
HAL Id: tel-03374323
https://theses.hal.science/tel-03374323v1

Submitted on 12 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ab initio description of doubly-open shell nuclei via a
novel resolution method of the quantum many-body

problem
Mikael Frosini

To cite this version:
Mikael Frosini. Ab initio description of doubly-open shell nuclei via a novel resolution method of
the quantum many-body problem. Nuclear Theory [nucl-th]. Université Paris-Saclay, 2021. English.
�NNT : 2021UPASP078�. �tel-03374323�

https://theses.hal.science/tel-03374323v1
https://hal.archives-ouvertes.fr


Th
ès

e 
de

 d
oc

to
ra

t
N
N
T
:
2
0
2
1
U
PA

S
P
0
7
8

Ab initio description of doubly-open shell nuclei
via a novel resolution method of the quantum

many-body problem

Description ab initio des noyaux à double couches
ouvertes via une nouvelle méthode de résolution du

problème quantique à N corps

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦ 576
Particules, Hadrons, Énergie et Noyau : Instrumentation, Imagerie,

Cosmos et Simulation (PHENIICS)
Spécialité de doctorat : Structure et réactions nucléaires

Unité de recherche : Université Paris-Saclay, CEA, Département de Physique
Nucléaire, 91191, Gif-sur-Yvette, France
Référent : Faculté des sciences d’Orsay

Thèse présentée et soutenue à Gif-sur-Yvette, le 21 septembre 2021, par

Mikael FROSINI

Composition du jury :

Andreas EKSTRÖM Président
Professeur associé, Université Technologique de Chalmers
Heiko HERGERT Rapporteur & Examinateur
Professeur associé, Université d’État du Michigan
Pierre-François LOOS Rapporteur & Examinateur
Chargé de Recherche (HDR), Université de Toulouse, CNRS

Direction de la thèse :

Thomas DUGUET Directeur de thèse
Ingénieur de recherche, professeur, CEA Saclay, IRFU, KU Leuven
Vittorio SOMÀ Co-encadrant
Ingénieur de recherche, CEA Saclay, IRFU
Jean-Paul EBRAN Co-encadrant
Ingénieur de recherche, CEA, DAM, DIF





Acknowledgements
Here we are, about to turn a page. Before closing this chapter for good, a few words are
due to thank all of those who made this possible and helped me walk my way around
these three years.
First, let me thank warmly Andreas Ekström, Heiko Hergert and Pierre-François

Loos for accepting taking part as jury members. I am grateful for your patience and
dedication reading and improving the document. From remarks and corrections to
numerous suggestions that could be further discussed during the defense, it will probably
keep me (and others) busy for the years to come, this was very constructive. Sadly, the
situation prevented us to be in the same room to discuss it in person - but as we say in
french, ce n’est que partie remise.

Restons donc en français, pour rappeler (si certains en doutaient), que j’ai eu la chance
de travailler avec les meilleurs. Pas sûr que j’arrive à exprimer comme il se doit ma
reconnaissance envers Thomas, Vittorio et Jean-Paul, qui m’ont fait confiance en premier
lieu puis m’ont guidé dans le monde de la physique nucléaire. Merci de m’avoir donné
l’opportunité de travailler avec vous et d’ajouter mon petit caillou à l’édifice.

Thomas, je vais essayer de le dire simplement. Merci, merci de toujours m’avoir poussé à
donner le meilleur possible. On en a déjà parlé, mais tu sais combien j’apprécie l’importance
que tu donnes aux détails, et au fait qu’au delà des chiffres et des formules, ton intérêt
premier est et reste le tableau général - car c’est bien ça qui nous intéresse. Dans tous les
cas, sache que ta recherche permanente du mieux restera un exemple pour moi.
Et pourtant, il n’aurait sans doute pas été possible de tenir le cap sans le soutien

constant de Vittorio. Ta porte est toujours ouverte, et quelque part on sait que quand on
a besoin, tu trouves toujours le temps de porter une oreille attentive à tes étudiants. Ta
gentillesse, ta patience, sont des qualités inestimables, et je te suis reconnaissant de tous
ces moments ou tu as pris le temps de me réexpliquer la même chose encore ou encore, ou
bien de me rassurer sur les doutes existenciels qui peuvent apparaître au cours dúne thèse.

Jean-Paul, j’ai eu beaucoup de chance que nos routes se soient croisées, et que la thèse ait
pris ce chemin. Grâce à toi, on a pu passer de la théorie générale à l’application concrète, et
ainsi faire un travail vraiment complet. Ton enthousiasme constant, la passion sans limite
qut tu communiques autour de toi au sujet de tous les domaines de la physique (du plus
phénoménologique au plus abstrait) est sont de vraies motivations. Merci pour la confiance
que tu m’as faite pour me permettre d’utiliser le code HFB. Je te suis d’autant plus
reconnaissant que c’est grâce à toi que je vais pouvoir continuer avec ces développements
et à collaborer avec vous trois, merci merci merci.
Comment décide-t-on de faire une thèse? Dans mon cas, je pense avoir rencontré les

bonnes personnes, à un moment ou à un autre du parcours. De M. Gouillon à M. Lefranc
au collège, jusquà M. Brion et M. Ansaldi au lycée, des recontres, des questionnements et
des discussions m’ont poussé à quitter la pinède et le soleil pour le béton et le brouillard de
la capitale. Si mon stage en entreprise n’est pas probablement pour rien dans ma décision
de m’engager dans la voie de la recherche, je pense que cést surtout l’accueil chaleureux de
Denis, au LLR, puis d’Alexandre et Olivier au CERN, qui ont fini de me décider. J’allais

iii



faire une thèse.
The first year, i had to learn a lot from scratch, so let me thank warmly Alex, that

introduced us to the numerous questions surrounding perturbation theory. Pepijn, sadly
we couldn’t see much of you the last years with the endless confinements, I wish you the
best luck with the rest of your thesis! Au final, c’est bien Julien qui m’a pris sous son aile,
et s’il m’a fallu un an de plus pour vraiment comprendre le sujet de ta thèse, sache qu’elle
est restée sur mon bureau (et sur mon navigateur) pendant les deux ans qui ont suivi ton
départ.
Cette section serait incomplète sans dédier son propre paragraphe à Benjamin. Sans

ton aide, il aurait sûrement été impossible de comprendre en profondeur les méthodes
développées ici (en particulier leur implémentation pratique). Le temps que tu as pris à
m’aider quand j’en avais besoin, ou qu’il fallait tester le code, tu l’as donné sans te poser
de question, juste par altruisme. Bref, merci.
Merci également aux autres doctorants des Précaires (en particulier à Zoé qui était

toujours là pour tout organiser!), et aussi à Killian, Yann et Florian, qui forment le groupe
très sélect des thésards de Jean-Paul! Surtout, un grand merci à Andrea pour ces cafés
interminables, ces débats sans fin (et sans conclusion). Bonne chance pour les deux années
qui te restent, dans tous les cas j’espère bien pouvoir revenir te taxer un café ou deux
avant ta défense!
Je suis également reconnaissant envers Danielle et Isabelle, qui sont toujours là quand

on a besoin d’elles et ont toujours un mot gentil. Merci pour votre patience et votre bonne
humeur!

Merci à mes parents qui m’ont toujours soutenu et sans qui je ne serais pas là aujourd’hui.
Merci enfin à Tatiana, qui m’a accompagné dans les épreuves de ces dernières années et
me suivra dans la suite!

iv



Contents
Acknowledgements iii

List of Acronyms ix

Introduction 1

1. Basic definitions and elements of Bogoliubov algebra 7
1.1. Operators in second quantized form . . . . . . . . . . . . . . . . . . . . . . 8

1.1.1. Operators definition . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.2. Density matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2. Bogoliubov algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1. Bogoliubov state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2. One-body density matrices . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.3. Normal-ordered operators . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.4. Constrained Hartree-Fock-Bogoliubov theory . . . . . . . . . . . . . 11
1.2.5. Elementary excitations . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.6. Rotated Bogoliubov state . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.7. Overlap between Bogoliubov vacua . . . . . . . . . . . . . . . . . . 14
1.2.8. Transition Bogoliubov transformation . . . . . . . . . . . . . . . . . 15
1.2.9. Similarity transformation . . . . . . . . . . . . . . . . . . . . . . . . 15

2. PGCM-PT formalism 19
2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2. Formal perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1. Set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.2. Perturbative expansion . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.3. Computable expression . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.4. Hylleraas functional . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3. PGCM-PT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1. PGCM unperturbed state . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2. Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.3. Application to second order (PGCM-PT(2)) . . . . . . . . . . . . . 32

2.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3. Interlude: In-medium interactions 41
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2. Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.2. Standard NOkB approximation . . . . . . . . . . . . . . . . . . . . 45
3.2.3. Generalized k-body approximation . . . . . . . . . . . . . . . . . . 46

3.3. Many-body methods and one-body density matrices . . . . . . . . . . . . . 49
3.3.1. Many-body methods . . . . . . . . . . . . . . . . . . . . . . . . . . 49

v



Contents

3.3.2. Trial one-body density matrices . . . . . . . . . . . . . . . . . . . . 50
3.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.1. Studied nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.2. Numerical setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.3. Measure of the systematic deviations . . . . . . . . . . . . . . . . . 52
3.4.4. Ground-state binding energy . . . . . . . . . . . . . . . . . . . . . . 53
3.4.5. PHFB absolute energies and radii . . . . . . . . . . . . . . . . . . . 59
3.4.6. Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4.7. Optimal one-body density matrix . . . . . . . . . . . . . . . . . . . 70

3.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4. Results: PGCM 77
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2. Many-body calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.1. Nuclear Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2.2. PGCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2.3. IM-NCSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3.1. Model-space convergence . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3.2. 20Ne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3.3. Isotopic chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5. Results: PGCM-PT(2) 105
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2. Many-body calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.1. VSRG pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2.2. VSRG+MR-IMSRG pre-processing . . . . . . . . . . . . . . . . . . 119

5.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Conclusions 129

A. Symmetry group 133
A.1. Unitary representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
A.2. Projection operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

B. Permutation operators 137

C. Similarity-transformed matrix elements 139

D. PGCM-PT(2) matrix elements 141
D.1. Type-1 matrix elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
D.2. Type-2 matrix elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
D.3. Type-3 matrix elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

E. Single-reference (Bogoliubov) Many-Body Perturbation Theory 145
E.1. Single-reference partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . 145

E.1.1. BMBPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
E.1.2. MBPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

vi



Contents

E.2. Second and third order BMBPT energy corrections . . . . . . . . . . . . . 147
E.2.1. Second order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
E.2.2. Third order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

E.3. BMBPT transition density matrix . . . . . . . . . . . . . . . . . . . . . . . 148
E.3.1. BCI state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
E.3.2. Expression in quasi-particle space . . . . . . . . . . . . . . . . . . . 148
E.3.3. Expression in one-particle space . . . . . . . . . . . . . . . . . . . . 149
E.3.4. One-body density matrix . . . . . . . . . . . . . . . . . . . . . . . . 150
E.3.5. BMBPT coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 150

F. Inverse tensor transformations 153

G. PGCM transition density matrix 155
G.1. Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

G.1.1. Off-diagonal one-body density matrix . . . . . . . . . . . . . . . . . 155
G.2. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
G.3. Simplified expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

G.3.1. Expanding the projectors . . . . . . . . . . . . . . . . . . . . . . . . 156
G.3.2. Spherical one-body basis . . . . . . . . . . . . . . . . . . . . . . . . 156
G.3.3. Special case of the one-body density matrix of a Jπ = 0+ state . . . 157

G.4. Anomalous transition one-body density matrix . . . . . . . . . . . . . . . . 158
G.4.1. PGCM anomalous density matrix . . . . . . . . . . . . . . . . . . . 158
G.4.2. Spherical one-body basis . . . . . . . . . . . . . . . . . . . . . . . . 158

H. Error-function sampling 159
H.1. Error function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
H.2. Random one-body density matrices . . . . . . . . . . . . . . . . . . . . . . 160
H.3. Spherical Hartree-Fock field . . . . . . . . . . . . . . . . . . . . . . . . . . 161

I. Charge density distribution 163

J. Linear redundancies in HWG 165

K. Memory optimization 167
K.1. J-coupling scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

K.1.1. Contractions with one-body density matrices . . . . . . . . . . . . . 168
K.2. Evaluation of the norm overlap . . . . . . . . . . . . . . . . . . . . . . . . 168

L. Anti-symmetry reduction 171

M. Solving the linear problem 173
M.1. Exact SVD-based solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
M.2. QLP decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

M.2.1. Pivoted QR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
M.3. Pivoted QLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

M.3.1. Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
M.4. From QLP to MINRES-QLP algorithm . . . . . . . . . . . . . . . . . . . . 176
M.5. Preconditioning of the linear system . . . . . . . . . . . . . . . . . . . . . . 176

M.5.1. Matrix scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
M.5.2. Incomplete Cholesky decomposition . . . . . . . . . . . . . . . . . . 177

vii



Contents

M.5.3. Norm preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . 177
M.6. Error evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
M.7. Stopping condition of iterative solver . . . . . . . . . . . . . . . . . . . . . 178
M.8. Illustration of iterative solvers . . . . . . . . . . . . . . . . . . . . . . . . . 179

N. Complex shift 181
N.1. Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
N.2. Implementation in real arithmetic . . . . . . . . . . . . . . . . . . . . . . . 181
N.3. Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

O. Discussion on numerics 185
O.1. Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
O.2. Complexity reduction in PGCM-PT(2) . . . . . . . . . . . . . . . . . . . . 187

O.2.1. Norm-based importance truncation . . . . . . . . . . . . . . . . . . 187
O.2.2. Hamiltonian-based importance truncation . . . . . . . . . . . . . . 187
O.2.3. Energy-based importance truncation . . . . . . . . . . . . . . . . . 188
O.2.4. Incremental building of the basis . . . . . . . . . . . . . . . . . . . 188

P. On the numerical implementation 189

Résumé en français 191

List of Figures 199

List of Tables 207

viii



List of Acronyms
χEFT Chiral Effective Field Theory.

BCC Bogoliubov Coupled Cluster.

BMBPT Bogoliubov Many-Body Perturbation Theory.

CC Coupled Cluster.

dHFB deformed Hartree-Fock-Bogoliubov.

EDF Energy Density Functional.

FCI Full Configuration Interaction.

GSCGF Gorkov Self-Consistent Green Function.

HF Hartree-Fock.

HFB Hartree-Fock-Bogoliubov.

IMSRG In-Medium Similarity Renormalization Group.

IR infrared.

LDM Liquid Drop Model.

MBPT Many-Body Perturbation Theory.

MCPT Multi-Configuration Perturbation Theory.

MR multi reference.

MR-CC Multi-Reference Coupled Cluster.

MR-IMSRG Multi-Reference IMSRG.

NCSM No-Core Shell Model.

NO2B Normal-Ordered 2-Body approximation.

PBCC Projected Bogoliubov Coupled Cluster.

PGCM Projected Generator Coordinate Method.

PGCM-PT PGCM Perturbation Theory.

PHFB Projected Hartree-Fock-Bogoliubov.

QCD Quantum Chromodynamics.

ix



List of Acronyms

SCGF Self-Consistent Green Function.

sHFB spherical Hartree-Fock-Bogoliubov.

SR single reference.

SRG Similarity Renormalization Group.

UV ultraviolet.

x



Introduction
La folie n’est plus folle, dès qu’elle est
collective.

Alain Damasio
La Horde du Contrevent

The nuclear many-body problem
The theoretical description of atomic nuclei is still an open challenge for several reasons.
Even if the experimental study of the rich phenomenology of nuclear systems has been
steadily progressing in the past few years, the construction of a unified model capable
of giving a reliable and predictive description of the whole nuclear chart is still missing.
As of today, the most promising route for a unified theory relies on a set of consistent
effective (field) theories (EFT) appropriate to describing various energy scales. For low-
energy nuclear systems, one of the most elementary version of such an EFT is chiral
EFT (χEFT) describing the self-bound nucleus as a collection of N point-like neutrons
and Z point-like protons in strong interaction. In this context, the theoretical scheme
eventually consists of solving the A-body Schrödinger’s equation on the basis of a nuclear
Hamiltonian systematically built through the χEFT expansion.

Thus, the first difficulty to the solution of the nuclear many-body problem stems from the
complexity of inter-nucleon interactions, themselves deriving from the residual interaction
between the quarks and gluons composing the nucleons. The non perturbativeness of
Quantum Chromodynamics (QCD) at low energy has long been believed to prevent any
workable expansion of the nuclear interaction, and Lattice QCD calculations have not yet
been able to provide physically relevant results yet [1, 2, 3]. On top of that, the short-range
repulsion of inter-nucleon interaction generates ultraviolet (UV) divergences, while the
weakly-bound deuteron and the virtual di-neutron state are a source of infrared (IR)
divergences, two fundamentally different phenomena that need to be dealt with to solve
the nuclear problem. Last but not least, because nucleons are assumed to be point-like
objects within χEFT, their inner structure is at the source of two, three, four, ... up to
A-body terms that would all need to be included in an exact solution of the many-body
problem.

Besides the building of the Hamiltonian, the solution of the nuclear many-body problem
presents a second challenge. Containing up to 300 hundred nucleons, the vast majority
of nuclear systems are too large to allow an exact solution of the A-body Schrödinger’s
equation. Furthermore, the large variety of scales at play in a nucleus, ranging from
short-range individual excitations responsible for absolute binding energies to long-range
correlations associated with collective phenomena (at the origin of pairing, rotational
and vibrational physics), not to mention phenomena like electroweak decays, make a
unified description even harder to achieve. As of today, more than 3400 nuclei stable with
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Chapter 0. Introduction

respect to the strong force have been observed [4] and thousands more have been predicted
theoretically.

The first attempts to circumvent these difficulties advocated the use of macroscopic de-
scriptions. For instance, semi-classical models of nuclei like Liquid Drop Model (LDM) [5],
as crude as they may be, were and are still used for calculations in which fine structure
mechanisms are not needed in first approximation. However, the inclusion of microscopic
structure effects is mandatory as soon as one aims at a predictive and accurate description.
Among microscopic approaches, Energy Density Functional (EDF) has managed, through-
out the years, to achieve an empirical description of both long- and short-range correlations
in all known (and still to be discovered) nuclei [6, 7]. Still, the phenomenological character
of the effective interactions at play, that do not rely on a well-defined hierarchy between
the various terms, lacks (as of today) a systematic character. Even with ever-increasing
computational resources, this makes further improvement of this method problematic.
In this context, ab initio expansion techniques employed with χEFT interactions and

operators approximate the exact solution of A-body Schrödinger’s equation through a
truncated series, allowing to assess and propagate various sources of theoretical uncertainties
through the calculation. Ab initio methods all share the following properties:

• Nucleons are considered as elementary structureless degrees of freedom. Consequently,
collective nuclear phenomena must emerge from the complex correlations between
the interacting nucleons.

• The Hamiltonian is derived consistently from the underlying theory, QCD. The
current paradigm is to use Chiral Effective Field Theory (χEFT) to expand the
Hamiltonian matrix elements in a consistent sequence of successive approximations
compatible with the symmetries of QCD [8, 9, 10].

• The solution of Schrödinger’s equation is expanded in a systematic way, each
truncation order correcting the previous one towards the exact solution.

• Errors coming from the various solution steps (Hamiltonian, expansion and numerical
approximations) are to be eventually estimated and propagated to the computed
observables.

Ab initio methods therefore differ inherently from more phenomenological approaches for
which the error assessment is in the best case intricate if not impossible. Two decades
ago, these methods were only implemented through quasi-exact approaches, e.g. Fadeev-
Yakubovski [11, 12, 13], Green’s function Monte Carlo [14, 15, 16] and No-Core Shell
Model (NCSM) [17, 18, 19, 20, 21], and were consequently limited to light nuclei due to
an exponential scaling with system size. Through the joint formalisation of preprocessing
methods of the Hamiltonian removing the UV divergences [22], and of expansion methods
for the solution of Schrödinger’s equation, it has become possible in the past 15 years to
develop polynomial methods to tackle medium-mass nuclear systems.

Ab initio expansion methods
Expansion methods aim at adding correlations on top of a reference state suitably chosen
such that it constitutes a good enough starting point towards the true solution. Although
expansion methods capture by construction all correlations in their exact limit, they
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tend, traditionally, to focus on short-range (dynamical) correlations, and usually fail to
account correctly for residual strong (static) correlations arising in open-shell systems.
This distinction between static and dynamical correlations, even if partly arbitrary, is very
useful in practice and the coherent inclusion of both type of correlations is an important
challenge for ab initio methods today.

Single-reference expansion methods in closed-shell systems
In closed-shell nuclei collective long-range effects are almost not necessary for the description
of the ground state, such that it is sufficient to account for dynamical correlations. In
such systems, expansions built on top of a single-determinantal (i.e. single reference (SR))
reference state, usually optimized via mean-field methods like Hartree-Fock (HF), account
for dynamical correlations via particle-hole excitations. The wave function of the system
|Ψ〉 is therefore written as a wave operator Ω acting on the reference state |Φ〉

|Ψ〉 ≡ Ω|Φ〉, (0.1)

that correlates the mean-field ansatz towards the true solution. The first example is
Many-Body Perturbation Theory (MBPT) [23, 24, 25], where Ω is expanded perturbatively.
The method has gained a renewed interest in the last years thanks to the pre-processing
of the interaction via Similarity Renormalization Group (SRG) transformations that make
the expansion possibly convergent [26, 27, 28]. In parallel, non perturbative expansion
methods have been developed as well. Coupled Cluster (CC) [29, 30, 31, 32, 33], In-
Medium Similarity Renormalization Group (IMSRG) [34, 35, 36, 37] or Self-Consistent
Green Function (SCGF) [38, 39, 40] methods all resum in their own way selected sets of
perturbation theory contributions to infinite orders and therefore deliver higher accuracy
at a given computational cost.

All those methods show a very good agreement with each other and with exact NCSM
calculations, and have been able to extend the reach of ab initio calculations to systems
containing up to A ∼ 130 nucleons [41, 42].

Multi-reference approaches and static correlations
The application of expansion methods poses problems in open-shell systems, where single-
determinantal expansions break down due to degeneracies with respect to elementary
excitations. This difficulty is already known in the context of phenomenological EDFs,
where the qualitative description within a symmetry-conserving mean-field scheme is quickly
deteriorating away from doubly-magic nuclei. These degeneracies allow the development
of strong long-range correlations near the Fermi level that can be safely captured by
complexifying the reference state. Instead of sticking to a symmetry-conserving Slater
determinant, an optimized linear combination of symmetry-breaking generalized product
states is used as reference state.
In EDF approaches, this multi reference (MR) state is built in two separate steps.

First, the symmetry-conserving determinant is replaced by a symmetry- breaking reference
state [43]. This reference state is still a product state, but is allowed to be deformed or to
break particle number symmetry. Since nuclei are mesoscopic quantum systems, however,
true eigenstates of the Hamiltonian must carry good symmetry quantum numbers. Hence,
in a second step, one needs to project the reference state onto good symmetry states via a
linear combination involving all its symmetry-rotated partners, thus accounting for the
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associated rotational (and/or pairing) physics. The vibrational physics is further addressed
by additionally mixing projected states differing by the symmetry breaking content of
the underlying product states, giving rise to the Projected Generator Coordinate Method
(PGCM) method.

Following the same rationale, the unperturbed state at play in ab initio expansion
methods can be allowed to break symmetries in order to lift unwanted degeneracies
such that the expansion is performed on top of a symmetry-breaking unperturbed state.
This approach has been implemented for particle-number symmetry through Bogoliubov
Many-Body Perturbation Theory (BMBPT) [44, 45, 46, 47], Gorkov Self-Consistent Green
Function (GSCGF) [48, 49, 50] and Bogoliubov Coupled Cluster (BCC), as well as for
rotational symmetry through CC [51, 52]. The corresponding description of ground-
state properties of medium mass nuclei competes with more phenomenological approaches.
However, as for EDFs, symmetry breaking is only an intermediate step such that symmetries
need to be eventually restored. The symmetry restoration becomes non-trivial in beyond
mean-field methods and has been formulated only recently for both perturbative and
non-perturbative expansions [53, 54]. Projected Bogoliubov Coupled Cluster (PBCC) has
been implemented successfully for schematic Hamiltonians [55, 56], but no implementation
with realistic nuclear interactions has been achieved yet and the first attempts in this
direction have not been conclusive.
Another possible strategy is to add dynamical correlations on top of a multi-reference

Ansatz that arleady incorporate static correlations. Following this idea, the Multi-Reference
IMSRG (MR-IMSRG) has been developed in nuclear physics [37, 57], and Multi-Reference
Coupled Cluster (MR-CC) in quantum chemistry [25], while Multi-Configuration Pertur-
bation Theory (MCPT) perturbatively builds correlations on top of a NCSM reference
state [28]. However, MR-IMSRG is not yet a solution method as such but acts more as
a preprocessing of the Hamiltonian, while MCPT needs a preliminary NCSM reference
state, which becomes out of reach beyond light nuclei. In quantum chemistry, another MR
perturbation theory based on a non-orthogonal mixing of determinants has been recently
proposed and implemented [58, 59], showing great success in systems with strong static
correlations.

The present work has consisted in building on recent advances in quantum chemistry in
order to

• Formalize a universal MR perturbation theory based on an unperturbed state mixing
non-orthogonal Bogoliubov product states in order to consistently capture static and
dynamical correlations within an ab initio context,

• Implement the first order of the formalism and use it to systematically investigate
the low-lying spectroscopy in the neon chain,

• Implement the second order of the formalism in a restricted model space in order to
assess the quality of the method with realistic nuclear Hamiltonians,

• Formalize, implement and benchmark a symmetry-conserving rank-reduction method
of operators to efficiently reabsorb the effect of three-nucleon interactions (at the
cost of introducing a controlled error in the end result) via the sole use of effective
two-body operators.

The present thesis is structured as follows. Chapter 1 introduces the notations and the
basic ingredients of the formalism used in the rest of the manuscript. Chapter 2 presents
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the formalism of MR perturbation theory and discusses the role of the reference state in
dynamical expansions. Chapter 3 describes the many-body reduction of the interaction,
and carefully tests the approximation for three-body forces in a selected set of nuclei and
many-body methods. Chapter 4 develops the first order of the theory that correspond to
the linear mixing of projected mean-field calculations. Systematic results are shown for
the neon chain and compared to other reference methods. Finally, Chapter 5 implements
and shows the first original results of the new perturbation theory in restricted model
spaces. Attention is put on total energies as well as spectroscopic quantities. Details on
symmetry groups, derivations, similarity-transformed matrix elements and aspects of the
numerical implementation are given in the appendices.
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Chapter 1.

Basic definitions and elements of
Bogoliubov algebra
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Given the nuclear Hamiltonian H, ab initio nuclear structure calculations seek a solution
of the A-body Schrödinger’s eigenvalue equation

H|Ψσ
µ〉 = Eσ̃

µ |Ψσ
µ〉 , (1.1)

that is as accurate as possible for as many nuclei as possible. In Eq. (1.1), µ denotes a
principal quantum number whereas σ ≡ (JMΠNZ) ≡ (σ̃M) collects the set of symmetry
quantum numbers labelling the many-body states, i.e. the angular momentum J and
its projection M , the parity Π = ±1 as well as neutron N and proton Z numbers. The
M -independence of the eigenenergies Eσ̃

µ and the symmetry quantum numbers carried by
the eigenstates are a testimony of the symmetry group

GH ≡ {R(θ), θ ∈ DG} (1.2)

of the Hamiltonian, i.e.,

[H,R(θ)] = 0 , ∀θ , (1.3)
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which plays a key role in the present context1. In the particular case of ab initio calculations,
H is a realistic interaction and its matrix elements are derived consistently with the
underlying physics within the framework of χEFT.

To solve this equation, one must first define a many-body basis in which the problem is
expressed prior to applying solution methods.

1.1. Operators in second quantized form

1.1.1. Operators definition
Given a basis B1 ≡ {|l〉} of the one-body Hilbert space H1 whose associated set of particle
creation and annihilation operators is denoted as {c†l , cl}, an arbitrary particle-number-
conserving operator O is represented as

O ≡
r∑

n=0
Onn , (1.4)

where each n-body component2

Onn ≡ 1
n!

1
n!

∑
a1···an
b1···bn

o
a1···an
b1···bn C

a1···an
b1···bn , (1.5)

and
C
a1···an
b1···bn ≡ c†a1 · · · c

†
an
cbn · · · cb1 (1.6)

defines a string of n particle creation and n particle annihilation operators such that
(
C
a1···an
b1···bn

)†
= Cb1···bn

a1···an . (1.7)

The string is in normal order with respect to the particle vacuum |0〉

N(Ca1···an
b1···bn ) = C

a1···an
b1···bn , (1.8)

where N(. . .) denotes the normal ordering with respect to |0〉, and it is anti-symmetric
under the exchange of any pair of upper or lower indices, i.e.

C
a1···an
b1···bn = ε(σu)ε(σl)Cσu(a1···an)

σl(b1···bn) , (1.9)

where ε(σu) (ε(σl)) refers to the signature of the permutation σu(. . .) (σl(. . .)) of the n
upper (lower) indices.
In Eq. (1.5), the n-body matrix elements {oa1···an

b1···bn } constitute a mode-2n tensor, i.e. a
data array carrying 2n indices, associated with the string they multiply. The n-body
matrix elements are also fully anti-symmetric under the exchange of any pair of upper or
lower indices, i.e.

o
a1···an
b1···bn = ε(σu)ε(σl) oσu(a1···an)

σl(b1···bn) . (1.10)
1The characteristics of GH and the definitions of the quantities associated with it that are used throughout
the present work are detailed in App. A.

2The term O00 is a number.

8



1.2. Bogoliubov algebra

1.1.2. Density matrices
The l-body density matrix associated with a many-body state |Θ〉 constitutes a mode-2l
tensor defined through3 [

ρ(l)Θ
]b1···bl
a1···al

≡
〈Θ|Ca1···al

b1···bl |Θ〉
〈Θ|Θ〉 . (1.11)

In the following, the superscripts l and Θ are omitted for l = 1 and when dealing with
a generic density matrix, respectively. The elements of ρ(l)Θ inherit from C

a1···al
b1···bl a full

anti-symmetry under the exchange of any pair of upper or lower indices along with a
hermitian character, i.e. [

ρ(l)Θ
]b1···bl
a1···al

=
([
ρ(l)Θ

]a1···al
b1···bl

)∗
. (1.12)

Given two density matrices ρ(l)Θ and ρ(k)Ψ, their tensor product

ρ(l)Θ⊗(k)Ψ ≡ ρ(l)Θ ⊗ ρ(k)Ψ (1.13)

defines a direct-product (l+k)-body density matrix through the mode-2(l+k) tensor whose
elements are given by[

ρ(l)Θ⊗(k)Ψ
]b1···bl+k
a1···al+k

≡
[
ρ(l)Θ

]b1···bl
a1···al

[
ρ(k)Ψ

]bl+1···bl+k
al+1···al+k

, (1.14)

and display the hermitian property characterized in Eq. (1.12). Because of the direct-
product character of ρ(l)Θ⊗(k)Ψ, its elements are only partially anti-symmetrized, i.e. they
are anti-symmetric under the exchange of any pair of the first l (or last k) upper or lower
indices.
In case one considers the m-fold tensor product of the same l-body density matrix

ρ(l)Θ, the notation can be further simplified according to ρ⊗(ml)Θ ≡ ρ(l)Θ ⊗ . . .⊗ ρ(l)Θ. In
particular, the m-fold tensor product of the generic one-body density matrix ρ defines a
mode-2m tensor whose elements are[

ρ⊗(m)
]b1···bm
a1···am

≡ ρb1a1 · · · ρ
bm
am
. (1.15)

Because of its pure direct-product character, the elements of ρ⊗(m) display no property
under the exchange of any pair of upper or lower indices but inherit the hermitian property
characterized by Eq. (1.12).

1.2. Bogoliubov algebra
1.2.1. Bogoliubov state
Considering an arbitrary order parameter q, whose detailed significance will be specified
later on, the linear Bogoliubov transformation W(q) connects the set of particle creation
and annihilation operators {c, c†} to a set of quasi-particles creation and annihilation
operators {β(q), β†(q)} obeying fermionic anti-commutation rules

{βk(q), βl(q)} = 0 , (1.16a)
{β†k(q), β

†
l (q)} = 0 , (1.16b)

3Conventionally, Eq. (1.11) is consistently extended to l = 0 via ρ(0)Θ ≡ 1.
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{βk(q), β†l (q)} = δkl . (1.16c)

Formally the transformation reads [43](
β(q)
β†(q)

)
≡ W†(q)

(
c

c†

)
, (1.17)

with
W(q) ≡

(
U(q) V ∗(q)
V (q) U∗(q)

)
. (1.18)

so that the Bogoliubov transformation in expanded form reads as

βk(q) ≡
∑
l

U∗lk(q) cl + V ∗lk(q) c†l , (1.19a)

β†k(q) ≡
∑
l

U lk(q) c†l + V k
l (q) cl . (1.19b)

The anti-commutation rules (Eq. (1.16)) constrain W(q) to be unitary

W†(q)W(q) =W(q)W†(q) = 1 , (1.20)

which translates into

U †(q)U(q) + V †(q)V (q) = 1 , (1.21a)
V T (q)U(q) + UT (q)V (q) = 0 , (1.21b)
U(q)U †(q) + V ∗(q)V T (q) = 1 , (1.21c)
V (q)U †(q) + U∗(q)V T (q) = 0 . (1.21d)

The normalized Bogoliubov product state |Φ(q)〉 is defined, up to a phase, as the vacuum
of the quasi-particle operators, i.e.

βk(q)|Φ(q)〉 ≡ 0 , ∀k . (1.22)

Contrary to Slater determinants, which constitute a subset of Bogoliubov states, the latter
are not eigenstates of neutron and proton number operators in general.

1.2.2. One-body density matrices
The Bogoliubov vacuum is fully characterized by its normal ρ(q) and anomalous κ(q)
one-body density matrices whose matrix elements are defined through

ρ
l1
l2

(q) ≡ 〈Φ(q)|c†l2cl1|Φ(q)〉 = V ∗(q)V T (q) , (1.23a)
κl1l2(q) ≡ 〈Φ(q)|cl2cl1|Φ(q)〉 = V ∗(q)UT (q) , (1.23b)

such that

ρ†(q) = ρ(q) , (1.24a)
κT (q) = −κ(q) . (1.24b)
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1.2.3. Normal-ordered operators
It is eventually useful to normal order operators with respect to the Bogoliubov vacuum
|Φ(q)〉 and express them in terms of the associated quasi-particle operators. Applying the
standard Wick’s theorem leads to

O ≡
r∑

n=0
O[2n](q) ≡

r∑
n=0

2r∑
i,j=0
i+j=2n

Oij(q) , (1.25)

with4

Oij(q) ≡ 1
i!

1
j!

∑
k1···ki
l1···lj

ok1···ki
l1···lj (q)Bk1···ki

l1···lj (q) , (1.26)

where
B
k1···ki
l1···lj (q) ≡ β†k1

(q) · · · β†ki(q)βlj(q) · · · βl1(q) (1.27)
denotes a string of i quasi-particle creation and j quasi-particle annihilation operators
such that (

B
k1···ki
l1···lj (q)

)†
= B

l1···lj
k1···ki(q) . (1.28)

The string is in normal order with respect to the Bogoliubov state |Φ(q)〉

: Bk1···ki
l1···lj (q) := B

k1···ki
l1···lj (q) , (1.29)

where : . . . : denotes the normal ordering with respect to |Φ(q)〉, and it is anti-symmetric
under the exchange of any pair of upper or lower indices, i.e.

B
k1···ki
l1···lj (q) = ε(σu)ε(σl)Bσu(k1···ki)

σl(l1···lj) (q) . (1.30)

In Eq. (1.26), the matrix elements {ok1···ki
l1···lj (q)} are fully anti-symmetric under the

exchange of any pair of upper or lower indices, i.e.

ok1···ki
l1···lj (q) = ε(σu)ε(σl) oσu(k1···ki)

σl(l1···lj) (q) , (1.31)

and are functionals of the Bogoliubov matrices (U(q), V (q)) and of the matrix elements
{oa1···an

b1···bn } initially defining the operator O. As such, the content of each operator Oij(q)
depends on the rank r of O. For more details about the normal ordering procedure and for
explicit expressions of the matrix elements up to r = 3, see Refs. [45, 46, 47, 53, 60, 61].

1.2.4. Constrained Hartree-Fock-Bogoliubov theory
The state |Φ(q)〉 is obtained by minimizing its total energy under the constraints that it
satisfies5

〈Φ(q)|A|Φ(q)〉 = A , (1.32a)
〈Φ(q)|Q|Φ(q)〉 = q , (1.32b)

where Q is a generic operator of interest. To do so, one considers the Routhian

R ≡ H − λA(A− A)− λq(Q− q) (1.33a)
4The term O00(q) is just a number.
5In our discussion A stands for either the neutron (N) or the proton (Z) number.
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≡ Ω− λq(Q− q) , (1.33b)

where λA and λq denote two Lagrange parameters6. The Routhian reduces to the so-called
grand potential Ω whenever λq = 0, i.e. when we perform unconstrained calculations with
respect to the order parameter q. Minimizing7

R(q) ≡ 〈Φ(q)|R|Φ(q)〉 = R00(q) (1.34)

according to Ritz’ variational principle, the Bogoliubov matrices (U(q), V (q)) are found as
the solutions of the Hartree-Fock-Bogoliubov (HFB) eigenequation [43](

h̄(q) ∆̄(q)
−∆̄∗(q) −h̄∗(q)

)(
U(q)
V (q)

)
k

= Ek(q)
(
U(q)
V (q)

)
k

, (1.35)

where the eigenvalues {Ek(q)} are referred to as quasi-particle energies. The constrained
HFB Hamiltonian matrix

H(q) ≡
(

h̄(q) ∆̄(q)
−∆̄∗(q) −h̄∗(q)

)
, (1.36)

is built out of the constrained one-body Hartree-Fock and Bogoliubov fields

h̄ll′(q) ≡
∂R00(q)
∂ρ∗ll′(q)

(1.37a)

= 〈Φ(q)|{[cl, R], c†
l
′}|Φ(q)〉

= f ll′ [|Φ(q)〉]− λq
∂Q00(q)
∂ρ∗ll′(q)

− λAδll′ ,

∆̄ll
′(q) ≡ ∂R00(q)

∂κ∗ll′(q)
(1.37b)

= 〈Φ(q)|{[cl, R], cl′}|Φ(q)〉

= ∂H00(q)
∂κ∗ll′(q)

− λq
∂Q00(q)
∂κ∗ll′(q)

,

where f ll′ [|Φ(q)〉] denote the matrix elements of the one-body operator generically defined
in Eq. (2.31) but presently computed from the normal one-body density matrix of |Φ(q)〉.
At convergence where the constraints (Eq. (1.32)) are satisfied, the HFB energy is

〈Φ(q)|H|Φ(q)〉 = H00(q) = R00(q) . (1.38)

Furthermore, Eq. 1.35 implies that

W†(q)H(q)W (q) =
(

R11(q) R20(q)
−R20∗(q) −R11∗(q)

)

=
(
E(q) 0

0 −E(q)

)
,

6In actual applications, one Lagrange multiplier relates to constraining the neutron number N and one
Lagrange multiplier is used to constrain the proton number Z.

7As alluded to in Sec. 1.2.3, the explicit functional form of R00(q) depends on the initial rank of H and
Q and can be found elsewhere for up to 3-body operators [45, 53, 61].
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such that the properties

R20(q) = R02(q) = 0 , (1.39a)
R11(q) =

∑
k

Ek(q)β†k(q)βk(q) , (1.39b)

are fulfilled at convergence.

1.2.5. Elementary excitations
Given the Bogoliubov state |Φ(q)〉, a complete basis of Fock space F is obtained by
generating all its elementary excitations

|Φk1···ki(q)〉 ≡ Bk1···ki(q)|Φ(q)〉 . (1.40)

where Bk1···ki(q) defines the subclass of strings defined in Eq. (1.27) that only contain
quasi-particle creation operators.

It is interesting to note that each state defined through Eq. (1.40) is itself a Bogoliubov
vacuum whose associated Bogoliubov transformation can be deduced from the one defining
|Φ(q)〉 (Eq. (1.19)). Writing as Kn ≡ {k1 · · · kn} the n-tuple defining a given elementary
excitation |ΦKn(q)〉, the associated Bogoliubov transformation (U(q,Kn), V (q,Kn)) is
given by the matrices

U lk(q,Kn) ≡ U lk(q) if k /∈ Kn , (1.41a)
U lk(q,Kn) ≡ V k∗

l (q) if k ∈ Kn , (1.41b)
V l
k(q,Kn) ≡ V l

k(q) if k /∈ Kn , (1.41c)
V l
k(q,Kn) ≡ U∗lk(q) if k ∈ Kn . (1.41d)

Such a consideration can be exploited to eventually compute matrix elements of operators
between two Bogoliubov states that may differ not only by the value of the collective
coordinate q but also by the elementary excitation character. The idea of evaluating matrix
elements by redefining each elementary excitation of an original Bogoliubov vacuum as
a novel vacuum is a generalization of the so-called generalized Slater-Condon rules [62].
The present work follows a numerically more efficient route where quasi-particle excitation
operators are explicitly processed in order to avoid the combinatorics associated with the
redefinition of many Bogoliubov transformations through Eq. (1.41).

1.2.6. Rotated Bogoliubov state
Given the Bogoliubov state |Φ(q)〉, its rotated partner

|Φ(q; θ)〉 ≡ R(θ)|Φ(q)〉 , (1.42)

is also a Bogoliubov state whose associated quasi-particle operators {β(q; θ), β†(q; θ)} are
characterized by the Bogoliubov transformation

W(q; θ) =
(
r(θ) 0

0 r(θ)†
)
W(q)

≡
(
U(q; θ) V ∗(q; θ)
V (q; θ) U∗(q; θ)

)
, (1.43)
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Chapter 1. Basic definitions and elements of Bogoliubov algebra

where r(θ) defines the matrix representation of R(θ) in the one-body Hilbert-space. Its
matrix elements are

r
l1
l2

(θ) ≡ 〈l1|R(θ)|l2〉 . (1.44)

Given that W(q; θ) is a unitary Bogoliubov transformation, Eqs. (1.21) are also satisfied
when substituting (U(q), V (q)) for (U(q; θ), V (q; θ)).

Because R(θ) ∈ GH , the energy of the rotated HFB state

〈Φ(q; θ)|H|Φ(q; θ)〉 = H00(q; θ) (1.45)

is in fact independent of the rotation angle; i.e. H00(q; θ) = H00(q) for all θ.
Elementary excitations of the rotated Bogoliubov state are given by

|Φk1···ki(q; θ)〉 ≡ Bk1···ki(q; θ)|Φ(q; θ)〉 (1.46)

where the rotated string reads as

Bk1···ki(q; θ) ≡ R(θ)Bk1···ki
l1···lj (q)R†(θ) (1.47)

= β†k1
(q; θ) · · · β†ki(q; θ)βlj(q; θ) · · · βl1(q; θ) ,

such that they are nothing but the rotated elementary excitations

|Φk1···ki(q; θ)〉 ≡ R(θ)|Φk1···ki(q)〉 . (1.48)

1.2.7. Overlap between Bogoliubov vacua
Given two Bogoliubov vacua |Φ(q, θ)〉 and |Φ(p)〉, their overlap is a key ingredient to
the calculation of the needed many-body matrix elements. To express the result, Bloch-
Messiah-Zumino decompositions [43] of the Bogoliubov transformations W(p) and W(q)
are invoked, e.g. the matrices defining W(p) are expressed as the product of unitary
matrices D(p) and C(p) and special block-diagonal matrices Ū(p) and V̄ (p) according to

U(p) ≡ D(p)Ū(p)C(p) , (1.49a)
V (p) = D∗(p)V̄ (p)C(p) . (1.49b)

Further denoting by vk(p) the BCS-like coefficients making up V̄ (p), the overlap eventually
reads as [63]8

〈Φ(p)|Φ(q; θ)〉 = (−1)ndet(C∗(p))det(C(q))∏n
k vk(p)vk(q)

pf
[(

V (p)TU(p) V T (p)rT (θ)V ∗(q)
−V (q)†r(θ)V (p) U †(q)V ∗(q)

)]
,

(1.50)

where 2n denotes the dimension of H1 and where the pfaffian of a symplectic matrix has
been considered.

8There exists an alternative way to compute the overlap between any two Bogoliubov states without any
phase ambiguity, see Ref. [64].
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1.2. Bogoliubov algebra

1.2.8. Transition Bogoliubov transformation
Given the Bogoliubov vacua |Φ(q, θ)〉 and |Φ(p)〉, the two sets of quasi-particle operators
are related via the Bogoliubov transformation(

β(q; θ)
β†(q; θ)

)
=W†(q; θ)W(p)

(
β(p)
β†(p)

)

≡
(
D†(p, q; θ) E†(p, q; θ)
ET (p, q; θ) DT (p, q; θ)

)(
β(p)
β†(p)

)

≡ W†(p, q; θ)
(
β(p)
β†(p)

)
, (1.51)

where

E(p, q; θ) ≡ V T (q)U(q; θ) + UT (q)V (q; θ) , (1.52a)
D(p, q; θ) ≡ U †(q)U(q; θ) + V †(q)V (q; θ) . (1.52b)

Given that W (p, q; θ) is a unitary Bogoliubov transformation, Eqs. (1.21) is also satisfied
when substituting (U(q), V (q)) for (D(p, q; θ), E(p, q; θ)).

1.2.9. Similarity transformation
Thouless transformation

The two Bogoliubov vacua |Φ(q, θ)〉 and |Φ(p)〉 can be connected via a non-unitary Thouless
transformation

|Φ(q; θ)〉 = 〈Φ(p)|Φ(q; θ)〉 exp
[
Z20(p, q; θ)

]
|Φ(p)〉, (1.53)

where matrix elements of the Thouless operator

Z20(p, q; θ) ≡ 1
2
∑
k1k2

zk1k2(p, q; θ)Bk1k2(p) . (1.54)

are expressed in terms of the transition Bogoliubov transformation between both vacua
(Eqs. (1.51)-(1.52)) according to

z(p, q; θ) = E∗(p, q; θ)D∗−1(p, q; θ) . (1.55)

Similarity-transformed operators

Given |Φ(p)〉, |Φ(q, θ)〉 and an operator O, the similarity-transformed operator is introduced
as

ZO ≡ e−Z20(p,q;θ)OeZ20(p,q;θ) , (1.56)
which obviously depends on (p, q; θ) via Z20(p, q; θ). Because the similarity transformation is
not unitary, ZO is not hermitian. Such similarity-transformed operators appear repeatedly
in the PGCM-PT formalism developed in the present work.

Normal ordering O with respect to |Φ(p)〉 according to Eqs. (1.25)-(1.26), ZO is obtained
by simply replacing the quasi-particle operators {β†k(p), βk(p)} by the similarity-transformed
ones (

Zβ(p)
Zβ†(p)

)
≡ e−Z20(p,q;θ)

(
β(p)
β†(p)

)
eZ20(p,q;θ)
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=
(

1 z(p, q; θ)
0 1

)(
β(p)
β†(p)

)

≡ ZX †(p, q; θ)
(
β(p)
β†(p)

)
. (1.57)

Expressing the result in terms of the initial set {β†k(p), βk(p)} and applying Wick’s theorem
allows one to eventually express ZO in normal-ordered form with respect to |Φ(p)〉, i.e.
according to Eqs. (1.25)-(1.27), where the set of (p, q; θ)-dependent matrix elements are
functions of the original set of matrix elements and of the matrix z(p, q; θ). The explicit
expressions of these matrix elements are provided in App. C for a two-body operator O,
i.e. an operator with r = 2 in Eqs. (1.4)-(1.6) and/or Eqs. (1.25)-(1.27).

As made clear in App. D, one also needs the similarity transformation of a de-excitation
operator Bl1...li(p) acting on the corresponding vacuum bra 〈Φ(p)|, i.e.

〈Φ(p)| ZBl1...li(p) = 〈Φ(p)|
1∏
n=i

Zβln(p) (1.58)

= 〈Φ(p)|
1∏
n=i

(
βln(p) +

∑
m

zlilmβ†lm(p)
)
,

where the transformation (1.57) is used repeatedly and where the dependence of z(p, q; θ)
on (p, q; θ) is omitted for simplicity. This gives for a single de-excitation

〈Φ(p)| ZBl1l2(p) =〈Φl1l2(p)| (1.59)
+ zl1l2〈Φ(p)| ,

and for a double de-excitation

〈Φ(p)| ZBl1l2l3l4(p) =〈Φl1l2l3l4(p)| (1.60)
+ P (l1l2/l3l4) zl3l4 〈Φl1l2(p)|
+ P (l1/l3l4) zl1l2zl3l4 〈Φ(p)| ,

where the final expressions are obtained by expanding the product of transformed quasi-
particle operators, by applying Wick’s theorem and by acting on the bra to eliminate
many null terms. The definition of the needed permutation operators can be found in
App. B. Interestingly, one observes that the excitation rank is not increased through the
similarity transformation in Eqs. (1.59)-(1.60).

