
HAL Id: tel-03375226
https://theses.hal.science/tel-03375226

Submitted on 12 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Relativistic phases in condensed matter
Eric Brillaux

To cite this version:
Eric Brillaux. Relativistic phases in condensed matter. Condensed Matter [cond-mat]. Université de
Lyon, 2021. English. �NNT : 2021LYSEN018�. �tel-03375226�

https://theses.hal.science/tel-03375226
https://hal.archives-ouvertes.fr


Numéro National de Thèse : 2021LYSEN018

THÈSE DE DOCTORAT DE L’UNIVERSITÉ DE LYON

opérée par

l’École Normale Supérieure de Lyon

École Doctorale N°52
Physique et Astrophysique de Lyon

Discipline : Physique

Soutenue publiquement le 12/07/2021 par :
Éric BRILLAUX

Relativistic Phases in Condensed Matter
Phases relativistes en matière condensée

Devant le jury composé de :

Meyer, Julia Professeure CEA Grenoble Rapporteure
Le Doussal, Pierre Directeur de Recherche LP ENS Rapporteur
Vozmediano, María Professeure ICMM Examinatrice
Gurarie, Victor Professeur University of Colorado Examinateur
Carpentier, David Directeur de Recherche LP ENS de Lyon Directeur
Fedorenko Andrey Chargé de Recherche LP ENS de Lyon Co-encadrant



Abstract — This thesis focuses on the electronic properties of crystalline materials known
as relativistic semimetals, where the energy bands touch linearly at discrete points of
the Brillouin zone. A historical example of such material is graphene, whose elementary
excitations behave as two-dimensional massless Dirac fermions, even though they propagate
at sublight speed. Massless relativistic fermions also appear in the spectrum of three-
dimensional materials: Weyl and Dirac semimetals. In this thesis, we analyse the stability
of the band crossing points with respect to perturbations, either disorder or interactions.
The first part addresses the disorder-driven continuous phase transition of a Weyl semimetal
to a metallic phase. In this semimetal-metal transition, which differs from Anderson’s
localisation, the disorder-averaged density of states acts as an order parameter. As an
alternative way to characterise the transition, we study a continuous set of exponents,
the multifractal spectrum, which encodes the geometrical properties of the critical wave
functions. These multifractality exponents, which we determine within a renormalisation
group approach, govern the scaling law of the typical density of states. We also investigate
the fate of surface states in disordered Weyl and Dirac semimetals using a self-consistent
approximation, and show that the Dirac surface states undergo a similar disorder-induced
transition. The second part addresses twisted bilayer graphene, a system where the
interplay between interlayer tunnelling and the moiré geometry of the bilayer leads to an
unusual ‘magic’ angle physics. The Fermi velocity vanishes at a discrete set of so-called
magic angles, which enable many-body effects to dominate the electronic properties. We
classify all contact interactions allowed by symmetry, and develop a renormalisation group
approach to study the competition between the relevant instabilities. We explain the
emergence of a gapped phase at charge neutrality that breaks the three-fold rotational
symmetry, which we call a nematic insulator.

Résumé — Cette thèse traite des propriétés électroniques de cristaux où les bandes
d’énergie se croisent linéairement : les semimétaux relativistes. Un exemple historique en est
le graphène, dont les excitations élémentaires se comportent comme des fermions de Dirac
sans masse. Les fermions relativistes se rencontrent aussi dans les semimétaux de Weyl et
de Dirac. Nous étudions ici la stabilité du point de croisement vis-à-vis de perturbations
(désordre ou interactions). Dans une première partie, nous caractérisons la transition
de phase continue induite par le désordre (différente d’Anderson) entre un semimétal de
Weyl et un métal, dont la densité d’états moyenne sert de paramètre d’ordre. Comme
signature alternative, nous étudions un ensemble d’exposants, le spectre multifractal, qui
décrit les propriétés géométriques des fonctions d’ondes critiques, et dicte la loi d’échelle
de la densité d’états typique. Nous déterminons ces exposants à partir d’une approche de
groupe de renormalisation. Nous étudions aussi les états de surface des semimétaux de
Weyl et de Dirac désordonnés par une approximation auto-cohérente, et montrons que les
états de surface de Dirac deviennent également métalliques. Dans une seconde partie, nous
discutons des bicouches de graphène dont les axes cristallins sont décalés d’un léger angle.
Suite aux sauts des électrons entre couches, la vitesse de Fermi s’annule à certains angles
« magiques », ou l’énergie cinétique devient comparable à l’énergie d’interaction. Nous
identifions toutes les interactions autorisées par les symétries, et étudions leur compétition
à partir d’une méthode de groupe de renormalisation. Nous expliquons l’émergence au
point de neutralité d’une phase isolante dont la densité d’états locale brise la symétrie de
rotation, que nous appelons isolant nématique.
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Introduction

Condensed matter physics aims at explaining the macroscopic properties of solids and
liquids from the collective behaviour of the microscopic constituents. Among the most
studied phases, crystalline solids, which consist of a periodic assembly of atoms, have
played a pivotal role in the development of condensed matter physics. One reason for
this success may be that the prospect of their applications has driven the activity of the
scientific community and oriented the research direction towards the understanding of
crystalline matter. At any rate, these materials have greatly interested physicists because
of the relative simplicity to describe them, in contrast to amorphous solids and liquids,
which lack positional order. Crystalline solids offered a wonderful playground for the
new-born quantum mechanics during the 1930’s, and have arguably represented one of its
greater successes (Kittel 1971).

With the electronic band theory in their toolbox, condensed matter physicists have
managed to classify crystalline solids according to their electronic properties. Metals, in
particular, have the ability to carry electrical currents with limited power loss, because
the electrons within move almost freely. The study of metals led to major discoveries on
electricity and magnetism, and enabled a formidable industrial and technological progress
during the xixth century. Other materials were discovered around the same period,
whose electrical conduction properties are dramatically enhanced by temperature or the
presence of impurities. These so-called semiconductors have spurred numerous applications,
especially since the design of the first transistor from gold-semiconductor contacts at the
end of the 1940’s (Bardeen 1948). By acting as amplifiers and switches, transistors now
constitute the building block of computer-based devices, which have shaped the modern
technological landscape. While these ‘conventional’ semiconductors present a window of
energy forbidden to electrons – a gap –, some exotic materials with a vanishing energy
gap have recently spurred a renewed interest. In these particular semimetals, intermediate
between semiconductors and metals, the electron dynamics mimics the behaviour of
massless relativistic particles. For this reason, these materials are also called relativistic
semimetals. The first isolated material of this kind was graphene in 2004, a monoatomic
layer of carbon peeled from graphite (Novoselov 2004). Three-dimensional analogues of
graphene closely followed, in the form of Dirac (Liu 2014) and Weyl (Lv 2015) semimetals.

Relativistic semimetals enjoy extraordinary properties. For example, the high mobility
of its electrons endows graphene with an excellent electrical and thermal conductivity,
which foretells promising applications; the fastest field-effect transistor designed by IBM
are already based on graphene technology, and operates at frequencies larger than 100 GHz,
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where silicon-based transistors hardly reach 1 GHz (Wu 2011). The most exotic features
of graphene, though, arise from the relativistic nature of its elementary excitations. To cite
only one, the Hall effect of massless particles differs from their massive counterparts; under
a large perpendicular magnetic field, the transverse conductivity of graphene varies in steps
with an unusual half-integer quantisation rule. Weyl and Dirac semimetals also display
exotic phenomena. These materials host surface states at zero energy, which therefore
require no doping to transport charge carriers, and which can refocus electronic wave packets
through negative refraction (Chen 2020). In Weyl semimetals, the elementary excitations
possess a degree of freedom related to the so-called chiral symmetry. Remarkably, a subtle
property of the theory of chiral fermions, the chiral anomaly, leaves unique signatures in
magneto-transport measurements. The low-energy physics of relativistic semimetals thus
offers interesting parallels with the high-energy physics of elementary particles. Through
these exotic materials, some theoretical predictions of quantum field theory finally bear
experimental consequences in condensed matter physics.

Yet, perturbations of the electron dynamics can dramatically affect the properties of
relativistic semimetals. A strong enough disorder, for example, can destroy the linear
band crossing points of pristine three-dimensional materials. Disordered Weyl and Dirac
semimetals thus transit to a metallic phase through a quantum critical point, near which
some observables (such as the density of states) obey universal scaling laws. This phase
transition differs from other disorder-driven quantum phase transitions such as Anderson’s
localisation. Similarly, many-body effects alter the electron dynamics when the kinetic
and electron-electron interaction energies are comparable. For example, interactions play
a crucial role when the tunnelling between crystalline membranes overlaid with a relative
twist quenches the electron kinetics. In twisted bilayer graphene, notably, interlayer
tunnelling entirely suppresses the quasi-particles velocity and flattens the energy bands
at specific ‘magic’ values of the twist angle. Electron-electron interactions then prevail
and lead to an extraordinarily rich phase diagram, where diverse correlated orders –
superconducting, insulating, nematic, etc. – emerge, and combine or compete.

In this thesis, we investigate some aspects of relativistic phases in presence of perturba-
tions. We resort to a field-theoretical formalism to describe the effective low-energy physics
of these perturbed phases, either of Weyl fermions moving in the background of random
defects (in disordered Weyl semimetals) or two-dimensional Dirac fermions experiencing
many-body correlations (in twisted bilayer graphene). We rely heavily on renormalisation
group methods to study the large-scale behaviour. The manuscript is organised as follows.

• In Chapter 1, we define and characterise relativistic semimetals. After presenting
the Dirac equation, we recall the basics of electronic band theory, propose a simple
atomistic model for graphene, and review the topological, surface and transport
properties of relativistic semimetals. We also present the renormalisation group
approach, which we will use extensively in the rest of this thesis.

• In Chapter 2, we focus on the phenomenological aspects of the new non-Anderson
transition found in disordered three-dimensional relativistic semimetals. We recall
the key features of the well-known Anderson transition, and discuss how to treat
disorder in relativistic semimetals. We then present the scaling laws of some critical
observables, and prove the existence of this semimetal-metal transition within a
self-consistent approximation. Finally, we analyse the multifractal nature of the
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critical wave functions, which leads in particular to different scaling laws for the
typical and average observables.

• In Chapter 3, we analyse the semimetal-metal transition in presence of both short-
range and long-range correlated disorder through the lens of the renormalisation
group. We build an effective theory for disordered Weyl semimetals, determine
the renormalisation flow of the disorder strengths, and compute the multifractal
exponents of the critical wave function and the scaling exponent of the typical
density of states. We compare our results to similar non-Anderson transitions and
to Anderson’s localisation.

• In Chapter 4, we study the surface properties of disordered Weyl and Dirac semimetals.
We design a self-consistent approximation to determine the local density of states,
and investigate the fate of surface states in presence of disorder. In particular, we
show that criticality manifests itself in Dirac surface states, while Fermi arcs avoid
this surface critical point.

• From Chapter 5 onwards, we address twisted bilayer graphene. We study the
emergence of large moiré patterns in twisted bilayer graphene, and explain phe-
nomenologically how interlayer tunnelling flattens the energy bands at specific ‘magic’
angles. We also present the experimental phase diagram of magic angle twisted
bilayer graphene, which acquires a superconducting, insulating or nematic character
upon doping.

• In Chapter 6, we build a low-energy theory of twisted bilayer graphene near charge
neutrality; first at the single-particle level (including the interlayer tunnelling), where
we diagonalise the Hamiltonian perturbatively in the tunnelling strength; then in
presence of all electronic interactions allowed by symmetry, which we classify using
the theory of group representations.

• In Chapter 7, we study the non-standard theory developed in the previous chapter
within a mean-field and a renormalisation group approach to the model, where we
expand perturbatively in both the tunnelling and interaction strengths. From the
renormalisation flow, we analyse the competition between different instabilities, and
show that the proximity to the magic angle favours the emergence of a gapped
phase with a broken three-fold rotational symmetry at charge neutrality, which is
compatible with experiments.
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Chapter 1
Relativistic condensed matter

Condensed matter offers a wonderful playground for quantum mechanics, where the
geometry and nature of the atomic lattice, the interplay between internal degrees of
freedom, and many-body effects can lead to exotic electronic phases. New phases of
matter recently attracted attention, where emergent excitations mimic the behaviour of
the fundamental particles near light speed, which is governed by relativistic quantum
physics. The birth of this research area – relativistic condensed matter – dates to the first
experiments on graphene, a single layer of carbon atoms, which hosts two-dimensional Dirac
fermions as elementary excitations; the later realisation of three-dimensional analogues of
graphene, the Weyl and Dirac semimetals, rekindled interest in this domain.

In this introductory chapter, we review the famous Dirac equation, which we apply
to the case of two spatial dimension, and from which we derive the Weyl equation for
massless fermions. We then recall the basics of electronic band theory to define relativistic
semimetals, namely graphene and Weyl and Dirac semimetals. We also review their
topological, surface and transport properties. The stage will then be set to define the
goal of this thesis, which consists in studying the stability of the semimetallic phase under
disorder or interactions. To do so, we will need to introduce the renormalisation group
approach for effective interacting theories.

1.1 Relativistic quantum physics . . . . . . . . . . . . . . . . . . . 6
1.1.1 The Dirac equation . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Special cases of the Dirac equation . . . . . . . . . . . . . . . . 8

1.2 Relativistic semimetals . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Electronic band theory . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.2 From metals to relativistic semimetals . . . . . . . . . . . . . . 14
1.2.3 Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.4 Weyl and Dirac semimetals . . . . . . . . . . . . . . . . . . . . 19

1.3 Hallmark of relativistic semimetals . . . . . . . . . . . . . . . . 23
1.3.1 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.2 Surface states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5



Chapter 1. Relativistic condensed matter

1.3.3 Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.4 What this thesis is about . . . . . . . . . . . . . . . . . . . . . . 37

1.4.1 Disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.4.2 Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.5 The renormalisation group . . . . . . . . . . . . . . . . . . . . . 40
1.5.1 Renormalisation in spirit . . . . . . . . . . . . . . . . . . . . . 41
1.5.2 Perturbative expansion . . . . . . . . . . . . . . . . . . . . . . 50

1.1 Relativistic quantum physics
1.1.1 The Dirac equation
Introduction — Quantum mechanics matured dramatically during the 1920s. The
principles of the quantum world – the wave-particle duality, the probabilistic interpretation
of the wave function, the uncertainty principle, the effect of measurement – were all set
at that time. Despite its many successes in explaining experimental data, such as the
photoelectric effect or the atomic spectra, quantum mechanics did not incorporate the
notion of relativistic invariance developed earlier by A. Einstein. Its relativistic extension
came soon after, at the end of the same decade. In 1928, British physicist P. Dirac
proposed the eponymous relativistic equation for quantum particles (Dirac 1928):

(i~γµ∂µ −mc)Ψ = 0. (1.1)

Not only did P. Dirac unite quantum mechanics (through Planck’s constant ~) and special
relativity (through the speed of light c) in a most elegant fashion; he also included
naturally the intrinsic angular momentum of particles – the spin – recently discovered by
G. Ulhenbeck and S. Goudsmit (Goudsmit 1926). The Dirac equation describes all spin
one-half particles, which comprises all fermions encountered in particle physics, such as
electrons, protons and neutrons. It marks the birth of relativistic quantum mechanics,
which later shaped into a powerful theory of the interaction of light and matter: quantum
electrodynamics.

From Schrödinger to Dirac — Textbooks do not usually follow the historical path
that led P. Dirac to postulate Eq. (1.1) from the Schrödinger equation (Peskin 1995).
The reason is that the dynamical variable of quantum mechanics (the wave function ψ)
and its relativistic counterpart (the Dirac field Ψ) are essentially different objects. But
because we deem Dirac’s thread of thought of high pedagogical interest, we will present
its historical derivation (Bjorken 2013; Srednicki 2007).

The Shrödinger equation rests on the non-relativistic expression E = p2/2m for the
energy E of a free massive particle of mass m and momentum p. Quantum mechanics
describes particles as a scalar field ψ(r, t) function of space r and time t, the so-called
wave function. By promoting the energy E and momentum p to their equivalent quantum
operators i~∂t and −i~∂ respectively, E. Shrödinger found the differential equation

(
i~ ∂t + ~2∂2

2m2

)
ψ = 0. (1.2)
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Clearly, Eq. (1.2) breaks relativistic invariance, since time and space derivatives appear at
different orders (first order for time, second order for space). To treat time and space on
an equal footing, we should start instead from Einstein’s formula

E = c
√
p2 +m2c2. (1.3)

But how to make sense of the square root once we substitute the momentum for its
quantum operator? To circumvent this problem, we may consider squaring Eq. (1.3) to lift
the root, and then make quantum replacement. This leads to the Klein-Gordon equation,

(
~2∂µ∂µ +m2c2

)
ψ = 0, (1.4)

where repeated indices are contracted according to Einstein’s sum rule, ∂µ∂µ = ∑3
µ=0 ∂

µ∂µ =
∂2
ct − ∂2. P. Dirac originally discarded Eq. (1.4) because of the impossibility to build a

positive probability density, but the Klein-Gordon equation was later resurrected as a
relativistic equation for scalar quantum fields, which describe spinless particles.

In the hope of preserving a positive density, P. Dirac built a first-order equation out of
the second-order Eq. (1.4), so as to somehow restore the initial square root. The most
general form for a first-order equation of the Dirac field Ψ reads

(i~ ∂ct + i~α · ∂ −mc) Ψ = 0, (1.5)
where the coefficients α = (α1, α2, α3) and β must be compatible with the relativistic
energy-momentum relation (1.3). Taking the square of Eq. (1.5), we see immediately that
these coefficients cannot be simple scalars, but must satisfy the algebra

{αi, αj} = 2δij, {αi, β} = 0, (1.6)
where the curly brackets {A,B} stand for the anticommutator AB + BA. This entails
that (α1, α2, α3) and β are hermitian traceless matrices: the field Ψ no longer represents a
scalar, but a vector constrained by the transformation laws of special relativity. Such an
object is called a spinor. As for the Schrödinger equation, Eq. (1.5) admits a Hamiltonian
formulation. Indeed, it can be written as i~ ∂tΨ = HΨ, where the Hamiltonian reads

H = −i~cα · ∂ + βmc2 (1.7)
The Hamiltonian formulation of Eq. (1.7) will be of utmost importance in Sec. 1.2, where
it will enable us to make contact with the standard quantum mechanics of crystalline
materials.

The Dirac matrices — The above matrices satisfy further constraints. In particular,
they square to the identity: α2

i = β2 = 1. Their eigenvalues are thus ±1, and since the
matrices have zero trace, they possess equally many positive and negative eigenvalues.
Hence, (α1, α2, α3) and β must be even-dimensional. In three spatial dimensions, this
enforces the spinor to be made of at least four components, thus defining a four-dimensional
linear representation of the Lorentz group. Now, to make the relativistic invariance of
Eq. (1.5) more explicit, one usually defines the Dirac matrices γ0 = β and γi = βαi, such
that multiplying Eq. (1.5) by γ0 finally gives Eq. (1.1). Relativistic invariance becomes
clear from the properties of the Dirac matrices, which satisfy the Clifford algebra

{γµ, γν} = 2ηµν . (1.8)
The Minkowski metric ηµν , with signature (+,−,−,−), together with the speed of light c,
constitute indeed the two fundamental characteristics of space-time.
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Particles and antiparticles — In building Eq. (1.5), we glossed over a detail of high
importance. Indeed, by squaring the energy-momentum relation of Eq. (1.3) to find the
Klein-Gordon equation, we allowed for positive energy states, for which

E = +c
√
p2 +m2c2, (1.9)

but also for unintended negative energy states, for which

E = −c
√
p2 +m2c2. (1.10)

This doubling in the number of eigenstates also transpires in the size of the Dirac spinor,
which bears four components, while we expect spin one-half particles to be in only two
states, spin up or spin down. This seriously threatens the theory, since in absence of any
lower energy bound, there is no ground state. Unless, as P. Dirac suggested, unobservable
particles occupy all negative energy states, and excitations of this ground state, known as
the Dirac sea, appear as pairs of a particle and an antiparticle (both with positive energy).
The total charge being conserved, an antiparticle carries the same mass and spin, but the
opposite charge as its particle counterpart. The positron (the antiparticle of the electron)
was indeed observed a few years later (1932), and lent strong credence to Dirac’s theory.
Antiparticles became a key concept in condensed matter physics beyond the context of
relativity, where they are known as holes. Electrons and holes alike contribute to the
electrical, optical, and thermal properties of certain solids, especially the semiconductors.

1.1.2 Special cases of the Dirac equation
The Dirac equation accurately describes the massive fermions which live and move in
the real three-dimensional world. But some theorists, among which features H. Weyl ,
drawn by sheer curiosity, searched for more exotic particles that would also meet the
requirements of relativistic quantum mechanics. Their discoveries turned out to be of high
interest in condensed matter physics, where emergent phenomena sometimes exhibit the
same behaviour as those exotic particles. We review below two special cases of the Dirac
equation: the two-dimensional Dirac equation and the Weyl equation.

The Dirac equation in two space dimensions — In Sec. 1.1.1, we derived the Dirac
equation in three space dimensions, putting the total count to four space-time dimensions.
We found it impossible to define a set of four matrices satisfying the Clifford algebra (1.8) if
they are less than four-by-four. Yet, it is possible to find a set of only three anticommuting
two-by-two hermitian matrices. Thus, if particles are ascribed to move in two spatial
dimensions, the Dirac spinor need only have two components instead of four. We know
that the Pauli matrices (σ1, σ2, σ3) generate the space of two-by-two hermitian matrices;
they also satisfy the anticommuting relation {σi, σj} = 2δij, like the matrices αi and β of
Eq. (1.5). Guided by this similarity, we try to build realisations of the Dirac matrices from
the Pauli matrices. We start by setting γ0 = β = σ3. From then, two equally convenient
choices for (γ1, γ2) are




γ1 = γ0σ1 = +iσ2

γ2 = γ0σ2 = −iσ1
, or




γ1 = −γ0σ1 = −iσ2

γ2 = +γ0σ2 = −iσ1
. (1.11)
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A quick check shows that Eq. (1.11) is indeed consistent with the anticommutation rules
{γµ, γν} = 2ηµν , for µ, ν = 0, 1, 2. The Dirac Hamiltonian stems from the Pauli matrices as

H = cσ · p+mc2σ3, or H = −cσ∗ · p+mc2σ3, (1.12)

depending on the chosen representation, and where the two-dimensional Pauli vector σ =
(σ1, σ2) represents the spin. Importantly, the third Pauli matrix σ3 plays a different role
than σ1 and σ2 in two space dimensions, since it does not couple to a kinetic variable, but
to the particle mass.

The helicity operator — Both Hamiltonians of Eq. (1.12) involve the projection of the
momentum p along the spin operator σ. In particular, in the limit of massless Dirac
fermions, the first Hamiltonian reduces (up to some factor) to the helicity operator

h = σ · n, (1.13)

where n = p/p is the direction of momentum. The second Hamiltonian of Eq. (1.12)
follows from the first one by applying the antiunitary time reversal operation T , which
reverses p and complex conjugates σ. Helicity thus provides a good quantum number
for massless fermions, and its two eigenvalues ±1 label the positive and negative energy
states. These results hold in any dimension; we will use the notion of helicity again in the
next paragraph on the massless Dirac equation in three spatial dimensions, known as the
Weyl equation.

The Weyl equation — Let us go back to the three-dimensional case. The Dirac matrices
are primarily defined by the Clifford algebra of Eq. (1.8), and so many possible ways
exist to represent the Dirac matrices. These representations are all related by a unitary
transformation. Among the most natural choices, the Dirac matrices admit a compact
relativistic representation in the so-called Weyl basis, where

γµ =

 0 σµ

σµ 0


 , (1.14)

where σµ = (σ0,+σ), σ̄µ = (σ0,−σ), σ0 is the two-by-two identity matrix, and σ =
(σ1, σ2, σ3) the three-dimensional Pauli vector. The Dirac equation then reads


 −mc i~(∂ct + σ · ∂)
i~(∂ct − σ · ∂) −mc


Ψ = 0. (1.15)

The convenience of the Weyl basis becomes clear in the context of massless Dirac
fermions. By setting m = 0 in Eq. (1.15), the Dirac equation decouples into two separate
blocks. If one splits the Dirac spinor Ψ into left- and right-handed parts (ΨR,ΨL), each
subspinor satisfies its own equation of motion

(∂ct ± σ · ∂)ΨR,L = 0, (1.16)

where the plus and minus signs apply to ΨR and ΨL, respectively. Eq. (1.16) is known
as the Weyl equation, in tribute to German theorist H. Weyl, which first introduced the
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left- and right-handed subspinors (Weyl 1929). The block decomposition of the massless
Dirac equation (1.15), though more obvious in the Weyl basis of Eq. (1.14), holds in any
representation. The possibility of such decomposition stems from the reducibility of the
Dirac spinor as a four-dimensional representation of the Lorentz group, which breaks down
into a direct sum of two conjugate irreducible representations (Srednicki 2007). To cast
the Dirac equation into this block-diagonal form in a systematic way, we introduce the
chiral matrix

γ5 = iγ0γ1γ2γ3 =

σ0 0

0 −σ0


 . (1.17)

It is hermitian, squares to identity, and anticommutes with the Dirac matrices: {γ5, γµ} = 0.
Thanks to these properties, we can build chiral projectors PR,L = 1

2(1 ± γ5), whose
eigenvectors PRΨ = ΨR and PLΨ = ΨL are nothing more than the left- and right-handed
Weyl spinors, and which satisfy, for a zero mass, the evolution equations i~ ∂tΨR,L =
HR,LΨR,L, with Hamiltonian HR,L = ∓cσ · p. This notion of chirality, i.e. the possibility
to break down a Dirac spinor into two elementary constituents, each belonging to an
irreducible representation of the Lorentz group, applies to massive fermions as well, but
provides a good quantum number for massless fermions only.

Note that for massless fermions with a fixed energy (either positive or negative), the
chiral eigenvectors ΨR,L coincide with the eigenvectors of the helicity operator, as a result of
Eq. (1.16). This should not blur the distinction between those two concepts: chirality refers
to a distinct representation of the Lorentz group: chiral eigenvectors are thus invariant
under a Lorentz boost; helicity refers to the projection of the spin on the direction of
motion, which for massive particles can always be reversed through a well-chosen change
of reference frame. We will see that in condensed matter the notion of chirality extends to
spinors with more than two components thanks to topological considerations.

1.2 Relativistic semimetals
Neutrinos were once promising candidates for Weyl fermions, until the observation of
oscillations in the flavour of solar neutrinos definitely proved that they possess a small
but non-zero mass (Fukuda 1998). At present, the standard model of particle physics
excludes exotic fermions (Weyl and, for obvious reasons, two-dimensional Dirac) from the
list of elementary particles. Yet, these particles do emerge in condensed matter physics
as effective low-energy excitations (quasi-particles) in crystalline solids, as we will see in
Sec. 1.2.1 and Sec. 1.2.2. The sighting of relativistic quasi-particles dates back to the
study of Luttinger liquids (Giamarchi 2004). In these one-dimensional electronic phases,
particles move at the Fermi velocity vF, which, as in all electronic phases, is more than
two orders of magnitude smaller than the speed of light c, and depends on the details of
the material. However, all metals in one dimension follow the Luttinger physics, which
means that Luttinger liquids are rather trivial realisations of relativistic quasi-particles.

Relativistic condensed matter really came under the spotlight in 2004 when K. S.
Novoselov and A. Geim isolated graphene, a atomically thick layer of graphite (Novoselov
2004). As we will see in Sec. 1.2.3, graphitic layers had been studied theoretically for a long
time (Wallace 1947), but the works of Novoselov and Geim mark the first experimental
discovery of Dirac fermions in two dimensions. It was later predicted numerically that three-
dimensional alloys known as pyrochlore iridates should host massless Weyl excitations
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due to strong electron-electron interactions (Wan 2011). Weyl quasi-particles were
indeed observed in 2015 by several teams in tantalum-based compounds (Lv 2015; Xu
2015b). Around the same period, massless Dirac excitations were spotted in sodium
bismuthide (Liu 2014b). Subsequent efforts revealed many other examples of such three-
dimensional materials, which we will present in Sec. 1.2.4. Those phases that host either
two- or three-dimensional relativistic excitations, which includes graphene, Weyl and Dirac
semimetals, are commonly known as relativistic semimetals.

1.2.1 Electronic band theory
Introduction — Condensed matter physics describes dense macroscopic phases and
especially crystalline solids, through their mechanical, thermal, magnetic or electrical
properties. Although the term crystal originally referred to ice or gems, its meaning
extended after the xviie century to all solid chunks that present a regular aspect (Kittel
1971). During the xixe century, mineralogists understood that this regularity originates
from the periodic arrangements of elementary constituents at the microscopic scale. In
1912, M. Von Laue proposed to probe this microscopic arrangement using X-rays. By
diffracting on the atomic lattice, a light with a wave length of the order of the lattice
spacing should form specific intensity patterns that reveal the underlying crystalline
structure. One year later, W. L. Bragg experimentally determined the structure of the
ionic crystals KCl, NaCl, KBr and KI, thereby validating Von Laue’s theory.

Crystals exhibit rich electrical properties. The electrical conductivity, which measures
how easily a material transports electrical charges when subject to a potential difference,
covers an incredibly large range – it varies of thirty orders of magnitude from the best
conductors (noble metals, such as copper, silver, gold) to the strongest insulators (diamond).
In metals, a sufficient number of electrons are able to carry an electrical current through
the periodic lattice formed by the residual cations. Those are the conduction electrons,
as opposed to the valence electrons, which are firmly bound to the cations. The classical
Drude theory predicts that conduction electrons should frequently collide with the cations
over distances of the order of the lattice spacing. This is not the case: measurements
show that the average distance of free motion – the so-called mean free path – extends to
hundreds of atomic distances. This suggests that electrons scatter on defects or thermal
excitations of the lattice (phonons), rather than on the ions themselves. In fact, they
should propagate freely in a perfectly periodic potential! Electronic band theory explains
this paradoxical result. To do so, we solve the quantum mechanical problem of a single
electron in a periodic potential, under some approximation scheme.

Bloch waves — Free electrons are described as static plane waves ψ(r) ∝ eik·r with wave
vector k. Thanks to the continuous translational invariance, k is a good quantum number
and can be used to label the energy eigenstates. When the electrons are enclosed in a box
of size L, periodic boundary conditions quantise the components of the wave vector in
units of 2π/L, as shown in Fig. 1.1(a). In a perfect crystal, a gas of conduction electrons
feels the periodic potential U(r) of the cations, which demote the continuous to a discrete
translational invariance. As a result, the single-particle, or Bloch Hamiltonian

H(r) = −~2∂2

2m + U(r) (1.18)

11



Chapter 1. Relativistic condensed matter

is invariant under translations by a lattice vector T , namely H(r + T ) = H(r). Since
lattice translations commute with one another and with the Hamiltonian, these operators
are all co-diagonalisable. In analogy with the free case, let us write as eik·T the eigenvalues
of the translation operators, and let ψk(r) be the corresponding energy eigenstate. We see
that the wave functions deviate from a plane wave only by an envelope that shares the
lattice periodicity,

ψk(r) = eik·ruk(r), (1.19)

where uk(r + T ) = uk(r) for all T . This theorem, due to F. Bloch, constitutes the central
result of electronic band theory (Bloch 1929). A wave function of the form (1.19) is called
a Bloch wave. As for plane waves, Bloch waves are indexed by a vector k, which reduces
to a wave vector in the limit of zero lattice potential, and satisfies the same boundary
conditions. It also enters conservation laws in electron-phonon scatterings; for this reason,
the quantity ~k (or abusively, k itself) is known as the crystal momentum. However, the
crystal momentum differs from the conjugate momentum p = i~∂, since the envelope of
the Bloch wave uk(r) also carries spatial variations.

The first Brillouin zone — We have already shown that the wave vector and the crystal
momentum admit a lower bound due to periodic boundary conditions, of order 2π/L,
with L the system size. On the microscopic scale, the lattice spacing a also constrains
crystal momentum by setting a upper bound π/a, as shown in Fig. 1.1(a). This upper
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Figure 1.1 | (a) The energy-momentum relation of free electrons is quadratic: E = ~2k2/2m,
with E the energy and k the wave vector. On a one-dimensional lattice of constant a, it is
convenient to systematically choose the crystal momentum k inside the first Brillouin zone
[−π/a, π/a]. The folding of the energy-momentum relation to the first Brillouin zone leads to
an infinite number of energy bands En(k) with band index n. Periodic boundary conditions
quantify the wave vector in units of 2π/L, where L denotes the system size. (b) A weak periodic
potential favours the formation of stationary waves near the corners of the Brillouin zone, thus
bending the bands outwards and creating an energy gap ∆. The highest occupied band (valence
band) can carry electrical charges if it is partially filled, i.e. if the Fermi level EF lies below
the gap, in which case the material is metallic, or semi-metallic. Otherwise, the material is an
insulator because electrons cannot reach the upper band (conduction band) at zero temperature
(case shown here).
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1.2. Relativistic semimetals

bound has the following interpretation. Any one-dimensional plane wave whose wave
vector k′ exceeds π/a coincides on all lattice sites with another plane wave of wave vector
k < π/a. Thus, k and k′ carry the same information, and we can conventionally assign to
any Bloch wave a crystal momentum in the range [−π/a, π/a]. In higher dimensions, the
set of the differences k′ − k = G of all such vectors organises into a periodic lattice: the
reciprocal lattice. And the locus of all crystal momenta closer to the origin than any other
point of the reciprocal lattice delimits a primitive cell, called the (first) Brillouin zone.
While the Brillouin zone reduces to the interval [−π/a, π/a] in one dimension, it takes
more complex and diverse shapes in three-dimensional crystals. For instance, Fig. 1.2(a)
and 1.3(b) show the Brillouin zones for the face-centred cubic and body-centred tetragonal
lattices, respectively. When representing Bloch waves, we will always choose the crystal
momentum within the Brillouin zone.

Energy bands in the weak potential limit — The energy E(k) depends on crystal
momentum for arbitrary large values of k, including outside the Brillouin zone, so that
physically equivalent Bloch waves ψk, whose crystal momenta differ by a vector of the
reciprocal lattice, have different energies. To represent all energies associated with a given
crystal momentum, we fold the graph of the function E(k) onto the Brillouin zone. This
leads to an infinite set of energy bands En(k) labelled by a band index n. Free electrons
only possess a kinetic energy

EK(k) = ~2k2

2m , (1.20)

which is a continuous function of crystal momentum, so that the energy bands touch at
the corners of the Brillouin zone, as in Fig. 1.1(a). The energy spectrum is connected.

In the background of the lattice potential, conduction electrons prefer instead to
form stationary waves near the corners of the Brillouin zone because of Bragg reflections.
This opens forbidden regions, or gaps, in the energy spectrum, as in Fig. 1.1(b). To
show this, let us consider a one-dimensional lattice, and keep only the first Fourier
components of the lattice potential U(x) = 2U1 cos(G1x). Let uk(x) = ∑

GC(k −G)e−iGx
be the envelope of the Blotch wave, where the sum extends over all reciprocal lattice
vectors G, and 2G1 = 2π/a is the smallest non-trivial reciprocal vector. The eigenvalue
equation Hψk = Eψk can be massaged into


EK(k)− E U1

U1 EK(k − 2G1)− E




C(+G1)
C(−G1)


 =


0

0


 . (1.21)

The system (1.21) admits a non-trivial solution if the determinant of the left matrix vanishes.
Close to a corner of the Brillouin zone, δk = k −G1 � k, and for a weak potential U1 �
EK(G1), the roots of the determinant equation lead to two energy bands (Kittel 1971)

E±(k) ' EK(G1)± U1 + EK(δk)
(

1± 2EK(G1)
U1

)
(1.22)

The presence of the potential U1 opens an energy gap ∆ = 2U1 at the corners k = ±G1 of
the Brillouin zone. In Fig. 1.1(b), we represent schematically the two energy bands E±(k)
within the weak potential approximation.

Since electrons are fermions, they fill the energy bands from bottom to top, according to
the Fermi-Dirac distribution, characterised entirely by the temperature T and the chemical
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Chapter 1. Relativistic condensed matter

potential µ(T ). The chemical potential is typically fixed by the valence of the atoms, the
presence of impurities, or external voltage doping. Throughout this work, we will focus
on properties at zero temperature, for which the Fermi-Dirac distribution reduces to a
step function. In this case, the highest occupied state has a fixed energy µ(T = 0) = EF,
called the Fermi energy. Much of the electrical properties of solids are entirely determined
by the position of EF in the energy landscape, and in particular whether the Fermi level
lies inside the energy gap, as in Fig. 1.1(b), or outside the energy gap. In the following
section, we distinguish the band structures of metals, insulators, semimetals, and finally
relativistic semimetals.

1.2.2 From metals to relativistic semimetals
The shape, filling and symmetry of the band structure dictate the response of a material to
an electric field. In general, the position of the Fermi level cannot be predicted beforehand,
and is found numerically from calculated band structures, as in Fig. 1.2(b) and Fig. 1.2(c).
In simple cases, however, the filling of the energy bands depends only on the total number
of conduction electrons per unit cell (Kittel 1971). As per the Pauli exclusion rule,
an eigenstate with a definite energy E and crystal momentum k can host at most two
electrons with opposite spins. Let us see how these constraints determine the metallic,
insulating, semimetallic, or relativistic semimetallic nature of the material.

(a)

EF

Γ K

(b)

EF

(c)

Figure 1.2 | (a) Face-centred cubic structure of copper (red sites) with the associated first
Brillouin zone. The structure of diamond differs by the filling of half of the tetrahedral interstices
(in blue). (b) Calculated band structure of the metal copper along the high symmetry line Γ-K
of the first Brillouin zone (a). The Fermi level cuts the middle of a band, where the electronic
density of states is high and any gain of energy, however small, can excite electrons and induce
a current. Extracted from (Burdick 1963). (c) Calculated band structure of the insulator
diamond along the high symmetry lines L-Γ-X of the first Brillouin zone (a). The Fermi level
lies within an energy gap. Extracted from (Saslow 1966).
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1.2. Relativistic semimetals

• If the unit cell cedes an odd number of conduction electrons, for instance when it
encloses an odd number of atoms of valence one or one atom with an odd valence, the
electrons fill only partially the valence band, and the Fermi level lies in the middle
of the band. Due to the high density of states near the Fermi level, a large number
of conduction electrons partake in charge carriage, and the material easily conducts
electricity: it is a metal. This is the case of noble metals such as copper (Fig. 1.2(b))
and alkaline elements, for which each unit cell gives one conduction electron.

• If the unit cell cedes an even number of conduction electrons, for instance when it
encloses an even number of atoms of valence one, or atoms with an even valence,
the electrons fill entirely the valence band. Unless the bands overlap in some region
of the Brillouin zone, the Fermi level lies within an energy gap, so that no electron
from the valence band can be promoted to the conduction band to carry electricity:
the material is an insulator, or a semiconductor. The difference between these
two materials is purely practical: in semiconductors, the density of charge carriers
at room temperature can reach values as high as 1013 cm−3, leading to a sizeable
conductivity (Kittel 1971). The larger the energy gap with respect to the ambient
thermal energy kBT ' 25 meV, the smaller the conductivity. Diamond, with an
energy gap of 5.4 eV, is an insulator (Fig. 1.2(c)), while germanium, with an energy
gap of 0.74 eV, is a semiconductor widely used in diodes and solar cells. Yet, both
diamond and germanium possess eight conduction electrons per unit cell.

• Other band structures exist. In our one-dimensional band structure of Fig. 1.1(b),
the lattice potential generates a gap on both sides of the Brillouin zones. In some
instances, the minimum of the conduction band and maximum of the valence band
do not face each other at the corners of the Brillouin zone, but overlap in energy
without touching. If the Fermi level lies within this overlap, the material conducts
electricity, but less efficiently than metals. Like in semiconductors, both holes and
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Figure 1.3 | (a) Body-centred tetragonal lattice of the Weyl semimetal TaP (tantalum phos-
phoride). Adapted from (Lv 2015). (b) First Brillouin zone associated to the body-centred
tetragonal lattice in real space. (c) Calculated band structure of TaP along high symmetry lines
in absence of spin-orbit coupling (Xu 2015a). The Fermi level EF = 0 cuts the band structure
close to linear crossing points of the valence and the conduction bands (only 40 meV above the
W1 nodes near the points Σ, N and Σ1, and 24 meV below the W2 nodes between Σ1 and Z).
The low-energy excitations of the Fermi sea mimic massless relativistic particles.
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Chapter 1. Relativistic condensed matter

electrons contribute to charge carriage. Such materials correspond to semimetals,
among which feature alkaline earth elements (Be, Mg, Ca, etc.).

• The energy difference between the valence and conduction bands generically depends
on crystal momentum, and may even vanish at some special points of high symmetry.
At these band crossing points, the energy-momentum (or dispersion) relation is
generically linear; if the Fermi level lies close to the node, the elementary excitations
of the Fermi sea behave as massless relativistic particles. The band structure of
tantalum phosphoride (TaP) shown in Fig. 1.3(c) hosts such crossing points. These
materials are dubbed relativistic semimetals. Though this terminology suggests some
strong similarity between relativistic and non-relativistic semimetals, the transport
properties of these materials differ completely.

We now study the first observed relativistic semimetal: graphene.

1.2.3 Graphene
K. Novoselov and A. Geim proved the existence of two-dimensional massless Dirac fermions
for the first time in condensed matter with the first experiments on graphene (Novoselov
2004). They confirmed the anomalous character of the Hall effect in graphene – relativistic
particles behave differently under a magnetic field than non-relativistic particles – and
were awarded the Nobel Prize in 2010 for their discovery. This was a great achievement
per se. Yet, the authors also proved at the same time that crystals can be stable, in
low dimensions, even though thermal fluctuations prevent atoms from ordering on long
distances. Graphene sheets work around this problem by rippling, thus deforming from a
planar shape. The theory of graphene dates back to the works of P. R. Wallace (Wallace
1947), which did not attract much attention at the time, when graphene appeared merely
as an intermediate step towards understanding the electronic properties of graphite. Other
exotic graphitic allotropes were known before graphene, such as carbon nanotubes and
fullerenes, but none of them display relativistic properties.

Tight-binding approach — Graphene consists in a hexagonal arrangement of carbon
atoms linked by sp2 covalent bonds, originating from the hybridisation of 2s and 2px,y
orbitals. This honeycomb lattice is not of Bravais type: the repeated translations of a
single atom by two independent vectors a1 and a2 cannot generate the whole lattice. To
apply Bloch theorem, we decompose the honeycomb lattice into one triangular lattice with
two atoms A and B per unit cell. In the (x, y) basis of Fig. 1.4(a), the unit vectors of the
triangular lattice are

a1 = a0

2
(
3,
√

3
)
, a2 = a0

2
(
3,−
√

3
)
, (1.23)

where a0 = 1.42 Å is the carbon-carbon distance (Castro Neto 2009). We conventionally
place atom A at the origin of the unit cell; atom B is then located at δ = a0(1, 0). The
low-energy properties of graphene result from the one electron of the 2pz orbital, which
we denote as φ(r). Let H be the real-space Hamiltonian of a conduction electron moving
on the honeycomb lattice. In a tight-binding approach, the conduction electrons strongly
attach to the atoms and have a small probability amplitude (Wallace 1947)

t =
ˆ

d3r φ(r)∗Hφ(r + δ) ' −2.7 eV (1.24)
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Figure 1.4 | (a) Graphene consists in a sheet of carbon atoms arranged in a honeycomb lattice.
In a tight-biding description, electrons from 2pz orbitals take part in π bonds, and tunnel from an
atom of sublattice A (respectively B) to a neighbour B atom (respectively A) with a probability
amplitude t. (b) The honeycomb lattice of graphene splits into a triangular Bravais lattice
generated by the vectors a1 and a2, where each unit cell (in yellow) encloses two atoms A and B.
(c) The Brillouin zone associated to a triangular lattice is a hexagon rotated by 30° with respect
to the real-space lattice. Among the special points of the Brillouin zone feature the totally
symmetric Γ point at the origin, the mirror symmetric M points, and the three-fold symmetric K
and K′ points.

to hop from an atom A to any of the three neighbour B atoms (rotational symmetry
ensures the hopping amplitude to be the same for the three atoms). We will neglect
hopping processes between further away atoms. We now build a basis of two Bloch waves,
one for each sublattice A or B, as superpositions of plane waves of wave vector k modulated
by the localised 2pz orbitals,

ψA(r) =
∑

rA

eik·rAφ(r − rA), ψB(r) =
∑

rB

eik·rBφ(r − rB). (1.25)

These two wave functions are not orthogonal, but their small overlap only renormalises
next-to-nearest neighbour hopping, which we already neglected. Ignoring this overlap, the
real-space Hamiltonian projects in the basis of the Bloch waves to a two-by-two matrix
with components Hij =

´
d3r ψi(r)∗Hψj(r). Since the on-site energies HAA = HBB are

equal, they merely shift the band structure, and we may omit them. We then find the
Bloch Hamiltonian

H =

 0 tf(k)
tf(k)∗ 0


 , (1.26)

where the function f(k) = 1 + eik·(a1−δ) + eik·(a2−δ) accounts for the three-fold spatial
modulation of the hopping amplitude.

Dirac cones — The eigenvalues of Hamiltonian (1.26) are E±(k) = ±|tf(k)|, and give
one valence band (minus sign) and one conduction band (plus sign), shown in Fig. 1.5.
The bands satisfy the three-fold rotational symmetry of the triangular lattice, and a fragile
particle-hole symmetry, which breaks down when one includes next-to-nearest neighbour
hopping. We also see that the two bands touch at the six corners of the hexagonal Brillouin
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K
•

K′
•

π∗

π

Figure 1.5 | The band structure of graphene hosts time-reversed partner Dirac cones located at
the corners of the Brillouin zone (K and K′ points). The valence (π) and conduction (π∗) bands
touch linearly at the Dirac nodes, which coincides with the Fermi level in undoped graphene,
leading to relativistic low-energy excitations. In this plot, next-to-nearest neighbour hopping
breaks the particle-hole symmetry. Adapted from (Castro Neto 2009).

zone, where f(k) = 0, i.e. at the two non-equivalent crystal momenta

K = 2π
3a0

(
1, 1√

3

)
, K′ = 2π

3a0

(
1,− 1√

3

)
, (1.27)

and their images under three-fold rotations. For crystal momenta close to the touching
points at K and K′, Hamiltonian (1.26) simplifies to

H(K + q) ' ~vFσ · q, H(K′ + q) ' −~vFσ
∗ · q, (1.28)

at first order1 in effective momentum q, and where vF = −3ta/2~ ' 8.7× 105 m · s−1 is
the so-called Fermi velocity. Eq. (1.28) match the two copies of the Dirac Hamiltonian of
Eq. (1.12), and describe two-dimensional massless Dirac fermions with momentum p = ~q
and velocity vF instead of the speed of light c. The band structure of graphene thus hosts
two non-equivalent Dirac cones at the points K and K′, which are related by time reversal.

To ensure that the low-energy physics is relativistic, we must finally check that the
Fermi level of clean graphene coincides with the nodal level E = 0, i.e. lies at the
crossing points. This is indeed the case since each carbon atom gives one electron, so that
the valence band is full and the conduction band empty. In experiments, however, and
particularly with epitaxial graphene, the presence of impurities and the proximity to the
substrate, which affects the charge distribution, tend to shift the Fermi level away from
the crossing point (Fuchs 2008).

A key difference between quasi-particles in graphene and genuine Dirac fermions comes
from what the Pauli matrices stand for: in high-energy physics, they represent the actual
spin; in graphene, they represent the sublattice, which is an effective degree of freedom that
emerges in a crystal when the unit cell hosts several atoms. In the context of condensed
matter, this effective degree of freedom is called pseudospin. Of course, conduction electrons
also possess an actual spin, on which the energy may depend when processes like spin-orbit

1Higher order corrections in crystal momentum lead to a trigonal warping of the band structure: the
energy contours stretch along the three crystallographic axes, thus deforming the dispersion relation from
perfect cones.
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coupling come into play; but in graphene, spin-orbit coupling is weak because carbon
atoms are light (the energy split is less than 20 neV) (Castro Neto 2009). The presence
of two non-equivalent Dirac cones leads to yet another valley degree of freedom. Though
the dispersion relations of the non-equivalent cones look identical, the behaviour of the
wave function differs when circling around one or the other node in a closed loop: the two
valleys have different topologies, as we will see in Sec. 1.3.1.

Density of states — The density of states (DoS) ρ(E) is an equilibrium quantity, function
of the energy E, which measures the number of eigenstates per unit of energy. It enters the
expression of thermodynamic properties of electronic phases (total internal energy, specific
heat, etc.), and depends directly on the electronic band structure. Let us determine the
DoS in graphene near the Fermi level. To later generalise to three-dimensional phases, we
will consider a system of linear size L with a relativistic dispersion relation in arbitrary
dimension d. The low-energy relation dispersion E = ~vFq is isotropic: it depends only
the norm q of the quasi-particle momentum q, but not on its direction. Let the integer
s = 4 accounts for the spin and valley degeneracy in graphene. By definition, the quantity

ρ(E)dE = sΩd q
d−1

(2π)d dq (1.29)

represents the number of states per sample ‘volume’ Ld in a shell of thickness dE centred
at the energy E. The 2π factor comes from the quantisation of crystal momentum under
periodic boundary conditions, while the angular factor Ωd = 2πd/2/ΓE(d/2) is the surface
of the d-sphere, with ΓE(x) Euler’s Gamma function. For a relativistic dispersion relation,
we easily find (Castro Neto 2009; Syzranov 2018)

ρ(E) = sΩd

(2π~vF)dE
d−1. (1.30)

Graphene, for which d = 2, thus exhibits a linear DoS near the Dirac nodes. More generally,
in two- and three-dimensional relativistic phases, the DoS vanishes at the nodal level.
Therefore, the conductivity due to propagating modes vanishes in relativistic semimetals
at zero temperature. We will discuss several consequences of the relativistic nature of the
dispersion relation in the transport properties of relativistic semimetals in Sec. 1.3.3.

1.2.4 Weyl and Dirac semimetals
Graphene provides a special example of a relativistic phase, being two-dimensional. All
other relativistic semimetals known at present have three dimensions. Most of the three-
dimensional relativistic semimetals fall into two categories: Weyl semimetals, where two
bands cross linearly; and Dirac semimetals, where four bands cross linearly. The first class
was observed in alloys of the tantalum (TaP and TaAs) and niobium (NbAs and NbP)
families in 2015, while the second class was observed a year before in sodium bismuthide
(Na3Bi) and similar compounds.

Weyl semimetals — Tantalum phosphoride (TaP) is an example of a three-dimensional
relativistic semimetal where only two non-degenerate bands touch (see Fig. 1.3). Assuming
the Fermi level coincides with the nodal level, the low-energy excitations behave as two-
component massless relativistic particles, i.e Weyl fermions. The low-energy band structure
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forms a so-called Weyl cone, as depicted in Fig. 1.6(a). The quasi-particle dynamics follows
from the Hamiltonian (1.15) with the mass m set to zero,

H = χ~vFσ · q, (1.31)

where by convention we assign a chirality index χ = +1 for left-handed and χ = −1 for
right-handed fermions, and σ = (σ1, σ2, σ3) are the three Pauli matrices, and typically
vF ' 106 m · s−1. Real materials always host more than one Weyl node, and in analogy
with graphene, we will often use the term valley to refer to the corresponding degree
of freedom. Similarly, the pseudospin σ represented by the Pauli matrices in Eq. (1.31)
corresponds to sublattice, orbital or spin degrees of freedom, or mixtures of them. In
TaP, the pseudospin emerges from spin-orbit doublets in the 3d orbitals of Ta and the 4f
orbitals of P (Xu 2015a).

It would seem that forcing the valence and conduction bands to meet as in Eq. (1.31)
requires to fine-tune physical parameters, as in graphene where a mass term can gap the
Dirac nodes in absence of any protective symmetry. But this is not the case in three
dimensions. In a Weyl semimetal, the Hamiltonian projected onto a set of two proximate
bands is of the form

H =
3∑

µ=0
σµfµ(k) = σ0f0(k) + σ · f(k), (1.32)

where f0 and f = (f1, f2, f3) are arbitrary functions. First, the equal number of components
of k (which is the dimension of real space) and f (which is the dimension of the Pauli
algebra) guarantees that if there exists a crystal momentum b such that f(b) = 0, nothing
can get rid of the crossing point: tuning b or f0(b) only moves the node in the energy
landscape (Burkov 2015).

Second, the two bands must be non-degenerate away from the crossing point, i.e. we
wish that only a few crystal momenta b satisfy f(b) = 0. Unfortunately, the symmetries
of spatial inversion I and time reversal T , when both present, force the band degeneracy.
Indeed, these symmetries act on time, space and crystal momentum in the following way:

T :





t 7→ −t
r 7→ r

k 7→ −k
, I :





t 7→ t

r 7→ −r
k 7→ −k

, (1.33)

with the caveat that T is antiunitary (it complex conjugates objects on which it acts). Let
then Θ = IT be the product of inversion and time reversal. Both symmetries reverse k,
which implies that the Bloch waves ψk and Θψk have the same energy E(k). Since Θ2 = −1
for spinful fermions, the energy eigenstates ψk and Θψk cannot be equal, but belong instead
to two orthogonal eigenspaces of Θ, which means that the energy band E(k) is two-fold
degenerate everywhere. To ensure the non-degeneracy except at high symmetry points, at
least one of these symmetries must be broken.

• Non-centrosymmetric Weyl semimetals break inversion while preserving time reversal.
Time reversal reverses the crystal momentum, i.e. the node’s position b and the
wave vector q of the low-energy excitations, but also conjugates the pseudospin. Yet,
the operators σ · q and −σ∗· q describe two copies of the same chiral fermion. Weyl
nodes thus pair with time-reversal partners of the same chirality: a left-handed node
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1.2. Relativistic semimetals

at −b accompanies a left-handed node at +b, and similarly for right-handed nodes.
Topology also constrains left- and right-handed nodes to come in equal number,
which forces I-breaking Weyl semimetals to host at least four Weyl nodes. The first
Weyl semimetals observed in 2015, TaAs (Lv 2015) and TaP (Xu 2015b), crystallise
in a body-centred tetragonal structure and belong to this non-centrosymmetric class.

• Magnetic Weyl semimetals break time reversal while preserving inversion.
Inversion reverses the crystal momentum. Weyl nodes thus pair with inversion
partners of opposite chiralities: a left-handed node at −b accompanies a right-handed
node at +b. Though several candidates were proposed, such as Y2Ir2O7 (Wan 2011),
HgCr2Se4 (Xu 2011) and Co3Sn2S2 (Xu 2018), observing magnetic Weyl semimetals
poses a great challenge because of the need to enhance the magnetic order through
chemical doping. Experiments recently identified a magnetic Weyl semimetallic
phase in Co3Sn2S2 (Liu 2019).

Dirac semimetals — Sometimes, extra spatial symmetries pin two Weyl nodes of
opposite chiralities at the same point, provided the pseudospins represent independent
degrees of freedom. This requires their position b to be time-reversal invariant, i.e. that
there exists a vector G of the reciprocal lattice such that T b = −b = b+G. The resulting
crossing point is linear with a four-fold degeneracy,

H = ~vFα · q = ~vF


σ · q 0

0 −σ · q


 . (1.34)

Eq. (1.34) is precisely the Hamiltonian for massless Dirac fermions in three dimensions;
the corresponding low-energy band structure forms a Dirac cone, as shown in Fig. 1.6(b).
Interestingly, a Dirac semimetal can be viewed as an intermediate massless phase between
a topological insulator and a trivial insulator, with masses (gaps) m > 0 and m < 0,

(a) (b) (c) (d) (e)

Figure 1.6 | (a) In a type-I Weyl node, two bands cross linearly. (b) A type-I Dirac node
hosts two Weyl nodes of opposite chiralities pinned at the same crystal momentum, leading to a
four-band linear crossing. (c) A pseudospin-one node hosts an additional flat band. (d) A type-II
Weyl cone tilts sufficiently in one direction to produce electron and hole pockets. (e) When the
valence and conduction bands merge over some energy region, they cross over a nodal circular
line.
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respectively. We expect Dirac semimetals to be less robust than their Weyl counterparts,
to the extent that Dirac nodes are protected by symmetry but not by topology. The
observation of Dirac semimetals actually predates that of Weyl semimetals: sodium
bismuthide (Na3Bi) (Liu 2014b) and cadmium arsenide (Cd3As2) (Borisenko 2014; Liu
2014a) were identified as Dirac semimetals in 2014. The Dirac cones of these materials are
protected by three-fold and four-fold rotational symmetries, respectively (Chiu 2016).

Higher order semimetals and the likes — The zoology of relativistic semimetals
would be incomplete without mentioning the following exotic phases.

• Higher-order semimetals.

The low-energy excitations of a Weyl cone mimic massless spin one-half relativistic
particles. A natural extension would consist of relativistic excitations with higher
spin, e.g. spin one. A spin one fermion belongs to a three-dimensional representation
of the Lorentz group; the corresponding massless Hamiltonian

H = ~vFJ · q (1.35)

looks similar to a Weyl Hamiltonian, except that the pseudospin J = (Jx, Jy, Jz)
represents three-times-three generalisations of the Pauli matrices, which satisfy the
algebra of the angular momentum [Ji, Jj] = 2iεijkJk. The three-fold degenerate
crossing point involves an extra flat band E0 = 0 besides the valence and conduction
bands E± = ±~vFq, as seen in Fig. 1.6(c). The Hamiltonian (1.35) can incorporate
a mass term at the cost of doubling the degeneracy of each band, and ruining the
algebra of angular momentum. The corresponding particles, which do not belong to
any conventional spin representation, are known as Kane fermions; they appear in
Hg1−xCdxTe alloys, where they induce a topological phase transition upon tuning
the gap near a critical cadmium concentration x and temperature T (Teppe 2016).

• Type-II semimetals.

The Weyl semimetals we have considered up to now satisfy Lorentz invariance at
low energies; they are said to be of type I. The Weyl Hamiltonian (1.31) originates
from the generic two-by-two Hamiltonian (1.32) assuming that f(k) is isotropic
and linear near the crystal momentum b, and that f0(k) is constant up to possible
quadratic corrections. But Lorentz invariance is not a fundamental requirement in
condensed matter, and materials could break one of the previous conditions. When
relaxing the condition of isotropy, the dispersion relation can become quadratic in
one particular direction, while remaining linear in other directions, in which case the
material is a semi-Dirac phase. When relaxing the second condition, e.g. assuming
that f0(k) = ~v0qx varies linearly with momentum along a given direction x, the
Weyl cone tilts in that same direction. If v0 > vF, the Fermi level crosses no longer
a single point but a two-dimensional section of the (three-dimensional) Weyl cone:
the band structure forms electron and hole pockets, as shown in Fig. 1.6(d). Among
these so-called type-II semimetals features WTe2 (Soluyanov 2015).

• Nodal line semimetals.
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1.3. Hallmark of relativistic semimetals

Nodal line semimetals, like type-II semimetals, host extended Fermi surfaces. A
nodal line semimetals arise when the Dirac Hamiltonian acquires an off-diagonal
element of the form

H = µβσyz + ~vFα · q =

~vFσ · q µσ1

µσ1 −~vFσ · q


 , (1.36)

where σµν = i
2 [γµ, γν ] is the spin tensor. The conduction and valence bands then

shift towards one another so as to merge over some energy µ around the Fermi level,
and the Fermi surface forms a circle of radius µ/~vF, as in Fig. 1.6(e).

1.3 Hallmark of relativistic semimetals
The properties of relativistic semimetals differ from that of conventional phases of matter
in many respects. We pointed out in Sec. 1.2.3 that the DoS vanishes at the Fermi level. In
this section, we exemplify the most exotic features of relativistic semimetals regarding their
surface and transport measurements. Though transport offers the richest signatures of the
relativistic physics – from the scaling of the optical conductivity to the chiral anomaly
–, surface properties, to which we dedicate a chapter of this thesis, will be our primary
concern. Most of these experimental signatures originate not only from relativistic nature
of the low-energy excitations, but also from the topology of the Weyl cones. Although this
thesis needs few prerequisites in topology, we will thus devote a subsection to topological
aspects, and define three important concepts: the Berry phase, the winding number, and
the Chern number.

1.3.1 Topology
The discovery of topological insulators around the same period as graphene launched a novel
area of research: topological condensed matter (Bernevig 2013; Chiu 2016). Topology
refers to the robustness of some mathematical objects against smooth deformations. It
disregards the specific geometry and focuses instead on invariant features, which enables
to classify topological objects by integer numbers. In relativistic semimetals, chirality –
which is yet a relativistic concept – serves this purpose of classification. Far from being
some barren curiosity, topology has become a powerful tool to explain and predict the
exotic surface and transport properties of relativistic phases.

The Berry phase — Because of the probabilistic interpretation of quantum mechanics,
a quantum state |ψ〉 must be normalised. However, |ψ〉 and eiφ|ψ〉 represent the same state
for all real φ. This freedom in the choice of the overall phase endows quantum mechanics
with a U(1) gauge invariance, as in electromagnetism.

Consider some HamiltonianH(λ), which depends on a set of parameters λ = {λ1, λ2, ...}.
For each value of λ, we make an arbitrary choice of phase and assign a basis {|m(λ)〉} to
the Hamiltonian. We now wish to know how an energy eigenvector |ψ(t)〉, which originally
coincides with one vector of the basis, say |n(λ)〉, evolves when λ traces out a closed
path in parameter space under time evolution, governed by the Schrödinger equation
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H|ψ〉 = i~ ∂t|ψ〉. An energy eigenvector always acquires a dynamical phase

ϕ = − i
~

ˆ
En(λ(t)) dt, (1.37)

which contains no essential information about the Hamiltonian’s structure. We absorb it
into a redefinition of the eigenvector |Ψ〉 = e−iϕ|ψ〉, which still differs from |n〉 by some
phase factor eiθ(λ). To keep track of the eigenvector throughout the time evolution, we
must tune λ slowly enough not to mix |Ψ〉 with another eigenvector at a nearby level
crossing. This adiabatic condition ensures parallel transport2 (Witten 2016):

〈Ψ|∂λ|Ψ〉 = i∂λθ + 〈n|∂λ|n〉 = 0. (1.38)

Over a closed path C, the state |Ψ〉 thus acquires a Berry phase

γn =
˛
C
∂λθ dλ =

˛
C
An, (1.39)

where An = i 〈n|d|n〉 is the Berry connection. The Berry connection depends on the choice
of phase for the basis of eigenvectors |n〉, as opposed to the Berry phase, which no change
of basis can absorb. This property illustrates the gauge dependence of the former, and
gauge invariance of the latter up to a phase of 2π. The Berry phase is also insensitive
to the precise parametrisation λ(t) of the closed path C, so that nothing requires t to
represent actual time.

As an example, let us compute the Berry phases for both positive and negative energy
states in graphene. The low-energy Hamiltonians near the valleys K (of the form σ ·q) and
K′ (of the form −σ∗ · q) are naturally parametrised by the momentum q = q(cos θ, sin θ).
The eigenvectors are (Castro Neto 2009)

|ψ±〉 = 1√
2


e
−iθ

±1


 , |ψ′±〉 = 1√

2


e

iθ

∓1


 , (1.40)

where the plus (minus) sign refers to electrons (holes). Clearly, the Berry phase around any
closed loop that does not enclose the Dirac nodes vanishes. But when the path C circles
counter-clockwise around one node at a fixed radius q, the Berry phase reads, irrespective
of the band index,

γ = i

ˆ 2π

0
〈ψ±|∂θψ±〉 dθ = π (1.41)

for the valley K, and γ′ = −π for the valley K′. Though the Berry phase equals exactly ±π
for massless Dirac fermions, it is not quantised in general and may take all values between
(modulo 2π). For instance, the Berry phase of massive Dirac fermions depends continuously
on q, and in the Aharonov-Bohm effect, the Berry phase γ = eΦ/~c varies continuously
with the magnetic flux Φ. Experiments can measure the Berry phase of elementary
excitations in graphene using angle-resolved photoemission spectroscopy (ARPES) and by
comparing the response to linearly and circularly polarised lights (Liu 2011).

2Actually, adiabaticity is superfluous, and this hypothesis was later removed by Berry.
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Figure 1.7 | Winding number and topological charge. (a) In graphene, the pseudospins of both
electrons (red) and holes (blue) wind once around the Dirac node, clockwise for the valley K
and counter-clockwise for the valley K′. (b) In Bernal-stacked bilayer graphene, the dispersion
relation near the nodes becomes quadratic. The pseudospin winds twice. (c) A Weyl node (red
dot) acts as a Berry monopole. The Berry field strength in the conduction band points outwards
or inwards depending on the chirality, and its flux over a sphere (in gray) that surrounds the
node is quantised in units of 2π. The corresponding integer is the Chern number; it generalises
the notion of chirality to larger topological charges. In a Weyl node of positive chirality χ = +1,
the Berry field strength in the conduction band F+ points outwards.

The winding number — The 2π ambiguity of the Berry phase sometimes poses a
problem to identify whether a given Hamiltonian describes a trivial or a topological phase.
This is not the case in graphene, where γ = ±π, but some topological phases present
Berry phases multiple of 2π. For two-dimensional systems with a chiral symmetry3, we
can define a (less general) invariant that solves this ambiguity, while enabling to extend
the notion of chirality to higher-order band crossings: the winding number (Chiu 2016).

The winding number counts how many times the pseudospin rotates around a topological
point in the Brillouin zone, like a Weyl node, when the crystal momentum spans a closed
loop. A two-by-two Hamiltonian with no σ3 mass term is proportional to a unitary matrix
of the form σ · n where n = (cosφ, sinφ) depends on crystal momentum. Because the
pseudospin of energy eigenstates, which are also helicity eigenstates, is locked in the
direction of n, we may as well use the vector n to count the winding of the pseudospin.
The winding number is then defined by

ν = 1
2π

ˆ 2π

0
∂θφ dθ. (1.42)

This definition extends to chirally symmetric Hamiltonians defined on Hilbert spaces of
any dimension. For simplicity, we chose in Eq. (1.42) the same circular path as for the
Berry phase in Eq. (1.41). And indeed in graphene φ = ±θ near the valleys K and K′
respectively, so that the winding number ν = ±1 coincide, up to a factor of π, with
the Berry phase, as we can see in Fig. 1.7(a). In graphene, the pseudospin is locked in

3Here, chirality is understood in the sense of condensed matter, not in the sense of special relativity.
In condensed matter, a chiral ‘symmetry’ refers to a unitary antisymmetry of the Hamiltonian, i.e. an
operator C which anticommutes with H: {C,H} = 0. If ψ denotes an eigenstate of energy E, then Cψ
is an eigenstate of opposite energy −E. The sublattice polarisation operator σ3 implements a chiral
symmetry in graphene (in absence of any mass term).
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the direction of the crystal momentum and winds only once, either clockwise (ν = +1)
or counter-clockwise (ν = −1). In Bernal-stacked bilayer graphene, which harbours a
quadratic dispersion relation, the pseudospin winds twice as fast, and ν = ±2, as shown
in Fig. 1.7(b) (McCann 2013).

The Chern number — In three dimensions, the analogy with electromagnetism suggests
to express the Berry phase of Eq. (1.39) as a flux over a surface S that borders the closed
path C, using Stokes’ theorem. The two-form associated to the Berry connection is the
Berry curvature Fn = dAn. It is gauge invariant. In the same way as the Berry connection
A = A · dk can be viewed as a gauge vector potential A, the Berry curvature can be
viewed as a curl, or Berry field strength F = ∇×A (which reduces trivially to a scalar in
two dimensions, up to a Hodge transformation). Expressed in terms of curvature instead
of connection, the Berry phase reads

γn =
ˆ
S
Fn =

ˆ
S
Fn · dS, (1.43)

where C = ∂S and the orientation of the infinitesimal transverse vector dS follows from
the orientation of C.

As an example, consider the Weyl Hamiltonian with positive chirality. The energy
eigenstates are eigenvectors of the helicity σ · q. A possible basis consists of the following
vectors, expressed in polar coordinates,

|ψ+〉 =

e
−iφ cos(θ/2)
sin(θ/2)


 , |ψ−〉 =


e
−iφ sin(θ/2)
− cos(θ/2)


 , (1.44)

where the sign ± refers to the sign of the energy. The corresponding Berry connections
are A+ = cos2( θ2) dφ and A− = sin2( θ2) dφ. Taking a path that circles around the Weyl
node along the equator, we find that contrary to graphene, the energy eigenstates of a
Weyl Hamiltonian have opposite Berry phases γ± = ±π, where the plus (minus) sign
applies to electrons (holes). As a result, the Berry curvatures also have opposite signs
F± = ±1

2 sin θ dθ ∧ dφ. The corresponding Berry field strength

F± = ± q

2q3 (1.45)

has the same expression as the electric field created by an electric charge Q = 2π located
at the Weyl node.

Guided by the analogy with Gauss’s theorem, we propose to integrate over a closed
sphere around the node, instead of an open surface that borders a Berry path, as shown
in Fig. 1.7(c). This defines a topological charge, the Chern number (Bernevig 2013)

Cn = 1
2π

˛
S
Fn · dS, (1.46)

where n denotes the band index. In the conduction band, the Chern number is CR
+ = 1

for right-handed fermions, and CL
+ = −1 for left-handed fermions. Weyl nodes thus carry

Berry monopoles, whose topological charge in the conduction band coincides with the
chirality index χ = ±1. Unlike chirality, the Chern number depends on the band index,
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but without further indication, we will conventionally consider the conduction band, so as
to ensure a one-to-one correspondence between the former (which is a relativistic notion)
and the latter (which is a topological notion). The Chern number applies not only to
three-dimensional relativistic semimetals, where the closed surface can be taken as a sphere
around the band crossing point, but also to two-dimensional systems with an isolated
band, in which case the Brillouin zone serves as a closed surface. The latter situation
corresponds to topological insulators, which we will discuss briefly in Sec. 1.3.2. Physically,
a non-zero topological charge reflects an obstruction to smoothly define wave functions
over the whole Brillouin zone.

The no-go theorem — An immediate consequence of topology is that it constrains the
nature and number of the Weyl (or higher order) nodes a material can host (Witten
2016). By virtue of the Bianchi identity, the second differential of the Berry connection
(which is a one-form) vanishes, which entails that dF = 0 wherever the Berry curvature is
well defined; this corresponds to the whole Brillouin zone for isolated bands, but precludes
Weyl and Dirac nodes in relativistic semimetals. Let us denote by B the Brillouin zone
from which we exclude all the bad points by removing small open balls centred at the
nodes. Due to periodic boundary conditions, the Brillouin zone is a closed manifold,
and thus the boundary of B reduces to the spheres Sα centred at the nodes α = 1, ..., N .
Applying Stokes’ theorem, we find that the sum of all Chern numbers vanishes,

0 = 1
2π

ˆ
B

dF =
N∑

α=1

1
2π

ˆ
Sα
F =

N∑

α=1
Cα. (1.47)

This result is known as the Nielsen-Ninomiya or no-go theorem (Nielsen 1981). In
particular, Weyl semimetals must host pairs of nodes of opposite chiralities. Topology
imposes no constrains on the number of Dirac nodes in three-dimensional materials, which
have zero Chern numbers, though there are usually symmetry constraints.

1.3.2 Surface states
Chern insulators — A well-known consequence of topology is the bulk-boundary corre-
spondence (Bernevig 2013). In the simplest topological insulators, the Chern insulators,
the two bands closest to the Fermi level and separated by an energy gap have non-zero
Chern numbers. To realise a trivial to topological phase transition, let us consider the
massive Dirac Hamiltonian in two dimensions

H = ~vFσ · q + ∆σ3. (1.48)

This Hamiltonian describes Dirac fermions of mass ∆ and energy E = ±
√

(~vFq)2 + ∆2.
The energy bands are insensitive to the sign of the mass, but the conduction band acquires
a non-zero Chern number C = +1 when ∆ < 0, while having a zero Chern number for
∆ > 0. Decreasing the energy gap ∆ induces a phase transition from a gapped trivial
phase (trivial insulator) to a gapped topological phase (Chern insulator). The intermediate
gapless phase is precisely a Dirac semimetal. Chern insulators host gapless states which are
exponentially localised near the edge, and topologically protected against disorder, even
when the gap closes (Meyer 2013). These edge states allow for ballistic transport, which
makes Chern insulators conducting at the boundary while insulating in the bulk. In this
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regard, three-dimensional Dirac semimetals can be seen as the surface of four-dimensional
Chern insulators. As we will see below, gapless phases host surface states themselves,
though of different nature, in the form either of edge modes (graphene), Fermi arcs (Weyl
semimetals) or Dirac surface states (Dirac semimetals).

Edge modes in graphene — In Sec. 1.2.3, our interest lay on the bulk properties
of graphene. The relativistic and topological physic also manifests themselves on the
boundary in the form of exponentially localised states (Bernevig 2013; Castro Neto
2009). Because of electron-electron interactions, edge modes in graphene nanoribbons
behave as Luttinger liquids, and ensure charge and spin transport in the presence of a
magnetic field. The spectrum of these edge modes depends strongly on the geometry of
the edges, whether zigzag, armchair, or more complicated shapes, but in all instances, the
edge modes exist over a large region of the Brillouin zone at nearly zero energy. We will
discuss only the zigzag geometry.

