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LIST OF ACRONYMS

The survival of humanity is closely linked to the maintenance of biodiversity. Biodiversity is " the sum total of all plants, animals, fungi, and microorganisms on Earth, their genetic and phenotypic variation, and the communities and ecosystems of which they are a part" [START_REF] Dirzo | Global State of Biodiversity and Loss[END_REF]. Climate regulation, support to agriculture (soil fertilization, pest regulation), production of food and material resources, and transformation of waste and pollutants are among the multitude of ecosystems services provided to humans [START_REF] Bolund | Ecosystem services in urban areas[END_REF][START_REF] Baudry | Hedgerows: An international perspective on their origin, function and management[END_REF][START_REF] Krieger | Economic value of forest ecosystem services: a review[END_REF]). Anthropogenic pressures have led (and still lead) to habitat loss and degradation causing massive extinction of biodiversity [START_REF] Pimm | The Future of Biodiversity[END_REF]. Habitat loss can decrease connectivity by isolating habitat patches from other patches at the landscape scale. However, movement is essential for the sustainability of species because they need to move throughout their life cycle, particularly to feed, find refuge and reproduce. Furthermore, the movement supports genetic mixing, a key element for the maintenance of fauna and flora species.

Ecological corridors are one of the main tools used to increase the landscape connectivity by facilitating the movement of species. Ecological corridors connect the patches of habitats to form a whole called "ecological continuities" [START_REF] Bennett | Integrating Biodiversity Conservation and Sustainable Use: Lessons Learned from Ecological Networks[END_REF]). The ecological functions of continuities are complex due to the diversity of structure and composition of landscape elements and their different contexts from local to landscape scale. In addition, there is a diversity of species that react differently to the landscape elements [START_REF] Dennis | Corridors and barriers in biodiversity conservation: a novel resource-based habitat perspective for butterflies[END_REF]. Therefore, maintaining and creating ecological continuities require a good understanding of the interactions between landscape elements and species to achieve relevant conservation strategies. In wooded landscapes, the main threat on biodiversity is deforestation and forest degradation. In these landscapes, primary forests and large patches of habitats are considered to be the most effective landscape elements for biodiversity conservation. However, secondary forests and small habitat patches play an important role for species persistence by potentially increasing landscape connectivity [START_REF] Lillesand | General management principles and a checklist of strategies to guide forest biodiversity conservation[END_REF][START_REF] Vidal | Biodiversity Conservation of Forests and their Ecological Restoration in Highly-modified Landscapes[END_REF]. In crop-dominated landscapes, many studies have focused on semi-natural elements such as permanent grasslands and wooded elements (woodlands and hedgerows), that are key elements of ecological continuities [START_REF] Burel | The Structure and Dynamics of Agricultural Landscapes as Drivers of Biodiversity[END_REF]. Originally, crop-dominated landscapes were described as a set of semi-natural elements within a neutral agricultural matrix by landscape ecologists [START_REF] Burel | The Structure and Dynamics of Agricultural Landscapes as Drivers of Biodiversity[END_REF]. However, heterogeneous crop-dominated landscapes with semi-natural elements have a high potential for biodiversity [START_REF] Tscharntke | Landscape perspectives on agricultural intensification and biodiversity -ecosystem service management[END_REF][START_REF] Billeter | Indicators for biodiversity in agricultural landscapes: a pan-European study[END_REF][START_REF] Fahrig | Functional landscape heterogeneity and animal biodiversity in agricultural landscapes[END_REF]. Crops induce spatial heterogeneity due to their diversity and the complexity of their configuration beneficial for biodiversity. In addition, temporal heterogeneity induced by crop rotation, management and phenology affects the movement of species across the landscape. Therefore, corridors may temporarily appear within crop-dominated landscapes [START_REF] Burel | The Structure and Dynamics of Agricultural Landscapes as Drivers of Biodiversity[END_REF]. Now, the notion of ecological continuity is a key concept in public policies dealing with environmental protection laws, protected areas, land use planning tools, etc from the international level to local level. The identification and characterization of ecological continuities are at the basis of biodiversity conservation strategies and represent a major scientific challenge due to the structural and functional complexity of ecological systems. However, in wooded landscapes, small habitat patches and secondary forests are being neglected in favour of primary forests and large habitat patches. In landscapes dominated by crops, the mosaic of crops is rarely integrated into maps of ecological continuities that include only semi-natural elements such as permanent grasslands and wooded elements. Moreover, the temporal dynamics of these landscapes are not taken into account while it impacts the functionality of ecological continuities.

In this context, time series of satellite images are a relevant tool for mapping and monitoring the elements constituting ecological continuities in crop-dominated and wooded landscapes over large areas. Images acquired by optical satellites have already shown high potential for identifying and characterizing landscape elements. The optical sensors Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Very High Resolution Radiometer (AVHRR) and Landsat have been widely used to map land use and land cover [START_REF] Congalton | Global Land Cover Mapping: A Review and Uncertainty Analysis[END_REF][START_REF] Gómez | Optical remotely sensed time series data for land cover classification: A review[END_REF]) and to detect deforestation and forest degradation (Bourgoin 2019) at large scales due to their high temporal resolution and large swathes. However, the low spatial resolution of these data (30m to 1.1km) does not allow the fine identification of landscape features or their characterization. Very high spatial resolution images such as SPOT (Satellite Pour l'Observation de la Terre), Formosat-2 optical, Quickbird, WorldView and IKONOS (<5m) have shown high potential to identify fine hedgerows [START_REF] Vannier | Multiscale comparison of remote-sensing data for linear woody vegetation mapping[END_REF], estimate yield, leaf area index (LAI), biomass and crop phenological stages (Quarmby et al. 1993;Doraiswamy et al. 2004;Mulla 2013;Bontemps et al. 2015;[START_REF] Pan | Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data[END_REF]Betbeder et al. 2016b) or mapping the above-ground biomass of tropical forests [START_REF] Singh | Biomass estimation of mixed forest landscape using a Fourier transform texture-based approach on very-high-resolution optical satellite imagery[END_REF][START_REF] Pargal | Inverting Aboveground Biomass?Canopy Texture Relationships in a Landscape of Forest Mosaic in the Western Ghats of India Using Very High Resolution Cartosat Imagery[END_REF]. The temporal resolution is also an essential element in characterizing the temporal dynamics of landscape features. Since the 2000s, studies have demonstrated the value of high spatial resolution SAR (Synthetic Aperture RaDAR) satellite data for crop mapping and characterization [START_REF] Steele-Dunne | Radar Remote Sensing of Agricultural Canopies: A Review[END_REF]. Polarimetric indicators derived from RADARSAT-2 or TerraSAR-X are relevant for estimating the phenological stages, height and biomass of various crops (Jiao et al. 2009;Wiseman et al. 2014;[START_REF] Mascolo | Retrieval of phenological stages of onion fields during the first year of growth by means of C-band polarimetric SAR measurements[END_REF]Jin et al. 2015;Betbeder et al. 2016b;[START_REF] Pacheco | Using RADARSAT-2 and TerraSAR-X satellite data for the identification of canola crop phenology[END_REF]Canisius et al. 2018;McNairn et al. 2018;Homayouni et al. 2019). In wooded landscapes, the ALOS-SAR sensor has shown high performance in producing a global forest/non-forest map [START_REF] Shimada | New global forest/non-forest maps from ALOS PALSAR data (2007-2010)[END_REF][START_REF] Zhou | Research of forest type identification based on multi-dimensional POLSAR data in Northeast China[END_REF]. However, the low temporal resolution of these sensors, their necessary programming and the cost of the images constitute strong constraints for the monitoring of crop-dominated and wooded landscapes.

The free high spatial and temporal resolution data acquired by the Sentinel-1 (S-1) SAR satellite since 2014 and the Sentinel-2 (S-2) optical satellite since 2016 offer new possibilities for mapping and monitoring ecological continuities. Recent studies have demonstrated the potential of S-2 time series for mapping land use in wooded [START_REF] Jönsson | A Method for Robust Estimation of Vegetation Seasonality from Landsat and Sentinel-2 Time Series Data[END_REF]) and cropdominated landscapes [START_REF] Csillik | Cropland mapping from Sentinel-2 time series data using object-based image analysis[END_REF]Denize et al. 2019a). For crop-dominated landscapes, spectral bands, vegetation indices and biophysical variables derived from S-2 data accurately estimate LAI (Delegido et al. 2011b;Frampton et al. 2013;Clevers et al. 2017;Pan et al. 2018;Wang et al. 2019), biomass (Veloso et al. 2017;Ghosh et al. 2018;Ganeva et al. 2019) and phenological stages (Veloso et al. 2017;Ghosh et al. 2018;Stendardi et al. 2019) of various crops. However, the exploitation of optical data is limited by cloud cover presence. In addition, they provide information only on the top layer of vegetation and the signal saturates with high biomass and LAI levels (Wang et al. 2016a). Despite the fact that S-1 data are sensitive to soil conditions (roughness, moisture), they are an alternative to S-2 data as they are insensitive to atmospheric conditions and the SAR signal penetrates the canopy [START_REF] Lee | Polarimetric Radar Imaging: From Basics to Applications[END_REF]. Recent studies have shown the interest of backscatter coefficients and VH:VV ratio derived from S-1 data for mapping five global land cover types (water, forest, urban, bare soil and agricultural area) in Turkey [START_REF] Abdikan | Land cover mapping using sentinel-1 SAR data[END_REF]) and detecting coniferous forests, deciduous forests and non-irrigated arable land in Germany [START_REF] Balzter | Mapping CORINE land cover from Sentinel-1A SAR and SRTM digital elevation model data using random forests[END_REF]. In crop-dominated landscapes, the potential of these same S-1 variables has been demonstrated for detecting changes in the structure of rapeseed, maize and winter cereals (Vreugdenhil et al. 2018), identifying the phenological stages of wheat (Song and Wang 2019) and estimating biomass, water content (WC) and LAI of wheat (Kumar et al. 2018). However, to our knowledge, no studies have been conducted with polarimetric indicators derived from S-1 to characterize crops (Jin et al. 2015;Stendardi et al. 2019).

Consequently, the combined use of optical and SAR data should improve the mapping of ecological continuities. Indeed, the fusion of optical and SAR data improves the identification of land use/land cover [START_REF] Kussul | Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data[END_REF][START_REF] Zhou | Exploring the Impact of Seasonality on Urban Land-Cover Mapping Using Multi-Season Sentinel-1A and GF-1 WFV Images in a Subtropical Monsoon-Climate Region[END_REF][START_REF] Laurin | Above-ground biomass prediction by Sentinel-1 multitemporal data in central Italy with integration of ALOS2 and Sentinel-2 data[END_REF][START_REF] Reiche | Improving near-real time deforestation monitoring in tropical dry forests by combining dense Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2[END_REF]) and crop types [START_REF] Orynbaikyzy | Crop type classification using a combination of optical and radar remote sensing data: a review[END_REF]. The optical domain is sensitive to the vegetation physiology, while microwaves are influenced by geometry (roughness, texture, geometrical structure) and surface moisture. This complementarity between the optical and SAR domains is little exploited to characterize ecological continuities. A few studies have used both optical and SAR data to characterize crops (Betbeder et al. 2016a;Veloso et al. 2017;[START_REF] El Hajj | Penetration Analysis of SAR Signals in the C and L Bands for Wheat, Maize, and Grasslands[END_REF]. However, these studies use the Normalized Difference Vegetation Index (NDVI), derived from optical data as a reference for evaluating SAR data. Although the actual combination of optical and SAR data improves the results of land use and crop type classification, it remains little used to predict crop parameters (Jin et al. 2015;Stendardi et al. 2019).

The objective of the thesis is twofold : 1) comparatively evaluate the S-2 optical and S-1 SAR time series to identify and characterize the constituent elements of ecological continuities using land cover and land use classifications and crop characterization in wooded and crop-dominated landscapes, 2) assess the influence of the spatio-temporal structuring these landscape mosaics on biodiversity using metrics derived from S-1 and S-2 time series.

The first part of the thesis explains the basis of ecological continuities and remote sensing with a focus in wooded landscapes and crop-dominated landscapes, and highlights the associated challenges. Then, study areas and field, species and remote sensing data used in this thesis are detailed.

The second part of the thesis aims at answering the following question : What are the most efficient Sentinel sensor and variables to identify the potential constitutive elements of ecological continuities in wooded landscapes?

For that purpose, we evaluated the potential of S-1 data alone, S-2 data alone and the combined S-1 and S-2 data to identify and characterize land cover in forest-agricultural mosaic landscapes. The study focused on two wooded landscapes with contrasting vegetation gradients: a temperate mountainous landscape in the Cantabrian Range (Spain) and a tropical humid forest landscape in Paragominas (Brazil). The satellite images were classified using an incremental procedure based on the ranks of importance of the input variables derived from S-1 and S-2 time series. The developed algorithm automatically Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

selects the relevant variables and time periods to be used to best classify land cover and land use in each landscape.

The third part of the thesis focused on the following the question: What are the most efficient Sentinel sensor and variables to identify and characterize the potential constitutive elements of ecological continuities in agricultural landscapes?

To answer this question, we focused on wheat and rapeseed, which are two of the most important crops in the world in terms of area harvested (FAO, 2017). We evaluated the potential of S-1 data alone, S-2 data alone and the combined of S-1 and S-2 data to identify the principal and secondary phenological stages of wheat and rapeseed in Picardy (France). More specifically, the aim of this study was to evaluate the interest of polarimetric indicators derived from S-1 data and to determine the number and type of S-1 and S-2 variables necessary to discriminate the phenological stages of wheat and rapeseed. We estimated the performance of spectral bands and vegetation indices derived from S-2 and backscatter coefficients and polarimetric indicators derived from S-1. Satellite images were classified using the incremental method developed in the previous study (Mercier et al. 2019b).

We continued our research on crop characterization by evaluating the potential of S-1 and S-2 data to estimate the LAI, wet biomass (WB), Dry Biomass (DB) and WC of wheat and rapeseed in Brittany (France). We compared the predictive power of spectral bands and vegetation indices derived from S-2 and backscatter coefficients and polarimetric indicators derived from S-1 using Gaussian process regressions (GPR).

The fourth part of the thesis focused on the following question: What is the impact of landscape structure on crop phenology and biodiversity in crop-dominated landscapes?

Based on the results obtained in the previous part of the thesis, we assessed the impact of the spatio-temporal structuring of the crop mosaic on biodiversity. For that purpose, we analyzed the influence of biophysical heterogeneity on wheat phenology and associated biodiversity in Brittany, Picardy and Wallonia study areas. The vegetation index named Weighted Difference Vegetation Index (WDVI) calculated from S-2 data was used as a metric of biophysical heterogeneity and as an indicator of wheat phenology. First, we analyzed the relationships between crop mosaic, landscape grain and biophysical heterogeneity. Then, we studied the effect of biophysical heterogeneity on wheat phenology. Finally, the distribution of two carabid beetle species was estimated using the biophysical heterogeneity metric.

This thesis contributes to the WOODNET project (Connectivity patterns and processes along a gradient of European landscapes with woody vegetation and spatial heterogeneity), which is part of the European BIODIVERSA program. This is an interdisciplinary project that combines ecology, geography, hydrology, agronomy and law and involves researchers from Belgium, France and Spain. The researches that are presented in this thesis focus on one of the main activities of the WOODNET project, that is the evaluation of new satellite images for landscape mapping (https://woodnetweb.wordpress.com/project/).

The first part of this manuscript presents the thematic basics necessary for a clear understanding of the thesis and details the study areas and data used.

The objective of this part is to present the challenges posed by landscape ecology and remote sensing applied to ecological continuities based on the scientific literature.

In the first chapter, the basic terms and concepts related to ecological continuities are defined. We explain the global issues related to ecological continuities and those specific to wooded and crop-dominated landscapes. Finally, the integration of ecological continuities in public policies is described from the international to the national and regional scales, focusing on policies in the sites studied in this thesis.

In the second chapter, we first define the basics terms and concepts related to optical and SAR remote sensing data. Then, we provide an overview of research using these data for the identification and characterization of constitutive elements of ecological continuities from wooded to crop-dominated landscapes, with particular emphasis on Sentinel-1 and 2 images. Finally, we explain how ecological continuities functions are evaluated using remote sensing data.

Finally, in the third chapter, we present the eight sites studied in this thesis: first, the wooded landscapes located in Spain and Brazil and second, the crop-dominated landscapes located in France and Belgium. Then, the remote sensing data used and associated preprocessing are described. Finally, field data, species data and the field protocols developed for their collection are presented.

Introduction

This chapter first defines the basic terms related to ecological continuities and their functions. Then, the second and third sections focus on ecological continuities in wooded and crop-dominated landscapes, respectively. The implications of ecological continuities in public policies are described and reviewed in a final section.

Habitat fragmentation and ecological continuities

Habitat loss is the main driver of the current mass extinction of biodiversity [START_REF] Pimm | The Future of Biodiversity[END_REF]. Biodiversity is "the sum total of all plants, animals, fungi, and microorganisms on Earth, their genetic and phenotypic variation, and the communities and ecosystems of which they are a part" [START_REF] Dirzo | Global State of Biodiversity and Loss[END_REF]. An operational habitat is defined as an unit that is lived in, occupied by, or consumed by one or more species [START_REF] Vandermeer | Niche Theory[END_REF]. A habitat is therefore directly linked to the notion of species and is not relevant without it. More recently, [START_REF] Hall | The Habitat Concept and a Plea for Standard Terminology[END_REF] defined habitat as "the resources and conditions present in an area that produce occupancy-including survival and reproduction-by a given organism". Then, [START_REF] Mitchell | Carnivore habitat ecology: integrating theory and application. Carnivore ecology and conservation: a handbook of techniques[END_REF] introduced a fitness-based definition of habitat by considering that individuals have an ideal knowledge about the distribution of resources and move between patches to maximize fitness. The main causes of habitat loss are human pressures, i.e. intensification of agriculture, natural resource extraction (mining, fishing and logging) and urbanization (cities, roads, dams and power lines) [START_REF] Dirzo | Global State of Biodiversity and Loss[END_REF].

Over the last 3 years, the effects of habitat fragmentation have been debated in the ecology community [START_REF] Fahrig | Ecological Responses to Habitat Fragmentation Per Se[END_REF][START_REF] Fletcher | Is habitat fragmentation good for biodiversity?[END_REF][START_REF] Fahrig | Is habitat fragmentation bad for biodiversity?[END_REF]. "Fragmentation occurs when a large expanse of habitat is transformed into a number of smaller patches of smaller total area, isolated from each other by a matrix of habitats unlike the original" [START_REF] Wilcove | Habitat fragmentation in the temperate zone[END_REF]). Habitat fragmentation is frequently associated with habitat loss and perceived as negative for biodiversity. While the effects of habitat loss have been widely demonstrated to be detrimental to biodiversity, habitat fragmentation independent of habitat loss has mostly rare and positive effects [START_REF] Fahrig | Ecological Responses to Habitat Fragmentation Per Se[END_REF]. Indeed, for the same total area, small separated habitats have an ecological value equivalent or higher than a single large habitat (Figure 1-1). [START_REF] Fahrig | Ecological Responses to Habitat Fragmentation Per Se[END_REF] reviewed 161 author's explanations for positive responses (water quality, plants, inverterbrates, mammals etc.) to habitat fragmentation and identified 7 possible causes: an increase of functional connectivity (higher patch encounter rate and higher edge density), a higher diversity of habitat, positive edge effects, a stabilization or increase of persistence of predator-prey and host-parasitoid systems, a reduction of intraspecific and interspecific competition, a spread of the extinction risk and an increase of landscape complementation.

Either way, connectivity plays a crucial role for biodiversity. The connectivity is defined as the degree of isolation of a patch from the other patches at landscape scale [START_REF] Hanski | Habitat Connectivity, Habitat Continuity, and Metapopulations in Dynamic Landscapes[END_REF] or the degree of permeability of the landscape to the movement of species [START_REF] Taylor | Connectivity Is a Vital Element of Landscape Structure[END_REF].

Connectivity is considered at a species-specific scale; the defined study landscape should be a function of the dispersal capacity and preferred habitats of the studied species. Movement is essential for the sustainability of species as it allows them to feed, reproduce, avoid predators and colonize new habitats [START_REF] Wiens | Ecological Mechanisms and Landscape Ecology[END_REF]. Thus, patch isolation has negative Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

effects on biodiversity [START_REF] Virgós | Role of isolation and habitat quality in shaping species abundance: a test with badgers (Meles meles L.) in a gradient of forest fragmentation[END_REF][START_REF] Hatfield | Biodiversity management in the face of climate change: A review of 22 years of recommendations[END_REF][START_REF] Bailey | Effects of habitat amount and isolation on biodiversity in fragmented traditional orchards[END_REF]) impeding mechanisms such as genetic rescue, inbreeding avoidance, colonization of unoccupied habitat and adaptation to climate change [START_REF] Clobert | Dispersal ecology and evolution[END_REF]). The corridor is a widely used tool to reduce patch isolation by connecting habitats together to increase and maintain landscape connectivity [START_REF] Beier | Do Habitat Corridors Provide Connectivity?[END_REF].

Figure 1-1. Illustration of habitat loss and habitat fragmentation concepts in [START_REF] Fahrig | Ecological Responses to Habitat Fragmentation Per Se[END_REF].

Higher fragmentation results in higher number of smaller patches with less distance between them. Land-sharing will usually result in a higher ecological value than landsparing. Habitat fragmentation per se = habitat fragmentation independent of habitat amount.

Originally, corridors were designated as linear elements that facilitate the movement of species [START_REF] Spellerberg | Linear features: linear habitats & wildlife corridors[END_REF]. On the contrary, barriers impede movement. More recently, [START_REF] Dennis | Corridors and barriers in biodiversity conservation: a novel resource-based habitat perspective for butterflies[END_REF] define a corridor "as any structure, distinct from neighboring ones, that facilitates relatively more transfers per unit area and unit time between contributing habitat units than predicted from the surrounding matrix". The landscape consists of features that promote or discourage species movements within it. For example, hedgerows are considered corridors for diverse forest herb communities (Roy and de Blois 2008) and forest carabid beetles [START_REF] Petit | Diffusion of forest carabid beetles in hedgerow network landscapes[END_REF] while transports infrastructure and urban areas are barriers for brown bears [START_REF] Gastón | Species' habitat use inferred from environmental variables at multiple scales: How much we gain from high-resolution vegetation data[END_REF]). However, corridors and barriers vary considerably in terms of structure (vegetation, management, topography), composition, energy flow (moisture, heat, light, wind), resources and landscape context, resulting in very heterogeneous functions for one population, species or individual [START_REF] Dennis | Corridors and barriers in biodiversity conservation: a novel resource-based habitat perspective for butterflies[END_REF]. Indeed, a corridor more or less facilitates movement depending on the resistance of surrounding landscape matrix. A landscape feature may be a corridor or a barrier, depending on the direction of dispersal flow of a species. For example, roads are barriers if considered perpendicular flows, whereas roads verges can be corridors considered longitudinally [START_REF] Villemey | Can linear transportation infrastructure verges constitute a habitat and/or a corridor for insects in temperate landscapes? A systematic review[END_REF]. Also, the orientation of a landscape feature and its landscape context modify energy flows affecting certain species. For example, flying insect species benefit from the microclimate provided by the hedgerows by accumulating near hedgerows in windy weather [START_REF] Lewis | The Distribution of Flying Insects Near a Low Hedgerow[END_REF]. Finally, the functions of corridors vary over time with mowing of grassland for butterfly [START_REF] Aviron | Conservation of butterfly populations in dynamic landscapes: The role of farming practices and landscape mosaic[END_REF] or tree canopy closure in hedgerows for European badger [START_REF] Dondina | How to manage hedgerows as effective ecological corridors for mammals: A two-species approach[END_REF]. The diversity of organisms also contributes to the complexity of corridor functions [START_REF] Dennis | Corridors and barriers in biodiversity conservation: a novel resource-based habitat perspective for butterflies[END_REF]. A landscape feature can be a corridor for one species and a barrier for another. For example, hedgerows are barriers for the butterflies Lysandra bellargus [START_REF] Thomas | The Ecology and Conservation of Lysandra bellargus (Lepidoptera: Lycaenidae) in Britain[END_REF]) and corridors for forest carabid beetles [START_REF] Petit | Diffusion of forest carabid beetles in hedgerow network landscapes[END_REF]. Corridors can be at the kilometer scale for mammals [START_REF] Kautz | How much is enough? Landscape-scale conservation for the Florida panther[END_REF] or at the meter scale for butterflies [START_REF] Delattre | Grassy field margins as potential corridors for butterflies in agricultural landscapes: A simulation study[END_REF]. Also, individuals within the same species may react differently to the same landscape feature because they are all different (i.e. speed of movement, physical capacity and life span) [START_REF] Dennis | Corridors and barriers in biodiversity conservation: a novel resource-based habitat perspective for butterflies[END_REF]. All these reasons make it irrelevant to establish a standard list of barriers and corridors.

Ecological continuities are composed of habitats (core area), corridors varying in structure and function (landscape corridor, linear corridor, stepping zone corridor), and a buffer zone that protect the continuities and are mainly transition zones between the continuities and the surrounding matrix [START_REF] Bennett | Integrating Biodiversity Conservation and Sustainable Use: Lessons Learned from Ecological Networks[END_REF].

