geographic Direction Awareness is an instant mobility metric, its results are not plotted
here.
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4.7 Summary

We introduced and discussed the metrics and features of TOOTS. The main outcomes and
lessons learned are:

e State-of-art opportunistic forwarding strategies dealt with fixed-length time approaches
(e.g., 24h and last six hours). We saw heterogeneity in the metrics or contact dynamics
in every single period through our novel human-aware time approach. We expect that
this time approach leads us to more precise metrics and consequently improved strategy’s
performance;

e The average radius of gyration (in meters) on both NCCU and GRM datasets is quite
close. These datasets feature a restricted area size. Traces covering larger areas would
be interesting to evaluate this metric and the forwarding strategies. Nevertheless, we
learned that the real dataset shows much more correlation with the displacements het-
erogeneity throughout the daily periods. With that said, we need to understand clearly
their dynamics of synthetic datasets, which can impact the results;

e In state-of-art, centrality degree correlates well with improving forwarding strategies
performance. We learned here that varying contact range directly impacts the centrality
degree in terms of the number of contacts and their duration. We target a more precise
centrality degree since the user popularity depends directly on his/her social context in
each period of the day;

e The Sojourn Time metric gave us exciting results and is beneficial not only to identify
the permanence in the network cells but also to discover important user locations (e.g.,
home, work, sports practice). ST and user context can bring great opportunities. For
example, we could stimulate or not the opportunistic forwarding in a region by learning
from this metric;

e Destination proximity can also be combined with the Sojourn Time to understand user
dynamics concerning specific Pols. This metric is used for a reason already explained
in our strategy but can apply to many other intuitions from particular human mobility
habits. We also learned that the NCCU campus has users concentrated in certain areas,
while most of it has few visiting. In the GRM, the users spread within the area and are
much less mobile.

e The geographic direction awareness focus on some human uncertainty. Human mobility
has much recurrence, but individuals could tend toward disorder or randomization, called
entropy [4].

For each metric presented we included its mathematical formulations and its characteriza-
tion and discussions within MACACO, NCCU, and GRM datasets.






CHAPTER 5

TOOTS: A Tactful Opportunistic
Communication Strategy

Herein, we describe the Tactful Opportunistic Communication Strategy for performing cost-
effective content delivery in a cellular network scenario. We start by presenting an application
scenario for TOOTS evaluation, followed by the formal definition for the problem of choosing
disseminator nodes (TOOTS’ 1st phase). To motivate the building of the strategy, we evaluate
the overhead and latency of state-of-art Epidemic Forwarding. Finally, we introduce TOOTS
in its two phases: a Tactful-based Dissemination Policy and a forwarding algorithm.

5.1 Scenario

In Fig. 5.1 we describe a scenario in which TOOTS assists a cellular operator to deliver contents
opportunistically. This cellular operator owns a mobile edge computing (MEC) [224] site. In
the literature, D2D is also linked with recent networking architectures, such as Mobile Edge
Computing (MEC). According to ’[225], traditional centralized network architectures cannot
accommodate nowadays user demands due to heavy burden on the backhaul links and long
latency. MEC appeared as a solution for this problem, bringing capabilities to the edge of
cellular networks. MEC architecture works with servers located in proximity to operator base
stations. User requests are handled by these MEC servers or forwarded to remote data centers
and content distribution networks. Data is transferred to/from end-user devices through the
cellular network base stations. D2D is a MEC enabler, being able to cache and disseminate
content, offloading radio access network [225, 226|, furthermore, in some cases, increasing
network capillarity given by users’ mobility. Yet according to [226], user mobility brings design
issues, and large data sizes and strict computation requirements should be fetched to nearby
users via D2D communications for higher energy efficiency.
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Figure 5.1: A scenario for TOOTS evaluation.
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The TOOTS’ goal in the proposed scenario is performing cost-effective content delivery
through leveraging opportunistic D2D communication among the users. In such a scenario,
TOOTS can assist to:

e Detouring delay-tolerant traffic from operator’s legacy network;
e Increasing network capillarity given by users’ mobility;

e Assisting to deliver content in challenging scenarios, e.g. disasters, crowded places, and
rural areas.

As well known in state-of-art research cited in Chap. 2, users in opportunistic networks may
act in a greedy way, and so incentive mechanisms are necessary for this kind of environment.
Using and building incentive mechanisms are out of the scope of this thesis, thus we simply
consider the users receive operator incentives (e.g., data plan savings, discounts) for their
cooperation. In the mentioned scenario, content delivery task starts upon gathering a set of
users content-requests. All the forwarding decisions are distributed (i.e., in the user devices)
and rely on individual metrics locally calculated. The strategy relies on a seven-day period for
learning from users’ mobility. The gathered set of user requests for a given content is used to
run the proposed Tactful Dissemination Policy (TDP) (Sec. 5.4), which chooses disseminator
nodes. In Fig. 5.1, we illustrate the opportunistic delivery of two distinct contents through
the disseminators chosen by TDP. Thereafter, the nodes carrying a content run locally an
algorithm (Sec. 5.5) which takes a forwarding decision. Each node can assume the following
roles:

e Ordinary - a node that belongs to the network but did not get involved in any activity
related to the opportunistic communication strategy. Let O(t) be the population of
ordinary nodes at time t.

e Disseminator - a node chosen by the operator to start the disemination of a content. Let
D(c)¢ be the set of disseminator nodes for a content ¢ at time t. The disseminator nodes
are the first set of propagators.

e Propagator - a node that received the full content and is now acting as a relay for it. Let
P(c); be the set of propagators for a content ¢ at time ¢.

e Consumer - a node that is interested in the content and sent a request to the operator
to obtain it. Let C(c); be the set of consumers for a content ¢ at time t.

Each node of the network has one of the roles above for a content, therefore, the sum of all
nodes of each set is equal to the total number of nodes in the network,

O(t) + D(t) + P(t) + C(t) = 1

Despite not being a role, we also have a set for the Satisfied Consumers. Let S(c); be the set
of satisfied nodes for a content ¢ at time ¢t. A satisfied consumer is a node that was a member
from the Consumer set, and received the data from a propagator at an instant ¢ or he was also
chosen as a Disseminator.

We assume the operator receives requests at time ¢ from consumers interested in a content
stored in the MEC site. The first step is choosing a set of disseminator nodes, replicating the
content in the network to satisfy the maximum number of consumers possible. At the following
section we define formally the problem of choosing these disseminator nodes.
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5.2 Formal Definition for the Problem of Choosing Disseminator
Nodes

In our network, we have a dynamic contact graph G; = (V, E;), where V' is the set of users
(mobile nodes), and E; is the set of edges existing at a time slot ¢, where ¢ € (1,2,3,...,n). An
edge e € E,; exists between two users if those are at the defined communication range at time
t, that is, they are in contact. The length of the time slot represents the minimum duration
in which there is no change in the topology that can make the two users fall apart (out of the
communication range). Suppose the operator receives requests from a set of consumers C' € V/
at an instant ¢ to obtain a content c. We consider a consumer is covered if he/she receives
the content until its time-to-live of A time slots. We assume all users u € V are willing
to collaborate through some incentive mechanism (e.g., data plan savings, bill discounts, free
access to paid content). These ordinary non-consumers users can keep their status or becoming
disseminators or propagators after receiving the full content. In the first, the content is sent
by the operator to the disseminators, and in the second the content is transferred from a
disseminator or from another propagator. We denote D(c); € V as the set of disseminators
of a content c¢ at time t. Initially, before ¢ starts flowing, there are no disseminators, as the
operator must choose them accordingly after putting together the set of consumers C' for the
content. Thus D(c) = (). We denote P(c); € V as the set of propagators at time ¢. A node
u € P(c)y, that has the full content is a propagator, so let a(u) be the minimum total contact
duration between (u,v) € V required so u can transfer the full content to v. As v has to receive
the full content from w, the aggregated contact duration between (u,v) must be greater than

a(u),
A
i.e. Z |(u,v) € E; for some u € V > a(u), (5.1)
t=1
where the indicator function,

1 if statement — true

||(statement) = { 0 (5.2)

otherwise

Therefore, the set of nodes v covered by a content propagator u € P, for a content ¢ when
there is an edge between these nodes is:

A
o(c) = {v eV: Z |((u,v) € Ey for some u € P;) > a(u) (5.3)
t=1

Now, let’s consider a set of disseminators D(c) of a content c¢. This set of disseminators will be
chosen by the operator. After they are chosen, they will be equal to the first set of propagators,
Pi(c) = D(c). Operator’s objective is to cover all consumers with a minimum number of A(c)
disseminators. Thus, our content dissemination (CD) problem is to minimize the cardinality
of the set D; in a way that it covers all consumers in V for the content ¢, formally;

Minimize D(c)

subject to  o(c) = V\D(c) (5.4)

Our Content Dissemination (CD) problem, similarly to the Content Replication in [29], is
NP-Hard even for the most simple case of a static social graph where the full content can be
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transferred in one single contact. The CD decision problem is to find if there is an initial
set of disseminators D; of size at most |D1| = k, where k is a positive integer which covers
a maximum number of consumers of a content ¢. To maximize this coverage, Di must be
a minimum dominating set of size k. As the decision problem of the minimum dominating
set is NP-Complete, therefore the hardness of the CD problem is NP-Hard. In the following
section we evaluate the traditional state-of-art Epidemic Forwarding algorithm as a motivation
to build TOOTS.