Rotated/similarity-transformed operators

Given |Φ(p)〉, |Φ(q, θ)〉 and an operator O, the rotated/similarity-transformed operator is
introduced as

ZO(θ) ≡ e−Z20(p,q;θ)R(θ)OR†(θ)eZ20(p,q;θ) , (1.61)

where the extra dependence in θ due to the additional rotation compared to OZ defined in
Eq. (1.56) is made apparent in the newly introduced notation ZO(θ) such that ZO(0) =Z O.
Of course, the particular form used to express the initial operator O does not impact

the actual content of ZO or ZO(θ). In the PGCM-PT formalism of present interest,
it happens that ZO and ZO(θ) arise for operators O that are initially normal ordered
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with respect to |Φ(p)〉 and |Φ(q)〉, respectively, and thus expressed in terms of quasi-
particle operators {β†k(p), βk(p)} and {β†k(q), βk(q)}, respectively. With this in mind,
ZO(θ) is obtained by simply replacing the quasi-particle operators {β†k(q), βk(q)} by
rotated/similarity-transformed ones(

Zβ(q; θ)
Zβ†(q; θ)

)
≡ e−Z20(p,q;θ)R(θ)

(
β(q)
β†(q)

)
R†(θ)eZ20(p,q;θ)

≡ e−Z20(p,q;θ)
(
β(q; θ)
β†(q; θ)

)
eZ20(p,q;θ) . (1.62)

Eventually, the operator ZO(θ) needs to be re-expressed in terms of the set {β†k(p), βk(p)},
the goal being to express all quantities involved in a many-body matrix element of interest
in terms of a single set of quasi-particle operators. To do so, the rotated/similarity-
transformed quasi-particle operators are written as(

Zβ(q; θ)
Zβ†(q; θ)

)
≡ e−Z20(p,q;θ)

(
β(q; θ)
β†(q; θ)

)
eZ20(p,q;θ)

=W†(p, q; θ)ZX †(p, q; θ)
(
β(p)
β†(p)

)

≡ ZY†(p, q; θ)
(
β(p)
β†(p)

)
, (1.63)

with

ZY†(p, q; θ) =
(
D†(p, q; θ) D†(p, q; θ)z(p, q; θ) + E†(p, q; θ)
ET (p, q; θ) ET (p, q; θ)z(p, q; θ) +DT (p, q; θ)

)

=
(
D†(p, q; θ) 0
ET (p, q; θ) D∗−1(p, q; θ)

)
(1.64)

where the second line is obtained by inserting Eq. (1.55) into the first one and utilizing
Eqs. (1.21a) and (1.21b).
In the present context, and as made clear in App. D, one only needs to perform

the rotation/similarity-transformation of an excitation operator Bk1...ki(q) acting on the
vacuum |Φ(p)〉

ZB
k1...kj(q; θ) |Φ(p)〉 =

j∏
n=1

Zβ
†
kn

(q; θ)|Φ(p)〉 (1.65)

=
j∏

n=1

∑
km

(
E
kn
km
βkm(p)

+D−1†kmknβ†km(p)
)
|Φ(p)〉 ,

where the transformation (1.62)-(1.64) has been used repeatedly and where the dependence
of E(p, q; θ) and D(p, q; θ) on (p, q; θ) has been omitted for simplicity. This gives for a
single excitation

ZB
k1k2(q; θ) |Φ(p)〉 =

∑
j1j2

D−1†j1k1D−1†j2k2|Φj1j2(p)〉
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+
∑
j1

E
k1
j1
D−1†j1k2 |Φ(p)〉 , (1.66)

and for a double excitation

ZB
k1k2k3k4(q; θ) |Φ(p)〉 =

∑
j1j2j3j4

D−1†j1k1D−1†j2k2D−1†j3k3D−1†j4k4|Φj1j2j3j4(p)〉

+ P (k1k2/k3k4)
∑
j1j2j4

D−1†j1k1D−1†j2k2E
k3
j4
D−1†j4k4|Φj1j2(p)〉

+ P (k1/k3k4)
∑
j2j4

E
k1
j2
D−1†j2k2E

k3
j4
D−1†j4k4 |Φ(p)〉 , (1.67)

where the final expressions are obtained by expanding the product of transformed quasi-
particle operators, applying Wick’s theorem and acting on the ket to eliminate many
vanishing terms. Interestingly, one observes that the excitation rank is not increased
through the rotation and similarity transformation in Eqs. (1.66)-(1.67).
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Now that the necessary elements of formalism have been introduced, we can dive into
the solution of Eq. (1.1). The present chapter is dedicated to the formulation of a generic
multi-reference many-body perturbation theory applicable to all systems, regardless of
their closed- or open-shell character.

2.1. Introduction
The breaking of ab initio calculations away from p-shell nuclei over the last fifteen years
has essentially been due to the development and implementation of so-called expansion
many-body methods to solve Eq. (1.1). Generically, these methods rely on a partitioning
of the Hamiltonian

H = H0 +H1 (2.1)

chosen such that (at least) one appropriate eigenstate |Θσ̃M
µ 〉 of H0 is known, i.e.

H0|Θσ̃M
µ 〉 = Eσ̃(0)

µ |Θσ̃M
µ 〉 . (2.2)

Given this state, the so-called unperturbed state, expansion methods aim at finding an
efficient way to connect it to a target eigenstate |Ψσ

µ〉 of H. This connection is formally
achieved via the so-called wave operator, i.e.

|Ψσ̃M
µ 〉 ≡ Ω[σ̃,µ,H1]|Θσ̃M

µ 〉 , (2.3)
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Figure 2.1. (color online) Schematic illustration of the workflow of expansion many-body
methods based on a given input Hamiltonian H. While the unperturbed state must
be capable of capturing so-called static correlations (if any), the expansion on top of it
typically focuses on grasping so-called dynamical correlations (either perturbatively or
non-perturbatively).
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2.1. Introduction

which is state specific and carries the complete effect of the residual interaction H1. This
two-step procedure is schematically illustrated in Fig. 2.1.
Two ingredients characterize a given expansion method

1. the nature of the partitioning and the associated unperturbed state,

2. the rationale behind the construction, i.e the expansion and truncation, of the wave
operator.

The construction of the wave operator is typically realized via either perturbative [60]
or non-perturbative [41] techniques, i.e. by either expanding Ω[σ̃,µ,H1] as a power series
in H1 or organizing the series as a more elaborate function of the residual interaction.
Independently of this, the nature and the reach of the expansion is first and foremost
determined by the type of unperturbed state used, which is itself governed by two main
characteristics. The first feature relates to whether |Θσ̃M

µ 〉 is a pure product state or a
linear combination of product states. In the former case, the method is said to be of SR
nature. In the latter case, the method is said to be of MR character. One typically needs
to transition from the former to the latter whenever the system is (nearly) degenerate
and displays strong static correlations, e.g. going from closed-shell to open-shell nuclei,
thus making the SR expansion singular. Standard MR unperturbed states are linear
combinations of orthonormal Slater determinants spanning a so-called valence/active
space. This is indeed the case of the sole multi-reference method implemented to date
in nuclear physics, i.e. MCPT [28]. In the present work, the goal is to generalize to the
nuclear context the multi-reference perturbation theory developed in Ref. [65] in which the
unperturbed state is built as a linear combination of non-orthogonal Slater determinants.

In addition to the SR or MR nature of the unperturbed state, a second, key feature relates
to the symmetry conserving or non-conserving character of the partitioning, Eq. (2.1).
While expansion methods typically build on a symmetry-conserving scheme [25] as implied
by Eq. (2.2), a given SR expansion method can be generalized to a symmetry non-conserving
formulation in which

[H0, R(θ)] 6= 0 , (2.4a)
[H1, R(θ)] 6= 0 . (2.4b)

As a result, the unperturbed state is said to be symmetry breaking, i.e. it looses (some of)
the symmetry quantum numbers characterizing the eigenstates of H and rather carries a
non-zero order parameter % ≡ qeiθ whose norm q quantifies the extent of the symmetry
breaking. In this case, the unperturbed state is written as |Φµ(q)〉. Breaking symmetries is
employed to capture strong static correlations without having to resort to MR methods that
are typically formally and numerically more involved. While such a philosophy is indeed
very powerful [45, 46, 47, 48, 49, 51, 66, 67, 68], it carries the loss of good symmetries over
to the (approximation of) |Ψσ̃M

µ 〉 generated through the expansion method as soon as the
wave operator is truncated in Eq. (2.3).

In this context, the natural question is whether broken symmetries can be restored1

at any given truncation order whenever a symmetry-breaking SR partitioning is used.
Doing so amounts to incorporating large amplitude fluctuations of the phase θ of the order
parameter characterizing the broken symmetry. While it is indeed straightforward to do

1While the full wave operator restores broken symmetries, it is always truncated in actual calculations
such that the formal restoration obtained in the exact limit is of no practical help.
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so for the unperturbed product state, i.e. at zeroth order in the many-body expansion,
by acting with a symmetry projection operator [43], the generalization of symmetry-
breaking SR expansion methods to restore the symmetries at any finite truncation order
has only attracted serious attention recently, both for perturbation [53, 69, 70] and coupled
cluster [53, 55, 69] theories2. These approaches follow a philosophy that can be coined as
"partition-project-and-expand" in which the action of the symmetry projector itself needs
to be expanded and truncated as soon as one goes beyond zeroth order in the expansion
of the wave operator. After showing promising results in the context of solvable/toy
models [55, 56], these novel formalisms are now being implemented and tested within the
frame of realistic nuclear structure calculations where the necessary approximation of the
symmetry projector seems to constitute a challenge [80].
The present work wishes to promote an alternative strategy through a novel MR

perturbation theory that, while building the unperturbed state out of symmetry-breaking
product states, does rather follow a "project-partition-and-expand" philosophy, i.e. relies
on a symmetry-conserving partitioning, such that symmetries are exactly maintained all
throughout the expansion. Furthermore, the approach is not only capable of incorporating
large amplitude fluctuations of the phase of % into the unperturbed state, but also of
including large amplitude fluctuations of its norm q, which constitutes an efficient asset to
fully incorporate static correlations.
This chapter is organized as follows. Section 2.2 briefly summarizes formal Rayleigh-

Schrödinger’s perturbation theory [25] underlying the subsequent formulation of the
multi-reference perturbation theory of present interest that is formulated in detail in
Sec. 2.3. Section 2.4 is dedicated to discussions and conclusions. While the bulk of the
chapter is restricted to the generic formulation of the many-body method, Apps. C, D and
E provide all algebraic details necessary to the actual implementation of the approach.

2.2. Formal perturbation theory
2.2.1. Set up
The present work focuses on the perturbative expansion of the wave operator. Starting
from Eqs. (2.1)-(2.2), the two projectors in direct sum3

P σ̃µ ≡
∑
K

|Θσ̃K
µ 〉〈Θσ̃K

µ | , (2.5a)

Qσ̃µ ≡ 1− P σ̃µ , (2.5b)

are introduced. The operator P σ̃µ projects on the eigen subspace of H0 spanned by the
unperturbed state along with the degenerate states obtained via symmetry transformations,
i.e. belonging to the same irreducible representation (IRREP) of the symmetry group.
This constitutes the so-called P space. The operator Qσ̃µ projects onto the complementary
orthogonal subspace, the so-called Q space. In the present context, the eigenstates of H0
spanning the latter subspace are not assumed to be known explicitly.

2The insertion of a projector at second-order in perturbation theory was investigated at some point in
nuclear physics [71, 72, 73, 74, 75] and quantum chemistry [76, 77, 78] but not pursued since. Those
methods relied on Löwdin’s representation of the spin projector [79], often approximating it to only
remove the next highest spin.

3The two hermitian operators fulfill (P σ̃µ )2 = P σ̃µ , (Qσ̃µ)2 = Qσ̃µ and P σ̃µQ
σ̃
µ = Qσ̃µP

σ̃
µ = 0 such that

P σ̃µ +Qσ̃µ = 1.
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While the ingredients introduced above are state specific and, as such, depend on
the quantum numbers (µ, σ), those labels are dropped for the time being to lighten the
notations. Consequently, the targeted eigenstate and energy (of the full H) are written as
|Ψ〉 and E, respectively, whereas the unperturbed state and energy are denoted as |Θ(0)〉
and E(0) to typify that they act as zeroth-order quantities in the perturbative expansion
designed below. The projectors are simply denoted as P and Q.

The goal is to compute the perturbative corrections to both |Θ(0)〉 and E(0) such that

|Ψ〉 ≡
∞∑
k=0
|Θ(k)〉 , (2.6a)

E ≡
∞∑
k=0

E(k) , (2.6b)

where the superscript k indicates that the corresponding quantity depends on the kth

power of H1. This expansion is defined using the so-called intermediate normalization, i.e.

〈Θ(0)|Θ(k)〉 = 0 , ∀k ≥ 1 , (2.7)

such that

〈Θ(0)|Ψ〉 = 1 . (2.8)

2.2.2. Perturbative expansion
Rayleigh-Schrödinger perturbation theory [25] allows one to first expand the exact state
and energy as

|Ψ〉 ≡
∞∑
m=0

(
X−1Y

)m
|Θ(0)〉 , (2.9a)

E − E(0) ≡
∞∑
m=0
〈Θ(0)|H1

(
X−1Y

)m
|Θ(0)〉 , (2.9b)

where

X ≡ Q
(
H0 − E(0)

)
Q , (2.10a)

Y ≡ Q
(
E − E(0) −H1

)
Q . (2.10b)

The two series do not yet provide the perturbative corrections to the unperturbed quantities
because of the presence of E − E(0) on the right-hand side through Y . To identify each
perturbative contribution, it is necessary to substitute Eq. (2.9b) for each E − E(0) in the
right-hand-side of Eq. (2.9) iteratively and sort out the terms with equal powers of H1.
This procedure leads to4,5

|Θ(1)〉 = −X−1QH1|Θ(0)〉 , (2.11a)
4Starting with |Θ(3)〉 and E(4), so-called renormalization terms arise in addition to the principal term [25].
5The perturbative expansion of the wave operator formally introduced in Eq. (2.3) is thus obtained as

Ω[σ̃,µ,H1] = 1
− (X σ̃

µ )−1Qσ̃µH1

+ (X σ̃
µ )−1Qσ̃µH̄1Q

σ̃
µ(X σ̃

µ )−1Qσ̃µH1

+ . . .
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|Θ(2)〉 = +X−1QH̄1QX−1QH1|Θ(0)〉 , (2.11b)
...

and6

E(1) = 〈Θ(0)|H1|Θ(0)〉 , (2.12a)
E(2) = 〈Θ(0)|H1Q|Θ(1)〉

= −〈Θ(0)|H1QX−1QH1|Θ(0)〉 , (2.12b)
E(3) = 〈Θ(0)|H1Q|Θ(2)〉

= +〈Θ(0)|H1QX−1QH̄1QX−1QH1|Θ(0)〉
= 〈Θ(1)|QH̄1Q|Θ(1)〉 , (2.12c)
...

where H̄1 ≡ H1 − E(1). The total energy of the unperturbed state is defined as

Eref ≡ 〈Θ(0)|H|Θ(0)〉 = E(0) + E(1) . (2.13)

2.2.3. Computable expression
Working algebraic expressions of |Θ(k)〉 and E(k) are easily obtained in case X is invertible,
i.e. if the eigenstates of H0 in Q space are known, which is not the case in the present
work. Under closer inspection, one actually needs matrix elements of

A ≡ −X−1QH̄1 , (2.14)

noting in passing that QH̄1|Θ(0)〉 = QH1|Θ(0)〉. Since by definition

Q
(
H0 − E(0)

)
QA = −QH̄1 , (2.15)

the matrix A of A is the solution of the system of linear equations

MA = −H̄1 , (2.16)

where M ≡ H0 − E(0)1 and where the left matrix index necessarily belongs to Q space
whereas the right index is either in Q or P space. In expanded form, the linear system
thus reads, with i 6= 0, ∑

k 6=0
MikAkj = −

(
H̄1

)
ij
, (2.17)

where the sum is restricted toQ-space states. In case one is only interested inX−1QH̄1|Θ(0)〉,
a simpler linear system involving the vectors a and h1 made out of the first column Ak0
and (H1)k0 of A and H1, respectively, needs to be solved, i.e.

Ma = −h1 . (2.18)
6Some of the projectors Q are redundant but are kept to make the systematic structure of the equations
more apparent.
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2.2. Formal perturbation theory

As discussed in Chapter 5, a sparse matrix representation ofM makes the iterative solution
of the linear equation system accessible under certain hypothesis for realistic ab initio
nuclear structure calculations.
Given A, the energy corrections can eventually be computed as

E(2) = 〈Θ(0)|H1A|Θ(0)〉 = h†1a , (2.19a)
E(3) = 〈Θ(0)|H1A

2|Θ(0)〉 = h†1Aa = a†H̄1a , (2.19b)
...

knowing that E(1) = (H1)00.

2.2.4. Hylleraas functional
Formal perturbation theory can be alternatively derived through a variational method
due to Hylleraas [25]. Let us consider a variational ansatz

|Ξ〉 ≡ |Θ(0)〉+
∞∑
k=1
|Ξ(k)〉 , (2.20)

where 〈Θ(0)|Ξ(k)〉 = 0 ∀k ≥ 1 and where the variational component |Ξ(k)〉 is proportional
to Hk

1 . Computing the expectation of H in |Ξ〉 and sorting the various orders in H1, Ritz’
variational principle leads to

E ≤E(0) + E(1)

+
[
〈Ξ(1)|QH1|Θ(0)〉+ 〈Θ(0)|H1Q|Ξ(1)〉

+ 〈Ξ(1)|Q(H0 − E(0))Q|Ξ(1)〉
]

+O(H3
1 ) , (2.21)

For E to be a minimum of the right-hand side expression for an arbitrary H1, each term
associated with a given power of H1 must be either minimal or constant in order to
indeed reach E. The sum of the corresponding terms delivers the individual perturbative
components E(k) in Eq. (2.6b) given the uniqueness of the series in powers of H1.
Noting that E(0) and E(1) are free from any variational components, the variational

approach starts with the second-order energy correction E(2) that is the minimum of the
so-called Hylleraas functional

L[Ξ(1)] ≡ 〈Ξ(1)|QH1|Θ(0)〉
+ 〈Θ(0)|H1Q|Ξ(1)〉
+ 〈Ξ(1)|Q(H0 − E(0))Q|Ξ(1)〉 . (2.22)

It is straightforward to realize that the saddle-point of Eq. (2.22) is obtained for |Ξ(1)〉 =
|Θ(1)〉 the solution of Eq. (2.11a).

This alternative derivation is of interest because it underlines the fact that the use of an
approximate ansatz to the exact solution of Eq. (2.11a) delivers a variational estimate7 of
E(2).

7One however obtains a variational upper bound of the exact eigen energy if and only if E(0) is the
lowest eigenvalue of H0 [25].
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Chapter 2. PGCM-PT formalism

2.3. PGCM-PT
The above formal perturbation theory is now specified to the case where the unperturbed
state is generated through the projected generator coordinate method (PGCM). The
unperturbed state is thus of multi reference character given that a PGCM state is nothing
but a linear combination of non-orthogonal product states whose coefficients result from
solving Hill-Wheeler-Griffin’s (HWG) secular problem [43], i.e. a generalized many-body
eigenvalue problem. The PGCM Perturbation Theory (PGCM-PT) of present interest
adapts to the nuclear many-body problem the multi-reference perturbation theory recently
formulated in the context of quantum chemistry [65] where the reference state arises from a
non-orthogonal configuration interaction (NOCI) calculation involving Slater determinants.
In order to do so, the method is presently generalized to the mixing of Bogoliubov vacua.

In the present context, PGCM must thus be viewed as the unperturbed, i.e. zeroth-order,
limit of the PGCM-PT formalism that is universally applicable, i.e. independently of
the closed or open-shell nature of the system and of the ground or excited character of
the PGCM state generated though the initial HWG problem. Because PGCM states
efficiently capture strong static correlations associated with the spontaneous breaking of
symmetries and their restoration as well as with large amplitude collective fluctuations,
one is only left with incorporating the remaining weak dynamical correlations, which
PGCM-PT offers to do consistently. Because of the incorporation of static correlations
into the zeroth-order state, the hope is that nuclear observables associated with a large set
of nuclei and quantum states can be sufficiently converged at low orders in PGCM-PT.

2.3.1. PGCM unperturbed state
Ansatz

A multi-reference PGCM state reads as

|Θσ̃M
µ 〉 ≡

∫
dqf σ̃µ (q)P σ̃

M0|Φ(q)〉

= dσ̃
vG

∑
q

f σ̃µ (q)
∑
θ

Dσ̃∗
M0(θ)|Φ(q; θ)〉 , (2.23)

where integrals over the collective coordinate q and the rotation angle θ have been
discretized as actually done in a practical calculation.
In Eq. (2.23), Bq ≡ {|Φ(q)〉; q ∈ set} denotes a set of non-orthogonal Bogoliubov

states differing by the value of the collective deformation parameter q. Such an ansatz is
characterized by its capacity to efficiently capture static correlations from a low-dimensional,
i.e. from several tens to a few hundreds, configuration mixing at the price of dealing with
non-orthogonal vectors. This constitutes a very advantageous feature, especially as the
mass A of the system, and thus the dimensionality of HA, grows.
The product states belonging to Bq are typically obtained in a first step by solving

repeatedly Hartree-Fock-Boboliubov (HFB) mean-field equations with a Lagrange term
associated with a constraining operator8 Q such that the solution satisfies

〈Φ(q)|Q|Φ(q)〉 = q . (2.24)

8The generic operator Q can embody several constraining operators such that the collective coordinate q
may in fact be multi dimensional.
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2.3. PGCM-PT

The constrained HFB total energy H00(q) (see Eq. (1.38)) delivers as a function of q
the so-called HFB potential energy curve (PEC). Details about Bogoliubov states and
the associated algebra, as well as constrained HFB equations, can be found in Sec. 1.2.
The constraining operator Q is such that the product states belonging to Bq break a
corresponding symmetry of the Hamiltonian as soon as q 6= 0. Because physical states
must carry good symmetry quantum numbers one acts on |Φ(q)〉 with the operator9

P σ̃
M0 = dσ̃

vG

∫
DG

dθDσ̃∗
M0(θ)R(θ) (2.25)

in Eq. (2.23) to project the HFB state onto eigenstates of the symmetry operators with
eigenvalues (σ̃,M) and incorporate additional static correlations. The operator P σ̃

M0 is
expressed in terms of the symmetry rotation operator R(θ) and the IRREP Dσ̃

MK(θ) of the
symmetry group GH . See App. A for a discussion of the actual symmetry group, symmetry
quantum numbers and symmetry projector of present interest.
Due to the symmetry projection, the PGCM state eventually is constructed from the

extended set10 of Bogoliubov states Bq;θ ≡ {|Φ(q; θ)〉; q ∈ set and θ ∈ DG} obtained from
Bq by further acting with the symmetry rotation operator, i.e.

|Φ(q; θ)〉 ≡ R(θ)|Φ(q)〉 . (2.26)

Because R(θ) ∈ GH , the HFB potential energy surface (PES) H00(q; θ) (Eq. (1.45)) in the
two-dimensional plane associated with the order parameter % = qeiθ of the (intermediately
broken) symmetry is independent of the rotation angle θ. This is qualitatively illustrated
in Fig. 2.2.

Mixing states belonging to Bq;θ, PGCM states account for large amplitude fluctuations
of both the norm q and the angle θ of the order parameter %. Doing so constitutes
an efficient way to incorporate strong static correlations and extract at the same time
collective excitations associated with both of these fluctuations, i.e. vibrational and
rotational excitations along with their coupling. In this context, the coefficients Dσ̃

M0(θ)
associated with the symmetry restoration are entirely determined by the group structure11.
Consequently, the sole unknowns to be determined are the coefficients f σ̃µ (q) associated
with the mixing over q.

Hill-Wheeler-Griffin’s equation

The unknown coefficients {f σ̃µ (q); q ∈ set} are determined via the application of Ritz’
variational principle

δ

δf σ̃∗µ (q)
〈Θσ̃M

µ |H|Θσ̃M
µ 〉

〈Θσ̃M
µ |Θσ̃M

µ 〉
= 0 , (2.27)

9The present work is effectively concerned with HFB states that are invariant under spatial rotation
around a given symmetry axis. Extending the formulation to the case where |Φ(q)〉 does not display
such a symmetry poses no formal difficulty but requires a more general projection operator Pσ; see
App. A for details.

10Seeing the PGCM state as a configuration mixing of states belonging to Bq;θ rather than as resulting
from the projection of the states belonging Bq allows one to define the SR limit of PGCM-PT via the
truncation of the double sum in Eq. (2.23) to a single term such that the PGCM unperturbed state
reduces to one symmetry-breaking state |Φ(q; 0)〉.

11This is true because the present work is only concerned with HFB states that are invariant under spatial
rotation around a given symmetry axis. If not, the configuration mixing with respect to the rotation
(i.e. Euler) angles is not entirely fixed by the structure of the group; see App. A for details.
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𝐻00 𝑞  𝐻00 𝑞  

𝐴𝑟𝑔 𝑞  𝐴𝑟𝑔 𝑞  

𝑞  
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a) b) 

Symmetry-conserving minimum Symmetry-breaking minimum 

Figure 2.2. (color online) Schematic representation of the HFB PES H00(q; θ) in the
two-dimensional plane associated with the order parameter % = qeiθ of the (intermediately
broken) symmetry. Light (dark) blue circles represent configurations along the q (θ)
direction. Left (right) panel: system characterized by a symmetry-conserving (-breaking)
minimum.

that eventually leads to solving Hill-Wheeler-Griffin’s equation12

∑
q

H σ̃
p0q0 f

σ̃
µ (q) = E σ̃µ

∑
q

N σ̃
p0q0 f

σ̃
µ (q) . (2.28)

The HWG equation is nothing but a NOCI eigenvalue problem expressed in the set of
non-orthogonal projected HFB states PBqσ̃ ≡ {P σ̃

00|Φ(q)〉; q ∈ set}. The coefficients f σ̃µ (q)
are presently defined such that the set of PGCM states PGCMσ ≡ {|Θσ

µ〉;µ = 1, 2, . . .}
emerging from Eq. (2.28) are (ortho-)normalized.
Equation (2.28) involves so-called operator kernels13

Oσ̃
p0q0 ≡ 〈Φ(p)|OP σ̃

00|Φ(q)〉 , (2.29)

whose explicit expressions in terms of input quantities are worked out in App. D. The
kernel associated with the identity operator N ≡ 1 is the norm kernel denoted as N σ̃

p0q0.
The more the vectors in PBqσ̃ are linearly dependent, the more the generalized eigenvalue

problem of Eq. (2.28) tends to be singular. In order to avoid numerical instabilities, singular
eigenvalues must be removed. The standard method to deal with the problem, which is
feasible for the manageable number of states in PBqσ̃, is recalled in App. J.

12The diagonalization is performed separately for each value of σ̃, i.e. within each IRREP of GH .
13The two 0 indices in Oσ̃p0q0 relate to the fact that the ket and the bra denote HFB vacua belonging

to Bq. This notation is necessary to make those kernels consistent with the more general ones Oσ̃pIqJ
introduced later on in Sec. 2.3.3, which also involve Bogoliubov states obtained via elementary, i.e.
quasi-particle, excitations of those belonging to Bq.
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2.3. PGCM-PT

2.3.2. Partitioning

Now that the nature of the multi-reference unperturbed state |Θσ
µ〉 has been detailed, the

formal perturbation theory developed in Sec. 2.2 can be explicitly applied. The formulation
starts with the choice of an appropriate partitioning of the Hamiltonian (Eq. 2.1), i.e. by
defining an unperturbed Hamiltonian H0 of which |Θσ

µ〉 is an eigenstate.

Definition

The goal is to design H0 such that PGCM-PT reduces to standard Møller-Plesset MBPT
whenever the PGCM unperturbed state reduces to a single (unconstrained) Hartree-Fock
Slater determinant14. To achieve this goal, one introduces the state-specific partitioning

H0 ≡ P σ̃µF[|Θ〉]P σ̃µ +Qσ̃µF[|Θ〉]Qσ̃µ , (2.30)

where the one-body operator

F[|Θ〉] ≡
∑
a1b1

f
a1
b1

[|Θ〉]Ca1
b1
, (2.31a)

f
a1
b1

[|Θ〉] ≡ t
a1
b1

+
∑
a2b2

v
a1a2
b1b2

[
ρΘ
]b2
a2
, (2.31b)

involves the convolution of the two-body interaction with a symmetry-invariant one-body
density matrix15

[
ρΘ
]b1
a1
≡
〈Θ|Ca1

b1
|Θ〉

〈Θ|Θ〉 , (2.32)

i.e. a one-body density matrix computed from a symmetry-conserving state |Θ〉16.
As soon as the PGCM unperturbed state |Θσ̃M

µ 〉 is not symmetry-conserving, e.g., it
corresponds to an excited state |Θσ̃M

µ 〉 of an even-even nucleus with J 6= 0, the one-body
operator F[|Θ〉] must necessarily be built from a different state |Θ〉. In this situation, it
is natural to employ the corresponding symmetry-conserving ground state17. Contrarily,
whenever the PGCM unperturbed state |Θσ̃M

µ 〉 is symmetry-conserving, e.g. for the ground
state of an even-even system, it is natural to choose it18, i.e. to take |Θ〉 ≡ |Θσ̃M

µ 〉, to build
F[|Θ〉].

14This limit is discussed in some details in Sec. 2.3.2. The more subtle case where the PGCM unperturbed
state reduces to a single Bogoliubov state is also discussed.

15In case |Θ〉 were to denote the exact ground-state of the system, F[|Θ〉] would be nothing else but
the so-called Baranger one-body Hamiltonian [81], which is itself the energy-independent part of the
one-nucleon self-energy in self-consistent Green’s function theory [82].

16In the present work, a symmetry-conserving state represents a state whose associated one-body density
matrix is symmetry-invariant, i.e. belongs to the trivial IRREP of GH . While for the SU(2) group this
requires the many-body state itself to be symmetry invariant, i.e. to be a J = 0 state, for the U(1)
group this condition is automatically satisfied for the normal one-body density matrix (cf. Sec. 1.2.2).

17For odd-even or odd-odd nuclei eigenstates, the symmetry-invariant density matrix associated with a
fake odd system described in terms of, e.g., a statistical mixture [83, 84] can typically be envisioned.

18The explicit expression of the one-body density matrix of a PGCM state can be found in App. G.
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Chapter 2. PGCM-PT formalism

Eigenstates of H0

Introducing19 the M -independent unperturbed energy

Eσ̃(0)
µ ≡ 〈Θσ̃M

µ |F[|Θ〉]|Θσ̃M
µ 〉 =

∑
a1b1

f
a1
b1

[|Θ〉]
[
ρΘσ̃0

µ

]b1
a1

, (2.33)

one can write

H0 ≡ Eσ̃(0)
µ P σ̃µ +Qσ̃µF[|Θ〉]Qσ̃µ , (2.34)

such that the PGCM state is by construction, and independently of the nature of F[|Θ〉],
an eigenstate of H0 with eigenvalue Eσ̃(0)

µ .
Because the PGCM unpertubed state is a linear combination of non-orthogonal product

states, there is no preferred one-body basis of H1 that can be used to represent this state or
the other eigenstates of H0 conveniently. This feature reflects in the fact that, while F[|Θ〉]
is a one-body operator with an explicit second-quantized representation, H0 is a genuine
many-body operator with no simple second-quantized form. This further results into the
fact that the other eigenstates of H0 are not accessible via excitations of the unperturbed
state that are simply built from a given set of one-body creation and annihilation operators.
As a matter of fact, |Θσ

µ〉 constitutes the only explicitly known eigenstate of H0 given
that no explicit eigen representation of H0 in the complementary Qσ̃µ space is trivially
accessible. This difficulty was anticipated in Sec. 2.2 where formal perturbation theory was
presented without assuming that such an eigen-representation was available. The practical
consequences for the second-order implementation, i.e. PGCM-PT(2), are discussed in
detail below in Sec. 2.3.3.

Symmetries

Being built from a symmetry-invariant one-body density matrix, F[|Θ〉] is symmetry invari-
ant, i.e. it belongs to the trivial IRREP of GH such that

[F,R(θ)] = 0 , ∀ θ , (2.35)

which is notably responsible for the M -independence of Eσ̃(0)
µ in Eq. (2.33). Using

Eqs. (A.11) and (A.12), one can further prove that

[P σ̃µ , R(θ)] = 0 , ∀ θ , (2.36)

and thus similarly for Qσ̃µ. This results in the fact that H0 itself, and thus H1, are scalars
with respect to GH , i.e.

[H0, R(θ)] = [H1, R(θ)] = 0 ,∀ θ , (2.37)

such that the partitioning is indeed symmetry conserving. Consequently, the eigenstates
of H0, most of which are not known explicitly as discussed in the previous section, carry
the symmetry quantum numbers σ = (σ̃,M).
The unperturbed PGCM state |Θσ̃M

µ 〉 introduced in Eq. (2.23) can be rewritten as

|Θ(0)〉 ≡ P σ̃
M0|Θ̄(0)〉 = P σ̃

M0(P σ̃
00|Θ̄(0)〉) , (2.38)

19The dependence of Eσ̃(0)
µ on |Θ〉 is dropped for simplicity.
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2.3. PGCM-PT

where |Θ̄(0)〉 is an eigenstate of Jz with eigenvalue M = 0. Exploiting the scalar character
of H0, H1 and Qσ̃µ, the kth-order perturbed state (Eq. (2.11)) can similarly be shown to
read

|Θ(k)〉 ≡ P σ̃
M0|Θ̄(k)〉 = P σ̃

M0(P σ̃
00|Θ̄(k)〉) . (2.39)

Thus, one can choose to solve for |Θ(0)〉 = |Θσ̃0
µ 〉 and thus for |Θ(k)〉 = P σ̃

00|Θ̄(k)〉, while
further acting a posteriori on the obtained solution with the operator P σ̃

M0 to generate all
the associated states of the IRREP.

Furthermore, the intermediate states entering |Θ̄(k)〉 as a result of the repeated action of
H1 and X−1 (see Eq. (2.11)) on |Θ̄(0)〉 also carry M = 0; i.e. PGCM-PT can effectively be
implemented without any loss of generality within the restricted σ = (σ̃,M = 0) sub-block,
i.e. without ever connecting to states with M 6= 0.

U(1)-conserving single-reference limit

The presently developed PGCM-PT can be investigated in the limit where the unperturbed
state becomes of single-reference nature. It corresponds to reducing the set Bqθ in Eq. (2.23)
to a single HF(B) state such that PGCM-PT must exhibit some connection with single-
reference (B)MBPT [60] (see also App. E for a summary of BMBPT main formulas) in
this limit. In fact, the characteristics of the single-reference limit depends on the symmetry
properties of the unperturbed product state, which requires us to distinguish two cases.
Let us first consider the case where qU(1) = 0, either because the HFB PES H00(q; θ)

minimizes for qU(1) = 0 or because the solution is constrained to it. In this situation, Bqθ is
reduced to the particle-number conserving Slater determinant |Φ(q; 0)〉 = |Φ(q)〉 obtained
from the constrained HF equations for which q associated with other symmetries than
U(1) can still be non zero as briefly described in App. E.1.2. The projectors on P and Q
spaces reduce in that case to

P(q) ≡ |Φ(q)〉〈Φ(q)| , (2.40a)
Q(q) ≡ 1− P(q) , (2.40b)

such that Eq. (2.36) is not fulfilled anymore. Furthermore, the one-body operator F[|Θ〉] is
naturally constructed from the SR unperturbed state |Θ〉 = |Φ(q)〉 such that Eq. (2.35) is
also lost along the way. Eventually, either of these two features implies that Eq. (2.37) is
violated as well, i.e. the partitioning becomes symmetry breaking in the SR limit.

With these elements at hand, the unperturbed Hamiltonian in PGCM-PT becomes

H0(q) ≡ E(0)(q)P(q) +Q(q)F[|Φ(q)〉]Q(q) , (2.41a)

with

E(0)(q) ≡ 〈Φ(q)|F[|Φ(q)〉]|Φ(q)〉

=
∑
a1b1

f
a1
b1

[
ρΦ(q)

]b1
a1
. (2.41b)

Generally, the above definition of H0 does not match the one of MBPT (see App. E.1.2).
Only in the unconstrained case, i.e. whenever λq = 0, does the SR reduction of PGCM-

PT directly relate to Møller-Plesset MBPT. In particular, the unperturbed state |Φ(q)〉 is
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Chapter 2. PGCM-PT formalism

built from the eigenstates of F[|Φ(q)〉] in that special case whereas it is not true otherwise.
Furthermore, Eq. (2.41a) becomes

H0(q) = F[|Φ(q)〉]

= E(0)(q) +
∑
k

ek(q) : Akk : , (2.42)

where the latter equality makes use of the one-body eigenbasis of F and where

E(0)(q) ≡
A∑
i=1

ei(q) . (2.43)

While the definition of E(0)(q) above is still at variance with the choice made in App. E.1.2
for Møller-Plesset MBPT, it only shifts H0(q) by a constant such that both expansions
match from the first order on. Details of the corresponding expansion are discussed in
App. E.1.2.

U(1)-breaking single-reference limit

In the more general case, the set Bqθ reduces to a particle-number breaking Bogoliubov
state |Φ(q)〉 in the single-reference limit. Formally, Eqs. (2.40)-(2.41) still hold such that
H0 does not match the one in BMBPT (see App. E.1.1).

However, and contrary to Sec. 2.3.2, |Φ(q)〉 cannot be an eigenstate of the U(1)-conserving
one-body operator F such that even in the unconstrained case, i.e. whenever λq = 0, the
SR reduction of PGCM-PT does not match Møller-Plesset BMBPT. Correspondingly, and
even though |Φ(q)〉 is an eigenstate of H0 by construction, the eigenstates in Q space differ
from the elementary quasi-particle excitations of |Φ(q)〉 (Eq. (1.40)) and cannot be directly
accessed. As a result, the perturbative expansion is less straightforward to implement than
in standard BMBPT where H0 is a generalized, i.e. particle-number-non-conserving, one-
body operator whose eigenstates are nothing but |Φ(q)〉 and its elementary quasi-particle
excitations (see App. E.1.1).
It will be of interest to see to what extent the partitionings at play in (B)MBPT on

the one hand and in the SR reduction of PGCM-PT on the other do influence numerical
results. This comparison will be performed in Chapter 5.

2.3.3. Application to second order (PGCM-PT(2))
Now that the unperturbed reference state and the associated partitioning have been
introduced, the perturbative expansion built according to the formal perturbation theory
recalled in Sec. 2.2 is specified up to second order, thus defining PGCM-PT(2).

Zeroth and first-order energies

Given the unperturbed state |Θ(0)〉 ≡ |Θσ̃0
µ 〉 delivered by Eqs. (2.23) and (2.28), the

zeroth-order energy is given by Eq. (2.33) whereas the first-order energy is obtained
through

Eref = E(0) + E(1)

= 〈Θ(0)|H|Θ(0)〉
=
∑
pq

f ∗(p)H σ̃
p0q0 f(q) , (2.44)
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First-order interacting space

According to Eq. (2.12b), the second-order energy E(2) requires the knowledge of the
first-order wave-function. Accessing |Θ(1)〉 is rendered non-trivial by the fact that Q-space
eigenstates of H0 are not known a priori. This difficulty leads to the necessity to solve
Eq. (2.18) 20.

However, solving Eq. (2.18) requires the identification of a suitable basis of Q space, i.e.
the appropriate first-order interacting space over which |Θ(1)〉 can be exactly expanded. In
standard single-reference21 perturbation theories, the first-order wave function is a linear
combination of single and double excitations of the unperturbed state, i.e. the first-order
interacting space is well partitioned. In the present case, the PGCM unperturbed state
prevents a straightforward identification of the first-order interacting space in terms of
elementary excitations of a preferred reference vacuum. Indeed, each excitation of a
Bogoliubov product state entering |Θ(0)〉 can have a non-zero overlap with any of the other
HFB vacua making up |Θ(0)〉, and thus with |Θ(0)〉 itself. Eventually, this means that (i)
Q cannot be built explicitly and that (ii) Eq. (2.18) cannot be solved exactly. While the
first difficulty can be bypassed by using Eq. (2.5b) repeatedly, the second one requires a
procedure to optimally approximate the first-order interacting space.
Rather than referring to the orthonormal representation of HA associated with a

preferred reference vacuum and its elementary excitations, one can appropriately consider
the multiple representations built out of each product state entering |Θ(0)〉, i.e. each
Bogoliubov state belonging to Bqθ. This leads to writing the ansatz

|Θ(1)〉 ≡ dσ̃
vG

∑
q

∑
θ

∑
I

aI(q; θ)|ΦI(q; θ)〉

= dσ̃
vG

∑
q

∑
θ

∑
I

aI(q; θ)R(θ)|ΦI(q)〉 , (2.45)

where the index I runs over all single (S), double (D), triple (T). . . excitations of the
Bogoliubov vacua |ΦI(q; θ)〉 defined in Eq. (1.46). The second line of Eq. (2.45) has been
obtained thanks to Eq. (1.48) whereas the coefficients

{aI(q; θ); q ∈ set , θ ∈ DG and I ∈ S,D,T,. . . }

denote the unknowns to be determined.
The fact that, as pointed out in Sec. 2.3.2, the first-order wave function is given by

|Θ(1)〉 ≡ P σ̃
00|Θ̄(1)〉 (2.46)

fully fixes the dependence of the coefficients on the angle θ of the order parameter that
are constrained to take the separable form

aI(q; θ) ≡ aI(q)Dσ̃∗
00 (θ) , (2.47)

20The more elaborate Eq. (2.17) needs to be solved to access |Θ(k)〉 with k > 1.
21Standard multi-reference perturbation theories rely on an unperturbed state mixing orthogonal elemen-

tary excitations of a common vacuum state restricted to a certain valence/active space. In such a
situation, the first-order interacting space is also well partitioned [28] as it is built out of single and
double22 excitations outside the valence/active space from each orthogonal product state entering the
unperturbed state wave function.
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Figure 2.3. (color online) Schematic energetic representation as a function of the norm q of
the order parameter of the considered symmetry of excited Bogoliubov states {|ΦI(q)〉; q ∈
set and I ∈ S,D,T,. . . } employed to expand |Θ(1)〉. The (red) dotted curve represents
the constrained HFB energy H00(q; 0) associated with the vacua Bq = {|Φ(q)〉; q ∈ set}
entering the unperturbed PGCM state |Θ(0)〉. Left (right) panel: system characterized by
a symmetry-conserving (-breaking) minimum of H00(q; 0). In single-reference methods,
the problematic gapless symmetry-conserving solution encountered in open-shell nuclei
is replaced by a gentle gap-full one by allowing the unperturbed state to spontaneously
break the symmetry.

which drastically reduces the cardinal of the unknown coefficients to

{aI(q); q ∈ set and I ∈ S,D,T,. . . } .

Explicitly projecting over Q space to only retain the orthogonal component to |Θ(0)〉,
Eq. (2.47) is used to rewrite Eq. (2.45) under the compact form

|Θ(1)〉 =
∑
q

∑
I

aI(q)|ΩI(q)〉 , (2.48)

where the expansion now runs over the reduced set of non-orthogonal states

|ΩI(q)〉 ≡ QP σ̃
00|ΦI(q)〉 . (2.49)

As schematically illustrated in Fig. 2.3, the first-order wave-function is thus expanded over
(projected) excitations of the HFB vacua carrying different values of the norm q of the
order parameter.
In principle, all excitation ranks are involved in Eq. (2.49), which is unmanageable.

The idea is to truncate the expansion based on the fact that (i) the Hylleraas functional
justifies that an approximation to |Θ(1)〉 delivers a variational upper bound to E(2) that
can be systematically improved and on the fact that (ii) doing so on the basis of Eq. (2.48)
can provide an optimal approximation. In order to motivate the latter point, let us further
investigate the expression of E(2). After noticing that23

〈Θ(0)|H1Q = 〈Θ(0)|(H −H0)(1− |Θ(0)〉〈Θ(0)|)
23Because symmetry blocks associated with different values of M are explicitly separated throughout

the whole formalism as explained in Sec. 2.3.2, one effectively has P = |Θ(0)〉〈Θ(0)| everywhere in the
following.
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= 〈Θ(0)|(H − Eref) , (2.50)

let us insert the definition of 〈Θ(0)| along with multiple completeness relations in HA to
write the second-order energy (Eq. (2.12b)) as

E(2) =〈Θ(0)|(H − Eref)|Θ(1)〉 (2.51)

=dσ̃
vG

∑
pθ

f ∗µ(p)Dσ̃
M0(θ)

×
∑
I∈S,D

〈Φ(p; θ)|(H−Eref)|ΦI(p; θ)〉〈ΦI(p; θ)|Θ(1)〉

where the excitation rank is naturally truncated given that the two-body Hamiltonian can at
most couple each vacuum 〈Φ(p; θ)| to its double excitations. Equation (2.51) demonstrates
that any excited component of |Θ(1)〉 in a given representation of HA can only contribute
to E(2) if it corresponds to a linear combination of single and double excitations associated
with another representation. Looking for the first-order interacting space spanned by
product states uniquely contributing to E(2), it is sufficient to include single and double
excitations from each Bogoliubov state entering |Θ(0)〉. The approximation presently
employed consists thus in replacing Eq. (2.48) by

|Θ(1)〉 =
∑
q

∑
I∈S,D

aI(q)|ΩI(q)〉 . (2.52)

Equation of motion

The last step of the process consists in determining the unknown coefficients {aI(q); q ∈
set and I ∈ S,D}. This is done by solving Eq. (2.18) according to∑

q

∑
J∈S,D

MIpJq a
J(q) = −hI1(p) , (2.53)

with I ∈ S,D. The ansatz in Eq. (2.52) does constitute an approximation given that, even
if only single and double excitations contribute to the energy, the coefficients are influenced
by the presence of higher-rank excitations in the wave function24. Thus truncating the
linear system to J ∈ S,D defines the working approximation that can be variationally and
systematically improved if needed.
The elements entering Eq. (2.53) are given by

MpIqJ ≡〈ΩI(p)|H0 − E(0)|ΩJ(q)〉
=〈ΦI(p)|QH0QP σ̃

00|ΦJ(q)〉 − E(0)〈ΦI(p)|QP σ̃
00|ΦJ(q)〉

=F σ̃
pIqJ − E(0)N σ̃

pIqJ

+
∑
p
′
q
′
f ∗(q′)f(p′)(2E(0)N σ̃

pIp
′0N

σ̃
q
′0qJ − F

σ̃
pIp
′0N

σ̃
q
′0qJ −N

σ̃
pIp
′0F

σ̃
q
′0qJ) , (2.54a)

hI1(p) ≡〈ΩI(p)|H1|Θ(0)〉
=〈ΦI(p)|(H − Eref)|Θ(0)〉

24This is similar to the situation encountered in coupled cluster theory where the energy is a functional of
the sole single and double amplitudes that are themselves influenced by the presence of higher-rank
amplitudes in the wave-function.
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=
∑
p
′
f(p′)(H σ̃

pIp
′0 − ErefN

σ̃
pIp
′0) , (2.54b)

knowing that the expressions of the operator kernels

Oσ̃
pIqJ ≡ 〈ΦI(p)|OP σ̃

00|ΦJ(q)〉 , (2.55)

generalizing those introduced in Sec. 2.3.1, in terms of input quantities are worked out in
App. D25. The kernel associated with the identity operator N ≡ 1 is the generalized norm
kernel denoted as N σ̃

pIqJ . In Eq. (2.54), the sole matrix elements involving excitations
in both the ket and the bra are those of a zero or a one-body operator, which limits
the complexity of the calculation. On the other hand, matrix elements of the two-body
Hamiltonian only involve single or double excitations of the bra.

Second-order energy

Once the coefficients {aI(q); q ∈ set and I ∈ S,D} have been obtained by solving Eq. (2.53),
the second-order energy can be computed via Eq. (2.19a). In expanded form, it reads as

E(2) =
∑
q

∑
I∈S,D

hI∗1 (q) aI(q)

≡
∑
q

∑
I∈S,D

e(2)I(q)

≡
∑
q

e
(2)
S (q) + e

(2)
D (q) , (2.56)

such that the contributions of each configuration I at deformation q could be isolated,
along with their partial sums over the categories of single and double excitations.
One can further compute E(3) from the same information, i.e. from the knowledge of
|Θ(1)〉. According to Eq. (2.19b), this however requires to access matrix elements of the
two-body Hamiltonian with excited configurations on both sides, which is significantly
more costly than for E(2). These matrix elements are not provided in the present work
but can be worked out to access E(3) in a future work.

