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1 Introduction
Thermal fluctuations at small scales

The separation of scales, such as in energy, time, or sizes, has enabled physicists to
establish models that accurately describe and predict the behaviour of natural pro-
cesses. The deep insight provided by powerful models for many different systems stem
from treating the different levels of description as independent of each other. Yet, an
important aspect of science is to achieve unified frameworks capable of describing pro-
cesses not from the viewpoint of scale division but from interconnected theories through
which it is possible to move across the limits. One of such theories is statistical mechan-
ics, which successfully yielded thermodynamic results observed in macroscopic systems
without ignoring the evolution of the microscopic, complex, degrees of freedom [1, 2].
Statistical physics conveys the powerful message that it is not necessary to know the
specific state of each atom, molecule or organism that forms a system, in order to be
able to provide, at a collective level, the inexorable rules obeyed by the ensemble. The
study of gases is paradigmatic since it offers a clear illustration of how the description
of its properties is more easily accessible by statistical inference than by solving the
full set of equations of motion of the constituent particles.

Statistical physics was enriched at an even deeper level when physicists began to
realize that fluctuation themselves can provide valuable tools to understand diverse
nonequilibrium processes [3–5]. Despite the great progress that we have witnessed over
the past few decades on the understanding of a variety of out-of-equilibrium systems,
there is still no general teatrise. As Kubo pointed out, “the concept of non equilibrium
is perhaps too broad to be unified by a few principles” [6]. Most of the processes oc-
curring in nature happen out-of-equilibrium [7, 8], and being out-of-equilibrium causes
the breakdown of a fundamental symmetry: the time invariance of the evolution equa-
tions. Such asymmetry manifests itself as dissipation of energy and, according to the
second law of thermodynamics, dissipative processes are characterised by entropy pro-
duction. Many paradoxes have nourished the debate concerning the interpretation of
the second law and on how irreversibility arises from a system composed of microscopic
degrees of freedom that obey time-reversible equations of motion [9, 10]. Nowadays,
the statistical nature of the second law has not only been verified experimentally [11],
but it has too a well-defined theoretical support which came from the development of
a relatively new framework, known as the Fluctuation Theorems (FT) [12–15], which
will be discussed in more detail in Chapter 4.

The first relation between fluctuations and dissipation was provided by Einstein’s
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analysis of Brownian motion in one of his notorious articles published in 1905 [16–
18]. Brownian motion represents the incessant erratic motion observed on a meso-
scopic object suspended in a fluid, named after the botanist Robert Brown who was
the first to study the phenomenon systematically, in 1827 looking at grains of pollen
suspended on water [19]. On Brownian motion, Einstein demonstrated the relation
between the ensemble average of velocity time correlations and the diffusion coefficient
directly related to the viscous drag through the temperature [6]. Such a relation is
known as the Fluctuation-Dissipation Theorem (FDT), and links the averages of the
time correlations of fluctuating quantities to macroscopic observables [3, 6]. It was then
established as a general approach to treat any system slightly away from equilibrium
after the works of Nyquist, Onsager, Kubo and others [5, 19, 20].

Experimentally, Einstein’s results have been fully verified by the diligent experi-
mental works of Jean Perrin in 1907 that ended a long lasting debate between the
atomistic and the equivalentist hypothesis in favor of the former [18]. Since then,
Brownian motion has established itself as a key concept in statistical physics mainly
by its ability to probe the complexity of interacting individual microscopic objects and
reveal predictable thermodynamic behaviours at the macroscopic level.

Among the many formulations of Brownian motion, the Langevin equation is prob-
ably the most privileged and convenient in an experimental context. The first central
hypothesis of Langevin’s approach is a very sharp separation of the time scales between
the fast molecular degrees of freedom and the relatively slow degrees of freedom of the
particle (the d.o.f. accessible by the observer) [21, 22]. The second hypothesis uses the
central limit theorem, by modeling the transfer of momentum between the particle and
the numerous and random molecular impacts of the fluid as a Gaussian random process
[21]. With these features, the Langevin equation describes the Brownian dynamics as
a balance of forces, composed by an inertial term, a viscous term, due to the friction
of the particle with the fluid, and a stochastic term, known as the thermal force, from
which stems the erratic character of the motion.

As the first stochastic differential equation, the Langevin equation is considered to
be at the origin of stochastic calculus [19, 20]. Nowadays, stochastic calculus represents
an important branch of physics and mathematics, and has broad impact in the different
disciplines, well beyond the natural sciences [23]. Whether applied for stock market
fluctuations or population dynamics, the tools provided by stochastic calculus have
succeeded in understanding many aspects of complex systems where intuition is hard
to build considering the too large number of intervening factors and degrees of freedom.
An interesting example is given by the applications in epidemiology, where stochastic
models assess the dynamics of the spread of infectious diseases, providing insights of
the key factors that allow to evaluate the results of different containment strategies [24].

In physics, the study of Brownian dynamics has recently been enriched by a pow-
erful experimental technique: optical tweezers [14, 25, 26]. This technique consists
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in optically trapping unique Brownian objects in well controlled environments, and it
gives direct access to their stochastic evolutions. Remarkably, optical trapping experi-
ments are usually well described using the Langevin approach because the experimen-
tal control available on an optical trap allows one to induce, shape, modulate, etc,
the different terms forming the Langevin equation: an interaction potential, additional
external force fields (of conservative or non-conservative nature), a control on temper-
ature and viscosity. Overall, optical traps, through the possibility to induce tailored
and well controled optical forces, have allowed the study of Brownian systems from
totally new perspectives.

The experimental contributions of optical trapping experiments together with the
theoretical approach of Langevin equation have led to the emergence of a new field:
Stochastic Thermodynamics [14, 27], a rich approach to describe fluctuating nonequi-
librium phenomena, whose results had a strong impact in many applications, going
from explanation of metabolic processes in living systems [7] to quantum field theories
[28].

Stochastic thermodynamics encompasses every aspect of small systems in nonequi-
librium situations, such as colloids, biopolymers such as RNA and DNA, proteins,
enzymes and molecular motors [14]. Such small biosystems execute essential tasks
in our organism, for example gene transcription by the formation of small loops in
DNA molecules [7, 29], or serotonin release that regulates our anxiety is carried out
through the intervention of molecular motors such as the kinesin family [30]. Single-
molecule biophysics was revolutionized by the advent of optical tweezers and other
micromanipulation and imaging techniques [31], the most notable findings concerned
the characterization of the mechanical properties of DNA such as the stretching [32]
and torsional effects [33], and also the dynamics of motor proteins [34]. Stochastic
thermodynamics has made it possible to study in depth the role of fluctuations in
such systems, and provided the tools to access to information such as the free-energy
landscapes of biomolecules or the efficiencies of such molecular motors. With rele-
vant energy scales, of the order of kBT, and fluctuations of the same magnitude, such
systems are extremely sensitive to and actually driven by thermal fluctuations. For
example, molecular motors use chemical energies from the hydrolysis of ATP to rectify
thermal fluctuations or extract useful energy from the bath [35]. As a consequence
molecular motors can occasionally operate in reverse and reach efficiencies as high as
60% [7].

At such small scales, the ability to rectify thermal fluctuations is one fundamental
feature for the operating principle of microscopic engines [36]. This is clearly seen in
the operation of biological molecular motors [7, 35]. Such systems live in environments
where fluctuations dominate the average behaviour. Fluctuations experienced by these
molecules are an integral part of their mechanism [14]. The efficiencies of molecular
machines, in terms of energy consumed versus useful work, are above any macroscopic
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counterpart. Thanks to the fluctuating environment such motors sometimes work back-
wards, by absorbing a few kBT of energy from the environment rather than dissipating
it.

The idea of converting thermal fluctuations into useful work dates back to Feyn-
man’s ratchet [37], conceived as a mechanism capable of rectifying thermal fluctuations
under non-homogeneous external conditions [36, 38, 39]. Recently a Feynman ratchet
was setup experimentally by means of optical tweezers [40].

In small stochastic systems, one can distinguish between three types of out-of-
equilibrium situations. First, one can prepare the system in an initial state of non-
equilibrium and study its relaxation towards equilibrium. Second, one can disturb
the system by external time-dependent forces, fields, fluxes, or unbalanced chemical
reactions. Third, if the external disturbance does not depend on time (or is periodic),
the system can reach a nonequilibrium steady state (NESS). For all these situations,
there are rigorous theoretical results [7, 14, 26]. In all cases, even in nonequilibrium
situations, the temperature of the medium is well defined [14]. This property, together
with the existence of a separation of time scales between the degrees of freedom of
the observables and the degrees of freedom associated with the thermal bath allow a
consistent thermodynamic description.

In an article published in 1998, Ken Sekimoto showed how the Langevin equation
can be endowed with a thermodynamic interpretation [41]. As a consequence, thermo-
dynamic quantities, such as heat, work and internal energy, as well as the first law of
thermodynamics can be defined at the level of single stochastic trajectories of a Brown-
ian object, therefore such quantities become fluctuating themselves and follow specific
statistical laws. Later, it was proposed that quantities such as entropy become fluctu-
ating [15] and then demonstrated that entropy can be also defined at the level of single
stochastic trajectories [42]. These where the building blocks used for the foundation
of the field of Stochastic thermodynamics, whose pillars are the Fluctuation Theorems
[12, 13, 15]. These relations shed new light on the principles governing fluctuations in
such thermodynamic quantities [7, 8, 14, 26, 43]. It should be noted that this frame-
work goes beyond linear or quasi-equilibrium response conditions, and can be applied
to a large number of systems disturbed by non-conservative forces through arbitrarily
time-dependent protocols [44], even in the case of feedback control [45, 46]. Formally,
the generality of the fluctuation theorems can be attributed to the way in which the
probability distributions of certain observables behave in the presence of forces that
break some dynamic symmetry, for example, non-conservative and or time-dependent
forces [15, 47].

Because all such experiments require extreme control of the environments, external
parameters and external force fields applied, optical tweezers are privileged tools in
this context. They have not only been instrumental for the investigation of biological
systems [31], they also constitute reliable and flexible tools for measuring weak forces in
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different environments. Through the thermal position fluctuations of the particle one
can indeed measure small displacements and perform 3D mapping of nonconservative
force fields [48]. The accuracy level offered in this type of experiments have made it
possible to measure the instantaneous velocity of a Brownian particle in rarefied gases
and verify the Maxwell-Boltzmann velocity distribution [49, 50], an experiment that
Einstein thought impossible [16, 17]. Such experiments paved the way for developing
methods that gave access to the quantum ground state of mechanical motion [51]. The
high precision reached on levitated nano-objects through the techniques of optical trap-
ping and laser cooling [52] has enabled the possibility to map the vectorial nature of
the optomechanical interaction [53] and the strong coupling between mechanical modes
of a trapped oscillator [54].

The following paragraphs discuss some experimental milestones in the recent re-
search field of stochastic thermodynamics of small systems, all studies performed with
diverse optical trapping configurations. Of course, we do not intend to provide here
an exhaustive review but rather to discuss the ideas conveyed in some of the selected
experiments.

Experimental observations of information to energy
conversion

The second law of thermodynamics states that in order to decrease the entropy of a sys-
tem, a reservoir must "pay" for that decrease and must have therefore its own entropy
increasing. This, for example, precludes infinite production of energy or work. There
have been countless debates on the interpretation of this law. In 1948, after Claude
Shannon defined the information entropy, information, became a real physical quan-
tity with a unit [55]. Thus, as a physical quantity, information should be subjected
to physical laws, in particular thermodynamic ones [56–58]. This approach turned the
question whether is it possible to extract mechanical work from the information of
the state of the system [59]. Debates on the role of information in thermodynamics
actually started in the early days of the establishment of thermodynamic laws, when
Maxwell devised a simple and ingenious gedankenexperiment, to illustrate a hypotheti-
cal violation of the second law. The idea consisted in considering a vessel made of two
compartments of equal volume and adiabatic walls. The two partitions were occupied
by the same gas of same temperature, given by the mean velocity of the molecules. The
wall separating the two compartments contained a molecule-sized window that opens
and closes in a controlled way by an intelligent being, dubbed the Maxwell’s dæmon
by Lord Kelvin [26, 60]. Depending on the velocity of the molecule that reaches the
window, the dæmon decides whether to open the window or not, thus separating the
fast molecules from the slow ones in the different compartments, managing to raise the
temperature of one side and lowering the temperature of the other.
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Later, in 1929, Leó Szilárd simplified Maxwell’s thought experiment by changing
the working substance from a gas to a single particle. The volume V containing the
particle is divided in two partitions of equal volume at a certain instant, at which the
dæmon intervenes, measuring the position of the particle. Such system has two possible
outcomes, either the particle is on the left or in the right [60]. As the dæmon knows
where the particle is located, he uses this information to exchange the partition wall
with a piston and then leaves the one-particle gas perform an isothermal expansion
going back to the initial volume, in this way the Szilárd engine is capable of extracting
a work [61]:

W =

∫ V

V/2

pdV = kBT

∫ V

V/2

dV

V
= kBT ln 2

cyclically. After the process, according to the first law, the reservoir has given an
amount Q = W decreasing its entropy by an amount ∆S = kB ln 2 and thus violating
the second law. Szilárd concluded that a measurement must then be associated with
a certain entropy production which balances such entropy decrease. At the time, this
hypothesis was criticized with the argument that entropy was a measurable quantity
and does not depend on the information that the observer has on the system [57, 58].

In 1961, Rolf Landauer, proposed that in a computer there are specific degrees of
freedom in charge of encoding logical states and that such logical states evolve irre-
versibly. A logical operation is accompanied by entropy increase in the other degrees
of freedom and in the environment [56]. In particular, he showed, that the erasure of a
bit of information requires at least an amount, kBT ln 2 of work which is dissipated into
the environment [26, 62]. Using this argument, Charles Bennett solved the apparent
violation of the second law in a Szilárd’s engine. Since there are two possible locations
for the particle, left or right, the dæmon is equivalent to a one-bit memory system,
which at each cycle has to be reset [63, 64]. According to Landauer’s principle, the
cost of memory erasure of the dæmon is Werasure ≥ kBT ln 2, which is the work one has
to inject, and therefore the work extracted by the engine is actually W −Werasure ≥ 0,
and thus the second law is not violated.

For the reasons summarized above, it is not surprising that the first experimental
demonstration employing feedback as Maxwell’s dæmon to convert information into
energy was performed on an optically trapped Brownian particle [65]. The particle was
placed in an staircase-like potential, as the one on the left panel of Fig. 1.1 made with
an electric field gradient. The height of the steps were set to ca. 1 kBT. Due to ther-
mal fluctuations the particle makes jumps between the steps stochastically, however
due to the nature of the staircase, downward jumps are more frequent than upward,
thus in average, the particle falls down the stairs. The feedback protocol consisted in
measuring the particle’s position, and when this latter performs an upward jump, a
block emulated by an electric field, is placed to prevent a subsequent downward jump
from that point. Repeating this protocol a certain number of times, and assuming that
the block is placed reversibly, the particle was able to climb up the stairs and gain free
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energy.

A similar feedback protocol was used to make a Brownian particle move against a
fluid flow without the use of an external force [66] and studied the role of the frequency
of measurements on the work extracted and the information gain. The colloidal particle
was trapped in a channel filled with a flowing fluid, as shown in the right panel of figure
1.1, the feedback loop consisted in moving a wall of light upstream towards the particle
whenever the particle was observed to move stochastically in the opposite direction of
the fluid flow.

Figure 1.1: Experimental realizations of Szilárd engines with an op-
tically trapped colloidal particle. Left panel: Maxwell’s dæmon feed-
back protocol to achieve the Brownian particle to climb up the staircase.
Right panel: Stochastic motion of the Brownian particle moving up-
stream along with the barrier implemented with the feedback protocol.

Figures adapted from refs. [65, 66].

No long after the first experimental realization of a Szilárd engine [65], an optically
trapped Brownian particle was also used to experimentally test the Landauer’s principle
[62]. The erasure of one-bit memory was emulated by the particle in a bistable potential
whose barrier could be modulated, see left panel on fig. 1.2. The erasure cycle starts
with the particle in state 1, which is considered when the particle is in the left well,
then the barrier is lowered during 1s and kept low for a duration, τ , in which an
external force is applied to move the particle to the right well, then the cycle is closed
by raising the height of barrier and removing the external force. The dissipated heat
is measured for a cycle and on average from many repetitions of the protocol. The
average dissipated heat as a function of the transfer duration from one well to the
other is shown in the right panel of figure 1.2 below. The Landauer’s bound is attained
for transfers performed quasistatically.
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Figure 1.2: Experimental verification of Landauer’s principle. Left
panel: Different stages of the erasure cycle. Right panel: Mean dissi-
pated heat for an erasure cycle as a function of transfer duration, τ . The
dashed line represents Landauer’s bound. Figures reproduced from ref.

[62].

Thermal engines in a regime where fluctuations domi-
nate the average behaviour

At the macroscale, the laws of thermodynamics impose important limitations for the
operation of thermal engines. Let us consider, in a very simplified way, the operation
of a combustion engine in a car. A spark causes the explosion of a given quantity
of fuel, producing a lot of energy in the form of heat. Part of the thermal energy is
transferred to the engine’s pistons, which effectuate a cycle, allowing the complex gear
system to start the car moving. But inevitably, part of the heat absorbed to do work
is transferred to the environment, which has a temperature much lower than that of
the gases used for the combustion [67]. A direct implication of the second law, just
the way Carnot expressed it, is that no engine can perform optimally, defining the
efficiency as the fraction of heat absorbed that is used to perform work. Unfailingly, a
part of that heat is released to a colder reservoir, and consequently the efficiency of any
cyclical process in a thermal machine is always less than 100%. In fact, Carnot found
that there is an optimal cyclic process for an engine that operates between two differ-
ent thermal reservoirs at different temperatures, such that no real engine can have a
greater efficiency than that of a thermal machine operating under this cycle, called the
Carnot cycle. This process consists of an isothermal expansion of the gas followed by
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an adiabatic expansion and then a closing of the cycle with an isothermal compression
followed by a adiabatic compression [68].

The prototypical simplicity of a Brownian particle in an optical trap makes it an
ideal test tool for implementing thermodynamic cycles and explore necessary aspects
involved in artificial micrometer sized heat engines, since these are not simply the
miniaturized version of the well known macroscopic heat engines [69] of the early days
of thermodynamics. At small scales, it is not straightforward to put a Brownian system
in contact with two reservoirs at different temperatures in order to extract work, how-
ever a Brownian particle moving in an asymmetric can serve as an isothermal motor,
as in the case of ratchets [36].

Figure 1.3: Stirling cycle at the microscale: (1) → (2) Isothermal in-
crease of the stiffness of the optical trapping potential (isothermal com-
pression). (2)→ (3) Instantaneous temperature increase at fixed optical
potential (isochoric process). (3) → (4) Isothermal decrease of trap
stiffness (isothermal expansion) (4) → (1) Instantaneous temperature
decrease at fixed optical potential (isochoric process). The histograms
show the measured particle probability distributions of the corresponding
stationary states. Inset: Stirling process in the pressure-volume diagram
representation, where the enclosed area amounts to the work extracted

by the machine. Reproduced from ref. [69]

A non-isothermal microscopic heat engine was realized by Blickle and Bechinger
[70]. The engine consists on a single Brownian particle confined in a optical potential
whose stiffness is time dependent. The tempperature of the surrounding fluid was "in-
stantly" changed at the different stages of the thermodynamic cycle, yielding isochoric
transformations. This was achieved by means of a second laser with a wavelength
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matching the absorption peak of water and a temperature sensitive dye. In this way,
they were capable of raising the temperature from 22◦C to 90◦C in less than 10 ms.
With the control of the stiffness of the trapping potential and the temperature of the
bath, the trapped Brownian particle was able to recreate a microscopic version of the
Stirling cycle as shown in fig. 1.3 above. An engine capable of extracting about 20kBT

from the heat bath.

Instead of abrupt changes of temperature at a give stiffness of the trap, Martinez
et al. used an external source of electrostatic noise in order to control the kinetic tem-
perature of the trapped Brownian particle [71] devised a way to mimic the effects of
a thermal bath on a trapped Brownian particle. With the simultaneous control of the
effective temperature and the trap stiffness, they were able to realize adiabatic transi-
tions within a cycle [36, 72], paving the way for a miniaturized realization of a Carnot
engine, with the Brownian particle as the working substance [73]. As expected, in an
environment dominated by thermal fluctuations, they observed that the fundamental
Carnot limit for the efficiency can be exceeded.

Today there is an increasing number of proposals and prototypes for artificial en-
gines at the micro and nanoscale, in all kind of environments [74, 75]. Thanks to the
progress of nanoscience and the tools of manipulation in biology, hybrid systems com-
bining biological and artificial systems are starting to become a reality, for example
transistors made by combining proteins, nanoparticles and quantum dots [76].

It is not yet clear how biological molecular machines are optimized, however for
the artificial small engines it is still a challenge. There are numerous novel theoretical
studies for the optimization of nonequilibrium processes at the mesoscale [44, 77–80],
especially concerning the trade-off between power fluctuations and efficiency [81, 82].
With all this progress on stochastic control and optimization, it is perhaps not absurd
to consider the feasibility of artificial heat engines that could potentially outperform
molecular motors.
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1.1 Thesis outline

In this thesis we act on a Brownian probe with conservative and nonconservative op-
tical force fields that can be integrated and modulated by means of a versatile optical
trapping setup. As discussed throughout this introduction, such system has an ex-
perimental relevance for its flexibility and good control at the micro and nanoscales
and the tractability of its theoretical model which is very advantageous to offer when
proposing simple methods to explore fundamental notions of forces and energetics.

The framework of the Langevin equation forms the backbone of this thesis, as it of-
fers the possibility to study the effects of manipulating each of its terms independently.
By means of our optical trapping setup we are able to control the external force term
and the potential term, the first with the purpose of constructing a force microscope
that would be capable of measuring chiral forces at the nanoscale and the latter for
performing optimal transformations between thermal equilibrium states. With this
introduction, the manuscript is structured in six chapters, which are outlined in the
following paragraphs.

• Chapter 2 is dedicated to the physics of optical trapping and the description of
our experimental setup. The chapter starts with a brief historical introduction on
light forces and takes a retrospective look on the early days of optical trapping.
Then presents a more rigorous description of the optical forces involved in the
trapping mechanism. An alternative configuration of the standard single-beam
trapping method is presented, such modification consists in focusing the trap-
ping laser in front of a reflective surface, creating a standing wave pattern and is
advantageous for the stable trapping of metallic nanoparticles. We detail the dif-
ferent components of the experimental setup such as the detection methods, how
we follow the dynamics of the trapped bead in real time and the interferometric
imaging system, essential for discriminating single objects from aggregates. As
in our laboratory we are particularly interested in the influence of chirality in
light-matter interactions, we have tested the capacity of our set-up to trap chiral
nanoparticles as a first step towards the selective manipulation of chiral nano-
objects. Such particles are metallic and of non-spherical, we explain the essential
considerations for trapping such objects and characterize their dynamics. We
then implement an enantiomeric recognition method based on polarimetry that
allows us to recognize which enantiomeric form of the chiral nano-object is in the
trap. This study has been published in ref. [83].

• Chapter 3 explores the potential of the standing wave optical trap as a high
resolution force microscope in presence of thermal noise. Stably trapped single
metallic nanoparticles are used as highly sensitive probes for external radiation
pressure exerted by an additional laser. This second beam acts independently of
the trapping dynamics and is modulated sinusoidally in such a way that the force
can be detected at the frequency of modulation. Potential temperature elevation
issues are carefully assessed to validate the metallic nanoparticles as optimal
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probes. Two detection methods are investigated for extracting the smallest mea-
surable force and then compared in terms of force and position resolution. The
fundamental aspects of a force measurement at the thermal limit are exposed,
emphasizing how the the measurement bandwidth is constrained by the global
stability of the setup. The work covered in this chapter has been published in
ref. [84].

• Chapter 4 deals with transformations between equilibrium states of a Brownian
particle trapped in a potential under compression and expansion, evaluating the
system from the perspective of stochastic thermodynamics. The chapter begins
with an analogy between the trapped Brownian particle and the concept of the
ideal gas in a piston. Then we explain the experimental and analytical methods
to obtain the thermodynamic quantities at the level of single trajectories and at
the level of the ensemble. Two transformation protocols and their time-reversed
counterparts are studied with the tools of stochastic energetics and fluctuation
theorems, which gives the notions necessary for the experiments studied in Chap-
ter 5.

• Chapter 5 studies the control of transformations of our Brownian system, de-
signing theoretically a strategy for optimising the dissipation and the transfer
duration on an equal footing, unveiling a universal time-energy bound that can
only be reached under optimal control conditions, such strategy is implemented
experimentally with different parameters to construct and verify such universality
curve. The chapter starts by explaining the notion of relaxation time and pro-
ceeds walks through the optimisation methodology. We situate our results with
previous works concerned with acceleration of transitions between states and op-
timization of the energetic cost. We will discuss how optimisation problems are
currently a major concern in the field of stochastic thermodynamics, especially in
the context of nano-engines that we have briefly mentioned above. These efforts
have been published in ref. [85].

• Chapter 6 concludes the thesis by putting some of the results presented in the
manuscript into perspectives with respect to the current trends in the field of
stochastic energetics.
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2 Standing wave optical trap and
chiral metallic nanostructures

2.1 Mechanical light-matter interactions

Since Kepler who suggested in the seventeenth century that comet tails were pushed
by sun emanations away from it, light has been suspected to exert mechanical forces
on material objects. More than two centuries later, Maxwell, developing the electro-
magnetic theory [86], formalized the concept of light radiation pressure. By showing
that light carries linear momentum, Maxwell simply explained radiation pressure by a
transfer of momentum ∆p = pincident − preflected between an illuminating beam of light
and a reflecting surface of given area S. Characterizing the surface by a reflectivity
R and an absorption A (assuming thus that 1 − T = R + A) illuminated at normal
incidence, the time average momentum transfer writes as

〈∆p

∆t
〉T = (2R + A)× S I

c
, (2.1)

where I is the irradiance of the light beam, in [Wm−2] units. A pictorial view of the
process is shown in Fig. 2.1, for the case of a semi-reflecting surface.

Figure 2.1: Conceptual illustration
of the change of momentum ∆p =
pin − pout of a plane wave impinging
on a surface resulting in mechanical

displacement.

The irradiance of the sun on earth’s outer at-
mosphere is ca. 1100 [Wm−2]. Equation 2.1 leads
to an exerted solar radiation pressure of ∼ 4µPa,
which compared to the atmospheric pressure, is
more than ten orders of magnitude smaller. This
point naturally led the first experimentalists de-
cided to test and measure radiation pressures to
do so by applying a radiant flux as high as possi-
ble on the smallest possible area.

The first experimental observations of such
forces were performed by P.N. Lebedev in tour-de-
force experiment (published in 1901 [87]) where he
measured, using reflecting winglets suspended on
torsional balances radiation pressure forces down
to 3 × 10−10 N with a precision better than 6%. These experiments were followed by
the ones of Nichols and Hull [88], who like Lebedev, ended up being limited by ther-
mal perturbations induced on the measurement system by the illuminating light beam,
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such as convective and radiometric effects. This is probably why these outstanding ex-
periments remained for a long time practically the only ones that managed to observe
light induced forces, until Arthur Ashkin revived the idea of observing the mechanical
interaction of light with small objects by using focalized lasers with which very high
irradiance of very small area (diffraction limited focal spots) can be reached.

The birth of optical manipulation

Ashkins’ successful attempts took place when using transparent microspheres sus-
pended in water [89]. Resorting to transparent microspheres through which light ab-
sorption is reduced was the solution proposed by Ashkin to minimize the radiometric
force. Such issues remain indeed problematic in experiments involving lasers. Shin-
ning an intense laser on a particle inevitably heats the surrounding fluid, and thereby
inevitably induces photophoretic forces that can become several orders of magnitude
stronger than radiation pressure.

These experiments led, after more than 15 years, to the observation of additional
transverse forces guiding the particles towards the beam waist [25, 90]. Such forces,
coined as gradient forces, arise from the strong electric field gradients that can be
created near the focus of a laser beam. Achieving very stable trapping through such
gradient forces generated with a single laser beam by using high NA immersion micro-
scope objectives led to considerably increasing the trapping potentialities of Ashkin’s
experiments that became capable of operating in the Rayleigh size regime. This in
particular paved the way to atom trapping and cooling experiments.

Operating mainly with such gradient force effects, so-called optical tweezers devel-
opped into powerful noninvasive tools in the fields of biology and physics. During the
last three decades, their performance has constantly improved with the aim of manipu-
lating small objects such as nanoparticles and bio-molecules. As discussed in Chapters
4 and 5, they appeared as ideal tools for testing non-equilibrium statistical physics
with a great variety of stochastic protocols that can be implemented [7].

In order to describe the forces at play in an optical tweezer, Ashkin elaborated a sim-
ple ray-optics explanation, looking at momentum exchanges between the trapping laser
beam and the particle [90]. This point of view is illustrated in figure 2.2. For a refractive
index of the particle, np, larger than the refractive index of the surrounding medium,
nm, as would be the case of a polystyrene bead (np = 1.59) immersed in water (nm =

1.33), the particle can be considered as a small lens and the beam as formed by rays
that travel with well defined directions perpendicular to the wavefronts. As rays enter
the particle, a portion gets reflected and the remaining refracted. In figure 2.2, we see
two incoming rays of wave vectors ki,1 and ki,2 refracted by a bead situated at a certain
distance from the laser focal point, refracted again with new wave vectors kf,1,kf,2 as
they exit the particle’s volume. This directional change of rays’ momenta gives rise to a
force following light momentum conservation. Physically, this force acts on the bead to
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restore axial and transverse displacements from the trapping focus. Such force has two
components, one acting in the direction of propagation, which is the scattering force,
and one normal to the direction of propagation, which corresponds the gradient force.

Figure 2.2: Qualitative view of
the momentum exchanges taking
place in an optical trap in the

regime of geometric optics.

As radiation pressure tends to push the parti-
cles along the direction of propagation, the electric
field gradient confines the particle near the focus of
the beam, giving the possibility to trap and manipu-
late objects. To enhance the latter effect and enable
stable three dimensional trapping of high refractive
index particles, Ashkin implemented a two counter-
propagating beams configuration. In this arrange-
ment, radiation pressure from both beams would be
compensated, stabilising the particle axially while be-
ing confined laterally by the gradient force. We will
describe below our standing wave trap that shares
some aspects with counter-propagating trapping beam
confugurations.

2.2 Optical forces in the dipolar approximation

Ashkin’s model is set within the regime of geometric optics where the particle diam-
eter is assumed to be much larger than the wavelength of the trapping laser (at least
10λ). Even in this regime, this simple model however fails to account for important ef-
fects that are well observed experimentally, such as multipolar resonance effects. More
rigourous approaches are available, such as Lorenz-Mie theoretical description of the
interaction between the large particle and the laser trapping beam [91]. In this context,
an important body of work has been carried out using different calculation strategies,
and numerical and computational methods. For example, a representation for the
forces on a dielectric particle has been derived by considering an explicit series of par-
tial waves [92]. Ganic and colleagues presented exact calculations based on a vectorial
theory of diffraction [93]. The group lead by Helena Rubinsztein-Dunlop developed
computational tools using the generalized Lorentz-Mie theory and the T-matrix [94]
permitting even to calculate forces on non-spherical particles[95].

Although theoretical calculations of high precision can be obtained, it is important
to keep in mind that the experiments are far from the idealized configurations assumed
in theoretical work. Many effects are intertwined experimentally within the force sig-
nals, such as thermo-hydrodynamic coupling effects, local heterogeneities within the
fluidic cell, electrostatic influence of charge stabilization of the colloidal assemblies,
etc., all making difficult a high-precision level comparison between theory and experi-
ment. This explains why, in practice, we have rather looked for an apposite framework
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within which our experiments can be physically interpreted.

This framework corresponds to the Rayleigh regime where the size of the particle
is taken sufficiently small (D � λ) so that the electric field can be considered homoge-
neous over the full volume of the particle. In such a case, the particle is described by
a dipole (or an ensemble of dipoles enclosed within the volume V of the particle [96,
97]) induced by the illuminating electromagnetic field, neglecting in the case of a not
too strong field, higher multipolar terms.

Harada and Asakura showed, in the paraxial approximation, that this approach is
very precise for cases where the radius of the particle is less than λ/20 [96]. Depsite
this, and very interestingly in the context of optical trapping, they demonstrated that
the Rayleigh regime can extend its range of validity with respect to the gradient force
term, until the size of the particle reaches a size comparable (yet smaller) to the trap-
ping laser beam waist.

Dealing with an homogeneous electromagnetic field inside the volume of the particle,
the complex dipolar moment associated with the particle can be written as p = p0e

−iωt.
It is related to the complex harmonic electric field of frequency ω through the complex
polarizability1 α(ω) and the real refractive index n(ω), p0(r) = n2αE0.

Considering monochromatic fields of angular frequency ω, such as the lasers em-
ployed in trapping experiments, E(r, t) = Re{E0(r)e−iωt}, H(r, t) = Re{H0(r)e−iωt},
the instantaneous force exerted on the electric dipole is given by the Lorentz law [99]:

F = (P · ∇)E + µ0Ṗ × H (2.2)

with P = Re{p}. From the complex fields one can introduce the quantity:

f0 = (E0 · ∇)E∗0 + E0 × (∇× E∗0) (2.3)

whose decomposition in real and imaginary parts allow to express the net force as:

Freactive =
n2

2
Re{α}Re{f0} Fdissipative = −n

2

2
Im{α} Im{f0}. (2.4)

In such expression the dissipative and reactive terms can be clearly identified. Note
that this identification turns out to be very important for interpreting many experi-
ments performed in nano-optics [48, 100–102]. In the regime of ray optics in contrast,
such a separation of force fields into conservative and dissipative components loses its
meaning.

1in most materials, given by the Clausius-Mosotti relation. In some cases a correction is supplied to
take into account the field scattered by the dipole [98]. In the adopted notation, taken from ref. [99],
the equations are valid for both cases, i.e. including or not the radiated field by the dipole.
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The interpretation of the reactive and dissipative components is straightforward
when considering an electric field, linearly polarized (such as delivered by a simple
laser). In this case, the electric field of amplitude ρ and phase φ can be expressed as
E(r) = ρ(r)eiφ(r)ŷ, so that the term f0 reduces to:

Re{f0} =
1

2
∇ρ2 Im{f0} = −ρ2∇φ.

These expressions immediately connect with the fact that the reactive force is as-
sociated with the gradient force and the dissipative part, associated with the phase
gradient, corresponds, as such, to optical radiation pressure force.

In nano-optics, optical excitation usually correspond to more complex polarization
cases, that can be framed most generally with amplitude and phase definitions given
component-by-component. Each component Ej = ρje

iφj of the electric field can now
be different with φx 6= φy 6= φz. The term f0 is now given by:

Re{f0} =
1

2
∇
∑
j

ρ2
j Im{f0} = −

∑
j

ρ2
j∇φj.

In this case, the imaginary component is expressed as a weighted average of phase
gradients, which can be seen as a generalization of a phase gradient.

