
HAL Id: tel-03374009
https://theses.hal.science/tel-03374009v1

Submitted on 11 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Black holes, stars and cosmology in scalar-tensor
theories

Timothy Anson

To cite this version:
Timothy Anson. Black holes, stars and cosmology in scalar-tensor theories. General Relativity and
Quantum Cosmology [gr-qc]. Université Paris-Saclay, 2021. English. �NNT : 2021UPASP067�. �tel-
03374009�

https://theses.hal.science/tel-03374009v1
https://hal.archives-ouvertes.fr


Th
ès

e 
de

 d
oc

to
ra

t
N

N
T:

2
0
2
1
U

PA
S
P
0
6
7

Black holes, stars and cosmology
in scalar-tensor theories

Trous noirs, étoiles et cosmologie dans
les théories tenseur-scalaire

Thèse de doctorat de l’Université Paris-Saclay

École doctorale n◦ 564, École Doctorale de Physique en Île
de France (EDPIF)

Spécialité de doctorat : Physique
Unité de recherche : Université Paris-Saclay, CNRS, IJCLab, 91405,

Orsay, France
Référent : Faculté des Sciences d’Orsay

Thèse présentée et soutenue à Orsay, le
10/09/2021, par

Timothy ANSON

Composition du jury

Éric GOURGOULHON Président

Directeur de Recherche, Laboratoire Univers et Théories,
Observatoire de Paris

Ruth GREGORY Rapporteure & Examinatrice

Professeure, Department of Physics, King’s College Lon-
don

David LANGLOIS Rapporteur & Examinateur

Directeur de Recherche, Laboratoire AstroParticule et
Cosmologie, Université Paris Diderot

Vitor CARDOSO Examinateur

Professeur, Instituto Superior Técnico, Université de Lis-
bonne

Christos CHARMOUSIS Examinateur

Directeur de Recherche, Laboratoire de Physique des 2
Infinis Irène Joliot-Curie, Université Paris-Saclay

Thomas SOTIRIOU Examinateur

Professeur, School of Physics and Astronomy, Université
de Nottingham

Direction de la thèse

Eugeny BABICHEV Directeur de thèse

Chargé de Recherche, Laboratoire de Physique des 2 In-
finis Irène Joliot-Curie, Université Paris-Saclay





i

Remerciements

This thesis owes a lot to many people that I've interacted with over the years. Thank
you Eugeny for giving me the opportunity to carry out my PhD studies. Your guidance
and ideas have been essential throughout these years, and I am very grateful for what
you taught me. I am happy to have been your student. Christos, it was a pleasure
to work and discuss with you. Even though you were not o�cially my supervisor,
you were always there when I needed it and I appreciate it. Thank you Sabir and
Mokhtar for enjoyable collaborations, it was nice to work with you. I am indebted
to Ruth Gregory and David Langlois for accepting to referee my thesis, thank you
for your valuable comments. Thank you to Vitor Cardoso and Thomas Sotiriou for
being part of the committee, and for your comments on the thesis. Merci aussi à Éric
Gourgoulhon d'avoir accepté de présider le jury de thèse, et pour tes commentaires
sur le manuscrit. Merci Karim pour tes conseils et ton rôle de tuteur scienti�que, nos
discussions m'ont beaucoup aidé. Merci à Robin pour ton rôle dans le cadre du suivi
de ma thèse. Thank you Marco for your tips about using Mathematica. Merci Gilles
d'avoir pris le temps pour me conseiller lorsque j'étais à la recherche d'une thèse, et
pour ton aide sur divers sujets scienti�ques pendant ces années. Merci Sarah pour ton
aide sur des questions administratives. Merci Marie-Agnès pour ta gentillesse et ton
aide au quotidien pendant ma thèse, le laboratoire ne serait pas le même sans toi !

Merci à mes amis d'avoir rendu ces années bien plus agréables. Martin, Thomas,
Dounia et Flo, merci pour les nombreux diners ou soirées qui m'ont permis de me
changer les idées à maintes reprises. Merci aussi Martin de ton aide pour l'organisation
de ma soutenance et du pot de thèse ! Merci aux autres étudiants du laboratoire pour
les discussions notamment lors des pauses café: Amaury, Florentin, Gioacchino, Nico-
las, Elie, Lydia, mais aussi tous les stagiaires qui sont passés plus ou moins brièvement
pendant ces années. Un grand merci également à François et Quentin pour les mo-
ments conviviaux à l'IAP et dans les bars aux alentours, ainsi que pour les discussions
scienti�ques. Merci à mes amis de l'ENS : Alex et Cyril pour les journées de grimpe
à Bleau, Jordan pour nos discussions échiquéennes, Andréane pour la découverte des
plages normandes.

Merci à ma famille pour leur soutien permanent, et en particulier : Maman, Olivier
et Co pour votre accueil à la campagne, qui a rendu le con�nement bien plus agréable;



ii Remerciements

Papa pour ta relecture de la thèse; Marie-France pour ta générosité, ce fut une grande
chance de pouvoir pro�ter de l'appartement à Saint-Mandé; Mémé, Bab et Lilou pour
vos encouragements. Grazie mille Simone e Roberto per il vostro benvenuto in Ticino,
è stato un vero piacere.

En�n, merci Giulia d'avoir été à mes côtés, même dans les moments di�ciles. Le
soutien que tu m'as apporté est inestimable, et cette thèse te doit beaucoup.



iii

Synthèse en français

Aperçu historique

La force gravitationnelle est l'une des interactions fondamentales de la nature. Pen-
dant des siècles, le mouvement des corps célestes a été décrit dans le contexte de la
physique newtonienne. Cependant, l'une des observations qui restait inexpliquée par
cette théorie au début du 20e siècle est l'avance séculaire du périhélie de Mercure, qui
s'écarte de la prédiction newtonienne de 43� par siècle. L'avance du périhélie dans
le système solaire est principalement due à l'attraction gravitationnelle des autres
planètes, puisqu'une planète seule en orbite autour du Soleil aurait une trajectoire
elliptique. Un problème similaire s'était posé pour la planète Uranus. En 1846, Le
Verrier a pu prédire l'existence et la position d'un corps perturbateur qui expliquerait
les anomalies de son orbite, ce qui a conduit à la découverte de Neptune plus tard
dans l'année. En 1859, il se rendit compte que le mouvement de Mercure ne pouvait
être expliqué par la théorie newtonienne avec les planètes connues du système solaire.
Il émit l'hypothèse qu'un nouvel objet pourrait exister encore plus près du Soleil, et
ainsi expliquer ce mouvement anormal. Cependant, la prédiction était cette fois in-
correcte et la nouvelle planète, qui devait être nommée Vulcain, ne fut pas trouvée.
Par conséquent, l'avance du périhélie de Mercure restait inexpliquée dans la théorie
de Newton. En 1915, Einstein publia sa théorie générale de la relativité (RG), dans
laquelle il propose que la gravitation soit une manifestation de la courbure de l'espace-
temps [1]. Dans cette description, le potentiel gravitationnel lui-même est intégré à la
métrique de l'espace-temps gµν . Le mouvement de la matière, qui est représentée par
un tenseur énergie-impulsion Tµν , est directement lié à la géométrie de l'espace-temps
par les équations d'Einstein :

Rµν −
1

2
Rgµν =

8πG

c4
Tµν − Λgµν , (1)

où G est la constante de Newton et c est la vitesse de la lumière dans le vide. En
unités naturelles, nous avons G = (8πM2

P )
−1, où la constante MP ∼ 1018 GeV est la

masse de Planck réduite.
Depuis sa proposition il y a plus d'un siècle, la relativité générale a passé tous les

tests expérimentaux dans le système solaire, son premier triomphe étant la prédiction
correcte de la précession séculaire du périhélie de Mercure. Même dans le cadre de
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la physique newtonienne, il était compris que la lumière pouvait être déformée par
des sources gravitationnelles. En utilisant une théorie corpusculaire de la lumière, cet
e�et a été calculé par Cavendish et Soldner, la première version publiée remontant à
1804 [2]. Cette prédiction a également été calculée par Einstein en 1911 en utilisant
le principe d'équivalence. Cependant, dans la théorie complète de la RG, Einstein a
réalisé que la déviation de la lumière devait être deux fois plus importante, et sa mesure
constitue un deuxième test important de la RG. Cette déviation fut observée pour la
première fois par Eddington et ses collaborateurs pendant l'éclipse solaire de 1919 [3],
et ils ont conclu que la prédiction d'Einstein était correcte (bien que la faible précision
de la mesure ait conduit à une controverse, voir par exemple Ref. [4]). Un autre test
de la RG proposé par Einstein est le décalage vers le rouge gravitationnel, qui prédit
que les photons perdent de l'énergie (et deviennent donc rouges) lorsqu'ils s'échappent
d'un puits gravitationnel. Si l'on imagine deux horloges, l'une proche d'une source
gravitationnelle et l'autre éloignée, un observateur �xe constate que la fréquence de
la première est plus basse. En 1959, Pound et Rebka ont mesuré cet e�et en tirant
des rayons gamma du haut d'une tour de 22 mètres, montrant que les photons étaient
décalés vers le bleu lors de leur chute. En plus des expériences du système solaire dans
le régime de champ faible, la découverte des pulsars binaires en 1974 [5] a permis de
tester la RG dans des environnements de champ fort [6].

La relativité générale peut également être appliquée à de très grandes échelles,
en cosmologie. Dans ce cas, l'espace-temps est décrit par la métrique isotrope et
homogène de Friedmann-Lemaître-Robertson-Walker (FLRW), qui s'écrit :

ds2 = −dt2 + a2(t)

(
dr2

1− κr2
+ r2dθ2 + r2 sin2 θdφ2

)
, (2)

où la fonction a est appelée le facteur d'échelle et la constante κ est la courbure de
l'espace. Elle peut prendre les valeurs κ ∈ {−1, 0, 1}, correspondant respectivement
à un Univers ouvert, plat ou fermé. Nous supposons que le contenu énergétique de
l'Univers peut être décrit par un �uide parfait de densité énergétique ρ et de pression
P , auquel cas le tenseur énergie-impulsion prend la forme suivante :

T µ
ν = diag (−ρ, P, P, P ) . (3)

En substituant ces expressions dans l'Eq. (16), on obtient les équations de Friedmann

ä

a
=

Λ

3
− ρ+ 3P

6M2
P

, (4)

H2 =
Λ

3
+

ρ

3M2
P

− κ

a2
, (5)

où le point représente la dérivée par rapport au temps cosmique t, et H = ȧ/a est le
paramètre de Hubble. Ces équations montrent que l'Univers n'est pas statique, c'est-à-
dire que H ̸= 0. En voulant que l'Univers soit statique à tout prix, conformément à la
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compréhension traditionnelle, Einstein a essayé d'imposer H = 0 dans l'équation (5),
sans se rendre compte que cet équilibre �nement ajusté est de toute façon instable.
Hubble a montré que l'Univers était en expansion en 1929 [7]. En combinant les
équations de Friedmann, on obtient une troisième relation correspondant au fait que
le tenseur énergie-impulsion a une divergence nulle, c'est-à-dire que ∇µT

µν = 0. Cela
découle de l'identité géométrique ∇µG

µν = 0, où le tenseur d'Einstein Gµν est dé�ni
comme suit :

Gµν = Rµν −
1

2
Rgµν . (6)

Pour un �uide parfait, l'équation de continuité s'écrit

ρ̇+ 3H (ρ+ P ) = 0 . (7)

Si nous considérons une équation d'état de la forme P = wρ, avec w constant, alors il
découle de l'équation (7) que

ρ a3(1+w) = const. (8)

Par conséquent, les di�érents types de matière se diluent di�éremment au fur et à
mesure de l'expansion de l'Univers. La matière ordinaire correspond à w = 0, et la
densité de matière ρm évolue comme ρm ∼ 1/a3, alors que pour le rayonnement nous
avons w = 1/3 et la densité correspondante ρr décroît comme ρr ∼ 1/a4. Un autre
cas intéressant est w = −1, qui correspond à l'énergie noire, ou une constante cos-
mologique. En e�et, on peut considérer la constante cosmologique comme un �uide de
densité ρΛ = ΛM2

P et de pression PΛ = −ΛM2
P , et donc w = −1. En �xant ρ = P = 0

dans l'équation (4), on voit qu'un Univers dominé par une constante cosmologique pos-
itive Λ correspond à une expansion accélérée de la forme a ∼ exp(t

√
Λ/3). L'expansion

accélérée actuelle de l'Univers a été démontrée en 1998 [8,9] en utilisant des supernovae
de type Ia (ces objets sont des chandelles standard, c'est-à-dire que leur pic de lumi-
nosité est connu et qu'ils fournissent donc un moyen précis de mesurer les distances à
grande échelle). Ceci peut être expliqué dans le modèle standard de la cosmologie en
introduisant une petite constante cosmologique Λe� ∼ 10−65GeV2. De plus, puisque la
valeur mesurée de la courbure spatiale de l'Univers est très faible, nous �xerons par la
suite κ = 0 dans l'équation (2). Le contenu énergétique de l'Univers est aujourd'hui
constitué de 3 composants majeurs : l'énergie noire (∼ 68%), la matière noire froide
(∼ 27%), et la matière baryonique (∼ 5%) [10].

Une autre prédiction fascinante de la RG est l'existence des trous noirs, qui sont des
objets si compacts que même les rayons lumineux sont piégés en leur sein. Ces trous
noirs avaient été conceptualisés même dans le contexte de la physique newtonienne,
notamment par Michell et Laplace au 19e siècle. Quelques mois après la publication
de la RG, Schwarzschild trouva une solution statique aux équations d'Einstein dans
le vide, à savoir Rµν = 0. Nous discuterons de quelques propriétés de cette solution
plus en détail dans le chapitre 7, ainsi que de la métrique de Kerr [11] pour un trou
noir en rotation. Alors que l'on a longtemps pensé que de tels objets présentaient un
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intérêt purement mathématique, de plus en plus de mesures expérimentales montrent
que les trous noirs existent dans la nature, et ils seront au c÷ur de la dernière partie de
cette thèse. Contrairement à la théorie newtonienne, la RG prédit l'existence d'ondes
gravitationnelles. De telles ondes ont été détectées en 2015 à l'aide d'interféromètres
terrestres [12] provenant de la coalescence lointaine de deux trous noirs, bien que des
preuves indirectes de leur existence aient déjà été obtenues par l'étude de pulsars
binaires [13]. Il s'agit à nouveau d'un succès de la RG, qui a ouvert la voie à une
nouvelle ère de tests expérimentaux de la théorie dans le régimes de champ fort.

Malgré tous les triomphes de la RG que nous avons évoqués, il reste quelques
phénomènes inexpliqués qui ont encouragé les physiciens à envisager des théories al-
ternatives de la gravitation. Tout d'abord, il est bien connu que la relativité générale
n'est pas renormalisable, ce qui signi�e qu'elle perd son pouvoir prédictif à des éner-
gies élevées. L'énergie qui correspond à cette coupure est la masse de Planck mP =√
8πMP ∼ 1019 GeV. De nombreux e�orts ont été déployés au cours des dernières

décennies pour construire une théorie de la gravité complète dans l'ultraviolet, la ten-
tative la plus célèbre étant la théorie des cordes. Un autre problème est lié à la faible
valeur expérimentale de la constante cosmologique. Dans une théorie quantique des
champs, on s'attend à une correction quantique δΛ qui s'ajoute à la valeur nue pour
former la contante mesurée Λe� = Λ + δΛ. En supposant une coupure à l'échelle de
Planck mP , les corrections quantiques sont estimées de l'ordre de δΛ ∼ 1037GeV2, ce
qui signi�e que les deux contributions à Λe� devraient s'annuler avec une précision
de plus de 100 ordres de grandeur. Un calcul di�érent utilisant la régularisation di-
mensionnelle atténue le problème, mais il reste une divergence d'environ 50 ordres de
grandeur (voir Ref. [14] pour une revue). C'est ce que l'on appelle le problème de
la naturalité, qui se produit de manière similaire (mais pas aussi radicale) pour la
masse du boson de Higgs en physique des particules. Il existe d'autres problèmes liés
à la cosmologie, l'un d'eux étant le problème de la platitude. On peut le comprendre
facilement en introduisant la densité critique ρc = 3M2

PH
2 et en réécrivant l'équation

(5) avec Λ = 0 comme suit : (
ρc
ρ

− 1

)
ρa2 = −3κM2

P .

Puisque le côté droit de l'équation précédente est constant, le côté gauche doit égale-
ment rester constant tout au long de l'évolution de l'Univers. Cependant, étant donné
que pendant la domination de la matière et du rayonnement, la combinaison ρa2

diminue, le deuxième terme du côté gauche doit augmenter. Les mesures actuelles
montrent que |1 − ρc/ρ| est très petit aujourd'hui, ce qui implique qu'il était ex-
trêmement petit (environ 10−62) aux premiers instants de l'Univers, et il n'y a pas de
mécanisme permettant d'expliquer cet ajustement �n. Un autre problème est celui
dit de l'horizon. Le satellite Planck [10] a pu mesurer la température du fond di�us
cosmologique avec une grande précision, et des régions du ciel qui n'auraient pas pu
être en contact causal dans le passé ont une température très proche, ce qui laisse per-
plexe. Heureusement, une explication possible de ces deux problèmes a été proposée
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dans les années quatre-vingt, et repose sur une période d'expansion accélérée au tout
début de l'histoire de l'Univers, appelée l'in�ation [15�22]. Pendant cette période, le
facteur d'échelle a croît exponentiellement (au moins d'un facteur e60), et cela permet
d'expliquer les deux problèmes précédents. Une autre caractéristique intrigante de
l'Univers est qu'environ 85% de la matière est invisible, en ce sens qu'elle n'émet pas
de lumière, d'où le nom de matière noire. L'analyse des courbes de rotation des galax-
ies spirales (c'est-à-dire la distribution de la vitesse des étoiles), suggère l'existence
de matière invisible qui interagit gravitationnellement et expliquerait les pro�ls plats
observés. À plus grande échelle, la masse des amas de galaxies peut être déterminée
à l'aide de techniques de lentilles gravitationnelles, et fournit également une motiva-
tion pour l'existence de la matière noire (voir Ref. [23] pour une revue récente). La
compréhension de sa nature est l'un des dé�s principaux de la physique moderne.

Théories tenseur-scalaire

Introduisons maintenant les théories tenseur-scalaire, qui fournissent un cadre général
pour les travaux présentés dans cette thèse. Les théories alternatives de la gravitation
nous permettent de prédire et de tester les déviations à la RG, ce qui est déjà une raison
su�sante pour motiver leur étude. De plus, les défauts de la RG discutés précédem-
ment fournissent une incitation supplémentaire à considérer ces théories alternatives,
dans l'espoir d'obtenir des réponses aux questions que nous avons mentionnées. Les
équations d'Einstein peuvent être obtenues à partir de l'action d'Einstein-Hilbert :

S =
M2

P

2

∫
d4x

√
−g(R− 2Λ) + Sm [gµν , ψm] , (9)

où ψm désigne les champs de matière qui sont couplés minimalement à la métrique
gµν . Le tenseur énergie-impulsion Tµν est dé�ni en utilisant l'action de matière de la
manière suivante :

Tµν = − 2√
−g

δSm
δgµν

. (10)

Le principe de moindre action appliqué à cette théorie conduit aux équations d'Einstein.
Selon un théorème de Lovelock [24,25], les seuls 2-tenseurs en 4 dimensions ayant une
divergence nulle, et construits avec la métrique et ses dérivées premières et secondes
uniquement sont la métrique gµν elle-même et le tenseur d'Einstein Gµν . Par con-
séquent, pour obtenir des équations du mouvement di�érentes de celles de la RG, il
est nécessaire de briser l'une des hypothèses du théorème de Lovelock. Par exemple,
on peut considérer des champs supplémentaires médiateurs de la gravité, changer la
dimension de l'espace-temps ou introduire des dérivées supérieures dans l'action. La
façon la plus simple de modi�er la RG est de construire une théorie avec un champ
scalaire en plus de la métrique, qui s'appelle une théorie tenseur-scalaire. La détection
du boson de Higgs en 2012 a montré que les champs scalaires peuvent exister dans la
nature [26]. De plus, on s'attend à ce qu'ils apparaissent dans les actions e�ectives
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quadri-dimensionnelles des théories des cordes, après compacti�cation des dimensions
supplémentaires (voir Réf. [27]). On s'attend également à ce que les champs scalaires
participent à la phase in�ationnaire de l'Univers. Pour ces raisons, il semble naturel
de considérer les théories tenseur-scalaire comme des extensions de la RG et d'étudier
leurs propriétés. Nous nous concentrerons sur ce type de modi�cation tout au long
de la thèse, bien qu'il existe de nombreuses autres théories de gravité modi�ée (voir
Refs. [28, 29] pour des revues). En 1961, Brans et Dicke [30], s'appuyant notamment
sur les travaux antérieurs de Jordan [31], ont proposé une théorie qui inclut un champ
scalaire supplémentaire ϕ pouvant être interprété comme une constante de Newton
variable. L'action de la théorie de Jordan-Brans-Dicke est la suivante :

SJBD =
M2

P

2

∫
d4
√
−g
[
ϕR− ω0

ϕ
(∂ϕ)2

]
, (11)

où ω0 est une constante. Cette action a été étendue plus tard en remplaçant la con-
stante ω0 par une fonction ω(ϕ), et en ajoutant un terme potentiel pour le champ
scalaire [32]. Ces extensions sont habituellement appelées théories tenseur-scalaire,
bien que nous utilisions ce terme dans un sens plus large dans cette thèse, comme
nous allons le discuter. En e�et, les théories tenseur-scalaire standard ne contiennent
que les dérivées premières du scalaire dans l'action. Dans les années soixante-dix,
Horndeski a déterminé l'action la plus générale contenant un scalaire ϕ et la métrique
qui conduit à des équations d'Euler-Lagrange du second ordre [33], et le lagrangien
contient les dérivées secondes du champ scalaire. Cette classe de théories a été redé-
couverte récemment lors de l'extension du modèle des galileons [34] à un espace-temps
courbe [35�37], et il a été démontré qu'elle est équivalente à la théorie de Horndeski [38].
Dans la formulation moderne, le lagrangien de Horndeski s'écrit

LH = f(ϕ,X)R +K(ϕ,X)−G3(ϕ,X)□ϕ− 2fX
(
{□ϕ}2 − ϕµνϕ

µν
)

+G5(ϕ,X)Gµνϕ
µν +

1

3
G5X

(
{□ϕ}3 − 3□ϕϕµνϕµν + 2ϕµαϕ

ανϕµ
ν

)
, (12)

où X = ∂µϕ∂
µϕ, fX = ∂f/∂X, et nous utilisons les notations abrégées ϕµ = ∇µϕ,

ϕµν = ∇µ∇νϕ. Le fait d'exiger que les équations de champ soient du second ordre
permet d'éviter l'apparition d'un fantôme d'Ostrogradsky [39, 40], qui est un degré
de liberté avec une énergie ne possédant pas de borne inférieure. Bien qu'avoir des
équations du second ordre soit une condition su�sante pour obtenir une théorie ne
contenant pas de fantôme d'Ostrogradsky, ce n'est pas une condition nécessaire. En
e�et, le théorème d'Ostrogradsky ne s'applique qu'aux Lagrangiens non dégénérés, ce
qui signi�e qu'il est possible qu'une théorie aux dérivées supérieures soit saine (dans le
sens qu'elle ne contient pas de fantôme d'Ostrogradsky) si elle est également dégénérée.
Par conséquent, des théories tenseur-scalaire au-delà de la classe de Horndeski ont
été recherchées. Le premier pas dans cette direction a été obtenu en e�ectuant une
transformation disforme du tenseur métrique [41] :

g̃µν = C(ϕ,X)gµν +D(ϕ,X)ϕµϕν . (13)
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Il a été montré dans la Réf. [42] que l'action de Horndeski est stable sous cette trans-
formation si les fonctions C et D ne dépendent pas du terme cinétique X. Cependant,
si les fonctions C et D dépendent de X mais sont choisies de manière à ce que la trans-
formation soit inversible, alors la relation précédente est simplement un changement
de variable, et une théorie devrait rester saine sous une telle transformation même
si les équations d'Euler-Lagrange contiennent des dérivées d'ordre supérieur. Cette
propriété intéressante a été soulignée pour la première fois dans la Réf. [43]. Elle a
conduit au développement de théories au-delà de la classe de Horndeski, et des exten-
sions des termes G4 et G5 ont été trouvées dans la Ref. [44], qui peuvent être obtenues
par transformation purement disforme de la théorie de Horndeski. La classe la plus
générale des théories tenseur-scalaire saines a ensuite été isolée en imposant certaines
conditions de dégénérescence sur le Lagrangien, permettant de réduire les équations de
champ d'ordre supérieur à un système du second ordre et donc d'éviter la propagation
d'un fantôme d'Ostrogradsky. Ces théories ont été appelées Extended Scalar-Tensor
(EST) [45], ou Degenerate Higher-Order Scalar-Tensor (DHOST) theories [46, 47], et
nous utiliserons ce dernier nom dans la thèse. Le Lagrangien DHOST quadratique,
c'est-à-dire contenant des termes au plus quadratiques en les dérivées secondes du
champ scalaire ϕ, s'écrit

S =
M2

P

2

∫
d4x

√
−g

(
f(ϕ,X)R +K(ϕ,X)−G3(ϕ,X)□ϕ+

5∑
i=1

Li

)
, (14)

où les densités scalaires Li sont données par

L1 = A1(ϕ,X)ϕµνϕ
µν ,

L2 = A2(ϕ,X) (□ϕ)2 ,

L3 = A3(ϕ,X)ϕµνϕ
µϕν□ϕ ,

L4 = A4(ϕ,X)ϕµαϕ
ανϕµϕν ,

L5 = A5(ϕ,X) (ϕµνϕ
µϕν)2 . (15)

Plusieurs sous-classes de théories DHOST peuvent être obtenues à partir de cette ac-
tion. Dans chaque classe, des conditions de dégénérescence spéci�ques sont supposées
a�n d'éviter l'apparition du fantôme d'Ostrogradsky.

Structure et principaux résultats de la thèse

Dans cette thèse, je présente plusieurs sujets dans le contexte général des théories
tenseur-scalaire de la gravitation. La première partie de la thèse est consacrée à la
cosmologie des théories présentant une scalarisation spontanée des objets compacts.
Je décris le mécanisme de scalarisation dans le chapitre 1, à la fois dans le contexte des
théories tenseur-scalaire standard et dans le cas d'un couplage non trivial au scalaire
de Gauss-Bonnet. Il repose sur une masse e�ective tachionique acquise par le champ
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scalaire, et je montre dans le chapitre 2 que cela conduit génériquement à une instabilité
des modes scalaires pendant l'in�ation. Ceci est vrai dans les deux cas que nous
considérons, c'est-à-dire le modèle de Damour et Esposito-Farèse (DEF) et les théories
avec un couplage au terme de Gauss-Bonnet. Un mécanisme pour résoudre cette
instabilité dans le cas du modèle DEF, reposant sur un couplage du champ scalaire
à l'in�aton, est proposé dans le chapitre 3. Ce couplage induit une masse e�ective
pour le scalaire, qui permet de le stabiliser pendant la période in�ationnaire. Bien que
l'amplitude du scalaire croisse durant les phases ultérieures de l'expansion de l'Univers
(comme dans le modèle DEF), sa valeur actuelle est su�samment faible pour passer
les tests expérimentaux actuels de la RG.

Dans la deuxième partie, j'étudie l'écrantage de Vainshtein pour les étoiles en
rotation lente dans les théories tenseur-scalaire. Les tests de la gravité dans le système
solaire sont tous compatibles avec les RG. Il est donc important qu'une théorie modi�ée
de la gravité dispose d'un mécanisme qui rétablisse la RG à proximité des sources
gravitationnelles, et l'écrantage de Vainshtein est l'un des moyens d'y parvenir. Il
a été beaucoup étudié dans le cas de sources à symétrie sphérique, mais les objets
astrophysiques réalistes sont en rotation, et l'objectif était d'étudier cet e�et dans
le cas d'étoiles en rotation lente. Pour ceci, j'utilise le formalisme de Hartle, qui
nécessite d'introduire une fonction supplémentaire ω dans le tenseur métrique. Celle-
ci est responsable de l'e�et Lense-Thirring prédit par la théorie de la relativité. Notez
que dans certains cas, l'équation satisfaite par ω dans le vide est la même que pour la
RG, ce que je montre dans l'annexe II.A. Dans le chapitre 4, j'écris l'équation satisfaite
par la fonction ω traduisant la rotation lente de la source. Je me place ensuite dans
l'approximation de champ faible et écris les solutions pour ω dans ce cas, montrant
qu'en général le mécanisme d'écrantage peut être étendu à la fonction ω en dehors de
la source. Cependant, il est possible que ω reçoive des corrections d'ordre supérieur à
l'intérieur de la source. Dans le chapitre 5, j'étudie l'écrantage dans le cas d'un champ
scalaire dépendant du temps, et donne des exemples dans di�érentes classes de théories.
Je montre que même si l'écrantage de Vainshtein fonctionne en symétrie sphérique,
il n'est pas nécessaire que les corrections pour ω soient atténuées par des puissances
du rayon de Vainshtein rV . Dans ces cas, bien que l'écrantage fonctionne également
pour ω, il est moins e�cace que pour les potentiels de la métrique. L'écrantage dans
le cas d'un champ scalaire statique est ensuite étudié dans le chapitre 6. Je considère
une certaine classe de théories de Horndeski permettant d'échapper au théorème de
calvitie pour les étoiles. Dans ce cas, les résultats sont similaires au cas du scalaire
dépendant du temps.

La dernière partie de la thèse porte sur les trous noirs, et je commence par passer en
revue les solutions (non chargées) de la RG dans le chapitre 7, en rappelant certaines
propriétés importantes des solutions de Schwarzschild et de Kerr. Dans le chapitre 8,
des solutions de trous noirs en rotation dans des théories tenseur-scalaire sont constru-
ites en e�ectuant une transformation disforme de la métrique de Kerr, et j'explique les
propriétés de ces espaces-temps. Ces solutions axisymétriques sont similaires à celle de
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Kerr à certains égards : la même singularité ; une expansion asymptotique similaire ;
l'existence d'une ergorégion. Cependant, elles sont très di�érents de l'espace-temps de
Kerr sous d'autres aspects : absence de circularité ; Rµν ̸= 0 ; pas de tenseur de Killing
non trivial ; la limite stationnaire est distincte de l'horizon ; ce dernier n'est pas un
horizon de Killing et a un pro�l dépendant de θ. Il est important de noter que ces
espaces-temps restent causaux même après une petite perturbation des cônes de lu-
mière, ce qui permet d'éviter les pathologies telles que les courbes temporelles fermées
dans la région située en dehors de l'horizon. Des exemples intéressants de métriques
de trous noirs non circulaires sont obtenus dans les limites D → −1 (quasi-Weyl) et
D → ∞ (Schwarzschild non circulaire), où D est le paramètre disforme. En raison
de leur simplicité par rapport au cas générique, une analyse détaillée de ces métriques
pourrait être utile pour comprendre les propriétés des espaces non circulaires. Après
avoir présenté la métrique de Schwarzschild non circulaire, je montré qu'elle est du
type I de Petrov. Bien que le calcul explicite ne soit présenté que dans ce cas simple,
le résultat est valable pour des D ̸= 0 et a ̸= 0 génériques. L'orbite des étoiles autour
d'un trou noir de Kerr déformé est analysée dans le chapitre 9. J'y calcule la varia-
tion séculaire des paramètres orbitaux jusqu'au deuxième ordre post-newtonien pour
di�érentes limites du paramètre disforme D. De manière générale, les métriques dis-
formes ne satisfont pas le théorème de calvitie de la RG, qui stipule que les multipôles
d'ordre supérieur sont déterminés de manière unique par la masse et le moment angu-
laire du trou noir. En particulier, la mesure simultanée du spin et du quadrupôle de
Sgr A*, permettra de tester cette propriété dans le futur. Dans une limite particulière
de D, il est possible d'obtenir une prédiction di�érente de la RG pour la précession
du péricentre au premier ordre post-newtonien. Ceci constitue une prédiction venant
d'une théorie de gravité modi�ée, et permet de contraindre le paramètre disforme en
utilisant les observations actuelles provenant de l'orbite de l'étoile S2 autour de Sgr
A*.
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Introduction

Historical overview

The gravitational force is one of the fundamental interactions of Nature. For centuries,
the motion of celestial bodies was understood in the context of Newtonian physics.
However, one of the observations that remained unexplained by this theory at the
beginning of the 20th century is the secular advance of the perihelion of Mercury, which
deviates from the Newtonian prediction by 43� per century. The perihelion advance
in the Solar System is mainly caused by the gravitational pull of other planets, since a
lone planet orbiting the Sun would have an elliptic trajectory. A similar problem had
occurred for the planet Uranus. In 1846, Le Verrier was able to predict the existence
and position of a perturbing body which would explain the discrepancies in its orbit,
and this led to the discovery of Neptune later that year. In 1859, he realized that
the motion of Mercury could not be explained by Newtonian theory with the known
planets in the Solar System. He suggested that a new object may exist even closer
to the Sun, and that it could explain this anomalous motion. However, this time the
prediction was incorrect and the new planet, which was to be named Vulcan, was not
found. Hence, Mercury's perihelion advance remained unexplained in Newton's theory.
In 1915, Einstein published his general theory of relativity (GR), in which he proposed
that gravitation is a manifestation of spacetime curvature [1]. In this description, the
gravitational potential itself is part of the spacetime metric gµν . The movement of
matter, which is represented by a stress-energy tensor Tµν , is directly linked to the
geometry of spacetime through Einstein's equations:

Rµν −
1

2
Rgµν =

8πG

c4
Tµν − Λgµν , (16)

where G is Newton's constant and c is the velocity of light in vacuum.1 In natural
units, we have G = (8πM2

P )
−1, where the constant MP ∼ 1018 GeV is the reduced

Planck mass. We will use it instead of G in most of the thesis.

1We will follow the conventions of Misner-Thorne-Wheeler [48] throughout the thesis, and in
particular we use the mostly-plus metric signature (−,+,+,+). We will also employ natural units
where c = ℏ = 1. Furthermore, each part of this thesis is independent, and the same letter may have
a di�erent meaning depending on the part.
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Since its proposal more than a century ago, general relativity has passed all ex-
perimental tests in the Solar System, the �rst triumph being the correct prediction
of the secular perihelion precession of Mercury. It was understood even in Newtonian
physics that light could be bent by gravitational sources. Using a corpuscular theory
of light, this e�ect was calculated by Cavendish and Soldner, the �rst published ver-
sion dating back to 1804 [2]. This prediction was also calculated by Einstein in 1911
using the principle of equivalence. However, in the full theory of GR Einstein realized
that the de�ection of light should be twice as large, and its measurement constitutes
a second important test of GR. The light bending e�ect was �rst observed by Edding-
ton and his collaborators during the solar eclipse of 1919 [3], and they concluded that
Einstein's prediction was correct (though the low accuracy of the measurement led to
controversy, see for instance Ref. [4]). Another test of GR proposed by Einstein is the
gravitational redshift, which predicts that photons lose energy (and hence become red)
when escaping a gravitational well. If one imagines two clocks, one near a gravitational
source and the other far away, then the former would be seen to tick slower from the
point of view of a �xed observer. In 1959 Pound and Rebka measured this e�ect by
shooting gamma rays from the top of a 22 meter tower, showing that the photons
were blueshifted as they fell [49]. A useful framework to test general relativity is the
so-called parametrized post-Newtonian (PPN) formalism, the �rst version of which
was written by Eddington in 1923. The metric for a spherically symmetric source of
mass M in isotropic coordinates and in the nonrelativistic limit can be parametrized
as

gtt
c2

= −1 +
2GM

rc2
− 2βPPN

(
GM

rc2

)2

+O
(
1

c6

)
,

gti = 0 ,

gij = δij

(
1 + 2γPPN

GM

rc2

)
+O

(
1

c4

)
. (17)

The 2 parameters {βPPN, γPPN} quantify the deviations from GR, for which we have
βPPN = γPPN = 1. This formalism was later extended, notably by Nordtvedt and
Will, and now includes 10 parameters which can be confronted with experiments (see
Ref. [50] for a review). In addition to the Solar System experiments in the weak �eld
regime, the discovery of binary pulsars in 1974 [5] provided the possibility to test GR
in strong �eld environments [6].

General relativity can also be applied on very large scales, in cosmology. In this
case spacetime is described by the isotropic and homogeneous Friedmann-Lemaître-
Robertson-Walker (FLRW) metric, which is given by the following line element:

ds2 = −dt2 + a2(t)

(
dr2

1− κr2
+ r2dθ2 + r2 sin2 θdφ2

)
, (18)

where the time-dependent function a is called the scale factor and the constant κ is the
curvature of space. It can take the values κ ∈ {−1, 0, 1}, corresponding respectively to
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an open, �at or closed Universe. We assume that the energy content of the Universe
can be described by a perfect �uid of energy density ρ and pressure P , in which case
the energy-momentum tensor takes the form

T µ
ν = diag (−ρ, P, P, P ) . (19)

Substituting these expressions in Eq. (16), we obtain the Friedmann equations

ä

a
=

Λ

3
− ρ+ 3P

6M2
P

, (20)

H2 =
Λ

3
+

ρ

3M2
P

− κ

a2
, (21)

where a dot stands for di�erentiation with respect to cosmic time t, and H = ȧ/a
is the Hubble parameter. These equations show that the Universe is not static, i.e.
H ̸= 0. By wanting the Universe to be static at all cost, in line with the traditional
understanding, Einstein famously tried to enforce H = 0 in Eq. (21), not realizing
that this �ne-tuned equilibrium is unstable anyway. The Universe was shown to be
expanding by Hubble in 1929 [7]. By combining the Friedmann equations, we obtain a
third relation corresponding to the fact that energy-momentum tensor is divergence-
less, i.e. ∇µT

µν = 0. This follows from the geometric identity ∇µG
µν = 0, where the

Einstein tensor Gµν is de�ned as

Gµν = Rµν −
1

2
Rgµν . (22)

For a perfect �uid, the continuity equation reads

ρ̇+ 3H (ρ+ P ) = 0 . (23)

If we assume an equation of state of the form P = wρ, with w constant, then it follows
from Eq. (23) that

ρ a3(1+w) = const. (24)

Hence, di�erent types of matter are diluted di�erently as the Universe expands. Or-
dinary matter corresponds to w = 0, and the matter density ρm evolves as ρm ∼ 1/a3,
while for radiation we have w = 1/3 and the corresponding density ρr decays as
ρr ∼ 1/a4. Another interesting case is w = −1, which corresponds to dark energy, or
the cosmological constant. Indeed, one can view the cosmological constant as a �uid
with density ρΛ = ΛM2

P and pressure PΛ = −ΛM2
P , and hence w = −1. By setting

ρ = P = 0 in Eq. (20), we see that a Universe dominated by a positive cosmological
constant Λ corresponds to an accelerated expansion of the form a ∼ exp(t

√
Λ/3). The

current expansion of the Universe was shown to be accelerated in 1998 [8,9] using type
Ia supernovae (these objects are standard candles, i.e. their peak brightness is known
and hence they provide an accurate way to measure distances on large scales). The
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expansion can be explained in the standard model of cosmology by introducing a small
cosmological constant Λe� ∼ 10−65GeV2. In addition, the curvature of the Universe is
measured to be extremely small, so we will set κ = 0 in Eq. (18). The energy content
of the Universe in the present day is made up of 3 major components: dark energy
(∼ 68%), cold dark matter (∼ 27%), and baryonic matter (∼ 5%) [10].

Another fascinating prediction of GR is the existence of black holes, which are
objects so compact that even light rays are trapped in their interior. These had
been conceptualized even in the context of Newtonian physics, notably by Michell
and Laplace in the 19th century.2 A few months after Einstein published his theory
of gravitation, Schwarzschild found a static solution to the vacuum �eld equations
Rµν = 0. We discuss this solution in more detail in Chapter 7, along with its rotating
counterpart, the Kerr metric [11]. While such objects were thought for a long time to
be of purely mathematical interest, there has been increasing experimental evidence
that black holes do exist in Nature, and they will be central to the �nal part of this
thesis. Unlike the Newtonian theory, GR predicts the existence of gravitational waves.
Such waves were directly detected in 2015 using ground-based interferometers [12]
coming from the distant merger of two black holes, though indirect evidence of their
existence had already been obtained from the study of binary pulsars [13]. This was
yet again a success of GR, and paved the way for a new era of strong �eld tests .

Despite all the triumphs of GR that we have discussed, there remain some unex-
plained phenomena which have encouraged physicists to consider alternative theories
of gravitation. Firstly, it is well-known that general relativity is not renormalizable,
which means that it loses its predictability at high energies. The mass scale which
represents this cuto� is the Planck mass mP =

√
8πMP ∼ 1019 GeV. There has been a

lot of e�ort in the past decades to construct a UV-complete theory of gravity, the most
famous attempt being string theory. Another issue is linked to the small measured
value of the cosmological constant. In a quantum �eld theory, the bare constant Λ is
expected to be corrected by a quantum correction δΛ arising from loop contributions,
combining into the observed value Λe� = Λ+δΛ. Assuming a cuto� at the Planck scale
mP , the quantum corrections are estimated to be of order δΛ ∼ 1037GeV2, meaning
that the two contributions to Λe� would have to cancel out with a precision of more
than 100 orders of magnitude. A di�erent calculation using dimensional regularization
alleviates the issue, but there remains a discrepancy of around 50 orders of magnitude
(see Ref. [14] for a review). This is known as the naturalness problem, and occurs in
a similar way (though not as drastically) for the mass of the Higgs boson in particle
physics. There are additional problems linked to cosmology, one of them being the
�atness problem. This can be understood easily by introducing the critical density
ρc = 3M2

PH
2 and rewriting Eq. (21) with Λ = 0 as(

ρc
ρ

− 1

)
ρa2 = −3κM2

P . (25)

2An English translation of Laplace's essay can be found in the book by Hawking and Ellis [51].
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Since the right-hand side of the previous equation is constant, the left-hand side must
also remain constant throughout the evolution of the universe. However, because
during matter and radiation domination the combination ρa2 decreases, the second
term on the left-hand side must increase. Current measurements show that |1− ρc/ρ|
is very small today, which implies that it was extremely small (around 10−62) in the
early stages of the Universe, and there is no explanation for this �ne-tuning. Another
issue is the so-called horizon problem. The Planck satellite [10] was able to measure
the temperature of the cosmic microwave background (CMB) with high accuracy,
and regions of the sky which could not have been in causal contact in the past have
almost the same temperature, which is puzzling. Fortunately, a possible explanation
for both of these problems has been proposed in the eighties, and relies on a period
of accelerated expansion in the very early Universe called in�ation [15�22]. During
that period, the scale factor a grows by about 60 e-folds, and this allows to explain
the two previous problems. If one assumes initial conditions |1 − ρc/ρ| ∼ 1, this
value will be diluted to a very small value during in�ation (since ρa2 increases in
this case). This can explain the �ne-tuning discussed above, and even if this value
grows from the end of in�ation until the present day, it is still consistent with the
present day observations. A similar picture holds for the horizon problem: two points
in spacetime can be in causal contact before in�ation, and lose contact by the end
of it. A simple way to model the in�ationary stage is to introduce a scalar �eld χ,
called the in�aton, slowly-rolling at the top of its potential. This mimics a �uid with
equation of state wχ ≃ −1 (at least during the early stages of in�ation), and hence the
expansion is accelerated. Once the slow roll approximation breaks down, the scalar
�eld oscillates at the bottom of its potential and decays into the standard model
particles during a stage called (p)reheating. This acts as an apparent (nonsingular)
Big Bang, and the Universe then proceeds with the three usual stages, i.e. radiation
domination followed by matter domination and �nally a dark energy dominated stage
which we are currently living in. Another intriguing feature of the Universe is that
around 85% of the matter content is invisible, in the sense that it doesn't emit light,
hence the name dark matter. The analysis of rotation curves of spiral galaxies (i.e. the
velocity distribution of stars), suggests the existence of invisible matter which interacts
gravitationally and would explain the �at pro�les. On larger scales, the mass of galaxy
clusters can be determined using gravitational lensing techniques, and also provides
a motivation for the existence of dark matter (see Ref. [23] for a recent review). The
understanding of its nature is one of the challenges of modern physics.

