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Résumé

Le travail présenté dans ce manuscrit se concentre sur une technique particulière, que nous
appellerons souvent la technique de l’impureté. Cette technique est née au carrefour de deux
domaines différents de la physique de la matière condensée : l’étude des états de bord et de surface
et l’étude des effets d’impuretés.

Ces dernières années, un regain d’intérêt a eu lieu pour les phénomènes de bord et de surface
en raison de l’avènement de la matière condensée topologique. Ce domaine moderne, né dans les
années 80 avec la découverte notable de l’effet Hall quantique (Klitzing et al., 1980), se focalise
sur les phases de la matière (et les phénomènes uniques qui y sont associés) qui ne sont pas
expliquées par la théorie de Landau des transitions de phase. La théorie de Landau est basée sur la
brisure de symétrie : des phases distinctes sont supposées correspondre à des symétries différentes,
et donc une transition de phase est toujours associée à un changement de symétrie. Cette théorie
peut par exemple expliquer la différence entre un liquide et un solide, un cristal en particulier. Un
liquide est une phase désordonnée avec une symétrie de translation continue tandis qu’un cristal
est une phase ordonnée qui présente une symétrie de translation discrète (voir Fig. 1.1) : dans un
liquide les atomes sont distribués aléatoirement et donc le liquide reste le même si on applique une
translation arbitraire aux atomes dans l’espace, alors que dans un cristal les atomes sont organisés
en un réseau qui ne reste inchangé que si on applique une translation spécifique (correspondant à
un entier multiplié par la constante de réseau). En revanche, les phases topologiques ne diffèrent
pas toujours par leurs symétries mais sont plutôt différenciées par la valeur d’un paramètre spécial
appelé invariant topologique, ou nombre quantique topologique.1

Un certain nombre de matériaux topologiques présentent des états spéciaux à leur frontière,
qu’il s’agisse de coins, de bords, de charnières ou de surfaces. Par exemple, les isolants topologiques
possèdent des états de bord métalliques (Kane and Mele, 2005), et les supraconducteurs topologiques
présentent des états liés de Majorana.2 En raison de la nature topologique de ces matériaux, leurs
états de bord sont particulièrement résistants aux perturbations et au désordre : ils sont « protégés
» par la topologie. La robustesse des états de bord topologiques a été une motivation importante
pour l’étude des matériaux topologiques, car ils peuvent avoir des applications très étendues : les
états métalliques pourraient transporter du courant sans dissipation, les états protégés en général
sont de bons candidats pour les qubits...

Même si les matériaux topologiques sont ce qui vient le plus souvent à l’esprit lorsqu’on
pense aux "états de bord" de nos jours, d’autres systèmes possèdent également des états qui sont

1La rupture de symétrie peut en fait être utilisée pour décrire certaines transitions de phase topologiques, et ce
n’est donc pas la raison pour laquelle les phases topologiques ne peuvent pas être expliquées par la théorie de Landau.
La différence réelle réside dans le paramètre d’ordre : la théorie de Landau décrit les transitions de phase à l’aide de
paramètres d’ordre locaux, dont la valeur moyenne est nulle dans une phase désordonnée et non nulle dans une phase
ordonnée ; alors qu’il est impossible d’en définir un pour les transitions de phase topologiques, nous définissons donc
à la place des invariants topologiques. Cependant, ces paramètres d’ordre local étant directement liés à la brisure
de symétrie, la brisure de symétrie reste un concept très pertinent. Pour des raisons pédagogiques nous avons donc
décidé de le mentionner dans le texte principal, à la place du paramètre d’ordre local.

2L’existence des états liés de Majorana est à ce jour encore considérée comme théorique, leur preuve expérimentale
restant très controversée.
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Figure 1 Illustration de deux phases différentes : une phase ordonnée (cristal) où la position des
atomes est fixe, et une phase désordonnée (liquide) dans laquelle les atomes n’ont qu’une certaine
probabilité d’exister en un point donné de l’espace. Crédit à Trung Van Phan.

liés à leurs bords, ou dont l’existence est directement liée à la présence de bords. Par exemple, le
graphène, l’un des matériaux 2D les plus connus, héberge des états localisés pour certains types de
bords. Il peut être particulièrement intéressant d’étudier ces états, par exemple pour voir comment
ils se transforment sous l’application de certains champs, ou en fonction des interactions en jeu
(Lado et al., 2015).

L’autre domaine principal qui se rapporte à cette thèse est l’étude des effets d’impuretés. Les
impuretés ont toujours joué un rôle important dans la matière condensée, car il est tout simplement
impossible d’étudier un matériau (expérimentalement) sans qu’il présente aucun défaut. Bien sûr
au fil des années, de nouveaux procédés de fabrication nous ont permis de fabriquer des matériaux
de plus en plus purs, mais les impuretés restent importantes et peuvent grandement affecter les ré-
sultats d’une expérience. Une autre raison fondamentale pour laquelle les impuretés sont étudiées,
c’est parce que beaucoup de phénomènes physiques intéressants ne se produisent en réalité qu’en
présence de défauts. Un exemple est l’effet Kondo : la diffusion d’électrons de conduction dans un
métal due à des impuretés magnétiques peut affecter la résistivité électrique à basse température,
ce qui dans certains cas peut produire des fermions lourds, c’est-à-dire des électrons de masse
effective élevée (Hewson and Kondo, 2009).

La méthode que nous présentons ici, la "méthode des impuretés" ou "technique des impuretés",
vise à apporter une nouvelle façon d’étudier les phénomènes de bord, en utilisant les impuretés.
La plupart du temps, la physique des bords est étudiée théoriquement en simulant un système fini
avec les bords souhaitées. Dans la méthode des impuretés, nous considérons plutôt un système
infini et "créons" une frontière avec des impuretés. Un exemple est donné dans la Fig. 1.2 pour un
système 2D. Dans ce cas, nous ajoutons une ligne d’impuretés qui, si elle est suffisamment forte,
agira comme un mur et "coupera" le système en deux. On se retrouve ainsi avec un bord effectif
de chaque côté de la ligne d’impureté, où des états de bord peuvent se former si le système de base
les supporte.

Mathématiquement, nous utilisons des modèles tight-binding pour décrire les systèmes infinis,
et utilisons le formalisme des fonctions de Green et des matrices T, couramment utilisés pour

http://web.mit.edu/8.334/www/grades/projects/projects14/TrungPhan_8334WP/foundation-5.2.2/formation_4.html
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Figure 2 Représentation de la technique des impuretés sur un système 2D : à un système infini
(en gris) on ajoute une ligne d’impuretés (en rouge), coupant effectivement le système en deux.
Chaque sous-système possède ainsi un bord effectif, où des états de bord peuvent se former (en
bleu).

étudier la diffusion, pour tenir compte des impuretés et calculer leur effet. La méthode a l’avantage
d’être plus analytique que numérique : le calcul suit une série d’équations, et la seule partie qui
puisse réellement être considérée comme numérique consiste à évaluer quelques intégrales. Cette
dernière partie peut même se faire de manière "légèrement" numérique en approchant simplement
les intégrales par des sommes de Riemann ou avec la règle trapézoïdale.3 Pour des systèmes
suffisamment simples, des résultats purement analytiques peuvent même être obtenus, comme
nous l’avons montré par exemple dans Kaladzhyan et al. 2020.

Il existe bien sûr d’autres méthodes pour étudier les états de bord : diagonalisation exacte des
hamiltoniens tight-binding pour des systèmes finis, méthodes itératives pour calculer les fonctions
de Green aux limites (voir Lopez Sancho et al. 1985 et Peng et al. 2017 pour une application
récente), utiliser la correspondance bulk-bords aux limites (Delplace et al., 2011)... Le but de
ce travail n’est pas de comparer la technique des impuretés à ces autres méthodes4, mais plutôt
d’explorer les possibilités qu’elle peut offrir : que peut-on en obtenir ? dans quelle mesure ?
pouvons-nous l’utiliser pour trouver de nouveaux résultats?

Afin de répondre à ces questions, nous avons appliqué la méthode des impuretés à un certain
nombre de systèmes, qui correspondent plus ou moins aux différents chapitres de ce manuscrit.

Nous commencerons au chapitre 2 en introduisant quelques caractéristiques de base des états
de bord à travers deux exemples bien connus : le graphène et le modèle SSH. Dans ce chapitre
d’introduction, nous n’utiliserons pas la technique des impuretés, mais effectuerons seulement
quelques calculs simples en utilisant la diagonalisation exacte. L’objectif de ce chapitre est double
: présenter les états de bord dans quelques systèmes simples, et introduire des concepts qui seront
utilisés dans les chapitres suivants, à savoir le modèle de base du graphène et quelques notions de
topologie.

Ensuite, au chapitre 3, nous donnons les détails de la technique des impuretés. Pour cela,
nous devons introduire les différentes fonctions de Green pertinentes, ainsi que le formalisme de

3Tous les résultats présentés dans cette thèse ont d’ailleurs été calculés de cette manière.
4Certaines comparaisons seront néanmoins faites avec la méthode de diagonalisation exacte, d’une part parce

qu’elle est couramment utilisée, d’autre part parce que nous l’utiliserons nous-mêmes pour vérifier que la technique
de l’impureté peut retrouver les mêmes résultats, et ainsi confirmer sa validité.
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la matrice T. Ce chapitre contient la plupart des "maths", et nous y ferons souvent référence dans
les autres chapitres afin de ne pas réécrire les mêmes équations pour chaque système.

Dans le chapitre 4 nous présentons notre première application de la technique des impuretés.
Nous nous concentrons sur deux types de systèmes topologiques : le modèle Kane-Mele, un
isolant topologique 2D, et des modèles de semi-métaux de Weyl, qui vivent en 3D. Pour chaque
modèle, nous montrons que nous pouvons récupérer les états de bord caractéristiques, avec les
propriétés attendues, en comparant la fonction spectrale obtenue par la technique des impuretés
avec le spectre d’énergie calculé en utilisant la diagonalisation exacte. Nous montrons ainsi que
la technique peut fonctionner correctement aussi bien en 2D qu’en 3D, le cas 1D ayant été prouvé
dans de précédents travaux (Kaladzhyan and Bena, 2019).

Nous passons ensuite au chapitre 5 à un système non topologique : la jonction SNS. Ce sys-
tème est composé de trois parties reliées entre elles : un supraconducteur, un métal normal et un
autre supraconducteur. Cette jonction implique donc deux frontières, qui déterminent l’étendue de
la région normale. En raison de la diffusion aux frontières, des états spéciaux apparaissent dans la
région normale, appelés états liés d’Andreev. Nous montrons que nous pouvons récupérer ces états
grâce à notre technique, cependant le processus est un peu différent de celui utilisé dans le chapitre
précédent car il implique de nouvelles difficultés : il faut prendre en compte deux frontières, pas
une seule, et ces frontières doivent permettre la diffusion particule-trou, un ingrédient principal
dans la formation des états liés d’Andreev. Nous constatons que la technique des impuretés ne
fonctionne que pour un certain type de jonction, mais cela reste un résultat intéressant car ce
régime particulier n’est généralement étudié que par des méthodes numériques plus "lourdes".

(a) Système 1D, impureté
ponctuelle

(b) Système 2D, impureté
en forme de ligne

(c) Système 3D, impureté
en forme de plan

Figure 3 Représentation de l’impureté que nous avons utilisée pour créer des bords dans les sys-
tèmes 1D, 2D et 3D. Dans chaque cas, le système infini est soumis à une impureté, qui le divise
effectivement en deux sous-systèmes semi-infinis. Si le système possède des états de bord, ceux-ci
sont recréés de chaque côté de l’impureté. Ces états de bord sont représentés en bleu en (a) et (b),
ou existent sur la surface représentée en rouge en (c).

Dans le chapitre 6 nous introduisons un nouveau type d’application pour la technique des
impuretés : l’étude de l’interférence des quasi-particules. Ce phénomène est dû à la diffusion
des états de surface par les impuretés ; en quelque sorte on revient ainsi à l’autre origine de la
technique : l’investigation des effets d’impureté. Pour ce faire, nous passons par deux étapes :
d’abord nous appliquons la technique de l’impureté pour créer une surface et obtenir les états de
surface, puis, en utilisant le même formalisme mathématique, nous ajoutons à cette surface une
impureté singulière et observons ses effets. Nous prenons comme exemples les modèles semi-
métalliques de Weyl utilisés dans le chapitre 4, et comparons nos résultats avec ceux obtenus
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par les auteurs des modèles via des techniques plus conventionnelles. Nous constatons que nos
résultats ne sont pas en accord avec ceux des auteurs mentionnés et soutenons que la méthode
des impuretés devrait donner les "meilleurs" résultats, en partie parce qu’elle ne reproduit pas les
problèmes aujourd’hui bien connus des techniques conventionnelles.

Nous terminons au chapitre 7 par une étude du graphène multicouche et du graphite, en mettant
l’accent sur les effets de l’empilement et du trigonal warping. L’idée d’étudier ces systèmes est
née d’une collaboration avec des équipes expérimentales, qui ont examiné les effets des impuretés
trouvées dans leurs échantillons de graphite. Ce fut donc l’occasion d’exploiter tout ce que nous
avions appris des précédentes applications de la technique des impuretés, en complétant par des
comparaisons avec des résultats expérimentaux récents, et en concluant convenablement cette
thèse.

Dans cette thèse, nous nous sommes intéressés à une nouvelle méthode pour étudier les phénomènes
de bord et de surface. Tout d’abord, nous avons montré qu’elle recrée correctement les états de
bord connus, tels que ceux caractéristiques des isolants topologiques et des semi-métaux de Weyl
; puis nous avons vu qu’elle peut modéliser des effets de bord plus compliqués, recréant par ex-
emple des états liés d’Andreev dans certaines jonctions SNS ; et enfin, nous avons constaté que la
technique constitue en fait une bonne base pour l’étude de l’interférence des quasi-particules, à la
fois dans l’espace des moments et dans l’espace réel, en montrant des exemples sur des modèles
de semi-métaux de Weyl et sur des systèmes de graphène et de graphite.

A travers l’étude de tous ces systèmes, nous avons observé plusieurs avantages à l’utilisation de
cette technique. D’une part, elle pourrait être considérée comme semi-analytique, dans la mesure
où elle est exacte jusqu’au calcul de certaines intégrales. Le codage de la technique est également
assez simple : à partir d’une petite matrice hamiltonienne, il suffit de suivre les équations succes-
sives pour calculer les fonctions de Green et les matrices T, et la fonction spectrale résultante ou la
densité d’états locale par exemple. La méthode fonctionne dans toutes les dimensions physiques
(1D, 2D et 3D), et avec des systèmes topologiques et non topologiques. Sa plus grande force
réside sans doute dans sa construction : elle permet de modéliser des bords en s’affranchissant de
la nécessité de considérer des systèmes finis.

Pendant la rédaction de ce manuscrit, d’autres applications de la technique de l’impureté ont
été poursuivies. Des résultats entièrement analytiques ont été obtenus pour les interférences de
quasi-particules du graphène bicouche à basse énergie (Kaladzhyan et al., 2021b), ce qui permet
en particulier de mieux comprendre les effets du trigonal warping. La méthode a également été
utilisée pour étudier les chaînes de Shiba et leur topologie (Sedlmayr et al., 2021), où elle peut
ignorer les problèmes d’effet de taille finie, connus pour se produire dans les calculs tight-binding.
Parmi les applications futures possibles, l’interférence de quasi-particules semble être un choix
prometteur, car elle peut prendre en compte des contributions importantes qui sont supprimées
lors de l’utilisation des approximations habituelles de JDOS et SSP.



Chapter 1 | Introduction

The work presented in this manuscript is centered around a certain technique, which we will often
refer to as the impurity technique. This technique arose at the crossroads between two different
domains in condensed matter physics: the study of edge and surface states, and the investigation
of impurity effects.

In recent years, there has been a lot of regained interest in edge and surface phenomena due
to the rise of topological condensed matter. This modern field, born in the 80s with the notable
discovery of the quantum Hall effect (Klitzing et al., 1980), focuses on phases of matter (and their
associated unique phenomena) which are not explained by the Landau theory of phase transitions.
The Landau theory is based on symmetry breaking: distinct phases are assumed to correspond to
different symmetries, and so a phase transition is always associated with a change in symmetry.
This theory can for example explain the difference between a liquid and a solid, a crystal in par-
ticular. A liquid is a disordered phase with a continuous translation symmetry while a crystal is an
ordered phase which exhibits a discrete translation symmetry (see Fig. 1.1): in a liquid the atoms
are randomly distributed and so the liquid remains the same if we apply an arbitrary translation
to the atoms in space, whereas in a crystal the atoms are organized into a lattice which remains
unchanged only if we apply a specific translation (corresponding to an integer times the lattice
constant). In contrast, topological phases don’t always differ by their symmetries but are instead
differentiated by the value of a special parameter called the topological invariant, or topological
quantum number.1

A number of topological materials show special states at their boundary, be it corners, edges,
hinges or surfaces. For example, topological insulators possess metallic edge states (Kane and
Mele, 2005), and topological superconductors exhibit Majorana bound states.2 Because of the
topological nature of these materials, their edge states are particularly resistant to perturbations
and disorder: they are "protected" by the topology. The robustness of topological edge states has
been an important motivation to the study of topological materials, as they can have extensive
applications: metallic states could carry current without dissipation, protected states in general are
great candidates for qubits...

1Symmetry-breaking can be used to describe some topological phase transitions, and so this is not the reason why
topological phases cannot be explained by the Landau theory. The actual difference lies in the order parameter: the
Landau theory describes phase transitions using local order parameters, which average value is zero in a disordered
phase and non-zero in an ordered one; while it is impossible to define one for topological phase transitions, instead
we define topological invariants. However, these local order parameters being directly connected to the breaking of
symmetry, symmetry-breaking is still a very relevant concept. For pedagogical purposes we thus decided to mention
it in the main text, instead of the local order parameter.

2The existence of Majorana bound states is to this date still considered theoretical, their experimental proof re-
maining very controversial.

6
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Figure 1.1 Illustration of two different phases: an ordered phase (crystal) where the position of the
atoms is fixed, and a disordered phase (liquid) for which the atoms only have a certain probability
of existing at a given point in space. Credit to Trung Van Phan.

Even though topological materials are what often come to mind nowadays when thinking "edge
states", other systems also possess states which are bound to their edges, or which existence is
directly linked to the presence of edges. For example graphene, one of the most well-known 2D
materials, hosts localized states for certain types of edges. It can be particularly interesting to
study these states, for instance to see how they transform under the application of certain fields, or
depending on the interactions at play (Lado et al., 2015).

The other main field which relates to this thesis, is the study of impurity effects. Impurities
have always played an important role in condensed matter, because it is simply impossible to
study a material (experimentally) without it presenting any defects. Of course over the years, new
manufacturing processes have allowed us to make purer and purer materials, but impurities remain
important and can greatly affect the results of an experiment. Another fundamental reason why
impurities are studied, is because a lot of interesting physics actually only occur in the presence
of defects. One example is the Kondo effect: scattering of conduction electrons in a metal due to
magnetic impurities can affect electrical resistivity at low temperature, which in some cases can
produce heavy fermions, electrons with a high effective mass (Hewson and Kondo, 2009).

The method we present here, the "impurity method" or "impurity technique", aims to bring a
new way of studying edge phenomena, using impurities. Most of the time, edge physics is studied
theoretically by simulating a finite system with the desired edges. In the impurity method, we
instead consider an infinite system, and "create" a boundary with impurities. An example is given
in Fig. 1.2 for a 2D system. In this case we add a line of impurities which, if strong enough, will
act as a wall and "cut" the system in two. We thus end up with an effective edge on each side of
the impurity line, where edge states can form if the base system supports them.

Mathematically, we use tight-binding models to describe the infinite systems, and use the
formalism of Green’s functions and T-matrices, commonly used to study scattering, to account for
the impurities and compute their effect. The method has the advantage of being more analytical
than numerical: the computation follows a set of equations, and the only part which could really
be considered numerical consists in evaluating some integrals. This last part can even be done in
a "light" numerical way by simply approximating the integrals with Riemann sums or with the

http://web.mit.edu/8.334/www/grades/projects/projects14/TrungPhan_8334WP/foundation-5.2.2/formation_4.html
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Figure 1.2 Representation of the impurity technique on a 2D system: to an infinite system (shown
in grey) we add a line of impurities (shown in red), effectively cutting the system in two. Each
subsystem thus possesses an effective edge, where edge states can form (in blue).

trapezoidal rule.3 For not too complicated systems, purely analytical results can even be obtained,
as we showed for example in Kaladzhyan et al. 2020.

Of course, other methods to study edge states exist: exact diagonalization of tight-binding
Hamiltonians for finite systems, iterative methods to compute boundary Green’s functions (Lopez San-
cho et al. 1985 and Peng et al. 2017 for a recent application), using the bulk-boundary correspon-
dence (Delplace et al., 2011)... The aim of this work is not to compare the impurity technique with
these other methods4, but rather to explore the possibilities that it offers: what can we obtain from
it? To what extent? Can we use it to find new results?

As a way to answer those questions, we applied the impurity method to a number of systems,
which more or less correspond to the different chapters of this manuscript.