5.3 Motivation: Overhead and Latency Evaluations

28

1% of Consumers - Epidemic Forwarding

ENCCU - 30M GRM - 30M
uNCCU - 10M GRM - 10M

Figure 5.2: Epidemic forwarding average delivery latency performance evaluation on NCCU
and GRM datasets with 1% of consumers and varying contact range (10 m and 30 m).

The Epidemic forwarding is a well-known state-of art algorithm. In opportunistic networks,
it works by always trying to forward a content to an encountered node which does not have
it. This algorithm is known by higher delivery ratio, smaller delivery latency, but also a
heavy network overhead. In Fig. 5.2, we evaluate the average delivery latency of the Epidemic
forwarding algorithm with a consumer set size equal to 1% of the number of nodes from each
dataset. This scenario with a limited size consumer-set is challenging. Depending on how a
strategy works and on dataset’s characteristics (e.g., encounters between nodes), the results
can show lower bound performance. In our experiments, the contents were generated once an
hour, during 24 hours, with random source and destination nodes. Each content has a 72 h
time-to-live. The experiments were repeated 30 times through the Opportunistic Network
Environment (ONE) Simulator [227]. The confidence intervals are shown in Fig. 5.2. Despite
largely evaluated by previous work, here the Epidemic forwarding performance is illustrated
within the NCCU and GRM datasets, with varying contact-range (10 m and 30 m).

When the contact range is 30 m, the Epidemic Forwarding average delivery latency is re-
spectively 2.6 and 3.6 hours on NCCU and GRM datasets. In both datasets, the algorithm
delivery rate performance was 100%. On the other hand, the average network infection (over-
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head) was respectively 98.44%, and 99.62% on NCCU and GRM. With that said, most nodes
received the content and became forwarders. For reaching superior performance in terms of de-
livery rate and delivery latency, Epidemic forwarding flooded the network with many copies of
the same message. This is not feasible in real-world scenarios and is highly costly, particularly
in opportunistic networks where the devices have limited resources (e.g., battery, storage).
Another finding (which is also a characteristic) from the Epidemic Forwarding experiments
was a high average of hops (i.e., intermediary nodes) from the source to the destination. In
this scenario, Epidemic had the average hop count of 6.62 and 8.85 respectively on NCCU and
GRM. This peculiarity motivated and brought an insight to TOOTS development: taking the
contents closer to its consumers for reducing the number of intermediary nodes, and potentially
the overhead, and delivery latency through the combination of intelligent dissemination and
forwarding decisions.

As expected according to the results from the pairwise-contacts evaluation (Sec. 3.5), when
the contact range is more restricted, the delivery delay increased in both datasets. In the
experiments with 10 m range, the overhead was quite similar on NCCU (98.47%), but smaller
on GRM (86.50%). Still, the average delivery rate on GRM was 97%, meaning that with the
restricted contac range on this dataset, even the Epidemic Forwarding could not deliver all
the contents in the time-to-live. In Fig. 5.2, we see that the contact range restriction causes
more proportional delay on GRM than on NCCU (on GRM, there is a 7-fold increase). This
is justified by a characteristic showed on the previous section. GRM has nodes with very
low centrality degrees, and also shorter contact duration per day. With that said, epidemic
struggles with less contacts, and so, it takes more time to “flood” the network and to make
the content reach the destination. Through the evaluation of the Epidemic Forwarding, we
see that a restricted contact range, and the characteristics of a population in terms of their
contact can affect strategy’s effectiveness. In the next section, we introduce TOOTS, including
its algorithms.

5.4 1st TOOTS Phase: Tactful Dissemination Policy

Herein, we describe our proposed Tactful-Based Dissemination Policy (TDP) (Alg. 1). This
policy chooses disseminator nodes according to their social behavior (i.e., in terms of encoun-
ters) in each time window (previously described). The TDP’s intention is trying to start the
offloading task placing the content closer to the consumer nodes, possibly reducing the over-
head, and delivery latency. Thereafter, we explain how the user routines in terms of encounters
are leveraged in the policy for choosing the content disseminators. Considering the network
as a dynamic contact graph Gy = (V, E), there is a set of users V' (i.e., mobile nodes), and a
set of edges F), found during the period p of the week k. We assume that there is an entity
that at the end of each week k, receives the information below from each node (i.e., operator
subscribers) u € V.

e (a): o(u)p - the set of users v encountered by u for each period p.

e (b): A¢y,p, (u) - the average local improved centrality degree metric [29] of a user u for
each period p. The Crp coefficient is calculated based on the node’s number of contacts,
how long (duration) they took, and how early (earliness) they happened. Therefore a
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higher Crrp is given to a node with more contacts which had longer durations, and
occurred earlier (i.e., in a period p)

Algorithm 1: SelectDisseminators
input : G¢,C,c,p

output: D(c)

begin

D(c) +— 0

while C # () do

[y

|op(u) N C|
Cl

4 let u € V maximizing |

+ ACLIDP (u)|
D(c) «+— u
C+—C—o(u)

end

Return D(c)

end

© W N o W

In an instant ¢ of the week £+ 1 when there is a set of users (consumers) C(c) € V requests
for a content ¢, the TDP (Alg. 1) runs for choosing the disseminator nodes. The policy
uses the o(u), from the week k for trying to select users with past direct contacts with the
consumers. According to [128], due to our human routines, there is regularity in our contacts
and interactions. The Alg. 1 prioritizes these direct contacts (i.e., as they are most likely to
repeat) for trying to save network and user device resources. Furthermore, the Cprp is used
for identifying nodes’ popularity and coverage through contacts duration and earliness. The
use of this metric is justified by the fact that in such opportunistic scenario, a contact that
happens earlier in a time window and lasts enough to transmit a content might help decreasing
the delivery latency. Further, depending on the size of the content, trying to transmit through
short-duration contacts can lead to resources wasting without full content forwarding.

The Alg. 1 runs for selecting a disseminator set D(c) and starting the delivery of ¢ (content)
in the period p. The disseminator set starts empty (line 2), as the content delivery task begins
only upon having a set of Consumers C interested in a content ¢. The policy selects (lines 4 and
5) the user u with the higher coefficient from the direct contacts with Consumers (o,(u) N C),
normalized by the size of C', summed with u’s average Crp in p (ie., Ac,,p, (u)). Thereafter,
all Consumers that had direct encounters with the selected node u are removed (line 6). With
this, we avoid the possibility for selecting a next user with similar coefficient for direct contacts
and which covers the same nodes. The Alg. 1 loops (line 3) while the consumer set is not
totally covered (C # )). All users in the datasets encounter at least one node (i.e., there are
no isolated nodes) during the week k. With that said, if a isolated consumer is identified within
a population, for obvious reasons, opportunistic communication is not a good choice to deliver
content for such node. In Sec. 6.2, the TDP is evaluated with varying consumer set sizes (1%,
5%, and 10% of each dataset total nodes).
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Figure 5.3: TOOTS forwarding flow diagram of the Algorithm 2.

5.5 2nd TOOTS Phase: Human-Aware Forwarding

After running the Alg. 1, the operator injects the content ¢ to each chosen disseminator (i.e.,
transmits from MEC site to the node) node (u € D(c)), which stores ¢ in a local buffer. From
this moment, when any node carrying ¢ has an encounter, the Alg. 2 runs locally (i.e., in a
distributed fashion) for deciding if the content is forwarded. As for facilitating the comprehen-
sion of the algorithm, we also present a flow diagram in Fig. 5.3. The algorithm lines and the
flow diagram boxes will be mentioned in the explanations to follow.