Replacing the complex fields in the expression of the Lorentz force, eq.2.2 and taking
the time average gives:

〈F〉T =
n2

4
Re{α}∇||E0||2︸ ︷︷ ︸

reactive

+n2ωµ0 Im{α}(Π−
∇×ΦE

2ωµ0

)︸ ︷︷ ︸
dissipative

, (2.5)

where Π = 〈E × H〉T the time-averaged Poynting vector, ΦE = E × Ė/ω the time-
independent electric polarization ellipticity and µ0 the free-space permeability. This
leads to an interesting decomposition of the time-averaged Poynting vector in orbital
and spin parts:

Π = − 1

2ωµ0

Im{f0}︸ ︷︷ ︸
ΠO

+
1

2ωµ0

∇×ΦE︸ ︷︷ ︸
ΠS

. (2.6)

This separation shows that a non-vanishing curl of the electric ellipticity leads to inter-
preting radiation pressure as arising from ΠO and not Π. This framework highlights
the relation between the phase-gradient and the orbital energy flow responsible for ra-
diation pressure, as discussed in details in the group [99, 103].

The two contributions lead to a net force that is non-conservative. However in
situations where the gradient force is significantly stronger than radiation pressure, as
it happens in single beam traps, the force acting inside the trap can be considered as
arising from an optical potential. In this case, the motional dynamics of the particle
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inside the optical tweezer is performed within a potential energy well.

2.3 Experimental setup

We now describe the optical trap and detection methods used throughout this manuscript.
A schematized description of our trap is given in figure 2.3. Our trap consists in a single
TEM00 laser beam (Coherent OBIS LX, λ = 785nm, optically isolated using a Faraday
isolator (Newport ISO-04-780-MP), focused by a water-immersion microscope objec-
tive of 1.2 numerical aperture (NA) into a microfluidic cell containing a dispersion of
charge-stabilized Brownian dielectric spheres purchased at PolySphere GmbH.

Figure 2.3: Trapping and the two alternative detection methods, in
forward scattering and backscattering. The trapping 785 nm laser is fo-
cused in vicinity of the end-surfaces constituting the microfluidic cham-
ber, using a NA=1.2 water-immersion microscope objective. In order
to have a collimated beam slightly overfilling the back aperture of the
microscope objective, the beam is magnified 3× through a 4 − f lens

relay system not shown here. Figure adapted from [84].

Real-time displacements of the bead around the equilibrium position inside the
trapping potential are usually recorded by monitoring the intensity variations asso-
ciated with the interference pattern resulting from the coherent superposition of the
incident beam and the scattered light by the nanoparticle. More precisely, these vari-
ations of the light intensity are due to the Gouy phase changes between the incident
and scattered field related to the axial position fluctuations of the bead in the focal
region. This technique is commonly referred as Back Focal Plane (BFP) interferom-
etry since the position sensing device is placed in a plane conjugated to the BFP of
the collection objective. In our case, we exploit the reflection of the trapping laser
at the end-interface of the microfluidic cell (as discussed further down), which implies
that the trapping objective also serves as a collection objective in the reflected path.
The detector that we use in order to record precisely the intensity variations is a PIN
photodiode (Thorlabs Det10A2) of 350 MHz bandwidth.
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A 50-50 non-polarizing beam-splitter (NPBS) is placed between the PIN photodi-
ode and the trapping objective in order to send 50% of the recollected light to a CCD
camera. This allows us to visualize the trapping spot during the experiments and
perform necessary optical adjustments. The voltage generated by the PIN detector is
simultaneously sent to an acquisition card (National Instruments PCI-6251) for data
collection and to an oscilloscope that monitors the signal in real time.

In the experiments detailed in Chapters 4 and 5, the position-tracking of the trapped
bead is performed using an additional laser (wavelength at 639 nm, 70 mW, Thorlabs
laser diode) that enters the trapping volume by means of a dry microscope objective
(O2) of NA= 0.7 –see figure 2.3. A 45◦ dichroic mirror (DM) separates the scattered
639 nm beam sent to a PIN-photodiode from the reflected trapping 785 nm laser. In
this configuration, a combination of a polarizing beam-splitter cube (PBS) and a quar-
ter wave plate (λ/4) placed between the source of the 785 nm laser and the trapping
objective (O1) is used to reduce back-reflections from the microfluidic chamber (or
other optical elements) back to the laser source. Such a system yields an additional
optical isolation of approximately 20 dB to the initial optical isolation stage. With
a glass-slides composing the microfluidic chamber giving reflections of ca. 3%, such
stringent isolations are necessary in order to avoid any feedback into the diode laser.

For all the experiments, the objectives (O1 and O2) have to remain conjugated. It
is important that their relative lateral positions remain fixed, so that the only degree of
freedom is the axial relative distance between the two objectives. This corresponds to a
variable axial distance between the sample and objective O1, or equivalently between
the sample and objective O2. The three axes of the sample holder can be driven
independently by three piezo-electric actuators (Newport PZA12, travel range 12.7
mm, motion precision 30 nm) enabling lateral scanning of the sample and adjustment
of the axial distance between the trapping objective and the fluidic chamber. This
relative distance is actually controlled by a system of two coupled piezo-actuators, one
for the long range displacement and one for fine adjustments (Newport NPA50SGV6).
The latter can be operated under closed loop with a resolution of 1 nm over a travel
range of 40 µm. The axial axis of the second objective, O2, is also piezo-controlled,
with its position with respect to the sample therefore adjustable once the sample-to-
trapping objective distance is fixed. On the contrary, the trapping objective is carefully
fixed in order to maintain the alignment with the rest of the elements of the optical
path.

A standing wave optical trap

Many of our experiments are performed using an alternative arrangement of the counter-
propagating configuration proposed by Ashkin, a modification conceived by Pavel
Zemánek in 1998 [104]. This modification consists on focusing the trapping beam
on a reflective surface such that the interference between the incident and reflected
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waves creates a deep optical potential in which the particle’s motion is confined with-
out the need of high numerical aperture optics. The interference between the incident
and reflected beams results indeed in a strong reduction of the axial scattering force
that can be easily much smaller than the gradient force induced by the focusing effect
of the objective [83].

In our group, such a configuration was first implemented in combination with nanos-
tructured mirrors in order to investigate the mechanical effects of resonant and delo-
calized surface plasmons (SP) on the trapping dynamics of the trapped bead, aiming
in particular at increasing as much as possible the “trapping efficiency” (i.e. stifness
vs. trapping laser power) of the trap [105]. A standing wave configuation was also
used in order to generate bistable potentials and to study, from a thermodynamical
perspective, the dynamics of a trapped Brownian particle at the cross-over between
stable and bistable regimes [106]. In this context, inter-well stochastic synchronization
effects using external forcing have been studied by Gabriel Schnoering [107].

Figure 2.4: Pictorial view of the
standing wave potential landscape. A
small metallic bead is axially confined
by “light walls” formed by the stand-
ing wave. In such a configuration,
the Poynting vectors of the incident
and reflected beams compensate each
other in such a way that the trans-
verse confinement is merely ensured

by the gradient force.

Assuming that the reflected wave only differs
by amplitude and phase from the incident wave,
the axial component of the gradient force can be
approximated as [104]:

Fgrad(z, r) = −4α

πc

P

w2
ρe−2r2w2

sin(φ), (2.7)

using a Gaussian beam in the paraxial approxima-
tion, with r =

√
x2 + y2 the radial coordinate, w

the beam waist, ρ the amplitude of Fresnel reflec-
tion coefficient of the surface, P the total beam
power, and α the (dipolar) polarizability of the
trapped bead. In the vicinity of the mirror the
phase factor can be simplified to φ ' 2kz + ψ,
with ψ the phase shift added to the wave after the
reflection on the surface. Stable equilibrium positions occur at φ = 2πl, with l an
integer, at which the particles will be trapped in the antinodes lλ/2 − ψ/2k of the
standing wave pattern separated by λ/2. In these antinodes, the radial component of
the gradient force is almost 4 times stronger than for the case of a highly focused single
beam trap for the same intensity. The radial position of the maximal radial component
is localized in the same position as for a single-beam trap.

This configuration proves to be very efficient for trapping metallic nanoparticles.
As discussed below and in Chapter 3, this is an important asset of our trapping con-
figuration. It is indeed difficult to achieve three-dimensional stable optical trapping
of large metallic nanoparticles (i.e., radii larger than 50 nm) in fluids using standard
laser intensity conditions [108–110]. This difficulty remains a strong limitation de-
spite the potential offered by metallic nanoparticles, in particular in the context of
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biophysics, nanosensing, and spectroscopy. In a standing wave configuration, single
metallic nanoparticles turn out to be axially confined in the anti-nodes of the standing
wave pattern, and the transverse immobilization ensured by the gradient force that en-
tirely determines the trapping stability due to the compensation between the Poynting
vectors between the incident and reflected beams.

We finally stress that the high reflecting surface used to create the standing wave
optical trap requires a strong attenuation of the back-reflected beam at least of 6
orders of magnitude [107]. In addition therefore to the PBS-λ/4 plate combination, an
additional optical isolation stage is incorporated which consists of a Faraday isolator
(Newport ISO-04-780-MP) placed right at the exit of the laser, ensuring a 30-38 dB
level of isolation.

Microfluidic cell

In our experiments, we have always used colloidal dispersions of dielectric or metallic
nanoparticles in deionized water in order to increase the screening length and avoid
formation of aggregates.

The dispersion, deposited on a microscope glass slide sealed using a cover glass
with an adhesive spacer (Invitrogen SecureSeal imaging spacers) of 120µm thickness.
This fluidic cell chamber is then fixed to a vertical sample holder integrated in the setup.

The fact that the microfluidic cell can be made either using a microscope slide or a
0◦ dichroic mirror gives to our setup a interesting versatility. Indeed, depending on the
choice of the reflecting surface, the trapping laser can either be transmitted (forming
a single-beam trap) or reflected for a standing-wave trap configuration. The single-
beam mode is used for trapping micron sized dielectric particles while, as discussed
above, the standing-wave trap is important when aiming for a stable trap for large
metallic nanoparticles. In this case, the mirror is dip-coated for ca. 5 min in a 5% wt
polystyrene sulfonate solution in order to reduce electrostatic interactions between the
metallic particles and the mirror.

For the experiments presetend below in this chapter or in Chapter 3, we use a 0◦

dichroic mirror (Thorlabs FM01R) highly reflective (99.4 %) at the trapping wavelength
(785 nm) while transparent (93.5%) for an auxiliary laser beam of wavelength 639 nm
and an additional imaging laser at 594 nm (in this case, a transparency of 94.9%).

2.3.1 Interferometric imaging

The variety of nanoobjects, dielectric or metallic, involved in our experiments demands
a good capacity in diagnosing what is falls and eventually what is stabilized in the op-
tical trap. But obviously, objects whose sizes lie below the diffraction limit cannot
be resolved precisely. For tackling this issue, we resort to an interferometric imaging
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strategy that has been proposed and developped by the group of Vahid Sandoghdar.
This technique is known as Interferometric Scattering Microscopy (abbreviated iSCAT
or ISM). In [111], they implemented an iSCAT approach and demonstrated the local-
ization of gold nanoparticles of 5 nm radius. After this first implementation, a series
of variations based on the same methodology have been proposed [112]. Today, iSCAT
has has been applied in many contexts, from investigating viruses and DNA to quan-
tum dots and metallic nanoparticles [112] proving its efficacy and adaptability. For
instance, an interferometric scattering mass spectrometry iSCAMS have been imple-
mented [113], giving an unexpected and striking illustration of the value of the method.

Figure 2.5: iSCAT mechanism: When illuminating a suspension of
nanoparticles in an acqueous solution, a fraction of the scattered field Es
travels back in the opposite direction of the incident field and interferes
with the reflection at the glass/water interface. The image on the right
shows an iSCAT image of a very concentrated solution of polystyrene

microparticles.

The iSCAT idea is to detect an illuminated single nanoobject by means of an
interference between the field it scatters and a reference field, given by the reflection
of the incident illuminating beam on a glass/water interface as -schematized in figure
2.5. The approach offers a label-free detection of objects in the fluid against a bright
background. Let us consider a spherical scatterer of radius R. The response of this
object to the incident field of intensity Ei is Es = sEi, with s = |s|eiϕs the scattering
amplitude, proportional in the Rayleigh regime (i.e. when R� λ/2π) to the complex
polarizability of the nanoparticle:

α(λ) = εm(λ)
4πR3

3

εNP (λ)− εm(λ)

εNP (λ) + εm(λ)
(2.8)

with λ the wavelength of the incident field ,εNP the complex dielectric function of the
nanoparticle, and εm of the surrounding medium (in our case, water).

As one immediately notices, the scattering intensity Is = |Es|2 ∝ α2|Ei|2 drops
with V 2 ∝ R6. Taking into account the reflection Er = rEi of the incident beam at
the interface with a reflection amplitude r = |r|eiϕr , the intensity at the detector will
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be given by the superposition of the scattered and the reflected light:

IISM = η|Er + Es|2 = η(|r|2 + |s|2 + 2|r||s| sinϕ)|Ei|2, (2.9)

where η = η(λ) is the detection efficiency, and ϕ containing the phase difference ϕr−ϕs
between the interfering fields.

When the object is very small, Is becomes negligible. The cross-term stemming
from the interference between Es and Er then determines the ISM signal:

IISM = ηIr(1− 2
|s|
|r|

sinϕ), (2.10)

with a contrast with respect to the reflected intensity written as [114]:

IISM
Ir

= 1− 2|r||s| sinϕ
|r|2

(2.11)

In this case, the particle appears as a dark spot on top of a constant bright back-
ground. In practice, this background is not homogeneous since the ISM signal also
reveals all impurities, roughness, etc., present on the surface of the sample. Note that
it is possible to remove the background IISM−Ir in order to improve the contrast [112],
as IISM − Ir. Finally, ISM signals are quite insensitive to spurious reflections along the
optical path, because these have amplitudes smaller than the signal from the reflection
of the sample.

In order to setup a interferometric scattering microscopy within our optical trap,
we used the dichroic mirror described above as the bottom mirror of the fluidic cell
and injected a third laser (Excelsior, Spectra Physics, λ =594 nm, 50mW) into the
cell, as depicted in figure 2.6. The beam enters the fluidic chamber colinearly with the
trapping beam, but in the opposite direction of propagation. Prior to this step, the
beam passes through a beam expander and subsequently through a plano-convex lens
(L1) in order to be focused at the back focal plane of objective O2. This enabled the
beam to propagate through the sample as a plane wave and to illuminate a sufficiently
wide area (several hundred of µm2) around the object, or equivalently along the axis of
the trapping beam. As mentioned previously, a portion of the beam is reflected at the
glass/water (or dichroic mirror/water) interface and interferes with the back-scattered
light by the objects in the fluid. The sample image is formed on a CCD camera placed
in a conjugate plane formed using a tube lens (L2).
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Figure 2.6: Optical illumination set-up (not to scale.) An additional
plane wave counterpropagating the trapping laser gets reflected at the
water/glass interface, and back-scattered by the nanoparticles in the
fluidic chamber, the scattered and reflected beam interfere forming an
image on a camera situated on a conjugate plane of the back focal plane

of objective O2. Figure adapted from reference [83].

Once installed, the ISM line constitutes an important tool for diagnosing the quality
of colloidal (both dielectric and metallic –see below) dispersions, and for determining
the nature of the trapped object in the trap volume, as well as counting how many
objects are in the trapping volume. It helps us in determining the diffusive properties
related to the sizes of all small objects dispersed in the fluid through (i) the shape of
the imaged spot and its contrast, and (ii) through the blinking dynamics of the image
on the CCD video, which strongly depends on the size of the object. Small objects,
with large average diffusion rates, will span the phase ϕ through diffusion more rapidly
than larger ones. Importantly for the experiments, ISM allows us to scan through the
sample in order to assess the quality of dispersion and select the object to be trapped
relatively fast. To rapidly trap any particle, one can adjust the relative distance or
trap strength to catch the particle, according to its image in the camera, or conversely
move the trap away when there are objects approaching once a single particle is already
trapped. Therefore, one can work at very low NP concentrations without having to
wait hours to catch the particle of choice. One can simply scan across the sample
until finding the diffusing object with the expected characteristics that will therefore
be trapped by simply switching on the trapping laser.

2.4 Brownian dynamics of a trapped spherical bead

Objects held in optical potentials have typically sizes ranging from 10 nm to 10 µm.
Such objects, suspended in a fluid, undergo a perpetual random motion (Brownian
motion) due to the collisions with the fluid molecules. To describe the interplay of
forces acting on Brownian particles, a convenient approach is to use the fact that
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in the region near equilibrium, the interaction between the particle and the optical
trap can be approximated by a harmonic potential, where the particle is confined and
oscillates with an amplitude that depends on the thermal energy kBT and the trap
stiffness κ. This noise driven motion of a bead in a harmonic potential is described by
a Langevin equation:

mẍ(t) + γẋ(t) + κx(t) = Fth(t), (2.12)

where κx(t) is the restoring force of the trap, γẋ(t), the force due to the viscous fric-
tion. The drag coefficient is given by the Stokes law, γ = 6πρνR, for a spherical
particle of radius R placed far from any wall, immersed in a fluid of density ρ and
kinematic viscosity ν. In the case for a polystyrene particle of radius R = 0.5µm in
water at room temperature, ρ = 997.86kg m−3, ν = 0.89× 10−6m2 s−1 the Stokes drag
is γ = 8.39× 10−9kg s−1.

The term Fth(t) =
√

2kBTγη(t) is the Langevin thermal force that describes the
effect of stochastic collisions between the particle and the fluid molecules. In water at
room temperature, these collisions occur in very short time scales, τ ∼ 10−12 s. During
a characteristic time of the motion of the bead, a large number of stochastic kicks take
place and the total effect can be modeled with a delta-correlated Gaussian noise,

〈η(t)〉 = 0 〈η(t)η(t′)〉 = δ(t− t′) (2.13)

where the average 〈· · · 〉 taken over many realizations of the Gaussian process.

The first term of the l.h.s. of equation 2.12 is the inertial contribution, where
m is the mass of the bead. In a typical optical trap that immobilizes a polystyrene
bead of radius R = 0.5 µm in water at room temperature, the inertial term can
safely neglected since the characteristic decay time of the kinetic energy due to friction
τv = m/γ ∼ 10−7s is, at least, four orders of magnitude shorter than the relaxation
time for positions τx = γ/κ ∼ 10−3 s. This scaling τv � τx corresponds to the over-
damped limit (low Reynolds number) for Equation 2.12. A typical time series of the
positions of a polystyrene microsphere of radius R = 0.5 µm confined in a trap of
stiffness κ = 18 pN/µm is displayed in figure 2.7 below.

Introducing the trap characteristic frequency as fc = κ/(2πγ) and the Einstein
relation for the diffusion coefficient D = kBT/γ, the equation of overdamped motion
can be written as:

ẋ(t) + 2πfcx(t) =
√

2Dη(t). (2.14)

The cut-off frequency, fc characterises the spectral cross-over between the low-frequency
confined dynamics and the high-frequency free Brownian diffusion. It is therefore useful
to determine how the position fluctuations are distributed over the different frequen-
cies. This information can be retrieved by computing the power spectral density (PSD),
which is basically the Fourier transform of the auto-correlation function of the position
signal x(t).
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To compute analytically the PSD of the time trace of the position fluctuations, we
first compute Fourier transform of eq. 2.14,

2πγ(fc − if)x̂[f ] = F̂th[f ]

with x̂[f ] =
∫ +∞
−∞ x(t)e−2iπftdt. Then, we take the square modulus 2|x̂[f ]|2 = Sx[f ],

with the one-sided PSD of positions given by:

Sx[f ] =
|F̂Th[f ]|2

4π2γ2(f 2
c + f 2)

=
D

π2(f 2
c + f 2)

, (2.15)

taking the value for the thermal fluctuations PSD STh[f ] = |F̂Th[f ]|2 = 4γkBT fixed
by the fluctuation-dissipation theorem [3, 115].

The spectral density for the position noise is therefore a Lorentzian with a low-
frequency plateau fixed at STh[f ]/κ2. At higher frequencies, the PSD falls as 1/f 2, the
frequency dependency of free Brownian diffusion.

Figure 2.7: Left panel: Extract of the temporal trace of the positions
of a trapped polystyrene microsphere of radius 0.5 µm along the optical
axis corresponding at x = 0. Right panel: The corresponding ccupation

histogram of positions.

Experimentally, we deal with a discrete time series of voltage values recorded using
the PIN-photodiode. These values are proportional to the displacement of the bead.
We fit the Lorentzian PSD L = Dex/(π2(f 2

ex + f 2)) with two free parameters Dex and
f 2
ex from which we extract the PSD roll-off frequency fc, hence the trap stiffness κ and
the diffusion coefficient. Given in arbitrary voltage units, these values are compared to
the value D = kBT/γ expected from the known properties of the fluid. This leads to
define the conversion factor between voltages (in volts units) and spatial displacements
(in meters) of the bead inside the trap. This is one of the advantages of this calibration
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method based on the PSD where no prior calibration of the detection system itself is
needed. The PSD for the time series plotted in figure 2.7 is displayed in figure 2.8,
where the cutoff frequency is found to be fc = 340Hz which corresponds to a stiffness
of 18 pN/µm.

Figure 2.8: The power spectrum of a trapped polystyrene microsphere
of radius 0.5 µm is shown in blue, superposed to a the power spectrum of
the noise floor in grey, taken without a bead in the trap. The solid orange
line shows the Lorentzian fit, the cutoff frequency obtained from the fit
is fc = 340Hz and the conversion factor from volts to meters is 6.89 ×
10−7 m/V. One can observe two regimes, in the low frequency regime,
before the cut-off frequency fc represents the position flucutations of the
bead confined in the trapping potential, at higher frequencies we observe
the free Brownian motion spectral beahviour f2. The bottom PSD (in

grey) corresponds to the experimental noise floor.

The separation of time scales between the degrees of freedom of the bath and the
degrees of freedom of the particle allows to have a well defined temperature of the
system. Under such thermalized conditions, the distribution of positions ρ(x(t)) of the
particle in the tweezers can be described by Boltzmann statistics:

ρ(x) = Z−1e−U(x)/kBT (2.16)

where U(x) corresponds to the harmonic potential inside which the Brownian bead
moves and Z =

∫ +∞
−∞ eU(x)/kBTdx is the partition function of the system. The probability

density function (PDF) of positions is obtained simply by building, throughout the time
series, an histogram of occupied positions as presented in panel (b) of figure 2.7. As
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clearly seen, the probability density is a Gaussian which width is given by the stiffness

ρ(x) =
1√

2πσ2
x

e−x
2/2σ2

x σ2
x = 〈x2〉 =

kBT

κ
, (2.17)

as expected from the equipartition theorem. The trapping potential can be recon-
structed from the PDF, up to a constant (kBT lnZ):

U(x) = kBT ln(ρ(x)), (2.18)

where a quadratic fit can be used to extract the trap stiffness. The experimental
occupation histogram in figure 2.7 shows the Gaussian character of the PDF.

2.5 Trapping single chiral nanoparticles

As an illustration of the asset of our optical trap configuration, we present now exper-
iments that optically trapped single metallic (gold) chiral nanopyramids (NPy). Such
experiments rely on specific features of our setup, capable to operate in a standing
wave configuration for stable trapping of metallic nanoparticles with the open nature
of the trapping cavity (i.e. an optical access offered in the fluidic cell by the use of
a 0◦ dichroic mirror) that allows the incorporation of additional laser beams inter-
vening in the trapping volume without affecting the trapping dynamics. It appears
cleary through these experimental results that the combination of the standing wave
configuration of the trap with the interferometric imaging diversifies and expands the
capacities of the setup to trap in well-controlled conditions metallic nanoobjects with
more complex shapes, in particular chiral ones, that actually very difficult, if not im-
possible, to trap using standard single-beam traps. In addition, our setup allows to
recognize precisley the type of trapped object by implementing and combining an in-
terferometric scattering microscopy together with, using a third laser acting as a weak
probe for circular dichroic scattering, a polarization analysis that enable us to perform
an in situ recognition of the enantiomeric form of the trapped chiral NPy.

As we now discuss, trapping single chiral objects lead to carry new physical dis-
cussions grounded on fundamental concepts, which are at the core of many current
debates and discussions like the conservation law of optical chirality or the notion of
chiral scattering. Remarkably, these discussions lead to turning operational such con-
cepts in the experimental study of chiral matter at the nanoscale, as exemplified in our
use of chiral symmetries in the context of optical trapping. In particular, invoking the
conservation law of optical chirality [116] enables a new experimental development for
single-particle enantiomeric recognition. The results that we now present have been
made possible by collaborating with the Optical Materials Engineering Laboratory of
Prof. David J. Norris at ETH-Zurich, in particular with Lisa V. Poulikakos during her
PhD thesis.
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2.5.1 Complex chiral colloids

Outstanding anisotropic etching techniques mastered in D.J. Norris’ laboratory at
ETH-Zürich resulted in the fabrication of three-dimensional chiral nanostructures of
pyramidal shape, with specific handedness depending on the choice of high-index off-
cut silicon wafers [117]. Scanning Electron Microscope images are displayed in figure
2.9. The sharp-edges of such complex structures exhibit intense chiral near fields that
are more twisted than circularly polarized light, as studied in [118]. Such “twisted”
near fields correspond to now coined superchiral near fields. Remarkably, such chiral
nanostructures have strong chiroptical signatures as revealed in their extremely strong
circular dichroism (CDpeaked at 639 nm, as seen on the CD spectra given on figure 2.9.

These colloidal chiral nanopyramids (NPys) are obviously apposite systems for
our experiments and we prepared, with the help of Lisa V. Poulikakos, enantiomer-
ically pure dispersions of gold chiral NPy colloids in charge-stabilized solutions using
trisodium citrate buffer at a pH of 7.32. The choice of the buffer leads to a dispersion
of chiral NPys of typical sizes of 150 nm. The CD spectra clearly show on figure 2.9 a
sign inversion between two NPy dispersions of opposite handedness.

Figure 2.9: Circular dichroism (CD) spectra measured through a 1 cm
thick cuvette for right-handed (red) and left-handed (blue) enantiomer-
ically pure NPy dispersions. The dashed line represents the wavelength
of the probe laser used in our experiment (see below). The correspond-
ing SEM images of the NPys, taken directly after lift-off, are displayed
as insets for the left-handed (left upper corner) and right-handed (right
lower corner) NPys. The scale bars correspond 500 nm. Reproduced

from ref. [83].

2.5.2 Trapping single chiral nanopyramids

In order to trap these NPys, our trap, schematized in figure 2.10, uses a standing wave
configuration where the circularly polarized TEM00 785 nm trapping beam (power 45
mW) is focused in the microfluidic chamber by a water immersion objective (60×,
1.2 NA) and then reflected by a 0◦ dichroic mirror placed at a distance ca. 2 µm
from the beam waist. The trapping dynamics is monitored in three dimensions: the
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back-reflected light (on-optical axis motion) is recorded by a PIN-photodiode and the
instantaneous transverse and axial motions of the trapped NPy are recorded using a
quadrant photodiode (QPD).

In order to reduce electrostatic attraction that lead to unwanted adhesion of the
NPys on the walls of the fluidic cell, we negatively charge both the dichroic end-mirror
by dip-coating it for 5 min in a 5 % wt., and the NPys by diluting the colloidal
dispersion within a citrate buffer solution. Despite this, the quality of the dispersion
degrades over time, and the NPys start forming aggregates so that, after a certain time,
no single NPy is left available for trapping. This puts a constraint on the available
time for repeated experiments on different trapped objects that must be accounted for
when doing our experiments. By their sizes, the aggregates are actually more prone
to be trapped. In order to discriminate between a cluster of NPys and a single NPy,
we use the Interferometric Scattering Microscopy (ISM) signal. There, the phase-
dependent blinking dynamics of an ISM image strongly depends on the size of the
object. For the sake of experimental reproducibility, we only keep trapped objects
which blinking dynamics corresponds to the closest possible to the diffusive dynamics
found by observing through the ISM compartively sized 150 nm Au nanospheres.

Figure 2.10: Schematics of the standing wave optical trap (SWOT),
consisting in a circularly polarized TEM00 beam from a 785 nm diode-
laser (power 45 mW, Excelsior) sent into a water immersion objective
(60×, 1.2 NA) and focused in a water cell (deionized water, 120 µm
thick). The beam is reflected by a dichroic mirror placed at a distance
ca. 3 µm from the beam waist, creating a standing wave pattern within
which a single NPy can be trapped. A low-power laser beam of 15 µW
(594 nm, 50 mW, Excelsior, Spectra Physics) is focused at the back focal
plane of an objective (NA 0.6, 40×) behind the SWOT dichroic end-
mirror, transparent at 594 nm. This allows to have the laser beam almost
like a plane wave between the two objectives. A fraction of this beam is
scattered back at the mirror/water interface and another fraction from
the NPy trapped in the fluid. The interference between these scattered
beams is imaged back on a CCD camera by a tube lens. Adapted from

[83].

A single chiral NPy has very specific scattering signatures, when freely diffusing
and when optically trapped. Stable trapping of single NPys in three dimensions is
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demonstrated in figure 2.11, where the Gaussian histogram of the axial position fluc-
tuations shows the good confinement of the NPy. The power spectral densities (PSD)
acquired for 36 seconds along the three spatial dimensions show almost the Lorentzian
shape associated with a harmonic trapping potential. A Lorentzian fit for each PSD
shows that above the roll-off frequencies, they precisely match the f−2 signature of
the free Brownian motion. However, in the lower frequency ranges, below the roll-off
frequency, broadly distributed correlations are observed with a power law Sz[f ] ∝ fα

deviating from to the expected Lorentzian plateau kBT/γπ
2. This is observed most

notably in the axial PSD. The exponent α slightly depends on the position of the end-
mirror with respect to the waist of the trapping beam. In the case shown in figure 2.11
the exponent is α ∼ −0.49 and is the largest measured. Curiously, this exponent takes
place in the best trapping conditions of the standing wave optical trap. Because it
lies below the 1/f noise spectral signature, we attribute this deviation to the peculiar
geometry of the NPys, with uneven facets, diffusing within a limited trap volume [83].
This observation deserves to be investigated in details, for it opens new questions on
the influence of (chiral) geometries in the context of optical trapping.

Figure 2.11: (a) The intensity histogram of positions along the opti-
cal axis shows a Gaussian like distribution. (b–d) Axial and transverse
power spectral densities (PSD) of a trapped chiral NPy, acquired for
duration of 36 s and averaged 8×. The continuous purple curves rep-
resent, for each case, the best Lorentzian fits. The red line shows the
best fit of the on-axis data on the low frequency part of the spectrum
(from 1 to 200 Hz). Its linear scaling is characterized by a slope of 0.49.

Reproduced from [83]
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2.5.3 Dissipation of optical chirality and recognition protocol

Once the NPy is stably trapped, the open character of our trap allows for a far-field po-
larization analysis of the signal scattered by a probe beam illuminating the NPy inside
the trapping volume. This leads to define a recognition protocol of the enantiomeric
form of the trapped NPy, as we now explain.

This protocol can be understood as a consequence of the conservation law of optical
chirality [116]. As discussed by Lisa Poulikakos et al., a lossy, dispersive chiral object
upon a non-chiral excitation selectively dissipates optical chirality and must therefore
break, in the scattering, the initial balance in left vs right circular polarizations of the
excitation field. This unbalanced scattering is determined in direct relation with the
chiral nature of the scattering object, hence its enantiomeric form. We note that this
law of conservation is directly related to the concept of "Circular Dichroism Differ-
ential Scattering" proposed earlier by Tinoco Jr. and Bustamante in the context of
chiroptical molecular studies [119].

It is interesting to discuss the nature of the conservation law of optical chirality in
connection with the Poynting’s theorem that describes the conservation of energy in
a lossy, dispersive medium. For time average harmonic complex fields (as defined in
Section 1.2), the conservation law writes as [116, 120]:

−2ω

∫
V

Im{we − wm}dV +

∫
S

Re{Π · n̂}dA = 0, (2.19)

where the first integral is taken over a volume V surrounding the medium and the sec-
ond over the surface S enclosing the volume (with a elementary surface term A), and
where n̂ the unit vector normal to the surface. The harmonic electric and magnetic
energy densities are we = 1

4
(E ·D∗) and wm = 1

4
(B ·H∗) respectively. The imaginary

term therefore quantifies how much energy is dissipated inside the volume which cor-
responds to an output energy flux given by the Poynting vector Π = E × H∗. We
remind that ∇× E = iωB and ∇×H = −iωD for harmonic complex fields (electric
displacement D and complex magnetic induction B).

Akin to the Poynting’s theorem, it was noted very long ago by D.M. Lipkin [121]
and more recently by Y. Tang and A.E. Cohen [122] that the optical chirality of an
electromagnetic field could be measured by a local chiral density and a local chiral
flux that are both related through a conservation law similar to the energetic one. In
strict analogy with the Poynting’s theorem, L.V. Poulikakos proposed to quantify the
amount of optical chirality that can be dissipated in a chiral lossy, dispersive object by
the generation of a non-zero chiral flux, following the law [116]:

−2ω

∫
V

Im{Ke −Km}dV +

∫
S

Re{Φ · n̂}dA, (2.20)
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where the complex electric and magnetic chirality densities write as:

Ke =
1

8
[D∗ · (∇× E) + E · (∇×D∗)] (2.21)

Km =
1

8
[H∗ · (∇×B) + B · (∇×H∗)]. (2.22)

Quoting Y. Tang and A.E. Cohen, such quantities “embody the geometrical picture that
in a chiral field, the field lines wrap around a central axis, but also have a component
parallel to that axis” [116, 122]. The optical chirality flux is written as:

Φ =
1

4
[E× (∇×H∗)−H∗ × (∇× E)]. (2.23)

The implication of this law is that the dissipation of optical chirality Im{Ke−Km}
translates into the generation of a non-zero chirality flux Φ that corresponds to a
far-field quantity, and as such easily measurable. It turns out, as expected, that this
quantity is simply related to the third component of the Stokes vector S3 measuring the
balance in left vs. right circular polarization in the polarization state of the scattered
field. Our recognition strategy will be based on the fact that the optical chirality flux
becomes easily accessible through polarization analysis intensity measurements, consid-
ering that the sign of the balance is strictly dependent on the enantiomeric-dependent
selective dissipation of left and right circularly polarized light in the chiral scatter, as
described by the conservation law of optical chirality. This is simply summarized in
figure 2.12 – reproduced from [118] – which describes schematically a chiral scattering
mechanism. Upon achiral excitation using a linearly polarized field (in other words, a
field that combines equal weights of left and right circular polarization) a lossy, dis-
persive chiral material will selective dissipate chirality in its scattering, breaking in the
far-field the circular polarization balance. This is directly quantified by measuring the
S3 Stokes vector.
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Figure 2.12: A chiral structure (a hand, e.g.) made of a homoge-
neous isotropic lossy dispersive medium is excited with vertically polar-
ized light. As linear polarization is an equal superposition of left- and
right-handed circular polarization, the incoming optical chirality flux is
zero. If the structure then selectively dissipates optical chirality of one
handedness, a nonzero outgoing optical chirality flux must be generated.
In this case, the only chiral light contained in the scattered field is due

to the structure. Figure reproduced from ref. [118].