Linear redundancies

Linear redundancies pose significant difficulties to the solving of the PGCM-PT(2) linear
system (Eq. (2.53)). While of similar nature as for the PGCM itself, these difficulties are
much more acute due to the incomparable dimensionality at play in Eq. (2.53) compared to
the HWG equation (Eq. (2.28)) and to the significant linear dependencies of the excitations
of the different non-orthogonal HFB vacua. The numerical method implemented to
overcome the problem is detailed at length in Chapter 5 and App. M.

Intruder states

Multi-reference approaches are susceptible to troublesome intruder states that induce sin-
gularities in the perturbative corrections. These singularities originate from the possibility
that the unperturbed state becomes accidentally degenerate with another eigenstate of
H0. This causes the first-order wave-function coefficients to blow-up.
25A generalization of the computation of such matrix elements to the case where vacua are orthogonal

Slater determinants is found in [85].
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Figure 2.4. (color online) Schematic representation of the existing options to define
the partitioning and unperturbed state at the heart of expansion many-body methods.
Standard single-reference symmetry-conserving schemes appear as particular limits of
more general choices, i.e. single-reference symmetry-breaking schemes that are themselves
limits of the multi-reference symmetry-conserving scheme introduced in the present work.
Moving up in generality allows one to tackle stronger static correlations, which effectively
enlarge the classes of nuclei that can be accessed in a controlled fashion.
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Being related to the definition of the partitioning, the nuisance of intruder states can be
mitigated by changing the definition of H0. Rather than using an explicitly different H0,
the difficulties can be bypassed by adding a constant shift to the chosen H0. While real
energy shifts can only move the problematic poles along the real axis [86], often causing
the divergences to reappear in a slightly different situation, imaginary shifts move the
poles into the complex plane and provide a more robust way to remove intruder-state
divergences [87]. The corresponding method is detailed in Chapter 5 and App. N.

2.4. Discussion
In the past ten years, perturbative and non-perturbative expansion methods have been
instrumental to extend the reach of ab initio calculations over the nuclear chart. Figure 2.4
provides a sketched panorama of such many-body methods, detailing in particular their
character and their applicability depending on the nature of the unperturbed state and
the associated partitioning. While the current limitation to mass numbers A . 100 is
chiefly computational, there does not exist a symmetry-conserving approach universally
applicable to doubly closed-shell, singly open-shell and doubly open-shell nuclei and scaling
gently, i.e. polynomially, with the number of nucleons.
The present work addresses such a challenge by formulating a perturbative expansion

on top of a multi-reference unperturbed state mixing deformed non-orthogonal Bogoliubov
vacua, i.e. an unperturbed state obtained via the projected generator coordinate method.
As a result, (strong) static correlations can be captured in a versatile and efficient fashion
at the level of the unperturbed state such that only (weak) dynamical correlations are left
to be accounted for via perturbative corrections. Interestingly, the novel method, coined
as PGCM-PT, recovers more standard symmetry-conserving and symmetry-breaking
single-reference many-body perturbation theories as particular cases.
In addition to being adapted to all types of nuclei, a key feature of PGCM-PT is to

apply to both ground and excited states, i.e. each state coming out of a PGCM calculation
can be consistently corrected perturbatively. Another crucial aspect of PGCM-PT relates
to the scaling of its cost with nuclear mass. The only other MR perturbation theory
applied so far to nuclear systems, MCPT [28], is based on an unperturbed state mixing (a
large number of) orthogonal excitations built within a limited configuration space out of a
symmetry-conserving vacuum26. Contrarily, the PGCM unperturbed state considered here
is built from a low-dimensional linear combination of non-orthogonal vacua. While this is
accessed via a diagonalization procedure, the associated low dimensionality is expected to
scale much more gently with both mass number and the degree of collective correlations
than for more traditional multi-reference methods like MCPT.
The novel PGCM-PT formalism has been laid out in detail in the present chapter.

While the generic features of the multi-reference perturbation theory have been described
in the bulk of the chapter, many technical appendices are provided to fully characterize
the approach, in particular the explicit algebraic expressions of the many-body matrix
elements constituting the key ingredients to the approach and entering the main equations
that need to be solved in practice. For the future, it is of interest to envision the possibility
to develop non-perturbative versions of PGCM-PT, i.e. a method in which PGCM states
are corrected via a non-perturbative expansion.
26The vacuum can be the particle vacuum whenever the unperturbed state is obtained from a small-scale

no-core shell model [28].
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2.4. Discussion

Before applying the novel method in practical applications, Chapter 3 describes a
rank-reduction method of the Hamiltonian operator to circumvent the difficulty of treating
three-body forces explicitly in ab initio calculations.

39





Chapter 3.

Interlude: In-medium interactions

Contents
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2. Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.2. Standard NOkB approximation . . . . . . . . . . . . . . . . . 45
3.2.3. Generalized k-body approximation . . . . . . . . . . . . . . . 46

3.3. Many-body methods and one-body density matrices . . . . . 49
3.3.1. Many-body methods . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.2. Trial one-body density matrices . . . . . . . . . . . . . . . . . 50

3.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.1. Studied nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.2. Numerical setting . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.3. Measure of the systematic deviations . . . . . . . . . . . . . . 52
3.4.4. Ground-state binding energy . . . . . . . . . . . . . . . . . . 53
3.4.5. PHFB absolute energies and radii . . . . . . . . . . . . . . . . 59
3.4.6. Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4.7. Optimal one-body density matrix . . . . . . . . . . . . . . . . 70

3.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

The implementation of the novel expansion method formulated in Chapter 2 is hampered,
as any other method, by the presence of three-nucleon operators in the Hamiltonian. In
order to circumvent this difficulty, a versatile rank-reduction method for the Hamiltonian
is formulated and tested in the present chapter.

3.1. Introduction
Dealing explicitly with three- or even four-nucleon interactions is non-trivial but tractable
in a self-consistent mean-field HF or Hartree-Fock-Bogoliubov (HFB) calculation. However,
it becomes extremely cumbersome, if not impossible, beyond a certain nuclear mass when
we want to solve the A-body Schrödinger equation to sufficient accuracy beyond the mean
field. Consequently, ab initio calculations of mid-mass nuclei are typically performed on
the basis of the so-called Normal-Ordered 2-Body approximation (NO2B) that captures
dominant effects of three-nucleon interactions while effectively working with two-nucleon
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operators [88, 89]. In large-scale no-core shell-model calculations, the error induced by the
NO2B approximation of the Hamiltonian was estimated to be of the order of 1-3% up to
the oxygen region1.

The NO2B approximation was originally designed by normal ordering the Hamiltonian
with respect to a Slater determinant through the standard Wick’s theorem [91]. The
procedure involves the contraction of the three-body operator with the one-body density
matrix of that product-state Slater determinant. The approximate Hamiltonian resulting
from the NO2B approximation can be consistently employed in many-body methods
applicable to closed-shell nuclei that expand the exact solution with respect to a symmetry-
conserving2, e.g. JΠ = 0+, Slater determinant. In this context, the approximate NO2B
Hamiltonian naturally displays the same symmetries as the original one. However, the
naive extension of the NO2B approximation to methods applicable to open-shell systems
via the use of symmetry-breaking reference states poses a difficulty. Indeed, ignoring the
normal-ordered three-body term delivers in such a situation an approximate operator
that itself explicitly breaks the corresponding symmetry(ies) of the full Hamiltonian. This
feature is unwelcome as it lacks the transparency of restricting the symmetry breaking to
approximations of the many-body state, especially in view of the eventual restoration of
the symmetry or symmetries.

For many-body methods that break the U(1) symmetry associated with particle-number
conservation [46, 48, 51, 60, 67] via the use of Bogoliubov reference states, a particle-number-
conserving normal-ordered k-body (PNOkB) approximation of an arbitrary n-body operator
was recently formulated and validated numerically [61]. Using the PNOkB approximation,
ab initio calculations on singly open-shell nuclei based on U(1)-breaking and restored
formalisms can thus be safely performed. As the focus is now shifting to methods that
(also) break the SU(2) symmetry associated with angular-momentum conservation [92] to
describe doubly open-shell nuclei, the symmetry-conserving NOkB approximation should
be extended to this symmetry group, which happens to be neither easy nor transparent.

The difficulty is bypassed from the outset when open-shell systems are described through
a multi-reference method based on an explicitly correlated and symmetry-conserving
reference state, e.g. in the multi-reference in-medium similarity renormalization group
method [37, 93]. In this context, it is natural to approximate the three-body interaction
through its truncated normal-ordering with respect to the correlated reference state on the
basis of Mukherjee-Kutzelnigg Wick theorem [94]. The benefit however comes with the
prize of having to contract the three-body operator not only with the one-body, but also
with the two-body and three-body density matrices of the correlated state. A somewhat
similar situation occurs within self-consistent Green’s function (SCGF) theory that can
be formulated in terms of effective k-body vertices obtained by contracting initial n-body
operators (n ≥ k) with fully correlated (n− k)-body density matrices [40].
In conclusion, several approaches exist to produce so-called effective, i.e. nucleus-

1For low-resolution Hamiltonians obtained via, e.g., the application of similarity renormalization group
(SRG) transformations [22], the efficiency of the NO2B approximation can be understood on the basis
of phase-space arguments in the calculation of homogeneous infinite nuclear matter [90]. In particular,
the analysis of Ref. [90] makes clear that the quality of the approximation can only improve as the
density (mass) of matter (nuclei) increases.

2In the present work, a symmetry-conserving state represents a state whose associated one-body density
matrix is symmetry-invariant, i.e. belongs to the trivial irreducible representation of the symmetry
group of the Hamiltonian. While for the SU(2) group it is necessary that the many-body state itself is
symmetry invariant, i.e. a J = 0 state, for the U(1) group this condition is automatically satisfied for
the normal one-body density matrix.

42



3.1. Introduction

dependent, interactions. The aim is to eventually discard the effective operator(s) of
highest n-body character(s) whose contribution to, e.g., ground-state energies is (are)
expected3 to be much smaller than for the original operator(s) carrying the same n-body
character(s). Such a procedure always involves a contraction of the original operator(s) with
a (set of) density matrix (matrices) reflecting (i) the symmetries and (ii) the correlations
of the many-body state it (they) originate from and that is typically the reference state or
the fully correlated state at play in the many-body method of interest.

Consequently a novel method is introduced to build a set of effective k-body interactions
in view of approximating the initial Hamiltonian. While the Hamiltonian is indeed our
primary target, the procedure can in principle be applied to any observable. Our goal is
thus to formally justify and test numerically a novel approximation method that

1. only invokes contractions with a one-body density matrix,

2. uses a symmetry-invariant one-body density matrix,

3. is flexible regarding the many-body state used to compute that one-body density
matrix,

4. re-expresses the approximate Hamiltonian in normal-ordered form with respect to
the particle vacuum.

The benefits are that

1. the method does not involve l-body density matrices with l > 1,

2. the approximate Hamiltonian resulting from omitting certain effective k-body terms
always possesses the same symmetry group as the original one,

3. the method does not necessarily have to employ the one-body density matrix asso-
ciated with the many-body (reference) state at play in the method used to solve
Schrödinger’s equation,

4. the resulting Hamiltonian is explicitly expressed in the original single-particle basis
such that it can naturally be employed as the starting point of any many-body
method.

Points (3) and (4) underline the fact that the approximation of the Hamiltonian and
the solution of the Schrödinger equation, although not unrelated, constitute two different
problems and do not necessarily have to be dealt with on the basis of the same many-body
scheme.
Per se, the method is applicable independently of the closed- or (doubly) open-shell

character of the system as well as of the ground or excited nature of the targeted state.
Still, point (2) implies that only one-body densities deriving from a JΠ = 0+ state can
be employed in the approximation procedure, which obviously implies that the employed
one-body density matrix does not necessarily derive from the targeted state/nucleus.
With excited states of even-even nuclei in mind, one can most naturally approximate the
Hamiltonian through the use of a one-body density matrix associated with the ground
state. With odd-even or odd-odd systems in mind, one can employ the symmetry-invariant

3Once again, this property can be justified for low-resolution Hamiltonians on the basis of phase-space
arguments [90].

43



Chapter 3. Interlude: In-medium interactions

density matrix associated with a fake odd system described in terms of, e.g., a statistical
mixture [83, 84] in close spirit with the ensemble-normal ordering technique used in
valence-space IMSRG calculations of odd nuclei [95]. Here, the focus is on even-even
systems.

The chapter is organized as follows. Sec. 3.2 is dedicated to the formulation of the method
and its relation to existing ones. After explaining in Sec. 3.3 the hierarchy of one-body
density matrices and many-body methods presently employed to test the approximation
method, the corresponding numerical results are presented in Sec. 3.4. Finally, a discussion
is provided in Sec. 3.5.

3.2. Formalism

3.2.1. Definitions
An arbitrary particle-number conserving operator O as defined in Eq. (1.4) is considered
in this section.

Distance

In the following, the extent to which two one-body density matrices ρ and ρ′ deviate from
one another will need to be characterized. The distance

d(ρ, ρ′) ≡ ||ρ− ρ′|| , (3.1)

provides such a diagnostic, where the Frobenius norm ||.|| for an arbitrary mode-n tensor
T is defined as

||T || ≡
√ ∑
i1...in

Ti1...inT
∗
i1...in . (3.2)

The superscript denotes elementwise complex conjugation.

Convolution

The convolution of the mode-2n tensor o(n) associated with an n-body operator Onn

with the mode-2m tensor (m ≤ n) defining an m-body density matrix ρ(m) generates the
mode-2(n−m) tensor o(n) ·ρ(m) with elements

[
o(n) ·ρ(m)

]a1···an−m
b1···bn−m

≡
∑

an−m+1,··· ,an
bn−m+1,··· ,bn

o
a1···an
b1···bn

[
ρ(m)

]bn−m+1...bn

an−m+1...an
. (3.3)

The tensor o(n) ·ρ(m) is obviously a pure number whenever m = n and nothing but the
initial tensor o(n) whenever m = 0.
Given two density matrices ρ(l)Θ and ρ(k)Ψ, it is straightforward to check that the

convolution is such that the following identity holds(
o(n) ·ρ(m)Θ

)
·ρ(l)Ψ =

(
o(n) ·ρ(l)Ψ

)
·ρ(m)Θ

= o(n) ·
(
ρ(m)Θ ⊗ ρ(l)Ψ

)
. (3.4)
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3.2.2. Standard NOkB approximation
Wick’s theorem

Let us consider a symmetry-conserving product state |Φ〉, i.e. a JΠ = 0+ Slater determinant.
The standard Wick’s theorem [91] for a state |Φ〉 entails four elementary contractions

c†ac
†
b− : c†ac†b : = 0 , (3.5a)

c†acb− : c†acb : = ρΦb
a , (3.5b)

cac
†
b− : cac†b : = δab − ρΦa

b , (3.5c)
cacb− : cacb : = 0 , (3.5d)

where : . . . : denotes the normal ordering with respect to |Φ〉.
Applying Wick’s theorem, the operator O defined in Eq. (1.4) is rewritten as

O =
N∑
k=0

Okk[ρΦ] , (3.6)

where Okk[ρΦ] is a k-body operator in normal-ordered form4 with respect to |Φ〉

Okk[ρΦ] ≡ 1
k!

1
k!

∑
a1···ak
b1···bk

oa1···ak
b1···bk [ρΦ] : Ca1···ak

b1···bk : . (3.7)

Considering Onn (n ≤ N) and k ≤ n, there are

(n−k)!
(

n

n− k

)(
n

n− k

)
(3.8)

ways to perform (n−k) non-zero contractions. Consequently, the matrix elements of
Okk[ρΦ] are related to those defining the original contributions to O through

oa1···ak
b1···bk [ρΦ] =

N∑
n=k

1
(n− k)!

[
o(n) ·ρΦ⊗(n−k)

]a1···ak

b1···bk
. (3.9)

Approximation

The normal-ordered k-body (NOkB) approximation ONOkB[ρΦ] to the operator O proceeds
by truncating the sum in Eq. (3.6) to the desired maximum value k. While the original
operator is obviously independent of ρΦ, ONOkB[ρΦ] does acquire such a dependence as
soon as k < N .
For example, the standard NO2B approximation consists of ignoring beyond normal-

ordered 2-body terms to define the approximate Hamiltonian as [88, 89]

HNO2B[ρΦ] ≡ H00[ρΦ] + H11[ρΦ] + H22[ρΦ] . (3.10)

Generalizing the approach to a U(1)-breaking product state, i.e. a Bogoliubov reference
state, Wick’s theorem gives rise to non-zero anomalous contractions (Eqs. (3.5a) and (3.5d))

4In the present work, a k-body operator and the tensor representing it are written with a standard font
(bold font), e.g. Okk (Okk), if the operator is in normal order with respect to the particle vacuum |0〉
(a many-body state |Φ〉).
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Chapter 3. Interlude: In-medium interactions

such that the truncation procedure generates a particle-number-breaking operator. A
different truncation scheme was thus formulated to design a particle-number conserving
normal-ordered k-body (PNOkB) approximation in Ref. [61]. A similar problem arises
when using a SU(2) non-invariant Slater determinant, i.e. whenever |Φ〉 is not a JΠ = 0+

state. Indeed, the standard NOkB approximation yields an operator that is not rotationally
invariant in such a case. Rather than extending the tedious approach designed in Ref. [61]
for the U(1) case, a novel method is proposed in Sec. 3.2.3 that avoids such complications
from the outset by involving the one-body density matrix stemming from a symmetry-
conserving many-body state.

Approximate operator in standard form

Starting from Eq. (3.6), it is interesting to re-express the operator in a normal-ordered form
with respect to the particle vacuum (Eq. (1.5)). Doing so requires a backward application
of Wick’s theorem, i.e. with respect to |0〉. The only required non-zero contraction is given
by

: c†acb : −N(: c†acb :) = : c†acb : −c†acb = −ρΦb
a , (3.11)

which is nothing but the opposite of the elementary contraction at play in the first step.
The original n-body part of O is obtained in terms of the various contributions entering
Eq. (3.6) such that the connection between their matrix elements is given by

o
a1···an
b1···bn =

N∑
l=n

(−1)l−n

(l − n)!

[
o(l)[ρΦ]·ρΦ⊗(l−n)

]a1···an

b1···bn
. (3.12)

Truncating Eq. (3.6) according to the NOkB approximation and inserting the result into
Eq. (3.12) yields the matrix elements of the approximate n-body part of O in normal order
with respect to the particle vacuum.

3.2.3. Generalized k-body approximation
The standard NOkB approximation relies on the standard Wick’s theorem and is therefore
strictly defined with respect to a symmetry-conserving many-body product state. Because
this restriction is too severe in open-shell systems, a generalization of the procedure is
now envisioned such that the involved one-body density matrix can originate from a more
general many-body state.

Two-step procedure

Given the operator O and the one-body density matrix ρ associated with an arbitrary
JΠ = 0+ state, one first defines the set of anti-symmetrized matrix elements

oa1···ak
b1···bk [ρ] ≡

N∑
n=k

1
(n− k)!

[
o(n) ·ρ⊗(n−k)

]a1···ak
b1···bk

, (3.13)

in strict analogy with Eq. (3.9) but relaxing the necessity for the density matrix to originate
from a Slater determinant5.

5The matrix elements introduced in Eq. (3.13) are not obtained through a set of algebraic operations on
the original operator but via a straight convolution of tensors. Still, the present procedure could be
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The key point of the present development relates to the fact that, independently of the
nature of ρ, the inverse operation embodied by Eq. (3.12) remains valid in the present
context and recovers the original operator’s matrix elements, i.e.

o
a1···an
b1···bn =

N∑
l=n

(−1)l−n

(l − n)!
[
o(l) [ρ] · ρ⊗(l−n)

]a1···an
b1···bn

. (3.14)

This identity is proven in App. F. One can thus conclude that the combined operations
embodied by Eqs. (3.9) and (3.12) are actually valid outside the reach of standard Wick’s
theorem. Indeed, the two steps are utterly general operations, i.e. tensor products that are
mutually inverse one another, independently of the nature of ρ (i.e. whether it stems from a
Slater determinant or not). The standard Wick’s theorem is recovered as a particular case
of the general tensor identities (3.13)-(3.14), namely when the one-body density matrix
does originate from a Slater determinant.
Thus, the purpose of Eqs. (3.13) and (3.14) is to start from the set of tensors defining

each n-body contribution to the original operator O in Eqs. (1.4)-(1.5) and to recover it
after having gone through an intermediate set defined in strict analogy with the tensors
generated via the single-reference normal ordering. While there is no benefit in applying the
two-step procedure per se, it ensures that the original operator is exactly recovered when
doing so. Based on this property, the method provides a useful way to produce nucleus-
dependent approximations to the operator through the truncation of the intermediate set
of tensors.

Approximation

In close analogy with the NOkB approximation, the k-body approximation of O is now
introduced. First, the set of tensors defined through Eq. (3.13) is truncated according to

ō(l)[ρ] ≡ o(l) [ρ] for l ≤ k , (3.15a)
ō(l)[ρ] ≡ 0 for l > k . (3.15b)

Second, inserting Eq. (3.15) into Eq. (3.14) generates the set of tensors ō(n)[ρ] defining the
k-body approximation of O in normal order with respect to the particle vacuum according
to

OkB[ρ] ≡
k∑

n=0
Ōnn [ρ] , (3.16)

where the truncation of the sum naturally derives from Eq. (3.15). While the original
operator O is independent of ρ, OkB[ρ] does acquire such a dependence as a result of the
truncation characterized by Eq. (3.15).

While OkB can be built on the basis of an arbitrarily correlated (symmetry-conserving)
state, it does not require the use of ρ(l) with l > 1. As a result, the procedure is significantly
simpler than the one associated with the application of Kutzelnigg-Mukherjee’s Wick
theorem or the one at play in SCGF theory. The practicality of the approach also relates
to the fact that the effective Hamiltonian is expressed in normal-ordered form with respect

formulated within the frame of the quasi-normal ordering of Ref. [96], which is itself an extension of
Kutzelnigg and Mukherjee’s universal normal-ordering involving the sole one-body density matrix. In
this context, it becomes possible to associate an actual quasi-normal-ordered operator to the tensor
o(k)[ρ]. However, given that such a quasi-normal-ordered operator is of no use in the present context,
there is no need to invoke it.
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Chapter 3. Interlude: In-medium interactions

to the particle vacuum in the working single-particle basis. As a result, HkB[ρ] can be
straightforwardly used in place of H as the input to any many-body method of interest.

Example

One is typically interested in the 2-body approximation H2B[ρ] of an initial Hamiltonian
containing a 3-body interaction

H ≡T + V +W

≡ 1
(1!)2

∑
a1
b1

t
a1
b1
C
a1
b1

+ 1
(2!)2

∑
a1a2
b1b2

v
a1a2
b1b2

C
a1a2
b1b2

+ 1
(3!)2

∑
a1a2a3
b1b2b3

w
a1a2a3
b1b2b3

C
a1a2a3
b1b2b3

, (3.17)

where ta1
b1

denotes matrix elements of the kinetic energy whereas va1a2
b1b2

and wa1a2a3
b1b2b3

denote
anti-symmetric matrix elements of two- and three-body interactions, respectively.
Setting

O00 −→ 0 ,
O11 −→ T ,

O22 −→ V ,

O33 −→ W ,

Eq. (3.15) gives for k = 2

h̄(0)[ρ] ≡ t(1) ·ρ+ 1
2!v

(2) ·ρ⊗(2) + 1
3!w

(3) ·ρ⊗(3) , (3.18a)

h̄(1)[ρ] ≡ t(1) + v(2) ·ρ+ 1
2!w

(3) ·ρ⊗(2) , (3.18b)

h̄(2)[ρ] ≡ v(2) + w(3) ·ρ , (3.18c)
h̄(3)[ρ] ≡ 0 . (3.18d)

Except for the key fact that ρ does not necessarily relate to a Slater determinant, Eq. (3.18)
is formally identical to Eq. (3.10) defining HNO2B. Inserting Eq. (3.18) into Eq. (3.14),
one eventually obtains the three tensors

h̄(0)[ρ] ≡ 1
3!w

(3) ·ρ⊗(3) , (3.19a)

h̄(1)[ρ] ≡ t(1) − 1
2!w

(3) ·ρ⊗(2) , (3.19b)

h̄(2)[ρ] ≡ v(2) + w(3) ·ρ , (3.19c)

defining the normal-ordered contributions to H2B [ρ] with respect to the particle vacuum,
i.e.

H2B[ρ] =h̄(0)[ρ] + 1
(1!)2

∑
a1
b1

h̄
a1
b1

[ρ]Ca1
b1

+ 1
(2!)2

∑
a1a2
b1b2

h̄
a1a2
b1b2

[ρ]Ca1a2
b1b2

. (3.20)

In addition to the fact that, by construction, H2B[ρ] does not contain a three-body operator,
its structure differs from the original operator expressed in normal order with respect to
the particle vacuum (Eq. (3.17)) by the fact that it incorporates the pure number h̄(0)[ρ].
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3.3. Many-body methods and one-body density matrices
Equations (3.19) define a set of nucleus-dependent 0-, 1- and 2-body operators entering
H2B[ρ]. As in the NO2B approximation, the inclusion of a large part of W into these
effective operators, while treating T and V exactly, gives a clear argument that omitting
h(3)[ρ] leads to small, hopefully small enough, errors. Still, one is left with the question of
the optimal character of the one-body density matrix to be employed for a given system
and many-body approximation.

In the hypothesis that exact eigenstates of H in the A-body Hilbert space HA are known,
one may expect that employing the one-body density matrix of the exact ground-state6 is
optimal to reproduce the ground-state energy7. In fact, this intuition is not correct.
From a formal viewpoint, it would be interesting to find the optimal one-body density

matrix to be used in H2B[ρ] to best reproduce, e.g., the energy associated with the
(approximate) ground state |Ψ〉 of the full Hamiltonian H. This would however not be of
practical use. Consequently, the numerical results displayed in Sec. 3.4 rely on testing a
set of trial one-body density matrices while obtaining the solution to the A-body problem
via various approximation methods. As will be concluded, the results are very robust with
respect to the employed one-body density matrix as long as the latter respects a minimal
set of properties.

3.3.1. Many-body methods
The many-body methods presently used to solve the A-body Schrödinger equation for a
collection of doubly closed, singly open-shell and doubly open-shell even-even nuclei (to
be specified later on) are

1. axially deformed Hartree-Fock-Bogoliubov (dHFB) theory [43] as defined in Sec.
1.2.4,

2. the particle-number- and angular-momentum-Projected Hartree-Fock-Bogoliubov
(PHFB) method [43, 97] based on dHFB states,

3. the PGCM [43] mixing PHFB states along the axial quadrupole moment of the
underlying dHFB states (see Chaps. 2 and 4),

4. quasi-particle random phase approximation for axially deformed and superfluid nuclei
(dQRPA) in the finite amplitude method (FAM) formulation [98, 99],

5. deformed Bogoliubov many-body perturbation theory8 at third order (dBMBPT(3)) [45,
47, 53]. See App. E for a brief summary of the formalism.

A schematic representation of the structure of the implementation of many-body methods
(developed in the context of this thesis) is found in App. P 9. Deformed HFB theory

6This reasoning has of course a chance to be correct only if the target state |Ψ〉 is a JΠ = 0+ state.
If not, the optimal density matrix cannot be equal to ρΨ for symmetry reasons as already briefly
discussed in the introduction.

7One may further think that the density matrix associated with a statistical symmetry-conserving average
of a set of exact low-lying states is optimal to best reproduce the low-lying spectroscopy.

8Whereas BMBPT has already been applied quite systematically to semi-magic spherical nuclei [46, 60],
it is the first time it is performed on top of a deformed Boboliubov state in order to describe doubly
open-shell nuclei.

9dQRPA results were provided by Y. Beaujeault-Taudière [100].
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constitutes the mean-field baseline that can capture the bulk of static correlations in open-
shell nuclei through the spontaneous breaking of U(1) and SU(2) symmetries. Based on it,
PHFB, PGCM and dQRPA on the one hand and dBMBPT on the other hand, provide
systematic beyond-mean-field extensions whose aim is to capture many-body correlations.
While PHFB, PGCM and dQRPA10 do so via the addition of static correlations associated
with the restoration of broken symmetries and the fluctuation of shapes, dBMBPT
targets dynamical correlations through the resummation of elementary, i.e. quasi-particle,
excitations. The former approaches access collective excited states whereas the latter
naturally addresses absolute binding energies and associated ground-state observables.

The string of dHFB, PHFB, PGCM and dQRPA calculations can presently be performed
with the full inclusion of three-body forces, i.e. employing a realistic nuclear Hamiltonian
H without any form of approximation. Such ab initio calculations are the first of their
kind [99] and allow us to benchmark the approximation of H by H2B[ρ] on the basis of
non-trivial many-body methods11. While it can be envisioned to do so in the future [45],
BMBPT is not yet implemented with full three-body interactions. Deformed BMBPT
calculations are therefore presently performed with H2B[ρ] for various approximations to ρ
and compared to those done earlier [46, 60] on the basis of the PNO2B approximation [61].

3.3.2. Trial one-body density matrices
Employing the many-body schemes introduced above, the goal is to approximate H by
H2B[ρ] with ρ computed from various JΠ = 0+ trial states12, i.e.

1. a spherical harmonic oscillator Slater determinant13 (ρsHOSD),

2. a spherical HF(B) state (ρsHF(B)),

3. a PHFB state (ρPHFB),

4. a PGCM ground-state (ρPGCM),

10While helpful to discuss the performance of a many-body method, the distinction between dynamical
and static correlation effects involve a fuzzy boundary, prominently displayed in the dQRPA case.
Namely, the dQRPA equations can be derived within different schemes, e.g. as a harmonic limit
of the GCM equations [101] or via the linearization of time-dependent HFB equations [102, 103].
Depending on these viewpoints, dQRPA either falls in the category of post-HFB extensions grasping
static correlations (associated with fluctuation of shapes), or in the category of beyond-mean-field
approaches aiming at capturing dynamical correlations (in terms of 2-quasi-particle excitations). In the
present work, we make the arbitrary choice to categorize dQRPA among the former class of approaches.

11PHFB and PGCM calculations based on realistic chiral Hamiltonians have been performed recently for
the first time but at the price of approximating three-body operators [93, 104]. The exact treatment
of W in realistic PGCM calculations typically increases the CPU time by three orders of magnitude
compared to using H2B [ρ].

12Because correlations captured by QRPA do not feed back into the ground-state, there is no non-trivial
one-body density matrix ρsQRPA associated with the spherical QRPA solution to be used in the
construction of H2B [ρ].

13In open-shell nuclei, the invariant density matrix is obtained via the use of the equal filling approximation.
This approach can be justified on the basis of a specific statistical mixture of sHO Slater determinants
carrying the appropriate number of particles [84] or on the basis of a specific linear combination of
sHO Slater determinants carrying different number of particles such that the linear combination has
the correct number of particles on average [105].
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5. a standard spherical MBPT14 ground-state (ρsMBPT).

In the numerical results discussed in Sec. 3.4, ρsHF(B), ρPHFB and ρPGCM are extracted from
the corresponding calculations performed with the full H. Contrarly, ρsMBPT is obtained
from a calculation performed with the PNO2B approximation whereas ρsHOSD does not
require any a priori calculation.
The two options ρsHF(B) and ρsMBPT originate from symmetry-restricted HFB and

BMBPT calculations, i.e. spherical HF(B) ensures the JΠ = 0+ character of the state
whereas standard spherical MBPT ensures particle-number conservation15. In the latter
case, the restriction implies that the use of ρsMBPT is limited to doubly closed-shell nuclei.
While the expression of ρsHF(B) is textbook material [43], it is not the case for ρPHFB

and ρPGCM. Consequently, the derivation of the corresponding expressions are provided in
App. G. For the sake of generality and future use, the derivation is actually performed for
a more general quantity than presently needed, i.e. App. G provides the expressions for
the transition one-body density matrix between two arbitrary initial (JΠi

i ) and final (JΠf
f )

PGCM states. The result of present interest is then obtained by setting JΠi
i = J

Πf
f = 0+.

While the expression for ρsMBPT is known material [106, 107], the expression of ρBMBPT

it presently derives from is not. Consequently, the derivation of ρBMBPT is provided in
App. E.3 for the sake of completeness and future use.

3.4. Results

3.4.1. Studied nuclei
A set of properties (i.e. binding energies, matter radii, low-lying spectra as well as
electromagnetic properties) are computed for a set of representative nuclei using the
many-body methods and the one-body density matrices introduced in Sec. 3.3. The set
ranges from light to medium-mass nuclei and contains

1. doubly closed-shell (16O, 40Ca),

2. singly open-shell (18O),

3. and doubly open-shell (20Ne, 30Ne, 24,40Mg, 42,48Ar),

systems. The goal is to cover oblate, spherical and prolate representatives among which
some nuclei are soft and others are rigid with respect to axial deformation16.
14Standard spherical MBPT denotes many-body perturbation theory based on a spherical Slater determi-

nant reference state rather than on a particle-number-breaking Bogoliubov reference state. The former
is automatically obtained from the latter in closed-shell nuclei where the dHFB reference state reduces
to the spherical HF Slater determinant.

15While it is not a problem to compute ρ from a particle-number-breaking state carrying the correct
particle number on average as in spherical Hartree-Fock-Bogoliubov (sHFB), it happens that ensuring
the correct average particle-number requires a non-trivial procedure in BMBPT beyond HFB [47]. For
simplicity, we thus presently limit ourselves to nuclei for which dBMBPT automatically reduces to
standard spherical MBPT.

16Some of these nuclei, e.g. 24Mg, display a triaxial minimum if allowed to. Still, present calculations are
restricted to axial symmetry.
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3.4.2. Numerical setting
The numerical solver allowing us to perform dHFB, PHFB, PGCM, dQRPA [99] and
dBMBPT calculations based on full two- and three-nucleon interactions is briefly introduced
in App. P. For the present purpose, it is sufficient to specify that the one-body spherical
harmonic oscillator basis is employed. The finite number of oscillator shells is set by the
parameter emax such that 2n + l ≤ emax, where n and ` denote the principal quantum
number and the orbital angular momentum of a given shell, respectively. The value of the
harmonic oscillator frequency ~ω is further needed to fully characterize the working basis.
Except if specified otherwise, all calculations are presently performed with emax = 8 and
~ω = 20 MeV. While these values do not permit to generate fully converged calculations of
all the nuclei listed above, the conclusions drawn at the end of the chapter are independent
of them.

When representing an n-body operator, the natural truncation of the tensor-product basis
of the n-body Hilbert space is set by enmax ≡ nemax. One and two-body operators are thus
represented using e1max = emax and e2max = 2emax, respectively. However, e3max = 8, 10, 12
(� 3emax) is used to represent the three-nucleon interaction given that employing 3emax is
largely beyond today’s capacities 17. This truncation will play a key role regarding the
quality of the approximation associated with H2B[ρ] in medium-mass and/or neutron-rich
nuclei.
The chiral effective field theory Hamiltonian H presently employed combines a two-

nucleon interaction at next-to-next-to-next-to-leading order (N3LO) [108, 109] with an
N2LO three-nucleon interaction [110]. It is then evolved to a lower momentum scale
λsallows rg via particle-vacuum SRG transformations [22, 111, 112]. While by default
results obtained for λsrg = 1.88 fm−1 are discussed, λsrg = 2.23 fm−1 will also be used for
comparison.

3.4.3. Measure of the systematic deviations
In order to assess quantitatively the errors induced by the approximation and compare
the different effective interactions, measures of the average deviation between the results
obtained with H2B[ρ] and H are introduced for each method, i.e.

rHFB ≡
1

ndata

∑
nnuclei

∣∣∣∣∣EHFB[ρ]− EHFB

EHFB

∣∣∣∣∣ , (3.21a)

rPHFB ≡
1

ndata

∑
nnuclei

∑
J

∣∣∣∣∣∣E
J

Π

PHFB[ρ]− EJ
Π

PHFB

EJ
Π

PHFB

∣∣∣∣∣∣ , (3.21b)

rBMBPT ≡
1

ndata

∑
nnuclei

∣∣∣∣∣EBMBPT[ρ]− EPNO2B
BMBPT

EPNO2B
BMBPT

∣∣∣∣∣ , (3.21c)

rPGCM ≡
1

ndata

∑
nnuclei

∑
J

∑
O

∣∣∣∣∣∣O
J

Π

PGCM[ρ]−OJ
Π

PGCM

OJ
Π

PGCM

∣∣∣∣∣∣ , (3.21d)

where in practice states up to J = 6 are taken into account when applicable and where
O denotes any observable computed within the PGCM formalism (energy, electric and
17A novel framework capable of handling values up to e3max = 28 in the normal-ordered two-body

approximation was proposed very recently [42]. However, as discussed later, the present truncation of
e3max = 14 allows us to reach converged results for the light nuclei considered here.
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Figure 3.1. Error (in %) of dHFB ground-state energies obtained with H2B[ρ] for the
various test one-body density matrices. The error corresponding to the use of ρsHOSD

for 40Mg amounts to 2.6% and lies outside the figure. Calculations were performed with
emax = 8, e3max = 12 and λsrg = 1.88 fm−1.

magnetic moments, transitions and radii). In each case, ndata denotes the number of terms
in the sum(s).
The deviation on PHFB excitation energies is given by the formula

rPHFB-S ≡
1

ndata

∑
nnuclei

∑
J

∣∣∣∣∣∣δE
J

Π

PHFB[ρ]− δEJ
Π

PHFB

δEJ
Π

PHFB

∣∣∣∣∣∣ . (3.22)

3.4.4. Ground-state binding energy
Deformed HFB

Let us first discuss the use of H2B[ρ] at the mean-field, i.e. dHFB, level. Fig. 3.1 displays
the error (in %) of the corresponding dHFB ground-state energies compared to the reference
values obtained from the full H. Results are provided for ρ = ρsHOSD ( ), ρsHF(B) ( ),
ρPHFB ( ) and ρPGCM ( ), as well as for ρ = ρsMBPT ( ) whenever applicable, i.e. in
doubly closed-shell nuclei.

One first observes that H2B[ρ] perform well for the five test one-body density matrices
although a notable degradation is visible for ρ = ρsHOSD. As can be inferred from Tab. 3.1,
the weaker performance of ρ = ρsHOSD is systematic but especially pronounced as the mass
and/or the isospin-asymmetry of the system increases. While the same trend is at play
for ρsHF(B), ρPHFB and ρPGCM, the error systematically remains below 0.2% for these three
density matrices, with the exception of 40Mg whose error lies around 0.7%. For ρsHOSD,
the average error over the set is significantly larger (1.2%) throughout the panel and peaks
at about 2.6% in 40Mg (not shown in the figure).
From a general standpoint, it is not surprising that the error due to the use of H2B[ρ]

is small at the mean-field level. To best appreciate this feature, let us focus on doubly
closed-shell 16O and 40Ca for which dHFB reduces to sHF. As shown in Tab. 3.1, the
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Closed shell Open shell Mass ≤ 30 Mass > 30 Neutron-rich All
ρsHOSD 0.67 1.32 0.71 1.76 2.04 1.18
ρsHF(B) 0.04 0.20 0.10 0.25 0.29 0.17
ρPHFB 0.04 0.21 0.09 0.28 0.33 0.17
ρPGCM 0.05 0.23 0.09 0.30 0.37 0.18
ρsMBPT 0.04

Table 3.1. Average difference (in %) between ground-state dHFB energies computed
with H2B[ρ] and H for different sub-categories in the test panel and the various test
one-body density matrices. The neutron-rich subcategory encompasses 30Ne, 40Mg and
48Ar. See Eq. (3.21a) for the definition of the cost function. Calculations are performed
with emax = 8, e3max = 12 and λsrg = 1.88 fm−1.

error is below 0.05% in these two nuclei for all test one-body density matrices except for
ρsHOSD. As explained in App. H.3, the error would even be strictly zero in such a situation
if ρ were equated to the variational sHF one-body density matrix throughout the sHF
iterations based on H2B[ρ]. This procedure would be equivalent to working within the
NO2B approximation, which is indeed exact at the sHF level, i.e. the NO2B approximation
of the Hamiltonian only impacts post-sHF methods by construction. The fact that one
rather takes ρ to be a fixed, e.g. ρsHF obtained from the full H, a priori determined
one-body density matrix to build H2B[ρ] induces a marginal error in sHF calculations.

While the error remains below 0.05% in 16O and 40Ca for appropriate density matrices,
the distinctly worse result obtained in 40Ca for ρ = ρsHOSD underlines the fact that obtaining
a very accurate description is not automatic even in this optimal situation, i.e. it is crucial
that the test density matrix contains relevant physical information18. Having said that,
the results obtained with the other four test density matrices are so similar19 that no clear
characteristic can be easily identified as far as the optimal choice is concerned. Neither the
consistency with the employed many-body method nor the degree of correlations encoded
in the one-body density matrix seem to constitute a decisive feature. For example, ρsHFB

performs as well as the more advanced ρsMBPT that incorporates dynamical correlations
beyond the mean field, as can be seen in Tab. 3.1. We will come back repeatedly to this
question throughout the following sections.

While spherical doubly closed-shell nuclei are particularly amenable to a very accurate
description, it is pertinent to investigate the dependence of the approximation on the
axial quadrupole deformation of the HFB state. All nuclei in the set but 16,18O and 40Ca
are doubly open-shell systems and thus spontaneously break rotational symmetry at the
dHFB level, 20Ne and 24Mg displaying the largest deformation of all.
The upper panel of Fig. 3.2 displays the dHFB total energy curve (TEC) calculated

in 20Ne from the full H as a function of the axial quadrupole deformation20. This
nucleus is significantly deformed, as is evident from the minimum of the TEC located at
18The poorer performance of ρsHOSD is (at least in part) due to the fact that it misses effects from the

Coulomb interaction. This is consistent with the fact that the quality seems to degrade with increasing
mass and isospin asymmetry.

19Because sHFB reduces to sHF in doubly closed-shell nuclei, notice that ρsHFB = ρPHFB in this case
such that both test density matrices give identical results by construction.

20The dimentionless axial quadrupole moment β20 used in the figures is defined Eq. (4.3).
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Figure 3.2. Upper panel: dHFB total energy curve of 20Ne as a function of the axial
quadrupole deformation computed with the full H. Lower panel: Error (in %) in the
total energy curve when using H2B[ρ] with the various test one-body density matrices.
Calculations are performed with emax = 8, e3max = 10 and λsrg = 1.88 fm−1.
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β20 = 0.45. As visible from the lower panel, the error induced by H2B[ρ] is essentially zero
at sphericity21, except for ρ = ρsHOSD where it is equal to 0.3%, and grows only mildly
with the deformation. The error remains below 1% up to a large deformation of β20 = 0.8
(β20 = −0.4) on the prolate (oblate) side22 for ρ = ρsHFB, ρPHFB or ρPGCM. For ρ = ρsHOSD,
the error is about twice as large along the TEC.

There exists a trend along the TEC, the results obtained with ρsHFB degrading slightly
faster with the deformation than those obtained with ρPGCM and ρPHFB. The trend is
however not quantitatively significant as can be inferred from the systematic error over
open-shell nuclei provided in Tab. 3.1. Eventually, it is remarkable that all three one-body
density matrices give excellent and essentially equivalent results up to large deformations,
especially given the fact that ρsHFB does not encode any information about deformation
properties of 20Ne. This is a first indication of the robustness of the in-medium 2-body
reduction method of 3-body interaction operators.
For orientation, it is interesting to analyze how the various components of H2B[ρ]

(Eqs. (3.19)-(3.20)) and H (Eq. (3.17)) contribute to the dHFB energy. Figure 3.3
decomposes the dHFB total energy accordingly in 16O and 20Ne. Results are provided
for a schematic model space and ρ = ρsHFB. Focusing first on 16O and making the
hypothesis that the sHF density matrix is the same in both calculations23, the inspection
of Eq. (3.19) makes clear that (a) the 0-body part of H2B[ρ] is strictly equal to the sHF
contribution originating from the three-body interaction in H and that (b) the energy
contribution associated with the 1- and 2-body parts of H2B[ρ] originating from the
three-body interaction exactly cancel out. These features are indeed observed in the upper
panel of Fig. 3.3 such that the total sHF energies are identical in both calculations. While
this formal analysis does not hold for dHFB in general, the results displayed in the lower
panel demonstrate that it remains valid in practice in a well-deformed nucleus such as
20Ne, which eventually elucidates the high-quality results obtained above over a large set
of nuclei.

Deformed BMBPT

While it is satisfying that the error induced by H2B[ρ] is negligible at the mean-field,
i.e. dHFB, level, it is to some extent expected and surely not sufficient to claim victory.
The performance of H2B[ρ] must thus be tested in beyond mean-field methods where the
accurate compensation observed above between the terms of H and those of H2B[ρ] is not
guaranteed to hold.
While such a test must eventually be carried out for various ab initio methods in the

future, the present section focuses on ground-state energies obtained from dBMBPT, which
resums dynamical correlations in a perturbative fashion on top of a (possibly deformed
and superfluid) HFB state. Present calculations are performed at the BMBPT(3) level
that is known to reproduce essentially exact results based on SRG-evolved interactions to
better than 2% in oxygen isotopes and those computed from non-perturbative expansion
methods to better than 2% in semi-magic nuclei up to the nickel region [46, 60].
21Contrarly to 16O and 40Ca, sHFB does not reduce to sHF at sphericity in 20Ne because neutrons and

protons remain superfluid. Consequently, the error due to the use of H2B [ρ] cannot be made strictly
equal to zero by any optimization of the test one-body density matrix.

22Note that the edge of the displayed TEC lies 10MeV (27MeV) above the minimum on the prolate
(oblate) side.

23This hypothesis is very well validated in practice, even more so in a small model space such as the one
employed in the present calculation.
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Figure 3.3. Contributions of the various components of H2B[ρ] and H to the dHFB
energy. Upper panel: 16O. Lower panel: 20Ne. Calculations are performed with emax = 6
and e3max = 6.
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Figure 3.4. Difference of dBMBPT(3) ground-state energies (in %) obtained with H2B[ρ]
and within the PNO2B approximation of H for the various test one-body density matrices.
Calculations are performed with emax = 8, e3max = 12 and λsrg = 1.88 fm−1.

Although envisioned in the future, BMBPT calculations with explicit three-nucleon forces
are not available yet. Consequently, calculations with H2B[ρ] are presently benchmarked
against those obtained using the PNO2B approximation [61], which is the approximation
employed so far in all published BMBPT calculations of semi-magic nuclei [46, 60]. In
doubly closed-shell nuclei, the PNO2B approximation reduces to NO2B, which has itself
been benchmarked against the use of full three-body interactions and shown to offer a
typical 1− 2% accuracy up to 16O [88].

Deformed BMBPT(3) binding energy differences (in %) are displayed in Fig. 3.4. Results
produced within both approximations agree to better than 0.3% over the whole set of
considered nuclei, except for ρ = ρsHOSD where the difference increases up to 2%. Just as
for the dHFB results discussed above, the use of a one-body density matrix encoding either
static or dynamical correlations beyond the mean-field does not have a significant impact

Closed shell Open shell Mass ≤ 30 Mass > 30 Neutron-rich All
ρsHOSD 0.69 1.1 1.00 1.03 1.37 1.01
ρsHF(B) 0.16 0.14 0.09 0.21 0.16 0.14
ρPHFB 0.18 0.14 0.10 0.21 0.19 0.15
ρPGCM 0.13 0.13 0.06 0.21 0.13 0.13
ρsMBPT 0.19

Table 3.2. Average difference (in %) of ground-state dBMBPT(3) energies obtained with
H2B[ρ] and within the PNO2B approximation of H for different sub-categories in the
test panel and the various test one-body density matrices. The neutron-rich subcategory
encompasses 30Ne, 40Mg and 48Ar. See Eq. (3.21c) for details on the cost function.
Calculations are performed with emax = 8, e3max = 12 and λsrg = 1.88 fm−1.
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on the quality of H2B[ρ] such that the results are essentially equivalent to those obtained
with ρ = ρsHF(B). This can be confirmed quantitatively by inspecting the numbers reported
in Tab. 3.2. Interestingly, the results also show that the average deviation is independent
of the closed- or open-shell character of the nuclei under consideration whereas it slightly
increases with the mass even though the deviation remains tiny in all cases.

These remarkable results indicate that the in-medium interaction and PNO2B approxi-
mation methods are equivalent as far as quantitative ab initio dBMBPT calculations of
mid-mass nuclei are concerned. Given the earlier benchkmarking of the NO2B approxi-
mation in doubly-closed shell nuclei, the presently developed in-medium approximation
method is well validated in fully-correlated binding energy calculations.