. Although most studies demonstrate the effectiveness of corridors for the movement of species and the conservation of biodiversity [START_REF] Resasco | Meta-analysis on a Decade of Testing Corridor Efficacy: What New Have we Learned?[END_REF], some studies highlight their potential adverse effects [START_REF] Simberloff | Movement Corridors: Conservation Bargains or Poor Investments?[END_REF][START_REF] Haddad | Potential Negative Ecological Effects of Corridors[END_REF]. Simberldorff and Cox (1987) and Sinberloff et al. (1992) first noted that corridors could have five negative effects: (1) increase dispersal of species antagonistic to conservation targets, (2) create edge, (3) increase dispersal of exotic species, (4) facilitate spread of disturbances and ( 5) synchronize population dynamics (Figure 1-3). However, Hadad et al. (2014), who reviewed 46 studies on these five corridor effects, found no evidence that corridors are systematically detrimental in a way that overcomes their established benefits and advised further research to clarify their potential negative effects. No evidence was found implicating corridors in the spread of invasive species or the facilitation of disasters such as fire spread [START_REF] Haddad | Potential Negative Ecological Effects of Corridors[END_REF]). However, corridors may introduce predatory species that threaten the species to be conserved, such as seed predators, plant parasites and protozoa in microcosms. Therefore, consideration of food webs in corridor design is necessary [START_REF] Haddad | Potential Negative Ecological Effects of Corridors[END_REF]. Edges can increase predation by migratory birds (nestlings) and fish and be traps for species that prefer edges. This problem could be addressed by creating wider corridors or less contrast between corridors and the surrounding matrix. The synchronization of population dynamics can lead to an increase in likelihood of simultaneous extinction, but this effect is unlikely for slowgrowing, poorly dispersed species that are often conservation targets.

Figure 1-3. The five potential negative effects of corridors reported by [START_REF] Simberloff | Movement Corridors: Conservation Bargains or Poor Investments?[END_REF] illustrated by Neil McCoy in [START_REF] Haddad | Potential Negative Ecological Effects of Corridors[END_REF] Ecological continuities, as ecosystems, provide benefits to human populations, i.e. ecosystem services. In all environments, they provide habitats for many species and have recreational and cultural values [START_REF] Bolund | Ecosystem services in urban areas[END_REF][START_REF] Baudry | Hedgerows: An international perspective on their origin, function and management[END_REF][START_REF] Krieger | Economic value of forest ecosystem services: a review[END_REF][START_REF] Duru | How to implement biodiversity-based agriculture to enhance ecosystem services: a review[END_REF]. In crop-dominated landscapes, services can be delivered through landscape structure and the biodiversity resulting from ecological continuities [START_REF] Baudry | Hedgerows: An international perspective on their origin, function and management[END_REF][START_REF] Duru | How to implement biodiversity-based agriculture to enhance ecosystem services: a review[END_REF]. Semi-natural habitats such as hedgerows and grasslands are habitats for arthropods that provide pollination and natural pest control services. Hedgerows provide a large set of services: protection against soil erosion, water drainage, windbreak, carbon storage, wood production [START_REF] Baudry | Hedgerows: An international perspective on their origin, function and management[END_REF]. In wooded landscapes, natural forests contribute significantly to human well-being and health. These ecosystems regulate the climate, improve air quality by trapping carbon and airborne particular matter, product food and raw materials (timber, fodder, medicines products etc.) and purify water with soil filtration [START_REF] Krieger | Economic value of forest ecosystem services: a review[END_REF]. In cities, vegetation zones (parks, urban forests, street trees, wetlands) and water surfaces (lakes and rivers) contribute to improve air quality, regulate the microclimate, reduce noise, improve water flows and purify waste water [START_REF] Bolund | Ecosystem services in urban areas[END_REF]. Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

Ecological continuities in wooded landscapes

Forests are essential for biodiversity conservation as they support 65% of terrestrial taxa (World Commission on Forests and Sustainable Development, 1999) and have the highest diversity for many species such as birds and invertebrates [START_REF] Lillesand | General management principles and a checklist of strategies to guide forest biodiversity conservation[END_REF]. In wooded landscapes, the main threats to biodiversity are deforestation and forest degradation. Deforestation is mainly caused by logging and the expansion of crops and pastures [START_REF] Angelsen | Rethinking the Causes of Deforestation: Lessons from Economic Models[END_REF][START_REF] Kaplan | The prehistoric and preindustrial deforestation of Europe[END_REF]) leading to habitat loss. Forest degradation is a vaguer process than deforestation, which is simply the removal of a forested area. Degradation is a loss or reduction of functions or services (e.g. carbon storage, water quality, wood resources, biodiversity conservation) that can take multiple paths in time and space [START_REF] Putz | The Importance of Defining 'Forest': Tropical Forest Degradation, Deforestation, Long-term Phase Shifts, and Further Transitions[END_REF][START_REF] Ghazoul | Conceptualizing Forest Degradation[END_REF]. [START_REF] Ghazoul | Conceptualizing Forest Degradation[END_REF] emphasized the fact that forests are resilient, therefore, a forest is not degraded if the dynamics allowing it to return to its former state are conserved. The main causes of tropical forest degradation are unsustainable logging, intensive hunting and low-intensity slow-moving undergrowth fires [START_REF] Putz | The Importance of Defining 'Forest': Tropical Forest Degradation, Deforestation, Long-term Phase Shifts, and Further Transitions[END_REF]. Primary forests are defined as mature forests that have been little or not exploited [START_REF] Margono | Primary forest cover loss in Indonesia over 2000-2012[END_REF], while secondary forests are forests that were developed as a result of deforestation, e.g. through abandonment of crops or pastures [START_REF] Vidal | Biodiversity Conservation of Forests and their Ecological Restoration in Highly-modified Landscapes[END_REF]. Primary forests are reservoirs of biodiversity, e.g. in the Brazilian Amazon, which have many more native species (25%) compared to secondary forests (8%) or plantations (11%) [START_REF] Barlow | Quantifying the biodiversity value of tropical primary, secondary, and plantation forests[END_REF]). However, secondary forests and plantations have an important role to play in biodiversity conservation as they provide habitat for forest species, ensure the persistence of some primary forest species [START_REF] Barlow | Quantifying the biodiversity value of tropical primary, secondary, and plantation forests[END_REF]) and can increase landscape connectivity [START_REF] Lillesand | General management principles and a checklist of strategies to guide forest biodiversity conservation[END_REF].

While large forest patches are considered one of the most effective elements for biodiversity conservation in wooded landscapes [START_REF] Lillesand | General management principles and a checklist of strategies to guide forest biodiversity conservation[END_REF][START_REF] Vidal | Biodiversity Conservation of Forests and their Ecological Restoration in Highly-modified Landscapes[END_REF], studies showed that species respond differently to the size patches. [START_REF] Hoover | Effects of Forest Patch Size on Nesting Success of Wood Thrushes[END_REF] showed that wood thrushes in Pennsylvania are more abundant in large habitat patches (72%) than small ones (43%) due to a lower predation rate. In Finland, [START_REF] Suorsa | Effects of forest patch size on physiological stress and immunocompetence in an area-sensitive passerine, the Eurasian treecreeper (Certhia familiaris): an experiment[END_REF] found that fat and protein storage by treecreeper chicks was higher in larger habitats. In contrast, [START_REF] Jokimäki | Distribution of arthropods in relation to forest patch size, edge, and stand characteristics[END_REF] found lower numbers of flying arthropods, small arthropods, and seven different arthropod taxa in large patches compared to small ones in a pine forest in Finland due to the presence of saplings, deciduous shrubs, and spruces, and a welldeveloped and diverse understory in small forest patches. Forest structure maters, sometime more that size. Foaublomme et al. (2008) found that forest carabid beetles were more abundant in large forest patches along an urbanization gradient in Belgium. Finally, [START_REF] Norris | Biodiversity in a forest-agriculture mosaic -The changing face of West African rainforests[END_REF] found that armadillos were in large patches at night and small patches when searching for food during the day. Regarding large ecological reserves, [START_REF] Lillesand | General management principles and a checklist of strategies to guide forest biodiversity conservation[END_REF] noted that they are relatively free from human disturbance and provide a reference for comparing human impacts in managed forests. Furthermore, they mentioned that many species require large habitats to live, and interactions with humans that are undesirable for some species are limited in large habitats. However, small isolated forest fragments have also an important role to play in biodiversity conservation [START_REF] Lillesand | General management principles and a checklist of strategies to guide forest biodiversity conservation[END_REF][START_REF] Vidal | Biodiversity Conservation of Forests and their Ecological Restoration in Highly-modified Landscapes[END_REF]. They provide habitats for some species with little or no presence in large forest patches [START_REF] Lillesand | General management principles and a checklist of strategies to guide forest biodiversity conservation[END_REF]) and may contain high levels of biodiversity [START_REF] Vidal | Biodiversity Conservation of Forests and their Ecological Restoration in Highly-modified Landscapes[END_REF]. They also act as "stepping stones" and thus increase the connectivity of wooded Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

landscapes. Small isolated forest fragments may have a role in supporting biodiversity in highly modified wooded landscapes such as intensive agricultural matrices [START_REF] Vidal | Biodiversity Conservation of Forests and their Ecological Restoration in Highly-modified Landscapes[END_REF]. Given that small fragments constitute a significant part of forest habitats, e.g. 80% of the forest cover in the Brazilian Atlantic Forest [START_REF] Ribeiro | The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation[END_REF], their consideration is essential for biodiversity conservation. Tree planting, seed collection for nurseries and the creation of corridors between forest fragments are examples of tools to improve the habitat quality of small fragments and landscape connectivity in wooded landscapes [START_REF] Lillesand | General management principles and a checklist of strategies to guide forest biodiversity conservation[END_REF][START_REF] Vidal | Biodiversity Conservation of Forests and their Ecological Restoration in Highly-modified Landscapes[END_REF]).

Ecological continuities in crop-dominated landscapes

In crop-dominated landscapes, semi-natural elements such as grasslands and woodlands (hedgerows and forests) are key elements of ecological continuities. [START_REF] Burel | The Structure and Dynamics of Agricultural Landscapes as Drivers of Biodiversity[END_REF] showed that the abundance of diptera decrease with the decrease of semi-natural elements. Avignon et al. (2005) showed that large forest carabid beetles are found in landscapes with a high proportion of semi-natural elements whereas small winged species prefer a high proportion of cultivated land. Originally, crop-dominated landscapes were described as a set of semi-natural elements within a neutral agricultural matrix by landscape ecologists [START_REF] Burel | The Structure and Dynamics of Agricultural Landscapes as Drivers of Biodiversity[END_REF]). However, many species perceive the landscape in a more complex way than a set of habitats containing all the necessary resources within a hostile matrix [START_REF] Fahrig | Functional landscape heterogeneity and animal biodiversity in agricultural landscapes[END_REF]. While farming practices (e.g. pesticides, fertilizers, herbicides, intensive grazing, etc) resulting from intensive systems have shown negative effects on biodiversity (de Snoo and van der Poll 1999; [START_REF] Desneux | The Sublethal Effects of Pesticides on Beneficial Arthropods[END_REF], heterogeneous crop-dominated landscapes with semi-natural elements have a high potential for biodiversity [START_REF] Tscharntke | Landscape perspectives on agricultural intensification and biodiversity -ecosystem service management[END_REF][START_REF] Billeter | Indicators for biodiversity in agricultural landscapes: a pan-European study[END_REF][START_REF] Fahrig | Functional landscape heterogeneity and animal biodiversity in agricultural landscapes[END_REF]. Some arthropod [START_REF] Vasseur | The cropping systems mosaic: How does the hidden heterogeneity of agricultural landscapes drive arthropod populations? Agriculture[END_REF] , bird [START_REF] Freemark | Birds on organic and conventional farms in Ontario: partitioning effects of habitat and practices on species composition and abundance[END_REF], mammal [START_REF] Delattre | Vole outbreaks in a landscape context: evidence from a six year study of Microtus arvalis[END_REF]) and weed [START_REF] Petit | Weeds in agricultural landscapes. A review[END_REF]) species use crops (including grasslands) during their life cycle. At the same time, biodiversity provides benefits to farmers, for example, pollination by insects or crop pest control by birds.

The value of crop-dominated landscapes lies in particular in their high potential heterogeneity, a key element for biodiversity [START_REF] Burel | Landscape Ecology: Concepts, Methods, and Applications[END_REF]. While functional landscape connectivity is important for species movement, heterogeneity is equally important for the dynamics of resource patches [START_REF] Schooley | Habitat quality of source patches and connectivity in fragmented landscapes[END_REF]. In cropdominated landscapes, the diversity of crop types induces spatial heterogeneity. Spatial heterogeneity increases with the increase of different cover types and the complexity of their configuration (Figure 1234). It is beneficial for species because it brings different types of resources and is essential for species that use different types of habitats during their life. Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

Figure 1234.Illustration of spatial heterogeneity and its two components: compositional heterogeneity and configurational heterogeneity. Source: [START_REF] Fahrig | Functional landscape heterogeneity and animal biodiversity in agricultural landscapes[END_REF] Farming practices, crop rotation and crop phenology induce additional temporal heterogeneity to which species respond [START_REF] Vasseur | The cropping systems mosaic: How does the hidden heterogeneity of agricultural landscapes drive arthropod populations? Agriculture[END_REF]. Several studies have demonstrated the influence of past landscape structure on current ecological processes and a lag in the response of organisms to landscape change [START_REF] Burel | Comparative biodiversity along a gradient of agricultural landscapes[END_REF][START_REF] Ernoult | Potential landscape drivers of biodiversity components in a flood plain: Past or present patterns?[END_REF][START_REF] Krauss | Habitat fragmentation causes immediate and timedelayed biodiversity loss at different trophic levels[END_REF]. [START_REF] Fahrig | Relative importance of spatial and temporal scales in a patchy environment[END_REF] has shown that in dynamic landscapes, habitat turnover and associated landscape structure change can be more important than the spatial organization of resource patches for species survival. For example, intensive mowing of grasslands decreases butterfly movement between habitats because it reduces the quality of resources (vegetation height, available nectar), and early mowing (before the butterflies activate their wings) prevents their full development [START_REF] Aviron | Conservation of butterfly populations in dynamic landscapes: The role of farming practices and landscape mosaic[END_REF]). Conversely, late mowing is beneficial for butterflies as it ensures continuous nectar resources and grasslands provide shelter and food for larvae to develop [START_REF] Feber | Butterfly conservation on arable farmland[END_REF]. The phenology of maize and peas affects the movements of the agricultural carabid beetle Pterostichus melanarius due to its preference for crops with dense canopy cover [START_REF] Vasseur | Contrôles exercés par les mosaïques de systèmes de culture sur les dynamiques du carabe Pterostichus melanarius Illiger (Coleoptera, Carabidae). Phdthesis[END_REF]. Indeed, in early summer in Brittany, maize crops have bare soil and pea crops have dense vegetation, thus Pterostichus melanarius move from maize to peas. At the end of July, the opposite movement occurs because the maize has grown and the peas have been harvested. Also, [START_REF] Fitzgibbon | Small Mammals in Farm Woodlands: The Effects of Habitat, Isolation and Surrounding Land-Use Patterns[END_REF] and [START_REF] Ouin | Spatial dynamics of wood mouse (Apodemus sylvaticus) in an agricultural landscape under intensive use in the Mont Saint Michel Bay (France)[END_REF] found that landscape connectivity increases for small forest mammals when crops are grown high and dense. Corridors may therefore temporarily appear within crop-dominated landscapes.

In a context of increasing demand for food coupled with the extinction of biodiversity, understanding the role of crops as ecological continuities and their consideration for biodiversity conservation is essential. Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020. 

Ecological continuities and public policies

Since 1972, the United Nations (UN) has been organizing Earth Summits inviting member states (132 members in 1972, 193 in 2020) in order to establish the main thrusts of an international environmental policy. The integration of biodiversity conservation into public policies first appeared at the first Earth Summit (1972) with the creation of the United Nations Environment Program (UNEP). This organization aims to coordinate the environmental actions of member states and to assist countries in implementing environmental policies. It introduced the notion of sustainable development with the Brundltand Report in 1987 and created, in association with the World Meteorological Organization (a United Nations institution), the Intergovernmental Panel on Climate Change (IPCC) in 1988. This expert group is an organization including the member states and aims to analyze and synthesize international research on human impacts on climate. In 1992, the 3rd Earth Summit in Rio de Janeiro led to the creation of the Convention on Biological Diversity, which aims at the conservation of biodiversity, the sustainable use of biological diversity and the fair and equitable sharing of the benefits arising from the use of genetic resources. Finally, the importance of ecological networks was recognized in 2002 at the 4th Summit in Johannesburg. The UN therefore encourages initiatives in favour of areas of biological richness and other areas essential for biodiversity and the realization of ecological networks at national and regional level. (PROVEG) in 2017. For example, the municipality of Paragominas (Pará) was included in the black list in 2007. From 1980, wood production, beef exploitation, then charcoal production and finally the expansion of crops (rice, corn, soybeans) in the early 2000s led to massive deforestation. In order to comply with the legislation, the "município verde" (green municipality) was created in 2008. The aim of this action plan was to fight against deforestation by stopping deforestation, monthly monitoring of forest cover, training of personnel for environmental control and management, environmental education, establishment of a land registry of farms, encouraging the reforestation of degraded soils and the adoption of good agricultural, livestock and forestry practices. The municipal authorities of Paragominas and large private producers signed a territorial pact that includes these objectives and are supported by environmental NGOs and funds from companies operating in the region. Deforestation has thus been reduced by 80% between 2007 and 2010 and the municipality was taken off the blacklist in 2010. At present, the priorities are the fight against fires, the fostering of family farming, carbon storage, education in rural areas and the reconstruction of forest continuity and efficient landscapes [START_REF] Piketty | Multi-level Governance of Land Use Changes in the Brazilian Amazon: Lessons from Paragominas, State of Pará[END_REF][START_REF] Piketty | Chapitre 7 -« Municípios Verdes » : passer du zérodéforestation à la gestion durable des ressources naturelles en Amazonie brésilienne[END_REF][START_REF] Laurent | Le tournant environnemental en Amazonie : ampleur et limites du découplage entre production et déforestation[END_REF].

In Europe, environmental issues have initially been linked to the simple economic framework since the creation of the European Economic Community in 1957. Then in the 1970s, several environmental disasters (pollution of the Rhine in 1969, accidental release of dioxins at Seveso in 1976, oil spill following the sinking of the Amoco Cadiz in 1978) and the gradual rise of environmental issues on the international scene (first Earth Summit in 1972) led the member countries to launch a European environmental policy in Paris in 1972 [START_REF] Bertrand | Les politiques européennes d'environnement et l'aménagement des territoires[END_REF]. From 1973 onwards, Environment Action Programmes have been regularly adopted. More specifically about ecological continuities, these programmes led to the creation of the Natura 2000 network. In 1995, the Pan-European Biological and Landscape Diversity Strategy launched by the European Environment Ministers aims to establish ecological continuities at the regional and national scales and a pan-European ecological network. In 2011, the European Union aimed to halt the loss of biodiversity by 2020 by adopting a biodiversity strategy. This aim has not been reached, and the dead line was postponed to 2030. One of the objectives is the preservation of ecosystems and their services with the establishment of a green infrastructure and the restoration of at least 15% of degraded ecosystems. The European commission defined green infrastructure as "a strategically planned network of natural and semi-natural areas with other environmental features designed and managed to deliver a wide range of ecosystem services such as water purification, air quality, space for recreation and climate mitigation and adaptation" (https://ec.europa.eu/environment/). More specifically, the green infrastructure strategy is based on four elements: (1) promoting green infrastructure in key European policy areas, (2) supporting green infrastructure projects at the European level, (3) improving access to finance for green infrastructure projects, and (4) improving information and promoting innovation (https://ec.europa.eu). The Review of progress on implementation of the EU green infrastructure strategy published in May 2019 indicates that 179.6 million euros have been invested to support green infrastructure projects; it also highlights the difficulty of deploying infrastructures at transnational scale (https://eur-lex.europa.eu/homepage.html, COM(2019) 236 final). Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

In France, ecological continuities were integrated into public policies under the impetus of the Ministry of Ecology with the Grenelle I and II laws adopted in 2009 and 2010, respectively. The policy called "Trame Verte et Bleue" (green and blue network) came from these laws. French administrative regions have to identify ecological continuities in order to improve and maintain them. Ecological continuities are implemented at the local level by integrating them into urban planning documents (local urban planning plans and territorial coherence schemes) and at the regional level with the Regional Ecological Coherence Schemes (SRCE). The SRCEs are elaborated by each region and include documents aimed at identifying and preserving ecological continuities, such as a diagnosis of the territory related to biodiversity, an action plan, maps of ecological continuities and a summary for public actors. At the national level, the State has elaborated a framework document named "National Guidelines for the Preservation and Restoration of Ecological Continuities". In 2017, a national map was produced for illustrative purpose by merging the SRCEs maps (Figure 123456). In Belgium, protection of biodiversity began in 1973 with the law on nature conservation. This law provides several tools to protect natural areas such as protected areas, species and biotope protection. In 1993, the Wallon region launched a program of Inventory of Sites of Great Biological Interest (SGIB) to identify remarkable natural terrestrial or aquatic areas. Six years later, the regional development plan (SDER) was defined in the Walloon code of territorial development, urban planning and heritage. This document consists of an analysis of the territory and a strategy for future planning. Among the objectives of this document is the protection and development of the natural heritage with the implementation of an ecological network. It indicates the reinforcement of protection of Natura 2000 sites. In addition, it is planned that Sites of Great Biological Interest (SGIB) will be identified on public land with the help of scientific inventories coordinated by the Department of Natural and Agricultural Environment Studies in order to be integrated into the Natura 2000 network. The areas classified as "green spaces" and "parks" are intended to be integrated into the ecological network. Finally, the use of linear infrastructures (bicycle and pedestrian paths and roads) is encouraged for the constitution of ecological continuities. The set of ecological continuities is called Main Ecological Structure (SEP) and is composed of central areas where nature protection is a priority and development areas where protection is less and human activities are in accordance with biodiversity conservation. These areas can be habitats, corridors or buffer zones protecting the continuities. In 2014, Wallonia abandoned the protection of the SGIBs not yet protected with the project of a new regional development plan (SDER) called Territorial Development Code (CoDT). In the same year, several researchers called on the Walloon government to reiterate this objective. The Territorial Development Code (CoDT), that became effective in 2017, stipulates that only sites recognized by the law on nature conservation (1973) must be taken into account in land use planning. The text provides for the identification of a "trame verte et bleue" (green and blue network) at the communal level with an indicative value [START_REF] Born | La biodiversité en Wallonie, 40 ans après l'adoption de la loi sur la conservation de la nature[END_REF]. A map of ecological continuities (Figure 1234567) was adopted by the Walloon government in 2019 and included in the territorial development plan (SDT) (tool defined by the CoDT). This map lists five types of continuities: deciduous forest massifs, limestone grasslands and associated environments, Ardennes ridges, high Ardennes valleys and alluvial plains (http://lampspw.wallonie.be/dgo4/site_amenagement). In Spain, the Natural Heritage and Biodiversity Act of 2007 defines three types of protected areas: (1) protected natural areas, (2) protected areas Red Natura 2000 and ( 3) areas protected by international instruments. The Ministry of Agriculture, Food and Environment is responsible for protected areas in marine areas under national sovereignty or jurisdiction. The Autonomous Communities are responsible for protected areas in the terrestrial and marine space within their territories. The first type of protected areas named "natural protected areas" includes land or sea areas that meet one of the two following constraints: (1) contain natural systems or elements that are representative, unique, fragile, threatened or of special ecological, scientific, landscape, geological or educational interest or ( 2 

Introduction

This chapter aims to present the use of remote sensing data to identify and characterize ecological continuities. First, the basics of optical and SAR remote sensing are explained for a good understanding of this these. The following section provides an overview of research using optical and SAR remote sensing data for the identification and characterization of ecological characteristics from wooded to crop-dominated landscapes, with particular emphasis on Sentinel-1 and 2 images. Finally, examples of applications are described to illustrate how ecological continuities functions are evaluated using remote sensing data.

Basics of remote sensing

Remote sensing refers to the set of techniques allowing the acquisition of information on the Earth's surface without physical contact with it. The information measured by the sensors is derived from the electromagnetic radiation reflected by the objects. The visible domain, from 380 to 780 nm, is only a small part of the spectrum exploited in remote sensing; radiations in the infrared (near-infrared (NIR), short-wavelength infrared (SWIR), thermal infrared) and microwaves are also commonly used ( In the case of optical or SAR imagery, the signals received by the sensors are synthetized into raster images where each pixel corresponds to a digital count of reflectance. The swath corresponds to the area scanned by the antenna beam. Spatial resolution is defined by the size of the smallest element that can be detected (Figure 2 of a sensor to distinguish different electromagnetic wavelengths in the spectrum. The higher the spectral resolution, the more parts of the spectrum the sensor records and the more detailed the spectral signature of an object is. Parts of the electromagnetic spectrum are called spectral bands and their widths vary from sensor to sensor. Temporal resolution corresponds to the revisit time of the sensor to monitor the same area. The selection of the sensor depends on the objectives of the study, the size of the study area, the available funding, the available land data etc. Note that generally the higher the spatial resolution (fine pixel), the lower the temporal resolution (long revisit time) and vice versa [START_REF] Wegmann | Remote Sensing and GIS for Ecologists: Using Open Source Software[END_REF]. 

2.2.1.