2.5.4 Chiral scattering by metallic nanopyramids

In order to describe the chiral scattering properties of a chiral nanopyramids, let us
use a Jones matrix representation. In the paraxial approximation, the Jones matrix is
a simple 2 × 2 matrix which structure for a 3D chiral object is known and described
in details in [123]. For instance, in the basis of circularly polarized states (σL, σR), the
Jones matrix of the + enantiomer can be written as:

J+ =

(
α γ

γe2iθ β

)
, (2.24)

where the diagonal elements (α, β) represent the “circular dichroic” strength of the NPy
and the off-diagonal elements correspond to the fact that the NPy takes a preferential
orientation inside the trap as depicted in fig. 2.13, where the base-to-tip axis of the
NPy forms an angle θ/2 with respect to the x-axis. We observe indeed experimentally
on the ISM images that each NPy adopts a stable averaged position inside the trap
which corresponds to the scheme of Fig. 2.13 inside the trap.
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Figure 2.13: Schematics explaining the structure of the Jones matrices
that can be associated with the NPy enantiomers. Due to its slight
pyramidal anisotropy of shape, the + enantiomer is immobilized inside
the optical trap in a preferred direction that makes an angle θ/2 with
the x-axis of the optical axis −z. The Jones matrix of the - enantiomer

is deduced by mirror symmetry.

In this simple Jones formalism, the mirror symmetry operation that exchanges the
+ enantiomer into its − mirror image writes as [123]:

Πθ =

(
0 e−iθ

e−iθ 0

)
(2.25)

for an in-plane symmetry axis making an angle θ/2 with respect to the x-direction.
The enantiomeric exchange from + to − enantiomer is then described by:

J− = Πθ · J+ · Π−1
θ =

(
β γ

γe2iθ α

)
. (2.26)

This formalism enables us to write directly the scattered field as φ±sca = J±φin
depending on which eneatiomeric for is optically trapped inside the trap. Following the
law of conservation of optical chirality [116], such a lossy, dispersive NPy will selectively
dissipate optical chirality of one handedness more than the other, hence breaking in
the scattered field the initial L vs. R balance of polarization of the illuminating beam.
As a consequence, a non-zero chirality flux will be generated. The important point
is that this balance breaking can be directly measured as the third component of the
Stokes vector of the scattered field [116]. In our experiments, it is rather the total field
φ±tot = φin + φ±sca that we have access to, and the third Stokes parameter associated to
it can be written as:

S±3 = 〈|φ±tot|2L − |φ±tot|2R〉. (2.27)

In order to evaluate the parameter, we start by assuming rotational invariance of the
chiral optical responses of the NPy. This corresponds to a reasonable angular averaging
process over the different orientations that can be exposed due to the faceted structure
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of the NPys will being trapped and diffusing inside the trap. With such angular
averaging, the enantiomeric Jones matrices become diagonal with:

J+ =

(
α 0

0 β

)
(2.28)

J− =

(
β 0

0 α

)
. (2.29)

In this case the Stokes parameter normalized to 〈|φin|2〉 is:

S+
3 = (α− β) +

1

2
(α2 − β2) = −S−3 . (2.30)

The chiral recognition process relies on the global sign inversion related to the ±
nature of the enantiomer. The first term of Eq. (2.30) stems from the interference
between the incident field and the scattered field. Since φ±sca is enantioselectively al-
tered, the interfering term is proportional to the relative difference ±(α−β) and hence
to the circular dichroism of the single ± enantiomer. This term actually corresponds
to the concpet of “CD Differential Scaterring” introduced in [119]. The second term
±(α2−β2)/2 represents the chiral field directly scattered by the trapped NPy. As such,
it measures the optical chirality flux, in agreement with the prediction that optical chi-
rality flux of opposite sign is generated by chiral objects of opposite handedness [124].
The recognition efficiency of our protocol relies in the global sign inversion of S3 de-
pending on the optically trapped ± enantiomer. For our experiments performed in the
visible range, the NPys, with their pockets and tips, behave as weak light scatterers.
This implies that |φin/φ

±
sca| � 1 so that the recognition essentially operates through

the dominant CD contribution.

Experimentally, in addition to the 785 nm trapping laser, we insert a second laser,
linearly (vertically) polarized acting as φin, inside the trap volume co-linearly with the
trapping beam. This laser is slightly focused behind the trap, but to avoid exerting any
force on the trapped NPy, its power is kept as low as possible (100 µW) with respect to
the polarization analysis (see below). To maximize the selective dissipation of optical
chirality (α−β) with respect to handedness, this second laser is tuned to the CD maxi-
mum of the NPy at 639 nm, see Fig. ??. With a dichroic end-mirror, our configuration
ensures that the 785 nm laser is reflected, creating the SWOT, while the 639 nm laser
is perfectly transmitted by the mirror. In this way, we are able to perform the S3 po-
larization analysis behind the trap volume by collecting, through an imaging objective
(NA 0.6, 40×), the light transmitted and scattered in the forward direction by the NPy.

The interference signal φ±tot is then sent to a photodetector through a polarization
analysis stage made of a quarter-wave plate at 45◦, followed by a half-wave plate, and
a Wollaston prism. The quater-wave plate converts the unbalanced beam φ±tot into a
superposition of horizontal |H〉 and vertical |V 〉 polarization states and the Wollas-
ton prism separates spatially the two linear orthogonal |H〉 , |V 〉 states into two beams
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with a diverging angle of 20◦. The intensities of these two channels are measured by
a balanced photodetector (New Focus Balanced Photoreceiver Model 2307) and then
substracted. The S3 = 〈IH − IV 〉 values are measured by a fast oscilloscope, averaging
over an acquisition time of δt = 50µs.

Once the polarization analysis is performed, the NPy is released from the trap by
blocking the trapping laser and the trap is re-opened after ca. 1 min in order to catch
a new NPy which is, in turn, analyzed in the same way. This procedure is repeated
on two different dispersions of opposite enantiomers prepared in identical fluidic cells
(identical dichroic mirrors and cover glasses) in the same way (stabilization and con-
centration). The two samples are analyzed in a sequential manner, following the same
polarization preparation and analysis. One advantage of our experimental protocol us-
ing a Wollaston prism is that the optical settings (and in particular polarization optics)
are left untouched when interchanging the fluidic cells. The measurements performed
for each cell are repeated three times for validity for each + and − enantiomers. The
single NPy trapping condition is carefully verified each time with the ISM method, and
only the scattering intensities and imaging signatures corresponding to the smallest,
thus single, objects are measured.

2.5.5 In-situ recognition experimental results

The results are gathered in Fig. 2.14. The averaged values (S+
3 = −39 ± 4 mV and

S−3 = 28 ± 6 mV) clearly show that the + and − enantiomeric signals can be distin-
guished through the polarization analysis. The reproducibility of the S3 measurements
for different NPys trapped from one given dispersion and within the same optical land-
scape suggests a constant equilibrium position of the NPys inside the optical trap.
Despite this, the recorded values do not display the exact sign inversion in the S3

component between the two enantiomers expected from Eq. (??). As discussed below
in more details, we explain this from (i) the fact that the NPys adopt a preferred
orientation inside the optical trap, and (ii) from residual alignment errors in the po-
larization preparation and analysis stages. These effects only offset the S±3 values by
the same constant quantity, independently from the enantiomeric form. Therefore, the
meaningful quantity to monitor is the difference ∆S3 = S+

3 − S−3 = −67 ± 10 mV for
which the deviation from zero directly measures the NPy’s preferential dissipation of
incident left- or right-handed circularly polarized light, i.e. the NPy circular dichroism
∝ (α− β).
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Figure 2.14: S3 Stokes measurements for two dispersions of chiral NPys
of opposite handedness. The red bars correspond to different chiral right
+ NPy labeled from 1 to 3 while the blue bars are three different left ‚àí
enantiomers. Errors, given by the lighter top of each bar, represent the
standard deviation in measuring the S3 parameter of each trapped NPy.
The signal clearly exhibits nonoverlapping intensity differences between
the ± enantiomers. We use a fast oscilloscope to measure all S3 values,
averaging over an acquisition time of δt = 50µs. Each measurement
sequence for a given dispersion is performed in less than 15 min, and the
entire comparative study was shorter than 30 min. These requirements
are important in order to avoid fluidic drifts and NPy aggregation to

affect the stability of the setup. Reproduced from [83].

Orientational issues

As emphasized above, describing the Jones matrices associated with each enantiomeric
form of the NPys with the simple circular dichroism (CD) matrices given in Eq. (2.29)
actually amounts to assuming some kind of rotational invariance of the chiral opti-
cal responses. This condition leads to the usual optical activity transmission matrices
found for instance for isotropic chiral media such as molecular solutions. But at the
single chiral object level, ISM images revealed that NPys take a preferred orientation
inside the optical trap due to their pyramidal shapes. In such conditions, one loses
rotational invariance, and the Jones matrices are no longer diagonal but rather deter-
mined by Eq. (2.24). With such matrices, we evaluate the time-averaged intensity
S±3 = 〈|φ±tot|2L − |φ±tot|2R〉 component of the Stokes vector associated with the total field
φ±tot = φin + J±φin. To first order in (α, β), we then evaluate

S+
3 = (α− β) + ∂ (2.31)

S−3 = (β − α) + ∂, (2.32)

showing an additional constant contribution ∂ = γ (1− cos(2θ)) with respect to the
simple CD case presented above in Eq. (2.30). This contribution however is consistent
with our data that do not show the perfect sign inversion expected from this simple
CD case, stressing that it is indeed the difference ∆S3 = S+

3 − S−3 which is meaningful
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in the context of optical trapped chiral objects.

Such evaluations of the Stokes vectors rely on one main assumption: the enan-
tiomers are structural mirror images from each other, with (α, β, γ)+ = (α, β, γ)−.
This assumption cannot be absolutely true but we have indications that it is reasonable.
First, as far as the α, β parameters are concerned, it is reasonable from the opposite
profiles of the CD spectra associated with each enantiomers -see Fig. 2.9. Then, it is
also reasonable from the relatively small variations in the three successive S3 measure-
ment obtained for each ± enantiomers. Considering the reliability of the fabrication
process of the NPys, in particular from an enantiomorphic point of view, the small
variations observed when trapping both ± NPys imply that (α, β, γ)+ ∼ (α, β, γ)−.

Potential impact of polarization errors

Finally, we evaluate the potential errors introduced by slight misalignements of the
polarization optics in the preparation and analysis sequences of the recognition exper-
iments.

Our polarimetry takes the advantage of using a Wollaston prism that analyzes left
vs. right handed circular polarized σ+, σ− states through a mere intensity balanced
detection. It hence avoids having to manipulate and rotate any wave plate during the
analysis. For an empty trap, the half-wave plate (λ/2) placed before the prism (but
after the collection objective, as shown in Fig. 2.15) is adjusted to precisely compensate
slight misalignments between the prism and the balanced detector. When set, the λ/2
wave plate yields zero in the balanced detection for an linearly polarized input state
and absolute maximum (minimum) for σ+ (σ−). In the analysis sequence therefore,
the main source of errors, however very small, will come from the alignment of the fast
axis of the quarter-wave plate (λ/4).
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Figure 2.15: Polarization preparation and analysis sequences involved
in the enantiomeric recognition protocol. The 45◦ dichroic mirror allows
injecting inside the trap the 639 nm laser. This laser is scattered at the
waist of the trapping beam by the NPy enantiomer and hence serves as
the polarization probe. The preparation sequence is insured by the first
half-wave plate (λ/2) and we treat the 45◦ dichroic mirror - λ/2 wave
plate as a phase retarding wave plate. The analysis involves a second
half-wave plate (λ/2 behind the collection objective O2) and a quarter-
wave plate (λ/4) which fast axes are respectively set to π/2 + θλ/2 and

π/4 + θλ/4.

In the preparation sequence in contrast, the presence of a 45◦ dichroic mirror (DM
in Fig. 2.15) induces polarization errors that have to be discussed carefully. Because
the reflection amplitudes for s and p polarizations are different on DM, we use a mo-
torized half-wave plate to set the input linear polarization of the 639 nm laser normal
to the plane of incidence of the beam on the 45◦ dichroic mirror, i.e. as close to the
vertical y axis as possible (see frame on Fig. 2.15). This corresponds to an orientation
of the field ϑ = π/2 + δ of the half-wave plate fast axis, but with an unavoidable small
offset δ. Then, in order to keep the discussion of polarization errors general, we simply
model the λ/2-DM system as a general phase retarding wave plate with J̃(π/2+δ, η, ϕ),
where η is the relative phase retardation between the fast and slow axes, and ϕ the
circular retardance (following the conventions of [125]).

The polarization analysis sequence can then be written in a straightforward way.
We start with the incident field φin linearly polarized, first sent through the half-wave
plate-DM system as φ̃in = J̃(π/2 + δ, η, ϕ)φin. This field then illuminates the chiral
sample inside the trap and is transmitted as φ̃±tot = φ̃in + J±φ̃in. As explained in the
main text, we measure the S±3 parameters from a balanced detection of intensities ∆I

in the horizontal |H〉 and vertical |V 〉 states of polarization after the Wollaston prism.
This balanced detection yields:

∆I = |〈H|Jλ
4
(π/4 + θλ/4) · Jλ

2
(π/2 + θλ/2)|φ̃±tot〉|2 (2.33)

−|〈V |Jλ
4
(π/4 + θλ/4) · Jλ

2
(π/2 + θλ/2)|φ̃±tot〉|2,

where Jλ
4
(π/4 + θλ/4) and Jλ

2
(π/2 + θλ/2) are the Jones matrices associated with the
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analysis quarter- and half-wave plates. They include in θλ/4 and θλ/2 small deviations
from the perfect π/4 and π/2 orientations of the fast axes.

Due to these deviations and the λ/2-DM system, we are confronted to a residual
contribution δI from the direct transmission that is not perfectly canceled in the bal-
anced detection. This residual contribution can be expanded to second order in the
errors as

δI ∼ −2(8δηθλ/4θλ/2 − 4θλ/4θλ/2 + δη) (2.34)

This additive term, which does not depend on the enantiomeric form of the NPy,
therefore acts exactly on the same level as the orientational effect discussed above: it
forbids to measure the expected exact sign inversion between the S+

3 and S−3 parame-
ters. But as discussed above, it can be eliminated by measuring the difference in the
Stokes parameters for the two enantiomers. From the polarization analysis point of
view, this difference then only depends on the relative orientation of the wave plates.
The difference can be derived at the second-order in potential polarization misalign-
ment errors (and at the first order in the (α, β) chiral response) as:

S+
3 − S−3 ∼ (α− β) ·

(
1 + 8θλ/4θλ/2

)
. (2.35)

We emphasize that the (π/4, π/2) orientations of the fast axes of the analysis
quarter- and half-wave plates are actually the best controlled parameters of the en-
tire polarimetric protocol. This implies that the angular deviations (θλ/4, θλ/2) are
much too small to change the overall sign of the S+

3 − S−3 difference. We can hence
safely conclude that this difference is robust to polarization errors both in the prepa-
ration and in the analysis sequences, providing for that reason a reliable observable for
recognizing the two different NPy enantiomers.

2.6 Conclusion and perspectives

These experiments illustrate well the versatility of our optical trap, constructed on a
standing wave configuration. Such a configuration has enabled us (i) to stably trap chi-
ral shaped metallic nanopyramids of 150 nm size, (ii) to monitor these sub-wavelength
particles during the whole experiments and controlling their number and sizes inside
the trap volume using an built-in interferometric imaging microscopy, and (iii) to per-
form polarimetry analysis that led to a capacity for in situ chiral recognition of such
single nanopyramids exploiting the law of conservation of optical chirality.

Considering the few remarkable experiments that have been performed at the mi-
crometer scale [126, 127] or with two-dimensional objects [124, 128], our demonstration
of stable optical trapping of single chiral nano-objects in three-dimensions is an impor-
tant step in the development of new experimental methods for controlling and manip-
ulating chiral nano-objects [129]. The concomitant capacity of our optical tweezer for
in situ chiral recognition gives the possibility to perform chiroptical studies on single
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artificial chiral objects at the nanometer scales with an unprecedented level of control.
In fact, such experiments take an important step towards the possibility to selectively
manipulate chiral matter via new modes of actuations. A strong drive for us towards
these experiments is the perspective of revealing and exploiting chiral optical forces
at the nanoscale. There is indeed a high expectation that chiral optical forces could
constitute an alternative and viable strategy for chiral mechanical separation [103, 130,
131]. In this context, our setup appears in an optimal position. As we will discuss in the
next Chapter, our optical trap can also turn into a high-resolution force measurement
microscope. Such a combination of possibilities gathered around a single setup gives
promissing oppotunities for assessing the applicative potential of all-optical strategies
in the vast and cross-disciplinary realm of chirality.
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3 Thermally limited force microscopy
in an optical trap

3.1 Introduction

The experiments presented in this Chapter can be read as the continuous effort, initi-
ated in the previous Chapter, towards measuring chiral optical forces at the nanoscale.
Such forces, as already emphasized, are notoriously weak: optimistic predictions give
forces at the fN level involving "strongly chiral" artificial objects [103]). Moreover,
they are usually superimposed to non-chiral conventional optical forces, such as radia-
tion pressure, which are expected to dominate, by ca. 2 orders of magnitude. In such
conditions, and besides the capacity to optically trap single chiral nanoobjects, it is
also important to assess the potential of our setup for measuring weak force signals,
and to this aim devising the most efficient force detection strategies.

In this Chapter therefore, we will discuss in detail the limitations put by thermal
fluctuations, first on the force sensitivity, and then on the best force resolution level that
one can reach in our standing wave trap configuration. These discussions are common in
the context of weak force measurement experiments. For instance for micromechanical
systems, such as Atomic Force Microscopes (AFM), it is important to optimize the
mechanical properties of the probe (such as an AFM cantilever) in order to reduce the
drag acting on it as much as possible. In such case indeed, the fundamental limit put
on the minimal detectable force is set by the coupling to the external bath. Using
nanoresonators in ultra-high vacuum conditions, the optomechanics community has
achieved force resolutions at the zeptonewton (i.e. 10−21 N) level [132]. In liquids at
room temperature, where drag effects are important, the group of F. Capasso reached
a subfemtonewton (i.e. < 10−15 N) resolution level using a Total Internal Reflection
Force microscope (TIRF) [133, 134]. This work draws an interesting relation between
the TIRF expected sensitivity and the resolution level that actually made us realize
how important a global stability test of the entire experiment setup is, in order to fix
the appropriate measurement bandwidth, as discussed further down.
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3.2 Optically trapped Brownian motion under exter-
nal forcing

Figure 3.1: Thermal position fluctua-
tions z(t) of the trapped bead under the
influence of an external sinusoidal force

Fext(t).

For an optically trapped bead in a harmonic
potential and on which is exerted an external
(radiation pressure, e.g.) force field Fext(t),
the Langevin equation (in the overdamped
regime) writes as:

γż(t) + κz(t) = Fth(t) + Fext(t), (3.1)

where z(t) is the instantaneous position of a
trapped nanoparticle, ż(t) its time derivative,
γ = 6πηR is the Stokes drag built on the dy-
namical viscosity of water at room tempera-
ture (η ∼ 10−3 Pa/s) and the radius R of the

trapped bead. The trapping force κz(t) stems from a harmonic potential. Fth is the
fluctuating thermal force whose magnitude is related to the dissipative drag coefficient
γ as a result of the fluctuation-dissipation theorem (FDT):

Fth =
√

2kBTγη(t) (3.2)

that ensures thermodynamic equilibrium. Molecular collisions are assumed to happen
in times much shorter than the relaxation time of positions, and described effectively
by a Gaussian stochastic process η(t) uncorrelated in time. Given the large number
of successive impacts that compensate on average, the process η(t) is characterized by
the following properties:

〈η(t)〉 = 0 〈η(t′)η(t)〉 = δ(t′ − t).

The thermal force is not affected by the trapping potential since this latter does not
change the properties of the fluid, however the thermal fluctuations of the bead in the
trap are constrained by the stiffness. Assuming a harmonic potential the variance of
the position noise is given by equipartition, σ2

x = kBT/κ.

At thermal equilibrium, when no other sources are present, the bead dynamics
within the trap is entirely driven by the thermal force (Fext = 0), in this case, the
Fourier transform of the Langevin equation, ẑ(f) = χ(f)F̂th[f ], leads to define the
mechanical susceptibility:

χ[f ] =
1

κ− i2πγf
(3.3)

which measures the spectral response of the Brownian system. Using the FDT that
relates the power spectral density of the thermal noise to the friction term of the
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mechanical susceptibility [135]:

Sth(f) = |F̂th(f)|2 = −kBT

πf
Im

(
1

χ[f ]

)
(3.4)

leads to F̂th(f) =
√

2kBTγη̂(f).

The motional PSD describes how the power is distributed among the different
frequency components. Usually, one works over an interval of positive frequencies
0 < f < +∞, hence evaluating the one-sided PSD [136]:

Sz(f) = |ẑ(f)|2 + |ẑ(−f)|2.

Since the process z(t) is real, the two parts are equal, and we write

Sz(f) = 2|ẑ(f)|2. (3.5)

The corresponding one-sided PSD has a simple Lorentzian shape:

Sz[f ] =
kBT

γπ2(f 2 + f 2
T )

=
D

π2(f 2 + f 2
T )

(3.6)

where we have introduced the diffusion coefficient given by the Einstein relation:
D = kBT/γ. The roll-off frequency fT depends on the ratio of the stiffness of the
potential κ and the dissipative term γ through fT = κ

2πγ
. This roll-frequency separates

two regimes of diffusion. For frequencies f < fT , the PSD is constant to a plateau
value Sz(f < fT ) = 4γkBT/κ

2 that characterizes Brownian fluctuations of the particle
confined by the potential. For higher frequencies (f > fT ), i.e. for shorter times than
γ/κ, the particle essentially does not see the effect of the harmonic potential and be-
haves as a free Brownian particle, with a typical PSD decrease following a 1/f 2 law.
From this, one concludes that in the lower frequency range of the PSD, the trapped
bead acts as a mechanical low-pass filter of cut-off frequency equal to fT , where higher
frequency spurious signals do not contaminate the particle’s motional dynamics at long
times.

We now want to evaluate the response of the trapped bead, when added to the
stochastic mechanical action exerted by the surrounding bath on the trapped bead, an
external source perturbs its dynamics. More precisely, we are interested in the influence
of external radiation pressure pushing the bead along the trapping potential but being
exerted in a completely independent way from the trap. The action of this force is
designed to be harmonically modulated at a fixed frequency f0 as:

Fext(t) = FDC + FAC cos(2πf0t) (3.7)

To be considered as a genuinely independent action, the beam exerting external
radiation pressure has to fulfill a few conditions:
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• The external radiation pressure is exerted independently of the trapping force,
and does not perturb the trapping dynamics. We will see in the next section that
such force can be induced using a weakly focalized beam that does not trap the
bead.

• The radiation pressure force field is uniform within the whole trapping volume in
such a way that its action on the probe is not position dependent and thus the
detected radiation pressure is not modulated by the Brownian diffusion of the
bead itself within the trapping volume. This conditions is not obviously met in
other recent experiments, see [133] for instance.

• The action of the sinusoidal Fdrive on the bead is uncorrelated from the thermal
noise. This will allow us to superpose the two PSD contributions

Sdz (f) = Sth
z (f) + Sdrive

z (f), (3.8)

where Sth
z (f) gives the PSD associated with the thermal position fluctuations of

the bead in the trap, and Sdrive
z (f) the contribution to the motional PSD Sdz (f)

of the sinusoidal forcing.

Assuming that the response of the bead to the external radiation pressure is linear, the
Langevin equation taking into account the external force is:

γż(t) + κz(t) = Fth(t) + Fext(t). (3.9)

In our experiments, the instantaneous position of the bead z(t) is measured using a
p-i-n photodiode (see Chapter 2) which signal is sent through a low-noise pre-amplifier
in which a high pass filter is set at 0.03 Hz to remove the DC force contribution. As
derived in Appendix A, the one-sided PSD of the bead evaluated from Eq. 3.9 is given
by:

Sdz (f) =
1

(f 2 + f 2
T )

[D
π2

+
F 2

AC

8π2γ2
δ(f − f0)

]
(3.10)

where the Dirac peak contribution at f0 = 43333 Hz corresponds to the harmonic
modulation. We emphasize that we have carefully verified the sinusoidal nature of the
modulation signal of the radiation pressure laser beam intensity. In such condition, the
signature of the external harmonic drive is directly observed as a peak superimposed
on the motional PSD at the modulation frequency f0, as clearly seen in 3.2. Such a
clear emergence of the force peak is a consequence of the fact that the beam exerting
the external force does not perturb the trapping dynamics. In this figure, the large
peak amplitude measured corresponds to a modulation ratio of Imod/Istatic = 0.3 with
a PSD measured from a motional temporal trace integrated over 10 s at a sampling
rate of 1 MHz.
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Figure 3.2: Experimental one-sided PSD acquired over τopt = 10 s at
1 MHz is shown in the main panel. From the Lorentzian fit, shown as a
solid line, we extract the best-fitted roll-off frequency fT = 8 kHz and a
calibration factor β = 1.2×10−7 m/V. Inset: The Allan deviation σz(τ)
of a trapped gold nanosphere without external drive. The black solid

line has a slope of −1/2 which corresponds to white noise.

The effect of the filtered-out DC component is to shift the minimum of the potential
along the optical axis. The bead ends up fluctuating around the shifted minimum
within an effective attractive potential schematized in figure 3.3. On top of the thermal
fluctuations, the motion of the bead under the influence of FAC is as if it were virtually
pushed and pulled sinusoidally at a frequency f0 around the new effective equilibrium
position.

Figure 3.3: Simplified energy landscape of the trapped nanosphere
under the influence of an external oscillating radiation pressure force,

including both DC and AC force components.
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The coupling to the bath will determine the force detection limits of our optical
trap envisioned as a force microscope. We will now specifically address the problem
of defining the force resolution of our setup, by presenting our experimental approach
that led us to measure radiation pressure at the fN resolution level.

3.3 Qualifying the setup as a force microscope

As stressed above, our force microscope is designed in such a way that external ra-
diation pressure can be injected independently from the trap and detected by the
nanoparticle. We use gold nanospheres of radius R = 75 nm (BBI Solutions) that yield
large extinction cross-sections for the wavelength of the laser exerting radiation pres-
sure, λP = 639 nm. The large extinction cross-sections make such nanospheres highly
sensitive probes to external radiation pressure, exhibiting large displacements inside
the trap volume even at low radiation pressure laser powers. The size was chosen in
order to have a good compromise between extinction cross-sections and the reduction
of the Stokes drag γ = 6πηR. Considering that the thermal noise depends only on the
temperature and the drag, this choice of a small radius will increase the sensitivity of
our setup, as we will discuss further below.

In the previous Chapter we have seen that large gold nanoparticles are rather diffi-
cult to stably trap using conventional laser tweezers, we have thus resorted to our stand-
ing wave configuration, in which the nanospheres can be immobilized in the antinodes
of the standing wave pattern. The end-mirror is a 0◦ dichroic mirror which reflects the
trapping laser (λT = 785 nm) and transmits the beam exerting the external radiation
pressure, which we call the pushing laser, (λP = 639 nm). This latter enters collinearly
with the trapping laser but propagates in the opposite direction.

Whereas the trapping beam overfills the water immersion microscope objective
(NA 1.2, ×100), the pushing laser does not fill the entrance pupil of the corresponding
objective (NA 0.7, ×0.7) and hence is only weakly focused in order to avoid any gradient
force that would, if induced, perturb the trapping dynamics. In such a configuration
the external force field is uniform within the trapping volume, so that the second point
rose above –i.e. no Brownian modulation of the measured radiation pressure- is insured.
This allows to operate the force microscope in the dynamic mode, where the intensity
of the force signal is harmonically modulated and thereby detected at the modulation
frequency f0. With therefore a power of the pushing laser sinusoidally driven around
a mean value 〈P 〉t as:

PP = 〈P 〉t + Pmod cos 2πf0t, (3.11)

the resulting harmonic force takes the form:

Fext(t) = FDC + FAC cos(2πf0t) (3.12)
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with FDC being proportional to 〈P 〉2t and FAC to P 2
mod. The experimental configuration

used to implement this scheme is described in figure 3.5. The pushing beam entering
behind the dichroic mirror of the fluidic cell is delivered by a linearly polarized laser
diode at 639 nm (Thorlabs LP639-SF70). The power of the pushing laser is controlled
by a function generator (Agilent Technologies 33220A) which generates a sinusoidal
waveform with a computer controlled frequency and amplitude. The function genera-
tor also sends the output to a lock-in amplifier to serve as reference for this alternative
detection (see below for more details).

The advantage of our sinusoidal modulation with respect to other periodic modula-
tions such as square functions, used for instance in ref. [137] or by employing a chopper,
as in ref. [133], is that no harmonics are present after the main peak, not even at high
modulation strengths, as clearly observed in figure 3.2 that display only the harmonic
peak alone associated with the excitation, without any odd harmonics.

Figure 3.4: The force microscope

The recording of the instantaneous position of the gold nanosphere is made on
the light scattered by the particle, collected back into the trapping objective and sent
by means of a polarizing beam-splitter (PBS) to a fast p-i-n photodiode (Thorlabs
Det10A). Importantly, a 650-nm high-pass filter (HPF) is added in the path in order
to prevent any contamination of the scattered signal by the pushing beam. Prior to
the photodiode a nonpolarizing beam splitter (NPBS) divides the signal and send a
fraction of it to a CCD camera that allows real-time video monitoring the trapping spot.

The photodiode detected signal, is passed through a low-noise pre-amplifier with
high pass filter set at 0.03 Hz, hence removing the DC contribution. The signal is then
sent to both a 16-bit acquisition card (National Instruments NI-6251) and a lock-in
amplifier (Stanford Research SR830).

3.3.1 Measurement Bandwidth

In weak force measurements, it is crucially important to identify the limited stability
of the experimental setup in standard conditions in order to put an upper bound on
the available measurement time. This fixes the available measurement bandwidth, and
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thus the level of resolution that can be ultimately reached by the setup.

Despite being housed and acoustically/vibrationally isolated, the interferometric
nature of our trap makes it very sensitive to all external perturbations: besides in-
trinsic Brownian noise, our system is subject to other natural noises, air currents,
evaporation in the cell, acoustic vibrations, electrical noise in the acquisition chain. In
this case, one can expect deviations from the true measure of the position that are
statistically not well behaved, for example, the presence of Flicker-like (1/f) noise.
Such sources of non-stationarity will lead to deviations that cannot be evaluated with
conventional statistical tools.

It is therefore very important to be able to determine our optimal data acquisition
time τopt beyond which the various sources of noise have eventually drifted the entire
setup out of the thermodynamic response given by Eq. 3.6 [138].

As discussed in details in a recent work in the group [139], the stability of the en-
tire setup can be carefully assessed using an Allan variance-based analysis. This type
of analysis gives unambiguous indications of the relevant timescales over which the
system is only driven by thermal (Gaussian) noise and those above which it becomes
dominated by other noise sources or detrimental drift effects.

The Allan variance is obtained by subsampling a long time trace and can be com-
puted as [107, 139, 140]:

σ2
z(τ) =

{ 1∑
i=0

[z((i+ 1)τ)− z(iτ)

τ

]2

− 1

2

[ 1∑
i=0

z((i+ 1)τ)− z(iτ)

τ

]2}
(3.13)

which monitors the evolution of the difference taken between successive means of the
trapped bead position z(t) separated by a time interval τ .

The inset of Fig. 3.2 shows the result for the Allan deviation σz(τ) calculated on
a trapped gold nanosphere without external drive. For time delays shorter than 0.1 s,
σz(τ) has a slope of 1/2 this indicates that the system is dominated by thermal noise
[140]. For longer timescales, one can observe a slight departure from the thermally
driven dynamics of the bead appears, system is subject to drift. At 10 s, it usually
ranges between 1.2 and 2 depending on the trapped Au NP and its distance to the end
mirror. At this transition, the departure still follows a thermal noise spectrum, imply-
ing thus that the system can be considered stable. At longer time delays, it clearly
appears that the system is dominated by drift effects and clearly not thermally limited
anymore.

This analysis gives us a simple criterion for choosing the optimal bandwidth at
which a measurement can be performed when aiming at resolving the minimal force
at the thermal limit. In our experiments, this limited bandwidth turns out to be ca.
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∆fopt = 0.1 Hz. Beyond such limit, it is not possible to average a large number of
measurements repeated for long acquisition times to increase the experimental sensi-
tivity. This clearly contrasts with the naive view of an optical trap as a "no-drift"
system for which one thinks possible to subsample a (very) long tracking sequence into
many PSDs that are eventually averaged. Beyond the thermal limit, such procedure
can lead to increasing errors in the measured force. As it is seen on the Allan deviation,
one position measurement performed over 1 s. is already not solely thermally driven.
Averaging our signal acquired over 10 s. as 10× 1 s. will necessarily add non-thermal
noise observed at 1 s. The ratio between the signal measured and the thermal floor
due to other noise contributions being comparable between 1 and 10 s., errors would
simply be 10× larger on the averaged position dynamics than for a single measurement
of 10 s. In our case therefore, averaging the PSD cannot provide any improvement in
the force measurement.

3.3.2 Power spectrum calibration and extraction of the force
peak

The p-i-n photodiode provides a voltage, the power spectrum associated to this signal,
SI(f) has units of V/

√
Hz, a Lorentzian fit of the form, eq. 3.6, taken without the in-

terval where the force peak lies and starting at 10 Hz, provides the best fitted values for
D and fT . The value D is calibrated to the diffusion coefficient DFDT = κBT/γ, given
by the fluctuation-dissipation theorem, assuming the known properties of the fluid,
T, γ. The conversion factor from photodiode volts to meters is given by β = DFDT/D,
consequently the calibrated PSD is obtained as Sz(f) = β2SI(f).

The procedure to extract the peak in the spectrum due to FAC is the following.
Once the power spectrum is acquired and the Lorentzian fit is performed, one can
localize the peak, and substract the thermal contribution:

D

π2(f 2 + f 2
T )
. (3.14)

One is then left with the value Sz(f0) around f0. In practice, the spectral density of
the peak is distributed over a finite frequency range ∆fAC which is approximately 0.4
Hz and centered at f0. The peak is therefore the sum of all the spectral contributions
Ii within this frequency range ∆fAC, I =

∑
i Ii. The peak has to also be calibrated as

I = β2I. The force sensitivity is given by :

FAC =
√

8π2γ2I(f 2
0 + f 2

T ) (3.15)

As shown in figure 3.2, the PSD is an extremely erratic function, at each frequency
there are various points which consist in independent events distributed as a Gaussian,
the standard deviation of the power spectral density equals its value σz(f) = Sz(f).
However, averaging the PSD necessarily reduces the frequency band- width because
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each signal series involved in the averaging is measured on a shorter timescale. As a
consequence of this reduction in bandwidth, the width of the peak associated with the
external modulated force is increased and its height is reduced. This implies that the
improvement associated with the reduction of the PSD variance is lost when the peak
is measured at a smaller bandwidth.

