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Summary

The term gravitational motion is a generic term that refers to several types of ground destabilization

that have different kinematic and geomechanical characteristics. The most common ones are mudflows,

blockfalls, landslides and volcanic wall slides. The ground displacement velocities vary according to the

type of instability and the state of stability in which the environment is. For example, rock falls are fast

moving events and can be sudden, whereas landslides can move over a short time when they are quick (a

few m/s) or a long one when very slow (a few mm/year).

One of the movement characteristics that has proven to be most appropriate in a surveillance con-

text is the velocity of the surface movement. There are several geodetic techniques including those that

allow the acquisition of positions of points on the ground such as GPS or automatic theodolite surveying.

They provide local but accurate (< mm) measurements. Other techniques have been developed over time

to ensure wider spatial coverage. They are called remote sensing techniques and are divided into two

categories: active sensors such as LiDAR, radar interferometry, etc., and passive sensors such as satellite,

aerial or terrestrial optical imagery, thermal imagery, etc..

In an operational context that requires a certain flexibility in data acquisition and processing, we were

interested, in this thesis, in the contribution of terrestrial optical images from a fixed camera for the

understanding and analysis of landslides and its complementary contribution to classical in-situ mea-

surements. The use of cameras such as single lens reflex cameras (SLR) is increasingly used in the

monitoring of natural surface movements. A significant advantage of this instrument is the low cost of the

camera compared to terrestrial LiDARs for example. The resolution of the sensor yet remains high (>

18 MPix). The information extracted from the optical images is both qualitative and quantitative, as it

enables changes in surface morphology to be identified and movements to be quantified.

During the temporal evolution of these gravitational phenomena, several issues stand out such as: what

are the spatial limits of movement? What are the velocities of deformation? What is the prediction of the

rupture date? To answer these questions, we have developed tools and processing methodologies for the

analysis of long time series in order to extract a maximum of information.

The work was carried out through the analysis of four time-series acquired on four high-stake sites

located in the French Alps. Each time series contributed to the development of new techniques and new

approaches to acquisition and processing. Three cameras were installed with the aim of monitoring the

long-term dynamics of three unstable slopes in a pre-event phase (a phase of significant acceleration). The

fourth camera was installed in a post-event monitoring context. The acquisition of long time-series led to

the development of generic tools which are as automated as possible and which can be adapted to different

situations. These situations can be geometric (camera distance to a variable object) or geomorphological

(size of the movement studied, velocity of surface deformation).
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The tools developed have been gathered in a toolbox called TSM (Tracing Surface Motion, (Desrues et al.,

2019)). TSM is a modular processing toolbox combining tools for:

1. Camera calibration;

2. Image selection (sorting to eliminate images obstructed by poor weather conditions);

3. Image co-registration in order to correct camera movements induced by wind, temperature change

or by the movement of its support;

4. Change detection based on image correlation techniques;

5. Filtering of correlation results in order to detect only significant movements;

6. Metric transformation of the pixel displacements resulting from the correlation;

7. Eventually, a stereoscopic approach can be used instade of (6) for the reconstruction of spatially

dense 3D deformation fields;

8. Analysis of displacements from a kinematic and mechanical point of view for a better understanding

of the phenomenon.

In order to assess the influence of the parameters of these different steps on the TSM results, a sensitivity

analysis was carried out by testing many of them such as the image modality, the correlation parameters,

the co-registration accuracy, the correlation strategy applied to the time series as well as the accuracy

of the digital terrain model integrated in the calculation and the parameters introduced in the camera

calibration. TSM has been applied to two case studies and has demonstrated its robustness and generality

in the case of a landslide characterised by velocities of less than 10 cm.day−1 and in the case of a faster

landslide with velocities greater than 50 cm.day−1.

From the displacement fields and velocities, several secondary products can be generated depending on

the objectives of the case studies and the phase of the landslide evolution:

• In the case of long-term monitoring, we looked at the general behaviour of the phenomenon: are

there relationships between the movement and some triggering factors of its acceleration? Are the

observed accelerations spatially homogeneous on the scale of the slope? What type of deformation

is involved? What is the estimated thickness of the moving mass?

We have therefore implemented modules in TSM that allow us to link events over the long term

with meteorological data such as rainfall, and seismological data. We have also implemented

deformation analysis tools, when the approach used is stereoscopic, in order to be able to highlight

compression, expansion and shear zones. The thickness of the moving mass results from this last

analysis. It is based on the law of mass conservation and integrates two major contributions: a

rheology and a geometric contribution.
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• In the case of pre-event monitoring, we were interested in the prediction of the time of failure based

in particular on the relation linking the inverse of the displacement velocity to time (Fukuzono,

1985) and in the application of physical models to characterise the mechanical behaviour involved

in the process (Helmstetter et al., 2004).

• In the case of post-event monitoring, we were once again interested in the characterisation of the

slope since other points of interests may arise once the event has passed. Quantifying residual

movements is indeed important in order to detect or not areas destabilised by the departure of the

masses. Defining the new state of stability of the slope is also crucial before any human intervention

on site.
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Résumé

Le terme mouvement gravitaire est un terme générique qui fait référence à plusieurs types de désta-

bilisations du sol qui présentent des caractéristiques cinématiques et géomécaniques différentes. Les

plus communes sont les coulées de boue, les chutes de blocs, les glissements de terrain ou encore les

glissements de parois volcaniques. Les vitesses de déplacements varient suivant le type d’instabilité et

suivant l’état de stabilité dans lequel le milieu est. Par exemple, les chutes de blocs sont des événements

qui évoluent rapidement et qui peuvent être soudains tandis que les glissements de terrain peuvent évoluer

sur des temps courts lorsqu’ils sont rapides (quelques m.s−1) comme sur des temps longs lorsqu’ils sont

lents (quelques mm.an−1).

Une des caractéristiques des mouvements qui s’est révélée être la plus appropriée dans un contexte

de surveillance, est la vitesse de déplacement de surface. Il existe plusieurs techniques géodésiques

dont celles qui permettent l’acquisition de position de points au sol telles que le relevé par GPS ou par

théodolite automatique. Elles fournissent des mesures locales mais précises (< mm). D’autres techniques

se sont développées au cours du temps afin d’assurer une couverture spatiale plus large. Elles sont appelés

techniques de télédétection et se divisent en deux catégories : les capteurs actifs tels que le LiDAR et

l’interférométrie radar, et les capteurs passifs tels que l’imagerie optique satellitaire, aérienne ou terrestre

et l’imagerie thermique.

Dans un contexte opérationnel qui demande une certaine flexibilité dans l’acquisition et dans le traite-

ment des données, nous nous sommes intéressés, dans cette thèse, à la contribution des images optiques

terrestres issues d’un appareil photographique fixe pour la compréhension et l’analyse des glissements

de terrain et de son apport complémentaire à des mesures classiques in-situ. L’utilisation des appareils

photographiques tels que les caméras reflex à focale fixe (Single Lens Reflex – SLR) est de plus en plus

utilisée dans le monitoring de mouvements de surface naturels. Un des avantages non négligeable de

cet outil est le prix bas-coût de l’appareil comparé à des LiDARs terrestres par exemple. La résolution

du capteur reste cependant élevé (> 18 MPix). Les informations qui sont extraites des images optiques

sont à la fois qualitatives et quantitatives puisqu’elles permettent en effet d’identifier des changements de

morphologie de la surface et d’en quantifier les déplacements.

Au cours de l’évolution temporelle de ces phénomènes, plusieurs problématiques se détachent telles que:

quelles sont les limites spatiales du mouvement ? Quelles sont les vitesses de déformation ? Quelle est la

prédiction de la date de rupture ?

Pour répondre à ces questions, nous avons donc développé des outils et des méthodologies de traitement

pour l’analyse de séries temporelles longues afin d’en extraire un maximum d’information.

Le travail s’est réalisé au travers de l’analyse de quatre séries temporelles acquises sur quatre sites

à enjeu situés dans les Alpes Françaises. Chaque série temporelle a contribué au développement de
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nouvelles techniques et de nouvelles approches d’acquisition et de traitement. Trois caméras ont été

installés dans le but de surveiller les dynamiques à long terme de trois pentes instables dans une phase de

pré-événement (phase d’accélération significative). La quatrième caméra a quant à elle, été installée dans

un contexte de suivi post événément. L’acquisition de séries temporelles longues a mené au développe-

ment d’outils génériques qui soient les plus automatisés possibles et qui soient adaptables à différentes

situations. Ces situations peuvent être de l’ordre géométrique (distance entre la caméra et l’objet variable),

ou bien géomorphologique (taille du mouvement étudié, vitesse de déformation de surface).

Les outils développés ont été regroupés dans une toolbox appelée TSM pour Tracing Surface Motion

(Desrues et al., 2019). TSM est une méthode de traitement modulaire associant des outils pour:

1. La calibration de la caméra;

2. La sélection des images (tri permettant d’éliminer les images obstruées par des conditions météorologiques

dégradées);

3. La co-registration des images afin de corriger les déplacements des caméras induits par le vent, le

changement de température ou bien par le mouvement de son support;

4. La détection de changement basée sur les techniques de corrélation d’images;

5. Le filtrage des résultats de corrélation afin de ne détecter que les mouvements significatifs;

6. La transformation métrique des déplacements pixels issus de la corrélation.

7. Le module (6) peut être remplacé par le module (7) lorsque nous utilisons une approche stéréo-

scopique pour la reconstruction de champs de déformation 3D dense spatialement;

8. L”analyse des déplacements d’un point de vue cinématique et mécanique pour une meilleure

compréhension du phénomène.

Afin d’estimer l’influence des paramètres de ces différentes étapes, sur les résultats de TSM, une analyse

de sensibilité a été menée en testant plusieurs de ces paramètres : la modalité de l’image, les paramètres

de corrélation, la précision de la co-registration, la stratégie de corrélation appliquée à la série temporelle

ainsi que la précision du modèle numérique de terrain intégré dans le calcul et les paramètres introduits

dans la calibration de la caméra. TSM a été appliqué sur deux cas d’études et a démontré sa robustesse

et sa généricité dans le cas d’un glissement caractérisé par des vitesses de déplacement inférieures à

10 cm.jour−1 et dans le cas d’un glissement plus rapide dont les vitesses sont supérieures à 50 cm.jour−1.

A partir des champs de déplacements et de vitesses de déplacements, plusieurs produits secondaires

peuvent être générés selon les objectifs des cas d’étude et selon la phase d’évolution dans laquelle se

trouve le glissement de terrain :
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• Dans le cas d’une surveillance à long terme, nous nous sommes intéressés au comportement général

du phénomène : existe-t-il des relations entre le mouvement et des facteurs déclencheurs ? Les

accélérations observées sont-elles homogènes spatialement à l’échelle du versant ? Quel type de

déformation est impliqué ? Quelle est l’épaisseur estimée de la masse en mouvement ?

Nous avons dès lors implémenté dans TSM des modules permettant de mettre en relation les

événements sur le long terme avec des données météorologiques telles que la pluie ou encore des

données sismologiques. Nous avons également implémenté des outils d’analyse de déformations

lorsque l’approche utilisée est stéréoscopique, afin de pouvoir mettre en évidence des zones de

compression, de dilatation et de cisaillement. L’épaisseur de la masse en mouvement découle

de cette dernière analyse. Elle se base sur la loi de la conservation de la masse et intègre deux

contributions majeures : une contribution rhéologique et une géométrique.

• Dans le cas d’une surveillance proche de la rupture du versant, nous nous sommes intéressés à la

prédiction de la date de rupture en nous basant notamment sur la relation reliant l’inverse de la

vitesse de déplacement au temps (Fukuzono, 1985) et à l’application de modèles physiques pour

caractériser le comportement mécanique impliqué dans le processus (Helmstetter et al., 2004).

• Dans le cas d’une surveillance post événement, nous nous sommes intéressés une nouvelle fois

à la caractérisation du versant puisque d’autres enjeux peuvent avoir lieu une fois l’événement

passé. Quantifier les mouvements résiduels est en effet important afin de détecter ou non des zones

déstabilisées par le départ des masses. Définir le nouvel état de stabilité du versant est également

crucial avant toute intervention humaine sur site.
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Introduction

General introduction

Assessing the risk of gravitational processes that may impact slopes, volcano flanks or ice glaciers, is a

global challenge since some of these processes can jeopardize either infrastructure or lives. Due to the

large numbers of gravitational movements around the world, these events have been recorded to built

dense databases to help future assessment (Costa and Schuster, 1991; Pereira et al., 2014). The most

frequent gravitational movements encountered are rockfalls (Royán et al., 2014; Kromer et al., 2015; Sala

et al., 2019), landslides (Travelletti et al., 2008; Quinn et al., 2011; Valentin, 2018) and volcanic flank

slides (Walter, 2011). They may be characterized by several parameters, such as their size and volume, the

type of material and the deformation rate (Varnes, 1978; Cruden and Varnes, 1996). The motion can be

slow to fast, and continuous or by phases of acceleration/deceleration. The understanding of these events

involves several disciplines from geology to geophysics and may call for different monitoring techniques.

Monitoring can be defined as an analysis carried out: (1) by science observatories over long time

periods, for the scientific understanding of processes; (2) to document the pre-event/event dynamics to

anticipate hazards and risks. The latter is conducted in operational contexts; (3) to document the post-event

dynamics when residual movements and the long-term stability need to be quantified. The latter case

is often associated to mitigation works such as drainage. This means that monitoring requires series of

observations acquired over time on a periodic or continuous basis. The analysis of these observations

should provide information on temporal changes of the movements.

Motion analysis can be performed at different stages of the temporal evolution of gravitational pro-

cesses. By representing the cumulative surface displacements in time (Figure 1), we can notice that several

states compose and define the motion: a steadily deforming is for example expressed by a linear trend

implying a constant velocity. It can be followed either by an occasional reactivation or a failure stage. An

occasional reactivation defines a destabilization of the slope essentially caused by external factors such

as rainfall, snow melt or seismicity, and reaches a new state called, according to Leroueil et al. (2012),

active landslide. Several features are used and combined together to provide information on the temporal

evolution of the processes. They include for instance, geomorphological and geological observations (e.g,

evolution of crack opening), mudflow detection and/or water flow measurements, if there is for instance a
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Figure 1: Typical sequences of the cumulative displacements of the ground surface over time after Scoppettuolo et al. (2020). (a)
Landslide reactivation due to triggering factors. (b) Landslide evolution to failure from a pre-failure stage.

river at the foot of the slide. The latter measurements are usually acquired with infrared cameras giving

a picture of what is happening day and night, before an operator actually moves to the site. However,

the most relevant parameter for characterizing the slope activity, is the motion (incremental/cumulative

displacement, displacement rate) of the ground surface since it provides information on the kinematics

and the mechanical behavior (Cruden and Varnes, 1996).

Displacement information can be acquired by various geodetic techniques, by comparing the geode-

tic positions of given natural or artificial targets between two dates (Wang, 2011; Benoit et al., 2015).

These particular techniques, which are in-situ and point-based, allow the analysis of the geometrical

properties of the moving mass and of the mechanical behavior of the slopes by analysing time series of

displacements. Similar information is also provided by remote sensing methods which have the advantage

of proposing an image of the motion and thus more dense spatial coverage and possibly short revisit

times (Mazzanti et al., 2012; Sun et al., 2015; Stumpf et al., 2017). Among the remote sensing methods,

there is optical imagery, which has the possibility to provide both qualitative information (detection of

geomorphological changes, detection of snow) and quantitative information (such as ground motion

calculated by image correlation techniques (Lacroix et al., 2015; Stumpf et al., 2017).

In the case of monitoring, more and more studies are using low-cost remote sensing methods, that

are easy to use and to deploy (Pham et al., 2014; Gance et al., 2014; Schwalbe and Maas, 2017; Kromer

et al., 2019). Thanks to the large consumer market, digital passive sensors, such as Single Lens Reflex

(SLR) cameras, are increasingly available, while the sensor resolution is constantly rising. By combining

time series of terrestrial optical imagery and the classical in-situ techniques (such as extensometers,

crack-meters), the amount of collected information is diversified, better distributed and denser.

The acquisition of terrestrial optical images can be performed in two principal modes: the first mode is low
frequency data acquisition, when acquisition campaigns are spaced out over several weeks or months.
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Figure 2: Some approaches that can be adopted for a terrestrial optical image acquisition. (a) Monoscopic approach for the
analysis of the displacement of the volcano Mount St. Helens (Walter, 2011). (b) Stereoscopic approach for the analysis of
the Argentière glacier displacement (Fallourd et al., 2010). (c) Multi-view approach for the analysis of rock slope deformation
within Clear Creek Canyon (Kromer et al., 2019).

The second mode is high-frequency data acquisition with the time between two acquisitions being close

to the hour or the day according to the velocity of the slope movement. The latter are therefore more

continuous measurements. For each mode, two approaches can be adopted: a monoscopic approach
and a stereoscopic or multi-view approach (Figure 2). In the first case, only one camera is used whose

position remains fixed for the entire duration of the acquisition. The processing of monoscopic images

provides, among others, time series of 2D displacement fields. If more than one camera is used (or

more than one line of sight), we are in the stereoscopic or multi-view approach providing access to 3D

surface motion and the possibility to create Digital Elevation Models (DEMs) (Hasegawa et al., 2000;

Pierrot-Deseilligny and Paparoditis, 2006; Stumpf et al., 2016). When data acquisition is carried out at

high frequency (i.e., continuous measurement) from one or more fixed cameras, we are in the case of

time-lapse photography. This acquisition mode provides spatially and temporally dense observations.

The time intervals in which time-lapse photography is the most appropriate (see Figure 1), depend on the

sensor and acquisition parameters which are linked to the expected ground displacement rates.
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Figure 3: At the top, photographs acquired at the Pas de l’Ours landslide in Aiguilles (Hautes-Alpes, France) from a fixed camera
on June 8, 12, 16 and 18, 2018. The camera is a Canon EOS 100D of 18 Mega Pixels (MPix) with a focal length equal to 24 mm.
At the bottom, schematic trend of the surface velocity over time that can be extracted from the image analysis. Several questions
that can be raised at each specific stage of the landslide evolution are presented.

Figure 3 (top) shows an example of a temporal series of terrestrial optical images composed of four

photographic acquisitions made from a fixed camera at the Pas de l’Ours landslide (Hautes-Alpes, France).

From the image analysis it is possible to extract surface change information such as the surface velocity

evolution over time (Figure 3 (bottom)). A typical trend in surface velocity over time can be broken down

into several stages (Mazzanti and Pezzetti, 2013): the long-term monitoring that is composed of the slope

characterization and the pre-failure stage, and the early-warning stage. For each stages, there are several

technical (metrology) and science questions that can be raised:

• From a geomorphological perspective: what are the spatial boundaries (lateral and top limits) of the

motion?

• From a kinematic perspective: what is the 2D/3D velocity field of the movement?

4



Introduction

• From a mechanical perspective: what are the deformation regime and rheology of the moving

masses?

• From a forecasting/modelling perspective: what is the estimated time of failure?

The work focuses on the analysis of time-series of ground-based photographs acquired on four landslides

in the French Alps. Each dataset was used to develop and implement specific processing tools. Three

cameras were setup in the field in order to monitor the long-term dynamics of the unstable slopes in their

pre-failure stages; one camera was setup on an unstable slope in its post-failure stage and in a monitoring

context.

Research context

The research has been supported by the CNRS/Institut de Physique du Globe de Strasbourg (IPGS) and

the SAGE company (Société Alpine de GEotechnique) as part of a CIFRE/ANRT 1 research contract.

During the thesis, stays at the company (up to 20 percent per year were done) in order to collect data,

carry out additional measurements on site and test and optimize the analysis tools.

Some words on the SAGE company...

The SAGE company carries out missions in relation to mountain development, public works and natural

risks. This last field, which is essentially based on the assessment of gravitational risks, integrates studies

ranging from the geometric slope characterization to the modelling of its evolution, and the design of

mitigation measures. For this purpose, the company uses classic in-situ monitoring methods such as

extensometers or topographic targets measured by automatic total stations. SAGE also contributes to the

analysis of block trajectories, field reconnaissance and modelling. The detection and survey of gravita-

tional instabilities at regional scales are complementary missions. SAGE is continuously looking for new

technologies aiming at meeting these expectations and thus improve the understanding of gravitational

processes and assist the decision-making of the local authorities.

Objectives

The objectives of this work are to design, test and implement automated image processing pipelines

for the analysis of monoscopic/stereoscopic image time series from fixed terrestrial optical cameras.

Low-cost camera system prototypes (e.g. cameras, digitizers, telemetry system, optimized protection

boxes) have also been developed for standard deployment on the site. The processing pipeline is built

around modules from the selection of the image sequences, to post-processing of change detection and

displacement/velocity fields (Figure 4). Providing a versatile, flexible, robust and automated tool for the

1The CIFRE/ANRT research contract - Conventions Industrielles de Formation par la REcherche - is an agreement which
enables a French company to develop a research collaboration with a public research laboratory through a Private-Public
Partnership (PPP).
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Figure 4: Processing pipeline of the Tracing Surface Motion (TSM) toolbox (Desrues et al., 2019).

image time series analysis and interpretation is a real challenge in operational contexts since it is necessary

to retrieve a maximum amount of information in short time.

Several issues and questions can be considered:

• What kind of useful information could the analysis of image time series provide?

• Is information retrieved from image time series sufficient to document gravitational motion, espe-

cially in the case of monitoring activities?

• How to evaluate the relevance (completeness, resolution, accuracy) of this source of information in

the absence in-situ/ground control data?

To answer these questions, we proposed to:

• Develop, implement and test a processing pipeline for the analysis of terrestrial optical image time

series acquired from fixed cameras. The processing is based on the open-source photogrammetric

library MicMac 2, MPIC 3, COREGIS 4 and Python libraries.

• Develop and implement a method to reconstruct the 3D displacement fields from pair-wise cameras

considering the correlation results and the camera orientations.
2MicMac: Multi Images Correspondances par Méthodes Automatiques de Corrélation. It is a free open-source software,

implemented at IGN (Institut National de l’Information Géographique et Forestière, France).
3MPIC: Multiple Pairwise Image Correlation. It is a processing strategy for time series of stereoscopic very-high resolution

(Pléiades) images (Stumpf et al., 2017), and time series of Sentinel-2 and Landsat-8 images (Stumpf et al., 2018).
4COREGIS: Python implementation to improve the co-registration of Sentinel-2 and Landsat-8 images (Stumpf et al., 2018).
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• Develop and implement tools for the thickness estimation of the moving mass.

• Implement tools for the analysis of the landslide mechanical behavior (deformation, rheology).

• Implement post-processing analysis tools for the modelling of slope behaviour (rainfall-velocity

relationships, landslide kinematic regime, time to failure forecasts).

Structure of the thesis

The thesis is organized in five chapters.

The first chapter presents the morphology and kinematics of the landslide cases used to develop and

test the processing strategy. It further reviews various methods available to study and understand these

phenomena, distinguishing between sensors specific to in-situ or remote measurements. An exhaustive

state-of-the-art discussion on time-lapse photography is then provided. Finally, the four unstable slopes

are presented from geological, kinematic and monitoring points of view.

The second chapter introduces the TSM pipeline (Tracing Surface Motion) (Desrues et al., 2019)

developed within the thesis. It is based on image correlation techniques to calculate both qualitative

(ground surface changes) and quantitative (displacement/velocity fields) information. The method is

modular and associates tools for (1) the selection of the image sequence to process from the initial raw

image time series, (2) the co-registration of the image stacks and the correction of the camera movements

over time, and (3) the calculation of the terrain motion using change detection approaches. TSM is based

on the open-source photogrammetric library MicMac and tailored for the processing of monoscopic

images. A sensitivity analysis is conducted by testing four categories of parameters: the image modality,

the image matching parameters, the size of the stable area used in the co- registration, and the strategy used

to combine the images in the time series. The application of TSM on two case studies -e.g. the Chambon

landslide characterized by slow motion (< 10 cm.day−1) and the Pas de l’Ours landslide characterized by

moderate motion (> 50 cm.day−1)- demonstrates the generalised applicability of the method. The results

provide information on the kinematics and the spatial behavior of both landslides.

The third chapter presents the application of TSM for image time series acquired with pair-wise

(stereoscopic) cameras in order to combine the displacement/velocity fields from two different points

of view. We propose a technique to reconstruct the 3D displacements from the displacement grids, the

correlation coefficients and the camera orientations. This new method allows us to minimize the dispersion

of the displacement estimates in the case of the stereoscopic approach. This approach was applied to the

slow-moving Montgombert landslide. In addition to this mechanical analysis, we used the constructed 3D

displacement time series to estimate the thickness of the moving mass, considering a pure translational

slide. The approach is based on the mass conservation law. Applied to the Montgombert landslide, it

indicates a thickness estimated to a few meters. This result is consistent with previous geological and

geotechnical observations.
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The fourth chapter presents a multi-sensor analysis combining geological observations, meteorolo-

gical data, seismicity, topographic measurements and simple physical modelling applied to the Cliets

rockslide (Desrues et al., 2020), submitted. We implement post-processing tools to analyse the relationship

between displacements and rainfall and to perform kinematics and mechanical analyses. The mechanical

analysis is carried out with a frictional model (Helmstetter et al., 2004) which allows us to define the

velocity of the sliding regime. We also implement a tool to estimate the time to failure (Voight, 1989).

Additionally, we present the application of TSM to image time series acquired with a monoscopic camera

during the pre-failure and the post-event stages.

The fifth chapter proposes a general conclusion and presents some technological and operational

perspectives on the use of terrestrial image time series and toolbox and the use of image time series for

geohazard analysis.
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Chapter 1

Remote sensing methods for the monitoring
of gravitational movements

The purpose of this chapter is to introduce time-lapse photography in the context of monitoring

gravitational movements. Surface displacement and velocity are characteristic features that allow

the monitoring of an instability evolution and the determination of its state of activity. To measure

these features, several techniques exist, being either in-situ or remote sensing. In the context of

monitoring at the scale of a full slope, time-lapse photography is a complement to existing methods

allowing increasing the spatial density and the temporal frequency of data. We first present the

different types of gravitational movements that one may encounter, with regard to their kinematic

characteristics and, then, review the different monitoring methods, in particular introducing the

time-lapse photography method and its challenges. Finally, we present the study sites for which

the time-lapse photographs have been acquired during this work.

Notations: The name ‘digital elevation model’ (or its acronym: DEM) includes, by default in this chapter,

digital surface and terrain models. Additionally, MPix will here stand for MegaPixels.
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1 Gravitational movements: risk and challenges

1.1 Types of gravitational movements

The term gravitational movements, also commonly referred as landslides, defines a diversity of processes

implying a moving mass, caused by the action of gravity. Various types of geological materials can

be at play, such as soil, bedrock or a mix of both, in a specific movement type (falls, slides, flows...).

Landslides may be distinguished by their material, geometry, velocity or volume. Therefore, finding a

simple classification for these different processes has become necessary. Over time, several classifications

were proposed to define the process with more precise vocabulary, thanks to a growing knowledge on the

subject. In 1978, the first classification is proposed by Varnes (1978), in which movements are defined

according to the type of motion and the type of material. From this starting point, several improvements

were especially made by Hutchinson, J.N. (1988) and later by Cruden and Varnes (1996) who append the

ground velocity along the slope as a new discriminating criteria. Other classifications where proposed

over time to adapt to different purposes such as engineering geological mapping (Nemčok et al., 1972;

Hungr et al., 2001), loess mapping (Li and Mo, 2019) or slope instability mapping (Smith and Dixon,

2015).

In the monitoring context, the most appropriate descriptor for the characterization of landslides is

the surface velocity over time. Indeed, it provides information on the state of slope stability. Figure

1.1 provides a schematic overview of the classification by ground velocity. It clearly shows that a fast

movement cannot be monitored in the same way as a slow movement. In other words, before monitoring,

the frequency and the resolution of the measurement acquisition need to be assessed, according to the

type of instability.

Based on the Varnes classification, the most commonly encountered types of instabilities according to the

velocity descriptor are summarized in Figure 1.2 (Cruden and Varnes, 1996). They are listed hereafter:

• [Extremely rapid velocity: ≥ 5 m/sec]

Falls correspond to fast-moving events involving single blocks. These blocks are detached from a

steep slope on discontinuities, such as joints. They are characterized by a stage of free fall, which

may be accompanied by rolling or bouncing, depending on the slope. The size of typical falling

blocks will depend on the geology at play, which includes the bedding thickness, the dip direction

and the joint orientations. Falls can be preceded by toppling or sliding motion.

Flows occur when the ground reaches its liquid limit (Hungr et al., 2001; Malet et al., 2003).

There are three types of flows. Debris flows are moving fast (Hungr et al., 2001) and load soil, rock

and water as a matrix. Debris avalanches are similar to debris flows except that they more fast and

involve very large volumes of material. Earthflows are characterized by saturated material involving

fine soils.

12



Chapter 1 Remote sensing methods for the monitoring of gravitational instabilities

Figure 1.1: Schematic surface velocities of a gravitational movement after Mirgon et al. (1993)

Figure 1.2: Description of the most common types of instabilities based on Varnes (1978) and Cruden and Varnes (1996)
classification. The illustrations are from the United States Geological Survey and are available online (USGS, 2004). DSGSD
stands for Deep-Seated Gravitational Slope Deformation and defines sliding movements that affect large slopes over a long period
of time. The camera symbol indicates the velocity interval in which time-lapse photography monitoring is most appropriate.
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• [Very rapid velocity: ≥ 3 m/min and ≤ 5 m/sec]

Topple is the rotation of a rock mass around an axis below its center of gravity. This movement

usually takes place towards the front of the slope (Tamrakar et al., 2002; Nichol and Wong, 2007).

This type of movement generally leads to the subsequent fall of the blocks and echoes the movement

presented above.

• [Rapid velocity: ≥ 1.8 m/hr and ≤ 3 m/min]

Slides are characterized by a downslope movement along a sliding plane called ’failure surface’

or ‘surface of rupture’ (Petley, 2004). They appear when the stabilizing forces, defined by the

shear strength and weight on the sliding surface are exceeded by driving forces including gravity.

We distinguish three types of slides. Rotational landslides have a surface of rupture that draws a

concave curve. Thus, the mass revolves around an axis parallel to the slope and remains, more

or less, a single coherent mass. It is essentially characterized by the presence of a well-defined

scarp at the crown (the top of the landslide) and the presence of a zone of depletion and a zone

of accumulation. Some cracks may be observed before the main scarp is formed. A rotational

landslide mainly occurs in homogeneous materials. Translational slides have a surface of rupture

similar to a roughly planar surface. This surface can be affected by a slight rotational movement

and it corresponds usually to a discontinuity such as a fault or a joint. Block slides are translational

slides, in which the material is moving as a single mass.

• [Moderate velocity: ≥ 13 m/month and ≤ 1.8 m/hr]

Spreads occur on a gentle slope or a flat surface in response to soil liquefaction (Youd, 2018). They

are defined by an extension of the soil, with a general subsidence of the fractured mass of cohesive

material into softer underlying material.

• [Slow to extremely slow velocity: ≤ 13 m/month]

Creep is a deformation supplied by internal shear stress which is not sufficient to reach rupture.

Curved tree trunks are good creep indicators since the base of the tree is moving with the ground

soil whereas the top is trying to grow straight up.

All of these processes can be marked by the presence of simultaneous and different types of movements

in several slope areas, and/or by a change of type of movement over time. In other words, considering

more complex landslides, the environment will not, always and everywhere, evolve at the same ground

velocity. Thus, monitoring these gravitational phenomena requires us to be able to detect and track
several ranges of velocity both in time and space.

1.2 Controlling and triggering factors

The areas prone to landslides are predominantly characterized by controlling factors that are directly part

of the environment of study, whether at the scale of the landslide, that of the slope or of the valley. They

consist essentially of the geological structures and the hydrological context. The most common natural

indicators, to estimate the susceptibility of landslides, are the slope angle and the slope orientation
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(Donnarumma et al., 2013; Çellek, 2020). The slope angle expresses the surface steepness according to

the horizontal and it ranges from 0◦ (horizontal surface) to 90◦ (vertical surface). It can be computed

from Digital Elevation Model (DEM). The angle depends on the local structures and on the lithology

(e.g., presence of joints, of discontinuities or of bedding planes). Several studies show that soil landslides

mainly occur on gentle slopes, whose angle is comprised between 10◦ to 30◦ (Zêzere et al., 1999; Iwahashi

et al., 2003; Çellek, 2020). Additionally, Beaty (1956) suggests that landslides mainly occur on slopes

with the least exposure to sunlight and where temperatures are low, based on the study of the orientations

of landslides that have occurred in the Berkeley area (California). 70% of landslides occurred on slopes

with both northerly and easterly orientation. This suggests that the areas most prone to landslides are those

where there is more moisture and less evaporation, as confirmed by Rotaru et al. (2007). In addition to the

slope steepness and orientation, the mechanical properties of the rocks define the stability considering

cohesion and angle of friction (Rotaru et al., 2007).

Gravitational movements may be induced or at least disturbed by triggering factors that are related

to the climate (i.e., rainfall, snowmelt), or to tectonics and seismicity (Dou et al., 2019). Intense rainfall

or snowmelt imply change and/or saturation of the ground-water levels (Zêzere et al., 1999; Polemio

and Petrucci, 2000; Jesus et al., 2018), affecting the mechanical process by increasing the rock or soil

movement, and leading to a catastrophic scenario. In addition, on a longer time scale, rock alteration and

erosion are also natural triggers. Earthquakes and active tectonics also play a role in the destabilization of

masses. When the ground shakes, soil materials are subject to dilatation, which allows the infiltration

of water into the environment (Rodrıguez et al., 1999). Materials then lose contact with one another

involving the loss of frictional forces.

Additionally, the slope environment may be disturbed by the removal of vegetation since it partly

regulates the amount of water in the soil and by the human activity since a slope profile is usually

modified when there are work-sites nearby (e.g. the construction of roads, houses or transportation

corridors) (Baioni, 2011). The human activity may consist of excavation, overloading or fill for instance.

This has the effect of disrupting the equilibrium between the shear force and the shear resistance along a

potential failure surface (Rotaru et al., 2007).
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Figure 1.3: Schematic framework that connect the risk management cycle (orange circle), which is managed by the local
authorities, the time-related progress of disasters (white circle), the temporal stages of the monitoring (blue circle) and the
observation frequency (gray circle). Modified after Stumpf (2013) and Alexander (2002).