We will start in Chapter 2 by introducing some basic features of edge states through two well-
known examples: graphene and the SSH model. In this introductory chapter, we will not use the
impurity technique, but only carry out some simple calculations using exact diagonalization. The
aim of this chapter is two-fold: to present edge states in some simple systems, and to introduce
concepts which will be used in the following chapters, namely the basic graphene model and some
notions of topology.

Then in Chapter 3 we give the details of the impurity technique. For this, we must introduce
the different relevant Green’s functions, as well as the T-matrix formalism. This chapter contains
most of the "maths", and we will often refer to it in the other chapters so as not to rewrite the same
equations for each system.

In Chapter 4 we present our first application of the impurity technique. We focus on two kinds
of topological systems: the Kane-Mele model, a 2D topological insulator, and Weyl semimetal
models, which live in 3D. For each model we show that we can recover the characteristic edge
states, with the expected properties, by comparing the spectral function obtained through the im-
purity technique with the energy spectrum computed using exact diagonalization. We thus show
that the technique can function correctly in both 2D and 3D, the 1D case having been proven in a
previous work (Kaladzhyan and Bena, 2019).

We then switch in Chapter 5 to a non-topological system: the SNS junction. This system is
made of three parts, joined together: a superconductor, a normal metal and another superconduc-
tor. This junction thus involves two boundaries, which determine the extent of the normal region.

3All the results presented in this thesis have actually been computed this way.
4Some comparisons will still be done with the exact diagonalization method, for one because it is commonly used,

for another because we will use it ourselves to verify that the impurity technique can recover the same results, to
confirm its validity.
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Due to scattering at the boundaries, special states appear in the normal region, which are called
Andreev bound states. We show that we can recover these states using our technique, however
the process is a little different from the one used in the previous chapter as it involves new diffi-
culties: we must take into account two boundaries, not just one, and these boundaries must allow
particle-hole scattering, a main ingredient in the formation of Andreev bound states. We find that
the impurity technique only works for a certain kind of junction, but this is still an interesting
result as that particular regime is usually only studied through more "heavy" numerical methods.

In Chapter 6 we introduce a new type of application for the impurity technique: the study of
quasiparticle interference. This phenomenon is due to scattering of surface states by impurities; in
a way we thus come back to the other origin of the technique: the investigation of impurity effects.
To do this we go through two steps: first we apply the impurity technique to create a surface
and obtain the surface states, then, using the same mathematical formalism, we add a singular
impurity to that surface and observe its effects. We take as examples the Weyl semimetal models
used in Chapter 4, and compare our results with those obtained by the models’ authors through
more conventional techniques. We find that our results do not agree with those of the mentioned
authors, and argue that the impurity method should give the "better" results, in part because it does
not reproduce well-known issues from the conventional techniques.

We end in Chapter 7 with a study of multi-layer graphene and graphite, with an emphasis on
the effects of stacking and trigonal warping. The idea of investigating these systems originates
from a collaboration with experimental teams, who examined the effects of impurities found in
their graphite samples. It was thus an opportunity to use all we had learned from the previous ap-
plications of the impurity technique, completing with comparisons to recent experimental results,
and bringing a fitting conclusion to this thesis.



Chapter 2 | An introduction to edge states
andother edge-relatedphenom-
ena

Contents
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In this thesis, we focus on systems in which the presence of edges causes new states to appear.
One can think of edge states, i.e. states which are localized at an edge, with a probability dis-
tribution decreasing exponentially when moving away from the edge. But delocalized states can
also be linked to the presence of edges, e.g. the Andreev bound states in Superconductor-Normal-
Superconductor (SNS) junctions which are discussed in Chapter 5.

Edge states can be separated into two categories: topological states, and non-topological states.
Indeed a lot of edge states examples can be found in topological systems, and most of the systems
presented in this manuscript are topological. For this reason, in this chapter we give two simple
examples of edge states, one from a non-topological system, graphene (in its most basic form), and
one from a topological system, the Su-Schrieffer-Heeger (SSH) chain. Through these examples
we want to display the main characteristics one can look for when studying edge states, and with
the SSH chain also briefly introduce the concept of topology in condensed matter.

2.1 | Simple graphene: a non-topological system with edge
states

Graphene is one of the most, if not the most, well-known 2D system in condensed matter physics.
It is a single sheet of carbon atoms arranged in a honeycomb lattice, as shown in Fig. 2.1.

The honeycomb lattice has a unit cell of two sites, usually labeled A and B. The tight-binding
Hamiltonian with only nearest-neighbor hopping is written as:

H = t
∑
〈i j〉

c†i,Ac j,B + h.c. (2.1)

where c†i,α creates an electron at site i of the corresponding type α = A or B. This Hamiltonian can
be Fourier transformed to obtain the Bloch Hamiltonian for bulk graphene:

10
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x

y

A

B

u.c.

Figure 2.1 The honeycomb lattice in graphene. The unit cell, in red, is composed of two sites
labeled A and B. The black lines connect nearest-neighbor atoms.

H(k) = t
1 + 2 cos

 √3
2

kya
 e−i 3

2 kxa

 c†k,Ack,B + h.c. (2.2)

where a is the distance between two nearest neighbors, and

c†k,α =
1
√

N

∑
i

e−ik·Ric†i,α (2.3)

with N the number of unit cells and Ri the position of the cell containing the site i.

The Brillouin Zone (BZ) of graphene is a hexagon which corners are called K points (see
Fig. 2.2). Out of the six K points, only two are independent, the other four can be obtained by
translations involving the reciprocal lattice vectors. We’ll call these two independent points K and
K′.

In Fig. 2.2 we show the band structure of graphene along a line in the BZ which crosses K and
K′. As we can see, the spectrum around the K points is linear. Such a dispersion is characteristic
of massless Dirac fermions, studied in high-energy physics, which is why the K points of graphene
are also called Dirac points.
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Figure 2.2 Left: upper energy band of bulk graphene with the BZ drawn on top. K points are
indicated by circles and crosses, equivalent points are drawn with the same marker. Right: energy
spectrum of bulk graphene along the left plot’s black dashed line.

Let us now change the boundary condition in one direction from periodic to open. We now
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have an infinite ribbon of graphene, with two edges. Depending on the direction and the position
at which the ribbon ends, we can obtain three different types of edges: zigzag, bearded or armchair
(see Fig. 2.3). In the convention we have chosen for the lattice orientation, taking open boundary
conditions (OBC) in x will result in either zigzag or bearded edges, while taking OBC in y will
result in armchair edges.

x

y

A

B

(a) Zigzag edge

x

y

A

B

(b) Bearded edge

x

y

A

B

(c) Armchair edge

Figure 2.3 The three possible edges of a graphene ribbon.

The Hamiltonian for a graphene ribbon can be obtained by taking the partial Fourier transform
of Eq. (2.1) in the infinite direction. For a ribbon infinite along x we thus have:

H(kx) = t
∑

Y

[
c†kx,Y,A

ckx,Y,B + e−i 3
2 kxa

(
c†kx,Y,A

c
kx,Y−

√
3

2 a,B
+ c†kx,Y,A

c
kx,Y+

√
3

2 a,B

)]
+ h.c., (2.4)

where Y designates the cell position in the y direction, and for a ribbon infinite along y:

H(ky) = t
∑

X

c†X,ky,A
cX,ky,B + 2 cos

 √3
2

kya
 c†X,ky,A

c
X− 3

2 a,ky,B

 + h.c., (2.5)

where X designates the cell position in the x direction.
Using these two Hamiltonians, we can obtain the spectrum for a graphene ribbon with any

of the three types of edges. The spectra for the four possible edge configurations are given in
Fig. 2.4: a ribbon with two zigzag edges, two bearded edges, one zigzag and one bearded edge, or
two armchair edges.

As we can see, flat bands appear in the spectrum at zero energy when we have either zigzag
or bearded edges (or both), but not with armchair edges. These flat bands actually correspond to
edge states, i.e. states localized on the edge. From Fig. 2.4a and 2.4b we observe that zigzag edge
states exist for kya ∈ I with I =

(
− 4π

3
√

3
;− 2π

3
√

3

)
∪

(
2π

3
√

3
; 4π

3
√

3

)
, while bearded edge states exist for

kya < I. In Fig. 2.4c, both a zigzag and a bearded edge state are present: the flat band extends to
all values of ky.

This shows that edge states can form in graphene, depending on the type of edge. The presence
of zero energy states is often reminiscent of topological systems, however, the existence of topo-
logically protected edge states does not depend on the edge considered. For this reason, graphene
is categorized as a non-topological system. Graphene can however be turned into a topologi-
cal system: one example consists in adding spin-orbit interactions to its Hamiltonian, creating a
topological insulator refered to as the Kane-Mele model, which we will present in Chapter 4.
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(d) Two armchair edges

Figure 2.4 Energy spectrum of a graphene ribbon depending on the edges considered. In each
case, we consider a ribbon width of 50 cells in the open direction.

2.2 | Abrief introduction to topology: the Su-Schrieffer-Heeger
chain

We now introduce the Su-Schrieffer-Heeger (SSH) chain (Su et al., 1979), a simple 1D system, in
order to illustrate the main characteristics of topological systems.

t1 t2

Figure 2.5 An SSH chain of 10 sites. The unit cell is made of two neighboring sites, with hopping
t1 (t2) between sites belonging to the same (different) unit cell.

We give a picture of the SSH chain in Fig. 2.5. The system is made from unit cells of two sites,
and two different nearest neighbor hoppings exist: t1 which links two sites from a same unit cell,
and t2 for sites belonging to different unit cells.

Let us first consider the two extreme cases where one of the two hoppings is equal to zero.
When t2 = 0, only hoppings inside the unit cells remain. As we can see in Fig. 2.6, the sites pair
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−t1

t1

E

Figure 2.6 SSH chain and its energy spectrum for t2 = 0.

together and the eigenvalues are ±t1. Indeed in this case we have a block diagonal Hamiltonian,
where each block is the 2 × 2 matrix: (

0 t1

t1 0

)
, (2.6)

which eigenvalues are ±t1.
The t1 = 0 case is similar, except that this time the two sites at the ends of the chain do not

have partner sites to pair up with and become isolated (see Fig. 2.7). We thus obtain the additional
eigenvalue 0 in the spectrum.

−t2

0

t2

E

Figure 2.7 SSH chain and its energy spectrum for t1 = 0.

In this case, the presence of zero energy states is evident and doesn’t seem particularly inter-
esting. Let us now turn the hopping t1 back on. Energy spectra for t2 = 1 and different values of
t1 are shown in Fig. 2.8. We now have a lot more eigenvalues than in the previous extreme cases,
but the important thing is: zero-energy states are present, even though t1 , 0.

In order to investigate these peculiar states, we plot their distribution along the chain in Fig. 2.9.
As we can see, the zero-energy states are exponentially localized at the ends of the chain. We also
see that they become less localized when t1 increases, but we’ll come back to that later.

These plots show that, just like in the case of t1 = 0, we obtain two zero-energy states localized
at the ends of the chain for different non-zero values of t1. However, these states do not appear for
all values of t1: in Fig. 2.10 we show instances where the eigenvalue 0 is absent.

The reader may have noticed the difference between the values taken for t1 in Fig. 2.8 and
2.10. Indeed, in the first plots we have taken positive values of t1 which are inferior to t2, while in
the latter plots t1 is superior to t2. The presence or absence of zero-energy states in these instances
can be explained by considering that the system is in different phases when 0 ≤ t1 < t2 and when
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(c) t1 = 0.8

Figure 2.8 Spectrum of an SSH chain of 100 sites for t2 = 1 and different values of t1.

0 ≤ t2 < t1. However, the phase transition at t1 = t2 cannot be explained by the Landau theory
because no symmetry was broken in order to go from one phase to the other. We call these types
of phases "topological phases".

According to the theory of topological order, the system is in the same phase when t1 = 0 and
when 0 < t1 < t2, which explains why we see the zero-energy edge states in Fig. 2.8. For t1 > t2,
an important feature of the system changes: the value of the topological invariant. We will not
explain here how to compute the topological invariant, as it was not studied in this thesis, but it
can be computed from bulk attributes. This is important, as it means that this invariant is a bulk
property, that does not depend on the boundary conditions of the system.

The topological invariant is a number that takes quantized values. In the case of the SSH
model, it can only take integer values. That is usually the case in topological systems, although
the invariant can also be a rational number or a set of numbers. When it is zero, it means that the
system is in a so-called topologically trivial phase. These phases do not show topological effects:
the system can appear as a simple insulator for example. The SSH chain is in a topologically
trivial phase when 0 ≤ t2 < t1. When the invariant has a non-zero value, the system is in a
topologically non-trivial phase: topological effects appear, such as the zero-energy edge states of
the SSH chain. The study of topological edge states has been very popular in condensed matter
physics lately, as they are by nature robust to perturbations. Indeed these states are protected by
certain symmetries of the system, and as long as perturbations respect those symmetries, they will
not affect the topological states.

At the topological phase transition, in the case of the SSH chain we saw that this happens
at t1 = t2, the topological invariant is not defined. Indeed since it is quantized, with different
values for different phases, it cannot change smoothly at the transition. This translates in the bulk
spectrum by a closed gap. At a topological phase transition, the bulk spectrum cannot be gapped,
otherwise the invariant cannot change. We show this in the case of the SSH chain in Fig. 2.11
where we plot the bulk spectrum across the phase transition: the spectrum is gapped, but closes at
t1 = t2.

We now move on to the core of this thesis, introducing the impurity technique and its corre-
sponding mathematical formalism.
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Figure 2.9 Modulus square of the zero-energy eigenstates of an SSH chain of 100 sites as a
function of the position x along the chain, for t2 = 1 and different values of t1.
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Figure 2.10 Spectrum of an SSH chain of 100 sites for t2 = 1 and other values of t1.
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Figure 2.11 Bulk spectrum of the SSH chain for t2 = 1 and several values of t1 across the phase
transition.
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In this chapter, we introduce the main mathematical tools that are used in the impurity method,
namely the Green’s functions and the T-matrix formalism. This introduction is not very general,
and most of the equations that follow are only correct under certain hypotheses, the main one
being the consideration of a quadratic Hamiltonian. For a more general or detailed introduction
on Green’s functions or T-matrices, as this chapter is only meant as a support to understand the
constituents of the impurity technique, and does not include much in the way of proofs, we invite
the reader to look to the many textbooks or lectures on the subject. Some references are given in
the next sections.

3.1 | Green’s functions
When studying quantum systems, the Green’s function can be a very helpful mathematical tool.
Through it, one can obtain properties of a system without having to determine its eigenstates.
Depending on the quantities of interest, this can help save a lot of time. For example, one can
derive the density of states (DOS) of electrons for a given energy value, and thus recreate the
energy spectrum. The Green’s function can also be used to compute topological invariants for
topological systems.

Here we introduce the Green’s functions that were of interest to us, as well as the spectral func-
tion and its relation to the electron DOS. Most of the Green’s functions’ properties are given here
without proof. More details can be found in books or courses on Green’s functions (Rickayzen,
2013; Mahan, 2000).

18
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In what follows we use the Heisenberg representation where the time dependence of an oper-
ator A is defined by:

A(t) = eiHtAe−iHt (3.1)

and its expectation value by:

〈A〉 =
1
Z

tr
[
e−βHA

]
(3.2)

with H the Hamiltonian in the grand-canonical ensemble, β = 1/kBT the thermodynamic beta and
Z = tr

[
e−βH

]
the partition function.

We only studied systems with a quadratic Hamiltonian, i.e. where the electrons are considered
to be free particles. For this reason, the notions developed here are less general and we consider
Hamiltonians of the form:

H =
∑
αβ

c†αhαβcβ (3.3)

where c†α creates a particle in the state α.

Here we present two types of Green’s functions: the retarded Green’s function and the Mat-
subara Green’s function.

3.1.1 The retarded Green’s function
We define the retarded Green’s function as:

GR
(
t, t′

)
= −iθ(t − t′)〈

[
A(t), B(t′)

]
ζ〉 (3.4)

where θ is the Heaviside function, A and B are two operators and [A, B]ζ = AB − ζBA with ζ = 1
if we consider bosons and ζ = −1 if we consider fermions.

As we only treat the case of free particles, we need only focus on the single-particle retarded
Green’s function:

gab
R (t, t′) = −iθ(t − t′)〈[ψ̂a(t), ψ̂†b(t′)]ζ〉 (3.5)

where ψ̂†a creates a particle in the state a.
Physically, the single-particle retarded Green’s function describes the behaviour of an extra

particle added to the system. By developing the expectation value in Eq. (3.5), we get two terms
〈ψ̂a(t)ψ̂†b(t′)〉 and 〈ψ̂†b(t′)ψ̂a(t)〉. The first one is the probability amplitude for finding a particle in
the state a at time t given that a particle is created in the state b at time t′. This term therefore
describes the way a particle goes from state b to state a between the times t′ and t. Likewise, the
second term describes a "hole" going from state a to state b between the times t and t′.

One can also show that if the Hamiltonian does not depend explicitly on time, which is the
case for the systems studied here, the retarded Green’s function depends only on t − t′. Hence in
what follows we write the single-particle retarded Green’s function as gab

R (t − t′) = gab
R (t, t′).

The retarded Green’s function can give us the physical quantities we are interested in, such as
the spectral function and the DOS. However it is not straight-forward to compute. This is why we
use Matsubara Green’s functions. The Matsubara Green’s function is defined on imaginary times.
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It is related to the retarded Green’s function and, as we will see in the following section, has a
simple expression for the case of free fermions.

3.1.2 The Matsubara Green’s function
By analytical continuation with Eq. (3.1), we define the imaginary time evolution as:

A(τ) = eHτAe−Hτ. (3.6)

The Matsubara Green’s function is defined as:

GM(τ, τ′) = −〈T (A(τ)B(τ′))〉 (3.7)

where T is the time-ordered operator, defined by:

T (A(τ)B(τ′)) = θ(τ − τ′)A(τ)B(τ′) + ζθ(τ′ − τ)B(τ′)A(τ). (3.8)

Once again, since we only consider quadratic Hamiltonians, we only use single-particle Mat-
subara Green’s functions, that we define as:

gab
M (τ, τ′) = −〈T (ψ̂a(τ)ψ̂†b(τ′))〉. (3.9)

Also, since the Hamiltonian does not depend explicitely on time, we have gab
M (τ − τ′) =

gab
M (τ, τ′).

One can show that:
gab

M (τ + β) = ζgab
M (τ). (3.10)

This means that we can write the Matsubara Green’s function as a Fourier series:

gab
M (τ) =

1
β

∑
ωn

e−iωnτgab
M (iωn) (3.11)

where the ωn are the Matsubara frequencies, given by eiωnβ = ζ.
One can also show that the Fourier transform gab

R (ω) of the retarded Green’s functions is related
to gab

M (iωn) by the analytical continuation:

gab
M (iωn → ω + i0+) = gab

R (ω). (3.12)

This direct relationship is very useful in the case of a quadratic Hamiltonian. Indeed one can
show that for a general quadratic Hamiltonian (3.3), the Matsubara Green’s function is a matrix of
the same size as h and has the simple expression:

gM(iωn) =
1

iωn − h
. (3.13)

This means that if h is a small matrix, as is the case for infinite systems with only a few degrees
of freedom, the Matsubara Green’s function is easy to compute.
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3.1.3 The spectral function and DOS
We define the spectral function as:

A(ω) = −
1
π

Im {tr [GR(ω)]} (3.14)

where GR(ω) is the Fourier transform of the retarded Green’s function. To understand its meaning,
let us take the case of a quadratic Hamiltonian. By analytic continuation of Eq. (3.13) we have:

GR(ω) =
1

ω + i0+ − h
. (3.15)

By diagonalizing h, we can define a Green’s function for a specific state of eigenvalue E:

GR(E, ω) =
1

ω + i0+ − E
(3.16)

which in turn gives us:
A(E, ω) = δ(ω − E). (3.17)

In this case the spectral function is a delta function, which tells us that an excitation can only
happen by adding a particle in a state of energy ω = E. This means that for a non-interacting sys-
tem, the spectral function behaves like a density of states: it only takes non-zero values for values
of ω corresponding to the energies available to the particles. When interactions are considered,
the spectral function is no longer a delta function, but one can show that it is still similar to the
density of states at a given energy.

3.2 | The T-matrix formalism
In this section, we introduce the T-matrix formalism. A T-matrix is a tool that can be used together
with Green’s functions to study the effects of disorder in electronic systems.

Adding an impurity to a system will cause electrons to scatter. But this scattering event can be
very complex to describe. In some cases we may not be interested in the scattering itself, but only
in its effect. The T-matrix is a way to do just that: it creates a link between the system without
scattering, which we call the unperturbed system, and the system with scattering, which we call the
perturbed system. These two systems, perturbed and unperturbed, are represented mathematically
by Green’s functions, while the scattering event is represented by the T-matrix.

In the brief introduction that follows we use a few assumptions, which are valid for all the
systems we worked on, and simplify the equations as well as the understanding of the formalism
(for a more general theory of T-matrices see for example Mahan 2000; Bruus and Flensberg 2004).

First we assume that the unperturbed system is described by a quadratic Hamiltonian and is
translationally invariant. Typically, we consider a Bloch Hamiltonian H(k), written as a small
matrix e.g. 2 × 2 or 4 × 4.