The algorithm input is: a destination node d (i.e., d € C'), the content ¢, the present period
p, the encountered node v, and the coordinates of d’s cell, given by . All metrics coefficients
are stored locally by each node in a table divided by period p. The content c is transmitted
from u to v, only if an algorithm’s condition is satisfied.

First (line 2), if v already carries ¢, u waits till the next encounter (content test). Second
(line 4), if v is the destination (i.e., v = d), u transmits ¢ (destination test). The success of
the transmission depends if there is an edge e between u and v, with enough persistence (i.e.,
that does not suffer disconnection caused by a topology change) until the amount of time ¢
necessary to transfer ¢’s full data.

As previously stated (Chap. 3), the geographic space of both datasets was divided into
network cells. If (line 6) v is at the same cell (cell test) reported by the destination (given
by 1), the centrality degree from u and v in p are compared (centrality test). If v’s avg. CD is
higher (line 7), ¢ is forwarded, as v has a higher forwarding potential inside its cell, (i.e., v met
more nodes). If the previous test is false, the algorithm tests (line 9) if Arg, (v) > Agg, (u)
and Agreen (v) > ASTdeu(u) (ST & RG test). If true, that means v has less “popularity”
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Algorithm 2: HumanAwareForwarding

input :d,c,p,v,l
output: A forwarding Decision

1 begin

2 if ¢ € v then

3 ‘ exit(0)

4 else if v = d then

5 | ve—c

6 else if v.cell =1 then

7 if ACDP (U) > ACDP (u) then

8 | ve—c

9 else if Ag, (v) > Apg (uv) and AST};(’U) > AST}) (u) then
10 | ve—c
11 else

12 if testDirection(v,l) then

13 | ve—c

14 else if AMP;,(U) < AMP,Q(u) then
15 | ve—c

16 end
17 end

than u (i.e., lower avg. CD). On the other hand, v has a higher avg. RG which gives it the
potential to do larger displacements inside the cell given by I. Furthermore, v’s routine makes
it stay longer inside ! (v has higher avg. ST). Due to these intuitions, ¢ is forwarded to v
(line 10). When v is in a different cell than the one given by [, an instant mobility test (line
12) in relation to [ is performed (direction test). If v’s predominant direction in the last
30 minutes was towards [ (i.e., the line 12 test is true), ¢ is forwarded, as v can potentially
reach or get close to the domain of the cell given by [. Finally, if the direction test is not true,
the Destination Proximity metric is used (line 14). If v’s avg. MP (AMP;(Q;)) is smaller, ¢ is
forwarded (proximity test), as that means v got closer (or visited) the cell given by [ during
the period p and due to human routines, this behavior is more likely to repeat.

5.6 Summary

In this chapter we introduced TOOTS, our tactful opportunistic communication strategy. First,
we described the application scenario example in which we evaluate TOOTS hereafter. This
scenario targets a more complete and realistic environment that could be of interest to mobile
carriers. The scenario assumes a cellular operator with a MEC infrastructure that stores
content frequently requested by the subscribers closer to the edge. The goal is to perform cost-
effective content delivery through opportunistic D2D communication among the subscribers.

Following, we presented the formal definition for the problem of choosing disseminator
nodes (TOOTS’ 1st phase). We showed that the Content Dissemination (CD) problem is NP-
Hard. CD’s decision problem is similar to the minimum dominating set, which is NP-Complete.
For such reasons, we proposed a policy for choosing disseminator nodes.
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As a motivation to build the strategy, we evaluated the overhead and latency of the state-
of-art Epidemic Forwarding within NCCU and GRM datasets. With 30 m contact range,
epidemic delivered 100% of the contents in 2.6 and 3.6 hours (respectively on NCCU and
GRM), but with 98.44%, and 99.62% network infection (i.e., overhead). The network was
flooded, which is highly costly and not feasible in the real world. Epidemic also showed a 6.62
and 8.85 average hop count (respectively on NCCU and GRM), which gave the first insight
into the dissemination policy: trying to take the contents closer to its consumers might reduce
intermediary nodes, and so the overhead and delivery latency.

Finally, we presented TOOTS, including a tactful dissemination policy for choosing the
disseminator nodes and a human-aware forwarding algorithm. The 1st phase (TDP Policy)
chooses a set of disseminators for each content, relying on direct encounters with the consumers,
the improved centrality degree metric, and our human-aware time division. The following facts
justify these features:

e We choose users that had direct contacts with the consumers since they are most likely
to repeat those interactions;

e Taking the content closer to its consumers (i.e., choosing disseminators that had di-
rect encounters with the consumers) would increase the strategy’s cost-effectiveness, i.e.,
increasing the delivery rate and decreasing the delivery delay and overhead;

e The improved centrality degree metric targets users with longer duration and earlier con-
tacts (i.e., they happen earlier in the time windows). That also could lead us to improved
performance since longer contacts can avoid forwarding interruptions and increase the
delivery rate while earlier contacts can reduce the delivery delay.

TOOTS’ 2nd phase relies on probabilistic spatiotemporal aspects, social information (i.e.,
wireless contacts), Pol awareness related to network cells, and individual mobility. These char-
acteristics come from the metrics and features previously presented, discussed, and analyzed.
We combined this 2nd phase in a forwarding algorithm that considers our insights from each
metric targeting the increased performance.






CHAPTER 6

TOOTS Evaluations, Results, and
Analysis

As previously stated, TOOTS is composed of two phases: a Tactful Dissemination Policy
(TDP) and a Human-Aware Forwarding Algorithm. Our empirical evaluation is presented and
performed through simulation analysis with the ONE simulator and the NCCU and GRM
datasets. This chapter is organized as follows. We start presenting our evaluation setup where
we use more realistic settings (e.g., content size, content time-to-live, and varying contact
range) than most related work. Then, we analyze the results in terms of average delivery
rate and latency from our TDP compared to state-of-art Store-wait-forward and Epidemic
forwarding. Finally, we compare TOOTS with Bubble Rap (the most popular strategy in the
context) enhanced with three dissemination policies: random-based (RDP), centrality-based
(CDP), and tactful-based (TDP).

6.1 Evaluation Setup

As previously stated, the goal of the strategy is cost-effective content delivery through users’
opportunistic communication. In our simulations, the contents range from 11-14 MB, an
average size for 60 seconds YouTube 720P HD 30fps advertising videos. TOOTS uses seven
days of users’ mobility (extracted from NCCU and GRM datasets) during a learning phase.
The contents are generated during one day, being one ofHoading task started every hour.
The content delivery deadline is three days, which according to [29] is a reasonable time for
delay-tolerant content. Each content has a set of random consumers with varying set sizes.
The contents are injected into the network through the users. The first set of users carrying
the content is called the Disseminator set. Upon having a contact (i.e., given by a specific
communication range), they run an algorithm to make a forwarding decision. If the content is
not fully transmitted during a contact, the forwarding is aborted. Every node in the simulation
has an 802.11/11 Mbps network interface. We evaluate two communication ranges: 30 m (avg.
for WiFi Direct) and 10 m (referred to as Bluetooth). This whole scenario is simulated with the
Opportunistic Network Environment (ONE) Simulator through the NCCU and GRM datasets
as mobility models. Each experiment case ran 30 times, and the confidence intervals appear
when necessary. As previously stated in Sec 2.4, some state-of-art work focused a lot on
performance, but their evaluations had non-realistic settings (e.g., a tiny content size possibly
transferred through very short contact duration). Throughout the setup mentioned above, we
make the evaluated algorithms front more challenges to be successful.

Comparison Strategies: We compare TOOTS 1st phase (Tactful Dissemination Policy)
by combining it with state-of-art Store-wait-forward (a.k.a., direct delivery) and Epidemic
Forwarding. The first works by trying to forward content to an encountered node only if this
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one is the destination (i.e., the consumer). For such reason, the store-wait-forward has zero
overhead. The latter always tries to forward the content to an encountered node that does
not have it. As the name says, the latter has a high “ network infection” potential (i.e., high
overhead).