Scalar-tensor theories

Let us now introduce scalar-tensor theories, which provide a general context for the
work presented in this thesis. Alternative theories of gravitation allow us to predict
and test deviations from GR, which is already a su�cient reason to motivate their
study. Furthermore, the shortcomings of GR discussed previously provide an addi-
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tional incentive to consider such alternative theories, in the hope of obtaining answers
to the issues we mentioned. The Einstein �eld equations can be obtained from the
Einstein-Hilbert action:

S =
M2

P

2

∫
d4x

√
−g(R− 2Λ) + Sm [gµν , ψm] , (26)

where ψm denotes the matter �elds which are minimally coupled to the metric g. The
energy-momentum tensor Tµν is de�ned using the matter action as

Tµν = − 2√
−g

δSm
δgµν

. (27)

The principle of least action applied to this theory yields the Einstein equations (16).
According to a theorem by Lovelock [24, 25], the only 2-tensors in 4 dimensions that
are divergence-less and constructed with the metric and its �rst and second derivatives
only are the metric gµν itself and the Einstein tensor Gµν . Hence, in order to obtain
�eld equations which are di�erent from those of GR, it is necessary to break one of
the hypotheses of Lovelock's theorem. For instance, one can consider additional �elds
mediating gravity, change the spacetime dimension or introduce higher derivatives in
the action. The simplest way to modify GR is to construct a theory with a scalar �eld
in addition to the metric, which is called a scalar-tensor theory. The detection of the
Higgs boson in 2012 showed that scalar �elds can exist in Nature [26]. Furthermore,
they are expected to arise in the 4-dimensional e�ective action of string theories, which
is obtained upon compactifying extra dimensions (see Ref. [27]). As we discussed
above, scalar �elds are also expected to participate in the in�ationary stage of the
Universe. For these reasons, it seems natural to consider scalar-tensor theories as
extensions to GR and study their properties. We will focus on this type of modi�cation
throughout the thesis, though there exist many other modi�ed gravity theories (see
Refs. [28,29] for reviews). In 1961, Brans and Dicke [30], building notably on previous
work by Jordan [31], proposed a theory which includes an additional scalar �eld ϕ that
can be interpreted as a varying Newton constant. The action for the Jordan-Brans-
Dicke theory reads

SJBD =
M2

P

2

∫
d4
√
−g
[
ϕR− ω0

ϕ
(∂ϕ)2

]
, (28)

where ω0 is a constant. This action was later extended by replacing the constant ω0 by
a function ω(ϕ), and adding a potential term for the scalar �eld [32]. These extensions
are usually called scalar-tensor theories, though we use this term in a broader sense in
this thesis, as we will discuss. Indeed, the standard scalar-tensor theories only contain
�rst derivatives of the scalar in the action. In the seventies, Horndeski determined
the most general action containing a scalar ϕ and the metric which leads to second
order Euler-Lagrange equations [33], and it contains second derivatives of the scalar
�eld. This class of theories was recently rediscovered when extending the Galileon
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model [34] to curved spacetime [35�37], and was shown to be equivalent to Horndeski
theory [38]. In the modern formulation, the Horndeski Lagrangian reads

LH = f(ϕ,X)R +K(ϕ,X)−G3(ϕ,X)□ϕ− 2fX
(
{□ϕ}2 − ϕµνϕ

µν
)

+G5(ϕ,X)Gµνϕ
µν +

1

3
G5X

(
{□ϕ}3 − 3□ϕϕµνϕµν + 2ϕµαϕ

ανϕµ
ν

)
, (29)

where X = ∂µϕ∂
µϕ, fX = ∂f/∂X, and we use the shorthand notation ϕµ = ∇µϕ,

ϕµν = ∇µ∇νϕ. The requirement that the �eld equations be of second order is to avoid
the appearance of an Ostrogradsky ghost [39, 40], which is a degree of freedom with
an energy that is unbounded from below. While having second-order equations is a
su�cient condition avoid the Ostrogradsky ghost , it is not a necessary one. Indeed,
the Ostrogradsky theorem only applies to nondegenerate Lagrangians, meaning that
it is possible for a theory with higher derivatives to be healthy (in the sense that
there is no Ostrogradsky ghost) if it is also degenerate. Hence, scalar-tensor theories
going beyond the Horndeski class were sought out. The �rst step in that direction was
obtained by performing a disformal transformation of the metric tensor [41]:

g̃µν = C(ϕ,X)gµν +D(ϕ,X)ϕµϕν . (30)

It was shown in Ref. [42] that the Horndeski action is stable under the disformal
map3 if the functions C and D do not depend on the kinetic term X. However, if the
functions C and D depend on X but are chosen so that the disformal map is invertible,
then the previous relation is simply a �eld rede�nition, and a theory should remain
healthy under such a transformation even if the Euler-Lagrange equations contain
higher-order derivatives. This interesting property was �rst pointed out in Ref. [43].
It led to the development of theories beyond the Horndeski class, and extensions
of the G4 and G5 terms were found in Ref. [44], which can be obtained by purely
disformal transformation of the Horndeski theory. The most general class of healthy
scalar-tensor theories were then isolated by imposing certain degeneracy conditions
on the Lagrangian, allowing to reduce higher-order �eld equations to a second-order
system and hence avoid the propagation of an Ostrogradsky ghost. Theses theories
were called Extended Scalar-Tensor (EST) [45], or Degenerate Higher-Order Scalar-
Tensor (DHOST) theories [46,47], and we will use the latter name in this thesis. The
quadratic DHOST Lagrangian, i.e. containing terms at most quadratic in the second
derivatives of the scalar �eld ϕ, reads

S =
M2

P

2

∫
d4x

√
−g

(
f(ϕ,X)R +K(ϕ,X)−G3(ϕ,X)□ϕ+

5∑
i=1

Li

)
, (31)

where the scalar densities Li are given by

L1 = A1(ϕ,X)ϕµνϕ
µν ,

3We use the word �stable� in the sense that starting from a Horndeski theory and performing such
a disformal transformation, we obtain a theory that also belongs to the Horndeski class.
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L2 = A2(ϕ,X) (□ϕ)2 ,

L3 = A3(ϕ,X)ϕµνϕ
µϕν□ϕ ,

L4 = A4(ϕ,X)ϕµαϕ
ανϕµϕν ,

L5 = A5(ϕ,X) (ϕµνϕ
µϕν)2 . (32)

Several subclasses of DHOST theories can be obtained from this action. In each class,
speci�c degeneracy conditions are assumed, ensuring that the theory is free from the
Ostrogradsky ghost. In most of this thesis, the theories will belong to the class Ia,
which is obtained by imposing the following constraints on the Lagrangian functions,
assuming f −XA1 ̸= 0:

A2 = −A1 ,

A4 =
1

8(f −XA1)2
[
−16XA3

1 + 4A2
1(3f + 16XfX) + 4A3A1(3Xf − 4X2fX)

−X2fA2
3 − 16fXA1(3f + 4XfX) + 8fA3(XfX − f) + 48ff 2

X

]
A5 =

(2A1 −XA3 − 4fX)(2A
2
1 + 3XA1A3 − 4fXA1 − 4fA3)

8(f −XA1)2
, (33)

The quadratic Horndeski class [33] is given by the relations

AH
3 = 0 and AH

1 = 2fHX . (34)

Note that there also exist cubic DHOST theories [52], which generalize the cubic
Horndeski terms in the Lagrangian (29), i.e. the terms which contain the function G5.
In the following, we limit ourselves to quadratic actions. The only exception is when
considering the scalar-Gauss-Bonnet theories in the �rst part of the thesis, which
can be written as a cubic Horndeski theory [38]. Though other classes of DHOST
theories exist, they have been found to present a gradient instability of cosmological
perturbations [53�55], and hence the type Ia subclass is the most interesting one from a
phenomenological point of view. However, there are also constraints on the dark energy
models in the Ia subclass, due to the detection of gravitational waves coming from the
merger of a binary neutron star along with its electromagnetic counterpart [56, 57].
This measurement allowed to compare the speed of propagation cT of gravitational
waves to the speed of light, leading to the constraint |cT − 1| ∼ 10−15. In order to
obtain a theory with cT = 1, one must set A1 = 0 in the DHOST Lagragian (and
hence A2 = 0 to impose the degeneracy of the theory) [54,58�61].4 It was later argued
that that one should also set A3 = 0 in order to avoid the decay of the scalar �eld into
gravitational waves, which would be in contradiction with the measurements [63]. If we
assume all of these constraints, then using Eq. (33) we obtain that the only quadratic
term remaining in the action (31) is A4 = 6f 2

X/f . In particular, the quadratic terms
of the Horndeski theory are ruled out by these observations.

4See however Ref. [62] for a critical discussion of the implications of the LIGO/Virgo measurement
in the context of e�ective �eld theories.
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Structure of the thesis

In this thesis, I will present various topics in the general context of scalar-tensor
theories belonging to the Horndeski class and beyond. Part I deals with theories
exhibiting spontaneous scalarization around compact objects. After explaining how
this mechanism works in Chapter 1, we focus on the cosmology of these models, and
more precisely the in�ationary epoch. In Chapter 2, we show that an instability of
the scalar mode generically develops in such models during in�ation. In Chapter 3,
we present a mechanism which relies on a coupling of the scalar �eld to the in�aton
and allows to quench the instability in a particular class of models.

In Part II, we study the Vainshtein screening for slowly rotating stars, and start
by brie�y describing how this mechanism operates in spherically symmetric con�gu-
rations. The aim of this part is to examine the validity of the Vainshtein screening
for slowly rotating stars, since astrophysical objects typically rotate. In Chapter 4
the formalism is introduced, and general solutions for the frame-dragging function
(which is added to the metric to account for slow rotation) are discussed. We then
give explicit examples of the screening for slowly rotating sources, both in the case of
a time-dependent scalar �eld in Chapter 5 , and a static scalar in Chapter 6.

Finally, Part III is devoted to axisymmetric black hole solutions in scalar-tensor
theories. In Chapter 7, we start by reviewing the properties of (uncharged) black
holes in GR. In Chapter 8, we construct disformed versions of these spacetimes by
applying the disformal map to the Kerr metric, and discuss their many interesting
properties. Astrophysical implications are examined in Chapter 9, where we study the
post-Newtonian orbit of stars around a disformed Kerr black hole.

I will end the manuscript by summarizing the main results. This thesis gave rise
to the publications listed below:

� T. Anson, E. Babichev and C. Charmousis, Deformed black hole in Sagittarius
A, Phys. Rev. D 103 no. 12, (2021) 124035,

� T. Anson, E. Babichev, C. Charmousis and M. Hassaine, Disforming the Kerr
metric, JHEP 01 (2021) 018,

� T. Anson and E. Babichev, Vainshtein screening for slowly rotating stars, Phys.
Rev. D 102 no. 4, (2020) 044046,

� T. Anson, E. Babichev, and S. Ramazanov, Reconciling spontaneous scalarization
with cosmology, Phys. Rev. D 100 no. 10, (2019) 104051,

� T. Anson, E. Babichev, C. Charmousis, and S. Ramazanov, Cosmological insta-
bility of scalar-Gauss-Bonnet theories exhibiting scalarization, JCAP 06 (2019)
023.

http://dx.doi.org/10.1103/PhysRevD.103.124035
https://doi.org/10.1007/JHEP01(2021)018
http://dx.doi.org/10.1103/PhysRevD.102.044046
http://dx.doi.org/10.1103/PhysRevD.102.044046
http://dx.doi.org/10.1103/PhysRevD.100.104051
http://dx.doi.org/10.1088/1475-7516/2019/06/023
http://dx.doi.org/10.1088/1475-7516/2019/06/023
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Part I

Cosmology of theories exhibiting

spontaneous scalarization
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Introduction to Part I

In this part, we will focus on scalar-tensor theories exhibiting the spontaneous
scalarization of compact objects. This interesting e�ect was �rst discovered for neutron
stars by Damour and Esposito-Farèse (DEF) in the nineties [64]. In this model, the
coupling of the scalar �eld to curvature acts as an e�ective tachyonic mass in the strong
�eld region inside the star. For a certain range of coupling parameters and for high
enough curvature, the GR branch with a constant scalar becomes unstable in favor
of the scalarized branch which accommodates a nontrivial scalar pro�le. Because of
the coupling to the Ricci curvature R, this phenomenon only operates for stars, where
R ̸= 0. More recently, it was observed that scalarization could arise in scalar-Gauss-
Bonnet theories, where the scalar �eld is nontrivially coupled to the Gauss-Bonnet
invariant [65,66]. Interestingly, since the latter is nonzero even in vacuum, this led to
the extension of scalarization to black holes. We will brie�y review these models in
Chapter 1, since we will use them in the following chapters. We will limit ourselves
to these models in the following, i.e. DEF and scalar-Gauss-Bonnet, but it is worth
pointing out that scalarization has since been shown to work in a more general class
of theories. The most general terms which can lead to the onset of scalarization
were found in Refs. [67, 68]. While the examples we will treat are for spherically
symmetric uncharged objects, scalarization was shown to work for charged objects as
well [65, 69]. Interestingly, the instability can also be triggered for a rapidly rotating
black hole [70�72].

Our main interest lies in the cosmology of such models, and in particular the
in�ationary stage. As we have said, the scalarization e�ect relies on a tachyonic
e�ective mass for the scalar �eld that destabilizes the GR solution. In Chapter 2, we
examine the in�uence of the tachyonic mass on the cosmology of a certain class of
scalar-Gauss-Bonnet theories. We will argue that theories leading to the scalarization
of compact objects generically present an instability during the in�ationary stage,
which is also present for the DEF model, as we show in Chapter 3. In that case
however, we propose a mechanism to quench the instability which relies on a coupling
of the scalar �eld ϕ to the in�aton χ. As we will explain, the in�ationary stage is
not broken in that case, and the current Solar System constraints are satis�ed for the
scalar �eld.
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Chapter 1

Scalarization of compact objects

In this �rst chapter, we review the process of spontaneous scalarization for spherically
symmetric compact objects in the case of the DEF model and for theories with a
nontrivial coupling of the scalar �eld to the Gauss-Bonnet invariant.

1.1 The Damour�Esposito-Farèse model of scalariza-

tion

We begin by presenting the Damour�Esposito-Farèse (DEF) model leading to the
scalarization of neutron stars [64]. We write the action in the so-called Einstein frame,
where matter is nonminimally coupled to the metric:

SE =
M2

P

2

∫
d4x

√
−g [R− 2∂µϕ∂

µϕ− 2V (ϕ)] + Sm
[
A2(ϕ)gµν , ψm

]
, (1.1)

where ψm is the collective notation for matter �elds, and the function A(ϕ) is de�ned
as

A(ϕ) = e
βϕ2

2 , (1.2)

with β constant. Following the notations of Ref. [64], we have chosen the �eld ϕ to be
dimensionless. In the original DEF model, the potential V (ϕ) is absent, but we keep
it here because it plays a crucial role in our discussion later on. The previous action
can also be written in the Jordan frame, where the matter �elds follow geodesics. It
is obtained by rede�ning the metric as g̃µν = A2(ϕ)gµν . The corresponding action is
of the form (31) and reads

SJ =
M2

P

2

∫
d4x
√

−g̃

[
ϕ̃R̃− ω(ϕ̃)

ϕ̃
g̃µν∂µϕ̃∂νϕ̃− Π(ϕ̃)

]
+ Sm [g̃µν , ψm] , (1.3)

where ϕ̃, ω and Π are de�ned as(
d lnA
dϕ

)2

= [2ω(ϕ̃) + 3]−1 , (1.4)
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ϕ̃ = A−2(ϕ) , (1.5)

Π(ϕ̃) = 2ϕ̃2V (ϕ(ϕ̃)) . (1.6)

In the following, we will work in the Einstein frame since the �eld equations are simpler
in that case. Let us now describe the essence of scalarization. The equation of motion
for the �eld ϕ derived from the action (1.1) reads

□ϕ+
α(ϕ)T

2M2
P

− 1

2

∂V

∂ϕ
= 0 , (1.7)

where

α(ϕ) ≡ d lnA(ϕ)
dϕ

= βϕ (1.8)

plays the role of the coupling constant to the matter �elds and T = gµνTµν . One
can see that ϕ = 0 solves this equation for the potential V (ϕ) = 0. For β < 0 and
T < 0, the scalar acquires a tachyonic e�ective mass, which hints at the existence of
other, stable solutions of Eq. (1.7). This is indeed the case when β ≲ −4 for massive
enough neutron stars [64]. The �eld ϕ acquires a nontrivial pro�le which matches the
constant cosmological value ϕ0 ≡ ϕ(t0), where t0 ≈ 13.8 ·109 years is the present time.
However, the parameter β is greatly constrained by the observation of binary pulsars,
which imposes the bound β > −4.5 [73,74]. Hence, this parameter is practically �xed
for the scalarization models, and we will set β ≃ −4.5 in the following.

In the theory given by the action (1.1), the parametrized post-Newtonian (PPN)
parameters (17) are given by [75]

γPPN − 1 =
−2α2(ϕ0)

1 + α2(ϕ0)
βPPN − 1 =

βα2(ϕ0)

[1 + α2(ϕ0)]
2 . (1.9)

In the limit α(ϕ0) → 0, the PPN parameters coincide with those of GR. From the
de�nition of α in Eq. (1.8), one sees that this limit corresponds to ϕ0 → 0. Using the
constraint on the PPN parameter γPPN from the Shapiro time-delay measurement

γPPN = 1± (2.1± 2.3)× 10−5

given in Ref. [76], we get for |β| ≃ 4.5 the following upper bound on ϕ0:

ϕ0 ≲ 10−3 . (1.10)

For these values, the DEF model is indistinguishable from GR in the weak-�eld and
quasi-static regimes. However, even with a vanishing value of the �eld ϕ at cosmological
scales, neutron stars experience scalarization, leading to testable deviations from GR
in the strong �eld regime [77,78]. On the other hand, as we will discuss in Chapter 3,
the values (1.10) are not realistic in the original DEF model with V (ϕ) = 0. Indeed,
the tachyonic instability triggers runaway cosmological solutions for the �eld ϕ, so that
ϕ0 ≫ 1, which is in direct con�ict with the Solar System constraints [79�81].
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1.2 Coupling to the Gauss-Bonnet scalar

The standard scalarization model of the previous section relies on a coupling of the
scalar �eld to the Ricci scalar, as seen from the action (1.3) written in the Jordan frame.
Outside of matter, the Ricci scalar vanishes, and hence the DEF model is only valid
for neutron stars. Recently, it was found that scalarized solutions may also arise when
the scalar �eld couples nonminimally to the Gauss-Bonnet invariant [65, 66,82�85]

Ĝ = RµνσαR
µνσα − 4RµνR

µν +R2 .

This scalar is nonzero even for black holes, which makes scalarization possible in these
cases as well. Let us now explain how scalarized solutions arise in these theories. We
consider the following action, which includes a coupling term F (ϕ) between a scalar
�eld ϕ and the Gauss-Bonnet invariant Ĝ:

S =
M2

P

2

∫
d4x

√
−g
[
R− 2Λ− gµν∂µϕ∂νϕ+ 2F (ϕ)Ĝ

]
, (1.11)

where Λ is the cosmological constant. Even though this action is not immediately
of the form (31), one can check that the �eld equations are of second order, which
means that this theory belongs to the Horndeski class (29). It contains cubic terms,
i.e. G5 ̸= 0 in the Lagrangian (29), which is why it is not part of the quadratic
DHOST theories. The explicit expressions for the functions appearing in the Horndeski
Lagrangian corresponding to this theory can be found in Ref. [38]. By varying the
previous action, we see that the Gauss-Bonnet scalar provides a source term in the
scalar �eld equation, which reads

□ϕ+ F ′(ϕ)Ĝ = 0 . (1.12)

The variation of Eq. (1.11) with respect to the metric yields the following modi�ed
Einstein equations:

M2
P (Gµν + Λgµν) = ∇µϕ∇νϕ− 1

2
gµν∇αϕ∇αϕ− 8Pµλνα∇α

[
F ′(ϕ)∇λϕ

]
. (1.13)

We have introduced the tensor Pαβµν , which is the double dual of the Riemann tensor.
It is de�ned using the antisymmetric Levi-Civita tensor εµναβ in the following way:

Pαβµν = −1

4
εαβρσR

ρσγδεµνγδ

= Rαβµν + gανRβµ − gαµRβν + gβµRαν − gβνRαµ +
1

2
(gαµgβν − gανgβµ)R .

(1.14)

Under certain conditions on the coupling function F (ϕ), namely

F ′(ϕ0) = 0 and F ′′(ϕ0) > 0 (1.15)
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for some constant ϕ0, such theories were shown to exhibit spontaneous scalarization
around black holes and neutron stars [65,66,82�85].

The �rst condition on the coupling function ensures that ϕ = ϕ0 satis�es the
equations of motion, in which case we recover the solution of GR with a constant
scalar �eld. The second condition is crucial, as it implies that the scalar �eld acquires
a negative e�ective mass squared, which is responsible for the appearance of scalar hair
via a tachyonic instability. Indeed, one may study a scalar perturbation ϕ = ϕ0 + δϕ
on a �xed Schwarzschild geometry, as was done in Ref. [65]. Notably, the equations
for the scalar and metric �uctuations are decoupled at �rst order for a constant ϕ0.
The equation describing scalar perturbations is given by(

□+ F ′′(ϕ0)Ĝ
)
δϕ = 0 , (1.16)

where the d'Alembert operator and the Gauss-Bonnet invariant are calculated using
the Schwarzschild metric. We now decompose the scalar perturbation on the static
and spherically symmetric background as

δϕ =
u(r)

r
e−iωtYlm(θ, φ) , (1.17)

where Ylm(θ, φ) are the spherical harmonics. One can rewrite Eq. (1.16) in the form
of a Schrödinger equation by introducing the tortoise coordinate dr∗ = dr (1− rS

r
)−1,

where rS is the Schwarzschild radius of the black hole:

d2u
dr2∗

+ ω2u = Ve�(r)u . (1.18)

For l = 0 the e�ective potential Ve�(r) reads

Ve�(r) =
(
1− rS

r

)(rS
r3

− 12r2S
r6

F ′′(ϕ0)

)
. (1.19)

A su�cient condition on the e�ective potential for the existence of an unstable mode
is [86] ∫ ∞

rg

dr
Ve�(r)

1− rS
r

< 0 . (1.20)

This condition, which can be satis�ed if F ′′(ϕ0) > 0, translates to

r2S <
24

5
F ′′(ϕ0) . (1.21)

Hence the Schwarzschild solution becomes unstable for small enough masses (the value
depends on the coupling function F ), and one expects scalar hair to appear in that
case. Bearing in mind the possible rede�nition ϕ→ ϕ+ ϕ0, the function F (ϕ) can be
expanded around ϕ0 = 0,

F (ϕ) =
1

8
λ2ϕ2 +O

(
λ2ϕ4M2

P

M2
1

)
. (1.22)
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Here M1 is some scale normally taken to be of order of the Planck mass MP , and the
sign of the quadratic term is chosen so that the e�ective mass is tachyonic. The value
of λ sets the upper bound of the mass of a black hole or a star at which scalarization
may happen, λ ≳ rS. For physically interesting objects like neutron stars, one easily
�nds

λ ∼ M⊙

M2
P

∼ 1019GeV−1 . (1.23)

Di�erent branches of scalarized solutions were shown to exist by a numerical analysis,
for speci�c bands of λ/rS. Each branch may be labeled by an integer n ∈ N corre-
sponding to the number of nodes of the radial scalar pro�le. It was shown in Ref. [87]
that none of the branches are stable for a theory with a purely quadratic coupling
function, F (ϕ) ∝ ϕ2. However, for the theory with F (ϕ) ∝ (1 − e−ϕ2/M2

P ) the funda-
mental branch n = 0 is stable for a speci�c range of parameters. The same can be
achieved by adding a quartic term to the purely quadratic coupling function [88,89].
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Chapter 2

Cosmological instability of the scalar

mode

In this chapter, which is based on Ref. [90], we show that the tachyonic mass leading
to the scalarization of black holes and stars is potentially dangerous on a cosmolog-
ical background, and may result in a catastrophic instability of scalar modes during
in�ation.

2.1 Cosmology and scalar �uctuations

We start by introducing some aspects of cosmology that will be useful to us in the
following. Everything which is described in this section can be found in more detail in
any modern cosmology textbook, as for instance Ref. [91]. The Universe is homoge-
neous and isotropic on very large scales, and in the context of GR it can be described
by the �at FLRW metric

ds2 = −dt2 + a(t)2δijdx
idxj , (2.1)

where a is the scale factor and we de�ne H = ȧ/a. We saw in Eq. (18) that the FLRW
spacetime also depends on the spatial curvature κ, but we set it to 0 in the following as
this value is consistent with experiments. In this case, the Friedmann equations (20)
and (21) become

ä

a
= − 1

6M2
P

∑
i

ρi (1 + 3wi) , (2.2)

H2 =
1

3M2
P

∑
i

ρi , (2.3)

where wi = Pi/ρi. The main species that constitute the universe are matter (wm = 0),
radiation (wr = 1/3) and dark energy (wΛ = −1). Using the conservation equation (23)
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for each species, one can write the total energy density as

ρ =
ρ0r
a4

+
ρ0m
a3

+ ρ0Λ , (2.4)

where the ρ0i represent the densities for each species today, and we have set the present
day scale factor a0 = 1. From this expression, one sees that the energy densities for
each species decays di�erently as the Universe expands. The matter is simply diluted
as a grows, which explains the factor a3. For radiation, there is an additional factor of
a because photons are also redshifted due to the expansion. The dark energy density,
on the other hand, remains constant. In the Big Bang model, the scale factor a → 0
as t→ 0, in which case the Universe is a point with in�nite density. We actually don't
know what happens at very early times t < tP , where tP ∼ 10−43 s is the Planck time,
since GR would break down at these high energies. Keeping this in mind, one can single
out three periods in the history of the Universe in standard GR, each corresponding
to the dominance of one of the species in Eq. (2.4). Radiation dominates when a is
small in the early Universe, and this period lasts until the densities of matter and
radiation become comparable. This happens at the time teq ∼ 5 · 104 years. We then
enter the matter dominated epoch, which constitutes the major part of the history of
the Universe. During this period, the photons of the cosmic microwave background
(CMB) are emitted at a time called recombination, around t ∼ 4·105 years. The matter
domination ends around 10 billion years after the Big Bang, and we live today in a dark
energy dominated Universe. This means that the current expansion is accelerated, i.e.
ä > 0.

As we saw in the previous chapter, the tachyonic instability for the scalar �eld which
leads to the scalarization of compact objects is due to a coupling to curvature. In the
DEF model, the scalar is coupled to the Ricci tensor. Since we work in the Einstein
frame, given by the action (1.1), the scalar �eld equation contains the trace T of the
energy-momentum tensor instead of the Ricci scalar. If we neglect the backreaction of
the scalar on the metric, then by taking the trace of the Einstein equations we obtain
M2

PR = −T . Hence one can view the e�ective tachyonic mass as coming either from
R or T , though notice that their signs are di�erent. For the �at FLRW metric (2.1),
the Ricci scalar is given by

R = 6

(
ä

a
+H2

)
.

Using Eqs. (2.2) and (2.3), this can be written in terms of the densities of the di�erent
perfect �uids as

R =
1

M2
P

∑
i

ρi (1− 3wi) .

Hence, we have R ≥ 0 for �uids verifying wi ≤ 1/3. This is true for the three
di�erent species that we consider. In the case of radiation, we have an equation of
state parameter wr = 1/3, and henceR = 0. However, this relation is only approximate
due to the trace anomaly which arises in gauge theories [92�94], and we have R ≃ 0
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Radiation Matter
In�ation/Dark

Energy

a(t)
√
t t2/3 eHt

R ≃ 0 > 0 > 0

Ĝ < 0 < 0 > 0

Table 2.1: Time-dependence of the scale factor, along with the signs of the Ricci scalar
and Gauss-Bonnet invariant for di�erent epochs of an FLRW Universe.

instead. Another curvature invariant that we will need is the Gauss-Bonnet scalar,
which has the following expression in terms of the scale factor:

Ĝ = 24H2 ä

a
. (2.5)

This shows that the sign of Ĝ is directly related to ä, and changes depending on
whether the expansion of the Universe is accelerating or decelerating. In Table 2.1,
we summarize the time dependence of the scale factor and the signs of R and Ĝ in the
di�erent epochs, i.e. radiation, matter and dark energy (this case also applies to the
early stages of in�ation, as we will explain).

As we mentioned already, the standard Big Bang model in GR su�ers from several
issues. The fact that the Universe is (very close to) �at today implies that the curvature
density in the early Universe had to be �ne-tuned to 0 with a high precision, as we
discussed after Eq. (25). This is known as the �atness problem. Another issue that we
mentioned is the horizon problem. The temperature of the CMB has been measured
to a high accuracy and shows that up to small �uctuations it has a uniform value
ΘCMB ≃ 2.7 K. The puzzling issue is that regions of the sky which weren't in causal
contact at the time of recombination (when the CMB photons were emitted) have the
same temperature. According to the modern understanding of cosmology, these issues
are solved by introducing an in�ationary stage in the very early Universe, during which
the expansion is accelerated. A simple way to achieve this is to introduce a scalar �eld
χ, called the in�aton, which evolves inside a potential U . The corresponding action
reads

Sχ =

∫
d4x

√
−g
[
−1

2
gµν∂µχ∂νχ− U(χ)

]
.

From the Friedmann equations with χ = χ(t), one can identify the energy density ρχ
and pressure Pχ of the in�aton, and deduce the following equation of state parameter:

wχ =
Pχ

ρχ
=
χ̇2 − 2U

χ̇2 + 2U
. (2.6)

If the potential energy dominates the kinetic energy of the in�aton, i.e. U ≫ χ̇2,
then we obtain wχ ≃ −1. This can be achieved in a Universe dominated by the
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in�aton which is slowly slowly rolling at the top of its potential. More precisely, one
can introduce the slow-roll parameters ϵsr = −Ḣ/H2 and ηsr = −ϕ̈/(Hϕ̇). If these
parameters are small, i.e. {ϵsr, ηsr} ≪ 1, we obtain a quasi-de Sitter expansion where
the scale factor takes the form a(t) ≃ eHt. In�ation ends when the slow-roll parameters
become of O(1). In order to solve the �atness and horizon problems, one must have

N = ln
aend
astart

≥ 60 , (2.7)

where N is the number of e-folds that the scale factor has grown by from its starting
value astart to its value aend at the end of in�ation. Once the slow-roll approximation
breaks down, the scalar �eld oscillates at the bottom of its potential and decays into
the Standard Model particles in a period called (p)reheating. This acts as an apparent
nonsingular Big Bang, which marks the transition between in�ation and the radiation
dominated Universe. In the following, we will only be interested in the quasi-de Sitter
phase of in�ation, and we will assume that the scale factor reads a = eHt with a
constant Hubble rate H.

Let us now discuss the dynamics of a scalar �eld in a de Sitter Universe, since we
will be interested in the scalar �uctuations during in�ation. We consider for simplicity
a free massless scalar ψ with the Lagrangian

L = −1

2
gµν∂µψ∂νψ . (2.8)

The corresponding �eld equation for a time dependent scalar ψ(t) reads

ψ̈ + 3Hψ̇ −∆ψ = 0 . (2.9)

We now introduce the variable u = aψ (which has a canonical kinetic term on the de
Sitter background), and use the conformal time η given in terms of the cosmic time t
as

dt = a dη . (2.10)

The �eld u can be quantized in the standard way by promoting the Fourier coe�cients
to operators:

û(η,x) =

∫
d3k

(2π)3/2

[
uk(η)e

ik·xAk + u∗
k
(η)e−ik·xA†

k

]
, (2.11)

where ∗ denotes complex conjugation, and {Ak, A
†
k
} are the annihilation and creation

operators, respectively. They verify the following commutation relations:

[Ak, Ak
′ ] = [A†

k
, A†

k
′ ] = 0 ,

[Ak, A
†
k′ ] = δ(k− k′) . (2.12)
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Using Eq. (2.9), one can show that the mode functions uk(η) satisfy the equation

u′′
k
+

(
k2 − a′′

a

)
uk = 0 , (2.13)

where a prime denotes di�erentiation with respect to conformal time. In Minkowski
space, when a′′ = 0, the modes satisfy uk ∼ e−ikη. It is clear from the previous equation
that when a′′ ̸= 0, the scalar acquires an e�ective mass due to the expansion. For a
de Sitter spacetime where H is constant, we have η = −1/(aH). This implies that
a′′/a = 2/η2, and in this case the general solution to Eq. (2.13) reads

uk(η) = λ(k)eikη
(
1 +

i

kη

)
+ µ(k)e−ikη

(
1− i

kη

)
, (2.14)

where λ and µ are integration constants. The inspection of Eq. (2.13) shows that in the
limit k|η| → ∞, the mode functions satisfy the same equation as in Minkowski space.
This is to be expected, as these very short-wavelength modes don't �see� the spacetime
curvature. Hence, it is natural to assume that in this limit we recover uk ∼ e−ikη as in
Minkowski space. This allows us to set λ = 0 in Eq. (2.14). Furthermore, canonical
quantization imposes the following constraint on the uk (in natural units ℏ = 1):

uku
′
k
∗ − u∗ku

′
k = i . (2.15)

This determines the function µ, and we obtain

uk(η) ∼
k|η|→∞

e−ikη

√
2k

. (2.16)

With this choice, the vacuum state |0BD⟩ annihilated by Ak is called the Bunch-Davies
vacuum [95], i.e. we have Ak|0BD⟩ = 0. In the following, we will assume that the scalar
�uctuations are initially in the Bunch-Davies vacuum (i.e. when η → −∞), meaning
that the corresponding modes uk satisfy Eq. (2.16). In the case of a massless scalar in
de Sitter space, the solution for uk is then simply

uk =
e−ikη

√
2k

(
1− i

kη

)
.

When k|η| ≪ 1, using also that η = −1/(aH), we obtain that ψk = uk/a is a constant.
Hence, the modes stop evolving (or �freeze�) as they exit the horizon, i.e. when k ≃ aH.

2.2 Instability of the perturbations on an FLRW

background

Let us now go back to the scalar-Gauss-Bonnet theories exhibiting spontaneous scalar-
ization (we will discuss the DEF model in the next chapter). We start with the per-
turbed equation of motion for the scalar �eld in the scalar Gauss-Bonnet theories,
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which is given by Eq.(1.16): [
□+ F ′′(ϕ0)Ĝ

]
δϕ = 0 , (2.17)

where δϕ is the perturbation of the scalar �eld. As we already mentioned, there are
no terms involving δgµν in the above equation since the scalar �eld is constant on the
background. This equation de�nes an e�ective mass me� for the scalar perturbation,
where m2

e� = −F ′′(ϕ0)Ĝ. Assuming the coupling given in Eq. (1.22), the e�ective mass
can be written

m2
e� = −1

4
λ2Ĝ . (2.18)

As we have discussed in the previous chapter, the case of real λ corresponds to theories
with scalarized stars and black holes. We now consider a �at Friedmann-Lemaître-
Robertson-Walker (FLRW) background given by the metric (2.1). In this case, the
perturbation equation (1.16) takes the form

δϕ̈+ 3Hδϕ̇− 1

a2
∆δϕ+m2

e�δϕ = 0 , (2.19)

where H ≡ ȧ/a is the Hubble parameter, and we have assumed a coupling function of
the form (1.22). We now expand the scalar perturbation into Fourier modes,

δϕ(t,x) =

∫
dωd3k
(2π)2

ϕ(ω,k)e−i(wt−k·x) ,

to obtain the following dispersion relation:

ω2 =
k2

a2
+m2

e� . (2.20)

In the above equation, we have neglected the slow change of ω on the time scales
shorter than H−1. Whether the mass of the scalar perturbations is real or tachyonic
depends on the sign of Ĝ for the �at FLRW metric (2.1), which is given by Eq. (2.5).
This expression shows that Ĝ has the same sign as ä. Thus for a decelerating Universe,
ä < 0, i.e. during radiation and matter dominated epochs, the mass of the scalar is real,
m2

e� > 0, and no instability arises. On the other hand, for an accelerated expansion,
ä > 0, the mass (2.18) becomes tachyonic and the perturbations are unstable. In
particular, for a de Sitter solution with constant Hubble rate HdS, one �nds

m2
e� = −6λ2H4

dS . (2.21)

The instability is extremely slow for the present-day acceleration of the Universe.
Indeed, the ratio of the instability time tinst to the age of the Universe t0 is estimated
as

tinst
t0

∼ H0

me�
∼ 1

λH0

∼ 1023 , (2.22)
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so that the instability is not noticeable. However, the same estimation for in�ation
with the scale Hinf ∼ 1013 GeV and N ∼ 102 e-folds yields:

tinst
tinf

∼ 1

NλHinf
∼ 10−34 . (2.23)

Thus the GR solution with ϕ = 0 has a very short instability time. This suggests a
catastrophic instability of the theory during the in�ation era, unless the initial value
of the �eld ϕ is tuned to be extremely small. Indeed, since the scalar �eld grows as

ϕ ∼ ϕ1e
|me�|t

starting from some initial value ϕ1, one may choose ϕ1 arbitrarily close to 0, so that the
instability does not develop during the time of in�ation. In particular, if ϕ1 = ϕ0 = 0,
the �eld ϕ will stay on the top of the potential for an in�nitely long time. However,
even for the solution with ϕ0 = 0, quantum �uctuations of the scalar �eld rapidly grow
and ultimately destroy the in�ationary stage. This happens during a time which is
much smaller than the duration of in�ation, as we explicitly show in the next section.

2.3 Catastrophic instability of the scalar �eld during

in�ation

In this section we show that the tachyonic instability experienced by the scalar �eld
ϕ is inconsistent with the existence of in�ation in the early Universe. We approxi-
mate in�ation by an exact de Sitter expansion with constant H, which is a plausible
assumption away from its �nal stages. In this case the Friedmann equation, which is
given by the (tt) component of Eq. (1.13), reads

3H2 = Λ+
ϕ̇2

2
− 6λ2H3ϕϕ̇ .

One sees that in the presence of the �eld ϕ coupled to the Gauss�Bonnet invariant,
the Friedmann equation is modi�ed by the term

ρGB = −6λ2H3ϕϕ̇ . (2.24)

We require that the previous term be negligible compared to the in�aton energy density
dominating the evolution of the Universe, i.e.

λ2H|ϕϕ̇| ≪ 1 . (2.25)

Our goal is to show that this condition gets violated quickly, namely as soon as in�ation
starts. Even if the �eld ϕ is set at the top of the e�ective potential initially, ϕ = 0, its
perturbations will cause a rapid instability. Perturbations of the �eld ϕ obey Eq. (2.19)
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with an e�ective mass given by Eq. (2.21), where HdS = H is the Hubble factor during
in�ation.

In the following, we will primarily use the conformal time η, which is de�ned in
terms of the cosmic time in Eq. (2.10). It is negative during in�ation, and the scale
factor veri�es aH = 1/|η| during the quasi-de Sitter phase. We now introduce the
canonical �eld

δϕ̂ =MP δϕ ,

and expand the perturbations into Fourier modes. We search for a solution to Eq. (2.19)
of the form

δϕ̂(η,x) =

∫
d3k

(2π)3/2

[
ϕk(η)e

ik·xAk + ϕ∗
k
(η)e−ik·xA†

k

]
, (2.26)

where A†
k
and Ak are the creation and annihilation operators. The functions ϕk are

determined by solving Eq. (2.19), which has the following expression in terms of con-
formal time:

η2
d2ϕk
dη2

− 2η
dϕk
dη

+

(
k2η2 +

m2
e�

H2

)
ϕk = 0 . (2.27)

This equation can easily brought to the Bessel form by performing the change of
variable ϕk → (−η)3/2ϕk. The integration constants are chosen so that in the limit
k|η| → ∞, the mode uk = aϕk is in the Bunch-Davies vacuum. Under these conditions,
we obtain the following expression for the scalar perturbations:

δϕ̂(η,x) =

∫
d3k

(2π)3/2

√
π

2
H|η|3/2

[
H(2)

ν (−kη)e−ik·xA†
k +H(1)

ν (−kη)eik·xAk

]
, (2.28)

where H(i)
ν (−kη) are the Hankel functions of order

ν =

√
9

4
− m2

e�

H2
.

Note that the evolution of in�aton perturbations is described by ν ≈ 3/2. In that case,
perturbations get frozen as they exit the horizon. On the other hand, in the situation
with ν ≫ 3/2�the case of our interest�perturbations grow fast beyond the horizon,
as we will see shortly. This behavior is due to the huge tachyonic mass acquired by
the scalar �eld. Taking the derivative of Eq. (2.28), we get

∂

∂η
δϕ̂(η,x) =

∫
d3k

(2π)3/2
H
√
π

2

[{
−3

2
|η|1/2H(2)

ν (−kη)

+|η|3/2 ∂
∂η

[
H(2)

ν (−kη)
]}

e−ik·xA†
k + h.c.

]
,

where h.c. denotes the Hermitian conjugate, and we have used the following identity
for the derivative of the Hankel functions:

∂

∂z
H(1,2)

ν (z) =
1

2

[
H

(1,2)
ν−1 (z)−H

(1,2)
ν+1 (z)

]
.
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We are working in the large ν regime, in which case the Hankel functions take the
form:

H(1,2)
ν (−kη) ∼

ν→+∞
∓i
(

2

−kη

)ν
√

2

πν

(ν
e

)ν
, (2.29)

(minus and plus signs correspond to the Hankel functions of the �rst and second kind,
respectively). We see that it has a very sharp dependence on the order ν. Hence,
one can keep only Hankel functions with the largest ν when calculating the relevant
correlation function:

⟨δϕ̂(η,x) ∂
∂η
δϕ̂(η,x)⟩ ≃

∫
dkk3

16π
H2|η|3H(1)

ν (−kη)H(2)
ν+1(−kη) , (2.30)

where we made use of the commutation relation (2.12) and integrated over the di-
rections of the momenta k. As the lower limit of the above integral we choose some
kmin, which is on-horizon at some moment η1 during in�ation, i.e. kmin|η1| = 1, but
otherwise is arbitrary. We choose |η1| > |η|, so that η1 corresponds to the past with
respect to η. As for the upper limit we take kmax = 1/|η|. The result, in terms of the
dimensionless perturbations δϕ, is

⟨δϕ(η,x) ∂
∂η
δϕ(η,x)⟩ = H2

8π2M2
P |η|ν

(
2ν

e

)2ν
[∣∣∣∣η1η

∣∣∣∣2ν−3

− 1

]
.

Finally, we use that

⟨δϕ δϕ̇⟩ = H|η|⟨δϕ ∂
∂η
δϕ⟩ ,

and implement condition (2.25) to obtain the ratio η1/η at which in�ation gets violated:(∣∣∣∣η1η
∣∣∣∣2ν−3

− 1

)
≃ 8π2νM2

P

λ2H4
·
[ e
2ν

]2ν
, (2.31)

or equivalently ∣∣∣∣η1η
∣∣∣∣ ≃ 1 +O

(
M2

P

λ2H4
·
[ e
2ν

]2ν)
.

We see that the modes with the momenta k1 ≃ 1/|η1| destabilize in�ation immediately
after exiting the horizon. Given an essentially arbitrary choice of η1, we conclude that
in�ation cannot take place in this theory.

One remark is in order here. Recall that our calculations imply the existence of
modes which start from the Bunch�Davies vacuum and exit the horizon during in�a-
tion. This seemingly modest assumption requires some justi�cation in the situation
with exponentially large ν. The asymptotic expansion of the Hankel functions for large
positive arguments is given by

H(i)
ν (z) =

(
2

πz

)1/2

e±i(z−πν/2−π/4)

(
1 +O

[
ν2

z

])
.
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The Bunch�Davies vacuum is de�ned in the limit z = −kη → +∞, when the second
term in the brackets is irrelevant. In practice, however, in�ation has a �nite duration.
Thus, the quantity z is also large, but �nite. Hence, the minimum value of momenta
which are in the Bunch�Davies vacuum at the beginning of in�ation is given by

kmin|ηi| ≃ ν2 , (2.32)

where ηi is the conformal time at the beginning of in�ation. It is possible, in principle,
that the modes with these large momenta never exit the horizon during in�ation,
formally invalidating our analysis. Let us show that this is not the case, unless the
duration of in�ation is tuned to its minimum value. By integrating Eq. (2.30) from
kmin to in�nity, we get

⟨δϕ ∂
∂η
δϕ⟩ = H2

8π2M2
P |η|ν

(
1

kmin|η|

)2ν−3(
2ν

e

)2ν

.

We now apply the condition (2.25), which leads to

kmin|η| ≫ ν .

Combining the latter with Eq. (2.32), we obtain∣∣∣∣ηiη
∣∣∣∣≪ ν ,

which should hold until the end of in�ation η = ηf . Unless the duration of in�ation
is close to 60 e-folds, the ratio |ηi/ηf | is very large, even compared to the huge value
ν ≃ 1032 used for scalarization of the stars. Hence, the modes, which are in the
Bunch�Davies vacuum initially and exit the horizon during in�ation, alone destabilize
in�ation already 75 e-folds after it starts.

Let us now comment on a possible stabilization of the scalar �eld due to the
presence of the quartic corrections, since one should include those anyway to make the
scalarized branch of compact objects physically viable [88,89]. It is not di�cult to see,
however, that the quartic terms cannot stabilize the �eld ϕ and prevent the instability,
because the destabilization occurs at tiny values of ϕ, for which the approximation
F (ϕ) ∝ ϕ2 still holds. Indeed, from Eq. (2.28) we obtain

⟨δϕ2(η,x)⟩ =
∫

k2dk
8πM2

P

H2|η|3|H(1)
ν (−kη)|2 .

Using Eq. (2.29) and integrating over the modes in the range
(

1
|η1| ,

1
|η|

)
, we get

⟨δϕ2(η,x)⟩ = H2

8π2M2
Pν

2
·
(
2ν

e

)2ν

·

(∣∣∣∣η1η
∣∣∣∣2ν−3

− 1

)
. (2.33)
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Finally, substituting Eq. (2.31) into Eq. (2.33), we obtain the typical value of the scalar
when in�ation is violated:

⟨δϕ2(η,x)⟩ ≃ (λH)−3 ,

where we used the relation ν ≃ λH. Given that λH ≃ 1032, we conclude that the insta-
bility develops at the �eld values

√
⟨δϕ2(η,x)⟩ ∼ 10−48 ≪ 1 in the theory exhibiting

scalarization, i.e. well before the quartic term starts to act.
It would be interesting to �nd ways to stabilize the theories exhibiting scalarization

during in�ation. For instance, one may try to solve the problem by adding a coupling
to the in�aton χ, e.g., g2χ2ϕ2, where g is the coupling constant. In this case the
in�aton expectation value serves as a stabilizing e�ective mass, which vanishes as
in�ation ends. The problem here is that the coupling constant g should be huge in
this approach. Indeed, to balance the large value of m2

e� given by Eq. (2.21), one needs
to assume that

g2 ≳
6λ2H4

χ2
≃ 1053 ,

for χ ≃MP , λH ≃ 1032, and H ≃ 1013 GeV. Thus, the theory is deeply in the strong
coupling regime, where no trustworthy predictions can be made. On the other hand,
as we will explain in the next chapter, this coupling does �x a similar problem in the
original DEF model of scalarization without putting the theory in the strong coupling
regime.

