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Synthèse en français Aperçu historique

La force gravitationnelle est l'une des interactions fondamentales de la nature. Pendant des siècles, le mouvement des corps célestes a été décrit dans le contexte de la physique newtonienne. Cependant, l'une des observations qui restait inexpliquée par cette théorie au début du 20e siècle est l'avance séculaire du périhélie de Mercure, qui s'écarte de la prédiction newtonienne de 43 par siècle. L'avance du périhélie dans le système solaire est principalement due à l'attraction gravitationnelle des autres planètes, puisqu'une planète seule en orbite autour du Soleil aurait une trajectoire elliptique. Un problème similaire s'était posé pour la planète Uranus. En 1846, Le Verrier a pu prédire l'existence et la position d'un corps perturbateur qui expliquerait les anomalies de son orbite, ce qui a conduit à la découverte de Neptune plus tard dans l'année. En 1859, il se rendit compte que le mouvement de Mercure ne pouvait être expliqué par la théorie newtonienne avec les planètes connues du système solaire.

Il émit l'hypothèse qu'un nouvel objet pourrait exister encore plus près du Soleil, et ainsi expliquer ce mouvement anormal. Cependant, la prédiction était cette fois incorrecte et la nouvelle planète, qui devait être nommée Vulcain, ne fut pas trouvée.

Par conséquent, l'avance du périhélie de Mercure restait inexpliquée dans la théorie de Newton. En 1915, Einstein publia sa théorie générale de la relativité (RG), dans laquelle il propose que la gravitation soit une manifestation de la courbure de l'espacetemps [START_REF] Einstein | The Foundation of the General Theory of Relativity[END_REF]. Dans cette description, le potentiel gravitationnel lui-même est intégré à la métrique de l'espace-temps g µν . Le mouvement de la matière, qui est représentée par un tenseur énergie-impulsion T µν , est directement lié à la géométrie de l'espace-temps par les équations d'Einstein :

R µν - 1 2 R g µν = 8πG c 4 T µν -Λg µν , (1) 
où G est la constante de Newton et c est la vitesse de la lumière dans le vide. En unités naturelles, nous avons G = (8πM 2 P ) -1 , où la constante M P ∼ 10 18 GeV est la masse de Planck réduite.

Depuis sa proposition il y a plus d'un siècle, la relativité générale a passé tous les tests expérimentaux dans le système solaire, son premier triomphe étant la prédiction correcte de la précession séculaire du périhélie de Mercure. Même dans le cadre de la physique newtonienne, il était compris que la lumière pouvait être déformée par des sources gravitationnelles. En utilisant une théorie corpusculaire de la lumière, cet eet a été calculé par Cavendish et Soldner, la première version publiée remontant à 1804 [START_REF] Will | Johann von Soldner, and the deection of light[END_REF]. Cette prédiction a également été calculée par Einstein en 1911 en utilisant le principe d'équivalence. Cependant, dans la théorie complète de la RG, Einstein a réalisé que la déviation de la lumière devait être deux fois plus importante, et sa mesure constitue un deuxième test important de la RG. Cette déviation fut observée pour la première fois par Eddington et ses collaborateurs pendant l'éclipse solaire de 1919 [START_REF] Dyson | A Determination of the Deection of Light by the Sun's Gravitational Field, from Observations Made at the Total Eclipse of May 29, 1919[END_REF],

et ils ont conclu que la prédiction d'Einstein était correcte (bien que la faible précision de la mesure ait conduit à une controverse, voir par exemple Ref. [START_REF] Coles | Einstein, Eddington and the 1919 eclipse[END_REF]). Un autre test de la RG proposé par Einstein est le décalage vers le rouge gravitationnel, qui prédit que les photons perdent de l'énergie (et deviennent donc rouges) lorsqu'ils s'échappent d'un puits gravitationnel. Si l'on imagine deux horloges, l'une proche d'une source gravitationnelle et l'autre éloignée, un observateur xe constate que la fréquence de la première est plus basse. En 1959, Pound et Rebka ont mesuré cet eet en tirant des rayons gamma du haut d'une tour de 22 mètres, montrant que les photons étaient décalés vers le bleu lors de leur chute. En plus des expériences du système solaire dans le régime de champ faible, la découverte des pulsars binaires en 1974 [START_REF] Hulse | Discovery of a pulsar in a binary system[END_REF] a permis de tester la RG dans des environnements de champ fort [START_REF] Wex | Gravity Tests with Radio Pulsars[END_REF].

La relativité générale peut également être appliquée à de très grandes échelles, en cosmologie. Dans ce cas, l'espace-temps est décrit par la métrique isotrope et homogène de Friedmann-Lemaître-Robertson-Walker (FLRW), qui s'écrit :

ds 2 = -dt 2 + a 2 (t) dr 2 
1 -κr 2 + r 2 dθ 2 + r 2 sin 2 θdφ 2 ,

où la fonction a est appelée le facteur d'échelle et la constante κ est la courbure de l'espace. Elle peut prendre les valeurs κ ∈ {-1, 0, 1}, correspondant respectivement à un Univers ouvert, plat ou fermé. Nous supposons que le contenu énergétique de l'Univers peut être décrit par un uide parfait de densité énergétique ρ et de pression P , auquel cas le tenseur énergie-impulsion prend la forme suivante :

T µ ν = diag (-ρ, P, P, P ) .

(

En substituant ces expressions dans l'Eq. ( 16), on obtient les équations de Friedmann

ä a = Λ 3 - ρ + 3P 6M 2 P , (4) 
H 2 = Λ 3 + ρ 3M 2 P - κ a 2 , (5) 
où le point représente la dérivée par rapport au temps cosmique t, et H = ȧ/a est le paramètre de Hubble. Ces équations montrent que l'Univers n'est pas statique, c'est-àdire que H ̸ = 0. En voulant que l'Univers soit statique à tout prix, conformément à la Synthèse en français v compréhension traditionnelle, Einstein a essayé d'imposer H = 0 dans l'équation [START_REF] Hulse | Discovery of a pulsar in a binary system[END_REF], sans se rendre compte que cet équilibre nement ajusté est de toute façon instable.

Hubble a montré que l'Univers était en expansion en 1929 [START_REF] Hubble | A relation between distance and radial velocity among extra-galactic nebulae[END_REF]. En combinant les équations de Friedmann, on obtient une troisième relation correspondant au fait que le tenseur énergie-impulsion a une divergence nulle, c'est-à-dire que ∇ µ T µν = 0. Cela découle de l'identité géométrique ∇ µ G µν = 0, où le tenseur d'Einstein G µν est déni comme suit :

G µν = R µν - 1 2 Rg µν . (6) 
Pour un uide parfait, l'équation de continuité s'écrit ρ + 3H (ρ + P ) = 0 .

Si nous considérons une équation d'état de la forme P = wρ, avec w constant, alors il découle de l'équation [START_REF] Hubble | A relation between distance and radial velocity among extra-galactic nebulae[END_REF] que

ρ a 3(1+w) = const. (8) 
Par conséquent, les diérents types de matière se diluent diéremment au fur et à mesure de l'expansion de l'Univers. La matière ordinaire correspond à w = 0, et la densité de matière ρ m évolue comme ρ m ∼ 1/a 3 , alors que pour le rayonnement nous avons w = 1/3 et la densité correspondante ρ r décroît comme ρ r ∼ 1/a 4 . Un autre cas intéressant est w = -1, qui correspond à l'énergie noire, ou une constante cosmologique. En eet, on peut considérer la constante cosmologique comme un uide de densité ρ Λ = ΛM 2 P et de pression P Λ = -ΛM 2 P , et donc w = -1. En xant ρ = P = 0 dans l'équation [START_REF] Coles | Einstein, Eddington and the 1919 eclipse[END_REF], on voit qu'un Univers dominé par une constante cosmologique positive Λ correspond à une expansion accélérée de la forme a ∼ exp(t Λ/3). L'expansion accélérée actuelle de l'Univers a été démontrée en 1998 [START_REF] Riess | Observational evidence from supernovae for an accelerating universe and a cosmological constant[END_REF][START_REF] Perlmutter | Measurements of Ω and Λ from 42 high redshift supernovae[END_REF] en utilisant des supernovae de type Ia (ces objets sont des chandelles standard, c'est-à-dire que leur pic de luminosité est connu et qu'ils fournissent donc un moyen précis de mesurer les distances à grande échelle). Ceci peut être expliqué dans le modèle standard de la cosmologie en introduisant une petite constante cosmologique Λ e ∼ 10 -65 GeV 2 . De plus, puisque la valeur mesurée de la courbure spatiale de l'Univers est très faible, nous xerons par la suite κ = 0 dans l'équation [START_REF] Will | Johann von Soldner, and the deection of light[END_REF]. Le contenu énergétique de l'Univers est aujourd'hui constitué de 3 composants majeurs : l'énergie noire (∼ 68%), la matière noire froide (∼ 27%), et la matière baryonique (∼ 5%) [START_REF] Aghanim | Planck 2018 results. VI. Cosmological parameters[END_REF].

Une autre prédiction fascinante de la RG est l'existence des trous noirs, qui sont des objets si compacts que même les rayons lumineux sont piégés en leur sein. Ces trous noirs avaient été conceptualisés même dans le contexte de la physique newtonienne, notamment par Michell et Laplace au 19e siècle. Quelques mois après la publication de la RG, Schwarzschild trouva une solution statique aux équations d'Einstein dans le vide, à savoir R µν = 0. Nous discuterons de quelques propriétés de cette solution plus en détail dans le chapitre 7, ainsi que de la métrique de Kerr [START_REF] Kerr | Gravitational eld of a spinning mass as an example of algebraically special metrics[END_REF] pour un trou noir en rotation. Alors que l'on a longtemps pensé que de tels objets présentaient un vi Synthèse en français intérêt purement mathématique, de plus en plus de mesures expérimentales montrent que les trous noirs existent dans la nature, et ils seront au c÷ur de la dernière partie de cette thèse. Contrairement à la théorie newtonienne, la RG prédit l'existence d'ondes gravitationnelles. De telles ondes ont été détectées en 2015 à l'aide d'interféromètres terrestres [START_REF] Abbott | Observation of Gravitational Waves from a Binary Black Hole Merger[END_REF] provenant de la coalescence lointaine de deux trous noirs, bien que des preuves indirectes de leur existence aient déjà été obtenues par l'étude de pulsars binaires [START_REF] Taylor | A new test of general relativity -Gravitational radiation and the binary pulsar PSR 1913+16[END_REF]. Il s'agit à nouveau d'un succès de la RG, qui a ouvert la voie à une nouvelle ère de tests expérimentaux de la théorie dans le régimes de champ fort.

Malgré tous les triomphes de la RG que nous avons évoqués, il reste quelques phénomènes inexpliqués qui ont encouragé les physiciens à envisager des théories alternatives de la gravitation. Tout d'abord, il est bien connu que la relativité générale n'est pas renormalisable, ce qui signie qu'elle perd son pouvoir prédictif à des énergies élevées. L'énergie qui correspond à cette coupure est la masse de Planck m P = √ 8πM P ∼ 10 19 GeV. De nombreux eorts ont été déployés au cours des dernières décennies pour construire une théorie de la gravité complète dans l'ultraviolet, la tentative la plus célèbre étant la théorie des cordes. Un autre problème est lié à la faible valeur expérimentale de la constante cosmologique. Dans une théorie quantique des champs, on s'attend à une correction quantique δΛ qui s'ajoute à la valeur nue pour former la contante mesurée Λ e = Λ + δΛ. En supposant une coupure à l'échelle de Planck m P , les corrections quantiques sont estimées de l'ordre de δΛ ∼ 10 37 GeV 2 , ce qui signie que les deux contributions à Λ e devraient s'annuler avec une précision de plus de 100 ordres de grandeur. Un calcul diérent utilisant la régularisation dimensionnelle atténue le problème, mais il reste une divergence d'environ 50 ordres de grandeur (voir Ref. [START_REF] Martin | Everything You Always Wanted To Know About The Cosmological Constant Problem (But Were Afraid To Ask)[END_REF] pour une revue). C'est ce que l'on appelle le problème de la naturalité, qui se produit de manière similaire (mais pas aussi radicale) pour la masse du boson de Higgs en physique des particules. Il existe d'autres problèmes liés à la cosmologie, l'un d'eux étant le problème de la platitude. On peut le comprendre facilement en introduisant la densité critique ρ c = 3M 2 P H 2 et en réécrivant l'équation (5) avec Λ = 0 comme suit : ρ c ρ -1 ρa 2 = -3κM 2 P .

Puisque le côté droit de l'équation précédente est constant, le côté gauche doit également rester constant tout au long de l'évolution de l'Univers. Cependant, étant donné que pendant la domination de la matière et du rayonnement, la combinaison ρa 2 diminue, le deuxième terme du côté gauche doit augmenter. Les mesures actuelles montrent que |1 -ρ c /ρ| est très petit aujourd'hui, ce qui implique qu'il était extrêmement petit (environ 10 -62 ) aux premiers instants de l'Univers, et il n'y a pas de mécanisme permettant d'expliquer cet ajustement n. Un autre problème est celui dit de l'horizon. Le satellite Planck [START_REF] Aghanim | Planck 2018 results. VI. Cosmological parameters[END_REF] a pu mesurer la température du fond dius cosmologique avec une grande précision, et des régions du ciel qui n'auraient pas pu être en contact causal dans le passé ont une température très proche, ce qui laisse perplexe. Heureusement, une explication possible de ces deux problèmes a été proposée vii dans les années quatre-vingt, et repose sur une période d'expansion accélérée au tout début de l'histoire de l'Univers, appelée l'ination [1522]. Pendant cette période, le facteur d'échelle a croît exponentiellement (au moins d'un facteur e 60 ), et cela permet d'expliquer les deux problèmes précédents. Une autre caractéristique intrigante de l'Univers est qu'environ 85% de la matière est invisible, en ce sens qu'elle n'émet pas de lumière, d'où le nom de matière noire. L'analyse des courbes de rotation des galaxies spirales (c'est-à-dire la distribution de la vitesse des étoiles), suggère l'existence de matière invisible qui interagit gravitationnellement et expliquerait les prols plats observés. À plus grande échelle, la masse des amas de galaxies peut être déterminée à l'aide de techniques de lentilles gravitationnelles, et fournit également une motivation pour l'existence de la matière noire (voir Ref. [START_REF] Arbey | Dark matter and the early Universe: a review[END_REF] pour une revue récente). La compréhension de sa nature est l'un des dés principaux de la physique moderne.

Théories tenseur-scalaire

Introduisons maintenant les théories tenseur-scalaire, qui fournissent un cadre général pour les travaux présentés dans cette thèse. Les théories alternatives de la gravitation nous permettent de prédire et de tester les déviations à la RG, ce qui est déjà une raison susante pour motiver leur étude. De plus, les défauts de la RG discutés précédemment fournissent une incitation supplémentaire à considérer ces théories alternatives, dans l'espoir d'obtenir des réponses aux questions que nous avons mentionnées. Les équations d'Einstein peuvent être obtenues à partir de l'action d'Einstein-Hilbert :

S = M 2 P 2 d 4 x √ -g(R -2Λ) + S m [g µν , ψ m ] , (9) 
où ψ m désigne les champs de matière qui sont couplés minimalement à la métrique g µν . Le tenseur énergie-impulsion T µν est déni en utilisant l'action de matière de la manière suivante :

T µν = - 2 √ -g δS m δg µν . (10) 
Le principe de moindre action appliqué à cette théorie conduit aux équations d'Einstein.

Selon un théorème de Lovelock [START_REF] Lovelock | The Einstein tensor and its generalizations[END_REF][START_REF] Lovelock | The four-dimensionality of space and the einstein tensor[END_REF], les seuls 2-tenseurs en 4 dimensions ayant une divergence nulle, et construits avec la métrique et ses dérivées premières et secondes uniquement sont la métrique g µν elle-même et le tenseur d'Einstein G µν . Par conséquent, pour obtenir des équations du mouvement diérentes de celles de la RG, il est nécessaire de briser l'une des hypothèses du théorème de Lovelock. Par exemple, on peut considérer des champs supplémentaires médiateurs de la gravité, changer la dimension de l'espace-temps ou introduire des dérivées supérieures dans l'action. La façon la plus simple de modier la RG est de construire une théorie avec un champ scalaire en plus de la métrique, qui s'appelle une théorie tenseur-scalaire. La détection du boson de Higgs en 2012 a montré que les champs scalaires peuvent exister dans la nature [START_REF] Aad | Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC[END_REF]. De plus, on s'attend à ce qu'ils apparaissent dans les actions eectives viii Synthèse en français quadri-dimensionnelles des théories des cordes, après compactication des dimensions supplémentaires (voir Réf. [START_REF] Grana | Flux compactications in string theory: A Comprehensive review[END_REF]). On s'attend également à ce que les champs scalaires participent à la phase inationnaire de l'Univers. Pour ces raisons, il semble naturel de considérer les théories tenseur-scalaire comme des extensions de la RG et d'étudier leurs propriétés. Nous nous concentrerons sur ce type de modication tout au long de la thèse, bien qu'il existe de nombreuses autres théories de gravité modiée (voir Refs. [START_REF] Clifton | Modied Gravity and Cosmology[END_REF][START_REF] Heisenberg | A systematic approach to generalisations of General Relativity and their cosmological implications[END_REF] pour des revues). En 1961, Brans et Dicke [START_REF] Brans | Mach's principle and a relativistic theory of gravitation[END_REF], s'appuyant notamment sur les travaux antérieurs de Jordan [START_REF] Jordan | The present state of Dirac's cosmological hypothesis[END_REF], ont proposé une théorie qui inclut un champ scalaire supplémentaire ϕ pouvant être interprété comme une constante de Newton variable. L'action de la théorie de Jordan-Brans-Dicke est la suivante :

S JBD = M 2 P 2 d 4 √ -g ϕR - ω 0 ϕ (∂ϕ) 2 , (11) 
où ω 0 est une constante. Cette action a été étendue plus tard en remplaçant la constante ω 0 par une fonction ω(ϕ), et en ajoutant un terme potentiel pour le champ scalaire [START_REF] Wagoner | Scalar tensor theory and gravitational waves[END_REF]. Ces extensions sont habituellement appelées théories tenseur-scalaire, bien que nous utilisions ce terme dans un sens plus large dans cette thèse, comme nous allons le discuter. En eet, les théories tenseur-scalaire standard ne contiennent que les dérivées premières du scalaire dans l'action. Dans les années soixante-dix, Horndeski a déterminé l'action la plus générale contenant un scalaire ϕ et la métrique qui conduit à des équations d'Euler-Lagrange du second ordre [START_REF] Horndeski | Second-order scalar-tensor eld equations in a four-dimensional space[END_REF], et le lagrangien contient les dérivées secondes du champ scalaire. Cette classe de théories a été redécouverte récemment lors de l'extension du modèle des galileons [START_REF] Nicolis | The Galileon as a local modication of gravity[END_REF] à un espace-temps courbe [3537], et il a été démontré qu'elle est équivalente à la théorie de Horndeski [START_REF] Kobayashi | Generalized G-ination: Ination with the most general second-order eld equations[END_REF].

Dans la formulation moderne, le lagrangien de Horndeski s'écrit

L H = f (ϕ, X)R + K(ϕ, X) -G 3 (ϕ, X)□ϕ -2f X {□ϕ} 2 -ϕ µν ϕ µν + G 5 (ϕ, X)G µν ϕ µν + 1 3 G 5X {□ϕ} 3 -3□ϕ ϕ µν ϕ µν + 2ϕ µα ϕ αν ϕ µ ν , (12) 
où X = ∂ µ ϕ∂ µ ϕ, f X = ∂f /∂X, et nous utilisons les notations abrégées ϕ µ = ∇ µ ϕ, ϕ µν = ∇ µ ∇ ν ϕ. Le fait d'exiger que les équations de champ soient du second ordre permet d'éviter l'apparition d'un fantôme d'Ostrogradsky [START_REF] Ostrogradsky | Mémoires sur les équations diérentielles, relatives au problème des isopérimètres[END_REF][START_REF] Woodard | Ostrogradsky's theorem on Hamiltonian instability[END_REF], qui est un degré de liberté avec une énergie ne possédant pas de borne inférieure. Bien qu'avoir des équations du second ordre soit une condition susante pour obtenir une théorie ne contenant pas de fantôme d'Ostrogradsky, ce n'est pas une condition nécessaire. En eet, le théorème d'Ostrogradsky ne s'applique qu'aux Lagrangiens non dégénérés, ce qui signie qu'il est possible qu'une théorie aux dérivées supérieures soit saine (dans le sens qu'elle ne contient pas de fantôme d'Ostrogradsky) si elle est également dégénérée.

Par conséquent, des théories tenseur-scalaire au-delà de la classe de Horndeski ont été recherchées. Le premier pas dans cette direction a été obtenu en eectuant une transformation disforme du tenseur métrique [START_REF] Bekenstein | The Relation between physical and gravitational geometry[END_REF] : gµν = C(ϕ, X)g µν + D(ϕ, X)ϕ µ ϕ ν .

(
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Il a été montré dans la Réf. [START_REF] Bettoni | Disformal invariance of second order scalar-tensor theories: Framing the Horndeski action[END_REF] que l'action de Horndeski est stable sous cette transformation si les fonctions C et D ne dépendent pas du terme cinétique X. Cependant, si les fonctions C et D dépendent de X mais sont choisies de manière à ce que la transformation soit inversible, alors la relation précédente est simplement un changement de variable, et une théorie devrait rester saine sous une telle transformation même si les équations d'Euler-Lagrange contiennent des dérivées d'ordre supérieur. Cette propriété intéressante a été soulignée pour la première fois dans la Réf. [START_REF] Zumalacárregui | Transforming gravity: from derivative couplings to matter to second-order scalar-tensor theories beyond the Horndeski Lagrangian[END_REF]. Elle a conduit au développement de théories au-delà de la classe de Horndeski, et des extensions des termes G 4 et G 5 ont été trouvées dans la Ref. [START_REF] Gleyzes | Healthy theories beyond Horndeski[END_REF], qui peuvent être obtenues par transformation purement disforme de la théorie de Horndeski. La classe la plus générale des théories tenseur-scalaire saines a ensuite été isolée en imposant certaines conditions de dégénérescence sur le Lagrangien, permettant de réduire les équations de champ d'ordre supérieur à un système du second ordre et donc d'éviter la propagation d'un fantôme d'Ostrogradsky. Ces théories ont été appelées Extended Scalar-Tensor (EST) [START_REF] Crisostomi | Extended Scalar-Tensor Theories of Gravity[END_REF], ou Degenerate Higher-Order Scalar-Tensor (DHOST) theories [START_REF] Langlois | Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski instability[END_REF][START_REF] Ben Achour | Degenerate higher order scalar-tensor theories beyond Horndeski and disformal transformations[END_REF], et nous utiliserons ce dernier nom dans la thèse. Le Lagrangien DHOST quadratique, c'est-à-dire contenant des termes au plus quadratiques en les dérivées secondes du champ scalaire ϕ, s'écrit

S = M 2 P 2 d 4 x √ -g f (ϕ, X)R + K(ϕ, X) -G 3 (ϕ, X)□ϕ + 5 i=1 L i , (14) 
où les densités scalaires L i sont données par L 1 = A 1 (ϕ, X) ϕ µν ϕ µν , L 2 = A 2 (ϕ, X) (□ϕ) 2 , L 3 = A 3 (ϕ, X) ϕ µν ϕ µ ϕ ν □ϕ , L 4 = A 4 (ϕ, X) ϕ µα ϕ αν ϕ µ ϕ ν ,

L 5 = A 5 (ϕ, X) (ϕ µν ϕ µ ϕ ν ) 2 . ( 15 
)
Plusieurs sous-classes de théories DHOST peuvent être obtenues à partir de cette action. Dans chaque classe, des conditions de dégénérescence spéciques sont supposées an d'éviter l'apparition du fantôme d'Ostrogradsky.

Structure et principaux résultats de la thèse

Dans cette thèse, je présente plusieurs sujets dans le contexte général des théories tenseur-scalaire de la gravitation. La première partie de la thèse est consacrée à la cosmologie des théories présentant une scalarisation spontanée des objets compacts.

Je décris le mécanisme de scalarisation dans le chapitre 1, à la fois dans le contexte des Je montre que même si l'écrantage de Vainshtein fonctionne en symétrie sphérique, il n'est pas nécessaire que les corrections pour ω soient atténuées par des puissances du rayon de Vainshtein r V . Dans ces cas, bien que l'écrantage fonctionne également pour ω, il est moins ecace que pour les potentiels de la métrique. L'écrantage dans le cas d'un champ scalaire statique est ensuite étudié dans le chapitre 6. Je considère une certaine classe de théories de Horndeski permettant d'échapper au théorème de calvitie pour les étoiles. Dans ce cas, les résultats sont similaires au cas du scalaire dépendant du temps.

La dernière partie de la thèse porte sur les trous noirs, et je commence par passer en revue les solutions (non chargées) de la RG dans le chapitre 7, en rappelant certaines propriétés importantes des solutions de Schwarzschild et de Kerr. Dans le chapitre 8, des solutions de trous noirs en rotation dans des théories tenseur-scalaire sont construites en eectuant une transformation disforme de la métrique de Kerr, et j'explique les propriétés de ces espaces-temps. Ces solutions axisymétriques sont similaires à celle de

Introduction Historical overview

The gravitational force is one of the fundamental interactions of Nature. For centuries, the motion of celestial bodies was understood in the context of Newtonian physics.

However, one of the observations that remained unexplained by this theory at the beginning of the 20th century is the secular advance of the perihelion of Mercury, which deviates from the Newtonian prediction by 43 per century. The perihelion advance in the Solar System is mainly caused by the gravitational pull of other planets, since a lone planet orbiting the Sun would have an elliptic trajectory. A similar problem had occurred for the planet Uranus. In 1846, Le Verrier was able to predict the existence and position of a perturbing body which would explain the discrepancies in its orbit, and this led to the discovery of Neptune later that year. In 1859, he realized that the motion of Mercury could not be explained by Newtonian theory with the known planets in the Solar System. He suggested that a new object may exist even closer to the Sun, and that it could explain this anomalous motion. However, this time the prediction was incorrect and the new planet, which was to be named Vulcan, was not found. Hence, Mercury's perihelion advance remained unexplained in Newton's theory.

In 1915, Einstein published his general theory of relativity (GR), in which he proposed that gravitation is a manifestation of spacetime curvature [START_REF] Einstein | The Foundation of the General Theory of Relativity[END_REF]. In this description, the gravitational potential itself is part of the spacetime metric g µν . The movement of matter, which is represented by a stress-energy tensor T µν , is directly linked to the geometry of spacetime through Einstein's equations:

R µν - 1 2 R g µν = 8πG c 4 T µν -Λg µν , ( 16 
)
where G is Newton's constant and c is the velocity of light in vacuum. 1 In natural units, we have G = (8πM 2 P ) -1 , where the constant M P ∼ 10 18 GeV is the reduced Since its proposal more than a century ago, general relativity has passed all experimental tests in the Solar System, the rst triumph being the correct prediction of the secular perihelion precession of Mercury. It was understood even in Newtonian physics that light could be bent by gravitational sources. Using a corpuscular theory of light, this eect was calculated by Cavendish and Soldner, the rst published version dating back to 1804 [START_REF] Will | Johann von Soldner, and the deection of light[END_REF]. This prediction was also calculated by Einstein in 1911 using the principle of equivalence. However, in the full theory of GR Einstein realized that the deection of light should be twice as large, and its measurement constitutes a second important test of GR. The light bending eect was rst observed by Eddington and his collaborators during the solar eclipse of 1919 [START_REF] Dyson | A Determination of the Deection of Light by the Sun's Gravitational Field, from Observations Made at the Total Eclipse of May 29, 1919[END_REF], and they concluded that Einstein's prediction was correct (though the low accuracy of the measurement led to controversy, see for instance Ref. [START_REF] Coles | Einstein, Eddington and the 1919 eclipse[END_REF]). Another test of GR proposed by Einstein is the gravitational redshift, which predicts that photons lose energy (and hence become red) when escaping a gravitational well. If one imagines two clocks, one near a gravitational source and the other far away, then the former would be seen to tick slower from the point of view of a xed observer. In 1959 Pound and Rebka measured this eect by shooting gamma rays from the top of a 22 meter tower, showing that the photons were blueshifted as they fell [START_REF] Pound | Gravitational Red-Shift in Nuclear Resonance[END_REF]. A useful framework to test general relativity is the so-called parametrized post-Newtonian (PPN) formalism, the rst version of which was written by Eddington in 1923. The metric for a spherically symmetric source of mass M in isotropic coordinates and in the nonrelativistic limit can be parametrized as

g tt c 2 = -1 + 2GM rc 2 -2β PPN GM rc 2 2 + O 1 c 6 , g ti = 0 , g ij = δ ij 1 + 2γ PPN GM rc 2 + O 1 c 4 . ( 17 
)
The 2 parameters {β PPN , γ PPN } quantify the deviations from GR, for which we have β PPN = γ PPN = 1. This formalism was later extended, notably by Nordtvedt and Will, and now includes 10 parameters which can be confronted with experiments (see Ref. [START_REF] Will | The Confrontation between General Relativity and Experiment[END_REF] for a review). In addition to the Solar System experiments in the weak eld regime, the discovery of binary pulsars in 1974 [START_REF] Hulse | Discovery of a pulsar in a binary system[END_REF] provided the possibility to test GR in strong eld environments [START_REF] Wex | Gravity Tests with Radio Pulsars[END_REF].

General relativity can also be applied on very large scales, in cosmology. In this case spacetime is described by the isotropic and homogeneous Friedmann-Lemaître-Robertson-Walker (FLRW) metric, which is given by the following line element:

ds 2 = -dt 2 + a 2 (t) dr 2 1 -κr 2 + r 2 dθ 2 + r 2 sin 2 θdφ 2 , ( 18 
)
where the time-dependent function a is called the scale factor and the constant κ is the curvature of space. It can take the values κ ∈ {-1, 0, 1}, corresponding respectively to an open, at or closed Universe. We assume that the energy content of the Universe can be described by a perfect uid of energy density ρ and pressure P , in which case the energy-momentum tensor takes the form T µ ν = diag (-ρ, P, P, P ) .

(
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Substituting these expressions in Eq. ( 16), we obtain the Friedmann equations

ä a = Λ 3 - ρ + 3P 6M 2 P , (20) 
H 2 = Λ 3 + ρ 3M 2 P - κ a 2 , (21) 
where a dot stands for dierentiation with respect to cosmic time t, and H = ȧ/a is the Hubble parameter. These equations show that the Universe is not static, i.e.

H ̸ = 0. By wanting the Universe to be static at all cost, in line with the traditional understanding, Einstein famously tried to enforce H = 0 in Eq. ( 21), not realizing that this ne-tuned equilibrium is unstable anyway. The Universe was shown to be expanding by Hubble in 1929 [START_REF] Hubble | A relation between distance and radial velocity among extra-galactic nebulae[END_REF]. By combining the Friedmann equations, we obtain a third relation corresponding to the fact that energy-momentum tensor is divergenceless, i.e. ∇ µ T µν = 0. This follows from the geometric identity ∇ µ G µν = 0, where the Einstein tensor G µν is dened as

G µν = R µν - 1 2 Rg µν . ( 22 
)
For a perfect uid, the continuity equation reads ρ + 3H (ρ + P ) = 0 .

(

) 23 
If we assume an equation of state of the form P = wρ, with w constant, then it follows from Eq. ( 23) that

ρ a 3(1+w) = const. (24) 
Hence, dierent types of matter are diluted dierently as the Universe expands. Ordinary matter corresponds to w = 0, and the matter density ρ m evolves as ρ m ∼ 1/a 3 , while for radiation we have w = 1/3 and the corresponding density ρ r decays as ρ r ∼ 1/a 4 . Another interesting case is w = -1, which corresponds to dark energy, or the cosmological constant. Indeed, one can view the cosmological constant as a uid with density ρ Λ = ΛM 2 P and pressure P Λ = -ΛM 2 P , and hence w = -1. By setting ρ = P = 0 in Eq. ( 20), we see that a Universe dominated by a positive cosmological constant Λ corresponds to an accelerated expansion of the form a ∼ exp(t Λ/3). The current expansion of the Universe was shown to be accelerated in 1998 [START_REF] Riess | Observational evidence from supernovae for an accelerating universe and a cosmological constant[END_REF][START_REF] Perlmutter | Measurements of Ω and Λ from 42 high redshift supernovae[END_REF] using type Ia supernovae (these objects are standard candles, i.e. their peak brightness is known and hence they provide an accurate way to measure distances on large scales). The expansion can be explained in the standard model of cosmology by introducing a small cosmological constant Λ e ∼ 10 -65 GeV 2 . In addition, the curvature of the Universe is measured to be extremely small, so we will set κ = 0 in Eq. [START_REF] Linde | A New Inationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems[END_REF]. The energy content of the Universe in the present day is made up of 3 major components: dark energy (∼ 68%), cold dark matter (∼ 27%), and baryonic matter (∼ 5%) [START_REF] Aghanim | Planck 2018 results. VI. Cosmological parameters[END_REF].

Another fascinating prediction of GR is the existence of black holes, which are objects so compact that even light rays are trapped in their interior. These had been conceptualized even in the context of Newtonian physics, notably by Michell and Laplace in the 19th century.

2 A few months after Einstein published his theory of gravitation, Schwarzschild found a static solution to the vacuum eld equations R µν = 0. We discuss this solution in more detail in Chapter 7, along with its rotating counterpart, the Kerr metric [START_REF] Kerr | Gravitational eld of a spinning mass as an example of algebraically special metrics[END_REF]. While such objects were thought for a long time to be of purely mathematical interest, there has been increasing experimental evidence that black holes do exist in Nature, and they will be central to the nal part of this thesis. Unlike the Newtonian theory, GR predicts the existence of gravitational waves. Such waves were directly detected in 2015 using ground-based interferometers [START_REF] Abbott | Observation of Gravitational Waves from a Binary Black Hole Merger[END_REF] coming from the distant merger of two black holes, though indirect evidence of their existence had already been obtained from the study of binary pulsars [START_REF] Taylor | A new test of general relativity -Gravitational radiation and the binary pulsar PSR 1913+16[END_REF]. This was yet again a success of GR, and paved the way for a new era of strong eld tests . Despite all the triumphs of GR that we have discussed, there remain some unexplained phenomena which have encouraged physicists to consider alternative theories of gravitation. Firstly, it is well-known that general relativity is not renormalizable, which means that it loses its predictability at high energies. The mass scale which represents this cuto is the Planck mass m P = √ 8πM P ∼ 10 19 GeV. There has been a lot of eort in the past decades to construct a UV-complete theory of gravity, the most famous attempt being string theory. Another issue is linked to the small measured value of the cosmological constant. In a quantum eld theory, the bare constant Λ is expected to be corrected by a quantum correction δΛ arising from loop contributions, combining into the observed value Λ e = Λ+δΛ. Assuming a cuto at the Planck scale m P , the quantum corrections are estimated to be of order δΛ ∼ 10 37 GeV 2 , meaning that the two contributions to Λ e would have to cancel out with a precision of more than 100 orders of magnitude. A dierent calculation using dimensional regularization alleviates the issue, but there remains a discrepancy of around 50 orders of magnitude (see Ref. [START_REF] Martin | Everything You Always Wanted To Know About The Cosmological Constant Problem (But Were Afraid To Ask)[END_REF] for a review). This is known as the naturalness problem, and occurs in a similar way (though not as drastically) for the mass of the Higgs boson in particle physics. There are additional problems linked to cosmology, one of them being the atness problem. This can be understood easily by introducing the critical density ρ c = 3M 2 P H 2 and rewriting Eq. ( 21) with Λ = 0 as

ρ c ρ -1 ρa 2 = -3κM 2 P . (25) 
2 An English translation of Laplace's essay can be found in the book by Hawking and Ellis [START_REF] Hawking | The Large Scale Structure of Space-Time[END_REF].

Since the right-hand side of the previous equation is constant, the left-hand side must also remain constant throughout the evolution of the universe. However, because during matter and radiation domination the combination ρa 2 decreases, the second term on the left-hand side must increase. Current measurements show that |1 -ρ c /ρ| is very small today, which implies that it was extremely small (around 10 -62 ) in the early stages of the Universe, and there is no explanation for this ne-tuning. Another issue is the so-called horizon problem. The Planck satellite [START_REF] Aghanim | Planck 2018 results. VI. Cosmological parameters[END_REF] was able to measure the temperature of the cosmic microwave background (CMB) with high accuracy, and regions of the sky which could not have been in causal contact in the past have almost the same temperature, which is puzzling. Fortunately, a possible explanation for both of these problems has been proposed in the eighties, and relies on a period of accelerated expansion in the very early Universe called ination [1522]. During that period, the scale factor a grows by about 60 e-folds, and this allows to explain the two previous problems. If one assumes initial conditions |1 -ρ c /ρ| ∼ 1, this value will be diluted to a very small value during ination (since ρa 2 increases in this case). This can explain the ne-tuning discussed above, and even if this value grows from the end of ination until the present day, it is still consistent with the present day observations. A similar picture holds for the horizon problem: two points in spacetime can be in causal contact before ination, and lose contact by the end of it. A simple way to model the inationary stage is to introduce a scalar eld χ, called the inaton, slowly-rolling at the top of its potential. This mimics a uid with equation of state w χ ≃ -1 (at least during the early stages of ination), and hence the expansion is accelerated.

Once the slow roll approximation breaks down, the scalar eld oscillates at the bottom of its potential and decays into the standard model particles during a stage called (p)reheating. This acts as an apparent (nonsingular)

Big Bang, and the Universe then proceeds with the three usual stages, i.e. radiation domination followed by matter domination and nally a dark energy dominated stage which we are currently living in. Another intriguing feature of the Universe is that around 85% of the matter content is invisible, in the sense that it doesn't emit light, hence the name dark matter. The analysis of rotation curves of spiral galaxies (i.e. the velocity distribution of stars), suggests the existence of invisible matter which interacts gravitationally and would explain the at proles. On larger scales, the mass of galaxy clusters can be determined using gravitational lensing techniques, and also provides a motivation for the existence of dark matter (see Ref. [START_REF] Arbey | Dark matter and the early Universe: a review[END_REF] for a recent review). The understanding of its nature is one of the challenges of modern physics.

tional incentive to consider such alternative theories, in the hope of obtaining answers to the issues we mentioned. The Einstein eld equations can be obtained from the Einstein-Hilbert action:

S = M 2 P 2 d 4 x √ -g(R -2Λ) + S m [g µν , ψ m ] , (26) 
where ψ m denotes the matter elds which are minimally coupled to the metric g. The energy-momentum tensor T µν is dened using the matter action as

T µν = - 2 √ -g δS m δg µν . ( 27 
)
The principle of least action applied to this theory yields the Einstein equations ( 16).

According to a theorem by Lovelock [START_REF] Lovelock | The Einstein tensor and its generalizations[END_REF][START_REF] Lovelock | The four-dimensionality of space and the einstein tensor[END_REF], the only 2-tensors in 4 dimensions that are divergence-less and constructed with the metric and its rst and second derivatives only are the metric g µν itself and the Einstein tensor G µν . Hence, in order to obtain eld equations which are dierent from those of GR, it is necessary to break one of the hypotheses of Lovelock's theorem. For instance, one can consider additional elds mediating gravity, change the spacetime dimension or introduce higher derivatives in the action. The simplest way to modify GR is to construct a theory with a scalar eld in addition to the metric, which is called a scalar-tensor theory. The detection of the Higgs boson in 2012 showed that scalar elds can exist in Nature [START_REF] Aad | Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC[END_REF]. Furthermore, they are expected to arise in the 4-dimensional eective action of string theories, which is obtained upon compactifying extra dimensions (see Ref. [START_REF] Grana | Flux compactications in string theory: A Comprehensive review[END_REF]). As we discussed above, scalar elds are also expected to participate in the inationary stage of the Universe. For these reasons, it seems natural to consider scalar-tensor theories as extensions to GR and study their properties. We will focus on this type of modication throughout the thesis, though there exist many other modied gravity theories (see Refs. [START_REF] Clifton | Modied Gravity and Cosmology[END_REF][START_REF] Heisenberg | A systematic approach to generalisations of General Relativity and their cosmological implications[END_REF] for reviews). In 1961, Brans and Dicke [START_REF] Brans | Mach's principle and a relativistic theory of gravitation[END_REF], building notably on previous work by Jordan [START_REF] Jordan | The present state of Dirac's cosmological hypothesis[END_REF], proposed a theory which includes an additional scalar eld ϕ that can be interpreted as a varying Newton constant. The action for the Jordan-Brans-Dicke theory reads

S JBD = M 2 P 2 d 4 √ -g ϕR - ω 0 ϕ (∂ϕ) 2 , ( 28 
)
where ω 0 is a constant. This action was later extended by replacing the constant ω 0 by a function ω(ϕ), and adding a potential term for the scalar eld [START_REF] Wagoner | Scalar tensor theory and gravitational waves[END_REF]. These extensions are usually called scalar-tensor theories, though we use this term in a broader sense in this thesis, as we will discuss. Indeed, the standard scalar-tensor theories only contain rst derivatives of the scalar in the action. In the seventies, Horndeski determined the most general action containing a scalar ϕ and the metric which leads to second order Euler-Lagrange equations [START_REF] Horndeski | Second-order scalar-tensor eld equations in a four-dimensional space[END_REF], and it contains second derivatives of the scalar eld. This class of theories was recently rediscovered when extending the Galileon model [START_REF] Nicolis | The Galileon as a local modication of gravity[END_REF] to curved spacetime [3537], and was shown to be equivalent to Horndeski theory [START_REF] Kobayashi | Generalized G-ination: Ination with the most general second-order eld equations[END_REF]. In the modern formulation, the Horndeski Lagrangian reads

L H = f (ϕ, X)R + K(ϕ, X) -G 3 (ϕ, X)□ϕ -2f X {□ϕ} 2 -ϕ µν ϕ µν + G 5 (ϕ, X)G µν ϕ µν + 1 3 G 5X {□ϕ} 3 -3□ϕ ϕ µν ϕ µν + 2ϕ µα ϕ αν ϕ µ ν , (29) 
where X = ∂ µ ϕ∂ µ ϕ, f X = ∂f /∂X, and we use the shorthand notation ϕ µ = ∇ µ ϕ, ϕ µν = ∇ µ ∇ ν ϕ. The requirement that the eld equations be of second order is to avoid the appearance of an Ostrogradsky ghost [START_REF] Ostrogradsky | Mémoires sur les équations diérentielles, relatives au problème des isopérimètres[END_REF][START_REF] Woodard | Ostrogradsky's theorem on Hamiltonian instability[END_REF], which is a degree of freedom with an energy that is unbounded from below. While having second-order equations is a sucient condition avoid the Ostrogradsky ghost , it is not a necessary one. Indeed, the Ostrogradsky theorem only applies to nondegenerate Lagrangians, meaning that it is possible for a theory with higher derivatives to be healthy (in the sense that there is no Ostrogradsky ghost) if it is also degenerate. Hence, scalar-tensor theories going beyond the Horndeski class were sought out. The rst step in that direction was obtained by performing a disformal transformation of the metric tensor [START_REF] Bekenstein | The Relation between physical and gravitational geometry[END_REF]:

gµν = C(ϕ, X)g µν + D(ϕ, X)ϕ µ ϕ ν . (30) 
It was shown in Ref. [START_REF] Bettoni | Disformal invariance of second order scalar-tensor theories: Framing the Horndeski action[END_REF] that the Horndeski action is stable under the disformal map 3 if the functions C and D do not depend on the kinetic term X. However, if the functions C and D depend on X but are chosen so that the disformal map is invertible, then the previous relation is simply a eld redenition, and a theory should remain healthy under such a transformation even if the Euler-Lagrange equations contain higher-order derivatives. This interesting property was rst pointed out in Ref. [START_REF] Zumalacárregui | Transforming gravity: from derivative couplings to matter to second-order scalar-tensor theories beyond the Horndeski Lagrangian[END_REF].

It led to the development of theories beyond the Horndeski class, and extensions of the G 4 and G 5 terms were found in Ref. [START_REF] Gleyzes | Healthy theories beyond Horndeski[END_REF], which can be obtained by purely disformal transformation of the Horndeski theory. The most general class of healthy scalar-tensor theories were then isolated by imposing certain degeneracy conditions on the Lagrangian, allowing to reduce higher-order eld equations to a second-order system and hence avoid the propagation of an Ostrogradsky ghost. Theses theories were called Extended Scalar-Tensor (EST) [START_REF] Crisostomi | Extended Scalar-Tensor Theories of Gravity[END_REF], or Degenerate Higher-Order Scalar-Tensor (DHOST) theories [START_REF] Langlois | Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski instability[END_REF][START_REF] Ben Achour | Degenerate higher order scalar-tensor theories beyond Horndeski and disformal transformations[END_REF], and we will use the latter name in this thesis. The quadratic DHOST Lagrangian, i.e. containing terms at most quadratic in the second derivatives of the scalar eld ϕ, reads

S = M 2 P 2 d 4 x √ -g f (ϕ, X)R + K(ϕ, X) -G 3 (ϕ, X)□ϕ + 5 i=1 L i , (31) 
where the scalar densities L i are given by

L 1 = A 1 (ϕ, X) ϕ µν ϕ µν , L 2 = A 2 (ϕ, X) (□ϕ) 2 , L 3 = A 3 (ϕ, X) ϕ µν ϕ µ ϕ ν □ϕ , L 4 = A 4 (ϕ, X) ϕ µα ϕ αν ϕ µ ϕ ν , L 5 = A 5 (ϕ, X) (ϕ µν ϕ µ ϕ ν ) 2 . ( 32 
)
Several subclasses of DHOST theories can be obtained from this action. In each class, specic degeneracy conditions are assumed, ensuring that the theory is free from the Ostrogradsky ghost. In most of this thesis, the theories will belong to the class Ia, which is obtained by imposing the following constraints on the Lagrangian functions, assuming f -XA 1 ̸ = 0:

A 2 = -A 1 , A 4 = 1 8(f -XA 1 ) 2 -16XA 3 1 + 4A 2 1 (3f + 16Xf X ) + 4A 3 A 1 (3Xf -4X 2 f X ) -X 2 f A 2 3 -16f X A 1 (3f + 4Xf X ) + 8f A 3 (Xf X -f ) + 48f f 2 X A 5 = (2A 1 -XA 3 -4f X )(2A 2 1 + 3XA 1 A 3 -4f X A 1 -4f A 3 ) 8(f -XA 1 ) 2 , (33) 
The quadratic Horndeski class [START_REF] Horndeski | Second-order scalar-tensor eld equations in a four-dimensional space[END_REF] is given by the relations

A H 3 = 0 and A H 1 = 2f H X . (34) 
Note that there also exist cubic DHOST theories [START_REF] Ben Achour | Degenerate higher order scalar-tensor theories beyond Horndeski up to cubic order[END_REF], which generalize the cubic Horndeski terms in the Lagrangian (29), i.e. the terms which contain the function G 5 .