The entire strategy (i.e., tactful dissemination policy + human-aware forwarding algorithm)
comparison performs with Bubble Rap, remarked as the most popular social-based forwarding
algorithm in opportunistic delay-tolerant networks. Bubble Rap works by assigning a Glob-
alRank, and a LocalRank to each node. The GlobalRank accounts for node’s popularity in
the whole network, while the LocalRank measures the popularity into a community. Both
centrality-related ranks are linked with the C-Window temporal approach, which accounts for
nodes’ popularity in the last time window of 24 hours. Bubble Rap also relies on social com-
munities calculations, where each node is assigned to at least one community. According to
these metrics, a content ¢ stored in the buffer of a node u is transmitted by Bubble Rap to
an encountered node v, when: v is the consumer (i.e., the destination d); v’s GlobalRank is
higher, or v belongs to the consumer’s (d) community; v has higher LocalRank and belongs to
the consumer’s community.

Herein, Bubble Rap is combined with three policies for choosing disseminator nodes. These
policies are used to inject the contents in the network whenever a content delivery process is
started:

¢ Random-Based Dissemination Policy (RDP): the origin nodes are randomly se-
lected (i.e., it works like the traditional Bubble Rap trying to forward content to source-
destination using intermediary nodes);

e Centrality-Based Dissemination Policy (CDP): the origin is selected as the higher
centrality node (i.e., the node which has more encounters);

e Tactful-Based Dissemination Policy (TDP): our proposal detailed in Sec. 5.4. TDP
node selection is based on direct encounters with the consumers, combined with higher
C'rrp metric coeflicient.

Evaluation Metrics: In the 1st phase, we compare TOOTS’ TDP with store-wait-forward
and epidemic regarding delivery rate and delivery latency. Our goals here were: (i) to determine
if the TDP increases the delivery rate and reduces the delay when combined with store-wait-
forward; (ii) to discover if the TDP could reduce the delay and the average number of hops
when combined with the epidemic. We skip the overhead measurements from the 1st phase
since store-wait-forward represents the best case in terms of overhead (i.e., zero) and epidemic
forwarding the worst case.

In the 2nd phase, the benchmark metrics are delivery rate, delivery latency, and network
infection (i.e., overhead). Our goal in this phase was to determine if our whole strategy has
more cost-effectiveness for delivering content in the scenario than Bubble Rap combined with
different dissemination policies (including ours).

6.2 Tactful Dissemination Policy Results and Analysis

This sections presents the evaluation results of the TDP policy. For this, we combine the TDP
with two state-of-art forwarding strategies: store-wait-forward (a.k.a., direct delivery), and
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Figure 6.1: Tactful dissemination policy average delivery rate and delivery latency performance
evaluation. TDP is combined with epidemic and store-and-wait forwarding in scenarios with
varying amount of consumers and different communication range.

epidemic forwarding. In this combination, we use the TDP for electing the disseminator nodes,
chosen as content sources, followed by running each forwarding strategy. The performance of
the TDP-enhanced store-wait-forward and epidemic forwarding is shown in Fig. 6.1. As shown
in Sec. 5.3, traditional epidemic with 30 m communication range had 98.44%, and 99.62%
network infection (i.e., overhead) respectively on NCCU and GRM. Nevertheless, the TDP-
enhanced epidemic might get decreased delivery latency with comparable delivery rate. Given
the metrics applied in the TDP policy, the TDP-enhanced store-wait-forward has the potential
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to increase the delivery rate while decreasing the delivery latency. Despite the success of
the store-wait-forward algorithm depends on direct encounters with the consumers, the TDP
content dissemination brings an improvement. Still, depending on dataset characteristics, and
the social bonds between source and destination nodes, these improvements might take time
or never happen.

In Fig. 6.1(a), the TDP-enhanced store-wait-forward show an improved average delivery
rate of 82% and 75% respectively on NCCU and GRM, independent of the consumer set size
evaluated (1%, 5%, and 10% of each dataset). This delivery rate improvement is explained
by one of TDP insights, which is choosing nodes with direct encounters per period with the
consumers. For instance, in comparison with the traditional store-wait-forward, the TDP-
enhanced strategy’s average delivery rate with 1% of consumer set size was 18% and 60% higher
respectively on NCCU and GRM. In Fig. 6.1(a), the TDP-enhanced epidemic forwarding, as
expected, reaches 100% average delivery rate regardless of the consumer set size and dataset. In
comparison with the traditional Epidemic forwarding algorithm, the TDP-enhanced epidemic
had decreased average hop count, which impacts also in the delivery latency (analysis to follow).

With more restricted contact-range (Fig. 6.1(b)), as expected, the performance of the
content delivery task decreases on both datasets. Still, when compared with the traditional
store-wait-forward, the TDP-enhanced has better performance in delivery rate and delivery
latency. The plot also shows that the TDP-Enhanced Epidemic reaches 100% delivery rate in
all scenarios on both datasets, which is an improvement in comparison with the traditional
Epidemic. Furthermore, thanks to TDP-policy, the overhead on GRM with 1% of consumers
was reduced in 50%. This is also explained by a characteristic of this dataset, which is having
nodes with a lower number of encounters. The plot from Fig. 6.1(b) also shows that the contact
range does not create an impact when the percentage of consumers varies up till 10% in those
datasets.

Following in the evaluations, in Fig. 6.1(c), we plot the average delivery latency. The TDP-
enhanced store-wait-forward, regardless of the size of consumers set, takes 13-15h to deliver
the contents on NCCU, and 18h-19h on GRM. With that said, the TDP policy makes possible
to deliver at least 75% of the delay-tolerant contents in an acceptable time [29], regardless of
the dataset, and with zero overhead. In comparison with the traditional store-wait-forward,
the TDP-enhanced strategy’s average delivery latency with 1% of consumers was reduced 23%
on NCCU and 48% on GRM. As previously stated, thanks to the TDP policy, the number of
hops in epidemic forwarding decreased, and so the delivery delay (18.6% and 64.5% smaller
respectively on NCCU and GRM with 1% of consumers). Still, the networking infection of
epidemic forwarding makes this algorithm very costly or unfeasible in real scenarios.

Again, with more restricted contact range (Fig. 6.1(d)), there are less contacts on both
datasets, and so the delivery delay increases . Nevertheless, even in this scenario, thanks to
TDP policy, most of the delay-tolerant contents still reach their consumers in an acceptable
time. As Epidemic forwarding is unfeasible in realistic scenarios, and TDP-Enhanced store-
wait-forward showed an average delivery rate of 55%, we look for a forwarding algorithm able
to increase the delivery rate with as lower as possible overhead, and delivery latency.
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Figure 6.2: Delivery rate, delivery latency, and overhead performance comparison of TOOTS,
Bubble Rap-CDP, Bubble Rap-TDP, and Bubble Rap-RDP on NCCU and GRM datasets with

30 m communication range.

6.3 TOOTS Forwarding Results and Analysis

Finally, we present the evaluation of the full strategy in terms of delivery rate, delivery latency,
and overhead within NCCU and GRM datasets. As with the state-of-art epidemic forwarding
evaluation, the scenario has random consumers with the set size equal to 1% of dataset total
nodes and varying communication range (10 m and 30 m). We compare TOOTS’ performance
with Bubble Rap.

First, in Fig. 6.2(a) TOOTS and Bubble Rap are evaluated in terms of delivery rate through
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the NCCU dataset with 30 m communication range. TOOTS reached 100% delivery ratio and
was also the fastest strategy, with approx. 90% of the generated contents delivered in up to
9 hours. Even in the NCCU dataset which has a smaller number of nodes, those with high
centrality degree, Bubble Rap-CDP failed to deliver approx. 10% of the contents. Adopting a
CDP is not feasible in real-world, as this strategy originates a “bottleneck” tending to train the
device resources of the most “popular” users. Despite reaching 100% delivery ratio, a higher
overhead is expected in Bubble Rap-RDP (analysis to follow). Finally, Bubble Rap-TDP also
delivered 100% of the contents, but in such experiments, this strategy took slightly more time



6.3. TOOTS Forwarding Results and Analysis 69

than TOOTS to deliver all contents.

Within the GRM dataset and 30 m communication range (Fig. 6.2(b)), TOOTS reaches
100% delivery rate, with approx. 97% of the contents in up to 12 hours. Bubble Rap-CDP
delivery rate is even worst than in NCCU. This is explained by the fact GRM nodes’ has
much lower centrality degrees, and, by a communication bottleneck generated by higher node
density, where nodes’ interfaces are able to transmit only one content at once. As in the
previous analysis, Bubble Rap-RDP reached 100% delivery ratio, but with a higher overhead
expected (analysis to follow). Bubble Rap-TDP delivered approx. 94% of the contents. This
can be explained by a characteristic of GRM: nodes with low centralitty degrees, which makes
Bubble Rap-TDP need more time to reach 100% delivery rate.