Passive optical remote sensing

Basics

Optical images are widely used to map land cover types and monitor vegetation. Optical sensors cover the visible and infrared spectrum, including NIR, SWIR and thermal infrared, with varying spectral resolutions. Panchromatic sensors have the lowest spectral resolution, consisting of a single wide band ranging from blue to red wavelengths. Multispectral sensors (eg. SPOT, QuickBird, ASTER and S-2) have from three to twenty large bands while hyperspectral sensors (eg. CASI, AVIRIS and HySpex) can record several tens to hundreds of fine bands. Concerning the interactions of visible spectrum wavelengths with vegetation, chlorophyll absorbs blue and red wavelengths and reflects a higher proportion of green. Green vegetation strongly reflects NIR wavelengths due to its cellular structure and water in the leaves absorbs SWIR wavelengths near 1450 and 1900 nm (Figure 2 -3). The interactions between vegetation and optical wavelengths are determined by vegetation chlorophyll content, cellular structure and WC. Hence, optical remote sensing images allow identifying Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

plant species, phenological stages or estimate water stress. However, optical wavelengths are reflected from the first layer of the canopy and signal saturation is observed when the leaf surface is high. Moreover, the acquisition of optical images is dependent on cloud cover and their exploitation requires atmospheric corrections due to the sensibility of short wavelengths to water vapor and clouds. These corrections are necessary when different dates or images are compared. 

Vegetation indices and biophysical variables

Many indices have been developed by combining the spectral bands of optical sensors. The best known is the NDVI [START_REF] Rouse | Monitoring vegetation systems in the Great Plains with ERTS[END_REF]. This index exploits the red and NIR bands to determine the chlorophyll content of the vegetation. The Normalized Difference Water Index (NDWI) including NIR bands and SWIR [START_REF] Gao | NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space[END_REF] or green [START_REF] Mcfeeters | The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features[END_REF] bands is commonly used to detect hydric stress. Other vegetation indices take into account effect of soil such as the Soil-adjusted Vegetation Index (SAVI) (Huete 1988) and the Modified SAVI (MSAVI) (Qi et al. 1994, p. 199) or the combined effects of soil and atmosphere such as the Enhanced Vegetation Index (EVI) [START_REF] Huete | MODIS vegetation index (MOD 13)[END_REF]. Some of them indices were specifically developed from a sensor such as the EVI from MODIS or the S-2 Red-Edge Position (S2REP) index from S-2.

Biophysical variables are commonly used to study the structure and functioning of vegetation and estimate the water and carbon balances of surfaces. The LAI, the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) by green vegetation and the fraction of green vegetation cover (fCover) are the most commonly used to study vegetation. The LAI is defined as the total area developed by green leaves per m² on the ground. The FAPAR is the fraction of solar radiation absorbed by plants for photosynthetic activity. Finally, the fCover is the fraction of the soil surface covered by vegetation observed at nadir. These biophysical variables can be measured in the field, directly with samples or indirectly using digital hemispherical photography, LAI sensors such as the LAI-2000 PCA or TRAC [START_REF] Claverie | Estimation spatialisée de la biomasse et des besoins en eau des cultures à l'aide de données satellitales à hautes résolutions spatiale et temporelle : application aux agrosystèmes du sud-ouest de la France[END_REF], terrestrial scanning LIDARs. Optical satellite images are widely used to estimate biophysical variables, using radiative transfer models that simulate the processes of radiative transfer in the soil-vegetation system. The PROSPECT-PROSAIL model is one of the best known and is notably integrated in the S-2 data processing chains in order to map biophysical variables [START_REF] Jacquemoud | PROSPECT+SAIL models: A review of use for vegetation characterization[END_REF]. Relationships between biophysical variables and spectral bands or indices such as NDVI can then also be explored in time over large areas.

2.2.2.

Active SAR remote sensing

Basics

SAR sensors operate in the microwave region of the electromagnetic spectrum, from 0.75 to 100 cm, between Ka-band and P-band (Table 2-1). The signal penetration capacity increases with the wavelength, the signal being sensitive to objects of at least the same size (Figure 234). Concerning the satellite sensors, the bands used are X-band (e.g., TerraSAR-X), C-band (e.g., S-1 and RADARSAT) and L-band (e.g., ALOS-PALSAR (Phased Array L-band Synthetic Aperture RaDAR and JERS (Japan Earth Resources Satellite)). The other parts of the spectrum are exploited with airborne sensors such as RAMSES and SETHI for the Ka, K, Ku and S bands, and AIRSAR and OrbiSAR for the P band. In contrast to optical sensors, SAR sensors are active, and therefore independent of solar illumination, allowing the acquisition of images day and night. Moreover, SAR signal pass through clouds, fog and rain, which is particularly interesting in areas with heavy cloud cover such as tropical areas [START_REF] Lee | Polarimetric Radar Imaging: From Basics to Applications[END_REF]. Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

The SAR imaging system is a side-looking Radio Detection and Ranging (RaDAR) sensor with an antenna that illuminates the scene perpendicular to the flight line direction. The SAR imaging geometry can be briefly described with the following technical terms (Figure 2345):

 The height and velocity of the SAR imaging system.  The angle of incidence between the antenna beam direction and the nadir.  The "slant-range" defined as the RaDAR-line-of-sight, i.e., the antenna beam direction.  The "ground range" that is perpendicular to the flight line direction.  The "azimuth range" that is parallel to the flight line direction. SAR images are subject to geometrical distortions due to their cross-track dimension. The main distortion sources are the "foreshortening" and "layover". In mountainous areas, foreshortening is dominant especially with high angles of incidence. It occurs when the beam reaches the top of a relief before its base, so the relief appears folded on the image and the length of the slope is smaller than in reality. The layover is the opposite phenomenon, when the beam reaches the base of the top before the base of the slope. On the images, the slope appears inverted; the top is in front of the base of the slope. Finally, if the angle of the slope on the reverse of the relief is steeper than the angle of incidence, a RaDAR shadow appears on the image because no signal is returned (Figure 2 "Each pixel of SAR images provides a complex number, including amplitude and phase information, associated to the reflectivity of all scatterers contained in the SAR resolution cell" [START_REF] Lee | Polarimetric Radar Imaging: From Basics to Applications[END_REF]. The amplitude is a measure of the signal strength (i.e., the height of the wavelength), the higher the quantity of radiation returning to the sensor, the higher the amplitude. The amplitude depends of surface properties that induces different scattering mechanisms. The phase indicates the instantaneous situation in the cycle of a microwave. Its measurement refers to its starting point or its progression from an arbitrary origin and is expressed in radian or degree. The phase depends on the surface properties and the distance between the sensor and the earth's surface. The resulting images look like noise and cannot be used directly. The surface reflectivity is sensitive to the SAR sensor parameters such as frequency, incidence angle and polarization, and of the surface properties such as topography, roughness, moisture, dielectric properties and incidence angle [START_REF] Lee | Polarimetric Radar Imaging: From Basics to Applications[END_REF]. Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

Random variations in gray levels called speckle appear on SAR images. These variations are caused by waves reflected from many scatterers within the same resolution cell. Since these scatterers are at random distances from the sensor, the waves received are not coherent in phase. The received signal is strong if the waves of each disperser add relatively constructively (constructive interference); the signal is weak if the waves are out of phase (destructive interference). This effect complicates the interpretation of SAR images, as well as their segmentation and classification. The SAR image multi-look processing and filtering methods are commonly used to reduce speckle noise. The multi-look processing consists in treating separately "looks", i.e. sub-apertures, then averaging the values of the same target to smooth the speckle. The filtering methods consist in applying sliding windows that compute an algorithm, for example, median, boxcar, lee refined or lee sigma. The spatial resolution of the processed image decreases as the window size increases. Larger windows provide more speckle smoothing, while smaller windows provide better texture preservation [START_REF] Lee | Polarimetric Radar Imaging: From Basics to Applications[END_REF].

RaDAR remote sensing yield different types of information such as the SAR signal intensity, the SAR polarimetry or the SAR interferometry (phase difference analysis to measure extremely fine altitudes and small displacements). In this thesis, the intensity and polarimetry were used because of their suitable applications to identify and characterize ecological variables.

Intensity

The backscatter coefficient, also called "sigma nought" or , is a measure of the SAR signal intensity that is proportional to the ratio between the received power and the emitted power. The values of the backscatter coefficients vary according to a set of parameters related to the sensor characteristics (frequency, polarization, incidence angle, etc.) and the target characteristics (geometric structure, surface roughness, dielectric constant, physical properties, etc.). The intensity is measured in natural values (m²/m²) with the following equation (Eq. 2.1):

(2.1)

Where

is the illuminate area, is the power that the target intercepts from the incident wave electric field called scattered field and is the power reradiated by the same target in the form of the scattered wave called scattered field.

The backscatter coefficients are converted into decibels (dB m²/m²) on a logarithmic basis using the following equation (Eq. 2.2):

(2.2)
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Polarimetry

SAR polarimetry is the study of the polarization state of an electromagnetic wave. Microwaves are polarized, i.e. there is an orientation of the electric field in a plane perpendicular to the wave direction of propagation. SAR systems emit microwaves with horizontal (H) or vertical (V) polarization, and receive the backscattered waves with horizontal or vertical polarization. Thus, four combinations are possible: HH, VV, HV and VH, with the first letter corresponding to transmission and the second to reception. The HH and VV polarizations are so-called parallel or co-polarized, while HV and VH are crossed polarizations. Multi-polarization SAR systems enable the transmission of H or V polarizations and can receive parallel or cross polarizations. Polarimetric SAR systems can transmit and receive in both V and H polarizations and, therefore, provide the four possible combinations. The single, dual and quad polarizations correspond to SAR systems including one, two and four combinations, respectively. More specifically, polarimetry is the study of the modification of the wave polarization during its interaction with a target. The modification of the wave polarization is related to the target properties such as its structure, shape, orientation and physical properties. The depolarization of the backscattered wave (superposition of many waves) can be revealed by several decompositions of the sccattering matrix (Cloude andPottier, 1996, Freeman and[START_REF] Freeman | A three-component scattering model for polarimetric SAR data[END_REF].

In the case of quad-polarized data, the complex 2 x 2 matrix called coherent scattering matrix, , also called Sinclair matrix, transcribes the change in polarization. The matrix consists of four complex numbers calculated from the amplitude and phase of the polarized channels. The diagonal corresponds to the co-polarized channels and the other elements to the cross-polarized channels. (2.3) The span of the matrix is the total power scattered by a target and is calculated with the following equation (Eq. 2.4): (2.4) When the transmitter and receiver are located at the same location, which is the case for most SAR systems, and are equal, based on the reciprocity assumption. Thus, it is possible to represent the information scattered with the 3-D lexicographic feature vector from the matrix as (Eq. 2.5):

(2.5)
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These two target vectors are consistent representations of the matrix and their norm is equal to the span (Eq. 2.4). The 3-D lexicographic feature vector is directly related to the measurable elements of the system. The 3-D Pauli feature vector is closely related to the physical properties of the scatterers and can be interpreted in terms of elementary scattering mechanisms with the single bounce (or surface scattering) corresponding to , the double bounce to and the volume scattering to (Figure 2 -8). From the target vectors and , complex polarimetric coherence matrices, , and covariance,

, can be constructed. This is an incoherent representation of the signal derived from the variance of the signals in the different polarization channels and their mutual correlation. The covariance matrix is the product between the target vector and its conjugate transpose (Eq. 2.7):

(2.7)

The coherence matrix is the product between the target vector and its conjugate transpose (Eq. 2.8):

(2.8)

These matrices aim to characterize "non-coherent" targets, also known as non-pure targets. In reality, a target has a complex scattering response due to its complex geometry and reflectivity properties. Interpretation of a target response is difficult because the target response is the sum of several mechanisms within the resolution cell. Therefore, canonical targets are used because their polarimetric signature and matrices associated are known (Table 2.2). Geometric representation of canonical targets and associated Sinclair matrix adapted from [START_REF] Lee | Polarimetric Radar Imaging: From Basics to Applications[END_REF] (Table 2.2). For example, the matrix of the trihedron corresponds to single bounce, that of a dihedral oriented at 0° to double bounce and that of a dihedral oriented at 45° to volume scattering. Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020. The Cloude and Pottier decomposition results in three polarimetric parameters derived from the coherence matrix:  The alpha angle ( ) measures the dominant backscattering mechanism. A value of 0°, 45° and 90° corresponds to a surface scattering, a volume scattering, and a double bounce, respectively.  The entropy (H) is related to the randomness of the diffusion. If H = 0, there is a single scattering mechanism that dominates (case of water surfaces); If H = 1, several scattering mechanisms are present, thus, the signal is depolarized.  The anisotropy (A) characterizes the importance of secondary scattering mechanisms compared to the primary scattering mechanism. This parameter is used in addition to the entropy parameter. It becomes interesting for high entropy values.

Geometric representation Canonical target Sinclair matrix

Sphere

If A = 0, the two secondary mechanisms are mixed in equal proportions. If A = 1, the secondary mechanism dominates.

Other polarimetric parameters can be used to characterize the targets from the covariance matrix. In this thesis, we use Shannon entropy (SE) because of its high potential to characterize the vegetation (Betbeder et al. 2014a(Betbeder et al. , 2016b)). The SE measures the randomness of the scattering of a pixel that may be due to the variation of power or backscatter polarization. For example, a complex structure induces an increase in SE. It is calculated from the following equation (Eq. 2.9):

(2.9)

Where

And is the determinat of the matrix and is the trace of the matrix.

Polarimetric decompositions are suitable for processing quad-polarized SAR data. However, for dual-polarized data, one of the polarization channel is missing. The is therefore adapted in . For example, the covariance matrix of S-1 is (Eq. 2.10):

(2.10)

Identification and characterization of the elements constituting ecological continuities using remote sensing data

The identification and characterization of the elements potentially constituting ecological continuities is one of the major challenges facing humanity in a context of rapid decline in biodiversity. Today, the notion of ecological continuity is a key concept in public policies dealing with environmental protection laws, protected areas, land use planning tools, etc from the international level to local level. The identification and characterization of ecological continuities are at the basis of biodiversity conservation strategies and represent a major scientific challenge due to the structural and functional complexity of ecological systems. In this context, remote sensing data are an important tool for the identification and characterization of the ecological elements constituting continuities. Optical remote sensing data have been more widely used than SAR for this purpose, in part due to their older operational history. Indeed, the first optical satellite, Landsat-1, was launched in 1972, while SAR satellite systems are available since the 1990s, first with JERS-1 and ERS-1. Optical data are sensitive to physiology of vegetation (chlorophyll content, pigments) while SAR data are sensitive to canopy structure and soil surface characteristics (roughness, moisture). Optical remote sensing data have already shown a high potential to identify and characterize ecological characteristics of landscape elements. However, they have some limitations such as their sensitivity to cloud cover and atmospheric effects. More specifically concerning vegetation, the optical waves do not penetrate the canopy and the signal saturates at high biomass levels. SAR sensors overcome these limitations since microwaves are insensitive to clouds and able to penetrate vegetation. SAR images also have limitations such as the presence of speckle noise and geometric distortions; in addition, the sensitivity of the signal to soil moisture is problematic in rainy conditions. This section provides an overview of research using optical and SAR remote sensing data for the identification and characterization of ecological characteristics from wooded to crop-dominated landscapes. While this thesis evaluates the Sentinel-1 and 2 data, special attention is given to them.

2.3.1.

Identification and characterization of land cover types using remote sensing data Satellite images are an ideal tool for mapping land cover types patterns since they cover large areas with a high frequency revisit time. Since several decades, MODIS, AVHRR and Landsat optical time series have been used extensively for global land cover classification due to their high temporal resolution and large spatial coverage [START_REF] Congalton | Global Land Cover Mapping: A Review and Uncertainty Analysis[END_REF][START_REF] Gómez | Optical remotely sensed time series data for land cover classification: A review[END_REF]. The S-2 sensor launched in 2014 improved the characteristics of available images to map land cover with a higher resolution (10m, 20m and 60m), a 5-day revisit time and 13 spectral bands. The associated SAR S-1 data offer a good complement to optical data, especially for cloudy areas. In addition, Sentinel data are freely available unlike most SAR data (e.g., TerraSAR-X, ALOS2, RADARSAT-2, COSMO-Sky Med) and high resolution optical data (e.g., SPOT, Quickbird, WorldView, Geo-Eye, Ikonos). Recent studies have demonstrated the potential of S-2 data for mapping land cover types from a single-date image (Immitzer et al. 2016;[START_REF] Clark | Comparison of simulated hyperspectral HyspIRI and multispectral Landsat 8 and Sentinel-2 imagery for multi-seasonal, regional land-cover mapping[END_REF][START_REF] Colkesen | Ensemble-based canonical correlation forest (CCF) for land use and land cover classification using sentinel-2 and Landsat OLI imagery[END_REF][START_REF] Haas | Urban Land Cover and Ecosystem Service Changes based on Sentinel-2A MSI and Landsat TM Data[END_REF][START_REF] Mongus | Segmentation schema for enhancing land cover identification: A case study using Sentinel 2 data[END_REF] and time series [START_REF] Inglada | Operational High Resolution Land Cover Map Production at the Country Scale Using Satellite Image Time Series[END_REF][START_REF] Phiri | Sentinel-2 Data for Land Cover/Use Mapping: A Review[END_REF]. Some studies have demonstrated the potential of the S-1 signal intensity to map 5 global land cover types [START_REF] Abdikan | Land cover mapping using sentinel-1 SAR data[END_REF]) and some CORINE land cover classes such as broadleaf and coniferous Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

forests, inland waters and non-irrigated arable land [START_REF] Balzter | Mapping CORINE land cover from Sentinel-1A SAR and SRTM digital elevation model data using random forests[END_REF]. Use of S-1 data combined with S-2 or Landsat data increases the classification accuracy [START_REF] Kussul | Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data[END_REF][START_REF] Zhou | Exploring the Impact of Seasonality on Urban Land-Cover Mapping Using Multi-Season Sentinel-1A and GF-1 WFV Images in a Subtropical Monsoon-Climate Region[END_REF][START_REF] Laurin | Above-ground biomass prediction by Sentinel-1 multitemporal data in central Italy with integration of ALOS2 and Sentinel-2 data[END_REF][START_REF] Reiche | Improving near-real time deforestation monitoring in tropical dry forests by combining dense Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2[END_REF]. [START_REF] Liu | Integration of convolutional neural networks and object-based post-classification refinement for land use and land cover mapping with optical and sar data[END_REF] demonstrated that the efficiency of optical and SAR data fusion is modulated by the algorithmic method selected.

Although convolutional neural network approach remains ultimately more efficient, fusion has brought more to classical methods (random forest (RF), support vector machine (SVM)).

2.3.2.

Identification and characterization of ecological entities in wooded landscapes using remote sensing data

As described in Chapter 1, deforestation and forest degradation are key points for studying ecological characteristics of wooded landscapes. Very high spatial resolution data are required to detect forest degradation [START_REF] Zhu | Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications[END_REF]Bourgoin 2019). Spectral unmixing analysis has proven to be a relevant method to distinguish degraded vegetation, nondegraded vegetation and bare soil using remote sensing optical images [START_REF] Tritsch | Multiple Patterns of Forest Disturbance and Logging Shape Forest Landscapes in Paragominas, Brazil[END_REF]. Time series are required to analyze the dynamics of degradation and the resilience of disturbed environments [START_REF] Mitchell | Current remote sensing approaches to monitoring forest degradation in support of countries measurement, reporting and verification (MRV) systems for REDD+[END_REF]. While Landsat data are widely used for the detection of deforestation and forest degradation (Bourgoin 2019), more recently, high performance was found using S-2 optical data [START_REF] Nuthammachot | Estimating aboveground biomass on private forest using Sentinel-2 imagery[END_REF][START_REF] Sedano | Monitoring intra and inter annual dynamics of forest degradation from charcoal production in Southern Africa with Sentinel -2 imagery[END_REF]. Although LiDAR data are particularly relevant for estimating aboveground biomass [START_REF] Asner | A universal airborne LiDAR approach for tropical forest carbon mapping[END_REF][START_REF] Meyer | Detecting tropical forest biomass dynamics from repeated airborne lidar measurements[END_REF]), these data are unsuitable for monitoring large areas with a high revisit time. In tropical zones, high cloud cover is a major constraint to detect forest degradation using optical data. In this context, SAR data offer very interesting possibilities. They can be an alternative to LiDAR data since they are also sensitive to the geometrical structure of vegetation. [START_REF] Bourgoin | A framework for evaluating forest ecological vulnerability in tropical deforestation fronts from the assessment of forest degradation in a landscape approach : Case studies from Brazil and Vietnam. Phdthesis, Institut agronomique[END_REF] have demonstrated the performance of S-1 and ALOS-1 PALSAR data to estimate above ground biomass in a degraded Amazonian forest. Finally, the combined use of optical and SAR data allows to obtain denser data series essential for monitoring degradation dynamics. S-2 data are also promising to classify forest types and tree species (Immitzer et al. 2016;[START_REF] Persson | Tree Species Classification with Multi-Temporal Sentinel-2 Data[END_REF][START_REF] Hościło | Mapping Forest Type and Tree Species on a Regional Scale Using Multi-Temporal Sentinel-2 Data[END_REF]. The red-edge and SWIR bands are important for differentiating spectral signatures of species and the multitemporal nature of the data is a key point for capturing the different phenology of species at key periods.

2.3.3.

Indentification and characterization of ecological entities in crop-dominated landscapes using remote sensing data

Semi-natural elements

Wooded elements and grasslands, which are commonly considered « semi-natural elements » by the scientific community, are essential for biodiversity in crop-dominated landscapes [START_REF] Burel | The Structure and Dynamics of Agricultural Landscapes as Drivers of Biodiversity[END_REF]. Many remote sensing studies have addressed the identification of hedgerows (Betbeder 2015). The definition of hedgerows varies according to studies and this confusion is a problem for the extraction of hedgerows from satellite images because the maps obtained are not based on the same characteristics, making them incomparable [START_REF] Baudry | De la haie aux bocages. Organisation, dynamique et gestion[END_REF]. [START_REF] Baudry | De la haie aux bocages. Organisation, dynamique et gestion[END_REF] defined a hedgerow as "a linear element of the landscape composed of trees or shrubs and managed by man". Manual discrimination from aerial photographs was first used to identify hedgerows network. However, maps represented hedgerows as lines and manual discrimination was time consuming and difficult to transfer on large areas. Automatic methods were therefore developed using optical satellite images such as QuickBird, SPOT-5 and WorldView-2 images [START_REF] Thornton | Sub-pixel mapping of rural land cover objects from fine spatial resolution satellite sensor imagery using super-resolution pixel-swapping[END_REF][START_REF] Vannier | Detection of Wooded Hedgerows in High Resolution Satellite Images using an Object-Oriented Method[END_REF][START_REF] Aksoy | Automatic mapping of linear woody vegetation features in agricultural landscapes using very high resolution imagery[END_REF][START_REF] Fauvel | Detection of hedges in a rural landscape using a local orientation feature: from linear opening to path opening[END_REF]. Spatial resolution is a key point for hedgerow mapping because fine hedges can only be detected with very high spatial resolutions [START_REF] Vannier | Multiscale comparison of remote-sensing data for linear woody vegetation mapping[END_REF]. LiDAR data and its derived raster products are particularly efficient for this purpose [START_REF] Vannier | Multiscale comparison of remote-sensing data for linear woody vegetation mapping[END_REF][START_REF] Lucas | Identification of Linear Vegetation Elements in a Rural Landscape Using LiDAR Point Clouds[END_REF] and are increasingly used due to their growing availability [START_REF] Lucas | Identification of Linear Vegetation Elements in a Rural Landscape Using LiDAR Point Clouds[END_REF]. Very few studies use SAR sensors to identify and characterize hedgerows despite some promising results [START_REF] Bargiel | Capabilities of high resolution satellite radar for the detection of semi-natural habitat structures and grasslands in agricultural landscapes[END_REF]Betbeder et al. 2014a). The hedgerows characterization remains little studied, either with optical or SAR satellite data. For example, [START_REF] Wiseman | Quantification of shelterbelt characteristics using high-resolution imagery[END_REF] developed a method to discriminate tree species in shelterbelts based on the spectral characteristics of SPOT 5 images. [START_REF] Czerepowicz | Using satellite image data to estimate aboveground shelterbelt carbon stocks across an agricultural landscape[END_REF] explained 70% of the variance in shelterbelt biomass using spatial and spectral characteristics of QuickBird images. Finally, only one study demonstrated the potential of SAR data to characterize hedgerows by estimating the canopy aperture using SE derived from TerraSAR-X images (Betbeder et al. 2014a).

Concerning grasslands, optical satellite data such as MODIS or AVHRR with coarse spatial resolution (>205m) and wide coverage are sufficient for global scale applications. On the other hand, sensors such as SPOT, S-2, GeoEye, RapidEye and Quickbird with higher spatial resolution (>10m) are required to retrieve grassland characteristics such as biophysical parameters, quality, growth, degradation and grazing capacity [START_REF] Ali | Satellite remote sensing of grasslands: from observation to management[END_REF]. Spectral resolution is a key factor to discriminate species, while temporal resolution is beneficial to estimate yields or monitor phenological stages and grassland management. SAR data have been less used than optical data but they remain promising [START_REF] Ali | Satellite remote sensing of grasslands: from observation to management[END_REF]. Wang et al. (Wang et al. 2019) found that the combination of S-1, S-2 and Landsat-8 data improved estimates of LAI and above ground biomass of grasslands compared to S-1 alone with low vegetation cover and compared to S-2 with high vegetation cover. [START_REF] Fauvel | Prediction of plant diversity in grasslands using Sentinel-1 and -2 satellite image time series[END_REF] predicted grasslands plant diversity by combining Sentinel-1 and 2 data. They showed thatS-1 did not improve results obtained using only S-2 data but only the signal intensity was used. [START_REF] Dusseux | Combined Use of Multi-Temporal Optical and Radar Satellite Images for Grassland Monitoring[END_REF] found that the discrimination between grasslands and crops is more accurate using a full polarimetric RADARSAT-2 time series than an optical time series (SPOT and Landsat). Polarimetry also showed a high potential for monitoring grassland cutting practices [START_REF] Voormansik | Observations of Cutting Practices in Agricultural Grasslands Using Polarimetric SAR[END_REF]). El Hajj et al. (2019) demonstrated that L-band was more relevant to characterize grasslands than C-band because of its higher penetration capacity.