In an infinite graphene ribbon oriented in the x direction, periodic boundary conditions
apply along x while open boundary conditions apply at the two edges at positions y = 0
and y = Ly, where Ly denotes width of the ribbon. The longitudinal wave vector kx
is a good quantum number, unlike the transverse wave vector. Because of the different
orientations of the bonds A-B and B-A within a transverse chain of atoms, neighbour sites
see different hopping amplitudes t and tkx = t(1 + eikxa), where a = a0

√
3 is the lattice

constant of graphene. This dispersion leads to exponentially localised states near the edges
with a penetration length ξ = 1/ ln |2 cos(kxa/2)|. For kxLy � 1, we can safely neglect
the overlap between the surface states of the two opposite edges, and the edge energy
band becomes flat with zero energy, except near the Dirac nodes. The location of this
band depends on the relative weight of the zero-energy modes over the sites A and B, and
thus on the microscopic details of the chains. If the chains comprise an even number of
sites, edge modes develop over either one of two complementary ranges of kx, depending

(a) (b) (c)

Figure 1.8 | Band structure in infinite graphene ribbons along the x direction with zigzag
geometry, within a tight-binding approach. The energy E is plotted against the longitudinal wave
vector kx. When the transverse chains of atoms, which are roughly oriented along the transverse y
direction, contain an even number of sites (here 20), two edge modes of almost zero energy
(a portion of the red bands) develop between the Dirac nodes. (a) For A and B terminations
at y = 0 and y = Ly respectively, the edge modes exist only in the range [2π/3, 4π/3] of kx.
(b) For B and A terminations, they exist only in the complementary range [0, 2π/3] ∪ [4π/3, 2π].
(c) When transverse chains of atoms contain an odd number of sites (here 21), the two edge
modes are pinned at exactly zero energy over the full longitudinal Brillouin zone.

28



1.3. Hallmark of relativistic semimetals

on whether the two terminal sites are A at y = 0 and B at y = Ly (Fig. 1.8(a)), or B at
y = 0 and A at y = Ly (Fig. 1.8(b)). If the chains comprise an odd number of sites, the
edge modes exist for all kx at exactly zero energy and the surface energy band disconnects
completely from the bulk bands (Fig. 1.8(c)).

Fermi arcs — Topological surface states also appear in three-dimensional relativistic
semimetals (Wan 2011; Hashimoto 2008). They lead to richer band structures, being
localised on a two-dimensional instead of a one-dimensional boundary. These surface
states, namely the Fermi arcs, Dirac surface states, and Fermi rays, constitute the topic
of Chapter 4.

Let us consider first the surface states of Weyl semimetals. The constant energy contours
on the surface Brillouin zone form crescent-shaped lines which connect the projections of
two Weyl cones with opposite chiralities, as shown in Fig. 1.9(a). Precisely at the nodal
level, the line terminates on the nodes, thus forming a Fermi arc. Weyl semimetals usually
host many nodes for symmetry reasons. For instance, the Weyl semimetal TaP harbours
no less than twenty-four Weyl nodes, because the body-centred tetragonal lattice associate
nodes of opposite chiralities by four-fold rotations and reflections (Lv 2015). Weyl nodes
thus have high chances of overlapping when projected to the surface Brillouin zone of a
material cleaved along high symmetry surfaces. The (001) surface of TaP comprises eight
nodes with Chern number ±1 and eight nodes with Chern number ±2. A pair of surface
nodes can thus host more than one Fermi arc; in fact, the same number as the absolute
topological charge. Fig 1.10 shows a surface spectral density map obtained by ARPES in
TaP. One of the Fermi arcs which join two proximate nodes of topological charges ±2 is
clearly visible. Besides, this pair of nodes also host trivial surface states, whose constant
energy contours avoid the nodes and close in large loops. These additional states are
probably associated with deeper layers below the boundary (Xu 2015b).

Unfortunately, transport signatures of surface states are difficult to isolate because of
the conducting bulk. Some promising techniques to evidence surface transport rely on the
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Figure 1.9 | (a) Pairs of Weyl nodes of opposite chiralities host Fermi arcs at the nodal level
(in orange), parametrised by an aperture angle θ. The group velocity of the surface states (in
green) is locally normal to the arc. (b) The same chiral-breaking boundary condition leads to
Dirac surface states in Dirac nodes, which disperse along a semi-cone of positive energy on one
surface (in orange) and negative energy on the other. The slope ~v of the single-branch cone
corresponds to a reduced Fermi velocity v = vF cos θ, where vF stands for the Fermi velocity
of the bulk excitations. (c) Pseudospin-breaking boundary conditions lead to one disconnected
Fermi ray at each node (in orange), parametrised by a normal surface vector e±.
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-0.5 0.0 0.5 1.0

ky(1/Å)
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Figure 1.10 | Spectral density map at the Fermi energy of the (001) surface of the Weyl
semimetal TaP, from angle-resolved photoemission spectroscopy (Xu 2015b). The black and
white dots along the Γ̄-X̄ line indicate two projected Weyl nodes of topological charges ±2. The
green ‘tadpole’ feature that surrounds these two nodes comes from six surface states, among
which four are trivial (they avoid the nodes and form closed loops) and two are Fermi arcs. The
outermost green line is trivial, while the inner crescent is a Fermi arc.

hybridisation of surface and bulk states (Armitage 2018). Another transport signature
of surface states is negative refraction (Chen 2020). Indeed, the edges of two adjacent
boundaries refract surface states with a perfect −1 refraction index, provided the Fermi
arcs are properly oriented. This enables to refocus electronic wave packets, so that the
spatially resolved conductance peaks at the image of the point source.

One can predict the existence of Fermi arcs using a correspondence with topological
insulators (Wan 2011). At any fixed transverse momentum k⊥ between a pair of Weyl
nodes, the effective Hamiltonian H(k‖,k⊥ = cte) is gapped and thus describes a two-
dimensional Chern insulator, which hosts chiral edge states at zero energy. Integrating
over k⊥, we see that a Fermi line stretches continuously from one node and necessarily
terminates to a node of opposite chirality. Physically, Fermi arcs arise from scattering
processes on the boundary that reverse the chirality of Weyl fermions. The requirement
that the cross current vanishes at the surface (particles cannot exit the material) leads to
the boundary condition (Witten 2016)

MΨs = Ψs (1.49)

for the surface Dirac spinor Ψs, where the unitary matrix M satisfies {M, τzσz} = 0. The
index z denotes the direction normal to the surface and σ, τ the Pauli matrices in the
pseudospin and chiral sectors, respectively. The boundary matrix M should depend on
crystal momentum in general, but reduces to a constant in the low-energy limit, which is
enough to explain all qualitative properties of Fermi arcs. A realisation of such chirality-
mixing but pseudospin-preserving boundary matrix which is also compatible with the
alignment of nodes along, say, the x direction, is

M = τxσz sin θ − τyσ0 cos θ. (1.50)

This boundary matrix of Eq. (1.50) breaks the surface rotational symmetry, along with the
transverse mirror symmetry y 7→ −y for non-zero θ, which allows Fermi arcs to bend from
a straight line. It is possible to determine the Green’s function compatible with Eq. (1.49),
from which we can find the surface dispersion relation (Faraei 2018). With the boundary
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matrix of Eq. (1.50), the Fermi contour forms a circular arc with aperture angle θ, as
defined in the schematic of Fig. 1.9(a). In real materials, however, Fermi arcs deviate
from a circular shape due to quadratic corrections to the energy bands. In addition, no
theoretical argument constrains the value of the aperture angle, which should then be
fixed by microscopic details: termination of the boundary, presence of adatoms, etc.

Dirac semimetals also host Fermi arcs. Since one Dirac node consists of two overlapping
Weyl nodes, the Fermi arcs appear in pairs and join Dirac nodes on either end. But unlike
in Weyl semimetals, double Fermi arcs are not topologically protected, and can deform
into closed Fermi loops (Kargarian 2016). Experiments later confirmed this fragility,
since Fermi loops were observed in cubic PtBi2 (Wu 2019).

Dirac surface states — Besides Fermi arcs, Dirac semimetals can host another type of
surface states confined around a single Dirac node in reciprocal space (Shtanko 2018).
Since a Dirac cone consists of two Weyl cones of opposite chiralities superimposed at
the same crystal momentum, any Fermi arc joining the overlapping Weyl nodes formally
reduces to a point. The boundary matrix (1.50) then leads to a linear surface dispersion
relation E = s~v(θ)q with a diminished velocity v(θ) = vF cos θ, and where s = ±1
according to which side of the material the surface faces (Fig. 1.9(b)). These Dirac surface
states leak exponentially in the bulk over a penetration depth ξ = 1/q sin θ. For θ = 0, all
surface states dissolve into the bulk.

A striking feature of these surface states is that the boundary hosts only one band,
either of conduction or valence: particle-hole symmetry is utterly broken. In practice,
particle-hole symmetry is restored at the scale of the material, because a finite sample has
two opposite surfaces along each direction, each hosting one type of surface carriers.

Fermi rays — Dirac fermions could also retain the same chirality under scattering from
the boundary, but exchange instead their pseudospin. In this case, spinors with a definite
handedness are eigenvectors of the boundary matrix. The most general boundary matrix
of this type reads

M = τ̂+σ · e+ + τ̂−σ · e−, (1.51)

where τ̂± denote the valley projectors, and e± = (cos θ±, sin θ±) are two unit vectors
parallel to the surface. The emerging surface states at the nodal level disperse along
two independent Fermi rays pointing in the directions orthogonal to e±, and stemming
from the nodes of chiralities χ = ±1 respectively, as illustrated in Fig. 1.9(c). The
separation between the nodes has no influence on the Fermi rays, so that Fermi rays could
appear in Weyl and Dirac semimetals alike. Similarly to the boundary matrix (1.50), the
boundary matrix (1.51) breaks the O(2) rotational symmetry in the surface plane, along
with all mirror symmetries in general. The rays’ orientations should be determined by
microscopic details of the boundary, and thus should be extremely sensitive to surface
roughness (Witten 2016). This boundary condition also mixes neighbouring Landau
levels in a background magnetic field, making Landau quantisation ill-defined (Faraei
2018). Keeping in mind that Weyl excitations only emerge at low energies, and that we
discarded much information about the complete band structure, seemingly infinite Fermi
rays may not extend to the whole Brillouin zone but terminate at another remote pair of
nodes, thus leading to large Fermi arcs (Hashimoto 2017).
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1.3.3 Transport
The relativistic dispersion relation yields unusual scaling laws, notably in the DoS, as
we have seen in Sec. 1.2.3, but also in several transport properties, such as the optical
conductivity. Relativistic particles also tunnel more easily than non-relativistic particles, a
phenomenon known as Klein tunnelling. Quantum transport leads to a minimal non-zero
conductivity in graphene in absence of propagative modes. But it is topology which
certainly leads to the most intriguing transport phenomena: the presence of a zeroeth
Landau level in graphene, which results in a half-integer quantum Hall effect, the anomalous
Hall effect in Weyl and Dirac semimetals, and the chiral anomaly.

Optical conductivity — Lit us consider a d-dimensional material where the Fermi
level lies at a band touching point (it could be a relativistic semimetal or any degener-
ate semiconductor). Except for pathological cases, the bands touch with a power-law
dispersion E ∝ qα, with α a real positive number. Various theoretical approaches (Boltz-
mann transport, Kubo formalism) show that the optical conductivity σ(ω) scales with
frequency ω as ω(d−2)/α at low temperature (Armitage 2018). In three-dimensional
relativistic semimetals, where α = 1 and d = 3, this induces a linear dependence,

σ(ω) = N
e2

12h
ω

vF
, (1.52)

with N the number of nodes. Several experiments confirmed Eq. (1.52) over some window
of energy, even though quantitative agreement is difficult to reach because of the many non-
idealities in the band structure: higher-order corrections to the dispersion, anisotropy, the
presence of additional flat bands. In the Dirac semimetal ZrTe5, the optical conductivity
follows Eq. (1.52) up to 150 meV, but with a slope thirty times larger than expected from
ARPES measurements of the Fermi velocity (Chen 2015).

Klein tunnelling — A peculiarity of Weyl fermions is the absence of backscattering
when crossing a potential barrier, or Klein tunnelling (Klein 1929). Klein tunnelling
simply refers to the counterpart of the tunnelling effect for relativistic particles, but the
two effects differ so strongly that the former is often considered paradoxical. Whereas the
probability for a non-relativistic particle to transmit through a potential barrier decays
exponentially with its width, the barrier is absolutely transparent to relativistic particles
at normal incidence (Duplantier 1991). One interpretation of this counter-intuitive
behaviour is that a barrier of height V0 can reflect an incoming particle, of positive energy
E < V0, but also transmit it as a hole of negative energy V0 − E. Klein tunnelling occurs
in relativistic semimetals, provided the scattering decouple the valleys, and thus preserve
chirality. The absence of backscattering has deep consequences for disordered relativistic
semimetals, since it prevents electrons from localising. We will see in Sec. 1.4.1 that under
strong enough disorder, these materials undergo a phase transition quite different from
localisation. Klein tunnelling promises several applications of graphene, notably in p-n
junctions and quantum dots (Castro Neto 2009).

Minimal conductivity of graphene — Though the DoS vanishes at the Fermi level of
a Dirac node, graphene presents a small but non-zero universal conductivity at charge
neutrality (Castro Neto 2009; Peres 2010; Das Sarma 2011). In two dimensions, the
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conductivity at charge neutrality equates the unit of quantum conductance up to some
numerical factor,

σ0 = s

π

e2

h
. (1.53)

For a clean infinitely wide strip of graphene, the integer s = 4 accounts for the spin and
valley degeneracy (Tworzydło 2006). No propagating states engage in conduction at the
Fermi level, so that only the contribution of evanescent modes can explain the non-vanishing
of σ0. This is surprising, since the transmission probability of an evanescent mode decays
exponentially with the system size in the thermodynamic limit. But for two-dimensional
massless fermions specifically, the summation of all these exponentially small transmission
probabilities yields a conductance G proportional to the aspect ratio W/L � 1 in the
limit of infinite width W and fixed length L, which justifies the expression (1.53) for the
conductivity σ0 = GL/W . Although experimental data spread significantly because of
the various probe geometries and sample heterogeneity, most measurements fall closer to
4e2/h, in disagreement with Eq. (1.53) (Geim 2007). The quantitative discrepancy may
originate from the presence of charged impurities or electron-electron interactions.

In addition, the ratio of noise power and mean current, measured by the Fano factor,
takes the same value F = 1/3 as for disordered metals, even though clean graphene
exhibits ballistic, not diffusive transport. Both the conductivity and the Fano factor display
quantum oscillations upon doping, as more and more propagating modes contribute to
charge carriage across the strip. This shot noise is sensitive to the boundary condition.
The transverse momentum of mode n reads indeed qn = (2n+ 1)π/2W for a smooth edge,
but qn = nπ/W for a metallic armchair edge, which leads to a phase difference πL/2W in
the quantum oscillations. Fig. 1.11(a) and 1.11(b) show respectively the conductivity and
Fano factor as a function of the chemical potential, for those two boundary conditions.

Interestingly, Louvet et al. have recently shown using a low-energy model of three-band
semimetals that the existence of a minimal conductivity also originates from topological

(a) (b)

Figure 1.11 | The conductivity σ and Fano factor F of clean graphene show shot noise oscillations
as af function of the chemical potential µ. The phase of the: smooth edge (in blue) or armchair
edge (in brown). Here we set the aspect ratio to W/L = 4 (a) The conductivity tends to the
universal value 4e2/πh at charge neutrality µ = 0, and increases roughly in a linear fashion at
high µ. (b) The Fano factor tends to 1/3 at charge neutrality for an infinitely wide strip, the
same value as for disordered metals.
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considerations (Louvet 2015). Because of topological constraints, the transverse con-
ductivity obeys an unusual half-integer quantisation rule in graphene under a magnetic
field, a phenomenon known as the half-integer quantum Hall effect. Weyl semimetals
also experience a Hall effect even in absence of a magnetic field, which can be termed
as anomalous. Though these effects will not be the focus of this thesis, we will briefly
discuss them for the sake of completeness. In addition, in presence of both an electric and
a magnetic field, Weyl semimetals manifest a positive magneto-conductivity as a result
of the chiral anomaly. By presenting the chiral anomaly, we will make contact with field
theories, which constitute the framework of this thesis.

The half-integer quantum Hall effect — The quantum Hall effect also differs between
relativistic and non-relativistic particles. Quantum Hall effects refer to the quantisation of
the transverse conductivity that occurs in some materials under specific conditions. In two-
dimensional gapless phases like graphene, the Hall effect appears under strong out-of-plane
magnetic fields. The conductivity plateaus arise at half-integer fillings instead of integer
fillings because of the relativistic nature of massless Dirac fermions. In two-dimensional
Chern insulators and three dimensional relativistic semimetals, a distinct effect occurs in
absence of any magnetic field: the anomalous Hall effect.

In two-dimensional gapless phases, whether relativistic or not, the transverse conduc-
tivity per Landau level

σxy = e2

h
ν (1.54)

is quantised through some yet-unspecified parameter ν. The existence of such quantisation
is remarkable, because quantum mechanics usually leads to the quantisation of microscopic,
not macroscopic observables, and Eq. (1.54) persists in presence of electron-electron
interactions and disorder (Tong 2016) – in fact, the quantum Hall effect requires disorder
for large conductivity plateaus to be visible!

The plateaus first observed in non-relativistic phases follow Eq. (1.54) with integer
values of ν (Klitzing 1980). Physically, the plateaus appear when charge carriers
completely fill a number ν of Landau levels, i.e. for an electron density n = νB/Φ0,
where B is the magnetic field and Φ0 = h/e is the flux quantum. In relativistic materials,
the Landau levels can have both positive and negative energies, and each valley hosts an
extra chiral Landau level, which is half-filled at charge neutrality. This leads to an odd
quantisation of the transverse conductivity, with half-integer values ν = ±1/2,±3/2, etc.,
as K. Novoselov and A. Geim showed in 2006 (Fig. 1.12(a)).

The anomalous quantum Hall effect — In Weyl semimetals, the transverse conduc-
tivity remains non-zero in absence of a magnetic field. To show this, we invoke the same
argument we used to prove the existence of Fermi arcs in Sec. 1.3.2. Let us consider one pair
of nodes of opposite chiralities located at the momenta ±b, with b = b ez aligned along the
z-axis. For a fixed component kz of the longitudinal momentum in the range [−b, b], the
low-energy Hamiltonian H(kx, ky, kz = cte) describes a two-dimensional Chern insulator,
whose chiral edge mode contributes a term e2/h to the transverse conductivity (Yang
2011). Integrating over the range [−b, b], we find

σxy = e2

πh
b. (1.55)
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Figure 1.12 | Transport in relativistic semimetals under a magnetic field. (a) In disordered
graphene the Hall effect leads to the plateaus of the Hall conductivity σxy appear at half-integer
fillings (Novoselov 2004). Concomitantly, the longitudinal resistivity ρxx vanishes. Inset: Hall
conductivity in the integer Hall effect, characteristic of non-relativistic phases. (b) The zeroth
Landau levels of relativistic fermions are chiral: the sign of the slope in momentum space depends
on the fermions’ handedness (Burkov 2015). In three-dimensional semimetals, an additional
parallel electric field E pumps particles from one node to the node of opposite chirality, thus
giving rise to a chiral current.

Real materials host many pairs of Weyl nodes, whose positions ki and chiralities χi are
constrained by lattice symmetries. To generalise Eq. (1.55), the node separation 2b must
be replaced by the ‘chiral charge centre’ ∑i χiki. Unfortunately, lattice symmetries (such
as the cubic symmetry in pyrochlore iridates) often pin the chiral charge centre at the
origin, so that the transverse conductivity vanishes unless some uniaxial strain favours a
special direction. Weyl semimetals thus exhibit a pressure-induced anomalous Hall effect,
with a linear pressure dependence of the transverse conductivity (Yang 2011).

The chiral anomaly — Striking properties emerge in presence of both a magnetic and an
electric field. One is the chiral anomaly, which appears only in odd dimensions (Armitage
2018). In a Weyl semimetal subject to a magnetic field B, applying an electric field E
pumps electrons between nodes of opposite chirality at a rate (Nielsen 1981; Son 2013)

dnχ
dt = χ

e2

h2E ·B, (1.56)

where nχ denotes the population of the node with chirality χ = ±1. Thus, even uniform
and constant fields generate a valley imbalance. The origin of this pumping lies in the
chiral nature of the zeroth Landau level, as sketched in Fig. 1.12(b): Weyl particles near
charge neutrality propagate either along or opposite to the field direction according to
their chirality (Armitage 2018). An electric field that points in the same direction as the
magnetic field pushes away the particles along the chiral Landau level, thus depopulating
one node to the benefit of the other. In practice, a steady state settles when intervalley
scattering, with a characteristic time τr, compensates the pumping current.

The resulting DC chiral current is proportional to the magnetic field B and the
driving force E ·B. Hence, the conductivity acquires an anisotropic contribution which
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is quadratic in the magnetic field, and whose value is maximal along the magnetic field
direction (Burkov 2015; Son 2013):

σ(B) = σ0 + e4B2τr

4π4ρF
, (1.57)

where ρF is the DoS at the Fermi level. This enhancement of conduction, known as the posi-
tive magneto-conductivity, contrasts strongly with metals and conventional semiconductors,
which usually present a small negative magneto-conductivity insensitive to the magnetic
field’s direction (Armitage 2018). The positive magneto-conductivity also manifests itself
in Dirac semimetals, because a magnetic field can lift the valley degeneracy of a Dirac
node and pull the resulting Weyl cones apart. It thus represents one of most compelling
signatures of relativistic physics. Experiments confirmed the positive magneto-conductivity
in both Weyl (TaAs, TaP, NbAs, NbP) and Dirac (Na3Bi, Cd3As2, ZrTe5) semimetals.

The chiral anomaly originally referred to discrepancies in the decay rate of the neutral
pion π0. The observed rate of the process π0 → γ+γ, in which a neutral pion decays into two
photons, was much smaller than the one first computed within quantum electrodynamics.
Quantum field theorists later understood that one-loop processes which were thought to
vanish on symmetry grounds actually contribute (Adler 1969; Bell 1969). Indeed, the
conservation of the axial current Jµ5 = Ψγµγ5Ψ, which follows from Noether’s theorem in
classical electrodynamics, does not survive quantum corrections.

To see this, let us consider the path integral formalism of quantum electrodynamics. The
partition function Z lies at the heart of field theories, since it enables to generate expectation
values of all kinds of operators (including current operators and their derivatives, where
lies our interest). Within the path integral formalism, it can be written as an integral over
the Dirac fields of the Feynman weight, namely

Z =
ˆ

DΨ DΨ eiS/~, (1.58)

where S is the action of the theory (here quantum electrodynamics). Assuming that the
theory satisfies the local U(1) axial symmetry, the gauge transformation of the fields

Ψ 7→ e−iαγ5Ψ, Ψ 7→ Ψe−iαγ5 , (1.59)

where α(x) depends on the space-time variable x, leaves the path integral Z invariant.
Usually, the invariance of the path integral implies the invariance of the action; and under
the transformation of Eq. (1.59), the action acquires the additional part

S5 = −
ˆ

d4xα(x)∂µJµ5 (x). (1.60)

This would suggest that ∂µJµ5 = 0 in order to ensure the axial symmetry, yielding
the conservation of the axial current. But unexpectedly, the path integral gets an extra
contribution from the measure DΨ DΨ. After some algebra, one can show that transforming
the measure as per Eq. (1.59) amounts to add an additional term to the action,

Smeas = − e2

16π2~2c
εµνρσ

ˆ
d4xFµν(x)Fρσ(x), (1.61)

36



1.4. What this thesis is about

where Fµν denotes the electromagnetic field tensor. Since the sum Smeas + S5 must vanish,
the divergence of the axial current actually reads (Srednicki 2007)

∂µJ
µ
5 = − e2

16π2~2c
εµνρσFµνFρσ, (1.62)

a result known as the Adler-Bardeen theorem. For homogeneous and stationary magnetic
and electric fields, Eq. (1.62) reduces indeed to the chiral pumping formula of Eq. (1.56).

1.4 What this thesis is about
The electronic properties discussed in Sec. 1.3.2 and Sec. 1.3.3 originate from the relativistic
behaviour of the low-energy excitations in perfectly clean materials. We have seen that
topology ensures a certain robustness of the Weyl nodes, to the extent that linear crossing
points cannot disappear without merging, because they carry a topological charge. A
natural question then arises, as to whether this topological protection preserves the
relativistic behaviour under perturbations, beyond electronic band theory. Our works
cover two main types of perturbation.

One is disorder, which when strong enough affects both bulk and surface properties of
relativistic semimetals. In three-dimensional phases (Weyl and Dirac semimetals), disorder
induces a quantum phase transition towards a diffusive metallic phase in the bulk, which
possesses a non-zero DoS (Chapter 2 and Chapter 3 of Part I). The surface states of
relativistic semimetals also bear signatures of this semimetal-metal transition (Chapter 4
of Part I). We discuss the types of defects encountered in relativistic semimetals and the
stability of the crossing point under disorder in Sec. 1.4.1.

Another is electron-electron interactions, which can generate correlated phases when
the kinetic energy becomes comparable to the interaction energy, for instance in the
presence of flat bands. A seminal example of such phases is twisted bilayer graphene
(TBG) (Part II). in Sec. 1.4.2, we show that electron-electron interactions play a minor
role in Weyl or Dirac semimetals and graphene, unlike in TBG.

1.4.1 Disorder
In physics, the term disorder denotes the state of a system which possess fewer symmetries
than other states of the same system often viewed as ‘ideal’. In condensed matter physics,
disorder typically takes the form of crystalline defects. These imperfections often smear
the electronic properties of relativistic semimetals, leading to quantitative changes, but
can sometimes affect their qualitative properties. Disorder usually modifies the transport
phenomena discussed in Sec. 1.3.3, but we will focus on equilibrium properties in the rest
of this thesis – especially the DoS.

Crystalline defects — Electronic band theory rests on the assumption that conduction
electrons move in the background potential of a perfectly periodic lattice of cations. This
pristine crystalline state is often frustrated, though. Real solids contain some amount of
impurities, and even with a pure chemical composition, atoms do not perfectly arrange on
lattice sites, because, for instance, the material keeps some memory of the solidification.
Any discrepancy to the crystalline arrangement is called a defect; the presence of a
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macroscopic number of defects induces disorder. According to the dimensionality of a
defect, one distinguishes between point defects on one hand, and extended (line and plane)
defects on the other hand (Kittel 1971).

• Point defects spoil the crystalline arrangement only near one or few sites. These
can be vacancies (empty sites where an atom should be), insertion atoms (atoms
in excess that fit in small interstices), or chemical impurities (unexpected chemical
elements), as shown in Fig. 1.13(a).
Vacancies appear when the thermal motion excites atoms out of some lattice sites.
The ejected atoms either deposit on the surface (Schottky defects), or jump to an
interstitial site (Frenkel defects), thus leading to an insertion atom. A metal has
a typical activation energy Ea ' 1 eV: just below the fusion temperature (roughly
T ' 103 K), the fraction of vacancies reaches values of e−Ea/kBT ' 10−5.
Chemical impurities are not thermally activated. Although they sometimes affect
the sample quality, they are often beneficial; in fact, they are widely used to enhance
the electrical conductivity – a process known as doping – in semiconductors, which
enter the fabrication of all our modern electronic devices. They can also improve the
mechanical resistance of building materials. Steel, for example, is crafted by adding
carbon impurities to iron.

• Extended defects affect lines or planes of atoms. Linear defects induce either
positional (dislocation) or orientational (disclination) disorder. Examples include
edges dislocations, where an abrupt change in the in-plane atomic arrangement
introduces irregularities in the crystalline structure, as shown in Fig. 1.13(b). Planar
defects consist of stacking faults, i.e. disruptions of the stacking sequence over a few
layers. All these extended defects settle at random lattice sites and orient themselves
randomly. They can be thermally activated.

Let us mention another type of defect specific to two-dimensional crystals: ripples.
These defects echo with a thorny debate surrounding graphene before its experimental
discovery, as to whether such planar crystals could exist. Wielding the Mermin-Wagner

Frenkel

Schottky

Impurity

(a) (b)

Figure 1.13 | Lattice defects in three-dimensional crystals. (a) Point defects consist of: vacancies
(blueish region), left when an atom either exits a lattice site and deposits on the surface (Schottky
defect), or jumps to an interstitial site (Frenkel defect); and chemical impurities, when an
unexpected chemical element substitute some atoms of the lattice. (b) Crystals can also host
linear defects, such as edge dislocations (represented here).
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theorem as proof, which states that thermal fluctuations destroy long-range order in two
dimensions and below, many thought graphene sheets to be unstable, and that they would
fold into fullerene molecules or carbon nanotubes. This argument breaks down because
two-dimensional crystals are not perfectly planar; they tend to bend out of the plane to
form rippled membranes. Quasi-particles in graphene thus propagate in a curved space,
which brings interesting parallels with quantum gravity (Vozmediano 2008). The rippling
of graphene sheets allows for the propagation of out-of-plane vibrations of the honeycomb
lattice (flexural modes). Due to random fluctuations of the bending rigidity, out-of-plane
phonons scatter effectively on electrons (Gornyi 2015).

Stability of the crossing point — Disorder usually smears the properties of crystals,
leading to quantitative differences at the very least, or transitions towards new phases of
matter in the most dramatic cases. A natural tool to probe the stability of the relativistic
semimetal phase is the DoS, which vanishes at the nodal level, unlike metals where a
large number of states populate the Fermi level. Since no propagating modes engage
in electrical conduction at zero temperature, three-dimensional relativistic semimetals
are insulating. But what about dirty semimetals? Can a new phase of matter set in for
sufficiently strong disorder? Quantum phase transitions are common in electronic phases.
A remarkable example of how disorder can alter the properties of pristine materials is
Anderson’s localisation.

P. W. Anderson showed indeed that destructive quantum interferences of particles which
propagate in a random potential can localise them for strong enough disorder (Anderson
1958). Anderson’s original approach rests upon a tight-binding formalism with nearest
neighbour hopping and random on-site energies. The term ‘Anderson transition’ now
applies to a larger variety of metal-insulator transitions where electrons become localised
in some region of the energy landscape, such as in quantum Hall plateaus (Huckestein
1995).

Later, E. Fradkin established that disorder induces a transition in relativistic semimetals
towards a metallic phase (Fradkin 1986). Similar non-Anderson transitions occur in
all materials which host a power-law dispersion relation E ∝ qα near a band edge or
touching point, provided the dimension d exceeds 2α (Syzranov 2018). This includes,
besides three-dimensional relativistic semimetals, high-dimensional gapless semiconductors,
quantum kicked rotors, and arrays of trapped ions.

This thesis brings relativistic semimetals in the spotlight. We will thus restrict the
terminology and refer to the ‘semimetal-metal’ transition for Weyl and Dirac semimetals,
and to ‘non-Anderson’ transitions when mentioning other high-dimensional materials as a
side note. Yet, these two transitions share similar features, and some qualitative results
that we will present for the semimetal-metal transition extend to non-Anderson transitions.

1.4.2 Interactions
Interactions in graphene, Weyl and Dirac semimetals — Electronic band theory
deals with the single-particle physics, but in real materials, electrons interact with each
other, either through direct Coulomb repulsion or through indirect lattice-mediated
interactions. Due to the point-like nature of the Fermi surface, electrons interact differently
in relativistic semimetals than in Fermi liquids, which possess an extended Fermi surface.
Electron-electron interactions lead to two kinds of excitations of the Fermi sea: electron-hole
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pairs and collective modes known as plasmons (Castro Neto 2009).
In undoped relativistic semimetals, plasmons do not exist because their dispersion

relation merges with the electron-hole continuum. In addition, the formation of electron-
hole pairs costs a lot of energy, so that we expect interaction effects to be small. On the
other hand, the absence of eigenstates at the Fermi level prevents screening and may protect
the long-ranged nature of the Coulomb repulsion. Besides, the effective fine structure
constant of graphene is much larger than in quantum electrodynamics, about αf ' 1.
Theses arguments suggest that on the contrary, electron-electron interaction is strong in
relativistic semimetals. Yet, renormalisation group analyses show that Coulomb repulsion
is marginally irrelevant in graphene and irrelevant in Weyl and Dirac semimetals, so
that quantum corrections highly suppress the strength of Coulomb repulsion (González
1994; Vozmediano 2011). Therefore, many-body effects have only quantitative effects in
relativistic semimetals.

Twisted bilayer graphene — To find interesting physics, one has to look for electronic
systems where the kinetic energy is quenched. A prominent example is TBG, which has
become very fashionable since the discovery in 2018 of Mott insulating and unconventional
superconducting phases at some special ‘magic’ angles (Cao 2018a; Cao 2018b).

TBG consists in the overlay of two graphene sheets with a relative twist of the
crystalline axes. Unlike commensurate stacking arrangements, bilayers with a twist form
incommensurate packings. Yet, the interference between the two mismatched lattices give
rise to a so-called moiré pattern, which defines a new structural length scale hundreds
of times larger than the inter-atomic distance. Interlayer tunnelling, which is spatially
modulated by the moiré pattern, tends to suppress the Fermi velocity of the Dirac fermions
and flatten the energy bands. At special values of the twist angle, dubbed ‘magic’ angles,
the kinetic energy is quenched so much so that interactions dominate the electron dynamics.
The quenching of the kinetic energy is specific to the moiré physics, and arises only in
few-layer systems bound together by weak Van der Waals interactions. Although the
electronic properties of TBG differ from that of relativistic semimetals, the Dirac physics
serves as the starting point of the low-energy description. The difficult task then consists
in including interlayer hopping and many-body effects in the effective theory, which we
can treat with a renormalisation group approach.

1.5 The renormalisation group
Throughout this thesis, we will extensively use the renormalisation group technique to
investigate the large-scale behaviour of low-energy effective theories in presence of either
disorder or interactions. The concept of renormalisation emerged in the early developments
of quantum electrodynamics, as an attempt to make sense of the short-distance divergences
that arise in correlation functions. We will first present the basic ideas of renormalisation,
starting from its development in quantum field theory and going on to its later use in
critical phenomena. We will briefly discuss the real-space renormalisation group in spin
systems, and then exemplify its momentum-space representation on a theory of interacting
fermions known as the Gross-Neveu model. We will then implement the renormalisation
group using a perturbative expansion near the lower critical dimension.

40



1.5. The renormalisation group

1.5.1 Renormalisation in spirit
The problem of infinities — The theory of quantum electrodynamics aims at describing
the interaction of light and charged matter. The nascent quantum electrodynamics of
the early 1930s developed along two research directions (Schweber 2020). In the first
research tradition, Dirac’s hole theory, individual particles constitute the fundamental
objects of quantum mechanics. The sentient particles which physicists produce and detect
originate from excitations of a vacuum where all negative-energy states are filled: the
Dirac sea. The promotion to a positive-energy state creates a particle, e.g. an electron,
and leaves a vacancy in the Dirac sea known as a hole, which physicists perceive as an
antiparticle, e.g. a positron. This viewpoint progressively lost support after the 1940s,
although the concept of holes made its way into condensed matter physics. In the other
research tradition, developed by W. Pauli and W. Heisenberg, the fundamental objects
consist in quantum fields instead of individual particles, which result from elementary
excitations of the fields.

Both descriptions – Dirac’s hole theory and quantum field theory – describe the
quantised electromagnetic field and its coupling to fermions. The electromagnetic field
couples to electrons, of charge e, with a relative strength

αf = e2

4π~c, (1.63)

known for historical reasons as the fine structure constant. The hole and field theories
predicted with equally reasonable accuracy the cross-sections of electron-positron pair
creation, Compton scattering, and other elementary processes, at the lowest order in the
coupling strength. Yet, both theories faced huge troubles when trying to incorporate
higher-order corrections, in the form of divergences, which appear when particles scatter on
virtual photons of arbitrarily large momenta. These infinities seemed to have a profound
meaning and seriously impeded the progress of quantum field theory until the first half
of the 1940s. The solution came between 1943 and 1950 under the pen of F. Dyson,
J. Schwinger, S. Tomonaga, and R. Feynman, among others. By reparametrising the
mass m and charge e of the electron, they managed to absorb the divergences to extract
sensible, quantitative predictions – a procedure called renormalisation (Tomonaga 1946;
Schwinger 1948; Dyson 1949). In this procedure, the actual electron mass m, i.e. the
one which enters in all physical processes, differs from the mass parameter m0 of the free
theory. The evaluation of the discrepancy δm = m−m0 can be organised in a perturbative
expansion in the coupling strength. In particular, the first order leads to a logarithmic
divergence

δm = 3αfm

2π ln
(
~Λ
mc

)
. (1.64)

The ultraviolet cut-off Λ represents the maximal momentum of virtual photons; it acts as
an ancillary variable to regularise the divergent theory and subtract infinities. The electron
charge e had to be similarly reparametrised. Thanks to his original insight, R. Feynman
then endowed renormalisation with a powerful diagrammatic scheme to effectively compute
the corrections to the mass and charge order by order in the coupling strength (Feynman
1949a; Feynman 1949b; Feynman 1950). All subsequent observations – the hyperfine
structure of hydrogen, the Lamb shift, the magnetic moment of the electron – agreed
beautifully with the predictions of the renormalised theory of quantum electrodynamics.
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Renormalisation in critical phenomena — The idea of renormalisation progressively
made its way to the study of continuous phase transitions (Zinn-Justin 2012; Cardy 1996;
Goldenfeld 2018). First proposed by L. Kadanoff and later developed by K. Wilson, the
renormalisation group extends the recipe of renormalisation in quantum electrodynamics
to the scaling theory of critical phenomena. By adapting the renormalisation procedure to
critical phenomena, it became clear that renormalised quantum field theories, much like
the statistical field theories used to model phase transitions, intrinsically depend on an
energy scale. In addition, field theories have to include a maximum energy scale to be
well-defined. In quantum field theories, this scale is given by the ultraviolet cut-off Λ of
Eq. (1.64). Effective theories of critical systems, on the other hand, naturally include a
momentum cut-off; this is the inverse of the lattice constant a, or any microscopic length
scale. Yet, nothing forbids to define such effective theories at an arbitrary length scale,
intermediate between the microscopic limit a = Λ−1 and the macroscopic limit set by the
system size L. Similarly, the quantum field theories of the now-celebrated standard model
could well be approximations of a more fundamental theory at the energies accessible to
experiments and usual observations (Weinberg 1995).

Before explaining what the renormalisation group is, we should say a few words
about what it is not, and stress how unfortunate this terminology now seems. First, the
renormalisation group refers to a set of transformations which act on the parameters of
the theory (coupling strength α, mass m, etc.) upon rescaling the length. In critical
phenomena, the multiplication of two such transformations also belongs to this set, but
only up to a certain maximum length (the size of the system, or any large scale that cuts
the renormalisation flow). Besides, these transformations do not admit an inverse, because
much information about the microscopic degrees of freedom is lost under coarse graining,
and the lattice structure defines a minimal length scale to the problem anyway. Hence, the
mathematical structure of the renormalisation procedure is that of a semi-group, rather
than a group. Second, critical phenomena face no infinity issues as quantum field theory,
since they incorporate a physical cut-off from the beginning through the lattice constant
or the limit of validity of the low-energy theory. ‘Renormalisation’ in critical phenomena
denotes the way certain parameters behave under rescaling, regardless of any perturbative
scheme. The renormalisation group does not require any field theory either; it can apply
to any Hamiltonian that describes a phase transition in a thermodynamic system. Finally,
there is not one, but many renormalisation group procedures. The same ideas can indeed
be implemented in several ways, according to the nature of the degrees of freedom (discrete
lattice variables or continuous fields), the treatment of the couplings (perturbative or
exact) and the technical details (regularisation and subtraction).

Real-space renormalisation — Kadanoff’s motivation for devising the renormalisation
group was to understand the origin of scaling laws near critical points and the universality
of critical exponents (Kadanoff 1966). The mean-field approximation, which was the
standard approach at the time, was indeed powerless to predict the critical exponents
correctly. A canonical example of critical phenomena is the famous Ising model. The Ising
model describes a ferromagnetic-paramagnetic second-order phase transition in a system
of classical spins one-half si = ±1 placed on a lattice. The spins couple with nearest
neighbours with a homogeneous strength J , and interact with an external magnetic field B;
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1.5. The renormalisation group

the corresponding Hamiltonian is of the form

H({si};B) = −J
∑

〈i,j〉
sisj −B

∑

i

si, (1.65)

where 〈i, j〉 represents a sum over distinct pairs of nearest neighbours.
The Hamiltonian (1.65) describes the system at the microscopic level, i.e. at a length

scale about the lattice constant a. The macroscopic properties are encoded in the free
energy W (B) = − logZ(B), where the partition function Z follows from a sum over all
spin configurations

Z(B) =
∑

{si}
e−H({si};B), (1.66)

in natural units where kBT = 1. The free energy describes the collection of spins under
a constant external field. To describe the same system at constant magnetisation, the
appropriate thermodynamic potential follows from the free energy through a Legendre
transformation, which gives the macroscopic effective Hamiltonian

Γ({Si}) = −W (B)−B
∑

i

Si, (1.67)

where Si = 〈si〉 denotes the average spin (Le Bellac 2002). In the mean-field ap-
proximation, the macroscopic effective Hamiltonian Γ assumes the same functional form
as the microscopic Hamiltonian (1.65), with the same exact couplings J and B. The
mean-field approach treats indeed all spins as independent magnetic moments coupled to
the background magnetic field created by all other spins, so that the correlation length ξ
essentially reduces to the lattice constant a. In vicinity of the critical point, fluctuations
prevail, the correlation length diverges, and Γ deviates radically from Eq. (1.65). The goal
of the renormalisation procedure is to keep track of the effective Hamiltonian Γ as we
increase the correlation length ξ, or equivalently as we vary the intermediate length scale
at which we define the effective theory.

The early formulation of the renormalisation group proposed by L. Kadanoff relies on
a coarse-graining procedure in real space. Let ` > 1 be the corresponding scaling factor.
Since the spins correlate over a large distance near the critical point, one can see blocks
of spins of size `a � ξ as giant spins S`i with a well-defined up or down direction (the
one favoured by most individual spins within the blocks). Neighbour block spins couple
with a new strength J` and perceive a new external field B`, both of which function of
the scaling factor `. If there were no other coupling terms, the effective Hamiltonian
Γ`({S`i}; J`, B`) would describe an Ising system with a new correlation length ξ` = ξ/`
(measured in units of the new lattice spacing). In reality, the coarse-graining procedure
generates coupling terms which were absent in the microscopic Hamiltonian of Eq. (1.65),
and which must sometimes be included to correctly describe the system; fortunately, the
procedure generates only irrelevant operators in the Ising model, in the sense that the
corresponding coupling strengths vanish in the limit `→∞.

Since the new correlation length ξ` is smaller than ξ, the coarse-graining procedure
pushes the system further away from criticality, except exactly at the phase transition
where ξ =∞. It formally defines a transformation R` on the set of coupling constants,

R` : K = (J,B, ...) 7→ K` = (J`, B`, ...). (1.68)
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By iterating transformation (1.68), which amounts to tune ` to larger and larger values, K`

traces out a trajectory in the space of coupling constants, which depends on the initial
set of coupling constants K. Such trajectory is known as a renormalisation group flow.
In the thermodynamic limit, the infinite repetition of transformation (1.68) leads to
non-analytic behaviours in the free energy and its derivatives: there lies the very origin of
phase transitions. The coupling constants then reach a fixed point of Eq. (1.68), denoted
as K∗ = R∞(K), meaning that K∗ = R`(K∗) for any scaling factor `. Similarly, the
correlation length satisfies ξ∗/` = ξ∗ at the fixed point for any `, which leads to the two
following possibilities.

• When ξ∗ =∞, the fixed point is critical (C), as sketched in Fig. 1.14. Within linear
theory, at least one eigendirection of the flow is associated to a positive eigenvalue,
which means that the coupling constants flows away from the critical point along
this direction. This eigenvalue, which dictates the critical scaling laws, is insensitive
to the microscopic values and nature of the coupling constants; this robustness is at
the origin of universality.

• When ξ∗ = 0, the fixed point is trivial. If all eigendirections of the flow are associated
to a negative eigenvalue, except the one associated to an external field, the fixed
point is stable. Its basin of attraction delineates a phase in the space of coupling
constants. The Ising model possesses two stable points, one for the paramagnetic
phase (P), the other for the ferromagnetic phase (F), as sketched in Fig. 1.14. In
presence of a magnetic field, the coupling constants of the Ising model flow towards
sinks (S) at infinite B, which describe a magnetised spin system. It may happen that
all eigendirections are associated to a negative eigenvalue, in which case the fixed
point is a source. Source points typically appear at the crossing of several critical
lines.

Although Kadanoff’s block-spin approach to renormalisation is correct in spirit, it
does not provide a systematic way to compute the critical exponents, and miss the strong

J

B

•
C

•P • F

• S

• S

Figure 1.14 | Flow diagram of the Ising model in the (J,B) plane, with J coupling strength
and B the magnetic field, in units of kBT . The arrows indicate renormalisation flows (J`, B`)
with increasing scaling factor `→∞ from particular microscopic values of the coupling constants.
The critical fixed point C = (J∗, 0) controls the ferromagnet-paramagnet transition. The stable
fixed point P = (0, 0) characterises the high-temperature paramagnetic phase, while F = (∞, 0)
characterises the low-temperature ferromagnetic phase. The sinks S(0,±∞) describe the spin
system magnetised by an external field.

44



1.5. The renormalisation group

analogy with the renormalisation recipe of quantum field theory. In the following, we
review the current understanding of the renormalisation group developed in the seminal
works of K. Wilson (Wilson 1971b; Wilson 1971a; Wilson 1972; Wilson 1974),
using as a guiding thread a fermionic field theory with quartic interaction known as the
Gross-Neveu model.

The Gross-Neveu model — The similarity with the renormalisation procedure in
quantum field theory becomes clearer when the Hamiltonian depends on field variables
instead of spins on a lattice. This often occurs in condensed matter, either when continuum
space can replace the lattice structure under a sufficiently large coarse graining, or when
the variables themselves depend continuously on position, such as electronic wave functions.
In the Ising model, the coarse-grained spins can be described by a scalar field ϕ which
self-interacts through a quartic potential. Hence, the Ising model maps to the ϕ4 model
with O(N) symmetry in the special case N = 1. Like in any classical transition, thermal
fluctuations trigger the ferromagnetic order in the Ising model. On the contrary, quantum
fluctuations spontaneously break the symmetry of the zero-temperature ground state in
quantum phase transitions. An example of a quantum field theory with symmetry breaking
is the Gross-Neveu model.

The Gross-Neveu model describes N flavours of massless Dirac fermions, encoded by
two fields ψ = {ψa, a = 1, ..., N} and its adjoint ψ = {ψa, a = 1, ..., N}, which interact
via a quartic scalar potential (Gross 1974; Zinn-Justin 2002). In the path integral
formulation of quantum field theory – which we will use extensively –, these fermionic
fields obey a complex Grassmann algebra, whose properties are recalled in Appendix A.
The action of the Gross-Neveu model reads

S =
ˆ

ddx
[
ψ(−iγµ∂µ)ψ + g

2 (ψψ)2
]

(1.69)

in d space-time dimensions, where for brevity the field dependence on the space-time
variable x = (r, t) is implicit. The parameter g > 0 stands for the coupling strength of the
quartic interaction. From Eq. (1.69), we see that the N flavours behave as independent
copies of the same Dirac fermion. The decoupling of all flavours endows the Gross-Neveu
model with a global U(N) symmetry. Indeed, for any unitary matrix R ∈ U(N), the
transformation

ψa 7→ (Rψ)a =
∑

b

Rabψb, ψa 7→ (ψR−1)a =
∑

b

(R−1)abψ b (1.70)

leaves Eq. (1.69) invariant. The Gross-Neveu, which is renormalisable near d = 2 dimen-
sions, originally served as (1 + 1)-dimensional toy model for quantum chromodynamics,
given the similar properties of these two theories. In particular, the Gross-Neuveu model
features asymptotic freedom and dynamical mass generation – a phenomenon at the basis
of the electroweak unification (Rosenstein 1991) –, while being simpler to treat than
quantum chromodynamics. Indeed, the absence of any mass term in action (1.69) ensures
its invariance under either the discrete chiral symmetry4

ψ 7→ γ5ψ, ψ 7→ −ψγ5, (1.71)
4In (3 + 1) dimensions, the chiral symmetry becomes a continuous U(1) symmetry; the dynamical

mass generation is then associated with a Goldstone boson, identified as the idealised pion of quantum
electrodynamics.
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in even dimension, or inversion r 7→ −r in odd dimensions. For a positive coupling
strength g the quartic potential describes an attractive interaction; if moreover the
interaction is strong enough, the fermions form bound states, thereby breaking the chiral
symmetry. The formation of bound states requires some energy, though, which explains
why fermions acquire an effective mass.

Mean-field analysis — We propose here to show the spontaneous mass generation at
the mean-field level. The emergence of a fermion mass is already clear in the mean-field
approximation, where the action becomes Gaussian,

SMF =
ˆ

ddxψ(−iγµ∂µ +m)ψ, (1.72)

and acquire an extra mass term m = g〈ψψ〉. As is standard in mean-field approximations,
we estimate the ensemble average 〈...〉 using the Gaussian action itself, given by Eq. (1.72),
which leads to a self-consistent equation for m. The existence of a solution enforces a
condition on g. To ease the computation, we first diagonalise the action by switching to
Fourier space. With k the space-time momentum, and {ψk, ψk} the Fourier-transformed
fields5, the action becomes

SMF =
ˆ
k

ψk(γµkµ +m)ψk, (1.73)

where we use the notation shorthand ˆ
k

=
ˆ ddk

(2π)d . (1.74)

We now express the mean-field expectation value

〈ψψ〉 = 1
Z

ˆ
Dψ Dψ (ψψ) e−SMF = ∂

∂m
log
ˆ

Dψ Dψ exp
[
−
ˆ
k

ψk(γµkµ +m)ψk
]
,

(1.75)
and evaluate the Gaussian integral, which gives

〈ψψ〉 = ∂

∂m
log det(γµkµ +m) =

ˆ
k

G(k), (1.76)

where G(k) = (γµkµ + m)−1 denotes the Fourier-transformed propagator (or Green’s
function) of the Gaussian theory. By plugging Eq. (1.76) into the expression m = g〈ψψ〉
for the mass, and simplifying by m 6= 0 on both sides, we get the implicit relation between
the coupling strength and the mass in the phase with broken symmetry

1 = g

ˆ ddk
(2π)d

1
k2 +m2 . (1.77)

5Different conventions exist for the Fourier transform; in compliance with the tradition of high-energy
theorists, we choose the one with the 2π factors in the inverse transform with the wave vector as Fourier
parameter,

f̂(k) =
ˆ

d3r e−ik·rf(r), f(r) =
ˆ d3k

(2π)3 e
ik·r f̂(k).

For notational symmetry, we use the opposite sign convention for the Fourier transform of the conjugate
field ψ . In so doing, ψ (r)ψ(r) transforms to ψkψk and not ψ−kψk.
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In dimension d < 2, the integral in Eq. (1.77) converges, and a non-trivial solution
m 6= 0 exists for all g 6= 0: the spontaneous quantum fluctuations are large enough to
break the chiral or parity symmetry for arbitrarily weak coupling strength. The marginal
dimension below which fluctuations always destroy the symmetric phase is called lower
critical dimension. Therefore, the lower critical dimension equals d` = 2 in the Gross-Neveu
model. In dimension d ≥ 2, the integral in Eq. (1.77) diverges, which entails that the
right-hand side is infinite for non-zero g. This singularity signals that, as expected, the
interacting theory should be renormalised, which we have not done yet. Let us therefore
introduce a momentum cut-off Λ. In three dimensions, the regularised integral diverges
linearly with Λ and leads to

1 = gΛKd

[
1− m

Λ arctan
(

Λ
m

)]
. (1.78)

For the sake of generality, we introduced in Eq. (1.78) the numerical factor Kd = Ωd (2π)−d,
where

Ωd = 2πd/2
ΓE(d/2) (1.79)

represents the surface of the hypersphere in d dimensions, and ΓE is Euler’s Gamma
function. Eq. (1.78) admits a solution for m only if the coupling strength exceeds the
critical value g∗ = (ΛKd)−1. Slightly above this critical coupling strength, the mass m,
which acts as an the order parameter, increases with g in a power-law fashion:

m ∼ (g − g∗)β, (1.80)

where the so-called order parameter exponent takes the value β = 1 in mean field. As
is standard in critical phenomena, the ∼ symbol indicates an equivalence up to some
unimportant (possibly dimensionful) factor. This value of β is inexact, however, because the
mean-field description neglects quantum fluctuations, which yet dominate near the critical
point. The renormalisation group, on the other hand, accounts for critical fluctuations in
a well-controlled fashion.

Formalism of the renormalised effective action — To cure the ultraviolet diver-
gences, one must assume that the bare variables that enter the free theory (1.69), become
ill-defined when adding an interacting potential. Instead, the interacting theory must
be expressed in terms of new renormalised fields and parameters. To clearly distinguish
between bare and renormalised variables, we will henceforth mark bare quantities with
an upper circle (̊ ). Let us now consider that the theory is temporarily regularised, for
instance using a cut-off Λ (but the following discussion remains valid for any regularisation).
We also need to introduce an independent mass scale µ in the theory, which plays the
same role as the scaling factor ` ∝ µ−1 in the block-spin transformation, to monitor the
renormalisation flow from the microscopic (µ = Λ) to the macroscopic (µ = 0) level.

It then becomes possible to relate the bare and renormalised fields through a finite
constant Zψ(Λ/µ), function of the dimensionless parameter Λ/µ, in the following way:

ψ̊ = Z
1/2
ψ ψ, ψ̊ = Z

1/2
ψ ψ. (1.81)

By convention, the square root is introduced in Eq. (1.81) because correlation functions
of interest usually contain pairs of fermionic fields. In the end, we choose Zψ so that
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when Λ is set to infinity, the correlation functions of renormalised fields remain finite (we
do not worry about how to achieve that for the moment). Similarly, we reparametrise
the mass and the coupling strength in terms of their renormalised values m(µ) and g(µ),
respectively. For the mass, we define the constant Zm(Λ/µ) such that

m̊ = ZmZ
−1
ψ m. (1.82)

The canonical mass dimension of the coupling strength is [g] = 2− d; for convenience, one
usually defines the renormalised coupling strength as dimensionless, so that the bare and
renormalised couplings differ by a factor µ2−d. We need to introduce a constant Zg(Λ/µ)
so that

g̊ = 2µ2−d

Kd

Zg
Z2
ψ

g. (1.83)

We extracted a factor Kd/2 in Eq. (1.83) to absorb the angular factors from the Feynman
diagrams and simplify the equations of the renormalisation flow as much as possible.

Note that we conventionally introduced the constant Zψ in Eq. (1.82) and Eq. (1.83)
to compensate the rescaling of the fields. Indeed, by expressing the original action S of
Eq. (1.69) in terms of the renormalised fields and parameters, we obtain the so-called
renormalised action

SR =
ˆ

ddx
[
ψ(−Zψiγµ∂µ + Zmm)ψ + µ2−d

Kd

Zg g (ψψ)2
]
. (1.84)

Of course, the two actions SR[ψ, ψ;µ] = S[ψ̊ , ψ̊] describe the same theory, except that
the renormalised action SR is viewed as a functional of the renormalised fields, while the
original action S is viewed as a functional of the bare fields. The Legendre transform of
the bare and renormalised actions defines the effective action at a given mass scale µ (the
counterpart of the effective macroscopic Hamiltonian for quantum field theories)

ΓR[χ, χ;µ] = Γ[χ̊, χ̊], (1.85)

which depends on the macroscopic fields χ = 〈ψ〉 and χ = 〈ψ〉. For simplicity, we will
nonetheless use the same symbols ψ and ψ for the arguments of the effective action. At
the microscopic scale µ = Λ, one recovers the original action ΓR[Λ] = SR. On the contrary,
at the macroscopic scale µ = 0, the effective action captures the large-scale physics, or the
physics in the thermodynamic limit in statistical theories.

In general, the effective action Γ assumes a complicated functional dependence, with
infinitely many high-order operators. We write the functional Taylor expansion of the
renormalised effective action as (Zinn-Justin 2002)

ΓR =
∞∑

n=1

1
n!2
ˆ

ddx1...ddx2n Γ(2n)
i1,...,i2n(x1, ..., x2n)ψ i1(x1)ψi2(x2)...ψ i2n−1(x2n−1)ψi2n(x2n),

(1.86)
where the integers i1, ..., i2n index both the flavour a and the components of each fermionic
field ψa or ψa. Hence, The renormalised 2n-point vertex functions Γ(2n) have a tensorial
structure, which we will not spell out except when necessary for the exposition. The
equality between the bare and renormalised quantum action of Eq. (1.85) leads to the
relations for the 2n-point vertices (here in Fourier space)

Γ(2n)({ki};m, g, µ) = Zn
ψ Γ̊(2n)({ki}; m̊, g̊). (1.87)
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The Gross-Neveu model is multiplicatively renormalisable in two dimensions6. This means
that to completely renormalise the theory, it is sufficient to determine the renormalisation
constants Zm, Zψ and Zg so as to render the two-point and four-point vertices finite at
special sets of momenta. In agreement with the functional form of the action S, we impose
on the two-point functions the conditions





Γ(2)(k = 0;m, g, µ) = finite ·m,
∂Γ(2)

∂kµ
(k = 0;m, g, µ) = finite · γµ,

(1.88a)

(1.88b)

where the two finite constants depend on the dimensionless factor Λ/µ. Eq. (1.88a)
determines Zψ, while Eq. (1.88b) determines Zm. We find similarly the constant Zg by
enforcing

Γ(4)({ki = 0};µ, g, µ) = finite · g (1.89)

for the four-point vertex function.

Renormalisation flow — Once the renormalised constants are determined, the flow of
the coupling constant g is encoded in the so-called beta function (Zinn-Justin 2002)

β(g) = − ∂g

∂ log µ, (1.90)

which quantifies how the coupling strength scales with µ near a fixed length scale. The
scenario β(g) > 0 indicates that the coupling strength increases in the infrared limit µ→ 0.
Importantly, the partial derivative of Eq. (1.90) is evaluated with all bare parameters fixed,
since only the effective theory depends on the mass scale. The initial condition of the flow
at µ = Λ corresponds to the (dimensionless) microscopic coupling g(Λ) = 1

2Λd−2g̊. A naive
dimensional analysis suggests that slightly above the microscopic scale, g(µ) ∝ µd−2, from
which we expect β(g) ' −(d− 2)g. Obviously, the quantum corrections encoded in the
constants Zg and Zψ alter this scaling law, especially at large coupling strengths. Using
the prescription (1.83), we find the exact expression for the beta function

β(g) = −(d− 2)g
(

1 + g
∂ logZ
∂g

)
, (1.91)

where Z = Zg/Z
2
ψ. For concreteness, let us assume that the first quantum corrections

to the beta function are of order two in the coupling strength. Then, there exists some
constant A such that

β(g) ' −(d− 2)g + Ag2. (1.92)

If furthermore A > 0 and we place ourselves in dimension d > 2, two large-scale behaviours
may arise according to the value of the microscopic coupling strength, as shown in Fig. 1.15.

• If g(Λ) is smaller than the critical coupling strength g∗ = (d−2)/A, the beta function
is always negative and the coupling strength decreases under the renormalisation
flow. This situation corresponds to the symmetric phase, with zero fermion mass.

6We refer the reader to (Zinn-Justin 2002) for inductive proofs of renormalisability
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β(g)

g•
g∗

Figure 1.15 | Beta function β(g) of the Gross-Neveu model against the quartic coupling
strength g, for N > 1 flavours of fermions. The beta function is negative below a critical value g∗:
the coupling strength decreases in the infrared limit towards the Gaussian fixed point g = 0. This
asymptotic freedom is a peculiarity of the Gross-Neveu model and more realistic theories like
quantum chromodynamics. The beta function is positive above g∗, where the coupling strength
increases to infinity: in this strongly interacting regime, quantum fluctuations break the chiral
symmetry and spontaneously generate a fermion mass.

• If g(Λ) > g∗, the beta function becomes positive and the flow enhances the coupling
strength. This property is specific to asymptotically free theories, for which the
coupling weakens as the energy scale increases. The model then describes a symmetry-
broken phase, where the fermions acquire a mass m 6= 0.

Similarly, we define the scaling functions for the field and mass

ηψ(g) = ∂ logZψ
∂ log µ = −β(g)∂Zψ

∂g
, ηm(g) = ∂ logZm

∂ log µ = −β(g)∂Zm
∂g

. (1.93)

These functions represent the power-law dependence of the Z constants with the mass
scale. Close to the critical point, the theory becomes scale-invariant and the scaling
functions tend to constants, from which we deduce the scaling law Zm ∼ µηm−ηψ and
Zψ ∼ µηψ . The scaling functions thus give the anomalous contribution to the critical
exponents induced by quantum fluctuations, which correct the predication of the naive
dimensional analysis m ∼ µ. For instance, upon defining the correlation length exponent ν
such that µ ∼ (g − g∗)ν , we predict that the mass scales according to Eq. (1.80) with a
power-law exponent β = ν(1 + ηm − ηψ).

1.5.2 Perturbative expansion
The stage is all set to determine the critical properties of the model. Yet, when putting the
renormalisation group in action, the computation of renormalisation constants stumbles
over a huge obstacle: finding the exact expression of the vertex functions often proves an
impossible task. As a result, it is often necessary to resort to a perturbative approach to
compute the renormalisation constants and determine the flow of the coupling strength.

Perturbative scheme — Several approximation methods exist, according to which
parameter is considered small. In the so-called large fermion number expansion, correlation
functions are expanded in the parameter gN−1, with N the number of fermions. The most
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natural and common perturbative scheme, though, consists in expanding in the coupling
strength g. To do so, let us split the action S = S0 + Sint into its Gaussian part S0 and its
interacting part Sint, proportional to g. We can then expand the partition function as

Z =
ˆ

Dψ Dψ e−S =
ˆ

Dψ Dψ e−S0 exp
[
− g̊2

ˆ
ddr (ψψ)2

]

=
ˆ

Dψ Dψ e−S0
∞∑

L=0

g̊L

2LL!

[
−
ˆ

ddr (ψψ)2
]L
. (1.94)

At this point, the series in Eq. (1.94) behaves well. But to organise the perturbative
expansion of correlation functions order pby order in the coupling strength, one must, in a
leap of faith, swap the path integral and the sum, which gives

Z =
∞∑

L=0
g̊LZL, ZL = (−1)L

2LL!

〈[ˆ
ddr (ψψ)2

]L〉

0
, (1.95)

where 〈...〉0 denotes a statistical average over the Gaussian action S0. Due to this illegitimate
mathematical trick, the coefficients ZL of the series in Eq. (1.95) diverge in absence of any
regularisation: there lies the mathematical origin of the infinities. Since Gaussian integrals
are easy to perform, it is now possible to compute observables from the partition function
order by order in the coupling strength. The famous Wick theorem, which we recall in
Appendix A, enables to cast the averages of operators of the form (ψψ)2L into a sum of
all possible contractions between the fields ψ and ψ , each factor giving the propagators of
the free theory 〈ψψ〉0 = G0. In addition, the pictorial method developed by R. Feynman
enables to keep track of all those contractions by grouping them into classes of graphs
with similar topology. The Feynman rules for the Gross-Neveu model are the following.

• A propagator is depicted as a solid line

G0(k) = (γµkµ +m)−1 = (1.96)

While in quantum electrodynamics, the middle arrow conventionally indicate whether
the particle or antiparticle propagates, we will use the same arrow to label to direction
of the momentum carried by the propagator.

• An interaction vertex is depicted as a node with four legs. It decomposes into two
subvertices with different topologies, depending on the way the component indices
of the fermionic fields ψ i and ψi contract one another. A vertex carries a factor

(−1)L

2LL! g̊L = • = +
(1.97)

• A Feynman diagram carries a combinatorial factor, or multiplicity, which can be
found by counting all possible Wick contractions that lead to diagrams with the
same topology.
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Loopwise expansion and counterterms method — As illustrated on the partition
function in Eq. (1.95), the bare coupling strength g̊ represents a natural expansion
parameter. The loopwise expansion consists in organising the series of a bare correlation
function order by order in the bare coupling strength g̊. The terminology refers to the
pictorial interpretation of this expansion, which amounts to collect Feynman graphs dressed
with the same number of loops. As an example, the perturbative expansion of the bare
two-point vertex function reads

Γ̊(2)(m̊, g̊) = [ ]−1 − −

− + ...

= Γ̊(2)
0 (m̊) + g̊ Γ̊(2)

1 (m̊) + g̊2 Γ̊(2)
2 (m̊) + ...

(1.98)

where the indices L = 0, 1, 2, etc. represent the tree level, the one-loop order, the two-loop
order, etc. The tree-level vertex function is simply the inverse of the propagator, i.e.

Γ̊(2)
0 (m̊) = γµkµ + m̊. (1.99)

Yet, the renormalised coupling strength g provides a more adequate expansion pa-
rameter, to the extent that we must express the correlation functions in terms of the
renormalised parameters to render them finite. The expansion of a renormalised correlation
function order by order in the renormalised coupling strength g comprises graphs which
are absent from the loopwise expansion, known as counterterms. As an example, the
renormalised two-point vertex function can be written as

Γ(2)(m, g, µ) = Γ(2)
0 (m,µ) + g Γ(2)

1 (m,µ) + g2 Γ(2)
2 (m,µ) + ... (1.100)

To make contact with Eq. (1.98), we use the prescription of Eq. (1.81) to Eq. (1.83) to
express g̊ and m̊ in terms of g and m respectively. In addition, the bare and renormalised
vertex functions differ themselves by a factor Zψ, as per Eq. (1.87). For instance, the bare
vertex function at tree level is of the form

ZψΓ̊(2)
0 (m̊) = Zψγ

µkµ + Zmm = Γ(2)
0 (m,µ) + g

(
z

(1)
ψ γµkµ + z(1)

m m
)

+O(g2), (1.101)

where z(1)
ψ and z(1)

m stand for the first-order coefficients of the constants Zψ and Zm,
respectively. The bare vertex function at tree level thus includes a term of order g, which
contributes to the first-order renormalised vertex function Γ(2)

1 . The renormalised vertex
function at tree level Γ(2)

0 (m,µ) = γµkµ +m takes the same forms as its bare counterpart,
except that it naturally depends on the renormalised mass m. Higher-order vertices in
the loopwise expansion can be similarly cast into a first term of order gL, which coincides
with the renormalised vertex at the same order, and corrections of order gM with M > L
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coming from the Z constants. These counterterms also admit a graphical representation.
Comparing Eq. (1.98) and Eq. (1.100), we write the renormalised vertex at first order as

Γ(2)
1 (m,µ) =

A

− +

= 2µ−εK−1
d Γ̊(2)

1 (m) +
(
z

(1)
ψ γµkµ + z(1)

m m
)

(1.102)

Alternately, we may view the counterterms as contributions from an extra part δS
added to the original action S, such that SR[ψ, ψ;µ] = S[ψ, ψ;µ] + δS[ψ, ψ;µ] with

δS = (Zψ − 1)
ˆ

ddxψ(−iγµ∂µ)ψ + (Zm − 1)m
ˆ

ddxψψ

+ µ2−d

Kd

(Zg − 1) g
ˆ

ddx (ψψ)2. (1.103)

The Z constants implicitly depend on the coupling strength via Zψ − 1 = gz
(1)
ψ +O(g2),

Zm − 1 = gz(1)
m +O(g2) and Zg − 1 = gz(1)

g +O(g2).

Dimensional regularisation — To cure the divergences that arise in correlation func-
tions beyond the tree approximation, the Feynman integrals must be regularised beforehand.
Several regularisation schemes exist (Kleinert 2001; Zinn-Justin 2002).

• The hard cut-off regularisation operates by limiting the range of integration to a
maximal momentum Λ. In condensed matter, this is the most natural regularisation,
since the lattice introduces a short wave length lower bound through the lattice
constant a = Λ−1. But cutting abruptly the integrals destroys most of the original
symmetries of the theories (translation, gauge).

• The Pauli-Villars regularisation is similar to the cut-off regularisation in spirit but
preserve all symmetries. It boosts the convergence of the propagator at high momenta
so as to reduce the degree of divergence by introducing a soft cut-off. Unfortunately,
this method is ambiguous. For instance, it leads to inconsistent results in quantum
electrodynamics without careful analysis of the renormalisation conditions (Kleiss
2015). This scheme seems inappropriate to treat the Gross-Neveu model.

• The dimensional regularisation extends the definition of isotropic integrals to arbi-
trary dimensions. It preserves all symmetries, greatly simplifies the computation of
Feynman integrals, and enables to subtract the poles effectively. Importantly, this
plays a double role: not only does it regularise divergent integrals, but it also enables
to perform the perturbative expansion Eq. (1.95) in a controlled way. We devote
ourselves to explaining this scheme in the rest of this section (’t Hooft 1972).

The mean-field analysis of Sec. 1.5.1 showed that in three dimensions, the dimensionless
critical coupling Λg∗ is everything but small. How to make sense of a perturbative expansion
in small g and then investigate the phase transition, which occurs at coupling strengths of
order unity? Dimensional regularisation solves this problem by offering a natural small
parameter, which is the distance to the lower or upper critical dimension.
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• The upper critical dimension du denotes the dimension above which the fluctuations
are small enough for the Gaussian approximation to predict the universal properties
of the system correctly. In the Ising model and its field-theoretical peer the ϕ4 theory,
the relative fluctuations of the magnetisation vanish at the critical point above
du = 4. This entails that mean-field theory predicts the correct critical exponents
above four dimensions. Statistical field theories are renormalisable below du. Thus
the theory can be advantageously extended to arbitrary dimension d = du−ε slightly
below the upper critical dimension, and the position of the critical point controlled
via the small parameter ε. The upper critical dimension of the Gross-Neveu model
is ill-defined, since the Gaussian theory is not critical (it describes free fermions)
unlike the ϕ4 theory.

• The lower critical dimension d` denotes the dimension below which the fluctuations
are large enough to break the symmetry of the free theory however weak the coupling
strength. According to the Mermin-Wagner theorem, the lower critical dimension
of models with a continuous symmetry is d` = 2. The Gross-Neveu undergoes the
breaking of a discrete rather than continuous symmetry, but as per the mean-field
analysis of Sec.. the lower critical dimensional is also d` = 2. This is reflected in the
canonical dimension of the bare coupling [g̊] = 2−d vanishing in two dimensions, and
from there in the dominant term of the beta function. According to Eq. (1.92), the
critical point g∗ = ε/A is indeed small when ε� 1, which justifies the perturbative
expansion.

Subtraction scheme — Let us now see how to subtract divergences in the d = 2 + ε
expansion. For concreteness, consider the one-loop 2-point vertex function. Evaluating
the corresponding diagram shown in Eq. (1.98), we find that the one-loop contribution is
independent of the external momentum k, and thus renormalises only the mass,

g̊ Γ̊(2)
1 (m̊) = 2

(
− g̊2

)
(1− Tr)

ˆ
q

G(q) = (n− 1)g̊
ˆ ddq

(2π)d
m̊

q2 + m̊2 , (1.104)

where n = NTr1 denotes the total number of fermionic degrees of freedom and the factor 2
accounts for the multiplicity of the diagram. Using the analytical tricks of Appendix A,
the d-dimensional integral of Eq. (1.104) gives

Γ̊(2)
1 (m̊) = 1

2m̊
1+ε(n− 1)Kd ΓE(−ε/2)ΓE(1 + ε/2), (1.105)

The Gamma function possesses a pole at the origin, ΓE(x) = 1/x− γE +O(x) where γE is
Euler-Mascheroni’s constant. We thus can expand in the small parameter ε. To enhance
the analogy with the renormalised vertex of Eq. (1.98), we also plug spell out the bare
coupling as a function of the renormalised one, and now use the renormalised mass as the
argument. Hence

Γ̊(2)
1 (m) = −m(n− 1)Kd

[ 1
ε

+ log (m) +O(ε)
]
, (1.106)

In dimensional regularisation, ultraviolet divergences appear in correlation functions as
poles in ε. We can now render the corresponding renormalised vertex finite, since according
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to Eq. (1.98), we finally get

Γ(2)
1 (k;m,µ) = z

(1)
ψ γµkµ +m

[
z(1)
m −

2(n− 1)
ε

− 2 log
(
m

µ

)
+O(ε)

]
. (1.107)

Two strategies exist to render Γ(2) finite at one-loop order by choosing suitable Z constants.

• On one hand, we may enforce that the parameter m represents the actual mass of
the fermions, and thus impose Γ(2)

1 (k = 0;m,µ) = m and ∂kµΓ(2)
1 (k = k;m,µ) = γµ,

in the limit ε → 0. This corresponds to the on-shell subtraction scheme, widely
used in quantum field theories of the standard model to compare the theoretical
predictions with observations. In this scheme, the renormalisation constants absorb
not only the pole but also finite constants,

z
(1)
ψ = 0, z(1)

m = 2(n− 1)
ε

+ 2 log
(
m

µ

)
. (1.108)

• On the other hand, we may require that the Z constants absorb only the pole. In
this scheme, the renormalisation constants at first order read

z
(1)
ψ = 0, z(1)

m = 2(n− 1)
ε

. (1.109)

This minimal subtraction scheme suffices to renormalise the theory, and leads to
simpler expression of the renormalisation constants, at the expense of fermions being
off-shell. This is the common procedure in statistical field theories.