Second we assume that the impurity is localized and is represented by a scattering potential
resembling a delta function in space. For example, the impurity can be point-like, represented by
a potential: V(r) = Uδ(r − r′).
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As mentioned above, we first consider an unperturbed system which is translationally invariant,
described by a Bloch HamiltonianH(k). We define the associated unperturbed Matsubara Green’s
function as:

G0(k, iωn) =
1

iωn −H(k)
. (3.18)

As explained in Sec. 3.1.2, we use the Matsubara Green’s function because it has a simple
expression for the systems we consider.

We now add an impurity to the system. For a localized impurity, the impurity scattering can
be modeled using an impurity potential series. That is, the Green’s function G of the perturbed
system can be expanded in terms of the Green’s function G0 of the unperturbed system and the
impurity potential V:

G = G0 + G0VG0 + G0VG0VG0 + ... (3.19)

= G0 + G0(V + VG0V + ...)G0. (3.20)

For now, we omit the parameters k, iωn for simplicity. If we then define T as the infinite sum
(V + VG0V + ...), we get a more compact expression for G:

G = G0 + G0TG0. (3.21)

This T-matrix is the sum of the contributions corresponding to all-order impurity scattering
processes. Again though, this method can only be used if the impurity is localized. For extended
impurities, if the impurity scattering is weak, the Born approximation can be used instead. In that
case only the first order term in the impurity potential series is considered, i.e. we simply have
T = V .

Adding again the parameters k, iωn, the equation we use to compute the perturbed Green’s
function is:

G(k1,k2, iωn) = G0(k1, iωn)δ(k1 − k2) + G0(k1, iωn)T (k1,k2, iωn)G0(k2, iωn). (3.22)

Since the unperturbed system is translationally invariant, G0 depends only on one momentum.
However, adding the impurity breaks this invariance, which is why G depends on two distinct
momenta k1 and k2.

We can compute G0 for a given Hamiltonian using Eq. (3.18), so the only thing needed to
obtain the perturbed Green’s function G from Eq. (3.22) is an expression for the T-matrix. By
definition we can write T as:

T (k1,k2, iωn) = V(k1,k2) +
∑

k’

V(k1,k’)G0(k’, iωn)V(k’,k2) + ... (3.23)

= V(k1,k2) +
∑

k’

V(k1,k’)G0(k’, iωn)

V(k’,k2) +
∑
k”

V(k’,k”)G0(k”, iωn)V(k”,k2) + ...


(3.24)

= V(k1,k2) +
∑

k’

V(k1,k’)G0(k’, iωn)T (k’,k2, iωn) (3.25)
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which means that we need to solve Eq. (3.25) to obtain an expression for the T-matrix.

We consider an impurity localized around r = 0, represented by a delta function impurity
potential: V(r) = Uδ(r). By Fourier transforming V , one can see that V is constant in momentum
space, and simply equal to U. Then the solution to Eq. (3.25) is:

T (iωn) =

[
I − U

∫
dk
VBZ

G0(k, iωn)
]−1

U (3.26)

where VBZ is the volume of the first Brillouin Zone. This result can be verified by plugging
Eq. (3.26) into Eq. (3.25), taking V(k,k’) = U.

3.3 | Using the T-matrix formalism to study edge states
In order to study edge states, or other phenomena linked to the presence of edges, we used this
T-matrix formalism in a very specific way. The idea is to take an infinite system, and to create
an edge using an impurity. Illustrations are given in Fig. 3.1 for 1D, 2D and 3D. Typically, when
adding a localized impurity to a system, some states will form around the impurity. What we
observed is that, when the impurity potential strength U goes to infinity, i.e. is much larger than
the energy scales of the system, these localized states transform into the edge states one would
obtain on "normal" edges. This technique thus presents a new way to obtain and study edge states.

(a) 1D system, point-like impu-
rity

(b) 2D system, line-like
impurity

(c) 3D system, plane-like
impurity

Figure 3.1 Reprensentation of the impurity we used to create edges in 1D, 2D and 3D systems.
In each case, the infinite system is subjected to an impurity, which effectively splits it into two
semi-infinite subsystems. If the system possesses edge states, these are recreated on each side
of the impurity. These edge states are represented in blue in (a) and (b), or exist on the surface
represented in red in (c).

This method offers several advantages compared to the usual ways of obtaining edge states.
For one, we consider the system to be infinite. Usually, to study a system with edges, one needs to
make it finite in at least one direction. In that case, k is no longer a good quantum number along
that direction, and the Hamiltonian matrix becomes much bigger, with a size proportional to N×N
with N the number of sites in the finite direction. Such a big matrix makes it impossible to obtain
any analytical result, and also makes numerical caluculations slower, mostly when considering big
systems with a lot of sites. With our technique, it is possible to obtain some analytical results, such
as an expression for the Green’s function, the energy dispersion of the edge states or even the edge
states themselves. This depends of course on the complexity of the Hamiltonian: the difficulty lies
in particular in computing the integral in Eq. (3.26). Numerically, there is a clear advantage since
the computation time no longer depends on the size of the system. It is also easier to implement
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compared to the case of a big Hamiltonian, where one must remember to take into account the
open boundary conditions.

Another point worth mentioning is that even the numerical results are not too numerical. The
technique is exact up to the integration in Eq. (3.26), which is usually impossible to compute
exactly1.

3.3.1 Point, line and surface Green’s functions
Before moving on to the application of this technique, we go over the equations which can be used
for the different cases of 1D, 2D and 3D systems. Here we introduce the point, line or surface
Green’s functions and their corresponding spectral function.

In 1D, the Hamiltonian only depends on one momentum direction k. The unperturbed Green’s
function can be computed using Eq. (3.18), the T-matrix using Eq. (3.26) with VBZ = LBZ the
length of the Brillouin Zone, and then we obtain the Green’s function using Eq. (3.22) where T
does not depend on k.

Since we are interested in what happens next to the impurity, we must take the Green’s function
at a corresponding point in space. Typically, for a tight-binding model where we add an impurity
potential on the site r = 0, we take the Green’s function at the nearest neighbor site i.e. r = a or
r = −a, with a the distance between two nearest neighbors. This means we do a Fourier transform
of G:

Gp(r = ±a, iωn) =

∫
dk1dk2

L2

BZ

G(k1, k2, iωn)e±ik1ae∓ik2a (3.27)

where Gp labels the real space Green’s function at a given point. Using Gp we can in turn compute
the spectral function at r = ±a:

A(r = ±a, E) = −
1
π

Im
{
tr

[
Gp(r = ±a, E)

]}
(3.28)

where we write A and Gp as a function of E instead of iωn, such that iωn = E + iδ, δ → 0+.
The positive infinitesimal shift of energy, +iδ, corresponds to an inverse quasiparticle lifetime and
is generally related to the width of the energy levels. We often use E as a parameter for a more
evident correspondence with energy.

If the system exhibits edge states, this quantity is non zero at energy values E corresponding
to the edge states energy. In contrast, if we evaluate A(r, E) with r � 0, i.e. far from the impurity,
it has zero value at the same energies. Unless of course bulk states exist at those energies, making
the edge states indistinguishable from the bulk states in the spectrum. But that is not the case for
the systems we considered in this thesis.

In 2D the situation is a bit different: instead of adding a point-like impurity, we add a line-like
one. This means that translational invariance is only broken in one direction. For example, for
an impurity along the y direction, at x = 0, the impurity potential takes the form V(r) = Uδ(x).

1The integral in Eq. (3.26), as well as the other ones running over momentum space presented in the rest of this
chapter, are all approximated numerically by either Riemann sums or by using the trapezoidal rule.
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Eq. (3.26) is then modified, such that we only integrate over the direction in which the translational
invariance is broken:

T (k1y, k2y, iωn) = δ(k1y − k2y)
[
I − U

∫
dkx

LBZ,x
G0(kx, k1y, iωn)

]−1

U (3.29)

where LBZ,x is the length of the BZ along the x direction. This time, the T-matrix depends on ky,
but contains the delta term δ(k1y − k2y). This term characterizes the conservation of momentum
along y, since translational invariance is not broken by the impurity in that direction.

In a similar way to the 1D case, we can compute the real space Green’s function Gl on a line
close to the impurity:

Gl(x = ±a, ky, iωn) =

∫
dk1xdk2x

L2

BZ,x

G(k1x, ky, k2x, ky, iωn)e±ik1xae∓ik2xa. (3.30)

Again, since momentum is conserved along y, G must be taken at momenta k1, k2 with the
same ky component. The spectral function on the x = ±a line is then written as:

A(x = ±a, ky, E) = −
1
π

Im
{
tr

[
Gl(x = ±a, ky, E)

]}
. (3.31)

The 3D case is similar to the 2D one, with translational invariance broken in only one direction
and conserved in the two others. If we again write the impurity potential as V(r) = Uδ(x), we have
for the T-matrix, the real space surface Green’s function and the surface spectral function:

T (k1y, k1z, k2y, k2z, iωn) = δ(k1y − k2y)δ(k1z − k2z)
[
I − U

∫
dkx

LBZ,x
G0(kx, k1y, k1z, iωn)

]−1

U (3.32)

Gs(x = ±a, ky, kz, iωn) =

∫
dk1xdk2x

L2

BZ,x

G(k1x, ky, kz, k2x, ky, kz, iωn)e±ik1xae∓ik2xa. (3.33)

A(x = ±a, ky, kz, E) = −
1
π

Im
{
tr

[
Gs(x = ±a, ky, kz, E)

]}
. (3.34)

Numerical computation of the point, line or surface Green’s function

Due to the delta function in the formula for the perturbed Green’s function G (3.22), it is not
convenient to compute it numerically. Since we are only interested in the resulting point, line
or surface Green’s function, we decompose its integral so as to remove the delta function. For
instance, for the point Green’s function we have:

Gp(r = ±a, iωn) =

∫
dk1dk2

L2

BZ

[G0(k1, iωn)δ(k1 − k2) + G0(k1, iωn)T (k1, k2, iωn)G0(k2, iωn)] e±ik1ae∓ik2a

=

∫
dk1

LBZ
G0(k1, iωn) +

∫
dk1dk2

L2

BZ

G0(k1, iωn)T (k1, k2, iωn)G0(k2, iωn)e±ik1ae∓ik2a.

For a delta function impurity localized around r = 0, we can use the T-matrix formula of
Eq. (3.26), which does not depend on k1 and k2, thus further simplifying the equations:
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Gp(r = ±a, iωn) =

∫
dk1

LBZ
G0(k1, iωn) +

∫
dk1dk2

L2

BZ

G0(k1, iωn)T (iωn)G0(k2, iωn)e±ik1ae∓ik2a

=

∫
dk1

LBZ
G0(k1, iωn) +

(∫
dk1

LBZ
G0(k1, iωn)e±ik1a

)
T (iωn)

(∫
dk2

LBZ
G0(k2, iωn)e∓ik2a

)
= B(iωn) + ∆(iωn)

where B(iωn) corresponds to the "bulk" contribution to Gp, involving only the unperturbed bulk
system, while ∆(iωn) embodies the impurity’s effect as it corresponds to the perturbed part of the
Green’s function.

In the same way, the line and surface Green’s functions can be split into two similar contribu-
tions B and ∆.

3.3.2 Average correction to the spectral function
In some cases, such as the study of the Kane-Mele model in Sec. 4.1, it can be more convenient
to compute the average correction to the spectral function. This quantity is actually equal to the
average correction to the number of electronic states at given momentum and energy. It therefore
allows us to visualize the impurity-induced states more easily, as it takes positive values for those
states only. We demonstrate this here in the 2D case but the computation is similar in other
dimensions.

In 2D, we consider a line impurity proportional to δ(x). Since the spatial translational invari-
ance along y is not broken, ky is still a good quantum number. The correction to the number of
available electronic states at position x and having momentum ky is then given by:

δρ(x, ky, E) = −
1
π

Im tr δG(x, x; ky; E), (3.35)

where δG corresponds to the perturbed part of the Green’s function.
Averaging this over the direction perpendicular to the impurity, for which translational invari-

ance was broken, we obtain:

δN(ky, E) ≡
∫

dx δρ(x, ky, E) = −
1
π

Im tr
∫

dxG0(x, ky, E)T (ky, E)G0(−x, ky, E)

= −
1
π

Im tr
∫

dx
∫

dkx

LBZ,x

dk′x
LBZ,x

eikx xe−ik′x xG0(kx, ky, E)T (ky, E)G0(k′x, ky, E)

= −
1
π

Im tr
∫

dkx

LBZ,x
G0(kx, ky, E)T (ky, E)G0(kx, ky, E)

= −
1
π

Im tr
∫

dkx

LBZ,x
δG(kx, ky; kx, ky; E) ≡

∫
dkx

LBZ,x
δA(kx, ky, E),

(3.36)

where δA(kx, ky, E) is the correction to the perturbed spectral function in momentum space.

We now have all the tools we need to study edge related phenomena in 1D, 2D and 3D systems.
The following chapters are dedicated to the results obtained using the impurity method on a variety
of examples.
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The impurity method allows us to simulate edges and surfaces from any bulk model. In this
chapter we apply it to study several systems which exhibit edge states or surface states. We first
investigate a 2D topological insulator: the Kane-Mele model. We will explain what a topological
insulator is, obtain the edge states of the Kane-Mele model from a usual tight-binding calculation,
and then show that we can reproduce these states with our method. After that, we move on to
Weyl semimetals, 3D topological systems which display surface states known as Fermi arcs. As
we did for the topological insulator, we will give a general introduction to Weyl semimetals, then
study two given models and prove that our technique can recover their Fermi arcs.

4.1 | A topological insulator: the Kane-Mele model

4.1.1 What is a topological insulator?
Simply put, a topological insulator is an insulator which displays symmetry-protected conducting
edge states (in the case of 2D systems) or surface states (in 3D systems). Similar edge states
were first discovered through the integer quantum Hall effect (IQHE) (Klitzing et al., 1980) : in
2D systems subject to low temperatures and strong magnetic fields, the Hall conductance takes
the quantized values νe2/h, where e is the elementary charge, h is the Planck constant and ν is

27
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an integer. Depending on the value of ν, a certain number of conducting edge states appear. It
was understood later on (Hatsugai, 1993) that ν is a topological invariant which, in particular,
counts the number of conducting channels at the edges. Afterwards, models which reproduce
the phenomena found in the IQHE, but without magnetic field, were introduced (Haldane, 1988;
Kane and Mele, 2005; Bernevig et al., 2006), then discovered experimentally, both in 2D (König
et al., 2007) and in 3D (Hsieh et al., 2008). They are now commonly referred to as "topological
insulators".

We will give some more explicit details in the next section by taking the example of the Kane-
Mele model (Kane and Mele, 2005). More general information can be found in books and reviews
on the subject (for example see Andrei Bernevig and Hughes 2013).

4.1.2 The Kane-Mele model

4.1.2.1 Tight-binding calculation

x

y

νij = +1

νij = −1

Figure 4.1 The honeycomb lattice with the νi j convention.

The Kane-Mele model describes a topological insulator created from graphene: we take the
simple tight-binding model of graphene, described in 2.1, and add a next-nearest-neighbor (n.n.n.)
term involving spin-orbit interactions. The Hamiltonian is written as:

H =
∑
〈i j〉,α

tc†i,αc j,α +
∑
〈〈i j〉〉,α,β

it2νi jsz
αβc
†

i,αc j,β, (4.1)

where c†i,α creates an electron on the lattice site i, with spin α =↑, ↓ and sz
αβ is the αβ component

of the z Pauli matrix. In 2.1 we labeled the operators with the sublattice indices A, B. Here we can
refrain from using them as the two sublattices are equivalent, and it is clear that 〈i j〉 relates to sites
from different sublatttices while 〈〈i j〉〉 points to sites belonging to the same sublattice.

The parameter νi j is a spin-dependent amplitude defined by the orientation of the n.n.n. hop-
ping direction, as depicted in Fig. 4.1: a n.n.n. hopping consists in two successive n.n. hoppings,
and depending on the orientation of the second n.n. hopping with respect to the first one, νi j = +1
(if the electron hops to the left) or νi j = −1 (if the electron hops to the right). To preserve complex
conjugation, we have νi j = −ν ji.

We plot the bulk energy spectrum in Fig. 4.2 for t = 1 and t2 = 0.03. As we can see, the
new term in the Hamiltonian opens a gap at the Dirac points between the valence band and the
conduction band: the bulk is now insulating.
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Figure 4.2 Bulk energy spectrum for the Kane-Mele model along a line crossing the two inequiv-
alent Dirac points (see Fig. 2.2), with t = 1 and t2 = 0.03.

We now consider an infinite ribbon, so as to have a system with edges. The energy spectrum
for a ribbon with zigzag edges is shown in Fig. 4.3. As we can see, dispersing in-gap states
appear in the same k intervals as the regular non-dispersing zigzag edge states of graphene (see
Fig. 2.4). These states disperse between two inequivalent K points, and connect the valence and
the conduction bands: they are conducting. In the intervals where they are defined, these states
are localized on the zigzag edges, and start to delocalize into the bulk when approaching the Dirac
points.
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Figure 4.3 Energy spectrum for the Kane-Mele model on a 50-cells-wide ribbon with zigzag
edges. t = 1 and t2 = 0.03.

In Sec. 2.1, we pointed out that the edge states of normal graphene are not topological because
their appearance depends on the type of edge considered: they exist for zigzag and bearded edges,
but not for armchair edges. In Fig. 4.4 we show the ribbon bands for the Kane-Mele model with the
other types of edges. As we can see, the behavior observed with the zigzag edges is reproduced in
the case of bearded edges: dispersing edge states appear in the same intervals as the usual bearded
edge states. For armchair edges we now also see dispersing edge states. Unlike the zigzag and
bearded ones, they do not disperse between Dirac points of different momentum, but they still
connect the conduction and valence bands. This respects the previously mentioned condition on
topological edge states: their presence is independent of the boundary considered.

For the Kane-Mele model, the topological invariant is the Z2 invariant: it can only take the
value 0 or 1. As we made explicit for the SSH model in Sec. 2.2, the invariant can only change if
the bulk gap closes. This can be achieved for example with t2 = 0, where we recover the normal
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Figure 4.4 Energy spectrum for the Kane-Mele model on a 50-cells-wide ribbon with different
edges. t = 1 and t2 = 0.03. In the case of armchair edges, we have restricted the energy values to
show the low energy behavior more clearly.

graphene linear dispersion at low energy. However, this does not correspond to a topological phase
transition: when the gap reopens for t2 < 0, the dispersing edge states are again present. In order
to change the topological invariant, one must consider other terms such as a Rashba term and a
staggered sublattice potential (Kane and Mele, 2005). Nevertheless, since we are only interested
in reproducing the edge states found in this topological phase, we will not take these additional
terms into account.

4.1.2.2 Impurity method

x

y

A

B

u.c.

(a) Two effective zigzag edges

x

y

A

B

u.c.

(b) Two effective bearded edges

Figure 4.5 Infinite graphene lattice where we add a line impurity, localized on a single unit cell
along x (periodicity is conserved along y). Impurity sites, represented by larger dots, are effectively
disconnected from the rest of the lattice, as indicated by the dotted lines. If the vector which
goes between the two sites of the u.c. has a component along y (two possibilities exist for the
u.c. definition), we then obtain effective zigzag edges on each side of the impurity (blue lines).
Conversely, if the u.c. vector is parallel to the x axis, we get two effective bearded edges.

We will now show that by using our impurity scheme, we can recover the edge states without
considering actual edges. The Kane-Mele model is defined on a 2D lattice, therefore, as explained
in Sec. 3.3, we must introduce a line impurity in the infinite system. By setting the impurity
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potential to infinity, we should then reproduce the formation of the edge states.
The starting point is to rewrite the Hamiltonian in Eq. (4.1) in momentum space. In order

to compare our results with the spectrum of Fig. 4.3, we must make sure that the impurity will
recreate zigzag edge states. This can be done by defining an impurity which covers a whole unit
cell. Depending on the unit cell considered however, we will create either two effective zigzag
edges or two effective bearded edges, as shown in Fig. 4.5. Let us focus on the zigzag case for
now.

We choose the basis (cA↑, cA↓, cB↑, cB↓), where ciσ is an electron operator with spin σ = ↑/↓ on
the sublattice i = A/B. The Kane-Mele Hamiltonian is then expressed as:

H(k) =


hNNN 0 hNN 0

0 −hNNN 0 hNN

h∗NN 0 −hNNN 0
0 h∗NN 0 hNNN

 , (4.2)

with

hNN = t
[
1 + ei

√
3kya + ei

√
3

2 kyaei 3
2 kxa

]
,

hNNN = 2t2

sin
(√

3kya
)
− 2 cos

(
3
2

kxa
)

sin
 √3

2
kya


being the nearest-neighbor and the next-nearest-neighbor terms, with a the distance between near-
est sites and ∗ simply denoting the complex conjugation.

We then define the impurity matrix as V = UI, where I is the identity matrix, and U is the
impurity strength. This represents an impurity localized on both sites of the unit cell, with no
discrimination between different spins.