2 Landslide monitoring: in-situ measurements and remote sensing

Monitoring a landslide, either in a event context or in a post-event context (Figure 1.3), is distinct from

a single landslide survey since the measurement is acquired repeatedly or continuously over time (see

Figure 1.4). A survey is a punctual measurement such as drilling (from geotechnical measurements) or a

geophysical profile, while monitoring uses techniques that are repeated at more or less regular intervals.

It is often supplemented by field observations. The technique depends on the type of movement, on the

size of the object, but also on the possible risks involved. The required precision and the time scale of the

measurements are associated with the study, even if the quality and quantity of the measurements depend

indirectly on economic constraints.

2.1 Selection of the monitoring techniques

We divide the monitoring techniques into two main categories: the in-situ techniques and the remote

sensing techniques. These two techniques may involve different platforms (satellite, aerial and terrestrial

platforms). The main difference between these two categories is that the first, in contrast to the second,

requires a direct contact between the measuring device and the ground surface. Several sensors are

presented in Table 1.1 according to their characteristics, such as the type of the measurement that can be

obtained (e.g., displacements, DEM comparison) and the precision of the measurement.

Several studies list questions and recap the advantages and disadvantages of the monitoring techniques

such as (Malet et al., 2002; Delacourt et al., 2007; Michoud et al., 2010). Stumpf (2013) summarizes

in graphical form the most relevant techniques to be used in the case of a study, according to three
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Figure 1.4: Monitoring techniques for landslide understanding.

criteria: the scale of the measurement (point, local or regional), the deformation rate (from extremely

slow to extremely rapid) and the type of movement (slide, rockfall, spread ...). For instance, in the

case of a rotational landslide, all monitoring techniques are appropriate, whereas for cliff monitoring,

the proper techniques are reduced to laser scanning measurements, ground-based radar interferometry

(GB-InSAR) and total station measurements. In fact, all aerial platforms are probably the least suitable for

cliff monitoring, whatever the technique, because of the line of sight of the measurements which is similar

to the main slope aspect (i.e., vertical direction). For a local measurement, the best platforms will be the

total station, but also terrestrial photogrammetry and the GB-InSAR, while, for a regional measurement,

the satellite platforms will be the best as well as aerial photographic acquisition or LiDAR acquisition.

We can also include, in this list, the frequency and the duration of acquisition with respect to the moni-

toring stage, which is specific to each instrument: the duration of the acquisition varies from a few seconds

(case of a time lapse of images) to several minutes / hours (case of a LiDAR acquisition). In addition, the

frequency of the acquisition depends strongly on the type of the platform which is used: satellites have a

revisit time of one day minimum while that of terrestrial fixed cameras is of a few minutes or even seconds.

We propose to summarize this list, with these main questions:

• sensor parameters
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� What measurement accuracy is required?

� What is the spatial coverage of the measure?

� What is the distance to the object?

� What is the temporal and spatial resolution of the measurement?

� What is the cost associated to the survey?

• slope parameters

� What is the purpose of the measurement?

� What types of products are requested?

� What is the expected ground deformation rate?

� What is the pattern of motion that characterizes the gravitational movement?

• data parameters

� How reliable is the data?

� What is the response time of the measurement?

� What is the format of the data storage / data transmission?

� Does the data support semi-automatic or even automatic processing?

2.2 In-situ measurements

In-situ techniques provide either absolute or relative measurements. Relative measurements between
two points are usually distance measurements and may come from an extensometer, crack opening or

inclinometer sensors (Corominas et al., 2000; Klimeš et al., 2012). As for absolute measurements, they

correspond to angle and distance measurements or directly to 3D coordinate positions. They are also

called geodetic measurements.

2.2.1 GPS/GNSS survey

GPS (Global Positioning System) / GNSS (Global Navigation Satellite System) are satellite-based

navigation and positioning systems, which provide precise 3D coordinates (with an accuracy that can

reach a few millimeters). This measuring system is increasingly used in civil applications. It is suitable

both for monitoring slow deformations, such as tectonic movements (Nilforoushan et al., 2003; Devoti

et al., 2011) or subsidence Engelkemeir et al. (2010), and for faster deformations, such as landslides

(Gili et al., 2000; Malet et al., 2002; Squarzoni et al., 2005; Benoit et al., 2015). GPS/GNSS are often

used repeatedly and not continuously over long periods of time mainly because of the cost of such a

system and the bias in multi-paths (when the direct path is blocked by trees, buildings...) (Malet et al.,

2002). The GPS/GNSS measurement can be carried out in real time (Real Time Kinematic - RTK) as in

18



Chapter 1 Remote sensing methods for the monitoring of gravitational instabilities

Table 1.1: Summary of landslide monitoring methods modified after Malet et al. (2002); Delacourt et al. (2007); Michoud et al.
(2010).

Monitoring methods Measurement type Precision Some References

In
-s

itu

Global Positioning System Target displacements 1-2 mm Malet et al. (2002); Squarzoni
et al. (2005); Gili et al. (2000)

Tacheometry, theodolite Displacements along ver-
tical 20 mm Angeli et al. (2000)

Precise levelling Target displacement 0.5 mm Malet et al. (2002)

Extensometry Local displacement 0.5 mm Angeli et al. (2000); Corominas
et al. (2000)

R
em

ot
e

se
ns

in
g

Passive sensors - Optical Imaging

Satellite imaging Displacement 0.6−80 m Kääb (2002); Delacourt et al.
(2004); Stumpf et al. (2018)

Aerial imaging Displacement 0.5−2 m Niethammer et al. (2012); De-
witte et al. (2008)

Terrestrial imaging Displacement cm - dm Travelletti et al. (2012); Stumpf
et al. (2015)

Passive sensors - Thermal imaging Temperature map 1−2◦ C Guerin et al. (2019)

Active sensors - Laser scanning
Aerial laser scanning DEM comparison dm - m Jaboyedoff et al. (2012)

Terrestrial laser scanning DEM comparison mm - cm Kromer et al. (2017); Noël et al.
(2018)

Active sensors - Radar interferometry

Satellite LOS displacement 2 mm Strozzi et al. (2004); Nikolaeva
et al. (2014)

Aerial LOS displacement
1.7x10−2

displ.
gradient

Hu et al. (2020a)

Ground-based LOS displacement ∼mm Antonello et al. (2004); Bozzano
et al. (2011)
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Figure 1.5: In situ techniques. (a) Photograph of a fixed GPS station located at the valley of the Basento river (Italian Southern
Apennines) from (Calcaterra et al., 2012). (b) Photograph of a total station set up in front of the Viella landslide (French
Pyrenees) (source: J.-P. Malet). (c) Photograph of an extensometer (fixed site visible) from (Malet et al., 2002). (d) Principle of
the direct levelling form (Schultz, 1995).

teletransmission (Leick et al., 2015; Hofmann-Wellenhof et al., 2012). In the latter case, it is not necessary

to have a direct line of sight between the GPS base and the measurement point. This flexibility of the

measurement is particularly an asset in measurement campaigns conducted in the natural environment.

Another advantage is that it is possible to measure whatever the weather conditions, and whatever the

time at which the measurement is made. However, the orbit of the satellites, the ionospheric delays and

the environment of the point will influence the quality of the measurement (Gili et al., 2000; Squarzoni

et al., 2005).

2.2.2 Tacheometry / Theodolite

A tacheometer is a device used to measure horizontal and vertical angles between two targets. A

theodolite, for its part, only measures angles. When the instrument is robotized, the term total station

is used. Monitoring landslides from total station measurements requires a dense topographic network,

composed of a set of artificial targets, to cover the maximum amount of the area. Additionally, some targets

are set up in an assumed stable area to be used for the instrument calibration. The spatial coordinates

of each target, expressed in a local reference frame, are deduced from the angle measurements and are,

mostly, the deliverable. The angular precision ranges from 1′′ to 7′′. The benefit of such a device is that it

can acquire data night and day, in rain and sunshine. Atmospheric conditions may bias the quality of the

measurements. As with any in-situ measurement, the total station measurement depends on the ground

evolution. Indeed, the displacement of the ground can cause the topographic target to fall or tilt, which
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then causes misalignment with respect to the total station. As a result, some reliable information may be

irreversibly lost.

2.2.3 Precise levelling

Precision levelling is an accurate method of differential levelling that uses precise levels and a procedure

of rigorous observation (Ferhat et al., 2017). This method aims to achieve high orders of accuracy (Malet

et al., 2002). It is mainly used to monitor areas in which vertical movements are significant (e.g., areas of

subsidence) (Murase et al., 2014; Sabuncu and Ozener, 2014; Ferhat et al., 2015).

2.2.4 Extensometry

An extensometer is a monitoring device for a relative measurement of the distance between at least

two points. A displacement measured by an extensometer does not provide information on the vertical

and horizontal components of the movement or information on the thickness of the moving masses. It

is a global measure providing information about the ground deformation (Angeli et al., 2000). There

are several kind of sensors (Michoud et al., 2010): the probe extensometers which are non-permanent

measurements, the fixed borehole extensometers which measure the change of distance of two or more

specific points along the axis of a borehole, and the wire extensometers (Corominas et al., 2000) which

measure the distance between two points; generally with one point located in the unstable part and one

other located on a stable part.

2.3 Remote sensing imaging methods

Remote sensing is a set of techniques which detect or monitor the ground features as well as the physical

characteristics of an area at a distance. Several platforms may be used: satellite, aerial and ground-based

methods. The surface area covered by these techniques varies from a few m2 to several hundred km2. The

accuracy of the measurements ranges from few millimeters to meters (Delacourt et al., 2007). The active

techniques are based on the emitted-transmitted principle by providing their own energy to illuminate

an object. They send energy and receive the response which is reflected by the object. The measure

is therefore performed in 1D along the line of sight of the sensor. The operator has control over the

characteristics of the emitted signal, such as the wavelength which, depending on its value, may or may

not pass through the vegetation. The passive techniques may also be used. They do not interact with the

object and detect natural emitted or reflected sunlight radiation. There are part of the group based on

optical sensors and provide a 2D measurement, or a 3D one if some additional data are available.

2.3.1 Active imaging sensors

We here introduce two active sensors, which are the most often used in landslide monitoring:
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Satellite InSAR, UAVSAR and ground-based SAR interferometry Among passive sensors are radar

techniques based on the Synthetic Aperture Radar (SAR) data. Radar is an active and coherent source that

emits electromagnetic signals in the [1-12] GHz frequency band. Satellite SAR images have regularly

been recorded since the 1900s, enabling the monitoring of ground motion. They are used in several

applications, such as the measurement of the ground displacements induced by earthquakes, landslides or

glaciers (Massonnet et al., 1994; Bawden et al., 2001; Bamber and Rivera, 2007; Nikolaeva et al., 2014;

Modeste, 2020). One of the major advantages of this method is the ability to acquire images day and

night.

To measure the ground deformation and provide maps of surface deformation, images are acquired

repeatedly. This technique, called SAR interferometry, consists in measuring ground motion occurring

between two acquisitions by providing the motion as a complex signal expressed by fringes (Rosen et al.,

2000; Pathier et al., 2003). The principle of a radar acquisition is shown in Figure 1.6 and explained below.

The radar follows a trajectory, called azimuth, which is perpendicular to the line of sight (LOS) in which

the measurement is made. The footprint of the LOS extends from near ranges to far ranges covering areas

at the regional scale. Yet, some distortions can be introduced on SAR images, which are caused by some

low coherence measure and which may correspond to important vegetation change, snowfall or significant

ground surface change. Additionally, in a mountainous context, shadow zones relative to the orientation

of the hills in particular can be inserted; the radar method is sensitive to relief.

The Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) airborne is a NASA repeat-pass

SAR interferometry system. This instrument enables the acquisition of L-band SAR images at various

time-scales and different optical imaging geometries (Hensley et al., 2009; Delbridge et al., 2016). The

submeter-level resolution (0.6 m in azimuth and 1.9 m in range) allows the imaging of geological struc-

tures on small scales (Hensley et al., 2009; Hu et al., 2020a). This technique was successfully used by

combining several look directions, for landslide monitoring (Delbridge et al., 2016; Hu et al., 2020a,b) or

glacier flow monitoring (Minchew et al., 2015).

The ground-based interferometry (GBInSAR) is often used to monitor the ground in near real-time

with a millimetre level of accuracy (Antonello et al., 2004; Bozzano et al., 2011). It covers a local scale,

and thus, a smaller area. It is a continuous measurement that does not require the installation of targets. In

contrast to the satellite case, this technique is flexible in its application, since the operator controls all the

acquisition parameters. However, the instrument needs to be set up on a stable area and to be fixed during

the whole acquisition. Thus, the costs related to this method, can be substantial.

Terrestrial and Aerial laser scanning Laser scanning or light detection and ranging (LiDAR), is a

measure providing 3D dense point clouds. Measures are realized thanks to an infrared laser pulse, and are

based most often on the time-of-flight principle (see Figure 1.7). Knowing the speed of light, c ,and the

response time δ t, it is possible to convert the signal into the distance d between the instrument and the
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Figure 1.6: Radar principle. a) Radar imaging geometry from Bamler (2000). b) Example of SAR image from Yan et al. (2012).
Spatial representation of subsidence over Mexico City (2002−2007).

Figure 1.7: Laser scanning principle. a) Laser scanning acquisition principle from Jaboyedoff et al. (2012). b) 3D point cloud
acquired by TLS at the Chambon landslide in 2016 (France) (Desrues et al., 2018).
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object : d = (c∗δ t)/2. 3D coordinates are then recorded as well as the intensity of the pulse and other

signal attributes. The instrument can reach a very long range up to 4000 m and can also be embarked in

airborne platforms such as airplane or helicopter (Aerial laser scanning - ALS) (Ventura et al., 2011), in

mobile platforms such as vehicle or boat (Michoud et al., 2015) or in terrestrial platform (Terrestrial laser

scanning - TLS) (Royán et al., 2014; Kromer et al., 2017). The resolution of the measure varies with the

distance between the laser and the object, and with the angular spacing between two scanned points. The

quality of the measurement can be affected by the atmospheric conditions as well as the ambient humidity.

The technique is used from the laboratory scale to reconstruct rock samples (Wang et al., 2019) to

the macroscopic scale to reconstruct digital terrain models (Travelletti et al., 2008; Prokop and Panholzer,

2009) or to monitor rockfalls (Royán et al., 2014; Kromer et al., 2015). Indeed, with a single scan, some

slope information such as geometry and orientation are directly available. The 3D model can also be

inserted in rockfall simulations software to provide a ground surface on which block trajectories are

calculated. (Ondercin et al., 2014; Noël et al., 2018; Sala et al., 2019). This method is used in several

fields such as archaeology (Fernandez-Diaz et al., 2014), geosciences (Jaboyedoff et al., 2009; Eitel et al.,

2016), construction and rail environment (Assali, 2015; Kedzierski and Fryskowska, 2014) or even in the

automobile industry, in order to detect how far away obstacles are from a car (Rasshofer and Gresser, 2005).

To monitor slope changes, multi-temporal laser scanning is often used, either by repeating the mea-

sure with an operator or automatically (Jaillet et al., 2011; Kromer et al., 2017; Point et al., 2018). The

frequency of acquisition varies from one every few hours to one every days, months, years ((Eitel et al.,

2016)). It depends on the ground velocity of the movement as well as on the objective of the measurement

campaign.

As the measure is realized in the light of sight of the instrument, several viewpoints, in the case of

a terrestrial acquisition, are necessary in order to avoid occluded areas. The resolution is then increased

and spatially heterogeneous. When several point clouds are generated from one or more viewpoints, they

are aligned with each other to obtain a single entity. Many algorithms can be used to process point clouds.

The most common algorithm is the Iterative Closest Point algorithm (ICP) successfully used by Hebel

and Stilla (2007); Travelletti et al. (2014); Bellekens et al. (2015) and Moon et al. (2019).

2.3.2 Passive imaging sensors

Passive sensors include optical images from several platforms: satellite, airborne and terrestrial platforms

1.8. Depending on the type of the embedded sensor, images may be acquired in several modes: in mono

band (grayscale image), in spectral bands (colored image with three bands in the visible spectre: Red,

Green Blue (i.e., RGB image)) and in multi- or hyper-spectral bands (several bands in the visible spectrum

with the infrared band).
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Figure 1.8: Example of optical images acquired by the three platforms and result from the image correlation technique. (a)
Left Panchromatic Pléiades image acquired in October 12, 2012. Right Horizontal displacements (in meter) measured at the La
Valette landslide (France) between August 7 and October 5, 2012. From Stumpf et al. (2014). (b) Left Aerial image of the La
Clapière landslide (France). Right Horizontal velocity (in cm.day−1) calculated between 1995 and 1999. From Delacourt et al.
(2007). (c) Left Terrestrial image of the Sanières landslide (France) acquired in July 10, 2015 by a PENTAX K200D with a
21 mm of focal length. Right Surface velocity (in pixel.day−1) between July 10 and July 30, 2015.
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Optical satellite images Multi-spectral and panchromatic images are, nowadays, acquired with satellite

optics with a very high resolution (VHR) compared to the previous decades. The first optical satel-

lites for civilian purposes, SPOT and LANDSAT, were launched in the 1990 s. They are characterised

by decametric resolutions and a revisit time of 18 to 30 days respectively. Since then, Quickbird and

Ikonos, high-resolution satellites with near-metre resolution (HR), were launched in the 2000 s followed

by the Sentinel-2. The resolution of this latest satellite ranges from 10 to 60 m and depends on the

spectral band used. Other satellites have been launched since then, enabling even finer resolution to be

achieved: 2.5 m for the SPOT satellites and 0.7 m for the Pléiades constellation with a revisit time of 1 day.

Innovations in sensor technology and processing algorithms (Section 3.2.2) have made it possible to use

these high and very high resolution images for qualitative and quantitative analysis of surface changes. By

improving processing algorithms and developing new ones (e.g., MPIC technique (Stumpf et al., 2017)),

change mapping and displacement rates analysis are realized faster with higher confidence. The recent

development of new acquisition methods such as stereoscopic or tristereoscopic acquisition has opened up

new perspectives. Indeed, thanks to these acquisitions high-resolution DEMs can be generated. Optical

satellite images can be found in several applications such as the detection of ground motion as well as

that of avalanches (Larsen et al., 2013), earthquakes (Lacroix et al., 2015), landslides (Delacourt et al.,

2004; Stumpf et al., 2017, 2018; Desrues et al., 2019a), or the estimation of glacier speed (Heid and Kääb,

2012b). They can also provide a general overview on natural hazards highlighting the consequences of

natural disasters by generating DEMs and orthoimages (Shean et al., 2016).

Optical aerial images They are acquired either from a plane, an helicopter or even a paraglider or

from a Unmanned Aerial Vehicle (UAV) such as, kites or balloons (Colomina and Molina, 2014). The

embedded camera generally points downwards and the images are acquired along the flight path. They

are often used in the fields of agriculture, archaeology or in the humanitarian sector (Vigneau et al., 2014;

Barge and Régagnon, 2017; Apvrille et al., 2017). UAVs are increasingly being used to map mountainous

surface, which, at the same time, allows the human operator to be independent and autonomous in the

field. The most common device is the low-cost motorized and piloted UAV, also called drone. This

device has the advantage of being very easy to handle and simple in its use. The maximum range can

reach 8 km, which is the case for the drone DJI Mavic Pro 2, and the images are acquired in ultra high

resolution (>18 MPix). Large areas can be covered (up to several square kilometers) by aerial images

with high resolution. It can reach a few centimeters for lower areas (of about 1x1 km2) (Casson et al., 2005).

Optical aerial images are processed by stereo photogrammetry or by Structure from Motion (SfM),

which enables the generation of a large-scale digital elevation model. DEMs may achieve a sub-meter

accuracy for airborne images (Dewitte et al., 2008), and may reach a resolution of a few centimeters for

UAV images (Niethammer et al., 2012; Westoby et al., 2012; Lucieer et al., 2014; Gupta and Shukla, 2018).

To provide DEM, ground control points (GCPs), or the position of the cameras, can be introduced in the

SfM algorithm in order to convert the model built in a local coordinate system to a geodesic coordinate
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system. The addition of GCPs improves the quality of the 3D reconstruction by constraining the algorithm

(bundle adjustment stage) and by georeferencing the 3D model (Bitelli et al., 2004; Fonstad et al., 2013).

Aerial images also provide extremely important databases that allow the retro-analysis of ground move-

ments over several years, in order to better understand the current dynamics. Indeed, they provide the

ability to detect small movements over a large period of time such as a decade (Hapke, 2005; Dewitte

et al., 2008). One of the major limitations of the use of airborne images is the geometry of the study

object. Indeed, photogrammetry fails when the object represents steep slopes or very marked slope breaks.

As for UAV images, the environment and the weather conditions strongly constrains the acquisition. For

instance, most of the drones cannot fly when the wind speed reaches or exceeds 30 or 40 km/h. Beyond

this threshold, it becomes more difficult to control the device, the battery loses autonomy and the drone

risks crashing. In addition, the required image overlap is compromised. It is also impractical to fly the

UAV in a forest environment or in a dense urban environment. In addition, the presence of electrical

cables may add some additional constraint.

Optical terrestrial imaging Terrestrial images can be acquired by one or more cameras using two

approaches, either the monoscopic approach or the stereoscopic or multi-view approach. Using the

terrestrial platform offers the advantage of generating high-resolution DEMs but also of generating

surface change maps qualitatively and quantitatively, at low cost with ease of use. It is often used in

several domains, such as in archaeology to construct 3D model of fragile objects or inaccessible objects

(Drap et al., 2007), in glacier surveillance (Kaufmann, 2012; Piermattei et al., 2015) or in landslide

monitoring (Travelletti et al., 2012; Valentin, 2018). This method, used in a repetitive way, is hereafter

called time-lapse photography and is presented in Section 3.

3 Time-lapse photography

In this section, we are interested in time-lapse photography carried out on land-based platforms. The

different acquisition approaches are presented as well as the sensors and acquisition systems that can be

used. The processing algorithms are also introduced as well as the post-processing algorithms.

3.1 State of art

As previously mentioned, images from time-lapse photography can be acquired in different modes: RGB,

multi-spectral, etc. depending on the field of investigation and the desired products. Indeed, RGB images

give access to quantitative and qualitative surface change detection (Travelletti et al., 2012; Stumpf et al.,

2015) whereas infrared images give access to surface temperature maps allowing the detection of thermal

anomalies (Frodella et al., 2017; Le Roy, 2020).

In the context of the thesis, we were only interested in images acquired in RGB mode.
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Figure 1.9: Schematic table on the possible modes of time-lapse photography.

3.1.1 Principle of time-lapse photography

Time-lapse photography is an acquisition method that allows us to associate a temporal dimension to
the photography data. From temporal data, that we will call time series, it is possible to track surface

changes and to quantify the different types of deformations. This method can be broken down into two

acquisition approaches: a monoscopic approach and a stereoscopic (or multi-view) approach (Figure 1.9).

The first approach consists in acquiring a succession of photographs of a moving object from a sin-

gle point of view. The acquisition characteristics, such as the focal length, aperture or isometry, and

the spatial coverage remain fixed during the entire image acquisition. As for the temporal scale of the

measurements, it can vary from milliseconds (video acquisition) to days. This approach generates a set

of photographs taken at regular time intervals, that enables changes to be detected and movements to be

quantified using image matching methods (see section 3.2.2). Monoscopic time lapse was successfully

used in volcanology to monitor dome deformations (Walter, 2011), and in glaciology and landslides

(Ahn and Box, 2010; Fallourd et al., 2010; Gance et al., 2014; Schwalbe and Maas, 2017; Altena and

Kääb, 2017; Marsy et al., 2020) to monitor surface displacements (Figure 1.10). In addition, Travelletti

et al. (2012) have demonstrated the potential of a permanent time-lapse in the study of the Super-Sauze

landslide. The displacements obtained by image analysis have a centimetre accuracy.

Like any passive measurement, time-lapse photography is dependent on weather conditions that can

render the photographs unusable. Even if the influence of wind remains negligible, rain, snow and fog can

obscure the view. The image acquisition requires a proper point of view, which depends directly on the

study site. The camera can only capture the parts that are visible from its point of view. Nevertheless, this

technique has the advantage of being low cost and easy to use, while offering the possibility of having a

quick acquisition that can be applied at different scales in time and space.

3.1.2 Type of camera sensor

The choice of the camera sensor influences two main parameters: the resolution of the ground pixel (i.e.,

the pixel equivalent size in the real world system), which directly determines the resolution of the displace-

ment maps, and the camera spatial coverage. This leads to the choice of the sensor size and the focal length.
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Figure 1.10: Example of a photography time-lapse at the Argentière glacier. (Left) Photograph of the camera view point. (Right)
Displacement rates in pixel/day. From Fallourd et al. (2010)

Figure 1.11: Abacus relating the ground pixel size to the distance between the camera and the object. Graphic built from the
Dinion IP ultra 8000MP 1/2.3” CMOS Progressive Scan webcam of 12 Mpix and the Canon EOS 100D camera of 24 MPix.
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There are two types of sensors: CCD (Charge Coupled Device) and CMOS (Complementary metal-

oxide-semiconductor). The most commonly used, single lens reflex (SLR), cameras employ CMOS

sensors. The size of the sensor is related to the size and the resolution of the image. The size of the image

pixel is determined as:

δpixelimagesize =
Sizesensor

Resolutionimage
(1.1)

The focal length of a camera varies from a few millimeters to more than 300 mm depending on the lens

used. Fisheye lenses are those with a focal length less than 14 mm. This type of camera can be found in

traffic surveillance, for example, and are commonly called ‘webcams’. Then comes the ultra wide-angle

lenses, whose focal length is between 14 mm and 20 mm, and the wide-range cameras with a focal length

between 24 mm and 35 mm. Finally, the more standard lenses are those with a focal length between

45 mm and 70 mm. This range corresponds to the field of vision of the human eye. Above this range, lie

the telephoto lenses, with a focal length of more than 300 mm. The focal length controls the view angle:

the longer the focal length, the narrower the angle of view. Thus a substantial advantage of this technique

is the ability to use different fixed lenses at different focal lengths.

If we consider f the focal length, d the average camera-object distance, the ground pixel size is then

defined as:

δpixelgroundsize =
d

f
∗δpixelimagesize (1.2)

Figure 1.11 relates the ground pixel size to the camera-object distance, according to the focal length, for

two particular cameras, a Dinion IP ultra 8000MP 1/2.3” CMOS Progressive Scan webcam (12 Mpix of

resolution) and a Canon EOS 100D camera (24 MPix of resolution). These two cameras were installed on

the Pas de l’Ours site (see Section 4). The advantage of using a webcam in an operational context is the

adjustment of the day/night modes, which allows us to cover a whole time interval. On the other hand,

many webcams do not have a fixed focal length. In the case of this webcam the focal length varies from

3.2 mm (120◦) to 5 mm (71◦) and a simple screw fixes it. It is therefore subject to potential unwanted

variations over time.

The use of a very wide angle webcam may also imply strong distortions in the captured images (see

Appendix A). To use this type of sensor in the quantification of ground motions, it is thus necessary to

apply corrections to the photographs. This requires us to determine the distortion coefficients and, thus,

to calibrate the webcam precisely. In the study of the Pas de l’Ours landslide, too few known points

on the ground were available to calibrate the webcam. Calibrating a camera provides the opportunity

to determine the internal parameters of the camera such as focal length and distortion coefficients, but

also the external parameters that enable the camera to be oriented in a chosen geodetic reference frame.

Appendix A is dedicated to the description of these parameters.

3.1.3 Acquisition system and digitizer

The system that has proven to be the most suitable for a photography time-lapse acquisition is a stand-
alone box in which the camera is placed, as well as a data logger powered by an external battery or by
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Figure 1.12: Example of the image acquisition system developed by the SAGE Society. (a) Photograph of the image acquisition
system set up at the Pas de l’Ours landslide (Hautes-Alpes, France), after Desrues et al. (2019b). (b) View of the inside of the
box shown in (a). (c) Photograph of the image acquisition system set up at the Montgombert landslide (Savoie, France). In this
configuration, the camera sensor and the data logger are in separate cases.

a solar panel. This low cost acquisition system allows us to control the acquisition frequency and its

actual moment, according to the sun illumination. It also allows us to automatically upload images
onto a server, if a WiFi connection is available in the area. Another advantage of this kind of system is

its very low power consumption. Such a system allows to connect a very high resolution camera to the

data logger. For instance, cameras with 21 MPix and 50 MPix were, respectively, used by Roncella et al.

(2014) and Kromer et al. (2019) to monitor slopes and rockfalls. This enables the object to be imaged

accurately while being at a great distance (i.e., more than 500 m). Some other systems use a Raspberry

Pi as on-board computer, combined with the PiCamera module (Santise et al., 2017). However, the low

resolution of the sensor (8 MPix), induces ambient noise in the image and constrains the distance between

the object and the camera. In addition to these custom systems, some commercial solutions exist within

an all-in-one box (e.g., Devisubox, Boxcam). They are robust to weather conditions but have two major

drawbacks: high power consumption and a non-fixed focal length.

Figure 1.12 shows an example of two low cost acquisition systems developed by the SAGE company. In

the first months of its installation at the Pas de l’Ours landslide (see Section 4), the captured images were

first retrieved directly from the camera’s memory card and after modifications of the system, they were
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sent directly to a server.

3.2 Methodology

To extract the information related to a surface change, several image processing algorithms specific to

the two acquisition approaches (monoscopic and multi-view approach) are available. The three main

steps common to both approaches are: the pre-processing (image selection, camera calibration, ....), the

processing to extract the main information such as the image correlation of the DEM generation, and the

analysis.

3.2.1 Image pre-processing

Image pre-processing consists of selecting the images to be further processed, transforming them, if

necessary, to increase the signal-to-noise ratio and calibrating and determining the internal and external

parameters of the camera. Image selection refers to the estimation of the quality of the images which may

be altered by the presence of clouds, rain, fog or vegetation. The image quality needs to be as high as

possible to avoid the integration of bias during processing. This operation is often carried out manually.

Biases can also be reduced by transforming the images to highlight their texture. The images can be

transformed, for example, into grayscale or radiometrically enhanced (transformation on the histogram).

The internal and external parameters of the camera are involved in image processing at several levels:

correction of distortion, transformation of image coordinates into geodetic coordinates, orientation of the

camera in relation to the object, etc. This step does not affect the image data set as such, but is necessary

for pre-processing since it affects the image acquisition as well as the image processing.

3.2.2 Image processing

Image processing depends on the adopted acquisition approach. But in both cases we can have a temporal

series of images that can be processed in a similar way (Figure 1.9). For the multi-view approach, the

images are processed by stereo-photography or by SfM in order to generate DEMs (Eltner et al., 2017;

Parente et al., 2019). The projected DEM is then converted into field data such as shading or roughness,

in order to texture the image (Lucieer et al., 2014; Travelletti et al., 2014). Therefore, image matching

techniques can be applied to quantify the ground motions.

To track surface changes from two images, taken before and after the ground movement, several algorithms

can be used to identify and quantify the displacements. Matching techniques can be differentiated in local

matching such as tracking feature methods and in global matching such as image correlation methods.

Other emerging technical matching methods can be used to generate displacement fields which is notably

the case with optical flow techniques such as the Lucas-Kanade method and its derivatives (Brox et al.,

2004). They assume that the illumination properties of the object are preserved between two dates and

that the movements are small.
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Tracking features methods detect time-invariant points (Harris et al., 1988; Lowe, 2004) which are

discrete features that can either be natural (blocks) or artificial (topographic targets). There are several

detection algorithms based on these specific points, such as the Harris corner detector (Gance et al., 2014)

or the Scale Invariant Features Transform (SIFT) (Le et al., 2011). This method has the advantage of

being robust and not dependent, for instance, on radiometric changes in objects. Figure 1.13a) shows

an example of target tracking whose method is based on target properties (size, geometric luminance)

(Gance et al., 2014). This method is limited only to the points which are detected by the algorithm and,

therefore, the displacements are only calculated locally. The amount of information is then dependent

on the study site and its identifiable landmarks. This is why many researchers use the image correlation

technique which allows us to obtain a dense spatial deformation field. This technique has been tested and

approved in many cases such as the analysis of glacier movements (Tiwari et al., 2014; Dehecq et al.,

2015) or surface deformation (Delacourt et al., 2004; Travelletti et al., 2012; Stumpf et al., 2017).

Image correlation techniques can be used either to detect equivalent points in a pair of images, or

to calculate the displacement field between two consecutive images. It is a technique that is sensitive

to the displacements along the two spatial directions that are perpendicular to the line of sight of the

camera. Let us consider two images of which there is a ’reference’ one called here ‘master’ and there

is the one being compared called here ‘slave’ (see Figure 1.13b)). To compute the displacement of a

pixel (um,vm), we center a correlation window, here denoted Cwm, of defined dimensions (nxp) in the

master image, and a correlation window Cws (of the same dimensions as Cwm) in the slave image. This

second window is moved in the slave image and, at each position, the correlation with the first window

is calculated. The pixel with the highest correlation peak is considered to be the new position of the

considered master location. The correlation results are composed of three components: the row (dv) and

column (du) displacements, and the associated correlation coefficient. Figure 1.14 shows an example of

correlation results applied to an image time series acquired in the landslide of Super-Sauze.

Correlation calculation can be performed either in the spatial domain or in the frequency domain. To

provide a spatial distribution of the displacement field, various algorithms can be used according to the

correlation calculation domain (Heid and Kääb, 2012b):

• The Normalized Cross Correlation (NCC) operates in the spatial domain. This algorithm is mostly

used because it is not sensitive to high image intensities, and images with strong local anomalies

can be better compared (Heid and Kääb, 2012b; Pham et al., 2014). As the correlation coefficient

is normalized, the results from several image correlations can also be compared. This coefficient

ranges from 0 (anti-correlation) to 1 (perfect match) and it is defined according to Hild and Roux

(2012) by Equation (1.3):

NCC =
∑

n,p(Cwm(um,vm)−Cwm)(Cws(um +du,vm +dv)−Cwm)√
∑

n,p(Cwm(um,vm)−Cwm)2
√

∑
n,p(Cws(um +du,vm +dv)−Cws)2

(1.3)
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Figure 1.13: Image matching techniques. (a) Tracking features flowchart from Gance et al. (2014). The automated feature
detection uses the properties of the target such as the object size, its geometry and its luminance. (b) Image correlation principle.

As mentioned, Cwm and Cws are the spatial average of the respective correlation windows.

The calculation time of this algorithm can be rather large because the convolution operation is

performed in the spatial domain (Bickel et al., 2018). In addition, the algorithm performs badly

when the transformation of a point from the master image to the slave image is a rotation (Travelletti

et al., 2012; Bickel et al., 2018).