Beta functions — Pushing the expansion to order four in the coupling constant, one
finds the following expression for the beta functions (Gracey 2016),

β(g) = −εg + 2(n− 2)g2 − 4(n− 2)g3 − 2(n− 2)(n− 7)g4

− 4
3(n− 2)[−n2 − 19n+ 48− 3ζ(3)(11n− 34)]g5 +O(g6), (1.110)

where here ζ is Riemann’s function, and we recall that n = NTr1. The beta function
vanishes identically if n = 2, which corresponds to a single Dirac fermion in dimension
d ≤ 3. It is of the form of Eq. (1.92) and leads to a (positive) critical fixed point when
n > 2. At dominant order, the critical coupling strength is g∗ = ε/2(n− 2). The reason is
that the Gross-Neveu model is equivalent to the so-called abelian Thirring model in this
case, due to the Fierz identity (ψψ)2 = −1

2(ψγµψ)(ψγµψ). The Thirring model is exactly
soluble near two dimensions, which explains why the coupling strength is not renormalised.
Similarly, the scaling functions read

ηψ(g) = −2(n− 1)g2 + 2(n− 1)(n− 2)g3 − 2(n− 1)(n2 − 8n+ 7)g4 +O(g5) (1.111)

for the field anomalous dimension, and

ηm(g) = 2(n− 1)g − 2(n− 1)g2 − 2(n− 1)(2n− 3)g3

− 2(n− 1)[−5n2 − 23n+ 57 + 6(n− 2) + (n− 13)ζ3]g4 +O(g5) (1.112)
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for the mass anomalous dimension. Both Eq. (1.111) and Eq. (1.112) vanish identically
for n = 1, since quartic interactions are zero for Majorana fermions. By evaluating ηψ(g)
and ηm(g) at the critical coupling strength, we finally obtain the critical exponents. At
dominant order, they are

ηψ(g∗) = − n− 1
2(n− 2)2 ε

2 +O(ε3), ηm(g∗) = n− 1
n− 2ε+O(ε2). (1.113)

Evanescent operators — When generalising Feynman integrals to arbitrary dimension,
we glossed over an important detail: the extension of the Clifford algebra. The Pauli
matrices (σx, σy, σz) define indeed a three-dimensional Clifford algebra in Euclidean metric,
denoted as Cl3(R). In even dimension, the basis of the Clifford algebra Cld(R) is made
of d anticommuting elements γi with {γi, γj} = 2δij1 for i, j = 1, ..., d, which admit
faithful representations as 2d/2-times-2d/2 matrices. This algebra can be extended to odd
dimensions, though the definition of the elements becomes less straightforward (Kennedy
1981). But in non-integer dimensions, the products γiγj cannot be written as linear
combinations of Dirac matrices, which entails that the Clifford algebra becomes infinite
dimensional. Beyond three-loop order, the renormalisation flow of the Gross-Neveu model
generates new couplings, which we can collect in the antisymmetric channels (Vasil’ev
1997; Gracey 2008)

Γµ1µ2...µp = γ[µ1γµ2 ...γµp] = 1
p!

∑

P∈Sp
ε(P )γP (µ1)γP (µ2)...γP (µp), (1.114)

where P are permutations of p elements and ε(P ) is the signature of P . Each index µi can
take an infinite number of integer values. In particular, the quadrilinears in the fields of the
form (ψΓµ1µ2...µpψ)2 with p > d disappear when the dimension d = 2. These evanescent
operators then collapse on the few physical operators in integer dimension, and therefore
contributes to the beta function of the coupling strength g.
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Disorder in three-dimensional
relativistic semimetals
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Chapter 2
The disorder-driven semimetal-metal
transition

Real materials always contain some amount of disorder. And disorder can have drastic
consequences: for example, the amplitudes of wave packets scattered by random defects
can interfere destructively, which results in the localisation of the wave function. In
three-dimensional relativistic semimetals, the DoS vanishes at the band crossing, and
there are no wave functions to localise; but a strong enough random potential can drive
semimetals to a diffusive metal with a sizeable density of states, through a quantum
continuous phase transition, distinct from that of Anderson.

This chapter paints a cohesive but concise picture of the properties of the semimetal-
metal transition. We first show that this transition occurs in relativistic semimetals when
the (effective) dimension exceeds two. The next section is devoted to the phenomenology
of this transition: we present the phase diagram and the critical scaling laws for the
conductivity and the density of states, this latter quantity playing the role of an order
parameter. We then show the existence of a critical point and estimate the critical
exponents using a simple analytical technique: the self-consistent Born approximation.
Finally, we discuss the geometrical properties of the wave function density, which displays
a multifractal behaviour, and relate the scaling laws of average and typical observables.
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2.1 Quantum phase transitions in disordered electro-
nic systems

The effect of disorder on relativistic particles is a rather novel topic. In conventional
phases of matter, which usually host massive elementary excitations, disorder can induce
phase transitions. Prominent examples include many-body localisation, which currently
attracts a lot of attention, but also older topics such as percolation, spin glasses, and the
celebrated Anderson’s localisation (Thouless 1984). This latter transition is a perfect
benchmark to introduce the physics of disordered of localisation phenomena. With this
basic understanding at hand, we then explore the phenomenology of disordered relativistic
semimetals.

2.1.1 A historical example: Anderson’s localisation
Scaling theory — Localisation phenomena are ubiquitous in disordered electronic sys-
tems: from amorphous semiconductors and their celebrated Mott’s law, to thin metallic
films, quantum Hall states; and even manifest themselves beyond condensed matter physics,
in electromagnetic or water waves (Kramer 1993). The archetype remains Anderson’s
localisation (Anderson 1958). Under strong enough disorder, a three-dimensional metal
transits to an insulating phase, as a result of wave functions becoming exponentially
localised by multiple destructive scatterings. The same phenomenon can happen to any
conducting phase with a large DoS at the Fermi level, provided no other mechanism
prevents localisation. In general, lower-dimensional metals are unstable to an arbitrarily
weak disorder, and are always insulating. The role of dimensionality can be clearly seen
on the scaling with the system size L of the DC conductance G(L) (measured in units of
e2/h and at zero temperature), given by the beta function (Abrahams 1979)

β(G) = d logG
d logL . (2.1)

In the one-parameter scaling hypothesis, the beta function depends only on G (and not on
temperature or system size independently). Let us find its asymptotic behaviour. In the
metallic region (large G), dimensional analysis gives the classical Ohm’s law β(G) = d− 2;
the beta function is negative below dimension d = 2. In the localised region (small G),
the conductance vanishes exponentially with the system size, so that β(G) = logG.
This explains why one- and two-dimensional disordered solids behave as insulators in
the thermodynamic limit; only three-dimensional metals undergo a second-order phase
transition, in agreement with the Mermin-Wagner theorem. Fig. 2.1(a) shows this classical
behaviour of the conductance’s scaling. At intermediate values of the conductance, however,
quantum corrections alter this prediction, as discussed below.
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Figure 2.1 | (a) The beta function β(G) = d logG/d logL encodes the scaling behaviour of the
conductance G in Anderson’s localisation. When the beta function is positive, the conductance
increases in the thermodynamic limit; when it is negative, the conductance decreases instead. In
the classical limit sketched here, the beta function interpolates between the localised (small G)
and metallic (large G) behaviours in three dimensions, leading to a second-order (continuous)
phase transition at a critical conductance G∗. One- and two-dimensional disordered metals do
not undergo such localisation-delocalisation transition in the absence of quantum corrections. (b)
Below the mobility edge Ec, all states are localised; above it, all states are extended. On the
insulating side, the localisation length diverges as ξ ∝ (Ec −E)ν , while on the metallic side, the
DC conductivity at absolute zero vanishes as σ ∝ (E − Ec)s with s = ν(d− 2).

Disorder affects electronic states differently. While extended waves survive in regions
of the energy landscape with a high DoS, they become easily localised in lowly populated
parts of the spectrum. The mobility edge Ec delimits these regions of extended states
(above in energy) and localised states (below in energy), as shown in Fig. 2.1(b). On
each side of the mobility edge, the localisation length ξ (in the insulating phase) and the
DC conductivity σ (in the metallic phase), behave as critical power laws, as expected in
continuous transitions (Wegner 1976):

ξ ∼ (Ec − E)ν , σ ∼ (E − Ec)s, (2.2)

where the ∼ symbol indicates an equivalence up to some unimportant factor. Dimensional
analysis predicts that the conductivity scales as σ ∼ ξ2−d, so that s = ν(d − 2). The
correlation length exponent ν takes different values according to the universality class
of the transition. From a phenomenological viewpoint, the conductivity offers a good
order parameter for the transition. A renormalisation group can determine its precise
flow – or usually, the flow of the conductance – near the critical point, including quantum
corrections, which were ignored up to now.

Universality classes and quantum corrections — Some models for Anderson’s local-
isation fall into the conventional Wigner-Dyson symmetry classes inherited from random
matrix theory (Wigner 1951; Dyson 1962). Consider a Bloch Hamiltonian H with ran-
dom entries (Evers 2008). These could be random on-site energies or hopping amplitudes
within a tight-binding formulation, for instance. The behaviour under time reversal T
leads to three cases.
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• When time-reversal symmetry is absent, the only constraint on the Hamiltonian is
its hermiticity, H† = H. Such Hamiltonians are invariant under conjugation by any
unitary matrix; they belong to the unitary class.

• When time-reversal symmetry is present and the particles carry an integer spin
(T 2 = 1), the Hamiltonian is further symmetric, Ht = H. Such Hamiltonians are
invariant under conjugation by any orthogonal matrix; they belong to the orthogonal
class.

• When time-reversal symmetry is present and the particles carry a half-integer spin
(T 2 = −1), a natural representation is T = iσyK, where K denotes complex
conjugation and the Pauli matrix σy lives in the spin sector. The Hamiltonian
satisfies σyHtσy = H. It is invariant under the symplectic group, and thus belongs
to the symplectic class.

Yet, additional discrete symmetries are needed to cover all universality classes encountered
in nature. Including the chiral symmetry leads to three chiral ensembles (Gade 1991).
Including the particle-hole symmetry, on the other hand, leads to four Bogoliubov-De
Gennes ensembles (Altland 1997). The latter classification applies notably to disordered
superconductors.

A definitive field-theoretical approach for Anderson’s localisation remains elusive; the
first theoretical breakthroughs relied on self-consistent techniques, lattice models, or
numerical simulations. Several authors later developed a field-theoretical approach to
study Anderson transitions, known as the non-linear sigma model (Wegner 1979). This
theory is amenable to a renormalisation group analysis in dimension d = 2 + ε, from which
flow equations can be extracted for the disorder-averaged conductance (written again as G
for simplicity). This is far from the end of the story, however, because much information is
lost through the mapping to the non-linear sigma model, in particular about the cumulants
of the conductance’s distribution. Moreover, the small parameter ε does not control a
perturbative fixed point of the theory. In the orthogonal symmetry class, which describes
metals with scalar disorder, the ε-expansion leads to the beta function

βO(G) = ε− 1
πG

+O
(
G−3

)
. (2.3)

The critical exponents at leading order in ε follow from the critical conductance G∗ = (πε)−1

through ν−1 = −(Gβ)′(G∗) = ε and s = νε = 1. Likewise, the unitary class yields the
exponents ν−1 = 2ε and s = 1/2. In these two classes, quantum corrections enhance
backscattering in two dimensions (ε = 0), thereby localising all electronic states: metallic
films are always insulating. On the contrary, the beta function for the symplectic class

βSp(G) = ε+ 1
2πG +O

(
G−3

)
, (2.4)

is positive in two dimensions, at least for weak disorder. This signals the existence of
a phase transition, as in three dimensions, and contrasts with the classical picture of
Fig. 2.1(a). As often in disorder-induced transitions, long-range correlations also affect
criticality (Croy 2012). One-dimensional systems, which are always localised in presence
of short-range correlations, can undergo a delocalisation transition in presence of long-range
hopping (Cao 2017).
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2.1.2 Modelling disorder in relativistic semimetals
A key feature of metals is their large DoS at the Fermi level. In contrast, the DoS vanishes
at the band crossing point of relativistic semimetals. In undoped semimetals, the Fermi
level lies precisely at the point of zero DoS: Anderson’s localisation cannot occur here.
Then, how may disorder affect relativistic phases?

Random potential — Let us consider for concreteness a single Weyl node in a three-
dimensional semimetal which contains defects; for instance, impurities located randomly
at some lattice sites, or extended defects with random orientations. Whatever the nature
of disorder, we model its effect on the low-energy physics by a random perturbation that
couples linearly to bilinears in the fields, i.e. a background random potential. The effective
Hamiltonian is then given in full generality by

H = −iσ · ∂ +
3∑

µ=0
σµVµ(r, t), (2.5)

where Vµ(r, t) for µ = 0, 1, 2, 3, represent four possible couplings to the pseudospin. These
four potentials are functions of position r and in general of time t, which adds further
difficulties. Depending on how fast disorder reaches thermodynamic equilibrium, we may
consider two limit cases for the time dependence (Cardy 1996).

If the relaxation time of the defects is much less than the typical time of quantum
fluctuations, the random degrees of freedom (i.e the positions or orientations of the
defects) follow the same dynamics as the intrinsic degrees of freedom of the pure system.
Statistical and disorder averages are equivalent. This situation corresponds to annealed
disorder (Belitz 2002). In crystalline solids, the defects’ relaxation time far exceeds the
typical time of quantum fluctuations. The defects are thus frozen at fixed positions or
orientations, so that the potential Vµ(r) is no longer a function of time. This regime of
quenched disorder is of much more practical interest. As a trade-off, statistical averages
now depend on a particular realisation of the random variable Vµ, and performing averages
over disorder configurations becomes notoriously difficult. We will always assume that
disorder is quenched in relativistic semimetals.

In addition, the random potential couples to the pseudospin in two possible ways. On
one hand, the component V0 breaks the (emergent) chiral symmetry C. This perturbation
is ubiquitous, and can originate from any type of disorder: impurity-electron Coulomb
interaction, alteration of the electron’s kinetics by crystalline defects, etc. On the other
hand, the components Vi for i = 1, 2, 3 break not only C, but also the (emergent) time-
reversal symmetry T . The impurity-electron Coulomb interaction may break a spinless T
symmetry when the pseudospin represents orbital degrees of freedom, and different orbitals
have different charge distributions. Magnetic impurities can also lift the spinful T symmetry
when the pseudospin stems from the actual electronic spin.

Let us compare Eq. (2.5) with equivalent models in two space dimensions, such as
disordered graphene. There, the Pauli matrices represent the sublattice degree of freedom.
Any local perturbation of the length and direction of the carbon-carbon bonds, or of the
coordination number, leads to a random potential that couples asymmetrically to the A
and B sublattices. And such deformations inevitably exist as a result of corrugation (the
formation of ripples). Graphene thus harbours massless Dirac fermions which propagate in
the background of a random non-Abelian gauge field (Vozmediano 2008; Vozmediano
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2010). This offers fascinating parallels with gravity and cosmology, since the graphene
sheet induces a two-dimensional curved metric. Note in passing that the kinetic part of
the Hamiltonian (2.5) reduces to −i(σx∂x + σy∂y) in two dimensions, while the third Pauli
matrix σz acts as a chiral operator. This allows for an extra type of disorder in graphene:
the random mass.

Statistical properties of the random potential — In presence of quenched disorder,
we can describe the random potential within a statistical approach. If all components
µ = 0, ..., 3 are independent, we may assign a probability distribution Pµ[Vµ] to each
separately. These distributions are normalised:

ˆ
DVµ Pµ[Vµ] = 1. (2.6)

Since Vµ(r) depends on position, Pµ is a functional, and Eq. (2.6) stands for a path integral.
The functional form of the probability distribution depends on the defects’ nature or
concentration. But in the limit of a high concentration of weak defects, the central limit
theorem ensures that the probability distribution assumes a Gaussian shape,

Pµ[Vµ] ∝ exp
[
−1

2

ˆ
ddr ddr′ Vµ(r)hµ(r − r′)Vµ(r′)

]
, (2.7)

Let us show how the central limit theorem applies for point defects, using the so-called
Edwards model (Edwards 1958; Akkermans 2007). Suppose indeed that Ni identical
impurities are distributed randomly on lattice sites at positions {ri, i = 1, ..., Ni}. Each
impurity generates a potential v(r), so that the total potential felt by conduction electrons is

V (r) =
Ni∑

i=1
v(r). (2.8)

Denoting by ni = Ni/V the impurity density, the cumulants of order q have the following
expressions at the thermodynamic limit:

(
V (r1) · · · V (rq)

)
c

= ni

ˆ
ddr v(r − r1) · · · v(r − rq). (2.9)

In the limit of a high density ni → ∞ but weak potential v → 0, all cumulants vanish
except the variance (q = 2): the distribution becomes Gaussian. Advanced techniques can
nonetheless extend the study of disordered semimetals to generic probability distributions.
One of them is the functional renormalisation group, which we will mention again in the
next chapter.

A Gaussian distribution is entirely defined by its mean and variance. The average of
the potential over disorder configurations,

Vµ(r) =
ˆ

DVµ Pµ[Vµ]Vµ(r), (2.10)

locally shifts the band crossing point in energy (µ = 0) or momentum (µ = 1, 2, 3). It
is induced, in most cases, by charged impurities. Admittedly, doping completely alters
electronic properties; but since we wish to probe the stability of the nodal level in Weyl
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2.1. Quantum phase transitions in disordered electronic systems

semimetals, we may as well fix the energy and momentum shift (2.10) to zero. The next
order in disorder average is the variance. Assuming translational invariance the variance
depends only on the distance between two points,

Vµ(r)Vν(r′) = δµνgµ(r − r′). (2.11)

The disorder variance gµ > 0 is nothing more than the inverse distribution hµ of Eq. (2.7),
ˆ

ddr hµ(r1 − r)gµ(r − r2) = δ(r1 − r2). (2.12)

Range of disorder correlations — Though real systems might exhibit arbitrary func-
tions for the disorder variance, two main qualitative behaviours stand out. The first family
of functions rapidly dies out beyond a finite distance ξd, the disorder correlation length.
The archetype of such short-range correlation is a Gaussian function, which on virtue of
isotropy depends only on the distance r as

gµ,S(r) ∝ e−r
2/ξ2

d . (2.13)

Note that the Gaussian nature of the disorder variance gµ(r) has nothing to do with the
Gaussian nature of the probability distribution Pµ[Vµ]; one property does not imply the
other. Since the wave length λ diverges at the band crossing point, whereas the range
of disorder correlation ξd remains finite, the variance essentially reduces to a Dirac peak
gµ,S(r) ∝ δ(r). Such short-range correlations typically occur with uncharged or screened
impurities, vacancies, or insertion atoms. One caveat: numerical simulations on a lattice
usually reproduce at least one pair of nodes, separated by a typical momentum b. Hence,
ξd must be very large compared to b−1 in order to suppress internode scattering.

On the opposite side of the spectrum, the disorder variance may decay slowly on
distance. Linear dislocations and grain boundaries generate such long-range correlations,
provided they orient themselves randomly, with a power-law decay

gµ,L(r) ∝ r−a. (2.14)

The parameter a physically represents the codimension of the defects (a = 2 for lines,
a = 1 for planes). Yet for our purposes, a could take on any real value. Another situation
where the disorder variance looks similar to Eq. (2.14) is in presence of charged impurities.
Indeed, in absence of screening the Coulomb repulsion between ionic impurities forces
their relative positions to be correlated over long distances. Long-range correlations
can dramatically modify criticality in phase transitions, as is well known in the Ising
model (Weinrib 1983).

2.1.3 Relevance of weak disorder
Does randomness modify qualitatively the system’s properties? In systems where the
Gaussian theory is critical, like the Ising model, we can ask ourselves whether weak
disorder drives the phase transition to a new universality class. And the presence of
either short- or long-range correlations of disorder is key input to this problem (Weinrib
1983). In systems whose pure phase is described by a Gaussian theory, such as relativistic
semimetals, the issue to address is whether disorder affects the properties of the clean
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Chapter 2. The disorder-driven semimetal-metal transition

system so much as to induce a transition towards a new phase of matter. A simple scaling
argument answers this question by comparing the energy of the pure system E to the
energy broadening ∆E induced by disorder (Imry 1975). In the spirit of the Imry-Ma
criterion, we devise below a scaling argument adapted to relativistic phases to investigate
the crossing point’s stability.

For the sake of completeness, consider any gapless semiconductor with generic power-
law dispersion E ∝ λ−α, where the wave length λ of the Bloch state diverges at the nodal
level. This also represents the mean (kinetic) energy in a weakly disordered system. After
averaging over a box of size equal to the wave length λ, the variance of the energy reads

(∆E)2 = λ−d
ˆ
λ

ddr V (0)V (r) ∝



λ−d (short range)
λ−a (long range)

. (2.15)

The smaller the power-law exponent of ∆E in the long-wave length regime, the more
relevant the disorder. Yet, both the kinetic energy and the disorder-induced broadening
vanish, and so we must compare them near the nodal level. In presence of either short- or
long-range correlations, the relative strength of disorder (∆E/E)2 scales with the diverging
wave length as λ−y, where

y = min(d, a)− 2α. (2.16)

The sign of the scaling exponent (2.16) dictates whether weak disorder is relevant or
irrelevant. Remarkably, this sign criterion involves not directly the dimension d, but the
effective dimension deff = min(d, a). As far as the nodal stability is concerned, disorder
correlations matter as much as dimensionality; dimension acts as the default correlation
exponent when neighbouring defects disregard one another at long distances.

• When y < 0, the relative strength of disorder diverges near the nodal level, which
means the weak disorder hypothesis breaks down and impurities smear the properties
of the pure system. Such instability occurs in low-dimensional systems with short-
range correlations (d < 2α) or in systems with sufficiently long-range correlations
(a < 2α). This criterion says nothing about the nature of the disordered phase,
though. Usually a DoS emerges at the Fermi level, and the disordered material
acquires a diffusive metallic character.

• When y > 0, the relative strength of disorder vanishes near the nodal level, thus
preserving the pure crossing point. The relativistic semimetallic phase is immune
to a low amount of disorder. This robustness holds in high-dimensional systems or
systems with sufficiently short-range correlations (d < a and d > 2α, or a < d and
a > 2α). However, this stability cannot survive in the strong disorder regime. Due
to this limited immunity to disorder, Weyl and Dirac semimetals (d = 3, α = 1)
turn into a diffusive metal beyond a non-zero critical disorder strength through
a second-order phase transition. E. Fradkin first discovered this semimetal-metal
transition (Fradkin 1986a; Fradkin 1986b). It was later shown that all degenerate
semiconductors undergo non-Anderson disorder-induced transitions (Syzranov
2018; Syzranov 2019). Here again, this simple scaling argument remains powerless
to determine the nature of this transition or to explore the vicinity of the critical point.
More advanced techniques are needed (mean-field approximation, renormalisation
group).
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• When y = 0, the disorder-induced broadening and the kinetic energy are comparable,
showing that the non-Anderson transition in gapless semiconductors have lower
critical dimension d` = 2α. For relativistic phases, d` = 2. This marginal situation
occurs notably in graphene for short-range correlations (α = 1, a > d and d = 2).
The DoS acquires in graphene a small yet non-zero exponential contribution, however
weak the disorder strength (Fradkin 1986a; Fradkin 1986b).

In the following section, we discuss the semimetal-metal transition phenomenologically.

2.2 Phenomenology of the semimetal-metal transition
Relativistic semimetals undergo a second-order phase transition, where the critical point is
located at zero energy (the nodal level) and non-zero disorder strength. As in all continuous
transitions, the physical observable obey universal scaling laws when approaching the
critical point. The nodal level acquires an average DoS on the disordered metallic side,
and provides a good order parameter for the transition. The mean free path, on the
other hand, diverges at the critical point, but is finite in metallic phase and diminishes as
disorder strengthens and electronic transport becomes more and more diffusive.

2.2.1 Phase diagram
The density of states as order parameter — The scaling argument of Sec. 2.1.3
predicts that three-dimensional relativistic semimetals are immune to weak disorder. But
in the limit of infinitely strong disorder, the electron’s free kinetics becomes irrelevant:
the material’s properties should change drastically. A transition must take place at an
intermediate disorder strength. E. Fradkin first studied this transition in the simplest case
a single Weyl cone affected by short-range correlated disorder which couples symmetrically
with the pseudospin (Fradkin 1986a; Fradkin 1986b). The restriction to a single Weyl
cone is reasonable whenever intravalley scattering dominates over intervalley scattering,
which is all the more likely that the typical separation between Weyl cones is large, and the
random potential smooth at the microscopic scale. This corresponds to a (time-reversal)
T -preserving perturbation σ0V (r) with delta-peaked variance

g(r) = γ δ(r − r′), (2.17)

as defined in Eq. (2.11) and discussed in Sec. 2.1.2.
The disorder strength γ > 0 drives the crossing through the quantum critical point,

similarly than temperature drives classical phase transitions. Let γ∗ be the critical disorder
strength. We wish to find an order parameter for the transition, i.e. a physical observable
whose behaviour differs qualitatively in the phases of low and high disorder strengths. As for
most second-order phase transitions, a symmetry of the pure Hamiltonian is spontaneously
broken under disorder. One natural candidate is the emergent chiral symmetry of a single
Weyl node, which associates eigenstates of opposite energies. An energy asymmetry should
therefore affect the distribution of eigenstates near the nodal level. And indeed, the
disorder-averaged DoS ρ̄(E) acts as an order parameter at zero energy, up to possible
small corrections due to rare-region effects. For subcritical disorder (γ < γ∗), it vanishes
and the semimetallic phase survives; for supercritical disorder (γ > γ∗), the Fermi level
acquires a non-zero DoS, which is characteristic of a metallic phase.
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Chapter 2. The disorder-driven semimetal-metal transition

We sketch in Fig. 2.2(a) the typical behaviour of the mean DoS at the Fermi level ρ̄(0)
as a function of disorder strength. On the metallic side, the mean free path ξ of zero-energy
electronic waves is well defined. (The mean-free path plays the role of the correlation
length in spin systems). It diverges at the critical point, and decreases progressively with
disorder strength as electronic waves scatter more and more frequently. Both ρ̄(0) and ξ
scale in a power-law fashion near the critical point. Sec. 2.2.2 addresses these power laws
and their exponents. The critical point is located exactly at E = 0 and γ = γ∗, but a
critical-like behaviour spreads at finite energy over a small window of disorder strength,
which grows as we move away from the nodal level. The crossover region traces out a
critical fan in the energy-disorder plane, as in Fig. 2.2(b).

Note that a strong enough disorder can localise semimetallic states if allowed by
symmetry, as long as the material passes through an intermediate metallic phase. In fact,
some numerical simulations observed a semimetal-metal transition followed by Anderson’s
localisation on the same lattice model (Pixley 2015). For this reason, and to offer a point
of comparison, we stretched the axis of schematic 2.2(a) to larger disorder strength to
include the metal-insulator transition.

Rare-region effects — Self-consistent and renormalisation group techniques establish
that the mean DoS vanishes exactly for subcritical disorder (Syzranov 2018). Yet
perturbative techniques disregard rare disorder fluctuations which could in principle
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Figure 2.2 | (a) Qualitative behaviour of the mean density of states at the nodal level ρ̄(0) (the
solid blue curve) and the mean DC conductivity σ (the solid red curve) against disorder strength γ.
Both quantities vanish on the semimetallic side γ < γ∗, where γ∗ is the critical disorder strength,
notwithstanding exponentially small corrections to the density due to rare-region effects (the
dashed blue curve). The density ρ̄(0) ∼ (γ − γ∗)β and the conductivity σ ∼ (γ − γ∗)s increase
in a power-law fashion on the diffusive metallic side γ > γ∗. The correlation length, which is
also the mean free path (the solid black curve), diverges as ξ ∼ (γ − γ∗)−ν at the critical point.
If allowed by symmetry, a strong enough disorder localises the electronic waves of the metallic
phase through the critical point γAL of an Anderson transition. (b) The critical fan (the yellow
solid curve) delineates the crossover region E∗ ∼ (γ − γ∗)νz for the energy E between a critical
behaviour (inside the pale yellow region), and an analytical behaviour (on either side of the fan).
Within the fan, the larger the energy, the less sharp the transition.
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2.2. Phenomenology of the semimetal-metal transition

contribute to the subcritical DoS. The theoretical picture of this phenomenon is still
controversial.

Two scenarios have been proposed. In the first scenario, non-perturbative solutions to
the classical equation of motion generate small corrections to the mean density, known
as Lifshitz tails (Nandkishore 2014; Yaida 2016). These corrections are non-universal;
they depend on the microscopic details. They are exponentially suppressed for weak
disorder,

ρ̄tail(E = 0, γ) ∼ e−ξ/γ (2.18)

where here the equivalence ∼ is valid up to some numerical power. Yet (Buchhold 2018b)
showed by expanding and integrating out the Gaussian fluctuations around instantonic
solutions that the prefactor in Eq. (2.18) vanishes at zero energy. In the second scenario,
resonances between two different rare regions with strong disorder generate a non-zero
DoS (Ziegler 2018), but as was argued in (Buchhold 2018a), these resonances cannot
create states exactly at zero energy.

If one of these scenarios is true, either the DoS is no suitable order parameter strictly
speaking, which does not preclude other observables to be so, or the system avoids
the critical point, leading to a sharp crossover instead of a genuine phase transition.
Interestingly, a few numerical simulations found a small nodal density in the semimetallic
side compatible with Lifshitz tails, but whether these come from the physics or the method
is hard to decide (Pixley 2016b; Pixley 2016a). At any rate, these thin corrections
cannot hide the critical point entirely.

Particle-hole symmetry breaking — Here we link the emergence of a DoS for super-
critical disorder to the breaking of chiral symmetry (Fradkin 1986a; Fradkin 1986b).
Let H0 = −iσ · ∂ be the Hamiltonian of a clean Weyl node. In this model, the chiral
symmetry acts by multiplication (conjugation) on eigenstates (the Hamiltonian) by a Pauli
matrix σi, provided the corresponding coordinate xi is reversed (this extra requirement is
specific to three dimensions). Choosing the z direction,

C : H0(x, y, z) 7→ σzH0(x, y,−z)σz = −H0(x, y, z). (2.19)

Since σz anticommutes with the Hamiltonian up to a harmless spatial inversion, C refers
strictly speaking to an antisymmetry, rather than a symmetry1. We will also use this
loose but widespread terminology unless this lack of rigour threatens the clarity of the
exposition.

In presence of disorder, the retarded Green’s function G is defined by

(H(r)− E − iΓ)G(r, r′, E;V (r)) = δ(r − r′), (2.20)

where Γ = 0+ denotes some infinitesimal broadening, which avoids on-shell divergences. At
this stage, G depends on disorder through the random potential V (r). Investigating the
system’s properties in a particular disorder configuration, which depend on a tremendous
number of microscopic parameters, would be a formidable task. Mean observables depend
instead on a few macroscopic variables. Fortunately, the particle-hole symmetry of the pure

1Note also that a chiral (anti)symmetry is unitary, as opposed to its close cousin the particle-hole
(anti)symmetry, which is antiunitary.
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Chapter 2. The disorder-driven semimetal-metal transition

Hamiltonian enables to build a mean observable as order parameter. Indeed, Eq. (2.19)
entails

σzG(r−, r, E;V (r−))σz = −G(r, r,−E;−V (r)), (2.21)
where r = (x, y, z) and r− = (x, y,−z). By averaging Eq. (2.21) over the potential, and
using that the probability distribution is even in V , we find the anticommutation relation

{σz, Ḡ(r0, r0, 0)} = 0, (2.22)
where r0 = (x, y, 0) and Ḡ denotes the mean Green’s function. Also, the well-known
expression for the DoS (Akkermans 2007)

ρ̄(E) = 1
π
ImTrG(r, r, E), (2.23)

applies to any position r because the disorder average restores homogeneity. Setting E = 0
in Eq. (2.23), using Eq. (2.22) and the cyclicity of the trace, we conclude that the DoS
should vanish at zero energy, unless a strong enough disorder spontaneously breaks the
particle-hole symmetry.

Contrast with Anderson’s localisation — Even though the same ingredient, namely
disorder, triggers Anderson and non-Anderson transitions, and that both transitions have
lower critical dimensions d` = 2 in accord with the scaling arguments of Sec. 2.1.1 and
Sec. 2.1.3, they differ in many respects.

Anderson’s localisation appears in metallic phases, i.e. in electronic phases with a
large DoS at the Fermi level. Non-Anderson transitions appear on the contrary in phases
where the Fermi level lies near a band edge or crossing point, where the DoS vanishes.
Crucially, the origins of the two transitions differ radically. In Anderson’s localisation,
electronic waves stop propagating when they get trapped by random scatterers; in gapless
semiconductors such as relativistic semimetals, there are no propagating waves because of
the vanishing DoS, unless disorder is strong enough for nearby energy states to overlap
with the nodal level.

As a corollary, the critical manifolds in the energy-disorder strength diagram look
dissimilar. Localisation occurs typically when tuning the disorder strength γ at fixed
energy, or by tuning the energy below the mobility edge Ec at fixed supercritical disorder
strength, as in Fig. 2.1(b). Non-Anderson transitions occur only at a fixed energy (not
over an energy window), which is pinned to zero in relativistic semimetals, as in Fig. 2.2.
Hence, only the disorder strength controls the proximity to the critical point. Consequently,
different order parameters capture the two transitions. In Anderson’s localisation, the
mean DoS behaves smoothly at the critical point, while the DC conductivity vanishes.
In relativistic semimetals, both the mean DoS and the DC conductivity are zero on the
semimetallic side, and non-zero on the metallic side. Yet, as we will see in Sec. 2.4,
the so-called typical DoS – or any higher-order average – vanishes on the localised and
semimetallic side, but not on the metallic side, and thus provides an extra order parameter
for Anderson and non-Anderson transitions alike (Janssen 2001).

2.2.2 Conventional scaling laws
We now define the conventional critical exponents of the semimetal-metal transition
(correlation length exponent ν, dynamical exponent z) and discuss how they dictate the
scaling laws of the DoS and other observables.
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The one-parameter scaling hypothesis — Experiments and numerical simulations
show that in almost all continuous phase transitions, whether classical or quantum,
observables behave in a power-law fashion near the critical point as a function of the
transition parameter (temperature in the first case, parameter of the Hamiltonian which
monitors the ground state in the second case). Many theoretical arguments explain this
observation (Goldenfeld 2018). The singular behaviour of the free energy at the critical
point results from the divergence of the correlation length ξ, which quantifies the typical
distance over which fluctuations of the order parameter correlate. This length blows
up near the critical point as ξ ∼ (γ − γ∗)−ν , and this power law defines the so-called
correlation length exponent ν. In the metallic side of the semimetal-metal transition, the
mean free path is proportional to the correlation length, and follows the same scaling
law (Roy 2016).

Let us now consider how the Green’s function scales at the nodal level with the separa-
tion r. Widom’s one-parameter scaling hypothesis states that there exists a dimensionless
function f such that

G(0, r) = r1−df (r/ξ) . (2.24)
Eq. (2.24) represents the probability amplitude that a particle created at the origin
propagates to the position r. Mean-field theory shows that f(r/ξ) ∝ e−r/ξ up to some
numerical factor. At the critical point, ξ diverges, f(0) is a finite, and the Green’s function
scales as r1−d. In reality, the scaling exponent deviates from the prediction of naive
dimensional analysis, because an extra microscopic length scale ` interferes. The critical
Green’s function actually scales as

G(0, r) ∼ r1−d (`/r)η , (2.25)
where η is the so-called anomalous field exponent. Similarly, the naive dimensional analysis
for the energy |E| = k breaks down at the critical point. Instead, the critical dispersion
relation is of the form |E| ∼ `z−1kz, where the dynamical exponent z differs from unity.
This implies that defects break the effective Lorentz invariance of the disorder-averaged
physics at criticality.

Density of states — From these basic critical exponents, we can find the scaling laws for
more complex observables, such as the DoS, which plays the role of an order parameter. The
DoS can be found by counting the number of modes in a shell of energy E and infinitesimal
width dE. At the critical disorder strength, we have ρ̄(E) ∼ kd−1dk/dE ∼ Ed/z−1. Slightly
away from criticality, a more general relation holds (Kobayashi 2014)

ρ̄(E, γ) = |E|d/z−1f1
[
(γ − γ∗)|E|−1/zν

]
. (2.26)

In Eq. (2.26), the argument of the scaling function f1 is indeed scale invariant, in accord
with the scaling of the crossover region of the critical fan. The scaling law at the critical
disorder strength imposes f1(0) ∼ 1 to recover the correct energy dependence. On the
contrary, at zero energy, we must cancel out the energy dependence in Eq. (2.26) to get
the density-disorder strength relation. We thus set f1(−∞) = 0 to recover the vanishing
DoS for subcritical disorder, and f1(x) ∼ xν(d−z) in the limit x → +∞ for supercritical
disorder. All in all, the supercritical DoS at the nodal level scales as ρ̄(γ) ∼ (γ − γ∗)β
where the density exponent satisfies the hyperscaling relation (Sbierski 2016; Roy 2016;
Goswami 2011)

β = ν(d− z). (2.27)
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Conductivity — An observable of particular interest in experiments is the DC electrical
conductivity. Except for the DoS, we will always deal with disorder-averaged quantities, and
so we will neglect the overline when writing the symbol for those observables. Slightly above
the critical disorder strength the conductivity at zero doping scales as σ(γ) ∼ (γ − γ∗)s,
where s = ν(d− 2) as in Anderson’s localisation. Slightly below, however, numerical and
analytical results differ. To understand why, we must recall that numerical simulations
deal with finite-sized samples exactly at the nodal level (Sbierski 2014). Since the DoS
vanishes at the nodal level for subcritical disorder, there are no charge carriers, and σ = 0.
Analytical approaches are insensitive to finite-size effects. The vanishing of the DoS ρ
near the nodal level is compensated by the divergence of the scattering time τ , which
leads to a finite conductivity σ = v2

Fρ̄ τ at zero energy. For very weak disorder γ � γ∗

in particular, the conductivity scales as σ(γ) ∼ γ−1, provided the thermodynamic limit
is taken before the zero energy limit. When the material is doped to the energy E, the
conductivity satisfies the more general scaling relation (Syzranov 2015)

σ(E, γ) = (γ − γ∗)ν(d−2)f2
[
(γ − γ∗)|E|−1/zν

]
, (2.28)

where f2 denotes a scaling function, as in Eq. (2.26). At low but non-zero temperatures, we
can integrate Eq. (2.28) over the Fermi-Dirac distribution nF(E, T ) = [1 + exp(E/kBT )]−1

Short-range Long-range

Exponent Numeric Mean-field One-loop Two-loop Two-loop

ν 1.47± 0.03a 1b 1c 0.67d 1.60e

1.01± 0.06f

z 1.49± 0.02a 2b 1.5c 1.32d 1.25e

1.50± 0.04f

η inaccessible 0b 0c −0.18e −0.09e

β 1.51± 0.09f 1b 1.5 1.13 2.80
a(Sbierski 2015) b(Kobayashi 2014) c(Goswami 2011) d(Roy 2014) e(Louvet 2017)
f (Pixley 2016c)

Table 2.1 | Conventional critical exponents (correlation length exponent ν, dynamical exponent z,
anomalous field exponent η, density of states exponent β) at the semimetal-metal transition in
three dimensions in the universality classes of short-range (first columns) or long-range (last
column) correlated disorder First column: finite-size scaling analyses of the conductance (quantum
transport) or the mean density of states. The correlation length exponent ν ranges from 0.6
to 1.5 according to the details of the simulation. Despite the sensitivity of numerical estimates
to the critical point’s location, this inconsistency cannot originate from the method alone, but
may signal the non-universality of ν. The issue is still unresolved. Second column: one-loop
renormalisation group exponents in dimension d = 2 + ε, with direct substitution ε = 1. Third
and fourth column: two-loop results. The estimate of ν, and to a lesser extent of z, worsens with
the order of the ε-expansion. Last column: two-loop results in the universality class controlled
by long-range correlations. For concreteness, the disorder correlation exponent is set to a = 2.5.
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to find the T -dependent conductivity,

σth(T, γ) =
ˆ ∞
−∞

nF(E, T )ρ̄(E)σ(E, γ). (2.29)

In particular, the critical conductivity scales as σth(T, γ∗) ∼ T (d−2)/z (Syzranov 2015).
The scaling laws of the conductance prove to be useful to determine both the correlation
length exponent ν and the dynamical exponent z from numerical simulations, in conjunction
with finite-size effects.

Specific heat — Numerical simulations can also extract the dynamical exponent through
the scaling of thermodynamic observables. Those are of less interest for our purposes, since
we will focus on the pure quantum critical point and disregard any crossover at non-zero
temperatures. An example is the specific heat at constant volume CV = ∂〈E〉/∂T , whose
integral expression reads (Goswami 2011)

CV =
ˆ ∞
−∞

∂nF

∂T
(E, T )ρ̄(E)E = 1

4kBT 2

ˆ ∞
−∞

ρ̄(E)E2

cosh(E/2kBT )2 . (2.30)

In the semimetallic and metallic phases, the scaling laws read CV ∼ T 3 and CV ∼ T
respectively. At the critical disorder strength, CV ∼ T d/z.

Estimate of the critical exponents — In numerical simulations, the finite-size scaling
analysis of the distribution of the mean DoS (2.26) and the conductance (2.28) gives access
to the correlation length exponent ν (Sbierski 2015; Pixley 2016a). The scaling of
the critical conductance or the mean critical DoS with doping level, or the temperature
dependence of the specific heat, gives access to the dynamical exponent z. The scaling of
the mean DoS at the Fermi level gives directly the order parameter exponent β (Pixley
2016c; Pixley 2015). The anomalous field exponent η, on the other hand, is hard to
determine in numerical simulations, because it enters only correlations of operators. The
first column of Tab. 2.1 shows independent numerical estimates for ν, z and β. As a
general rule, the values of ν are less precise than z, because of the location of the critical
point is hard to find. This does not explain, though, the huge discrepancies observed
between different studies, and even different methods used in one study. Estimates of ν
fall within a range as wide is [0.6, 1.5]. No clear answer has been proposed to this issue
yet. The correlation length exponent may be non-universal, and sensitive to microscopic
details.

Analytical approaches can predict these exponents. The simplest technique, mean-
field theory, gives only crude estimates; the renormalisation group leads in principle to
better and better estimates as higher-order corrections in disorder strength are included.
On one hand, the dynamical exponent z ' 1.5 agrees well with numerical estimates,
especially at one-loop order. The estimate deviates at higher order, but the two-loop and
three-loop expansions yield credible results. On the other hand, the determination of
the correlation length exponent suffers again from serious flaws. The estimate worsens
dramatically with the order of the expansion, so much so that the four-loop result is
totally unrealistic (Gracey 2008a; Gracey 2008b). The sensitivity of ν to the presence
of evanescent operators (operators generated by quantum corrections initially absent from
the theory) may explain this unreliability. Anderson’s localisation faces the same issue.
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2.2.3 Effect of various types of disorder
In the simple picture presented in Sec. 2.2.1, a scalar uncorrelated random potential drives
the semimetal to a diffusive metallic phase. When multiple types of disorder interplay,
each associated with its own strength parameter, the phase diagram gains in complexity,
but the same qualitative features hold. The DoS, conductivity, and other observables
obey the scaling laws of Sec. 2.2.2, but the critical exponents depend on the nature of
disorder. We consider the effect of correlations and of the symmetries of the random
potential separately.

Interplay between disorder correlations — Assume that the scalar potential correlate
over distances of the order of the system size, for instance due to the presence of randomly
oriented line or plane defects. The disorder variance g(r) = γS δ(r) + γL r

−a acquires
short-range (strength parameter γS) and long-range (strength parameter γL) contributions,
the latter monitored by the disorder correlation exponent a. The phase diagram of a Weyl
semimetal in the (γS, γL) plane is sketched in Fig. 2.3(a) for moderate disorder correlations
(the disorder correlation exponent a exceeds the lower critical dimension d` = 2) (Louvet
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γ∗
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Figure 2.3 | (a) Phase diagram for a random scalar potential with both short-range correlations
(coupling strength γS) and long-range correlations (coupling strength γL). The disorder correlation
exponent a lies in the ‘critical’ domain 2 < a . d (with d the space dimension) where long-range
correlations control criticality. The black arrows represent several flow lines of the couplings.
The Gaussian fixed point G (blue dot •) attracts all coupling strengths inside the light red
region; the corresponding basin of attraction delineates the semimetallic phase. Outside coupling
strengths flow to infinity, possibly to a remote strong disorder fixed point not accessible by the
perturbative renormalisation group; the blank area delimits the metallic phase. The short-range
fixed point S (yellow dot •), which controls criticality for white noise disorder, becomes trivial for
a < d, to the benefit of the critical fixed point C (red dot •): long-range correlations modify the
universality class of the semimetal-metal transition. Adapted from (Louvet 2017). (b) Same
phase diagram for a short-range correlated potential with both a time-reversal- (T ) preserving
component (coupling strength γ) and a T -breaking component (coupling strength κ). The critical
T -breaking strength κ∗ is rejected to infinity at first order, but should actually be finite to agree
with numerical simulations, which observe κ-induced transitions (Sbierski 2016). At any rate,
the usual short-range fixed point controls criticality.
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2017). Instead of a critical point γ∗, a critical line γ∗L(γS) develops where the mean free
path diverges, and the mean DoS emerges at the Fermi level, thereby reproducing the
singular behaviour depicted in Fig. 2.2(a). The same line delimits the semimetallic phase
(near the origin of the graph) from the metallic phase (in the strong disorder region).
Remarkably, long-range correlations generate short-range correlations, even when absent
in the microscopic theory, while the reverse is untrue. The white noise perturbation thus
plays a special role for the transition.

The power laws discussed in Sec. 2.2.2 still apply near the critical line – the same
phenomenology holds –, but the exponents differ in presence of long-range correlations for
which 2 < a < d, which means that in this case the semimetal-metal transition belongs to
a distinct universality class parametrised by the disorder correlation exponent a. This new
universality class is determined by the critical fixed point C of Fig. 2.3(a). We determine
the exponents of this new universality class in Sec. 3.2. The last column of Tab. 2.1 lists
the corresponding exponents ν, z, η and β in terms of the small expansion parameter
δ = a− 2.

Interplay between T -preserving and T -breaking disorder — Suppose now the
random potential to be uncorrelated, but to couple to the pseudospin of the Weyl fermions
in all possible ways. By virtue of isotropy, we write g0(r) = γ δ(r) for the variance
of the scalar (time-reversal preserving) perturbation, and gi(r) = κ r−a with the same
disorder strength κ for the three components i = 1, 2, 3 of the vectorial (time-reversal
breaking) perturbation. As we will see in Sec. 3.2.3, the phase diagram resembles the one
previously discussed, except that the critical line crosses the κ-axis at a point beyond
the reach of one-loop computations. The exact location of this end point must be finite,
because a lone vector potential suffices to induce a transition to the metallic phase in
numerical simulations (Sbierski 2016). Crucially, a random vector potential preserves
the universality class of the semimetal-metal transition, however strong (κ large) and long
ranged correlated (a small).

The generalisation to a band crossing point with higher degeneracy, such as a Dirac
cone or several Weyl nodes connected by intervalley scattering, allows for even more
couplings of random scatterers to the electronic degrees of freedom (Goswami 2017).
The phase diagram retains, here again, the same features, with a semimetallic region at
weak disorder, and a metallic region at strong disorder. We show in Sec. 3.2.3 that the
universality class of the transition is unaffected, unless long-range correlations strengthen
intervalley scattering so much that they control criticality.

2.3 The self-consistent Born approximation
A simple theoretical approach to the semimetal-metal transition – beyond a phenomeno-
logical description – relies on the so-called self-consistent Born approximation (SCBA).
This technique implements a microscopic version of the mean-field theory, and follows
from a saddle-point approximation of the path integral. The SCBA yields satisfactory
results in the weak disorder regime, predicts the existence of the critical point, reproduces
the qualitative features of the transition, but misses the anomalous contribution in critical
exponents. By carrying out a large N expansion (with N the fermion number) of the path
integral, corrections to the SCBA can be found systematically. We also apply the SCBA
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in Chapter 4 to probe surface effects. For now, let us see how the Born approximation
applies to disordered phases.

2.3.1 Approximation schemes of the self-energy
Self-energy in disordered systems — Though first introduced to solve quantum
scattering problems, the SCBA proves useful in statistical field theory to check the existence
of a critical point and determine approximately the critical exponents. It advantageously
preserves conservation laws – especially the continuity equation. In the original formulation,
the Born approximation relates outgoing and incoming energy eigenstates (Born 1926),
but it can do without reference to fields and use Green’s functions instead. The latter
perspective better suits our purposes.

The Green’s function G was defined in Eq. (2.20) as the inverse of the full Hamiltonian
H = H0 + V , where H0 is the Weyl Hamiltonian and V the random scalar potential; it
represents the response of the Schrödinger equation to a pulse in real space. The amplitude
of presence at point r′ in response to a pulse at point r is given in the pure system by the
clean Green’s function G0(r−r1), which depends only on the distance between positions r
and r′ thanks to translational invariance. In presence of disorder, we can massage the
expression of G into the formal self-consistent equation (Akkermans 2007)

G = G0 −G0V G, (2.31)

where the product represents a spatial convolution of some sort,

(G0V G)(r, r′) =
ˆ

ddr1G0(r, r1)V (r1)G(r1, r′). (2.32)

As shown pictorially in Fig. 2.4(a), a particle moving from the origin to point r either
moves freely (this is the first term), or scatter at least once with the interacting potential V
before reaching the end point (this is the second term with an impurity line). It is judicious,
however, to pursue the self-injection of G to achieve a non-perturbative expansion at
second order in V . We arrive at the relation G = G0 −G0V G0 +G0V G0V G, represented
graphically in Fiq. 2.4(b). Without pushing the self-substitution ad infinitum, we now
average this equation. This kills the first-order term, and any odd power in V that
would appear further in the expansion. The reappearance of translational invariance
allows to Fourier-transform the disorder-averaged Green’s function Ḡ. Introducing the
momentum k, which is the conserved quantity associated to translation symmetry, we get
the non-perturbative expansion known as the Schwinger-Dyson equation,

Ḡ(k) = G0(k) +G0(k)Σ(k)Ḡ(k), Σ(k) = V G0V G(k) Ḡ(k)−1. (2.33)

This equation describes how quasiparticles propagate in the background of static random
scatterers, which induce an infinite number of elastic scattering processes. Eq. (2.33)
conveniently collects a geometric series Ḡ = G0 + G0ΣG0 + G0ΣG0ΣG0 + ..., depicted
as the chain of reducible diagrams of Fig. 2.4(c), into a neat formula. The self-energy Σ
encodes the average effect of disorder on the quasiparticles’ energy (real part) and lifetime
(imaginary part).
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Figure 2.4 | (a) Quasiparticle motion dressed by scattering processes with the background
defects. Among all probability amplitudes which contribute to the full Green’s function G
(wiggly-solid line) in a particular disorder realisation, we can collect those where the particle
moves freely (clean Green’s function G0, simple line), and those where the particle scatters with
the interaction potential V , depicted as an impurity line (second term). (b) We can also collect
diagrams more thoroughly, with those where the particle moves freely, those where the particle
scatters once with the interaction potential V , and those where the particle scatters at least
twice (third term). This non-perturbative expansion can be continued indefinitely. (c) The
disorder-averaged Green’s function Ḡ (double line) follows from a geometric series in G0Σ, with
Σ the self-energy, given by all one-particle irreducible two-point diagrams with external legs
removed. This expansion is known as the Schwinger-Dyson equation (Dyson 1949).

The Born approximation — At this point, Eq. (2.33) is exact, but we cannot proceed as
long as we have no workable expression for the self-energy. An approximation scheme is
needed. A first possibility is to ignore scattering processes hidden in the factors G and
Ḡ of the self-energy (2.33), and replace them by the clean Green’s function G0. This
amounts to expand the self-energy perturbatively to second order in the random potential,
or equivalently to first order in disorder strength γ. With uncorrelated disorder, the
self-energy becomes k-independent,

Σ '
ˆ

ddr1 ddr2 e
−ik·r1V (r1)V (r2)G0(r2 − r1)G0(r2)G0(k)−1 = γ

ˆ ddq
(2π)d G0(q).

(2.34)
Due to the Gaussian nature of the potential’s distribution, impurity lines associate by pairs
in multiple scattering. The graphical representation of Eq. (2.34) shown in Fig. 2.5(b)
thus harbours one pair of scattering processes, depicted like a curved impurity line. This
so-called Born approximation treats the background particles as non-interacting. It gives
faithful results for γ � γ∗ but cannot be trusted in the strong disorder regime, where
multiple-scattering processes dominate. In addition, it does not predict the existence of a
critical point.

To remedy these shortcomings, we replace the clean Green’s function G0 of Eq. (2.34)
by its disorder-averaged counterpart Ḡ, which in turn depends on Σ through Eq. (2.33).
This improvement leads to the self-consistent version of the Born approximation, which
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Figure 2.5 | The Hartree diagram (a) describes the classical coupling to the effective potential
created by the Fermi sea; it does not intervene when the potential averages to zero, because the
positively and negatively charged backgrounds compensate. In such forward scattering process,
the momentum and energy of the incident particle are conserved (Mattuck 1992). We will see
in Chapter 3 that graphs with closed fermionic loops (including the Hartree diagram) vanish
similarly in the low-energy theory for disordered Weyl semimetals due to the zero-replica limit.
The Fock diagram (b) accounts for double scattering processes where particles self-interact at
different points in space-time; it corrects the self-energy at first order in disorder strength. In
the self-consistent Born approximation (SCBA), infinitely many scattering processes contribute
to the self-energy (c), which are hidden in the disorder-averaged Green’s function (double line).
Only diagrams with nested particle-particle interactions contribute. Graph (c) corrects the
self-consistent Born approximation at second order in disorder strength, by including intertwined
exchange scatterings (Sinner 2017). One can neglect this diagram for very dense electron gases,
where hole-mediated scattering dominates (Sbierski 2014).

reads (restoring the energy dependence)

Σ(E) ' γ

ˆ ddq
(2π)d Ḡ(E, q). (2.35)

The SCBA accounts for, not only one, but an infinite number of scatterings which host
nested particle-hole pair creation-annihilation processes, hidden in the Fock diagram of
Fig. 2.5(c). This equation is still approximate, since it ignores diagrams with more complex
topology, such as the intertwined exchange processes of Fig. 2.5(d). For uncorrelated
disorder, the self-energy depends on the energy E but not on the external momentum k
(correlations weight impurity lines with a q-dependent factor, in which case virtual modes
depend on k). We can write a more explicit equation using an ansatz for the pseudospin
structure of the self-energy. It seems indeed reasonable that the self-energy is proportional
to the identity matrix, as the random potential itself. Using Eq. (2.33), we find

Σ(E) = γ

ˆ d3q

(2π)3
E + Σ

q2 − (E + Σ)2 . (2.36)

2.3.2 Solution to the self-consistent equation
Scattering rate — The SCBA approach has already been proposed to compute equi-
librium and transport properties at the semimetal-metal transition (Fradkin 1986a;
Fradkin 1986b; Ominato 2014; Klier 2019). We will go through the line of reasoning
of these papers and present their main results. For simplicity, we place ourselves at the
nodal level E = 0. The self-energy possesses a real and imaginary part in general. The
former induces a shift of the chemical potential away from the nodal energy, which one
can show to vanish at zero energy; the latter indicates a broadening of the energy levels
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due to random scattering, which should be present. We assume that the nodal self-energy
is purely imaginary: Σ = iΓ, where Γ is the so-called scattering rate. Eq. (2.36) then
integrates to

iΓ = γ

ˆ d3q

(2π)3
iΓ

q2 + Γ2 = iΓγ
2π2

[
Λ− Γ arctan

(
Λ
Γ

)]
, (2.37)

upon introducing the ultraviolet cut-off Λ, which represents the momentum above which
the linear approximation for the band crossing breaks down. It typically covers a sizeable
fraction of the Brillouin zone: Λ ' a−1 is of the order of the inverse lattice constant. Let
us analyse Eq. (2.37) as a function of the dimensionless disorder strength ∆ = γΛ/2π2.

For ∆ < 1, the right-hand side is always larger than Γ, and Eq. (2.37) has no solution
except the trivial one Γ = 0. In this low disorder regime, the system is semimetallic. For
∆ > 1, Eq. (2.38) has an extra non-trivial solution shown, which satisfies (Klier 2019)

Γ
Λ arctan

(
Λ
Γ

)
= ∆− 1

∆ . (2.38)

This self-consistent equation poses no problem for numerical solving. In this strong disorder
regime, quasiparticles have finite a lifetime τ ∼ Γ−1, and the energy levels broaden by
acquiring a Lorentzian width δE = Γ: the system is diffusive metallic. Fig. 2.6 shows
the behaviour of the DoS for several energies on the weak and strong disorder sides. A
semimetal-metal transition takes place at the critical disorder strength ∆∗ = 1.

Mean density of states — The scattering rate gives precious information about various
equilibrium or transport observables – the DC conductivity, notably. Here we focus on the
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Figure 2.6 | Dimensionless mean density of states ρ̄ against disorder strength ∆ = γΛ/2π2 for
an uncorrelated scalar potential, obtained by solving Eq. (2.36) numerically. The momentum Λ,
of the order of the inverse lattice constant, serves as an ultraviolet cut-off. The scattering rate
Γ = ρ̄Λ∆ = ImΣ follows from the imaginary part of the self-energy Σ, which satisfies the
self-consistent Born approximation. Each curve corresponds to a given energy E � Λ, in units of
10−3Λ. At the nodal level E = 0, the density of states vanishes on the metallic side and develops
beyond the critical disorder strength ∆∗ = 1. when the Weyl node is doped at an energy E 6= 0,
the density of states bypasses the critical point, so that the transition is avoided.
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order parameter of the semimetal-metal transition: the mean DoS. From Eq. (2.23), we
find

ρ̄ = 1
π
ImTr

ˆ ddq
(2π)d Ḡ(E, q) = 2Γ

πγ
, (2.39)

where the factor 2 comes from the trace, which counts the number of degrees of freedom
(here, two fermionic components). At the nodal level and slightly above the critical disorder
strength, the arctangent of Eq. (2.38) tends to π/2, and the mean DoS behaves as

ρ̄(E = 0,∆) ' 4Λ
π

(∆−∆∗). (2.40)

According to the scaling laws of Sec. 2.2.2, we deduce that β = ν(d− z) = 1 in the SCBA.
Similarly, at the critical disorder strength but slightly away from the nodal level, the
density behaves as

ρ̄(E,∆ = 1) ' 2Λ3/2

π7/2 |E|
1/2. (2.41)

Hence d/z − 1 = 1/2 and the dynamical exponent is z = 2: the critical dispersion relation
is quadratic in the SCBA. Combined with the value of β, we further find ν = 1, as expected
within mean-field theory. These are the mean-field critical exponents advertised in Tab. 2.1.
The table also shows that these exponents deviate from those found with other analytical
methods. Why is the SCBA less accurate?

From a physical viewpoint, the SCBA inevitably fails because it neglects fluctuations
of the DoS induced by maximally crossed exchange scatterings, which modifies drastically
the approach to the critical point. From a mathematical viewpoint, the SCBA is bound
to give crude estimates of the exponents, because a self-consistent equation relates two
analytic functions on either side of the equal sign. The exponents follow by expanding
these functions near the critical point in powers of the order parameter, and so are doomed
to take integer values – or simple fractions at best – where the actual exponents can
be any real number. To get better estimates, we can either expand the self-energy in
disorder strength, whose first order contribution was given in Eq. (2.34), or improve the self-
consistent expression of Σ order by order in 1/N , where N is the fermion number (Sinner
2017). The leading correction to the saddle-point equation appears at order N−2, and
enhances (reduces) the self-energy in the weak (strong) disorder regime. These field-
theoretical techniques extend to any observable (not only the self-energy) within the
renormalisation group formalism. This improvement comes at the cost of a dramatic
increase of computational complexity with the order of the expansion.

2.4 Wave function statistics
The conventional scaling laws involve apply to disorder-averaged observables, thereby
hiding valuable information about the probability distribution of the DoS, conductivity, or
any observable. Yet higher moments of the DoS exhibit scaling behaviours of their own
at criticality. The associated multifractal exponents encode the geometric properties and
statistics of the wave function density.
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2.4.1 Multifractality
The concept of multifractality, first introduced by mathematician B. Mandelbrot (Man-
delbrot 1974), has proved fruitful in infinitely various topics. From the velocity field in
hydrodynamic turbulence (Parisi 1988) to time series in financial markets (Mandelbrot
1999), or the dynamics of human heartbeat (Ivanov 1999), the list of problems subjected
to a multifractal analysis is booming. Including in condensed matter physics: disordered
classical spin models (Duplantier 1991), disordered elastic systems (Fedorenko 2014),
but also – closest to our interest – Anderson’s localisation (Wegner 1980). Recently, S.
Syzranov et al. showed that the critical wave functions at the semimetal-metal transition
exhibit multifractality as well (Syzranov 2016). Unlike the few conventional exponents
(dynamical, field or correlation length), the multifractal spectrum consists of a continuous
set of exponents, and therefore contains all information about the probability distribution
of the wave function density; in particular, it dictates the scaling behaviour for the most
probable value of the DoS (the typical DoS), which serves as an alternative order parameter
for both Anderson and non-Anderson transitions. We hereafter transpose key notions
about wave function statistics (participation ratios, multifractal exponents, typical DoS),
which are now well-established tools for Anderson’s localisation, to the semimetal-metal
transition (Brillaux 2019).

Geometrical interpretation of multifractality — In metallic phases, the Bloch waves
vary periodically at the atomic scale, while at larger scale, these sharp modulations average
out and the wave function spreads evenly over the sample, as shown in Fig. 2.7(a). Wave
functions satisfy this property in a clean metal, or in the diffusive metallic side phase of a
dirty Weyl semimetal. In a localised phase, the wave function density displays instead a few
peaks, and vanishes everywhere else, as in Fig. 2.7(c). How do these drastically different
behaviours connect at a localisation-delocalisation point? In absence of any typical length

(a) (b) (c)

Figure 2.7 | Maps of the electronic wave function density |ψ|2 near the Anderson localisation
point of a two-dimensional system. The colour code is blue for a low density, and red for a high
density. Extracted from (Gruzberg 2009). (a) A metallic phase is populated by extended states,
which despite atomic-scale modulations have a globally flat density |ψ|2 ' V −1 where V is the
system volume. (b) At the localisation-delocalisation point, critical wave functions fluctuate
wildly and display complex patterns which roughly repeat themselves at all length scales, but
with different scaling dimensions. The probability distribution of the wave function is multifractal.
The multifractal nature manifests itself in non-integer scaling exponents of the moments |ψ|2q.
(c) A localised state spreads over a finite distance ξ from a localisation centre.
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in the system, we expect to find patterns that repeat themselves at all scales. Fig. 2.7(b)
shows such critical wave function density at the Anderson transition. When averaged
over many disorder realisations, the moments of the wave function density scale with the
system size L with non-integer dimensions. When these moments scale with independent
exponents, the distribution of the wave function density is said to be multifractal.

The same features develop at the semimetal-metal transition. Consider a Weyl
semimetal subject to disorder of strength γ. The multifractal behaviour can be seen
on the (generalised) inverse participation ratio (Evers 2008)

Pq(E, γ) =
ˆ

ddr |ψ(r)|2q, (2.42)

which represents the moments of the inverse volume spanned by the wave function at
energy E. We typically choose integer powers q, but nothing forbids it to take real values
from a theoretical viewpoint (even negative ones, provided the wave functions are smooth
enough at the microscopic scale). For a finite system near criticality (within an energy
window ∝ L−z and a disorder strength window ∝ L−ν), the inverse participation ratio
scales on average as P̄q(E = 0, γ∗) ∼ L−τq . This scaling law defines a continuous set of
exponents τq known as the multifractal spectrum.

To see more clearly the geometrical interpretation of multifractality, let us also define
the Renyi dimension Dq such that (Huckestein 1995)

τq = Dq(q − 1), (2.43)

where a limit is implicit for q → 1. The Renyi dimension represents the fractal dimension
of the measure induced by the moments of the wave function density. First envisage two
limit cases: extended states on one hand; localised states on the other hand. As shown
in Fig. 2.7(a), extended waves covers a sizeable fraction of the system volume, if not all
of it. For normalised plane waves, |ψ|2 ∼ L−d, the inverse participation ratio scales as
Pq ∼ L−d(q−1) and thus Dq = d for all q. The localised states of Fig. 2.7(c), on the contrary,
span a small constant volume. For an exponentially localised state |ψ|2 ∼ ξ−d e−2r/ξ,
with ξ the localisation length, the inverse participation ratio Pq ∼ ξ−d(q−1) becomes
volume-independent, and the Renyi dimension is trivial: Dq = 0 for all q.

By contrast, critical wave functions scale with intermediate non-integer dimensions
(hence the fractal nature), which differ for all moments of the wave function density
(hence the multi-fractality), as shown in Fig. 2.7(b). The Renyi dimension still satisfies
the following properties. By definition, the inverse participation ratio at q = 0 equals
the volume of the system. Thus D0 = d is the geometrical dimension. The information
dimensionD1 describes the fractality of the measure dµ = ddr |ψ|2 induced by the electronic
probability of presence. For a normalised state, P1 = 1 and D1 = 0. Intuitively, the
larger q, the more the participation ratio (2.42) should be dominated by points where the
wave function density exceeds its average value. In the limit q → +∞, the maxima of
the wave function control the scaling law, which fixes an upper bound D+∞ for the Renyi
dimension. This argument applies symmetrically in the limit q → −∞, where the minima
control the scaling law and fixes a lower bound D−∞.

Anomalous part of the multifractal scaling — Interestingly, we can also observe
multifractality in the scaling of the local DoS through the so-called participation ratio.
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Consider a finite lattice model of a Weyl semimetal. Let us provide the Hilbert space with
a basis of normalised eigenstates {ψi(r)} of discrete energies Ei. Inspired by the integral
expression (2.42) for the inverse participation ratio, we first build a spatially resolved
equivalent of the DoS,

ρ(r, E) =
∑

i

|ψi(r)|2δ(E − Ei), (2.44)

This local DoS counts the number of states at energy E and weights this number by the
electron’s probability of presence. The usual DoS derives from Eq. (2.44) by a spatial
average,

ρ(E) = 1
V

ˆ
ddr ρ(r, E) = 1

V

∑

i

δ(E − Ei), (2.45)

with V = Ld the system volume. The (generalised) participation ratio pq extends Eq. (2.45)
to higher moments of the DoS. It is defined by (Wegner 1980)

pq(E, γ)−1 = 1
V

ˆ
ddr ρ(r, E)q ρ̄(E)−q, (2.46)

and represents the moments of the fraction of sites occupied by the wave function. Note
that integrating out the random defect’s positions restores homogeneity, so that the spatial
integrals of Eq. (2.42) and Eq. (2.46) are actually optional. In lattice simulations, though,
the spatial average is kept to reduce fluctuations and improve convergence. Near criticality,
the mean participation ratio scales with system size as p̄q(E = 0, γ∗) ∼ L∆q , where ∆q are
the anomalous multifractal exponents.

The scaling laws of the inverse participation ratio and participation ratio are not
independent; they satisfy the hyperscaling relation (Evers 2008),

τq = d(q − 1) + ∆q. (2.47)

This exponent ∆q captures the anomalous part of τq, while the contribution d(q−1) follows
from naive dimensional analysis of a plane wave. For extended states, the anomalous
multifractal exponents formally vanish off criticality: ∆q = 0. For localised states, the
anomalous exponents formally take the value ∆q = −q(d − 1) and τq = 0. But ∆q

depends linearly on q, which shows that the distribution of localised wave functions is
not multifractal. The moments of a multifractal distribution scale indeed with different
Renyi dimensions, which entails that ∆q varies non-linearly with q at criticality. Since
the participation ratio for q > 1 is at best intensive, ∆q is negative in this condition.
Also, the anomalous exponents vanish for q = 0 and q = 1 to agree with the geometrical
and information dimensions D0 = d and D1 = 0. Besides, in non-linear sigma models
formulations of Anderson’s localisation, the anomalous multifractal exponent is symmetric
around the index q = 1/2, i.e. ∆q = ∆1−q (Mirlin 2006). This relation holds in
all Wigner-Dyson classes. Whether the same symmetry applies to the semimetal-metal
transition is undecided, but the results currently available (two-loop order expansion in
dimension d = 2 + ε) meet this requirement

The anomalous multifractal exponents also govern the scaling of the moments %q ∼ L∆q

of the normalised DoS % = ρ/ρ̄. A renormalisation group analysis gives easy access to the
scaling dimension ηq of the moments ρq ∼ L−ηq , from which we can determine

∆q = ηq − qη1. (2.48)

Note that η1 = d− z is related to the familiar dynamical exponent.
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Multifractal scaling laws in a relativistic semimetal — A Weyl semimetal becomes
metallic at moderate disorder strengths. If allowed by symmetry, a strong enough disorder
can then suppress backscattering in the metallic phase and lead to Anderson localisa-
tion (Altland 2016). A dirty Weyl semimetal can thus explore three phases (semimetallic,
metallic, localised). We discuss below the scaling laws of P̄q and p̄q slightly off the critical
point in an infinite system, and prove that the inverse participation ratio plays the role
of an order parameter for the semimetal-metal transition. Since the constant disorder
strength path γ = γ∗ lies inside the critical fan, we define the multifractal exponents of an
infinite system as a function of γ instead of the energy E, in compliance with Sec. 2.2.2,
but unlike the usual conventions for Anderson’s localisation (Huckestein 1995).

• In the semimetallic phase, the Fermi level is empty of states. Both Pq and pq vanish
in the thermodynamic limit for q > 1.

• In the metallic phase, extended states exist at the Fermi level. In the thermodynamic
limit, Pq still vanishes for q > 1 while pq remains sizeable in the same condition. The
inverse participation ratio Pq = V 1−q dies out for q > 1, while the participation ratio
pq = 1 is intensive. Near the critical point of the semimetal-metal transition, the
mean participation ratio decays in a power-law fashion on the metallic side as

p̄q(E = 0, γ) ∼ (γ − γ∗)µq . (2.49)

The exponent µq = −ν∆q is positive for q > 1, which is consistent with p̄q vanishing
on the semimetallic side. The inverse participation ratio, on the other hand, plays
no role at the semimetal-metal transition.

• In the localised phase, on the contrary, pq vanishes while Pq remains sizeable. For
a localised state, the inverse participation ratio Pq ∝ V 0 is intensive, while the
participation ratio pq ∝ V −d(q−1) dies out in an infinite system for q > 1. Near the
localisation-delocalisation point, the mean inverse participation ratio behaves on the
insulating side as

P̄q(E, γ) ∼ (γ − γ∗)πq , (2.50)
where the exponent πq = ντq is positive for q > 1. The participation ratio vanishes
as in Eq. (2.49) with a different exponent µq.

Fig. 2.8(a) summarises the behaviour of P̄q and p̄q in the three phases of a disordered
Weyl semimetal. The previous examples on purely extended and purely localised waves
suggest that the participation and inverse participation ratios satisfy P̄q p̄q = V 1−q (Weg-
ner 1980). This relation actually holds for all electronic waves, in particular for critical
ones. This enforces the hyperscaling relation

πq + µq = dν(q − 1), (2.51)

which is the counterpart of Eq. (2.47) for the scaling laws at the thermodynamic limit.

Singularity spectrum — Rather than focussing on how the wave function density itself
is distributed, one might instead wish to know how the scaling dimension of the wave
function density is distributed. This change of perspective brings information which is
easier to grasp than the multifractal spectrum: how many states scale with an exponent
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smaller than the geometrical dimension d, how many scale with an exponent larger than d,
what is the most probable scaling dimension, etc. These questions find their answer in the
singularity spectrum (Evers 2008). The singularity spectrum follows from a Legendre
transformation of the function q 7→ τq, namely

fτ (x) = xq − τq, where x(q) = dτq
dq (2.52)

represents the scaling dimension of the wave function density. The reason for the Legendre
transformation will become clearer when introducing the typical DoS in Sec. 2.4.2. For
now, let us discuss the main properties of fτ . The singularity spectrum gives the fractal
dimension of the manifold composed of points r where the wave function density scales as
|ψ(r)|2 ∼ L−x; in other words, the volume of this manifold scales as Lfτ (x) (Halsey 1987).
Since the function q 7→ τq is increasing concave (at least for small enough values of q), fτ
is a well-defined concave function on the semi-axis x ≥ 0. It peaks at a certain value x0,
with a maximum fτ (x0) = d. Hence x0 gives the most probable scaling dimension for
the wave function density, and the volume of the corresponding manifold scales like the
volume of the whole sample, as Ld.