Following the steps described in Sec. 3.3, we now compute the average correction to the spec-
tral function. The unperturbed Green’s function is defined as:

G0(k, E) = [E + i0+ −H(k)]−1, (4.3)

and the T-matrix for the line impurity is:

T (k1y, k2y, E) = δ(k1y − k2y)
[
I − V

∫
dkx

LBZ,x
G0(kx, k1y, E)

]−1

V. (4.4)

For a square lattice of length a, we would simply integrate kx from −π/a to π/a, and would have
LBZ,x = 2π/a. However in this case we have a honeycomb lattice, thus the limits of integration are
not so simply defined. In App. 4.A we show that the integration must be performed from −2π/(3a)
to 2π/(3a), with LBZ,x = 4π/(3a).

The average correction to the spectral function is then obtained through the equation:

δN(ky, E) = −
1
π

∫
dkx

LBZ,x
Im{tr[G0 (k, E) T

(
ky, ky, E

)
G0 (k, E)]}. (4.5)

In Fig. 4.6 we plot δN for U = 1, 10 and 100. To see the evolution of the impurity states more
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Figure 4.6 Average correction to the spectral function due to the line impurity for two effective
zigzag edges, for U = 1, 10 and 100. For better comparison with Fig. 4.3, we also plot the U = 100
case for a larger range of ky. We have set t = 1 and t2 = 0.03.

clearly, we plot in a reduced energy and momentum range in the first subfigures. As proven in
Sec. 3.3.2, the average correction to the spectral function represents the correction to the number
of available states at given E and k. We thus observe that the impurity changes some bulk states
(δN < 0) into impurity states (δN > 0). For a weak impurity i.e. U = t = 1, the impurity states
appear at distinct energies, still concentrated mostly out of the gap. When increasing U these
states gradually evolve into edge states. Indeed for U = 100 i.e. U � t, t2, we recover subgap
states with the same linear dispersion as the ones derived via exact diagonalization (Fig. 4.3).

In Sec. 3.3 we also introduced the line spectral function as a tool to study states induced by
a line impurity. The results obtained with this quantity are given in App. 4.B. They are similar
to those obtained using the average correction to the spectral function, in that we recover the
edge states dispersion for large U, but also show that the impurity states are localized around the
impurity: they disappear when we move spatially away from the impurity.

In a similar way, we can reproduce the bearded edge states of Fig. 4.4a. To do this, we must
define the unit cell as shown in Fig. 4.5b i.e. with the A and B sites at same y. In the Hamiltonian
matrix of Eq. (4.2), only the nearest neighbor hopping term changes. We now have:

hNN = t
1 + 2 cos

 √3
2

kya
 e−i 3

2 kxa

 . (4.6)

The equations for G0, T and δN also remain unchanged and we obtain the results shown in
Fig. 4.7a, which correspond to those obtained using exact diagonalization.
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Figure 4.7 Average correction to the spectral function due to the line impurity for different types
of effective edges, for U = 100. We have set t = 1 and t2 = 0.03.

The case of one bearded and one zigzag edges, as well as the case of two armchair edges, can
also be reproduced as we show in Fig. 4.7b and 4.7c.

To obtain an effective bearded edge with an effective zigzag edge, we must define a line im-
purity localized on an odd number of sites along x (see Fig. 4.8a). There is however an added
restriction due to the consideration of n.n.n. hopping. In order to effectively separate the system
into two parts, and thus recreate edges, the impurity must restrict hoppings between the two sub-
systems. To restrict n.n.n. hopping, we must consider an impurity which extends to at least two
sites along x: we can thus simulate both a bearded and a zigzag edge with an impurity localized
over three sites. The easiest way to do this is to double the unit cell, thus considering 8×8 matrices
instead of 4 × 4, and define V as a diagonal matrix with value U for three sites and value 0 for the
last site. An alternative is to add a phase factor corresponding to the third site we must consider,
which is out of the unit cell (see Eq. (4.24) in App. 4.C). However this phase factor depends on
momentum, which means we would no longer be able to write V as independent of k, making the
T-matrix equation more complicated.
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(a) One effective zigzag edge
and one effective bearded edge
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(b) Two effective armchair edges

Figure 4.8 Infinite graphene lattice with a doubled unit cell where we add a line impurity such as
to reproduce different edge configurations.

The armchair edges can also be reproduced using a doubled unit cell (see Fig. 4.8b). This time
the line impurity breaks translational symmetry along y and the invariance remains only along x.
The equations for G0, T and δN are obtained by integrating over ky instead of kx.
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4.2 | Weyl semimetals and Fermi arcs

4.2.1 A gapless 3D topological system
We now wish to apply the impurity technique to a different topological system, this time in 3D:
the Weyl semimetal. Similar to graphene, Weyl semimetals exhibit linear dispersion in the bulk
energy spectrum at low energy: these systems are therefore gapless, in contrast to the topological
systems we’ve introduced so far (the SSH chain in Sec. 2.2 and the Kane-Mele model in Sec. 4.1).

The points in momentum space where the bulk bands reach zero energy are called Weyl nodes
or Weyl points, and always exist in pairs. The topological invariant for a Weyl semimetal is the
Chern number, which takes integer values and is defined for each Weyl point. Again unlike the
previous topological systems, the overall value of the topological invariant in Weyl semimetals is
always zero: the Chern numbers for the two Weyl points of a pair are opposite, thus the net Chern
number, defined as the sum of Chern numbers for each Weyl node, vanishes.

Figure 4.9 Depiction of a Weyl semimetal, with two Weyl nodes in the bulk and a Fermi arc
extending between the projections of the two nodes on the surface Brillouin Zone. (Modified from
Lv et al. 2015)

What we are interested in is to reproduce the surface states appearing in Weyl semimetals: the
so-called Fermi arcs. These states appear as open lines on the surface Brillouin Zone, which end
at the projection of the two Weyl nodes of a pair on this surface Brillouin Zone (see Fig. 4.9). This
fixes a condition on the surface to consider: the Weyl nodes must not project on the same point for
this surface, otherwise no Fermi arc will be created.

Figure 4.10 High-resolution ARPES Fermi surface map of crescent-shaped Fermi arcs on the
surface of tantalum arsenide (TaAs), modified from Xu et al. 2015)
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Experimentally, these Fermi arcs can be measured using angle-resolved photoemission spec-
troscopy (ARPES). An example of such a measurement is given in Fig. 4.10.

4.2.2 Application of the impurity method
We focus on two different models, described in Kourtis et al. 2016 and Lau et al. 2017, which we
denote byH1 andH2, respectively. The Bloch Hamiltonians for these two systems are given by:

H1,2 =
∑

k

ψ†(k)H1,2(k)ψ(k), (4.7)

where ψ(k) = (ckA↑, ckA↓, ckB↑, ckB↓) is a spinor with the index A/B denoting a generic unspecified
orbital component, and the ↑ / ↓ the physical spin.

For the model in Kourtis et al. 2016 written in the basis above we have

H1(k) = g1(k)τ1σ3 + g2(k)τ2σ0 + g3(k)τ3σ0 + g0(k)τ0σ0 + βτ2σ2 + α sin kyτ1σ2, (4.8)

where

g0(k) = 2d(2 − cos kx − cos ky)

g1(k) = a sin kx

g2(k) = a sin ky

g3(k) = m + t cos kz + 2b(2 − cos kx − cos ky). (4.9)

and α, β are real parameters. The 2 × 2 identity matrices σ0/τ0 and the Pauli matrices σi/τi,
i = 1, 2, 3 act in the spin and the orbital spaces, correspondingly, and the multiplication of the σ
and τ matrices indicates a tensor product.

We will consider two sets of parameters for this Hamiltonian: a) a = b = 1, t = −1, m = 0.5,
d = 0.8, α = β = 0 and b) a = b = 1, t = −1.5, d = m = 0, β = 0.9, and α = 0.3. We can compute
the position of the Weyl nodes by combing the BZ for zero energy points in the bulk spectrum. For
both sets of parameters we find that two Weyl nodes of a pair are always at the same kx and ky. To
see the Fermi arcs, we must thus consider a surface which is not parralel to the xy plane, otherwise
the Weyl nodes’ projections will superpose and no Fermi arc will be created on that surface.

We choose to take a surface perpendicular to the y axis. We can compute the spectrum using
exact diagonalization by applying a partial inverse Fourier transform along y to the Hamiltonian
(4.8). We thus end up with a system infinte along x and z and finite along y, with two infinite xz
surfaces. In Fig. 4.11 we plot the minimum positive energy band obtained as a function of kx and
kz, along with the Weyl points, for both sets of parameters. For the set a) we find two Weyl points,
along with two Fermi arcs connecting them: one for kx < 0 and another for kx > 0. For the set
b) we find two pairs of Weyl points, with one Fermi arc per pair. We can clearly see in Fig. 4.11b
how the zero energy lines end at the Weyl nodes.

To recover the arcs with the impurity method, we add a plane-like impurity at y = 0 to the
infinite system. For a strong impurity potential we thus create two effective xz surfaces: one
at y = 1, the other at y = −1. Following the steps described in Sec. 3.3.1, we compute the
surface Green’s function and the corresponding surface spectral function at E = 0, for an impurity
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Figure 4.11 Minimum positive energy band, obtained via exact diagonalization, for a system
defined by the Hamiltonian (4.8) with periodic boundary conditions in x and z and open boundary
conditions in y (length of 100 sites). We take two different sets of parameters which generate a
different number of Weyl nodes.

potential V = 100I. We plot the results for y = −1 in Fig. 4.12: as expected, we recover the arcs
of Fig. 4.11. The same thing is obtained for y = 1.
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Figure 4.12 Surface spectral function at E = 0, y = −1, for the Hamiltonian (4.8) with a surface
impurity at y = 0. The plots are obtained with the same set of parameters as in Fig. 4.11. We set
U = 100.

Using the surface Green’s function, we can also easily describe the spin and orbital distribution
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of the Fermi arc states. Indeed, we have for the different spin and orbital components:

S x
A(kx, kz) = −

1
π

Im
[
Gs

12 (kx, kz) + Gs
21 (kx, kz)

]
S x

B(kx, kz) = −
1
π

Im
[
Gs

34 (kx, kz) + Gs
43 (kx, kz)

]
S y

A(kx, kz) = −
1
π

Re
[
Gs

12 (kx, kz) − Gs
21 (kx, kz)

]
S y

B(kx, kz) = −
1
π

Re
[
Gs

34 (kx, kz) − Gs
43 (kx, kz)

]
S z

A(kx, kz) = −
1
π

Im
[
Gs

11 (kx, kz) − Gs
22 (kx, kz)

]
S z

B(kx, kz) = −
1
π

Im
[
Gs

33 (kx, kz) − Gs
44 (kx, kz)

]
, (4.10)

where Gs
i j labels the i j component of the surface Green’s function (we omit the energy dependence

for the sake of brevity).
In Fig. 4.13 we plot the z spin component of the Fermi arc states for the set of parameters a),

and the x and z components for the set b). The other components are zero for both the A and B
orbitals, so we do not show them. In each plot, we can clearly see that the two Fermi arcs have
opposite spins, which is in accordance with the results of Kourtis et al. 2016.

−π −π
2 0 π

2 π

kx

−π
−π

2

0

π
2

π

kz

SzA

−0.4

−0.2

0.0

0.2

0.4

−π −π
2 0 π

2 π

kx

−π
−π

2

0

π
2

π

kz

SzB

−2

0

2

−π −π
2 0 π

2 π

kx

−π
−π

2

0

π
2

π

kz

SxA

−0.8

−0.4

0.0

0.4

0.8

−π −π
2 0 π

2 π

kx

−π
−π

2

0

π
2

π

kz

SxB

−1.0

−0.5

0.0

0.5

1.0

−π −π
2 0 π

2 π

kx

−π
−π

2

0

π
2

π

kz

SzA

−0.5

0.0

0.5

−π −π
2 0 π

2 π

kx

−π
−π

2

0

π
2

π

kz

SzB

−0.2

0.0

0.2

Figure 4.13 Spin components on the A and B orbitals at E = 0 for the Hamiltonian (4.8) with the
two sets of parameters: set a) in the first line of plots, and set b) in the second line.

We now perform the same analysis on the model from Lau et al. 2017:

H2(k) = g1(k)τ1σ3 +g2(k)τ2σ0 +g3(k)τ3σ0 +dτ2σ3 +βτ2σ2 +α sin kyτ1σ2 +λ sin kzτ0σ1. (4.11)

Again we consider two sets of parameters, this time we take a) a = b = 1, t = 1.5, λ = 0.5, d =

0.1, α = 0.3, β = 0.7,m = 0 and b) a = b = 1, t = −1.5, λ = 0.5, d = 0.1, α = 0.3, β = 0.4,m = 0.
Same as before, we consider surfaces perpendicular to the y axis. The arcs obtained using a tight-
binding calculation are shown in Fig. 4.14. For both sets of parameters, we obtain four Weyl nodes
and two Fermi arcs. For the second configuration, we also observe a closed Fermi pocket (a closed
contour on the Fermi surface). According to Lau et al. 2017, the Fermi arcs coexist with a surface
Dirac cone, which is protected for a given connectivity of the Fermi arcs. In Fig. 4.14a and 4.14b



Chapter 4. Studying edge and surface states with the impurity method 38

we can see that the arcs connect the Weyl nodes differently: in the process of reconnecting the
nodes in a different way, a Fermi pocket is created or removed.
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Figure 4.14 Minimum positive energy band, obtained via exact diagonalization, for a system
defined by the Hamiltonian (4.11) with periodic boundary conditions in x and z and open boundary
conditions in y (length of 100 sites). We take two different sets of parameters which generate two
Fermi arcs, and one Fermi pocket in the second configuration.

We now use the impurity method by considering a plane-like impurity at y = 0 on the infinite
system. The surface spectral functions obtained at y = −1 are shown in Fig. 4.15. We successfully
recover the Fermi arcs, as well as the Fermi pocket. We also compute the spin and orbital prop-
erties for this model (see Fig. 4.16). This time, for the set of parameters a), we find that the spins
are not exactly opposite. This is most explicit when looking at the S z

B component.
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Figure 4.15 Surface spectral function at E = 0, y = −1, for the Hamiltonian (4.11) with a surface
impurity at y = 0. The plots are obtained with the same set of parameters as in Fig. 4.14. We set
U = 100.

We have shown that the impurity technique can be applied to topological systems such as
topological insulators and Weyl semimetals. Using, respectively, a line-like and a surface-like
impurity for 2D and 3D systems, we can derive the boundary states along with their properties,
for example the spin and orbital distributions.
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Figure 4.16 Spin components on the A and B orbitals at E = 0 for the Hamiltonian (4.11) with the
two sets of parameters: set a) on the left and set b) on the right.

Next, we will show that we can also use this technique to obtain states which arise due to the
presence of boundaries, but are not localized at those boundaries, taking as example the Andreev
bound states found in SNS junctions.
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Appendix

4.A | Derivation of the T-matrix momentum limits of inte-
gration for a honeycomb lattice

While for a square or cubic lattice there is no subtlety concerning the integration limits, for the
honeycomb lattice this is much more subtle. We will consider a line impurity localized on A
atoms, but the conclusions do not depend on the type of impurity we consider. Let us start by
writing down the form of the contribution of the impurity potential to the Hamiltonian, such as it
has to be written in the continuum:

δHimp =

∫
dr V(r) (4.12)

where the integral is performed over the entire space, with

V(r) = Uρ(r),

ρ(r) =
∑

j

δ(r − RA
j )a†ja j (4.13)

where the sum is performed over a line of lattice unit cells at x = 0, each denoted by the index
j and R j = (0, j

√
3a). The a†j and a j operators describe the formation and annihilation of electrons

at site j, they no longer live in the continuum but on the lattice and as such they are defined as:

a j =

∫
k∈BZ

dk e−ik·RA
j ak (4.14)

where
∫

k∈BZ
≡

∫
BZ

d2k
S BZ

with S BZ = 8π2

3
√

3a2 . In order to use the momentum space T-matrix formalism
we need to write δHimp in momentum space:

δHimp = U
∫

dr
∑

j

δ(r − RA
j )

∫
k∈BZ

∫
k′∈BZ

dkdk′ ei(k−k′)·RA
j a†kak′

= U
∑

j

∫
k∈BZ

∫
k′∈BZ

dkdk′ ei(k−k′)·RA
j a†kak′

= U
∑

j

∫
k∈BZ

dkxdky

∫
k′∈BZ

dk′xdk′y ei(ky−k′y)( j
√

3a)a†kak′

= U
2π
√

3a

∑
n

∫
k∈BZ

dkxdky

∫
k′∈BZ

dk′xdk′y δ(ky − k′y + n
2π
√

3a
)a†kak′ (4.15)

Since both k and k′ are in the first BZ the only possibilities for n are 0, 1 and −1. It appears
that implementing this constraint is quite subtle, however things get much simpler if we deform
the first BZ and instead we consider a rectangle with − 2π

3
√

3a
< ky <

4π
3
√

3a
and −2π

3a < kx <
2π
3a .

This is allowed since ak+Qµν
= ak, where Qµν are all the reciprocal basis vectors (Bena 2009; in

the tight-binding basis considered here the same relation is valid also for the B atoms (Bena and
Montambaux, 2009)). Under this construction it is clear that the only possible solution for n is
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n = 0, and thus we have

δHimp = U
∫ 4π

3
√

3a

− 2π
3
√

3a

dky

2π/(
√

3a)

∫ 2π
3a

− 2π
3a

dkx

Lk

∫ 2π
3a

− 2π
3a

dk′x
Lk

a†kx,ky
ak′x,ky (4.16)

where LBZ,x = 4π/(3a).

4.B | Recovery of the Kane-Mele zigzag states with the line
spectral function

The line spectral function introduced in Sec. 3.3.1 can also be used to visualize the transformation
of the impurity states into edge states. The unperturbed Green’s function G0 and the T-matrix
T are the same as the ones used to compute the average correction to the spectral function (see
Eq. (4.3) and (4.4)). From there we compute the perturbed Green’s function:

G(k1,k2, E) = G0(k1, E)δ(k1 − k2) + G0(k1, E)T (k1,k2, E)G0(k2, E). (4.17)

The line Green’s function at a given x is defined as:

Gl(x, ky, E) =

∫
dk1xdk2x

L2

BZ,x

G(k1x, ky, k2x, ky, E)eik1x xe−ik2x x, (4.18)

and the corresponding line spectral function is:

A(x, ky, E) = −
1
π

Im
{
tr

[
Gl(x, ky, E)

]}
. (4.19)

For a system on a honeycomb lattice we define the tight-binding basis such that, in the expo-
nentials of Eq. (4.18), x corresponds to the unit cell position (and not the site position, see App. 4.C
for more information). The T-matrix considered here corresponds to a line impurity at x = 0, the
effective edges (see Fig. 4.5) are thus situated on the two nearest unit cells i.e. at x = ±3a/2.

In Fig. 4.B.1 we plot the line spectral function at x = 3a/2 for U = 1 and U = 100, and at
x = 3a and x = 12a for U = 100. At x = 3a/2 we find the same dispersion for the impurity
states as in the results obtained via the average correction to the spectral function (Fig. 4.6). In
this case the quantity we compute is always positive and is similar to a local density of states at
given energy and position. As we can expect, we thus have at x = 3a/2 a high contribution from
the impurity-induced states and a weak contribution from the bulk states. When we then move
away from the impurity, the intensity of the impurity states decreases while that of the bulk states
increases, until only the bulk contribution remains as we can see in the plot for x = 12a: the
impurity states are indeed localized near the impurity.
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Figure 4.B.1 Line spectral function for two effective zigzag edges, for U = 1 or U = 100 and at
different positions away from the impurity. We have set t = 1 and t2 = 0.03.

4.C | Subtlety on the definition of the tight-bindingbasis for
a honeycomb lattice

The honeycomb lattice has a unit cell of two sites, there are therefore two possible ways of defining
the tight-binding basis (Bena and Montambaux, 2009). In one basis the positions of the two atoms
in the unit cell are used as the origin for the Bloch wavefunctions. The Hamiltonian eigenstates
are then written as linear combinations of two Bloch functions corresponding respectively to the
A and B atoms, but with a different phase factor attached to each Bloch function:

Ψk
I (r) = cA

I (k)ΨA,k
I (r) + cB

I (k)ΨB,k
I (r)

=
1
√

N

∑
j

[
eik·RA

j cA
I (k)φ(r − RA

j ) + eik·RB
j cB

I (k)φ(r − RB
j )
]
, (4.20)

where N is the number of elementary cells, the functions φ(r) are the wavefunctions of the pz

orbitals of the carbon atoms and RA/B
j are the positions of the A and B atoms of the unit cell j.