In the following, we limit ourselves to quadratic actions. The only exception is when considering the scalar-Gauss-Bonnet theories in the rst part of the thesis, which can be written as a cubic Horndeski theory [START_REF] Kobayashi | Generalized G-ination: Ination with the most general second-order eld equations[END_REF]. Though other classes of DHOST theories exist, they have been found to present a gradient instability of cosmological perturbations [5355], and hence the type Ia subclass is the most interesting one from a phenomenological point of view. However, there are also constraints on the dark energy models in the Ia subclass, due to the detection of gravitational waves coming from the merger of a binary neutron star along with its electromagnetic counterpart [START_REF] Abbott | GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral[END_REF][START_REF] Abbott | Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A[END_REF].

This measurement allowed to compare the speed of propagation c T of gravitational waves to the speed of light, leading to the constraint |c T -1| ∼ 10 -15 . In order to obtain a theory with c T = 1, one must set A 1 = 0 in the DHOST Lagragian (and hence A 2 = 0 to impose the degeneracy of the theory) [START_REF] Langlois | Scalar-tensor theories and modied gravity in the wake of GW170817[END_REF]5861]. 4 It was later argued that that one should also set A 3 = 0 in order to avoid the decay of the scalar eld into gravitational waves, which would be in contradiction with the measurements [START_REF] Creminelli | Gravitational Wave Decay into Dark Energy[END_REF]. If we assume all of these constraints, then using Eq. ( 33) we obtain that the only quadratic term remaining in the action [START_REF] Jordan | The present state of Dirac's cosmological hypothesis[END_REF] is A 4 = 6f 2 X /f . In particular, the quadratic terms of the Horndeski theory are ruled out by these observations.

4 See however Ref. [START_REF] De Rham | Gravitational Rainbows: LIGO and Dark Energy at its Cuto[END_REF] for a critical discussion of the implications of the LIGO/Virgo measurement in the context of eective eld theories.

Structure of the thesis

In this thesis, I will present various topics in the general context of scalar-tensor theories belonging to the Horndeski class and beyond. Part I deals with theories exhibiting spontaneous scalarization around compact objects. After explaining how this mechanism works in Chapter 1, we focus on the cosmology of these models, and more precisely the inationary epoch. In Chapter 2, we show that an instability of the scalar mode generically develops in such models during ination. In Chapter 3, we present a mechanism which relies on a coupling of the scalar eld to the inaton and allows to quench the instability in a particular class of models.

In In this part, we will focus on scalar-tensor theories exhibiting the spontaneous scalarization of compact objects. This interesting eect was rst discovered for neutron stars by Damour and Esposito-Farèse (DEF) in the nineties [START_REF] Damour | Nonperturbative strong eld eects in tensor -scalar theories of gravitation[END_REF]. In this model, the coupling of the scalar eld to curvature acts as an eective tachyonic mass in the strong eld region inside the star. For a certain range of coupling parameters and for high enough curvature, the GR branch with a constant scalar becomes unstable in favor of the scalarized branch which accommodates a nontrivial scalar prole. Because of the coupling to the Ricci curvature R, this phenomenon only operates for stars, where R ̸ = 0. More recently, it was observed that scalarization could arise in scalar-Gauss-Bonnet theories, where the scalar eld is nontrivially coupled to the Gauss-Bonnet invariant [START_REF] Doneva | New Gauss-Bonnet Black Holes with Curvature-Induced Scalarization in Extended Scalar-Tensor Theories[END_REF][START_REF] Silva | Spontaneous scalarization of black holes and compact stars from a Gauss-Bonnet coupling[END_REF]. Interestingly, since the latter is nonzero even in vacuum, this led to the extension of scalarization to black holes. We will briey review these models in Chapter 1, since we will use them in the following chapters. We will limit ourselves to these models in the following, i.e. DEF and scalar-Gauss-Bonnet, but it is worth pointing out that scalarization has since been shown to work in a more general class of theories. The most general terms which can lead to the onset of scalarization were found in Refs. [START_REF] Andreou | Spontaneous scalarization in generalised scalar-tensor theory[END_REF][START_REF] Ventagli | Onset of spontaneous scalarization in generalized scalar-tensor theories[END_REF]. While the examples we will treat are for spherically symmetric uncharged objects, scalarization was shown to work for charged objects as well [START_REF] Doneva | New Gauss-Bonnet Black Holes with Curvature-Induced Scalarization in Extended Scalar-Tensor Theories[END_REF][START_REF] Herdeiro | Spontaneous Scalarization of Charged Black Holes[END_REF]. Interestingly, the instability can also be triggered for a rapidly rotating black hole [7072].

Our main interest lies in the cosmology of such models, and in particular the inationary stage. As we have said, the scalarization eect relies on a tachyonic eective mass for the scalar eld that destabilizes the GR solution. In Chapter 2, we examine the inuence of the tachyonic mass on the cosmology of a certain class of scalar-Gauss-Bonnet theories. We will argue that theories leading to the scalarization of compact objects generically present an instability during the inationary stage, which is also present for the DEF model, as we show in Chapter 3. In that case however, we propose a mechanism to quench the instability which relies on a coupling of the scalar eld ϕ to the inaton χ. As we will explain, the inationary stage is not broken in that case, and the current Solar System constraints are satised for the scalar eld.

Chapter 1

Scalarization of compact objects

In this rst chapter, we review the process of spontaneous scalarization for spherically symmetric compact objects in the case of the DEF model and for theories with a nontrivial coupling of the scalar eld to the Gauss-Bonnet invariant.

The DamourEsposito-Farèse model of scalarization

We begin by presenting the DamourEsposito-Farèse (DEF) model leading to the scalarization of neutron stars [START_REF] Damour | Nonperturbative strong eld eects in tensor -scalar theories of gravitation[END_REF]. We write the action in the so-called Einstein frame, where matter is nonminimally coupled to the metric:

S E = M 2 P 2 d 4 x √ -g [R -2∂ µ ϕ∂ µ ϕ -2V (ϕ)] + S m A 2 (ϕ)g µν , ψ m , (1.1) 
where ψ m is the collective notation for matter elds, and the function A(ϕ) is dened as

A(ϕ) = e βϕ 2 2 , (1.2) 
with β constant. Following the notations of Ref. [START_REF] Damour | Nonperturbative strong eld eects in tensor -scalar theories of gravitation[END_REF], we have chosen the eld ϕ to be dimensionless. In the original DEF model, the potential V (ϕ) is absent, but we keep it here because it plays a crucial role in our discussion later on. The previous action can also be written in the Jordan frame, where the matter elds follow geodesics. It is obtained by redening the metric as gµν = A 2 (ϕ)g µν . The corresponding action is of the form (31) and reads

S J = M 2 P 2 d 4 x -g φ R - ω( φ) φ gµν ∂ µ φ∂ ν φ -Π( φ) + S m [g µν , ψ m ] , (1.3) 
where φ, ω and Π are dened as

d ln A dϕ 2 = [2ω( φ) + 3] -1 , (1.4) φ = A -2 (ϕ) , (1.5) 
Π( φ) = 2 φ2 V (ϕ( φ)) .

(1.6)

In the following, we will work in the Einstein frame since the eld equations are simpler in that case. Let us now describe the essence of scalarization. The equation of motion for the eld ϕ derived from the action (1.1) reads

□ϕ + α(ϕ)T 2M 2 P - 1 2 
∂V ∂ϕ = 0 , (1.7) 
where

α(ϕ) ≡ d ln A(ϕ) dϕ = βϕ (1.8)
plays the role of the coupling constant to the matter elds and T = g µν T µν . One can see that ϕ = 0 solves this equation for the potential V (ϕ) = 0. For β < 0 and T < 0, the scalar acquires a tachyonic eective mass, which hints at the existence of other, stable solutions of Eq. (1.7). This is indeed the case when β ≲ -4 for massive enough neutron stars [START_REF] Damour | Nonperturbative strong eld eects in tensor -scalar theories of gravitation[END_REF]. The eld ϕ acquires a nontrivial prole which matches the constant cosmological value ϕ 0 ≡ ϕ(t 0 ), where t 0 ≈ 13.8 • 10 9 years is the present time. However, the parameter β is greatly constrained by the observation of binary pulsars, which imposes the bound β > -4.5 [START_REF] Damour | Tensor -scalar gravity and binary pulsar experiments[END_REF][START_REF] Esposito-Farese | Tests of Alternative Theories of Gravity[END_REF]. Hence, this parameter is practically xed for the scalarization models, and we will set β ≃ -4.5 in the following.

In the theory given by the action (1.1), the parametrized post-Newtonian (PPN) parameters [START_REF] Guth | The Inationary Universe: A Possible Solution to the Horizon and Flatness Problems[END_REF] are given by [START_REF] Damour | Tensor multiscalar theories of gravitation[END_REF] γ

PPN -1 = -2α 2 (ϕ 0 ) 1 + α 2 (ϕ 0 ) β PPN -1 = βα 2 (ϕ 0 ) [1 + α 2 (ϕ 0 )] 2 .
(1.9)

In the limit α(ϕ 0 ) → 0, the PPN parameters coincide with those of GR. From the denition of α in Eq. (1.8), one sees that this limit corresponds to ϕ 0 → 0. Using the constraint on the PPN parameter γ PPN from the Shapiro time-delay measurement

γ PPN = 1 ± (2.1 ± 2.3) × 10 -5
given in Ref. [START_REF] Bertotti | A test of general relativity using radio links with the Cassini spacecraft[END_REF], we get for |β| ≃ 4.5 the following upper bound on ϕ 0 :

ϕ 0 ≲ 10 -3 . (1.10)
For these values, the DEF model is indistinguishable from GR in the weak-eld and quasi-static regimes. However, even with a vanishing value of the eld ϕ at cosmological scales, neutron stars experience scalarization, leading to testable deviations from GR in the strong eld regime [START_REF] Freire | The relativistic pulsar-white dwarf binary PSR J1738+0333 II. The most stringent test of scalar-tensor gravity[END_REF][START_REF] Shao | Constraining nonperturbative strong-eld eects in scalar-tensor gravity by combining pulsar timing and laser-interferometer gravitational-wave detectors[END_REF]. On the other hand, as we will discuss in Chapter 3, the values (1.10) are not realistic in the original DEF model with V (ϕ) = 0. Indeed, the tachyonic instability triggers runaway cosmological solutions for the eld ϕ, so that ϕ 0 ≫ 1, which is in direct conict with the Solar System constraints [7981].

Coupling to the Gauss-Bonnet scalar

The standard scalarization model of the previous section relies on a coupling of the scalar eld to the Ricci scalar, as seen from the action (1.3) written in the Jordan frame.

Outside of matter, the Ricci scalar vanishes, and hence the DEF model is only valid for neutron stars. Recently, it was found that scalarized solutions may also arise when the scalar eld couples nonminimally to the Gauss-Bonnet invariant [START_REF] Doneva | New Gauss-Bonnet Black Holes with Curvature-Induced Scalarization in Extended Scalar-Tensor Theories[END_REF][START_REF] Silva | Spontaneous scalarization of black holes and compact stars from a Gauss-Bonnet coupling[END_REF]8285

] Ĝ = R µνσα R µνσα -4R µν R µν + R 2 .
This scalar is nonzero even for black holes, which makes scalarization possible in these cases as well. Let us now explain how scalarized solutions arise in these theories. We consider the following action, which includes a coupling term F (ϕ) between a scalar eld ϕ and the Gauss-Bonnet invariant Ĝ:

S = M 2 P 2 d 4 x √ -g R -2Λ -g µν ∂ µ ϕ∂ ν ϕ + 2F (ϕ) Ĝ , (1.11) 
where Λ is the cosmological constant. Even though this action is not immediately of the form [START_REF] Jordan | The present state of Dirac's cosmological hypothesis[END_REF], one can check that the eld equations are of second order, which means that this theory belongs to the Horndeski class [START_REF] Heisenberg | A systematic approach to generalisations of General Relativity and their cosmological implications[END_REF]. It contains cubic terms, i.e. G 5 ̸ = 0 in the Lagrangian [START_REF] Heisenberg | A systematic approach to generalisations of General Relativity and their cosmological implications[END_REF], which is why it is not part of the quadratic DHOST theories. The explicit expressions for the functions appearing in the Horndeski Lagrangian corresponding to this theory can be found in Ref. [START_REF] Kobayashi | Generalized G-ination: Ination with the most general second-order eld equations[END_REF]. By varying the previous action, we see that the Gauss-Bonnet scalar provides a source term in the scalar eld equation, which reads □ϕ + F ′ (ϕ) Ĝ = 0 .

(1.12)

The variation of Eq. (1.11) with respect to the metric yields the following modied Einstein equations:

M 2 P (G µν + Λg µν ) = ∇ µ ϕ∇ ν ϕ - 1 2 g µν ∇ α ϕ∇ α ϕ -8P µλνα ∇ α F ′ (ϕ)∇ λ ϕ .
(1.13)

We have introduced the tensor P αβµν , which is the double dual of the Riemann tensor. It is dened using the antisymmetric Levi-Civita tensor ε µναβ in the following way:

P αβµν = - 1 4 ε αβρσ R ρσγδ ε µνγδ = R αβµν + g αν R βµ -g αµ R βν + g βµ R αν -g βν R αµ + 1 2
(g αµ g βν -g αν g βµ ) R . for some constant ϕ 0 , such theories were shown to exhibit spontaneous scalarization around black holes and neutron stars [START_REF] Doneva | New Gauss-Bonnet Black Holes with Curvature-Induced Scalarization in Extended Scalar-Tensor Theories[END_REF][START_REF] Silva | Spontaneous scalarization of black holes and compact stars from a Gauss-Bonnet coupling[END_REF]8285].

The rst condition on the coupling function ensures that ϕ = ϕ 0 satises the equations of motion, in which case we recover the solution of GR with a constant scalar eld. The second condition is crucial, as it implies that the scalar eld acquires a negative eective mass squared, which is responsible for the appearance of scalar hair via a tachyonic instability. Indeed, one may study a scalar perturbation ϕ = ϕ 0 + δϕ on a xed Schwarzschild geometry, as was done in Ref. [START_REF] Doneva | New Gauss-Bonnet Black Holes with Curvature-Induced Scalarization in Extended Scalar-Tensor Theories[END_REF]. Notably, the equations for the scalar and metric uctuations are decoupled at rst order for a constant ϕ 0 .

The equation describing scalar perturbations is given by

□ + F ′′ (ϕ 0 ) Ĝ δϕ = 0 , (1.16) 
where the d'Alembert operator and the Gauss-Bonnet invariant are calculated using the Schwarzschild metric. We now decompose the scalar perturbation on the static and spherically symmetric background as

δϕ = u(r) r e -iωt Y lm (θ, φ) , (1.17) 
where Y lm (θ, φ) are the spherical harmonics. One can rewrite Eq. (1.16) in the form of a Schrödinger equation by introducing the tortoise coordinate dr * = dr (1 -r S r ) -1 , where r S is the Schwarzschild radius of the black hole: + ω 2 u = V e (r)u .

(1.18)

For l = 0 the eective potential V e (r) reads

V e (r) = 1 - r S r r S r 3 - 12r 2 S r 6 F ′′ (ϕ 0 ) . (1.19) 
A sucient condition on the eective potential for the existence of an unstable mode is [START_REF] Buell | Potentials and bound states[END_REF] ∞

rg dr V e (r) 1 -r S r < 0 . (1.20)
This condition, which can be satised if F ′′ (ϕ 0 ) > 0, translates to

r 2 S < 24 5 F ′′ (ϕ 0 ) . (1.21)
Hence the Schwarzschild solution becomes unstable for small enough masses (the value depends on the coupling function F ), and one expects scalar hair to appear in that case. Bearing in mind the possible redenition ϕ → ϕ + ϕ 0 , the function F (ϕ) can be expanded around ϕ 0 = 0,

F (ϕ) = 1 8 λ 2 ϕ 2 + O λ 2 ϕ 4 M 2 P M 2 1 . (1.22)
Here M 1 is some scale normally taken to be of order of the Planck mass M P , and the sign of the quadratic term is chosen so that the eective mass is tachyonic. The value of λ sets the upper bound of the mass of a black hole or a star at which scalarization may happen, λ ≳ r S . For physically interesting objects like neutron stars, one easily

nds λ ∼ M ⊙ M 2 P ∼ 10 19 GeV -1 .
(1.23)

Dierent branches of scalarized solutions were shown to exist by a numerical analysis, for specic bands of λ/r S . Each branch may be labeled by an integer n ∈ N corresponding to the number of nodes of the radial scalar prole. It was shown in Ref. [START_REF] Blázquez-Salcedo | Radial perturbations of the scalarized Einstein-Gauss-Bonnet black holes[END_REF] that none of the branches are stable for a theory with a purely quadratic coupling function, F (ϕ) ∝ ϕ 2 . However, for the theory with F (ϕ) ∝ (1 -e -ϕ 2 /M 2 P ) the fundamental branch n = 0 is stable for a specic range of parameters. The same can be achieved by adding a quartic term to the purely quadratic coupling function [START_REF] Minamitsuji | Scalarized black holes in the presence of the coupling to Gauss-Bonnet gravity[END_REF][START_REF] Silva | Stability of scalarized black hole solutions in scalar-Gauss-Bonnet gravity[END_REF].

Chapter 2

Cosmological instability of the scalar mode

In this chapter, which is based on Ref. [START_REF] Anson | Cosmological instability of scalar-Gauss-Bonnet theories exhibiting scalarization[END_REF], we show that the tachyonic mass leading to the scalarization of black holes and stars is potentially dangerous on a cosmological background, and may result in a catastrophic instability of scalar modes during ination.

Cosmology and scalar uctuations

We start by introducing some aspects of cosmology that will be useful to us in the following. Everything which is described in this section can be found in more detail in any modern cosmology textbook, as for instance Ref. [START_REF] Mukhanov | Physical Foundations of Cosmology[END_REF]. The Universe is homogeneous and isotropic on very large scales, and in the context of GR it can be described by the at FLRW metric ds

2 = -dt 2 + a(t) 2 δ ij dx i dx j , (2.1)
where a is the scale factor and we dene H = ȧ/a. We saw in Eq. ( 18) that the FLRW spacetime also depends on the spatial curvature κ, but we set it to 0 in the following as this value is consistent with experiments. In this case, the Friedmann equations [START_REF] Hawking | The Development of Irregularities in a Single Bubble Inationary Universe[END_REF] and [START_REF] Starobinsky | Dynamics of Phase Transition in the New Inationary Universe Scenario and Generation of Perturbations[END_REF] become

ä a = - 1 6M 2 P i ρ i (1 + 3w i ) , (2.2) 
H 2 = 1 3M 2 P i ρ i , (2.3) 
where w i = P i /ρ i . The main species that constitute the universe are matter (w m = 0), radiation (w r = 1/3) and dark energy (w Λ = -1). Using the conservation equation [START_REF] Arbey | Dark matter and the early Universe: a review[END_REF] for each species, one can write the total energy density as

ρ = ρ 0 r a 4 + ρ 0 m a 3 + ρ 0 Λ , (2.4) 
where the ρ 0 i represent the densities for each species today, and we have set the present day scale factor a 0 = 1. From this expression, one sees that the energy densities for each species decays dierently as the Universe expands. The matter is simply diluted as a grows, which explains the factor a 3 . For radiation, there is an additional factor of a because photons are also redshifted due to the expansion. ä > 0.

As we saw in the previous chapter, the tachyonic instability for the scalar eld which leads to the scalarization of compact objects is due to a coupling to curvature. In the DEF model, the scalar is coupled to the Ricci tensor. Since we work in the Einstein frame, given by the action (1.1), the scalar eld equation contains the trace T of the energy-momentum tensor instead of the Ricci scalar. If we neglect the backreaction of the scalar on the metric, then by taking the trace of the Einstein equations we obtain M 2 P R = -T . Hence one can view the eective tachyonic mass as coming either from R or T , though notice that their signs are dierent. For the at FLRW metric (2.1), the Ricci scalar is given by

R = 6 ä a + H 2 .
Using Eqs. (2.2) and (2.3), this can be written in terms of the densities of the dierent perfect uids as

R = 1 M 2 P i ρ i (1 -3w i ) .
Hence, we have R ≥ 0 for uids verifying w i ≤ 1/3. This is true for the three dierent species that we consider. In the case of radiation, we have an equation of state parameter w r = 1/3, and hence R = 0. 

> 0 > 0 Ĝ < 0 < 0 > 0 Table 2
.1: Time-dependence of the scale factor, along with the signs of the Ricci scalar and Gauss-Bonnet invariant for dierent epochs of an FLRW Universe.

instead. Another curvature invariant that we will need is the Gauss-Bonnet scalar, which has the following expression in terms of the scale factor: Ĝ = 24H 2 ä a .

(2.5)

This shows that the sign of Ĝ is directly related to ä, and changes depending on whether the expansion of the Universe is accelerating or decelerating. In Table 2.1, we summarize the time dependence of the scale factor and the signs of R and Ĝ in the dierent epochs, i.e. radiation, matter and dark energy (this case also applies to the early stages of ination, as we will explain).

As we mentioned already, the standard Big Bang model in GR suers from several issues. The fact that the Universe is (very close to) at today implies that the curvature density in the early Universe had to be ne-tuned to 0 with a high precision, as we discussed after Eq. ( 25). This is known as the atness problem. Another issue that we mentioned is the horizon problem. The temperature of the CMB has been measured to a high accuracy and shows that up to small uctuations it has a uniform value Θ CMB ≃ 2.7 K. The puzzling issue is that regions of the sky which weren't in causal contact at the time of recombination (when the CMB photons were emitted) have the same temperature. According to the modern understanding of cosmology, these issues are solved by introducing an inationary stage in the very early Universe, during which the expansion is accelerated. A simple way to achieve this is to introduce a scalar eld χ, called the inaton, which evolves inside a potential U . The corresponding action reads

S χ = d 4 x √ -g - 1 2 g µν ∂ µ χ∂ ν χ -U (χ) .
From the Friedmann equations with χ = χ(t), one can identify the energy density ρ χ and pressure P χ of the inaton, and deduce the following equation of state parameter:

w χ = P χ ρ χ = χ2 -2U χ2 + 2U . (2.6)
If the potential energy dominates the kinetic energy of the inaton, i.e. U ≫ χ2 , then we obtain w χ ≃ -1. This can be achieved in a Universe dominated by the inaton which is slowly slowly rolling at the top of its potential. More precisely, one can introduce the slow-roll parameters ϵ sr = -Ḣ/H 2 and η sr = -φ/(H φ). If these parameters are small, i.e. {ϵ sr , η sr } ≪ 1, we obtain a quasi-de Sitter expansion where the scale factor takes the form a(t) ≃ e Ht . Ination ends when the slow-roll parameters become of O(1). In order to solve the atness and horizon problems, one must have

N = ln a end a start ≥ 60 , (2.7) 
where N is the number of e-folds that the scale factor has grown by from its starting value a start to its value a end at the end of ination. Once the slow-roll approximation breaks down, the scalar eld oscillates at the bottom of its potential and decays into the Standard Model particles in a period called (p)reheating. This acts as an apparent nonsingular Big Bang, which marks the transition between ination and the radiation dominated Universe. In the following, we will only be interested in the quasi-de Sitter phase of ination, and we will assume that the scale factor reads a = e Ht with a constant Hubble rate H.

Let us now discuss the dynamics of a scalar eld in a de Sitter Universe, since we will be interested in the scalar uctuations during ination. We consider for simplicity a free massless scalar ψ with the Lagrangian

L = - 1 2 g µν ∂ µ ψ∂ ν ψ . (2.8) 
The corresponding eld equation for a time dependent scalar ψ(t) reads ψ + 3H ψ -∆ψ = 0 .

(2.9)

We now introduce the variable u = aψ (which has a canonical kinetic term on the de Sitter background), and use the conformal time η given in terms of the cosmic time t as dt = a dη .

(2.10)

The eld u can be quantized in the standard way by promoting the Fourier coecients to operators:

û(η, x) = d 3 k (2π) 3/2 u k (η)e ik•x A k + u * k (η)e -ik•x A † k , (2.11) 
where * denotes complex conjugation, and {A k , A † k } are the annihilation and creation operators, respectively. They verify the following commutation relations:

[A k , A k ′ ] = [A † k , A † k ′ ] = 0 , [A k , A † k ′ ] = δ(k -k ′ ) .
(2.12)

Using Eq. (2.9), one can show that the mode functions u k (η) satisfy the equation

u ′′ k + k 2 - a ′′ a u k = 0 , (2.13) 
where a prime denotes dierentiation with respect to conformal time. In Minkowski space, when a ′′ = 0, the modes satisfy u k ∼ e -ikη . It is clear from the previous equation that when a ′′ ̸ = 0, the scalar acquires an eective mass due to the expansion. For a de Sitter spacetime where H is constant, we have η = -1/(aH). This implies that a ′′ /a = 2/η 2 , and in this case the general solution to Eq. (2.13) reads

u k (η) = λ(k)e ikη 1 + i kη + µ(k)e -ikη 1 - i kη , (2.14) 
where λ and µ are integration constants. The inspection of Eq. (2.13) shows that in the limit k|η| → ∞, the mode functions satisfy the same equation as in Minkowski space. This is to be expected, as these very short-wavelength modes don't see the spacetime curvature. Hence, it is natural to assume that in this limit we recover u k ∼ e -ikη as in Minkowski space. This allows us to set λ = 0 in Eq. (2.14). Furthermore, canonical quantization imposes the following constraint on the u k (in natural units ℏ = 1):

u k u ′ k * -u * k u ′ k = i . (2.15) 
This determines the function µ, and we obtain

u k (η) ∼ k|η|→∞ e -ikη √ 2k .
(2.16)

With this choice, the vacuum state |0 BD ⟩ annihilated by A k is called the Bunch-Davies vacuum [START_REF] Bunch | Quantum Field Theory in de Sitter Space: Renormalization by Point Splitting[END_REF], i.e. we have A k |0 BD ⟩ = 0. In the following, we will assume that the scalar uctuations are initially in the Bunch-Davies vacuum (i.e. when η → -∞), meaning that the corresponding modes u k satisfy Eq. (2.16). In the case of a massless scalar in de Sitter space, the solution for u k is then simply

u k = e -ikη √ 2k 1 - i kη .
When k|η| ≪ 1, using also that η = -1/(aH), we obtain that ψ k = u k /a is a constant. Hence, the modes stop evolving (or freeze) as they exit the horizon, i.e. when k ≃ aH.

Instability of the perturbations on an FLRW background

Let us now go back to the scalar-Gauss-Bonnet theories exhibiting spontaneous scalarization (we will discuss the DEF model in the next chapter). We start with the perturbed equation of motion for the scalar eld in the scalar Gauss-Bonnet theories, which is given by Eq.(1.16):

□ + F ′′ (ϕ 0 ) Ĝ δϕ = 0 , (2.17)
where δϕ is the perturbation of the scalar eld. As we already mentioned, there are no terms involving δg µν in the above equation since the scalar eld is constant on the background. This equation denes an eective mass m e for the scalar perturbation, where m 2 e = -F ′′ (ϕ 0 ) Ĝ. Assuming the coupling given in Eq. (1.22), the eective mass can be written

m 2 e = - 1 4 λ 2 Ĝ .
(2.18)

As we have discussed in the previous chapter, the case of real λ corresponds to theories with scalarized stars and black holes. We now consider a at Friedmann-Lemaître-Robertson-Walker (FLRW) background given by the metric (2.1). In this case, the perturbation equation (1.16) takes the form

δ φ + 3Hδ φ - 1 a 2 ∆δϕ + m 2 e δϕ = 0 , (2.19) 
where H ≡ ȧ/a is the Hubble parameter, and we have assumed a coupling function of the form (1.22). We now expand the scalar perturbation into Fourier modes,

δϕ(t, x) = dωd 3 k (2π) 2 ϕ(ω, k)e -i(wt-k•x) ,
to obtain the following dispersion relation:

ω 2 = k 2 a 2 + m 2 e .
(2.20)

In the above equation, we have neglected the slow change of ω on the time scales shorter than H -1 . Whether the mass of the scalar perturbations is real or tachyonic depends on the sign of Ĝ for the at FLRW metric (2.1), which is given by Eq. (2.5). This expression shows that Ĝ has the same sign as ä. Thus for a decelerating Universe, ä < 0, i.e. during radiation and matter dominated epochs, the mass of the scalar is real, m 2 e > 0, and no instability arises. On the other hand, for an accelerated expansion, ä > 0, the mass (2.18) becomes tachyonic and the perturbations are unstable. In particular, for a de Sitter solution with constant Hubble rate H dS , one nds m 2 e = -6λ 2 H 4 dS .

(2.21)

The instability is extremely slow for the present-day acceleration of the Universe.

Indeed, the ratio of the instability time t inst to the age of the Universe t 0 is estimated as

t inst t 0 ∼ H 0 m e ∼ 1 λH 0 ∼ 10 23 , (2.22) 
so that the instability is not noticeable. However, the same estimation for ination with the scale H inf ∼ 10 13 GeV and N ∼ 10 2 e-folds yields:

t inst t inf ∼ 1 N λH inf ∼ 10 -34 .
(2.23)

Thus the GR solution with ϕ = 0 has a very short instability time. This suggests a catastrophic instability of the theory during the ination era, unless the initial value of the eld ϕ is tuned to be extremely small. Indeed, since the scalar eld grows as ϕ ∼ ϕ 1 e |m e |t starting from some initial value ϕ 1 , one may choose ϕ 1 arbitrarily close to 0, so that the instability does not develop during the time of ination. In particular, if ϕ 1 = ϕ 0 = 0, the eld ϕ will stay on the top of the potential for an innitely long time. However, even for the solution with ϕ 0 = 0, quantum uctuations of the scalar eld rapidly grow and ultimately destroy the inationary stage. This happens during a time which is much smaller than the duration of ination, as we explicitly show in the next section.

Catastrophic instability of the scalar eld during ination

In this section we show that the tachyonic instability experienced by the scalar eld ϕ is inconsistent with the existence of ination in the early Universe. We approximate ination by an exact de Sitter expansion with constant H, which is a plausible assumption away from its nal stages. In this case the Friedmann equation, which is given by the (tt) component of Eq. (1.13), reads

3H 2 = Λ + φ2 2 -6λ 2 H 3 ϕ φ .
One sees that in the presence of the eld ϕ coupled to the GaussBonnet invariant, the Friedmann equation is modied by the term

ρ GB = -6λ 2 H 3 ϕ φ . (2.24)
We require that the previous term be negligible compared to the inaton energy density dominating the evolution of the Universe, i.e.

λ 2 H|ϕ φ| ≪ 1 .

(2.25)

Our goal is to show that this condition gets violated quickly, namely as soon as ination starts. Even if the eld ϕ is set at the top of the eective potential initially, ϕ = 0, its perturbations will cause a rapid instability. Perturbations of the eld ϕ obey Eq. (2. [START_REF] Albrecht | Cosmology for Grand Unied Theories with Radiatively Induced Symmetry Breaking[END_REF] with an eective mass given by Eq. (2.21), where H dS = H is the Hubble factor during ination.

In the following, we will primarily use the conformal time η, which is dened in terms of the cosmic time in Eq. (2.10). It is negative during ination, and the scale factor veries aH = 1/|η| during the quasi-de Sitter phase. We now introduce the canonical eld δ φ = M P δϕ , and expand the perturbations into Fourier modes. We search for a solution to Eq. (2.19) of the form 

δ φ(η, x) = d 3 k (2π) 3/2 ϕ k (η)e ik•x A k + ϕ * k (η)e -ik•x A † k , (2.26 
η 2 d 2 ϕ k dη 2 -2η dϕ k dη + k 2 η 2 + m 2 e H 2 ϕ k = 0 . (2.27)
This equation can easily brought to the Bessel form by performing the change of variable ϕ k → (-η) 3/2 ϕ k . The integration constants are chosen so that in the limit k|η| → ∞, the mode u k = aϕ k is in the Bunch-Davies vacuum. Under these conditions, we obtain the following expression for the scalar perturbations:

δ φ(η, x) = d 3 k (2π) 3/2 √ π 2 H|η| 3/2 H (2) ν (-kη)e -ik•x A † k + H (1) ν (-kη)e ik•x A k , (2.28)
where H

(i) ν (-kη) are the Hankel functions of order

ν = 9 4 - m 2 e H 2 .
Note that the evolution of inaton perturbations is described by ν ≈ 3/2. In that case, perturbations get frozen as they exit the horizon. On the other hand, in the situation with ν ≫ 3/2the case of our interestperturbations grow fast beyond the horizon, as we will see shortly. This behavior is due to the huge tachyonic mass acquired by the scalar eld. Taking the derivative of Eq. (2.28), we get

∂ ∂η δ φ(η, x) = d 3 k (2π) 3/2 H √ π 2 - 3 2 |η| 1/2 H (2) ν (-kη) +|η| 3/2 ∂ ∂η H (2) ν (-kη) e -ik•x A † k + h.c. ,
where h.c. denotes the Hermitian conjugate, and we have used the following identity for the derivative of the Hankel functions:

∂ ∂z H (1,2) ν (z) = 1 2 H (1,2) ν-1 (z) -H (1,2)
ν+1 (z) .

We are working in the large ν regime, in which case the Hankel functions take the form:

H (1,2) ν (-kη) ∼ ν→+∞ ∓i 2 -kη ν 2 πν ν e ν , (2.29) 
(minus and plus signs correspond to the Hankel functions of the rst and second kind, respectively). We see that it has a very sharp dependence on the order ν. Hence, one can keep only Hankel functions with the largest ν when calculating the relevant correlation function:

⟨δ φ(η, x) ∂ ∂η δ φ(η, x)⟩ ≃ dkk 3 16π H 2 |η| 3 H (1) ν (-kη)H (2) ν+1 (-kη) , (2.30) 
where we made use of the commutation relation (2.12) and integrated over the directions of the momenta k. As the lower limit of the above integral we choose some k min , which is on-horizon at some moment η 1 during ination, i.e. k min |η 1 | = 1, but otherwise is arbitrary. We choose |η 1 | > |η|, so that η 1 corresponds to the past with respect to η. As for the upper limit we take k max = 1/|η|. The result, in terms of the dimensionless perturbations δϕ, is

⟨δϕ(η, x) ∂ ∂η δϕ(η, x)⟩ = H 2 8π 2 M 2 P |η|ν 2ν e 2ν η 1 η 2ν-3 -1 .
Finally, we use that ⟨δϕ δ φ⟩ = H|η|⟨δϕ ∂ ∂η δϕ⟩ , and implement condition (2.25) to obtain the ratio η 1 /η at which ination gets violated:

η 1 η 2ν-3 -1 ≃ 8π 2 νM 2 P λ 2 H 4 • e 2ν 2ν , (2.31) 
or equivalently

η 1 η ≃ 1 + O M 2 P λ 2 H 4 • e 2ν 2ν .
We see that the modes with the momenta k 1 ≃ 1/|η 1 | destabilize ination immediately after exiting the horizon. Given an essentially arbitrary choice of η 1 , we conclude that ination cannot take place in this theory.

One remark is in order here. Recall that our calculations imply the existence of modes which start from the BunchDavies vacuum and exit the horizon during ination. This seemingly modest assumption requires some justication in the situation with exponentially large ν. The asymptotic expansion of the Hankel functions for large positive arguments is given by

H (i) ν (z) = 2 πz 1/2 e ±i(z-πν/2-π/4) 1 + O ν 2 z .
The BunchDavies vacuum is dened in the limit z = -kη → +∞, when the second term in the brackets is irrelevant. In practice, however, ination has a nite duration.

Thus, the quantity z is also large, but nite. Hence, the minimum value of momenta which are in the BunchDavies vacuum at the beginning of ination is given by 

k min |η i | ≃ ν 2 , ( 2 
η i η ≪ ν ,
which should hold until the end of ination η = η f . Unless the duration of ination is close to 60 e-folds, the ratio |η i /η f | is very large, even compared to the huge value ν ≃ 10 32 used for scalarization of the stars. Hence, the modes, which are in the BunchDavies vacuum initially and exit the horizon during ination, alone destabilize ination already 75 e-folds after it starts.

Let us now comment on a possible stabilization of the scalar eld due to the presence of the quartic corrections, since one should include those anyway to make the scalarized branch of compact objects physically viable [START_REF] Minamitsuji | Scalarized black holes in the presence of the coupling to Gauss-Bonnet gravity[END_REF][START_REF] Silva | Stability of scalarized black hole solutions in scalar-Gauss-Bonnet gravity[END_REF]. It is not dicult to see, however, that the quartic terms cannot stabilize the eld ϕ and prevent the instability, because the destabilization occurs at tiny values of ϕ, for which the approximation F (ϕ) ∝ ϕ 2 still holds. Indeed, from Eq. (2.28) we obtain

⟨δϕ 2 (η, x)⟩ = k 2 dk 8πM 2 P H 2 |η| 3 |H (1) ν (-kη)| 2 .
Using Eq. (2.29) and integrating over the modes in the range 1

|η 1 | , 1 |η| , we get ⟨δϕ 2 (η, x)⟩ = H 2 8π 2 M 2 P ν 2 • 2ν e 2ν • η 1 η 2ν-3 - 1 . 
(2.33)

Finally, substituting Eq. (2.31) into Eq. (2.33), we obtain the typical value of the scalar when ination is violated:

⟨δϕ 2 (η, x)⟩ ≃ (λH) -3 ,
where we used the relation ν ≃ λH. Given that λH ≃ 10 32 , we conclude that the instability develops at the eld values ⟨δϕ 2 (η, x)⟩ ∼ 10 -48 ≪ 1 in the theory exhibiting scalarization, i.e. well before the quartic term starts to act.

It would be interesting to nd ways to stabilize the theories exhibiting scalarization during ination. For instance, one may try to solve the problem by adding a coupling to the inaton χ, e.g., g 2 χ 2 ϕ 2 , where g is the coupling constant. In this case the inaton expectation value serves as a stabilizing eective mass, which vanishes as ination ends. The problem here is that the coupling constant g should be huge in this approach. Indeed, to balance the large value of m 2 e given by Eq. ( 2.21), one needs to assume that

g 2 ≳ 6λ 2 H 4 χ 2 ≃ 10 53 ,
for χ ≃ M P , λH ≃ 10 32 , and H ≃ 10 13 GeV. Thus, the theory is deeply in the strong coupling regime, where no trustworthy predictions can be made. On the other hand, as we will explain in the next chapter, this coupling does x a similar problem in the original DEF model of scalarization without putting the theory in the strong coupling regime.

Another idea would be to add an extra coupling of the scalar to higher powers of curvature, so that it becomes dominant during ination. The extra term should be of order higher than 2 in curvature, otherwise one risks to spoil scalarization triggered by the coupling to the GaussBonnet invariant, which is of the second order in curvature.

For example, the coupling ∼ ϕ 2 R 4 with the appropriate sign stabilizes the scalar eld in the high-curvature regime. In this case, similarly to f (R) gravity, an extra scalar degree of freedom is eectively introduced, which is coupled to ϕ. However, the coupling between ϕ and the scalar from the gravitational sector must be huge in order to balance the term involving the GaussBonnet invariant. As we have discussed above, the introduction of a strong coupling is not a viable solution.

Yet another possible way to x the catastrophic instability during ination is to introduce quartic terms of the scalar, ∼ ϕ 4 Ĝ. It has been shown that such terms help to stabilize the scalarized solutions of compact objects, see, e.g., Refs. [START_REF] Minamitsuji | Scalarized black holes in the presence of the coupling to Gauss-Bonnet gravity[END_REF][START_REF] Silva | Stability of scalarized black hole solutions in scalar-Gauss-Bonnet gravity[END_REF]. However, as we have seen previously, the destabilization of ination already happens for very small ϕ, where the quartic term does not play any role. Adding a large coupling g, i.e., writing gϕ 4 Ĝ does not improve the situation for the following reason. We presume that the solutions for the scalarized compact objects will be indistinguishable from GR ones, since the scalar eld will have values extremely close to zero due to the stabilizing quartic term. A very similar idea has been suggested recently in [START_REF] Macedo | Self-interactions and Spontaneous Black Hole Scalarization[END_REF],

where it has been argued that a quartic term ∼ gϕ 4 , added to the action to stabilize the scalarized solution of compact objects, may also solve the problem of instability during ination. In [START_REF] Macedo | Self-interactions and Spontaneous Black Hole Scalarization[END_REF] it has been suggested that the scalar eld is in the minimum of the eective potential during ination. It is easy to see, however, that this mechanism cannot work either. First, the minimum should be set at a value of order of 10 64 M P (in dimensionful units), which is highly unnatural. Moreover, as ination ends, the structure of the eective potential changes because the scalar-Gauss-Bonnet coupling changes sign, and the scalar tends to the new minimum located at zero. Carrying a tremendous initial potential energy density estimated as ∼ 10 180 M 4 P , the rolling scalar eld again causes a large modication of the standard cosmological picture.

Finally, we comment on Ref. [START_REF] Antoniou | Compact object scalarization with general relativity as a cosmic attractor[END_REF], where the authors identify a theory which allows the scalarization of compact objects while having GR as a cosmological attractor.

The authors do not consider the inationary stage, where the previously discussed instability would be problematic. They instead believe that one should not trust the theory at such high curvatures, but instead nd a suitable UV completion where ination is not broken.

Chapter 3

Quenching the cosmological instability in the DEF model

In this chapter, based on Ref. [START_REF] Anson | Reconciling spontaneous scalarization with cosmology[END_REF],

1 we examine the cosmological instability in the case of the DEF model. We propose a mechanism to quench the instability, which relies on a coupling of the scalar to the inaton eld. This new coupling term provides another contribution to the eective mass of the scalar ϕ, and allows to stabilize its perturbations during the inationary stage.

Setting the problem: cosmological instability of the scalar

In the present section, we estimate the eect of the tachyonic instability in the DEF scenario. The presence of the instability is evident from Eq. (1.7), and it has the same origin as the instability responsible for the scalarization of neutron stars. If

V (ϕ) = 0 as in the original DEF scenario, the second term on the left-hand side of Eq. (1.7) mimics the mass term. This mass term is negative for β < 0 and thus leads to the tachyonic instability. Let us estimate the rate of this instability during the matter-dominated stage. Neglecting the backreaction of the scalar ϕ on the metric, one obtains the following expression from Eq. (1.7):

φ + 3H φ + 3 2 βH 2 ϕ = 0 .
Recall that we work in the Einstein frame. Hence, the scale factor a(t) and the Hubble expansion rate H(t) are dened in this frame. However, in what follows we will not make a distinction between the energy-momentum tensor in the two frames, since

T µν ≃ Tµν as long as ϕ ≪ 1. Later on, we will see that ϕ is indeed extremely close to zero in our scenario, so this assumption is justied. The above equation has the growing solution given by

ϕ ≃ ϕ eq t t eq √ 1- 8β 3 -1 2
, where H = 2/3t and the subscript eq denotes the matter-radiation equality. From this relation, one can convert the upper bound on ϕ 0 in Eq. (1.10) into a limit on ϕ eq . We substitute t eq ≈ 5 • 10 4 years, t 0 ≈ 13.8 • 10 9 years, β = -4.5, and obtain ϕ eq ≲ 10 -10 .

(3.1) Note that we assumed that the matter-dominated stage continues up to the present day, but taking into account the current accelerated expansion of the Universe does not alter this estimate considerably.

The tachyonic instability is also present during the radiation-dominated stage.

Even though the equation of state for radiation yields T = 0, this is only an approximation. For temperatures higher than 100 GeV, its value is given by the gauge trace anomaly [9294] T ≃ -ϵρ , where ϵ ≃ 10 -3 . At lower temperatures Θ, the parameter ϵ is a function of Θ [START_REF] Erickcek | Chameleons in the Early Universe: Kicks, Rebounds, and Particle Production[END_REF], but does not exceed the value 10 -2 , see Ref. [START_REF] Belokon | Light scalar dark matter coupled to a trace of energy-momentum tensor[END_REF] for details. Hence, in order to obtain an approximate growth of the scalar in the case of maximum destabilization, we will set ϵ ≃ 10 -2 in the following. The energy density ρ r of radiation evolves as ρ r (t) = ρ r,eq a 4 eq a 4 (t) ,

where ρ r,eq is the radiation density at equality. We estimate it as as ρ r,eq ≃ 3M 2 P H 2 (t eq ) ,

where H(t eq ) ≃ 1/2t eq is the Hubble rate at equality obtained by extrapolating the expression H(t) = 1/2t during radiation domination. Putting everything together and substituting the scale factor a(t) ∝ √ t, we obtain the equation

φ + 3 2t φ + 3βϵ 8t 2 ϕ = 0 .
This equation admits the growing solution:

ϕ = ϕ r t t r √ 1-6βσ-1 4
, where t r is the cosmic time at the beginning of the radiation dominated epoch, and ϕ r = ϕ(t r ). We now set β = -4.5, σ = 10 -2 , t r ≃ 10 -32 s, and use Eq. (3.1) to estimate an upper bound on ϕ r . We nd that the scalar grows by a factor of about 25 during the radiation epoch, which leads approximately to:

ϕ r ≲ 10 -11 . (3.2)
This means that to achieve consistency with Solar System tests, the post-inationary value of ϕ should be tuned to zero with high accuracy. Note that the value ϕ r is also subject to Big Bang Nucleosynthesis (BBN) constraints. However, the latter are very weak [START_REF] De Pirey | Cosmological Evolution and Solar System Consistency of Massive Scalar-Tensor Gravity[END_REF], typically ϕ r ≲ 1. Hence, once we manage to satisfy the constraint (3.2), the BBN limit will automatically be respected.

So far we have assumed that the scalar ϕ is homogeneous, but in practice there are small inhomogeneities due to cosmological perturbations imposed on the scalar eld.

These inhomogeneities evolve dierently depending on their characteristic wavelength, namely there is an upper bound on the wavenumber of cosmological modes which experience the instability: k a(t eq ) ≲ H(t eq ) .