The counterpart of Eq. (2.52) for the anomalous multifractal exponents is the anomalous
singular exponents. It is defined as the Legendre transform of the function q 7→ ∆q,

f∆(y) = yq −∆q, where y(q) = d∆q

dq (2.53)
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Figure 2.8 | (a) Mean participation ratios p̄q (in blue) and inverse participation ratios P̄q (in
red) at the semimetal-metal transition (weak disorder strength γ∗SM) and Anderson’s localisation
(strong disorder strength γ∗AL), for q > 1. The participation ratio P̄q vanishes on the metallic with
an exponent µq, and stays zero on the weak disorder side. The inverse participation ratio vanishes
on the localised and semimetallic side with a generic exponent πq (different for each transition).
Both ratios vanish in the semimetallic phase, due to the absence of zero energy eigenstates. (b)
The average ρ and typical ρt densities of states at the Fermi level are both non-zero in the
metallic region, but only the latter vanishes at the localisation point. The hyperscaling relations
for the corresponding exponents β and βt are given at the Anderson transition (Janssen 1998)
and the semimetal-metal transition (Brillaux 2019).

85



Chapter 2. The disorder-driven semimetal-metal transition

represents the scaling dimension of the normalised wave function density %. From Eq. (2.47)
follows the plain relation f∆(x) = fτ (x+ d)− d between the singularity spectrum and the
anomalous singular exponents. In particular, the anomalous singular exponent peaks at
y0 = x0 − d, with a maximum f∆(y0) = 0.

When d approaches the lower critical dimension d` = 2, the critical fluctuations diminish
as the wave functions progressively shape into extended states. In this regime of weak
multifractality, the anomalous multifractal spectrum becomes parabolic, ∆q = −y0 q(q−1),
as well as the singularity spectrum and the anomalous singular exponents

fτ (x) = d− (x− x0)2

4(x0 − d) , f∆(y) = −(y − y0)2

4y0
. (2.54)

The spectrum is exactly quadratic in some systems, as for a random vector potential in
two dimensions (Foster 2009; Foster 2012).

2.4.2 Typical versus average densities of states
Here, we relate multifractality to the scaling laws of the typical and mean DoS (Brillaux
2019).

Universal scaling law — We emphasised that the average DoS ρ̄(E, γ) varies smoothly
around the critical point of Anderson’s localisation, and thus cannot pinpoint this transition.
By contrast, the typical DoS, defined as the geometric mean

ρt(E, γ) = exp
[

ln ρ(r, E)
]
, (2.55)

remains finite for extended states, decreases when approaching the critical point, and
vanishes in the localised phase. Indeed upon localisation the local spectrum changes
from continuous to discrete. The typical DoS acts as an order parameter for Anderson’s
localisation in addition to the DC conductivity (Janssen 1998). That the typical and
average DoS so strongly differ should not surprise, because the broad distribution of the
local DoS at criticality leads to rare realisations of wave functions with high amplitudes,
which dominate the average density. By contrast, the typical DoS is less sensitive to these
rare fluctuations. A similar observation applies to the semimetal-metal transition, except
that both typical and average DoS vanish at the nodal level of the semimetallic phase.
They do so, however, with different power-law exponents: in the metallic phase

ρt(E = 0, γ) ∼ (γ − γ∗)βt , (2.56)

where βt 6= β. Remarkably, a universal scaling law completely determines βt.
This universal scaling law is an intrinsic property of the probability distribution for the

DoS. It applies to any non-self-averaging spectrum, which includes some disordered phases,
and the critical point of disorder-induced transitions. Let us consider the distribution
P (%, L) of the normalised density % in a system of a finite size L. The moments of the
normalised density read

%q =
ˆ ∞

0
d%P (%, L)%q. (2.57)
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Guided by the physical interpretation of the singularity spectrum, we now change the
variable from % to y such that % = L−y. We introduce the associated distribution by setting
d%P (%, L) = dy P ′(y, L), which we set in an exponential form as well, P ′(y, L) = Lf∆(y).
At this stage, nothing links y or f∆ to the power q. We arrive at

%q =
ˆ ∞

0
dy P ′(y, L)L−y =

ˆ ∞
0

dy exp [−(yq − f∆(y)) logL] . (2.58)

Applying the steepest descent method, we get %q ' exp [−(yq − f∆(y)) logL], where now
the function q 7→ y(q) satisfies f ′∆(y) = q. We recognise the argument in the exponential
as the Legendre transform of f∆, which is nothing other than the anomalous multifractal
exponent ∆q = yq − f∆(y). As expected, we recover the scaling law %q ∼ L−∆q . Most
importantly, we may now determine the scaling of the typical DoS, since

%t = ρt

ρ̄
= exp

[ˆ ∞
0

d%P (%, L) log %
]

= exp
[
− logL

ˆ ∞
0

dy yLf∆(y)
]
' L−y0 , (2.59)

where the last equality stems again from the steepest descent method. Let us discuss the
implications of Eq. (2.59) on the scaling laws in Anderson’s localisation on one hand, and
in the semimetal-metal transition on the other hand.

The typical density exponent — For Anderson’s localisation, the mean DoS behaves
smoothly near the critical point, so that β = 0 formally. Eq. (2.59) predicts that the
corresponding exponent for the typical DoS is βt = ν(x0 − d), in agreement with well-
established results (Janssen 1998). By directly tracking the typical DoS through the
Anderson critical point, numerical studies are able to estimate x0. In the orthogonal
class, (Pixley 2015) finds x0 = 4.0±0.3, in agreement with the four-loop result α0 = 4.043.

For the semimetal-metal transition, β = ν(d− z), and Eq. (2.59) entails βt = ν(x0− z).
Despite much effort, numerical simulations have trouble finding precise or consistent values
for the correlation length exponent ν; it is therefore more useful to deduce a scaling relation
wherein ν is absent, as in

βt

β
= x0 − z

d− z . (2.60)

By combining the numerical estimates of (Pixley 2015; Sbierski 2015; Pixley 2016b;
Pixley 2016c; Roy 2016), we find a dynamical exponent z = 1.485± 0.015 and a mean
density exponent β = 1.50± 0.04 for the semimetal-metal transition in the universality
class of uncorrelated disorder. (Pixley 2015; Roy 2016) find the typical density exponents
βt = 2.0± 0.3 and βt = 1.8± 0.2 respectively. Using Eq. (2.60), we predict x0 = 3.4± 0.2.
(Pixley 2015) also estimates the second Renyi dimension D2 = 1.2 ± 0.3. Under the
assumption of weak multifractality, D2 = 3d− 2x0, which yields x0 ' 3.90± 0.15. But due
to the poor control over this approximation, the uncertainty on the last estimate should
be taken with a grain of salt.

Smearing by rare-region effects — Some authors recently argued that the presence
of rare large regions with strong disorder potential creates a non-zero nodal DoS even for
weak disorder (Nandkishore 2014; Pixley 2016b). This would introduce a new length
scale above which the wave function is not multifractal, or at least not with the same
multifractal spectrum. However, Eq. (2.59) still applies below this crossover length scale,
which is accessible numerically (Pixley 2016b; Pixley 2016a).
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Conclusion
Summary — We have seen that disorder can dramatically affect the properties of
electronic phases. In systems with a high density of states, defects can localise electrons
due to destructive scattering processes. Three-dimensional relativistic semimetals, whose
density of states vanishes at the Fermi level, can transit towards a metallic phase under
strong enough disorder through a quantum critical point. A small set of exponents –
dynamical exponent z, anomalous field exponent η, correlation length exponent ν – encodes
most scaling laws at this semimetal-metal transition, especially the critical behaviour
of the average density of states, which acts as an order parameter. A simple analytical
approach, the self-consistent Born approximation, predicts the existence of the transition
and the values of these critical exponents within mean-field theory. These conventional
exponents do not capture the scaling behaviour of higher moments of the density of states,
which is described by the so-called multifractal spectrum. The multifractal spectrum has
often proved a useful concept, notably in Anderson’s localisation; we have extended this
notion to the semimetal-metal transition, where we have determined the scaling law of the
typical density of states.

Outlook — The universality class of the semimetal-metal transition, and thus the values
of the conventional and multifractal exponents, depend on the range of disorder correlations.
We have distinguished two regimes of disorder corrections: when defects correlate over a
finite distance, the variance of the random potential essentially reduces to a delta peak
in real space; otherwise, the variance of the random potential decays algebraically with
distance. All these exponents can be determined within a field-theoretical framework. In
particular the perturbative renormalisation group predicts analytical estimates of these
exponents order by order in the small parameter ε = d − 2, the ‘distance’ to the lower
critical dimension d` = 2. By comparing estimates of the conventional exponents from
different numerical and analytical techniques, it appears that the values of the correlation
length exponent ν vary tremendously between different numerical simulations. Besides
bringing valuable information about the geometrical properties of the wave function, the
multifractal spectrum manifests itself in the scaling exponent of the typical density of states,
for which numerical simulations find consistent estimates. It thus provides a robust set of
exponents to characterise the semimetal-metal transition, and in principle to discriminate
between the two universality classes (with short-range or long-range disorder correlations).
The stage is now set to determine the multifractal exponents within a field-theoretical
approach.
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Chapter 3
Field-theoretical description of the
semimetal-metal transition

In the previous chapter, we reviewed the phenomenology of the semimetal-metal tran-
sition, and got crude estimates of the critical exponents using the self-consistent Born
approximation. We briefly discussed numerical methods to determine the exponents. The
multifractal exponents, notably, bring valuable information about the distribution of the
wave function density and density of states. This chapter puts the spotlight on a powerful
analytical technique: the renormalisation group. We first map the physics of disordered
Weyl semimetals to an effective low-energy field theory closely related to the Gross-Neveu
model, thanks to the so-called replica trick. We then renormalise this theory in presence
of short- and long-range correlations of disorder to determine the flow of the disorder
strengths, along with the phase diagram. Finally, we renormalise the composite operator
associated to the moments of the wave function density, whose scaling dimension gives the
multifractal exponents.
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Chapter 3. Field-theoretical description of the semimetal-metal transition

3.1 Effective field theory
3.1.1 From clean to dirty Weyl semimetals
Theory of a clean Weyl semimetal — The low-energy excitations of a Weyl semimetal
are described by a set of two conjugate Weyl spinors {Ψ†,Ψ} and the Weyl Hamiltonian
H0 = iσ · ∂. To map standard quantum mechanics to quantum field theory, we interpret
the quantity Ψ†H0Ψ as a Hamiltonian density and promote the conjugate Weyl spinors to
Grassmann fields, which we denote as ψ = (ψ 1, ψ 2) and ψ = (ψ1, ψ2) to emphasise their
independence1 (Zinn-Justin 2002). The Hamiltonian of the effective field theory is

H0 =
ˆ

ddr ψ(iσ · ∂)ψ, (3.1)

where the fields ψ(r, t) and ψ(r, t) implicitly depend on the space-time arguments. The
Hamiltonian H0(π, ψ) depends naturally on the generalised coordinates ψ and their
canonical momenta π = iψ . The Lagrangian ensues from the Legendre transformation of
Eq. (3.1),

L0 =
ˆ

ddr π∂tψ −H0 =
ˆ

ddr ψ(iσµ∂µ)ψ, (3.2)

where in the Minkowskian metric σµ∂µ = ∂t − σ · ∂. Thanks to a Wick rotation from real
time t to imaginary time τ = −it, the Hamiltonian, Lagrangian and action can be expressed
in the Euclidean (trivial) metric instead, at the cost of losing the explicit Lorentz-invariant
form of these functionals. This also enables to cast the Feynman weight eiS to the more
statistical-friendly Boltzmann weight e−S. The corresponding Euclidean action reads

S0[ψ, ψ] =
ˆ +∞

−∞
dτ L0 =

ˆ
ddr dτ ψ(∂τ − iσ · ∂)ψ. (3.3)

Since the low-energy theory of a clean Weyl node is associated with a Gaussian fermionic
theory, we will refer to the action S0 of (3.3) as the free action. We can determine
expectation values of the free fields using a path integral representation. The partition
function

Z[J ] =
ˆ

Dψ Dψ e−S0−SJ , (3.4)

generates insertions of the fields by functional derivation with respect to a source current J
incorporated in the extra term SJ . To get correlations of ψ and ψ at different points in
space-time, the source current consists of two external Grassmann fields η̄ and η that
couple linearly to the Weyl fields, i.e. SJ = −

´
η̄ψ + ψη in symbolic notations.

Treatment of disorder — In presence of disorder, the Bloch Hamiltonian H = H0 + V
includes the random potential V (r). For the moment, we need not specify its pseudospin
structure. Going through the same line of reasoning as before, the full action of the
disordered Weyl semimetal reads

S[ψ, ψ, V ] =
ˆ

ddr dτ ψ(∂τ − iσ · ∂ − V )ψ. (3.5)

1For Dirac spinors, the usual convention is to assimilate ψ with the adjoint Ψ = Ψ†γ0 instead of Ψ†,
but the two choices are equivalent and related by a harmless change of variable in the path integral.
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The partition function for a given disorder configuration follows from Eq. (3.4),

Z[η̄, η, V ] =
ˆ

Dψ Dψ e−S−SJ . (3.6)

The statistically averaged observable X of a system affected by quenched disorder
depends on a particular realisation of the random potential; it is not accessible experimen-
tally, and is, by definition, a random variable itself. What is measurable and in principle
predictable, though, is the probability distribution of X. Rather than determining the
whole distribution, which is a formidable task, we can instead focus on a few representative
values, such as its mean X̄. This information completely determine the equilibrium
properties of non-critical systems, where the free energy W is a self-averaging quantity.
An observable X is said to be self-averaging when its relative variance

vX = X2

X̄2
− 1 (3.7)

vanishes in the thermodynamic limit L → ∞, as does any higher-order moment of the
distribution, which essentially reduces to a single peak centred at X̄. To understand why,
consider the free energy of a large system, of size L� ξ much greater than the correlation
length. By virtue of additivity, it can be decomposed into the sum W = ∑

iWi of the free
energies Wi of smaller, independent subsystems of size ξ. Each such subsystem sees its
own disorder configuration. Computing the total free energy per site, which is nothing
other than a spatial average of the free energy, amounts to average over all realisations of
the random potential. Thus, a non-critical free energy W tends to its disorder average W
in the thermodynamic limit.

At criticality, ξ diverges and the above argument breaks down. Fluctuations prevail
and broaden the probability distribution; additive quantities, such as the free energy, no
longer satisfies the self-averaging property. And multifractality attests this failure: as per
the scaling of the participation ratio (2.46), the critical relative variance of the DoS scales
as

vρ = (p̄2)−1 − 1 ∼ L−∆2 , (3.8)
which diverges in the thermodynamic limit since ∆2 < 0. The breakdown of the self-
averaging property applies to any critical observable. Multifractality precisely encodes
the scaling of the variance and all higher-order cumulants, which the large fluctuations
generate at criticality.

For quenched disorder, the random degrees of freedom follow their own statistics, which
means that in the mean free energy, they are summed over not in the partition function Z,
but after taking the logarithm. Consider a source field J which couples linearly to a field
operator O. Let 〈O〉 be its statistical average in a given disorder configuration, which
follows from the free energy by functional derivation. The disorder average of 〈O〉 then
reads

〈O〉 = δW

δJ
, W =

ˆ
DV P [V ] lnZ[J, V ], (3.9)

where we recall that P [V ] is assumed Gaussian. Unfortunately, taking the Gaussian integral
of a logarithm is far from straightforward. Three procedures overcome this obstacle. They
all amount in some way or another to normalise the partition function (3.6) to unity in
absence of source fields.
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• The Keldysh method considers the time evolution from t = −∞ to t = +∞, then
back to t = −∞ again through a closed contour in the complex time plane. Originally
introduced to study non-equilibrium systems, this technique has proved useful in
disordered equilibrium systems too (Chamon 1999). Indeed, the partition function
computed along a closed contour has value 1 by construction in absence of source
fields.

• The supersymmetric method consists in introducing bosonic fields in the partition
function with the same kinetics and coupling to the random potential as the fermionic
fields (Efetov 1996). The statistical average of an observable O for a given
realisation of the potential reads

〈O〉 = 1
ZF

δZF

δJ
, (3.10)

where the right-hand side is evaluated at zero source field, and we renamed the
partition function ZF to highlight the fermionic nature of the theory. The rule of
Gaussian integration over Grassmann fields gives ZF[J = 0] = det (∂τ − iσ · ∂ − V ).
The zero-field partition function depends on the random potential, which forbids to
directly average Eq. (3.10) over disorder. To solve this issue, we add to the fermionic
action SF the bosonic action

SB[ϕ, ϕ, V ] =
ˆ

ddr dτ ϕ (∂τ − iσ · ∂ − V )ϕ, (3.11)

where {ϕ, ϕ} are two-component commuting fields. The zero-field partition function
associated to this action is ZB[J = 0] = det (∂τ − iσ · ∂ − V )−1, i.e the reciprocal
of the fermionic partition function. The supersymmetric action S = SF + SB
leads to an effective partition function Z = ZFZB = 1 in absence of source fields.
Averaging Eq. (3.10) over disorder now becomes feasible by using the supersymmetric
partition function. This results in an effective coupling between fermionic and bosonic
fields.

• The replica method was first introduced for the problem of spin glasses (Edwards
1975; Parisi 1979; Mezard 1987). It rests on the following trick. First compute
the replicated partition function ZN for integer N , which represents the partition
function of N copies (replicas) of the fermionic fields, all with the same free dynamics
and in the same disorder configuration. Each replica is thus described by the
action (3.5). Then average the replicated partition function over disorder. Finally,
use the mathematical identity

lnZ = lim
N→0

ZN − 1
N

, (3.12)

and send N to zero. This limit assumes that the analytical continuation for arbitrary
small N exists. The continuation breaks down when the probability distribution
of the partition function is too broad, especially in the strong disorder regime. By
contrast, the replica trick maps the physics of weakly disordered Weyl semimetals to
an effective replicated theory amenable to perturbative treatments; the correlation
functions of the effective theory, when expanded order by order in disorder strength,
have a polynomial dependence on N , and the zero-replica limit is well defined.
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The multifractal spectrum at the semimetal-metal transition has been determined
for uncorrelated disorder in the supersymmetric approach (Syzranov 2016). In the
weak disorder regime, it is believed that these three methods – Keldysh, supersymmetric,
and replica – leads to the same critical exponents order by order in the perturbative
expansion. To test this insensitivity to the disorder-averaging technique, we will use a
different approach: the replica method. The replica method will also enable us to map the
theory of disordered Weyl semimetals to the well-known Gross-Neveu model, which was
discussed at length in Sec. 1.5.

3.1.2 Replicated action
We now use the replica method to map the low-energy theory of Weyl semimetals either
to the Gross-Neveu model (for uncorrelated scalar potential) or to the Thirring model
(for uncorrelated vectorial potential). We then extend the replicated theory to include
long-range disorder correlations, T -breaking random potentials and intervalley scattering.

Theory of a disordered Weyl semimetal — Let us introduce a replica index α =
1, ..., N to label the N copies of the Weyl fermionic fields. Each of them has two components.
We collect all these degrees of freedom into 2N -component Grassman fields ψ = (ψ1, ..., ψN )
and ψ = (ψ1, ..., ψN ). The first step of the trick consists in replicating the partition function,

ZN =
ˆ

Dψ Dψ exp
(
−

N∑

α=1
S[ψα, ψα, V ]

)
, (3.13)

where the functional S is the action (3.5). For the sake of completeness, we now consider
both the T -preserving and T -breaking parts of the random potential, and write V =∑
µ σµVµ. By averaging Eq. (3.13) over disorder, we find

ZN ∝
ˆ

Dψ DψDV exp
(
−

N∑

α=1

ˆ
ddr dτ ψα(∂τ − iσ · ∂)ψα

−
∑

µ

ˆ
ddr dτ Vµ(r)

N∑

α=1
ψασµψα −

1
2
∑

µ

ˆ
ddr1 ddr2 Vµ(r1)hµ(r1 − r2)Vµ(r2)

)
. (3.14)

where the functions hµ were defined in Eq. (2.12); their inverse is the disorder variance gµ.
The Gaussian integral over the random potential leads to the replicated partition function

ZN ∝
ˆ

Dψ Dψ exp
(
−

N∑

α=1

ˆ
ddr dτ ψα(∂τ − iσ · ∂)ψα

+1
2
∑

µ

N∑

α,β=1

ˆ
ddr1ddr2 dτ1 dτ2 gµ(r1 − r2)(ψασµψα)(r1, τ1)(ψβσµψβ)(r2, τ2)


 . (3.15)

Hence, the average properties of disordered Weyl semimetals derive from fermionic
fields described by the effective action Seff = S0 + Sint. The terms S0 and Sint correspond
to the Gaussian and quartic parts of Eq. (3.15), respectively (Louvet 2016). In order to
diagonalise the Gaussian part, let us Fourier transform the fermionic fields, as we did in
Sec. 1.5. The Fourier parameter conjugate to imaginary time is the so-called Matsubara

93



Chapter 3. Field-theoretical description of the semimetal-metal transition

frequency ω. We write the Fourier-transformed fields in compact forms {ψk,ω, ψk,ω}. On
one hand, the Gaussian action coincides with the original free action (3.3),

S0[ψ, ψ] =
ˆ
k,ω

ψk,ω(σ · k − iω)ψk,ω, (3.16)

except that ψψ = ∑
α ψαψα now stands for a scalar product over the 2N components of

the replicated field2. We recall the notation shorthand
ˆ
k,ω

=
ˆ ddk dω

(2π)d+1 . (3.17)

On the other hand, the quartic action

Sint[ψ, ψ] = −1
2
∑

µ

ˆ
ki,q,ωi

gµ(q)ψk1,ω1σµψk1+q,ω1ψk2,ω2σµψk2−q,ω2 , (3.18)

describes an effective attraction between replicas, mediated by scatterings on the average
background of random defects. The coupling strength in Eq. (3.18) is precisely the
variance gµ of the random potential: the stronger the disorder correlation, the stronger the
quasiparticles attraction. As the Gaussian action S0, the interacting part of the action Sint
is blind to the replica index, since the random potential couples to the total current ψσµψ.
All replicated theories in the weak disorder limit enjoy a discrete replica symmetry encoded
in the permutation group SN (Mezard 1987). In fermionic theories, this invariance
extends to a continuous U(N) symmetry.

In addition, the quartic interactions of Eq. (3.18) preserve the frequency. Incoming
quasiparticles keep the same frequencies ω1 or ω2 after scattering, unlike the exchanged
momentum q. This disparity between space and time variables can be traced back to
the quenched nature of disorder: because the defects are frozen in place at microscopic
time scales, defect-electron interactions lead only to elastic scattering, which preserves
the particle’s energy (Ludwig 1994). An important consequence is that both Gaussian
and interacting actions can be computed at a fixed frequency ω, the same for all fermionic
fields. This viewpoint demotes the frequency to a simple parameter of the theory, so that
for brevity we will drop all frequency indices in the fields and integrals.

Scalar potential: the Gross-Neveu model — The actions (3.16) and (3.18) reduce to
well-known theories for uncorrelated disorder, where the variance of the random potential
is flat in Fourier space. Let us first consider a scalar potential with momentum-independent
disorder strength g0(q) = γ. The quartic action simplifies to a density-density interaction

Sint[ψ, ψ] = −γ2

ˆ
ki,q

ψk1ψk1+qψk2ψk2−q = −γ2

ˆ
ddr (ψψ)2. (3.19)

The full effective action

SGN[ψ, ψ] =
ˆ

ddr
[
ψ(−iσ · ∂ − iω)ψ − γ

2 (ψψ)2
]

(3.20)

describes the Gross-Neveu model in d dimensions with fermion massm = −iω and coupling
strength g = −γ, according to the conventions of Sec. 1.5 (Gross 1974; Zinn-Justin

2We will always omit the implicit identity matrix in the replica sector.
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3.2. Renormalisation group in presence of correlated disorder

2002). Luckily, the beta function is known to four-loop order in dimension d = 2 + ε,
and was given in Eq. (1.110) (Gracey 2016). The flow of the disorder strength of the
replicated theory γ follows from the beta function of the Gross-Neveu model in the limit
N → 0 and ε→ 1.

The replicated theory with long-range correlations does not share the same fame as
the Gross-Neveu model, but was investigated recently by (Louvet 2017). The variance
splits into a flat part and an algebraic part in Fourier space, g0(q) = γS + γLq

a−d. The
beta functions for the disorder strengths γS and γL are known to two-loop order, which is
enough to determine the leading term of the multifractal exponents.

Vectorial potential: the Thirring model — For a vectorial uncorrelated potential,
the variances are gi(q) = κ for i = 1, 2, 3, where we assumed the same disorder strength κ
for the three spatial directions. The full effective action simplifies to

STh[ψ, ψ] =
ˆ

ddr
[
ψ(−iσ · ∂ − iω)ψ − κ

2 (ψσψ)2
]
, (3.21)

where particles now interact through the current-current channel. Eq. (3.21) describes the
Thirring model, with fermion mass m = −iω and coupling strength g = −κ (Thirring
1958). It is exactly soluble in two dimensions, and is renormalisable in the large N
expansion between two and four dimensions. The three-dimensional model is not amenable
to a d = 2 + ε expansion, however, because evanescent operators appear at one-loop order.
Admittedly, the Thirring and Gross-Neveu models are related by Fierz identities, but only
for N = 1 (Bondi 1990). Another expansion scheme should be used, compatible with the
zero-replica limit.

In Sec. 3.2.3, we adapt the so-called εm-expansion developed by (Roy 2018), which
consists in expanding, not near the lower critical dimension, but near the critical disorder
correlation r−2, thus avoiding the emergence of evanescent operators.The variance splits
again into a flat and an algebraic part in Fourier space, gi(q) = κS + κLq

a−d, where now
δ = a− 2, like ε = d− 2, is seen as a small expansion parameter. Furthermore, this scheme
fits perfectly the replicated theory with generic disorder, since it naturally accounts for
long-range correlations.

3.2 Renormalisation group in presence of correlated
disorder

In this section we renormalise the replicated theory with both short- and long-range
correlations (whether of the Gross-Neveu or Thirring type) directly in the zero-replica
limit N → 0. We set the renormalisation group approach and present the phase diagram
for a scalar potential only, and discuss the effects of a vectorial potential in Sec. 3.2.3.

3.2.1 Renormalisation group procedure
Renormalisation constants — The renormalisation procedure consists in reparametris-
ing the action so that the correlation functions of the interacting theory converge in the
large momentum limit. This amounts to rescale the bare fields, parameters, and couplings
in terms of renormalised ones, from which are defined the new, finite correlation functions.
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Chapter 3. Field-theoretical description of the semimetal-metal transition

The relation between bare and renormalised quantities is made through the so-called Z
constants:

ψ̊ = Z
1/2
ψ ψ, ψ̊ = Z

1/2
ψ ψ, ω̊ = ZωZ

−1
ψ ω, (3.22)

for the fields and frequency, and

γ̊S = 2µ−ε
Kd

ZS

Z2
ψ

γS, γ̊L = 2µ−δ
Kd

ZL

Z2
ψ

γL, (3.23)

for the coupling strengths. Since the two coupling strengths are associated to distinct
operators, the flow differently under the renormalisation procedure, which explains why two
constants ZS,L are needed. The factor Kd was introduced in Eq. (1.79), and compensates
the annoying angular factors appearing in Feynman integrals to ease the computations of
the beta functions. The canonical dimensions of the disorder strengths are [γS] = −ε and
[γL] = −δ, where ε = d − 2 and δ = a − 2. Here we adopt the double expansion in the
small parameters ε and δ developed in (Weinrib 1983; Fedorenko 2006; Dudka 2016).
The two expansion parameters ε and δ are treated as independent. The parameter µ is
the mass scale of the renormalised theory. The renormalised Gaussian action reads

S0 =
ˆ
k

ψk(Zψσ · k − iZωω)ψk (3.24)

while the renormalised quartic interaction reads

Sint = −K−1
d

ˆ
ki

(
µ−εZSγS + µ−δZLγLq

δ−ε
)
ψk1ψk1+qψk2ψk2−q. (3.25)

Expansion and subtraction scheme — We cure the divergences of the Feynman
diagrams using the minimal subtraction scheme: the Z constants absorb only the poles
in inverse powers of ε and δ but no constant terms. The Z constants at order L in the
loopwise expansion take the form of a finite Laurent series

Z(γ) = 1 + A(γ)
ε

+ B(γ, ε/δ)
δ

+ ... , (3.26)

where A and B are polynomials of order L in the coupling strengths γ = {γS, γL}. The
function x 7→ B(γ, x) is analytic at x = 0 because the theory is renormalisable in two
dimensions in presence of long-range correlations only. The ellipsis stands for higher order
terms of the Laurent series, which originates from diagrams of order larger than two. In
the standard ε-expansion, these terms compensate one another in the scaling functions,
and thus play no role in the determination of the critical exponents. We will assume that
the same happens in Eq. (3.26), which also contains poles in δ.

For each coupling strength γi, for i = S,L, we define the beta function

βi(γ) = − ∂γi
∂ log µ (3.27)

where all bare quantities are fixed in the derivative. From the renormalisation constants
for the couplings and the field, we extract the beta functions using Eq. (3.23),


βS

βL


 = Y −1


−εγS

−δγL


 , Yij = δij + γi

∂ log(Zi/Z2
ψ)

∂γj
, (3.28)

96



3.2. Renormalisation group in presence of correlated disorder

where here again all bare quantities are fixed in the derivative. The beta functions at
order L follow by expanding the matrix Y −1 in the coupling strengths up to the power L.
The scaling functions for the field and frequency then read

ηψ = ∂ logZψ
∂ log µ = −

∑

i

βi
∂Zψ
∂γi

, ηω = ∂ logZω
∂ log µ = −

∑

i

βi
∂Zω
∂γi

. (3.29)

The critical exponents η and z are given by the suitable scaling functions evaluated at the
critical point, η = ηψ(γ∗) for the anomalous field exponent and z = 1 + ηω(γ∗)− ηψ(γ∗)
for the dynamical critical exponent. We will restrict the expansion to two-loop order.

Renormalisation of the vertex functions — To determine the renormalisation con-
stants for the fields and frequency on one hand, and for the coupling strengths on the other
hand, it is sufficient to render respectively the two-point and four-point vertices finite at
special sets of momenta. Guided by the form of the vertex in the tree approximation, we
impose on the two-point vertex function the renormalisation condition

Γ(2)(k = 0;ω, γ, µ) = finite, ∂Γ(2)

∂k
(k = 0;ω, γ, µ) = finite. (3.30)

We also decompose the four-point vertex function into the contact and long-range compo-
nents

Γ(4)(k1,k1 + q,k2,k2 − q;ω, γ, µ) = Γ(4)
S ({ki};ω, γ, µ) + Γ(4)

L ({ki};ω, γ, µ)qa−d (3.31)

and enforce similar finiteness conditions,

Γ(4)
S ({ki = 0};µ, γ, µ) = finite, Γ(4)

L ({ki = 0};µ, γ, µ) = finite. (3.32)

The self-energy Σ is linked to the two-point function by the relation Γ(2) = G−1
0 − Σ.

Fig. 3.1 gives the one-particle irreducible diagrams that contribute to the self-energy at
one- and two-loop orders. The four-point vertex is given in Appendix B by the diagrams of
Fig. B.2 at one-loop order, and of Fig. B.2 to Fig. B.4 at two-loop order. The Feynman rules
are akin to that of the Gross-Neveu model. However, an interaction line now represents
the scattering of two particles mediated by an intermediate random defect, averaged
over all disorder configurations, i.e an impurity line. Each impurity line carries either a
factor K−1

d µ−εZSγS for a contact interaction, or a factor K−1
d µ−δZLγLq

δ−ε for a long-range
interaction.

3.2.2 Beta functions and flow diagram
The results of this section come from the works of T. Louvet et al. on the effect of
long-range correlations on the semimetal-metal transition (Louvet 2017).

Beta functions — The beta functions for scalar random potentials to two-loop order in
the disorder strengths γS and γL are





βS = −εγS + 4γ2
S + 4γSγL + 8γ3

S + 20γ2
SγL + 16γSγ

2
L + 4γ3

L,

βL = −δγL + 4γ2
L + 4γSγL + 4γ3

L + 4γ2
SγL + 8γSγ

2
L.

(3.33a)

(3.33b)
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i

(a)

i

(b)

i j

(c)

i

j

(d)

Figure 3.1 | The corrections to the two-point vertex function beyond the tree level coincide
(up to a sign) with the self-energy Σ = G−1

0 − Γ(2). Each index i, j refers to either short- or
long-range interactions. (a) Self-energy at one-loop order. (b) In a closed fermionic loop, the two
indices of the free Green’s function are contracted. The trace brings out a factor N in the graph’s
multiplicity (the number of replicas), which vanishes in the zero-replica limit. Those diagrams
that contain closed fermionic loops do not enter the effective theory of disordered relativistic
semimetals. (c)-(d) Self-energy at two-loop order. These graphs correct the anomalous field ηψ
and frequency ηω exponents at order ε2 in the small parameter ε = d− 2. The counterterms are
not shown.

In absence of long-range correlations (γL = 0), the beta function (3.33a) agrees with that of
the Gross-Neveu model given in Eq. (1.110) in the limit N → 0, up to the sign flip g = −γS.
Remarkably, long-range correlations generate a contact interaction at two-loop order even
when the latter is absent at tree level, but not vice versa, the beta function (3.33b) being
proportional to γL at all orders. The 4γ3

L contribution to Eq. (3.33a) comes from the three-
barred ladder diagrams of Fig. B.4, where a particle-hole pair self-interacts sequentially,
and diagrams with a loop and a two-barred ladder intertwined. The scaling functions for
the field and frequency read,

ηψ = −2γ2
S + 2γ2

L −
4ε
δ
γL(γS + γL), z = 1 + 2(γS + γL) + 2(γS + γL)2. (3.34)

The beta functions possess three fixed points, whose stability depends on the values
of ε and δ. The stability regions are summarised in Fig. 3.2.

a

d

0 1 2 3
2

3

S critical

L critical

Metal
(G unstable)

Figure 3.2 | Stability regions of the Gaussian G, short-range S and long-range L fixed points,
in the (a, d) plane, where a = 2 + δ represents the disorder correlation exponent and d = 2 + ε
the space dimension (Louvet 2017). Only the area above the lower critical dimension d` = 2 is
shown, where the semimetallic phase may survive moderate disorder. For a < 2, G is unstable
and the flow exhibits a runaway behaviour, reflecting the instability of the semimetal with
respect to very long-range correlations. A diffusive metallic phase then settles at arbitrarily weak
disorder. The line δ∗(ε) = ε− 1

4ε
2 +O(ε3) separates the regions where the S (below) or L (above)

fixed point controls criticality.
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3.2. Renormalisation group in presence of correlated disorder

• The Gaussian fixed point G has coordinates γS = γL = 0; its basin of attraction
covers the semimetallic phase. This fixed point – and thus the semimetallic phase –
is unstable for δ < 0, i.e. when the disorder correlation exponent a is less than the
lower critical dimension d` = 2.

• The short-range fixed point S has coordinates

γS = ε

4 −
ε2

8 +O(ε3), γL = 0. (3.35)

Since uncorrelated disorder cannot generate long-range correlations under the renor-
malisation flow, the vanishing of γL at this fixed point holds at any order of the
expansion. S has a single unstable direction for δ > δ∗(ε) = ε − 1

4ε
2 + O(ε3), and

thus controls the universality class of the semimetal-metal transition for a & d. The
critical exponents are

ν−1 = ε+ ε2

2 +O(ε3), z = 1 + ε

2 −
ε2

8 +O(ε3). (3.36)

• The short-range fixed point L has coordinates

γS = δ3

16(ε− δ) +O(ε3), γL = δ

4 −
δ2ε

16(ε− δ) +O(ε3). (3.37)

It has a single unstable direction for 0 < δ < δ∗ where it drives the transition to a
new universality class with critical exponents

ν−1 = δ + δ2(2δ + ε)
4ε +O(ε3), z = 1 + δ

2 . (3.38)
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Figure 3.3 | Flow diagram of a Weyl semimetal in three dimensions under a scalar random
potential. The coupling constant γS (γL) quantifies the strength of short-range (long-range)
disorder correlations. The Gaussian fixed point (blue dot •) attracts all coupling strengths
initially in the semimetallic region. In the strong disorder regime, both coupling strengths exhibit
a runaway behaviour. (a) For a disorder correlation exponent a = 3.5, the short-range fixed
point (red dot •) is critical and determines the universality class. (b) For a disorder correlation
exponent a = 2.5, the long-range fixed point (red dot •) is critical and the short-range fixed
point (black dot •) becomes trivial. Long-range correlations determine the universality class.
Adapted from (Louvet 2017).
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Chapter 3. Field-theoretical description of the semimetal-metal transition

The two-loop correction to the dynamical exponent magically vanishes. The expres-
sion z = a/2 is actually exact. The scaling function (3.34) for the dynamical exponent
coincides indeed with that of the reduced temperature in the two-dimensional Ising
model with correlated random bond disorder, for which ν−1

Ising = 2/a exactly (Dudka
2016).

Phase diagram — Fig. 3.3 represents the phase diagram of a dirty Weyl semimetal along
with the renormalisation flow of the disorder strengths. For δ > δ∗, long-range correlations
can induce a phase transition even in absence of uncorrelated disorder, but play no role
in the critical behaviour. The short-range fixed point S determines the universality class.
The long-range fixed point, on the other hand, is located in the unphysical region γL < 0
of the phase diagram. For δ < δ∗, the long-range fixed point L determines the universality
class.

3.2.3 Time-reversal- and valley-symmetry breaking disorder
Vector potential disorder — The effect of vector potential disorder on the semimetal-
metal transition is not settled. Numerical simulations show that an uncorrelated random
vector potential drives the system to a diffusive metal phase if more than two components
out of three are included (Sbierski 2016). Though the one-loop correlation length
exponent ν = 1 agrees with that of the ‘scalar’ fixed point, nothing rules out the possibility
that the two transitions belong to different universality classes (Sbierski 2016; Lee 2017).
we hereby demonstrate that vector potential disorder is less relevant than scalar disorder
at one-loop order, to the extent that it preserves the universality class controlled by the
scalar fixed point (Brillaux 2019).

Unfortunately, the one-loop ladder diagrams generate an infinite number of evanescent
operators in dimensional regularisation. As discussed previously, projecting these unphys-
ical operators onto the physical ones is a difficult task in three dimensions. To bypass
this problem, another regularisation scheme must be used. Here we use the εm-expansion
of (Roy 2018) to investigate the interplay between scalar and vectorial random potentials,
with independent and arbitrary correlations. Instead of lowering the degree of divergence
near the lower critical dimension d` = 2, the εm expansion regularises Feynman integrals
near the critical disorder correlation r−2. We thus fix the dimension d = 3, and assume
an algebraic form for both scalar correlations g0(q) = γqε−1 and vectorial correlations
gi(q) = κqδ−1 for i = 1, 2, 3. The renormalisation flow preserves the isotropy of the
current-current interaction (ψσψ)2, so that a single coupling strength κ is needed. Note,
however, that this scheme works properly in the zero-replica limit N → 0 at one-loop
order. For arbitrary N , diagrams with closed loop contribute and produce new couplings
with higher power correlations. Similarly, two-loop diagrams create contact interactions,
which cannot be included without dimensional regularisation.

The renormalised interacting action reads (in compact form)

Sint = −µ
−εZγγ

Kd

ˆ
ki

qε−1(ψψ)2 − µ−δZκκ

Kd

ˆ
ki

qδ−1 (ψσψ)2 . (3.39)

The subspace of quartic interactions spanned by Sint is invariant under the renormalisation
flow; the couplings beyond the tree level are all included in Eq. (3.39). The relations
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3.2. Renormalisation group in presence of correlated disorder

between bare and renormalised couplings are similar to Eq. (3.23),

γ̊ = 2µ−ε
Kd

Zγ
Z2
ψ

γ, κ̊ = 2µ−δ
Kd

Zκ
Z2
ψ

κ. (3.40)

The 4-point vertex function split again into the contact and long-range components, but
they now possess a non-trivial tensorial structure

Γ(4) = Γ(4)
γ 1⊗ 1 + Γ(4)

κ qa−dσ ⊗ σ, (3.41)

where ⊗ stands for the Kronecker product and σ ⊗σ = σx ⊗ σx + σy ⊗ σy + σz ⊗ σz. The
renormalisation conditions on Γ(4)

γ and Γ(4)
κ are similar to Eq. (3.32). Besides the Feynman

rules already presented in Sec. 1.5.2, each vertex now carries either σ0 or σ matrices. At
the critical power-law correlations (ε = δ = 0), the ladder diagrams are finite, and thus
do not contribute to the beta functions. By omitting them, we are left with Yukawa-like
couplings, where internal impurity lines affect only two of the four external legs.

Unlike dimensional regularisation, the εm-expansion generates one-loop anomalous
dimensions for the field and frequency. The renormalisation constants read

Zψ = 1− 2
3

(
γ

ε
− κ

δ

)
, Zω = 1 + 2

(
γ

ε
+ 3κ

δ

)
(3.42)

for the field and frequency, and

Zγ = 1 + 4
(
γ

ε
+ 3κ

δ

)
, Zκ = 1 + 4

3

(
−γ
ε

+ κ

δ

)
(3.43)

for the coupling strengths. we deduce the anomalous dimensions ηψ = −2
3(γ − κ) and

ηω = 2(γ + 3κ), along with the beta functions

βγ = −εγ + 32
3 γκ+ 16

3 γ
2, βκ = −δκ. (3.44)

Fig 3.4(a) shows the renormalisation flow generated by the beta functions (3.44) in three
dimensions, and for uncorrelated disorder (ε = δ = 1). Due to the trivial flow of κ even
in presence of a scalar potential, we recover the Gaussian G = (0, 0) and the ‘scalar’ S
= (3ε/16, 0) fixed points. For moderately long-range correlations of the vector potential
(δ > 0), the scalar fixed point controls criticality and the transition lies in the universality
class of the three-dimensional Gross-Neveu model. Otherwise, the Gaussian fixed point is
unstable and an infinitesimal amount of disorder drives the system to a metallic phase,
as was the case for a scalar potential. The one-loop anomalous exponents are ηψ = −ε/8
and ηω = 3ε/8. Remarkably, the dynamical exponent z = 1 + ε/2 agrees in both ε- and
εm-expansion schemes, which demonstrates once more the robustness of this exponent.

Extension to binodal systems — When random scattering mixes the valleys, whether
they represent two remote Weyl nodes or a single Dirac node, a minimal Hamiltonian
must be binodal. The insensitivity of the single-node system to vector potential disorder
suggests some kind of super-universality of the semimetal-metal transition, which falls
into the same universality class whatever the symmetry of the perturbation. A natural
inquiry is whether this super-universality survives the presence of intervalley scattering.
We now extend the work of (Roy 2018) to study the interplay between intervalley and
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Intravalley T I P Intervalley T I P
potential Ψ†Ψ X X γ temporal tensor Ψ†γ0σ0jΨ λ

axial potential Ψ†γ5Ψ X X spatial tensor Ψ†γ0σjkΨ X X

current Ψ†γ0γjΨ κ mass Ψ†γ0Ψ X

axial current Ψ†γ0γ5γjΨ X X pseudomass Ψ†iγ0γ5Ψ X X

Table 3.1 | Random bilinear perturbations of a binodal Weyl system split into eight classes,
four of which preserve the emergent U(1) valley symmetry (intravalley scattering), while the
other four break it (intervalley scattering). They are specified by the emergent time-reversal T ,
inversion I, and particle-hole P symmetries. The chemical potential and current perturbations
respectively match the scalar and vector potential disorders of the single-node system. Axial
potential disorder is inevitable in I-breaking materials, because of asymmetries in the position of
each valley’s nodal level. Magnetic impurities create axial current disorder when the pseudospin
stands for the actual electronic spin. The spin tensor σµν = i

2 [γµ, γν ] completes the basis of the
so(4) algebra, besides the gamma matrices γµ and γ5. Adapted from (Roy 2018).

intravalley scatterings in presence of long-range correlations. Tab. 3.1 reports all possible
perturbations in binodal Weyl or Dirac materials. Since the axial their corresponding
non-axial perturbations flow identically, we will focus on scalar (or chemical potential) and
vector (or current) perturbations on one hand (intravalley scattering), and the temporal
tensor and mass perturbations on the other hand (intervalley scattering). In addition,
disorder correlations which decay slower than r−2 always drive the system to a metallic
phase, whatever the symmetry of the perturbation; we will restrict myself to the effect of
moderately long-range intervalley scatterings on the ‘scalar’ critical point.

Intervalley scatterings split into tensorial and mass-like perturbations. A lone random
tensor acquires no corrections at one-loop order, like in Eq. (3.44) for the vectorial potential;
a lone random mass is even renormalised downwards. Neither induces a transition at this
order. Let us now consider the competition with scalar disorder. Mass-like perturbations
leave the universality class of the semimetal-metal transition unchanged. But a new critical
point appears in presence of sufficiently long-range correlated tensorial perturbations. Let λ
be the coupling strength of a random temporal tensor. The coupled flow has the form

βγ = −εγ + 40
3 γλ+ 16

3 γ
2, βλ = −δλ+ 8

3λγ. (3.45)

As Fig. 3.4(b) shows, the ‘scalar’ fixed point becomes unstable for 0 < δ < ε/2, in which
case a new ‘tensorial’ fixed point T = (3δ/8, 3(ε − 2δ)/40) controls criticality. In this
universality class, the anomalous exponents are ηψ = −(3δ + ε)/20 and ηω = 3(3ε− δ)/20,
but the dynamical exponent z = 1 + ε/2 assumes once again the same value as for scalar
disorder.

All in all, super-universality does not extend to binodal Weyl systems, although
intervalley scattering preserves the dynamical exponent, which assumes the same expression
as for scalar uncorrelated disorder. This ‘weak’ form of super-universality leads us to
postulate – though without proof at present – that intervalley scattering plays no role in
the determination of the multifractal exponents defined in Sec. 3.3. Under thus assumption,
only scalar disorder requires scrutiny, though short-range and long-range contributions
must both be considered.
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Figure 3.4 | Phase diagram of Weyl or Dirac semimetals in three dimensions under an uncorre-
lated scalar potential, with disorder strength γ, in presence of (a) a random vector potential in a
single-node system, with disorder strength κ; (b) a random spinorial tensor in a binodal system.
The variance of the random vector or tensor decays as r−a with distance r. The Gaussian fixed
point (blue dot •) attracts all disorder strengths initially in the semimetallic region. In the strong
disorder regime, both strengths run away in the metallic region. (a) With a random vector, the
‘scalar’ fixed point (red dot •) remains critical and determines the universality class (here a = 3).
(b) With a sufficiently long-range correlated random tensor (here 2 < δ = 2.3 < 2.5), a new
critical fixed point emerges (red dot •), and the scalar fixed point (black dot •) becomes unstable.
The universality class changes, but the dynamical exponent coincides with that determined by
scalar disorder.

3.3 Multifractality within the replicated field theory
In this section, we compute the multifractal spectrum at the semimetal-metal transition for
both a short-range and a long-range correlated scalar potential. As shown in the previous
section, time-reversal-breaking disorder and intervalley scattering should not affect the
multifractality of critical wave functions in absence of very long-range correlations. Before
this work, these exponents were known for uncorrelated disorder in the supersymmetric
method (Syzranov 2016). Here, we use instead the replica method (Brillaux 2019).

3.3.1 Multifractal spectrum to two-loop order
Suitable composite operator — We now wish to build a suitable composite operator
to represent the moments of the local DoS within the effective theory. The operator
canonically associated to the wave function density is the local operator ψψ, where the
two fields ψ and ψ are evaluated at the same point. As is standard in field theories, the
corresponding scaling dimension differs from that of ψ(r1)ψ(r2), where r1 and r2 are
distinct points, because of short-distance singularities. Let us add to the original action S
the source term

SJ = −
ˆ

ddr Jψψ. (3.46)

This source term enables to insert ψψ in correlation functions, by deriving the partition
function with respect to J as many times as the number of insertions (Zinn-Justin 2002).
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I now apply the replica trick to cast the expectation value of ψψ into a form suitable for
disorder averaging. Let q be an integer that divides the replica number N . We now use
the replica trick in the following way:

〈ψψ〉 = δ lnZ
δJ

∝ lim
N→0

ZN/q−1 δZ

δJ
, (3.47)

where the functional derivative is evaluated at J = 0. Keeping the zero-replica limit in
mind, we raise Eq. (3.47) to the power q, so as to insert q distinct replicated operators
ψαψα. In other words,

〈ψψ〉q ∝ ZN−q
(
δZ

δJ

)q
=
ˆ

Dψ Dψ
( q∏

α=1
ψαψα

)
exp

(
−

N∑

α=1
S[ψα, ψα, V ]

)
(3.48)

Averaging over disorder is now straightforward. we get

〈ψψ〉q =
ˆ

Dψ Dψ
( q∏

α=1
ψαψα

)
exp (−Seff [ψ, ψ]) . (3.49)

The moments of the local DoS are thus represented in the replicated theory by an
expectation value of the composite operator

Oq =
q∏

α=1
ψαψα. (3.50)

Note that in Eq. (3.50) the product is done over distinct replicas. Were it performed
over the same replicas, or equivalently over the sum of all replicas, the scaling dimension
would be different. The similar-looking operator

Õq =
(

n∑

α=1
ψαψα

)q
(3.51)

captures deviations of the random potential from a Gaussian distribution due to the
generation of higher-order vertices under the renormalisation flow. While Oq represents the
disorder average of 〈ψψ〉q, the operator Õq represents the disorder average of 〈(ψψ)q〉, and
gets already corrected at one-loop order. At first order in ε = d− 2, its scaling dimension
reads d̃q = (d− 1)q − 2γ = (1 + ε)q − 1

2q
2ε (Louvet 2016). The critical fluctuations of

the density is a more subtle effect, and manifest themselves in the scaling dimension of Oq
only beyond two-loop order.

Renormalisation at two-loop order — The renormalisation ofOq requires to introduce
a new constant Zq. The renormalised proper vertex Γ(q)

O , which follows from the ensemble
average of Oq over the quantum action Γ, is rendered finite by setting

Γ̊(q)
O ({ki}; γ̊, ω̊) = ZqZ

−q
ψ Γ(q)

O ({ki}; γ, ω, µ), (3.52)

Dimensional analysis indicates that the scaling dimension of Oq is dq = (d− 1 + ηψ)q − ηq.
The anomalous scaling dimension which stems from the Zq constant is

ηq = −
∑

i

βi
∂ lnZq
∂γi

. (3.53)
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Figure 3.5 | One-loop corrections to the vertex function with a single insertion of the multifractal
operator Oq. we employ the graphical conventions of (Syzranov 2016), with the difference
that impurity lines carry either short-range (i = S, coupling strength γS) or long-range (i = L,
coupling strength γL) disorder correlations. (a) Vertex at tree level. Solid lines stand for the free
Green’s functions in distinct replica sectors α = 1, ..., q. The wavy line indicates the insertion
of Oq. Diagram (b) has multiplicity 2q and pole γS/ε+ γL/δ, where ε = d− 2 is the distance
to the lower critical dimension and δ = a − 2 the distance to the critical disorder correlation
exponent. The two ladder diagrams (c) cancel one another. Diagram (d) vanishes because fields
from different replicas are contracted. It contributes, however, to the analogous operator Õq
defined in Eq. (3.51), and which captures how much the distribution of the density of states
deviates from a Gaussian law.

From there, the multifractal anomalous exponents ∆q = dq − qd1 = qη1 − ηq can be easily
computed. The anomalous field dimension plays no role since it enters only the linear part
of dq.

The one- and two-loop diagrams for this vertex function are shown in Fig. 3.5, and B.5
in Appendix B, respectively. Tab. B.1 summarises the poles of the corresponding diagrams
with their multiplicities. As for the four-point vertex, the ladder diagrams of Fig. 3.5(c)
vanish. Only the loop diagram of Fig. 3.5(b) contributes. The tree-level vertex is depicted
as q solid lines connected by a wavy line, which stands for the source of Oq. we find the
anomalous dimension ηq at second order in the coupling strengths to be

ηq = q

[
2(γS + γL)− 6γ2

S +
(

1− 7ε
δ

)
γ2

L − γSγL

(
11 + 4ε

δ
− 3δ

ε

)]

+ q2
[
6γ2

S + 3
(

5− δ

ε

)
γSγL + 3

(
1 + ε

δ

)
γ2

L

]
. (3.54)

We can check that Eq. (3.54) gives the correct exponent for q = 1. And indeed η1 =
2(γS + γL) + 4γ2

L + 4(1− ε
δ
)γL(γS + γL) agrees with the frequency exponent ηω of Eq. (3.34).

Eventually,

∆q = q(1− q)
[
6γ2

S + 3
(

5− δ

ε

)
γSγL +3

(
1 + ε

δ

)
γ2

L

]
. (3.55)

Anomalous multifractal exponents — To determine the anomalous multifractal ex-
ponents at the semimetal-metal transition we evaluate Eq. (3.55) at the relevant critical
fixed point.

• For δ > δ∗, the short-range fixed point controls criticality. Substituting Eq. (3.35)
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into Eq. (3.55) we recover the result of S. V. Syzranov (Syzranov 2016),

∆q = 3
8q(1− q)ε

2 +O(ε3). (3.56)

• For 0 < δ < δ∗, the long-range fixed point controls criticality. Injecting Eq. (3.37) we
find the anomalous multifractal exponents of the new universality class (Brillaux
2019)

∆q = 3
16q(1− q)δ(δ + ε) +O(ε3). (3.57)

As a consistency check, the two expressions (3.56) and (3.57) match on the line δ = δ∗,
which separates the regions of stability of the short- and long-range fixed points. The
expression of Eq. (3.57) also vanishes at δ = 0, in agreement with the disappearance of
the transition at the lower critical dimension.

Singularity spectrum — The singularity spectrum fτ corresponding to the multifractal
spectra (3.56) and (3.57) is quadratic, and peaks at x0 with a maximum fτ (x0) = d. This
leads to a log-normal distribution P (%, L) for the local DoS. The location of the maximum
depends, here again, on the universality class.

• For short-range correlated disorder (δ > δ∗),

x0 = 2 + ε+ 3
8ε

2 +O(ε3). (3.58)

The [1/1] Padé approximant of Eq. (3.58) gives x0 = 3.6 in three dimensions, while
direct substitution gives x0 = 3.375. We found in Sec. 2.4.2 the numerical estimate
x0 = 3.4± 0.2, which agrees with the theoretical prediction. Unfortunately, the large
uncertainties prevent any conclusive remark on whether the multifractal exponents
behave well under the ε expansion, like the dynamical exponent, or are not Borel
summable, like the correlation length exponent.

• For long-range correlated disorder (0 < δ < δ∗),

x0 = 2 + ε+ 3
16δ(ε+ δ) +O(ε3). (3.59)

In this case x0 is smaller and the DoS distribution thinner. To the best of my
knowledge, the effect of long-range correlations on the typical DoS have not been
probed in numerical simulations. Hopefully, future research may provide a point of
comparison to test the validity of Eq. (3.59).

3.3.2 Comparison with other transitions
Non-Anderson transition in gapless semiconductors — We can compare multi-
fractality at the semimetal-metal in presence of uncorrelated disorder to that in other
non-Anderson transitions, which occur in all gapless semiconductors with algebraic disper-
sion relation E ∝ kα where d > 2α. Due to the inversion symmetry, the ladder diagrams
add up instead of cancelling out, so that multifractality appears at one-loop order in this
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case, instead of two-loop order. Expanding in dimension d = 2α + ε, the multifractal
exponents read (Syzranov 2016)

∆q = −ε2q(q − 1). (3.60)

The probability distribution of the local DoS is thus broader in inversion-symmetric systems
that undergo a non-Anderson transition when compared to the semimetal-metal transition.
To first order in ε = d− 2α, the exponents read ν−1 = ε and z = α + ε

4 . The peak of the
singularity spectrum is located at

x0 = 2α + 3
2ε+O(ε2). (3.61)

The average and typical DoS decay algebraically near the critical disorder strength with
the exponents β = ν(d− z) and βt = ν(x0 − z) respectively, whose one-loop values are

β = 3
4 + α

ε
, βt = 5

4 + α

ε
. (3.62)

In the conventional case of a quadratic dispersion (α = 2), criticality is observed only in
higher dimension, e.g. in d = 5, which kicked quantum rotors can emulate (Moore 1994).
In this situation, ε = 1, and the critical exponents read ν = 1, z = 2.25, β = 2.75 and
βt = 3.25.

We can also carry out similar computations in presence of long-range correlations,
using again an δ = a− 2 expansion. The renormalisation constant is Zq = 1 + 2q2(γS

ε
+ γL

δ
),

from which we find ηq = 2q2(γS + γL). Plugging in the coordinates of the long-range fixed
point, we get without surprise the same expression as Eq. (3.60) with δ substituting ε,

∆q = −δ2q(q − 1). (3.63)

The critical exponents ν, z, β and βt follow immediately.

Anderson’s localisation — The anomalous multifractal exponents were determined
at four-loop order in the orthogonal and unitary classes (Wegner 1987). In d = 2 + ε
dimension, they read

∆(O)
q = q(1− q)ε+ ζ(3)

4 q(q − 1)(q2 − q + 1)ε4 +O(ε5) (3.64)

for the orthogonal class, and

∆(U)
q = q(1− q)

√
ε

2 −
3ζ(3)

8 q2(q − 1)2ε2 +O(ε5/2) (3.65)

for the unitary class. In particular the orthogonal class in d = 3 has x0 = 4 at leading
order, in excellent agreement with the numerical result α0 = 4.03± 0.05 (Mildenberger
2002). In conclusion, multifractality is ‘stronger’ at Anderson’s localisation than at the
semimetal-metal transition, to the extent that the distribution of the local DoS is broader.
In semimetals, this distribution is itself broader when driven by uncorrelated disorder,
than by long-range correlated disorder. The exact origin of this hierarchy remains unclear;
yet it seems reasonable that the wave function density is more broadly distributed when
particles localise, and the extension of the wave function is restricted dramatically, than
when extended waves roughly keep the same shape while spreading over an energy region
(the nodal level) which was unavailable in absence of random scatterers.
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Conclusion
Summary — Among other techniques, the replica trick enables to cast the low-energy
theory of disordered relativistic semimetals to a relativistic field theory with an effective
interaction, whose strength is given by the variance of the random potential. When
particles move in the background of a Gaussian, spatially uncorrelated random potential,
the replicated theory follows from either the Gross-Neveu model for a scalar potential, or
the Thirring model for a vectorial potential, in the limit of a vanishing number of fermions.
We have presented the flow diagram when the random scalar potential comprises both
short-range and long-range correlations, and estimated the conventional exponents at
two-loop order for the two corresponding universality classes. Importantly, we have shown
how to represent the moments of the density of states as a composite operator of the
replicated theory, and have determined the multifractal spectrum for the two universality
classes. In the former case, the exponents agree with those found in a supersymmetric
approach at the same order, and leads to a scaling exponent of the typical density of
states consistent with numerical estimates. We have also compared our results for the
multifractal spectrum to similar non-Anderson transitions and to Anderson’s localisation.

Outlook — We know that at Anderson’s localisation the four-loop corrections to the
multifractal exponents dominate at large moments, which puts into question the validity
of the ε-expansion. The same issue is likely to occur at the semimetal-metal transition,
since the Gross-Neveu model is not multiplicatively renormalisable in three dimensions.
Two main alternative theories exist. One resorts to the functional renormalisation group;
the other rests on the equivalence between the Gross-Neveu and the Gross-Neveu-Yukawa
models. First, the functional renormalisation group includes fluctuations of the random
potential beyond the Gaussian approximation (Wiese 2006). The fermions interact in the
replicated theory via a generic potential W function of the total density (Balog 2018).
Instead of following the flow of a single coupling strength, this method keeps track of the
whole functional dependence of W in the infrared limit. Second, the Gross-Neveu-Yukawa
model proceeds from the Gross-Neveu model by decoupling the action using a Hubbard-
Stratonovitch transformation with ancillary scalar field, and endow it with a kinetic term
and a quartic potential (Louvet 2016). A large N expansion in d = 4 − ε dimensions
enables to compute the correlation length exponent ν in the zero-replica limit.

Multifractality at the semimetal-metal transition still reserves many open questions.
First, we know from Anderson’s localisation that the ensemble averaging plays a crucial
role in the inverse participation ratios (Evers 2000). The mean ratio p̄q, which we have
considered so far, and the typical ratio pt

q = exp( log pq ), carry the same information for
the most probable realisations of the wave function, but differ significantly in the region
of strong multifractality, i.e. for large moments where the mean singularity spectrum
terminates (when fτ (0) < 0) or freezes (when fτ (0) = 0). In this region, extremely
sparse eigenfunctions with diverging peaks dominate the scaling of the average singularity
spectrum in the thermodynamic limit. Second, the wave functions fluctuate more at the
surface than in the bulk when crossing the localisation-delocalisation point (Subramaniam
2006). Surface effects thus dominate the large moments of the wave function’s distribution.
These topics, which have been explored at Anderson’s localisation but not at the semimetal-
metal transition, promise an exciting future research on multifractality.
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Chapter 4
Surface criticality in disordered semimetals

Disordered relativistic semimetals undergo a quantum phase transition towards a metallic
phase, which we covered in the previous chapters. The signatures of this semimetal-metal
transition (behaviour of the density of state and other mean observables, critical exponents)
reflect the properties of the bulk excitations. Yet, relativistic semimetals harbour peculiar
surface states on their boundary, whose dispersion relation differs entirely from their bulk
counterpart. The effect of disorder on these surface states (Fermi rays, arcs and Dirac
surface states) has started to attract attention, and motivated a few analytical (Shtanko
2018) and numerical (Slager 2017; Wilson 2018) studies.

In this chapter we study the effect of weak disorder on the surface states produced
by generic boundary conditions in a minimal model for Weyl and Dirac semimetals. We
develop a local version of the self-consistent Born approximation (Klier 2019) to compute
the density of states profile and the surface group velocity as a function of disorder
strength. While the self-consistent Born approximation is poorly controlled close to the
transition and fails to produce the correct critical exponents, it still captures the qualitative
behaviour of the system (Sinner 2017). In particular, we investigate the phase diagram
of Dirac semimetals in presence of a surface, and show that it bears similarities with that
of semi-infinite magnetic systems, which exhibit ordinary, surface and extraordinary phase
transitions (Lubensky 1975a; Lubensky 1975b). The boundary of a semimetal that
hosts Dirac surface states turns into a metallic state at a critical disorder strength lower
than that in the bulk. Upon further increasing disorder, the bulk becomes metallic in
presence of the metallic surface, thereby experiencing an extraordinary transition. In
Weyl semimetals, the extension of Fermi arcs in momentum space smooths out the surface
criticality observed in Dirac surface states.

4.1 Surface states in clean semimetals . . . . . . . . . . . . . . . . 110
4.1.1 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . 110
4.1.2 Surface states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.2 Spatially resolved properties with disorder . . . . . . . . . . . 119
4.2.1 Qualitative effect of disorder . . . . . . . . . . . . . . . . . . . 119
4.2.2 Self-consistent approach . . . . . . . . . . . . . . . . . . . . . . 121
4.2.3 Profile of the local density of states . . . . . . . . . . . . . . . . 123
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4.2.4 Beyond the local self-consistent approximation . . . . . . . . . 125
4.3 Surface states of disordered semimetals . . . . . . . . . . . . . 127

4.3.1 Criticality of Dirac surface states . . . . . . . . . . . . . . . . . 127
4.3.2 Robustness of Fermi arcs . . . . . . . . . . . . . . . . . . . . . 129
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4.1 Surface states in clean semimetals
The presence of a boundary leads to new states in Weyl and Dirac semimetals that were
absent in the infinite material. These surface states can be classified according to whether
the reflection of incoming particles on the boundary preserves chirality. Taking account
of the distinction between Weyl and Dirac semimetals, this classification results in three
types of surface states: the celebrated Fermi arcs, along with Dirac surface states, when
chirality is broken; and the Fermi rays, when chirality is preserved. In this section we
discuss the properties of these surface states in clean relativistic semimetals, and show
how they arise from the boundary condition. Some of the following results are original
(Brillaux 2021b).

4.1.1 Boundary conditions
Bulk Hamiltonian — Surface states in Weyl and Dirac semimetals originate from the
topological nature of Weyl nodes. The Nielsen-Ninomiya theorem constrains relativistic
semimetals to host pairs of nodes with opposite Berry charges (Nielsen 1981). A minimal
low-energy theory for the surface of semimetals thus comprises two Weyl nodes of opposite
chiralities. Let 2b be their separation in momentum space. The electron dynamics follows
from the binodal Weyl Hamiltonian (Altland 2016; Faraei 2018)

H0 = −iτzσ · ∂ + τ0σ · b. (4.1)

We defined two sets of Pauli matrices. The set σ = (σx, σy, σz) represents the pseudospin.
The other set (τx, τy, τz) represents instead the valley – or chiral in this case – degree of
freedom. We denote by σ0 and τ0 the corresponding identity matrices. The Hamiltonian
of Eq. (4.1) describes two Weyl nodes related by time reversal; it could typically represent
a magnetic Weyl semimetal.

The chief advantage of the Hamiltonian (4.1) is that we can formally tune b to describe
either a pair of Weyl cones (for b arbitrary) or a single Dirac cone (for b = 0). Note that
the two Weyl cones could originate from the crossing of the same energy bands at distinct
points of the Brillouin zone. Merging the nodes opens a gap in this case, which does not
correspond to what happens when setting b = 0 in Eq. (4.1). A Dirac node forms only
when spatial symmetries prevent the nodes from hybridising. In addition, the minimal
model of Eq. (4.1) cannot reproduce double Fermi arcs connecting a pair of Dirac nodes
(twice more bands would be required to do so). We will consider only single Fermi arcs.

Boundary condition — Since large wave length fluctuations governs the approach to
criticality, large-scale properties of a finite sample can play an essential role in phase
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Figure 4.1 | A minimal model for a semi-infinite Weyl semimetal comprises two Weyl cones (in
red and blue) in the bulk V+ : {z > 0}. The surface S : {z = 0} faces the vacuum, which particles
are forbidden to explore. Boundary scattering then gives rise to evanescent waves localised at the
surface. These topological excitations disperse at the Fermi level along a line which connects to
the bulk Weyl nodes W± of chiralities χ = ±1 at both ends. When boundary scattering breaks
chirality, and that the Weyl nodes do not overlap when projected to the surface Brillouin zone,
the surface hosts Fermi arcs (shown here).

transitions (Cardy 1996). The related phenomena – rounding of the transition, influence
of geometry, surface criticality – are collectively known as finite-size effects. The local
degrees of freedom couple to the critical fluctuations differently near a boundary than
inside the bulk. To investigate the effect of a surface without introducing a new length scale
(the system size L), we model the material as a d-dimensional semi-infinite system with a
single planar (d− 1)-dimensional boundary. Whenever the correlation length exceeds the
typical size of the surface irregularities, the boundary can be viewed as smooth. Let us
consider then a semi-infinite Weyl or Dirac semimetal filling the half-space V+ : {z ≥ 0}
(Fig. 4.1). The vector b = b‖+bzez splits into components respectively parallel and normal
to the surface S : {z = 0}. The Weyl nodes project to the momenta ±b‖ on the surface
Brillouin zone; as far as surface properties are concerned, only this parallel separation
matters. If the material were cleaved in the direction normal to b, the projected nodes
would indeed overlap and be indistinguishable from a single Dirac cone.

We must now supplement the bulk Hamiltonian (4.1) with proper boundary conditions.
Let ΨS = Ψ(z = 0) be the surface Dirac spinor. A generic relativistic boundary condition
involves a dimensionless unitary matrix M such that

MΨS = ΨS. (4.2)

Though M could depend on momentum, we will regard it as constant in the low-energy
limit. This boundary condition is of Dirichlet-type, in contrast to bosonic theories, where
the field’s first derivative appears (Lubensky 1975a; Lubensky 1975b). Not any boundary
matrix is suitable, of course. Because the sample faces vacuum, no particles exit the
boundary, and the boundary condition must ensure that the cross current Jz = Ψ†γ0γzΨ
vanishes at the surface (where γ0γz = σzτz in the chosen representation). Besides, Eq. (4.2)
amounts to add a surface term HS = iγ0γzMδ(z) to the Hamiltonian. The full Hamiltonian
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H = H0 +HS should be hermitician: for all Dirac spinors Ψ, we have (Witten 2016)

〈Ψ|HΨ〉 = 〈HΨ|Ψ〉. (4.3)

Writing the scalar products in terms of spatial integrals, we find
ˆ ∞

0
dzΨ†(−iγ0γz)∂zΨ + Ψ†S(iγ0γzM)ΨS =

ˆ ∞
0

dz ∂zΨ†(iγ0γz)Ψ + Ψ†S(−iM †γ0γz)ΨS.

(4.4)
An integration by parts then leads to

[
Ψ†γ0γzΨ

]∞
0

= Ψ†S(γ0γzM +M †γ0γz)ΨS. (4.5)

The conservation of Jz enforces the left-hand side of Eq. (4.5) to vanish. Let us assume
further that M itself is hermitian. Eq. (4.5) then entails that the boundary matrix
anticommutes with the cross current operator (Hashimoto 2017; Faraei 2018)

{M,γ0γz} = 0, M2 = M †M = 1. (4.6)

The two conditions of Eq. (4.6) ensure that the cross current vanishes at the surface, as
required.

The boundary matrix — We will give the most general solution of Eq. (4.6) at the end of
this paragraph for the four-times-four matrixM . Two classes of suitable matrices naturally
come to mind: one that decouples left- and right-handed Weyl fermions, thus preserving
chirality, the other that couples them, and applies only to Dirac fermions (Faraei 2018).

Let us consider the first class, denoted generically as M1. In each chiral sector, M1
anticommutes with the pseudospin σz, which is only possible for σx or σy. A superposition
of these two matrices is of the form σ · e where e ∈ S is a unitary vector of the surface.
Combining the two sectors together in a block diagonal form, we get

M1 =
∑

χ=±
τ̂χ(σ · eχ) =




0 e−iθ+ 0 0
eiθ+ 0 0 0
0 0 0 e−iθ−

0 0 eiθ− 0




(4.7)

where χ = ± is the chiral index, e± = (cos θ±, sin θ±) are two unitary surface vectors, and
τ̂± = 1

2(τ0± τz) are the chiral projectors. The two angles θ± are independent and arbitrary.
We will see in Sec. 4.1.2 that the constant-energy contours at the surface take the form of
(Fermi) rays, and that the angles θ± select the orientation of the rays. A basis-independent
expression is M1 = −γ0γ ·m with the surface (matrix) vector

m = (γ5 cosϕ+ cosϕ− + sinϕ+ sinϕ−, γ5 sinϕ+ cosϕ− − cosϕ+ cosϕ−), (4.8)

where ϕ± = 1
2(θ+ ± θ−). This boundary condition clearly breaks the rotational symmetry

in the (x, y) plane; it even breaks all discrete space groups of the crystal, except for
special values of the angles (Witten 2016). It also mixes neighbouring Landau levels in a
background magnetic field, making Landau quantisation ill-defined (Faraei 2018).
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We now consider the second class, denoted generically as M2. A plain example is γz.
In general, such chirality-breaking boundary matrix is of the form

M2 =
∑

χ=±
(τ · eχ)σ̂χ =




0 0 e−iθ+ 0
0 0 0 e−iθ−

eiθ+ 0 0 0
0 eiθ− 0 0




(4.9)

where here again e± = (cos θ±, sin θ±), and σ̂± = 1
2(σ0 ± σz) are the pseudospin projectors.

An alternate expression is M2 = γ0(cosϕ+ cosϕ− + iγ5 sinϕ+ sinϕ−) + γz(sinϕ+ cosϕ− −
iγ5 cosϕ+ cosϕ−), where ϕ± = 1

2(θ+±θ−). Unlike forM1, the relative position of the Weyl
nodes constrains the angles θ± in the M2 boundary condition. This further requirement
stems from the arc-shaped line which connects the nodes at the Fermi level, known as a
Fermi arc, as we will see in Sec. 4.1.2. In particular, the parameter

θ = 1
2(θ+ − θ− + π) (4.10)

dictates the curvature of the Fermi arc. This boundary condition conserves most of the
spatial symmetries of the bulk Hamiltonian. When the nodes project to the same point
on the surface, the original O(2) symmetry is preserved. When the two projected nodes
are separated, the original mirror symmetries Mx : x 7→ −x and My : y 7→ −y are both
preserved for a straight arc (θ = 0); otherwise, My is also broken. Tab. 4.1 recaps which
symmetries are preserved or broken for each boundary condition.

The linear superposition of two matrices of the form (4.7) and (4.9) automatically
anticommutes with γ0γz, but the coefficients should be tuned to preserve the unitary. One
can also check that such linear superpositions span all possible solutions. We find the
most general boundary matrix to be

M(ϕ, θ1±, θ2±) = M1(θ1±) cosϕ+M2(θ2±) sinϕ, (4.11)

with the extra condition that (θ1+ − θ1−) − (θ2+ − θ2−) = π (Brillaux 2021b). For a
non-zero mixing angle ϕ, this boundary condition breaks all symmetries, spatial and chiral.

Parallel separation Bulk Surface M1 Surface M2

b‖ = 0 O(2)× U(1) {1} × U(1) O(2) O(2)

b‖ ∝ ex D2 × U(1) {1} × U(1) D2 {1,Mx}

θ = 0 θ 6= 0

Table 4.1 | When the projected nodes overlap (b‖ = 0), any parallel plane deep in the bulk enjoys
an O(2) symmetry. Otherwise, the symmetry group is restricted to D2 = {1,Mx,My,MxMy},
where Mx and My denotes the mirror symmetries which respectively exchange the nodes and
leave them in place. The elements of the group act by matrix multiplication on the Dirac
spinor. In the corresponding linear representation Υ, a rotation Rφ ∈ SO(2) is represented by
Υ(Rφ) = exp(− i

2φτ0σz). The boundary condition M2 breaks the U(1) chiral symmetry but
preserves most of the bulk spatial symmetries, according to the Fermi arc’s curvature θ, in total
opposition with M1.
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Chapter 4. Surface criticality in disordered semimetals

For simplicity, we will disregard this type of boundary condition, and focus on M1 and M2
separately. We now move on to determine the surface states from the Green’s function.