3.4.5. PHFB absolute energies and radii
In the following, we wish to go beyond ground-state energies and test the in-medium
approximation method on spectroscopic properties. In order to do so, PHFB, PGCM and
dQRPA calculations will be employed. While these techniques resum static correlations
associated with the restoration of broken symmetries and the fluctuation of shapes, they
do not account for dynamical correlations. As a result, whereas relative energies and
spectroscopic quantities can be well converged and meaningful, absolute energies are
not realistic, i.e. they are far from converged ab initio values. Still, it is useful to first
investigate how these absolute energies differ when computed from H and H2B[ρ].
In this section we thus analyse total (ground- and excited-state) energies obtained at

the PHFB level. In addition, corresponding ground-state matter radii are presented. In
doing so, the dependence of the results on numerical parameters such as e3max, emax and
λsrg is also investigated.

Systematic analysis

The upper panels of Fig. 3.5 display binding energies of the lowest-lying JΠ = 0+, 2+, 4+

states obtained via PHFB calculations with e3max = 8 and 12 (at fixed emax = 8). The
energy of each state obtained from H ( ) is compared to those generated from H2B[ρ]
with ρ = ρsHOSD ( ), ρsHF(B) ( ), ρPHFB ( ) and ρPGCM ( ), as well as with ρ = ρsMBPT (
) whenever applicable. Energies are shifted by the dHFB value obtained from the full H

for the corresponding system such that all nuclei can be displayed on the same figure.
Reference energies are well reproduced in light nuclei for all test one-body density

matrices and both values of e3max, i.e. absolute deviations remain below 1 MeV until
24Mg. Increasing the mass and/or isospin asymmetry renders the approximation more
and more sensitive to the value of e3max. Given that ab initio calculations are known
to be increasingly more sensitive to e3max with the mass and isospin-asymmetry of the
system [113], it is not surprising that any approximation of the three-nucleon displays the
same feature. Going from e3max = 8, through e3max = 10 (not shown) and to e3max = 12, a
clear convergence of the results is observed, although full convergence is not quite reached
for the heaviest and most neutron-rich nuclei. Eventually, converged results display a
similar error in medium-mass nuclei to the one obtained in lighter systems, except for
ρ = ρsHOSD. Below, only results obtained for the largest reachable value of e3max (typically
12 but not always) are shown.

The lowest panels of Fig. 3.5 display ground-state root-mean-square matter radii (results
are similar for excited-states radii). The conclusions are the same as for the energies.
Eventually, radii are extremely well reproduced for all nuclei, states and test density

59



Chapter 3. Interlude: In-medium interactions

Figure 3.5. Results of PHFB calculations with H and H2B[ρ] for several test one-body
density matrices ρ. Left and right panels display results obtained for e3max = 8 and 12,
respectively, at fixed emax = 8. Upper panel: absolute energies of lowest JΠ = 0+, 2+, 4+

states to which the dHFB energy obtained from H in each nucleus is subtracted. Lower
panel: ground-state root-mean-square matter radii. Calculations are performed with
λsrg = 1.88 fm−1.
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Closed-shell Open shell Mass ≤ 30 Mass > 30 Neutron-rich All
ρsHOSD 0.67 1.36 0.62 1.68 2.34 1.09
ρsHF(B) 0.04 0.22 0.13 0.24 0.30 0.17
ρPHFB 0.04 0.22 0.10 0.27 0.34 0.17
ρPGCM 0.05 0.24 0.11 0.29 0.38 0.19
ρsMBPT 0.04

Table 3.3. Average error (in %) on absolute PHFB energies of low-lying JΠ = 0+, 2+, 4+

and 6+ states for different sub-categories in the test panel and the various test one-
body density matrices. Calculations are performed with e3max = 8, e3max = 12 and
λsrg = 1.88 fm−1. See Eq. (3.21b) for details on the cost function.

matrices, with the exception of ρ = ρsHOSD for which a slight underestimation is visible in
the heaviest systems.
Focusing on the right panels of Fig. 3.5, one does notice that the situation regarding

the performance of the test one-body density matrices is qualitatively and quantitatively
similar to the one encountered in dHFB and dBMBPT(3) calculations. As soon as the
results are converged with respect to e3max, PHFB energies and radii obtained with H2B[ρ]
reproduce the reference results equally well with all employed one-body density matrices
but ρsHOSD, i.e. it seems necessary (compared to ρsHOSD) and sufficient (compared to ρPHFB,
ρPGCM and ρsMBPT) to employ a test one-body density matrix encoding the information of
the spherical mean-field, i.e. ρsHF(B).

The above analysis is put in more quantitative terms via the computation of systematic
errors. The corresponding results are shown in Tab. 3.3. By construction, PHFB results
are identical to sHF ones in doubly closed-shell nuclei given that the sole 0+ ground-
state has been considered for these nuclei and given that the projections on particular
number and angular momentum are superfluous for a sHF state. In the other nuclei where
the projections typically add few MeV of correlations energy to the ground state, the
average error over JΠ = 0+, 2+, 4+, 6+ PHFB states is essentially the same as for dHFB
ground-state energies, independently of the test one-body density matrix.

Dependence on emax

Figure 3.6 probes the dependence of the results on the value of emax at fixed e3max. First,
one notices that radii are insensitive to emax and are perfectly reproduced. Second, no
change is visible in the PHFB energies of 20Ne when going from emax = 8 to emax = 10. In
the more neutron-rich 30Ne isotope, there exists a slight change of approximate PHFB
energies. While the agreement with the reference results are still quantitatively good, the
energies degrade slightly when going from emax = 8 to emax = 10. The slight evolution
away from the reference results relates in fact to the lack of convergence of the results with
respect to e3max discussed earlier. In the present case, e3max had to be set to 10 in order to
be able to perform PHFB calculations with the explicit 3-body interaction at emax = 10.
While pushing the calculations to large values of e3max would probably improve the

agreement further, the overall conclusion is that the high quality of H2B[ρ] depends only
mildly on emax as long as the reference calculations themselves are converged enough.
Although not shown, the same convergence behavior as a function of emax is at play in the
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Figure 3.6. Same as Fig. 3.5 for 20Ne (left) and 30Ne (right) for emax = 8 and 10 at fixed
e3max = 10.

62



3.4. Results

Figure 3.7. Same as Fig. 3.6 but for two values of the SRG parameter λsrg. Calculations
are performed with emax = 8 and e3max = 12.
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Figure 3.8. Low-lying PHFB excitation spectra of doubly open-shell nuclei. Reference
results calculated from H are compared to those computed from H2B[ρ] using the various
one-body test density matrices. Calculations are performed with emax = 8, e3max = 12 and
λsrg = 1.88 fm−1.

BMBPT(3) ground-state energies reported on in Sec. 3.4.4.

Dependence on λsrg
Figure 3.7 probes the dependence of the results on the resolution scale of the Hamiltonian.
The SRG Hamiltonian at λsrg = 2.23 fm−1 is less evolved than the one at λsrg = 1.88 fm−1

and produces spectra that are slightly less compressed. Still, no significant dependence on
λSRG is observed as far as the quality of the results obtained with H2B[ρ] is concerned.

Although not shown, the same convergence behavior as a function of λsrg is obtained in
the BMBPT(3) ground-state energies reported in Sec. 3.4.4.

3.4.6. Spectroscopy
Having analyzed absolute PHFB energies and radii, we are now in the position to investigate
spectroscopic observables.

PHFB

Low-lying PHFB excitation spectra of doubly open-shell nuclei computed from H and
H2B[ρ] are compared in Fig. 3.8. Being based on the minimum of the dHFB TEC, these
spectra describe the low-lying part of the ground-state rotational band.
Reference results are well reproduced for all one-body test densities except ρsHOSD

for which a degrading arises with increasing mass. Even in nuclei for which absolute
PHFB energies were not converged yet with respect to e3max (e.g. 40Mg and 20Ne), energy
differences are fully consistent with the reference values.

As for quantitative measures, systematic results are reported on in Tab. 3.4. Reference
excitation energies are reproduced to better than 2% throughout the whole panel for
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Mass ≤ 30 Mass > 30 Neutron-rich Total
ρsHOSD 5.86 15.38 16.79 10.62
ρsHF(B) 1.47 1.56 0.91 1.51
ρPHFB 1.17 1.68 1.11 1.43
ρPGCM 1.27 1.90 1.22 1.51

Table 3.4. Average error (in %) on PHFB low-lying excitation energies computed from
H2B[ρ] for various sub-categories of nuclei and test one-body density matrices. See
Eq. (3.22) for details on the cost function. Calculations are performed with emax = 8,
e3max = 12 and λsrg = 1.88 fm−1.

Figure 3.9. Same as the bottom panel of Fig. 3.2 for JΠ = 0+, 2+, 4+ PHFB states.

ρsHF(B), ρPHFB and ρPGCM, which amounts to making errors of the order of a few tens of
keVs. This is obviously negligible compared to other sources of uncertainties in state-of-the-
art ab initio calculations. While this outcome further demonstrates the robustness of the
approximation method, the 10% average error obtained for ρsHOSD underlines the fact that
the employed one-body density matrix must be realistic enough to deliver high accuracy
results. Given that the purpose of ab initio PHFB (and PGCM below) calculations is
to access excitation energies and not absolute ones, one can be fully satisfied with the
performances of H2B[ρ] in the present context.

PGCM

While PHFB calculations already provide a good test whenever the system is rigid with
respect to collective variables, the PGCM opens the way to the wider class of so-called
soft nuclei. More generally, it allows us to include static correlations induced by shape
fluctuations and to access associated vibrational excitations.
Here, PGCM calculations of 20Ne and 30Ne along the axial quadrupole coordinate are

performed. In order to obtain a first indication of the performance of H2B[ρ], Fig. 3.9
extends the study performed at the dHFB level in Sec. 3.4.4 by displaying the error
obtained for the TEC of JΠ = 0+, 2+, 4+ PHFB energies for the various test one-body
density matrices. The JΠ projected TEC constitutes the diagonal part of the Hamiltonian
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Figure 3.10. Low-lying part of the PGCM ground-state rotational band of 20Ne. Reference
results calculated from H are compared to those computed from H2B[ρ] using various
test one-body density matrices. Each energy level is displayed along with the magnetic
dipole (below) and electric quadrupole (above) moments of the associated state. B(E2)
transitions strengths are displayed using red arrows. Calculations are performed with
emax = 8, e3max = 10 and λsrg = 1.88 fm−1.

matrix in the Hill-Wheeler-Griffin secular equation of the PGCM calculation. The errors
obtained along the projected TECs are strictly similar to those displayed in Fig. 3.2 at
the dHFB level. This result gives confidence regarding the quality of the results that can
be expected at the PGCM level.
Reference and approximate low-lying PGCM excitation energies of the ground-state

rotational band and associated electromagnetic observables are compared for 20Ne and
30Ne in Figs. 3.10 and 3.11, respectively. Due to numerical limitations, only three-body
matrix elements up to e3max = 10 could be included in the full calculation, hence hindering
the convergence in 30Ne. Still, building on the results reported in Fig. 3.9 an excellent
agreement emerges in both nuclei for PGCM energies and electromagnetic observables,
even more so in 20Ne where sub-percent accuracy (see Tab. 3.5) is achieved. As before, a
decent but less optimal reproduction of the reference results is obtained for ρ = ρsHOSD.
The excellent results obtained for electromagnetic observables testify to the stability of
the PGCM wave-functions themselves with respect to the in-medium approximation of
the three-nucleon interaction.

dQRPA

QRPA is a method of choice to study excited states of both single- or few-particle and
collective characters, with energies ranging from a few MeV to tens of MeV. In this
context, the performance of H2B[ρ] can be assessed by looking at, e.g., electromagnetic
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Nucleus 20Ne 30Ne
Quantity Spectrum Observables Spectrum Observables
ρsHOSD 2.95 1.43 4.53 2.85

ρsHF(B) 1.46 0.71 2.60 2.57

ρPHFB 0.36 0.55 2.59

ρPGCM 0.26 0.48 2.98 2.85

Table 3.5. Average error (in %) on PGCM excitation energies and spectroscopic observables
computed from H2B[ρ] in 20Ne and 30Ne for various test one-body density matrices. See
Eq. (3.21d) for details on the cost function. Calculations are performed with emax = 8,
e3max = 10 and λsrg = 1.88 fm−1.

Figure 3.11. Same as Fig. 3.10 for 30Ne.
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Figure 3.12. Electric isovector dipole strength of 16O as a function of the excitation
energy (upper panel). Reference results calculated from H are compared to those computed
from H2B[ρ] using ρsHFB. The relative deviation from the strength computed with the
exact Hamiltonian is displayed as a function of the excitation energy in the lower panel.
Calculations are performed with emax = 8, e3max = 10 and λsrg = 1.88 fm−1.
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Figure 3.13. Same as Fig. 3.12 for 20Ne.

strength functions. Figures 3.12 and 3.13 display the electric isovector dipole (E1) strength
computed with both H and H2B[ρsHFB], for 16O and 20Ne respectively. Similar results are
obtained for the other test one-body density matrices and are reported in Table 3.6.
In 16O, where dQRPA reduces to sRPA built on top of a sHF Slater determinant, the

difference between the strength functions are hardly noticeable. As in sHF calculations
discussed earlier on, this relates to the fact that the sRPA error would actually be strictly
zero if the ρ entering H2B[ρ] were taken as the variational sHF density matrix obtained
from that approximate Hamiltonian. Because the ρsHF coming from the calculation
performed with H slightly differs from the variational one obtained from H2B[ρsHF], the
error is not strictly zero but remains tiny. As seen from the bottom panel of Fig. 3.12
the relative error of the E1 strength at each excitation energy does not exceed 4% over
the interval [0, 50]MeV. This error essentially relates to the horizontal position of the
individual dQRPA modes that, as seen in Tab. 3.6, are shifted by a tiny amount, i.e. 0.05%
on average. This relates to the fact that approximating H by H2B[ρ] slightly affects dHFB
quasi-particle energies, inducing in turn a small shift (1% on average) in the position of
the dQRPA eigenmodes. Computing the observable total photo-emission cross section by
integrating the differential photo-emission cross section deduced from the E1 strength, the
error on the latter generates a tiny 0.02% error. While the error remains very small for the
other test one-body density matrices, the choice ρ = ρsHFB is optimal in the present case.
Moving to Fig. 3.13, the dQRPA dipole strength of 20Ne obtained from H2B[ρsHFB] at

the minimum of the dHFB TEC is also visually very close to the reference one, although
slightly deteriorated compared to the 16O case. Looking at the bottom panel, the situation
suddenly appears less favorable with a relative error at fixed excitation energies that can
reach nearly 30% on the left side of the giant resonance. This error results from a more
substancial shift in quasi-particle energies. The steep slope of the E1 strength function
before and after the giant resonance exacerbates the relative error made at fixed excitation
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Nucleus 16O 20Ne
Quantity Excitation energy Total photo-emission cross section Excitation energy Total photo-emission cross section
ρsHOSD 0.39 0.04 0.46 0.82

ρsHF(B) 0.05 0.02 1.09 0.63

ρPHFB 0.14 0.23 1.13 0.48

ρPGCM 0.15 0.24 1.19 0.44

Table 3.6. Average relative error (in %) on dQRPA excitation energies and on the total
photo-emission cross section computed from H2B[ρ] in 16O and 20Ne for various test
one-body density matrices. Calculations are performed with emax = 8, e3max = 10 and
λsrg = 1.88 fm−1.

energies. However, propagated to the total photo-emission cross section, this only results in
a negligible error of 0.63% (see Tab. 3.6). In this case, the optimal character of ρ = ρsHFB

is not apparent as all test one-body density matrices deliver similar results.
The above results validates the quality and robustness of H2B[ρ] in the dQRPA context.

Although not shown for brevity, essentially identical results hold for one-body transition
operatorsvwith other multipolarities. Furthermore, the dependence of the results on e3max
is along the same line as the one discussed in Sec. 3.4.5.

3.4.7. Optimal one-body density matrix
The in-medium approximation of three-body interactions proposed in the present work
appears to be very robust with respect to the employed symmetry-invariant one-body
density matrix. All dHFB, dBMBPT, PHFB PGCM and dQRPA results presented above
are of equally excellent quality for ρ = ρsHF(B), ρPHFB and ρPGCM but systematically
deteriorate for the more simplistic choice ρ = ρsHOSD.

In this context, it is of interest to better assess this robustness and possibly characterize
the optimal one-body density matrix to be used in the design of H2B[ρ]. For this purpose,
trial (symmetry-invariant) one-body density matrices {ρsRd} are generated by means of
the random sampling described in App. H. To evaluate the corresponding approximation
H2B[ρsRd], the ground-state energy error

∆E2B
Ψ [ρ] ≡ 〈Ψ|H

2B[ρ]|Ψ〉
〈Ψ|Ψ〉 − 〈Ψ|H|Ψ〉

〈Ψ|Ψ〉 (3.23)

is considered; see App. H.1 for the working expression and a related discussion. The error
function ∆E2B

Ψ [ρsRd] computed for a large set of randomly generated matrices is shown
in Fig. 3.14 as a function of the distance ‖ρsRd − ρΨ‖ between the trial one-body density
matrix and the ground-state one ρΨ in the many-body calculation of interest. The data
points corresponding to the physical one-body density matrices (ρsHOSD, ρsHF(B), ρPHFB

and ρPGCM) are also displayed to better make sense of the results obtained so far. In
addition to the distance to ρΨ, each trial one-body density matrix is characterized by its
von Neumann entropy

S[ρ] ≡ −Tr (ρ ln ρ) , (3.24)
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Figure 3.14. Ground-state energy error ∆E2B
Ψ [ρ] associated with the use of H2B[ρ] as

a function of the distance ‖ρ − ρΨ‖ between the test one-body density matrix ρ and
the actual ground-state one ρΨ in log-log scale. Left panel: sHF (JΠ = 0+) solution
for 16O. Right panel: PHFB (JΠ = 0+) solution for 20Ne. Data points are for physical
and randomly-sampled test one-body density matrices. For the latter, the color scale
characterizes their von Neumann entropy. The dashed-dotted lines denote the cubic
envelop extracted from the left panel and reported on the right panel. Calculations are
performed for emax = 6 and e3max = 6.
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which, in the eigenbasis of ρ with eigenvalues {ra} reads as Shannon’s entropy of information
theory

S[ρ] ≡ −
∑
a

ra ln ra . (3.25)

In the present context, the size of the entropy essentially characterizes how much the
many-body state ρ differs from a Slater determinant for which S[ρ] = 0, i.e. it is a measure
of many-body correlations.
Results for 16O computed in a small model space at the sHF level are shown in the

left panel of Fig. 3.14 while the right panel displays results for 20Ne computed at the
PHFB level. The sHF calculation of 16O illustrates the situation encountered for an
uncorrelated state, i.e. the many-body solution |Ψ〉 is nothing but a symmetry-conserving
Slater determinant. In this particular case, the ground-state energy error (see Eq. (H.2))
takes the simple form

∆E2B
sHF[ρ] = 1

3!w
(3) ·

(
ρ− ρsHF

)⊗(3)
(3.26)

and is thus minimal, actually zero, for ρ = ρsHF. The fact that the optimal one-body
density matrix is nothing but the one of the many-body state under scrutiny is confirmed
numerically in the left panel of Fig. 3.14. In absence of genuine correlations, one expects
from Eq. (3.26) that the sampled errors are bounded by a cubic envelope in the variable
‖ρ − ρsHF‖, which indeed appears clearly in the numerical results. The coefficient (0.4)
of that cubic envelope extracted from the data is a measure of the employed three-body
interaction strength in the utilized model space.

Besides the null error delivered by ρ = ρsHF, the errors associated with the physical one-
body density matrices ρsHOSD and ρsMBPT are provided on the figure. Compared to the full
range of sampled one-body density matrices24 ρsHOSD and ρsMBPT are rather close to ρsHF.
This is particularly true of ρsMBPT, which is a sign of the weakly-correlated character of 16O
when eventually going beyond the mean-field on the basis of an SRG-evolved Hamiltonian.
Given the cubic upper-bound, such a proximity between the two density matrices implies
a tiny error on the energy obtained for ρ = ρsMBPT. Despite originating from a Slater
determinant and thus sharing the same null entropy as ρsHF, ρsHOSD is about 3 times more
distant from it than ρsMBPT. In agreement with the cubic law governing the error, plus
being located closer to the envelope, the associated error is about 170 times larger. Given
the softness of the employed three-body interaction, ρsHOSD still provides a small absolute
error in the end. Eventually, the sampling provides a fair understanding that, as long
as the test one-body density is not too distant from ρsHF, its detailed properties do not
matter much and the error is bound to be small.

Compared to the previous case, the right panel of Fig. 3.14 allows one to appreciate the
qualitatively different situation encountered for a genuinely-correlated state. Indeed, the
error ∆E2B

PHFB[ρ] behaves now differently as a function of the distance25 ‖ρ− ρPHFB‖. As
visible from Eq. (H.2), ∆E2B

PHFB[ρ] contains non-zero constant and linear terms in addition
to the cubic term encountered in Eq. (3.26).
24Given that ρsHF relates to a Slater determinant with 16 particles, the maximum distance is reached for

densities associated with Slater determinants obtained by promoting the 16 particles from hole states
into particle states, i.e. Maxρ‖ρ− ρ

sHF‖ =
√

32 ≈ 5.7, which is indeed the maximum value visible on
the left panel of Fig. 3.14.

25Because of the log-log scale employed, the point at zero distance associated with ρPHFB is artificially
placed on the left border of the figure.
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The constant term yields the error ∆E2B
PHFB[ρPHFB] associated with the actual ground-

state density, i.e. when setting ρ = ρPHFB. The fact that this error is nonzero is a
fingerprint of the fact the PHFB ground-state wave-function carries (at least) genuine
three-body correlations. The value of the corresponding error additionally depends on the
size of the three-body interaction convolved with the irreducible three-body density matrix
(see Eq. (H.2)). As analyzed in Ref. [90] in connection with the NO2B approximation, a
low-resolution Hamiltonian makes the energy contribution from the residual three-body
interaction small. For (emax = 6; e3max = 6) this error is ∆E2B

PHFB[ρPHFB] ≈ 0.1MeV
whereas the better converged value obtained earlier on for (emax = 8; e3max = 12) is
0.5MeV (0.4%); i.e. the error is small.
Increasing the distance from ρ = ρPHFB, one can lower the error such that a minimum

Minρ∆E2B
PHFB[ρ] is found for ‖ρ − ρPHFB‖ = few 10−1 with a value several times smaller

than ∆E2B
PHFB[ρPHFB]. Past the minimum the error typically increases and is eventually

dominated by the cubic terms at large distances such that the cubic envelope extracted
from the left panel becomes visible.

The physical density matrices ρsHOSD and ρsHFB are found right past the minimum such
that their error is small and in fact similar to the one found at the origin. The profile of
the error as a function of the distance ‖ρ− ρPHFB‖ rationalizes the fact that small errors
can be found over a substantial range of density matrices to which the various physical
one-body density matrices one may typically access all belong. This feature provides
practitioners with a significant flexibility as far as the choice of the employed one-body
density matrix is concerned. Beyond that appropriate interval the error rapidly increases
with the distance, as testified by the use of ρsHOSD sitting on the edge of it, such that one
may not be too cavalier either regarding the choice of ρ.

3.5. Discussion
Main lessons

The above results demonstrate the usefulness of the proposed in-medium reduction method
for three-body interaction operators in nuclear ab initio calculations. The fact that the
method relies on the sole use of a one-body density matrix gives much credit to the
simplicity of the method. Furthermore, the high-quality approximation was shown to be
robust with respect to the employed one-body density matrix, which gives much credit to
the flexibility of the method.

These conclusions have been validated for nuclei with closed and open-shell characters,
i.e. displaying weak and strong correlations, for a large class of observables in light and mid-
mass systems as well as for stable and exotic isotopes. While convincingly substantiated
via the use of both perturbative and non-perturbative many-body methods, a further
validation of the quality of the approximation on the basis of (non-perturbative) ab initio
methods built on different paradigms is desirable in the future.

Algorithm

The independence of the results with respect to a large class of one-body density matrices
is of key importance for practical applications in the future, especially given that ab initio
calculations aspire to move up the nuclear chart towards heavy, doubly open-shell nuclei.
Specifically, the high-quality results obtained for ρ = ρsHFB allow one to build H2B[ρ] at
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the sole cost of running first a spherical HFB calculation with full three-body forces, thus
bypassing the need to run any deformed HFB code followed by projections, which would
already be too costly with explicit three-body forces in heavy nuclei requiring large values
of e3max. Eventually, the envisioned working algorithm is

1. run a spherical HFB calculation with three-nucleon forces to extract ρsHFB,

2. build H2B[ρsHFB],

3. run the many-body method of interest with the two-body Hamiltonian H2B[ρsHFB],

such that even in (heavy) open-shell nuclei

• no two-body density matrix has to be extracted,

• no genuine open-shell calculation with an explicit three-nucleon operator has to be
performed.

Odd-even and odd-odd nuclei

While the method presented in this article relies on the use of symmetry-invariant one-body
densities, which can be generated only starting from JΠ = 0+ states (or a superposition
of such states), it can also be easily used to construct effective k-body interactions for
odd-even and odd-odd nuclei. For this purpose, one can employ the one-body density
generated in a mean-field calculation of a spherical Bogoliubov vacuum constrained to have
odd-even or odd-odd numbers of particles on average. In the case of odd-even systems, it
was demonstrated in Ref. [83] that such a vacuum represents a good approximation to the
true mean-field solution obtained with an odd number parity wave function.

Of course, the accuracy of the k-body interactions constructed in this way will have to
be properly checked but there is no reason to believe that they would perform particularly
worse than those generated to describe even-even nuclei.

Conclusion

The present chapter introduced a novel method to approximate n-body operators in terms
of k-body ones with k < n. This is highly pertinent to overcome the steep increase of
the computational cost of many-body calculations due to the presence of three-nucleon
interactions, especially as ab initio calculations aspire to move to heavier nuclei than
presently possible.

The main advantages are that the method is accurate, universal, simple and flexible. The
universality of the method not only relates to its applicability to all nuclei, independently
of their closed or open-shell character, but also to its independence with respect to the
many-body method eventually used to solve Schrödinger’s equation. The simplicity of the
method relates to the fact that it requires the convolution of the, e.g., three-body operator
with a sole symmetry-invariant one-body density matrix, even in open-shell nuclei. This is
at variance with existing methods that either convolve the three-body operator with one-,
two- and three-body density matrices in open-shell systems or with a symmetry-breaking
one-body density matrix, thus leading to an approximate operator that explicitly breaks
symmetries of the initial Hamiltonian. Eventually, the flexibility of the method relates
to the possibility to use various one-body density matrices as an entry. As a matter of
fact, the functional form of the error due to the use of the approximate Hamiltonian could
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be exploited to explain why accurate results can be obtained for a rather large class of
one-body density matrices. Such a flexibility can be exploited to use a (not too) simple
density matrix in practical calculations, e.g. the density matrix extracted from a spherical
Hartree-Fock-Bogoliubov calculation.

Further perspectives

Extensive numerical results have demonstrated the high accuracy of the approach over
a wide range of nuclei and observables. The approximation method is thus ready to be
employed in routine ab initio calculations in the future. Furthermore, the in-medium
reduction procedure is ready to be tested on four-nucleon interactions [114, 115, 116] and/or
three-body nuclear currents [117] in order to deal with them at a reduced computational
cost.
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Using the novel PGCM-PT many-body formalism developed in Chapter 2 and the
rank-reduction method of the Hamiltonian formulated and tested in Chapter 3, the present
chapter discusses a systematic study of neon isotopes at leading order in PGCM-PT, i.e.
at the PGCM level.

4.1. Introduction
The projected generator coordinate method (PGCM) based on the mixing of Bogoliubov
vacua generated by solving constrained Hartree-Fock-Bogoliubov (HFB) mean-field equa-
tions has been traditionally employed with empirical effective interactions [6, 118, 119].
In spite of being ill-defined and affected by potentially dangerous spurious contamina-
tions [120, 121, 122, 123] in this particular context, such PGCM calculations have been
successfully applied to describe numerous nuclear phenomena over the last few decades.

The PGCM has also been employed in the context of so-called valence-space calculations
based on appropriate effective interactions [124, 125, 126] (although less often). Employing
sophisticated realizations of the PGCM ansatz, solutions obtained from an exact diago-
nalization for pf-shell Ca isotopes [127] or the complete set of sd-shell nuclei [128] have
recently been shown to be accurately reproduced. These works demonstrate the capacity
of the PGCM to efficiently capture strong static correlations emerging within a small
energy window around the Fermi energy.

In the present chapter, the objective is to employ the PGCM for ab initio calculations.
PGCM calculations have already been performed on the basis of realistic Hamiltonians
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that were pre-processed via unitary similarity renormalization group (SRG) transfor-
mations [100] (see Chapter 3) and possibly further pre-processed via unitary IMSRG
transformations [93, 104]. However, and independently of the pre-processing of the Hamil-
tonian1, the PGCM is not amenable to an exact solution of A-body Schrödinger’s equation.
Indeed, while very efficient at grasping strong static (collective) correlations, the PGCM
is not suited to capture weak, so-called dynamical, correlations2. Through the novel
formulation of a multi-reference perturbation theory (PGCM-PT) formalism in Chapter
2, the PGCM is embedded, for the first time, into a genuine ab initio expansion method
capable of grasping dynamical correlations in a systematic fashion.

While the PGCM-PT formalism was explained in detail in Chapter 2, the present chapter
discusses numerical results obtained through its leading order, i.e. PGCM, reduction.
Specifically focusing on even-even neon isotopes, the objectives are to

1. benchmark PGCM calculations against quasi-exact results obtained via the so-called
in-medium no core shell model (IM-NCSM),

2. deliver ab initio predictions of spectroscopic properties of even-even Ne isotopes,

3. gauge uncertainties and convergence of the many-body results associated with the
order-by-order chiral effective field theory (χEFT) expansion of the Hamiltonian.

Based on the above results, the following chapter, i.e. Chapter 5, will present the first
PGCM-PT calculations beyond zeroth order and characterize the way absolute and relative
PGCM energies are amended by the inclusion of dynamical correlations.

This chapter is organized as follows. All the ingredients of the calculations (Hamiltonians,
many-body formalisms, numerical settings, uncertainty evaluations) are detailed in Sec. 4.2
whereas a large body of results is presented in Sec. 4.3. A discussion is then provided in
Sec. 4.4.

4.2. Many-body calculations
4.2.1. Nuclear Hamiltonian
The present calculations employ the family of χEFT Hamiltonians H introduced in
Ref. [130] and constructed at next-to-leading (NLO), next-to-next-to-leading (N2LO) and
next-to-next-to-next-to-leading (N3LO) orders according to Weinberg’s power counting [8,
131, 132]. Consistent non-local regulators and cut-off values (Λ = 500MeV) are employed

1IMSRG transformations pre-process the Hamiltonian in order to decouple as much as possible a given
many-body state from the rest of the Hilbert space [129]. The decoupling can in principle, i.e. in
absence of any approximation, be exact whenever the many-body state is a single product state,
which thus becomes an exact eigenstate of the transformed Hamiltonian at the end of the process.
Contrarily, the decoupling is typically not exact, even in the absence of any approximation, whenever
the many-body state is more general, e.g. when it is a PGCM state. Consequently, while the IMSRG
constitutes per se a method to solve Schrödinger’s equation when the so-called single-reference (SR-
IMSRG) [57] implementation can be applied, it is not the case for the more versatile multi-reference
(MR-IMSRG) [34] approach that can only be seen as a pre-processing of the Hamiltonian on top
of which an appropriate many-body method must be applied. This point is further discussed and
illustrated in Chapter 5.

2Dynamical correlations are essentially accounted for, at least in principle, through the effective Hamilto-
nian in valence space calculations. This is the reason why PGCM can well reproduce exact solutions
in this particular context. See Sec. 4.3.3 for an illustration of this feature.
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in the two-nucleon and three-nucleon sectors; see Ref. [130] for the details of the fitting
protocol. This family of interactions was shown to robustly reproduce selected experimental
energies and radii from p-shell nuclei to nickel isotopes and to resolve several deficiencies
of the previous generations of χEFT Hamiltonians.
The values of the SRG scale λsrg employed in the many-body calculations presented

below are specified later on.

4.2.2. PGCM
The PGCM formalism presently employed has been described in Chapter 2 and the reader
is referred to it for technical details.

Choice of collective coordinates

The PGCM state |Θσ̃M
µ 〉 mixes a set of Bogoliubov states Bq ≡ {|Φ(q)〉; q ∈ set} differing by

the value of the (typically multi-dimensional) collective deformation parameter q that are
obtained by solving constrained Hartree-Fock-Bogoliubov equations. As an intermediate
step, the calculation thus delivers a HFB total energy surface (TES) as a function of q.

Typically, q presently collects quadrupole (q2µ) and axial octupole (q30) moments, i.e.

Qλµ ≡ rλY λ
µ (θ, ϕ) , (4.1a)

qλµ ≡
1
2〈Φ(q)|Qλµ + (−1)µQλ−µ|Φ(q)〉 , (4.1b)

where Y λ
µ (θ, ϕ) is a spherical harmonic of degree λ and order µ, such that

q20 ≡ 〈Φ(q)|Q20|Φ(q)〉 , (4.2a)

q21 ≡
1
2〈Φ(q)|Q21 −Q2−1|Φ(q)〉 , (4.2b)

q22 ≡
1
2〈Φ(q)|Q22 +Q2−2|Φ(q)〉 , (4.2c)

q30 ≡ 〈Φ(q)|Q30|Φ(q)〉 . (4.2d)

In the present calculations, q10 and q11 are set to zero to avoid the spurious motion of
the nucleus’ center of mass. Similarly, q21 is set to zero to fix the orientation of the nucleus.
From the moments, one introduces deformation parameters according to

β2 ≡
4π

(3R2A)

√
q2

20 + 2q2
22 , (4.3a)

γ2 ≡ arctan
(√

2q22

q20

)
, (4.3b)

β3 ≡
4π

(3R3A)
q30 , (4.3c)

with R ≡ 1.2A1/3 and A ≡ N + Z the mass number. Whenever the deformation is purely
axial, β2 reduces to the traditional axial quadrupole deformation parameter.

Each state |Φ(q)〉 is further projected, whenever necessary, onto good symmetry quantum
numbers σ ≡ (JMΠNZ) ≡ (σ̃M) [97], i.e. onto total angular momentum J and projection
M , parity Π = ±1 as well as neutron N and proton Z numbers. This procedure generates
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a set of projected Bogoliubov states PBqσ̃ for each realization σ̃ of the symmetry quantum
numbers and an associated projected HFB (PHFB) TES.
Eventually, the unknown coefficients {f σ̃µ (q); q ∈ set} of the PGCM mixing are deter-

mined via the application of Ritz’ variational principle. This leads to solving Hill-Wheeler-
Griffin’s (HWG) equation3 [133, 134] that is nothing but a generalized eigenvalue problem
represented in the set of non-orthogonal PHFB states PBqσ̃. The practical aspect of
dealing with the linear redundancies associated with the non-orthogonality of the PHFB
states when solving HWG’s equation are briefly discussed in App. J.

Numerical setting

In the present chapter, two sets of HFB and HWG solvers are used. While the first
set [135, 136] offers more flexibility regarding the enforced/relaxed symmetries in the
computation of the HFB states and operator kernels entering HWG’s equation4, the second
set, implemented in the context of this thesis and discussed in App. P, can exactly handle
three-nucleon interactions as mentioned in Chapter 3.
Based on these solvers, the calculations performed in the present study involve

1. the potential breaking of
a) global neutron and proton gauge symmetries,
b) rotational symmetry,
c) parity,

2. the associated restoration of
a) N and Z,
b) J and M ,
c) Π,

3. The use of constraints for
a) axial quadrupole (q20),
b) non-axial quadrupole (q2±2),
c) axial octupole (q30),

operators.

For details on the employed many-body basis, see Chapter 3.

Uncertainties

The uncertainties of PGCM calculations are of several origins and nature5:

• Numerical representation:
3The diagonalization is performed separately for each value of σ̃.
4Full space triaxial results were provided by B. Bally [137].
5When adding two uncertainties σ1 and σ2, presently supposed to be uncorrelated, the total one is
computed as σtot ≡

√
σ2

1 + σ2
2 . When considering an observable O = O1 − O2, e.g. an excitation

energy, its uncertainty is computed under the hypothesis that the uncertainties associated with O1
and O2 are fully correlated, i.e. using σO ≡ |σO1

− σO2
|.
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– Model-space truncation. Results depend on the choice of the one-body basis
parameters (~ω, emax) and the truncation of three-body operators e3max as
defined in Chapter 3. While the nominal results discussed in the following
are obtained for (~ω, emax, e3max) = (12, 8, 14), the associated uncertainty is
evaluated in each nucleus according to a procedure described in Sec. 4.3.1 and
typically included in the error bars shown of several of the figures below.

– Approximate three-body interaction. While three-body interactions terms can
be handled exactly, it typically increases the runtime of PGCM calculations by
three orders of magnitude compared to using a two-nucleon interaction only. In
order to avoid this significant cost, the operator rank-reduction method [100]
discussed in Chapter 3 is employed. The approximation was shown to induce
errors below 2− 3% across a large range of nuclei, observables and many-body
methods when employing low-resolution Hamiltonians as done in the present
work. Specifically, the PGCM errors on the ground-state charge radius and the
low-lying excitation energies of 20Ne (30Ne) were shown to be of 0.7% (2.5%)
and 1.5% (2.6%), respectively. While not included in the error bars appearing
in some of the figures below, a conservative 2− 3% error is to be appropriately
attributed.

– Discretization errors. PGCM results depend on the discretization of the em-
ployed generator coordinate(s) and on the procedure described in App. J to
handle linear redundancies when solving the HWG equation. The dependence
of our PGCM results on these two numerical parameters have been checked
and found to be negligible compared to the other sources of uncertainty.

• Many-body expansion:
– Generator coordinates. PGCM results depend on the choice of generator

coordinates employed in the calculation. While it is hard to envision a systematic
way to evaluate an associated uncertainty, the dependence of the results on the
generator coordinates that are expected to be dominant is gauged by generating
results (a) with or without the octupole degree of freedom and (b) with or
without the triaxial degree of freedom.

– Many-body truncation. Given a PGCM ansatz, the PGCM-PT formalism
developed in Chapter 2 allows one to embed it into a systematic many-body
expansion. Constituting the leading-order contribution to the expansion, PGCM
results carry an uncertainty associated with the corresponding truncation.
Because it is the goal of Chapter 5 to present the first computation of the next
correction, i.e. PGCM-PT(2), the associated uncertainty is not evaluated in
the present chapter but simply commented on at various points below.

• Hamiltonian:
– χEFT truncation. The hierarchy of terms in the chiral expansion allows us

to increase the precision at each order and coherently assess truncation errors.
These errors are consistently propagated to many-body calculations and are
to be added to the errors coming from the many-body method itself. The
uncertainty of a many-body observable X at N2LO and N3LO reads [130]

δX
N

2
LO
≡ Q|X

N
2
LO
−XNLO| , (4.4a)
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δX
N

3
LO
≡ max

[
Q|X

N
3
LO
−X

N
2
LO
|,

Q2|X
N

2
LO
−XNLO|

]
, (4.4b)

where the expansion parameter Q denotes the ratio of a typical momentum
scale characterizing medium-mass nuclei over the χEFT breakdown scale. The
value Q = 1/3 is presently employed; see Ref. [130] for details.

– SRG dependence. The particle-vacuum SRG transformation induces an intrinsic
error associated with the violation of unitarity due to neglected induced opera-
tors beyond three-body terms. Furthermore, the uncertainty associated with
the truncation of the many-body expansion itself depends on the transformation,
which is typically minimized by working with low-resolution Hamiltonians as
done in the present work. Overall, this induces a dependence of the results on
the SRG parameter λsrg. While the nominal results are systematically provided
for λsrg = 1.88 fm−1, the variation of the results obtained for λsrg = 2.23 fm−1

will be quoted to provide an idea of the sensitivity of selected observables.

4.2.3. IM-NCSM
As a complement and a benchmark of the PGCM calculations, the IM-NCSM6 ap-
proach [139] is used to describe even-even neon isotopes.

Methodology

The IM-NCSM starts by pre-processing (already SRG-evolved) operators O through a
nucleus-dependent unitary MR-IMSRG transformation U(s) parameterized by the real
variable s. The lowest eigenstate with appropriate symmetry quantum numbers obtained
from a prior NCSM calculation in a small reference space including all basis Slater
determinants with up to N ref

max HO excitation quanta above the lowest-energy basis states
serves as a multi-configurational reference state. The transformed operator O(s) expressed
in normal-ordered form [94, 96] with respect to the NCSM reference state is truncated
beyond two-body operators, i.e. at the MR-IMSRG(2) level, which induces a breaking of
unitarity that needs to be monitored.

The transformation U(s) is tailored to suppress the terms of the pre-processed Hamilto-
nian H(s) that couple the NCSM reference space to the rest of the Hilbert space. This
decoupling corresponds to the incorporation of dynamical correlations into the transformed
Hamiltonian. While the decoupling is not complete in principle, even in the s→∞ limit,
it leads in practice to an extremely fast convergence of a subsequent NCSM calculation as
a function of the truncation parameter Nmax for appropriate values of the flow parameter
s. This subsequent NCSM calculation performed on the basis of H(s) constitutes the last
step of the IM-NCSM calculation.

Numerical setting

The oscillator frequency is set to ~ω = 20MeV in the IM-NCSM calculations. While the
initial NCSM calculation is performed for N ref

max = 0 or 2, the final NCSM calculation goes
up to Nmax = 4, which is fully converged7.

6IM-NCSM calculations were provided by R. Roth [138].
7While the Nmax = 0 is essentially sufficient in practice, the configuration mixing within that Nmax = 0
subspace is however non negligible, i.e. the initial NCSM state used for the MR-IMSRG is not
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In the MR-IMSRG part of the calculation, emax = 12 and e3max = 14 are employed. The
flow equations rely on a modified version of the so-called White generator [129] adapted
to the Nmax-truncated reference space and the value of the flow-parameter is chosen large
enough to warrant convergence of the evolved Hamiltonian, i.e. typically around s = 80.

A HO Hamiltonian for the center of mass is added to initial Hamiltonian and consistently
evolved through MR-IMSRG to remove spurious center-of-mass excitations from the
spectrum. This operator comes with a small numerical pre-factor λHcm = 0.2 that is
sufficient to shift the spurious states out of the way without modifying other states in any
significant fashion.

Uncertainties

Nominal IM-NCSM results quoted below are obtained for λsrg = 2.23 fm−1, N ref
max = 2,

Nmax = 4 and s ∼ 80. These results are accompanied with the following uncertainties

• Many-body. Many-body uncertainties are estimated from the maximum of the
differences to the three calculations based on N ref

max = 0, Nmax = 2 and s ∼ 40,
varying only one parameter at a time. These errors are typically dominated by the
effect of reducing N ref

max although the dependence on the flow parameter is often not
negligible8.

• Hamiltonian. The chiral order-by-order uncertainties are extracted as for the PGCM
calculations but using a more advanced Bayesian model. On the other hand, no
uncertainty associated with the original value of λsrg is presently provided.

4.3. Results

4.3.1. Model-space convergence
The convergence of PHFB results with respect to the employed HO model space has
been checked for all Ne isotopes. In this test, the HFB minimum in the (q20, q30) plane,
systematically obtained at β3 = 0 (see Sec. 4.3.2 below), is projected on good neutron
and proton numbers as well as on the desired angular momentum J . Results for two
representative examples, 20Ne and 28Ne, are displayed in Fig. 4.1 for the ground-state
energy and root-mean-square (rms) charge radius, as well as for the absolute energy of the
first 2+ state.
The three observables show a typical convergence pattern consisting of curves that

gradually become independent of ~ω and closer to each others as the basis size increases.
At each step of the way, the HO frequency delivering the least sensitive results to emax, i.e.
the results that are closest to the converged value, is given by ~ω = 12MeV. Taking the
least favorable case, i.e. 28Ne, the energy of the first 0+ (2+) changes by 70 keV (72 keV)
when going from emax = 10 to emax = 12 whereas the ground-state charge radius increases
by 10−4 fm. Taking the results displayed in Fig. 4.1 for ~ω ≥ 12MeV, their infra-red
extrapolation towards the infinite basis limit is performed according to the procedure

decoupled from the rest of the Nmax = 0 space such that the subsequent NCSM diagonalization of
H(s) is necessary.

8For large enough Nmax, the dependence of the end results on s probes the effects of truncating the
transformed Hamiltonian to the normal-ordered two-body level throughout the MR-IMSRG evolution
based on the reference NCSM state.
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Figure 4.1. Dependence of PHFB results in 20Ne (left column) and 28Ne (right column) on
the employed HO model space. Results are plotted as a function of ~ω for various values
of emax. The dashed lines denote extrapolated values whereas the grey band provides the
associated uncertainty. The first row (panels (a) and (b)) focuses on the first 2+ absolute
energy whereas the second (panels (c) and (d)) and third (panels (e) and (f)) rows provide
the ground-state energy and associated rms charge radius. Calculations employ the N3LO
χEFT Hamiltonian with λsrg = 1.88 fm−1.
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Figure 4.2. (Color online) Constrained HFB TES of 20Ne in the axial (β2, β3) plane.
The (red) full line indicates the lowest-energy path, with the arrow positioned at the
minimum of the TES. The (red) dots characterize the set of HFB states used in the
subsequent PGCM calculation. Calculations employ the N3LO χEFT Hamiltonian with
λsrg = 1.88 fm−1.

described in Ref. [140] for both energies and radii. The result of the extrapolation is also
displayed, along with its uncertainty, in Fig. 4.1.

All PGCM results presented in the following have been obtained for (~ω, emax, e3max) =
(12, 8, 14). In most of the figures shown below, these nominal values are displayed with
an error bar associated with the model space convergence obtained by adding, in the
sense explained above, the distance to the extrapolated result and the uncertainty on the
latter. Focusing again on the least favorable case, i.e. 28Ne, model-space uncertainties on
the nominal energy of the first 0+ and 2+ states are 830 keV (0.7%) and 810 keV (0.7%),
respectively, whereas the uncertainty on the ground-state charge radius is 0.02 fm (0.7%).

Furthermore, the impact of e3max has been studied by varying the truncation parameter
in the range e3max = 8− 14 for selected observables. Overall, both energies and radii are
found to be well converged with respect to e3max, with changes between e3max = 12 and 14
amounting in the least favorable cases to 2-300 keV for total binding energies and 10−3 fm
for charge radii. These uncertainties can be thus effectively incorporated in the larger ones
resulting from the infinite-basis extrapolation discussed above.

Given that model-space uncertainties tend to cancel out in excitation spectra, the
errors on the latter are typically smaller than for absolute energies. One must note that
model-space uncertainties of the nominal calculations are sub-leading compared to the
error associated with the rank-reduction of the three-nucleon interaction whose maximal
value along the Ne chain has been evaluated in Chapter 3 to be respectively 2.5% and
2.6% for the ground-state charge radius and low-lying excitation energies of 30Ne [100].

85



Chapter 4. Results: PGCM

-0.40.0 0.4 0.8 1.2
2

0.0
0.4
0.8
1.2
1.6

3

J = 1

0.0
0.4
0.8
1.2
1.6

3
J = 0 +

-0.40.0 0.4 0.8 1.2
2

J = 3

J = 2 +

-0.40.0 0.4 0.8 1.2
2

J = 5

J = 4 +

-0.40.0 0.4 0.8 1.2
2

J = 7

J = 6 +

0

3

6

9

12

15

18

21

24

En
er

gy
 [M

eV
]

MeV

Figure 4.3. (Color online) Projected HFB TES of 20Ne in the axial (β2, β3) plane for spin-
parity values Jπ = 0+, 1−, 2+, . . . , 7−. In each case, the minimum of the TES is indicated
by a (red) star. Calculations employ the N3LO χEFT Hamiltonian with λsrg = 1.88 fm−1.

4.3.2. 20Ne
The present study focuses first on the stable 20Ne isotope. This nucleus has been extensively
studied experimentally and theoretically in the past [141, 142, 143], in part because it is
one of the few nuclei displaying a strong admixture of cluster configurations in the ground
state. The ab initio description of this doubly open-shell nucleus is thus a challenge given
that it is necessary to appropriately capture both dynamical and strong static correlations.