Another idea would be to add an extra coupling of the scalar to higher powers of
curvature, so that it becomes dominant during in�ation. The extra term should be of
order higher than 2 in curvature, otherwise one risks to spoil scalarization triggered by
the coupling to the Gauss�Bonnet invariant, which is of the second order in curvature.
For example, the coupling ∼ ϕ2R4 with the appropriate sign stabilizes the scalar
�eld in the high-curvature regime. In this case, similarly to f(R) gravity, an extra
scalar degree of freedom is e�ectively introduced, which is coupled to ϕ. However,
the coupling between ϕ and the scalar from the gravitational sector must be huge in
order to balance the term involving the Gauss�Bonnet invariant. As we have discussed
above, the introduction of a strong coupling is not a viable solution.

Yet another possible way to �x the catastrophic instability during in�ation is to
introduce quartic terms of the scalar, ∼ ϕ4Ĝ. It has been shown that such terms help to
stabilize the scalarized solutions of compact objects, see, e.g., Refs. [88,89]. However,
as we have seen previously, the destabilization of in�ation already happens for very
small ϕ, where the quartic term does not play any role. Adding a large coupling
g̃, i.e., writing g̃ϕ4Ĝ does not improve the situation for the following reason. We
presume that the solutions for the scalarized compact objects will be indistinguishable
from GR ones, since the scalar �eld will have values extremely close to zero due to
the stabilizing quartic term. A very similar idea has been suggested recently in [96],
where it has been argued that a quartic term ∼ gϕ4, added to the action to stabilize
the scalarized solution of compact objects, may also solve the problem of instability
during in�ation. In [96] it has been suggested that the scalar �eld is in the minimum of
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the e�ective potential during in�ation. It is easy to see, however, that this mechanism
cannot work either. First, the minimum should be set at a value of order of 1064MP

(in dimensionful units), which is highly unnatural. Moreover, as in�ation ends, the
structure of the e�ective potential changes because the scalar-Gauss-Bonnet coupling
changes sign, and the scalar tends to the new minimum located at zero. Carrying a
tremendous initial potential energy density estimated as ∼ 10180M4

P , the rolling scalar
�eld again causes a large modi�cation of the standard cosmological picture.

Finally, we comment on Ref. [97], where the authors identify a theory which allows
the scalarization of compact objects while having GR as a cosmological attractor.
The authors do not consider the in�ationary stage, where the previously discussed
instability would be problematic. They instead believe that one should not trust
the theory at such high curvatures, but instead �nd a suitable UV completion where
in�ation is not broken.
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Chapter 3

Quenching the cosmological instability

in the DEF model

In this chapter, based on Ref. [98],1 we examine the cosmological instability in the
case of the DEF model. We propose a mechanism to quench the instability, which
relies on a coupling of the scalar to the in�aton �eld. This new coupling term provides
another contribution to the e�ective mass of the scalar ϕ, and allows to stabilize its
perturbations during the in�ationary stage.

3.1 Setting the problem: cosmological instability of

the scalar

In the present section, we estimate the e�ect of the tachyonic instability in the DEF
scenario. The presence of the instability is evident from Eq. (1.7), and it has the
same origin as the instability responsible for the scalarization of neutron stars. If
V (ϕ) = 0 as in the original DEF scenario, the second term on the left-hand side of
Eq. (1.7) mimics the mass term. This mass term is negative for β < 0 and thus leads
to the tachyonic instability. Let us estimate the rate of this instability during the
matter-dominated stage. Neglecting the backreaction of the scalar ϕ on the metric,
one obtains the following expression from Eq. (1.7):

ϕ̈+ 3Hϕ̇+
3

2
βH2ϕ = 0 .

Recall that we work in the Einstein frame. Hence, the scale factor a(t) and the Hubble
expansion rate H(t) are de�ned in this frame. However, in what follows we will not
make a distinction between the energy-momentum tensor in the two frames, since
Tµν ≃ T̃µν as long as ϕ ≪ 1. Later on, we will see that ϕ is indeed extremely close

1Note that the mostly minus (+,−,−,−) convention for the metric was used in this reference,
unlike in the present chapter.
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to zero in our scenario, so this assumption is justi�ed. The above equation has the
growing solution given by

ϕ ≃ ϕeq

(
t

teq

)√
1− 8β

3 −1

2

,

where H = 2/3t and the subscript �eq� denotes the matter-radiation equality. From
this relation, one can convert the upper bound on ϕ0 in Eq. (1.10) into a limit on ϕeq.
We substitute teq ≈ 5 · 104 years, t0 ≈ 13.8 · 109 years, β = −4.5, and obtain

ϕeq ≲ 10−10 . (3.1)

Note that we assumed that the matter-dominated stage continues up to the present
day, but taking into account the current accelerated expansion of the Universe does
not alter this estimate considerably.

The tachyonic instability is also present during the radiation-dominated stage.
Even though the equation of state for radiation yields T = 0, this is only an approxi-
mation. For temperatures higher than 100 GeV, its value is given by the gauge trace
anomaly [92�94]

T ≃ −ϵρ ,
where ϵ ≃ 10−3. At lower temperatures Θ, the parameter ϵ is a function of Θ [99], but
does not exceed the value 10−2, see Ref. [100] for details. Hence, in order to obtain an
approximate growth of the scalar in the case of maximum destabilization, we will set
ϵ ≃ 10−2 in the following. The energy density ρr of radiation evolves as

ρr(t) = ρr,eq
a4eq
a4(t)

,

where ρr,eq is the radiation density at equality. We estimate it as as

ρr,eq ≃ 3M2
PH

2(teq) ,

where H(teq) ≃ 1/2teq is the Hubble rate at equality obtained by extrapolating the
expression H(t) = 1/2t during radiation domination. Putting everything together and
substituting the scale factor a(t) ∝

√
t, we obtain the equation

ϕ̈+
3

2t
ϕ̇+

3βϵ

8t2
ϕ = 0 .

This equation admits the growing solution:

ϕ = ϕr

(
t

tr

)√
1−6βσ−1

4

,

where tr is the cosmic time at the beginning of the radiation dominated epoch, and
ϕr = ϕ(tr). We now set β = −4.5, σ = 10−2, tr ≃ 10−32 s, and use Eq. (3.1) to estimate
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an upper bound on ϕr. We �nd that the scalar grows by a factor of about 25 during
the radiation epoch, which leads approximately to:

ϕr ≲ 10−11 . (3.2)

This means that to achieve consistency with Solar System tests, the post-in�ationary
value of ϕ should be tuned to zero with high accuracy. Note that the value ϕr is also
subject to Big Bang Nucleosynthesis (BBN) constraints. However, the latter are very
weak [80], typically ϕr ≲ 1. Hence, once we manage to satisfy the constraint (3.2), the
BBN limit will automatically be respected.

So far we have assumed that the scalar ϕ is homogeneous, but in practice there are
small inhomogeneities due to cosmological perturbations imposed on the scalar �eld.
These inhomogeneities evolve di�erently depending on their characteristic wavelength,
namely there is an upper bound on the wavenumber of cosmological modes which
experience the instability:

k

a(teq)
≲ H(teq) . (3.3)

Indeed, spatial inhomogeneities of the �eld ϕ characterized by the wavenumber k yield
the term ∼ k2

a2
ϕk in the evolution equation of the corresponding mode ϕk:

ϕ̈k + 3Hϕ̇k +
3

2
βH2ϕk +

k2

a2
ϕk + ... = 0 . (3.4)

Here the ellipses stand for the terms sourced by the gravitational potential and matter
energy density perturbations, which give a negligible contribution. For perturbations
violating the upper bound (3.3), the additional term in Eq. (3.4) screens the one
of O(H2), which would otherwise give rise to the tachyonic instability. As a result,
short wavelength modes decay as ϕk ∝ 1/a, as it should be for the case of a massless
scalar �eld in the expanding Universe (see for instance Ref [91]). Thus, we will focus
on perturbations obeying Eq. (3.3) in what follows. Note that we consider only the
modes which are unstable during matter domination, although strictly speaking there
is also a mild instability for the modes that re-enter the horizon during the radiation
dominated epoch, as we saw above. We will discuss this in the following.

We now show that if the DEF model is not modi�ed, the constraint given by
Eq. (3.2) is violated by the end of in�ation. Similarly to the previous chapter, in the
case of a coupling to the Gauss-Bonnet invariant, the �eld ϕ is also subject to the
tachyonic instability during the in�ationary epoch. As a result, the �eld ϕ acquires
large values inconsistent not only with the Solar System constraints, but also with the
existence of the in�ationary stage. This conclusion holds even if classically the �eld ϕ
is set exactly at ϕ = 0 initially. Inevitable vacuum �uctuations of the scalar �eld are
quickly enhanced during in�ation leading to a large value of ϕ. We now quantify the
e�ect of vacuum �uctuations assuming an exact de Sitter expansion characterized by
the Hubble rate H. We switch to the canonically normalized �eld ϕ̂ de�ned as

δϕ̂ =MP

√
2δϕ . (3.5)
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In terms of conformal time, de�ned as (2.10), the perturbations δϕ̂ obeying the Bunch�
Davies vacuum initial conditions read:

δϕ̂ =

∫
d3k

(2π)3/2

√
π

2
H|η|3/2

[
H(2)

ν (k|η|)e−ikxA†
k +H(1)

ν (k|η|)eikxAk

]
,

where the order of the Hankel functions is given by

ν =

√
9

4
+ 6|β| .

By setting β = −4.5, we obtain ν ≃ 5. The expectation value of δϕ̂ can be calculated
from

⟨δϕ̂2⟩ =
∫

dkk2

8π
H2|η|3

∣∣H(1)
ν (k|η|)

∣∣2 .
We are interested in superhorizon modes, i.e. k|η| → 0, which add up to the classical
background of the �eld ϕ̂. In this limit, one has for the Hankel functions

H(1,2)
ν (k|η|) = ∓iΓ(ν)

π

(
2

k|η|

)ν

.

The result reads

⟨δϕ̂2⟩{k} =
22νΓ2(ν)H2

8(2ν − 3)π3

[
(kmin|η|)3−2ν − (kmax|η|)3−2ν

]
.

Here {k} denotes the range of momenta (kmin, kmax). Given that ν ≃ 5 and assuming
kmax ≫ kmin, the second term in the square brackets is irrelevant. Conservatively, one
can take kmin ≃ H0 (we set the scale factor a0 = 1 today) corresponding to the largest
mode which is interesting for cosmology. The �nal expression in terms of the original
�eld ϕ is then given by

⟨δϕ2⟩{k} =
22νΓ2(ν)H2

16(2ν − 3)π3M2
P

∣∣∣∣η∗η
∣∣∣∣2ν−3

,

where η∗ denotes the time when the cosmological mode with wavenumber kmin exits
the horizon. It is evident that

√
⟨δϕ2⟩{k} is very large for |η∗| ≫ |η|, given the minimal

duration of in�ation which should last for at least 50 − 70 e-folds. Hence, we end up
with an unacceptably large ϕ which violates existing Solar System constraints and
also threatens the existence of the in�ationary stage. Indeed, according to Eq. (1.4)
ϕ≫ 1 corresponds to a huge ϕ̃≫ 1 in the Jordan frame. This means that the �eld ϕ̃
quickly comes to dominate the evolution of the Universe, and in�ation terminates. We
conclude that the DEF scenario should be modi�ed at least in the very early Universe,
and one modi�cation of this type is discussed in the next section.

Before that, let us brie�y comment on some solutions to the problem of the tachy-
onic instability which exist in the literature. In Ref. [80], it was proposed to endow the
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scalar with a small mass m by introducing a potential V (ϕ) = m2ϕ2/2. As the Hubble
rate drops down to H ≃ m, the �eld ϕ starts to decay, oscillating about the mini-
mum of its potential at ϕ = 0. From this point on, it contributes to the dark matter
content of the Universe. Given post-in�ationary conditions for the �eld ϕ assumed in
Ref. [80], ϕi ≃ 1 and ϕ̇i ≃ 0, the mass m should be extremely tiny, i.e. m ≲ 10−28 eV.
For masses violating this bound, the �eld ϕ gives an unacceptably large contribution
to the energy density of the Universe. Apart from tuning the mass m, the instability
during in�ation remains an issue, as discussed above. As a result of this instability,
one should expect the initial condition ϕi ≫ 1 rather than ϕi ≲ 1.

In passing, we would like to point out that the instability during in�ation and at
later stages can be avoided by choosing the following form for the function A(ϕ) [81]:

lnA(ϕ) =
βϕ2

2
+
γϕ4

4
. (3.6)

Choosing the extra parameter γ > 0, one can stabilize the �eld ϕ during in�ation,
so that it evolves close to the e�ective minimum ϕ =

√
−β/γ right until present.

Unfortunately, this scenario does not work, because with ϕ0 ̸= 0 and γ ̸= 0, the
scalarization of neutron stars does not occur.

3.2 Cosmological relaxation of the �eld ϕ to zero

In this chapter, we follow another approach to the problem of consistency with Solar
System tests. Namely, we will �nd a way to relax the �eld ϕ to tiny values during
in�ation, well below the upper bound in Eq. (3.2), while at the same time retaining
the original form of the DEF model at post-in�ationary times. The idea is to couple
the �eld ϕ to the in�aton χ, by considering an interaction of the form ∼ ϕ2χ2. Such a
coupling induces a large e�ective mass for the �eld ϕ during in�ation, so that ϕ relaxes
to an exponentially small value. The e�ective mass term vanishes upon the in�aton
decay, so that we end up with the standard DEF scenario after in�ation. While the
tachyonic instability during the matter-dominated stage is still present, there is not
enough time for the �eld ϕ to grow to large values by cosmological mechanisms. In
other words, the inequality (1.10) is always satis�ed, in agreement with the Solar
System tests.

We assume that in�ation is driven by the canonical scalar �eld χ rolling down the
slope of its (almost) �at potential U(χ). In the Einstein frame its action is given by

Sχ

[
A2(ϕ)gµν , χ

]
=

∫
d4x
√
−g̃
[
−1

2
g̃µν∂µχ∂νχ− U(χ)

]
|g̃µν=A2(ϕ)gµν

.

Note that unlike the �eld ϕ, the in�aton χ is assumed to have a canonical mass
dimension. We modify the DEF model by assuming a nonzero interacting potential

V (ϕ, χ) = g2ϕ2χ2 , (3.7)
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where g2 is some dimensionless coupling. Thus the �eld ϕ has the e�ective mass g2χ2

due to the coupling to the in�aton. We require that

g2χ2 ≫ H2 . (3.8)

Hence, the �eld ϕ is e�ectively superheavy, meaning that its e�ective mass is larger
than the in�ationary Hubble rate (but still below the Planckian scale). In this case,
ϕ relaxes to zero within a few Hubble times. For the typical values χ ≃ MP and
H ≃ 1013 GeV, the constant g2 can be as small as g2 ≃ 10−10. Hence, the mechanism
which cures the instabilities can operate in a very weakly coupled regime. In the
Jordan frame, the potential (3.7) is transformed to

Π(ϕ̃, χ) = 2g2ϕ2(ϕ̃)ϕ̃2χ2 , ϕ2(ϕ̃) = − ln ϕ̃

β
.

Note that Eq. (1.4) implies ϕ̃ > 1 for β < 0. Hence, the Jordan frame interacting
potential Π(ϕ̃, χ) is positive. We see that modulo the logarithmic correction, the
interacting potential has a quadratic form in the Jordan frame as well. Therefore it is
not important in which frame the coupling to the in�aton is introduced. We now list
the set of equations relevant for future purposes. The metric �eld equations are given
by

Rµν −
1

2
gµνR =

T χ
µν

M2
P

+ T ϕ
µν ,

where
T ϕ
µν = 2∂µϕ∂νϕ− gµν∂αϕ∂

αϕ− gµνV (ϕ, χ) ,

and

T χ
µν = A2(ϕ)∂µχ∂νχ− 1

2
gµνA

2(ϕ)∂αχ∂
αχ− gµνA

4(ϕ)U(χ) . (3.9)

Note that the indices are raised and lowered with the Einstein metric gµν . The equa-
tions of motion for the �eld ϕ is given by Eq. (1.7), where T is replaced by T χ, while
the equation for the in�aton reads

□̃χ− Uχ −
M2

P

A4(ϕ)
Vχ(ϕ, χ) = 0 .

3.2.1 Relaxing the background value of ϕ to zero

Let us show that the background value of the scalar relaxes to zero during in�ation.
The Friedmann equation is given by

3H2 = ϕ̇2 + V (ϕ, χ) +
A2(ϕ)χ̇2

2M2
P

+
A4(ϕ)U(χ)

M2
P

,
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and the background evolution of the scalar ϕ is governed by

ϕ̈+ 3Hϕ̇+
α(ϕ)

2M2
P

[
4A4(ϕ)U(χ)− A2(ϕ)χ̇2

]
+ g2χ2ϕ = 0 . (3.10)

As usual, we assume that the in�aton potential dominates the energy density of the
Universe, i.e. 3H2 ≈ A4(ϕ)U(χ)/M2

P . Consequently, we drop the second term in the
square brackets of Eq. (3.10). The background equation for ϕ simpli�es to

ϕ̈+ 3Hϕ̇+m2ϕ = 0 ,

where m2 is the full e�ective mass of the �eld ϕ de�ned by

m2 = g2χ2 + 6βH2 .

Provided that the condition (3.8) is obeyed and |β| is not very large, the �eld ϕ evolves
as a superheavy �eld, which relaxes to zero within a few Hubble times. In the exact
de Sitter space-time approximation, the solution for the �eld ϕ is given by

ϕ =
C

a3/2
cos

[√
m2 − 9H2

4
t+ δ

]
,

where C and δ are irrelevant constants. We conclude that starting from subplanckian
values ϕ < 1, by the end of in�ation the �eld ϕ is relaxed to

ϕ ≲ 10−39 ,

where the upper bound corresponds to the minimal duration of in�ation�about 60
e-folds. Generically, the duration of in�ation is much larger, so one can safely set the
background value of ϕ to zero.

The background evolution of the in�aton is given by the equation:

χ̈+ 3Hχ̇+ 2α(ϕ)χ̇ϕ̇+ A2(ϕ)Uχ +
M2

P

A2(ϕ)
Vχ(ϕ, χ) = 0 .

As ϕ → 0, one has α(ϕ) → 0, A(ϕ) → 1, and Vχ → 0. Therefore, the evolution of the
in�aton proceeds as in GR.

3.2.2 Relaxing the perturbations δϕ to zero

One may naively expect the �eld ϕ to develop superhorizon perturbations δϕ ≃ H/MP

for each mode. Taking into account that for standard in�ation scenarios

H

MP

∼ 10−5 ,
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such perturbations would be a problem for the DEF model, cf. Eq. (3.2). Such a
situation would occur for light �elds during in�ation, but our case is di�erent, since
the �eld ϕ is e�ectively superheavy. We will prove below that perturbations δϕ, which
source the present day cosmological value of ϕ, are exponentially suppressed by the
end of in�ation.

In the Newtonian gauge, linear metric perturbations are given by

ds2 = −(1 + 2Φ)dt2 + a2(1− 2Ψ)δijdx
idxj .

In the absence of the anisotropic stress, which is the case here, we have Φ = Ψ. We
are primarily interested in the linear perturbation δϕ. The relevant equation is given
by

δϕ̈− 1

a2
∂i∂iδϕ− 2ϕ̈Φ− 4ϕ̇Φ̇− 6Hϕ̇Φ + 3Hδϕ̇− δT χ

2M2
P

α(ϕ)

− T χ

2M2
P

∂α(ϕ)

∂ϕ
δϕ+

1

2

∂2V

∂ϕ2
δϕ+

1

2

∂2V

∂ϕ∂χ
δχ = 0 ,

(3.11)

where

δT χ = −16A4(ϕ)α(ϕ)U(χ)δϕ− 4A4(ϕ)
dU
dχ

δχ

+ 2A2(ϕ)α(ϕ)χ̇2δϕ− 2A2(ϕ)χ̇2Φ + 2A2(ϕ)χ̇δχ̇ .

While this equation looks rather complicated, it is simpli�ed upon substituting the
background value ϕ = 0. We obtain in terms of the Fourier modes δϕk:

δϕ̈k + 3Hδϕ̇k +
k2

a2
δϕk −

T χ

2M2
P

∂α(ϕ)

∂ϕ
δϕk +

1

2

∂2V

∂ϕ2
δϕk = 0 .

This is a homogeneous equation, which describes a damped oscillator with an almost
constant large mass. The modes δϕk decay as 1/a3/2 in the superhorizon regime.
Hence, they have negligibly small amplitudes by the end of the in�ationary stage. We
will make an exact estimate of the �eld ϕ due to its perturbations shortly.

Before going into details let us make two comments. First, note that the vanishing
background value of ϕ shields the perturbations δϕ from the metric and in�aton �uc-
tuations δχ. Generally, the latter source adiabatic perturbations, which turn out to be
zero in our case. This is also evident from the expression for adiabatic perturbations
in the superhorizon regime [101]:

δϕad

ϕ̇
=
δχ

χ̇
=

1

a
·
(
C1

∫ t

0

adt′ − C2

)
,

χ = C1 ·
(
1− H

a

∫ t

0

adt′
)
+ C2

H

a
.
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Here C1 and C2 are some constants de�ned by the subhorizon evolution of the gravi-
tational potential. Independently of their values, we have δϕad → 0, because ϕ̇→ 0.

Secondly, we have only considered linear perturbations δϕ. However, using the
same argument as above one can show that once ϕ → 0 and the linear perturbation
δϕ → 0, the second-order perturbation δϕ(2) also obeys the homogeneous oscillator
equation with the Hubble friction and a very large mass. Hence, it should also decay
as δϕ(2) ∝ 1/a3/2 in the superhorizon regime.

The above consideration shows that the perturbations δϕ are indeed very small at
the end of in�ation. However, we still need to estimate the amplitude of perturbations
in order to compare it with the constraint (3.2). We approximate in�ation by an exact
de Sitter stage and switch to the canonical variable δϕ̂ related to the original �eld
δϕ by Eq. (3.5). The solution for the �eld δϕ̂ obeying Bunch�Davies vacuum initial
conditions is given by

δϕ̂ =

∫
d3k

(2π)3/2

√
π

2
H|η|3/2

[
e

πs
2 H

(2)
is (k|η|)e−ikxA†

k + e−
πs
2 H

(1)
is (k|η|)eikxAk

]
, (3.12)

where the H(1,2)
is are Hankel functions of purely imaginary order [102] and

s =

√
m2

H2
− 9

4
.

Note that the functions H(1,2)
is are not complex conjugate. Instead, the following

relation is correct: [
H

(1)
is (k|η|)

]∗
= eπsH

(2)
is (k|η|) ,

which explains the presence of unconventional factors e
πs
2 in Eq. (3.12). For s ≫ 1,

one obtains the following relation in the limit k|η| → 0 [102]:

H
(1,2)
is (k|η|) =

√
2

πs
e±is ln[− 1

2
kη]∓iγs±πs

2 ,

where ∓γs are irrelevant phases. The choice of the upper or lower sign on the right-
hand side of the previous corresponds to the Hankel functions of the �rst and the second
kind, respectively. We are interested in the quantity ⟨δϕ̂2⟩unstable, where the subscript
�unstable� means that we focus on the modes which are subject to the tachyonic
instability during the matter-dominated stage. These modes have the cuto� kmax
de�ned by the condition (3.3). Strictly speaking, the modes that reenter the horizon
during the radiation dominated epoch also experience an instability, but it is much
milder than the one for super-horizon modes during matter domination.

By the end of in�ation, at the moment ηf , the value of ⟨δϕ̂2⟩unstable is given by

⟨δϕ̂2⟩unstable(ηf ) =
H2

12π2s

∣∣∣∣ ηfη×
∣∣∣∣3 ,
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where η× is de�ned by kmax|η×| ≃ 1. In terms of the original �eld ϕ, one �nally gets

⟨δϕ2⟩unstable(ηf ) =
H2

24π2sM2
P

∣∣∣∣ ηfη×
∣∣∣∣3 .

Note that η× roughly corresponds to 50-70 e-folds before the end of in�ation, when
cosmological modes exit the horizon. For the sake of concreteness, we assume 60
e-folds. Taking also H ≃ 10−5MP (high scale in�ation) and s = 10, we �nd√

⟨δϕ2⟩unstable(ηf ) ≃ 10−46 . (3.13)

The �eld ϕ will be roughly frozen at this value during the radiation-dominated stage
(modulo the enhancement by a factor of about 25 discussed in the previous section).
During the matter-dominated stage, and later, it experiences the tachyonic instability.
However, the resulting �eld ϕ0 is still well below the upper bound, i.e., ϕ0 ≪ 10−3, in
a comfortable agreement with the Solar System tests. Note that we have omitted some
modes from the discussion, i.e. those that are unstable during radiation domination
only and exit the horizon between η× and ηf . One can estimate the contribution
of these modes to the amplitude of the scalar �uctuations at the end of in�ation by
integrating Eq. (3.12) in the range of momenta {kmax, kf}, where kf |ηf | = 1. We
obtain the rough estimate √

⟨δϕ2⟩{kmax,kf}(ηf ) ≃ 10−6 . (3.14)

Since these modes experience the instability only during radiation domination, they
will only grow by a factor of 10, and will not violate current bounds on the scalar
�eld. Hence, we did not include them in the previous discussion. Note also that upon
establishing the bounds (3.1) and (3.2) for the scalar �eld, we have overestimated the
instability of the scalar. Indeed, each mode characterized by the wavenumber k is
only unstable for k < aH, so the modes stop growing after re-entering the horizon,
which was not taken into account. However, the scalar is able to satisfy even those
overestimated bounds, which is why the calculation was not re�ned.

Recall that we have assumed a universal coupling of matter �elds to the metric. Let
us comment here on modi�cations of the model where the coupling is non-universal.
For instance, one may consider a model with a direct coupling of the in�aton to the
Einstein metric. Contrary to the situation with the universal coupling, now the scalar
�eld ϕ does not receive an e�ective tachyonic potential, and thus does not undergo the
instability during in�ation. Hence, one may naively expect that the model is viable
even in the absence of the stabilizing potential V (ϕ, χ) introduced in Eq. (3.7). In this
case, however, the scalar ϕ enjoys shift symmetry, and hence can take on any value.
Modulo �ne-tuning, this value is not small generically, leading to a large value of ϕ0

today, and consequently to the con�ict with Solar System tests. Moreover, even if the
background value of ϕ is tuned to zero, the perturbations δϕ are still too large and give
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rise to ϕ0 ≫ 1. This problem is avoided upon turning on the potential V (φ, χ) as in
Eq. (3.7). Yet another possibility is to couple the in�aton to the Einstein metric with
a conformal factor as in Eq. (1.2), but with positive βinf > 0 (while at the same time
keeping β < 0 for the normal matter to ensure scalarization). In this case, according
to Eq. (1.7), the �eld ϕ acquires a positive mass even if V (φ, χ) = 0. Provided that
βinf ≫ 1, the scalar ϕ is superheavy. Hence it relaxes to zero exactly in the same
way as in the model with the stabilizing potential V (ϕ, χ). In fact, one can view this
scenario as a variation of the model discussed in this chapter, modulo the replacement
of the coupling ∼ ϕ2χ2 by the coupling of the �eld ϕ to the trace of the in�aton
energy-momentum tensor.
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Conclusion to Part I

The spontaneous scalarization of compact objects is an interesting phenomenon
which may arise in certain classes of scalar-tensor theories. This e�ects relies on the
existence of a tachyonic e�ective mass for the scalar �eld which destabilizes the GR
solutions. In Chapter 1, we reviewed this mechanism both in the original DEF scenario
for neutron stars, but also for classes of theories where the scalar �eld is nonminimally
coupled to the Gauss-Bonnet invariant. In this case scalarization can exist for black
holes as well as stars, since the Gauss-Bonnet term is nonzero in vacuum.

In Chapter 2, we studied the stability of cosmological solutions in the latter theo-
ries. As we showed in Section 2.2, the stability of scalar perturbations on GR cosmo-
logical solutions depends on the sign of the acceleration ä, see Eqs. (2.18) and (2.5).
For a decelerating Universe, the mass in the equation for the scalar perturbation is
real, and therefore no instability arises for the GR branch. However, the mass becomes
tachyonic for an accelerated expansion, and one expects the GR cosmological solution
to become unstable in that case. It turns out that this instability is very slow with
respect to the current acceleration, with the time of instability being much larger than
the age of the Universe, see Eq. (2.22). On the contrary, the scalar-Gauss-Bonnet cou-
pling leads to a catastrophic instability during the in�ationary epoch, due to its huge
e�ective tachyonic mass. The characteristic instability time, at which the amplitude
of a classical solution increases by the factor e, is given in Eq. (2.23). This is a tiny
number compared to the time of in�ation. One should take into account that classi-
cally the initial conditions of the scalar �eld can be tuned such that the �eld stays on
top of the potential for an in�nite time, at least in principle. However, as we explic-
itly showed in Section 2.3, quantum �uctuations of the scalar �eld are large enough
to trigger this instability, making any conventional in�ationary scenario impossible
in the theories exhibiting scalarization which we studied. Throughout this analysis,
we have assumed that the scalarization �eld ϕ is not the in�aton �eld. However, the
Gauss-Bonnet scalar is an ultraviolet correction which naturally modi�es gravity at
early times. Indeed, in�ation models where the Gauss-Bonnet scalar is coupled to the
in�aton �eld according to the action (1.11) have been studied in the literature (see for
instance Refs. [103�105]). However, in these works, the e�ective sign of the coupling
function F in Eq. (1.11) is crucially required to be of the opposite sign to the one
which allows for scalarization.

In Chapter 3, we proposed a way to extend the original DEF model of scalarization
to cosmological scales, while retaining consistency with Solar System tests. In the
cosmological context, the original model leads to a runaway solution for the relevant
�eld ϕ, making the scenario inconsistent with existing PPN constraints unless the
initial value of ϕ is tuned to zero with high precision, as we discussed in Section 3.1.
We have found a modi�cation of the original scenario in which this tuning is automatic.
More precisely, we showed in Section 3.2 that if the �eld ϕ responsible for scalarization
is coupled to the in�aton, it relaxes to zero with a high accuracy during in�ation. Upon
the in�aton decay, the coupling e�ectively vanishes, meaning that in our modi�ed
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scenario all the predictions related to neutron stars are the same as in the original
DEF model. Note that the results of this part are largely insensitive to the structure
of the conformal factor A(φ). While we have focused on the simple quadratic function
lnA(φ) ∝ φ2, involving higher powers of φ would leave our analysis and conclusions
intact. Moreover, the solution we proposed to quench the cosmological instability could
be applied to other models of scalarization akin to the DEF model. Indeed, starting
from the action (1.1), one can make the disformal transformation of the metric as

gµν → C(X)gµν +D(X)∂µφ∂νφ ,

where C(X) and D(X) are functions of the kinetic term X = (∂φ)2. The transfor-
mation results in a new scalar-tensor action belonging to the DHOST class (31). In
the context of scalarization, such extensions have been discussed in Refs. [67,106]. We
believe that our solution to the cosmological instability presented in this paper may
also work for such extensions. Another idea would be to consider the scalar-Gauss-
Bonnet theories in which rapidly rotating black holes were shown to scalarize [70�72].
Crucially, this can happen for a reversed sign of the parameter λ2 in Eq.(2.18), be-
cause the Gauss-Bonnet scalar of a rotating black hole can change sign, unlike in the
spherically symmetric case. Perhaps this sign reversal could lead to a relaxation of the
scalar during the in�ationary phase, instead of the instability discussed in Chapter 2,
and we believe that this point deserves further study.
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Part II

Vainshtein screening for slowly

rotating stars
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Introduction to part II

One of the approaches to modify general relativity (GR) is to add extra �elds me-
diating the gravitational force, and the simplest extensions are scalar-tensor theories
with one additional scalar �eld. However, since GR passes all local experimental tests
in the Solar System [50], it is necessary to have a mechanism that screens the e�ect
of the scalar �eld (�fth force) close to the gravitational source. There have been sev-
eral propositions to suppress the �fth force around matter, like the chameleon [107]
or symmetron mechanisms [108, 109]. We will be interested in the Vainshtein mech-
anism, which was originally proposed in the context of massive gravity. The linear
Fierz-Pauli theory describes a free spin-2 particle of mass m [110�112]. For nonzero
m, these theories were shown to have di�erent predictions from linearized GR, even in
the limit m→ 0, which is related to the van-Dam-Veltman-Zakharov (vDVZ) discon-
tinuity [113�115]. The Newtonian potential for nonrelativistic bodies in these theories
is larger by a factor 4/3, and hence theories which exhibit this e�ect are ruled out by
Solar System observations. Indeed, if this extra factor were to be reabsorbed in the
de�nition of Newton's constant, it would manifest itself in other measurable quanti-
ties. For example the bending of light by the Sun in the massive theory would be too
small to pass the current experimental bounds [50]. Shortly after this was pointed
out, Vainshtein proposed that the linear theory should break down inside a certain
radius rV from the gravitational source [116], where rV is now called the Vainshtein
radius. However, he did not show that the expansions in the two di�erent regimes
could be obtained by a unique underlying solution. In addition, such nonlinear theo-
ries were shown to generically present a ghost instability [117], i.e. a degree of freedom
with an energy which is unbounded from below. It was understood later that the
Vainshtein screening could work in a certain limit of these theories, called the de-
coupling limit (DL), which isolates the dominant derivative self-interactions of the
massive graviton's scalar mode [118�125]. While this limit simpli�es the problem, the
Vainshtein mechanism was also shown to work in the full theory of nonlinear massive
gravity [119,120]. In parallel, an analogous mechanism, dubbed k-mou�age [126], was
developed in the context of scalar-tensor theories. It relies on the presence of a non-
linear scalar kinetic term, which explains the name. The covariant k-mou�age action
can be written [126,127]

Sk =
M2

P

2

∫
d4x

[
R

(
1 +

ϕ

2

)
+KNL[ϕ]

]
+ Sm [gµν , ψm] , (II.1)

where the term KNL contains nonlinear self-interactions of the scalar �eld. The idea
is to expand this action around �at space, i.e. gµν = ηµν + hµν , and keep terms up
to second order in hµν . Higher-order terms are kept in KNL however, as they are
important for the screening to work. After the following rede�nition of the tensor h,

hµν = h̃µν − ϕ ηµν , (II.2)
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the k-mou�age action reads

Sk =
M2

P

4

∫
d4x

[
−h̃µνEµν

αβh̃αβ + 3ϕ□ϕ+ 2m2KNL[ϕ] +
2

M2
P

(
h̃µνTµν − Tϕ

)]
,

where the tensor Eµν = Eµν
αβhαβ is the linearization of the Einstein tensor around �at

space, and the indices are raised with the �at metric ηµν in the previous expression.
The �eld equations which derive from this action read

Eµν
αβh̃αβ =

Tµν
M2

P

,

3□ϕ+ ENL =
T

M2
P

, (II.3)

where ENL is obtained from varying the part of the action containing KNL. The main
features of the Vainshtein mechanism can be understood from these equations, as
explained in Ref. [127]. There are two di�erent regimes, depending on which term
dominates in the scalar �eld equation:

� If □ϕ ≫ ENL, then the scalar equation is linear and we have ϕ ∼ h̃µν . This
means that the physical metric hµν , given by Eq. (II.2), receives leading-order
corrections and GR is modi�ed. We will see that the linear regime corresponds
to a region far away from the gravitational source.

� On the other hand, if a region exists where □ϕ ≪ ENL, then ϕ ≪ h̃µν and we
recover GR, i.e. hµν ≃ h̃µν . This is called the nonlinear regime, and it generically
happens inside a radius rV which is given by the theory at hand.

The Vainshtein mechanism can be most easily demonstrated for nonrelativistic spher-
ically symmetric static con�gurations outside the source. Let us give a simple illustra-
tion in the case of the cubic Galileon theory [128]. We choose the following functions
in the DHOST action (31):

f = 1 + αϕ , K = ηX , G3 = βX , A1 = A3 = 0 , (II.4)

where {α, β, η} are constants. Note that upon imposing the DHOST Ia conditions (33),
this leads to A4 = A5 = 0 also. We consider a static scalar �eld ϕ = ϕ(r), and use the
following ansatz for the metric tensor:

ds2 = −eνdt2 + eλdr2 + r2
(
dθ2 + sin2 θdφ2

)
. (II.5)

We will use this ansatz throughout this part, but we give here the relation between
the functions {λ, ν} and the potentials {Φ,Ψ} in the Newtonian gauge which are often
used in the literature. The metric in isotropic coordinates is written

ds2 = − (1 + 2Φ(r̄)) dt2 + (1− 2Ψ(r̄))
[
dr̄2 + r̄2

(
dθ2 + sin2 θdφ2

)]
, (II.6)
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and in the weak �eld limit, one can show that the following relations hold

r ≃ r̄ (1−Ψ) ≃ r̄ , ν = 2Φ , λ = 2rΨ′ .

In GR, the potentials in the Newtonian limit are given by

ΦGR = ΨGR = −rS
2r

, or λGR = −νGR =
rS
r
. (II.7)

In the weak �eld limit [120], i.e. {ν, rν ′, λ, rλ′, ϕ, rϕ′} ≪ 1, the independent �eld
equations for the theory (II.4) read

d
dr

[
rλ− αr2ϕ′] = r2ρ(r) ,

λ− rν ′ = 2αϕ′ ,

1

r2
d
dr

[
rα (2λ− rν ′)− 2ηr2ϕ′ + 2βrϕ′2] = 0 , (II.8)

where ρ(r) is the energy density of the source, and we have neglected its pressure
because it is assumed to be nonrelativistic. These correspond to the (tt), (rr) and
scalar �eld equations, respectively. The third equation can be written in an integrated
form because in the weak-�eld approximation, the Ricci scalar reads

Rweak =
1

r2
d
dr

[
2rλ− r2ν ′

]
. (II.9)

Note that upon the rede�nitions λ → λ̃+ αrϕ′ and ν → ν̃ − αϕ, the previous system
decouples and we obtain equations of the form (II.3). This rede�nition is not necessary
however, and we will keep the system as it is. We now integrate the �rst equation and
introduces the Schwarzschild radius rS = 2GM of the object. We set the integration
constant in the scalar equation to 0 (as we will see in the following, this is to have a
regular scalar current at r = 0), and upon combining these equations we obtain an
algebraic equation for the �fth force ϕ′:

4βrϕ′2 +
(
3α2 − 2η

)
r2ϕ′ + αrS = 0 . (II.10)

If β = 0, the equation is linear and we obtain the following solution for ϕ′ in the linear
regime:

ϕ′
lin =

αrS
(2η − 3α2)r2

. (II.11)

Let us now determine the metric potentials in this region. In the linear regime, re-
placing the scalar pro�le in the �eld equations leads to the following expressions:

λ =
rS
r

(
1 +

α2

2η − 3α2

)
,

ν = −rS
r

(
1− α2

2η − 3α2

)
. (II.12)
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When α ̸= 0, it is clear that GR is not recovered, and the �fth force introduces leading
order corrections to the metric functions. Importantly, the corrections for λ and ν
are di�erent, meaning that they cannot be absorbed by a rede�nition of Newton's
constant. Hence, when β = 0, one does not recover GR unless α = 0, in which case
the scalar is trivial, i.e. ϕ′ = 0.

Let us now consider the general case β ̸= 0. The �fth force is given by solving the
quadratic equation above:

ϕ′ =
µrrS
r3V

[
1±

√
1 +

(rV
r

)3]
, (II.13)

where we have de�ned

µ =
2α

3α2 − 2η
,

r3V = −4βrSµ
2

α
. (II.14)

We can identify the two regimes from the expression (II.13) for ϕ′:

� If r ≫ rV , then we obtain ϕ′ = ϕ′
lin, where we have chosen the minus sign in

Eq. (II.13) in order for the scalar �eld to remain �nite as r → ∞. As we discussed
above, the metric potentials receive leading-order corrections in this case, and
we obtain deviations from GR.

� If rS ≪ r ≪ rV , which correspond to a region inside the Vainshtein radius but
outside the nonrelativistic source, then we obtain

ϕ′ =
µrS
r2

(
r

rV

)3/2

. (II.15)

From this expression, it is clear that the �fth force is suppressed compared to
the Newtonian force ν ′ ∼ rS/r

2. Substituting the expression for ϕ′ in the �eld
equations, we obtain the following solutions for the metric potentials:

ν = −rS
r

[
1 +O

(
r

rV

)n]
and λ =

rS
r

[
1 +O

(
r

rV

)n]
, (II.16)

where n = 3/2 in the present case, but generically depends on the theory con-
sidered.

We have presented a simple example belonging to the k-mou�age family and with a
static scalar �eld. It is possible to consider more complicated setups, like for instance
allowing a time dependence of the scalar �eld [129�131]:

ϕ = qt+ ϕ(r) . (II.17)



50

In this case, the previous analysis can be repeated, and we obtain the following coef-
�cients which generalize those of Eq. (II.14):

µ =
2(α− q2β)

(3α− q2β)(α + q2β)− 2η
,

r3V = − 4βrSµ
2

(α− q2β)
. (II.18)

The Vainshtein screening in the cubic Galileon theory with a time-dependent scalar
was studied in [130], though the scalar was coupled to the matter �elds instead of the
Ricci tensor. The approaches are similar, and it was shown that one must instead
chose the plus sign in Eq. (II.13), which leads to de Sitter asymptotics where ϕ′ ∼ r.
Hence the time dependence of the scalar �eld can also lead to a screening of the �fth
force. It is also worth noting that in some scalar-tensor theories the spin-0 and spin-2
degrees of freedom do not decouple entirely, and the �eld equations do not reduce to
a system which has the form of Eq. (II.3) (see Ref. [127] for explicit examples). In
these cases, one solves for the metric potentials in terms of the scalar �eld and uses
the resulting expressions in the scalar equation. It is sometimes necessary to neglect
part of the nonlinear terms in the metric equations, in anticipation of the Vainshtein
screening, and one can check the validity of such assumptions once the solutions have
been found.

The Vainshtein screening has been extensively studied in scalar tensor theories
for spherically symmetric spacetimes, in particular in Horndeski [126, 130, 132�137],
beyond Horndeski [138�143] and DHOST theories [54, 144�147]. However, realistic
astrophysical objects typically rotate, and one may naturally ask whether rotation
a�ects the validity of the Vainshtein mechanism. Indeed, it has been found that
the chameleon screening mechanism is shape dependent [148, 149], i.e. the �fth force
does depend on the deviation from spherical symmetry. In the case of the Vainshtein
mechanism, the recovery of GR for nonspherical con�gurations in particular models
has been previously considered in [136,143,150�153]. The aim of this part is to make
a systematic study of the Vainshtein screening in scalar-tensor theories for slowly
rotating bodies. Following the Hartle-Thorne formalism developed in GR [154], we
will introduce a frame-dragging function ω to the line element, and include the scalar
�eld in the discussion. In Chapter 4, we derive the equation satis�ed by the frame-
dragging function for a slowly rotating star, and discuss its solutions in the weak-�eld
approximation. In Chapter 5, we study the Vainshtein screening for slowly rotating
stars in DHOST Ia theories in the case of a time-dependent scalar �eld, i.e. when
q ̸= 0. Finally, we analyze the case of a static scalar �eld in Chapter 6, meaning that
we set q = 0. We study a subclass of quadratic Horndeski theories, with an additional
coupling of the scalar to the Ricci curvature which breaks shift-symmetry.
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Chapter 4

Setup and weak-�eld approximation

It is known that in spherical symmetry, theories belonging to the DHOST class ex-
hibit the Vainshtein screening [144], meaning that GR is recovered inside a radius
rV called the Vainshtein radius, and deviations from GR may be observed at large
radii. However, for some theories beyond Horndeski, the screening is broken inside
matter [138] when the scalar �eld depends on time, and sometimes even outside the
matter source [146,147]. Our aim is to extend these studies by deviating from spheri-
cal symmetry and examining how the Vainshtein screening is a�ected. Following the
Hartle-Thorne formalism [154], we will introduce an additional function ω to the met-
ric, which accounts for the slow rotation of the source. In this chapter, we derive
the di�erential equation satis�ed by the function ω, and discuss its solutions in the
weak-�eld approximation. The three chapters in this part are based on Ref. [155].1

4.1 Equations of motion for slow rotation

We will consider theories belonging to the quadratic DHOST Ia class, given by the
following Lagrangian density:

L = f(ϕ,X)R +K(ϕ,X)−G3(ϕ,X)□ϕ+
5∑

i=1

Li , (4.1)

the densities Li are given in Eq. (32) and we assume the Ia conditions (33). In addition,
we assume a matter action with �elds ψm that are minimally coupled to the metric
gµν , and an energy-momentum tensor de�ned by Eq. (27). We de�ne the quantities
Eµν and Eϕ which come from the variation of L:

Eµν =
1√
−g

δ (
√
−gL)

δgµν
, and Eϕ =

1√
−g

δ (
√
−gL)
δϕ

. (4.2)

1Note that the scalar kinetic termX = (∂ϕ)2 is de�ned di�erently in this reference, X = −(∂ϕ)2/2,
resulting in many formulas being altered.
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With these de�nitions, the �eld equations for the metric and scalar �eld read

M2
P Eµν = Tµν , (4.3)

Eϕ = 0 . (4.4)

We consider a slowly rotating source of radius R modeled by a perfect �uid. We will
follow the Hartle-Thorne formalism [154] developed for general relativity, and assume
a uniform rotation of the �uid at angular velocity Ω. We take the same ansatz for the
metric tensor as in GR:

ds2 = −eν(t,r)dt2 + eλ(t,r)dr2 + r2dθ2 + r2 sin2 θ [dφ− ϵω(t, r)dt]2 , (4.5)

where the frame-dragging function ω is the angular velocity acquired by an observer
falling freely from in�nity, due to the dragging of inertial frames. The bookkeeping
parameter ϵ accounts for the slow rotation of the source, and we will keep terms only
up to �rst order in ϵ in the following. For the scalar �eld we take the (generically)
time-dependent ansatz given by Eq. (II.17). The metric functions can a priori depend
on time if the constant q ̸= 0, because the Lagrangian functions generically depend
on ϕ. The solutions for the metric potentials depend on these functions, meaning
that they also depend on time. We assume that the star is a perfect �uid, which is
described by the following energy-momentum tensor:

T µν = (ρ+ P )uµuν + Pgµν , (4.6)

where uµ is the 4-velocity of the �uid, given at �rst order in ϵ by

uµ =
(
e−ν/2, 0, 0, ϵΩe−ν/2

)
, (4.7)

where the component of u along the vector ∂φ accounts for the slow rotation. We will
be interested in the di�erential equation for the function ω, obtained from the (tφ)
component of the metric equations:

M2
P E t

φ = T t
φ . (4.8)

At the same time, for the other nontrivial equations, (tt), (rr) and (tr) components
as well as for the scalar �eld equation, it is enough to keep only terms of order 0 in ϵ,
i.e. to consider these equations of motion without rotation,

M2
P E (0)

tt = T
(0)
tt , (4.9)

M2
P E (0)

rr = T (0)
rr , (4.10)

E (0)
tr = 0 , (4.11)

E (0)
ϕ = 0 , (4.12)
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where the superscript (0) implies that one should set ϵ = 0 in the equations of motion.
Note that not all of the equations (4.9)�(4.12) are independent, because of the following
relation due to the di�eomorphism invariance of the action [156]:

∇νEµν = −1

2
∇µϕ Eϕ . (4.13)

With the choice (4.6) for Tµν , Eq. (4.8) can be written as

ω′′ +K1ω
′ +

K2

M2
P

(ρ+ P ) (ω − Ω) = 0 , (4.14)

where the functions K1 and K2 depend on the speci�c theory considered and on the
solution in the nonrotating limit,

K1 =
4

r
− λ′ + ν ′

2
+

d
dr

ln (f −XA1) , (4.15)

K2 = − 2eλ

f −XA1

, (4.16)

and ′ denotes a derivative with respect to the radial coordinate. Thus the system
of equations to solve is given by Eqs. (4.9)�(4.12) and (4.14) with (4.15) and (4.16),
where all the functions depend on ϕ given by (II.17) and X evaluated in the spherically
symmetric limit,

X = e−λϕ′2 − e−νq2 . (4.17)

Using the previous relation, Eq. (4.15) can be written in an expanded form, which will
be useful in the following, as

K1 =
4

r
− λ′ + ν ′

2
+

(fX −XA1X − A1)X
′ + ϕ′ (fϕ −XA1ϕ)

f −XA1

. (4.18)

where
X ′ = q2e−νν ′ − e−λϕ′ (λ′ϕ′ − 2ϕ′′) . (4.19)

Eq. (4.14) with the coe�cients given by Eqs. (4.15) and (4.16) is the main equation
we will focus on throughout this part.