4.1.2 Surface states
Green’s function of the clean system — The Green’s function G0 of a clean semi-
infinite system can be Fourier-transformed in the two directions (x, y) parallel to the surface,
but not in the normal direction z due to the absence of translational invariance (Faraei
2018). We can thus express G0 in a mixed momentum-real space, as a function of the
parallel momentum k = (kx, ky), and two distances z and z′ to the boundary. To simplify
the notation we will omit the dependence on k. The Green’s function satisfies the equation

(H0 − E)G0(E, z, z′) = δ(z − z′), (4.12)

where the bulk Hamiltonian H0 = τzσ · k − iτzσz∂z + σ · b is expressed in the mixed
position-momentum space, and identity matrices are omitted. As per Eq. (4.2), the Green’s
function also fulfils the boundary condition

MG0(E, 0, z′) = G0(E, 0, z′). (4.13)

A general solution to the linear differential equation (4.12) is written as a sum of
two terms: a particular solution for the infinite system, which by virtue of translational
invariance depends only on |z−z′|; a solution of the homogeneous equation, which depends
on z and z′ separately. The particular solution is easily found by a Fourier transform of
the bulk Green’s function. For instance, for b = 0, we find

Gb(E, z − z′) = [τzσ · k + E + iκ sgn(z − z′)] e
−κ|z−z′|

2κ , (4.14)

where κ =
√
k2 − E2, and sgn(x) is the sign function. Particles that propagate in the bulk

satisfy κ = 0. On the contrary, surface states are off-shell excitations, whose amplitude
decays exponentially in the bulk over a distance of the order of the penetration length
ξ = κ−1. Thanks to the method of images, we know that the solution of the homogeneous
equation must be a function of |z+ z′|, but its matrix structure is far from trivial (Faraei
2018). Combining the bulk part (particular solution) and excess part (solution of the
homogeneous equation), which enable the full Green’s function to satisfy Eq. (4.13), we
write

G0(E, z, z′) = Gb(E, z − z′) +Ge(E, z + z′). (4.15)
The off-diagonal components of the bulk part in the pseudospin sector are

(Gb)σ̄σχχ′(E, z − z′) = χ

2
kχx + iσkχy
κχ + iχbz

δχχ′ e
−(κχ+iχbz)|z−z′|. (4.16)

where σ = ±1 is the pseudospin index, σ̄ = −σ, and {χ, χ′} are two independent chiral
indices. The vector kχ = k − χb‖ represents the momentum measured from the surface-
projected node of chirality χ. As for the case of zero separation, the decay rates are given
by κ2

χ = (kχ)2 − E2. The excess part, on the other hand, reads

(Ge)σ̄σχχ′(E, z + z′) = −χ2
kχx + iσkχy
κχ + iχbz

(A0)σ̄σχχ′(E) e−(κχ+iχbz)|z+z′|, (4.17)
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4.1. Surface states in clean semimetals

The coefficient A0(E) represents the reflectivity of the boundary, and always differs
from unity for off-shell excitations. It depends on the boundary condition. For M1, the
off-diagonal chiral components vanish, as for the bulk part,

(A0)σ̄σχχ′(E) =
E − iχσκχ + 2σbz − χe−iσθχ(kχx + iσkχy )

E + iχσκχ − χe−iσθχ(kχx + iσkχy ) δχχ′ . (4.18)

The M2 boundary condition, on the other hand, couples the chiral indices, and A0(E)
takes a more involved form,

(A0)σ̄σχχ′(E) = 1− 2iχσκχeiχθσ̄
Dσ̄σ
χχ′(E) (kχ̄x + iσkχ̄y ), (4.19)

where the denominator reads

Dσ̄σ
χχ′(E) = eiχθσ̄(E + iχσκχ)(kχ̄x + iσkχ̄y ) + eiχθσ(E + iχ̄σκχ̄)(kχx + iσkχy ). (4.20)

The components which are diagonal in pseudospin follow from the relation

(G0)σσχχ′(E, z, z′) = χ
E − iχσ∂z + σbz

kχx + iσkχy
(G0)σ̄σχχ′(E, z, z′). (4.21)

The dispersion relation of the bulk states E(k) corresponds to the pole of the bulk part
of the Green’s function Gb. Likewise, the surface dispersion relation Es(k) corresponds
to the pole of the excess part Ge. In other words, the denominator of A0(Es) vanishes.
Following (Faraei 2018), we determine below the surface dispersion relation for both
boundary conditions (Brillaux 2021b).

Chirality-preserving boundary condition — For M1, the coefficient A0(E) is given
by Eq. (4.18). Unsurprisingly, we find two independent dispersion relations in this case,
one for each node,

Eχ
s = χkχ cos(φχ − θχ), κχ = kχ sin(φχ − θχ), (4.22)

where kχ and φχ are respectively the norm and the angle of the kχ in the basis (ex, ey)
chosen to define the angles θ±. The requirement that κχ be positive, which ensures that
surface wave functions are normalisable, selects the half-plane φχ − θχ ∈ [0, π]. Since the
pseudospin index does not enter the dispersion relation, each surface energy band is two-
fold degenerate, contrary to the bulk Weyl cones where particles and holes have opposite
pseudospins. At the nodal level, Eχ

s vanishes, so that φχ = θχ+ π
2 . The zero-energy surface

states disperse along two independent Fermi rays pointing in the directions orthogonal
to eχ, and stemming from the nodes of chiralities χ = ±1 respectively, as sketched in
Fig. 4.2(a). Fermi rays are semi-infinite straight lines in the low-energy theory, but we
expect their large-momentum behaviour to be modified at energy scales of the order of
the ultraviolet cut-off.

Let us now find the eigenstates associated to this boundary condition. The eigenvalue
equation reads H0Ψ1(r, z) = EΨ1(r, z), where the Dirac spinor satisfies M1Ψ1(r, 0) =
Ψ1(r, 0) and r marks the position the (x, y) pane. Since chirality is a good quantum
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Chapter 4. Surface criticality in disordered semimetals

number, we write the Dirac spinor as a linear superposition of the two chiral eigenstates,
and factor out the boundary plane wave,

Ψ1(r, z) = e−ir·k
∑

χ=±
cχΨχ(z), (4.23)

where c± are two complex constants. The chiral eigenstates take the form of evanescent
plane waves. Up to a arbitrary phase factor, they are

Ψ+(z) = √κ+ e
−zκ+




1
eiθ+

0
0



, Ψ−(z) = √κ− e−zκ−




0
0
1
eiθ−



. (4.24)

They are indeed normalisable provided that κχ > 0. Would κχ be negative, the amplitude
would increase exponentially in the inside of the material; these solutions are unphysical.

The M1 boundary condition breaks the rotational symmetry. It forces the Fermi rays’
orientations, which must be determined by microscopic details of the boundary, and thus
should be very sensitive to surface roughness (Witten 2016). Yet, no analogous features
have been observed in real materials. In the context of condensed matter, we expect these
seemingly infinite Fermi rays to be low-energy truncations of Fermi arcs that terminate
at another remote pair of Weyl nodes. This is all the more likely that at higher energies,
the boundary matrix depends on momentum. The Fermi lines, with parametric equation
φχ(k) = θχ(k) + π

2 in polar coordinates, would then deviate from straight rays. In the
context of quantum field theory, however, the M1 boundary condition has no reason to
be unphysical and could describe the scattering of Weyl fermions on an infinite potential
barrier.

Chirality-breaking boundary condition — For M2, the coefficient A0(E) is given
by Eq. (4.19), and the denominator D by Eq. (4.20). The poles couple the parameters
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Figure 4.2 | (a) Chirality-preserving boundary conditions lead to one disconnected Fermi ray
at each node (in orange), parametrised by a normal surface vector e±. (b) Pairs of Weyl nodes
of opposite chiralities host Fermi arcs at the nodal level (in orange), parametrised by an aperture
angle θ. The group velocity of the surface states (in green) is locally normal to the arc. (c) The
same chiral-breaking boundary condition leads to Dirac surface states in Dirac nodes, which
disperse along a single-nappe cone of positive energy on one surface (in orange) and negative
energy on the other. The slope of the cone corresponds to a lessened Fermi velocity v = cos θ.
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4.1. Surface states in clean semimetals

associated to the two Weyl nodes, e.g. the momenta k+ and k−. We expect, therefore,
that a continuous band structure emerges from one node and terminates on the other.
Solving Dσ̄σ

χχ′(Es) = 0 for all possible values of the pseudospin and chiral indices, we find
indeed a single dispersion relation,

Es = kχ cos βχ, κχ = kχ sin βχ, (4.25)

where the angles βχ are completely determined by the relation β+ + β− = 2θ + φ+ − φ−,
along with the tacit condition k+ cos β+ = k− cos β− of Eq. (4.25) (Brillaux 2021b).
Shifting the angle θ by π leads to the same surface properties: we will thus restrict its
domain of definition to the interval [0, π]. As for Fermi rays, the pseudospin leads to a
two-fold degeneracy of the energy levels. Unlike rays, though, the band structure depends
on the parallel separation of the nodes. We must distinguish the cases for which this
separation is non-zero, from those for which it vanishes.

Fermi arcs — We already introduced the angle θ in Eq. (4.10), which dictates the
curvature of the Fermi arc. We expect that the parameters of the M2 boundary condition
in general, and θ in particular, depend on the microscopic details of the surface. Lattice
models show that the chemical composition of the first boundary layer also determines
which Weyl nodes pair up to form Fermi arcs (Okugawa 2014). Even away from the
nodal level, surface termination affects the surface energy contours dramatically. On the
other hand, the parameter ϑ = 1

2(θ+ + θ− − π) fixes the direction of the arc, which is
constrained by the position of the Weyl nodes. The half-separation b‖ = bn, with norm b,
has for orientation vector n = (cosϑ, sinϑ). Assume for clarity that the nodes are aligned
along the x axis. Then ϑ = 0 and θ = θ+ remains the only free variable. For non-zero b,
the parametric equation (4.25) is hard to study analytically at arbitrary energy. But at
the Fermi level, the polar coordinates satisfy

φ+ − φ− = π − 2θ. (4.26)

Eq. (4.26) describes a circular arc of diameter dA = b/ sin(2θ) and centre kA = −2b cot(2θ)ey.
The perimeter is LA = 4θdA. For θ = 0, the arc reduces to a straight line that joins the
nodes on either end. As θ goes up, the arc bends itself, until it becomes infinitely large
at θ = π/2. This angle thus quantifies the curvature of the Fermi arc; we will call it
aperture angle. For θ < π/2, the normalisability of the surface states restricts the arc to
the half-plane φ± ∈ [0, π]. The other half-plane can be explored for θ > π/2, but leads
to the same physics, so that we will further restrict θ to the domain [0, π/2]. Fig. 4.2(b)
depicts a schematic Fermi arc in a binodal Weyl semimetal.

A compelling way to picture the band structure is through the spectral density

A(k, E, z) = 1
π
Im[TrG0(k, E, z, z)], (4.27)

which represents the momentum-resolved DoS. By varying the photon’s momentum,
ARPES experiments give access to the spectral density as a function of the parallel k
and normal kz momentum components, from which the local, surface and bulk band
structures can be reconstructed. In the mixed position-momentum space, the spectral
density becomes a function of the parallel momentum k in a two-dimensional Brillouin
zone projected on a slab at distance z from the surface. Since the elementary excitations
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(a) (b) (c) (d)

Figure 4.3 | Calculated spatially resolved spectral density map of a Fermi arc in a slightly doped
Weyl semimetal. The two-dimensional reciprocal spaces (kx, ky) are projections of the three-
dimensional Brillouin zone over slabs at fixed distance z from the surface. The energy E = 0.2,
the momenta k, and the distance z are all measured in the same natural units, determined by a
fixed cut-off. (a) z = 0, the surface supports a Fermi arc with aperture angle θ = π/4. (b) z = 2,
(c) z = 5, the surface states amplitude decays exponentially in the bulk, where the penetration
length is smallest at the middle of the arc, and infinite at the tips in contact with the nodes. (d)
z =∞, the Fermi level cuts circular blobs through the bulk band structure, centred at the Weyl
nodes.

are poles of the Green’s function, the local band structure appears as a singularity of the
spectral map. In real materials, the elementary excitations develop a finite lifetime τ in
presence of arbitrarily weak disorder, which smooths out the singularities of the spectral
density. In a first approximation, the spectrum acquires a Lorentzian broadening of width
equal to the scattering rate Γ = τ−1. Even though impurities are evenly distributed in
the bulk, surface states feel their presence because they extend in the bulk over some
penetration length, which diverges at the contact with the Weyl points (Gorbar 2016).

We show spectral density maps in Fig. 4.3 in a binodal Weyl semimetal with Fermi
arcs positively doped. The surface states are confined exponentially at the surface, some
more loosely than others: the further apart the momentum is from the Weyl nodes, the
quicker the arc dissolves in the bulk. This leads to high-density spectral features that touch
the Weyl cones in a spiralling fashion. In experiments, Fermi arcs are usually distorted
because of higher-order corrections to the linear dispersion relation (Xu 2015; Lv 2015;
Inoue 2016). They can join two Weyl nodes (our model) but also two Dirac nodes or
surface-projected nodes with higher topological charges, in which case multiple arcs are
attached to the pair.

Dirac surface states — When b = 0, the two valleys merge and Eq. (4.25) reduces to

Es = k cos θ, κ = k sin θ. (4.28)

Although the eigenstates associated to the band structure of Eq. (4.28) are not specific to
Dirac semimetals but also emerge whenever two Weyl nodes are projected to the same
point in the surface Brillouin zone, we will refer to them as Dirac surface states. These
surface states spread out along a single-branched cone, which extends in either the electron
or hole side depending on the orientation of the surface. In our case, this corresponds to
the positive energies, as shown in Fig. 4.2(c). The slope of the cone gives corresponds to a

118



4.2. Spatially resolved properties with disorder

(a) (b) (c) (d)

Figure 4.4 | Calculated surface spectral density map at the Fermi level for a mixing of the
boundary conditionsM1 andM2 with equal weight (ϕ = π/4) and preserving the mirror symmetry
x 7→ −x (ϑ = 0). The scattering rate is set to Γ = 0.05Λ. The parameter θ takes the values (a)
θ = 0, (b) θ = π/4, (c) θ = 9π/20, and (d) θ = π/2. A curved Fermi arc still extends between
the pair of the Weyl nodes, while the Fermi rays deform themselves into a trivial Fermi line with
infinite extension in momentum space.

diminished Fermi velocity v = cos θ. This electron-hole surface asymmetry persists in the
presence of a magnetic field or a gap, where the dispersion relation also depends on the
parameter ϑ (Shtanko 2018). As opposed to Fermi rays and arcs, which give rise to a
non-zero surface DoS at all energies, the density of the Dirac surface states vanishes at
the nodal level, like for the bulk states.

General surface states — Mixing the boundary conditions M1 and M2 lead to complex
surface states. The Fermi arcs keep their integrity, but deviate from a circular shape, as
can be seen in Fig. 4.4. The three independent parameters θ1+, θ1− and ϑ enable to play
not only on the curvature of the arc, but also its distortion towards one node or the other,
thus breaking the Mx : x 7→ −x mirror symmetry. Besides, the material hosts trivial
surface states with infinite extension in momentum space, reminiscent of the Fermi rays.

4.2 Spatially resolved properties with disorder
The boundary breaks translational symmetry in the normal direction: physical observables
are no longer homogeneous but depend on the distance z to the boundary. This remains
true in presence of disorder. For this reason, the determination of disorder-averaged
observables poses a greater challenge than in the infinite system. In this section we
analytically probe the mean local DoS for the two classes of boundary conditions M1
and M2. The SCBA seems a natural option for a first approach (Klier 2019). The
self-consistent equation is solvable, provided we resort to a further local approximation to
get a closed equation for the self-energy at a given z (Brillaux 2021b).

4.2.1 Qualitative effect of disorder
The stability of surface states under weak perturbations varies considerably according to
the nature of the boundary condition, the degeneracy of the band crossing, and the spatial
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distribution of disorder. In discussion below, and throughout this chapter, we restrict
ourselves a scalar and uncorrelated random potential.

Bulk disorder — The surface of clean Dirac semimetals supports double Fermi arcs. Yet,
experiments detect instead closed Fermi pockets in Cd3As2, Na3Bi, or PtBi2 (Wu 2019).
Though perturbations cannot fully remove double Fermi arcs in presence of time-reversal
symmetry, topology offers no protection either to the bulk Dirac nodes or to the surface
states. Within a simple four-band model, small perturbations destroy Fermi arcs in Dirac
semimetals, even when preserving all symmetries (Kargarian 2016; Kargarian 2018).
When adding an extra mass term to the two-dimensional effective Hamiltonian, the tips
of the arcs detach from the nodes and merge to form a single Fermi pocket. Strangely
enough, transport experiments in Cd3As2 show Shubnikov-de Haas oscillations similar to
those observed in Weyl semimetals, which arise from ‘Weyl orbits’, i.e. the intertwined
cyclotron motion of chiral bulk and surface states, which seems inconsistent with ARPES
measurements of the surface band structure (Moll 2016). This discrepancy probably
comes from doping. Dirac nodes in real materials are usually close to, but not exactly at
the Fermi level; Fermi arcs may well be connected with the bulk band structure at the
Fermi energy, and lead to Weyl orbits, and yet form a closed Fermi contour at the nodal
energy.

By contrast, Fermi arcs in Weyl semimetals share the immunity of the bulk crossing
point under a weak disorder, according to numerical simulations (Slager 2017). They do
not survive a strong enough disorder, though. At the semimetal-metal critical point, they
dissolve in the bulk, because the Weyl nodes no longer protect them due to the loss of
the topological charge in the metallic phase. There, the surface Fermi surface broadens
dramatically, the hitherto-localised states merge with non-perturbative bulk states due to
rare realisations of disorder, and lose their support on the boundary. The presence of a
near surface at the opposite side of the material boosts the hybridisation and dissolution
of surface states (Wilson 2018). In Sec. 4.2.2, we compare these numerical findings with
the results of an analytical self-consistent approach. Our study is not restricted to Fermi
arcs, but also investigate the fate of Fermi rays and Dirac surface states.

Surface disorder — The previous observations apply for random scatterers that are
evenly distributed in the bulk. Yet, disorder can also affect the surface alone. Surface
defects consist chiefly of quenched vacancies, which are known to be plentiful in real
samples. Unlike the surface states of topological insulators, Fermi arcs resist better
surface disorder than bulk disorder, because evanescent waves leak through the bulk over
a large distance (compared to the microscopic scale) and are thus likely to avoid surface
scatterers. Though the conductivity is highly suppressed in both relativistic semimetals
and topological insulators, they differ by one to two orders of magnitude, to the benefit of
the semimetal (Resta 2018). Other works have addressed the properties of Dirac surface
states under surface disorder (Shtanko 2018). Dirac surface states are largely insensitive
to surface disorder, and propagate quasi-ballistically. The suppression of random scattering
due to the small overlap of Dirac surface states with boundary impurities enhances the
mean free path, which can be a hundred times larger than the carrier wave length. These
also apply to two-dimensional Dirac materials, where ballistic edge transport extend to an
anomalously long range.

Surface impurities require a treatment of their own; we will no longer address this type
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of disorder in the following, and focus instead on the effect of bulk disorder. If defects are
evenly distributed in the bulk, their mean number per unit of area vanishes in the limit of
an infinitely thin boundary. This hypothesis ensures that the boundary condition remains
the same in presence of disorder: the Green’s function still satisfies Eq. (4.13).

4.2.2 Self-consistent approach
In the following sections, we assume the random potential scalar and uncorrelated, and
aim at determining the disorder-averaged DoS.

Disorder-averaged Green’s function — For brevity, let us simplify the notations and
denote by G the disorder-averaged Green’s function. In the mixed position-momentum
representation, the self-energy Σ depends a priori on z and z′ separately. Yet, in the
SCBA, the bulk self-energy is independent of the transferred momentum. We thus search
for self-consistent solutions for Σ that depend only on one distance z. In addition, we
postulate that the self-energy Σ(E, z, z′) = Σ(E, z)τ0σ0 shares the same matrix structure
as the potential, so that it is proportional to the identity. The defining equation of the
self-energy then reads

[H0 − E − Σ(E, z)]G(E, z, z′) = δ(z − z′). (4.29)

Performing the similar calculations that led to the free Green’s function in Sec. 4.1.2, we
arrive at the following form for the off-diagonal pseudospin components:

Gσ̄σ
χχ′(E, z, z′) = χ

2
kχx + iσkχy

h′χσ(z′) + iχbz

[
δχχ′e

−|hχσ(z)−hχσ(z′)|−iχbz |z−z′|

−Aσ̄σχχ′(E, z′)e−[hχσ(z)+hχσ(z′)+iχbz(z+z′)]
]
. (4.30)

The diagonal components are

Gσσ
χχ′(E, z, z′) = χ

E + Σ(E, z)− iχσ∂z + σbz
kχx + iσkχy

Gσ̄σ
χχ′(E, z, z′). (4.31)

The matrix function A(E, z′) now depends on z′ besides the energy E. For the M1
boundary condition, only the diagonal chiral components are non-zero,

[
Aσ̄σχχ′

]
1

(E, z′) =
E + Σs(E)− iχσh′χσ(z′) + 2σbz − χe−iσθχ(kχx + iσkχy )

E + Σs(E) + iχσh′χσ(z′)− χe−iσθχ(kχx + iσkχy ) δχχ′ , (4.32)

where Σs(E) = Σ(E, 0) is the surface self-energy. For the M2 boundary condition, the
chiral components are coupled, and Aσ̄σχχ′(z′) takes a more complex form,

[
Aσ̄σχχ′

]
2

(E, z′) = 1− 2iχσh′χσ(z′)eiχθσ̄
Dσ̄σ
χχ′(E, z′)

(kχ̄x + iσkχ̄y ), (4.33)

where the denominator reads

Dσ̄σ
χχ′(E, z′) = eiχθσ̄

[
E + Σs(E) + iχσh′χσ(z′)

]
(kχ̄x + iσkχ̄y )

+ eiχθσ
[
E + Σs(E) + iχ̄σh′χ̄σ(z′)

]
(kχx + iσkχy ). (4.34)
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The four functions hχσ(z), indexed by chirality χ and pseudospin σ, implicitly depends
on the energy, and satisfy the non-linear differential equation

(kχ)2 − (E + Σ)2 − iχσΣ′ + h′′χσ − (h′χσ)2 = 0, (4.35)

where the ′ represents a derivative with respect to z. For a zero self-energy (in the clean
system), we recover hχσ(z) = κχz. Eq. (4.35) still admits a simple solution for a constant
self-energy, but is extremely hard to solve for a general function Σ(z). We now turn to
a simplified self-consistent approach to obtain analytical results, and propose later an
algorithm to solve the ‘exact’ SCBA in Sec. 4.2.4.

The local self-consistent Born approximation — In the SCBA, the self-energy fulfils
the condition

Σ(E, z) = γ

4

ˆ
k<Λ

d2k

(2π)2TrG(E, z, z), (4.36)

where the factor 4 = Tr1 compensates the trace, and Λ is an ultraviolet cut-off. Eq. (4.29)
and Eq. (4.36) provides a closed set of equations from which the self-energy can be
determined in principle. In particular, the latter equation relates the self-energy on
the left-hand side to the Green’s function on the right-hand side, which depends itself
implicitly on the whole function z 7→ Σ(E, z) via Eq. (4.35). The scheme we refer to as
the local SCBA rests upon the following observation: assuming Σ constant only in the
integrand of Eq. (4.36), the disorder-averaged Green’s function reduces to the free Green’s
function, up to the substitution E 7→ E + Σ, i.e. G(E, z, z′) = G0(E + Σ(E, z), z, z′).
The self-consistency now concerns only the scalar Σ(E, z) at fixed E and z, instead of a
function,

Σ(E, z) = γ

4

ˆ
k<Λ

d2k

(2π)2TrG0(E + Σ(E, z), z, z). (4.37)

Within this approximation, the self-consistent approach is amenable to a numerical
resolution.

Solution for the minimum of the self-energy — Since the random potential averages
to zero, the defects cannot dope the bulk Weyl nodes away from the Fermi energy E = 0.
However, it is quite common in interface phenomena that the chemical potential varies
close to ta surface, as numerical studies have found in analogous Dirac materials (Papaj
2019). The local self-energy then acquires a real part at the bulk nodal level, which
complicates the analysis. Two approaches are possible. Either the self-energy profile is
determined at E = 0, but we then compare slices of the band structure with very different
DoS (zero in the bulk, but large at the surface). Or the self-energy profile is determined
at the local energy ε(z) such that

ε(z) + ReΣ(ε(z), z) = 0. (4.38)

In the second option, E + ReΣ(E, z) = iΓ(z) is purely imaginary, which means that
disorder only broadens the spectral function, while preserving the shape of the band
structure. This provides a less faithful picture of real three-dimensional materials, where
chemical doping affects the Fermi level uniformly. Yet, this approach alone can reveal the
critical nature of disordered Dirac surface states, which would otherwise be hidden by the
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Figure 4.5 | Surface self-energy of Dirac surface states Σs against energy E, for subcritical
(0.0, 0.6, 0.9) and supercritical (1.2) disorder strengths ∆. The bulk critical disorder strength is
∆∗ = 1. We set the angular parameter of the boundary matrix to θ = π/12, which corresponds
to a surface Fermi velocity v0 = cos θ ' 0.97. (a) The minimum of the mean density of states
ρ̄ ∝ ImΣ/∆, marked by the three arrows, moves in the energy landscape as the disorder strength
increases. (b) This minimum coincides with the vanishing of E + ReΣ for subcritical disorder
strength. The two energies remain close for reasonable supercritical disorder strength.

non-zero DoS which develops at zero energy at all disorder strengths. The vanishing of
E + ReΣ matches indeed the minimum of the scattering rate Γ as a function of energy E,
at least for subcritical disorder (when Γ vanishes smoothly). The energy shift ε(z) remains
close to but not exactly at this minimum for moderate supercritical disorder, as the
Kramers-Krönig relations break down when the scattering rate becomes non-analytic, as
shown in Fig. 4.5. At this energy the local SCBA takes the dimensionless form

s

∆ = g(s, u) = s
(√

1 + s2 − s
)

+ f(s, u) (4.39)

where s = Γ(z)Λ−1 and u = Λz. The first part of the function g(s, u) comes from the
bulk part of the Green’s function, see Eq. (C.3). The second part f(s, u) is the excess
contribution.

For the M1 boundary condition, we find that the energy which cancels the real part
of the self-energy vanishes, ε1(z) = 0. In Fermi rays the minimum of the local scattering
rate in the energy landscape is located at the bulk nodal level. The excess contribution of
Eq. (4.39) reads

f1(s, u) = 1
4u2

{
e−2us − e−2u

√
1+s2

[
1 + 2u

(√
1 + s2 − s

)]}
. (4.40)

Unfortunately, the excess contribution for the M2 boundary condition admits no simple
expression. We resort to numerical integration to estimate the excess contribution f2 in
this case. The local energy shift ε2(z) is non-zero, and can be found from the zeroes of the
function E 7→ E + Σ(E, z), which is plotted in Fig. 4.5(b) in the case z = 0.

4.2.3 Profile of the local density of states
Using the relation between the DoS and the Green’s function, we extract the minimum of
the mean local DoS, which in natural units reads

ρ̄(z) = 4π
γΛ2 ImΣ[ε(z), z] = Γ(z)

∆Λ . (4.41)
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Chapter 4. Surface criticality in disordered semimetals

We now apply Eq. (4.41) to the case b = 0 for the two boundary conditions, which describes
either a single Dirac node when bz is also zero, or Weyl nodes whose projections overlap
on the surface otherwise. We mention the effects of a non-zero bz in the last paragraph,
and focus now the case of a single Dirac node. The surface states are then either Fermi
rays (M1) or Dirac surface states (M2).

Bulk properties and Fermi rays — Fig. 4.6(a) depicts the DoS profiles for various
disorder strengths, while Fig. 4.6(b) shows the same profiles for Dirac surface states with
θ = π/4, for which the surface Fermi velocity is reduced to v = 1/

√
2. For both boundary

conditions, we recover the bulk transition in the limit z → +∞, with the (bulk) critical
disorder strength ∆∗b = 1. For larger ∆, the DoS scales as

ρ̄b = 1
2
(
1−∆−2

)
∼ (∆−∆∗b)βb , (4.42)

where as anticipated βb = 1 in mean field. Combined with the mean field value ν = 1
for the correlation length exponent, and using the hyperscaling relation βb = ν(d− zb),
we also recover the mean-field dynamical exponent zb = 2. Below this critical disorder
strength, the density vanishes, in agreement with the results established in Sec. 2.3 for
infinite systems (Klier 2019). Exactly at the critical point, the DoS profile falls off
algebraically as z−1. These results confirm the validity of the local SCBA in the bulk,
where the self-energy tends towards a constant.

Near the surface, the DoS behaves very differently depending on the boundary condition.
For Fermi rays, disorder hardly affects the DoS close to the surface, which saturates to
ρ̄s = 1/2. The existence of infinite Fermi rays is inconsistent with a low-energy theory,
which is only defined below the ultraviolet momentum Λ. In agreement with the discussion
of Sec. 4.2.1, the surface modes populating the Fermi rays propagate diffusively. The mean
free path l = 2/∆ decreases as more random scatterers invade the material.

At intermediate distances from the surface, disorder always enhances the local DoS. In
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Figure 4.6 | Profile of the density of states ρ̄ for various disorder strengths ∆, as a function
of the dimensionless distance Λz to the surface. The bulk density of states emerges above the
critical value ∆∗b = 1, and vanishes below. (a) For Fermi rays (M1 boundary condition), the
profile tends to a universal function in the clean limit. The surface density is pinned to 1/2 due
to the infinite extension of the rays. (b) For Dirac surface states (M2 boundary condition, here
with θ = π/4), the profile vanishes identically below a critical strength ∆∗s = cos2(θ).
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the clean limit, the DoS profile tends to a universal curve which decays asymptotically
as z−2. Above the bulk critical point, Fermi rays dissolve into the metallic bulk.

Dirac surface states — As seen in Fig. 4.6(b), the local density of Dirac surface states
vanishes above a distance Λz = ξ from the boundary (the penetration length), such that

1− e−2ξ

2ξ = ∆−1 − 1
tan2(θ) . (4.43)

we expect the exact vanishing of the DoS beyond the penetration length to be an artefact
of the local SCBA. The local SCBA is indeed justified when the derivative of Γ is small
compared to Γ2, which is satisfied close to the surface and deep in the bulk, but breaks
down at intermediate distances. In all likelihood, the real density profile in the limits
Λz = 0 and for Λz � 1 match smoothly between. Dirac surface states spread maximally
at the bulk critical point where the penetration length diverges as ξ ∼ (∆∗b −∆)−ν with
ν = 1. This power can be identified with the correlation length exponent, though the
actual correlation length (the bulk mean free path), is well defined for supercritical, not
subcritical, disorder. In addition, both ξ and ρ̄ vanish identically at the critical disorder
strength ∆∗s = v2, where v = cos θ. The expression of ∆∗s is consistent with dimensional
analysis for a Dirac cone (whether with one or two nappes) of Fermi velocity v. The
vanishing of the surface order parameter ρ̄s indicates that a surface transition takes place
at ∆∗s ≤ ∆∗b. We will explore the properties of this transition in Sec. 4.3.

Effect of a longitudinal separation — When two distinct Weyl nodes are projected to
the same point of the surface, they are separated in the three-dimensional Brillouin zone
by a purely longitudinal momentum b = Λbzez. First, this separation induces quantum
interferences between chiral eigenstates, which modulates the density profile with a period
u0 = π/bz. Second, the introduction of an extra length scale modifies the bulk critical
disorder strength, which moves to a higher value ∆∗b = [1− bz arctan(1/bz)]−1. This shift
has no consequence on the properties of disordered Dirac surface states.

4.2.4 Beyond the local self-consistent approximation
Throughout Sec. 4.2.2, we pointed out some deficiencies of the local SCBA. We now
propose an algorithm to improve it. For concreteness, let us consider the equation for
b = 0 for the M1 boundary condition, where the self-energy is imaginary at zero energy.
Eq. (4.35) reduces in this case to a pair of equations for two functions hς(z) indexed by
the product ς = χσ = ±, which read

k2 + Γ2 + ςΓ′ + y′ς − y2
ς = 0, (4.44)

where yς = h′ς is the spatial derivative of hς . Usually, such a first-order differential
non-linear equation is supplemented by one initial condition yς(0) = aς . However, our
physical problem enforces more naturally one asymptotic condition, with the long-distance
behaviour yς(+∞) = κb where κ2

b = k2 + Γ2
b and Γb denotes the bulk scattering rate.

Another constraint deals with the short-distance behaviour hς(0) = 0, which fixes the
constant of integration.
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Figure 4.7 | This algorithm solves the spatially resolved self-consistent Born equation numerically,
without resorting to a local approximation. The input Σ0(z) is the first-order self-energy, function
of the distance z to the boundary. Through a shooting procedure, we determine the auxiliary
function h(z), which enters the exponential dependence of the Green’s function, in compliance
with the large-distance limit h(z) ' κbz where κ2

b = k2 + Γ2
b, with k the in-plane momentum

and Γb the bulk scattering rate. Then the Green’s function is integrated numerically over k,
which leads finally to the self-energy Σ(z). Multiple iterations allow to improve the result, by
using the output self-energy as the input for the next iteration.

The resolution of differential equations constrained by such boundary conditions relies
on the so-called shooting method. First guess a value for the initial condition aς , solve the
equation and compare the actual long-distance limit yς(+∞) with the target κb. Then
choose a better guess, e.g. iterate this procedure until the long-distance limit approaches
the target with a suitable accuracy. To solve the ‘exact’ SCBA, we propose the iterative
algorithm schematised by the flowchart of Fig. 4.7, which presents the following steps.

(i) Guess a function Σ0(z) = iΓ0(z) for the self-energy as the input. A natural candidate
is the self-energy at first order of the disorder strength γ.

(ii) Pick a value of the in-plane momentum k, guess an initial condition for aς , and
solve Eq. (4.44) numerically with Γ0(z) as the scattering rate. Let yς(k, z; aς) be the
output function.

(iii) Estimate the discrepancy in the long-distance limit by computing the error Err(aς) =
|yς(k,+∞; aς) − κb|. Search for the zero of Err(aς), for instance using a Newton
algorithm. The final output is y(1)

ς (k, z). Sets the integration constant to zero to
determine the function h(1)

ς (k, z).

(iv) Express the Green’s function G1(k, z, z) using h(1)
ς (k, z), and integrate the SCBA

Eq. (4.36) over momentum k numerically. This gives the first output for the self-
energy Σ1(z), which provides a new guess for step (i). Iterate steps (i) to (iv) as
many times as wished. The final iteration gives the estimated solution Σ(z) of the
SCBA.
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4.3 Surface states of disordered semimetals
The local DoS also gives information about the surface properties. We show below that
Dirac surface states undergo a phase transition analogous to the bulk semimetal-metal
transition, but at a smaller critical disorder strength. Fermi arcs avoid this surface critical
point because of their extension in momentum space even in absence of disorder. We
disregard Fermi rays in this section, whose key properties were already discussed in
Sec. 4.2.3.

4.3.1 Criticality of Dirac surface states
Density of states — The analytical resolution of the local SCBA can be pushed further
for the M2 boundary condition if we restrict to the surface properties. First, the energy
shift is non-zero, including at the surface, where it reads

εs = ∆ tan θ
2

[
1− s2

v
log

(
1 + v

s2

)]
, (4.45)

where we recall that v = cos2(θ). Below the critical disorder strength, the surface DoS
vanishes identically at the energy εs = 1

2∆ tan θ. Above, the minimum of the DoS and the
energy εs diverge, because the scattering rate suppresses εs. Now the excess contribution
to the local SCBA, defined in Eq. (4.39), is

f2(s, 0) = tan2(θ)
{
s
(√

1 + s2 − s
)

+ 2s2

sin(2θ)

[
arctan(cot θ)− arctan

(
s tan θ√
1 + s2

)]}
.

(4.46)
The local SCBA leads to the surface density of Dirac surface states shown in Fig. 4.8(a).

Except for the pathological case of a non-dispersing flat band (θ = π/2), eigenstates
populate the surface projection of the Weyl node only above a non-zero critical disorder
strength. However, this surface critical strength ∆∗s = v2 is smaller than the bulk critical
strength ∆∗b = 1. In the opposite case of θ = 0, the surface Weyl cone merges with the
bulk band structure, and the difference between surface and bulk states fades out.

This contrasts with Dirac fermions in two dimensions, as in graphene, where a non-zero
DoS develops at the nodal level under arbitrary weak disorder (Ostrovsky 2006). At
the lower critical dimension, disorder is indeed marginal, and induces an exponentially
small density ρ̄ ∼ e−1/∆. The difference comes from the ability of Dirac surface states to
overcome disorder by leaking through the bulk: carrier transport at the boundary of a
three-dimensional disordered material does not compare to the two-dimensional case. Since
evanescent waves explore the volume within a distance ξ from the surface, the problem
is effectively three-dimensional. We expect an even more pronounced stability of Dirac
surface states when the impurities are confined to the boundary.

Group velocity — The group velocity of the Dirac surface states also reveals a critical
behaviour at the surface transition. By definition, the group velocity is vg = ∂kEs,
where Es(k) is the surface dispersion relation (Wilson 2018). Let us consider first the
clean material. By differentiating the equation D(Es,k) = 0, where D is the pole of the
excess Green’s function, the group velocity can be cast into v = −∂kD/∂ED, expression
which depends only on the functional dependence of the pole. In presence of impurities,
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Figure 4.8 | (a) Surface density of Dirac surface states ρ̄s against disorder strength ∆, for
several angles θ ∈ [0, π/2]. The Dirac surface states become metallic above the critical value
∆∗s = cos2(θ). (b) The group velocity vg vanishes at the same surface critical point.

the defining equation of the dispersion relation becomes D(Es + ReΣ(Es, z = 0),k) = 0.
At the surface energy shift εs, we thus find

vg = v[1 + ∂E(ReΣ)(εs, 0)]−1 (4.47)

The derivative of the self-energy follows by solving Eq. (2.36) numerically for energies E
around εs. Fig. 4.8(b) shows the norm of the group velocity as a function of disorder
strength. Below the surface critical point, the group velocity admits the analytical
expression vg = v(1 −∆v−2), where we recall that v = cos θ. On both sides, the group
velocity vanishes linearly near the critical disorder strength. The power-law behaviour
vg ∝ |∆ −∆∗s |ν(zs−1) is consistent with the mean-field value of the dynamical exponent
zs = 2.

Phase diagram of the semi-infinite system — We found that when Dirac semimetals
host Dirac surface states, the semimetal-metal transition occurs not only in the volume,
but also at the boundary, though at a smaller different disorder strength. The properties
of the semi-infinite system at the energies E = 0 in the bulk and E = εs at the surface
can be summarised as the phase diagram in the (∆, θ) plane shown in Fig. 4.9(a). This
diagram features two critical lines. The so-called extraordinary transition occurs at the
critical line E : {∆ = 1}, and is reminiscent of the usual semimetal-metal transition
of infinite systems. It separates the region ∆ > 1, where the bulk and the surface are
metallic, and the region ∆ < 1, where the bulk keep its semimetallic properties. At the
critical point, the penetration length ξ diverges. The surface transition, with critical line
S : {∆ = cos2(θ)}, runs through the subcritical region ∆ < 1, and determines when the
surface becomes metallic, in presence of the semimetallic bulk. At the surface critical
point, the penetration depth ξ vanishes, in agreement with the surface and bulk states
merging at the Dirac node in the clean material. Surface and extraordinary critical lines
meet at the special point (∆ = 1, θ = 0).

This phase diagram resembles the one found in semi-infinite spin systems, from which
we borrow the terminology (Lubensky 1975a; Lubensky 1975b). As we discuss in more
detail in Appendix C, the equivalent of the angle θ which parametrises the boundary
matrix is the surface nearest-neighbour interaction strength Js, which usually differs from
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Figure 4.9 | (a) Phase diagram of a semi-infinite semimetal hosting Dirac surface states,
typically a Dirac semimetal (DSM), or a Weyl semimetal where two nodes of opposite chiralities
overlap when projected to the surface. The parameter ∆ represents the disorder strength; the
angle θ parametrises the chirality-breaking boundary matrix. The surface transition occurs on
the critical line S : {∆ = cos2(θ)}. At a larger disorder strength, metallic eigenstates populate
the surface, and penetrate in the bulk over a finite length ξ (MS). Beyond the extraordinary line
E : {∆ = 1}, the bulk becomes metallic as well (MS + MB). (b) Semi-infinite spin systems exhibit
a similar diagram in the temperature T - surface neighbour coupling Js plane. Here the vertical
axis represents the relative surface strength, i.e. the ratio Js/Jb of surface and bulk coupling
strength. When the bulk coupling Jb exceeds the surface coupling Js, the system undergoes an
extraordinary transition, where the bulk and surface become magnetic simultaneously.

the bulk strength Jb. For Js above the special point, the surface becomes magnetised at a
temperature higher than for the bulk, but for Js below the special point, bulk and surface
order at the same temperature, as shown in Fig. 4.9(b). This ordinary transition is absent
in semi-infinite semimetals. Another key difference between spin systems and relativistic
phases lies in the universality class of the surface transition. In spin systems, the surface
transition in d dimensions shows the same critical behaviour as the bulk transition in d− 1
dimensions. This cannot be the case in the semimetal-metal transition, in two dimensions,
disorder is marginal.

4.3.2 Robustness of Fermi arcs
The separation of the surface-projected Weyl nodes generates a sizeable surface density
in the clean system, phenomenon which is observed in numerical works as well (Wilson
2018). The two-dimensional density of the arc coincides with its length in momentum
space, ρA = 4θb/ cos(2θ). The surface density ρs plotted in Fig. 4.10(a), on the other hand,
represents the three-dimensional density of states taken at z = 0. It differs from ρA to the
extent that the arc extends in the bulk over a distance of order b, so that ρs ∝ ρAb ∝ b2.
The θ-dependence of ρs is harder to find. At any rate, the extension of the surface Fermi
surface smooths out the sharp transition observed at the boundary of Dirac semimetals.
Fermi arcs are indeed diffusive metallic for arbitrarily weak disorder. With increasing
disorder strength, the Fermi arc broadens. The effect of disorder on the surface density
of states is less clear, and depends on the original extension of the clean arc. For close
Weyl nodes, as in Fig. 4.10(a) where b = 0.1Λ and the aperture is moderate, more random
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Figure 4.10 | (a) (a) Surface density of states ρ̄s and (b) group velocity vg of Fermi arcs (solid
curves) against disorder strength ∆, for several aperture angles θ ∈ [0, π/2]. The half-separation
between the Weyl nodes is set to b = 0.1Λ in units of the ultraviolet cut-off Λ, and the dashed
curves is for comparison with Dirac surface states (b = 0). Both observables show that the Fermi
arcs avoid the surface critical point.

scatterers entails more surface eigenstates at the Fermi level, in agreement with (Wilson
2018). This enhancement of the density of states is less apparent in straight Fermi arcs
due to their reduced size.

The group velocity of the Fermi arc states similarly avoids the surface transition
observed in Dirac semimetals. The group velocity at the contact points with the nodes,
where it is maximal, is shown in Fig. 4.10(b). The significant drop near the critical disorder
strength ∆∗s = cos2(θ) reflects the proximity of Fermi arcs to the avoided critical point,
which is not utterly hidden for ‘small’ arcs. In numerical simulations on lattice models,
where Weyl nodes can be separated by momenta of the order of the Brillouin zone’s
size, the group velocity decreases monotonically and vanishes at strong disorder strengths
where localisation takes place (Wilson 2018). This localisation point is inaccessible
in our analytical study. The behaviour of both the density of states and the group
velocity indicates that the surface of Weyl semimetals lies in the crossover region of a
surface transition. The dimensionless quantity ξb compares the penetration length ξ with
the typical length scale over which intervalley scattering occurs at the boundary, of the
order b−1. The larger ξb, the more rounded the transition is.
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Conclusion
Summary — We have seen that three-dimensional relativistic semimetals harbour exotic
states on their surface. Experimentalists have observed these surface states since the first
material realisations of the three-dimensional relativistic semimetals, in the form of curved
Fermi arcs which connect to a Weyl or Dirac node on either end. While topologically
protected in Weyl semimetals, Fermi arcs do not survive moderate disorder in Dirac
semimetals, where they detach from the nodes to form closed loops of trivial states. The
low-energy physics of Weyl and Dirac semimetals allows for a wider range of surface modes:
besides the Fermi arcs, Dirac surface states and Fermi rays are valid solutions of the
boundary condition for Dirac fermions; the first two arise from chirality-breaking reflection
processes, characterised by a boundary matrix M1, the last one from chirality-preserving
reflection processes, characterised by a boundary matrix M2. We have extracted the
dispersion relation of the surface elementary excitations from the pole of the Green’s
function.

We have then included disorder. Using a spatially resolved version of the self-consistent
Born approximation, and resorting to a ‘local’ approximation of our own design, we have
determined the spatial profile of the average density of states for the two types of boundary
conditions. In particular, Dirac surface states, which disperse along a single-branch cone,
display their own critical behaviour at a lowest disorder strength. The full phase diagram
in the (∆, θ) plane, where ∆ represents the disorder strength and θ determines the Fermi
velocity of Dirac surface states, shares many similarities with that found in spin systems,
which displays an extraordinary (bulk) and a surface transition. These results offer a new
perspective on how disorder affect Fermi arcs, since they appear to avoid the critical point
of the surface transition because of their finite extension, of the order of the momentum
separation b between the paired Weyl nodes.

Outlook — A natural extension of this work would be to determine the critical properties
of the extraordinary and surface transitions in a field-theoretic framework. Such an
approach has given fruitful results in spin systems. The correlation functions acquire
additional divergences when one point belongs to the surface, which must be subtracted
to make the theory finite. In the context of disordered relativistic phases, these surface
singularities encode the power-law scaling of the surface dispersion relation, field amplitude
and density of states at the extraordinary transition (work in progress) (Brillaux 2021a).
A crucial difference between the two systems lies in the nature of the surface transition.
While the surface transition of a d-dimensional spin system belongs to the universality
class of the (d− 1)-dimensional bulk transition, the surface transition observed in Dirac
surface states bears no similarity with its bulk counterpart. Therefore, it requires its own
treatment within the field theory.
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Electronic interactions in twisted
bilayer graphene
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Chapter 5
Overview of magic angle twisted bilayer
graphene

The fascinating properties of graphene change substantially when several layers bond
together through Van der Waals attractions. The energy bands of bilayer graphene depend
heavily on the stacking arrangement. Bernal-stacked bilayer graphene, for instance, hosts
massive chiral excitations, in contrast to monolayer graphene. Even these commensurate
bilayer systems carry their share of exotic features, many-body effects do not completely
alter their qualitative properties. On the contrary, when two graphene flakes are overlaid
with a twist at special ‘magic’ angles, a plethora of correlated phases appears: supercon-
ductivity, Mott insulation, nematic ordering, etc., which suggests the presence of strong
electronic interactions. Twisted and untwisted bilayers differ essentially by the magnitude
of their characteristic length scale: while the atomic distance fixes the energy scale of
commensurate packings of crystalline membranes, incommensurate packings obtained by a
small twist develop a moiré pattern with a period hundreds of times larger than the atomic
distance. At special values of the twist angle, known as ‘magic’ angles, the energy bands
flatten out dramatically, so that the kinetic and interaction energies become comparable,
even though interactions have essentially the same absolute strength than in monolayer
graphene.

The phase diagram of twisted bilayer graphene bears striking similarities with that of
high-temperature cuprates, while being much easier to explore, thanks to the experimental
expertise gained on graphene: by using electrical gate doping, researchers can evidence
all phases of the doping-temperature plane in a single sample, which would require to
grow many samples with various compositions in cuprates. In this chapter we introduce
twisted bilayer graphene and the ‘magic’ angle physics that manifests itself at special twist
configurations, and review the major experimental findings in twisted bilayer graphene,
with a primary focus on the insulating phase at charge neutrality.

5.1 Bilayer graphene systems . . . . . . . . . . . . . . . . . . . . . . 136

5.1.1 Commensurate stacking arrangements . . . . . . . . . . . . . . 136
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5.1 Bilayer graphene systems
The properties of multilayer graphene systems differ substantially from their monolayer
counterpart. Of particular interest is bilayer graphene, whose electronic spectrum depends
on the stacking arrangement. The commensurate AA and especially AB packings, which
formally correspond to a 0° and 60° twist, represent the most common arrangements
in graphite. At intermediate twist angles, the stacking becomes incommensurate, and
the bilayer forms wide moiré patterns with a period as large as several hundred lattice
spacings. Although twisting the bilayer breaks translational invariance at the microscopic
scale, the standard tools of crystalline state physics apply exceptionally well as far as the
single-particle physics is concerned.

5.1.1 Commensurate stacking arrangements
Introduction — Bilayer graphene consists of two graphene flakes overlaid and weakly
bound by Van der Waals interactions (McCann 2013). Multilayer graphene systems
are useful to understand the properties of graphite; but they are also noteworthy in
themselves. The study of Van der Waals heterostructures has become a booming research
area: few-layer atomic compounds can be assembled sheet by sheet to design versatile
materials with a high degree of controllability (Geim 2013). Among the building bricks
of Van der Waals heterostructures feature graphene and graphene-like two-dimensional
crystals such as fluorographene, hexagonal boron nitride (hBN), dichalcogenides such as
molybdenum disulphide (MoS2) and tungsten diselenide (WSe2), or layered oxides. Notably,
graphene-based heterostructures represent promising platforms to study unconventional
superconductivity, where the growth techniques of high-temperature superconducting
cuprates offer limited tunability.

The interlayer spacing of bilayer graphene c ' 3.3 Å represents a few times the length
of the carbon-carbon covalent bond a0 = 1.42 Å, as shown in Fig. 5.1(a). Each crystalline
layer hosts two interpenetrating triangular sublattices A and B, which we will index as
A1 or B1 for the bottom layer, and A2 or B2 for the top layer. Two possible stacking
arrangements of the bilayer exist which preserve the crystalline periodicity of the monolayer.

• In the AA stacking, the layers are exactly superimposed, so that each atom of the
top layer matches a neighbour below. Since AA stacking is rarely found in nature,
this structure is believed to be weakly stable. AA-stacked bilayer graphene can be
semimetallic, metallic, or insulating, depending on interlayer spacing (Andres 2008).
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• In the AB or Bernal stacking, half the atoms of the top layer lie directly above
another atom of the bottom layer. Graphitic layers usually stack in this way, and
the corresponding -ABABAB- sequence forms the hexagonal allotrope of graphite.

Band structure of Bernal-stacked bilayer graphene — We consider here the most
common, Bernal stacking. Like in monolayer graphene, the band structure depends strongly
on the intensity and symmetry of hopping processes. The electron motion on a bilayer
differs significantly from that on a monolayer due to interlayer tunnelling mechanisms.
Following Sec. 1.2.3 on monolayer graphene, we determine the electronic spectrum of
bilayer graphene from a tight-binding model.

The bilayer crystal combines the three-fold and in-plane reflection symmetry, already
present in monolayer graphene, with spatial inversion; it is therefore centrosymmetric.
Since the top and bottom layers are merely shifted in Bernal stacking, the bilayer and
the monolayer have identical Brillouin zones, shown in Fig. 1.4(c). In particular, two
time-reversal partner points K and K′ lie at the corners of the Brillouin zone of the bilayer.
Let A2 and B1 be the sublattices that match vertically. The atoms on A1 and B2 sites
then bond with their three remote neighbours on the opposite layer. The unit cell of the
bilayer contains four sites: A1, B1, A2 and B2, each with filled sp2 orbitals and half of
which host a vacant 2pz orbital responsible for electrical conduction.

What fate does interlayer tunnelling reserve for the Dirac points at the K and K′
points? For a faithful representation of the band structure, four types of bonds must be
considered, as shown in Fig 5.1(a). The intralayer bonds between neighbour A and B
atoms have energies t0 ' −3.16 eV, determined by infrared spectroscopy (Kuzmenko
2009). This value agrees with experiments on graphite, and slightly deviates from the
valence bond amplitude t ' −2.60 eV in monolayer graphene. At least three interlayer
hopping processes have a sizeable amplitude. The A2-B1 and bonds A1-B2 have a similar
energy t1 ' t2 ' 0.38 eV respectively; the A1 and A2 atoms bond more weakly, with an
energy t4 ' 0.14 eV. As in 1.4(c), we ignore overlap integrals and on-site energies. In
a basis {ψA1, ψB1, ψA2, ψB2} made of linear superpositions of on-site orbitals, the Bloch
Hamiltonian reads (Guinea 2006)

H =




0 t0f(k) t4f(k) t3f(k)∗

t0f(k)∗ 0 t1 t4f(k)
t4f(k)∗ t1 0 t0f(k)
t3f(k) t4f(k)∗ t0f(k)∗ 0



, (5.1)

where f(k) is still given by Eq. (1.26). Note that only the A2-B1 pairs of sites couple
vertically, so that in-plane spatial modulations do not affect A2-B1 hopping processes: the
function f(k) is absent from these terms. The diagonalisation of Hamiltonian (5.1) gives
the four energy bands represented in Fig. 5.1(b).

Near the K and K′ points, the bands organise in two sets: one pair of bands touch
quadratically at the Fermi level, while the other pair is separated by an energy gap 2t1.
Let s = ±1 be the valley index, with a plus sign for the valley K and a minus sign for the
valley K′. At low energies E � t1, the effective Hamiltonian for the two bands closest to
the Fermi level,

H(sK + q) ' q2

2mσ · n, (5.2)
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Figure 5.1 | (a) In Bernal-stacked bilayer graphene, the A2 atoms of the top layer face the B1
atoms on the bottom layer, while the B2 atoms lie at the vertical of hexagons’ centres. The
carbon-carbon bonds have length a0 = 1.42 Å within a layer, which is more than twice shorter
than the interlayer spacing c ' 3.35 Å. Besides the intralayer hopping of amplitude t0, three
interlayer hopping processes dominate, with amplitudes t1, t3 and t4. (b) The 2pz orbitals of the
carbon atoms leads to four energy bands (one per sublattice and layer); two valence π bands
(full), and two conduction π∗ bands (empty). On this plot the Fermi level lies at zero energy.
Two particle-hole symmetric bands out of the four touch quadratically near the K and K′ points,
where chiral massive fermions emerge as low-energy excitations. The other bands are gapped by
an energy 2t1. Adapted from (McCann 2013).

leads to non-relativistic chiral excitations of mass m = t1/2v2
F, where vF is the Fermi

velocity of monolayer graphene, and momentum q = q(cosφ, sinφ). As in graphene, the
energy eigenstates have fixed helicity σ · n = ±1, where the in-plane axis of quantisation
n = −(cos(2φ), s sin(2φ)) winds twice around the origin under a closed Berry loop. Bilayer
graphene exhibits an integer quantum Hall effect similar to that found in conventional
semiconductors, where the transverse conductivity per spin and valley jumps by units
of e2/h. A difference appears at low densities, where the conductivity curve displays
instead a step of 2e2/h at zero magnetic field, due to the eight-fold degeneracy of the
zero-energy Landau levels (Novoselov 2006).

Robustness to perturbations — The predictions of electronic band theory for bilayer
graphene usually tally with experimental results. Disorder suppresses the DC conductivity,
but leads to no qualitative change (Koshino 2006). Furthermore, the non-zero DoS at the
Fermi level survives weak electron-electron interactions; many-body effects affect transport
properties only at low carrier density and in the presence of a magnetic field, even though
experimental and theoretical studies often find conflicting results because of the sensitivity
of the correlated phase to microscopic details. Among them feature spin ferromagnetism,
layer anti-ferromagnetism, a charge density wave state, or a quantum spin Hall state. But
the absence of superconductivity, along with the stringent conditions for many-body effects
to manifest themselves, pushed research to look for new materials. One of these, which is
closely linked to graphene, exceeded all expectations: twisted bilayer graphene.
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5.1.2 Twisted bilayer graphene
When two-dimensional meshes are overlaid, their interference forms exotic pseudo-periodic
structures known as moiré patterns. Beyond their aesthetic interest in textiles and art,
such patterns affect the electronic motion in planar crystals and may lead to new phases
of matter (Andrei 2020). Moiré patterns arise in particular when the symmetry axes of
the two layers are oriented along different directions, as was already observed in graphite
under scanning tunnelling microscopy (Xhie 1993). However, researchers only recently
achieved a high degree of control over the twist angle (Cao 2018a). Misalignment abounds
naturally in few-layer graphene, especially in epitaxially grown samples on silicon carbide.

Geometry — Let us pack two layers of graphene with an AA stacking order. We then
apply a relative twist of angle θ around an arbitrary origin where two atoms A1 (of the
bottom layer) and A2 (of the top layer) overlap, and translate the top layer by a vector d.
Let a0 be the in-plane carbon-carbon distance, and a =

√
3 a0 graphene’s lattice spacing.

A basis for the triangular Bravais lattice of an untwisted layer is

a1 = a0

2
(
3,
√

3
)
, a2 = a0

2
(
3,−
√

3
)
. (5.3)

For convenience, we choose the x-axis such that the top and bottom layers are rotated by
+θ/2 and −θ/2 respectively, as in Fig. 5.2. In a twisted bilayer, the A sites of the bottom
and top layers are located at positions

rA1(m,n) = R−θ/2 (ma1 + na2) , rA2(k, l) = R+θ/2 (ka1 + la2) + d, (5.4)

respectively, where Rϕ operates an in-plane rotation of angle ϕ, and m,n, k, l ∈ Z. The B
sites are located at rB = rA + R±θ/2δ, where δ = a0(1, 0) is the vector that joins the A
and B sites within the unit cell of an untwisted layer.

The beauty of moiré patterns — The twisted bilayer is not crystalline in general,
because nowhere do the A1 and A2 sublattices match for arbitrary twists. Yet, there exists
a discrete set of twist angles for which some sites A1 and A2 stack perfectly on one another
repeatedly, which restores periodicity, albeit on a larger scale. To fulfil this commensuration
condition, there must exist a tuple (m,n, k, l) such that rA1(m,n) = rA2(k, l). Crucially,
commensuration depends only on the basis vectors of the Bravais lattice and on the relative
twist, but not on the structure of the layers’ unit cell. Neither the presence of two carbon
atoms per unit cell nor the stacking arrangement before twist matter in the end. Similarly,
the translation vector d shifts the commensurate structure, but does not change either its
shape or size. The corresponding commensurate angles θ(r, s) are parametrised by two
coprime integers r and s according to (Shallcross 2010; Lopes dos Santos 2012)

cos θ = 3r2 − s2

3r2 + s2 . (5.5)

The set of commensurate structures is thus isomorphic to the set of rational numbers Q,
which is dense in the set of real numbers R. Hence, for any angle θ, there exists a
commensurate structure corresponding to a twist angle θ(r, s) given by Eq. (5.5) as close
to θ as desired. We can distinguish two large-scale structures emerging from the twisted
bilayer.
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Figure 5.2 | When two graphene layers are overlaid with a relative twist, a six-fold symmetric
moiré pattern emerges due to the interference of the mismatched lattices. This so-called moiré
pattern does not arise from an underlying periodic structure for a generic twist angle θ, except for
a discrete subset of commensurate values where it coincides with a superlattice of basis (d1,d2).
The conventional supercell is made of a hexagon with AA stacking regions at the centre and
the corners. On this schematic, the twist corresponds to a commensurate angle θ(r, s) ' 11°
with r = 6 and s = 1, and the superlattice spacing is about 10a0, where a0 is the carbon-carbon
distance. For θ ' 1° and below, the supercell encompasses tens of thousands of atoms.

• At a generic commensurate twist (for arbitrary r and s), the bilayer forms a super-
lattice of basis vectors given by smallest coincident lattice vectors,

d1 = rA1(m,n) = rA2(k, l), d2 = Rπ/3d1, (5.6)

where the pairs (m,n) and (k, l) are minimal and entirely determined by the integers
r and s, up to a three-fold rotation of the basis. As for the monolayer, the Wigner-
Seitz cell of the superlattice is triangular. The superlattice is extremely sensitive
to the precise twist angle θ(r, s), since infinitely small variations of the twist angle
always lead to sizeable translations far enough from the origin, and can dramatically
alter the commensuration condition. Fig. 5.3 shows how crucially the number of
atoms per commensuration cell N depends on the twist.

• At a generic angle, whether commensurate or incommensurate, a large moiré pattern,
with six-fold rotational symmetry, strikes the eye. This periodic pattern originates
from the interference between the mismatched sublattices of the bilayer, where
alternate local AA and AB stacking regions, as visible in Fig. 5.2. The moiré
period L, which separates two adjacent AA stacking regions, corresponds to the
distance between the origin and the point where two rotated straight lines deviate
exactly by the microscopic lattice spacing a. Choosing a basis of unit vectors (ex, ey)
in the plane, we see that to meet this condition, we must have

L(R+θ/2ex −R−θ/2ex) = a ey, (5.7)

which gives L = a/2 sin(θ/2).
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Figure 5.3 | Number of atoms N per commensuration cell of twisted bilayer graphene against
relative twist angle θ. The set of commensurate structures (circles) is parametrised by a rational
number r/s. The moiré period L ∝ θ−1, which is the structural length scale that stands out
to the eye, fixes a lower bound for the size of the commensuration cell, and thus the number
of atoms per supercell N ∝ θ−2 (blue dashed line). The associated moiré pattern coincides
with a superlattice, where the bilayer recovers strict periodicity, on a subset θ(r, s = 1) of the
commensurate twist angles. The inset shows the moiré pattern for the commensurate structure
labelled ‘4’ on the upper left. Adapted from (Shallcross 2010).

The moiré pattern coincides with the superlattice in the special case of a commensu-
rate angle θ(r, s) with s = 1. At a generic commensurate twist, the moiré period L
fixes a lower bound for the superlattice spacing |d1|. Similarly, since there are four
atoms per graphene unit cell (one for each sublattice and layer), the number of atoms
per moiré cell Nm = 4(L/a)2 = sin(θ/2)−2 sets a lower bound for the number of
atoms per commensuration cell N , as shown in 5.3. For θ ' 1°, the moiré unit cell
encompasses a tremendous number of 10 000 atoms.

We will see below that the moiré pattern represents the structural building block
from which we can build a continuum description of TBG, where the standard tools of
crystalline matter physics apply at all twist angles.

Continuum description — For incommensurate angles, hexagonal tiles roughly repeat
themselves when wandering along the twisted bilayer, so that long-range crystalline
order remains. But strict periodicity is lost. In such materials, known as quasi-crystals,
electron diffraction patterns lead nonetheless to sharp Bragg peaks similar to that found
in perfect crystals, as in aluminium-manganese metallic alloys, the first representative of
the family (Shechtman 1984). Quasi-crystalline electronic phases resemble disordered
phases in some respects: a random tiling can be viewed as geometric disorder. It seems,
however, that the non-periodicity of TBG is not an essential input to understand its
properties; treating the moiré pattern as a superlattice for all small θ appears to describe
the single-particle band structure correctly when compared to numerical tight-binding
studies, and offers a workable – though unusual – free theory to which one may incorporate
many-body effects. To justify this approach a priori, we could also argue that the set
of commensurate twist angles for which the moiré pattern corresponds to a superlattice
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becomes denser as θ decreases, as appears on Fig. 5.3; an approximate periodicity should
thus be recovered in the low twist angle limit with increasing accuracy. At zero twist, the
electronic band structure should match that of the AA-stacked bilayer.

Under this assumption, we can build a continuum model for TBG, where the standard
tools of crystalline matter physics – the real and reciprocal lattices, the Brillouin zone,
Bloch’s theorem, etc. – apply (Lopes dos Santos 2007; Shallcross 2010; Bistritzer
2011). We review below the basic ingredients of the continuum model of the decoupled
bilayer, and discuss in Sec. 5.2 the fascinating ‘magic angle’ physics that emerges when
turning on the interlayer tunnelling.

As any Bravais lattice in real space, the triangular moiré pattern comes with its
reciprocal superlattice and a corresponding Brillouin zone. The microscopic structure of
graphene and the emerging moiré pattern share the same six-fold symmetry, except that
the moiré period L exceeds the microscopic lattice spacing a by a factor ' θ−1. We thus
expect the moiré, or mini Brillouin zone to be hexagonal, and smaller than graphene’s
Brillouin zone by a factor ' θ. Unlike the Bernal-stacked bilayer, where the Brillouin zone
coincides with that of the single layer, the mini Brillouin zone of TBG differs in orientation
and in size.

The simple geometric construction of Fig. 5.4 enables to trace the mini Brillouin zone.
LetK be the Dirac momentum of the valley K of graphene before the twist, andK = 4π/3a
its norm. After the twist, the corresponding Dirac points of the top and bottom layers
are located at Kt = R+θ/2K and Kb = R−θ/2K, respectively. The vector q1 = Kb −Kt
which joins the top and bottom Dirac nodes, of length kθ = 2K sin(θ/2) = 4π/3L, delimits
one segment of the hexagonal mini Brillouin zone for the valley K. In the (x, y) basis of
Fig. 5.4, its coordinates are q1 = kθ(0,−1). The other sides of the mini Brillouin zone are
found by the three-fold rotational symmetry, i.e. by moving along the vectors q2 = R2π/3q1
and q3 = R4π/3q1. The basis vectors Q1 = q2 − q1 and Q2 = q3 − q1 generate the
reciprocal superlattice of the moiré pattern.
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Figure 5.4 | For most purposes one can treat twisted bilayer graphene by a triangular Bravais
lattice of spacing L = a/2 sin(θ/2) for all twist angles, with a being graphene’s lattice constant.
As any lattice in real space, the moiré pattern admits a Brillouin zone in momentum space, of
size kθ = 4π/3L = 2K sin(θ/2), where K = 4π/3a is the Dirac momentum of graphene. The
tilted Dirac points Kb and Kt of the bottom and top layers respectively delimit the corners of
the moiré (or mini) Brillouin zone. There are actually two mini Brillouin zones related by time
reversal and six-fold rotation: one for the valley K, the other for the valley K′.
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The valley K′ hosts a similar mini Brillouin zone as a result of the time-reversal or
six-fold symmetry. Confusingly, what could be called the valley degree of freedom of the
mini Brillouin zone corresponds in fact to the layer degree of freedom of graphene, while
the two valleys K and K′ of graphene lead to yet another degree of freedom. To avoid any
ambiguity, we will always associate the non-equivalent Dirac cones of the mini Brillouin
zone to the ‘layer’ degree of freedom, and the non-equivalent Dirac cones of the Brillouin
zone of monolayer graphene to the ‘valley’. Note also that two Dirac cones of the top and
bottom layers, located at Kt and Kb respectively, are described by the same copy of the
Dirac Hamiltonian, in contrast to the valleys K and K′ in graphene which are related by
time reversal. In particular, the Dirac cones located at Kt and Kb have the same winding
number: the topology of the bilayer differs from that of the single layer.

5.2 Band structure
We now explore how interlayer tunnelling affects the band structure of TBG. We denote
by w the interlayer hopping strength, which is assumed independent of the twist. As seen
in Sec. 5.1.2, the twist angle affects the characteristic momentum kθ ' Kθ of the mini
Brillouin zone. Because of the relativistic dispersion relation, this momentum scale of
the mini Brillouin zone is naturally associated to a characteristic energy scale of the mini
bands EK ' ~vFkθ, which vanishes in the low twist angle limit. We first discuss the effect
of interlayer tunnelling on the single-particle band structure as a function of the twist, and
show notably that interlayer hopping strongly suppresses the Fermi velocity at the Dirac
points. We then explain this quenching of the kinetic energy with a qualitative argument,
and define ‘magic’ values of the twist angle, for which the Fermi velocity vanishes and the
mini bands closest to the Fermi level flatten out.

5.2.1 Effect of interlayer hopping
Band structure calculations can incorporate interlayer tunnelling in the electron dynamics.
In ab initio (first-principle) calculations, the Schrödinger equation is solved over a workable
set of basis functions. A popular implementation of this approach is density functional
theory, where the band structure is found by minimising the energy as a functional of
the electronic density, from which ground-state observables can be determined. These
numerical techniques demand a huge computational effort when the unit cell contains
many atoms, and are doable at large twists only (typically θ > 10°). To explore smaller
twists, one can fit the ab initio band structures found at large twists with that obtained
in Bernal stacking to build an effective tight-binding Hamiltonian, from which band
structures at small twists can be extrapolated (Suárez Morell 2010). Fig. 5.5 shows
band structures computed numerically for several twisted configurations near 2°. As the
twist angle decreases, interlayer tunnelling prevails over the kinetic energy, which dampens
the Fermi velocity at the Dirac points. At the same time, the bandwidth measured at
the Γ point goes down. The same conclusions apply to other bilayer systems, such as
graphene on hexagonal boron nitride (Fang 2016).

The above qualitative picture holds whatever the numerical approach used, even though
the details of the band structure may differ. For instance, when diagonalising the tight-
binding Hamiltonian with the Lanczos algorithm for large sparse matrices, a gap develops
above 1.9° in the energy spectrum, which disappears below (Sboychakov 2015). In this
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active
bands

Figure 5.5 | Calculated band structure of twisted bilayer graphene at small twist angles (in
blue), Bernal-stacked bilayer graphene (in dashed green), and monolayer graphene (in dotted
red). The three panels correspond to decreasing twist angles (a) θ = 2.9°, (b) θ = 2.0°, and
(c) θ = 1.9°. As the relative twist is reduced, the kinetic energy of the mini bands closest to the
neutrality point – the active bands – decreases. Interlayer hopping suppresses both the Fermi
velocity at the Dirac points (K point) and the bandwidth at the centre of the moiré Brillouin zone
(Γ point). By contrast, the band structures of Bernal-stacked graphene and monolayer graphene
are respectively parabolic, and linear with a fixed Fermi velocity vF ' 106 m · s−1. Adapted
from (Suárez Morell 2010).

regime of low twist, the Dirac points seem to be pushed slightly off the charge neutrality
point, and TBG may be metallic. This contrasts with the results of (Suárez Morell
2010), but in both cases, interlayer tunnelling reduces the bandwidth and dampens the
Fermi velocity. Let us try to understand why interlayer hopping tends to shrink the lowest
energy bands.

5.2.2 The magic angle physics
The first magic angle — The first magic angle θ0 is defined as the twist angle where
interlayer hopping dampens the Fermi velocity so much that it vanishes. By comparing
the energy scales at play – the intralayer kinetic energy and the interlayer tunnelling
amplitude –, we can easily estimate this magic value. In the limit of decoupled layers,
the top and bottom Dirac cones cross at opposite points split by an energy ∆E ' ~vFkθ,
which is roughly proportional to the twist angle θ. Due to interlayer hopping, these two
bands hybridise over an energy region w, leading to two symmetric saddle points separated
by a smaller energy ∆E ' ~vFkθ − 2w (Andrei 2020). Upon decreasing the twist angle,
the saddle point ultimately reaches the Dirac nodes, and destroys the linear dispersion
dispersion, as shown in Fig. 5.6. The energy split ∆E vanishes at the first magic angle
θ0 ' aw/π~vF. With w ' 0.1 eV (Kuzmenko 2009; Bistritzer 2011), vF ' 106 m · s−1
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Figure 5.6 | (a) In a decoupled bilayer of graphene, the typical energy split between the particle
and hole crossing points of the tilted Dirac cones is ∆E = ~vFkθ, where vF ' 106 m · s−1 is
graphene’s Fermi velocity. The momentum kθ ∝ Kθ represents the size of the moiré Brillouin
zone; it is smaller than the Dirac momentum K by a factor θ, which the low twist angle of
the bilayer. After interlayer hopping is switched on, the top and bottom layer hybridise over
an energy window 2w, where w denotes the hopping amplitude. The energy split diminishes
to ∆E = ~vFkθ − 2w. Reducing the twist angle suppresses utterly this energy split – and
thus the typical kinetic energy – at the first magic angle θ0 ' 1°. The Fermi velocity vanishes
at the same time. Adapted from (Cao 2018a). (b) At the first magic angle θ0 = 1.05°, the
calculated band structure harbours two mini flat bands on either side of the neutrality point
(zero energy). The K and K′ valleys of graphene are conjugate under time reversal or six-fold
rotation. Three properties characterise the magic angle physics: the Fermi velocity vanishes,
leading to a quadratic low-energy dispersion; the bandwidth W ' 8 meV is minimal, which
signals that the bands flatten out significantly; the gap with surrounding bands (beyond this
panel) is maximal. Adapted from (Koshino 2018).

and a ' 2.5 Å, we estimate θ0 ' 1°. This simple argument leads to an good quantitative
agreement with analytical and numerical results, in particular with the band structure of
Fig. 5.5. Close to the first magic angle, three phenomena happen.