(3.3)
Indeed, spatial inhomogeneities of the eld ϕ characterized by the wavenumber k yield the term ∼ k 2 a 2 ϕ k in the evolution equation of the corresponding mode ϕ k :

φk + 3H φk + 3 2 βH 2 ϕ k + k 2 a 2 ϕ k + ... = 0 . (3.4) 
Here the ellipses stand for the terms sourced by the gravitational potential and matter energy density perturbations, which give a negligible contribution. For perturbations violating the upper bound (3.3), the additional term in Eq. (3.4) screens the one of O(H 2 ), which would otherwise give rise to the tachyonic instability. As a result, short wavelength modes decay as ϕ k ∝ 1/a, as it should be for the case of a massless scalar eld in the expanding Universe (see for instance Ref [START_REF] Mukhanov | Physical Foundations of Cosmology[END_REF]). Thus, we will focus on perturbations obeying Eq. (3.3) in what follows. Note that we consider only the modes which are unstable during matter domination, although strictly speaking there is also a mild instability for the modes that re-enter the horizon during the radiation dominated epoch, as we saw above. We will discuss this in the following.

We now show that if the DEF model is not modied, the constraint given by Eq. (3.2) is violated by the end of ination. Similarly to the previous chapter, in the case of a coupling to the Gauss-Bonnet invariant, the eld ϕ is also subject to the tachyonic instability during the inationary epoch. As a result, the eld ϕ acquires large values inconsistent not only with the Solar System constraints, but also with the existence of the inationary stage. This conclusion holds even if classically the eld ϕ is set exactly at ϕ = 0 initially. Inevitable vacuum uctuations of the scalar eld are quickly enhanced during ination leading to a large value of ϕ. We now quantify the eect of vacuum uctuations assuming an exact de Sitter expansion characterized by the Hubble rate H. We switch to the canonically normalized eld φ dened as

δ φ = M P √ 2δϕ .
In terms of conformal time, dened as (2.10), the perturbations δ φ obeying the Bunch Davies vacuum initial conditions read:

δ φ = d 3 k (2π) 3/2 √ π 2 H|η| 3/2 H (2) ν (k|η|)e -ikx A † k + H (1) ν (k|η|)e ikx A k ,
where the order of the Hankel functions is given by ν = 9 4 + 6|β| .

By setting β = -4.5, we obtain ν ≃ 5. The expectation value of δ φ can be calculated

from ⟨δ φ2 ⟩ = dkk 2 8π H 2 |η| 3 H (1) ν (k|η|) 2 .
We are interested in superhorizon modes, i.e. k|η| → 0, which add up to the classical background of the eld φ. In this limit, one has for the Hankel functions

H (1,2) ν (k|η|) = ∓ iΓ(ν) π 2 k|η| ν . The result reads ⟨δ φ2 ⟩ {k} = 2 2ν Γ 2 (ν)H 2 8(2ν -3)π 3 (k min |η|) 3-2ν -(k max |η|) 3-2ν .
Here {k} denotes the range of momenta (k min , k max ). Given that ν ≃ 5 and assuming k max ≫ k min , the second term in the square brackets is irrelevant. Conservatively, one can take k min ≃ H 0 (we set the scale factor a 0 = 1 today) corresponding to the largest mode which is interesting for cosmology. The nal expression in terms of the original eld ϕ is then given by

⟨δϕ 2 ⟩ {k} = 2 2ν Γ 2 (ν)H 2 16(2ν -3)π 3 M 2 P η * η 2ν-3
, where η * denotes the time when the cosmological mode with wavenumber k min exits the horizon. It is evident that ⟨δϕ 2 ⟩ {k} is very large for |η * | ≫ |η|, given the minimal duration of ination which should last for at least 50 -70 e-folds. Hence, we end up with an unacceptably large ϕ which violates existing Solar System constraints and also threatens the existence of the inationary stage. Indeed, according to Eq. (1.4) ϕ ≫ 1 corresponds to a huge φ ≫ 1 in the Jordan frame. This means that the eld φ quickly comes to dominate the evolution of the Universe, and ination terminates. We conclude that the DEF scenario should be modied at least in the very early Universe, and one modication of this type is discussed in the next section.

Before that, let us briey comment on some solutions to the problem of the tachyonic instability which exist in the literature. In Ref. [START_REF] De Pirey | Cosmological Evolution and Solar System Consistency of Massive Scalar-Tensor Gravity[END_REF], it was proposed to endow the scalar with a small mass m by introducing a potential V (ϕ) = m 2 ϕ 2 /2. As the Hubble rate drops down to H ≃ m, the eld ϕ starts to decay, oscillating about the minimum of its potential at ϕ = 0. From this point on, it contributes to the dark matter content of the Universe. Given post-inationary conditions for the eld ϕ assumed in Ref. [START_REF] De Pirey | Cosmological Evolution and Solar System Consistency of Massive Scalar-Tensor Gravity[END_REF], ϕ i ≃ 1 and φi ≃ 0, the mass m should be extremely tiny, i.e. m ≲ 10 -28 eV.

For masses violating this bound, the eld ϕ gives an unacceptably large contribution to the energy density of the Universe. Apart from tuning the mass m, the instability during ination remains an issue, as discussed above. As a result of this instability, one should expect the initial condition ϕ i ≫ 1 rather than ϕ i ≲ 1.

In passing, we would like to point out that the instability during ination and at later stages can be avoided by choosing the following form for the function A(ϕ) [START_REF] Anderson | Eect of cosmological evolution on Solar System constraints and on the scalarization of neutron stars in massless scalar-tensor theories[END_REF]:

ln A(ϕ) = βϕ 2 2 + γϕ 4 4 . (3.6)
Choosing the extra parameter γ > 0, one can stabilize the eld ϕ during ination, so that it evolves close to the eective minimum ϕ = -β/γ right until present.

Unfortunately, this scenario does not work, because with ϕ 0 ̸ = 0 and γ ̸ = 0, the scalarization of neutron stars does not occur.

Cosmological relaxation of the eld ϕ to zero

In this chapter, we follow another approach to the problem of consistency with Solar System tests. Namely, we will nd a way to relax the eld ϕ to tiny values during ination, well below the upper bound in Eq. (3.2), while at the same time retaining the original form of the DEF model at post-inationary times. The idea is to couple the eld ϕ to the inaton χ, by considering an interaction of the form ∼ ϕ 2 χ 2 . Such a coupling induces a large eective mass for the eld ϕ during ination, so that ϕ relaxes to an exponentially small value. The eective mass term vanishes upon the inaton decay, so that we end up with the standard DEF scenario after ination. While the tachyonic instability during the matter-dominated stage is still present, there is not enough time for the eld ϕ to grow to large values by cosmological mechanisms. In other words, the inequality (1.10) is always satised, in agreement with the Solar System tests.

We assume that ination is driven by the canonical scalar eld χ rolling down the slope of its (almost) at potential U (χ). In the Einstein frame its action is given by

S χ A 2 (ϕ)g µν , χ = d 4 x -g - 1 2 gµν ∂ µ χ∂ ν χ -U (χ) | gµν =A 2 (ϕ)gµν .
Note that unlike the eld ϕ, the inaton χ is assumed to have a canonical mass dimension. We modify the DEF model by assuming a nonzero interacting potential

V (ϕ, χ) = g 2 ϕ 2 χ 2 , (3.7) 
where g 2 is some dimensionless coupling. Thus the eld ϕ has the eective mass g 2 χ 2

due to the coupling to the inaton. We require that

g 2 χ 2 ≫ H 2 . (3.8)
Hence, the eld ϕ is eectively superheavy, meaning that its eective mass is larger than the inationary Hubble rate (but still below the Planckian scale). In this case, ϕ relaxes to zero within a few Hubble times. For the typical values χ ≃ M P and H ≃ 10 13 GeV, the constant g 2 can be as small as g 2 ≃ 10 -10 . Hence, the mechanism which cures the instabilities can operate in a very weakly coupled regime. In the Jordan frame, the potential (3.7) is transformed to

Π( φ, χ) = 2g 2 ϕ 2 ( φ) φ2 χ 2 , ϕ 2 ( φ) = - ln φ β .
Note that Eq. (1.4) implies φ > 1 for β < 0. Hence, the Jordan frame interacting potential Π( φ, χ) is positive. We see that modulo the logarithmic correction, the interacting potential has a quadratic form in the Jordan frame as well. Therefore it is not important in which frame the coupling to the inaton is introduced. We now list the set of equations relevant for future purposes. The metric eld equations are given by

R µν - 1 2 g µν R = T χ µν M 2 P + T ϕ µν ,
where

T ϕ µν = 2∂ µ ϕ∂ ν ϕ -g µν ∂ α ϕ∂ α ϕ -g µν V (ϕ, χ) ,
and

T χ µν = A 2 (ϕ)∂ µ χ∂ ν χ - 1 2 g µν A 2 (ϕ)∂ α χ∂ α χ -g µν A 4 (ϕ)U (χ) . (3.9) 
Note that the indices are raised and lowered with the Einstein metric g µν . The equations of motion for the eld ϕ is given by Eq. (1.7), where T is replaced by T χ , while the equation for the inaton reads

□χ -U χ - M 2 P A 4 (ϕ) V χ (ϕ, χ) = 0 .

Relaxing the background value of ϕ to zero

Let us show that the background value of the scalar relaxes to zero during ination.

The Friedmann equation is given by

3H 2 = φ2 + V (ϕ, χ) + A 2 (ϕ) χ2 2M 2 P + A 4 (ϕ)U (χ) M 2 P ,
and the background evolution of the scalar ϕ is governed by

φ + 3H φ + α(ϕ) 2M 2 P 4A 4 (ϕ)U (χ) -A 2 (ϕ) χ2 + g 2 χ 2 ϕ = 0 . (3.10)
As usual, we assume that the inaton potential dominates the energy density of the Universe, i.e. 3H 2 ≈ A 4 (ϕ)U (χ)/M 2 P . Consequently, we drop the second term in the square brackets of Eq. (3.10). The background equation for ϕ simplies to

φ + 3H φ + m 2 ϕ = 0 ,
where m 2 is the full eective mass of the eld ϕ dened by

m 2 = g 2 χ 2 + 6βH 2 .
Provided that the condition (3.8) is obeyed and |β| is not very large, the eld ϕ evolves as a superheavy eld, which relaxes to zero within a few Hubble times. In the exact de Sitter space-time approximation, the solution for the eld ϕ is given by

ϕ = C a 3/2 cos m 2 - 9H 2 4 t + δ ,
where C and δ are irrelevant constants. We conclude that starting from subplanckian values ϕ < 1, by the end of ination the eld ϕ is relaxed to

ϕ ≲ 10 -39 ,
where the upper bound corresponds to the minimal duration of inationabout 60 e-folds. Generically, the duration of ination is much larger, so one can safely set the background value of ϕ to zero.

The background evolution of the inaton is given by the equation:

χ + 3H χ + 2α(ϕ) χ φ + A 2 (ϕ)U χ + M 2 P A 2 (ϕ) V χ (ϕ, χ) = 0 .
As ϕ → 0, one has α(ϕ) → 0, A(ϕ) → 1, and V χ → 0. Therefore, the evolution of the inaton proceeds as in GR.

Relaxing the perturbations δϕ to zero

One may naively expect the eld ϕ to develop superhorizon perturbations δϕ ≃ H/M P for each mode. Taking into account that for standard ination scenarios

H M P ∼ 10 -5 ,
such perturbations would be a problem for the DEF model, cf. Eq. (3.2). Such a situation would occur for light elds during ination, but our case is dierent, since the eld ϕ is eectively superheavy. We will prove below that perturbations δϕ, which source the present day cosmological value of ϕ, are exponentially suppressed by the end of ination.

In the Newtonian gauge, linear metric perturbations are given by ds

2 = -(1 + 2Φ)dt 2 + a 2 (1 -2Ψ)δ ij dx i dx j .
In the absence of the anisotropic stress, which is the case here, we have Φ = Ψ. We are primarily interested in the linear perturbation δϕ. The relevant equation is given by

δ φ - 1 a 2 ∂ i ∂ i δϕ -2 φΦ -4 φ Φ -6H φΦ + 3Hδ φ - δT χ 2M 2 P α(ϕ) - T χ 2M 2 P ∂α(ϕ) ∂ϕ δϕ + 1 2 ∂ 2 V ∂ϕ 2 δϕ + 1 2 ∂ 2 V ∂ϕ∂χ δχ = 0 , (3.11) 
where

δT χ = -16A 4 (ϕ)α(ϕ)U (χ)δϕ -4A 4 (ϕ) dU dχ δχ + 2A 2 (ϕ)α(ϕ) χ2 δϕ -2A 2 (ϕ) χ2 Φ + 2A 2 (ϕ) χδ χ .
While this equation looks rather complicated, it is simplied upon substituting the background value ϕ = 0. We obtain in terms of the Fourier modes δϕ k :

δ φk + 3Hδ φk + k 2 a 2 δϕ k - T χ 2M 2 P ∂α(ϕ) ∂ϕ δϕ k + 1 2 ∂ 2 V ∂ϕ 2 δϕ k = 0 .
This is a homogeneous equation, which describes a damped oscillator with an almost constant large mass. The modes δϕ k decay as 1/a 3/2 in the superhorizon regime.

Hence, they have negligibly small amplitudes by the end of the inationary stage. We will make an exact estimate of the eld ϕ due to its perturbations shortly.

Before going into details let us make two comments. First, note that the vanishing background value of ϕ shields the perturbations δϕ from the metric and inaton uctuations δχ. Generally, the latter source adiabatic perturbations, which turn out to be zero in our case. This is also evident from the expression for adiabatic perturbations in the superhorizon regime [START_REF] Polarski | Isocurvature perturbations in multiple inationary models[END_REF]:

δϕ ad φ = δχ χ = 1 a • C 1 t 0 adt ′ -C 2 , χ = C 1 • 1 - H a t 0 adt ′ + C 2 H a .
Here C 1 and C 2 are some constants dened by the subhorizon evolution of the gravitational potential. Independently of their values, we have δϕ ad → 0, because φ → 0.

Secondly, we have only considered linear perturbations δϕ. However, using the same argument as above one can show that once ϕ → 0 and the linear perturbation δϕ → 0, the second-order perturbation δϕ (2) also obeys the homogeneous oscillator equation with the Hubble friction and a very large mass. Hence, it should also decay as δϕ (2) ∝ 1/a 3/2 in the superhorizon regime.

The above consideration shows that the perturbations δϕ are indeed very small at the end of ination. However, we still need to estimate the amplitude of perturbations in order to compare it with the constraint (3.2). We approximate ination by an exact de Sitter stage and switch to the canonical variable δ φ related to the original eld δϕ by Eq. (3.5). The solution for the eld δ φ obeying BunchDavies vacuum initial conditions is given by

δ φ = d 3 k (2π) 3/2 √ π 2 H|η| 3/2 e πs 2 H (2) is (k|η|)e -ikx A † k + e -πs 2 H (1) is (k|η|)e ikx A k , (3.12)
where the H

(1,2) is are Hankel functions of purely imaginary order [START_REF] Dunster | Bessel functions of purely imaginary order, with an application to second-order linear dierential equations having a large parameter[END_REF] and

s = m 2 H 2 - 9 4 . 
Note that the functions H

(1,2) is are not complex conjugate. Instead, the following relation is correct:

H (1) is (k|η|) * = e πs H (2) is (k|η|) ,
which explains the presence of unconventional factors e πs 2 in Eq. (3.12). For s ≫ 1, one obtains the following relation in the limit k|η| → 0 [START_REF] Dunster | Bessel functions of purely imaginary order, with an application to second-order linear dierential equations having a large parameter[END_REF]:

H (1,2) is (k|η|) = 2 πs e ±is ln[-1 2 kη]∓iγs± πs 2 ,
where ∓γ s are irrelevant phases. The choice of the upper or lower sign on the righthand side of the previous corresponds to the Hankel functions of the rst and the second kind, respectively. We are interested in the quantity ⟨δ φ2 ⟩ unstable , where the subscript unstable means that we focus on the modes which are subject to the tachyonic instability during the matter-dominated stage. These modes have the cuto k max dened by the condition (3.3). Strictly speaking, the modes that reenter the horizon during the radiation dominated epoch also experience an instability, but it is much milder than the one for super-horizon modes during matter domination.

By the end of ination, at the moment η f , the value of ⟨δ φ2 ⟩ unstable is given by

⟨δ φ2 ⟩ unstable (η f ) = H 2 12π 2 s η f η × 3 , where η × is dened by k max |η × | ≃ 1.
In terms of the original eld ϕ, one nally gets

⟨δϕ 2 ⟩ unstable (η f ) = H 2 24π 2 sM 2 P η f η × 3 .
Note that η × roughly corresponds to 50-70 e-folds before the end of ination, when cosmological modes exit the horizon. For the sake of concreteness, we assume 60 e-folds. Taking also H ≃ 10 -5 M P (high scale ination) and s = 10, we nd

⟨δϕ 2 ⟩ unstable (η f ) ≃ 10 -46 . (3.13)
The eld ϕ will be roughly frozen at this value during the radiation-dominated stage (modulo the enhancement by a factor of about 25 discussed in the previous section).

During the matter-dominated stage, and later, it experiences the tachyonic instability.

However, the resulting eld ϕ 0 is still well below the upper bound, i.e., ϕ 0 ≪ 10 -3 , in a comfortable agreement with the Solar System tests. Note that we have omitted some modes from the discussion, i.e. those that are unstable during radiation domination only and exit the horizon between η × and η f . One can estimate the contribution of these modes to the amplitude of the scalar uctuations at the end of ination by integrating Eq. (3.12) in the range of momenta {k max , k f }, where k f |η f | = 1. We obtain the rough estimate

⟨δϕ 2 ⟩ {kmax,k f } (η f ) ≃ 10 -6 . (3.14)
Since these modes experience the instability only during radiation domination, they will only grow by a factor of 10, and will not violate current bounds on the scalar eld. Hence, we did not include them in the previous discussion. Note also that upon establishing the bounds (3.1) and (3.2) for the scalar eld, we have overestimated the instability of the scalar. Indeed, each mode characterized by the wavenumber k is only unstable for k < aH, so the modes stop growing after re-entering the horizon, which was not taken into account. However, the scalar is able to satisfy even those overestimated bounds, which is why the calculation was not rened.

Recall that we have assumed a universal coupling of matter elds to the metric. Let us comment here on modications of the model where the coupling is non-universal.

For instance, one may consider a model with a direct coupling of the inaton to the Einstein metric. Contrary to the situation with the universal coupling, now the scalar eld ϕ does not receive an eective tachyonic potential, and thus does not undergo the instability during ination. Hence, one may naively expect that the model is viable even in the absence of the stabilizing potential V (ϕ, χ) introduced in Eq. (3.7). In this case, however, the scalar ϕ enjoys shift symmetry, and hence can take on any value. Modulo ne-tuning, this value is not small generically, leading to a large value of ϕ 0 today, and consequently to the conict with Solar System tests. Moreover, even if the background value of ϕ is tuned to zero, the perturbations δϕ are still too large and give rise to ϕ 0 ≫ 1. This problem is avoided upon turning on the potential V (φ, χ) as in Eq. (3.7). Yet another possibility is to couple the inaton to the Einstein metric with a conformal factor as in Eq. (1.2), but with positive β inf > 0 (while at the same time keeping β < 0 for the normal matter to ensure scalarization). In this case, according to Eq. (1.7), the eld ϕ acquires a positive mass even if V (φ, χ) = 0. Provided that β inf ≫ 1, the scalar ϕ is superheavy. Hence it relaxes to zero exactly in the same way as in the model with the stabilizing potential V (ϕ, χ). In fact, one can view this scenario as a variation of the model discussed in this chapter, modulo the replacement of the coupling ∼ ϕ 2 χ 2 by the coupling of the eld ϕ to the trace of the inaton energy-momentum tensor.

Conclusion to Part I

The spontaneous scalarization of compact objects is an interesting phenomenon which may arise in certain classes of scalar-tensor theories. This eects relies on the existence of a tachyonic eective mass for the scalar eld which destabilizes the GR solutions. In Chapter 1, we reviewed this mechanism both in the original DEF scenario for neutron stars, but also for classes of theories where the scalar eld is nonminimally coupled to the Gauss-Bonnet invariant. In this case scalarization can exist for black holes as well as stars, since the Gauss-Bonnet term is nonzero in vacuum.

In Chapter 2, we studied the stability of cosmological solutions in the latter theories. As we showed in Section 2.2, the stability of scalar perturbations on GR cosmological solutions depends on the sign of the acceleration ä, see Eqs. (2.18) and (2.5).

For a decelerating Universe, the mass in the equation for the scalar perturbation is real, and therefore no instability arises for the GR branch. However, the mass becomes tachyonic for an accelerated expansion, and one expects the GR cosmological solution to become unstable in that case. It turns out that this instability is very slow with respect to the current acceleration, with the time of instability being much larger than the age of the Universe, see Eq. (2.22). On the contrary, the scalar-Gauss-Bonnet coupling leads to a catastrophic instability during the inationary epoch, due to its huge eective tachyonic mass. The characteristic instability time, at which the amplitude of a classical solution increases by the factor e, is given in Eq. (2.23). This is a tiny number compared to the time of ination. One should take into account that classically the initial conditions of the scalar eld can be tuned such that the eld stays on top of the potential for an innite time, at least in principle. However, as we explicitly showed in Section 2.3, quantum uctuations of the scalar eld are large enough to trigger this instability, making any conventional inationary scenario impossible in the theories exhibiting scalarization which we studied. Throughout this analysis, we have assumed that the scalarization eld ϕ is not the inaton eld. However, the Gauss-Bonnet scalar is an ultraviolet correction which naturally modies gravity at early times. Indeed, ination models where the Gauss-Bonnet scalar is coupled to the inaton eld according to the action (1.11) have been studied in the literature (see for instance Refs. [103105]). However, in these works, the eective sign of the coupling function F in Eq. (1.11) is crucially required to be of the opposite sign to the one which allows for scalarization.

In Chapter 3, we proposed a way to extend the original DEF model of scalarization to cosmological scales, while retaining consistency with Solar System tests. In the cosmological context, the original model leads to a runaway solution for the relevant eld ϕ, making the scenario inconsistent with existing PPN constraints unless the initial value of ϕ is tuned to zero with high precision, as we discussed in Section 3.1.

We have found a modication of the original scenario in which this tuning is automatic.

More precisely, we showed in Section 3.2 that if the eld ϕ responsible for scalarization is coupled to the inaton, it relaxes to zero with a high accuracy during ination. Upon the inaton decay, the coupling eectively vanishes, meaning that in our modied scenario all the predictions related to neutron stars are the same as in the original DEF model. Note that the results of this part are largely insensitive to the structure of the conformal factor A(φ). While we have focused on the simple quadratic function ln A(φ) ∝ φ 2 , involving higher powers of φ would leave our analysis and conclusions intact. Moreover, the solution we proposed to quench the cosmological instability could be applied to other models of scalarization akin to the DEF model. Indeed, starting from the action (1.1), one can make the disformal transformation of the metric as

g µν → C(X)g µν + D(X)∂ µ φ∂ ν φ ,
where C(X) and D(X) are functions of the kinetic term X = (∂φ) 2 . The transformation results in a new scalar-tensor action belonging to the DHOST class [START_REF] Jordan | The present state of Dirac's cosmological hypothesis[END_REF]. In the context of scalarization, such extensions have been discussed in Refs. [START_REF] Andreou | Spontaneous scalarization in generalised scalar-tensor theory[END_REF][START_REF] Minamitsuji | Relativistic stars in scalar-tensor theories with disformal coupling[END_REF]. We believe that our solution to the cosmological instability presented in this paper may also work for such extensions. Another idea would be to consider the scalar-Gauss-Bonnet theories in which rapidly rotating black holes were shown to scalarize [7072].

Crucially, this can happen for a reversed sign of the parameter λ 2 in Eq.(2.18), because the Gauss-Bonnet scalar of a rotating black hole can change sign, unlike in the spherically symmetric case. Perhaps this sign reversal could lead to a relaxation of the scalar during the inationary phase, instead of the instability discussed in Chapter 2, and we believe that this point deserves further study.

Part II Vainshtein screening for slowly rotating stars

Introduction to part II One of the approaches to modify general relativity (GR) is to add extra elds mediating the gravitational force, and the simplest extensions are scalar-tensor theories with one additional scalar eld. However, since GR passes all local experimental tests in the Solar System [START_REF] Will | The Confrontation between General Relativity and Experiment[END_REF], it is necessary to have a mechanism that screens the eect of the scalar eld (fth force) close to the gravitational source. There have been several propositions to suppress the fth force around matter, like the chameleon [START_REF] Khoury | Chameleon cosmology[END_REF] or symmetron mechanisms [START_REF] Hinterbichler | Symmetron Fields: Screening Long-Range Forces Through Local Symmetry Restoration[END_REF][START_REF] Hinterbichler | Symmetron Cosmology[END_REF]. We will be interested in the Vainshtein mechanism, which was originally proposed in the context of massive gravity. The linear Fierz-Pauli theory describes a free spin-2 particle of mass m [110112]. For nonzero m, these theories were shown to have dierent predictions from linearized GR, even in the limit m → 0, which is related to the van-Dam-Veltman-Zakharov (vDVZ) discontinuity [113115]. The Newtonian potential for nonrelativistic bodies in these theories is larger by a factor 4/3, and hence theories which exhibit this eect are ruled out by Solar System observations. Indeed, if this extra factor were to be reabsorbed in the denition of Newton's constant, it would manifest itself in other measurable quantities. For example the bending of light by the Sun in the massive theory would be too small to pass the current experimental bounds [START_REF] Will | The Confrontation between General Relativity and Experiment[END_REF]. Shortly after this was pointed out, Vainshtein proposed that the linear theory should break down inside a certain radius r V from the gravitational source [START_REF] Vainshtein | To the problem of nonvanishing gravitation mass[END_REF], where r V is now called the Vainshtein radius. However, he did not show that the expansions in the two dierent regimes could be obtained by a unique underlying solution. In addition, such nonlinear theories were shown to generically present a ghost instability [START_REF] Boulware | Can gravitation have a nite range?[END_REF], i.e. a degree of freedom with an energy which is unbounded from below. It was understood later that the Vainshtein screening could work in a certain limit of these theories, called the decoupling limit (DL), which isolates the dominant derivative self-interactions of the massive graviton's scalar mode [118125]. While this limit simplies the problem, the Vainshtein mechanism was also shown to work in the full theory of nonlinear massive gravity [START_REF] Babichev | Recovering General Relativity from massive gravity[END_REF][START_REF] Babichev | The Recovery of General Relativity in massive gravity via the Vainshtein mechanism[END_REF]. In parallel, an analogous mechanism, dubbed k-mouage [START_REF] Babichev | k-Mouage gravity[END_REF], was developed in the context of scalar-tensor theories. It relies on the presence of a nonlinear scalar kinetic term, which explains the name. The covariant k-mouage action can be written [START_REF] Babichev | k-Mouage gravity[END_REF][START_REF] Babichev | An introduction to the Vainshtein mechanism[END_REF] 

S k = M 2 P 2 d 4 x R 1 + ϕ 2 + K NL [ϕ] + S m [g µν , ψ m ] , (II.1)
where the term K NL contains nonlinear self-interactions of the scalar eld. The idea is to expand this action around at space, i.e. g µν = η µν + h µν , and keep terms up to second order in h µν . Higher-order terms are kept in K NL however, as they are important for the screening to work. After the following redenition of the tensor h,

h µν = hµν -ϕ η µν , (II.2)
the k-mouage action reads

S k = M 2 P 4 d 4 x -hµν E µν αβ hαβ + 3ϕ□ϕ + 2m 2 K NL [ϕ] + 2 M 2 P hµν T µν -T ϕ ,
where the tensor E µν = E µν αβ h αβ is the linearization of the Einstein tensor around at space, and the indices are raised with the at metric η µν in the previous expression.

The eld equations which derive from this action read

E µν αβ hαβ = T µν M 2 P , 3□ϕ + E NL = T M 2 P , (II.3)
where E NL is obtained from varying the part of the action containing K NL . The main features of the Vainshtein mechanism can be understood from these equations, as explained in Ref. [START_REF] Babichev | An introduction to the Vainshtein mechanism[END_REF]. There are two dierent regimes, depending on which term dominates in the scalar eld equation:

If □ϕ ≫ E NL , then the scalar equation is linear and we have ϕ ∼ hµν . This means that the physical metric h µν , given by Eq. (II.2), receives leading-order corrections and GR is modied. We will see that the linear regime corresponds to a region far away from the gravitational source.

On the other hand, if a region exists where □ϕ ≪ E NL , then ϕ ≪ hµν and we recover GR, i.e. h µν ≃ hµν . This is called the nonlinear regime, and it generically happens inside a radius r V which is given by the theory at hand.

The Vainshtein mechanism can be most easily demonstrated for nonrelativistic spherically symmetric static congurations outside the source. Let us give a simple illustration in the case of the cubic Galileon theory [START_REF] Luty | Strong interactions and stability in the DGP model[END_REF]. We choose the following functions in the DHOST action [START_REF] Jordan | The present state of Dirac's cosmological hypothesis[END_REF]:

f = 1 + αϕ , K = ηX , G 3 = βX , A 1 = A 3 = 0 , (II.4)
where {α, β, η} are constants. Note that upon imposing the DHOST Ia conditions [START_REF] Horndeski | Second-order scalar-tensor eld equations in a four-dimensional space[END_REF], this leads to A 4 = A 5 = 0 also. We consider a static scalar eld ϕ = ϕ(r), and use the following ansatz for the metric tensor:

ds 2 = -e ν dt 2 + e λ dr 2 + r 2 dθ 2 + sin 2 θdφ 2 .
(II.5)

We will use this ansatz throughout this part, but we give here the relation between the functions {λ, ν} and the potentials {Φ, Ψ} in the Newtonian gauge which are often used in the literature. The metric in isotropic coordinates is written ds

2 = -(1 + 2Φ(r)) dt 2 + (1 -2Ψ(r)) dr 2 + r2 dθ 2 + sin 2 θdφ 2 , (II.6)
and in the weak eld limit, one can show that the following relations hold

r ≃ r (1 -Ψ) ≃ r , ν = 2Φ , λ = 2rΨ ′ .
In GR, the potentials in the Newtonian limit are given by

Φ GR = Ψ GR = - r S 2r , or λ GR = -ν GR = r S r .
(II.7)

In the weak eld limit [START_REF] Babichev | The Recovery of General Relativity in massive gravity via the Vainshtein mechanism[END_REF], i.e. {ν, rν ′ , λ, rλ ′ , ϕ, rϕ ′ } ≪ 1, the independent eld equations for the theory (II.4) read

d dr rλ -αr 2 ϕ ′ = r 2 ρ(r) , λ -rν ′ = 2αϕ ′ , 1 r 2 d dr rα (2λ -rν ′ ) -2ηr 2 ϕ ′ + 2βrϕ ′2 = 0 , (II.8)
where ρ(r) is the energy density of the source, and we have neglected its pressure because it is assumed to be nonrelativistic. These correspond to the (tt), (rr) and scalar eld equations, respectively. The third equation can be written in an integrated form because in the weak-eld approximation, the Ricci scalar reads

R weak = 1 r 2 d dr 2rλ -r 2 ν ′ .
(II.9)

Note that upon the redenitions λ → λ + αrϕ ′ and ν → ν -αϕ, the previous system decouples and we obtain equations of the form (II.3). This redenition is not necessary however, and we will keep the system as it is. We now integrate the rst equation and introduces the Schwarzschild radius r S = 2GM of the object. We set the integration constant in the scalar equation to 0 (as we will see in the following, this is to have a regular scalar current at r = 0), and upon combining these equations we obtain an algebraic equation for the fth force ϕ ′ :

4βrϕ ′2 + 3α 2 -2η r 2 ϕ ′ + αr S = 0 .
(II.10)

If β = 0, the equation is linear and we obtain the following solution for ϕ ′ in the linear regime:

ϕ ′ lin = αr S (2η -3α 2 )r 2 . (II.11)
Let us now determine the metric potentials in this region. In the linear regime, replacing the scalar prole in the eld equations leads to the following expressions:

λ = r S r 1 + α 2 2η -3α 2 , ν = - r S r 1 - α 2 2η -3α 2 .
(II.12) When α ̸ = 0, it is clear that GR is not recovered, and the fth force introduces leading order corrections to the metric functions. Importantly, the corrections for λ and ν are dierent, meaning that they cannot be absorbed by a redenition of Newton's constant. Hence, when β = 0, one does not recover GR unless α = 0, in which case the scalar is trivial, i.e. ϕ ′ = 0.

Let us now consider the general case β ̸ = 0. The fth force is given by solving the quadratic equation above:

ϕ ′ = µrr S r 3 V 1 ± 1 + r V r 3 , (II.13)
where we have dened

µ = 2α 3α 2 -2η , r 3 V = - 4βr S µ 2 α . (II.14)
We can identify the two regimes from the expression (II.13) for ϕ ′ :

If r ≫ r V , then we obtain ϕ ′ = ϕ ′ lin , where we have chosen the minus sign in Eq. (II.13) in order for the scalar eld to remain nite as r → ∞. As we discussed above, the metric potentials receive leading-order corrections in this case, and we obtain deviations from GR.

If r S ≪ r ≪ r V , which correspond to a region inside the Vainshtein radius but outside the nonrelativistic source, then we obtain

ϕ ′ = µr S r 2 r r V 3/2 . (II.15)
From this expression, it is clear that the fth force is suppressed compared to the Newtonian force ν ′ ∼ r S /r 2 . Substituting the expression for ϕ ′ in the eld equations, we obtain the following solutions for the metric potentials:

ν = - r S r 1 + O r r V n and λ = r S r 1 + O r r V n , (II.16)
where n = 3/2 in the present case, but generically depends on the theory considered.

We have presented a simple example belonging to the k-mouage family and with a static scalar eld. It is possible to consider more complicated setups, like for instance allowing a time dependence of the scalar eld [129131]:

ϕ = qt + ϕ(r) .
(II.17)

In this case, the previous analysis can be repeated, and we obtain the following coefcients which generalize those of Eq. (II.14):

µ = 2(α -q 2 β) (3α -q 2 β)(α + q 2 β) -2η , r 3 V = - 4βr S µ 2 (α -q 2 β)
.

(II.18)

The Vainshtein screening in the cubic Galileon theory with a time-dependent scalar was studied in [START_REF] Babichev | Time-Dependent Spherically Symmetric Covariant Galileons[END_REF], though the scalar was coupled to the matter elds instead of the Ricci tensor. The approaches are similar, and it was shown that one must instead chose the plus sign in Eq. (II.13), which leads to de Sitter asymptotics where ϕ ′ ∼ r.

Hence the time dependence of the scalar eld can also lead to a screening of the fth force. It is also worth noting that in some scalar-tensor theories the spin-0 and spin-2 degrees of freedom do not decouple entirely, and the eld equations do not reduce to a system which has the form of Eq. (II.3) (see Ref. [START_REF] Babichev | An introduction to the Vainshtein mechanism[END_REF] for explicit examples). In these cases, one solves for the metric potentials in terms of the scalar eld and uses the resulting expressions in the scalar equation. It is sometimes necessary to neglect part of the nonlinear terms in the metric equations, in anticipation of the Vainshtein screening, and one can check the validity of such assumptions once the solutions have been found.

The Vainshtein screening has been extensively studied in scalar tensor theories for spherically symmetric spacetimes, in particular in Horndeski [START_REF] Babichev | k-Mouage gravity[END_REF][START_REF] Babichev | Time-Dependent Spherically Symmetric Covariant Galileons[END_REF]132137],

beyond Horndeski [138143] and DHOST theories [START_REF] Langlois | Scalar-tensor theories and modied gravity in the wake of GW170817[END_REF]144147]. However, realistic astrophysical objects typically rotate, and one may naturally ask whether rotation aects the validity of the Vainshtein mechanism. Indeed, it has been found that the chameleon screening mechanism is shape dependent [START_REF] Burrage | The shape dependence of chameleon screening[END_REF][START_REF] Burrage | Ellipticity Weakens Chameleon Screening[END_REF], i.e. the fth force does depend on the deviation from spherical symmetry. In the case of the Vainshtein mechanism, the recovery of GR for nonspherical congurations in particular models has been previously considered in [START_REF] Chagoya | Galileons and strong gravity[END_REF][START_REF] Sakstein | Towards Strong Field Tests of Beyond Horndeski Gravity Theories[END_REF]150153]. The aim of this part is to make a systematic study of the Vainshtein screening in scalar-tensor theories for slowly rotating bodies. Following the Hartle-Thorne formalism developed in GR [START_REF] Hartle | Slowly rotating relativistic stars. 1. Equations of structure[END_REF], we will introduce a frame-dragging function ω to the line element, and include the scalar eld in the discussion. In Chapter 4, we derive the equation satised by the framedragging function for a slowly rotating star, and discuss its solutions in the weak-eld approximation. In Chapter 5, we study the Vainshtein screening for slowly rotating stars in DHOST Ia theories in the case of a time-dependent scalar eld, i.e. when q ̸ = 0. Finally, we analyze the case of a static scalar eld in Chapter 6, meaning that we set q = 0. We study a subclass of quadratic Horndeski theories, with an additional coupling of the scalar to the Ricci curvature which breaks shift-symmetry.

Chapter 4

Setup and weak-eld approximation

It is known that in spherical symmetry, theories belonging to the DHOST class exhibit the Vainshtein screening [START_REF] Dima | Vainshtein Screening in Scalar-Tensor Theories before and after GW170817: Constraints on Theories beyond Horndeski[END_REF], meaning that GR is recovered inside a radius r V called the Vainshtein radius, and deviations from GR may be observed at large radii. However, for some theories beyond Horndeski, the screening is broken inside matter [START_REF] Kobayashi | Breaking of Vainshtein screening in scalar-tensor theories beyond Horndeski[END_REF] when the scalar eld depends on time, and sometimes even outside the matter source [START_REF] Hirano | Screening mechanism in degenerate higher-order scalar-tensor theories evading gravitational wave constraints[END_REF][START_REF] Crisostomi | Vainshtein regime in Scalar-Tensor gravity: constraints on DHOST theories[END_REF]. Our aim is to extend these studies by deviating from spherical symmetry and examining how the Vainshtein screening is aected. Following the Hartle-Thorne formalism [START_REF] Hartle | Slowly rotating relativistic stars. 1. Equations of structure[END_REF], we will introduce an additional function ω to the metric, which accounts for the slow rotation of the source. In this chapter, we derive the dierential equation satised by the function ω, and discuss its solutions in the weak-eld approximation. The three chapters in this part are based on Ref. [START_REF] Anson | Vainshtein screening for slowly rotating stars[END_REF]. 1

Equations of motion for slow rotation

We will consider theories belonging to the quadratic DHOST Ia class, given by the following Lagrangian density:

L = f (ϕ, X)R + K(ϕ, X) -G 3 (ϕ, X)□ϕ + 5 i=1 L i , (4.1) 
the densities L i are given in Eq. ( 32) and we assume the Ia conditions [START_REF] Horndeski | Second-order scalar-tensor eld equations in a four-dimensional space[END_REF]. In addition, we assume a matter action with elds ψ m that are minimally coupled to the metric g µν , and an energy-momentum tensor dened by Eq. ( 27). We dene the quantities E µν and E ϕ which come from the variation of L:

E µν = 1 √ -g δ ( √ -gL) δg µν
, and

E ϕ = 1 √ -g δ ( √ -gL) δϕ . (4.2)
With these denitions, the eld equations for the metric and scalar eld read

M 2 P E µν = T µν , (4.3) 
E ϕ = 0 . We consider a slowly rotating source of radius R modeled by a perfect uid. We will follow the Hartle-Thorne formalism [START_REF] Hartle | Slowly rotating relativistic stars. 1. Equations of structure[END_REF] developed for general relativity, and assume a uniform rotation of the uid at angular velocity Ω. We take the same ansatz for the metric tensor as in GR:

ds 2 = -e ν(t,r) dt 2 + e λ(t,r) dr 2 + r 2 dθ 2 + r 2 sin 2 θ [dφ -ϵω(t, r)dt] 2 , (4.5) 
where the frame-dragging function ω is the angular velocity acquired by an observer falling freely from innity, due to the dragging of inertial frames. The bookkeeping parameter ϵ accounts for the slow rotation of the source, and we will keep terms only up to rst order in ϵ in the following. For the scalar eld we take the (generically) time-dependent ansatz given by Eq. (II.17). The metric functions can a priori depend on time if the constant q ̸ = 0, because the Lagrangian functions generically depend on ϕ. The solutions for the metric potentials depend on these functions, meaning that they also depend on time. We assume that the star is a perfect uid, which is described by the following energy-momentum tensor:

T µν = (ρ + P ) u µ u ν + P g µν , (4.6) 
where u µ is the 4-velocity of the uid, given at rst order in ϵ by u µ = e -ν/2 , 0, 0, ϵΩe -ν/2 , (

where the component of u along the vector ∂ φ accounts for the slow rotation. We will be interested in the dierential equation for the function ω, obtained from the (tφ) component of the metric equations:

M 2 P E t φ = T t φ . (4.8) 
At the same time, for the other nontrivial equations, (tt), (rr) and (tr) components as well as for the scalar eld equation, it is enough to keep only terms of order 0 in ϵ,

i.e. to consider these equations of motion without rotation,

M 2 P E (0) tt = T (0)
tt , (4.9)

M 2 P E (0) rr = T (0) rr , (4.10) 
E (0) tr = 0 , (4.11) E (0) ϕ = 0 , (4.12) 
where the superscript (0) implies that one should set ϵ = 0 in the equations of motion.

Note that not all of the equations (4.9)(4.12) are independent, because of the following relation due to the dieomorphism invariance of the action [START_REF] Babichev | Charged Galileon black holes[END_REF]:

∇ ν E µν = - 1 2 ∇ µ ϕ E ϕ . (4.13)
With the choice (4.6) for T µν , Eq. (4.8) can be written as

ω ′′ + K 1 ω ′ + K 2 M 2 P (ρ + P ) (ω -Ω) = 0 , (4.14) 
where the functions K 1 and K 2 depend on the specic theory considered and on the solution in the nonrotating limit,

K 1 = 4 r - λ ′ + ν ′ 2 + d dr ln (f -XA 1 ) , (4.15) 
K 2 = - 2e λ f -XA 1 , (4.16) 
and ′ denotes a derivative with respect to the radial coordinate. Thus the system of equations to solve is given by Eqs. (4.9)(4.12) and (4.14) with (4.15) and (4. [START_REF] Starobinsky | A New Type of Isotropic Cosmological Models Without Singularity[END_REF],

where all the functions depend on ϕ given by (II.17) and X evaluated in the spherically symmetric limit,

X = e -λ ϕ ′2 -e -ν q 2 .
(4.17)

Using the previous relation, Eq. (4.15) can be written in an expanded form, which will be useful in the following, as

K 1 = 4 r - λ ′ + ν ′ 2 + (f X -XA 1X -A 1 ) X ′ + ϕ ′ (f ϕ -XA 1ϕ ) f -XA 1 . (4.18)
where

X ′ = q 2 e -ν ν ′ -e -λ ϕ ′ (λ ′ ϕ ′ -2ϕ ′′ ) . (4.19) 
Eq. (4.14) with the coecients given by Eqs. (4.15) and (4.16) is the main equation we will focus on throughout this part.

Note that the GR case is easily obtained from the above equations. Indeed, we set 

L = R, corresponding to G 3 = K = A i = 0 and f = 1. Using
ω ′′ + 4 r - λ ′ + ν ′ 2 ω ′ - 2 M 2 P e λ (ρ + P ) (ω -Ω) = 0 , (4.20) 
which coincides with the GR equation for ω [START_REF] Hartle | Slowly rotating relativistic stars. 1. Equations of structure[END_REF]. In vacuum we impose ρ = P = 0, which implies λ ′ = -ν ′ in GR, so that Eq. (4.20) becomes

ω ′′ + 4 r ω ′ = 0 . (4.21)
It was shown that this vacuum GR equation is recovered in particular classes of DHOST theories [START_REF] Sakstein | Towards Strong Field Tests of Beyond Horndeski Gravity Theories[END_REF]151153]. We generalize these results in Appendix II.A, showing that it is true for any shift-symmetric quadratic Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theory [START_REF] Gleyzes | Healthy theories beyond Horndeski[END_REF] with G 3 = 0. The solution to this equation, assuming that

lim r→∞ ω = 0, is ω = 2JG r 3 , (4.22) 
where J is the total angular momentum of the star [START_REF] Hartle | Slowly rotating relativistic stars. 1. Equations of structure[END_REF][START_REF] Papapetrou | Einstein's theory of gravitation and at space[END_REF], which can be expressed in terms of the moment of inertia I of the star as J = ΩI. In the following, we will examine the solutions for ω in DHOST Ia theories and compare them to the GR expression Eq. (4.22).

Frame-dragging function in the weak-eld approximation

From now on we will employ the weak-eld approximation [START_REF] Babichev | The Recovery of General Relativity in massive gravity via the Vainshtein mechanism[END_REF], assuming that λ, ν, ϕ and their derivatives are small, which one can check once the solutions are found:

{r n d n λ dr n , r n d n ν dr n , r n d n ϕ dr n } ≪ 1 , (4.23) 
where n is a positive integer. Additionally, we assume that ω ≪ Ω , which is the appropriate approximation in the Newtonian regime [START_REF] Hartle | Slowly rotating relativistic stars. 1. Equations of structure[END_REF]. Physically, the above conditions correspond to nonrelativistic sources, for which we also assume P ≪ ρ. These assumptions considerably simplify Eq. (4.14), since it becomes a rst order equation for ω ′ :

ω ′′ + 4 r 1 + rδK 1 4 ω ′ = K 2 (r)Ω M 2 P ρ(r) , (4.24) 
where δK 1 ≡ K 1 -4 r marks the departure from the vacuum GR behavior (ρ = 0). The integration of Eq. (4.24) with the conditions ω ′ (0) = 0 and lim

r→∞ ω = 0 leads to ω(r) = Ω M 2 P r ∞ I 1 (v) v 4 v 0 K 2 (u)ρ(u) I 1 (u) u 4 du dv , (4.25) 
where we have dened the function I 1 (r) = e -δK 1 dr .