• The Cross Correlation (CC) operates in the frequency domain and it provides the best spatial

representation, with a low noise level compared to the NCC algorithm (Bickel et al., 2018). It is

defined as Equation (1.4):

CC = IFFT (Fm(um,vm)G∗s (um,vm)) (1.4)

where Fm and Gs are the Fast Fourier Transform (FFT) of the correlation windows of the master

and the slave images, respectively. IFFT denotes the Inverse Fast Fourier Transform.

As the algorithm is not normalized, the highest intensity changes can not be ignored and can cause

severe dis-matches. There are several ways to normalize in the Fourier domain and one of the most

common methods is the one that considers only the phase information.

The Phase Correlation (PC) allows to normalize the CC algorithm (Brown, 1992). It is defined by
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Figure 1.14: Example of correlation results applied to the image time series acquired in the landslide of Super-Sauze. Displace-
ment rates in pixel/day. From Travelletti et al. (2012).

Figure 1.15: Principle of normalized hierarchical image correlation from Travelletti (2011).

Equation (1.5):

PC = IFFT (
Fm(um,vm)G∗s (um,vm)

|Fm(um,vm)G∗s (um,vm)|
) (1.5)

The maximum of the phase difference enables us to compute the displacement (Heid and Kääb,

2012b; Bickel et al., 2018).

The choice of the size of the correlation window is an important parameter that directly influences the

signal-to-noise ratio, the precision as well as the accuracy of the displacements (Delacourt et al., 2007;

Travelletti et al., 2012). The larger the correlation window, the better the signal-to-noise ratio and accuracy,

but the lower the accuracy. To cope with its influence, sub-pixel techniques can be used. They are

considered if the displacements to be detected are smaller than the size of the image pixel. In return,

these methods are very sensitive to noise and image quality. These techniques have been developed and

applied in different areas such as the analysis of co-seismic deformation (Leprince et al., 2007), of glacier

motion (Heid and Kääb, 2012a) and of landslide motion (Travelletti et al., 2012; Delacourt et al., 2004;

Stumpf et al., 2017). In case of a sub-pixel hierarchical approach, the physical size of the correlation

window varies as well as the size of the window to be explored, commonly named the search window

(Figure 1.15). The first steps are performed at low resolution and then at high resolution. The pixel with

the highest correlation peak at low resolution becomes the center of the area of interest for the next steps

(Travelletti et al., 2012).
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Several comparisons were made on the different methods of correlation in order to determine which

algorithm was the most robust, the fastest or the most accurate (Heid and Kääb, 2012b; Rosu et al., 2015;

Bickel et al., 2018). It was found that, correlation operators in the frequency domain give very successful

results when the correlation window is large (bigger than 32x32 pixels) (Leprince et al., 2007). These

approaches are embedded in several libraries such as COSI Corr (Leprince et al., 2007)1, MEDICIS 2

(Berthier et al., 2005) or MicMac 3 (Stumpf et al., 2014, 2017) or other software like DPIVSoft (Meunier

and Leweke, 2003)4.

3.2.3 Image post-processing and analysis

Displacements obtained from image correlation provide access to qualitative information that enables

the mapping of areas affected by movement, but also quantitative information on displacements, surface

velocities and the deformation involved. Several image matching algorithms exist to improve the precision

and accuracy of the displacements and thus increase the signal-to-noise ratio, based in particular on the

redundancy of information (Stumpf et al., 2017). However, post-processing is often integrated into the

overall process in order to eliminate false detection and decorrelation due to large surface changes. The

most frequent filters include masks based on the correlation coefficient, filters related to the direction and

magnitude of the displacement velocities (Stumpf et al., 2014) and low-pass filters to remove outliers

(Heid and Kääb, 2012a). From there, the displacements can be used for mechanical analyses (Helmstetter

et al., 2004), to evaluate the dimensions of the object (Booth et al., 2013) or to estimate time of failure

(Voight, 1989).

In the case where the images come from the projection of DEMs, other types of information can be

extracted from the time series of DEMs. Indeed, the comparison of two point clouds constructed at

two different dates, allows us to highlight geomorphological changes, areas of accumulation and loss of

materials and in general, stable and unstable areas. The comparison of two point clouds can be carried

out according to several algorithms such as the DEM-to-DEM computation (Schürch et al., 2011), the

point-to-mesh distance (Girardeau-Montaut et al., 2005; Lague et al., 2013; Stumpf et al., 2015) and the

point-to-point distance (Girardeau-Montaut et al., 2005; Lague et al., 2013). Volume measurements can

also be performed in order to estimate the volume of accumulated or removed masses (Hapke, 2005;

Ventura et al., 2011)

1COSI Corr: non-commercial software developed for measuring ground deformation using optical satellite and aerial images.
Correlations are performed in the frequency domain.

2MEDICIS: Moyen d’Evaluation de Décalages entre Images, Commun à l’Imagerie Spatiale. This correlator is developed by
CNES (Centre National d’Etudes Spatiales, France). Correlations are process either in the spatial or in the frequency domain.

3MicMac: Multi Images Correspondances par Méthodes Automatiques de Corrélation. It is a free open-source software,
implemented at IGN (Institut National de l’Information Géographique et Forestière, France). Correlations are processed in the
spatial domain.

4DPIVSoft: software for image correlation. It based on the Particle Image Velocity (PIV) algorithms (Keane and Adrian,
1992; Aryal et al., 2012)
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Figure 1.16: Location of the four studies sites presented in this work. Photographs are taken from the fixed camera.

4 Presentation of the use cases: technologies and data

During this work, several landslides located in the French Alps were studied using time-lapse photography

(Figure 1.16): the Chambon landslide, the Pas de l’Ours landslide (also called Aiguilles landslide), the

Cliets rockslide and the Montgombert landslide. The dimensions of the slope, the mode of deformation

and the surface velocity differ from one to another. The dominant deformation process is sliding and

the measured average velocity is either slow or moderate (Table 1.2). For each site, optical single-reflex

cameras of high-resolution have been permanently installed. The frequency of the acquisitions varies

from one site to another since it has been adjusted according to the illumination of the sun, the expected

displacement rate and the experience gained (Table 1.3). In addition, two cameras were set up in the

field at the Montgombert landslide in order to test and analyse the influence of the line of sight over the

measurement and to develop a 3D algorithm to reconstruct the displacements in a world coordinate system

directly from the correlation results (see Chapter 3).
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Table 1.2: Summary of the study sites characteristics presented in these works. Location corresponds to the French departments The average velocity refers to the classification
proposed by Cruden and Varnes (1996).

Landslide name Chambon Pas de l’Ours Les Cliets Montgombert

Location Isère Hautes-Alpes Savoie Savoie

Process Rotational landslide Complex landslide Toppling rockslide Complex landslide

Lithology Sedimentary rocks from the
Lias

Lustrous clay-shales of lower
Cretaceous and unconsoli-
dated moraine formations

Micachists and shale screes Micachists

Average velocity dur-
ing the acquisition slow motion moderate motion moderate motion slow motion

Dimension of the area
of interest (length x
width)

170 m x 92 m 500 m x 500 m 72 m x 80 m 150 m x 115 m

Complementary instru-
mentation

Terrestrial LiDAR (non-
permanent)

Total station, Terrestrial Li-
DAR (permanent), GBInSAR Total station, Extensometer

Total station, Terrestrial Li-
DAR (non-permanent), Ex-
tensometer

Context of study Post event monitoring Pre/Post-failure monitoring Pre/Post-failure monitoring Pre/Post-failure monitoring
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Table 1.3: Acquisitions characteristics.

Landslide name Chambon Pas de l’Ours Les Cliets Montgombert

Camera Canon EOS 100D Canon EOS 100D Canon EOS 2000D Canon EOS 100D
Resolution 18 MPix 18 MPix 24 MPix 18 MPix
Focal length 50 mm 24 mm 24 mm 50 mm
Acquisition
frequency 8/day 10/day 8/day 3/day

Distance camera-
object (average) 500 m 320 m 160 m 620 m(left) & 520 m

(right)

4.1 Chambon landslide (Isère, France)

The Chambon landslide (Figure 1.16) is located in the Romanche valley (Isère, France), downhill of a

tunnel allowing the Road RD1091 to cross the valley above the Chambon lake. The landslide involves

sedimentary rocks from the Lias and extends over a length of about 170 m and a width of 92 m. The depth

of rupture surface was estimated by geophysical surveys at 25 m and the volume at about 600.000 m3

Mathy and Lorier (2015). An acceleration of the landslide occurred in July 2015 with displacement in the

range of 60 centimeter per day Laurent et al. (2016); on the 26th of June 2015, mitigation measures with

the purge of the moving mass were realized.

In 2017, in a post-event surveillance context, a digital single-lens reflex camera (Canon 100D) of 18 MPix

connected to a Paratronic LNS datalogger was set up in front of the Chambon landslide (Figure 1.12).

For the period 15 February to 23 May 2017, eight images were acquired per day in JPG file format,

corresponding to a total of 830 images. To be in agreement with the terrestrial laser scanning point clouds

used to validate the displacement rates, the image data set used in this work corresponds to 26 images

acquired at 14h UTC from 9 March to 17 May 2017. During this period, the landslide displacement rate is

in the range of a centimeter per day. Figure 1.17a indicates the footprint of the camera view on the ground.

4.2 Pas de l’Ours landslide (Hautes-Alpes, France)

The Pas de l’Ours landslide is located in the Guil valley (Hautes-Alpes, France). The landslide is about

1 km wide and 2 km long and is overhanging the Guil River. It involves lustrous clay-shales of lower

Cretaceous and unconsolidated moraine formations. The main scarp visible on Figure 1.17b corresponds

to the boundary of a paleo-landslide. In 2014, the landslide started to reactivate with some rockfalls

triggered from the main scarp. In March 2017, acceleration of the central and lower part of the slope

started with velocities up to several tens of centimeter per day. Currently, the landslide motion extends up

to the slope. The depth of the rupture surface is on average 30 m, and the total volume is estimated at

almost 15 Mm3.

To monitor the Pas de l’Ours landslide during its reactivation stage, an acquisition box, similar to

the one used for the Chambon use case, was setup in the field. In order to track fast motion of the slope
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from 8 June to 4 October 2018, 10 images were acquired per day in the Canon native CR2 file format

further converted in JPG file format. The dataset consists of a total of 757 images for this period. The

Figure 1.17: Landslide use cases: (a) The Chambon landslide (Isère, France) with a terrestrial laser scanner derived Digital
Surface Model (DSM) of the slope. (b) The Pas de l’Ours landslide (Hautes-Alpes, France) with an airborne LiDAR-derived
DSM of the slope. (c) The Montgombert landslide with an airborne LiDAR-derived DSM of the slope. (d) The Cliets landslide
with an airborne UAV-derived DSM of the slope. Colored areas corresponds to the footprint of the camera. Two colours are used
for c) the Montgombert landslide since two cameras were set up to provide a stereoscopic model. Red lines indicate limits of the
movement. Blue circle indicates the position of the camera. Black dots are spot elevations.
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Figure 1.17: Landslide use cases: (a) The Chambon landslide (Isère, France) with a terrestrial laser scanner derived Digital
Surface Model (DSM) of the slope. (b) The Pas de l’Ours landslide (Hautes-Alpes, France) with an airborne LiDAR-derived
DSM of the slope. (c) The Montgombert landslide with an airborne LiDAR-derived DSM of the slope. (d) The Cliets landslide
with an airborne UAV-derived DSM of the slope. Colored areas corresponds to the footprint of the camera. Two colours are used
for c) the Montgombert landslide since two cameras were set up to provide a stereoscopic model. Red lines indicate limits of the
movement. Blue circle indicates the position of the camera. Black dots are spot elevations. (cont.)

dataset acquired for the period 8 June to 18 July 2018 (22 images according to the selection criteria), is

presented in this work to be in agreement with the ancillary dataset (tacheometer-derived displacement

rates on benchmarks) used to assess the results.

4.3 Montgombert landslide (Savoie, France)

The Mongombert landslide is located in the Arly Valley (Savoie, France) on the right bank of the Arly

River. The bedrock is composed of micaschists and shale screes make up the unconsolidated parts. Since

2016 several mudflows and blockfalls that can reach the departmental road are observed. The observations

suggest that the landslide is strongly impacted by weather conditions especially after a event occurred

following heavy rains in January 2018 (Mathy and Lorier, 2018). The landslide continues to be monitored

by automatic theodolite, extensometer and time lapse photographs. The moving zone is 150 m long and

115 m wide but continues to spread and several geomorphological markers such as cracks and scarps are

visible further up the slope (see Chapter 3).

Two cameras were installed as part of a development to reconstruct a 3D displacement field from a

stereoscopic system (Figure 1.17c). The conditions required to set up such a system (ratio of the distance
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between the two cameras to the camera-object distance) could be verified. The two acquisition systems

consist of an 18 MPix EOS 100D camera with a focal length of 50mm, connected to a Paratronics data

logger as used previously. Images are acquired every 3 hours. Such a short frequency is due to the fact

that the camera is oriented East/Southeast and that being installed in a very narrow valley, the brightness

drops rapidly.

4.4 Les Cliets rockslide (Savoie, France)

The Cliets rockslide is located in the Arly Valley (Savoie, France) upstream of a departmental road which

goes through the 60 meter long tunnel of the Cliets (Figure 1.17d) (downstream of the Montgombert

landslide on the right bank of the Arly River). Since a long time, this area undergoes frequent damages

(Kasperski, 2008; Pothérat, 2005; Mathy and Lorier, 2013) and in February 2019, 10.000 m3 of mass

fell (Lorier et al., 2019). The rockslide is mainly composed of mica schist which stemmed from an old

metamorphic folded detritic sedimentary series. This implies that the rock mass may be generally subject

to toppling (see Section Chapter 4). The area extends over a length of about 72 m and a width of 80 m.

A camera Canon EOS 2000 of 24 MPix was used to acquired images at a frequency of 8 images per day.

The camera was set up in the field when significant changes in ground velocity have been measured by

in-situ sensors. The focal length used in this case is 24 mm. The camera system was installed on 22

December 2018 and is still operational. Because of mist, rain and snowfall, only a few images were

available during the pre-failure stage. From 22 December 2018 to 9 February 2019, date on which the

failure occurs, only 17 photographs were able to be used. Following the event of February 2019, several

topographic targets tracked by automatic theodolite are no longer available mainly because they have been

swept away by unstable masses. The contribution of time-lapse photogrammetry is therefore important in

these cases as a support and tool for post-event monitoring.

Conclusions

Time-lapse photography is a tool that is starting to be used operationally as a result of various promising

photogrammetric campaigns. It has emerged as a complementary measure to classical total station

monitoring thanks to the extent of the spatial coverage and to its low cost price.

Working on the analysis of photographs and the understanding of gravitational movements called for the

resolution of several questions during this thesis, on how to acquire the images, process them and extract

the maximum amount of information from them. These scientific barriers involve several areas such as

the management of data from its acquisition to its conservation and the scientific tools for data processing.

They can be summarized into several major and underlying issues:

• What is the influence of the instrument setting and parameterization on the results?
The acquisition parameters involve the acquisition frequency, the camera line of sight incidence

angle, as well as the characteristics of the camera (focal length, aperture...), but also the format

42



Chapter 1 Remote sensing methods for the monitoring of gravitational instabilities

in which the image is recorded (raw or compressed format) and the format in which the image is

processed (multi-band or single band). These parameters are important since they are set as soon

as the camera is installed and subsequently condition the spatial coverage (i.e., the spatial limits

of the interpretation) and the resolution of the measurements. How to control and anticipate these

parameters? How to calibrate a camera or a couple of cameras once it is installed? In addition, what

is the advantage of one acquisition approach over the other? Is the accuracy improved with the

stereoscopic approach compared to the monoscopic approach?

• What is the influence of the processing parameters on the results?
A time series of images can be processed in different correlation combinations, which can be

sequential or relative to a unique reference image. These different correlation strategies are mostly

derived from the processing of optical satellite images. But are the correlation methods of optical

satellite images applicable to terrestrial images? Do we get the same results or do we lose some

information with one technique or another? How can the signal-to-noise ratio be increased? Is the

method of co-registration influenced by the percentage of stable pixels?

• What are the primary and secondary products that can be generated?
Depending on the acquisition approaches and parameters, several products can be calculated such

as maps of metric displacement fields or deformation fields. What types of products can be derived

from the different acquisition/processing combinations? What is the accuracy of these products?

• How far can we process data automatically?
Automating the processing as much as possible in order to avoid on-site and numerical interventions

by an operator is one of the most complex challenges in our monitoring problem, which requires

taking into account the storage conditions of the raw data as well as that of the results, their format

and the deliverables/products in an operational context. Many scenarios need to be taken into

account in order to provide the user with the best choice of parameters and to allow them to adjust

them optimally. So... how far can we automate?

Throughout this thesis, we have tried to answer each of these questions, whether for the monoscopic

(Chapter 2) or stereoscopic (Chapter 3) approach. The treatment chains and the influence of the different

parameters are discussed and the products resulting from these treatments are presented. Chapter 4 is a

foretaste of the limits of the optical method in the case of pre-event monitoring but nevertheless opens up

an interesting perspective in the field of visual support when no other type of information is available.

The last question concerning the automation of processing is dealt with implicitly but will be summarised

in Chapter 5.
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Chapter 2

Image time series analysis for a monoscopic
model

This chapter introduces a generic pipeline proposed for the processing of long image time series

acquired by Single Lens Reflex (SLR) cameras. The system associates modules for (1) the selection

of the image sequences, (2) the registration of the image stacks and the correction of the camera

movements, and (3) the calculation of the terrain motion using change detection approaches.

The system is based on the open-source photogrammetric library MicMac and tailored for the

processing of monoscopic images. A sensitivity analysis is conducted to design and test the image

processing for two use cases; the Chambon landslide (Isère, France) characterized by slow motion

(< 10 cm.day−1), and the Pas de l’Ours landslide (Hautes-Alpes, France) characterized by moderate

motion (> 50 cm.day−1). Four categories of parameters are tested: the image modality, the image

matching parameters, the size of the stable area used in the co-registration stage, and the strategy

used to combine the images in the time series. The application of the pipeline on the two use cases

provides information about the kinematics and the spatial behavior of the landslides.

This chapter is based on the article: Desrues M, Malet JP, Brenguier O, Point J, Stumpf A, Lorier L

(2019b) TSM—Tracing Surface Motion: A Generic Toolbox for Analyzing Ground-Based Image Time

Series of Slope Deformation. Remote Sensing 11(19):218 9 (https://doi.org/10.3390/rs11192189).

Comments: Some additional analyses are inserted in this chapter to keep some continuity in the reading of

the manuscript.
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1 Introduction

Terrain motion monitoring systems are currently integrating technologies to provide data on the space

and time distribution of the displacement to complement the classical point-based measurements based

on geodetic techniques (Peyret et al., 2008). Among them, multispectral imagery acquired from satellite

(Marek et al., 2015), airborne (Nichol and Wong, 2007) or terrestrial (Niethammer et al., 2012) platforms

can provide distributed information on the terrain motion. These techniques are useful in landslide research

for terrain motion detection, mapping and monitoring (Gance et al., 2014). Terrestrial optical imagery

is however seldom used for monitoring purposes, though high versatility and high spatial resolution of

information can be accessed. With the development of relatively low-cost acquisition systems (very-high

resolution consumer grade camera, 20 MPix digitizers), it becomes easier to generate long- and high-

frequency image time series for documenting complex surface motion, and thus discovering specific and

transient patterns such as the ones observed on landslides, ice/rock glaciers or volcanoes (Travelletti et al.,

2012; Fallourd et al., 2010; Benoit et al., 2015; Hibert et al., 2015; Kromer et al., 2019). Simple perma-

nent installations requiring only solar panels and a stable anchoring can be easily setup (Gance et al., 2014).

Geomorphological processes typically feature complex 3D deformation patterns and the displaced volumes

can vary by several orders of magnitudes. Surface displacement rates and volumes of the unstable mass

are first-order parameters to estimate dynamic properties (such as the rheology of the media), to quantify

relationships with forcing conditions (meteorology, hydrology, earthquake) and identify thresholds for

hazard assessment and warning criteria (van Asch et al., 2007). The most commonly used techniques for

surface motion measurements are in-situ point-based sensors such as GNSS, inclinometers, extensometers

and crack-meters (Malet et al., 2002; Calcaterra et al., 2012), while the most frequently used in-situ remote

sensing techniques comprise total station measurements, ground-based interferometric synthetic aperture

radar (GB-InSAR) and Terrestrial Laser Scanning (TLS) surveys (Travelletti et al., 2008; Prokop and

Panholzer, 2009; Jaboyedoff et al., 2012). Several studies also demonstrated the possibility to estimate

horizontal displacement measurements from remote platforms such as optical airborne/satellite images

(Leprince et al., 2007; Debella-Gilo and Kääb, 2012) and more recently from SAR amplitude images using

offset-tracking techniques (Raucoules et al., 2013). Currently, those measurements are still of limited use

for the integration in long-term operational monitoring experiments because of coarse image resolutions

(resulting in low accuracies for detecting small displacement) or long-time intervals (mostly related to

meteorological conditions, and the absence of acquisitions in the nights) between subsequent observations.

For many geomorphological processes, and more specifically for landslides, acquiring ground- based

image time series at high temporal frequency (typically 1 h) is a relevant source of information. Terrestrial

optical photographs (mono-view, pair-views or multiple views) allow identifying the movement pattern

(in either 2D or 3D (Travelletti et al., 2012)), the reconstruction of the surface topography (Kaufmann,

2012; Stumpf et al., 2014) or the identification of discontinuities in the unstable mass (Sturzenegger and

Stead, 2009). Recently, Gance et al. (2014), Travelletti et al. (2012), Roncella et al. (2014) and Mishra
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et al. (2014) demonstrated that a fixed installation of a camera allows us to obtain time series of the

displacement fields from multiple pairwise image correlation. The obtained displacement fields are able to

reveal the spatial and temporal patterns of acceleration and mass accumulation, and thereby help to refine

conceptual and numerical models. With only one camera, the approach is not fully 3D and still depends on

the availability of frequently updated topographic surface models but could be extended with stereo- and

multi-view camera setups. Travelletti et al. (2012) analyzed time series of incremental displacements by

cumulating the displacement over the complete epoch at the pixel scale. Such approach is valid for small

time series but is not very efficient for detecting changes in longer time series (e.g., 30 time steps) for

which fully automated processing and adapted (to different study cases) correlation approaches are needed.

Ground-based camera-derived terrain motion techniques are also applied for river sediment discharge

analysis (Bradley et al., 2002; Stumpf et al., 2016) where long-time series of video frames are processed

using Particle Image Velocimetry (PIV) approach (Adrian, 1991). In these cases, the fluid flow is free

surface and is therefore part of a non-Newtonian approach. This approach cannot be applied to complex

movements characterized by several rheologies. The techniques used in the laboratory are the closest to

our cases. However, the resulting conditions and assumptions (near fields, controlled illuminations, known

magnitude and direction of expected deformation) cannot be applied to a geomorphological use case.

Further, most geomorphological examples currently published were tailored for very specific use case.

Currently no generic pipeline adaptable to any site configuration (slope dimensions, slope deformation

rates, distance between the slope and the camera) and any camera type (sensor size, focal length) exists

(Pham et al., 2014; Marsy et al., 2018).

Our works target the presentation of the "TSM—Tracing Surface Motion" processing toolbox. TSM

is a generic and fully-automated toolbox, built on previouswork (Gance et al., 2014; Travelletti et al.,

2012; Stumpf et al., 2016, 2018), for the processing of ground-based optical image time series integrating

several modules from the pre-processing of the raw images to the calculation of displacement fields,

and the identification of slope units of similar kinematics. The method is applied and evaluated on two

landslide use cases: a very slow movement (Chambon landslide; Romanche valley, France) and a moderate

movement (Pas de l’Ours landslide; Guil valley, France) based on rates published by Cruden and Varnes

(1996). The sensitivity of the method to the processing parameters and to the strategy used to combine the

images (‘leap frog’, Common Master approach) are assessed. The potential of the system to detect the

motion pattern of the two landslides compared to reference measurements (laser scanning point clouds

and on-site GNSS acquisitions) is discussed.

First, we present the methodology applied to process large image time series (30 images) (Section

2) from the estimation of the camera parameters to the extraction of relevant information in time. Second,

the possible strategies used for processing large datasets are discussed (Section 3). Third, the datasets

acquired on the use cases are presented (Section 4). Fourth, the sensitivity of the method is assessed

(Section 5). Finally, the results obtained on large time series are discussed (Section 6 and Section 7).
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2 Methodology

The methodology to calculate deformation fields (both in the image plane geometry and in the ground

geometry) is presented in Figure 2.1. The system comprises six modules for (1) sensor orientation, (2)

image selection, (3) correction of sensor movement, (4) quantification of ground motion using cross-

correlation technique, (5) detection of meaningful motion patterns, and (6) geometrical correction of the

displacement fields. The input data consists of image time series acquired from a monoscopic camera

(JPG compressed format encoded in 8-bits) with focal lengths in the range 24 to 50 mm. The radial lens

distortion is not compensated for this ground-based application as it is assumed that the projection errors

are negligible with the used focal lengths (24 to 50 mm) because the errors induced by the radial lens

distortion are lower than the image picking precision (Gance et al., 2014; Stumpf et al., 2016); section

2.1. Several approaches for image combination (e.g., transformation of the RAW images, sequential vs.

redundant sequential correlations, forward vs. backward correlation) are integrated in the processing and

are described in detail in section 3. The registration and matching modules are based on the open source

photogrammetric library MicMac (Pierrot-Deseilligny and Paparoditis, 2006).

2.1 Module 1: Orientation estimation

This module aims at calculating the external orientation of the camera installed in the field from a series

of Ground Control Points (GCP). The camera calibration is essential to get metric information for three-

dimensional applications. To obtain precise measures, it’s necessary to take into account the camera

model used. The most common are the spherical model (Feng et al., 2012; Aghayari et al., 2017) and

the pinhole model (Figure 2.2). As the camera lens of a spherical model introduced high distortion, it’s

more easy to deal with the pinhole model which is commonly used. Here, we propose two methods for

the orientation estimation in the framework of a pinhole model.

2.1.1 Field calibration without a priori

As explained previously, internal parameters are not introduced currently in the processing. External

parameters are deduced from the collinearity equation’s, Equation (2.1):
u = u0− fu

m11 (X−Xcam)+m12 (Y −Ycam)+m13 (Z−Zcam)

m31 (X−Xcam)+m32 (Y −Ycam)+m33 (Z−Zcam)

v = v0− fv
m21 (X−Xcam)+m22 (Y −Ycam)+m23 (Z−Zcam)

m31 (X−Xcam)+m32 (Y −Ycam)+m33 (Z−Zcam)

, (2.1)

where (u,v) are the image-based coordinates, (X ,Y,Z) are the world 3-D coordinates (X is the East

direction, Y is the North direction and Z is the elevation), (Xcam,Ycam,Zcam) is the position of the camera in

the world coordinate system, ( fu, fv) is the effective focal length and (m11,m12, . . .m33) is the orientation

matrix which depends on the three Euler rotation angles (Heikkila and Silven, 1997; Kraus and Waldhäusl,
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Figure 2.1: Methodology of the Tracing Surface Motion (TSM) processing toolbox from data collection to analysis of motion
time series.
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Figure 2.2: Definition of the three coordinate systems implied in the pinhole model.

1994). Those parameters are computed by applying a Direct Linear Transformation (DLT) on the equations

(Abdel-Aziz et al., 1971). We assume that the position of the central point (u0,v0) is the centre of the

image (Travelletti et al., 2012) and that the effective focal length and the camera position are known. The

error measures are defined with the standard deviation and the Root Mean Square Error (RMSExy) defined

in Equations (2.2–2.3):

RMSExy =

√
1
n
×∑∆x2 +∆y2, (2.2){

∆xi = xpro j,i− xpicking,i

∆yi = ypro j,i− ypicking,i
, (2.3)

where (xpro j,i,ypro j,i) are the coordinates of the ith re-projected GCP in the image-based coordinate system,

(xpicking,i,ypicking,i) are the coordinates of the ith picked GCP in the image-based coordinate, and n is the

number of GCPs.

Because the estimated parameters are dependent on each other, there is no information about the external

parameters and the measure of the camera position is biased.

2.1.2 Field calibration with a priori

The calibration with a priori is used to estimate each parameter independently of each other. As introduced

previously, the camera orientation is modelled with internal parameters (to simulate the camera optics)

and external parameters (to determine the transformation between the image and the world coordinate

systems). The relation between both coordinate systems can be expressed by Equation (2.4). Let’s

consider P in the image plane and Q the associated point in 3 D as drawn in Figure 2.2:

sP = A
[
R|t

]
Q (2.4)

where A is the intrinsic matrix commonly called the matrix calibration,
[
R|t

]
is the extrinsic matrix

composed of a rotational matrix R and a translation matrix t, and s is an arbitrary scaling factor which is
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independent of the camera model. The camera parameters are described with more details in the annex

A. We use the Python toolbox OpenCV©(Zhang, 2000; Bradski and Kaehler, 2008; Wang et al., 2010)

to run the calibration by integrating a priori on the intrinsic and extrinsic parameters. OpenCV©is an

Open source Computer Vision library written in C-language which is provides several image processing

algorithms and computer vision. Calibration algorithm is based on Zhang’s calibration method which

assumed a two-dimensional template as study object. Camera parameters are estimated by the DLT

method as previously done. Using these parameters, the distortion coefficients are then estimated by

minimizing the distances between the image points and the reprojection points. To constrain the algorithm

to determine the parameters that best fit the position of the camera relative to its true position, the camera

matrix, the distortion coefficients and the rotation and translation matrices are inverted by applying a

differential evolution algorithm (Storn and Price, 1997).

2.2 Module 2: Image selection

Analyzing long image time series (< 30 images) of terrain motion poses the problem of creating sub-

sequences of images of equal-level quality. The images may be altered by the presence of snow, rain,

mist or shadow. As the selection of images can be very time-consuming, this module allows identifying

automatically the best images according to thresholds in radiometry (red band R, green band, G, and blue

band B). The sequential steps of the module are (1) the selection of a reference image referred to as the

master image, not altered by meteorological or illumination conditions, (2) the calculation of the statistical

properties (standard deviation, median and skew of each band of the master and slave images), and (3)

the creation of a new image sequence after comparison of the statistical properties of the images. Image

selection is, by default, applied for the full image size, but options for masking irrelevant areas (sky,

vegetation, water bodies) can be applied. Masks are based on the principle that each area gets is own

radiometric signature and can be extracted from the three components.

2.3 Module 3: Correction of sensor movement

The module aims at correcting the image time series from camera movements. For many on-site ap-

plications, the cameras are affected by significant movements induced by temperature, wind or terrain

motion. This induces non-negligible systematic offsets between two images of the time series. To correct

sensor movement, techniques based on characteristic points are used, such as the Harris detection method

(Gance et al., 2014), the feature detection method (Zitova and Flusser, 2003) and the SIFT method

(Lowe, 2004). However, the number of points taken into account in the transformation calculation and

the distribution of these points in the image vary from one image pair to another. This has a direct

impact on the accuracy of co-registration of the time series. To overcome these limitations, the module

implements a statistical co-registration initially tailored for satellite imagery (Stumpf et al., 2018). The

approach consists in correlating two images in order to construct disparity grids ∆XDISP and ∆YDISP and

a Correlation Coefficient (C) grid (Figure 2.3). The systematic offsets (∆XDISP, ∆YDISP) are modelled

considering two planes ∆Xmodel and ∆Ymodel . As the movement of the camera results mostly from a
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Figure 2.3: Details of the TSM processing toolbox for the Modules 3 to 6.
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translation and a rotation, the two planes are modelled with an affine transformation, Equation (2.5):{
∆xmodel,i = a+b∗ xDISP,i + c∗ yDISP,i

∆ymodel,i = a′+b′ ∗ xDISP,i + c′ ∗ yDISP,i
, (2.5)

where ∆xmodel,i and ∆ymodel,i represent the modelled offsets of the ith pixel and xDISP,i,yDISP,i are the raw

disparities of the ith pixel. The parameters a,b,c,a′,b′,c, are estimated to reduce residuals between both

offsets using an Iteratively Re-weighted Least Square (IRLS) (Stumpf et al., 2018). The corrected grids

are obtained by subtracting the modelled planes to the disparity grids with Equation (2.6):{
∆XCORRECT ED =∆XDISP−∆XMODEL

∆YCORRECT ED =∆YDISP−∆YMODEL
, (2.6)

where ∆XCORRECT ED and ∆YCORRECT ED are the corrected disparity maps. To disregard the areas in

the images where real terrain motion needs to be quantified, the systematic offsets are calculated on

sub-portions of the images considered as stable. A mask, defined by the user, is applied for selecting only

the relevant sub portion of the images.

2.4 Module 4: Quantification of terrain motion using matching techniques

The module aims at quantifying changes between two acquisitions through the calculation of disparity

vectors using cross-correlation (Hild and Roux, 2012). The disparity vectors are first expressed in pixels as

they are determined in the image plane. Three grids are computed with the open source photogrammetric

library MicMac corresponding to the relative displacement in line, the relative displacement in row and

the correlation coefficient. The image correlation algorithm uses a multi-scale and hierarchical approach

based on Normalized Cross-Correlation (NCC) and a non-linear cost function. A regularization parameter

is introduced in order to avoid matching ambiguities and to have the ability to process small matching

windows (Pierrot-Deseilligny and Paparoditis, 2006; Rosu et al., 2015; Rupnik et al., 2017). The cost

function to minimize is defined by Equation (2.7):

Eα = ∑(1−Corr)+α×F, (2.7)

where (1−Corr) is the similarity measure with Corr being the NCC score; α being a weighting parameter

and F being a positive function representing the regularization term. The matching is computed only in

the spatial domain (Rosu et al., 2015). The parameters used in the module are presented in section 5.

2.5 Module 5: Filtering and detection of meaningful motion patterns

The module aims at filtering ambient noise induced by changes in illumination (affecting the reflectance

of the pixel) or changes in soil surface state (humidity, large displacement between two images) creating

loss of coherence. The objective is to filter the displacement fields of Module 4 using the criteria proposed

by Stumpf et al. (2014) in order to highlight meaningful motion patterns. Filtering is applied jointly on
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the correlation coefficient C (see section 5.1.2) and on the direction and norm of the disparity vectors.