Note that the GR case is easily obtained from the above equations. Indeed, we set
L = R, corresponding to G3 = K = Ai = 0 and f = 1. Using Eqs. (4.15) and (4.16)
in Eq. (4.14) one obtains

ω′′ +

(
4

r
− λ′ + ν ′

2

)
ω′ − 2

M2
P

eλ (ρ+ P ) (ω − Ω) = 0 , (4.20)

which coincides with the GR equation for ω [154]. In vacuum we impose ρ = P = 0,
which implies λ′ = −ν ′ in GR, so that Eq. (4.20) becomes

ω′′ +
4

r
ω′ = 0 . (4.21)
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It was shown that this vacuum GR equation is recovered in particular classes of
DHOST theories [143, 151�153]. We generalize these results in Appendix II.A, show-
ing that it is true for any shift-symmetric quadratic Gleyzes-Langlois-Piazza-Vernizzi
(GLPV) theory [44] with G3 = 0. The solution to this equation, assuming that
limr→∞ ω = 0, is

ω =
2JG

r3
, (4.22)

where J is the total angular momentum of the star [154,157], which can be expressed
in terms of the moment of inertia I of the star as J = ΩI. In the following, we
will examine the solutions for ω in DHOST Ia theories and compare them to the GR
expression Eq. (4.22).

4.2 Frame-dragging function in the weak-�eld

approximation

From now on we will employ the weak-�eld approximation [120], assuming that λ, ν,
ϕ and their derivatives are small, which one can check once the solutions are found:

{rnd
nλ

drn
, rn

dnν
drn

, rn
dnϕ
drn

} ≪ 1 , (4.23)

where n is a positive integer. Additionally, we assume that

ω ≪ Ω ,

which is the appropriate approximation in the Newtonian regime [154]. Physically,
the above conditions correspond to nonrelativistic sources, for which we also assume
P ≪ ρ. These assumptions considerably simplify Eq. (4.14), since it becomes a �rst
order equation for ω′:

ω′′ +
4

r

[
1 +

rδK1

4

]
ω′ =

K2(r)Ω

M2
P

ρ(r) , (4.24)

where

δK1 ≡ K1 −
4

r

marks the departure from the vacuum GR behavior (ρ = 0). The integration of
Eq. (4.24) with the conditions ω′(0) = 0 and lim

r→∞
ω = 0 leads to

ω(r) =
Ω

M2
P

∫ r

∞

I1(v)

v4

(∫ v

0

K2(u)ρ(u)

I1(u)
u4du

)
dv , (4.25)

where we have de�ned the function

I1(r) = e−
∫
δK1dr .
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We see that the overall integration constant which appears in the expression for I1

is not important, as it disappears in the �nal result for ω. Note that Eq. (4.25) is
valid even if δK1 is not small. In order to compare a generic situation to GR, let us
brie�y describe the latter case, corresponding to f = 1 and G3 = K = Ai = 0. The
linearization of Eqs. (4.9) and (4.10) gives, respectively,

λ+ rλ′ =
1

M2
P

r2ρ ,

rν ′ − λ =
1

M2
P

r2P .

In the case of nonrelativistic matter, P ≪ ρ, we obtain from Eq. (4.20):

ω′′ +
4

r

(
1− GM ′

4

)
ω′ = −4GM ′Ω

r2

(
1 +

2GM

r

)
, (4.26)

where we have introduced the mass function

M(r) = 4π

∫ r

0

ρr̄2dr̄ . (4.27)

This is the weak-�eld equivalent of the relativistic GR equation found in Ref. [154].
As one can see by comparing Eqs. (4.24) and (4.26), outside the source δK1 measures
the departure from GR, while inside the source it takes into account both GR and
non-GR corrections due to the presence of matter.

4.2.1 Leading term

Let us now calculate the leading term in Eq. (4.25), assuming that
∫
δK1dr is small

and K2 is almost constant. We can then write

I1 = 1 + εδI1 ,

K2 = κ2 (1 + εδK2) ,
(4.28)

where κ2 is a constant, {δI1, δK2} ≪ 1, and ε is a bookkeeping parameter used to
keep track of small terms.

Outside the source: In the exterior region, r > R, Eq. (4.25) simpli�es to

ω(r) =
2GJ̃

r3
+O (ε) , (4.29)

where we have de�ned an e�ective angular momentum

J̃ = −4πΩ

3

∫ R

0

K2(u)ρ(u)

I1(u)
u4du . (4.30)
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This coe�cient can a priori be di�erent from the GR value. However, if the density
pro�le of the star is unknown, I1 and K2 can be reabsorbed in the de�nition of ρ.
Therefore, unless the density pro�le ρ(r) is known, any physical e�ect related to frame-
dragging outside the star is the same as in GR at leading order. Thus, one can say
that the Vainshtein screening can be extended outside the star to the case of slowly
rotating bodies in the weak-�eld approximation.

Inside the source: Inside the source, we have from Eq. (4.25)

ω − ω(0) =
κ2Ω

M2
P

∫ r

0

1

v4

(∫ v

0

ρ(u)u4du

)
dv +O (ε) . (4.31)

The constant ω(0) is not free and it should be �xed by continuity at the surface of the
star. One can see that for κ2 ̸= −2, the solution for ω di�ers from its GR counterpart
at leading order inside the star.2 In this case the Vainshtein mechanism is broken
for rotating solutions inside the star. On the other hand, the Vainshtein screening
operates for theories in which κ2 = −2 (for instance when A1 = 0 and f = 1). As
an illustration, let us consider a star with constant density ρ = ρ0 for r < R. From
Eq. (4.31) we have

ω − ω(0) =
κ2ρ0Ωr

2

10M2
P

+O (ε) . (4.32)

In order for J̃ to be positive at leading order in Eq. (4.30), one must have κ2 < 0.
This implies that ω(r) is everywhere decreasing (as in GR) and that it is maximal at
r = 0.

4.2.2 Subleading terms

In this subsection, we examine the subleading terms in the solution to Eq. (4.24), when
the corrections to the coe�cients K1 and K2 are power laws. The coe�cient K2 is
only relevant inside the star where ρ ̸= 0. On the other hand we will be interested
in the corrections to K1 for all r. As we will see in the following, one can in general
identify three regions of radii, and in each of those the correction δK1 has a particular
power-law behavior. These regions are r < R, R ≤ r ≪ rV and r ≫ rV , where rV is
the Vainshtein radius of the considered theory. Therefore, we can write approximately

rδK1

4
= a1

(
r

r1

)s1

Hr≤R + a2

(
r

r2

)s2

HR<r≤rV + a3

(
r

r3

)s3

Hr>rV ,

δK2 = a0

(
r

r0

)s0

,

2Note that nonrotating solutions in some theories require a renormalization of MP . In this case
one should write Eq. (4.31) in terms of the renormalized Planck mass and take into account this extra
factor in the de�nition of κ2.
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where H is the Heaviside step function, the ai are constants, and we assume that
(r/ri)

si ≪ 1. The scaling exponents si depend on the theory at hand and should
satisfy certain constraints in order for the integral (4.25) to be �nite and for ω to have
the correct boundary conditions. Therefore we set s0 + 1 > 0, s1 + 1 > 0, s2 ̸= 0 and
s3 < 0. We also assume s2 ̸= 3, since we did not �nd an example of a theory with
such a behavior, although it is not di�cult to consider the case s2 = 3 separately. It
is worth noting that in the case of a time-dependent scalar �eld, which we consider
in Chapter 5, our analysis allows us to calculate the coe�cients K1 and K2 up to
r ∼ 1/q. In this case, instead of imposing the boundary condition at r = +∞, we set
the boundary condition at r = 1/q, i.e. ω(1/q) = 0. This does not a�ect the �nal
result, due to a very weak dependence of the integral (4.25) on the upper bound. In
this case, we obtain the following corrections in the region r > R outside the star:

r3ω

2GJ̃
− 1 = 12ε

[
a3

s3(s3 − 3)

(
r

rV

)3(
rV
r3

)s3

+
a2

s2(s2 − 3)

(
r

r2

)s2
(
1−

(
r

rV

)3−s2
)]

HR<r≤rV

+
12a3ε

s3(s3 − 3)

(
r

r3

)s3

Hr>rV .

Assuming s2 < 3, one can write the solution in the regions R < r ≪ rV and r ≫ rV
that we will focus on in the following:

ω =
2GJ̃

r3

[
1 +

12a2ε

s2(s2 − 3)

(
r

r2

)s2

HR<r≪rV +
12a3ε

s3(s3 − 3)

(
r

r3

)s3

Hr≫rV

]
. (4.33)

The above expression tells us how the corrections to ω outside the star can be read o�
from the coe�cient K1.

Inside the source: As we saw in Eq. (4.32), the leading term di�ers from GR
inside the star when κ2 ̸= −2, meaning that the Vainshtein screening is broken. In
theories for which κ2 = −2, the leading term in the solution for ω coincides with its
GR counterpart, and the corrections to the frame-dragging function come from the
subleading terms. Assuming for simplicity that the star has a constant density ρ0, the
frame-dragging function inside the star can be written as follows:

ω(r)− ω(0) = −ρ0Ωr
2

5M2
P

[
1 +

10a0ε

(s0 + 5)(s0 + 2)

(
r

r0

)s0

− 40a1ε

(s1 + 5)(s1 + 2)

(
r

r1

)s1]
,

(4.34)
where ω(0) can be determined using Eq. (4.33) by continuity of ω at the surface of the
star r = R. Once again, the subleading terms can be read o� from the coe�cients K1

and K2.
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Chapter 5

Slow rotation with a time-dependent

scalar �eld

5.1 General equations

In this chapter, we study the slow rotation of nonrelativistic sources in DHOST Ia
theories with q ̸= 0, meaning that the scalar �eld is time-dependent. In addition to
the weak-�eld assumption (4.23), we also assume that

ϕ′2 ≪ q2 , (5.1)

i.e. that the spatial gradient of the scalar �eld is much smaller than the time derivative
of ϕ. This can be viewed as a manifestation of the �static� Vainshtein screening and the
failure of the Vainshtein mechanism for the time evolution of the scalar [158]. We will
also assume that dimensionless combinations of coe�cients are of O(1), for instance
f ∼ q2fX ∼ q2A1 ∼ O(1). Under the assumptions (4.23) and (5.1), the coe�cients K1

and K2, Eqs. (4.15) and (4.16), read

K1 =
4

r
− λ′ + ν ′

2
+

(fϕ + q2A1ϕ)ϕ
′ − (A1 − fX − q2A1X) (q

2ν ′ + 2ϕ′ϕ′′)

(f + q2A1)
, (5.2)

K2 = − 2

f + q2A1

[
1 +O

(
λ,
ϕ′2

q2

)]
, (5.3)

where we have used Eq. (4.19) in the weak-�eld approximation, and all the functions
are evaluated at ϕ = qt and X = −q2. The aim is to see how the solution to Eq. (4.14)
for ω is modi�ed in the case of the scalar-tensor theories, with respect to the GR
solution. We can see that generically the coe�cient κ2 de�ned in Eq. (4.28) is not the
same as in GR, signaling that the screening is broken inside the source. If the condition
rϕ′ϕ′′/q2 ≪ 1 is veri�ed, it is clear from Eq. (5.2) that the corrections to K1 are small
compared to 4/r, in which case ω has the same form as in GR at leading order outside
the star, see Section 4.2. For instance, this condition is satis�ed if the solution for ϕ is
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a power law, and we will see in many examples below that this is generically the case.
Note that only the functions f and A1 directly appear in these coe�cients. Of course
the other functions of the Lagrangian enter the expression for K1 implicitly via the
scalar and metric functions in Eq. (4.14). However, we can immediately see that in a
theory for which fX = A1 = 0 and the Vainshtein mechanism is e�ective in spherical
symmetry, the coe�cientK1 is the same as in GR up to subleading corrections. Indeed,
in this case we have

K1 =
4

r
− λ′ + ν ′

2
+
fϕ
f
ϕ′ .

When the Vainshtein mechanism in spherical symmetry is operational, the �fth force
is screened for r ≪ rV , implying ϕ′ ≪ {λ′, ν ′}. Also, the solutions for {λ, ν} are those
of GR at leading order. Assuming fϕ/f ≲ O(1), these two conditions show that the
GR expression for K1 is recovered up to rV suppressed corrections, which means that
the subleading corrections for ω outside the star are also rV suppressed.

The Vainshtein mechanism in spherical symmetry was studied for DHOST Ia the-
ories in Refs. [54,144,146,147]. Adopting similar notations, we de�ne

x =
ϕ′

r
, y =

ν ′

2r
, z =

λ

2r2
, M(r) = 4π

∫ r

0

ρ(r̄)r̄2dr̄, A(r) =
GM(r)

q2r3
.

Outside the source, we have A = rS/(2q
2r3), and we will de�ne the Vainshtein radius

rV as A(rV ) ∼ 1, meaning that

r3V ≡ rS
q2

. (5.4)

The functions {λ, ν} vary slowly with time in this section, and we assume:

ż ∼ qz, ẏ ∼ qy ,

which can be checked once the solutions for {y, z} are found. The (tt) and (rr) �eld
equations for the metric, Eqs. (4.9) and (4.10), can be solved in terms of x and A, and
written in the form:

y = α1A+ β1x+ γ1x
2 + δ1rxx

′ + η1 , (5.5)

z = α2A+ β2x+ γ2x
2 + δ2rxx

′ + η2 , (5.6)

where all the time-dependent coe�cients are listed in Appendix II.B. They can be
expressed in terms of the Lagrangian functions evaluated on the background ϕ = qt
and X = −q2. Note that these coe�cients are not necessarily dimensionless. In order
to obtain Eqs. (5.5) and (5.6), we have also assumed r ≪ 1/q. In terms of the function
A de�ned above, the Vainshtein screening in the nonrotating case generally happens
when A ≫ 1, which corresponds to r ≪ rV . However, there are deviations from
GR when A ≪ 1, which we will examine in the region rV ≪ r ≪ 1/q where our
equations are valid. The terms we neglected should be kept if we want to match to the
appropriate de Sitter solution at cosmological radii r ≥ 1/q. This is the asymptotic
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condition consistent with the linear time dependence of the scalar �eld, as discussed
in [130] for the cubic Galileon theory.

The expressions (5.5) and (5.6) for y and z can then be substituted in the scalar
�eld equation, Eq. (4.12), yielding a cubic equation for x [144]:

C3x
3 + C2x

2 +

(
C1 + Γ1A+ Γ2

(r3A)′

r2

)
x+ Γ0A+ η3 = 0 . (5.7)

Similarly, using Eqs. (5.5) and (5.6) in Eq. (5.2) results in:

K1 =
4

r

[
1 + α0r

2A+ ζ0
(
r3A

)′
+ β0r

2x+ κ0r
3x′ + γ0r

2x2

+δ0r
3xx′ + σ0r

4
(
xx′′ + x′2

)
+ η0r

2
]
. (5.8)

The coe�cients of Eqs. (5.7) and (5.8) are listed in Appendix II.B. One can see from
Eq. (5.8) that there is always a leading term in the brackets corresponding to the
Minkowski limit of the metric K1 ≃ 4/r (for radii r ≪ 1/q). We discuss below various
cases of Eq. (5.7) leading to di�erent nonrotating solutions [132, 144]. Substituting
the relevant solution for x in Eq. (5.8), we will examine how the modi�cations of
gravity a�ects Eq. (4.24) for ω in the slowly rotating case. We will show that the
leading corrections to the coe�cients K1 and K2 are small and take the form of power
laws. In this case, we showed in Chapter 4 that ω has the GR form at leading order
outside the star, up to an overall factor (which can be absorbed in the de�nition of
the angular momentum of the star as measured by an exterior observer, unless the
density distribution of the star is known). On the other hand, the screening can be
broken inside the star. We will be interested in the subleading corrections to ω when
the leading term is not modi�ed, and compare them to those of GR.

5.2 Outside the Vainshtein radius

We �rst examine the linear regime outside the Vainshtein radius, where we haveA ≪ 1.
There are two di�erent cases, depending on the coe�cient η3. In this regime the
Vainshtein mechanism for nonrotating sources does not operate, and the corrections to
the metric for the spherically symmetric solution are expected to be large. Therefore,
we also expect that the equation for ω receives corrections larger than those inside the
Vainshtein radius.

5.2.1 η3 = 0 and C1 ̸= 0

Let us �rst consider the case η3 = 0. A su�cient condition for this coe�cient to vanish
is K = G3ϕ = 0. In this case, the nonlinear terms in x in Eq. (5.7) can be neglected,
and the solution for x is

x = −Γ0

C1

A ∼ rS
r3

.
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Substituting this expression into Eq. (5.8), we obtain the expression for K1,

K1 =
4

r

[
1 +O

(rS
r

)]
. (5.9)

This shows that the corrections due to the scalar �eld are not suppressed by powers
of the Vainshtein radius, and are of the order of the Newtonian potential. This is
expected in the region r ≫ rV where the Vainshtein screening in spherical symmetry
is no longer e�ective (meaning that we do not have λ′ + ν ′ ≃ 0 in Eq.(5.2)).

5.2.2 η3 ̸= 0 and C1 ̸= 0

If η3 ̸= 0, we have Γ0A ≪ η3, since A ≪ 1. In this case Eq. (5.7) reduces to the
following cubic equation for x with r-independent coe�cients:

C3x
3 + C2x

2 + C1x+ η3 = 0 .

The relevant solution for x must be chosen by taking into account the asymptotic
behavior of the solution at large radii, r ≫ 1/q. Since the coe�cients of the algebraic
equation depend on time only, x does not depend on the radial coordinate and we
have x = x0(t). Substituting this solution into Eq. (5.8), we obtain

K1 =
4

r

[
1 +O

(
q2r2

)]
. (5.10)

Note that here the corrections have a clear physical interpretation; they arise as a
backreaction on the metric due to the �weight� of the scalar �eld, see for instance
Ref. [159]. They are present even in the simplest theory with a minimally coupled
scalar �eld. The corrections are larger in this case than for η3 = 0, considered above.
Indeed, using Eq. (5.4), we obtain that the ratio of the corrections in Eq. (5.9) to the
corrections in Eq. (5.10) are of order (rV /r)

3.
In the rest of this chapter, we will consider the region r ≪ rV , where the Vainshtein

mechanism usually operates in spherical symmetry.

5.3 Case 1: C3 ̸= 0 and Γ1 ̸= 0, inside the Vainshtein

radius

We �rst consider the generic case Γ1 ̸= 0 and C3 ̸= 0 (see Appendix II.B for their
expressions). Note that when Γ1 = 0 then we also have C3 = 0. We assume that
C3Γ1 < 0 and we will con�rm this choice later. Then the solutions to Eq. (5.7) for
r ≪ rV are1

x1 = ±

√
−Γ1A− Γ2

(r3A)′

r2

C3

, (5.11)

1For some theories these solutions have been shown to match de Sitter asymptotics [142].
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where we used A ≫ 1 to simplify the expression. The ± sign must be chosen in
order to match the solution at in�nity, depending on the theory. We have (r3A)′ = 0
outside the star, and therefore our choice C3Γ1 < 0 is indeed correct to have a real
solution in the exterior region. Extra conditions should be also imposed on Γ2 for
the argument of the square root to be positive. In particular, a su�cient condition is
Γ2 < 0. We do not consider the third solution to the cubic equation, since there is no
known example where it is matched to de Sitter asymptotics. (Note however that in
Ref. [132] the asymptotically �at spherically symmetric solutions of this branch were
found, and it was shown that the Vainshtein mechanism is not e�ective for this branch
unless the speed of gravitational waves cT = 1). Substituting the solution (5.11) for x
in Eq. (5.8), we obtain

K1 =
4

r

[
1 +

d
dr

(ι0r
3A+ ι1r

4A′ + ι2r
5A′′) +O

(
q2r2

√
A
)]

, (5.12)

where we assumed A ∼ rnA(n) for the subsubleading part, and the expressions for
the ιi are listed in Appendix II.B. The above expression generically di�ers from its
GR counterpart inside the source (see Eq. (4.26)). In particular, as can be seen from
Eq. (4.26), ι1 = ι2 = 0 in GR. In the exterior region outside the star, R < r ≪ rV , we
have (r3A)′ = 0 and the previous equation simpli�es to

K1 =
4

r

[
1 +O

(
rS
√
r

r
3/2
V

)]
.

Hence, the corrections to the solution for ω are subdominant, as we showed in Chap-
ter 4. Furthermore, they are suppressed by powers of rV , in an analogous way to the
screening in spherical symmetry. In fact, the screening is even more e�ective for ω,
since one has a power rS/rV instead of r/rV as in Eq. (II.16). A similar screening also
happens for the third solution to Eq. (5.7) that cannot be matched to the de Sitter
solution at large radii, which we do not consider here.

5.3.1 A class of shift-symmetric beyond Horndeski theories

Let us now restrict ourselves to the quadratic sector of GLPV theories [44], which
corresponds to the following Lagrangian:

L = f(X)R+K(X)− 2fX
[
(□ϕ)2 − ϕµνϕ

µν
]
+
A3(X)

2
εµνασεληκσϕµλϕνηϕαϕκ , (5.13)

where εµνασ is the totally antisymmetric Levi-Civita tensor, and we have set

f = f(X), A1 = −A2 = 2fX +
1

2
XA3(X), K = K(X), G3 = 0 . (5.14)

In the case of shift-symmetric beyond Horndeski theories, the Vainshtein mecha-
nism for spherically symmetric con�gurations has been studied extensively. In partic-
ular, it was shown in Ref. [137] that the backreaction of the scalar �eld on the metric
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leads to a rede�nition of Newton's constant G. Also, in a subclass of the theory, the
Vainshtein screening has been considered for slowly rotating sources. Indeed, the spe-
ci�c case of constant A3 was studied in Refs. [142, 143] for relativistic stars. It was
shown in this theory that ω satis�es the GR equation outside the star, meaning that
K1 = 4/r exactly, with no subleading corrections. This result remains true for the shift
symmetric theories de�ned above, and does not rely on the weak-�eld approximation,
as we show in Appendix II.A.

We now discuss the equation for ω in the weak-�eld approximation inside the
matter source. After substituting the solution for x, given by Eq. (5.11), the metric
potentials read

y = G̃

(
M

r3
− q4A2

3M
′′

4r[f(−q2A3X + 2A3 + 4fXX)− q2A3fX + 4f 2
X ]

)
,

z = G̃

(
M

r3
+

q2A3(−2q4A3X − 4fX + 5q2A3 + 8q2fXX)M
′

4r2[f(−q2A3X + 2A3 + 4fXX)− q2A3fX + 4f 2
X ]

)
,

(5.15)

where we have de�ned an e�ective gravitational constant

G̃ =
2G

2f + 8q2fX − 8q4fXX − 5q4A3 + 2q6A3X

.

The above equations show that the Vainshtein mechanism in spherical symmetry is
broken inside the source [138], but that GR is recovered in the exterior region where
M is constant.

Substituting the metric potentials in Eq. (4.14), with the coe�cients given by
Eqs. (5.3) and (5.8), the equation for ω inside the star and in the weak-�eld limit
reads

ω′′ +
4

r

[
1− GM ′

2(2f + 4q2fX − q4A3)

]
ω′ = − 8GM ′Ω

r2(2f + 4q2fX − q4A3)

[
1 +O(r2z)

]
,

which is the same equation as in GR (up to the subleading term in the coe�cient K2)
provided we rede�ne Newton's constant as:

G∗ =
2G

2f + 4q2fX − q4A3

̸= G̃ .

As we can see, in general the two rede�ned Newton constants G̃ andG∗ do not coincide.
This means that the coe�cient κ2 is not the same as in GR, and the Vainshtein
screening is broken inside the star (see Eq. (4.31)). This is expected for A3 ̸= 0 since the
Vainshtein screening for static sources is broken inside matter for these theories [138].
However, this remains true even for A3 = 0 when the Vainshtein screening in the
nonrotating case works inside the star (as can be seen from Eq. (5.15)). Note that the
two rede�nitions of G coincide in theories with fX = fXX = A3 = A3X = 0, but in
this case Γ1 = C3 = 0, so the analysis of the present section is not valid.
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5.4 Case 2: C3 = Γ1 = 0 and C2 ̸= 0 inside the Vain-

shtein radius

In this section, we consider the particular subclass of DHOST Ia theories verifying

2fA1X + 2A1fX + fA3 = 0 , (5.16)

which implies C3 = Γ1 = 0. In this case Eq. (5.7) is quadratic, and the general solution
reads

x2 = −
r2C1 + Γ2(r

3A)′ ±
√

[r2C1 + Γ2(r3A)′]2 − 4r4AC2Γ0

2r2C2

. (5.17)

Assuming Γ0C2 < 0 and neglecting C1 in the limit A ≪ 1, the solution for x2 in the
exterior region R < r ≪ rV is

x2out = ±
√

−AΓ0

C2

. (5.18)

Substituting this expression in Eq. (5.8), we obtain

K1 =
4

r

[
1 + ξ

rS
r

+O

(
rS
√
r

r
3/2
V

)]
, (5.19)

where the coe�cient ξ reads

ξ =
α0

2
+

Γ0

4C2

[3 (δ0 − 4σ0)− 2γ0] .

The full expression for ξ is rather lengthy, but it can be rewritten in the form

ξ =
[
f + q2A1

] [
f
(
q2A1X + 2fX

)
+ A1

(
−f + q2fX

)]
ξ0 , (5.20)

where the coe�cient ξ0 is in general a time-dependent function. Several interesting
observations can be made from Eq. (5.20). First of all, for theories with A1 = A3 =
fX = 0 (we also used the condition (5.16)), one automatically obtains ξ = 0. This
means that there are only subleading (Vainshtein suppressed) corrections to the coef-
�cient K1, see Eq. (5.19). For example, this is the case for the cubic Galileon, which
we will discuss in more detail below.

In fact, from Eq. (5.19) one can draw a conclusion for more general theories, namely
those satisfying the constraint (5.16) with fX ̸= 0. Indeed, assuming that the Vain-
shtein mechanism in spherical symmetry is at work, the metric potentials approxi-
mately verify the GR relation in vacuum:

y − z = 0 .
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This relation is valid whenever the Vainshtein mechanism in spherical symmetry op-
erates outside the star, up to subleading corrections. Substituting Eq. (5.18) into
Eqs. (5.5) and (5.6), we obtain

r2 (y − z) = −4ξ0fX
(
f + q2A1

)2 rS
r

+O

(
rS
√
r

r
3/2
V

)
. (5.21)

We see that if fX ̸= 0, one must impose ξ0 = 0 to recover the Vainshtein screening in
the absence of rotation (since f+q2A1 ̸= 0 in the DHOST Ia class). In this case, ξ also
vanishes, see Eq. (5.20). On the other hand, when Eq. (5.16) is satis�ed but fX = 0,
the Vainshtein mechanism operates in spherical symmetry, but ξ is not necessarily
zero, as we will see in an explicit example below.

5.4.1 Example 1: theory with larger corrections to the frame-

dragging function in the exterior region

As we mentioned above, there are theories which allow for the spherically symmetric
Vainshtein screening, but for which the corrections to the frame-dragging equation are
of the order of the Newtonian potential (showing that the screening is less e�ective for
ω than for the metric potentials). We consider such theories in detail in the present
section. If Eq. (5.16) is satis�ed, a necessary condition for the Vainshtein mechanism
to work in spherical symmetry if ξ0 ̸= 0 is fX = 0. This can be seen from Eq. (5.21),
which shows deviations of the metric functions from the GR case. If we assume fX = 0,
Eq. (5.16) implies A3 = −2A1X . Assuming f = f(ϕ), the dimensionless coe�cient ξ
can be written

ξ =
Nξ

Dξ

,

where Nξ and Dξ read

Nξ =
(
f + q2A1

) (
q2A1X − A1

) [
fϕ
(
2q2A1 + f − q4A1X

)
−q2A1ϕ

(
3q2A1 + 4f + q4A1X

)
+ q2

(
f + q2A1

) (
3G3X + 2q2A1ϕX

)]
,

Dξ =
(
3q2A1 + 2f − q4A1X

)2 [
f 2
(
4G3X − 6A1ϕ + 4q2A1ϕX

)
+ q2A1fϕ

(
q2A1X − 3A1

)
+q2fA1ϕ

(
4A1G3X − 3A1A1ϕ − 3q2A1XA1ϕ + 4q2A1A1ϕX − 2fϕA1X

)]
.

Note that since we consider the case C2 ̸= 0, we haveDξ ̸= 0. The metric potentials
in these theories read:

r2y = ι3
rS
r

+O

(
rS
√
r

r
3/2
V

)
, (5.22)

r2z = ι3
rS
r

+O

(
rS
√
r

r
3/2
V

)
, (5.23)
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where the coe�cient ι3 is given in Appendix II.B.
After rede�ning Newton's constant, the metric potentials have the GR form up

to subleading corrections, meaning that the Vainshtein mechanism works in spheri-
cal symmetry. Meanwhile ξ ̸= 0, and therefore the corrections to the frame-dragging
function ω are of order rS/r, as Eq. (5.19) shows. This implies that the screening for
ω is not as e�ective as it is for the metric potentials λ and ν. We have thus demon-
strated for a particular theory that the Vainshtein screening in spherical symmetry is
not su�cient to ensure that the leading corrections to the GR expression for ω are
suppressed by powers of rV .

In order to give a simpler example, let us consider the particular case of shift-
symmetric theories. We set f = f0 = const., since we must have fX = 0, and we
assume that the other functions depend on X only. In this case the previous expression
simplify and we obtain

ξ(s) =
3q2 (f0 + q2A1) (q

2A1X − A1)

4f0 (2f0 + 3q2A1 − q4A1X)
2 , (5.24)

ι
(s)
3 =

q2A1 (15f0 + 6q2A1) + f0 (8f0 − q4A1X)

4f0 (2f0 + 3q2A1 − q4A1X)
2 , (5.25)

where the subscript �(s)� refers to shift-symmetric theories. Hence, unless we have
A1 ∼ 1/X, this provides a simple example for which the Vainshtein screening in
spherical symmetry does not imply rV suppressed corrections for the frame-dragging
function.

5.4.2 Example 2: theory with cT = 1 and no decay of the gravi-
ton into dark energy

Most of the DHOST Ia theories as models of dark energy [53] have been ruled out by
the constraint cT = 1 (i.e. the graviton propagates at the speed of light) coming from
the merger of a binary neutron star system [56,58,59], and requiring that the graviton
does not decay into dark energy [63]. The surviving theories correspond to the choice

A4 =
6f 2

X

f
and A1 = A2 = A3 = A5 = 0 . (5.26)

The Vainshtein screening in the absence of rotation for these theories was studied in
Refs. [146,147]. It was shown that the screening is broken inside the star, and that it
may work in the exterior region provided the parameters of the theory are �ne-tuned.

Outside the source: Outside the star, the coe�cient K1 is of the form (5.19), with

ξ =
fX [fϕ (f − 10q2fX) + q2f (3G3X + 2fϕX)]

8(f + q2fX)2(fG3X − 3fXfϕ)
,
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where we used Eq. (5.26). Note that the denominator does not vanish in the case
C2 ̸= 0. It was shown in [146, 147] that the Vainshtein mechanism can work outside
the star in this theory if the parameters verify

fX
[
fϕ
(
f − 10q2fX

)
+ q2f (3G3X + 2fϕX)

]
= 0 . (5.27)

Interestingly, this is exactly the condition for ξ to vanish, as can be seen from the above
expression. This shows that if we �ne-tune the parameters to recover the Newtonian
potential outside the source, then the screening for ω becomes more e�ective, in the
sense that corrections to the GR expression for ω are suppressed by powers of rV (see
Eq. (5.19)). If this condition is veri�ed, the potentials in the exterior region read

r2y = r2z =
rS

2r (f + q2fX)
+O

(
rS
√
r

r
3/2
V

)
.

In this case, GR is recovered if Newton's constant is rede�ned according to

G̃ =
G

f + q2fX
. (5.28)

Inside the source: Let us examine the (tφ) equation inside the source, where
(r3A)′ ̸= 0 and we assume rA′ ∼ A. We also assume

Γ2 = −192q2f 2fX
(
f + q2fX

)
̸= 0 ,

which implies that the leading term inside the square root of Eq. (5.17) is the one
containing the coe�cient Γ2. One of the branches obtained with these assumptions is
physically unacceptable,2 as argued in Ref. [146], so we focus on the second branch for
which

r2x ≃ −Γ0

Γ2

r4A
(r3A)′

∼ O
(
q2r2

)
.

This expression is only valid when (r3A)′ ̸= 0 and (r3A)′ ≫ 1. We assume that the
Vainshtein mechanism in spherical symmetry operates outside the source, meaning
that condition (5.27) is veri�ed. In terms of the constant G̃ de�ned in Eq. (5.28), the
frame-dragging equation inside the star reads

ω′′ +
4

r

[
1 +

q2fXG̃M

r(f + q2fX)
− (f + 2q2fX)G̃M

′

4(f + q2fX)
+O

(
q2r2

)]
ω′

+
4(f + q2fX)G̃M

′Ω

fr2
[
1 +O(r2z)

]
= 0 .

2In this case the potentials in the Newtonian gauge have the form Φ′ ≃ −Ψ′ ∼ M ′M ′′

r2 − M ′2

r3 , which
is far from the normal GR behavior.
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On the left-hand side of this equation, there is an extra term ∝ G̃M/r compared to
the equation in GR (see Eq. (4.26)). Note that this term is nonzero, since we study
the case Γ2 ̸= 0, which implies fX ̸= 0 (see Appendix II.B). The screening is broken
inside the star, because generically κ2 ̸= −2 when fX ̸= 0 as can be seen from the
equation above. This behavior is not surprising, since the Vainshtein mechanism in
spherical symmetry is broken inside the source. Note that the expressions forK1 inside
and outside the star were obtained in di�erent limits ((r3A)′ ≫ 1 in the former and
(r3A)′ = 0 in the latter case), therefore they cannot be matched at the surface of the
star. One would have to solve the full equation to obtain a continuous pro�le, as was
done in Ref. [146].

5.4.3 Example 3: cubic Galileon

The time-dependent cubic Galileon was studied in Ref. [132], and also in Ref. [130],
where the appropriate de Sitter asymptotics were discussed. To get the cubic Galileon
from the general action (31), we set

f = 1, G3 = βX, K = ηX, Ai = 0 . (5.29)

With these choices, we have that Γ2 = 0 in Eq. (5.7), and the expression for x for
r ≪ rV reads

x = ±q2
√

A
2
.

The sign should be chosen when properly examining the asymptotic behavior for large
radii, but it does not a�ect the resulting equation for ω (since quadratic terms are
dominant in Eq. (5.8) inside the Vainshtein radius) both inside and outside the star.
The equation for the frame-dragging function can be written as follows:

ω′′ +
4

r

[
1− GM ′

4
+O

(
q2r2

√
A
)]

ω′ = −4GM ′Ω

r2

[
1 +

2GM

r
+O

(
q2r2

√
A
)]

,

where we have assumed A ∼ rA′ and βq2 ∼ 1. By comparing the above equation
with Eq. (4.26) and taking into account Eq. (5.4), we can see that the corrections for
ω to the GR equation are suppressed by powers of rV inside the Vainshtein radius
both inside and outside the source. Using the results of Section 4.2, we then conclude
that deviations from the GR expression for ω are also suppressed by powers of rV in
a way analogous to the screening in spherical symmetry. It should also be noted that
nonlinear GR corrections (which we did not take into account) may be larger than
those due to modi�ed gravity, but they are of course still smaller than the linear GR
terms.
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Chapter 6

Slow rotation with a static scalar �eld

We set q = 0 in this chapter, meaning that ϕ = ϕ(r), and consider the shift-symmetric
sector of the DHOST Ia class, i.e. the theories which are invariant under the transfor-
mation

ϕ→ ϕ+ const.

This symmetry is associated with a conserved current

Jµ = − δL
δ(∂µϕ)

,

so that in this case the scalar �eld equation is simply

∇µJ
µ = 0 .

It was shown in Ref. [160] that such theories generically lead to a trivial scalar �eld,
i.e. ϕ′ = 0, in spherically symmetric con�gurations.1 Because of the shift-symmetry,
this is equivalent to having ϕ = 0. In order to avoid this no-hair theorem for stars,
we introduce an additional linear coupling of the scalar �eld to the Ricci scalar of the
form αϕR, which breaks the shift symmetry. This coupling to the curvature provides
a nontrivial scalar �eld con�guration with rich phenomenology, including k-mou�age
gravity [126], an analog of the Vainshtein mechanism. In this setup, the scalar equation
can be written in the form

∇µJ
µ = −αR , (6.1)

where Jµ is the conserved current associated with the shift symmetry of the action
when α = 0. In the following, we will focus on the quadratic Horndeski theory, i.e. we
will consider the Lagrangian

L = (f(X) + αϕ)R +K(X)−G3(X)□ϕ− 2fX
[
(□ϕ)2 − ϕµνϕ

µν
]
. (6.2)

1We do not give details about the precise hypotheses of the theorem, which can be found in [160].
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For these theories, the current associated to shift-symmetry reads

Jµ = 4RµνϕνfX −Xµ (G3X + 4fXX□ϕ) + 4fXXϕ
µνXν

− 2ϕµ
[
RfX +KX −G3X□ϕ+ 2fXX

(
ϕαβϕ

αβ − {□ϕ}2
)]

.
(6.3)

Interestingly, the current equation (6.1) can be integrated in the weak-�eld regime,
and we obtain

1

r2
d
dr

[
r2Jr + α

(
2rλ− r2ν ′

)]
= 0 ,

where we have used Eq. (II.9) to express the Ricci scalar in the weak-�eld regime.
Even though the action is not shift-symmetric if α ̸= 0, there is an e�ective conserved
current in the weak-�eld limit in this particular case of a linear coupling to the Ricci
scalar. In the following, we will set the integration constant to 0, in order for the norm
of the current JµJµ = eλ(Jr)2 to be regular at the center of the star. In this case, the
scalar �eld equation reads

rJr + α (2λ− rν ′) = 0 . (6.4)

It is clear from the above equation that the radial component of the current cannot be
zero, in contrast to the shift-symmetric time-dependent case, where we have Jr = 0.
The presence of the symmetry-breaking term, when α ̸= 0, renders Jr nonzero. This,
and the fact that the ratio ϕ′2/q2 is no longer a small parameter in the equations,
cf. Eq. (5.1), changes the results in the weak-�eld approximation. This means that
one cannot simply set q = 0 in the analysis of the previous chapter, but it is instead
necessary to proceed starting from square one.

6.1 K-essence

Let us �rst consider a k-essence theory, i.e. we take f = 1, Ai = 0 andK = γXp, where
p ∈ N\{0, 1} and µ is constant. Neglecting the backreaction of the energy-momentum
of the scalar �eld on the metric, which corresponds to neglecting nonlinear scalar
contributions in Eqs. (4.9) and (4.10), one can integrate Eq. (4.9) to obtain the metric
potentials:

λ =
2GM(r)

r
+ αrϕ′ ,

ν ′ =
2GM(r)

r2
− αϕ′ .

(6.5)

After combining these expressions with Eq. (6.4), we obtain the following equation for
the scalar �eld:

2αGM(r)

r2
+ 3α2ϕ′ − 2pγϕ′2p−1 = 0 . (6.6)
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6.1.1 Linear regime

Outside the star, we have 2GM(r) = rS, and in the limit r → ∞ we can neglect the
nonlinear term in Eq. (6.6). In that case, the solution for the scalar �eld can easily be
found:

ϕ′
lin = − rS

3αr2
. (6.7)

Note that the limit α → 0 is not well de�ned in Eq. (6.7). This is a consequence of the
absence of a standard kinetic term in the considered theory. Indeed, due to the mixing
term αϕR the scalar degree of freedom has a kinetic term. However, it disappears
in the limit α → 0, thus making the theory strongly coupled. Said di�erently, the
nonlinear term is dominant for small α, and therefore the linear regime is nowhere
valid.

Using Eq. (6.7) in Eqs. (6.5), one can see that in the linear regime, the GR condition
λ + ν = 0 is not satis�ed even approximately. Instead, the solutions of the system
(6.5) read

λ =
2rS
3r

and ν = −4rS
3r

, (6.8)

meaning that deviations of the metric potentials from the GR solutions are of O(1).
Upon substituting Eqs. (6.7) and (6.8) into Eq. (5.2) for ω, we obtain

ω′′ +
4

r

(
1− rS

6r

)
ω′ = 0 . (6.9)

This expression is to be compared with Eq. (4.26) in vacuum, for which M ′(r) = 0.
One can see that the term proportional to rS has a coe�cient di�erent from the GR
case. Thus, according to the results of Chapter 4, the leading term in the solution
for ω is the same as in GR, unlike the metric potentials. However, the subleading
corrections in the weak-�eld approximation are of order rS/r. As we will see below,
the screening is less e�ective than in the region r ≪ rV , where the leading corrections
are suppressed by powers of rV .

6.1.2 Inside the Vainshtein radius

The linear regime breaks down at the Vainshtein radius r ∼ rV , where nonlinear
terms become important. Let us determine rV by taking the solution for ϕ′ at in�nity
and evaluating at which radius the nonlinear term becomes comparable to the linear
one [126]. We �nd

r2V = rS

(
6p|γ|
32pα2p

) 1
2p−2

. (6.10)

For r ≪ rV , we can neglect the linear term in Eq. (6.6), and in this range of radii the
scalar �eld reads

ϕ′ = sgn [αγ]

(
|α|GM(r)

r2p|γ|

) 1
2p−1

. (6.11)
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Note that the limit α → 0 is well de�ned, and in that case we have ϕ′ → 0, in contrast
to the solution in the linear regime Eq. (6.7). The limit is consistent with the solution
to the scalar equation (6.6) for α = 0. In the limit α → 0, the Vainshtein radius given
by Eq. (6.10) is in�nite; therefore, the Vainshtein mechanism operates for all distances
and the linear regime is invalid.

In the region r ≪ rV , one can compare the strength of the �fth force with the
Newtonian force {λ′GR, ν ′GR} ∼ 2GM/r2, obtained by setting ϕ = 0 in Eq. (6.5):∣∣∣∣ ϕ′

{λ′GR, ν ′GR}

∣∣∣∣ ∼ 1

3|α|

(
rSr

2

2GM(r)r2V

) 2p−2
2p−1

.