In the other basis, only one point per unit cell is used as the origin for the Bloch wavefunctions.
It thus also consists of two pz orbital wavefunctions centered on the two sites of the unit cell, but
with the same phase factor (determined by the position of the "origin" of the unit cell):
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Ψk
II(r) = cA

II(k)ΨA,k
II (r) + cB

II(k)ΨB,k
II (r)

=
1
√

N

∑
j

eik·R j
[
cA

II(k)φ(r − RA
j ) + cB

II(k)φ(r − RB
j )
]
, (4.21)

where R j = na1 + ma2 specifies the position of the unit cell j = (n,m), with a1,2 the lattice vectors.
Depending on the basis considered, certain quantities are expressed differently. For exam-

ple the component corresponding to nearest neighbor hopping in the Hamiltonian matrix (4.2) is
written in the first basis as:

hI
NN = t

2e−i 1
2 kxa cos

 √3
2

kya
 + eikxa

 (4.22)

and in the second basis as (with the unit cell defined as the one drawn in the lowest half of
Fig. 4.5a):

hII
NN = t

[
1 + ei

√
3kya + ei

√
3

2 kyaei 3
2 kxa

]
. (4.23)

Of particular relevance to us is the expression for a delta-function impurity potential. For an
impurity located on sublattice A, we have:

VA = UAa†ja j = UA

∫
k,k′∈BZ

ei(k−k′)·R
Aimp
j a†I (k)aI(k′)

= UA

∫
k,k′∈BZ

ei(k−k′)·Rimp
j a†II(k)aII(k′), (4.24)

and for an impurity on sublattice B:

VB = UBb†jb j = UB

∫
k,k′∈BZ

ei(k−k′)·R
Bimp
j b†I (k)bI(k′)

= UB

∫
k,k′∈BZ

ei(k−k′)·Rimp
j b†II(k)bII(k′), (4.25)

where the second quantization operators depend on the basis considered:

aI(k) =
∑

j

eik·RA
j a j,

bI(k) =
∑

j

eik·RB
j b j,

aII(k) =
∑

j

eik·R ja j,

bII(k) =
∑

j

eik·R jb j.

Eq. (4.24) and (4.25) clearly show that if we must consider an impurity on both the A and B
sublattices i.e. V = VA + VB, as is the case if we want to create two equivalent effective edges
(see Fig. 4.5), the second basis is more convenient as there is no phase difference to consider: the
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exponential factor is the same for both sublattice terms. Moreover since we consider an impurity
at x = 0, the exponential becomes 1 and we thus have no phase factor to consider.

For this reason, we always consider the second basis when applying the impurity method to
systems on a honeycomb lattice, or on any lattice with more than one atom per unit cell, for which
the same reasoning can be applied.
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5.1 | From the BCS theory to the Andreev Bound States
In 1957, Bardeen, Cooper and Schrieffer published a paper presenting their theory of supercon-
ductivity (Bardeen et al., 1957), now known as the Bardeen-Cooper-Schrieffer (BCS) theory. Ac-
cording to this theory, the transition to the superconducting (SC) state is marked by the dominance
of some attractive potential, often attributed to electron-phonon interactions, over the repulsive
Coulomb interaction between electrons near the Fermi surface. It then becomes favorable for
those electrons to combine into what we call Cooper pairs or BCS pairs: bound pairs of electrons
with opposite spin and momentum.

The fermionic excitation of a superconductor is no longer a charge eigenstate, but a coherent
superposition of an electron and a hole, named Bogoliubov quasi-particle (Bogoljubov, 1958).
Here we take interest in a specific phenomenon originating from this particle-hole coherence:
Andreev scattering, or Andreev reflection (Andreev, 1964). This novel scattering process occurs
at interfaces between a superconductor and a normal conductor, which we refer to as normal-
superconductor (NS) junctions.

We show in Fig. 5.1.1 the difference between the usual reflection which can occur for example
at a normal-insulator (NI) interface, and an Andreev reflection at an NS interface. In a normal
scattering process, conduction electrons and holes are separately conserved. Therefore, as shown
in the left figure, an electron with momentum p, velocity vp ‖ p and energy below the energy
gap of the insulator is reflected by the insulating gap into an outgoing electron with velocity
vp = vp − 2n̂(n̂ · vp), with n̂ the normal to the interface. In a similar way at an NS interface, for
energies below the SC gap, the electron is forbidden to propagate into the superconducting region.
However, upon reflection, the outgoing excitation is a hole: the electron is converted into a hole.

45
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Furthermore, the reflected hole is not specularly reflected, i.e. it does not follow the change in
velocity given previously, but retro-reflected: vp = −vp. Similarly, a hole will be converted into
an electron upon Andreev scattering. Because of this, Andreev scattering is also called branch
conversion scattering, where branch refers to the the electron and hole branches of excitation in
a normal metal. As one can see, contrary to the case of normal scattering, charge is transported
across the NS interface: a Cooper pair of charge −2e is produced in the superconducting region.
Note that, since a Cooper pair binds two electrons of opposite spin, the retro-reflected hole has a
spin opposite to the incoming electron.

Figure 5.1.1 Left: usual reflection at a normal-insulator boundary. Right: Andreev reflection at a
normal-superconductor boundary (Sauls, 2018).

Let us now consider a superconductor-normal-superconductor (SNS) junction. Andreev scat-
tering can take place on both sides of the normal section, and quantum interference between those
scatterings can occur. This leads to the formation of Andreev bound states (ABS) in the normal
region (Andreev, 1966). These states are a superposition of electron and hole excitations, with
energies below the SC gap.

In what follows, we study the formation of ABS with the impurity technique. We found
that analytical results can be obtained for ABS energies much smaller than the SC gap. This
corresponds to the limit of long SNS junctions, thus the work presented here does not apply to the
case of short SNS junctions. The impurity we consider is a little different from the ones presented
in the previous chapter, as it must be able to model Andreev reflection. As we will explain,
this can only be done by also considering imperfect SNS junctions, i.e. where both normal and
Andreev scattering can happen at the interfaces. Interestingly, we found that this method is the
first to give an analytical description of ABS under those two considerations (long and imperfect
junctions), analytical tools being usually used to describe the two limits of perfect junctions (no
normal scattering) and of junctions with very large normal scattering.

5.2 | Studying ABS with the impurity method

5.2.1 The "Andreev" impurity
To model an NS interface, we consider what we call an "Andreev" impurity. The goal being to
model a full SNS junction, the system we will consider is similar to the ones introduced before
(see Fig. 5.2.1): we will start with an infinite 1D normal system, and add two Andreev impurities
to model the scattering at NS interfaces. This means that we do not model what happens inside
the SC regions, but only what occurs inside the middle normal region. This is fine since we are
only interested in what happens in that normal region, where the ABS will form.
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Figure 5.2.1 Schematics of the equivalence between "Andreev" impurities and NS junctions.

The Andreev impurity must scatter an electron into a hole with opposite spin (and vice versa).
Our starting point is the Blonder-Tinkham-Klapwijk (BTK) theory (Blonder et al., 1982), which
allows to compute the transmission and reflection coefficients at an NS interface (for both Andreev
and normal scattering). The presence of normal scattering is introduced through a barrier strength
Z: if Z = 0, the junction is perfect (only Andreev scattering). Here we focus on energies smaller
than the SC gap, and an arbitrary barrier strength (neither zero nor too high). For these conditions,
the BTK theory indicates that the normal reflection and Andreev reflection coefficients r and rA,
resulting from injecting an electron from the normal side of the junction (see Fig. 5.2.2 for the
schematics of the junction), are given by:

|rA|
2 =

∆2

E2 + (∆2 − E2)(1 + 2Z2)2 , (5.1)

|r|2 = 1 − |rA|
2, (5.2)

where ∆ is the SC gap. Since we consider subgap energies, the transmission coefficients are equal
to zero.

Figure 5.2.2 Schematics of an NS junction where we consider E to be inferior to the SC gap, i.e.,
the transmission coefficients t, tA = 0.
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Here we focus only on energies much smaller than the gap, thus we have:

|rA|
2 =

1
(1 + 2Z2)2 , (5.3)

|r|2 = 1 − |rA|
2. (5.4)

For Z = 0 we have a perfect Andreev junction, i.e., rA = 1, while for Z � 1 we have a bad junction
with |r|2 � |rA|

2.

Figure 5.2.3 Schematics of an “Andreev” impurity with the incoming, reflected and transmitted
plane waves.

In order to verify the equivalence between an Andreev impurity and an NS junction we will
calculate the normal reflection and transmission coefficients, as well as the Andreev reflection
and transmission for the Andreev impurity, and check in which regime they correspond to the
traditional BTK values mentioned above. For a delta-function Andreev impurity (see Fig. 5.2.3)
we can write down the Schrödinger equation:

−
~2

2m
d2ψ

dx2 (x) + Vimp(x)ψ(x) = Eψ(x), (5.5)

where ψ(x) = (ψe(x), ψh(x))T is a two-component wave function with the upper and lower com-
ponents standing for the electron and hole wave functions, respectively. We assume a quadratic
dispersion with m denoting the quasiparticle mass. The impurity potential is a 2 × 2 matrix in the
electron-hole space, and can be written as:

Vimp(x) = Vδ(x) ≡
(
VN VA

V∗A −VN

)
δ(x). (5.6)

In the most general case a normal reflection component VN , 0 should be present. However, as
we will show, VA alone is already generating both an Andreev and a normal scattering component
when taking the equivalence with the BTK formalism, therefore we will set VN = 0.

For x , 0 the solution of Eq. (5.5) is just a linear combination of two-component vectors
multiplied by right-moving and left-moving plane waves, eikx and e−ikx, where the wavevector
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k ≡
√

2mE/~. The most general solution in the presence of the impurity is then:

ψL(x) = Areikx + Ale−ikx, x < 0, (5.7)

ψR(x) = Breikx + Ble−ikx, x > 0. (5.8)

We focus on the simple case of an injected electron incoming on the barrier from the left, thus
Ar = (1, 0)T, and no injected electron or hole from the right, i.e., Bl = (0, 0)T. Hence Al = (r, rA)T,
where r is the regular reflection coefficient, and rA is the Andreev reflection coefficient, and Br =

(t, tA)T with t being regular transmission and tA Andreev transmission.
By assuming that the wave function ψ(x) = ψL(x)Θ(−x) + ψR(x)Θ(x) is continuous at x = 0,

we obtain 1 + r = t, rA = tA. We then write down the continuity equation for the derivative of the
wave function. The delta-function potential gives rise to a discontinuity at the origin, proportional
to the value of the impurity potential, in occurence here:

−
~2

2m
[ψ′R(0) − ψ′L(0)] + Vψ(0) = 0, (5.9)

which yields:

−
~2

2m
ik(−Ar + Al + Br − Bl) + V(Ar + Al) = 0. (5.10)

We note that the solution to this problem is energy-dependent, but since we are interested in
energies very close to the Fermi level, we can take k to be constant k = kF , and we denote α ≡ ~

2k2
F

m .
The above equations yield:

r = −
|VA|

2

α2 + |VA|
2 , (5.11)

rA = −i
αV∗A

α2 + |VA|
2 . (5.12)

In Fig. 5.2.4 we plot |r|2 + |rA|
2 and |rA|/|r| as a function of VA, while setting α = 1. This shows

that for large enough Andreev potentials the impurity models the NS junction asymptotically well,
i.e., |r|2 + |rA|

2 ≈ 1. On the other hand, we also see that with increasing VA the ratio between the
Andreev and the regular reflection is decreasing, e.g., for VA = 3.5, for which |r|2 + |rA|

2 ≈ 0.92, we
barely have |rA|/|r| ≈ 0.3. This corresponds to a value of Z ≈ 1 for the NS junction (see Eq. (5.3)).

We can conclude that, while our impurity cannot model perfect Andreev reflection it can still
recreate the Andreev bound states of an imperfect junction.

5.2.2 Recreating the ABS

5.2.2.1 Double impurity formalism

To model the SNS junction we must consider two Andreev impurities, which requires a slightly
different T-matrix formalism from the one for single impurities. This time we will translate the
formalism in real space, instead of writing everythin in momentum space like we did for the
previous systems, as it makes the equations easier to obtain. Furthermore we are mostly interested
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Figure 5.2.4 In red the ratio |rA|/|r| and in blue |r|2 + |rA|
2 as a function of VA (in units of α).

in the evolution of the ABS energies as a function of the applied chemical potential and of the
phase difference between the two SCs, which does not require us to be in momentum space.

For a single impurity in a 1D system, we had in momentum space (see Sec. 3.2):

G(k1,k2, E) = G0(k1, E)δ(k1 − k2) + G0(k1, E)T (k1,k2, E)G0(k2, E), (5.13)

with:

T (E) =

[
I − V

∫
dk
VBZ

G0(k, E)
]−1

V. (5.14)

The real space equivalents can be written as:

G(x, x′, E) = G0(x − x′, E) + G0(x, E)T (E)G0(−x′, E) (5.15)

and

T (E) = [I − V · G0(x = 0, E)]−1
· V, (5.16)

where G0(x = 0, E) is equivalent to integrating the Green’s function G0(k, E) over all momenta
(cf. Eq. (5.14)).

Now we consider two delta-function impurities with amplitudes Vi, localized at x = Xi, i ∈
{1, 2}. The full impurity potential can be written as:

Vimp (x) = V1δ (x − X1) + V2δ (x − X2) . (5.17)

The perturbed Green’s function is now expressed as:

G(x, x′) = G0(x−x′)+
∑

i j

G0(x−Xi)Ti jG0(X j−x′), (5.18)

where we now have four T-matrix terms: T11, T12, T21 and T22, which can be found from the
following equation (Choi, 2004, 2005):

Ti j = Viδi j+ViG0(Xi−X1)T1 j+ViG0(Xi−X2)T2 j. (5.19)
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For brevity we omit energy-dependence in all functions. Solving the system of four equations in
Eq. (5.19), we get:

T11 =
[
I−V1G0(0)−V1G0(X1 − X2)T (0)

2 G0(X2 − X1)
]−1

V1,

T12 = T (0)
1 G0(X1 − X2)T22,

T21 = T (0)
2 G0(X2 − X1)T11,

T22 =
[
I−V2G0(0)−V2G0(X2 − X1)T (0)

1 G0(X1 − X2)
]−1

V2,

where we defined T (0)
i ≡ [I − ViG0(0)]−1 Vi.

Using the Green’s function of Eq. (5.18) we can compute the correction to the electronic local
density of states due to the impurities:

∆ρ(x) = −
1
π

Im

∑
i j

G0(x−Xi)Ti jG0(X j−x′)

∣∣∣∣∣∣
x′=x


11

, (5.20)

where we only take the (1, 1) component of the perturbed part of the Green’s function in order to
see the electrons’ behavior.

In what follows, we will evaluate this quantity as a function of different parameters in order to
see the evolution of the ABS energies.

5.2.2.2 Results

The normal part of the junction is described using a simple lattice Hamiltonian Hk = ξkτz, where
τz is the Pauli matrix acting in the particle-hole subspace, ξk ≡ µ − 2t cos ka, where a is the
lattice constant, t denotes the hopping parameter and µ is the chemical potential. The unperturbed
retarded Green’s function in real space is computed as the Fourier transform of its momentum-
space representation, G0 (E, k) =

[
E + iδ −Hk

]−1, and is given by:

G0(E, x) =

(
G11(E, x) 0

0 G22(E, x)

)
, (5.21)

where

G11(E, x) =

[
− (Et − µt + iδ) + sgn(Et − µt)

√
(Et − µt + iδ)2

−4
] |x|

a

at · sgn(Et − µt) · 2
|x|
a ·

√
(Et − µt + iδ)2

− 4
(5.22)

G22(E, x) =

[
+ (Et + µt + iδ) − sgn(Et + µt)

√
(Et + µt + iδ)2

− 4
] |x|

a

at · sgn(Et + µt) · 2
|x|
a ·

√
(Et + µt + iδ)2

− 4
(5.23)
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if E2 + µ2 , 0, where we expressed the energy and the chemical potential in terms of the hopping
amplitude, i.e., Et ≡ E/t and µt = µ/t, and

G11(E, x) = −
i

2at
e+i π|x|2a , (5.24)

G22(E, x) = −
i

2at
e−i π|x|2a , (5.25)

for E2
t + µ2

t = 0. The expressions in Eqs. (5.24) and (5.25) are obtained directly from the integral
defining the Fourier transform of the momentum-space Green’s function. In other words, we first
set in the integrand Et = µt = 0 and then we perform the integral over momenta to obtain the
real-space formulae. Note that since the expressions above are obtained within the lattice model,
the results are valid only for x = na, where n ∈ Z.

The results for the Green’s function and the local density of states (LDOS) are evaluated using
this full tight-binding model. However, in order to test the validity of our approximations, we
also establish a correspondence between the continuum model (used in Sec. 5.2.1 to make the
connection between an NS junction and an “Andreev impurity”) and the lattice model. We thus
expand ξk in a quadratic form:

ξk = µ − 2t cos ka ≈ ta2k2 + µ − 2t =
~2k2

2m
−
~2k2

F

2m
. (5.26)

This allows us to extract:

t =
~2

2ma2 , α ≡
~2k2

F

m
= 2(2t − µ). (5.27)

In what follows we set by default the hopping parameter t = 1, therefore making µt and Et equiv-
alent to µ and E respectively. We also use values of the chemical potential around µ = 1.5 so that
α ≈ 1 (as set in Sec. 5.2.1). The broadening is set to δ = 0.001 and the lattice constant to a = 1.

−100 0 100 200 300

x

−0.04

−0.02

0.00

0.02

0.04

E

0.0

0.5

1.0

Figure 5.2.5 Correction to the electronic LDOS as a function of position and energy, with Andreev
impurities at x = 0 and x = 200. The chemical potential and phase difference are fixed to µ = 1.5
and ϕ = 0, with VA = 3.5.

We now introduce the two Andreev impurities, described by the potential of Eq. (5.6), with
VN = 0. In order to take into account the phase difference between the superconductors we replace
VA → VAe±iϕ for one of the impurities, choosing the signs differently for the 12 and 21 components,
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to preserve the Hermitian character of the Hamiltonian. Using the notations from Eq. (5.17), we
can thus write:

V1 =

(
0 VA

VA 0

)
and V2 =

(
0 VAe−iϕ

VAe+iϕ 0

)
. (5.28)

As mentioned in Sec. 5.2.1 we focus on some intermediate value of VA ≈ 3.5 corresponding
to a ratio of Andreev and regular reflection of 0.3, and we study the formation of Andreev bound
states using the formalism described in Sec. 5.2.2.1, the T -matrix for two delta-function impurities.
This yields an exact formula for the perturbed Green’s function of the system (see Eq. (5.18)),
which allows to extract the perturbation to the local density of states (see Eq. (5.20)).

We first plot ∆ρ as a function of energy and position in Fig. 5.2.5, for fixed values of the
chemical potential µ and the phase difference ϕ. We can see that bound states form at certain
energies in the normal region, i.e. for x ∈ [0, 200].

In order to compare the behavior of these bound states with that of previously studied ABS
(Bena, 2012; Pillet et al., 2010), which we show examples in Fig. 5.2.6, we focus on a given po-
sition and we plot in Fig. 5.2.7 the dependence of the LDOS as a function of energy and chemical
potential. In the plots we choose to average the LDOS over a few sites (i.e., 6 sites) to avoid any
fluctuation effects due to the short wavelength oscillations visible in Fig. 5.2.5. As expected, we
recover the oscillatory bell-shaped dependence of the ABS energy on the chemical potential.

Figure 5.2.6 Examples of the ABS profile as a function of chemical potential obtained theoreti-
cally (upper plot, from Bena 2012) and experimentally (lower plot, from Pillet et al. 2010).
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Figure 5.2.7 Correction to the electronic LDOS, averaged over 6 sites x ∈ [90, 95], as a function
of chemical potential and energy. µ varies between 1.46 and 1.54, so that α ≈ 1 does not vary with
µ. The phase difference is set to ϕ = 0, with VA = 3.5.

Furthermore, we plot in Fig. 5.2.8 examples that show the ABS dependence on the phase
difference ϕ between the two SCs, and in Fig. 5.2.9 the dependence of the LDOS as a function of
energy and ϕ, for a fixed chemical potential.1 We recover a membrane-like form, with a certain
amplitude. While not very large, this amplitude is still significant, marking the presence of nonzero
Andreev reflection and of the corresponding phase coherence.

Figure 5.2.8 Examples of the ABS profile as a function of the phase difference ϕ obtained theo-
retically (left plot, from Bena 2012) and experimentally (right plot, from Pillet et al. 2010).

This observed dependence of the ABS energies on the phase and chemical potential is con-
nected to the fact that we are studying long SNS junctions in the imperfect long junction limit,
and that we focus on the limit of small energies with respect to the gap, E � ∆. In what fol-
lows we write down the solutions for the two extreme limits characterizing this junction, that have
both been studied previously in the literature (Bena, 2012; Hurd and Wendin, 1994; Furusaki and
Tsukada, 1991; Kulik, 1969).

First, for the long perfect SNS junctions (no normal backscattering at the leads), the corre-
sponding results are described by the Andreev approximation. Following the results of Hurd and
Wendin 1994; Kulik 1969, the energies of the ABS are given by:

1Note that the ϕ range in the left plot of Fig. 5.2.8 is shifted by a value of π compared to the plot of Fig. 5.2.9.
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Figure 5.2.9 Correction to the electronic LDOS, averaged over 6 sites x ∈ [90, 95], as a function
of the phase difference ϕ and energy. We set µ = 1.5, with VA = 3.5.

2 arccos (E/∆) − (qe − qh)L ± ϕ = 2nπ, (5.29)

where qe = kF
√

1 + E/EF and qh = kF
√

1 − E/EF , with EF ≡ ~
2k2

F/2m = α/2, are the momenta
for the electron and hole of respective energy E and −E, and n = 0,±1,±2, ....