We see that the overall integration constant which appears in the expression for I 1 is not important, as it disappears in the nal result for ω. Note that Eq. (4.25) is valid even if δK 1 is not small. In order to compare a generic situation to GR, let us briey describe the latter case, corresponding to f = 1 and G 3 = K = A i = 0. The linearization of Eqs. (4.9) and (4.10) gives, respectively,

λ + rλ ′ = 1 M 2 P r 2 ρ , rν ′ -λ = 1 M 2 P r 2 P .
In the case of nonrelativistic matter, P ≪ ρ, we obtain from Eq. (4.20):

ω ′′ + 4 r 1 - GM ′ 4 ω ′ = - 4GM ′ Ω r 2 1 + 2GM r , (4.26) 
where we have introduced the mass function

M (r) = 4π r 0 ρr 2 dr . (4.27) 
This is the weak-eld equivalent of the relativistic GR equation found in Ref. [START_REF] Hartle | Slowly rotating relativistic stars. 1. Equations of structure[END_REF].

As one can see by comparing Eqs. (4.24) and (4.26), outside the source δK 1 measures the departure from GR, while inside the source it takes into account both GR and non-GR corrections due to the presence of matter.

Leading term

Let us now calculate the leading term in Eq. (4.25), assuming that δK 1 dr is small and K 2 is almost constant. We can then write

I 1 = 1 + εδI 1 , K 2 = κ 2 (1 + εδK 2 ) , (4.28)
where κ 2 is a constant, {δI 1 , δK 2 } ≪ 1, and ε is a bookkeeping parameter used to keep track of small terms.

Outside the source: In the exterior region, r > R, Eq. (4.25) simplies to

ω(r) = 2G J r 3 + O (ε) , (4.29) 
where we have dened an eective angular momentum

J = - 4πΩ 3 R 0 K 2 (u)ρ(u) I 1 (u) u 4 du . (4.30)
This coecient can a priori be dierent from the GR value. However, if the density prole of the star is unknown, I 1 and K 2 can be reabsorbed in the denition of ρ. Therefore, unless the density prole ρ(r) is known, any physical eect related to framedragging outside the star is the same as in GR at leading order. Thus, one can say that the Vainshtein screening can be extended outside the star to the case of slowly rotating bodies in the weak-eld approximation.

Inside the source: Inside the source, we have from Eq. (4.25)

ω -ω(0) = κ 2 Ω M 2 P r 0 1 v 4 v 0 ρ(u)u 4 du dv + O (ε) . (4.31)
The constant ω(0) is not free and it should be xed by continuity at the surface of the star. One can see that for κ 2 ̸ = -2, the solution for ω diers from its GR counterpart at leading order inside the star. 2 In this case the Vainshtein mechanism is broken for rotating solutions inside the star. On the other hand, the Vainshtein screening operates for theories in which κ 2 = -2 (for instance when A 1 = 0 and f = 1). As an illustration, let us consider a star with constant density ρ = ρ 0 for r < R. From Eq. (4.31) we have

ω -ω(0) = κ 2 ρ 0 Ωr 2 10M 2 P + O (ε) . (4.32) 
In order for J to be positive at leading order in Eq. (4.30), one must have κ 2 < 0. This implies that ω(r) is everywhere decreasing (as in GR) and that it is maximal at r = 0.

Subleading terms

In this subsection, we examine the subleading terms in the solution to Eq. (4.24), when the corrections to the coecients K 1 and K 2 are power laws. The coecient K 2 is only relevant inside the star where ρ ̸ = 0. On the other hand we will be interested in the corrections to K 1 for all r. As we will see in the following, one can in general identify three regions of radii, and in each of those the correction δK 1 has a particular power-law behavior. These regions are r < R, R ≤ r ≪ r V and r ≫ r V , where r V is the Vainshtein radius of the considered theory. Therefore, we can write approximately

rδK 1 4 = a 1 r r 1 s 1 H r≤R + a 2 r r 2 s 2 H R<r≤r V + a 3 r r 3 s 3 H r>r V , δK 2 = a 0 r r 0 s 0 ,
where H is the Heaviside step function, the a i are constants, and we assume that (r/r i ) s i ≪ 1. The scaling exponents s i depend on the theory at hand and should satisfy certain constraints in order for the integral (4.25) to be nite and for ω to have the correct boundary conditions. Therefore we set s 0 + 1 > 0, s 1 + 1 > 0, s 2 ̸ = 0 and s 3 < 0. We also assume s 2 ̸ = 3, since we did not nd an example of a theory with such a behavior, although it is not dicult to consider the case s 2 = 3 separately. It is worth noting that in the case of a time-dependent scalar eld, which we consider in Chapter 5, our analysis allows us to calculate the coecients K 1 and K 2 up to r ∼ 1/q. In this case, instead of imposing the boundary condition at r = +∞, we set the boundary condition at r = 1/q, i.e. ω(1/q) = 0. This does not aect the nal result, due to a very weak dependence of the integral (4.25) on the upper bound. In this case, we obtain the following corrections in the region r > R outside the star:

r 3 ω 2G J -1 = 12ε a 3 s 3 (s 3 -3) r r V 3 r V r 3 s 3 + a 2 s 2 (s 2 -3) r r 2 s 2 1 - r r V 3-s 2 H R<r≤r V + 12a 3 ε s 3 (s 3 -3) r r 3 s 3 H r>r V .
Assuming s 2 < 3, one can write the solution in the regions R < r ≪ r V and r ≫ r V that we will focus on in the following:

ω = 2G J r 3 1 + 12a 2 ε s 2 (s 2 -3) r r 2 s 2 H R<r≪r V + 12a 3 ε s 3 (s 3 -3) r r 3 s 3 H r≫r V . (4.33)
The above expression tells us how the corrections to ω outside the star can be read o from the coecient K 1 .

Inside the source: As we saw in Eq. (4.32), the leading term diers from GR inside the star when κ 2 ̸ = -2, meaning that the Vainshtein screening is broken. In theories for which κ 2 = -2, the leading term in the solution for ω coincides with its GR counterpart, and the corrections to the frame-dragging function come from the subleading terms. Assuming for simplicity that the star has a constant density ρ 0 , the frame-dragging function inside the star can be written as follows:

ω(r) -ω(0) = - ρ 0 Ωr 2 5M 2 P 1 + 10a 0 ε (s 0 + 5)(s 0 + 2) r r 0 s 0 - 40a 1 ε (s 1 + 5)(s 1 + 2) r r 1 s 1 , (4.34)
where ω(0) can be determined using Eq. (4.33) by continuity of ω at the surface of the star r = R. Once again, the subleading terms can be read o from the coecients K 1 and K 2 .

Chapter 5

Slow rotation with a time-dependent scalar eld

General equations

In this chapter, we study the slow rotation of nonrelativistic sources in DHOST Ia theories with q ̸ = 0, meaning that the scalar eld is time-dependent. In addition to the weak-eld assumption (4.23), we also assume that ϕ ′2 ≪ q 2 , (

i.e. that the spatial gradient of the scalar eld is much smaller than the time derivative of ϕ. This can be viewed as a manifestation of the static Vainshtein screening and the failure of the Vainshtein mechanism for the time evolution of the scalar [START_REF] Babichev | Constraints on Shift-Symmetric Scalar-Tensor Theories with a Vainshtein Mechanism from Bounds on the Time Variation of G[END_REF]. We will also assume that dimensionless combinations of coecients are of O(1), for instance f ∼ q 2 f X ∼ q 2 A 1 ∼ O(1). Under the assumptions (4.23) and (5.1), the coecients K 1 and K 2 , Eqs. (4.15) and (4.16), read

K 1 = 4 r - λ ′ + ν ′ 2 + (f ϕ + q 2 A 1ϕ )ϕ ′ -(A 1 -f X -q 2 A 1X ) (q 2 ν ′ + 2ϕ ′ ϕ ′′ ) (f + q 2 A 1 ) , (5.2) 
K 2 = - 2 f + q 2 A 1 1 + O λ, ϕ ′2 q 2 , (5.3) 
where we have used Eq. (4.19) in the weak-eld approximation, and all the functions are evaluated at ϕ = qt and X = -q 2 . The aim is to see how the solution to Eq. (4.14) for ω is modied in the case of the scalar-tensor theories, with respect to the GR solution. We can see that generically the coecient κ 2 dened in Eq. (4.28) is not the same as in GR, signaling that the screening is broken inside the source. If the condition rϕ ′ ϕ ′′ /q 2 ≪ 1 is veried, it is clear from Eq. (5.2) that the corrections to K 1 are small compared to 4/r, in which case ω has the same form as in GR at leading order outside the star, see Section 4.2. For instance, this condition is satised if the solution for ϕ is a power law, and we will see in many examples below that this is generically the case.

Note that only the functions f and A 1 directly appear in these coecients. Of course the other functions of the Lagrangian enter the expression for K 1 implicitly via the scalar and metric functions in Eq. (4.14). However, we can immediately see that in a theory for which f X = A 1 = 0 and the Vainshtein mechanism is eective in spherical symmetry, the coecient K 1 is the same as in GR up to subleading corrections. Indeed, in this case we have

K 1 = 4 r - λ ′ + ν ′ 2 + f ϕ f ϕ ′ .
When the Vainshtein mechanism in spherical symmetry is operational, the fth force is screened for r ≪ r V , implying ϕ ′ ≪ {λ ′ , ν ′ }. Also, the solutions for {λ, ν} are those of GR at leading order. Assuming f ϕ /f ≲ O(1), these two conditions show that the GR expression for K 1 is recovered up to r V suppressed corrections, which means that the subleading corrections for ω outside the star are also r V suppressed.

The Vainshtein mechanism in spherical symmetry was studied for DHOST Ia theories in Refs. [START_REF] Langlois | Scalar-tensor theories and modied gravity in the wake of GW170817[END_REF][START_REF] Dima | Vainshtein Screening in Scalar-Tensor Theories before and after GW170817: Constraints on Theories beyond Horndeski[END_REF][START_REF] Hirano | Screening mechanism in degenerate higher-order scalar-tensor theories evading gravitational wave constraints[END_REF][START_REF] Crisostomi | Vainshtein regime in Scalar-Tensor gravity: constraints on DHOST theories[END_REF]. Adopting similar notations, we dene

x = ϕ ′ r , y = ν ′ 2r , z = λ 2r 2 , M (r) = 4π r 0 ρ(r)r 2 dr, A(r) = GM (r) q 2 r 3 .
Outside the source, we have A = r S /(2q 2 r 3 ), and we will dene the Vainshtein radius

r V as A(r V ) ∼ 1, meaning that r 3 V ≡ r S q 2 .
(

The functions {λ, ν} vary slowly with time in this section, and we assume:

ż ∼ qz, ẏ ∼ qy ,
which can be checked once the solutions for {y, z} are found. The (tt) and (rr) eld equations for the metric, Eqs. (4.9) and (4.10), can be solved in terms of x and A, and written in the form:

y = α 1 A + β 1 x + γ 1 x 2 + δ 1 rxx ′ + η 1 , (5.5) 
z = α 2 A + β 2 x + γ 2 x 2 + δ 2 rxx ′ + η 2 , (5.6) 
where all the time-dependent coecients are listed in Appendix II.B. They can be expressed in terms of the Lagrangian functions evaluated on the background ϕ = qt and X = -q 2 . Note that these coecients are not necessarily dimensionless. In order to obtain Eqs. (5.5) and (5.6), we have also assumed r ≪ 1/q. In terms of the function A dened above, the Vainshtein screening in the nonrotating case generally happens when A ≫ 1, which corresponds to r ≪ r V . However, there are deviations from GR when A ≪ 1, which we will examine in the region r V ≪ r ≪ 1/q where our equations are valid. The terms we neglected should be kept if we want to match to the appropriate de Sitter solution at cosmological radii r ≥ 1/q. This is the asymptotic condition consistent with the linear time dependence of the scalar eld, as discussed in [START_REF] Babichev | Time-Dependent Spherically Symmetric Covariant Galileons[END_REF] for the cubic Galileon theory.

The expressions (5.5) and (5.6) for y and z can then be substituted in the scalar eld equation, Eq. (4.12), yielding a cubic equation for x [START_REF] Dima | Vainshtein Screening in Scalar-Tensor Theories before and after GW170817: Constraints on Theories beyond Horndeski[END_REF]:

C 3 x 3 + C 2 x 2 + C 1 + Γ 1 A + Γ 2 (r 3 A) ′ r 2
x + Γ 0 A + η 3 = 0 .

(5.7)

Similarly, using Eqs. (5.5) and (5.6) in Eq. ( 5.2) results in:

K 1 = 4 r 1 + α 0 r 2 A + ζ 0 r 3 A ′ + β 0 r 2 x + κ 0 r 3 x ′ + γ 0 r 2 x 2 +δ 0 r 3 xx ′ + σ 0 r 4 xx ′′ + x ′2 + η 0 r 2 .
(5.8)

The coecients of Eqs. (5.7) and (5.8) are listed in Appendix II.B. One can see from

Eq. (5.8) that there is always a leading term in the brackets corresponding to the Minkowski limit of the metric K 1 ≃ 4/r (for radii r ≪ 1/q). We discuss below various cases of Eq. (5.7) leading to dierent nonrotating solutions [START_REF] Kimura | Vainshtein screening in a cosmological background in the most general second-order scalar-tensor theory[END_REF][START_REF] Dima | Vainshtein Screening in Scalar-Tensor Theories before and after GW170817: Constraints on Theories beyond Horndeski[END_REF]. Substituting the relevant solution for x in Eq. (5.8), we will examine how the modications of gravity aects Eq. (4.24) for ω in the slowly rotating case. We will show that the leading corrections to the coecients K 1 and K 2 are small and take the form of power laws. In this case, we showed in Chapter 4 that ω has the GR form at leading order outside the star, up to an overall factor (which can be absorbed in the denition of the angular momentum of the star as measured by an exterior observer, unless the density distribution of the star is known). On the other hand, the screening can be broken inside the star. We will be interested in the subleading corrections to ω when the leading term is not modied, and compare them to those of GR.

Outside the Vainshtein radius

We rst examine the linear regime outside the Vainshtein radius, where we have A ≪ 1.

There are two dierent cases, depending on the coecient η 3 . In this regime the Vainshtein mechanism for nonrotating sources does not operate, and the corrections to the metric for the spherically symmetric solution are expected to be large. Therefore, we also expect that the equation for ω receives corrections larger than those inside the Vainshtein radius.

η

3 = 0 and C 1 ̸ = 0
Let us rst consider the case η 3 = 0. A sucient condition for this coecient to vanish is K = G 3ϕ = 0. In this case, the nonlinear terms in x in Eq. (5.7) can be neglected, and the solution for

x is x = - Γ 0 C 1 A ∼ r S r 3 .
Substituting this expression into Eq. (5.8), we obtain the expression for K 1 ,

K 1 = 4 r 1 + O r S r .
(5.9)

This shows that the corrections due to the scalar eld are not suppressed by powers of the Vainshtein radius, and are of the order of the Newtonian potential. This is expected in the region r ≫ r V where the Vainshtein screening in spherical symmetry is no longer eective (meaning that we do not have λ ′ + ν ′ ≃ 0 in Eq.(5.2)).

η

3 ̸ = 0 and C 1 ̸ = 0 If η 3 ̸ = 0, we have Γ 0 A ≪ η 3 , since A ≪ 1.
In this case Eq. (5.7) reduces to the following cubic equation for x with r-independent coecients:

C 3 x 3 + C 2 x 2 + C 1 x + η 3 = 0 .
The relevant solution for x must be chosen by taking into account the asymptotic behavior of the solution at large radii, r ≫ 1/q. Since the coecients of the algebraic equation depend on time only, x does not depend on the radial coordinate and we have x = x 0 (t). Substituting this solution into Eq. (5.8), we obtain

K 1 = 4 r 1 + O q 2 r 2 .
(5.10)

Note that here the corrections have a clear physical interpretation; they arise as a backreaction on the metric due to the weight of the scalar eld, see for instance

Ref. [START_REF] Babichev | The sound of DHOST[END_REF]. They are present even in the simplest theory with a minimally coupled scalar eld. The corrections are larger in this case than for η 3 = 0, considered above.

Indeed, using Eq. (5.4), we obtain that the ratio of the corrections in Eq. (5.9) to the corrections in Eq. (5.10) are of order (r V /r) 3 .

In the rest of this chapter, we will consider the region r ≪ r V , where the Vainshtein mechanism usually operates in spherical symmetry.

Case 1:

C 3 ̸ = 0 and Γ 1 ̸ = 0, inside

the Vainshtein radius

We rst consider the generic case Γ 1 ̸ = 0 and C 3 ̸ = 0 (see Appendix II.B for their expressions). Note that when Γ 1 = 0 then we also have C 3 = 0. We assume that C 3 Γ 1 < 0 and we will conrm this choice later. Then the solutions to Eq. (5.7) for r ≪ r V are 1

x 1 = ± -Γ 1 A -Γ 2 (r 3 A) ′ r 2 C 3 , (5.11) 
1 For some theories these solutions have been shown to match de Sitter asymptotics [START_REF] Babichev | Relativistic Stars in Beyond Horndeski Theories[END_REF].

where we used A ≫ 1 to simplify the expression. The ± sign must be chosen in order to match the solution at innity, depending on the theory. We have (r 3 A) ′ = 0 outside the star, and therefore our choice C 3 Γ 1 < 0 is indeed correct to have a real solution in the exterior region. Extra conditions should be also imposed on Γ 2 for the argument of the square root to be positive. In particular, a sucient condition is Γ 2 < 0. We do not consider the third solution to the cubic equation, since there is no known example where it is matched to de Sitter asymptotics. (Note however that in

Ref. [START_REF] Kimura | Vainshtein screening in a cosmological background in the most general second-order scalar-tensor theory[END_REF] the asymptotically at spherically symmetric solutions of this branch were found, and it was shown that the Vainshtein mechanism is not eective for this branch unless the speed of gravitational waves c T = 1). Substituting the solution (5.11) for x in Eq. (5.8), we obtain

K 1 = 4 r 1 + d dr (ι 0 r 3 A + ι 1 r 4 A ′ + ι 2 r 5 A ′′ ) + O q 2 r 2 √ A , (5.12) 
where we assumed A ∼ r n A (n) for the subsubleading part, and the expressions for the ι i are listed in Appendix II.B. The above expression generically diers from its GR counterpart inside the source (see Eq. (4.26)). In particular, as can be seen from Eq. (4.26), ι 1 = ι 2 = 0 in GR. In the exterior region outside the star, R < r ≪ r V , we have (r 3 A) ′ = 0 and the previous equation simplies to

K 1 = 4 r 1 + O r S √ r r 3/2 V
.

Hence, the corrections to the solution for ω are subdominant, as we showed in Chapter 4. Furthermore, they are suppressed by powers of r V , in an analogous way to the screening in spherical symmetry. In fact, the screening is even more eective for ω, since one has a power r S /r V instead of r/r V as in Eq. (II.16). A similar screening also happens for the third solution to Eq. (5.7) that cannot be matched to the de Sitter solution at large radii, which we do not consider here.

A class of shift-symmetric beyond Horndeski theories

Let us now restrict ourselves to the quadratic sector of GLPV theories [START_REF] Gleyzes | Healthy theories beyond Horndeski[END_REF], which corresponds to the following Lagrangian:

L = f (X)R + K(X) -2f X (□ϕ) 2 -ϕ µν ϕ µν + A 3 (X) 2 ε µνασ ε ληκ σ ϕ µλ ϕ νη ϕ α ϕ κ , (5.13)
where ε µνασ is the totally antisymmetric Levi-Civita tensor, and we have set

f = f (X), A 1 = -A 2 = 2f X + 1 2 XA 3 (X), K = K(X), G 3 = 0 .
(5.14)

In the case of shift-symmetric beyond Horndeski theories, the Vainshtein mechanism for spherically symmetric congurations has been studied extensively. In particular, it was shown in Ref. [START_REF] Babichev | Cosmological self-tuning and local solutions in generalized Horndeski theories[END_REF] that the backreaction of the scalar eld on the metric leads to a redenition of Newton's constant G. Also, in a subclass of the theory, the Vainshtein screening has been considered for slowly rotating sources. Indeed, the specic case of constant A 3 was studied in Refs. [START_REF] Babichev | Relativistic Stars in Beyond Horndeski Theories[END_REF][START_REF] Sakstein | Towards Strong Field Tests of Beyond Horndeski Gravity Theories[END_REF] for relativistic stars. It was shown in this theory that ω satises the GR equation outside the star, meaning that K 1 = 4/r exactly, with no subleading corrections. This result remains true for the shift symmetric theories dened above, and does not rely on the weak-eld approximation, as we show in Appendix II.A.

We now discuss the equation for ω in the weak-eld approximation inside the matter source. After substituting the solution for x, given by Eq. (5.11), the metric potentials read

y = G M r 3 - q 4 A 2 3 M ′′ 4r[f (-q 2 A 3X + 2A 3 + 4f XX ) -q 2 A 3 f X + 4f 2 X ] , z = G M r 3 + q 2 A 3 (-2q 4 A 3X -4f X + 5q 2 A 3 + 8q 2 f XX )M ′ 4r 2 [f (-q 2 A 3X + 2A 3 + 4f XX ) -q 2 A 3 f X + 4f 2 X ] , (5.15) 
where we have dened an eective gravitational constant

G = 2G 2f + 8q 2 f X -8q 4 f XX -5q 4 A 3 + 2q 6 A 3X
.

The above equations show that the Vainshtein mechanism in spherical symmetry is broken inside the source [START_REF] Kobayashi | Breaking of Vainshtein screening in scalar-tensor theories beyond Horndeski[END_REF], but that GR is recovered in the exterior region where M is constant.

Substituting the metric potentials in Eq. (4.14), with the coecients given by Eqs. (5.3) and (5.8), the equation for ω inside the star and in the weak-eld limit reads

ω ′′ + 4 r 1 - GM ′ 2(2f + 4q 2 f X -q 4 A 3 ) ω ′ = - 8GM ′ Ω r 2 (2f + 4q 2 f X -q 4 A 3 ) 1 + O(r 2 z) ,
which is the same equation as in GR (up to the subleading term in the coecient K 2 ) provided we redene Newton's constant as:

G * = 2G 2f + 4q 2 f X -q 4 A 3 ̸ = G .
As we can see, in general the two redened Newton constants G and G * do not coincide. This means that the coecient κ 2 is not the same as in GR, and the Vainshtein screening is broken inside the star (see Eq. (4.31)). This is expected for A 3 ̸ = 0 since the Vainshtein screening for static sources is broken inside matter for these theories [START_REF] Kobayashi | Breaking of Vainshtein screening in scalar-tensor theories beyond Horndeski[END_REF].

However, this remains true even for A 3 = 0 when the Vainshtein screening in the nonrotating case works inside the star (as can be seen from Eq. (5.15)). Note that the two redenitions of G coincide in theories with f X = f XX = A 3 = A 3X = 0, but in this case Γ 1 = C 3 = 0, so the analysis of the present section is not valid.

5.4 Case 2: C 3 = Γ 1 = 0 and C 2 ̸ = 0 inside the Vainshtein radius

In this section, we consider the particular subclass of DHOST Ia theories verifying

2f A 1X + 2A 1 f X + f A 3 = 0 , (5.16) 
which implies C 3 = Γ 1 = 0. In this case Eq. (5.7) is quadratic, and the general solution reads

x 2 = - r 2 C 1 + Γ 2 (r 3 A) ′ ± [r 2 C 1 + Γ 2 (r 3 A) ′ ] 2 -4r 4 AC 2 Γ 0 2r 2 C 2 .
(5.17)

Assuming Γ 0 C 2 < 0 and neglecting C 1 in the limit A ≪ 1, the solution for x 2 in the exterior region R < r ≪ r V is

x 2out = ± -AΓ 0 C 2 .
(5.18)

Substituting this expression in Eq. (5.8), we obtain

K 1 = 4 r 1 + ξ r S r + O r S √ r r 3/2 V , (5.19) 
where the coecient ξ reads

ξ = α 0 2 + Γ 0 4C 2 [3 (δ 0 -4σ 0 ) -2γ 0 ] .
The full expression for ξ is rather lengthy, but it can be rewritten in the form

ξ = f + q 2 A 1 f q 2 A 1X + 2f X + A 1 -f + q 2 f X ξ 0 , (5.20) 
where the coecient ξ 0 is in general a time-dependent function. Several interesting observations can be made from Eq. (5.20). First of all, for theories with A 1 = A 3 = f X = 0 (we also used the condition (5.16)), one automatically obtains ξ = 0. This means that there are only subleading (Vainshtein suppressed) corrections to the coefcient K 1 , see Eq. (5.19). For example, this is the case for the cubic Galileon, which we will discuss in more detail below.

In fact, from Eq. (5.19) one can draw a conclusion for more general theories, namely those satisfying the constraint (5.16) with f X ̸ = 0. Indeed, assuming that the Vainshtein mechanism in spherical symmetry is at work, the metric potentials approximately verify the GR relation in vacuum:

y -z = 0 .
This relation is valid whenever the Vainshtein mechanism in spherical symmetry operates outside the star, up to subleading corrections. Substituting Eq. (5.18) into Eqs. (5.5) and (5.6), we obtain

r 2 (y -z) = -4ξ 0 f X f + q 2 A 1 2 r S r + O r S √ r r 3/2 V .
(5.21)

We see that if f X ̸ = 0, one must impose ξ 0 = 0 to recover the Vainshtein screening in the absence of rotation (since f +q 2 A 1 ̸ = 0 in the DHOST Ia class). In this case, ξ also vanishes, see Eq. (5.20). On the other hand, when Eq. (5.16) is satised but f X = 0, the Vainshtein mechanism operates in spherical symmetry, but ξ is not necessarily zero, as we will see in an explicit example below.

Example 1: theory with larger corrections to the framedragging function in the exterior region

As we mentioned above, there are theories which allow for the spherically symmetric Vainshtein screening, but for which the corrections to the frame-dragging equation are of the order of the Newtonian potential (showing that the screening is less eective for ω than for the metric potentials). We consider such theories in detail in the present section. If Eq. (5.16) is satised, a necessary condition for the Vainshtein mechanism to work in spherical symmetry if ξ 0 ̸ = 0 is f X = 0. This can be seen from Eq. (5.21), which shows deviations of the metric functions from the GR case. If we assume f X = 0, Eq. (5.16) implies A 3 = -2A 1X . Assuming f = f (ϕ), the dimensionless coecient ξ can be written

ξ = N ξ D ξ ,
where N ξ and D ξ read

N ξ = f + q 2 A 1 q 2 A 1X -A 1 f ϕ 2q 2 A 1 + f -q 4 A 1X -q 2 A 1ϕ 3q 2 A 1 + 4f + q 4 A 1X + q 2 f + q 2 A 1 3G 3X + 2q 2 A 1ϕX , D ξ = 3q 2 A 1 + 2f -q 4 A 1X 2 f 2 4G 3X -6A 1ϕ + 4q 2 A 1ϕX + q 2 A 1 f ϕ q 2 A 1X -3A 1 +q 2 f A 1ϕ 4A 1 G 3X -3A 1 A 1ϕ -3q 2 A 1X A 1ϕ + 4q 2 A 1 A 1ϕX -2f ϕ A 1X .
Note that since we consider the case C 2 ̸ = 0, we have D ξ ̸ = 0. The metric potentials in these theories read:

r 2 y = ι 3 r S r + O r S √ r r 3/2 V , (5.22) r 2 z = ι 3 r S r + O r S √ r r 3/2 V , (5.23) 
where the coecient ι 3 is given in Appendix II.B.

After redening Newton's constant, the metric potentials have the GR form up to subleading corrections, meaning that the Vainshtein mechanism works in spherical symmetry. Meanwhile ξ ̸ = 0, and therefore the corrections to the frame-dragging function ω are of order r S /r, as Eq. (5.19) shows. This implies that the screening for ω is not as eective as it is for the metric potentials λ and ν. We have thus demonstrated for a particular theory that the Vainshtein screening in spherical symmetry is not sucient to ensure that the leading corrections to the GR expression for ω are suppressed by powers of r V .

In order to give a simpler example, let us consider the particular case of shiftsymmetric theories. We set f = f 0 = const., since we must have f X = 0, and we assume that the other functions depend on X only. In this case the previous expression simplify and we obtain

ξ (s) = 3q 2 (f 0 + q 2 A 1 ) (q 2 A 1X -A 1 ) 4f 0 (2f 0 + 3q 2 A 1 -q 4 A 1X ) 2 , (5.24) 
ι (s)

3 = q 2 A 1 (15f 0 + 6q 2 A 1 ) + f 0 (8f 0 -q 4 A 1X ) 4f 0 (2f 0 + 3q 2 A 1 -q 4 A 1X ) 2 , (5.25) 
where the subscript (s) refers to shift-symmetric theories. Hence, unless we have A 1 ∼ 1/X, this provides a simple example for which the Vainshtein screening in spherical symmetry does not imply r V suppressed corrections for the frame-dragging function.

Example 2: theory with c T = 1 and no decay of the graviton into dark energy

Most of the DHOST Ia theories as models of dark energy [START_REF] Langlois | Eective Description of Higher-Order Scalar-Tensor Theories[END_REF] have been ruled out by the constraint c T = 1 (i.e. the graviton propagates at the speed of light) coming from the merger of a binary neutron star system [START_REF] Abbott | GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral[END_REF][START_REF] Ezquiaga | Dark Energy After GW170817: Dead Ends and the Road Ahead[END_REF][START_REF] Creminelli | Dark Energy after GW170817 and GRB170817A[END_REF], and requiring that the graviton does not decay into dark energy [START_REF] Creminelli | Gravitational Wave Decay into Dark Energy[END_REF]. The surviving theories correspond to the choice

A 4 = 6f 2 X f and A 1 = A 2 = A 3 = A 5 = 0 .
(5.26)

The Vainshtein screening in the absence of rotation for these theories was studied in

Refs. [START_REF] Hirano | Screening mechanism in degenerate higher-order scalar-tensor theories evading gravitational wave constraints[END_REF][START_REF] Crisostomi | Vainshtein regime in Scalar-Tensor gravity: constraints on DHOST theories[END_REF]. It was shown that the screening is broken inside the star, and that it may work in the exterior region provided the parameters of the theory are ne-tuned.

Outside the source: Outside the star, the coecient K 1 is of the form (5.19), with

ξ = f X [f ϕ (f -10q 2 f X ) + q 2 f (3G 3X + 2f ϕX )] 8(f + q 2 f X ) 2 (f G 3X -3f X f ϕ ) ,
where we used Eq. (5.26). Note that the denominator does not vanish in the case C 2 ̸ = 0. It was shown in [START_REF] Hirano | Screening mechanism in degenerate higher-order scalar-tensor theories evading gravitational wave constraints[END_REF][START_REF] Crisostomi | Vainshtein regime in Scalar-Tensor gravity: constraints on DHOST theories[END_REF] that the Vainshtein mechanism can work outside the star in this theory if the parameters verify

f X f ϕ f -10q 2 f X + q 2 f (3G 3X + 2f ϕX ) = 0 .
(5.27)

Interestingly, this is exactly the condition for ξ to vanish, as can be seen from the above expression. This shows that if we ne-tune the parameters to recover the Newtonian potential outside the source, then the screening for ω becomes more eective, in the sense that corrections to the GR expression for ω are suppressed by powers of r V (see Eq. (5.19)). If this condition is veried, the potentials in the exterior region read

r 2 y = r 2 z = r S 2r (f + q 2 f X ) + O r S √ r r 3/2 V .
In this case, GR is recovered if Newton's constant is redened according to

G = G f + q 2 f X .
(5.28)

Inside the source: Let us examine the (tφ) equation inside the source, where (r3 A) ′ ̸ = 0 and we assume rA ′ ∼ A. We also assume

Γ 2 = -192q 2 f 2 f X f + q 2 f X ̸ = 0 ,
which implies that the leading term inside the square root of Eq. (5.17) is the one containing the coecient Γ 2 . One of the branches obtained with these assumptions is physically unacceptable, 2 as argued in Ref. [START_REF] Hirano | Screening mechanism in degenerate higher-order scalar-tensor theories evading gravitational wave constraints[END_REF], so we focus on the second branch for which

r 2 x ≃ - Γ 0 Γ 2 r 4 A (r 3 A) ′ ∼ O q 2 r 2 .
This expression is only valid when (r 3 A) ′ ̸ = 0 and (r 3 A) ′ ≫ 1. We assume that the Vainshtein mechanism in spherical symmetry operates outside the source, meaning that condition (5.27) is veried. In terms of the constant G dened in Eq. (5.28), the frame-dragging equation inside the star reads

ω ′′ + 4 r 1 + q 2 f X GM r(f + q 2 f X ) - (f + 2q 2 f X ) GM ′ 4(f + q 2 f X ) + O q 2 r 2 ω ′ + 4(f + q 2 f X ) GM ′ Ω f r 2 1 + O(r 2 z) = 0 .
On the left-hand side of this equation, there is an extra term ∝ GM/r compared to the equation in GR (see Eq. (4.26)). Note that this term is nonzero, since we study the case Γ 2 ̸ = 0, which implies f X ̸ = 0 (see Appendix II.B). The screening is broken inside the star, because generically κ 2 ̸ = -2 when f X ̸ = 0 as can be seen from the equation above. This behavior is not surprising, since the Vainshtein mechanism in spherical symmetry is broken inside the source. Note that the expressions for K 1 inside and outside the star were obtained in dierent limits ((r 3 A) ′ ≫ 1 in the former and (r 3 A) ′ = 0 in the latter case), therefore they cannot be matched at the surface of the star. One would have to solve the full equation to obtain a continuous prole, as was done in Ref. [START_REF] Hirano | Screening mechanism in degenerate higher-order scalar-tensor theories evading gravitational wave constraints[END_REF].

Example 3: cubic Galileon

The time-dependent cubic Galileon was studied in Ref. [START_REF] Kimura | Vainshtein screening in a cosmological background in the most general second-order scalar-tensor theory[END_REF], and also in Ref. [START_REF] Babichev | Time-Dependent Spherically Symmetric Covariant Galileons[END_REF],

where the appropriate de Sitter asymptotics were discussed. To get the cubic Galileon from the general action (31), we set

f = 1, G 3 = βX, K = ηX, A i = 0 . (5.29)
With these choices, we have that Γ 2 = 0 in Eq. (5.7), and the expression for x for r ≪ r V reads

x = ±q 2 A 2 .
The sign should be chosen when properly examining the asymptotic behavior for large radii, but it does not aect the resulting equation for ω (since quadratic terms are dominant in Eq. (5.8) inside the Vainshtein radius) both inside and outside the star.

The equation for the frame-dragging function can be written as follows:

ω ′′ + 4 r 1 - GM ′ 4 + O q 2 r 2 √ A ω ′ = - 4GM ′ Ω r 2 1 + 2GM r + O q 2 r 2 √ A ,
where we have assumed A ∼ rA ′ and βq 2 ∼ 1. By comparing the above equation with Eq. (4.26) and taking into account Eq. ( 5.4), we can see that the corrections for ω to the GR equation are suppressed by powers of r V inside the Vainshtein radius both inside and outside the source. Using the results of Section 4.2, we then conclude that deviations from the GR expression for ω are also suppressed by powers of r V in a way analogous to the screening in spherical symmetry. It should also be noted that nonlinear GR corrections (which we did not take into account) may be larger than those due to modied gravity, but they are of course still smaller than the linear GR terms.

Chapter 6

Slow rotation with a static scalar eld

We set q = 0 in this chapter, meaning that ϕ = ϕ(r), and consider the shift-symmetric sector of the DHOST Ia class, i.e. the theories which are invariant under the transfor-

mation ϕ → ϕ + const.
This symmetry is associated with a conserved current

J µ = - δL δ(∂ µ ϕ) ,
so that in this case the scalar eld equation is simply

∇ µ J µ = 0 .
It was shown in Ref. [START_REF] Lehébel | A no-hair theorem for stars in Horndeski theories[END_REF] that such theories generically lead to a trivial scalar eld, i.e. ϕ ′ = 0, in spherically symmetric congurations. 1 Because of the shift-symmetry, this is equivalent to having ϕ = 0. In order to avoid this no-hair theorem for stars, we introduce an additional linear coupling of the scalar eld to the Ricci scalar of the form αϕR, which breaks the shift symmetry. This coupling to the curvature provides a nontrivial scalar eld conguration with rich phenomenology, including k-mouage gravity [START_REF] Babichev | k-Mouage gravity[END_REF], an analog of the Vainshtein mechanism. In this setup, the scalar equation can be written in the form

∇ µ J µ = -αR , (6.1) 
where J µ is the conserved current associated with the shift symmetry of the action when α = 0. In the following, we will focus on the quadratic Horndeski theory, i.e. we will consider the Lagrangian

L = (f (X) + αϕ) R + K(X) -G 3 (X)□ϕ -2f X (□ϕ) 2 -ϕ µν ϕ µν . (6.2)
1 We do not give details about the precise hypotheses of the theorem, which can be found in [START_REF] Lehébel | A no-hair theorem for stars in Horndeski theories[END_REF].

For these theories, the current associated to shift-symmetry reads

J µ = 4R µν ϕ ν f X -X µ (G 3X + 4f XX □ϕ) + 4f XX ϕ µν X ν -2ϕ µ Rf X + K X -G 3X □ϕ + 2f XX ϕ αβ ϕ αβ -{□ϕ} 2 . (6.3)
Interestingly, the current equation (6.1) can be integrated in the weak-eld regime, and we obtain

1 r 2 d dr r 2 J r + α 2rλ -r 2 ν ′ = 0 ,
where we have used Eq. (II.9) to express the Ricci scalar in the weak-eld regime.

Even though the action is not shift-symmetric if α ̸ = 0, there is an eective conserved current in the weak-eld limit in this particular case of a linear coupling to the Ricci scalar. In the following, we will set the integration constant to 0, in order for the norm of the current J µ J µ = e λ (J r ) 2 to be regular at the center of the star. In this case, the scalar eld equation reads

rJ r + α (2λ -rν ′ ) = 0 . (6.4)
It is clear from the above equation that the radial component of the current cannot be zero, in contrast to the shift-symmetric time-dependent case, where we have J r = 0.

The presence of the symmetry-breaking term, when α ̸ = 0, renders J r nonzero. This, and the fact that the ratio ϕ ′2 /q 2 is no longer a small parameter in the equations, cf. Eq. (5.1), changes the results in the weak-eld approximation. This means that one cannot simply set q = 0 in the analysis of the previous chapter, but it is instead necessary to proceed starting from square one.

K-essence

Let us rst consider a k-essence theory, i.e. we take f = 1, A i = 0 and K = γX p , where p ∈ N\{0, 1} and µ is constant. Neglecting the backreaction of the energy-momentum of the scalar eld on the metric, which corresponds to neglecting nonlinear scalar contributions in Eqs. (4.9) and (4.10), one can integrate Eq. (4.9) to obtain the metric potentials:

λ = 2GM (r) r + αrϕ ′ , ν ′ = 2GM (r) r 2 -αϕ ′ . (6.5)
After combining these expressions with Eq. (6.4), we obtain the following equation for the scalar eld: 2αGM (r) r 2 + 3α 2 ϕ ′ -2pγϕ ′2p-1 = 0 .

(6.6)

Linear regime

Outside the star, we have 2GM (r) = r S , and in the limit r → ∞ we can neglect the nonlinear term in Eq. (6.6). In that case, the solution for the scalar eld can easily be found:

ϕ ′ lin = - r S 3αr 2 . 
(6.7)

Note that the limit α → 0 is not well dened in Eq. (6.7). This is a consequence of the absence of a standard kinetic term in the considered theory. Indeed, due to the mixing term αϕR the scalar degree of freedom has a kinetic term. However, it disappears in the limit α → 0, thus making the theory strongly coupled. Said dierently, the nonlinear term is dominant for small α, and therefore the linear regime is nowhere valid.

Using Eq. (6.7) in Eqs. (6.5), one can see that in the linear regime, the GR condition λ + ν = 0 is not satised even approximately. Instead, the solutions of the system (6.5) read λ = 2r S 3r and ν = -4r S 3r ,

meaning that deviations of the metric potentials from the GR solutions are of O(1). Upon substituting Eqs. (6.7) and (6.8) into Eq. ( 5.2) for ω, we obtain

ω ′′ + 4 r 1 - r S 6r ω ′ = 0 . (6.9) 
This expression is to be compared with Eq. (4.26) in vacuum, for which M ′ (r) = 0.

One can see that the term proportional to r S has a coecient dierent from the GR case. Thus, according to the results of Chapter 4, the leading term in the solution for ω is the same as in GR, unlike the metric potentials. However, the subleading corrections in the weak-eld approximation are of order r S /r. As we will see below, the screening is less eective than in the region r ≪ r V , where the leading corrections are suppressed by powers of r V .

Inside the Vainshtein radius

The linear regime breaks down at the Vainshtein radius r ∼ r V , where nonlinear terms become important. Let us determine r V by taking the solution for ϕ ′ at innity and evaluating at which radius the nonlinear term becomes comparable to the linear one [START_REF] Babichev | k-Mouage gravity[END_REF]. We nd

r 2 V = r S 6p|γ| 3 2p α 2p 1 2p-2 . (6.10)
For r ≪ r V , we can neglect the linear term in Eq. (6.6), and in this range of radii the scalar eld reads

ϕ ′ = sgn [αγ] |α|GM (r) r 2 p|γ| 1 2p-1 . (6.11)
Note that the limit α → 0 is well dened, and in that case we have ϕ ′ → 0, in contrast to the solution in the linear regime Eq. (6.7). The limit is consistent with the solution to the scalar equation (6.6) for α = 0. In the limit α → 0, the Vainshtein radius given by Eq. (6.10) is innite; therefore, the Vainshtein mechanism operates for all distances and the linear regime is invalid.

In the region r ≪ r V , one can compare the strength of the fth force with the Newtonian force {λ ′ GR , ν ′ GR } ∼ 2GM/r 2 , obtained by setting ϕ = 0 in Eq. (6.5):

ϕ ′ {λ ′ GR , ν ′ GR } ∼ 1 3|α| r S r 2 2GM (r)r 2 V 2p-2 2p-1 .
Outside the source, in the region R ≤ r ≪ r V , we have 2GM = r S , and it is clear that the fth force is screened. Inside the star, assuming it has a constant density ρ 0 , we have 2GM (r) = r S r 3 /R 3 . In this case, it is clear from the above expression that the fth force becomes dominant for radii smaller than r * = R 3 /r 2 V ≪ R. Meanwhile, in the region r * ≪ r ≤ R, the fth force is screened. To examine the eects of rotation, we substitute Eq. (6.6) into the (tφ) metric equation. Assuming for instance that αγ > 0 (the other case is analogous), the coecients K 1 (outside and inside the star respectively) and K 2 read

K out 1 = 4 r 1 + O r S r V r r V 2p-3 2p-1 , K in 1 = 4 r 1 + r S r 8r 2 V 3 -4p 3(1 -2p) r r * 1 2p-1 - 3r r * , K 2 = -2 1 + r S r 2 R 3 1 + O r * r 2p-2 2p-1
.

This shows that the Vainshtein mechanism operates in the region r * ≪ r ≪ r V . Furthermore, corrections to the GR expression for ω are suppressed by powers of r V in this region. On the other hand, the subleading correction to ω diers from GR in the region r ≤ r * , due to a dierent power law as compared to the GR case. Hence, the screening for ω is less eective in this region, meaning that corrections to the GR expression are not r V suppressed. One can check that the size of the value of r * is very small in physically relevant situations, i.e. r * ≪ R.

Cubic Galileon

We now discuss the cubic Galileon theory, dened by the relations (5.29). The static Vainshtein screening in this theory was studied in Ref. [START_REF] Babichev | Time-Dependent Spherically Symmetric Covariant Galileons[END_REF], though the authors considered both a time dependence of the scalar eld and a coupling of the scalar to the matter elds. The slow rotation in this theory has already been discussed in Ref. [START_REF] Chagoya | Galileons and strong gravity[END_REF], where it was found that the correction to the (tφ) equation coming from the Galileon term is highly suppressed. The scalar eld equation (6.4) is quadratic in ϕ ′ , and the solution reads

ϕ ′ = µrr S r 3 V 1 -1 + r V r 3 , (6.12) 
where we chose the solution that does not diverge at r → ∞, and the constants µ and r V are given in Eq. (II.14). We assume αβ < 0, in order to have r V > 0. The solution for the scalar eld in the linear regime, i.e. r ≫ r V , is similar to its counterpart in the case of k-essence, see Eq. (6.7). The dierence is that in the case of the cubic Galileon we included a canonical kinetic term, and therefore the limit α → 0 is well dened in this regime as well. In the linear regime, the equation for the frame-dragging function is modied in a similar way to the k-essence case, Eq. (6.9), and the conclusions of the previous section about a less eective screening for ω hold. Inside the Vainshtein radius, i.e. for r ≪ r V , we expand the solution (6.12) and obtain

ϕ ′ = 2αr S k 2 r 3/2 V 2GM r S r .
In order to study the equation for the frame-dragging function inside the star, we assume that the matter source has a constant density. It is easy to check from the above expression that the fth force is screened everywhere in the region r ≪ r V , unlike in the k-essence case, where the fth force becomes dominant for small radii inside the source (see Section 6.1). Substituting the expression for ϕ ′ into the (tφ) equation, we obtain the following expressions for the coecients K 1 (outside and inside the source) and K 2 :

K out 1 = 4 r 1 + O r S √ r r 3/2 V , K in 1 = 4 r 1 - 3r S r 2 8R 3 1 + O R 3/2 r 3/2 V , K 2 = -2 1 + r S r 2 R 3 1 + O R 3/2 r 3/2 V .
For a star of constant density, ρ 0 = 3r S /R 3 , the leading corrections to the GR equation (4.26) are suppressed by powers of r V . This means that the corrections to the GR solution for ω are also suppressed by powers of r V , in a way analogous to the screening in spherical symmetry.

Quadratic sector of Horndeski theory

We now consider the quadratic sector of Horndeski theory, and set

K = G 3 = 0 . (6.13)
We will treat the case f XX = 0 separately, since the scalar equation is dierent in that case.