Outside the source, in the region R ≤ r ≪ rV , we have 2GM = rS, and it is clear that
the �fth force is screened. Inside the star, assuming it has a constant density ρ0, we
have 2GM(r) = rSr

3/R3. In this case, it is clear from the above expression that the
�fth force becomes dominant for radii smaller than r∗ = R3/r2V ≪ R. Meanwhile, in
the region r∗ ≪ r ≤ R, the �fth force is screened. To examine the e�ects of rotation,
we substitute Eq. (6.6) into the (tφ) metric equation. Assuming for instance that
αγ > 0 (the other case is analogous), the coe�cients K1 (outside and inside the star
respectively) and K2 read

Kout
1 =

4

r

[
1 +O

(
rS
rV

(
r

rV

) 2p−3
2p−1

)]
,

K in
1 =

4

r

[
1 +

rSr

8r2V

(
3− 4p

3(1− 2p)

(
r

r∗

) 1
2p−1

− 3r

r∗

)]
,

K2 = −2

[
1 +

rSr
2

R3

(
1 +O

(r∗
r

) 2p−2
2p−1

)]
.

This shows that the Vainshtein mechanism operates in the region r∗ ≪ r ≪ rV .
Furthermore, corrections to the GR expression for ω are suppressed by powers of rV
in this region. On the other hand, the subleading correction to ω di�ers from GR in
the region r ≤ r∗, due to a di�erent power law as compared to the GR case. Hence,
the screening for ω is less e�ective in this region, meaning that corrections to the GR
expression are not rV suppressed. One can check that the size of the value of r∗ is
very small in physically relevant situations, i.e. r∗ ≪ R.

6.2 Cubic Galileon

We now discuss the cubic Galileon theory, de�ned by the relations (5.29). The static
Vainshtein screening in this theory was studied in Ref. [130], though the authors
considered both a time dependence of the scalar �eld and a coupling of the scalar
to the matter �elds. The slow rotation in this theory has already been discussed in
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Ref. [136], where it was found that the correction to the (tφ) equation coming from
the Galileon term is highly suppressed. The scalar �eld equation (6.4) is quadratic in
ϕ′, and the solution reads

ϕ′ =
µrrS
r3V

[
1−

√
1 +

(rV
r

)3]
, (6.12)

where we chose the solution that does not diverge at r → ∞, and the constants µ and
rV are given in Eq. (II.14). We assume αβ < 0, in order to have rV > 0. The solution
for the scalar �eld in the linear regime, i.e. r ≫ rV , is similar to its counterpart in the
case of k-essence, see Eq. (6.7). The di�erence is that in the case of the cubic Galileon
we included a canonical kinetic term, and therefore the limit α → 0 is well de�ned in
this regime as well. In the linear regime, the equation for the frame-dragging function
is modi�ed in a similar way to the k-essence case, Eq. (6.9), and the conclusions of
the previous section about a less e�ective screening for ω hold. Inside the Vainshtein
radius, i.e. for r ≪ rV , we expand the solution (6.12) and obtain

ϕ′ =
2αrS

k2r
3/2
V

√
2GM

rSr
.

In order to study the equation for the frame-dragging function inside the star, we
assume that the matter source has a constant density. It is easy to check from the
above expression that the �fth force is screened everywhere in the region r ≪ rV , unlike
in the k-essence case, where the �fth force becomes dominant for small radii inside the
source (see Section 6.1). Substituting the expression for ϕ′ into the (tφ) equation, we
obtain the following expressions for the coe�cients K1 (outside and inside the source)
and K2:

Kout
1 =

4

r

[
1 +O

(
rS
√
r

r
3/2
V

)]
,

K in
1 =

4

r

[
1− 3rSr

2

8R3

(
1 +O

(
R3/2

r
3/2
V

))]
,

K2 = −2

[
1 +

rSr
2

R3

(
1 +O

(
R3/2

r
3/2
V

))]
.

For a star of constant density, ρ0 = 3rS/R
3, the leading corrections to the GR equa-

tion (4.26) are suppressed by powers of rV . This means that the corrections to the GR
solution for ω are also suppressed by powers of rV , in a way analogous to the screening
in spherical symmetry.
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6.3 Quadratic sector of Horndeski theory

We now consider the quadratic sector of Horndeski theory, and set

K = G3 = 0 . (6.13)

We will treat the case fXX = 0 separately, since the scalar equation is di�erent in that
case.

6.3.1 Case fXX ̸= 0

For now let us assume fXX ̸= 0. Neglecting nonlinear terms in the (tt) and (rr)
equations, the expressions for {λ, ν} are the same as Eq. (6.5). After substituting
these expressions for the metric potentials, the scalar equation reads

2αGM(r) + 3α2r2ϕ′ + 8ϕ′3fXX = 0 , (6.14)

where fXX is evaluated at X = ϕ′2. In the nonlinear regime outside the source, i.e. for
R ≤ r ≪ rV , the linear term in Eq. (6.14) can be neglected. In that case, the scalar
�eld is constant and satis�es the equation

8ϕ′3fXX = −αrS ,

unless f(X) ∝
√
X, in which case the nonlinear term disappears in the scalar equation.

For these particular theories, solving Eq. (6.14) leads to ϕ′ ∼ 1/r2 everywhere outside
the star. A similar case was studied in an application to black holes in Ref. [161]. In
the general case, when f(X) is not proportional to

√
X and fXX ̸= 0, the derivative

of the scalar �eld ϕ′ must be constant. This allows us to simplify the equation for ω,
since ϕ′′ = 0. Let us examine what happens for polynomial functions of the form

f(X) = 1 + κXp ,

with κ a constant coe�cient and p > 1 so that fXX ̸= 0. The spherically symmetric
Vainshtein regime in such theories was discussed in Ref. [135]. For large radii, one can
neglect the nonlinear term in Eq. (6.14), and the solution for ϕ′ is the same as those for
k-essence and the cubic Galileon discussed above. One can then de�ne a Vainshtein
radius rV by equating the linear and nonlinear terms in Eq. (6.14), and show that in
the region r ≪ rV the �fth force reads

ϕ′ ∼ rS
3αr2V

(
2GM(r)

rS

) 1
2p−1

. (6.15)

It is constant outside the source, and one can easily check that it is screened for
r ≪ rV . Inside the source the situation is similar to the k-essence theories discussed
above. Indeed, for a star of constant density the �fth force becomes larger than the
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Newtonian force near the center of the star when p > 2 (for p = 2, |ϕ′| grows linearly
and the Vainshtein screening is e�ective for all radii r ≪ rV ). For p > 2, the �fth force
becomes dominant for radii smaller than some r∗ ≪ R. A simple estimate, assuming
that rV is of the order of Neptune's distance to the Sun, gives r∗ ≤ 10 m (the case of
k-essence is recovered for large p), while for more realistic Vainshtein radii, the value
of r∗ is much smaller. As in the k-essence theories, this small radius is not physically
relevant.

Substituting the solution (6.15) into the (tφ) equation, we obtain the following
expressions for the coe�cients K1 (outside and inside the source) and K2:

Kout
1 =

4

r

[
1 +O

(
rSr

r2V

)]
,

K in
1 =

4

r

[
1− 3rSr

2

8R3

(
1 +

R2

r2V
· O
(
R

r

) 2p−4
2p−1

)]
,

K2 = −2

[
1 +

rSr
2

R3

(
1 +

R2

r2V
· O
(
R

r

) 2p−4
2p−1

)]
.

(6.16)

Using the results of Section 6.2, one can see that for p = 2 the situation is similar to
the cubic Galileon case. The corrections to the GR expression for ω are suppressed
by powers of rV , and the screening operates in a way analogous to the spherically
symmetric mechanism. For p > 2, the situation is similar to the k-essence case, and
the subleading terms in the solution for ω are not the same as in GR in the region
r ≤ r∗. However, as we discussed above, this region is not physically relevant.

6.3.2 Case fXX = 0

Let us now look at the case where the Lagrangian contains a derivative coupling to
the Einstein tensor ∼ ϕµϕνGµν , which corresponds to

f(X) = 1 + κX .

The spherically symmetric Vainshtein mechanism in this theory was discussed in
Ref. [134]. The particularity of this Lagrangian in application to the Vainshtein mech-
anism is that the leading nonlinear term in the scalar equation (6.14) vanishes. There-
fore we have to keep nonlinear terms in the metric equations, as well as the subleading
term for the scalar current, since the leading term vanishes. This modi�es the expres-
sion for λ (compared to Eq. (6.5)), and the metric potentials read

λ =
2GM(r)

r
+ αrϕ′ − 2κϕ′2 ,

ν ′ =
2GM(r)

r2
− 2αϕ′ .

(6.17)



78 Chapter 6. Slow rotation with a static scalar �eld

Substituting these expressions into the scalar equation, we obtain

2αGM(r) + 3α2r2ϕ′

[
1− 4

κϕ′

αr
+

8

3

(
κϕ′

αr

)2
]
= 0 .

In the linear regime, the scalar �eld is given by Eq. (6.7), as in the previous case.
We de�ne the Vainshtein radius as κϕ′(rV ) ∼ αrV , which implies that both nonlinear
terms are of the same order around r ∼ rV . Using the expression for ϕ′ in the linear
regime, we obtain

r3V =
|κ|rS
3α2

.

In the nonlinear regime r ≪ rV , the expressions (6.17) for the metric potentials imply
that κrϕ′2 ≪ GM in order for the static Vainshtein screening to work. In this case,
one can show that the cubic term dominates in the scalar equation (otherwise we �nd
κrϕ′2 ∼ GM , which modi�es the GR expression for λ in Eq. (6.17)), and the �fth force
reads

ϕ′ = − rS
3αr2V

(
GM(r)

4rS

)1/3

.

The above expression is similar to the one obtained for p = 2 in the previous section.
This means that the �fth force is screened for all radii r ≪ rV , inside and outside
the matter source. After substituting this expression in the (tφ) metric equation, we
obtain the following coe�cients for the frame-dragging equation:

Kout
1 =

4

r

[
1 +O

(
rSr

r2V

)]
,

K in
1 =

4

r

[
1− 3rSr

2

8R3

(
1 +O

(
R2

r2V

)
+O

(
rSr

2

R2rV

))]
,

K2 = −2

[
1 +

rSr
2

R3

(
1 +O

(
R

rV

))]
.

The subleading corrections depend on the value of r inside the star. In any case,
however, the corrections to the GR expression for ω are screened by a power of rV ,
and the conclusions are the same as for p = 2 in the previous section. It is worth
stressing again that in addition to these corrections due to modi�cations of gravity,
there exist nonlinear GR terms. Both types of contributions can be seen as higher-
order corrections to linearized GR. We do not consider them here, though it is possible
for these corrections to be larger than those coming from modi�ed gravity.
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Conclusion to Part II

We have analyzed the validity of the Vainshtein mechanism for slowly rotating stars
in scalar tensor theories belonging to the DHOST Ia class. While it is usually studied
for spherically symmetric objects, we have shown that, in general, slow rotation does
not spoil the Vainshtein screening. We also found that in most situations, when the
Vainshtein screening operates in spherical symmetry, the leading corrections to the GR
expression for ω in the weak-�eld approximation are also suppressed by powers of the
Vainshtein radius rV . Importantly, even though the corrections to ω may receive sizable
modi�cations (inside the star), the metric functions ν and λ are not modi�ed. This
means that if the theory exhibits the Vainshtein mechanism in spherical symmetry,
slow rotation does not change the Vainshtein suppression of non-GR corrections to the
�static� part of the metric ν and λ, independently of the behavior of the frame-dragging
function ω. We applied the Hartle-Thorne formalism for slowly rotating stars to the
scalar-tensor theories of the DHOST Ia class, and considered both a time-dependent
and a static scalar �eld. Our main purpose was to study the equation for ω and
compare the results with the standard GR case.

In the �rst part of Chapter 4, we found the general equation for the frame-dragging
function in DHOST Ia theories, Eq. (4.14), with coe�cients K1 and K2 given by
Eqs. (4.15) and (4.16), respectively. For slowly rotating relativistic sources in a sub-
class of Horndeski theory, we calculated exact expressions for the coe�cients K1 and
K2 and showed that the vacuum GR equation for the frame-dragging function is fully
recovered, see Appendix II.A. This result also applies to the quadratic beyond Horn-
deski theories, namely the theories described by the Lagrangian (5.13). It can also be
extended to general shift-symmetric DHOST Ia theories, with the additional assump-
tion that the kinetic term for the solution has the constant value X = −q2.

In the rest of this part, we assumed that the weak-�eld approximation is valid, see
Eq. (4.23). In Section 4.2, we derived the equation satis�ed by the frame-dragging
function in this limit, and showed that outside the star the solution is the same as in
GR at leading order. Inside the source, we showed that the screening can be broken,
in which case κ2 ̸= −2, see Eq. (4.28). We also computed corrections to the solution
for ω, assuming that the coe�cients of the frame-dragging equation acquire small
modi�cations. In Chapter 5 we studied the equation for the frame-dragging function
for various subclasses of the DHOST Ia class in the case q ̸= 0, i.e. when the scalar is
time-dependent. In Section 5.1, we found the expressions for the coe�cients K1 and
K2 of the equation for ω in this approximation, Eqs. (5.2) and (5.3). We then used
the metric �eld equations to obtain the coe�cient K1 in terms of the scalar �eld only,
Eq. (5.8). In Section 5.2, we showed that outside the Vainshtein radius the coe�cient
K1 receives a correction suppressed by rS/r or q2r2, Eqs. (5.9) and (5.10). To study
the region inside the Vainshtein radius, we considered di�erent classes of theories case
by case in Sections 5.3 and 5.4. In most cases, when the Vainshtein screening works in
spherical symmetry, the corrections to the GR expression for ω are screened by powers
of rV , in a way analogous to what happens in the nonrotating case. However, we have
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found a particular theory for which the suppression is not as e�ective, in this case the
leading correction is suppressed by rS/r instead. We also studied a di�erent class of
theories for which the static metric potentials in the nonrotating case are exactly the
same as in GR (possibly up to a rede�nition of Newton's constant), while the screening
for ω is broken inside the star.

The case of a static scalar �eld was discussed in Chapter 6, and we found that
the results are similar to the time-dependent case. In all the examples we considered,
the Vainshtein mechanism works for the frame-dragging function ω. Furthermore,
the screening is more e�ective in regimes where the Vainshtein mechanism operates in
spherical symmetry, meaning that the corrections to the GR expression are suppressed
by powers of rV . Meanwhile, outside the Vainshtein radius, the coe�cients of the
frame-dragging equation receive non-screened corrections, see e.g. Eq. (6.9) for k-
essence. The screening still works for the frame-dragging function ω, but it is less
e�ective in this region.

Although our results show that the deviations from GR are always small (outside
the source), it is interesting to see whether local gravity tests can provide additional
constraints on scalar-tensor theories coming from the sub-leading modi�cations to the
frame-dragging function. Probably the simplest way is to check constraints on PPN
parameters (although it should be noted that precisely speaking the PPN analysis
does not apply). The frame-dragging function ω can be written as (see for instance
section 4.4 of Ref. [50]),

ωPPN =

(
1 + γ +

1

4
α1

)
J

r3
.

We have ω = 2J/r3 in GR, and hence deviations from GR are characterized by the
combination γ − 1 + α1/4. This is to be compared to our results on the frame-
dragging function. Generically the deviation of ω from its GR value is of order rS/r
for non-Vainshtein suppression, and much smaller for the Vainshtein suppressed cases.
Therefore the combination of PPN parameters γ−1+α1/4 is not larger than O(rS/r)
in our case, which gives a deviation of order 10−8 at Earth's orbit. This value is well
within the experimental constraints on both γ and α1, and therefore we do not get
any additional constraints on the parameters of the scalar-tensor theories from this
estimation.
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Appendix

II.A Relativistic sources in shift-symmetric theories

In this appendix, we study the slow rotation of relativistic stars for shift-symmetric
theories that are invariant under ϕ → −ϕ, meaning we set G3 = 0. We also assume
slow rotation, but otherwise the equations are fully nonlinear in the metric functions
λ and ν, i.e. we do not assume the weak-�eld approximation in this section.

II.A.1 Horndeski theories

We �rst consider Horndeski theories with general functions f(X) and K(X), in which
case the Lagrangian density reads:

L = f(X)R +K(X)− 2fX
[
(□ϕ)2 − ϕµνϕ

µν
]
. (II.19)

The authors of Ref. [153] studied slowly rotating neutron stars in the case when f(X)
and K(X) are linear functions of X. They showed that the equation for ω in vacuum
reduced to the GR expression, meaning that we have K1 = 4/r and the term propor-
tional to K2 in Eq. (4.14) is absent. In fact this property was pointed out before in
Refs. [151, 152], in the case of slowly rotating black holes. We now extend this result
to a more general class of theories. We assume fXX ̸= 0, since the case fXX = 0 was
treated in Ref. [153]. With this assumption, the scalar �eld can be obtained in terms
of {λ, ν, ν ′} from the equation Etr = 0:

ϕ′2 =
eλ
[
−2fX

(
1 + rν ′ − eλ

)
+ r

(
4q2fXXν

′e−ν + rKXe
−λ
)]

4fXX (1 + rν ′)
.

One then substitutes this expression into the (rr) component of the metric equations
to obtain λ in terms of ν ′:

eλ =
2 (1 + rν ′) (f 2

X + ffXX)

2f 2
X + r2fXKX + fXX (2f + r2K + 2r2P/M2

P )
.

Using the (tt) equation one can then obtain λ′ in terms of {λ, ν, ϕ′, ϕ′′, ρ}. After
substituting this expression in Eq. (4.18), the second derivatives of ϕ disappear and we
are left with a coe�cient K1 which depends only on {λ, ν, ν ′, ϕ′2}. Upon substituting
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the expressions for ϕ′2 and λ the �nal expression for K1 depends only {ρ, P, ν, ν ′}.
Finally, the coe�cients read:

K1 =
4

r
− reν(1 + rν ′)2(f 2

X + ffXX)(ρ+ P )

M2
PD1

,

K2 = − 2eλ

f + 4XfX
,

where the denominator in the �rst expression is given by

D1 = 2q2fX

[
2f 2

X + r2fXKX +

[
2f + r2

(
2P

M2
P

+K

)]
fXX

]
+ eν

[
2f + r2

(
2P

M2
P

+K

)] (
f 2
X + ffXX

)
(1 + rν ′) .

One can see that the GR case is recovered in vacuum, where we simply have K1 = 4/r.
This shows that the result of Ref. [153] can be extended to general functions f and K
in Horndeski theories.

It is also worth pointing out a mistake in formulas (44) and (53) of Ref. [153]. In
their notations, which are obtained from ours by ω → Ω∗ − ω, eν → b, q → Q and
K2 → −K2(ρ + P ), these formulas should read (note also that the de�nition of the
scalar kinetic term is di�erent)

uφ = ε
r2 sin2 θω√

b
,

K2 =
4(b+ rb′)2(P + ρ)

b[(Pr2 + 4κ)(b+ rb′)− ηQ2]
.

With the above expression for uφ, one recovers the correct expression for the 4-velocity
vector [154]:

uµ =
(
u0, 0, 0, ϵΩu0

)
,

unlike in Ref. [153].

II.A.2 Quadratic GLPV theories

The above result, namely that the equation for ω reduces to the one of GR in vacuum
for Horndeski theory with arbitrary f(X) and K(X), can be extended to quadratic
Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theories [44]. They are given by the La-
grangian density (5.13). The inclusion of A3 makes Etr = 0 a quadratic equation in
ϕ′2, in contrast to the Horndeski case, where the analogous equation is linear in ϕ′2.
In order to obtain the desired result, we use the metric equations in a di�erent or-
der than in the previous case for Horndeski theory. First, we use Err to express ϕ′ϕ′′

in terms of {ϕ′, λ, ν, ν ′}. Then, we substitute this expression into Ett to obtain λ′ in
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terms of {ϕ′, λ, ν, ν ′}, which we inject into Etr. This yields a quadratic equation for
ϕ′2, and the two solutions are expressed in terms of {λ, ν, ν ′}. Using the expressions
for {ϕ′ϕ′′, λ′, ϕ′2}, one can obtain that K1 = 4/r in vacuum, which means that the GR
equation for ω is fully recovered in the case of the theories (5.13) as well.

II.A.3 DHOST Ia with constant X

Assuming in addition that X is constant, i.e. X0 = −q2, the previous result can be
extended to shift-symmetric DHOST theories. Indeed, when X =const., the terms
containing A4 and A5 in the action (31) drop out of the �eld equations, because one
can write

L4 ∼ XµX
µ , L5 ∼ (Xµϕ

µ)2 .

Since the above expressions are quadratic in Xµ, their variation will not give any
contribution to the �eld equations when X is constant. It immediately follows from
Eq. (4.15) that

K1 =
4

r
− λ′ + ν ′

2
,

since f(X0) −X0A1(X0) is a constant. With the choice X0 = −q2, the scalar can be
expressed in terms of {λ, ν} as

ϕ′2 = q2eλ
(
e−ν − 1

)
. (II.20)

Using Eq. (II.20) in the (tt), (tr) and (rr) components of the metric equations, one
can show that

λ′ + ν ′ ∼ r (P + ρ) ,

so once again the GR equation for ω, Eq. (4.21), is recovered in vacuum.

II.B List of coe�cients

In this appendix, we list the coe�cients of Eqs. (5.5), (5.6), (5.7), and (5.8). Each time
a function is written, it is evaluated on the time-dependent background. For instance,

f ≡ f
(
qt,−q2

)
.

The time dependence of these coe�cients comes from the ϕ dependence of the func-
tions. We will implement the constraint A2 = −A1, but in order to keep expressions
light, we will not always substitute the expression for A4 in DHOST Ia theories. When-
ever A4 appears, one must keep in mind that the following constraint holds:

A4 =
1

8(f + q2A1)2
{
12fA2

1 + 16q2A3
1 − 12q2fA1A3 − fA3

(
8f + q4A3

)
−8fX

[
6fA1 + q2

(
8A2

1 + fA3 + 2q2A1A3

)
− 2fX

(
3f + 4q2A1

)]}
.

The terms involving A5 were negligible in the �eld equations when assuming dimen-
sionless quantities to be of O(1), so this function does not appear in the following.
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II.B.1 Coe�cients of the metric equations

With the de�nition

C = f(2f + 2q2A1 − q4A4) + 4q2fX(f + 2q2fX) ,

the coe�cients for Eqs. (5.5) and (5.6) read:

Cα1 = 2q2f ,

Cα2 = 2q2
(
f + 2q2fX

)
,

2Cβ1 = −2fϕ
(
f + 4q2fX

)
− q2

[
−2fGX + q2fA3ϕ +

(
6f + 8q2fX

)
A1ϕ

]
,

2Cβ2 = 2q2
[(
f + 2q2fX

)
GX −

(
f − 2q2A1 + 6q2fX + q4A4

)
A1ϕ

]
− q4

(
f + 2q2fX

)
A3ϕ + 2fϕ

(
f + 2q2A1 − 2q2fX − q4A4

)
,

2Cγ1 = 2f
(
A1 + 2q2A1X

)
+ q2f (3A3 + 2A4)− 4fX

(
f + 4q2fX − 3q2A1

)
,

2Cγ2 = A1

(
3q4A4 − 4f

)
+ q2

(
3fA3 + 2fA4 − 6A2

1

)
+ 2fX

(
2f + 6q2A1 + 3q4A3 − 4q2fX

)
+ 4q2A1X

(
f + 2q2fX

)
,

2Cδ1 = 2 (A1 − 2fX)
(
f + 4q2fX

)
+ q2f (A3 + 2A4) ,

2Cδ2 = q2f (A3 + 2A4)− 2A1

(
f + 2q2A1 − q4A4

)
+ 2fX

(
2f − 4q2fX + 6q2A1 + q4A3

)
,

3Cη1 = fK + q2
[
3fX

(
K − q2Gϕ

)
− f (KX + 2Gϕ)

]
,

12Cη2 = K
(
3q4A4 − 6q2A1 − 2f

)
+ q2

[
−4fKX + 8fX

(
K − q2KX − 2q2Gϕ

)
+Gϕ

(
6q2A1 − 2f − 3q4A4

)]
.

II.B.2 Coe�cients of the scalar equation

We now list the coe�cients of the scalar equation (5.7). We do not write C1 or η3
because the expressions are cumbersome, and we always neglect those terms in the
nonlinear regime where the Vainshtein mechanism operates. The other coe�cients
read

C2 = 6
(
f + q2A1

) {
−12q4A3

1

(
3fϕ + 4q2fϕX

)
− 4q2A1

(
−4q2G3X

[
3f + q2fX

]
+q2

[
3A1ϕ + 4q2A1ϕX

] [
3f + 4q2fX

]
+ 4q4A3ϕ

[
3f + 2q2fX

]
+fϕ

[
6f − 3q4A3 − 12q4A1X + 8q2fX

]
− 2q2fϕX

[
3q4A3 + 8q4A1X − 10f

])
+16f 2G3X

(
2f + 2q2fX − q4A3 − 3q4A1X

)
+ 16q4f 2fϕX (A3 + 2A1X)

−fA1ϕ

(
16q4A1X

[
q4A3 − 8f − 12q2fX

]
+
[
4f − 5q4A3

] [
12f − q4A3

]
+16q2fXA1ϕ

[
10f + 7q2fX − 5q4A3

])
− 8q2f 2A1ϕX

(
4f + q4A3 + 4q2fX

)
−8q2f 2A3ϕ

(
4f − q4A3 + 4q2fX − 4q4A1X

)
+ 2ffϕ

(
q2A3

[
16f − q4A3

]
−16fX

[
3f − 2q4A3 + 3q2fX

]
+ 4q2A1X

[
6f − q4A3 + 20q2fX

])
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+q2A1

(
16fG3X

[
5f − q4A3 − 3q4A1X + 3q2fX

]
+ 4A1ϕ

[
2q2fX(−28f

+7q4A3 + 16q4A1X − 12q2fX) + 3f(5q4A3 + 8q4A1X − 8f)
]

+8fq2A3ϕ

[
q4A3 − 10f + 4q4A1X − 8q2fX

]
+ 8ffϕX

[
5q4A3 − 4f + 12q4A1X

]
−8fq2A1ϕX

[
10f + q4A3 + 12q2fX

]
+ q2A3fϕ

[
40f + 3q4A3

]
−8fϕfX

[
18f − 5q4A3 + 10q2fX

]
+ 8q2fϕA1X

[
8f + q4A3 + 12q2fX

])}
,

C3 = 24
(
f + q2A1

)2
(2fA1X + 2A1fX + fA3)

×
(
4q2fX − 3q4A3 + 4f + 6q2A1 − 8q4A1X

)
,

Γ0 = 48q2
(
f + q2A1

) {
q2
(
q2A3 − 4fX

) (
−2q2fA1ϕ + fϕ

[
q2A1 − f

])
+2q2A1f

(
q4A3ϕ + 2fϕ + 6q2fϕX − q2G3X

)
+ 2q4A2

1

(
3fϕ + 4q2fϕX

)
+2f 2

(
fϕ + q2

[
2A1ϕ + q2A3ϕ + 2fϕX −G3X

])}
,

Γ1 = −192q4
(
f + q2A1

)2
(2fA1X + 2A1fX + fA3) ,

Γ2 = 12q2
[
2fA1 + q2

(
4A2

1 − fA3

)
− 4fX

(
f + 2q2A1

)]
×
[
f
(
4f + 6q2A1 + q4A3

)
+ 4q2fX

(
f + 2q2A1

)]
.

II.B.3 Coe�cients of the (tφ) equation

We now list the coe�cients of Eq. (5.8), apart from β0, κ0, since we neglect these terms
inside the Vainshtein radius. We de�ne

D = f
(
4f + 6q2A1 + q4A3

)
+ 4q2fX

(
f + 2q2A1

)
.

The remaining coe�cients read

D2α0 = 8q4
(
f + q2A1

) (
−fA1 + q2fA1X + fX

[
2f + q2A1

])
,

D2ζ0 = −4q2
(
f + q2A1

)2 (
f + 2q2fX

)
,

4D2γ0 = {f + q2A1}{f
[
8q2A1X

(
−2f − 4q2A1 + 4q4A1X + 3q4A3

)
+ 3q6A2

3

−12q2
(
A2

1 + fA3

)
− 8fA1 − 24q4A1A3

]
− 16fX

[
3q4A2

1 − 2q6A1A1X − f 2
]
+ 16q2f 2

X

[
f + 2q2A1

]
} ,

2D2δ0 =
(
f + q2A1

) (
2A1 + q2A3 − 4fX

) (
f
[
4f + 6q2A1 + 3q4A3 + 4q4A1X

]
+4q2fX

[
f + 3q2A1

])
,

4Dσ0 =
(
f + q2A1

) (
2A1 + q2A3 − 4fX

)
.
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II.B.4 Other coe�cients

We de�ne

B = 8
(
f + q2A1

)
(2A1fX + 2fA1X + fA3)

×
[
4f + 2q2 (3A1 + 2fX)− q4 (8A1X + 3A3)

]
.

Then, the coe�cients of Eq. (5.12) read

Bι0 =4q2
(
f + 2q2A1

) [
A2

1 − 2fA3 + 4fX (fX − 2A1)
]
+ q6A3

(
4A2

1 + 3fA3

)
+ 8q2A1X

[
f
(
−2f − 4q2A1 + 3q4A3

)
+ 4q4 (fA1X + A1fX)

]
,

Bι1 =− q2
(
2A1 − 4fX + q2A3

) [
2fA1 − 4fX

(
f + 3q2A1

)
+q2

(
4A2

1 − 3fA3 − 4fA1X

)]
,

2Bι2 =− q2
(
2A1 − 4fX + q2A3

) [
2fA1 − 4fX

(
f + 2q2A1

)
+ q2

(
4A2

1 − fA3

)]
.

The coe�cient of Eqs. (5.22) and (5.23) reads

ι3 =
Nι3

Dι3

,

where the numerator and denominator are given by

Nι3 = fϕ
{
A1

(
f 2 − 2q2fA1 − 5q4A2

1

)
+ q2A1X

(
−3f 2 − 3q2fA1 + 4q4A2

1

+q4A1X

[
f − q2A1

])}
− 2A1ϕ

{
6f 3 + 14q2f 2A1 + 10q4fA2

1 + 3q6A3
1

+q4A1X

(
2f 2 + 5q2fA1 + q4A2

1 − q4fA1X

)}
+
{
f + q2A1

}{
G3X

(
8f 2 + 15q2fA1 + 6q4A2

1 − q4fA1X

)
+2q2A1ϕX

(
4f 2 + 7q2fA1 + 2q4A2

1 − q4fA1X

)}
,

Dι3 =
(
2f + 3q2A1 − q4A1X

)2 {
q2fϕ

(
A1X

[
q2A1 − 2f

]
− 3A2

1

)
+f
(
4
[
f + q2A1

] [
G3X + q2A1ϕX

]
− 3A1ϕ

[
2f + q2A1 + q4A1X

])}
.
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Part III

Disforming the Kerr metric
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Introduction to Part III

In 1916, a few months after Einstein proposed his general theory of relativity (GR),
Schwarzschild discovered a static solution to the vacuum �eld equations. This solution
possesses an intriguing property, namely there exists a surface of no return, from the
interior of which it is impossible for matter or even light to escape. For this reason, the
term �black hole� was introduced by Wheeler in 1967 to describe such objects. Though
the metric of a static black hole was found rather quickly, the quest to �nd a rotating
counterpart to the Schwarzschild solution remained fruitless for decades. In 1963, Kerr
derived the expression for a rotating black hole depending on two parameters [11], its
mass M and angular momentum J = aM , and which reduced to the Schwarzschild
spacetime in the limit a = 0. It was later shown that the Kerr metric is the unique
stationary and axisymmetric vacuum black hole in GR [162], making it essential from
a theoretical point of view. While black holes were for a long time believed to be of
mathematical interest only, proof of their existence in Nature has started to arise in
later years.

Einstein's theory has been extensively tested in the Solar System in the last century,
passing all weak-�eld tests with great success (see Ref. [50] for a review). The study
of binary pulsars has provided a window into the strong gravity regime in GR [6], but
the spacetime around black holes remains largely untested. At the center of the Milky
Way, there exists a bright source of radio and infrared emissions called Sagittarius A,
and in which lies Sagittarius A* (Sgr A*). The current understanding is that this
region coincides with a supermassive black hole (SMBH) of mass M ∼ 4 × 106M⊙
(see Ref. [163] and references within). In fact, a SMBH (meaning M ≳ 106M⊙)
is expected to exist in the center of almost every large galaxy. Recently, the Event
Horizon Telescope collaboration produced an image of M87* [164], which is the SMBH
at the center of Messier 87, a galaxy in the Virgo cluster. Furthermore, gravitational
waves from the distant merger of binary black holes have been detected by ground-
based interferometers for the �rst time in 2015 [12]. Stars orbiting around Sgr A*
have been observed for more than two decades, and this led to the determination of its
mass. In addition, the GRAVITY collaboration was able to measure the gravitational
redshift and pericenter precession of the star S2 [165, 166], which agree with the GR
predictions. In the future, more precise measurements will be able to determine the
spin and quadrupole moment of Sgr A* [167], providing a test of the no-hair theorem
in general relativity [168�170] (which states that higher-order multipole moments of
the Kerr black hole are determined by its mass and spin only). This could in particular
be achieved if a binary pulsar orbiting close enough to the black hole is discovered, by
studying the time of arrival of pulses. Hence, Sgr A* provides a promising avenue to
test GR in the vicinity of a black hole [171].

In this context of increasing e�orts aimed at probing the spacetime around black
holes, it is natural to construct alternatives to the Kerr metric. Given the di�culty of
�nding metrics describing rotating black holes, several numerical solutions have been
constructed (see Refs. [172�175] and references therein). However, there have also been
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e�orts to construct analytical solutions, the usual approach consisting in adopting a
theory-agnostic point of view, while focusing on the phenomenological signatures of
the spacetime. Even though the underlying theory is unknown in these cases, the
Kerr deformations are usually chosen in order to preserve some properties of the GR
spacetime [176�178], like the possibility to integrate the geodesic equation for instance
[179]. These ad hoc deformations were sometimes shown to possess pathologies like
closed timelike curves [177]. Another approach is to construct a metric which is a
solution to a speci�c theory of gravity, and we will present such examples in the
following chapters: the disformed Kerr metrics. These spacetimes are constructed in
the context of degenerate higher-order scalar-tensor (DHOST) theories, by applying a
disformal transformation [41] to the Kerr metric using a geodesic scalar �eld. While
the resulting metrics present some similarities to the Kerr spacetime, we will see that
they are distinct in many interesting ways.

In Chapter 7, we will review the (uncharged2) black hole solutions of general rela-
tivity, by presenting the properties of the Schwarzschild and Kerr solutions. In Chap-
ter 8, we will present the construction of the disformed Kerr metrics, and analyze their
properties, highlighting the di�erences with the Kerr spacetime. Finally, in Chapter 9
we will study the orbit of stars around a disformed Kerr black hole, showing that in
general the no-hair theorem of GR is violated. Furthermore, we will use the current ex-
perimental measurements to put a bound on the parameter arising from the disformal
transformation.

2There exists a charged version of the Kerr metric, the Kerr-Newman black hole [180]. However,
since such an object would rapidly neutralize due to the in�uence of a surrounding plasma, it is
reasonable to assume that astrophysical black holes are uncharged.
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Chapter 7

Black holes in general relativity

This chapter is devoted to black holes in general relativity. We start by presenting
the static Schwarzschild black hole, and de�ne some important terms that we will use
in the following. We then review the main properties of the Kerr spacetime in GR,
which will provide a reference point to which we will compare those of the disformed
Kerr metric in the following chapter.

7.1 Schwarzschild black hole and de�nitions

In 1916, Schwarzschild found a metric which satis�es the vacuum Einstein equations

Rµν = 0 . (7.1)

In geometric units, where G = c = 1, the line element reads

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + r2 sin2 θdφ2

)
, (7.2)

where M is a constant parameter. Let us consider a freely-falling particle in this
spacetime with a 4-velocity uµ = dxµ/dτ , where the proper time τ is de�ned as
dτ 2 = −ds2. The particle's motion is given by the geodesic equation

uµ∇µu
ν =

d2xν

dτ 2
+ Γν

µα

dxα

dτ
dxµ

dτ
= 0 . (7.3)

Let us now examine the Newtonian limit of this equation, by assuming that the particle
is nonrelativistic, i.e. dxi/dt ≪ 1. With this approximation, the spatial components
of the geodesic equation can be written

d2xi

dt2
= −Mxi

r3
+O

(
M2

r3

)
. (7.4)

This is simply the Newtonian force created by an object of mass M located at r = 0.
The constant M is hence interpreted as the mass of the central object. From the
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expression (7.2), the metric seems singular at r = 2M . However, an explicit calculation
of the Kretschmann scalar for this metric yields

RµναβR
µναβ =

48M2

r6
, (7.5)

which suggests that r = 2M is not a curvature singularity. To see this explicitly, one
can introduce the coordinates

v = t+ r∗ , (7.6)

u = t− r∗ , (7.7)

where the tortoise coordinate r∗ is given by

r∗ = r + 2M ln
∣∣∣ r
2M

− 1
∣∣∣ . (7.8)

In these coordinates, ingoing light rays correspond to v = const., while outgoing light
rays are given by u = const.. In terms of the coordinate v, the Schwarzschild metric
reads

ds2 = −
(
1− 2M

r

)
dv2 + 2dvdr + r2

(
dθ2 + sin2 θdφ2

)
. (7.9)

These are called ingoing Eddington-Finkelstein (EF) coordinates, and one can obtain
an analogous line element for outgoing coordinates u by the substitution dv → −du.
It is clear from this expression that the only singularity of the Schwarzschild spacetime
lies at r = 0. In terms of the coordinates v, outgoing null geodesics verify the equation

dr
dv

=
1

2

(
1− 2M

r

)
. (7.10)

Hence, for r < 2M , even future oriented outgoing light rays travel to decreasing r [181].
Because of this peculiar property, the surface r = 2M is called the event horizon of
the Schwarzschild spacetime. Once a timelike or null observer has entered the region
r < 2M , it can no longer escape to in�nity, and in order to stay on the surface r = 2M ,
it is necessary to travel at the speed of light. This property has led to this object being
called a black hole, since not even light can escape its gravitational pull, and hence
it looks black to an observer on the outside. Notice that in terms of the coordinate
u, the same reasoning shows that infalling light rays move towards increasing r when
r < 2M . In this case we obtain a �white hole�, since all light rays must escape the
interior region and the object looks bright to an observer in the exterior region.

We will now see that the event horizon surface r = 2M is di�erent from the other
constant r surfaces in the Schwarzschild spacetime. A hypersurface is a 3-dimensional
surface Σ that can be de�ned by a constraint on the spacetime coordinates

Σ : F (xµ) = 0 . (7.11)
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Σ spacelike

n2 < 0

n

n2 = 0

Σ null

n

n2 > 0

Σ timelike

n

Figure 1: Di�erent types of hypersurfaces, depending on the norm of the normal vector
n.

The normal vector n to this surface has covariant components which are given by the
gradient of the function F :

nµ = ∂µF . (7.12)

We now de�ne the nature of the hypersurface depending on the norm of n:

n2 = gµν∂µF∂νF . (7.13)

There are 3 di�erent cases, which are represented on Fig. 1:

� if n is spacelike, i.e. n2 > 0 : Σ is a timelike hypersurface, and the light cone
at a point of Σ overlaps the surface, meaning a timelike observer can cross the
surface in both directions.

� if n is null n2 = 0 : Σ is null, and a the light cone is tangent to the surface.
This means that a light ray can skim the surface, but a future-oriented timelike
observer has to cross the surface in a future-pointing direction.

� if n is timelike, i.e. n2 < 0 : Σ is a spacelike hypersurface, and the light cone
at a given point is oriented in a speci�c direction which both light and timelike
observers must follow.

Let us now determine the nature of the hypersurfaces Σ0 de�ned by the equation
r = r0, where r0 is a constant. The normal vector to such a surface is simply nµ = grµ,
and its norm is given by

n2 = grr = 1− 2M

r
. (7.14)

From the de�nitions that we gave above, we see that there are 3 di�erent cases: Σ0 is
timelike i timelike when r0 > 2M , null for r0 = 2M and spacelike for 0 < r0 < 2M .
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Hence if a timelike observer crosses the surface r = 2M , they will continue falling
inwards until they reach the singularity at r = 0. The surface r = 2M is the event
horizon of the Schwarzschild spacetime, and it separates the singularity at r = 0 from
the exterior region r > 2M .

We now discuss the symmetries of the Schwarzschild solution. If the metric tensor
is invariant under the �ow of a vector V , i.e.

LV g = V α∂αgµν + 2gα(µ∂ν)V
α = 0 , (7.15)

where L is the Lie derivative, then V is called a Killing vector. It generates a continuous
isometry of spacetime, and using the previous expression we obtain the Killing equation

∇(µVν) = 0 , (7.16)

where the brackets denote a symmetrization of the indices. Each Killing vector corre-
sponds to a conserved quantity along geodesics. Indeed, for a geodesic vector uµ, we
have

uα∇α (u
µVµ) = uαuµ∇αVµ + Vµu

α∇αu
µ . (7.17)

The two terms on the right-hand side both vanish, the �rst because of the Killing
equation, and the second because u is geodesic. This implies that uµVµ is a constant
of motion.

A spacetime is said to be stationary if it possesses an asymptotically timelike Killing
vector ξ, i.e. ξ2 < 0 for r → ∞. For the Schwarzschild metric, the vector ξ = ∂t is
timelike in the region r > 2M , and hence the spacetime is stationary. A stationary
spacetime is static if the timelike Killing vector is irrotational, in which case the
spacetime can be foliated by spacelike hypersurfaces orthogonal to the Killing �eld ξ.
One can show that the Schwarzschild metric is indeed static. An important theorem by
Birkho� [182]1 states that any spherically symmetric solution to the vacuum Einstein
equations must be static and asymptotically �at (in the sense that we recover the
Minkowski metric when r → ∞2). In other words, the exterior metric of any spherically
symmetric star is isomorphic to the Schwarzschild spacetime.

Now that we have de�ned Killing vectors, we introduce the notion of Killing hori-
zon. A Killing horizon is a null hypersurface which possesses a normal Killing vector.
Hence, the Killing vector has a vanishing norm on the surface, and is normal to it. In
the Schwarzschild spacetime, the timelike Killing vector becomes null on the surface
r = 2M , which corresponds to the event horizon. Let us now show that this vector is
also normal to the surface. In Eddington-Finkelstein coordinates, one can choose the
timelike Killing vector ξ(v) = ∂v, which has contravariant components ξµ(v) = (1, 0, 0, 0).
The normal vector to the horizon surface has covariant components nµ = (0, 1, 0, 0).

1The theorem was in fact formulated two years before Birkho�, in 1921, by the Norwegian physicist
J. Jebsen, see Ref. [183] for an English translation of the paper.

2For a more precise de�nition of asymptotic �atness, see chapter 11 of Wald's book [184].
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The covariant components of the Killing vector read

gµνξ
ν
(v) =

(
−1 +

2M

r
, 1, 0, 0

)
, (7.18)

and it is clear that this vector is normal to the horizon surface, upon evaluating it
at r = 2M . Hence the event horizon of the Schwarzschild spacetime is also a Killing
horizon. In fact, the rigidity theorem, due to Hawking, states [51]:

Rigidity theorem: The event horizon of a real analytic, stationary, regular vacuum
spacetime is a Killing horizon.

One can de�ne the notion of surface gravity κ of the Killing horizon, which is given
by the ina�nity of the Killing �eld

ξµ(v)∇µξ
ν
(v) = κξν(v) , (7.19)

where the equality is evaluated on the horizon surface. The term �ina�nity� is due to
the resemblance of the previous equation to the one veri�ed by a non-a�ne geodesic
�eld. An explicit calculation for the Schwarzschild metric yields

κ =
1

4M
. (7.20)

It can be shown that the surface gravity is constant on a Killing horizon. More details
can be found in Wald's book [184], along with other de�nitions of the surface gravity
(which provide the same result in GR). In the context of black hole thermodynamics,
the surface gravity is related to the Hawking temperature TH of the black hole, through
the relation TH = κ/(2π) [185,186].

7.2 The Kerr spacetime

7.2.1 Properties and symmetries

The Schwarzschild solution for a static black hole was found within a year of the pub-
lication of Einstein's general theory of relativity. In 1918, Lense and Thirring, derived
the exterior metric of a rotating body up to �rst order in the angular momentum, but
an exact rotating black hole solution was not found until 1963. The Kerr metric was
originally written in the following form [11]:

ds2K = −
(
1− 2Mr

r2 + a2 cos2 θ

)(
dv + a sin2 θ dΦ

)2
+ 2

(
dv + a sin2 θ dΦ

) (
dr + a sin2 θ dΦ

)
+
(
r2 + a2 cos2 θ

) (
dθ2 + sin2 θ dΦ2

)
,

(7.21)
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where the parameters M and a represent the black hole's mass and spin (or angular
momentum per unit mass), respectively. When a = 0, the above line element reduces
to the Schwarzschild metric written in ingoing EF coordinates, and for this reason
they are sometimes referred to as generalized ingoing EF coordinates. It is clear that
they are regular everywhere except when:

r = 0 and θ =
π

2
. (7.22)

The Kretschmann scalar for the Kerr metric is given by:

RµναβR
µναβ =

48M2(r2 − a2 cos θ)[(r2 + a2 cos2 θ)
2 − 16r2a2 cos2 θ]

(r2 + a2 cos2 θ)6
, (7.23)

which shows that the above relations correspond to a curvature singularity. It is
referred to as a ring singularity, which can be understood by performing the following
coordinate transformation [11]:

t̃ = v − r ,

z̃ = r cos θ ,

x̃+ iỹ = (r − ia) eiΦ sin θ . (7.24)

Indeed, in these coordinates the singularity lies at z̃ = 0 and x̃2 + ỹ2 = a2, hence the
name ring singularity. The Kerr metric was written by Boyer and Lindquist [187] in a
form that contains only one o�-diagonal term, and hence usually simpli�es calculations.
The coordinate transformation to Boyer-Lindquist (BL) coordinates starting from the
metric (7.21) is given by:

t = v − r −
∫

2Mr

r2 + a2 − 2Mr
dr ,

φ = −Φ− a

∫
dr

r2 + a2 − 2Mr
, (7.25)

resulting in the following line element:

ds2K = −
(
1− 2Mr

ρ2

)
dt2 − 4Mar sin2 θ

ρ2
dtdφ

+
ρ2

∆
dr2 + ρ2dθ2 +

sin2 θ

ρ2

[(
r2 + a2

)2 − a2∆sin2 θ
]
dφ2 . (7.26)

In order to lighten the notation, we have de�ned the following functions:

∆(r) = r2 + a2 − 2Mr ,

ρ2(r, θ) = r2 + a2 cos2 θ .
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These coordinates are singular when ∆ = 0 or ρ = 0. We have seen that ρ = 0
corresponds to a curvature singularity, since the Kretschmann scalar diverges. On the
other hand, ∆ = 0 is a coordinate singularity, and it is clear from the line element
written in the original Kerr coordinates that the metric is well de�ned at these points.
When a = 0, the metric (7.26) reduces to the Schwarzschild metric in the usual
Schwarzschild coordinates.