Here we consider E � ∆, thus arccos (E/∆) ≈ π/2. Also E � EF , thus qe − qh ≈ kF E/EF and
we end up with:

E±n =
~2kF

2mL
[
π (1 − 2n) ± ϕ

]
. (5.30)

Using the equivalence between the tight-binding and continuum models (Eq. (5.27)), we get:

E±A
n =

a
L

√
αt
2

[
π (1 − 2n) ± ϕ

]
, n ∈ Z. (5.31)

In this limit the energies of the ABS are thus linear with the phase and independent of chemical
potential.

To the other extreme, in the limit of zero Andreev scattering and infinite normal scattering
at the leads, our setup is equivalent to the particle-in-a-box problem. For quadratically-dispersed
quasiparticles, the momentum is quantized and takes the values:

kn =
nπ
L
, (5.32)

with n = 1, 2, .... The energies are then:

En =
~2π2n2

2mL2 −
~2k2

F

2m
, (5.33)

which in the tight-binding model translates to:

EB
n =

ta2π2n2

L2 − 2t + µ, n ∈ N∗. (5.34)

In this limit, the energy is thus independent of phase and linear with the chemical potential.
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Figure 5.2.10 Correction to the electronic LDOS, averaged over 6 sites x ∈ [90, 95], as a function
of the chemical potential µ (left plot) or the phase difference ϕ (right plot) and energy, for VA = 0.5.
In the left panel we fix ϕ = 0 and in the right panel µ = 1.5. The red dashed lines correspond to
the energy spectrum in the Andreev limit (see Eq. (5.31)).

1.46 1.48 1.50 1.52 1.54

µ

−0.04

−0.02

0.00

0.02

0.04

E

0.0

0.5

1.0

1.5

−π −π
2 0 π

2 π

ϕ

−0.04

−0.02

0.00

0.02

0.04

E

0.0

0.5

1.0

Figure 5.2.11 Correction to the electronic LDOS, averaged over 6 sites x ∈ [90, 95], as a function
of the chemical potential µ (left plot) or the phase difference ϕ (right plot) and energy, for VA = 10.
In the left panel we fix ϕ = 0 and in the right panel µ = 1.5. The black dashed lines correspond to
the energy spectrum in the particle-in-the-box limit (see Eq. (5.34)).

The plots in Fig. 5.2.7 and 5.2.9 represent a situation in between these two limits: both Andreev
scattering and normal scattering coexist at the interfaces between the N and S regions. To compare
with the limit cases, we plot the LDOS for VA = 0.5 in Fig. 5.2.10 and for VA = 10 in Fig. 5.2.11.

According to Fig. 5.2.4, VA = 0.5 corresponds to a non-physical situation, as |r|2+|rA|
2 � 1, but

we get a high value for |rA|/|r|, so we could still use it to compare with the Andreev approximation
spectrum. And indeed we see that the red lines in Fig. 5.2.10, which represent the energy spectrum
in the Andreev approximation, fit quite well the LDOS results. In the left plot, the LDOS shows
energy levels which are not quite constant as a function of µ. This is due to the approximation we
made of α ≈ 1: α is actually function of µ (see Eq. 5.27) and so the energy levels are not exactly
constant as a function of µ. However we can see that on this small range of chemical potential
values, the levels still correspond pretty well to the Andreev limit energies. In the right plot we also
recover the linear dispersion as a function of ϕ. The correspondence looks exact at zero energy,
and a difference is seen when moving away from E = 0. This is not so surprising, as we used some
low energy approximations in order to both compute the LDOS and make a comparison with the
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continuum model.
Going back to Fig. 5.2.4, we see that VA = 10 corresponds to a small |rA|/|r| ratio, getting

close to the particle-in-the-box limit. In both plots of Fig. 5.2.11 we again see a pretty good
correspondence between our results and the limit case. In the right plot, just like in the Andreev
approximation case, we find that the coincidence is best at zero energy. In the left plot, the same
thing is observed: the central line, which corresponds best to the limit spectrum, corresponds to
the zero energy line of the right plot as we have set ϕ = 0 in the left plot and µ = 1.5 in the right
plot.

We can see that by varying the parameter VA, we can effectively model the ABS behaviour in
cases ranging from the Andreev approximation limit, where only Andreev scattering is considered,
to the particle-in-the-box limit where only normal scattering exists. It is also important to note that
these results are obtained very quickly (of the order of a minute for each figure presented here),
due to the existence of an analytical solution for the Green’s function (Eq. (5.22) - (5.25)).

We now change systems again to examine a different way of using the impurity scheme. By
adding another layer to the technique, we can also model a phenomenon called quasiparticle in-
terference.
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6.1 | Introduction

6.1.1 Quasiparticle interference patterns and how they can be used
When impurities are present in a system, the quasiparticle states are scattered by them. This
can be seen as a modulation in the LDOS. When moving to momentum space, this modulation
generates what we call a quasiparticle interference (QPI) pattern. The QPI pattern is thus a picture
in momentum space, generated by the presence of impurities (it is however to note that in some
articles, the momentum space picture is referred to as the "Fourier transform of the QPI": they
refer to the QPI as the real-space oscillations around the impurities).

Experimentally, the QPI pattern can be obtained using Fourier-transform scanning tunneling
spectroscopy (FT-STS). Scanning tunneling spectroscopy (STS) is the measurement of the differ-
ential conductance dI/dV of a tunnel junction in a scanning tunneling microscopy (STM) experi-
ment (Crommie et al., 1993). The dI/dV map for a given bias voltage V can be assimilated to a
map of the LDOS at a specific energy EF + |e|V . Applying a Fourier transform to this map, for
example by using a fast Fourier transform (FFT) algorithm, thus yields the QPI pattern at a given
energy.

58
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Figure 6.1.1 STM image showing standing wave patterns around impurities (Crommie et al.,
1993).

Figure 6.1.2 Left: part of a QPI pattern obtained experimentally from a Weyl semi-metal surface
at the Fermi level. Right: calculated Fermi surface for the same system. On the Fermi surface,
different momenta q = k f − ki, are designated by arrows. The shape of the QPI pattern follows
these arrows, showing interference between the different states observed in the Fermi surface
image (Zheng et al., 2016a).

The impurity scattering mixes states of different momenta and same energy. Let us consider
the scattering of a state at momentum ki to one at momentum k f of the same energy. The quantum
interference between the initial and final states will create a standing wave pattern (see Fig. 6.1.1)
with a characteristic momentum q = k f − ki (Zhang et al., 2009). By drawing a constant energy
contour, for example the Fermi surface, we can determine the available ki and k f at a given energy.
The difference q between these two momenta would then be represented by arrows between the
two corresponding momentum points (see right panel of Fig. 6.1.2 for an example). The QPI
pattern for the same energy will show features for momenta equal to the different q’s (see left
panel of Fig. 6.1.2).

Since the QPI pattern depends on the states’ momenta, it is a way to obtain momentum space
information from STM experiments, which can only give real space maps unlike angle-resolved
photoemission spectroscopy (ARPES) experiments. QPI patterns can also be used to study scat-
tering processes, which can be valuable in transport experiments (Chang et al., 2016), or to obtain
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knowledge on the system itself: the states’ spin dependence (Huang et al., 2020), information
about states inaccessible to ARPES (McElroy et al., 2003), the effective mass of excitations (Ay-
najian et al., 2012), the symmetries protecting topological states (Zhang et al., 2009)...

6.1.2 Common theoretical methods to compute QPI patterns

6.1.2.1 Joint Density of States

The most traditional method to obtain the QPI features theoretically is to approximate them by
computing the joint density of states (JDOS) for the surface states observed: if we take a constant
energy contour, for example the Fermi surface in Fig. 6.1.2, we can pick out the regions of high
DOS and assume that all the states within these regions scatter with one another, in proportion
to the associated DOS value (Roushan et al., 2009; Wang and Lee, 2003). Mathematically this
consists in an autocorrelation of the surface spectral function A(k):

JDOS (q) =

∫
A(k)A(k + q)dk. (6.1)

For complicated systems, the spectral function is often computed using density functional
theory (Kourtis et al., 2016; Gyenis et al., 2016). Alternatively, one can take the intensity obtained
directly from an ARPES experiment instead of the spectral function (Roushan et al., 2009).

6.1.2.2 Spin-Dependent Scattering Probability

As we just saw, the JDOS does not discriminate between the different surface states and the com-
puted QPI only depends on the spectral function intensity at the different momenta. This is a
problem when studying spin-polarized states, as states with opposite spin orientations do not scat-
ter with one another. A common solution is to compute the spin-dependent scattering probability
(SSP) instead of the JDOS (Roushan et al., 2009). The SSP is similar to the JDOS, but also
includes a spin-dependent scattering matrix element T (k, q)1:

S S P(q) =

∫
A(k)T (k, q)A(k + q)dk. (6.2)

A common form for the matrix element is T (k, q) = |〈S(k)|S(k + q)〉|2 (Roushan et al., 2009;
Gyenis et al., 2016), where S(k) is the spin of the state at momentum k. In this form, when the
states at k and k + q have aligned spins, T (k, q) = 1 and the term in the integral is the same as
for the JDOS; when the spins are nonaligned, T (k, q) decreases, reflecting the weaker scattering
between the two states, and eventually goes to zero for opposite spins, completely suppresing
scattering.

1This T must not be confused with the T-matrix that we have been working with so far, we are just reusing the
common notation for this matrix element. Luckily we will not be using this T outside of this section, avoiding any
possible confusion.
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6.1.3 Using our method to compute the Fourier Transform of the Local
Density of States

The problem, as underlined by Derry et al. 2015, is that a faithful description of interfering scat-
tering processes typically requires relative phase information; and both the JDOS and the SSP
lack information about overlap matrix elements between states in the impurity-coupled system. In
consequence, the QPI may be small even when the JDOS/SSP is large, in particular it has been
shown that these methods fail to capture basic scattering physics in the case of graphene (Simon
et al., 2011).

In order to calculate the QPI features accurately, one would need to compute the Fourier trans-
form of the LDOS (FTLDOS). This can be done using the Green’s functions and T-matrix for-
malism. In this case, one needs to first obtain the surface Green’s function of the system, then
apply the T-matrix formalism to take into account the effect of impurities. As we have shown, our
impurity technique allows us to compute this surface Green’s function in an intuitive way. Other
techniques exist, such as recursion methods, however they are harder to implement numerically
(Velev and Butler, 2004).

To obtain the QPI with our technique, we must follow two steps: first compute the surface
Green’s function for the surface we want to study; then add one or multiple impurities, using the
T-matrix formalism, and compute the resulting FTLDOS on the surface. More accurately, since
we are interested in the LDOS variations caused by the impurities, we will only compute the
correction to the FTLDOS i.e. the part which is modified when adding the impurities.

The first step, computing the surface Green’s function, is explained in Sec. 3.3.1: if we consider
a 3D system, we compute the bulk Green’s function, then add an infinite plane impurity and
compute the resulting surface Green’s function for a surface parallel to the impurity plane. If the
system we consider is 2D, then the surface Green’s function is simply the Green’s function when
the system is taken to be an infinite surface.

In the second step, we add impurities to the surface. Here we will detail the math for a single
localized impurity; we have also studied the case of two localized impurities, and give the details
in App. 6.A. To simplify, we’ll suppose that the BZ extends from −π to π, so that the integrals
over k = (kx, ky) are all normalized by (2π)2. We start with the surface Green’s function computed
in the first step, which we will call G0

s , so that the T-matrix for a single impurity, described by a
delta potential Vδ(r), is given by:

T (E) =

[
I − V

∫
dk

(2π)2 G0
s(E, k)

]−1

V. (6.3)

To obtain the correction δρ(k) of the FTLDOS, we will first express the correction δρ(r) of
the LDOS in real space. Conveniently, the T-matrix in Eq. (6.3) only depends on energy, so that
we can choose to compute it from the Green’s function in momentum space G0

s(k) even when
using the formalism in real space. The perturbed surface Green’s function Gs in real space can be
expressed using the T-matrix:

Gs(E, r, r′) = G0
s(E, r − r′) + G0

s(E, r)T (E)G0
s(E,−r′), (6.4)

which is the real space equivalent of Eq. (3.22). The correction to the LDOS due to the impurity
can be written in terms of the Green’s function:
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δρ(E, r) ≡ −
1
π

Im tr
[
Gs(E, r, r) −G0

s(E, 0)
]

= −
1
π

Im tr
[
G0

s(E, r)T (E)G0
s(E,−r)

]
. (6.5)

By applying a Fourier transform (FT) to Eq. (6.5), we can calculate the correction to the
FTLDOS δρ(E, k) =

∫
dr δρ(E, r)e−ik·r. If we rewrite the imaginary part using the identity Im z =

1
2i (z − z∗), we get:

δρ(E, k) = −
1

2πi
tr

∫
dr

[
G0

s(E, r)T (E)G0
s(E,−r) −G0∗

s (E, r)T ∗(E)G0∗
s (E,−r)

]
e−ik·r. (6.6)

Next, we express the unperturbed Green’s functions in the integrand as G0
s(E, r) =

∫
dq G0

s(E, q)eiq·r:

δρ(E, k) = −
1

2πi
tr

∫
dq

(2π)2

∫
d q̃

(2π)2

[
G0

s(E, q)T (E)G0
s(E, q̃) −G0∗

s (E, q̃)T ∗(E)G0∗
s (E, q)

]
∫

dr eiq·re−iq̃·re−ik·r

= −
1

2πi
tr

∫
dq

(2π)2

∫
d q̃

(2π)2

[
G0

s(E, q)T (E)G0
s(E, q̃) −G0∗

s (E, q̃)T ∗(E)G0∗
s (E, q)

]
× (2π)2δ(q − q̃ − k)

= −
1

2πi
tr

∫
dq

(2π)2

[
G0

s(E, q)T (E)G0
s(E, q − k) −G0∗

s (E, q − k)T ∗(E)G0∗
s (E, q)

]
.

If we define:

g(E, q, k) ≡ G0
s(E, q)T (E)G0

s(E, q − k) −G0∗
s (E, q − k)T ∗(E)G0∗

s (E, q), (6.7)

then we obtain:

δρ(E, k) =
i

2π

∫
dq

(2π)2 tr
[
g(E, q, k)

]
. (6.8)

This quantity is complex. In all of our results, we show the absolute value of δρ, as is common
in QPI analysis.

6.2 | Application to Weyl semimetals
In Sec. 4.2.1, we introduced Weyl semimetals (WSM) and their peculiar surface states called Fermi
arcs. A large amount of work, both theoretical (to cite a few: Mitchell and Fritz 2016; Gyenis et al.
2016; Lambert et al. 2016; Chang et al. 2016; Kourtis et al. 2016; McCormick et al. 2017; Lau
et al. 2017; Xu et al. 2018; Zheng and Hasan 2018 ) and experimental (Deng et al., 2016; Zheng
et al., 2016a; Inoue et al., 2016; Batabyal et al., 2016; Zhang et al., 2017; Deng et al., 2017; Lin
et al., 2017; Yuan et al., 2018; Li et al., 2018), has been devoted to the impurity scattering and
the corresponding QPI features, allowing to extract information on the Weyl nodes, the arcs or the
topology of Weyl semi-metals in general.

Here we use the impurity technique to compute the QPI for two different Weyl models. These
two models, from Kourtis et al. 2016 and Lau et al. 2017, were already introduced in Sec. 4.2.2:
they describe Weyl systems with four Weyl nodes and two Fermi arcs. The results we obtain differ
from those of Kourtis et al. 2016, where SSP calculations were used, and we argue that it is proof
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that the impurity technique can capture certain Fermi arc features better than the JDOS and SSP
methods.

We give again, in Fig. 6.2.1, the surface spectral function obtained from the Kourtis model
with the second set of parameters. If we add an impurity to the surface, the Fermi arcs we see here
will scatter and produce a QPI pattern.
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Figure 6.2.1 Surface spectral function at E = 0, y = −1, for the Kourtis model with a surface
impurity at y = 0 (same plot as in Fig. 4.12).

The surface spectral function was obtained from the surface Green’s function, through the
formula A(E, kx, kz) = − 1

π
Im{tr[Gs (E, kx, kz)]}. We now use this surface Green’s function Gs

again, in order to obtain the FTLDOS δρ (see Eq. (6.8)). We will set the impurity potential
strength V = I.
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Figure 6.2.2 Left: Quasiparticle interference pattern corresponding to the surface spectral function
of Fig. 6.2.1, with V = I. Right: SSP obtained in Kourtis et al. 2016 for the same model and
parameters.

The results are shown in Fig. 6.2.2, along with the SSP results from Kourtis et al. 2016 obtained
for the same model and set of parameters. The fact that our results look more blurry than those
from Kourtis et al. 2016 is due to the type of calculation: while an SSP calculation only requires
the spectral function values (see Eq. (6.2)), which can be obtained with good precision using a
tight-binding calculation, the impurity method computes the full surface Green’s function, which
is more complete but requires a lot of points when evaluating the different integrals in order to be
precise.
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We can see two main differences between the two plots: the central feature has a different
shape and the wing-like features around kx = ±π/2 observed in the SSP results are absent from our
FTLDOS results. The central feature corresponds to intra-arc scattering, i.e. scattering between
states belonging to the same Fermi arc. This can be seen by evaluating the extent of a Fermi arc:
two states of to the same arc will have a maximum momentum difference of about π/4 in kx and
about π/2 in kz, thus the intra-arc scattering pattern should extend to kx = ±π/4 and kz = ±π/2.
The fact that the intra-arc feature we obtain extends beyond kx = ±π/4 is most likely due to the
broadening issue mentioned above.

In contrast, the wing-like features correspond to inter-arc scattering, i.e. scattering between
states belonging to different arcs. The wings’ position matches the arcs’ relative position: the
distance between the Fermi arcs is about π/2 in kx, which creates inter-arc scattering around
kx = ±π/2. So, contrary to SSP calculation results, we do not observe inter-arc scattering when
obtaining the QPI pattern with the impurity method.

In Sec. 4.2.2, we studied the spin structure of the Fermi arcs, and saw that they had opposite
spin (see Fig. 4.13). This means that scattering between the two arcs would require spin flips,
which cannot occur when considering a scalar potential as we did here and as was done in Kourtis
et al. 2016 (it was shown for instance that in superconductors, scattering between states with
opposite spins does not yield any QPI features (Kaladzhyan et al., 2016)). It is mentioned in
Kourtis et al. 2016 that the SSP calculations show a diminished intensity of the inter-arc features
compared to the JDOS calculation results, which also indicates that taking spin into account tends
to restrain scattering between the two arcs; however, their results still show non-zero inter-arc
scattering. We interpret this as the SSP method yielding inaccurate results, contrary to the impurity
method which takes into account all-order scattering processes through the T-matrix formalism.

Figure 6.2.3 Experimental QPI pattern for the Weyl semi-metal MoTe2 (Zheng et al., 2016b).

The tight-binding model introduced in Kourtis et al. 2016 aimed to describe, in a simple way,
Weyl materials such as MoTe2. In Fig. 6.2.3, we give an experimentally obtained QPI pattern for
MoTe2 (Zheng et al., 2016b). As we can see, inter-arc scattering "wings" are actually observed,
similar to those found in Kourtis et al. 2016. One might then question our criticism of the SSP
method, since the SSP results do reproduce experimentally observed features. However, this ex-
periment, and others which measure the QPI on MoTe2 (Deng et al., 2016; Li et al., 2018), do
not measure the spin-polarized LDOS (they use non-spin-polarized STM), which means that they
cannot measure scattering between states of opposite spins. Indeed, both the presence of magnetic
impurities (to allow spin-flips) and the use of spin-polarized STM are required in order to see such
scattering features (Kaladzhyan et al., 2016). We conclude that the Fermi arcs in MoTe2 should
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not have opposite spins, and thus the tight-binding model of Kourtis et al. 2016 does not model the
spin structure of this material correctly. Consequently, the SSP results shown in Fig. 6.2.2 cannot
be compared to experimental results, and we maintain that the SSP method itself yields inaccurate
results with respect to the model it was applied to.

We can perform a similar analysis for the other Weyl model studied in Sec. 4.2.2, the model
from Lau et al. 2017. In Fig. 6.2.4 we show again the surface spectral function for the first set of
parameters used when studying the model. The QPI pattern obtained with the impurity technique,
along with the JDOS obtained in Lau et al. 2017 for the same parameters, is shown in Fig. 6.2.5.
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Figure 6.2.4 Left: Surface spectral function at E = 0, y = −1, for the Lau model with a surface
impurity at y = 0 (same plot as in Fig. 4.15).
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Figure 6.2.5 Left: Quasiparticle interference pattern corresponding to the surface spectral function
of Fig. 6.2.4, with V = I. Right: JDOS obtained in Lau et al. 2017 for the same model and
parameters.

This time, as the distance between the two arcs is rather small, it is hard to differentiate intra-
from inter-arc scattering. Even though the pattern is different from what can be obtained with
JDOS, we assume that both intra- and inter-arc scattering are present in our results. This is in
agreement with the study of the spin structure done in Sec. 4.2.2 (Fig. 4.16), where we saw that
the arcs do not have fully opposite spin, thus allowing inter-arc scattering to occur.