Total energy surfaces

Figure 4.2 displays the HFB TES of 20Ne in the axial (β2, β3) plane. The energy minimum is
found for the reflection-symmetric prolate shape characterized by deformation parameters
(β2 = 0.57, β3 = 0). Still, the TES is more shallow in the octupole direction than in the
quadrupole direction such that one may anticipate octupole shape fluctuations in the
ground-state and an octupole vibration at an energy lower than the quadrupole one.
Figure 4.3 shows the PHFB TES in the axial (β2, β3) plane for spin-parity Jπ =

0+, 1−, 2+, . . . , 7−. Each HFB state is projected onto neutron and proton numbers (N,Z) =
(10, 10) using Nϕn

= Nϕp
= 7 mesh points in the interval ϕn,p ∈ [0, π]. The projection on

good angular momentum involves Nβ = 20 Euler angles in the interval ϕβ ∈ [0, π]. Static
correlations associated with symmetry restorations favor deformed configurations in both
β2 and β3 directions for both positive- and negative-parity states. The minimum of the 0+

TES is thus located at (β2 = 0.75, β3 = 0.53) and the TES is softer along both β2 and β3
directions than at the HFB level. With increasing J , the energy minimum of positive-parity
states becomes more stable but drifts to configurations with smaller multipole moments.
The minimum of the 1− TES is located at larger deformations (β2 = 0.93, β3 = 1.0) than
for 0+ TES. While the minimum also becomes more stable with increasing J , it however
remains at the same deformations.
The above results are qualitatively very similar to those obtained through relativistic
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Figure 4.4. (Color online) Collective PGCM wave-functions in the axial (β2, β3) plane
of low-lying positive- and negative-parity states. Calculations employ the N3LO χEFT
Hamiltonian with λsrg = 1.88 fm−1.

multi-reference energy density functional (MR-EDF) calculations [141, 142]. While being
also quantitatively close, the present ab initio calculation produces more rigid TES than
the EDF ones, especially on the oblate side.

Low-lying spectroscopy

Based on the PHFB states associated with the grid displayed in Fig. 4.2, a PGCM
calculation of 20Ne is performed.
Figure 4.4 displays the collective wave functions {f̆ σ̃µ (p); q ∈ set} (see App. J) of the

low-lying yrast states with positive and negative parities. Along the positive-parity band,
collective wave-functions are peaked around a reflection-symmetric prolate configuration
located at (β2 = 0.55, β3 = 0). While displaying significant shape fluctuations, in
particular along the octupole degree of freedom as expected from the TES, the collective
wave functions become increasingly concentrated with increasing angular momentum,
thus indicating a stabilization of the nuclear shape under rotation. The behavior is
different along the negative-parity band. Indeed, the wave-functions extend over a larger
range of deformations that does not decrease with J . Overall, one observes a significant
contribution of reflection-asymmetric shapes along the positive-parity and the presence
of a negative-parity band at low energy built on an octupole vibration as was already
anticipated from the HFB TES.
The low-lying spectrum corresponding to the collective wave-functions displayed in

Fig. 4.4, labelled PGCM-2D, is compared in Fig. 4.5 (panel (c)) to experimental data
(panel (e)) and to IM-NCSM results (panel (d)). Experimental excitation energies are well
reproduced by PGCM and IM-NCSM results. IM-NCSM results, which act as quasi-exact
solutions for the employed Hamiltonian, are thus reproduced by the 2D axial GCM within
their respective uncertainties. As explained earlier, the rank-reduction of the three-nucleon
force (see Sec. 4.2.2) and missing dynamical correlations (see Chapter 5) would add several
percents of uncertainties to the PGCM results, making both sets of results fully compatible.
One notices that the χEFT uncertainty at N3LO is estimated to be sub-leading compared
to many-body uncertainties in both sets of calculations. The agreement between both
theoretical spectra is remarkable given that individual PGCM energies are about 60MeV
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Figure 4.5. (Color online) Low-lying positive- and negative-parity bands in 20Ne. The
intra-band E2 transition strengths (in e2fm4) are indicated along vertical arrows whereas
a selection of E3 transition strengths (in e3fm6) are indicated along oblique lines. Panel
(a): PGCM results obtained by restricting the mixing to the quadrupole axial degree of
freedom. Panel (b): PHFB results based on the HFB configuration corresponding to the
minimum of the 0+ TES located at (β2 = 0.75, β3 = 0.53) (see Fig. 4.3). Panel (c): PGCM
results obtained using the set of points in the axial (β2, β3) plane displayed in Fig. 4.2.
Panel (d): IM-NCSM results. Panel (e): experimental data. PGCM results in panel (c)
display model-space (black box) plus χEFT (pink band) uncertainties. IM-NCSM results
in panel (d) display total many-body (black box) plus χEFT (pink band) uncertainties.
The N3LO χEFT Hamiltonian with λsrg = 1.88 fm−1 (λsrg = 2.23 fm−1) is employed in
PGCM (IM-NCSM) calculations.
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Figure 4.6. (Color online) Point matter distribution of 20Ne in the x-y plane corresponding
to three constrained HFB configurations located at (i) (β2 = 0.7, β3 = 0), (ii) (β2 = 0.7,
β3 = 0.9) and (iii) (β2 = 1.2, β3 = 1.2) in the axial (β2, β3) plane. Calculations employ
the N3LO χEFT Hamiltonian with λsrg = 1.88 fm−1.

away from the converged values due to missing dynamical correlations (see Sec. 4.3.3
along with 5 for a detailed discussion). This proves that dynamical correlations contribute
(essentially) identically to the energy of all low-lying states whereas static correlations are
essential to describe their (mostly) collective nature. While constituting the mere leading
order of the PGCM-PT expansion, the PGCM is thus, at least in the present example, well
suited in itself to describe the low-lying spectrum. Still, one expects dynamical correlations
to provide sub-leading corrections.
Electric quadrupole transition strengths within each band are decently accounted for

by the PGCM calculation, although being too large by a factor 1.1-1.6 compared to
experimental data and by a factor 2.9 compared to the reference IM-NCSM value for the
B(E2 : 2+

1 → 0+
1 ) 9. One expects missing dynamical correlations to reduce the collective

character of the states and thus to decrease the B(E2) transitions. One also notes that
relativistic MR-EDF calculations [141] produced smaller B(E2) transitions by spreading
the collective wave-functions onto the oblate side10, which does not happen here due to
the stiffer TES.

Interestingly, limiting the PGCM mixing to reflection-symmetric HFB states (panel (a))
compresses too much the positive-parity band in addition to forbidding the access to the
negative-parity one. Contrarily, reducing the approach to a PHFB calculation based on
the sole reflection-asymmetric HFB state located at the minimum of the 0+ PHFB TES
(β2 = 0.75, β3 = 0.53) spreads out the positive-parity band too much and reduces too
significantly the collectivity in the negative-parity band compared to experiment (panel
(b)). The full 2D PGCM calculation of reference is optimal and situated in between these
two limiting cases, which indicates not only the need for octupole configurations but also
for their fluctuations.

Density distributions

Point matter densities of 20Ne associated with three different HFB configurations are
displayed in the x-y plane in Fig. 4.6. The three chosen configurations correspond to
(i) the maximum of the 0+ ground-state collective wave-function (β2 = 0.7, β3 = 0),

9While IM-NCSM energies and radii are very robust, it is less clear for B(E2) values at this point in
time such that the reference should be taken with a grain of salt.

10Excitation energies of the positive parity band were however slightly worse than in the present calculation.
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Figure 4.7. (Color online) Spherical HFB, PGCM and experimental 20Ne ground-state
charge density distributions in linear (upper panel) and logarithmic (lower panel) scales.
Calculations employ the N3LO χEFT Hamiltonian with λsrg = 1.88 fm−1.
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Figure 4.8. (Color online) HFB TES of 18−32Ne in the axial (β2, β3) plane. The (red) dots
characterize in each case the set of HFB states used in the subsequent PGCM calculations.
Calculations employ the N3LO χEFT Hamiltonian with λsrg = 1.88 fm−1.

(ii) the half-maximum of the 0+ ground-state collective wave-function with the largest
octupole deformation (β2 = 0.7, β3 = 0.9) and (iii) the maximum of the 1− state collective
wave-function (β2 = 1.2, β3 = 1.2). Panels (i) and (ii) demonstrate that the ground-state
not only displays clustering but actually mixes configurations ranging from a dominant
compact α+12 C + α structure to a sub-leading quasi-16C + α structure. Panel (iii) proves
that the low-lying negative parity band is built out of a proper 16C + α cluster structure.

Of course, intrinsic cluster structures are not observable per se and can only be probed
indirectly. Still, the observable charge density distribution displays fingerprints of many-
body correlations among which are the strong static correlations associated with intrinsic
shape deformation and fluctuation. In order to illustrate this feature, the radial PGCM
charge density distribution of the 0+ ground-state is compared to experimental data
and to the charge density computed from the spherical HFB (sHFB) configuration in
Fig. 4.7. Charge density distributions with respect to the center of mass are obtained
from point-proton and point-neutron density distributions according to the procedure
described in App. I. As visible from the upper panel of Fig. 4.7, the PGCM charge density
reproduces very satisfactorily the experimental data. While it is too low in the center of
the nucleus, many-body correlations partly fill up the artificial depletion displayed at the
nuclear center by the sHFB density and suppress the latter accordingly in the interval
r ∈ [1, 2] fm. Furthermore, static correlations associated with shape deformation and
fluctuation increase the charge density distribution in the interval r ∈ [4, 5] fm to improve
the agreement with experimental data. However, and as visible in the lower panel of
Fig. 4.7, the long tail part of the PGCM density overshoots the experimental density. This
is consistent with both the too low two-neutron separation energy and the too high rms
charge radius rch discussed later on.
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Figure 4.9. (Color online) Absolute ground-state energies (upper panel) and two-neutron
separation energies (lower panel) along the Ne isotopic chain. Results from HFB, PGCM,
BMBPT and IM-NCSM calculations are compared to experimental data. The N3LO
χEFT Hamiltonian with λsrg = 1.88 fm−1 (λsrg = 2.23 fm−1) is employed in IM-NCSM
calculations. BMBPT calculations are performed with emax = 10.
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Baranger’s single-particle spectra of the 0+ ground-state in 18−32Ne. Results from spherical
HFB (left column) and PGCM (right column) calculations in the axial (β2, β3) plane are
shown. Black dots denote the last occupied orbital associated with a naive filling of the
shells. Calculations employ the N3LO χEFT Hamiltonian with λsrg = 1.88 fm−1.

4.3.3. Isotopic chain
The PGCM spectroscopic results obtained in the non-trivial 20Ne isotope are very encour-
aging. In order to deepen the analysis, the study is now extended to other Ne isotopes
and to additional observables.

Total energy surfaces

Figure 4.8 shows the evolution of the HFB TES in the axial (β2, β3) plane along the Neon
chain. The already studied 20Ne nucleus (Fig. 4.2) appears to be transitional between
18Ne, whose TES is very soft in both β2 and β3 directions, and heavier Ne isotopes that
become increasingly rigid against octupole deformation11. The quadrupole deformation
11Octupole collectivity typically builds from strong correlations between nucleons near the Fermi surface

sitting on orbitals of opposite parity and differing by three units of angular momentum ∆l = 3.
While such conditions are fulfilled for proton and neutron numbers Z,N ≈ 34, 56, 88, 134 [144], one
also expects a large softness against octupole deformation in light self-conjugate nuclei featuring an
asymmetric di-nucleus clustering, such as the 16O+α configuration of 20Ne [145, 146]. The fragmenta-
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of the prolate minimum decreases gradually to reach the spherical 30Ne isotope before
increasing again in 32Ne. At the same time, the softness against quadrupole deformation
fluctuates as the absolute prolate minimum becomes connected to a local oblate minimum
in 24−28Ne before spreading again on the prolate side in 30Ne to generate a non-zero prolate
deformation in 32Ne.

Ground-state energies

The upper panel of Fig. 4.9 displays the absolute ground-state energy along the Ne
isotopic chain. Experimental data are well reproduced by IM-NCSM calculations within
uncertainties, with the exception of 30Ne that wrongly appears less bound than 28Ne.
Overall, the results are similar, and even better, than coupled cluster calculations in the
SDT-1 approximation (CCSDT-1) performed with the ∆NNLOGO(394) Hamiltonian [92].
Strikingly, PGCM binding energies miss between 60 and 90MeVs, the difference increasing
with neutron number. The gain compared to HFB energies is small on that scale (i.e.
∼ 5 − 7MeV) and could never compensate, even with a more elaborate PGCM ansatz,
for the difference that is obviously due to missing dynamical correlations. While the
goal is to bring in these correlations within a symmetry-conserving scheme, i.e. on top
of the PGCM unperturbed state via PGCM-PT introduced Chapter 2, their effect can
already be appreciated through the results of single-reference Bogoliubov many-body
perturbation theory (BMBPT) [45, 46, 47, 53, 60] calculations performed on top of a
deformed HFB reference state12 that are displayed in Fig. 4.9. The bulk of correlations is
indeed recovered at the BMBPT(3) level, and we note that the gain in energy increases with
neutron number and therefore corrects for the overall trend at the same time. BMBPT(3)
energies are still about 7− 15MeV away from IM-NCSM and experimental values, which
is similar in magnitude to the static correlations gained via symmetry restorations and
shape fluctuations within the PGCM13. Thus the consistent “sum” of static and dynamical
correlations accessible via PGCM-PT can be expected to bring the absolute values very
close to IM-NCSM results; see Chapter 5 for a related discussion.
The lower panel of Fig. 4.9 displays two-neutron separation energies S2n to appreciate

the stability of Ne isotopes against two-neutron emission. Except for 30Ne whose S2n is
wrongly predicted to be negative, IM-NCSM results reproduce experimental data within un-
certainties, similarly to CCSDT-1 calculations with the ∆NNLOGO(394) Hamiltonian [92].
Consistently with the too flat curve in the upper panel, PGCM S2n are too low across
the chain such that the drip-line is wrongly predicted to be located at 30Ne instead of

tion of the nucleus in two symmetric or asymmetric clusters can be understood from the dynamical
symmetries of the anisotropic harmonic oscillator potential with frequencies in rational ratios [147].
Super-deformed systems are susceptible to cluster into two asymmetric (symmetric) spherical fragments
for proton and neutron numbers Z,N ≈ 2, 10, 28, 60, 110, 182 (Z,N ≈ 4, 16, 40, 80, 140). Consequently,
Ne isotopes with neutron numbers close to 8 are expected to be soft against octupole deformation, while
a competition between the development of octupole collectivity (due to protons) and the restoring force
towards a reflection-symmetric configuration (due to neutrons) makes neutron-rich Ne isotopes stiffer
against octupole deformations. The interpretation of these features in terms of molecular covalent
bonds is developed in Ref. [142].

12First results of this kind were presented in Ref. [100].
13In 20Ne, one has EBMBPT = 152.6MeV, EIM-NCSM = 162.6MeV and EPGCM − EHFB = 7.4MeV,

knowing that EEXP = 160.6MeV. It must be noted that, just as BMBPT, CCSDT-1 calculations
relying on a purely "vertical" expansion on top of a deformed mean-field state also provides slightly
underbound Ne isotopes with the ∆NNLOGO(394) Hamiltonian [92] and thus require the addition of
3-5 MeVs of static correlations associated with symmetry restoration and shape fluctuations.
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Figure 4.11. (Color online) Theoretical (HFB, PGCM, BMBPT, IM-NCSM) and ex-
perimental ground-state rms charge radius along the Neon isotopic chain. HFB and
BMBPT results correspond to the HFB minimum in the axial (β2, β3) plane. PGCM
calculations are performed over the axial (β2, β3) plane. The N3LO χEFT Hamiltonian
with λsrg = 1.88 fm−1 (λsrg = 2.23 fm−1) is employed in IM-NCSM calculations. BMBPT
calculations are performed with emax = 10.

34Ne [148]. While static collective correlations captured through PGCM have no impact on
the S2n, the comparison with IM-NCSM (or CCSDT-1) results underlines the importance
of dynamical correlations to reproduce the evolution of binding energies with neutron
number. As a matter of fact, dynamical correlations brought in at the BMBPT(3) level
correct for the wrong trend of HFB binding energies such that the S2ns become perfectly
consistent with IM-NCSM results and experimental data. Once again, there is no obvious
reason to believe that consistently correcting PGCM results for dynamical correlations
will not bring the same benefit.

To further put the binding energy evolution in perspective within our theoretical scheme,
Fig. 4.10 displays the evolution of neutron and proton (non-observable) Baranger’s spherical
shell structure [82, 149] along the Neon chain for both spherical HFB and PGCM 0+ ground
states14. The last occupied orbit associated with a naive filling of the shells is indicated
with a black dot for each isotope. One first observes that static correlations do tend to
compress the spectrum around the Fermi energy but without changing it qualitatively
here. The most important feature for the present discussion relates to the very large
gap between neutron sd and pf shells. The fact that this gap is barely compressed going
from sHFB to PGCM such that the neutron 2p3/2 remains unbound demonstrates that
cross-shell correlations in the PGCM state are insufficient to bind 32,34Ne and probably
too weak already in 28,30Ne to properly describe the physics of the island of inversion.

14Baranger’s single-particle energies embody the genuine one-body shell structure that can be extracted
from any many-body calculation [82, 149], i.e. their definition is not associated with a mean-field
approximation as the HF single-particle energies are for example.
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Ground-state rms charge radii

Figure 4.11 displays the ground-state charge rms radius in 18−32Ne. One first observes that
IM-NCSM values are similar to the ones obtained in CCSDT-1 calculations performed
with the ∆NNLOGO(394) Hamiltonian [92], i.e. they are too small below 24Ne but accurate
above it up to 28Ne, which is the last isotope in which rch is known. The overall trend is
qualitatively reproduced and the known sub-shell closure at N = 14 is nicely captured.
However, the trend predicted by the two methods differ beyond 28Ne, which would make
the measurement of rch in 30,32Ne of prime interest.

Except for 18−22Ne where octupole fluctuations are important and 24Ne, radii associated
with the HFB minimum in the axial (β2, β3) plane roughly follow the trend of IM-NCSM
(and CCSDT-1) predictions but are about 0.05 fm larger.

Compared to HFB results, PGCM systematically increases the rms charge radius by
mixing in more deformed configurations than the HFB minimum (see Figs. 4.2 and 4.4).
PGCM results overestimate experiment by ∼ 0.1 fm and IM-NCSM results by ∼ 0.2 fm all
throughout the isotopic chain even though the isotopic dependence is closer to IM-NCSM
than HFB, in particular in 18−22Ne where the inclusion of octupole shape fluctuations
improves it. Static collective correlations make PGCM largely exaggerate rms charge radii
and must be compensated for by missing dynamical correlations. Given that dynamical
correlations brought on top of the deformed mean-field increase charge radii [150], it will
be interesting to see how and why they decrease charge radii when brought on top of the
PGCM state via PGCM-PT.

Low-lying spectroscopy

Figure 4.12 displays the systematic of the first 2+ and 4+ excitation energies in 18−32Ne.
Except for the rotational character of the ground-state band in 30Ne, experimental data
are well reproduced by IM-NSCM calculations all along the isotopic chain. As for PGCM
calculations, the excellent results obtained in 20Ne do extend to 22Ne. Starting with 24Ne,
the trend of PGCM results is however at odds with IM-NCSM and experimental values.
In particular, the steep decrease of the first 2+ (4+) energy beyond 26Ne (24Ne), well
captured by IM-NCSM calculations, is absent from the PGCM results. Furthermore, the
experimental ∆E4+

1 /∆E2+

1 ratio displayed in the lower panel of Fig. 4.12 demonstrates
that the nature of the ground-state band changes brutally beyond 26Ne as one enters the
island of inversion to approach the rotational value in 30Ne. As could have been anticipated
from the evolution of the HFB TES in Fig. 4.8, this qualitative change is not captured by
PGCM calculations that predict 30Ne ground-state to be spherical.

The above discussion underlines that the ability of the PGCM to nicely reproduce the
low-lying spectroscopy of 20−22Ne cannot be naively and automatically generalized to
all nuclei. It is however unclear whether what is observed along the Ne isotopic chain
constitutes an intrinsic limitation of the PGCM ansatz, in which case all defects must be
corrected by the addition of dynamical correlations, or whether a richer PGCM ansatz
could already change the situation at play.
To investigate this question, the results of sd valence-space calculations 15 performed

with the USDB interaction [152] are reported on in Fig. 4.13. The restriction to a valence
space is meant to effectively remove, or largely suppress, the explicit role of dynamical
correlations and see if enriching the PGCM ansatz is sufficient to reach full configuration
15Valence space calculations were provided by T. R. Rodrìguez [151].
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Figure 4.12. (Color online) Low-lying spectroscopy in 18−32Ne. First ∆E2+

1 and ∆E4+

1

excitation energies (upper panel) and their ratio ∆E4+

1 /∆E2+

1 (lower panel). PGCM results
with model-space (black box) plus χEFT (pink band) uncertainties and IM-NCSM results
with total many-body (black box) plus χEFT (pink band) uncertainties are compared to
experimental data. The N3LO χEFT Hamiltonian with λsrg = 1.88 fm−1 (λsrg = 2.23 fm−1)
is employed in PGCM (IM-NCSM) calculations.
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quadrupole coordinate are compared to experimental data and to full configuration
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quadrupole coordinate.
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interaction (FCI) results [128]. To do so, the PGCM on purely axial states discussed above
is enriched via the explicit addition of triaxially-deformed HFB states. When restricted
to a small valence space around the Fermi level, the PGCM based on axial states is able
to track the exact 2+

1 excitation energy very closely all the way to the border of the sd
shell, i.e. up to 30Ne. However, the reproduction of the 4+

1 excitation energy is already
quite off in the middle of the shell such that the ∆E4+

1 /∆E2+

1 ratio does not track the
steep decrease visible in both the data and the FCI results. Enlarging the PGCM ansatz
to include triaxial states significantly improves the situation up to 24Ne, in particular by
capturing the drop of the ratio that is not described correctly in the PGCM ab initio
calculations (see Fig. 4.12). Thus, enriching the PGCM ansatz itself can help significantly
prior to resorting to an explicit account of dynamical correlations. Beyond 26Ne both sets
of PGCM calculations reproduce FCI results very well, which is somewhat anecdotal given
the smallness of the configuration space as one reaches the end the sd shell and given
that sd-shell valence space calculations based on traditional empirical interactions do not
reproduce the physics of the island of inversion anyway.

Having learnt that adding triaxiality can improve the low-lying spectroscopy of certain
isotopes, PGCM calculations of 20,24,30Ne have been extended to include this degree of
freedom into the PGCM ansatz. Corresponding results are shown in Fig. 4.14.

Starting with 20Ne, one observes that the already well reproduced spectroscopy is not
spoiled by the addition of triaxial configurations. More specifically, excitation energies are
barely modified whereas B(E2) transition strengths within both bands are decreased, in a
way that is more consistent with experimental data for the ground-state band.

In the valence-space results presented in Fig. 4.13, the addition of triaxial configurations
were mostly useful to improve the behavior of the ∆E4+

1 /∆E2+

1 ratio around mid shell. In
the ab initio calculation, the ground-state band is marginally compressed in 24Ne, moving
it slightly away from IM-NCSM results and experimental data. Correspondingly, the
∆E4+

1 /∆E2+

1 ratio is only marginally lowered from 2.78 in the axial calculation to 2.67
in the trixial one, i.e the inclusion of the trixial degree of freedom does not bring the
improvement that could be expected from valence-space calculations.

Let us now come to the most challenging 30Ne isotope located in the island of inversion.
As for the axial PGCM calculation, one first notices that the rotational behavior of the
experimental ground-state band is not reproduced by the IM-NCSM calculation. Thus,
one cannot exclude that the computed band is not the correct one, especially given that
the trend of IM-NCSM ground-state binding energies precisely presents a glitch in 30Ne as
observed earlier in Fig. 4.9. As a matter of fact, the problem of the PGCM calculation
relates to the fact that the excited intruder positive-parity band is probably the right
candidate for the ground-state band, only that it is wrongly positioned above the spherical
one. Indeed, both excitation energies with respect to the band-head and intra-band B(E2)
transitions are consistent with experimental data. This failure is consistent with the large
gap between the sd and pf shells observed in the PGCM Baranger neutron spectrum
(Fig. 4.10) that is a fingerprint of the lack of cross-shell correlations in the computed
ground-state. While incorporating full dynamical correlations must correct for this defect,
a more efficient strategy could consist in enriching the PGCM ansatz. As seen from the
lower panel of Fig. 4.14, the triaxial PGCM does compress the intruder band and lower it
slightly, but not nearly enough. At this point in time, one is thus left with two scenarios
(i) the account of missing dynamical correlations inverses the order of the two bands or (ii)
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Figure 4.14. (Color online) First two positive-parity bands in 20,24,30Ne. The E2 transition
strengths (in e2fm4) are indicated along vertical arrows. Panel (a): PGCM results obtained
using HFB configurations in the axial (β2, β3) plane. Panel (b): PGCM results obtained
adding triaxially deformed HFB configurations. Panel (c): IM-NCSM results. Panel
(d): experimental data. PGCM results in panel (a) display model-space (black box) plus
χEFT (pink band) uncertainties. IM-NCSM results in panel (c) display total many-body
(black box) plus χEFT (pink band) uncertainties. The N3LO χEFT Hamiltonian with
λsrg = 1.88 fm−1 (λsrg = 2.23 fm−1) is employed in PGCM (IM-NCSM) calculations.
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Figure 4.15. (Color online) Average neutron natural orbital occupations (including the
2j+1 degeneracy factor) for the first two PGCM 0+ states of 18−32Ne. Calculations employ
the N3LO χEFT Hamiltonian with λsrg = 1.88 fm−1.

further enriching the PGCM ansatz brings it down16, decreasing or even cancelling the
need for dynamical correlations to operate the inversion. Still, given that the IM-NCSM
ground-state band is not rotational (even within estimated uncertainties) and that the
∆E4+

1 /∆E2+

1 ratio is in fact close to the PGCM value, one must contemplate the fact that
the Hamiltonian is to be blamed, i.e. that the associated uncertainties are underestimated.

Natural orbitals average occupation

To further analyze the results displayed above, the (non-observable) average occupation of
neutron natural orbitals, i.e. the eigenvalues of the PGCM one-body density matrix, are
displayed in Fig. 4.15 for the first two 0+ states in 18−32Ne. The 28−30Ne data confirm that,
within the present theoretical calculation, the band built on the excited 0+

2 state is the
intruder band benefiting, although not enough at the strict PGCM level, from correlations
built out of particle-hole excitations into the pf shell. Contrarily, the pf natural orbitals
display zero occupation in the 0+

1 ground-state in these two isotopes belonging to the
island of inversion. Again, while enriching the PGCM ansatz can improve the situation,
adding dynamical correlations associated with explicit particle-hole excitations into the pf
shell is likely to be necessary to make the intruder band become the ground-state one.

16A preliminary study indicates that generating the Bogoliubov states via a variation after projection on
particle number (VAPPN) calculation [135] does go in the right direction but it is not sufficient to
invert the two bands per se.
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Figure 4.16. (Color online) Adaptation of the lower panel of Fig. 4.14 via the addition of
the axial PGCM results obtained from the N3LO χEFT Hamiltonian λsrg = 2.23 fm−1.

18Ne 20Ne 22Ne 24Ne 26Ne 28Ne 30Ne 32Ne
∆EJ

+

1 2+ 21.6 0.5 1.4 6.1 5.6 12.0 16.1 5.6
4+ 23.5 1.5 0.6 5.3 1.6 3.2 8.6 0.4

M1 2+ 13.6 0.1 5.9 1.2 4.2 0.5 7.2 1.6
4+ 11.3 0.0 4.5 4.5 3.2 5.0 3.7 0.3

Q2 2+ 32.6 20.2 16.6 21.5 17.8 19.0 26.8 16.4
4+ 32.9 22.9 17.5 21.2 18.3 21.1 10.0 16.6

rch 0+ 7.1 6.1 5.6 5.9 5.7 5.6 5.4 5.3

Table 4.1. Percentage of variation of selected PGCM results along the Neon isotopic
chain for λsrg ∈ [1.88, 2.23] fm−1.

SRG dependence

The above PGCM results have been obtained from the Hamiltonian characterized by
λsrg = 1.88 fm−1. Figure 4.16 illustrates the variation of the PGCM low-lying spectroscopy
in 30Ne when using λsrg = 2.23 fm−1. Softening the Hamiltonian from λsrg = 2.23 fm−1 to
λsrg = 1.88 fm−1, the PGCM spectrum is compressed, and the intruder band lowered, by
as much as what was produced by the addition of triaxial configurations.

As visible from Tab. 4.1, 30Ne is one of the two isotopes in which the sensitivity of the
spectrum is the largest, i.e. of the order of 10− 20%. Contrarily, the first 2+ and 4+ states
in 20Ne only vary by about 1% under the same modification of λsrg. Among the selected
quantities, the spectroscopic quadrupole moment appears to be the most sensitive one,
with variations of the order of 20% throughout the isotopic chain. It will be of interest
to investigate how much these variations are tamed down by the inclusion of dynamical
correlations on top of PGCM.

Spectroscopic observables

A last set of spectroscopic quantities are displayed in Fig. 4.17. As visible from the
upper panel, the situation for the B(E2 : 2+

1 → 0+
1 ) is similar to the one encountered for
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in 30Ne. Middle panel: spectroscopic electric quadrupole moment of the first 2+ state.
Lower panel: spectroscopic magnetic dipole moment of the first 2+ and 4+ states. PGCM
calculations are performed in the axial (β2, β3) plane. The N3LO χEFT Hamiltonian with
λsrg = 1.88 fm−1 (λsrg = 2.23 fm−1) is employed in PGCM (IM-NCSM) calculations.
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rms charge radii earlier on. IM-NCSM transition probabilities are too small below 24Ne,
accurate between 24Ne and 28Ne and quite far off in 30Ne even though the experimental error
bar are large. Contrarily, the collective character of the PGCM makes the B(E2 : 2+

1 → 0+
1 )

to be well reproduced below 24Ne and overestimated between 24Ne and 28Ne. In 30Ne,
the E2 transition is again too small because the first band does not correspond to the
experimental one. As visible from the added point on the figure, the B(E2 : 2+

2 → 0+
2 ) of

the intruder band is in better agreement with the experimental value.
In the middle panel, the PGCM spectroscopic quadrupole moment of the first 2+ state

reproduces well experimental data in 20,22Ne, confirming once more the adequacy of the
PGCM description of these two nuclei. PGCM results differ from IM-NCSM values that
are too small, probably due to a lack of collective character. Last but not least, the
PGCM spectroscopic dipole moment of the first 2+ and 4+ nicely account for the available
experimental data in 20,22Ne.
Accessing experimental electromagnetic moments in more neutron-rich isotopes would

allow one to better investigate the consistency of the picture that emerges from our
theoretical study and would thus be welcome in the future.

4.4. Discussion
This chapter proposed an extensive ab initio study of neon isotopes based on projected
generator coordinate method calculations, in comparison with IM-NCSM. The main
conclusion is that, in spite of missing so-called dynamical correlations, PGCM is shown to
be a suitable ab initio method to address the low-lying spectroscopy of complex nuclei
within theoretical uncertainties. For instance, the energy spectrum and electric multipole
transition strengths of the low-lying parity-doublet bands in 20Ne are reproduced by taking
into account the effect of dynamical octupole fluctuations.
Still, describing absolute binding energies, accounting consistently for a wide range of

spectroscopic observables, tackling many nuclei displaying different characteristics and
achieving high accuracy, eventually requires the inclusion of dynamical correlations on
top of the PGCM. In fact, certain salient features, such as the physics of the island of
inversion around 30Ne, require this inclusion from the outset to achieve a qualitatively
correct description. This incorporation is now possible thanks to the novel multi-reference
perturbation theory (PGCM-PT) formulated in Chapter 2. The first PGCM-PT results
are presented in the following chapter. The key question behind the present work and the
associated many-body developments regards the optimal way to consistently incorporate
static and dynamical correlations in view of describing complex nuclei. We are only at
the beginning of this journey, hence finding this optimal strategy will require time and a
significant amount of trial-and-error. Chapter 5 represents a first step in this direction.
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5.1. Introduction
As explained in the introduction of Chapter 2 a key challenge in nuclear many-body
theories regards the optimal way to consistently capture both static and dynamical
correlations within expansion methods. While doubly closed-shell nuclei are dominated
by (weak) dynamical correlations, efficiently captured through a coherent sum of (mostly
low-rank) particle-hole excitations of a symmetry-conserving unperturbed product state,
open-shell nuclei display strong static correlations that cannot be conveniently accounted
for in this way. This makes it necessary to design expansion methods based on more
general unperturbed states that can already capture static correlations. The corresponding
rationale was schematically illustrated in Fig. 2.1.
A good candidate to provide appropriate unperturbed states is the PGCM. The main

conclusion of Chapter 4 is that the PGCM is suitable to address the low-lying spectroscopy
of complex nuclei within reasonable theoretical uncertainties in spite of missing dynamical
correlations. For instance, the energy spectrum and electric multipole transition strengths
of the low-lying parity-doublet bands in 20Ne were reproduced by taking into account both
quadrupole and octupole collective fluctuations.
Still, describing absolute binding energies, accounting consistently for a wide range of

spectroscopic observables, tackling a large class of nuclei displaying different characteristics
and achieving high accuracy eventually requires the inclusion of dynamical correlations
on top of the PGCM. This coherent incorporation is now possible thanks to the novel
multi-reference perturbation theory (PGCM-PT) formulated in Chapter 2 that embeds
the PGCM within a systematic symmetry-conserving expansion method.
The objective of the present chapter is to discuss first proof-of-principle results of

second-order PGCM-PT, i.e. PGCM-PT(2), calculations in three selected nuclei, i.e. the
doubly closed-shell 16O, the singly open-shell 18O and the doubly open-shell 20Ne that was
studied at length at the PGCM level in Chapter 4.
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Figure 5.1. (color online) Schematic workflow of expansion many-body methods (vertical
axis) versus potential pre-processings of the Hamiltonian (horizontal axis). Unitary vacuum
(in-medium) similarity renormalization group transformations denote a nucleus-independent
(nucleus-dependent) pre-processing of the Hamiltonian.

In addition to displaying the first set of PGCM-PT(2) results, the goal of the present
work is to do so while exploiting an additional degree of freedom at our disposal in
quantum many-body calculations, i.e. the possible pre-processing of the Hamiltonian via,
e.g., in-medium (nucleus-dependent) unitary similarity renormalization group (IMSRG)
transformations. While the nucleus-independent pre-processing of the Hamiltonian via
vacuum unitary similarity renormalization group (VSRG) transformations has already
become a standard tool to pre-sum UV dynamical correlations via a decoupling of a
low-energy subspace from higher momentum modes, nucleus-dependent transformations
can be exploited more systematically to pre-sum IR dynamical correlations.

The single-reference IMSRG (SR-IMSRG) method [34] applicable to closed-shell systems
can fully decouple the unperturbed product state from the rest of the Hilbert space,
i.e. from the Q space, and thereby make it the actual ground-state of the pre-processed
Hamiltonian at the end of the flow. In this case, the wave operator eventually becomes
nothing but the identity operator and the expansion method is trivial. The more general
multi-reference IMSRG (MR-IMSRG) method [57] applicable to all nuclei does not fully
decouple the unperturbed state from the associated Q space such that non-zero dynamical
correlations remain to be included via a non-trivial, e.g. PGCM-PT, wave operator. While
quite negligible on absolute energies, these remaining dynamical correlations will be shown
to be mandatory to describe low-lying excitation spectra.
Eventually, a clear picture will emerge that is schematically illustrated in Fig. 5.1

(generalizing Fig. 2.1). Three complementary levers must be consistently exploited to
efficiently capture correlations within expansion many-body methods in order to describe
(complex) nuclei
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1. the pre-processing of the Hamiltonian,

2. the possibly non-trivial nature of the unperturbed state,

3. the rationale of the expansion.

While each lever is best suited to capture a certain category of correlations, the latter
are not orthogonal such that the ideal way to share the load is unclear and will require
extensive trial-and-error in the future. The present work wishes to contribute to this
(probably) long-term endeavor.

The present chapter is organized as follows. Section 5.2.1 details the results obtained
in 16O, 18O and 20Ne on the basis of (the two-body part of) a chiral effective field theory
(χEFT) Hamiltonian pre-processed via VSRG. Section 5.2.2 then elaborates on the impact
of further pre-processing the Hamiltonian via MR-IMSRG transformations on the results.
The conclusion of the present chapter are provided in Sec. 5.3. Apps. L, M, N and O are
directly completing this chapter with details on the numerical resolution.

5.2. Many-body calculations
The reader is referred to Chapter 2 for all necessary details about the PGCM-PT formalism
as well as to Refs. [22, 111, 112] and Refs. [37, 129, 153] for vacuum and in-medium IMSRG
methods, respectively. The PGCM-PT(2) solver is built on top of an axially-deformed
Hartree Fock Bogoliubov (HFB) code and a consistent PGCM solver (see App. P) allowing
for the projections on good particle number, angular momentum and parity.

5.2.1. VSRG pre-processing
Proof-of-principle calculations are performed using the spherical harmonic oscillator (HO)
basis of the one-body Hilbert space H1 characterized by an oscillator frequency ~ω =
20 MeV and 5 oscillator shells (emax = 4).

The next-to-next-to-next-to-leading (N3LO) χEFT Hamiltonian introduced in Ref. [130]
and evolved via VSRG to the low-momentum resolution scale λvsrg = 1.88 fm−1 is employed.
Thus, UV dynamical correlations are already processed via the VSRG decoupling of low-
and high-momentum modes.
In these proof-of-principle calculations, only the two-body part of the evolved Hamil-

tonian is actually retained. Thus, the goal is not to reproduce experimental data but
rather to benchmark PGCM-PT(2) results against those obtained from Full Configuration
Interaction (FCI) calculations in the same emax = 4 space. The FCI calculations rely on a
sequence of Nmax-truncated spaces up to Nmax = 8 embedded into the emax = 4 space 1.
The results are extrapolated to the full emax = 4 model space limit such that FCI results
come with an uncertainty associated with this extrapolation2.

Additional many-body methods are also included for comparisons. First, the sub-cases
of PGCM and PGCM-PT obtained by only using one "seed" HFB state, i.e. omitting
the GCM part of the calculation, are considered and referred to as PHFB and PHFB-
PT methods. The case where the projection part is further omitted is utilized as well.

1FCI results are provided by R. Roth [138].
2The uncertainties on excitation energies do not originate from this extrapolation but are taken from the
difference between the results obtained for the largest Nmax = 8 and the smallest space. Excitation
energies are more accurate than absolute ones because they converge faster with Nmax.
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This single-reference limit of PGCM-PT has been formally elaborated on in Chapter 2
and denotes a symmetry-breaking scheme in case the seed state (i.e. the unperturbed
state in this case), is itself symmetry breaking. This limit will be also compared to the
standard single-reference symmetry-breaking Bogoliubov many-body perturbation theory
(BMBPT) [45, 46, 47, 53, 60] (see App. E for details).

In the present section, three nuclei of increasing complexity are studied. In each case, a
different collective coordinate q is employed at the constrained HFB (cHFB) level and for
the subsequent GCM mixing. The characteristics of the associated mean-field, PGCM
and PGCM-PT calculations are:

1. Doubly closed-shell 16O:
• spherically-symmetric Hartree-Fock (HF) states,
• constraint on the root-mean-square (rms) matter radius (q ≡ rrms),
• no symmetry projection is needed.

2. Singly open-shell 18O:
• spherically-symmetric HFB states,
• constraint on the pairing gap (q ≡ δ [105]),
• projection of neutron number N is performed.

3. Doubly open-shell 20Ne:
• axially-deformed HFB states,
• constraint on the axial quadrupole moment (q ≡ q20),
• projections on good angular momentum J are performed (for the deformations

considered in the present chapter, 20Ne does not spontaneously break particle
number symmetry at mean-field level, and projection on N and Z is trivial).

16O

In doubly closed-shell systems, the mean-field solution is nothing but a spherical HF state.
Since the rms radius operator employed to perform constrained calculations commutes
with the total angular momentum J2, all mean-field states involved in the 16O calculation
carry good symmetry quantum numbers and no symmetry projection is necessary in the
subsequent PGCM and PGCM-PT calculations, hence we simply refer to them as GCM
and GCM-PT, respectively.
The ground-state total energy curves (TECs) of 16O are displayed in Fig. 5.2 as a

function of the rms radius rrms of the (underlying) HF vacua. One first observes that
cHF and GCM results are underbound compared to FCI by about 20MeV (12%), missing
significant IR dynamical correlations. In the present case, the GCM3 adds essentially
no energy to the HF minimum (i.e. 165 keV), which signals that static IR collective
correlations are marginal in such a doubly closed-shell nucleus.
Given the negligible character of static correlations, 16O acts as a good benchmark for

the (P)GCM-PT formalism. First, its single-reference reduction HF-PT(2) is, as formally
demonstrated in Chapter 2, identical to canonical MBPT(2), i.e. Møller-Plesset MBPT

3The GCM and GCM-PT(2) calculations are presently performed on the basis of the five cHF states
visible on the TEC.
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5.2. Many-body calculations

Figure 5.2. (Color online) Ground-state energy of 16O as a function of rrms of the
(underlying) HF vacua. Calculations are performed with ~ω = 20 MeV and emax = 4 as
well as with the two-body part of the N3LO χEFT Hamiltonian evolved to λvsrg = 1.88 fm−1.
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Figure 5.3. (Color online) Upper panel: collective ground-state GCM wave-function
probability distribution (|f̆ 0+

1 (rrms)|2) in 16O as a function of the rms radius of the un-
derlying HF vacua. Lower panel: contributions to GCM (e(0+1)

0 (rrms)) and GCM-PT(2)
(e(2)
S (rrms) + e

(2)
S (rrms)) ground-state energies as a function of rrms. GCM-PT(2) contri-

butions are split into single (one-particle/one-hole) and double (two-particle/two-hole)
excitations. Calculations are performed with ~ω = 20 MeV and emax = 4 as well as with
the two-body part of the N3LO χEFT Hamiltonian evolved to λvsrg = 1.88 fm−1.

based on the unconstrained HF solution at the minimum of the TEC. While the respective
partitionings of the Hamiltonian provide slightly different results away from the minimum
of the HF TEC, they are qualitatively and quantitatively similar. The minima of the two
TECs are close to the FCI result. However, perturbation theories are not variational such
that it is difficult to argue that these values are to be preferred to canonical ones. As
a matter of fact MBPT(3) (not shown) does not flatten the curve in the vicinity of the
lowest MBPT(2) value4.
Focusing on the canonical point, one observes that GCM-PT(2) is consistent with

MBPT(2)/HF-PT(2), i.e. it only adds 146 keV static correlation energy. This consistency
constitutes a validation of GCM-PT(2) knowing that it is formally very different from
MBPT(2) and relies on a completely different numerical procedure as can be appreciated
from the details given in App. M and N.

Furthermore, this consistency sheds some light on single-reference MBPT(2)/HF-PT(2)
results. The upper panel of Fig. 5.3 shows that, while the GCM ground-state collective
wave-function spreads over a large interval of rrms values due to nuclear-size fluctuations,
the Hamiltonian dictates that the contributions to the left of the HF minimum, i.e. for

4MBPT(2) and MBPT(3) energies are more consistent between each other in the vicinity of the canonical
point than away from it, indicating some empirical sign of convergence (although convergence of
perturbation theory cannot be inferred from lowest orders). This encourages us to prefer the canonical
values at this point.
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q < rrms = 2.03 fm, dominate it. From the energetic viewpoint, the lower panel of Fig. 5.3,
which shows the decomposition5 of the GCM energy as a function of rrms, demonstrates that
the largest contributions originate from configurations centered around the HF minimum.
Next6, the lower panel also illustrates that the physically-informed weights in the GCM
unperturbed state propagate to GCM-PT(2) such that configurations around the HF
minimum contribute the most to the second-order correction whereas those associated with
the lowest MBPT(2)/HF-PT(2) values around rrms ∈ [2.1, 2.2] fm are largely subleading.
Eventually, the total GCM-PT(2) energy is nearly identical to canonical MBPT(2)/HF-
PT(2) results. This definitely gives more credit to low-order MBPT(2)/HF-PT(2) energies
obtained at the canonical point than to those obtained at smaller and larger values of rrms.
Interestingly, one also observes that the GCM-PT(2) energy correction is dominated by
double (two-particle/two-hole) excitations given that the energy contribution of single
(one-particle/one-hole) excitations is negligible at all values of rrms. While this feature
can be expected at the canonical point given that single excitations do not contribute to
MBPT(2)/HF-PT(2)7, it is not obviously the case away from it.
Eventually, the GCM-PT(2) binding energy is 0.8% away from the FCI result. A

common theme throughout the chapter regards the best way to go to even greater accuracy.
At this point, one can either hope to enrich the PGCM unperturbed state by selecting a
potentially pertinent additional collective coordinate q and/or go to PGCM-PT(3)8. An
additional degree of freedom to achieve such a goal will be introduced in Sec. 5.2.2.

18O

The singly open-shell 18O constitutes the first nucleus in which static correlations are
expected to be significant. In this particular case, static correlations relate to superfluidity
and thus translate first into the spontaneous breaking of the U(1) global-gauge symmetry
associated with particle number conservation at the HFB level. Correspondingly, the
pairing gap operator is used there as a constraint to vary the amount of pairing correlations
in the HFB seeds [105]. As a next step, further static correlations are captured via the
restoration of good neutron number and the inclusion of pairing fluctuations through the
PGCM.
The ground-state TECs of 18O are displayed in Fig. 5.4 as a function of the pairing

constraint9 δ of the (underlying) HFB vacua. While the PHFB TEC follows the HFB
one, it is less bound, e.g. by 1.2MeV at the canonical point. The fact that the particle-
number projection after variation (PNPAV) decreases the binding reflects the fact that
the distribution of particle numbers in the HFB state around the average is distorted
towards heavier systems. In the next step, the GCM mixing associated with the inclusion
of pairing fluctuations provide negligible correlation energy compared to the PNPAV that
provides the essential IR static correlations.

Similarly to 16O, PGCM strongly underbinds the FCI result by about 25MeV (∼ 13%),
5The PGCM collective wave function and the contribution of each value of the collective coordinate
e

(0+1)
0 (rrms) to the PGCM energy are introduced in App. J.

6The decomposition of the PGCM-PT(2) correlation energy is provided in Eq. (2.56).
7This a consequence of Brillouin theorem, inducing a decoupling between the reference state and singles
excitations at the canonical point.

8The derivation and implementation of the third order being much more intricate (see for example [154],
going to the next order in perturbation is probably not the right way to improve the results at this
point.

9By definition δ = 1 corresponds to the canonical, i.e. unconstrained, HFB solution.
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Figure 5.4. Ground-state energy of 18O as a function of the pairing constraint δ calculated
from various many-body methods with ~ω = 20 MeV and emax = 4. The two-body part of
the N3LO χEFT Hamiltonian evolved to λvsrg = 1.88 fm−1 is employed.

thus missing significant IR dynamical correlations. While formally not identical to canonical
BMBPT(2), the single-reference reduction of PGCM-PT(2), here denoted by HFB-PT(2),
capture dynamical correlations on top of HFB. Results of both methods are very similar
and they agree with FCI within uncertainties.
While impressive, this close agreement is accidental and somewhat spurious. Indeed,

PHFB-PT(2), which actually corrects for the U(1) breaking of HFB-PT(2), pushes the
energy up by about 1.5MeV away from the FCI result at the canonical point. This
number is close to the difference between HFB and PHFB mentioned above. This is
the first example that demonstrates the impact of exactly restoring symmetries within
(perturbative) expansion methods. Adding the GCM mixing into the unperturbed state, the
PGCM-PT(2) result remains consistent with canonical PHFB-PT(2) within uncertainties.

Going away from the canonical point, BMBPT(2) and HFB-PT(2) differ. This behavior
reflects the different nature of the partitionings used by both expansions, which is magnified
when we move away from the canonical point. At the same time, PHFB-PT(2) becomes
less (more) bound than PGCM-PT(2) as δ becomes smaller (greater) than 1. Once again,
these behaviors do not instill trust in perturbative results away from the canonical point.
Thankfully, PGCM-PT(2) is better controlled given that the configurations associated
with different values of the collective coordinate δ enter the unperturbed PGCM state with
weights dictated by the physical Hamiltonian. As shown in Fig. 5.5, the collective PGCM
wave-function spreads significantly on both sides of the canonical point with a maximum
located to the left of it (δ = 0.7 < 1). While the decomposition of the PGCM energy
reflects this distribution, the second-order correction is flatter with δ but also favors values
smaller than 1. Eventually, the PGCM-PT(2) binding energy is very close to the canonical
PHFB-PT(2) energy and lies 1.5MeV (0.8%) above the FCI result.
Still, PGCM-PT(2) and PHFB-PT(2) results carry error bars associated with the

approximate solution of the linear system at play in the formalism (see Eq. (2.53)).
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Figure 5.5. (Color online) Upper panel: collective ground-state PGCM wave-function
probability distribution (|f̆ 0+

1 (δ)|2) in 18O as a function of the pairing constraint δ charac-
terizing the underlying HFB vacua. Lower panel: contributions to the PGCM (e(0+1)

0 (δ))
ground-state energy and to the PGCM-PT(2) (e(2)

S (δ) + e
(2)
S (δ)) correlation energy. The

latter is split into single (two quasi-particle) and double (four quasi-particle) contributions.
Calculations are performed with ~ω = 20 MeV and emax = 4, using the two-body part of
the N3LO χEFT Hamiltonian evolved to λvsrg = 1.88 fm−1.
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Figure 5.6. Ground-state energy of 20Ne as a function of the axial quadrupole deformation
β2 of the (underlying) HFB states. Calculations are performed with ~ω = 20 MeV
and emax = 4 using the two-body part of the N3LO χEFT Hamiltonian evolved to
λvsrg = 1.88 fm−1.