In Fig. 6.2(c), the strategies are evaluated in terms of delivery latency, considering a 30 m
communication range. On both datasets, TOOTS had the lower average delivery latency,
followed by Bubble Rap-RDP, and Bubble Rap-TDP respectively on NCCU and GRM. Re-
minding that only TOOTS and Bubble Rap-RDP delivered 100% of the contents in up to 72h.
On GRM, Bubble Rap-CDP had a much higher average delivery latency, as this strategy strug-
gles with the bottlenecks on fewer nodes with higher centrality, and by a characteristic from
this dataset showed in Chap. 3: from the time the contents are generated till their time-to-live
(i.e., end of the simulation), over 90% of the nodes has less than 0.4 centrality degree, which
are low coefficients.

In Fig. 6.2(d) we evaluate the overhead of each strategy. Bubble Rap-CDP appears with
the smaller overhead both on NCCU and GRM datasets with 30 m communication range.
On NCCU, this is explained by the existence of higher centrality degree nodes, which makes
possible for the disseminator nodes to find the destination directly for most of the generated
contents. Still, as previously discussed, there is a bottleneck, lowering Bubble Rap-CDP’s
delivery rate in comparison with other strategies. As expected, Bubble Rap-RDP had the
worst-case in terms of overhead. In comparison with Bubble Rap-TDP, the latter performs
with 53% less overhead on NCCU, and 65% less on GRM. Nevertheless, we remark that the
TDP-enhanced Bubble Rap needs more time to reach 100% delivery rate on GRM, when there
is a 72 h deadline. Applying other larger real-world datasets will be interesting when evaluating
this strategy. TOOTS was the fastest strategy, it reached 100% delivery rate, and had 10%
and 17% less overhead than Bubble Rap-RDP respectively on NCCU and GRM.

Finally, from Fig. 6.3(a) to Fig. 6.3(d) we evaluate how imposing a more restrict contact
range (10 m) affects the strategies’ performance in terms of delivery rate, delivery latency, and
overhead on both datasets. In Fig. 6.3(a) we see that TOOTS is the fastest, and the only
strategy that reaches 100% delivery rate on the real-world NCCU dataset. Bubble Rap-TDP
and Bubble Rap-RDP reach close to 90% delivery rate and require more time, which could be
more than the acceptable for delay-tolerant content. Bubble Rap-CDP fronts an even worst
bottleneck, as there are less contacts and their duration are also reduced. When the dataset is
the GRM (Fig. 6.3(b)), we see that the reduced contact range impacts in lower performance of
the algorithms. The delivery rate ranges from 56% (TOOTS) to 68% (Bubble Rap-RDP). On
the other hand, Bubble Rap-TDP reaches a very similar delivery rate (65%), with less average
latency. This reduced performance on GRM dataset is justified by the already very low CD
nodes which are even more reduced when the lower contact range is applied. With that said,
the efficiency of opportunistic forwarding algorithms and their deployment in realistic scenarios
depend on characteristics of the populations in terms of contacts, and also the technology
used for D2D communication. D2D technologies with higher transmission capacity and higher
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contact range can compensate certain contact restrictions imposed by the populations, or their
mobility context. Fig. 6.3(c) certifies TOOTS as the strategy with the smaller delay on NCCU
dataset. On GRM, thanks to the TDP policy, there is 28% less delivery delay with Bubble
Rap. From the overhead analysis (Fig. 6.3(d)) we learn that on NCCU, with 10 m contact
range, TOOTS had less forwarding decisions (i.e., imposed by less contacts) and so transmitted
less contents. The TDP policy also assists Bubble Rap to reduce the overhead within both
datasets. We conclude that on the real world dataset, 10 m communication range was enough
for TOOTS to deliver 100% of the contents in an acceptable time (i.e., avg. 9h), and with less
overhead than Bubble Rap-RDP (which had over 10% less delivery rate)

6.4 Summary

In this chapter we presented the TOOTS’ evaluation in its two steps. In the 1st phase, our
proposed Tactful Dissemination Policy (TDP) was evaluated through its combination with
two state-of-art algorithms named Store & Wait and Epidemic Forwarding. Among the main
outcomes of this phase results, are:

e TDP-enchanced store-wait-forward showed an improved average delivery rate of 82% and
75% respectively on NCCU and GRM, independent of the consumer set size evaluated
(1%, 5%, and 10% of each dataset);

e In comparison with the traditional store-wait-forward, the TDP-enhanced strategy’s av-
erage delivery rate with 1% of consumer set size was 18% and 60% higher respectively
on NCCU and GRM;

e The TDP-Enhanced Epidemic reaches 100% delivery ratio in all scenarios on both NCCU
and GRM, which is an improvement in comparison with the traditional Epidemic For-
warding;

e In comparison with the traditional store-wait-forward, the TDP-enhanced strategy’s av-
erage delivery latency with 1% of consumers was reduced 23% on NCCU and 48% on
GRM;

e Thanks to the TDP policy, the number of hops in epidemic forwarding decreased, and so
the delivery delay (18.6% and 64.5% smaller respectively on NCCU and GRM with 1%
of consumers).

e TDP policy was able to increase performance in terms of delivery rate, delivery latency,
and overhead. We look for a forwarding algorithm able to reach even superior perfor-
mance.

Finally, TOOTS (i.e., the full proposal) was compared with traditional Bubble Rap and
enhanced versions of the latter with TDP, CDP (Centrality-based Dissemination Policy), and
RDP (Random-based Dissemination Policy). As stated previously, Bubble Rap is the most
popular social-aware forwarding algorithm, still used as a benchmark with recent research |14,
208]. Among the main outcomes of the full proposal results, are:

e On NCCU dataset and 30 m communication range, TOOTS reached 100% delivery ratio
and was also the fastest strategy, with approx. 90% of the generated contents delivered



6.4. Summary 71

in up to 9 hours. In delay-tolerant scenarios, the deadline is usually referred to as 72
hours;

e Within the GRM dataset and 30 m communication range, TOOTS reached 100% delivery
rate, with approx. 97% of the contents delivered in up to 12 hours;

e On both datasets, with 30 m communication range, TOOTS had the lower average
delivery latency, followed by Bubble Rap-RDP, and Bubble Rap-TDP respectively on
NCCU and GRM;

e A Centrality-based dissemination policy is not suitable for real-world scenarios, since it
creates bottlenecks and tends to drain user device resources;

e TOOTS had 10% and 17% less overhead than BubbleRap-RDP respectively on NCCU
and GRM with 30 m communication range. Furthermore, TDP policy was able to reduce
significantly the overhead on the Bubble Rap-TDP enhanced;

e Restricted contact range reduced the performance of all algorithms in both datasets;

e With restricted contact-range (i.e., 10 m), TOOTS was the fastest, and the only strategy
by far that reached 100% delivery rate on the real-world NCCU dataset;

e With restricted contact-range (i.e., 10 m), when the dataset was the GRM, the delivery
rate ranged from 56% (TOOTS) to 68% (Bubble Rap-RDP). On the other hand, thanks
to TDP policy, Bubble Rap-TDP reached a very similar delivery rate (65%) to Bubble
Rap-RDP, with reduced delivery latency. This reduced performance is justified by a
characteristic of the dataset, which already had low CD nodes, as they were even more
reduced by restricting the contact range;

e Within NCCU dataset, 10 m communication range was enough for TOOTS to reach
100% delivery rate, being the faster strategy (i.e., avg. 9h delivery latency), and with less
overhead than Bubble Rap-RDP (which had over 10% less delivery rate than TOOTS).

e The results of TOOTS’ evaluation correlates better with the real-world dataset NCCU.
That copes with the insights behind building TOOTS, which relies on human-aware
aspects which are not totally present on GRM.






CHAPTER 7

Conclusion and Outlook

The following sections conclude this thesis. We start by summarizing the challenges and how
we treated each one individually to reach the contributions. Following, we present further
discussions and deliberate over out-of-scope subjects. Finally, we outline the limitations of
this work, future research, and concluding remarks.

