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Résumé

Soient p un nombre premier et K un corps de valuation discréte de caractéristique 0 complet, & corps
résiduel parfait de caractéristique p. Le but de cette thése est de construire des complexes, définis en termes
d’invariants attachés a une représentation p-adique du groupe de Galois absolu de K, et dont ’homologie
est isomorphe & la cohomologie galoisienne de la représentation. Dans sa thése, Herr a construit un tel
complexe, & trois termes, a partir du (@, I')-module associé a la représentation (défini & partir de I’extension
cyclotomique de K). Pour de nombreuses questions, il est cependant utile de travailler avec une extension
de Breuil-Kisin, obtenue & partir de K en lui adjoignant un systéme compatible de racines p™-iémes d’une
uniformisante de K. Une différence essentielle (et une difficulté notable) par rapport a la théorie cyclotomique
est que ’extension obtenue n’est pas galoisienne. Une solution naturelle, apportée par Tavares Ribeiro dans
sa thése, est de travailler avec ’extension composée de ’extension cyclotomique avec une extension de Breuil-
Kisin et le groupe de Galois correspondant, ce qui fournit un complexe a quatre termes. Depuis, Caruso a
développé la théorie des (¢, 7)-modules, qui sont & une extension de Breuil-Kisin ce que les (p,T')-modules
sont & l'extension cyclotomique : ils fournissent une classification compléte des représentations p-adiques
(entiéres ou non). Notre premier résultat est la construction d’un complexe & trois termes, défini & partir du
(¢, 7)-module d’une représentation p-adique, et dont I’homologie est isomorphe a la cohomologie galoisienne
de la représentation. Nous prouvons qu’il raffine celui de Tavares Ribeiro lorsque le corps résiduel est fini,
en construisant un quasi-isomorphisme entre les deux. Ensuite, nous construisons un opérateur ¢ (analogue
a celui existant dans la théorie cyclotomique), et montrons que dans notre complexe, on peut le substituer
a Popérateur de Frobenius. En s’appuyant sur la surconvergence des (¢, 7)-modules (démontrée par Gao-
Poyeton, et que nous raffinons pour les représentations entiéres), nous définissons des versions surconvergentes
de nos complexes, et prouvons qu’ils calculent les bons H° et H!. Par ailleurs, en utilisant des résultats de
Poyeton, nous construisons un complexe sur 'anneau de Robba, plus simple que les précédents (I’opérateur
7 est remplacé par une dérivation), et dont le H et le H! sont isomorphes & la limite inductive des H® et
H! galoisiens le long d’une extension de Breuil-Kisin. Enfin, nous appliquons ce qui précéde au calcul de la
cohomologie galoisienne du module de Tate d’un groupe p-divisible sur I’anneau des entiers de K, en termes
du module de Breuil-Kisin associé.

Mots-clefs

cohomologie galoisienne;
(¢, 7)-modules;

groupes p-divisibles;
corps locaux.
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Abstract

Let p be a prime number and K a complete discrete valuation field of characteristic 0, with perfect residue
field of characteristic p. The goal of this thesis is to build complexes, defined in terms of invariants attached
to a p-adic representation of the absolute Galois group of K, and whose homology is isomorphic to the
Galois cohomology of the representation. In his thesis, Herr constructed such a three-term complex using
the (¢, I')-module associated to the representation (defined from the cyclotomic extension of K). For many
questions, however, it is useful to work with a Breuil-Kisin extension, obtained from K by adding to it a
compatible system of p™-th roots of a uniformizer of K. An essential difference (and a notable difficulty)
compared to the cyclotomic theory is that the extension obtained is not Galois. A natural solution, provided
by Tavares Ribeiro in his thesis, is to work with the composite extension of the cyclotomic extension with
a Breuil-Kisin extension and the corresponding Galois group, which provides a four-term complex. Since
then, Caruso has developed the theory of (¢, 7)-modules, which are to a Breuil-Kisin extension what (¢, I')-
modules are to the cyclotomic extension: they provide a complete classification of p-adic representations
(integral or not). Our first result is the construction of a three-term complex, defined in terms of the
(¢, 7)-module of a p-adic representation, and whose homology is isomorphic to the Galois cohomology of the
representation. We prove that it refines that of Tavares Ribeiro in the finite residue field case, by building
a quasi-isomorphism between the two. Then, we construct an operator ¢ (analogous to the one existing
in the cyclotomic theory), and show that in our complex, we can substitute the Frobenius operator with
it. Using the overconvergence of (¢, 7)-modules (proved by Gao-Poyeton, and which we refine for integral
representations), we define overconvergent versions of our complexes, and prove that they calculate the
correct H? and H!. Moreover, using Poyeton’s results, we construct a complex over the Robba ring, simpler
than the previous ones (the 7 operator is replaced by a derivation), and whose H? and H! are isomorphic to
the inductive limits of the Galois cohomology H® and H' along a Breuil-Kisin extension. Finally, we apply
the above to the computation of Galois cohomology of the Tate modules of a p-divisible group over the ring
of integers of K, in terms of the associated Breuil-Kisin module.

Keywords

Galois cohomology;
(¢, 7)-modules;
p-divisible groups;
local fields.
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Introduction

Soient p un nombre premier et K un corps de valuation discréte complet, de caractéristique 0, dont le corps
résiduel k est parfait de caractéristique p. Fixons une cléture algébrique K de K et posons ¥k = Gal(K /K).
A une sous-extension strictement arithmétiquement profinie K /Kde K /K, Fontaine et Wintenberger ont
associé des corps de normes parfait (le tilt du complété de K.) et imparfait (¢f [52]). Ce dernier est
isomorphe & un corps de séries formelles en une variable & coefficients dans une extension finie de k, et son
groupe de Galois absolu est isomorphe & Gal(K /K).

Le cas le plus étudié est celui o Ko, est extension cyclotomique : fixons € = ((pn)nen un systéme
o0

compatible de racines primitives p”-iémes de l'unité, et supposons Ko, = K¢ := |J K((pn). L’extension
n=0

K /K est alors galoisienne et son groupe de Galois I s’identifie, via le caractére cyclotomique, & un sous-
groupe ouvert de Z;. Dans [24], Fontaine a relevé le corps des normes imparfait en caractéristique 0 : il
a construit un anneau de Cohen A muni d’un relévement de Frobenius et d’une action du groupe I' qui
commutent. Il s’agit d’un sous-anneau de ’anneau des séries formelles en une variable & coefficients dans
une extension finie de l’anneau des vecteurs de Witt W(k), et qui convergent sur la couronne d’épaisseur
nulle et de rayon 1. Cela lui a permis de construire une équivalence entre la catégorie des représentations
p-adiques entiéres de ¥ (constituée des Z,-modules de type fini munis d’une action linéaire et continue de
Yr) et la catégorie des (p,I')-modules étales sur Ag : ce sont des A g-modules de type fini munis d’un
endomorphisme de Frobenius semi-linéaire, et d’une action semi-linéaire de I' qui commutent (« étale »
signifiant que le linéarisé du Frobenius est un isomorphisme).

Cette théorie a été raffinée par Cherbonnier-Colmez dans [20], dans lequel ils montrent la surconver-
gence des représentations p-adiques. Cela signifie que dans la théorie des (¢,I')-modules qui précede, on
peut remplacer 'anneau A g par le sous-anneau A}( constitué des éléments qui surconvergent, c’est-a-dire
qui convergent sur une couronne d’épaisseur non nulle et de rayon extérieur 1 (et dont Ak est le complété
p-adique). Un des intéréts de ce raffinement est qu’il permet de relier le (¢, T')-module associé a une repre-
sentation p-adique & ses invariants issus de la théorie de Hodge p-adique (¢f [5], [26], [7] et [10]). L’action
infinitésimale de I permet en particulier de munir le (¢, I')-module sur ’anneau de Robba d’une connexion,
grace a laquelle Berger a prouvé que la conjecture de Crew (démontrée indépendamment par André, Kedlaya
et Mebkhout) implique la conjecture de monodromie p-adique de Fontaine (¢f [3]).

La theéorie des (¢,I')-modules a de trés nombreuses applications : la correspondance de Langlands pour
GL2(Q,,) (construite par Colmez, cf [22]), et dont la généralisation est I'une des motivations principales de
développements récents de la théorie, les lois de réciprocité, la théorie des fonctions L p-adiques et d’Iwasawa
(c¢f [2], [6], [3]). Bien logiquement, on peut calculer la cohomologie galoisienne d’une représentation p-adique
directement & partir de son (¢, ')-module au moyen d’un complexe & trois termes trés simple :

Théoréme. (Herr, [29]). Soient T une représentation p-adique entiére de Gx et D le (p,T')-module associé.
Supposons que I' = Gal(K:/K) soit topologiquement engendré par un élément . Alors I’homologie du

1



compleze

0 D Do D D 0

z——((p = (=), (v = 1)())

(y,2) (v =) — (¢ = 1)(2)
est canoniquement isomorphe a la cohomologie galoisienne de T.

Ce résultat a permis & Herr de redémontrer les théorémes de dualité de Tate (¢f [30]). L’analogue
surconvergent et sur ’'anneau de Robba sont également valables (¢f [4], [33]).

La théorie des (¢,T')-modules a été généralisée dans de nombreuses directions : dans le cas relatif par
Andreatta (c¢f [1]), pour les extensions de Lubin-Tate (c¢f [8], [9]), par Schneider et al. (ces derniéres
fortement motivées par la correspondance de Langlands p-adique).

Depuis les travaux de Breuil (¢f [I]) et Kisin (¢f [32]), il est apparu que pour de nombreuses questions
(applications aux groupes p-divisibles, théorie de Hodge p-adique « entiére », étude des déformations de
représentations p-adiques), il est judicieux de travailler avec d’autres extensions profondément ramifiées :
les extension de Breuil-Kisin. Pour les construire, on se donne une uniformisante 7 de K, et un systéme
compatible T = (m,)nen de racines p"-émes de 7 (i.e. tel que mp = 7 et m, | = m, pour tout n € N) :

oo
Pextension associée est alors Ko, = K := |J K(m,). Laencore, on peut construire un anneau de Cohen (que
n=0
nous noterons O¢) pour les corps de normes afférents, mais contrairement au cas cyclotomique, I’extension
K. /K n’est pas galoisienne, ce qui fait qu’il « manque » une action galoisienne sur les p-modules étales
que l'on associe aux représentations p-adiques dans ce cadre. Cela a néanmoins permis a Kisin d’associer
des invariants (des fibrés sur des domaines du disque unité ouvert) a certaines représentations semi-stables,
qui lui ont permis de classifier les représentations cristallines, les groupes p-divisibles et les schémas en
groupes finis et plats sur Ok, et de montrer que les représentations cristallines de poids de Hodge-Tate 0
et 1 proviennent toutes de groupes p-divisibles. Depuis, cette théorie a donné naissance & une littérature
abondante, notamment sous 'impulsion de Caruso et T. Liu (cf [34], [35], [16], [36], [17], [18], [37], [19], [38],
1391, 01, [23], (14, [151, [271).

Dans ce contexte, il est naturel de chercher & calculer la cohomologie galoisienne d’une représentation p-
adique & partir de ses invariants attachés & une extension de Breuil-Kisin, au moyen d’un complexe analogue
au complexe de Herr mentionné plus haut. C’est le premier objectif de cette thése. Comme on I’a vu,
Pobstacle principal est que 'extension K./K n’est pas galoisienne. Il est naturel de considérer la cloture
galoisienne de K dans K : c’est le compositum L = K, K, ¢ de K avec I’extension cyclotomique. Le groupe
de Galois Gal(L/K) est alors un produit semi-direct de Z,(1) par un sous-groupe ouvert de Z, (I'extension
L/K est dite métabélienne). Ce point de vue a été utilisé par Tavares Ribeiro dans sa thése (¢f [50]),
dans laquelle il a construit une théorie analogue a celle des (i, I')-modules, et un complexe & quatre termes
calculant la cohomologie de la représentation.

Théoréme. (Tavares Ribeiro, [50, §1.5]) Supposons que I' = Gal(K./K) soit topologiquement engendré par
un élément «y et soit T un générateur topologique de Gal(L/K.). Soit T une représentation p-adique entiére

de 9 et posons M = D (T) = (Oef; ®z, T)gL. Alors I’homologie du complexe

OsMSMeoMoMS MoaMaeaM ™ M0

ot

p—1 B v—1 1—¢ 0
a=|y—-1],p8=[7-1 0 1—¢
T—1 0 XM _1 §—v



= (X" =16 —v,0-1)
et 6= (X0 —1)(r—1)"te Z,[T — 1] est canoniquement isomorphe a la cohomologie galoisienne de T'.

Cela lui a permis de prouver la loi de réciprocité de Briickner-Vostokov pour un groupe formel.

Cela dit, la théorie des (¢, 7)-modules de Caruso (¢f [19]) fournit un avatar de la théorie des (¢, I')-
modules dans le cadre des extensions de Breuil-Kisin. Etant donnée une représentation p-adique (disons
entiére) T de ¥k, l'idée est de considérer non pas seulement le g-module étale P(T) associé sur Og, mais
aussi l'action d’un générateur topologique 7 de Gal(L/K;) sur D(T), := O¢_ ®o, D(T) (o &, est une
extension convenable du corps des fraction & de O¢). Explicitement on a :

Théoréme. (Caruso, [19, §1.3], cf section Le foncteur
Repz (Yx) — Modo, o._(¢,7)
b
T+ (O ®z, T)
est une équivalence de catégories entre la catégorie des représentations p-adiques entiéres et celle des (¢, T)-

modules sur Og .

La premiére contribution de cette thése est la construction d’un complexe & trois termes proche de celui
de Herr, construit a partir du (¢, 7)-module D(T"), et qui calcule la cohomologie galoisienne de T

Plus précisément, on a

Théoréme. (cf théoréme Soient T une représentation p-adique entiére de Y et (D,D.) le (¢, 7)-
module associé. Supposons I' topologiquement engendré par un élément. Posons

D;o= {a? €D, Vge9,. ) x(g) €EZ-o= (9@ 1)(x) =2+ 1p(x)+ - +T1§(g)71(a)‘)}.

Alors I’homologie du complexe

0 D D ® D,y D,y 0

z——((p = )(=), (1p — 1)(2))

(Y, 2) ————— (o — D(¥) — (¢ — 1)(2)
est canoniquement isomorphe a la cohomologie galoisienne de T.

Les techniques employées dans la preuve sont standard (effacabilité, dévissage et passage a la limite),
mais cette derniére est rendue un peu plus délicate par le fait que le complexe fait intervenir un sous-
groupe D(T), o de D(T) qui n’est pas facile d’appréhender (mais qui est nécessaire, le complexe « naif » ne
fournissant pas les bons groupes de cohomologie, c¢f section .

Dans la deuxiéme partie, nous construisons un morphisme entre le complexe de Tavares Ribeiro et le
notre, et prouvons que c’est un quasi-isomorphisme lorsque le corps résiduel est fini, ce qui montre que ce
dernier est un raffinement du premier dans ce cas (¢f theorem [2.1.14)).

Dans la troisiéme partie, nous construisons un opérateur ¢ (un inverse a gauche du Frobenius) et 1'utilisons
pour construire d’autres complexes calculant la cohomologie galoisienne. Le corps résiduel de €, étant parfait,
un tel opérateur 1 ne peut pas étre construit sur ce dernier : il est nécessaire d’utiliser un raffinement de la
théorie de (p, 7)-modules, plus précisément, il faut travailler avec des coefficients partiellement déperfectisés
Oc, . (cf [19; §1.2.2], section [3.1). On montre que les complexes analogues & celui du théoréme mais
a coefficients dans Og, _ et utilisant le Frobenius ou l'opérateur v calculent la cohomologie galoisienne (cf

theorem et |3.3.11).



Dans la quatriéme partie, on construit des avatars surconvergents des complexes précédents, utilisant
soit l'opérateur ¢ de Frobenius, soit I'opérateur . Bien entendu, on s’appuie de fagon cruciale sur la
surconvergence des (o, 7)-modules, démontrée par Gao et Poyeton (¢f [28]), et que nous la raffinons au
cas des représentations entiéres (c¢f proposition . Cela nous permet de prouver que les complexes
surconvergents calculent les bons H? et H'. Le cas du H? reste hélas non démontré. Signalons qu’a notre
connaissance, le fait que le complexe de Herr surconvergent « classique » (correspondant au cas de I’extension
cyclotomique) calcule la cohomologie galoisienne n’est démontré que dans le cas ou k est fini (i.e. ou K est
une extension finie de Q,,, c¢f [33], []).

Dans la cinquiéme partie, nous construisons un complexe & trois termes & partir du (p, Ny )-module sur
Panneau de Robba R associé & une représentation (i.e. a son (¢, 7)-module). Plus précisément, si V est une
représentation p-adique de ¥k et Djig le (¢, Ny )-module associé, le complexe en question est de la forme

T T T T
0 Drig Drig D Drig Drig

2= ((¢ = 1)(2), Ny (2))

(y,2) ——>Nv(y) — (cp — 1)(2)

ol ¢ € R est un élément explicite.

Il s’agit, aprés extension des scalaires & un anneau de Robba convenable, de remplacer l'opérateur 7p
par l'action infinitésimale (convenablement normalisée) de Gal(L/K.) (c¢f [45) §2.2]). Pour cette raison, le
complexe ne peut bien entendu pas calculer la cohomologie galoisienne de la représentation galoisienne V'
dont on est parti, mais « presque »: nous montrons (c¢f proposition que son H? est isomorphe &
lim Hi (& V) pour i € {0,1}. La encore, le cas du H? pose encore probléme. Dans le cas ot le corps

rgsiduel k est fini, nous construisons un accouplement analogue a celui qui donne lieu & la dualité de Tate
(¢f [30]), mais sa non dégénérescence (qui permetterait d’étendre I’énoncé évoqué ci-dessus au cas i = 2)
n’est pas démontrée. Observons que, bien qu’un peu moins fin que les complexes construits précédemment
et qui calculent la cohomologie galoisienne, le complexe considéré dans cette partie a le gros avantage de ne
pas faire intervenir un groupe du type D, (qui comme on l’a dit, est assez peu tangible), mais seulement
le (¢, Ny)-module : il est donc a priori plus maniable.

Dans la sixiéme et derniére partie, nous appliquons ce qui précéde aux représentations provenant des
groupes p-divisibles sur Ok . Depuis les travaux de Breuil et Kisin (¢f [32]), on sait qu'ils sont classifiés par
certains p-modules sur & := Wu]. L’idée est alors de relier le (p, Ny)-module associé au module de Tate
d’un groupe p-divisible avec le G-module associé. Signalons que d’aprés Caruso, on est méme capable de
retrouver ’action de 7 & partir de celle de Ny dans ce cas, ce qui permet de calculer la cohomologie du dual
du module de Tate du groupe p-divisible & partir du module de Breuil-Kisin (¢f corollary .

L’objectif initial de cette thése était de calculer la cohomologie galoisienne du module de Tate d’un groupe
p-divisible sur une base affine assez générale a partir de son display de Zink (c¢f [53], [54]). La complexité
des coefficients mis en jeu et l'intérét du cas des groupes p-divisibles sur ’anneau des entiers d’un corps
p-adique, en lien avec la théorie des (p, 7)-modules de Caruso, ont fait qu’il ne sera pas question des displays
dans cette thése. Nous espérons revenir sur ces derniers ultérieurement.



Introduction

Let p be a prime number and K a complete discrete valuation field, of characteristic 0, whose residue field
k is perfect of characteristic p. Fix an algebraic closure K of K and put ¥x = Gal(K /K). For any strictly
arithmetic profinite subextension K,,/K of K /K, Fontaine and Wintenberger have associated perfect (the
tilt of the completion of K,) and imperfect (¢f [52]) fields of norms. The latter is isomorphic to a field of
formal Laurent series in one variable with coefficients in a finite extension of k, and its absolute Galois group
is isomorphic to Gal(K /K.).

The most studied case is the one where K, is the cyclotomic extension: fix ¢ = ((pn )nen @ compatible
o0

system of primitive p”-th roots of unity, and assume Ko, = K¢ := |J K({y»). The extension K /K is
n=0

then Galois and its Galois group I’ is identified, via the cyclotomic character, with an open subgroup of Z; .
In [24], Fontaine lifted the imperfect field of norms to characteristic 0: he constructed a Cohen ring A
endowed with a lifted Frobenius map and an action of the group I' which commutes with Frobenius. It is a
sub-ring of the ring of formal Laurent series in one variable with coefficients in a finite extension of the ring
of Witt vectors W(k), and which converges on the annulus of thickness 0 and radius 1. This allowed him to
build an equivalence of categories between the category of integral p-adic representations of ¥k (constituted
by Z,-modules of finite type with a continuous linear action of ¥x) and the category of étale (¢, I')-modules
on Ay : these are Ax-modules of finite type endowed with a semi-linear Frobenius endomorphism, and a
semi-linear action of I' which commutes with Frobenius ("étale" meaning that the linearization of Frobenius
is an isomorphism).

This theory has been refined by Cherbonnier-Colmez in [20], in which they showed the overconvergence
of p-adic representations. This means that in the theory of (¢,T")-modules which precedes, one can replace
the ring A i by the sub-ring A;( constituted by overconvergent elements, that is to say, which converge on
an annulus of non-zero thickness and outer radius 1 (and Ak is its p-adic completion). One of the interests
of this refinement is that it allows to relate the (¢,T')-module associated to a p-adic representation to its
invariants coming from p-adic Hodge theory (cf [5], [26], [7] and [10]). The infinitesimal action of I" allows
in particular to endow the (¢,T')-module over the Robba ring with a connection, thanks to which Berger
proved that Crew’s conjecture (proved independently by André, Kedlaya and Mebkhout) implies Fontaine’s
p-adic monodromy conjecture (c¢f [3]).

The theory of (¢,I")-modules has many applications: the Langlands correspondence for GL2(Q,,) (con-
structed by Colmez, ¢f [22]), and whose generalization is one of the main motivations of recent developments
of the theory, reciprocity laws, p-adic L functions theory and Iwasawa theory (cf [2], [6], [3]). Logically, one
can compute the Galois cohomology of a p-adic representation directly from its (¢, ')-module using a simple
three-terms complex:

Theorem. (Herr, [29]). Let T be an integral p-adic representation of 9k and D the associated (p,T')-module.
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Assume T is topologically generated by an element v. Then the homology of the complex
0 D DeD D 0

z——((p = (=), (v = 1)(2))

(y,2) (= D(y) — (¢ = 1)(2)
is canonically isomorphic to the Galois cohomology of T

This result allowed him to reprove Tate’s duality theorem (¢f [30]). The analogues with (¢, I')-modules
over overconvergent rings and over the Robba ring are also valid (see [4], [33]).

The theory of (¢, I')-modules has been developed in many directions: in the relative case by Andreatta
(¢f [II), for Lubin-Tate extensions (cf [8], [9]), by Schneider et al. (the latter is strongly motivated by the
Langlands p-adic correspondence).

Since the work of Breuil (¢f [1I]) and Kisin (¢f [32]), it has been clear that for many questions (ap-
plications to p-divisible groups, “integral” p-adic Hodge theory, study of the deformations of p-adic repre-
sentations), it is judicious to work with other deeply ramified extensions: the Breuil-Kisin extensions. To
construct them, we fix a uniformizer 7 of K, and a compatible system 7™ = (7, )nen of p™*-roots of 7 (i.e. such

o0
that 7y = 7 and 7}, | = m, for all n € N): the associated extension is then Ko, = K, := |J K(m,). Again,
n=0

one can construct a Cohen ring (which we will note O¢) for the corresponding field of norms, but unlike the
cyclotomic case, the extension K /K is not Galois, so that a Galois action on the étale p-modules is “miss-
ing”, which is needed to associate p-adic representations in this framework. Nevertheless, this allowed Kisin
to associate invariants (bundles over domains in the open unit disk) to certain semi-stable representations,
which allowed him to classify crystalline representations, p-divisible groups and finite flat group schemes over
Ok, and to show that crystalline representations of Hodge-Tate weights 0 and 1 all come from p-divisible
groups. Since then, this theory has given rise to an abundant literature, notably under the impulse of Caruso
and T. Liu (¢f [34], [35], [16], [36], [17], [18], [37], [19], [38], [39], [40], [23], [14], [15], [21]).

In this context, it is natural to try to compute the Galois cohomology of a p-adic representation from its
invariants attached to a Breuil-Kisin extension, by means of a complex similar to the Herr complex mentioned
above. This is the first objective of this thesis. As we have seen, the main obstacle is that the extension
K, /K is not Galois. It is natural to consider the Galois closure of K in K: it is the compositum L = K K,
of K, with the cyclotomic extension. The Galois group Gal(L/K) is then a semi-direct product of Z,(1) by
an open subgroup of Z (the extension L/K is said to be métabélian). This point of view is used by Tavares
Ribeiro in his thesis (¢f [50]), in which he constructed a theory analogous to that of (¢, I')-modules, and a
four-term complex computing the Galois cohomology of the representation.

Theorem. (Tavares Ribeiro, [50, §1.5]) Suppose that T is topologically generated by an element v and
let 7 be a topological generator of Gal(L/K.). Let T be an integral p-adic representation of Yk and let

M =Dp(T) = (Og‘u‘r ®z, T)%. Then the homology of the complex

OsMSMeoMoMS MoMaeaM ™ M0

where
p—1 ~ v—1 1—¢ 0
a=|y—-1],p=[7-1 0 1—¢
T—1 0 X 1§y

fi= (X0 1,6~ 5,5 1)
and § = (X)) —1)(r = 1)~ € Z,[t — 1] is canonically isomorphic to the Galois cohomology of T.
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This allowed him to prove the Briickner-Vostokov reciprocity law for a formal group.

This said, Caruso’s (g, 7)-module theory (¢f [19]) provides an avatar of (¢,I')-module theory in the
context of Breuil-Kisin extensions. Given a p-adic (let’s say integral) representation T of ¥k, the idea is to
consider not only the associated ¢-module Z(T') over g, but also the action of a topological generator 7 of
Gal(L/K¢) on D(T), := O¢, ®o, D(T) (where &, is a suitable extension of the fraction field € of O¢ and
the action is usually denoted 7p.) Explicitly we have:

Theorem. (Caruso, [19, §1.5], cf section[1.1) The functor
Repr (%) — Modo, O¢, (¢, 7)
g T
T s (O 0, T) %"
is an equivalence between the category of integral p-adic representations and that of (¢, T)-modules over Og .

The first contribution of this thesis is the construction of a three term complex close to Herr’s, built from
the (¢, 7)-module D(T'), and which computes the Galois cohomology of T

More precisely, we have

Theorem. (cf theorem . Let T be an integral p-adic representation of 9x and (D, D.) the associated
(¢, 7)-module. Assume that T is topologically generated by an element. Put

D;o={z€D,, (VgEDk,) x(9) €Zso= (g®1)(z) =a+Tp(x)+ -+ Tg(g)_l(x)}.
Then the homology of the complex

0 D D@ D, D, 0

)

z——((p — (), (b — 1)(2))

(Y, 2) ———— (> = D(¥) — (¢ — 1)(2)
is canonically isomorphic to the Galois cohomology of T.

The techniques used in the proof are standard (effaceability, dévissage and passing to limit), but a bit
more difficult (compared to the cyclotomic case) by the fact that the complex involves a subgroup D (7).
of D(T'), which is not easy to understand (which is necessary, as the “naive” complex does not provide the
correct cohomology groups, cf section ).

In the second part, we construct a morphism between the Tavares Ribeiro complex and ours, and prove
that it is a quasi-isomorphism when the residue field is finite, which shows that the latter is a refinement of

the former in this case (¢f theorem [2.1.14]).

In the third part, we construct a 1) operator (a left inverse of the Frobenius) and use it to construct
other complexes that compute Galois cohomology. Since the residue field of €. is perfect, such a 1 operator
cannot be constructed on it: it is necessary to use a refinement of (p, 7)-module theory, more precisely, it is
necessary to work with partially unperfected coefficients O¢, . (cf [19, §1.2.2], section [3.1). It is shown that
complexes analogous to the one in theorem m but with coefficients in Og  _ and using operator ¢ or
compute the Galois cohomology (cf theorems |3.2.4{and |3.3.11)).

In the fourth part, we build overconvergent avatars of the previous complexes, using either the Frobenius
operator ¢, or the ¢ operator. Of course, we rely crucially on the overconvergence of (¢, 7)-modules, proved
by Gao and Poyeton (cf [28]), which we refine to the case of integral representations (¢f proposition 4.1.9).
This allows us to prove that the overconvergent complexes compute the correct H® and H!'. The case of

w,T
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H? remains unfortunately open. Let us point out that, as far as we know, the fact that the “classical”
overconvergent Herr complex (corresponding to the case of the cyclotomic extension) is shown to compute
the Galois cohomology only in the case where k is finite (i.e. where K is a finite extension of Q,,, c¢f [33],
[41).

In the fifth part, we construct a three-term complex from the (¢, Ny )-module over the Robba ring R
associated to a representation (i.e. associated to its (¢, 7)-module).