Due to to its large dimension, this linear system is solved iteratively as discussed in
App. M, inducing a precision uncertainty evaluated through Eq. (M.19). This resolution is
potentially further impacted by linear redundancies and intruder problems that are dealt
with via the simultaneous use of a norm preconditioning and a complex shift γ as detailed
in Apps. M.5.3 and N, respectively. While increasing the precision, the use of an overly too
large complex shift may degrade the accuracy by generating a bias in the extracted value.

In 18O, which qualifies as a difficult case, the iterative procedure can be converged
in a stable fashion with a complex shift γ = 10MeV, eventually leading to a ±0.3MeV
precision on the PGCM-PT(2) energy10 that is visualized by a band in Fig. 5.4. While the
central value reported in Fig. 5.4 is obtained for γ = 10MeV, the bias (not reported on the
figure) due to this complex shift pushes the PGCM-PT(2) energy up by about 1MeV11,
and therefore causes a significant fraction of the 1.5MeV (0.8%) disagreement with the
FCI result.

10The precision on the PHFB-PT(2) is better (±0.1MeV) thanks to the lower dimension and the near
diagonal character of the linear system.

11This bias is estimated by varying the shift over the interval γ ∈ [5, 15]MeV.
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Figure 5.7. (Color online) Upper panel: collective ground-state PGCM wave-function
probability distribution (|f̆ 0+

1 (β2)|2) in 20Ne as a function of the axial quadrupole de-
formation (β2) of the underlying HFB vacua. Lower panel: contributions to PGCM
(e(0+1)

0 (β2)) and PGCM-PT(2) (e(2)
S (β2) + e

(2)
S (β2)) ground-state energies as a function of

the axial quadrupole deformation (β2) of the underlying HFB vacua. The PGCM-PT(2)
contributions are split into singles (two quasi-particle) and doubles (four quasi-particle)
contributions. Calculations are performed with ~ω = 20 MeV and emax = 4 using the
two-body part of the N3LO χEFT Hamiltonian evolved to λvsrg = 1.88 fm−1.

20Ne

The doubly open-shell 20Ne displays strong static correlations that manifest first through the
breaking of SU(2) rotational symmetry associated with angular momentum conservation at
the HFB level. Accordingly, the axial quadrupole moment operator is used as a constraint
to vary the deformation of the HFB seeds. As a next step, further static correlations are
captured via the restoration of angular momentum and the inclusion of shape fluctuations
through the PGCM. As demonstrated in Chapter 4, 20Ne strongly benefits from breaking
and restoring parity as well as from including octupole shape fluctuations. Still, the present
calculations are restricted to axial quadrupole deformation, thus leaving some room for
further improvement in the future. While U(1) global gauge symmetry is also allowed to
break spontaneously, it does not do so with the presently employed Hamiltonian such that
all mean-field states actually reduce to (deformed) HF Slater determinants.
The ground-state TECs of 20Ne are displayed in Fig. 5.6 as a function of the axial

quadrupole deformation β2 of the (underlying) HFB vacua. One first observes that the
projection on J provides a significant energy gain of 5.5MeV and moves the minimum
of the PHFB TEC to larger deformation (β2 = 0.35) than the canonical HFB minimum
(β2 = 0.3). The GCM mixing only adds 80 keV correlation energy given that the TEC
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is rather stiff along the axial quadrupole direction12. Once again, static correlations are
dominated by the symmetry restoration. Having included essential static correlations, the
PGCM energy is still 21.7MeV (10%) away from the FCI result, and misses significant
dynamical correlations.
Stepping back to canonical HFB and adding dynamical correlations via BMBPT(2)13

lowers the energy by 24.6MeV, yelding a result that is 2.6MeV (1.2%) underbound
compared to FCI14.

On the other hand, starting from the PHFB TEC and adding dynamical correlations via
PHFB-PT(2) reduces the energy by 25.1/24.9/25.7MeV at the HFB/PHFB/PHFB-PT(2)
minimum, overshooting the FCI result by about 2.5/3.2/3.4MeV (1.2/1.5/1.6%). While the
difference between BMBPT(2) and PHFB-PT(2) TECs is similar to the difference between
HFB and PHFB TECs, one observes that a consistent angular-momentum restoration
favors larger deformations when adding dynamical correlations.

The mixing of quadrupole shapes in PGCM-PT(2) only adds 310 keV to the PHFB-PT(2)
minimum. The PGCM-PT(2) result keeps a close memory of the PHFB-PT(2) minimum
(β2 = 0.4) rather than the PHFB-PT(2) value at the canonical HFB minimum (β2 = 0.3).
All in all, the PGCM-PT(2) energy15 overshoots FCI by 1.7%, and we keep in mind that
this result is expected to improve via the inclusion of the octupole degree of freedom into
the PGCM16.

In order to further analyse the theoretical content of the above results, Fig. 5.7 shows that
the collective ground-state PGCM wave-function and the associated energy contributions
are distributed rather symmetrically around the Jπ = 0+ PHFB minimum (β2 = 0.35) of
the TEC visible in Fig. 5.6 and spread over a large interval of β2 values. Interestingly,
dynamical correlations captured via PGCM-PT(2) favor configurations17 to the left of the
HFB minimum (β2 = [0.25, 0.30]). As a result, dynamical correlations could counterbalance
the overestimated radii obtained at the PGCM level (see Fig. 4.11) due to the opposite
predilection of the latter for deformations larger than the HFB minimum. This interesting
and non-trivial finding will have to be confirmed by an explicit calculation of rms radii at
the PGCM-PT(2) level in the future.
In addition to providing accurate absolute energies in complex systems, e.g. in doubly

open-shell nuclei displaying strong collective static correlations, a key advantage of the
multi-reference PGCM-PT formalism over BMBPT is that it naturally gives access to the
low-lying spectroscopy within a symmetry-conserving scheme by correcting each PGCM
eigenstate for dynamical correlations.

The first 2+ and 4+ excitation energies in 20Ne are shown in Fig. 5.8 as a function of the
axial quadrupole deformation. First, one observes that the PGCM 2+

1 and 4+
1 excitation

energies are 300 keV (27%) and 560 keV (13%) away from FCI results, respectively. This is
consistent with the results displayed in Chapter 4. One also sees that PHFB results at
12As shown in Chapter 4, the energy is softer against axial octupole deformations.
13Canonical BMBPT(2) is the closest point to FCI along the TEC in the present example.
14Note that canonical BMBPT(3) only provides an extra 0.3MeV correlation energy compared to canonical

BMBPT(2).
15Present PGCM-PT(2) and PHFB-PT(2) results were obtained with a complex shift γ = 15MeV. The

precision error associated with the solving of the linear system is materialized by the error band in
Fig. N.3.

16The important role of octupolarity in the description of 20Ne has been shown in Chapter 4. However,
it is hoped for but not guaranteed that PGCM-PT(2) energy will go up with the inclusion of these
correlations.

17Once again, single excitations bring negligible contributions to the correlation energy.
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Figure 5.9. Absolute energies of the first 0+, 2+ and 4+ states in 20Ne computed via
PGCM, PGCM-PT(2) and FCI. Calculations are performed with ~ω = 20 MeV and
emax = 4 as well as with the two-body part of the N3LO χEFT Hamiltonian evolved to
λvsrg = 1.88 fm−1.
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the canonical deformation (β2 = 0.3) are very close to PGCM ones but diverge away from
them when going towards smaller or large deformations. Adding dynamical correlations,
PHFB-PT(2) flattens the excitation energies as a function of β2 compared to PHFB,
systematically going into the direction of PGCM-PT(2) for each deformation. Given that
exact results would be independent of the deformation of the underlying vacuum, this
feature is an empirical sign that PHFB-PT(2) results are better converged than PGCM
ones. It also implies that the PGCM-PT(2) spectrum converges with fewer states than
via the PGCM. Still, at the canonical deformation (β2 = 0.3), dynamical correlations are
small, which remains true when adding shape mixing given, that PGCM-PT(2) excitation
energies are essentially identical to PGCM ones.
Overall, the PGCM-PT(2) 2+

1 and 4+
1 excitation energies are differ by 24% and 15%

away from FCI results respectively, which seems to indicate that missing correlations are
beyond two-particle/two-hole excitations of axially deformed HF states. While going to
PGCM-PT(3) will help, it might be numerically less costly and more relevant in this case
to enrich the PGCM unperturbed state via, e.g., the inclusion of octupole, triaxial and/or
pairing degrees of freedom, or to start from HFB states obtained via a variation after
particle-number-projection (VAPNP) calculation in order to compress the spectrum. Of
course, one could also envision to design a non-perturbative extension of the multi-reference
PGCM-PT formalism in the future to more efficiently capture higher-rank particle-hole
excitations (see for example [155])

Eventually, previous results are summarized in Fig. 5.9 where the combined benefits of
PGCM-PT is clearly apparent. Although a slight overbinding of about 3MeV (∼ 1.5%) is
observed, PGCM-PT(2) brings down absolute energies to the right range of values without
degrading their relative position. Since the PGCM-PT formalism is state specific, i.e. the
calculation is performed separately on top of each PGCM eigenstate, the latter feature is
far from trivial considering that each PGCM energy is corrected by about 25MeV while
their relative distance is on the MeV scale. In particular, the (non-trivial) numerical
techniques used to solve the PGCM-PT(2) equations must be well controlled to maintain
the consistency of the spectra. For example, it is essential to use the same complex shift γ
for all states belonging to a given nucleus in order for the bias on absolute energies to be
consistent and to largely cancel out in the excitation spectrum.

5.2.2. VSRG+MR-IMSRG pre-processing
In the second part, PGCM-PT(2) calculations are performed in a larger model space with
emax = 6. The Hamiltonian introduced in Ref. [156] characterized by λvsrg = 1.8 fm−1

and containing both two- and three-nucleon interactions is employed. The Hamiltonian is
further pre-processed via the MR-IMSRG18 unitary transformation based on the canonical
PHFB state and the MR-IMSRG(2) truncation scheme [37, 129, 153]. The MR-IMSRG
transformation is parametrized by the flow parameter s ∈ [0, 20], where 0 means that no
transformation is applied. In closed-shell nuclei (not shown here), the PHFB reference
state reduces to a spherically invariant Slater determinant such that MR-IMSRG is nothing
but the simpler SR-IMSRG method. In this case, pushing the transformation to s =∞
(s large in practice) leads to a complete resummation of dynamical correlations into the
pre-processed Hamiltonian such that the unperturbed Slater determinant becomes its
exact ground state, i.e. no further correlations need to be further added. While dynamical
correlations are largely resummed in open-shell nuclei via the MR-IMSRG pre-processing,
18MR-IMSRG evolved matrix elements were provided by H. Hergert [157].
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Figure 5.10. (Color online) Absolute binding energy of 18O as a function of the flow pa-
rameter s associated with the MR-IMSRG pre-processing of the Hamiltonian. Calculations
are performed with ~ω = 16MeV and emax = 6.

the decoupling of the reference state cannot be complete such that an additional step is
always needed to grasp the remaining correlations as illustrated below.

18O

The absolute binding energy of 18O is displayed in Fig. 5.10 as a function of s. Due to the
need of PNPAV in 18O, the number of single and double excitations of the HFB vacuum
required to perform a PHFB-PT(2) calculation is already very large (1000000 states) for
emax = 6. The numerical implementation will be further optimized in the future, but in the
meantime we speed up the calculation by discarding some configurations based on their
norm, as specified in App. O. For the same reason, only PHFB-PT(2) calculations on top
of the spherical 18O canonical HFB vacuum have been performed, leaving a PGCM-PT(2)
calculation for the future.
In spite of the change of model space and Hamiltonian, the situation encountered at

s = 0 is qualitatively similar to the one discussed in Sec. 5.2.1. Indeed, while HFB
and PHFB are largely underbound, BMBPT(2) and PHFB-PT(2) bring in the dominant
fraction of dynamical correlations19, with BMBPT(3) adding an extra 2MeV. Switching
on the MR-IMSRG pre-processing, HFB and PHFB energies drop dramatically for small
values of s and flatten out very quickly beyond s = 1. At the same time, BMBPT(2),
19Contrarily to the results obtained in Sec. 5.2.1 with a two-body interaction only and emax = 4, PHFB-

PT(2) is very close to BMBPT(2) at s = 0. At the same time, the contribution of BMBPT(3) is
enlarged.
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Figure 5.11. (Color online) Correlation energy, i.e. difference to the canonical HFB result,
in 18O as a function of the flow parameter s associated with the MR-IMSRG pre-processing
of the Hamiltonian. Calculations are performed with ~ω = 16MeV and emax = 6.

PHFB-PT(2) and BMBPT(3) also drop towards a similar value, about 1.5MeV below
the original BMBPT(3) result, which happens to be also similar to the PHFB value.
Eventually, PHFB-PT(2) is about 4MeV (2.9%) away from experiment. No convergence
analysis as a function of the model space has been performed and reaching a converged
absolute binding energy clearly requires (an extrapolation to) a larger model space.
To better appreciate the impact of the MR-IMSRG evolution, the correlation energy,

i.e. the difference to the HFB result, is shown in Fig. 5.11. Having already absorbed
the bulk of dynamical correlations, pre-processed Hamiltonians become more and more
perturbative with increasing s such that BMBPT(2,3) and PHFB-PT(2) corrections
become less important with the flow, i.e. one goes from 38.8MeV and 36.2MeV for
BMBPT(3) and PHFB-PT(2) at s = 0 to 288 keV and 369 keV at s = 10, respectively,
with an inversion of both results. At the same time, the particle number projection that is
repulsive at s = 0 (−394 keV) brings in additional binding for s ≥ 1 (+327 keV at s = 10).
The above results demonstrate that correlations are reshuffled through the flow, such that
the importance of dynamical correlations is strongly reduced whereas static correlations
are magnified.
Dynamical correlations brought on top of PHFB via PHFB-PT(2)20 becomes as small

as 42 keV at s = 10. Thus, the PHFB state used as a reference for the MR-IMSRG
pre-processing is, for all practical purposes, decoupled from the Q space at the end of
the transformation in the present calculation. Although the decoupling cannot be exact

20The numerical solution of the PHFB-PT(2) linear system is very stable in the present example such that
a small complex shift (γ = 1MeV) can be used safely. The precision error on PHFB-PT(2) energies is
essentially invisible in Fig. 5.11 whereas the bias generated for γ = 1MeV is negligible compared to
the 42 keV difference between PHFB and PHFB-PT(2) energies at s = 10.
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in principle, 18O behaves similarly to a closed-shell nucleus such that the dynamical
correlations left to be captured after PNPAV are very small.

20Ne

The doubly open-shell 20Ne constitutes a richer and more instructive example. Figure 5.12
shows the Jπ = 0+, 2+ and 4+ PHFB TECs as a function of the axial quadrupole
deformation β2 for three values (s = 0, 10, 20) of the MR-IMSRG flow parameter. The
TECs are strongly lowered with s, e.g. the PHFB minimum gains 45.4MeV going from
s = 0 to s = 20, with most of the effect occuring for small 0 ≤ s ≤ 10[153]. At the same
time, the deformation of the PHFB minimum is lowered from β2 = 0.55 to β2 = 0.52 while
the TECs become stiffer.
In Fig. 5.13, PGCM and PGCM-PT(2) binding energies are displayed as a function

of the flow parameter. Starting from Jπ = 0+ PHFB TECs, PGCM and PGCM-PT(2)
calculations mix three HFB configurations with axial quadrupole deformations β2 =
(0.4, 0.5, 0.6). Unlike in 18O, the convergence of PGCM energies is not fully reached yet
for s = 20. Still, the bulk of dynamical correlations has already been resummed into the
pre-processed Hamiltonian at s = 10, hinting for a convergent behavior. Eventually, the
PGCM energy is lowered by 45.2MeV between s = 0 and s = 20. At the same time,
PGCM-PT(2) systematically lowers the PGCM value, the added dynamical correlations
reducing from 42.5MeV at s = 0 to only 2.0MeV at s = 20. Similarly, the difference
between PHFB and PGCM-PT(2) reduces drastically with s but does not vanish, i.e. it
still amounts to 2.03MeV with the most pre-processed Hamiltonian21. This indicates that,
while very effective, the decoupling of the PHFB state with the Q space is not complete
and thus less effective than in the singly open-shell 18O, thus pointing to the stronger
multi-reference character of 20Ne associated with the breaking and restoration of SU(2)
symmetry.

The PGCM-PT(2) energy changes by less than 5MeV over the interval s ∈ [0, 20], thus
strongly reducing the flow parameter dependence22. This 5MeV residual s dependence
and the reduction of the perturbative correction to 2MeV at s = 20 indicate that the
PGCM-PT(2) energy is better converged than the smallest of these two values, i.e. by
better than 1.2%.

Turning to the low-lying spectroscopy, Fig. 5.14 displays the first 2+ and 4+ excitation
energies as a function of β2 for the three values of the flow parameter. Focusing first on
s = 0, the conclusions drawn in Sec. 5.2.1 remain valid, i.e. PHFB-PT(2) flattens the
excitation energies as a function of β2 compared to PHFB whereas dynamical correlations
brought in through PGCM-PT(2) do not modify the low-lying part of the PGCM ground-
state rotational band. However, the picture changes drastically when pre-processing the
Hamiltonian via MR-IMSRG. Indeed, the PGCM spectrum becomes more dilated with
increasing s. This can be understood from the TECs in Fig. 5.12 where the decrease with
s of the minimum deformation spreads out the PHFB rotational spectrum whereas the
increased stiffness further pushes up the excitation energies via the coupling to shape
fluctuations within the GCM. Based on this trend, one observes that PHFB-PT(2), while
always flattening the dependence on β2, systematically correct for this dilatation of the
21PHFB and PGCM energies differ by less than 200 keV all throughout the interval s ∈ [0, 20].
22The residual dependence of the ground-state energy on the flow parameter results both from the breaking

of unitarity associated with the truncation of the flow equations at the MR-IMSRG(2) level and from
the approximations to the solution to the A-body Schrödinger equation at the PGCM-PT(2) level.
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Figure 5.12. (Color online) Jπ = 0+, 2+, 4+ PHFB TECs in 20Ne as a function of the
axial quadrupole deformation β2 for s = 0 (upper panel), s = 10 (middle panel) and s = 20
(lower panel). Calculations are performed with ~ω = 20MeV and emax = 6.
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Figure 5.13. (Color online) Absolute PGCM and PGCM-PT(2) binding energies of 20Ne
as a function of the MR-IMSRG flow parameter s. Calculations are performed with
~ω = 20MeV and emax = 6.

rotational spectrum. This non-trivial feature is confirmed at the PGCM-PT(2) level.
This key result can be better appreciated in Fig. 5.15 where PGCM and PGCM-

PT(2) spectra are compared to experiment and to the spectrum obtained from a richer
PGCM calculation including additional axial states along with triaxially deformed ones23.
Although the PGCM calculation based on three axial states is rudimentary, the observed
dilatation of spectra is not compensated by adding further static correlations via the richer
PGCM. Correspondingly, the systematic compensation of that dilatation via PGCM-PT(2)
corresponds to a genuine action of the perturbation that captures dynamical correlations
lying outside the reach of the PGCM. The PGCM-PT(2) correction could probably
be magnified by calculating it on top of a richer PGCM reference state allowing the
perturbation to span a larger configuration space. In the end, the PGCM-PT(2) 2+

1
excitation energy is independent of s within uncertainties. While reduced compared to
PGCM, the s dependence of the PGCM-PT(2) 4+

1 excitation energy is still significant and
would probably benefit from being performed on top of a richer PGCM state and/or by
going to PGCM-PT(3).

The global picture at play with the pre-processing of the Hamiltonian is illustrated for
20Ne in Fig. 5.16. The MR-IMSRG evolution largely reshuffles the hierarchy of correlations
at play. As s grows, one observes that

1. static correlations captured through the breaking of symmetries at the HFB level as
well as by their restoration and the inclusion of collective fluctuations at the PGCM
level slightly increase,

2. dynamical correlations brought either on top of HFB via BMBPT(2) or on top of
23Triaxial PGCM calculations were provided by B. Bally [135, 136, 137].
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PGCM via PGCM-PT(2) are drastically reduced.

Overall, dynamical correlations go from being highly dominant to being largely subleading.
Still, their inclusion on top of PGCM via PGCM-PT(2) remains mandatory, in particular
when dealing with low-lying excitation energies.

Eventually, the great benefit of the pre-processing relates to the fact that the many-body
calculations performed with evolved Hamiltonians become numerically gentler with s, i.e.
the numerical solution of the PGCM-PT(2) linear system is more precise, corrections
beyond PGCM-PT(2) are minimized and the convergence with the model-space size
(emax) is probably faster, although this latter point remains to be studied. Given that
PGCM-PT(2) is numerically more costly than the MR-IMSRG(2) step (see App. O.1), the
optimal combination of both methods is of great interest. Of course, this optimal point
must be such that the error due to the breaking of unitarity through the MR-IMSRG(2)
pre-processing is not larger than the error associated with PGCM-PT(2) results.

5.3. Discussion
This chapter presented the first realistic results for the novel multi-reference perturba-
tion theory (PGCM-PT) built on top of an unperturbed state generated through the
projected generator coordinate method. While the unperturbed state captures crucial
static correlations via the breaking and restoration of symmetries along with collective
fluctuations, the perturbative expansion brings in complementary dynamical correlations
in a consistent fashion within a symmetry-conserving scheme. Furthermore, being a
state-specific multi-reference many-body perturbation theory, PGCM-PT accesses ground
and low-lying excited states on an equal footing.
First, the novel many-body formalism was shown to be both versatile and accurate by

benchmarking proof-of-principle results of doubly closed-shell 16O, singly open-shell 18O
and doubly open-shell 20Ne nuclei in a small (emax = 4) harmonic oscillator model space
against full configuration interaction (FCI). Binding energies obtained at second order, i.e.
through PGCM-PT(2), were shown to be typically 0.5− 1.5% away from FCI results.
The second focus of the present chapter was to demonstrate the benefit of combining

low-order PGCM-PT with a pre-processing of the Hamiltonian via multi-reference in-
medium similarity renormalization group (MR-IMSRG) transformations. The rather low
cost of MR-IMSRG(2) calculations makes it possible to first capture the bulk of dynamical
correlations in large model spaces. Based on such a pre-processed Hamiltonian, PGCM-
PT(2) can bring in crucial static correlations and remaining dynamical correlations while
working in a smaller model space. The present work showed that, after the MR-IMSRG(2)
pre-processing, dynamical correlations brought on top of the PGCM via PGCM-PT(2) are
indeed essential to describe low-lying spectra satisfactorily.

Forthcoming extensions of the formalism to other observables and vibrational states are
naturally envisioned, as well as truncation techniques to reduce the computational burden
of the method.
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Conclusions
In the past ten years, ab initio methods for atomic nuclei [26, 29, 30, 31, 32, 34, 35, 37,
38, 40, 46, 52, 60, 158, 159] have proven capable of providing a predictive description of
medium-mass isotopes. Their rapid progress in three directions (towards heavier systems,
away from magicity and aiming at an increased precision) designate ab initio calculations
as the working horse for next generation simulations of nuclear systems. Nuclei up to mass
A ∼ 130 [42] are now consistently described from first principles. Pioneering works [160,
161] explore the possibility to further extend the reach of ab initio methods via the use
of systematic methods to reduce the cost of the calculations. In parallel, calculations
have become more and more precise, and a new generation of simulations are now able to
identify various sources of uncertainties and propagate them to many-body observables.
Last, but not least, novel formalisms [26, 37, 48, 162] have opened the way towards
open-shell systems and exotic physics.

Initial limitations to closed-shell nuclei have been overcome via the use of more general
reference states incorporating static correlations from the outset. Three complementary
strategies exploit this idea as of today. First, the MR-IMSRG procedure [57] evolves the
interaction to approximately decouple a multi-determinantal reference state from the rest
of the Hilbert space. By doing so, the solution of the many-body problem with the evolved
interaction is made much easier, such that most (but not all!) correlations are captured at
the mean-field or PGCM level. Another approach relies on an expansion performed on top
of a symmetry-broken product state. Successfully implemented for perturbative [46] and
non perturbative expansions [50, 52], this method provides already accurate results for
absolute binding energies and radii of medium-mass open-shell nuclei. However, symmetry
breaking solutions can only be an intermediate step in finite-size nuclear systems and
symmetries must eventually be restored. Formulations of symmetry restorations at all
order in the theory exist [7, 54] and have been successfully implemented for toy-model
Hamiltonians [55, 56], but applications to nuclear systems remain (until now) inconclusive.
The third route, followed e.g. by MCPT [28], consists in expanding perturbatively on top
of a linear mixing of orthogonal Slater determinants. Such an approach has been employed
with success, but the NCSM step providing the unperturbed state does not scale gently
enough with system size to be appropriate to mid- and heavy-mass nuclei.

The present work dealt with the derivation and implementation of a perturbation theory
on top of a PGCM unperturbed state, e.g. a linear mixing of non orthogonal projected
Bogoliubov vacua. After the derivation of the formalism, practical calculations at first
and second orders have been performed and discussed extensively.

In Chapter 1, notations and formal ingredients useful for the rest of the document have
been introduced. Chapter 2 introduced the formalism of generic perturbation theory,
and discussed the importance of the choice of the reference state in expansion methods.
Specific derivations for PGCM reference states were given, and detailed expressions for
useful quantities have been derived. PGCM-PT is not only appropriate to ground-state
energies but can also be straightforwardly applied to the computation of yrast excited
energies. Non-yrast states and other observables require extensions that are envisioned for
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the near future.
Before applying this method to practical calculations, a symmetry-conserving rank-

reduction procedure has been developed in Chapter 3 in order to circumvent the prohibitive
storage and runtime requirements of handling three-body terms in the interaction. The
method has been carefully tested on a wide range of many-body methods focusing both
on dynamical and static correlations in closed and open-shell nuclei. The rank-reduction
method is accurate, universal, simple, flexible. As such it constitutes a promising way
towards heavier systems, especially taking into account the fact that it is already formalised
for 4-body forces whenever they become available for practical applications. In particular,
it would be interesting to explore how this techniques can be combined with the methods
developed in Ref. [42], and therefore build a two-body effective interaction containing as
many three-body matrix elements as possible. Similarly, it could be interesting to test the
quality of the rank-reduced Hamiltonian based on one-body density matrices obtained from
spherical EDF calculations in heavy nuclei as a way to avoid performing the corresponding
mean-field calculation with the three-body interaction.
Chapter 4 focused on the leading order of the theory formalized in Chapter 2, and

performed systematic PGCM calculations of the neon chain with state-of-the-art chiral
interactions. Detailed results on 20Ne showed that the method, although missing dynamical
correlations, can provide a very good description of the low-lying spectroscopy, in good
agreement with experiment whenever the right collective degrees of freedom are included
into the PGCM ansatz. The emergence of clustered structures in 20Ne associated with
strong octupole shape fluctuations proved the predictive power of PGCM in particular
and of ab initio methods in general. In a second step, systematic PGCM results along
the Neon isotopic chain were compared to quasi-exact IM-NCSM results. Although the
overall description is satisfactory, it is clear that correlations are missing in neutron-rich
isotopes that require the use of a richer PGCM ansatz and/or the addition of dynamical
correlations on top.
It was precisely the objective of Chapter 5 to complement the PGCM with dynamical

correlations according to the PGCM-PT formalism developed in Chapter 2. While the
PGCM reference state naturally captures long-range collective correlations, the additional
state-specific perturbation theory consistently corrects it with the effect of low-rank
elementary excitations. Eventually, the method was applied to Hamiltonians pre-processed
via MR-IMSRG transformations. In this case, dynamical correlations were shown to
adequately correct absolute energies and, most importantly, PGCM spectra that are
artificially dilated by the MR-IMSRG evolution.

Overall, the present study indicates that a versatile and accurate description of complex
mid- and heavy-mass nuclei will probably rely on the combination of three levers whose
complementarity needs to be further investigated and optimized

1. the pre-processing of the Hamiltonian via, e.g., MR-IMSRG to efficiently capture
the bulk of dynamical correlations,

2. the use of a, e.g., PGCM unperturbed state capturing collective static correlations
via a low-dimensional diagonalization problem that is thus scalable to heavy nuclei,

3. the low-order truncation of a systematic expansion on top of the multi-reference
unperturbed state via, e.g., PGCM-PT to bring in remaining dynamical correlations.

Each of the three steps comes with its own flexibility that must be exploited in order to
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5.3. Discussion

optimize their combination24. First, the pre-processing is a function of a flow parameter s
that must be optimized to resum the bulk of dynamical correlations without inducing a
large breaking of unitarity25. Second, the PGCM depends on a choice of suitable collective
coordinates that must be rich enough to capture all non-perturbative static correlations at
play, only leaving weak perturbative corrections to the subsequent PGCM-PT step, while
maintaining a low-enough dimensionality to its advantage over large-scale diagonalization
methods. Third, while PGCM-PT can in principle be implemented at various perturbative
orders n, it must be limited to low orders, e.g. PGCM-PT(2), in practice to avoid a
prohibitive numerical cost.
While the present work has laid the foundations of such an optimal scheme, future

studies will allow us to better understand the way many-body correlations can be most
efficiently captured in complex heavy nuclei within an ab initio setting. For example,
describing nuclei displaying strong shape coexistence via ab initio many-body calculations
constitute an interesting milestone to achieve in the years to come.

24It is worth mentioning that the combination of the three steps is always consistent, i.e. there is no
double counting given that each step consistently adapt to the other two.

25In this context, the truncation order of the MR-IMSRG(n) procedure plays a critical role. If MR-
IMSRG(3) will allow to carry the flow evolution to larger s, and thus better decouple the reference
state, it is also significantly costlier numerically.
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Appendix A.

Symmetry group
The symmetry group of H underlines the symmetry quantum numbers carried by its
many-body eigenstates. In the present context, the group1

GH ≡ SU(2)× I× U(1)N × U(1)Z

associated with the conservation of total angular momentum, parity and neutron/proton
numbers is explicitly considered. The group is a compact Lie group but is non Abelian as
a result of SU(2).

A.1. Unitary representation
Each subgroup is represented on Fock space F via the set of unitary rotation operators

R ~J(Ω) ≡ e−ıαJze−ıβJye−ıγJz , (A.1a)
RN(ϕn) ≡ e−iϕnN , (A.1b)
RZ(ϕp) ≡ e−iϕpZ , (A.1c)
Π(ϕπ) ≡ e−iϕπF , (A.1d)

where Ω ≡ (α, β, γ), ϕπ and ϕn (ϕp) denote Euler, parity and neutron- (proton-) gauge
angles, respectively. The one-body operators entering the unitary representations of
interest denote the generators of the group made out of the three components of the total
angular momentum ~J = (Jx, Jy, Jz), neutron-number N and proton-number Z operators
as well as of the one-body operator

F ≡
∑
ab

fabc
†
acb (A.2)

defined through its matrix elements [163]

fab ≡
1
2 (1− πa) δab , (A.3)

where πa denotes the parity of one-body basis states that are presently assumed to carry a
good parity. The eigenstates of H are characterized by

J2|Ψσ
µ〉 ≡ ~2J(J + 1)|Ψσ

µ〉 , (A.4a)
Jz|Ψσ

µ〉 ≡ ~M |Ψσ
µ〉 , (A.4b)

1One can add translation and time-reversal symmetries to the presentation to reach the complete
symmetry group of the nuclear Hamiltonian.
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N |Ψσ
µ〉 ≡ N|Ψσ

µ〉 , (A.4c)
Z|Ψσ

µ〉 ≡ Z|Ψσ
µ〉 , (A.4d)

Π(π)|Ψσ
µ〉 ≡ Π|Ψσ

µ〉 , (A.4e)

where σ ≡ (JMΠNZ) and where the operator Π(π) is nothing but the parity operator and
J2 ≡ ~J · ~J is the Casimir of SU(2).
The irreducible representations (IRREPs) of the group are given by [164]

〈Ψσ
µ|R(θ)|Ψσ

′

µ
′〉 ≡Dσ̃

MM’(θ)δσ̃σ̃′δµµ′ , (A.5)

with σ̃ ≡ (JΠNZ) and

Dσ̃
MM’(θ) ≡DJ

MM’(Ω)e−iϕnNe−iϕpZe−
i
2 (1−Π)ϕπ , (A.6)

and where the rotation operators have been gathered into

R(θ) ≡ R ~J(Ω)RN(ϕn)RZ(ϕp)Π(ϕπ) , (A.7)

with

θ ≡ (Ω, ϕn, ϕp, ϕπ) (A.8)

encompassing all rotation angles. The domain of definition of the group is thus

DGH ≡ Dα ×Dβ ×Dγ ×Dϕn
×Dϕp

×Dϕπ

= [0, 4π]× [0, π]× [0, 2π]× [0, 2π]× [0, 2π]× {0, π} .

In Eq. (A.5), DJ
MK(Ω) denotes Wigner D-matrices that can be expressed in terms of the

(real) reduced Wigner d-functions through DJ
MK(Ω) ≡ e−iMα dJ

MK(β) e−iKγ.
Given that the degeneracy of the IRREPs is dσ̃ = 2J + 1 and the volume of the group is

vGH ≡
∫
DG

dθ

≡
∑

ϕπ=0,π

∫
[0,4π]×[0,π]×[0,2π]
dα sin β dβ dγ

∫ 2π

0
dϕn

∫ 2π

0
dϕp

= 2(16π2)(2π)2 (A.9)

the orthogonality of the IRREPs read as∫
DG

dθDσ̃∗
MK(θ)Dσ̃

′

M’K’(θ) = vG

dσ̃
δσ̃σ̃′δMM

′δKK′ . (A.10)

Furthermore, the unitarity of the symmetry transformations, i.e. R†(θ)R(θ) = R(θ)R†(θ) =
1, induces ∑

M

Dσ̃∗
MK(θ)Dσ̃

MK’(θ) = δKK′ , (A.11a)∑
K

Dσ̃
MK(θ)Dσ̃∗

M’K(θ) = δMM
′ . (A.11b)
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An irreducible tensor operator T σ̃K of rank J and a state |Ψσ̃K
µ 〉 transform under rotation

according to
R(θ)T σ̃K R(θ)−1 =

∑
M

T σ̃M Dσ̃
MK(θ) , (A.12a)

R(θ) |Ψσ̃K
µ 〉 =

∑
M

|Ψσ̃M
µ 〉Dσ̃

MK(θ) . (A.12b)

Peter-Weyl’s theorem ensures that any function f(θ) ∈ L2(GH) can be expanded
according to

f(θ) ≡
∑
σ̃

∑
MK

f σ̃MK Dσ̃∗
MK(θ) , (A.13)

such that the set of complex expansion coefficients {f σ̃MK} can be extracted thanks to the
orthogonality of the IRREPs through

f σ̃MK = dσ̃
vGH

∫
DGH

dθDσ̃
MK(θ)f(θ) . (A.14)

A.2. Projection operators
The operator

P σ ≡ P J
MP

NP ZPΠ (A.15)
collects the projection operators on good symmetry quantum numbers

P J
M ≡

∑
K

gKP
J
MK

≡
∑
K

gK
2J + 1
16π2

∫
[0,4π]×[0,π]×[0,2π]

dΩDJ∗
MK(Ω)R ~J(Ω) , (A.16a)

PN ≡ 1
2π

∫ 2π

0
dϕneiϕnNRN(ϕn) , (A.16b)

P Z ≡ 1
2π

∫ 2π

0
dϕpeiϕpZRZ(ϕp) , (A.16c)

PΠ ≡ 1
2

∑
ϕπ=0,π

e
i
2 (1−Π)ϕπΠ(ϕπ) , (A.16d)

such that one can write in a compact way

P σ = dσ̃
vG

∑
K

gK

∫
DG

dθDσ̃∗
MK(θ)R(θ)

≡
∑
K

gKP
σ̃
MK . (A.17)

The so-called transfer operator P σ̃
MK fulfills
P σ̃

MK =
∑
µ

|Ψσ̃M
µ 〉〈Ψσ̃K

µ | , (A.18a)

P σ̃†
MK = P σ̃

KM , (A.18b)

P σ̃
MKP

σ̃
′

M’K’ = δσ̃σ̃′δKM ′P
σ̃
MK’ , (A.18c)

along with the identity
P σR(θ) =

∑
K

gK
∑
M
′
Dσ̃

KM’(θ)P σ̃
MM’ . (A.19)

The present work is eventually interested in the particular case where gK = δK0.
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Appendix B.

Permutation operators
Many of the algebraic expressions derived in the present document can be econom-
ically written via the use of so-called permutation operators that perform appropri-
ate anti-symmetrizations of the matrix element they act on. A permutation operator
P (s1/s2/ . . . /sn), where si (i = 1, . . . , n}) denotes a given set of indices, permutes the
indices belonging to the various sets in all possible ways, without permuting the indices
within each set. Furthermore, the sign given by the signature of each permutation multi-
plies the corresponding term. In the present work, the needed permutation operators read
as

P (k1/k2) ≡1− Pk1k2 , (B.1a)
P (k1/k2k3) ≡1− Pk1k2 − Pk1k3 , (B.1b)

P (k1/k2k3k4) ≡1− Pk1k2 − Pk1k3 − Pk1k4 , (B.1c)
P (k1k2/k3k4) ≡1− Pk1k3 − Pk1k4 − Pk2k3 − Pk2k4 + Pk1k3Pk2k4 , (B.1d)
P (k1/k2/k3k4) ≡P (k1k2/k3k4)P (k1/k2)

=1− Pk1k3 − Pk1k4 − Pk2k3 − Pk2k4 + Pk1k3Pk2k4 + Pk3k4 + Pk1k3Pk3k4

+ Pk1k4Pk3k4 + Pk2k3Pk3k4 + Pk2k4Pk3k4 − Pk1k4Pk2k3 , (B.1e)
P (k1/k2/k3/k4) ≡P (k1k2/k3k4)P (k1/k2)P (k3/k4) , (B.1f)

where the exchange operator Pkikj commutes indices ki and kj.
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Appendix C.

Similarity-transformed matrix elements
Let us consider a two-body operator O (see Eqs. (1.25)-(1.27) with r = 2), in normal-
ordered form with respect to |Φ(p)〉

O ≡O00(p)

+
[
O11(p) + {O20(p) + O02(p)}

]
+
[
O22(p) + {O31(p) + O13(p)}+ {O40(p) + O04(p)}

]
= O00(p)

+ 1
(1!)2

∑
k1k2

ok1
k2

(p)Bk1
k2

(p) + 1
2!
∑
k1k2

ok1k2(p)Bk1k2(p) + 1
2!
∑
k1k2

ok1k2(p)Bk1k2(p)

+ 1
(2!)2

∑
k1k2k3k4

ok1k2
k3k4

(p)Bk1k2
k3k4

(p)

+ 1
3!1!

∑
k1k2k3k4

ok1k2k3
k4

(p)Bk1k2k3
k4

(p) + 1
1!3!

∑
k1k2k3k4

ok1
k2k3k4

(p)Bk1
k2k3k4

(p)

+ 1
4!

∑
k1k2k3k4

ok1k2k3k4(p)Bk1k2k3k4(p) + 1
4!

∑
k1k2k3k4

ok1k2k3k4(p)Bk1k2k3k4(p) . (C.1)

Expressing the similarity-transformed partner ZO (Eq. (1.56)) under the same form, its
(p, q; θ)-dependent1 matrix elements read as

ZO00 ≡Z S00 , (C.2a)
Zok1k2 ≡

Zsk1k2 , (C.2b)
Zok1

k2 ≡
Zsk1

k2 +
∑
l1

Zsl1k2z
l1k1 , (C.2c)

Zok1k2 ≡ Zsk1k2 + P (k1/k2)
∑
l1

Zsk1
l1 zl1k2 −

∑
l1l2

Zsl1l2z
l1k1zl2k2 , (C.2d)

Zok1k2k3k4 ≡
Zsk1k2k3k4 , (C.2e)

Zok1
k2k3k4 ≡

Zsk1
k2k3k4 +

∑
l1

Zsl1k2k3k4z
l1k1 , (C.2f)

Zok1k2
k3k4 ≡

Zsk1k2
k3k4 + P (k1/k2)

∑
l2

Zsk1
l2k3k4z

l2k2 −
∑
l1l2

Zsl1l2k3k4z
l1k1zl2k2 , (C.2g)

1The transformed matrix elements depend on (p, q; θ) through their dependence on Z and further depend
on p through the matrix elements defining the original normal-ordered operator in Eq. (C.1). All these
dependencies are dropped in Eqs. (C.2)-(C.3) for the sake of readability.
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Appendix C. Similarity-transformed matrix elements

Zok1k2k3
k4 ≡ Zsk1k2k3

k4 + P (k3/k1k2)
∑
l3

Zsk1k2
l3k4 zl3k3

− P (k1/k2k3)
∑
l2l3

Zsk1
l2l3k4z

l2k2zl3k3 −
∑
l1l2l3

Zsl1l2l3k4z
l1k1zl2k2zl3k3 , (C.2h)

Zok1k2k3k4 ≡ Zsk1k2k3k4 + P (k4/k1k2k3)
∑
l4

Zsk1k2k3
l4 zl4k4 − P (k1k2/k3k4)

∑
l3l4

Zsk1k2
l3l4 zl3k3zl4k4

+ P (k1/k2k3k4)
∑
l2l3l4

Zsk1
l2l3l4z

l2k2zl3k3zl4k4 +
∑

l1l2l3l4

Zsl1l2l3l4z
l1k1zl2k2zl3k3zl4k4 ,

(C.2i)

where the intermediate matrix elements are defined through2

ZS00 ≡ O00 + 1
2
∑
l1l2

ol1l2z
l1l2 + 1

8
∑

l1l2l3l4

ol1l2l3l4z
l1l2zl3l4 , (C.3a)

Zsl1l2 ≡ ol1l2 + 1
2
∑
l3l4

ol1l2l3l4z
l3l4 , (C.3b)

Zsl1l2 ≡ ol1l2 + 1
2
∑
l3l4

ol1l2l3l4z
l3l4 , (C.3c)

Zsl1l2 ≡ ol1l2 + 1
2
∑
l3l4

ol1l2l3l4
zl3l4 , (C.3d)

Zsl1l2l3l4 ≡ ol1l2l3l4 , (C.3e)
Zsl1l2l3l4 ≡ ol1l2l3l4 , (C.3f)
Zsl1l2l3l4 ≡ ol1l2l3l4

, (C.3g)
Zsl1l2l3l4 ≡ ol1l2l3l4

, (C.3h)
Zsl1l2l3l4 ≡ ol1l2l3l4 . (C.3i)

2The intermediate matrix elements incorporate all terms where both indices of a given matrix z are
contracted with indices of a matrix element of O.
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Appendix D.

PGCM-PT(2) matrix elements
From a technical viewpoint, the building blocks of the PGCM-PT formalism presented in
Sec. 2.3 are many-body matrix elements of the following kind

Oσ̃
pIqJ ≡ 〈ΦI(p)|OP σ̃

00|ΦJ(q)〉

= dσ̃
vG

∑
θ

Dσ̃∗
00 (θ) 〈Φ(p)|Bl1...li(p)OR(θ)Bk1...kj(q)|Φ(q)〉

= dσ̃
vG

∑
θ

Dσ̃∗
00 (θ) 〈Φ(p)| ZBl1...li(p)

ZO ZB
k1...kj(q; θ) |Φ(p)〉 〈Φ(p)|Φ(q; θ)〉

≡ dσ̃
vG

∑
θ

Dσ̃∗
00 (θ)OpIqJ(θ) 〈Φ(p)|Φ(q; θ)〉 , (D.1)

where I and J denote arbitrary i-tuple and j-tuple excitations1 of the corresponding vacua
and where all involved quantities have been introduced and/or worked out in the previous
appendices.

While the matrix elements introduced in Eq. (D.1) are defined (and could be evaluated)
for an operator and excitations of arbitrary ranks, the implementation of PGCM-PT(2) on
the basis of a two-body Hamiltonian only requires a subset of them that are now worked
out explicitly.

D.1. Type-1 matrix elements
The first category of matrix elements is obtained from Oσ̃

pIqJ whenever

1. O is a two-body operator2,

2. I = 0, S,D, where 0 = {}/S = {k1k2}/D = {k1k2k3k4} stands for no/single/double
excitation,

3. J = 0, i.e. the ket state is fixed to be the vacuum.

Starting thus from a two-body operator O in the form given by Eq. (C.1), the many-body
matrix elements of interest are worked out by exploiting Eqs. (1.59), (1.60), (C.2) and
(C.3) and by applying Wick’s theorem with respect to |Φ(p)〉 such that

Op0q0(θ) = ZO00
, (D.2a)

1Whenever there is no excitation, i.e. whenever the associated excitation operator is the identity, the
index is conventionally put to 0.

2If working with explicit three-body interactions, O would be of three-body character.
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Appendix D. PGCM-PT(2) matrix elements

OpSq0(θ) = zk1k2 ZO00 + Zok1k2 , (D.2b)

OpDq0(θ) = P (k1/k3k4)zk1k2zk3k4ZO00 (D.2c)

+ P (k1k2/k3k4)zk3k4Zok1k2 + Zok1k2k3k4 ,

where the (p, q; θ) dependencies of the various quantities appearing on the right-hand side
have been omitted.

D.2. Type-2 matrix elements
The second category of matrix elements is obtained from Oσ̃

pIqJ whenever

1. O is a one-body operator,

2. I = 0, S,D,

3. J = 0, S,D.

Starting from a one-body operator O, i.e. a sub-part of the operator given by Eq. (C.1),
the evaluation of this second category of many-body matrix elements further requires the
use of Eqs. (1.66)-(1.67) given that excitations of the ket are now in order.