7.1 Summary of this Thesis

The main goal of this thesis was to build an opportunistic D2D communication strategy that
leverages human characteristics to perform cost-effective content delivery in a mobile network
scenario. Within such goal, our first research question arose:

Which lessons can we take from state-of-art opportunistic communication strate-
gies when dealing with the human aspect? State-of-art opportunistic communication
strategies and algorithms tackled cost-effective content delivery. Most of such proposals consid-
ered characteristics such as user encounters due to individual mobility, points of interest (Pols),
and time-evolving social ties between node pairs. Despite their contributions, in most cases,
there was a gap between evaluation metrics and broader inherent aspects of human mobility.
From such state-of-art, we learned some traditional techniques and human mobility features.
According to open challenges in the field, it became necessary to identify other human traits
and peculiarities hidden in the mobility datasets with more detail and precision. We then
started to dig into other possible characteristics targeting a tactful opportunistic communi-
cation strategy for delivering content with improved performance. Naturally, the following
research question was the following:

What human characteristics and peculiarities can we learn from mobility datasets
to improve our strategy’s performance? From the insights obtained from the state-of-
art review, the study and proposal of the tactful networking paradigm, and the study and
characterization of MACACQO, NCCU, and GRM datasets, we identified characteristics that
could lead to the strategy’s improved performance. The first aspect was related to human
routines. We thought that our strategy’s features would need to be more precise than state-
of-art. With that said, we thought that analyzing human activities in different periods of
the day would bring different results reflecting heterogeneity in metrics/features coefficients.
This idea was applied in all other characteristics later proposed as strategy’s metrics. We
added proximity and time of stay (both in terms of Pol) and direction awareness as other
characteristics to offer insightful results to our strategy. Additionally, we analyzed traditional
metrics related to user social aspects and displacements but in a different way than state-of-
art and with other purposes (previously explained). After putting together this set of human
characteristics, the next step linked to the following research question, i.e.,
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How can we translate the identified peculiarities and characteristics into mo-
bility metrics, and how can we combine those to reach superior performance in
our strategy?

The characteristics mentioned above became metrics and features of our tactful opportunis-
tic communication strategy:

e Human-Aware time approach - we divided the time in different windows to capture
human activities and mobility throughout six periods of the day. All the other metrics
calculations rely on this time approach, which is justified because humans are most likely
to show repetitiveness in their mobility (e.g., encounters, displacements, Pol visiting)
due to their routines.

e Radius of Gyration - we applied this traditional mobility metric differently from state-
of-art. Herein, this metric selects more mobile nodes inside a network cell to take the
content to a farther area.

e Centrality Degree - to measure users’ encounters, also applied herein differently (with
metric coefficients per periods of the day). The Centrality Degree identifies nodes with
higher forwarding potential.

e Sojourn Time - applied to provide quantitative information about the permanence (i.e.,
time spent) on the network cells. We use this metric for identifying users that spend
more time on the same cell as a consumer.

e Destination Proximity - used a Pol abstraction to find how close a given user reached
towards a consumer’s network cell.

e Geographic Direction AWareness - instant mobility metric to discover if a given node was
moving towards a cell in the last 30 minutes.

All presented metrics featured their mathematical formulations (except the last, which
relates to instant mobility). We also analyzed and discussed the metrics and features within
the three datasets. Later on, we combined those metrics based on our human-aware insights to
build a two-phases strategy, including a Tactful Dissemination Policy (TDP) (1st phase) and
a Human-aware Forwarding algorithm (2nd phase).

In the first phase, the TDP selects disseminator nodes based on two metrics: users’ direct
encounters per period of the day and the local improved centrality degree metric (which con-
siders encounters duration and earliness) per period. The reason and intuition behind these
metrics were:

e Direct encounters with consumers - to start the content delivery process with the content
closer to its consumer. As the users are most likely to repeat their encounters due to
their routines, this could lead us to improved delivery rate, smaller delivery latency, and
less overhead;

e Local improved centrality degree (Ac,,,, (u)) - this metric considers not only the amount
of contacts (i.e., user “popularity”), but their duration and earliness. These two aspects
are important, as the metric gives higher coefficients to contacts that occurred earlier
in the time window and with longer duration. These could lead us to avoid wasting
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device resources with unfinished content transmissions (i.e., interrupted by short-duration
contacts) and reducing delay by choosing nodes that might repeat earlier contacts. The
first characteristic could also lead to an improved delivery ratio since the user device
interface can transmit only to a single user at a time. So if we choose proper longer
contacts for transmitting, potentially we increase the delivery rate.

In the second phase, upon contact, the human-aware forwarding algorithm runs locally at
the node that holds the content to make a forwarding decision. Intuitions and insights behind
such algorithm are in Chap. 5. The TDP policy and the human-aware forwarding algorithm
are the core of our Tactful Opportunistic Communication Strategy (TOOTS).

TOOTS was evaluated in a mobile network scenario to perform cost-effective opportunistic
content delivery. We compared TOOTS’ effectiveness on its two phases with different state-
of-art algorithms. The 1st phase with enhanced Store-wait-forward and Epidemic algorithms.
The 2nd phase (i.e., TOOTS entire strategy) with Bubble Rap through real and synthetic
traces. Bubble Rap is the most popular algorithm in such context and appears as a bench-
mark with recent work. TOOTS improved the performance of a content delivery scenario in
terms of delivery rate, delivery latency, and overhead. TOOTS’ results correlate better with
the real-world dataset NCCU. With that said, there is a need for larger real mobility datasets
with available social behavior from the users. TOOTS’ quantitative evaluation results are sum-
marized in the introduction, detailed, and summarized on Chap. 6, so we skip from repeating
those here.

As for reaching the main goal of this thesis, we also had to investigate human aspects
technical details applied in state-of-art networking solutions. From such investigation, another
research question (cf. 1) arose.

How was the human aspect applied in state-of-art networking research to improve
QoS, QoE, and bring innovative solutions? We addressed this question by surveying the
human aspect in networking. The starting point was the User-Centric Networks paradigm [12]
evolution, according to [228], one of the most important concepts for future networking. User-
centric was one of the first paradigms in computer networking to bring attention to user charac-
teristics and featuring functionalities straight directed to satisfying user goals. We found that,
over the years, the user and the human perspectives attracted attention. At first, users were
seen as mere consumers of networking services of applications. This vision started to appear
obsolete as the human aspects took part in the solutions for achieving superior network /system
performance and helping providers offer QoS/QoE.

Based on the view acquired from surveying the human aspect in networking, we found
that many proposed solutions’ metrics or insights still lacked a broader human-aware vision.
Additionally, opportunistic D2D communication, a paradigm often combined with user-centric
goals, appeared as an enabler of recent technologies and future networking standards such
as 5G/6G. For such reason, we decided to investigate this subject further for proposing our
solution in this context. From these notions, we came with another research question (cf. 1).

Which human characteristics can we use to leverage networking research for im-
proving system performance and user experience? In particular, opportunistic
D2D algorithms? The broader human-aware vision that we acquired through the survey
culminated into a conceptual contribution, the Tactful Networking perspective, introduced in
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Chap 2. We named Tactful Networking as the paradigm that groups different concepts from
broader human-behavior research, not restricted to the computer networks field, but from other
areas of knowledge, such as philosophy and psychology. Among the human characteristics to
shape human-aware networking services are mobility, routines, personality traits, temperament
traits, humor, character traits, sharing wills, age, and socioeconomic status. Complementing
the Tactful Networking discussions, we shared insights on how human-aware data can lever-
age network concepts, technologies, and communication models (5G, IoT, Vehicular Networks,
Ultra-dense networks, Information-centric Networks, SDN, and NFV). These discussions iden-
tify several open research opportunities concerning the tactful networking paradigm. Other
contributions of this thesis include discussions of a framework with best practices for extracting
human data from datasets and a case study.

Resuming, we divide the contribution of this thesis into two branches. The first features the
technical contributions: (i) Datasets analysis; (ii) TOOTS metrics; (iii) TOOTS dissemination
policy; (iv) TOOTS human-aware forwarding algorithm; (v) TOOTS evaluations. The second
branch features the conceptual contributions, which are: (i) Human aspect survey; (ii) Tactful
networking paradigm; (iii) Tactful networking applications in mobile communications; (iv)
Framework for extracting human data; (v) Future directions (discussed to follow in Sec 7.3).

In the next section, we bring further discussions and out-of-scope subjects.