Indeed, disparity vectors which are believed inconsistent with a gravitational movement (e.g., for instance

disparity vector pointing towards the top of the terrain) are removed. Agreements between the direction of

the disparity vectors and the aspect of the terrain slope are determined. The values of terrain direction

angles are adapted for each use case.

2.6 Module 6: Geometrical correction of the displacement fields

This module aims at converting the relative displacement fields (e.g., in pixels) in absolute displacement

fields (e.g., in a projected geographic coordinate system). The projection from the relative coordinate sys-

tem in the image geometry (∆u, ∆v) to the absolute coordinate system in terrain geometry (∆X ,∆Y,∆Z)

is based on the method proposed by Travelletti et al. (2012) (Figure 2.2). It consists in (1) calculating the

line-of-sight of the portion of the terrain visible from the camera position using a high-resolution Digital

Surface Model (DSM) (Čučković, 2016), (2) performing a back-projection of the DSM in the image plane

according to Equation (2.1) (Corripio, 2004), (3) interpolating the projected DSM coordinates in the

image plane, and (4) re-projecting the displacement fields in the geographic coordinate system.

3 Combination strategies for processing large image datasets

Several combinations of images are possible to process large time series (Marsy et al., 2018; Pham, 2015).

TSM implements three approaches (Figure 2.4) to be flexible to any type of use cases. The results are

compared and discussed in section 5.1.4:

• (1) the Common Master Correlation method (CMC) consists in forming all pairs of images from a

common master image (Pham et al., 2014) (Figure 2.4a);

• (2) the Variable Sequential Correlation method (VSC) consists in correlating the images sequentially

along the time series (Figure 2.4b). The correlations are thus performed for each interval [I, I +n]

with the incremental parameter n being variable. In the case of n being fixed (n = 1), this method is

known in the literature as “leap frog”;

• (3) the Redundant Variable Sequential Correlation method (RVSC), which consists in correlating p

images at I with p other images at I +n, with the incremental parameter n not being fixed. In total,

p2 correlations are performed for the forward matching (Figure 2.4c). The average displacements

are then calculated. This approach allows obtaining redundant information (Stumpf et al., 2017)

to increase the Signal-to-Noise ratio and improving the detection of meaningful surface motion.

This technique builds on the Multi-Pairwise Correlation method (MPIC) proposed by (Stumpf

et al., 2018) for processing time series of satellite imagery. Correlations can be performed for each

interval [I, I +n] in forward and backward mode (Figure 2.4d).
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Figure 2.4: Combination strategies for processing large image dataset: (a) Common Master Correlation method (CMC), (b)
Variable Sequential Correlation Method (VSC), (c) Redundant Variable Sequential Correlation Method (RVSC) Each gray
square represents an image acquired at day t. h1, h2 and h3 corresponds to images acquired at hour h. The combination
Forward-Backward, (d), is illustrated for the VSC method but can be applied to the other two combinations.

4 Application to use cases: the Chambon and the Pas de l’Ours landslides

TSM is designed as an end-to-end toolbox and its performance in terms of detection of terrain motion is

evaluated on two image time series acquired on two unstable slopes characterized by slow motion (Cham-

bon use case) and moderate motion (Pas de l’Ours use case) and by different viewing geometries. The two

study sites are presented in Chapter 1. For the two use cases, the cameras are placed horizontally in front

of the slope at distances (in the line of sight) between 440 m and 640 m for the Chambon landslide and

between 80 m and 560 m for the Pas de l’Ours landslide. The ground pixel sizes vary from 12.10−2 m2 to

31.10−2 m2 for the Chambon landslide and from 2.10−2 m2 to 18.10−2 m2 for the Pas de l’Ours landslide.

The image acquisition frequency is variable and designed according to the landslide velocity. The choice

of the focal length depends on the requested ground pixel size taking into account that focal lengths below

24 mm induce high distortion if the order of magnitude of the surface displacements is greater than all the

errors related to the camera. To estimate the sensor orientation, six GCPs are available for the Chambon

use case, and nine GCPs are available for the Pas de l’Ours use case. The GCPs are picked manually in

an image from the fixed camera. The picking accuracy is about 2 pixels for the Chambon and 5 pixels

for Pas de l’Ours. The standard deviations are 0.4 pixels for the Chambon and 5.6 pixels for the Pas de

l’Ours use cases, while RMSExy are respectively 1.4 pixels and 10.0 pixels. This difference is explained

by the picking accuracy and the distribution of GCPs in the images of the two use cases.
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The ISO sensitivity and the aperture opening are fixed at 100 and 5.6 respectively, and are kept constant

for all acquisitions.

5 Sensitivity analysis

The sensitivity of TSM to several processing parameters is evaluated. Among the internal parameters, the

influences of the image modalities (section 5.1.1), of the image matching parameters (section 5.1.2), of

the size of the stable part used for the co-registration (section 5.1.3) and of the influence of the correlation

technique (section 5.1.4) are analyzed on both datasets. For external parameters, the influences of the

DEM accuracy as well as the point picking accuracy are analyzed on a third dataset.

5.1 Role of the internal parameters

5.1.1 Sensitivity to Image Modalities

Sensitivity to the image modality (grayscale image, brightness image, average of p images, texture-derived

image) used as input to the image matching is evaluated:

1. the "grayscale image G*" modality corresponds to a neo-band derived using an averaging of the

three initial RGB bands with a weighting equal to 1;

2. the "brightness image B*" modality corresponds to the transformation of the RGB images using

Craig’s formula (Pratt, 2013): I = 0.30×R+0.59×G+0.11×B where I is the brightness image

and R, G and B are the three bands (Fallourd et al., 2010; Pham et al., 2014);

3. the "average of p images A*" modality corresponds to a stack of p = 3 images used to reduce

radiometric noise;

4. the "texture-derived image T*" corresponds to a Sobel filter applied to the grayscale converted images

using a 3× 3 convolution matrix (Chambon, 2003; Travelletti et al., 2012). The Sobel filter is used to

highlight natural edges and to improve image quality which can be degraded by weather conditions

or illumination (Berthier et al., 2005).

These four modalities can be applied either on the initial RGB image or on the enhanced image. The

radiometric enhancement is expressed by the histogram transformations Ha, Hb and Hc which are applied

in the initial RGB bands: the Ha transformation corresponds to a linear contrast enhancement by stretching

the values from min = 0 to max = 255; the Hb transformation corresponds to a histogram normalization

to adjust the contrast; and the Hc transformation corresponds to the application of a Contrast Limited

Adaptive Histogram Equalization (CLAHE) to improve the local contrast and highlight natural edges.

For each pair of image modality, block matching correlation is carried out with fixed parameters. The

co-registration residuals expressed by the RMSExy for all pixels are calculated (Equation (2.2)). As outliers
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Figure 2.5: Sensitivity of co-registration quality to the image modality expressed by the criteria RMSExy and the criteria
percentage of pixels with C > Cmin at Chambon landslide (a) and Pas de l’Ours landslide (b). G* is the grayscale image modality,
B* is the brightness image modality, A* is the average of p images modality and T* is the textured-image modality. Ha, Hb and
Hc are the histogram transformations applied on the RGB image.

due to matching errors need to be filtered to avoid bias in the co-registration accuracy (Stumpf et al.,

2018), the RMSExy is calculated for a Gaussian distribution filtered from the outliers at a 99% confidence

threshold. The percentage of pixels with a C > Cmin is also calculated. Cmin corresponds to the correlation

threshold: pixels with C < Cmin have no influence on the matching cost function. We estimate the impacts

of the image modality on non-ideal images affected by some illumination changes (Figure 2.5). The

analysis indicates that compared to the first modality G, the modality A decreases the RMSExy parameter

in both cases and increases the percentage of pixels with C > Cmin. The used of enhanced images have

little influence on the two parameters with a difference smaller than 1/10th of a pixel. Same results are

obtained for the modality B*. The modality T* decreases the percentage of pixels with C > Cmin; less

than 10% of the pixels have impacts on the correlation calculation.

5.1.2 Sensitivity to the Image Matching Parameters

The size of the research window (Inc), the size of the correlation window (SzW) (related to the spatial

resolution of the image; (Rosu et al., 2015; Binet and Bollinger, 2005)), the value of the regularization

parameter (Reg) of the cost function (Pierrot-Deseilligny and Paparoditis, 2006) and the value of the

correlation threshold (Cmin) are evaluated. The parameter sub-pixel precision (spp) and the parameter γ

are considered non-sensitive Stumpf et al. (2017) and thus are set at spp = 0.1 pixel (by default the value

equals 0.05 pixel but to reduce the computational costs, it is increased) and at γ = 2.

To analyze the influence of those parameters on the correlation results and to choose the best com-

bination to extract the most relevant and accurate information as possible, several correlations were

carried out on one image pair of both landslides (Figure 2.6). Value fixed arbitrarily at Inc = 20, SzW = 4,

Reg = 0.2, and Cmin = 0.3 are used as reference for the Chambon case and at Inc = 20, SzW = 8,

Reg = 0.6, and Cmin = 0.5 for the Pas de l’Ours case. Three tests were carried out to evaluate the

sensitivity of the window size of the research area at the Chambon landslide. The sizes 4 × 4, 8 × 8 and
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Figure 2.6: Sensitivity of co-registration quality to the correlation parameters expressed by the criteria percentage of pixels with
C > Cmin at (a) the Chambon landslide and (b) the Pas de l’Ours landslide: (left) Inc (size of the research window), (middle left)
SzW (size of the correlation window), (middle right) Cmin (minimum threshold in the correlation coefficients) and (right) Reg
(image matching regularization parameter). The range of tested parameter values is indicated in brackets.

20 × 20 were tested. Seven tests were realized at the Pas de l’Ours landslide where the sizes 8 × 8, 12 ×
12, 16 × 16, 20 × 20, 24 × 24, 32 × 32 and 40 × 40 were tested. This parameter is directly linked to the

detection accuracy (Travelletti et al., 2012).

As shown in Figure 2.6b (left), higher values of Inc increase the percentage of pixels with C > Cmin.

Above Inc = 20, the influence of this parameter diminishes. In Figure 2.6a (left), the parameter has no

influence. Four tests (Chambon) and six tests (Pas de l’Ours) were carried out to define the influence of

the correlation window size (Figure 2.6a,b middle left). The sizes 4 × 4, 6 × 6, 8 × 8, 10 × 10 were

tested for both cases and the sizes 12 × 12 and 14 × 14 were also tested for the Pas de l’Ours case. As the

influence of the correlation window is well-known (Delacourt et al., 2007), the parameter is represented

against the percentage of pixels with C > Cmin. Compared to the Inc parameter, the SzW parameter has a

small influence on the quality of the results. Four (Chambon) and five tests (Pas de l’Ours) were carried

out to quantify the influence of the correlation threshold Cmin (Figure 2.6a, 6b middle right), by varying

the parameter value from 0.3 to 0.8 (Chambon) and from 0.1 to 0.9 with a step of 0.2 (Pas de l’Ours).

Large variations are observed: the higher Cmin is, the smaller the percentage of pixels is. This explains

why most published studies used a value close to 0.5 as a compromise on the quality and the quantity of

the information. For landslide analysis, it is also necessary to take into account the change in intensity

of pixel radiometry that can decrease the correlation coefficient. Finally, five tests were carried out in

both cases to document the sensitivity of the regularization parameter, in the range from 0.2 to 1.0 with a

step of 0.2 (Figure 2.6d). The amount of noise and outliers is decreasing when the parameter increases

because of the spatial smoothing of the displacement field (Rosu et al., 2015) that translates in an increase
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Figure 2.7: Sensitivity of the co-registration quality to the size of the stable area. Only pixels located on stable areas are taken
into account. (a) Offset distribution along the U axis (left) and along the V axis (right) for the Chambon landslide. (b) Offset
distribution along the U axis (left) and along the V axis (right) for the Pas de l’Ours landslide.

of the amount of pixels with information. The parameter has small influence in our case because the C

values are already high.

5.1.3 Sensitivity to the Size of the Stable Area Used for the Co-registration

The size of the stable area used for evaluating the quality of the co-registration is assessed (Figure 2.2).

The size of the area is expressed by the number of pixels in the stable area according to the total number

of pixels in the image. As described in section 3, a mask is generated before the co-registration step in

order to calculate the statistical fitting plane. Figure 2.7 presents the distribution of residuals in the (u,v)

directions for the stable area for a given image pair. The size of the stable area introduced in the statistical

modelling varies in the range 36 % (full stable area) to 6.5 % for the Chambon landslide and from 9 %

(full stable area) to 1 % for the Pas de l’Ours landslide. In both cases, the larger the stable area is, the

more accurate is the quality of the co-registration. However, above 4.5 % of stable area for the Pas de

l’Ours landslide and 9.7 % for the Chambon landslide, the distributions of residuals are similar. As it is

shown in Figure 2.7a, the simultaneous use of stable areas in the near- and far-fields allows us to increase

the standard deviation and the average shift.
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5.1.4 Sensitivity to the Image Combination Strategy

Several image combination strategies (CMC, VSC, and RVSC) are evaluated (Figure 2.4) through three

comparisons: (1) CMC vs. VSC; (2) VSC vs. RVSC; and (3) forward vs. backward correlation. Then, the

stability of the RMSExy parameter (Equation (2.2)) along time, is used as criteria to compare the three

combination strategies along the time series.

Figure 2.8 shows the cumulative displacements of four selected points, located either in the stable

or in the unstable parts, calculated with the VSC method and with the CMC method using two masters

(master 1, master 2) and one slave image. Because the CMC method can be strongly dependent of the

choice of the master image, two masters are selected (no meteorological alterations such as rain, mist

or shadow). For the Chambon use case (Figure 2.8a) characterized by slow motion (displacement rates

less than 1 pix.day−1), both methods give similar results since the accuracy is about a half-pixel. For

the Pas de l’Ours use case (Figure 2.8b) characterized by moderate motion (displacement rates higher

than 10 pix.day−1), both methods give the same results except for Point 2. The displacement calculated

between the master 1 and the slave image differs from those calculated by the VSC method and those

calculated with the master 2 (> 10 pixels). This can be explained by the quality of the measure given by

the correlation coefficient. Actually, C < 0.3 for the displacement measured between the master 1 and the

slave image and C > 0.9 from those measured between the master 2 and the slave. For both use cases, the

VSC method performs better for displacements > 1 pixel among two dates; applied to use cases with small

displacements (< 1 pixel), the VSC method gives noisy results as small displacements are cumulated. The

CMC method gives satisfactory results in both cases (low or high displacements). However, it can lead to

artefacts when the master and slave images are heterogeneous in terms of radiometry.

The VSC and the RVSC methods are compared for the full time series. The standard deviations of

all residuals located in the stable area are calculated and averaged. The standard deviations (σu, σv)

in both direction (u, v) for the Chambon and the Pas de l’Ours landslides are respectively (0.22, 0.21)

pixels and (0.97, 0.65) pixels for the VSC method, and respectively (0.16, 0.16) pixels and (0.96, 0.67)

pixels for the RVSC method. Even if some residuals are still observed due to some defectiveness of the

co-registration, the RVSC method tends to improve the detection accuracy and reduces false detections.

The influence of forward and backward calculation (Figure 2.4) is evaluated for both use cases on

a pair of images. The standard deviations of all residuals are calculated. The standard deviations (σu,

σv) in both direction (u, v) are respectively, for the Chambon and the Pas de l’Ours landslides, (0.14,

0.19) and (0.22, 0.17) pixels in the forward mode and (0.14, 0.19) and (0.21, 0.17) pixels in the backward

mode in the forward-backward mode, they are respectively (0.13, 0.18) pixels and (0.20, 0.15) pixels.

Compared to the RVSC method, the forward-backward approach is less powerful to improve the detection

accuracy significantly.

The results of the RMSExy stability are shown in Figure 2.9. The RMSExy parameter (Equation (2.2))
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Figure 2.8: TSM-derived displacement time series [pix] for specific points at the two landslides, at Chambon landslide (a) and
Pas de l’Ours landslide (b). The image combination strategies VSC (colored lines) and CMC (dates of the master and slave
images indicated on the graphs) are presented.
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Figure 2.9: Comparison of the combination strategies Variable Sequential Correlation method (VSC), Redundant Variable
Sequential Correlation method (RVSC) and Common Master Correlation method (CMC) processed in a forward mode. Stability
of the criteria RMSExy in time for the Chambon landslide (a) and the Pas de l’Ours landslide (b).

Table 2.1: Combination of parameters used to process the two time series for respectively the Chambon and the Pas de
l’Ours landslides.

Use case Image modality Image matching parameters [pix] Size of the stable
area [%]

Correlation
strategy

Inc SzW Reg Cmin

Chambon landslide *G 20x20 4x4 0.2 0.5 36 VSC
Pas de l’Ours land-
slide *G 24x24 4x4 0.2 0.5 9 VSC

was calculated for the three methods and two master images were selected for having two time series in a

CMC mode. The co-registration errors vary according to the correlation method used; in particular the

RMSExy relative to the CMC method seems to depend on the defined master. Indeed the temporal stability

can be disrupted by the surface-changes which can lead to significant variations on the stability (Figure

2.9a). As the time series stability of the Pas de l’Ours use case (Figure 2.9b) is not affected by the master

choice, we assume that the stability of the calculation depends on both the method used and the study sites.

Afterward, we used a combination of the parameters (Table 2.1) which seemed the most appropriate to the

use cases.
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5.2 Role of the external parameters

To estimate the influence of external parameters on TSM results, we conducted a statistical analysis

based on the OAT (One-at-a-time) method. This method consists of varying only one parameter at a time,

the others being fixed. The parameter variation is a Gaussian noise applied randomly to the data and

calculated according to the measurement errors associated with the data. The analysis was carried out

on a data set other than that of the Chambon and the Pas de l’Ours landslides for timing reasons. For

more clarity, the results are in the Appendix. Nevertheless, it results that the errors related to the noise

relative to the in-situ data are of the order of several centimeters, those relative to the DEM are of the

order of centimeters and those relative to the picking are of the order of meters for the noise applied in the

direction perpendicular to the movement and less than one millimeter for the direction of the movement.

6 Results and Discussion

The quality of the camera-derived displacement fields is evaluated in comparison to reference geodetic

observations and the pros and cons of the TSM toolbox are discussed.

6.1 Displacement Fields at the Chambon Landslide

A time series of images spanning from 8 to 27 March 2017 is processed to illustrate the TSM application

and characterize the motion of the Chambon landslide. Figure 2.10 shows an example of a displacement

fields (in cm.day−1) for the image pair of 9-12 March 2017. The image pair was processed with the VSC

method in the forward direction taking the first image as master. The most active part of the landslide is

clearly depicted with displacements rates > to 3 cm.day−1; the stable parts are also highlighted with very

small displacement rates lower than 0.6 cm.day−1 indicating the sensibility and robustness of the method.

Two surface velocity profiles are presented in Figure 2.11: P1 is a longitudinal profile of 137 m in the N-S

direction and P2 is a transverse profile of 92 m in the W-E direction (Figure 2.11a). The displacements are

presented for the period 8-27 March 2017. The image time series was processed with the VSC method

in forward direction. One image per day is used. The profile P1 reveals two active parts from 0 to

20 m and from 80 to 100 m (Figure 2.11b). They have contrasting behavior: the displacement rates of

the upper part (from 0 to 20 m) decrease over time while those of the lower part (from 80 to 100 m)

increase. This pendulum motion is in agreement with a rotational movement which is confirmed by

topographic surveys (Mathy and Lorier, 2013; Desrues et al., 2019). The profile P2 identifies two distinct

compartments, with a slide-type behavior (from 2 to 50 m) and a subsidence type behavior (from 60 to

92 m).

To validate the displacements derived from the image time series, we compared the TSM outputs to

displacements calculated from two high-density point clouds acquired on 9 March and 10 April 2017 with

a terrestrial laser scanner RIEGL VZ-2000. Point clouds were processed using the approach developed

71



Chapter 2 Image time series analysis for a monoscopic model

Figure 2.10: Displacement rates [cm.day−1] measured by TSM from 9 to 12 March 2017 at the Chambon landslide. The
continuous white line corresponds to the main scarp and the discontinuous white lines corresponds to the lateral flanks of
the landslide.

by Point et al. (submitted) consisting in (1) registering the point clouds using an Iterative-Closest Point

method (ICP), (2) generating 3D displacements fields on the point clouds. The point-clouds derived

displacements are compared to the TSM-derived displacement on images acquired between the 9 March

and the 8 April 2017. As there is no detectable movement between the 8th of April and the 10th of April

according to the Figure 2.11, we can assume that the two results are similar. To highlight the movement

and reduce the ambient noise, images were correlated according to the RVSC method in the forward

direction. 79 points were chosen randomly (with 43 points inside the active area of the landslide, and 36

points outside the landslide area) and displacements were calculated over a window of 16 × 16 pixels

(which represent a window size comprised between 56 × 56 cm and 96 × 96 cm). The mean and standard

deviations between the two displacement grids are respectively −0.013 m and 0.043 m.

6.2 Displacement Fields at the Pas de l’Ours Landslide

A time series of images from 6 to 22 June 2018 is processed to illustrate the TSM application and

characterize the motion of the Pas de l’Ours landslide. Figure 2.12 shows an example of displace-

ment fields (in m.day−1) for the image pair 16-18 June 2018. Images were processed with the VSC

method in the forward direction. Two sections in the landslide are clearly depicted: the lower part which

presents low displacement rates < 0.10 m.day−1 and the upper part which presents high displacements

> 0.10 m.day−1 to > 2.0 m.day−1. The accuracy of the measurements is evaluated on a stable slope

located in the first quarter of the image; the standard deviations of the displacement rates are 0.07 m.day−1.
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Figure 2.11: Displacement rates [cm.day−1] measured by TSM from 8 to 27 March 2017 at the Chambon landslide. (a) Profiles
location on a terrestrial laser-scanner derived DSM and an ortho-image from 12 March 2017. (b) Displacement rates [m.day−1]
along Profile P1. (c) Displacement rates [m.day−1] along Profile P2. The displacement rates are calculated over a band of 20
pixels in width.
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Figure 2.12: Displacement rates [m.day−1] measured by TSM from 16 to 18 June 2018 at the Pas de l’Ours landslide. The
discontinuous white lines corresponds to the Eastern flank of the landslide.

Two surface velocity profiles are presented in Figure 2.13: P1 is a longitudinal profile of 198 m in

the N-S direction and P2 is a transverse profile of 132 m in the W-E direction (Figure 2.13a). The displace-

ments are presented for the period 6-22 June 2018. The image time series was processed with the VSC

method in the forward direction. One image per day is used. The profile P1 reveals the presence of two

zones with > 0.5 m.day−1): the first one situated along the first 25 m and the second one from 50 to 175 m

(Figure 2.13b). The higher displacements are measured during the period 6-12 June 2018. Significant

changes (loss of spectral coherence) of the ground surface is responsible of the lack of information between

80 and 135 m for the period 12-16 June 2018. In Profile 2, the main active zone is clearly identified from

20 to 100 m. The stable part cannot be determined directly in Profile 2 because low displacement rates are

measured close to the Eastern limit.

One target was measured by a total station during the same time span than the image time series. It

corresponds here to the point Pt0 in Figure 2.8. Its cumulative displacement is represented in Figure 2.14

according to other specific points (located in Figure 2.8) whose displacements were calculated with TSM.

As we can see, displacements measured by the total station at the Pt0 are in the error bar of the TSM

processing. The standard deviation linked to the difference between the displacements measured at Pt0

and calculated by the TSM is equal to 16 cm.
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Figure 2.13: Displacement rates [m.day−1] measured by TSM from 6 to 22 June 2018 at the Pas de l’Ours landslide. (a) Profiles
location on a terrestrial laser-scanner derived DSM and an ortho-image from 12 June 2018. (b) Displacement rates [m.day−1]
along Profile P1. (c) Displacement rates [m.day−1] along Profile P2. The displacement rates are calculated over a band of 20
pixels in width.
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Figure 2.14: Cumulated displacements [m] of specific points (cf. Figure 2.8 measured by TSM and by a total station at the Pas
de l’Ours landslide.

7 Advantages and Limitations of TSM Pipeline

The TSM methodology for the massive processing of time series has proved to be robust and applicable

to two sites with different field setup and terrain motion. The coupling of several correlation techniques

has proven to be an asset to detect small change in velocity but several factors limit the capacity of

the technique to detect terrain motion above a cm.day−1. For instance, in most cases the choice of

the camera position depends on the topography of the site (e.g., viewing geometry) and on the access

path. This constrains the camera-to-object distance, the viewing geometry (e.g., camera line-of-sight vs.

direction of the terrain motion) and the timing of image acquisition (depending on the incidence of the sun).

The hypothesis of negligible radial-distortion is not true if the camera is equipped with very wide

view lenses (focal length < 24 mm) for which lens distortion should be systematically corrected. However,

the analysis of very wide view images like the ones acquired with webcam should provide more stable

information over time due to the system’s robustness to climate, its lower energy consumption compared

to SLR cameras, and the possibility of integrating larger stable areas in the image view.

For the operational use of TSM in monitoring conditions, several factors need to be taken into account to

leverage the detectability of small movements and increase the accuracy:

• The implementation of GNSS field targets for the estimation of the orientation parameters of the

camera. Most of the time, some areas of the images are not covered by GCPs because of the field

access. This has direct consequences on the calibration accuracy since it is necessary to have the
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most homogeneous distribution of GCPs in the image.

• The optimization of the image matching calculation; using a Debian 64 bits computer with a 64 Go

RAM and a 3.50 GHz processor, and for images acquired with 18Mpix cameras (corresponding

to 5184 × 3456 pixels), one correlation between an image pair takes about 20 min (without any

pre-processing such as greyscale reduction) for an 8 × 8 pixels search window size and can exceed

60 min if the pixel search window increases (> 12 × 12 pix). High-Performance Calculation (HPC)

is compulsory for processing massive datasets and calculating all the possible combination of

image pairs.

• The optimization of the change detection calculation. The filtering of the stacks of correlation grids

(e.g., RVSC approach, combination of forward and backward correlation) is also time-consuming

and HPC is also compulsory for operational uses.

The process presented here requires some a-priori information (dimensions, surface velocity estimation)

to adapt the camera field setup and the parameterization of TSM.

Conclusions

This work targeted the development, testing and operational use of the TSM toolbox as a generic pipeline

for the analysis of large time series of terrestrial optical images for the detection and quantification of

terrain motion. The TSM toolbox is composed of several modules to process images acquired with a fixed

monoscopic camera. It includes six modules that can be used independently of each other or sequentially:

the sensor orientation module, the image selection module, the sensor movement correction module, the

quantification of ground motion module, the detection module and the geometrical correction module.

The sensitivity analysis carried out on image dataset acquired on the landslide use cases revealed the low

influence of image modalities (G*, B*, A*, T*) on the matching results. The TSM method is sensitive

to the correlation parameters such as the search window and the correlation threshold which need to be

tuned for each case studies. For landslide applications, the parameterization of TSM is constrained by the

amplitude of the displacements and the type of deformation which will affect the quality of the results.

Several calculation strategies are possible to combine the image time series; the implemented VSC and

RVSC combination methods performed well for the two use cases. The stability and accuracy of the CMC

combination method is highly dependent of the choice of the master image.

Comparison with displacements calculated from high density point clouds for the Chambon landslide and

in-situ measurements for the Pas de l’Ours landslide show a standard deviation of respectively 4.3 cm and

16 cm. The displacement field is further consistent with previous studies and technical reports (Mathy and

Lorier, 2013; Laurent et al., 2016), (Point et al. (submitted)).

The two use cases demonstrated the robustness and large applicability of TSM since it was applied
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on both slow and moderate motion landslides with several configurations (slope dimensions, slope

deformation rates, distance camera-slope).
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Chapter 3

A stereoscopic model for landslide analysis:
Application to the Montgombert landslide
(Savoie, French Alps)

This chapter is devoted to the development of a method to infer landslide 3D displacement fields

and further landslide geometry from time series of optical images acquired from two remote

locations. The method is developed and tested for the Montgombert landslide (Savoie, France)

use case and the quality of the information obtained by image analysis is assessed with in-situ

measurements. The sliding properties are approached thanks to the 3D surface displacements

which give both access to tangential and normal displacements.

The chapter is divided into two main sections: (1) the first section presents the methodol-

ogy developed to construct dense 3D displacements from a stereoscopic camera system and (2)

the second one presents a technique to infer a field of depth of mass movement by using the 3D

displacement field reconstructed, together with the digital elevation model (DEM).

In this chapter a stereoscopic model refers to a system of two fixed cameras for the ac-

quisition of the time series.

This chapter is based on an article in preparation: Desrues M, Toussaint R, Malet JP, Brenguier

O (2021) Landslide thickness estimation inferred from terrestrial stereoscopic optical images (Savoie,

French Alps).
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1 Foreword

1.1 Context setting

The analysis of displacements and velocity fields is a useful tool for monitoring gravitational instabilities.

It allows to define the state of stability of the slope, its evolution over time, its spatial coverage and

to identify if the movement is progressing laterally or retrogressively. Other types of information can

also be extracted from this analysis such as the tangential and normal deformation calculated locally,

together with a DEM, or the strain field that highlights areas of compression and extension (Travelletti

et al., 2014). The kinematic analysis, that can be qualified as classical approach, becomes therefore

a deformation analysis that enables to assess the mechanical properties of the moving mass such as

its thickness, providing a better understanding of the movement (Baum et al., 1998). To do so, it is

consequently important to ensure that the computation of the 3D displacements provides both information

on normal and tangential displacements.

Several methods give access to complete 3D movement information including the monoscopic ap-

proach thanks to the integration of a DEM in the image plane. However, this method suggests that the

motion is mostly tangential to the surface. Complete information can also be obtained by integrating two
DEMs in the camera image plane at two different dates, Displacements are then calculated by projecting

the pixel points onto the respective DEM. This technique is limited to specific cases in which normal

displacements are significant to be detected and pixel displacements trackable to avoid de-correlation in

the image correlation process. This technique requires both a time series of images and a time series of

DEMs. Thus, to take into account the full information with the few possible data, and to detect tangential
and normal displacements, we developed a methodology to construct the 3D displacements directly

from the correlation results from a pairwise of fixed camera and tools to perform deformation analysis.

Most of the pre-existing methods used for estimating the sliding surface depth are simple techniques,
based on in-situ methods that provide sparse data without any surface information. This is the case of

geotechnical techniques (e.g., boreholes) or some geophysical prospecting that may be time consuming

since the fieldwork is realized on hazardeous areas. Other methods combine in-situ data with surface

information (DEM and field observations) and use, for instance, some polynomial fits to reconstruct

the slip surface in between the localised information (Tang et al., 2020). In recent years, the thickness

of the moving mass has been calculated from the surface displacements derived either from surface

topography (Farinotti et al., 2009; Aryal et al., 2015) or from satellite synthetic-aperture interferometry

(InSAR) (Morlighem et al., 2011; Nikolaeva et al., 2014) of from orthorectified optical images (Delacourt

et al., 2007; Booth et al., 2013). The thickness of the moving mass can be estimated by several methods.

Bishop (1999) introduced the application of the 2D balance cross section (Woodward et al., 1989) for the

estimation of the depth of translational landslide. This geometrical method suggests that deformation is

purely in-compressible. Booth et al. (2013) introduced also a new method to estimate the thickness of

a moving mass by inverting 3D displacements calculated from the correlation of aerial optical images.
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This approach suggests in a similar way than the previous method, that deformation is in-compressible.

Contrary to previous methods, the estimated thickness is calibrated with in-situ measurements.

Thickness can also be estimated assuming that deformation evolves in a homogeneous elastic half-

space. This method refers to the elastic dislocation models introduced by Okada (1985) that suggests that

slip is more important at the sliding surface than at the ground surface. It infers depth of sliding surface

but also fault orientation. Nikolaeva et al. (2014), for instance, applied the elastic dislocation model to find

a possible dislocation plane by inverting displacements derived from InSAR measurements. Aryal et al.

(2015) tested and compared the 2D balance cross section approach with the elastic dislocation method

on displacements derived from terrestrial laser scanning. They highlighted some limitations such as the

elastic dislocation plane is only applied at the initial phase of the landslide where there is no significant

inelastic displacement and the balance cross section is restrained to translational landslides. Landslides

can also be modelled by considering various velocity profile such as, in particular, a viscoplastic model

(Savage and Chleborad, 1982).

To estimate the thickness of the moving mass from 3D displacements derived from stereoscopic optical

images, we propose a methodology based on the law of conservation (i.e., displacement in-compressible)

by invoking the rheology of the material involved (Booth et al., 2013). In order to take into account, in this

model, a more complex slip geometry, we introduced a disbonding parameter that marks the presence of a

dislocation area at the top limit of the moving mass which implies a non-zero velocity at the sliding surface.

In this chapter, we propose to test the different methodologies (i.e., reconstruction of the 3D displacements

with a stereoscopic approach and estimation of the depth of the sliding surface) by applying them to the

Montgombert use case presented in the next section.

1.2 The Montgombert use case

The Mongombert landslide is located in the Arly valley in Savoie (France) and is mainly composed of

mica schist scree. The landslide has been monitored since 2016 since it undergoes frequent accelerations.

The most active parts are located at the base of the landslide above a stable 50 m high cliff, crossed by

three propagation corridors. Field observations indicate that the movement retrogresses uphill, that the

lateral boundaries are susceptible to change, and that the movement is composed of several overlapping

compartments (Mathy and Lorier, 2018). As shown in Figure 3.1, these observations are consistent in

time. Because of the dense vegetation and the difficult access to the lower part of the movement, the

observations were concentrated on the upper part of the landslide. In March-April 2020, heavy rains

destabilized the lower part of the movement (Figure 3.2). Some displacements in the order of a meter

were measured by total station. However, as shown in Figure 3.2, highest displacements could not be

measured, because of the loss of some topographic targets due to their tilting or tearing off during the

movement. In total, 32 topographic targets were measured in a hourly basis before the event and only 13

could be measured after.
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Figure 3.1: The Mongombert landslide: (Left) Topographic map after Mathy and Lorier (2018) and Mathy and Lorier (2019).
(Right) Topographic profile corresponding to the black line of the topographic map.

Figure 3.2: Cumulative 3D displacements measured by total station. Targets whose displacements time series are represented on
the right, are located on the georeferenced aerial image on the left. The red dots without numbers correspond to a position of a
topographic target. The accumulated rainfall comes from a weather station in the Arly valley about 3 km from the Montgombert
landslide upstream.
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In addition to topographic measurements, two inclinometers were set up in the field as well as two

piezometers (Figure 3.1). These two geotechnical equipments were installed uphill of the visible area

covered by the time lapse photograph. As mentioned by Mathy and Lorier (2018), the inclinometer at the

700 m elevation (Figure 3.21) is sheared at three different depths: at 8 m, 15 m and 30 m from the natural

terrain. As for the second inclinometer at the 794 m elevation, it is sheared at 13.5 m. This suggests well

the complexity of the movement which is declined in several lobe slides which evolve and retrogress

upstream (see section 4.2.2).