• The Fermi velocity v vanishes at the Dirac points. This is observed in numeri-
cal (Suárez Morell 2010) and analytical studies (Bistritzer 2011). In ex-
periments, the slow-down of the quasi-particle motion manifests itself as a high
effective mass in quantum oscillations (Luican 2011; Cao 2018a). As a result of the
vanishing velocity, the dispersion relation becomes quadratic near the Dirac points,
and the lowest mini bands flatten locally. The vanishing of the velocity results from
charge carriers propagating with opposite velocities on the top and bottom layer,
thus compensating with one another and leading to a zero net flow (Bistritzer
2011).

• The bandwidth measured at the Γ point is minimal near the first magic angle.
interlayer hopping reduces the bandwidth to values as low as W ' 8 meV (Koshino
2018), and thus enhances the DoS dramatically, which diverges at two energy levels
that flank the neutrality point. These so-called Van-Hove singularities are seen in
scanning tunnelling microscopy (Luican 2011).

• The energy gap between the flat mini (or active) bands and the passive bands
immediately above and below, is maximal, about 14 meV (Koshino 2018). The
active bands are well separated from the passive ones at the first magic angle.
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Figure 5.7 | Wave function density ρK(r) (arbitrary units) of the zero energy mode of twisted
bilayer graphene at the first magic angle. The electronic density peaks near AA stacking regions,
while interlayer tunnelling tends to deplete AB and BA regions. In the special model presented
here, where interlayer tunnelling preserves the chiral symmetry of graphene, the density vanishes
exactly at B1A2 regions, where the label 1 (2) refers to the bottom (top) layer respectively. In
passing, this difference between AB-BA regions illustrates the three-fold (instead of six-fold)
symmetry of the single-valley continuum model. Adapted from (Tarnopolsky 2019).

The minimal bandwidth and maximal band gap occur close to, but not exactly at the
first magic angle θ0. The slight discrepancies between the three criteria that characterise
the magic angle physics come from unimportant details of how the layers couple to one
another. In a simplified model which preserves the original chiral symmetry of graphene,
these criteria all agree on the location of the magic angle: they all occur concomitantly at
the exact value θ0 (Tarnopolsky 2019). This chirally symmetric model delivers a unified
and cohesive picture of the magic angle physics, and shows that the key ingredient is the
tunnelling between the A and B sublattices of neighbour moiré cells. Tunnelling processes
at smaller wave lengths or which operate on the same sublattice only add refinements.
In particular, in the presence of chiral symmetry, the flat mini bands are pinned at zero
energy. Besides, the wave function density condenses in islets centred at AA stacking
regions, while it vanishes at BA regions, as in Fig. 5.7. These topographic features indicate
that electrons are confined near the AA sites of the moiré pattern. In more realistic
models, a small DoS appears on BA regions, and the flat bands acquire a weak dispersion
in momentum space, which leads to a bandwidth W ' 8 meV.

Comparison between kinetic and interaction energies — Details of the interlayer
tunnelling aside, the quenching of the kinetic energy bears huge consequences for magic
angle TBG. Flat bands and van Hove singularities are known to favour many-body
effects (Vozmediano 2002); electron-electron interactions, notably. We may estimate the
Coulomb on-site energy as

U = e2

4πεd, (5.8)

where d is the effective size of the superlattice sites and ε the dielectric constant. Using
the estimates ε = 10ε0, and d about half the moiré period, we get U ' 25 meV, which is
several times larger than the bandwidth W ' 8 meV (Cao 2018a). Scanning tunnelling
microscopy confirms this estimate of the Coulomb repulsion (Xie 2019; Wong 2020). We
clearly see that interactions should dominate the electron dynamics, and dramatically
alter the electronic properties predicted by band theory.
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Higher-order magic angles — These phenomena are not restricted to the single magic
value θ0, but appear repeatedly at smaller discrete magic angles θn, with n a positive
integer, where the Fermi velocity vanishes exactly. The hierarchy of the magic angles is
complex, but they seem to recur with a period ∆(θ−1) = 3/θ0 in the chirally symmetric
model (Tarnopolsky 2019). Chirality breaking should completely modify this quantita-
tive prediction, however (Bistritzer 2011). These extra magic configurations appear
because the Fermi velocity changes signs beyond the first magic angle, and then oscillates
back and forth as higher-order tunnelling processes dominate interlayer tunnelling. Because
of this sign change, TBG undergoes a quantum phase transition from a semimetal to
another semimetallic phase where the Dirac cones have reversed their helicity (Fu 2018).
Across this magic-angle critical point, TBG explores a narrow intermediate metallic phase
with multifractal wave functions.

5.3 Experimental findings
Near the first magic angle, where the mini bands flatten out, many-body effects should
control the electron’s dynamics. In 2018, the team led by P. Jarillo-Herrero first evidenced
correlated phases in TBG, and thereby confirmed that the physics beyond the single-
particle level is central to understanding moiré materials (Cao 2018a; Cao 2018b). These
extraordinary discoveries spurred tremendous activity on the subject. After three years
of intense research, much remains to understand. The phase diagram of TBG bears
apparent similarities with that of high-temperature cuprates, with insulators at integer
fillings of the mini bands surrounded by superconducting domes. Some correlated states,
and in particular the insulator at the neutrality point, break the three-fold symmetry in
the cleanest samples (Lu 2019; Jiang 2019; Cao 2020b). The appearance of rotational
symmetry breaking, but also most characteristics of the superconducting and insulating
regions, depend strongly on the sample details. A strange metallic behaviour (Cao 2020a)
and anti-ferromagnetism (Sharpe 2019; Lu 2019), which is accompanied by an amomalous
Hall effect, were also reported.

The microscopic mechanisms at play remain mysterious. While the insulating and
superconducting orders were first thought to share a common origin, recent experiments
suggest instead that they compete (Stepanov 2020). Without aiming exhaustivity, this
section outlines a selection of major experimental findings in the present state of knowledge.
We will quickly narrow our focus to the nematic insulating behaviour found at charge
neutrality, which we study theoretically in Chapter 7. For a pedagogical review on the
topic, see (MacDonald 2019). For more specialised expositions, see (Andrei 2020;
Mogera 2020; Balents 2020).

5.3.1 Experimental setup
Sample preparation — Chemical synthesis has progressively superseded the historic
method for graphene production, based on mechanical exfoliation. The so-called chemical
vapour deposition technique enables to grow clean and large crystals of graphene with
a high degree of tunability (Guan 2020). By depositing methane on copper or nickel
substrates, seeds of graphene grow by precipitation or adsorption, and ultimately form a
continuous film. This technique extends to multilayer systems in several ways. Either the
sample is exposed to a fresh copper foil placed upstream of the methane flow, so as to
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grow new seeds on top of the first graphene flake; or hydrogen passivates the graphene
edges to force methane to diffuse underneath the first flake. By tuning the methane
concentration and pressure or the growth time, experimentalists precisely control the
number of layers (Liu 2019). Unfortunately, chemical vapour deposition offers no control
over the stacking arrangement. To form twisted bilayers, two graphene flakes must be
overlaid by hand.

The tear-and-stack method enables to superimpose two layers with well-controlled
twist angle (Cao 2016). Rather than using two distinct flakes, a single flake is torn apart
and the lower piece rotated with the desired twist angle, before stacking the two layers.
The initial graphene flake can be either exfoliated from graphite or grown chemically, but
the first option is preferred over the second one, because chemically grown samples are
highly polycrystalline, which offers no guarantee the two graphene pieces to be aligned
before rotation. A precision of 0.1° over the twist angle can be achieved. Other techniques
of synthesis rely on the delamination and folding of a graphene sheet on hydrophilic-
hydrophobic substrates (Wang 2017), or Joule heating on a nickel foil (Ni 2009). Using
a polymer stamp, the twisted bilayer is then encapsulated between flakes of hexagonal
boron nitride, and the stack deposited on SiO2/Si substrate, as shown in Fig. 5.8(a). The
polymer is finally removed using acetone or thermal annealing. To carry out transport
measurements, the stack is sandwiched between metallic gates, on which two or more
contacts are carved, as in the device of Fig. 5.8(b). The success of the procedure can be
checked by optical imagery, as in Fig. 5.8(c), or Raman spectroscopy (Mogera 2020), and
the twist angle accurately measured by selected area electron diffraction (Guan 2020).

(a) (b) (c)

Figure 5.8 | (a) In transport experiments, twisted bilayer graphene (tBLG) is encapsulated in
hexagonal boron nitride (BN). The whole stack is sandwiched between two metallic, graphitic,
or here multilayer-graphene gates. Extracted from (Yankowitz 2019). (b) To measure the
transport properties of twisted bilayer graphene, the bilayer edges are put into contact with a
source (S) and drain (D), which impose the voltage and current. The gate below the bilayer
is biased at a voltage Vg and controls the doping level. Extracted from (Cao 2018a). (c) The
twisted bilayer, of width w ' 7 nm, is visible in optical microscopy (the dark patch). Exfoliated
graphene flakes have a typical size of 10 µm. To perform transport measurements, the bilayer
graphene – hexagonal boron nitride (hBN) stack is deposited on a silicate (SiO2) substrate, and
eight contacts are connected to the gates. Extracted from (Stepanov 2020).
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Measurements techniques — Two techniques of measurement can probe the electronic
properties of TBG: scanning tunnelling microscopy and transport. Scanning tunnelling
microscopy enables to visualise the local electronic DoS. A metallic tip biased at a voltage
Vb ' 200 mV with respect to the contact spans the sample’s surface. The microscope works
either at fixed tunnelling current I ' 10 pA (where the height encodes the topography), or
at fixed height (where the current encodes the topography) (Jiang 2019). The gate voltage
Vg between the contact and the gate controls the doping of the sample. The tunnelling
resistance R = dI/dVb gives a faithful map of the local DoS. Transports studies, on the
other hand, gives access to the electrical conductance. The standard setups rely on a
four-probe or eight-probe geometry, as in Fig. 5.8(c). The longitudinal conductance reveals
insulating and superconducting regions in the phase diagram of TBG at low temperature,
and gives access to thermal activation gaps. A magnetic field suppresses the resistive and
superconducting behaviours, and the dependence of the conductance on its orientation
reflects the spin or orbital nature of Zeeman splitting.

With the recent progress in photoemission spectroscopic technology at the submicromet-
ric scale, ARPES has also been proposed to measure the twist angle, the interlayer hopping
amplitude, and the spectral redistribution induced by electron-electron correlations (Zhu
2020).

5.3.2 Global phase diagram
Insulating and superconducting states — In 2018, the team led by P. Jarillo-Herrero
at MIT reported the existence of correlated phases in magic angle TBG. Upon varying the
doping level through the electrical gating method discussed in Sec. 5.3.1, the authors found
insulating and superconducting phases (Cao 2018a; Cao 2018b). In the carrier density n –
temperature T phase diagram alternate thin regions of insulating behaviour (with a
large longitudinal resistance) and large superconducting domes (with a zero longitudinal
resistance). Owing to the large gap that separates the active from the passive bands,
conventional band insulators flank this collection of correlated states at empty or full
filling of the moiré unit cell. Due to the spin and valley degeneracy, filling the active
bands require four electrons per moiré cell, which corresponds to a filling factor ν = +4,
or equivalently to a carrier density ns = 4/A, with A the surface of the moiré cell. The
experimental value varies from sample to sample, but revolves around ns ' 3× 10−12 cm−2.
The measured charge gap of these band insulators, about 40 meV, is of the same order of
magnitude as the one predicted by electronic band theory (Sec. 5.2.2).

The insulating phases which appear at intermediate filling factors ν are compatible
with Mott insulators, in which electronic correlations open gaps within the degenrate active
bands. These gaps induce a drop in the conductance measured in transport measurements
at zero magnetic field, but also manifest themselves in quantum oscillations (Cao 2018b).
The first experiments observed insulators only at half-filling of the active bands (ν = ±2),
but others were then found at all integer filling factors, on both the hole (ν = −3,−2,−1)
and particle (ν = 1, 2, 3) sides of the active bands (Yankowitz 2019). In all cases,
the charge gaps are of the order of 0.3 meV. Interestingly, in highly angle-homogeneous
samples, an extra Mott insulator appears at charge neutrality (ν = 0) (Lu 2019). ATt
all filling factors, the insulating character disappears above a temperature of the order of
4 K, where the sample becomes diffusive metallic. The insensitivity of the conductance
to the field’s orientation points towards a spin-singlet insulator, i.e. the active bands
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ν = 0ν = −1ν = −2ν = −3ν = −4

ν = 1 ν = 2 ν = 3 ν = 4

Figure 5.9 | Temperature T versus carrier density n phase diagram of twisted bilayer graphene
at magic twist angle. The diagram spans all intermediate fillings of the active mini bands, and is
centred around the charge neutrality point n = 0; two band insulators (BI) flank the diagram at
full fillings, which corresponds to carrier densities ±ns with ns ' 3× 1012 cm−2, according to
the hole (negative n) or particle (positive n) doping, as predicted by the single-particle physics.
However, the longitudinal resistance Rxx peaks at integer filling factors ν = 0,±1,±2,±3 of the
spin-valley degenerate mini bands, and signals correlated Mott-like insulators (CS). By contrast,
it drops to zero within superconducting domes (SC) that surround some of the insulating regions.
The critical temperature of a few Kelvin is enormous given the very low carrier density. Extracted
from (Lu 2019).

retain their spin degeneracy. In this scenario, the sample starts conducting when the
Zeeman energy fills the charge gap. The existence of these insulating states is confirmed
independently by capacitance measurements. In addition, the insulators at three-quarter
fillings (ν = ±3) exhibit a hysteretic anomalous Hall effect: a magnetic field generates a
transverse conductivity, which persists when the field is switched off (Sharpe 2019). The
insulators at three-quarter fillings also display ferromagnetism. Since the weak spin-orbit
coupling cannot explain such a large susceptibility, the magnetisation probably originates
from the orbital angular momentum of electrons. If these results were to be confirmed,
TBG would be the first example of an orbital ferromagnet.

Though correlated phases were expected, the discovery of unconventional supercon-
ductivity in TBG stroke as a great surprise. Indeed, the emergence of nearby insulating
states cannot be explained by the Bardeen-Cooper-Schrieffer theory, which relies on a
weak electron-phonon coupling mechanism. From the current state of knowledge, super-
conductivity could equally well be mediated by phonon scattering (Sharma 2020; Choi
2018) or by pure electron-electron interactions. A perpendicular magnetic field B⊥ ' 0.1 T
destroys the superconductivity, in agreement with a vortex-induced dissipation mechanism.
Owing to the atomic thickness of TBG, an in-plane magnetic field B‖ ' 1 T also suppresses
superconductivity, but through a different mechanism, probably through the Zeeman
splitting of the Cooper pairs (Cao 2018b). As seen in Fig. 5.9, the critical superconducting
temperature reaches values up to Tc ' 2 K. This value is impressively high given the
low carrier concentration: the critical to Fermi temperature ratio Tc/TF ' 0.08 even
exceeds that of cuprates by an order of magnitude (Cao 2018b). In addition, like in
high-temperature cuprates, a strange metallic state surmounts the superconducting domes,
which exhibits a linear T -dependence of the resistivity inconsistent with the Fermi liquid
theory (Cao 2020a). Whether this anomalous metallic behaviour stems from the proximity
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to quantum criticality or phonon scattering remains on open question (Andrei 2020).
It is not known whether the insulating and superconducting phases arise from the same

microscopic mechanism. In spite of the resemblance of the phase diagram of TBG with
that of cuprates, where insulation and superconductivity are believed to share a common
origin, some experiments showed that, unlike the superconducting domes, the insulating
regions die out under moderate screening (Stepanov 2020). This difference in robustness
may indicate that two orders compete near the same filling factors.

Mott insulation at charge neutrality — The sample preparation and device geometry
deeply affect the experimental results near the magic angle, because the band structure is
extremely sensitive to strain and lattice relaxation. The tear-and-stack method introduces
a significant amount of twist-angle heterogeneity, as a result of variations in local strain
or the presence of substrate defects. Yet, even small modulations of the twist angle
lead to a sizeable smearing of the electronic properties. Fortunately, several groups have
devised a mechanical cleaning process which relaxes local strains and reach a high angle
homogeneity (Lu 2019; Stepanov 2020). These clean samples revealed the existence of
an strong insulator at charge neutrality, which was absent in earlier experiments, with a
charge gap ∆ = 0.86 meV larger than at any other integer filling, as shown in Fig. 5.9.

Scanning tunnelling microscopy does not offer the precision necessary to observe a
charge gap. Nevertheless, some authors reported pseudo-gaps at charge neutrality, i.e.
large doping region where the local DoS near AA stacking sites is highly suppressed,
but where band theory predicts a DoS peak instead, as large as 30 meV (Jiang 2019;
Kerelsky 2019; Choi 2019; Xie 2019). The pseudo-gap manifests itself in the tunnel
conductance dI/dV , which shows a clear dip at charge neutrality surrounded by two peaks
on the hole and electron sides.

5.3.3 Nematic phases
Several regions of the phase diagram of TBG break the three-fold symmetry of the moiré
pattern. This is the case of the insulator at charge neutrality, which we discuss first. The
physics at charge neutrality represents a natural starting point for an interacting theory
of TBG, since this corresponds to the doping level where the single-particle low-energy
theory is relativistic. For this reason, we will study the strong nematic insulator at the
neutrality point. For completeness, we also discuss in this section other regions of the
phase diagram which display nematicity.

Nematicity at charge neutrality — The insulator at charge neutrality also destroys
the three-fold symmetry of TBG in favour of a preferred axis (Jiang 2019). Such
electronic phase which breaks the lattice point group down to a two-fold symmetric group
is termed nematic, in analogy with their classical equivalents, the liquid crystals (Fradkin
2010). The origins of the orientational order differ entirely in quantum and classical
phases, however. While molecules in liquid crystals have rod-like shapes, electrons are
intrinsically isotropic entities. In Landau’s theory of Fermi liquids (which does not
apply in TBG, unfortunately), the standard mechanism that leads to nematicity is a
Pomeranchuk instability: when a Landau parameter becomes negative, the Fermi surface
is distorted in a channel of possibly non-zero angular momentum `, in which case a
rotational order with lower symmetry settles. For a quadrupolar distortion (` = 2), the
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Figure 5.10 | The topography of the moiré superlattice, obtained by scanning tunnelling
microscopy, reveals a stripe order in the charge distribution of undoped twisted bilayer graphene
at the magic angle. The AA regions are electron doped (in red), while the neighbouring AB
and BA regions are hole-doped (in blue). The lower band (a) and upper band (b) near charge
neutrality display asymmetric charge distributions in orthogonal directions. The net charge
distribution (c) displays a quadrupolar distortion, with two opposite lobes doped in holes, the
other two doped in electrons. This nematic order generates stripes that break the six-fold
rotational symmetry of the moiré pattern. Extracted from (Jiang 2019).

Fermi surface becomes elliptic and the order is nematic. Appart from TBG and cuprate
superconductors, nematic electronic phases were found in the quantum Hall state of
GaAs/GaAlAs heterostructures (Lilly 1999).

Evidencing nematicity in experiments can prove a subtle task (Kivelson 2003). The
nematic order manifests itself as anisotropies in transport measurements, diffraction
patterns, or scanning tunnelling spectroscopic maps. A possible order parameter is the
resistivity anisotropy defined by δρ = ρxx − ρyy, where ρab denotes the resistivity tensor,
and where the x and y directions coincide with inequivalent crystalline axes. Similarly,
electronic diffraction patterns reveal a nematic order as peaks of the form factors at
unexpected wave vectors. Scanning tunnelling microscopy remains the optimal tool, since
this technique probes a spatially resolved quantity (the local DoS) instead of spatially
averaged quantities, as in transport measurements. As seen in Fig. 5.10, the insulator
at charge neutrality displays a nematic order in the form of charge-ordered stripes in
the DoS maps. The six-fold symmetry of the moiré pattern is clearly visible in the DoS
maps, but the large hexagonal structure is accompanied by small spatial modulations near
AA regions, where the DoS is maximal. We saw in Sec. 5.3.2 that the spectral weight
is transferred from the charge neutrality point to the hole (lower band) and electron
(upper band) sides. However, the orientation of the charge transfer differs in the lower
(Fig. 5.10(a)) and (Fig. 5.10(b)) bands. As a result, the net charge distribution exhibits
quadrupolar distortions and form ordered stripes separated by the moiré lattice constant
(Fig. 5.10(c)).

Nematic superconductivity — A nematic ordering was also reported in a resistive
patch shown in Fig. 5.11, which spread between the Mott insulator at half-negative filling
(ν = −2) and the nearby superconducting dome on the hole side of the spectrum (Cao
2020b). Using transport measurements, the authors observed a transverse resistivity ρxy at
zero magnetic field, which can only stem from an anisotropy in the longitudinal resistivity,
i.e. ρxy ∝ ρxx − ρyy 6= 0. When a strong magnetic field destroys the superconducting
phase, the nematic patch, which has a well-defined nematic axis, spread in the region
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Figure 5.11 | Anisotropies in longitudinal transport measurements reveal a nematic order in
TBG near half-hole filling, i.e for a number −ν = 2 of active mini bands entirely empty. An
anisotropic normal state develops between the correlated insulator at half-filling (blue region)
and the left superconducting dome (yellow region). Both this resistive state and the nearby
superconductor display a nematic order, but with different preferred direction. Since the nematic
order of the resistive state spreads over the yellow region under a strong magnetic field that
suppresses superconductivity, these two orders compete, and probably comes from distinct
microscopic mechanisms. Extracted from (Cao 2020b).

initially occupied by the superconducting dome at zero field. On the other hand, both
the longitudinal resistivity ρxx (along the drain-gate line) and the critical current respond
anisotropically to a in-plane magnetic field in the superconductor. The field’s orientation
for which the resistivity drops, which is the direction favoured by the nematic order, varies
continuously with carrier density across the dome. At the crossing with the resistive patch,
it rotates quickly and align along the nematic axis of the resistive region, which is an
entirely different direction. This observation tallies with the hypothesis of two nematic
orderings competing; one intrinsic to the superconducting dome but with no preferred axis,
the other pinned in a specific direction within the resistive patch. The nematic ordering of
the superconducting region favours p-wave or d-wave Cooper pairings over of an isotropic,
s-wave pairing, as found in conventional superconductors.

Several mechanisms could explain the appearance of a joint nematic-superconducting
order. The suppression of superconductivity under in-plane magnetic fields (Cao 2018b)
points towards a spin-singlet pairing (Wu 2019). Some authors theorised from atomistic
modelling that superconductivity develops through d-wave pairing as a result of strong
on-site repulsion (as in cuprates) (Löthman 2021). In stark contrast to cuprates, though,
the spectrum for Cooper pairs is fully gapped and the gap function highly inhomogeneous,
which explains the moiré-scale nematicity. Other authors claimed using a Ginzburg-Landau
phenomenology that the nematic order develops only under a magnetic field, but that
the zero-magnetic field phase is chiral instead of nematic (Yu 2021). A superconductor
is chiral when the gap function acquires a non-zero phase when the momentum winds
around a closed path of the Fermi surface (Kallin 2016). Under an in-plane magnetic
fields, two chiral superconducting orders with p± ip pairings, which are both isotropic,
could overlap and thus lead to an anisotropic transport response.
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Conclusion
Summary — When two layers of graphene overlap with a relative twist, the interference
of the two mismatched lattices form large-scale moiré patterns. Although the atomic sites
of the bilayers organise into a periodic superlattice only at commensurate twist angles, the
moiré pattern defines an effective Bravais lattice from which we can build a continuum
description of the low-energy physics of twisted bilayer graphene. The corresponding mini
Brillouin zone, which is a hundred times smaller than the Brilloun zone of graphene for
twist angles ' 1°, host two non-equivalent Dirac points at its corners associated to the
two layers, but originating from the same valley of graphene. Yet, interlayer tunnelling
in TBG strongly renormalises the spectrum by flattening the energy bands. At special
‘magic’ angles, the Fermi velocity of the Dirac cones vanish. Other phenomena accompany
the magic angle physics, since the bandwidth of the flat bands becomes minimal and the
gap with passive bands above and below maximal.

This dramatic quench of the kinetic energy leaves the door open for electron-electron
interactions. Experiments confirmed the importance of many-body effects; twisted bilayer
graphene displays indeed a rich and complex phase diagram, whose prominent features are
the presence of insulators at integer fillings of the flat bands surrounded by superconduct-
ing domes. In particular, transport measurements and scanning tunnelling microscopy
evidence the breaking of the three-fold rotational symmetry in several regions of the
phase diagram, and notably in the strong insulator found at charge neutrality in the most
angle-homogeneous devices. Twisted bilayer graphene offers unprecedented tunability. The
tear-and-stack method allows for the high degree of control necessary to tune the twist
angle precisely at the magic values and observe correlated phases. A low carrier density
ns ' 3× 1012 cm−2 suffices to explore the whole phase diagram, and can be easily achieved
by voltage gating. On the contrary, changing the carrier density in cuprates (Lee 2006)
or layered organic materials (Powell 2011) requires to synthesis several samples each
with different chemical doping. This takes time, and is less precise.

In the next chapters, we focus on the low-energy physics of twisted bilayer graphene near
charge neutrality. After proposing a single-valley continuum model for the single-particle
physics, we identify all insulating interaction channels allowed by symmetry, and study
the emergence of a gap and a nematic order through a renormalisation group approach.
This project was done in collaboration with L. Savary at the Laboratoire de Physique, and
led to the preprint (Brillaux 2020).

Outlook — We will restrict our study to twisted bilayer graphene at the first magic angle
θ0 ' 1.1°. It is worth mentioning that correlated phases were also observed in twisted bilayer
graphene at lower magic angles, in particular at the second magic angle θ1 ' 0.5° (Lu 2020).
Achieving such higher-order magic twists is challenging, because the lower the twist angle,
the higher the relative sensitivity of the magic angle condition. Thicker Van der Waals
heterostructures also develop moiré patterns under a twist, and were similarly theorised
to host flat mini bands (Khalaf 2019; Chebrolu 2019; Mora 2019). Experiments
have evidenced correlated phases in trilayer graphene (Chen 2019; Chen 2020), twisted
double-bilayer graphene (Samajdar 2021), and 30°-twisted bilayer gaphene (Yao 2018).
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Chapter 6
Low-energy theory near charge neutrality

In the previous chapter, we explained with a simple energetic argument the origin of band
flattening in magic angle twisted bilayer graphene. When the twist angle becomes small
enough that the kinetic energy is comparable to the interlayer tunnelling amplitude, the
Fermi velocity of the Dirac cones vanishes, and the overall bandwidth is minimal. To
demonstrate the exact vanishing of the Fermi velocity, we need a low-energy effective
theory. This effective relativistic theory also provides a basis to incorporate many-body
effects and study the nematic insulator observed at charge neutrality. The sublattice and
layer degrees of freedom play a key role in the electron dynamics at the magic angle, while
in a first approximation, the spin and valley degrees of freedom can be ignored.

In the present chapter, we thus propose a single-valley low-energy description of twisted
bilayer graphene, close in spirit to the seminal continuum model introduced by R. Bistritzer
and A. MacDonald, but where the ratio of intra- over inter-sublattice hopping amplitudes
is kept as a free parameter. After presenting the single-particle description, we identify
all contact quartic interactions allowed by the symmetries of the model: the three-fold
out-of-plane rotation, a mirror symmetry, a particle-hole symmetry, and an antiunitary
symmetry stemming from the combination of time reversal and spatial inversion. We
restrict this classification to particle-hole channels, which are commonly at the origin of
correlated insulating phases.
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6.1 Single-particle description
Experiments find correlated states at partial fillings of the two flat bands (per spin and
valley) closest to charge neutrality. Because of the large band gap that separates these flat
bands from the rest of the spectrum, a minimal low-energy theory can be restricted to
the Hilbert space composed of those flat bands. In a first approximation, the degrees of
freedom of sublattice and layer dictate the dynamics, while the electronic spin and the
presence of two valleys can be ignored. This single-valley continuum model leads to a
low-energy theory which is already far from standard at the single-particle level, because
of the spatial modulation of the interlayer tunnelling amplitude over the moiré period. To
diagonalise the Hamiltonian, we thus resort to an approximation scheme: we assimilate
the hopping term as a perturbation of the kinetic term, and expand the Hamiltonian
accordingly.

6.1.1 The single-valley continuum model
Physical ingredients — The low-energy theory of twisted bilayer graphene comprises
four degrees of freedom, each associated to a spin one-half fermion: the valley of graphene,
the electronic spin, the sublattice, and the layer. Yet, intervalley scattering involves the
transfer of momenta of the order of the Dirac momentum K, which exceeds the size of the
mini Brillouin zone kθ ' Kθ by several orders of magnitude in the low twist angle limit,
where typically θ ' 1°. Hence, the valley degree of freedom can be ignored. Similarly,
spin-orbit coupling plays a minor role in graphene, so that we can neglect the electronic
spin in a first approximation. As we did for Bernal-stacked bilayer graphene in Sec. 5.1.1,
we now build a simple tight-binding model for the low-energy excitations of the twisted
bilayer, using the sublattice and layer as inputs. Three ingredients of the model are the
geometry, the intralayer dynamics, and the interlayer coupling (Balents 2019).

First, the layer twist results in a change of coordinates, which shifts the Dirac point
of the valley K from K to Kt,b for the top and bottom layers respectively. The twist
also implements a rotation of the pseudospin σ, which is tied to the orientation of the
sublattices within each layer. The interplay between these geometrical effects and intralayer
dynamics leads to the following Hamiltonian of the decoupled twisted layers:

Ĥs = ivF
(
Rsθ/2σ

)
· ∂ + s

2vFσ · q1, (6.1)

where vF is the Fermi velocity of graphene, s = +1 (−1) for the top (bottom) layer, and
the momentum q1 = Kt −Kb is represented in Fig. 5.4. The rotation of the pseudospin
implemented by the operators Rsθ/2 has no qualitative consequences, and can be safely
ignored in Eq. (6.1); besides, it corrects the dynamics at order θ only. On a strained layer,
the Hamiltonian acquires an artificial gauge field due to the local in-plane deformation of
the bonds (Mañes 2013) and the out-of-plane relaxation of the bilayer (Guinea 2008).
Assuming that the layers undergo a perfectly rigid rotation, the change of coordinates
preserves the dynamics of the Dirac fermions in the frame of reference of the twisted layers,
and Eq. (6.1) captures all aspects of the intralayer dynamics.

Last but not least, the proximity of the two graphene sheets leads electronic orbitals on
both sides to overlap significantly, which allow for Dirac fermions to hop between layers.
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The Hamiltonian for the coupled bilayer thus contains hopping terms that are off diagonal
in layer, which we write generically as

Ĥ =

 Ĥ+ T̂ (r)
T̂ †(r) Ĥ−


 =



vFσ ·

(
i∂ + q1

2

)
T̂ (r)

T̂ †(r) vFσ ·
(
i∂ − q12

)


 . (6.2)

An uncommon feature of Hamiltonian (6.2) is that the tunnelling matrix T (r) depends
explicitly on position r, as a result of the twist destroying translational symmetry at the
atomic scale. This tunnelling matrix obeys the translational invariance of the large-scale
moiré pattern, however; we decompose it as a Fourier series over the reciprocal superlattice
generated by the vectors Q1 = q2 − q1 and Q2 = q3 − q1, where q3 and q2 are defined in
Fig. 5.4. As was proven analytically and numerically, the hopping amplitude falls off rapidly
with momentum, so that a few first Fourier components dominate the series (Bistritzer
2010; Bernevig 2020a). To ensure the three-fold rotational symmetry of the Hamiltonian,
we keep the three coefficients

T̂ (r) = T̂0 + e−iQ1·rT̂1 + e−iQ2·rT̂2, (6.3)

where the constant hopping matrices for j = 0, 1, 2 read

T̂j = uσ0 + w
(
ζjσ+ + ζ−jσ−

)
, (6.4)

where ζ = e2iπ/3. The pseudospin ladder operators σ± = 1
2(σx ± iσy) present in the second

term of Eq. (6.4) implement the hopping of Dirac fermions between sites A and B of
distinct layers. The parameter w ' 110 meV, which we introduced phenomenologically in
Sec. 5.2, thus quantifies the inter-sublattice hopping strength (Bistritzer 2011). The
first term of Eq. (6.4), proportional to the identity in the sublattice sector, describes intra-
sublattice hopping processes with strength u. We will keep u and w as free independent
parameters, because lattice relaxation suppresses the on-diagonal hopping amplitude u
with respect to the off-diagonal one w. Lattice relaxation tends indeed to pull the layers
away near AA-stacked regions – a mechanism known as corrugation –, resulting in spatial
modulations of the interlayer distance (Koshino 2018). Numerical calculations find
u ' 90 meV (Lucignano 2019).

Change of basis and limit models — To simplify the form of the Hamiltonian (6.2),
it is judicious to relocate the two Dirac cones at the same crystal momentum. We achieve
this change of basis through the unitary transformation

H = A(r)†ĤA(r), A(r) = exp
(
−iq1 · r2 τz

)
, (6.5)

where (τx, τy, τz) denote the Pauli matrices in the layer sector. Furthermore, we remove all
dimensions by measuring momenta in units of the size of the mini Brillouin zone kθ, and
energies in units of the kinetic energy EK = vFkθ. The resulting Hamiltonian is

H = iτ0σ · ∂ + α
3∑

j=1

∑

η=±
e−iηqj ·rT ηj , (6.6)
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where α = w/EK represents the dimensionless strength of inter-sublattice hopping. Note
that the index j now runs from 1 to 3, unlike in Eq. (6.4). The index η = ± indicates a
hopping from the bottom to the top layer for the plus sign, and vice versa for the minus
sign. The four-times-four hopping matrices T ηj present in the second term of Eq. (6.6)
split into two conjugate blocks in the layer sector. The upper right block

T+
j = τ+

(
β σ0 + ζj−1σ+ + ζ1−jσ−

)
(6.7)

describes bottom-to-top tunnelling, while the lower left block T−j = (T+
j )† describes top-

to-bottom tunnelling. The parameter β = u/w is the relative intra- versus inter-sublattice
hopping strength. As for the pseudospin, τ± denote the ladder operators in the layer sector.
Three limit cases can be considered according to the value of β.

• The isotropic limit β = 1 (u = w) corresponds to the seminal Bistritzer-MacDonald
model (Bistritzer 2011). This model explains well the vanishing Dirac velocity
and finds a good estimate for the first magic angle. Still, it misses some qualitative
features of the band structure, in particular, the existence of a gap between the
active flat bands and the excited bands.

• The first chiral limit β = 0 (u = 0 with w non-zero) restores the original chiral
symmetry of monolayer graphene, implemented by the operator σz. This model has
a remarkable mathematical structure, since the eigenvalue equation can be solved
exactly using complex analysis. The local DoS vanishes exactly at the B1-A2 regions,
and a perfectly flat band develops at zero energy (Tarnopolsky 2019). This model
captures correctly the phenomenology of the magic angles, and unifies the different
notions of band flatness (maximal band gap, minimal bandwidth, zero Fermi velocity)
under a single definition, because these three phenomena happen precisely at the
same twist angle. Moreover, a simple law relates the magic angles that also appear in
multilayer extensions of the model to the first magic angle of TBG (Khalaf 2019).

• The second chiral limit β =∞ with α = 0 (w = 0 with u non-zero) has interesting
properties as well (Bernevig 2020b). This model enjoys a hidden chiral symmetry
implemented by the operator τzσz. This extra symmetry forces the energy spectrum
to be fully connected, leaving no gaps between active and passive bands. Such
band structure leads to a ‘perfect’ metallic behaviour, to the extent that the DoS
remains sizeable at all energies. Yet, this second chiral limit corresponds to an
unphysical configuration where the two layers are closer to one another in AA regions
than in AB/BA regions, which is incompatible with lattice relaxation. In addition,
intra-sublattice hopping enhances the Fermi velocity instead of suppressing it, so
that the magic angle physics does not apply in this model.

In practice, numerical studies find β ' 0.8 (Lucignano 2019). Given the uncertainty on
this estimate, and the sensitivity of the band structure to intra-sublattice hopping, we will
keep β as a free parameter.

Gauge potential formulation — Interestingly, the spatial modulation of interlayer
tunnelling acts for the Dirac fermions as a background non-Abelian potential Aµ = (Φ,A),
with Hamiltonian (San-Jose 2012)
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6.1. Single-particle description

H = σ · [i∂τ0 + αA(r)] + αβΦ(r). (6.8)
This non-Abelian potential lives in the layer su(2) algebra, being a linear superposition of
the generators τx and τy. The vectorial part A accounts for inter-sublattice hopping, and
couples to the fermions with a strength α. The scalar part Φ accounts for intra-sublattice
hopping, and couples to the fermions with a strength αβ. Such potentials are known to
induce intriguing interference phenomena, which are absent in conventional U(1) gauges (of
the Aharonov-Bohm type). These interferences tend to confine zero-energy electronic waves
near the AA stacking regions, which explains the enhancement of the local DoS observed in
Fig. 5.7. This reformulation in terms of gauge potential brings to light interesting parallels
between the interlayer coupling dynamics in moiré materials and quantum field theories.

Diagonalisation of the Hamiltonian — To determine the interlayer hopping correc-
tions to the Fermi velocity, we diagonalise Hamiltonian (6.6). The kinetic term poses no
problem (it is diagonal in momentum space), but the hopping term depends explicitly
on position, and renders an exact diagonalisation extremely difficult. Instead, we treat
interlayer hopping as a perturbation of the kinetic term, and expand the Hamiltonian
order by order in α. This method provides analytical results for the corrected Fermi
velocity, and therefore, the values of the magic angles. Unfortunately, it applies only to
a small domain of twist angles. On one hand, the continuum description requires the
twist angle θ to be small. On the other hand, the smaller θ, the larger the dimensionless
hopping strength α ∝ θ−1, and the less accurate the perturbative expansion. We will see
that the first magic angle θ0 ' 1.1° corresponds to a magic value α0 of order unity, so that
the perturbative approach offers less control over smaller magic angles, which appear as
higher order zeros of the Fermi velocity.

6.1.2 Hopping strength expansion
Following the idea of (Bistritzer 2011; Tarnopolsky 2019), we expand the Hamiltonian
in the dimensionless hopping strength α, while treating β non-perturbatively (Brillaux
2020). To deal with the highly non-standard low-energy theory of TBG, where the lattice
mismatch leads to large spatial modulations of the hopping amplitude, we develop a
diagrammatic technique to organise the perturbative expansion. The Feynman rules we
introduce here will also be useful for the interacting theory studied in Chapter 7. The
self-energy encodes the correction to the wave function amplitude and the band structure
induced by interlayer hopping.

Perturbative approach — The Green’s function associated to the Hamiltonian of the
decoupled bilayer H0 = iσ · ∂ is

G0(k,Ω) = (σ ·k − iΩ)−1 (6.9)

in Fourier space, where k is the momentum, Ω the Mastubara frequency1, and we omitted
the identity matrices σ0 and τ0 for brevity. We set vF = 1, so that the Fermi velocity
corrected by interlayer hopping is measured in units of the Fermi velocity of graphene.

1As a general rule, we distinguish between external momentum k and frequency Ω, and internal
momentum q and frequency ω, which appear as integration variables in the interacting theory.
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Chapter 6. Low-energy theory near charge neutrality

In analogy with quantum field theories, we will refer to Eq. (6.9) as the free propagator.
Other correlation functions are generated by the free action

S0 =
ˆ

d2r dτ ψ(H0 − ∂τ )ψ =
ˆ
k,Ω

ψk(σ ·k − iΩ)ψk, (6.10)

where {ψ, ψ} are two Grassman fields, and we assimilate ψ to the conjugate Dirac field Ψ†
instead of the adjoint Ψ.

Similarly, the hopping term of the Hamiltonian (6.6) can be represented by the action

Sα = α
3∑

j=1

∑

η=±

ˆ
d2r dτ

(
ψT ηj ψ

)
e−iηqj ·r = α

3∑

j=1

∑

η=±

ˆ
k,Ω

ψkT
η
j ψk+ηqj . (6.11)

This hopping action Sα breaks the continuous translational invariance of the kinetic
action S0 down to a discrete translational invariance on the moiré lattice d1Z + d2Z,
where d1 and d2 are the superlattice vectors of Fig. 5.2. As a result, the Fourier space
representation of the action (6.11) couples conjugate fields at different momenta k and
k + ηqj . The low-energy description described by the full action S ′0 = S0 + Sα is highly
unusual: unlike most free field theories, it does not conserve momentum. Because of this
non-conservation, the quantum action contains an infinite number of two-point vertices
where the total momentum is preserved only up to a vector Q of the reciprocal superlattice,
which is generated by the (linearly dependent) family of vectors {qj , j = 1, 2, 3}. The
two-point connected correlation functions thus take the form of the infinite sum

〈ψk,Ωψk+q,Ω〉′0 =
∑

Q∈R
G′0(Q,k,Ω)δ(Q− q). (6.12)

The term of Eq. (6.12) with zero momentum transfer Q = 0, abbreviated as G′0(k,Ω) =
G′0(0,k,Ω), indicates how interlayer hopping renormalises the dispersion relation. We
introduce the translational-invariant part Σ′ of the self-energy such that

G′0(k,Ω)−1 = G0(k,Ω)−1 − Σ′(k,Ω). (6.13)

In the low-energy limit k,Ω� 1, we expect the self-energy to take the same form as the
kinetic term of the decoupled bilayer. At lowest order in k and Ω, we can write

Σ′(k,Ω) ' (1−Nψ)(σ · k − iΩ) +Nψδvσ · k. (6.14)

The parameter Nψ(α, β) diminishes the amplitude of the wave function, while δv(α, β)
reduces the Fermi velocity from unity to v = 1− δv. The series of magic angles and their
corresponding magic hopping strengths αn are those which fulfil v(αn, β) = 0.

Diagrammatic expansion of the self-energy — In standard field theories, the self-
energy, being a two-point vertex function, can be represented as one-particle irreducible
graphs. As a natural extension of this property, the contributions to Σ′ come from the
connected two-point diagrams that conserve total momentum and that cannot be cut by
one stroke into two subdiagrams that conserve themselves total momentum. We can define
the following Feynman rules.
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6.1. Single-particle description

• A free propagator is depicted as a solid line

G0(k, Ω) = (σ · k − iΩ)−1 = (6.15)

For pedagogical reasons, we keep the arrow that indicates the direction of momentum
in the following Feynman rules, but will soon drop it to ease the reading of graphs
with more complex topology.

• The corrected propagator is depicted as a double line

G′
0(k, Ω) = (6.16)

• The insertion of a hopping matrix T ηj inside a correlation function is accompanied
with the transfer of a momentum ηqj . We represent this insertion with a wavy line.
Each insertion contributes a factor α to the correlation function.

αT ηj =
k k +ηqj

η,j

(6.17)

• The algebra of the hopping matrices, along with Σ′ satisfying translational invariance,
impose stringent conditions on which graphs actually contribute. Let us consider
successive hopping processes with momentum transfers {η1qj1 , ..., ηmqjm

} in this
precise order. The corresponding two-point diagram vanishes unless

(i) total momentum is conserved, i.e.
m∑

r=1
ηrqjr

= 0;

(ii) consecutive hopping processes affect distinct layers, i.e. η2r = −η2r−1 for all
r = 1, 2, ...,m/2 with m even.

Condition (ii) forbids odd numbers of insertions, so that all correlation functions can
be expanded in α2 instead of α. It also implies that a hopping sequence is entirely
determined by the sign of the first hopping process η = η1 and the channels j1, j2, ...,
jm of the subsequent transfers. Combined with condition (i), it further yields that
the transfer of a momentum at one point of the diagram must be followed by the
transfer of the opposite momentum at another point. Thus we can join insertions of
opposite momenta by a single wavy line, as in Fig. 6.1(a). Furthermore, the total
count of wavy line crossings must be even. Hence the sixth order diagram 6.1(e)
contributes, whereas the analogue of diagram 6.1(b) where the two wavy lines cross
vanishes.
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Figure 6.1 | Diagrammatic expansion of the self-energy to order six in the dimensionless hopping
strength α = w/EK, where w is the AA hopping amplitude and EK the typical kinetic energy
of the decoupled twisted layers. A wavy line stands for a pair of hopping processes; it bears
an index j (or l, k at higher orders) and carries a momentum qj , summed over the channels
j = 1, 2, 3 arising from the three-fold rotational symmetry. Each graph is summed over the
sign η = ± of the first momentum transfer, which corresponds to bottom-to-top (η = +) or
top-to-bottom hopping (η = −). We show here the graphs at order (a) two (b) four, and (c-e)
six in α. At order six, the hopping lines can be (c) nested, (d) in a row, or (e) crossed.

Determination of the magic angles — We are now able to expand the self-energy to
an arbitrary order in α. In the following, we restrict ourselves to the sixth order. The
interested reader may find the details of the computation in Appendix E. Within the
low-energy limit k,Ω � 1, we can further expand at lowest order in momentum k and
frequency Ω. Then, the translational-invariant part of the corrected propagator can be
massaged into

G′0(k,Ω) ' N−1
ψ (vσ · k − iΩ)−1, (6.18)

where the normalisation of the wave function reads

Nψ = 1+3α2(1+β2)+2α4(1+7β2+4β4)+ 3
28α

6(8+16β2+376β4+187β6)+O(α8). (6.19)

In addition, the Fermi velocity corrected by interlayer hopping v follows from the relation

Nψv = 1− 3α2 + α4
(
1− β2

)2 − 3
49α

6
(
37− 112β2 + 119β4 − 70β6

)
+O(α8). (6.20)
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Figure 6.2 | Fermi velocity corrected by interlayer hopping v(α, β) at order α6, as a function of
the dimensionless hopping strength α in units of the kinetic energy. As the twist angle increases,
so does α, and the velocity vanishes at the first magic manifold α0(β), which corresponds to
the first magic angle θ0 ' 1.1°. The parameter β quantifies the asymmetry between intra- and
inter-sublattice hopping, which originates from lattice relaxation. Inset: the first magic angle
α0(β) depends weakly on β, and thus on corrugation effects.
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6.2. Algebraic classification of interaction channels

The first magic angle corresponds to the lowest α for which Eq. (6.20) vanishes. A quick
estimate gives α0 ' 1/

√
3, as was originally found in the seminal works (Lopes dos

Santos 2007; Shallcross 2010; Bistritzer 2011); this sets the first magic angle
about θ0 ' 1.1◦, in excellent agreement with experiments. Due to lattice relaxation, the
vanishing of v defines in fact a magic manifold α0(β) in parameter space. As shown in
Fig. 6.2, the above estimate of the first magic angle is trustworthy, because the first magic
hopping strength depends weakly on β. It ranges from α0(1) = 0.598 in the isotropic limit
to α0(0) = 0.585 in the first chiral limit (these limits were defined in Sec. 6.1.1). This
robustness with respect to the precise strength of intra-sublattice hopping breaks down for
the higher-order magic manifolds αn(β) with n > 0, where the perturbative expansion is
less controlled. In the second chiral limit, where αβ ∝ u remains finite and α ∝ w is set to
zero, hopping corrections to the Fermi velocity are weaker, of the order Nψv − 1 ' (αβ)4,
as originally noted by (Mele 2011).

Many numerical studies report that the vanishing of the Dirac velocity, the maximal
band gap and the minimal bandwidth occur almost at the same magic value α0, thereby
showing the universality of the magic angle physics. Apart from the chirally symmetric
model, where the flat bands appear at exactly zero energy due to the mathematical structure
of the eigenvalue equation, the reason why these phenomena happen simultaneously is
obscure. A. Bernevig et al. showed in an approximate two-band model that the bandwidth
vanishes exactly on a different magic manifold (Bernevig 2020a)

α′0(β) = 2
√

1 + β2 −
√

2 + 3β2. (6.21)

Yet, these two manifolds stay extremely close for moderate amplitudes of intra-sublattice
hopping (for β between 0 and 1), which explains why tuning the model away from the
chiral limit preserves the band flatness with an excellent accuracy.

Exactly at the first magic angle, the dominant correction to the relation dispersion is
quadratic. To order two in momentum, we find indeed

Σ′(k,Ω) ' τz
2m


 0 ik2

−ik∗2 0


+ (Nψ − 1)iΩτ0σ0, (6.22)

where k = kx + iky, and the fermion mass m is such that m−1 = 6(αβ)2 [1− 3α2 (1− β2)].
The low-energy band structure becomes similar to that of the Bernal-stacked bilayer, where
massive chiral fermions emerge as elementary excitations. This parabolic dispersion is
fully consistent with numerical findings.

6.2 Algebraic classification of interaction channels
We now use the symmetries of the single-valley model developed in Sec. 6.1 to identify all
allowed contact interactions near charge neutrality. We will consider only particle-hole
repulsive channels (the ones relevant for an insulating ground state), such as those that
arise from electron-electron Coulomb interaction. We base our analysis on the theory of
the linear representations of groups. Appendix D reviews the definitions and theorems
needed to perform this group-theoretical analysis. For specialised papers and books on
group theory, see (Dixon 1970; Gao 2002; Ma 2007; Ma 2004; Dresselhaus 2007).
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Chapter 6. Low-energy theory near charge neutrality

6.2.1 Symmetry analysis of the model
Generators of the symmetry group — Interlayer hopping strongly restricts the
symmetries of the single-particle Hamiltonian H = H0 +Hα given in Eq. (6.6). Indeed, the
Hamiltonian of the decoupled bilayer H0 = iτ0σ · ∂ is invariant under the combination of
inversion and time reversal Θ = IT , an accidental particle-hole symmetry P , which we will
soon define, space-time translations R1+2, and the Lorentz transformations O(1, 2). The
two former sets form the Poincaré group R1+2 oO(1, 2), where o indicates a semi-direct
product.

The hopping Hamiltonian Hα breaks Lorentz invariance, continuous space translations
and layer rotational symmetry. The symmetry group in the space-time sector thus reduces
to the symmorphic group R×ToD3, composed of time translations R, discrete translations
on the moiré lattice T = d1Z + d2Z, and the point group D3. The latter is generated
by the rotation C3 which rotates the bilayer by an angle 2π/3 around the out-of-plane
z-axis, and the rotation C2 which rotates the bilayer by an angle π around the in-plane x
axis which passes through the bilayer at mid-distance (see Fig. 5.2). It consists of the six
elements

D3 = {1, C3, C2
3 , C2, C2C3, C2C2

3}. (6.23)
We now focus on the magnetic group generated by C3, C2, and the two special sym-

metries Θ and P . These four operations act by conjugation on the single-particle Hamil-
tonian H in a four-dimensional representation, denoted as Υ. The three-fold rotation C3
affects the sublattice but leaves the layer degree of freedom untouched. Its matrix repre-
sentation reads

Υ(C3) = e2iπ/3σzτ0. (6.24)
Though often viewed as a mirror symmetry, the operation C2 flips both sublattices and
layers, which means that it acts as a proper rotation in three dimensions. It is represented
by

Υ(C2) = σxτx. (6.25)
These two operations R = C3, C2 define unitary spatial symmetries of the Hamiltonian;
they act as

Υ(R)−1H(Rr, t) Υ(R) = H(r, t). (6.26)
Let us consider now the two special symmetries. The composition Θ = IT of spatial

inversion I and time reversal T is represented by

Υ(Θ) = σxτ0K, (6.27)

where K denotes complex conjugation. Since the electron spin does not enter our low-energy
model, Θ squares to identity. As an antiunitary symmetry, it acts on the Hamiltonian as

Υ(Θ)−1H(−r,−t)∗Υ(Θ) = H(r, t). (6.28)

Note that time reversal here is spinless, so that Θ2 = 1. The Θ symmetry protects a Z
topology of the active flat bands, characterised by a winding number (Song 2019; Ahn
2019). This protection manifests itself in an obstruction to build Wannier (atomically
localised) wave functions which are invariant under Θ out of eigenstates of the active flat
bands. The topology is fragile, which means that including higher-energy bands trivialise
the flat bands. However, this fragile topology becomes robust type when including a
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6.2. Algebraic classification of interaction channels

particle-hole symmetry P. This latter operation relates eigenstates of opposite energies,
and acts in real space as the reflection x 7→ −x. Its matrix representation reads

Υ(P) = σxτz. (6.29)

Following (Hejazi 2019), we define P as a unitary operation2 in order to have a single
antiunitary generator Θ, unlike the conventions of (Song 2019). This operation actually
corresponds to an antisymmetry, since it anticommutes with the Hamiltonian,

Υ(P)−1H(Pr, t) Υ(P) = −H(r, t). (6.30)

Because the operators P and C2 anticommute, the combined antisymmetry PC2 leads to a
Kramers degeneracy through the relation (PC2)2 = −1. This degeneracy has important
consequences on the linear representation theory of the symmetry group of TBG, as we
will see shortly. Unlike the three other symmetries, the particle-hole antisymmetry is
accidental, and indeed appears to be broken in experiments. From the perspective of our
low-energy theory, the P symmetry is lost when the angular dependence of the kinetic
terms (R±θ/2 σ) · k is kept, when the single-particle Hamiltonian includes quadratic terms
in momentum, or when intervalley scattering affects the dynamics (Song 2019). As a
result, the topological constraints, which forbids lattice models to preserve both Θ and P
(Bernevig 2020b; Song 2020), seem to be specific to microscopic details. For this reason,
we disregard the topological aspects of the low-energy theory of TBG in this work. Besides,
we believe that topology plays a minor role in identifying interaction channels and in a
renormalisation group framework.

Since Υ is a faithful representation, the multiplication table of the symmetry group
follows from that of the matrix representations of the four generators. In the following
paragraphs, we determine the classes of conjugation and irreducible representations, first
of the symmetry group generated by D3 and P (the unitary group), then when including
the antiunitary operation Θ (the magnetic group).

Representations of the unitary group — We define the unitary group D̃3 as the
subgroup which contains all unitary operators, whether symmetries or antisymmetries. In
other words, for all R ∈ D̃3,

Υ(R)−1H(Rr, t) Υ(R) = ±H(r, t). (6.31)

Eq. (6.31) shows that the set D̃3 has indeed the structure of a group. It is generated by
the point group D3 and P as the semi-direct product

D̃3 = {1,P , 1̄, P̄}oD3, (6.32)

where the ‘anti-identity’ 1̄ = (PC2)2 is represented by the matrix Γ(1̄) = −τ0σ0 and a
barred operator stands for the product of this operator with 1̄. This new element can be
seen as a 2π rotation in the double covering of D3, or double group

D(2)
3 = D3 × {1, 1̄}, (6.33)

2Strictly speaking, this operation is a chiral rather than a particle-hole symmetry, but to avoid any
confusion with the chiral symmetry of monolayer graphene implemented by the operator σz, we will
nonetheless refer to P as a particle-hole symmetry.
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Chapter 6. Low-energy theory near charge neutrality

where the identity 1 is assimilated to a 4π rotation. Double groups often show up in
models where the excitations have a half-integer spin. This example shows that unitary
antisymmetries can also generate a double group, due to the anticommutation of P and C2.
The double group is a normal subgroup of D̃3. Hence the structure of the quotient
set D̃3/D(2)

3 ∼ {1,P} is also that of a group, which simplifies the determination of the
irreducible representations (irrep.) of D̃3. We can indeed find the irrep. of D̃3 from the
composite operator method (Chen 2002), or build them by induction from that of D3.
We illustrate the second method in Appendix D. The table of characters of the unitary
group is shown in Tab. 6.1.

Corepresentations of the magnetic group — A group generated by a crystallographic
point group and an antiunitary operator is magnetic, or Shubnikov group (Buerger
1964). In general, this antiunitary operator is time reversal, under which the electron spin
is odd. Magnetic groups give clues about the magnetic properties of a crystal, hence its
name. The group generated by D̃3 and Θ is a grey magnetic group, i.e. the direct product

M = D̃3 × {1,Θ}. (6.34)

The ‘representations’ of a magnetic group do not share all the defining properties of the
standard representations of finite groups. To stress the difference, the term corepresentation
is used instead, but for simplicity, we will refer to irreducible corepresentations as irrep. We
determine the irrep. in Appendix D. All irrep. $ of D̃3 generate two irrep. ofM, denoted
as $±, except E1 and E5. In the former case $±(Θ) = ±1 for the one-dimensional irrep.,
and $±(Θ) = ±µx for the two-dimensional irrep., where µx represents here a generic x

Irrep. 1 1̄ 2C3 2C̄3 2PC2 2PC2C3 2PC2C2
3 6P 6C2

A1 1 1 1 1 1 1 1 1 1
A2 1 1 1 1 −1 −1 −1 1 −1
a1 1 1 1 1 −1 −1 −1 −1 1
a2 1 1 1 1 1 1 1 −1 −1
E1 2 −2 −1 1 0

√
3 −

√
3 0 0

E2 2 2 −1 −1 2 −1 −1 0 0
E3 2 −2 2 −2 0 0 0 0 0
E4 2 2 −1 −1 −2 1 1 0 0
E5 2 −2 −1 1 0 −

√
3

√
3 0 0

Table 6.1 | Table of characters of the unitary group D̃3, generated by the three-fold out-of-plane
rotation C3, the bilayer flip C2, and the particle-hole (anti)symmetry P . Each column corresponds
to a class of conjugation, and each line to an irreducible representation. For the one-dimensional
representations already present in the point group D3, we use the symbol A prescribed by
Mulliken’s notation (Mulliken 2004). The symbol a denotes a one-dimensional representation
whose character takes opposite signs on antisymmetric operators, and is specific to the full
unitary group. The symbol E denotes a two-dimensional representation.
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6.2. Algebraic classification of interaction channels

Pauli matrix (unrelated to any degree of freedom). In the latter case, E1 and E5 generate
a single four-dimensional onM, which is equivalent to Υ.

Extended symmetries in the spin-valley sector — The four generators discussed
above describe entirely the single-valley model with spinless fermions, within which we
identify the allowed interactions in Sec. 6.2.2. When both valleys are considered, e.g.
when accounting for intervalley scattering, the low-energy theory of TBG acquires two
extra discrete symmetries, which are time reversal T and the six-fold rotation C6 about
the out-of-plane axis z. Both operations map the valleys K and K′ to one another, and
each valley enjoys an internal U(2) spin symmetry. This leads to a global U(2)K × U(2)K′

spin-valley symmetry (Bernevig 2020b).

6.2.2 Symmetry-preserving contact interactions
Principle of the method — The fermionic Grassmann fields {ψ, ψ} define two conjugate
representations of the magnetic group M, one which we denoted as Υ, the conjugate
representation being Υ†. The action of the free decoupled bilayer reads

S0 =
ˆ

ddr dτ ψ(H0 − ∂τ )ψ, (6.35)

where d = 2 is the space dimension. Eq. (6.35) describes two copies of (2 + 1)-dimensional
massless Dirac fermions, each associated to one layer of TBG. Importantly, these copies
correspond to the same representation of the Dirac matrices, unlike the two valleys
of monolayer graphene, which are time-reversal partners. The behaviour under the Θ
symmetry is modified accordingly. The representation Υ is four-dimensional, unitary, and
reducible; we decomposed it into the direct sum

Υ ∼ E1 ⊕ E5. (6.36)

The elements R ∈M act by matrix multiplication on the fields, R · ψ(x) = Υ(R)ψ(R−1x)
and R · ψ(x) = ψ(R−1x)Υ†(R), where x = (r, t) is the space-time variable, and Υ†(R) =
Υ(R)−1 by unitarity. Let us consider now the action of the free coupled bilayer

S ′0 =
ˆ

ddr dτ ψ(H− ∂τ )ψ, (6.37)

where H is given by Eq. (6.6). The bilinear form ψψ transforms in the direct product of
representations Υ† ⊗Υ, which, of course, leads to the invariance of the action. Indeed,

R · ψ(x)H(x)ψ(x) = ψ(R−1x)Υ†(R)H(x)Υ(R)ψ(R−1x) = ψ(R−1x)H(R−1x)ψ(R−1x).
(6.38)

Upon changing the integration variable from x toR−1x, the action (6.37) remains unaffected.
From the perspective of the matrix representation of the bilinear form, among all irrep.
that enter the decomposition of Υ† ⊗Υ, the Bloch Hamiltonian H transforms according
to the trivial representation A+

1 ofM.
We now add a contact quartic interaction. The interaction is thus independent of the

space-time variable, but only in the original basis of eigenvectors (ψ̂ , ψ̂) where the two
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Chapter 6. Low-energy theory near charge neutrality

Dirac nodes are separated, and the origin of momentum coincides with the centre of the
mini Brillouin zone. We look for interaction actions of the form

Sint ∝
ˆ

ddr dτ (ψ̂M̂ψ̂)(ψ̂ N̂ ψ̂), (6.39)

where M̂ and N̂ are constant four-dimensional matrices. Each bilinear ψ̂M̂ψ̂ and ψ̂ N̂ ψ̂
belongs to a representation that enters the decomposition of Υ† ⊗ Υ. To ensure that
Eq. (6.39) is also invariant under the symmetry group M, we must find the suitable
matrices (M̂, N̂) such that (ψ̂M̂ψ̂)(ψ̂ N̂ ψ̂) belongs to the trivial representation of the
direct product (Υ† ⊗Υ)⊗ (Υ† ⊗Υ). The entries of the interaction matrices M̂ and N̂ are
given by the so-called Clebsch-Gordan coefficients.

Interaction matrices in the unrotated basis — The decomposition of the direct
product Υ† ⊗Υ into irrep. ofM (the Clebsch-Gordan series) reads

X(Υ†⊗Υ)X−1 = A+
1 ⊕a+

1 ⊕A+
2 ⊕a+

2 ⊕A−1 ⊕a−1 ⊕A−2 ⊕a−2 ⊕E+
2 ⊕E+

4 ⊕E−2 ⊕E−4 , (6.40)

where the sixteen-times-sixteen transformation matrix X contains the Clebsch-Gordan
coefficients, which are given in Appendix D.

To find the quartic interactions that preserveM we must find all copies of the trivial
irrep. A+

1 in the product (Υ† ⊗Υ)⊗ (Υ† ⊗Υ). By inspecting the characters, it is clear
that only products of the same irrep. decompose themselves into a copy of A+

1 . For
the one-dimensional irrep. $ = A+

1 , a
+
1 , A

+
2 , a

+
2 , A

−
1 , a

−
1 , A

−
2 and a−2 , the decomposition is

simply
$ ⊗$ = A+

1 . (6.41)
The quartic interaction corresponding to one of these irrep. is of the form M̂ ⊗ M̂ , where
M̂ = N̂ follows from Eq. (6.40). The interaction matrices for these eight one-dimensional
irrep. are listed in Tab. 6.2. For the two-dimensional irrep., we have

E±2 ⊗ E±2 ∼ A±1 ⊕ A±2 ⊕ E±4 , E±4 ⊗ E±4 ∼ A±1 ⊕ A±2 ⊕ E±2 . (6.42)

irrep. A+
1 a+

1 A+
2 a+

2 A−1 a−1 A−2 a−2

M̂ σ0τ0 σ0τx σ0τz σ0τy σzτy σzτz σzτx σzτ0

Θ +1 (X) +1 (X) +1 (X) +1 (X) −1 −1 −1 −1

C2 +1 (X) +1 (X) −1 −1 +1 (X) +1 (X) −1 −1

P +1 −1 (X) +1 −1 (X) +1 −1 (X) +1 −1 (X)

Table 6.2 | One-dimensional irreducible corepresentations (irrep.) of the magnetic symmetry
group of the continuum model, with their associated coupling matrices M̂ , expressed in sublattice
(Pauli matrices σ) and layer (Pauli matrices τ) sectors. The basis ψ̂ is chosen at the centre of
the mini Brillouin zone, for which the coupling matrices are space-independent. The matrices
are normalised such that Tr(M̂M̂ †) = 4. The entries are the eigenvalues with respect to the
symmetries Θ = IT (product of space inversion and time reversal), C2 (flip of the bilayer), and P
(particle-hole antisymmetry). The irrep. can either break or preserve (X) those symmetries, in
which case the eigenvalues are +1 for symmetries, −1 for antisymmetries that act on a field
bilinear. They all preserve the three-fold rotational symmetry C3.
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6.2. Algebraic classification of interaction channels

irrep. E+
2 E+

4 E−2 E−4
√

2M̂ στ0 στx στy στz

Θ +1 +1 −1 +1

Table 6.3 | Two-dimensional irreducible corepresentations (simplified as irrep.) of the magnetic
symmetry group of the continuum model, with their associated coupling matrices M̂ , expressed
in sublattice (Pauli matrices σ) and layer (Pauli matrices τ) sectors. The hat indicates that
the basis is chosen at the centre of the mini Brillouin zone, for which the coupling matrices are
space-independent. These coupling matrices are normalised such that Tr(M̂ · M̂ †) = 4, hence
the factor

√
2. These two-dimensional irrep. all break the three-fold rotational symmetry C3, but

in the chosen basis where the quadrilinear form is written as a square of bilinears M̂ ⊗ M̂ , all
matrix vectors are eigenvectors of the antiunitary symmetry Θ = IT . The last line indicates the
eigenvalue with respect to Θ. The presence of the reflection C2 symmetry or the particle-hole
antisymmetry P depends on the spatial direction in which the order develop.

For each of these irrep., the invariant combination transforming as A+
1 is M̂ ⊗ N̂ , where

(M̂, N̂) forms an orthonormal basis of the two-dimensional space on which the irrep. acts.
A natural choice for this basis is M̂ = σ+τµ and N̂ = σ−τµ where σ± are the pseudospin
ladder operators, for µ = 0, ..., 3. However the quadrilinear form can be cast into a perfect
square M̂ ⊗ M̂ where M̂ = στµ in the new basis. Tab. 6.2 lists the interaction matrices
for these four two-dimensional irrep.

Interaction matrices in the rotated basis — The interaction matrices in the rotated
basis M(r) follow by conjugation with the transformation matrix A(r) of Eq. (6.5),

M(r) = A†(r)M̂A(r). (6.43)

Though both M̂ and M(r) describe contact interactions, M̂ is space-independent, while
M(r) depends in general on position. However, the transformed matrix M(r) remains
space-independent if the channel affects the two layers separately. Indeed, if M̂ is diagonal
in layer, i.e. proportional to τ0/z, it commutes with A(r), so that M(r) = M̂ . This class
of scattering processes leads to no momentum transfer between interacting particles.

If instead M̂ is off diagonal in layer, i.e. proportional to τx/y, M(r) differs from M̂ ,
and is modulated periodically over a distance of the order of the moiré lattice constant.
The off-diagonal Pauli matrices τx/y are indeed transformed into





A†(r)τxA(r) = e−iq1·rτ− + eiq1·rτ+,

A†(r)τyA(r) = −ie−iq1·rτ+ + ieiq1·rτ−.
(6.44)

Due to the momentum transfer in Eq. (6.44), these couplings will turn out to be irrelevant
in the renormalisation group approach. We will clarify this point in Chapter 7. The same
conclusions apply to two-dimensional irrep., where a vector of matrices M̂ replaces the
single matrix M̂ .

Interaction channels — All in all, we find the allowed couplings to be: eight channels
originating from one-dimensional irrep., four of which involve intralayer scatterings; and
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Chapter 6. Low-energy theory near charge neutrality

four channels originating from two-dimensional irrep., two of which involve intralayer
scatterings. The one- versus two-dimensional nature of the irrep. transpires in the
field theory as quartic couplings between either density or current operators. The one-
dimensional channels describes couplings between density operators ρi(r) = ψMi(r)ψ,
which are diagonal in sublattice and preserve C3. The two-dimensional channels describe
couplings between current operators Jl(r) = ψMl(r)ψ, which are off diagonal in sublattice
and break C3. The complete interaction action has the form

Sint = −
8∑

i=1
gi

ˆ
d2r dτ ρi(r)ρi(r)−

4∑

l=1
λl

ˆ
d2r dτ Jl(r) · Jl(r). (6.45)

The parameters gi and λl of Eq. (6.45) denote the coupling strengths of the density-density
and current-current interactions, respectively. We collect the density couplings into two
sets, represented in Tab. 6.2; the vectors of couplings matrices of Tab. 6.3 constitute a
third set.

• Out of the eight density-density couplings, the four interactions associated to irrep.
which preserve Θ are those symmetric in the A/B sublattices. The corresponding
channels are of the form ψ̂σ0τµψ̂ for µ = 0, x, y, z, in the original unrotated basis.
They differ by their breaking of C2 or P . Setting aside the layer degree of freedom,
this corresponds to a ‘pure’ density-density interaction, of the form (ψ̂ ψ̂)2. This
instability renormalises the chemical potential, which is not associated to a correlated
phase.

• The four density channels which break Θ are those antisymmetric in the A/B

C3 C3

1d (density)

Dirac cone
shift

(ψ̂σψ̂ )2

2d (current)

chemical
potential

(ψ̂ ψ̂ )2

gap

(ψ̂ σzψ̂ )2

Θ Θ

Figure 6.3 | Among the twelve contact interaction channels at charge neutrality in twisted bilayer
graphene, eight correspond to one-dimensional (1d) irreducible representations (irrep.), and lead
to density-density couplings; four correspond to 2d irrep., and lead to current-current couplings.
The current channels break the three-fold C3 symmetry, and have a structure σ = (σx, σy) in the
sublattice sector, as a result of the relativistic dispersion relation and the sublattice acting as
a pseudospin. The corresponding instability tends to shift the Dirac cones from the corners of
the hexagonal mini Brillouin zone. Among the eight density channels, four preserve the product
of time reversal and spatial inversion Θ = IT , and develop a (possibly staggered) chemical
potential; four break Θ, and develop a gap. These four latter channels have a structure σz in the
sublattice sector, which corresponds to a mass term in graphene. The shape of the quadrilinear
form presented is valid in the basis (ψ̂ , ψ̂) where the origin of momentum is taken at the centre
of the mini Brillouin zone.
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sublattices, of the form ψ̂σzτµψ̂ . Similarly to the first set, they can break C2
or P . Those which preserve the particle-hole symmetry lead to on-diagonal in layer
instabilities. These four couplings corresponds to a chiral interaction, of the form
(ψ̂γ5ψ̂)2, where γ5 = σz in (2 + 1) dimensions. This instability is reminiscent of the
spontaneous mass generation of the Gross-Neveu model.

• Finally, the four current channels assume the form ψ̂στµψ̂ . They break most of
the symmetries of the free model in general (and always the three-fold rotational
symmetry C3) except the anti-unitary symmetry Θ (see Tab. 6.3). Depending on the
direction selected by ψ̂στµψ̂ , these couplings can preserve C2 and P .

We summarise all these channels in Fig. 6.3. We will discuss the nature of the correlated
phase associated to the dominant instabilities in Sec. 7.1.
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Conclusion
Summary — The low-energy physics of twisted bilayer graphene can be described near
charge neutrality by a pair of Dirac cones, each originating from the same valley of
graphene, and pulled apart by the twist. In a first approximation, only the sublattice and
layer degrees of freedom control the dynamics. Particles can tunnel between the layers,
with an amplitude that is spatially modulated by the moiré pattern. To diagonalise the
Hamiltonian of this highly non-standard free theory, we have expanded it order by order
in the dimensionless hopping strength α. Remarkably, the kinetic energy becomes so small
at low twist angles that interlayer hopping completely suppresses the Fermi velocity at a
discrete set of ‘magic’ angles. We have calculated the correction to the Fermi velocity and
the wave function amplitude at order six in α, and have shown that corrugation of the
graphene layers weakly alters the first magic angle.

Focusing then on many-body effects, we have identified the contact quartic interactions
that preserve the symmetries of the model: the three-fold in-plane rotation, a mirror
symmetry, an accidental particle-hole antisymmetry, and the antiunitary product of time
reversal and spatial inversion. In the basis where the Dirac cones of each layer are
superimposed to the same momentum, half the allowed particle-hole channels display
interlayer coherence, meaning that the coupling matrix has off-diagonal entries in the layer
sector and is associated with momentum transfers of the order of the moiré momentum.
Because such channels require the quasiparticles to scatter with a wave length of the order
of the moiré period, they will not compete as dominant instabilities in the infrared limit, as
we will see in Chapter 7. The remaining instabilities correspond either to density-density
couplings, which preserves the three-fold rotational symmetry, or current-current couplings,
which break it. The relevant density instabilities will turn out to be those which open
gaps in the energy spectrum. The current instabilities, on the other hand, shift the Dirac
cones from the corners of the Brillouin zone.

Outlook — To go beyond the low-energy theory proposed in this chapter, we could
include the valley degree of freedom. Neglecting the valley is a good approximation,
because intervalley scattering occurs at atomic length scales, which are several orders of
magnitude smaller than the moiré period at low twist angles. We thus expect that ground
states which differ only in their ordering in the valley sector have close energies. The valley
degeneracy of the channels we considered in our single-valley model, which is protected
by time-reversal symmetry, could be split by tenuous effects such as strain or substrate
alignment. The hierarchy of the possible ground states also depends strongly on corrugation
and lattice relaxation, which affect the amplitude of intra-sublattice hopping processes.
Besides, the single-particle band structure displays a valley asymmetry along the Γ−M
lines of the mini Brillouin zone: the interplay between dispersion and Coulomb repulsion
could also explain why the valley degree of freedom plays a small but non-negligible role in
magic angle twisted bilayer graphene. We will ignore these refinements, and treat only the
competition between instabilities at the lowest energy scale, where only the band structure
near the Dirac cones matter.
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The continuum single-valley model proposed in the previous chapter captures the magic
angle physics near charge neutrality. At certain twist angles, interlayer hopping decreases
the energy bandwidth so much that the kinetic and interaction energy scales become
comparable. To account for many-body effects, we include in the model all contact
interactions channels allowed by symmetry, which we identified using a formal group-
theoretical approach. These channels split into three sets: two sets correspond to density-
density couplings and preserve the three-fold rotational symmetry; the last set corresponds
to current-current couplings, and break the rotational symmetry.