More precisely, if V' is a p-adic representation of ¥x and Djig the associated (¢, Nv)-module, the complex
in question is of the form

1 T T 1
0 Drig Drig ©® Drig Drig

2= ((¢ = 1)(2), Ny (2))

(y,2) ——>Nu(y) — (cp — 1)(2)

where ¢ € R is an explicit element. It is a matter, after extension of the scalars to a suitable Robba ring, of
replacing the operator 7p by the (suitably normalized) infinitesimal action of Gal(L/K¢) (cf [45} §2.2]). For
this reason, the complex of course cannot compute Galois cohomology of the Galois representation V' from
which we started, but it can almost be computed: we show (¢f proposition that its H? is isomorphic
to lim H (&, V) for i € {0,1}. Again, the case of H? is still problematic. In the case where the residue

field & is finite, we construct a pairing analogous to the one which gives rise to the Tate duality (¢f [30]),
but its non-degeneracy (which would allow to extend the above mentioned assertion to the case i = 2) is
not demonstrated. Let us observe that, although a little less fine than the complexes constructed previously
(which compute the Galois cohomology), the complex considered in this part has the great advantage of not
involving a group of the type D, o (which as we said, is rather intangible), but only the (¢, Nv)-module: it
is thus a priori easier to deal with.

In the sixth and last part, we apply the above to representations coming from p-divisible groups over
Ok. From the work of Breuil and Kisin (¢f [32]), we know that they are classified by some p-modules on
G := WJu]. The idea is then to relate the (p, Nv)-module associated to the Tate module of a p-divisible
group with the associated &-module. Let us point out that according to Caruso, we are even able to find
the action of 7 from that of Ny in this case, which allows us to compute the Galois cohomology of the dual
of the Tate module of a p-divisible group, using its Breuil-Kisin module (¢f corollary .

The initial goal of this thesis was to compute the Galois cohomology of the Tate module of a p-divisible
group over a general affine base in terms of its Zink’s display (¢f [53], [54]). The complexity of the coefficients
involved and the great interest of the case of p-divisible groups on the ring of integers of a p-adic field, in
connection with Caruso’s (p, 7)-module theory, have led to the fact that displays will not be discussed in
this thesis. We hope to come back to them later.



Notations

Extensions of fields

Let p be a prime, K a complete discretly valued extension of Q,,, with perfect residue field k. Let v be the
normalized valuation on K. Fix an algebraic closure K of K : the valuation v extends to K, denote by C' its
completion. The group ¥x = Gal(K/K) acts by continuity on C.

Let
C’ = lm ¢ = {(a:n)nEN eCN: (Vne N)zb | = a:n}

=P

be the tilt of C' (¢f [48, §3]): products and sums are

(xn)neN(yn)neN = (xnyn)n€N7

and
(xn)nEN + (yn)TLEN = (Zn)n€N7

where

m

Zn = 0 (L + yn+m)p

The field C” is algebraically closed of characteristic p and complete for the valuation given by

v " - RU{oc}

(#n) ene 7 v(20)-

We denote O as the ring of integers of C” and recall that the natural map

Ocr = I O /pOg

(an)neN — (J:n mod p) nEN

is an isomorphism.

Fix 7 = (m,) € Oy with mgp = 7 and € = ((pn )nen € O¢» such that ¢, is a primitive p-th root of unity.

Let
K, := UK(T{'n)7 K¢ := UK((pn),

and
L =K () = K K¢.

We denote the corresponding Galois groups as follows:
Yk, =Gal(K/Kyx), 9k, =Gal(K/K¢), % =Gal(K/L).
Let x: Yx — Z; be the cyclotomic character. It induces an injective morphism with open image:

I = Gal(K¢/K) 2.

In what follows, assume that " has a topological generator.
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Lemma 0.0.1. There exists a topological generator v € T with x(v) € Zso .

Proof. Let o be a topological generator of I'. As x(T') is an open subgroup of Z,, there exists N € Z+( such
that 1+ p™ Z,, C x(T), hence x (7o) + p~ Z, C x(T'). As Z>, is dense in Z,, we can choose v € I such that

X(7) € Zzo 0 (x(70) + 1™ Zy).
We have (x(7)) C x(I') and both have the same image under Z; — (Z /p" Z)* : we have

X(o)x ()™ e x(T) N (1 +p"Y Zy),
so we can write x(v0)x(7) ™! = x(70)* with z € pZ,, (if N > 0). We have x(70) = x(7)x(70)?, so

)1+z

X(0) = x(M' 2 x(0),

and by induction
r+1

(k2P 42T) 3 ()2

x(v0) = x(7)
and passing to the limit gives
2
X(0) = x(y) =)

so that vy = *yi € (7). O

The element 7

If g € 9, we denote by c(g) the unique element in Z, such that g(#) = 9%, Indeed, for any n € N,
there exists a unique element ¢, (g) € Z /p" Z such that g(m,) = C;Z(g)wn. As ¢p41(9) = ¢n(g) mod p”, the
sequence (¢,(g)), defines the element ¢(g) € Z,,. Notice that the map ¢: ¥x — Z,(1) is a 1-cocycle (with

¢ H0) = Yk.), i.e. for any g, h € Y :
c(gh) = c(g) + x(g)e(h).
Fix an element 7 € Gal(K/K.) such that 7(7) = 7 (i.e. ¢(7) = 1). As &, C ¢~ 1(0), we still denote 7
for its image in Gal(L/K,) (¢f diagram below).

Remark 0.0.2. The sequence
1 =9, = G X5 Zy, 1T — 1

is exact with xoo = (¢, x) and we have Z, xI' ~ 9k /9, = Gal(L/K). Moreover, Gal(L/K) ~ () x () with
-1 — x()
vyt = X))

Remark 0.0.3. If g € 9k _, then

so that grg~! and 7X(9) have the same image in ¥k /9.

We summarize these notations in a diagram:
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Topologies on W(C”)

Let W(C?) be the ring of Witt vectors with coefficients in C*. The group % naturally acts on W(C”) and
we now describe some topologies on W(C”).

Definition 0.0.4. We define the weak topology on W(C®) as follows. Write

W(C?) = lim W, (C")

n

and endow W(C”) with the inverse limit topology (i.e. the topology induced by the product topology on
[1,, W,(C?)) where we endow W,,(C”) = (C”)" with the topology induced by the valuation topology on C”.
Remark 0.0.5.

(1) The p-adic topology on W(C”) induces the discrete topology on C”.

(2) The weak topology induces the valuation topology on C”.

(3) The ¥k-action is not continuous on C” with the discrete topology, while it is continuous on C” with
the valuation topology. Indeed we have glijild ex(9) = ¢ for the valuation topology, but not for the discrete
topology.

11
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Chapter 1

The complex Cg, ;

In this chapter, we introduce the category Modg ¢ (p,7T) of (¢, 7)-modules over (&,&;) (introduced by
Caruso ¢f [19]), which is categorically equivalent to the category of p-adic representations. Then for any p-
adic representation V, we construct a complex C,, - (V') (which is functorial) using the (¢, 7)-module associated
to V, and we show that this complex computes the continuous Galois cohomology of V. Hence, this is indeed
a variant of Herr complex for p-adic representations (c¢f [29]).

1.1 Construction of the complex

Notation 1.1.1. Let Repy (¥ ) (resp. Repq (9K ), resp. Repy (9K )) be the category of Z,-representations

(resp. p-adic representations, resp. F,-representations), whose objects are Z,-modules (resp. Q,-vector
spaces, resp. F,-vector spaces) of finite type endowed with a linear and continuous action of ¥f. Let
Repzp,tors(%() be the subcategory of Z,-representations that are killed by some power of p. Moreover, for
a fixed r € N, let Repy, ,r ors(¥) e the subcategory of Zj-representations that are killed by p".

Notation 1.1.2. Let F, = (C*)?:, Fy = k(7)) and F;°® be the separable closure of Fy in C°. We then have
Fy C (Fy™)#r C F,. Put

O¢ = {Zaiui; a; € W(k), im_q; = 0}7

and embed it into W(C”) by sending u to [7]. Endow O¢ with the p-adic valuation: it is a discrete valuation
ring with residue field Fy. Put € = Frac(Og). Let Ogu be the unique ind-étale sub-algebra of W(C”) whose
residue field is [P C C” and O its p-adic completion. We put Og . = W(F;) and &, = FracO¢, .

Remark 1.1.3. We have Gal(Frac Ogur / Frac Og) ~ Gal(F5*™* /Fy) ~ 9k (cf [52, Théoréeme 3.2.2]).

Definition 1.1.4. (¢f [19, Définition 1.17]) A (¢, 7)-module over (Og, O¢_) consists of

(i) an étale p-module D over O¢ (this means that the linearization 1 ® ¢: O¢ ®,,0,D — D is an isomor-
phism);

(ii) a 7-semi-linear endomorphism 7p on D; := Qg ®¢, D which commutes with vo. ® ¢p (where po,
is the Frobenius map on O¢_ and ¢p the Frobenius map on D) and such that:

(Vo € D) (g®1) o mp(x) = 759 (),

for all g € ¥x_/%;, such that x(g) € Z~o .

Let Modo, 0. (®,7) be the corresponding category. One defines similarly the notion of (¢, 7)-module
over (€, €;), and the corresponding category Modeg ¢ (¢, 7).

13



Chapter 1. The complex C, ;

Remark 1.1.5. (1) In the following we will use light notations, take Modo, 0. (¢, 7) for example: we will
simply denote D or (D, D) for objects of this category.

(2) The condition for (¢, 7)-modules can be rewritten as follows (c¢f [19, §1.2.3]): if g € ¥k /¥y, is such that
X(g) € Z+¢ then

(g 1)oTp = Tg(g) o(r7XWgro1) = Tg(g) o(g®1).
Notice that the first equality is hold on D., while the second equality is hold on D.

Theorem 1.1.6. The functors

Repr (Yk) ~ MOdOs,OsT (¢, 7)
T+ D(T) = (Ogm ® T)
T(D) = (Ogm ®o, D)?=' <+ D

establish quasi-inverse equivalences of categories.

Similarly, we have quasi-inverse equivalences of categories
Repr (9K) ~Modg ¢ _(p,T).
Proof. cf [19, §1.3]. O

Notation 1.1.7. Let (D, D;) € Modo, 0. _(¢,7), then we put

D;o:={x€D;; (Vge9,) x(9) €Z>o= (9 1)(z) =x+ 1p(x) + - +T,§(9)71(aﬁ)}.

Recall that we have the following lemma:
Lemma 1.1.8. Let T' € Repz (Y, ), we then have an isomorphism of I'-modules:
D(T), = ¢, @0, D(T) ~ (W(C”) @z, T)?-.
Proof. cf [19, Lemma 1.18]. O

Notation 1.1.9. If z € Z, and n € Z>, let

(z) _ A=l (zmnt))

n n!

p -

Ag lim Tgm =1 (¢f [19] Proposition 1.3]), the operator 7p — 1 is topologically nilpotent on D, and we

z . Z n
=3 <n) (rp 1)
n=0

may define

for all z € Z,, . In particular, we have

x(v) o
- —1 x(7) _
5::1 e X(’Y) IZTD = —1” 1.
+Tp 4+ Th p— Z (rp — 1)
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1.1. Construction of the complex

Proof. Let x € D, and suppose
Then for any g € Y /¥, with x(g) € Zso, we show that
(9®1)(@) =z +7p(@) +- -+ 7577 ().

Let g € 9x_. Under the isomorphism of lemma the action of g ® 1 on Og_®¢, D(T') corresponds to
the diagonal action g ® g on W(C”) ®z, T. Similarly, lemma also tells that the action 7p corresponds

to7® 7 on D(T), C W(C®) ®z, T. We prove by induction on n € Z- that

(9o @) =1+ ++ 73 (@)

when g = ~" (this is true for n = 1 by hypothesis). Assume n > 1. Seeing = as an element of Og Q. D(T),
we have

= (va)( P o))
i=0
x(nhi-r 4
— Yy g T%x(v)) (v @ 7)(x)
=0
X()" -1 4 xn-1
- Yy rxg sz('y)) ( Y P TJ)(m)
=0 =0
x(y)" -1

I
B
E
&
B
E
N—
—~
8
~—

Let g € 9k, be such that x(g) € Z-o. As v is a topological generator of I', there exists a sequence
(bm)mezs, in Zy such that lim ~Pm = g As Z is dense in Z,, there exists a,, € Zxq such that by, — a,, €
p" Z,. Then lim ~%m = g We have

(o @@ =1t rpt+ 75a = Y (M - 11

for all m. Passing to the limit as m — oo, we get

n

(oD@ =3 (X(g)) (b~ "(@) = (14 7p 4 + 759V (a).

n=1

O

Lemma 1.1.11. The maps ¢ —1: D, = D, and 7p — 1: D; — D, induce maps ¢ —1: D, g — D, and
0 —1: D —= D.j.

Proof. For ¢ — 1, this results from the fact that ¢: D, — D, commutes with 7p and the action of ¥ _.
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Chapter 1. The complex C, ;

Let € D and y := (7p — 1)(1 @ ) € D,, we then claim that y € D, . Indeed, if g € ¥k satisfies
x(g) =n € Z+,, then

(1+1p+--+ 7'?;1)(?4) =14+7mmp+--- “rTgil)((TD -l ®w)
- 1(l®x)

Dimp(l®r) -1

1

=(
=
=g )((rp -1 ®2))

g

g &
=9(y)-

Indeed, T(1®@x) =7Ro(g®1)(1®x) = (9®1)7p(1 @ z), where the last equality follows from remark

(2). O

Definition 1.1.12. Let (D, D;) € Modo, 0. (¢, 7). We define a complex €, (D) as follows:

0 D D@D,y D.o 0

2= ((¢ = 1)(2), (7p — 1)(2))

(y,2) ——= (10 = 1)(y) = (¢ = 1)(2)

where the first term is of degree —1.

If T € Repy (9k), we have in particular the complex C, -(D(T)), which will also be simply denoted
Cop - (T).

Similarly, we can attach a complex C, (D) to any D € Mod¢ ¢ (¢, 7), and in particular attach a
complex C, (V) to any V € Repq (YK).

Theorem 1.1.13. For any T € Repzp (9k) and natural integer i, there is a canonical and functorial
isomorphism 4 '
H'(Cy - (T)) ~ H (9K, T).

Similarly, if V € Repq, (9K ), we have a canonical and functorial isomorphism H(Cy, (V) ~ H (¥, V)
for all 3.

Notation 1.1.14. If ¥ is a category, we denote by Ind % the associated ind-category, whose objects are
inductive systems of objects of ¢ indexed by some filtered category.

Remark 1.1.15. (1) The category Ind Repy, - ors(¥k) coincides with the category of discrete ¢x-modules
killed by p", i.e. of discrete (Z /p" Z)[¥k]-modules.

(2) The equivalences of theorem extend into equivalences
Ind Repz (¥k) ~ Ind Modo, 0., (¢, 7).

Definition 1.1.16. Let T' € Repyz, ;o (Y ). The induced module of T is Indg, (T') := C°(Yx, T), the set
of all continuous maps from ¥x to T. Endow Indg, T with the discrete topology and the action of ¥k given
by

%{ X |ndgK (T) — |ndgK (T)
(9,m) = [z = n(zg)].

Then Indg, (T') € Ind Repg (¥k), and T canonically injects into Indg, (T') by sending v € T" to n,, where
My(g) = g(v) for any g € Y.
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1.1. Construction of the complex

Lemma 1.1.17. Let T' € Repy, 1,s(YK) and K’ be any subfield of K containing K. We then have
Hl(g;(/, |ndgK T) =0.
Proof. Put U = Indg,. T. Let I+ be the set of finite subextensions of K'/K. Put H = ()| %y : thisis a
M€l
closed subgroup of %k (since all %y, are) and ¥k, C H. Hence we have K" c B — K’ On the other
hand, for each M € I/, we have H < ¥, whence M = FgM C K. As this holds for each M, we get
K= | McC FH, ie. KT =K =K . by Galois correspondence we have H = 4. We have
Mely

H (@i, U) = I HY (9, U) (1.1)

by [47, Chapitre I, Proposition 8|. Indeed, we saw that the groups {%u } amrer1,., form, for inclusion, a projective
system with limit (%) = @k and this system is compatible with the inductive system formed by U, seen as
a ¥)s-module by restriction. While the limit is U, seen as a ¥x/-module by restriction again. Now we claim

that HY(9x/,U) = 0. Indeed, s being open in ¥k, we have the finite decomposition ¥ = Ll t%u
t€9x /Gm
from which we deduce that, as a %y;-module, U admits a decomposition

U= @ ctouT)~ @ C"@u.T)~ P Indy,T

teYGK |9 teEYK | 9m teEYK |9m

Indeed, the homeomorphism is given by

CO(t%;, T) ~ C° (G, T)
fef,

where f(g) = f(tg) for all g € ). It is an isomorphism of ¥y-modules: if f € CO(t%y,T) and g,h € %y,
we have

(9- F)(h) = f(hg) = f(thg) = (g- f)(th) = g - f(h),

ie.g-f=g-f.
Thus, we have

Hl(gMaU): @ Hl(gM,lndgMT),
Y |9Gm

and the summands of the right-hand side are zero by classical results, refering to [47, VII, Proposition 1].
Now (1.1)) implies that H* (%, U) = 0. ;

Lemma 1.1.18. (¢f [50, Lemma 1.8]) The following two maps

p—1
O 25 0

W(C?) £=5 w(c?)
admit continuous sections. E|

Proof. For any element y of F;°, there exists a finite field extension F; /Fy such that y € Fy. If v”(y) > 0, then

o) o)
we have — > ¢F(y) € Fy and y = (¢—1)(— > ©*(y)). This defines a continuous section 3: Mpser — Mpser .
k=0 k=0

!Remark that the sections are not ring morphisms.
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Chapter 1. The complex C, ;

We have F™ = || (i + mFgep) : this is a union of disjoint opens, where I is a fixed set of representatives of
el

the quotient F;*”/mpeer . For any i € I choose a y; € F5"" such that (¢ — 1)(y;) = i. Indeed, we can solve

the equations TP — 7' = i in F;*". Observe that y; € Opger When i € Opzer. We define a continuous section

on Fy*? by sending i+ to y; +3(z) (note that 5 maps Ogser into itself). As Fy*” is dense in C”, this section

extends by continuity into a continuous section 5 of ¢ — 1: C” — C” that maps O into itself.

The map s;: W(C”) — W(C”) defined by s1(z) = [5(%)] is a continuous (for the weak topology) section of
¢ — 1 modulo p, that maps W(Oc») into itself. We deform s, inductively into maps s,: W(C?) — W(C”)
which are sections of ¢ — 1 modulo p™ and map W(O¢») into itself: if s, is constructed, we have

((P - 1) os, =Id +pnfn7
where f,,: W(C®) — W(C”) is a continuous map that maps W(O») into itself. Then
Sp+1 = Sn _pnsl © fn

has the required properties. The sequence (s,)nez., converges to a section s of ¢ — 1 on W(C”) that maps
W(Oe») into itself.

Let y € Ogs : there exists © € Og such that (¢ — 1)(x) = y, so that (¢ — 1)(s(y) — ) = 0, i.e.

5(y) — = € Zy, so that s(y) € Og . This proves that s(Ozw) C Ogs, so that s induces a continuous section

gur
of p —1: Ogzz = Ogi

O
Corollary 1.1.19. Let T € Repy . os(Yx) and U = Indg, T. We have

HY 9., U) =0
HY (Y. ,U)=0

and hence the following exact sequences:
0= U’ = D), L5 D), =0
0 — U%n — D(U) £=5 D(U) — 0.
Proof. Let K' = L, then lemma [1.1.17| gives H! (4., U) = 0. Consider the following exact sequence
0= Z, — W(C") £=5 W(C?) - 0.

Tensorize with the injective U and then, by lemma [1.1.18] we can take Galois invariants to get a long exact
sequence

0— U — D), 25 DWU), — H (¥, U) = 0.
The case K’ = K can be proved similarly. O

1.1.20 Tensor product and internal Hom

Remark 1.1.21. Let 7' € Repg (Y ), we then have a ¥y _-equivariant isomorphism:
@(T) XKoo, Og\,\r ~ T®Zp Ogu\r .

Proposition 1.1.22. Let T1,T5 € Repzp(%;(), then we have

D(Tl ®Zp Tg) o~ D(Tl) R, D(TQ)
D(Homz, (T1,T3)) ~ Homg, (D(T1), D(13)).

18



1.2. Cohomological functoriality

Proof. We have the following ¥k _-equivariant isomorphisms:

Ogm ®o,. D(Ty ®z, To) = T1 ®z, T2 @z, Ogw
~ (T @z, Ogw) R0 . (T2 ®z, Ogw)

gur
~ (D(T1) ®o, Ogw) Q0 (D(T2) ®o, Oger)
~ @(Tl) ®o£ 'D(TQ) ®o£ Ogﬁ .
Recall that ¥k acts trivially on D(T'). Taking fixed points under ¥k on both sides of Oz ®o,. D(T1 @z,
Ty) ~ D(T1) ®o, D(T2) ®o, Ogw we have
@(Tl ®Zp TQ) ~ D(Tl) ®O£ @(TQ)

We also have the following ¥k _-equivariant isomorphisms:

Ogw ®o, D(Homgz, (T1,T2)) ~ Ogwm @z, Homz, (T1,T3)
~ Homg, (T1, T2 ®z, Og=)
~ Homg . (Th ®z, Ogw, T2 ®z, Ogw)
~ Homo . (D(T1) ®o, Ogw, D(T2) ®o, Ogw)
~ Ogm ®o, Homo, (D(T1), D(T2)).

Recall the Galois action on Homg, (D(T1), D(T3)) is defined as g(f) = go f o g~!. Taking fixed points under
¥, on both sides of

Ogu\, ®OgD(H0mZP (Tl, Tg)) ~ Ogﬁ Ko, HOm(‘_).S (D(Tl), D(Tz)),

and we have
D(Homzp (Tl, TQ)) ~ Homos (D(Tl), D(Tg))

1.2 Cohomological functoriality

Definition 1.2.1. For i € Z>(, we put

g*: IndRepz, (Yx) — Ab
T +— H(Cy, - (T)).
To prove theorem [1.1.13] we use the strategy of [50], 1.5.2]: we show that {T}iezzo forms a d-functor
that coincides with invariants under ¥k in degree 0 (¢f proposition [1.2.12)), and we prove its effaceability
(¢f section . As in loc. cit., we firstly show the result for torsion representations, then pass to the limit.

For torsion representations, it is necessary to work in a category with sufficiently many injectives: we have
to embed Repz  iors(¥k) in its ind-category.

Notation 1.2.2. For T' € Repy,_o.s(Yk ), we put U := Indg, (T) € Ind Repy,_ ;q.(Y ).
Lemma 1.2.3. If T € Repg (Yk), we have FO(T) = HO (Y, T).
Proof. By definition we have:

FUT) = (Ogm ®z, T)7<~ #7101 = ((045)77" @z, T)“ ™= = T ™) = T9% = HO(9, T).
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Chapter 1. The complex C, ;

Lemma 1.2.4. If ' € Repy_ ;,s(¥Yk), then
H (%7, W(C”) @z, T) =0
H (Y., W(C*) @z, T) =0
H (k. , W(C") ®z, T) =0
for all ¢ > 0.

Proof. Recall that if M is a subextension of K /K whose completion is perfectoid (this is the case for K,
K¢ and L) and i € Z-g, then H (9, 0y ®p,T) is almost zero (this follows from the almost vanishing of
H (%1, 07 /pO%)), so that H (%, C” @p, T) = 0. Then we proceed by induction on r € Z-, such that
p"T = 0 : the exact sequence

0—->pT =T —=T/pT =0

induces the exact sequence
H' (%1, W(C?) @z, pT) — H (%21, W(C*) @z, T) — H' (%1, W(C*) @3z, (T/pT)).

so that H (%, W(C®) ®z, T) = 0 since H (%, W(C”) @z, pT') = 0 (because pT is killed by p"!) and
H! (%2, W(C?) ®z, (T/pT)) = 0 (because T/pT € Repy, (Yk))- O

Corollary 1.2.5. If T € Repg (Yk), then
H' (9L, W(C”) @z, T) = 0
H (Y, ,\W(C") @z, T) =0
H (%, ,W(C") ®z, T) =0
for all i > 0.
Proof. By [43], Theorem 2.3.4], we have the exact sequence
0—R' fm H = (9, W, (C°) ®z, T) — H (G, W(C") ®z, T) — fmn H (%L, W,,(C”) ®z, T') — 0.

By lemma [1.2.4] we have .
H =Y (G, W, (C”) @z, T) =0, if i > 1,

while when i = 1 we know that {H%(%,,W,,(C”) ®z, T)},, has the Mittag-Leffler property. This implies

H (&, W, (C") @z, T) = 0, if i > 0

and
R'im H=Y (4, W, (C°) ®z, T) =0, if i >0,
hence ‘
H (%, W(C") @z, T) =0, if i > 0.
The proofs of the other statements are similar. O

Notation 1.2.6. Let T € Repy (¥k), we will put D; = D(T). in the rest of this section to keep light
notations.

Lemma 1.2.7. Let H be a profinite group homeomorphic to Z, with o a topological generator, and M be a
p-torsion H-module. Then the continuous cohomology H'(H, M) is computed by the complex

(M = M

in which the first term is in degree Q.
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1.2. Cohomological functoriality

Proof. cf [43], Proposition 1.6.13]. O

Lemma 1.2.8. If n € Z, the operators v — 1 and 77 — 1 are surjective on D,.
Proof. As H (9., W(C?) ®z, T') = 0 for all i > 0, together with lemma we have

0 = H'(@x,,W(C") ®z, T) = H'(Gal(L/K), D;) = Coker (D, 2= D)

since Gal(L/K,) = (7). Similarly, put K, = L{™") : this is a finite extension of K and we have

0=H"(%x, . W(C®) ®z, T) = H(Gal(L/K ), D;) = Coker (D T, D)

since Gal(L/K¢ ) = (™). O
Lemma 1.2.9. We have (§ —y® 1)o (p — 1) = (1 — Tg(w) o(y®1—1)on D,.
Proof. As (y®1)o7p = Tgm o(y®1), we have
—vy®1)o(tp—1)=do(rp—1)—vorp+7®1
= 1P o(ye1)+ye1
=(1-m")o(y®1-1).
O

Proposition 1.2.10. The map § — vy ® 1 is surjective on D...

Proof. As v — 1 and Tgm — 1 are surjective by lemma , sois (0 —y®1)o(rp —1). Hence § — ~ is
surjective. O

Corollary 1.2.11. If 0 - T — T — T" — 0 is an exact sequence in Repz, (9K ), then the sequences
0— D(T') = D(T) = D(T") =0
0— DTy = D(T)r —DT")r =0
0— D(T")r0— D(T)r0— DT )ro — 0

are exact. In particular, the functor T+ C, -(T') is exact.
Proof. As W(C”) is torsion-free, we have the exact sequence

0= W(C”) @z, T' = W(C®) @z, T — W(C") @z, T" — 0
which induces the exact sequence

0 — D(T"), = D(T), — D(T"); — HY (G, W(C") ©z, T").

By corollary [1.2.5] we get the second exact sequence. Similarly, by the observation H! (¥ _, Ogw ®z,T') =0
(where O is endowed with the p-adic topology, c¢f lemma|2.1.5) we have the first exact sequence. Moreover,

gur
we have the commutative diagram

0——D(T"), ——D(T); —=D(T"), ——=0.
5—y®1l 5—7®1l 5—7®1i
0> D(T"); —— D(T), —> D(T"); —=0
The snake lemma and proposition [I.2.10] provide the last exact sequence. O

Proposition 1.2.12. The functors {F'}ien form a d-functor.

Proof. Let 0 — 1" — T'— T" — 0 be a short exact sequence in Ind Repy (¥k). We have a short exact
sequence of complexes 0 — C, -(7") = C, (T) — €, (T") — 0 by corollary |1.2.11] Classical result (cf
[61, Theorem 1.3.1]) gives the desired long exact sequence of cohomological groups. O
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Chapter 1. The complex C, ;

1.3 Computation of H'(C, ;)

».7(0g, D) the group of extensions of

O¢ (the unit object in Modo, 0. (¥,7)) by D. More precisely, the group of exact sequences

Notation 1.3.1. For any (p, 7)-module D, we denote ExtModo, o, (

0—-D—=F—0s—0

in Modo, 0. (¢, 7) modulo equivalence. Two extensions Ej, F, are equivalent when there exists a map f
making the diagram commute:

D B 0 0
| b
D B

O¢ 0.

0

Lemma 1.3.2. Define two submodules of D ® D, as follows:

(¢ =Dp=(rp —1)A

M = {()\,,u) €D ® Dy {(Vg €Yr.) x(9) € Zoo= g(pu) = p+7p(p) + 73 (1) +...+Tg(9)—1(ﬂ) }7

N = {((wf 1)d, (rp — 1)d); d € D}.