We first present the stereoscopic model used to generate the 3D displacement fields. A comparison

with the in-situ measurements and the measurements from a monoscopic model is then led to assess the

relevance of such a reconstruction. Finally, some thickness and volume estimates are discussed.

2 Stereoscopic model

2.1 Two-camera model

Stereophotogrammetry is the ability to build a 3D object from its observation from several points of view.

In the case of a single camera, the reconstruction is dependent on the used camera model (pinhole, thin

lens, etc). A pinhole model relates the coordinates in the world system to those in the image system by a

simple relationship as shown in Appendix A. In the case of a two-camera model, this relation is based on

an epipolar geometry (Hartley and Zisserman, 2004), which is dependent on the intrinsic and extrinsic

parameters of the cameras, but does not depend on the structure or content of the object. The epipolar

geometry is constructed from an epipolar plane defined by the baseline (i.e., the straight line connecting

the projections of the camera centers) and a given point M (see Figure 3.3). The geometry assumes that

the point Q, homologous to P, is located on the epipolar line in the image on the right. All epipolar lines

intersect at the epipoles.

Let P be a point belonging to the left image and Q to the right image. For each homologous pair

(P, Q) there is a point M of coordinates (x,y,z) in the world coordinate system. The relation that governs

this geometry is the one linking each pair of homologous points (P,Q) by the fundamental matrix F :

PT FQ = 0 (3.1)

where

P =

xp

yp

1

 Q =

xq

yq

1

 F =

F11 F12 F13

F21 F22 F23

F31 F32 F33


P and Q are defined in the camera coordinate system. If this equation is not satisfied for a pair of

points, then they are not homologous. The fundamental matrix can be determined from a set of at least
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Figure 3.3: A schematic illustration of the epipolar geometry that governs the stereoscopic model.

eight known homologous points by using the eight-points algorithm proposed by Hartley and Zisserman

(2004).The fundamental matrix is essentially used to reconstruct the 3D model in the case of a pair of

uncalibrated cameras. Indeed, by calculating F , we refrain from calculating the intrinsic parameters of the

cameras.

2.2 Camera positioning

The position of the cameras is, first, defined by the difference in the angle of view of the cameras, which

must not be too large, otherwise there will be very little overlap in their capture images and, therefore,

very few similar points. This difference in the angle of view is constrained by the distance between the

two cameras and the distance between the cameras and the object. These two parameters are combined

together to form a ratio which, when close to 1, means little overlap but distinct angles of view and, when

low, means high overlap but similar angles of view. This ratio is called the b/H ratio and is shown below.

The position of the cameras is also defined by the angles that characterize the external orientation of the

cameras in the world coordinate system.

2.2.1 b/H ratio

The b/H ratio is the ratio of the distance between the two cameras, commonly called baseline (b), to the

distance between the baseline and the object called height (H) (see Figure 3.4 a)). This ratio is important

to consider in the case of aerial or satellite stereoscopy. Several studies recommend a base-height ratio in

the range of 0.5 to 0.9 in order to obtain the most accurate DEM possible (Hasegawa et al., 2000). Indeed,

this ratio directly influences the image matching, since it constrains the difference in the angle of view of

the cameras (Hasegawa et al., 2000; Aguilar et al., 2013). As far as terrestrial stereoscopy is concerned,

few studies recommend that cameras be installed in a precise ratio. Gance et al. (2014) experimented

with a b/H ratio between 1.6 and 2.1 and it would seem that these values are too high for a terrestrial

stereoscopic system. In addition, a baseline that is too large may bias the matching (Moser, 2012; Gance
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Figure 3.4: Field configuration for the two-camera model with the position of the two cameras at the Mongtbombert landslide.
The b/H ratio is equal to 0.66. Both cameras are imaging the lower part of the landslide which is also the deforested part. The
camera footprint corresponding to the Left camera is blue and the one corresponding to the right camera is red. The white frame
refers to Figure 3.1 for more details about the boundaries of the landslide (red lines).

et al., 2014). Two cameras were set up at the Montgombert with a b/h ratio equal to 0.66 (see Figure

3.4 b)). The right camera is at a distance of 520 m from the landslide while the left camera is at 620 m.

The cameras are fixed to the bedrock with the help of poles (see Chapter 1) in order to minimize their

displacement over time. The difference of respective distance between the cameras and the object implies

that the ground pixel size differs from one camera to the other. Its size ranges from 5 to 6.5 cm for the left

camera, and from 4 to 5.5 cm for the right one. Therefore the resolution of the images, as well as that

resulting from the correlation measurements, are different.

2.2.2 External camera orientations

Each camera is oriented in space using three angles commonly named Euler angles (ω , φ , κ) (see Ap-

pendix A); in the airborne photogrammetry domain, one might rather use pitch, roll and yaw. These

angles are zero when the camera is horizontal and pointing North. In the world coordinate system, defined

by the geographic coordinates (X, Y, Z), ω is the rotation around the X-axis; φ is the rotation around

the Y-axis and κ is the rotation around the Z-axis. The sign of these angles are defined according to the
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right-hand rule. Euler angles are involved in the rotation matrix used to link the image coordinate system

to the coordinates of the world system.

The cameras were installed without constraining Euler’s angles. Indeed the installation of the cam-

eras was a complex, since the installation was mainly dependent on the environment (restricted access

requiring a rope, road, presence of protective grid). It was therefore necessary to determine the orientation

of the cameras, a posteriori, by using the camera calibration introduced in Chapter 2 and showed in section

2.3.2.

2.3 Image pairing

The matching process consists in finding all pairs of homologous points (P,Q) in stereoscopic images.

These points are specific features that are unique and easy to track such as a corner, a line intersection or

an edge (Harris et al., 1988; Zitova and Flusser, 2003). They are characterized by distinctive descriptors,

which correspond to regions located on the features. The neighborhood allows the algorithms to situate

the feature in the right place on both images. As mentioned in Chapiter 1, several algorithms can be used

to detect these features. Among the most well-known are the classical feature-based algorithms such

as the Harris Corner Detector or the SIFT detector (Le et al., 2011; Hassaballah et al., 2016) and the

image-based matching such as the image correlation technique.

2.3.1 Classical methods

The image-based matching is a robust method that provides results with high spatial overlap. However,

the results of the image matching proved to be unsatisfactory as very few pixels could be matched. The

difference in viewing angle is probably too high in our case to ensure a dense matching image. Therefore

we turned to the application of a feature-based algorithm.

We used the ORB (Oriented FAST and Rotated BRIEF) algorithm to detect the features (Rublee et al.,

2011). Faster than SIFT detector, this algorithm is also rotation invariant and resistant to noise. The

number of homologous points found on the series of stereo pairs varies from 150 to 185 points. As shown

in Figure 3.5, the detection of homologous points does not lead to a unique result (several points matched

in one image for a given point in the other one). This can be explained by the presence of similar objects

(vegetation, tree trunks) and heterogeneous objects such as scree or soil areas distributed throughout the

image. In fact, this method is often used in the case of object related to streets infrastructure since the

features are very well defined in these cases. Here, the characteristics of the features are too volatile. The

few homologous points compared to the number of pixels in the image, as well as their spatial distribution

in the image with respect to the area of interest, makes this technique unsatisfactory for our study. Indeed,

although only few points are necessary, when one wishes to register an image compared to another, it is

not the case when these points become features to be tracked in time. In our case, this technique does not

allow us to obtain the densest possible network to be used afterwards.
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Figure 3.5: Image pairing by using the ORB detector. 171 features are detected for the pair-image acquired the February 11 2020.
Drawn lines connect the pairs of homologous points. As we can noticed with the red circles and the red rectangular, several
features from one image get the same homologous point in the second image and conversely.

2.3.2 Back-Projection method

In order to obtain dense pairs of homologous points spatially distributed homogeneously in the image, we

decided to use a Digital Elevation Model (DEM), which is involved in the calculation of pixel to meter

transformation (see Chapter 2). The workflow used is organised as follows:

1. Camera calibration: Nine artificial targets, with absolute positions measured by GNSS!, were used

for the camera calibration. The orientation of the cameras was first roughly estimated (as an initial

parameter for a later inversion process). We do similar estimations for the calibration matrix which

is composed of the effective focal length ( fx, fy), and the coordinates of the principal point, which

are commonly estimated to the first order as those of the center of the image (the skew parameter,

which is usually equal to zero, is not expressed in OpenCV©(Zhang, 2000) - (see Chapter 2). The

distortion coefficients have been set to zero. The calibration algorithm was developed in the case of

planar objects. In our case, regarding the camera-object distances as well as the geometrical shape

of the object, we can assume that we are in a similar case. Indeed, if we consider a plane formed by

the three targets A, B and C, the distances of the other targets to this plane deviate by a maximum

of 2 % (Figure 3.6).

The inversion is performed by applying a differential evolution algorithm which is a stochastic

algorithm (Storn and Price, 1997). This implies that the results from the calibration are not unique.

In order to determine the most appropriate combination of parameters, several inversions have been

performed and the one that minimizes the error on the camera position and gives Euler angles such

that the camera’s reference system is orthonormalized, is selected.
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Figure 3.6: Reprojection of the points used to determine the intrinsic and extrinsic parameters of the cameras by applying the a
priori calibration. Points A, B and C indicate the targets used to construct a mean plane of the object and thus show that the
Zhang calibration method can be applied.

Finally, after the full process, we found an error (RMSExy defined by Eq. (2.2)) equal to 6.1 pix and

4.3 pix respectively for the right and left cameras. The 3D position of the camera, in regard to the

measured position, is estimated at 1.8 m for the right camera and 2.9 m for the left camera.

2. DEM back projection and interpolation: We used a DEM acquired by an aerial LiDAR and dating

from May 2019. The ground resolution is 0.15 m in both directions (i.e EW and NS). Several UAV

and terrestrial LiDAR acquisitions were also carried out during 2019-2020, but the georeferencing

of the point clouds was too disturbed by vegetation. The alignment error, using these latter data sets,

would therefore induce significant projection errors. From May 2019 to the first photographs of

2020 only small displacements were recorded; consequently the use of the May 2019 DEM seems

to be the most appropriate. The DEM is then back-projected in the two image planes according to

Equation (2.1). The coordinates of the projected DEM are interpolated linearly in the image plane.

3. Image matching: This final stage is performed in both directions (u, v) to determine the maximum

number of homologous points by the nearest neighbor algorithm. It is realized pixel by pixel and

the associated errors are presented in section 3.4.

The advantage of this technique is to be able to match the maximum number of pixels over a large area.

The image pairing by searching for the pixel according to the coordinates X, Y, Z is carried out by the

nearest neighbor algorithm. The calculation time is therefore directly related to the number of pixels
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considered, since the calculation is performed pixel by pixel. To get rid of the long computing time

(> 4h) per image pair, we processed the data at low resolution considering a step of 25 pixels. For an

average physical pixel size of about 0.05 m, this means calculating the 3D displacement every 1.25 m if

the displacements are distributed on a regular grid.

2.4 Inversion of the 3D displacement fields from the 2D displacement fields in pixels

Let us consider that (u1,v1) are the pixel displacements of a point P in the left image and (u2,v2), those

of the homologous point, Q, in the right image. Thus, the pixel displacements are related to the metric

displacements (dx, dy, dz) by the matrix A, Equation (3.2):
u1

v1

u2

v2

= A ·

dx

dy

dz

 (3.2)

Let us call u = (u1,v1,u2,v2)
T and dr = (dx,dy,dz)T . Equation (3.2) is thus written:

u = A ·dr (3.3)

which can be solved by inverting the matrix A:

dr = (AT A)−1AT ∗ ·u (3.4)

The metric displacement dr can be expressed as a function of the geodetic unit vectors (tu, tv) that

orientates the sensor and the geodetic unit vector perpendicular to the image plane n. They can therefore

be given by the Euler angles.

d̄r = (d̄r.t̄u)t̄u +(d̄r.t̄v)t̄v +(d̄r.n̄)n̄ (3.5)

By applying Thales’ theorem to the system, we can express the projection of the metric displacements on

one of the unit axes using the physical size of the pixel (li, l j):{
(d̄r.t̄u) = l j ∗u

(d̄r.t̄v) = li ∗ v
(3.6)

Equation (3.6) is therefore written as follows:
u =

drx ∗ tux

l j
+

dry ∗ tuy

l j
+

drz ∗ tuz

l j

v =
drx ∗ tvx

li
+

dry ∗ tvy

li
+

drz ∗ tvz

li

(3.7)
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Applying Equation (3.7) to the two cameras, the result is that the matrix A can be written as follows:

A =



tu1x

l j1

tu1y

l j1

tu1z

l j1

tv1x

li1

tv1y

li1

tv1z

li1
tu2x

l j2

tu2y

l j2

tu2z

l j2

tv2x

li2

tv2y

li2

tv2z

li2


(3.8)

This system is over-constrained since we have 4 pixel-displacement inputs to determine only 3 metric-

displacement outputs. It was attempted to take only 3 out of 4 values to estimate the contribution of each

input. The 4x4 matrix thus becomes a 3x3 matrix which is written according to 4 possible combinations.

It turns out that, in our specific case, the matrix A does not always invert since it was too similar to a

singular matrix. We have therefore decided to keep the 4x4 matrix A for the rest of the computations to

ensure some stability in the calculation along the time series.

The 3D displacement grids are generated from the correlation results filtered by the correlation co-

efficient, by the standard deviation of the stable parts and by the morphological filter (see Chapter 2).

To complete the filtered results and thus obtain a dense deformation field, we used the Inverse Distance

Weighted (IDW) method which allows us to use an adaptive step interpolation. The IDW method is

based on the fact that the points furthest away from the missing value have little influence on it while

the closest points have the greatest influence (Chen and Liu, 2012). It is a deterministic method that is

local (Adhikary and Dash, 2017). The advantage of using this method is that a missing value can be

interpolated either by setting the number of points to be used (variable radius of the search circle) or by

setting the maximum radius of the search circle (variable number of input points to be used). In our study,

we opted to use the IDW method so that the number of points used in the calculation is fixed and is chosen

by the user in order to adapt the interpolation for different study cases. In order to avoid using completely

unrelated information in areas with a poor input density, the maximum radius is also chosen by the user.

Let us consider Q the empty cell, Qi the neighboring cell and i the variable from 1 to the number

of cells taken into account, n. This last parameter n, ranges from a minimum number nmin to a maximum

required number nmax. The interpolated value v(Q) is calculated if within a maximum radius there is the

minimum number of points required. It is defined as Equation (3.9) :

v(Q) =


∑

n
i=1 wp

i vi

∑
n
i=1 wp

i

wi =
1

d(Q,Qi)

(3.9)
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where wi is the weight and p the IDW power value. The larger the power value is, the more influence the

close points have on the result of the interpolation. In other words, the larger the power values is, the more

localized the interpolation is. The selected interpolation method implies three parameters that are defined

by the user: the minimum number of points to consider, the maximum radius of the search circle and the

power parameter. As often happens when it comes to interpolating, there is no straightforward guide to

choose the power setting. It must be adapted for each situation since it influences the smoothing of the

results. The minimum number of points is by default (in our study) equal to 3 and the power parameter is

set to one. The maximum radius of the search circle is by default set to 30 pixels.

3 Landslide displacement estimation

In order to ensure the validity of the results and to estimate the associated quality and uncertainty, the

time series of the two cameras were first processed independently with the TSM toolbox (see Figure 3.7).

The correlation results, corrected for the camera motion, were then used for the 3D reconstruction. To

remain consistent, the same prior calibration was applied in all three cases. Finally, the obtained time

series were compared to the in-situ data acquired using the total station.

3.1 Monoscopic displacement fields

The images were processed with the CMC approach (Common Master Correlation) (Desrues et al., 2019)

and the first image, dating from February 11 2020, was used as the master image. 12 images were

processed between February 11 and April 20 2020. This correlation strategy was adopted to minimize

the influence of the device on the calculations by integrating a DEM acquired at a date prior to the time

series. The stable area that is taken into account corresponds to the apparent bedrock. Figure 3.8 shows

an example of 3D displacements calculated for each camera between February 11 and March 13 2020.

Displacements are interpolated according to the interpolation method presented previously in section 2.4.

The displacements calculated by the two monoscopic approaches show a good agreement between

them that could indicate that they may be independent of the two positions of the cameras (Figure 3.8). To

compare both monoscopic results, we fit the distribution of the difference between the results obtained by

the right camera and those obtained by the left camera by a normal distribution. The mean and the standard

deviation associated to this distribution are respectively −1.5 cm and 9 cm for the EW component, −2 cm

and 10 cm for the NS component and 0.8 cm and 6 cm for the Up component. These results show that the

displacements calculated by the two monoscopic approaches are of the same order of magnitude. The

main differences can be explained by the geographical position of the camera in relation to the object

under study, as suggested by Gance et al. (2014). It affects the stable part localization where radiometric

properties are stable along time. Stable areas have to be distributed in order to be as spatially homogeneous

as possible in the image plane. It also influences the line of sight of the camera that must be optimized in

order to limit errors due to incorrectly estimated distortion parameters, and the back-lighting influence.
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Figure 3.7: General workflow applied in the case of the Mongtombert study case. It allows to assess the contribution of the 3D
reconstruction relative to a monoscopic approach. The blue and red colors refer to Figure 3.4 and to the monoscopic approach.
The green color refers to the stereoscopic approach. The term Module refers to the TSM processing (Desrues et al., 2019)
introduced in Chapter 2. The term Motion time series stands for the 3D displacements expressed in a geodetic reference system.
Finally, the process DEM back projection is situated after Module 1 because, in our case, images are processed according to a
Common Master approach (CMC). If not, the process should be performed after Module 3.

.

96



Chapter 3 A stereoscopic model for landslide analysis: Application to the Montgombert landslide

3.2 Stereoscopic displacement fields

The evolution of the pattern of the 3D cumulative displacements is shown in Figure 3.9. From February

11 to March 3, the movement is relatively stable with velocities of less than one centimeter per day. Only

a small part, at the base of the slope, is in motion with an average movement rate of 5 cm.day−1. A

deceleration is then observed in this zone on February 25. From March 6, a reactivation of the localized

zone marked by velocities greater than 8 cm.day−1 and a destabilization of the lower part of the movement

(2-3 cm.day−1) are observed. This unstable zone is highlighted by a clear boundary: the lateral limits

coincide with the observed limits and the upper limit is set back from the observed scarp. The movement

then evolves homogeneously from March 6. A clear acceleration is observed until March 14, followed by

a deceleration of the movement which suggests that the slope reaches a new state of stability. The upper

part of the slide is slightly impacted since it has average speed of about 2 cm.day−1.

We can also notice that there is no information on the lower part of the slope, which, in particular,

includes the apparent bedrock. This is due to the filtering of the data based on the residual displacements

of the stable parts. At the base of the localized part which is in motion, the lack of information is, in this

case, due to the loss of coherence from one image to another. This suggests a rapid movement or a flow

type deformation that induces a loss of soil texture. Furthermore, the footprint of the information was

constrained by the interpolation that was performed on a reduced part of the image. This is why the lateral

edges are cut off.
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Figure 3.8: Monoscopic approach. Displacements are calculated between February 11 and March 13, 2020. (a) 3D displacements
[meter], calculated from the image time series from the two monoscopic cameras. Red lines correspond to scarps and limits of
the movement observed in 2019 and 2020 (see Figure 3.4). The black line shows the forestry track while the brown polygons
highlight the apparent bedrock. (b) Distribution of the difference between the results obtained by the right camera and those
obtained by the left camera.
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Figure 3.9: 3D displacements, in meters, calculated from the image time series taken from a pair of stereoscopic cameras. Red lines correspond to scarps and limits of the movement
observed in 2019 and 2020 (see Figure 3.4). The black line shows the forestry track while the brown polygons highlight the apparent bedrock. Red points show the localization of
some reference topographic targets.
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Figure 3.10: Cumulative surface displacements of targets 8, 17, 35, 4, 12, 22, 16, 26, 23 (see Figure 3.9 for the localization)
according to their directions. (a) Azimuth calculated vs the displacements measured by total station [mm] over the period from
February 11, 2020 to April 20, 2020. The direction is calculated every 7 days. (b) Azimuth calculated vs the displacements
derived from the steresocopic model [mm] (over the same period as (a)).

In addition, the direction of the 3D displacements reconstructed from a stereoscopic approach is

consistent with that of the topographic targets measured by total station as we can see in Figure 3.10 for

a set of nine topographic targets. The azimuth represented is that of the displacements calculated over

the period February 11, 2020 - April 20, 2020 (period of the time-lapse photography). A difference of

about 3◦ separates the average directions of the two measurements. The directions of the displacements

are quite similar for each of the topographic targets which suggests a spatially homogeneous deformation.

Let us now consider the local normal and the tangential displacements that are shown in Figure 3.11 with

thumbnails from C to H. We can see that a normal deformation particularly affects the central part from

the beginning of March. This deformation increases over time but not homogeneously over the whole

surface. This deformation draws, around targets 23 and 26, several bands perpendicular to the preferential

direction of the tangential displacements. On the other hand, it is homogeneous at the level of target 22.

3.3 Comparison of the stereoscopic approach with in-situ measurements and the mono-
scopic approach

The results from the 3D reconstruction are compared to some in-situ measurements, realized by a total

station. Figure 3.12 shows the cumulative displacements for the 9 topographic targets located in Figure

3.9 in thumbnail A. There are three types of trends shown in Figure 3.12:

• A trend towards a stable state in which the measured displacements do not change over time. This

is the case of target 12 which is located in the part which was already considered stable according

to field observations, and which is thus confirmed by the photographic and in-situ measurements.

On the five known-to-be stable targets, the standard deviation of the displacements, calculated from

the photography time lapse, is less than 1 cm for the EW component (i.e., approximately along the

width direction of the slide), is less than 5 cm for the NS component (along to the length direction)

and is less than 4 cm for the Up component.
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Figure 3.11: Normal and tangential displacements from the stereoscopic system corresponding to thumbnails from C to H
(Figure 3.9). (a) Displacements of the normal component in meters. (b) Displacements of the tangential component by vector
fields. Red lines correspond to scarps and limits of the movement observed in 2019 and 2020 (see Figure 3.4). The black line
shows the forestry track while the brown polygons highlight the apparent bedrock. Red points show the localization of some
reference topographic targets.
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Figure 3.12: Cumulative 3D displacements of some topographic targets. Lines correspond to the measurements acquired by the
total station. Data were collected on an hourly basis. Squares correspond to the displacements calculated from the stereoscopic
image time series. Images were processed with a Common Master Correlation approach. (a) Cumulative displacements
corresponding to the all image time series. (b) Zoom of the black square located in (a).

• A trend of moderate homogeneous movement. Targets 17, 4, and 8 were affected by displacements

of several centimeters during the event but are still in function. The error of the photography

measurements relative to the total station measurements, expressed by the RMSE (Eq. (2.2)), is

calculated over 13 targets which show a trend of moderate homogeneous movement. The error

varies from 0.7 to 3.2 cm for the EW direction, from 2.7 to 6.5 cm for the NS direction and from

1.4 to 4.4 cm for the up direction. There is thus an average difference of about 3-4+/−2.7 cm

between the total station and photographic measurements. This is rather satisfactory for a low-cost

method providing 3D displacement fields only on pairs of images.

• A trend of significant movement that results in the loss of signal from some topographic targets

and/or their physical destruction. This is the case for the targets located in the lower part of the

movement. The contribution of time-lapse photography, in these cases, is extremely important,

since we no longer have in-situ information on the behavior of the environment in these areas: Was

there a failure? Has there been a change in the predominant type of deformation (from sliding to

toppling, from sliding to mudflow, for example)? The results of the 3D reconstruction shows that

the environment has been destabilized without loss of coherence to reach a new state of stability.

Figure 3.13 shows three cumulative displacements (for targets 8, 17 and 6) according to the three

components EW, NS and Up. These targets were here chosen in order to illustrate the accuracy of

the measurements through different behaviours: target 8 was displaced in all three directions in the

order of several centimeters; target 17 underwent greater displacements but kept a low velocity less than

0.5 m.day−1; and, finally, target 26 moved by about one meter.
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Figure 3.13: Cumulative 3D displacements of topographic targets 8, 17 and 26 according to the three components WE, NS and Up. Doted lines correspond to the measurements
acquired by the total station. Squares correspond to the displacements calculated from the stereoscopic image time series. Images were processed with a Common Master Correlation
approach either in monoscopic or in stereoscopic way.
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We can highlight that:

• First, the results from the monoscopic system shows an average dispersion in position, calculated

over the five known-to-be stable targets, equaling, respectively for the right and the left cameras,

2.6 cm and 1.6 cm for the EW component, 4.0 cm and 2.2 for the NS component and 2.5 cm and

0.9 cm for the Up component. The RMSE is computed by taking into account photography displace-

ments and those measured by the total station along all of the time series for each topographic target

(i.e., 13 available targets). The results show that the RMSE associated with the EW component

ranges from 1 cm to 13 cm, the one associated with the NS component varies from 2 cm to 24 cm

and the one associated with the Up component ranges from 4 cm to 17 cm.

• Secondly, the results from the stereoscopic system shows an average dispersion in position, calcu-

lated over the same five known-to-be stable targets, equals 0.5 cm for the EW component, 0.7 cm

for the NS component and 0.2 cm for the Up component, which is an improvement compared to

the monoscopic approach. In addition, they are in agreement with the in-situ data. The calculated

RMSE computed on the EW component equals 1.7 cm, the one computed on the NS component

equals 3.9 cm and the one computed on the Up component equals 2.6 cm.

• Finally, the plots that are relative to target 26, the large displacements resulting from the 3D

reconstruction are overestimated compared to those calculated by the monoscopic approach for the

NS and Up components. This deviation is induced by several factors such as the downsampling of

the DEM in the image matching process or the non-optimal parameters of the cameras, but it also

can be influenced by the type of deformations which is monitored.

3.4 Discussion

3.4.1 Source of potential errors

The reconstruction of the 3D displacements involves a DEM during the image matching process but not

during the inversion of the displacements. This implies that the 3D displacement computation depends on

the geometry in which the scene is contained. In other words, we eliminate the DEM in the computation

but the results remain dependent on the DEM. The errors that potentially influence the calculation are

therefore: the DEM resolution in the image matching process and the estimation of the camera parameters.

Image matching and DEM resolution The image matching is performed by using a DEM back-

projected in the image plane. To evaluate the influence of the resolution of the DEM (Figure 3.14), we

have generated five DEMs at resolutions (valid for both directions): 100 cm, 50 cm, 25 cm, 15 cm and

5 cm. Each corresponding coordinate grid was interpolated linearly and the image matching technique

was applied.

Two RMSE were computed for each matching image, either from the left to the right image or vice

versa. They have been calculated on the 9 ground control points (GCPs) visible on Figure 3.6 on both the

104



Chapter 3 A stereoscopic model for landslide analysis: Application to the Montgombert landslide

Figure 3.14: Part of the image acquired by the left camera with the projected points of the DEM (red dots). a) DEM resolution
15 cm and b) 50 cm resolution.

geographical coordinates (X ,Y ,Z) and the pixel coordinates (u,v). The impact of the DEM resolution on

the matching image is relatively small since the RMSE calculated on the pixel coordinates varies at most

2 pixels. The RMSE calculated on the geographic coordinates varies at most by 2 cm. A lower variability

of the results is however noted in the right-to-left direction. If other GCPs had been available, it would

have been interesting to estimate the influence of the number of GCPs in addition to the resolution of

the DEM. However, a more detailed study would have more impact on an object whose surface presents

counter-slopes or different preferential orientations.

Calibration parameters and camera position The computation of the 3D displacements is based

on the external orientation of the cameras that defined the matrix A (Equation 3.8). The estimation

of external and internal properties is directly dependent on the accuracy of the calibration. However,

these parameters may be subject to biases induced by variations of the environmental conditions (e.g.,

temperature, humidity) or by camera motion. In our study, the calibration was carried out at the beginning

of the installation of the cameras but was not renewed. In the case of long time series, it would be

interesting to re-estimate these parameters after periods of rain and/or cold.

Moreover, we make the strong hypothesis that the physical pixel size (li, l j), which depends on the

camera focal length and the camera-object distance, remains constant for the computation. Indeed this

statement is valid for small displacements where the physical pixel size does not change significantly

from the initial position to the moved pixel position. This may be not true for larger displacements.

For displacements larger than 500 mm, the physical pixel size varies from a fraction of a centimeter.

Consequently, displacements could be overestimated or underestimated by a few centimeters.
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3.4.2 Type of displacements and computation precision

As introduced previously, the technique of 3D displacement construction by stereoscopic method has the

major advantage of being able to reconstruct tangential surface and normal displacements, as opposed to

the monoscopic method which loses the information related to the normal displacements by assuming

that all displacements are tangential. Figure 3.11 shows that the normal displacements mainly affect the

lower part of the landslide in which the calculated displacements are largest. But if we look at the normal

to tangential ratios along time, we can see, in our case, that the tangential displacements predominate

the motion. However, even if the normal displacements are small, they are far from negligible since

they represent about 23 % of the total displacement over the full period. This therefore suggests that the

monoscopic approach may truncate the results in the case where the normal components are significant.

In order to be able to conclude on the observed bias in the large displacements calculated by stereoscopy

compared to the monoscopic approach, further investigations could lead to a better understanding.

4 Landslide deformation estimation

Landslide deformation analysis is complementary to the displacements analysis since it uses the surface

displacements to generate mechanical information. Deformation analysis was performed using the 3D

displacement reconstructed from the stereophotography.

4.1 Deformation analysis

A deformation analysis is carried out in order to highlight different mechanical behaviors within the

landslide such as shear zones or compression/extension zones. In the case of the Montgombert landslide

few significant changes are visible by photo-interpretation due to the dense vegetation, even though trees

in the upper parts of the landslide continue to indicate the activity of the movement due to their tilting.

4.1.1 Strain analysis

Let us consider, u and v as the displacements along the x, y directions in the local reference system such

that the resulting displacement is planimetric. The Cauchy 2D deformation tensor, ε , is then written:

ε =


∂ux

∂x

1

2
(
∂ux

∂x
+
∂uy

∂y
)

1

2
(
∂ux

∂x
+
∂uy

∂y
)

∂uy

∂y

 (3.10)

where the diagonal components,
∂ux

∂x
and

∂vy

∂y
, represent the change in length per unit length in the x and y

directions respectively. A positive value means an extension. The deformation tensor ε is symmetrical and

represents the internal deformation of the moving mass. Therefore, eigenvalues ε1 and ε2 can be calculated

as well as the eigenvectors whose axes indicate the main strain directions. Applying the deformation
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tensor ε , involves two important points: (1) the displacements u and v are considered to be small and (2)

the displacements are in the form of a regular grid resolved so that the results are filtered out of outliers to

avoid error propagation and to increase the accuracy of the results. To do so, the least-square approach

that consists in fitting a linear plane locally and inverting its parameters allows to build a more robust

gradient and it is generally used (Pan et al., 2009; Travelletti et al., 2014; Shen et al., 2015).

To take into account the local variations of the slope geomporhology (aspect and slope), we have chosen

to consider the displacements/velocities expressed in the local tangent-normal reference system. Locally,

displacements are projected on a plane centered on a point. The local divergence is then calculated for

the specific point. The divergence corresponds to the trace of the deformation tensor; it results that the

slide is extended when the divergence is positive and is in compression when the divergence is negative.

A zero value indicates a homogeneous motion. As the displacement grids have been interpolated and

are therefore regular with a certain predefined step size in the previous steps, we have directly applied a

central discrete operator for the calculation of the deformation. It is defined as follows:

div(~v) =
v
′
2(i, j+n)− v

′
2(i, j−n)

2n∆ j
+

v
′
1(i+n, j)− v

′
1(i−n, j)

2n∆i
(3.11)

where (v
′
1,v

′
2) are the projected displacements in the local tangential plane centered in (i, j), n is the step

and ∆i,∆ j are the lattice steps of the grid.

4.1.2 Results

The deformation calculation module implemented in TSM proposes two approaches, both realized in the

tangential plane: a first approach which consists in calculating the deformation tensor and the associated

eigenvalues. This assumes that the deformations are small and represent the majority of 3D displacements.

The surface deformation, ε , is then represented and is equal to the sum of the eigenvalues: ε = ε1 + ε2

(Travelletti et al., 2014) and the shear strain γ is defined as γ = |ε1− ε2|. In the second approach, the

deformation is directly calculated as a divergence. In our case the deformations calculated in the tangential

plane represent about 77% of the total displacements (after the event by considering the full surface).

These displacements remain large and therefore will not be considered as small displacements. This is

why we preferred to turn to an analysis of the divergence of the displacement field which still allows us to

highlight the compression and extension zones.

Figure 3.15 shows an example of the Montgombert landslide deformation analysis. The results come from

the displacement fields between the image of February 11, 2020 and April 13, 2020. They thus include

the acceleration of March 2020 in which several meters of displacement were measured by terrestrial

photography. The normal component, represented in Figure 3.15a, highlights: the active part of the

landslide in which the most important displacements were measured, a zone further uphill which is

detached from the landslide part by zero values of the normal, a part to the West of the active part in which
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moderate displacements are detected. As for the tangential component, it is consistent with the orientation

of the slope and suggests that the majority of the displacements are tangential (Figure 3.15b). This is

confirmed by Figure 3.15c, which shows the ratio of the tangential component to the normal component

(in absolute value). It turns out that the movement is tangential in the central part except on the side to the

right of this area. The normal displacements are more important there as well as in the upstream zone,

highlighting two behaviors. A preferential displacement in the axis of the normal can either translate a

subsidence (negative normal component) or an uplift or an accumulation of material (positive normal

component). The result of the divergence highlights two main points (Figure 3.15d):

• the movement can be considered spatially homogeneous in the slide except in the most active zone;

• a top limit is observed below the scarp observed from 2018. It is mainly formed by extension zones

but also by an alternation of extension-compression features. These zones have the particularity of

being perpendicular to the local tangential movement;

4.2 Thickness estimation

In this section we propose to determine the sliding depth from a low-cost and affordable system based

on essentially kinematic considerations. We used a similar approach to the one proposed by Booth et al.