7.2 Further Discussions and Out of Scope Subjects

Following, through Q&A, we bring some further discussions about out-of-scope subjects of
this thesis. We reassure that the focus of this work is the whole process for building a tactful
opportunistic communication strategy for cost-effective content delivery in cellular networks.
This process included surveying state-of-art and other goals already mentioned.

Q1: What is the difference between tactful networking solutions and what companies such
as Google are doing regarding collecting information about the users from their mobile devices
to shape novel solutions?

A1l: Many technology companies collect user data from their mobile devices, and that relates
to the Tactful Networking concept, particularly as data analytics is one of its key enablers.
What Google does converges with Tactful Networking: We need to steer and adapt to user
behavior and context to fulfill users’ expectations while fostering innovative applications and
services. That leads to a win-win situation. The user will have better QoE when accessing
an operator network closer to his/her requirements (thus bringing the user the feeling of ac-
cessing services personally designed to her; one of the future considerations envisaged in 6G).
Meanwhile, an operator can maximize profit by managing resources with lower cost and offering
new services based on user-behavior understanding. In the last years the broader human-aware
vision is helping to solve many networking challenges. Understanding more about human be-
havior can potentially boost solutions.

Q2: In section 2.1, several human-aware networking solutions are presented. Are they also
considered tactful?
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A2: Such related contributions pave the way and converge to what we denominate Tactful
Networking. Tactful Networking is a perspective closer to individual aspects. It considers
attributes that could link to performance and decouples the human factor from the networking
system point of view, targeting a more personalized network service. Some of the attributes
discussed in Sec. 2.1 are part of the Tactful Networking paradigm. These attributes, notions,
and insights gathered from a broader view of the human perspective in networking were essen-
tial to develop TOOTS while targeting improved performance. Every human being is unique,
so learning from these individuals makes it possible to develop suitable or personal solutions
and applications.

Q3: Does TOOTS works in other scenarios besides the one presented?

A3: Yes. The proposed scenario only illustrates an application of the strategy to deliver
content opportunistically through user empowerment. As previously stated, state-of-art works
discussed more simplified scenarios or characteristics more distant to the real world. TOOTS
can work or adapt to other opportunistic communication scenarios where the target is cost-
effective content delivery from given sources to its destinations. It does not matter if the source
is the mobile operator or a mobile node in the network that generates content for other users.
TOQOTS can assist scenarios where timely delivery is not the main concern, such as smartphone
system updates, video advertisements, or scheduled on-demand content. The strategy shows
that by using peculiar characteristics from human behavior, the content delivery system reaches
superior performance in delivery rate, delivery latency, and overhead.

Q4: The strategy proposed herein relies on sensitive mobility data from users to achieve its
goals. How does it work with the privacy of users?

A4: Privacy is a concern in Tactful Networking solutions since they rely on human-aware
data. We assume the users’ willingness to share their movement patterns (i.e., which is already
very common). Other similar strategies discussed herein rely on the same kind of assumption.
According to authors, such as [15], D2D and opportunistic communication enabled by AI will
be one of the pieces of 6G. In [4] we discussed privacy as an essential element of Tactful
Networking. Privacy techniques must protect the users, but in a way that does not harm
innovation. Despite its importance, discussing privacy issues was out of the scope of this
work. We assumed that implementing such ideas in the real world would need proper ways to
protect their users’ sensitive information (e.g., location coordinates). Several works propose
mechanisms to guarantee privacy and anonymity in opportunistic networks [229, 230, 231].
These mechanisms are not trivial and sometimes require complex cryptography solutions and
anonymization. Among the techniques used are generating pseudo node identifiers, onion
routing [231], and public or symmetric key cryptography systems. Without privacy and trust
mechanisms, it is hard to believe in massive real-world implementations of opportunistic D2D
solutions. In TOOTS’ proposed evaluation scenario, an idea would be to have a trustable
entity to receive the nodes’ required information to choose the disseminators set and generate
pseudo-ID to the consumers (i.e., destination nodes) of a content. Cryptography mechanisms
can also be studied to guarantee privacy and anonymity.
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Q5:  Mobile user devices have restricted or limited resources, such as storage, battery, and
processing. Does TOOTS consider any such restrictions?

Ab5: These are definitely important concerns to consider in future work regarding TOOTS or
other opportunistic strategies. Likewise, state-of-art did not focus on such limitations when
building their strategies or algorithms, but more on strategy’s performance itself. Some pre-
vious work relies on metrics that would not be feasible in the real world. In some examples, a
specific set of “popular” users from a population would have their resources drained fast if they
were cooperating to the opportunistic network goal. Such constraints are among the reasons
why opportunistic D2D communication was not fully implemented in previous mobile network
standards. The advent of smartphones and big data opens new opportunities to improve the
performance of such content delivery solutions.

Q6: This work assumes that the users are willing to cooperate to deliver the content op-
portunistically. The incentive and reputation mechanisms play a crucial role in this kind of
opportunistic environment, given the uncertainty, user selfishness, and other issues. For an
operator to give incentives, such as the ones mentioned (i.e., data plan savings, bill discounts,
access to paid content), they would concede to obtain some gains. What is the business model
in this case?

A6: We discussed an evaluation scenario that links D2D with recent technologies (i.e., “hot
topics” such as MEC). According to state-of-art research, D2D will be a MEC enabler in
5G/6G. We remark that the strategy can work in different scenarios where the intention is to
deliver content opportunistically. There is a need to discuss other more realistic D2D scenarios
to incentivize mobile carriers to invest in D2D solutions since they already have access to user
data. The business model here would work with an operator making some concessions (i.e.,
incentives to its participating users), for obtaining gains. Among those, detouring a certain
amount of traffic from its legacy network, increasing the network capillarity given by users’
mobility, and offering connectivity in challenging situations (e.g., disasters, crowded places).
Still, offloading benefits would have to be measured, and different types of contents with larger
sizes also require evaluation. Building and applying incentive mechanisms are out of the scope
of this thesis, so we assume that the users are willing to cooperate in the presented scenario.

In the following section, we discuss limitations of the presented work and future research
directions for works based on the two branches of contributions of this thesis.

7.3 Limitations and Future Research Directions

7.3.1 A Tactful Opportunistic Communication Strategy

Along with this thesis, we discussed limitations or assumptions necessary for the tactful oppor-
tunistic communication strategy to increase the cost-effectiveness of a content delivery scenario.
Among these limitations, there are several issues that we identified and can lead to future work.
We describe and discuss those topics below:

Datasets and larger scenario evaluations: TOOTS and other state-of-art strategies need
larger scales evaluations (i.e., in networks with more nodes). Previous solutions already showed
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scalability issues. Despite the increased availability of real datasets in the last years, there is
still a lack of those covering larger populations (e.g., whole metropolitan areas). These datasets
will be essential for identifying possible insights for future strategies.

Metrics x Performance: There is a need to evaluate the correlation of each metric in-
dividually with the performance of the entire strategy. With that said, this knowledge can
bring even more improved performance. As discussed throughout the thesis, TOOTS relies on
different inherent human aspects. Not surprisingly, the presented strategy’s results are more
correlated with the real-world dataset used (NCCU). In this dataset, the human-aware time
approach made it possible to calculate the metrics to reflect the users’ routines with more
granularity, possibly leading to better strategy performance. Other time-division approaches
must be investigated through insights obtained from the study of other kinds of populations.

Proposing and analyzing new metrics: Apart from the metrics proposed, there is a mul-
titude of possibilities when it comes to the tactful networking paradigm. Therefore, identifying
and applying other metrics based on peculiar aspects of human mobility or behavior open new
possibilities. Metrics can help to improve the overall performance of the strategy and tasks
such as routing (e.g., relying on user interests and depending on the application types).

Overhead constraints: An important evaluation in the context of TOOTS would be to
study the relation between overhead and opportunistic gain. For example, which are the cost
x benefits for using the opportunistic strategy in an application scenario where data offloading is
the main goal? Are the costs added to the network (i.e., to the nodes) reasonable for the amount
of data offloaded? Using overhead thresholds could apply for studying such opportunistic gain;

Energy efficiency: Despite the increased capacity of mobile devices in the last years, energy
(i.e., battery) is still a concern. TOOTS and most previous work did not study energy con-
straints within the algorithms. That is one of the critical issues when it comes to opportunistic
networks. Energy efficiency in opportunistic communication links directly to tasks that con-
sume many resources. Among those, the collection of mobility information (e.g., GPS), the
forwarding and storage of messages, other networks and devices lookup, and the routing aspect
(often adapted from conventional network algorithms). In TOOTS, we applied some metrics
that might avoid wasting some resources (e.g., selecting contacts with longer durations to avoid
forwarding interruptions), but the energy efficiency must be studied. In all cases, information
from the human context can help predict situations and optimize energy consumption. For
example, the knowledge of a user’s meeting dynamics to forward messages to other devices
that are more likely to take them to their final destination (reducing overhead). Nevertheless,
the lookup and handover can happen at specific times, based on mobility prediction. The col-
lection of user mobility information can also link to their routine habits, reducing the sampling
frequency of the GPS, which tends to drain the battery of a mobile device quickly. Energy
efficiency is paramount for the adoption of opportunistic communication strategies.