Crops

Until the late 1990s, the optical Landsat and SPOT images were the most relevant to discriminate crop types with a spatial resolution of 30m and 20m, respectively [START_REF] Bauer | Identification and area estimation of agricultural crops by computer classification of Landsat MSS data[END_REF][START_REF] Büttner | Comparative study of crop and soil mapping using multitemporal and multispectral SPOT and landsat thematic mapper data[END_REF]. In 1990s, the launch of very high spatial resolution optical satellites such as Quickbird and IKONOS offered new opportunities to accurately identify crop types [START_REF] Yang | Using high resolution QuickBird imagery for crop identification and area estimation[END_REF][START_REF] Turker | Field-based crop classification using SPOT4, SPOT5, IKONOS and QuickBird imagery for agricultural areas: a comparison study[END_REF]. The misclassifications of crop types are mainly due to spectral similarities between crops and spatial and spectral variability within fields. A high spectral resolution of optical sensors is essential to discriminate crops, especially spectrally similar crops. A high temporal resolution is also highly useful to Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

discriminate crops by enabling to monitor crop rotation and phenological cycles. The S-2 sensors, launched in 2015 and 2017, are a very good tool for crop identification and characterization since they combine high spatial, temporal and spectral resolutions (Immitzer et al. 2016;[START_REF] Inglada | Improved Early Crop Type Identification By Joint Use of High Temporal Resolution SAR And Optical Image Time Series[END_REF]Veloso et al. 2017;[START_REF] Belgiu | Sentinel-2 cropland mapping using pixel-based and object-based timeweighted dynamic time warping analysis[END_REF][START_REF] Vuolo | How much does multi-temporal Sentinel-2 data improve crop type classification?[END_REF]Ghosh et al. 2018). The use of SAR images alone have a good potential in identifying crop types, as shown with with TerraSAR-X (McNairn and Brisco 2004;[START_REF] Kenduiywo | CROP TYPE MAPPING FROM A SEQUENCE OF TERRASAR-X IMAGES WITH DYNAMIC CONDITIONAL RANDOM FIELDS[END_REF], RADARSAT-2 [START_REF] Jiao | Object-oriented crop mapping and monitoring using multitemporal polarimetric RADARSAT-2 data[END_REF]) and S-1 (Denize et al. 2019b;[START_REF] Mandal | Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data[END_REF] data.

The temporal resolution of SAR data appears more important than the polarimetric information (McNairn and Brisco 2004;[START_REF] Kenduiywo | CROP TYPE MAPPING FROM A SEQUENCE OF TERRASAR-X IMAGES WITH DYNAMIC CONDITIONAL RANDOM FIELDS[END_REF][START_REF] Kenduiywo | Higher Order Dynamic Conditional Random Fields Ensemble for Crop Type Classification in Radar Images[END_REF]Denize et al. 2019b) and quad polarization outperforms dual polarization (McNairn and Brisco 2004;Denize et al. 2019b). Since 2014, the use of optical and SAR data fusion for crop type discrimination is increasing [START_REF] Blaes | Efficiency of crop identification based on optical and SAR image time series[END_REF][START_REF] Inglada | Improved Early Crop Type Identification By Joint Use of High Temporal Resolution SAR And Optical Image Time Series[END_REF]Denize et al. 2019a;[START_REF] Orynbaikyzy | Crop type classification using a combination of optical and radar remote sensing data: a review[END_REF].

Landsat and RADARSAT sensors are the most widely used sensors while the fusion methods are mostly layer-stacking of optical and SAR bands. The optical and SAR data fusion improves the accuracy of classifications [START_REF] Orynbaikyzy | Crop type classification using a combination of optical and radar remote sensing data: a review[END_REF]. [START_REF] Orynbaikyzy | Crop type classification using a combination of optical and radar remote sensing data: a review[END_REF] noted that studies using optical and SAR data fusion used small study areas and the reproducibility of the methods is lacking.

Optical data (AVHRR, SPOT, Landsat, MODIS, IRS, IKONOS, QuickBird, Formosat-2, S-2) have been widely used for crop characterization (Quarmby et al. 1993;Doraiswamy et al. 2004;Mulla 2013;Bontemps et al. 2015;[START_REF] Pan | Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data[END_REF]Betbeder et al. 2016b;[START_REF] Bégué | Remote Sensing and Cropping Practices: A Review[END_REF]. The spectral bands, vegetation indices and biophysical variables derived from these data have a high potential for estimating crop parameters such as yield, biomass, LAI and phenological stages of various crops. More specifically, S-2 data perform well in estimating LAI (Delegido et al. 2011b;Frampton et al. 2013;Clevers et al. 2017;Pan et al. 2018;Wang et al. 2019), biomass (Veloso et al. 2017;Ghosh et al. 2018;Ganeva et al. 2019) and phenological stages (Veloso et al. 2017;Ghosh et al. 2018;Stendardi et al. 2019) of grasslands and crops. Red-edge and SWIR bands of S-2 are relevant for estimating LAI of various crop types (Pan et al. 2018). Many studies demonstrate the value of satellite (RADARSAT, TerraSAR-X, ALOS, S-1) and airborne SAR data for identifying crop parameters [START_REF] Steele-Dunne | Radar Remote Sensing of Agricultural Canopies: A Review[END_REF]. Polarimetric parameters derived from RADARSAT-2 or TerraSAR-X are relevant for estimating phenological stages, height and LAI of various crops (Jiao et al. 2009;Wiseman et al. 2014;[START_REF] Mascolo | Retrieval of phenological stages of onion fields during the first year of growth by means of C-band polarimetric SAR measurements[END_REF]Jin et al. 2015;Betbeder et al. 2016b;[START_REF] Pacheco | Using RADARSAT-2 and TerraSAR-X satellite data for the identification of canola crop phenology[END_REF]Canisius et al. 2018;McNairn et al. 2018;Homayouni et al. 2019). We do not know any study using polarimetric indicators derived from S-1 to characterize crops. More specifically about S-1, recent studies show the interest of backscatter coefficients and VH:VV ratio for crop classification [START_REF] Bargiel | A new method for crop classification combining time series of radar images and crop phenology information[END_REF], changes detection in the structure of rapeseed, maize and winter cereals (Vreugdenhil et al. 2018), identification of wheat phenological stages (Song and Wang 2019) and estimation of biomass, moisture content and LAI of wheat (Kumar et al. 2018). Some studies have used both optical and SAR data for crop characterization (Betbeder et al. 2016a;Veloso et al. 2017;[START_REF] El Hajj | Penetration Analysis of SAR Signals in the C and L Bands for Wheat, Maize, and Grasslands[END_REF]. However, most of them use optical data as a reference for evaluating SAR data. Although the combination of optical and SAR data improves classification results, it remains little used to predict crop parameters (Jin et al. 2015;Stendardi et al. 2019). Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

Functional assessment of ecological continuities identified by remote sensing data

While remote sensing is commonly used to map the elements constitutive of ecological continuities, be they semi-natural features, permanent grasslands, or cultivated plots, it is also is commonly used in landscape ecology to study landscape structure, change and function [START_REF] Crowley | Remote Sensing's Recent and Future Contributions to Landscape Ecology[END_REF]. Landscape function can be assessed by combining these indicators with information from landscape ecology models (e.g., spatial distribution of a species, meteorological measurements). Ecological continuities are identified using modeling of the interactions between map data and species observations. Indicators used for this purpose can be images with continuous values such as vegetation indices [START_REF] Moreno | Application of NDVI for identify potentiality of the urban forest for the design of a green corridors system in intermediary cities of Latin America: Case study, Temuco, Chile[END_REF] or polarimetric indicators [START_REF] Betbeder | Assessing ecological habitat structure from local to landscape scales using synthetic aperture radar[END_REF] or discrete land cover and land use classes [START_REF] De La Fuente | Natura 2000 sites, public forests and riparian corridors: The connectivity backbone of forest green infrastructure[END_REF].

At the national level, in Spain, Fuente et al. ( 2018) have produced a map of ecological corridors relevant for forest mammal movements. They used a least-cost path modeling, based on resistance surfaces to link Natura 2000 sites with corridors. In the case of woodland species, movement was restricted outside woodlands, i.e. in crops, urban areas or through transport infrastructures. Therefore, high movement resistance values were assigned to these land cover/land use classes. The resistance surface was derived from the forest map of Spain, and the Corine land cover and OpenStreetMap databases.

In France, the mapping of the green and blue network is carried out in most regions in three stages. First, sub-networks such as wooded areas, hedgerows, wet grasslands or coastlines are identified. Aerial photographs and field inventories are the main sources of information. Second, biodiversity reservoirs are identified from existing protected areas (e.g. Natura 2000 and Natural Areas of Ecological, Faunistic and Floristic Interest), scientific databases (tree species, habitat), and modeling of species movement capacity according to the environment encountered. Third, corridors are identified using photo-interpretation of land cover/use. Two methods are used: 1) the identification of corridors using the least-cost method 2) the use of methods based on permeability of environments generally integrated into GIS (Betbeder 2015). At the regional level, Hubert-Moy et al. ( 2012) mapped corridors in Brittany, France. They used high and medium spatial resolution optical data to identify agro-natural elements (woodlands, heathlands, thickets and permanent grasslands). Then, an aggregation index was applied to the different elements identified in order to detect structural continuities in this agricultural landscape.

Croley and Cardille (Crowley and Cardille 2020) identified future contributions of remote sensing to landscape ecology by examining studies of the last five years, including intra-annual monitoring for landscape analysis, comparison between different landscapes and the use of continuous rather than discrete classes of data. They outlined that ecological continuities maps do not consider the crop mosaic despite beneficial effects of heterogeneous landscape including semi-natural elements on biodiversity. They also highlighted that the temporal dynamics of ecological continuities such as hedgerow trimming or crop rotation are never integrated despite their effects on landscape functions. These issues could be taken into consideration using remote sensing time series data, given their high potential to identify and characterize crop-dominated landscapes. Introduction 

Introduction

The identification and characterization of ecological continuities were conducted over eight study areas in four countries: one in Brazil, one in Spain, three in France and three in Belgium. Firstly, this chapter presents the study areas: (i) the forest agriculture mosaics (Cantabrian range and Paragominas) used to map land cover types and (ii) the cropdominated landscapes (Brittany, Picardy, Wallonia) used for crop characterization and ecological assessment of agricultural networks. Secondly, the data used are described, i.e. remote sensing data, field measurements and species data.

Study areas

3.2.1.
Forest-agriculture mosaics

Cantabrian range (Spain)

The study area named "Cantabrian range" is a forest-agriculture mosaic that covers 35 700 km² and four regions of Spain, i.e. Lugo in the East, Cantabria in the West, Principality of Asturias in the North and Castilla y Leon in the South (Figure 3-). The region includes the entire Cantabrian Range with an elevation of 0-2468m (mean = 800m). The climate is Atlantic with mild temperatures and short cool summers (Mateo- [START_REF] Mc | Seasonal and temporal changes in species use of the landscape: how do they impact the inferences from multi-scale habitat modeling?[END_REF][START_REF] García-León | Comparison of meteorological and satellite-based drought indices as yield predictors of Spanish cereals[END_REF]). The landscape is dominated by forested areas, shrublands and croplands dominated by vines, wheat, barley, rye, sunflower and oat (Mateo- [START_REF] Mc | Seasonal and temporal changes in species use of the landscape: how do they impact the inferences from multi-scale habitat modeling?[END_REF]. The crops are located in the south of the study area (Castilla y Leon), most of them being irrigated. Three thousand years ago, large patches of natural forests were converted to pasturelands (traditional cattle ranging and selective logging), leading to major decrease in forest area. Thus, the current landscape contains remnant forest fragments that are distinct from a non-forest matrix composed mainly of pastures, heathlands in abandoned meadows [START_REF] García | Fragmentation patterns and protection of montane forest in the Cantabrian range (NW Spain)[END_REF]. Some parts of the region include small scattered villages while others are composed of extensive urban and agricultural lands connected by roads, highways, and railways [START_REF] Sánchez | Scale dependence in habitat selection: the case of the endangered brown bear (Ursus arctos) in the Cantabrian Range (NW Spain)[END_REF]). More recent forest decrease is due to anthropogenic pressures such as surface mining, road construction, creation of forest plantations and anthropogenic fires. Mature beech forests of Cantabrian range provide habitat for threatened species (capercaillie and brown bear). In the past 40 years, regional and national reserves were established to preserve forested habitats. Legal restrictions on new land uses are imposed in reserves such as road construction, mining and timber deforestation [START_REF] García | Fragmentation patterns and protection of montane forest in the Cantabrian range (NW Spain)[END_REF].

Paragominas (Brazil)

Paragominas is a municipality located in the eastern Brazilian Amazonia, in Pará State, 217 km south of Belem. The municipality covers 19342 km² with an elevation of 0-190 m (Figure 3-2). The climate is tropical with a wet season from December to May and a dry season from June to November, an average annual temperature of 26.3°C and an annual rainfall of 1693m (Andrade 2011). From the 1960s to 2010, there has been a period of deforestation mainly caused by soybean and maize cultivation, creation of forest plantations and cattle ranching. The remnant forest areas were degraded due to overlogging and fires [START_REF] Tritsch | Multiple Patterns of Forest Disturbance and Logging Shape Forest Landscapes in Paragominas, Brazil[END_REF]. In Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

1990, Paragominas was the main producer of wood in Brazil. Landscape and forest disturbances in the municipality have caused biodiversity loss, with significant negative effects on species of high conservation and functional value [START_REF] Barlow | Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation[END_REF]. In 2005, in the context of the new federal policy to fight deforestation, a new model of local governance, called "Municipio Verde", was adopted by the municipality [START_REF] Viana | From red to green: achieving an environmental pact at the municipal level in paragominas (Pará, Brazilian Amazon)[END_REF]. Its aims were to combat deforestation and strengthen the capacity of local institutions to develop specific environmental policies based on the Brazilian forestry code. Since then, Paragominas represents a spectacular case of deforestation that became a national reference for municipallevel anti-deforestation policies with annual deforestation rates decreasing by up to 80%.

3.2.2.

Crop-dominated landscapes

Picardy (France)

The two study areas of Picardy are 5 km squares located in northern France (Figure 3-3). The climate is oceanic with an average annual temperature of 10°C and mean average precipitation of 702 mm (Météo France). The site named "Picardy-West" is an open field landscape with intensive cultivation of cereals and sugar beet. The site named "Picardy-East" is a "bocage" landscape dominated by grasslands and less intensive farming activities (mainly dairy cattle), the fields being smaller and tending to be surrounded by hedgerows. In both landscapes, managed forest fragments are used for hunting and production of wood (Jamoneau 2010). These study areas are quite Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

flat with an elevation of 125-224 m (mean = 180 m) and 72-158 m (mean = 114 m), for the "bocage" and open field landscapes, respectively.

Brittany (France)

The study area of Brittany named "Zone Atelier Armorique" (ZAA) is located in the southern part of the Bay of Mont-Saint-Michel, France and covers 130km² (Figure 34). It is a Long-Term Ecological Research (LTER) accredited by the National Center for Scientific Research (CNRS) which is part of European LTER and International LTER networks (https://osur.univ-rennes1.fr/za-armorique). The ZAA was created in 1993 to perform longterm research around three main themes: planning, public policy and landscape dynamics; the relationship between spatio-temporal landscape dynamics and biodiversity; and influence of spatial-temporal landscape dynamics on ecosystem processes. The climate is temperate with an average annual temperature of 12 °C and an average annual precipitation of 650 mm. Cropland includes mainly maize, wheat, grassland and barley. Grasslands which represent 30% of the utile agricultural area are located in the northwestern and southern part of the study area. The crops are more or less surrounded by hedges, the density of the hedge network increasing from north to south. 

Wallonia (Belgium)

The three Belgian study areas are located in Wallonia (Figure 345). The climate is temperate with annual mean temperature of 9.4-10.5°C and average annual precipitation of 822-912 mm (en.climate-data.org). The site named "Wallonia-Northeast" is an openfield landscape dominated by intensive cultivation of wheat and beet, and high proportions of potato and maize. The site named "Wallonia-Northwest" has an intermediate landscape grain with mainly grasslands and to a lesser extent wheat, maize, potato, barley and beet. The site named "Wallonia-South" ranges from an intermediate to coarse landscape grain with wheat, beet, barley, grassland and in smaller proportions potato and rapeseed depending on the year. 

Remote sensing data

The remote sensing data used in this thesis were exclusively SAR S-1 and optical S-2 images. In this section, the characteristics of optical and SAR images are first described, then the image pre-processing is presented.

3.3.1.

Optical Sentinel-2 images S-2 MSI products are organized in 110 X 110 km tiles with a 10 km overlap and 13 spectral bands in UTM/WGS84 projection. A total of 96 S-2 tiles were downloaded from the Copernicus Open Access Hub (https://scihub.copernicus.eu/). The images were acquired with spatial resolutions of 10 and 20 m (i.e. 10 spectral bands) were downloaded (Table 3-3). The number of tiles required to cover the Spanish and Brazilian study areas were 8 and 9, respectively. For the Cantabrian range, six mosaics were acquired from December to August 2017 (The tiles were downloaded in level 2A for Cantabrian range and level 1C for Paragominas (level 2A was not yet available during processing). Level-1C and 2A products are orthorectified and provide top-of-atmosphere and top-of-canopy reflectances, respectively.

Table 3-2). Tiles were acquired on July 20 and 27, 2017 on Paragominas due to the frequent heavy cloud cover. The tiles were downloaded in level 2A for Cantabrian range and level 1C for Paragominas (level 2A was not yet available during processing). Level-1C and 2A products are orthorectified and provide top-of-atmosphere and top-of-canopy reflectances, respectively. . In all crop-dominated landscapes, S-2 images were acquired from April to July 2017 and 2018 for the ecological assessment of the agricultural networks ( Table 3-3). These images were cloud-free and in level 2A providing top-of-canopy reflectance. For the forest-agriculture mosaics (Spain and Brazil), Sentinel-1A images were downloaded in dual-polarization (VV and VH), Interferometric Wide (IW) swath mode and in Ground Range Detected (GRD) level-1 (Table 34). The IW swath mode acquires data with a 250km swath using Terrain Observation with Progressive Scans SAR (TOPSAR). Level-1 GRD products consist of focused SAR data that have been detected, multi-looked and projected to ground range using an Earth ellipsoid model (sentinel.esa.int). Phase information is lost, which enables to extract only the backscattering coefficients. The resulting product has approximately square spatial resolution and square pixel spacing with reduced speckle due to the multi-look processing. The range and azimuth spatial resolutions were 20 and 22 m, respectively, and the pixel spacing was 10 x 10 m (Table 3- 4). S-2 images were downloaded from the Copernicus Open Access Hub providing level-1C and level-2A products. ESA used the Sen2Cor processor algorithm to perform atmospheric corrections on Level-2A products, thus we transformed Level-1C products to level-2A using the Sen2Cor application (Sen2Cor, ESA, http://step.esa.int/main/third-party-plugins-2/sen2cor/). The Sen2Cor processor algorithm performs atmospheric corrections adapted to S-2 data [START_REF] Main-Knorn | Sen2Cor for Sentinel-2[END_REF]. It uses a scene classification algorithm [START_REF] Louis | Coud Detection for Sentinel-2[END_REF] resulting in three different classes for clouds, and six classes for shadows, cloud shadows, vegetation, not vegetated, water and snow. The algorithm is based on a series of threshold tests that are derived from band ratios and indices (.e.g. NDVI). Cloud screening allows retrieving accurate atmospheric and surface parameters. The aerosol type and optical thickness of the atmosphere are calculated using the DDV (Dense Dark Vegetation) algorithm [START_REF] Kaufman | Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery[END_REF]. These parameters are preferably determined from dense dark vegetation and water bodies whose reflectance behavior is well known. The Atmospheric Pre-Corrected Differential Absorption (APDA) algorithm uses the bands 8a and 9 (NIR-narrow and Cirrus) to perform water vapour retrieval over land [START_REF] Schläpfer | Atmospheric Precorrected Differential Absorption Technique to Retrieve Columnar Water Vapor[END_REF]. Finally, the atmospheric correction is performed using a set of look-up tables generated via libRadtran [START_REF] Emde | The libRadtran software package for radiative transfer calculations (version 2.0.1)[END_REF] Part I -Ecological continuities and remote sensing 54 Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

The images were projected onto the appropriate coordinate system for each study area : ETRS89-TM3/ETRS0 system (EPSG 3042) for Cantabrian range, WGS84/UTM 22S system (EPSG 32722) for Paragominas, RGF93/Lambert-93 system (EPSG 2154) for Brittany and Picardy, and ETRS89/Belgian Lambert 2008 (EPGS 3812) for Wallonia.

In total, fourteen vegetation indices were calculated (Table 3456): the NDVI, the Green Normalized Difference Vegetation Index (GNDVI), the NDWI, the EVI, the Red-Edge Inflation Point (REIP) index, the Inverted Red-Edge Chlorophyll Index (IRECI), the S2REP index, the Modified Chlorophyll Absorption in Reflectance Index (MCARI), the MERIS Terrestrial Chlorophyll Index (MTCI), the SAVI, the MSAVI, the WDVI, the Pigment Specific Simple Ratio (PSSRa) and the Normalized Difference Index (NDI).

LAI was also derived from S-2 images in Picardy using the PROSAIL radiative transfer model implemented in SNAP (Sentinel Application Platform) v6.0 software. This biophysical variable describes the state of vegetation cover and provides information on the density of green vegetation (Bréda 2003). 2.5×(B8-B4)/(B8+6×R-7.5×B2)+1) [START_REF] Huete | Overview of the radiometric and biophysical performance of the MODIS vegetation indices[END_REF]) GNDVI (RE3 -G) / (RE3 + G) (B7 -B3) / (B7 + B3) (Gitelson et al. 1996) 

IRECI (RE3 -R) / (RE1 / RE2) (B7 -B4) / (B5 / B6) (Guyot and Baret 1988) MCARI [(RE1 -R) 0.2(RE1 -G)] * (RE1 -R) [(B5 -B4) -0.2(B5 -B3)] * (B5 -B4) (Daughtry et al. 2000) MSAVI (1 + L) * (NIR-R) / (NIR + R + 0.5) (1 + L) * (B8-B4) / (B8 + B4 + 0.

3.3.3.2.

Pre-processing of SAR Sentinel-1 images

Backscattering coefficients

The backscattering coefficient extraction process was performed using the S-1 Toolbox (ESA, http://step.esa.int/main/toolboxes/sentinel-1-toolbox/). First, the images were radiometrically calibrated to transform the digital number of each pixel into a basckscattering coefficient (σ•VV, σ•VH) on a linear scale using the following equation (Miranda and Meadows 2015): (1) where DN is the digital number of each pixel (amplitude of the backscattering signal) and A is the information necessary to convert SAR reflectivity into physical units and provided in the Calibration Annotation Data Set in the image metadata.

Second, a Lee refined 7 x 7 filter was applied to reduce speckle noise (Lee et al. 1994).

Third, the images were geo-coded using Shuttle RaDAR Topography Mission (SRTM) data [START_REF] Farr | The Shuttle Radar Topography Mission[END_REF]) to correct topographic deformations and were projected onto the appropriate coordinate system for each study area : ETRS89-TM3/ETRS0 system (EPSG 3042) for Cantabrian range, WGS84/UTM 22S system (EPSG 32722) for Paragominas, RGF93/Lambert-93 system (EPSG 2154) for Brittany and Picardy, and ETRS89/Belgian Lambert 2008 (EPGS 3812) for Wallonia.

Fourth, the σ•VH:σ•VV ratio was calculated from the backscattering coefficients.

Finally, the backscattering coefficients and the ratio were converted from linear to decibel (dB) scale using the following equation:

(2)

Polarimetric indicators

The polarimetric indicators extraction process was performed using PolSARpro version 5.1.3 software (Pottier and Ferro-Famil 2012).

First, a 2 × 2 covariance matrix ( ) was extracted from the scattering matrix S of each S-1 SLC image.

Second, a Lee refined 7 x 7 filter was applied to reduce speckle noise (Lee et al. 1994).

Third, four polarimetric indicators were extracted: the span, the SE, the intensity ( ) and the degree of polarization (

). The SE was calculated from the covariance matrix ( ) using the following equation:

( 3) where is related to the intensity and to the degree of polarization.

Finally, , and were normalized as , and . Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

Field surveys

3.4.1.

Land cover surveys in forest-agriculture-mosaics

In order to identify and characterize the land cover types in forest-agriculture mosaics (Cantabrian range and Paragominas) using Sentinel-1 and 2 time series, samples were produced with a field campaign and aerial photographs in Paragominas and Forest Map of Spain and aerial photographs in Cantabrian range.

For Paragominas, a set of 328 GPS points were collected in September 2017 during a 3week field mission. Then, polygons were manually discriminated around the GPS points using aerial photographs. The 7 land cover classes discriminated were bare soils, artificial surfaces, water bodies, forested areas, croplands, pastures, and "young secondary forests" (fallow land with dense but low vegetation representing early regeneration stages of forests after abandonment of agriculture or pasture).

For Cantabrian range, a set of 828 polygons was manually discriminated using the Forest Map of Spain (MAPAMA-Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente 1997) and aerial photographs. The Forest Map of Spain is the official national forest inventory consisting of polygons associated to land cover and land use attributes. The version used was developed from 1997-2006 and based on interpretation of aerial photographs and field inventory data. The 8 land cover classes discriminated were permanent bare soils, artificial surfaces, water bodies, forested areas, shrublands, permanent herbaceous vegetation (herbaceous vegetation containing chlorophyll throughout the year), summer herbaceous vegetation, and winter herbaceous vegetation.