Taking the minimal measurable peak spectral density Imin as one standard devia-
tion σz[f ] of the PSD, the sensitivity of the optical force microscope is expected to be
thermally limited at

√
8π2γ2σz[f ] (f 2

0 + f 2
T ) which equals 2

√
2kBTγ, using the property

that for a continuous response driven by Gaussian white noise: σz(f) = Sz(f). As ex-
pected therefore with Gaussian white noise, the thermal force sensitivity depends only
on the fluid properties and the radius of the NP via the Stokes drag, as for an AFM,
where reducing dissipation sources is a key target to increase resolution [141]. In this
respect, the possibility for trapping a Au nanoparticle of radius R = 75 nm is a good
compromise between the

√
R dependence of the Stokes-drag contribution, which must

be reduced as much as possible to increase the thermally limited force sensitivity, and
the R3 dependence of the absorption cross section, which determines the strength of
the radiation pressure.

In practice, starting with large FAC values, one first measures over the optimal
bandwidth ∆fopt the ac force signal at fopt through a high peak spectral intensity
I � σz(f). Figure 3.7 (a) gathers such force measurements obtained with a single
trapped Au nanoparticle for a relatively large optical modulation ratio. We stress that
all f0 peak spectral intensities Sz(f) are measured from a PSD (or with a lock- in
amplifier, as discussed below) acquired with a bandwidth of fopt = 0.1 Hz, hence at
noise levels similar to the noise level of the PSD shown in Fig. 3.2.

Reducing the optical modulation ratio, one faces a relative increase of unavoidable
noise (thermal, external, vibrations, etc.) with respect to the force signal. This noise
contribution is analyzed through Allan-deviation analysis. After 10 s, this deviation
(seen in the inset in Fig. 2) reaches, at worst, twice the thermal contribution. This
sets the optimal experimental sensitivity to 2 × (2

√
2kBTγ) = 9.2 fN/

√
Hz for our

experimental conditions (single Au NP, radius 75 nm, trapped in water at room tem-
perature). This sensitivity is valid only for experiments with timescale shorter than
τopt.

3.3.3 Lock-in detection

Another advantage of the sinusoidal forcing is the use of a lock-in amplifier for the de-
tection of the position of the particle. Lock-in amplifiers are instruments typically used
in experiments when it is desired to detect a signal in the presence of overwhelming
noise, such system measures the amplitude and phase when the device under test is
probed by a pure periodic signal by combining methods of time and frequency domains.
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The algorithm consists on sending the input noisy signal and the reference into a
frequency mixer, in our particular case, a function generator emits a sinusoidal voltage
V (t) that controls the pushing laser and simultaneously is sent to the lock-in amplifier
as a reference Vref(t) = V (t), the resulting modulated pushing beam is injected into the
force microscope where is probed by the trapped gold nanoparticle. The temporal trace
of the position is detected by a p-i-n photodiode which in turn sends a voltage Vsig(t) to
the lock-in amplifier. We have seen that Vsig(t) contains is proportional to the thermal
position fluctuations of the bead in the trap and contains also the influence of the
sinusoidal pushing. Prior to lock-in detection Vsig(t) is sent to a low-noise preamplifier
and and high-pass filtered with a cut-off frequency set at 0.03 Hz to remove the DC
component.

Figure 3.5: Lock-in detection method

The signal mixing consists in multipling the two inputs Vref(t) and Vsig(t):

Vref(t)Vsig(t) = R cos(2πft+ θ) cos(2πft) (3.16)

which in the frequency domain will appear as a peak at twice the frequency, 2f , and
outputs the voltage of such peak.

The voltage values provided by the lock-in have to be calibrated by means of the
self-calibrated Power Spectral Density, since both detection methods provide values
proportional to Sdz (f0). For a single drive frequency, f0 the modulation amplitude is
set to a high value and then progressively lowered, in this regime of strong drive, the
linearity of the lock-in output signal is calibrated to the linearity of the power spectral
intensity peak at f0 measured from the PSD and converted, as FAC, to newtons.

The lock-in amplifier can be modeled as a Lorentzian band-pass filter centered at the
modulation frequency, and a narrow spectral bandwidth set by the Allan variance. Such
that the position noise becomes δz =

√
∆fSdz (f0). For sufficiently high modulation

frequencies, this mode of operations shifts the resolution threshold away from the 1/f

noise contribution. The position noise determines the thermally limited resolution of
the force.
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3.3.4 Heating effects

Because the trap stiffness κT , directly proportional to the field intensity, depends on
the viscosity η(T ), it is clear that a wrong estimation of the fluid temperature can have
dramatic implications on calibrating the setup and measuring forces. Optical powers
at the waists of tightly focused light beams can reach significant levels (of the order
of MW/cm2), and metallic objects are subject to strong elevations of temperature,
around 1500 K/W for Au NPs of 150 nm at λT . This would correspond for our exper-
iments to an increase in temperature of ca. 40 K which gives, for water, a change in
viscosity by a factor two. In order to check, and if necessary, estimate such unwanted
thermal contributions, we varied the trapping beam intensity for different Au NPs sta-
bly trapped, and at different mirror-waist distances (see Supplementary Material, Sec.
B). No deviations to linearity for trap stiffnesses as a function of the laser power were
observed, suggesting a constant surrounding viscosity for all trapping laser intensities.
Importantly therefore, heating of the trapped Au NP in our system, if present, has a
negligible impact in calibrating the setup and measuring an external force.

The temperature elevation at the surface of the metallic sphere under laser irradia-
tion can be estimated considering its size R and absorption cross-section σabs as well as
the water thermal conductivity ks and the irradiance I using the following expression:

∆T =
σabsI

4πksR
. (3.17)

Such effect has been measured experimentally looking, for instance, at trap stiffness
variations, shift of the localized plasmon resonances or thermal damaging of a sup-
porting membrane. These experiments provide a value of thermal elevation of ca. 500
K/W for Au spheres of 100 nm under a Gaussian illumination at wavelength 1064 nm.
These values are in relatively good agreement with Eq. (3.17).

Adjusting this value for our 150 nm spheres illuminated at 785 nm provides temper-
ature elevations over 1500 K/W, which corresponds, considering the ∼25 mW of our
laser, an increase of 40 K. The viscosity of water η = η(T ) being strongly dependent
on temperature variations, this increase is expected to give a factor 2 change in the
viscosity -η(T = 300 K) = 0.85 and η(T = 340 K) = 0.42- that necessarily would alter
our external force estimation by the same factor.

But such a change is not observed in our experiments. We carefully checked this by
varying, through a rotating optical density, the trapping laser power for single Au NPs
(150 nm) trapped at different distances from the mirror. As clearly seen in Fig. 3.6,
the roll-off frequencies for all trapping conditions follow a linear behavior. Considering
that the trap stiffness κT = 12π2η(T )RfT is assumed to be directly proportional to
the trapping laser intensity, this linear dependence shows that the viscosity η(T ) of
water inside the trap remains constant throughout the variations of intensity. We can
therefore conclude that no significant thermal effect is at play on the dynamics of the
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trapped object.

This a priori surprising results hints towards the complex patterns for stable trap-
ping of spherical Au NP in a standing-wave optical trap. In our experiments, and
in order to be consistent with this thermal result, one must imagine that the NP is
trapped slightly aside from field intensity maxima. Our system appears analogous to
a cage with optical walls along the optical axis, preventing the NP to cross anti-nodes
of the interference pattern, while being maintained laterally from the residual gradient
contributions.

Figure 3.6: Evolution of the trap stiffness with incident trapping laser
powers depicted for 4 different Au spheres of 150 nm and at different
stable trapping positions. Regardless of the mirror-waist distances, the
trap stiffnesses, while different, increase linearly with increasing laser
power. The behavior is expected when the drag term γ is constant
which in our case depends only the viscosity of the fluid and therefore
temperature. This verifies that the potential heating of the trapped NPs
remains low enough as to not induce any significant variations of the
surrounding viscosity. The second top line is offset by -1000 Hz to ease
readability. The red dashed line (24.5 mW) corresponds to the trapping

laser intensity which is used in experiments.

Finally, no changes were observed in the trap stiffness with the external DC force
present. The external pushing field is a few orders of magnitude weaker than the
trapping beam and does not induce changes in the fluid properties despite its higher
absorption cross-section.

3.4 Force measurements

We now present in Fig. 3.7 optical force measurements done over ∆fopt. The measure-
ments are performed at the modulation frequency f0 = 43 333 Hz and displayed as a
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function of the ratio between the modulation of the pushing-beam amplitude Imod set
by the function generator and the static pressure contribution Istatic. They are done
with both the lock-in amplifier and the PSD, measuring the intensity peaks on the
PSD plot (pink crosses) with the relevant spectral bins populated by the external force
and distributed over ∆fAC. The force, as expected, varies linearly (blue shade in Fig.
3.7) with the pushing-laser modulation intensity.

Figure 3.7: Evolution of the force measured by the intensity peak on
the PSD (blue circles) and by the lock-in amplifier (pink crosses) at the
modulation frequency f0 =43 kHz, as a function of the modulated push-
ing beam amplitude controlled by the function generator. The linearity
of measured forces with modulation amplitudes is apparent and quan-
tified by an uncertainty interval (a deviation to linearity to ±1σ) on
the whole measurement series shown as a shaded blue area. Dark and
light grey shaded areas represent one and two thermal forces of Fth and
2×Fth, respectively, at the chosen bandwidth ∆fopt = 0.1 Hz.We reach

a dynamical range of detection of FDC/Fmin ∼ 50.

Working at the optimal bandwidth, we expect in these conditions a resolution of
2×(2

√
2kBTγ)×

√
∆fopt = 2.9 fN, which corresponds to the minimal force that can be

measured by our microscope as discussed above. All measurements of external forces
below 2 × Fopt are discarded considering that in such cases, the corresponding force
signal cannot be discriminated from the noise with a sufficient confidence level. Re-
markably, as seen in the inset in Fig. 3(a), our system enables us to measure radiation
pressures down to 3 fN (i.e., at the level of the expected resolution) directly from the
f0 modulation peak of the PSD. In agreement with these values, a Mie computation
with field intensities estimated at the experimental limit yields a force of 4 fN exerted
on the 150 nm Au sphere, a value in good agreement with our measurements.

We also verified that, as a consequence of the property σz(f) = Sz(f), the minimal
force measured does not depend on the choice of the modulation frequency. To do
so, we repeated our experiments for different driving frequencies f0 corresponding to
confined (f0 < fT ) or freely (f0 > fT ) diffusing Brownian motion within the trap. The
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results are gathered in Fig. 3.8 below. All measured series minimal forces detected
above the stringent resolution criterion of 2Fth ∼ 3 fN. Remarkably, while the band-
width was chosen to account for a worst-case stability scenario for a single NP, the
good linearity of the overall series (taking up to a few minutes) suggests that longer
acquisition times do not deviate much, for good series, from the Allan variance at 10
s. This could allow for even shorter bandwidth when considering single measurements
and must further be evaluated from a much longer acquisition time Allan variance com-
putation, difficult to perform with colloidal suspensions and the chosen acquisition card.

Our data confirm that for our over-damped Brownian particle, the measured ex-
ternal force, and in our case, the minimal measurable external force, remains constant
regardless of the driving frequency. This is seen experimentally with driving frequen-
cies f0 equal to 1331, 10331, 43333 and 97579 Hz, spanning two orders of magnitude
and across the trap roll-off frequency. The results are gathered in Fig. 3.9. These
results in a sense can be expected: the thermal force depends only on the coupling of
the object to the fluid, no matter where in the frequency spectrum the force is driven
and detected through the motional PSD.

Finally, we stress that the force resolution is independent of the static DC radiation-
pressure component. The smallest force measured Fmin is almost 50 times smaller than
FDC determined to be approximately 160 fN from the slope of the force versus modula-
tion ratio. This gives to our setup one important feature, namely a potential capacity
to detect small optical force modulations within a strong background. This feature can
indeed become an asset in the context of chiral optical force detection where one could
envision inducing on a chiral nanoobject optically trapped chiral radiation pressure
modulations by alternating at f0 the polarization of the trapping beam from linear to
circular polarization states. This will impart a small additional AC chiral force signal
on the DC component of the achiral radiation pressure contribution that is always
present, whatever the polarization state is. The results just presented above give hope
for detecting, within the dynamical mode strategy of this chapter, chiral force signals
ca. 2 orders of magnitude smaller that non-chiral radiation pressure terms.
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Figure 3.8: Measured external forces driven at f0 exerted on optically
trapped single Au NPs of 150 nm at frequencies of 1331, 10 331, 43 333,
and 97 579 Hz. The amplitude of the drive is modulated with respect
to the mean intensity of the 639 nm optical beam. The crosses are
measured external forces from the PSDs and the circles represent forces
measured by the lock-in amplifier after its response is linearly calibrated
from strong external drives.Each value has a bandwidth f = 0.1 Hz.
The linearity of measured forces with modulation amplitude is quantified
through an uncertainty interval (a deviation from linearity of ±1σ) on
the whole measurement series. Dark and light shaded areas represent one
and two thermal forces of Fth and 2 × Fth, respectively, at the chosen

bandwidth (0.1 Hz).
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Figure 3.9: Smallest measurable external force measured by the lock-
in amplifier (red crosses) and the spectral peak stracted from the PSD,
for different modulations in frequency across 2 full orders of magnitude.
No fundamental difference between the force measured in the different
spectral regions : the smallest measured force stays constant at ca. 3 fN
throughout the whole drive-frequency range with both methods. Dark
and light shaded areas represent one and two thermal forces of Fth and

2× Fth, respectively, at the chosen 0.1 Hz bandwidth.

3.5 Position resolution

The discussion on forces is of course different if one looks at positions. Indeed, measur-
ing Sd

z [f ] by selecting spectral bins on the PSD over a sufficiently narrow spectral band-
width ∆fAC � f0, or equivalently operating through a lock-in amplifier, corresponds
to a band-pass filter centered on the modulation frequency f0. In such conditions, the
position noise is given by δzmin ∼

√
∆f · Sz[f0]. Contrasting with the thermal limit

for force measurements, position noises therefore depend on the modulation frequency,
for high-resolution in position it is therefore convenient to modulate at high frequencies.

An isometric representation of the PSD for different external drive frequencies f0

is displayed on Fig. 3.10. Displacements associated with the smallest external forces
measured by the lock-in amplifier are superimposed on the graph as red crosses as a
function of f0. As clearly seen, they lie within the PSD noise levels, separated only by
a factor ca. 2 from the Lorentzian fits. The f0 dependence yields δzmin that rapidly
decrease with f 2 as soon as the free Brownian regime is dominant for f0 > fT . Fur-
thermore, the large fT values provide sub-Å levels of resolution in position for all drive
frequencies f0 and displacements of 10−11 m reached at f0 ∼ 100 kHz.
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Figure 3.10: Isometric representation of the PSD as a function of the
external drive frequency f0 (going from ∼1 kHz to ∼100 kHz). The po-
sition resolution measured by the lock-in amplifier (and converted back
to noise powers) are superimposed on the graph as crosses as a func-
tion of f0. The smallest measured displacement amplitude is less than
1 angstrom and diminishes even further as the drive frequency departs
from the Lorentzian plateau and reaches the free Brownian regime (f−2

at high frequencies in the PSD plot). The fit line (in orange) in each PSD
plot represents the thermal contribution to the dis- placement. All mea-
surements are acquired over thermally limited acquisition time τopt = 10
s. Experiments are performed with different nanospheres and at differ-
ent distances from the mirror. This results in different trap stiffnesses
for the different series acquired. The roll-off frequencies are 17 kHz for
f0 = 1331 Hz, 18.5 kHz for f0 = 10331 Hz, 8 kHz for f0 = 43333 Hz,

and 7.2 kHz for f0 = 97579 Hz.

3.6 Conclusion

The careful assessment of the conditions for stability of our experiment through Allan-
deviation analysis validates our setup as a high-resolution optical force microscope.
Over a thermally limited bandwidth of 0.1 Hz, we are able to consistently measure
radiation pressure down to approximately 3 fN. This result should also be appreciated
in relation to a dynamical range FDC/FAC of approximately 2 orders of magnitudes.
This range, together with the capacity to reach femtonewton force-resolution levels in
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water at room temperature with relatively short acquisition times in the absence of any
induced heating, is particularly important when one is aiming at studying new types
of optical force fields, in particular in the context of evanescent and surface-plasmon
optics, optical spin-orbit interactions, and chiral optical forces.
The concomitant subangstrom displacement resolution offered by our setup also opens
new possibilities in the context of short-distance forces, such as Casimir-like interac-
tions or optical binding effects, where adjustable roll-off frequencies allow tuning of
the diffusion volume of the trapped NP, and thereby giving a capacity of localiza-
tion on nanometer scales. This capacity could be important for resolving nonlinear
force signals, such as found at the level of self-organized supramolecular assemblies in
mechanochemistry. In this context, the reliability and resolution provided by our force
microscope could help in exploring connections between optical force and chemical
signals.
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4 Thermodynamic transformations in
an optical trap

4.1 Introduction

In the preceding chapter we have used a harmonically trapped Brownian particle in
order to measure radiation pressure at the thermal limit. The strategy consisted in
modulating the source of external radiation pressure in such a way that the particle was
pushed periodically along the trapping landscape. The energy supplied by the periodic
forcing was dissipated to the environment through the frictional force γẋ, which via the
fluctuation-dissipation theorem, is related to the thermal force Fth(t) =

√
2kBTγξ(t),

the source that stochastically injects energy to the system and maintains it in thermal
equilibrium with its surroundings.

The dynamics of the bead resulted from a linear combination of the thermal force
and the controlled radiation pressure. Thus, with such a probe, the smallest resolvable
external force was limited to the thermal force, whose magnitude can only be influenced
by the coupling to the bath, through the Stokes drag γ and the temperature T .

For our analysis, we adopted the linear response approach, in which the displace-
ment x(t) of the optically trapped bead is connected through the Langevin equation
to the thermal force, the trapping potential and the external radiation pressure Fext:

γẋ(t) = −κx(t) + Fext(t) + Fth(t) (4.1)

where γẋ is the viscous drag, −κx the trapping force and Fth =
√

2kBTγξ(t), is the
thermal force characterized by delta-correlated noise of zero mean, 〈ξ(t)ξ(t′)〉 = δ(t−t′),
〈ξ(t)〉 = 0. In such overdamped regime, the time scale at which the energy of the sys-
tem is dissipated into the bath is given by γ/κ, which is the time the particle takes to
relax within the harmonic potential of stiffness κ, at a given friction γ. We call this
relaxation time of positions, "the trap characteristic time" τrelax. In our experiments,
we do not have access to faster degrees of freedom. Typically, the relaxation time of
the velocities of a polystyrene bead of mass m = 5.52 × 10−16 kg is τv = m/γ ∼ 10−8

s, with γ = 8.39× 10−9 kg s−1, the Stoke’s drag for a bead of radius R = 1 µm.

Under the periodic forcing studied in Chapter 3, the particle enters a stationary
state known as a non-equilibrium steady state (NESS) [142, 143], a state reached by
a system when driven out of equilibrium by non-conservative forces and in which the
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system constantly dissipates heat to the surrounding bath. No longer described by the
canonical distribution, a NESS can not be studied with the standard tools of classi-
cal thermodynamics. But in the past decade, significant theoretical [143, 144] and
experimental [145–147] progress made possible a consistent description of such states
extending thermodynamics to arbitrary irreversible states. This brings us to the main
discussion of the present chapter, the thermodynamics of a trapped Brownian particle.
At this stage indeed, one wonders whether it makes sense to talk about thermody-
namics of such a small system with certainly not ca. 1023 degrees of freedom. This
is precisely the purpose of a relatively recent field of research known as "Stochastic
Thermodynamics" [26, 27, 148], where the Langevin equation itself is endowed with
a thermodynamic interpretation [21, 41]. K. Sekimoto attributed heat and work to
single stochastic trajectories [41], when later in 2005, U. Seifert, assigned entropy pro-
duction at the level of individual trajectories [42], establishing the foundation of the
field.

This field nowadays is very well developed with fast-paced theoretical advances.
The literature on the topic is very extensive, with an exhaustive review with more
than 600 references that can be found in ref. [14]. Today, developments in stochastic
thermodynamics have allowed the recovery of equilibrium properties of systems mea-
sured only out of equilibrium [149], measurement of irreversibility of processes [15],
the quantitative measurement of the direction of time’s arrow [150], and many more
fundamental results related to small systems and systems driven arbitrarily far from
equilibrium. An essential family of results forming the backbone of stochastic thermo-
dynamics are the celebrated fluctuation theorems, a set of exact relations that shed
new light on the principles that govern energy fluctuations in a wide group of model
systems. It should be noted that these relationships go beyond the conditions of linear
response or quasi-equilibrium, and can be applied to a large number of systems per-
turbed by conservative or non-conservative forces through arbitrarily time-dependent
protocols [43].

This chapter aims at presenting a simple stochastic thermodynamics approach in
the context of our optical trapping experiments, in order to understand the meaning
and validity of thermodynamic predictions at the level of a single microscopic particle.
In the same way the ideal gas represents the most convenient system to derive thermo-
dynamics results from statistical mechanics, the thermodynamic interpretation of the
Langevin equation reveals how a single particle in an optical trap constitutes "the gas
and piston" model in the thermodynamics of small systems [7, 47]. A pictorial view of
such analogy is shown in Fig. 4.1. An ideal gas contained in a vessel with a movable
piston can be subjected to changes of state if one exerts work on the system by com-
pressing the gas or conversely the gas can exert work on the piston if its temperature
increases. The same occurs to a Brownian particle confined in a trapping potential,
when increasing the laser power, increases the stiffness of the potential. This forces the
bead to fluctuate in a smaller volume, a situation that can be considered as analog to
the compression of the gas by diminishing the available volume in the vessel.
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Optical trapping experiments give access to fundamental models that allow to de-
rive the connection between the macroscopic and microscopic worlds from a thermody-
namical perspective. An optical trap with a Brownian particle offers an experimental
playground to test and develop theoretical models. In particular, a colloidal particle in
a time dependent harmonic potential becomes a very interesting system for studying
the emergence of macroscopic irreversible behaviors from the reversible dynamics at
the microscopic scale. This simply stems from the capacity to perform ensemble aver-
ages over large number of trajectories of the trapped particle. At the level of a single
particle, the individual trajectories constitute the microstates and their ensembles rep-
resent the behavior of the macrostate.

Both, the piston-gas and the trapped Brownian particle are simple systems, coupled
to a single heat reservoir, and can be driven out of equilibrium by an external time
dependent perturbation.

In this Chapter, we will start from a "macroscopic" thermodynamics viewpoint in
order to remind some classical results obtained when describing processes generated
by the action of a piston on an ideal gas. This introduction in section 4.2 will help
understanding the significance of the results one can obtain when looking at optical
trapping experiments in the framework of stochastic thermodynamics. With such a
system, section 4.3 will show how the information at the single trajectory and the en-
semble levels can be obtained. Section 4.3.3 introduces the measurement of stochastic
heat, work and internal energy at the single trajectory level. Macroscopic behaviors are
then derived through ensemble averages, leading to address the problem of dissipation
in such fluctuating systems. This of course is connected to the possibility to perform
reversible transformations, as discussed in section 4.3.6. The connection is made clear
with the Jarzysnki Equality and Crooks Fluctuation Theorems, presented in sections
4.4.1 and 4.4.2. These sections lead to the concept of stochastic entropy, presented in
section 4.4.3, closing the chapter on the Integral Fluctuation Theorem for entropy pro-
duction in section 4.4.4, which is the fluctuation theorem stochastic entropy production
obeys, and a generalization of the Second Law of thermodynamics to small systems.
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Figure 4.1: Analogy between the gas-piston model in classical thermo-
dynamics and its microscopic counterpart, the optical trap and Brow-
nian particle system. The change of internal energy ∆U of the system
(gas/Brownian particle) is given by the heat exchanged δQ with the en-
vironment and the work exerted δW on the system by the piston/trap.

This Chapter therefore introduces all the tools and concepts that are necessary when
discussing the connections between reversibility and dissipation at the level of thermo-
dynamic transformations imposed on single systems. As discussed in the next Chapter,
such transformations on such systems, when looked from a stochastic viewpoint, open
interesting perspectives and opportunities for the control of single sub-micro/nano sys-
tems.

4.2 Entropy changes for isothermal compression of an
ideal gas enclosed in a moving piston

The ideal gas is defined as a gas consisting of non-interacting particles that do not pos-
sess internal degrees of freedom. It provides a simple system that allows one to derive
many results of classical thermodynamics. Let us remind here some of its properties.

We consider an ideal gas, constituted by N particles, enclosed in a vessel made of
diathermal walls that allow heat flows between the gas and the surroundings. A mov-
ing piston closes the vessel and fixes the available volume V for the gas. The position
of the piston can be controlled by an external agent. The system is in contact with
a thermal reservoir of constant temperature T . The equation of state of the gas is
PV = NkBT , with P the pressure the gas exerts on the walls of the container and kB
the Boltzmann constant. One can alter the state of the gas by changing the volume
of the container, or by varying the pressure of the gas, for example by supplying heat,
thus changing the temperature.

We examine an isothermal compression, in which the available volume V decreases
in a controlled manner by manipulating the moving piston while keeping the vessel
in contact with the bath of constant temperature. The motion of the piston can be
performed according to a prescribed protocol. The volume V (t) being proportional to
the position of the piston x(t) can be considered as the control parameter. The internal
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energy of the gas is U = cVNkBT where cV is the specific heat capacity at constant
volume. The internal energy only depends on the temperature, hence for an isothermal
process, ∆T = 0, the internal energy of the gas before and after the transformation
remains unchanged, ∆U = 0. Thus, the first law of thermodynamics, ∆U = W + Q,
grants the possibility to perform the transformation along a reversible or an irreversible
path, Wrev + Qrev = Wirrev + Qirrev. The only thermodynamic restrictions put on the
possible processes compatible with the first law, are imposed by the second law of
thermodynamics. This law assesses the entropy production, ∆S associated with the
change from the initial to the final state. When compressing an ideal gas, the entropy
S(U, V ) changes according to:

dS =
dU

T
+
PdV

T

= cVNkB
dT

T
+NkBT

dV

V

= cVNkBd[lnT ] +NkBd[lnV ], (4.2)

with the first term vanishing when the process is carried out at constant temper-
ature. We investigate two limiting cases of protocols for driving the state of the gas
between two equilibria.

• In the first protocol, known as a STEP, the gas starts at thermal equilibrium
with the bath until the piston position is changed instantaneously, resulting in
an abrupt reduction of the available volume. The gas is driven out of equilibrium
and takes its natural relaxation time to equilibrate at the new state, the relaxation
timescale depends on the work parameter and the coupling to the heat bath.

• In the second protocol, the transformation is carried out slowly enough so the gas
can be considered at equilibrium at each elementary stage of the transformation
and therefore during the whole process.

4.2.1 Case 1: Isothermal compression of an ideal gas: STEP
protocol

Figure 4.2: Isothermal compression of an ideal gas. At time t0 the
volume is abruptly changed from the initial V0 to V1. The pressure is
then expected to increase from P0 = NkBT

V0
to P1 = NkBT

V1
according to

the compression rate ξ = V0/V1 = P1/P0 > 1.
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With a sudden compression, the volume of the container is instantaneously changed
from V0 to V1, as illustrated in Fig. 4.4, while keeping the temperature constant, T0 =

T1 = T . The pressure of the initial and final state can be found respectively from the
equation of state, P0 = NkBT/V0, P1 = NkBT/V1. In this isothermal transformation,
the compression factor is given by ξ = P1

P0
= V0

V1
> 1. The entropy change for the gas

(system) is according to eq. 4.2:

∆Sgas = NkB

∫ V1

V0

d lnV = −NkB ln ξ < 0 (4.3)

The first law of thermodynamics tells us that any work applied to the system
will either increase the internal energy of the gas or will be dissipated as heat to the
surroundings according to W + Q = ∆U . Since the process here is isothermal, the
internal energy does not change and the work thus results in heat exchanged with the
thermostat. Therefore the entropy change of the bath stems from the heat exchanged
with the gas:

∆Sbath = −Q
T

(4.4)

with δW = −P1dV i.e. W = −P1V1(1− ξ) = −NkBT (1− ξ), thus Q = NkBT (1− ξ)
according to the first law. One then derives:

∆Sbath = −NkB(1− ξ) > 0. (4.5)

This allows us to evaluate the total entropy change of the "universe" given by entropy
change of the system and the entropy change of the surrounding bath as:

∆Stot = ∆Sgas + ∆Sbath

= NkB(ξ − 1− ln ξ) > 0, (4.6)

a positive quantity that can only be taken as the signature of irreversibility. This is
what Sommerfeld calls "The Second part of the Second Law": the entropy of an isolated
system can only increase [151].
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Figure 4.3: Comparison of the entropy increase of the system and the
bath as a function of the compression rate. A concave function f(x) is

such that for any x1 6= x2, 1
2(f(x1) + f(x2)) ≤ 1

2f(x1 + x2).

This entropy production can be recasted in terms of expended work and exchanged
heat:

∆Stot = ∆Ssys + ∆Sbath > 0 (4.7)

= ∆Ssys −
Q

T
= ∆Ssys −

∆U −W
T

=⇒ ∆(U − TSsys︸ ︷︷ ︸
F

) < W, (4.8)

where F = U − TS characterises the equilibrium state and depends only on the tem-
perature and the control parameter, which in this case is the volume of the vessel. F
is known as the Helmholtz free energy, and in statistical mechanics it is a very useful
quantity. It allows indeed, to retrieve information regarding the probability associated
to a given state since it is related to the partition function, according to F = −kBT lnZ.

The formulation 4.8 of the second law stresses that the minimum amount of work
required to transform a system from a state A to an state B is given by the free-energy
difference between these states ∆F = FB−FA. If during the transformation the system
has been driven out-of-equilibrium, the produced entropy does not allow the system
to return to its initial state, unless paying an extra amount of work, known as the
dissipated work, Wdiss = W − ∆F , which is the work needed to compensate dissipa-
tion. Lost in the bath, such work is proportional to the entropy production, and the
constant of proportionality is the temperature of the bath, Wdiss = T∆Stot.

The two expressions, eq. 4.7 and 4.8 encompass the essence of the Second Law of
Thermodynamics, which tells us that if the process has been carried out irreversibly, the
entropy production of the universe (system + environment) is always positive, breaking
the time-reversal symmetry characteristic of the underlying microscopic dynamics. The
second interpretation of the Second Law, pointed out by Lord Kelvin, says that in any
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thermodynamic process that transforms heat into work, the maximum amount of work
that can be extracted is ∆F . In other words, there is always a certain amount of work
Wdiss lost in the bath. This sets a fundamental limit to the power and efficiency of
thermal engines.

4.2.2 Case 2: Isothermal compression of an ideal gas: reversible
limit

Figure 4.4: Quasi-static compression: instead of an abrupt change of
the piston, the piston is moved very slowly, which is equivalent of saying
that the motion of the piston is composed by Ñ infinitesimal STEPS.

Now we examine a reversible process described in Fig. 4.4, involving the same change
V0 → V1 compression discussed in case 1. But the compression this time it is carried
out infinitely slowly throughout Ñ infinitesimal STEP transforms, that each are at
equilibrium. The infinitesimal compression rate is:

ε =
Pj+1

Pj

with Pj the pressure of state j, and j = 0, 1, ..., Ñ − 1. After Ñ identical compressions,
the total compression rate is:

ξ =
P1

P0

= εÑ ,

with thus ε = ξ1/Ñ = e
1
Ñ

ln ξ. According to eq. 4.6, the total entropy change associated
to an infinitesimal compression ε is:

δStot = NkB(ε− 1− ln ε),

implying thus that the total entropy change of the whole process is ∆Stot = ÑδStot.
Since Ñ � 1, we can write ε = 1 + h, where h ∼ ln ξ

Ñ
+ O( 1

Ñ
) arises from a Taylor

expansion of e
1
Ñ

ln ξ. With this approximation we have:

ε− 1− ln ε = h− ln (1 + h) ∼ h2

2
+O(h2)
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and h− ln 1 + h ∼ 1
2
( ln ξ

Ñ
)2 +O( 1

Ñ
). In the limit of a large number of infinitesimal steps,

the total entropy change is:

∆Stot ∼ ÑNkB
1

2
(
ln ξ

Ñ
)2 +O(

1

Ñ
)

∼ NkB
(ln ξ)2

2Ñ
+O(

1

Ñ
)−→
Ñ�1

0

This shows that in the quasi-static limit Ñ � 1, we have:

• ∆Stot = 0, that is:

• W = ∆F ⇒ Wdiss = 0 .

Macroscopically, when the piston is moved slowly enough to maintain the gas at
equilibrium, the gas can be driven back to the initial state without paying extra energy,
and (without accounting for the random behavior of microscopic degrees of freedom),
the gas can be considered as passing through the same sequence of equilibrium states as
it went through when compressed, since no entropy is produced during the compression.

In classical thermodynamics, the extensive quantities involved, i.e. heat, work and
entropy, are regarded as deterministic quantities. If the process is repeated a large
number of times, the measured values of such quantities are expected to give the same
result. At the thermodynamic limit, with the number of particles N ∼ 1023, the mean
values of extensive quantities increase linearly with the number of particles, whereas
their fluctuations decrease as 1/

√
N . The predictions of classical thermodynamics are

therefore consistent for macroscopic deterministic results and one single experiment is
sufficient in order to describe the behavior of the system under thermodynamic trans-
formations. The question is what happens when the scales are reduced, notably to the
level of a single particle, as in the case of our trapped colloidal bead? In such systems,
whose energy fluctuations are of the same order of the mean energies involved, ther-
modynamic predictions have to be interpreted statistically. As an example, we show in
Fig. 4.5, the results of one of our experiments, in which the Brownian particle is con-
fined in a trapping volume undergoing a quasi-static compression. The measured work
values for individual realizations of the process are distributed statistically, and some of
these values violate the second law of thermodynamics. This notion of stochastic ther-
modynamic quantities and their associated distributions will be investigated further in
the chapter.
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Figure 4.5: The second law, has to be interpreted statistically. Among
the fluctuating work values, for a quasistatic protocol (for experimen-
tal details, see section 4.3.6) indeed, we can observe, events for which
W < ∆F . At the micron scale, dealing with a single Brownian object,
occasional violations of the second law are observable, "in which ran-
dom fluctuations interfere constructively in a manner that facilitates the

process" [152].

4.3 Isothermal compression at the level of a single
particle confined in an optical trap

The reactive gradient trapping force of the optical trap limits the diffusion of the Brow-
nian particle to a certain volume. Such a force can be considered as deriving from a
harmonic potential1 U(κ, x) = κx2/2, where the stiffness of the trap, κ, is proportional
to the polarizability of the bead and the averaged intensity I of the trapping laser. If
we probe the position of the particle, x(tj), within this potential at a given instant tj,
it is not possible to conclude whether the particle is thermalized or not. Therefore one
usually records the position of the particle during a long enough interval of time τ .
From this stochastic trajectory x(τ), which can be considered as an ensemble of dis-
crete points in time {tj}j, one can construct a histogram, such as the one displayed in
Fig. 4.6, which represents the occupation probability of the particle inside the potential.

At thermal equilibrium, the distribution that determines this histogram is given by:

ρ(x) =
e−U(κ,x)/kBT∫

x(τ)
dxe−U(κ,x)/kBT

(4.9)

where kB is the Boltzmann constant and T the temperature of the surrounding bath.
The denominator ensures normalization of probability and represents the partition

1For simplicity we proceed all discussions in one dimension, the conclusions in three dimensions
are analog.
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function, with the integration path taken along the full trajectory x(τ). In the case of
a harmonic potential, ρ(x) is a Gaussian of zero-mean and variance:

σ2
x =

kBT

κ

which satisfies the equipartition theorem. Figure 4.6 shows how one can retrieve the
confining potential from the thermally driven fluctuations.