We now study the competition between these instabilities and identify the dominant
one, responsible for the correlated phase observed at charge neutrality. We look for the
dominant instabilities using mean-field and renormalisation group methods. In the mean-
field description, we determine the order parameters associated to the relevant instabilities
(gap and momentum shift) in a self-consistent way. Doing so, we take into account their
reduction by interlayer hopping, in a similar way as we did for the Fermi velocity. We
then resort to the renormalisation group to discard irrelevant instabilities, and study
the competition between the four remaining instabilities. We find that the asymptotic
behaviour of the renormalisation flow selects a nematic insulator with layer-polarised gap
and momentum shift as the correlated phase observed at charge neutrality. Finally, we
put our results in perspective with other effects, such as twist angle disorder, long-range
components of the electron-electron interaction, and the valley or spin degrees of freedom.

7.1 Mean-field approach . . . . . . . . . . . . . . . . . . . . . . . . . 174
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7.2.1 Renormalisation procedure . . . . . . . . . . . . . . . . . . . . 179
7.2.2 Loopwise and hopping strength expansions . . . . . . . . . . . 184
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7.3.2 Coulomb interaction . . . . . . . . . . . . . . . . . . . . . . . . 188
7.3.3 Valley and spin degrees of freedom . . . . . . . . . . . . . . . . 189

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7.1 Mean-field approach
We perform here a mean-field analysis to prove the emergence of a correlated phase near
the first magic angle (Brillaux 2020). To gain some intuition on the correlated phases
at play, we first identify the order parameters associated to the four relevant interacting
channels, which leads to a gap or a momentum shift of the Dirac cones. We then solve the
self-consistent equation for each of these order parameters separately, where we include the
effect of interlayer hopping, which tends to reduce the gaps and momentum shifts. To do
so, we diagonalise and expand the mean-field Hamiltonian at order six in the dimensionless
hopping strength α, as we have done in Sec. 6.1.2 for the Fermi velocity.

7.1.1 Nature of the correlated phases
As we will see in the renormalisation group study of Sec. 7.2 below, only four interactions
turn out to dominate the long wave length physics. We consider only these in this
section. These interactions are associated to the coupling matrices σzτ0/z and στ0/z and
the coupling constants g0/z and λ0/z, respectively. The first set of channels breaks the
product of time reversal and spatial inversion Θ = IT , and generates a phase with a
gap ∆µ ∝ gµ 〈ψσzτµψ〉, with µ = 0, z. The second set of channels breaks the three-fold
rotational symmetry C3, and generates a phase where the Dirac cones are shifted by a
momentum Gµ ∝ λµ 〈ψστµψ〉. We account for these couplings by introducing four order
parameters, which enter the mean-field Hamiltonian

HMF = H0 + σz(∆0τ0 + ∆zτz) + σ · (G0τ0 + Gzτz), (7.1)

where H0 = τ0σ · k is the single-particle Hamiltonian of the decoupled bilayer. At this
stage, we ignore the corrections induced by interlayer hopping. We also treat each order
parameter individually, and reconstruct schematically the band structure near the corners
of the mini Brillouin zone as in Fig. 7.1.

The two terms in the first parenthesis of Eq. (7.1), being proportional to σz, open
gaps of energy 2∆0/z at the Dirac points of the mini Brillouin zone. The sublattice
polarisation leads to two topological bands (per spin and valley) with Chern numbers
C = σzτz (Bultinck 2020b). These two insulating phases have identical band structures,
but differ by the spatial charge redistribution, since the first one breaks the mirror
symmetry C2, while the other preserves it. In the σzτz channel, and assuming ∆z to be
positive, particle excitations are localised on the A1 (bottom layer) and B2 (top layer)
sublattices near the band edges, and vice versa for the holes, as shown in Fig. 7.1(a).
In the σzτ0 channel, particles localise on the A sublattice and holes on the B sublattice,
irrespectively of the layer, as in Fig. 7.1(b).

The two terms in the second parenthesis of Eq. (7.1), being proportional to σx,y, shift
the bottom and top Dirac points away from the corners of the mini Brillouin zone. The
perturbation σ · Gzτz pushes the top and bottom Dirac nodes asymmetrically by an

174



7.1. Mean-field approach

amount ±Gz, as in Fig. 7.1(c). The charge distribution organises into stripes. When
the direction of this shift coincides with the high-symmetry line K-M, these stripes are
oriented along the direction normal to Gz (along the x-axis), as shown in Fig. 7.2. We dub
this state a nematic phase by analogy with similar states discussed in (Fradkin 2010).
The τ0σ · G0 perturbation pushes the top and bottom Dirac nodes symmetrically, as in
Fig. 7.1(d), which modulates the phase of the wave function identically in the top and
bottom layers. This perturbation leaves no signatures in scanning tunnelling microscopy
or transport measurements, and does not lead to a correlated phase per se.

Kb

Kt
C = +1

C = −1

2∆z

x

(a)

Kb

Kt
C = +1

C = +1

2∆0

(b)

•
• •

•
••

Gz

(c)

•

•
•

•

•
•

G0

(d)

Figure 7.1 | Schematic low-energy dispersion relation over the mini Brillouin zone and corre-
sponding correlated phases of twisted bilayer graphene, in the single-valley continuum model.
(a)-(b) represent gapped phases, while (c)-(d) represent density-modulated phases. (a) A term
∆zτzσz in the mean-field Hamiltonian opens a gap at the Kt (blue dots •) and Kb (red dots
•) Dirac points of the top and bottom layers respectively. Near the band edges, the A sublat-
tice (black dots •) harbours particles on the top layer, and holes on the bottom layer. (b) A
term ∆0τ0σz opens a gap as well, but the spatial distribution near the band edges is symmetric:
the particle states are localised on the A sublattice on both the top and bottom layers. (c) A
term τzσ · Gz (yellow arrow) detaches the Dirac points asymmetrically from the corners of the
Brillouin zone, leading to a nematic phase. (d) A term τ0σ · G0 instability (yellow arrow) shifts
all Dirac points by the same vector, and merely modulates the global phase of the wave function.
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(a) (b)

Figure 7.2 | Theoretical map of the local density of states of twisted bilayer graphene, in
absence of correlations (a), and in the nematic phase (b). These colour plots represent the
imbalanced density |ψt + r ψb|2 probed e.g. by a scanning tunnelling microscopy tip located on
the top layer, where for concreteness we set the relative amplitude of tunnelling through the
bottom layer to r = 0.5. The coordinates (x, y) are measured in units of the moiré period. (a) In
absence of correlation, the wave function density peaks at AA stacking regions (in orange), which
form a hexagonal pattern. (a) The nematic phase is characterised by an asymmetric shift ±Gz of
the top and bottom Dirac cones from the corners of the mini Brillouin zone. Here, Gz = 0.3 ey
in units of the moiré momentum kθ, where ey denotes the unit vector in the y direction. The
three-fold symmetry breaking appears as charge stripes perpendicular to Gz, and separated by a
distance G−1

z .

7.1.2 Solutions of the self-consistent equations
Correction of order parameters by interlayer hopping — We found in Eq. (6.18)
that the propagator corrected by interlayer hopping has the form G′−1

0 ' Nψ(vσ ·k− iΩ) in
the low-energy limit k,Ω� 1. Interlayer hopping enhances the wave function amplitude by
a factor Nψ, while reducing the Fermi velocity to |v| < 1. The expressions of Nψ and v at
order six in the dimensionless hopping strength α were given in Eq. (6.19) and Eq. (6.20),
respectively. Similarly, we can determine the correction to the four order parameters
introduced in Sec. 7.1.1 by expanding the mean-field Hamiltonian of the coupled bilayer
order by order in α. By adding the hopping term to Eq. (7.1), we arrive at the full
mean-field Hamiltonian

H′MF = HMF +Hα = H + σz(∆0τ0 + ∆zτz) + σ · (G0τ0 + Gzτz), (7.2)

where the Hamiltonian of the free theory H is given by Eq. (6.6). Diagonalising Eq. (7.2)
in the low-energy limit, we find a mean-field propagator of the form

G′
−1
MF ' Nψ

{
vσ ·

[(
k +N

(G)
0 G0

)
τ0 +N (G)

z Gzτz
]

+σz
(
N

(∆)
0 ∆0τ0 +N (∆)

z ∆zτz
)
− iΩ

}
. (7.3)

The factors N (G/∆)
0/z (α, β) encode the renormalisation of the order parameters by interlayer

hopping; they are the counterparts of the corrected Fermi velocity for the matrix structures
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Figure 7.3 | Interlayer hopping correction of the order parameter against dimensionless hopping
strength α, for the four relevant instabilities of twisted bilayer graphene: layer-symmetric gap
(channel ∆0σzτ0, factor N (∆)

0 ), layer-polarised gap (channel ∆zσzτz, factor N (∆)
z ), momentum

shift (channel τ0σ · G0, factor v equal to the corrected Fermi velocity), and layer-polarised
momentum shift (channel τzσ · Gz, factor vN (G)

z ). The first pair of instabilities generates a
gapped phase, while the layer-polarised shift leads to a nematic phase. The ratio of intra-
sublattice over inter-sublattice hopping amplitudes is set to β = 0.82 (Lucignano 2019). The
corrected Fermi velocity v(α, β) vanishes at the first magic value α0 ' 0.59. Strikingly, the
layer-polarised gap corrected by hopping vanishes at a hopping strength α̃0 ' 0.69 slightly larger
than the first magic value. At the mean-field level, the layer-polarised gap is more suppressed in
the vicinity of the magic angle than the layer-symmetric gap, which is itself more suppressed
than the layer-polarised momentum shift.

σzτ0/z and στ0/z. By definition of the Fermi velocity, we have N (G)
0 = 1. We calculate the

other non-trivial factors diagrammatically to sixth order in α, and plot their dependence
on α in Fig. 7.3. Their expressions are given in Appendix E.

Strikingly, we find that the correction to the layer-polarised gap N (∆)
z vanishes at a

dimensionless hopping strength α̃0(β) slightly larger than the first magic value α0(β).
Though this particular value of the hopping strength plays no role in the magic angle
physics (the bandwidth is not especially small at α̃0), the strong reduction of the layer-
polarised gap in the vicinity of the first magic angle entails that at the mean-field level, a
gap instability should preferably develop in the channel σzτ0 rather than σzτz. In addition,
the factor vN (G)

z which renormalises the asymmetric momentum shift Gz stays non-zero
at the first magic angle, which entails that the local DoS in the nematic phase becomes
modulated over a distance of the order of the moiré period L. Since the momentum shift
becomes of the order of the mini Brillouin zone’s size kθ, the Dirac cones can overlap. This
rotational-symmetry-breaking instability cannot form a gap by itself, though, because the
non-equivalent Dirac cones of the mini Brillouin zone originate from the same valley of
graphene, and therefore have the same winding number. We now confirm these conclusions
by solving the mean-field self-consistent equations.

Solution to the self-consistent equations — For the sake of simplicity, we write the
mean-field self-consistent equations for each order parameter separately. Upon introducing
an ultraviolet cut-off Λ, these equations read
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∆µ = −2gµ
ˆ

dω
ˆ

Λ

d2q

(2π)3 〈ψq,ωσzτµψq,ω〉,

Gµ = −2λµ
ˆ

dω
ˆ

Λ

d2q

(2π)3 〈ψq,ωστµψq,ω〉,

(7.4a)

(7.4b)

for µ = 0, z, where the momentum integral runs over a sphere of radius Λ in Eq. (7.4a) and
a square of side Λ in Eq. (7.4b), and {ψq,ω, ψq,ω} denote the Fourier-transformed fields. The
correlators in Eq. (7.4) represent the translational-invariant parts of statistical averages
computed over the mean-field Hamiltonian H′MF defined in Eq. (7.2). By expanding the
correlators in powers of α, we automatically correct the order parameters by the factors
N

(G/∆)
0/z introduced in Eq. (7.3). Details can be found in Appendix E. Fig. 7.4 shows the

(a) (b)

(c) (d)

Figure 7.4 | Mean-field order parameters of the leading instabilities as a function of the
dimensionless hopping strength α, for various coupling constants g0/z, λ0/z. (a) Layer-polarised
gap ∆z and (b) layer-symmetric gap ∆0. Energies (c) vGz and (d) vG0 associated to the
layer-polarised shift Gz and layer-symmetric shift G0 of the Dirac cones (here the shifts are
oriented along the y-axis). The ratio of intra- versus inter-sublattice hopping amplitudes is set
to β = 0.82, and the order parameters are measured in units of 10−2Λ, where Λ is an ultraviolet
energy cut-off.
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solutions to the self-consistent equations (7.4). For simplicity we assume the shift momenta
G0/z to be aligned along a crystallographic axis of the moiré pattern, here along the y-axis.
The Dirac points then move along the high-symmetry line K-M of the mini Brillouin zone.

As expected, we see on Fig. 7.4(a), Fig. 7.4(b), and Fig. 7.4(d) that the gaps ∆0/z and
the asymmetric momentum shift Gz develop at arbitrary small coupling constants g0/z
and λz near the first magic angle, as a result of the kinetic energy vanishing. Only the
layer-symmetric momentum shift G0 requires a non-zero coupling constant λ0 to develop,
as shown in Fig. 7.4(c). We can therefore exclude this instability from the competing
orders at the first magic angle. The layer-polarised gap ∆z emerges over a thinner region
near the magic angle than the layer-symmetry gap ∆0. Within the mean-field description,
the insulating phase at charge neutrality likely originates from a layer-symmetric gap,
which corresponds to the dominant gapping channel. We will see in the next section,
however, that including fluctuations completely reverses this hierarchy.

7.2 Renormalisation group approach

The conclusions drawn from the mean-field description should be compared with a renor-
malisation group approach, since we expect fluctuations near the first magic angle to
play a crucial role in the competition between instabilities. To do so, we decouple the
interacting action using a Hubbard-Stratonovitch transformation, and analyse the scaling
behaviour of all allowed contact interactions at first order in the coupling strengths and
second order in α. By studying the renormalisation flow, we rule out all one-dimensional
channels that preserve Θ, and all channels that are off diagonal in layer sector, which are
irrelevant instabilities. The renormalisation flow of the four relevant instabilities shows
that the two dominant ones lead to a nematic phase with a layer-polarised gap. Aside
from being responsible for the magic angle physics, interlayer hopping plays a crucial role
in the nematic-gap competition, since the nematic order develops over a region of the
phase diagram that grows with the hopping strength.

7.2.1 Renormalisation procedure

Hubbard-Stratonovitch decoupling — We aim at finding the insulating order near
charge neutrality. We therefore restrict ourselves to particle-hole channels, with order
parameters of the form 〈ψMψ〉 for M ∈ {Mi,Ml}, where now the bracket 〈...〉 denotes
the ensemble average over the complete action S = S ′0 + Sint. This contrasts with
superconducting channels, where the Cooper pairing of electrons spontaneously generate
correlations of the form 〈ψMψ〉 and 〈ψMψ〉. Albeit not obvious in Eq. (6.45), it is
possible to rewrite the interactions in terms of superconducting channels using Fierz
identities, but we will not address superconductivity in this thesis. Using Hubbard-
Stratonovitch transformations, we can introduce auxiliary bosonic fields to decouple
the quartic interactions into Yukawa couplings. We must distinguish between the one-
dimensional irrep., for which a scalar field φi for i = 1, ..., 8, is sufficient, and the two-
dimensional irrep., for which a two-component field ϕl = (ϕl1, ϕl2) must be introduced,
for l = 1, ..., 4. All these bosonic fields can be chosen real. Such transformation enables to
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recast the action for quartic fermion interactions (6.45) into

Sint[ψ, ψ] 7→ SHub[ψ, ψ, φi,ϕl] =
8∑

i=1

ˆ
d2r dτ

(
φ2
i + 2√gi φi ψMiψ

)
+

4∑

l=1

ˆ
d2r dτ

(
ϕ2
l + 2

√
λlϕl · ψMlψ

)
, (7.5)

where the sum runs over both one-dimensional (first sum) and two-dimensional (second
sum) irrep. The original four-fermion vertex thus splits into a bosonic Gaussian part (the
first term in the parentheses), and a Yukawa vertex (the second term in the parentheses).
Our choice of modelling many-body effects by instantaneous contact interactions, which
obviously violate Lorentz covariance, lead to a peculiar property: the boson of Eq. (7.5)
have no kinetics, they are only characterised by their mass (set to unity).

Regularisation scheme — A noteworthy consequence of the Hubbard-Stratonovitch
decoupling is the absence of ladder diagrams. Indeed, the ladder diagrams generate a
four-fermion vertex at two-loop order, but do not correct the Yukawa coupling at one-loop
order. This solves one issue of dimensional regularisation, since ladder diagrams create
evanescent operators in presence of current-current interactions. Thanks to the absence of
these diagrams, each coupling defines an invariant subspace of the renormalisation flow.
Another issue with dimensional regularisation deals with the analytic continuation of the
chiral matrix γ5 = σzτ0. In arbitrary dimension, the trace rule γµγ5γ

µ = (d − 2)γ5 and
the anticommutation rule {γµ, γ5} = 0 cannot be both valid, except when d = 1, where
these two conditions become accidentally compatible. For this reason, and because the
Matsubara frequency ω plays a different role than space variables, a natural regularisation
scheme consists in isolating the frequency variable, over which Feynman diagrams are
integrated from −∞ to +∞, from the momentum variables, which we continue analytically
in d = 1 + ε space dimensions.

Renormalised action — To renormalise the field theory described by the action S =
S ′0+SHub, we relate the bare fields φ̊ for φ ∈ {φi,ϕl} and the bare couplings g̊ for g ∈ {gi, λl}
to their renormalised counterparts. The Z constants for the bosonic fields are such that

φ̊ = Z
1/2
φ φ. (7.6)

We work in an isotropic space dimension d = 1 + ε, and introduce a dummy mass scale µ
to render the regularised coupling constants dimensionless. Note that at one-loop order,
the fermionic fields are not renormalised, so that the constant Zψ = 1 is trivial here. A
generic coupling constant g is defined from its bare value g̊ by

g̊ = µ−εN2
ψZ

2
gZ
−1
φ g. (7.7)

The hopping correction to the wave function amplitude Nψ compensate those same factors
that appear at all loop orders from the corrected fermionic propagator G′0. We also assume
the interlayer hopping amplitudes α and β to be scale-invariant, i.e. constant under
the renormalisation flow so that, like for the fermionic fields, there is no need to add
extra Z constants for translational-breaking part of the fermionic two-point function. This
assumption is valid at all orders, but for contact interactions only. Using Eq. (7.6) and
Eq. (7.7), we find the renormalised action SR = SR,0 + SR,α + SR,φ + SR,Yuk. In order to
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cure infrared divergences, we add a mass regulator µσz to the quadratic action of the
decoupled bilayer

SR,0 =
ˆ
k,Ω

ψk(σ · k − iΩ + µσz)ψk, (7.8)

where the mass scale µ vanishes in the infrared limit. The quadratic hopping action reads

SR,α = α
3∑

j=1

∑

η=±

ˆ
k,Ω

ψkT
η
j ψk+ηqj . (7.9)

The quadratic bosonic part of the action is given by

SR,φ =
8∑

i=1
Zφi

ˆ
k,Ω

(
φ2
i

)
k

+
4∑

l=1
Zϕl

ˆ
k,Ω

(
ϕ2
l

)
k
. (7.10)

Finally, the Yukawa coupling is

SR,Yuk = 2µ−ε/2Nψ

[ 8∑

i=1
Zgi
√
gi

ˆ
k,Ωk,q,Ωp

ψk(φiMi)k−qψq

+
4∑

l=1
Zλl
√
λl

ˆ
k,Ωk,q,Ωp

ψk(ϕl ·Ml)k−qψq
]
. (7.11)

Among the Yukawa couplings of Eq. (7.11), the layer off-diagonal vertices break transla-
tional invariance: the bosonic field transfer the momenta ±qj for j = 1, 2, 3, because of
the spatial dependence of the coupling matrix (see Eq. (6.44)). For brevity we omitted
the dependence of the fields on frequency and used the notation shorthand

ˆ
k,Ω

=
ˆ +∞

−∞

dΩ
2π

ˆ
Rd

ddk
(2π)d . (7.12)

Unlike the low-energy theory of relativistic semimetals in presence of quenched disorder,
here the frequency is also transferred in the Yukawa coupling, and loops contain both a
dummy frequency, integrated from −∞ to ∞, and a dummy momentum, integrated in
space dimension d = 1 + ε. To fix the Z constants, we use again the minimal subtraction
scheme: we absorb only the divergent parts of the Feynman diagrams. Inspecting Eq. (7.10)
and (7.11), we see that the constants Zφ can be found by absorbing the divergences of the
polarisation, i.e. the bosonic self-energy, while the constants Zg can be found from the
divergences of the three-point Yukawa vertices. Before computing these diagrams, let us
outline the general strategy.

The theory acquires two extra Feynman rules when including interactions.

• The free bosonic propagators are depicted as dashed lines,

∆(i)
0 (k,Ω) = Z−1

φi
= i

(7.13)

for the one-dimensional channels, and similarly for the two-dimensional channels.
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• In the tree-level Yukawa vertex, two fermionic lines join with a bosonic one. For
layer-diagonal channels, the vertex with zero bosonic momentum is weighted by the
matrix factor

2µ−ε/2NψZgi
√
giMi =

i k

k

(7.14)

for the one-dimensional channels, and similarly for the two-dimensional channels.
For layer off-diagonal channels, translational invariance is broken and the vertex
with zero bosonic momentum is weighted by the matrix factor

2µ−ε/2NψZgi
√
giM

(ηj)
i = i k +ηqj

k

(7.15)

where the coupling matrix is decomposed into Mi(r) = ∑
η=±

∑3
j=1M

(ηj)
i e−iηqj ·r.

Treatment of the hopping term — This theory is highly non-standard already at the
single-particle level, as we have seen in Sec. 6.1. There, we diagonalised the Hamiltonian
perturbatively order by order in the hopping strength α. In the same spirit, we expand
the correlation functions of the interacting theory not only in the coupling constants but
also in the hopping strength. The insertion of hopping matrices leads to two classes of
diagrams.

• When all hopping matrices affect a subgraph which has two external legs and contains
no three-point vertex, the diagram is topologically equivalent to those of the theory
without interlayer hopping. Such subgraphs can be resummed at all order in α to
bring out the corrected propagator of Eq. (6.18). This method captures efficiently
the vanishing energy scale at the magic angle by extracting a factor v−L at order L of
the loopwise expansion. Hence, the proper expansion parameter is not the coupling
constant g, but the ratio g/v.

• In other cases, hopping matrices meddle with three-point vertices and the diagram
is not topologically equivalent to those of the theory without interlayer hopping.
Such diagrams contribute a term of order αngL+1 in the beta function, where n is
the (even) number of non-resummable insertions. As in the first case, we extract a
factor v−L by resumming insertions oven single fermionic lines.

The loopwise expansion comprises two steps. We first draw the standard diagrams
with Yukawa vertices, and replace all solid lines by double lines, like in the polarisation of
Fig. 7.5(a), or the three-point vertex of Fig. 7.5(c). We then include wavy lines connecting
distinct fermionic lines in all possible ways, as in Fig. 7.5(b) for the polarisation, or
Fig. 7.5(d) to Fig. 7.5(g) for the three-point vertex. We restrict the computation to the
first non-trivial order α2.

Importantly, the graphs affected by hopping carry fermionic propagators evaluated at
the momenta q+ηqj , where q is the loop momentum and qj , for j = 1, 2, 3 are the leading
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Figure 7.5 | One-particle irreducible diagrams at first order in the loopwise expansion and
second order in the dimensionless hopping strength α. The double line stands for the fermionic
propagator corrected by interlayer hopping, the dashed line for a bosonic propagator, and the
wavy line for the sum of all interlayer hopping channels with momenta ηqj , for η = ± and
j = 1, 2, 3. The polarisation Πi, i.e. the corrections to the bosonic propagator of type i, is taken
at zero external momentum and frequency and given by (a) at order α0 and (b) at order α2. The
three-point Yukawa vertex Vil, also at zero external momenta and frequencies,is drawn in (c)
at order α0, and in (d)-(g) at order α2. The hopping line can be (d) internal, (e) external, (f)
isolated and (g) crossed with respect to the internal vertex of type l.

Fourier momenta of the tunnelling amplitude. The norm of the qj is unity – the size of the
mini Brillouin zone. Yet, the instabilities develop at wave lengths much larger than the
moiré period, so that the loop momentum q and the loop frequency ω are negligible with
respect to the momenta qj transferred by interlayer hopping. We can therefore simplify

G0(q + ηqj , ω) ' G0(ηqj , 0) = ησ · qj , (7.16)

in Feynman integrals.

Reduction to the four relevant instabilities — As advertised in Sec. 7.1, only four
interactions out of twelve are relevant. The four instabilities which develop in density-like
channels ψσ0τµψ have no poles near (1 + 1) dimensions, because the spatial and temporal
divergences compensate. The vanishing of the corrections to the vertex seems to persist at
all order in perturbation theory. The four remaining instabilities which develop in layer
off-diagonal channels ψτx/yψ lead to order parameters with fast spatial modulations (of
the order of the moiré pattern’s size) because of the spatial dependence of the coupling
matrix. Due to the net separation of energy scales, captured by Eq. (7.16), the corrections
to these interactions vanish. We are left with a four-dimensional subspace of the flow
corresponding to the four irrep. a−2 (layer-symmetric gap), a−1 (layer-polarised gap) of
Tab. 6.2, and E+

2 (layer-symmetric momentum shift), E−4 (layer-polarised momentum
shift) of Tab. 6.3. Each of them is associated with a phase transition towards a correlated
phase, and the renormalisation group flow captures the competition between these phases.
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7.2.2 Loopwise and hopping strength expansions
We compute the polarisation and the three-point vertices, the two diagrams necessary to
determine the flow of the coupling constants. We relegate the details of the calculation to
Appendix E. Fig. 7.5 presents all one-loop diagrams up to order α2.

Polarisation — The polarisations Πi are the self-energy of the bosonic fields φi, for
i = 1, ..., 8, and similarly for the vector fields ϕl, for l = 1, ..., 4. If ∆i(k,Ω) denotes the
(renormalised) propagator of the bosonic field, we have ∆−1

i (k,Ω) = Zφi − Πi(k,Ω). The
one-loop diagrams contributing to the polarisation are drawn in Fig. 7.5(a) at order α0

and Fig. 7.5(b) at order α2. The finiteness of ∆i(k = 0,Ω = 0) leads to the following
expression of the Zφi constants,

Zφi = 1− 4ngiIi[1 + 3α2χihi(β)]
vε

, (7.17)

where n = 4 stands for the number of degrees of freedom. The quantity χi equals either
+1 for the interaction matrices σzτ0 and στz, or −1 for the interaction matrices σzτz and
στ0; the function hi(β) equals either 1− β2 or 1 if the interaction matrix matches σ0 or σz
in the sublattice sector, respectively. The integrals Ii are numerical constants listed in
Appendix E.

Yukawa vertices — We enforce the finiteness of Vi({k = 0}, {Ω = 0}). The diagram of
order α0 is drawn in Fig. 7.5(c), while the diagram of order α2 is given by Fig. 7.5(d) to
Fig. 7.5(g). All internal vertices contribute to the vertex function i if the external vertex
is of type i. The Z constants for the couplings read

Zgi = 1− 4
vε

12∑

l=1
gl
{[

1 + 6α2hi(β)χi
]
Jil + 2α2Kil(β)

}
, (7.18)

where by definition gl = λl−8 for l = 9, ..., 12. The sum of Eq. (7.18) runs over all channels
for generality, but we will focus only on the four relevant ones. One-dimensional and
two-dimensional channels alike contribute to the sum. The integrals Jil are numerical
constants listed in Appendix E, while Kil depend on β.

Beta functions — We express the renormalisation constant Zi = Z2
gi
Z−1
φi

at first order
in the coupling constants as

Zi = 1 +
12∑

l=1

fil(α, β)gl
vε

, (7.19)

where v is the corrected Fermi velocity of Eq. (6.20) and the explicit expressions of
the functions fil are given in Tab. 7.1 for the four relevant instabilities. The hopping-
independent correction vanishes for the one-dimensional channels in the case of a single
Dirac fermion (n = 2), in agreement with the absence of any flow in the (1+1)-dimensional
Thirring model (Gracey 2016). The beta functions follow from Eq. (7.19) from the
relation

βi = − ∂gi
∂ log µ = −εgi + gi

v

12∑

l=1
fil(α, β)gl. (7.20)

The physical (2 + 1)-dimensional model is recovered for ε = 1.
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7.2.3 Flow diagram

Dominant instabilities — We now discuss the key features of this four-dimensional
flow as a function of α. The Gaussian fixed point at the origin is always stable in (2 + 1)
dimensions, and attracts all flowing coupling strengths whose microscopic value lies within
the semimetallic region. Besides, we identify four critical points for non-special values
of α, one for each non-trivial coupling, at locations g∗i = εv/fii, with v the corrected Fermi
velocity. These fixed points control phase transitions towards the four correlated phases
discussed in the mean-field analysis of Sec. 7.1. As α approaches the first magic value α0,
all critical fixed points collapse on the Gaussian fixed point: all non-trivial perturbations
become relevant, and the semimetallic region shrinks to the Gaussian fixed point and
disappears entirely. Hence the correlated phases correspond to runaway flows in specific
directions, and are not described by a perturbative stable fixed point. A natural way to
identify the dominant instabilities among those four is to select those couplings whose
critical fixed point collapse the fastest near the magic angle. We see from Tab. 7.1 that
this criterion elects the layer-polarised channels σzτz and στz, with coupling constants
gz and λz, at the expense of the layer-symmetric channels σzτ0 and στ0, with coupling
constants g0 and λ0.

This hierarchy of the four relevant instabilities seems at odds with the mean-field
results of Sec. 7.1. The mean-field analysis predicted the layer-symmetric gap ∆0 to be
less suppressed by interlayer hopping than the layer-polarised gap ∆z. Admittedly, the
two approaches treat interlayer hopping differently: in the mean-field analysis of Sec. 7.1,
we diagonalised the correlators of the mean-field self-consistent equations, whereas in the
present renormalisation group analysis, we study how interlayer hopping processes affect
the flow of the coupling strengths. But this discrepancy shows above all the importance
of fluctuations of the order parameters near the first magic angle, and proves that a
renormalisation group analysis is necessary to study the competition of instabilities.

πfil/2 σzτ0 σzτz στ0 στz

σzτ0 2 [1− 12α2(1− β2)] −2 [1− 6α2(1− β2)] 2 [1− 6α2(1 + β2)] 2 [1 + 6α2(3− β2)]

σzτz −2 [1− 6α2(1− β2)] 2 2 [1− 6α2(1− β2)] 2 [1− 6α2(1− β2)]

στ0 1− 6α2(1 + β2) 1− 6α2(1− β2) 2 [1− 3α2(1− β2)] −6α2β2

στz 1 + 6α2(3− β2) 1− 6α2(1− β2) −6α2β2 2 [1 + 3α2(1 + β2)]

Table 7.1 | List of the one-loop coefficients fil(α, β) of the beta functions defined in Eq. (7.20),
at second order in the dimensionless hopping strength α, and function of the relative AA/AB
hopping strength β. Only the four non-trivial channels are presented, with matrix structures
σzτ0 (layer-symmetric gap), σzτz (layer-polarised gap), στ0 (layer-symmetric momentum shift),
and στz (layer-polarised momentum shift).
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Layer-polarised gap versus nematic competition — Discarding the coupling con-
stants g0 and λ0, we are left with a two-dimensional flow diagram for the coupling constants
gz and λz, which is easier to study. While the gapped phase, induced by gz, is reminiscent
of the dynamical mass generation in the Gross-Neveu model (Gross 1974; Rosenstein
1991), the C3-breaking phase is specific to TBG. The competition between these two
dominant instabilities follows from the coupled flow equations





βgz = −εgz + 4g2
z

πv
+ 4gzλz

πv

[
1− 6α2

(
1− β2

)]
,

βλz = −ελz + 4λ2
z

πv

[
1 + 3α2

(
1 + β2

)]
+ 2λzgz

πv

[
1− 6α2

(
1− β2

)]
.

(7.21a)

(7.21b)

To explore the competition between the phases in vicinity of the magic angle, we plot
the renormalisation flow of the coupling constants rescaled by the vanishing velocity v
in Fig. 7.6. Only the gz > 0 and λz > 0 region corresponds to repulsive interactions,
which are the only physical insulating mechanisms. The comparison between the flows
for highly suppressed interlayer hopping (Fig. 7.6(a)) and close to the first magic angle
(Fig. 7.6(b)) reveals that the proximity to the magic angle favours the nematic phase
by enlarging the corresponding region of the phase diagram. This behaviour parallels
the Mott multicriticality found in monolayer graphene in the limit of a large fermion
number, though the competition involves slightly different phases (Classen 2015). The
fastest diverging coupling commands the large-scale behaviour; this selects two regions
with runaway gz (a purely gapped phase) or λz (a purely nematic phase). Within the
one-loop analysis, a crossover line separates these regions, with parametric equation

λz = 1 + 6α2(1− β2)
6α2(3− β2) gz. (7.22)

Next to the crossover line, both order parameters coexist over a large range of length scales,
so that neither phase prevails. This mixed state develops a gap with periodic modulations
of the density, and breaking the rotational C3 and antiunitary Θ symmetries. We call this
phase a nematic insulator.

Similar nematic orderings were reported in recent works. The starting point and
strategy of these works differ entirely from our approach, and rely on effective tight-
binding models built from exponentially localised Wannier orbitals and analysed in mean
field. (Klug 2020) finds a stripe order at filling factors |ν| < 2, including at charge
neutrality ν = 0, with a few possible ordering vectors of the order of superlattice reciprocal
vectors Q1 and Q2. The emergence of a gap is not explored in this work. On the other
hand, (Liu 2021) studied a momentum-space continuum model where they break the
three-fold symmetry by hand by distorting one of the three tunnelling matrices T±j . By
minimising the energy of possible correlated states through a Hartree-Fock analysis, they
find a gapped nematic ground state at all values of the symmetry-breaking parameter. As
in our renormalisation group approach, they noticed the interplay between the gapped
and nematic instabilities. But unlike in previous studies, in our renormalisation group
analysis we clearly identify a nematic order parameter through the correlation function
〈ψστzψ〉, and prove that quantum fluctuations favour the spontaneous emergence of a
combined insulating and stripe order.
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(a) (b)

Figure 7.6 | Renormalisation flow of the coupling constants gz, associated to a layer-polarised
gap, and λz, associated to a layer-polarised momentum shift. Due to the vanishing of the kinetic
energy at the magic angle, the coupling constants are rescaled by the Fermi velocity corrected
by interlayer hopping v → 0. All interactions corrected at one-loop order are thus relevant
perturbations in magic twisted bilayer graphene. The ratio of intra- over inter-sublattice hopping
amplitudes is set to β = 0.82. (a) In the absence of hopping (α = 0), a critical fixed point (red
dot •) on the gz-axis controls the transition towards a correlated insulator (gapped phase, reddish
region). The Gaussian sink point (blue dot •) defines the semimetallic phase (blueish region).
The fixed point on the λz-axis is marginal (pink dot •). (b) Near the first magic angle (α ' α0),
the semimetallic region shrinks to the origin in the (gz, λz) plane. When rescaled by v, a second
critical fixed point appears on the λz-axis, which controls the transition towards a C3-breaking
(nematic) phase (greenish region). A source fixed point (black dot •) gives rise to a crossover
region (mixed state). It migrates away from the vertical axis as α increases, thus expanding the
region with nematic order.

7.3 Perspective
Before concluding, we wish to put our results in perspective in the context of the very
active field of TBG. We first discuss the effect of twist angle disorder, which completely
suppresses the gap at charge neutrality in experiments. We also compare our results with
a different renormalisation group approach in presence of Coulomb interactions. Finally,
we discuss the ordering of the nematic insulator at charge neutrality in the valley and spin
sectors.

7.3.1 Twist angle disorder
Several sources of disorder can smear the properties of pristine TBG samples. An obvious
one is charge disorder, but it appears to be fairly low, with deviations of carrier density
about δn ' 1010 meV (Cao 2018a). Another comes from the alignment of TBG with the
hBN substrate, which breaks the Θ symmetry and opens a gap. These types of defects do
not explain why devices with disordered samples fail to see a large gap at charge neutrality,
which yet appears clearly in clean samples (Lu 2019). The most important source of
disorder thus appears to be angular heterogeneity.

It was not until experimentalists managed to devise angle-homogeneous samples that
the strong insulator at charge neutrality was observed (Lu 2019). This suggests that
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at the charge neutrality point, more than at any other band filling, TBG is sensitive to
the heterogeneity of the twist angle. This heterogeneity results from local strains on the
bilayer, whose relaxation towards the energetically favoured Bernal stacking is impeded
by the substrate. This new type of angular disorder was studied numerically (Wilson
2019). The authors consider a real-space microscopic model with a sample made of several
patches with uniform twist angles randomly chosen from a box distribution. They point
out two main effects of disorder. On one hand, the Fermi velocity seems extremely robust
to angular disorder, apart from a small rounding near the magic angle. On the other hand,
electronic states tend to fill the gap between the active bands and passive bands under
increasing disorder, which even vanishes when fluctuations in twist angle exceed a few
percents. This sensitivity explains why the carrier density required to reach full filling of
the active bands varies strongly from sample to sample (Yankowitz 2019).

The interplay between angular disorder and many-body effects, however, remains an
open field of research. The low-energy interacting theory studied in this chapter provides
a valid basis to tackle this problem. Indeed, a heterogeneity in twist angle θ entails a
heterogeneity in the dimensionless hopping strength α ∝ θ−1. Instead of treating α as a
fixed parameter, we could assume the position-dependent α(r) to be a random variable,
e.g. of Gaussian distribution

P [α] ∝ exp
[
− 1

2σα

ˆ
ddr (α(r)− ᾱ)2

]
, (7.23)

with mean ᾱ and variance σα. We thus recover a problem similar to that of disordered Weyl
semimetals, as we have seen in Chapter 3. In principle, the renormalisation group study
of Sec. 7.2 could be extended to a replicated theory of disordered TBG by substituting α
for ᾱ, incorporating the action

Sσα = −σα2
3∑

j,l=1

∑

η,µ=±

ˆ
ki,q

ψk1T
η
j ψk1+q+ηqjψk2T

µ
l ψk2−q+µql , (7.24)

and expanding order by order in σα. At this stage, it seems unclear which physical
mechanism could explain that the gap of the nematic insulator at charge neutrality is so
effectively suppressed by angular disorder.

7.3.2 Coulomb interaction
We modelled many-body effects in TBG as contact interactions at the scale of the moiré
wave length. Recently, O. Vafek et al. independently developed a renormalisation group
approach for the generalised continuum model (continuum model with arbitrary AA and
AB/BA hopping amplitudes) in presence of unscreened Coulomb repulsion, instead of
contact interaction (Vafek 2020).

In the first stage of their renormalisation procedure, both interaction and interlayer
hopping are treated perturbatively. Using momentum-shell integration, the authors find
that the Coulomb repulsion enhances the dimensionless Fermi velocity v and the AB/BA
hopping strength w in the infrared limit, while the AA hopping strength u remains fixed:

− µdv
dµ = e2

4ε, −µdw
dµ = w

e2

4εv , −µdu
dµ = 0, (7.25)
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where µ denotes the mass scale, and ε is the dielectric constant. The scaling behaviour
of the Fermi velocity agrees with that in monolayer graphene. The low-energy theory of
graphene flows indeed to the fixed point of (2 + 1)-dimensional quantum electrodynamics,
where v equals the speed of light (Vozmediano 2011). The generalised continuum model
thus flows towards the fixed point β = 0, which corresponds to the first chiral limit
discussed in Sec. 6.1.1.

The flow of w described by Eq. (7.25) contrasts with our results of Sec. 7.2 for contact
interactions, where we kept α ∝ w and β = u/w as fixed parameters; the two-point vertices
which break momentum conservation all converge at one-loop order, so that we needed not
introduce renormalisation constants Zα,β in the renormalised hopping action of Eq. (7.9).
An example of diagram that contributes to the vertex function 〈ψkT ηj ψk+ηqj〉1PI is the
one-loop correction

q+ q +ηqj

i

= αN2
ψ(4gi)

∫

q,ω
MiG

′
0(q +ηqj ,ω)T ηj G

′
0(q,ω)Mi∆0,i(q,ω),

(7.26)

where ∆0,i(q, ω) is the free bosonic propagator, and the external momentum and frequency
are set to k = 0 and Ω = 0, respectively. Due to the net separation of energy scales,
q, ω � |qj| and Eq. (7.26) has no pole whatever the bosonic propagator ∆0,i(q, ω), which
is an even function of q and ω. This holds for contact interactions, where ∆0,i(q, ω) = 1,
but also for Coulomb repulsion, for which ∆0,i(q, ω) = e2/εq2. Screening cannot bring
corrections to the hopping strengths either, and higher order diagrams in the loopwise
expansion appear to converge as well. Hence, we cannot predict any renormalisation of
the hopping strengths in our scheme.

7.3.3 Valley and spin degrees of freedom

The Landau levels emerging from the Mott insulators at integer fillings ν = ±1,±2,±3
follow a two-fold degenerate sequence (Lu 2019). This observation holds at charge
neutrality ν = 0 for the two lowest Landau levels, although the Landau fan recovers a
four-fold degeneracy at larger quantisation indices. These results suggest that the spin-
valley degeneracy is partially lifted, and that the order parameters of the insulating phases
have a non-trivial structure in the spin or valley sectors. Besides, quantum oscillations
point towards a trivial spin order but non-trivial valley order (Yankowitz 2019). Let us
discuss the structure of the gap order parameter in the valley sector.

Starting from the layer-polarised order parameter ∆z ∝ 〈ψσzτzψ〉, which we found to be
the order favoured at charge neutrality, the inclusion of the valley degree of freedom leads
to three structures for ∆z. Either the charge neutrality point develops a valley-symmetric
gap, which corresponds to a trivial µ0 identity matrix in the valley sector. Or, correlations
break time-reversal symmetry, leading to a valley polarisation µz. Or, correlations break
the valley U(1) charge, which induces an intervalley coherent order µx cos θ + µy sin θ and
lifts the valley degeneracy. In the following, we discuss the probable valley orders at
non-zero filling factors and at charge neutrality, in light of recent numerical studies.
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Non-zero filling factors — Numerical studies usually rely on a tight-binding description.
The Wannier functions of the flat bands, which provide a basis of orbitals localised at
the AA sites of the moiré pattern, strongly overlap with their neighbours through their
three lobes, which leads to an unusual interaction Hamiltonian (Kang 2019). Within
a mean-field approach, the ground states at half filling (ν = ±2) and quarter filling
(ν = ±1) develop a mixed spin-valley order. These SU(4) ‘ferromagnets’ are not necessarily
spin magnetic, unless an unknown mechanism further lift the spin-valley degeneracy. In
particular, the two valleys K and K′ carry opposite spins at half filling. The insulator
at three-quarter filling (ν = ±3) could be an anomalous Hall state, which exhibits both
valley and spin polarisations (Bultinck 2020a).

Charge neutrality — The hierarchy of the energy scales associated to the possible
instabilities at charge neutrality depends strongly on interlayer hopping amplitude, twist
angle, and to a lesser extent on the dielectric permittivity, so that theoretical studies do
not agree as to the nature of the ground state (Xie 2020; Choi 2019). Most probably,
the insulator at charge neutrality develop an intervalley-coherent order, which unlike the
SU(4) ferromagnet breaks time-reversal symmetry to the benefit of an effective Kramers
symmetry, and leads to a band structure wth trivial topology. (Po 2018; Bultinck 2020b;
Liu 2021). The mean-field analysis results in the following classification: the semimetallic
phase is the most energetic, followed by a valley Hall phase, a valley-polarised phase,
and finally the presumed ground state with Kramers intervalley coherence (Bultinck
2020b). Intervalley coherence cannot induce Mott insulation by itself. The authors propose
the breaking of C3 as the gapping mechanism, instead of the independent Θ-breaking
mechanism that we proposed in Sec. 7.1.
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Conclusion
Summary — By applying a mean-field analysis supplemented by a renormalisation group
approach, we have shown that the proximity to the first magic angle in twisted bilayer
graphene favours a gapped nematic state at charge neutrality. Within the mean-field
analysis, the dominant insulating instability emerges from a layer-symmetric gap. By
including quantum fluctuations, the renormalisation group analysis favours instead a
layer-polarised gap. The discrepancy between the mean-field and renormalisation group
analyses illustrates the limits of the former, and justifies the necessity of a renormalisation
group description. Due to the non-standard nature of the free theory, we have renormalised
the interacting theory in a unusual way by expanding correlation functions at leading
order in both the dimensionless hopping strength α and the coupling constants g, so as to
capture vanishing Fermi velocity v. The competition between the gap and the three-fold
symmetry breaking instability leads to a so-called nematic insulator, which develops spatial
modulations of the local density of states in the form of stripes. Remarkably, the increase in
interlayer hopping favours nematicity, since it enlarges the runaway region of the coupling
constant associated to the three-fold symmetry breaking.

Our results agree with the observation of a large gap at charge neutrality in scanning
tunnelling spectroscopy (Jiang 2019; Choi 2019; Kerelsky 2019; Xie 2019) and four-
terminal transport measurements (Lu 2019). Other studies reported a nematic order at
charge neutrality (Jiang 2019; Kerelsky 2019). These experimental findings strongly
support the emergence of a nematic insulator at charge neutrality in twisted bilayer
graphene, which we have identified in this chapter. This nematic gapped phase was
predicted numerically by explicitly breaking the rotational symmetry (Liu 2021), but
we have proven that quantum fluctuations within the renormalisation group formalism
spontaneously generate a nematic ordering.

Outlook — Our renormalisation group approach does not rule out other correlations
to develop conjointly with the nematic order. This includes intervalley coherence and
generalised (spin or valley) ferromagnetism (Ochi 2018; Bultinck 2020b; Chichinadze
2020; Zhang 2020). Some theoretical works suggest that the energies scales of these
correlated states are close to one another, resulting in a strong sensitivity to microscopic
details (Zhang 2020). In addition, the observation of a distinct type of nematicity in
the superconducting domes raises the questions of the relation between different nematic
orders in the phase diagram of magic angle twisted bilayer graphene (Cao 2020b).
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General conclusion

In relativistic semimetals, the dynamics of the low-energy excitations follows the massless
Dirac equation, thereby bridging a gap between condensed matter and high-energy physics.
This is all the more remarkable that these two domains belong to fundamentally distinct
research traditions, and deal with the physical properties at wildly different energy scales.
Two-dimensional (graphene) and three-dimensional (Weyl and Dirac) relativistic semimetals
provide a wonderful playground to experimentally realise exotic equilibrium, transport,
topological or surface properties. We have shown in this project that we cannot overlook
perturbations of these materials, which can destabilise the linear crossing points and utterly
change the nature of the phase, leading to a diffusive metal in disordered Weyl semimetals
or strongly correlated states in twisted bilayer graphene. A field-theoretical formalism
stands out as the natural framework to analyse the low-energy physics of perturbed
relativistic semimetals. Besides, the renormalisation group appears as a strikingly powerful
tool to investigate the large-scale behaviour of such diverse physical systems.

In the first part of this thesis, we have mapped the low-energy theory of Weyl semimetals
in presence of uncorrelated disorder to the Gross-Neveu model. To account for the
various types of disorder, we have extended this theory to include long-range correlations.
Disordered Weyl and Dirac semimetals undergo a continuous phase transition towards a
metallic phase; the average density of states at the Fermi level acts as an order parameter,
since it vanishes in the semimetallic side, while being non-zero above the critical disorder
strength. A few critical exponents – the anomalous field, dynamical and correlation length
exponents – determine the scaling behaviour of many observables, in particular the average
density of states. We have also found signatures of criticality in the geometrical properties
of the electronic wave function, in the form of multifractality. The multifractal nature of
the critical wave functions originates from the presence of multiple length scales in the
spatial distribution of electrons; multifractals thus obey multiple scaling rules instead of a
global one. The celebrated renormalisation group technique provides a systematic way
to compute the critical exponents at this semimetal-metal transition: within a two-loop
ε-expansion, we have computed the scaling exponents of the moments of the wave function
density, which give direct access to the multifractal spectrum, for the two universality
classes of the Weyl semimetal-metal transition controlled by either short-range or long-
range disorder correlations. By relating the multifractal spectrum to the distribution
width of critical observables, we have predicted the scaling exponent of the typical density
of states at the semimetal-metal transition, in agreement with numerical estimates.

We have seen that disorder impacts not only the bulk electronic properties, but also
the surface ones. Three-dimensional relativistic semimetals harbour exotic states on their
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surface, in the form of curved Fermi arcs, Dirac surface states and Fermi rays. We have
modelled these surface states by considering appropriate boundary conditions for Dirac
fermions confined in a semi-infinite space. The symmetries of the boundary condition and
of the bulk low-energy theory determine the nature of the surface states. We have then
included disorder and probed the spatially resolved density of states using a ‘local’ version
of the self-consistent Born approximation. We have seen that Dirac surface states, like
the bulk excitations, undergo a phase transition towards a metallic state, but at a lower
disorder strength, whereas Fermi arcs avoid this critical point because of their extension
in momentum space. Surprisingly, the phase diagram of semi-infinite Dirac semimetals
shares some similarities with that found in spin systems, which also display a so-called
extraordinary transition, reminiscent of the bulk transition, and a surface transition.

To go beyond this work on disordered relativistic semimetals, we could endeavour to bet-
ter understand the origin of multifractality in disorder-induced phase transitions. Strangely
enough, the Anderson and semimetal-metal transitions both display multifractality, even
though the nature of these two transitions differ substantially. At the Anderson transition,
critical wave functions are intermediate between extended and localised; in contrast, at the
semimetal-metal transition, the Fermi level hosts extended states on the strong disorder
side, and . . . no states on the weak disorder side. In addition, multifractality not only
characterises equilibrium properties, such as the density of states, but also dictates the
long-time behaviour of transport properties. Density fluctuations often induce anomalous
diffusion in localisation phenomena, but much about the critical transport properties of the
semimetal-metal transition remains to explore. More generally, multifractality has become
a widely used tool to study disorder-driven phase transitions: Anderson’s localisation
and the semimetal-metal transition, but also many-body localisation, the ferromagnetic
ordering in spin systems, etc. This concept has even reached a great – and probably
greater – popularity beyond condensed matter physics, and scientists apply multifractal
analyses in a growing number of mathematical, physical, biological or financial problems.
This ubiquity perhaps testifies that the scientific community appreciates better and better
the full complexity of random phenomena, which carry essential information beyond the
average properties.

We could also envision to draw experimental predictions from the surface properties of
disordered relativistic semimetals. Interestingly, the band dispersion of Dirac surface states
could be tuned by voltage gating or by controlling the microscopic details of the boundary
(surface termination, presence of adatoms, etc.). It would thus be of practical utility to
better understand the effect of disorder on edge and surface modes in Dirac materials.
From a theoretical viewpoint, the quantitative study of criticality in Dirac surface states
could benefit from a renormalisation group analysis, since the renormalisation of fermionic
theories in semi-infinite space remains an uncharted territory. By comparison, the field-
theoretical description of surface criticality in spin systems has a decades-long history of
research activity. The renormalisation of fermionic theories in semi-infinite space poses
a great challenge; technically, because the lack of translational invariance increases the
computational complexity, and fundamentally, because the perturbative expansion leads
to extra surface singularities. We hope that these obstacles will be overcome eventually.

As another outlook, we could investigate alternative field-theoretical descriptions
of disordered relativistic semimetals. Indeed, the perturbative renormalisation group
gives much information about the weak disorder regime, but disregards non-perturbative
phenomena such as rare-region effects, which possibly turn the semimetal-metal transition
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into a sharp cross-over. It is also unclear whether we can extract reliable estimates of the
critical exponents from the ε-expansion. Alternative approaches include the functional
renormalisation group, the Gross-Neveu-Yukawa model, or the non-linear sigma model.

In the second part of this thesis, we have addressed the effect of electron correlations
in twisted bilayer graphene, and the emergence of a joint insulating and nematic order at
charge neutrality. By overlaying two layers of graphene with a twist, the interference of
the two mismatched lattices form large-scale moiré patterns, which spatially modulates
interlayer tunnelling. As a result, the Fermi velocity of the Dirac cones vanish at special
‘magic’ angles, where interactions dominate the electron dynamics. We have reviewed
major experimental results of twisted bilayer graphene, whose phase diagram features
insulating regions at integer fillings of the flat bands surrounded by superconducting
domes. Transport measurements and scanning tunnelling microscopy have proved that the
strong insulator at charge neutrality breaks the three-fold rotational symmetry. We have
built a continuum model for twisted bilayer graphene, and diagonalised the single-particle
Hamiltonian perturbatively in the tunnelling strength to determine the correction to
the Fermi velocity and explain the origin of the magic angle physics. Focusing then on
many-body effects, we have identified the contact quartic interactions that preserve the
symmetries of the model. By applying both a mean-field analysis and a renormalisation
group approach, we have shown that quantum fluctuations spontaneously break the
three-fold symmetry near the first magic angle. Due to the highly non-standard nature
of the free theory, we have treated the interacting theory perturbatively in both the
tunnelling strength and the coupling constants associated to the relevant interactions. The
competition between the gap and the three-fold symmetry breaking instabilities leads to a
so-called nematic insulator compatible with experimental findings.

Although our works have focussed on twisted bilayer graphene, the magic angle physics
comes into play in a variety of Van der Waals heterostructures (twisted double-bilayer
graphene, trilayer graphene, dichalcogenides-based bilayers), where similar correlated
phases were found. Thanks to their incredible versatility, these moiré materials represent
a wonderful platform to explore the richness of many-body effects. We have indeed
identified the nature of the correlated phase which appears at charge neutrality in twisted
bilayer graphene, but this phase remains to be characterised. In particular, the unusual
emergence of a combined insulating and nematic order should lead to anisotropies in physical
observables. What are the electrical, magnetic, optical or thermal properties of such a
nematic insulator? Answering these questions will probably leverage much theoretical
research effort in the future. In addition, despite the expertise gained on cuprates and
pnictides, the microscopic mechanisms at play in unconventional superconductors hold a
part of mystery, which twisted bilayer graphene could partially solve. Understanding the
origin of superconductivity in twisted bilayer graphene, which exhibits remarkably large
critical temperatures close to the limit of Bose-Einstein condensation, may represent a
step forward in the on-going race towards high-temperature superconductivity.
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Appendix A
Standard field-theoretic tools

A.I Grassmann algebra
Being operators, the quantised Dirac fields satisfy an anticommutating algebra, as required
by the spin-statistics theorem. In contrast, usual integration variables are real- or complex-
valued and therefore commute with one another. To preserve the algebra of fermions when
writing the partition function

Z =
ˆ

Dψ Dψ e−S, (A.1)

we must replace the classical fields ψ and ψ by a continuous set of scalar but anticommuting
variables, known as Grassmann variables (Efetov 1996; Zinn-Justin 2002). Acquiring
an intuition about what Grassmann variables represent physically is hard, if not hopeless.
The best to do is accept them as handy mathematical tools, and go through their formal
definition and properties.

A complex Grassmann algebra is an associative algebra generated by the identity and
a set of conjugate generators {θi, θ̄i} which satisfy the anticommuting relations

{χi, χj} = 0, for χ = θ, θ̄. (A.2)

As a result, any function f defined on the Grassmann algebra reduces to sum of monomials
of the form χi1 ...χip . Consider a particular generator χi. Any such function can be written
f = f1 + χif2 after appropriate commutations. We define the derivation and integration
with respect to χi as the nilpotent operation

ˆ
dχi f(χi) = ∂f

∂χi
= f2. (A.3)

Though surprising at first, the definition (A.3) of the so-called Bérézin integration is
consistent with the usual properties of definite integrals (linearity, Leibniz formula, a total
derivative integrates to zero). The use of two different symbols for the same operation
seems redundant, but enables to strengthen the similarity with bosonic path integrals.
The crucial difference with bosons lies in changes of variables. Indeed the Jacobian of the
transformation χ′i 7→ χi(χ′) becomes

J(χ′) = det−1
(
∂χi
∂χ′j

)
, (A.4)
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with an inverse determinant where we would expect the determinant itself for bosonic
variables. A corollary is that the fermionic Gaussian integral

I =
ˆ ∏

i

dθ̄i dθi exp

∑

ij

θ̄iMijθj


 (A.5)

gives the inverse I = det(M) of its bosonic counterpart. Similarly, Wick’s theorem applies
to Grassmann variables with the correct sign,

〈θ̄i1θi1 ...θ̄ipθip〉 =
∑

P∈Sp
ε(P )〈θ̄i1θiP (1)〉...〈θ̄ipθiP (p)〉, (A.6)

where Sp denotes the set of permutations of p elements and ε is the signature.

A.II Dimensional regularisation
A.II.1 Basic properties
Definition — Let d be an integer dimension. Let f be an analytic function of a single
variable (typically a rational fraction). We consider the following isotropic integral over
this function

Id[f ] =
ˆ
q

f(q) =
ˆ ddq

(2π)df(q), (A.7)

where q = (q1, q2, ..., qd) is a d-dimensional vector and q is its norm. For values of d where
this integral converges, Eq. (A.7) is well defined. Thanks to rotational invariance, we can
change from Cartesian to angular coordinates. The angular integral is trivial and only the
integral over the norm q remains,

Id[f ] = Kd

ˆ ∞
0

dq qd−1f(q), (A.8)

Eq. (A.8) defines a one-dimensional Riemann integral. The conventional factor in front is

Kd = Ωd

(2π)d , where Ωd = 2πd/2
Γ(d/2) (A.9)

stands for the area of the hypersphere in d dimensions. The function Γ is Euler’s Gamma
function, whose properties we shall soon discuss. Now, for all values of d in the complex
plane, except possibly at isolated points, we define the dimensional continuation of the
integral (A.7) by Eq. (A.8). One of these singularity point typically corresponds to the
lower critical dimension of the theory. This d-dimensional integral meets the following
requirements (Zinn-Justin 2002).

(i) Translation: for any d-dimensional vector p,ˆ
q

f(|q + p|) =
ˆ
q

f(q). (A.10)

(ii) Dilatation: for any positive scalar λ,ˆ
q

f(λq) = λ−d
ˆ
q

f(q). (A.11)
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(iii) Factorisation: for any analytical functions f and g,ˆ
q

ˆ
p

f(q)g(p) =
ˆ
q

f(q)
ˆ
p

g(p). (A.12)

Remark — Property (ii) implies that the integral of a power of q vanishes, i.e.ˆ
q

q−α = 0, (A.13)

for any real α, a result known as Veltman’s formula. The vanishing of Eq. (A.13) hides in
fact a cancellation between ultraviolet and infrared divergences. For example, Feynman
diagrams require to integrate products of propagators, whose leading large momentum
behaviour is frequently q−2. The Feynman integral can be split into

ˆ
q

q−2 = Kd

(ˆ ∞
1

dq qd−3 +
ˆ 1

0
dq qd−3

)
. (A.14)

The first term of Eq. (A.14) leads to an ultraviolet pole, which contributes to the renor-
malisation flow of the field amplitude, frequency, coupling strength, or any operator of
the theory. The second term of Eq. (A.14) appears only in massless theories, where
infrared divergences mix with ultraviolet ones. This mixing happens in the Gross-Neveu
model. To prevent infrared singularities, we can attach a dummy mass m to the fields,
which ultimately vanishes at the end of the calculations, but serves as an intermediate
regularisator. Eq. (A.14) becomesˆ

q

1
q2 +m2 = 2Kd ΓE(1− d/2)ΓE(d/2)md−2, (A.15)

by virtue of Eq. (A.20). The integral (A.15) displays a pole in ε = d− 2 as expected.

A.II.2 Explicit calculation
Several analytical tricks ease the explicit computation of the d-dimensional integrals found
in Feynman diagrams (Srednicki 2007; Kleinert 2001; Zinn-Justin 2002).

Feynman’s trick and Schwinger’s representation — One is Feynman’s trick,

1
AB

=
ˆ 1

0

dx
Ax+B(1− x) , (A.16)

valid for any expressions A and B, which permits to linearise a product of two denominators.
Typically, A and B are quadratic polynomials in the norm of loop momenta q, p, etc. The
generalisation to higher powers of denominators reads

1
AaBb

= ΓE(a+ b)
ΓE(a)ΓE(b)

ˆ 1

0
dx xa−1(1− x)b−1

[Ax+B(1− x)]a+1 , (A.17)

for positive reals a and b, and where ΓE denotes Euler’s Gamma function. Similarly, the
trick can be extended to products of more than two denominators, such that

1
A1 · · · An

= ΓE(n)
ˆ 1

0
dx1 · · · dxn

δ(1− x1 + · · ·+ xn)
(A1x1 + · · ·+ Anxn)a1+···+an

. (A.18)
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Alternately, Schwinger’s proper time representation can prove helpful:

1
Aa

= 1
ΓE(a)

ˆ ∞
0

dτ τa−1e−τA. (A.19)

This trick enable to cast complicated rational fractions into Gaussian integrals. When
Feynman integrals simplify themselves to isotropic integrals in arbitrary dimension d, one
often encounters one-loop integrals of the form

ˆ
q

q2a

(q2 +m2)b = ΓE(b− a− d/2)ΓE(a+ d/2)
(4π)d/2ΓE(b)ΓE(d/2) m−2(b−a−d/2), (A.20)

for positive reals a and b. The mass m→ 0 plays the role either of an infrared regulator in
massless theories, or of the fixed Matsubara frequency. When one-loop Feynman diagrams
include an external momentum k, we can use the formula
ˆ
q

1
(q2 +m2)a[(q + k)2 +m2]b = ΓE(a+ b)

(4π)d/2ΓE(a)ΓE(b)

ˆ 1

0
dx (1− x)a−1xb−1

[k2x(1− x) +m2]a+b−d/2 .

(A.21)
Generalisations exist for at two-loop order, where more denominators come into play.

Tensor structure — In fermionic theories, the integrand may carry a non-trivial tensorial
structure. The integral may be parametric and depend on an external momentum k.
The two symmetric tensors with two indices that we can build from k are kµkν and δµν .
Hence (Zinn-Justin 2002),

ˆ
q

qµqνf(q, p, q · k) = A(k)kµkν +B(k)δµν . (A.22)

The functions A and B depend only on the norm k and can be found by tracing or
multiplying Eq. (A.22) with kµ,





(d− 1)A(k)k2 =
ˆ
q

[
d(k̂ · q)2 − q2

]
f(q, p, q · k)

(d− 1)B(k) =
ˆ
q

[
q2 − (k̂ · q)2

]
f(q, p, q · k),

(A.23)

(A.24)

where k̂ = k/k.

Euler’s Gamma function — Euler’s Gamma function ΓE generalises the factorial to
the complex plane; it is defined by

ΓE(z) =
ˆ ∞

0
dt tz−1e−t. (A.25)

The Gamma function satisfies the recursive relation ΓE(z + 1) = zΓE(z). It is holomorphic
except at all negative integer values z = 0,−1,−2, etc. Near one of these poles, it satisfies

ΓE(−n+ x) = (−1)n
n!

[ 1
x

+ ψ(n+ 1) +O(x)
]

(A.26)
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for all real x and integer n; this relation is usually used with x = ε in dimension
d = 2 + ε (close to the lower critical dimension) or d = 4− ε (close to the upper critical
dimension). In Eq. (A.26), ψ = (ln Γ)′ is Euler’s Digamma function. One particular
value is ψ(1) = −γE, where γE ' 0.58 is Euler-Mascheroni’s constant. The constant term
of Eq. (A.26) contributes in counterterms beyond two-loop order, but plays no role at
one-loop order in the minimal subtraction scheme.

A.II.3 Feynman integrals with long-range correlation
We reproduce below the list of two-loop integrals presented in (Dudka 2016), which enter
the second-order corrections to the beta functions and the leading contribution to the
multifractal exponents. At this order, the Feynman diagrams involve integrals over two
internal momenta q and p. The graphs are depicted in the following Appendix B; they
host three impurity lines labelled each by a symbol a, b or c, which can take the value
S for short-range correlations, or L for long-range correlations. We use the shorthand
notations [1] = q2 + ω2, [2] = p2 + ω2, [3] = (q + p)2 + ω2 for the integrands, and

ˆ
= K−2

d

ˆ ddq
(2π)d

ˆ ddp
(2π)d , (A.27)

where Kd is defined in Eq. (A.9). Only the poles are given, unless the leading contribution
of the integral is a constant. We collect the Feynman integrals according to the nature of
impurity lines.

Case a = b = c = S — ˆ 1
[1][2] =

ˆ 1
[1][3] = ω−2ε

[ 4
ε2

]
, (A.28)

ˆ 1
[1][3]2 =

ˆ 1
[1][2]2 = ω−2ε−2

[2
ε

]
. (A.29)

Case a = L — ˆ
qa−d

[1][2] =
ˆ

qa−d

[1][3] = ω−ε−δ
[ 4
εδ

]
, (A.30)

ˆ
qa−d

[2][3] = ω−ε−δ
[

8
δ(δ + ε)

]
, (A.31)

ˆ
qa−d

[1][2]2 =
ˆ

qa−d

[1][3]2 = ω−ε−δ−2
[2
δ

]
, (A.32)

ˆ
qa−d

[2]2[3] =
ˆ

qa−d

[2][3]2 = ω−ε−δ−2
[2
δ

]
, (A.33)

ˆ
q2qa−d

[2]2[3]2 = ω−ε−δ−2
[4
δ

]
, (A.34)

ˆ
qa−d

[1]2[2] = ω−ε−δ−2
[2
ε

]
, (A.35)
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ˆ
q2qa−d

[2]3[3] = ω−ε−δ−2 [−1] , (A.36)

ˆ
qa−d

[2]3[3] = ω−ε−δ−4
[1
δ

]
. (A.37)

Case a = L and b = L —
ˆ
qa−dpa−d

[1][2] = ω−2δ
[ 4
δ2

]
, (A.38)

ˆ
qa−dpa−d

[1][3] =
ˆ
qa−dpa−d

[2][3] = ω−2δ
[

2(3δ−ε)
δ2(2δ−ε)

]
, (A.39)

ˆ
qa−dpa−d

[1][3]2 =
ˆ
qa−dpa−d

[2][3]2 = ω−2δ−2
[ 2
2δ−ε

]
, (A.40)

ˆ
qa−dpa−d

[2]2[3] =
ˆ
qa−dpa−d

[1][2]2 = ω−2δ−2
[2
δ

]
, (A.41)

ˆ
p2qa−dpa−d

[1]2[3] = ω−2δ
[

2(3δ − ε)
δ2(2δ − ε) −

2(3δ − ε)
δ2

]
,

(A.42)

ˆ [2]qa−dpa−d
[1]2[3]2 = ω−2δ−2

[
2(3δ − ε)
δ(2δ − ε)

]
, (A.43)

ˆ [2]qa−dpa−d
[1][3]2 = ω−2δ

[
2(3δ − ε)
δ2(2δ − ε) −

2
δ

]
, (A.44)

ˆ [2]qa−dpa−d
[1]2[3] = ω−2δ

[
2(3δ − ε)
δ2(2δ−ε)−

2(2δ−ε)
δ2

]
,

(A.45)

ˆ
p4qa−dpa−d

[1]2[3]2 = ω−2δ
[

8(3δ−ε)
δ2(2δ−ε)−

2(8δ−3ε)(3δ−ε)
δ2(2δ−ε)

]
.

(A.46)
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Case b = L and c = L —
ˆ
p2(a−d)

[1][2] =
ˆ
p2(a−d)

[2][3] = ω−2δ
[

4
ε(2δ−ε)

]
, (A.47)

ˆ
p2(a−d)

[1][3] = ω−2δ
[

4
δ(2δ − ε)

]
, (A.48)

ˆ
p2(a−d)

[1][2]2 =
ˆ
p2(a−d)

[2]2[3] = ω−2δ−2
[2
ε

]
. (A.49)

Case a = L, b = L, and c = L —
ˆ
qa−dp2(a−d)

[1][2] = ω−3δ+ε
[

4
δ(2δ − ε)

]
, (A.50)

ˆ
qa−dp2(a−d)

[1][3] = ω−3δ+ε
[

4(5δ−3ε)
(3δ−2ε)(2δ−ε)(3δ−ε)

]
, (A.51)

ˆ
qa−dp2(a−d)

[2][3] = ω−3δ+ε
[

8(2δ−ε)
δ(3δ−2ε)(3δ−ε)

]
, (A.52)

ˆ
qa−dp2(a−d)

[2]2[3] = ω−3δ+ε−2
[2
δ

]
, (A.53)

ˆ
qa−dpa−d|q+p|a−d

[1][2] = ω−3δ+ε
[

8
(2δ−ε)(3δ−ε)

]
.

(A.54)
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Appendix B
Feynman graphs of the replicated theory

B.I Four-point vertex functions
We introduce the renormalisation constants Zψ, Zω such that the renormalised Gaussian
action reads

S0 =
ˆ
k

ψk(Zψσ · k − iZωω)ψk. (B.1)

These constants are found by rendering the two-point vertex function Γ(2) finite. The
renormalisation constants ZS, ZL are such that the renormalised quartic interaction reads

Sint = −K−1
d

ˆ
ki

(
µ−εZSγS + µ−δZLγLq

δ−ε
)
ψk1ψk1+qψk2ψk2−q. (B.2)

The constants make the link between bare and renormalised coupling strengths,

γ̊S = 2µ−ε
Kd

ZS

Z2
ψ

γS, γ̊L = 2µ−δ
Kd

ZL

Z2
ψ

γL, (B.3)

They can found by rendering the four-point vertex function Γ(4) finite. Because of disorder
correlations, the four-point vertex function splits into contact and long-range components,

Γ(4)(k1,k1 + q,k2,k2 − q;ω, γ, µ) = Γ(4)
S ({ki};ω, γ, µ) + Γ(4)

L ({ki};ω, γ, µ)qa−d, (B.4)

(a) (b) (c)

Figure B.1 | Four-point vertex functions of the replicated theory at one-loop order. A solid
line stands for a fermionic propagator; a dashed line for an impurity scattering. The symbols a
and b each label either short- (strengh γS) or long-range (strength γL) correlations of disorder.
Diagram (a) contributes to the flow of γb, while the poles of the ladder diagrams (b) and (c)
compensate one another as a result of particle-hole symmetry. The counterterms are not shown.
Extracted from (Dudka 2016).
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(a) (b) (c) (d) (e)

Figure B.2 | Four-point vertex functions of the replicated theory at two-loop order. A solid
line stands for a fermionic propagator; a dashed line for an impurity scattering. The symbols
a, b, c each label either short- (strengh γS) or long-range (strength γL) correlations of disorder.
Shown here are the single-barred graphs, the only ones to contribute to the flow of γL, when
c = L. They also contribute to the flow of γS when c = S. The counterterms are not shown.
Extracted from (Dudka 2016).

which differ in their dependence on the transferred momentum q. Each component depends
on the set of the two coupling strengths γ = {γS, γL}. The finiteness conditions apply to
the short- and long-range components separately,

Γ(4)
S ({ki = 0};µ, γ, µ) = finite, Γ(4)

L ({ki = 0};µ, γ, µ) = finite. (B.5)

At two-loop order, the loopwise expansion of the bare four-point vertex of type a = S,L
takes the form

Γ̊(4)
a (ω̊, γ̊) = − γ̊a2


1 +

∑

b

γ̊b Γ̊(4)
1,ab(ω̊) +

∑

b,c

γ̊bγ̊c Γ̊(4)
2,abc(ω̊)


− γ̊ā

2
∑

b,c

γ̊bγ̊c Γ̊(4)
2,ābc(ω̊), (B.6)

where ā = S if a = L and vice versa. A similar expansion can be written down for the
renormalised vertex, which then includes counterterms as separate graphs. The one-loop
graphs, which contribute to the vertices Γ̊(4)

1,ab are listed in Fig. B.1. The vertices Γ̊(4)
2,abc(ω̊)

are given by the two-loop graphs of Fig. B.2, Fig. B.3 and Fig. B.4, according to the
presence of one, two or three forward scattering processes respectively. The two-loop
vertices Γ̊(4)

2,ābc(ω̊) contribute to short-range correlations only (a = S and ā = L), and
are given by the three-barred diagrams of Fig. B.4. They originate from graphs with
long-range correlations only, when b = L and c = L. We refer the reader to Sec. A.II.3 for
the poles of the Feynman integrals.

Replacing the bare coupling strengths γ̊a by their renormalised counterpart as per
Eq. (B.3), and relating the bare and renormalised vertex through

Γ(4)
a (ω, γ, µ) = Z2

ψ Γ̊(4)
a (ω̊, γ̊), (B.7)

we can cure the divergences of the Feynman diagrams using the minimal subtraction
scheme: the Z constants absorb only the poles in inverse powers of ε and δ, so as to ensure
the finiteness conditions (B.5). The constants at order two in the loopwise expansion take
the form of a finite Laurent series

Za(γ) = 1 + Aa(γ)
ε

+ Ba(γ, ε/δ)
δ

+ ... , (B.8)
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(a) (b) (c) (d)

(e) (f)

Figure B.3 | Four-point vertex functions at two-loop order for the replicated theory. A solid
line stands for a fermionic propagator; a dashed line for an impurity scattering. The symbols
a, b and c label each either short-range (strengh γS) or long-range (strength γL) correlations of
disorder. Shown here are all the double-barred diagrams. Diagrams (a) componsates with (b),
and diagram (c) with (d). Diagram (e) and (f) contribute to the flow of γS only. Remarkably,
they are responsible for the spontaneous generation of short-range correlations by long-range
correlations, when a, b and c all carry long-range impurity lines. All these graphs are topologically
identical to those considered in (Dudka 2016). The counterterms are not shown.