3.4.2.

Crop parameters measurements in crop-dominated landscapes of France

The following data were published as a data paper by [START_REF] Mercier | Estimating crop parameters using Sentinel-1 and 2 datasets and geospatial field data[END_REF]. Phenological stages were identified in Picardy and Brittany to classify them using Sentinel-1 and 2 time series. In Picardy, field surveys were conducted on 36 wheat fields and 19 rapeseed fields (Figure 3456) on 8 dates from January to July 2017 (Table 34567). The wheat and rapeseed fields ranged from 0.77-35.09 ha (mean=7.31 ha), median=4.63) and 1. 35-23.91 ha (mean=4.82 ha, median=2.84 ha) in size, respectively.

In Brittany, field surveys were conducted on 3 wheat fields and 3 rapeseed fields (Figure 34567) on 5 dates from January to July 2017 (Table 34567). Wheat field sizes were 4.26, 10.33 and 12.81 ha, and rapeseed field sizes were 6.02, 10.11 and 11.35 25 2017-05-17 2017-07-05 2017-01-25 2017-03-16 2017-0425 2017-05-17 2017-07-05 2017-01-18 2017-02-14 2017-03-13 2017-04-10 2017-05-04 2017-06-01 2017-06-12 2017-07-04 

Phenological stages in Picardy and Brittany

The Biologische Bundesanstalt, Bundessortenamt and CHemical industry (BBCH) scale (Bleiholder, et al. 2001) was used to identify phenological stages.

In Picardy, for both crops, 5 principal phenological stages were identified. More specifically, 29 and 15 secondary phenological stages were observed for wheat and rapeseed, respectively. The samples of secondary phenological stages available for wheat and rapeseed were grouped into sub-classes to obtain a sufficient number of samples per class to train and validate the classifications.

In Brittany, four and five principal phenological stages were observed for wheat and rapeseed, respectively.

Leaf area index in Brittany

Approximately 10 hemispherical photographs were taken on the sampled plots for each field survey date. The digital hemispherical photographs were then processed using CAN-EYE software to estimate LAI (https://www6.paca.inra.fr/can-eye). Finally, LAI values were averaged per date and field sample.

Biomass and water content in Brittany

Biomass measurements were performed in homogeneous areas of 20 × 20 m (Betbeder et al. 2016b). For wheat and rapeseed, five samples of 50 cm on the ground and five plants were collected per field sample, respectively. The WB of each sample was directly weighed in situ, and the DB was measured after drying the crop (oven, 65°C, 48 h). WC in the plant equals WB minus DB.

Meteorological data

Meteorological data was used to ensure that SAR signal was not affected by rainfall or freezing on acquisition dates. Temperatures and rainfall were recorded at the Meteo-France weather stations in Saint Quentin (49°49′06"N, 3°12′22"E, located 24 km from the open field site and 52 km from the "bocage" site) for Picardy and in Vieux-Viel (48°30′47" N, 1°33′31"W located in the middle of the ZAA) for Brittany. Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

Species data

Carabid beetles sampling in crop-dominated landscapes

We used carabid beetle samples to study the influence of wheat phenology derived from S-2 images on biodiversity. Carabid beetles were collected in 40 and 39 wheat fields from April to July in 2017 and 2018, respectively (Table 345678). Pitfall traps filled with 200 mL of water saturated with salt and a few drops of soap were used to catch adult carabid beetles. There were two sampling station per wheat field, one located 40m from the hedgerow edge and the other 40 m from the grassed strip edge. One sampling station consisted of two pitfall traps set 1m apart. Traps were left open for two weeks prior to field collection. Finally, carabid beetles were identified to the species level (Jeannel 1941[START_REF] Jeannel | Coléoptères Carabiques II, Faune de France[END_REF][START_REF] Roger | Clé de détermination des Carabides-Paysages agricoles du nord ouest de la France[END_REF]. In this thesis, we analyzed the two most abundant agricultural carabid beetles species named Pterostichus Melanarius and Poecilus Cupreus, to assess the ecological function of the agricultural network. The second part of this manuscript consists of a comparative evaluation of the potential of variables derived from S-1 and S-2 data to identify and characterize the elements constituting ecological continuities in wooded landscapes. Land cover was identified and characterized in wooded landscapes in Brazil and Spain to answer the following research question: What are the most efficient Sentinel sensor and variables to identify the potential constitutive elements of ecological continuities in wooded landscapes?

In chapter 4, we evaluate the potential of S-1 data alone, S-2 data alone and the combined S-1 and S-2 data to identify and characterize land cover in forest-agricultural mosaic landscapes. The study focuses on two wooded landscapes with contrasting vegetation gradients: a temperate mountainous landscape in the Cantabrian Range (Spain) and a tropical humid forest landscape in Paragominas (Brazil). The satellite images were classified using an incremental procedure based on the ranks of importance of the input variables derived from S-1 and S-2 time series. The developed algorithm automatically selects the relevant variables and time periods to be used to best classify land cover and land use in each landscape. 

Introduction

Mapping forest-agriculture mosaics is essential for understanding effects of land cover changes on economic (e.g. agricultural and silvicultural production, timber extraction, ecotourism) and non-market ecosystem services (e.g. carbon sequestration, water quality, stream flow, species conservation) [START_REF] Gardner | A social and ecological assessment of tropical land uses at multiple scales: the Sustainable Amazon Network[END_REF]. Cropland and pastures are the largest use of Earth's ice-free land [START_REF] Foley | Solutions for a cultivated planet[END_REF] and have particularly high biodiversity potential [START_REF] Altieri | The ecological role of biodiversity in agroecosystems[END_REF]). However, this capacity refers to landscapes with heterogeneous semi-intensive agricultural systems and semi-natural elements (hedgerows, wetlands, forests) [START_REF] Krebs | The second Silent Spring?[END_REF][START_REF] Billeter | Indicators for biodiversity in agricultural landscapes: a pan-European study[END_REF][START_REF] Fahrig | Functional landscape heterogeneity and animal biodiversity in agricultural landscapes[END_REF]. In many parts of the world, land cover changes affect landscapes, causing habitat loss and fragmentation [START_REF] Fahrig | Relative importance of spatial and temporal scales in a patchy environment[END_REF]. Habitat fragmentation decreases the size of habitats and populations and increases distances between patches of habitat, which may result in species loss [START_REF] Hanski | Habitat Loss, the Dynamics of Biodiversity, and a Perspective on Conservation[END_REF].

Each species uses different kinds of habitats and requires different amounts of them [START_REF] Fahrig | Relative importance of spatial and temporal scales in a patchy environment[END_REF]. Many species perceive landscapes in ways more complex than as a "habitatmatrix" dichotomy (i.e. dividing the landscape into "habitat", which contains all necessary resources, and "matrix", which is hostile) and use resources from different cover types [START_REF] Fahrig | Functional landscape heterogeneity and animal biodiversity in agricultural landscapes[END_REF]. Thus, landscape management can be considered a complex process that requires characterizing the landscape composition and structure suitable for the target species. Habitat selection and resistance models are widely used as a decision support tool, since they can apply to multiple groups of species (e.g. insects, birds, herpetofauna, mammals, plants). Landscape maps are essential for developing these models, and most environmental features used in the models are derived from remote sensing imagery [START_REF] Zeller | Estimating landscape resistance to movement: a review[END_REF].

Remotely sensed imagery is a common tool for straightforward land cover classification. The main difficulty is that the land cover classes in forest-agriculture mosaics are distributed along a landscape gradient, which results in misclassification. Images with high and very high spatial resolutions provide greater spatial detail and precise information [START_REF] Aplin | Remote sensing: land cover[END_REF][START_REF] Wulder | High Spatial Resolution Remotely Sensed Data for Ecosystem Characterization[END_REF][START_REF] Chen | Multi-source remotely sensed data fusion for improving land cover classification[END_REF][START_REF] Estes | A large-area, spatially continuous assessment of land cover map error and its impact on downstream analyses[END_REF]. However, the low temporal resolution of such data does not enable monitoring vegetation dynamics to better discriminate land cover classes that are spectrally similar. In contrast, satellite time series provide great opportunities for this purpose.

MODIS and Landsat optical time series have been used extensively for land cover classification since the 1970s. Despite a 1-2 days revisit time, however, land cover derived from MODIS has low local accuracy due to the maximum spatial resolution of 250m. The Landsat constellation has an 8-day revisit time but has a higher spatial resolution (30m) than MODIS. The S-2 satellite has even higher capacities, with a 5-day revisit time and a 10m spatial resolution [START_REF] Gómez | Optical remotely sensed time series data for land cover classification: A review[END_REF]. Despite these high capacities, optical images sometimes cannot be used (e.g. lack of cloud-free periods) or are at the limit of their utility (e.g. optical reflectance provides information only about the top layer of vegetation). In this context, SAR images provide a reliable alternative to optical images because they are not greatly influenced by atmospheric conditions and can be acquired during the day or night. Several scattering mechanisms, including single bounce, double bounce, and volume scattering can contribute to SAR backscatter over distributed targets such as agricultural fields [START_REF] Lee | Polarimetric Radar Imaging: From Basics to Applications[END_REF], depending on crop properties (e.g. biomass, architecture, height) [START_REF] Baghdadi | Potential of SAR sensors TerraSAR-X, ASAR/ENVISAT and PALSAR/ALOS for monitoring sugarcane crops on Reunion Island[END_REF]Fieuzal et al. 2013;Wiseman et al. 2014) and soil conditions (e.g. roughness, moisture) (McNairn and Brisco 2004;[START_REF] Baup | Surface soil moisture estimation over the AMMA Sahelian site in Mali using ENVISAT/ASAR data[END_REF][START_REF] Álvarez-Mozos | Influence of Surface Roughness Spatial Variability and Temporal Dynamics on the Retrieval of Soil Moisture from SAR Observations[END_REF]. Unlike optical data, however, SAR data are rarely used to map land cover. Some studies have focused on the complementarity of SAR and optical data, concluding that using them together provided better results than using them separately [START_REF] Joshi | A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use Mapping and Monitoring[END_REF]. The SAR signal is sensitive to the geometry (e.g. roughness, texture, internal structure) and wetness of the observed targets, while optical reflectance is influenced by their physiology. Thus, these two spectral domains provide complementary information.

The recent SAR S-1 and optical S-2 time series provide a great opportunity to monitor forest-agriculture mosaics due to their high spatial and temporal resolutions, with a 5-day revisit time and decametric resolution. They are freely available under an open license, unlike most SAR data (e.g. TerraSAR-X, ALOS2, RADARSAT-2, COSMO-Sky Med) and optical data (e.g. SPOT, Quickbird, WorldView, Geo-Eye, Ikonos). Recent studies have demonstrated the potential of S-2 data for mapping 6-12 land cover classes from a single-date image (Immitzer et al. 2016;[START_REF] Clark | Comparison of simulated hyperspectral HyspIRI and multispectral Landsat 8 and Sentinel-2 imagery for multi-seasonal, regional land-cover mapping[END_REF][START_REF] Colkesen | Ensemble-based canonical correlation forest (CCF) for land use and land cover classification using sentinel-2 and Landsat OLI imagery[END_REF][START_REF] Haas | Urban Land Cover and Ecosystem Service Changes based on Sentinel-2A MSI and Landsat TM Data[END_REF][START_REF] Mongus | Segmentation schema for enhancing land cover identification: A case study using Sentinel 2 data[END_REF]. Studies that use S-2 time series focus on one or a few specific land cover classes, usually on homogeneous agricultural or forested landscapes located in the same climatic region . Use of S-1 data has been limited to combining them with S-2 or Landsat data, which increases classification accuracy [START_REF] Inglada | Improved Early Crop Type Identification By Joint Use of High Temporal Resolution SAR And Optical Image Time Series[END_REF][START_REF] Kussul | Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data[END_REF][START_REF] Zhou | Exploring the Impact of Seasonality on Urban Land-Cover Mapping Using Multi-Season Sentinel-1A and GF-1 WFV Images in a Subtropical Monsoon-Climate Region[END_REF][START_REF] Laurin | Above-ground biomass prediction by Sentinel-1 multitemporal data in central Italy with integration of ALOS2 and Sentinel-2 data[END_REF][START_REF] Reiche | Improving near-real time deforestation monitoring in tropical dry forests by combining dense Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2[END_REF]. Hence, the use of S-1 time series alone for mapping land cover classes has not yet been evaluated.

The objective of this study was to assess the potential of S-1 data alone, S-2 data alone, and combined S-1 & 2 data for mapping land cover in forest-agriculture mosaics. We focused on two landscapes with contrasting vegetation gradients: a temperate mountainous landscape in the Cantabrian Range (Spain) and a humid tropical forested landscape in Paragominas (Brazil). Although these forest-agriculture mosaics differ greatly, they perform similar ecological functions, such as conserving high levels of biodiversity and storing carbon.

Satellite images were classified using an incremental procedure based on the rank of importance of input features derived from S-1 and S-2 time series. The method automatically selects the relevant features (spectral bands and/or vegetation indices) and time periods to use to best classify land cover types in the forest-agriculture mosaics.
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Study Area and Data

Study area

The Spanish study area is located in northwestern Spain, extending from eastern Lugo to western Cantabria. Covering the entire Cantabrian Range, it has an area of 35 700 km² (Figure 4-a). The region has an elevation of 0-2 468 m, an Atlantic climate, and remnant forest fragments that are distinct from a non-forest matrix composed mainly of pastures and heathlands in abandoned meadows [START_REF] García | Fragmentation patterns and protection of montane forest in the Cantabrian range (NW Spain)[END_REF][START_REF] Gastón | Species' habitat use inferred from environmental variables at multiple scales: How much we gain from high-resolution vegetation data[END_REF]. Croplands constitute 22% of the study area and are composed of vines and cereals crops including wheat, barley, rye, sunflower and oats (Mateo- [START_REF] Mc | Seasonal and temporal changes in species use of the landscape: how do they impact the inferences from multi-scale habitat modeling?[END_REF]). These crops are located in the south of the study area(Castile-Leon), most of them are irrigated (fao.org). In northern slopes of the Cantabrian range, oaks (Quercus robur and Q. petraea), beeches (Fagus sylvatica) and chestnuts (Castanea sativa) are the main species found in forested areas, while southern slopes are dominated by semi-deciduous oaks (Q. pyrenaica and Q. faginea) and evergreen oaks (Q. ilex), Pinus sp. and Eucalyptus globulus being relatively abundant . The major decrease in the forest area dates back to 3 000 years BP, with the transformation of large patches of natural forests into pasturelands (traditional cattle grazing and selective timber extraction). More recently, additional forests were lost due to road construction, surface mining, increased frequency of anthropogenic fires, and creation of forest plantations. In the past 20 years, reserves were established that impose legal restrictions on new land uses [START_REF] García | Fragmentation patterns and protection of montane forest in the Cantabrian range (NW Spain)[END_REF]. Many studies focused on habitat quality for brown bear and wood grouse, two native species of the Cantabrian Range, indicating that the forest cover is essential to their presence [START_REF] Quevedo | The decline of Cantabrian capercaillie: How much does habitat configuration matter?[END_REF][START_REF] Gastón | Species' habitat use inferred from environmental variables at multiple scales: How much we gain from high-resolution vegetation data[END_REF]). Brown bear home ranges include forests, shrublands, rocky areas, and grasslands [START_REF] Gastón | Species' habitat use inferred from environmental variables at multiple scales: How much we gain from high-resolution vegetation data[END_REF].

The second study area is the municipality of Paragominas, Pará State, in the eastern Brazilian Amazonia, 217 km south of Belem (Figure 4-b). The municipality extends for 19 342 km², has an elevation up to 190 m, and has a tropical climate. It experienced a continuous period of deforestation from the 1960s to 2010, due mainly to cattle ranching, soybean and corn cultivation, and creation of forest plantations. Overlogging and fires degraded the remaining forests greatly [START_REF] Tritsch | Multiple Patterns of Forest Disturbance and Logging Shape Forest Landscapes in Paragominas, Brazil[END_REF][START_REF] Bourgoin | A framework for evaluating forest ecological vulnerability in tropical deforestation fronts from the assessment of forest degradation in a landscape approach : Case studies from Brazil and Vietnam. Phdthesis, Institut agronomique[END_REF]. The municipality was the main timber-producing region in Brazil in 1990. A biodiversity survey performed in the municipality showed that both landscape and within-forest disturbances contributed to biodiversity loss, with the greatest negative effects on species of high conservation and functional value [START_REF] Barlow | Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation[END_REF]. In 2005, in the context of the new federal policy to fight deforestation, Paragominas was asked to establish measures against deforestation. The municipality established a new local governance model, called "Municipio Verde" [START_REF] Viana | From red to green: achieving an environmental pact at the municipal level in paragominas (Pará, Brazilian Amazon)[END_REF], which aimed to fight deforestation and strengthen the ability of local institutions to develop specific environmental policies based on the Brazilian forest code. Since then, annual deforestation rates have decreased by up to 80%. Paragominas represents a case of remarkable deforestation that became a national reference for municipal-level antideforestation policies. 

Data

Reference data

A set of 828 polygons was manually discriminated on the Spanish study area using aerial photographs and the Forest Map of Spain (mapama.go.es), which was developed from 1997-2006 and is the official forest inventory of the country. Its minimum mapping unit is 2.25 ha. The map is composed of polygons containing land cover and land use attributes derived from interpretation of aerial photographs and field inventory data. The 8 land cover classes discriminated in the sample data were permanent bare soils, artificial surfaces, water bodies, forested areas, shrublands, permanent herbaceous vegetation (herbaceous vegetation containing chlorophyll throughout the year), summer herbaceous vegetation, and winter herbaceous vegetation. The total area of samples per class ranged from 260-290 ha.

A set of 328 GPS points was recorded during a 3-week field mission in Paragominas in September 2017. The samples were produced by calculating polygons around the GPS points and using aerial photographs for photo-interpretation. The 7 land cover classes discriminated were bare soils, artificial surfaces, water bodies, forested areas, croplands, pastures, and "young secondary forests" (fallow land with dense but low vegetation representing early regeneration stages of forests after abandonment of agriculture or pasture). The total area of samples per class ranged from 14 ha (bare soil) to 530 ha (forested area).

4.2.2.2.

Sentinel-1 time series S-1 GRD products were acquired in Interferometric Wide Swath mode and delivered with VV and VH polarizations and an incidence angle ranging from . GRD products provide multilook intensity (5 and 1 looks according to slant range and azimuthal direction, respectively) and are projected to a ground range based on an Earth ellipsoid model (https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar). The range and azimuth spatial resolutions were 20 and 22 m, respectively, and the pixel spacing was 10 x 10m (Table 4-). Sets of 66 and 42 S-1A images were downloaded for the Spanish and Brazilian study areas, respectively. S-1A images were acquired on two orbits (5-day and 12-day revisit time for Spain and Brazil, respectively), and 3 images were required to cover each study area. In total, 22 mosaics were produced from December 2016 to September 2017 for the Spanish study area, while 14 mosaics were produced from November 2016 to December 2017 for the Brazilian study area.

Sentinel-2 time series

The S-2 sensor acquired optical images during the same periods, with spatial resolutions of 10 and 20 m, and a spectral resolution of 10 bands (Table 456789101112. For the Spanish study area, a series of 6 S-2 mosaics was acquired from December 2016 to August 2017. The tiles were downloaded in level 2A, which provides Top Of Canopy (TOC) reflectances and a cloud and shadow mask (sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi). Eight S-2 tiles were necessary to cover the entire study area days between 2 tiles). Tiles with minimum cloud cover were selected. The mosaics were projected onto the ETRS89/ETRS-TM30 system (EPSG 3042).

For the Brazilian study area, only one mosaic was produced due to the frequent heavy cloud cover (July 2017). The tiles were downloaded in level 1C, which provides Top Of Atmosphere reflectances and orthorectified images mask (sentinel.esa.int/web/sentinel/userguides/sentinel-2-msi). Nine S-2 tiles were necessary to cover the entire study area (no more than 12 days between 2 tiles). The mosaic was projected onto the WGS84/UTM 22S system. 

Methodology

The method was developed to assess the potential of S-1 data alone, S-2 data alone, and combined S-1 & 2 data for mapping land cover of forest-agriculture mosaics (Figure 4-2).We focused on automatically selecting the relevant features (spectral bands and/or vegetation indices) and time periods to classify land cover types. The method used to select and classify features into land cover types was based on the incremental classification developed by Inglada et al. [START_REF] Inglada | Improved Early Crop Type Identification By Joint Use of High Temporal Resolution SAR And Optical Image Time Series[END_REF]. 

Samples selection

A set of 30 pairs of training and validation polygons were randomly selected from the reference polygons with a 50/50 ratio. The 30 random pairs were performed in order to perform 30 trainings and 30 corresponding validations, allowing to compute average performances with confidence intervals [START_REF] Inglada | Improved Early Crop Type Identification By Joint Use of High Temporal Resolution SAR And Optical Image Time Series[END_REF]). The 50/50 ratio allows a more reliable comparison between training and validation samples than a ratio with a lower proportion of validation samples.} For each set of selected training polygons, 300 and 1000 pixels per class were randomly selected for the Brazilian and Spanish study areas, respectively. The same random selection of pixels was applied to each set of associated validation polygons. This selection was performed to avoid over-representing large polygons Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

at the expense of small polygons in the training and validation samples and to have the same number of samples for each class.

Preprocessing

The S-1 images were preprocessed using the ESA Toolbox, (http://step.esa.int/main/toolboxes/sentinel-1-toolbox/). The images were first radiometrically calibrated to extract the backscattering coefficients ( , ) (Figure 4-2). A speckle filter was then applied (Lee refined, with a 7 x 7 window, (Lee et al. 1994). The images were geo-coded using SRTM data to correct topographic deformations (geometric correction accuracy < 1 pixel) and were projected onto the ETRS89-TM3/ETRS0 system (EPSG 3042) and the WGS84/UTM 22S system (EPSG 32722) for the Spanish and the Brazilian study areas, respectively. A ratio channel was produced (VV/VH) from the backscattering coefficient images. All images were then converted from linear to decibel (dB).

Spectral bands and indices were derived from S-2 images. For the Brazilian study area, the Sen2Cor application (Sen2Cor, ESA, http://step.esa.int/main/third-party-plugins-2/sen2cor/) was used to transform L1C tiles to level L2A (TOC). Four vegetation indices commonly used in remote sensing were calculated for each S-2 mosaic for both study areas: EVI, NDVI, NDWI, and SAVI (Table 4-3). Each mosaic was composed of 10 spectral bands and 4 vegetation indices.

Table 4-3 

Feature selection and classification

Incremental classification was performed using a RF classifier. Two output analysesmean rank of importance of each input feature and mean kappa index as a function of the number of features -were used to select the relevant features to use in the final classification. Incremental classification analyzes mapping quality as the type and number of features used are added, thus determining at what combination and number of features the classification reaches an acceptable quality [START_REF] Inglada | Improved Early Crop Type Identification By Joint Use of High Temporal Resolution SAR And Optical Image Time Series[END_REF]. For each training and validation set (30 pairs), a RF algorithm was first applied to all of the features (dates and bands) to rank them in order of importance based on the mean decrease in the Gini index. Calle and Urea (2011) demonstrated more robust results for exploring ranking stability using the mean decrease in the Gini index instead of the mean decrease in accuracy. The mean rank of importance of each feature was derived from the 30 ranks obtained from the 30 pairs of training and validation samples. We then ran as many RF algorithms as number of features, starting with the two most important features and then adding the less important features until all of the features were processed. The kappa index was calculated for each classification to estimate the accuracy of the land cover classifications (Cohen 1960). [START_REF] Rosenfield | A coefficient of agreement as a measure of thematic classification accuracy[END_REF] advised using the kappa index to measure classification accuracy. We chose the RF algorithm [START_REF] Breiman | Random Forests[END_REF] due to its advantages of having low sensitivity to feature selection, simple parameterization, and short calculation time [START_REF] Belgiu | Random forest in remote sensing: A review of applications and future directions[END_REF][START_REF] Pelletier | Effect of Training Class Label Noise on Classification Performances for Land Cover Mapping with Satellite Image Time Series[END_REF]). We used it to select and classify features. In both cases, the number of trees was set to 100 to reduce calculation time since [START_REF] Pelletier | Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas[END_REF] demonstrated that it can be set to 100 without a major loss in accuracy. The experiments were performed using the randomForest package of R software (randomForest package version 4.6-14, Andy Liaw, https://cran.r-project.org). We used the OrfeoToolbox to calculate the final RF prediction (OrfeoToolbox version 6.6.1., CNES, https://www.orfeo-toolbox.org}).

4.3.4.

Percentage of pixels confused

For both study areas, the features selected from analyses of S-1 data alone and S-2 data alone were used to calculate 30 RF classifiers. For each pair of classes, we calculated the percentage of confused pixels in relation to the total number of misclassified pixels. The following equation (Eq. 4.1): (4.1) where i and j are the classes in the pair, was applied to the 30 confusion matrices derived from the 30 RF classifications using the 30 pairs of training and validation samples. The mean of the percentages was calculated for each pair of classes. We then calculated the mean percentage of confused pixels per pair of classes in relation to the total number of misclassified pixels using the most important S-1 features and most important S-2 features.

Comparison of classifications

We used McNemar's X² test to analyze the significance of the difference or resemblance between the classifications derived from S-1 data alone vs. S-2 data alone, S-1 data alone vs. the combined S-1 & 2 data, and S-2 data alone vs. the combined S-1 & 2 data. This test, based on a binary 2 x 2 contingency matrix, shows the proportion of pixels correctly and incorrectly classified in two classification runs and allows the use of non-independent samples. A X² value lower than 3.14 means that the two classifications compared are non significantly different [START_REF] Foody | Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy[END_REF]).