Figure 4.6: Left panel: Extract of the temporal trace of the thermal
position fluctuations of a polystyrene bead of radius 500 nm trapped in
a potential U(κ, x) of stiffness κ = 1.7 pN/µm acquired during τ = 10
seconds at a sampling rate of 262.144 kHz. Right panel: Corresponding
histogram of the axial position fluctuations. Superposed as an orange
solid line, is the potential U(κ, x) calculated from the histogram by in-
verting eq. 4.9 with U = −kBT ln ρ+C, the constant C being determined
by the partition function. The dashed red line shows a parabolic fit as-

suming harmonicity.

Figure 4.7: Conceptual illustration
of a trap compression along the opti-

cal axis

We now extend the analysis discussed for the
ideal gas in a moving piston to the situation of
a Brownian particle confined in an optical poten-
tial. In our optical trap, an isothermal compres-
sion can be realized by changing the trapping po-
tential Ui = κix

2/2 to a stiffer one Uf = κfx
2/2

with κf > κi. The role of the control parameter is
played by the trap stiffness which can follow any
driving protocol κ(t) that transforms the state of
the system from an initial to a final configuration.
The advantage of such system is that no matter
how far from equilibrium the system is driven, the
surrounding fluid still behaves like a bath of con-
stant temperature T at equilibrium.

If we perform the trap compression repeatedly, preparing the system at the same
κi and following the same driving protocol κ(t), we can study how the thermal fluctu-
ations of the particle in the trap affect the work values which, being measured for each
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realization are random variables.

4.3.1 Implementing a protocol κ(t)

The laser output power is controlled by an external time varying voltage supplied by
a function generator (Agilent 33220A) as depicted in Fig. 4.8. Such voltage can take
any arbitrary waveform designed by the user. In our experiment, we use Matlab to
send the desired waveforms V (t) to the function generator. As aforementioned, since
κ(t) ∝ I(t) the trapping potential evolves accordingly. More details are given in section
4.3.2.

Waveform 
Generator

V(t)

Trapping 
Laser

I(t) DM k(t)

Detection 
Laserx(t)

PIN
Detector

Figure 4.8: Set-up scheme showing how the trap stiffness κ(t) is mod-
ulated and how the instantaneous position x(t) of the bead under the
protocol is independently detected. The computer programmed wave-
form is sent as a time-varying voltage V (t) to the trapping laser. An
auxiliary laser, arriving from the opposite direction of the propagation
of the trapping beam probes the position of the particle. The scattered
light by the particle is sent to a PIN photodiode by means of a dichroic
mirror (DM) that separates the trapping beam and the scattered detec-

tion beam containing the bead fluctuations.

We first implement a STEP protocol that drives the system from κi = 4 to κf =

6 pNµm−1, the compression factor is given by ξ = κf/κi. To ensure such an abrupt
increase of κ, characteristic of a STEP protocol, the laser power has to increase in a
time shorter than the equilibration time, which for our overdamped system is given
by τ frelax = 2γ/κf = 2.8 ms. From our laser specifications ( laser OBIS, Coherent), we
expect to increase the laser intensity in less than 0.7µs, with the rise time of the voltage
generator expected to be 5 ns. In practice, we observe that the STEP "instantaneous"
transition takes place rather within 7.63µs, which still remains significantly shorter
than τ frelax. On the other hand, in our approach where we repeat large number of
compression cycles, the duration of the plateaus where κ(t) = κi or κf has to be
longer than the corresponding relaxation time (τ frelax for ∆κ > 0 and τ irelax = γ/κi for
∆κ < 0) in order to guarantee the proper equilibration of the system in between cycles.
This approach is described in the top right panel of Fig. 4.9. There, the potential is
maintained with a constant stiffness of κi = 4 pNµm−1 during 12.5 ms, followed by
the abrupt change ∆κ and then κ(t) is maintained again constant at the final value
κ(t) = κf = 6 pNµm−1 during 12.5 ms before a new cycle starts.
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Figure 4.9: Procedure followed in order to obtain an ensemble of inde-
pendent trajectories undergoing the same transformation. Several cycles
of the STEP compression protocol κ(t) are shown on top of the right
panel. The corresponding stochastic position of the particle x(t) expe-
riencing the cyclic modulation of the potential stiffness appears in the
bottom. The red vertical lines depict how to section the long temporal
trace in order to obtain the ensemble of trajectories undergoing a sin-
gle STEP as illustrated on the right panel. The shaded areas indicate
the timescale at which the system is out-of-equilibrium. The first zones,

t ≤ |τ frelax| and t ≤ |τ
i
relax|, are removed before analysis.

When the system is at thermal equilibrium with κ fixed, constructing the occu-
pation probability ρ(xj(t)) from a single trajectory will be the same as constructing
an occupation probability from an ensemble of trajectories at a given time instant ti,
ρ(xj(t)) = ρ({x(ti)}). However when the stiffness becomes time dependent κ = κ(t)

this is no longer the case, because the system now is not stationary. In such situation
it makes no more sense to construct an occupation probability from a single trajectory.
One has to resort to an ensemble of trajectories, that is, a set of trajectories subjected
to the same change of the control parameter, and to evaluate the distribution for a
particular time instant tj.

Under trapping laser intensity modulations, the instantaneous axial motion x(t) of
the bead is monitored using an auxiliary laser propagating in the opposite direction of
the trapping beam, cf. fig. 4.8. With this additional laser we construct an ensemble of
trajectories by recording the instantaneous position of the particle undergoing a cyclic
change of potential, with a driving protocol repeated N = 2 × 104 times. The time
series of the position measurements constitutes a long temporal trace x(t) that can
be sectioned into trajectories of equal length {xi(τ)} (i = 1..N), each corresponding
to a single cycle of the compression protocol. Under proper sectioning as discussed
above, the trajectories can be considered independent of each other, and all starting
with initial points drawn from the same probability distribution ρ(κi, x). On the left
panel of Fig. 4.9, we can see several cycles of the STEP protocol driving the system
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from κi to κf and the corresponding stochastic position of the particle experiencing the
cyclic modulation of stiffness. The figure on the right shows a single cycle of κ(t) which
represents the desired STEP protocol, and below, the ensemble of 2× 104 independent
trajectories that correspond to a single cycle. It is on this ensemble that the occupation
probability ρ({x(ti)}) is constructed.

4.3.2 Calibration

When modulating the trapping beam intensity according to the prescribed protocol,
the trapping laser is operated externally with a voltage generator and the intensity
I(t) is proportional to the voltage Vmod(t) provided. To determine the conversion
factor between κ(t) and Vmod(t), a calibration is performed prior to the experiment.
The procedure consists in measuring the trap stiffnesses associated with a series of
consecutive DC voltages applied to the laser. The calibration curve shown in the
left panel of Fig. 4.10 corresponds to a linear fit of the evolution of the measured
trap stiffness as a function of the DC voltages. The shaded area represents a 95%

confidence interval for the estimated linear regression parameters taking into account
the weights of the uncertainties of the individual κ points. The errorbars of the data
points are determined by combining the error of the Lorentzian fit of the PSD and
the uncertainty on the Stokes drag γ = 6πRη due to the polystyrene sphere radius
dispersion δR/R = 2.8%.

Figure 4.10: Left panel: Calibration of the function generator volt-
ages. The red symbols represent the measured values of κ extracted
from the PSD’s, shown in the right panel, as a function of the DC volt-
age that fixes the laser intensity. The shaded area depict the linear fit
confidence interval. Right panel: The motional power spectra for the dif-
ferent steady trapping laser intensities, the solid lines are the Lorentzian

fits and the vertical represent the location of fc of each fit.

Such calibration is also useful for determining the limits of stiffness variations that
can be reached with our system and design the protocols accordingly. Because of
the thermal equilibration waiting times, the time intervals during which κ(t) is kept
constant will depend on the specific values of κi and κf , thus having an impact on the
duration of the cycles and the total experimental time. Such constraints are important
to identify.
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4.3.3 Stochastic energetics

As we have quickly mentioned above, it is possible to give a thermodynamic interpre-
tation to a single stochastic trajectory, Ken Sekimoto [21, 41] proposed that stochastic
processes, for example described by Langevin equations, can be viewed at an interme-
diate level which takes into account the effects of the microscopic degrees of freedom
while allowing to introduce control parameters in the same way as in the context of
classical thermodynamics. With this view and the fact that energy must be conserved
also at the level of a single stochastic trajectory, Langevin equations are endowed with
a thermodynamic interpretation for equilibrium and non-equilibrium processes.

The balance of forces of a Brownian particle in a harmonic potential U(κ, x), at
thermal equilibrium with a homogeneous stationary fluid is set by the Langevin equa-
tion:

−γ dx
dt
− dU

dx
+ Fth(t) = 0 (4.10)

where γẋ is the frictional force, γ the Stokes drag coefficient, which relates the dissipa-
tive force to the fluctuating thermal force Fth =

√
2kBTγη(t). The normalized white

noise process η(t) can be represented as a time-derivative of a Wiener process with the
following properties:

〈η(t)〉 = 0 〈η(t)η(t′)〉 = δ(t′ − t)

The Brownian system is assumed to be a spherical particle. In the overdamped
regime and at equilibrium (no work exerted on the system) any change in the internal
energy of this system is mostly due to changes in the potential energy, dE = dU , con-
sidering variations in kinetic energy negligible.

At thermal equilibrium, any infinitesimal change in the bead’s position within the
potential, dx(t), is driven by thermal fluctuations via Fth(t). Since there are no external
force sources acting on the particle and since the potential is fixed, equation 4.10 can
be regrouped and interpreted as an infinitesimal variation in potential energy due to
heat exchanged with the bath [14, 41]:

dU

dx
dx(t)︸ ︷︷ ︸
dU

=
(
− γ dx

dt
+ FTh(t)

)
◦ dx(t)︸ ︷︷ ︸

−δQ

(4.11)

hence, dU and δQ become stochastic quantities due to the Langevin force Fth(t) =√
2kBTγη(t). We adopted the convention of a positive sign when the heat flows from

the system to the bath. We will use the notation q = Q[x(t)], u = U [x(t)] to emphasize
that the energetics are expressed at the level of a single trajectory x(t).

In our experiments, because the bead is trapped far from any wall and is not subject
to multiplicative noise [153], γ is independent of x and t. The stochastic integrals are
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written in the Stratonovich form2, denoted with the symbol ◦, which corresponds to
employing the usual rules of integration. The same assumptions prevail in the rest of
the manuscript and we will therefore drop the symbol ◦ from now on. (See Appendix
A).

Injecting work into the system

The same reasoning employed in equation 4.11 can be extended to the case in which
the trap stiffness κ, i.e. the external control parameter, is varied from κi to κf > κi
according to a driving protocol κ(t). Now that in our case of a harmonic potential,
U = 1

2
κx2 depends on κ(t) and x(t), the dynamical change in the potential energy is:

dU =
∂U

∂κ
dκ+

∂U

∂x
dx (4.12)

Combining eq. 4.12 with the energetic balance defined previously eq. 4.10:

(−γ dx
dt

+ Fth(t))dx︸ ︷︷ ︸
−δq

= dU −∂U
∂κ

dκ︸ ︷︷ ︸
δw

, (4.13)

we arrive with eq. 4.13 to the first law of stochastic thermodynamics, with a microscopic
expression for the work exerted on the system when the control parameter changes by
a small amount dk.

The work performed along the trajectory of duration τ = tf − t0 when the control
parameter is increased from κi to κf depends on the specific trajectory x(τ), therefore
it is expressed as a functional of the trajectory:

w[x(τ)] =

∫ κf

κi

∂U

∂κ
dκ(t) =

1

2

∫ tf

t0

dκ

dt
x2(t) dt, (4.14)

where the last equality corresponds to the a harmonic trapping potential U(κ, x) =
1
2
κx2.

In order to extract the heat dissipated along the trajectory, we resort to the chain
rule of the internal energy, equation 4.12, and write:

q[x(τ)] =

∫ x(tf )

x(t0)

∂U

∂x
dx(t) = −1

2

∫ tf

t0

κ(t)
d(x2(t))

dt
dt. (4.15)

2In Stratonovich calculus, the discretization of integrals is as following [27, 36]:∫
f(x(t)) ◦ dx(t) = lim

∆t→0

∑
f(x(t))(x(t+ ∆t− x(t)))

with x(t) = x(t)+x(t+∆t)
2 .
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This method allows one to extract the heat simply from the particle’s trajectory and
the control parameter, without having to evaluate the stochastic thermal force.

Numerically, we can compute the integrals, eq. 4.14 and eq. 4.15, as definite in-
tegrals or as cumulative integrals. In the first case, the integral over the duration of
the entire process gives a single value, which is the total work wtot or total heat qtot
associated to that particular trajectory x(t). Obviously, thermal fluctuations lead to
different total values of the energetics. When computing the total values for many
realizations, one can construct a probability distribution of such total values, qtot and
wtot. The probability distributions of such values are shown in Fig. 4.11 below. In the
case of the (internal) potential energy, since there is no integral to compute, and ∆u

is independent of the path taken, the values for the total internal energy change over
an interval τ = tf − ti can be obtained as ∆u = u(κ(tf ), x(tf )) − u(κ(ti), x(ti)). By
evaluating the distributions P (q) and P (u), it is not possible to detect the effect of the
STEP protocol because thermal fluctuations induce larger fluctuations of qtot and utot,
as can be seen by comparing the distribution of the total work values P (w), whose
largest fluctuation is about 3 kBT.

On the other hand, when computing the cumulative integral, one obtains a sequence
of values {q(tj)}j resulting from the cumulative integral from t0 to t0, t1, t2, t3, t4,...,tf
that grows sequentially. This is considered as a stochastic heat trajectory q[x(t)] as-
sociated to a single trajectory x(t) (and similarly for the work w[x(t)]), as shown in
Figs. 4.12 and 4.13. The stochastic functional of the internal energy, u[x(t)], is trivially
obtained from the product of κ(t) and x2(t), as u[x(t)] = 1

2
κ(t)x2(t).
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Figure 4.11: Upon repetitions of the STEP protocol, we obtain the to-
tal values of heat, work and internal energy for each trajectory. The blue
curve represents the distribution of wtot, the orange curve the distribu-
tions of the total heat and the yellow curve the internal energy change.

The y−axis is in logarithmic scale.

Fig. 4.12 displays the instantaneous fluctuations of the potential energy as the par-
ticle explores the fixed harmonic potential. The potential energy u[x(t)] is calculated
as κ(t)x2(t)/2 for constant κ(t) = κi. In this given realization, we can observe fluctu-
ations of the potential energy that are as large as 2 kBT. The stochastic heat q[x(t)] is
calculated as the cumulative integral −1

2

∫ tf
t0
κ(t)d(x2(t))

dt
dt for constant κ(t) = κi.

Since the system is at thermal equilibrium, the strong coupling with the bath en-
sures that the dissipated heat instantaneously compensates the fluctuations of energy.
This can be seen with the two curves associated respectively to q(t) and u(t) that
mirror each other. The fluctuations of each of these functionals are constrained: the
heat is defined negative so that its fluctuations can never be positive, and conversely,
energy fluctuations never go negative. Their sum δ[x(t)] = q[x(t)] + u[x(t)] − w[x(t)]

(w[x(t)] = 0) is centered to zero as expected from the first law of thermodynamics,
showing the consistency of such a trajectory-dependent view with thermodynamic bal-
ance.
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Figure 4.12: When the Brownian system is at thermal equilibrium, the
increase in the potential energy of the system along a single trajectory
u[x(t)] (orange curve) is compensated by the heat dissipated to the bath
q[x(t)] (in blue). The energy balance is confirmed at the level of a single

trajectory, q[x(t)] + u[x(t)] = δ[x(t)] centered to zero (in yellow).

We now examine a case in which work is injected to the system. Fig. 4.13 displays
the temporal fluctuations of the different energetics, u, q, w for a single realization
x(t), when the trap undergoes a STEP compression. The internal energy and the
heat are calculated as explained in the previous paragraph but considering now a
time-dependent κ(t). The stochastic work is computed as the cumulative integral of
eq. 4.14. In this realization, the work exerted on the system, w[x(t)], is dissipated
into the surroundings in the form of heat. As expected for an isothermal process, the
internal energy does not change, besides evidently, the fluctuations induced by Fth(t),
which are also compensated by the heat released to the bath. At every given instant,
the trapped bead receives a kick from the thermal bath that increases its potential
energy. This gain in potential energy is then released as heat (by several collisions
with the surrounding molecules of the bath) in a timescale given by ∼ γ/κf .
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Figure 4.13: Top panel: Temporal fluctuations of heat, q[x(t)] (or-
ange), work w[x(t)] (blue), and internal energy u[x(t)] (yellow) for a
single trajectory x(t) undergoing a STEP protocol κ(t). In this out-of-

equilibrium situation we observe that w is totally dissipated by q.

As expected for an isothermal process, one sees no change in the internal energy
in Fig. 4.13 when comparing both sides of the STEP. The isothermality is observed
for several realizations of x(t) upon compression with the STEP protocol, as shown
in Fig. 4.14, where the temporal traces of the internal energy present fluctuations
whose lower bound is zero. Superimposed to the single realizations is the ensemble
average of the internal energy over 2×104 trajectories, see below. Taking the ensemble
average, we can see that the fluctuations wash out, the cumulative temporal evolution
of the ensemble average validates the isothermal character, ∆U = 0 ⇔ W = Q, of
the process almost at all times. For such an abrupt switch of the control parameter,
with the transition from κi to κf happening in less than τrelax, the overdamped system
is driven out of equilibrium, and relaxes to the new equilibrium state in a time-scale3

of the order of γ/κf . For times right after the transition, that are shorter than the
relaxation time, the applied work is not compensated by the dissipated heat. As a
consequence, a transient change in internal energy occurs. Fig. 4.15 below shows,
respectively, the work and heat extracted for different realizations of the process x(t)

undergoing a STEP protocol. The temporal evolution of their respective ensemble
averages is superimposed to the individual trajectories.

3The notion of the relaxation time between two equilibria will be discussed in detail in chapter 5.
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Figure 4.14: Several realizations of the internal energy of the system,
when the trap is compressed with a STEP protocol. The bold black
line represents the ensemble average of the cumulative internal energy

extracted from 2× 104 trajectories.

Figure 4.15: Heat and work trajectories for different cycles of the
STEP protocol, that drives the stiffness of the confining potential from
κi to κf . The bold black solid lines represent the ensemble averages,

〈w(t)〉, 〈q(t)〉.

The different heat trajectories display very large fluctuations, which are constrained
by the temperature T and κ. From one realization to another, only the magnitude of
the work w[x(t)] corresponding to the STEP fluctuates. Each trajectory appears very
smooth, without significant fluctuations over time that are comparable to the amplitude
of the fluctuation at the transition. This can be easily understood from the fact that
when κ(t) is constant, no work is applied. Since the derivative dκ/dt for a STEP
protocol is zero everywhere except at the transition, the integral 4.14 only evaluates
the fluctuation of x2(t) at the transition time as depicted in Fig. 4.16 below.
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Figure 4.16: Illustration of the terms to be evaluated in the work
integral, eq. 4.14 for a STEP protocol at the level of a single stochastic
trajectory. The black solid line represents dκ/dt and x2(t) is shown as

the grey, highly fluctuating curve.

First law of thermodynamics for stochastic trajectories

Now that we have identified the stochastic heat, work and internal energy at the level
of single trajectories we can proceed to verify the trajectory-dependent version of the
first law. In realizations such as the ones displayed in Figs. 4.12 and 4.13, the first law
is perfectly validated at the level of single trajectories, in those cases, the trajectory-
dependent sum δ[x(t)] of q[x(t)],u[x(t)] and w[x(t)] has a zero temporal mean with
some instantaneous small fluctuations. However when observing δ[x(t)] for several
realizations of the compression process as shown in Fig. 4.17, we can see that for some
realizations the instantaneous fluctuations of δ[x(t)] do not fall at zero for all cycles.
This indicates that some additional energy must be taken into account when studying
the first principle in this particular experiment.
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Figure 4.17: Trajectory-dependent deviation to the first law, δ[x(t)] =
q[x(t)]− w[x(t)] + u[x(t)] for different trajectories undergoing the same

STEP compression.

To evaluate the precision within which we can measure the conservation of energy
of the system, we adopt a similar approach as the one described in reference [70]. We
calculate the total values of the injected work wtot and dissipated heat qtot correspond-
ing to a single cycle, and ∆u = u(κf , x(tf ), tf ) − u(κi, x(ti), ti) for the total energy
difference. We then compute these values for all the cycles. From each of these values
we can extract the corresponding deviation δ = qtot − wtot + ∆u and evaluate its dis-
tribution ρ(δ), as shown in the right panel of Fig. 4.18.

How the total values of the thermodynamic quantities, qtot, wtot and ∆u, fluctuate
from one realization to the next is shown in Fig. 4.18. As expected, the distribution of
the values of the deviation, δ = ∆q−∆w+ ∆u, is centered at zero, validating the fact
that the first law holds on average. The distribution is symmetric around zero with
a standard deviation of 0.17 kBT, associated with the experimental precision that the
setup offers, taking into account discretization effects due to the measured trajectory
with a finite sampling frequency, fs = 218 Hz, and due to the numerical computation
of integrals eq. 4.15 and eq. 4.14.
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Figure 4.18: Left panel: Fluctuations, from one cycle to another, of the
total heat (orange), total work (blue ) and total energy change (yellow)
of the system. In dark purple are the corresponding fluctuations of the
values of δ from one cycle to the next. Right panel: Distribution of
the residue δ = qtot − wtot − ∆u to the first law. The variance of the

distribution is 0.17kBT .

4.3.4 Ensemble behavior

Taking the ensemble average over the 2×104 trajectories of thermodynamic functionals
reveals the deterministic behavior of the energetics at play when performing a sudden
trap compression. The temporal evolution of the mean cumulative heat, work and
internal energy are shown in Fig. 4.19 below.

Because of the instantaneous switch of κ(t), the work shows an abrupt increase
from 0 kBT (equilibrium) to 0.25 ± 0.02 kBT, as expected when going from the single
trajectory work:

w(t) =

∫ κf

κi

∂U

∂κ
dκ =

1

2
(κf − κi)x2(t),

to the ensemble average:

〈w(t)〉 =
1

2
(κf − κi)〈x2(t = 0)〉

with 〈x2(t = 0)〉 given by the equipartition theorem:

〈x2(t = 0)〉 =
kBT

κi
.

This leads to measure an ensemble averaged work equal to:

〈w(t)〉 =
kBT

2

(κf − κi)
κi

= 0.25 kBT.
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Figure 4.19: Temporal evolution of the mean cumulative work (blue),
heat (orange) and internal energy (yellow) associated with the STEP
protocol for increasing κi to κf = 1.5κi. The shaded areas represent the
combination of statistical and systematic uncertainties detailed below in

the main text.

The behavior of the mean cumulative heat 〈q(t)〉 and the mean cumulative energy
〈u(t)〉 can be analyzed together. As κ is switched, a sudden amount of work is injected
into the system. For an isothermal transformation like this one, such added source of
energy must be dissipated into the bath in order to leave the internal energy unchanged.
This compensation, however, is not instantaneous. Just as in the case of the ideal gas,
the system is driven out of equilibrium and displays a transient increase in internal
energy accompanied with a slow release of heat that take place during an interval of
time given by τrelax. Once the system reaches equilibrium, the energy exchange ceases
and 〈q(t)〉 = 〈w(t)〉 as expected.

In our experiments, we consider that the temperature of the surrounding bath
remains unchanged during the whole experiment. Consequently, as discussed in the
gas-piston model, the internal energy is likely to remain unchanged during the process.
Besides the transient characteristic of the out-of-equilibrium behavior, we expect that
once the system is equilibrated in the new state, the corresponding internal energy is
the same as before the STEP. Yet in Fig. 4.19, we can observe that this is not exactly
the case. There remains a difference of ca. 0.03 kBT between the initial and final
equilibrium values of the mean energies. Such a difference can be also spotted between
the heat and work, once the system has relaxed in the new thermal equilibrium, with
〈w(t)〉 6= 〈q(t)〉. Even though such discrepancy does not appear to be significant since
it falls perfectly within the errorbars, it might still indicate that the total work could
be slightly overestimated. A potential cause for a misestimation could be that the
true stiffness of the trap has slightly departed from the initial calibration value. For
computing the energetics, we use indeed the voltage waveform converted to stiffness
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units by means of the prior calibration. Such a procedure therefore does not directly
yield the measured stiffness. This is a difficulty that remains because extracting the
stiffness instantaneously relies recording instantaneous positions. However, when the
system is out-of-equilibrium, such a position-based extraction of the stiffnesses does
not work because κ(t) can change on shorter timescales than τrelax.

4.3.5 Uncertainties

The confidence intervals represented as shaded surfaces in Fig. 4.19 combine the PSD
calibration uncertainties of x(t) and κ(t) and the statistical uncertainties arising from
averaging over the ensemble of trajectories.

A single stochastic trajectory, w[x(τ)], q[x(τ)] or u[x(τ)] computed from equations
eq. 4.14 and 4.15, is subjected to calibration uncertainties of x and κ in the following
way:

δw =
1

2

∫ tf

t0

[dδκ
dt

x2(t) +
dκ

dt
δx2(t)

]
dt (4.16)

δq = −1

2

∫ tf

t0

[
κ(t)

dδx2(t)

dt
+ δκ(t)

dx2(t)

dt

]
dt (4.17)

δu =
1

2

(
κ(t)δx2(t) + δκ(t)x2(t)

)
. (4.18)

The ensemble average of the work can be obtained as:

〈w〉 =
1

N

N∑
i=1

wi, (4.19)

where wi is the stochastic work of the i− th realization of the protocol. The associated
statistical uncertainty is then given by the statistical deviation of the mean:

σ〈w〉 =
σw√
N

(4.20)

with σw the estimator of the standard deviation:

σw =

√√√√ 1

N − 1

N∑
i=1

(wi − 〈w〉)2. (4.21)

Doing the same treatment for the uncertainties δwi, we can combine in quadrature
[154] the statistical and systematic uncertainties to obtain the total error as:

∆w =
√
σ2
〈w〉 + 〈δw〉2 + σ2

〈δw〉. (4.22)
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In the same way, 〈q〉 ±∆q and 〈u〉 ±∆u are calculated. These uncertainties appear as
the shaded surfaces in Fig. 4.19.

4.3.6 Slow switching protocol

The premises of the ideal gas and the movable piston offer valuable intuition on the
expected macroscopic behavior of our system. As discussed in the previous section, the
first scenario we evaluated was the sudden compression of the trap, implemented with
the STEP protocol, in which the stiffness is increased instantaneously4, approximately
200 times faster than the characteristic time of the trap ∼ γ/κf . With such a protocol,
the system is driven out of equilibrium. For an abrupt increase of work, the mean
cumulative energetics revealed a transient interchange of internal energy and released
heat, taking place during the same characteristic time. Once the system reaches ther-
mal equilibrium in the final state, the dissipated heat compensates the injected work to
leave the internal energy unchanged in agreement with the first law of thermodynamics.

We now study the effects of a protocol analogue to the quasi-static transformation
presented in section 4.2 for the gas-piston model. This protocol intends to keep the
system at equilibrium at each instant of the transfer between the initial and final
state. To this purpose, optical confinement has to be increased very slowly. To do
so, we implement the simplest protocol, called a RAMP, in which κi evolves towards
κf linearly during 28 ms, i.e. approximately during 10 τrelax. The calibrated waveform
corresponding to one cycle of the RAMP protocol is contrasted with the STEP in Fig.
4.20. For a single cycle of the RAMP we can observe three cycles of the STEP. A
single cycle of the RAMP protocol lasts 71 ms, with the intervals of constant κ, 25 ms

for κ(t) = κi and 18 ms for κf .

Figure 4.20: RAMP protocol (in orange), representing the quasi-static
variation of a control parameter, on top of three cycles of the STEP
protocol (in blue) for the same transition κi = 4→ κf = 6 pNµm−1.

4For our experimental limitations, "instantaneously" means during 7.6µs, to be compared with
τrelax = 1.4 ms for a targeted κf = 6 pNµm−1.
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The energetic fluctuations as the trap becomes progressively stiffer are shown in
Fig. 4.21 for different repetitions of the protocol. Instantaneous fluctuations close
to 6 kBT in internal energy are compensated by heat fluctuations. In contrast to the
stochastic work trajectories of the STEP, w[x(τ)] of the RAMP fluctuates during the
whole transition interval.

Figure 4.21: Several realizations of the stochastic energetics for differ-
ent trajectories undergoing the RAMP protocol presented in Fig.4.20.

The probability distribution of the heat and work fluctuations for the STEP and
RAMP protocols appear in fig.4.22. The distributions of heat fluctuations are similar
for both protocols. Since these are large, and are compensated by the energy fluctua-
tions, it is not possible to detect the influence of the driving scheme from distribution
of the dissipated heat values. In contrast, work distributions show striking differences
between the two protocols, the work fluctuations associated with the STEP proto-
col are significantly larger than in the case of the quasistatic drive. Already at the
level of fluctuations we can conclude that the STEP protocol is more dissipative than
the RAMP. From a linear response perspective, the dissipated work can be directly
estimated from the variance of the fluctuations [8, 155, 156]:

Wdiss =
σ2
W

2kBT
(4.23)

which gives Wdiss = 0.07 kBT for the STEP and 0.001 kBT only for the RAMP, the lat-
ter value falling below the experimental uncertainties. The STEP protocol is roughly
50 times more dissipative than this particular RAMP protocol, for a 5 times faster
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transformation, considering the transformation completed once the system is fully re-
laxed in the final state. At this point, we can thus clearly see that driving a system
out of equilibrium results in inevitable dissipation.

Figure 4.22: Probability distributions of the work (left panel) and heat
fluctuations (right panel) for a STEP and a RAMP protocol.

On the macroscopic level, the behavior of the ensemble averages of the different
cumulative energetics, 〈w[x(t)]〉,〈q[x(t)]〉 and 〈u[x(t)]〉 are shown in Fig. 4.23. Unlike
the STEP case, the internal energy stays constant during the entire RAMP transfor-
mation. The mean work is compensated by the mean heat at all times, and the system
does not exhibit any significant departure from equilibrium. However, looking atten-
tively, one can observe a small difference between the mean work and mean heat in the
final state, as well as a slight deviation of the constant evolution of the mean internal
energy. This change in internal energy is exactly the same as for the STEP. Fig. 4.23
confirms that ∆U = Qrev +Wrev = Qdiss+Wdiss, that is, the energy difference depends
only on the difference of states, unlike the heat and work which depend on the path
taken during the transformation, which can be reversible (subscript rev) or dissipative
(diss). Additionally, if the process is isothermal, we expect ∆U = 0. This is practically
verified, by measuring a deviation less than 0.02 kBT, which coincides exactly with the
value of the experimental uncertainty. Such discrepancy is therefore not significant to
be considered as a physical departure of equilibrium or even less as a change in the
bath temperature. As discussed previously for the case of a STEP protocol, such a
small deviation could be due to an overestimation of the work as a consequence of a
wrong calibration of the stiffness or a degradation of the signal over time.
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Figure 4.23: Comparison of the temporal evolution of the ensemble
averaged cumulative energetics associated to the RAMP and STEP pro-

tocols.

By definition, there is no dissipation when performing a reversible transformation,
thus the injected work is simply the free-energy difference between the initial and final
states ∆F = F (T, κf )−F (T, κi), with F (T, κ) = −kBT lnZ and Z(T, κ) the partition
function of an overdamped system:

Z(T, κ) =

∫
dxe−U(κ,x)/kBT =

∫
dxe

1
2
κx2

kBT =

√
2πkBT

κ
(4.24)

∆F = −kBT ln
Z(T, κf )

Z(T, κi)
= kBT ln

√
κf
κi
. (4.25)

The expression for ∆F is very similar to the one for the compression of the ideal
gas ∆F = NkBT ln ξ, with the stiffness equivalent √κf/κi of the compression factor
ξ = Vf/Vi. The free energy of the confined particle depends on the square-root of the
potential stiffness just as the free energy of the confined gas depends on the position
(volume) of the piston. Any driving scheme that performs the transition faster than the
relaxation time will pay an energetic price which is quantified by the dissipative work
Wdiss = Wtot −∆F . The work the RAMP performs is Wtot = 0.21± 0.02 kBT and the
free energy difference, as calculated from eq. 4.25, is ∆F = 0.21±0.04, validating that
such protocol can be considered as reversible indeed. These values are also consistent
with eq. 4.23.
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4.4 Fluctuation theorems and the second law

The identification of work and heat at the level of single trajectories of the Brownian
particle has given us some insight on the transformation between equilibrium states
at two scales. At the macroscopic level, we have recovered for the trapped Brown-
ian particle the deterministic behavior similar to the behavior of the compression of an
ideal gas, by performing ensemble averages of the trajectory-dependent thermodynamic
functionals. The microscopic behavior was investigated by analysing single events of
the transformation. The specific distribution of work values obtained from different
repetitions of the compression process is a signature of how irreversible the transforma-
tion is. When the compression is performed abruptly according to the STEP protocol,
such distributions exhibit large tails with large fluctuating work values. When the
system is driven from the initial to the final state while maintaining the system at
equilibrium during the whole transformation, as done with the RAMP protocol, the
fluctuations are relatively small. Thus large fluctuations are a direct consequence of
driving the system out of equilibrium and are associated to inevitable dissipation.

One essential consequence of the stochasticity of the thermodynamic functionals is
the existence of trajectories violating the Second Law. Such trajectories yieldWdiss < 0

as illustrated in the result of the RAMP protocol, Fig. 4.5. It is possible to interpret
such events as single realizations that convert all absorbed heat into useful work, a
process forbidden by the Second Law and unimaginable at the macroscopic scale. Hav-
ing seen that the dissipative work is directly related to entropy production, we can
say that a quasi-static transformation as the RAMP protocol has a similar number of
trajectories that consume entropy as trajectories that produce entropy. In contrast,
as the driving protocol forces the system to depart from equilibrium, the number of
events of entropy consumption decreases.

Fluctuations seem to provide essential and fundamental information on how ther-
modynamic irreversible behavior emerges from a stochastic system. Entropy being an
extensive quantity, we can expect that as the system grows or as the process is observed
during longer time intervals, realizations in which dissipation is negative decrease in
number. The study of the distribution of such fluctuations can precisely show how fast
this number of events decreases. This is precisely the purpose of Fluctuation Theorems
(FT) that quantify the previous statement. The first FT [12] was originally derived
in the context of non-equilibrium steady states of certain dissipative dynamic systems
where the first violations of the Second Law were observed. Other approaches have
then been developed towards more general stochastic systems in order to explain such
symmetries. IN particular, FT were generalized to systems following Langevin-type
dynamics [13].

Concretely, FT are exact relations expressing universal properties of the probability
distribution p(X) for trajectory functionals X[x(t)] like work and heat [14]. They can
be phenomenologically classified in "integral" and "detailed fluctuation theorems".
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Integral fluctuation theorems are of the form:

〈e−X〉 = 1 (4.26)

for averages over many realizations of X[x(t)]. Detailed fluctuation theorems, formu-
lated for the same observables, relate the probability distributions of X, and of itself
under some symmetry transformation, typically time reversal, and can be written as
[14]:

p(X)

p(−X)
= eX . (4.27)

In most of the cases, the quantity in the exponent represents a convenient measure
of the asymmetry of the system with respect to the transformation. In the case of
time-reversal, such quantity is entropy increase, which in our case, is directly related
to the dissipative work.