Case f XX ̸ = 0

For now let us assume f XX ̸ = 0. Neglecting nonlinear terms in the (tt) and (rr) equations, the expressions for {λ, ν} are the same as Eq. (6.5). After substituting these expressions for the metric potentials, the scalar equation reads

2αGM (r) + 3α 2 r 2 ϕ ′ + 8ϕ ′3 f XX = 0 , (6.14) 
where f XX is evaluated at X = ϕ ′2 . In the nonlinear regime outside the source, i.e. for R ≤ r ≪ r V , the linear term in Eq. (6.14) can be neglected. In that case, the scalar eld is constant and satises the equation

8ϕ ′3 f XX = -αr S ,
unless f (X) ∝ √ X, in which case the nonlinear term disappears in the scalar equation. For these particular theories, solving Eq. (6.14) leads to ϕ ′ ∼ 1/r 2 everywhere outside the star. A similar case was studied in an application to black holes in Ref. [START_REF] Babichev | Asymptotically at black holes in Horndeski theory and beyond[END_REF]. In the general case, when f (X) is not proportional to

√

X and f XX ̸ = 0, the derivative of the scalar eld ϕ ′ must be constant. This allows us to simplify the equation for ω, since ϕ ′′ = 0. Let us examine what happens for polynomial functions of the form f (X) = 1 + κX p , with κ a constant coecient and p > 1 so that f XX ̸ = 0. The spherically symmetric Vainshtein regime in such theories was discussed in Ref. [START_REF] Kase | Screening the fth force in the Horndeski's most general scalar-tensor theories[END_REF]. For large radii, one can neglect the nonlinear term in Eq. (6.14), and the solution for ϕ ′ is the same as those for k-essence and the cubic Galileon discussed above. One can then dene a Vainshtein radius r V by equating the linear and nonlinear terms in Eq. (6.14), and show that in the region r ≪ r V the fth force reads

ϕ ′ ∼ r S 3αr 2 V 2GM (r) r S 1 2p-1 . (6.15)
It is constant outside the source, and one can easily check that it is screened for r ≪ r V . Inside the source the situation is similar to the k-essence theories discussed above. Indeed, for a star of constant density the fth force becomes larger than the Newtonian force near the center of the star when p > 2 (for p = 2, |ϕ ′ | grows linearly and the Vainshtein screening is eective for all radii r ≪ r V ). For p > 2, the fth force becomes dominant for radii smaller than some r * ≪ R. A simple estimate, assuming that r V is of the order of Neptune's distance to the Sun, gives r * ≤ 10 m (the case of k-essence is recovered for large p), while for more realistic Vainshtein radii, the value of r * is much smaller. As in the k-essence theories, this small radius is not physically relevant.

Substituting the solution (6.15) into the (tφ) equation, we obtain the following expressions for the coecients K 1 (outside and inside the source) and K 2 :

K out 1 = 4 r 1 + O r S r r 2 V , K in 1 = 4 r 1 - 3r S r 2 8R 3 1 + R 2 r 2 V • O R r 2p-4 2p-1 , K 2 = -2 1 + r S r 2 R 3 1 + R 2 r 2 V • O R r 2p-4 2p-1 . (6.16)
Using the results of Section 6.2, one can see that for p = 2 the situation is similar to the cubic Galileon case. The corrections to the GR expression for ω are suppressed by powers of r V , and the screening operates in a way analogous to the spherically symmetric mechanism. For p > 2, the situation is similar to the k-essence case, and the subleading terms in the solution for ω are not the same as in GR in the region r ≤ r * . However, as we discussed above, this region is not physically relevant.

Case f XX = 0

Let us now look at the case where the Lagrangian contains a derivative coupling to the Einstein tensor ∼ ϕ µ ϕ ν G µν , which corresponds to f (X) = 1 + κX .

The spherically symmetric Vainshtein mechanism in this theory was discussed in

Ref. [START_REF] Koyama | Eective theory for the Vainshtein mechanism from the Horndeski action[END_REF]. The particularity of this Lagrangian in application to the Vainshtein mechanism is that the leading nonlinear term in the scalar equation (6.14) vanishes. Therefore we have to keep nonlinear terms in the metric equations, as well as the subleading term for the scalar current, since the leading term vanishes. This modies the expression for λ (compared to Eq. (6.5)), and the metric potentials read

λ = 2GM (r) r + αrϕ ′ -2κϕ ′2 , ν ′ = 2GM (r) r 2 -2αϕ ′ .
(6.17)

Substituting these expressions into the scalar equation, we obtain

2αGM (r) + 3α 2 r 2 ϕ ′ 1 -4 κϕ ′ αr + 8 3 κϕ ′ αr 2 = 0 .
In the linear regime, the scalar eld is given by Eq. (6.7), as in the previous case.

We dene the Vainshtein radius as κϕ ′ (r V ) ∼ αr V , which implies that both nonlinear terms are of the same order around r ∼ r V . Using the expression for ϕ ′ in the linear regime, we obtain

r 3 V = |κ|r S 3α 2 .
In the nonlinear regime r ≪ r V , the expressions (6.17) for the metric potentials imply that κrϕ ′2 ≪ GM in order for the static Vainshtein screening to work. In this case, one can show that the cubic term dominates in the scalar equation (otherwise we nd κrϕ ′2 ∼ GM , which modies the GR expression for λ in Eq. (6.17)), and the fth force reads

ϕ ′ = - r S 3αr 2 V GM (r) 4r S 1/3
.

The above expression is similar to the one obtained for p = 2 in the previous section. This means that the fth force is screened for all radii r ≪ r V , inside and outside the matter source. After substituting this expression in the (tφ) metric equation, we obtain the following coecients for the frame-dragging equation:

K out 1 = 4 r 1 + O r S r r 2 V , K in 1 = 4 r 1 - 3r S r 2 8R 3 1 + O R 2 r 2 V + O r S r 2 R 2 r V , K 2 = -2 1 + r S r 2 R 3 1 + O R r V .
The subleading corrections depend on the value of r inside the star. In any case, however, the corrections to the GR expression for ω are screened by a power of r V , and the conclusions are the same as for p = 2 in the previous section. It is worth stressing again that in addition to these corrections due to modications of gravity, there exist nonlinear GR terms. Both types of contributions can be seen as higherorder corrections to linearized GR. We do not consider them here, though it is possible for these corrections to be larger than those coming from modied gravity.

Conclusion to Part II

We have analyzed the validity of the Vainshtein mechanism for slowly rotating stars in scalar tensor theories belonging to the DHOST Ia class. While it is usually studied for spherically symmetric objects, we have shown that, in general, slow rotation does not spoil the Vainshtein screening. We also found that in most situations, when the Vainshtein screening operates in spherical symmetry, the leading corrections to the GR expression for ω in the weak-eld approximation are also suppressed by powers of the Vainshtein radius r V . Importantly, even though the corrections to ω may receive sizable modications (inside the star), the metric functions ν and λ are not modied. This means that if the theory exhibits the Vainshtein mechanism in spherical symmetry, slow rotation does not change the Vainshtein suppression of non-GR corrections to the static part of the metric ν and λ, independently of the behavior of the frame-dragging function ω. We applied the Hartle-Thorne formalism for slowly rotating stars to the scalar-tensor theories of the DHOST Ia class, and considered both a time-dependent and a static scalar eld. Our main purpose was to study the equation for ω and compare the results with the standard GR case.

In the rst part of Chapter 4, we found the general equation for the frame-dragging function in DHOST Ia theories, Eq. (4.14), with coecients K 1 and K 2 given by Eqs. (4.15) and (4.16), respectively. For slowly rotating relativistic sources in a subclass of Horndeski theory, we calculated exact expressions for the coecients K 1 and K 2 and showed that the vacuum GR equation for the frame-dragging function is fully recovered, see Appendix II.A. This result also applies to the quadratic beyond Horndeski theories, namely the theories described by the Lagrangian (5.13). It can also be extended to general shift-symmetric DHOST Ia theories, with the additional assumption that the kinetic term for the solution has the constant value X = -q 2 .

In the rest of this part, we assumed that the weak-eld approximation is valid, see Eq. (4.23). In Section 4.2, we derived the equation satised by the frame-dragging function in this limit, and showed that outside the star the solution is the same as in GR at leading order. Inside the source, we showed that the screening can be broken, in which case κ 2 ̸ = -2, see Eq. (4.28). We also computed corrections to the solution for ω, assuming that the coecients of the frame-dragging equation acquire small modications. In Chapter 5 we studied the equation for the frame-dragging function for various subclasses of the DHOST Ia class in the case q ̸ = 0, i.e. when the scalar is time-dependent. In Section 5.1, we found the expressions for the coecients K 1 and K 2 of the equation for ω in this approximation, Eqs. (5.2) and (5.3). We then used the metric eld equations to obtain the coecient K 1 in terms of the scalar eld only, Eq. (5.8). In Section 5.2, we showed that outside the Vainshtein radius the coecient K 1 receives a correction suppressed by r S /r or q 2 r 2 , Eqs. (5.9) and (5.10). To study the region inside the Vainshtein radius, we considered dierent classes of theories case by case in Sections 5.3 and 5.4. In most cases, when the Vainshtein screening works in spherical symmetry, the corrections to the GR expression for ω are screened by powers of r V , in a way analogous to what happens in the nonrotating case. However, we have found a particular theory for which the suppression is not as eective, in this case the leading correction is suppressed by r S /r instead. We also studied a dierent class of theories for which the static metric potentials in the nonrotating case are exactly the same as in GR (possibly up to a redenition of Newton's constant), while the screening for ω is broken inside the star.

The case of a static scalar eld was discussed in Chapter 6, and we found that the results are similar to the time-dependent case. In all the examples we considered, the Vainshtein mechanism works for the frame-dragging function ω. Furthermore, the screening is more eective in regimes where the Vainshtein mechanism operates in spherical symmetry, meaning that the corrections to the GR expression are suppressed by powers of r V . Meanwhile, outside the Vainshtein radius, the coecients of the frame-dragging equation receive non-screened corrections, see e.g. Eq. (6.9) for kessence. The screening still works for the frame-dragging function ω, but it is less eective in this region.

Although our results show that the deviations from GR are always small (outside the source), it is interesting to see whether local gravity tests can provide additional constraints on scalar-tensor theories coming from the sub-leading modications to the frame-dragging function. Probably the simplest way is to check constraints on PPN parameters (although it should be noted that precisely speaking the PPN analysis does not apply). The frame-dragging function ω can be written as (see for instance section 4.4 of Ref. [START_REF] Will | The Confrontation between General Relativity and Experiment[END_REF]),

ω PPN = 1 + γ + 1 4 α 1 J r 3 .
We have ω = 2J/r 3 in GR, and hence deviations from GR are characterized by the combination γ -1 + α 1 /4. This is to be compared to our results on the framedragging function. Generically the deviation of ω from its GR value is of order r S /r for non-Vainshtein suppression, and much smaller for the Vainshtein suppressed cases.

Therefore the combination of PPN parameters γ -1 + α 1 /4 is not larger than O(r S /r) in our case, which gives a deviation of order 10 -8 at Earth's orbit. This value is well within the experimental constraints on both γ and α 1 , and therefore we do not get any additional constraints on the parameters of the scalar-tensor theories from this estimation.

the expressions for ϕ ′2 and λ the nal expression for K 1 depends only {ρ, P, ν, ν ′ }.

Finally, the coecients read:

K 1 = 4 r - re ν (1 + rν ′ ) 2 (f 2 X + f f XX )(ρ + P ) M 2 P D 1 , K 2 = - 2e λ f + 4Xf X ,
where the denominator in the rst expression is given by

D 1 = 2q 2 f X 2f 2 X + r 2 f X K X + 2f + r 2 2P M 2 P + K f XX + e ν 2f + r 2 2P M 2 P + K f 2 X + f f XX (1 + rν ′ ) .
One can see that the GR case is recovered in vacuum, where we simply have K 1 = 4/r. This shows that the result of Ref. [START_REF] Cisterna | Slowly rotating neutron stars in the nonminimal derivative coupling sector of Horndeski gravity[END_REF] can be extended to general functions f and K in Horndeski theories.

It is also worth pointing out a mistake in formulas ( 44) and ( 53) of Ref. [START_REF] Cisterna | Slowly rotating neutron stars in the nonminimal derivative coupling sector of Horndeski gravity[END_REF]. In their notations, which are obtained from ours by ω → Ω * -ω, e ν → b, q → Q and K 2 → -K 2 (ρ + P ), these formulas should read (note also that the denition of the scalar kinetic term is dierent)

u φ = ε r 2 sin 2 θω √ b , K 2 = 4(b + rb ′ ) 2 (P + ρ) b[(P r 2 + 4κ)(b + rb ′ ) -ηQ 2 ]
.

With the above expression for u φ , one recovers the correct expression for the 4-velocity vector [START_REF] Hartle | Slowly rotating relativistic stars. 1. Equations of structure[END_REF]:

u µ = u 0 , 0, 0, ϵΩu 0 , unlike in Ref. [START_REF] Cisterna | Slowly rotating neutron stars in the nonminimal derivative coupling sector of Horndeski gravity[END_REF].

II.A.2 Quadratic GLPV theories

The above result, namely that the equation for ω reduces to the one of GR in vacuum for Horndeski theory with arbitrary f (X) and K(X), can be extended to quadratic Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theories [START_REF] Gleyzes | Healthy theories beyond Horndeski[END_REF]. They are given by the Lagrangian density (5.13). The inclusion of A 3 makes E tr = 0 a quadratic equation in ϕ ′2 , in contrast to the Horndeski case, where the analogous equation is linear in ϕ ′2 .

In order to obtain the desired result, we use the metric equations in a dierent order than in the previous case for Horndeski theory. First, we use E rr to express ϕ ′ ϕ ′′ in terms of {ϕ ′ , λ, ν, ν ′ }. Then, we substitute this expression into E tt to obtain λ ′ in terms of {ϕ ′ , λ, ν, ν ′ }, which we inject into E tr . This yields a quadratic equation for ϕ ′2 , and the two solutions are expressed in terms of {λ, ν, ν ′ }. Using the expressions for {ϕ ′ ϕ ′′ , λ ′ , ϕ ′2 }, one can obtain that K 1 = 4/r in vacuum, which means that the GR equation for ω is fully recovered in the case of the theories (5.13) as well.

II.A.3 DHOST Ia with constant X

Assuming in addition that X is constant, i.e. X 0 = -q 2 , the previous result can be extended to shift-symmetric DHOST theories. Indeed, when X =const., the terms containing A 4 and A 5 in the action [START_REF] Jordan | The present state of Dirac's cosmological hypothesis[END_REF] drop out of the eld equations, because one can write

L 4 ∼ X µ X µ , L 5 ∼ (X µ ϕ µ ) 2 .
Since the above expressions are quadratic in X µ , their variation will not give any contribution to the eld equations when X is constant. It immediately follows from

Eq. (4.15) that

K 1 = 4 r - λ ′ + ν ′ 2 , since f (X 0 ) -X 0 A 1 (X 0 ) is a constant.
With the choice X 0 = -q 2 , the scalar can be expressed in terms of {λ, ν} as ϕ ′2 = q 2 e λ e -ν -1 .

(II.20)

Using Eq. (II.20) in the (tt), (tr) and (rr) components of the metric equations, one can show that λ ′ + ν ′ ∼ r (P + ρ) , so once again the GR equation for ω, Eq. (4.21), is recovered in vacuum.

II.B List of coecients

In this appendix, we list the coecients of Eqs. (5.5), (5.6), (5.7), and (5.8). Each time a function is written, it is evaluated on the time-dependent background. For instance,

f ≡ f qt, -q 2 .
The time dependence of these coecients comes from the ϕ dependence of the functions. We will implement the constraint A 2 = -A 1 , but in order to keep expressions light, we will not always substitute the expression for A 4 in DHOST Ia theories. Whenever A 4 appears, one must keep in mind that the following constraint holds:

A 4 = 1 8(f + q 2 A 1 ) 2 12f A 2 1 + 16q 2 A 3 1 -12q 2 f A 1 A 3 -f A 3 8f + q 4 A 3 -8f X 6f A 1 + q 2 8A 2 1 + f A 3 + 2q 2 A 1 A 3 -2f X 3f + 4q 2 A 1 .
The terms involving A 5 were negligible in the eld equations when assuming dimensionless quantities to be of O(1), so this function does not appear in the following.

II.B.1 Coecients of the metric equations

With the denition

C = f (2f + 2q 2 A 1 -q 4 A 4 ) + 4q 2 f X (f + 2q 2 f X ) ,
the coecients for Eqs. (5.5) and (5.6) read:

Cα 1 = 2q 2 f , Cα 2 = 2q 2 f + 2q 2 f X , 2Cβ 1 = -2f ϕ f + 4q 2 f X -q 2 -2f G X + q 2 f A 3ϕ + 6f + 8q 2 f X A 1ϕ , 2Cβ 2 = 2q 2 f + 2q 2 f X G X -f -2q 2 A 1 + 6q 2 f X + q 4 A 4 A 1ϕ -q 4 f + 2q 2 f X A 3ϕ + 2f ϕ f + 2q 2 A 1 -2q 2 f X -q 4 A 4 , 2Cγ 1 = 2f A 1 + 2q 2 A 1X + q 2 f (3A 3 + 2A 4 ) -4f X f + 4q 2 f X -3q 2 A 1 , 2Cγ 2 = A 1 3q 4 A 4 -4f + q 2 3f A 3 + 2f A 4 -6A 2 1 + 2f X 2f + 6q 2 A 1 + 3q 4 A 3 -4q 2 f X + 4q 2 A 1X f + 2q 2 f X , 2Cδ 1 = 2 (A 1 -2f X ) f + 4q 2 f X + q 2 f (A 3 + 2A 4 ) , 2Cδ 2 = q 2 f (A 3 + 2A 4 ) -2A 1 f + 2q 2 A 1 -q 4 A 4 + 2f X 2f -4q 2 f X + 6q 2 A 1 + q 4 A 3 , 3Cη 1 = f K + q 2 3f X K -q 2 G ϕ -f (K X + 2G ϕ ) , 12Cη 2 = K 3q 4 A 4 -6q 2 A 1 -2f + q 2 -4f K X + 8f X K -q 2 K X -2q 2 G ϕ +G ϕ 6q 2 A 1 -2f -3q 4 A 4 .

II.B.2 Coecients of the scalar equation

We now list the coecients of the scalar equation (5.7). We do not write C 1 or η 3 because the expressions are cumbersome, and we always neglect those terms in the nonlinear regime where the Vainshtein mechanism operates. The other coecients read

C 2 = 6 f + q 2 A 1 -12q 4 A 3 1 3f ϕ + 4q 2 f ϕX -4q 2 A 1 -4q 2 G 3X 3f + q 2 f X +q 2 3A 1ϕ + 4q 2 A 1ϕX 3f + 4q 2 f X + 4q 4 A 3ϕ 3f + 2q 2 f X +f ϕ 6f -3q 4 A 3 -12q 4 A 1X + 8q 2 f X -2q 2 f ϕX 3q 4 A 3 + 8q 4 A 1X -10f +16f 2 G 3X 2f + 2q 2 f X -q 4 A 3 -3q 4 A 1X + 16q 4 f 2 f ϕX (A 3 + 2A 1X ) -f A 1ϕ 16q 4 A 1X q 4 A 3 -8f -12q 2 f X + 4f -5q 4 A 3 12f -q 4 A 3 +16q 2 f X A 1ϕ 10f + 7q 2 f X -5q 4 A 3 -8q 2 f 2 A 1ϕX 4f + q 4 A 3 + 4q 2 f X -8q 2 f 2 A 3ϕ 4f -q 4 A 3 + 4q 2 f X -4q 4 A 1X + 2f f ϕ q 2 A 3 16f -q 4 A 3 -16f X 3f -2q 4 A 3 + 3q 2 f X + 4q 2 A 1X 6f -q 4 A 3 + 20q 2 f X +q 2 A 1 16f G 3X 5f -q 4 A 3 -3q 4 A 1X + 3q 2 f X + 4A 1ϕ 2q 2 f X (-28f +7q 4 A 3 + 16q 4 A 1X -12q 2 f X ) + 3f (5q 4 A 3 + 8q 4 A 1X -8f ) +8f q 2 A 3ϕ q 4 A 3 -10f + 4q 4 A 1X -8q 2 f X + 8f f ϕX 5q 4 A 3 -4f + 12q 4 A 1X -8f q 2 A 1ϕX 10f + q 4 A 3 + 12q 2 f X + q 2 A 3 f ϕ 40f + 3q 4 A 3 -8f ϕ f X 18f -5q 4 A 3 + 10q 2 f X + 8q 2 f ϕ A 1X 8f + q 4 A 3 + 12q 2 f X , C 3 = 24 f + q 2 A 1 2 (2f A 1X + 2A 1 f X + f A 3 ) × 4q 2 f X -3q 4 A 3 + 4f + 6q 2 A 1 -8q 4 A 1X , Γ 0 = 48q 2 f + q 2 A 1 q 2 q 2 A 3 -4f X -2q 2 f A 1ϕ + f ϕ q 2 A 1 -f +2q 2 A 1 f q 4 A 3ϕ + 2f ϕ + 6q 2 f ϕX -q 2 G 3X + 2q 4 A 2 1 3f ϕ + 4q 2 f ϕX +2f 2 f ϕ + q 2 2A 1ϕ + q 2 A 3ϕ + 2f ϕX -G 3X , Γ 1 = -192q 4 f + q 2 A 1 2 (2f A 1X + 2A 1 f X + f A 3 ) , Γ 2 = 12q 2 2f A 1 + q 2 4A 2 1 -f A 3 -4f X f + 2q 2 A 1 × f 4f + 6q 2 A 1 + q 4 A 3 + 4q 2 f X f + 2q 2 A 1 .

II.B.3 Coecients of the (tφ) equation

We now list the coecients of Eq. (5.8), apart from β 0 , κ 0 , since we neglect these terms inside the Vainshtein radius. We dene

D = f 4f + 6q 2 A 1 + q 4 A 3 + 4q 2 f X f + 2q 2 A 1 .
The remaining coecients read

D 2 α 0 = 8q 4 f + q 2 A 1 -f A 1 + q 2 f A 1X + f X 2f + q 2 A 1 , D 2 ζ 0 = -4q 2 f + q 2 A 1 2 f + 2q 2 f X , 4D 2 γ 0 = {f + q 2 A 1 }{f 8q 2 A 1X -2f -4q 2 A 1 + 4q 4 A 1X + 3q 4 A 3 + 3q 6 A 2 3 -12q 2 A 2 1 + f A 3 -8f A 1 -24q 4 A 1 A 3 -16f X 3q 4 A 2 1 -2q 6 A 1 A 1X -f 2 + 16q 2 f 2 X f + 2q 2 A 1 } , 2D 2 δ 0 = f + q 2 A 1 2A 1 + q 2 A 3 -4f X f 4f + 6q 2 A 1 + 3q 4 A 3 + 4q 4 A 1X +4q 2 f X f + 3q 2 A 1 , 4Dσ 0 = f + q 2 A 1 2A 1 + q 2 A 3 -4f X .

II.B.4 Other coecients

We dene

B = 8 f + q 2 A 1 (2A 1 f X + 2f A 1X + f A 3 ) × 4f + 2q 2 (3A 1 + 2f X ) -q 4 (8A 1X + 3A 3 ) .
Then, the coecients of Eq. (5.12) read

Bι 0 =4q 2 f + 2q 2 A 1 A 2 1 -2f A 3 + 4f X (f X -2A 1 ) + q 6 A 3 4A 2 1 + 3f A 3 + 8q 2 A 1X f -2f -4q 2 A 1 + 3q 4 A 3 + 4q 4 (f A 1X + A 1 f X ) , Bι 1 = -q 2 2A 1 -4f X + q 2 A 3 2f A 1 -4f X f + 3q 2 A 1 +q 2 4A 2 1 -3f A 3 -4f A 1X , 2Bι 2 = -q 2 2A 1 -4f X + q 2 A 3 2f A 1 -4f X f + 2q 2 A 1 + q 2 4A 2 1 -f A 3 .
The coecient of Eqs. (5.22) and (5.23) reads

ι 3 = N ι 3 D ι 3 ,
where the numerator and denominator are given by

N ι 3 = f ϕ A 1 f 2 -2q 2 f A 1 -5q 4 A 2 1 + q 2 A 1X -3f 2 -3q 2 f A 1 + 4q 4 A 2 1 +q 4 A 1X f -q 2 A 1 -2A 1ϕ 6f 3 + 14q 2 f 2 A 1 + 10q 4 f A 2 1 + 3q 6 A 3 1 +q 4 A 1X 2f 2 + 5q 2 f A 1 + q 4 A 2 1 -q 4 f A 1X + f + q 2 A 1 G 3X 8f 2 + 15q 2 f A 1 + 6q 4 A 2 1 -q 4 f A 1X +2q 2 A 1ϕX 4f 2 + 7q 2 f A 1 + 2q 4 A 2 1 -q 4 f A 1X , D ι 3 = 2f + 3q 2 A 1 -q 4 A 1X 2 q 2 f ϕ A 1X q 2 A 1 -2f -3A 2 1 +f 4 f + q 2 A 1 G 3X + q 2 A 1ϕX -3A 1ϕ 2f + q 2 A 1 + q 4 A 1X .
Part III

Disforming the Kerr metric Introduction to Part III

In 1916, a few months after Einstein proposed his general theory of relativity (GR), Schwarzschild discovered a static solution to the vacuum eld equations. This solution possesses an intriguing property, namely there exists a surface of no return, from the interior of which it is impossible for matter or even light to escape. For this reason, the term black hole was introduced by Wheeler in 1967 to describe such objects. Though the metric of a static black hole was found rather quickly, the quest to nd a rotating counterpart to the Schwarzschild solution remained fruitless for decades. In 1963, Kerr derived the expression for a rotating black hole depending on two parameters [START_REF] Kerr | Gravitational eld of a spinning mass as an example of algebraically special metrics[END_REF], its mass M and angular momentum J = aM , and which reduced to the Schwarzschild spacetime in the limit a = 0. It was later shown that the Kerr metric is the unique stationary and axisymmetric vacuum black hole in GR [START_REF] Robinson | Uniqueness of the Kerr black hole[END_REF], making it essential from a theoretical point of view. While black holes were for a long time believed to be of mathematical interest only, proof of their existence in Nature has started to arise in later years.

Einstein's theory has been extensively tested in the Solar System in the last century, passing all weak-eld tests with great success (see Ref. [START_REF] Will | The Confrontation between General Relativity and Experiment[END_REF] for a review). The study of binary pulsars has provided a window into the strong gravity regime in GR [START_REF] Wex | Gravity Tests with Radio Pulsars[END_REF], but the spacetime around black holes remains largely untested. At the center of the Milky Way, there exists a bright source of radio and infrared emissions called Sagittarius A, and in which lies Sagittarius A* (Sgr A*). The current understanding is that this region coincides with a supermassive black hole (SMBH) of mass M ∼ 4 × 10 6 M ⊙ (see Ref. [START_REF] Ghez | The Galactic Center: A Laboratory for Fundamental Astrophysics and Galactic Nuclei[END_REF] and references within). In fact, a SMBH (meaning M ≳ 10 6 M ⊙ ) is expected to exist in the center of almost every large galaxy. Recently, the Event Horizon Telescope collaboration produced an image of M87* [START_REF] Akiyama | First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole[END_REF], which is the SMBH at the center of Messier 87, a galaxy in the Virgo cluster. Furthermore, gravitational waves from the distant merger of binary black holes have been detected by groundbased interferometers for the rst time in 2015 [START_REF] Abbott | Observation of Gravitational Waves from a Binary Black Hole Merger[END_REF]. Stars orbiting around Sgr A* have been observed for more than two decades, and this led to the determination of its mass. In addition, the GRAVITY collaboration was able to measure the gravitational redshift and pericenter precession of the star S2 [START_REF] Abuter | Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole[END_REF][START_REF] Abuter | Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole[END_REF], which agree with the GR predictions. In the future, more precise measurements will be able to determine the spin and quadrupole moment of Sgr A* [START_REF] Will | Testing the general relativistic no-hair theorems using the Galactic center black hole SgrA*[END_REF], providing a test of the no-hair theorem in general relativity [168170] (which states that higher-order multipole moments of the Kerr black hole are determined by its mass and spin only). This could in particular be achieved if a binary pulsar orbiting close enough to the black hole is discovered, by studying the time of arrival of pulses. Hence, Sgr A* provides a promising avenue to test GR in the vicinity of a black hole [START_REF] Johannsen | Sgr A* and General Relativity[END_REF].

In this context of increasing eorts aimed at probing the spacetime around black holes, it is natural to construct alternatives to the Kerr metric. Given the diculty of nding metrics describing rotating black holes, several numerical solutions have been constructed (see Refs.

[172175] and references therein). However, there have also been eorts to construct analytical solutions, the usual approach consisting in adopting a theory-agnostic point of view, while focusing on the phenomenological signatures of the spacetime. Even though the underlying theory is unknown in these cases, the Kerr deformations are usually chosen in order to preserve some properties of the GR spacetime [176178], like the possibility to integrate the geodesic equation for instance [START_REF] Carter | Hamilton-Jacobi and Schrodinger separable solutions of Einstein's equations[END_REF]. These ad hoc deformations were sometimes shown to possess pathologies like closed timelike curves [START_REF] Johannsen | Systematic Study of Event Horizons and Pathologies of Parametrically Deformed Kerr Spacetimes[END_REF]. Another approach is to construct a metric which is a solution to a specic theory of gravity, and we will present such examples in the following chapters: the disformed Kerr metrics. These spacetimes are constructed in the context of degenerate higher-order scalar-tensor (DHOST) theories, by applying a disformal transformation [START_REF] Bekenstein | The Relation between physical and gravitational geometry[END_REF] to the Kerr metric using a geodesic scalar eld. While the resulting metrics present some similarities to the Kerr spacetime, we will see that they are distinct in many interesting ways.

In Chapter 7, we will review the (uncharged 2 ) black hole solutions of general rela- tivity, by presenting the properties of the Schwarzschild and Kerr solutions. In Chapter 8, we will present the construction of the disformed Kerr metrics, and analyze their properties, highlighting the dierences with the Kerr spacetime. Finally, in Chapter 9

we will study the orbit of stars around a disformed Kerr black hole, showing that in general the no-hair theorem of GR is violated. Furthermore, we will use the current experimental measurements to put a bound on the parameter arising from the disformal transformation.

2 There exists a charged version of the Kerr metric, the Kerr-Newman black hole [START_REF] Newman | Metric of a Rotating, Charged Mass[END_REF]. However, since such an object would rapidly neutralize due to the inuence of a surrounding plasma, it is reasonable to assume that astrophysical black holes are uncharged.

Chapter 7

Black holes in general relativity

This chapter is devoted to black holes in general relativity. We start by presenting the static Schwarzschild black hole, and dene some important terms that we will use in the following. We then review the main properties of the Kerr spacetime in GR, which will provide a reference point to which we will compare those of the disformed Kerr metric in the following chapter.

Schwarzschild black hole and denitions

In 1916, Schwarzschild found a metric which satises the vacuum Einstein equations R µν = 0 . In geometric units, where G = c = 1, the line element reads

ds 2 = -1 - 2M r dt 2 + 1 - 2M r -1 dr 2 + r 2 dθ 2 + r 2 sin 2 θdφ 2 , (7.2)
where M is a constant parameter. Let us consider a freely-falling particle in this spacetime with a 4-velocity u µ = dx µ /dτ , where the proper time τ is dened as dτ 2 = -ds 2 . The particle's motion is given by the geodesic equation

u µ ∇ µ u ν = d 2 x ν dτ 2 + Γ ν µα dx α dτ dx µ dτ = 0 . (7.3)
Let us now examine the Newtonian limit of this equation, by assuming that the particle is nonrelativistic, i.e. dx i /dt ≪ 1. With this approximation, the spatial components of the geodesic equation can be written d

2 x i dt 2 = - M x i r 3 + O M 2 r 3 . (7.4)
This is simply the Newtonian force created by an object of mass M located at r = 0.

The constant M is hence interpreted as the mass of the central object. From the expression (7.2), the metric seems singular at r = 2M . However, an explicit calculation of the Kretschmann scalar for this metric yields

R µναβ R µναβ = 48M 2 r 6 , (7.5) 
which suggests that r = 2M is not a curvature singularity. To see this explicitly, one can introduce the coordinates

v = t + r * , (7.6 
)

u = t -r * , (7.7) 
where the tortoise coordinate r * is given by

r * = r + 2M ln r 2M -1 . (7.8)
In these coordinates, ingoing light rays correspond to v = const., while outgoing light rays are given by u = const.. In terms of the coordinate v, the Schwarzschild metric reads ds

2 = -1 - 2M r dv 2 + 2dvdr + r 2 dθ 2 + sin 2 θdφ 2 .
(7.9)

These are called ingoing Eddington-Finkelstein (EF) coordinates, and one can obtain an analogous line element for outgoing coordinates u by the substitution dv → -du.

It is clear from this expression that the only singularity of the Schwarzschild spacetime lies at r = 0. In terms of the coordinates v, outgoing null geodesics verify the equation

dr dv = 1 2 1 - 2M r .
(7.10)

Hence, for r < 2M , even future oriented outgoing light rays travel to decreasing r [START_REF] Chandrasekhar | The mathematical theory of black holes[END_REF].

Because of this peculiar property, the surface r = 2M is called the event horizon of the Schwarzschild spacetime. Once a timelike or null observer has entered the region r < 2M , it can no longer escape to innity, and in order to stay on the surface r = 2M , it is necessary to travel at the speed of light. This property has led to this object being called a black hole, since not even light can escape its gravitational pull, and hence it looks black to an observer on the outside. Notice that in terms of the coordinate u, the same reasoning shows that infalling light rays move towards increasing r when r < 2M . In this case we obtain a white hole, since all light rays must escape the interior region and the object looks bright to an observer in the exterior region.

We will now see that the event horizon surface r = 2M is dierent from the other constant r surfaces in the Schwarzschild spacetime. A hypersurface is a 3-dimensional surface Σ that can be dened by a constraint on the spacetime coordinates Σ : F (x µ ) = 0 . The normal vector n to this surface has covariant components which are given by the gradient of the function F : n µ = ∂ µ F .

(7.12)

We now dene the nature of the hypersurface depending on the norm of n:

n 2 = g µν ∂ µ F ∂ ν F . (7.13) 
There are 3 dierent cases, which are represented on Fig. 1:

if n is spacelike, i.e. n 2 > 0 : Σ is a timelike hypersurface, and the light cone at a point of Σ overlaps the surface, meaning a timelike observer can cross the surface in both directions.

if n is null n 2 = 0 : Σ is null, and a the light cone is tangent to the surface.

This means that a light ray can skim the surface, but a future-oriented timelike observer has to cross the surface in a future-pointing direction.

if n is timelike, i.e. n 2 < 0 : Σ is a spacelike hypersurface, and the light cone at a given point is oriented in a specic direction which both light and timelike observers must follow.

Let us now determine the nature of the hypersurfaces Σ 0 dened by the equation r = r 0 , where r 0 is a constant. The normal vector to such a surface is simply n µ = g rµ , and its norm is given by

n 2 = g rr = 1 - 2M r . (7.14)
From the denitions that we gave above, we see that there are 3 dierent cases: Σ 0 is timelike i timelike when r 0 > 2M , null for r 0 = 2M and spacelike for 0 < r 0 < 2M .

Hence if a timelike observer crosses the surface r = 2M , they will continue falling inwards until they reach the singularity at r = 0. The surface r = 2M is the event horizon of the Schwarzschild spacetime, and it separates the singularity at r = 0 from the exterior region r > 2M .

We now discuss the symmetries of the Schwarzschild solution. If the metric tensor is invariant under the ow of a vector V , i.e.

L V g = V α ∂ α g µν + 2g α(µ ∂ ν) V α = 0 , (7.15)
where L is the Lie derivative, then V is called a Killing vector. It generates a continuous isometry of spacetime, and using the previous expression we obtain the Killing equation

∇ (µ V ν) = 0 , (7.16)
where the brackets denote a symmetrization of the indices. Each Killing vector corresponds to a conserved quantity along geodesics. Indeed, for a geodesic vector u µ , we have

u α ∇ α (u µ V µ ) = u α u µ ∇ α V µ + V µ u α ∇ α u µ .
(7.17)

The two terms on the right-hand side both vanish, the rst because of the Killing equation, and the second because u is geodesic. This implies that u µ V µ is a constant of motion.

A spacetime is said to be stationary if it possesses an asymptotically timelike Killing vector ξ, i.e. ξ2 < 0 for r → ∞. For the Schwarzschild metric, the vector ξ = ∂ t is timelike in the region r > 2M , and hence the spacetime is stationary. A stationary spacetime is static if the timelike Killing vector is irrotational, in which case the spacetime can be foliated by spacelike hypersurfaces orthogonal to the Killing eld ξ.

One can show that the Schwarzschild metric is indeed static. An important theorem by Birkho [START_REF] Birkho | Relativity and modern physics[END_REF] 1 states that any spherically symmetric solution to the vacuum Einstein equations must be static and asymptotically at (in the sense that we recover the Minkowski metric when r → ∞ 2 ). In other words, the exterior metric of any spherically symmetric star is isomorphic to the Schwarzschild spacetime. Now that we have dened Killing vectors, we introduce the notion of Killing horizon. A Killing horizon is a null hypersurface which possesses a normal Killing vector.

Hence, the Killing vector has a vanishing norm on the surface, and is normal to it. In the Schwarzschild spacetime, the timelike Killing vector becomes null on the surface r = 2M , which corresponds to the event horizon. Let us now show that this vector is also normal to the surface. In Eddington-Finkelstein coordinates, one can choose the timelike Killing vector ξ (v) = ∂ v , which has contravariant components ξ µ (v) = (1, 0, 0, 0). The normal vector to the horizon surface has covariant components n µ = (0, 1, 0, 0).

The covariant components of the Killing vector read

g µν ξ ν (v) = -1 + 2M r , 1, 0, 0 , (7.18)
and it is clear that this vector is normal to the horizon surface, upon evaluating it at r = 2M . Hence the event horizon of the Schwarzschild spacetime is also a Killing horizon. In fact, the rigidity theorem, due to Hawking, states [START_REF] Hawking | The Large Scale Structure of Space-Time[END_REF]:

Rigidity theorem: The event horizon of a real analytic, stationary, regular vacuum spacetime is a Killing horizon.

One can dene the notion of surface gravity κ of the Killing horizon, which is given by the inanity of the Killing eld

ξ µ (v) ∇ µ ξ ν (v) = κξ ν (v) , (7.19) 
where the equality is evaluated on the horizon surface. The term inanity is due to the resemblance of the previous equation to the one veried by a non-ane geodesic eld. An explicit calculation for the Schwarzschild metric yields κ = 1 4M .

(7.20)

It can be shown that the surface gravity is constant on a Killing horizon. More details can be found in Wald's book [START_REF] Wald | General Relativity[END_REF], along with other denitions of the surface gravity (which provide the same result in GR). In the context of black hole thermodynamics, the surface gravity is related to the Hawking temperature T H of the black hole, through the relation T H = κ/(2π) [START_REF] Hawking | Black hole explosions[END_REF][START_REF] Bekenstein | Black holes and entropy[END_REF].

7.2 The Kerr spacetime

Properties and symmetries

The Schwarzschild solution for a static black hole was found within a year of the publication of Einstein's general theory of relativity. In 1918, Lense and Thirring, derived the exterior metric of a rotating body up to rst order in the angular momentum, but an exact rotating black hole solution was not found until 1963. The Kerr metric was originally written in the following form [START_REF] Kerr | Gravitational eld of a spinning mass as an example of algebraically special metrics[END_REF]:

ds 2 K = -1 - 2M r r 2 + a 2 cos 2 θ dv + a sin 2 θ dΦ 2 + 2 dv + a sin 2 θ dΦ dr + a sin 2 θ dΦ + r 2 + a 2 cos 2 θ dθ 2 + sin 2 θ dΦ 2 , (7.21)
where the parameters M and a represent the black hole's mass and spin (or angular momentum per unit mass), respectively. When a = 0, the above line element reduces to the Schwarzschild metric written in ingoing EF coordinates, and for this reason they are sometimes referred to as generalized ingoing EF coordinates. It is clear that they are regular everywhere except when: r = 0 and θ = π 2 .

(7.22)

The Kretschmann scalar for the Kerr metric is given by:

R µναβ R µναβ = 48M 2 (r 2 -a 2 cos θ)[(r 2 + a 2 cos 2 θ) 2 -16r 2 a 2 cos 2 θ] (r 2 + a 2 cos 2 θ) 6 , (7.23)
which shows that the above relations correspond to a curvature singularity. It is referred to as a ring singularity, which can be understood by performing the following coordinate transformation [START_REF] Kerr | Gravitational eld of a spinning mass as an example of algebraically special metrics[END_REF]:

t = v -r , z = r cos θ ,
x + iỹ = (r -ia) e iΦ sin θ .

(7.24)
Indeed, in these coordinates the singularity lies at z = 0 and x2 + ỹ2 = a 2 , hence the name ring singularity. The Kerr metric was written by Boyer and Lindquist [START_REF] Boyer | Maximal analytic extension of the Kerr metric[END_REF] in a form that contains only one o-diagonal term, and hence usually simplies calculations.

The coordinate transformation to Boyer-Lindquist (BL) coordinates starting from the metric (7.21) is given by:

t = v -r - 2M r r 2 + a 2 -2M r dr , φ = -Φ -a dr r 2 + a 2 -2M r , (7.25) 
resulting in the following line element:

ds 2 K = -1 - 2M r ρ 2 dt 2 - 4M ar sin 2 θ ρ 2 dtdφ + ρ 2 ∆ dr 2 + ρ 2 dθ 2 + sin 2 θ ρ 2 r 2 + a 2 2 -a 2 ∆ sin 2 θ dφ 2 . (7.26)
In order to lighten the notation, we have dened the following functions:

∆(r) = r 2 + a 2 -2M r , ρ 2 (r, θ) = r 2 + a 2 cos 2 θ .
These coordinates are singular when ∆ = 0 or ρ = 0. We have seen that ρ = 0 corresponds to a curvature singularity, since the Kretschmann scalar diverges. On the other hand, ∆ = 0 is a coordinate singularity, and it is clear from the line element written in the original Kerr coordinates that the metric is well dened at these points.

When a = 0, the metric (7.26) reduces to the Schwarzschild metric in the usual Schwarzschild coordinates.

The Kerr metric is a stationary spacetime, as the vector ξ = ∂ t is an asymptotically timelike Killing vector. Furthermore, the metric is axially symmetric, and the associated Killing eld η = ∂ φ is spacelike (and vanishes on the axis of symmetry θ = 0 [START_REF] Carter | The commutation property of a stationary, axisymmetric system[END_REF]). Furthermore, one says that the spacetime is axisymmetric if the action of these elds commutes, i.e.

ξ µ ∇ µ η ν -η µ ∇ µ ξ ν = 0 ,
which can easily be checked for the Kerr metric. In addition to being independent of t and φ, the line element (7.26) also enjoys the reection symmetry (t, φ) → (-t, -φ).

In other words, the metric is invariant under the simultaneous reversal of the time and azimuthal angle coordinates. This can be formulated in terms of the Killing elds as follows [START_REF] Heusler | Black Hole Uniqueness Theorems[END_REF]:

ξ [µ η ν ∇ α ξ β] = ξ [µ η ν ∇ α η β] = 0 ,
where the square brackets denote the antisymmetrization of indices. With a slight abuse of notation, we refer to the associated 1-forms to the Killing vectors with the same letter, i.e. ξ = g tµ dx µ and η = g φµ dx µ . The previous conditions can then be rewritten as ξ ∧ η ∧ dξ = ξ ∧ η ∧ dη = 0 , (7.27) where the ∧ is the exterior product on the space of forms. A spacetime which veries the previous conditions is said to be circular. This is the case for black hole solutions in GR. Indeed, it can be shown [START_REF] Papapetrou | Champs gravitationnels stationnaires a symetrie axiale[END_REF] that a Ricci-circular spacetime, i.e. a spacetime verifying:

ξ µ R µ [ν ξ α η β] = η µ R µ [ν ξ α η β] = 0 , (7.28) 
is circular as long as the conditions (7.27) hold at one point of the spacetime. For axisymmetric spacetimes, the spacelike Killing vector η µ = 0 on the symmetry axis [START_REF] Carter | The commutation property of a stationary, axisymmetric system[END_REF], so the relations (7.27) are satised there. It follows that vacuum axisymmetric spacetimes in GR are circular, as Ricci-circularity is immediate from R µν = 0.

In addition to the two Killing vectors, the Kerr metric possesses a nontrivial Killing tensor, i.e. a symmetric 2-tensor K verifying the generalized Killing equation:

∇ (α K µν) = 0 . (7.29)
We say nontrivial in the sense that K is neither the metric tensor (which trivially veries this identity if one assumes the Levi-Civita connection, i.e. ∇g = 0), nor any tensor product combination of the Killing vectors ξ and η. The Killing tensor is associated to a conserved quantity K µν u µ u ν along the geodesic u µ , as can be seen by calculating:

u α ∇ α (K µν u µ u ν ) = u α u µ u ν ∇ α K µν + 2K µν u µ u α ∇ α u ν = 0 . (7.30)
The two terms on the right-hand-side of the previous expression vanish separately.

The rst term is zero because of the relation (7.29), while the second vanishes because u is a geodesic vector. The same argument can be used to show that the quantities

E = -ξ µ u µ and L = η µ u µ (7.31)
are also conserved along the geodesic dened by the vector u, as we saw in the previous section. These correspond to the energy and angular momentum of the particle, respectively. The meaning of the conserved quantity associated to the Killing tensor is not very clear, in the sense that it is not immediately associated to spacetime symmetries as in the case of the Killing vectors. It is said to correspond to a hidden symmetry of the Kerr spacetime.