Vacuum-to-vacuum and (I = 0, J = 0) and excitation-to-vacuum (I 6= 0, J = 0) matrix
elements can be deduced from Eq. (D.2) and are thus not repeated here. Vacuum-to-
excitation (I 6= 0, J = 0) matrix elements are given by

Op0qS(θ) =ZO00∑
j1

E
k1
j1
D−1†j1k2

+
∑
j1j2

Zoj1j2D
−1†j1k1D−1†j2k2 (D.3a)

Op0qD(θ) =P (k1/k3k4)ZO00 ∑
j2j4

E
k1
j2
D−1†j2k2E

k3
j4
D−1†j4k4

+ P (k1k2/k3k4)
∑
j1j2j4

Zoj1j2D
−1†j1k1D−1†j2k2E

k3
j4
D−1†j4k4 . (D.3b)

Excitation-to-excitation (I 6= 0, J 6= 0) matrix elements are of course the most involved
ones. Single-to-single (I = S ′ = {i1i2}, J = S = {k1k2}) ones read as

OpS
′
qS(θ) =P (i1/i2)ZO00

D−1†i1k1D−1†i2k2

+ P (i1/i2)P (k1/k2)
∑
j1

Zoi1j1D
−1†j1k1D−1†i2k2

+ P (k1/k2)zi1i2
∑
j1j2

D−1†j1k1Zoj1j2D
−1†j2k2

+ P (i1/i2)Zoi1i2
∑
j2

E
k1
j2
D−1†j2k2

+ ZO00zi1i2
∑
j2

E
k1
j2
D−1†j2k2 . (D.3c)

Double-to-single (I = D = {i1i2i3i4}, J = S = {k1k2}) matrix elements read as

OpDqS(θ) = P (i1i2/i3i4)P (k1/k2)D−1†i1k1D−1†i2k2Zoi3i4
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D.2. Type-2 matrix elements

+ P (i1i2/i3i4)P (k1/k2)zi3i4D−1†i1k1D−1†i2k2ZO00

+ P (i1/i2/i3i4)P (k1/k2)zi3i4D−1†i1k1
∑
j2

Zoi2j2D
−1†j2k2

+ P (i1i2/i3i4)zi1i2Zoi3i4
∑
j2

E
k2
j2
D−1†j2k1

+ P (i1i2/i3i4)zi1i2zi3i4
∑
j1j2

Zoj1j2D
−1†j1k1D−1†j2k2

+ P (i1/i3i4)zi1i2zi3i4ZO00∑
j2

E
k2
j2
D−1†j2k1 . (D.3d)

Single-to-double (I = S = {i1i2}, J = D = {k1k2k3k4}) matrix elements read as

OpSqD(θ) = P (k1k2/k3k4)P (i1/i2)Zoj3j4D
−1†j3k3D−1†j4k4D−1†i1k1D−1†i2k2

+ P (k1k2/k3k4)P (i1/i2)ZO00
D−1†i1k1D−1†i2k2

∑
j3

E
k4
j3
D−1†j3k3

+ P (k1/k2/k3k4)P (i1/i2)D−1†i1k1

∑
j3

E
k3
j3
D−1†j3k4

∑
j2

D−1†j2k2Zoi2j2


+ P (k1k2/k3k4)zi2i1

∑
j3

E
k4
j3
D−1†j3k3

∑
j1j2

Zoj1j2D
−1†j1k1D−1†j2k2


+ P (k1/k3k4)Zoi1i2

∑
j1

E
k1
j1
D−1†j1k2

∑
j3

E
k4
j3
D−1†j3k3


+ P (k1/k3k4)ZO00zi2i1

∑
j3

E
k4
j3
D−1†j3k3

∑
j1

E
k2
j1
D−1†j1k1

 . (D.3e)

Double-to-double (I = D = {i1i2i3i4}, J = D′ = {k1k2k3k4}) matrix elements read as

OpDqD
′(θ) = P (i4/i3/i2/i1)ZO00

D−1†
k4i4D

−1†i3k3D−1†i2k2D−1†i1k1

+ P (k4/k3k2k1)P (i4/i3/i2/i1)
∑

j4

Zoi4j4D
−1†j4k4

D−1†i3k3D−1†i2k2D−1†i1k1

+ P (i1i2/i3i4)zi1i2P (k1k2/k3/k4)D−1†i4k4D−1†i3k3
∑
j2j1

D−1†j1k1Zoj1j2D
−1†j2k2

+ P (k1k2/k3k4)P (i1i2/i3/i4)Zoi1i2D−1†i4k4D−1†i3k3

∑
j1

E
k2
j1
D−1†j1k1


+ P (i1i2/i3/i4)P (k1k2/k3k4)zi1i2ZO00

D−1†i4k4D−1†i3k3

∑
j1

E
k2
j1
D−1†j1k1


+ P (i1i2/i3/i4)P (k1k2/k3/k4)zi1i2

∑
j1

E
k2
j1
D−1†j1k1

∑
j4

Zoi4j4D
−1†j4k4D−1†i3k3


+ P (i1/i3i4)P (k1k2/k3k4)zi1i2zi3i4

∑
j1

E
k2
j1
D−1†j1k1

∑
j4j3

D−1†j3k3Zoj3j4D
−1†j4k4


+ P (i1i2/i3i4)P (k1/k3k4)zi1i2Zoi3i4

∑
j3

E
k4
j3
D−1†j3k3

∑
j1

E
k2
j1
D−1†j1k1


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Appendix D. PGCM-PT(2) matrix elements

+ P (i1/i3i4)P (k1/k3k4)zi1i2zi3i4ZO00
∑

j3

E
k4
j3
D−1†j3k3

∑
j1

E
k2
j1
D−1†j1k1

 .

(D.3f)

D.3. Type-3 matrix elements
The third category of matrix elements is obtained from Oσ̃

pIqJ whenever

1. O is a zero-body operator, i.e. the identity operator multiplied by the number O00,

2. I = 0, S,D,

3. J = 0, S,D.

All these matrix elements can be deduced from the previous cases by solely keeping the
terms proportional to ZO00 = O00 in the appropriate expressions.

144



Appendix E.

Single-reference (Bogoliubov)
Many-Body Perturbation Theory
The presently developed perturbation theory is of multi-reference character due to the
fact that the PGCM unperturbed state (Eq. (2.23)) is a linear combination of several
Bogoliubov vacua. However, in the limit where the PGCM state reduces to a single
Bogoliubov state, which itself reduces to a Slater determinant whenever U(1) symmetry
is conserved, PGCM-PT becomes of single-reference character and must thus entertain
some connection with single-reference (B)MBPT [45, 54, 60]. To clarify this connection,
the partitioning at play in the latter approaches and the second and third order energy
corrections of the theory are now briefly discussed. BMBPT density matrices expressions
are also given in this appendix.

E.1. Single-reference partitioning
E.1.1. BMBPT
Because of the inherent necessity to control the average particle number, the operator
driving the perturbation in BMBPT is the grand potential Ω [46]. Whenever |Φ(q)〉 results
from a constrained HFB calculation (see Sec. 1.2.4), a natural partitioning is given by

Ω = Ω0(q) + Ω1(q) , (E.1)

such that

Ω0(q) ≡ Ω00(q) + Ω̄11(q) , (E.2a)
Ω1(q) ≡ Ω20(q) + Ω̆11(q) + Ω02(q) (E.2b)

+ Ω40(q) + Ω31(q) + Ω22(q) + Ω13(q) + Ω04(q) ,

with Ω̆11(q) ≡ Ω11(q)− Ω̄11(q) and where the diagonal one-body part of Ω0(q)

Ω̄11(q) ≡
∑
k

Ek(q)β†k(q)βk(q) , (E.3)

is built out of the positive eigenvalues generated through Eq. (1.35). In general, the
partitioning defined in Eqs. (E.1)-(E.3) is not canonical given that, while Eq. (1.39) is
fulfilled for the Routhian R, it is not for Ω except for λq = 0, i.e. whenever |Φ(q)〉 is the
solution of an unconstrained HFB calculation. The eigenstates of Ω0(q) are nothing but

Ω0(q) |Φ(q)〉 = Ω00(q) |Φ(q)〉 , (E.4a)
Ω0(q) |Φk1...(q)〉 =

[
Ω00(q) + Ek1(q) + . . .

]
|Φk1...(q)〉 . (E.4b)
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E.1.2. MBPT
Whenever qU(1) = 0, |Φ(q)〉 is a Slater determinant and BMBPT reduces to MBPT. In
this situation, the Bogoliubov field ∆̄(q) is zero and the Lagrange term associated with
the particle number constraint entering the Routhian becomes superfluous and can be
omitted. As a result, Eq. (1.35) reduces to

h(q) (U(q))k = ek(q) (U(q))k , (E.5)

i.e. to the constrained Hartree-Fock (HF) equation where the one-body HF field reads as

hll′(q) ≡ f ll′ [|Φ(q)〉]− λq
∂Q00(q)
∂ρ∗ll′(q)

. (E.6)

Solving Eq. (E.5) delivers constrained HF single-particle states {a†k(q)} through the unitary
one-body basis transformation U(q) along with the associated HF single-particle energies

ek(q) = fkk [|Φ(q)〉]− λq
∂Q00(q)
∂ρ∗kk(q)

. (E.7)

The HF Slater determinant is built by occupying the A lowest HF single-particle states

|Φ(q)〉 ≡ Ai1···iA(q)|0〉 . (E.8)

Because the Lagrange term associated with the particle-number constraint is superfluous,
the operator driving the perturbative expansion in MBPT is nothing but the Hamiltonian.
Given the above, the unperturbed Hamiltonian deriving from Eq. (E.2) becomes

H0(q) ≡ H00(q)+ : h(q) :
= E(0)(q) +

∑
k

ek(q) : Akk(q) : , (E.9)

where the latter form is given in the eigenbasis of h(q). Equation (E.7) makes clear that
h(q) = F[|Φ(q)〉] whenever λq = 0 such that {ek(q)} denotes nothing but the eigenvalues of
F[|Φ(q)〉] in that particular case.
The A-body eigenbasis of H0 is given by

H0(q)|Φ(q)〉 = E(0)(q)|Φ(q)〉 , (E.10a)
H0(q)|Φp1···

h1···(q)〉 = E
(0)
p1···h1···(q)|Φ

p1···
h1···(q)〉 , (E.10b)

with

E(0)(q) ≡ H00(q) = 〈Φ(q)|H|Φ(q)〉 ,
E

(0)
p1···h1···(q) ≡ E(0)(q) + ep1(q) + . . .− eh1(q)− . . . ,

where elementary particle-hole excitations of the unperturbed Slater determinant are
defined through

|Φp1···
h1···(q)〉 ≡ A

p1···
h1···(q)|Φ(q)〉 . (E.11)
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Whenever applied at the minimum of H00(q), the spectrum of H0 is ensured to be non-
degenerate with respect to elementary excitations1, i.e. it displays a gap-full spectrum

E
(0)
p1···h1···(q)− E

(0)(q) > 0 . (E.12)

This is schematically illustrated in Fig. 2.3.

E.2. Second and third order BMBPT energy corrections
Injecting the BMBPT splitting defined Eq. (E.1) for BMBPT into the expression of the
energy corrections given Eq. (2.12), the unperturbed part of the Hamiltonian can be
analytically inverted and the energy corrections take a closed-form expression.

E.2.1. Second order
The second-order energy, extracted from Eq. (2.12b), reads [54]

E(2)(q) ≡ −1
2
∑
k1k2

Hk1k2(q)Ωk1k2(q)
Ek1k2(q) −

∑
k1k2k3k4

1
24
Hk1k2k3k4(q)Ωk1k2k3k4(q)

Ek1k2k3k4(q) . (E.13)

E.2.2. Third order
The third-order energy, extracted from Eq. (2.12c), reads [54]

E(3)(q) ≡
∑
ki

Hk1k2(q)Ωk1
k3

(q)Ωk3k2(q)
Ek1k2(q)Ek2k3(q)

+ 1
4
∑
ki

Hk1k2(q)Ωk1k2
k3k4

(q)Ωk3k4(q)
Ek1k2(q)Ek3k4(q)

+ 1
4
∑
ki

Hk1k2(q)Ωk3k4(q)Ωk1k2k3k4(q)
Ek1k2(q)Ek1k2k3k4(q)

+ 1
8
∑
ki

Hk1k2k3k4(q)Ωk1k2(q)Ωk3k4(q)
Ek1k2(q)Ek3k4(q)

+ 1
6
∑
ki

Hk1k2k3k4(q)Ωk1k2k3
k5

(q)Ωk5k4(q)
Ek4k5(q)Ek1k2k3k4(q)

+ 1
6
∑
ki

Hk1k2k3k4(q)Ωk1
k5

(q)Ωk5k2k3k4(q)
Ek2k3k4k5(q)Ek1k2k3k4(q)

+ 1
6
∑
ki

Hk1k2(q)Ωk1
k3k4k5

(q)Ωk3k4k5k2(q)
Ek2k3k4k5(q)Ek1k2k3k4(q)

+ 1
8
∑
ki

Hk1k2k3k4(q)Ωk1k2
k5k6

(q)Ωk5k6k3k4(q)
Ek1k2k3k4(q)Ek3k4k5k6(q) . (E.14)

1The fact that the unperturbed state is non-degenerate is a necessary (but not sufficient) condition for
the perturbative series to converge or at least offers mean to be (partially) re-summed. Note that a
degeneracy with states carrying different symmetry quantum numbers is not an issue since symmetry
blocks are not connected by the perturbation within a symmetry-conserving scheme.
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E.3. BMBPT transition density matrix
The BMBPT(2) transition one-body density matrix is presently derived within the frame of
a so-called expectation-value many-body scheme rather than within a projective one, i.e. it is
computed directly through Eq. (1.11) for l = 1 and |Θ〉 ≡ |ΨBMBPT(2)〉. The derivation can
actually be performed within the larger frame of the Bogoliubov configuration-interaction
(BCI) formalism such that BCI-like expansion coefficients are eventually obtained within
the frame of BMBPT(2) [54].

The present applications are eventually limited to standard MBPT, i.e. calculations are
restricted to doubly closed-shell nuclei for which BMBPT reduces to MBPT on top of a
JΠ = 0+ Slater determinant.

E.3.1. BCI state
In BCI, many-body states are written as a CI-like expansion on top of the (deformed)
Bogoliubov vacuum. Presently truncated to single and double excitations, the BCISD
ansatz reads as

|Ψ(q)〉 ≡
1 +

∑
k1k2

Ck1k2(q)β†k1
(q)β†k2

(q)

+
∑

k1k2k3k4

Ck1k2k3k4(q)β†k1
(q)β†k2

(q)β†k3
(q)β†k4

(q)


× |Φ(q)〉 , (E.15)

where the unknown coefficients, anti-symmetric with respect to the exchange of any pair
of upper indices, can be obtained by diagonalization of Ω or via BMBPT.

E.3.2. Expression in quasi-particle space
Definition

Considering two different BCISD states |Ψi(q)〉 and |Ψf (q)〉, the four transition one-body
density matrices defined in terms of quasi-particle operators are given by

ρfi
k2
k1

(q) ≡
〈Ψf (q)|β†k1

(q)βk2(q)|Ψi(q)〉√
〈Ψf (q)|Ψf (q)〉〈Ψi(q)|Ψi(q)〉

, (E.16a)

κfi
k2k1(q) ≡

〈Ψf (q)|βk1(q)βk2(q)|Ψi(q)〉√
〈Ψf (q)|Ψf (q)〉〈Ψi(q)|Ψi(q)〉

, (E.16b)

−κ∗fik2k1(q) ≡
〈Ψf (q)|β†k1

(q)β†k2
(q)|Ψi(q)〉√

〈Ψf (q)|Ψf (q)〉〈Ψi(q)|Ψi(q)〉
, (E.16c)

−σ∗fik1
k2(q) ≡

〈Ψf (q)|βk1(q)β†k2
(q)|Ψi(q)〉√

〈Ψf (q)|Ψf (q)〉〈Ψi(q)|Ψi(q)〉
, (E.16d)

among which the relations

κ∗fik2k1(q) =
(
κif

k2k1(q)
)∗

, (E.17a)
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E.3. BMBPT transition density matrix

σ∗fi
k1
k2(q) =

(
ρif

k2
k1

(q)
)∗
− 1 , (E.17b)

hold.

Matrix elements

Starting from Eqs. (E.15)-(E.16) and applying Wick’s theorem, one obtains

ρfi
k2
k1

(q) = 1√
〈Ψf (q)|Ψf (q)〉〈Ψi(q)|Ψi(q)〉

×

1
2
∑
k3

Cf∗
k1k3(q)Cik2k3(q)

+ 1
12

∑
k3k4k5

Cf∗
k1k3k4k5(q)Cik2k3k4k5(q)

 ,
and

κfi
k1k2(q) = 1√

〈Ψf (q)|Ψf (q)〉〈Ψi(q)|Ψi(q)〉

×
[1
2C

ik1k2(q)

+ 1
4
∑
k3k4

Cf∗
k3k4(q)Cik1k2k3k4(q)

 .
The expressions of κfi∗ and σ∗fi are then deduced via Eq. (E.17) whereas the norm
entering the denominators of the transition one-body density matrices reads, e.g., as

〈Ψi(q)|Ψi(q)〉 ≡1

+
∑
k1k2

Ci∗
k1k2(q)Cik1k2(q)

+
∑

k1k2k3k4

Ci∗
k1k2k3k4(q)Cik1k2k3k4(q) .

E.3.3. Expression in one-particle space
Inserting the inverse Bogoliubov transformation, the normal one-body density matrix
expressed in terms of particle operators is obtained under the form

ρfi
b

a(q) ≡
〈Ψf (q)|c†acb|Ψi(q)〉√

〈Ψf (q)|Ψf (q)〉〈Ψi(q)|Ψi(q)〉

=
∑
k1k2

[
Uk2b(q)ρfik2

k1
(q)U∗k1a(q)

− V ∗bk2 (q)σ∗fik1
k2(q)V k1

a (q)
− V ∗bk2 (q)κ∗fik2k1(q)U∗k1a(q)

+ Uk2b(q)κfik2k1(q)V k1
a (q)

]
. (E.18)
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E.3.4. One-body density matrix
In the present work, one is interested in the case where |Ψi(q)〉 = |Ψf (q)〉 ≡ |Ψ(q)〉 such
that Eq. (E.18) reduces to

ρΨb
a(q) =

∑
k1k2

[
V ∗bk2 (q)V k1

a (q)

+ Uk2b(q)ρΨk2
k1

(q)U∗k1a(q)

−
(
V
k2
b (q)ρΨk2

k1
(q)V ∗ak1 (q)

)∗
−
(
V
k2
b (q)κΨk2k1(q)U∗k1a(q)

)∗
+ Uk2b(q)κΨk2k1(q)V k1

a (q)
]
. (E.19)

When time-reversal symmetry is preserved, the one-body density matrix can be chosen to
be real such that the final expression reads as

ρΨb
a(q) =ρΦb

a(q)

+
∑
k1k2

[
Uk2b(q)ρΨk2

k1
(q)U∗k1a(q)

− V k2
b (q)ρΨk2

k1
(q)V ∗ak1 (q)

− V k2
b (q)κΨk2k1(q)U∗k1a(q)

+ Uk2b(q)κΨk2k1(q)V k1
a (q)

 , (E.20)

where ρΦ(q) denotes the one-body density matrix of the reference state |Φ(q)〉 such that
the additional terms relate to BCISD corrections on top of it.

E.3.5. BMBPT coefficients
The coefficients of the BCISD state obtained at first- and second-order in BMBPT are
now explicitly provided [54]. Given that the present application is limited to a JΠ = 0+

Slater determinant reference state |Φ〉, the resulting one-body density matrix ρΨb
a is

actually proportional to δjajb and relates to a many-body state that is an eigenvector of
the particle-number operator.

First-order correction

At first order in BMBPT, singles and doubles BCI-like coefficients read as

C(1)k1k2(q) ≡− Ωk1k2(q)
Ek1k2(q) , (E.21a)

C(1)k1k2k3k4(q) ≡− Ωk1k2k3k4(q)
Ek1k2k3k4(q) . (E.21b)
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Second-order correction

At second order in BMBPT, singles and doubles BCI-like coefficients read

C(2)k1k2(q) ≡1
6P (k1/k2)

∑
k3k4k5

C(1)k1k4k5k3(q)Ωk2
k4k5k3

(q)
Ek1k2(q)

+ 1
2
∑
k3k4

C(1)k1k2k3k4(q)Ωk3k4(q)
Ek1k2(q)

+ 1
2
∑
k3k4

C(1)k3k4(q)Ωk1k2
k3k4

(q)
Ek1k2(q)

+ P (k1/k2)
∑
k3

C(1)k1k3(q)Ω̆k2
k3

(q)
Ek1k2(q) , (E.22a)

C(2)k1k2k3k4(q) ≡1
2P (k1k2/k3k4)

∑
k5k6

C(1)k1k2k5k6(q)Ωk3k4
k5k6

(q)
Ek1k2k3k4(q)

+ P (k4/k1k2k3)
∑
k5

C(1)k1k2k3k5(q)Ω̆k4
k5

(q)
Ek1k2k3k4(q)

+ P (k1/k2k3k4)
∑
k5

C(1)k1k5(q)Ωk2k3k4
k5

(q)
Ek1k2k3k4(q)

+ P (k1k2/k3k4)
[
C(1)k1k2(q)C(1)k3k4(q)

]
, (E.22b)

where anti-symmetrizing operators P (· · · / · · · ) were defined in App. B.
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Appendix F.

Inverse tensor transformations
Given the operator O, i.e. the set of tensors {o(n);n = 0, . . . , N}, and the one-body density
matrix ρ, a second set of matrices is introduced through

o(k)[ρ] ≡
N∑
n=k

1
(n− k)!o

(n) ·ρ⊗(n−k) (F.1)

with k = 0, . . . , N . In a second step, the third set of tensors is defined via

õ(n) [ρ] ≡
N∑
l=n

(−1)l−n

(l − n)! o
(l) [ρ]·ρ⊗(l−n) (F.2)

with n = 0, . . . , N .
The third set of tensors is now shown to be the same as the initial one. Noting that

o(l) [ρ] · ρ⊗(l−n) =
N∑
k=l

1
(k − l)!

(
o(k) ·ρ⊗(k−l)

)
·ρ⊗(l−n)

=
N∑
k=l

1
(k − l)!o

(k) ·ρ⊗(k−n), (F.3)

one obtains

õ(n) [ρ] =
N∑
l=n

N∑
k=l

(−1)l−n

(l − n)!
1

(k − l)!o
(k) · ρ⊗(k−n)

=
N∑
k=n

[
k∑
l=n

(−1)l−n 1
(l − n)!(k − l)!

]
o(k) · ρ⊗(k−n)

=
N∑
k=n

[
k∑
l=n

(−1)l−n
(
k − n
l − n

)]
1

(k − n)!o
(k) · ρ⊗(k−n)

=
N∑
k=n

δkn
1

(k − n)!o
(k) · ρ⊗(k−n)

= o(n), (F.4)

such that each original tensor o(n), and thus the full original operator O, is recovered
through the two-step procedure.
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Appendix G.

PGCM transition density matrix
A workable expression for the transition one-body density matrix between two PGCM
states is obtained and eventually reduced to the particular case of of the normal one-body
density matrix of a Jpi = 0+ state.

G.1. Inputs

G.1.1. Off-diagonal one-body density matrix
Given a state |Φ(q)〉 defined through the Bogoliubov transformation (U(q), V (q)) and the
common index

θ ≡ (Ω, ϕn, ϕp, ϕπ) (G.1)

encompassing all rotation angles, the state obtained through multiple rotations

|Φ(q, θ)〉 ≡ R ~J(Ω)RN(ϕn)RZ(ϕp)Π(ϕπ)|Φ(q)〉 , (G.2)

is also a Bogoliubov state whose Bogoliubov transformation (U(q, θ), V (q, θ)) can be
obtained from (U(q), V (q)) and from the characteristics of the rotation operators [43, 165].
A crucial quantity in terms of which the final results will be expressed is the so-called

off-diagonal one-body density matrix

ρ(q′; q, θ)ba ≡
〈Φ(q′)|c†acb|Φ(q, θ)〉
〈Φ(q′)|Φ(q, θ)〉 , (G.3)

which involves two different Bogoliubov states and, as such, can be computed explicitly
from the sole knowledge of (U(q′), V (q′)) and (U(q, θ), V (q, θ)) [43, 165].

G.2. Definition
Considering two PGCM states, the one-body transition density matrix can now be defined
through1 2

ρ
σfσi
µfµi

b

a
≡〈Ψσf

µf |c
†
acb|Ψσi

µi
〉

1In the present derivation, the density matrix is restricted to be diagonal in the isospin quantum number,
i.e. single-particle states a and b carry the same isospin projection quantum number.

2PGCM states being normalized, there is no need of an explicit denominator (contrary to the situation
encountered in App. E.3).
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=
∫

dqfdqif
σf∗
µf (qf )fσiµi (qi)

× 〈Φ(qf )|P σf †c†acbP
σi |Φ(qi)〉

=
∫

dqfdqi
∑
KfKi

f̃
σfKf∗
µf qf f̃σiKiµiqi

δ(Πfπaπb)Πi

× δNfNiδZfZi ρ
JfMfKfσiKi
qf qi

b

a
, (G.4)

where
ρ

JfMfKfσiKi
qf qi

b

a
≡ 〈Φ(qf )|P

Jf †
MfKf c

†
acbP

Ji
MiKiP

NiP ZiPΠi |Φ(qi)〉 , (G.5)

and where the action of PNfP ZfPΠf was easily resolved.

G.3. Simplified expressions
G.3.1. Expanding the projectors
In order to evaluate this matrix element, the left angular-momentum projector is expanded
according to Eq. (A.16a) such that Eq. (G.5) is rewritten as

ρ
JfMfKfσiKi
qf qi

b

a
= 2Jf + 1

16π2

∫
dΩ

∑
M
′
D

Jf
MfKf (Ω)DJi∗

MiM
′(Ω)

× 〈Φ(qf )|c†a [Ω] cb [Ω]P Ji
M′Ki

PNiP ZiPΠi |Φ(qi)〉, (G.6)

where the rotated creation and annihilation operators are defined as

c†a [Ω] ≡ R ~J(Ω)†c†aR ~J(Ω) , (G.7a)
cb [Ω] ≡ R ~J(Ω)†cbR ~J(Ω) , (G.7b)

and where the identity

R ~J(Ω)†P Ji
MiKi =

∑
M
′
D

Ji∗
MiM

′(Ω)P Ji
M′Ki

, (G.8)

has been used.

G.3.2. Spherical one-body basis
In case one-body basis states carry spherical indices (a ≡ na, ja,ma, πa, qa ≡ αa, ja,ma),
the operators c†αajama and (−1)ma−jacαaja−ma transform like the mth

a component of a rank-ja
spherical tensor under the action of SU(2), which leads to

c†αajama [Ω] ≡
∑
m

Dja∗
mam

(Ω)c†αajam , (G.9a)

cαbjbmb [Ω] ≡
∑
m

Djb
mbm

(Ω)cαbjbm . (G.9b)

Consequently, the transition density matrix can be simplified as

ρ
JfMfKfσiKi
qf qi

b

a
= 2Jf + 1

16π2
∑
mm

′

∑
M
′
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×
(∫

dΩDJf
MfKf (Ω)DJi∗

MiM
′(Ω)Djb

mbm
(Ω)Dja∗

mam
′(Ω)

)
× 〈Φ(qf )|c†αajam′cαbjbmP

Ji
M′Ki

PNiP ZiPΠi |Φ(qi)〉. (G.10)

The integral over Wigner-D matrices is performed analytically and generates a sum over
Clebsch-Gordan coefficients and 3j-symbols according to

1
16π2

∫
dΩDJf

MfKf (Ω)DJi∗
MiM

′(Ω)Djb
mbm

(Ω)Dja∗
mam

′(Ω)

=
min(Ji+Jf ,ja+jb)∑

λ=max(|Ji−Jf |,|ja−jb|)
(−1)Mf−Kf+Jf−Ji+jb−ja

×
(
Jf Ji λ
−Mf Mi Mf −Mi

)(
jb ja λ
mb −ma Mf −Mi

)

× (−1)m
′−maC

λ(m−m′)
Jf−KfJi(m−m

′+Kf )C
λ(m−m′)
jbmja−m

′ . (G.11)

The remaining matrix element in Eq. (G.10) is easily obtained in terms of the off-diagonal
one-body density matrix defined through Eq. (G.3)

〈Φ(qf )|c†αajam′cαbjbmP
Ji
M′Ki

PNiP ZiPΠi |Φ(qi)〉

= 2Ji + 1
16π2

1
(2π)2

1
2

∫
dθDJi∗

M′Ki
(Ω)eiϕnNieiϕpZi

× e
i
2 (1−Π)ϕπρ(qf ; qi, θ)αbjbmαajam

′ 〈Φ(qf )|Φ(qi, θ)〉 , (G.12)

knowing that the overlap 〈Φ(qf )|Φ(qi, θ)〉 between two arbitrary non-orthogonal Bogoliubov
states can be computed in several ways [64, 166] as detailled in App. K.2.

G.3.3. Special case of the one-body density matrix of a Jπ = 0+ state
The expression of the one-body density matrix of a JΠ = 0+ state can be further simplified.
In the above set of equations, it corresponds to setting Ji = Jf = 0, Mi = Mf = 0 and
Πi = +1. In this case, the triangular inequalities encoded in the 3j-symbols impose that

λ = 0 , (G.13a)
ma = mb , (G.13b)
ja = jb , (G.13c)
m = m′ , (G.13d)

such that Eq. (G.11) becomes
1

16π2

∫
dΩD0

00(Ω)D0∗
00(Ω)Djb

mbm
(Ω)Dja∗

mam
′(Ω)δmambδjajbδmm′

1
2ja + 1 . (G.14)

The fact that the initial and final states are the same and thus carry the same parity
further requires that πa = πb. Eventually, Eq. (G.10) reduces to

ρ0+NiZi
qf qi

b

a
≡ δjajbδmambδπaπb

1
16π2

1
(2π)2

1
2

× 1
2ja + 1

∫
dθeiϕnNieiϕpZi〈Φ(qf )|Φ(qi, θ)〉

ja∑
m=−ja

ρ(qf ; qi, θ)αbjbmαajam
. (G.15)

The diagonal character of the one-body density matrix in (j,m) and its independence on
m is made clear in Eq. (G.15) and ends the derivation.
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G.4. Anomalous transition one-body density matrix
G.4.1. PGCM anomalous density matrix
Although not used in the body of this thesis, expressions for anomalous transition density
matrices between nuclei with different number of particles have been derived, and are
given here for sake of completeness. The ab initio study of pair transitions is envisioned in
a near future.
In this section only one nucleon species is considered for convenience. As densities are

assumed to be diagonal in isospin, the same derivation can be achieved for protons and
neutrons. As such, the proton density will be considered. Since the derivation is similar to
the normal projected density matrices, only the main steps of the derivation are explicited.
The PGCM proton density matrix between two states |ΨJ

π
i MiZ
µi

〉 and |ΨJ
π
fMfZ+2
µf 〉 is defined

as

κ
J
π
fMfJ

π
i MiZ

µfµi

ab

≡ 〈ΨJ
π
fMfZ
µf |cbca|ΨJ

π
i MiZ+2
µi

〉,

=
∫

dqidqf
∑
KiKf

f
J
π
f i∗

Kfµf
(qf )fJ

π
i

Kiµi
(qi)κ

J
π
fMfKfJ

π
i MiKiZ

qf qi

ab

, (G.16a)

where
κ
J
π
fMfKfJ

π
i MiKiZ

qf qi

ab

≡ 〈Φ(qf )|P
J
π
f

MfKf
cbcaP

J
π
i

MiKi
P (Z+2)|Φ(qi)〉. (G.17)

G.4.2. Spherical one-body basis
The final expression reads

κ
J
π
fMfKfJ

π
i MiKiZ

qf qi

ab

≡ = (2Jf + 1)(2Ji + 1)
128π4

min(Jf+Ji,ja+jk)∑
λ=max(|Jf−Ji|,|ja−jk|)

(−1)Mf+Jf−Ji+ja−jk

×
(
Jf Ji λ
−Mf Mi Mf −Mi

)(
ja jb λ
ma mb Mf −Mi

)

×
∑
mm

′
C
λ(m+m′)
JfKfJi(m+m′−Kf )C

λ(m+m′)
jamjbm

′

∫
dθDJi∗

(Kf+m+m′)Ki
(Ω)eiϕp(Z+2)

× e
i
2 (1−Π)ϕπκ(qf ; qi, θ)α1jam

′
αbjbm〈Φ(qf )|Φ(qi, θ)〉 . (G.18)
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Appendix H.

Error-function sampling

H.1. Error function
The error function introduced in Eq. (3.23) can be interpreted as the first-order correction
to the energy due to the perturbation δH[ρ] ≡ H2B[ρ]−H. Knowing that for a generic
n-body operator O(nn)

〈Ψ|O(nn)|Ψ〉
〈Ψ|Ψ〉 = 1

n!
1
n!

∑
a1···ai
b1···bi

o
a1···an
b1···bn

〈Ψ|Aa1···an
b1···bn |Ψ〉
〈Ψ|Ψ〉

=
( 1
n!

)2
o(n) ·ρ(n)Ψ , (H.1)

Eq. (3.23) can be written as

∆E2B
Ψ [ρ] =−

( 1
3!

)2
w(3) ·ρ(3)Ψ

+
( 1

2!

)2 (
w(3) ·ρ(2)Ψ

)
·ρ

− 1
2!
(
w(3) ·ρΨ

)
·ρ⊗(2)

+ 1
3!w

(3) ·ρ⊗(3)

=−
( 1

3!

)2
w(3) ·λ(3)Ψ

+
( 1

2!

)2 (
w(3) ·λ(2)Ψ

)
·
(
ρ− ρΨ

)
+ 1

3!w
(3) ·

(
ρ− ρΨ

)⊗(3)
(H.2)

where λ(n)Ψ denotes the irreducible n-body density matrix (or cumulants) [167, 168] that,
for n ≥ 2, encodes genuine n-body correlations in |Ψ〉. Whenever |Ψ〉 reduces to a Slater
determinant, one has λ(n)Ψ = 0 for n ≥ 2.
Inspecting Eq. (H.2), one observes that the error

1. only depends on the three-nucleon interaction and involves up to the 3-body (irre-
ducible) density matrix of |Ψ〉,

2. can be written as a cubic polynomial in the variable ρ − ρΨ whenever involving
irreducible density matrices of |Ψ〉,
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3. is zero (and thus minimal in absolute value) for ρ = ρΨ whenever |Ψ〉 contains at
most genuine 2-body correlations, which is notably the case whenever |Ψ〉 reduces to
a Slater determinant,

4. is in general non-zero for ρ = ρΨ and measures in that case genuine 3-body correlations
encoded into λ(3)Ψ. While the error does not minimize for ρ = ρΨ in general, the fact
that ρ = ρΨ is the optimal solution whenever |Ψ〉 contains at most genuine 2-body
correlations indicates that the optimal ρ cannot be very different from ρΨ whenever
|Ψ〉 is a weakly correlated JΠ = 0+ state.

H.2. Random one-body density matrices
The goal is to sample the error function ∆E2B

Ψ [ρ] within the space of one-body density
matrices {ρ} associated with JΠ = 0+ states1. Thus, a large set of density matrices {ρsRd}
is randomly generated in the sHO basis {|a〉; a ≡ αajama} under the constraints that

ρba = (ρab )∗ , (H.3a)
ρba ≡ δjajbδmambδπaπb%

αb
αa
, (H.3b)

Trρ = 1
(1) ·ρ = A , (H.3c)

0 ≤ diag(ρ)bb ≤ 1 , ∀b , (H.3d)

where 1(1) denotes the identity operator on H1 and where diag(ρ) gathers the eigenvalues.
More specifically, the procedure works as follows

1. choice of a reference one-body density matrix ρref,

2. diagonalization of ρref

ρref ≡ LTdiag(r)L , (H.4)

where L denotes an orthogonal matrix.

3. choice of two coefficients αd, αo characterizing the amplitude of the random pertur-
bation to be performed next.

4. sampling of a random perturbation δr of the diagonal matrix elements of r verifying∑
a

δra = 0 , (H.5a)

ra + δra ∈ [0, 1] , ∀a , (H.5b)
|δra| ≤ αd , ∀a . (H.5c)

5. sampling of a random skew-symmetric matrix δl with all upper-diagonal coefficients
chosen via a normal distribution N (0, 1).

1Strictly speaking, and as the procedure detailed in Sec. 3.2.3 makes clear, the one-body density matrix
employed in the construction of H2B[ρ] does not have to be actually related to a many-body state,
i.e. it does not have to be N-representable. It is at least mandatory to use trial one-body density
matrices carrying the fingerprints of the symmetry constraints associated with a true state in order for
H2B [ρ] to display appropriate symmetries, which translates into Eqs. (H.3a), (H.3b) and (H.3c) as far
as hermiticity, angular momentum, parity and particle number are concerned.
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6. exponentiation of δl to obtain an orthogonal matrix

δL ≡ exp [αoδl] . (H.6)

7. computation of the random neighbour of ρref

ρsRd ≡ (LδL)T diag(r + δr)LδL . (H.7)

Although the sampling is not uniform, all densities with the required properties can in
principle be obtained via this method.

H.3. Spherical Hartree-Fock field
Given a test one-body density matrix ρ and considering that the many-body state of interest
|Ψ〉 is a Slater determinant, the one-body Hamiltonian at play in the HF minimization
problem based on H2B[ρ] is, given Eq. (H.2),

[
hHF(2B)[ρΨ; ρ]

]a
b
≡δ〈Ψ|H

2B[ρ]|Ψ〉
δ[ρΨ]ba

(H.8)

=δ〈Ψ|H|Ψ〉
δ[ρΨ]ba

+ δ∆E2B
Ψ [ρ]

δ[ρΨ]ba
=
[
hHF[ρΨ]

]a
b
− 1

2!

[
w(3) ·

(
ρΨ−ρ

)⊗(2)
]a
b
.

In Eq. (H.8), hHF[ρΨ] denotes the one-body HF Hamiltonian obtained from the full H
whose associated solution is ρsHF. Equation (H.8) allows one to appreciate the implications
of using H2B[ρ] at the sHF level, i.e. in the mean-field calculation of a doubly closed-shell
nucleus such as 16O and 40Ca. One observes that

• in general, the use ofH2B[ρ] generates an additional term on top of hHF[ρΨ], eventually
leading to ρΨ 6= ρsHF and ∆E2B

Ψ [ρsHF] 6= 0 at convergence,

• even when using H2B[ρsHF], the additional term differs from zero such that ρΨ 6= ρsHF

and ∆E2B
Ψ [ρsHF] 6= 0 at convergence,

• only if one were to set ρ = ρΨ in H2B[ρ] throughout the iterative procedure, thus
modifying the approximate Hamiltonian along the way, would the correction term
vanish in Eq. (H.8) at convergence and the sHF solution based on H2B[ρ] be the same
as the one obtained from H. This particular case is equivalent to constructing H2B[ρ]
through Wick’s theorem with respect to the self-consistent sHF Slater determinant
itself and is thus identical to the NO2B procedure, which indeed does not lead to
any approximation at the HF level.
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Appendix I.

Charge density distribution
Generically speaking, the electromagnetic charge density operator is expressed as an
expansion in many-body operators acting on nucleonic degrees of freedom. These operators
not only account for the point distribution of protons but also for their own charge
distribution, along with the one of neutrons, and for charge distributions associated with
the light charged mesons they exchange. In practice, the charge density distribution1 is
usually computed as [169, 170, 171]

ρch(r) = ρp
ch(r) + ρn

ch(r), (I.1)

where ρp
ch (ρn

ch) is determined by folding the point-proton (point-neutron) density with
the finite charge distribution of the proton (neutron). Following Ref. [170], the latter are
included by parameterizing proton and neutron charge form factors as a linear superposition
of Gaussians

Gp/n(r) =
∑
i

θ
p/n
i

[π(rp/n
i )2]3/2

e−(r/rp/n
i )2

, (I.2)

whose widths rp/n
i and relative weights θp/n

i are adjusted to reproduce electron scattering
data. Three and two Gaussians are sufficient to reproduce the proton and neutron form
factors, respectively, with parameters2 given in Tab. I.1. Convoluting Eq. (I.2) with
point-proton and point-neutron distributions ρp and ρn yields the two contributions to the
nuclear charge density [171]

ρp
ch(r) =

3∑
i=1

θp
i

rp
i

√
π

+∞∫
0

dr′
r′

r
ρp(r′)

e−
(
r−r′

r
p
i

)2

− e
−
(
r+r′

r
p
i

)2 , (I.3a)

ρn
ch(r) =

2∑
i=1

θn
i

rn
i

√
π

+∞∫
0

dr′
r′

r
ρn(r′)

e−
(
r−r′

r
n
i

)2

− e
−
(
r+r′

r
n
i

)2 . (I.3b)

Finally, one needs to correct for spurious center-of-mass contamination and include
the Darwin-Foldy relativistic correction. Assuming that the center-of-mass wave function

1An additional relativistic correction that depends on spin-orbit terms, ρls
ch, is sometimes considered.

Given that proton and neutron spin-orbit contributions largely cancel out in N = Z nuclei, this term
is omitted in the present calculation of 20Ne.

2The proton r.m.s. radius resulting from this parameterization is 〈R2
p〉

1/2 = 0.88 fm. This is consistent
with the values reported in the older CODATA evaluations (e.g. the 2010 evaluation [172], 〈R2

p〉
1/2 =

0.8775(51) fm), but overestimates the value found in more recent evaluations (〈R2
p〉

1/2 = 0.8414(19) fm,
adopted from the 2014 evaluation [173] on). A smaller value of the proton r.m.s. charge radius would
lead to less smoothing of the point-proton distribution. Given the small difference between the possible
values of 〈R2

p〉
1/2, however, this would be hardly noticeable in the final charge density curves.
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proton neutron

θ
p/n
1 0.506 1
θ

p/n
2 0.328 -1
θ

p/n
3 0.166 -

(rp/n
1 )2 [fm2] 0.432 0.469

(rp/n
2 )2 [fm2] 0.139 0.546

(rp/n
3 )2 [fm2] 1.526 -
〈R2

p/n〉 [fm2] 0.775 -0.116

Table I.1. Proton and neutron parameters entering the Gaussian expansion (I.2). Taken
from Ref. [170]. The resulting mean-square charge radii are also reported.

factorizes in the ground-state of a harmonic oscillator Hamiltonian characterized by the
frequency ω̃, the inclusion of these two corrections can be performed at the price of
proceeding to the replacement [170, 174]

r2
i −→ r2

i −
b2

A
+ 1

2

(
~
m

)2

(I.4)

in Eqs. (I.3), where m is the nucleon mass, hence ~/m = 0.21 fm, and b2 = (m ~ ω̃)−1.
Employing Bethe’s formula [174], the latter term can be approximated with b2 ≈ A1/3 fm2.
Let us note that, for 16O, such an approximation is consistent with the value of ~ω̃ found
in Ref. [175] and is thus safe to use in present calculations of 20Ne.
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Linear redundancies in HWG
The linear redundancies due to the non-orthogonality of the HFB states mixed into
the PGCM state must be dealt with when solving the HWG equation. Because of the
manageable number of such HFB states, it can be done by diagonalizing the norm matrix
Nσ̃ and by removing the eigenvectors associated with eigenvalues smaller than a given
threshold εth. The threshold must be chosen such that the end results do not depend on
its particular value.
In the second step, the Hamiltonian H can be safely diagonalized in the orthonormal

basis generated in the first step. Since Nσ̃ is a Hermitian positive-definite matrix, the
basis transformation can be written as

Nσ̃ = Sσ̃†N̆σ̃Sσ̃ , (J.1)

where Sσ̃ is a unitary matrix and where N̆σ̃ is diagonal with strictly positive eigenvalues.
Defining

Gσ̃ ≡ Sσ̃†
(
N̆σ̃

)−1/2
Sσ̃ , (J.2)

and only keeping the rows of Sσ̃ corresponding to eigenvalues of N̆σ̃ larger than εth, HWG’s
equation is transformed into the associated orthonormal basis and becomes∑

q

H̆ σ̃
p0q0 f̆

σ̃
µ (q) = E σ̃µ f̆ σ̃µ (p) , (J.3)

with

H̆σ̃ ≡ Gσ̃†Hσ̃Gσ̃ , (J.4a)
f σ̃ ≡ Gσ̃ f̆ σ̃ . (J.4b)

The solutions {f̆ σ̃µ (p); q ∈ set} play the role of orthonormal collective wave functions as a
function of q that can be interpreted as probability amplitudes. Left-multiplying Eq. J.3
by f̆ σ̃∗µ (p), one can thus decompose the PGCM energy in terms of contributions associated
with each deformation q

E σ̃µ =
∑
q

hσ̃∗µ (q) f̆ σ̃µ (q) ≡
∑
q

e
(0+1)
0 (q) , (J.5)

with

hσ̃µ(q) ≡
∑
p

H̆ σ̃
q0p0 f̆

σ̃
µ (p) . (J.6)

Note that the same decomposition of the PGCM energy can be achieved prior to diagonal-
izing the norm kernel.
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Memory optimization
The storage of the interaction matrix elements necessary to perform ab initio calculations
in large computational bases is challenging. Several methods exist to reduce this memory
burden. For example, one most commonly takes advantage of the rotational symmetry
to store matrix elements in J-coupled form. However, this storage is not well adapted
to PGCM calculations based on symmetry breaking HFB states where the contraction
of the interaction with rotated density matrices need to be performed in m-scheme. In
the present Appendix, the workflow to calculate a Hamiltonian kernel while optimizing
memory and runtime is detailed.

K.1. J-coupling scheme
In the present calculations, the one-body Hilbert space is spanned by spherical harmonic
oscillator eigenstates that are labelled by 5 quantum numbers

k ≡ (nk, lk, jk,mk, tk) , (K.1)

where nk denotes the radial quantum number, lk the orbital angular momentum, jk the
total angular momentum, mk its projection and tk the isospin projection.
Introducing the reduced index

k̃ ≡ (nk, lk, jk, tk) , (K.2)

and building the m-scheme, i.e. tensor-product, basis of the two-body Hilbert space
according to

|k1k2〉 ≡ |k1〉 ⊗ |k2〉 , (K.3)
the J-coupled two-body basis is obtained through

|k̃1k̃2JM〉 ≡
1

1 + δk̃1k̃2

∑
m1m2

CJM
jk1

mk1
jk2

mk2
|k1k2〉 , (K.4)

where Clebsch-Gordan coefficients have been introduced. Conversely, uncoupled basis
states can be expanded on J-coupled ones via

|k1k2〉 ≡ (1 + δk̃1k̃2
)
∑
JM

CJM
jk1

mk1
jk2

mk2
|k̃1k̃2JM〉 . (K.5)

The two-body interaction being invariant under rotation, Wigner-Eckart theorem implies
that its matrix elements are diagonal in (J,M) when expressed in the J-coupled basis.
Furthermore, matrix elements can be factorized in terms of a geometrical factor and a
reduced tensor independent of M . Therefore, only the reduced tensor is stored in memory.
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K.1.1. Contractions with one-body density matrices
When the PGCM solely involves spherically invariant HFB states, all necessary contractions
of the two-body interaction with off-diagonal one-body density matrices associated with
pairs of HFB vacua can be conveniently worked out in the J-coupled two-body basis in a
way that only involves the reduced tensor. When employing deformed HFB states and
projecting onto good angular momentum, interaction matrix elements must however be
expressed in the uncoupled basis prior to performing the contractions. Two strategies are
then possible

• Uncouple J-coupled matrix elements prior to the calculation and work with the
corresponding set of uncoupled matrix elements. This however induces a large
memory requirement.

• Decouple interaction matrix elements on the fly, thus reducing the storage workload
while substantially increasing the runtime.

In order to tackle this problem efficiently, a workflow that decouples each matrix ele-
ment only once has been devised, thus reducing drastically both memory and runtime
requirements in a way that is easily parallelized. The workflow is as follows

1. Pre-compute all off-diagonal one-body density matrices.

2. Split the initial one-body basis into subsets of states carrying the same quantum
numbers (m,π).

3. Select [((m1, π1), (m2, π2), (m3, π3), (m4, π4)].
a) Decouple the sub-part of the interaction characterized by this combination of

quantum numbers and store it contiguously in memory.
b) Perform the contraction of the interaction sub-part with the corresponding

sub-blocks of the off-diagonal one-body density matrices. This part can be
completely vectorized since the decoupled interaction is stored contiguously in
memory.

4. Go back to 3. until all combinations of quantum numbers have been exhausted.

The loop in step 3 can be easily parallelized. Except for the overhead associated with
the storage of all off-diagonal one-body density matrices, the memory consumption scales
linearly with the number of cores.

K.2. Evaluation of the norm overlap
As discussed in Chap. 1, the overlap between a left Bogoliubov vacuum and a rotated
right Bogoliubov vacuum can be evaluated according to [63]

〈Φ(p)|Φ(q; θ)〉 = (−1)ndet(C∗(p))det(C(q))∏n
k vk(p)vk(q)

pf
[(

V (p)TU(p) V T (p)rT (θ)V ∗(q)
−V (q)†r(θ)V (p) U †(q)V ∗(q)

)]
,

(K.6)

where the pfaffian of a symplectic matrix and Bloch-Messiah-Zumino’s decompositions [43]
of the Bogoliubov transformations of the left and (unrotated) right states have been
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invoked. In Eq. (K.6), 2n denotes the dimension of H1. This expression is however not
numerically stable as it amounts to taking the ratio of two vanishing quantities. A way to
circumvent this difficulty has been proposed in Ref. [176], but a simpler alternative consists
of rescaling the matrix before evaluating the pfaffian. For any 2n× 2n skew-symmetric
matrix A and real scalar λ, one has

pf(λA) = λnpf(A). (K.7)

Therefore, Eq. (K.6) can be rewritten as

〈Φ(p)|Φ(q; θ)〉 = (−1)ndet(C∗(p))det(C(q))pf
 1

n

√∏n
k vk(p)vk(q)

(
V (p)TU(p) V T (p)rT (θ)V ∗(q)

−V (q)†r(θ)V (p) U †(q)V ∗(q)

) ,
(K.8)

which is well-behaved numerically. The numerical library Pfapack [177] is used to compute
the pfaffian.
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Anti-symmetry reduction
From a technical viewpoint, and as extensively explained in Chapter 2, PGCM-PT(2)
calculations rely on solving a large-scale linear problem of the form

Ma = −h1 . (L.1)

The linear problem relates to excitations I of several non-orthogonal Hartree-Fock-
Bogoliubov vacua, each of which is defined by a set of quasi-particle creations, i.e. a
rank-n excitation is defined through a set of n quasi-particle labels I ∼ (ki1 , · · · , kin).
Correspondingly, the problem is initially expressed in terms of unrestricted sets of quasi-
particle indices. Still, anti-commutation relations of quasi-particle creation operators imply
that M, a and h1 are anti-symmetric with respect to the permutations of quasi-particle
indices, which can be exploited to reduce the effective dimensionality of the linear system.
Given a rank-n excitation I ∼ (ki1 , · · · , kin) on a given Bogoliubov state, the set
I ≡ {τ(I)}τ∈Sn of |I| ≡ n! permutations of the quasi-particle indices of I is considered.
For a pair (I, J) of excitations and two permutations (τ, τ ′) applicable on I and J , the
antisymmetry properties at play read as

MpIqJ = ε(τ)ε(τ ′)Mpτ(I)qτ ′(J) , (L.2a)
aJ(q) = ε(τ)aτ(J)(q) , (L.2b)

hI1(p) = ε(τ ′)hτ
′(I)

1 (p) , (L.2c)

where ε(τ) denotes the signature of the permutation τ . First, these antisymmetry properties
trivially imply that excitations with repeated quasi-particle indices can be excluded from
the basis. Second, the set of excitations I corresponding to one another via a change
of the quasi-particle ordering can all be tracked through the one representative Ī of I
characterized by a strictly increasing ordering of the quasi-particle indices k1 < · · · < kn.
Writing Eq. (L.1) for such an external ordered excitation Ī∑

q

∑
J

∑
J∈J

MpĪqJa
J(q) = −hĪ1(p) , (L.3)

the internal sum is split such that, with the help of Eq. (L.2), |J | equivalent terms are
generated to eventually deliver the reduced form∑

q

∑
J
|J |MpĪ qJ̄a

J̄(q) = −hĪ1(p) . (L.4)

In order to maintain the hermiticity of the reduced matrix one further left-multiplies the
equation by

√
|I| such that the final form∑

q

∑
J

√
|J |

√
|I|MpĪqJ̄

√
|J |aJ̄(q) = −

√
|I|hĪ1(p) , (L.5)
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naturally leads to a trivial redefinition of the reduced matrix and vectors through the
inclusion of the combinatorial factors. In the following, the above reduction process is
assumed such that the effective working basis only includes excitations characterized by
quasi-particle indices in a strictly increasing order.
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Solving the linear problem
Finding the numerical solution of Eq. (L.1) (or equivalently its reduced version given Eq.
(L.5)) is delicate due to the non-orthogonality of the many-body states used to represent
it. Thus, a careful handling of zeros in the norm eigenvalues is typically necessary to
avoid instabilities in the resolution of the equation. Different methods are progressively
introduced below to eventually motivate the use of the iterative MINRES-QLP algorithm.