Then there is a group isomorphism
Ext(O¢, D) ~ M/N.

Proof. Consider an extension of Og by D :
0—D—E5 0 —0.

It is equivalent to giving a (p,7)-module structure to the Og¢-module £ = D & O¢ -z, where x € E is a
preimage of 1 under €. Since D is already a (p, 7)-module, it suffices to specify the images of x by ¢ and 7p.
Since €(¢(x) — x) = 0, we must have p(z) —x € D and hence we put

p(r) =2+ A with A € D.
For 7p, we tensorize the original exact sequence with Og_ as follows
0= D, = 0s, @E 5 0. — 0
then similarly we have e((7p — 1)(1 ® #)) = 0 and hence (7p — 1)(1 ® z) € D,. We then put
m(l®z)=1®x+ p with p € D.,.

Such a pair (A, 1) has to satisfy two conditions to give an extension E. The first condition is that ¢ commutes
with 7p, i.e. ¢(rp(x)) = Tp(p(x)). Notice

o(rp(l®z)) =mp(e(l®z)) —= p(lc+p)=m(lRz+)) < 1Qz+A+o(p) =1Qz+pu+71p(N).

This is equivalent to:
o) — 1 = Tp(\) — A (1.2)
The second condition is: (¢ ® 1)(7p(1 ® z)) = Tg(g)(l ® x) whenever g € 9x_/9;, is such that x(g) € Z~o¢.

By induction we have 759 (1@ 2) = 1@z + p+7p (1) +- - -+ 759" (). Thus the second condition rewrites
as

g(1) = p+ 1o (p) + TH(R) + -+ T3 (). (1.3)
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1.4. Effaceability

Indeed
(@) =(ge)(rples)-102) =51 ew) - 10z =p+71o() +7H(1) + -+ 7577 (u).
Hence we are left to show that an extension E arising from the pair (A, ) is trivial if and only if there
exists d € D such that A = (¢p—1)(d) and u = (7p —1)(d). Indeed, F is trivial if and only if there exists d € D
such that O¢ -(x—d) is a sub-(p, 7)-module of E. In other words, E = D& O¢ -(x —d) as (¢, 7)-modules. This
is equivalent to the existence of & € O¢ and 8 € Q¢ such that p(x —d) = a(z —d) and 7p(x —d) = Sz —d).
More precisely, it is * + A — ¢(d) = a(z — d) and after applying the map ¢ we have « = 1 and § = 1. We

now have p(z —d) = x — d and it gives directly (¢ — 1)(d) = A. Similarly we have p = (7p — 1)(d). Hence
we find the desired d. O

Proposition 1.3.3. Let T € Repy (Yk), then we have
HY(Cy (7)) = H' (%, T).
Proof. As D establishes the equivalence of categories, we have
HY (Y, T) ~ Extrep, (4i)(Zp:T) ~ ExtModo, o, (v.r)(0e, D(T))
(since D(Z,) = O¢ is the trivial (¢, 7)-module). Consider the complex

05D S DeD, o5 D — 0.

We firstly describe H'(C, -(T)). A pair (\,u) € D@ D, is in Ker 3 if and only if it satisfies the following
two conditions:

o(u) —p=1p(A) — A (1.4)

we DT,O (15)

We see that (1.4) and (1.5)) correspond to (1.2) and (1.3) respectively. It suffices to show that two pairs

(A1, 1) and (Ao, o) give equivalent extensions if and only if (g, p2) — (A1, 1) € Ima, but this is clear. O
1.4 Effaceability

Lemma 1.4.1. The map 6 —y @ 1: UYL — U9 is surjective.

Proof. By lemma it is sufficient to prove that v — 1 and Tf:(,m — 1 are surjective over U¥, which

is equivalent to the vanishing of H*((),U“") and H'((rx(), U¥") according to lemma m Indeed, by
lemma [1.1.17] we have H'(¢,,,U) = 0, which implies that

HY((y), U?t) = HY((v), HY (%L, U)) = HY(9k_, U).

The group H'(¥9k_,U) vanishes by lemma [1.1.17} Assume x(v) = n and put K¢, = L{™) . Then similarly

we have

HY ((rx(0), U7k) = HY ((rxO0), HO(9,,U)) = H' (9., U) = 0,

where the last equality follows from lemma O
Lemma 1.4.2. The map ¢ —1: D(U)r o — D(U). is surjective.

23



Chapter 1. The complex C, ;

Proof. By corollary [1.1.19] we have the following exact sequence:

0— U% — D), 25 D(U), — 0.

Consider the following map of complexes:

e—1

0 U“e DU), —DU), ——0
57®1l 6’y®1l 6'y®1l
0 U D), 2% D(U), — 0.

By snake lemma we have the exact sequence:
p—1 _ . TT9YL Gy
DWU)ro — D(U)r o — Coker(60 —y@1: U?* - U"*) =0
where the last equality is lemma [T.41] O

Proof of theorem[I.1.13, Write C, -(D(U)) as follows:

0— > DU) —2 DWU)PDU)r0

z———((¢ = V)(2), (7p = 1)(2))

(y,2) —————— (0 = D(y) = (¢ = 1)(2).

As remarked in section it suffices to show the effaceability of F*, more precisely that F* (U) =0 for
i € {1,2}. For i = 1, by proposition we have H'(C, - (U)) = H' (9, U), which is zero by lemma [1.1.17

For i = 2, it follows from lemma [1.4.2 O

Remark 1.4.3. We recover the fact that H (%, T) =0 for T € Repy (9k) and i > 3.

1.5 A counter example

A more natural complex can be defined as follows.

Definition 1.5.1. Let (D, D,) € Modo, 0. (¢,7). We define a complex C;fi;’e(D) as follows:

0 D D@D, D, 0
z——= ((¢ = 1)(2), (7p — 1)(2))

(y,2) ————— (10 = )(y) — (¢ — 1)(2).

If T € Repg, (9Yk), we have in particular the complex @;fi;'e(D(T)), which will also be simply denoted
enaive(T).

®,T
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1.5. A counter example

However, this complex does not compute the continuous Galois cohomology in general, as showed in the
following example.

Example 1.5.2. Let T' = F, be the trivial representation: then D = Fy and D, = F.. Now we look at the
following diagram, which embeds the complex C, -(F)) into €37 (F,) and we denote the cokernel complex
by C(F,).

(p—1,7—1) (t—=1)6(¢—1)
egan' (Fp) 0 Fy z o FT,O ? FT,O 0
iv (p—1,7-1) j (T—1)e(e-1) \£\
esn:'re(Fp) 0 Ff z Fo T Fr z }I 0
C(F,) 0 0 Fr)Frg—" P JFy—0

The associated long exact sequence is

O — HO(gK7Fp) — Hgaive(gf(’ Fp) - O — Hl(gK7FP) - Hr%aive(gKva)
— Ker(p — 1) = H*(%x, F},) = H2,.0e(9x, Fp) — Coker(p — 1) — 0

where the subscript "naive " refers to the complex G:f:i;'e(Fp) in the middle of the diagram, while Ker(p—1)

and Coker(¢ — 1) refer to the last complex F./F; Lt F./F.o.

Notice that 1 & Fr o and 1 € Ker(F: SaiN F;), this implies that Ker(o — 1) is not trivial. In particular,

this implies that
H' (k. Fp) S Hhive (@i, Fp).

naive

More precisely, take any o € k, then (a,1) € Ker((t — 1) © (¢ — 1)) \ (Fy ® Frp) induces an element of
H%aive(%Ka FP) \ Hl(gKv F;D)~

Remark 1.5.3. Let T € Repy (¥k) with (D, D;) € Modo, 0. (¢, ) its (¢, 7)-module. Then we have
(rp —1) D C D,y C D,
(¢f lemma[1.1.11)), and it is natural to consider the following complex:

0 D D@(TD—I)D (TD—l)D4>O

z—— ((p = 1)(=), (1p — 1)(2))

(y,2) —————— (> = V() = (¢ = )(2).

However, this complex does not compute the continuous Galois cohomology of T" in general as it has trivial
H2.
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Chapter 2

Relation with Tavares Ribeiro’s complex

In this chapter, we show that the complex €, . defined in chapter [I} is a refinement of Tavares Ribeiro’s
complex introduced in [50} §1.5], at least in the finite residue field case.

Theorem 2.0.1. Let T be an integral p-adic representation of Yk and let M = Dy (T) = (Og\ ®z, T)%L.
Then the homology of the complex Cy, ~ (M) defined as follows:

OsMSMeaMoMES MoaMaM ™ M0

where
p—1 ~ v—1 1—¢ 0
a=|v—-1|,6=7-1 0 1—¢
T—1 0 ™M -1 §—~

777: (TX(V)fla(s*’yaQD*l)

with § = (TX0) —1)(1 — 1)~ € Z,[r — 1], identifies canonically and functorially with the continuous Galois
cohomology of T.

Proof. cf [50, Theorem 1.5]. O

2.1 Tavares Ribeiro’s complex with D,

By replacing D (T') in [50, Lemma 1.9] with D(T"),, we have:

Lemma 2.1.1. For any T € IndRepg,_ ,r 40, (9) and a € Z, we have:

p’
0 — Ind&(T) — D(Indg, (T)), L= D(Indg, (T)), — 0
0 — Indr(T) — Ind&(T) =% Ind5(T) = 0
0 — Indg, (T)?% — Indp(T) 2= Indp(T) — 0.

Proof. The first exact sequence follows from corollary [1.1.19] while the proof for the rest ones are the same
as in [50, Lemma 1.9]. O

Definition 2.1.2. For i € N, we put
F': Repy (¥x) — Ab
T = H'(Cpy,r (D(T)r)).
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Chapter 2. Relation with Tavares Ribeiro’s complex

Remark 2.1.3. The functor {3” }: just defined is different from that of the previous chapter (¢f definition
1.2.1).

Lemma 2.1.4. We have
FO(T) ~ HO(, T).
Proof. We have F°(T') = (W(C?) @z, T)“r-#=17=17=1 = (W(C")¢=! @z, T) @™ = 7@m7) = 7% O

Lemma 2.1.5. Let M be an O g -module of finite type with a continuous (for the p-adic topology) semi-linear

action of G, i.e. (Vg € G )(VA € Oz )(Vm € M) g(Am) = g(\)g(m), then

HY (G, M) = 0.

Proof. (1) We first assume that M is a F;*"-vector space of finite dimension, and hence pM = 0. Denote
d = dimpger M and denote e = (e1,...,eq) a basis of M over F3®P. For any g € 9k, , we denote by
Uy € GL4(F,") the matrix of the action of g under the fixed basis e. There is a bijection between the
classes of F,;°P-representations of ¢y and the set H*(9x_, GL4(F;°P)), which has one point by Hilbert
90 theorem (here F;°" is endowed with the discrete topology). This implies that M ~ (F;")? as a
@y -module and hence H (%, M) ~ HY (%, F3?)? = 0.

(2) Now we assume that M is killed by a power of p. We use induction as follows: if M is killed by p™,
then we have an exact sequence

0—p" "M —M—=M/p"~ M =0,
hence an exact sequence
T Hl(gK‘,mpn_lM) — Hl(ng7M) — Hl(gfﬂﬂm/pn_l) —

As p"~ 1M is killed by p and M/p"~! by p"~1, the induction hypothesis and (1) implies the vanishing
of two sides, hence the vanishing in the middle.

(3) If M is an Og-module of finite type, we have M = im M/p" M and hence we have the following exact
sequernce "
RMm HO (G, M/p") — H' (%, M) — I HY (G, M/p").

The first term vanishes since the short exact sequence
0 — p"M/p" Tt — M/p" Tt — M/p™ — 0
gives the exact sequence
HO(Gy , M /p" 1) — HO (G, M/p") — H (G, p"M/p" ),

and we know the right term vanishes by situation (2) we discussed. Hence we have Mittag-Leffler
condition for the system of H® and then R lim HO(%x . M/p") = 0. Notice that im H' (&5, M/p") = 0
by case (2), and hence H(9x_, M) = 0.

O

Lemma 2.1.6. The group Yy, acts continuously on the ring Og, where the latter is endowed with the
p-adic topology.

Proof. The extension £“"/& is Galois with group ¥ _.The p-adic valuation is the unique valuation that
extends the p-adic valuation on € : this implies that ¥k _ acts by isometries hence continuously on €". In

particular, the action over Oz is continuous for the p-adic topology. O

Corollary 2.1.7. The functors D(—) and D(—), are exact.
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2.1. Tavares Ribeiro’s complex with D,

Proof. The functor D(—) is left exact by construction. If T € Repy (¥, ), the semi-linear action on

Ogw ®z, T is continuous for the p-adic topology (because it is continuous on 7" and Og) @ by lemma[2.1.3]

the functor D(—) is also right exact. Recall D(T), = O¢, ®o, D(T), and hence it is exact.
Lemma 2.1.8. The functors {F'}ien: Repz (Yx) — Ab form a §-functor.
Proof. This follows directly from corollary O
Theorem 2.1.9. Let T € Repy (¥k) and i € N, we then have
H (Y, T) ~ F(T).

Proof. By lemmas and [2.1.8] it suffices to prove the effaceability of {F"};en. Similar proof as |50,
Proposition 1.7] works, as it is based on [50, Lemma 1.9]. O

Notation 2.1.10. Let T' € Repy (¥k). To make light notations, in the rest of this chapter we denote Cy,
for the complex €, (T'), and Crr for Tavares Ribeiro’s complex attached to D(T)., i.e. Cy ~ - (D(T),).

Using the morphisms introduced by Tavares Ribeiro, we have another description of D(T'), o as follows:
Lemma 2.1.11. Let x € D(T),, thenz € D(T); o <= (6 —y)xz =0.
Proof. This is a translation of lemma [1.1.10] with new notations. O

Notation 2.1.12. Let F3* be the radical closure of Fy in C”, and F}*! the closure (for the valuation
topology) of F3*d in C® : this is a complete perfect subfield of C*. Let W(FE*d) be the ring of Witt vectors
of Fpad.

Lemma 2.1.13. In Repz (Y ), we have (D(T),)"=" = W(F/b;;i) ® D(T).

Proof. (D(T),)=" = (D(T),)?%= = (0, ®o, D(T))?= = (0¢ )%= ©o, D(T) = W(F*}) © D(T). Indeed,
Fy=l = 7% = Frad, O

Let T' € Repy, (¥Yk) and put D = D(T'). We have the following morphism of complexes from €, ; to Ctr

B

0 D—* >D®D., Do 0 0
O L
0 D, D, D, D, —=D,. DD, D, D, 0
where
a(d) = ((¢ — 1)d, (tp — 1)d),
B(x,z) = (tp — Dz — (¢ — 1)z,
~ p—1
- (5).
Tp—1
~ y—1  1—¢ 0
— Tp—1 0 1—¢
ﬂ ( 0 Tgﬁ) 1 5’y>
ﬁ: (Tg(v) - 176_’77@_ 1)
and
B

d—*—>(z=(p—1)d,z=(p — 1)d) ———t = (p — D)z — (¢ — 1)z ——0

b I : oo

di a (,0,2) d (0,4,0)—— 1 =0

Theorem 2.1.14. This morphism of complezes is a quasi-isomorphism when the residue field of K is finite.
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Chapter 2. Relation with Tavares Ribeiro’s complex

2.2 The intermediate complex Gg’fﬂ

Definition 2.2.1. Let (D, D;) € Modo, 0., (¢, 7). We define a complex €24 (D) as follows:

0= W(F™) © D —*—>W(F™) ® D@ Drg & Dr 0

s

z————((p = D(@), (tp — 1)(2))

(4,2) —————= (0 = D(y) = (¢ = D(2).

If T' € Repg, (¥Yk ), we have in particular the complex ijtf. (D(T)), which will also be simply denoted ijtf. (T).

Remark 2.2.2. The morphism 7p—1: W(l*:or;i)@D — D, ¢ is well-defined. Indeed, for any z € W(F@)@D
(i.e. € D, with (y— 1)z =0 ¢f lemma(2.1.13)), we have by lemma|1.2.9

(6 —)(rp— Dz = (1 -5 (y =1z =0.

rad

This exactly tells that (tp — 1)z € D, . Hence the complex €' is well defined.

d

- to Ctr as follows:

Remark 2.2.3. We have a morphism from C'

0—>W(F*) ® D —2 = W(F™) © D@ Dry ——— Dy 0 0
o T
0 D. a D.#D.®D.— " <D &D.®D.,—"+D. 0

where the maps are defined similarly as in section [2.1

Theorem 2.2.4. Let T € Repz, (9K ), the homology of the complex G‘:‘i(T) computes H (9x, T).
To prove the theorem, we need the following results.

Lemma 2.2.5. The constructed map from Gf:‘i to Ctr induces an isomorphism on H!.

Proof. For injectivity: suppose a pair (z, z) € Ker 3 is mapped to 0 in H'(C1r) by u, i.e. there exists d € D,
such that

(p—ld=x
(y—=1)d=0
(TD—].)d:Z.

Then d € (D,)=! = W(F*) @ D and a(d) = (z, 2) € Ima and hence [(z, 2)] = 0 € H(€%),
For surjectivity: given (a,b,c) € Ker B, i.e.

(y=Da+(1—-p)b=0
(tp—1Da+(1—p)c=0
(Tg(v) — Db+ (6 —7)c=0.

By lemma [1.2.8] we can fix an element s € D, such that (y — 1)s = b. Denote 2’ := (¢ — 1)s — a and
2 :=c— (tp —1)s € D,. We have (2/,2') € Ker 3 so that [u(2’,2')] = [(a,b,c)] € H(Ctr). Indeed, we have

(V=" =(-D((¢p—-1)s—a)=(p—-1)b—(y—=1a=0
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. . d
2.2. The intermediate complex C*;

and

—Ds—~(mp —1)s
s — (T?)(V)'y —9)s

hence (2', 2’) € Ker 8 is as required. O
Lemma 2.2.6. The constructed map from Gfoa,i to Crr induces an injective map on H2.

Proof. Take t € D, and suppose v(t) vanishes in H*(C, ;). Hence there exists (a,b,c) € DP? such that

B(a,b,c) =(0,t,0), i.e. the following relations holds:

(y—1Da+(1—-¢)b=0 (2.1)
(tp—la+(1—p)c=t (2.2)
(T — )b+ (6 — v)e = 0. (2.3)

It suffices to show there exist a’ € W(Fg2d) ®¢, D and ¢’ € D, such that (7p — 1)a’ + (¢ — 1)c’ = t.
By lemma|1.2.8) we can fix an element b’ € D, such that (y — 1)b' = b. From (2.1) we have

(v=Dla+ @ -pt)=0 (2.4)
and from 1) we have (Tg(w —1)(y=1)b + (6 — v)e = 0. Lemma then tells
(6 =) (c—(rp —1)V') =0. (2.5)
Now implies (7p — 1)(a + (1 — )b') + (1 — ¢)(c — (7p — 1)V') = t. Hence @’ := a + (1 — )b’ and
= —c+ (tp — 1)V’ are good candidates, as they satisfy (7p — 1)a’ + (¢ — 1)¢’ = t. Indeed, we have now
(y—1d' =
(0 =)
which tells exactly o’ € DY*~ = W(b:g;i) ®p, D and ¢ € D, . O

Lemma 2.2.7. The constructed map from @f;fi to Crr induces a surjective map on H2.
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Chapter 2. Relation with Tavares Ribeiro’s complex

Proof. Let (d,l;, ¢) € Ker, i.e.
(Y —Da+ (5 —Nb+ (¢ —1)é=0. (2.6)

It suffices to find ¢t € D, such that [v(t)] = [(@,b,¢)] € H*(Ctr). More precisely, to find (a,b,c) € D3
and t € D, that satisfy the following system of equations:

(y=1Da+(1—-p)b=a
(tp —Da+ (1 —@)c+t=0
(TS )b+ (8 —)e =2

Take b = 0 : it suffices to solve

(v=1a=a i
(tp —Da+ (1 —@)c+t=0b
(0 —7e=¢

By lemma [1.2.8) we can find a, ¢ € D; such that (y —1)a =a, (6 —y)c = ¢ Now we have

(6 =) ((rp ~ Da+ (1 =)o) =(1 = 757)(y = Da+ (1 - )
=(1-— TE(V))d + (1 —p)e
=(5— )b
where the first equality follows from lemma [1.2.9|and the last one is from . This shows that
t:=b—(rp—1)a—(1—p)c
belongs to D, o, as required. O

Remark 2.2.8. We hence proved theorem without refering to proposition [1.3:3

2.3 Proof of Theorem 2.1.14]
Lemma 2.3.1. If§ € W(};(‘)";i) ®o, D is such that (p — 1)(6) € D, then ¢ € D.

Proof. (1) First consider the case when D is killed by p : we have to prove that if § € F}2d @, D satisfies
(p—1)d € D, then 6 € D.
We have

d A
Fpt = P For
AEA

where A = Z [p~'] N[0, 1). This shows that
Fr=t = { ZOZAW’\; (ax)ren € Fgt, limay = 0}
AeA
where the limit is taken for the filter complement of finite subsets in A (this means that for every
C € R, the set {\ € A; vz(ay) < C} is finite). This implies that
DYl =F7 @p, D = { D ™ ®@dy; (da)rea € D imdy = 0}-
AeA

Here we use a basis 8 = (e1,...,e,.) of D over Fy, and endow D with the "valuation"

vy r(T1€1 + -+ Trer) = f?ii?r v (&2).
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2.3. Proof of Theorem |2.1.14

Put D = Dy := @ k[n]e;, this is a lattice in D.
i=1

Note that the writting > 7 ® d, of an element in F?=! ®p, D as above is unique.
AEA

Write § = Y 7 ® dy as above: we have
AEA

(p—13= Y (" ©p(dy) — 7 © dy)

AEA
p—1
=Y e ( me(dm) —dA)

XeA m=0 !

so that dy = 5" = (p(der,\) for all A € A\ {0}.
m=0
For k € Z~q, put ¢, = E\nl}\l vy, (dy). We have lim ¢, = +o0.
€

pk—l)\¢z

Let k € Z~o and A € A such that p*\ € Z and p*"*A ¢ Z. If m € {0,...,p— 1} andu:mTH‘, we

have p*u & Z, 50 ves »(dy) > cp1. Assume cpyq > 0 : we have vy ((d,,)) > pegr1. This implies that
vy x(dx) > pery1 > cpy1. Thus we have

Ck+1 > 0= cx > cp41 > 0.

Let ¢ € Rsq : we have ¢, > ¢ for k > 0, and the above shows that ¢, > ¢ for all kK € Z~o. As this
holds for all ¢ > 0, this means that ¢; = 400, i.e. dy = 0 whenever \ # 0, so that

§:d0€D.

In the general case, let § € W(I*:g;i) ®o, D be such that (¢ — 1)6 € D. We show that

5 € D+ p"W(E™) ©o, D

by induction on n € Z>0 The case n = 1 follows from the special case above. Assume n > 1 and that
we have § € D+p"W(Frad) ®e, D : write 6 = §,, + 4/, with §,, € D and ¢/, € p”W(Frad) ®e, D. Then

(o =1)8, = (¢ = 1)dn — (¢ = 1)d € DNP"W(F§*) ®0, D =p"D.
If we apply the special case to the image of ¢/, in p"D/p"**D (which is a p-module over FO)El, we
deduce that &/, € p"D + p"T'W(F3*!) ®¢, D, which shows that

§ € D+ p"W(FR) @0, D.

As this holds for all n € Z+, this shows that ¢ belongs to the closure of D in W(F/‘(ﬁ-a\d) ®o, D for the
p-adic topology: as D is closed, we deduce that § € D.
O

LObserve that the proof of the particular case (D killed by p) uses nothing but the p-module structure of D : it holds with
p"D/p"1D.
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Chapter 2. Relation with Tavares Ribeiro’s complex

2.3.2 Morphism from €, to Gra‘i

We have a morphism from C - to Grad as follows

T

0 D o D® Dy

incll incll
rad

. L
0 — = W(EE) @0, D 2" W(FE™) @0, D@ Dry > Dyg— 0.

DT,O —_— 0

Proposition 2.3.3. The above morphism is a quasi-isomorphism when the residue field of K is finite.

Proof. For H® : We have HO(C,, ) = Ker(a) C Ker(a*d) = HY(€*7). We have (W(F/(ﬁ;i) R, D)?=t = D¥=1
(by lemma [2.3.1). Thus Ker(a ra‘d) C Ker(a) = H(Cy ).

Injectivity of H! : Let (z,y) € Ker() whose image in H'(C27) is zero: there exists § € W(Frad) ®o, D
such that (z,y) = ((¢—1)d, (1p — 1)9). As (p — 1)(5 =zeD: thls implies d € D by lemma|2.3.1} so (z,y) €
Im(c), and so that the class of (z,y) is zero in H(C,, ;). This proves the injectivity of H'(C,, ) — Hl(Gfﬁ‘i).

Surjectivity of H! : By theorems|1.1.13|and the homology groups H' of both complexes are isomor-
phic to H (%, T), hence they have the same finite dimension. Notice the map is a linear transformation,
hence injectivity implies surjectivity.

For H? : Since we proved that both Cy,r and (‘frad have the correct H? by theorems [1.1.13{and , hence
have the same finite dimension. It is enough to show either injectivity or surjectivity. But the surjectivity is
direct. O
Corollary 2.3.4. The complezes C Gr
is finite.

o Cur and Cyr are all quasi-isomorphic when the residue field of K

In particular, we have proved theorem
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Chapter 3

Complexes with y-operator

In this chapter, we construct a complex with v operator (similar as in [29] §3]) that computes the continuous
Galois cohomology.

As F, is perfect, we cannot have such an operator on (¢, 7)-modules over (O¢,O¢_) (¢f remark |3.3.7):
we have to use a refinement of (¢, 7)-module theory developped in [19], 1.2.2]. More precisely, we will work
with coefficients Og,, _, whose residue field is not perfect (¢f notation 4.1.1)).

u, T

We construct a complex (?Z;,T in section and we show that it computes the continuous Galois coho-

mology. Replacing the operator ¢ with ¢ in GZ - provides another complex Cy, , and we show that these

two complexes are quasi-isomorphic. Hence GIJJ’T 7c0mputes the continuous Galois cohomology.

To prove the results mentioned above, we will as usual start with F,-representations and then pass to
Z,-representations by dévissage.

3.1 The (¢, 7)-modules over partially unperfected coefficients

For simplicity, we will denote by u and 7 the elements 7 and ¢ — 1 in C” (this is a little abuse of notation
since, strictly speaking, u is a variable that maps to 7 under the injective map Fy — C” and similarly for 7)
or the elements [7] and [¢] — 1 in W(C®) under the injective map O — W(C”).

Notation 3.1.1. (¢f [19] §1.2.2])

(1) We put
Fuz o= k(u,n""7) = k(u,m) [n"/*"] = | k(u,n)n"/?"] c C".
neN
(2) By an abuse of notation we denote
Ch = F2P C CP

the separable closure of F), ; in .

Note that thnp is not the tilt of a perfectoid field, though ambiguously it carries a superscript b in the
notation.

(3) We put
G:=Gal(F;P/Fy -).

Lemma 3.1.2. The group G acts isometrically over F;°P.
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Chapter 3. Complexes with -operator

Proof. Denote v the valuation of C” that is normalized by v(7) = 1/e. We show that V) «ep 1S the unique

valuation of F;? that extends v, .

If o € F5P, then « is algebraic over F, . = Jk((u,n'/?")). This implies that there exists n € N such

u,T
n

that « is algebraic over k((u,n'/?")). Notice that k((u,n'/?")) is complete for the valuation v and hence there
exists a unique valuation over k((u,n"/?"))[a] that extends V|, . (cf [44, Chapter II, §4, Theorem 4.8]). This
implies that for any g € G, vo g = v over F;°F. 1 O

Remark 3.1.3. Notice that the action of G ~ Gal(F;?/F, ) on F;;°P is continuous for the discrete topology.

Proposition 3.1.4. We have
G~ gL~

Proof. We first prove that there are injective maps 41, — G — ¥x_ whose composite is the inclusion.
Let a € Fi? and P(X) € F, ;[X] its minimal polynomial of o over F, . Then for any g € 41, we have
9(P(X)) =P(X) = Pgla))=9g(P(a)) =0 = g(a)€ F}.

This shows that F;;F is stable under ¢;,. As ¥, fixes F), ;, this implies that we have a morphism of groups:

g, —— G.
Similarly, let o € F;®” and Q(X) € Fy[X] its minimal polynomial over Fy. Then for any g € G, we have

9(QX)) =Q(X) = Qy(a)) =9(Qa)) =0 = g(a) € F5*.

This shows that F;" is stable under G. As G fixes Fp, this implies that we have a morphism of groups:
G —2 Gal(F®/Fy) ~ D .

Hence finally we have the diagram:

%LL>G

N

Yk ..

™

The map p is thus injective and we are left to prove that A is injective. Take any g € G that acts trivially
on F;P. Recall that F3°P is dense in C” for the valuation topology (¢f [19, Proof of Proposition 1.8]) and
hence also dense in F;°?. By lemma we have g = idpze» and hence A is injective.