(2013) by considering the 3D displacements computed with optical image correlation and by invoking

the material rheology. However, our methodology does not compute the thickness by calibrating it with

in-situ measurements. To consider a more complex geometry of the sliding surface and to get closer

to a more realistic geometry close to the area where the sliding surface rises to the ground surface, we

introduce a geometrical parameter (i.e., disbonding parameter) presented below.

4.2.1 Landslide and conservation of mass

Considering that the landslide is similar to an in-compressible fluid, sliding along a slope parallel to the

surface (Figure 3.16a), the conservation of the mass is written:

−h(x)ū(x)+h(x+dx)ū(x+dx)+utop
n = 0 (3.12)

where utop
n is the normal component of the surface deformation field, h is the thickness of the unstable

mass and ū is the average of the velocity inside the unstable mass (Figure 3.16a). Equation (3.12) can be

rewritten as follows:

utop
n +∇.(hū) = 0 (3.13)

Assuming that the thickness is constant over the length of the moving layer, Eq. (3.13) becomes:

h =−
utop

n

∇.(ū)
(3.14)
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Figure 3.15: Deformation analysis performed by TSM applied to the pair of images 2020-02-11 - 2020-04-13. a) Normal
component of the surface displacements expressed in meter, b) Tangential vector field of the surface displacements according to
the slope orientation expressed in degrees, c) Ratio of the tangential component to the normal component taken in absolute value,
d) Tangential vector field of the surface displacements according to its divergence. Red dots indicate specific topographic target
locations (see Figure 3.2) and red lines show the lateral and top limits of the landslide (see Figure 3.1). The black line shows the
forestry track while the brown polygons highlight the apparent bedrock.
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Figure 3.16: Schematic deformation model where the law of the conservation of mass is applied. (a) Conservation of mass
applied to a sliding parallel to the surface (Eq. (3.14)). The thickness h is constant along the layer from x to x+ dx. (b)
Conservation of mass applied in the case of a presence of a zone of disbonding, in which h is variable and the normal velocity at
the bottom is non-zero (Eq. (3.17)). θ is the angle between the surface of direction vector ~utang

bottom the disbonding surface of
directing vector ~uslip. δ is the slope angle.

ū can also be expressed as being proportional to the surface velocity that corresponds to the tangential

component of the deformation field measured at the surface, utop
tang, by integrating a factor α such as:

ū = αutop
tang (3.15)

The parameter α is a constant related to the landslide rheology. As explained by Booth et al. (2013), this

parameter is very poorly quantified and the assumption that it is a constant implies that the rheology of

the movement is spatially uniform. A value equal to 1 indicates that the moving mass is similar to a rigid

block. A value between 2/3 and 1 indicates motion is consistent with that of a plug flow, a value equal to

2/3 to a viscous Newtonian fluid and a value equal to 1/2 is consistent with a linear vertical velocity profile.

If the sliding surface is not plane and shows a disbonding zone which results in the presence of a

non-zero velocity at the base of the slide, called from now interface (Figure 3.16b), Equation (3.12) then

becomes:

−h(x)ū(x)+h(x+dx)ū(x+dx)+utop
n (x)dx−ubottom

n (x)dx = 0 (3.16)

where ubottom
n corresponds to the displacement at the interface along the direction of utop

n . It means that

ubottom
n is not related to the direction of the normal to the interface.

By integrating Eq. (3.15), Equation (3.16) is written as follows:

αh∇.utop
tang +utop

tang∇.(αh) = ubottom
n −utop

n (3.17)

By considering that the variations at the interface are negligible with time, the relationship between

displacement ubottom
n and the one along the direction of the interface, uslip is:

ubottom
n =−uslip∇.(h) (3.18)
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Let us introduce the parameter β related to the zone of disbonding being the ratio of the slide velocity at

the interface to the tangential velocity at the surface:

β =
uslip

utop
tang

(3.19)

Thus, the relation between the normal velocity at the bottom and the tangential velocity at the top can be

written as follows:

ubottom
n =−βutop

tang∇.(h) (3.20)

Assuming that α is constant and h varies along the layer, equation 3.17 then becomes:

αh∇.utop
tang +(α +β )utop

tang∇.(h) =−utop
n (3.21)

To solve this equation, we decided to apply an iterative system that can only be valid if ubottom
n is small

enough. To do this, we rewrote equation 3.21 as a set of n equations using a perturbation approach so that

h = h0 +h1 + ...+hn with hn−1 << hn :

h0 =−
utop

n

α∇.(utop
tang)

h1 =−
utop

n +(α +β )utop
tang∇.(h0)

α∇.(utop
tang)

...

hn =−
utop

n +(α +β )utop
tang∇.(hn−1)

α∇.(utop
tang)

(3.22)

This set of equations is implemented in TSM so that the user sets the α and β parameters and the

number of iterations n from which the solution converges. A more complex solution that varies the pair

of parameters in a stochastic way would also be interesting to implement. This system is solved by

minimizing the RMS calculated from the values hn and hn−1:

RMS =

√
1
n
×∑(hn−hn−1)2, (3.23)

This relation is valid only if the divergence of tangential velocity at the surface is significant. Indeed, low

values (which reflect a homogeneous deformation) would lead to an overestimation of the values of h. It

is therefore necessary to have at least significant divergence values in order to get consistent results of the

landslide thickness. For the next calculation, the divergence of the tangential field was filtered from its

low values by considering any value less than two standard deviations as homogeneous deformation.
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Figure 3.17: Profiles (located in Figure 3.18) of the ground surface (black line) and profiles of the sliding surface (red dots). The thickness was calculated without taking into account a
disbonding zone. α is equal to 1 which refers to a single sliding block. It was computed from the correlation results of the pair-wise images dating from February 11, 2020 and April
13, 2020. N, S, W, E stand for North, South, West, East respectively.
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4.2.2 Results and discussion

Thickness calculated between February 11, 2020 and April 13, 2020 Three profiles, outlined in

the preferred tangential direction and located in Figure 3.18, are shown in Figure 3.17. The thickness

values have been averaged in an ellipse set by the user in order to be able to quickly average in a preferred

direction. Here, the values were averaged in a radius of 1 m around the central point and extracted so

that there is one point every meter along the profile (user-specified parameter). We used α = 1 with

no disbonding zone as a first approximation. The maximum thickness calculated along the profiles is

6.3 m. Remember that the thickness is measured perpendicular to the topographic surface. A sliding

lobe profile is drawn along the P3-P4 profile between points Q4 and Q5. However, it is not visible on

profile P5-P6 because too few points are transferred there. From point Q6 to the end of the profile in P5, a

small thickness of h (< 1 m) is calculated and echoes the highly deformed zone in which compression

and extension alternates. We can therefore argue that from point Q6 to P5, the zone has undergone a very

superficial movement which may be similar to a translational slide.

The thickness values were also estimated by using several time intervals in which the event occurred. For

time intervals larger than 31 days (i.e., thumbnails from H to L), the estimated thicknesses show a similar

distribution. For time intervals less than 31 days, the estimated thicknesses shows a finer distribution.

Further analysis will lead to the analysis of the stability of the moving mass.

Thickness sensitivity Two a priori unknown parameters are introduced in the equation of the calculation

of the thickness h (Equation 3.21): the α parameter which is a parameter related to the rheology of the

material and thus to its mechanical behavior, and the β parameter which is a geometrical parameter related

to the disbonding zone. In order to evaluate the influence of these parameters on the thickness estimation,

we were interested in the P4-P5 profile in which the sliding lobe is the most visible. We then modified the

parameters one after the other. Figure 3.19 shows the influence of the rheological parameter α on the

maximum and average thickness calculated along the P3-P4 profile without taking into account any zone

of disbonding (Equation 3.14). As we can see the parameter α has an important role on the calculation

of the thickness and thus on the estimation of the volume involved (section 4.3). A difference of 6 m is

calculated between a mass with a linear velocity profile and a mass assumed to be a rigid sliding block.

However, whatever the α parameter chosen, the spatial pattern is the same as also observed by Booth

et al. (2013). This means that even if the measurement cannot be constrained by an a priori on α , it will

still be possible to spatially highlight the most active, shallowest and deepest areas, thus allowing the

landslide to be mapped. The influence of the parameter β has been tested on some points of the P3-P4

profile which seem to belong to the upper part of the sliding surface. Indeed, this parameter only matters

when there is a large depth gradient. The depth of this zone was calculated at different values of parameter

β and at α arbitrarily equal to 1. β ranges from 0 to 1 to be in accordance with the fact that the tangential

displacement at the surface is higher than the displacement along the interface. A value close to zero

therefore means that there is no or little discontinuity (i.e., θ ≈ 0, Figure 3.16b). As shown in Figure

3.20, few modifications are introduced by β but they confirm the physical meaning of this extra term. The
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Figure 3.18: Thickness computation with the parameters α = 1 without including a zone of disbonding and localisation of
the profiles P1-P2, P3-P4, P5-P6 and the specific points Qi added as reference points. The thickness was calculated from the
displacement fields of the pair-wise images dating from February 11, 2020 and April 13, 2020. Green lines indicate the measured
dispersion. Red dots indicate specific topographic target locations (see Figure 3.2) and red lines show the lateral and top limits of
the landslide (see Figure 3.1). The black line shows the forestry track while the brown polygons highlight the apparent bedrock.

Figure 3.19: Maximum and mean thickness calculated over the profile P3-P4. Each pair of values are related to a rheological
parameter. A value of 1/2 refers to a linear vertical velocity profile, a 2/3 value stands for a Newtonian viscous flow, a value
between 2/3 and 1 means a plug flow and value equal to 1 means a rigid sliding block.

114



Chapter 3 A stereoscopic model for landslide analysis: Application to the Montgombert landslide

Figure 3.20: Zoom on the P3-P4 profile at the top of the sliding surface. The thickness is calculated according to several beta
values. Higher β values (superior to 1) are mathematically possible but they do not have physical meaning.

introduction of this refinement is only for a more complete method. As explained, this parameter only

matters in particular cases, as close to regions where the scarp is cutting the surface.

Interpolation The calculation proposed in TSM is a discrete calculation which happens to be very

sensitive to noise. Several interpolation and smoothing methods are proposed in the literature such as

polynomial fitting (Tang et al., 2020) or statistical operator such as Krigging method. However, they are

not integrated by default in the calculation of thickness in TSM. Indeed, the calculation of the sliding

surface depth requires high divergence values in order not to integrate extreme values that would have

no real meaning. This implies that the calculation is performed in areas where the deformations are not

homogeneous. Therefore, interpolating values could lead to misinterpretation.

Used in-situ information The results presented above were realized with a set of α and β parameters

that designate a specific behavior and geometry. Finding out which parameter is best suited to the data

and the study site requires external data such as geophysical or geotechnical data even if it is often

very difficult to obtain those point data. Figure 3.21 shows the geotechnical profiles drawn in 2018

corresponding to the moving zone of 2020 detected by time lapse photography. As a result, at least five

sliding surfaces are involved in the Montgombert slide. The thickness of the sliding surfaces at points Q1,

Q2 is measured, from the geotechnical profiles, at 3 m and 10 m respectively. The associated thickness

calculated by photography time lapse, if we consider a movement that is similar to a rigid block (α = 1),

are respectively, 1.3 m and 2.4 m. The values for 2018 and 2020 are more or less of the same order of

magnitude, but there remains one notable difference. This can be explained by several interpretations. The

most likely of which is to assume that the first slide lobe has been retrogressing since 2018. Indeed several

115



Chapter 3 A stereoscopic model for landslide analysis: Application to the Montgombert landslide

Figure 3.21: Geotechnical profile carried out by Mathy and Lorier (2018) as part of the monitoring of the Montgbombert
landslide. The continuous line represents the topographic surface of the natural terrain in 2016. The dotted lines represent
slide lobes. Points Q1, Q2 and Q3 are markers whose location is given in Figure 3.18. Incl. means inclinometer and Pz. is for
piezometer. The blue dotted line indicates a potential water level revealed by the piezometric measurements.

indicators show this direction: (1) the area of detachment initially drawn below point Q2, is detected now,

by time-lapse photography, above this point; (2) the analysis of the deformation shows that the landslide

is quite homogeneous in the central part; (3) a shallow thickness is consistent with an interface rising to

the surface. In addition, the piezometric survey revealed the presence of a groundwater level at a depth of

18 m and a resurgence was noticed at Q1. As observed by Mathy and Lorier (2018), the material is mainly

composed of mica shale scree. When the latter is saturated with water it gives rise to regular falls of

material. The movements detected at the bottom of point Q4 and thus of point Q1 could then be detected

as a result of surface changes due to water infiltration. It is therefore consistent with a shallow sliding.

4.3 Volume estimation

Estimating the volume of a landslide or rock mass is important for anticipating disaster scenarios by

quantifying the potential damage and implications. Several techniques have been developed and approved.

4.3.1 Geometrical relationships

The geometrical relations are based on the geometrical shape of the sliding surface in the case of purely

rotational movement. The most common way to calculate a volume is to consider the landslide as having

a half ellipsoid shape (Cruden and Varnes, 1996). Let us consider Ve the volume of the moving mass, hmax

the maximum depth of the landslide surface perpendicular to the surface topography, L and W the length

and width of a half ellipsoid along the slope. The relationship between these variables is expressed in the
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Figure 3.22: Schematic representation of the various parameters included in the geometrical relationships. (a) Schematic
representation from Meier et al. (2020) for the computation of the volume by the half ellispoid and the elliptical paraboloid
methods. W is the width of a half ellipsoid along the slope. Lrh and Wrh are respectively the horizontal length and width of the
shape along the horizontal. Arh is the associated surface area. zmax is the maximum depth along the vertical. (b) Schematic
representation from Nikolaeva et al. (2014). A, B and C are the ellipsoid major axis, respectively, in the X, Y and Z directions. a
is the major axis of the sliding plane in the X direction. h is the distance between the plane of the landslide surface.

following manner:

Ve =
1

6
π.hmax.W.L (3.24)

By converting these variables into horizontal values, equation 3.24 becomes:

Ve ≈
2

3
.Ah.zmax (3.25)

where zmax is the maximum depth along the vertical assuming that zmax ≈ hmax/cos(β ) with β the average

slope angle. Ah is the surface area defined as Ah = π.Lh.Wh which are respectively the horizontal length

and width as shown in Figure 3.22. Another geometrical shape can also be taken into account, that of

an elliptical paraboloid which has no quasi vertical limits. This is an approach that is often considered

to be the most suitable and realistic (Jaboyedoff et al., 2019; Meier et al., 2020). Let Vp be the volume

calculated from an elliptical paraboloid shape. The volume is defined as:

Vp =
1

8
.π.Wh.Lh.zmax (3.26)

which can be approximated as:

Vp ≈
1

2
.π.Ah.zmax (3.27)

Nikolaeva et al. (2014) propose a new, more complex configuration by not considering a purely rotational

movement. They add a translational component to the geometry of an ellipsoid. This means that movement

consists of a rotational and a translational component. This new component is an ellispoidal segment

constrained by two parallel planes which are the surface of the slide and the plane of detachment. Let us

consider Vt the volume associated to this new configuration. It is defined as:

Vt = π.A.B.(h−
h3

3C2) (3.28)
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where h is the sliding surface depth, A and B the two major axes of the ellipsoid in the XY plane, and C is

the major axis in the Z direction.

4.3.2 Empirical relationship between the volume and the surface area

The volume can also be calculated by empirical laws that relate it to the surface area. This method is

based on landslide erosion rates and it is governed by the power law below (Larsen et al., 2010; Nikolaeva

et al., 2014):

Vr = η .Aγ (3.29)

where η is the intercept and γ is the scaling component. We can already see that this relationship, although

geometric, does not depend on the topography or the heterogeneity of the material under consideration

(Guzzetti et al., 2008; Nikolaeva et al., 2014). Measurements carried out on a number of data sets (Larsen

et al., 2010) have highlighted two ranges of values for γ , the first of which is [1.1-1.3] and applies to

shallow soil-based landslides. The second value range is [1.3-1.6] and applies to landslides with bedrock

failure. It is noted that a small variation in γ can drastically change the volume estimate.

4.3.3 Volume estimation of the Montgombert landslide

To estimate the volume of the Montgombert slip of 2020 we applied both the geometrical relationship

and the empirical relationship (Figure 3.23).To calculate the volume we considered the dimensions of

the unstable part highlighted by image analysis: Lh = 64 m, Wh = 72 m. The maximum vertical surface

depth was averaged to zmax = 7.2 m. Hence, the volume estimated by the half ellipsoid method equal to

17261 m3 and the one estimated by the elliptic paraboloid equal to 12946 m3.

Considering the empirical relationships, we used several γ and η constants derived from power laws

established by different authors (Table 3.1) so that the area of the slip surface is integrated into the interval

that the authors used. The surface area calculated is equal to 3619 m2. Figure 3.23 displays the volumes

estimated from the different methods. Measurements with a γ constant less than 1.3 underestimate the

volume compared to geometric methods. Only the power laws whose gamma is greater than 1.3 estimate

with the same order of magnitude as the geometrical measurements. According to Larsen et al. (2010), a

surface area of the order of 103 m2 with a moving mass thickness of several meters would correspond to a

bedrock landslide scar. From observations and knowledge of the terrain, the landslide that affected the

Montgombert landslide in 2020 is more similar to a bedrock landslide deposits.
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Figure 3.23: Estimated volume of the moving mass during the acceleration 2020 at the Montgombert landslide based on previous
published empirical relationships.

Table 3.1: Constants from the surface area - volume power law established by several authors after Guzzetti et al. (2009) and
Michel et al. (2020).

η γ
Range of values for the surface
area [m2]

Number of
landslide Source

0.1479 1.368 2.3x100 - 1.9x105 207 Simonett (1967)
1.826 0.898 5x101 - 1.6x104 1019 Larsen and Torres-Sanchez (1998)
0.155 1.091 7.0x102 - 1.2x105 124 Guthrie and Evans (2004)

0.0844 1.4324 2.0x100 - 1.0x109 539 Guzzetti et al. (2008)
0.074 1.145 2.0x100 - 1.0x109 677 Guzzetti et al. (2009)
0.05 1.5 4.0x102 - 1.0x105 4984 Hovius et al. (1997)
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Conclusions

This chapter was devoted to the development of two new methods allowing: (1) to estimate the 3D

displacement fields using a steresoscopic system and the image correlation technique applied to time

series of photographs, and (2) to estimate the deformation and the depth of the sliding mass only from

surface imaging.

The displacements calculated either from a monoscopic approach or from a stereoscopic system, are

consistent with in-situ data. The two monosocopic approaches, with different angle of views and distance

to the slope, gave results to within ten centimeters. The position of the camera and the estimation of

the intrinsic camera parameters may explain the difference. In addition, we have noticed that the metric

displacements reconstructed by stereoscopy are overestimated compared to those calculated by mono-

scopic approach when the displacements are large (greater than 500 mm). A study conducted purely

on synthetic data would be relevant in order to control all the input parameters of the processing and

understand the overestimation. To better understand the landslide behavior, we carried out an analysis

of the deformation field performed through the tangential vector fields and the components normal to

the local surfaces. It showed that the major advantage of the stereoscopic technique is to be able to take

into account the tangential and normal displacements as opposed to the monoscopic approach which only

considers displacements that are mostly tangential to the surface. The normal displacements being not

negligible in our case, the monoscopic method proves to be less adapted than the stereoscopic method.

Determining the depth field by a technique based on terrestrial optical tools is, by contrast with boreholes,

much lighter, and relies on easily affordable material compared to geophysical monitoring. We proposed a

new methodology to estimate the thickness of a moving mass by considering an in-compressible fluid. Two

parameters come into play: the rheological factor α and the geometrical parameter β . The α parameter

determines the velocity profile along the slope and controls depth values. The β parameter seems to have

little influence in our case, assuming that a disbonding zone may not be appropriate here. A maximum

depth of about 6 m is calculated for α equal to 1 (i.e., sliding rigid block) whereas it reach 12 m for α

equal to 1/2 (i.e., linear vertical velocity profile). These values remains of the order of those estimated by

geotechnical profiles. The volume involved in the March 2020 acceleration was calculated using existing

geometrical and empirical methods. Considering a γ greater than 1.3, an averaged volume was calculated

and is 12000 m3.

This method showed the potential of using terrestrial optical imaging for the understanding of land-

slide behavior. Nerveless, to demonstrate better the influence of the β parameter, further analysis should

be performed either by using synthetic data or by considering a slide for which there are information, and

a priori, on slope deformation.
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Chapter 4

Pre- and post-event monitoring analysis:
application to the Cliets rockslide (Savoie,
French Alps)

This chapter presents a multi-technique analysis applied to the Cliets rockslide. The analysis is

conducted by combining geological observations, meteorological data analysis, active seismics,

topographic measurements and simple physical modelling. We implement post-processing tools

to perform analysis of the relationship between the displacement and rainfall and to perform

kinematics and mechanical analysis. Additionally, we present the application of TSM to image

time series acquired with a monsocopic camera during the pre-failure stage and the post-event

monitoring.

This chapter is divided in two sections: a first section deals with the pre-event study of

the movement of Cliets using the multi-technique approach. The in-situ data, meteorological data,

seismological and geophysical data were acquired in an operational context and were generated by

the SAGE company in collaboration with the Savoie Departmental Council.

The second section deals with the photography time lapse monitoring that was carried out in

parallel with the pre-event study. We present the data acquired at the different stages of the

evolution of the rockslide (event-monitoring, failure monitoring and post-event monitoring) and

the type of information we can extract from it.

This first section is based on a submitted article entitled: Desrues M, Malet JP, Brenguier O, Carrier

A, Mathy A, Lorier L (2020) Landslide dynamics inferred from in-situ measurements: the Cliets rockslide

(Savoie, French Alps).

In this section, the term purge refers to the removal of unstable blocks and masses without causing

destabilisation of the surrounding environment.
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1 Case study in the context of monitoring and early-warning

1.1 Introduction

Gravitational instabilities affecting hard rocks have various forms such as topples, rockslides and rockfalls

(Varnes, 1978; Hoek and Bray, 1981; Hutchinson, J.N., 1988). Toppling is mainly observed in large

slopes in response to Quaternary glacial retreat and slope stress redistribution, river erosion and thus slope

debuttressing (Grämiger et al., 2017). Toppling initiated by glacial retreat was observed at the La Clapière

landslide (France) which involved about 50 millions m3 of material (Follacci et al., 1988; Vengeon, 1998),

at the Siwalik Hills (Nepal) (Tamrakar et al., 2002) or at the Mount Breakenridge area (Canada) (Nichol

et al., 2002).

This gravitational phenomena occurs on rock with regularly spaced discontinuities whose dip is opposed

to the slope. This geological structure has the particularity of forming a series of columns. Goodman and

Bray (1976) define three modes of toppling: (1) a flexural toppling which is characterized by a continuous

break in flexure of the columns. It is a retrogressive movement which involves predominantly schists and

foliated (phyllite) rocks. (2) a block toppling which involves individual columns divided by spaced joints.

(3) a block flexure toppling which is defined by a pseudo-continuous flexure along columns divided by

numerous joints. Column stability is then controlled by the slope geometry, the rock properties and the

extent of the discontinuities (Rotaru et al., 2007). Consequently toppling can occur if the force applied

by the center of gravity overhangs the base of the columns while sliding can occur if the thrust becomes

higher than the ratio of normal strength applied to the columns and if it exceeds the angle of friction

(Goodman and Bray, 1976; Wyllie, 1980).

Generally, toppling are analyzed using numerical modelling to analyse the column stability based on

Goodman and Bray’s limit equilibrium technique (Goodman and Bray, 1976). It suggests a discretization

of the columns which leads us to consider them as free to rotate around their base (Nichol, 2000; Nichol

et al., 2002; Merrien-Soukatchoff et al., 2001; Pereira et al., 2013). An analytical solution is proposed by

Guo et al. (2017) for a toppling failure triggered by an earthquake. Here we are only interested in the

contribution of a kinematic study in the understanding of toppling movements which is the common way

to monitor an instability in an operational context.

Slope motion can reveal the predominant type of movement. For sliding-type processes, surface ve-

locity indicates an overturning of the block topples according to the toppled beds (Cruden and Varnes,

1996; Nichol et al., 2002; Glueer et al., 2019) whereas for toppling processes, surface velocity depends on

the geometry of the surface of rupture (Glastonbury and Fell, 2010; Glueer et al., 2019). Several forcing

factors control the slope destabilization possibly leading to another kinematic regime of even catastrophic

failures (Cruden and Varnes, 1996; Rose and Hungr, 2007; Oppikofer et al., 2008; Jesus et al., 2018).

Among them are the geological effects driven by earthquakes (material dilatation leading to fast water
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ingress), water-level changes (rainfall, snowmelt) and by the presence of discontinuities or faults; the

human effects such as deforestation or drainage. These events are reflected in changes in trend when

looking at the evolution of displacement velocity over time. These events can be periodical (e.g annual or

seasonal) or sudden (extreme events) (Rose and Hungr, 2007; Guo et al., 2017). When the velocity trend

is clear and is only slightly affected by external factors, we can hypothesize that the motion is governed

by a mechanical action in which external destabilizing factors play only a small role.

Forecasting the time to failure is crucial to take decisions such as closing a road or evacuating citi-

zens. A robust approach is proposed by Voight (1989) considering that surface displacements present

a vertical asymptote close to the failure time. It suggests that deformation evolves linearly with time

and becomes independent of external factors (Voight, 1989; Favre et al., 1992; Rose and Hungr, 2007).

Generally, if slope materials undergo deformation, changes of material properties or changes in slope

geometry, the measured displacements take the form of a standard creep curve (Petley, 2004; Federico

et al., 2012; Crosta and Agliardi, 2003). This curve is divided into three stages, based on the strain-time

relationships for the creep of materials: the first stage corresponds to strain hardening, the second stage

corresponds with a steady state where velocity is constant and the third stage corresponds to accelerating

creep. These stages are summarized by introducing the notions of primary, secondary and tertiary creep

(Emery, 1978). Recently, Scoppettuolo et al. (2020) propose another approach based on the partitioning

of the displacement curve in time according to triggering factors. 4 trends are highlighted: the first one

corresponds to the linear behavior, the second one to a transition phase between two stable stages, the

third trend is a response of an occasional event and the last trend is the failure stage.

To understand the mechanisms involved which depend on the geometry of the instability and the material

properties, physical approaches are considered (Mirgon et al., 1993). A physical basis is applied to

simulate the kinematics such as viscoplastic models for clayey materials (Angeli et al., 1996; Van Asch

and Malet, 2009; Picarelli et al., 2008) and rate-weakening friction models (Helmstetter et al., 2004;

Handwerger et al., 2016).

In this work, we analyse the mechanical behavior of the Cliets unstable slope which is representa-

tive of gravitational instabilities observed in the micaschists of the Arly Valley, Central French Alps

(Kasperski, 2008). This unstable slope is very interesting because several acceleration phases were ob-

served before the final acceleration toward failure in a toppling-sliding mode of motion (Mathy and Lorier,

2013, 2018). The surface displacement time series is analyzed for the last two failures which occurred on

23 January 2014 and 9 February 2019, and is compared to the long-term topographic measurement data

sets acquired since 2004. A simple mechanical analysis is proposed by using a combination of friction

models and forecasting methods.

We first present the geological setting of the unstable slope (section 1.2) and the observations col-

lected in-situ (section 1.3). The role of, respectively, the geological structures and the triggering factors is
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analyzed (section 1.4). Time to failure is then analyzed (section 1.5) and is followed by a more general

discussion (section 1.6).

1.2 Geological setting of the study area

1.2.1 Context of the Arly Valley

The Arly Valley is located in the Savoie department in the Central French Alps (Figure 4.1). The valley

is an important infrastructure connecting to many ski resorts. About 4650 vehicles per day on average

are using this road (data set in 2001 (Pothérat, 2005; Lorier et al., 2019)). This narrow valley is the

object of many landslides, regular and sometimes very important which can affect the road and the Arly

riverbed. The first documented event (the ’Moulin Ravier’ landslide) occurred in 1955 involving about

17 millions m3 (Goguel, 1957). Since then, several events generally affecting the RD1212 road have

been recorded (Baudin, 2015) such as the landslides of the Panissats Dessous in 2014 and 2016, regular

landslides at the Nant Cortay localization (≤ 10000 m3) and the Montgombert landslide in 2016 and 2018

(Figure 4.1). Jeannin (2001) counted in 2001 a total of 111 landslides from 1 to more than 10000 m3

(overhanging micaceous shales) in the high gorges; in the middle gorges 19 landslides of more than

1 m3 and in the lower gorges 23 landslides. Today, the road is still closed because of the last landslide

event which occurred in February 2019 involving 10000 m3. This landslide called the Cliets landslide

is situated on the left bank of the Arly river. Generally the presence of steep rock slopes and of dense

forest cover make the valley difficult to monitor and gravitational instabilities still represent the major issue.

According to the 1/50000◦ geological map (Figure 4.1), the left bank of the Arly valley is located

in the western branch of the Belledonne crystalline massif. The "satin series" is composed of varied

micaschists with carbonaceous schists coming from an old metamorphosed detrital series. Because of

its mineralogical composition marked by the presence of phyllite minerals, the rock is very brittle and

very altered in the presence of water (Pothérat, 2005; Baudin, 2015). The right bank of the Arly valley is

composed of sedimentary coal sedimentary rocks that are above these crystalline rocks (Jeannin, 2001;

Dussauge-Peisser et al., 2002).

1.2.2 The Cliets unstable slope in the Arly Valley

The Cliets unstable slope (45.77 ◦, 6.486 ◦) from 650 to 775 m in elevation is crossed by a 60 m long

tunnel (Figure 4.2) in order to protect the road. Many rockfall events have been documented in December

1996 (1500 m3), October 2003 (3000 m3), January 2014 (9000 m3) and February 2019 (10000 m3). The

source areas of these rockfalls are delineated in Figure 4.2 (Kasperski, 2008; Pothérat, 2005; Mathy and

Lorier, 2013). The area extends over a length of about 72 m and a width of 80 m. To protect the road,

geotechnical screws were drilled in 2003 and rock purges were carried out between 2003 and 2004.
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Figure 4.1: Geology context of the Arly valley with (a) the localization of the Cliets rock slide and its geological context
simplified from (Baudin, 2015) and (b) a geological cross-section of the upper Arly gorges (which localization is indicated in (a))
modified from (Dussauge-Peisser et al., 2002; Jeannin, 2001) (source http://infoterre.brgm.fr/).
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Figure 4.2: Mapping of the antecedent rockfalls at the Cliets unstable slope. (a) Rockfall sources are shown on the topographic
map of July 2018. (b) Photographs of the July 2013 and the December 2018 rockfalls. ml stands for linear meter.
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1.2.3 Local geology and discontinuity of the Cliets unstable slope

The Cliets unstable slope is composed of micaschist which formed from an old metamorphic folded

detritic sedimentary series (cf 1.2.1). The alternation of sandstone with black micaschist provides a mix

of hardly consolidated and soft rocks sensitive to internal deformation and weathering. The rock masses

are subject to toppling as shown in Figure 4.2. The sub-vertical schistosity tilts by gravity towards West

and the dip is towards East with an average of 45 ◦. Consequently, the deep deformation induces a failure

surface constituting a "rock topple - rock slide" complex (Cruden et al., 1993). The area concerned by

toppling is estimated to be around 30 m width, 40 m long along the line of largest slope and on average

10 m depth (Mathy and Lorier, 2018). Furthermore, no surface flow networks are observed for the

periods 2004−2014 and 2018−2019 thus suggesting that water infiltrates directly into the sub-vertical

discontinuities.

1.3 Data

1.3.1 Chronology of the site’s instrumentation

As shown in Figure 1.2.2, several areas of the Cliets site have been destabilized over time. It was therefore

necessary to adjust the techniques according to the spatial extent of the movement and its dynamics. This

is why the Cliets site has gradually been instrumented. Table 4.1 summarizes the instruments put in place

from 1996 to 2019. The instruments generally used in an operational context are the topographic targets

whose position is surveyed on a regular basis (annually, monthly or hourly). This survey can be done

manually if the frequency of measurement is low enough (annual survey). If the frequency increases

(hourly survey), an automatic theodolite monitoring is preferable. Theodolite instrumentation is often

accompanied by extensometric measurements to monitor the opening or closing of rock fracture. They

are often connected to road closure lights to protect lives. At the same time, a weather station close to the

rockslide was deployed and geological observations as well as stereo−interpretation were realized in the

course of 2003 (Pothérat, 2005; Kasperski, 2008).

Long-term monitoring of the Cliets provides a very precise vision of the activity of the rock move-

ment and the various hazards show that the road remains subject and vulnerable to the threat of landslides

of several thousand cubic meters. In our analysis of the two last events of the Cliets rockslide (periods 3

and 6 according to Table 4.1), we relied on geological and geophysical measurements, on topographical

data and data that would indicate triggering conditions.
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Table 4.1: Chronology of the site’s instrumentation

Period Label Instrumentation Averaged velocity (from topographic measurements) Source
Vertical Planimetric

1996 - 2003 1
5 geodetic references + 9 extensome-
ters for monitoring the transverse
opening of rock corridors

200 mm.year−1

(upper part)
100 mm.year−1

(North part)
Kasperski (2008)

20 mm.year−1

(middle part)

30-
40 mm.year−1

(South part)

2000 - 2003 2
10 geodesic references to complete
the previous network (annually mea-
sured)

Dec. 2003 and Feb. 2004 Purges Loss of instruments

2004 - 2014 3 9 topographic targets (monthly mea-
sured) 35 mm.year−1 47 mm.year−1 Mathy and Lorier

(2013)

2013 - 2014 4
10 additional topographic targets
measured by total station + exten-
someters

June 2014 Purges Loss of instruments

2014 - 2018 5
10 topographic targets measured
by total station (measured every
3hours) + extensometers

1.8 mm.month−1

(during 2014)
2.6 mm.month−1

(during 2014)
Mathy and Lorier
(2014)

2018 - 2019 6
30 topographic targets measured by
total station + extensometers + fixed
permanent camera

2.8 mm.day−1

(rocky spur)
6.2 mmday−1

(rocky spur)
Mathy and Lorier
(2018)
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1.3.2 Rock discontinuity detection and mapping

Geological observations The geological model of the slope is inferred from field observations of the

discontinuities, stereoscopic image analysis and geophysical surveys (Goguel, 1957; Pothérat, 2005;

Kasperski, 2008; Mathy and Lorier, 2013; Baudin, 2015; Mathy and Lorier, 2018). Rock discontinuities

were mapped at different periods in 2004, 2013−2014 and 2018 and are presented in section 1.4.1. Three

major zones are highlighted:

• an active zone uphill where the two rockfalls of 1996 and 2003 occurred. In 2013, the presence

of voids are noticed and observations concluded to a constant toppling motion. Benchmark 4 is

situated in this zone (topographic network of the period 3 - see Figure 1.3.3).