M.1. Exact SVD-based solution
The pedestrian way to solve the linear system can be summarized in three steps: diagonalize
the norm matrix to transform the equation into an orthonormal basis, diagonalize the
Hamiltonian matrix in that basis and finally invert the problem. This strategy is essentially
similar to the one at play in PGCM to solve HWG equation (see App. J).
The norm matrix (see Chap. 2) is first decomposed by projecting on the range of N

N = XIX† , (M.1)

where X is unitary. M, a and h1 are transformed into the resulting orthogonal basis

M̃ ≡ XMX† , (M.2a)
ã ≡ X†a , (M.2b)

h̃1 ≡ X†h1 , (M.2c)

such that the linear problem equivalently reads

M̃ã = −h̃1 . (M.3)

The solution of this system is then found by diagonalizing M̃

∆ = Y†M̃Y , (M.4)

such that, similarly to canonical MBPT, the system is inverted in the basis where M̃ is
diagonal to obtain the second-order energy under the form

E(2) = −h1
†XY∆−1Y†X†h1 . (M.5)

In principle, the projection on the range of N is not necessary to solve the system.
However, in numerical applications, the coupling between spurious eigenvalues of N and
large eigenvalues of M can arise such that the explicit removal of the redundancies is
often necessary. However, the full diagonalization is not applicable to the large matrices
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Figure M.1. (Color online) Distribution of eigenvalues of N and M matrices for 20Ne.
The calculation is performed with a two-body χEFT Hamiltonian, λsrg = 1.88fm−1,
~ω = 20MeV and emax = 2.

encountered in realistic PGCM-PT(2) calculations (contrary to the PGCM step where the
typical dimensions at play allow for such a strategy) such that other methods need to be
designed to solve the problem.

As an example, the distribution of eigenvalues of matrices N and M obtained through
a PHFB-PT(2) calculation of 20Ne in a small model-space is displayed in Fig. M.1. Two
observations can be made

• The distributions of eigenvalues of the two matrices are very close up to a scal-
ing factor. In particular, and as expected, their (numerical) kernel has the same
dimension.

• The kernels dimension is small compared to the matrices dimension, and all eigenval-
ues have the same magnitude. This prevents from using truncated SVD approaches
in larger model spaces.

Although the GCM mixing enlarges the kernel of the PGCM-PT(2) matrices compared to
PHFB-PT(2) due to the partial linear dependencies of the added HFB states, there is still
a large number of independent configurations.

M.2. QLP decomposition
Before introducing iterative methods, one may introduce an intermediate method effectively
removing spurious eigenvalues without paying the price of fully diagonalizing the norm
and Hamiltonian matrices. Indeed pivoted QR [178] and QLP [179] factorizations may be
used to reach the range of symmetric matrices without resorting to a full diagonalization.

M.2.1. Pivoted QR
Let us consider an arbitrary n×m complex matrix A. A can be decomposed according to

AD = QR , (M.6)

where D is a permutation of the columns of A, Q is a unitary matrix, and R is an
upper triangular matrix. The permutation D is used to sort the diagonal entries of R in
decreasing order of magnitude. This way, the kernel of A corresponds to the last columns
of R with diagonal entries 0.
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Figure M.2. (Color online) PHFB-PT correlation energy of 20Ne obtained for SVD, QR and
QLP decompositions as function of the size of the excluded kernel in the decomposition.
The calculation is performed with a two-body χEFT Hamiltonian, λsrg = 1.88fm−1,
~ω = 20MeV and emax = 2.

M.3. Pivoted QLP
Performing two successive pivoted QR decompositions allows to further decompose A into
the form

D′AD = QLP (M.7)
where D,D′ are permutation matrices, Q, P are unitary matrices and L is a lower
triangular matrix. In particular, L takes the block-diagonal form

L =
(
L̃ 0
0 0

)
, (M.8)

such that Q and P naturally block factorize A into a full-rank part and its null-space.

M.3.1. Application
In the case of present interest, pivoted QR/QLP factorizations can either be used directly
on M to solve Eq. (L.1) or on the norm matrix in order to remove redundancies in the
basis. In both cases, the symmetry of the matrices guarantees that the range and the
kernel of both matrices are in direct sum. QLP factorization can therefore be seen as a
way to reexpress the original problem in the range of M or N. In practical applications, a
tolerance is used (as with SVD) to numerically discard small eigenvalues and disentangle
the numerical kernel from the numerical range. The QLP factorization, although twice
more expansive than the single QR decomposition, is found to be more stable and to
better discard spurious eigenvalues.

Figure M.2 shows a comparison of SVD, QR and QLP decompositions in a PHFB-PT(2)
calculation. The three of them are in very good agreement when nearly all the space is
kept in the calculation. However, truncating along the magnitude of the diagonal elements
of the decomposition deteriorate the results. While the SVD is by far the most reliable
method, the QLP decomposition significantly improves the correlation energy with respect
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to the simpler QR decomposition and reduces the corresponding error. The reduced cost
of QLP/QR decompositions compared to SVD, especially in their sparse version, make
them very profitable.

M.4. From QLP to MINRES-QLP algorithm
The QLP decomposition introduced above is still not applicable to very large matrices
due to the runtime and memory requirements. An alternative solution is to use an
iterative method, preferentially one that exploits the symmetry of the input matrix.
Among various available solvers, the MINRES algorithm [180] finds the minimum length
solution to ||Ma + h1|| via QR factorizations in the Krylov space of M. In case of
ill-conditionned problems, QR factorizations are replaced by QLP factorizations, the
corresponding algorithm being coined as MINRES-QLP [181].

The benefit of iterative solvers compared to exact decompositions is that the QR (resp.
QLP) factorization is performed in the Krylov subspace of the matrix instead of the whole
matrix itself. At iteration k, the problem is of dimension k× k, k being usually kept much
smaller that the original matrix dimensions. This results both in a runtime and memory
saving, at the cost of solving the system only approximately.

M.5. Preconditioning of the linear system
The number of iterations required by the solvers strongly depends on the distribution
of eigenvalues of the linear system under consideration. Typically, systems where the
eigenvalues are clustered will have a faster convergence than systems with a spread spectrum.
The spread of the eigenvalues can be altered with preconditioning techniques that amounts
to finding equivalent systems with different (generally much smaller) condition numbers.
In this section, the compatible symmetric system

Mx = −h1 , (M.9)

is considered. Let A = CCT be a positive definite matrix. The solution of the initial
system can be deduced from the solution of the preconditioned system

C−1MC−Ty = −C−1h1 . (M.10)

Whereas various techniques are available to build an appropriate matrix A, designing
efficient preconditioners is still an active field of research [182]. There is no perfect
preconditioner, and finding the trade-off between effectiveness and computational cost
heavily relies on heuristic. Furthermore, for systems only known up to a given precision,
preconditioners can artificially magnify eigenvalues that are numerically close to zero.
Thus, a slower convergence with the possibility to stop the iterations before the appearance
of spurious divergences might be preferable. Eventually, solving simultaneously several
equivalent systems can help better identify systems where the solution is harder to find
and discrepancies between different solutions can be used as uncertainty estimates in the
resolution.
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M.5.1. Matrix scaling
Matrix scaling is a subcase of preconditioning where the preconditioner is a diagonal
matrix A ≡ D such that the equivalent system reads

D−
1
2 MD−

1
2 y = −D−

1
2 h1 . (M.11)

If the scaled matrix
M̃ ≡ DMD (M.12)

is better conditioned than M, then the solution to the initial system can be found in
less iterations. For a diagonally dominant matrix M, scaling the matrix with its own
diagonal elements will reduce its condition number. The binormalization method detailed
in Ref. [183] amounts to scaling all rows and columns to unit norm and can deliver
significantly better results at low cost. A stochastic matrix-free variant [184] allows one to
efficiently apply this method for abstract linear operators that are not necessarily defined
explicitly by a matrix-vector product. Below, the stochastic binormalization preconditioner
is denoted as SBIN.

M.5.2. Incomplete Cholesky decomposition
For a sparse positive definite matrix N, an approximate Cholesky factorization preserving
the sparsity pattern of the original matrix can be computed as

N ∼ LLT , (M.13)

with L a (sparse) lower triangular matrix. A variant of Cholesky factorization applicable
to positive indefinite matrices can be applied directly on the norm matrix N. Since N
and M have similar eigenvalue spread, eigenvalues of the system preconditioned with LLT

will be much more clustered than those of the original system. Below, the incomplete
Cholesky preconditioner is denoted as IC0.

M.5.3. Norm preconditioning
In some cases, spurious eigenvalues in the linear system can couple to physical modes and
prevent any convergence of the iterative solvers. In this case, clustering the eigenvalues via
preconditioning techniques is counterproductive as spurious modes are given an equivalent
amplitude to physical ones. When this happens, it is preferable to amplify the separation
of scale between numerically small and large eigenvalues. Instead of manually removing
redundancies in the norm matrix, there exists a simple way to reach the image of N
without resorting to a decomposition. Instead of solving

Ma = −h1 , (M.14)

one directly solves for N−1a inside the range of N via

NMN
(
N−1a

)
= −Nh1 , (M.15)

Even if N is singular, the fact that h1 and a live in the range of N by construction ensures
that N−1a is well-defined. The procedure ensures that small numerical eigenvalues of N,
originating from colinear many-body basis vectors, are tamed down in NMN. Furthermore,
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numerical errors in h1 are additionally suppressed. Of course, in exact arithmetic, the two
systems are equivalent. This method corresponds in fact to preconditioning the system
with N−2. As mentioned, this slows down the convergence of the iterative procedure and
must be kept for cases where the direct resolution or the complex shift method (see below)
do not provide accurate solutions. Below, the norm precondition is denoted as NMN.

M.6. Error evaluation
Iterative methods may require a large number of iterations or even diverge due to numerical
errors. In this section, a conservative error bound to estimate the error on the computed
second-order energy is advocated.
Given an approximate resolution of the system

Ma = −h1 + b , (M.16)

the second-order energy evaluated with Hylleraas’ functional reads

E(2) = a†Ma + h†1a + a†h1

= a†b + h†1a . (M.17)

The difference in the second-order energy evaluated directly or via Hylleraas’ functional
reads

δE(2) = a† (Ma + h1) . (M.18)

A conservative error estimate on the second-order energy can thus be expressed as

|δE|(2) ≡ ‖a‖‖Ma + h1‖ . (M.19)

The quantity |δE|(2) vanishes for an exact resolution and grows whenever ‖a‖ becomes too
large, which generally occurs if M is badly conditioned. When the norm-preconditioning
is used, the error estimate is obtained as

|δE|(2) ≡ ‖N−1a‖‖NMN
(
N−1a

)
+ Nh1‖ . (M.20)

M.7. Stopping condition of iterative solver
MINRES-QLP already implements by default its own stopping criterion based on the
relative norm of the residuals

‖Ma + h1‖
‖a‖

. (M.21)

In the present case, elements of M and h1 are obtained after several computational steps
such that round-off and discretization errors will alter the quality of the input matrices.
Furthermore, a threshold on the magnitude of the matrix elements of M is employed to
enforce the sparsity of the matrix. As such, iterations should be stopped when the residual
errors are of the same order as the precision of the input matrix elements.
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M.8. Illustration of iterative solvers

Figure M.3. (Color online) Correlation energy (top) and respective error (bottom) at each
MINRES-QLP iteration for the ground state of 20Ne for various systems and preconditioning
techniques. Exact solution is obtained via SVD. The calculation is performed with a
two-body χEFT Hamiltonian, λsrg = 1.88fm−1, ~ω = 20MeV and emax = 2.

M.8. Illustration of iterative solvers
In order to illustrate the use of iterative solvers and preconditioning techniques, results
obtained in 20Ne with emax = 2 are shown in Fig. M.3. The IC0 preconditioning significantly
reduces the number of iterations before reaching the converged value. Contrarily, the
norm preconditioning tends to spread the eigenvalues of the system and therefore slows
down the convergence. On a well-behaved system, applying the IC0 to the original matrix
is the method of choice. On the contrary, whenever spurious eigenvalues prevent any
convergence of the iterative process, the IC0 preconditioning amplifies the problem. Such
a case is shown Fig. M.4 for the ground state of 18O. In that case, applying the norm
preconditioning is necessary to converge the system to the SVD solution.
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Appendix M. Solving the linear problem

Figure M.4. (Color online) Correlation energy (top) and respective error (bottom) at each
MINRES-QLP iteration for the ground state of 18O for various systems and preconditioning
techniques. The exact solution is obtained via SVD. The calculation is performed with a
two-body χEFT Hamiltonian, λsrg = 1.88fm−1, ~ω = 20MeV and emax = 2.
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Appendix N.

Complex shift

N.1. Motivations
As it appears in Eq. (M.5), the second-order energy relies on the inversibility of ∆ to
generate non-zero energy denominators. However, the eigenvalues of ∆ can vanish, making
the calculation of the second-order energy unstable if not ill-defined. Multi-reference
methods are indeed susceptible to this so-called intruder-state problem [65, 185].
One way to regularize these zeros is to introduce a diagonal imaginary shift in the

eigenbasis of M. The eigenvalues are thus replaced by

∆̄ ≡∆ + ıγI , (N.1)

or, equivalently, working in the original basis

M̄ ≡M + ıγN , (N.2)

which actually corresponds to adding such a term to the unperturbed Hamiltonian H0.
The imaginary shift moves zero eigenvalues of ∆ into the complex plane and provides a
robust way to remove intruder-states’ divergences.
In this context, the second-order energy is eventually evaluated using the real part of

the Hylleraas functional

E(2) = <
[
a†M̄a + a†h1 + h†1a

]
. (N.3)

N.2. Implementation in real arithmetic
Although an extension of MINRES-QLP has been developped to handle complex symmetric
matrices [186, 187], it is possible, due to the specificity of PGCM-PT(2), to rewrite the
complex system into a larger real system and use directly the MINRES-QLP algorithm.
The system

(M + ıγN)(a + ıb) = −h1 (N.4)
is recast into a blockwise 2x2 real symmetric system(

M −γN
−γN −M

)(
a
b

)
=
(
−h1
0

)
. (N.5)

Since the matrices are real by default after projection, implementing the imaginary shift via
an augmented real system is profitable to make use of the MINRES-QLP real symmetric
solver.

Note that preconditioning techniques such as SBIN and N-IC0 are still applicable with
the augmented system.
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Figure N.1. (Color online) Correlation energy (top panel) and corresponding estimated
error for different values of the complex shift γ as a function of the number of MINRES-
QLP iterations in 20Ne. The calculation is performed with a two-body χEFT Hamiltonian,
λsrg = 1.88fm−1, ~ω = 20MeV and emax = 2.

N.3. Example

Pursuing with the 20Ne test case (emax = 2), the effect of the complex shifts on the
MINRES-QLP iterations with the IC0 preconditioning is illustrated in Fig. N.1. In general,
the complex shift tends to lower the correlation energy (the correlation energy vanishes in
the limit of an infinite shift), which thus induces a bias that must be monitored. Eventually,
the larger the complex shift, the faster the convergence of the iterative procedure (towards
a biased result).
As shown in Fig. M.4, the linear problem is not solvable directly in 18O such that the

norm preconditioning must be used. It is possible to combine it with the complex shift,
as pictured in Fig. N.2 with an additional SBIN preconditioning. Unlike in 20Ne, the
complex shift with the norm preconditioning decreases the convergence speed. Note that
the complex shift without norm preconditioning is also possible, but does only lead to a
stabilization of the result before the occurrence of a divergence.
In practical applications, the optimal shift is a function of the interaction, the model

space and the system under consideration. As the model space is enlarged, encountering
small eigenvalues becomes more probable and the complex shift becomes necessary to
smear out the contaminations. A shift γ ∈ [10, 20]MeV is well suited to remove spurious
behaviors, with an estimated error lying around 4% on the correlation energy as can
be seen in Fig. N.3. The difference between the results obtained with γ = 15MeV and
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N.3. Example

Figure N.2. (Color online) Correlation energy (top panel) and corresponding estimated
error for different values of the complex shift γ as a function of the number of MINRES-
QLP iterations in 18O. The calculation is performed with a two-body χEFT Hamiltonian,
λsrg = 1.88fm−1, ~ω = 20MeV and emax = 2.

γ = 4MeV is used to estimate the bias due to the shift. Note that PHFB-PT(2) is more
sensitive to intruder states problem than PGCM-PT(2), hence the need to employ a
larger shift to smooth out singularities on the energy curve. In practice, it is essential
to use the same shift for all quantum states of a given nucleus for the bias on absolute
binding energies to be consistent and to largely cancel out in the excitation spectrum. The
development of an extrapolation method to correct for the bias due to the complex shift is
left to a future study.
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Figure N.3. (Color online) Correlation energy in 20Ne for a complex shift γ = 15 MeV.
Error bars associated to the effect of the shift correspond to the correlation energy
with γ = 4 MeV. The calculation is performed with a two-body χEFT Hamiltonian,
λsrg = 1.88fm−1, ~ω = 20MeV and emax = 2.
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Appendix O.

Discussion on numerics

O.1. Complexity

Each method to solve the A-body Schrodinger equation comes with its numerical complexity
and storage requirement. For a given basis size N of the one-body Hilbert space the
naive runtime and storage complexity of the methods is given as a polynom in N in
Tab. O.1. These asymptotic values are to be revised when making use of symmetries (like
spherical or axial symmetry, that reduce the size of the many-body tensors at play), and
prefactors (ignored here) may play a significant role. However, it gives a fair idea of the
asymptotic of the method. As an example, the computational cost of each individual
matrix element at play in PGCM-PT(2), requiring 1000 vectorized elementary operations,
makes the building of the matrix the most time-consuming step in the calculation, i.e.
the computation of the N8 matrix elements dictates the overall complexity given that the
(approximate) sparsity of the matrix makes the cost of the linear system resolution to be
subleading. Similarily, even if BMBPT(3) has the same storage cost as HFB in principle,
symmetry properties of the density matrices are used to drastically reduce the number
of matrix elements needed at the HFB level. In general, the nominal complexity and
storage requirement have to be balanced with the possible optimizations (vectorization,
parallelization, compression techniques) that depend on the method and can play a decisive
role in practical applications. Also, shape mixing through PGCM scales quadratically
with the number of reference states, i.e. a PGCM (resp. PGCM-PT(2)) calculations with
10 states is 100 times costlier than a PHFB (resp. PHFB-PT(2)) calculation.

A selection of runtimes as a function of the one-body basis dimension is displayed in
Fig. O.1. Symmetry properties lower the effective complexity to O(N4) for BMBPT(2,3)
and PHFB, the main differences residing in the prefactor that is logically larger for
BMBPT(3). Note that the normal ordering of the Hamiltonian and the transformation to
the quasi-particle basis is included into the runtime estimate.

Method HFB PGCM BMBPT(2) BMBPT(3) PGCM-PT(2) FCI
Runtime O(N4) O(nprojn

2
gcmN

4) O(N5) O(N6) O(nprojn
2
gcmN

8) O(NA)
Storage O(N4) O(N4) O(N4) O(N4) O(n2

gcmN
8) O(NA)

Table O.1. Runtime complexity and storage requirements for various resolution methods
of the many-body problem. nproj denotes the number of gauge angles used for projections
and ngcm the number of states used in the mixing.
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O.2. Complexity reduction in PGCM-PT(2)

O.2. Complexity reduction in PGCM-PT(2)
The multi-reference PGCM-PT(2) calculation is, in its naive formulation, significantly
costlier than its single-reference counterparts. This is mainly due to the redundancies in
the visited Hilbert space: many projected quasi-particle configurations play little to no
role in the correlation energy or are redundant. This is even more true for large scale
applications where the multi-reference unperturbed state mixes many product HF(B)
states. The idea is therefore to reduce the dimensionality of the problem by controlling
the number of configurations. This has been recently employed in nuclear physics [161]
and quantum chemistry [188]. In particular, the application of importance truncation
techniques in the context of non perturbative methods [160] show promising results that
should be applicable to the present problem.

Several procedures, some of which are left to be implemented, to reduce the number of
configurations in a controlled way are now briefly introduced.

O.2.1. Norm-based importance truncation
Exact arithmetic

The norm of a projected configuration is

nI(p) ≡ 〈ΩI(p)|ΩI(p)〉 ∈ [0, 1] (O.1)

such that a configuration I for which nI(p) = 0 verifies

|ΩI(p)〉 = 0 . (O.2)

Trivially, a null vector does not contribute to the linear system and can be safely removed
from the calculation.

Approximate zeros

Given a threshold εn > 0, the norm-based importance-truncated problem is introduced
by removing configurations I verifying nI(p) < εn. The exact problem is obtained in the
limit εn = 0. For now, this is the only method that has been implemented to discard
configurations in 18O at emax = 6. Although the number of configurations was divided by
two (from 1000000 to 500000) by only keeping configurations whose norm reaches 2% of
the maximal value, the induced error was shown to be less than 1%. A systematic study
of the results obtained via this procedure still remains to be performed.

O.2.2. Hamiltonian-based importance truncation
Exact arithmetic

The Hamiltonian vector element of a projected configuration reads

hI1(p) ≡ 〈ΩI(p)|H1|Θ(0)〉 . (O.3)

A configuration I for which hI1(p) = 0 does not contribute to the linear system nor to the
second-order energy such that it can be safely removed from the calculation.
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Approximate zeros

Given a threshold εh > 0, the hamiltonian-based importance-truncated problem is intro-
duced by removing configurations I verifying |hI1(p)| < εh. The exact problem is obtained
in the limit εh = 0.

O.2.3. Energy-based importance truncation
The contribution of a configuration I associated with the vacuum |Φ(q)〉 to the second-order
correlation energy reads as

e(2)I(q) = hI∗1 (q)aI(q) . (O.4)
A configuration I for which e(2)I(q) = 0 does not contribute to the correlation energy.
However, this configuration might contribute to the system and influence the value of
the other coefficients aJ(q′). Removing configurations based on their contribution to the
correlation energy (estimated by using the SR-BMBPT evaluation of aI(q)) corresponds to
the method advocated in Refs. [160, 161] and is expected to lead to a critical gain without
altering significantly the end result.

O.2.4. Incremental building of the basis
Besides the importance of a given configuration, it could be also interesting to optimize the
building of the matrix by removing redundant configurations from the outset. A procedure
for PGCM calculations proposed in Ref. [189] could be adapted to a the PGCM-PT(2)
matrix. Although it is not possible to apply it directly to a large matrix, it is possible to
subdivide the original matrix and to incrementally build a non-degenerate configuration
space
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On the numerical implementation
A schematic representations of the developments of the modules in the numerical imple-
mentation is provided Fig. P.1.
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Figure P.1. Schematic representation of the structure of the numerical implementation.
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Résumé en français

Le problème à A corps nucléaire
La description théorique des systèmes nucléaires reste, à ce jour, toujours un sujet de
recherche actif. Bien que les progrès expérimentaux aient apporté une description toujours
plus fine de la vaste de gamme de phénomènes à l’oeuvre dans les noyaux atomiques, on
manque encore d’une description unifiée de l’ensemble de la carte des noyaux. Aujourd’hui,
il semble que la meilleure piste pour construire une théorie unifiée prend forme comme
une superposition de théories effectives des champs (EFT) successives, qui permettent de
décrire de façon cohérente les différentes échelles dénergies en jeu. Pour les noyaux de
basse énergie, la version la plus élémentaire dúne telle EFT, la théorie effective des champs
chirale (χEFT) décrit le noyau auto-lié comme une collection de N neutrons et Z protons
ponctuels en interaction forte. Dans ce modèle on résout l’équation de Schrödinger à A
corps en partant d’un Hamiltonien dérié à partir d’une expansion chirale.
Ainsi, le premier obstacle à la résolution dúne problème à N corps nucléaire provient

de la complexité de l’interaction entre nucléons, découlant elle même de l’interaction
résiduelle entre les quarks et gluons composant les nucléons. On a longtemps cru que le
fait que la chromodynamique quantique (QCD) ne soit pas perturbative à basse énergie
empêcherait d’en faire un développement utilisable en pratique. En parallèlle, les calculs
non perturbatifs sur réseau n’ont pas permis, pour l’instant, de fournir une interaction
utilisable pour les noyaux. Si ça ne suffisait pas, la répulsion de courte portée entre nucléons
est à l’origine de divergences ultraviolettes (UV), tandis que le deuteron (faiblement lié)
et le di-neutron (virtuel) génr̀ent des divegences infrarouges (IR). Ces deux phénomǹes,
fondamentalement différents, doivent être traités séparément pour résoudre la problème
de structure nucléaire. Enfin, si les nucléons sont pris ponctuels dans le cadre de la χEFT,
leur structure interne est tout de même à l’origine de forces à deux, trois, quatre, ... jusquà
A corps qui, en théorie, doivent être pris en compte pour avoir une résolution exacte du
problème à A corps.

En plus de la construction du Hamiltonien, cette résolution fait face à un second problème.
La vaste majorité des noyaux atomiques, qui peuvent contenir jusqu’à environ 300 nucléons,
contiennent beaucoup trop de nucléons pour permettre une résolution exacte de l’équation
de Schrödinger à A corps. De plus, les différentes échelles en jeu dans les noyaux, qui
comprennent à la fois des excitations individuelles de courte portée (responsables par
exemple des énergies de liaison absolues) mais aussi des corrélations de longue portées
associées à des phénomènes collectifs (à l’origine de la physique de l’appariement, de
la crotation et de la vibration), sans parler des phénomènes comme les désintégrations
radioactives ou les réactions, rendent encore plus difficile lélaboration dún modèle unifié.
À ce jour, plus de 3400 noyaux stables vis à vis de línteraction forte ont été observés, et
un millier d’autres ont été prédits par la théorie.

Les premières tentatives pour contourner ces difficultés ont promu l’utilisation de modèles
macroscopiques. Par exemple, des modèles semi-classiques comme le modèle de la goutte
liquide (LDM), même s’ils ne proposent qu’une description sommaire du noyau, ont éte
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et sont toujours utilisés dans des calculs où les méchanismes de structure fine ne sont
pas nécessaires en première approximation. Cependant, l’inclusion des effets de structure
fine sont nécessaires dès que l’on recherche une théorie prédictive et suffisemment précise.
Parmi ces approches, la fonctionelle de la densité de l’énergie (EDF) est parvenue, au
fil de ces dernières décennies, à apporter une description empirique des corrélations de
courte et de longue portée dans tous les noyaux (connus ou pas). Mais le caractère
phénoménologique de l’interaction en jeu, qui ne repose pas sur hiérarchie bien définie
entre les différents termes, manque toujours d’une formulation systématique. Malgré les
progrès constants des ressources de calcul, ceci ne permet pas d’envisager une route claire
vers l’amélioration de cette méthode.

Dans ce contexte, les méthodes déxpansion ab initio, employées dans le cadres des
la χEFT, approximent la solution exacte de l’équation de Scrödinger comme une série
tronquée, ce qui permet d’identifier et de propager les incertitudes aux différents niveaux
de la théorie jusquáux observables finales. Les méthodes ab initio partagent toutes un
certain nombre de caractéristiques

• Les nucléons sont considérés comme des degrés de liberté ponctuels élémentaires. En
conséquence, les phénomènes nucléaires collectifs doivent émerger des corrélations
entre les nucléons en interaction.

• L’hamiltonien est dérivé de manière consistante à partir de la théorie sous-jacente, la
QCD.Actuellement, ceci est fait en utilisant la χEFT pour développer les élémentents
de matrice du hamiltonien dans une suite dápproximation successives compatibles
avec les symmétries de la QCD.

• La solution de l’équation de Schrödinger est développée de maní‘ere systématique,
chaque ordre de la théorie corrigeant le précédant pour se rapprocher de la solution
exacte.

• Les erreurs provenant de chaque étape de la résolution (du hamiltonien, du développe-
ment, des approximations numériques doivent être estimées et propagées jusqu’aux
observables d’intêret.

En ce sens, les méthodes ab initio diffèrent des approches plus phénoménologiques pour
lesquelles il est difficile voire impossible dévaluer les erreurs de façon rigoureuse. Il y a
une vingtaine d’années, ces méthodes étaient implémentées uniquement dans le cadre
d’approches quasi-exactes, e.g. Fadeev Yakubovski, les fonctions de Green Monte-Carlo,
le le modèle en couche sans coeur (NCSM). Ainsi, elles étaient limitées aux noyaux
légers à cause de la complexité du problème, exponentielle en fonction du nombre de
particules A. Grâce à la formalisation concomitante de méthodes de pré-traitement de
l’interaction (qui enlv̀ent les divergences UV) et de méthodes d’expansion qui construisent
une solution approchée de l’équation de Schrödinger, des méthodes de résolution de
complexité polynomiales ont été développées avec succès au cours de ces 15 dernières
années pour donner une description des systèmes nucléaires de masse moyenne.

Méthodes d’expansion ab initio
Les méthodes d’expansion ont pour but d’ajouter des corrélations par dessus un état de
référence bien choisi qui constitue un bon point de départ pour aller vers la solution exacte.
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Même si ces méthodes d’expansion capturent toutes les corrélation dans leur limite exacte,
elles tendent (par construction) à se concentrer sur les corrélations de courte portée (i.e.
les corrélations dynamiques), et ne parviennent pas, en général, à incorporer de manière
efficace les corrélations résiduelles de longue portée (i.e. les corrélations statiques) qui sont
particulièrement importantes dans les noyaux à couche ouverte. Cette distinction entre
corrélations statiques et dynamiques, même si elle est partiellement arbitraire, se révèle
très utile et pertinente en pratique, et l’inclusion simultanée des deux types de corrélations
est à ce jour un défi important des méthodes ab initio.

Expansion à un état de référence dans les noyaux à couche fermée
Dans les noyaux à couche fermée, la physique collective de longue portée n’est pas
réellement nécessaire pour la description de létat fondamental. Il est donc suffisant de
traiter uniquement les corrélations dynamiques. Dans ce cas, les méthodes d’expansions
construites par dessus un unique déterminant de Slater de référence (SR), lui même
généralement optimis2́ via un calcul de champ moyen Hartree-Fock (HF), capturent les
corrélations dynamiques via des excitations particule-trou. La fonction d’onde totale du
système |Ψ〉 est donc écrite comme un opérateur de corrélation Omega agissant sur létat
de référence |Φ〉

|Ψ〉 = Ω|Φ〉.

Ainsi, l’opérateur Ω correlle l’état de référence vers la solution exacte du système. Le
premier exemple est la théorie de perturbation à A corps (MBPT), dans laquelle Ω est
développé en une série perturbative. Cette méthode a observé un regain d’intêret ces
dernìres années grâce au pré-traitement de l’interaction vua les méthodes du groupe de
transformation similaire (SRG) qui permettent de rendre la série perturbative convergente.
En parallèlle, des méthodes d’expansion perturbatives ont aussi été développées. Les
méthodes des clusters couplés (CC), du groupe de transformation similaire dans le milieu
(IMSRG) ou de la fonctionde Green auto-cohérente (SCGF) resomment toutes (à leur fao̧n)
des sous-ensembles de diagrammes perturbatifs à tous les ordres. Ainsi, ils permettent
d’avoir un résultat plus précis pour un coût donné.
Toutes ces méthodes donnent des résultats compatibles entre elles et avec les calculs

exacts NCSM. Elles ont été capables détendre la portée des calculs ab initio jusqu’à des
systèmes contenant A ∼ 130 nucléons.

Approches multi-références et corrélations statiques
L’application des méthodes d’expansion pose des problèmes dans les systeèmes à couche
ouverte, où les dégénérescences de létat de référence déterminantal (par rapport aux
excitations particules-trous) sont à l’origine de singularités dans l’expansion. Cette
difficulté est déjà connue dans le cadre des EDFs phénoménologiques, où la description
qualitative des noyaux à couche ouverte par des méthodes de champ moyen conservant
la symmétrie se détériore rapidement lorsqu’on s’éloigne des fermetures de couche. Ces
dégénerescences sont en fait à l’origine de corrélations fortes de longue portée près du
niveau de Fermi, qui peuvent être capturées aisément si on complexifie létat de référence.
Au lieu d’imposer un état de référence uni-déterminantal conservant la symmétrie, une
combinaison linéaire optimale détats produits généralisés fait peut être utilisée avec succès
comme état de départ.
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Dans les approches EDF, létat multi-référence est construit en deux étapes distinctes.
Premièrement. le déterminant conservant les symmétries de línteraction est remplacé
par un état de référence à symmétrie brisée. Cet état reste un état produit (proche de
l’image de particules indépendantes) mais peut être déformé spacialement ou briser la
symmétrie du nombre de particules. Comme les noyaux sont des systèmes quantiques
mésoscopiques, les vrais états propres du hamiltonien doivent impérativement avoir de
bons nombres quantiques de symmétrie. C’est pourquoi, dans un second temps, on doit
projeter létat de référence sur les bonnes symmétries, ceci étant obtenu en faisant une
combinaison lináire incluant les partenaires tournés de létat initial. Ainsi, on peu prendre
en compte naturellement la physique de la rotation (et / ou de l’appariement). La physique
vibrationelle est prise en compte dans une dernière étape qui mélange différents états
projetés différent par la nature de la brisure de symmétrie de létat sous-jacent. Cette
approche porte le nom de méthode de la coordonnée génératrice projetée (PGCM).

Poursuivant la même logique, létat non perturbé en jeu dans les méthodes d’expansion
ab initio peut être autorisé à briser des symmétries dans le but de lever les dégénérescences,
de sorte que léxpansion soit faite directement par-dessus cet état de référence à symmétrie
brisée. Cette approche a été implémentée pour la symmétrie du nombre de particules via la
théorie de perturbation de Bogoliubov (BMBPT), les fonctions de Green auto-cohérences
de Gorkov (GSCGF), et les clusters couplés de Bogoliubov (BCC), ainsi que pour la
symmétrie de rotation via CC. La description des propriétés du fondamental des noyaux de
masse moyenne n’a pas à rougir face à des approches plus phénoménologiques. Cependant,
comme en EDF, la brisure de symmétrie ne peut être qu’une étape intermédiaire du calcul
et ces symmétries doivent être restorées. Cependant, la restoration devient non triaviale au
delà du champ moyen, et a été formulée assez récemment pour les expansion (perturbatives
ou non).Les cluster couplés de Bogoliubov projetés (PBCC) ont éte implémentés avec
succès pour des hamiltoniens schématiques, mais aucune implémentation réaliste n’est
disponible à ce jour, et les premières tentatives dans ce sens sont restées infructueuses
jusqu’à maintenant.

Une autre stratégie possible est d’ajouter des corrélations dynamiques directement par
dessus un état de référence incorporant les corrélations statiques. Dans cette ligne dídée,
l’approche d’IMSRG multi-référence (MR-IMSRG) a été développée en physique nucléaire,
et les clusters-couplés multi-référence (MR-CC) en chimie quantique. En parallèlle, la
théorie de pertubation multi-configurationelle (MCPT) coorige en perturbation un état
de référence issu d’un calcul NCSM. Cependant, MR-IMSRG n’est pas une méthode de
résolution à proprement parler mais doit plus être comprise comme une méthode de pré-
traitement du hamiltonien, tandis que MCPT nécessite un calcul NCSM préliminaire, qui
devient vite prohibitif au delà des noyaux légers. En chimie quantique, une autre méthode
de perturbation multi-référence basée sur un mélange non-orthogonal de déterminants de
Slater a été proposée et implémentée récemment. Cette méthode parvient, sans ce contexte,
à capturer avec succès les correlations de longue portée dans les systèmes fortement corrélés.

Développements de la thèse
Ce travail de thèse s’est basée sur les avancées récentes en chimie quantique dans le but de

• Formaliser un théorie de perturbation multi-référence basée sur un état non perturbé
mélange non-orthogonal détats produits de Bogoliubov projetés, dans le but de
capturer de manière consistente les corrélations statiques et dynamiques dans un

194



contexte ab initio.

• Implémenter le premier order du formalisme et l’utiliser pour une étude systématique
de la spectroscopie de basse énergie dans la chaine des náons.

• Implémenter le deuxième ordre de la théorie dans un espace de taille réduite pour
déterminer les performances de la méthodes avec des hamiltoniens réalistes.

• Formaliser, implémenter et tester une méthode de réduction de rang d’opérateurs
conservant la symmétrie, dans le but de réabsorber efficacement les effets dans
interactions à trois corps dans une interaction effective à deux corps (au prix de
l’introduction d’une erreur contrôlée dans les observables finales).

Définitions et éléments de l’algb̀re de Bogoliubov
Dans le Chapitre 1, les notations et éléments de formalisme essentiels aux chapitres suivants
sont introduits. Après avoir rappelé léquation de Schrödinger que l’on cherche à résoudre,
une base de l’espace de Fock est définie sur laquelle les opérateurs sont développés. Enfin,
les états de produits de Bogoliubov sont définis, ainsi que les transformation entre différents
états différant par leur déformation q ou par leur orientation θ.

Formalisme PGCM-PT
Le formalisme générique de la théorie de perturbation est introduit dans le Chapitre
2. En particulier, on y insiste sur l’importance du choix de l’état de référence et du
partitionnement du problème dans une théorie de perturbation. Le cas particulier d’un
état de référence PGCM, qui mélange des états produits projetés différant par leur
déformation intrinsèque, est discuté en détail. On y donne les dérivations spécifiques ainsi
que les formules utilisables dans une implémentation pratique. Un des grands avantages
de la théorie de perturbation basée sur un état PGCM (PGCM-PT) est la possibilité de
traiter sur un pied d’égalité tous les états rotationels. À l’heure actuelle, l’extension aux
états vibrationels n’est pas encore formalisée mais est envisagée dans un futur proche.

Interaction in medium
Le principal facteur limitant des méthodes ab initio à l’heure actuelle réside dans la partie
purement 3 corps de l’interaction. En effet, les éléments de matrice à 3 corps nécessitent
de grandes capacités de stockage (même en conservant la symmétrie sphérique), tandis que
le traitement exact du 3 corps augmente de façon importante le coût d’un calcul. Dans ce
contexte, et en s’inspirant des méthodes déjd̀isponibles dans les noyaux à couche fermée,
une nouvelle méthode d’approximation de la partie 3 corps de línteraction a été proposée,
implémentée et testée dans le Chapitre 3. La qualité de cette approximation a été vérifiée
dans une large de variété de systèmes (à couche dermée et ouverte) et pour différente
méthodes de résolution. La méthode de réduction de rang, qui moyenne la partie à 3
corps en une interation effective à 2 corps, est précise, universelle, simple à implémenter et
robuste. Ces caractéristiques en font une des routes possibles vers les noyaux de masse plus
importante, notamment car elle est déjà formulée pour des interaction comprenant, par
exemple, des termes à 4 corps, le jour où elles deviendront discponibles pour des calculs
pratiques.
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Appendix P. On the numerical implementation

PGCM: Résultats
Le Chapitre 4 s’est intéressé au premier ordre de la théorie formalisée dans le Chapitre 2.
Des calculs systématiques de la chaîne des néons ont été produits avec des interactions
chirales de nouvelle génération. En particulier, l’étude approfondie du 20Ne a montré que
le premier ordre de la théorie, bien que manquant certaines corrélations dynaminques,
donne une bonne description de la spectroscopie de basse énergie avec un bon accord
avec les données expérimentales pour peu que les bons degrés de liberté collectifs (e.g.
quadrupolaires et octupolaires) soient pris en compte. En particulier, l’émergence de
strutures en agrégats associées avec des fluctuations de fores octupolaires dans le 20Ne a
montré le pouvoir prédictif de la PGCM dans un contexte ab initio. Dans une seconde
étape, les systématiques de la chaîne ont éte comparées avec des résultats IM-NCSM
quasi-exacts. Même si la description globale est satisfaisante, il est clair que certaines
corrélations manquent dans les noyaux riches den neutron, ce qui appelle à un état de
référence PGCM plus riche (incorporant plus de coordonnées collectives) ou l’ajout de
corrélations dynamiques par dessus la solution PGCM.

PGCM-PT(2): Résultats
C’est précisément l’objectif du Chapitre 5 que de complémenter l’état PGCM avec des
corrélations dynamiques en utilisant le formalisme introduit Chapitre 2. Tandis que létat de
référence capture par construction les corrélations collectives de longue portée, la méthode
de perturbation dépendant de létat corrige cet état de manière consistante avec des
excitations élémentaires de bas rang. Au final, la méthode a été appliqueée en conjonction
avec des interactions issues d’hamiltoniens préprocessés avec une transformation MR-
IMSRG. Dans ce cas, les ces corrélations dynamiques ont réussi à corriger les énergies
absolues, mais aussi les spectres PGCM qui ont tendance à être artificiellement dilatés par
l’évolution MR-IMSRG.

Conclusion
Cette thèse indique finalement qu’une description précise et compl̀te des noyaux de masse
moyenne et lourde devra probablement reposer sur trois leviers complémentaires, dont
l’interaction doit encore être étudiée plus en détail dans les années à venir:

1. Le prétraitement de l’hamiltonien via, par exemple, des méthodes MR-IMSRG pour
capturer de façon efficace la majeure partie des corrélations dynamiques.

2. L’utilisation dún état perturbé multi-référence (e.g. obtenu via PGCM) qui cap-
ture les corrélations collectives de longue portée via une disgonalisation de faible
dimensionalité.

3. Les premiers ordres dúne méthode d’expansion additionelle par dessus l’état de
référence, e.g. via le formalisme PGCM-PT, pour capturer les corrélations dy-
namiques restantes.

Chacune de ces étapes est elle même flexible et sujette à amélioration, et leur cominaison
reste à être optimisée. Premí‘erement, le prétraitement est une fonction du paramètre
dévoolution qui doit être optimisé pour capturer des corrélations dynamiques sans briser
lúnitarité. Ensuite, la PGCM dépend du choix des coordonnées collectives qui doivent
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être assez riches pour capturer efficacement tout la physique non perturbative de longue
portée. Enfin, si PGCM-PT est formulé à tous les ordres, on veut naturellement le garder
à un ordre réduit pour garder un coût tractable.

Tandis que cette thèse a posé les fondations dún tel schéma de calcul, les études à venir
vont permettre de mieux comprendre le jeu des corrélations dans les méthodes ab initio.
Par exemple, la description de noyaux montrant un fort caractère de mélange de forme
serait un objectif intéressant à atteindre dans les prochaines années.
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Titre: Description ab initio des noyaux à double couches ouvertes via une nouvelle méth-
ode de résolution du problème quantique à N corps

Mots clés: Systèmes à N corps, structure nucléaire, méthodes numériques

Résumé: Les noyaux atomiques sont des sys-
tèmes liés de nucléons en interaction dont la
description unifiée pose encore des problèmes
théoriques à l’heure actuelle à cause de la grande
diversité dans la phénoménologie émergeant
dans les systèmes nucléaires. En plus des ex-
citations individuelles responsables des énergies
de liaison absolues et des énergies de séparation
entre noyaux, des corrélations de longue portée
avec un grand degré de collectivité jouent dans
rôle majeur dans les propriétés macroscopiques
du noyau et sont essentielles pour la compara-
ison avec l’expérience. dans cette thèse, on
s’intéresse aux modèles microscopiques où le
noyau est décrit comme une collection de nu-
cléons ponctuels en interaction forte. On rentre
donc dans le domaine du problème à N corps
quantique.

Deux approches complémentaires existent
pour résoudre ce problème, qui diffèrent par
la nature de l’interaction. La méthode de la
fonctionnelle de la densité de l’énergie (EDF)
utilise une interaction phénoménologique dépen-
dant du système qui capture facilement les
corrélations de courte portée au niveau du
champ moyen. La physique de longue portée
doit être capturée au-delà du champ moyen

via des méthodes multi référence. A l’inverse
les méthodes ab-initio partent d’une interac-
tion réaliste dérivée (via la théorie effective des
champs chirale) à partir de la physique sous-
jacente, l’interaction forte, c’est-à-dire la chro-
modynamique quantique. La solution du prob-
lème à N corps est donc bien plus difficile obtenir
mais les résultats qui ressortent sont plus fiables
et systématiquement améliorables.

Dans cette thèse une nouvelle théorie de per-
turbation multi référence est introduite pour
résoudre le problème à N corps à partir
d’interactions chirales. Ce nouveau formalisme
inclue de façon cohérente les corrélations de
courte et longue portée. Le premier ordre de
la théorie, directement adapté du savoir-faire
EDF au contexte ab-initio, est comparé dans des
calculs à grande échelle à d’autres méthodes et
appliqué à la chaîne de Néons. Le second or-
dre (nouvellemen formulé) est implémenté dans
des bases de taille réduite pour s’assurer de la
qualité de la méthode et le comparer avec des
méthodes de perturbation uni référence déjà ex-
istantes. ce nouveau formalisme et très promet-
teur pour la description unifiée des états fonda-
mentaux excités des noyaux à couche fermées
comme à couches ouvertes.



Title: Ab initio description of doubly-open shell nuclei via a novel resolution method of
the quantum many-body problem

Keywords: Many-body problem, nuclear structure, numerical methods

Abstract: Nuclei are self bound systems of in-
teracting nucleons, whose unified description is
made intricate by the very diverse phenomenol-
ogy emerging in nuclear systems. Besides indi-
vidual excitations responsible for absolute bind-
ing energies and separation energies between nu-
clei, long range correlations with a high degree
of collectivity play a major role in macroscopic
properties of nuclei and are essential for compar-
ison with experimental measurements. In this
thesis, the focus is put on microscopic models
where the nucleus is described as a collection of
point-like nucleons in strong interactions, falling
into the realm of the quantum many-body prob-
lem.

Two approaches exist to solve this problem,
differing by the very nature of the interaction.
Energy Density Functional (EDF) uses a phe-
nomenological system-dependent Hamiltonian
easily encompassing short-range correlations at
the mean-field level, leaving long-range physics
to be captured beyond the mean-field via multi-
reference methods. On the contrary, ab initio

methods start from a realistic interaction rooted
(through chiral Effective Field Theory) into the
underlying theory of the strong force, i.e. quan-
tum chromo-dynamics, making the solution of
the many-body problem much more difficult to
compute but providing results that are more re-
liable and systematically improvable.

In the present work, a new multi-reference
perturbation theory to solve the many-body
problem starting from chiral interactions is for-
malized in order to include coherently long and
short range correlations in both closed- and
open-shell nuclei. The first order of this the-
ory, directly adapted from the EDF know-how
to the ab initio context, is benchmarked in large
scale calculations against other methods, and ap-
plied to the Neon chain. The second - newly
formalized - order of the theory is implemented
in small-scale model spaces to assess the qual-
ity of the method and compared with available
single-reference perturbative expansions. The
novel formalism shows great promises to de-
scribe ground and excited states of closed and
open-shell nuclei.
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