Now we can see G/p(¥1,) as a subgroup of ¥k /¥, ~ (v). Suppose z € Z,, is such that v* acts trivially
on Fy -, then we have

e—1=7(—-1) =XV —1, ie. XV =¢ thus 7% = id.
This shows that p is surjective, and we conclude that G ~ ¥ .. O

Corollary 3.1.5. We have F,, = (C°_,)?".

u—np

Proof. By definition we have F, , = (C”__ )¢, which is (C°_, )" by proposition O

u—np u—np
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3.1. The (¢, 7)-modules over partially unperfected coefficients

Remark 3.1.6. (1) Recall that

Oe = {Zaiui; a; € W(k), Jlim q; = ()}

i€Z

is a Cohen ring for k((u)), and is equipped with the lift ¢ of the Frobenius of k((u)), such that ¢(u) = uP. It
embeds in W(C”) by sending u to [7]. Similarly we have a Cohen ring O, for k((u,n'/?")) which is endowed

with a Frobenius ¢ and embeds in W(C”) so that
Og = 05, = W(C")
are compatible with Frobeniuses (¢f [19} 1.3.3]).

(2) Note that F, , is stable by the action of 7 on (C’b)%, because 7(u) = u(n+ 1) and 7(n'/?") = n'/?" for

all n € N. Similarly, O, is stable under the action of 7 on W(C”)%x.

Notation 3.1.7. Let F, = Frac(O7,) and F}" the maximal unramified extension in W(C”)[1/p] and Ozu-

its ring of integers. We denote O its p-adic completion and put F,) = Oﬂ;[l /D]

The ring Ogu is endowed with a Frobenius map that is compatible with the Frobenius map in W(C”) by

our construction above. By continuity, it extends into a Frobenius map on Oz and 7"
We put '
Oc‘:u,q— = (of??)yLa ‘gu,f = OEu,q—[l/p]'

Remark 3.1.8. We summarize the notations by the following diagram:

W(C?) — C°

Theorem 3.1.9. We have O5, = O¢,, .
Proof. We have the following diagram:

ur
:}'u

0
Ogu Oe

i Proposition [3.1.4] ) i @
Fopr (F3ep)“e.

u,T

Notice that Og, is fixed by ¢, hence Oy, C Og, . Both Oy, and Og, , have the same residue field

Fu . Indeed, O¢, _ has residue field (F5°?)“%, which is F, ; by proposition Hence O, C Og¢, , are

two Cohen rings for F’, ; and they must be equal as Og, is dense and closed inside Og, . for the p-adic

topology.
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Chapter 3. Complexes with -operator

Remark 3.1.10. The theorem can be rewritten as S"Einp = 8Einp’7 with Caruso’s notations in [19]
1.3.3].

Definition 3.1.11. A (¢, 7)-module over (Fy, F, ) is the data:
(1) an étale p-module D over Fy;

(2) a 7-semi-linear endomorphism 7p over Dy, := Fy,; ®p, D which commutes with ¢r, =® ¢p (where
¢p, , is the Frobenius map on F), » and ¢p the Frobenius map on D) such that

(va € D) (9@ 1) o 7p(a) = 75 (),
for all g € 9k /% such that x(g) € N.

We denote Modp, r, . (¢, 7) the corresponding category.
Theorem 3.1.12. The functors
Repy, (9x) = Modp, F, . (¢, 7)
T D(T) = (R @, T)%%r
T(D) = (Fy®® ®@p, D)?~' <= D

establish quasi-inverse equivalences of categories, where the T-semilinear endomorphism tp over D(T), , =
Fur®p, D(T) is induced by T @ T on C’Z_np ® T using the following lemma .

Proof. cf [19, Théoréme 1.14]. O

Lemma 3.1.13. The natural map F,, r ®p, D(T) — (Cz_np ® T)%t is an isomorphism.

Proof. ¢f [19, Lemma 1.12]. O
More generally, we have the integral analogue of theorem [3.1.12

Definition 3.1.14. A (¢, 7)-module over (Og,O¢, ) is the data:
(1) an étale p-module D over Og¢;

(2) a 7-semi-linear endomorphism 7p over D, , := O¢, . ®o, D which commutes with o, ~® ¢p (where
$0,, . is the Frobenius map on O¢, . and ¢p the Frobenius map on D) such that

(va € D) (g 1) o p(x) = 75 (x),
for all g € ¥k_ /¥, such that x(g) € N.

We denote Modo,,o,, , (¢,7) the corresponding category.
Theorem 3.1.15. The functors

Repr (Yk) — Modo, Oey » (¢,7)
T — D(T) = (Ogw ®z,T) %
T(D) = (Ogm ®0, D)¥=" <+ D

establish quasi-inverse equivalences of categories, where the T-semilinear endomorphism tp over D(T), » =
(Ozm ®ZPT)(§L ~ O¢, . ®@D(T) is induced by T @ 7 on Oz ®z,T.

Remark 3.1.16. For V' € Repq_ (9K ), we can similarly define Modg ¢,  (@,7): the category of (¢, 7)-
modules over (€, &, -) and establish an equivalence of category.
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3.2 The complex €,

Notation 3.2.1. Let (D, D, ) € Modo, 0., _(®,T), Wwe put

Do = { € Duri (¥ € %ic,) X(9) € Zo = (9@ 1)(w) = 7 + (@) + (@) + -+ 757 (@)},
By similar arguments as that of lemma [1.1.10] we have

Dyro={z€Dyr; @z =0+mp 475+ +75" (@)}

Lemma 3.2.2. Let (D,D, ) € Modo, 0., . (¢, T), then o—1 and Tp—1 induce maps o—1: Dy ro — Dy 70
and Tp —1: D — Dy 0.

Proof. cf lemma [[.T.11] O

Definition 3.2.3. Let (D,D,;) € Modo, o0, (»,7) (resp. (D,D;) € Mode¢ ¢, . (¢,7)). We define a
complex C¢ (D) as follows:

0 D D@ Do Duro 0

z——((p — (=), (1p — 1)(2))

(Y, 2) ———— (0 = () — (¢ = D(2).
IfT € Repg (Yk) (resp. V € Repq (9K )), we have in particular the complex C; _(D(T')) (resp. €, (D(V))),
which will also be simply denoted C;, (T') (resp. C; (V).

Theorem 3.2.4. Let T € Repg (9x), then the complex €, (T) computes the continuous Galois cohomology
of T, i.e. H{(Yk,Cl (T)) ~ H (Yk,T) foric N.

Remark 3.2.5. (1) Let T' € Repg (9k) and (D, Dy ;) be its (¢, 7)-module over (O¢,O¢, ). We have the
following diagram of complexes

—1,7p—1 Tp—1 -1
CZ’,T(D) 0 D (‘/’ = ) D @ Du,'r,(] % Du,T,O 0
e,-(D) 0 p (et o Dro (rp—1)6(p-1) Doy 0
e(D) 0 0 Dy.0/Durp —— > D10/ Duro — 0.

(2) Recall that for T € Repg (9K ), the complex C, ,(D) computes the continuous Galois cohomology by
theorem [1.1.13} We will show in the following that € (D) and €, ,(D) are quasi-isomorphic, and hence

the complex € /(D) also computes the continuous Galois cohomology.

3.2.6 Proof of theorem the quasi-isomorphism
Let T € Repg (9k), and denote by (D, D, ;) its (¢, 7)-module over (O¢, Oe, ).

Lemma 3.2.7. The map D;/D,, - Lank D, /D, is injective.
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Proof. For any x € D, = (W(C") ®z, T)?* such that (¢ — 1)z € Dy, = (Ogm ®z,T)?, we have to

show that z € D, .. Obviously it suffices to show that for any element € W(C”) ®z, T, the relation
(¢ — Dz € O,Jmr ®z,T implies © € Oz @z, T. By dévissage we can reduce to the case pT' = 0. For any

reC @, T, we claim that (¢ — 1)z eu E((u, n'/P™))sep ®@r, T implies x € E((w, n'/P7 ))sep ®r, T. We have
C*® T~ (C*)* and
R, n/PT)P @ T o (k((u,n'/P7)*P)?

as @-modules. Hence it suffices to show that for any € C°, 2P — 2 € k((u,n*/?” ))*P will imply that
x € k((u,nt/P7)*P. Put P(X) = XP — X — (2P — 2) € k((u,n*/?7)[X] : it is separable as P'(X) = —1 so
that x is separable over k((u,n*/P™)) and hence x € k((u,n'/P™ ))*P. O

Lemma 3.2.8. Assume T is killed by p, then there are exact sequences of abelian groups

0— T = D,., LniN Dy, — HY %, T) — 0
0> T% - D, 5 D. - HY(%,,T) — 0.
Proof. The sequence of ¥4;-modules
0 — Fp — k((u,n'/P" )P SAiN E((w,n'/P7 )% = 0
and
05F, > C" 250" 50

are exact (here we endow k((u,n'/P”™ )P with the discrete topology and C” with its valuation topology).
Tensoring with T and taking continuous cohomology (the first for the discrete topology, the second for
valuation topology) gives exact sequences:

0—T% — Dy, £ D, , — H'(¥,, T) = H (@0, k((u,n"/7" )*P @, T)
0—T% = D, £ D, - H' (%, T) » H (%, C* @p, T).

The lemma follows from the vanishing of H* (¢, k((u, n*/?™))**? @g, T') (by Hilbert 90) and the vanishing of
HY(¢,,C* @p, T) (that follows from the fact that L is perfectoid.) O

Lemma 3.2.9. If ' € Repy_ ;,s(¥Yk ), then
H' (%L, 0= ®z,T) =0

where O is endowed with the p-adic topology.

Stur

Proof. By dévissage we may assume that 7T is killed by p, in which case this reduces to the vanishing of
H (9, C" np @F, T'), which follows from Hilbert 90 since ¢, acts continuously on C’Z_np = k((u,n'/P" )P
(endowed with the discrete topology). O

Corollary 3.2.10. If T € Repg, (YK ), then
HY (YL, 05 ®2,T) = 0,

where O = is endowed with the p-adic topology.

S:ux

Proof. Denote Q== F oo /p"™. By [43] Theorem 2.3.4], we have the exact sequence

j:ur
0= RUmHYGy, Ogm , @2,T) = H (Y1, O ©2,T) — I HY(FL, O, @2, 7).

We have H! (4, 0 T ®z,T) = 0 by lemma and R! L&l HY (9,0 T L ®z ,T) = 0 from the observation

that {H°(%,0 ®z,T)}, has the Mittag-Leffler property. Hence we get H' (4, 0 7w Oz ,T) =0. O

g'ur
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Corollary 3.2.11. If 0 » 7" — T — T" — 0 is an exact sequence in Repy (¥ ), then the sequence

0= DT )ur = DTy = DI )ur — 0

is exact.

Proof. As Oz is torsion-free, we have the exact sequence

i
?'u

0= Ogm ®z,T" — Oz ©2,T = Ogm ®z,T" =0

which induces the exact sequences

0= D(T")uyr = D(T)uyr = DT )y r — H (Y1, O @2, T").

By corollary [3.2.10, we get the exact sequence. O

Proposition 3.2.12. The map D, /D, . Lk D, /D, is bijective.
Proof. (1) We first assume T is killed by p. By lemma [3.2.7} it suffices to show the surjectivity. By lemma
i

the inclusion k((u,n'/?”))*P C C” induces a commutative diagram:

e—1

0 T Dy.r Dy.» HY (9., T) ——0
0 T D, 2. D, H (%, T) — 0.

If y € D, there exists z € D, , having the same image in H'(¢,,T) : hence y — z maps to 0 in
HY (4., T), so there exists € D, such that (¢ — 1)z =y — z and thus (¢ — 1)(z + Dy,r) =y + Dy 1.
This finishes the proof.

We now use dévissage for Z,-representations. Notice that D(T'/p"™) = D(T)/p" and T, D(T) are both
p-adically complete. Hence it suffices to deal with the case where T is killed by p™ with n € N>q. We
use induction over n. Suppose T is killed by p”, we put T = pT, T = T/pT and consider the following
exact sequence

05T T —T —0

in Repzp (9k). Then we have the following diagram of exact sequences by corollary [3.2.11

0——=D(Tyr——=DT)yr —=DT")yr —=0

0——= D(T"), D(T), D), — 0.
By snake lemma we have the exact sequence
0= D(T")r/D(T)u,r = D(T)7/D(T)ur = D(T")7/D(T")ur = 0
and we consider the following diagram
0——=D(T")7/D(T")u,r — D(T)+/D(T)u,s —= D(T")7/D(T" )u,r —0
sa—ll w—ll w—ll
0 ——D(T")+/D(T")ur — D(T)+/D(T)u,r — D(T")+/D(T" )ur,r — 0.

Notice that the first and the third vertical maps are isomorphisms by induction hypothesis, hence the
middle one is an isomorphism. We then conclude by passing to the limit.
O
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Corollary 3.2.13. The map D, /Dy 0 Lani D;.0/Dy o is bijective.

Proof. Consider the following morphism of short exact sequences:

p—1
DT,O/Du,T,O E—— DT,O/Du,T,O

e—1

OHDT/DU,T DT/DU,THO

0 — D,/Dy, ——> D./D, , —0.

We then have the claimed isomorphism using the snake lemma. O

Remark 3.2.14. By remark [3.2.5] this finishes the proof of theorem

3.3 The complex Cj

In this section we will define a 1 operator for (p, 7)-modules over Oz, and then construct a complex @zﬁ .
At the end of this section, we will show that this complex (31277 computes the continuous Galois cohomology:

we will first prove the case of F)-representations and then pass to the case of Z,-representations by dévissage.

Recall that we have defined O in definition and denote Oz its p-adic completion. The ring Oz

has a Frobenius map that lifts that of the residue field k((u, n'/?™ ))*® (¢f |42, Theorem 29.2]).

Lemma 3.3.1. Let M be a field of characteristic p, such that [M : p(M)] < oo, then p(M3P) @,y M ~
M=°P and in particular [M5P : p(M3P)] = [M : p(M)].

Proof. Tt suffices to show that for any separable and algebraic extension L/M (we pass to inductive limit
for the case of separable extension) we have an isomorphism M ®,p) @(L) ~ L. By [42, Theorem 26.4], the
natural map M ®,(ar)@(L) — M(L) is an isomorphism. This implies that [M (L) : M] = [p(L) : ¢(M)]
[L: M]. As M C Myp(L) C L, then [L : M] = [L: Mp(L)|][Me(L) : M] and hence [L : Mp(L)] =1, i.e.

Mo(L) = L. O

Corollary 3.3.2. The estension Ci_, /p(Ch ) has degree p.

Proof. By definition C’Z_np = k((u,n*/P7)*P  and we apply lemma m O

Lemma 3.3.3. The extension @/@(?E\r) has degree p.

Proof. We have the diagram

O?;r - vaknp
lw lw
Ozm — Cz—np
with [C},_ ., : ¢(Ch_,)] = p. Hence there exist ay,...,a, € O such that whose image (ag, ..., @,) modulo
p forms a basis of C’Z_np over w(CZ_np). The following map is surjective
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3.3. The complex €} _

p: (0(07m))" = Oz

P
()\1,. . .,)\p) — Z/\laz
=1

there exists (A", ..., A e (@(Ogm)) such that

Z)\(l a; € p O .

i=1

Indeed, for any a € Oz

Hence there exists ()\52), ce )\1(,2)) € (cp(@om)) such that

p
a— Z/\El)a,- Z/\( )az € p? (93,\,r .

i=1 i=1

By induction, for any n € N there exists (A", ..., Al") € ((p(O?ur)) such that

Z (Zp] 1)\j)>az ep” (‘)?ur.

=1 7j=1

As O is p-adically complete, we have

ur
S:u

=y (ipJ 1)\(J))ai.

=1 Jj=1

Notice that >~ p/ _1)\§j ) ¢ ©(O=) and hence we proved the surjectivity of the map p defined above. Now

3:ur
j=1
O@ is a cp(O?“,) -module of finite type and we can apply Nakayama’s lemma: the map is an isomorphism
since it is so modulo p by corollary 3.2 O

Definition 3.3.4. For any z € S"Er, we put

1
Y(x) = ];‘Pil(Trg/le/g,(fg?)(m))-

on ?E\r Applying lemma [3.3.3| to é\ur, we see that the operator v

In particular we have ¥ o p = 1d5rrur

induces an operator 1): e% _, W Note that P(0 3"”) C Ogur and ¢¥(Ogw) C O -

Remark 3.3.5. We have ¢ o g = go 9 for all g € ¥k . Indeed, we have the following commutative square

ur g ur
E—
?u ?u
Lp71 ‘P71
>~ P Pl

(T2 —= o(FU).

1

This implies ¢~! commutes with g € ¥k over cp( N). As Tr= 5'“‘” — <p(9’ ") commutes with

o g,‘u! /Lp(frur)
g € Yk, so does 1 on F.".

43



Chapter 3. Complexes with -operator

Proposition 3.3.6. Let (D,D,) € Modo, 0. _(,7). There exists a unique additive map
’(/)D: D — D,

satisfying
(1)
(Va € O¢)(Vz € D) ¢plapp(z)) = vo. (a)z,

(2)
(Va € O¢)(Ve € D) ¢p(po. (a)z) = athp(z).

This map is surjective and satisfies 1p o pp =idp.

There also exists a unique additive map Yp, | : Dy — Dy that satisfies similar conditions as above
and extends the additive map p.

—

Proof. Let T € Repg, (¥k) be such that D = D(T). We have defined ¢ on F,", hence it is defined over
Eur = (5‘?)%. The operator 1) @ 1 on Ogw ®z,T and Oz @z, T induces operators ¢ on D and Dy ;. One

EUI‘ ?Er
easily verifies the above properties: this shows the existence. The unicity follows from the fact that D is
étale, i.e. p(D) generates D as an Og-module. O

Remark 3.3.7. (1) Let (D, D;) € Modo, 0. _(¢,7). Suppose there exists an operator ¢p, over D, that
extends ¢¥p and ¢¥p_opp_ = idp,, then ¢p_ being bijective over D, (as D is étale and PO, s bijective
over O¢_) will imply that ¢p_ is bijective, which contradicts the fact ¢ p is not injective.

(2) When there is no confusion, we will simply denote 1 instead of 1o, ,v¥p and ¥p, ..
Lemma 3.3.8. Let (D, D, ;) € Modo, 0., (»,7). We have a map ¢: Dy 10 — Dy rp-

Proof. We have the 1 operator on D, . by proposition Notice that ¢ commutes with g € ¥, by
remark [3.3.5] hence 9 induces a Zp-linear endomorphism on D, . Indeed, if x € D, r o, then we have

(Yo lz=1+mp+- - +757" e
Applying 1 to both sides and by the commutativity we have
(1@ D) = A+ 7+ + 7357 ().
This implies ¥(x) € Dy, 0. O
Remark 3.3.9. By proposition @ and lemma @, 1 is surjective on D and D, - .

We now define the following complex:

Definition 3.3.10. Let (D, D, -) € Modo,,o0,, (¢, 7). We define a complex Cj, (D) as follows:

0 D D@ Duro Duro 0

z—— (¢ = (), (rp — 1)(z))

(Y, 2) ——= (70 = D(y) = (¢ = 1)(2).
If T € Repy, (¥ ), we have in particular the complex €y, (D(T')), which will also be simply denoted €, . (T').
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Theorem 3.3.11. The morphism of complezes

—1,7p—1 Tp—1 —1

e:j:rr : 0 D . P~ Do Du,-r,O( % Du,T,O — 0
—1,7p—1 Tp—1 —1

Z,T: 0 (¥—1,7p—1) D& Du,T,O(% Dy,9g—0

18 a quasi-isomorphism.
Remark 3.3.12. (1) The diagram in theorem [3.3.11}is indeed a morphism of complexes.

Proof. As 1 commutes with the Galois action, it induces a map ¢ : Dy r0 — Dy 0. We claim that ¢p, . b
1p, and hence the diagram in theorem [3.3.11] commutes. Indeed, we have the following commutative square

Ogu\rc—> O —
(N
05— 0=

ur ur *
g Fu

By lemma Oz : ©(Ogm)] = [0z : ¢(Oz)] = p, hence we conclude by the construction of .

u

(2) We have diagram

0 0 pv=0 071 p=0__ .

l —1,7p—1 Tp—1 -1
v 0 p- ¥t pgp,, D b a0
o : lf e D Dy P Do —— 0
0 0 0 0 0.

As 1 is surjective, the cokernel complex is trivial and it suffices to show that the kernel complex is acyclic,
i.e. the map

p¥=0 2%, pv=0

u,7,0
is an isomorphism.
To prove the theorem [3.3.11} we will start with the case of F,-representations and then pass to the
Z,-representations by dévissage.
3.3.13 The case of F,-representations

We assume in this subsection that 7' € Repg (9k).

Lemma 3.3.14. For all r € N, we have (C',_, )“<c = FJ;T = k((n'/?™)).

u—np
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Proof. Let z € F, ., write z = > fi(n)u’, where m € Z and f;(X) € k(X/?"")) for some n; € N. We have

=m

" (2) = 3 " fi(n)u® so that 77" (z) = z implies that " f;(n) = f;(n) and hence f; = 0 for i # 0. We

conclude z = fo(n) € U k((n'/?")) and hence FuTi. C k((n*/?™)). Conversely, we have k((n'/?™)) C FT" | as

,,,LGN u,T
k((n'/?™)) C F., and 7 acts trivially over K. Notice that 9k, = (¢, 7) and F, , = (C»_,,)¥= by corollary
, so that (thnp)gKC = F ., which is k((n*/?™)) by similar computations as above. O

Lemma 3.3.15. Put D(T) = (C',_, ® T)“*c. We have a Y . -equivariant isomorphism

u—np
Oz—np ®Fp T ~ Cz—np ®k((n1/p°<> ) D(T)
In particular, we have dimy,1/p>~) D(T) = dimp, T.

Proof. Denote D(T) = (k(n'/?™))**? &, T) %(4, then from the field of norm theory (of perfect fields) (c¢f
[24, Proposition 1.2.4]) we have the following % -equivariant isomorphism

k("7 )*P @ ooy D(T) = k(n'/?7)) ©r, T
Tensoring with sznp over k((n'/P™)), we have

Ch o ®piro=y D(T) ~ Ch,_ @, T. (3.1)

P

Taking the points fixed by ¥k, on both sides gives

(Conp @iy D(T)) ™ = (€1 _pp @, T) < = D(D).

u—np

As D(T) is fixed by %k, from definition, the left hand side is

@
(Ch_p ®ruyrv=y D(T)) ¢ = (C, ) p(yr/ey D(T) = D(T)

u—np

by lemma [3.3.14] This proves that D(T") = D(T'), hence equation gives what we want. O

Lemma 3.3.16. Let r € Ny, we then have D(T)Z% Cc D(T).

p"

. g o .
Proof. We have D(T),5 = (C'z_np or, T) Kc=/?") Notice that by lemma [3.3.15 we have

gK

9 r ”
(OZ—np 2, T) Ke(nl/P7y _ (CZ—np) (1P ®D(T)

= ((C_pp)")™ @D(T)
= F @ D(T)
=D(T).

The last step follows from lemma [3.3.14) as |J k(n)[n"/?"] (C’Z_np)g’%.
neN

r
P
p —1
D

T

Proposition 3.3.17. The map -2—: Df;% — D:f;grp is injective.
P =0 . Tgr—l . . p" Tgr,wzo
roof. Take any x € D, with -2—(z) = 0, then in particular (r, — 1)z = 0. Hence z € Du;r and

r € D(T)¥=° by lemma Lemma and lemma imply that x = ¢(2’) for some =’ € D(T)
(as D(T) is étale and the base field k(n'/? ")) is perfect) and hence 0 = ¥(z) = ¥ (p(z')) = 2’ implies
z=0. O

Recall that by remark [3.3.12] (2), to prove theorem [3.3.11|it suffices to prove D¥=0 "2—% Dfi% being
isomorphic: we firstly prove the case of F,-representations, in several steps.
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The injectivity
Recall that Fy = k((u)) embeds into C* by u + 7.

Lemma 3.3.18. We have FJ=' = k.

Proof. Recall that 7(u) = eu = (n+ 1)u and 7(u*) = (n+ 1)*u’. Suppose z = > \u® € FJ=! with \; € k,
i=io
then 7(z) = Y. A\i(n+ 1)’ Hence \; = A\;(n+ 1), so that \;((n+1)® — 1) = 0 for all i > ig. If i # 0, then
i=io

(n+1)" # 1, hence (n+1)" — 1 € k((n))* so that \; = 0. In particular, x = g € k. O
Lemma 3.3.19. We have k((n'/?")7=! = k.

Proof. We have k((n*/?™) c (C*)“<¢, hence k((n'/*™)7=! C (C")¥x. As C* = lim C, we have

TP

(C°)¥x = lm K.

TP

Let © = (xp)n € @1 K, we have z¢ = xfln for all n € N. In particular, we have v(xg) = p"v(zy). If © # 0,
this implies v(x,,) = 0 for all n € N . Let Ty be the image of 2o in k = O /(7) and y = ([Top_n])n € lm K

then y~!

7+t Ok for all m € N, hence z, = 1 for all n € N. This shows that = = y, and that the map

x = (2n)n € I K satisfies z, = 1 mod 7 O for all n € N. This implies z, = zﬁzm = 1 mod
TP

k— Im K = (C7)%

n

o ([a’r ])

n

is a ring isomorphism. As k C k((n'/?™)7=1 C (C*)¥%, this shows that k = k((n*/P™ )7=! = (C*)¥x. O
Proposition 3.3.20. The natural map k(n'/?")) @, D(T)"=! = D(T) is injective.

,

Proof. We use the standard argument: assume it is not and let = 3> \; ® oy, with \; € k((n'/?7)) and
i=1

a; € D(T)”=! for all i, be a nonzero element in the kernel such that r is minimal Deviding by A, we may

assume that A\, = 1. As E v(A;) ® a; maps to 7(2 Aia;) = 0, the element Z( 1)(A\i) ® a; lies in the
=1
kernel, by the mlmmahty of r, we have v(\;) = Az, i.e. \; €ktforallie{1,...,r} (¢f lemma|3.3.19). Then
r=1® (Z Aia;) = 0, which is a contradiction to the assumption. Hence the map is injective. O
i=1
Corollary 3.3.21. We have dim; D(T)"=! < dimp, T.
Lemma 3.3.22. If x € D¥=0 is such that 7p(z) = =, then z = 0.

Proof. Let * € D¥=" be such that 7p(x) = 2. This shows that z, seen as an element of C”_ np OF, T, 18
fixed by ¥k : it belongs to D(T)Y=!. By corollary m 3.3.21] the latter is a finite dimensional k-vector space.
It is endowed with the restriction ¢ of the Frobenius map, and this restriction is injective. As k is perfect,
this implies that ¢: D(T)7"=! — D(T)"=! is bijective: there exists y € D(T)?=! such that z = ¢(y). Then

y =vp(y) = ¢(x) = 0, hence z = p(y) = 0. O
Corollary 3.3.23. The map D¥=0 2= o7l pY=0 s injective.

u,T,0
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The trivial case

Recall that v¢: Fy — Fp is given by the formula (z) = %gp‘l(TrFO/w(Fo)(x)). The elements 1,u,...,uP"!
form a basis of Fy over ¢(Fp).

p—1 )
Lemma 3.3.24. Let x = Y x;u’ be an element of Fy with x; € p(Fy). Then we have ¥(x) = ¢~ (z0).
i=0

Proof. For 1 < i < p, we have 9(u') = 0 as Trpo/w(po)(ui) = 0. Indeed, the minimal polynomial of u® is

f(X) = XP —uPl € p(Fp)[X] when 1 <i < p. O
p—1 )

Corollary 3.3.25. An element x = Y z;u* € Fy with x; € p(Fy) is killed by ¢ if and only if xq = 0.
i=0

Proof. By the lemma [3.3.24] and notice that ¢ is injective. O

p—1 +oo .
Let 2 = Y u'z € Fy¥=" with 2; € p(Fy) = k((uP)). More precisely, write z; = Y. b;juP’ with b;; € k.

i=1 Jj=ni
p—1 +oo o
Then z = Z Z bijuH_pJ with bij € k so that
i=1j=n;
p—1 o~
(r=1z=>Y_> bju P (T —1). (3.2)
i=1 j=n;

Lemma 3.3.26. The map 7 — 1: FSZJ 0 F¥=0 s surjective.

u,7,0
) p—1
Proof. Let x € Fibfo C k((u,n*/P7)¥=0: by corollary [3.3.25| we can write uniquely z = 3" w’z; with
i=1
z; € o(k((u, nt/P )¥=0).
We can write
zi= Y P fi;(n)
j=m;
with m; € Z and f;;(X) € k(X/?"") for some n,; € N, hence
p—1 oo
z=) Y w0
i=1 j=m,
By definition, x € F, o implies
y(@) =147+ ().
The left hand side is (recall that n = ¢ — 1)
-5 S i =5 3w -y
i=1 j=m; i=1 j=m;
and the right hand side is
p—1 oo
(I+74--+ x()— D) Z Z WP (14677 4 ¢ 20+p5) 4 ... 4 E(x(“Y)*l)(iﬂﬂj)) < fij(n).