Due to the spontaneous generation of a contact interaction by long-range correlations,
the functions AS(γ) and BS(γ, x) for the contact interaction comprise a second-order
polynomial in the coupling strengths, plus an extra term of order γ3

L/γS. The function
x 7→ Ba(γ, x) is analytic at x = 0 because the theory is renormalisable in two dimensions
in presence of long-range correlations only. The ellipsis stands for higher order terms
of the Laurent series, which originates from diagrams of order larger than two. In the
standard ε-expansion, these terms compensate one another in the scaling functions, and
thus play no role in the determination of the critical exponents. We will assume that the

(a) (b) (c) (d)

Figure B.4 | Four-point vertex functions at two-loop order for the replicated theory. A solid
line stands for a fermionic propagator; a dashed line for an impurity scattering. The symbols
a, b and c label each either short-range (strengh γS) or long-range (strength γL) correlations of
disorder. Shown here are all the triple-barred diagrams, which contribute to the flow of γS only.
Remarkably, they are responsible for the spontaneous generation of short-range correlations by
long-range correlations, when a, b and c all carry long-range impurity lines. All these graphs are
topologically identical to those considered in (Dudka 2016). The counterterms are not shown.
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same happens in Eq. (B.8), which also contains poles in δ.

B.II Two-loop multifractal vertex
We now consider the renormalisation of the composite operator

Oq =
q∏

α=1
ψαψα. (B.9)

The standard procedure consists in adding a source J(r, τ) to the renormalised action
which couples linearly to the operator (B.9) (Zinn-Justin 2002)

SR[ψ, ψ]→ SR[ψ, ψ, J ] = SR[ψ, ψ] + Zq

ˆ
ddr dτJ(r, τ)Oq(r, τ). (B.10)

To insert the operator Oq into a correlation function (vertex function), one has to derive
the action (quantum action) with respect to the source J . In particular, the renormalised
vertex function with a single insertion of Oq reads

Γ(q)
O (r, τ) = δΓ[ψ, ψ, J ]

δJ(r, τ)

∣∣∣∣∣
J=0

. (B.11)

Since the vertex functions represent the one-particle diagrams without the external legs, the
vertex function (B.11) can also be written as an ensemble average Γ(q)

O (r, τ ) = 〈Oq(r, τ )〉1PI
restricted over one-particle irreducible (1PI) diagrams.

The bare and renormalised vertex functions are linked in the usual way; in Fourier
space, we have

Γ̊(q)
O ({ki = 0}, ω̊, γ̊) = ZqZ

−q
ψ Γ(q)

O ({ki = 0}, ω, γ, µ), (B.12)

where {ki} represents a set of 2q external momenta with zero sum. The renormalisation
constant Zq is chosen to render Γ(q)

O finite when ε and δ vanish. From Eq. (B.12), it is easy
to find the corresponding Callan-Symanzik equation by deriving with respect to the mass
scale µ,


µ

∂

∂µ
+ (1− z)ω ∂

∂ω
+
∑

i=S,L
βi

∂

∂∆i

+ ηq − qηψ

Γ(q)
O ({ki}, ω, γ, µ) = 0, (B.13)

The functions βi are the beta functions for the coupling constant γi, for i = S,L, while z
is the dynamical exponent and ηψ the anomalous field exponent. Similarly, the renormali-
sation constant Zq is associated to its own scaling function

ηq = −
∑

i=S,L
βi
∂ logZq
∂γi

. (B.14)

The anomalous multifractal exponents at a fixed point γ∗ follow from the relation ∆q =
ηq(γ∗)− qη1(γ∗). The renormalisation constant Zq at two-loop order is given by the graphs
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B.II. Two-loop multifractal vertex

of Fig. B.5, whose poles are summarised in Tab. B.1. It reads

Zq = 1 + 2q
[
γS

ε
+ γL

δ

]
+ γ2

S

[1
ε

(3q − 3q2) + 1
ε2 (−4q − 2q2)

]

+γSγL

[
1
ε

(−3q + 3q2) + 4q
δ

+ 1
ε+ δ

(10q − 18q2) + 1
εδ

(−22q + 2q2) + 1
δ(ε+ δ)(28q − 12q2)

]

+ γ2
L

[
ε

δ2

(
7q
2 −

3q2

2

)
+ 1
δ

(
−q2 −

3q2

2

)
+ 1
δ2

(
−7q + q2

)
+ 1
δ(ε+ δ)

(
3q − 3q2

)]
.

(B.15)

As in Eq. (B.8) for the renormalisation constants of the coupling strengths, we isolate the
residues of Zq as

Zq(γ) = 1 + Aq(γ)
ε

+ Bq(γ, ε/δ)
δ

+ ... , (B.16)

where Aq and Bq are the following second-order polynomials in γ = {γS, γL},




Aq(γ) = 2qγS + 3γ2
Sq(1− q)− 3γSγLq(1− q),

Bq(γ, x) = 2qγL + 4qγSγL + 2qγSγL
5− 9q
1 + x

+ γ2
L
2 q [(7− 3q)x− (1 + 3q)] .

(B.17a)

(B.17b)

Using the first order approximation for the beta functions βS(γ) = −εγS + 4γ2
S + 4γSγL +

O(γ3) and βL(γ) = −δγL + 4γ2
L + 4γSγL + O(γ3) of Eq. (3.33), we deduce the following

expression for the anomalous scaling exponent,

ηq = γS
∂Aq(γ)
∂γS

+ γL
δ

ε

∂Aq(γ)
∂γL

+ γS
ε

δ

∂Bq(γ, ε/δ)
∂γS

+ γL
∂Bq(γ, ε/δ)

∂γL
, (B.18)

while the poles cancel one another. This leads to the expression of ηq given in Eq. (3.54)
in the main text.
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(a) (b) (c) (d) (e)

+

(f)

+

(g)

+

(h)

+

(i)

+

(j)

+

(k)

+

(l)

+ + +

(m)

+

(n)

+ + +

(o)

+

(p)

+ + +

(q)

+

(r)

+

(s)

+

(t) (u) (v) (w)

Figure B.5 | (a)-(q) One-particle irreducible diagrams contributing to the renormalisation of the
multifractal operator Oq to two-loop order. These diagrams are topologically identical to those
considered in (Syzranov 2016), but here each dashed line corresponds to either short-range (γS)
or long-range (γL) disorder vertices. (r)-(w) Counterterms. The cross represents the one-loop
correction to the quartic interaction (dashed line), to the free Green’s function (solid line), or to
the source of the multifractal operator (wavy line).
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Diagram Multiplicity γ2
S γSγL γ2

L

(a) 4q 1
ε2

+ 2
ε

1
εδ

+ 2
δ(δ+ε) + 3

δ
+ 1

ε
3δ−ε
δ(2δ−ε) + 3δ−ε

2δ2(2δ−ε)

(b) 4q − 1
2ε2 − 1

ε
− 2
δ(δ+ε) − 2

δ
− 1

2δ(2δ−ε) − 1
2δ−ε

(c) 8q 1
2ε2 + 1

ε
2

δ(ε+δ) + 1
ε

+ 1
δ

1
2δ2 + 1

δ

(d) 8q 1
2ε

1
2ε + 1

2δ − δ−ε
2δ(ε+δ)

1
2δ − δ−ε

4δ2

(e) 2q(q − 1) 1
ε2

+ 2
ε

2
εδ

+ 2
ε

+ 2
δ

1
δ2 + 2

δ

(f) 8q(q − 1) 1
ε

1
ε

+ 1
δ

1
δ

(g) 8q(q − 1) 1
ε

1
ε

+ 1
δ

1
δ

(j) 4q(q − 1) 1
ε2

+ 1
2ε

1
εδ

+ 2
δ(δ+ε) + 1

2ε + 1
δ+ε

3δ−ε
2δ2(2δ−ε) + 3δ−ε

4δ2

(k) 2q(q − 1) 1
ε2

+ 1
2ε

1
εδ

+ 2
δ(δ+ε) + 1

2ε + 1
δ+ε

3δ−ε
2δ2(2δ−ε) + 3δ−ε

4δ2

(l) 4q(q − 1) − 1
2ε2 − 1

2ε − 2
δ(δ+ε) − 2

ε+δ − 1
2δ(2δ−ε) − 1

2δ

(n) 8q(q − 1) − 1
2ε2 − 1

2ε − 2
δ(δ+ε) − 2

ε+δ − 1
2δ(2δ−ε) − 1

2δ

(p) 4q(q − 1)(q − 2) 1
ε

1
ε

+ 1
δ

1
δ

(r) 2q(q − 1) −4
ε

−4
ε
− 4

δ
−4
δ

(t) 2q(q − 1) −2q
ε

−2q
ε
− 2q

δ
−2q

δ

(u) 2q − 4
ε2
− 4

ε
− 8
εδ
− 4

ε
− 4

δ
− 4
δ2 − 4

δ

(v) 2q −2q
ε2
− 2q

ε
−4q
εδ
− 2q

ε
− 2q

δ
−2q
δ2 − 2q

δ

(w) 4q −1
ε

−1
ε
− 1

δ
−1
δ

Table B.1 | Poles of the diagrams depicted in Fig. B.5. The first column gives the diagram’s
label as per the conventions of Fig. B.5. The second column indicates the multiplicity. The last
three columns give the terms proportional to γ2

S, γSγL and γ2
L, respectively, where γS denotes

the short-range correlated disorder strength and γL the long-range correlated disorder strength.
Diagrams (h), (i), (m), (o), (q) and (s) cancel each other. In computing these diagrams one
encounters many different types of integrals which can be found in Appendix B of (Dudka 2016).
Diagrams (r) – (w) are counterterms.
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Appendix C
Surface properties of disordered relativistic
semimetals

C.I Solution to the self-consistent equation
C.I.1 Bulk contribution
We recall the local SCBA for the spatially resolved self-energy Σ(E, z),

Σ(E, z) = γ

4

ˆ
k<Λ

d2k

(2π)2TrG0(E + Σ(E, z), z, z). (C.1)

Although Eq. (C.1) can be solved numerically, we can further simplify it analytically
in the case b = 0, which corresponds to either a single Dirac cone, or two Weyl nodes
whose surface projections overlap. We will also set bz to zero for simplicity. To avoid any
ambiguity we explicitly indicate the dependence of the Green’s function on the momentum,
which in polar coordinates reads k = k(cosφ, sinφ). For convenience, we introduce the
dimensionless disorder strength ∆ = γΛ/4π. The integrand of Eq. (C.1) naturally splits
into two parts, one involving the bulk part of the Green’s function, given by Eq. (4.14),
the other involving the excess part of the Green’s function. Thus, we can cast Eq. (C.1)
into

Σ
∆ = π

Λ

ˆ
k<Λ

d2k

(2π)2TrG0(E + Σ, z, z, k, φ)

= 1
4πΛ

ˆ Λ

0
k dk dφTr

[
Gb(E + Σ, k, φ) + e−2κzGe(E + Σ, k, φ)

]
, (C.2)

where κ2 = k2 − (E + Σ)2. The quantities Gb and Ge represent the bulk and excess
Green’s functions deprived from the z-dependent exponential factor.

The first term of Eq. (C.2) is common to both boundary conditions M1 and M2, and
does not depend on distance z. It can be integrated to

1
4πΛ

ˆ Λ

0
k dk dφTrGb(E + Σ, k, φ) = E + Σ

Λ

(√
−(E + Σ)2 −

√
Λ2 − (E + Σ)2

)
. (C.3)

The self-consistent equation derived from Eq. (C.3) is exact in the limit z → +∞, where
it leads to the bulk self-energy Σb. At zero energy, it takes the dimensionless form

s

∆ = s
(√

1 + s2 − s
)

(C.4)
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where s = ΓbΛ−1 with Γb = ImΣb. The solution of this equation has been discussed in
Sec. 2.3.2.

C.I.2 Chirality-preserving boundary condition
The spatial dependence originates from the second term of Eq. (C.2) only. For the M1
boundary condition, the excess propagator Ge is diagonal in the chiral sector. Thus the
trace of Ge splits into two partial traces wherein the integration variable k can be rotated
by an arbitrary angle to absorb the parameters θ± defined in Eq. (4.7). As a result, we
choose pleasant values of these angles to simplify the calculus, namely θ+ = 0 and θ− = π.
We then have

1
2TrGe(E + Σ, k, φ) = E + Σ√

k2 − (E + Σ)2
+

√
k2 − (E + Σ)2

E + Σ− k cosφ . (C.5)

The excess contribution to the local SCBA reads

1
4πΛ

ˆ Λ

0
k dk dφ e−2κz TrGe(E + Σ, k, φ)

= 1
4Λz2

[
e−2z
√

Λ2−(E+Σ)2
(

2iz
√

Λ2 − (E + Σ)2 + i− 2z(E + Σ)
)

−e2z
√
−(E+Σ)2

(
2iz

√
−(E + Σ)2 + i− 2z(E + Σ)

)]
. (C.6)

At zero energy the local SCBA takes the dimensionless form
s

∆ = s
(√

1 + s2 − s
)

+ f1(s, u) (C.7)

where s = Γ(z)Λ−1 with Γ(z) = ImΣ(E = 0, z), u = Λz, and

f1(s, u) = 1
4u2

{
e−2us − e−2u

√
1+s2

[
1 + 2u

(√
1 + s2 − s

)]}
. (C.8)

This proves Eq. (4.40) in the main text.

C.I.3 Chirality-breaking boundary condition
When b = 0, the self-consistent equation depends solely on the parameter θ of the M2
boundary matrix, which dictates the Fermi velocity of the Dirac surface states v = cos2(θ).
The integrand of the excess contribution looks like Eq. (C.5), except that θ replaces the
integration variable φ,

1
2TrGe(E + Σ, k, φ) = E + Σ√

k2 − (E + Σ)2
+

√
k2 − (E + Σ)2

E + Σ− k cos θ . (C.9)

The excess contribution to the local SCBA can be written as

1
4πΛ

ˆ Λ

0
k dk dφ e−2κz TrGe(E + Σ, k, φ) =

(E + Σ)
(
e−2z
√
−(E+Σ)2 − e−2z

√
Λ2−(E+Σ)2

)

2Λz

− 1
2Λ

∂

∂z

ˆ Λ

0
k dk e

−2z
√
k2−(E+Σ)2

E + Σ− k cos θ . (C.10)
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The integral of Eq. (C.10) does not admit a simple expression for general z. Focussing on
surface properties,and setting z = 0, the local SCBA further simplifies to

Σs

∆ = E + Σs

Λ

(√
Λ2 − (E + Σs)2 −

√
−(E + Σs)2

)
− Λ sec θ

− sec2(θ)(E + Σs) log
(

1− Λ cos θ
E + Σs

)
, (C.11)

where Σs = Σ(z = 0) denotes the surface self-energy. Eq. (C.11) can be solved numerically
to plot the surface DoS ρs(E) = ImΣs(E)/π as a function of the energy, as in Fig. 4.5.
The local energy shift ε(z) is non-zero, and can be found can be found from the zeroes of
the function E 7→ E+ReΣ(E, z), which is plotted in Fig. 4.5(b) in the case z = 0. Setting
Σs = −εs + iΛs with εs = ε(z = 0) and s > 0, and taking the real part of Eq. (C.11), we
find

εs = ∆ tan θ
2

[
1− s2

v
log

(
1 + v

s2

)]
, (C.12)

as was advertised in Eq. (4.45). Taking the imaginary part, we find the self-consistent
equation

s

∆ = s sec2(θ)
(√

1 + s2 − s
)

+ s2 sin θ
cos3(θ)

[
arctan(cot θ)− arctan

(
s tan θ√
1 + s2

)]
, (C.13)

in agreement with Eq. (4.46).

C.II The semi-infinite Ising ferromagnet
In this section, we review the phase diagram of semi-infinite Ising ferromagnets, from
which we borrow the terminology to characterise the phase diagram of semi-infinite Dirac
semimetals. For a pedagogical introduction to the topic, see (Cardy 1996). For a textbook
introduction to the renormalisation of the semi-infinite ϕ4 theory, see (Domb 2000).

C.II.1 Mean-field approach
A seminal example for phase transitions is the ferromagnetic Ising model. The first
theoretical works on spin models on a semi-infinite lattice leveraged most of the techniques
already available for infinite systems: mean-field theory (Lubensky 1975b), high- and
low-temperature expansions, Monte Carlo analyses, renormalisation group approach with
an ε-expansion (Lubensky 1975a) or large N expansion (Ohno 1983), and even exact
solutions (Bray 1977). The advantage of the semi-infinite geometry is that surface
properties become apparent without bothering with finiteness smearing the sharp critical
behaviour. We thus decouple strict finite-size effects from surface effects.

We treat here the effect of a surface at the mean-field level. Let J(z) be the space-
dependent ferromagnetic coupling, and R its range (of microscopic size). Near the boundary
at z = 0, the deficit of neighbour spins makes the coupling to drop from its bulk value
Jb, so that at first approximation J(z) = Jb[1− (R2/2λ)δ(z)] with λ� R > 0. From this
local coupling strength, we define the surface coupling strength

Js = 1
R

ˆ R

0
dzJ(z) = Jb(1−R/2λ) (C.14)
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Chapter C. Surface properties of disordered relativistic semimetals

In special cases, this surface coupling could be enhanced rather than diminished; we will
thus allow ourselves to consider λ < 0. We now write down the self-consistent equation
for the magnetisation M(z) obtained by minimising the free energy:
ˆ

dz′J(z − z′)M(z′) = J(z)M + J(z)
2R2

d2M

dz2 = kBT argth(M) ' kBT
(
M + 1

3M
3
)
.

(C.15)
where the last equality holds for small M and hence in vicinity of the critical point, i.e. for
a reduced temperature t ' 0. Expanding the left-hand side, one arrives at (Cardy 1996)

1
2R2

d2M

dz2 = tM + 1
3M

3, (C.16)

along with a Robin boundary condition at z = 0+

dM
dz = cM, (C.17)

with c = 1/λ. The magnetisation profile slightly below the critical point is sketched in
Fig. C.1(a). Let us analyse separately the cases c > 0 and c < 0.

For c > 0, the magnetisation vanishes at a distance of approximately λ outside the
material; for this reason, λ is a referred to as the extrapolation length (though this reading
breaks down beyond mean-field). Also, the surface magnetisation Ms = M(0) and the bulk
magnetisationMb = M(+∞) vanish conjointly. For c = 0, the profile is constant. For c < 0,
the surface orders at a higher temperatures than the bulk. Yet the differences between bulk
and surface criticality does not stop to the magnetisation being weakened or enhanced.
The critical exponents also differ. Indeed the usual scaling argument states the existence
of a scaling function f such that M(z) = (−t)1/2f

[
(z + λ)R−1|t|1/2

]
and f(+∞) ∼ 1. By

contrast, f(0) = 0 by definition of the extrapolation length. Since f is analytic near the
origin, it must vanish as f(x) ∼ x. Thus Ms ∼ (−t)1/2f(λR−1|t|1/2) ∼ (−t)βs with the
mean-field surface exponent βs = 1, which differs from the corresponding bulk exponent
β = 1/2 (Lubensky 1975b).

C.II.2 Phase diagram
As a summary, the phase diagram, depicted in Fig. C.1(b), presents the following features.

• Provided the surface coupling is small enough, the surface orders at the same
temperature as the bulk. This common bulk-surface transition resembles the one
encountered in the infinite system, and so is termed ordinary. The ordinary transition
survives up until a special, tricritical point, usually placed above the point of equal
couplings Js = Jb due to renormalisation effects. At the ordinary transition, the
surface magnetisation increases in a power-law fashion Ms ∼ (−t)βo , with a critical
exponent βo which differs from the bulk exponent. The latter follows from the
exponents of the transition in the infinite system.

• Above the special point cs, the large surface coupling enhances the magnetisation
so much as to order the surface in presence of the disordered bulk. A critical line
separates the two regions, with a power-law behaviour ts ∼ (csp − c)1/Φ in vicinity of
the special point; this defines the crossover exponent Φ. The magnetisation increases
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Figure C.1 | (a) Magnetisation profile as a function of the distance z from the surface. For
λ > 0 and near the critical point, the magnetisation vanishes at a distance λ� ξ outside the
material, with ξ the correlation length; for this reason, λ is referred to as the extrapolation
length (though this reading breaks down beyond mean-field). Also, the surface (Ms) and bulk
(Mb) magnetisations vanish conjointly. For λ =∞, the profile is constant. For λ < 0, the surface
orders at a higher temperatures than the bulk. (b) For small surface coupling Js with respect
to the bulk coupling Jb, both bulk and surface order at the bulk critical point T = Tc. For
large surface coupling, the surface orders at a higher temperature. The bulk critical lines for
diminished (in black) and enhanced (in red) surface coupling are known as the ordinary and
extraordinary transition, respectively. The surface transition (in blue) meets the two bulk critical
lines at a tricritical point, the special transition.

in a power-law fashion Ms ∼ (ts − t)βs with a surface critical exponent βs. This
surface transition belongs in the universality class of the (d − 1)-bulk transition
of Ising ferromagnets, but this property does not extend to the semimetal-metal
transition.

• Above the special point again, the bulk orders at the usual bulk critical point t = 0,
but in presence of the surface. This extraordinary transition leads to identical bulk
critical properties as the ordinary one. The surface magnetisation acquires a singular
part on top of a smooth background. The scaling behaviour at the extraordinary
transition Ms = M0 + A(−t)βe involves yet another surface critical exponent βe,
different than that at the surface transition βs, and of course than the analogous
bulk exponent β.
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Appendix D
Linear representation of point groups

D.I Representations and group actions
For introductions to the group theory and linear representations from the physicist’s
viewpoint, see (Atkins 1970; Dresselhaus 2007; Woit 2017; Ma 2004; Ma 2007; Chen
2002b). We restrict the discussion to finite groups, such as crystalline point groups. This
excludes the orthogonal O(N) and unitary groups U(N), among others. The results will
be given without proof. Throughout the exposition, we will use the dihedral group D3
as an example. In Sec. D.III we extend D3 to the symmetry group of twisted bilayer
graphene, which includes additional antiunitary and particle-hole symmetries.

D.I.1 Definitions
Let G be a finite group of cardinal g, Vn an n-dimensional vectorial space (typically C)
and Mn(C) the set of n× n matrices with complex coefficients.

A linear representation Υ of the group G is a homomorphism from G to the set of
linear operators acting on Vn, i.e. the set of matrices Mn(C) up to a choice of basis:

Υ :G→ Mn(C) (D.1)
R 7−→ Υ(R).

Hence for all R, S ∈ G, Υ(R−1) = Υ(R)−1 and Υ(RS) = Υ(R)Υ(S). The representation
is faithful when there is a one-to-one correspondence between G and Υ(G).

Example — The dihedral group D3 = {1, C3, C2
3 , C2, C ′2, C ′′2} is a finite group of g = 6

elements. The trivial representation is the one-dimensional representation defined via
Υ(R) = 1 for all elements R ∈ D3. One gets another representation by tracking how the
summits 1, 2, 3 of a triangle are swapped under the rotations of D3. The three-fold rotation
C3 sends 1 to 2, 2 to 3 and 3 to 1. The reflexion C2 whose axis goes through the summit
number 1 exchanges 2 and 3. Hence D3 is isomorphic to the permutation group of three
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elements S3. This latter representation acts in the following way:

Υ(1) =




1 0 0
0 1 0
0 0 1


 , Υ(C3) =




0 0 1
1 0 0
0 1 0


 , Υ(C2) =




1 0 0
0 0 1
0 1 0


 . (D.2)

Two representations Υ and Υ′ are equivalent if and only if there exists a similarity
transformation that maps one to the other:

Υ′ ∼ Υ⇔ ∃X ∈ GLn(C),Υ′ = X−1ΥX. (D.3)

A representation is irreducible if it is not equivalent to a representation with block-
diagonal matrices. On the contrary, a reducible representation Υ can be decomposed as a
direct sum Υ = ⊕mi=1Υi, such that for all R ∈ G,

Υ(R) ∼




Υ1(R) 0 0 0
0 Υ2(R) 0 0
0 0 ... 0
0 0 0 Υm(R)




(D.4)

The conjugation by an element X ∈ G, R ∼ S ⇔ R = X−1SX for all R, S ∈ G,
defines an equivalence on G. The class of conjugation of an element R is defined as

C(R) = {X−1RX,X ∈ G}. (D.5)

An important theorem enables to easily determine the number of irrep. of a group. The
number n of irrep. Υi of a group G equals the number nC of conjugation classes of G,

n = nC . (D.6)

Furthermore, let [G,G] be the commutator subgroup of G, i.e. the normal subgroup
generated by all possible commutators of elements in G. The quotient set G/[G,G],
which is also a group thanks to the commutator subgroup being normal, is called the
abelianisation of G. Then the number n1 of one-dimensional irrep. of G equals the index
of [G,G] (the cardinal of the quotient group),

n1 = |G/[G,G]|. (D.7)

D.I.2 Characters
Definition — The character χ of a representation Υ is defined as the trace of any matrix
representation of the elements of G, i.e. for all R ∈ G,

χ(R) = TrΥ(R). (D.8)

It is well-defined (independent of the choice of the matrix representation), since the
cyclicity of the trace ensures that equivalent representations have the same character. For
all X ∈ GLn(C), χΥ′ = TrΥ′ = Tr (X−1ΥX) = Tr (XX−1Υ) = TrΥ = χΥ. For the same
reason, all elements R that belong the same class of G have identical characters,

χ(R) = χ(C(R)). (D.9)
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A character is a natural function of the classes of G, rather than the elements themselves.
The character of a reducible representation Υ = ⊕mi=1Υi split into the sum of the

corresponding characters, also called primary characters χi. Hence,

χ =
m∑

i=1
χi. (D.10)

Orthonormality theorem — A character is primary if and only if it is of norm one for
the scalar product 〈χ1, χ2〉 = g−1∑

R∈G χ
∗
1(R)χ2(R), namely if

1
g

∑

R∈G
χ∗(R)χ(R) = 1 (D.11)

The sum may also be written as a sum over classes,
∑

R∈G
χ∗(R)χ(R) =

∑

C(R)
c χ∗(R)χ(R), (D.12)

where c is the number of elements in class C(R). In addition, the primary characters of a
group are orthogonal, i.e. for all i 6= j,

∑

R∈G
χ∗i (R)χj(R) = 0 (D.13)

Hence, they form an orthonormal basis for the vectorial space composed of all characters of
a group G. The dimension d of an irrep. denotes the size of all its matrix representations,
and is given by d = χ(1). The set of dimensions di of the irrep. Υi of a group G of cardinal
g satisfies the completeness relation

(D.14)

Example — The dihedral group D3 has three classes, {1} written as 1, {C3, C2
3} written

as 2C3, and {C2, C2C3, C2C2
3} written as 3C2. The irreducible characters of D3 are the

following

D3 1 2C3 3C2

A1 1 1 1
A2 1 1 −1
E 2 −1 0

Among the irrep. of a group features always the trivial representation A1 for which
χ = 1. According to Mulliken’s notation, one-dimensional representations are represented
with the symbols A or B, the two-dimensional ones with the symbol E, and the three-
dimensional ones (less common), with T . The completeness relation is satisfied for D3
since 12 + 12 + 22 = 6, as are the orthonormality relations.
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Mullikens’ notation — Mulliken’s notation is widespread among theoretical chemists.
Group theory is indeed a powerful method to predict which vibrational or rotational
radiations molecules can emit. The conventions to represent irrep. of groups are the
following. A denotes a singly degenerate state (one-dimensional irrep.) which is symmetric
with respect to rotation about the principal Cn axis. B denotes singly degenerate state
which is antisymmetric with respect to rotation about the principal Cn axis. E is used for
doubly degenerate states and T for triply degenerate states. Let X be any of these four
previous symbols. Xg (for ‘gerade’, symmetric) is used when the sign of the wavefunction
is invariant under spatial inversion through the center of the atom, while Xu (‘ungerade’,
antisymmetric) is used when spatial inversion reverses the sign of the wavefunction.
Similarly, we use X1 when the sign of the wavefunction is invariant under rotation about
the center of the atom, and X2 otherwise. Finally, ′ indicates that the representation is
symmetric with respect to a horizontal symmetry plane σh, and ” that it is antisymmetric.

Class operator method — Even though the above theorems bring a lot of useful
information about the primary characters of a group, they are often insufficient to find all of
them from scratch. The class operator method enables to compute all the irrep. of a group
G systematically knowing its multiplication table and its classes of conjugation (Chen
2002b). The algorithm is the following. First endow the group G with an addition (an
associative, commutative operation + between elements), thereby promoting G to an
algebra. For each class, define the class operator as the sum of all elements in the class. If
R ∈ G is a representative of the class, the class operator of C(R) reads

[R] =
∑

S∈C(R)
S. (D.15)

Then look at the action of a class operator [R] under a multiplication in the vectorial space
of all class operators Vect([R1], [R2], ..., [Rn]). Since the product is an internal operation,
all multiplications of class operators can be decomposed into a linear combination

[R] · [Ri] =
∑

j

aij[Rj]. (D.16)

The n×n matrix D([R])ij = aij is diagonalisable; its n eigenvectors Qi are each associated
with an irrep Υi of G. More precisely, the component (Qi)j is equal (modulo a normal-
isation factor) to the character χi of the irrep Υi evaluated on the class C(Rj). When
an eigenvalue of D([R]) is m-degenerate, several eigenvectors Q1, ..., Qm are associated to
the same eigenvalue. To find which linear combination gives the character χi(Rj), one
has to compute the matrix representation of another class operator [S], and diagonalise
both D([R]) and D([S]) simultaneously. Continue to add class operators until the set of
matrices D([R]), D([S]), ... is mutually diagonalisable with non-degenerate eigenvalues.
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D.II. Key properties of irreducible representations

D.II Key properties of irreducible representations
D.II.1 Direct product
Definition — The direct product of two representations Υ1 and Υ2, of dimensions d1 and
d2, is defined as the representation of G on Vn which acts as

Υ1 ⊗Υ2 :G→Mn1n2(C) (D.17)
R 7−→ Υ1(R)⊗Υ2(R) (D.18)

where the Kronecker product of matrices Υ1(R)⊗Υ2(R) has entries Υ1 ⊗Υ2(R)i1i2,j1j2 =
Υ1(R)i1j1Υ2(R)i2j2 . Even if Υ1 and Υ2 are irreducible of G, Υ1⊗Υ2 is in general reducible.
The character of a direct product representation is the product of the characters, i.e.

χΥ1⊗Υ2 = χΥ1χΥ2 . (D.19)

Let Υ be a reducible representation of G and Υ1, Υ2, ..., Υm be the list of irrep. of G,
whose number m equals the number of classes in the group. The decomposition of Υ reads

Υ ∼
m⊕

i=1
aiΥi (D.20)

where ai is the multiplicity of Υi in the decomposition of Υ and the list {ai, i = 1, ...,m}
is called the Clebsch-Gordan series. The character χ of Υ enables to easily determine the
coefficient ai using the scalar product

ai = 1
g

∑

C(R)
c χ(R)χ∗i (R), (D.21)

where c is the cardinal of the class C(R). Applying Eq. (D.20) to a direct product
Υ = Υa ⊗Υb, we find

ai = 1
g

∑

C(R)
c χa(R)χb(R)χ∗i (R). (D.22)

Example — The three-dimensional (3d) representation Υ of D3 defined in the first
example has the following character table:

D3 1 2C3 3C2

Υ 3 0 1

Hence a(A1) = 1
6(1 ·3 ·1 + 2 ·0 ·1 + 3 ·1 ·1) = 1, a(A2) = 1

6(1 ·3 ·1 + 2 ·0 ·1 + 3 ·1 · (−1)) = 0
and a(E) = 1

6(1 · 3 · 2 + 2 · 0 · (−1) + 3 · 1 · 0) = 1. We conclude that

Υ ∼ A1 ⊕ E.
The product table of irrep. lists all possible direct products between the irrep. of G. This
table is symmetric since Υa ⊗Υb ∼ Υb ⊗Υa. For the dihedral group D3 we have

D3 A1 A2 E

A1 A1 A2 E

A2 A2 A1 E

E E E A1 ⊕ A2 ⊕ E
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In general a reducible representation Υ is not already in a block-diagonal form. To bring
to light the block decomposition in a direct sum of irrep., we must perform a similarity
transformation first,

X−1ΥX =
m⊕

i=1
aiΥi. (D.23)

The entries of the invertible matrix X are the Clebsch-Gordan coefficients. Let us assume
again that Υ = Υa⊗Υb where a and b index two irrep. of G. The irrep Υa is expressed in
matrix form by choosing a basis |ai〉 composed of na vectors, and similarly we choose a
basis |bj〉 composed of nb vectors suitable for Υb. The matrix X transforms the product
basis |ai; bj〉 into the block-diagonal basis |ckr〉 where c is the irrep, k is the index of the
vector in irrep c and r is the index to distinguish from the ac different copies of Υc. Then
the Clebsch-Gordan coefficients squared, |〈ai; bj|ckr〉|2, satisfy the following identity:

∑

r

|〈ai; bj|ckr〉|2 = nc
g

∑

R

Υa(R)ijΥb(R)ijΥ∗c(R)kk. (D.24)

Example — The non-trivial coefficients for D3 are listed below.

A2 ⊗ E

E |E1〉
|A2;E1〉 i

|A2;E2〉 0

E |E2〉
|A2;E1〉 0
|A2;E2〉 −i

E ⊗ E
A1 |A1〉

|E1;E1〉 0
|E1;E2〉 1/

√
2

|E2;E1〉 1/
√

2
|E2;E2〉 0

A2 |A2〉
|E1;E1〉 0
|E1;E2〉 i/

√
2

|E2;E1〉 −i/
√

2
|E2;E2〉 0

E |E1〉
|E1;E1〉 0
|E1;E2〉 0
|E2;E1〉 0
|E2;E2〉 1

E |E2〉
|E1;E1〉 1
|E1;E2〉 0
|E2;E1〉 0
|E2;E2〉 0

D.II.2 Reality
Definition — We introduced representations on a complex vectorial space. Some repre-
sentations however, can be ’real’ in a sense which we define more precisely below. We will
distinguish real, pseudo-real and complex representations as follows.

(i) A representation is real when it is self-conjugate,

Υ ∼ Υ†, (D.25)

and when it is equivalent to a representation with real coefficients.

(ii) A representation is pseudo-real when it is self-conjugate,

Υ ∼ Υ†, (D.26)

and when it is not equivalent to a representation with real coefficients.

(iii) A representation is complex when it is not self-conjugate.
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Properties — An irrep. Υ is self-conjugate if and only if its character χ is real. For every
self-conjugate irrep. Υ, there exists a transformation matrix X such that X−1ΥX = Υ†.
This matrixX is antisymmetric if Υ is pseudo-real and symmetric if Υ is real. A pseudo-real
irrep. is necessarily of even dimension. Finally, the following criterion holds.

1
g

∑

R

χ(R2) =





+1 if Υ real
0 if Υ complex
−1 if Υ pseudo-real

(D.27)

Example — All irrep. of D3 are real.

D.II.3 Magnetic point groups
Anti-unitary symmetries — Consider a group G that contains unitary (and thus linear)
operators R, but also anti-unitary (and thus anti-linear) operators S. A famous example
of an anti-linear operator is time reversal T , whose spinful version for a single fermion is
represented by

T = iσyK, (D.28)
where σy denotes the second Pauli matrix in the spin sector and K is complex conjugation.
The action of time reversal on time t, position r, wavevector k, angular momentum L
(orbital or spin) and energy E is

T : t→ −t, r → r, r → −r, L→ −L, E → E. (D.29)

For a system of n spins one-half, we have the fundamental property that

T 2 = (−1)n1 =



1 if n even
1̄ if n odd

where 1 is the identity operator (the rotation by 4π) and 1̄ = −1 (the rotation by 2π). In
the following we will consider only spinless (n = 0) or spin one-half (n = 1) particles.

Decomposition of a magnetic group — Assume for concreteness that the group G
contains time reversal T (the discussion below applies with any anti-unitary generator).
Let us call H the subgroup of G composed of linear operators only. For a spin one-half
particle, H is a double group, meaning that it also includes all the product of the spinless
linear operators with 1̄. Since linear operators leave time t and angular momentum L
unchanged, they commute with T . As a result, H is a normal subgroup of G, and any
anti-unitary element S of G can be decomposed as S = T R where the operator R ∈ H is
linear. We refer to G as a magnetic point group and write

G = H + T H. (D.30)

We would like to find the irrep. D of G (the so-called irreducible corepresentations)
from the irrep. Υ of H. A corepresentation D satisfies the following properties

D(R1)D(R2) = D(R1R2), D(S)D(R)∗ = D(SR),
D(R)D(S) = D(RS), D(S1)D(S2)∗ = D(S1S2), (D.31)
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for any linear operators R1,2 and anti-linear operators S1,2. The symbol ∗ designates the
complex conjugation of the matrix entries (and not Hermitian conjugation). Depending on
the properties of a representation Υ of H, the presence of anti-unitary operators may or
may not double the dimension of the representation. Three cases must be distinguished.

(i) There exists an anti-unitary operator S0 = U0T such that the representations R 7→
Υ(R) and R 7→ Υ(S−1

0 RS0)∗ are inequivalent. Then the associated corepresentation
D of G has twice the dimension of Υ and reads

D(R) =

 Υ(R) 0

0 Υ(S−1
0 RS0)∗


 (D.32)

for unitary operators R ∈ H, and

D(S) =

 0 Υ(SS0)

Υ(S−1
0 S)∗ 0


 (D.33)

for anti-unitary operators S ∈ T H.

(ii) For all elements S ∈ T H, the representation R 7→ Υ(R) and R 7→ Υ(S−1RS)∗
are equivalent. Let us choose one particular element S0. There exists an invertible
matrix U such that for all R ∈ H, Υ(S−1

0 RS0)∗ = U−1Υ(R)U .

• Case (ii-a). If UU∗ = Υ(S2
0), there is no degeneracy and

D(R) = Υ(R) and D(S0) = U. (D.34)

• Case (ii-b). If UU∗ = −Υ(S2
0), the degeneracy is doubled and

D(R) =

 Υ(R) 0

0 Υ(R)


 (D.35)

for unitary operators R ∈ H, and

D(S) =

 0 Υ(SS−1

0 )U
−Υ(SS−1

0 )U 0


 (D.36)

for anti-unitary operators S ∈ T H.

Finding which case describes the group H becomes straightforward by using generalised
Frobenius-Schur criterion, which states that

(−1)nχ(1)
χ(S2

0)h
∑

R∈H
χ(S−1

0 RS0R) =





+1 for case (ii-a)
−1 for case (ii-b)
0 for case (i)

, (D.37)

where h = |H| denotes the cardinal of H.
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Regular vs non-regular — The irrep. of the double covering G(2) of a group G (the
double group) have the following properties. Since 1̄ commutes with all elements of G(2),
the irrep. can be classified into two sets: the ones that coincide on barred elements R̄ = 1̄R
and unbarred elements R:

Υ+(R̄) = Υ+(R) (D.38)
and the ones where a minus sign appears:

Υ−(R̄) = −Υ−(R). (D.39)

The first ones (Υ+) correspond to inductions of the irrep. Υ of G onto the double group G(2).
The others (Υ−) have nothing to do with the irrep. of G. The number of extra irrep.
equals the number of extra classes that appear when we add barred operators to D3. In
this regard, certain general rules enable to find the classes of G(2). The Opechowski rule
dictates the fate of the two following types of conjugation classes.

• The regular classes C of the group G form two separates classes C and C̄ of the
double group G(2). A set of proper or improper rotations by the same angle 2π/n
forms a regular class, except for n = 2 when there exists a π rotation around a
perpendicular axis.

• The non-regular classes C of the group G form a single class {C, C̄} of the double
group G(2). The characters of the extra irrep. of the double group vanish on a
non-regular class since χ−(C) = −χ−(C̄) = −χ−(C).

Example — The class 3C2 of D3 is regular according to Opechowski’s rule, so that 3C2
and 3C̄2 form separate classes. The rule says nothing for 2C3, but this class turns out to
be also regular. The character table for D(2)

3 reads

D3 1 2C3 3C2 1̄ 2C̄3 3C̄2

A1 1 1 1 1 1 1
A2 1 1 −1 1 1 −1
E 2 −1 0 2 −1 0

Υ1/2 2 1 0 −2 −1 0
$ 1 −1 i −1 1 −i
$† 1 −1 −i −1 1 i

The irrep. denoted as Υ1/2 represents the spin one-half representation of the rotation group
SO(3) subduced onto D3. Thus if a spinless fermion is an state ψ(x) which transforms in,
say, the irrep. E, the spinful fermion is in a state ψ(x)s of the product E ⊗Υ1/2, where s
is the spin state, i.e. a linear combination of | ↑〉 and | ↓〉. The representations ρ and ρ†
are two complex conjugate irrep.

Suppose that we consider the group generated by D3 and the operator Θ = IT , which
is the product of inversion I with time reversal T . The magnetic point group DM

3 has 24
elements and can be decomposed as

DM
3 = D(2)

3 + ΘD(2)
3 = D3 + 1̄D3 + ΘD3 + 1̄ΘD3. (D.40)

The irrep. A1, A2 and E of D3 belong to case (ii-a) of Eq. (D.34), because they are real.
Moreover, the corresponding matrix U = D(Θ) reduces to the identity for all three irrep.
Hence the characters of A1, A2 and E coincide on D(2)

3 and ΘD(2)
3 .
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D.II.4 Induction
Quotient map — Let H be a normal subgroup of G. The quotient set G/H also has
the structure of a group. Let

π : G → G/H

g 7→ gH
(D.41)

be the associated quotient map. Let $1, $2, ..., $n be the irrep. of the quotient group
G/H. Each irrep. $i of G/H generates an irrep. of G, as

Υi = $i ◦ π : G → GL(Rdi)
g 7→ $i(gH)

, (D.42)

where di is the dimension of $i.

Example — The cyclic group C3 = {1, C3, C2
3} is a normal subgroup of D3, with quotient

group D3/C3 = C2 = {1, C2}. The irrep. of C2 are

C2 1 C2

A1 1 1
A2 1 −1

Thus D3 has at least two one-dimensional irrep., which are the well-known representations
A1 and A2,

D3 1 2C3 3C2

A1 1 1 1
A2 1 1 −1

Induction — Let Υ be an irrep. of a subgroup H of a group G, whose character is χ.
We can extend the irrep. Υ onto G by a procedure called induction. The induced irrep,
denoted as Υ↑G, is a (a priori) reducible rep of G acting on a vectorial space with dimension
I · d where d = χ(1) is the dimension of Υ and I = |G/H| the index of H. The character
of Υ↑G is given by the Schur-Fröbenius formula,

χ↑G(g) =
∑

x∈G/H
χ̂(x−1gx), (D.43)

where χ̂(y) = χ(y) if y ∈ H and 0 otherwise.

Example — The induction enables for instance to find the irrep. of a chiral group,
a group of the Hamiltonian containing anti-commuting operators. Let G be the gener-
alised symmetry group of a d-times-d Hamiltonian H belonging to a representation D of
dimension d, i.e. the set G = {R,D(R)−1HD(R) = ±H}. Let us define the mapping

ε : G → Z2

g 7→ ε(g)
(D.44)
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where ε(g) = 1 if g is a symmetry and −1 if it is an anti-symmetry. Ker(ε) = G+ is a
normal subgroup of G, called the symmetry group of H. Let C be a chiral generator of H.
The quotient G/Ker(ε) := {e, C} is a group, whose irrep. are

G/Ker(ε) 1 C

A 1 1
a 1 −1

Saying that H is invariant under G means that H belongs to the representation a ◦ ε under
(the group action of) conjugation. Besides the trivial irrep. A ◦ ε and the irrep. b ◦ ε, the
other irrep. of G can be found by decomposing the representations induced from irrep.
of G+.

D.III Symmetry-preserving interactions in twisted bi-
layer graphene

Principle of the method — The fermionic Grassmann fields {ψ, ψ} define two conjugate
representations of the symmetry groupM, which we denoted as Υ, the conjugate being
Υ†. Here we define the Grassmann fields such that the action of the free decoupled bilayer
reads

S0 =
ˆ

ddr dτ ψ(H0 − ∂τ )ψ, (D.45)

where d = 2 is the space dimension. We thus assimilate ψ to the conjugate Dirac field Ψ†
instead of the adjoint Ψ. Eq. (6.35) describes two copies of (2 + 1)-dimensional massless
Dirac fermions. Importantly, these copies correspond to the same exact representation of the
Dirac matrices, and are not related by time reversal as the two valleys of monolayer graphene.
The behaviour under the Θ symmetry is modified accordingly. The representation Υ is
four-dimensional, unitary, and reducible; we decomposed it into the direct sum

Υ ∼ E1 ⊕ E5. (D.46)

The elements R ∈ G act by matrix multiplication on the fields, R·ψ(x) = Υ(R)ψ(R−1x) and
R·ψ(x) = ψ(R−1x)Υ†(R), where x = (r, t) is the space-time variable, and Υ†(R) = Υ(R)−1

by unitarity. Consider now the action of the free coupled bilayer

S ′0 =
ˆ

ddr dτ ψ(H− ∂τ )ψ. (D.47)

The field bilinear transforms in the direct product of representations Υ† ⊗ Υ, which of
course leads to the invariance of the action. Indeed,

R · ψ(x)H(x)ψ(x) = ψ(R−1x)Υ†(R)H(x)Υ(R)ψ(R−1x) = ψ(R−1x)H(R−1x)ψ(R−1x).
(D.48)

Upon changing the integration variable from x to R−1x, the action (D.47) remains un-
affected. From the perspective of the matrix representation of the field bilinear, among
all irrep. that enter the decomposition of Υ† ⊗Υ, the Bloch Hamiltonian H transforms
according to the trivial representation A+

1 ofM.
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We now add a contact quartic interaction. The interaction is thus independent of the
space-time variable, but only in the original basis of eigenvectors (ψ̂, ψ̂) where the two
Dirac nodes are separated, and the origin of momentum coincides with the center of the
mini Brillouin zone. We look for interaction actions of the form

Sint ∝
ˆ

ddr dτ (ψ̂M̂ψ̂)(ψ̂ N̂ ψ̂), (D.49)

where M̂ and N̂ are two constant four-dimensional matrices. Each bilinear ψ̂M̂ψ̂ and
ψ̂ N̂ ψ̂ belongs to a representation that enters the decomposition of Υ† ⊗ Υ. To ensure
that Eq. (D.49) is also invariant under the symmetry groupM, we must find the suitable
matrices (M̂, N̂) such that (ψ̂M̂ψ̂)(ψN̂ψ̂) belongs to the trivial representation of the
direct product (Υ† ⊗Υ)⊗ (Υ† ⊗Υ). The components of the interaction matrices M̂ and
N̂ are given by the so-called Clebsch-Gordan coefficients

Representations of the unitary group — We define the unitary group D̃3 as the
subgroup which contains all unitary operators including the pure symmetries and antisym-
metries. In other words, for all R ∈ D̃3,

Υ(R)−1H(Rr, t) Υ(R) = ±H(r, t). (D.50)

Eq. (D.50) shows that it has indeed the structure of a group. It is generated by the point
group D3 and P as the semi-direct product

D̃3 = {1,P , 1̄, P̄}oD3, (D.51)

where the ‘anti-identity’ 1̄ = (PC2)2 is represented by the matrix Γ(1̄) = −τ0σ0 and a
barred operator stands for the product of this operator by 1̄. This new element can be
seen as a 2π rotation of the double covering of D3, or double group

D(2)
3 = D3 × {1, 1̄}, (D.52)

the identity 1 being assimilated to a 4π rotation. Double groups are known to arise when
including time-reversal symmetry in models that include the electron spin. This example
shows that unitary antisymmetries can also generate a double group. The main interest
in considering the double group is that it is a normal subgroup of D̃3, unlike the simple
group D3. The structure of the quotient set D̃3/D(2)

3 ∼ {1,P} is also that of a group,

Name 1 1̄ 2C3 2C̄3 2PC2 2PC2C3

Set {1} {1̄} {C3, C2
3} {C̄3, C̄2

3} {PC2, P̄C2} {PC2C3, P̄C2C2
3}

Name 2PC2C2
3 6P 6C2

Set {P̄C2C3,PC2C2
3} {P ,PC3,PC2

3 , P̄ , P̄C3, P̄C2
3} {C2, C2C3, C2C2

3 , C̄2, C̄2C3, C̄2C2
3}

Table D.1 | Classes of conjugation of the unitary group D̃3, with their names (first line) and
their elements (second line). 1 is the identity operator, 1̄ the 2π rotation of a spin one half, and
R̄ denotes the product 1̄R.
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which simplifies the determination of the irrep. of D̃3 from that of D3. To find the irrep.
of D̃3 we can indeed find them from scratch using the composite operator method (Chen
2002a), or build them by induction and other tricks from that of D3. Let us illustrate the
second method.

We start with the one-dimensional irrep. The quotient group {1,P} possesses two
one-dimensional irrep., which we denote as A1 for the trivial one, and a1 for the non-trivial
one. Of course A1 also corresponds to the trivial irrep. of D3 (and to any group in general),
by putting ones for all conjugacy classes. The one-dimensional irrep. of D3, named A1
and A2, induce over the unitary group the representations A1 ↑ D̃3 ∼ A1 ⊕ a1 ⊕ E3 and
A2 ↑ D̃3 ∼ A2 ⊕ a2 ⊕ E3 respectively, where ⊕ denotes a direct sum. This defines and
determines completely the irrep. E3 and a2. We have found four one-dimensional irrep.
(A2, a1, A2 and a2). The commutator subgroup [D̃3, D̃3] is isomorphic to D3, whose index
|D̃3/D3| = 4 gives the number of one-dimensional irrep. Hence we have found all of them.

The cardinal of the group being |D̃3| = 24, the remaining irrep. must be two-
dimensional, of which there are five, including E3. We can decompose the four-dimensional
(reducible) representation Υ as a sum of two representations Υ ∼ E1⊕E5. In addition, the
two-dimensional irrep. E of D3 induces the representations E ↑D̃3 ∼ E1 ⊕ E2 ⊕ E4 ⊕ E5,
where the remaining irrep. E2 and E4 can be found by orthonormality of the characters.
We have found all the irrep., whose characters are given in Tab. D.2. Tab. D.1 sum-
marises the classes of conjugation of D̃3, which are invariant subsets (and thus the natural
argument) of the characters.

Corepresentations of the magnetic group — A group generated by a crystallographic
point group and an antiunitary operator is magnetic, or Shubnikov group. In general,
this antiunitary operator is time reversal, under which the electron spin is odd. Magnetic
groups give clues about the magnetic properties of a crystal, hence its name. The group

Irrep. 1 1̄ 2C3 2C̄3 2PC2 2PC2C3 2PC2C2
3 6P 6C2

A1 1 1 1 1 1 1 1 1 1
A2 1 1 1 1 −1 −1 −1 1 −1
a1 1 1 1 1 −1 −1 −1 −1 1
a2 1 1 1 1 1 1 1 −1 −1
E1 2 −2 −1 1 0

√
3 −

√
3 0 0

E2 2 2 −1 −1 2 −1 −1 0 0
E3 2 −2 2 −2 0 0 0 0 0
E4 2 2 −1 −1 −2 1 1 0 0
E5 2 −2 −1 1 0 −

√
3

√
3 0 0

Table D.2 | Table of characters of the unitary group D̃3. Each column corresponds to a class of
conjugation, and each line to an irrep. We use the symbols A and E prescribed by Mulliken’s
notation; the symbol a denotes a one-dimensional irrep. whose character have opposite signs on
the antisymmetric operators.
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generated by D̃3 and Θ is a grey magnetic group, i.e. the direct product
M = D̃3 × {1,Θ}. (D.53)

The ‘representations’ of a magnetic group do not share all the defining properties of the
standard representations of finite groups. To stress the difference, the term corepresentation
is used instead, but for simplicity, we will refer to irreducible corepresentations as irrep..
To find the irrep. of M from that of D̃3, we apply the Schur-Frobenius criterion (Ma
2007; Atkins 1970; Dresselhaus 2007; Woit 2017; Ma 2004). This criterion states the
following. For all irrep. $ of D̃3, we define another representation of D̃3 as with the same
dimension,

$′ : D̃3 → Mn(C), (D.54)
R 7→ $(Θ·R·Θ−1)∗. (D.55)

This representation falls into either one of the three following categories. (i,ii) Either $′ is
equivalent to $, in which case there exists an invertible matrix U such that $′ = U$U−1.
(i) If UU∗ = $(Θ2), then $ canonically generates two irrep. ofM, $+ and $−, upon
defining $±(Θ) = ±U , and which coincide with $ on D̃3, $±(R) = $(R). There is no
Kramer degeneracy. (ii) If UU∗ = −$(Θ2), the irrep. $M issued from $ has twice its
dimension. On D̃3 it coincides with $M = $ ⊕ $, but it has off-diagonal form on all
antiunitary operators, with $M(Θ) = iσyU . (iii) Or $′ is not equivalent to $, in which
case it is necessarily equivalent to another irrep. of D̃3. Again, $M has twice the dimension
of $, and coincides with $M = $ ⊕$′ on D̃3, while $M(Θ) = σx1.

All irrep. of D̃3 fall into category (i), except E1 and E5 = E ′1, which fall into
category (iii). In the former case, each irrep. leads to two irrep., with $(Θ) = ±1 for the
1d irrep. or $(Θ) = ±σx for the 2d irrep., where σx represents here a generic Pauli matrix,
but has nothing to do with the pseudospin. In the latter case, the one irrep. formed by E1
and E5 is equivalent to the four-dimensional representation Υ. In the following, we write
each irrep. with an exponent ± to indicate whether the eigenvalues of $(Θ) are +1 or −1.

Interaction matrices in the unrotated basis — The decomposition of the direct
product Υ† ⊗Υ into irrep. ofM (the Clebsch-Gordan series) reads
X(Υ†⊗Υ)X−1 = A+

1 ⊕a+
1 ⊕A+

2 ⊕a+
2 ⊕A−1 ⊕a−1 ⊕A−2 ⊕a−2 ⊕E+

2 ⊕E+
4 ⊕E−2 ⊕E−4 , (D.56)

where the sixteen-times-sixteen transformation matrix X contains the Clebsch-Gordan
coefficients. It can be found using the projection formula (Ma 2007)

Xik,γmX
∗
jl,γn = nγ

|M|
∑

R∈M
$γ(R)∗mnΥ†(R)ijΥ(R)kl, (D.57)

where $γ is the γth irrep. in the series (6.40), with dimension nγ, and |M| = 48 is the
cardinal of the group. The indices i, j, k and l run from 1 to 4, while m and n run from 1
to nγ. Some irrep. of Eq. (6.40) are one-dimensional; only one matrix M is associated
to the Clebsh-Gordan coefficients. Others are two-dimensional; two matrices M (1) and
M (2) are associated to the Clebsh-Gordan coefficients. The components of the matrices
Mγ = (M (1)

γ ,M (2)
γ ), which belong to the irrep. $γ, are listed in the γth column of X, i.e.

for a, b = 1, ..., 4,
(
M (1)

γ

)
ab

= Xab,γ1,
(
M (2)

γ

)
ab

= Xab,γ2. (D.58)
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Appendix E
Diagrammatic expansion in twisted bilayer
graphene

E.I Free theory
E.I.1 Correction of the Fermi velocity by interlayer hopping
We consider here the low-energy Hamiltonian of the coupled bilayer

H = iτ0σ · ∂ + α
3∑

j=1

∑

η=±
e−iηqj ·rT ηj , (E.1)

where α represents the dimensionless strength of inter-sublattice hopping, and the hopping
matrices have the form

T±j = τ±
(
β σ0 + ζj−1σ+ + ζ1−jσ−

)
, (E.2)

where τ± denote the ladder operators in the layer sector. The parameter β = u/w
is the relative intra- versus inter-sublattice hopping strength. From the translational-
invariant part of the two-point connected correlation functions G′0(k,Ω), we introduce the
translational-invariant part Σ′ of the self-energy such that

G′0(k,Ω)−1 = G0(k,Ω)−1 − Σ′(k,Ω) ' Nψ(vσ · k − iΩ), (E.3)

where the last equality holds in the low-energy limit k,Ω� 1.
We now expand the self-energy to sixth order to determine the corrected Fermi velocity v

and the normalisation of the wave function amplitude Nψ. For brevity, we omit to write
the Ω-dependence, and split the self-energy into the five contributions represented by the
graphs of Fig. E.1,

Σ′(k) = α2Σ′2(k) + α4Σ′4(k) + α6
[
Σ′6,nes(k) + Σ′6,row(k) + Σ′6,cro(k)

]
+O(α8). (E.4)

We also introduce the shorthand notation η̄ = −η with η = ±. The second order
contribution (Fig. E.1(a)) reads

Σ′2(k) =
∑

η=±

∑

j

T η̄j G0(k + ηqj)T ηj . (E.5)
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j

(a) Σ′2

j

l

(b) Σ′4

j

l

k

(c) Σ′6,nes

j

l k

(d) Σ′6,row

j l k

(e) Σ′6,cro

Figure E.1 | Diagrammatic expansion of the self-energy to order six in the dimensionless
hopping strength α = w/EK. Each hopping (wavy) line bears an index j (or l, k at higher orders)
and carries a corresponding momentum qj . The graphs are summed over all channels j = 1, 2, 3
(similarly for l,k) and the sign η = ± of the first momentum transfer. The graphs are of order
(a) two (b) four, and (c-e) six in α. At order six, the hopping lines can be (c) nested, (d) in a
row, or (e) crossed. For these diagrams to be one-particle irreducible, the consecutive hopping
induces must be different. Hence, j 6= l in diagram (b), l 6= j and l 6= k in diagrams (c) and (d),
and the indices j, l, k differ two by two in diagram (e).

The fourth order contribution (Fig. E.1(b)) reads

Σ′4(k) =
∑

η=±

∑

j 6=l
T η̄j G0(k + ηqj)T ηl G0(k + ηqj − ηql)T η̄l G0(k + ηqj)T ηj . (E.6)

The sixth order contribution breaks up into three terms. The first diagram hosts three
nested hopping lines (Fig. E.1(c)),

Σ′6,nes(k) =
∑

η=±

∑

l 6=j
l 6=k

T η̄j G0(k + ηqj)T ηl G0(k + ηqj − ηql)T η̄kG0(k + ηqj + ηqk − ηql)

T ηkG0(k + ηqj − ηql)T η̄l G0(k + ηqj)T ηj . (E.7)

The second diagram hosts two hopping lines in a row, embedded in a third one (Fig. E.1(d)),

Σ′6,row(k) =
∑

η=±

∑

l 6=j
l 6=k

G0(k + ηqj)T ηl G0(k + ηqj − ηql)T η̄l G0(k + ηqj)

T ηkG0(k + ηqj − ηqk)T η̄kG0(k + ηqj)T ηj . (E.8)

The third diagram consists in three crossing hopping lines (Fig. E.1(e)),

Σ′6,cro(k) =
∑

η=±

∑

j 6=l 6=k
T η̄kG0(k + ηqk)T ηl G0(k + ηqk − ηql)T η̄j G0(k + ηqj + ηqk − ηql)

T ηkG0(k + ηqj − ηql)T η̄l G0(k + ηqj)T ηj . (E.9)

By expanding Eq. (E.4) at order one in k and Ω, we get the expressions (6.19) and (6.20)
for the wave function amplitude and Fermi velocity, respectively. By keeping the order
two in momentum, we get the quadratic dispersion relation of Eq. (6.22).

E.I.2 Correction of the order parameters by interlayer hopping
We now consider the mean-field Hamiltonian of the decoupled bilayer

HMF = H0 + σz(∆0τ0 + ∆zτz) + σ · (G0τ0 + Gzτz), (E.10)
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where H0 = τ0σ · k is the single-particle Hamiltonian of the decoupled bilayer. Including
the hopping term, we find

H′MF = H + σz(∆0τ0 + ∆zτz) + σ · (G0τ0 + Gzτz), (E.11)

where the Hamiltonian of the coupled bilayer H is given by Eq. (6.6). The scalar order
parameters ∆0/z gap out the energy spectrum, while the vectorial order parameters G0/z
shift the Dirac cones from the corners of the mini Brillouin zone. We proceed as in
Sec. E.I.1 to diagonalise the Hamiltonian (E.11) in the low-energy limit. Let GMF be the
translation-invariant part of the propagator corresponding to Hamiltonian (E.10), and
G′−1

MF be the similar function for Hamiltonian (E.11). We can write the latter as

G′
−1
MF(k,Ω) = GMF(k,Ω)−1 − Σ′(k,Ω) ' Nψ

{
vσ ·

[(
k +N

(G)
0 G0

)
τ0 +N (G)

z Gzτz
]

+σz
(
N

(∆)
0 ∆0τ0 +N (∆)

z ∆zτz
)
− iΩ

}
. (E.12)

The factors N (G/∆)
0/z (α, β) encode the renormalisation of the order parameters by interlayer

hopping; they are the counterparts of the corrected Fermi velocity for the matrix structures
σzτ0/z and στ0/z. By definition of the corrected Fermi velocity, we have N (G)

0 = 1. We
calculate the other non-trivial factors diagrammatically to sixth order in α, by replacing
the free propagator G0 by the mean-field propagator GMF in the second, fourth and sixth
order contributions to the self-energy given by Eq. (E.5) to Eq. (E.9). The results are

NψN
(∆)
0 = 1 + 3α2

(
1− β2

)
+ 2α4

(
1− β2

) (
1 + 2β2

)

+ 1
28α

6
(
24− 80β2 + 352β4 − 233β6

)
+O(α8), (E.13)

NψN
(∆)
z = 1− 3α2

(
1− β2

)
+ 2α4

(
1− β2

) (
1− 4β2

)

− 1
28α

6
(
56− 304β2 + 872β4 − 561β6

)
+O(α8), (E.14)

and

vNψN
(G)
z = 1 + 3α2 + α4

(
1 + 10β2 + β4

)
+ 3

49α
6
(
9 + 441β4 + 70β6

)
+O(α8). (E.15)

E.I.3 Mean-field self-consistent equations
For the sake of simplicity, we write the mean-field self-consistent equations for each order
parameter separately. Upon introducing an ultraviolet cut-off Λ, these equations read





∆µ = −2gµ
ˆ

dω
ˆ

Λ

d2q

(2π)3 〈ψq,ωσzτµψq,ω〉,

Gµ = −2λµ
ˆ

dω
ˆ

Λ

d2q

(2π)3 〈ψq,ωστµψq,ω〉,

(E.16a)

(E.16b)

for µ = 0, z, where the momentum integral runs over a square of side Λ, and {ψq,ω, ψq,ω}
denote the Fourier-transformed fields. The correlators in Eq. (E.16) represent the
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translational-invariant parts of statistical averages computed over the mean-field Hamil-
tonian H′MF defined in Eq. (7.2). By expanding the correlators in powers of α, we
automatically correct the order parameters by the factors N (G/∆)

0/z introduced in Eq. (E.11).
We can express these self-consitent equations analytically. The quantities ∆′0/z = N

(∆)
0/z ∆0/z

and G ′0/z = N
(G)
0/zG0/z satisfy the relations





∆′0/z =
g0/zN

(∆)
0/z Λ2

vNψ

F
(
∆′0/z

)
,

G ′0/z =
λ0/zN

(∆)
0/z Λ2

Nψ

F0/z
(
G ′0/z

)
,

(E.17a)

(E.17b)

where for simplicity we assume the shift momenta G0/z = G0/z ey to be aligned along
a crystallographic axis of the moire pattern, here along the y axis. The dimensionless
functions F and F0/z read

F (x) = 2x
π2

[
− log

(√
x2 + 2− 1

)
+ log

(√
x2 + 2 + 1

)

−2x cot−1
(
x
√
x2 + 2

)
+ 2 coth−1

(√
x2 + 2

)]
, (E.18)

F0(x) = 1
π2

[
−√y− +√y+ + tanh−1 (√y−)− tanh−1 (√y+)

−y− coth−1 (√y−) + y+ coth−1 (√y+)
]
, (E.19)

and

Fz(x) = 1
2π2

[
x2 log

(1− x
1 + x

)
− 2x2 tanh−1(x) + (1− 2x) log (√y− − 1)

− (1 + 2x) log (√y+ − 1) + z+ log (√y+ + 1)− z− log (√y− + 1)

+ 2 (√y+ −
√
y−)


, (E.20)

where y± = 2 + x(x± 2) and z± = 1 + 2x(x± 1).

E.II Renormalisation group analysis of the interact-
ing theory

We decompose the renormalised action into SR = SR,0 + SR,α + SR,φ + SR,Yuk. In order
to cure infrared divergences, we add a mass regulator µσz to the quadratic action of the
decoupled bilayer

SR,0 =
ˆ
k,Ω

ψk(σ · k − iΩ + µσz)ψk, (E.21)

where the mass scale µ vanishes in the infrared limit. The quadratic hopping action reads

SR,α = α
3∑

j=1

∑

η=±

ˆ
k,Ω

ψkT
η
j ψk+ηqj . (E.22)
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Figure E.2 | One-particle irreducible diagrams at first order in the loopwise expansion and
second order in the dimensionless hopping strength α. The double line stands for the fermionic
propagator corrected by interlayer hopping, the dashed line for the bosonic propagator, and
the wavy line for the sum of all interlayer hopping channels with momenta ηqj , for η = ± and
j = 1, 2, 3. The polarisation Πi, i.e. the corrections to the bosonic propagator of type i, is taken
at zero external momentum and frequency and given by (a) at order α0 and (b) at order α2. The
three-point Yukawa vertex V (il), also at zero external momenta and frequencies,is drawn in (c)
at order α0, and in (d)-(g) at order α2. The hopping line can be (d) internal, (e) external, (f)
isolated and (g) crossed with respect to the internal vertex of type l.

The bosonic part of the renormalised action is given by

SR,φ =
8∑

i=1
Zφi

ˆ
k,Ω

(
φ2
i

)
k

+
4∑

l=1
Zϕl

ˆ
k,Ω

(
ϕ2
l

)
k
. (E.23)

The renormalised Yukawa coupling is

SR,Yuk = 2µ−ε/2Nψ

[ 8∑

i=1
Zgi
√
gi

ˆ
k,Ωk,q,Ωp

ψk(φiMi)k−qψq

+
4∑

l=1
Zλl
√
λl

ˆ
k,Ωk,q,Ωp

ψk(ϕl ·Ml)k−qψq
]
. (E.24)

The factor Nψ is the field amplitude corrected by interlayer hopping of Eq. (6.20). Here
we determine the renormalisation constants Zχ for bosonic fields χ ∈ {φi,ϕl}, and Zu for
coupling strengths u ∈ {gi, λl}. We denote by G′0 be the fermionic propagator corrected
by interlayer hopping of Eq. (6.13). The one-particle irreducible diagrams are listed in
Fig. E.2. In the following, the expressions of the Feynman integrals hold for all couplings
which are diagonal in the layer sector, but some numerical values are given for the four
relevant interactions only, of coupling matrices M = σzτ0/z and M = στ0/z.

E.II.1 Polarisation
Consider one of the four relevant instabilities labelled i with interaction matrixMi (which
is a vector of one or two components). The polarisation at order zero in α is given by
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diagram E.2(a),

Π(i)
0 = −4uaN2

ψ

ˆ
q,ω

Tr[MiG
′
0(q, ω)·MiG

′
0(q, ω)], (E.25)

where an scalar products over the components of Mi is performed. The polarisation at
order two in α is given by diagram E.2(b),

Π(i)
1 = −4uiN2

ψα
2

3∑

j=1

∑

η=±

ˆ
q,ω

Tr[MiG
′
0(q, ω)T η̄j G′0(q + ηqj, ω)·

MiG
′
0(q + ηqj, ω)T ηj G′0(q, ω)]. (E.26)

The pole of the integral in Eq. (E.25) per number of fermion flavours n (equal to four in
our case) can be cast into Π(i)

0 = −4nuiIi/vε where v is the corrected Fermi velocity and

Ii = lim
ε→0

vεN2
ψ

n

ˆ
q,ω

Tr[MiG
′
0(q, ω) ·MiG

′
0(q, ω)] =





1
2π for Mi ∝ σz,

1
4π for Mi ∝ σ.

(E.27)

In Eq. (E.26) we can use the separation of energy scales: the theory is meaningful only at
length scales much larger than the moiré periodicity, i.e. for q, ω � 1, so that G′0(q+ηqj, ω)
can be replaced by G′0(ηqj, 0). This results in Π(i)

1 = −3α2sihi(β)Π(i)
0 where si equals

either +1 for the interaction matrices σzτ0 and στz or −1 for the interaction matrices σzτz
and στ0; and the corrugation-dependent function hi(β) equals either 1 − β2 or 1 if the
interaction matrix matches σ0 or σz in the pseudospin sector, respectively. The finiteness
of the renormalised polarisation fixes the bosonic field constant to

Zχi = 1− 4nuiIi[1 + 3α2sihi(β)]
vε

. (E.28)

E.II.2 Yukawa vertex
Consider now two instabilities labelled a and b, the former appearing in an external Yukawa
vertex, the latter entering as an internal vertex. If instability a is two-dimensional, we
focus on the a single component Mi of the interaction matrix. The other component gives
the same corrections to the vertex. The three-point Yukawa vertex at order zero in α is
given by diagram E.2(c),

V
(il)

0 = N3
ψ(2√ui)(4ul)

ˆ
q,ω

MlG
′
0(q, ω)MiG

′
0(q, ω)Ml. (E.29)

The Yukawa vertex at order two in α have either multiplicity one or two. Those with
multiplicity one are dressed by either an internal hopping line, as in Fig. E.2(d),

V
(il)

1,int = N3
ψ(2√ui)(4ulα2)

∑

η,j

ˆ
q,ω

MlG
′
0(q, ω)T η̄j G′0(q + ηqj, ω)MiG

′
0(q + ηqj, ω)

T ηj G
′
0(q, ω) ·Ml, (E.30)
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or an external hopping line, as in Fig. E.2(e),

V
(il)

1,ext = N3
ψ(2√ui)(4ulα2)

∑

η,j

ˆ
q,ω

T η̄j G
′
0(ηqj, ω)MlG

′
0(q, ω)MiG

′
0(q, ω)·

MlG
′
0(ηqj, ω)T ηj . (E.31)

The diagrams corrected by interlayer hopping with multiplicity two nest either an isolated
hopping line, as in Fig. E.2(f),

V
(il)

1,iso = 2N3
ψ(2√ui)(4ulα2)

∑

η,j

ˆ
q,ω

T η̄j G
′
0(ηqj, ω)MlG

′
0(q + ηqj, ω)T ηj G′0(q, ω)

MiG
′
0(q, ω) ·Ml, (E.32)

or a hopping line that crosses the interaction line, shown in Fig. E.2(g),

V
(il)

1,cro = 2N3
ψ(2√ui)(4ulα2)

∑

η,j

ˆ
q,ω

MlG
′
0(η̄qj, ω)T η̄j G′0(q, ω)MiG

′
0(q, ω)·

MlG
′
0(ηqj, ω)T ηj . (E.33)

Similarly, we can define the pole of the integral appearing in Eq. (E.29) as

Jil = lim
ε→0

vεN2
ψ

n

ˆ
q,ω

Tr[MlG
′
0(q, ω)MiG

′
0(q, ω) ·MlMi] =





0 i = 2d, l = 2d,
−1
4π i = 2d, l = 1d,
−1
2π i = 1d, l = 2d,
1

2π i = 1d, l = 1d,

(E.34)

where the four possible values of Jil depend on the dimension of the irrep. associated to
the channels i and l (1d for the matrix structure σz, or 2d for the matrix structure σ).
Hence V (il)

1,in = V
(il)

1,ext = 3α2sihi(β)V (il)
0 with V (il)

0 = Nψ(2i√ui)(4ulJil/vε). We also define
the pole appearing in the sum of the diagrams with multiplicity two as

Kil(β) = lim
ε→0

vεN4
ψ

n

∑

η,j

ˆ
q,ω

Tr
{
MlG

′
0(ηqj, ω)T ηj G′0(q, ω)MiG

′
0(q, ω)·

Ml

[
MiT

η̄
j G
′
0(ηqj, ω) +G′0(η̄qj, ω)T η̄jMi

]}
, (E.35)

such that V (il)
1,iso + V

(il)
1,cro = Nψ(2i√ui)[8α2ulKil(β)]/vε. The numerical constants Jil depend

neither on the number of fermion flavours n nor on the parameter β, while Kil(β) depends
on β. Using commutation relations between interaction and hopping matrices, we can
express all vertices (E.29) – (E.33) in terms of Jil and Kil only. We then find the vertex
renormalization constant to be

Zui = 1− 4
vε

∑

l

ul[(1 + 6α2sihi(β))Jil + 2α2Kil(β)]. (E.36)

This proves the expressions of the functions fil(α, β) given in Tab. 7.1 in the main text.
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