• a rocky spur where the last rockfalls occurred. Considered as a stable area in 2013, some discontinu-

ities are noticed in 2018 and deformation of the geotechnical screws (benchmark 12 - topographic

network of the period 6) are observed.

• an active zone downhill where visible cracks are observed (benchmarks 6 and 7 - topographic

network of the period 3 ). In 2018, an unstable area is observed close to the rocky spur.

Seismic survey In 2018, a geophysical survey has been conducted by the SAGE company to determine

the depth of the soft rock prone to rock falls (Mathy and Lorier, 2018). Three seismic profiles (P1, P2 and

P3) of 60 ml were carried out using hammer blow as seismic source. The data were processed using the

classical seismic refraction method (plus-minus method) (Figure 4.3). Analysis of the P-wave velocity

highlights a seismic interface between 10 to 15 m among 730 and 745 m of altitude and between 5 to 8 m

among 700 and 730 m of altitude. This layer is characterized by velocities close to 800 m.s−1.

1.3.3 Topographic measurements

Displacements of 10 benchmarks have been monitored at a monthly frequency from the 7 September

2004 to the 31 January 2014 (period 3). The array of benchmark is shown in Figure 4.3. Because of

an acceleration of benchmark displacements in 2013, a new topographical network composed of 10

benchmarks was setup on 3 December 2013 and displacements were measured hourly by an automatic

total station till the 14 January 2014 (period 4). The total station is located in the right bank of the Arly

river in front of the Cliets tunnel. On 28 July 2018, another new topographic network of 40 benchmarks

was installed (Figure 4.3), and displacements are measured hourly by an automatic total station till June

2019 (period 6). To be consistent with the rest of data (1.3.4), the displacement and velocity are expressed

in a daily time step. The associated measurement error is calculated on reference targets that are stable

over time. The error is of the order of few millimeters for both periods.

1.3.4 Forcing factors

The daily gross rainfall observed by three Meteo-France meteorological stations (Col des Saisies, Al-

bertville, Cliets, Figure 4.4a)) over the period 2004−2019 is used to define the relation between rainfall
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Figure 4.3: Topographic network set up to monitor the landslide activity. (Left) Network associated to the periods 3 and 4 on
the photography from December 2013. (Right) Network associated to the periods 5 (approximated positions) and 6 on the
photography from July 2018. P3, P2 and P1 represent seismic profiles realized in 2018 (cf. section 1.3.2).

and rock slide events. The 24−h meteorological stations Col des Saisies and Albertville, available for the

period 2004−2018 are used for the analysis. For the period 2018−2019, the 1−h meteorological station

Les Cliets is added. To integrate all data, hourly data are converted to daily data and a weighted average is

calculated by the Inverse Distance Weighting method. Table 4.2 summarizes the characteristics to each

station. The Mean Annual Precipitation (MAP) associated with the total weighted rainfall (Rw) for the

period 2004−2019 is 1227 mm. The effective rainfall is calculated according to Oudin et al. (2005) in

order to estimate the contribution of meteorological water. The water balance is written as:

RE = Rw−ET P−Rumax (4.1)

where RE is the effective rainfall (mm), Rw is the total weighted rainfall (mm), ET P is the evapotranspi-

ration (mm) and Rumax is the ground water storage (mm). The MAP of the weighted effective rainfall

is 646 mm. We can point out that the rockslides at the beginning of the year (Jan. 2014 and Feb. 2019)

precede a year with a calculated annual effective rainfall of more than 800 mm.

Water infiltration can also be related to snowmelt. The degree-day method (Van Mullem et al., 2004) is

used to approximate snowmelt fluxes at daily time steps (Moussav et al., 1989; Kustas et al., 1994; Hock,

2003):

M =C(t∗−Tb) (4.2)

where M is the total melt rate (cm.day−1), C is the melt factor expressed (cm.day−1.◦C), t∗ is the average

daily temperature (◦C) and Tb is the base temperature (usually equals to 0◦C). The melt factor varies
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Figure 4.4: Forcing factors related to the Cliets rockslide. (a) Weather station locations. (b) Location of recorded earthquakes
around the Cliets site. The size of the seismic event indicators (circles) corresponds to the magnitude and their colors show the
year in which they were recorded.

Table 4.2: Characteristics of the meteorological stations used in the Cliets rockslide analysis: time sampling, distance from the
slip and weighting coefficients.

Characteristics Col des Saisies Albertville Cliets

Observation time sampling daily daily hourly
Horizontal distance to unstable slope (km) 3.9 13 0.8
Elevation difference to unstable slope (m) 904 377 0
Weight (2004-2018) 0.77 0.23 /
Weight (2018-2019) 0.15 0.23 0.8

typically between 0.35 and 0.60 cm.day−1.◦C−1 (Kustas et al., 1994) and has a high spatial and temporal

variability. According to Moussav et al. (1989), the melt factor is taken to 0.47 cm.day−1.◦C−1. The

snowmelt effective rainfall is calculated adding the melt contribution to the rainfall excess.

Seismic forcing is estimated by analysing the temporal occurrence of earthquakes for the period

2004−2019 in a 80 km2 area centered on the unstable slope (Engels and Grunberg, 2013) (Figure 4.4b)).

The maximum earthquake magnitude recorded is 3.6 close to Albertville (Figure 4.4b)) in October 2015.

During the first period (Dec. 2014 to Jan. 2014) 48 earthquakes of any magnitude are recorded among 28

with ML > 2. During the second period (Aug. 2018 to Feb. 2019) 12 seismic events of any magnitude

are recorded among 3 with ML > 2. The mean of the magnitudes over the all periods reaches 1.8 and the

distance to the Cliets landslide is in average 16 km. Based on these results, no direct relationship can be

made between seismic and gravitational events and we will continue with the rainfall-motion relationship.
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1.4 Role of geological structures and of the triggers

1.4.1 Predisposing factors: geological structures

From a regional point of view, three major families of structures were highlighted by stereo photo

interpretation (Kasperski, 2008): (1) faults (dip direction) N50−60◦ on the right bank of the Arly river,

(2) incidents N110− 120◦ of greater length and (3) faults N80◦ which are transverse to the Arly river.

Kasperski (2008) also noticed a fault N20−30◦ which runs the Arly river in the east and passes upstream

of the unstable zone.

From a local point of view, according to the field observations three main joint sets are observed (Kasperski,

2008; Mathy and Lorier, 2013, 2018) and are summarized in Figure 4.5:

• S0 dips sub-vertically towards the SE (strike - dip angle: N30-90 ◦). This discontinuity set matches

the schistosity and correlates with the direction of the main scarp. Its direction is consistent with

those of the regional faults.

• F1 dips towards the W with mostly directions of N140-50 ◦ at the base of the slope and N140-90◦

at the top.

• F2 dips towards the S (N70-70 ◦). This set was only observed during the period 3. Its direction gets

closer to regional faults.

• D1 dips towards W (N142-46 ◦). This discontinuity is observed as of 2018.

Further several discontinuities were observed in 2013 prior to the rockslide of 2014 in Figure 4.5a (Mathy

and Lorier, 2018). There are summarized with the notation Dn and are documented in the stereonet (Figure

4.5b). The green plan is related to the toppling foliation. The stereonet representation highlights two major

families of discontinuities: F2 and the majority of Dn from the first family of discontinuities observed

in 2013. It indicates that the preferred sliding direction is SSE. The second family of discontinuities is

the one formed by F2 and D1 (observed only in 2018). Their direction is specific to the slip of the Cliets

in view of the regional structures. The sliding direction is therefore preferably WSW and follows the

direction of the greatest slope.

1.4.2 Triggering factors: rainfall and gravitational events

Searching for correlation among rainfall and the occurrence of gravitational events is mostly carried out on

catchment to regional scales (Keefer, 1994; Zêzere et al., 1999; Polemio and Petrucci, 2000; Marc et al.,

2018). This leads to the definition of rainfall thresholds in terms of high-intensity rainfalls or long-lasting

rainfall and can be expressed by several rain properties (intensity, duration, antecedent rainfall over several

time scales; (Zêzere et al., 1999; Guzzetti et al., 2008; Giannecchini et al., 2012; Teja et al., 2019). The

same approach is used to establish some links between earthquake magnitude and landslide occurrences

(Keefer, 1994; Rodrıguez et al., 1999; Marc et al., 2017; Martha et al., 2017).
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Figure 4.5: Structural analysis of the Cliets rockslide. (a) 3D view of the unstable slope and of the discontinuities for the two last
failure events. (b) Stereonet of the major discontinuities: S0 and F1 are observed in the main scarp area; F2 and Dn are only
observed during the period 3 (2004-2014) and D1 is observed only in 2018. Colored points are the associated poles. (c) and (d)
Topographic profiles along the slope.
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At the slope scale, linking forcing factors to slope instability requires us to introduce a new defini-

tion for a gravitational event. We thus define a gravitational event as a positive surface velocity change

between two dates. The following method and criteria are used to define what we called here a change

motion: (1) in-situ velocity observations are smoothed using a moving average; (2) knee points are

detected in the smoothed time series using Satopaa’s algorithm (Satopaa et al., 2011). The knee points are

calculated over a moving window and are always part of a convex portion of the velocity curve with an

increasing slope; (3) criteria are applied to discriminate local knee points using ∑
k
i=k−n/2 a(i)<∑

k+n/2
i=k a(i)

where n is the length of the window in which the acceleration a is calculated. n depends on the data

sampling. With this method, there is no discrimination of the results on the value of the calculated

accelerations around the knee point.

The length of the moving window depends on the data resolution. For period 6, the length of the

window is 30 samples which corresponds to a 30−day window. The window is shifted by 12 days in order

to have overlap and the possibility to detect other knee points. Figure 4.6 shows the events detected by the

knee point method for all targets for the period 6. An event is detected within 2 days, which corresponds

to the uncertainty of the method in our case related to the size of the moving window and the shift. We can

see that there are a total of 6 events detected around: October 24 2018, November 20 and 29, December

16, January 9 2019 and January 28. A spatial representation of the date of the event shows us that: 47% of

the targets have a concomitant change in velocity (targets surrounding the rocky spur), 12% of the targets

are within the uncertainty of the nearest two days, 41% of the targets have no change in velocity detected

in the 5 days before and after November 29. For period 3, the frequency of the data is not regular. The

most appropriate combination of parameters proved to be: a sample size of 13 samples for the moving

window and a step size of 5 samples. As shown in Figure 4.6 several events were not detected and this is

mainly due to the lack of data. Nevertheless a dozen events are highlighted from 2005 to 2014 including

at least three at the end of 2013 (visible on all targets).

Cross-correlation techniques are used to analyze the relation between effective rainfall and surface ve-

locity. Figure 4.7 shows the results of the cross-correlation (expressed with the Pearson coefficient) for

benchmarks whose events are the most marked for period 3 (benchmarks 6 and 7) and for benchmarks

with successful event detection for period 6 (benchmarks 12 and 36). The cross-correlation is realized

over a rolling window which size corresponds to 10 samples. Dashed lines indicate gravitational events

determined by the knee-point method. No relationship emerges for period 3; at the opposite for period

6, each gravitational event is associated with a progressive rise in the Pearson coefficient up to nearly

1.0. This suggests that motion is controlled by daily rainfall rather than by antecedent rainfall. These

observations are similar if we consider the daily gross rainfall or the snowmelt equivalent.

1.5 Analysis of slope behaviour

As already identified, the gravitational events of period 6 are mostly related to daily effective rainfall.

However, a general trend in the surface velocity profile is identified for both previous periods independently
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Figure 4.6: Effective daily rainfall (mm) reconstructed according to section 1.3.4, compared to the cumulative 3D displacements
(m) for both periods 3 (a) and 6 (b). The numbers refer to the targets located in Figure 4.3. The circles correspond to gravitational
events detected thanks to the knee point method. An example is given for period 6 in the inset of (b), over the photography of the
landslide in 2018. The points indicate topographic target positions. The colors correspond to the time of detection.
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Figure 4.7: Dependency analysis between the daily effective rainfall, reconstructed according to section 1.3.4, and the 3D surface
velocity. Correlograms are calculated over a rolling window for the two periods 3 (a) and 6 (b). A vertical dashed line indicates a
gravitational event, as defined in section 1.4.2.

of the velocity changes generated by the triggering factor (Rose and Hungr, 2007). This is why we are

interested in analysing the slope behavior from a kinematic and mechanical points of view.

1.5.1 Forecasting landslide failure

Considering a ductile material in conditions where stress and temperature are constant (e.g. third creep

stage), the time to slope failure can be determined, at first stage, by the relation linking the inverse velocity

to time (Fukuzono, 1985):
1
V

= [A(α−1)]
1

1−α (t f − t)
1

α−1 (4.3)

where A and α are constants, t f is the predicted time to slope failure and t is time. In the case where

α = 2, the fit matches with a linear trend. This simple approach often provides reliable forecasts when

used shortly before failure. (Rose and Hungr, 2007; Voight, 1989).

Here we used the surface velocity time series to predict time to slope failure (Crosta and Agliardi, 2003;

Carlà et al., 2018). As mentioned by Carlà et al. (2017), the predicted time to failure does not represent

an exact date but a possible interval time. The forecasts are impacted by the parameterization of the

time series smoothing. Here, the frequency acquisition is different from one campaign to another which

requires that data are filtered for the period 3 by applying a centered moving average windows of width

n = 5 and raw data are used for the period 6 thanks to the data quality.

For clarity, Figure 4.8 shows the inverse velocity for the benchmarks 6 and 7 for the period 3 and

benchmarks 12, 29 and 36 for the period 6 (Figure 4.8). The prediction realized from data from 2011-03-

06 to 2013-07-07, corresponding to a period of two and a half years, underestimates the time to failure
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Figure 4.8: Inverse velocity and time to failure forecast. Forecasts for (a) benchmarks 6 and 7 for the period 3; (b) benchmarks
12, 29, 36 for the period 6. The red arrows indicate the estimated time to failure computed within the time span represented by a
grey rectangle. The black arrow shows the real time of failure.

(2013-12-04 for benchmark 6 and 2014-01-11 for benchmark 7). For the period 6, only a forecast realized

a week before the failure gives a relevant estimate of the time to failure within three days and this, for the

19 benchmarks for which an acceleration is observed. A prediction on the same number of days for the

two periods could unfortunately not be made since the number of data is different from one period to the

other (e.g., five values for 48 days for period 3 and one value per day for period 6).

The period predicted for the failure ranges over 3 days from 2019-01-31 to 2019-02-09. This esti-

mated period of 3 days is narrow, and is similar for the 19 benchmarks suggesting that all portions of the

slope behave similarly from a kinematic point of view.

1.5.2 Physical model of slope behaviour

The kinematic analysis indicates the possibility to predict a realistic time interval for the slope failure.

This suggests that motion is governed primarily by gravity and that the influence of external forcing

factors is similar over time. To explain the acceleration of the displacements, we apply a simple physical

model based on sliding instability. This model permits us to differentiate a stable slow slide from an

unstable fast slide, knowing that a slope rupture occurs when the sliding surface is characterized by a

"rate-weakening" friction (Handwerger et al., 2016).

Clustering In order to model slope behaviour with a physical model, first, clusters of benchmarks with

similar motion and kinematic trend (e.g. surface displacement magnitude, azimutal displacement direction,

ratio of horizontal vs. vertical displacement, range of velocity and acceleration) and corresponding to

kinematic sub-units have to be identified. To define robust clusters, a dense network of benchmarks (at

least 10 samples) is compulsory.
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Figure 4.9: Clustering of the slope into kinematic units based on the behavior of the benchmark velocity properties.

For the period 6, 5 clusters and thus 5 kinematic units are identified from the statistical analysis of

the motion of 37 benchmarks (Figure 4.9). All clusters show a RMSE < 10−3. It can be concluded that,

for the period between the 1 st December 2018 and the day before failure: (1) the first cluster (red color in

Figure 4.9) corresponds to the upper part of the rocky spur defined in Section 1.2.3 characterized with

average velocity of 7 mm.day−1; (2) the second cluster (yellow) corresponds to the area surrounding

the rocky spur and is characterized by an averaged velocity of 2 mm.day−1; (3) the third cluster (lime)

corresponds to the lower part of the spur characterized with an average velocity of 0.6 mm.day−1; (4)

the fourth cluster (dark green) corresponds to conditionally stable units with an averaged velocity of

0.6 mm.day−1. The main difference between this cluster and the third cluster results in the shape of the

velocity curves before the rupture. The third cluster shows an acceleration of displacements one week

before the rupture date while the fourth cluster does not, confirming its stability over time. Finally, (5)

the fifth cluster (blue) corresponds to stable units with an averaged velocity of the order of 10−5 mm.day−1.

This simple spatial and temporal classification reveals that the top limit of the first cluster corresponds

to the fracture sets D1 observed in 2018 (Section 4.5). The lack of observations surrounding this area is

consistent with stable zones which suggests that the motion is highly localized. Additionally, having three

clusters in the collapsed area also suggests that the motion has been initialized at the top.

Plunge analysis As mentioned in section 1.2.3, the Cliets unstable slope presents two mechanical

behaviors of toppling and sliding along a plane. In order to estimate if one behavior predominates over

time, we use the displacement vectors to calculate the plunge angle. As detailed in Figure 4.10, the plunge

angle corresponds to the angle between the horizon and the displacement vector. This is a simplified
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Figure 4.10: Plunge angle versus time calculated for a series of benchmarks for the period 3 (2004-2014) and for the kinematic
units for the period 6 (2018-2019). The bottom figure corresponds to a zoom of the bold rectangle highlighted after 2018.

method compared to the plunge computation of Glueer et al. (2019) who used structural information such

as the slope dip direction, the friction angle and the toppling depths. For a toppling mode, the plunge

angle should increase with time, while for a sliding mode, the plunge angle should be constant over time.

The plunge angle is calculated for 4 benchmarks (period 3) and for the 3 kinematic clusters (period 6) of

high velocities (Figure 4.10). At first order, two patterns are emerging:

• For the period 3, the plunge angle of benchmarks 6 and 7 increases until 2010 and then becomes

constant. This indicates a change of toppling to sliding over time. This trend is not sufficiently

pronounced for benchmarks 4 and 8 to assume that sliding is predominant over toppling. This is

consistent with observations realized in July 2013 (see section 1.3.2, (Mathy and Lorier, 2013)).

• For the period 6, the plunge angle decreases until December 2018 and then becomes relatively

constant. This decrease may correspond to a transition between toppling and sliding along an initial

foliation acting as sliding discontinuity.

Frictional rate and state model of the unstable slope Considering the period where the plunge angle

is constant, we assume that the unstable slope is sliding on a plane over time and that the motion can

be assumed to a single block sliding on an inclined plane. Consequently, we apply a frictional model

based on the Dieterich-Ruina frictional law ((Dieterich, 2007) which relates the solid friction coefficient
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according to the velocity and the cumulative displacement:

µ = µ0 +Aln
δ̇

δ̇0
+Bln

θ

θ0
(4.4)

where A and B are constants and θ is the frictional state variable which evolves with time according to

Equation (4.5):
dθ

dt
= 1− θδ̇

Dc
(4.5)

where Dc is a representative slip distance. The resolution of Equation (4.4) is proposed by Helmstetter

et al. (2004) and summarized in Sornette et al. (2004) by introducing reduced variables. Equation (4.4) is

then written as:

δ̇ = DX (−m) (4.6)

where X , D and m are the reduced variables expressed with:
X = (Sθ0)

1
1−m θ

θ0

D = Dc(Sθ m
0 )

1
1−m

m = B
A

S = θ0e
τ
σ −

µ0
A

Dc .

(4.7)

where τ and σ are, respectively, the average shear and the normal stresses. Equation (4.6) is transformed

to Equation (4.8):
dX
dt ′

= 1−X (1−m) (4.8)

where t ′ = t/T is a dimensionless time which means that time is usually expressed in the units of T = Dc
D

(Helmstetter et al., 2004; Sornette et al., 2004).

Helmstetter et al. (2004) indicate that four possible regimes can be identified and are defined by the

parameters Xi and m: (1) m> 1 and Xi < 1 indicate an acceleration which leads to a finite-time singularity

of the velocity expressed by Equation (3) with α = 2; (2) m < 1 and Xi > 1 indicate an acceleration

evolving towards a stable regime; the two other combinations (3) m < 1 and Xi > 1 and (4) m > 1 and

Xi > 1 indicate a deceleration of the motion.

The velocity model is then determined by inverting the parameters m, D, T and the initial condition of

the parameter Xi. The cost function used is the average Normalized Root Mean Square Error defined as:

NRMSE = 1
¯̇
δ

√
∑

n
i=1 (x−xi)2

n where ¯̇
δ is the average velocity. As the inversion is very poorly constrained,

several iterations (more than 50 iterations) are used and the best fit corresponds to the lower value of the

NRMSE.

The frictional model is applied to benchmarks 6 and 7 for the period 3 (Figure 4.11) and to clus-

ters 1, 2 and 3 for the period 6 (4.12). Values of the m and Xi parameters are shown in Table 4.3. A high

value of m is obtained for the two benchmarks of the period 3 while according to Helmstetter et al. (2004)
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Figure 4.11: Rate and state models applied to benchmarks 6 and 7 of the period 3.

Table 4.3: Results of the friction model realized on two simulations for the period 3 and three simulations for the period 6. They
are expressed by the m and Xi estimated parameters and the NRMSE associated.

Time span Data set Xi m NRMSE

Period 3 benchmark 6 0.99 4.99 1.2
Period 3 benchmark 7 0.95 4.99 1.4
Period 6 cluster 1 0.0102 1.0001 3.1
Period 6 cluster 2 0.0017 1.001 4.5
Period 6 cluster 3 0.0076 1.004 3.5
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Figure 4.12: Rate and state models applied to clusters 1, 2 and 3 for the period 6.

and Sornette et al. (2004), m should be close to 1. For all simulations on clusters, the parameter m is

similar which is consistent with the finite-time singularity of the velocity (4.3).

1.6 Discussion

To determine the contribution of modelling, two assessments were conducted: (1) an estimate of the time

to failure by including more measurements (Figure 4.13 a), (2) an estimate of the time to failure by taking

into account a rolling window of a fixed number of measurements (Figure 4.13 b). In Figure 4.13, tc

stands for the time to failure and t∗ to the time of the last date used for the 1/v model. For both cases,

the modelled time to failure converges towards a single value while the estimated time to failure of the

inverse velocity applied directly to the data deviates by about twenty days for the first case and by about

ten days for the second case. Including more data in the estimation of the time to failure leads thus to

more dispersion in the calculation than considering a fixed number of data. But, by considering the second

case, the prediction of time to failure tc, converges to a plateau ten days before the failure.

We apply the rate and state model on different sections of the velocity curve to estimate the evolution

phases of the slope (Figure 4.14). The question to answer is to identify if the stability of the system

is modified by each gravitational event. Segmentation is realized according to the main gravitational

events presented in section 1.4.2. Two models are applied for the period 3 and three models for the period
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Figure 4.13: Estimated time to failure tc versus the time t∗ of the last point used for the fit. The days are indexed relative to
the first data point in the series. The green dashed line indicates the real time to failure. (a) Estimation of the time to failure
by including more measurements and (b) Estimation of the time to failure by taking into account a rolling window of a fixed
number of measurements.

Figure 4.14: Application of the rate and state models before the main rock slide events on benchmark 7 of the period 3 and
benchmark 1 of the period 6.

6. Each model gives values of the two parameters m and Xi consistent with an unstable regime (Xi < 1

and m > 1). To overcome the problem of defining the time from which measurements are close to the

failure, linear regression (inverse of velocity) is performed by weighting the high velocity (high weight)

and the low velocity (low weight) as these measurements contain less information. It is shown that the

first gravitational event of the period 6 (green curve) predicts a failure in June 2019 while the two others

(magenta and red curves) predict respectively a rupture on the 5th and the 9th February 2019. For the

period 3, the first model predicts a rupture on the 19th January 2014 and the second model predicts a

rupture in April 2014. The difference in time to failure estimation is explained by the presence of a mixed

regime of toppling-sliding, while at first order, the sliding behavior is predominant (see section 1.5.2)

from the 1 December 2018. As shown in Figure 4.10, the variation of plunge angle noticed during the

period 3 may skew the friction model fitting.

146



Chapter 4 Pre- and post-event monitoring analysis

Figure 4.15: Images from the image time series of the Cliets rockslide. The images are acquired with a Canon 2000 D with a
focal length of 24 mm. Snow cover can be thick on the slope but also in front of the camera in the foreground.

2 Time-lapse image analysis

On December 22, 2018, a 24 mm Canon 2000 D camera was installed on a concrete pillar for a period of

9 months in front of the Cliets tunnel (Savoie, France) (see Chapter 1). As we can see in Figure 4.15, the

images might be affected by the presence of snow, by mist, rain and back-lighting.

2.1 Landslide monitoring in a pre-event context

2.1.1 Displacement calculation

A small series of images (17 images acquired from December 23, 2018 to January 23, 2019) was processed

by TSM to calculate the metric displacements of the moving surface by including a DEM derived from

UAV photogrammetry of 20 cm of resolution. Images were converted into brightness images. The sub

vertical cliffs were used to correct the camera movements. The camera was calibrated according to the

none apriori method using 30 topographic targets as ground control points whose geodetic positions were

known (section 2.1). The associated RMSExy is of the order of 3.1 pixels. The distance between the

camera and the object ranges from 160 to 225 m implying that the ground pixel size varies from 2.4 to

3.6 cm.

Images were processed according to the CMC and V SC methods (the correlation parameters were adapted

to the method used). Because of low motion in the time lapse interval, small movements are considered

as noise by the V SC method and are therefore filtered out, while they are detected by the CMC method

(Figure 4.16). This is highlighted by the amount of information detected for the targets 36, 29, 18, 8 and

1 over time. A pixel recurrence analysis corresponding to the number of times the pixel has significant

information (detected and unfiltered) was performed (Figure 4.17). Even if the amount of information

differs depending on the method used, it can be seen that all the information is clustered in the central part

of the landslide. Using the V SC method, if we assume that it detects the most significant displacements,
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we can highlight two sub-areas: one located uphill (pixel recurrence > 14) and one located downhill

(pixel recurrence < 10). This difference can be interpreted as an indication of the dynamics of the motion:

a high pixel recurrence in the VSC method is similar to a fast motion whose displacements measured

by correlation are significant along the time series; a lower recurrence is similar to a state in which the

displacements were significant at a given date in the time series.

2.1.2 Visual image interpretation

The fact that an image is not exploitable for the calculation of displacements does not necessarily imply

that it is useless. Indeed, optical images are also often used for image interpretation in order to identify

weather conditions (cloud detection in the case of satellite images, snow and rain detection for terrestrial,

aerial and satellite images (Bossu et al., 2011)). Snow cover is also a key factor in understanding the

dynamics of climate change and water resources. In the case of the study of the Cliets rockslide, several

images show significant snow cover that varies over time. Assessing the presence of snow cover can be

an important information. Indeed, during thawing, water runoff can also penetrate the ground and add

additional water to the slope. If the slope is saturated, the environment is unstable and the conditions are

checked for destabilization of the environment.

Determining the percentage of pixels in an image that correspond to snow is constrained by the il-

lumination of the object over time since the radiometric properties of the pixel can vary from one image

to another. There are several calculation methods to estimate whether a pixel represents snow or not

using threshold methods. The snow pixel has a specific radiometric signature since the color white has

a high digital number (DN). Salvatori et al. (2011) assumes, by default, that pixels with a DN greater

than 127 correspond to snow. We can distinguish: the snow-to-snow method, which analyzes the blue

component of the image since it is in this channel that the reflectance of the snow is the highest (Salvatori

et al., 2011); the RGB Normalized Difference Snow Index (RGBNDSI) method developed by Hinkler

et al. (2002) which is based on the calculation of a band derived from the R, G, B bands and the empirical

approximation of the MIR band (Mid-Infrared); and finally the Gaussian Mixture Model (GMM) method

(Rüfenacht et al., 2014). These three methods have been applied to digital camera images in the context of

snow monitoring in mountainous areas. To approximate the percentage of snow in an image, we applied

the snow-to-snow method by normalizing the images (Figure 4.18). Since the illumination of the images

changes over time, we chose to apply a variable threshold, established for each image. The presence of

snow is reflected in the histogram of the normalized blue band by the presence of two local maximums

(bi-modal distribution). The area of the curve closest to the value 255 corresponds to white pixels and

therefore to snow (Figure 4.18a)). A mask has been applied to hide the lower part of the images since

snow has accumulated over time in the foreground. The calculation of the number of pixels was therefore

estimated only on the upper part of the image. 81 images were manipulated in the period from January 17,

2019 to February 14, 2019.

We can plot the percentage of snow pixels identified during the time series. The associated curve
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Figure 4.16: Cumulative 3 D displacements in meter computed from the time series processed in a) and b) CMC mode and c)
and d) in V SC mode. Displacements were averaged in a 10x10 window size centered on the target. The RMSE calulated on the
magnitude of the 3 D displacement is represented on a photography taken from the fixed camera. Colors correspond to the value
of the RMSE and the circle size indicates visually the pixel recurrence. The larger the diameter of the circle, the greater the pixel
recurrence.
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Figure 4.17: Pixel recurrence in time series computed on the filtered correlation results as presented in Chapter 2. a) Recurrence
calculated on the time series processed according to the CMC approach. The first image of the time series was used as master
image. b) Recurrence calculated on the one processed according to the V SC method. Number of information is more important
for the first case a) in the central area as well as on the edges. The information acquired by the V SC method is all the more
filtered as the residual movement (on the edges) is similar to noise.

Figure 4.18: Adapted snow-to-snow method. a) Histogram of the normalized blue band of a photograph. Green point shows the
snow threshold calculated from the polynomial fit. This is the equivalent of finding the minimum local of the polynomial fit.
Some pixels may be considered as snow pixel while they are not. Indeed, high values can also indicate pixels with high sun
illumination. Therefore, this method may overestimate the number of pixels.
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Figure 4.19: Snow covery calculated over the image time series and expresses in %.

is smoothed to filter the extreme values induced by changes in illumination. Figure 4.19 shows the

evolution of the snow cover over time. It is represented with the effective rainfall expressed in millimeter

and the cumulative 3D displacements of 4 targets located in Figure 4.16e) and d). Several snowfall and

snow melt events are highlighted by image analysis. Each snow episode is accompanied by a peak of rain.

What can be seen is that the slope failure is preceded by a significant snow melt episode in which the snow

cover decreases by about 45 %.

2.2 Image processing during the event of February 9, 2019

The event of February 9, 2019 of the Cliets rockslide led to the rupture of the slope and the fall of around

10000 m3 of rocks. Fortunately, this event occurred after the road at the base of the slope was closed. The

correlation of the images associated with this event highlights the spatial and kinematic evolution of the

destabilization of the slope (Figure 4.20). As we have seen previously, the unstable zone is very well

delineated and is detached from the rest of the slope by moderate displacements. During the February

event, we can see that only the central rocky spur is in movement and that the stable part is not affected, at

least in the short term. On date February 9, from 8 am to 9 am, displacements of more than 4 pixels are

detected in the upper zone of the unstable area. A velocity gradient from top to bottom is also observed.

From 9 am to 12 am the movements are amplified and we notice that some areas are already de-correlated

(gray areas). This de-correlation indicates a substantial change of texture from one image to another

which suggests that the movements were too important (moved or collapsed material). Between noon

and 1 pm, the movement accelerates but becomes homogeneous within the unstable area. In section 1.5.2

we have seen that the predominant first-order behavior was slippage from December 2019. Looking at a

finer scale, we see that the velocity gradient detected at the beginning of the day (between 8 and 11 am)

suggests that the movement is much more complex than what happens at first order. Between 1 and 2 pm
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the slope collapses and the de-correlation of several zones within the stable part is potentially linked to

the movement of the wire mesh placed on top of it that was carried away by the collapse. This hypothesis

can be verified by the absence of movement detected between 2 and 3 pm. On the other hand, a strong

signal is measured on the fracture plane, which indicates a surface movement due to erosion.

2.3 Landslide dynamics in a post-event context

After the main event, a post-event analysis is performed to determine residual movements. The slope may

present stable areas as well as moving areas that may be destabilized by the departure of masses. In the

case of landslides that affect roads or river beds for example, human intervention is required to clear the

paths and/or carry out entropic purges. But before any human intervention on site, it is important to assess

the stability of the slope.

In the case of the Cliets, purges and reconstruction work on the tunnel were carried out a few months after

the event. A series of 15 images (acquired between February 15 and October 4, 2019) were processed

to ensure that there were no possible departures of new unstable masses. The time interval between

each image varies over time: one image every two days was used first, then every two weeks. A DEM

from a UAV acquisition realized after the event was used in the process. Since little signal is detected

outside the collapsed area (see Annex) we opted to represent here only the average speed of the area

which correspond to the rocky spur. Figure 4.21 represents the averaged velocity in m.day−1 of this area.

From February to March 2019 the average velocity decreases from a few centimeters to a few millimeters

per day. In April/May it reaches a plateau where the average velocity ranges between 2 and 4 mm.day−1.

The behavior is similar to that of a linear state in which conditions are stable, speeds are constant and

acceleration is zero (Scoppettuolo et al., 2020).
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Figure 4.20: Displacement rates in pixel.h−1 calculated from the correlation technique. Images were taken on February 9, 2019
on the day of the slope failure.
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Figure 4.21: Mean displacement rates in m.day−1 calculated over the post event image time series. Images were processed in the
V SC mode. The velocity is averaged over the rocky spur area in order to ensure the new stability of this zone.

Conclusions

In this chapter we have covered the different stages of a multi-technique and modelling monitoring with

the study of the Cliets rockslide.

We carry out a pre-event analysis by conducting a kinematic and mechanistic analysis of unstable

slope in order to characterize the influence of gravitational events on the kinematic regime and define

how to forecast time to failure for complex slope movement associating toppling and sliding. A set

of topographic measurements over a period of several years (1996− 2019) is used to understand the

long-term kinematics and define possible relationships with triggering factors. The analysis was realized

for the two last gravitational events which occurred the 23rd January 2014 in the downhill section of

the slope and the 9th February 2019 impacting the central section (rocky spur) of the slope. The main

specificity of this slope is the mechanism involved for two rock failures linked to the structure of the slope

composed of schists and nearly vertical discontinuities subject to both toppling and sliding (sections 1.2.3

and 1.5).