Incentive and Reputation mechanisms: Opportunistic communication works in a sce-
nario where each individual has a device with limited resources, among those, bandwidth,
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battery, storage, and memory. Because of these limitations, incentivizing collaboration is nec-
essary since the success of these communication types is directly proportional to the adhesion
of users. Previous work cited in Chap. 2 summarize proposed benefits such as financial and
reciprocity. However, incentives can work more naturally by “imitating” social and human be-
havior. We do know that humans tend to cooperate when there is something in common. For
example, social interactions and meeting dynamics can help to create incentive mechanisms
between users who naturally share similarities in their daily lives. The same is true for rep-
utation systems since users who have characteristics in common tend not to act greedy with
their peers (in the peer-to-peer world, the well-known leechers). We assumed that the users in
our scenario are willing to collaborate, but for real-world adoption of opportunistic forwarding,
incentive and reputation mechanisms are necessary.

Security, privacy, and trust: The turnover of users connected to a mobile network and
a large amount of information that travels through it also poses challenges related to the
security and privacy of users’ data. Authentication and authorization mechanisms to ensure
that malicious individuals do not interfere are also necessary for this context. In the case of
reliability management, the notion of interactions on mobile social networks has already been
used [1]. Networks and circles of trust can be formed opportunistically from groups of people
with a common interest, such as students in a classroom. Reliability can be propagated directly
or indirectly among users. All of this must be done with concern for users’ privacy, preventing
their personal information from being used maliciously. Within our strategy (TOOTS), we
assume there are mechanisms providing security, privacy, and trust, but there is a lack of
building or adapting suitable mechanisms for industry implementations.

Simulation scenarios and parameters: Future work will need to evaluate TOOTS and
other state-of-art proposals’ effectiveness through varying contact ranges, bandwidth, increas-
ing content size, and the number of days for the algorithm’s learning phase. Furthermore,
opportunistic strategies will need evaluations throughout modern D2D technologies specifica-
tions (i.e., wider communication range) and modern life scenarios (e.g., autonomous vehicles).
As shown in this thesis, population characteristics, technological capabilities (e.g., contact
range, bandwidth), and other aspects can impact the strategy’s effectiveness.

7.3.2 Tactful Networking Paradigm

There are multiple issues from the human, networking, and computing systems perspectives for
such a paradigm to progress. First, there is a need for changing modeling practices of network
solutions. In addition to the focus on network performance and metrics, it is necessary to
apply big data analytics related to human context and behavior information and to bring
knowledge about human behavior combining ideas and methods from different areas such
as machine learning, pervasive Al, HCI, stochastic modeling, psychology, sociology, computer
networks, data science, and statistics. Throughout time, correlating this data will help analyze
routines, build enhanced incentive mechanisms, and predict situations and behavior. This kind
of information will apply to orchestrate better how the network shall behave from the operation
point-of-view.

Second, emerging new applications, more people connected through more powerful smart-
devices, cloud services massification, among others, bring data traffic raise and challenges to
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network core and edge. The wireless communications technologies available will deal with im-
proved capabilities user equipment that will accelerate the proliferation of performance-hungry
applications. Such challenges call for having a new architectural paradigm for the current In-
ternet. Here, intelligence should come from centralized computing facilities to distributed and
in-network computation. The envisaged scenario is to have network intelligence pushed at the
edge, much closer to UEs. Learning, reasoning, and decision making will provide distributed
autonomy, replacing the classical centralized structures: Integrating collective intelligence in
the network is essential. The natural Internet upgrade into a ‘“network of subnetworks” is a
new trend, where “local” evolution is the key principle to enhance situational awareness and
adaptation of edge networks.

With the advent of smart devices and the big data era, multifaceted user information
will bring novel opportunities. Therefore, future work will need to focus on identifying other
human characteristics (e.g., personality traits) for proposing even more precise metrics to
reflect human routines. Future Opportunistic D2D communication works will need to discuss
envisaged scenarios with realistic challenges on crowded (i.e., metropolitan) areas and rural
areas to motivate a more widespread adoption of human-centered technologies by the mobile
carriers and industry.

Despite the traffic increase in the past few years, communication protocols remain limited.
In many cases, they rely on strategies developed in the past, where the present scenario was
not envisaged, much less the future. There is still a limited understanding of the characteristics
that protocols must consider, including the traffic carried aspects and its generation context.
Thus, intelligent protocols will be required to transport the requested information at the lowest
possible cost to the network while simultaneously providing quality of service and experience
for users [182].

Even with a vast literature available, there are still gaps in predicting human behavior
under the influence of psychological, social, and demographic factors, among others, that should
impact prediction models [232]. Quantitative studies are needed to uncover an expected degree
or precision of these learning and predictions, which more suitable techniques to predict an
individual’s behavior, and how factors such as those above interfere with accuracy. Previous
prediction methods require an extensive data history and high regularity of events. This
fact reinforces the need to make datasets available and makes urgent the design of prediction
techniques providing high accuracy while based on limited datasets.

Understanding the human decision-making process is also necessary, as the decisions we
take can reflect in extracted human traits increasingly used as input to develop networking
solutions. According to [143], “a group of individuals, no matter how highly organized it
may be at any given instant, tends toward greater disorder or randomization, called entropy”.
Therefore, investigating and detecting what causes entropy, when, and why it happens in
human decision-making is essential for future Tactful Networking solutions. The amount of
individual entropy can also link to personality traits, which influence other human traits like
mobility patterns, interactions, and social activities. Nevertheless, according to [143], Intrinsic
Information Theory (IIT) is helpful to understand the conscious state of mind in decision-
making. Consciousness is led by aspects such as spatial and temporal boundaries, information,
and individual perspectives. Establishing this relationship with decision-making is essential,
as we call for future network design to consider human behavioral aspects. Our behavior and
individual characteristics directly impact how we demand network resources and what kind of
resources are requested.
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The Tactful Networking paradigm will also be a cornerstone for envisaged 6G that will
empower our cities to be smart and fully connected with many services and devices. 6G will
also be boosted by Deep Learning from Artificial Intelligence (AI), relying on data mining from
network aspects and user devices and behavior to provide context-aware service-enabled com-
munications. A human-aware Al layer will enable more intelligent network services deployment
and empower applications such as autonomous driving and connected vehicles, haptic commu-
nications, augmented reality, smart healthcare, and smart homes. Concerning 6G challenges,
the study of human aspects can bring insights to the future edge and cloud computing, higher
networking densification (with even smaller cells to reduce latency and increase capacity), and
dynamic topology environments.

Finally, whenever human user data is being collected, stored, or analyzed, suitable privacy-
preserving mechanisms must be provided. Future Tactful Networking solutions must find the
balance between privacy and user satisfaction, and among privacy and protocols, services, and
application utility. These solutions or services must keep in mind that there will be no privacy
implementation in real life if users are cut from their typical applications, services, or likes.
Distributed management inherently disperses valuable information and facilitates the use of
private-owned data management systems [233]. Therefore, distributed edge servers are much
less likely to become the target of security attacks, reducing information leakage.

7.4 Concluding Remarks

The contributions of this thesis are ten-fold, divided in technical or conceptual. Among these
contributions we highlight: (i) the full process for building a tactful opportunistic strategy for
cost-effective content delivery in mobile networks, and (ii) the tactful networking paradigm as
a cornerstone for future networking solutions. Our results showed that through this research
direction which involves the human as part of the solution, it is possible to improve perfor-
mance. We addressed multiple challenges and conclude that our technical and conceptual
contributions and the shared intuitions have the potential to serve as a lead to a multitude
of work in the networking domain when it comes to human-aware big data, and also to the
specific field of opportunistic forwarding.
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an opportunistic scenario in terms of
overhead, delivery rate, and latency through
following this process.
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