Results

Contribution of Sentinel 1 & 2 time series to map land cover

To estimate the contribution of the optical and SAR Sentinel time series, we analyzed the mean kappa index as a function of the number of input features. The combined use of S-1 & 2 data provided the best results for both study areas (Figure 4-3). However, for the standard deviation of the kappa index, results of the combined use of S-1 & 2 data were similar to those of S-2 data alone. The improvement in classification due to combining S-1 & 2 data rather than using S-2 data alone was perceptible up to 30 input features for the Spanish study area. For the Spanish study area, using the top 10 S-2 features out of the 84 total S-2 features increased the mean kappa index by ca. 0.25 (i.e. from 0.58 to 0.83 ); the mean kappa index continued to increase slightly up to 40 input features and then stabilized. For the Brazilian study area, using the top 7 S-2 features out of the 14 total S-2 features increased the mean Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020. Using S-1 data alone yielded the lowest accuracy for both study areas. The mean kappa index was higher for the Spanish area than for the Brazilian area, as was the maximum kappa index (ca. 0.73 and 0.60, respectively). Compared to the mean kappa indices of S-2 data alone, those of S-1 data alone were lower by 0.08-0.20 for the Spanish study area and by 0.28-0.40 for the Brazilian study area.

Importance of input features

When using S-2 data alone, bands 11 and 12 (the SWIR domain) were the most important features for both study areas (mean rank of importance of 1.77 (B11) and 4.07 (B12), and of 1.43 (B12) and 1.63 (B11) for the Spanish and Brazilian study areas respectively) (Figure 4-4). For the Spanish area, the vegetation indices were relevant, with 11 of them among the top 20: 4 SAVI and 4 NDVI (1 each in January, March, June, and July), 2 NDWI (in January and March) and, although less relevant for classifying forest-agriculture mosaics, EVI. For the Brazilian study area, NDWI was the most relevant index (ranked 3rd,), while other spectral bands were more relevant than EVI, NDVI, or SAVI. When assessing the relevance of time periods using S-2 data alone (Figure 4-4a), January was the most important month for discriminating the 8 land cover classes, since it was the month of the top 6 features (mean rank of importance=1.77-11). In addition, March and July appeared among the top 10 features. The least important months were August and April. Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020. When using S-1 data alone, the VV/VH ratio was not useful for mapping land cover in these two forest-agriculture mosaics. For both study areas, VV polarization was the most important feature. For the Spanish and Brazilian study areas, the VV mean ranks of importance were of 2.03 and 2.13, respectively (Figure 45). The top 20 features, however, had a nearly equal number of VV and VH features (10 VV and 9 VH polarization dates for the Spanish study area, 11 VV and 9 VH polarization dates for the Brazilian study area). When assessing the relevance of time periods using S-1 data alone, the months from December to May were relevant for the Spanish study area. In contrast, months from both dry and wet seasons were among the top 10 features (January, March, April, July, September, November, December) for the Brazilian study area.

When combining S-1 & 2 data, the top 20 important features were all S-2 features for the Spanish study area and mostly S-2 features (the top 14) for the Brazilian study area (Figure 456). As a trade-off between accuracy and processing time, we decided to maintain a minimum but sufficient number of features for classification (Table 4-4). In the following experiments, we choose to keep the 20 most important S-1 features and 10 S-2 features, and the 10 most important S-1 features and 7 S-2 features on the Spanish and Brazilian study areas, respectively (Table 4-4). Due to the large majority of S-2 features in the top 20 important features of combined S- 1 &2 data (Figure 4-7), we decided to combine the previously selected features of S-1 data alone and S-2 data alone to predict the land cover classes combining S- 1 &2 data (Table 4-4). Table 4-4 the most confused pairs of classes (Figure 4-8b). Forested areas vs. young secondary forests were better discriminated by S-2 than S-1 features. However, pastures and young secondary forests were better discriminated by S-1 than S-2 features. On both study areas, bare soils vs. artificial surfaces were discriminated better by S-1 data than S-2 data features.

(a) (b) 

Prediction of selected features

Misclassification errors in the land cover map of forest-agriculture mosaics of the Spanish study area -due to cloud confusions using S-2 data alone and slopes using S-1 data alone -were partly corrected using combined S-1 (Figure 456789). McNemar X² test results.

According to McNemar's X² test, all land cover class predictions differed significantly (X² > 3.14), and S-2 data alone vs. combined S-1 & 2 data for the Brazilian study area is not significant (p-value=NS) (Table 45). Thus, we concluded that all classifications differed. The land cover classes that comprise forest-agriculture mosaics are distributed along a landscape gradient, with transition classes such as shrublands to forest or pasture to young secondary forests, which result in misclassifications. S-1 data alone were least accurate for mapping land cover of forest-agriculture mosaics, with a best mean kappa index of 0.73, vs. 0.87 and 0.89 for S-2 data alone and combined S-1 & 2 data, respectively (Figure 4-3). For example, S-2 data discriminated forested areas from young secondary forests better than S-1 data for the Brazilian study area . This may be because SAR sensors are sensitive to vegetation structure, while optical sensors are sensitive to chlorophyll content. Thus, when observed at a 10m resolution, broad vegetation classes were discriminated more easily by their physiology than their physical structure. Also, VV and VH polarizations were the most important S-1 features for discriminating land cover classes, while the VV/VH ratio was not useful (Figure 45). While it is known that VH polarization is more sensitive to vegetation than VV polarization [START_REF] Patel | Comparative evaluation of the sensitivity of multi-polarized multi-frequency SAR backscatter to plant density[END_REF], results show that both polarizations had an equivalent low contribution to classify forest-agriculture mosaics, as well as the ratio VV/VH. We can conclude that in this case the C-band of S-1 was not relevant to classify vegetation classes. In general, the C-band SAR is less suitable than L-Band for forest change monitoring due to a lower penetration depth and a rapid saturation of the signal (Woodhouse 2017). For example, [START_REF] Patel | Comparative evaluation of the sensitivity of multi-polarized multi-frequency SAR backscatter to plant density[END_REF] demonstrated that L-band is more sensitive to plant density than C-band, and that C-band interacts mostly with the primary branches of the canopy while Lband within the vegetation canopy. We used S-1 GRD products that record backscattering coefficients (VV and VH) because they require less processing time than SLC products, which preserve the phase information. However, using texture, coherence, and polarimetric indices derived from full-polar RaDAR data, such as RADARSAT-2 data, could improve classification based on S-1 data alone [START_REF] Ranson | Characterization of Forests in Western Sayani Mountains, Siberia from SIR-C SAR Data[END_REF][START_REF] Sonobe | Discrimination of crop types with TerraSAR-X-derived information[END_REF][START_REF] Du | Correlating the subsidence pattern and land use in Bandung, Indonesia with both Sentinel-1/2 and ALOS-2 satellite images[END_REF]Roychowdhury). Thus, although Bagdhadi et al. ( 2016) concluded that using polarimetric indices (SE and span) derived from polSAR RADARSAT-2 images did not improve estimates of soil moisture and vegetation parameters, Betbeder et al. (2014) demonstrated the greater utility of the SE index than backscattering coefficients for mapping wetland vegetation using dual-pol TerraSAR-X time series. The best mean kappa index achieved with S-1 data was higher for the Spanish study area than for the Brazilian study area (0.73 vs 0.60, respectively) (Figure 4-3). This could be due to differences in the classification methods (different numbers of classes and land cover types) and to the number of S-1 images used to classify land cover types (22 dates for the Spanish study area vs. 14 dates for the Brazilian study area). %More misclassification errors were observed in high-relief areas, which is consistent with the literature [START_REF] Lee | Polarimetric Radar Imaging: From Basics to Applications[END_REF].

For the Spanish study area, the classification results achieved using S-1 data alone show that misclassification errors are most often located on mountain slopes. These errors are due to the acquisition of SAR images in slant range geometry that causes layover and foreshortening effects [START_REF] Lee | Polarimetric Radar Imaging: From Basics to Applications[END_REF]. Moreover, it is known that soil moisture and roughness influence the RaDAR backscatter depending on frequency, polarization and the incidence angle of the incoming microwave. [START_REF] Holah | Potential of ASAR/ENVISAT for the characterization of soil surface parameters over bare agricultural fields[END_REF] found that the sensitivity to surface roughness is more important using HH and HV polarizations than VV polarization. However, [START_REF] Baghdadi | Operational performance of current synthetic aperture radar sensors in mapping soil surface characteristics in agricultural environments: application to hydrological and erosion modelling[END_REF] demonstrated that the soil moisture was not very dependent on polarization. The effects of soil moisture on forest-agriculture classification are rather limited using C-band due to a low penetration depth of the microwaves compared to L-band [START_REF] Ulaby | Radar mapping of surface soil moisture[END_REF], however C-band is more sensitive to roughness [START_REF] Mattia | The effect of surface roughness on multifrequency polarimetric SAR data[END_REF]. Lastly, the higher the incidence angle, the more important the sensitivity of the SAR to surface roughness [START_REF] Fung | Dependence of the surface backscattering coefficients on roughness, frequency and polarization states[END_REF]).

However, S-1 data sometimes discriminated better than S-2 data -for bare soils and artificial surfaces -(Figure 4-7Figure 4-8) because the SAR signal reacts differently to these two land cover classes, with double-bounce on buildings and single-bounce on flat bare soils [START_REF] Lee | Polarimetric Radar Imaging: From Basics to Applications[END_REF], while their spectral signatures in the optical domain are similar (high reflectance values in green, blue and red bands). When using S-2 data alone, SWIR bands were the most important features for discriminating land cover classes (Figure 4-2Figure 4-4).

The importance of S-2 SWIR bands has been demonstrated for mapping vegetation and forest (Immitzer et al. 2016;[START_REF] Chrysafis | Assessing the relationships between growing stock volume and Sentinel-2 imagery in a Mediterranean forest ecosystem[END_REF]. Vegetation indices derived from S-2 data (e.g. SAVI, NDVI, NDWI) discriminated better than spectral bands for the Spanish study area, while NDWI was the most important vegetation index for the Brazilian study area. The sensitivity of the blue band to water contained in vegetation could explain why NDWI is well suited to tropical vegetation, while NDVI saturates at high biomass values [START_REF] Huete | Overview of the radiometric and biophysical performance of the MODIS vegetation indices[END_REF][START_REF] Jackson | Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans[END_REF]). The EVI, which was developed for MODIS, was a less important feature than other vegetation indices for both study areas. It could be interesting to calculate other vegetation indices that are used for crop discrimination such as S2REP, IRECI, MTCI or SRI (Simple Ratio Index) [START_REF] Jordan | Derivation of leaf-area index from quality of light on the forest floor[END_REF]Frampton et al. 2013).

The best mean kappa index using combined S-1 & 2 data (0.88) did not differ greatly from that using S-2 data alone (0.86) (Figure 4-3). Thus, the use of S-2 data alone was sufficient to discriminate the land cover classes with high accuracy. However, the backscattering intensity from S-1 data alone provided additional relevant information, since predictions of land cover classes using S-1 data alone, S-2 data alone, and combined S-1 & 2 data differed according to McNemar's X² test (Table 45). For example, the misclassification between cropland and artificial surfaces for the Brazilian study area when using S-2 data alone was partly corrected using combined S-1 & 2 data (Figure 4-10).

4.5.2.

Using S-1 and S-2 data to identify the key time periods for classifying land cover

Based on the classification results using S-1 data alone, S-2 data alone, and combined S-1 & 2 data, classification accuracy was strongly related to the number of dates. Classification accuracy increased when dates were added to the RF classifier (Figures Figure 4-3Figure 4-4aFigure 4-5Figure 4-6). The relevance of high temporal resolution underlines the importance of describing and taking into account the phenology of vegetation to map forest-agriculture mosaics. For the Spanish study area, January, March, June, and July features are among the top 20 important S-2 features (Figure 4-4a). This may have been because the S-2 sensor is sensitive to chlorophyll content in vegetation, and these months are key periods of chlorophyll activity. The features of the months from December to May were among the top 20 S-1 features for this study area, while the summer period was not relevant (Figure 4-5a). This is probably because SAR sensors, which are sensitive to the internal structure of elements, penetrate vegetation better during the leaf-off period. Only one S-2 date was used for the Brazilian study area, which precluded studying the importance of time period. In addition, no clear time periods emerged from the importance ranks of the S-1 time series (Figure 4-5b). Thus, no intra-annual time period seems more important than others for S-1 time series for discriminating land cover types in Paragominas. Unlike the Cantabrian Range, where the seasons differ, temperatures and precipitation are relatively constant in Pará, with a drier season from July to October (https://www. worldweatheronline.com/paraweather/para/br.aspx). In addition, the dynamics of human practices in pastures, forested areas, and plantations are inter-annual rather than intra-annual [START_REF] Piketty | Multi-level Governance of Land Use Changes in the Brazilian Amazon: Lessons from Paragominas, State of Pará[END_REF].
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The robustness of the method for different landscapes

The results show that the method can be applied to forest-agriculture mosaics in two landscapes with contrasting climates (i.e. tropical, temperate) and vegetation types (e.g. tropical forests, shrublands, coniferous and deciduous forests). S-1 and S-2 features were selected according to their respective importance in each study area, which highlighted relevant features and time periods for the two areas. Land cover maps of the two study areas were produced with a high degree of accuracy and a short processing time. Time series are used to map the land cover of forest-agriculture mosaics, but processing them requires high computational capacity. The method enabled focusing on specific time periods and features to reduce the time required for image processing.

Conclusion

An incremental procedure based on ranking the importance of the input features derived from S-1 and S-2 time series was used to discriminate land cover classes in forestagriculture mosaics. The method automatically selected relevant features (spectral bands and/or vegetation indices) and time periods to classify land cover types in such landscapes. S-2 data alone were more relevant than S-1 data alone for mapping the land cover of forestagriculture mosaics, and combining S-1 & 2 data slightly improved results compared to those of S-2 data alone. Using polarimetric indices, such as the SE index, which has already shown potential for characterizing vegetation, can improve predictions of S-1 data alone. Indeed, SAR data are useful in cloudy regions; the high cloud cover in the S-2 time series was the main source of misclassification errors. This part of the manuscript aims at answering the following question: What are the most efficient Sentinel sensor and variables to identify and characterize the potential constitutive elements of ecological continuities in crop-dominated landscapes? Our assumption is that crop phenonologies play a major role in the structure of these continuities. For that purpose, we comparatively evaluated the potential of variables derived from S-1 and S-2 data to estimate phenological stages and biophysical variables in wheat and rapeseed crops.

In chapter 5, we evaluate the potential of S-1 data alone, S-2 data alone and the combined of S-1 and S-2 data to identify the principal and secondary phenological stages of wheat and rapeseed in Picardy (France). More specifically, the aim of this study was to evaluate the interest of polarimetric indicators derived from S-1 data and to determine the number and type of S-1 and S-2 variables necessary to discriminate the phenological stages of wheat and rapeseed. We estimated the performance of spectral bands and vegetation indices derived from S-2 and backscatter coefficients and polarimetric indicators derived from S-1. Satellite images were classified using the incremental method developed in the previous study (Mercier et al. 2019b).

In chapter 6, we continue our research on crop characterization by evaluating the potential of S-1 and S-2 data to estimate the LAI, WB, DB and WC of wheat and rapeseed in Brittany (France). We compared the predictive power of spectral bands and vegetation indices derived from S-2 and backscatter coefficients and polarimetric indicators derived from S-1 using GPR. Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

CHAPTER 5 

Introduction

Monitoring crops is important for many agricultural and ecological applications, such as estimating crop yields (Maas 1988;Jin et al. 2018), preventing disease and insect infestation (Hatfield and Pinter 1993), applying fertilizer (Diacono et al. 2013;Bouchet et al. 2016) and managing water resources (Duchemin et al. 2015). Identifying and predicting phenological stages provide essential information for precision agriculture. Considering specific phenological stages can optimize irrigation and fertilizer application schedules [START_REF] Sakamoto | A crop phenology detection method using timeseries MODIS data[END_REF]Bouchet et al. 2016). Some phenological stages are more sensitive to pests and diseases, thus identifying and predicting these stages can prevent pest outbreaks and diseases and reduce the use of pesticides (Vreugdenhil et al. 2018). Finally, phenological stages can be used as indicators of global warming on terrestrial ecosystems [START_REF] Menzel | European phenological response to climate change matches the warming pattern[END_REF]. One of the main current challenges is to identify principal and secondary phenological stages of wheat and rapeseed that are two of the most important crops in the world in terms of harvested area (Food and Agriculture Organization of the United Nations 2017). Principal phenological stages are defined as long-duration developmental phases of plants, while secondary stages are short developmental steps within them (Bleiholder, et al. 2001).

The recent SAR S-1 and optical S-2 sensors, which acquire image time-series at a high temporal frequency (every 5-12 days, depending on the acquisition mode and location in the world) and high spatial resolution (2.3 m and 13.9 m in range and azimuth directions, respectively, for S-1 bands; 10, 20 and 60 m spatial resolutions for S-2 bands), provide a unique opportunity to monitor crops regularly at fine grain scale. Moreover, S-1 & 2 data are freely available under an open license.

Several features (i.e. spectral bands, vegetation indices and biophysical variables) derived from optical remotely sensed data have demonstrated their great potential to predict crop parameters such as yield, biomass and phenological stages (Quarmby et al. 1993;Doraiswamy et al. 2004;Mulla 2013;Bontemps et al. 2015;[START_REF] Pan | Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data[END_REF]Betbeder et al. 2016b). For S-2 time series, significant relationships have been found between S-2 and vegetation indices: LAI, leaf chlorophyll concentration and canopy chlorophyll content for potato crops in the Netherlands (Clevers et al. 2017) and for maize, garlic, oat, onion, potato, sunflower, alfalfa and grape crops in Spain and Italy (Frampton et al. 2013). The potential of S-2 red-edge bands for estimating LAI was demonstrated for maize, wheat, rapeseed, barley, sugar beet, sunflower, onion and other vegetable crops in Spain and Germany and for winter wheat in northern China (Pan et al. 2018). Veloso et al. (2017) found that S-2 NDVI was highly sensitive to the phenological stages of winter and summer crops in southern France. Despite these abilities, a continuous time-series of optical images is difficult -if not impossible -to acquire due to the cloud-free dependence of optical acquisitions and the signal provides information only about the top layer of vegetation. In this context, Synthetic-Aperture RaDAR (SAR) images are a reliable alternative to the limitations of optical images since microwaves are not sensitive to atmospheric or light conditions. Unlike optical reflectance, backscattering coefficients depend on soil conditions (roughness and moisture) during early plant phenological stages (McNairn and Brisco 2004;[START_REF] Baup | Surface soil moisture estimation over the AMMA Sahelian site in Mali using ENVISAT/ASAR data[END_REF][START_REF] Álvarez-Mozos | Influence of Surface Roughness Spatial Variability and Temporal Dynamics on the Retrieval of Soil Moisture from SAR Observations[END_REF]) and later on crop properties (biomass, architecture, height) [START_REF] Baghdadi | Potential of SAR sensors TerraSAR-X, ASAR/ENVISAT and PALSAR/ALOS for monitoring sugarcane crops on Reunion Island[END_REF]Fieuzal et al. 2013;Wiseman et al. 2014).

Many studies have demonstrated the relevance of airborne and spatial SAR data for identifying phenological stages [START_REF] Steele-Dunne | Radar Remote Sensing of Agricultural Canopies: A Review[END_REF]. In recent years, several studies have shown the value of S-1 data for monitoring crop phenology. [START_REF] Bargiel | A new method for crop classification combining time series of radar images and crop phenology information[END_REF] improved crop classification in northern Germany using phenological stages based on S-1 time series. Vreugdenhil et al. (2018) demonstrated the high sensitivity of S-1 backscattering coefficients and the ratio of VH:VV polarizations in detecting changes in vegetation structure for rapeseed, maize and winter cereals. S-1 VV and VH polarizations have shown great potential for identifying phenological stages of wheat (Song and Wang 2019) and rice (Mandal et al. 2018b) based on analyzing temporal behavior of backscattering coefficients, but phenological stages were not classified in these studies. Studies using polarimetric features derived from RADARSAT-2 or TerraSAR-X satellite images to identify crop parameters showed that polarimetric indicators were highly sensitive to phenological stages [START_REF] Pacheco | Using RADARSAT-2 and TerraSAR-X satellite data for the identification of canola crop phenology[END_REF]McNairn et al. 2018), crop height (Jin et al. 2015;Betbeder et al. 2016b;Canisius et al. 2018), crop biomass (Wiseman et al. 2014;Betbeder et al. 2016b;Homayouni et al. 2019;Jin et al. 2015) and LAI (Jiao et al. 2009;Betbeder et al. 2016b;Canisius et al. 2018). To our knowledge, polarimetric indicators derived from S-1 data have not been used to study crop parameters.

A few studies used both optical and RaDAR data to monitor crop phenology. Most used optical data as a reference and predicted biophysical parameters from SAR data. Betbeder et al. (2016) revealed the high potential of RADARSAT-2 polarimetry using NDVI derived from Formosat-2, SPOT-4 and SPOT-5 as references. El Hajj et al. ( 2019) described the ability of the S-1 C-band to penetrate crops when biomass is high (NDVI > 0.7) for maize, and the lack of this ability for wheat and grassland. Veloso et al. (2017) showed the value of S-1 data for monitoring crop growth through analysis of temporal profiles of VV and VH polarizations and the VH:VV ratio for winter and summer crops in southern France. Although these studies highlighted the value of SAR data, they did not evaluate the potential of combining SAR and optical data to predict crop parameters. Stendardi et al. (2019) concluded that combining SAR S-1 and optical S-2 data shows promise for detecting the phenology of mountain meadows in northern Italy. Jin et al. (2015) studied the potential of vegetation indices derived from the Huanjing-1A/B optical satellite and polarimetric indicators derived from RADARSAT-2 to estimate the LAI and biomass of winter wheat. They found the highest correlations when optical and RaDAR data were combined. While these studies evaluated SAR and optical time-series and their combined use to estimate LAI and biomass, to our knowledge, no study has explored the value of SAR S-1 and optical S-2 data for predicting phenological stages.

The objective of this study was to assess the potential of S-1 data alone, S-2 data alone, and their combined use to identify principal and secondary phenological stages of wheat and rapeseed. More specifically, this study aimed to evaluate the value of polarimetric indicators to discriminate wheat and rapeseed phenological stages and determine the number of relevant S-1 & 2 features that are needed to discriminate principal and secondary phenological stages of these crops. We evaluated the performance of spectral bands and vegetation indices derived from S-2 time-series and backscattering coefficients and polarimetric indicators derived from S-1 time-series. We first analyzed temporal profiles of features derived from S-1 and S-2 time-series for wheat and rapeseed crops. Satellite images were then classified using an incremental procedure based on the importance rank of these input features (Mercier et al. 2019b). This method automatically selects important features to classify the phenological stages of wheat and rapeseed.

The novelties of this work are threefold: (i) The use of S-1 polarimetric indicators to identify principal and secondary phenological stages of wheat and rapeseed; (ii) The statistical analysis of optical data, SAR data and their combined use to discriminate phenological stages of wheat and rapeseed; (iii) Mapping of wheat and rapeseed secondary phenological stages using remotely sensed data.

Materials

Study area

The study area consisted of two 5 × 5 km sub-sites in northern France (Figure 5-1). Their climate is oceanic with a mean annual temperature of 10°C and mean annual precipitation of 702 mm (Météo France). The western site is located in an open field landscape with intensive cultivation of cereals and sugar beet. The eastern site is located in a "bocage" landscape dominated by grasslands and is characterized by less intensive farming activities (mainly dairy cattle) and smaller fields that tend to be enclosed by hedgerows. Both landscapes contain managed forest fragments that are used mainly for hunting and production of wood Chapter 5 -Evaluation of Sentinel-1 and 2 time series for predicting wheat and rapeseed phenological stages 93 Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

Satellite imagery

A series of five optical S-2 and eight SAR S-1 images were downloaded from January to July 2017 to cover crop cycles of wheat and rapeseed (Figure 5-2). The S-1 images were acquired in Interferometric Wide (IW) swath mode and delivered with VV and VH polarizations. We used the SLC product, which consists of focused SAR data that use the full C-signal bandwidth and preserve the phase information, to derive polarimetric indicators. The incidence angle of images ranged from 30.6-46.0° (Table 1). The ground spatial resolution was 2.5 m and the azimuth spatial resolution was 13.9 m (Table 5-1).

According to data recorded at the Météo-France weather station in Saint Quentin (49°49'06"N, 3°12'22"E, located 24 km from the open field site and 52 km from the "bocage" site), two S-1 images (DOY 69 and 182) were acquired after a rainfall event. The weather station recorded a rainfall of 2.6 mm and 10.1 mm on days 68 and 182, respectively. However, the RaDAR signal was not affected by rainfall or freezing on acquisition dates, no peak being observed in the temporal profiles of VH and VV polarizations (Figure 5-2). The S-2 images were acquired with spatial resolutions of 10 and 20 m, and a spectral resolution of 10 bands (Table 5-2). The tiles were downloaded in level 2A, which provides Top of Canopy reflectance and a cloud and shadow mask (ESA, 2019b). Only two S-2 images were acquired between DOY 72 and 163 due to heavy cloud cover during the spring. 