It should be noted that the existence of a nontrivial Killing tensor for vacuum spacetimes in GR is a generic feature of type D metrics [START_REF] Walker | On quadratic rst integrals of the geodesic equations for type [22] spacetimes[END_REF], according to the Petrov classication [192194]. In this case the Killing tensor can be expressed in terms of the metric and the two repeated principal null directions of the spacetime (see Theorem 35.3 in Ref. [START_REF] Stephani | Exact solutions of Einstein's eld equations[END_REF] for an exception). For the Kerr spacetime, the Killing tensor can be written [START_REF] Walker | On quadratic rst integrals of the geodesic equations for type [22] spacetimes[END_REF] K µν = 2ρ 2 (r, θ)k

(µ 0 l ν) 0 + r 2 g µν , (7.32)
where the repeated principal null directions in Boyer-Lindquist coordinates read

k 0 = r 2 + a 2 ∆ ∂ t + ∂ r + a ∆ ∂ φ , l 0 = ∆ 2ρ 2 r 2 + a 2 ∆ ∂ t -∂ r + a ∆ ∂ φ . (7.33)
This extra conserved quantity makes it possible to integrate the geodesic equations and write them as a rst-order system. This was rst discovered by Carter when he realized that the Hamilton-Jacobi equation for geodesics was separable [START_REF] Carter | Hamilton-Jacobi and Schrodinger separable solutions of Einstein's equations[END_REF], and was later related to the existence of a nontrivial Killing tensor [START_REF] Walker | On quadratic rst integrals of the geodesic equations for type [22] spacetimes[END_REF]. To see this explicitly, let us write the Hamilton-Jacobi equation for geodesics in the Kerr spacetime:

∂S ∂τ + 1 2 g µν ∂ µ S∂ ν S = 0 , (7.34)
where S is the Hamilton-Jacobi potential. We now search for separable solutions of the form S = 1 2 m 2 τ -Et + Lφ + S r (r) + S θ (θ) , (7.35) where m, E, and L are respectively the mass, energy and angular momentum of a geodesic particle. For the Kerr spacetime, the equation does separate, and we obtain the relation

-m 2 r 2 - [aL -E (r 2 + a 2 )] 2 ∆ + ∆ ∂S r ∂r 2 = a 2 m 2 cos 2 θ + sin 2 θ aE - L sin 2 θ 2 + ∂S θ ∂θ 2 = K , (7.36)
where K is a separation constant which must be positive for timelike and null geodesics, as can be seen from the second line in the previous expression. This constant is in fact the conserved quantity associated to the Killing tensor K µν dened above. After integrating the previous relations, we obtain the nal expression for the Hamilton-

Jacobi potential S = 1 2 m 2 τ -Et + Lφ ± R(r) ∆ dr ± Θ(θ)dθ , (7.37)
where the functions R and Θ are given by:

R = aL -E r 2 + a 2 2 -∆ K + m 2 r 2 , Θ = K -a 2 m 2 cos 2 θ -sin 2 θ aE - L sin 2 θ 2 . (7.38)
The following combination of conserved quantities is often used:

Q = K -(aE -L) 2 , (7.39)
and either K or Q are called Carter's constant, depending on the reference. Each has its own advantage. As we discussed, K ≥ 0 for timelike and null geodesics, and it can be shown that K = 0 only for principal null geodesics. On the other hand, the constant Q has a clearer geometrical interpretation. For instance, any geodesic which approaches the ring singularity must have Q = 0. For a detailed study of Kerr geodesics, see for example Refs. [START_REF] Chandrasekhar | The mathematical theory of black holes[END_REF][START_REF] O'neill | The Geometry of Kerr Black Holes[END_REF].

Timelike observers in the Kerr spacetime

In this section, we will discuss the important hypersurfaces and regions of the Kerr spacetime. We will start in the region r ≫ M , and describe what happens as r decreases progressively. In the asymptotic region, the metric (7.26) reads

ds 2 K = -1 - 2M r + O M a 2 r 3 dt 2 - 4aM r 3 + O M a 3 r 5 [xdy -ydx] dt + δ ij + O M r dx i dx j , (7.40) 
where we have introduced the Cartesian coordinates x = r cos φ sin θ , y = r sin φ sin θ , z = r cos θ .

The mass and spin of the black hole are obtained from the leading corrections to at space: the mass is given by the g tt term, while we obtain the spin from the g ti terms [START_REF] Misner | Gravitation[END_REF].

We now decrease the radial coordinate, starting from innity. To understand the structure of the spacetime, it is instructive to study the trajectories of timelike observers. We assume a ≤ M and focus on stationary observers, meaning that the coordinates r and θ are constant. The 4-velocity l S of such observers is hence given by:

l S = ∂ t + ω∂ φ , (7.41) 
where ω corresponds to the angular velocity in the φ direction. The vector l S is timelike, l 2 S ≤ 0, which implies the following condition for the function ω:

g tt + 2ωg tφ + ω 2 g φφ ≤ 0 . (7.42)
The metric component g φφ > 0 for large enough r, in which case the condition above is satised for ω ∈ [ω -, ω + ], where the ω ± are given by:

ω ± = - g tφ g φφ 1 ± 1 - g tt g φφ g 2 tφ . (7.43) 
While g tt < 0, which is true asymptotically, it is possible to have ω < 0. However, there exists a hypersurface r = r E (θ) inside which g tt > 0. Solving the equation ρ 2 = 2M r, we obtain:

r E (θ) = M + √ M 2 -a 2 cos 2 θ . (7.44) 
This surface is called the ergosurface, or static limit. The latter name stems from the fact that when g tt > 0, a timelike or null vector must have ω > 0, since ω -> 0.

Hence, such observers necessarily co-rotate with the black hole, or in other words the frame-dragging eect from the rotating source can no longer be countered, even with a powerful engine. Hence this surface is the endpoint of static observers located at constant {r, θ, φ}. It can be shown that the ergosurface is a timelike hypersurface, meaning that it is possible to cross it in both directions (increasing or decreasing r).

Although the Killing vector ξ is null on this surface, we do not have a Killing horizon since ξ is not normal to the ergosurface. The Killing vector ξ becomes spacelike when g tt > 0, but it is still possible to construct a timelike Killing vector of the form (7.41) with a constant angular velocity. ). The ergoregion (in red), lies between the ergosurface (red) and the outer event horizon (black). Inside the outer horizon lies the inner horizon (dashed black), the inner ergosurface (dashed red) and the ring singularity (dotted blue).

By going deeper towards the interior of the ergosurface, one reaches a point where the condition (7.42) can no longer be satised. The limiting surface, which we call the stationary limit, 3 veries g tt g φφ -g 2 tφ = 0 .

(7.45)

For the Kerr metric, this is equivalent to solving the equation ∆ = 0, which admits the roots

r ± = M ± √ M 2 -a 2 . (7.46) 
In between these two constant r surfaces, timelike stationary observers of the form (7.41) cannot exist, as this would correspond to an imaginary angular velocity ω. The stationary limit is the surface corresponding to the outer root r = r + .

These two surfaces are in fact null hypersurfaces, and correspond to the outer and inner event horizon of the Kerr spacetime, respectively. When a = 0, we obtain the Schwarzschild horizon located at r = 2M , as we discussed in the previous section.

When a > M , the equation ∆ = 0 has no real solutions, and hence the ring singularity is not shielded by an event horizon [START_REF] Carter | Global structure of the Kerr family of gravitational elds[END_REF]. However, the cosmic censorship hypothesis states that no such naked singularity can exist in Nature [START_REF] Penrose | Gravitational collapse: The role of general relativity[END_REF]. In the special case a = M , the equation ∆ = 0 has a double root and we obtain the extremal Kerr metric, with an event horizon at r = M . Let us discuss the nature of the surfaces Σ 0 dened by r = r 0 in the Kerr spacetime. It is easy to show that such surfaces are timelike for r 0 > r + and 0 < r 0 < r -, spacelike for r -< r 0 < r + and null for r 0 = r ± . When a = M , in the case of the extremal Kerr metric, we have r + = r -and the surfaces Σ 0 are timelike both in the interior and the exterior of the horizon. Hence, unlike for the Schwarzschild spacetime, a timelike observer can avoid the ring singularity, as the motion towards increasing r is permitted in the region r < r -. For details about the global structure of the Kerr spacetime, see for instance Ref. [START_REF] O'neill | The Geometry of Kerr Black Holes[END_REF].

According to Hawking's rigidity theorem [START_REF] Hawking | The Large Scale Structure of Space-Time[END_REF], which we wrote in the previous section, the event horizons are also Killing horizons. Their Killing generators k ± are co-linear to the principal null directions (7.33) of the Kerr spacetime on the Killing horizon, and read

k ± = ∂ t + a a 2 + r 2 ± ∂ φ . (7.47)
When a = 0 we recover the Killing generator of the Schwarzschild horizon, and in the general case this can be interpreted as a rotation of the event horizons with constant angular velocities

Ω ± = a a 2 + r 2 ± = a 2M r ± . (7.48) 
The inanity of the Killing generators k ± leads to the expression of the surface gravities κ ± of the Killing horizons

κ ± = r ± -r ∓ 2M r ± . (7.49) 
For a review of black hole thermodynamics, see for instance Ref. [START_REF] Wald | The thermodynamics of black holes[END_REF].

We end this section by discussing an interesting property of the ergoregion in the Kerr spacetime, i.e. the region between the ergosurface and the outer event horizon.

Remarkably, it is possible to extract rotational energy from the black hole in this region by the Penrose process [START_REF] Penrose | Gravitational collapse: The role of general relativity[END_REF][START_REF] Penrose | Extraction of rotational energy from a black hole[END_REF]. The mechanism can be understood by considering a particle with 4-momentum p µ coming from innity with an energy E 0 = -p • ξ.

We assume that in the ergoregion, this particle decays into 2 other particles having momenta p µ 1 and p µ 2 . Since the Killing vector ξ is spacelike in this region, it is possible to choose E 1 < 0 for instance. The particle (1) has a negative energy as seen from an observer at innity, and will fall inside the black hole. On the other hand, the particle (2) can escape to innity, and the conservation of energy gives E 2 > E 0 . In this way, rotational energy has been extracted from the black hole. Though this is an interesting theoretical property, it has been shown that the eciency of this process for realistic astrophysical scenarios is rather low [START_REF] Wald | Energy Limits on the Penrose Process[END_REF]. A similar process exists for the amplication of waves in the ergoregion [202207], which is called superradiance (see Ref. [START_REF] Brito | Superradiance: New Frontiers in Black Hole Physics[END_REF] for a review). These eects are part of a wide class of physical phenomena, which also include the quantum laser eects of black holes [209211] (and their acoustic counterparts [START_REF] Finazzi | Black-hole lasers in Bose-Einstein condensates[END_REF]).

Chapter 8

The disformed Kerr metrics In this chapter, which is based on Ref. [START_REF] Anson | Disforming the Kerr metric[END_REF], we present the construction of the disformed Kerr metrics and compare their properties to those of the GR spacetime. We will see that they constitute interesting counterexamples to many of the properties exhibited by the Kerr black hole. Some important features are the following: the disformed metrics are noncircular and not Ricci-at; their event horizon does not lie at constant r; the event horizon is not a Killing horizon; there is no nontrivial Killing tensor. On the other hand, we will see that the asymptotic form of the disformed metrics is very similar to Kerr, and that they are regular everywhere except on the ring singularity.

Construction of the disformed Kerr metrics

The starting point of our construction is the stealth-Kerr black hole solution of Ref. [START_REF] Charmousis | Rotating Black Holes in Higher Order Gravity[END_REF].

In a particular class of DHOST theories, the authors showed that there exist solutions of the form:

g µν = g K µν , ϕ = -Et + Lφ ± R(r) ∆ dr ± Θ(θ)dθ ,
where the expressions for R and Θ are given by Eq. (7.38). This type of solution, where a nontrivial scalar eld has no backreaction on the GR metric, is called a stealth solution. There are examples of static stealth solutions, like for instance that of Ref. [START_REF] Babichev | Dressing a black hole with a time-dependent Galileon[END_REF], but the stealth-Kerr solution of [START_REF] Charmousis | Rotating Black Holes in Higher Order Gravity[END_REF] is the rst to describe a rotating black hole. The scalar eld is assumed to posses a constant kinetic term X, which implies that it denes a geodesic direction ϕ µ , since we have

ϕ µ ϕ νµ = ϕ µ ϕ µν = 0 . (8.1)
This justies the previous ansatz for the scalar eld, in which it is identied with the Hamilton-Jacobi potential S. The constants E and L represent the two conserved irrelevant in the present case, and one can omit them from the discussion. Another condition that we must enforce for the equations of motion to be veried is

A 3 (X 0 ) = 0 . (8.5) 
The disformed Kerr metrics g are constructed by performing a disformal transformation [START_REF] Bekenstein | The Relation between physical and gravitational geometry[END_REF] of the Kerr metric using the geodesic scalar of Eq. ( 8.3), namely:

gµν = g K µν + B(X)∂ µ ϕ∂ ν ϕ , (8.6) 
where the function B is chosen to be a function of X only in the context of shiftsymmetric theories. Since the kinetic term is constant on-shell, X = X 0 , we take the function B to be a constant, and set:

B(X) = - D q 2 0 . (8.7) 
The parameter D is the disformal parameter, and the rescaling by q 2 0 is simply done to lighten the expressions in the following. The scalar kinetic term transforms as X = -q 2 0 /(1 + D), which shows that ϕ µ is again a (timelike) geodesic vector for the disformed metrics.

The DHOST Ia class, given by Eq. ( 33), is stable under the disformal map [START_REF] Bettoni | Disformal invariance of second order scalar-tensor theories: Framing the Horndeski action[END_REF][START_REF] Zumalacárregui | Transforming gravity: from derivative couplings to matter to second-order scalar-tensor theories beyond the Horndeski Lagrangian[END_REF][START_REF] Ben Achour | Degenerate higher order scalar-tensor theories beyond Horndeski and disformal transformations[END_REF], which means that the metrics (8.6) are solutions to specic DHOST theories labeled by the constant B. The transformation (8.6) modies the functions in the Lagrangian such that we have S[g] = S[g], where S represents the DHOST action [START_REF] Jordan | The present state of Dirac's cosmological hypothesis[END_REF]. However, we couple the matter elds to the metric minimally in each case (either to gµν or g µν ), which ensures that we indeed have dierent theories. For a constant disformal parameter, the transformation rule for the Lagrangian functions [START_REF] Ben Achour | Degenerate higher order scalar-tensor theories beyond Horndeski and disformal transformations[END_REF] is simplied, and we obtain:

f = f √ 1 + BX , A 1 = Ã1 + B(1 + BX) f (1 + BX) 3/2 , A 2 = Ã2 -B(1 + BX) f (1 + BX) 3/2 , A 3 = Ã3 -2B(1 + BX) Ã2 -4B(1 + BX) 3 fX (1 + BX) 7/2 , A 4 = Ã4 -2B(1 + BX) Ã1 + 4B(1 + BX) 3 fX (1 + BX) 7/2 , A 5 = Ã5 + B(1 + BX) B(1 + BX)( Ã1 + Ã2 ) -( Ã3 + Ã4 ) (1 + BX) 11/2 , (8.8) 
where fX = ∂ f /∂X. The functions of X can be seen as functions of X through the transformation X = X 1 + BX .

(8.9)

As we argued above, we will only be interested in the functions { f , Ã1 , Ã3 } in the following. Indeed, {A 4 , A 5 } are irrelevant for a constant scalar kinetic density, and we impose Ã2 = -Ã1 , which is one of the conditions to avoid the Ostrogradsky ghost in DHOST Ia theories. Assuming A 1 = A 2 = G 3 = K = 0 [START_REF] Charmousis | Rotating Black Holes in Higher Order Gravity[END_REF], we invert the relations (8.8) and obtain:

f = f 1 -B X, Ã1 = - B 1 -B X f , Ã3 = A 3 (1 -B X) 7/2 + 4Bf X 1 -B X . (8.10) 
It should be noted that Ã1 ̸ = 0 in this case, which means that the constraint c T = 1

is not satised in these theories. However, we will see that these disformed solutions present some interesting properties which are worth studying in their own right.

Starting from the Kerr metric (7.26) in BL coordinates, the explicit expression for the disformed metric (8.6) is

ds 2 = -1 - 2 M r ρ 2 dt 2 - 4 √ 1 + D M ar sin 2 θ ρ 2 dtdφ -2D 2 M r(a 2 + r 2 ) ∆ dtdr + ρ 2 ∆ -2 M (1 + D)rD(a 2 + r 2 ) ∆ 2 dr 2 + ρ 2 dθ 2 + sin 2 θ ρ 2 r 2 + a 2 2 -a 2 ∆ sin 2 θ dφ 2 , (8.11) 
where we have rescaled the time coordinate as t → t/ √ 1 + D and dened a new mass M = M/(1+D). As we discussed above, the choice of B = -D/q 2 0 parametrizes a class of DHOST theories of which this metric, along with the scalar eld (8.3), are solutions.

Hence this does not correspond to an extra parameter of the metric, since changing D modies the theory, unless q 0 is chosen so that B remains the same. However, from a phenomenological point of view, one may consider D as an extra parameter, and study the disformed metric for dierent values of D, which is an approach that we will adopt in the following.

Before discussing the properties of the disformed Kerr metric in the general case, let us briey consider the case a = 0, for which the o-diagonal term gtr in Eq. (8.11) can be removed by the following coordinate transformation:

dt = dT - D 2 M r 3 ∆ 1 -2 M r
dr .

(8.12)

The resulting metric is nothing but the Schwarzschild spacetime with a rescaled mass:

ds 2 = -1 - 2 M r dT 2 + 1 - 2 M r -1 dr 2 + r 2 dΩ 2 . (8.13)
Hence, in the static case, the net eect of the disformal transformation is only to rescale the mass parameter. Note that a similar observation has been noted in the case of the Schwarzschild-de Sitter metric in Ref. [216218]. In Ref. [START_REF] Ben Achour | On rotating black holes in DHOST theories[END_REF], the authors claim that the disformation of Schwarzschild leads to a dierent metric, i.e. not Schwarzschild with mass M , but the previous coordinate redenition shows that it is the case.

Properties of the disformed Kerr metrics

In this section, we analyze the properties of the disformed Kerr metric (8.11), and treat D as a parameter, keeping in mind that it does not actually correspond to extra hair, as discussed above.

Symmetries of the disformed Kerr metric

We start by discussing the singularities of the disformed metric. One can start by calculating some scalar quantities, which include

R = - Da 2 M r[1 + 3 cos(2θ)] (1 + D)ρ 6 , Rµν Rµν = D 2 a 4 M 2 Q 1 (r, θ) 4ρ 12 (r 2 + a 2 )(1 + D) 2 , Rµναβ Rµναβ = M 2 Q 2 (r, θ) ρ 12 (r 2 + a 2 )(1 + D) 2 , (8.14) 
where the functions Q 1 and Q 2 can be found in Appendix III.A. These expressions show that the disformed metric is not Ricci-at, i.e. Rµν ̸ = 0, which is an important property. Furthermore, the expressions suggest that the disformed metric does not present new singularities compared to the Kerr metric, meaning that the only singularity lies at ρ = 0. To check this explicitly, it is enough to nd a coordinate system in which ρ = 0 is the only apparent singular point. We apply the coordinate transformation (7.25), and rescale the coordinate v → v/ √ 1 + D, as we did for the coordinate t in order to obtain the line element (8.11). This leads to the following expressions for the metric and scalar in the generalized ingoing Eddington-Finkelstein coordinates:

ds 2 = -1 - 2 M r ρ 2 dv 2 + 2 √ 1 + D   1 - D (1 + D)(1 + r 2 +a 2 2M r )   dvdr (8.15) -D   1 - 1 1 + a 2 +r 2 2M r   2 dr 2 (8.16) + 4a M r sin 2 θ √ 1 + D ρ 2 dvdφ + 2a sin 2 θdrdφ + ρ 2 dθ 2 (8.17) + sin 2 θ 2a 4 cos 2 θ + 4a 2 M r sin 2 θ + a 2 r 2 [3 + 2 cos(2θ)] + 2r 4 2ρ 2 dφ 2 , (8.18) 
ϕ = -m   v √ 1 + D -r + dr 1 + r 2 +a 2 2M r   . (8.19) 
These expressions show that the disformed metric does not contain any singularity other than the ring singularity of the Kerr spacetime. In particular, the metric and scalar are regular at the Kerr horizon given by ∆ = 0. In Ref. [START_REF] Ben Achour | On rotating black holes in DHOST theories[END_REF], the authors chose the other relative sign for the scalar eld in Eq. (8.3). This means that their scalar eld is not regular in the ingoing coordinates, but rather in outgoing ones, which represent a white hole instead of a black hole.

Let us now discuss the symmetries of the disformed Kerr metrics. It is clear from the line element (8.11) that the vectors ξ = ∂ t and η = ∂ φ are still Killing vectors of these spacetimes. One can check that their action commutes, so that the disformed Kerr metrics are stationary and axisymmetric spacetimes. However, the circularity conditions are no longer veried in the generic case, and we have:

ξ ∧ η ∧ dξ = - 4Da 2 M r 2 M r(a 2 + r 2 ) cos θ sin 3 θ ρ 4 dt ∧ dr ∧ dθ ∧ dφ , ξ ∧ η ∧ dη = 4Da 3 M r 2 M r(1 + D)(a 2 + r 2 ) cos θ sin 5 θ ρ 4 dt ∧ dr ∧ dθ ∧ dφ . (8.20) 
This means that it is not possible in the generic case to write the disformed metric in a way that exhibits the reection symmetry (t, φ) → (-t, -φ). In particular, the gtr term in Eq. (8.11) cannot be eliminated without introducing other o-diagonal components that break circularity. When D = 0, we recover the Kerr metric and the circularity conditions are veried. Similarly, when a = 0, the disformal metric is simply Schwarzschild with a rescaled mass, as we discussed already, and the conditions are satised in this case also.

This is an interesting property, as circularity is usually assumed as a starting point when discussing stationary solutions in the literature. Indeed, as we discussed above this is a feature of black hole solutions in GR. However, noncircular spacetimes may arise in physical situations, and hence it is important to understand their properties. This choice of ansatz can prove to be too restrictive in some situations, as was shown for example in for the numerical simulation of black holes in the cubic Galileon theory [START_REF] Van Aelst | Hairy rotating black holes in cubic Galileon theory[END_REF]. There have been eorts to develop numerical schemes to study such spacetimes [START_REF] Gourgoulhon | Noncircular axisymmetric stationary spacetimes[END_REF], but there is nonetheless very little work on this subject in the literature. Such conditions can arise in the presence of toroidal magnetic elds, or with a convective uid having a meridional ow [START_REF] Ioka | Grad-Shafranov equation in noncircular stationary axisymmetric space-times[END_REF][START_REF] Ioka | Relativistic stars with poloidal and toroidal magnetic elds and meridional ow[END_REF]. Noncircularity has an impact on the symmetries of the disformed Kerr metrics. In a spacetime with a separability structure, and hence with a nontrivial Killing tensor, it was shown that circularity could be made manifest with a particular choice of coordinates [223225]. Since circularity is a coordinate independent property (as long as the coordinates are adapted to the Killing vectors), one concludes that noncircular spacetimes in 4 dimensions do not possess a nontrivial Killing tensor, and hence the integrability of the geodesic equation is lost in this case. In fact, the most general Kerr deformation which is compatible with the separability condition was given in [START_REF] Papadopoulos | Preserving Kerr symmetries in deformed spacetimes[END_REF].

This kind of approach is usually followed in the literature when constructing deformations of the Kerr metric. One retains a certain amount of properties of the Kerr metric, while performing the deformations which are compatible with the hypotheses.

This point of view has been used to propose alternatives to the Kerr metric [176178].

Even though this method provides testable deviations from the GR spacetime, the underlying theory is unknown, and deformations often possess pathologies like closed timelike curves [START_REF] Johannsen | Systematic Study of Event Horizons and Pathologies of Parametrically Deformed Kerr Spacetimes[END_REF]. Such pathologies also exist in GR, for instance in the Kerr spacetime with a > M [START_REF] Carter | Global structure of the Kerr family of gravitational elds[END_REF], which describes a naked singularity.

One can show that the disformed Kerr metric is stably causal, meaning that it remains causal under a small perturbation of the light cone. It is argued in Wald's book, Ref. [START_REF] Wald | General Relativity[END_REF], that stable causality is sucient to avoid pathologies such as closed timelike curves. We will use the following theorem from this reference:

Theorem [START_REF] Wald | General Relativity[END_REF]: A spacetime is stably causal if and only if there exists a dierentiable function f such that ∇ µ f is a past directed timelike vector eld.

This function can be thought of as a global time, and in our case there exists such a function by construction, the scalar eld ϕ(t, r) itself. We have already seen that the vector ϕ µ is timelike 2 According to Eq. (8.15), the scalar is regular for r > 0. Therefore our spacetime is globally causal, provided that the region of the spacetime for some positive r (in particular outside the event horizon) is causally disconnected from the region r < 0 (where closed timelike curves are present, similarly to the Kerr case).

Spacetime structure and analytical constraints

We will now follow a similar approach to that of Section 7.2.2, namely we will start at spatial innity and slowly uncover important hypersurfaces as as the radial coordinate 2 The same argument was used in Ref. [START_REF] Babichev | k-Essence, superluminal propagation, causality and emergent geometry[END_REF] to show that a black hole with an accreting k-essence eld [START_REF] Babichev | Escaping from the black hole?[END_REF] has no closed timelike curves. Similarly to our case, the k-essence eld was identied as a global time function in Ref. [START_REF] Babichev | k-Essence, superluminal propagation, causality and emergent geometry[END_REF].

decreases. As we saw in the case a = 0, a coordinate change was necessary in order to put the metric in the Schwarzschild form. Similarly, we perform the following coordinate transformation in the general case:

dt = dT -D 2 M r(a 2 + r 2 ) ∆(1 -2 M r ) dr . (8.21) 
Though this redenition does not eliminate the gtr in the metric, it makes it smaller asymptotically. In fact, in these coordinates the Schwarzschild solution (8.13) is recovered for large r, contrary to what is claimed in Ref. [START_REF] Ben Achour | On rotating black holes in DHOST theories[END_REF]. We thus obtain a coordinate system which is closer to the BL coordinates for the Kerr metric, which we will call Boyer-Lindquist-like coordinates. In these coordinates the disformal Kerr metric for large r reads ds

2 = -1 - 2 M r + O ã2 M r 3 dT 2 - 4ã M r 3 + O ã3 M r 5 [xdy -ydx] dT + δ ij + O M r c ij dx i dx j + D 1 + D O ã2 M r 3 dt 2 + O ã2 M 3/2 r 7/2 b i dtdx i + O ã2 r 2 d ij dx i dx j , (8.22) 
where ã = a

√ 1 + D, {b i , c ij , d ij } ∼ O(1)
, and Cartesian coordinates have been introduced as in Eq. (7.40). From this expansion, we see that at leading order the disformed metric is the same as Kerr, with a mass and angular momentum given by

M = M 1 + D and ã = a √ 1 + D . (8.23) 
The eect of disformality appears at higher orders, and notice in particular the unusual half-integer power of r in the cross terms dtdx i . In the rest of this section, we will keep using the parameter a for simplicity, but one must keep in mind that the spin of the black hole, as determined by the asymptotic expansion, is ã.

As the radial coordinate decreases, we reach the surface where the timelike Killing vector ξ becomes null, which is determined by gtt = 0. As in the case of Kerr, this surface r = rE (θ) is called the static limit, or ergosurface, and is dened by

rE (θ) = M + M 2 -a 2 cos 2 θ . (8.24) 
Note that there is nonetheless a dierence compared to the Kerr spacetime, since the spin a enters the previous expression, and not ã. Inside this surface, static observers no longer exist and stationary observers of the form (7.41) must have ω > 0. As we go deeper inside the ergoregion, we reach a surface inside which timelike stationary observers no longer exist, which we dened as the stationary limit. This surface is obtained by solving the equation:

P (r, θ) ≡ r 2 + a 2 -2 M r + 2 M Da 2 r sin 2 θ r 2 + a 2 cos 2 θ = 0 . (8.25) 
It can be seen as a fourth order polynomial in the variable r, which has at most four roots. The outermost one, which we call R S (θ), denes the stationary limit

Σ S : r -R S (θ) = 0 (8.26)
In the limit D = 0, this would correspond to the outer event horizon of the Kerr metric. In general, this surface does not lie at constant r, and it meets the ergosurface at the poles. We now show that Σ S cannot be an event horizon, since such a surface is necessarily null. To determine the nature of Σ S we write the covariant components of the normal vector N to this surface:

N µ = (0, 1, -R ′ S (θ), 0) , (8.27) where a 
′ denotes a derivative with respect to θ. We now calculate the norm of this vector, and obtain

N 2 = gµν N µ N ν = gθθ R ′2 S (θ) + P (r, θ) . (8.28) 
By evaluating this expression on the surface r = R S (θ), where we have P = 0, we obtain

N 2 | r=R S = gθθ R ′2 S (θ) > 0 .
This shows that unless D = 0 (in which case R S is constant and we have R ′ S = 0), the normal vector N is spacelike, meaning that Σ S is a timelike hypersurface. Hence it cannot correspond to an event horizon. This confusion is common in the literature, and many authors have associated the solutions of Eq. (7.45) to event horizons, regardless of the θ-dependent prole. Hence, if an event horizon does exist for the disformed Kerr spacetime, it must lie in the interior of Σ S . A notable feature of the interior of Σ S is that all of the Killing vectors, i.e. of the form µ 1 ∂ t + µ 2 ∂ φ with {µ 1 , µ 2 } constants, are spacelike in this region. Indeed, by factorizing µ 1 , one can write these vectors in a form that is proportional to the vector (7.41), and we showed that such vectors are spacelike inside Σ S . This implies that if an event horizon is found in the interior of the stationary limit, it cannot be a Killing horizon, as this would require a Killing vector to be null on the surface. This is impossible, since the Killing vectors are spacelike in this region. This property is a notable dierence form the GR spacetimes. In our case Hawking's rigidity theorem does not hold since the spacetime is not Ricci at.

We now search for a candidate event horizon in the interior of the stationary limit surface Σ S , which must be a null hypersurface. The usual assumption is to look for a horizon located at constant r. Requiring that the normal vector to such a surface be null, we obtain the equation grr = 0. It can be shown that in the present case grr = P (r, θ) ρ 2 (r, θ) , so that the equation grr = 0 does not admit constant r solutions when D ̸ = 0. This means that our starting assumption is wrong, and a potential event horizon cannot be located at constant r. As we already stated, this error is common in the literature, as the link between solving grr = 0 and the hypothesis of a constant r surface is often forgotten.

Since the event horizon cannot be a constant r surface, we look for more general hypersurface H dened by H : r -R(θ) = 0 .

(8.29)

We introduce the vector n normal to H, which has the following covariant components:

n µ = (0, 1, -R ′ (θ), 0) . (8.30) 
We now ask for this vector to be null, which is a necessary condition for H to be a horizon. After dividing by gθθ , which is strictly positive outside of the ring singularity ρ = 0, the condition n 2 = 0 leads to

R ′2 (θ) + P (R(θ), θ) = 0 , (8.31) 
which constitutes the equation for the horizon surface. This type of horizon equation was also obtained in Refs. [START_REF] Johannsen | Systematic Study of Event Horizons and Pathologies of Parametrically Deformed Kerr Spacetimes[END_REF][START_REF] Johannsen | Regular Black Hole Metric with Three Constants of Motion[END_REF][START_REF] Anabalon | Remarks on the Myers-Perry and Einstein Gauss-Bonnet Rotating Solutions[END_REF].

Let us now discuss some analytical properties of the solution to Eq. (8.31). First of all, a solution exists only if P (R(θ), θ) ≤ 0, which is consistent with the fact that we're looking for a horizon in the interior of Σ S . It is a rst-order dierential equation which admits two branches in which R is monotonous:

R ′ (θ) = ± -P (R(θ), θ)) . (8.32) 
We will see that the branch must be chosen depending on the value of D and the interval of θ. The function R(π -θ) satises the same equation because P is invariant under the transformation θ → π -θ. This is consistent with the fact that our solution should be symmetric with respect to the equator. In order for the solution to be smooth, its derivative must vanish at the poles, i.e. R ′ (0) = R ′ (π) = 0. Furthermore, a smooth solution with the symmetry θ → π -θ must also satisfy R ′ (π/2) = 0. Hence, we are looking for a solution to Eq. (8.32) which satises the conditions:

R ′ (0) = R ′ π 2 = 0 . (8.33) 
The condition R ′ (π) = 0 follows from the symmetry with respect to the equator. Note that if these conditions are veried, the surfaces H and Σ S must touch at the poles and equator. 3 Since we are solving a rst-order dierential equation, it is a priori only possible to specify one of the boundary conditions given by Eq. (8.33). We will see by solving the equation numerically that this indeed becomes a problem for some ranges of parameters, in the sense that upon imposing one of the conditions, the second one is not necessarily veried. In the following, we will express distances in units of M to simplify the expressions, and for this we dene

h(θ) = R(θ) M , h S (θ) = R S (θ) M and χ = a M . (8.34) 
In terms of these variables, the horizon equation (8.31) becomes

h ′2 (θ) + h 2 + χ 2 -2h + 2Dχ 2 h sin 2 θ h 2 + χ 2 cos 2 θ = 0 . (8.35) 
It is possible to derive necessary conditions on the parameters χ and D for both of the conditions (8.33) to be veried. Let us assume that the function h is twice dierentiable at the points θ = 0 and θ = π/2, which should be veried for a smooth solution. In this case, a Taylor expansion around the point θ = π/2 yields the condition

h 3 ( π 2 ) -h 2 ( π 2 ) -Dχ 2 2 + 8Dχ 2 h( π 2 ) h 2 ( π 2 ) + χ 2 ≥ 0 , (8.36) 
in order for the second derivative h ′′ (π/2) to be real. 4 This condition is trivially veried for D ≥ 0, but it constrains the parameters {χ, D} in the case D < 0. The horizon equation evaluated at θ = π/2 gives the following polynomial equation for h(π/2):

h 3 ( π 2 ) -2h 2 ( π 2 ) + χ 2 h( π 2 ) + 2Dχ 2 = 0 . (8.37)
Let us assume that D < 0 is xed and χ may vary. Then, at the critical point χ = χ c for which the inequality (8.36) is saturated, it is possible to eliminate h using the expressions (8.36) and (8.37). We obtain a polynomial equation that must be satised by the critical parameter χ c : This can be seen as a fourth order polynomial in χ 2 c , and one can show that only one of the four roots is a positive number in the interval D ∈ [-1, 0]. Hence for each D we 3 More precisely, the surface H must touch one of the surfaces corresponding to a root of P .

However, one can check numerically that the surface is indeed Σ S . 4 Higher orders of the Taylor expansion around θ = π/2 do not give additional conditions. Indeed, if we assume that h (2p+1) (π/2) = 0, then the order 2p in the Taylor expansion is linear in h (2p) when p > 1. So we do not have additional constraints to ensure that h (4) , h (6) , etc. are real at θ = π/2. The same is true for the expansion around θ = 0. For χ > χ c , we have h ′ (π/2) ̸ = 0 when D < 0, and h ′ (0) ̸ = 0 when D > 0. For points in the shaded region, h ′ (0) = h ′ (π/2) = 0 is allowed. The red curve is an existence condition for the horizon at the equator, which gives a milder constraint.

obtain an upper bound for the parameter χ, in the sense that for χ > χ c the horizon surface cannot be smooth. Note that the condition χ ≤ χ c is not a sucient condition for the smoothness of H, but it is necessary. We now proceed similarly at the point θ = 0, where it is easy to see that

h(0) = 1 + 1 -χ 2 , (8.39) 
assuming that χ ≤ 1. We have chosen this root in order for the horizon to coincide with the ergosphere at the poles, as in the Kerr spacetime. We now perform a Taylor expansion and set h ′ (0) = 0. Then, the necessary condition for h ′′ (0) to be real translates to

1 -(1 + 4D) χ 2 ≥ 0. (8.40)
This is trivially veried when D ≤ 0, since we assume χ < 1. However, when D > 0 we obtain the following upper bound on the parameter χ:

χ c = 1 √ 1 + 4D . (8.41)
Hence, if we ask for both conditions (8.33) to be veried, in order to have a smooth horizon we obtain a necessary upper bound for the parameter χ for each value of D ∈ [-1, ∞). It is worth noting that there exists an additional bound linked to the existence of a real positive root to Eq. (8.37). As we saw, this is a necessary condition for the horizon to be smooth, as it must touch the stationary limit at the equator and

poles. An analysis of the polynomial gives another upper bound on χ when D > 0, but this constraint is milder than the one derived above, i.e. Eq. (8.41). The results are summarized in Fig. 1. Let us now comment on the implications of these bounds on the physical spin parameter ã, to which we associate the dimensionless parameter such that the null hypersurface is now located at some constant value of ζ. In terms of these coordinates, Eq. (8.31) is found by solving gζζ = 0, which is analogous to solving g rr = 0 for the Kerr spacetime, when searching for a horizon at r = const. As we discussed in the previous chapter, the constant r surfaces in the Kerr spacetime are timelike when r > r + , spacelike in between the two event horizons, i.e. for r -< r < r + , while the event horizon r = r + is a null hypersurface providing a transition between these two regions. Using a similar argument in the case of the disformed Kerr metrics, we argue that if a smooth solution to Eq. (8.31) is found, it indeed represents an event horizon. In this case, we introduce the one-parameter family of surfaces dened as

χ = ã M = χ √ 1 + D .
R ζ (θ) = R(θ) + ζ , (8.44) 
where R 0 (θ) = R(θ) is the candidate event horizon. We now examine the nature of such a surface by calculating the norm of its normal vector n ζ . We obtain

n 2 ζ = R ′2 (θ) + P (R ζ (θ), θ) . (8.45) 
For ζ = 0, we have n 2 ζ = 0, while n 2 ζ > 0 for ζ > 0, since the surface r = R(θ) is the outermost surface which satises Eq. (8.31). We now assume |ζ| ≪ 1, so that one can write

n 2 ζ = ζ ∂P ∂r (R(θ), θ) + O ζ 2 . (8.46)
If one can show that ∂P/∂r > 0 when evaluated at the horizon surface, then this proves the existence of some ζ 0 for which n 2 ζ < 0 in the interval ζ ∈ [ζ 0 , 0), which is precisely what we wish to establish. Note that one cannot have ∂P/∂r < 0, as this would contradict the result that n 2 ζ > 0 for any ζ > 0. Hence, it is enough to prove that ∂P/∂r ̸ = 0 when evaluated at the horizon surface.

In terms of the dimensionless variables, an explicit calculation shows that this is equivalent to determining the sign of

P 1 = (h -1) h 2 + χ 2 cos 2 θ 2 -Dχ 2 sin 2 θ h 2 -χ 2 cos 2 θ . (8.47) 
Let us now prove that this polynomial is positive at the horizon surface. We rst prove that h ≥ 1. We will show in the next section that depending on the sign of D, a dierent branch must be chosen in Eq. (8.32). When D < 0, the increasing branch h ′ > 0 must be chosen in the interval [0, π/2], so that h ≥ h(0) ≥ 1. When D > 0, the minimum h m of the function h is reached at the equator, and it is the outermost root of the polynomial (8.37). By evaluating this polynomial at h = 1 and enforcing the constraint (8.41), we obtain a negative number. Since P is positive for large r, this means that the outermost root is larger than 1, i.e. h m ≥ 1. Hence we have h ≥ 1 in all cases. Note that the inequality is strict unless χ = 1, and hence D = 0, in which case we simply recover the extremal Kerr black hole. This shows in particular that h 2 ≥ χ 2 sin 2 θ, since χ ≤ 1. Hence, it is clear that P 1 > 0 for D < 0. It remains to show that this is also the case when D > 0. It is clearly the case for θ = 0, but one can show that it is true for any angle by solving P 1 = 0 numerically. The solution does not satisfy the horizon equation at any point, and hence P 1 > 0 for D > 0 also. Hence, for any D ̸ = 0, we have shown that for a regular horizon surface h, i.e. verifying the necessary conditions (8.33), we have ∂P ∂r (R(θ), θ) ̸ = 0 . 

Numerical integration and approximate solutions

As we already mentioned, one cannot integrate the horizon equation (8.32) analytically. In this section, we discuss the numerical integration of this equation, along with an approximate solution when the disformal parameter D is small. The numerical integration is performed using the Runge-Kutta method with a specied boundary condition. Depending on the sign of D, we integrate the horizon equation (8.32) with dierent initial conditions. For D < 0, the integration is performed in the interval θ ∈ [0, π/2] with the initial condition h ′ (0) = 0, while for D > 0 we integrate in the interval θ ∈ [π/2, π] with the condition h ′ (π/2) = 0. In the latter case, we use the symmetry θ → π -θ to plot the solution in the interval [0, π/2]. If the wrong interval is chosen, the integration is unsuccessful, and we believe that this is caused by a growth of the numerical error. Furthermore, the right branch must be chosen in Eq. (8.32).

For D > 0, one must choose h ′ ≤ 0 in the interval [0, π/2], and the other branch is not physical. Hence, we have h ≤ h(0) in this case, and the minimum is reached at the equator. It is the opposite for D < 0, i.e. one must choose the branch where h ′ ≥ 0 and we have h ≥ h(0), so that the maximum is reached at the equator. Dierent proles for χ = 0.9 are represented in Fig. 2. Some of the solutions are manifestly not smooth at θ = π/2. In fact, only the cases D = -0. in Fig. 2 represent smooth solutions. The other cases do not satisfy the necessary conditions given by Eqs. (8.38) and (8.41). This can be seen from the fact that h ′ is nonzero at the equator, which also means that the horizon surface and the stationary limit do not touch at this point. This is very clear from Fig. 2 in the case D = -0.75 for instance. In the cases where the horizon is smooth, the surfaces H and Σ S are very close to each other in the whole interval [0, π/2], and touch at the poles and equator.

They are nevertheless distinct, and it is possible for a timelike observer to escape the region in between these two surfaces. Using the numerical integration, it is possible to check the necessary condition χ ≤ χ c . Depending on the sign of D, we specify one of the conditions (8.33) and integrate in the corresponding interval as discussed previously. For each case, we determine the value of h ′ at the end point of the interval, and check if it is consistent with h ′ = 0. Some examples are shown in Fig. 3 for D < 0, though analogous results hold for D > 0. By increasing the numerical precision, we obtain that h ′ → 0 if the condition χ ≤ χ c is veried. This numerical argument seems to indicate that the condition χ ≤ χ c is in fact also a sucient condition to have a smooth horizon surface, though we have not yet found an analytical proof of this claim.

Another way to gain some insight on the solutions to Eq. (8.35) is to solve it perturbatively. The term containing D can be thought of as a perturbation, and for Dχ 2 ≪ 1 we write Using Eq. ( 8.35), we can obtain δh 1 algebraically. Then, higher orders in the expansion give δh n in terms of δh n-i and δh ′ n-i , where i ∈ 1, n -1 . One can hence obtain the solution as a perturbative series to the desired order. The rst-order term reads δh 1 (θ) = -

h(θ) = h(0) + ∞ n=1 (Dχ 2 ) n δh n (θ) .
χ sin 2 θ 1 + 1 -χ 2 2 (1 -χ 2 ) + 1 -χ 2 2 -χ 2 sin 2 θ . (8.50)
The deviations from the Kerr solution are maximal at the equator, and are of order h(π/2) ∼ |Da 2 | (for small Da 2 ). Notice that δh 1 < 0, meaning that the sign of the rst order correction is opposite to the sign of D. This is in accordance with the choice of the branch for the numerical integration depending on the sign of D. As we discussed above, we have h -h(0) > 0 (resp. h -h(0) < 0) when D < 0 (resp. D > 0).

Another way to nd an approximate solution is to expand around the stationary limit surface r = R S (θ). As we discussed, for smooth solutions the surfaces H and Σ S meet at the poles and equator, and remain very close to each other in the interval θ ∈ [0, π/2]. This motivates the search for approximate solutions of the form

R n+1 (θ) = R n (θ) + F n (θ) , (8.51) 
where we start with R 0 = R S , and F n ≪ R n . To determine the function F n at each order, we Taylor expand Eq. (8.31) and obtain

R ′2 n + 2R ′ n F ′ n + F ′2 n + P (R n , θ) + F n ∂P ∂r (R n , θ) = 0 . (8.52)
We also assume F ′ n ≪ R ′ n , which should be checked numerically, and in this case the solution at each order reads

R n+1 (θ) = R n (θ) -R ′2 n + P (R n , θ) ∂P ∂r (R n , θ) -1
. (8.53) This provides an alternative method to integrate the horizon equation, and we have checked numerically that both methods converge towards the same solution when the necessary condition χ ≤ χ c is satised.

Interesting limiting cases

In this section, we examine some interesting limits of the disformed 

ϕ = q 0 √ 1 + D   t + (1 + D) 2 M r(a 2 + r 2 ) ∆ dr   .
In order to make sense of the limit, we redene the scalar eld and the corresponding kinetic density as ψ = √ 1 + D q 0 ϕ and Ỹ = gµν ∂ µ ψ∂ ν ψ .

(8.54)

After taking the limit D → -1, we simply have ψ = t in this case. In the same limit, the line element (8.11) becomes

ds 2 QW = -1 - 2 M r ρ 2 dt 2 + ρ 2 r 2 + a 2 dr 2 +2 2 M r r 2 + a 2 dtdr+ρ 2 dθ 2 + r 2 + a 2 sin 2 θdφ 2 . (8.55)
The gtφ term disappears in this limit, but the metric isn't static because of the gtr term which cannot be eliminated because of noncircularity. In the absence of the gtr term the above line-element would be a Weyl metric, in essence a static and axially symmetric circular metric, and because of this we call it a quasi-Weyl (QW) metric. In the limit a = 0, one recovers the Schwarzschild metric in Gullstrand-Painlevé coordinates.

Interestingly, in this case the ergosurface coincides with the stationary limit Σ S .

However, as we discussed above the event horizon is located further in the interior of these surfaces, even though they meet at the poles and equator. This is an interesting property, since the ergoregion is usually a feature of rotating black holes. In the In the green region, the Killing vector ξ is spacelike. The ergosurface coincides with the stationary limit in this case. present case, the object is not spinning in the φ direction, and yet there exists a region outside the horizon where the Killing vector ξ is spacelike. This will force timelike observers to move along the radial direction in this region. Indeed, by setting dr = 0 in the line element above, we obtain ds 2 QW > 0 in this region, which is impossible for a timelike curve. However, such a timelike observer can still escape to innity, since they haven't yet crossed the null surface H. In terms of the adapted coordinate ζ dened in Eq. (8.43), it is still possible to move towards increasing ζ in this region. In this limit, the polynomial (8.38) determining the critical parameter χ = a/ M simplies, and we obtain

h -h(0) h S -h(0)
χ c = 2 √ 15 . (8.56) 
The horizon equation for this metric is obtained by setting D = -1 in Eq. (8.35), which still cannot be integrated analytically. The dierent surfaces (obtained numerically) for χ = χ c are represented in Fig. 4. For values of χ < χ c , the green region in Fig. 4 would be thinner.

We now discuss the theory corresponding to this solution. We take the same limit in the general action given by the functions (8.10), and express everything in terms of the eld ψ, resulting in:

S QW [g] = M 2 P 2 d 4 x -g -Ỹ f ( Ỹ ) R - f -Ỹ ψ µν ψ µν -(□ψ) 2 + 4f Ỹ - Ỹ ψ µ ψ µν ψ ν □ψ , (8.57) 
where f has also been redened as f → f √ 1 + D to absorb a residual innite factor. One can check that the above action admits the QW metric (9.35) and ψ = t as a solution. If we consider a constant f , the theory belongs to the Horndeski class, i.e. it leads to second-order eld equations. 8.3.2 Limit D → ∞: the noncircular Schwarzschild metric Let us now consider the limit of an innite disformal parameter, i.e. D → ∞, while at the same time keeping the physical spin of the black hole ã = a √ 1 + D nite. This implies a → 0 but as we discussed above, the observable quantity is ã rather than a.