=1 j=m;
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3.3. The complex €} _

This implies that for all 4, j, we have
Fii(y(m) = fij (X —1) = (14 P74 20Fp0) 4. 4 () =DGHpI)) fii(n).
Put I = x(v) and m = i + pj (notice m # 0 as p 1 i), the condition translates into

glm 1

v(fiz(n) = ﬁfij(ﬂ)v

i.e.

V( fij(n) ) _ fiz(n)

em—1 em—1

As g,,i—(_"i € k(n*?7™)), we have g,,i—(_ni € k by lemma [3.3.19; there exist b; ; € k such that

oo

p—1
T = Z Z bijuierj(Eierj —1).

i=1 j=m;

=l o L
By equation () an inverse image of x = Y > b u'TPI (TP — 1) is

i=1 j=m;

p—1 oo
(r=1)7""z) =Y Y bjyu
i=1 j=m,
O
Corollary 3.3.27. An element x € Olé’u:? , can be written in the form
p—1
r= 33 e ()
i=1j€eZ
with c;; € W(k) such that 1M _c;; =0 for alli € {1,...,p—1}.
Proof. By lemma |3.3.26| elements of F;/if’g can be written in the form
p—1 oo
xTr = Z Z bijui+pj(€i+pj - ].) with bij € k.
i=1 j=m,
We then conclude by dévissage. O
Corollary 3.3.28. The map 7 — 1: Fabzo — F:f’:’g 1s bijective.
Proof. This follows from corollary [3.3.23| and lemma [3.3.26 O

We have proved the bijection for trivial representations, and we now prove the general case.

The general case
Recall that D = D(T) is an étale (¢, 7)-module; the natural map ¢*: Fy @, g, D — D is an isomorphism.
Let (eq,...,eq) be a basis of D over Fy, then (¢(e1),...,¢(eq)) is again a basis, i.e. D = ®L | Fop(e;).

d d
Lemma 3.3.29. If x = Y \ip(e;) € D, then ¢(z) = 3 ¥(\i)e;.
i=1 i=1
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d
Proof. We have D = (Fy® @p, T)“%~. Let (v1,...,vq) be a basis of T over F,, : we can write e; = Y a; ®v;,

j=1
d d
so that p(e;) = > of @ v, hence P(Nip(e;)) = - Y(\i)ay @ v; = Y(N)e; for all i € {1,...,d}. O
j=1 j=1
d
Corollary 3.3.30. We have 3 \ip(e;) € D¥=0 if and only if \; € F'=" for all i € {1,...,d}.
i=1
Proof. This follows from lemma [3.3.29 O
d
Corollary 3.3.31. If ji1,...,pq € Fur, we have Y pip(e;) € DY70 if and only if p; € FY70 for all
i=1
ied{l,...,d}.
Proof. The proof is similar to that of lemma [3.3.29] O

Lemma 3.3.32. Let n € Zand f = Y. \ju/ € F, -, where \; € k((n'/?7)) := U k(n'/?")). Then o(f) =
i=n =0

if and only if p | j = A\; =0.
Proof. If A € k(n*/?7)) and i € Z, we have

(') = (el (A)u') = ¢ ('),

and
; ut/P,if pli
C {O, else.

W= D ey,

Jj>mn, plj

so that ¥ (f) = 0 if and only if =1 ()\;) =0, i.e. A; =0 for all j such that p|j. O

We have thus

Notation 3.3.33. We have k[u, n]] C k((n))[u], so that there is an inclusion k((u,n)) C k(n))(u)), hence an
inclusion F, , = k((u,n*/?™)) U E(m)(w)[n'/?"] (¢f notation[3.1.1). Put
n=0

d
7 = D kule(e)
i=1

and

mMule(e;

u@g

o0
By construction, we have D, C U Zu,r [nl/pn, %] (¢f definition 3.1.11) and 2, . is u-adically separated

n=0

and complete.

Lemma 3.3.34. Assume n,k € N are such that Tgk(@(ei)) € Dur[nV/7"). Then for any m € N, y €
L D[P implies T]’:’,k (y) € == Do [n*/?"].

um um

d :
Proof. Write y = Z Aip(e;) with A; € —-k((n))[u]. Then Tgk (y)=>_ d ()\i)Tg(go(ei)). By assumption we
=

i=1

know that 7} (<p(ei)) € Du.-[n'/?"] : it remains to control Tpk()\ ). Recall that 7(u) = eu = u + nu. Write
Ni = ==y with g € k() [u] : we have () = umelp P (i) € Lk(m)[u] ase=1+ne€k[p]*. O
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3.3. The complex €} _

Proof of theorem|3.3.11] for F,-representations: Let y € Du‘rO : there exist n,m € N such that y €
L 9,-[n"/?"]. By continuity, there exists r € N such that 75 (e;) = ¢; mod u™%, ,[n"/*"] (making n

um

larger if necessary), whence Tg(ap(ei)) = p(e;) mod uP™ P, ,[n*/?"] (recall that 7p and ¢ commute). Put

2=y =+ 1o+ -+ 75 Ny € DI

Tp—1 u,7P" 0

We have 2z € == @ [nl/pn]wzo by lemma|3.3.34{and the fact that ¢ commutes with 7. By lemma|3.3.32 we

can write z = Z S fij(mwlp(e;) with fi;(n) € k(n'/?")). An argument similar to the proof of lemma
i=1j>—m
i ‘
3.3.26{shows that for all 4, j, there exists ¢; ; € k such that fi ;(n) = ¢; ;(’?" —1) mod wP™ 2, .[n'/?"].
Indeed z € D:fjgr o implies that

(Y& lz=(1+75 +77 +--+ 75T ().
The left hand side is

d d
(elz=@a)(). > fimule(e)) = Z Z (X )u p(e;)

i=1j>—m -
’f

pti

-gl\/

as ¢(e;) are all fixed by ¥k _, hence in particular fixed by . For the right hand side, we have

(A+7h +10 4+ T ()

d
EZ Z fii(m)u? (14 4+e2P" 4. 4 cI=DIP)p(e;)  mod upm_@uﬁ[nl/p”}
1=1j>—m
pti
d i xX()3? -1
:2 Z fij(mu (Ejpri_l)cp(ei)
Pl

as TD (<p( ) = ¢(e;) mod uP™P, .[n'/P"]. Hence for all i € {1,...,d} and j < pm, there exists ¢;; € k
such that f; ;(n) = ¢; j(e7P" — 1) mod UP™ Dy ['/P"] (cf lemma[3.3.26). Hence

d
Z Z CH(EJP —Dulp(e;)  mod wP™ D, - [n*/P"].

ptj

7mSj§pm
Put
d
To = Z ( Z ci,juj)cp(ei) e L9
i=1 ptj

—m<j<pm

For all i € {1,...,d}, we can write Tg(cp(ei)) = ¢(e;) +uP™g; with g; € D, ,[n"/?"] : we have

d
(72— 1)(z0) = Z Z Cij (5jpruj(<p(ei) +uP"g;) — ujgo(ei)) =z-2 mod w9, . [n"/*"],

i=1 ptj
—m<j<pm

Lef corollary for more details.
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Chapter 3. Complexes with -operator

where

d d
=30 > Fuwele) =3 >0 ey w g e u TG, ).

i=1j>pm i=1 ptj
ptj —m<j<pm

By construction, we have t(z¢) = 0, which implies ¥ ((75 — 1)(z0)) = 0 : as ¥(2) = 0, we have )(z;) = 0

as well. Note also that T}‘_’; — 1 maps D into D, »r o : as z € D, o7 o, we also have 21 € D, ;o o. This

shows that we can carry on the preceding construction, and build sequences (2¢)sen in D, 1o o and (z¢)ren

in D such that zo = z, z, € u®=Vm@, (/7" 2 € u@=DmG[1/P"| and (78 —1)(x4) = 20 — zo11 for all
o0

¢ € N. The series ¢ = Y x, converges in —+- 7, and summing all the equalities gives (Tg —1)(z) = =
=0

This shows that “(rp = D(2)) = (75 —1)(2) = :%_-11 (y) s as 22 o DfT% - DZ’ T,?T is injective

by prop051t10n We get y = (7p — 1)(x), showing that y belongs to the image of 7p — 1. As this holds

for all y € Du . 0, this proves the surjectivity. Together with corollary [3.3.23] we finish the proof of theorem
B3.11]for F, _representations. O

Corollary 3.3.35. For all r € N>, the maps TD —1: D¥=0 — Dw O and TD —L. p¥=%  D¥=0 are

" ,0 u,T,0 u, " ,0
bijective.

Proof. Replacing T by its restriction to ¥k, and replacing its (¢, 7)-module by the correspondlng (o, 7P")-
module, i.e. Tp by TD , the Fy-case of theorem [3.3.11) thus implies that the map 77, — 1: D¥=0 _, p¥=0

u,7P" 0

is bijective. The statement about T’; :1 follows. O

3.3.36 Proof of theorem [3.3.11; the quasi-isomophism

Lemma 3.3.37. Let 0 = T" — T — T" — 0 be a short ezact sequence in Repg (Yx), we then have a short
exact sequence
0 — D(TY=0 = D(T)¥=° — D(T")¥=° — 0.

Proof. We know by lemma[1.2.11|that D(—) is an exact functor and hence we have the short exact sequence
0— D) — D(T) = D(T") — 0. Now we consider the following diagram of complexes:

@(T’)ib:() —_— D(T)d’zO - D(T//)¢:0

Since 9 is surjective, by snake lemma we get the following short exact sequence:

0— D(T=0 = D(T)¥=° = D(T")¥=° - 0.

Proposition 3.3.38. Let T € Repy (Yk), we then have a bijection D(T)¥=0 SEEEN D(T)4Z"

u,7,0°
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3.4. The (p,7"")-modules

Proof. Notice that D(T/(p™)) = D(T)/(p™) and T, D(T) are both p-adically complete. Hence it suffices to
prove the cases when T is killed by p™ with n € N. We use induction on n, the case n = 1 being corollary
3.3.35| with 7 = 1. Suppose T is killed by p™. Put 7" = p" T, T" = T/T" and consider the exact sequence
in Repy, (%)

0T —-T—T"—0.

We then have the following commutative diagram

0 —— D(T")¥=" —— D(T)¥=0 —— D(T")¥=" —0

Tpli Tpli TDl\L

00— D(I)V5Y —> D(T)V5Y —= D(T")L5

u,7,0 u,7,0

The first line is exact by lemma [3.3.37] and the second from the fact D(—), - is left exact and then we
apply the functor (—)¥=° which is also left exact. As the first and third vertical maps are isomorphisms by
induction hypothesis, so is that in the middle. We then finish the proof by passing to the limit. O

Remark 3.3.39. The theorem [3.3.11] follows from proposition [3.3.38]

3.4 The (p, 7" )-modules

Notation 3.4.1. We put K, = K(7,) for r € N and we have the following diagram:

Definition 3.4.2. Let 7 € N and then a (¢, 77")-module over (Fy, F,) is the data:

(1) an étale p-module D over Fy;

(2) a 77" -semi-linear map Tg on D, := F,®p, D which commutes with pp_®pp (where pr_is the Frobenius

map on F, and ¢p the Frobenius map on D) and such that
(Vo € M) (g@1) o 7h (x) = ()9 (x),
for all g € 9k_/%: such that x(g) € N.

We denote Modp, . (p, ") the corresponding category.

By [19, Remark 1.15], we have an equivalence of categories between Repg (¥k,) and the category of
(¢, 77" )-modules over (Fy, F,).
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Chapter 3. Complexes with -operator

Notation 3.4.3. Let (D, D,) € Modg, r, (¢, 7). We put
Do o:={z € Dy; (Yge%xk,) X(9) €Zso = (9@ 1)(w) =+ 75 () + 722 (&) + -+ 75 XDV (@)}
By similar arguments as that of lemma [1.1.10] we have
Doy ={z€Dr; (Y@ r=+1h +7 + 475 X))}

Definition 3.4.4. Let (D, D,) € Modp, r. (¢, 7). We define a complex Cy o (D) as follows:

0 D D @ DTpT7O DTPT,O 0

z——((¢ — 1)(@), (7" —1)(=))

(y,2) (7" = 1)(y) — (¢ — 1)(2).
If T € Repg, (9k), we have in particular the complex C, ., (D(T)), which will also be simply denoted
@ p" (T)
©,T

Proposition 3.4.5. The complex C, . (T) computes the continuous Galois cohomology H (¥k,,T) for
1€ N.

Proof. This follows from theorem [1.1.13| by replacing K by K, (¢f [19, Remarque 1.15]). O

Corollary 3.4.6. For any r € N, we have the following morphism of complezes:

Cop ot 0——=D——=D&Dpr g——>=Dppr g—0
r+1 r+1
idéBT% _ -1 2 _ -1
P -1 2 -1
G%Tprﬂ : 0——D——>D&D yrt1g—>D prt1 y —0.

Proof. This follows from direct computations. Recall that for any g € ¥k and T € Repz (¥Yk), the
action g ® 1 over D(T), is induced by that of g ® g over W(C”) ®z, T. For any x € D, o : we have
r41

(v®@lz = (1+ Tg + T%)pr +-- +Tg‘(X(7)71))(ﬂc). Now we verify that y := T’z’pr :1 (z)isin D_,r+1 . Indeed,

n —1

by the relation y7 = 7X(")~ we have

2
P
= —_— €T
() 7( g )( )
x(v)p
_Tp -1
= W(V(@)
Xty } . , B
= 7DX(’Y)PT ((1 4 T% + T%P et 7‘,% (x() 1))(1,))
) -1
Tg(v)p"’“ 1 Tg(v)p" _ 1( )
= . va X
Tg(v)pr 1 ™ -1
Tg(v)p”‘“ _1
= (@)
T — 1
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On the other hand

r+1

r+1 r+1 _
L+78 +r 4T XYY

r+1

il 41 41 _ |
:(14—7']% +T%P +..._A'_7-g (x() 1))( Dpr )(.’L‘)
T — 1
Tg(V)pTH -1 T%TH -1
= pr1 ' G (‘T)
D —1 D — 1
r+1
x(p o 1
:D¢7($)~
T — 1

This shows that i it 1
'Y(y) _ (1 + Tg + Tép 4+t Tg (X(’Y)*l))(y)7

and we conclude that y € D_,r+1 . O
p™ _

Lemma 3.4.7. Let n,m € N with n < m. There is a natural map :Dpn 11 : Dopn g = Do .
g

Proof. By direct computations as in the proof of corollary O

The (go,T”T)-modules over partially unperfected coefficients

Similarly, we have results for (i, 77" )-modules over partially unperfected coefficients.
Definition 3.4.8. Let r € N and then a (¢, 77" )-module over (Fy, F, ) is the data:
(1) an étale p-module D over Fp;

(2) a 7P -semilinear map Tg on Dy ; := Fyr ®p, D which commutes with ¢, = ® ¢p (where ¢F, _ is the
Frobenius map on F, , and ¢p the Frobenius map on D) and such that

r

(Vze M) (g®1)o7h () = (h )X (x),
for all g € ¥k_ /¥, such that x(g) € N.

We denote Modp, r, , (p,77") the corresponding category.

Remark 3.4.9. We have an equivalence of categories between Repy (¥k,) and Modp,, Fur (0,777 (cf
[19] Remark 1.15]).

Notation 3.4.10. Let (D, D, ;) € Modg, r, . (¢, 7). We put
Dyror 0= {# € Duri (V9 € Fe,) x(9) € Zoo = (9@ D)(w) = x4 75 (@) + 73" () +- 47 OV (@)},
By similar arguments as that of lemma [1.1.10] we see that
Dyrrg={2€Dyr; (@ Va=(1+75 +72 4. 475 XO=yg)1,
Definition 3.4.11. Let (D, D, ;) € Modp, , , (¢, 7" ). We define a complex Cy o (D) as follows:

0 D D& Du,‘rPT,O Du,‘rPT,O —0

o= ((¢ = 1)(@), (7" —1)(2))

(y, 2) (" = 1)) = (¢ — 1)(2).
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If T € Repg, (¥k), we have in particular the complex e Lo (D(T)), which will also be simply denoted
e - (T).
¢, 7P

Proposition 3.4.12. The complex GZ’T ~(T) computes the continuous Galois cohomology H'(9x.,T) for

1€ N.

P

Proof. This follows from theorem replacing K by K,. O

m

-1
7

-1

Lemma 3.4.13. Let n,m € N with n <m. There is a natural map D, ;o» o —— D, 1om 0.

Proof. By direct computations similar as in corollary [3.4.6] O

Corollary 3.4.14. There is a morphism between complexes:

Z,TIJT : 0——D——D 2] Du,TPT,O Du,TPT,O —0
Tpr+1 . Tpr+1 1
id—Lor— o
-1 -1
e;rﬂ“: 0——D—D®D, ,r+1y—>D, _,r+1 ,—0.
Proof. This follows from direct computations similar as in corollary O

Remark 3.4.15. In subsection (¢, 77" )-modules with € N are only defined for Repp, (9K ). One can
easily define the categories Modo, 0. (¢, "), Modo, 0., (¢, "), Modg ¢ (¢, "), Modg ¢, , (¢, "),
and generalize the related notions to Repy (¥x) and Repép (k). The results given for Mod g, r. (¢, 77")
and Modp, r, . (¢, 77") hold similarly for the other categories.
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Chapter 4

Complexes over overconvergent rings

In this chapter, we introduce (g, 7)-modules over overconvergent rings (€7, €1) and (€T, ET +)- Then we will

define complexes € , (D) and €}, (D'), which embed respectively into the complexes €, (D) and C}, (D)
(defined in chapter . We will show that they are quasi-isomorphic and calculate the correct HO and H1

4.1 Locally analytic vectors

In this section, we will use results of Poyeton (¢f [46]), hence also some notations of loc. cit. However we
made some modifications for the sake of consistency with our notations.

Since we concentrate on (¢, 7)-modules, we remove subscripts 7 in the notations of Poyeton when it is
used to distinguish (p, 7)-modules from (¢,T')-modules. We also replace subscripts K in the notations of
Poyeton with K, when it corresponds to invariants under ¥ _ (this is also consistent with our subscripts
K¢, ¢f notation for details).

Notation 4.1.1. We have the following dictionary between our notations used in the first three chapters
and the notations from Poyeton (cf [46]).

E =0u, E=C" E, = g_np,
AT =W(O0u), A=W(C"), A, = 0=

EK :FO7E:Fosep7 EL:FTv EUL:FUT

Al =W(E)[ul, Ax, =0, A=0g, Ap=0g,, Ayp =0,

g-ur b) S\u‘ )

B =W(Ou)[1/p], B= W(C")[l/p], B, =T, B =A% [1/p], Bk, =& B=£&", By =¢&,, By =&,

Notice that we can read information from the notation itself: if A is an algebra endowed with an action
of 95, (resp. Y. ), we put Ay, = AYL (vesp. Ax, = A¥%=). If A is a perfect ring of characteristic p, A, (or
A, _np) is the partially unperfected subring of it, and we also put subscrlpt u for a Cohen ring of A, and
also the fraction field of this Cohen ring (for example Eu, A, and B «)- Notice that the above rule works
also for double-subscripts, for example Au 1 is an unperfected version of A 1, while the latter is A9,

Definition 4.1.2. (¢f [43l §1.1]) For r > 0, we define the set of overconvergent elements of B of radius r
by

1. ~ pr
B T:{ Z P, €B,  lim o (x )—&—7171—4—00}
n>>—0o0
~ 1 ~t,r ~ =t ~1,r2
and we denote B = |J B~ C B the set of overconvergent elements (we have ry <ro =B~ CB ).

r>0
We put Bf =B QET, and similarly AT = ]~3Jr N A and AT = AT N A. We put € := Bf and Opurt = AT,
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Remark 4.1.3. The subrings B"" and B' of B are stable by ¥k, and go(]?’;w) cB" forall + > 0, so that
B is stable by ¢ in B. Recall that B' and B' are fields (¢f [41], Proposition 3.2]).

We recall that (¢f definition i for V' € Repq (9k), the (p,7)-module associated to V over
(Bk.,Byp) (i.e. (€,&,)) is the p-module
D(V) = (B®q, V)7

and a semi-linear T-action over B
D(V), = (Bwq, V).

Definition 4.1.4. (¢f [46] Définition 4.1.16]) For r > 0, we define

D (V), = (B 0q V)

and
DIT(V) =D(V)N D (V), = (BM ®q, V) -,

where Bf" = Bf" N B . We put
DIV, = (B @q, V)% = DI"(V),
r>0

nd
) DI(V) = (BT ®q, V)" = D(V)nDI(V), = | D" (V).
>0

We say that a (¢, 7)-module D associated to V' is overconvergent if there exists r > 0 such that we have

D(V) = Bx, ®gi DM(V)

and B
';D(V)T = BL ®]§Tm DT,T'(V)T
L
fr Shro st o st
where By =Bg, NB  and B, =B, NB .

When this holds, we have in particular
D(V) =Bk, ®g;_ D(V)

and ~
D(V)T =B, ®1§TL 'DT(V)T,

where BJ}Qr = Uo BJ}(: and ]§TL = Uo ]~3TLT We put &F := B}(ﬂ and &f = ]§TL to match to the notations
r> >
used in the first three chapters (¢f notation [4.1.1)).

Remark 4.1.5. (1) As we mentioned, our notations are slightly different from those of Poyeton in [46] as
we do not work with (¢, I')-modules: we denote by D(V) and DT(V) for what are denoted by D, (V) and
DI(V) in loc. cit., while our D(V), comes from the pair (D(V),D(V),), which is part of the data of a
(¢, T)-module.

(2) We have DI(V), = B) @ DI (V) ~ (B @ 1)

Theorem 4.1.6. Let V be a Q,-representation of Y. Then the associated (i, T)-module over (Bk.,ByL)
is overconvergent.
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Proof. cf [46, Théoréme 4.3.29]. O
Definition 4.1.7. A (¢, 7)-module over (B}(W,ﬁz) consists of
(i) an étale p-module DT over BIKW;
(ii) a 7-semi-linear endomorphism 7p on D := ]§TL Rpt D' which commutes with Pt ®¢D (where Pgi

Kg L L
is the Frobenius map on ]T%E and ¢p is the Frobenius map on D) and that satisfies

(v € D) (9@ 1) o 7p(a) = 75" (@),
for all g € Yk /¥, such that x(g) € Z~o . The corresponding category is denoted Mody; zi (p, 7).
KnPL

Oune defines similarly the notion of (¢, 7)-module over (A}(ﬂ,:ﬂL) =: (g1, 0¢1), and the corresponding
category is denoted Mod ,+ z+ (¢, 7).
Kg ' ™L

Theorem 4.1.8. The functors
DI Repq (YK ) ~ MOdBkw B (p,7)

Ve DI(V) = (Bl @q, V)~
V(D) = (BT ®gi DT)¢=! i DI

Kz

(with the natural T-semi-linear endomorphism tp over DI(V), = ]§TL ®gt DI(V)) establish quasi-inverse
K

equivalences of categories, which are refinements of the equivalences of [19,7rThéoréme 1.14].

Proof. Recall that we have the category equivalence
D: Repq (Yi) ~ MOdBKW,EL(‘P’T)'

For any Vla‘/Z S RepQP(gK)a we have HomRepr(%K)(VL ‘/2) = HomModBK YEL(LP,T)(Q(Vl)ﬂ 9(‘/2)) by [197
Théoréme 1.14]. By theorem we have

HomModBK YEL(QD,T)(D(V1)7 D(V2)) = HomModBK ,EL(%T) (BK,r ®B}F< ®T(V1)>BKW ®B}F< QT(‘/Q))

We prove this is isomorphic to Homnioa_, (o, (DT(V1), DT(V2)), whence the fully-faithfullness. We have
K BL

the commutative diagram

2

Homgepq () (V1:V2) HomModBK” 5, (e (D(V1), D(V2))

Dt ()
®Bk,, ®BL

HomModBT st (,7) (DT(Vl)’ ®T(‘/2))

It is enough to show the map (x) is injective, and hence an isomorphism. For any map f: D}L — D; in

Mod,; gt (p,7), we have the commutative square:
KnPL
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Chapter 4. Complexes over overconvergent rings

DI Dyt

1 1

t 19 t
BK,, ®B;{WD1 *>BK7r ®B;<WD2

which shows that 1 ® f = 0 implies that f = 0.

Let (D, DI) € Mod; &1 (¢, 7). Tensoring with By, and B, respectively, we have
K.BL

by theorem

4.1.6

(Bk, ®BT}(7\' DT’ P;L ®]§1L Di) € MOdBKW B, (p,7)

By the equivalence induced by the functor D, the (¢, 7) module (Bg, ®gi D', By ®gt DI)
K L

corresponds to a p-adic representation V € Repq_ (9x). We show that D (V) (more precisely (D (V), DF(V),))

equals the original object (DT, DI) € Mod;

module in ModBmr B, (¢,7), and hence they are isomorphic in ModBf

5t (¢, 7). Indeed, DT(V) and (DT, DI) map to the same (¢, 7)-
Kn'PL

5t (. 7) as the map (x) in the
Ko'BL

diagram above is an isomorphism. This shows that D' is essentially surjective and hence estabilishes the
equivalence of categories. O

Proposition 4.1.9. Let T' € Repy (Yk), then its (¢,7)-module (D,D;) € Mod,  z (p,7) is overcon-

vergent.

Proof. (1) We first suppose T is p-torsion free. Recall that DY(T') = (AT ®z, T)?<~ and we have a natural

map

A, ®, DI(T) L D(D),

such that tensoring ®z, Q, is an isomorphism (cf [46, Théoréme 4.3.29]). This implies that f is

injective and DT(T) is free of rank d := rankz, T over A}(W. In particular, there are integers (n;)1<i<d
such that

d
Coker(f) ~ @ Ax /(™).

We have the commutative diagram

0—=>Ax, @4 DHT) —> Ak, @, DIT) — Ax, @41 DNT/pT) —0

0

N | y
D(T) D(T) D(T/pT) 0

which shows that multiplication by p is bijective over Coker(f) and hence bijective over Af_/(p™) for
i €{1,...,d}. This implies n; = 0 for all 4 € {1,...,d}, and hence Coker(f) = 0. Thus

Ak, Oat, DNT) = D(T)

is an isomorphism and the ¢-module DT(T) is overconvergent. Recall that D(T), = A, ® Ax, D(T)
and DI(T), = KTL NS DI(T) : we have

D<T)T = AL ®AE ‘DT(T)T'
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4.1. Locally analytic vectors

(2) In general, for any 7' € Repy (¥k), we have the short exact sequence:
0=T =T—=T"—0,

where T" is the p-torsion submodule of T and T = T'/T" is p-torsion free. Notice that DT (T") = D(T"),
and we have the exact sequence

0— D(T") = DNT) = DNHT") - HY (D, AR T') =0,

where the last equality follows from Hilbert 90 (A is endowed with p-adic topology). We thus have the
commutative diagram:

OHD(T/)HAKW ®A}( DT(T)*)AKW ®A}( DT<T”)*>O
i I
0—— @(T/) D(T) D(T”) 0

which shows that f is an isomorphism.

Corollary 4.1.10. The functors

Dt Repzp(gK) ~ MOdA;( )ATL (9077—)
T DHT) = (AT @z, T)%%=
ty = (At fye=1 f
V(DY) = (AT@,y D) <D

with the natural T-semi-linear endomorphism Tp over DHT), = Al Q4,1 D)) establish quasi-inverse
L¥A
K

equivalences of categories.

Proof. The proof is almost the same as that of theorem [f.1.8] with the following modifications. For any map
IR DI — D; in Mod ,+ x+ (¢, 7) we consider the commutative square:
KpthL

f

D]

l 1Qf

T T
AK,, ®A}(7\' Dl *)AKW ®A1}'(7r D2.

Dot

As Ak is faithfully flat over A}(ﬂ and Ay is faithfully flat over ATL (¢f [42, Theorem 7.2 (3)]),1®@ f =0

implies f = 0. For essential surjectivity, we use proposition [4.1.9]instead of theorem [4.1.6 O
Notation 4.1.11. Let (D, DI) € MOdB}(ﬂ,ETL(%T)' Put

Di,o ={xeDl; Vge%k,) x(9) €Zso= (g@1)(z) = (1+71p+ -+ Tg(g)fl)(x)}.
By similar arguments as that of lemma [1.1.10] we see that
Dly={zeDl; (v@lz=(1+mp+ -+ X9 (@)}
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Chapter 4. Complexes over overconvergent rings

4.1.12 Locally analytic vectors with partially unperfected coefficients

Definition 4.1.13. (¢f [45] §1.1]) We define for r > 0, ﬁzr -B"n B., and we denote ﬁz =U ]§Tu7" c B,
r>0

the set of overconvergent elements (we have ry < ry = ]~3:r;7'1 C ]§172) We put BL =B ﬂﬁl
Remark 4.1.14. The subrings ﬁi’r and ]§L of B, are stable by %, and gp(f’yl’r) c fﬁl’pr for all » > 0, so
that f’)L is stable by ¢ in B,,. Remark that ﬁl and B! are fields (¢f [41], Proposition 3.2]).