The Kerr metric is a stationary spacetime, as the vector ξ = ∂t is an asymptot-
ically timelike Killing vector. Furthermore, the metric is axially symmetric, and the
associated Killing �eld η = ∂φ is spacelike (and vanishes on the axis of symmetry
θ = 0 [188]). Furthermore, one says that the spacetime is axisymmetric if the action
of these �elds commutes, i.e.

ξµ∇µη
ν − ηµ∇µξ

ν = 0 ,

which can easily be checked for the Kerr metric. In addition to being independent of t
and φ, the line element (7.26) also enjoys the re�ection symmetry (t, φ) → (−t,−φ).
In other words, the metric is invariant under the simultaneous reversal of the time and
azimuthal angle coordinates. This can be formulated in terms of the Killing �elds as
follows [189]:

ξ[µην∇αξβ] = ξ[µην∇αηβ] = 0 ,

where the square brackets denote the antisymmetrization of indices. With a slight
abuse of notation, we refer to the associated 1-forms to the Killing vectors with the
same letter, i.e. ξ = gtµdxµ and η = gφµdxµ. The previous conditions can then be
rewritten as

ξ ∧ η ∧ dξ = ξ ∧ η ∧ dη = 0 , (7.27)

where the ∧ is the exterior product on the space of forms. A spacetime which veri�es
the previous conditions is said to be circular. This is the case for black hole solutions
in GR. Indeed, it can be shown [190] that a Ricci-circular spacetime, i.e. a spacetime
verifying:

ξµRµ
[νξαηβ] = ηµRµ

[νξαηβ] = 0 , (7.28)

is circular as long as the conditions (7.27) hold at one point of the spacetime. For
axisymmetric spacetimes, the spacelike Killing vector ηµ = 0 on the symmetry axis
[188], so the relations (7.27) are satis�ed there. It follows that vacuum axisymmetric
spacetimes in GR are circular, as Ricci-circularity is immediate from Rµν = 0.

In addition to the two Killing vectors, the Kerr metric possesses a nontrivial Killing
tensor, i.e. a symmetric 2-tensor K verifying the generalized Killing equation:

∇(αKµν) = 0 . (7.29)

We say nontrivial in the sense that K is neither the metric tensor (which trivially
veri�es this identity if one assumes the Levi-Civita connection, i.e. ∇g = 0), nor
any tensor product combination of the Killing vectors ξ and η. The Killing tensor is
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associated to a conserved quantity Kµνu
µuν along the geodesic uµ, as can be seen by

calculating:

uα∇α (Kµνu
µuν) = uαuµuν∇αKµν + 2Kµνu

µuα∇αu
ν = 0 . (7.30)

The two terms on the right-hand-side of the previous expression vanish separately.
The �rst term is zero because of the relation (7.29), while the second vanishes because
u is a geodesic vector. The same argument can be used to show that the quantities

E = −ξµuµ and L = ηµuµ (7.31)

are also conserved along the geodesic de�ned by the vector u, as we saw in the previ-
ous section. These correspond to the energy and angular momentum of the particle,
respectively. The meaning of the conserved quantity associated to the Killing tensor
is not very clear, in the sense that it is not immediately associated to spacetime sym-
metries as in the case of the Killing vectors. It is said to correspond to a �hidden
symmetry� of the Kerr spacetime.

It should be noted that the existence of a nontrivial Killing tensor for vacuum
spacetimes in GR is a generic feature of type D metrics [191], according to the Petrov
classi�cation [192�194]. In this case the Killing tensor can be expressed in terms of the
metric and the two repeated principal null directions of the spacetime (see Theorem
35.3 in Ref. [195] for an exception). For the Kerr spacetime, the Killing tensor can be
written [191]

Kµν = 2ρ2(r, θ)k
(µ
0 l

ν)
0 + r2gµν , (7.32)

where the repeated principal null directions in Boyer-Lindquist coordinates read

k0 =
r2 + a2

∆
∂t + ∂r +

a

∆
∂φ ,

l0 =
∆

2ρ2

(
r2 + a2

∆
∂t − ∂r +

a

∆
∂φ

)
. (7.33)

This extra conserved quantity makes it possible to integrate the geodesic equations
and write them as a �rst-order system. This was �rst discovered by Carter when he
realized that the Hamilton-Jacobi equation for geodesics was separable [179], and was
later related to the existence of a nontrivial Killing tensor [191]. To see this explicitly,
let us write the Hamilton-Jacobi equation for geodesics in the Kerr spacetime:

∂S

∂τ
+

1

2
gµν∂µS∂νS = 0 , (7.34)

where S is the Hamilton-Jacobi potential. We now search for separable solutions of
the form

S =
1

2
m2τ − Et+ Lφ+ Sr(r) + Sθ(θ) , (7.35)
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where m, E, and L are respectively the mass, energy and angular momentum of a
geodesic particle. For the Kerr spacetime, the equation does separate, and we obtain
the relation

−

[
m2r2 − [aL− E (r2 + a2)]

2

∆
+∆

(
∂Sr

∂r

)2
]

= a2m2 cos2 θ + sin2 θ

(
aE − L

sin2 θ

)2

+

(
∂Sθ

∂θ

)2

= K ,

(7.36)

where K is a separation constant which must be positive for timelike and null geodesics,
as can be seen from the second line in the previous expression. This constant is in
fact the conserved quantity associated to the Killing tensor Kµν de�ned above. After
integrating the previous relations, we obtain the �nal expression for the Hamilton-
Jacobi potential

S =
1

2
m2τ − Et+ Lφ±

∫ √
R(r)

∆
dr ±

∫ √
Θ(θ)dθ , (7.37)

where the functions R and Θ are given by:

R =
[
aL− E

(
r2 + a2

)]2 −∆
(
K +m2r2

)
,

Θ = K − a2m2 cos2 θ − sin2 θ

(
aE − L

sin2 θ

)2

. (7.38)

The following combination of conserved quantities is often used:

Q = K − (aE − L)2 , (7.39)

and either K or Q are called Carter's constant, depending on the reference. Each
has its own advantage. As we discussed, K ≥ 0 for timelike and null geodesics, and
it can be shown that K = 0 only for principal null geodesics. On the other hand,
the constant Q has a clearer geometrical interpretation. For instance, any geodesic
which approaches the ring singularity must have Q = 0. For a detailed study of Kerr
geodesics, see for example Refs. [181,196].

7.2.2 Timelike observers in the Kerr spacetime

In this section, we will discuss the important hypersurfaces and regions of the Kerr
spacetime. We will start in the region r ≫ M , and describe what happens as r
decreases progressively. In the asymptotic region, the metric (7.26) reads

ds2K = −
[
1− 2M

r
+O

(
Ma2

r3

)]
dt2 −

[
4aM

r3
+O

(
Ma3

r5

)]
[xdy − ydx] dt

+

[
δij +O

(
M

r

)]
dxidxj ,

(7.40)
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where we have introduced the Cartesian coordinates

x = r cosφ sin θ ,

y = r sinφ sin θ ,

z = r cos θ .

The mass and spin of the black hole are obtained from the leading corrections to
�at space: the mass is given by the gtt term, while we obtain the spin from the gti
terms [48].

We now decrease the radial coordinate, starting from in�nity. To understand the
structure of the spacetime, it is instructive to study the trajectories of timelike ob-
servers. We assume a ≤ M and focus on stationary observers, meaning that the
coordinates r and θ are constant. The 4-velocity lS of such observers is hence given
by:

lS = ∂t + ω∂φ , (7.41)

where ω corresponds to the angular velocity in the φ direction. The vector lS is
timelike, l2S ≤ 0, which implies the following condition for the function ω:

gtt + 2ωgtφ + ω2gφφ ≤ 0 . (7.42)

The metric component gφφ > 0 for large enough r, in which case the condition above
is satis�ed for ω ∈ [ω−, ω+], where the ω± are given by:

ω± = − gtφ
gφφ

(
1±

√
1− gttgφφ

g2tφ

)
. (7.43)

While gtt < 0, which is true asymptotically, it is possible to have ω < 0. However,
there exists a hypersurface r = rE(θ) inside which gtt > 0. Solving the equation
ρ2 = 2Mr, we obtain:

rE(θ) =M +
√
M2 − a2 cos2 θ . (7.44)

This surface is called the ergosurface, or static limit. The latter name stems from the
fact that when gtt > 0, a timelike or null vector must have ω > 0, since ω− > 0.
Hence, such observers necessarily co-rotate with the black hole, or in other words the
frame-dragging e�ect from the rotating source can no longer be countered, even with
a powerful engine. Hence this surface is the endpoint of static observers located at
constant {r, θ, φ}. It can be shown that the ergosurface is a timelike hypersurface,
meaning that it is possible to cross it in both directions (increasing or decreasing r).
Although the Killing vector ξ is null on this surface, we do not have a Killing horizon
since ξ is not normal to the ergosurface. The Killing vector ξ becomes spacelike when
gtt > 0, but it is still possible to construct a timelike Killing vector of the form (7.41)
with a constant angular velocity.
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Ergosurface
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Outer horizon
Inner horizon
Inner ergosurface

Ring singularity

Figure 2: Schematic structure of the Kerr spacetime in the Cartesian coordi-
nates (7.24). The ergoregion (in red), lies between the ergosurface (red) and the
outer event horizon (black). Inside the outer horizon lies the inner horizon (dashed
black), the inner ergosurface (dashed red) and the ring singularity (dotted blue).

By going deeper towards the interior of the ergosurface, one reaches a point where
the condition (7.42) can no longer be satis�ed. The limiting surface, which we call the
stationary limit,3 veri�es

gttgφφ − g2tφ = 0 . (7.45)

For the Kerr metric, this is equivalent to solving the equation ∆ = 0, which admits
the roots

r± =M ±
√
M2 − a2 . (7.46)

In between these two constant r surfaces, timelike stationary observers of the
form (7.41) cannot exist, as this would correspond to an imaginary angular veloc-
ity ω. The stationary limit is the surface corresponding to the outer root r = r+.
These two surfaces are in fact null hypersurfaces, and correspond to the outer and
inner event horizon of the Kerr spacetime, respectively. When a = 0, we obtain the
Schwarzschild horizon located at r = 2M , as we discussed in the previous section.
When a > M , the equation ∆ = 0 has no real solutions, and hence the ring singularity
is not shielded by an event horizon [197]. However, the cosmic censorship hypothesis
states that no such naked singularity can exist in Nature [198]. In the special case
a =M , the equation ∆ = 0 has a double root and we obtain the extremal Kerr metric,
with an event horizon at r = M . Let us discuss the nature of the surfaces Σ0 de�ned
by r = r0 in the Kerr spacetime. It is easy to show that such surfaces are timelike

3Note that some authors use this term to refer to the ergosurface.
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for r0 > r+ and 0 < r0 < r−, spacelike for r− < r0 < r+ and null for r0 = r±. When
a = M , in the case of the extremal Kerr metric, we have r+ = r− and the surfaces
Σ0 are timelike both in the interior and the exterior of the horizon. Hence, unlike for
the Schwarzschild spacetime, a timelike observer can avoid the ring singularity, as the
motion towards increasing r is permitted in the region r < r−. For details about the
global structure of the Kerr spacetime, see for instance Ref. [196].

According to Hawking's rigidity theorem [51], which we wrote in the previous
section, the event horizons are also Killing horizons. Their Killing generators k± are
co-linear to the principal null directions (7.33) of the Kerr spacetime on the Killing
horizon, and read

k± = ∂t +
a

a2 + r2±
∂φ . (7.47)

When a = 0 we recover the Killing generator of the Schwarzschild horizon, and in the
general case this can be interpreted as a rotation of the event horizons with constant
angular velocities

Ω± =
a

a2 + r2±
=

a

2Mr±
. (7.48)

The ina�nity of the Killing generators k± leads to the expression of the surface grav-
ities κ± of the Killing horizons

κ± =
r± − r∓
2Mr±

. (7.49)

For a review of black hole thermodynamics, see for instance Ref. [199].
We end this section by discussing an interesting property of the ergoregion in the

Kerr spacetime, i.e. the region between the ergosurface and the outer event horizon.
Remarkably, it is possible to extract rotational energy from the black hole in this region
by the Penrose process [198, 200]. The mechanism can be understood by considering
a particle with 4-momentum pµ coming from in�nity with an energy E0 = −p · ξ.
We assume that in the ergoregion, this particle decays into 2 other particles having
momenta pµ1 and pµ2 . Since the Killing vector ξ is spacelike in this region, it is possible
to choose E1 < 0 for instance. The particle (1) has a negative energy as seen from
an observer at in�nity, and will fall inside the black hole. On the other hand, the
particle (2) can escape to in�nity, and the conservation of energy gives E2 > E0. In
this way, rotational energy has been extracted from the black hole. Though this is an
interesting theoretical property, it has been shown that the e�ciency of this process
for realistic astrophysical scenarios is rather low [201]. A similar process exists for the
ampli�cation of waves in the ergoregion [202�207], which is called superradiance (see
Ref. [208] for a review). These e�ects are part of a wide class of physical phenomena,
which also include the quantum laser e�ects of black holes [209�211] (and their acoustic
counterparts [212]).
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Chapter 8

The disformed Kerr metrics

In this chapter, which is based on Ref. [213], we present the construction of the dis-
formed Kerr metrics and compare their properties to those of the GR spacetime. We
will see that they constitute interesting counterexamples to many of the properties
exhibited by the Kerr black hole. Some important features are the following: the
disformed metrics are noncircular and not Ricci-�at; their event horizon does not lie
at constant r; the event horizon is not a Killing horizon; there is no nontrivial Killing
tensor. On the other hand, we will see that the asymptotic form of the disformed
metrics is very similar to Kerr, and that they are regular everywhere except on the
ring singularity.

8.1 Construction of the disformed Kerr metrics

The starting point of our construction is the stealth-Kerr black hole solution of Ref. [214].
In a particular class of DHOST theories, the authors showed that there exist solutions
of the form:

gµν = gKµν ,

ϕ = −Et+ Lφ±
∫ √

R(r)

∆
dr ±

∫ √
Θ(θ)dθ ,

where the expressions for R and Θ are given by Eq. (7.38). This type of solution,
where a nontrivial scalar �eld has no backreaction on the GR metric, is called a
stealth solution. There are examples of static stealth solutions, like for instance that
of Ref. [131], but the stealth-Kerr solution of [214] is the �rst to describe a rotating
black hole. The scalar �eld is assumed to posses a constant kinetic term X, which
implies that it de�nes a geodesic direction ϕµ, since we have

ϕµϕνµ = ϕµϕµν = 0 . (8.1)

This justi�es the previous ansatz for the scalar �eld, in which it is identi�ed with
the Hamilton-Jacobi potential S. The constants E and L represent the two conserved
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quantities along the geodesic, the energy and angular momentum. They are associated
to the Killing vectors ξµ and ηµ respectively. It was shown in Ref. [214] that in order
for the solution to be regular at the poles, i.e. ∂ϕ/∂θ → 0 when θ → 0, one must set
L = 0 and K = m2a2. In this case the expressions for R and Θ become

R = m2
(
a2 + r2

) [
σ2
(
r2 + a2

)
−∆

]
,

Θ = m2a2 sin2 θ
(
1− σ2

)
, (8.2)

where σ = E/m. Furthermore, in order for both R and Θ to be positive from the
outer Kerr horizon to spatial in�nity, one must set σ = 1.1 In this case, our starting
solution reads

gµν = gKµν , (8.3)

ϕ = q0

(
t+

∫ √
2Mr(a2 + r2)

∆
dr

)
, (8.4)

where we have de�ned q0 = −m and gK is the Kerr metric. The scalar kinetic term is
constant and reads

X0 = −q20 ,

which shows that the vector ϕµ is timelike. The relative sign in the expression for the
scalar �eld was chosen so that it is regular from the outer horizon of the Kerr metric
to spatial in�nity. This becomes clear when writing the scalar �eld in the generalized
ingoing EF coordinates, as we will do in the following.

The theory which contains this solution belongs to the shift-symmetric DHOST Ia
class [45, 46], i.e. those described by Eq. (31) with functions that depend on X only.
The authors of Ref. [214] chose to consider theories in which the graviton propagates
at the speed cT = 1, as in GR. This is motivated by the measurement of gravitational
waves along with the electromagnetic counterpart coming from the merger of two
neutron stars [56]. Assuming that the scalar �eld is cosmologically dominant, one
must set A1 = A2 = 0 in the action (31) in order to satisfy this constraint. In the
absence of a cosmological constant, one must set K(X0) = K ′(X0) = 0, so we choose
K = 0 for simplicity. We also set G3 = 0 as in Ref. [214]. Since the scalar �eld has a
constant kinetic term, the terms proportional to A4 and A5 in the Lagrangian do not
enter the equations of motion. This is easily understood by writing

L4 =
A4

4
XµX

µ , L5 =
A5

4
(Xµϕ

µ)2 .

Since these terms are quadratic in Xµ, any contribution to the �eld equations will
contain at least one derivative of X, which vanishes on-shell. Hence these terms are

1Note that in Ref. [215], the authors considered Kerr-de Sitter solutions with a nonzero cosmolog-
ical constant, and in these cases the condition σ = 1 is not necessary.
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irrelevant in the present case, and one can omit them from the discussion. Another
condition that we must enforce for the equations of motion to be veri�ed is

A3(X0) = 0 . (8.5)

The disformed Kerr metrics g̃ are constructed by performing a disformal transfor-
mation [41] of the Kerr metric using the geodesic scalar of Eq. (8.3), namely:

g̃µν = gKµν +B(X)∂µϕ∂νϕ , (8.6)

where the function B is chosen to be a function of X only in the context of shift-
symmetric theories. Since the kinetic term is constant on-shell, X = X0, we take the
function B to be a constant, and set:

B(X) = −D
q20
. (8.7)

The parameter D is the disformal parameter, and the rescaling by q20 is simply done
to lighten the expressions in the following. The scalar kinetic term transforms as
X̃ = −q20/(1 + D), which shows that ϕµ is again a (timelike) geodesic vector for the
disformed metrics.

The DHOST Ia class, given by Eq. (33), is stable under the disformal map [42,
43, 47], which means that the metrics (8.6) are solutions to speci�c DHOST theories
labeled by the constant B. The transformation (8.6) modi�es the functions in the
Lagrangian such that we have S̃[g̃] = S[g], where S represents the DHOST action (31).
However, we couple the matter �elds to the metric minimally in each case (either to g̃µν
or gµν), which ensures that we indeed have di�erent theories. For a constant disformal
parameter, the transformation rule for the Lagrangian functions [47] is simpli�ed, and
we obtain:

f = f̃
√
1 +BX ,

A1 =
Ã1 +B(1 +BX)f̃

(1 +BX)3/2
,

A2 =
Ã2 −B(1 +BX)f̃

(1 +BX)3/2
,

A3 =
Ã3 − 2B(1 +BX)Ã2 − 4B(1 +BX)3f̃X

(1 +BX)7/2
,

A4 =
Ã4 − 2B(1 +BX)Ã1 + 4B(1 +BX)3f̃X

(1 +BX)7/2
,

A5 =
Ã5 +B(1 +BX)

[
B(1 +BX)(Ã1 + Ã2)− (Ã3 + Ã4)

]
(1 +BX)11/2

, (8.8)
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where f̃X = ∂f̃/∂X. The functions of X̃ can be seen as functions of X through the
transformation

X̃ =
X

1 +BX
. (8.9)

As we argued above, we will only be interested in the functions {f̃ , Ã1, Ã3} in the
following. Indeed, {A4, A5} are irrelevant for a constant scalar kinetic density, and
we impose Ã2 = −Ã1, which is one of the conditions to avoid the Ostrogradsky ghost
in DHOST Ia theories. Assuming A1 = A2 = G3 = K = 0 [214], we invert the
relations (8.8) and obtain:

f̃ = f
√

1−BX̃,

Ã1 = − B√
1−BX̃

f ,

Ã3 =
A3

(1−BX̃)7/2
+

4BfX̃√
1−BX̃

. (8.10)

It should be noted that Ã1 ̸= 0 in this case, which means that the constraint cT = 1
is not satis�ed in these theories. However, we will see that these disformed solutions
present some interesting properties which are worth studying in their own right.

Starting from the Kerr metric (7.26) in BL coordinates, the explicit expression for
the disformed metric (8.6) is

ds̃2 = −

(
1− 2M̃r

ρ2

)
dt2 − 4

√
1 +DM̃ar sin2 θ

ρ2
dtdφ− 2D

√
2M̃r(a2 + r2)

∆
dtdr

+
ρ2∆− 2M̃(1 +D)rD(a2 + r2)

∆2
dr2 + ρ2dθ2 +

sin2 θ

ρ2

[(
r2 + a2

)2 − a2∆sin2 θ
]
dφ2 ,

(8.11)

where we have rescaled the time coordinate as t→ t/
√
1 +D and de�ned a new mass

M̃ =M/(1+D). As we discussed above, the choice of B = −D/q20 parametrizes a class
of DHOST theories of which this metric, along with the scalar �eld (8.3), are solutions.
Hence this does not correspond to an extra parameter of the metric, since changing D
modi�es the theory, unless q0 is chosen so that B remains the same. However, from
a phenomenological point of view, one may consider D as an extra parameter, and
study the disformed metric for di�erent values of D, which is an approach that we will
adopt in the following.

Before discussing the properties of the disformed Kerr metric in the general case,
let us brie�y consider the case a = 0, for which the o�-diagonal term g̃tr in Eq. (8.11)
can be removed by the following coordinate transformation:

dt = dT − D
√

2M̃r3

∆
(
1− 2M̃

r

)dr . (8.12)



8.2. Properties of the disformed Kerr metrics 107

The resulting metric is nothing but the Schwarzschild spacetime with a rescaled mass:

ds̃2 = −

(
1− 2M̃

r

)
dT 2 +

(
1− 2M̃

r

)−1

dr2 + r2dΩ2 . (8.13)

Hence, in the static case, the net e�ect of the disformal transformation is only to rescale
the mass parameter. Note that a similar observation has been noted in the case of the
Schwarzschild-de Sitter metric in Ref. [216�218]. In Ref. [219], the authors claim that
the disformation of Schwarzschild leads to a di�erent metric, i.e. not Schwarzschild
with mass M̃ , but the previous coordinate rede�nition shows that it is the case.

8.2 Properties of the disformed Kerr metrics

In this section, we analyze the properties of the disformed Kerr metric (8.11), and
treat D as a parameter, keeping in mind that it does not actually correspond to extra
hair, as discussed above.

8.2.1 Symmetries of the disformed Kerr metric

We start by discussing the singularities of the disformed metric. One can start by
calculating some scalar quantities, which include

R̃ = −Da
2Mr[1 + 3 cos(2θ)]

(1 +D)ρ6
,

R̃µνR̃
µν =

D2a4M2Q1(r, θ)

4ρ12(r2 + a2)(1 +D)2
,

R̃µναβR̃
µναβ =

M2Q2(r, θ)

ρ12(r2 + a2)(1 +D)2
, (8.14)

where the functions Q1 and Q2 can be found in Appendix III.A. These expressions
show that the disformed metric is not Ricci-�at, i.e. R̃µν ̸= 0, which is an important
property. Furthermore, the expressions suggest that the disformed metric does not
present new singularities compared to the Kerr metric, meaning that the only singu-
larity lies at ρ = 0. To check this explicitly, it is enough to �nd a coordinate system in
which ρ = 0 is the only apparent singular point. We apply the coordinate transforma-
tion (7.25), and rescale the coordinate v → v/

√
1 +D, as we did for the coordinate t

in order to obtain the line element (8.11). This leads to the following expressions for
the metric and scalar in the generalized ingoing Eddington-Finkelstein coordinates:

ds̃2 = −

(
1− 2M̃r

ρ2

)
dv2 + 2

√
1 +D

1− D

(1 +D)(1 +
√

r2+a2

2Mr
)

 dvdr (8.15)
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−D

1− 1

1 +
√

a2+r2

2Mr

2

dr2 (8.16)

+
4aM̃r sin2 θ

√
1 +D

ρ2
dvdφ+ 2a sin2 θdrdφ+ ρ2dθ2 (8.17)

+
sin2 θ

(
2a4 cos2 θ + 4a2Mr sin2 θ + a2r2 [3 + 2 cos(2θ)] + 2r4

)
2ρ2

dφ2 , (8.18)

ϕ = −m

 v√
1 +D

− r +

∫
dr

1 +
√

r2+a2

2Mr

 . (8.19)

These expressions show that the disformed metric does not contain any singularity
other than the ring singularity of the Kerr spacetime. In particular, the metric and
scalar are regular at the Kerr horizon given by ∆ = 0. In Ref. [219], the authors chose
the other relative sign for the scalar �eld in Eq. (8.3). This means that their scalar �eld
is not regular in the ingoing coordinates, but rather in outgoing ones, which represent
a white hole instead of a black hole.

Let us now discuss the symmetries of the disformed Kerr metrics. It is clear from
the line element (8.11) that the vectors ξ = ∂t and η = ∂φ are still Killing vectors of
these spacetimes. One can check that their action commutes, so that the disformed
Kerr metrics are stationary and axisymmetric spacetimes. However, the circularity
conditions are no longer veri�ed in the generic case, and we have:

ξ ∧ η ∧ dξ = −
4Da2M̃r

√
2M̃r(a2 + r2) cos θ sin3 θ

ρ4
dt ∧ dr ∧ dθ ∧ dφ ,

ξ ∧ η ∧ dη =
4Da3M̃r

√
2M̃r(1 +D)(a2 + r2) cos θ sin5 θ

ρ4
dt ∧ dr ∧ dθ ∧ dφ .

(8.20)

This means that it is not possible in the generic case to write the disformed metric
in a way that exhibits the re�ection symmetry (t, φ) → (−t,−φ). In particular, the
g̃tr term in Eq. (8.11) cannot be eliminated without introducing other o�-diagonal
components that break circularity. When D = 0, we recover the Kerr metric and
the circularity conditions are veri�ed. Similarly, when a = 0, the disformal metric is
simply Schwarzschild with a rescaled mass, as we discussed already, and the conditions
are satis�ed in this case also.

This is an interesting property, as circularity is usually assumed as a starting point
when discussing stationary solutions in the literature. Indeed, as we discussed above
this is a feature of black hole solutions in GR. However, noncircular spacetimes may
arise in physical situations, and hence it is important to understand their proper-
ties. This choice of ansatz can prove to be too restrictive in some situations, as was
shown for example in for the numerical simulation of black holes in the cubic Galileon
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theory [175]. There have been e�orts to develop numerical schemes to study such
spacetimes [220], but there is nonetheless very little work on this subject in the liter-
ature. Such conditions can arise in the presence of toroidal magnetic �elds, or with
a convective �uid having a meridional �ow [221, 222]. Noncircularity has an impact
on the symmetries of the disformed Kerr metrics. In a spacetime with a separability
structure, and hence with a nontrivial Killing tensor, it was shown that circularity
could be made manifest with a particular choice of coordinates [223�225]. Since circu-
larity is a coordinate independent property (as long as the coordinates are adapted to
the Killing vectors), one concludes that noncircular spacetimes in 4 dimensions do not
possess a nontrivial Killing tensor, and hence the integrability of the geodesic equation
is lost in this case. In fact, the most general Kerr deformation which is compatible
with the separability condition was given in [176].

This kind of approach is usually followed in the literature when constructing de-
formations of the Kerr metric. One retains a certain amount of properties of the Kerr
metric, while performing the deformations which are compatible with the hypotheses.
This point of view has been used to propose alternatives to the Kerr metric [176�178].
Even though this method provides testable deviations from the GR spacetime, the
underlying theory is unknown, and deformations often possess pathologies like closed
timelike curves [177]. Such pathologies also exist in GR, for instance in the Kerr
spacetime with a > M [197], which describes a naked singularity.

One can show that the disformed Kerr metric is stably causal, meaning that it
remains causal under a small perturbation of the light cone. It is argued in Wald's
book, Ref. [184], that stable causality is su�cient to avoid pathologies such as closed
timelike curves. We will use the following theorem from this reference:

Theorem [184]: A spacetime is stably causal if and only if there exists a di�eren-
tiable function f such that ∇µf is a past directed timelike vector �eld.

This function can be thought of as a global time, and in our case there exists such a
function by construction, the scalar �eld ϕ(t, r) itself. We have already seen that the
vector ϕµ is timelike2 According to Eq. (8.15), the scalar is regular for r > 0. Therefore
our spacetime is globally causal, provided that the region of the spacetime for some
positive r (in particular outside the event horizon) is causally disconnected from the
region r < 0 (where closed timelike curves are present, similarly to the Kerr case).

8.2.2 Spacetime structure and analytical constraints

We will now follow a similar approach to that of Section 7.2.2, namely we will start at
spatial in�nity and slowly uncover important hypersurfaces as as the radial coordinate

2The same argument was used in Ref. [226] to show that a black hole with an accreting k-essence
�eld [227] has no closed timelike curves. Similarly to our case, the k-essence �eld was identi�ed as a
global time function in Ref. [226].
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decreases. As we saw in the case a = 0, a coordinate change was necessary in order
to put the metric in the Schwarzschild form. Similarly, we perform the following
coordinate transformation in the general case:

dt = dT −D

√
2M̃r(a2 + r2)

∆(1− 2M̃
r
)

dr . (8.21)

Though this rede�nition does not eliminate the g̃tr in the metric, it makes it smaller
asymptotically. In fact, in these coordinates the Schwarzschild solution (8.13) is recov-
ered for large r, contrary to what is claimed in Ref. [219]. We thus obtain a coordinate
system which is closer to the BL coordinates for the Kerr metric, which we will call
Boyer-Lindquist-like coordinates. In these coordinates the disformal Kerr metric for
large r reads

ds̃2 = −

[
1− 2M̃

r
+O

(
ã2M̃

r3

)]
dT 2 −

[
4ãM̃

r3
+O

(
ã3M̃

r5

)]
[xdy − ydx] dT

+

[
δij +O

(
M̃

r

)
cij

]
dxidxj

+
D

1 +D

[
O

(
ã2M̃

r3

)
dt2 +O

(
ã2M̃3/2

r7/2

)
bidtdx

i +O
(
ã2

r2

)
dijdx

idxj
]
,

(8.22)

where ã = a
√
1 +D, {bi, cij, dij} ∼ O(1), and Cartesian coordinates have been intro-

duced as in Eq. (7.40). From this expansion, we see that at leading order the disformed
metric is the same as Kerr, with a mass and angular momentum given by

M̃ =
M

1 +D
and ã = a

√
1 +D . (8.23)

The e�ect of disformality appears at higher orders, and notice in particular the unusual
half-integer power of r in the cross terms dtdxi. In the rest of this section, we will
keep using the parameter a for simplicity, but one must keep in mind that the spin of
the black hole, as determined by the asymptotic expansion, is ã.

As the radial coordinate decreases, we reach the surface where the timelike Killing
vector ξ becomes null, which is determined by g̃tt = 0. As in the case of Kerr, this
surface r = r̃E(θ) is called the static limit, or ergosurface, and is de�ned by

r̃E(θ) = M̃ +
√
M̃2 − a2 cos2 θ . (8.24)

Note that there is nonetheless a di�erence compared to the Kerr spacetime, since the
spin a enters the previous expression, and not ã. Inside this surface, static observers
no longer exist and stationary observers of the form (7.41) must have ω > 0. As we
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go deeper inside the ergoregion, we reach a surface inside which timelike stationary
observers no longer exist, which we de�ned as the stationary limit. This surface is
obtained by solving the equation:

P (r, θ) ≡ r2 + a2 − 2M̃r +
2M̃Da2r sin2 θ

r2 + a2 cos2 θ
= 0 . (8.25)

It can be seen as a fourth order polynomial in the variable r, which has at most four
roots. The outermost one, which we call RS(θ), de�nes the stationary limit

ΣS : r −RS(θ) = 0 (8.26)

In the limit D = 0, this would correspond to the outer event horizon of the Kerr
metric. In general, this surface does not lie at constant r, and it meets the ergosurface
at the poles. We now show that ΣS cannot be an event horizon, since such a surface
is necessarily null. To determine the nature of ΣS we write the covariant components
of the normal vector N to this surface:

Nµ = (0, 1,−R′
S(θ), 0) , (8.27)

where a ′ denotes a derivative with respect to θ. We now calculate the norm of this
vector, and obtain

N2 = g̃µνNµNν = g̃θθ
[
R′2
S (θ) + P (r, θ)

]
. (8.28)

By evaluating this expression on the surface r = RS(θ), where we have P = 0, we
obtain

N2|r=RS
= g̃θθR′2

S (θ) > 0 .

This shows that unless D = 0 (in which case RS is constant and we have R′
S = 0), the

normal vector N is spacelike, meaning that ΣS is a timelike hypersurface. Hence it
cannot correspond to an event horizon. This confusion is common in the literature, and
many authors have associated the solutions of Eq. (7.45) to event horizons, regardless
of the θ-dependent pro�le. Hence, if an event horizon does exist for the disformed Kerr
spacetime, it must lie in the interior of ΣS. A notable feature of the interior of ΣS is
that all of the Killing vectors, i.e. of the form µ1∂t + µ2∂φ with {µ1, µ2} constants,
are spacelike in this region. Indeed, by factorizing µ1, one can write these vectors in
a form that is proportional to the vector (7.41), and we showed that such vectors are
spacelike inside ΣS. This implies that if an event horizon is found in the interior of the
stationary limit, it cannot be a Killing horizon, as this would require a Killing vector
to be null on the surface. This is impossible, since the Killing vectors are spacelike in
this region. This property is a notable di�erence form the GR spacetimes. In our case
Hawking's rigidity theorem does not hold since the spacetime is not Ricci �at.

We now search for a candidate event horizon in the interior of the stationary limit
surface ΣS, which must be a null hypersurface. The usual assumption is to look for a
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horizon located at constant r. Requiring that the normal vector to such a surface be
null, we obtain the equation g̃rr = 0. It can be shown that in the present case

g̃rr =
P (r, θ)

ρ2(r, θ)
,

so that the equation g̃rr = 0 does not admit constant r solutions when D ̸= 0. This
means that our starting assumption is wrong, and a potential event horizon cannot be
located at constant r. As we already stated, this error is common in the literature, as
the link between solving g̃rr = 0 and the hypothesis of a constant r surface is often
forgotten.

Since the event horizon cannot be a constant r surface, we look for more general
hypersurface H de�ned by

H : r −R(θ) = 0 . (8.29)

We introduce the vector n normal toH, which has the following covariant components:

nµ = (0, 1,−R′(θ), 0) . (8.30)

We now ask for this vector to be null, which is a necessary condition for H to be a
horizon. After dividing by g̃θθ, which is strictly positive outside of the ring singularity
ρ = 0, the condition n2 = 0 leads to

R′2(θ) + P (R(θ), θ) = 0 , (8.31)

which constitutes the equation for the horizon surface. This type of horizon equation
was also obtained in Refs. [177,178,228].

Let us now discuss some analytical properties of the solution to Eq. (8.31). First
of all, a solution exists only if P (R(θ), θ) ≤ 0, which is consistent with the fact that
we're looking for a horizon in the interior of ΣS. It is a �rst-order di�erential equation
which admits two branches in which R is monotonous:

R′(θ) = ±
√

−P (R(θ), θ)) . (8.32)

We will see that the branch must be chosen depending on the value of D and the
interval of θ. The function R(π− θ) satis�es the same equation because P is invariant
under the transformation θ → π− θ. This is consistent with the fact that our solution
should be symmetric with respect to the equator. In order for the solution to be
smooth, its derivative must vanish at the poles, i.e. R′(0) = R′(π) = 0. Furthermore,
a smooth solution with the symmetry θ → π−θ must also satisfy R′(π/2) = 0. Hence,
we are looking for a solution to Eq. (8.32) which satis�es the conditions:

R′(0) = R′
(π
2

)
= 0 . (8.33)

The condition R′(π) = 0 follows from the symmetry with respect to the equator. Note
that if these conditions are veri�ed, the surfaces H and ΣS must touch at the poles
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and equator.3 Since we are solving a �rst-order di�erential equation, it is a priori only
possible to specify one of the boundary conditions given by Eq. (8.33). We will see by
solving the equation numerically that this indeed becomes a problem for some ranges
of parameters, in the sense that upon imposing one of the conditions, the second one
is not necessarily veri�ed. In the following, we will express distances in units of M̃ to
simplify the expressions, and for this we de�ne

h(θ) =
R(θ)

M̃
, hS(θ) =

RS(θ)

M̃
and χ =

a

M̃
. (8.34)

In terms of these variables, the horizon equation (8.31) becomes

h′2(θ) + h2 + χ2 − 2h+
2Dχ2h sin2 θ

h2 + χ2 cos2 θ
= 0 . (8.35)

It is possible to derive necessary conditions on the parameters χ and D for both of the
conditions (8.33) to be veri�ed. Let us assume that the function h is twice di�erentiable
at the points θ = 0 and θ = π/2, which should be veri�ed for a smooth solution. In
this case, a Taylor expansion around the point θ = π/2 yields the condition(

h3(
π

2
)− h2(

π

2
)−Dχ2

)2
+ 8Dχ2h(

π

2
)
(
h2(

π

2
) + χ2

)
≥ 0 , (8.36)

in order for the second derivative h′′(π/2) to be real.4 This condition is trivially veri�ed
for D ≥ 0, but it constrains the parameters {χ,D} in the case D < 0. The horizon
equation evaluated at θ = π/2 gives the following polynomial equation for h(π/2):

h3(
π

2
)− 2h2(

π

2
) + χ2h(

π

2
) + 2Dχ2 = 0 . (8.37)

Let us assume that D < 0 is �xed and χ may vary. Then, at the critical point χ = χc
for which the inequality (8.36) is saturated, it is possible to eliminate h using the
expressions (8.36) and (8.37). We obtain a polynomial equation that must be satis�ed
by the critical parameter χc:

0 = −256D2 + 32D [39 +D (50− 13D)]χ2
c

+ [15 +D (−2076 +D (562 + 7D (332 + 49D)))]χ4
c

− [30− 2D (414 + 517D)]χ6
c + 15χ8

c .

(8.38)

This can be seen as a fourth order polynomial in χ2
c, and one can show that only one

of the four roots is a positive number in the interval D ∈ [−1, 0]. Hence for each D we

3More precisely, the surface H must touch one of the surfaces corresponding to a root of P .
However, one can check numerically that the surface is indeed ΣS.

4Higher orders of the Taylor expansion around θ = π/2 do not give additional conditions. Indeed,
if we assume that h(2p+1)(π/2) = 0, then the order 2p in the Taylor expansion is linear in h(2p) when
p > 1. So we do not have additional constraints to ensure that h(4), h(6), etc. are real at θ = π/2.
The same is true for the expansion around θ = 0.
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Figure 1: Critical value χc as a function ofD (in blue). For χ > χc, we have h′(π/2) ̸= 0
when D < 0, and h′(0) ̸= 0 when D > 0. For points in the shaded region, h′(0) =
h′(π/2) = 0 is allowed. The red curve is an existence condition for the horizon at the
equator, which gives a milder constraint.

obtain an upper bound for the parameter χ, in the sense that for χ > χc the horizon
surface cannot be smooth. Note that the condition χ ≤ χc is not a su�cient condition
for the smoothness of H, but it is necessary.

We now proceed similarly at the point θ = 0, where it is easy to see that

h(0) = 1 +
√

1− χ2 , (8.39)

assuming that χ ≤ 1. We have chosen this root in order for the horizon to coincide
with the ergosphere at the poles, as in the Kerr spacetime. We now perform a Taylor
expansion and set h′(0) = 0. Then, the necessary condition for h′′(0) to be real
translates to

1− (1 + 4D)χ2 ≥ 0. (8.40)

This is trivially veri�ed when D ≤ 0, since we assume χ < 1. However, when D > 0
we obtain the following upper bound on the parameter χ:

χc =
1√

1 + 4D
. (8.41)

Hence, if we ask for both conditions (8.33) to be veri�ed, in order to have a smooth
horizon we obtain a necessary upper bound for the parameter χ for each value of
D ∈ [−1,∞). It is worth noting that there exists an additional bound linked to the
existence of a real positive root to Eq. (8.37). As we saw, this is a necessary condition
for the horizon to be smooth, as it must touch the stationary limit at the equator and
poles. An analysis of the polynomial gives another upper bound on χ when D > 0,
but this constraint is milder than the one derived above, i.e. Eq. (8.41). The results
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are summarized in Fig. 1. Let us now comment on the implications of these bounds
on the physical spin parameter ã, to which we associate the dimensionless parameter

χ̃ =
ã

M̃
= χ

√
1 +D . (8.42)

Using the condition (8.41), we obtain that solutions with a smooth horizon verify
χ̃ < 1 for D ̸= 0. This means that the smooth disformed Kerr black holes look like a
sub-extremal Kerr solution to an observer at in�nity.

Another method to �nd the horizon equation (8.31) is to introduce an adapted
radial coordinate of the form

dζ = dr −R′(θ) dθ , (8.43)

such that the null hypersurface is now located at some constant value of ζ. In terms of
these coordinates, Eq. (8.31) is found by solving g̃ζζ = 0, which is analogous to solving
grr = 0 for the Kerr spacetime, when searching for a horizon at r = const. As we
discussed in the previous chapter, the constant r surfaces in the Kerr spacetime are
timelike when r > r+, spacelike in between the two event horizons, i.e. for r− < r < r+,
while the event horizon r = r+ is a null hypersurface providing a transition between
these two regions. Using a similar argument in the case of the disformed Kerr metrics,
we argue that if a smooth solution to Eq. (8.31) is found, it indeed represents an event
horizon. In this case, we introduce the one-parameter family of surfaces de�ned as

Rζ(θ) = R(θ) + ζ , (8.44)

where R0(θ) = R(θ) is the candidate event horizon. We now examine the nature of
such a surface by calculating the norm of its normal vector nζ . We obtain

n2
ζ = R′2(θ) + P (Rζ(θ), θ) . (8.45)

For ζ = 0, we have n2
ζ = 0, while n2

ζ > 0 for ζ > 0, since the surface r = R(θ) is the
outermost surface which satis�es Eq. (8.31). We now assume |ζ| ≪ 1, so that one can
write

n2
ζ = ζ

∂P

∂r
(R(θ), θ) +O

(
ζ2
)
. (8.46)

If one can show that ∂P/∂r > 0 when evaluated at the horizon surface, then this
proves the existence of some ζ0 for which n2

ζ < 0 in the interval ζ ∈ [ζ0, 0), which is
precisely what we wish to establish. Note that one cannot have ∂P/∂r < 0, as this
would contradict the result that n2

ζ > 0 for any ζ > 0. Hence, it is enough to prove
that ∂P/∂r ̸= 0 when evaluated at the horizon surface.

In terms of the dimensionless variables, an explicit calculation shows that this is
equivalent to determining the sign of

P1 = (h− 1)
(
h2 + χ2 cos2 θ

)2 −Dχ2 sin2 θ
(
h2 − χ2 cos2 θ

)
. (8.47)
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Let us now prove that this polynomial is positive at the horizon surface. We �rst
prove that h ≥ 1. We will show in the next section that depending on the sign of D,
a di�erent branch must be chosen in Eq. (8.32). When D < 0, the increasing branch
h′ > 0 must be chosen in the interval [0, π/2], so that h ≥ h(0) ≥ 1. When D > 0, the
minimum hm of the function h is reached at the equator, and it is the outermost root
of the polynomial (8.37). By evaluating this polynomial at h = 1 and enforcing the
constraint (8.41), we obtain a negative number. Since P is positive for large r, this
means that the outermost root is larger than 1, i.e. hm ≥ 1. Hence we have h ≥ 1 in
all cases. Note that the inequality is strict unless χ = 1, and hence D = 0, in which
case we simply recover the extremal Kerr black hole. This shows in particular that
h2 ≥ χ2 sin2 θ, since χ ≤ 1. Hence, it is clear that P1 > 0 for D < 0. It remains to
show that this is also the case when D > 0. It is clearly the case for θ = 0, but one can
show that it is true for any angle by solving P1 = 0 numerically. The solution does not
satisfy the horizon equation at any point, and hence P1 > 0 for D > 0 also. Hence,
for any D ̸= 0, we have shown that for a regular horizon surface h, i.e. verifying the
necessary conditions (8.33), we have

∂P

∂r
(R(θ), θ) ̸= 0 . (8.48)

This signi�es that the surfaces r = Rζ are indeed timelike for ζ > 0, null for ζ = 0,
and spacelike in an interval [ζ0, 0) for some constant ζ0. Because of this property, and
in analogy with the Kerr spacetime, we will say that the surface r = R(θ) verifying
Eq. (8.31) is an event horizon for the disformed Kerr metrics.