We have also studied the effects of changing the impurity strength, taking a magnetic impurity
instead of a scalar one, and considering double-impurity scattering on the QPI pattern of the Kour-
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tis model, which we show in App. 6.B. In all cases, the shape of the intra-arc scattering pattern
changes, but no inter-arc scattering pattern emerges.

In this chapter, we showed that we can use the impurity technique to obtain the QPI patterns of
different Weyl semimetal models. For the Kourtis model, we found that no inter-arc interference
pattern arise, which differs from original predictions based on SSP calculations. Since the impurity
technique uses the T-matrix formalism to compute the perturbed Green’s function, it can take into
account relative phase information, whereas the JDOS and SSP techniques throw this information
away when computing the QPI pattern from the spectral function only. For this reason, we believe
that the impurity technique is better suited to compute QPI patterns than the commonly used JDOS
and SSP calculations.
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Appendix

6.A | QPI pattern derivation for double-impurity scattering
Here we give the derivation to compute the FTLDOS when we add two impurities to the surface.
The T-matrix formalism can be modified to include scattering from both impurities (Derry et al.,
2015; Mitchell et al., 2015). Assuming that the impurities are localized at r0 and r1, the perturbed
surface Green’s function can be written as:

Gs(E, ri, r j) = G0
s(E, ri − r j) +

∑
α,β=0,1

G0
s(E, ri − rα)Tαβ(E)G0

s(E, rβ − r j), (6.9)

where α and β run over the two impurities, and Tαβ(E) is the real-space T-matrix:

Tαβ(E) =
[
I − VG0

s(E, rα − rβ)
]−1

V =

[
I − V

∫
dk

(2π)2 G0
s(E, k)eik·(rα−rβ)

]−1

V. (6.10)

As we can see, this time the T-matrix depends on r, which makes the formula for δρ a little
more complicated. However, we will show that it can keep the simple form of Eq. (6.8).

In real space, the correction to the FTLDOS is now:

δρ(E, r) = −
1
π

Im tr

 ∑
α,β=0,1

G0
s(E, r − rα)Tαβ(E)G0

s(E, rβ − r)

 . (6.11)

In momentum space, using again the identity Im z = 1
2i (z − z∗), we obtain:

δρ(E, k) = −
1

2πi
tr

∫
dr e−ik·r∑

α,β=0,1

[
G0

s(E, r − rα)Tαβ(E)G0
s(E, rβ − r) −G0∗

s (E, r − rα)T ∗αβ(E)G0∗
s (E, rβ − r)

]
= −

1
2πi

tr
∫

dq
(2π)2

∫
d q̃

(2π)2

∫
dr eiq·re−iq̃·re−ik·r∑

α,β=0,1

[
G0

s(E, q)Tαβ(E)G0
s(E, q̃)e−iq·rαeiq̃·rβ −G0∗

s (E, q̃)T ∗αβ(E)G0∗
s (E, q)eiq̃·rαe−iq·rβ

]
.

If we now define the momentum space T-matrix as:

T (E, q, q̃) =
∑

α,β=0,1

e−iq·rαeiq̃·rβTαβ(E), (6.12)

then we can rewrite δρ as:

δρ(E, k) = −
1

2πi
tr

∫
dq

(2π)2

∫
d q̃

(2π)2

[
G0

s(E, q)T (E, q, q̃)G0
s(E, q̃) −G0∗

s (E, q̃)T ∗(E, q̃, q)G0∗
s (E, q)

]
∫

dr eiq·re−iq̃·re−ik·r

= −
1

2πi
tr

∫
dq

(2π)2

[
G0

s(E, q)T (E, q, q − k)G0
s(E, q − k) −G0∗

s (E, q − k)T ∗(E, q − k, q)G0∗
s (E, q)

]
,
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where we recover Eq. (6.8), with the expression for g now modified to:

g(E, q, k) = G0
s(E, q)T (E, q, q − k)G0

s(E, q − k) −G0∗
s (E, q − k)T ∗(E, q − k, q)G0∗

s (E, q). (6.13)

6.B | Study of different scattering impurities for the Kourtis
model

In this Appendix we show the effects of various scattering impurities on the QPI pattern for the
Kourtis model.

6.B.1 Single scalar or magnetic impurity
We first study the QPI patterns for a single scalar impurity V = UI with different values for the
impurity strength U. The results are shown in Fig. 6.B.1. We find that changing U modifies the
shape of the intra-arc scattering features. However, no inter-arc scattering appears.
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Figure 6.B.1 QPI patterns for the Kourtis model calculated for a scalar impurity with varying
strength U. From left to right we set: U = 0.5, U = 1, U = 3, and U = 10.

We now consider a magnetic impurity: V = U diag{1,−1, 1,−1}, where “diag” stands for a
diagonal matrix. The QPI patterns obtained are shown in Fig. 6.B.2. For a strong enough impurity
i.e. U = 10, the intra-arc pattern resembles the one obtained with a scalar impurity. For lower
values of U, the pattern’s shape is quite different, but we still do not find any inter-arc scattering.
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Figure 6.B.2 QPI patterns for the Kourtis model calculated for a magnetic impurity with varying
strength U. From left to right we set: U = 0.5, U = 1, U = 3, and U = 10.

6.B.2 Double impurity
QPI patterns for two impurities localized at r0 = (x = 0, z = 0) and r1 = (x = 0, z = 1) or
r1 = (x = 1, z = 0) are shown in Fig. 6.B.3. We find slightly different shapes for the intra-arc
scattering features, nevertheless we observe no inter-arc scattering.
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Figure 6.B.3 QPI patterns for the Kourtis model calculated for two impurities, considering dif-
ferent values of the impurity strength U. In the left column we set U = 1, in the central column
U = 3 and in the right column U = 10. For the first row we set r1 = (x = 0, z = 1), and for the
second one, r1 = (x = 1, z = 0).
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We now use the impurity technique to study one final set of systems: few-layer graphene
and graphite. The aim is to study the difference and similarities between graphite and few-layer
graphene for two different types of stacking: Bernal (ABA) stacking and rhombohedral (ABC)
stacking. In particular we examine the effects of trigonal warping, a symmetry distortion which
originates from a particular interlayer hopping term. Part of this study originates from a joint work
with experimental teams from the University of California in Santa Cruz, USA and the National
Institute for Materials Science in Tsukuba, Japan (Joucken et al., 2021), who investigated the role
of defects on graphite samples commonly used to prepare graphene devices. As we will present
in more detail in this chapter, we were able to use the impurity technique to provide a theoretical
understanding for the scattering effects observed in the experiments.

We will first say a few words on stacking types in multi-layer graphene and graphite, introduc-
ing the two stacking which are studied here. Then, similar to the study of the Weyl semimetals, we
will evaluate the surface spectral function for the different systems, then compute the QPI pattern,
both in momentum and real space. Finally, we will compare our results with the experimental
measurements mentioned above.

70
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7.1 | Different stackings inmulti-layer graphene andgraphite
Graphite, or multi-layer graphene, is a system composed of 2D graphene layers stacked on top of
each other. The term "stacking" refers to the arrangement of the successive layers with regard to
each other. Here we focus on the two most stable forms of stacking in graphite: Bernal stacking,
also referred to as ABA stacking, and rhombohedral stacking, also known as ABC stacking.

γ0

γ1

γ3

Figure 7.1.1 Illustration of the ABA and ABC stackings (modified from Shan et al. 2018). A:
single layer of graphene. B: bilayer graphene with Bernal stacking. C: Bernal-stacked graphite.
D: rhombohedral-stacked graphite.

An illustration of these two stackings is given in Fig. 7.1.1. In both cases, as depicted in panel
B, the first two layers are stacked on top of each other with a relative translation of a0 x̂, where
a0 is the distance between two sites of a given layer, and x̂ designates the horizontal axis. In
the xy plane (the plane parallel to the layers) we refer to the position of the first layer (the top,
yellow layer) as A, and that of the second layer (in blue) as B. The discrimination between the
two stackings appears with the third layer: in Bernal stacking the third layer will be at position
A, it is thus exactly below the first layer (panel C), while in rhombohedral stacking the third layer
is at a different position from the other two layers, which we label C (panel D). From the fourth
layer on, the stacking then repeats: for Bernal stacking we would get the sequence ABAB and for
rhombohedral stacking ABCA, etc.

Regarding hoppings, we will consider three different terms, shown in the lower left picture of
Fig. 7.1.1: an intra-layer hopping γ0 (which is denoted as t in the graphene study of Sec. 2.1),
and two inter-layer hoppings γ1 and γ3. The γ1 term connects sites which belong to two nearest
layers and have the same (x, y) coordinates; due to the relative translation of these layers, it thus
always connects a site from an A sublattice to one from a B sublattice. The γ3 term also connects
sites from opposite sublattices, but which have different (x, y) coordinates. As we will show , this
last term is responsible for an effect called trigonal warping (Charlier et al., 1991). We will fix
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γ0 = 3.3, γ1 = 0.42, and will consider either γ3 = 0 or γ3 = 0.3. These are the values, in eV,
previously used by the experimental teams when comparing their results to a theoretical model
(Joucken et al., 2020).

Hamiltonians
For an easier understanding, let us first give the tight-binding Hamiltonian for bilayer graphene
(BLG). We consider the momentum space basis (ck,l−,A, ck,l−,B, ck,l+,A, ck,l+,B), where ck,l,α is the
electron operator at momentum k = (kx, ky), layer l and sublattice α, with l− and l+ corresponding
to the lower and upper layer of the BLG respectively. In this basis, we have:

HBLG(k) =


0 h0(k) 0 h3(k)

h∗0(k) 0 γ1 0
0 γ1 0 h0(k)

h∗3(k) 0 h∗0(k) 0

 , (7.1)

where we defined

h0(k) = γ0

1 + 2e−i 3
2 a0kx cos

 √3
2

a0ky

 , (7.2)

h3(k) = γ3ε(k), (7.3)

and

ε(k) ≡ 2e−i 3
2 a0kx cos

 √3
2

a0ky

 + e−i3a0kx . (7.4)

Here a0 = 1.42 is the distance (in Å) between two nearest-neighbor atoms in the honeycomb
lattice. As can be seen in the matrix of Eq. (7.1), both the γ1 and the γ3 terms connect sites from
opposite sublattices. However, the γ1 term connects a B site from the lower layer to an A site from
the upper layer, while the γ3 term connects an A site from the lower layer to a B site from the
upper layer. Moreover, γ1 is added to the matrix as is, while the γ3 term (labeled h3) includes ε,
function of momentum, which translates the difference between the (x, y) coordinates of the two
connected sites.

Let us now add a third layer to obtain trilayer graphene (TLG). The new basis we consider
is (ck,l−,A, ck,l−,B, ck,l0,A, ck,l0,B, ck,l+,A, ck,l+,B), where l−, l0 and l+ correspond to the lower, middle and
upper layer. For rhombohedral stacking, the Hamiltonian in matrix form is then:

HABC
T LG (k) =



0 h0(k) 0 h3(k) 0 0
h∗0(k) 0 γ1 0 0 0

0 γ1 0 h0(k) 0 h3(k)
h∗3(k) 0 h∗0(k) 0 γ1 0

0 0 0 γ1 0 h0(k)
0 0 h∗3(k) 0 h∗0(k) 0


. (7.5)

As we can see, the first four lines and columns constitute the BLG Hamiltonian of Eq. (7.1),
and we have added terms in the fifth and sixth lines and columns to connect the middle layer to
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the upper layer. Just as for the first two layers, the γ1 term connects a B site from the middle layer
to an A site from the upper layer, while the γ3 term connects an A site from the middle layer to a
B site from the upper layer.

In contrast, the Hamiltonian for TLG with Bernal stacking is, in the same basis:

HABA
T LG (k) =



0 h0(k) 0 h3(k) 0 0
h∗0(k) 0 γ1 0 0 0

0 γ1 0 h0(k) 0 γ1

h∗3(k) 0 h∗0(k) 0 h∗3(k) 0
0 0 0 h3(k) 0 h0(k)
0 0 γ1 0 h∗0(k) 0


. (7.6)

In this case, the type of sites connected between the two upper layers is opposite to the one between
the two lower layers: the γ1 term connects an A site from the middle layer to a B site from the upper
layer, while the γ3 term connects a B site from the middle layer to an A site from the upper layer.
Also the term corresponding to the operators c†k,l0,Bck,l+,A (fourth line, fifth column of the matrix)
is h∗3(k) instead of h3(k) as the difference between the (x, y) coordinates of the upper layers is
opposite to the one of the lower layers (as can be seen in the lower left panel of Fig. 7.1.1).

By repeating the layer-related patterns highlighted in the TLG Hamiltonians, we can write
equations for graphite Hamiltonians in both stackings, for any number of layers. For rhombohedral
stacking, the pattern repeats every layer (the γ1 term always connects a B site from a layer to an A
site from the upper layer, while the γ3 term always connects an A site from a layer to a B site from
the upper layer), thus we get:

HABC
graphite(k) =

∑
l

[
h0(k)c†k,l,Ack,l,B + γ1c†k,l,Bck,l+1,A + h3(k)c†k,l,Ack,l+1,B

]
+ H.c.. (7.7)

In contrast, the pattern in Bernal stacking repeats only every two layers:

HABA
graphite(k) =

∑
l

h0(k)c†k,l,Ack,l,B (7.8)

+
∑
l even

γ1c†k,l,Bck,l+1,A +
∑
l odd

γ1c†k,l,Ack,l+1,B

+
∑
l even

h3(k)c†k,l,Ack,l+1,B +
∑
l odd

h∗3(k)c†k,l,Bck,l+1,A

+ H.c.,

where we consider the first layer to be l = 0, thus even.

When increasing the number of layers, the characteristics of graphite converge to that of an
infinite system. This includes for example the energy spectrum and the scattering behavior on
the surface, which we will examine in this chapter. The Hamiltonian for infinite graphite does
not depend on l, but instead on kz; its matrix form for a given momentum point (kx, ky, kz) is thus
smaller than the one for a finite number of layers (of size 2l × 2l). Since the impurity technique is
also more efficient when using small Hamiltonian matrices, we will here model graphite with an
infinite number of layers (except for one section near the end of this chapter, where we will briefly
study the dependence of the real space QPI on the number of layers).
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For the infinite system, we now have k = (kx, ky, kz). Since we have periodic boundary condi-
tions in the z direction, we must redefine the unit cell to include that direction (up to now, the unit
cell for a given layer consisted only of an A and a B site). This unit cell depends on the stacking.
For rhombohedral stacking, the unit cell must consist of three layers: as we can see in the panel D
of Fig. 7.1.1, the position of the layers in the (x, y) plane repeats every three layers (ABCABC...).
For the same reason, the unit cell for Bernal stacking only contains two layers (ABABAB...). The
size of the Hamiltonian matrices are thus respectively 6 × 6 and 4 × 4:

HABC
∞ (k) =



0 h0(k) 0 h3(k) 0 γ1ξ
∗(k)

h∗0(k) 0 γ1 0 h∗3(k)ξ∗(k) 0
0 γ1 0 h0(k) 0 h3(k)

h∗3(k) 0 h∗0(k) 0 γ1 0
0 h3(k)ξ(k) 0 γ1 0 h0(k)

γ1ξ(k) 0 h∗3(k) 0 h∗0(k) 0


, (7.9)

with

ξ(k) = e3ia0kxe3id0kz , (7.10)

and

HABA
∞ (k) =


0 h0(k) 0 h3(k)χ(k)

h∗0(k) 0 γ1χ(k) 0
0 γ1χ

∗(k) 0 h0(k)
h∗3(k)χ∗(k) 0 h∗0(k) 0

 , (7.11)

with

χ(k) = 1 + e−2id0kz . (7.12)

Here d0 = 3.35 is the distance (in Å) between two neighboring layers. As we can see, these
Hamiltonians are very close to the TLG Hamiltonian for rhombohedral stacking in Eq. (7.5) and
the BLG Hamiltonian in Eq. (7.1), except for the terms with ξ(k) and χ(k). These two functions,
which are the only ones with a dependence on kz, embody the periodicity of the stacking.

In what follows, we compare the behavior of graphite with that of few-layer graphene in both
stackings. In coherence with the definition of the unit cells, we choose BLG for the Bernal case
and TLG for the rhombohedral case, so that we compare the graphite behavior with that of a
system composed of a single unit cell. The Hamiltonians used are thus those of Eq. (7.1, 7.5, 7.9,
7.11).

7.2 | Surface spectral functions
We can obtain the surface spectral function for graphite the same way we obtained it in the previous
chapters. Here we create a surface at fixed z, thus the impurity potential is V = U I δ(z), where we
will set U = 100 000. The small δ, which comes from the analytical continuation iωn → E + iδ
used to obtain the retarded Green’s function from the Matsubara Green’s function, is set to 0.005.
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The surface spectral function must be computed at a z which is one unit cell away from the
impurity plane. This originates from the definition of the phase factors in the Hamiltonian (see
App. 4.C): here the same phase factor is applied to the sites of a same unit cell, so that the effective
surfaces created by the impurity are one unit cell away from it. Since the unit cells defined for the
two stackings are different, the spectral function must be computed at different z’s: at z = 2d0 for
Bernal stacking and z = 3d0 for rhombohedral stacking1.

To compare with the graphite results, we also compute the surface spectral function for BLG
and TLG with rhombohedral stacking. In these two systems, the number of layers is fixed so that
we do not need the impurity technique to create a surface artificially. Instead we directly compute
the spectral function by first obtaining the Green’s function from the Hamiltonian, then calculating
the quantity − 1

π
Im tr G where the trace is taken on the sites of the upper layer only.

We compute the surface spectral function at low energy, for two different values E = 0 and
E = 0.05. As is characteristic of graphene and graphite, the states at these energies only exist
around the Dirac point, therefore we restrict our calculation to momentum values around one of

these points: we choose K =

(
2π
3a0
, 2π

3
√

3a0

)
. We thus plot in Fig. 7.2.1 and 7.2.2 the surface spectral

functions of the different graphene and graphite systems, with and without trigonal warping and
at the two different energy values.

For Bernal stacking, in Fig. 7.2.1, we first observe that in the absence of the warping term γ3,
the spectral function seems to be rotationally symmetric in the (kx, ky) plane, both for graphite and
bilayer graphene and for both energy values. Then, once the trigonal warping is turned on, the
shape clearly acquires a three-fold symmetry. The resulting pattern seems to be much less sharp
for graphite than for BLG: the equal energy lines are much wider and less well defined than for
BLG. This is however also true, even if less obvious in particular at E = 0, when γ3 = 0. This
suggests that quasiparticles have shorter lifetimes on the surface of graphite than in BLG, and thus
a decreased coherence length.

Looking now at the rhombohedral-stacked systems, in Fig. 7.2.2, we see some differences.
Let us first compare the results to those of Fig. 7.2.1. The patterns for BLG and TLG look pretty
much the same, except for γ3 = 0.3, E = 0, however the momentum space range is different:
the TLG states extend further than the BLG ones (the plot ranges for kx and ky are different).
This is also the case when comparing ABA graphite with ABC graphite. This wider extension is
due to the flat band, characteristic of rhombohedral stacking (see App. 7.A). This flat band also
explains the saturation of the blobs for ABC graphite at E = 0 (panels b and d), in contrast with
the finer features of ABA graphite at the same energy. As for the trigonal warping effect, we can
see that the effect is somehow less pronounced for ABC graphite than it was for ABA graphite:
the blobs transform into something mildly triangular, while the three-fold symmetry was much
more obvious for ABA graphite.

1This technique also allowed us to recover the predicted surface states of graphite, including the flat-band states
in rhombohedral stacking. We show this in App. 7.A
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Figure 7.2.1 Surface spectral function of BLG and ABA graphite around the K point (correspond-
ing to kx = 0, ky = 0), with and without trigonal warping.