Recgll that (cf remark |3.1.16) if V' is a Q,-representation of ¥y, then its associated (¢, 7)-module over
(Br,sBu,r) (i-e. (€,&y,r)) is the p-module D(V) = (B®q, V)¥kx together with a 7-semi-linear action over
‘D(V)'LL,T = Bu,L ®BKW D(V)

Definition 4.1.15. (¢f [46, Définition 4.1.16])
For r > 0, we define

DM (V). = (BL @q, V)%

and
DI (V) = DV)N DV (V) = (BN @q, V)<,

observing that Bf" = ]§LT N B. We put

DNV )y = (B @, V)7 = | DT"(V)ur
r>0

and
DI(V) = (BT ®q, V)~ =D(V)N DI (V). = DM"(V).

>0
We say that a (¢, 7)-module D associated to V' is overconvergent if there exists r > 0 such that we have
_ ptr
D(V) =Bk, @g1 DM(V)
and _
D(V)u,'r = Bu,L ®]§Tﬂ' “DT7T(V)H,T
u,L
~T,r ~ ~T,r

where B, ; =B, 1 NB, .

When this holds, we have in particular

D(V) = Bx, ®@g;_ DI(V)

and

where ﬁl .= U ELTL
' r>0 '

Remark 4.1.16. (1) We have D}(V),,, = (B], 8q, V)% ~ B, 05 DI(V).
(2) Notice that for any > 0 we have:
B =Bl"nB =B"" NB,

and hence B B
B =B/ nB=BnNB.

This is simply because we have _ _
BcB, CB.
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4.1. Locally analytic vectors

Definition 4.1.17. A (¢, 7)-module over (B%r,ﬁz’L) =: (ET,EL}T) consists of

(i) an étale p-module DT over B}(W;

(ii) a 7-semi-linear endomorphism 7 on Dj,  := fil [ ®gi DT which commutes with gt ®@pi (where
’ ’ Kr w,L

¢zt is the Frobenius map on ]§L . and @p+ is the Frobenius map on D') and which satisfies
u,L ’

(va € DY) (9@ 1) o mp(z) = 759 (),

for all g € Yk_ /¥y, such that x(g) € Z~o . The corresponding category is denoted Mody; zi (o, 7).
Ky Pu,L

One defines similarly the notion of (p, 7)-module over (AK ) AL ) = (0gt,0,1 ), and the corresponding
category is denoted Mod o+ z+ (¢, 7).
K> “u, L

4.1.18 The overconvergence for (p, 7)-modules over partially unperfected coef-
ficients

For (¢, 7)-modules over (&, €,), we have seen the overconvergence result in theorem In this subsection
we will prove the overconvergence result for (¢, 7)-modules over (Bg_,B, 1)(i-e. (€,&4,7)).

Theorem 4.1.19. Let V € Repq (9K), then its (p,7)-module (D, D, .) € Modg g , (¢, 7T) is overcon-
vergent. o

Proof. Let (D, D, ) € Modg¢ ¢, . (@,7) be the (¢, 7)-module over (€, €, ;) associated to V' € Repq (YK).
By definition, it suffices to show that
D =E®gi DT (4.1)

and
Du,'r = Eu,'r ®8T DT

u,T"*

(4.2)

The first equality (4.1] . follows directly from theorem For the second equality (4.2] ., it suffices to
show that the following map is an isomorphism

f: &l @D = Df . (4.3)

Indeed, this impies that
8u,T ®8TDT = 8u,‘r ®SL_TDL,Ta
i.e.
Eur @e(E@er D) > €y @y DI ..
By equality (4.1) the left hand side is exactly &, r ®¢D = D, ;, hence this gives equality (4.2). To prove
that 1) is an isomorphism, it suffices to prove it is so after tensoring 81 ®gt ,i.e. that
i@, f: &l @eDt — el @, Df

u,T
is an isomorphic. We consider the commutative diagram:

elef
el @gpt — O et ®g1 D

u,T
theorerr%\ /
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Chapter 4. Complexes over overconvergent rings

Notice that this is a digram of linear-transformations of &l-vector spaces: it suffices to use dimensions.
Notice that by theorem the arrow on the left is an isomorphism, and

dim &l @,y D . <dimé&l @D'.

We hence conclude that 81 ®f is an isomoprhism. O

L., 7) is over-

Proposition 4.1.20. Let T € Repy (Yk), then its (¢, 7)-module (D, D, ) € Mod,  z
convergent. "

Proof. A similar proof as that of proposition works. O

Remark 4.1.21. One might also prove proposition using similar arguments as Gao and Poyeton (cf
[28]), based on Tate-Sen’s method (c¢f [10] §3]).

4.1.22 The categorical equivalence

Proposition 4.1.23. The functors
Dt Repq (Yk) ~ ModB}{’r 7I§L,L(<p,T)

Vi DI(V) = (BT @g, V)7~
V(D) = (B! ®gi DT)¥=! 1 Df

K7\'

(with the T-semi-linear endomorphism 7p = 7 @ 7 over DI (V),., = (ﬁz ®q, V)¥L) establish quasi-inverse
equivalences of categories, which refines the equivalence of [19, Théoréme 1.14].

Proof. The same proof as that of theorem [.1.8 works, except that for the overconvergence result we have
to use theorem [4.1.19l O

Notation 4.1.24. Let (D', D] ) € Mod;

5 (¢, 7). We put
Kn'Bu,L

Dl o={reD} ; (g€ %k, ) x(g) € Zoo= (g@1)(x) = x+ 7p(x) + - + 750 (2)}.
Let n € N and we put

Df . ={zeDl . (Vge%)x(g) €Zso= (90 1)) =a+75 (2) + 72" (@) + -+ 750 ()}

n
u, 7P,

Notice that these are all subgroups of DJ .

4.2 The complexes (:’Z’,TT and C’ZTT

Lemma 4.2.1. Let (D', D] ) € Mod,+ zi (¢,7) (resp. Mody: g+ (p,7)). Then there are maps
’ KnoDu L KnPu,L
p—1:Dt =Dl o o—-1:D! - D! andy:D]  ,— D}

u,7,0? u,7,0°

Proof. Notice that for any (D, D,, ;) € ModBu B, L((p7 7),wehave 1p—1: D — Dy, r.0,9—1: Dy r0— Dyro

(¢f lemma(3.2.2), and ¢: Dy ;0 — Dy ro (cf lemma [3.3.8). The lemma then follows from the fact that
operator 7p on D, preserves overconvergence in D,, .. Same arguments work for ¢ and . O]

Definition 4.2.2. Let (D', D] ) € MOdA}(W’AL,L(SO7T) (resp. MOdBLWﬁl,L (p,7)).
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4.2. The complexes @“T and @“T

T

(1) We define the complex C; T (D1) as follows:

0 Dt D@D} ., D}

u,7,0

z——((p = (), (rp — 1)(x))

(¥, 2) ————= (= (y) — (¢ = 1)(2).

If T € Repg, (¥Yk) (resp. V € Repr(gK)), we have in particular the complex G“T(DT( )) (resp.
eyt (D(V))), which will also be simply denoted €%1.(T) (resp. €4T(V)).

(2) Similarly, we define the complex GZ’;(DT) as follows:

0 Dt D@D ., D!

u,T,0
z——((¢ = 1)(), (p — 1)(2))

(y,2) ————— (o = () — (¥ = 1)(2).

If T € Repg, (9k) (resp. V € Repr(%K)), we have in particular the complex (3;7;(DT(T)) (resp.
@Z’;(’DT(V))), which will also be simply denoted GZ)TT (T) (resp. GZ)TT(V))

Remark 4.2.3. Notice that for T € Repg (¥k ), we use superscripts { in GzL(T) and (‘3&1 (T) to distinguish

from €Y _(T) and €% (T) (¢f definition and definition [3.3.10).

4.2.4 Quasi-isomorphism between Gzt and C4T
Let T' € Repg (9k) and (D, Dy, r) (resp. (D', Dj ,)) the associated (¢, 7)-module over (Og,O¢, ) (resp.

(O¢t,0 el T)) We consider the following morphism of complexes:

(p—1,7p—1) (tp—1)6(p—1)

GZ’,L(T) 0 DT DT D Du 7,0 u,7,0 0
|-se |-+
1,7p—1) p—1 -1
e:j):t'(T): 0 DT Sl DT@DuTO(D o )D’ZTO 0.

Theorem 4.2.5. The morphism just defined is a quasi-isomorphism.

Remark 4.2.6. We have the following diagram:
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0 0 (D=0 — 271~ (D}, _)¥=0 ——0

evir):  0—pt T prgpi (CoTURCTD b 0
1,7p—1 Tp—1 —1

e:Z ]-Lr(T) : 0 ZIT (w > ) DT S3] DL,T,O ( - )e(w DL,T,O O

0 0 0 0 0.

Hence to prove theorem [4.2.5] it suffices to show that 7p — 1: (DT)¥=0 — (DI _)¥=0 is bijective.

Proof of theorem 4.2.5|

As the operator ¢ is surjective (since v o p = Id), there is an exact sequence of complexes
0— €“N(T) = exl(T) = eyt (1) =0

where €*1(T) is the complex [(DT)¥=0 T2=L (pf

u,T,0

Similarly, we denote (D) the complex [D¥=0 2= Tool, pv= %], which is acyclic by proposition|3.3.38] There

u,7,002

)¥=0] in which the first term is in degree 1.

is a natural morphism of complexes C*“'(T") — €(D) induced by the commutative square

T 1 _
(D1)»=0 2= (D _ ,)¥="

| |

DY=0 p—1 DT/J:O

~ u,7,0
which implies the injectivity of 7p — 1: (DT)¥=0 — (Dl 20070

Ifrx= Y p™[z,] € W(C") and n € N, we put w,(z) = O<inf< v”(z,,). Reacll that if 2,y € W(C?), we

m=0

have wy,(z + y) > inf{w,(z), w,(y)} and w,(zy) >  inf . (wn, () + wny () (c¢f [20, p. 584]). Also, an

ni+ng<

element x € W(C”) is overconvergent if there exists r € R such that the sequence ((w,(z) + 25n)) o

p—1
is bounded below.
Lemma 4.2.7. The map 7—1: ;&fzo — ;&fzo is bijective. Ify € (;&L’L)wzo, then (1—1)"1(y) € (;&L’L)wzo.
Proof. By dévissage, the first assertion can be checked by modulo p: we have KuL/(p) ~ Ek((u,n'/?7)),
~ . oo p—1 . 0o oo
so that (Au,L)w_O/(p) ~ k((u,n"/P7)¥=0 = @ u'k(uP,n"/?7)). As element x € k((u,n"/?” )*=" can be
i=1

written in a unique way

p—1

i=1 jEZ

where x; ; € k((n/?”)) is zero when j < 0. Then we have

7' — 1 Z Zu”m Z+pj 1).731'7]'.

i=1 j€Z
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4.2. The complexes CZ”TT and @ZTT

o p=l L
As etPi £ 1 forall i € {1,...,p— 1} and j € Z, this implies that 7 — 1 is injective. If y = > > u'*Ply,; ;
i=1jez
is an element in k((u,n*/?”))¥=Y, then

p—1
(r= )7 ) = 3> .

i=1j€eZ
For the second assertion, let y € (ALﬁL)w:O. We can write
p—1
y= 3 S uy,
i=1j€Z
(where u = [7] here) with y; ; € W (k((n*/?7))), where lm_y; ; = 0 (for the p-adic topology) for all

i€{l,...,p—1}. Then (1 —1)"(y)= > u”m[s]fi’ip’;il. As y is overconvergent, there exists r € R>q

and ¢ € R such that w, (u""Py; ;) + p1f1il=12jizfor alli€{l,....p—1}, j€Zandn € N. If n € N we have
wy, (u' TP [5]2311’7]]—1) + Fan=wy ( [sﬂi:jpil] Yi,j E]:D;Jill]) +pon
= 2w (u Py ) + 2

> =t inf_ (wa, (W) 4 P+ (2 - Dng)

nit+n2<n

since v°(e¥P — 1) = 527 (because p 1 i + pj) and wn(i]f%_ll]) > —n (by [20, Corollaire I1.1.5]). Taking r

> fﬁJrcfor all

larger if necessary, we may assume that pp%l —1>0. Then w, (u'*r’ [E]iyf;;ﬁ_l) + p:’fln

i€{l,...,p—1}, j € Z and n € N. This shows that (1 — 1)~!(y) is overconvergent. O

Proposition 4.2.8. The map p — 1: (D1)¥=0 — (D! 0) V=Y is bijective.

u7T7

Proof. Put D'(T) = (Af Rz, T)?%¢ (this is the overconvergent (¢, T')-module associated to T). We have
a Yy-equivariant isomorphism Af R pt ]D)T(T) ~ Af ®z, T: extending the scalars to Al = O NAT,
KC u

we deduce a ¥k-equivariant isomorphism AL R pt Df (T) ~ KL ®z, T. Taking ¢ invariants provides a
K¢

Yr /91,-equivariant isomorphism

~ g ~
D} .= (Al ®z, T)" ~Al | . Dt (T).

(1) Assume T is torsion-free: so is DT(T). Let (ey,...,eq) be a basis of D'(T) so that (¢(ey),...,¢(eq))
d d

is a basis of DT (T") over ATKC. Then D} , = AL (e, if o= > Nip(e;) € Df,
i=1 i=1

u,T
(2

with )\1,...,)\d €

~ d

AL’L, we have ¢(z) = > 9 (A\;)e;. This implies that z € (D] ,)¥=° if and only if ¥(X;) = 0 i.e.
i=1

Ai € (AL,LWZO. Lemmaimplies that u; = (1 —1)71(\) € (AL,L)‘”ZO. As mp(p(es)) = ¢(e;),

d
this implies that y = (1p —1)(z) with # = Y pup(e;) € D], .. As we know that 7p —1: D¥=0 — D¥70
i=1

u,T,0

is bijective, this implies that in fact x € DN D:f” = D1, finishing the proof in that case.
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(2) In the general case, there is an exact sequence of representations
0T =T —=T"—0

where T" is finite and 7" torsion-free. Tensoring with At and taking ¥k _ invariants provides the exact
sequence

0— D(T) = DNT) = DHT") = H (Yk,, A @z, T') =0
(because AT @z T' = A ®z, T’ since T" is torsion). As the maps v are surjective, the snake lemma
applied to the commutative diagram

0 —— D(T") DI(T) DTy ——=0
N
0—— D(T) DI(T) DHT") ——=0

shows that the sequence
0 — D(T¥=0 = DHT)¥=0 = DI(T")¥=0 = 0

is exact. Similarly, tensoring the short exact sequence 0 — D(T") — DI (T) — DI(T”) — 0 by ;&LL
provides the short exact sequence

0= D(Tur = DHT)ur = DTy — 0

(by flatness of 11}: 1, over the discrete valuation ring A;(”). Consider the following commutative diagram

0 —_— Q(T/)u,T EE—— @T(T)uﬂ— —_— @T(T/,)uﬂ— E—— 0

ldv@n lawm i(?'y@l

00— D(T")yr — DY)y —= DHT")yr —0,
and we have the exact sequence
0— D(T/)u;,—’o — 'DT(T)U,T’O — DWT”)U’T’().

Now consider the following commutative diagram

0—— D(:T/)u,T,O — DT(T)u,T,O *f> DT(T/,)’U,,T,O .
P id) llﬂ
0—— 'D(T/)u,no I DJr<T‘)uﬂ',0 Hf DT(T//)u,nO

The composition D(T")4=5 € D(T")y.r0 = DI(T)y.+0 is injective, hence D(T")0=Y — DT(T)f;OO is

u,7,0 u,T,0
injective. Suppose z € DI(T)47 is mapped to 0 in DF(T”)V7Y, then = € Ker(f) N DT(T)ﬁi% and
$=0

hence z is in the image of D(1")," .

This implies that the sequence

0 — D)= — DH(1T)¥=° — DF (1) =°

u,T,0 u,7,0 u,T,0
is exact. Now we consider the following commutative diagram
0 — D(T")¥=0 ——= DHT)¥=0 ——= DN (T")¥=0 ——=0.

l‘l‘Dll l‘l’D—l lTDlll

0——= DT — s DHT)¥Z) — = Di(T7)¥="

u,7,0 u,T,0 u,7,0
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4.3, H(CLT(T)) and HI(€Y1(T)) for i € {0,1}

As the maps 7pr — 1 and 7p» — 1 are bijective (by proposition [3.3.38| for the first, and by the special
case above for the second), so is 7p — 1 in the middle.

O

This shows in particular that the complex €T (T) is acyclic, so that the complexes @Z::(T) and GZJTT(T)
are quasi-isomorphic.

4.3 H(Cy(T)) and HI(€4L(T)) for i € {0,1}
Proposition 4.3.1. Let T' € Repy (¥). We have Hi(GZ’,Z(T)) ~ H!(G,T) foric {0,1}.
Proof. We have H(C4T(T)) = (At g, T)¥kn#=Lmo=1 = T¥KsT) = T9 = HO (G, T).

We claim that the natural Z,-linear map Hl(GZ”i(T)) — HY(C,,(T)) is an isomorphism. Recall
that H'(C, - (T)) classifies all extensions of D(T) by Af, in the category Mod,,  z (¢, 7). Similarly,

Hl(CZ:TT(T)) classifies all extensions of DT(T") by A}(ﬂ in the category Mod 1z (,7). Since both cat-

egories are equivalent to Repy (¥k), we conclude that Hl((ig’; (T)) ~ H' (€, +(T)), which is isomorphic to
H(%x,T) by proposition O

Corollary 4.3.2. We have Hi(GZ”L(T)) ~ H Yk, T) foriec {0,1}.
Proof. By theorem , we have HZ(G:ZTT(T)) ~ Hi(GngT(V)) for i € N : the result follows from proposition
431 O

4.4 Some remarks on the morphism between GZTT and €

Let T € Repz, (9k) and (D,Dy ;) € Mod,  z (¢, 7) (resp. (D', D} ,) € ModA;( Al L(cp,T)) its
associated (¢, 7)-modules. We then have a natural map from GZTT(T) to €y, (T :

—1,7p—1 Tp—1 -1

GZ’,T]‘(T): 0 Di (¥—1,7p-1) Dt e D’L,T,O( p—1)0(¥—1) DZ,T,O 0
—1,7p—1 D — -1

e (T): 0 DY pep,,, ) p o,

Remark 4.4.1. (1) We summarize the relations between the different complexes:

ept(r) Lt evt (1) — ey (1) LB Sey () LB e, (7).

quasi-iso »,T quasi-iso #T quasi-iso

In the first chapter we have showed that C, ,(7") computes the continuous Galois cohomology of T' (cf

theorem |1.1.13). It is hence natural to study whether the morphism between (t’;z]; and GZ’T is a quasi-
isomorphism (we expect it is).

(2) The complex Cy, , (D) is the total complex of the double complex

v—1

D— >

Tpll \LTDl

Du,T,O w_f Du,T,O
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Chapter 4. Complexes over overconvergent rings

Similarly, the complex Gz’;(DT) is the total complex of the double complex

Dt v-! ~ DT

‘I'D—li J/TD—l

D'L,T,O P—1 DL,‘nO

Lemma 4.4.2. The compler Cy, (D) is quasi-isomorphic to GZ’,TT(DT) if the following two morphisms of
complezes are both quasi-isomorphisms:

p—1 p—1
[lfr - Df} [DL,T,O - DL,T,O]
P—1 £ P—1 £
[D - D] [Du,T,O I u,‘r,O]-
Proof. cf [51], Exercise 1.3.4]. O

Remark 4.4.3. (1) When the residue field & is finite. The morphism

[Df =~ Df]

L

D" D)

is a quasi-isomorphism. Indeed, this can be proved using classical methods: for A, it suffices to show that
r € D¥=! implies z € D' (¢f [21, Lemma 1.6.4; Proposition I11.2.1 (ii)]); for h!, it suffices to show that
Dt /(1 —1) ~ D/(1p — 1) (¢f [33, Lemma 2.6], [21, Corollaire 1.7.4] and [29, Proposition 3.6 (2)]).

(2) As k((n)) is never finite, it seems hard to use the same method to show that

P—1
[D:%[,\T,O - DLf’,O]

P—1
[Du,7,0 —= Dy,r0]

is a quasi-isomorphism. In particular the structure of D, , /(¢ — 1) is not clear.

Some remarks on H2(C’Z”TT(T)) and HQ(GZ’,L(T))

Let T € Repy (9x) and (D,D,,;) € Modo,, 0., (¢,7) its associated (¢, 7)-module. Notice that by
theorem H2(€Y4T (V) = H2(€LT (V). We have

H2(€Z’;(V)) = DL,T,O/((TZ’ - 1)Dl,r,0 + (7o — 1)DT)7

and
H?(Cy,+ (V) = Duro/ (¥ = 1)Dyro + (7o — 1)D) =~ H* (9, V).
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Lemma 4.4.4. Let (D, D, ;) € Modo, 0., (»,7) (resp. Mode¢ ¢, ,(¢,7)), we then have

D = (D) ® D¥=°,
Du,'r :(P(D )@Dw =0

u, T

Du,T,O = (p(Du T 0) &® Du ,7,0°

and D!

There are similar equalities with DY Du w0

T

Proof. For any z € D, ., put 2o = p(¢(z)) and write z = z9 + (z# — zp). Notice that zy € ¢(D, ) and
z— 2 € DYZ°. Suppose z € p(Dy,r) N D470, then = = ¢(y) and 0 = (z) = y, hence x = 0. This proves

Dy = ¢(Duyr) + DY, and similarly we have D = (D) ® D¥=°.
For any z € Dy -0, again put zo = @(¢(z)) and write z = 29 + (2 — 2z). Then 2y € @(Dy o) and
z— 29 € DYZY  Indeed, as 1) commutes with the action of ¥, z € D, o implies ¢¥(z) € Dy, 0.

uTO

The last statement follows from the fact that the operator ¢ and v respect overconvergence. O

Remark 4.4.5. Let f: D, .o — H?(€% (7)) and ff: D} V0 = HQ(G“’T( T)) be the canonical surjections.
If © € Dy r0, we can write x = o(y) + z with y € D, ;o and z € Dw -0 by lemma M By proposition

3.3.38, we have Du . O = (rp —1)(D¥=Y), so that the image of z in H2(Cy, . (T)) is zero, i.e. f(x)= f(e(y)).
Iterating, this shows that f induces a surjective map

f: n‘P Dy.70) _>H2( wr(T))

We have a similar statement for f7: ﬂ " (D! wr0) — H2(GZ”TT(T)). A strategy to prove the bijectivity of
HA(€},(T) — H3 (e} L(T))

could be to compare ﬂ ©"(Duy,r,0) and ﬂ " (D! +.0), or more precisely the cokernels of 1) — 1 on these.

n=0 n=
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Chapter 5

Complex over the Robba ring with
(¢, Ny)-modules

In this chapter, for any Galois representation V' € RepQP (9K ), we construct a three-term complex Cy, n (V),

using its corresponding (i, Ny )-module over the Robba ring. We show (¢f proposition [5.3.17) that its H® is
isomorphic to im H (% V) for i € {0,1}, and we construct a pairing analogous to the one which gives rise

to the Tate duality when k is finite.

If V is a crystalline representation with Hodge-Tate weights HT(V) C {2,...,h} for some h € N>q, we
construct similarly a three-term complex €, 5, (V) from its corresponding (i, d:)-module over the Robba
ring, which has similar results for H*,7 € {0,1} (¢f proposition [5.4.13) and construct similarly a pairing
when £ is finite.

5.1 The Robba ring

5.1.1 The rings ]§I and B’

Definition 5.1.2. (¢f [5, §2]) When A is a p-adic complete ring, we use A{X,Y} to denote the p-adic
completion of A[X,Y]. Recall that n =¢ — 1 and we put

(1)

S

R

Alrtoo] . K*’{ TST }, when r € Z>¢[1/p];

}, when r < s € Z>[1/p],s > 0;

Alrooteo] . A

~T ~
(2) If I is one of the closed intervals mentioned above, we put B := Af[1/p].

Remark 5.1.3. More precisely, in the above definition

~ p s e r s s—r
{2 U Ry )X = ¥ = B XY~ 1),
and similarly for others.
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Chapter 5. Complex over the Robba ring with (¢, Ny )-modules

Definition 5.1.4. When r € Z>([1/p], put
]§[T:+OO) — n ]AB’[T:S"]’
n>0
o0)

. ~ |7+
where s, € Z-o[l/p] and 1m s, = +oco. We endow B!

L with its natural Fréchet topology (c¢f [5l
Définition 2.16]).

Remark 5.1.5. (¢f [28] §2])

(1) If I is one of the closed intervals above, then Al s p-adically separated and complete.

(2) For r € Z>o[1/p], notice the difference between ﬁ[rnLOO) and ]~3[T7+Oo]. Indeed, ﬁ[r’ﬂo) is complete with
. . = lrtoo] .

respect to Fréchet topology and contains B as a dense subring.

Definition 5.1.6. (cf [28, Definition 2.1.8]) Suppose r € Z>o[1/p], and let = = > pi[z;] € ]~3[7‘7+oo] with

i>ig

iop € Z and x; € C” for all i > iy. Denote wy(z) = in£{vb(xi)}. Put
1<

Wsl(z) = inf {k7 % 'ﬂb(xk)} = kiglfo {k’ P};l 'wk(x)};

this is a well-defined valuation (¢f [13, Proposition 5.4]). For I C [r,+0o0) a non-empty closed interval such
that I # [0, 0], let
Wl(z):= inf {Wl*ol(z)}.

acl,a#0

Remark 5.1.7. Notice that W[5 is a variant of p-adic valuation, as the latter is inf  {k}.
{k€Z;z#0}

Definition 5.1.8. (1) When r € Z>¢[1/p|, we put

Alrtol .= An Alnteel

= [T,+OO]

BIrt><l .= BN B

7]

(2) When r,s € Z>¢[1/p] and s # 0, put B! the closure of Bt in B with respect to the topology
given by the valuation Wsl. Put Al"s] .= B/ A5l this is the ring of integers of Bl
(3) When r € Z>¢[1/p], put
B[r,+oo) _ ﬂ B[r,sn],
n>0

where s, € Z[1/p] and lm s, = +oco (¢f [28, Definition 2.1.4]).

n—-+oo

Definition 5.1.9. (¢f [45] §1.3]) If » > 0, we define a valuation V(-,r) on ]§+[1/[ﬂ] by

. -1
Vie,r) = kl;relg (k * ppr vb(xk))

for x = > pFlog). If now I is a closed subinterval of [0,+0c0), we put V(z,I) = in?V(x,r). We then
k> —o0 re
define the ring B’ as the completion of ]§+[1/[%]] for the valuation V' (-, I) if 0 € I, and as the completion of

B for V(-,1)if I = [0,r].
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Notation 5.1.10. (¢f [43, §1.3] and [28] Definition 3.4.6])
~ ~ ~T ~ I ~ ~

(1) Let I be an interval. When B (resp. A') is defined, put By := (B )“%= (resp. Ak = (AT)%xx),
Similarly, put Bﬁ(ﬂ = (]31)%(7r (resp. Ag{ﬂ = (Al)xn).
(2) We put
~t,r ~[r,+oo) ~
B, =B , By=|JB Bng,

r>0

tr._ glntoo) .
Bng =B ’ rlg U Bng )
r>0

f,r [r,+00) T _ T,r
Brlg,K - P’K7r ’ Brlg, - U P’rig,K7r .
r>0

Remark 5.1.11. We have

Bix=U N B

r>0 s>r
SEZ[1/p]

5.1.12 Relation with Laurent series

Notation 5.1.13. (cf [32]) Denote by DI0, 1) the open rigid analytic disc of outer radius 1 with co-ordinate
u. For any subinterval I C [0,1), we denote by D(I) C DI[0, 1) the admissible open subspace whose K-points
correspond to x € K with |z| € I. We set O = I'(D(1),Op(p)), and O = Opg 1) .

Remark 5.1.14. We have O 1) = B[Ig’:'oo) .
Definition 5.1.15. (1) Let I be as in the last section. We put

p—1
pe

B!(K,) = { > @i T ar € WE)[L/p], (Vo€ I) Jm_v,(ai) +

k
- = —l—oo}.
keZ P

(2) Let r > 0 and we put
o= { > a'sai e WR)L/pl, (Yp € [p7", 1) i lailo' = O}'
i€Z

In other words, elements of R, are Laurent series > a;u’ that converge on the annulus p~" < |u| < 1. We
i€Z

R=]J R

>0

define Robba ring to be

In other words, elements of R are Laurent series > a;u’ that converge on the annulus p~" < |u| < 1 for
i€Z
some r > 0.
(3) For any 0 < p < 1 and # = Y_ a;u’ € R, we define the p-Gauss norm over R as follows:
i€Z

|x|p 1= sup {lailp'}.
2

Remark 5.1.16.
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(1) The ring R, carries a Fréchet topology, in which a sequence converges if and only if it converges under
the p-Gauss norm for all p € [p~",1). (It is complete for this topology.)