Field data collection

Field surveys were conducted on 36 and 19 fields of wheat (Triticum aestivum L.) and rapeseed (Brassica napus L.), respectively (Figure 5-1). Sizes of wheat and rapeseed fields ranged from 0.77-35.09 ha (mean=7.31 ha), median=4.63) and 1. 35-23.91 ha (mean=4.82 ha, median=2.84 ha), respectively. Phenological stages were identified on 8 dates from January to July 2017 (Figure 5-2) based on the Biologische Bundesanstalt, Bundessortenamt and CHemical industry (BBCH) scale (Bleiholder, et al. 2001). Five principal phenological stages Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

were observed for both crops, and 29 and 15 secondary phenological stages were identified for wheat (Table 5-3) and rapeseed (Table 5-4), respectively. The samples of secondary phenological stages available for wheat and rapeseed were grouped into sub-classes to obtain a sufficient number of samples per class to train and validate the classifications.

Figure 5-2. Days of year of satellite images (triangular shape), field surveys (circular shape) and main crop phenological stages for wheat and rapeseed (drawings) (Bleiholder, et al. 2001). The ombrothermal diagram (Météo France) shows climatic conditions on the image acquisition dates and temporal profiles show the mean and standard deviation of the S-1 backscattering coefficients for wheat and rapeseed. The RaDAR signal was not affected by rainfall (blue columns) or freezing (red lines) on acquisition dates.
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Methods

We developed a method to analyze temporal behaviors of S-1 and S-2 features and predict phenological stages of wheat and rapeseed (Figure 5-3). First, the SAR S-1 and optical S-2 signals were preprocessed and the median was computed at the field scale with a negative buffer of 15m. Second, temporal profiles were plotted based on the mean and standard deviation derived from the median for all sampled wheat and rapeseed fields. Field surveys were used to analyze the temporal profiles of the spectral bands and vegetation indices derived from S-2 and RaDAR backscattering coefficients and polarimetric indicators derived from S-1. Finally, we assessed the potential of S-1 data alone, S-2 data alone, and combined S-1 & 2 data to predict principal and secondary phenological stages of wheat and rapeseed using an incremental method developed by Mercier et al. (2019b)and field data were used as reference data to train the classifier. 

Backscattering coefficients

Backscattering coefficients from S-1 images were extracted using the Sentinel-1 Toolbox (ESA, http://step.esa.int/main/toolboxes/sentinel-1-toolbox/). The images were first radiometrically calibrated to transform the digital number (DN, amplitude of the backscattering signal) of each pixel into backscattering coefficients (σ•VV, σ•VH) on a linear scale using the following equation (Eq. 5.1) (Miranda and Meadows 2015): (5.1) where A is the information necessary to convert SAR reflectivity into physical units provided in the Calibration Annotation Data Set in the image metadata.

A refined Lee filter was then applied in a window of 7 × 7 pixels to reduce speckle noise (Lee et al. 1994). The images were geocoded using SRTM data to correct topographic deformations (geometric correction accuracy < 1 pixel). A backscattering ratio was calculated by dividing σ•VH by σ•VV. All images were then converted from linear to decibel (dB) scale using the following equation (Eq. 5.2):

(5.2)

Polarimetric indicators

A 2 × 2 covariance matrix ( ) was first extracted from the scattering matrix S of each SLR image using PolSARpro version 5.1.3 software (Pottier and Ferro-Famil 2012). A refined Lee filter was then applied in a window of 7 × 7 pixels to reduce speckle noise (Lee et al. 1994). Then, we calculated the total scattered power called span in the case of a polarimetric RaDAR system [START_REF] Ferro-Famil | Chapter 21 -Radar Polarimetry Basics and Selected Earth Remote Sensing Applications[END_REF]. SE, which measures the randomness of scattering of a pixel (e.g. due to variation in backscattering power or polarization), was calculated from the covariance matrix ( ) using the following equation (Eq. 5.3): (5.3) where is related to the intensity and to the degree of polarization.

Finally , and were normalized as , and using PolSARpro version 5.1.3 software.

5.3.2.

Optical Sentinel-2 image preprocessing Twelve vegetation indices were calculated since their potential to monitor crop parameters (LAI, chlorophyll content and phenological stages) using S-2 data has been demonstrated (Daughtry et al. 2000;Frampton et al. 2013;Herrmann et al. 2011;Clevers and Gitelson 2013;Clevers et al. 2017). We calculated NDVI, the GNDVI, the REIP index, the Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

IRECI, the S2REP index, the MCARI, the MTCI, the SAVI, the MSAVI, the WDVI, the PSSRa and the NDI. Based on analysis of their temporal profiles and on correlation matrices (Appendix B), we ultimately selected four of these indices: NDVI, S2REP, MCARI and WDVI (Table 5-5). First, we selected NDVI because it is a very commonly used vegetation index sensitive to chlorophyll content, calculated from bands 4 and 7 of S-2 (Hermann et al., 2011;Frampton et al., 2013). Second, we chose the S2REP because this index is a version of the REP estimate for S-2 derived from a linear interpolation that incorporates bands 5 and 6 positioned on the red-edge slope (Guyot and Baret 1988;[START_REF] Clevers | Derivation of the red edge index using the MERIS standard band setting[END_REF]. MCARI and WDVI were also selected, because they had the lowest correlations with the other features derived from S-2 for both crop types. The MCARI, which was developed to study variations in chlorophyll and minimize effects of non-photosynthetic materials, was derived from bands 3, 4 and 5 of S-2 (Daughtry et al. 2000). The WDVI, which is related to the chlorophyll content of the canopy was used to estimate LAI to avoid destructive measurements. It is a two-dimensional greenness index derived from bands 4 and 8 of S-2 [START_REF] Bouman | Standard relations to estimate ground cover and LAI of agricultural crops from reflectance measurements[END_REF]). 1988)

MCARI [(RE -R) 0.2(RE -G)] * (RE -R) [(B5 -B4) -0.2(B5 -B3)] * (B5 - B4) (Daughtry et al. 2000) WDVI (NIR -0,5 * R) (B8 -0,5 * B4) ( Clevers 1988) 
LAI, a biophysical variable that describes the state of vegetation cover and provides information on the density of green vegetation, was also derived from S-2 images using the PROSAIL radiative transfer model implemented in SNAP v6.0 software. The spectral bands, vegetation indices and LAI were interpolated daily using a spline method to match the dates of SAR S-1 acquisition using the stats package of R software. All S-1 and S-2 images were projected onto the RGF93/Lambert-93 system (EPSG 2154) and resampled to the resolution of 10 m. In total, we preprocessed 120 S-2 features (10 spectral bands, 4 vegetation indices and 1 biophysical variable × 8 dates) and 56 S-1 features (2 backscattering coefficients, 1 backscatter ratio and 4 polarimetric indicators × 8 dates). Due to strong correlations between the S-2 spectral bands, we subsequently selected a sub-set of bands for the incremental classification based on their temporal behaviors.

Incremental classification

From an operational point of view, it is necessary to minimize the time between data acquisition and delivery of results to decision-makers [START_REF] Hatfield | Applications of Vegetative Indices from Remote Sensing to Agriculture: Past and Future[END_REF]. The timeconsuming processing of multi-temporal remote sensing data is a limitation for this purpose. Therefore, we used an incremental procedure based on the importance rank of the input features to find a trade-off between accuracy and processing time (Mercier et al. 2019b). This method automatically selects important features to maintain a minimum but sufficient number of features to classify the phenological stages of wheat and rapeseed. This method was applied to predict the principal and sub-classes of secondary phenological stages of wheat (Table 5-3) and rapeseed (Table 5-4) (Figure 5-4). Incremental classification was performed using a Random Forest (RF) classifier applied to S-1 data alone, S-2 data alone, and combined S-1 & 2 data. A total set of 50 pairs of training and validation fields in a 70:30 ratio were randomly selected to classify all wheat and rapeseed phenological stages. For each of the pairs, the selected fields were the same for S-1 data alone, S-2 data alone, and combined S-1 & 2 data. A maximum number of randomly selected samples per class was set to rebalance the classes, since the RF classifier underperforms with unbalanced classes [START_REF] Khoshgoftaar | An Empirical Study of Learning from Imbalanced Data Using Random Forest[END_REF]). The number of samples per pair ranged from 21 (5 principal phenological stages) or 18 (7 sub-classes of secondary phenological stages) to 52 for wheat, and from 13 to 35 for rapeseed (both types of phenological stages) (Table 56). Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020. Two output analysis -mean rank of importance of each input feature and mean kappa index (Cohen 1960;[START_REF] Rosenfield | A coefficient of agreement as a measure of thematic classification accuracy[END_REF] as a function of the number of features -were used to select the most important features to include in the final classification. Incremental classification is used to assess mapping quality as the types and numbers of features increase. Thus, it determines the combination and number of features in the classification necessary to obtain acceptable quality [START_REF] Inglada | Improved Early Crop Type Identification By Joint Use of High Temporal Resolution SAR And Optical Image Time Series[END_REF]. For each training and validation set (50 pairs), an RF algorithm was first applied to all of the features to rank them in order of importance based on the mean decrease in the Gini index which assessed the reliably of the incremental classification [START_REF] Calle | Letter to the Editor: Stability of Random Forest importance measures[END_REF]. The mean rank of importance of each feature was derived from the 50 ranks obtained from the 50 pairs of training and validation samples. We then ran as many RF algorithms as the number of features, starting with the two most important features and then adding the less important features until all features were processed. The number of features selected for the final predictions was determined automatically: when kappa increased by less than 0.02 for three consecutive feature additions, the first of the three features marked the end of the selection for prediction. To visualize differences in performance between classes, we calculated user's accuracy (UA) and producer's accuracy (PA) [START_REF] Congalton | A review of assessing the accuracy of classifications of remotely sensed data[END_REF] as a function of the number of features. We used the RF algorithm to select and classify features and to calculate the final prediction. In both cases, the number of trees was set to 100 [START_REF] Pelletier | Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas[END_REF]. The analyses were performed using the randomForest package of R software.

Results

5.4.1.

Analysis of time-series of Sentinel-2 features

For wheat and rapeseed, the highest signal variations in temporal profiles for S-2 reflectance were observed for bands 6 and 7 (red-edge) and bands 8 and 8A (NIR) (Figure 5 For wheat, LAI, NDVI and MCARI began to increase at the beginning of tillering, and S2REP and WDVI at the end of tillering. They all decreased during ripening.

For rapeseed, decreases are observed during ripening. NDVI increased until the development of fruit. However, it is not possible to observe its saturation due to the poor number of S-2 dates. LAI and WDVI were similar: they began to increase at the beginning of inflorescence (DoY 46) until the beginning of flowering (DoY 86). WDVI was the only vegetation index sensitive to leaf development .

For both crop types, MCARI had a high standard deviation. Thus, MCARI can produce inaccurate predictions of phenological stages. Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020. 

Analysis of time series of Sentinel-1 features

For wheat, while trends in the temporal profiles for and were similar, was influenced more by wheat growth than (Figure 567). Both polarizations increased during tillering (DoY 18-72). Both and decreased throughout stem elongation (DoY 72-124) but increased from inflorescence to ripening. The ratio has varied little during tillering stages. The ratio increased strongly during stem elongation and slightly from the beginning of inflorescence to ripening. The polarimetric indices were also sensitive to wheat phenological stages, according to their temporal behaviors (Figure 567). The temporal behaviors of , and were similar. The normalized SE index and its intensity (

) were similar. The influence of polarization ( ) on SE was weak, with values ranging from -0.9 to 0.8 dB, while ranged from -5 to -1 dB. and initially increased at tillering but then decreased during stem elongation and inflorescence.

initially varied little but then significantly increased during stem elongation.

decreased linearly from the end of flowering to ripening.

For rapeseed, the trends for and were similar, showing that they were sensitive to phenological stages, while the ratio was affected only slightly (Figure 5 

Contribution of Sentinel 1 & 2 time series to identifying principal phenological stages of wheat and rapeseed

The combined use of S-1 & 2 data outperformed use of S-1 or S-2 data alone in detecting the principal crop stages of wheat and rapeseed (maximum mean kappa index of 0.82 and 0.91, respectively) (Figure 5678). However, considering the standard deviation of the mean kappa index, results of the combined use of S-1 & 2 data were similar to those of S-2 data alone. The number of features automatically selected to predict the principal phenological stages were 4, 6 and 6 for wheat and 4, 5 and 5 for rapeseed for S-1 data alone, S-2 data alone and their combined use, respectively. For wheat, the mean kappa indices of S-1 and S-2 data alone were equal up to 3 input features, after which the S-1 mean kappa index changed little (0.60 ± 0.07), while that for S-2 continued to increase up to 5 input features (0.74 ± 0.07) (Figure 5-8a). Using the top 6 S-1 & 2 features out of all 18 features increased the mean kappa index by ca. 0.24 (i.e. from 0.53 ± 0.11 for 2 features to 0.77 ± 0.07 for 6 features). For rapeseed, S-1 data alone underperformed S-2 data alone based on the standard deviation of the mean kappa index (Figure 5-8b). Using the top 5 S-1 & 2 features out of all 18 features increased the mean kappa index by ca. 0.16 (i.e. from 0.74 ± 0.12 for 2 features to 0.90 ± 0.07). When using S-2 data alone for wheat (Figure 5-9b), LAI was the most important feature, followed by S2REP, red-edge2 (B06) and WDVI, NDVI and red edge1 (B05). For rapeseed (Figure 5 and 4 respectively). They were followed by LAI and WDVI (mean ranks of 4.3 and 5.3 respectively).

When using S-1 data alone, the ratio ranked first for both crops, while ranked third for wheat (Figures 5-9a and9d). Polarimetric indicators were important for wheat and rapeseed: several of them were among the 4 input features selected for predictions for both crops. For wheat, the polarization of the SE ( ) ranked second (Figures 5-9a), for rapeseed, the intensity of the SE ( ) ranked fourth (Figure 5-9d).

When using combined S-1 & S2 data, an S-1 feature was the most important for both crops:

for wheat (Figure 5-9c) and for rapeseed (Figure 5-9f). Among the top 10 important features, 6 were S-1 features for both crop types. For S-2 features, LAI was the most important for wheat and the NDVI and S2REP for rapeseed, since they were the only features out of the 6 and 5 features selected for prediction using the combined use of S-1 & 2 data. MCARI was the least important S-2 index for both crops. The ratio was a relevant feature using S-1 data alone for both crops, while LAI and NDVI were the most important features using S-2 data alone for wheat and rapeseed, respectively.

Concerning classification results for wheat, tillering was the phenological stage most accurately classified using S-1 data alone, S-2 data alone and their combined use (Figures 5-10a-c and11a-c). Based on the UA and PA results, similar results were obtained using S-1 or S-2 data alone for the stem elongation stage. The tillering stage was identified better using S-1 than S-2 data, while the flowering, development of fruit and ripening stages were identified better using S-2 than S-1 (Figures 5-10a and10b). Combined use of S-1 & 2 data improved the UA of tillering, stem elongation and ripening; only the PA of the stem elongation and flowering stages underperformed that of S-2.

For rapeseed, development of fruit was the most difficult phenological stage to identify using S-1 data alone and the combined use of S-1 & 2 data, due to confusion with ripening (Appendix C, Table C-4 andC-6 andFigures 5-10d and10f, 11d and11f 

Contribution of Sentinel 1 & 2 time series to identifying secondary phenological stages of wheat and rapeseed

The number of features automatically selected to predict secondary phenological stages were 4, 4 and 7 for wheat (Figure 12a) and 4, 4 and 5 for rapeseed (Figure 5-12b) for S-1 data alone, S-2 data alone and their combined use, respectively. For S-2 data alone, the mean kappa indices of wheat were similar to those for the principal phenological stages using the number of features automatically selected (0.72 ± 0.05 and 0.74 ± 0.06), whereas the secondary phenological stages of rapeseed were identified weaker than principal phenological stages (0.77 ± 0.07 and 0.86 ± 0.07, respectively). S-1 data alone did not discriminate secondary phenological stages well, since their mean kappa indices were significantly lower than those for the principal phenological stages (0.53 ± 0.06 and 0.60 ± 0.07, respectively, for wheat and 0.55 ± 0.07 and 0.63 ± 0.06, respectively, for rapeseed). For combined S-1 & 2 data, mean kappa indices for secondary phenological stages were also lower than those of principal phenological stages (0.72 ± 0.07 and 0.77 ± 0.06, respectively, for wheat and 0.79 ± 0.06 and 0.9 ± 0.07, respectively, for rapeseed). The use of S-1 & 2 data combined was similar to those of S-2 data alone for both crops ( Figure 5-13. Mean rank of importance of the most important features to identify the 7 secondary phenological stages of wheat and rapeseed. The ratio was the most important feature using S-1 data alone for both crops, while LAI, NDVI and S2REP were the most important features using S-2 data alone.
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When using S-2 features alone, LAI, NDVI and S2REP for both crop types remained, like those for the principal phenological stages, the most important features (Figures 5-11e and13e). For rapeseed, band 3 (green), which had been ranked third for identifying the principal phenological stages (Figure 5-10e) decreased to the sixth rank for identifying the secondary phenological stages (Figure 5-13e).

The ratio was the most important feature using S-1 data alone for both crops (Figures 5-13a and13d), and the first and seventh feature using S-1 & 2 data combined (Figures 5-13c and13f) for wheat and rapeseed, respectively.

When using S-1 features alone, and for wheat (Figure 5-13a) and and for rapeseed (Figure 5-13d) were also highly important for identifying secondary phenological stages.

appeared more important for discriminating secondary phenological stages than principal phenological stages, increasing by 3 ranks for both crops, while the rank of span decreased from third and first for wheat and rapeseed, respectively. For classification results for rapeseed, the leaf development, the beginning/middle of flowering and the end of development of fruit were the stages least well predicted using S-1 data alone (Figures 5-14d and15d) or S-2 data alone (Figures 5-14e and15e). Combined use of S-1 & 2 data increased the accuracy of identifying the leaf development stage (Figures 5-14f and15f).

Discussion

5.5.1.

The relationship between Sentinel-2 features and phenological stages of wheat and rapeseed

For both crop types, the temporal profiles of S-2 bands were consistent with those observed by [START_REF] Ashourloo | Automatic canola mapping using time series of sentinel 2 images[END_REF]. Saturation was observed from stem elongation to flowering for wheat and from flowering to development of fruit for rapeseed (Figure 5). However, it should be noted that the analysis of the temporal profiles was done from only 5 dates due to the heavy cloud cover over the study area between DOY 72 and 152, i.e. during the stem elongation, booting and early flowering stages for wheat and the flowering and development of fruit stages for rapeseed. Wilson et al. (2014) mentioned signal saturation for wheat and rapeseed when using hyperspectral data within a 400-900 nm range and identified optimal bands for identifying crops in green, red-edge and NIR wavelengths. Based on this study and our observations, we selected S-2 bands 3, 5, 6, 7, 8 and 8A as input for the incremental classification In the temporal profiles of S-2-based vegetation indices and LAI, the standard deviation peaked at the end of inflorescence for wheat and the end of development of fruit for rapeseed (Figures 56). Thus, the heterogeneity in crop phenology among fields during the field surveys peaked earlier during the middle of stem elongation for wheat and the beginning of development of fruit for rapeseed. All vegetation indices saturated when the LAI was high (1-2 for wheat and 3-4 for rapeseed, depending on the vegetation index), which confirms observations of [START_REF] Haboudane | Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture[END_REF] for wheat.

For wheat, the vegetation indices and LAI began to increase when the chlorophyll content increased at the tillering stage. They all decreased during ripening, as plants dried.

For rapeseed, decreases are observed during ripening due to the decrease in chlorophyll content as plants dried. LAI and WDVI began to increase at the beginning of inflorescence until the beginning of flowering as plant area expanded. WDVI decreased during the leaf development as leaves unfolded.

5.5.2.

The relationship between Sentinel-1 backscatter coefficients and phenological stages of wheat and rapeseed

For wheat, while trends in the temporal profiles for and were similar, was higher than especially during the first phenological stages (i.e. tillering and stem elongation), since is influenced more by wheat growth than (Figures 567). This is consistent with observations of Cookmartin et al. (2000) who showed that is particularly sensitive to vegetation wetness and of Fieuzal et al. (2013) who observed maximum WC at the stem elongation stage. Both polarizations increased during tillering (DoY 18-72). The increase in the number of stems per plant and the length of stems results in an increase in VH polarization, which is dominated by double-bounce and volume-scattering mechanisms [START_REF] Lopez-Sanchez | Estimating Phenology Of Agricultural Crops From Space[END_REF]Wiseman et al. 2014;Veloso et al. 2017) and a strong increase in VV polarization, which is dominated by the influence of soil and canopy. Both and decreased throughout stem elongation but increased from inflorescence to ripening, as observed by Fieuzal et al. (2013), due to an increase in crop absorption when vegetation was wet, and decreased as vegetation dried. VV polarization is attenuated by vertical transformation of the structure of wheat during stem elongation [START_REF] Brown | High-resolution measurements of scattering in wheat canopies-implications for crop parameter retrieval[END_REF]. The ratio has varied little during tillering stages, which does not help identify secondary phenological stages. This ratio correlates more to fresh biomass than to photosynthetic activity (Veloso et al. 2017). For rapeseed, VH and VV polarizations increased slightly during leaf development as biomass increased. They varied little during inflorescence and decreased during flowering. Indeed, rapeseed's vertical transformation from a thick rosette of leaves to a flowering stalk attenuated VV polarization, while its low density attenuated VH polarization. Both polarizations increased from development of fruit to the beginning of ripening, which was also observed in other studies (Fieuzal et al., 2013;[START_REF] Lopez-Sanchez | Estimating Phenology Of Agricultural Crops From Space[END_REF]Wiseman et al., 2014;Veloso et al., 2017). The progressive development of structure without preferred orientations results in a more complex geometry, inducing a strong increase in the volume-scattering mechanism (Betbeder et al. 2016b). VH and VV polarizations decreased until the end of ripening due to the decrease in WC in the top layer of rapeseed. VV polarization is particularly sensitive to the WC of vegetation (Cookmartin et al. 2000), and VH is attenuated by the increase in wave penetration into the soil. 5.5.3. The relationship between Sentinel-1 polarimetric indicators and phenological stages of wheat and rapeseed

For both crop types, the temporal behaviors of , and were similar since span is the total scattered power. For wheat, and initially increased at tillering but then decreased during stem elongation and inflorescence. The increase in was related to stem development during tillering. This complexity of plant structure increased the disorder encountered in the RaDAR signal. The opposite was observed during stem elongation, due to the less complex structure of wheat, which resulted in a decrease in backscatter power. Betbeder et al. (2016) demonstrated a strong positive correlation (r²=0.7) between topsoil moisture and during leaf development and tillering due to a low wave penetration into the soil.

initially varied little but then significantly increased during stem elongation, indicating that polarization varied greatly due to heterogeneity in plant structures in wheat fields.

decreased linearly from the end of flowering to ripening, as wheat was becoming homogeneous at the field scale. and could identify the development of fruit stage, unlike the other S-1 features, since they decreased slightly during this stage. For rapeseed, the temporal changes in and were similar to those of wheat. As mentioned by Betbeder et al. (2016), the intensity of SE was sensitive to different phenological stages. The slight increase in during flowering was associated with changes in rapeseed structure from a thick rosette of leaves to a flowering stalk, resulting in a strong variation in backscattering polarization (Betbeder et al. 2016b).

increased as rapeseed biomass increase; thus, it increased during flowering and decreased during ripening (Betbeder et al. 2016b).

5.5.4.

Relative contributions of S-1 and S-2 data to mapping of wheat and rapeseed phenological stages

Concerning the prediction of principal phenological stages of wheat using S-2 data alone (Figures 5-9b), LAI was the most important feature, followed by S2REP, red-edge2 (B06) WDVI, NDVI and red edge1 (B05). For rapeseed (Figures 5-9e), the most important 5 features were NDVI, S2REP, band 3 (green), LAI and WDVI. Principal and secondary phenological stages of wheat and rapeseed were well identified by LAI derived from S-2 data, since this index is related to the density of green vegetation. The incremental classification results demonstrated the relevance of the S2REP index for both crop types, which is consistent with results of Frampton et al. (2013). S2REP, which is highly sensitive to chlorophyll content, is calculated from red-edge bands of S-2 that respond to high large changes in leaf reflectance [START_REF] Hatfield | Application of Spectral Remote Sensing for Agronomic Decisions[END_REF]. The importance of the S-2 red-edge bands has been demonstrated for predicting green LAI in crop fields, including wheat in Spain and Germany (Delegido et al. 2011b). We noted the potential of WDVI for predicting rapeseed phenology based on our analysis of temporal profiles; it was the only index sensitive to the leaf development stage.
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Concerning principal and secondary phenological stages classification of wheat using S-1 data alone, the ratio ranked first for both crops, while ranked third (Figures 5-9a and9d). Previous studies demonstrated the suitability of backscattering coefficients ( , ) and the polarization ratio ( ) for estimating biomass and LAI of wheat [START_REF] Dente | Assimilation of leaf area index derived from ASAR and MERIS data into CERES-Wheat model to map wheat yield[END_REF]Betbeder et al. 2016b) and maize [START_REF] Gao | Estimating the Leaf Area Index, height and biomass of maize using HJ-1 and RADARSAT-2[END_REF]. Veloso et al. (2017) concluded that the influence of the ground was similarly reduced for wheat using compared to and , and was generally more consistent for wheat and rapeseed. For rapeseed, the ratio was the most important feature using S-1 data alone for classify principal and secondary phenological stages. The ratio had shown high performance in identifying principal phenological stages of both crops, confirming its high reliability for identifying principal and secondary phenological stages.

Consistent with results of Betbeder et al. (2016), polarimetric indicators were important for wheat and rapeseed: several of them were among the 4 input features selected based on the threshold automatically defined for predictions of principal and secondary phenological stages for both crops. SEp and span were selected to predict principal phenological stages of wheat and SEi was selected for rapeseed, while for secondary phenological stages, the selection included SEp and SE for wheat and SEi and SE for rapeseed.