In this section we review a few FT relevant in the context of this manuscript.
For the cases we have studied up to now, in which the system is driven between two
equilibrium states, there exist two fundamental relations. The first, known as the
Jarzynski equality, is classified as an integral fluctuation theorem, and the second,
known as the Crooks Fluctuation Theorem, is more general and falls under the category
of detailed fluctuation theorems. What is important however, is that both relations
can be simply written in terms of dissipative work.

4.4.1 The Jarzynski equality

Up to now, we have seen how under repetition of the protocol κ(t), either the STEP
or the RAMP, measured work values fluctuate from cycle to cycle, with in average
〈W 〉 ≥ ∆F (with the equality reached for the RAMP protocol). In both cases, at
the level of single trajectories, there is a significant amount of trajectories for which
W < ∆F . The Jarzynski equality [149] tells us that if we average the exponential of
all the fluctuating work values, this reduces to:

〈e−W/kBT 〉 = e−∆F/kBT (4.28)

or equivalently,
〈e−Wdiss/kBT 〉 = 1 (4.29)

in which, 〈 〉 denotes the average performed over a large number of experiments, re-
peated by following the same protocol κ(t). This result holds for all nonequilibrium
processes driven by any time-dependent perturbation. What is important is to note
that this equality can only be true if there are trajectories for which Wdiss ≤ 0 [8].
This equality is not only a statistical generalization of the Second Law5, but has an

5Which can be retrieved by using Jensen’s inequality, e〈−Wdiss/kBT 〉 ≤ 〈e−Wdiss/kBT 〉 ⇒ 〈Wdiss〉 ≥
0.
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additional powerful meaning: "equilibrium information is subtly encoded in the micro-
scopic response of a system driven out of equilibrium" [47].

For this reason, the Jarzynski equality has proven to be very interesting to exploit
for systems in which equilibration is difficult to characterize and/or when equilibrium
quantities, such as free energies, are unknown. The Jarzynski equality actually explains
how, through a series of perturbations that drive the system out of equilibrium, one can
retrieve ∆F by applying any type of transformation. This approach was successfully
demonstrated in the case of a RNA molecule, in which the free energy landscape was
obtained by repeating a given stretching process [156]. Such results have impacted a
lot the field of biomechanics and molecular motors as reviewed in this article [7].

Using a collection of measured work values wtot, obtained while repeating on the
optical trap the same protocol a large number of times, we are in position to study the
convergence of the relation given in eq. 4.28, as a function of the number of trajectories
involved in the ensemble average. We do this by comparing the two limits of continuous
protocols: the instantaneous switch, i.e. the STEP protocol on the one hand, and the
reversible switch, the RAMP protocol, on the other.

In our case, the simple nature of our system gives us access to ∆F , as explained
above –see eq. 4.25. This allows us to determine how many realizations of the protocol
are necessary in order to satisfy Jarzynski equality. Fig. 4.24 shows the convergence
〈e−W/kBT 〉 → e−∆F/kBT using work values extracted from the STEP and RAMP proto-
cols.

Figure 4.24: Convergence of the Jarzynski equality, 〈e−W/kBT 〉 →
e−∆F/kBT (green horizontal line) both for the STEP (brown curve) and
the RAMP (dark blue) driving protocols. The size of the ensemble of
increments (number of trajectories) are shown in logarithmic scale.

For measurements performed with the STEP protocol, more than 5000 trajectories
are needed to estimate the free energy difference, whereas with the RAMP protocol, the
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convergence to e−∆F/kBT is reached after roughly 200 realizations only. This difference
naturally stems from the fact that with more dissipation resulting from the driving
protocol, less chances of finding trajectories with Wdiss < 0 are. In fact, the maximal
number of violating trajectories occurs in the reversible limit, in which "the number of
trajectories for which Wdiss < 0 equals the number of trajectories with Wdiss > 0" [8].
In our case, the shorter the transition between the two equilibrium states set by the
control parameter is, the more trajectories are needed to estimate ∆F . For the RAMP
protocol, the distribution of work values measured for the different trajectories were
shown in Fig. 4.5 above.

After roughly 50 trajectories convergence is attained from below e−∆F/kBT , for both
protocols, this is due to the dominating contribution of trajectories with W > ∆F , as
expected from Jensen’s inequality [157], f(〈x〉) ≤ 〈f(x)〉, where f is a convex function.

For measurements obtained with the STEP protocol, we can see that 〈e−W/kBT 〉
as a function of the number of trajectories involved in the average, fluctuates more
significantly than for the RAMP case. However, in both protocols, the occurrence of
sudden jumps through the convergence suggest events for whichW < ∆F . Such events
have large contributions to the exponential average which, as such, is very sensitive to
rare events [158, 159].

4.4.2 Crooks Fluctuation Theorem and Stochastic Entropy Pro-
duction

The possibility to observe violations of the Second Law when compressing the optical
trap is reduced as more dissipation takes place during the process. In a dissipative
transformation, as the system grows, or as the process is observed during longer times,
the probability of observing trajectories with negative dissipation becomes exponen-
tially smaller than the probability of observing trajectories with positive dissipation.
The FT particularly relevant for our system that quantifies this is the Crooks Fluctu-
ation Theorem (CFT) [15]. Inspired by the general form of already existing entropy
production FT, G. Crooks found a symmetry relation for the probabilities of entropy
production in the forward and time-reversed transformation of a stochastic system
driven by a time-dependent perturbation. For systems that depart from equilibrium
and whose entropy production is related toWdiss, as in the case of the gas-piston model
discussed in section 4.2, the CFT can be formulated in terms of the work distributions
evaluated along the forward and reverse paths.

Consider the trap compression we have been studying. As explained above, our
experiments build ensemble averages by repeating the chosen protocol κ(t) in a cyclic
manner. This method leads to passing periodically through a sequence of equilibrium
states κi → κf → κi. Depending on where we section the cycles of κ(t), we can have
access to the process in the forward direction or its reverse. The forward protocol is
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the one we have been examining until now, namely the trap compression, in which κ(t)

is varied from κi to κf . In the reverse process, which depicts a trap expansion, κ(t)

evolves from κf to κi, written as κR(t) = κF (τ − t), with F and R denoting "forward"
and "reverse" and τ the total duration of the forward protocol. The time evolutions of
the control parameter of such conjugate processes are shown in Fig. 4.25 below.

Figure 4.25: Forward and reverse paths of the work parameter of the
STEP and RAMP protocols.

The distribution of work values obtained from a large number of repetitions of
the protocol κ(t) in the forward PF (W ) and time-reversed PR(−W ) paths are related
according to CFT as [15]:

PF (W )

PR(−W )
= eWdiss/kBT . (4.30)

Therefore, the more dissipation, the more these distributions differ from each other
[14]. Figure 4.26 below shows the experimental verification of eq. 4.30 for the trap
compression and expansion following the STEP protocol.
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Figure 4.26: Verification of eq. 4.30 with the STEP protocol. The blue
markers represent ln (PF (W )/PR(−W )) drawn from the distributions of
the measured work values associated to the compression and expansion
of the trap. The solid line represents the corresponding dissipative work

Wdiss of the transformation.

The spreading of points show how the values PF (w) and PR(−w) start to differ
more for larger work fluctuations. This can be clearly seen in the work distributions
displayed in the left panel Fig. 4.27 below. The right panel shows the same distribu-
tions of work values in the forward and reversed directions of the RAMP protocol.

Figure 4.27: Distribution of the work fluctuations when the system is
under the forward and reverse protocols of the STEP and the RAMP.

In the case of the RAMP protocol the distributions are exactly the same as expected
from a reversible process. The particular small compression (κf = 1.5κi), even with
the STEP protocol, causes only very little dissipation. This explains why we observe
the distributions PF (w) and PR(−w) nearly coinciding for the most probable values of
work fluctuations, while starting to differ for larger fluctuations.
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It is interesting to note that the Jarzynski’s equality can be derived simply from
eq. 4.30, by considering the following sequence [15]:

〈e−W/kBT 〉 =

∫
e−W/kBTPF (W )dW

=

∫
e−W/kBT eWdiss/kBTPR(−W )dW

= e−∆F/kBT

∫
PR(−W )dW = e−∆F/kBT .

4.4.3 Stochastic entropy production

As mentioned above, the general formulation of the CFT involves entropy production
terms [15]:

PF (+∆stot)

PR(−∆stot)
= e+∆stot , (4.31)

with ∆stot the total entropy production measured over a finite time interval, which in
our case is taken before and after the transition, but long enough to make sure that
the system is relaxed in both states. Eq. 4.31 implies 4.30, since for systems that start
at equilibrium, the entropy production is ∆stot = (W −∆F )/T = Wdiss/T [15].

We have presented, in section 4.3.3, how for a single realization of the compression
process, work and heat become stochastic functionals of the trajectory, w[x(τ)], q[x(τ)].
Remarkably, this reasoning can be extended to entropy production, as originally pro-
posed by U. Seifert in [42].

In a single cycle of κ(t), the instantaneous heat dissipated by the system to the
surroundings is q[x(t)]. The instantaneous increase of the entropy of the bath is thus
expected to be sbath[x(t)] = q[x(t)]/T [15, 27]. Concomitantly, there is also an entropy
variation associated with the change in the microscopic state of the system. For a given
state that occurs with probability p(x), the amount of information required to describe
that state is [15]:

ssys(x) = −kB ln p(x) (4.32)

which is the Gibbs/Shannon definition of entropy of a microscopic state. Starting from
this, U. Seifert found the expression for a trajectory-dependent entropy of the system
ssys[x(t)] [42], for a system characterized by overdamped Langevin dynamics. He did so
by evaluating the probability p(x, t), obtained from the Fokker-Planck equation, along
the stochastic trajectory x(t) [27, 42]. The stochastic entropy of our colloidal particle
is:

ssys[x(t)] = −kB ln p(x, t), (4.33)

which is associated to a single trajectory. This relation, however, subtly involves the
ensemble of trajectories in order to evaluate the probability distribution, p(x, t) along



100 Chapter 4. Thermodynamic transformations in an optical trap

the trajectory of interest x(t).

Experimentally, the procedure is straightforward: we construct the instantaneous
distribution p(x, t) from an ensemble of trajectories subjected to the same change in
the control parameter as described in section 4.3, Fig. 4.9. From this ensemble of
trajectories, we proceed to build a distribution of positions at each instant tj, and thus
define p(x(tj), tj). The stochastic entropy ssys[x(t)] is then obtained by evaluating the
value p(x(tj), tj) of the selected trajectory x(tj) at each instant tj, as depicted in the
figure 4.28 below.

Figure 4.28: Illustration of the scheme for evaluating the probabilities
p(x, t) along a selected trajectory x(t). The blue and orange lines repre-
sent the p(x, t) distributions at the instants, ti and tf , distributions built
from the instantaneous distributions of positions from the ensemble of
trajectories shown in the plane (time, x). The trajectory-dependent en-
tropy of the system is evaluated step-wise following eq. 4.33 as displayed

in the black curve.

The trajectory-dependent entropy production for an isolated system can be ob-
tained as stot[x(t)] = ssys[x(t)] + sbath[x(t)]. The stochastic nature of stot and the
associated trajectory-dependent entropy of the bath and of the system are shown in
the left panel of figure 4.29, for a single cycle of the STEP protocol.
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Figure 4.29: Instantaneous fluctuations of the trajectory-dependent
entropies. Left panel: ssys[x(t)],sbath[x(t)] and stot[x(t)] = ssys[x(t)] +
sbath[x(t)] for a single realization of the STEP compression, x(t). Right

panel: stot[x(t)] for different cycles of the STEP process.

The left panel of Fig. 4.29 presents a case in which the stochastic entropy production
decreases. In the panel on the right, several realizations of the process result in different
outcomes: some compression cycles show entropy annihilating trajectories and some
others show entropy creating trajectories. We can also see that, at equilibrium, before
the STEP is applied (i.e. t < 0) stot also fluctuates. The distribution of fluctuating
values of entropy production when the system is at equilibrium is displayed in Fig. 4.30,
under a constant κ. As expected, the total entropy production fluctuates around zero,
with equal number of trajectories producing negative entropy and positive entropy.

Figure 4.30: Comparison of the distributions of the entropy production
for a STEP transformation and at equilibrium. The standard deviation
of the equilibrium distribution is σ = 0.13 kB which increases to σ =

0.39 kB when the irreversible compression is takes place.

From the definitions of the entropy of the bath and the entropy of the system at the
trajectory level, we can evaluate the differences ∆ssys = ssys(tf ) − ssys(ti) for a given
interval of time, in which ti and tf are time instants in which the system is already
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relaxed in the initial and final equilibrium state respectively. The change of entropy
associated to the compression of the trapping potential is:

∆stot = ∆ssys + ∆sbath. (4.34)

These measured values fluctuate from trajectory to trajectory, the distributions of
fluctuations of these quantities ∆s are displayed in Fig. 4.31, for the compression and
expansion of the trap following the STEP and RAMP protocols. In all cases, the change
in system entropy fluctuates around zero with no net entropy increase, the amplitude
of fluctuations are the same for all the processes, the RAMP and the STEP in the
forward and backward directions, since the system entropy depends only on the states
and not the driving scheme, as emphasized already for the Jarzynski equality.

Because the distributions of ∆sbath look similar in the forward and backward di-
rections of both protocols, it is difficult to detect the effect of the protocol just by
looking at the distribution of these stochastic values. As discussed in the description
of heat fluctuations, at the level of a single cycle, the dynamical fluctuations due to
the thermal force are large compared to the effects of the small ∆κ of the protocol
and therefore difficult to detect when looking at the distribution of the dissipated heat.
Here, the same situation occurs for the entropy of the bath: ∆sbath exhibits large fluc-
tuations going beyond ±5 kB units in both protocols. However, when examining the
distribution of ∆stot one can notice two interesting features in the case of the STEP:
the distribution of the forward process has significantly larger fluctuations than the
reverse process, and both distributions are asymmetric. When the quasistatic trans-
formation is applied the distribution of entropy production values is the same along
the forward and reversed paths. We plot the ratio ln (PF (+∆stot)/PR(−∆stot)) as a
function of ∆stot in Fig. 4.32, in order to verify if the entropy production fluctuations
satisfy eq. 4.31, even though most of the values satisfy the relation, we observe some
departures in the values that fall in the tails of the distributions. This is consistent
with what we have observed in the case of work fluctuations.
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(a) P (∆ssys) STEP (b) P (∆ssys) RAMP

(c) P (∆sbath) STEP (d) P (∆sbath) RAMP

(e) P (∆stot) STEP (f) P (∆stot) RAMP

Figure 4.31: Probability distributions of the fluctuations of mea-
sured values of entropy change, for the entropy of the system, panels
4.31a,4.31b, of the bath, panels 4.31c and 4.31d and of the total entropy
production, panels 4.31e and 4.31f, for the system under compression
(forward direction) and expansion (reverse) with the STEP and RAMP

protocols.
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Figure 4.32: Verification of eq. 4.31 for the STEP protocol. The blue
markers are the results of the ratio of probabilities of the values ∆stot
from the distributions shown in Fig. 4.31. The solid line is +∆stot.

By taking the ensemble average over all the realizations of the STEP protocol,
we obtain the time-dependence of the mean cumulative entropy of the system and of
the bath, 〈sbath[x(t)]〉, 〈ssys[x(t)]〉, together with the resulting time evolution of the
macroscopic entropy stot produced by the abrupt compression. These evolutions are
shown in Fig. 4.33

Figure 4.33: Temporal evolution of the ensemble averages of the dif-
ferent entropies, for an abrupt compression of the trap induced by the

STEP protocol.

Similarly, we obtain the time-evolution of the ensemble averages of the entropy for
the RAMP protocol, shown in Fig. 4.34.
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Figure 4.34: Temporal evolution of the ensemble averages of the dif-
ferent entropies, for a progressive compression of the trap induced by the

RAMP protocol.

The contrasting behavior of the temporal evolution of the mean cumulative entropy
production for the two limiting cases of the work parameter is illustrated in Fig. 4.35.
When the trap is closed abruptly as prescribed by the STEP protocol, total entropy
production increases monotonically as the system relaxes to the new equilibrium state
where it saturates to a new value ∆stot = 0.05 [kB], signature of an irreversible process
that can be detected only with an ensemble average over a large number of trajectories.
In contrast, when the stiffness is slowly increased in the case of the RAMP protocol,
the total entropy production fluctuates around zero with no net entropy increase.
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Figure 4.35: Time-evolution of the total entropy production for the
RAMP and the STEP protocols, the two vertical dashed lines showing
where the RAMP protocol starts and ends. The inset is a close-up over
the entropy production related to the STEP protocol as the system is

evolving towards thermal equilibrium.

The entropy change of the system is the same for both protocols, since it depends
only on the initial and final states. The entropy production therefore is solely due
to the change in entropy of the bath, which in this case is due to the fraction of the
exerted work dissipated into the bath according to Wdiss = T∆stot.

4.4.4 Integral Fluctuation Theorem for Stochastic Entropy Pro-
duction

Measured work values satisfy Jarzysnki and Crooks FT. Stochastic entropy production
satisfies too an integral fluctuation theorem, derived by Seifert [42] following the defi-
nition of trajectory-dependent entropy production. This entropy production FT writes
as:

〈e−∆stot〉 = 1. (4.35)

Using Jensen’s inequality [157], e−〈∆stot〉 ≤ 〈e−∆stot〉 leads to verify indeed that:

〈∆stot〉 ≥ 0, (4.36)

and hence recovering the Second Law of Thermodynamics.
In the same light as for the Jarzynski equality, we have performed ensemble averages

of different sizes and observed the convergence of this entropy FT as a function of the
number of trajectories for a compression and expansion of the trap under the STEP
protocol. The results are displayed in Fig. 4.36. Convergence is reached roughly after
1000 trajectories in both cases, the forward (compression) and backward (expansion)
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processes. The fact that the average over more than 1000 trajectories is found slightly
above 1, precisely around 1.02 is due to our limited experimental precision.

Figure 4.36: Convergence of 〈e−∆stot〉 to 1, as a function of the num-
ber of trajectories involved in the average, for the forward and reversed

processes of the STEP protocol.

4.5 Conclusion

In this chapter, we have studied thermodynamic transformations between equilibrium
states at the level of a single Brownian particle. We first focused on a process analog
to the compression of an ideal gas in a vessel induced by a moving piston. This was
achieved by trapping the particle in a fixed optical potential and increasing confine-
ment by increasing the trap stiffness. The trap stiffness therefore, played the role of
control parameter, and it was changed over time to drive the system from the initial
equilibrium state within the initial potential U(κi, x) to the final equilibrium state in
U(κf , x). In order to perform this transformation, we implemented (i) a STEP proto-
col, which represents an instantaneous change of κ and (ii) a RAMP, in which κ(t) is
slowly increased from κi to κf .

Using Sekimoto’s approach, we identified heat, work and internal energy for such
processes at the level of single stochastic trajectories. In this framework, these ther-
modynamic quantities associated to the transformation become random vairables that
fluctuate from realization to realization. We discussed in particular how their statis-
tical distributions give powerful information on the dissipative nature of the driving
protocol. Besides the fact that the shape of the probability distribution of the work
fluctuations depends on the temporal evolution on the specific protocol κ(t), the mag-
nitude of the fluctuations depends on how far from equilibrium the protocol drives the
system in order to achieve the transformation.
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We also showed, repeating the protocols a large number of times, how to recover
the deterministic macroscopic behavior by taking the ensemble average of the thermo-
dynamic functionals of heat and work associated to the single stochastic trajectories,
undergoing the same change of control parameter. The time-evolution of such ensemble
thermodynamic quantities for the system driven out-of-equilibrium when performing
the STEP protocol reveals how the exchange of injected work and released heat evolve
to keep the internal energy unchanged in the case of the RAMP protocol.

When observing the work fluctuations taking place when the optical trap is com-
pressed applying the RAMP or STEP protocol, we detected the presence of some
trajectories that violate the Second Law of thermodynamics. We therefore devoted
the last part of the chapter to the definition and implementation of specific fluctuation
theorems that give essential information on the fluctuation dynamics at play in the
processes investigated with our system. We first focused on the Jarzynski equality,
which emphasizes that events violating the Second Law contribute to ensemble aver-
ages in a way that they allow to determining the equilibrium free-energy differences
between the initial and final states involved in the transformation induced by any type
of driving protocol. Investigating the Crooks fluctuation theorem led us to investigate
further work fluctuations. The CFT revealed in particular how the asymmetry be-
tween the compression process and its time-reversed (expansion) is directly linked to
the mean dissipated work. This FT hence explained the emergence of irreversibility at
the macroscopic level from our microscopic measurements.

These discussions on irreversibility and dissipation led us to investigate the fluctu-
ations of entropy, in which the CFT offers again a valuable insight. Following Seifert’s
method to obtain entropy production at the level of a single stochastic trajectory,
we obtained the probability distributions of entropy production for the compression
and expansion of the trap under the STEP and RAMP protocols. We then verified
with our data the validity of the CFT and the integral fluctuation theorem for stochas-
tic entropy production, observing the existence and importance of entropy annihilating
trajectories that were also manifest previously, but viewed from the work point of view.

Overall, the aim of this chapter was to provide the central concepts necessary for
the presentation of the results of the last chapter of the manuscript, where we address
the problem of optimizing such transformations between two equilibrium states.
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5 Optimal thermodynamic control

5.1 Introduction

In the previous chapter, we have seen how the Brownian particle trapped in an optical
potential represents the piston-gas model for testing the results of stochastic thermo-
dynamics. We have tested two intuitive protocols that drive the system between two
equilibrium states: one long enough to be considered as quasistatic and an other, a
step-like protocol characterized by an abrupt change in the optical trap stiffness. By
recording the trajectory of the Brownian particle in the optical potential undergoing
a large number of cycles of the STEP protocol we were able to construct an ensemble
of trajectories characterized by the same change of external conditions, i.e. stiffness
variation.

Such a step-like protocol constitutes the simplest protocol for transferring the Brow-
nian particle between two equilibrium states. For such a transfer, the relaxation time is
simply determined by the γ/κf . It has been shown both theoretically and experimen-
tally that this duration can be arbitrarily shorten by implementing a specific protocol
that essentially consists in a very strong compression/expansion sequence i.e. through
a very energetic cost.

In this Chapter, we are interested in the constrained relation between transfer
duration and energetic cost. We define and demonstrate the possibility of optimal
transfer protocols that lead to the best possible compromise between the shortening
of the transfer duration and its associated energetic cost. This project is a result of
a collaboration that intertwines the theoretical works of Prof. G. Manfredi and Prof.
P.A. Hervieux, IPCMS Strasbourg, and Prof. Laurent Merz, NYU-Shanghai and our
experiments.

5.2 Dynamical evolution of Brownian particle in a po-
tential under compression

In the previous chapter we have seen how the probability distribution of positions can
be constructed from an ensemble of trajectories, since the trap remains harmonic at
all times of the evolution of the stiffness, the linearity of Langevin equation guarantees
that the PDF of positions remains Gaussian at all times too [160]. A Gaussian can
be fully described by its first and second moments, the mean and the variance. When
the stiffness of the potential changes with time, the mean stays fixed, but the variance
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evolves accordingly.

It is possible to obtain the equation of motion of the variance directly from the
overdamped Langevin equation:

γ
dx

dt
= −κx(t) + Fth(t), (5.1)

where Fth(t) =
√

2kBTγξ(t) =
√

2Dξ(t) the Langevin force. We take the approach of
A. Manoliu and C. Kittel [161], multiplying the Langevin equation by x(t),

γ
dx

dt
(x(t)) = (−κx(t) + Fth(t))x(t) (5.2)

γ

2

dx2

dt
= −κx2(t) + Fth(t)x(t) (5.3)

and taking the ensemble average:

γ

2
〈dx

2

dt
〉︸ ︷︷ ︸

d〈x2〉/dt

= −κ〈x2〉+ 〈Fth(t)x(t)〉 (5.4)

we are left to compute the correlation function 〈Fth(t)x(t)〉. For that we use the solution
to the overdamped Langevin equation, and calling the correlation time τ = γ/κ, we
can write:

x(t) = x0e
−t/τ +

∫ t

0

dt′e−(t−t′)/τFth(t
′) (5.5)

then, we multiply by the stochastic force and take the ensemble average:

〈Fth(t)x(t)〉 = 〈x0FThe
−t/τ 〉︸ ︷︷ ︸

0

+〈
∫ t

0

dt′FTh(t)FTh(t
′)e(t′−t)/τ 〉 (5.6)

〈Fth(t)x(t)〉 = 2kBTγ

∫ t

0

dt′δ(t− t′)e(t′−t)/τ )︸ ︷︷ ︸
1/2

(5.7)

The last integral can be rigourously demonstrated by using stochastic integrals 1. Thus:

γ

2

d〈x2〉
dt

= −κ〈x2〉+ kBTγ (5.8)

for simplicity we call 〈x2(t)〉 ≡ s(t) so the previous equation writes:

ds

dt
= −2κ

γ
s(t) + 2D (5.9)

with κ the stiffness of the potential, γ the Stokes drag and D the diffusion coefficient.
1The integral of half of a distribution function is done by using Stratonovich convention. See

Appendix A
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This equation describes the deterministic dynamical evolution of the system. The
solution of this equation in the case of a fixed harmonic potential (κ̇ = 0) is:

s(t) =
Dγ

κ
(1− e−2κt/γ) (5.10)

from which we can extract the relaxation time of the variance of the position PDF,
when this latter reaches the equilibrium distribution, τrelax = 2γ/κ. At t � τrelax, we
recover the equipartition theorem:

κs = kBT (5.11)

which plays the role of a dynamical criterion for the system to be considered at thermal
equilibrium with its surroundings.

Time-dependent trapping potential As we have seen in the previous Chapter,
section 4.3.1, optical traps are very advantageous for applying arbitrary driving schemes
to the control parameter thanks to the simple relation κ(t) ∝ I(t). When the potential
changes between two configurations, U(κi, x) and U(κf , x), due to a time-dependent
stiffness κ(t), the potential stays harmonic at all times of the transformation. In the
figure below 5.1, we show, at the level of a single trajectory, how the trapped Brownian
particle thermally explores the optical potential undergoing a compression with a STEP
protocol.

Figure 5.1: Trajectory dependent energy fluctuations as a function of
time (yellow curve) and as a function of the trajectory (blue). Each blue
dot represents the sampled energy position of the particle within the
potential. The trapping potential was evolving according to the STEP
protocol, studied in the previous Chapter, from U(κi, x) to U(κf , x).

These are projected in the (x, U)-plane as purple curves.

The dynamical effects of such protocol at the ensemble level can be monitored
directly on the variance, s(t). The time evolution of s(t) for a STEP protocol that
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performs a trap compression characterized by κi going to κf � κi, can be found by
solving equation 5.9, with the boundary conditions s(0) = si = kBT/κi and s(tf ) =

sf = kBT/κf :
s(t) = sie

−2κf t/γ + sf (1− e−2κf t/γ) (5.12)

As an example, we plot the analytical evolution s(t) as an orange solid line on top of an
experimental ensemble variance represented as the blue curve in Fig. 5.2. The system
approaches the new equilibrium state characterized by a variance sf = kBT/κf after a
time τrelax given by 2γ/κf , which is indicated as the green dashed line in the figure.

f

Figure 5.2: Example of the variance evolution of a trap under com-
pression following a STEP protocol. The blue solid curve represents the
temporal evolution of the measured ensemble variance s(t) normalized
to the final variance sf = 1.72× 10−16m2. The stiffness of the potential
evolves from κi = 1.69×10−5N/m to κf = 2.39×10−5N/m. The orange
solid line on top of the measured variance is the analytical solution of
the variance evolution, equation 5.12. The vertical green dashed line
indicates the relaxation time τrelax = 2γ/κf = 7 × 10−4s. Inset: Time
evolution of the control parameter κ(t) following a STEP protocol, nor-

malized to the initial stiffness κi.

The ensemble cumulative energetics associated to the transformations, as discussed
in the previous chapter, section 4.3.3, can be now expressed in terms of the variance
s(t):

W (t) = 〈w(t)〉 =

∫ tf

0

s(t)κ̇dt Q(t) = 〈q(t)〉 =

∫ tf

0

ṡκ(t)dt (5.13)

following a convention for a positive flow when the heat is transferred from the trapped
microsphere to the bath, usually taken in stochastic thermodynamics [70].
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In section 4.3.1, we described the procedure to build the ensemble of trajectories,
from which at each instant, t = tj, of the time evolution of the trapping potential, we
can extract the distribution of positions p(x(tj), tj), as illustrated in Fig. 4.29. Such
PDF is a Gaussian of zero mean, µx(tj) = 0, and variance s(tj). We can therefore
extract the instantaneous ensemble variance over N repetitions of the driving protocol.
We use a Matlab routine which gives the estimator:

σ2
x(tj) =

N∑
i=1

|xi(tj)− µx(tj)|2

N − 1
(5.14)

where tj is a specific time instant, xi(tj) is the instantaneous position of a given tra-
jectory i, µx(tj) the ensemble mean at time tj. The statistical uncertainties for the
instantaneous ensemble variances are obtained following a χ2 law with N − 1 degrees
of freedom where N = Ncycles is the number of independent trajectories xi(t) undergo-
ing one cycle of the protocol κ(t), these uncertainties have to be complemented with
the systematic errors of calibration between positional units and measured voltages.

PSD calibration uncertainties: Under a trapping laser intensity, the registered p-
i-n voltage values V (t) that correspond to the position fluctuations of the trapped bead
are converted into displacement units using the best-fit parameter of the Lorentzian
fit of the PSD of the trajectory (at constant κ). The fit parameter Dfit is compared
to the diffusion coefficient D = kBT/γ expected from the Fluctuation-Dissipation
Theorem, assuming known temperature and viscosity. This gives a conversion factor
β =

√
D/Dfit from p-i-n voltages to meters. The uncertainty on the position sensitivity

is obtained from standard error propagation including the uncertainty on the viscosity
resulting from the δR/R = 2.8% size dispersion deviation of the trapped beads.

Instantaneous positions are thus given from the conversion factor as x(t) = (β ±
δβ)V (t), and therefore the variance, up to first-order in uncertainty, x2(t) = (β2 ±
2βδβ)V 2(t), (since the mean position 〈x(t)〉 = µx(t) = 0). The total error of the
variance writes as:

s(tj) = σ2
x(tj)± (δσ2

χ2(tj) + βδβσ2
x(tj))︸ ︷︷ ︸

δs(tj)

, (5.15)

where σ2
x(tj) =

∑N
i=1 |xi(tj) − µ(tj)|2/(N − 1) is the estimator of the instantaneous

ensemble variance over N cycles, δσ2
χ2 corresponds to the statistical uncertainty in the

motional variance determination (see above) and δβσ2
x the PSD calibration uncertainty

just discussed.

The temporal average variances related to the initial an final stiffness si and sf are
obtained from temporal average. Assuming ∆t as the interval over which κ(t) remains
constant (either at κi or κf ), the temporal average · · · of the corresponding variance
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is:

s =
1

∆t

n∑
j=1

s(tj), (5.16)

taking ∆t as the interval over which κ(t) remains constant (either at κi or κf ) and
n = ∆t · fs with fs = 262 kHz, the sampling frequency. The standard deviation of the
temporal average is simply evaluated as:

δts =

√√√√ 1

∆t

n∑
j=1

|s(tj)− 〈s〉t|2 (5.17)

The stationary variances si and sf and their uncertainties are thus simply given by:

si,f = s±
(
δts+ δs+ δtδs

)︸ ︷︷ ︸
δtsi,f

, (5.18)

where δs = 1/∆t
∑n

j=1 δs(tj).

5.3 Accelerated equilibration

The reversible and irreversible driving schemes discussed in the previous chapter show
that even with an abrupt change of the control parameter as performed with the
STEP protocol, the shortest time at which the system reaches equilibrium is limited to
τrelax = 2γ/κ. Nevertheless, if two states are related by a quasistatic transformation,
it is possible to design alternative driving protocols that transform the system from an
initial, U(κi, x) to a target state, U(κf , x), in a time shorter than τrelax. Martinez et al.
designed a novel protocol, called ’Engineered Swift Equilibration’ (ESE) [160], which
was the first proposition of accelerated equilibration protocols to a system in contact
with a thermostat. Such protocols aim at short-cutting quasi-static relaxations how-
ever by paying a high energetic cost. They first applied the ESE protocol to drive a
Brownian particle held in an optical trap between two equilibrium configurations of the
potential, characterized by an initial stiffness κi and a final κf . In their experimental
configuration, the ESE protocol allowed the system to reach the final equilibrium state
100 times faster than the natural relaxation time, they subsequently demonstrated the
applicability on a underdamped system, an AFM cantilever whose equilibrium position
is displaced [162]. Below we briefly explain their analytical method, for the overdamped
case.

As discussed above, the evolution of the system during the transition towards the
new equilibrium state is monitored through the position PDF which is a Gaussian
during the whole process. Defining the variable α(t) = κ(t)/kBT , the PDF can be
written as:

ρ(x, t) =

√
α(t)

π
e−α(t)x2 (5.19)
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By imposing α(0) = κi
2kBT

and α(tf ) =
κf

2kBT
, i.e. thermal equilibrium at initial and

final times and plugging Eq. 5.19 into the overdamped Fokker-Planck equation:

∂

∂x
ρ(x, t) =

1

γ

∂

∂x

[
ρ(x, t)

∂U

∂x

]
+D

∂2

∂x2
ρ(x, t), (5.20)

leads to a differential equation for α(t):

α̇ =
2κ

γ
α− 4kBT

γ
α2 (5.21)

Their strategy relies on choosing arbitrarily a solution of the differential equation for α
supplied with the boundary conditions, and a simple choice is a third degree polynomial,
calling the re-scaled time as t̂ = t/tf , and ∆κ = κf − κi:

α(t̂) =
1

2kBT
[κi + ∆κ(3t̂2 − 2t̂3)] (5.22)

This solution satisfies equation 5.21:

κ(t) =
γ

2α(t)

[
α̇(t) +

4kBT

γ
α2(t)

]
(5.23)

=
γ

2

α̇

α
+ 2kBTα (5.24)

In this way, with such solution and the imposed boundary conditions, they were able
to impose a relaxation in a time tf � τrelax, while driving the control parameter as:

κESE(t) =
3γ∆κt̂(1− t̂)/tf
κi + ∆κ(3t̂2 − 2t̂3)

+ κi + ∆κ(3t̂2 − 2t̂3) (5.25)

We compare the results of such ESE protocol with the standard sudden switch of
stiffness, the STEP protocol, using as observable the variance s(t). In the figure 5.3
below we show the protocols and the time evolution of the resulting variance.
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Figure 5.3: Left panel: Time evolution of the protocols, κ(t) normal-
ized to the initial stiffness κi. The STEP protocol is represented by the
green solid line and the ESE protocol is the pink line. Right panel: The
temporal evolution of the ensemble variances as a result of the mod-
ulations with the ESE and STEP protocols. The color codes are the
same as for the left panel. The shaded areas represent 95% confidence
intervals. The variance s(t) is normalized to its final equilibrium value

sf = kBT/κf .