8.2.3 Numerical integration and approximate solutions

As we already mentioned, one cannot integrate the horizon equation (8.32) analyti-
cally. In this section, we discuss the numerical integration of this equation, along with
an approximate solution when the disformal parameter D is small. The numerical
integration is performed using the Runge-Kutta method with a speci�ed boundary
condition. Depending on the sign of D, we integrate the horizon equation (8.32) with
di�erent initial conditions. For D < 0, the integration is performed in the interval
θ ∈ [0, π/2] with the initial condition h′(0) = 0, while for D > 0 we integrate in the
interval θ ∈ [π/2, π] with the condition h′(π/2) = 0. In the latter case, we use the
symmetry θ → π−θ to plot the solution in the interval [0, π/2]. If the wrong interval is
chosen, the integration is unsuccessful, and we believe that this is caused by a growth
of the numerical error. Furthermore, the right branch must be chosen in Eq. (8.32).
For D > 0, one must choose h′ ≤ 0 in the interval [0, π/2], and the other branch is not
physical. Hence, we have h ≤ h(0) in this case, and the minimum is reached at the
equator. It is the opposite for D < 0, i.e. one must choose the branch where h′ ≥ 0
and we have h ≥ h(0), so that the maximum is reached at the equator.

Di�erent pro�les for χ = 0.9 are represented in Fig. 2. Some of the solutions are
manifestly not smooth at θ = π/2. In fact, only the cases D = −0.1 and D = 0.05
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Figure 2: Numerical integration of h− h(0) and hS − h(0) for χ = 0.9 and varying D,
respectively D = −0.75 (black), D = −0.3 (red), D = −0.1 (blue), D = 0.05 (purple)
and D = 0.1 (orange). The solution becomes unphysical when |D| becomes large.

in Fig. 2 represent smooth solutions. The other cases do not satisfy the necessary
conditions given by Eqs. (8.38) and (8.41). This can be seen from the fact that h′ is
nonzero at the equator, which also means that the horizon surface and the stationary
limit do not touch at this point. This is very clear from Fig. 2 in the case D = −0.75
for instance. In the cases where the horizon is smooth, the surfaces H and ΣS are very
close to each other in the whole interval [0, π/2], and touch at the poles and equator.
They are nevertheless distinct, and it is possible for a timelike observer to escape the
region in between these two surfaces. Using the numerical integration, it is possible
to check the necessary condition χ ≤ χc. Depending on the sign of D, we specify
one of the conditions (8.33) and integrate in the corresponding interval as discussed
previously. For each case, we determine the value of h′ at the end point of the interval,
and check if it is consistent with h′ = 0. Some examples are shown in Fig. 3 for D < 0,
though analogous results hold for D > 0. By increasing the numerical precision, we
obtain that h′ → 0 if the condition χ ≤ χc is veri�ed. This numerical argument seems
to indicate that the condition χ ≤ χc is in fact also a su�cient condition to have
a smooth horizon surface, though we have not yet found an analytical proof of this
claim.

Another way to gain some insight on the solutions to Eq. (8.35) is to solve it
perturbatively. The term containing D can be thought of as a perturbation, and for
Dχ2 ≪ 1 we write

h(θ) = h(0) +
∞∑
n=1

(Dχ2)nδhn(θ) . (8.49)
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Figure 3: Numerical value of h′(π/2) for D = −0.75 (black), D = −0.3 (red) and
D = −0.1 (blue).

Using Eq. (8.35), we can obtain δh1 algebraically. Then, higher orders in the expansion
give δhn in terms of δhn−i and δh′n−i, where i ∈ J1, n− 1K. One can hence obtain the
solution as a perturbative series to the desired order. The �rst-order term reads

δh1(θ) = −
χ sin2 θ

(
1 +

√
1− χ2

)
2 (1− χ2) +

√
1− χ2

(
2− χ2 sin2 θ

) . (8.50)

The deviations from the Kerr solution are maximal at the equator, and are of order
h(π/2) ∼ |Da2| (for small Da2). Notice that δh1 < 0, meaning that the sign of the �rst
order correction is opposite to the sign of D. This is in accordance with the choice of
the branch for the numerical integration depending on the sign of D. As we discussed
above, we have h− h(0) > 0 (resp. h− h(0) < 0) when D < 0 (resp. D > 0).

Another way to �nd an approximate solution is to expand around the stationary
limit surface r = RS(θ). As we discussed, for smooth solutions the surfaces H and
ΣS meet at the poles and equator, and remain very close to each other in the interval
θ ∈ [0, π/2]. This motivates the search for approximate solutions of the form

Rn+1(θ) = Rn(θ) + Fn(θ) , (8.51)

where we start with R0 = RS, and Fn ≪ Rn. To determine the function Fn at each
order, we Taylor expand Eq. (8.31) and obtain

R′2
n + 2R′

nF
′
n + F ′2

n + P (Rn, θ) + Fn
∂P

∂r
(Rn, θ) = 0 . (8.52)

We also assume F ′
n ≪ R′

n, which should be checked numerically, and in this case the
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solution at each order reads

Rn+1(θ) = Rn(θ)−
(
R′2

n + P (Rn, θ)
)(∂P

∂r
(Rn, θ)

)−1

. (8.53)

This provides an alternative method to integrate the horizon equation, and we have
checked numerically that both methods converge towards the same solution when the
necessary condition χ ≤ χc is satis�ed.

8.3 Interesting limiting cases

In this section, we examine some interesting limits of the disformed Kerr metrics (8.11),
namelyD → −1 andD → ∞. They constitute simple examples of noncircular metrics,
and their study could be helpful to understand the properties of such spacetimes.

8.3.1 Limit D → −1: the quasi-Weyl metric

We �rst examine the limit D → −1, which is a priori singular, since the metric (8.11)
was written after the rede�nition t → t/

√
1 +D, and in these coordinates the scalar

�eld reads:

ϕ =
q0√
1 +D

t+ (1 +D)

∫ √
2M̃r(a2 + r2)

∆
dr

 .

In order to make sense of the limit, we rede�ne the scalar �eld and the corresponding
kinetic density as

ψ =

√
1 +D

q0
ϕ and Ỹ = g̃µν∂µψ∂νψ . (8.54)

After taking the limit D → −1, we simply have ψ = t in this case. In the same limit,
the line element (8.11) becomes

ds̃2QW = −

(
1− 2M̃r

ρ2

)
dt2+

ρ2

r2 + a2
dr2+2

√
2M̃r

r2 + a2
dtdr+ρ2dθ2+

(
r2 + a2

)
sin2 θdφ2 .

(8.55)
The g̃tφ term disappears in this limit, but the metric isn't static because of the g̃tr term
which cannot be eliminated because of noncircularity. In the absence of the g̃tr term the
above line-element would be a Weyl metric, in essence a static and axially symmetric
circular metric, and because of this we call it a quasi-Weyl (QW) metric. In the limit
a = 0, one recovers the Schwarzschild metric in Gullstrand-Painlevé coordinates.

Interestingly, in this case the ergosurface coincides with the stationary limit ΣS.
However, as we discussed above the event horizon is located further in the interior of
these surfaces, even though they meet at the poles and equator. This is an interesting
property, since the ergoregion is usually a feature of rotating black holes. In the
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Figure 4: Stationary limit (dashed black line) and event horizon (black) for the quasi-
Weyl metric with the critical parameter χ = 2/

√
15. In the green region, the Killing

vector ξ is spacelike. The ergosurface coincides with the stationary limit in this case.

present case, the object is not spinning in the φ direction, and yet there exists a region
outside the horizon where the Killing vector ξ is spacelike. This will force timelike
observers to move along the radial direction in this region. Indeed, by setting dr = 0
in the line element above, we obtain ds̃2QW > 0 in this region, which is impossible for
a timelike curve. However, such a timelike observer can still escape to in�nity, since
they haven't yet crossed the null surface H. In terms of the adapted coordinate ζ
de�ned in Eq. (8.43), it is still possible to move towards increasing ζ in this region.

In this limit, the polynomial (8.38) determining the critical parameter χ = a/M̃
simpli�es, and we obtain

χc =
2√
15

. (8.56)

The horizon equation for this metric is obtained by settingD = −1 in Eq. (8.35), which
still cannot be integrated analytically. The di�erent surfaces (obtained numerically)
for χ = χc are represented in Fig. 4. For values of χ < χc, the green region in Fig. 4
would be thinner.

We now discuss the theory corresponding to this solution. We take the same limit
in the general action given by the functions (8.10), and express everything in terms of
the �eld ψ, resulting in:

SQW[g̃] =
M2

P

2

∫
d4x
√

−g̃

(√
−Ỹ f(Ỹ )R̃− f√

−Ỹ

[
ψµνψ

µν − (□ψ)2
]

+
4fỸ√
−Ỹ

ψµψµνψ
ν□ψ

)
, (8.57)
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where f has also been rede�ned as f → f
√
1 +D to absorb a residual in�nite factor.

One can check that the above action admits the QW metric (9.35) and ψ = t as a
solution. If we consider a constant f , the theory belongs to the Horndeski class, i.e.
it leads to second-order �eld equations.

8.3.2 Limit D → ∞: the noncircular Schwarzschild metric

Let us now consider the limit of an in�nite disformal parameter, i.e. D → ∞, while
at the same time keeping the physical spin of the black hole ã = a

√
1 +D �nite. This

implies a → 0 but as we discussed above, the observable quantity is ã rather than a.
This limit applied to the disformed metric (8.11) leads to the following line element:

ds̃2NCS = −

(
1− 2M̃

r

)
dt2 +

√
2r

M̃
dtdr − 4χ̃M̃2 sin2 θ

r
dtdφ− r

2M̃
dr2

+ r2dθ2 + r2 sin2 θ

(
1 +

2χ̃2M̃3 sin2 θ

r3

)
dφ2 .

From this expression, it is clear that the metric is only singular at the point r = 0. We
can put the metric in a Schwarzschild-like form by trading the (tr) term for an (rφ)
term through the coordinate change (8.21), assuming the limit D → ∞ and a→ 0:

dt = dT +
r3/2dr√

2M̃(r − 2M̃)
.

In terms of these new coordinates, we obtain the following line element:

ds̃2NCS = −

(
1− 2M̃

r

)(
dT +

2χ̃M̃2 sin2 θ

r − 2M̃
dφ

)2

+

(
1− 2M̃

r

)−1
dr −

√
2M̃3

r
χ̃ sin2 θdφ

2

+ r2
(
dθ2 + sin2 θdφ2

)
.

(8.58)

This noncircular metric reduces to the Schwarzschild line element in the limit χ̃ = 0, so
we call it the noncircular Schwarzschild metric (NCS). Despite the name, the properties
of the above metric are quite di�erent from the static GR case. For a start the metric
is stationary and spinning : from the (tφ) term we can read o� the value of the spin
χ̃, when compared to an asymptotic expansion of the Kerr spacetime. The necessary
condition (8.41) for this black hole to have a smooth outer horizon translates to

χ̃ ≤ 1

2
, (8.59)
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Figure 5: Ergosurface (dotted red line), stationary limit (dashed black line) and nu-
merical integration of the horizon surface (black) for the NCS metric with critical spin
χ̃ = 1/2.

in terms of the physical spin parameter. The surface r = 2M̃ corresponding to the
Schwarzschild event horizon in the limit χ̃ = 0 is now the static limit of the spinning
black hole, while the stationary limit and event horizon lie inside this surface. The
horizon equation (8.31) simpli�es in this limit, and we obtain

h′2(θ) + h2 − 2h+
2χ̃2 sin2 θ

h
= 0 . (8.60)

Even though this equation simpli�es a lot, one still cannot solve it analytically. A
numerical integration for the critical spin χ̃ = 1/2 is represented in Fig. 5.

We now discuss the theory corresponding to the NCS metric and its associated
scalar �eld. We perform the same �eld rede�nition as in Eq. (8.54), and obtain in this
case

ψ = T + 2
√

2M̃r − 4 tanh−1

√
r

2M̃
. (8.61)

The resulting action in terms of ψ and Ỹ reads, in the limit D → ∞,

SD→∞[g̃] =
M2

P

2

∫
d4x
√

−g̃

(√
1 + Ỹ f(Ỹ )R̃ +

f√
1 + Ỹ

[
ψµνψ

µν − (□ψ)2
]

− 4fỸ√
1 + Ỹ

ψµψµνψ
ν□ψ

)
.

(8.62)

In this limit, we have Ỹ → −1, which leads to diverging terms in the equations of
motion. However, by inspecting the equations of motion following from the above
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action, one can notice that the �rst and third terms give subdominant contributions
with respect to the second one, in the limit Ỹ → −1. As a result, upon rede�ning the
function f as F = f/

√
1 + Ỹ , we obtain the action

SNCS[g̃] =
M2

P

2

∫
d4x
√
−g̃F (Ỹ )

[
ψµνψ

µν − (□ψ)2
]
. (8.63)

One can check that the equations of motion deriving from this action are satis�ed by
the NCS metric (8.58) and scalar �eld (8.61). This theory belongs to both the Ia and
IIIa DHOST classes [45,46], due to the absence of an Einstein-Hilbert term.

8.4 Petrov type of the disformed metrics

In this section, we use the NCS metric (8.58) to comment on the Petrov type of the
disformed metrics. As we discussed, the Kerr metric is algebraically special and has
a Petrov type D, meaning that it possesses the two repeated principal null directions
given in Eq. (7.33). We will show that the NCS metric is of general Petrov type I,
meaning that it is not not algebraically special. This is a generic feature of all the
disformed metrics, but we choose to perform the calculations for the NCS metric for
simplicity. However, even for type D metrics, most of the useful theorems apply only for
vacuum solutions. For instance, in this case the Goldberg-Sachs theorem [229] states
that the repeated principal null directions are geodesic (and shear-free). One can also
prove the existence of a nontrivial Killing tensor in this case [191]. However, since the
disformed Kerr metrics are not Ricci �at, these theorems wouldn't apply anyway, so
determining the Petrov type is not crucial. The authors of [219] constructed deformed
versions of the principal directions of the Kerr spacetime of the form

k̃µ = kµ0 + α1(r)ϕ
µ and l̃µ = lµ0 + α2(r)ϕ

µ. (8.64)

We show here that these objects cannot be considered as repeated principal null di-
rections of the disformed spacetime, since the Petrov type D is not conserved through
the disformal transformation. Instead, these are simply null vectors which are not
geodesic, and have no link to the Weyl tensor in the generic case D ̸= 0.

The NCS metric written in Schwarzschild-like coordinates is a good starting point
for applying the Newman-Penrose (NP) formalism [230]. Indeed, the line element (8.58)
can be written

ds̃2 = ηab e
a
µ e

b
ν dx

µ dxν , (8.65)

where ηab is the Minkowski metric and the 1-forms ea read

e0 =

(
1− 2M̃

r

)1/2(
dT +

2χ̃M̃2 sin2 θ

r − 2M̃
dφ

)
,
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e1 =

(
1− 2M̃

r

)−1/2
dr −

√
2M̃3

r
χ̃ sin2 θdφ

 ,

e2 = r dθ ,

e3 = r sin θ dφ .

We assume that we are in the region r > 2M̃ in order for the previous expressions to
be valid. From this real tetrad, we can construct a complex null tetrad {k, l,m, m̄}
according to

k =
e0 + e1√

2
, l =

e0 − e1√
2

, m =
e2 − i e3√

2
, m̄ =

e2 + i e3√
2

. (8.66)

In this formalism, the metric can be written

g̃µν = −kµlν − lµkν +mµm̄ν + m̄µmν .

In terms of the Riemann and Ricci tensors, the Weyl tensor in four dimensions reads

Cµναβ = Rµναβ − gµ[αRβ]ν + gν[αRβ]µ +
1

3
Rgµ[αgβ]ν . (8.67)

It is the trace-free component of the Riemann tensor, as can be checked easily by
contracting any two indices in the previous expression. We can now construct �ve
Weyl scalars through contractions with the vectors of the null tetrad:

ψ0 = Cµναβk
µmνkαmβ ,

ψ1 = Cµναβk
µlνkαmβ ,

ψ2 = Cµναβk
µmνm̄αlβ ,

ψ3 = Cµναβl
µkνlαm̄β ,

ψ4 = Cµναβl
µm̄νlαm̄β . (8.68)

The Weyl scalars completely determine the Petrov type of a given spacetime [230]. In
terms of the null tetrad (8.66), an explicit calculation for the NCS metric yields

ψ0 =
M̃3χ̃2 sin2 θ

(√
r −

√
2M̃
)2

r5
(
r − 2M̃

) ,

ψ1 = −
M̃2χ̃ sin θ

(√
r −

√
2M̃
)(

7M̃χ̃ cos θ − 6ir
)

4r5
√
r − 2M̃

,

ψ2 = −M̃
r3

[
1− M̃2χ̃2 (1 + 3 cos 2θ)

3r2
+

3iM̃χ̃ cos θ

r

]
,
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ψ3 =
M̃2χ̃ sin θ

(√
r +

√
2M̃
)(

7M̃χ̃ cos θ − 6ir
)

4r5
√
r − 2M̃

,

ψ4 =
M̃3χ̃2 sin2 θ

(√
r +

√
2M̃
)2

r5
(
r − 2M̃

) . (8.69)

The Weyl scalars are modi�ed by a rotation of the tetrad. For example, in the case
of a type D spacetime, one can �nd a null tetrad for which only the Weyl scalar
ψ2 ̸= 0. This is the case when χ̃ = 0 in the previous expressions, which corresponds
to the Schwarzschild metric. We have in this case ψ0 = ψ1 = ψ3 = ψ4 = 0, while
ψ2 = −M̃/r3. It is possible to construct scalars which are invariant under the rotation
o� the tetrad, among which [195]

I = ψ0ψ4 − 4ψ1ψ3 + 3ψ2
2 ,

J = ψ0ψ2ψ4 − ψ2
1ψ4 − ψ0ψ

2
3 + 2ψ1ψ2ψ3 − ψ3

2 . (8.70)

It can be shown that an algebraically special spacetime (i.e. not of Petrov type I)
satis�es 27J 2 = I3 (see for instance Ref. [195]). One can de�ne the following speciality
index S in order to quantify the deviations from an algebraically special spacetime
[231]:

S =
27J 2

I3
. (8.71)

For the NCS metric, one can check explicitly that S ̸= 1, indicating that the spacetime
is of generic Petrov type I. Furthermore, in the case χ̃≪ 1 we obtain

SNCS = 1− 3M̃4χ̃4 sin4 θ

4r4
+O

(
χ̃5
)
. (8.72)

The limit χ̃ = 0 corresponds to the Schwarzschild metric, which is of Petrov type D,
so we recover S = 1 in that case. This calculation can be performed for the disformed
Kerr metric (8.11) in the general case, and we obtain the same result S ̸= 1, unless
D = 0 or a = 0 (which both correspond to vacuum GR black holes that are of type
D).5 However, since the expressions are much heavier in the general case, the case of
the NCS metric was presented for simplicity. An analogous calculation for the quasi-
Weyl metric (8.55) outside the ergosurface yields the same result as Eq. (8.72) in the
case χ ≪ 1, with the substitution χ̃ → χ. The next-to-leading correction is of order
O(χ6) for that spacetime.

5After the submission of this thesis, Ref. [232] appeared, in which the authors study the e�ect
of the disformal transformation on the Petrov type. They also �nd that the disformed metric is
generically of Petrov type I.
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Chapter 9

Orbit of stars in the disformed Kerr

spacetime

In this chapter, which is based on Ref. [233], we study the post-Newtonian (PN)
motion of stars around a disformed Kerr black hole. We will study di�erent limits
of the disformal parameter D, showing that generically the no-hair theorem of GR is
violated. In a speci�c limit, we will be able to put a lower bound on the disformal
parameter in order to satisfy the current experimental constraints from the GRAVITY
collaboration [165, 166]. We start by comparing the second post-Newtonian (2PN)
expansion of the disformed metric to various rotating spacetimes in the literature,
and discuss the violation of the no-hair theorem. We then present the two-timescale
analysis which is used to compute the secular variation of orbital parameters, closely
following the analysis of Ref. [234]. Finally we calculate the secular shifts of orbital
parameters for various cases of the constant D and discuss experimental constraints.

9.1 Comparison of di�erent metrics asymptotically

Our goal is to study the post-Newtonian motion of stars in the vicinity of a disformed
Kerr spacetime. In the Newtonian limit, the trajectory of a star forms an ellipse with
the black hole located at one of its foci. In order to describe the post-Newtonian
motion, we introduce the following dimensionless parameter:

ε =
M̃

A
, (9.1)

where A is the semimajor axis of the ellipse. We consider the case where the star is
far away from the black hole, and write the metric up to 2PN order, meaning that
we keep terms up to order O(ε3). We write the metric in terms of the physical spin
χ̃ = ã/M̃ , which we assume is of order O(1). After the coordinate change (8.21),
which we perform so that the asymptotic form of the metric is closer to Kerr in BL
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coordinates, the line element up to 2PN order reads:

ds̃22PN = −

(
1− 2M̃

r
+

2M̃3χ2 cos2 θ

(1 +D)r3

)
dT 2 +

(
1 +

2M̃

r
+

4M̃2

r2
− M̃2χ2 sin2 θ

(1 +D)r2

)
dr2

+ r2

(
1 +

M̃2χ2 cos2 θ

(1 +D)r2

)
dθ2 + r2 sin2 θ

(
1 +

M̃2χ2

(1 +D)r2

)
dφ2

− 4M̃2χ sin2 θ

r
dTdφ .

(9.2)

Note that we keep terms up toO(ε3) in the g̃tt component, and lower-order terms in ε in
other components because the motion of stars is assumed to be nonrelativistic. Indeed,
in this case the spatial variation is suppressed with respect to the time variation along
the trajectory by the 3-velocity v ∼

√
ε, i.e. dxi ∼

√
εdt, and therefore one only needs

to keep lower-order terms in the spatial components of the metric. At this PN order,
the metric is circular (meaning it is unchanged under the re�ection (t, φ) → (−t,−φ)),
and the expansion is very similar to that of the Kerr metric. One can also check that
the Ricci tensor for the metric (9.2) is nonzero only at ε3 order, i.e. Rµν ∼ O(ε3)
(in these coordinates). This can be seen by evaluating the Ricci tensor for the full
metric (8.11). Thus one can say that the metric (9.2) is Ricci-�at up to the order ε2.

Once we have read o� the mass and spin of the black hole from the g̃tt and g̃tφ
terms, the disformal factor D only enters the quadrupole terms proportional to χ2 in
Eq. (9.2). These terms correspond to the leading-order contributions of the Newtonian
quadrupole moment, even though we will refer to them as 2PN in the context of a large
r expansion. In other words, the disformal metric is equivalent to the Kerr metric up
to 1.5PN order for generic D. To better understand the form of deviations at higher
PN orders, it is instructive to compare the metric (9.2) to a non-Kerr metric at that
order. A particularly interesting example is the Butterworth-Ipser (BI) metric [235,
236], which was constructed to model a rapidly rotating star. It is usually expressed
using the ansatz of Ref. [237] for a circular and axisymmetric metric in quasi-isotropic
coordinates:

ds2 = −e2νdt2 + e2Ψ (dφ− ω̃dt)2 + e2µ
(
dR2 +R2dθ2

)
,

where ν, Ψ, ω̃ and µ are functions of R and θ. The BI metric at 2PN order is given
by the following expressions (see for instance Ref. [238]1):

ν = −M̃
R

+

[
− 1

12
+ a0 − (4a0 + q)P2(cos θ)

]
M̃3

R3
+O(R−4) ,

1There is a typo in Eq. (3.29c) of this reference, where the quantity µS should be added to the
right-hand-side.
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µ =
M̃

R
−
[
1

4
+ a0 − 4a0P2(cos θ)

]
M̃2

R2
+O(R−3) ,

Ψ = log(R sin θ) +
M̃

R
+

[
3a0 −

1

4

]
M̃2

R2
+O(R−3) ,

ω̃ =
2χM̃2

R3
++O(R−4) , (9.3)

where a0 and q are quadrupole parameters, and P2(x) = (3x2 − 1)/2 is a Legendre
polynomial. We adopt here the notations of Ref. [238] (but we use a0 instead of their
a to avoid confusion with the Kerr spin parameter). With these conventions, the
parameter q corresponds to the coordinate invariant quadrupole moment, as pointed
out in Ref. [239] (see also Ref. [240]). In order to compare the asymptotic expansions
of the disformed Kerr and the BI metrics, we write the 2PN order expansion of the BI
metric in BL-like coordinates. One can show that the disformed metric can be written
in quasi-isotropic coordinates up to 2PN order by the coordinate transformation

r = R

[
1 +

M̃

2R

(
1 +

χ̃√
1 +D

)][
1 +

M̃

2R

(
1− χ̃√

1 +D

)]
. (9.4)

When D = 0, this coordinate rede�nition brings the full Kerr metric in BL coordinates
to quasi-isotropic ones [241]. However, for the disformed metric this is true only up to
2PN order. By inverting this relation, we obtain the BI metric in BL-like coordinates
at 2PN order:

ds2BI = −

(
1− 2M̃

r
+

2M̃3

r3

[
q + 6a0 +

χ̃2

2(1 +D)
− 3(4a0 + q) cos2 θ

])
dt2

+

(
1 +

2M̃

r
+

4M̃2

r2
+
M̃2

r2

[
6a0 cos 2θ −

χ̃2

2(1 +D)

])
dr2

+ r2

(
1 +

M̃2

r2

[
6a0 cos 2θ +

χ̃2

2(1 +D)

])
dθ2

− 4M̃2χ̃ sin2 θ

r
dtdφ+ r2 sin2 θ

(
1 +

M̃2

r2

[
6a0 +

χ̃2

2(1 +D)

])
dφ2 , (9.5)

One can see that the disformed Kerr and the BI metrics can indeed be matched at
2PN order. A direct comparison of the above line element to the metric (9.2) gives
the following identi�cation of the parameters for the disformed metric in the case of
generic D:

a
(D)
0 =

χ̃2

12(1 +D)
, q(D) = − χ̃2

1 +D
, (9.6)

It may seem surprising that such a matching exists, taking into account the completely
di�erent nature of the disformed Kerr and BI metrics, and given that there are only
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two free parameters at hand. It should be noted however, that at higher PN orders,
where the noncircularity of the disformed metric (re)appears, such a matching cannot
be done as the BI metric is circular (see for example Refs. [238, 242]). Furthermore,
for some limiting cases of D that we will consider below, the matching does not exist,
i.e. the disformed metric does not fall in the BI form, even at 2PN order.

In GR, the higher multipole moments Ml and Sl of the Kerr metric are uniquely
determined as a function of the mass M̃ and spin ã of the black hole according to the
formula [243,244]

Ml + iSl = M̃(iã)l . (9.7)

We have M0 = M̃ , S1 = M̃ã and M2 = −M̃ã2. Hence, for the Kerr metric, the
dimensionless quadrupole moment q reads

q(K) = −χ̃2 . (9.8)

For generic D we have q(K) ̸= q(D), which means that the no-hair theorem is violated
for the disformed Kerr spacetime. In the future, the spin and quadrupole moment of
Sgr A* will be measured, providing a test of the previous theorem.

It is instructive to compare the Kerr disformation to other metrics presented in
the literature in the asymptotic regime, i.e. for large r. The main challenge here
is that normally line elements are written in di�erent coordinates, which makes a
direct comparison impossible. We will write all of the metrics in Boyer-Lindquist-
like coordinates, so that we can see a connection to our asymptotic expansion of the
disformed Kerr metric, given by Eq. (9.2).

A well-known example of an axisymmetric and stationary spacetime is the Hartle-
Thorne (HT) metric [245], which was constructed to model slowly rotating stars. Note
that the �quasi-Kerr� metric [246], sometimes used as an alternative to the Kerr metric,
is exactly the HT metric up to 2PN order. The HT metric for slowly rotating stars
can be written in a form which reduces to BL coordinates in the Kerr limit. At 2PN
order, this metric reads

ds2HT = −

(
1− 2M̃

r
− M̃3

r3
[
qHT − χ̃2 + (χ̃2 − 3qHT) cos

2 θ
])

dt2

+

(
1 +

2M̃

r
+
M̃2(4− χ̃2 sin2 θ)

r2

)
dr2 + r2

(
1 +

M̃2χ̃2 cos2 θ

r2

)
dθ2 (9.9)

+ r2 sin2 θ

(
1 +

M̃2χ̃2

r2

)
dφ2 − 4M̃2χ̃ sin2 θ

r
dtdφ .

We have used the expression of the metric in the appendix of Ref. [245]2 with the
identi�cation Q = qHTM̃

3 and J = χ̃M̃2. The HT metric up to 2PN order is a

2Notice a typo in the coordinate transformation to BL-like coordinates (as pointed out in
Ref. [246]).
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subclass of the BI metric. This can be seen by comparing Eqs. (9.9) and (9.5) (where
one sets D = 0) with the identi�cation q = −qHT and a0 = χ̃2/12. The disformed
metric given by Eq. (9.2) cannot be matched with Eq. (9.9), as can be seen from a
direct comparison. The other variants of Kerr disformations that we will consider in
the following cannot be matched to the HT metric either.

Another spacetime worth considering is the Johannsen metric [178], which describes
a rotating black hole, unlike the HT metric. Using the notations of Ref. [178], the line
element at 2PN order in BL coordinates reads:

ds2J = −

(
1− 2M̃

r
+
M̃3

r3
[
2α13 − ϵ3 − 2χ̃2 cos2 θ

])
dt2

+

(
1 +

2M̃

r
+
M̃2(4− α52 − χ̃2 sin2 θ)

r2

)
dr2 + r2

(
1 +

M̃2χ̃2 cos2 θ

r2

)
dθ2

+ r2 sin2 θ

(
1 +

M̃2χ̃2

r2

)
dφ2 − 4M̃2χ̃ sin2 θ

r
dtdφ . (9.10)

Note that the Johannsen metric is circular by construction. The Kerr metric at this
order is obtained by setting α13 = α52 = ϵ3 = 0 in the above expression. In general,
the metric (9.10) does not match the BI metric at 2PN order. It only happens for
a special combination of the parameters, i.e. q = −χ̃2, a0 = χ̃2/12, α52 = 0 and
ϵ3 = 2α13. In this case the coordinate invariant quadrupole is the same as for Kerr
and the no-hair theorem is not violated at this order. The Johannsen metric can also
be mapped to other Kerr-like metrics, see Ref. [178] for details. One can also verify by
comparing Eqs. (9.10) and (9.2) that the disformed metric in the generic case does not
match the Johannsen metric at this order. The same conclusion holds for the other
variants of the disformed metric.

9.2 Two-timescale analysis for the secular variation

of orbital elements

In this section, we present the two-timescale analysis that we will use to calculate
the secular variation of orbital parameters, closely following Ref. [234]. We will use
the standard osculating orbit method, see for instance Ref. [247]. In general, the
3-dimensional acceleration of a test body can be written in the following form:

a = −M̃
r3
x+ F , (9.11)

where the �rst term on the right-hand side corresponds to the Newtonian acceleration,
F is the perturbation of the Newtonian acceleration and x is the position vector in
space, so that r = |x|. We need to calculate the projections of the acceleration (9.11)
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Figure 1: Kepler orbit of a star S around the black hole located at O. The purple
line is called the line of nodes, and it is de�ned by the intersecting points of the star's
trajectory with the (Oxy) reference plane. The nodal angle Ω gives the position of this
line with respect to the (Ox) axis. Starting from the line of nodes, the pericenter P
of the trajectory is given by the pericenter angle ω, while ι represents the inclination
angle of the ellipse with respect to the (Oxy) plane. Finally, the true anomaly f gives
the position of the star S with respect to the pericenter P .

along the orthogonal directions x, h = x × v, and h × x, where v = dx/dt is the
3-velocity of the star. These projections are given by

S =
1

r
x · F , T =

1

hr
(h× x) · F , W =

1

h
h · F ,

where h = |h|. The expressions for the components of x in Cartesian coordinates (see
Fig. 1) with respect to the orbital elements read

x = r [cos Ω cosu− sinΩ cos ι sinu] ,

y = r [sinΩ cosu+ cosΩ cos ι sinu] ,

z = r sin ι sinu ,

where u = ω+f . To obtain the components of v one di�erentiates the above expression
assuming that all the angles are constant except for u. In the following, we use the
standard relations

r =
p

1 + e cos f
,

dr

dt
=
eh

p
sin f , h =

√
M̃p , p = A

(
1− e2

)
, (9.12)
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where A and e are respectively the semi-major axis and eccentricity of the ellipse. In
order for the limit e→ 0 to be well de�ned, the alternative orbit parameters α = e cosω
and β = e sinω are introduced [248]. With the above de�nitions, we can write the
Gauss equations for the evolution of the orbital parameters:3

dp
dt

= 2r

√
p

M̃
T ,

dα
dt

=

√
p

M̃

[
S sinu+

(
αr

p
+

(
1 +

r

p

)
cosu

)
T +

βrW
p

cot ι sinu

]
,

dβ
dt

=

√
p

M̃

[
−S cosu+

(
βr

p
+

(
1 +

r

p

)
sinu

)
T − αrW

p
cot ι sinu

]
,

dι
dt

=
rW cosu√

M̃p
,

dΩ
dt

=
rW sinu√
M̃p sin ι

,

du
dt

=
h

r2
− cos ι

dΩ
dt

. (9.13)

Using this system, we follow the analysis of Ref. [234] to obtain the secular variation
of orbital elements. We perform a two-timescale analysis [234,248�251] by introducing
a second variable Θ = ϵu, where ϵ is a bookkeeping parameter that is useful to keep
track of small terms. Since Θ varies on longer timescales, in the following we treat
u and Θ as independent variables. This approach allows us to make an average over
a period using the variable u, while keeping Θ as a slow varying (almost constant)
variable. First, we use the last equation of the system (9.13) to trade dt for du in all
other equations and write them in the form,

dXk

du
= ϵQk (Xl(u), u) , (9.14)

where the Xk stands for the orbital parameters p, α, β, ι and Ω. In the two-timescale
approach, we have

d
du

=
∂

∂u
+ ϵ

∂

∂Θ
(9.15)

We de�ne the average ⟨·⟩ and average-free part AF as

⟨C⟩ = 1

2π

∫ 2π

0

C(Θ, u) du ,

AF (C) = C(Θ, u)− ⟨C(Θ, u)⟩ . (9.16)

3See for instance Ref. [234], though notice a typo in the expressions for dα/dt and dβ/dt.
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and each orbital parameter is decomposed as:

Xk(Θ, u) = X̄k(Θ) + ϵZk(X̄l, u) , (9.17)

X̄k(Θ) = ⟨Xk(Θ, u)⟩ , (9.18)

⟨Zk(X̄k(Θ), u)⟩ = 0 . (9.19)

This analysis is not necessary to obtain leading-order terms in the variation of orbital
parameters, but the periodic contributions which appear in the Zk must be taken into
account if one calculates higher-order terms in ϵ. Let us now derive the formula that
we will use to calculate the secular variation of orbital parameters, following Ref. [234].
By using the previous decomposition with the evolution equations (9.14), we obtain
the following expressions:

dX̄k

dΘ
= ⟨Qk

(
X̄l + ϵZl, u

)
⟩ , (9.20)

∂Zk

∂u
= AF

[
Qk

(
X̃l + ϵZl, u

)]
− ϵ

∂Zk

∂X̄m

dX̄m

dΘ
(9.21)

We want to obtain the corrections up to order ϵ2 in Eq. (9.14), so we must calculate
them up to order ϵ in terms of Θ derivatives. At the end, we sill replace Θ = ϵu to
obtain the desired result. We expand the functions Zk as

Zk = Z
(0)
k + ϵZ

(1)
k + . . . , (9.22)

and we perform a Taylor expansion of Eq. (9.21). The result is

dX̄k

dΘ
= ⟨Q(0)

k ⟩+ ϵ⟨Q(0)
k,lZ

(0)
l ⟩+O(ϵ2) , (9.23)

where Q(0)
k = Qk(X̄l, u) and Q

(0)
k,l = (∂Qk/∂X̄l)(X̄l, u). We must now determine Z(0),

in order to obtain the �nal formula for the secular shifts. Using Eq. (9.21), we obtain
that

dZ(0)
k

du
= AF

[
Q

(0)
k

]
, (9.24)

and one can show that the solution reads [234]

Z
(0)
k =

∫ u

0

Q
(0)
k du′ − (u+ π) ⟨Q(0)

k ⟩+ ⟨uQ(0)
k ⟩ . (9.25)

Finally, injecting this solution into Eq. (9.23) and multiplying by ϵ yields

dX̄k

du
= ϵ⟨Q0

k⟩+ ϵ2
[
⟨Q0

k,l

∫ u

0

Q0
l du

′⟩+ ⟨Q0
k,l⟩⟨uQ0

l ⟩ − ⟨(u+ π)Q0
k,l⟩⟨Q0

l ⟩
]
+O

(
ϵ3
)
,

(9.26)
In the following section, we will use this formula to �nd the secular variation of orbital
parameters for di�erent ranges of the disformal parameter D.
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9.3 Orbital perturbations for the disformed Kerr

metric

In this section, we use the technique described above to calculate the secular shifts of
orbital parameters for di�erent cases involving the disformal parameter D. We will
start with a generic D, and then consider limiting cases that provide interesting phe-
nomenology. As is common in the literature, we work with Kerr harmonic coordinates,
i.e. coordinates verifying □xµH = 0, where the □ operator is associated to the Kerr
metric with rescaled Kerr parameters M̃ and ã. It should be made clear that one has
□̃xµH ̸= 0, which means that these coordinates are not harmonic for the disformed
metric. The idea, however, is to use the same coordinates that one uses when assum-
ing the Kerr black hole and GR, in order to better gauge the di�erences arising from
the disformed spacetime. This is also the reason why we work with the black hole
parameters {ã, M̃} determined from the asymptotic expansion. Therefore, this choice
of coordinates makes it easier to link our results to observations.

In the following, we �rst consider the case of generic D in Section 9.3.1, and then
study di�erent limits of the parameter D. In particular, we investigate the noncircular
Schwarzschild and quasi-Weyl metrics presented in the previous chapter. In addition,
we study the limit of small but �nite (1 + D), for which deviations from the Kerr
geometry are enhanced, and consequently the corrections to orbital shifts become
larger. We consider two di�erent regimes separately: (1+D) ∼ ε in Section 9.3.4, and
(1 +D) ∼

√
ε in Section 9.3.5.

9.3.1 Disformal Kerr: generic case

We start with the generic case, where D is arbitrary, but not too large or too close to
−1. In terms of the BL coordinates {t, r, θ, φ}, the harmonic coordinates xµH can be
written as [234,252]

tH = t ,

xH =
√
R̃2 + a2 cos ψ̃ sin θ ,

yH =
√
R̃2 + a2 sin ψ̃ sin θ ,

zH = R̃ cos θ , (9.27)

where R̃ and ψ̃ are de�ned as

R̃ = r − M̃ ,

ψ̃ = φ+ tan−1

(
ã

r − M̃

)
+

∫
ã

∆
dr . (9.28)

We now invert these relations up to O(ε3), and replace the BL-like coordinates of
Eq. (9.2) by harmonic coordinates (we drop the index �H� in the following). The



136 Chapter 9. Orbit of stars in the disformed Kerr spacetime

result is:

g̃00 = −1 +
2M̃

r
− 2M̃2

r2
+

2M̃3

r3
+
M̃3χ̃2

r3

[
1− 3 +D

1 +D
(n · s)2

]
+O

(
ε4
)
,

g̃0j =
2M̃2χ̃

r2
(n× s)j +O

(
ε3
)
,

g̃ij =

[
1 +

2M̃

r
+
M̃2

r2

(
1− Dχ̃2

1 +D

)]
δij +

M̃2

r2
ninj

+
DM̃2χ̃2

(1 +D)r2
[
2ninj + sisj − 2s(inj)(n · s)

]
+O

(
ε5/2
)
, (9.29)

where n = x/r, s = J/J = ez, and r = r(x, y, z) is now the radial coordinate in the
old metric expressed in harmonic coordinates. When D = 0, the expressions (9.29)
reduce to the Kerr metric components in harmonic coordinates (see Ref. [234]).

We now apply the method described in Section 9.2 to the metric (9.29). For generic
values of D, the secular variation of orbit elements up to 2PN order is given by,

dp̄
du

= 0 ,

dᾱ
du

= −3M̃β̄

p̄
+ 6χ̃β̄ cos ῑ

(
M̃

p̄

)3/2

+
3M̃2β̄

4p̄2
(
10− ᾱ2 − β̄2

)
− 3M̃2β̄χ̃2(5 cos2 ῑ− 1)

4p̄2(1 +D)
,

dβ̄
du

=
3M̃ᾱ

p̄
− 6χ̃ᾱ cos ῑ

(
M̃

p̄

)3/2

− 3M̃2ᾱ

4p̄2
(
10− ᾱ2 − β̄2

)
+

3M̃2ᾱχ̃2(5 cos2 ῑ− 1)

4p̄2(1 +D)
,

dῑ
du

= 0 ,

dΩ̄
du

= 2χ̃

(
M̃

p̄

)3/2

− 3M̃2χ̃2 cos ῑ

2p̄2(1 +D)
. (9.30)

The corresponding relations for ω̄ and ē read:

dω̄
du

=
3M̃

p̄
− 6χ̃ cos ῑ

(
M̃

p̄

)3/2

− 3M̃2(10− ē2)

4p̄2
+

3M̃2χ̃2(5 cos2 ῑ− 1)

4p̄2(1 +D)
,

dē
du

= 0 . (9.31)

The expressions for the Kerr metric are obtained by setting D = 0 in the above equa-
tions. Note that terms of order O(εn+1) in the metric correspond to O(εn) order in the
equations for the secular shifts (9.30). In particular, in the Newtonian approximation,
the right-hand sides of the equations in the system (9.30) are identically zero, so that
there are no shifts in any of the orbital parameters. The leading-order PN corrections
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of O(ε) lead to a variation of α and β, which correspond to the standard pericenter
precession as in GR. The Lense-Thirring (or frame-dragging) e�ect is due to the term
O(ε3/2), corresponding to 1.5PN order in the last equation of (9.30), which results in
a variation of Ω. Similar terms also enter the corrections to the shifts of α and β.
The higher-order Schwarzschild corrections at 2PN order in the variation of α and
β (the third term on right-hand side of (9.30)), are una�ected by the modi�cation
of gravity in this case. Crucially however, quadrupole corrections proportional to χ̃2

now get corrected by the factor (1 +D)−1. As expected, the secular variation of the
orbital parameters remains unchanged up to the Lense-Thirring terms when compared
to Kerr, while the quadrupole terms are modi�ed.

9.3.2 Case of the noncircular Schwarzschild metric

We now consider the noncircular Schwarzschild metric (8.58), which we presented in
Section 8.3. Similarly to the generic case considered above, we change coordinates to
those that are harmonic for the Kerr metric, and expand in ε to obtain:

g̃NCS00 = −1 +
2M̃

r
− 2M̃2

r2
+

2M̃3

r3
+
M̃3χ̃2

r3
[
1− (n · s)2

]
+O

(
ε4
)
,

g̃NCS0j =
2M̃2χ̃

r2
(n× s)j +O

(
ε3
)
,

g̃NCSij =

[
1 +

2M̃

r
+
M̃2

r2
(
1− χ̃2

)]
δij + 2

√
2χ̃ (n× s)(i nj)

(
M̃

r

)3/2

+
M̃2

r2
ninj

+
M̃2χ̃2

r2
[
2ninj + siεsj − 2s(inj)(n · s)

]
+O

(
ε5/2
)
. (9.32)

where r is now the radial harmonic coordinate relevant for the PN expansion. This
metric is almost identical to the D → ∞ limit of Eq. (9.29), the only di�erence
being the term ∼ O(ε3/2) in the g̃(NCS)ij components. This term comes from the g̃rφ
component of Eq. (8.58), meaning that the metric is already noncircular at this PN
order (unlike in the case of generic D discussed above). In particular, this implies that
the NCS metric cannot be matched to the BI metric (9.5) at this PN order. It can be
shown that the Ricci tensor for the NCS metric is nonzero only at ε3 order, as in the
case of generic D.

We now perform the two-timescale analysis described in Section 9.2, and obtain:

dp̄
du

= 0 ,

dᾱ
du

= −3M̃β̄

p̄
+ 6χ̃β̄ cos ῑ

(
M̃

p̄

)3/2

+
3M̃2β̄

4p̄2
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10− ᾱ2 − β̄2

)
,

dβ̄
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3M̃ᾱ

p̄
− 6χ̃ᾱ cos ῑ

(
M̃

p̄

)3/2

− 3M̃2ᾱ

4p̄2
(
10− ᾱ2 − β̄2

)
,
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dῑ
du

= 0 ,

dΩ̄
du

= 2χ̃

(
M̃

p̄

)3/2

. (9.33)

The above expressions can be alternatively found by taking the limit D → ∞ in in
Eq. (9.30). Hence, the noncircular terms in the spatial components of Eq. (9.32) do
not in�uence the secular shifts at this PN order, as their e�ect averages to 0 over
an orbital period. As we can see by comparing Eqs. (9.33) and (9.30) where we set
D = 0, the variation of the orbit elements are modi�ed at 2PN order, while the 1PN
and Lense-Thirring terms remain the same. The di�erence appearing at 2PN order is
in the quadrupole terms. In the present case they do not appear at this order, while
they are present for Kerr. In terms of ω̄, we obtain the following expression at 2PN
order:

dω̄
du

=
3M̃

p̄
− 6χ cos ῑ

(
M̃

p̄

)3/2

− 3M̃2(10− ē2)

4p̄2
. (9.34)

In comparison to the Kerr case, the quadrupole term is absent in the above expression,
while other terms are the same as Kerr, namely the 1PN and 2PN Schwarzschild
corrections and the Lense-Thirring term are recovered. This means that the no-hair
theorem is violated for this spacetime.