This limit applied to the disformed metric (8.11) leads to the following line element:

ds 2 NCS = -1 - 2 M r dt 2 + 2r M dtdr - 4 χ M 2 sin 2 θ r dtdφ - r 2 M dr 2 + r 2 dθ 2 + r 2 sin 2 θ 1 + 2 χ2 M 3 sin 2 θ r 3 dφ 2 .
From this expression, it is clear that the metric is only singular at the point r = 0. We can put the metric in a Schwarzschild-like form by trading the (tr) term for an (rφ) term through the coordinate change (8.21), assuming the limit D → ∞ and a → 0:

dt = dT + r 3/2 dr 2 M (r -2 M )
.

In terms of these new coordinates, we obtain the following line element:

ds 2 NCS = -1 - 2 M r dT + 2 χ M 2 sin 2 θ r -2 M dφ 2 + 1 - 2 M r -1   dr - 2 M 3 r χ sin 2 θdφ   2 + r 2 dθ 2 + sin 2 θdφ 2 . (8.58)
This noncircular metric reduces to the Schwarzschild line element in the limit χ = 0, so we call it the noncircular Schwarzschild metric (NCS). Despite the name, the properties of the above metric are quite dierent from the static GR case. in terms of the physical spin parameter. The surface r = 2 M corresponding to the Schwarzschild event horizon in the limit χ = 0 is now the static limit of the spinning black hole, while the stationary limit and event horizon lie inside this surface. The horizon equation (8.31) simplies in this limit, and we obtain h ′2 (θ) + h 2 -2h + 2 χ2 sin 2 θ h = 0 .

(8.60)

Even though this equation simplies a lot, one still cannot solve it analytically. A numerical integration for the critical spin χ = 1/2 is represented in Fig. 5.

We now discuss the theory corresponding to the NCS metric and its associated scalar eld. We perform the same eld redenition as in Eq. (8.54), and obtain in this case

ψ = T + 2 2 M r -4 tanh -1 r 2 M . (8.61) 
The resulting action in terms of ψ and Ỹ reads, in the limit D → ∞,

S D→∞ [g] = M 2 P 2 d 4 x -g 1 + Ỹ f ( Ỹ ) R + f 1 + Ỹ ψ µν ψ µν -(□ψ) 2 - 4f Ỹ 1 + Ỹ ψ µ ψ µν ψ ν □ψ .
(8.62)

In this limit, we have Ỹ → -1, which leads to diverging terms in the equations of motion. However, by inspecting the equations of motion following from the above action, one can notice that the rst and third terms give subdominant contributions with respect to the second one, in the limit Ỹ → -1. As a result, upon redening the function f as F = f / 1 + Ỹ , we obtain the action

S NCS [g] = M 2 P 2 d 4 x -gF ( Ỹ ) ψ µν ψ µν -(□ψ) 2 .
(8.63)

One can check that the equations of motion deriving from this action are satised by the NCS metric (8.58) and scalar eld (8.61). This theory belongs to both the Ia and IIIa DHOST classes [START_REF] Crisostomi | Extended Scalar-Tensor Theories of Gravity[END_REF][START_REF] Langlois | Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski instability[END_REF], due to the absence of an Einstein-Hilbert term.

Petrov type of the disformed metrics

In this section, we use the NCS metric (8.58) to comment on the Petrov type of the disformed metrics. As we discussed, the Kerr metric is algebraically special and has a Petrov type D, meaning that it possesses the two repeated principal null directions given in Eq. (7.33). We will show that the NCS metric is of general Petrov type I, meaning that it is not not algebraically special. This is a generic feature of all the disformed metrics, but we choose to perform the calculations for the NCS metric for simplicity. However, even for type D metrics, most of the useful theorems apply only for vacuum solutions. For instance, in this case the Goldberg-Sachs theorem [START_REF] Goldberg | Republication of: A theorem on petrov types[END_REF] states that the repeated principal null directions are geodesic (and shear-free). One can also prove the existence of a nontrivial Killing tensor in this case [START_REF] Walker | On quadratic rst integrals of the geodesic equations for type [22] spacetimes[END_REF]. However, since the disformed Kerr metrics are not Ricci at, these theorems wouldn't apply anyway, so determining the Petrov type is not crucial. The authors of [START_REF] Ben Achour | On rotating black holes in DHOST theories[END_REF] constructed deformed versions of the principal directions of the Kerr spacetime of the form kµ = k µ 0 + α 1 (r) ϕ µ and lµ = l µ 0 + α 2 (r) ϕ µ .

(8.64)

We show here that these objects cannot be considered as repeated principal null directions of the disformed spacetime, since the Petrov type D is not conserved through the disformal transformation. Instead, these are simply null vectors which are not geodesic, and have no link to the Weyl tensor in the generic case D ̸ = 0.

The NCS metric written in Schwarzschild-like coordinates is a good starting point for applying the Newman-Penrose (NP) formalism [START_REF] Newman | An Approach to gravitational radiation by a method of spin coecients[END_REF]. Indeed, the line element (8.58) can be written We assume that we are in the region r > 2 M in order for the previous expressions to be valid. From this real tetrad, we can construct a complex null tetrad {k, l, m, m}

according to k = e 0 + e 1 √ 2 , l = e 0 -e 1 √ 2 , m = e 2 -i e 3 √ 2 , m = e 2 + i e 3 √ 2 . 
(8.66)

In this formalism, the metric can be written

gµν = -k µ l ν -l µ k ν + m µ mν + mµ m ν .
In terms of the Riemann and Ricci tensors, the Weyl tensor in four dimensions reads

C µναβ = R µναβ -g µ[α R β]ν + g ν[α R β]µ + 1 3 R g µ[α g β]ν . (8.67) 
It is the trace-free component of the Riemann tensor, as can be checked easily by contracting any two indices in the previous expression. We can now construct ve Weyl scalars through contractions with the vectors of the null tetrad:

ψ 0 = C µναβ k µ m ν k α m β , ψ 1 = C µναβ k µ l ν k α m β , ψ 2 = C µναβ k µ m ν mα l β , ψ 3 = C µναβ l µ k ν l α mβ , ψ 4 = C µναβ l µ mν l α mβ . (8.68) 
The Weyl scalars completely determine the Petrov type of a given spacetime [START_REF] Newman | An Approach to gravitational radiation by a method of spin coecients[END_REF]. In terms of the null tetrad (8.66), an explicit calculation for the NCS metric yields

ψ 0 = M 3 χ2 sin 2 θ √ r -2 M 2 r 5 r -2 M , ψ 1 = - M 2 χ sin θ √ r -2 M 7 M χ cos θ -6ir 4r 5 r -2 M , ψ 2 = - M r 3 1 - M 2 χ2 (1 + 3 cos 2θ) 3r 2 + 3i M χ cos θ r , ψ 3 = M 2 χ sin θ √ r + 2 M 7 M χ cos θ -6ir 4r 5 r -2 M , ψ 4 = M 3 χ2 sin 2 θ √ r + 2 M 2 r 5 r -2 M . (8.69)
The Weyl scalars are modied by a rotation of the tetrad. For example, in the case of a type D spacetime, one can nd a null tetrad for which only the Weyl scalar ψ 2 ̸ = 0. This is the case when χ = 0 in the previous expressions, which corresponds to the Schwarzschild metric. We have in this case ψ 0 = ψ 1 = ψ 3 = ψ 4 = 0, while ψ 2 = -M /r 3 . It is possible to construct scalars which are invariant under the rotation o the tetrad, among which [START_REF] Stephani | Exact solutions of Einstein's eld equations[END_REF] 

I = ψ 0 ψ 4 -4ψ 1 ψ 3 + 3ψ 2 2 , J = ψ 0 ψ 2 ψ 4 -ψ 2 1 ψ 4 -ψ 0 ψ 2 3 + 2ψ 1 ψ 2 ψ 3 -ψ 3 2 .
(8.70)

It can be shown that an algebraically special spacetime (i.e. not of Petrov type I) satises 27J 2 = I 3 (see for instance Ref. [START_REF] Stephani | Exact solutions of Einstein's eld equations[END_REF]). One can dene the following speciality index S in order to quantify the deviations from an algebraically special spacetime [START_REF] Baker | Making use of geometrical invariants in black hole collisions[END_REF]:

S = 27J 2 I 3 . (8.71) 
For the NCS metric, one can check explicitly that S ̸ = 1, indicating that the spacetime is of generic Petrov type I. Furthermore, in the case χ ≪ 1 we obtain S NCS = 1 -3 M 4 χ4 sin 4 θ 4r 4 + O χ5 .

(8.72)

The limit χ = 0 corresponds to the Schwarzschild metric, which is of Petrov type D, so we recover S = 1 in that case. This calculation can be performed for the disformed Kerr metric (8.11) in the general case, and we obtain the same result S ̸ = 1, unless D = 0 or a = 0 (which both correspond to vacuum GR black holes that are of type D). 5 However, since the expressions are much heavier in the general case, the case of the NCS metric was presented for simplicity. An analogous calculation for the quasi-Weyl metric (8.55) outside the ergosurface yields the same result as Eq. (8.72) in the case χ ≪ 1, with the substitution χ → χ. The next-to-leading correction is of order O(χ 6 ) for that spacetime.

Chapter 9

Orbit of stars in the disformed Kerr spacetime In this chapter, which is based on Ref. [START_REF] Anson | Deformed black hole in Sagittarius A[END_REF], we study the post-Newtonian (PN) motion of stars around a disformed Kerr black hole. We will study dierent limits of the disformal parameter D, showing that generically the no-hair theorem of GR is violated. In a specic limit, we will be able to put a lower bound on the disformal parameter in order to satisfy the current experimental constraints from the GRAVITY collaboration [START_REF] Abuter | Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole[END_REF][START_REF] Abuter | Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole[END_REF]. We start by comparing the second post-Newtonian (2PN) expansion of the disformed metric to various rotating spacetimes in the literature, and discuss the violation of the no-hair theorem. We then present the two-timescale analysis which is used to compute the secular variation of orbital parameters, closely following the analysis of Ref. [START_REF] Will | Relativistic orbits around spinning supermassive black holes. Secular evolution to 4.5 post-Newtonian order[END_REF]. Finally we calculate the secular shifts of orbital parameters for various cases of the constant D and discuss experimental constraints.

Comparison of dierent metrics asymptotically

Our goal is to study the post-Newtonian motion of stars in the vicinity of a disformed Kerr spacetime. In the Newtonian limit, the trajectory of a star forms an ellipse with the black hole located at one of its foci. In order to describe the post-Newtonian motion, we introduce the following dimensionless parameter:

ε = M A , (9.1) 
where A is the semimajor axis of the ellipse. We consider the case where the star is far away from the black hole, and write the metric up to 2PN order, meaning that we keep terms up to order O(ε 3 ). We write the metric in terms of the physical spin χ = ã/ M , which we assume is of order O(1). After the coordinate change (8.21), which we perform so that the asymptotic form of the metric is closer to Kerr in BL

µ = M R - 1 4 + a 0 -4a 0 P 2 (cos θ) M 2 R 2 + O(R -3 ) , Ψ = log(R sin θ) + M R + 3a 0 - 1 4 M 2 R 2 + O(R -3 ) , ω = 2χ M 2 R 3 + +O(R -4 ) , (9.3) 
where a 0 and q are quadrupole parameters, and P 2 (x) = (3x 2 -1)/2 is a Legendre polynomial. We adopt here the notations of Ref. [START_REF] Friedman | Rotating Relativistic Stars[END_REF] (but we use a 0 instead of their a to avoid confusion with the Kerr spin parameter). With these conventions, the parameter q corresponds to the coordinate invariant quadrupole moment, as pointed out in Ref. [START_REF] Pappas | Revising the multipole moments of numerical spacetimes, and its consequences[END_REF] (see also Ref. [START_REF] Paschalidis | Rotating Stars in Relativity[END_REF]). In order to compare the asymptotic expansions of the disformed Kerr and the BI metrics, we write the 2PN order expansion of the BI metric in BL-like coordinates. One can show that the disformed metric can be written in quasi-isotropic coordinates up to 2PN order by the coordinate transformation

r = R 1 + M 2R 1 + χ √ 1 + D 1 + M 2R 1 - χ √ 1 + D . (9.4) 
When D = 0, this coordinate redenition brings the full Kerr metric in BL coordinates to quasi-isotropic ones [START_REF] Lanza | Multigrid in general relativity. II. Kerr spacetime[END_REF]. However, for the disformed metric this is true only up to 2PN order. By inverting this relation, we obtain the BI metric in BL-like coordinates at 2PN order:

ds 2 BI = -1 - 2 M r + 2 M 3 r 3 q + 6a 0 + χ2 2(1 + D) -3(4a 0 + q) cos 2 θ dt 2 + 1 + 2 M r + 4 M 2 r 2 + M 2 r 2 6a 0 cos 2θ - χ2 2(1 + D) dr 2 + r 2 1 + M 2 r 2 6a 0 cos 2θ + χ2 2(1 + D) dθ 2 - 4 M 2 χ sin 2 θ r dtdφ + r 2 sin 2 θ 1 + M 2 r 2 6a 0 + χ2 2(1 + D) dφ 2 , (9.5)
One can see that the disformed Kerr and the BI metrics can indeed be matched at 2PN order. A direct comparison of the above line element to the metric (9.2) gives the following identication of the parameters for the disformed metric in the case of generic D:

a (D) 0 = χ2 12(1 + D) , q (D) = - χ2 1 + D , (9.6) 
It may seem surprising that such a matching exists, taking into account the completely dierent nature of the disformed Kerr and BI metrics, and given that there are only two free parameters at hand. It should be noted however, that at higher PN orders, where the noncircularity of the disformed metric (re)appears, such a matching cannot be done as the BI metric is circular (see for example Refs. [START_REF] Friedman | Rotating Relativistic Stars[END_REF][START_REF] Gourgoulhon | An Introduction to the theory of rotating relativistic stars[END_REF]). Furthermore, for some limiting cases of D that we will consider below, the matching does not exist, i.e. the disformed metric does not fall in the BI form, even at 2PN order.

In GR, the higher multipole moments M l and S l of the Kerr metric are uniquely determined as a function of the mass M and spin ã of the black hole according to the formula [START_REF] Geroch | Multipole moments. II. Curved space[END_REF][START_REF] Hansen | Multipole moments of stationary space-times[END_REF] M l + iS l = M (iã) l .

(9.7)

We have M 0 = M , S 1 = M ã and M 2 = -M ã2 . Hence, for the Kerr metric, the dimensionless quadrupole moment q reads q (K) = -χ2 . For generic D we have q (K) ̸ = q (D) , which means that the no-hair theorem is violated for the disformed Kerr spacetime. In the future, the spin and quadrupole moment of Sgr A* will be measured, providing a test of the previous theorem.

It is instructive to compare the Kerr disformation to other metrics presented in the literature in the asymptotic regime, i.e. for large r. The main challenge here is that normally line elements are written in dierent coordinates, which makes a direct comparison impossible. We will write all of the metrics in Boyer-Lindquistlike coordinates, so that we can see a connection to our asymptotic expansion of the disformed Kerr metric, given by Eq. (9.2). A well-known example of an axisymmetric and stationary spacetime is the Hartle-Thorne (HT) metric [START_REF] Hartle | Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars[END_REF], which was constructed to model slowly rotating stars. Note that the quasi-Kerr metric [START_REF] Glampedakis | Mapping spacetimes with LISA: Inspiral of a test-body in a `quasi-Kerr' eld[END_REF], sometimes used as an alternative to the Kerr metric, is exactly the HT metric up to 2PN order. The HT metric for slowly rotating stars can be written in a form which reduces to BL coordinates in the Kerr limit. At 2PN order, this metric reads

ds 2 HT = -1 - 2 M r - M 3 r 3 q HT -χ2 + ( χ2 -3q HT ) cos 2 θ dt 2 + 1 + 2 M r + M 2 (4 -χ2 sin 2 θ) r 2 dr 2 + r 2 1 + M 2 χ2 cos 2 θ r 2 dθ 2 (9.9) + r 2 sin 2 θ 1 + M 2 χ2 r 2 dφ 2 - 4 M 2 χ sin 2 θ r dtdφ .
We have used the expression of the metric in the appendix of Ref. [START_REF] Hartle | Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars[END_REF] 2 with the identication Q = q HT M 3 and J = χ M 2 . The HT metric up to 2PN order is a 2 Notice a typo in the coordinate transformation to BL-like coordinates (as pointed out in

Ref. [START_REF] Glampedakis | Mapping spacetimes with LISA: Inspiral of a test-body in a `quasi-Kerr' eld[END_REF]). 9.2. Two-timescale analysis for the secular variation of orbital elements 131 subclass of the BI metric. This can be seen by comparing Eqs. (9.9) and (9.5) (where one sets D = 0) with the identication q = -q HT and a 0 = χ2 /12. The disformed metric given by Eq. ( 9.2) cannot be matched with Eq. (9.9), as can be seen from a direct comparison. The other variants of Kerr disformations that we will consider in the following cannot be matched to the HT metric either.

Another spacetime worth considering is the Johannsen metric [START_REF] Johannsen | Regular Black Hole Metric with Three Constants of Motion[END_REF], which describes a rotating black hole, unlike the HT metric. Using the notations of Ref. [START_REF] Johannsen | Regular Black Hole Metric with Three Constants of Motion[END_REF], the line element at 2PN order in BL coordinates reads:

ds 2 J = -1 - 2 M r + M 3 r 3 2α 13 -ϵ 3 -2 χ2 cos 2 θ dt 2 + 1 + 2 M r + M 2 (4 -α 52 -χ2 sin 2 θ) r 2 dr 2 + r 2 1 + M 2 χ2 cos 2 θ r 2 dθ 2 + r 2 sin 2 θ 1 + M 2 χ2 r 2 dφ 2 - 4 M 2 χ sin 2 θ r dtdφ .
(9.10)

Note that the Johannsen metric is circular by construction. The Kerr metric at this order is obtained by setting α 13 = α 52 = ϵ 3 = 0 in the above expression. In general, the metric (9.10) does not match the BI metric at 2PN order. It only happens for a special combination of the parameters, i.e. q = -χ2 , a 0 = χ2 /12, α 52 = 0 and ϵ 3 = 2α 13 . In this case the coordinate invariant quadrupole is the same as for Kerr and the no-hair theorem is not violated at this order. The Johannsen metric can also be mapped to other Kerr-like metrics, see Ref. [START_REF] Johannsen | Regular Black Hole Metric with Three Constants of Motion[END_REF] for details. One can also verify by comparing Eqs. (9.10) and (9.2) that the disformed metric in the generic case does not match the Johannsen metric at this order. The same conclusion holds for the other variants of the disformed metric.

Two-timescale analysis for the secular variation of orbital elements

In this section, we present the two-timescale analysis that we will use to calculate the secular variation of orbital parameters, closely following Ref. [START_REF] Will | Relativistic orbits around spinning supermassive black holes. Secular evolution to 4.5 post-Newtonian order[END_REF]. We will use the standard osculating orbit method, see for instance Ref. [247]. In general, the 3-dimensional acceleration of a test body can be written in the following form:

a = - M r 3 x + F , (9.11) 
where the rst term on the right-hand side corresponds to the Newtonian acceleration, F is the perturbation of the Newtonian acceleration and x is the position vector in space, so that r = |x|. We need to calculate the projections of the acceleration (9.11) along the orthogonal directions x, h = x × v, and h × x, where v = dx/dt is the 3-velocity of the star. These projections are given by

S = 1 r x • F , T = 1 hr (h × x) • F , W = 1 h h • F ,
where h = |h|. The expressions for the components of x in Cartesian coordinates (see and each orbital parameter is decomposed as:

X k (Θ, u) = Xk (Θ) + ϵZ k ( Xl , u) , (9.17)

Xk (Θ) = ⟨X k (Θ, u)⟩ , (9.18) 
⟨Z k ( Xk (Θ), u)⟩ = 0 . This analysis is not necessary to obtain leading-order terms in the variation of orbital parameters, but the periodic contributions which appear in the Z k must be taken into account if one calculates higher-order terms in ϵ. Let us now derive the formula that we will use to calculate the secular variation of orbital parameters, following Ref. [START_REF] Will | Relativistic orbits around spinning supermassive black holes. Secular evolution to 4.5 post-Newtonian order[END_REF].

By using the previous decomposition with the evolution equations (9.14), we obtain the following expressions:

d Xk dΘ = ⟨Q k Xl + ϵZ l , u ⟩ , (9.20) ∂Z k ∂u = AF Q k Xl + ϵZ l , u -ϵ ∂Z k ∂ Xm d Xm dΘ (9.21)
We want to obtain the corrections up to order ϵ 2 in Eq. (9.14), so we must calculate them up to order ϵ in terms of Θ derivatives. At the end, we sill replace Θ = ϵu to obtain the desired result. We expand the functions Z k as

Z k = Z (0) k + ϵZ (1) 
k + . . . ,

and we perform a Taylor expansion of Eq. (9.21). The result is

d Xk dΘ = ⟨Q (0) k ⟩ + ϵ⟨Q (0) k,l Z (0) l ⟩ + O(ϵ 2 ) , (9.23) 
where Q

0) k = Q k ( Xl , u) and Q (0) ( 
k,l = (∂Q k /∂ Xl )( Xl , u). We must now determine Z (0) , in order to obtain the nal formula for the secular shifts. Using Eq. (9.21), we obtain that dZ (0)

k du = AF Q (0) k , (9.24) 
and one can show that the solution reads [START_REF] Will | Relativistic orbits around spinning supermassive black holes. Secular evolution to 4.5 post-Newtonian order[END_REF] Z 

0) k = u 0 Q (0) k du ′ -(u + π) ⟨Q (0) k ⟩ + ⟨uQ (0) k ⟩ . ( ( 
= ϵ⟨Q 0 k ⟩ + ϵ 2 ⟨Q 0 k,l u 0 Q 0 l du ′ ⟩ + ⟨Q 0 k,l ⟩⟨uQ 0 l ⟩ -⟨(u + π) Q 0 k,l ⟩⟨Q 0 l ⟩ + O ϵ 3 , (9.26) 
In the following section, we will use this formula to nd the secular variation of orbital parameters for dierent ranges of the disformal parameter D.

Orbital perturbations for the disformed Kerr metric

In this section, we use the technique described above to calculate the secular shifts of orbital parameters for dierent cases involving the disformal parameter D. We will start with a generic D, and then consider limiting cases that provide interesting phenomenology. As is common in the literature, we work with Kerr harmonic coordinates, i.e. coordinates verifying □x µ H = 0, where the □ operator is associated to the Kerr metric with rescaled Kerr parameters M and ã. It should be made clear that one has □x µ H ̸ = 0, which means that these coordinates are not harmonic for the disformed metric. The idea, however, is to use the same coordinates that one uses when assuming the Kerr black hole and GR, in order to better gauge the dierences arising from the disformed spacetime. This is also the reason why we work with the black hole parameters {ã, M } determined from the asymptotic expansion. Therefore, this choice of coordinates makes it easier to link our results to observations.

In the following, we rst consider the case of generic D in Section 9.3.1, and then study dierent limits of the parameter D. In particular, we investigate the noncircular Schwarzschild and quasi-Weyl metrics presented in the previous chapter. In addition, we study the limit of small but nite (1 + D), for which deviations from the Kerr geometry are enhanced, and consequently the corrections to orbital shifts become larger. We consider two dierent regimes separately: (1 + D) ∼ ε in Section 9.3.4, and (1 + D) ∼ √ ε in Section 9.3.5.

Disformal Kerr: generic case

We start with the generic case, where D is arbitrary, but not too large or too close to -1. In terms of the BL coordinates {t, r, θ, φ}, the harmonic coordinates x µ H can be written as [START_REF] Will | Relativistic orbits around spinning supermassive black holes. Secular evolution to 4.5 post-Newtonian order[END_REF][START_REF] Jiang | Harmonic metric for Kerr black hole and its post-Newtonian approximation[END_REF] t H = t ,

x H = R2 + a 2 cos ψ sin θ ,

y H = R2 + a 2 sin ψ sin θ , z H = R cos θ , (9.27) 
where R and ψ are dened as

R = r -M , ψ = φ + tan -1 ã r -M + ã ∆ dr .
(9.28)

We now invert these relations up to O(ε 3 ), and replace the BL-like coordinates of Eq. (9.2) by harmonic coordinates (we drop the index H in the following). The of O(ε) lead to a variation of α and β, which correspond to the standard pericenter precession as in GR. The Lense-Thirring (or frame-dragging) eect is due to the term O(ε 3/2 ), corresponding to 1.5PN order in the last equation of (9.30), which results in a variation of Ω. Similar terms also enter the corrections to the shifts of α and β.

The higher-order Schwarzschild corrections at 2PN order in the variation of α and β (the third term on right-hand side of (9.30)), are unaected by the modication of gravity in this case. Crucially however, quadrupole corrections proportional to χ2 now get corrected by the factor (1 + D) -1 . As expected, the secular variation of the orbital parameters remains unchanged up to the Lense-Thirring terms when compared to Kerr, while the quadrupole terms are modied.

Case of the noncircular Schwarzschild metric

We now consider the noncircular Schwarzschild metric (8.58), which we presented in Section 8.3. Similarly to the generic case considered above, we change coordinates to those that are harmonic for the Kerr metric, and expand in ε to obtain:

gNCS 00 = -1 + 2 M r - 2 M 2 r 2 + 2 M 3 r 3 + M 3 χ2 r 3 1 -(n • s) 2 + O ε 4 , gNCS 0j = 2 M 2 χ r 2 (n × s) j + O ε 3 , gNCS ij = 1 + 2 M r + M 2 r 2 1 -χ2 δ ij + 2 √ 2 χ (n × s) (i n j) M r 3/2 + M 2 r 2 n i n j + M 2 χ2 r 2 2n i n j + s i εs j -2s (i n j) (n • s) + O ε 5/2 . (9.32)
where r is now the radial harmonic coordinate relevant for the PN expansion. This metric is almost identical to the D → ∞ limit of Eq. (9.29), the only dierence being the term ∼ O(ε 3/2 ) in the g(NCS) ij components. This term comes from the grφ component of Eq. (8.58), meaning that the metric is already noncircular at this PN order (unlike in the case of generic D discussed above). In particular, this implies that the NCS metric cannot be matched to the BI metric (9.5) at this PN order. It can be shown that the Ricci tensor for the NCS metric is nonzero only at ε 3 order, as in the case of generic D.

We now perform the two-timescale analysis described in Section 9.2, and obtain:

d p du = 0 , d ᾱ du = - 3 M β p + 6 χ β cos ῑ M p 3/2 + 3 M 2 β 4p 2 10 -ᾱ2 -β2 , d β du = 3 M ᾱ p -6 χᾱ cos ῑ M p 3/2 - 3 M 2 ᾱ 4p 2 10 -ᾱ2 -β2 , dῑ du = 0 , d Ω du = 2 χ M p 3/2 . ( 9.33) 
The above expressions can be alternatively found by taking the limit D → ∞ in in Eq. (9.30). Hence, the noncircular terms in the spatial components of Eq. (9.32) do not inuence the secular shifts at this PN order, as their eect averages to 0 over an orbital period. As we can see by comparing Eqs. (9.33) and (9.30) where we set D = 0, the variation of the orbit elements are modied at 2PN order, while the 1PN and Lense-Thirring terms remain the same. The dierence appearing at 2PN order is in the quadrupole terms. In the present case they do not appear at this order, while they are present for Kerr. In terms of ω, we obtain the following expression at 2PN order:

d ω du = 3 M p -6χ cos ῑ M p 3/2 - 3 M 2 (10 -ē2 ) 4p 2 . 
(9.34)

In comparison to the Kerr case, the quadrupole term is absent in the above expression, while other terms are the same as Kerr, namely the 1PN and 2PN Schwarzschild corrections and the Lense-Thirring term are recovered. This means that the no-hair theorem is violated for this spacetime.

Case of the quasi-Weyl metric

We now consider the quasi-Weyl metric (8.55), which was introduced in Section 8.3.

After the coordinate change (8.21), the metric reads

ds 2 QW = -1 - 2 M r ρ 2 dT 2 - 4a 2 2 M 3 r cos 2 θ ρ 2 (r -2 M ) √ a 2 + r 2 dT dr + r 5 (r -2 M ) + 2a 2 r 3 cos 2 θ(r -3 M ) + a 4 cos 4 θ(r -2 M ) 2 ρ 2 (r -2 M ) 2 (r 2 + a 2 ) dr 2 + ρ 2 dθ 2 + r 2 + a 2 sin 2 θdφ 2 . (9.35) 
We saw that in this case, one must keep the parameter χ = a/ M instead of the physical spin χ. The 2PN expression of the above metric can be obtained from Eq. (9.2) by setting χ = χ √ 1 + D and taking the limit D → -1. Note that we also assume χ ∼ O(1) in order to perform the expansion. At this PN order, the quasi-Weyl metric can also be matched to the BI metric (9.5), with the BI parameters q = -χ 2 and a 0 = χ 2 /12. The resulting 2PN metric does not contain the Lense-Thirring term, which could be anticipated since the physical rotation parameter χ = 0 in this case. Meanwhile, the metric still contains a free quadrupole parameter χ. As in the two previous cases, the Ricci tensor for the metric (9.35) is nonzero only at ε 3 order.

Similarly to the generic case described above, we change to Kerr harmonic coordinates and calculate the secular variations of orbital parameters, following the method of Section 9.2. We obtain the following results up to 2PN order:

d p du = 0 , d ᾱ du = - 3 M β p + 3 M 2 β 4p 2 10 -ᾱ2 -β2 - 3 M 2 βχ 2 4p 2 5 cos 2 ῑ -1 , d β du = 3 M ᾱ p - 3 M 2 ᾱ 4p 2 10 -ᾱ2 -β2 + 3 M 2 ᾱχ 2 4p 2 5 cos 2 ῑ -1 , dῑ du = 0 , d Ω du = - 3 M 2 χ 2 cos ῑ 2p 2 
.

(9.36)

The above expressions can also be obtained from the system (9.30) by the substitution χ = χ √ 1 + D as explained above. As one can see from Eq. (9.36), the Lense-Thirring terms drop out in this limit, which is consistent with the absence of a (tφ) term in the metric. However, the quadrupole terms appear at 2PN order, similarly to the Kerr case. While the structure of these terms is the same as for Kerr, the free parameter χ entering the quadrupole terms is not related to the black hole spin, which is zero in the quasi-Weyl case. Hence, the no-hair theorem is violated in this case also.

Enhanced Kerr disformation

Finally, for the two last variants of the Kerr disformation we examine the situation when (1 + D) is small but nite. As we saw above, the generic values of D result in a rather mild eect on the secular shifts, i.e. only quadrupole terms in Eq. (9.30) are modied. The limit D → -1 (quasi-Weyl) yields stronger modications, since χ = 0 in this case, and hence the frame-dragging terms are also modied with respect to Kerr. In contrast to the quasi-Weyl case, here we assume that D has a small nite oset from -1, so that the physical spin remains nite, while the corrections to the Kerr metric are enhanced with respect to the generic case. Indeed, if we take 1 + D ∼ ε, the terms proportional to (1 + D) -1 in the metric expansion (9.2) become one order lower in ε. More precisely, we assume the following form for the constant disformal factor:

D = -1 + χ2 λ ε , {λ, χ} ∼ O (1) , (9.37) 
where the factor χ2 /λ is chosen for convenience and we introduced a new parameter λ here. Similarly to the case of generic D discussed above, we perform the coordinate transformation (8.21) in the disformal metric (8.11), and expand the line element to O(ε 3 ), assuming dx i ∼ √ ε dt. The result is:

ds 2 EKD ≃ -1 - 2Aε r + 2A 3 ε 2 λ r 3 cos 2 θ - 2A 5 ε 3 λ 2 cos 4 θ r 5 dt 2 + 1 + Aε(2r -Aλ sin 2 θ) r 2 + A 2 ε 2 (4r 2 -2Arλ + A 2 λ 2 sin 2 θ) r 4 dr 2 + r 2 1 + ελA 2 r 2 cos 2 θ dθ 2 + r 2 sin 2 θ 1 + ελA 2 r 2 dφ 2 - 4 √ 2A 7/2 ε 5/2 λ cos 2 θ r 7/2 dtdr - 4A 2 ε 2 χ sin 2 θ r dtdφ . (9.38) 
We call this metric the Enhanced Kerr disformation (EKD). Note that the above expression cannot be obtained by substituting Eq. (9.37) in the asymptotic expansion (9.2). This is because in Eq. ( 9.2) we neglected, in particular, terms of the form ∼ (1+D) -2 O(ε 5 ) in the (tt) component of the metric, which become ∼ O(ε 3 ) for values of the disformal parameter given by Eq. (9.37). Similarly, terms ∼

(1 + D) -1 O(ε 7/2 ) in the (tr) components and ∼ (1+D) -1 O(ε 3 ) or ∼ (1+D) -2 O(ε 4 ) in spatial components
were neglected in (9.2). However, they become important for the case considered here.

The metric (9.38) is noncircular and its Ricci curvature is nonzero already at ε 2 order, which is one order lower than all other cases considered above. As one of the consequences of noncircularity, the EKD metric cannot be matched to the BI metric (9.5) at this order. Also, due to noncircularity in the generic case (9.2), the odiagonal term (tr) cannot be eliminated in Eq. (9.38), since gtt depends on θ now. To recover the asymptotic Kerr metric at O(ε 3 ) one replaces λ = χ2 ε in Eq. (9.38), which corresponds to setting D = 0. By inverting the relations (9.27) to the right order, the asymptotic expansion (9.38) can be written in the Kerr harmonic coordinates,

gEKD 00 = -1 + 2 M r - 2 M 2 r 2 1 + Ã (n • s) 2 r + M 3 r 3 2 + 1 -(n • s) 2 χ2 + 6 Ã(n • s) 2 r + 2 Ã2 (n • s) 4 r 2 + O ε 4 , (9.39) gEKD 0j = 2 M 2 χ r 2 (n ∧ s) j - 2 √ 2 Ã M 5/2 (n • s) r 7/2 n j + O ε 3 , (9.40) 
gEKD ij = 1 + M r 2 + Ã r + M 2 r 2 1 -χ2 δ ij - 2 Ã M r 2 n i n j + M 2 r 2 1 + 2 χ2 - 2 Ã(n • s) 2 r + Ã2 r 2 1 -(n • s) 2 n i n j + Ã M r 2 1 - M χ2 Ã 2s (i n j) (n • s) -s i s j + O ε 5/2 , (9.41) 
where à = λA. The asymptotic expansion of the Kerr metric in harmonic coordinates is recovered by setting à → M χ2 and keeping terms up to 2PN order (one can check that the Kerr metric is indeed recovered by comparing to Ref. [START_REF] Will | Relativistic orbits around spinning supermassive black holes. Secular evolution to 4.5 post-Newtonian order[END_REF] for instance).

We now apply the osculating orbit method starting with the metric (9.39), and calculate the secular shifts up to 2PN order. The nal expressions are quite heavy, and can be found in Appendix III.B. Setting λ = χ2 ε, our results up to 2PN order coincide with Ref. [START_REF] Will | Relativistic orbits around spinning supermassive black holes. Secular evolution to 4.5 post-Newtonian order[END_REF] for the Kerr spacetime. Using the expressions for the secular variations of {ᾱ, β} in Eq. (III.1), one can obtain the secular variations of ω and ē: .43) In this case, the leading-order term in the secular variation of ω receives corrections due to disformality. Additionally, we see that ē has a secular corrections of 2PN order, which is one ε order lower than the GR value. The same is true for the parameters {p, ῑ}, as one can check using the expressions in Appendix III.B. This naively suggests possible strong secular eects in the case of the disformed metric, meaning that the parameters {p, ῑ, ē} could change considerably over a long period of time, when compared to the Kerr predictions. However, one can show that over long timescales these contributions average out to 0. Indeed, the characteristic timescale over which the pericenter angle ω varies is shorter than for other parameters, as the leading secular shift for ω appears at 1PN order. Hence, one can average the secular variations of orbital parameters over ω, while keeping other parameters xed. It is not necessary to perform another 2-timescale analysis since the terms containing ω are already of 2PN order, which means such an analysis would only be relevant if we were interested in higher-order PN terms (see Ref. [START_REF] Will | Relativistic orbits around spinning supermassive black holes. Secular evolution to 4.5 post-Newtonian order[END_REF]). From Eq. ( 9.42), one can easily see that By combining the expression for the secular variation of Ω (found in Appendix III.B) with the variation of ω, we obtain the following formula after multiplication by 2π:

d ω du = 3 M p 1 + λ 4(1 -ē2 ) 5 cos 2 ῑ -1 -6 χ cos ῑ M p 3/2 + O ε 2 , (9.42) dē du = λ M 2 sin 2 ῑ 8p 2 (1 -ē2 ) 2 [ē sin 2ω 17 + 183ē 2 + 40ē 4 + 16 √ 2 1 -ē2 2 ⟨sin 2u sin(u -ω) (1 + ē cos(u -ω)) 3/2 ⟩] + ēλ 2 M 2 sin 2 ῑ 64p 2 (1 -ē2 ) 2 4ē 2 sin 2 ῑ sin 4ω +2 sin 2ω -39 + 5ē 2 + ē4 + cos 2 ῑ -81 -25ē 2 + ē4 . ( 9 
∆ π ≡ ∆ω + cos ῑ ∆ Ω = 6π M p 1 + λ 4(1 -ē2 ) 3 cos 2 ῑ -1 + O ε 3/2 , (9.45) 
where π is the precession of the pericenter relative to the xed reference direction (the (Ox) axis in our case, see Fig. 1). As expected from the asymptotic expression Eq. (8.22), there are leading-order corrections to the secular pericenter shift. In Appendix III.C, we derive this leading term with the standard textbook method using equatorial geodesics. One can check that the two methods are compatible by setting ῑ = 0 in Eq. (9.45), which corresponds to an orbit in the equatorial plane of the black hole. While the leading-order terms are the same, one must be careful when comparing the higher-order corrections of the dierent methods, as explained in Ref. [START_REF] Tucker | Pericenter advance in general relativity: Comparison of approaches at high post-Newtonian orders[END_REF].

e nhanced Kerr disformation

We now examine another case of small and nite deviation of D from -1, similarly to the previous case. We study larger (but still small) deviations of order √ ε: .46) We call this the enhanced Kerr disformation (eKD), in order to dierentiate it from the EKD spacetime. Since the oset is larger than in the previous case, one expects that the modied gravity eects are smaller than those for EKD, while still larger than in the generic case. The metric in this limit can be obtained by replacing the relation (9.46) in the line element (9.29). Unlike in the EKD case, the metric is circular at 2PN order, and we have R µν ∼ ε 5/2 . The resulting metric cannot be matched to the BI metric (9. 

D = -1 + χ2 λ 2 √ ε , λ 2 ∼ O(1) . ( 9 
1 -ᾱ2 -β2 M p 3/2 + 3 M 2 β 4p 2 10 -ᾱ2 -β2 , d β du = 3 M ᾱ p - 3ᾱ 4 8 χ cos ῑ - λ 2 (5 cos 2 ῑ -1) 1 -ᾱ2 -β2 M p 3/2 - 3 M 2 ᾱ 4p 2 10 -ᾱ2 -β2 , dῑ du = 0 , d Ω du = 2 χ - 3λ 2 cos ῑ 4 1 -ᾱ2 -β2 M p 3/2 . ( 9 

.47)

The above expressions can be obtained by replacing Eq. (9.46) in the expressions (9.30)

for the generic case. As one can see from the above equations, the Kerr quadrupole terms drop out in this case, similarly to the NCS case. However, for the eKD secular corrections appear at lower order, at the level of the Lense-Thirring terms. This happens because the quadrupole (2PN) corrections of the generic case become 1.5PN order corrections here, due to the presence of the small value of (1 + D) given by Eq. (9.46). The 1PN order is not modied for the eKD case unlike in the EKD case considered above.

Summary, observational constraints and predictions

We now summarize the main results of this section, and discuss how the current experimental measurements can constrain the disformed Kerr metric. For the values of D that we considered, deviations from GR appear at dierent PN orders in the metric or the secular variation of orbital parameters. We summarize the dierent cases in Table 1.

One can show that the orbital shifts up to 2PN order in the generic case (9.30) can be matched to the orbital shifts for the HT metric (9.9), by the identication q HT = χ2 /(1 + D). Similarly, the secular variations for the NCS metric at 2PN are identical to those for HT metric when setting q HT = 0. In order to recover the 2PN secular shifts of the QW metric, Eq. ( 9.36), one sets q HT = χ 2 and χ = 0 in the metric (9.9). In the case of the Johannsen metric (9.10), the 2PN Schwarzschild terms are modied with respect to the Kerr case in the secular variation of orbital parameters. On the other hand, the quadrupole terms proportional to χ2 are the same as in the Kerr case (i.e. the terms are those of Eq. (9.30) with D = 0). Note that this is dierent from the generic case of the disformal parameter, where we found that the terms proportional to χ2 are modied with respect to the Kerr case.

The observation of the star S2 in the center of our galaxy provides an opportunity to test GR by measuring its redshift [START_REF] Abuter | Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole[END_REF] and pericenter precession [START_REF] Abuter | Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole[END_REF]. The redshift includes the Newtonian Doppler eect and relativistic corrections. The measured combination of the leading corrections, the gravitational redshift and relativistic transverse Doppler eect, was found to be in agreement with GR [START_REF] Abuter | Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole[END_REF]. Note, however, that the gravitational redshift at this observational precision is due to the Newtonian potential in the gtt component of the metric. This means that the current observations of the S2's redshift do not allow to test the Sgr A* metric beyond Newtonian order.

Taking into account that all the variants of the disformed Kerr metric agree with GR at this order, these observations do not put any constraints on the considered Kerr deformations.

On the other hand, one can use the pericenter precession experienced by the star S2 when orbiting around Sgr A*. It was found to be in agreement with GR [START_REF] Abuter | Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole[END_REF] with the accuracy f SP ≃ 1.1 ± 0.2, where f SP denes the ratio of the orbital pericenter precession (per period) of S2 to its GR value. For GR one has f SP = 1 while for Newtonian gravity f SP = 0. Since the pericenter precession is a 1PN eect, the only case we can constrain using the observed pericenter precession [START_REF] Abuter | Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole[END_REF] is the Enhanced and some properties of the resulting metrics at 2PN order. In the rst column, we report the PN order at which the metric diers from Kerr in each case. The second column shows the PN order at which the secular variation of orbital parameters start to deviate from Kerr. The third column contains the order of the Ricci tensor. In the fourth column, we specify if the 2PN metric in each case is circular, and in the last column if the 2PN metric can be identied with the Butterworth-Ipser metric.

Kerr Disformation studied in Section 9.3.4. 4 All other deformations give corrections to the orbital shifts at higher PN orders (see Table 1), and therefore they automatically pass this observational test.

5 For the EKD metric, on the other hand, it is possible to constrain the disformal parameter D using the pericenter precession of the star S2.

In order to stay within the experimental bounds of Ref. [START_REF] Abuter | Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole[END_REF], the correction to the Schwarzschild precession in Eq. (9.45) must satisfy λ (3 cos 2 ῑ -1) 4(1 -ē2 ) ≲ 0.2 . Note the factor ελ 0 /ε 0 in the second term of the brackets, since ε/λ = ε 0 /λ 0 . The above expression is correct as long as ε stays in the range,

ε 2 ≲ 10 -3 ≲ √ ε , (9.51) 
which implies that the perturbative expansion in ε is valid. 6 In the future, the pericenter precession of other stars orbiting around Sgr A* will be observed. If some of them have high eccentricities, the eect of modied gravity in the case of the EKD metric will be detected by the correction to the pericenter precession, as suggested by Eq. (9.50). This is correct for a generic inclination angle ῑ, but it is worth noting that for a specic value ῑ = arccos(1/ √ 3) the contribution coming from the disformal metric vanishes completely. Note also that depending on the value of ῑ, it is in principle possible to obtain a negative pericenter precession at leading order. This is a notable dierence from the Kerr spacetime, as argued in Ref. [START_REF] Bambhaniya | Shadows and negative precession in non-Kerr spacetime[END_REF], where the authors showed that a negative precession can arise in the case of a naked singularity in the Johannsen-Psaltis spacetime [START_REF] Johannsen | A Metric for Rapidly Spinning Black Holes Suitable for Strong-Field Tests of the No-Hair Theorem[END_REF].

6 To see this explicitly, we need to inspect the sub-leading terms in Eq. (9.50), which have the structure O (1 + λ)ε 3/2 + O (1 + λ) 2 ε 2 . The rst inequality in Eq. (9.51) comes from the requirement that O (1 + λ) 2 ε 2 be sub-leading with respect to Eq. (9.50), i.e. (λε) 2 ≲ (λε). The second inequality comes from the comparison of Eq. (9.50) with O (1 + λ)ε 3/2 for small λ. One must ensure that the corrections are subdominant, resulting in ε 3/2 ≲ λε. After replacing the values λ 0 ∼ 10 -1 and ε 0 ∼ 10 -4 we obtain Eq. (9.51).

Conclusion to Part III

There has been increasing evidence in recent years for the existence of black holes in Nature. Hence it is important to understand these objects from a theoretical point of view. Rotating (uncharged) black holes in GR are described by the Kerr metric, and we reviewed its main properties in Chapter 7. It is a remarkably simple spacetime which depends on two parameters only: the mass M and spin a of the black hole.

In particular, the quadrupole moment of a Kerr black hole is determined by these two parameters only, and constitutes the no-hair theorem (in fact all higher-order multipoles are uniquely determined). It is interesting to construct alternatives to the Kerr metric, both theoretically, but also in the aim of predicting testable dierences from the GR spacetime.