(2) The ring R carries a limit-of-Fréchet topology, or LF topology. This topology is defined on R by taking
the locally convex direct limit of the R, (each equipped with the Fréchet topology). In particular, a sequence
converges in R if it is a convergent sequence in R, for some r > 0.

Proposition 5.1.17. If the endpoints of an interval I lie in Z<o[1/p], the map T — u induces an isomor-
phism
B'(K,) ~Bj
hence we have an equality R = Bjig,K,, by remark|5.1.11,
Proof. cf [28, Lemma 2.2.7 (2)]. O

Remark 5.1.18. (cf [28, Proposition 2.2.10]) For n € Z>, put r, := (p — 1)p™ — 1. We have

0,400
Ab) Ay

epk
AR =ai {51

Al = ag {5}

uer'
ue?" p
A[IT(:TIC] = A'}‘(W{T, o }
Notation 5.1.19. (¢f [45, Proposition 2.2.5]) Put R, = (ﬁjig)% = EZ&L. Then we have B}(W CRCR, C
f;jig'

5.2 The (¢, 7)-modules over (R, R,)

Definition 5.2.1. A (¢, 7)-module over (R,R;) consists of

(i) an étale p-module D:rig over R;
(ii) a 7-semi-linear endomorphism 7 on Dfigj =R, ®93D:rig which commutes with px_ ® Yol (where px.

+

is the Frobenius map on R, and ¢, is the Frobenius map on Drig) and which satisfies:
rig

(Vo e DL) (9@ 1)orp(z) =5 (a),

for all g € ¥k /%9, such that x(g) € Z~o . The corresponding category is denoted Modx = (i, 7).

Theorem 5.2.2. The functors

Djig: RepQP (9x) — Modg », (¢, T)

Vi DE(V) = R@ei DI(V)
V(D}y) = (Bl @xDj)*=" <1 Dl

(with the natural T-semi-linear endomorphism Tp over D:ig(V)T =R, ®y@iig(V)) establish quasi-inverse
equivalences of categories.
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Proof. By theorem it is enough to show that the functor

Modgtgi(go, 7) = Modg », (¢, T)
(DT, DI)  (R@g1 DT, R, @1 DY)
is an equivalence of category. By [31, Theorem 6.33], the functor
Mod! () > Mo (%)
D' = R, D'

is an equivalence of categories, where Mod?f () is the category of étale ¢-modules over &t and Mod$ ()
is the category of étale p-modules over R (i.e. pure of slope 0). Let (DI7 D;T)7 (D;7 D;T) € MOdetei(‘P’ T)
and

f:R@et DI = R@ei D}

be a morphism in Modg », (¢, 7). By fully-faithfullness of (x), f comes from a unique map fo : DI — D; in
MOdgT’SI(QﬂT) by extension of scalars. The latter induces a map 1 ® fy : DI’T — D;T that inserts in the
commutative square:

1®fo

o, i,

1®f
:RT ®ETDI —_— 32,7- ®ETD§,

which shows that 1 ® fy is compatible with the operator 7p, and 7p,, i.e. that fy is a morphism in
MOdgT’gi((va)

Let (DjigaDrT;gJ) € Modg =, (¢, 7). By the essential surjectivity of (x), there exists DT € Mod%’ (¢),

such that Djig ~ R®g: DT as a p-module. We have

Dl =&l @D ¢ D]

rig, 7"

Notice that DI is the unique @-stable &l-lattice of D:rig’T (as R, is faithfully flat over &7): this implies that

the 7p map over D' _ maps DI into itself, so that (D, DI) € Mod,; .i (¢, 7). O

rig, T
Remark 5.2.3. We can define similarly the category Modx x, (o, 7P") for r € N. Notice that for any
T T T
(Drig7 Drig,T
semilinear endomorphism 7p (which is the case in Modx % (¢, 7)).

) € MOd:R,:RT(gO,TpT), there is a 77 -semilinear endomorphism Tg on DI rather than a 7-

rig, T

Definition 5.2.4. (cf [45) §1.2]) Let G be a p-adic Lie group and let W be a Banach Q,-representation of
G. Let H be an open subgroup of G that admits a system of coordinates that induces an analytic bijection
H— 7.

(1) We say that © € W is H-analytic if the orbit map H — W; g — g(x) is analytic (¢f [9} §2]).

(2) We say that x € W is locally analytic (for G), if the orbit map G — W; g — g(z) is locally analytic,
i.e. there exists some open H < G such that z is H-analytic. We denote by W' the set of locally analytic
elements in W.

(3) Let W be a Fréchet space, whose topology is defined by a sequence of semi-norms (p;);>1. We then denote
W; the completion of W for p;, hence we have W = lim W;. We say that w € W is pro-analytic if its image

i>1

m;i(w) € W; is locally analytic for all i. We denote by TWP? the set of pro-analytic elements in .
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Definition 5.2.5. (1) Let E(u) € W(k)[u] be the Eisenstein polynomial of 7. We put (¢f [32])

t=tog((e)) = (- S gl
n=1

(2) For any ¥k _-representation, we define the following operators (¢f [45, Définition 1.2.12]):

log( Tp : Z T , forne N
=1

1 n
V.= —log(r? ), for n > 0.
pn

By [45] §2.2], the operator V., is defined on (ﬁ:rigL)pa.

(3) We put (¢f [45] §2.2])
-
NV = TVT
It is showed in loc. cit. that Ny induces an operator on R (whereas V., does not). Remark that later we
will extend it to certain R-modules, and then to Dng(V) for V€ Repq (YK).

Remark 5.2.6. (1) We have \ = IE:ES;%O(/\)

(2) The element ¢ we just defined is different from that in [19], there ¢ = %O) e W(k)*.

or any n € the element gp is invertible in
3) F N, the el ] ble in R.

=0
Proof. Notice that E%OS = Ep(;‘) with @ € W(k)* : it is hence in &' . Hence E(") € R is a unit of the
Robba ring (¢f [12 diagram (10.4.3)]), thus ¢ (E( )) are units of the Robba ring for all n € N, and so is
n i E(u
e D

(4) (cf [45, §2.2]) We have Ny = =2V, = —uX-L as operators over R : the operator Ny we defined coincides
with that in [32] §1].

Proof. By direct computation we have
d

—u)\@(u") = —nAu".

On the other hand exp(p"V,)(u") = 77 (u") for 7 > 0 and 77" (u") = [¢]"® u™. Using the expansion
exp(p"V,)(u™) = u™ 4+ p"V.(u™) + O(p*") for r > 0, we have

(s

g™ =1
Ve (u") = lim T "
P
= ’llll.lo &71””
p
= ntu”.
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Hence we have

—V,(u") = —%ntu” = —nAu".

This finishes the proof. O

5.3 The complex C, y

Definition 5.3.1. (¢f [43, 2.2.1]) We define a (¢, Nv)-module over R to be a free R-module D endowed
with a Frobenius map ¢ and a connection Ny : D — D over Ny: R — R, i.e. an additive map such that

(Ym e D) (Vx € R) Ny(xz-m)= Ny(z) -m+z-Ny(m),
that satisfies Ny o ¢ = coNy. The corresponding category is denoted Modx (p, Ny ).
Proposition 5.3.2. (c¢f [{5, Proposition 2.2.2]) Let V € Repq, (%K), then

Ny (DI (V) c DI (V).

rig rig

This implies that if V is in Repq, (9K ), the operator Ny associated to its (¢, 7)-module @jig(V) provides
a (¢, Nv)-module structure.

Definition 5.3.3. Let D

g € Modzx (¢, Nv), we define the complex €y ng (Djig) as follows:

T T T T
0 Drig Drig @ Drig Drig

z——((¢ = 1)(z), Ny (z))

(y,2) ——>Nv(y) — (cp — 1)(2).

ItV e Repr (9K), we have in particular the complex C, NV(ZDT (V)), which will also be simply denoted

rig
G%Nv (V)

Remark 5.3.4. The complex C, ng (V) above is well-defined. Indeed we have
(Nve(ep—1)) o (p—1,Nv) = Nyolp—1)— (ep— 1) o Ny =0,

as Ny o ¢ = cpNy by definition of a (¢, Ny )-module over R.

Lemma 5.3.5. Let V € Repq (%) and D = D!

te(V). We have Extypoq,, (o) (D> R) = HY(Cy N (D).

Proof. To give an extension
0-D—ESR—0

of R by D in Modx(p, Ny) is equivalent to giving a (¢, Nv)-module structure to the R-module
E=D@Re,

where e € F is a preimage of 1 under e. Since D is already a (¢, Nv)-module, it suffices to specify the image
of e by ¢ and Ny. Since ¢(¢(e) — e) = 0, we must have p(e) — e € D and write:

p(e) =e+ A with A € D.
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Chapter 5. Complex over the Robba ring with (¢, Ny )-modules

For Ny, we have e(Ny(e)) = Ny(1) =0: put p = Ny(e) € D (this completely defines Ny on FE). In order
to have an extension, the only condition that (A, u) € D@ D has to satisfy is Ny o p(e) = cp o Ny (e), which
by construction is Ny (A) + p = co(u), i.e.

Ny (A) = (ep = 1)(p)-
Notice that the submodule of D & D
M :={(\,p) € D& D;Ny(\) = (cp — 1)(u) }
is exactly Ker 3 in the following complex (¢f definition |5.3.3)
Cone(D): 0D % DD D0

One checks that (A, u) corresponds to the trivial extension if and only if it lies in the Im «, i.e. there exists
d € D such that A = (p — 1)(d) and p = Ny (d). We define another submodule of M

N = {(((p —1)d, (rp — 1)d); d € D}.
Then there is an isomorphism

Ext(O¢g, D) ~ M/N ~ Ker 3/ Ima ~ H' (€, ng (D)).

O
Notation 5.3.6. Let (D, D} ) € Modx,x, (¢, 7). We put
gm0 = {z e D:Lig’T; (y@lax=014+75 + 7—1231’ et TJ(DX('Y)fl)p )(z)}
for any n € N.
Definition 5.3.7. Let n € N and (Dfig,DrTigJ) € Modgx . (¢, 7""). We define the complex C;gﬂ)n (D:ﬂg) as
follows:
T T T T
0 Drig Drig @ Drig,TP" ,0 Dfigﬂ'pn ,0 — =0

(y,2) ————(p = D) — (¢ = 1D(2).

If Ve Repq, (9K ), we have in particular the complex Gggﬂ,n (DlLig(V))7 which will also be simply denoted
e (V).

@, 7P"
Lemma 5.3.8. Letr € N and V € RepQP(%K), then Hi(Ggngr(V)) ~ H(Gy, , V) foriec {0,1}.

Proof. For i = 0 this follows by direct computation. For i = 1, similar argument as in proposition [1.3.3
works, as we have an equivalence of categories between Modx x, (¢, ") and Repq (YK, ) (the proof is

similar as that of theorem [5.2.2). O
Proposition 5.3.9. Let D € Modx(yp, Nyv). Then there exists n > 0 and D:rig € Modg x, (¢, ") such
that D ~ D:rig as (p, Ny )-modules over R.
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Proof. c¢f [45, Proposition 2.2.5]. O

Lemma 5.3.10. Let V € RepQP (9K). We have an isomorphism of groups
h%n Ethl\/Iode;RT (@,TP")(:Djig(V)7 :R) - Ethl\/IOdy(Lp,Nv) (D(V)7 R)

Proof. Let V € RepQP(%(), and we associate its (¢, Ny)-module D(V) and (¢, 77" )-module Dfig(V)n
(notice that ‘D;g(V)n = Djig(V) as @-modules, here we just use the subscript n to indicate it is an ob-
ject of Modx %, (p,77")). If n € N, an extension of its associated (¢, 7?")-module over R is naturally

equipped with a (¢, Ny)-module structure. This provides a map from Ethl\/[odfk 2 (o) (D(V)n, R) to

Extllvlodx(% Nv)(DLg(V), R). Those maps are compatible as n grows: this provides the map
B EXNtody g (prr) (D (V)i R) = Extiods .59 (D(V), R).

An extension E of D(V) in Modx (¢, Ny) has a (¢, 77" )-module structure for some n > 0 by propo-
sition This shows that the extension E comes from an extension of D! (V) in the category of

rig
MOdg{7jQT(g0,7'pn) for some n > 0, which implies the map is surjective. Moreover, it is also injective by
[45], remark 2.2.4]. O
Lemma 5.3.11. Let n € N and (Djig,D:[ig)T) € Modg », (¢, 7). We have an operator
Ny
pn : (Djigﬂ—)pa % (Dj‘igﬂ—)pa?
T —1
such that Ny = Té){il o(th —1)=(1h —1)o Té){il on (Djig’T)pa.
Proof. We have
Ny A V.
Tgn -1 t Tﬁn -1
A log(rh"
:——~% (for m > 0)
prt T —1
_ Ayl
S 1 i(rh — 1)
)\ o) 1 _ an i1 p'm _ 1
=—— Z ( D . (TDn ) (we can assume n|m)
2 v ™ —1
A > (1- Tjgm)i*l o m_q)pn
:_W.;f.(l_FTD +...+7-D )
which shows it is well defined over (Dfig’T)pa (cf [45, §2.2]). O
Definition 5.3.12. Let (Djig7 D:rig -) € Modg =, (¢, 7). For any n € N, we put
t,pa — T T a
Drig,‘r”n,O - Drig,r?",o n (Drigﬁ)p ’
We then define a complex
pa . s A DR 1,pa (B =1)8(p—1) % pa
€ (Drg): 0= Dy —————— D kP Dyom Dy on o = 0.
If V € Repq (9 ), we have in particular the complex (?Z:’Tpn (D(V)Iig), which will also be simply denoted
(?Zann (V).
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Remark 5.3.13. Notice that Dfig C (DI )P (¢f [45, Lemma 1.3.4]), and the complex C o (Djig) is

rig,T
well-defined as ¢ and 7p preserve pro-analyticity.

Lemma 5.3.14. We have yo Ny = Ny o7.
Proof. We have v o7 = 7X(") 0+, hence vy o 77" = 7X("P" 6~ We have

yolog(r?") = log(TXM7") o y
= x(7)log(r?") 0,

hence v oV, = x(v)V, ov. We then have

A
’YONV:’Y(_ZVT)

A
= —~7° V7'
(1)
A
= X(Y)Vr oy
x(0)t )
= Ny ovy
O
Proposition 5.3.15. Let n € N, then the operator —~ - induces a map AL - DT.’gpa oo D:[ig.
o TP rig, 7P,
Proof. Let x € D:rigipn o» then by lemma|5.3.14) we have
Ny Ny
(751 @) = S 6@)
™ -1 T x() _q
Ny P P (x(1)=1)
- e e
Th -
_ NV Tg x(v) -1 (x)
Tg‘x(v) 1
Ny
= —= (z).
T —1
N T =1 _ pf
Hence v(ﬁ(x)) € (D} )= = D}, O

) be its (¢, 77" )-module over (R,R,), then in par-

rig’ rig,T
ticular Djig is equipped with a (¢, Ny )-module structure. When n > 0, we have the following morphism of
complexes:

Remark 5.3.16. Let V € Repq (¥k) and (D!, D}

pa ) § (@-17"'113”—1) T 1,pa ("'g”—l)e(tp—l) t,pa
erig;r?" (V) : 0 Drig Drig @ Drig,-rf’" N —— rig.r " 0 —0
. N N
ldéergnvll lr%ﬂvl
(p—1,Nv) Nv & (%5t e—1)
Cone (V): 0 D}, Dl @Dl Dl 0.

Proposition 5.3.17. We have a group isomorphism H*(Cy, ng (V) ~ M HY (G, V) for i € {0,1}.
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Proof. When i = 0, it suffices to show that Ny (z) = 0 if and only if 77" (z) = x for some n > 0.
This is indeed the case as exp(p"-5Ny) = 7" for n > 0. When i = 1, this follows from the bi-

jectivity of 1& Ext(so’ﬂ,m)(DT (V),R) — Ext%W,Nv)(D(V),R) (¢f lemmas [5.3.5 and [5.3.10)), noting that

rig
Ext(@ 7_,,n)(Dng(V) R) ~ HY(K,,,V) for all n € N. O
Proposition 5.3.18. If Drlg oo C Djlgp o for all n € N, then the map in proposition s a natural

Q,,-linear isomorphism.

Ny . pt
then we have oy P D om

D

Proof. 1f D! c D'P

rig,7P" ,0 rig,7P"

— D:rig by proposition [5.3.15] We then have

the following map of complexes

rig . t (""71’7'% - (7'%”*1)6(90*1) t
G; ™ ( ) : 0 Drlg ng @ Dng 7P 0 - rig,7P™ ,0 —0
idéBTlp;,,Vl\L lwé\;’vi
¥ (p—1,Nv) Nvo(Zgsite—1) ‘
e%@vNV (V) : 0 Drlg ng 69 Drlg Drig 0

this induces a natural Q,-linear map 1in HY(Y,,,V) = HY(C, no (V)), which identifies with the bijective
(V),R) — Ext%%Nv)(D(V),R) mentioned in proposition [5.3.17 O

map h% Ext%@’ﬂ,m) (’D:rig

Remark 5.3.19. As V has finite dimension, the increasing sequence (H°(%x, ,V))nen is stationary, so
that HO(Cy, o (V) = H%(%,,, V) for n > 0. The analogue is not true for H'. For instance, (suppose k is
finite) if V' = Q,(1), we have dimq, (H'(Yk,,V)) > 14 [K, : Q)] =1+ p"[K : Q,], so that the sequence
(HY(%k,,, V))nen is not stationary.

n?

5.3.20 Examples: the (¢, 7)-module of Z,(n)

Let t € W(O¢») be an element that is not divisible by p and satisfies p(t) = ct. In fact t is unique up
to multiplication by an element in ZX By [45, Propositions 1.3.5, 1.3.6], we can normalize t such that

t= -1 c (AM)¥ (¢f also [35] Example 3.2.3], this element is denoted b, in loc. cit.).

By [19, 1.3.4] we see that the (¢, 7)-module structure over (O¢,O¢_) associated to the representation
Z,(n) is given by:

D(Zy(n)) = O "
Pty = e

Remark that the minus sign in the first equality follows from the fact that our constructions are covariant
(compare with [I9, 1.3.4]).

Remark 5.3.21. We have g(t) = x(g )g()\ t for g € Yk, and in particular g(t) = x(g)t for g € ¥k _.

Proof. cf [45], Proposition 1.3.6]. O
Lemma 5.3.22. We have Ny (t) = 0.

Proof. This follows directly from the definition of the element ¢ and the operator Ny over (]~3;g, )P O

Lemma 5.3.23. Let n € N, then we have Ny (t™") = TLF"LVA()\)-
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Proof. Recall that ¢ = pAt. By lemma [5.3.22| we have Ny (t) = 0. By Leibniz’s rule we have
No(At+ ANy (6) = 0,

i.€.

Again, by Leibniz’s rule we have

Ny(t™") = —nt "INy (t)

O

Remark 5.3.24. Similarly, the (¢, 7)-module structure over (R, R,) associated to the representation Q,,(n)
is given by:
T _ —-n
Drig((gp(n)) =Rt )

with the operators ¢ and Ny as mentioned above.

5.3.25 Construction of a pairing
Lemma 5.3.26. Let T1,T> € Repg (9k), then we have
DTy ®z, To) ~ DI (T1) ®o1 DH(Ty)
@T(Homzp (Th,T3)) ~ Homoz (DI(Ty), DI(Ty)).
Proof. The proof is similar to that of proposition [1.1.22 O
Proposition 5.3.27. Suppose the residue field k is finite. We have a pairing of groups
HY(Cp g (VY (1)) x HX(Cp g (V) = Q-
Proof. By lemma we have DT (VV(1)) = Hom (DT (V), DT(QP(l))). Hence we have
H(Cy g (VY(1)) = (R@gi (DT (VY (1)) P~ 1AV =0
= (R®g+ Homgi (DT(V), DI(Q, (1)) =17+ =°
= (Homgy (R @+ DI(V), Rt~ 1)) #=HAv=0,

Indeed, we used the ¥k -equivariant isomorphism of R-modules R ®@¢+DT(Q, (1)) ~ Rt~ (¢f section [5.3.20).
We start with the pairing:

HO (€ e (VY (1)) X (R®g1 DI(V)) = R
(f, @) = f(z).

Recall that elements in R can be written uniquely as series . a,u” with a,, € W(k)[1/p]. We define a
neZ

residue map over Rt~! as follows:
res: Rt™1 — W(k)[1/p]

¢! E apu”™ — ag.

nez
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Composing with the trace map Tr = Trw(k)n/s/ Q, W(k)[1/p] — Q,, we obtain a map

HO(Cp o (VY(1))) X (R@er DI(V)) — Q,
(f, x) = Tr(res f(x)).

Recall that H?(Cy, ng (V) =~ (R ®g+ DI(V))/Im((cp — 1) @ Ny)). To construct the claimed pairing, we
must show that the above map factors through Im((cp — 1) ® Ny) C R ®¢+ DT(V). In other words, for any
x € Im((cp — 1) ® Ny ), we have to show that Tr(res f(z)) = 0.

Notice that for any f € Homg(R®@¢:DI(V), R®e1DT(Q,(1)))#=1v=0, the condition Ny (f) = 0 means
that Nyof = foNy, and ¢(f) = f means that pof = fop. Indeed, the actions are Ny (f) = Nyof— foNy
and @(f) = po f oL,

For any € R ®¢: DI(V) and f € HO(Cy no (VY (1)), write f(x) = t7lr = t71 3 a,u™ € Rt™! with

neZz
an € W(k)[1/p]. By remark and lemma[5.3.23] we have

By section [5.3.20| we have ¢(t~!) = ¢~ 1t~1, hence

Troes(f((ep — 1)2)) = Trores((ep — 1) f(x))
= Trores ((cp — 1)(t" Z anu™))

neZ

= Trores (cciltflgo(z anu™) —t71 Z anu™)

neZz neZ

= Trores (t71(<,0 — 1)(2 @nun))

neZ

= Trores (f_l(z p(an)uf™ — Z anu"))

nez neZz
= Tr(p(ao) — ao)
= (¢ — 1) Tr(ao)
= 0.

Hence we have the desired pairing

H(Cy, e (VY(1))) x H*(Cy e (V) = Q,
(f;2) = B(f,x) = Tr(ves f ().
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Proposition 5.3.28. The pairing just constructed is nondegenerate on the left.

Proof. Recall that H°(C, ng (VV(1))) = Homg o ng (R@DT(V), Rt™1) (¢f the proof of proposition [5.3.27).
Suppose R @DT(V) has rank d € N+, and fix a R-basis {e1,...,eq}. Then f € Homg o ng (RODT(V),Rt71)
is determined by the image of the basis (by R-linearity), i.e. it is determined by a dx 1 matrix with coefficients
in Rt~! (it also satisfies certain conditions arising from the compatibility with ¢ and Ny). Denote

B: HY(Cyp ng (VY (1)) x H(Cpnvg (V) = Q,
(f,x) = B(f,x) = Tr(ves f(x))

the pairing constructed in proposition [5.3.27] Let f € Homg , no (R@DT(V),Rt™1) be such that B(f,z) =0
for all z € H%(Cy, o (V)), we claim that f = 0.

Suppose f corresponds to (rit™!, ..., 7gt7t) € Myxi(Rt™!) under the fixed basis with r; € R for i €

{1,...,d}. Write r; = >_ a; ju? with a; ; € W(k)[1/p]. We first prove r; = 0 and the others follow similarly.

JEZ
For any z € R ®,; DT(V) with its image Z € H3(Cy ng (V) = (R @t DI(V))/Im((cp — 1) & Ny), we have
B(f,Z) = 0 by assumption. To prove r1 = 0, it suffices to prove a; ; = 0 for any j € Z. For any j € Z,
consider x whose coordinates under the fixed basis is (cu=7,0,...,0) € RY, with o € W(k)[1/p]. Then we
have

f@) = au It =t lau™ Z a1,mu™ = ! Z aal,mum*j.

meZ meZ

We have res(f(Z)) = aay;. If a1; # 0, then we can always find o € W(k)[1/p] such that Tr(ca; ;) # 0,
which then contradicts the hypothesis that B(f,Z) = 0 for any z € R®g+ DT(V). Hence a} = 0 for all j € Z
and hence r; = 0. Similarly we can show that r; = 0 for all ¢ € {1,...,d} and hence f = 0. This shows that
B is nondegenerate on the left. O

Remark 5.3.29. Assume the previous pairing is perfect, then for any V € Repq (¥k), we have
P

H?(Cy vy (V) = H* (¥, V), n>> 0.

n?

Proof. The perfect pairing
HO(Cp,ne (VY (1))) X H2(Cpne (V) — Q,
implies
H? (€, v (V) = Homg, (I HY (%, , V¥(1)), Q,).

Notice that the sequence (H(%,.,VV(1)))
spaces of V'V (1)), hence for n > 0, we have

m>o 18 stationary (it is an increasing sequence of sub Q,,-vector

HQ(GLP,NV (V) = Home(Ho(ng Vv(l))7 Qp) = HO(gKnﬂ Vv(l))v'
Since HY(¥k,, V'V (1))V is isomorphic to H*(%k,, V) by Tate duality, we hence conclude. O

5.3.30 Examples with Q,(n)

Assume k is finite.

Remark 5.3.31. Let n,r € N, then by Tate duality we have

Hz(gKM Qp(n)) = HO(gKMQp(l - n))

Q, ifn=0

0 ~
H <%<T,Qp<n>>_{0 o
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we have
Q, ifn=1

M (i, Q) =~ {0 if n 1.

We have computed H*(C, o (V)) for i € {0,1} in proposition Let’s see some examples for
H2(Cy,no (V))-
Example 5.3.32. (1) For V = Q,(n) we have Djig(Qp(n)) ~ Rt™" and the complex Cy N (Q,) is

0— Rt " — > RETPRE™ Rt 0

z———((¢ = 1)(2), Ny (z))

(¥, 2) ———— Nv(y) — (co = 1)(2).
For any f,g € R, we have

Ne(7e) = Mo (e + e NS (v g M9 gy o,

(co—1)(gt™™) = cp(g)e™™t" —gt™" = (" " —1)(g) -t

Hence
Ny (M)

HQ(G%NV(QP(n))) ~R/(Im(Ny +n )+ Im(c' " — 1)).
(2) In particular, for V = Q,,, the complex C, N (Q,,) is

0 R RP R R 0

2= ((¢ = 1)(z), Nv(z))

(y,2) ——>= Nv(y) — (cp — 1)(2),

and we have H?(Cy vy (Q,)) ~ R /(Im(Ny) + Im(cp — 1)).

Notation 5.3.33. By definition |5.1.15| any element of R can be written in the form f(u) = > a;u’ with

i€Z
a; € W(k)[1/p]. We put fT(u) = ) a;u’ and f~(u) = Y a;ut, then f(u) = f(u) + f~(u).
i>0 i<0
Lemma 5.3.34. With notations as above, Y (co)™(f(u)) converges in O.
n=0

oo .
Proof. Recall that any h(u) = > \u' € W(E)[1/p][u] belongs to O if and only if for any r € [0,1).
i=0

lim |\;|r" = 0 (| - | denotes the p-adic absolute value), which is equivalent to |h|, = sup, |\;|r" being
finite for any r € [0,1). Recall zf5; € W(k)* and ¢ = pgg)), we hence have |c¢|, = max{1/p,7¢} and

|o*(c)| = max{1/p, rpke}, which is 1/p when k > 0. Notice also that |p(h(u))|, = |h(u)|» . We have (for
k> 0)
1

ep(e)e?(©)- - 1@ (W], < O, ()] = O
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Hence Y (cp)™(f+(u)) converges in O as its k-th term cp(c)p?(c) - - - *(c)p* 1 (f(u)) tends to 0 when k
n=0

tends to +oo. O

Remark 5.3.35. To check H?(C, ny(Q,)) = 0 (hence €, ny(Q,) computes the Galois cohomology by

remark [5.3.31)), it is equivalent to showing that R G R CoTIONY, g g surjective. Although we cannot prove

it, we can see from the following lemma that the image contains a lot of elements.

Lemma 5.3.36. We have

+oo
{ z au' € R; a; € W(k)[1/p],m € Z} C Im(cp — 1@ Ny).

i>m

Proof. Let f(u) = Y a;u’ € R, then we claim f¥(u) € Im(cp — 1). Put fi(u) = > (co)™(fF(u)), it is

i€Z m>0
well-defined in R by lemma [5.3.34] and satisfies (cp — 1)(f1(u)) = fF(u).
We now study f~(u). Observe that aju™7 € Im(cp — 1@ Ny) for any j € Z; and a; € W(k)[1/p]. We
o0

prove by induction as follows. As XA € O, we can write A = > A\;u’ and then

i=0
oo oo
Nv(alu_l) =g = E Nut Tl =a ouH +a E AutL.
i=0 i=1

2] .