Chapter 7. Study of few-layer graphene versus graphite for different stackings, and the effect of
trigonal warping 77

−0.10 −0.05 0 0.05 0.10

kx a0

−0.10

−0.05

0

0.05

0.10

k
y
a

0

20

40

60

(a) TLG, γ3 = 0, E = 0

−0.10 −0.05 0 0.05 0.10

kx a0

−0.10

−0.05

0

0.05

0.10

k
y
a

0

10

20

30

40

50

(b) ABC graphite, γ3 = 0, E = 0

−0.10 −0.05 0 0.05 0.10

kx a0

−0.10

−0.05

0

0.05

0.10

k
y
a

0

20

40

60

(c) TLG, γ3 = 0.3, E = 0

−0.10 −0.05 0 0.05 0.10

kx a0

−0.10

−0.05

0

0.05

0.10

k
y
a

0
10

20

30

40

50

(d) ABC graphite, γ3 = 0.3, E = 0

−0.10 −0.05 0 0.05 0.10

kx a0

−0.10

−0.05

0

0.05

0.10

k
y
a

0

5

10

15

20

25

(e) TLG, γ3 = 0, E = 0.05

−0.10 −0.05 0 0.05 0.10

kx a0

−0.10

−0.05

0

0.05

0.10

k
y
a

0

0.5

1.0

1.5

2.0

(f) ABC graphite, γ3 = 0, E = 0.05

−0.10 −0.05 0 0.05 0.10

kx a0

−0.10

−0.05

0

0.05

0.10

k
y
a

0

5

10

15

20

25

(g) TLG, γ3 = 0.3, E = 0.05

−0.10 −0.05 0 0.05 0.10

kx a0

−0.10

−0.05

0

0.05

0.10

k
y
a

0

0.5

1.0

1.5

2.0

(h) ABC graphite, γ3 = 0.3, E =

0.05

Figure 7.2.2 Surface spectral function of TLG and ABC graphite around the K point (correspond-
ing to kx = 0, ky = 0), with and without trigonal warping.
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7.3 | Quasiparticle interference patterns

7.3.1 Momentum space QPI
We will now calculate the QPI patterns for the systems described above, by considering a localized
scalar impurity on the surface. For ABA and ABC graphite we start from the surface Green’s
functions and we compute the FTLDOS, as described in Sec. 6.1.3. In this case though, compared
to the Weyl semimetal study, we make one small adjusment to the FTLDOS formula:

δρ(k, E) =
i

2π

∫
dq
S BZ

trsur f
[
g(q, k, E)

]
. (7.13)

Here, instead of taking the usual trace, we take the trace trsur f only over the matrix components
corresponding to the two top-layer atoms. This must be done in order to compare with experimen-
tal results, since the contribution to the density of states that is usually measured experimentally
is the one from the top layer. We will thus compute Gs at negative z and trace over the last two
components, corresponding to the upper layer of the unit cell. In the case of Bernal graphite, this
layer will then be a "B" layer, while it will be a "C" layer for rhombohedral graphite.

For bilayer graphene and trilayer graphene the same formalism applies, but with the surface
Green’s function Gs replaced by the unperturbed Green’s function G0(k, E) = [(E + iδ)I−H(k)]−1,
withH(k) the unperturbed BLG and TLG Hamiltonians.

Unlike the WSM study, we will also not compute the full QPI pattern. Here we focus on
the intra-scattering pattern created by the states around the Dirac points, in accordance with the
spectral function results we showed above.

In graphene and graphite only two inequivalent Dirac points exist; to compute the QPI, we can
thus take into consideration the surface Green’s function around two complementary Dirac points
only. This is supported by the plots in Fig. 7.3.1, where we show the surface spectral function for
TLG in the whole BZ: only two different patterns can be seen, each corresponding to one type of
Dirac point.

However we can also notice, by comparing Fig. 7.3.1 (b) and (c), that the surface states around
the two different Dirac points are related to each other: one pattern can be obtained from the other
by applying a rotation of π 2 around the corresponding K point, and a translation from one K point
to the other. Let us now consider the integral in Eq. (7.13). Since surface states only exist in small
areas around the Dirac points, we can separate this integral into two: one over an area close to K,
the other over an area close to K′. For each of these sub-integrals, the scattering between states
at two different momenta q and q′ is computed "both ways": the scattering momentum k, over
which the QPI is computed, takes both the values q − q′ and q′ − q. The translation from K to K′,
or from K′ to K, leaves k unchanged: [q − (K − K′)] − [q′ − (K − K′)] = q − q′. A rotation by π
changes q− q′ into q′ − q, however since both terms are already included in the integral, this does
not change the value of δρ(k). We thus see that even though the surface states around K and K′

are different, they will yield the same intra-scattering QPI pattern,3 which means we can compute
the QPI from the surface states around a single K point.

2Since the patterns possess a C3 symmetry, this is also valid for a rotation of π/3 or 5π/3.
3This has been verified through computations.
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Figure 7.3.1 Surface spectral function of TLG for E = 0.05 with γ3 = 0.3 for the entire BZ and
around the two inequivalent Dirac points K and K′.

In order to see a more extended pattern, here we focus on E = 0.05, and we set γ3 = 0.3 to
consider trigonal warping. For the point-like impurity situated on the surface, different configura-
tions are possible depending on where the impurity is situated in the unit cell: A or B sublattice,
upper, middle or lower layer. We can thus consider a buried impurity if we localize it on the mid-
dle or lower layer. The associated impurity potential Vp will only have one non-zero component,
corresponding to the site on which the impurity is considered. For example, for an impurity on the
sublattice A of the upper layer in Bernal graphite, the associated component is the 3rd component,
and we have Vp = diag(0, 0,U, 0). In what follows, we will fix U = 10.



Chapter 7. Study of few-layer graphene versus graphite for different stackings, and the effect of
trigonal warping 80

−0.13 0 0.13

kx a0

−0.13

−0.06

0

0.06

0.13

ky a0

0.5

1.0

(a) BLG

−0.13 0 0.13

kx a0

−0.13

−0.06

0

0.06

0.13

ky a0

0.2

0.4

0.6

0.8

(b) Bernal graphite

−0.22 0 0.22

kx a0

−0.22

−0.11

0

0.11

0.22

ky a0

0.1

0.2

0.3

0.4

(c) TLG

−0.22 0 0.22

kx a0

−0.22

−0.11

0

0.11

0.22

ky a0
1

2

(d) Rhombohedral graphite

Figure 7.3.2 Quasiparticle interference pattern computed for the different graphene and graphite
stackings, for an impurity situated on the lowest layer and sublattice B.

In Fig. 7.3.2 we plot the QPI pattern for the different systems, considering an impurity on the
lowest layer and on the B sublattice (2nd matrix component). As the main conclusions remain the
same, we collected the results for impurities localized on the other sites in App. 7.B.

One thing we notice is that, while in BLG and TLG the intensity is highest along an outer
hexagon of the pattern, in graphite we instead see highest intensity in the center, particularly
for rhombohedral stacking where, for this impurity, it is concentrated in a small circle-like area.
Looking back at the spectral function for ABA graphite in Fig. 7.2.1 (h), where we saw that the
states were more concentrated on the sides of a triangle, we infer that scattering mostly occurs
inside those sides rather than between different sides. As for ABC graphite, which spectral func-
tion is shown in Fig. 7.2.2 (h), it seems that even though the states concentrate around a uniform
triangular shape they don’t necessarily scatter together.

The patterns for BLG and TLG also appear sharper and more detailed than the ones for
graphite. This fits with the spectral function results, where we found more blurry patterns for
graphite. Like the spectral function motif, the QPI is also wider for graphite, since the allowed
states are more widely distributed.

7.3.2 Real space QPI
We can also study the QPI pattern in real space, in the vicinity of the impurity (located at x = 0,
y = 0). To do this, we simply have to Fourier transform the momentum QPI δρ(k) from Eq. (7.13)
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back into real space, i.e.:

δρ(r) =

∫
dk
S BZ

eik·rδρ(k) (7.14)

In Fig. 7.3.3 we plot the results obtained for two types of impurities: one on the sublattice A
of the lower layer, the other on the sublattice B of the upper layer. We refer to App. 7.C for the
results obtained with the other types of impurities.

First we observe that the interference pattern is more extended for BLG and TLG than for
graphite. This is consistent with the reduction of the quasiparticle lifetime observed in graphite, i.e.
the blurring of the surface spectral function compared to BLG and TLG. This can be understood
as graphite having one more dimension in which the quasiparticles can scatter (BLG and TLG can
be considered close to 2D systems). This effect of shorter quasiparticle lifetime due to an added
dimension has been observed previously in the case of Yu-Shiba-Rusinov states in two- versus
three-dimensional superconductors (Yazdani et al., 1997; Ji et al., 2008; Ménard et al., 2015).

The other feature that we observe, is that we obtain a triangular pattern for buried impurities
(situated on the lower layer of the unit cell), while we see a circular one for impurities directly on
the surface (upper layer), even though trigonal warping is present in equal measure in both cases.
We also observe a faster decay for the circular pattern.
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Figure 7.3.3 Real space QPI for the different systems around two distinct impurities: one on the
sublattice A of the lower layer, the other on the sublattice B of the upper layer.
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Dependence on the number of layers and energy

We now study the dependence of the real-space QPI patterns on the number of layers and energy.
For the dependence on the number of layers, we focus on a Bernal-stacked system with an impurity
on the sublattice A of the second last layer. The parameters are the same as before: we take
E = 0.05, γ3 = 0.3 and U = 10. We plot in Fig. 7.3.4 the QPI for two, three, four and eight layers.
We note that the pattern for three layers is oriented differently from the others: this orientation is
linked to whether the number of layers is odd or even, since the unit cell of Bernal-stacked graphite
consists of two layers. Overall, the results coincide with what we observed when comparing the
QPI patterns of few-layer graphene versus graphite: when increasing the number of layers, the
oscillations decay faster when moving away from the impurity. Already for eight layers we recover
the same pattern as the one for graphite in Fig. 7.3.3 (b).

−300−150 0 150 300

x/a0

−300

−150

0

150

300

y/a0

−0.10

−0.05

0.00

0.05

0.10

(a) BLG

−300−150 0 150 300

x/a0

−300

−150

0

150

300

y/a0

−0.08

−0.04

0.00

0.04

0.08

(b) 3 layers

−300−150 0 150 300

x/a0

−300

−150

0

150

300

y/a0

−0.06

−0.03

0.00

0.03

0.06

(c) 4 layers

−300−150 0 150 300

x/a0

−300

−150

0

150

300

y/a0

−0.06

−0.03

0.00

0.03

0.06

(d) 8 layers

Figure 7.3.4 Real space QPI for a Bernal-stacked system with different numbers of layers. The
impurity is set on the sublattice A of the second last layer.

For the dependence on energy, we take BLG with again an impurity on the sublattice A of the
lower layer and the same parameters as before, except that we vary E. We plot in Fig. 7.3.5 the
QPI for E = 0, 0.02, 0.05 and 0.25. We observe that when increasing the energy, the oscillations
have higher frequency: the space between two positive or two negative peaks of the QPI decreases.
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Figure 7.3.5 Real space QPI for bilayer graphene at different energies. The impurity is set on the
sublattice A of the lower layer. In some of the plots we have saturated the colors, as indicated
by the arrow-like ends of the colorbars, so as to see the oscillations better. Note that the we have
doubled the extent of the plot in space compared to the previous figures.

7.3.3 Correspondence with experiments
We will now compare the results obtained through this study with that of experimental results
obtained by the previously mentioned experimental teams. Information on how those results were
obtained can be found in Joucken et al. 2021 and Kaladzhyan et al. 2021a. All the maps presented
here were acquired at low-tip sample bias (around 5mV), so that they are essentially proportional
to the LDOS at the Fermi level.

In Fig. 7.3.6 we show the real and momentum space QPI patterns obtained for BLG at different
positive gate voltages. The change in gate voltage induces a variation of the Fermi level, and we
indicate the distance between the Fermi level and the charge neutrality point (Dirac point) for
each gate voltage value. We can see that, even if not so clear for VG = +20V , for VG = +40V and
+60V the momentum space pattern shows stronger intensity on an external ring, which looks like
a hexagon. This is in agreement with what we found when computing the FTLDOS for BLG. As
for the real space images, we clearly see that when increasing the gate voltage, the frequency of
the oscillations increases. This also corresponds to the energy-dependent study of the real-space
QPI where we found that the space between two positive or two negative peaks decreases when
moving away from E = 0, i.e. the charge neutrality point.

In Fig. 7.3.7 we show spatial maps of graphite and of a 10-layer graphene film along with the
computed FFT image. For the momentum-space image, we see that the intensity is this time great-
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est in the center of the pattern. This confirms the tendency observed in the simulations where the
FTLDOS showed overall stronger values in the center for graphite. As for the real-space experi-
mental maps, they clearly show a triangular symmetry. From the results we obtained previously,
this thus suggests that the impurities at the origin of those triangular patterns are embedded in
the material and not directly at its surface. We also observe that, contrary to the results on BLG,
the oscillations do not extend far from the impurities, consistent with the fast decay seen in the
computed real-space QPI for graphite.

Figure 7.3.6 Experimental measurements of the real-space and Fourier-space quasiparticle inter-
ference patterns for impurities in BLG for different gate voltages VG. Left panels: dI/dVS maps.
Right panels: zoom-ins around the center of the corresponding FFT images. The induced differ-
ence between the Fermi level EF and the charge neutrality point ECNP is indicated for each gate
voltage value (Joucken et al., 2021).
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Figure 7.3.7 Experimental measurements of the real-space and Fourier-space quasiparticle inter-
ference patterns for impurities in graphite and 10-layer graphene. Panels (a) and (b): dI/dVS maps.
Panels (c) and (d): zoom-ins around the center of the corresponding FFT images (Kaladzhyan
et al., 2021a).

Conclusion
Using the impurity technique, we studied the surface spectral function as well as the impurity-
induced quasiparticle interference patterns in real and momentum space of bernal- and rhombohedral-
stacked graphene and graphite. We found that the spectral function for graphite surfaces shows
a decrease in coherence and quasiparticle lifetime compared to that of few-layer graphene. Then
we observed that, independent of the type of stacking, surface impurity-induced oscillations decay
much faster in graphite than in BLG and TLG. Furthermore, the shape of the oscillations seem to
depend on the location of the impurity with respect to the layers: a buried impurity creates triangu-
lar shaped oscillations, while an impurity situated on the top layer will create a rather circular one.
By comparing these results with experimental measurements, we found that they are in overall
good agreement with the experimental data.
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Appendix

7.A | Recovering the predicted surface states of Bernal- and
rhombohedral-stacked graphite

In this appendix, we recover the surface states of graphite for both stackings using the impurity
technique. In particular, we obtain the surface flat bands predicted to appear in multi-layer ABC
graphene (Zhang et al., 2010; Yelgel, 2016), and are able to determine their extent in a fully-infinite
system. We will consider no trigonal warping here, i.e. we set γ3 = 0.

For comparison, we start by calculating the energy spectrum of finite slabs of graphene using
tight-binding calculations. To do this, we use the Hamiltonians in Eq. (7.7, 7.8). In Fig. 7.A.1
we plot the spectrum around the K point for a 100-layer ABA graphite slab. The spectrum shows
multiple bands with parabolic dispersion.

0−0.06 0.06−0.03 0.03

ky a0

−0.05

−0.025

0

0.025

0.05

E

Figure 7.A.1 Energy spectrum for Bernal-stacked graphite with 100 layers, along a line with fixed
kx and crossing the K point (corresponding to ky = 0 on the horizontal axis).

We then calculate the spectrum of ABC graphite, which we plot in Fig. 7.A.2 for different
numbers of layers. As we can see, the surface states in this case form a flat band at zero energy,
which extends further away from the K point when the number of layers is increased. It seems
that when the number of layers tends to infinity, the extension of the flat band reaches a limit value
in k space.

We now compute the surface spectral function for semi-infinite graphite, over the same range
of energies and momenta, using the impurity technique. In Fig. 7.A.3 we consider both stack-
ings and plot As for the corresponding surfaces: z = 2d0 for Bernal stacking and z = 3d0 for
rhombohedral stacking.

For ABA graphite we recover a parabolic-shaped band, which is consistent with the tight-
binding spectrum presented in Fig. 7.A.1. Indeed the energy spectrum should contain both the
surface and the bulk bands for the finite graphite slab, and we find only part of that spectrum in
Fig. 7.A.3: the exterior parabolas, with higher intensity close to zero energy corresponding to a
higher density of surface states.

For ABC graphite we observe once more a flat band, consistent with the results of the tight-
binding calculations of the finite-size graphite slabs. The extension of the flat band observed



Chapter 7. Study of few-layer graphene versus graphite for different stackings, and the effect of
trigonal warping 88

0−0.1 0.1

ky a0

−0.05

−0.025

0

0.025

0.05

E

(a) 10 layers

0−0.1 0.1

ky a0

−0.05

−0.025

0

0.025

0.05

E

(b) 50 layers

0−0.1 0.1

ky a0

−0.05

−0.025

0

0.025

0.05

E

(c) 100 layers

Figure 7.A.2 Energy spectrum for ABC graphite with 10, 50 and 100 layers, along a line with
fixed kx and crossing the K point (corresponding to ky = 0 on the horizontal axis).
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Figure 7.A.3 Surface spectral function for both stackings of graphite, along a line with fixed kx

and crossing the K point (corresponding to ky = 0 on the horizontal axis). For ABA stacking we
choose a surface at z = 2d0, and for ABC stacking one at z = 3d0.

here seems close to the one observed in the energy spectrum for 100 layers, confirming that it is
converging to a finite value when the width of the slab is going to infinity.
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7.B | Momentum QPI patterns for impurities localized on
other sites
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Figure 7.B.1 Quasiparticle interference pattern computed for BLG and Bernal graphite, for an
impurity situated on different layers and sublattices.
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Figure 7.B.2 Quasiparticle interference pattern computed for TLG and rhombohedral graphite,
for an impurity situated on different layers and sublattices.
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Figure 7.B.3 Quasiparticle interference pattern computed for TLG and rhombohedral graphite,
for an impurity situated on different layers and sublattices.
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7.C | Real spaceQPIpatterns for impurities localized onother
sites

−300−150 0 150 300

x/a0

−300

−150

0

150

300

y/a0

−0.08

−0.04

0.00

0.04

0.08

(a) BLG, lower layer, sublattice B

−300−150 0 150 300

x/a0

−300

−150

0

150

300

y/a0

−0.08

−0.04

0.00

0.04

0.08

(b) ABA graphite, lower layer, sublat-
tice B

−300−150 0 150 300

x/a0

−300

−150

0

150

300

y/a0

−0.2

−0.1

0.0

0.1

0.2

(c) BLG, upper layer, sublattice A

−300−150 0 150 300

x/a0

−300

−150

0

150

300

y/a0

−0.14

−0.07

0.00

0.07

0.14

(d) ABA graphite, upper layer, sublat-
tice A

Figure 7.C.1 Real space QPI for BLG and Bernal graphite around two distinct impurities: one on
the sublattice B of the lower layer, the other on the sublattice A of the upper layer.
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Figure 7.C.2 Real space QPI for TLG and rhombohedral graphite around different impurities.



Conclusion

In this thesis, we took interest in a new method to study edge and surface phenomena. First we
showed that it can correctly recover known edge states, such as those characteristic of topological
insulators and Weyl semimetals; then we saw that it can model more complicated boundary effects,
recreating for instance Andreev bound states in certain SNS junctions; and finally we found that
the technique actually makes a good foundation for the study of quasiparticle interference, both
in momentum and real space, showing examples on Weyl semimetal models and on graphene and
graphite systems.

Through the study of all these systems, we observed several advantages to the technique.
For one, it could be considered semi-analytical, in the way that it is exact up to some integrals’
calculation. The coding of the technique is also rather simple: starting from a small Hamiltonian
matrix, one needs only follow the successive equations to compute the Green’s functions and
T-matrices, and the resulting spectral function or LDOS for example. It works in all physical
dimensions (1D, 2D and 3D), and with both topological and non-topological systems. Its greatest
strength most probably lies in its construction: it can model edges while bypassing the need to
consider finite systems.

While this manuscript was being written, other applications of the impurity technique were
pursued. Fully analytical results have been obtained for the QPI of bilayer graphene at low-
energy (Kaladzhyan et al., 2021b), granting in particular more insight into the effects of trigonal
warping. The method has also been used to study Shiba chains and their topology (Sedlmayr et al.,
2021), where it can ignore the size-effect problems known to occur in tight-binding calculations.
Among possible future applications, the quasiparticle interference seems like a promising choice,
since it can take into account important contributions which are suppressed when using the usual
approximations of JDOS and SSP.
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Titre: Etude de phénomènes de bords via l’utilisation d’impuretés
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Résumé: Nous présentons ici une nouvelle
méthode permettant d’étudier des phénomènes
dus aux bords, nommée "méthode des im-
puretés". Cette technique consiste à simuler un
bord ou une surface en plaçant des impuretés
le long d’une ligne ou d’un plan, et en faisant
en sorte que le potentiel qui leur est associé soit
grand (par rapport aux énergies caractéristiques
du système). A travers une suite d’exemples de
systèmes, nous explorons alors les possibilités

qu’offre cette nouvelle méthode, ses avantages et
ses limites. Nous montrons en particulier qu’elle
peut s’appliquer indépendamment de la dimen-
sion du système (1D, 2D, 3D), qu’elle fonctionne
pour des systèmes topologiques comme non-
topologiques, et qu’elle peut apporter des avan-
tages par rapport à certaines techniques usuelles
telles que le calcul tight-binding ou les approxi-
mations JDOS et SSP utilisées pour étudier les
interférences de quasi-particules.

Title: Study of edge phenomena through the use of impurities

Keywords: Boundary, Impurities, T-matrix, Green’s function, Topology

Abstract: We present here a new method to
help study boundary phenomena, which we call
"impurity method". The technique consists in
simulating a boundary, such as an edge or a
surface, by adding impurities along a line or
a plane, with a high impurity potential (com-
pared to the typical energy values of the sys-
tem). Through a series of example systems, we
then explore the possibilities which this method

offers, along with its advantages and its lim-
its. In particular, we show that it can be ap-
plied for any physical system dimension (1D, 2D
and 3D), that it works for both topological and
non-topological systems, and that it can bring
several advantages compared to certain conven-
tional techniques, such as tight-binding calcula-
tion or the approximations of JDOS and SSP
used in the study of quasi-particle interference.
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