9.3.3 Case of the quasi-Weyl metric

We now consider the quasi-Weyl metric (8.55), which was introduced in Section 8.3.
After the coordinate change (8.21), the metric reads

ds̃2QW = −

(
1− 2M̃r

ρ2

)
dT 2 − 4a2

√
2M̃3r cos2 θ

ρ2(r − 2M̃)
√
a2 + r2

dTdr

+
r5(r − 2M̃) + 2a2r3 cos2 θ(r − 3M̃) + a4 cos4 θ(r − 2M̃)2

ρ2(r − 2M̃)2(r2 + a2)
dr2

+ ρ2dθ2 +
(
r2 + a2

)
sin2 θdφ2 .

(9.35)

We saw that in this case, one must keep the parameter χ = a/M̃ instead of the physical
spin χ̃. The 2PN expression of the above metric can be obtained from Eq. (9.2) by
setting χ̃ = χ

√
1 +D and taking the limit D → −1. Note that we also assume

χ ∼ O(1) in order to perform the expansion. At this PN order, the quasi-Weyl metric
can also be matched to the BI metric (9.5), with the BI parameters q = −χ2 and
a0 = χ2/12. The resulting 2PN metric does not contain the Lense-Thirring term,
which could be anticipated since the physical rotation parameter χ̃ = 0 in this case.
Meanwhile, the metric still contains a free quadrupole parameter χ. As in the two
previous cases, the Ricci tensor for the metric (9.35) is nonzero only at ε3 order.
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Similarly to the generic case described above, we change to Kerr harmonic coordi-
nates and calculate the secular variations of orbital parameters, following the method
of Section 9.2. We obtain the following results up to 2PN order:

dp̄
du

= 0 ,

dᾱ
du

= −3M̃β̄

p̄
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3M̃2β̄

4p̄2
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10− ᾱ2 − β̄2

)
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)
,
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p̄
− 3M̃2ᾱ

4p̄2
(
10− ᾱ2 − β̄2

)
+

3M̃2ᾱχ2

4p̄2
(
5 cos2 ῑ− 1

)
,

dῑ
du

= 0 ,

dΩ̄
du

= −3M̃2χ2 cos ῑ

2p̄2
. (9.36)

The above expressions can also be obtained from the system (9.30) by the substitution
χ̃ = χ

√
1 +D as explained above. As one can see from Eq. (9.36), the Lense-Thirring

terms drop out in this limit, which is consistent with the absence of a (tφ) term in the
metric. However, the quadrupole terms appear at 2PN order, similarly to the Kerr
case. While the structure of these terms is the same as for Kerr, the free parameter
χ entering the quadrupole terms is not related to the black hole spin, which is zero in
the quasi-Weyl case. Hence, the no-hair theorem is violated in this case also.

9.3.4 Enhanced Kerr disformation

Finally, for the two last variants of the Kerr disformation we examine the situation
when (1 +D) is small but �nite. As we saw above, the generic values of D result in
a rather mild e�ect on the secular shifts, i.e. only quadrupole terms in Eq. (9.30) are
modi�ed. The limitD → −1 (quasi-Weyl) yields stronger modi�cations, since χ̃ = 0 in
this case, and hence the frame-dragging terms are also modi�ed with respect to Kerr.
In contrast to the quasi-Weyl case, here we assume that D has a small �nite o�set
from −1, so that the physical spin remains �nite, while the corrections to the Kerr
metric are enhanced with respect to the generic case. Indeed, if we take 1 + D ∼ ε,
the terms proportional to (1 +D)−1 in the metric expansion (9.2) become one order
lower in ε. More precisely, we assume the following form for the constant disformal
factor:

D = −1 +
χ̃2

λ
ε , {λ, χ̃} ∼ O (1) , (9.37)

where the factor χ̃2/λ is chosen for convenience and we introduced a new parameter
λ here. Similarly to the case of generic D discussed above, we perform the coordinate
transformation (8.21) in the disformal metric (8.11), and expand the line element to
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O(ε3), assuming dxi ∼
√
ε dt. The result is:

ds̃2EKD ≃ −
(
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r
+

2A3ε2λ
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cos2 θ − 2A5ε3λ2 cos4 θ
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+
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+ r2
(
1 +

ελA2
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cos2 θ
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dθ2 + r2 sin2 θ

(
1 +
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)
dφ2

− 4
√
2A7/2ε5/2λ cos2 θ

r7/2
dtdr − 4A2ε2χ̃ sin2 θ

r
dtdφ . (9.38)

We call this metric the Enhanced Kerr disformation (EKD). Note that the above
expression cannot be obtained by substituting Eq. (9.37) in the asymptotic expan-
sion (9.2). This is because in Eq. (9.2) we neglected, in particular, terms of the form
∼ (1+D)−2O(ε5) in the (tt) component of the metric, which become∼ O(ε3) for values
of the disformal parameter given by Eq. (9.37). Similarly, terms ∼ (1+D)−1O(ε7/2) in
the (tr) components and ∼ (1+D)−1O(ε3) or ∼ (1+D)−2O(ε4) in spatial components
were neglected in (9.2). However, they become important for the case considered here.

The metric (9.38) is noncircular and its Ricci curvature is nonzero already at ε2

order, which is one order lower than all other cases considered above. As one of
the consequences of noncircularity, the EKD metric cannot be matched to the BI
metric (9.5) at this order. Also, due to noncircularity in the generic case (9.2), the o�-
diagonal term (tr) cannot be eliminated in Eq. (9.38), since g̃tt depends on θ now. To
recover the asymptotic Kerr metric at O(ε3) one replaces λ = χ̃2ε in Eq. (9.38), which
corresponds to setting D = 0. By inverting the relations (9.27) to the right order, the
asymptotic expansion (9.38) can be written in the Kerr harmonic coordinates,
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2Ã2(n · s)4

r2

]
+O

(
ε4
)
, (9.39)
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[
1 +

M̃

r

(
2 +

Ã
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where Ã = λA. The asymptotic expansion of the Kerr metric in harmonic coordinates
is recovered by setting Ã → M̃χ̃2 and keeping terms up to 2PN order (one can check
that the Kerr metric is indeed recovered by comparing to Ref. [234] for instance).

We now apply the osculating orbit method starting with the metric (9.39), and
calculate the secular shifts up to 2PN order. The �nal expressions are quite heavy,
and can be found in Appendix III.B. Setting λ = χ̃2ε, our results up to 2PN order
coincide with Ref. [234] for the Kerr spacetime. Using the expressions for the secular
variations of {ᾱ, β̄} in Eq. (III.1), one can obtain the secular variations of ω̄ and ē:

dω̄
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3M̃
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[
1 +
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(
5 cos2 ῑ− 1

)]
− 6χ̃ cos ῑ

(
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+O
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)
, (9.42)

dē
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λM̃2 sin2 ῑ
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(
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(
−81− 25ē2 + ē4

))]
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(9.43)

In this case, the leading-order term in the secular variation of ω̄ receives corrections
due to disformality. Additionally, we see that ē has a secular corrections of 2PN order,
which is one ε order lower than the GR value. The same is true for the parameters
{p̄, ῑ}, as one can check using the expressions in Appendix III.B. This naively suggests
possible strong secular e�ects in the case of the disformed metric, meaning that the
parameters {p̄, ῑ, ē} could change considerably over a long period of time, when com-
pared to the Kerr predictions. However, one can show that over long timescales these
contributions average out to 0. Indeed, the characteristic timescale over which the
pericenter angle ω̄ varies is shorter than for other parameters, as the leading secular
shift for ω̄ appears at 1PN order. Hence, one can average the secular variations of
orbital parameters over ω̄, while keeping other parameters �xed. It is not necessary to
perform another 2-timescale analysis since the terms containing ω̄ are already of 2PN
order, which means such an analysis would only be relevant if we were interested in
higher-order PN terms (see Ref. [234]). From Eq. (9.42), one can easily see that

1

2π

∫ 2π

0

dē
du

dω̄ = 0 (9.44)

at this PN order, and hence the variation of eccentricity averages out to 0 over a long
timescale. One can check that the same is true for the parameters {p̄, ῑ}, using the
expressions given in Appendix III.B.

By combining the expression for the secular variation of Ω̄ (found in Appendix III.B)
with the variation of ω̄, we obtain the following formula after multiplication by 2π:

∆ϖ̄ ≡ ∆ω̄ + cos ῑ∆Ω̄ =
6πM̃

p̄

[
1 +

λ

4(1− ē2)

(
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)]
+O

(
ε3/2
)
, (9.45)
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where ϖ̄ is the precession of the pericenter relative to the �xed reference direction
(the (Ox) axis in our case, see Fig. 1). As expected from the asymptotic expression
Eq. (8.22), there are leading-order corrections to the secular pericenter shift. In Ap-
pendix III.C, we derive this leading term with the standard textbook method using
equatorial geodesics. One can check that the two methods are compatible by setting
ῑ = 0 in Eq. (9.45), which corresponds to an orbit in the equatorial plane of the black
hole. While the leading-order terms are the same, one must be careful when comparing
the higher-order corrections of the di�erent methods, as explained in Ref. [253].

9.3.5 enhanced Kerr disformation

We now examine another case of small and �nite deviation of D from −1, similarly to
the previous case. We study larger (but still small) deviations of order

√
ε:

D = −1 +
χ̃2

λ2

√
ε , λ2 ∼ O(1) . (9.46)

We call this the enhanced Kerr disformation (eKD), in order to di�erentiate it from
the EKD spacetime. Since the o�set is larger than in the previous case, one expects
that the modi�ed gravity e�ects are smaller than those for EKD, while still larger
than in the generic case. The metric in this limit can be obtained by replacing the
relation (9.46) in the line element (9.29). Unlike in the EKD case, the metric is circular
at 2PN order, and we have Rµν ∼ ε5/2. The resulting metric cannot be matched to the
BI metric (9.5), since by replacing the disformal parameter according to Eq. (9.46),
one introduces fractional powers of the mass in the metric. The secular variation of
orbital parameters reads
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+
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p̄
− 3ᾱ
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. (9.47)

The above expressions can be obtained by replacing Eq. (9.46) in the expressions (9.30)
for the generic case. As one can see from the above equations, the Kerr quadrupole
terms drop out in this case, similarly to the NCS case. However, for the eKD secular



9.3. Orbital perturbations for the disformed Kerr metric 143

corrections appear at lower order, at the level of the Lense-Thirring terms. This
happens because the quadrupole (2PN) corrections of the generic case become 1.5PN
order corrections here, due to the presence of the small value of (1 + D) given by
Eq. (9.46). The 1PN order is not modi�ed for the eKD case unlike in the EKD case
considered above.

9.3.6 Summary, observational constraints and predictions

We now summarize the main results of this section, and discuss how the current
experimental measurements can constrain the disformed Kerr metric. For the values
of D that we considered, deviations from GR appear at di�erent PN orders in the
metric or the secular variation of orbital parameters. We summarize the di�erent
cases in Table 1.

One can show that the orbital shifts up to 2PN order in the generic case (9.30)
can be matched to the orbital shifts for the HT metric (9.9), by the identi�cation
qHT = χ̃2/(1 + D). Similarly, the secular variations for the NCS metric at 2PN are
identical to those for HT metric when setting qHT = 0. In order to recover the 2PN
secular shifts of the QW metric, Eq. (9.36), one sets qHT = χ2 and χ̃ = 0 in the
metric (9.9). In the case of the Johannsen metric (9.10), the 2PN Schwarzschild
terms are modi�ed with respect to the Kerr case in the secular variation of orbital
parameters. On the other hand, the quadrupole terms proportional to χ̃2 are the same
as in the Kerr case (i.e. the terms are those of Eq. (9.30) with D = 0). Note that this
is di�erent from the generic case of the disformal parameter, where we found that the
terms proportional to χ̃2 are modi�ed with respect to the Kerr case.

The observation of the star S2 in the center of our galaxy provides an opportu-
nity to test GR by measuring its redshift [165] and pericenter precession [166]. The
redshift includes the Newtonian Doppler e�ect and relativistic corrections. The mea-
sured combination of the leading corrections, the gravitational redshift and relativistic
transverse Doppler e�ect, was found to be in agreement with GR [165]. Note, however,
that the gravitational redshift at this observational precision is due to the Newtonian
potential in the g̃tt component of the metric. This means that the current observations
of the S2's redshift do not allow to test the Sgr A* metric beyond Newtonian order.
Taking into account that all the variants of the disformed Kerr metric agree with GR
at this order, these observations do not put any constraints on the considered Kerr
deformations.

On the other hand, one can use the pericenter precession experienced by the star
S2 when orbiting around Sgr A*. It was found to be in agreement with GR [166]
with the accuracy fSP ≃ 1.1± 0.2, where fSP de�nes the ratio of the orbital pericenter
precession (per period) of S2 to its GR value. For GR one has fSP = 1 while for
Newtonian gravity fSP = 0. Since the pericenter precession is a 1PN e�ect, the only
case we can constrain using the observed pericenter precession [166] is the Enhanced
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Deviations from Kerr

Value of D Metric
Secular
evolution

Rµν

Circularity
at 2PN
order

BI form at
2PN order

Generic D 2PN 2PN O(ε3) ✓ ✓

NCS (D → ∞) 1.5PN 2PN O(ε3) ✗ ✗

QW (D → −1) 1.5PN 1.5PN O(ε3) ✓ ✓

EKD
(D + 1 ∼ ε)

1PN 1PN O(ε2) ✗ ✗

eKD
(D + 1 ∼

√
ε)

1.5PN 1.5PN O(ε5/2) ✓ ✗

Table 1: Summary of the di�erent regimes considered for the disformal parameter D
and some properties of the resulting metrics at 2PN order. In the �rst column, we
report the PN order at which the metric di�ers from Kerr in each case. The second
column shows the PN order at which the secular variation of orbital parameters start
to deviate from Kerr. The third column contains the order of the Ricci tensor. In the
fourth column, we specify if the 2PN metric in each case is circular, and in the last
column if the 2PN metric can be identi�ed with the Butterworth-Ipser metric.

Kerr Disformation studied in Section 9.3.4.4 All other deformations give corrections to
the orbital shifts at higher PN orders (see Table 1), and therefore they automatically
pass this observational test.5 For the EKD metric, on the other hand, it is possible
to constrain the disformal parameter D using the pericenter precession of the star S2.
In order to stay within the experimental bounds of Ref. [166], the correction to the
Schwarzschild precession in Eq. (9.45) must satisfy∣∣∣∣λ (3 cos2 ῑ− 1)

4(1− ē2)

∣∣∣∣ ≲ 0.2 . (9.48)

If we assume |3 cos2 ῑ − 1| ∼ 1, and replace the eccentricity ē = 0.87 of the star S2,
the inequality is saturated for λ0 ∼ 0.2. Using the relation (9.37), we deduce a lower

4Note that since the pericenter precession is sensitive to 1PN order terms, its measurement also
allows to constrain spherically symmetric deformations of the Schwarzschild metric in DHOST theory.
In particular Refs. [254,255] constrained a particular solution of Horndeski theory given in [161].

5Note also that for stronger Kerr deformations than EKD, for instance when 1 + D ∼ ε3/2, the
correction to the pericenter shift is larger than the leading GR correction, which is already ruled out
by the GRAVITY observations [166].
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bound for the disformal parameter, D ≥ D0, which veri�es:

D0 = −1 +
χ̃2ε0
λ0

, (9.49)

where ε0 = M̃/A0, A0 being the semi-major axis of S2's orbit. Taking the parameter
D = D0, in order to maximize the e�ects of disformality, we consider another star
with ε ̸= ε0 in general. The leading pericenter precession reads, from Eq. (9.45),

∆ϖ̄ =
6πM̃

p̄

[
1 +

ελ0
ε0

(3 cos2 ῑ− 1)

4(1− ē2)

]
. (9.50)

Note the factor ελ0/ε0 in the second term of the brackets, since ε/λ = ε0/λ0. The
above expression is correct as long as ε stays in the range,

ε2 ≲ 10−3 ≲
√
ε , (9.51)

which implies that the perturbative expansion in ε is valid.6 In the future, the peri-
center precession of other stars orbiting around Sgr A* will be observed. If some of
them have high eccentricities, the e�ect of modi�ed gravity in the case of the EKD
metric will be detected by the correction to the pericenter precession, as suggested
by Eq. (9.50). This is correct for a generic inclination angle ῑ, but it is worth noting
that for a speci�c value ῑ = arccos(1/

√
3) the contribution coming from the disformal

metric vanishes completely. Note also that depending on the value of ῑ, it is in prin-
ciple possible to obtain a negative pericenter precession at leading order. This is a
notable di�erence from the Kerr spacetime, as argued in Ref. [256], where the authors
showed that a negative precession can arise in the case of a naked singularity in the
Johannsen-Psaltis spacetime [257].

6To see this explicitly, we need to inspect the sub-leading terms in Eq. (9.50), which have the
structure O

(
(1 + λ)ε3/2

)
+O

(
(1 + λ)2ε2

)
. The �rst inequality in Eq. (9.51) comes from the require-

ment that O
(
(1 + λ)2ε2

)
be sub-leading with respect to Eq. (9.50), i.e. (λε)2 ≲ (λε). The second

inequality comes from the comparison of Eq. (9.50) with O
(
(1 + λ)ε3/2

)
for small λ. One must ensure

that the corrections are subdominant, resulting in ε3/2 ≲ λε. After replacing the values λ0 ∼ 10−1

and ε0 ∼ 10−4 we obtain Eq. (9.51).
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Conclusion to Part III

There has been increasing evidence in recent years for the existence of black holes
in Nature. Hence it is important to understand these objects from a theoretical point
of view. Rotating (uncharged) black holes in GR are described by the Kerr metric,
and we reviewed its main properties in Chapter 7. It is a remarkably simple spacetime
which depends on two parameters only: the mass M and spin a of the black hole.
In particular, the quadrupole moment of a Kerr black hole is determined by these
two parameters only, and constitutes the no-hair theorem (in fact all higher-order
multipoles are uniquely determined). It is interesting to construct alternatives to the
Kerr metric, both theoretically, but also in the aim of predicting testable di�erences
from the GR spacetime.

In Chapter 8, starting from a stealth-Kerr solution in scalar-tensor theory, we
constructed the disformed Kerr metrics. This construction relies on the disformal
transformation, which is an internal map of DHOST Ia theories. The Kerr metric
is deformed along the gradient of the Hamilton-Jacobi potential, which is a geodesic
vector. The integration constants are chosen so that the scalar �eld is regular from
the outer Kerr horizon up to spatial in�nity. We start from cT = 1 theories where our
spacetime is identical to the GR Kerr solution [214], and map to a disformed Kerr met-
ric which is solution to some DHOST Ia theory [47]. Such theories are constrained from
gravity wave tests, assuming that the scalar is varying at vast cosmological scales, i.e.
a dark energy �eld. The solutions we have discussed here are asymptotically �at and
locally in�uence the speed of gravity waves for these particular scalar tensor theories.
Independently of gravity wave constraints, the solutions discussed here go beyond the
interest of these particular theories and we believe that they are interesting in their own
right as simple, analytic, benchmark alternatives to the prototype Kerr solution. The
resulting spacetimes remain axisymmetric and present some interesting features which
we will summarize here. First of all, the disformed metrics are regular everywhere
except at ρ = 0, which is the ring singularity of the original Kerr spacetime. Further-
more, an asymptotic expansion reveals that the metrics look like sub-extremal Kerr
spacetimes for large radii, with a rescaled mass M̃ and spin ã given by Eq. (8.23).
However, the disformed metrics present some notable di�erences in the strong �eld
regime close to the black hole. The most interesting feature is perhaps noncircularity,
i.e. the fact that the metric cannot be cast in a form which exhibits the re�ection sym-
metry (t, φ) → (−t,−φ). Noncircular spacetimes are rarely studied in the literature,
and usually a circular ansatz is assumed when studying rotating objects. However,
in some situations this assumption fails and one must consider noncircular metrics.
An example is when considering neutron stars with strong toroidal magnetic �elds.
Noncircularity has consequences on the separable structure of the spacetimes, and the
disformed metrics do not possess a nontrivial Killing tensor, which means that the
geodesic equations cannot be integrated so easily. Importantly, the disformed metrics
are stably causal, since the scalar �eld has a timelike gradient, and can be interpreted
as a global time. This allows to avoid pathologies like closed timelike curves, which
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are know to arise in certain ad hoc deformations of the Kerr metric.

By analyzing the fate of timelike observers in the disformed spacetime, we have
found that there exists an ergosurface where the Killing vector ∂t becomes null, sim-
ilarly to the Kerr case. In the ergoregion, one �nds a limiting surface for stationary
observers, inside which all Killing vectors are spacelike. This stationary limit surface
does not lie at constant r and can be shown to be timelike, and hence cannot correspond
to an event horizon when the disformal parameter D is nonzero. Hence a candidate
event horizon must lie in the interior of this surface. We have shown that it is neces-
sary to consider a θ-dependent pro�le of the surface in the generic case D ̸= 0. We
have derived the equation satis�ed by the candidate horizon surface, and argued by an
analogy with the constant r surfaces of the Kerr spacetime that it indeed corresponds
to an event horizon. Though the horizon equation cannot be solved analytically, we
have performed a numerical integration of the horizon pro�le, and given necessary
analytical conditions for the surface to be smooth at the poles and equator. We have
also studied the disformed metric in the limits D → −1 (quasi-Weyl) and D → ∞
(noncircular Schwarzschild), which provide very interesting examples of noncircular
metrics and could be helpful in understanding the properties of such spacetimes. We
have shown explicitly that the NCS metric is of Petrov type I. This result applies to
the generic case D ̸= 0 and a ̸= 0, but we only wrote explicitly in this simple case.

In Chapter 9, we searched for experimental signatures of the disformed metrics.
In GR, a Kerr black hole is completely determined its mass and angular momentum.
All higher-order multipoles depend on these two parameters only, and this property is
know as the no-hair theorem. In Section 9.1, we established that the no-hair theorem
of GR is generically violated in the case of a disformed Kerr black hole. Instead,
the gauge independent quadrupole moment depends on the disformal parameter D
according to Eq. (9.6). This expression was obtained by comparing the asymptotic
expansion of the disformed metric to the Butterworth-Ipser metric (9.5). We then
studied the orbit of stars around a disformed back hole, using a two-timescale analysis
reviewed in Section 9.2. In Section 9.3, we calculated the secular variation of orbital
parameters for di�erent cases of the disformal parameter. We summarized the results
in Section 9.3.6, and discussed the experimental signatures of the disformed spacetimes.
In the case of the EKD metric (9.39), the measurement of the Schwarzschild precession
of the star S2 around Sgr A* [166] allows us to set a lower bound on the disformal
parameter D.

While all the other variants of the Kerr deformations automatically satisfy the
current observational bounds coming from the star S2, future experiments will be able
to probe these Kerr deformations as well. Indeed, none of the deformations of Kerr
presented here verify the no-hair theorem. Therefore, future observations aiming at
testing the no-hair theorem for the Kerr spacetime will probe all the deformations
of Kerr. More precisely, the observation of high-eccentricity stars with short periods
orbiting Sgr A* can in principle lead to the determination of the spin and quadrupole
moment by measuring the secular variation of the nodal and inclination angles {Ω, ι}
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[167] (see also Ref. [171] for a review). Another promising method to test the no
hair theorem is to use pulsar timing, which could allow the determination of the spin
and quadrupole moment of Sgr A* if a binary pulsar orbiting closely enough to the
black hole is discovered (see the review [171] and references therein). The authors of
Ref. [258] calculated the second-order Shapiro delay for the BI metric. These results
can be applied to the disformed Kerr metric in the cases where the line element can
be put in the BI form (see Table 1).

There are numerous questions which we have left unanswered, starting with the
global causal structure of the disformed spacetime (8.11), which is a rather nontrivial
question and requires a separate study. Furthermore, we have shown that unlike in the
case of GR, the event horizon of the disformed spacetimes fails to be a Killing horizon.
The possibility of extending the notion of surface gravity for horizons which are no
longer Killing has been studied by several authors in di�erent contexts (see Ref. [259]
and references therein). Hence, it would be interesting to study the thermodynamics
of the disformed solutions using these di�erent de�nitions for surface gravity. As we
have discussed, the disformed metrics do not possess a nontrivial Killing tensor, making
the study of geodesics around such objects more involved. This task is nonetheless
made possible by numerically integrating the equations, and in this way the shadows
of disformed Kerr black holes have been computed in Ref. [260]. Finally, as we have
shown the stationary limit in the disformed spacetime generically lies outside of the
event horizon. Even though these two surfaces almost coincide, it would be interesting
to understand what the properties of the region separating them, if any. For instance,
in the example of the quasi-Weyl metric (8.55), there seems to exist an ergoregion
without any rotation of the black hole along the azimuthal direction, which is an
intriguing feature.
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Appendix

III.A Polynomials Qi

We give here the full expressions of the functions Q1 and Q2 appearing in the expres-
sions (8.14) for the curvature invariants of the disformed Kerr metric:

Q1(r, θ) = [127 + 56 cos(2θ) + 9 cos(4θ)] r4 + 4a2 [33 + 14 cos(2θ) + cos(4θ)] r2

+ 18a4 sin2(2θ) ,

Q2(r, θ) = 48
(
r2 + a2)

(
r6 − 15a2r4 cos2 θ + 15a4r2 cos4 θ − a6 cos6 θ

))
− Da2

2
{160 [4 + 3 cos(2θ)] r6

− a2 [3 (52 + 3D) cos(4θ) + 4 (48 + 25D) cos(2θ)− 124 + 243D] r4

+ a4 [3 cos(6θ) + (D − 138) cos(4θ)− (627 + 100D) cos(2θ)− 486− 253D] r2

+ 12a6 cos2 θ [cos(4θ) + (4 + 6D) cos(2θ) + 3− 6D]} .

III.B Secular shifts for the EKD metric

In this appendix, we provide the expressions for the secular perturbations of orbital
parameters up to 2PN order in the case of the EKD metric, D + 1 ∼ O(ε), see
Section 9.3.4. Since the EKD metric (9.39) does not fall in the class of generic D,
we cannot use the results of Section 9.3.1 to �nd the variation of orbital parameters.
We present the results obtained by applying the osculating orbit method described in
Section 9.2 to the metric (9.39). We obtain:

dp̄
du

=
λM̃2 sin2 ῑ

p̄(1− ᾱ2 − β̄2)2
[
5ᾱβ̄

(
5 + 2ᾱ2 + 2β̄2

)
+ I1(ᾱ, β̄)

]
− λ2M̃2ᾱβ̄ sin2 ῑ

8p̄(1− ᾱ2 − β̄2)3
[−72 +

(
ᾱ2 + β̄2

)2
+ 6ᾱ2 − 2β̄2

+
(
84 + (ᾱ2 + β̄2)2 − 6β̄2 − 14ᾱ2

)
cos2 ῑ] ,

dῑ
du

=
λM̃2 sin 2ῑ

4p̄2(1− ᾱ2 − β̄2)2
[
5ᾱβ̄

(
5 + 2ᾱ2 + 2β̄2

)
+ I1(ᾱ, β̄)

]
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+
λ2M̃2ᾱβ̄ sin 2ῑ

32p̄2(1− ᾱ2 − β̄2)3
[176 + 3

(
ᾱ2 + β̄2

)2
+ 86β̄2 + 78ᾱ2

−
(
84 + (ᾱ2 + β̄2)2 − 6β̄2 − 14ᾱ2

)
cos2 ῑ] ,

dΩ̄
du

= − 3M̃λ cos ῑ

2p̄(1− ᾱ2 − β̄2)
+ 2χ̃

(
M̃

p̄

)3/2

+
λM̃2 cos ῑ

4p̄2(1− ᾱ2 − β̄2)2
[
48 + 37ᾱ4 + 57β̄4 − 35ᾱ2 + 15β̄2 + 94ᾱ2β̄2 + I2(ᾱ, β̄)

]
+

λ2M̃2 cos ῑ

32p̄2(1− ᾱ2 − β̄2)3
[174 + ᾱ4

(
6β̄2 − 79

)
+ 6ᾱ2

(
13− β̄2 + 2β̄4

)
+ β̄2

(
570 + 89β̄2 + 6β̄4

)
]

+
λ2M̃2 cos3 ῑ

32p̄2(1− ᾱ2 − β̄2)3
[−66 + 2ᾱ6 − 554β̄2 + 207β̄4

+ ᾱ4
(
191 + 4β̄2

)
+ 2ᾱ2

(
β̄4 + 207β̄2 − 123

)
] ,

dᾱ
du

= − 3M̃β̄

4p̄(1− ᾱ2 − β̄2)

[
4
(
1− ᾱ2 − β̄2

)
+ λ

(
5 cos2 ῑ− 1

)]
+ 6β̄χ̃ cos ῑ

(
M̃

p̄

)3/2

+
3M̃2β̄(10− ᾱ2 − β̄2)

4p̄2

+
λM̃2

16p̄2(1− ᾱ2 − β̄2)2
[2β̄
(
−53 + 199ᾱ2 + 34ᾱ4 − 19β̄2(5 + 2ᾱ2)− 72β̄4

)
+ sin2 ῑ I3(ᾱ, β̄) + J1(ᾱ, β̄, ῑ)]

+
λM̃2β̄ cos2 ῑ

8p̄2(1− ᾱ2 − β̄2)2
[
253 + 48ᾱ4 + 194β̄4 − 27β̄4 + ᾱ2(242β̄2 − 421)

]
− λ2M̃2β̄

64p̄2(1− ᾱ2 − β̄2)3
[585 + 2ᾱ2

(
2ᾱ4 − 18ᾱ2 − 147

)
+ 2β̄2

(
693 + 34ᾱ2 + 4ᾱ4

)
+ 4β̄4

(
46 + ᾱ2

)
]

− λ2M̃2β̄ cos2 ῑ

32p̄2(1− ᾱ2 − β̄2)3
[−729 + ᾱ2

(
290 + 295ᾱ2 + 6ᾱ4

)
+ 2β̄2

(
6ᾱ4 + 315ᾱ2 − 733

)
+ β̄4

(
239 + 6ᾱ2

)
]

+
λ2M̃2β̄ cos4 ῑ

64p̄2(1− ᾱ2 − β̄2)3
[−585 + 2ᾱ2

(
−209 + 321ᾱ2 + 4ᾱ4

)
+ 2β̄2

(
8ᾱ4 + 936ᾱ2 − 941

)
+ 2β̄4

(
559 + 4ᾱ2

)
] ,

dβ̄
du

=
3M̃ᾱ

4p̄(1− ᾱ2 − β̄2)

[
4
(
1− ᾱ2 − β̄2

)
+ λ

(
5 cos2 ῑ− 1

)]
− 6ᾱχ̃ cos ῑ

(
M̃

p̄

)3/2
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− 3M̃2ᾱ(10− ᾱ2 − β̄2)

4p̄2

+
λM̃2

16p̄2(1− ᾱ2 − β̄2)2
[2ᾱ
(
87 + 46ᾱ4 + 461β̄2 + ᾱ2(167 + 198β̄2) + 152β̄4

)
− sin2 ῑ I4(ᾱ, β̄)− J2(ᾱ, β̄, ῑ)]

− λM̃2ᾱ cos2 ῑ

8p̄2(1− ᾱ2 − β̄2)2
[
287 + 128ᾱ4 + 339β̄2 + 274β̄4 + ᾱ2

(
−55 + 402β̄2

)]
− λ2M̃2ᾱ

64p̄2(1− ᾱ2 − β̄2)3
[−429 + 102ᾱ2 + 68ᾱ4 + 2β̄2

(
−773− 18ᾱ2 + 2ᾱ4

)
+ 8β̄4

(
ᾱ2 − 23

)
+ 4β̄6]

+
λ2M̃2ᾱ cos2 ῑ

32p̄2(1− ᾱ2 − β̄2)3
[−813 + 298ᾱ2 + 371ᾱ4 + 6ᾱ6 + 2β̄2

(
−713 + 375ᾱ2 + 6ᾱ4

)
+ β̄4

(
283 + 6ᾱ2

)
]

− λ2M̃2ᾱ cos4 ῑ

64p̄2(1− ᾱ2 − β̄2)3
[−909− 210ᾱ2 + 762ᾱ4 + 4ᾱ6 + 2β̄2

(
−821 + 2ᾱ2(520 + ᾱ2)

)
+ 2β̄4

(
603− 2ᾱ2

)
− 4β̄6] , (III.1)

where we de�ned the following functions to make the previous expressions lighter (and
we use the average ⟨·⟩ as de�ned in Eq. (9.16)):

H(κ)(u, ᾱ, β̄) = 4
√
2
(
1− ᾱ2 − β̄2

) (
1 + ᾱ cosu+ β̄ sinu

)κ
,

I1(ᾱ, β̄) = ⟨sin 2u
(
β̄ cosu− ᾱ sinu

)
H(3/2)(u, ᾱ, β̄)⟩ ,

I2(ᾱ, β̄) = 4⟨sin2 u
(
β̄ cosu− ᾱ sinu

)
H(3/2)(u, ᾱ, β̄)⟩ ,

I3(ᾱ, β̄) = 16⟨cosu sin2 uH(7/2)(u, ᾱ, β̄)⟩ ,
I4(ᾱ, β̄) = 16⟨cos2 u sinuH(7/2)(u, ᾱ, β̄)⟩ ,

J1(ᾱ, β̄, ῑ) = 4⟨
(
β̄ cosu− ᾱ sinu

)
H(3/2)(u, ᾱ, β̄){4β̄ cos2 ῑ sin2 u

+ sin2 ῑ sin 2u(3ᾱ + 4 cosu+ ᾱ cos 2u+ β̄ sin 2u)}⟩ ,
J2(ᾱ, β̄, ῑ) = 4⟨

(
β̄ cosu− ᾱ sinu

)
H(3/2)(u, ᾱ, β̄){4ᾱ cos2 ῑ sin2 u

+ sin2 ῑ sin 2u
(
−3β̄ − 4 sinu+ β̄ cos 2u− ᾱ sin 2u

)
}⟩ .

III.C Leading-order pericenter precession using the

textbook method

In this appendix, we apply the textbook method to derive the leading term for the
pericenter precession for the EKD metric considered in Section 9.3.4, and compare it
with the result obtained in Eq. (9.45). Assuming that the trajectory is in the equatorial
plane θ = π/2, one can write �rst-order geodesic equations. This is not the case for the
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general motion outside of the equatorial plane, because of the absence of a nontrivial
Killing tensor for the disformed Kerr metric. The orbit of stars around the central
black hole of the galaxy is approximately an ellipse, for which the energy and angular
momentum can be written:

E2 ≃ 1− M̃

A
,

L2 ≃ AM̃(1− e2) ,

where A and e are respectively the semi-major axis and eccentricity of the Kepler
orbit. We now combine the geodesic equations for the variables {r, φ}, and use the
standard variable U ≡ 1/r. By substituting the above values for energy and angular
momentum in the geodesic equations, a second-order equation follows:

U ′′(φ) + F (U, M̃, a,D) = 0 , (III.2)

where F is a complicated expression which also depends on A and e. Following the
standard procedure (see for instance Ref. [261]), we introduce a small parameter

η =
3M̃2

L2
≃ 3

(1− e2)
ε , (III.3)

where ε = M̃/A is the small parameter used throughout the main text. We again
assume ã = χ̃M̃ with χ̃ ∼ O(1), so that we can also express a in terms of η. We look
for a solution to Eq. (III.2) of the form

U =
1 + e cosφ

A(1− e2)
+ η δU(φ) ,

where the �rst part corresponds to the Kepler orbit, and the second term is the leading
correction in η. For the Schwarzschild metric (a = 0), this leads to the equation:

δU ′′
S + δUS =

(1 + e cosφ)2

A(1− e2)
.

The above equation can be solved to write down the solution for U at �rst order in η:

US ≃ 1 + e cos [φ(1− η)]

A(1− e2)
.

From this expression, one can calculate the precession of the pericenter ∆ΦS as:

∆ΦS = 2π

(
1

1− η
− 1

)
≃ 2πη =

6πM̃

A(1− e2)
(III.4)

The asymptotic expression of the disformed metric suggests that for the EKD metric,
i.e. when D+1 ∼ O(ε), corrections from higher-order terms in ε become of 1PN order,
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i.e. comparable to the leading Schwarzschild corrections. To check this, we rewrite
Eq. (9.37) in terms of η:

D = −1 +
(1− e2)χ̃2

3λ
η .

Assuming this form for D in Eq. (III.2) and expanding up to O(η), we obtain the
following equation for the correction to the Kepler orbit:

δU ′′ + δU =
(1 + e cosφ)2

A(1− e2)
+
λ(1 + e cosφ)(2 + e cosφ+ e2 − 2e2 cos(2φ))

3A(1− e2)2
.

Solving this equation and keeping only the terms of the form φ sinφ which provide a
secular shift, the standard procedure gives,

∆Φ = ∆ΦS

(
1 +

λ

2(1− e2)

)
. (III.5)

Thus for a spinning EKD black hole the corrections to the pericenter precession due
to modi�cations of gravity are of the same order as the leading GR e�ect. Eq. (III.5)
provides a useful check for our calculations in the main text, where we obtained secular
shifts for the EKD black hole by the orbital perturbation method. In particular, we
obtained the expression for the pericenter precession in Eq. (9.45). The two expressions
agree after setting ῑ = 0 in Eq. (9.45), which corresponds to an orbit in the equatorial
plane, as assumed in this appendix.
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Summary

In this thesis, I have presented various topics in the context of scalar-tensor theories
of gravitation. The �rst part of the thesis was devoted to the cosmology of theo-
ries exhibiting spontaneous scalarization. I described the scalarization mechanism in
Chapter 1, both in the context of standard scalar-tensor theories and in the case of
a coupling to the Gauss-Bonnet scalar. It relies on a tachyonic e�ective mass for the
scalar �eld, and I showed in Chapter 2 that this generically leads to an instability of
scalar modes during in�ation. This is true in both of the cases we consider, i.e. the
DEF model and the scalar-Gauss-Bonnet theories. A mechanism to quench this insta-
bility in the case of the DEF model, relying on a coupling of the scalar to the in�aton
�eld, was proposed in Chapter 3. This coupling acts as an e�ective mass term for the
scalar, which stabilizes it around 0 by the end of in�ation. Although the scalar grows
in the subsequent phases of the expansion of the Universe (as in the DEF model), its
value today is su�ciently small to pass current experimental tests of GR.

In the second part, I examined the Vainshtein screening for slowly rotating stars in
scalar-tensor theories. The tests of gravity in the Solar System are all compatible with
GR. Hence it is important for a modi�ed theory of gravity to have a mechanism that
restores GR close to gravitational sources, and the Vainshtein screening is one way to
achieve this. It has been extensively studied in the case of spherical symmetry, but
realistic astrophysical objects typically rotate, and our aim was to study this e�ect
in the case of slowly rotating stars. Note that in some cases the GR equations are
fully recovered in vacuum, even for relativistic stars, which I show in Appendix II.A. In
Chapter 4, I derived the equation satis�ed by the frame-dragging function ω accounting
for slow rotation. I then assumed the weak-�eld approximation and discussed the
solutions for ω in this case, showing that the screening mechanism can be extended to
ω outside the source in general. However, it is possible for ω to receive leading-order
corrections inside the source. In Chapter 5, I studied the screening in the case of a
time-dependent scalar �eld, and gave examples in di�erent classes of theories. It was
shown that even if the Vainshtein screening is operational in spherical symmetry, it is
not necessary for the corrections to ω to be suppressed by powers of the Vainshtein
radius rV . In these cases, while the screening works also for ω, it is less e�ective than
for the metric potentials. The screening in the case of a static scalar �eld was studied
in Chapter 6. I considered shift-symmetric Horndeski theories with an additional
coupling of the scalar �eld to curvature, in order to escape the no-hair theorem for
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stars. In this case the results are similar to the time-dependent case.
The �nal part of the thesis dealt with black holes, and I started by reviewing the

(uncharged) GR solutions in Chapter 7, discussing some important properties of the
Schwarzschild and Kerr solutions. In Chapter 8, rotating black hole solutions in scalar-
tensor theories were constructed by performing a disformal transformation of the Kerr
metric, and I discussed the properties of these spacetimes. These axisymmetric solu-
tions are similar to Kerr in some ways: only one singularity at ρ = 0; same asymptotic
expansion with the rescaled parameters M̃ and ã given by Eq. (8.23); existence of an
ergoregion. However, they are very di�erent from the Kerr spacetime in other aspects:
they are noncircular; not Ricci-�at; they do not possess a nontrivial Killing tensor; the
stationary limit is distinct from the event horizon; the horizon is not a Killing horizon
and has a θ-dependent pro�le. Importantly, the spacetimes were shown to be stably
causal, which allows to avoid pathologies like closed timelike curves in the region out-
side the horizon. Interesting examples of noncircular black hole metrics were obtained
in the limits D → −1 (quasi-Weyl) and D → ∞ (noncircular Schwarzschild), where D
is the disformal parameter. Because of their simplicity compared to the generic case,
a detailed analysis of these metrics could be useful in understanding the properties
of noncircular spacetimes. After introducing the noncircular Schwarzschild metric, I
showed that it is of generic Petrov type I. Though the explicit calculation was pre-
sented only in this simple case, the result holds for generic D ̸= 0 and a ̸= 0. The orbit
of stars around a disformed Kerr black hole was analyzed in Chapter 9. Using the os-
culating orbit method and a two-timescale analysis, I calculated the secular variation
of orbital parameters up to the second post-Newtonian order for di�erent limits of the
disformal parameter D. It was shown that generically the disformed metrics violate
the no-hair theorem of GR, which states that higher-order multipoles are uniquely
determined by the mass and spin of the black hole. In particular, the simultaneous
measurement of the spin and quadrupole of Sgr A*, which is expected in the future,
will provide a test of this property. In one particular limit of D, namely the EKD
metric, the �rst order post-Newtonian term is modi�ed for the secular pericenter pre-
cession. This constitutes a signature of modi�ed gravity, and allows to constrain the
disformed metric using the current observational bounds coming from the orbit of the
star S2 around Sgr A*.
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Titre: Trous noirs, étoiles et cosmologie dans les théories tenseur-scalaire

Mots clés: Gravité modi�ée, théories tenseur-scalaire, trous noirs, écrantage de Vainshtein,

cosmologie

Résumé: En 1915, Einstein proposait sa

théorie de la relativité générale. Bien que celle-

ci ait passé tous les tests expérimentaux du-

rant ce dernier siècle, il reste néanmoins cer-

tains mystères de la nature qui ont poussé les

scienti�ques à étudier des théories alternatives

de la gravitation. Les modi�cations les plus

simples sont obtenues en ajoutant un champ

scalaire dans la description de l'interaction grav-

itationnelle, en plus du tenseur déjà présent

en relativité générale. La première partie de

cette thèse est consacrée à la cosmologie dans

le cadre de théories tenseur-scalaire présentant

le phénomène de scalarisation spontanée. Nous

montrons que la masse e�ective tachyonique

responsable de la scalarisation déstabilise en

général la phase d'in�ation au début de l'histoire

de l'Univers, mais que ce problème peut être

résolu dans un modèle particulier. La deux-

ième partie porte sur l'écrantage de Vainsthein,

un mécanisme permettant de restaurer la rel-

ativité générale près d'une source gravitation-

nelle. Il s'applique en général à des con�gura-

tions à symétrie sphérique, mais nous étudions

ses extensions pour des sources en rotation lente.

Dans la dernière partie, nous construisons une

classe de trous noirs en rotation dans une cer-

taine catégorie de théories tenseur-scalaire. Ces

solutions sont obtenues en réalisant une trans-

formation disforme à partir de la solution de

Kerr, et présentent de nombreuses propriétés in-

téressantes que nous analysons. Nous étudions

ensuite les orbites d'étoiles autour de tels ob-

jets, dans l'optique de contraindre ces solutions

à l'aide d'expériences présentes et futures.

Title: Black holes, stars and cosmology in scalar-tensor theories

Keywords: Modi�ed gravity, scalar-tensor theories, black holes, Vainshtein screening, cosmol-

ogy

Abstract: It has been more than 100 years

since Einstein proposed his general theory of

relativity. Even though it has passed all experi-

mental tests, there remain some mysteries in the

current understanding of Nature which motivate

the study of alternative theories of gravitation.

The simplest modi�cations are obtained by con-

sidering a scalar �eld in addition to the tensor

of general relativity. The �rst part of the thesis

is devoted to the cosmology of scalar-tensor the-

ories exhibiting spontaneous scalarization. We

show that the tachyonic e�ective mass respon-

sible for scalarization generically spoils the in-

�ationary stage of the Universe, and argue that

this instability can be cured in a particular class

of theories. The second part is about the Vain-

shtein screening, which is a mechanism allow-

ing the recovery of general relativity near grav-

itational sources. While spherical symmetry is

usually assumed for the Vainshtein mechanism,

we discuss its extension to slowly rotating stars.

In the �nal part, we construct a class of rotat-

ing black holes in scalar-tensor theories. They

are obtained by performing a disformal trans-

formation of the Kerr solution along geodesic

directions, and present many interesting prop-

erties which we analyze. We then study the or-

bit of stars around such objects, and discuss the

present and future experimental tests which will

allow us to constrain these solutions.
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