Observe that \g =1 and a; > \u'~!t € O C Im(cp — 1), hence a;u~! € Im(cp — 1@ Ny). For any j > 2, we
i=1

have

Nv (ajufj) = ajj)\ufj

(e}
— a.i Lt
=a;j g Aiu
i=0

oo
= ajju +agihut T et g Y A

i=j
We have a;j\u' ™7 4+ -+ ajj\j_1u~" € Im(cp — 1 & Ny) by induction hypothesis and a;j Y \u'™7 € O,

i=j

hence in Im(cp — 1@ Ny). Hence a;ju™ € Im(cp — 1@ Ny) and then a;u™7 € Im(cp — 1 & Ny). O

5.4 The complex €,y

Lemma 5.4.1. Foranyz= Y. z,u" with z, € W(k)[1/p], we have u-(z) € R if and only if v € R.
neZ\{0}

Proof. For light notation, we put 9, = u% and we have 0, (x) = Y nz,u™
neZ\{0}
Assume 0, (z) € R : we show that x € R. For any 0 < r < 1, we have |nz,, |r" P 0 and in particular
n——+0oo

for 1 > p’ > p we have
/

()" = | (25" 0.
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Notice that |1] < (%)n for n > 0, so that |x,|p" < |nx,|(p)" for n > 0. Hence |z,|p" — 0 as n — +oo.
On the other hand, as 0, (z) € R, there exists 0 < ro < 1 such that |nz,|r™ —— 0 for any r € (rg,1). We
n——oo

claim that |x,|p" —— 0 for any p € (ro,1). There exists p’ such that 7o < p’ < p and
n——oo

I\ Pl n n
[nzn|(p') :Imnl(;) (p)" ———0.

n——oo

We then conclude similarly from the observation |%| < (%)n for n < 0.
To show x € R implies 0, (x) € R is direct, as |nx,| < |z,| for n € Z. O

Notation 5.4.2. Put 0, = %VT = —%NV = u% (¢f remark [5.2.6). Remark that this is an operator over
R by lemma and we will extend it to certain R-modules.

Definition 5.4.3. We define a (¢, 9, )-module over R to be a free R-module D endowed with a Frobenius
map ¢ and a connection 9,: D — D over 0;: R — R, i.e. an additive map such that

(Vm e D) (VzxeR) O.(x-m)=20.(z) - m+z-0;(m),
that satisfies 0, o ¢ = ppd,. The corresponding category is denoted Modx (¢, ;).

Definition 5.4.4. (¢f [45] §1.3])
(1) Let I be a sub-interval of [0,+00) and V € Repq, (%x), we define D (V) by

DLV) = (B' @q V).
(2) Let V € Repq, (YK ), we put

Bir

~tr
rig,L(V) = (Brig ®Qp V)%L

Lemma 5.4.5. Let V € Repq (9k) with (D', D}) € Mod,

51 (. 7) its associated (o, T)-module over
KpPL

(Bl.,By), and (D}, D]

rig? " rig,T

such that DT = Bl, @+ (B" ©q V)%~. Then for any compact interval I such that v < min(I), the
Kr “By Q,

) € Modg . (¢, T) its associated (¢, T)-module over (R,R;). Suppose r > 0 is

elements of D and D:rig, seen as elements of Ei(V) are locally analytic for the group Gal(L/K).

Proof. Notice that for s > r we have

Db c Dl (Dl )° < (DE)"

ng,

(¢f [45 Lemma 1.3.4]). O

Theorem 5.4.6. Let M be a (o, 7)-module over R whose Ny -action is locally trivial (cf [{5, Définition
3.4.1]), then there exists a unique (@, 7T)-module D C M[1/A] such that D[1/\] C M[1/A] and such that
0-(D) C D.

Proof. c¢f [45, Théoréme 3.4.10]. O

Corollary 5.4.7. Let V € Repq (%x) be a semi-stable representation and (D! . D}

rig? rig,T

) € Modgx %, (¢, 7)
the corresponding (p, T)-module over (R,R,). Then we have

d-(D}

r|g)CD]L CDT [1/)\]?

rig rig
hence there is a (@, 0;)-module structure on D:fig.
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Proof. Notice that the ¢-module Djig of a semi-stable representation has locally trivial Ny-action by [45]
Lemma 3.4.5, Théorém 3.4.12], hence it has a connection 0, by theorem [5.4.6] 0O

Definition 5.4.8. Let D € Modx(y, ;). We define a complex C,, 5. (D) as follows:

0 D D@D D 0
z——=((¢ — 1)(2),0-(2))

(y, 2) ———0:(y) — (pp — 1)(2).

IfV € Repq, (9K ), we have in particular the complex Cy, 5. (ZDjig(V)), which will be simply denoted €, 5, (V).

5.4.9 H%(C,.(V)) and HY(C,p (V))

Proposition 5.4.10. (¢f [{5], Proposition 2.2.3]) Let V,V' € Repr (YKk) be crystalline representations,
then Dfig(V) and D' (V') define the same (p,d,)-module in Modgx(p,d,) if and only if there exist some

rig
n > 0 such that V and V' are isomorphic in Repq, (YK, ).
Proof. The proof is basically the same as that of [45], Proposition 2.2.3]. If there exists n > 0 such that

V~V'in Repq (YK, ), then in particular V ~ V' in Repq (YK, ), and we have Dfig(V) = iDrTig(V’) as -

modules. Moreover, the action 77" is the same over (]§T®Qp V)¥ and (]?)T(X)Qp V)9 hence (DT(V), D(V),)
and (DT(V’), DT(V’),) are isomorphic in Mod; i (¢,7”"). By the definition of the operator d,, we have
Kn'PL

DL (V) = DI (V') in Modx(¢, 8, ).

rig rig
Conversely, if V and V' are two representations such that @fig(V) = Djig(V’ ) in Modx (i, 0;), we prove
that there exists n > 0 such that (DT(V), DT(V),) = (DI(V’),DI(V'),) in ModB}{ Bt (o, 7P"). Let r > 0
and (ey,...,eq) C DU (V)N DI (V') be such that (eq,...,eq) is a basis of the p-module DI(V) = DI (V).
Let s > r and let I = [r, s]. By lemma , the e; are locally analytic vectors in lN)i(V) = ]~3£ @gt DIT(V)
and DL (V') = ]§2 ®@gt.r DI (V') (remark that DI (V) = DI (V') as p-modules by hypothesis). In particular,
there exists n > 0 such that for all 4, exp(p™t0;)(e;) converges in (Ei(V))'a and (5,{(‘/’))'3. Hence for all 4,
the action of 77" on e; inside 15]{(‘/) and Bi(V’) are the same. As we have an injection ETLT(V) — Bi(V)
(¢f |5, Lemma 2.7]), we conclude that the 77" -actions over DI, (V) and D}, (V') coincide (hence the Tgn

rig,L rig, L
(V); and Dl (V") coincide by the proof of , which finishes the proof. O

endomorphisms over DI rig

rig
We now show how to construct a (o, 77" )-module (with n > 0) from a given (¢, d,)-module.

Proposition 5.4.11. Let D € Modx(p,d,). Then there exist n > 0 and D' € Modx x. (¢, 77" ) such that
D ~ D' in Modgx(p,0;).

Proof. For any D € Modx(p,d,), it has a natural (¢, Ny)-module structure (as Ny = —A9;). Then there
exist n > 0 and D' € Modg x, (¢, ") such that D ~ D" in Modx(p, Nv) (cf [45, Proposition 2.2.5]).

Hence the operator Ny over D' is also divisible by A (since it is for D), so that D" has a (¢, d,)-module
structure and D ~ D in Modgx (¢, 0;). O

Lemma 5.4.12. If V € Repq_ (YK) is crystalline with Hodge- Tate weights HT(V) C {2,...,h} for some
h € Nx>g, then we have an isomorphism of groups

li% Ethl\/Iodggy;RT (@,TP")(SDjig(V)’:R) - Ethl\/Iody(Lp,('?.,.)('Diig(V)7R)'

90
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Proof. We associate V with its (¢, 9, )-module D:ﬂg(V) and (p, 77" )-module Djig(V)n (notice that ‘Djig(V)n =
Diig(V) as p-modules, here we just use the subscript n to indicate it is an object of Modx % (o, 72")). If

n € N, an extension of R by D:rig(V)n is associated to an extension of Q, by V (as representations of
Yk, ), which is semi-stable by [5, Lemmas 6.5 and 6.6], whence is equipped with an operator 9, by corollary
This provides a map from EthleodR,yT(cp,fv")(pjig(v)m R) to Extll\,lodm(%aT)(Djig(V),ZR). Those maps
are compatible as n grows: this provides the map

; 1 1

oy Extiods . (g ) (D (Vs R) = Extitodse (0,0, (Dhig(V), R)-
By proposition [5.4.11] an extension F of R by Diig(V) in Modgx (¢, ;) has a (¢, 77" )-module structure for
some n > 0. This shows that the extension E comes from an extension of R by @Iig
MOdgg,ng(gO,Tpn) for some n > 0. This implies the map is surjective. Moreover, it is also injective by

proposition [5.4.10] O

Proposition 5.4.13. If V € RepQP(%K) is crystalline with Hodge-Tate weights HT(V) C {2,...,h} for
some h € Nx>a, we have a group isomorphism

(V) in the category

H (Cy.0, (V) =~ im H (Y, , V) fori € {0,1}.

Proof. When i = 0, it suffices to show that 9, (z) = 0 is equivalent to 77" (z) = z for some n > 0. This is
indeed the case as exp(p"td,) = 7" for n > 0. When i = 1, the isomorphism of lemma |5.4.12|identifies with
an isomorphism H*(C, 5 (V)) ~ im HY (G | V). O

5.4.14 H2(C, (V))

We assume k is finite.

Proposition 5.4.15. Let V € Repr (YK ), then we have a pairing of groups
H(Cp,0, (VY (1))) x H*(€p,0, (V) = Q, -
Proof. We have DT(VV (1)) = Homg: (DT (V), DT(Qp(l))). Hence we have

Ho(ego,a,(VV(l))) = (@T(Vv(l)))go:l,a,:o
= (Homgf(QT(V),DT(Qp(l))))w:LBT:O
= (Homg (DF(V), &7 ¢71))e=1.0-=0

We start with the following pairing:

H (€0, (VY(1))) X (R®ei DI(V)) = Rt

(f; ) = f(a).
Recall that elements in R can be written uniquely as series Y a,u™ with a,, € W(k)[1/p]. We define a
neZ
residue map over Rt~ as follows: for any z =t~! ¥ a,u™ =2 3 au” =1 3 buun,
nez neZ nez

res: Rt™1 — W(k)[1/p]
Z bo.
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Compose with the trace map Tr = Trwx)1/p)/ q,: W(k)[1/p] = Q,, we have the following map

H(Cy 0, (VY(1))) x (R @1 DI(V)) —

(f; )HTf(reSf( ))-
)-
)

Recall that H2(C, 5, (V)) =~ (R®@¢t DI (V))/Im((pp — 1) @ 9)
show that the above map factors through Im((pp — 1) & -
x € Im((pp — 1) ® 9, we have to show that Tr(res f(z)) = 0.

Notice that for any f € Homg(R®g1DT(V), R®e1DT(Q,(1)))#=197=0, the condition O, (f) = 0 means
that 8, o f = fo 0., and p(f) = f means that po f = f o . Indeed, the actions are 0, (f) = 0,0 f — fod,
and @(f) = po f oL,

For any 2 € R ®g1 DI(V) and f € HO(Cy o, (VV(1))), write f(z) = t™1r = t71 Y a,u™ € Rt~ with

To construct the claimed pairing, we must
C R ®gt DI(V). In other words, for any

nez
an € W(k)[1/p]. We have
Troves( (0 (2))) = Trores (9, ((x)
= Trores (0, (t" ')
= Trores (aT(rl)r n aT(r)rl)
~ 90 .
= Trores( 3 o+ 0 ()t )
= Trores (87()\/\7“) t_l)
— p
= Trores (t&()\r))
_ P,
= Trores (t udu()\r))
= Tr(0)
=0.
We have ¢(t=1) = ¢=1t~L, hence
Trores(f((pp — 1)x)) = Trores((pp — 1) f(x))
—Trores<pg0—1 t 1Zanu )
nez
—Trores<pc 1’(_ Zanu )—t~ 1Zan >
neZz nez
_1]?)\ p)‘ n
—Trores<pc Zan TZG”U )
nez nez
o —1p)‘ 7, p>\ n
= Trores <pc Z AU -5 Z Al )
nez nez
= Trores <p(p Zanu — f)\Zanu )
t neZ neZ
= Trores <p Z anU >
t
nez
= ©(bo) — bo)
= (<P 1) Tr(bo)
=0.
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where by is the constant term of p- A+ > a,u™
neZ

Hence we have the desired pairing

HY(Cg 0, (VY(1))) x H*(Cp 0. (V) = Q,
(f,z) = B(f,z) = Tr(res f(x)).

Remark 5.4.16. As ¢ = pAt and 0, (t) = 0, we have
O-(A)t+ X0-(t) = 0.

Hence

0:() = ~50-(N

and

9-(A)
-

Example 5.4.17. For V = Q,, we have D, ».(Q,) =~ R and the complex C, 5 (Q,,) is

Or (") = nt" 10, (t) = —nt"

0 R RPR R

z——=((¢ = 1)(x),0-(z))

(Y, 2) ————— 0-(y) — (pe — 1)(2).

Let’s check that H*(Cy0,(Q,)) = 0. For any x = Y z,u"™ € R, we have ag € Im(cp — 1) by lemma

neZ

[5-3.3] Hence it suffices to show that
x = Z Tpu™ € Im(8;).

neZ \{0}

Asy:= > ZI=u" satisfies 0-(y) = 2/, it is enough to show that y € R, which follows from lemma|5.4.1}

neZ \{0}

Remark 5.4.18. Let n € Z, we then have

H?(Cp0,(Q,)(n)) = Rt /(pp — 1)(RET) + 0-(RtT") ~ R /(Im(pc™ "¢ — 1) + Im(d- +n
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Chapter 6
Applications to p-divisible groups

In this chapter, we apply the results in the previous chapters to p-divisible groups, which allows us to compute
the Galois cohomology of (the dual of) the Tate module of some p-divisible group using its associated Breuil-
Kisin module.

6.1 p-divisible groups and Tate modules

Definition 6.1.1. (¢f [49]) A Barsotti- Tate group (or p-divisible group) of height h over a commutative
ring R is an inductive system (G, i,);>1 in which:

(1) G, is a finite, commutative group scheme over R of order p™";

(2) for each n, we have an exact sequence

0= Gp 2 Gpyr 2= Grgt

(that is, i, is a closed immersion and identifies G,, with the kernel of multiplication by p" on G,41).
The corresponding category of Barsotti-Tate groups over R is denoted BTx .
Remark 6.1.2. In particular, BT, is the category of Barsotti-Tate groups over the ring of integers of K.

Definition 6.1.3. Let G = hgl G, be a p-divisible group. The Tate module of G is 1£1 Gn(K), denoted T, G.

It carries a natural continuous ¢x-action on it and hence T, G € Repz (9k), inducing a functor:

Tp,: BTo, — Repg (9k)
G—T,G.

Theorem 6.1.4. The functor T, induces an equivalence of categories between BTy, and Repczris’{o’l}(%[()
(the category of crystalline representations of Y over Z, with Hodge- Tate weights in {0,1}).

Proof. cf [32, Corollary 2.2.6]. O

6.2 Some inputs from Kisin’s work

Definition 6.2.1. (1) We define a (¢, N)-module over & = W(k)[u] to be a finite free G-module 9N,
equipped with a (-similinear Frobenius ¢: 9 — 9, and a linear endomorphism

N: (D /ud) ®z, Q, = (M/uM) @z, Q,,
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Chapter 6. Applications to p-divisible groups

such that No = ppN on (M /uM) @z, Q,, .

We say that 9 is of finite E-height if the cokernel of 1 ® ¢: ¢* M — M is killed by some power of E(u).
We denote by Modg (¢, V) the category of (¢, N)-modules over & of finite E-height.

(2) (¢f [32] §2.1.3]) We denote by Mode (¢) the category of finite free G-modules equipped with an &-linear
map 1 ® p: p* M — M whose cokernel is killed by some power of E(u).

Remark 6.2.2. The category Modg () is a full subcategory of Modg (g, N) by taking the operator N to
be 0 on an object of Modg(y).

Definition 6.2.3. (¢f [32 §2.2.1]) We denote by BTZ the category consisting of objects 9 € Modg(¢)
such that 9 /p*(9) is killed by E(u), where ¢* = 1 ® ¢: * M — M. Objects of BTE are also called
Breuil-Kisin modules (or Kisin modules of height 1).

Remark 6.2.4. The category BT is a full subcategory of Mode ().

Proposition 6.2.5. There exists a functor from BTE to the category Repgis’{o’l}(%l() (the category of
P

crystalline representations of Yk with Hodge-Tate weights in {0,1}) and it induces an anti-equivalence on
the corresponding isogeny category.

Proof. cf [32, Proposition 2.2.2]. O

Definition 6.2.6. (1) (¢f [32, §1.1.4]) A p-module over O is a finite free O-module M endowed with
-semilinear injective map ¢: M — M. We denote Mod () the corresponding category.

(2) A (p, Ny)-module over O is a p-module M equipped with a differential operator Ny: M — M over
Ny: O — 0O, i.e. a map such that

(Vf € 0)(Ym e M) Nv(fm)= Ny(f)m+ fNv(m),

satisfying the condition Ny o ¢ = cp o Ny. We denote Modp (¢, Nv) the corresponding category.
(3) (cf 32, §1.3.9]) A (¢, N)-module over O is a p-module M over O together with a W(k)[1/p]-linear map

N: M/uM — M /uM

which satisfies Ny = ppN, where we have written ¢ for the endomorphism of M /uM obtained by reducing
p: M — M modulo u. We denote by Mody (¢, N) the category of (¢, N)-modules over O of finite E-height.

(4) (¢f [32, §1.2.5]) Let M € Modp(p). The associated filtered p-module D(M) is defined to be the
W(k)[1/p]-vector space M /uM together with the operator ¢ induced from M (the filtration is described in
[32, §1.2.7]).

Lemma 6.2.7. Let M be a p-module over O. There is a unique O-linear, p-equivariant morphism
£ DIM) @wry/p 0 = M,

whose reduction modulo u induces the identity on D(M). The map & is injective and its cokernel is killed by
a finite power of \. If v € (|x|,|7|'/P), then the image of the map &0, induced by & over D([0,r]) coincides
with the image of 1 ® @: (@* M)y — Mo

Proof. cf [32, Lemma 1.2.6]. O

Lemma 6.2.8. Let M € Mody (¢, Nv), the morphism
§: DM) @wyyp O = M

is compatible with the differential operator Nv (the one on the left hand side being given by 1 ® Ny ).
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Proof. This is [32, Lemma 1.2.12 (3)], noting that we have N = 0 thus n = id in our case. O

Remark 6.2.9. (1) Let M € Modg(p) and M = M ®e O the corresponding object in Modg (¢, N). Then
M is also an object in Mode(p). By lemma '6.2.8|, we have a map D(M) @w)ji/p O — M that lifts the
identity of D(M) ~ M /uM, and is compatible with ¢ and Ny. Here Ny acts on D(M) Qwi1/p O as
1® —uXLL (cf |32, 1.2]).

(2) As M /p* M is killed by some power of E(u), say E(u)" with n € N, then M/(D(M) @w)[1/p O) is
killed by A" (¢f lemma|6.2.7|and the proof of [32, Lemma 1.2.6]). Let m € M, and write m = > d; @ A™" f;

i=1
with d; € D(M) and f; € O, then we have

d

g d —-n - —n d)\ —-n
Ny(m)=>d; @ —uA@(/\ fi) = di @ (unX fige = u! du).
=1

=1

6.3 Recover 7-action from the Ny-action

Definition 6.3.1. (1) (¢f [19, Définition 2.1]) Let D be an étale ¢-module over Og . A p-lattice in D is a
finite type sub G-module 9t C D which is stable by ¢ and such that D = O ®¢ 1.

(2) (¢f [19), Définition 2.19]) Let (D, D;) be a (¢, 7)-module over (Og, O¢_). A (¢, 7)-lattice in (D, D,) is a
p-lattice M of D such that &, ®e M C O¢, ®p, D = D; is stable by 7, where &, = Og_ N W(O» ).

Remark 6.3.2. Let T € Repy (¥k) be such that V = Q, ®z,T is semistable with non negative Hodge-
Tate weights. Denote by 9t the corresponding (¢, 7)-lattice in the (contravariant) (¢, 7)-module (¢f [19]
Proposition 3.1]):

D*(T[1/p]) := Homq, g, | (T[1/p), €™) = D(TV[1/p).

(1) The underlying ¢-lattice is the object in Modg () associated to T' by Kisin in [32] (¢f [19, §3.1.1]).
(2) Put M = 0 ®g M, equipped with its operator Ny. By [19, Proposition 2.23], we have

Ny (M) C Gy ®e M,
where Sy is the set of sums of the form I;ﬁ—gﬁ)ue %=1 and the P, (u) are polynomials with coefficients in
n>0
W(k).
Definition 6.3.3. (c¢f [19) §3.3.2]) For any nonnegative integer ¢, we define

Rt — { Z anu™; vp(a,) +ilog,(n) are bounded below for n > 1}.
n>0

Remark 6.3.4. (c¢f [19, §3.3.2]) Remark that fRiZ-"t C 0. If 7 and j are two integers, the product of one
function of R by another function of R} falls into Ry ; .

Definition 6.3.5. (cf [19, §3.3.2]) We define N = id and
NgT =i 2 N 4+ Ny o NO,
U

which then define G-linear maps N(Vi): M — RM™ @ M. The operator 3 % . N(Vi) converges to a W(k)-
i>0
linear map
7: M — B

cris Qs m
(recall that B}, = As[1/p] where Ay is the p-adic completion of the divided power envelope of W(O ¢ )

with respect to the ideal generated by 1+ [e1/P] 4 [¢'/P]2 + .- + [eV/P]P~=1 ) cf [25]).
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Remark 6.3.6. (1) By [19, Remarque 3.25], we have in fact
T(M) C A®s M,

where A = W(O»)[t/p]" is the p-adic completion of W(O s )[t/p].

(2) By [19 Proposition 3.27], we have 7(9) C W(Or») @ MM, which inserts in the following commutative
square

T W(ch) ®6 m

J

O R M O¢, @M
D*(T) ® D*(T),.

(3) We have 7(uz) = [¢] - 7(z) for any = € M, which extends 7 to B},  ®e M by semi-linearity (¢f [19,
§3.3.2]).
6.4 Applications to p-divisible groups

Let G be a p-divisible group over Ok, denote T' = T, G its Tate module and 90 its associated Breuil-Kisin

module. Recall that D*(T') := Homgz 4, (T, 0gw) ~ M®e O and D*(T[1/p]) ~ M@s €.

Notation 6.4.1. Let T' € Repg (YK ), then we put

D*1(T) = Homgz, (¢, (T, Ogur.).
Let V € RepQP (9K ), then we put

D*’T(V) = Home[gKﬂ](V, Eur,’r).

Lemma 6.4.2. We have
DH(T[1/p]) = € 0o M,

hence
R@e1D*T(T[1/p]) ~ R@De M.

Proof. By [32, Theorem 2.2.7], we have
T = Homg (M, S™)
(where 8™ = Ogur N"W(O» )). Consider the following diagram
T = Homg, ,(M, ") ——— Homg, (0 ®@c M, Ogu\r) ~ Homg (M, Og;)
Homoghw((‘)y ®6 SDL OEur,T) ~ H0m67¢(m7 Ogur,'[‘).

The horizontal map is an isomorphism (cf [32, 2.1.4]), and the vertical map is injective (as Ogur.t C Ogwm),
hence all maps in the diagram are isomorphisms. We then have

Tl /pl = Hom£¢7¢(8T ®e M, 1) = ((ST Re M) @ £ )WZl.
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In particular T[1/p] C (&7 @ M)Y @g+ €T, hence we have a ¥x_-equivariant map

e ®q, T[1/p] — (&7 ©e M) @gr €T (6.1)

by €' linearity. Notice that 1) is an isomorphism after tensoring with g (as D*(T[1/p]) ~ & Re M),
hence (6.1)) is an isomorphism. We then have

D*1(T[1/p]) = Homq g (T[1/p], €™
= Homgur.t (£" ®q,T[1/p], gty
_ Homgum((gT Qs Sﬁ)v ®¢t Eur,T7 gur,’r)%(ﬂ
= Homg+ ((EF @g M), €0 1) 7xr
= (&1 0 M) @¢; £21)

=&l os M.
O
Recall that we have the following equivalences of categories:
Theorem 6.4.3. There exists an equivalence of categories between BTE and BT, .
Proof. This is [32, Theorem 2.2.7] if p > 2 and [38, Theorem 1.0.1] when p = 2. O

Remark 6.4.4. (c¢f [32, Proposition 2.2.2]) Let 9t € BTZ and M = M ®g O be the corresponding object
in Mody (g, N), then in particular M € Modg(¢). We have an operator Ny on 9 by remark [6.2.9] which
extends into a derivation on R Q¢ (0 ®e M) ~ R@e M.

6.5 Complexes with Breuil-Kisin modules
For any V' € Repq_ (9K ), recall that we have the following complex €, ,(V'), which computes the continuous

Galois cohomology of V' by theorem [[.1.13]

0 0

D(V)

DV)BD(V)ro D(V)ro

)

2 ((¢ = D(2), (Tp — 1)())

(4, 2) (0 = (1) = (¢ = 1)(2).

In particular, let G € BT o, and T, G € Repg, (¥x) be its Tate module, we then consider the represen-
tation V' = (T, G)"[1/p]. We have the complex C, -((T, G)"[1/p]) as follows:

0 ————=D((T, G)"[1/p]) —= D((T, G)*[1/p)) B D((T, G)'[1/p))r0 —— D((T, G)*[1/p])r0 ——0

T ((p = D(), (rp — 1)(=))

(y,2) (70 = 1)(y) = (¢ = 1)(2).
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Recall that we have D((T, G)Y[1/p]) ~ D*(T,G[1/p]) ~ € e M, hence we can rewrite the complex
Cy,7(V) using the Breuil-Kisin module 9t associated to T, G.

We have the formula of Ny-action over M ®eg O by remark[6.4.4] and in particular a formula of Ny-action
restricted on 9. By remark [6.3.6] we have the following formula of 7-action over 91

. )" v, "
T .:ZT-NV : M — B, @ M.
i>0
As we have seen, it takes values in W(O») ®g M, and factors through a map
Tp: M — &, Qe M,

which extends into
™: €, Qe M — €, R M.

Definition 6.5.1. Let 9 € BTZ, we define the complex C, - (M) as follows:

ERe M —— ERes MP(E, ¥ M) ———— (€, ®s M)o
x> ((¢ — 1)(@), (1p — 1)(2))

(4, 2) ——= (0 = D(y) = (¢ = D(2)

where (£, @ M) :={z €&, @cM; (Y@ l)z=1+1p+7H+-+ T(DX(’Y)_U)(SC)}.

Corollary 6.5.2. Let G € BTgy,., denote T,G its Tate module and M its corresponding Breuil-Kisin

module. Then we have . ,
H %k, (T, G)Y[1/p]) = H' (€, (M)

forallie N.
Proof. This follows from theorem [[.1.13] O

Let V € Repq (¥x) and Df,

(V) € Modx(p, Nv) the corresponding (p, Ny )-module. We have the
complex C, o (V) as follows:

T T
®rig Drig

(V) ——=DL (V)@ D! (V)

rig rig

0 (V)

2 ((¢ = D(z), Ny ()

(y, 2) ————— Ny (y) — (cp — 1)(2).

By proposition |5.3.17 we have H'(Cy, ng (V) ~ mH (%, ,V) for i € {0,1}. By lemma , for
G € BTy, we have
R@et DT, G[1/p]) =~ Me R.

Let V= (T,G)"[1/p] € Repq, (9K ), we can rewrite the complex with corresponding Breuil-Kisin modules.
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Definition 6.5.3. For any 9 € BTE, we define the complex C,, n, (9M) as follows:

04>9ﬁ®693—>9ﬁ®693@9ﬁ®6314>9ﬁ®6?4>0
z———((¢ — 1)(z), Nv(z))

(Y, 2) F——>Nv(y) — (cp = 1)(2)

where the action of Ny is given by the formula in remark

Corollary 6.5.4. Let G € BTy,., denote T,G its Tate module and M its corresponding Breuil-Kisin
module. Then we have

HY(Cy g (M) = iy HY (e, (T, G)Y[1/p]) for i € {0,1}.

Proof. This follows from proposition [5.3.17 O
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