In Chapter 8, starting from a stealth-Kerr solution in scalar-tensor theory, we constructed the disformed Kerr metrics. This construction relies on the disformal transformation, which is an internal map of DHOST Ia theories. The Kerr metric is deformed along the gradient of the Hamilton-Jacobi potential, which is a geodesic vector. The integration constants are chosen so that the scalar eld is regular from the outer Kerr horizon up to spatial innity. We start from c T = 1 theories where our spacetime is identical to the GR Kerr solution [START_REF] Charmousis | Rotating Black Holes in Higher Order Gravity[END_REF], and map to a disformed Kerr metric which is solution to some DHOST Ia theory [START_REF] Ben Achour | Degenerate higher order scalar-tensor theories beyond Horndeski and disformal transformations[END_REF]. Such theories are constrained from gravity wave tests, assuming that the scalar is varying at vast cosmological scales, i.e. a dark energy eld. The solutions we have discussed here are asymptotically at and locally inuence the speed of gravity waves for these particular scalar tensor theories. Independently of gravity wave constraints, the solutions discussed here go beyond the interest of these particular theories and we believe that they are interesting in their own right as simple, analytic, benchmark alternatives to the prototype Kerr solution. The resulting spacetimes remain axisymmetric and present some interesting features which we will summarize here. First of all, the disformed metrics are regular everywhere except at ρ = 0, which is the ring singularity of the original Kerr spacetime. Furthermore, an asymptotic expansion reveals that the metrics look like sub-extremal Kerr spacetimes for large radii, with a rescaled mass M and spin ã given by Eq. (8.23).

However, the disformed metrics present some notable dierences in the strong eld regime close to the black hole. The most interesting feature is perhaps noncircularity, i.e. the fact that the metric cannot be cast in a form which exhibits the reection symmetry (t, φ) → (-t, -φ). Noncircular spacetimes are rarely studied in the literature, and usually a circular ansatz is assumed when studying rotating objects. However, in some situations this assumption fails and one must consider noncircular metrics.

An example is when considering neutron stars with strong toroidal magnetic elds.

Noncircularity has consequences on the separable structure of the spacetimes, and the disformed metrics do not possess a nontrivial Killing tensor, which means that the geodesic equations cannot be integrated so easily. Importantly, the disformed metrics are stably causal, since the scalar eld has a timelike gradient, and can be interpreted as a global time. This allows to avoid pathologies like closed timelike curves, which are know to arise in certain ad hoc deformations of the Kerr metric.

By analyzing the fate of timelike observers in the disformed spacetime, we have found that there exists an ergosurface where the Killing vector ∂ t becomes null, similarly to the Kerr case. In the ergoregion, one nds a limiting surface for stationary observers, inside which all Killing vectors are spacelike. This stationary limit surface does not lie at constant r and can be shown to be timelike, and hence cannot correspond to an event horizon when the disformal parameter D is nonzero. Hence a candidate event horizon must lie in the interior of this surface. We have shown that it is necessary to consider a θ-dependent prole of the surface in the generic case D ̸ = 0. We have derived the equation satised by the candidate horizon surface, and argued by an analogy with the constant r surfaces of the Kerr spacetime that it indeed corresponds to an event horizon. Though the horizon equation cannot be solved analytically, we have performed a numerical integration of the horizon prole, and given necessary analytical conditions for the surface to be smooth at the poles and equator. We have also studied the disformed metric in the limits D → -1 (quasi-Weyl) and D → ∞ (noncircular Schwarzschild), which provide very interesting examples of noncircular metrics and could be helpful in understanding the properties of such spacetimes. We have shown explicitly that the NCS metric is of Petrov type I. This result applies to the generic case D ̸ = 0 and a ̸ = 0, but we only wrote explicitly in this simple case.

In Chapter 9, we searched for experimental signatures of the disformed metrics.

In GR, a Kerr black hole is completely determined its mass and angular momentum.

All higher-order multipoles depend on these two parameters only, and this property is know as the no-hair theorem. In Section 9.1, we established that the no-hair theorem of GR is generically violated in the case of a disformed Kerr black hole. Instead, the gauge independent quadrupole moment depends on the disformal parameter D according to Eq. (9.6). This expression was obtained by comparing the asymptotic expansion of the disformed metric to the Butterworth-Ipser metric (9.5). We then studied the orbit of stars around a disformed back hole, using a two-timescale analysis reviewed in Section 9.2. In Section 9.3, we calculated the secular variation of orbital parameters for dierent cases of the disformal parameter. We summarized the results in Section 9.3.6, and discussed the experimental signatures of the disformed spacetimes.

In the case of the EKD metric (9.39), the measurement of the Schwarzschild precession of the star S2 around Sgr A* [START_REF] Abuter | Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole[END_REF] allows us to set a lower bound on the disformal parameter D.

While all the other variants of the Kerr deformations automatically satisfy the current observational bounds coming from the star S2, future experiments will be able to probe these Kerr deformations as well. Indeed, none of the deformations of Kerr presented here verify the no-hair theorem. Therefore, future observations aiming at testing the no-hair theorem for the Kerr spacetime will probe all the deformations of Kerr. More precisely, the observation of high-eccentricity stars with short periods orbiting Sgr A* can in principle lead to the determination of the spin and quadrupole moment by measuring the secular variation of the nodal and inclination angles {Ω, ι} [START_REF] Will | Testing the general relativistic no-hair theorems using the Galactic center black hole SgrA*[END_REF] (see also Ref. [START_REF] Johannsen | Sgr A* and General Relativity[END_REF] for a review). Another promising method to test the no hair theorem is to use pulsar timing, which could allow the determination of the spin and quadrupole moment of Sgr A* if a binary pulsar orbiting closely enough to the black hole is discovered (see the review [START_REF] Johannsen | Sgr A* and General Relativity[END_REF] and references therein). The authors of Ref. [START_REF] Christian | Shapiro Delays at the Quadrupole Order for Tests of the No-Hair Theorem Using Pulsars around Spinning Black Holes[END_REF] calculated the second-order Shapiro delay for the BI metric. These results can be applied to the disformed Kerr metric in the cases where the line element can be put in the BI form (see Table 1).

There are numerous questions which we have left unanswered, starting with the global causal structure of the disformed spacetime (8.11), which is a rather nontrivial question and requires a separate study. Furthermore, we have shown that unlike in the case of GR, the event horizon of the disformed spacetimes fails to be a Killing horizon.

The possibility of extending the notion of surface gravity for horizons which are no longer Killing has been studied by several authors in dierent contexts (see Ref. [START_REF] Cropp | Surface gravities for non-Killing horizons[END_REF] and references therein). Hence, it would be interesting to study the thermodynamics of the disformed solutions using these dierent denitions for surface gravity. As we have discussed, the disformed metrics do not possess a nontrivial Killing tensor, making the study of geodesics around such objects more involved. This task is nonetheless made possible by numerically integrating the equations, and in this way the shadows of disformed Kerr black holes have been computed in Ref. [START_REF] Long | Shadow of a disformal Kerr black hole in quadratic degenerate higher-order scalartensor theories[END_REF]. Finally, as we have shown the stationary limit in the disformed spacetime generically lies outside of the event horizon. Even though these two surfaces almost coincide, it would be interesting to understand what the properties of the region separating them, if any. For instance, in the example of the quasi-Weyl metric (8.55), there seems to exist an ergoregion without any rotation of the black hole along the azimuthal direction, which is an intriguing feature.
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III.C Leading-order pericenter precession using the textbook method

In this appendix, we apply the textbook method to derive the leading term for the pericenter precession for the EKD metric considered in Section 9.3.4, and compare it with the result obtained in Eq. (9.45). Assuming that the trajectory is in the equatorial plane θ = π/2, one can write rst-order geodesic equations. This is not the case for the general motion outside of the equatorial plane, because of the absence of a nontrivial Killing tensor for the disformed Kerr metric. The orbit of stars around the central black hole of the galaxy is approximately an ellipse, for which the energy and angular momentum can be written:

E 2 ≃ 1 - M A , L 2 ≃ A M (1 -e 2 ) ,
where A and e are respectively the semi-major axis and eccentricity of the Kepler orbit. We now combine the geodesic equations for the variables {r, φ}, and use the standard variable U ≡ 1/r. By substituting the above values for energy and angular momentum in the geodesic equations, a second-order equation follows:

U ′′ (φ) + F (U, M , a, D) = 0 ,

(III.2)
where F is a complicated expression which also depends on A and e. Following the standard procedure (see for instance Ref. [START_REF] Inverno | Introducing Einstein's relativity[END_REF]), we introduce a small parameter

η = 3 M 2 L 2 ≃ 3 (1 -e 2 )
ε ,

(III.3)
where ε = M /A is the small parameter used throughout the main text. We again assume ã = χ M with χ ∼ O(1), so that we can also express a in terms of η. We look for a solution to Eq. (III.2) of the form U = 1 + e cos φ A(1 -e 2 ) + η δU (φ) ,

where the rst part corresponds to the Kepler orbit, and the second term is the leading correction in η. For the Schwarzschild metric (a = 0), this leads to the equation:

δU ′′ S + δU S =
(1 + e cos φ) 2 A(1 -e 2 ) .

The above equation can be solved to write down the solution for U at rst order in η:

U S ≃ 1 + e cos [φ(1 -η)] A(1 -e 2 ) .
From this expression, one can calculate the precession of the pericenter ∆Φ S as:

∆Φ S = 2π 1 1 -η -1 ≃ 2πη = 6π M A(1 -e 2 )
(III.4)

The asymptotic expression of the disformed metric suggests that for the EKD metric, i.e. when D +1 ∼ O(ε), corrections from higher-order terms in ε become of 1PN order, i.e. comparable to the leading Schwarzschild corrections. To check this, we rewrite Eq. (9.37) in terms of η: D = -1 + (1 -e 2 ) χ2 3λ η .

Assuming this form for D in Eq. (III. Solving this equation and keeping only the terms of the form φ sin φ which provide a secular shift, the standard procedure gives, ∆Φ = ∆Φ S 1 + λ 2(1 -e 2 ) .

(III.5)

Thus for a spinning EKD black hole the corrections to the pericenter precession due to modications of gravity are of the same order as the leading GR eect. Eq. (III.5) provides a useful check for our calculations in the main text, where we obtained secular shifts for the EKD black hole by the orbital perturbation method. In particular, we obtained the expression for the pericenter precession in Eq. (9.45). The two expressions agree after setting ῑ = 0 in Eq. (9.45), which corresponds to an orbit in the equatorial plane, as assumed in this appendix.

stars. In this case the results are similar to the time-dependent case.

The nal part of the thesis dealt with black holes, and I started by reviewing the (uncharged) GR solutions in Chapter 7, discussing some important properties of the Schwarzschild and Kerr solutions. In Chapter 8, rotating black hole solutions in scalartensor theories were constructed by performing a disformal transformation of the Kerr metric, and I discussed the properties of these spacetimes. These axisymmetric solutions are similar to Kerr in some ways: only one singularity at ρ = 0; same asymptotic expansion with the rescaled parameters M and ã given by Eq. (8.23); existence of an ergoregion. However, they are very dierent from the Kerr spacetime in other aspects: they are noncircular; not Ricci-at; they do not possess a nontrivial Killing tensor; the stationary limit is distinct from the event horizon; the horizon is not a Killing horizon and has a θ-dependent prole. Importantly, the spacetimes were shown to be stably the no-hair theorem of GR, which states that higher-order multipoles are uniquely determined by the mass and spin of the black hole. In particular, the simultaneous measurement of the spin and quadrupole of Sgr A*, which is expected in the future, will provide a test of this property. In one particular limit of D, namely the EKD metric, the rst order post-Newtonian term is modied for the secular pericenter precession. This constitutes a signature of modied gravity, and allows to constrain the disformed metric using the current observational bounds coming from the orbit of the star S2 around Sgr A*.

Titre: The simplest modications are obtained by considering a scalar eld in addition to the tensor of general relativity. The rst part of the thesis is devoted to the cosmology of scalar-tensor theories exhibiting spontaneous scalarization. We show that the tachyonic eective mass responsible for scalarization generically spoils the inationary stage of the Universe, and argue that this instability can be cured in a particular class of theories. The second part is about the Vainshtein screening, which is a mechanism allowing the recovery of general relativity near gravitational sources. While spherical symmetry is usually assumed for the Vainshtein mechanism, we discuss its extension to slowly rotating stars.

In the nal part, we construct a class of rotating black holes in scalar-tensor theories. They are obtained by performing a disformal transformation of the Kerr solution along geodesic directions, and present many interesting properties which we analyze. We then study the orbit of stars around such objects, and discuss the present and future experimental tests which will allow us to constrain these solutions.
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  théories tenseur-scalaire standard et dans le cas d'un couplage non trivial au scalaire de Gauss-Bonnet. Il repose sur une masse eective tachionique acquise par le champ x Synthèse en français scalaire, et je montre dans le chapitre 2 que cela conduit génériquement à une instabilité des modes scalaires pendant l'ination. Ceci est vrai dans les deux cas que nous considérons, c'est-à-dire le modèle de Damour et Esposito-Farèse (DEF) et les théories avec un couplage au terme de Gauss-Bonnet. Un mécanisme pour résoudre cette instabilité dans le cas du modèle DEF, reposant sur un couplage du champ scalaire à l'inaton, est proposé dans le chapitre 3. Ce couplage induit une masse eective pour le scalaire, qui permet de le stabiliser pendant la période inationnaire. Bien que l'amplitude du scalaire croisse durant les phases ultérieures de l'expansion de l'Univers (comme dans le modèle DEF), sa valeur actuelle est susamment faible pour passer les tests expérimentaux actuels de la RG. Dans la deuxième partie, j'étudie l'écrantage de Vainshtein pour les étoiles en rotation lente dans les théories tenseur-scalaire. Les tests de la gravité dans le système solaire sont tous compatibles avec les RG. Il est donc important qu'une théorie modiée de la gravité dispose d'un mécanisme qui rétablisse la RG à proximité des sources gravitationnelles, et l'écrantage de Vainshtein est l'un des moyens d'y parvenir. Il a été beaucoup étudié dans le cas de sources à symétrie sphérique, mais les objets astrophysiques réalistes sont en rotation, et l'objectif était d'étudier cet eet dans le cas d'étoiles en rotation lente. Pour ceci, j'utilise le formalisme de Hartle, qui nécessite d'introduire une fonction supplémentaire ω dans le tenseur métrique. Celleci est responsable de l'eet Lense-Thirring prédit par la théorie de la relativité. Notez que dans certains cas, l'équation satisfaite par ω dans le vide est la même que pour la RG, ce que je montre dans l'annexe II.A. Dans le chapitre 4, j'écris l'équation satisfaite par la fonction ω traduisant la rotation lente de la source. Je me place ensuite dans l'approximation de champ faible et écris les solutions pour ω dans ce cas, montrant qu'en général le mécanisme d'écrantage peut être étendu à la fonction ω en dehors de la source. Cependant, il est possible que ω reçoive des corrections d'ordre supérieur à l'intérieur de la source. Dans le chapitre 5, j'étudie l'écrantage dans le cas d'un champ scalaire dépendant du temps, et donne des exemples dans diérentes classes de théories.

  Part II, we study the Vainshtein screening for slowly rotating stars, and start by briey describing how this mechanism operates in spherically symmetric congurations. The aim of this part is to examine the validity of the Vainshtein screening for slowly rotating stars, since astrophysical objects typically rotate. In Chapter 4 the formalism is introduced, and general solutions for the frame-dragging function (which is added to the metric to account for slow rotation) are discussed. We then give explicit examples of the screening for slowly rotating sources, both in the case of a time-dependent scalar eld in Chapter 5 , and a static scalar in Chapter 6. Finally, Part III is devoted to axisymmetric black hole solutions in scalar-tensor theories. In Chapter 7, we start by reviewing the properties of (uncharged) black holes in GR. In Chapter 8, we construct disformed versions of these spacetimes by applying the disformal map to the Kerr metric, and discuss their many interesting properties. Astrophysical implications are examined in Chapter 9, where we study the post-Newtonian orbit of stars around a disformed Kerr black hole. I will end the manuscript by summarizing the main results. This thesis gave rise to the publications listed below: T. Anson, E. Babichev and C. Charmousis, Deformed black hole in Sagittarius A, Phys. Rev. D 103 no. 12, (2021) 124035, T. Anson, E. Babichev, C. Charmousis and M. Hassaine, Disforming the Kerr metric, JHEP 01 (2021) 018, T. Anson and E. Babichev, Vainshtein screening for slowly rotating stars, Phys. Rev. D 102 no. 4, (2020) 044046, T. Anson, E. Babichev, and S. Ramazanov, Reconciling spontaneous scalarization with cosmology, Phys. Rev. D 100 no. 10, (2019) 104051, T. Anson, E. Babichev, C. Charmousis, and S. Ramazanov, Cosmological instability of scalar-Gauss-Bonnet theories exhibiting scalarization, JCAP 06 (

(1. 14 )

 14 Under certain conditions on the coupling function F (ϕ), namely F ′ (ϕ 0 ) = 0 and F ′′ (ϕ 0 ) > 0(1.15) 

Figure 1 :

 1 Figure 1: Dierent types of hypersurfaces, depending on the norm of the normal vector n.

Figure 2 :

 2 Figure 2: Schematic structure of the Kerr spacetime in the Cartesian coordinates (7.24). The ergoregion (in red), lies between the ergosurface (red) and the
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Figure 1 :

 1 Figure1: Critical value χ c as a function of D (in blue). For χ > χ c , we have h ′ (π/2) ̸ = 0 when D < 0, and h ′ (0) ̸ = 0 when D > 0. For points in the shaded region, h ′ (0) = h ′ (π/2) = 0 is allowed. The red curve is an existence condition for the horizon at the

(8. 42 )

 42 Using the condition(8.41), we obtain that solutions with a smooth horizon verify χ < 1 for D ̸ = 0. This means that the smooth disformed Kerr black holes look like a sub-extremal Kerr solution to an observer at innity. Another method to nd the horizon equation(8.31) is to introduce an adapted radial coordinate of the form dζ = dr -R ′ (θ) dθ ,(8.43) 

(8. 48 )

 48 This signies that the surfaces r = R ζ are indeed timelike for ζ > 0, null for ζ = 0, and spacelike in an interval [ζ 0 , 0) for some constant ζ 0 . Because of this property, and in analogy with the Kerr spacetime, we will say that the surface r = R(θ) verifying Eq. (8.31) is an event horizon for the disformed Kerr metrics.

D=Figure 2 :

 2 Figure 2: Numerical integration of h -h(0) and h S -h(0) for χ = 0.9 and varying D, respectively D = -0.75 (black), D = -0.3 (red), D = -0.1 (blue), D = 0.05 (purple) and D = 0.1 (orange). The solution becomes unphysical when |D| becomes large.

2 Figure 3 :

 23 Figure 3: Numerical value of h ′ (π/2) for D = -0.75 (black), D = -0.3 (red) and D = -0.1 (blue).

Figure 4 :

 4 Figure 4: Stationary limit (dashed black line) and event horizon (black) for the quasi-Weyl metric with the critical parameter χ = 2/ √ 15.In the green region, the Killing vector ξ is spacelike. The ergosurface coincides with the stationary limit in this case.

2 θFigure 5 :

 25 Figure 5: Ergosurface (dotted red line), stationary limit (dashed black line) and numerical integration of the horizon surface (black) for the NCS metric with critical spin χ = 1/2.

ds 2 = η ab e a µ e b ν dx µ dx ν , ( 8 . 65 ) 2 =

 28652 where η ab is the Minkowski metric and the 1-forms e a read e 0 r dθ , e 3 = r sin θ dφ .

Figure 1 :

 1 Figure 1: Kepler orbit of a star S around the black hole located at O. The purple line is called the line of nodes, and it is dened by the intersecting points of the star'strajectory with the (Oxy) reference plane. The nodal angle Ω gives the position of this line with respect to the (Ox) axis. Starting from the line of nodes, the pericenter P of the trajectory is given by the pericenter angle ω, while ι represents the inclination angle of the ellipse with respect to the (Oxy) plane. Finally, the true anomaly f gives the position of the star S with respect to the pericenter P .

Fig. 1 )

 1 Fig. 1) with respect to the orbital elements read x = r [cos Ω cos u -sin Ω cos ι sin u] , y = r [sin Ω cos u + cos Ω cos ι sin u] , z = r sin ι sin u , where u = ω+f . To obtain the components of v one dierentiates the above expression assuming that all the angles are constant except for u. In the following, we use the standard relations r = p 1 + e cos f , dr dt = eh p sin f , h = M p , p = A 1 -e 2 , (9.12)

. 25 )

 25 Finally, injecting this solution into Eq. (9.23) and multiplying by ϵ yields d Xk du

  order, and hence the variation of eccentricity averages out to 0 over a long timescale. One can check that the same is true for the parameters {p, ῑ}, using the expressions given in Appendix III.B.

  [START_REF] Hulse | Discovery of a pulsar in a binary system[END_REF], since by replacing the disformal parameter according to Eq. (9.46), one introduces fractional powers of the mass in the metric. The secular variation of ῑ -λ 2 (5 cos 2 ῑ -1)

(9. 48 )

 48 If we assume |3 cos 2 ῑ -1| ∼ 1, and replace the eccentricity ē = 0.87 of the star S2, the inequality is saturated for λ 0 ∼ 0.2. Using the relation (9.37), we deduce a lower bound for the disformal parameter, D ≥ D 0 , which veries: ε 0 = M /A 0 , A 0 being the semi-major axis of S2's orbit. Taking the parameter D = D 0 , in order to maximize the eects of disformality, we consider another star with ε ̸ = ε 0 in general. The leading pericenter precession reads, from Eq. (9.45),

(III. 1 ) 1 -

 11 where we dened the following functions to make the previous expressions lighter (and we use the average ⟨•⟩ as dened in Eq. (9.16)):H (κ) (u, ᾱ, β) = 4 √ 2 ᾱ2 -β2 1 + ᾱ cos u + β sin u κ , I 1 (ᾱ, β) = ⟨sin 2u β cos u -ᾱ sin u H (3/2) (u, ᾱ, β)⟩ , I 2 (ᾱ, β) = 4⟨sin 2 u β cos u -ᾱ sin u H (3/2) (u, ᾱ, β)⟩ , I 3 (ᾱ, β) = 16⟨cos u sin 2 u H (7/2) (u, ᾱ, β)⟩ , I 4 (ᾱ, β) = 16⟨cos 2 u sin u H (7/2) (u, ᾱ, β)⟩ , J 1 (ᾱ, β, ῑ) = 4⟨ β cos u -ᾱ sin u H (3/2) (u, ᾱ, β){4 β cos 2 ῑ sin 2 u + sin 2 ῑ sin 2u(3ᾱ + 4 cos u + ᾱ cos 2u + β sin 2u)}⟩ , J 2 (ᾱ, β, ῑ) = 4⟨ β cos u -ᾱ sin u H (3/2) (u, ᾱ, β){4ᾱ cos 2 ῑ sin 2 u+ sin 2 ῑ sin 2u -3 β -4 sin u + β cos 2u -ᾱ sin 2u }⟩ .

2 )

 2 and expanding up to O(η), we obtain the following equation for the correction to the Kepler orbit: δU ′′ + δU = (1 + e cos φ) 2 A(1 -e 2 ) + λ(1 + e cos φ)(2 + e cos φ + e 2 -2e 2 cos(2φ)) 3A(1 -e 2 ) 2 .

  causal, which allows to avoid pathologies like closed timelike curves in the region outside the horizon. Interesting examples of noncircular black hole metrics were obtained in the limits D → -1 (quasi-Weyl) and D → ∞ (noncircular Schwarzschild), where D is the disformal parameter. Because of their simplicity compared to the generic case, a detailed analysis of these metrics could be useful in understanding the properties of noncircular spacetimes. After introducing the noncircular Schwarzschild metric, I showed that it is of generic Petrov type I. Though the explicit calculation was presented only in this simple case, the result holds for generic D ̸ = 0 and a ̸ = 0. The orbit of stars around a disformed Kerr black hole was analyzed in Chapter 9. Using the osculating orbit method and a two-timescale analysis, I calculated the secular variation of orbital parameters up to the second post-Newtonian order for dierent limits of the disformal parameter D. It was shown that generically the disformed metrics violate

  The dark energy density, on the other hand, remains constant. In the Big Bang model, the scale factor a → 0 as t → 0, in which case the Universe is a point with innite density. We actually don't know what happens at very early times t < t P , where t P ∼ 10 -43 s is the Planck time, since GR would break down at these high energies. Keeping this in mind, one can single out three periods in the history of the Universe in standard GR, each corresponding to the dominance of one of the species in Eq. (2.4). Radiation dominates when a is small in the early Universe, and this period lasts until the densities of matter and radiation become comparable. This happens at the time t eq ∼ 5 • 10 4 years. We then enter the matter dominated epoch, which constitutes the major part of the history of the Universe. During this period, the photons of the cosmic microwave background (CMB) are emitted at a time called recombination, around t ∼ 4•10 5 years. The matter domination ends around 10 billion years after the Big Bang, and we live today in a dark energy dominated Universe. This means that the current expansion is accelerated, i.e.

  However, this relation is only approximate due to the trace anomaly which arises in gauge theories [9294], and we have R ≃ 0

		Radiation	Matter	Ination/Dark Energy
	a(t)	√	t	t 2/3	e Ht
	R	≃ 0		

  Kerr metrics (8.11), namely D → -1 and D → ∞. They constitute simple examples of noncircular metrics,and their study could be helpful to understand the properties of such spacetimes.8.3.1 Limit D → -1: the quasi-Weyl metricWe rst examine the limit D → -1, which is a priori singular, since the metric (8.11) was written after the redenition t → t/

	√ 1 + D, and in these coordinates the scalar
	eld reads:

Table 1 :

 1 Summary of the dierent regimes considered for the disformal parameter D

				1.5PN	1.5PN	O(ε 3 )	✓	✓
	EKD (D + 1 ∼ ε)	1PN	1PN	O(ε 2 )	✗	✗
	e KD (D + 1 ∼	√	ε)	1.5PN	1.5PN	O(ε 5/2 )	✓	✗

  [176 + 3 ᾱ2 + β2 2 + 86 β2 + 78ᾱ 2 -84 + (ᾱ 2 + β2 ) 2 -6 β2 -14ᾱ 2 cos 2 ῑ] , (1 -ᾱ2 -β2 )2 48 + 37ᾱ 4 + 57 β4 -35ᾱ 2 + 15 β2 + 94ᾱ 2 β2 + I 2 (ᾱ, β)+ λ 2 M 2 cos ῑ 32p 2 (1 -ᾱ2 -β2 ) 3 [174 + ᾱ4 6 β2 -79 + 6ᾱ 2 13 -β2 + 2 β4 + β2 570 + 89 β2 + 6 β4 ] + λ 2 M 2 cos 3 ῑ 32p 2 (1 -ᾱ2 -β2 ) 3 [-66 + 2ᾱ 6 -554 β2 + 207 β4 + ᾱ4 191 + 4 β2 + 2ᾱ 2 β4 + 207 β2 -123 ] , -ᾱ2 -β2 ) 2 [2 β -53 + 199ᾱ 2 + 34ᾱ 4 -19 β2 (5 + 2ᾱ 2 ) -72 β4 + sin 2 ῑ I 3 (ᾱ, β) + J 1 (ᾱ, β, ῑ)] + λ M 2 β cos 2 ῑ 8p 2 (1 -ᾱ2 -β2 ) 2 253 + 48ᾱ 4 + 194 β4 -27 β4 + ᾱ2 (242 β2 -421) -λ 2 M 2 β 64p 2 (1 -ᾱ2 -β2 ) 3 [585 + 2ᾱ 2 2ᾱ 4 -18ᾱ 2 -147 + 2 β2 693 + 34ᾱ 2 + 4ᾱ 4 + 4 β4 46 + ᾱ2 ] -λ 2 M 2 β cos 2 ῑ 32p 2 (1 -ᾱ2 -β2 ) 3 [-729 + ᾱ2 290 + 295ᾱ 2 + 6ᾱ 4 + 2 β2 6ᾱ 4 + 315ᾱ 2 -733 + β4 239 + 6ᾱ 2 ] + λ 2 M 2 β cos 4 ῑ 64p 2 (1 -ᾱ2 -β2 ) 3 [-585 + 2ᾱ 2 -209 + 321ᾱ 2 + 4ᾱ 4 + 2 β2 8ᾱ 4 + 936ᾱ 2 -941 + 2 β4 559 + 4ᾱ 2 ] , -ᾱ2 -β2 ) 2 [2ᾱ 87 + 46ᾱ 4 + 461 β2 + ᾱ2 (167 + 198 β2 ) + 152 β4 -sin 2 ῑ I 4 (ᾱ, β) -J 2 (ᾱ, β, ῑ)] -λ M 2 ᾱ cos 2 ῑ 8p 2 (1 -ᾱ2 -β2 ) 2 287 + 128ᾱ 4 + 339 β2 + 274 β4 + ᾱ2 -55 + 402 β2 -λ 2 M 2 ᾱ 64p 2 (1 -ᾱ2 -β2 ) 3 [-429 + 102ᾱ 2 + 68ᾱ 4 + 2 β2 -773 -18ᾱ 2 + 2ᾱ 4 + 8 β4 ᾱ2 -23 + 4 β6 ] + λ 2 M 2 ᾱ cos 2 ῑ 32p 2 (1 -ᾱ2 -β2 ) 3 [-813 + 298ᾱ 2 + 371ᾱ 4 + 6ᾱ 6 + 2 β2 -713 + 375ᾱ 2 + 6ᾱ 4 + β4 283 + 6ᾱ 2 ]λ 2 M 2 ᾱ cos 4 ῑ 64p 2 (1 -ᾱ2 -β2 )3 [-909 -210ᾱ 2 + 762ᾱ 4 + 4ᾱ 6 + 2 β2 -821 + 2ᾱ 2 (520 + ᾱ2 ) + 2 β4 603 -2ᾱ 2 -4 β6 ] ,

		-	3 M 2 ᾱ(10 -ᾱ2 -β2 ) 4p 2
	d du Ω	= -+ 16p 2 (1 3 M λ cos 2p(1 -ᾱ2 -β2 ) ῑ λ M 2	+ 2 χ	p M	3/2
	λ M 2 cos 3 M β 4p(1 -ᾱ2 -β2 ) ῑ 4p 2 d + ᾱ du = -	4 1 -ᾱ2 -β2 + λ 5 cos 2 ῑ -1 + 6 β χ cos ῑ	p M	3/2
		+	3 M 2 β(10 -ᾱ2 -β2 ) 4p 2
	λ M 2 3 M 16p 2 (1 d + β du = ᾱ 4p(1 -ᾱ2 -β2 )	4 1 -ᾱ2 -β2 + λ 5 cos 2 ῑ -1 -6ᾱ χ cos ῑ	p M	3/2

  Trous noirs, étoiles et cosmologie dans les théories tenseur-scalaire Mots clés: Gravité modiée, théories tenseur-scalaire, trous noirs, écrantagede Vainshtein, cosmologie Résumé: En 1915, Einstein proposait sa théorie de la relativité générale. Bien que celleci ait passé tous les tests expérimentaux durant ce dernier siècle, il reste néanmoins certains mystères de la nature qui ont poussé les scientiques à étudier des théories alternatives de la gravitation. Les modications les plus simples sont obtenues en ajoutant un champ scalaire dans la description de l'interaction gravitationnelle, en plus du tenseur déjà présent en relativité générale. La première partie de cette thèse est consacrée à la cosmologie dans le cadre de théories tenseur-scalaire présentant le phénomène de scalarisation spontanée. Nous montrons que la masse eective tachyonique responsable de la scalarisation déstabilise en général la phase d'ination au début de l'histoire de l'Univers, mais que ce problème peut être résolu dans un modèle particulier. La deuxième partie porte sur l'écrantage de Vainsthein, un mécanisme permettant de restaurer la relativité générale près d'une source gravitationnelle. Il s'applique en général à des congurations à symétrie sphérique, mais nous étudions ses extensions pour des sources en rotation lente. Dans la dernière partie, nous construisons une classe de trous noirs en rotation dans une certaine catégorie de théories tenseur-scalaire. Ces solutions sont obtenues en réalisant une transformation disforme à partir de la solution de Kerr, et présentent de nombreuses propriétés intéressantes que nous analysons. Nous étudions ensuite les orbites d'étoiles autour de tels objets, dans l'optique de contraindre ces solutions à l'aide d'expériences présentes et futures. Title: Black holes, stars and cosmology in scalar-tensor theories Keywords: Modied gravity, scalar-tensor theories, black holes, Vainshtein screening, cosmology Abstract: It has been more than 100 years since Einstein proposed his general theory of relativity. Even though it has passed all experimental tests, there remain some mysteries in the current understanding of Nature which motivate the study of alternative theories of gravitation.

We use the word stable in the sense that starting from a Horndeski theory and performing such a disformal transformation, we obtain a theory that also belongs to the Horndeski class.

Note that the mostly minus (+, -, -, -) convention for the metric was used in this reference, unlike in the present chapter.

(3.5) 

Note that the scalar kinetic term X = (∂ϕ)

is dened dierently in this reference, X = -(∂ϕ) 2 /2, resulting in many formulas being altered.

Note that nonrotating solutions in some theories require a renormalization of M P . In this case one should write Eq. (4.31) in terms of the renormalized Planck mass and take into account this extra factor in the denition of κ 2 .

In this case the potentials in the Newtonian gauge have the formΦ ′ ≃ -Ψ ′ ∼ M ′ M ′′ r 2 -M ′2 r

, which is far from the normal GR behavior.

The theorem was in fact formulated two years before Birkho, in 1921, by the Norwegian physicist J. Jebsen, see Ref.[START_REF] Jebsen | On the general spherically symmetric solutions of einstein's gravitational equations in vacuo[END_REF] for an English translation of the paper.

For a more precise denition of asymptotic atness, see chapter 11 of Wald's book[START_REF] Wald | General Relativity[END_REF].

Note that some authors use this term to refer to the ergosurface.

Note that in Ref.[START_REF] Charmousis | Perturbations of a rotating black hole in DHOST theories[END_REF], the authors considered Kerr-de Sitter solutions with a nonzero cosmolog- ical constant, and in these cases the condition σ = 1 is not necessary.

After the submission of this thesis, Ref.[START_REF] Achour | Disformal map and Petrov classication in modied gravity[END_REF] appeared, in which the authors study the eect of the disformal transformation on the Petrov type. They also nd that the disformed metric is generically of Petrov type I.

Note that since the pericenter precession is sensitive to 1PN order terms, its measurement also allows to constrain spherically symmetric deformations of the Schwarzschild metric in DHOST theory.In particular Refs.[START_REF] Zakharov | Tests of gravity theories with Galactic Center observations[END_REF][START_REF] Zakharov | Constraints on tidal charge of the supermassive black hole at the Galactic Center with trajectories of bright stars[END_REF] constrained a particular solution of Horndeski theory given in[START_REF] Babichev | Asymptotically at black holes in Horndeski theory and beyond[END_REF].

Note also that for stronger Kerr deformations than EKD, for instance when 1 + D ∼ ε 3/2 , the correction to the pericenter shift is larger than the leading GR correction, which is already ruled out by the GRAVITY observations[START_REF] Abuter | Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole[END_REF].

using Mathematica. Merci Gilles

Appendix II.A Relativistic sources in shift-symmetric theories

In this appendix, we study the slow rotation of relativistic stars for shift-symmetric theories that are invariant under ϕ → -ϕ, meaning we set G 3 = 0. We also assume slow rotation, but otherwise the equations are fully nonlinear in the metric functions λ and ν, i.e. we do not assume the weak-eld approximation in this section.

II.A.1 Horndeski theories

We rst consider Horndeski theories with general functions f (X) and K(X), in which case the Lagrangian density reads:

(II. [START_REF] Albrecht | Cosmology for Grand Unied Theories with Radiatively Induced Symmetry Breaking[END_REF] The authors of Ref. [START_REF] Cisterna | Slowly rotating neutron stars in the nonminimal derivative coupling sector of Horndeski gravity[END_REF] studied slowly rotating neutron stars in the case when f (X) and K(X) are linear functions of X. They showed that the equation for ω in vacuum reduced to the GR expression, meaning that we have K 1 = 4/r and the term proportional to K 2 in Eq. (4.14) is absent. In fact this property was pointed out before in Refs. [START_REF] Maselli | Slowly rotating black hole solutions in Horndeski gravity[END_REF][START_REF] Cisterna | Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability[END_REF], in the case of slowly rotating black holes. We now extend this result to a more general class of theories. We assume f XX ̸ = 0, since the case f XX = 0 was treated in Ref. [START_REF] Cisterna | Slowly rotating neutron stars in the nonminimal derivative coupling sector of Horndeski gravity[END_REF]. With this assumption, the scalar eld can be obtained in terms of {λ, ν, ν ′ } from the equation E tr = 0:

One then substitutes this expression into the (rr) component of the metric equations to obtain λ in terms of ν ′ :

.

Using the (tt) equation one can then obtain λ ′ in terms of {λ, ν, ϕ ′ , ϕ ′′ , ρ}. After substituting this expression in Eq. (4.18), the second derivatives of ϕ disappear and we are left with a coecient K 1 which depends only on {λ, ν, ν ′ , ϕ ′2 }. Upon substituting quantities along the geodesic, the energy and angular momentum. They are associated to the Killing vectors ξ µ and η µ respectively. It was shown in Ref. [START_REF] Charmousis | Rotating Black Holes in Higher Order Gravity[END_REF] that in order for the solution to be regular at the poles, i.e. ∂ϕ/∂θ → 0 when θ → 0, one must set L = 0 and K = m 2 a 2 . In this case the expressions for R and

where σ = E/m. Furthermore, in order for both R and Θ to be positive from the outer Kerr horizon to spatial innity, one must set σ = 1. 

where we have dened q 0 = -m and g K is the Kerr metric. The scalar kinetic term is constant and reads X 0 = -q 2 0 , which shows that the vector ϕ µ is timelike. The relative sign in the expression for the scalar eld was chosen so that it is regular from the outer horizon of the Kerr metric to spatial innity. This becomes clear when writing the scalar eld in the generalized ingoing EF coordinates, as we will do in the following.

The theory which contains this solution belongs to the shift-symmetric DHOST Ia class [START_REF] Crisostomi | Extended Scalar-Tensor Theories of Gravity[END_REF][START_REF] Langlois | Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski instability[END_REF], i.e. those described by Eq. ( 31) with functions that depend on X only.

The authors of Ref. [START_REF] Charmousis | Rotating Black Holes in Higher Order Gravity[END_REF] chose to consider theories in which the graviton propagates at the speed c T = 1, as in GR. This is motivated by the measurement of gravitational waves along with the electromagnetic counterpart coming from the merger of two neutron stars [START_REF] Abbott | GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral[END_REF]. Assuming that the scalar eld is cosmologically dominant, one must set A 1 = A 2 = 0 in the action [START_REF] Jordan | The present state of Dirac's cosmological hypothesis[END_REF] in order to satisfy this constraint. In the absence of a cosmological constant, one must set K(X 0 ) = K ′ (X 0 ) = 0, so we choose K = 0 for simplicity. We also set G 3 = 0 as in Ref. [START_REF] Charmousis | Rotating Black Holes in Higher Order Gravity[END_REF]. Since the scalar eld has a constant kinetic term, the terms proportional to A 4 and A 5 in the Lagrangian do not enter the equations of motion. This is easily understood by writing

Since these terms are quadratic in X µ , any contribution to the eld equations will contain at least one derivative of X, which vanishes on-shell. Hence these terms are coordinates, the line element up to 2PN order reads:

Note that we keep terms up to O(ε 3 ) in the gtt component, and lower-order terms in ε in other components because the motion of stars is assumed to be nonrelativistic. Indeed, in this case the spatial variation is suppressed with respect to the time variation along the trajectory by the 3-velocity v ∼ √ ε, i.e. dx i ∼ √ εdt, and therefore one only needs to keep lower-order terms in the spatial components of the metric. At this PN order, the metric is circular (meaning it is unchanged under the reection (t, φ) → (-t, -φ)),

and the expansion is very similar to that of the Kerr metric. One can also check that the Ricci tensor for the metric (9.2) is nonzero only at ε 3 order, i.e. R µν ∼ O(ε 3 )

(in these coordinates). This can be seen by evaluating the Ricci tensor for the full metric (8.11). Thus one can say that the metric (9.2) is Ricci-at up to the order ε 2 . Once we have read o the mass and spin of the black hole from the gtt and gtφ terms, the disformal factor D only enters the quadrupole terms proportional to χ 2 in Eq. (9.2). These terms correspond to the leading-order contributions of the Newtonian quadrupole moment, even though we will refer to them as 2PN in the context of a large r expansion. In other words, the disformal metric is equivalent to the Kerr metric up to 1.5PN order for generic D. To better understand the form of deviations at higher PN orders, it is instructive to compare the metric (9.2) to a non-Kerr metric at that order. A particularly interesting example is the Butterworth-Ipser (BI) metric [START_REF] Butterworth | Rapidly rotating uid bodies in general relativity[END_REF][START_REF] Butterworth | On the structure and stability of rapidly rotating uid bodies in general relativity. I. The numerical method for computing structure and its application to uniformly rotating homogeneous bodies[END_REF], which was constructed to model a rapidly rotating star. It is usually expressed using the ansatz of Ref. [START_REF] Bardeen | Relativistic Disks. I. Uniform Rotation[END_REF] for a circular and axisymmetric metric in quasi-isotropic coordinates:

where ν, Ψ, ω and µ are functions of R and θ. The BI metric at 2PN order is given by the following expressions (see for instance Ref. [START_REF] Friedman | Rotating Relativistic Stars[END_REF] 1 ):

1 There is a typo in Eq. (3.29c) of this reference, where the quantity µ S should be added to the right-hand-side.

where A and e are respectively the semi-major axis and eccentricity of the ellipse. In order for the limit e → 0 to be well dened, the alternative orbit parameters α = e cos ω and β = e sin ω are introduced [START_REF] Lincoln | Coalescing Binary Systems of Compact Objects to (Post)5/2 Newtonian Order: Late Time Evolution and Gravitational Radiation Emission[END_REF]. With the above denitions, we can write the Gauss equations for the evolution of the orbital parameters: 

Using this system, we follow the analysis of Ref. [START_REF] Will | Relativistic orbits around spinning supermassive black holes. Secular evolution to 4.5 post-Newtonian order[END_REF] to obtain the secular variation of orbital elements. We perform a two-timescale analysis [START_REF] Will | Relativistic orbits around spinning supermassive black holes. Secular evolution to 4.5 post-Newtonian order[END_REF]248251] by introducing a second variable Θ = ϵu, where ϵ is a bookkeeping parameter that is useful to keep track of small terms. Since Θ varies on longer timescales, in the following we treat u and Θ as independent variables. This approach allows us to make an average over a period using the variable u, while keeping Θ as a slow varying (almost constant) variable. First, we use the last equation of the system (9.13) to trade dt for du in all other equations and write them in the form,

where the X k stands for the orbital parameters p, α, β, ι and Ω. In the two-timescale approach, we have

We dene the average ⟨•⟩ and average-free part AF as

(9.16)

3 See for instance Ref. [START_REF] Will | Relativistic orbits around spinning supermassive black holes. Secular evolution to 4.5 post-Newtonian order[END_REF], though notice a typo in the expressions for dα/dt and dβ/dt.

result is:

where n = x/r, s = J/J = e z , and r = r(x, y, z) is now the radial coordinate in the old metric expressed in harmonic coordinates. When D = 0, the expressions (9.29) reduce to the Kerr metric components in harmonic coordinates (see Ref. [START_REF] Will | Relativistic orbits around spinning supermassive black holes. Secular evolution to 4.5 post-Newtonian order[END_REF]).

We now apply the method described in Section 9.2 to the metric (9.29). For generic values of D, the secular variation of orbit elements up to 2PN order is given by,

.

(9.30)

The corresponding relations for ω and ē read:

The expressions for the Kerr metric are obtained by setting D = 0 in the above equations. Note that terms of order O(ε n+1 ) in the metric correspond to O(ε n ) order in the equations for the secular shifts (9.30). In particular, in the Newtonian approximation, the right-hand sides of the equations in the system (9.30) are identically zero, so that there are no shifts in any of the orbital parameters. The leading-order PN corrections Appendix

III.A Polynomials Q i

We give here the full expressions of the functions Q 1 and Q 2 appearing in the expressions (8.14) for the curvature invariants of the disformed Kerr metric:

III.B Secular shifts for the EKD metric

In this appendix, we provide the expressions for the secular perturbations of orbital parameters up to 2PN order in the case of the EKD metric, D + 1 ∼ O(ε), see Section 9.3.4. Since the EKD metric (9.39) does not fall in the class of generic D, we cannot use the results of Section 9.3.1 to nd the variation of orbital parameters.

We present the results obtained by applying the osculating orbit method described in Section 9.2 to the metric (9.39). We obtain:

Summary

In this thesis, I have presented various topics in the context of scalar-tensor theories of gravitation. The rst part of the thesis was devoted to the cosmology of theories exhibiting spontaneous scalarization. I described the scalarization mechanism in Chapter 1, both in the context of standard scalar-tensor theories and in the case of a coupling to the Gauss-Bonnet scalar. It relies on a tachyonic eective mass for the scalar eld, and I showed in Chapter 2 that this generically leads to an instability of scalar modes during ination. This is true in both of the cases we consider, i.e. the DEF model and the scalar-Gauss-Bonnet theories. A mechanism to quench this instability in the case of the DEF model, relying on a coupling of the scalar to the inaton eld, was proposed in Chapter 3. This coupling acts as an eective mass term for the scalar, which stabilizes it around 0 by the end of ination. Although the scalar grows in the subsequent phases of the expansion of the Universe (as in the DEF model), its value today is suciently small to pass current experimental tests of GR.

In the second part, I examined the Vainshtein screening for slowly rotating stars in scalar-tensor theories. The tests of gravity in the Solar System are all compatible with GR. Hence it is important for a modied theory of gravity to have a mechanism that restores GR close to gravitational sources, and the Vainshtein screening is one way to achieve this. It has been extensively studied in the case of spherical symmetry, but realistic astrophysical objects typically rotate, and our aim was to study this eect in the case of slowly rotating stars. Note that in some cases the GR equations are fully recovered in vacuum, even for relativistic stars, which I show in Appendix II.A. In Chapter 4, I derived the equation satised by the frame-dragging function ω accounting for slow rotation. I then assumed the weak-eld approximation and discussed the solutions for ω in this case, showing that the screening mechanism can be extended to ω outside the source in general. However, it is possible for ω to receive leading-order corrections inside the source. In Chapter 5, I studied the screening in the case of a time-dependent scalar eld, and gave examples in dierent classes of theories. It was shown that even if the Vainshtein screening is operational in spherical symmetry, it is not necessary for the corrections to ω to be suppressed by powers of the Vainshtein radius r V . In these cases, while the screening works also for ω, it is less eective than for the metric potentials. The screening in the case of a static scalar eld was studied in Chapter 6. I considered shift-symmetric Horndeski theories with an additional coupling of the scalar eld to curvature, in order to escape the no-hair theorem for