The kinematic analysis indicates that there are no direct relationships between slope activity and environ-

mental forcing factors (effective rainfall, snowmelt and crustal seismicity). However, a clear velocity trend

is observed and the plunge analysis indicate that the slope has been affected by a transition from toppling

to sliding (section 1.5.2). A rate and state frictional model suggests that velocity trends are dominant and

consistent with the behavior of the material (section 1.5.2) and that rain and seismicity plays a second role

in destabilizing the slope.

This study demonstrates that the velocity analysis may be applied to complex rockslides by provid-

ing information on both the dynamics of the movement and the prediction of time to failure. As shown in

sections 1.5.1 and 1.6, the prediction analysis is constrained by the density of available data close to the

rupture date. We suggest performing a prediction analysis by considering only the last values of the time
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series, thus avoiding biasing the results by adding data. The application of a physical model to explain the

displacements requires a good quality of data close to a potential slope failure. The advantage of applying

this model to a dense set of benchmarks is to be able to spatially compartmentalise the whole area in

terms of movement dynamics. This method may be applied to all types of time series of displacements

from different platforms such as GPS or ground-based interferometry radar (GB-InSAR). It therefore

opens many perspectives in the use of new measurement techniques for the study and understanding of

the dynamics of rockslide movements.

The time-lapse photography unfortunately did not allow us to complete this pre-event study from a

kinematic point of view. However, the results of the processing of the time series of images are promising

and suggest that a mechanical and kinematic study could have been carried out on these data. Time-lapse

photography proved to be a complementary tool to classical monitoring techniques since it provided a

visual image interpretation during the pre-event and event. It has become indispensable for post-event

studies in order to understand in-situ techniques that could not be used after the event. As a result of this

study, it is shown that the Cliets rockslide has reached a new state of stability in which it evolves in a

linear way. The post-event movements were only detected in the central collapsed zone, which supposes

(1) that there are no zones destabilized by the event, (2) the movements detected in the central zone are

linked to residual surface movements induced strongly by surface erosion.
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1 General conclusions

Time-lapse photography is a low-cost remote-sensing method allowing the acquisition of high resolution

and high value information but which is still under-exploited in the field of natural hazards. In this work,

we developed several processing tools for the analysis of time series of terrestrial optical images acquired

from fixed cameras. The tools allow the analysis of RGB images acquired from mono (or stereo-) single

lens cameras in order to extract primary (geomorphology, kinematics) and secondary (geometry, mechan-

ics) information relevant for landslide monitoring and hazard assessment. To this end, we have developed

and implemented the TSM modular toolbox, built on previous works of CNRS/EOST (Travelletti et al.,

2012; Stumpf et al., 2017). The tool was developed to be as versatile as possible by taking into account

data from several acquisition systems and for imaging several types of motion, with also the possibility to

be used both for science and operational applications. The toolbox has been designed to be modular and

upgradeable.

This work is a contribution to the development of new remote sensing methods for monitoring and

understanding gravitational movements from terrestrial photographs (Chapter 1). The accessibility of the

method and the low cost of the instrumentation make this method attractive compared to other types of

similar instruments such as Laser Scanning, ground-based InSAR and satellite imagery. The processing of

image time series acquired from fixed cameras irequires planning since instrumentation, site configuration

and processing parameters must be taken into account to measure displacement fields accurately both in

amplitude and direction.

Chapter 2 proposes a processing chain which is intended to be as exhaustive as possible for the processing

of images acquired in monoscopic mode. It is broken into several modules such as the camera calibration,

the image selection, the correction of camera movement and finally the calculation of displacement fields.

The modules were intensively tested on two use cases, namely the Pas de l’Ours landslide (Hautes-Alpes,

France) characterized by moderate displacement rates (ca. 50 cm.day−1) and the Chambon landslide

(Isère, France) characterized by low displacement rates (< 10 cm.day−1). The tests indicate that relevant

displacement above 1 cm.day−1 can be detected and that the errors relative to reference in-situ measure-

ments is of the order of ca. 4 cm for the Chambon landslide and ca. 15 cm for the Pas de l’Ours landslide.

The influences of internal and external parameters on the displacement results were also discussed (see

paragraph below: On the influence of the parameterization of the processing).

Chapter 3 implements a module able to process stereoscopic acquisition in order to allow the dense

reconstruction of 3D displacement fields directly from the results of image correlation. Such mode of

acquisition is suitable for the analysis of complex movements for which displacements along the normal

are not negligible. The errors calculated in reference to in-situ data is less than 4 cm for the three EW, NS

and Up components. We further calculate the tangential and normal displacements in order to estimate the

strain fields and invert the 3D displacement fields for estimating the thickness of the moving mass. We
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consider a simple mechanical model with an incompressible media moving on an inclined plane which

sliding surface can present a disbonding zone. The method, based on the law of mass conservation (Bishop,

1999; Booth et al., 2013), has shown, in the case of the Montgombert landslide, the strong influence of the

rheology parameter on the estimated depth values and the weak influence of the geometrical parameter

on the geometry of the sliding surface. The inverted depths are in the same order of magnitude as those

measured by geotechnical methods. The method is however dependent on the possible evolution of the

sliding geometry (for instance with the retrogression of the slide) and to the fact that the movements only

affect the subsurface.

In order to complete the post-processing analysis tools, we have proposed (Chapter 4) several tools for the

kinematic and mechanical landslide analysis. For this purpose, we used rainfall-displacement relationships

(Guzzetti et al., 2008; Giannecchini et al., 2012) for estimating the time to failure (Voight, 1989; Rose

and Hungr, 2007) and a friction model to determine the kinematic regime of the landslide (Helmstetter

et al., 2004; Sornette et al., 2004). The tools are applied to the dataset of the Les Cliets landslide,

(Savoie, France). The tools are adapted both for the analysis of displacement time series acquired both

from classical geodetic techniques (total stations, GNSS) or imaging techniques (terrestrial photographs,

ground-based InSAR). The methods allow to detect and cluster kinematic areas of homogeneous behavior

(displacement amplitude and direction) and the transition between mechanical behavior (in this case,

from toppling to sliding). In addition, the analysis of the time-lapse photographs acquired at several

development stages of the landslide allowed us to estimate the snow cover and melting influence on the

slope evolution ten days before the failure, to delineate the extent of the sliding before the failure, and

to visualize and thus better understand the progressive development of the failure, and finally to detect

and map possible residual movements after the main failure. In this latter application, the analysis of the

displacement fields allow us to estimate that the slope reached a stability plateau two months after the

failure.

Several scientific and operational questions were addressed in this work (see Chapter 1) and a sum-

mary is proposed below.

1. On the influence of the instrument setting and parameterization
The acquisition parameters may vary since they relate to the technical specifications of the camera,

to the orientation and position of the instrument in relation to the object, and to the acquisition mode

such as the measurement frequency or the image modality. All these parameters are interrelated and

will constrain the type of motion that can be detected (Chapter 2, Chapter 3): the spatial coverage,

the quality of the image co-registration (linked to the stability of the pole/concrete pillar, and to the

percentage of stable areas in the image plane), the size of the pixel on the ground (and therefore

the accuracy of the measurement), the internal calibration of the camera. In addition, we showed

that defining the acquisition approach (monoscopic or stereoscopic) is of importance (Chapter 3)

if the normal and tangential components need to be detected, or if many zones are masked from

one unique viewpoint. The analysis of the image time series resulting from these two approaches
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highlights: (1) the weak influence of the camera position in relation to the object for monoscopic

acquisitions, and (2) the increased accuracy of the measurements for stereoscopic acquisitions.

2. On the influence of the processing parameters
In our approach, the displacement fields were calculated using NCC-based and hierarchical image

correlation methods. The choice of the correlation parameters has a direct influence on the quality

(accuracy, precision, redundancy of information, spatial coverage) of the results. TSM is based on

the MicMac open source image correlation library for which the parameters that show the highest

sensitivity are the size of the correlation window and the size of the search window (Chapter 2).

In order to increase the signal-to-noise ratio to extract a maximum of reliable information, several

correlation strategies have been implemented and tested (Chapter 2-4). These strategies are the

Common Master Correlation (CMC), the Variable Sequential Correlation (VSC) and the Redundant

Variable Sequential Correlation (RVSC); all of them can be used in two matching directions

(backward, forward, and backwared+forward). As a result, (1) the CMC method is highly dependent

on the choice of the reference image; (2) the VSC and RVSC methods are very versatile and have

shown very satisfying results for several unstable slopes of various dimensions and displacement

rates; (3) the quantity of information varies according to the coherence between two correlated

images and its quality according to the detected noise. For long-term monitoring, these strategies

can be applied seasonally in order to highlight transitory phenomena characterized by a modification

of the equilibrium of the slope by triggering factors. This would allow a better characterization and

understanding of the long-term behavior of the slope.

3. On the primary and secondary products that can be generated TSM allows computing several

outputs in order to analyze landslide motion both qualitatively and quantitatively. Primary and

secondary products can be calculated, both from the monoscopic and the stereoscopic approach:

(1) primary products are either qualitative (such as maps of affected areas) and quantitative (such

as surface displacement fields; Chapter 2, Chapter 4), (2) secondary products are results of post-

processing analyses such as spatio-temporal clustering (amplitude, direction) of the displacement

fields in order to delineate zones of homogeneous behaviour and mechanical/predictive assessments

such as time of failure models or dynamic evolution models (Chapter 4). With a stereoscopic

approach, additional products are obtained since the tangential and normal surface fields can be

calculated in addition to the surface displacement fields (i.e., a monoscopic approach assumes that

the movements are mostly in the plane tangential to the surface). It is therefore possible to generate

strain maps and to infer the geometry of the moving mass from the calculation of depth maps

(Chapter 3).

4. On the automation of the processing Automating the processing workflow means an easier

use of the algorithm but also to have standard solutions. This standardization can be applied to

the input/output file formats, to the selection of images, to the correlation parameters (correlator

and correlation strategy). In practice, the TSM toolbox has been built to be used both 1) as

a moderately tunable automated processing service (such as for instance the automated image
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processing workflow developed for time series of optical images GDM-OPT from ForM@Ter and

MPIC-OPT from ESA/GEP (Provost et al., 2020)), and 2) as an on-demand service in which the

operator can control most of the processing options, thus allowing us to obtain the most accurate

information for a site (Chapter 2). Implementing TSM as fully automated service (e.g. operational

surveillance mode) or as on-demand service (e.g. science mode) is an objective of both the research

lab and the SAGE Society in the coming months.

2 Perspectives

2.1 Technical and science development of time-lapse optical imagery for landslide research

The TSM-based analysis of optical image time series acquired on several use cases calls for further works

on instrument, processing and post-processing code developments:

In terms of instrument developments:

• The growing development of stand-alone acquisition systems extends the number of sensors and

acquisition devices available. A more in-depth analysis on the contribution of webcams (and in

general low-cost IoT based camera sensors) for the generation of displacement fields could offer an

interesting alternative in operational contexts in which webcams are currently only used for visual

interpretation.

• The use of infrared cameras, recently successfully applied in various domains such as volcano

surveillance (Spampinato et al., 2011; Guerin et al., 2019), rockfall monitoring (Le Roy, 2020) or

landslide monitoring (Frodella et al., 2017) should be considered. This approach paves the way to

new application such as the indirect estimation of surface temperature (and thus heat transfer and

friction) and soil/rock humidity owing to increased slope characterization and understanding of the

pre-failure/failure landslide stages.

• The use of triggered-cameras should be considered in order to either store/analyse sequences

of image time series useful, or to change automatically the frequency of measurements in case

of changes in the slope regime. For instance, Hibert et al. (2015) used two seismologically-

triggered video cameras to extract images only when a seismic event associated to rockfalls are

recorded. Similarly, cameras may be triggered with meteorological information in order to adapt

the acquisition frequency to the purpose of the monitoring.

• The cameras could be linked to on-board computers such as RaspberryPi (Santise et al., 2017), with

the possibility of a real-time (or near-real-time) onboard processing with TSM; this would allow us

to transfer the model outputs only (e.g., displacement fields) and not the images.

• Hierarchical approaches could be considered for the image time series analysis by processing,

first, images at a low resolutions for a first evaluation of the landslide kinematics. Then, when the
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computed displacements exceed a threshold, processing is performed at higher resolution. The

calculation time could thus be shortened and the data transfer/storage optimized.

• Finally, as we have demonstrated, previously, that acquiring and processing terrestrial optical images

requires a priori information about the object being studied (e.g., dimensions, surface velocity),

combining a priori information with various external and internal camera parameters could help

in designing a decision support tool for the “best” choice of camera position, focal length and

acquisition frequency (Gance et al., 2014).

In terms of image processing:

• Novel image correlation methods are being developed and in particular optical flow methods. Such

approaches could be applied to the analysis of fast gravitational processes and/or video type data

(Hadhri et al., 2019; Marsy et al., 2020; Qiao et al., 2020) which could improve the detection of

behaviour changes as well as the measurement accuracy or the completeness of information for

complex movements. Methods allowing smart fusion of the displacement fields calculated using

several correlation strategies and/or several correlators would be interesting in order to obtain

redundant, dense and reliable information.

• The analysis of image time series can also go further than the generation of displacement fields.

More and more studies are applying data mining/machine learning methods to detect transitory in-

formation. These approaches categorize spatial sectors and periods of similar kinematic behaviours

either from satellite images (Julea et al., 2010; Méger et al., 2018) or terrestrial photogrammetry

(Pericault et al., 2015). Information reduction and clustering methods are applied to both the

displacement fields and the correlation coefficients in order to identify possible deformation sources.

Several dimensional reduction methods can be applied (PCA - Principal Component Analysis; ICA

– Independent Component Analysis , LLE - Linear Local Embedding).

• Time series of displacements can show gaps induced by missing data as we saw especially in

Chapter 4. To obtain a better temporal resolution, new methods could be implemented in TSM.

Such approaches were successfully applied to time series of displacements from the analysis of

optical satellite images (Bontemps et al., 2018) by inversion method, and from the analysis of SAR

images (Samsonov and d’Oreye, 2017) by simultaneous processing method (Multidimensional

Small Baseline Subset (MSBAS)).

• Finally, in order to improve the usability of the toolbox, both a Graphical User Interface (GUI) and

the implementation of the code on High-Performance Computers as webservice would be beneficial

for the near-real time analysis of the data, and the processing of many instrumental datasets at the

same time.
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Figure 5.1: Typical phases of landslide activity, periods of usability of terrestrial optical image time series and the corresponding
purpose of the surveillance (defined according to (Mazzanti and Pezzetti, 2013)). The usability is defined as follows: “+++”
means that optical terrestrial images may provide relevant results and are useful for landslide understanding. “++” means that
optical terrestrial images are useful but some requirements have to be considered. “+” means that the data and technique could
be applicable but only on specific cases. Possible monitoring alternatives should be considered.

2.2 Use of terrestrial optical time series for operational landslide applications

For uptake of the technology (data and processing) by users (e.g. private engineering and consultancy

companies, stakeholders in charge of disaster risk management), operational monitoring products derived

from terrestrial optical time series should consider the customer operational needs and the budget available.

The monitoring system and data acquisitions should be adapted to the main purpose of the study based on

criteria related to the current knowledge (kinematics) of the unstable slope, the available geological and

geotechnical information, and the environmental forcing conditions. Choosing the most suitable sensor

and acquisition parameters requires consideration of to several criteria (Mazzanti and Pezzetti, 2013) that

can be summarized into three items:

• the definition of the main purpose of the surveillance, which can be for instance the slope character-

ization, its long-term evolution or the prediction of time to failure (i.e. early-warning stage);

• the definition of the monitored parameters which justifies the use of a unique or several instruments

according to the number of other (in-situ) parameters being monitored. In some cases, fully

automated systems are not necessarily the most suitable;

• the definition of the acquisition period of the monitored parameters which define the acquisition

frequency (i.e., continuous real-time or long-term campaign monitoring). As underlined by Mazzanti

and Pezzetti (2013), monitoring is not a static procedure. It has to consider field feedback and

experts’ points of view.

In the case of a monitoring carried out with terrestrial optical sensors, the above-presented three criteria

are applicable. Time-lapse photography provides a large sequence of optical images and it can be used for
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landslide studies where the main purposes are slope characterization by giving access to change detec-

tion maps and long-term displacement time series useful to document the pre-failure stage (Figure 5.1).

However optical techniques remain dependent of the meteorological conditions limiting their usability as

monitoring sensor for the early-warning stage.

Products that can be generated from fixed cameras are listed in Table 5.1 in relation to operational

monitoring purposes, and specific requirements to take into account are addressed.
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Table 5.1: Summary of the products that can be generated from fixed cameras respect to the purposes of the study and some
specific requirements.

Landslide infor-
mation type Purposes Products Requirements

Geomorphological
information

Long-term
monitoring

Geomorphological change de-
tection maps

Monoscopic or multi-view im-
ages.

Slope character-
ization

Environmental condition maps
(e.g. for instance snow cover)

Textured images with homoge-
neous radiometric properties.
Presence of object with rigid type
deformation.

Kinematic
information

Above requirements.
Long-term
monitoring

Surface displacement / velocity
fields and time series Calibrated cameras.

Precise time series co-
registration.

Long-term
monitoring

Deformation / Strain fields
maps Above requirements.

Slope character-
ization

Dense spatial coverage of infor-
mation.

Mechanical
information

Long-term
monitoring

Identification of landslide me-
chanical regime Above requirements.

Early-warning
Dense image time series close
to the main acceleration / failure
event.

Long-term
monitoring

Landslide thickness / depth
maps

Stereo or multi-view datasets+ all
above requirements.

Slope character-
ization

Forecasting /
modelling
information

Early-warning Estimation of time to failure Mono or multi-view datasets + all
above requirements.

Long-term
monitoring Relationships velocity-rainfall Mono or multi-view datasets +

above requirements.
Slope character-
ization In-situ forcing factor datasets.
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Appendix

This appendix is written in French in order to fulfill the requirements of the University of Strasbourg on

the writing of English thesis manuscripts.

L’annexe comporte trois principales sections qui ont été écrites dans le but d’apporter des précisions

et des informations complémentaires aux différents chapitres de la thèse : (1) une section portant

sur les caractéristiques des caméras (modèle caméra, paramètres internes et externes); (2) une

deuxième section portant sur l’influence des paramètres externes au processus TSM sur les résultats

qui sont les déplacements de surface dans un repère géodésique; (3) une dernière section portant

sur l’analyse post-événement du glissement des Cliets à partir de la série temporelle d’images

optiques terrestres.
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Appendix A

Caractéristiques des caméras

Cette première annexe présente les caractéristiques des appareils photographiques, appelés par la suite

caméras, utilisées dans cette thèse. Elle introduit la notion de modèle de caméra et définit les paramètres

externes et internes du capteur.

1 Modèle de caméra

Le terme de modèle de caméra est introduit pour décrire le type de relation géométrique qui relie un point

d’une image à son homolgue dans l’espace 3D. Le modèle de caméra le plus répandu et le plus utilisé est

le modèle sténopé (pinhole model en anglais) qui stipule que tous les rayons qui traversent le système

optique passent par son centre. Dans le modèle sténopé, la caméra est modélisée par une projection
perspective.

Soient (xp, yp, zp) les coordonnées d’un point P dans le système de coordonnées caméra et (Xp, Yp, Zp)

ses coordonnées dans un système géodésique métrique. Les deux systèmes de coordonnées sont reliées

par la relation suivante :

xp = f
Xp

Zp
; yp = f

Yp

Zp
; zp = f (A.1)

où f est la distance focale exprimée en millimètre. Celle-ci définie la distance entre le centre de projection

et le plan image.

2 Paramètres externes et internes des caméras

Les paramètres qui interviennent dans le modèle sténopé sont divisés en deux catégories : les paramètres

externes qui définissent la position de la caméra dans l’espace 3D et les paramètres internes qui décrivent

les caractéristiques internes de la caméra et qui sont indépendants de sa position.

II



Chapter A Pre- and post-event monitoring analysis

2.1 Paramètres intrinsèques

Les paramètres intrinsèques permettent de relier le système de coordonnées dans le plan image à celui de

la caméra. C’est pourquoi, ils sont indépendants de la scène mais dépendent du capteur optique utilisé.

Parmis ces paramètres, on retrouve la distance focale f , les densités de pixels en direction des axes u et v,

ku,kv en pix.mm−1; et le point principal (x0,y0) usuellement défini comme le centre de l’image.

Ensemble, ils définissent la matrice caméra appelée K :

K =

αu 0 u0

0 αv v0

0 0 1

 (A.2)

Tel que : 
αu = ku ∗ f

αv = kv ∗ f

u0 = ku ∗ x0

v0 = ky ∗ y0

Un terme supplémentaire peut être ajouté à la matrice K sous le nom de skew (terme anglais généralement

utilisé). Il permet d’indiquer si les axes u et v sont perpendiculires entre eux. Il est introduit de la manière

suivante :

K =

αu s u0

0 αv v0

0 0 1

 (A.3)

De manière quasi systèmatique, ce terme est considéré comme étant nul.

2.2 Paramètres de distorsion

Selon l’optique utilisée, l’image peut être sujette à des déformations géométriques appelées distorsions. Il

existe deux types de déformations (Figure A.1):

• Les distorsions radiales qui traduisent un défaut de courbure radiale dand les lentilles de la caméra;

• Les distorsions tangentielles qui traduisent un défaut d’alignement entre le capteur et la lentille.

Ce phénomène se traduit mathématiquement par l’ajout d’un terme correctif δ aux coordonées images

non corrigées (x,y) :

xc = x+δx yc = y+δy (A.4)

Dans le cas d’une distrosion radiale, le terme correctif s’écrit tel un polynôme dépendant de la variable r

défini comme étant r2 = x2 + y2: {
δx = x.(1+ k1.r2 + k2.r2...)

δy = y.(1+ k1.r2 + k2.r2...)
(A.5)
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Figure A.1: Effet de la distorsion sur une grille régulière (Noury et al., 2017). a) Distorsion radiale posiive (à gauche) et négative
(à droite). b) Distorsion tangentielle.

Quant à la distorsion tangentielle, celle-ci est définie par ses deux premiers coefficients (P1,P2) de la

manière suivante : {
δx = P1.(r2 +2.x2)+2P2.x.y

δy = P2.(r2 +2.x2)+2P1.x.y
(A.6)

2.3 Paramètres externes

Les paramètres externes definissent l’orientation et la localisation de la caméra dans un système de

coordonnées géodésiques. En d’autres termes, ils décrivent le mouvement de la caméra autour de la scène.

La relation qui relie le système de coordonnées géodésique (Xw,Yw,Zw) et le système de coordonnées

caméra s’exprime de la manière suivante :


Xc

Yc

Zc

1

=

[
R
] {

t
}{

0
}

1

∗


Xw

Yw

Zw

1

 (A.7)

Où R est la matrice de rotation et t la matrice de translation. La matrice R s’exprime à partir des angles

d’Euler (ω,Φ,κ) tels que, dans le système de coordonnées géodésiques, ω tourne autour de l’axe the X ;

Φ tourne selon l’axe Y axis and κ selon l’axe Z. Le sens de ces angles respecte la règle de la main droite.

La matrice de rotation est donc une combinaison de ces trois angles et s’exprime de la manière suivante:

R = RzRyRx (A.8)

Tel que :

R=

cos(κ)cos(φ) −sin(κ)cos(ω)+ sin(φ)cos(κ)sin(ω) sin(κ)sin(ω)+ sin(κ)cos(φ)cos(ω)

sin(κ)cos(φ) cos(κ)cos(ω)+ sin(κ)sin(φ)sin(ω) −cos(κ)sin(ω)+ sin(κ)sin(φ)cos(ω)

−sin(φ) cos(φ)sin(ω) cos(φ)cos(ω)


(A.9)
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2.4 Détermination des angles d’Euler

Les angles d’Euler interviennent dans l’étape de calibration de la caméra en étant intégrés dans les

équations de collinéarité (Chapitre 2) mais également dans le calcul des déplacements 3D en considérant

un modèle stéréoscopique (Chapitre 3).

En généralisant la matrice de rotation, l’équation (A.9) s’écrit :

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 (A.10)

En associant termes à termes l’equation (A.9) et (A.10), nous pouvons extraire les angles d’Euler :
sin(φ) =−r31

tan(ω) = r32
r33

tan(κ) = r21
r11

(A.11)

On obteint dès lors : 

φ1 =−arcsin(r31)

ω = arctan(
r32

r33
)

κ = arctan(
r21

r11
)

(A.12)

Puisque sin(φ) = sin(π−φ), deux valeurs distinctes de φ sont valables :{
φ1 =−arcsin(r31)

φ2 = 180−φ1
(A.13)

A partir de là, deux couples d’angles (ω1,κ1) et (ω2,κ2) peuvent être calculés si cos(φ) 6= 0.

Dans le cas où φ =
π

2
ou φ =−

π

2
, notre première méthode ne peut être appliquée. Il faut donc réécrire

l’équation (A.11) telle que : 
φ =

π

2
cos(κ−ω) = r13

−sin(κ−ω) =−r12

(A.14)

et, 
φ =−

π

2
cos(κ +ω) =−r13

−sin(κ +ω) = r12

(A.15)
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Ainsi les deux combinaisons possibles sont :

φ =
π

2

κ−ω = arctan(
r12

r13
)

κ = ω + arctan(
r12

r13
)

(A.16)

et, 

φ =−
π

2

κ +ω = arctan(
− r12

−r13
)

κ =−ω + arctan(
− r12

−r13
)

(A.17)
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Analyse de sensibilité des paramétres
externes sur les résultats de TSM

Cette deuxième annexe présente l’analyse de sensibilité des paramètres externes sur les résultats de TSM

réalisée sur le jeu de donnés du glissement des Cliets. Cette section se réfère au Chapitre 2.

L’analyse de sensibité a été menée en appliquant la méthode OAT (One-A-Time) qui consiste à modifier

un paramètre, à la fois, en lui appliquant une certaine perturbation. Dans le cas de notre analyse, nous

avons utilisée une pertubration aléatoire calculée à partir du bruit déterminé pour chaque type mesure.

Nous rappelons que les paramètres externes mis en jeu sont:

• le Modèle Numérique de Terrain (MNT) qui intervient dans le calcul des valeurs métriques de

déplacements (transformation du repère plan image (déplacements pixels) en repère géodésiques

(déplacements métriques)).

• le pointage des cibles de références utilisées dans le calcul de la calibration.

• La position des cibles utilisées dans le calcul de la calibration. Celle-ci est donnée par la position

mesurée par la station totale, qui est ensuie convertie en position géodésique. L’erreur associée

correspond donc à la variabilité de la mesure calculée sur des cibles de référence supposées fixes.

Pour cela, un couple d’images a été traités par TSM avec les paramètres externes et internes les plus

optimums possible afin de générer les valeurs de références. Un bruit gaussien a ensuite été calculé à

Table B.1: Ecart type utilisé dans le calcul du bruit gaussien. Ce bruit est appliqué de manière alétaoire à la variable d’entré.

/ Ecart type de la distribution gaussienne, σgauss
x y z u v

MNT 0.01 m 0.01 m 0.01 m - -
Pointage - - 2 pix 3 pix
Position 0.0043 m 0.0019 m 0.0014 m - -
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partir des erreurs de mesure propres à chaque paramètre pour être ensuite appliqué de manière aléatoire

sur la donnée. L’écart type associé au bruit est renseigné dans la table B.1.

L’erreur est calculée de la manière suivante pour les trois composantes : EW notée X , NS notée Y

et la vertical notée Z :

∆Err =
Resultatbruite−Resultatre f erence

σgauss
(B.1)

La matrice des erreurs ∆Errx s’écrit dès lors :

∆Errx =



∂Resultatx
∂DEMx

∂Resultatx
∂DEMy

∂Resultatx
∂DEMz

∂Resultatx
∂Pickingu

∂Resultatx
∂Pickingv

0

∂Resultatx
∂Positionx

∂Resultatx
∂Positiony

∂Resultatx
∂Positionz


(B.2)

Cette écriture est également valable pour les erreurs en Y et en Z notées respectivement ∆Erry et ∆Errz.

Il en résulte que les matrices d’erreur par composante égalent (valeurs métriques) :

∆Errx =

 −0.02 −0.025 −3∗10−4

−4.92 −0.001 0

−0.058 −0.13 −0.17

 ; ∆Erry =

−0.007 −0.087 −2.7∗10−5

−10 −7.6∗10−5 0

−0.02 −0.05 −0.07

 ;

∆Errz =

 0.02 0.02 3∗10−4

−3.6∗10−4 7.4∗10−5 0

0.043 0.096 0.13


Nous pouvons constater que les erreurs liées au MNT bruité sont de l’ordre de plusieurs centimètres tandis

que celles liées aux positions sont légèrement plus faibles. Les erreurs les plus élevées sont celles qui

correspondent au bruit introduit dans le picking et donc dans la calibration de la caméra et il est intéressant

de voir qu’une direction est plus impactée que l’autre. Dans le cas des images des Cliets (acquises en

mode portrait), la direction u correspond à la direction perpendiculaire au mouvement et la direction v à la

direction du mouvement. Un erreur de quelques pixels dans la direction perpendiculaire au mouvement a

donc plus d’impact qu’une erreur introduit dans la direction du mouvement.

Pour quantifier de manière plus précise ces erreurs, deux approches seraient à envisager: (1) une approche

statistique dans laquelle une grande quantité de résultats bruités sont générés. On obtiendrait alors une

distribution dense d’erreurs. (2) une approche plus direct dans laquelle le bruit introduit est connu.
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Appendix C

Série temporelle des déplacements détéctés
post événement - glissement des Cliets

Cette annexe se réfère au Chapitre 4 et à l’analyse post-événenement (événement du 9 Février 2019) du

glissement des Cliets réalisée par photographie time-lapse.

Une série de 15 images ont été acquises entre le 15 Février et le 4 Octobre 2019 par une caméra

CANON 2000 D de focale 24 mm. Ces images ont traitées à l’aide de la toolbox TSM en utilisant la

stratégie de corrélation V SC et un MNT issu d’une acquisition drône après événement. Cette stratégie de

corrélation s’est révélée être la plus adaptée aux données puisque la série temporelle présente une grande

variabilité dans les propriétés radiométriques des images. Une approche CMC n’aurait donc donnée que

très peu d’informations.

La Figure C.1 nous montre les résultats du traitement de la série temporelle. On peut constater que

des déplacements sont détectés au droit de la zone centrale. Ils correspondent au déplacement du grillage

géotechnique déchiré par l’éboulement. D’autres mouvements disparates sont également détectés et sont

induits par les mouvements et les changements de végétation. On peut également noter que le nombre

d’informations se réduit au cours du temps. Cela peut être un indicateur sur la dynamique du mouvement

puisque des mouvenments filtrés peuvent également indiquer des faibles déplacements qui s’apparentent

au bruit ambiant.
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Figure C.1: Vitesse surfacique exprimée m.day−1 et calculée le long de la série temporelle d’images acquises après la crise de Février (Glissement des Cliets, Savoie, Fr.). Les
images onté été acquises entre le 15 Février 2019 et le 4 Octobre 2019. Elles ont été traitées par TSM et corrélées selon l’approche V SC. Les flèches noires indiquent la direction du
mouvement.
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Mathilde DESRUES

Operational monitoring of gravitational movements with image time series

Résumé

Comprendre la dynamique et le comportement des mouvements gravitaires est essentiel dans l’anticipation de catastrophes naturelles et donc
dans la protection des infrastructures et des personnes. Plusieurs techniques géodésiques apportent déjà des informations sur les champs de
déplacement / déformation des pentes instables, techniques qui permettent d’analyser les propriétés géométriques des masses en mouvement et
le comportement mécanique des pentes. En combinant des séries temporelles d’images optiques terrestres et ces techniques classiques, la
quantité d’informations collectées est densifiée et répartie dans l’espace. Les capteurs passifs numériques sont de plus en plus utilisés pour la
détection et la surveillance de mouvements gravitationnels. Ils fournissent à la fois des informations qualitatives, telles que la détection des
changements de surface, et une caractérisation quantitative, telle que la quantification du déplacement du sol par des techniques de corrélation
d’images. Notre approche consiste à analyser des séries chronologiques d’images terrestres provenant soit d’une seule caméra fixe, soit de
caméras stéreoscopiques, ces dernières permettant d’obtenir des informations redondantes et complémentaires. Les séries temporelles sont
traitées pour détecter les zones dans lesquelles le comportement cinématique est homogène. Les propriétés de la pente, telles que le volume de
glissement et l’épaisseur de la masse en mouvement, font partie des résultats de l’analyse afin d’obtenir une vue d’ensemble aussi complète que
possible.

Ces travaux sont présentés au travers de l’analyse de quatre glissements de terrain situés dans les Alpes françaises. Ils intervien-
nent dans le cadre d’une convention CIFRE/ANRT entre la société SAGE - Société Alpine de GEotechnique (Gières, France) et l’IPGS - Institut
de Physique du Globe de Strasbourg / CNRS UMR 7516 (Strasbourg, France).

Mots clefs : Photographie time-lapse, traitement d’images optiques, stereophotographie, analyse de déformation, glissement de
terrain

Abstract

Understanding the dynamics and the behavior of gravitational slope movements is essential to anticipate catastrophic failures and thus
to protect lives and infrastructures. Several geodetic techniques already bring some information on the displacement / deformation
fields of the unstable slopes. These techniques allow the analysis of the geometrical properties of the moving masses and of the
mechanical behavior of the slopes. By combining time series of passive terrestrial imagery and these classical techniques, the amount
of collected information is densified and spatially distributed. Digital passive sensors are increasingly used for the detection and the
monitoring of gravitational motion. They provide both qualitative information, such as the detection of surface changes, and a quantitative
characterization, such as the quantification of the soil displacement by correlation techniques. Our approach consists in analyzing
time series of terrestrial images from either a single fixed camera or pair-wise cameras, the latter to obtain redundant and additional
information. The time series are processed to detect the areas in which the Kinematic behavior is homogeneous. The slope properties, such
as the sliding volume and the thickness of the moving mass, are part of the analysis results to obtain an overview which is as complete as possible.

This work is presented around the analysis of four landslides located in the French Alps. It is part of a CIFRE/ANRT agreement
between the SAGE Society - Société Alpine de Géotechnique (Gières, France) and the IPGS - Institut de Physique du Globe de Strasbourg /
CNRS UMR 7516 (Strasbourg, France).

Keywords: Time-lapse photography, optical image processing, stereophotography, deformation analysis, landslide
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