When the trap is compressed following the STEP protocol, the particle starts at
equilibrium in the potential U = κix

2/2, with κi = 2.77± 0.08 pN/µm, then at t = 0,
the stiffness is suddenly switched to κf = 5.22±0.15 pN/µm. The variance s(t) evolves
according to Eq. 5.12 until the system reaches the new equilibrium state in the poten-
tial U = κfx

2/2, after τrelax = 3.22 ms. For the same ∆κ, we impose that the system
reaches the new equilibrium state in a time 10 times faster than τrelax by driving the
stiffness with the ESE protocol, Eq. 5.25. As seen in the left panel, in order to perform
such an acceleration, κESE goes up to a maximum value approximately six times higher
than its initial value and then decreases towards κf in the time imposed, which in this
case is, tf = 0.34 ms. At t = 0, the variance s(t) evolves from si = 1.5 × 10−15m2 as
1/2α (Eq. 5.21) and after ∆t = tf reaches the final equilibrium value sf = 7.7×10−16m2.

Figure 5.4 displays the temporal evolution of the mean cumulative energetics as-
sociated to the trap compression following the STEP and ESE protocols. The mean
cumulative work of the STEP protocol is depicted in green, and as seen previously,
reaches immediately Wstep = 0.45± 0.04 kBT . In contrast, the heat, plotted in brown,
achieves the equilibrium value W = Q with Qstep = 0.45 ± 0.04 kBT only after τrelax.
In the right panel we see the evolution of the mean cumulative work for the ESE
protocol, displayed in pink, which increases up to a maximum as confinement is in-
creased, then work is dissipated to the environment, resulting in a total work expended
of WESE = 1.142± 0.075 kBT . The mean cumulative heat generated through the ESE
protocol is displayed in yellow, superimposed to theWESE, and monotonically increases
as the system dissipates heat continuously until the system is completely relaxed in
the new equilibrium, with total heat QESE = 1.142 ± 0.076 kBT . At equilibrium, the
heat and work stay constant, W = Q, both curves reach equilibrium at the imposed
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time ∆t. To perform such a transformation in such short time, the work expense is 2.5
times higher than the STEP protocol. In their experiment [160], Martinez et al., use
the ESE protocol to perform a transition from κi = 0.5 pN/µm to κf = 1 pN/µm, in a
time 30 times faster than τrelax, and it comes at a price 20 times higher than using the
STEP protocol.

Figure 5.4: Temporal evolution of the mean cumulative energetics of
the STEP protocol (Left panel), and the ESE protocol (Right panel).

The shaded areas represent the errorbars.

5.4 Optimization strategy

Our aim is to control the relaxation dynamics of the trapped bead when the potential is
changed between two configurations, in such a way that for the minimal energetic cost
the system equilibrates as fast as possible, especially faster than the natural relaxation
time given by the ratio of the viscosity and the stiffness of the final trapping potential.
The advantage of an optical trap is in its harmonic nature, the clear relation between
the stiffness an the variance. And thus we can base our optimization strategy on the
direct influence of the control parameter κ(t) on the evolution of s(t). At equilibrium,
the two variables are related as, siκi = sfκf = kBT . And the interplay of the two
is also revealed in the energetics, as shown in equations 5.13. We thus seek, for the
time evolution of the control parameter κ(t) that optimises the compromise of transfer
duration and energetic cost, and this can be readily tackled with the approaches of
calculus of variations (See Appendix C).

In our case, s(t) and κ(t) are monotonically varying functions of time, this ren-
ders the calculations simpler. Instead of the time, κ or s can be considered as the
independent variable of the problem. This approach allows us to define a parameter
space (s, κ) in which the optimization problem can be clearly stated, as we will in the
following paragraphs.

Choosing s as the independent variable of the problem, the control parameter, κ(t)

can be written as κ̂[s(t)]. The quantities that we want to optimize such as the transfer
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duration and the work can now be written as functionals of the curve κ̂[s] From Eqs. 5.9
and 5.13 we obtain:

∆t[κ̂(s)] =

∫ tf

0

dt =
1

2

∫ sf

si

γ ds

Dγ − s κ̂(s)
(5.26)

W [κ̂(s)] = −1

2

∫ sf

si

κ̂(s)ds+
1

2
(κfsf − κisi)︸ ︷︷ ︸

=0

, (5.27)

In variational calculus [163], for a curve κ̂(s) in the (s, κ)-space, we can define a dif-
ferentiable function L(κ̂, κ̂′, s), where κ̂′ ≡ dκ̂/ds, known as the Lagrangian, and a
differentiable functional :

J [κ̂(s)] =

∫ sf

si

L(κ̂, κ̂′, s)ds (5.28)

such that the curve κ̂(s) is an extremal of the functional J [κ̂(s)] on the space of curves
joining (si, κi) and (sf , κf ), if it satisfies the Euler-Lagrange equation:

d

ds

∂L

∂κ̂′
− ∂L

∂κ̂
= 0 (5.29)

The idea originates from analytical mechanics [163], where the motion of a mechanical
system, whose extremals are solutions of Newton’s equations of motion in a poten-
tial, coincide with the extremals of a functional S[q(t)] =

∫ tf
t0
L(q, q̇, t)dt, known as

the action, where q(t) are generalized coordinates and L(q, q̇, t) is the Lagrangian of
the system, representing the difference between kinetic and potential energy. In such
mechanical system, the Euler-Lagrange equations are nothing other than Newton’s
equation of motion.

To define the Lagrangian in our case, or the functional J [κ̂(s)], we use the Lagrange
multiplier technique, in which the Lagrangian takes the form of a linear combination of
the objective function, and the constraints with the Lagrange multipliers, see Appendix
C. We can write J [κ̂(s)] as a compromise between transfer duration, eq. 5.26 and work,
eq. 5.27 as:

J [κ̂(s)] =

∫ sf

si

γds

Dγ − s κ̂(s)
− λ

∫ sf

si

κ̂(s)ds, (5.30)

where λ is a Lagrange multiplier that regulates the trade-off between transfer duration
and work, and will have units of [time/energy], that is [s/J ] or [s/kBT ]. Within
this framework, the optimization strategy can be interpreted as the search for the
trajectory in the (s, κ)-space that minimizes J [κ̂(s)] while keeping the extrema fixed
at equilibrium, i.e. siκi = sfκf = kBT = Dγ. With:

L(κ̂, κ̂′, s) =
γ

Dγ − s κ̂(s)
− λκ̂(s), (5.31)
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Eq. 5.29 yields:

s κ̂(s) = Dγ +

√
γs

λ
(5.32)

The expressions of the transfer duration and work can be obtained by plugging eq. 5.32
into equations 5.26 and 5.27:

∆t = tf =
√
γλ
(
s

1/2
i − s

1/2
f

)
(5.33)

W = kBT ln
( si
sf

)
+

√
γ

λ

(
s

1/2
i − s

1/2
f

)
. (5.34)

Depending on the value λ, different situations can be described from the above equa-
tions, for instance, in the limiting case, λ → ∞, one recovers the quasistatic solution,
sκ = Dγ = kBT , with infinite duration and a expended work equal to the free energy
difference, WQS = ∆F = 1

2
kBT ln(si/sf ). For finite λ and making use of Eq. (5.32),

Eq. (5.9) can be rewritten as:
ds

dt
= −2

√
s

γλ
(5.35)

which possesses the general solution:

s(t) =
(√

si −
t√
γλ

)2
. (5.36)

This equation represents the evolution of the variance when the trap is compressed
following the optimal protocol for the stiffness κopt(t), whose expression can be obtained
by inserting Eq. 5.36 into Eq. (5.32):

κ(t) =
Dγ +

√
γsi/λ− t/λ(√

si − t/
√
γλ
)2 , (5.37)

this temporal evolution ensures the minimal trade-off between ∆t and W , in other
words, generates a transfer between two equilibrium states as "fast and cheap" as pos-
sible.

In our case, the Euler-Lagrange equation is purely algebraic, so that one cannot
enforce the initial and final conditions, unlike other strategies consisting in solving
differential equations to find the suitable evolution for κ(t). Except for the quasi-static
limit, Eq. 5.37 does not satisfy the conditions for which the system is at thermal
equilibrium in the initial and final states. In order to ensure that si,fκi,f = kBT , we
need to add to Eq. 5.37 two discontinuities (See Appendix C). The optimal protocol,
shown in Fig 5.5, thus, consists of three successive sequences:

1 At time t = ti, the trap stiffness is suddenly changed from κi = Dγ/si (initial
equilibrium) to κ(t+i ) = κ+

i , such that: κ+
i − κi =

√
γ/(λsi), while keeping the

variance equal to si;
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2 Between t+i and t−f , the stiffness varies according to Eq. 5.37, reaching κ(t−f ) ≡
κ−f = Dγ/sf +

√
γ/(λsf );

3 At time t = tf , the stiffness is suddenly changed from κ−f to κf = Dγ/sf (final
equilibrium), while keeping the variance equal to sf .

Figure 5.5: Three succesive sequences constituting the temporal evo-
lution of the optimal protocol. κopt(t) (blue curve) is compared to the
STEP protocol (in green) for the same transition ∆κ. The two protocols

are normalized to κi.

Discontinuities are part of optimization problems, as emphasized in [44, 164], and
depending on the system, they can have a clear interpretation, in our case, their pres-
ence forces thermal equilibrium at initial and final sequences of the protocol.

To implement experimentally such optimal protocols the procedure is as follows:

• We choose the initial and targeted equilibrium states, by setting κi and κf , this
fixes the characteristic natural relaxation time τrelax = 2γ/κf associated to the
final trapping potential U(x, κf ) = κfx

2/2, and the values of si and sf from
equipartition.

• We choose to accelerate the transition n times compared to the characteristic
τrelax, this gives the protocol duration ∆topt = τrelax/n, or simply the desired
∆topt.

• In turn, from Eq. 5.33, these choices fix the Lagrange multiplier λ as:

λ =
∆t2opt

γ(s
1/2
i − s

1/2
f )2

(5.38)

and consequently the jumps, 1○ and 3○, in figure 5.5.
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We perform the experiment for the same transition described in the case of the ESE
and the STEP protocols, see Fig. 5.3. The results are shown in Fig. 5.6 below. The
stiffness of the potential is fixed to κi = 2.77±0.08 pN/µm during the first 30 ms of the
cycle, then at t = 0 the stiffness evolves according to the optimal protocol containing
the three sequences described above, and at time tf = ∆t ∼ τrelax/10 = 3.47 × 10−4

s, the stiffness reaches the final equilibrium value κf = 5.22 ± 0.15 pN/µm and is
maintained at this value during (20 - ∆t) ms, the protocol is repeated 24000 times,
and each cycle lasts 50 ms.

Figure 5.6: Experimental results of the optimal protocol. Left panel
displays the ensemble of trajectories undergoing one cycle of the the op-
timal protocol κopt(t) shown on top. The black vertical lines indicate tf .
Right panel shows the temporal evolution of the corresponding ensemble

variance s(t) with a 95% confidence interval.

The temporal evolution of the variance shows that the system is fully relaxed at
the final equilibrium sf = κf/kBT , exactly at time tf = ∆t. s(t) evolves in excellent
agreement with the theory, as displayed in Fig. 5.6 with the superimposed black
continuous line, which represents the theoretical evolution, Eq. 5.36, calculated with
the experimental values, si and λ. The Lagrange multiplier for this protocol was
λ = (5.29 ± 0.08) × 10−4 [s/kBT ]. In figure 5.7 below, we compare these results with
those obtained using ESE and STEP protocols.
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Figure 5.7: Left panel: κ(t) for the ESE (pink), STEP (green) and
optimal (green) protocols. Right panel: Associated variance evolutions.
Inset: The trajectories of the different driving schemes in the (s, κ)-space.

When the stiffness instantly disrupts the system, as with the STEP protocol, the
PDF of positions exponentially relaxes to the final equilibrium PDF characterized
with a variance sf . It can be observed that complete relaxation is reached after a time
τrelax = 2γ/κf = 3.22 ms. Whereas under the two other compression schemes, the ESE
and the optimal, the system reached the new equilibrium state exactly at the time
imposed, tf = 0.35 ms. Both accelerate the process effectively, but the dynamics of
evolution are very different between the two, this, together with the shape of κ(t), the
striking differences can be clearly seen in the (s, κ) parameter space, see inset of the
figure, and will be reflected in the energy cost discussed below.

5.4.1 Energetics of the optimal protocol

Defining a (s, κ) parameter space is advantageous since the work is clearly half the area
beneath the curve κ̂(s), see Eq. 5.27.

We analyse the energetic cost associated to each sequence of the optimal protocol
described above, and we show the evolution of the measured mean cumulative energetics
in the left panel of Fig. 5.8. We can describe the work evolution during the three
sequences, depicted in blue in Fig. 5.8:

1 The quantity of work W (1) = si(κ
+
i − κi)/2 is injected instantaneously into the

system at the time ti as the trap is suddenly stiffened from κi to κ+
i .

2 The injection of work continues as the trapping volume is progressively reduced,
reaching W (2) = WQS +

√
γ/λ

[
(s

3/2
i − s

3/2
f )/3− (s

1/2
i − s

1/2
f )/2

]
at t = t−f , when

κ = κ−f .

3 The trap is suddenly expanded at t = tf , and the system instantly reaches its
final equilibrium state, delivering to the thermal bath a quantity of work equal
to W (3) = sf (κf − κ−f )/2. For t > tf , the thermal steady state is characterized
by W = Q.
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Figure 5.8: Left panel: Temporal evolution of the mean cumulative
energetics of the optimal protocol. Wopt(t) is plotted in blue and Qopt(t)
in orange. Inset: The protocol in the (s, κ)-space with the sens of the
arrows indicating the order of the sequences 1○→ 2○→ 3○ (or the time).
Right panel: Comparison of the energetics of the optimal protocol with
the ESE and the STEP (bottom inset) described previously. WESE(t) is
represented by the pink curve, QESE(t) is displayed in yellow. Shaded

areas represent 95% confidence levels.

We evaluate our optimal protocol with respect to our reference, the STEP protocol,
and the accelerated protocol, ESE. The results are shown on the right panel of figure
5.8 above. The evolution of the mean cumulative energetics associated to the STEP
protocol are shown in the inset of the right panel. Both protocols, the optimal and
ESE, attain the equilibrium, given by W = Q precisely at ∆t = tf = 3.47 × 10−4

s. Since the ESE protocol is not optimal, to perform the same acceleration as the
optimal protocol, confinement has to be increased even beyond the maximum value
attained by κopt(t), and thus, as shown in the curves, more work has to be expended
and dissipated. The non-optimal character of the ESE protocol is directly measured
with excess work ∆WESE = WESE − ∆F = 0.81 ± 0.08 kBT larger than the optimal
value ∆Wopt = Wopt−∆F = 0.65±0.07 kBT . In both cases, the acceleration is limited
by the maximum laser intensity, therefore for a system limited by the experimental
conditions, from a practical point of view, implementing the optimal protocol is also
advantageous as it allows to accelerate more, since κmax

ESE > κmax
opt to achieve the same

tf = τrelax/n.

5.5 Universal time-energy bound

From the expressions ∆topt =
√
γλ
(
s

1/2
i − s

1/2
f

)
andWopt = WQS+

√
γ/λ

(
s

1/2
i − s

1/2
f

)
,

derived as Eqs. 5.33 and 5.34, we can notice that the two values depend only on the
difference between initial and final equilibrium states, si,f and the Lagrange multiplier
λ, to which a more intuitive expression can be attributed:

λ =
∆topt

Wopt −WQS

, (5.39)
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making very explicit the trade-off between transition time and expended work. This
leads us to define the "excess work" of the optimal protocol as:

∆Wopt = Wopt −WQS (5.40)

which corresponds to the dissipative work discussed in the previous chapter, but in this
new context of "fast and cheap" protocols results a more convenient terminology.

The central result relies on the product ∆topt ∆Wopt = γ/2(s
1/2
i − s

1/2
f )2, which

is independent of λ. In other words, it only depends on the difference between the
initial and final states. From this remarkable result, we can define a mutually exclusive
relation between the transfer duration and the expended work, and it corresponds to
the frontier value of a universal exclusion region:

∆t∆W ≥ γ/2(
√
si −
√
sf )

2, (5.41)

that bounds from below all protocols that are not optimal. In order to draw this frontier
experimentally, we perform 8 optimal protocols of different durations ∆topt = τrelax/n,
with n ∼ 34, 30, 22, 16, 10, 6, 3, 2, keeping the same choice of κi and κf for all. We
extract the different ∆Wopt associated to the different ∆topt. For each protocol, ∆Wopt

is normalized by the corresponding measured value γ/2(
√
si−
√
sf )

2, considering that
from experiment to experiment the values of si,f vary slightly, since experiments are not
performed the same day under the same calibration or since when performing various
experiments one after the other, a slight degradation from the initial calibration can
take place. However, the ratios κf/κi or si/sf are not affected. We can emphasize that
our procedures involve ∆κ/∆t ratios, which are unaffected by systematic errors that
act equally in all stiffnesses and are therefore compensated in such ∆κ terms. This an
important asset of our approach, which becomes insensitive to absolute values.

With the above discussion in consideration, the frontier of the universal exclusion
region can be verified experimentally, see Fig. 5.9 by observing that all the coordinates,
{∆t,∆Wopt/(γ/2(

√
si −
√
sf )

2)} precisely fall (within error bars) on the 1/∆t curve.

The universal character of the bound is further explored, by placing the values of
excess work normalized respectively, and ∆t obtained from other protocols that are
non-optimal, such as the ESE protocol, the STEP and the smooth protocols defined in
Appendix 3. We observe that all these fall above the optimal bound.
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Figure 5.9: Experimental verification of the universal time-energy ex-
clusion relation. The continuous solid blue line represents 1/t. The red
markers with errorbars are the normalized values of ∆Wopt for the opti-
mal protocols mentioned in the main text. The blue and green markers
also correspond to optimal values, and they appear in the insets along
with the values obtained by the smooth protocols. The black diamond
represents the normalized value associated to the ESE protocol discussed

above, and the black star with the STEP.

5.6 Normality tests

Under modulation of the stiffness of the trapping potential, it is crucial to verify that
the PDF of positions of the trapped particle remains Gaussian. A straightforward
way to assess the normality of the experimental is by calculating the kurtosis at all
times of the cycle. The kurtosis is a statistical measure, which determines the degree
of concentration presented by the values of a variable around the central area of the
distribution, it is defined as:

kurtosis(x) =
µ4(x)

σ4(x)
(5.42)

where µ4(x) is the fourth central moment and σ(x) the standard deviation of the prob-
ability distribution p(x). For a Gaussian distribution it is verified that µ4 = 3σ4,
therefore we verify that kurtosis = 3 for our data. Small fluctuations of the kurtosis
around 3 are expected.

In the figure 5.10 below, we show the measured kurtosis as a function of time,
for the entire evolution of the PDF of the system, constructed by the ensemble of
trajectories shown in Fig. 5.6. The PDF and the associated trapping potentials are
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evaluated at the two different times tj < t0 and tj > tf indicated by the two dashed
vertical lines in the bottom right panel of Fig. 5.6, with associated trap stiffnesses
κi = 2.77± 0.08 pN/µm and κf = 5.22± 0.15pN/µm, respectively.

Figure 5.10: Top-left panel: Position distribution functions (PDF)
built from the ensemble of trajectories at two different times, with as-
sociated trap stiffnesses κi = 2.78 ± 0.08 and κf = 5.22 ± 0.15 pN/µm
respectively. Top-right panel: Associated trapping potentials extracted
from the PDF as U(x, tj) = −kBT log(ρ(x, tj)) + cst. Bottom panel:

Measured kurtosis over the full cycle.

For the shortest protocols, one has to be more careful, since due the instantaneous
strong changes in κ(t) required to accelerate the transition, there is a higher risk that
the trapped bead explores regions beyond the harmonic potential. We therefore care-
fully assess the normality of the system at all times for the shortest protocol n ∼ 34, of
duration ∆t = 1.22× 10−4s which is shown in the upper panel of Fig. 5.11. As seen in
the lower panel, the kurtosis remains very close to 3 throughout the entire protocol. To
supplement this kurtosis-based analysis we pick four characteristic times, t0, t1, t2, t3, t0
at the jump from κi → κ′i, t1 in the middle of the evolution, t2 at jump from κ′f → κf
and finally one, t3 > tf at the final equilibrium value, κ(t) = κf . These times are
indicated as vertical grey lines in Fig. 5.11 below. For each of these times, we extract
the PDF of positions from the ensemble of trajectories and we fit them with Gaussian
distributions, the results are shown in Fig. 5.12.
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Figure 5.11: Top panel: Single cycle of the control parameter κ(t)
normalized to κi for the shortest duration ∆t = 1.22 × 10−4s protocol.
Middle panel: Corresponding time-evolution of the ensemble variance
s(t) extracted from the PDF of the ensemble of trajectories, normalized
to sf . The red dashed line, superimposed to s(t) between the transi-
tion points, corresponds to the variance extracted from the slopes of the
quantile-quantile plots extracted throughout the protocol and shown in
the inset of Fig. 5.13. Bottom panel: Kurtosis evaluated throughout
the protocol. The vertical lines represent the four times chosen for the

analysis of normality.

Figure 5.12: Normalized PDF represented in log-scale for the four
times shown in figure 5.11. The solid lines represent the results of Gaus-

sian fits.

We compare the same family of distributions with varying variance to a Gaussian
distribution of zero mean and unitary variance. We plot the quantile-quantile relation
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between the standard normal distribution and the for distributions plotted in 5.12
and plot a linear regression to evaluate the departure from normality. The results are
displayed in Fig. 5.13 below.

Figure 5.13: Quantiles of the PDF at four different times of the pro-
tocol as a function of the theoretical quantiles of a standard N (0, 1)
normal distribution. Inset: Evolution of the quantile-quantile plot as
the stiffness increases with time, the dashed lines represent the linear
fits of the quantile-quantile plots of the points at the beginning and end

of the protocols.

The intersection of all curves coincides with the 2-quantile, indicating that all dis-
tributions are of zero mean, the slope indicates the variance of the distribution, which,
as expected, evolves over time through the protocol. For each of these times, despite
that most of the data is compatible with a theoretical Gaussian we observe above the
fourth quantile, departures of the data from the linear regression. These, depending if
they are situated above or below, the regression line, correspond to some of the tails
regrouping more or less points, indicating a higher or lower probability of extreme
events compared to a perfect normal distribution This is expected given the discrete
nature of the data. This does not affect the well-defined mean and variances which are
as close as possible to a perfect Gaussian.

For a short protocol, since the transition is much faster than the position relaxation
time of the particle, we verify that at all sampling times, t0 < t < t2, the PDF remains
Gaussian and that the variance is well defined. The enveloppe of quantile-quantile
plots is displayed in the inset of Fig. 5.13. From the linear fit of each of these relations,
we can extract the evolution of the slope of the quantiles as κ(t) increases from κi to
κf . From the slopes, we can directly extract the variances, superposed as red-dashed
lines in the middle panel of figure 5.11. Besides changing its variance the shape of the
PDF does remain the same at all times of the process. We observe that the evolution of
the slope corresponds perfectly to the expected evolution of the variance of an optimal
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protocol. The variance can therefore be considered as well-defined for our analysis of
the time-evolution. Another remarkable feature is that all the curves pass through zero,
indicating that the mean of the distribution does not change during the process. The
curves remain linear up to the upper quantile, where the points slightly start departing
from the linear relation. Overall, therefore this diagrammatic analysis successfully
validates that the data to be treated as Gaussian at all points along the transition.

5.7 Discussion and outlook for future works

In this chapter, we have studied the dynamics of a Brownian particle trapped in an op-
tical potential that can vary over time, using the results of stochastic thermodynamics
to study the transformations between two equilibrium states of the system. This led
us to design protocols for controlling the optical potential so that the transformations
between the equilibrium states are done in an optimal way, that is to say, that the
relaxation of the particle towards an equilibrium state is done in a fast as possible
while guaranteeing a minimal energy dissipation. This is framed within a universal
exclusion relation between state transfer duration and expended work.

Our experiments consisted in checking carefully that our initial trapping conditions
are harmonic indeed, and that the evolution of the variance of position of the bead
follows a Gaussian law throughout the experiments. These verifications are crucial to
accurately compare the calculations with the experimental data. These verifications
then make it possible to precisely measure the duration, the work and the heat associ-
ated with a transformation between two states as functionals of the variance and of the
control parameter, which is the stiffness of the trap. To obtain the optimal protocol
which minimizes these two quantities, we introduced a Lagrange multiplier between
work done by the transformation and duration of this transformation in order to define
the minimal amount of work compatible with a given transfer duration.

As stressed in the introduction this capacity for optimizing stochastic processes in
rooted in the exceptional control that one can reach with an optical trap. In particular,
the possibility to identify both a clear control parameter in the trap stiffness and a clear
observable through the motional variance led us to build a (s, κ)-parameter space where
optimization through variational calculus can be easily performed.
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6 Summary and future perspectives

The adaptability of our optical trapping configuration in synergy with the rich theo-
retical framework of Langevin equation allowed us to exploit and control the dynamics
of an intrinsically noisy system, an optically trapped Brownian particle. First, from
a metrology perspective, we have devised through such dynamics a force microscope
capable of detecting weak optical forces at the femtonewton scale in water at room tem-
perature. Then, optimal thermodynamic transformations between equilibrium states
have been accomplished through a strategy that minimizes the relaxation time and the
associated expended work on the Brownian particle in the optical potential subject
to compression. Furthermore, stable trapping of single chiral nanoparticles has been
achieved using a standing wave trap configuration, and the recognition of the handed-
ness of the trapped object was performed based on the fundamental conservation law
of optical chirality [116]. In the following we overview the central results discussed in
the manuscript.

Measuring weak optical forces at the thermal limit

Langevin equation offers the possibility to add deterministic terms and to act on each
term independently. Optical tweezers offers the possibility to implement experimentally
the different terms involved in the Langevin equation in a controlled way while giv-
ing access to the instantaneous position of the trapped Brownian particle with spatial
resolutions at the level of the angstrom and temporal resolutions below microseconds.
This is how we based the construction of a force microscope capable of measuring op-
tical forces at the limit imposed by thermal noise, and how we used this microscope to
measure weak radiation pressure force fields.

The first ingredient in these experiments is the probe itself, a gold nanosphere with
a diameter of 150 nm. Its characteristics were chosen to maximise the dissipative inter-
action between the trapped bead and the laser beam generating the radiation pressure.
In order to stably confine these particles, we have not used a conventional trap, but
we have exploited the standing wave pattern created by the interference between the
incident and reflected beam by focalizing the trapping laser close to a reflecting sur-
face. In this configuration, the gold nano spheres are immobilised in the antinodes of
the interference pattern. As a reflecting surface, we have used a dichroic mirror which
allows the injection of the external radiation pressure beam, which acts on the probe
without affecting the trapping dynamics. The intensity of this beam is periodically
modulated so that detection is carried out by the spectral analysis of the position of
the probe, where the effect of the force appears as a peak at the modulation frequency,
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superimposed to the typical power spectrum associated with the trapping dynamics.
This allowed us working directly at the thermal limit.

A key feature of such a microscope is the definition of the maximum bandwidth
allowed by the stability of the experimental setup. These meticulous checks of the
stability conditions led to measuring radiation pressure forces down to 3 fN over a
bandwidth of 10 s that ensured the system to remain limited by the termal noise. This
resolution is to be compared with the dynamic range offered by our system, which
corresponds to a ration of 1/100 between the modulated component and the static
component of the force. The measurements were made at different modulation fre-
quencies, reaching sub-angstrom position resolution levels for all drive frequencies for
displacement of 10−11 m recorded at a modulation frequency close to 100 kHz.

In-situ enantiomeric recognition of single optically trapped chiral nanopar-
ticles

The force microscope described above is of particular interest for measuring chiral op-
tical forces, which are typically 2 orders of magnitude weaker than the conventional
optical forces such as gradient forces or radiation pressure. Recently confirmed at the
microscale, such forces remain to be measured at the nanoscale, domain in which new
strategies for all-optical chiral separation could be developed. Theoretical estimations
show typical values of such forces to be of the order of femtonewtons in thermally-
limited conditions.

Trapping single chiral nano-objects is the first essential step for measuring such
forces. In close collaboration with Lisa V. Poulikakos and Prof. David Norris, from
the ETH-Zurich, we have achieved stable trapping of single gold nanopyramids with
characteristic sizes of the order of 150 nm. The three-dimensional power spectral anal-
ysis of their position fluctuations in the trap indicated stable confinement during times
longer than 30 s.

The nanopyramids feature strong signals of circular dichroism peaked at 639 nm
and important sign inversions between left and right-handed enantiomers. The adapt-
ability of the experimental setup was also exploited in this context. The standing wave
trap guaranteeing the stable trapping of single chiral nano pyramids allows the addition
of a polarimetry line. The laser, of wavelength 639 nm serving as a test beam for radia-
tion pressure in the study of force microscopy, is in this case used as a recognition laser.

Our experiments exploited a fundamental result obtained by Lisa V. Poulikakos
from David J. Norris’ group: A chiral dissipative object illuminated by a non-chiral
optical field has to break, in the scattering, the initial balance between right and left
polarisation by a means of selective dissipation of electromagnetic energy. It is pre-
cisely this breakdown that we were capable of probing in our trap by measuring the
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contrast between the left and right polarizations of light scattered by the nanopyramid,
from the linearly polarised 639 nm laser. This revealed the capacity of our setup to
discriminate, in-situ, the enantiomeric forms of single chiral nanoparticles.

This combination of ingredients –our force microscope, the stable trapping and
enantiomeric recognition of nanoparticles with chiral shapes– holds a promising strat-
egy for measuring chiral optical forces at the nanoscale [103], and eventually be able
to design all-optical strategies mechanical separation of chiral molecules [131].

Thermodynamic protocols for optimal control of a transfer between two equi-
librium states of a Brownian particle.

We have then exploited the capacity of our experimental configuration for creating
optical confinement potentials which depend on time. To do this, we modulate the
stiffness of the trap (our control parameter) over time by following different protocols.
These possibilities allow in particular to study precisely, in the framework of stochas-
tic thermodynamics, the notion of transfer between equilibrium states. An interesting
discussion is to consider our optically trapped bead as an analog to a gas-piston model
in thermodynamics. Variations in stiffness will correspond to variations in volume of
the piston and the consequences on the Brownian fluctuations of our trapped bead will
be interpreted as the effects of such piston-gas thermodynamic transformations.

We tackled the problem of accelerating the thermalization of the transfer between
two equilibrium states. Usually, accelerating the transfer comes at a high energetic
cost, since it is necessary to inject into the system a large amount of work (i.e. a strong
intermediate compression of the trap) to quickly thermalize the bead. In collaboration
with G. Manfredi and P.A. Hervieux of IPCMS, in Strasbourg, and Laurent Mertz
from NYU-Shanghai, we have introduced a new strategy that treats both the duration
of the transfer and the expended work in a complete symmetric way, which provides
the outstanding capacity to optimally regulate the trade-off between these two quan-
tities. In this way, we were capable of designing a class of optimal protocols. Such
protocols reach the best possible compromise between transition time and the energy
cost. We were then able to describe experimentally and theoretically all the thermo-
dynamics associated with these constraints, by exploiting the techniques of stochastic
thermodynamics. In particular, we have derived a universal energy-time relationship
(i.e. dependent only on the initial and final equilibrium conditions) which takes the
form of a minimal bound for optimal protocols.

The optimization strategy discussed for transformations between thermodynamic
states could be explored for transformations between non-equilibrium steady states
(NESS). The most exciting potential application is in the domain of thermal nano-
engines, in which it is often desired to have good efficiency at maximum power. An
analog strategy could be designed to maximize these two quantities, or simply use
thermodynamic cycles that minimize the transfer duration to make shorter cycles that
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extract more power while dissipating the minimum to gain in efficiency. For such extent,
one could envision to devise a strategy in which an optimal protocol for temperature
changes within the cycle (e.g. s in Stilring cycle). Doing so, we could build cycles
for which each step, i.e. expansion and compression, together with the temperature
transitions, are optimal. Along this line, an interesting prospect would be to control
the noise term of the Langevin equation. This has already been explored in [71], but
not yet in the context of stochastic optimization.
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7 Résumé de la thèse

I. Introduction

Le comportement dynamique de nombreux systèmes hors équilibre est considérable-
ment influencé par l’interaction entre la source de bruit et les degrés de liberté déter-
ministes. De telles dynamiques régies par le bruit sont à la base d’une grande partie
des processus naturels.

C’est par l’étude de la dynamique d’une microparticule plongée dans un fluide, et
donc influencée par la dynamique des degrés de liberté rapides des plus petites partic-
ules du fluide que Brown, Smoluchowski, Einstein, Langevin et d’autres ont contribué
au développement d’une description complète d’une telle dynamique stochastique. Au-
jourd’hui elle sert à décrire des nombreux phénomènes dans diverses disciplines. Par
exemple: en climatologie pour expliquer les changements climatiques lents comme
réponse intégrale à des excitations aléatoires générées par des perturbation rapides
météorologiques [165], en génétique pour élucider le fait que notre individualité géné-
tique est due à la fécondation aléatoire, union aléatoire d’une gamète de chaque parent
pour former la première cellule de la nouvelle progéniture [18] et comprendre alors
comment une telle cellule développe certaines caractéristiques morphologiques. Dans
ce cadre génétique, ces processus sont aléatoires précisément parce qu’il y a un mou-
vement brownien à l’échelle moléculaire des entités biologiques en jeu. Les exemples
d’applications du calcul stochastique sont également vastes et divers, allant des prédic-
tions sur des marchés financiers aux descriptions de plusieurs phénomènes des réseaux
neuronaux.

L’équation de Langevin décrit la dynamique brownienne comme un équilibre de
forces. En reprenant l’exemple d’une particule immergée dans un fluide, cet équilibre
de forces s’écrit entre un terme inertiel, un terme visqueux, due au frottement de la
bille avec le fluide, et un terme stochastique, connu comme la force thermique ou la
force de Langevin, qui représente les effets des collisions aléatoires de la bille avec les
molécules du fluide.

L’étude de la dynamique brownienne s’est récemment enrichie d’une technique ex-
périmentale puissante: les pièges optiques. Ces systèmes permettent de piéger optique-
ment, dans un environnement bien contrôlé, des objets Browniens uniques et d’accéder
directement à leurs évolutions stochastiques. Dans ce contexte, les pièges optiques
ont permis de réaliser expérimentalement des dynamiques associées à une équation de
Langevin où viennent s’ajouter, de manière très contrôlée, des termes déterministes
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tels qu’un potentiel d’interaction, qui peut prendre différentes formes, ainsi que des
force externes non-conservatives. Globalement, les pièges optiques, par le biais des
forces optiques, ont permis l’étude des systèmes Browniens sous des angles nouveaux.
L’exemple à ce titre le plus impressionnant a été l’étude et la description des moteurs
moléculaires et des machines microbiologiques faites dans les années 1990-2000 par
Carlos Bustamante notamment. En parallèle, les pièges optiques ont permis de réaliser
(on parle de «simulations» expérimentales) un grand nombres de protocoles récemment
prédits et discutés dans le domaine de la thermodynamique stochastique [27], domaine
émergeant dans les années 2000 et aujourd’hui très présent dans un grand nombre de
laboratoires. Cette thèse porte un intérêt particulier sur ce sujet, d’une part parce qu’il
offre la possibilité d‘approcher de manière originale plusieurs problématiques étudiées
dans notre laboratoire, ensuite parce ces expériences permettent d’être développées
en synergie étroite avec une description théorique. Cette synergie permet de tester un
grand nombre de résultats théoriques pour lesquels très peu de résultats expérimentaux
sont déjà disponibles. C’est dans ce contexte que nous avons étudié la dynamique d’une
bille piégé dans un potentiel optique qui peut varier dans le temps, en exploitant les
résultats de la thermodynamique stochastique pour étudier les transformations entre
deux états d’équilibre du système. Ceci nous a amené à concevoir des protocoles de
contrôle du potentiel d’interaction de façon à ce que les transformations entre les états
soient faites de façon optimale, c’est-à-dire que la relaxation de la particule vers un
état d’équilibre se fait dans un temps plus rapide que l’échelle de temps naturelle de la
particule donnée par la viscosité du fluide et la raideur du potentiel tout en garantissant
une dissipation d’énergie minimale. Nous avons alors déduit une contrainte universelle
imposée par la relation énergie-temps sur de tels protocoles.

II. Résultats et discussions

i) Mesure de forces faibles à la limite thermique

La mesure de forces optiques extrêmement faibles trouve des applications dans divers
domaines de la physique. En générale, les méthodes impliquées pour mesurer de telles
forces peuvent être utilisées pour la mesure d’autres forces faibles qui ne sont pas
d’origine optique, par exemple des forces de Casimir, de Van der Waals, etc. Plusieurs
processus naturels impliquent des forces d’intensité de l’ordre des quelques femto-
Newtons.

Les pièges optiques donnent accès à la position instantanée de la bille piégé avec des
précisions spatiales de l’ordre de l’angström et des résolutions temporelles en dessous
de la microseconde. Comme mentionné plus haut, on peut contrôler chaque paramètre
de force de l’équation de Langevin et étudier expérimentalement chaque effet indépen-
damment. C’est ainsi qu’on a basé la construction d’un microscope capable de mesurer
des forces optiques à la limite fondamentale imposé par le bruit thermique. Un tel
microscope est un piège optique conçu pour permettre l’injection d’une force externe
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sans perturber le piège. La force externe, dans notre cas une force de pression de radi-
ation optique, est modulée périodiquement et sondée par la bille. Les dynamiques du
piège et de la force sondée étant indépendantes, la détection est faite par une analyse
spectrale de la position de la bille à la fréquence de modulation, ce qui nous permet de
travailler directement à la limite thermique.

Le premier ingrédient important est la sonde elle-même. Pour nos expériences, il
s’agit d’une nano-sphère d’or de 150 nm de diamètre, avec les caractéristiques choisies
pour maximiser l’interaction dissipative entre la bille et le faisceau laser générant la
pression de radiation que nous souhaitons mesurer. Le piège lui-même n’est pas un
piège optique conventionnel. Devant être capable de piéger stablement des telles son-
des métalliques, il fonctionne sur le mode d’un piège à onde stationnaire crée par
l’interférence entre le faisceau incident et sa réfection sur une surface réfléchissante.
C’est dans cette onde stationnaire qu’on arrive à confiner la bille, en la piégeant dans un
ventre de l’interférence. En utilisant pour surface réfléchissante un miroir dichroïque,
on peut injecter dans le piège le laser externe de pression de radiation. La détection
dynamique de la force, modulée sinusoïdalement, se fait directement sur le pic spec-
tral de force superposé au spectre de la fonction d’autocorrélation de la position de la
bille d’or piégée ou bien par détection synchrone. Dans nos expériences, nous portons
toute notre attention sur la définition de la bande passante maximale autorisée par la
stabilité de notre microscope pour mesurer l’amplitude de la force à la limite thermique.

Ces contrôles méticuleux des conditions de stabilité permettent la mesure d’une
force de pression de radiation de 3 fN sur une bande passante de 10 s en garantissant
que le système reste limité par le bruit thermique. Cette résolution est à mettre en
regard avec la grande plage dynamique offerte par notre système et qui correspond à
un rapport 1/100 entre la composante modulé et la composante statique de la force.
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Figure 7.1: Panel de gauche: Puissance spectrale du système contenant
la signature de la force comme un peak à la fréquence de modulation
superposé à la dynamique de la bille dans le piège. En insère: mesure
de stabilité globale du système, indiquant la bande passante optimale
pour la mesure. Panel de droite: Force mesuré par la méthode montré
à gauche, pour différents amplitudes de modulation, avec la plus petite
amplitude se trouvant à limite thermique indiquée comme zone grise.

verify and rewrite.

ii) Reconnaissance in-situ de nanopyramides chirales uniques
piégées

Dans notre laboratoire, un intérêt particulier se porte sur l’influence de la chiral-
ité optique dans les interactions optomécaniques. Une nouvelle classe de forces op-
tiques émergeant de l’interaction entre lumière chirale et matière chirale à l’échelle
nanoscopique a été prédite par notre équipe [99]. Récemment confirmées dans le do-
maine micrométrique par des résultats expérimentaux récents [126, 129], ces forces
restent encore à être mesurées dans le régime nanométrique. Une telle démonstra-
tion aurait un impact important, révélant la possibilité de nouvelles stratégies «tout-
optique» de séparation chirale. Théoriquement pourtant, les estimations faites sur ces
forces optiques chirales montrent qu’elles sont typiquement 2 ordres de grandeur plus
faibles que les forces optiques conventionnelles (forces de gradient et pression de radi-
ation) et qu’elles atteignent des valeurs typiques de l’ordre du femtoNewton. Dans ce
contexte, les caractéristiques de notre piège optique en tant que microscope de force
optique, résumées en i), sont extrêmement intéressantes.

Le piégeage optique de nano-objets chiraux uniques est donc une première étape
essentielle pour la mise en évidence de ces nouvelles forces. En collaboration avec le
groupe du Prof. David Norris, de l’ETH-Zürich, nous avons réussi le piégeage optique
stable de nanopyramides d’or de tailles de l’ordre de 150 nm. Une analyse des puis-
sances spectrales de déplacement d’une nanopyramide unique dans les 3 axes du piège
indique un confinement stable du nano-objet sur une durée supérieure à 30 s.
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Figure 7.2: Panel de gauche: Spectre de dichroïsme circulaire (CD) as-
socié aux nanopyramides apparaissant dans les insères, les formes énan-
tiomères gauches apparaissent au coin supérieur gauche et droites au
coin inférieur droit. Panel de droite: Valeurs du paramètre de Stokes
de l’intensité de la lumière diffusé par les nanopyramides piégées, util-
isées dans les mesures polarimétriques balancés pour deux dispersions

des nanoparticules chirales de signe inverse.

Ces nanopyramides sont des objets chiraux particulièrement intéressant pour la
nano-optique: ils présentent en effet des signaux des dichroïsme circulaire très impor-
tants avec la plus haute amplitude autour d’une longueur d’onde de 639 nm, comme
indiqué dans la figure 2. Les spectres indiquent une inversion de signe importante entre
les énantiomères gauches et les énantiomères droits. Le laser qui servait en partie i) de
faisceau pousseur pour la mesure de pression de radiation peut être donc utilisé pour
la reconnaissance chirale, ayant une longueur d’onde correspondant au maximum du
signal CD.

Nos expériences exploitent alors un résultat important obtenu dans le groupe du
Prof. D.J. Norris lié à une loi de conservation de chiralité optique. Un objet chiral
dissipatif (donc dispersif) illuminé par un champ optique non-chiral doit briser, en dif-
fusion, la balance initiale de polarisation droite et gauche par dissipation sélective en
spin de l’énergie électromagnétique. C’est précisément cette brisure que nous avons été
capable de sonder dans notre piège en mesurant le contraste de polarisation droite vs.
gauche de la diffusion, sur la nanopyramide, du laser à 639 nm polarisé linéairement.
Les résultats de ces mesures, effectuées sur 2 énantiomères opposés, sont présentées
en Figure 2 et montrent la capacité de notre système à discriminer, in-situ, les formes
énantiomériques d’un nano-objet unique.

iii) Protocoles thermodynamiques pour le contrôle optimal d’un
transfert entre 2 états d’équilibre d’une particule brownienne

Les lois générales de la thermodynamique régissant les échanges de chaleur, travail et
matière entre un système et son environnement sont des lois moyennées, pour lesquelles
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les effets des fluctuations thermiques se moyennent à zéro. Mais il est possible de définir
ces quantités thermodynamiques en tenant compte de ces fluctuations. Cette possi-
bilité devient très importante lorsque ces fluctuations dominent la dynamique, ce qui
est évidemment le cas d’un objet Brownien. Les lois qui régissent alors la chaleur ou
le travail, devenus des quantités thermodynamiques fluctuantes, forment un domaine
de recherche qui a émergé ces 20 dernières années: la thermodynamique stochastique
[12]. Un résultat important de ce domaine est de permettre de comprendre com-
ment émergent les propriétés de thermodynamique «macroscopiques» à partir des ef-
fets moyennés des propriétés thermodynamiques «microscopiques». Dans ce contexte,
les pièges optiques sont des systèmes extrêmement intéressant à utiliser puisqu’ils per-
mettent d’accéder directement aux dynamiques contrôlées d’objet Browniens uniques.
Les travaux de Ken Sekimoto en particulier ont permis d’identifier ces quantités ther-
modynamiques stochastiques directement à partir d’une description de Langevin [41].
Ces travaux ont ouvert une voie de recherche efficace, directement en lien avec les pos-
sibilités expérimentales offertes par les pièges optiques.

Revenant donc à la manipulation des différents termes de l’équation de Langevin,
notre configuration expérimentale offre la possibilité de créer des potentiels de confine-
ment optique qui varient dans le temps. Pour ce faire, on module la raideur du piège
(notre paramètre de contrôle) au cours du temps en suivant différents protocoles. Ces
possibilités permettent en particulier d’étudier précisément dans un cadre de thermo-
dynamique stochastique la notion de transfert entre des états d’équilibre. Une analogie
intéressante est de considérer alors notre bille optiquement piégée comme une particule
d’un gaz enfermée dans un piston. Les variations de raideur vont correspondre aux
variations du volume du piston et les conséquences sur les fluctuations Browniennes de
notre bille piégée seront interprétées comme des effets de transformations thermody-
namiques. Récemment ainsi, de nouveaux protocoles de modification de raideur ont été
proposés pour accélérer la thermalisation entre deux états d‘équilibre envisagés comme
deux volumes de compression optique différents [160].

Notre travail s’est centré sur ce problème de la thermalisation accélérée, c’est-à-
dire la réduction de la durée du transfert. En effet, cette accélération se fait à un
prix énergétique très élevé puisqu’il faut injecter dans le système une grande quantité
de travail (i.e. une forte compression intermédiaire du piège) pour thermaliser rapi-
dement la bille. Notre travail a été de définir une classe de protocoles de transfert
optimaux, c’est-à-dire atteignant le meilleur compromis possible entre raccourcisse-
ment de la durée du transfert et réduction du coût énergétique. En collaboration avec
Prof. G. Manfredi et Prof. P.A. Hervieux de l’IPCMS, à Strasbourg, et Prof. L. Mertz,
à NYU-Shangai, nous avons mis en place une méthode variationnelle qui permet de
construire de tels protocoles optimaux dans le contexte de nos expériences [85]. Nous
avons pu alors décrire expérimentalement et théoriquement toute la thermodynamique
associée à ces contraintes, en exploitant les techniques de la thermodynamique stochas-
tique. En particulier, nous avons dérivé une relation énergie-temps universelle (i.e. ne
dépendant que des conditions d’équilibre initiale et finale) qui prend la forme d’une
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inégalité minimisée pour les protocoles optimaux.

Figure 7.3: Panel de gauche:

Cette capacité de définir de tels protocoles optimaux minimisant à la fois la durée
de transition et les coûts énergétiques associés, offre évidemment des perspectives
d’applications directes pour les nano-dispositifs tels que les nano-machines thermo-
dynamiques. Il devient envisageable de définir des cycles thermodynamiques optimisés
en terme de coût énergétique et de durée de cycle. Cet axe constitue une perspective
importante de notre travail.

Nos expériences consistent à vérifier soigneusement que nos conditions initiales de
piégeage donnent un potentiel harmonique, et que l’évolution de la variance de position
de la bille suit bien une loi gaussienne tout au long des expériences. Ces vérifications
sont cruciales pour confronter précisément les calculs aux données expérimentales. Ces
vérifications permettent alors de mesurer précisément la durée, le travail et la chaleur
associés à une transformation entre deux états comme des fonctionnelles de la variance
et du paramètre de contrôle, qui est la raideur du piège. Pour obtenir le protocole
optimal qui minimise ces deux quantités, nous introduisons un multiplicateur de La-
grange entre travail effectué par la transformation et temps de cette transformation
pour réguler leur compromis mutuel et définir ainsi un travail minimal compatible avec
un temps de transfert minimal.

En effectuant une série de N = 2× 104 protocoles identiques sur la bille piégée, nous
construisons alors un ensemble statistique de trajectoires qui produit une fonction de
densité de probabilité de positions dont on peut extraire la variance à tous les temps
et construire les quantités thermodynamiques associées, comme montrées en Figure 3.
Nous avons également exploré en détail, pour tout un ensemble de protocole, le car-
actère universel de la limite optimale et vérifié ainsi que seuls les protocoles optimaux
sont capables d’atteindre une telle limite.
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III. Conclusion

L’adaptabilité d’une part de notre piège optique, et la richesse d’une description par
la dynamique de Langevin de notre système nous ont permis dans cette thèse :

• d’explorer des effets de pression de radiation,

• de discuter de la signification de la mesure d’une force faible,

• de piéger un nano-objet chiral unique,

• de vérifier et d’exploiter la loi de conservation de chiralité optique pour une
reconnaissance chirale d’un énantiomère nanométrique unique,

• d’utiliser les méthodes de la thermodynamique stochastique pour proposer des
protocoles optimisés en temps et en énergie pour le transfert de systèmes Brown-
iens entre 2 équilibres thermiques.

Ces travaux ont fait l’objet de 3 publications [83–85]. La versatilité de notre configu-
ration expérimentale nous a permis cette combinaison de résultats et le fonctionnement
harmonique de notre piège une synergie remarquable avec les descriptions théoriques.
Cette synergie en particulier s’est révélée fondamentale pour l’étude des protocoles op-
timaux.

Notre travail ouvre un certain nombre de perspectives intéressantes. Tout d’abord,
les résolutions obtenues sur notre «microscope de force» combinées aux capacités de
description thermodynamique permettent d’envisager de résoudre, à la fois du point
de vue des forces et de la thermodynamique, les effets induits par des champs de forces
optiques plus complexes. Ensuite, de chercher à exploiter une approche d’optimisation
thermodynamique pour proposer de nouveaux types de cycles thermodynamiques. Les
problématiques autour des nano-moteurs sont à l’heure actuelle activement discutées
et nous pensons que les approches de contrôle optimal peuvent avoir dans ce cadre un
impact important.
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A Spectral contribution of the
external driving

In Chapter 2 we have seen how difficult has been to observe the mechanical effects
of radiation pressure until the invention of the laser, since then, optical tweezers have
become the most popular tools to exert and measure forces in the micro and nanoscales
with high resolution. However most studies in the optical tweezers community have
involved measurement of gradient forces and not genuine radiation pressure in the sens
of Maxwell. We have evaluated the capacity of the standing wave trap (SWT) to sta-
bly trap relatively large gold nanoparticles, their metallic nature make them excellent
probes of radiation pressure. Therefore in Chapter 3 we assessed the capacity of the
SWT to measure external radiation pressure and we have qualified the setup as a suit-
able optical force microscope. In the dynamic mode of operation of our microscope,
the intensity of the external laser -exerting radiation pressure on the confined particle-
is modulated sinusoidally. Under such driving conditions, on top of the noisy motion
of the bead in the potential there is a precises push and pull mechanism that can be
directly detected through the Langevin equation. Thus, we have exploited the motion
of the bead as our high resolution force transducer. The strategy of the modulation
is based on the fact that in the frequency domain, modulating the force at a single
frequency will have a clear signature on the power spectrum. Here we present the
derivation of such signature.

A.1 A preliminary note on Energy and Power signals

In our experiment, the physical displacement of the trapped particle z(t), modulates the
scattered intensity detected by the photodiode. This latter outputs an analog tension
which is converted into a digital signal by an analog-to-digital converter integrated
in the acquisition card. The experimental signals have a finite duration given by the
acquisition time Tacq and discrete due to the finite sampling frequency. Therefore, in
practice, if we consider z(t) acquired during a finite acquisition time Tacq, its Fourier
transform ẑ[f ] is estimated by employing the so-called Finite Fourier Transform, which
simply evaluates the integral of eq. A.2 in the finite interval [0, Tacq].
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For a continuous signal V (t) we can define the energy carried by signal as1:

E =

+∞∫
∞

|V (t)|2dt, (A.1)

which is consistent with the physical interpretation of energy. Many signals, for ex-
ample periodic signals, deliver an infinite amount of energy, i.e. E → ∞. As a con-
sequence, to describe the energetic properties of such signals it is more convenient to
work in terms of average power, which is the rate of production of energy for a signal
and is defined as:

P = lim
T→∞

1

2T

T∫
−T

|V (t)|2dt (A.2)

which is finite.

A.2 Measuring optical forces through their spectral
contribution

The Langevin equation taking into account the external force is:

γż(t) + κz(t) = Fth(t) + Fext(t) (A.3)

with Fext(t) = Fdc + Fac cos 2πf0t.

To compute the respective power spectrum Sz(f) = 2|ẑ(f)|2, we first take the
Fourier transform of the above expression. For simplicity, we have dropped the influence
of Fdc since it is a static component:

+∞∫
−∞

z(t)e−2iπftdt =

+∞∫
−∞

1

κ
(Fth + Fext(t))e

−2iπftdt−
+∞∫
−∞

γ

κ

dz

dt
e−2iπftdt

Written explicitly and replacing the integral of z by the FT expression ẑ(f)

ẑ(f) =

√
2kBTγ

κ

+∞∫
−∞

η(t)e−2iπftdt+
Fac

κ

+∞∫
−∞

cos(2πf0t)e
−2iπftdt− γ

κ

+∞∫
−∞

dz

dt
e−2iπftdt

(
1 +

γ

κ
2iπf

)
ẑ(f) =

√
2kBTγ

κ

∫ +∞

−∞
η(t)e−2iπftdt+

Fac

κ

∫ +∞

−∞
cos(2πf0t)e

−2iπftdt

1Which can also be defined for a discrete signal, simply by changing the integrals into sums
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The modulus square of Eq. A.2 yields :

(
1− 4π2f 2(

γ

κ
)2
)
〈ẑ(f)ẑ∗(f)〉 =

2kBTγ

κ2

+∞∫
−∞

+∞∫
−∞

η(t′)η(t)e−2iπfte2iπf ′t′dt dt′

−
(Fac

κ

)2
+∞∫
−∞

+∞∫
−∞

cos(2πf0t
′) cos(2πf0t)e

−2iπf ′t′e2πiftdt dt′

Performing a change of variable t′ = t− τ the external force term of the previous can
be written as:

(Fac

κ

)2
+∞∫
−∞

+∞∫
−∞

cos(2πf0(t− τ)) cos(2πf0t)e
−2iπ(τ)dtdt (A.4)

We encounter here, the diverging situation of a signal with infinite energy, (see section
A.1). Re-defining the correlation function as2:

Γ(τ) = lim
T→∞

1

T

+T∫
−T

sin(2πf0(t− τ)) sin(2πf0t)dt (A.5)

Where Γ(0) is the average power of sin(2πf0t), and supposing |Γ(τ)| ≤ Γ(0).

Γ(0) = lim
T→∞

1

T

+T∫
−T

sin2(2πf0t)dt (A.6)

Using: sin2(x) = (1− cos(x))/2:

Γ(0) = lim
T→∞

2

T

+T/2∫
−T/2

1− cos(2πf0t)

2
dt =

1

2
+ lim

T→∞

sin(2πf0T )

T
=

1

2

and the Fourier transform of cos(x):

+∞∫
−∞

cos(2πf0τ)e−2iπfτdt =

+∞∫
−∞

e2iπf0τ + e−2iπf0τ

2
e−2iπfτdt (A.7)

Finally, we obtain:

(1− 4π2f 2(
γ

κ
)2)〈ẑ(f)ẑ∗(f)〉 =

2kBTγ

κ2
+
F 2

ac

2κ2

(
δ(f − f0) + δ(f + f0)

)
(A.8)

The force is detected by recording the instantaneous position of the nanosphere with
2Where we have used the trigonometric identity cos(a− b) = cos(a) cos(b) − sin(a) sin(b) to pass

from Eq. A.4 to Eq. A.5
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a p-i-n photodiode, this signal is passed through a low-noise pre-amplifier in which a
high pass filter is set at 0.03 Hz to remove the DC contribution. The spectral signature
of the injected radiation pressure is a Dirac delta peak superposed to the one-sided
power spectrum of the thermal fluctuations of the bead:

Sdz (f) =
1

(f 2 + f 2
T )

[D
π2

+
Fac

8π2γ2
δ(f − f0)

]
(A.9)
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B Stochastic Calculus

B.1 Wiener processes

The Langevin equation, which is central to all our experiments, is a differential equation
with a salient feature: the random forces ξ(t), which represent the dynamic variables
that fluctuate on short time scales compared to any observable. These forces are
represented by white Gaussian noise and are characterized by [21]:

〈ξ(t)〉 = 0 〈ξ(t′)ξ(t)〉 = δ(t′ − t) (B.1)

We can define dWt = ξ(t)dt, a Wiener process, which is a basic mathematical object
designed to deal with this kind of processes.

A real stochastic process, Wt is called Wiener process if:

(i) For t = 0, Wt = 0 the process starts at zero.

(ii) For all t′ < t, Wt −W ′t has a normal distribution with zero mean and variance
t− t′.

(iii) For all 0 < t1 < t2 < ... < tn, the random variables Wt1 < Wt2 −Wt1 < ... <

Wtn −Wtn−1 are independent.

(iv) Is continuous but not differentiable.

At short times it is not well defined. And its variance grows as t.

B.2 Stochastic differential equations

The Langevin equation is a particular case of stochastic differential equations

dx

dt
= f(x, t) + g(x, t)ξ(t), (B.2)

where g(x, t) and f(x, t) are deterministic functions (in our case g =
√

2γkBT ) and
ξ(t) is the delta-correlated noise satisfying B.1.

We can write the Langevin equation in the language of Wiener processes [19]:

dx = f(x, t) + g(x, t)dWt

dt = 〈dWtdWt′=t+dt〉
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with dWt = ξ(t)dt.

In a general case, where g(x, t) depends on the stochastic variable x(t), Eq. B.2 is
ill-defined because the integral: ∫

g(x, t′)dWt (B.3)

is not well defined. Depending on the interpretation of the integrals:

x(t+ ∆t)− x(t) =

t+∆t∫
t

f(x, t′)dt′ +

t+∆t∫
t

g(x, t′)dWt (B.4)

However, we can not define integral with a measure )dWt, since it is not differentiable.
Thus one can define the discretization of such an integral as:

T∫
0

g(t)dWt = lim
N→∞

N−1∑
i=0

g(τi)(Wti+1 −Wti) (B.5)

with τi = (1 − α)ti + αti+1, with 0 ≤ α ≤ 1. Since dWt is not continuous, the result
of such integral depends on the choice of α. And this can result in in a generation of
non-equivalent stochastic processes.

Let us suppose the case : g(x, t) =Wt, then :

〈 T∫
0

WtdWt

〉
=

〈 T∫
0

T∫
0

ξ(t′)ξ(t)dt′dt

〉
= α (B.6)

The most common conventions are:

• Itô calculus: α = 0 with g(x, t) =Wt results in WtdWt = 0.

• Stratonovich calculus: α = 1/2

The integral in Itô form can be written as Eq. B.7, and g(τi) uses Riemann sums,
whereas with the Stratonovich convention, the sums use the average:

T∫
0

g(t) ◦ dWt = lim
N→∞

N−1∑
i=0

(
g(τi) + g(τi+1)

2

)
(Wti+1 −Wti) (B.7)

It should be noted that the Stratonovich convention uses the ordinary rules of calculus.
There are physical justifications for choosing one differential calculation or another. In
particular, in the case of a correlation function 〈ξ(t′)(t)〉, which approximates the Dirac
Delta, a differential calculation is obtained that coincides with Stratonovich form. On
the other hand, Stratonovich calculus is physically reasonable in cases where Langevin’s
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forces are external [153]. It should be noted that the Langevin equation, in itself does
not make sense, without first specifying a stochastic differential calculation, that is, at
which moment the function g(X, t′), thus, once the Langevin equation is written down,
it has already a chosen interpretation, which in our case is a Stratonovich interpretation.
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C Variational calculus

C.1 Calculus of variations

In this appendix we present, in a simple and brief way, a review of the principles of
variational calculus, on which our optimization strategy for reducing the relaxation
time of the Brownian particle in a potential with the minimum energy cost is based.
This section is based on the content of references [163, 166–169].

In some processes, even in simple mechanical systems, it is not trivial to find the
equations of motion. The main difficulty of modeling is that the interaction between
the elements must be described by means of forces that are not known a priori and
that represent restrictions between the variables of the system. They are unknowns of
the problem that must be eliminated to get the equations that govern the movement.
These constraints are often quite complicated and if there are many to consider, the
modeling process is terribly cumbersome. In such cases, a possible alternative is to use
energy considerations. This alternative is based on Hamilton’s principle of least action
that makes use of the calculus of variations.

Functionals

A functional is a mapping from the vector space of functions to the set of real or
complex numbers. For example, in R, we can define the functional:

J [f(x)] =

∫ b

a

f(x)dx (C.1)

that maps to each function f(x) its integral in the interval [a, b]. Formally, if C((c, d),R)

is the vector space of continuous functions in the interval [c, d] with values in R and
[a, b] ⊂ [c, d] we can write:

J : C((c, d),R)→ R

f 7→
∫ b

a

f(x)dx

In analytical mechanics, the action of a mechanical system is defined as a functional
of the Lagrangian L, which in turn represents the difference of potential and kinetic
energies of the system.
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Variations

Let the Lagrangian be defined as the mapping:

L : R× R× R 7→ R
(x, ẋ, t) 7→ L(x, ẋ, t),

L is a function of three independent variables. Given two points x0, x1 ∈ R, among all
the trajectories that are differentiable and satisfy the boundary conditions:

x(t0) = x0, x(t1) = x1 (C.2)

the essential problem of variational calculus can be stated as finding the extremal
(could be maximum or minimum) of the functional:

S(x(t)) =

∫ t2

t0

L(x(t), ẋ(t), t)dt (C.3)

In general, let two differentiable trajectories x, h ∈ C([a, b],R) . The functional C.3
is differentiable in each function x and the value of its derivative in x is :

δS(h) =

∫ t2

t1

[∂L
∂x
− d

dt

(∂L
∂ẋ

)]
h(t) dt+

∂L

∂ẋ
h(t)|t1t2 , (C.4)

this is called a variation. Then, an extremal of S is a curve such that δS(h) = 0 for all
h.

Lemma: If x(t) is an extremal of the functional S[x(t)] on the space of curves sat-
isfying the boundary conditions C.2, then x(t) satisfies the Euler-Lagrange equations:

∂L

∂x
=

d

dt

∂L

∂ẋ
(C.5)

Proof: Let h(t) be any curve satisfying the boundary conditions h(t1) = h(t2) = 0.
And let x(t) an extremal of the functional S. Then let us define a curve :

η(t, α) = x(t) + αh(t) (C.6)

and

S[α, t1, t2] =

∫ t2

t1

L(η(t, α), η̇(t, α), t)dt (C.7)

then, if x(t) is an extremal of S then:

dS

dα

∣∣∣
α=0

= 0 (C.8)
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for any choice of h(t). By using the chain rule and the fact that η(α = 0, t) = x(t), we
can write Eq. C.8:

0 =

∫ t2

t1

dt
dL

dα

∣∣∣
α=0

=

∫ t2

t1

dt
[∂L
∂η

∂η

∂α
+
∂L

∂η̇

∂η̇

∂α

]
α=0

=

∫ t2

t1

dt
[∂L
∂x

h(t) +
∂L

∂ẋ
ḣ(t)

]
,

after integration by parts of the last equality:

0 =

∫ t2

t1

dt
[∂L
∂x

+
d

dt

∂L

∂ẋ

]
h(t) (C.9)

Since the function h(t) is arbitrary, the term inside the brackets has to be zero. The fact
that h(t) satisfies the boundary conditions h(t1) = 0 and h(t2) = 0 is essential to avoid
any contribution to the boundaries and thus in this way the lemma is demonstrated in
a simple way, there are of course more formal ways, see refs.

C.2 The method of Lagrange multipliers

Let f(x1, x2, ..., xn) a function of n variables. Supposing that such variables are related
by m < n constraints: g1(x1, .., xn) = 0, gm(x1, .., xn) = 0,...g2(x1, .., xn) = 0. Consider
a new function F (x1, x2, ..., xn):

F (x1, x2, ..., xn) = f(x1, x2, ..., xn) +
m∑
i=1

λigi(x1, .., xn) (C.10)

where λi are unknown. We can form the set of equations:
∂F
∂x1

= 0
∂F
∂x2

= 0

...
∂F
∂xn

= 0

(C.11)

with the m constraints gi(x1, .., xn) = 0, determine the m parameters λ1, λ2, ...λm and
the n variables x1, ...xn of the extrema of the function f(x1, x2, ..., xn). The parameters
λi are known as the Lagrange multipliers.
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C.3 Smooth protocols

As seen in the previous section, using the Lagrange multiplier method, it is possible to
add as many Lagrange multipliers as constraints of the problem. In Chapter ??, the
optimal protocols were found from the solution that minimizes the functional:

J [κ̂(s)] =

∫ sf

si

γds

Dγsκ̂(s)
− λ

∫ sf

si

κ̂(s)ds (C.12)

λ is the Lagrange multiplier and regulates the trade-off between the expended work
and transfer duration.

In order to comply with thermally equilibrated initial and final configurations we
had to augment sudden jumps to Eq. 5.37. From an experimental point of view, such
discontinuities do not constitute a weakness of the procedure, as they correspond to
finite and measurable quantities of work exchanged between the bath and the system
[170, 171]. Nevertheless, it is possible to generate smooth protocols that are arbitrarily
close to the optimal by adding a constraint in the derivatives of κ̂(s), and thus, with
a second Lagrange multiplier ε, we can write the functional 5.30 with an additional
term:

J [κ̂(s)] =

∫ sf

si

γds

Dγsκ̂(s)
− λ

∫ sf

si

κ̂(s)ds− ε
∫ sf

si

|κ̂′(s)|2ds, (C.13)

ε acts as a regularization parameter by removing the discontinuities in κ̂(s). The
Euler-Lagrange equation that minimize C.13 yields:

2ε
d2κ̂

ds2
=

γs

(Dγ − sκ̂)2
− λ, (C.14)

which is a second-order differential equation, and thus needs two independent boundary
conditions, enabling us to set siκi = sfκf = Dγ, as requested for our protocols. The
solution can be obtained numerically and generates a protocol κ̂(s) that is continuous in
the variable s and that converges towards the optimal protocol as ε→ 0. Through the
Lagrange multiplier ε, one can limit the value of such derivative, so that the protocol
becomes smoother and smoother as ε increases.

In figure C.1 below, we show the comparison of the cumulative energetics between
an optimal protocol defined for ∆t = 1.72×10−4 s ∼ τrelax/22 and two smooth protocols
with ε = 5× 10−6 and ε = 10−6, expressed in units of s2

i /(Dκ
2
i ), and identical value of

λ = (2.97± 0.12)× 1016 s/J. In the inset of Fig. C.1 are displayed the superimposed
evolutions κ(t) vs. s(t) for the three protocols, showing the continuous nature of the
smooth protocols and illustrating the progressive convergence to the optimal protocol
in the ε→ 0 limit. For each protocol, the curves are normalized to the corresponding κi
for κ(t) and sf for s(t). Although the smooth protocols involve slightly less expended
work (1.36 ± 0.06 kBT for ε = 5 × 10−6 and 1.65 ± 0.06 kBT for ε = 10−6) than the
optimal one (1.69±0.06 kBT ), they correspond to longer transfer durations (2.48×10−4 s

for ε = 5 × 10−6 and 2.14 × 10−4 s for ε = 10−6). The non-optimal character of the
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smooth protocols is clearly seen in the insets of universality curve, Fig. 5.9, where all
{∆t,∆W} coordinates lie above the universal bound, and only converge towards it in
the ε→ 0 limit.

Figure C.1: Evolution of the mean cumulative energetics -expended
work W (t) (blue curves) and dissipated heat Q(t) (red curves)- between
an optimal protocol defined for ∆t = τrelax/22 and two smooth protocols
with ε = 5× 10−6 and ε = 10−6, expressed in units of s2

i /(Dκ
2
i ). Inset:

superimposed evolutions κ(t) as a function of s(t) for the three protocols.
For each protocol, the curves are normalized to the corresponding κi for

κ(t) and sf for s(t).
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Yoseline ROSALES CABARA

Acting on a Brownian probe:
from optical forces to optimal

thermodynamic protocols

Résumé
Cette thèse explore le comportement d'une particule Brownienne piégée optiquement, à la fois
comme sonde de forces optiques et de protocoles thermodynamiques. Un piège optique particulier
est développé permettant la mesure en mode dynamique de forces de pression de radiation à
l’échelle du femtonewton. Nous piégeons également des nanopyramides métalliques chirales dont
la forme énantiomérique peut être reconnue in situ par une mesure polarimétrique couplée au
piège. Ce travail ouvre la voie aux mesures de forces optiques chirales nanométrique à l'échelle
nanométrique. Enfin, nous étudions les protocoles contrôlant la relaxation de la particule piégée
entre deux états d’équilibre. Nous identifions théoriquement des protocoles optimisés du point de
vue  du  temps  de  transfert  entre  2  équilibres  et  de  la  dépense  énergétique  associée.  Nous
implémentons expérimentalement ces protocoles et démontrons leur caractère optimal au travers
d’une relation d’exclusion temps-énergie universelle.

Mots clés : pièges optiques, forces faibles, chiralité, thermodynamique stochastique, contôle
optimale

Résumé en anglais

This thesis explores the behaviour of an optically trapped Brownian particle, both as a probe of
optical forces and thermodynamic protocols. A particular optical trap is developed allowing the
dynamic mode measurement of radiation pressure forces at the femtonewton scale. Such
configuration allows to stably trap chiral metallic nanopyramides whose enantiomeric form can be
recognized in situ by a polarimetric measurement coupled to the trap. This work paves the way for
measurements of chiral optical forces at the nanoscale. Finally, we study protocols controlling the
relaxation of the trapped particle between two equilibrium states. We theoretically identify protocols
optimized from the point of view of the transfer time between the two equilibria and the associated
energetic cost. We experimentally implement these protocols and demonstrate their optimality
through a universal time-energy exclusion relationship.

Keywords: optical traps, weak forces, chirality, stochastic thermodynamics, optimal control
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