This study aimed to evaluate the potential of S-1 data alone, S-2 data alone, and their combined use to predict wheat and rapeseed phenological stages. For wheat, the combined use of S-1 & 2 data outperformed use of S-1 or S-2 data alone in detecting the principal phenological stages of wheat and rapeseed. The secondary phenological stages of wheat were identified better using S-2 than S-1 data. Based on the standard deviation of the mean kappa index, similar results were obtained using S-2 data alone or combined S-1 & 2 data for the secondary phenological stages of wheat. The tillering was the principal and secondary phenological stage most accurately classified using S-1 data alone, S-2 data alone and their combined use (Figures 5-10a-c and11a-c). From DOY 18 to 72, wheat was at tillering stage and a specific temporal behavior of S-1 and S-2 features was observed in comparison to all other phenological stages. However, the tillering stage was identified better using S-1 than S-2 data, while the flowering, development of fruit and ripening stages were identified better using S-2 than S-1 (Figures 10a and10b). The SAR signal is sensitive to the geometry (e.g. roughness, texture, internal structure) and wetness of the observed targets, while optical reflectance is influenced by their physiology. Thus, we can conclude that the tillering stage of wheat was better discriminated by the structure of the wheat field rather than its physiology. From the stem elongation stage, the geometry of the wheat became vertical and varied little until ripening, while chlorophyll content increased and then decreased. Thus, S-2 features were more efficient than S-1 features to discriminate these phenological stages of wheat. For principal phenological stages of wheat, combined use of S-1 & 2 data improved the UA of tillering, stem elongation and ripening; only the PA of the stem elongation and flowering stages underperformed that of S-2. This is consistent with previous studies that have shown Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

saturation of the C-band [START_REF] El Hajj | Penetration Analysis of SAR Signals in the C and L Bands for Wheat, Maize, and Grasslands[END_REF]) and optical bands [START_REF] Haboudane | Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture[END_REF]) at high levels of wheat biomass.

For rapeseed principal phenological stages, the mean kappa index using combined S-1 & 2 data was higher and strongly higher than those obtained with S-2 data alone and S-1 data alone respectively. For secondary phenological stages, results of the combined use of S-1 & 2 data were similar to those obtained with S-2 data alone. However, combined use of S-1 & 2 data increased the accuracy of identifying the leaf development stage of rapeseed thanks to the capture of additional information about physiology from S-2 and geometry from S-1. Development of fruit was the most difficult principal phenological stage to identify using S-1 data alone and the combined use of S-1 & 2 data, due to confusion with ripening (Appendix C and E, Table C-4, C-6, E-1 and E-2 and Figures 5-10d and 10f, 11d and 11f). The most important features using S-1 data alone were , and . The temporal profiles showed that the ratio was stable between development of fruit and ripening, while and slightly increased. The structure of rapeseed stages is very similar during development of fruit and ripening, with randomly oriented canopy components. This high similarity can be explained by the fact that field observations were conducted during successive phenological stages (i.e. the end of development of fruit (BBCH = 77 and 79) and the beginning and end of ripening (BBCH = 80 and 89)). However, while, the development of fruit was considerably better classified using combined S-1 & 2 data (UA max = 0.87, PA max = 0.75) than using S-1 data alone (UA max = 0.32, PA max = 0.21), this phenological stage was the least well predicted. The most important features using combined S-1 & 2 data were derived from S-1 followed by NDVI and S2REP derived from S-2 and then , span, , and derived from S-1. Thus, SAR S-1 features increased confusion between development of fruit and ripening stages. The development of fruit was the most difficult secondary phenological stage to identify using S-1 data alone while the beginning and middle of flowering was the least well predited using S-2 data alone and combined S-1 & 2 data (Figures 5-14e and 14f, 15e and 15f). Prediction errors occurred between the two secondary phenological stages of flowering (Appendix D and E, Tables D-5, D-6, E-7 and E-8), the first corresponding to first flowers open until 40% of flowers on main raceme open and the second to the the full flowering until the end of flowering while the petals are fallen. It should be noted that this period coincided to the lack of S-2 data due to cloud cover, while S-1 temporal profiles showed little variation.

Classification results for combined use of S-1 & 2 data pointed out the large contribution of S-1 features for rapeseed. Combined used of S-1 & 2 data identified better principal phenological stages of rapeseed than S-2 data alone; moreover, the identification of the leaf development stage was improved adding S-1 features (Figures 5-11c, 11f). Results were more balanced for secondary phenological stages of wheat since S-2 data alone results were similar to those of combined S-1 & 2 data, except for the tillering stage.
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Conclusion

This study evaluated the potential of SAR S-1, optical S-2 time-series and the combined use of S-1 & 2 data to identify principal and secondary phenological stages of wheat and rapeseed. More specifically, we have shown that:

 Combined use of S-1 & 2 data (mean kappa = 0.53-0.82 and 0.74-0.92 for wheat and rapeseed, respectively) was more accurate than using S-1 data alone (mean kappa = 0.48-0.61 and 0.61-0.64 for wheat and rapeseed, respectively) or S-2 data alone (mean kappa = 0.54-0.75 and 0.67-0.86 for wheat and rapeseed, respectively), in identifying principal and secondary phenological stages for both crops.  S-2 data alone provided better results than S-1 data alone for both crop types.  Concerning S-1 features, the ratio and polarimetric indicators were important for obtaining accurate classifications of phenological stages for both crops. These features were the most important for discriminating both crop types using S-1 data alone and combined S-1 & 2 data.  Concerning S-2 features, LAI, NDVI and S2REP were the most important features for both crop types while the MCARI was less important.  The number of Sentinel features automatically selected to predict phenological stages of wheat and rapeseed ranged from 4 to 7. Overall, this study highlighted the value of using polarimetric indicators (SE and span) and combining Sentinel-1 and 2 data to monitor wheat and rapeseed phenology.

To confirm these results, this method should be based on a larger sample size, especially for identifying secondary phenological stages. Also, to test the robustness of combining S-1 & 2 data to predict principal and secondary phenological stages, the final predictive models should be applied to other study areas. 

Introduction

Crop monitoring is essential for managing agricultural resources to decrease environmental impacts. Indeed, natural resources (soil, forest, water) gradually decrease in the context of agricultural intensification, while food insecurity increases (Pinstrup-Andersen and Pandya-Lorch 1998). The challenge is to develop practices that are both economically and environmentally sustainable (Pinstrup-Andersen and Pandya-Lorch 1998) to meet the needs for food and feed, ecosystem services and human health. Land managers need timely and accurate information to help them manage agricultural resources efficiently.

Crop biophysical parameters, which are key variables that address this challenge, are required for several reasons: to estimate crop yield as model inputs (Maas 1988;Jin et al. 2018); to prevent disease and pest outbreaks (Hatfield and Pinter 1993;Vreugdenhil et al. 2018) since the plants are more sensitive during specific phenological stages; to optimize water resource management by accurately calculating crop needs and synchronizing irrigation schedules with vegetation stages during which water needs are minimal (Duchemin et al. 2015) and to decrease fertilizer application (Diacono et al. 2013;Bouchet et al. 2016). Crop biophysical parameters can also be used as indicators to study impacts of global warming [START_REF] Menzel | European phenological response to climate change matches the warming pattern[END_REF].

Most crop biophysical parameters commonly used for these purposes (e.g. LAI, DB, WB, WC) are obtained using time-consuming ground surveys and thus cannot be collected at the landscape scale. Remote sensing data can provide a solution to this issue because they can be used to map large areas at a fine scale. The free availability of SAR S-1 and optical S-2 time series offers a unique opportunity to monitor crops at a high temporal frequency (5-days) and high spatial resolution (10 m).

Many studies have focused on the use of satellite optical data (AVHRR, SPOT, Landsat, MODIS, IRS, IKONOS, QuickBird, Formosat-2, S-2 images) to estimate crop biophysical parameters, demonstrating the high performance of some spectral bands, vegetation indices, and biophysical variables (Quarmby et al. 1993;Doraiswamy et al. 2004;Mulla 2013;Bontemps et al. 2015;Betbeder et al. 2016b). More specifically, S-2 time series showed great potential for estimating grassland and crop LAI (Delegido et al. 2011b;Frampton et al. 2013;Clevers et al. 2017;Pan et al. 2018;Wang et al. 2019), biomass (Veloso et al. 2017;Ghosh et al. 2018;Ganeva et al. 2019) and phenological stages (Veloso et al. 2017;Ghosh et al. 2018;Stendardi et al. 2019). The importance of the S-2 red-edge bands has been demonstrated for predicting green LAI in crop fields, including wheat in Spain and Germany (Delegido et al. 2011b); however, Gosh et al. (2018) concluded that S-2 red-edge bands did not improve estimation of potato LAI compared to NIR bands. Ganeva et al. (2019) highlighted the importance of SWIR bands for estimating vegetation height and the vegetation fraction of rapeseed and wheat. The vegetation indices that emerged from the S-2 studies conducted in Europe were NDVI, IRECI, MCARI and NDI for several crops (wheat, rapeseed, barley, oat, onion, potato, sunflower, alfalfa, and grapevine). GNDVI and WDVI also performed well when estimating the parameters for potato. However, optical data have limitations because they are sensitive to weather conditions, capture only top-of-canopy information, and saturate at high levels of biomass and LAI. For example, for wheat, Wang et al. (2016a) estimated the saturation of visible and red-edge bands from 2.5 m².m -² for LAI and 1 for aboveground biomass. In contrast, although soil conditions (roughness and moisture) affect the SAR signal (McNairn and Brisco 2004;[START_REF] Chaube | Crop phenology and soil moisture applications of SCATSAT[END_REF], SAR data can be collected regardless of weather or light conditions, and microwaves are sensitive to the internal structure of vegetation (Fieuzal et al. 2013;Wiseman et al. 2014).

Several studies have evaluated the potential of satellite SAR data (RADARSAT, TerraSAR-X, ALOS, S-1) for estimating crop biophysical parameters (Steele-Dunne et al. 2017), and S-1 time series have demonstrated their high value for this purpose (Mandal et al. 2018b, a;Vreugdenhil et al. 2018;Kumar et al. 2018;Song and Wang 2019;[START_REF] Nasrallah | Sentinel-1 Data for Winter Wheat Phenology Monitoring and Mapping[END_REF]. The high potential of backscattering coefficients and the VH:VV polarization ratio was observed when detecting changes in vegetation structure for rapeseed, maize and winter cereals (Vreugdenhil et al. 2018). Mandal et al. (2018a) found good correlations between S-1 polarization combination (VH+VV) and WB and plant area index (half the surfaces of all green organs) of rapeseed. The S-1 VV polarization has shown high correlations with the WC, WB, DB and LAI of wheat (Kumar et al. 2018), while the VH and VV polarizations were important for identifying the phenological stages of wheat (Song and Wang 2019;[START_REF] Nasrallah | Sentinel-1 Data for Winter Wheat Phenology Monitoring and Mapping[END_REF]) and rice (Mandal et al. 2018b).

In addition, polarimetric indicators derived from RADARSAT-2 and TerraSAR-X have shown high sensitivity to crop biomass (Betbeder et al. 2016b;Wiseman et al. 2014;Homayouni et al. 2019;[START_REF] Yang | In-season biomass estimation of oilseed rape (Brassica napus L.) using fully polarimetric SAR imagery[END_REF], LAI (Betbeder et al. 2016b;Jin et al. 2015;Jiao et al. 2009;Canisius et al. 2018) and phenological stages [START_REF] Mascolo | Retrieval of phenological stages of onion fields during the first year of growth by means of C-band polarimetric SAR measurements[END_REF]McNairn et al. 2018;[START_REF] Pacheco | Using RADARSAT-2 and TerraSAR-X satellite data for the identification of canola crop phenology[END_REF]. Betbeder et al. (2016b) showed that the VV polarization was more effective than the NDVI at estimating wheat parameters from RADARSAT-2 images, and that while polarimetric indicators did not outperform VV, they were effective at estimating rapeseed crop height and DB. Wiseman et al. (2014) demonstrated that entropy had the highest accuracy among 21 SAR parameters derived from RADARSAT-2 images (linear and circular backscatter coefficients, linear copolarization and cross-polarization ratios, and polarimetric indicators) when estimating the DB of rapeseed. Entropy also emerged as important for estimating phenological stages of onion [START_REF] Mascolo | Retrieval of phenological stages of onion fields during the first year of growth by means of C-band polarimetric SAR measurements[END_REF] using RADARSAT-2 and of rapeseed using RADARSAT-2 or TerraSAR-X [START_REF] Pacheco | Using RADARSAT-2 and TerraSAR-X satellite data for the identification of canola crop phenology[END_REF]. Despite these encouraging results, to our knowledge, polarimetric indicators derived from S-1 data have not been used to study crop biophysical parameters.

Yang et al. ( 2019) demonstrated a higher saturation point and better accuracy when estimating rapeseed biomass using quad-polarization SAR data derived from RADARSAT-2 rather than dual polarimetric data. However, even though quad-polarization data express several backscattering mechanisms better than dual-polarization data, quad-polarization mode always yields a smaller swath width and lower spatial resolution than dualpolarization mode, which is not yet suitable for application over large areas. In addition, no quad-polarization data are freely available, unlike dual-polarization data (S-1).

Several modeling approaches were investigated for estimating crop biophysical parameters using optical and SAR satellite images. It is well known that many remote sensing-based indicators show a non-linear relationship with crop biophysical parameters, which can be explained by the Beer-Lambert extinction law for radiation penetration in plant canopies [START_REF] Tan | Quantitative monitoring of leaf area index in wheat of different plant types by integrating NDVI and Beer-Lambert law[END_REF]. Several studies have shown the value of non-linear machine learning methods to estimate the crop biomass (Wang et al. 2016b;[START_REF] Ahmadian | Biomass Assessment of Agricultural Crops Using Multi-temporal Dual-Polarimetric TerraSAR-X Data[END_REF], as well as LAI, WC WB, DB and plant height (Kumar et al. 2018). Among machine learning methods, Gaussian processes regression (GPR), which is a non-parametric kernel-based model [START_REF] Williams | Bayesian classification with Gaussian processes[END_REF], is one of the most robust regression algorithm for Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

monitoring crop biophysical parameters (Ganeva et al. 2019;[START_REF] Verrelst | Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3[END_REF][START_REF] Upreti | A Comparison of Hybrid Machine Learning Algorithms for the Retrieval of Wheat Biophysical Variables from Sentinel-2[END_REF][START_REF] Pipia | Fusing optical and SAR time series for LAI gap filling with multioutput Gaussian processes[END_REF]. For example, [START_REF] Upreti | A Comparison of Hybrid Machine Learning Algorithms for the Retrieval of Wheat Biophysical Variables from Sentinel-2[END_REF] demonstrated the superiority of GPR over eight machine-learning methods including RFs, neural networks and regression trees for estimating wheat biophysical parameters using S-2 images.

The objective of this study was to evaluate the potential of S-1 and S-2 images to estimate LAI, WB, DB and WC. We focused on wheat and rapeseed, which are two of the most important crops in the world in terms of harvested area (FAO, 2017). We evaluated the predictive power of 22 optical S-2 features (10 spectral bands and 12 vegetation indices) and 7 SAR S1-features (2 backscattering coefficients, 1 ratio and 4 polarimetric indicators). We estimated crop biophysical parameters of wheat (from tillering to ripening stages) and rapeseed (from leaf development to ripening stages) using a GPR approach.

Materials and Methods

Study area

The study area is a LTER site named ZAA located in the southern part of the Bay of Mont-Saint-Michel, France (Figure 6-1). It is part of European LTER and international ILTER networks (https://osur.univ-rennes1.fr/za-armorique). The ZAA was created in 1993 to perform long-term research around three main themes: planning, public policy and landscape dynamics; the relationship between spatio-temporal landscape dynamics and biodiversity; and influence of spatial- temporal landscape dynamics on ecosystem processes. This 130 km² area has a temperate climate with an annual mean temperature of 12 °C and annual mean precipitation of 650 mm. Maize, wheat, rapeseed and barley are the main crops grown in this agricultural area. The crops are surrounded by hedges to differing degrees, with density of the hedge network increasing from north to south.

Satellite imagery

Four optical S-2 and five SAR S-1 images were collected from January to July 2017 throughout the entire crop cycles of wheat and rapeseed (Figure 6-2).

Figure 6-2. Days of year of satellite images, field surveys and main crop phenological stages for wheat and rapeseed (Bleiholder, et al. 2001). The ombrothermal diagram (Météo France)

shows the climate conditions during image acquisition.

The S-1 images were acquired in Interferometric Wide (IW) swath mode and delivered with VV and VH polarizations. We used the SLC product, which consists of focused SAR data that use the full C-signal bandwidth and preserve the phase information, to derive polarimetric indicators. The incidence angle of images ranged from 36.9-51.3° (Table 6-1). The spatial resolution was 2.3 × 13.9 m (Figure 6-2 and Table 6-1). Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020. For the S-2 images, 10 bands with spatial resolutions of 10 and 20 m were selected (Table 6-2). The tiles were downloaded from the Europe Copernicus web site in level 2A, which provides top-of-canopy reflectance. 

Field data collection

Ground surveys were conducted on 3 wheat fields and 3 rapeseed fields (Figure 6-3). The wheat fields were 4. 26, 10.33 and 12.81 ha in size, while the rapeseed fields were 6.02, 10.11 and 11.35 ha. Phenological stages were identified from January to July 2017 (Figure 6-2) based on the Biologische Bundesanstalt, Bundessortenamt and CHemical industry (BBCH) scale (Bleiholder, et al. 2001). Four and five principal phenological stages were observed in Brittany for wheat and rapeseed, respectively (Tables 3 and4). Approximately 10 hemispherical photos were taken of each sampled plot on each date. LAI was estimated from digital hemispherical photographs using CAN-EYE software (https://www6.paca.inra.fr/caneye) and averaged per date and field sample. At the same time, biomass measurements were performed (Betbeder et al. 2016b). In homogeneous areas (20 × 20 m), 5 samples of wheat 50 cm on the ground and 5 rapeseed plants were collected. The WB of each sample was directly weighed in situ, and the DB was measured after drying the crop (oven, 65°C, 48 h). WC in the plant equals WB minus DB. Figure 3 shows the temporal profiles of the wheat and rapeseed parameters and Table 6-5 summarizes the crop biophysical parameters for all wheat and rapeseed fields sampled. Part III -Characterization of crops using Sentinel-1 and 2 time series 124 Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

Data processing

First, we preprocessed the SAR S-1 and optical S-2 signals. Second, we used GPR to estimate LAI, WB, DB, WC of the wheat and rapeseed crops using the field samples and the S-1 and S-2 features, before quantifying the predictive power of the best models using crossvalidation and the "k-folds " method.

SAR Sentinel-1 image preprocessing

We used the S-1 Toolbox (ESA, SNAP) to extract backscattering coefficients from the S-1 images.

Calibration was performed to convert digital pixel values into radiometrically calibrated backscatter ( VV, VH) using the following equation (Eq. 6.1) (Miranda and Meadows 2015): (6.1) where DN is the digital number and A is the information necessary to convert SAR reflectivity into physical units provided in the Calibration Annotation Data Set in the image metadata.

The presence of speckle in SAR images was reduced using a refined Lee filter in a 7 × 7 pixel sliding window (Lee et al. 1994). The Range Doppler orthorectification method was applied to correct topographical distortions; the operator used orbit state vector information, RaDAR timing annotations, slant-to-ground-range conversion parameters and a reference DEM (SRTM). We calculated a ratio by dividing VH by VV. Then, the resulting images were transformed from a linear into a decibel (dB) scale using the following equation (Eq. 6.2): (6.2) We used PolSARpro version 5.1.3 software to derive polarimetric indicators from the S-1 images (Pottier and Ferro-Famil 2012).

First, we extracted the 2 × 2 covariance matrix ( ) from the scattering matrix S. Second, the presence of speckle in SAR images was reduced using a refined Lee filter in a 7 × 7 pixel sliding window (Lee et al. 1994). Third, we calculated the scattered power called span in the case of a polarimetric RaDAR system (Ferro-Famil and Pottier 2014), and the SE (randomness of scattering of a pixel) was calculated using the following equation (Eq. 6.3): (6.3) where is the intensity and is the degree of polarization.

Finally, , and were normalized into , and .

Chapter 6 -Evaluation of Sentinel-1 and 2 time series for estimating LAI and biomass of wheat and rapeseed crop types 125 Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

Optical Sentinel-2 image preprocessing

We calculated 12 vegetation indices (Table 6-6) that are frequently used to monitor crop biophysical parameters (LAI, biomass, chlorophyll content and phenological stages) in studies using S-2 data (Frampton et al. 2013;Clevers et al. 2017;Daughtry et al. 2000;Herrmann et al. 2011;Clevers and Gitelson 2013). The indices included the GNDVI, IRECI, MCARI, MSAVI, MTCI, NDI, NDVI, PSSRa, REIP index, S2REP index, SAVI and WDVI.

Finally, we applied a spline method to interpolate daily the 10 spectral bands, and 12 vegetation indices derived from the S-2 images to match the dates of SAR S-1 acquisition using the "stats" package of R software (TEAM, R. [START_REF] Team | Package stats. The R Stats Package. The R Stats Package Teil H (1975) Correspondence factor analysis: An outline of its method[END_REF]. Then, S-1 and S-2 features were projected onto the RGF93/Lambert-93 system (EPSG 2154).

In total, we preprocessed 110 S-2 features (10 spectral bands and 12 vegetation indices × 5 dates) and 35 S-1 features (2 backscattering coefficients, 1 backscatter ratio and 4 polarimetric indicators × 5 dates). 

Estimating crop biophysical parameters

GPRs were performed using crop biophysical parameters of the wheat and rapeseed fields sampled and S-1 & S-2 features. GPR is a probabilistic non-parametric approach to regression [START_REF] Williams | Bayesian classification with Gaussian processes[END_REF]. A Gaussian process is a stochastic process which can be specified by its mean function and its covariance function ; any finite set of points will have a joint multivariate Gaussian distribution. Gaussian process model assumes that the noise model is gaussian with zero-mean and variance , then the predicted mean (Eq. 6.4) and variance (Eq. 6.5) at are given by: (6.4) Part III -Characterization of crops using Sentinel-1 and 2 time series 126 Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020. (6.5) where and .

A radial basis function kernel (Eq. 6.6) was used, defined as: ′ ′ ) (6.6) where is a parameter that sets the « spread » of the kernel.

GPR models were calibrated and validated using 10 repeated 3-fold cross-validation. More folds were not possible due to the sparse calibration dataset (n = 12 for wheat and n = 15 for rapeseed). The parameter of the radial basis function kernel was optimized with a tuning parameter grid value ranging from 0 to 4 (with a 0.05 step) to limit overfitting. For each relation, we calculated the adjusted R², related to the proportion of variance explained by the model, and the relative root mean square error (rRMSE), calculated by dividing the RMSE by the mean of observed data. We also calculated the means and standard deviations of adjusted R² and rRMSE among the 10 repeats.

GPR was performed with software "R" version 3.6.3 (R. Core Team, 2020) using packages "caret" version 6.0 [START_REF] Kuhn | caret: Classification and Regression Training[END_REF]).

Results and discussion

To estimate the crop biophysical parameters of the wheat and rapeseed, we compared the respective value of S-1 and S-2 features to model crop LAI, WB, DB and WC using GPR.

6.4.1.

Estimating crop biophysical parameters using S-2 images

Concerning estimation of wheat crop biophysical parameters using S-2 features, correlations were high using green and NIR bands and all indices except MCARI and NDI45 to estimate LAI and WC (adj. R² > 0.85 and 0.70 respectively) (Figure 6-4). More specifically, figure 5 shows the best relationships obtained between wheat crop biophysical parameters and S-2 features. There was a linear and positive relation between LAI and NIR-band 8, the NIR reflectance increasing with the chlorophyll content. The lowest LAI values were observed during the ripening (BBCH = 89) and the highest ones during the stem elongation (BBCH = 33) and inflorescence (BBCH = 51). The WC decreased with the green band reflectances from inflorescence (BBCH = 55) to tillering (BBCH = 23). These results are consistent with previous studies that have shown greater sensitivity of green or NIR spectral domains (Fu et al. 2014;Wilson et al. 2014) and of some indices such as MSAVI [START_REF] Haboudane | Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture[END_REF]), IRECI and NDVI (Frampton et al. 2013) to wheat biomass. Clevers et al. (2017) also demonstrated good performance of WDVI to estimate LAI of potato (R² = 0.809).

In contrast, the predictive power of models for DB (adj. R² max = 0.72) and WB (adj. R² max = 0.71) was low (Figure 4). More specifically, DB and WB values were high at ripening (BBCH = 89) when wheat is fully ripe, while MTCI and WDVI values were low when wheat is brown in color (Figure 6-5). Then, MTCI and WDVI values increased from tillering (BBCH = 23) to inflorescence (BBCH =55). For rapeseed, the best results for DB and WB were obtained from bands 11 and 12, which correspond to the SWIR domain (adj. R² max = 0.85 and 0.77 respectively), while vegetation indices were not useful (adj. R² max < 0.55) (Figure 6-6). In contrast, the predictive power of models for WC and LAI (adj. R² max = 0.60 and 0.64 respectively) was low. More specifically, figure 7 shows the best relationships obtained between rapeseed LAI, DB, WB and WC and S-2 features. The more WB, DB and WC increased, the more the SWIR reflectance decreased. The results of estimating WC were poor, no relation being found between WC and SWIR-band 11 from 200 to 300

. When LAI was high (2.5-3), MTCI saturated at the inflorescence (BBCH = 53), flowering (BBCH = 67) and development of fruit (BBCH =71) stages.

These results are consistent with other studies that have demonstrated the high performance of the SWIR bands for mapping vegetation (Schultz et al. 2015;Immitzer et al. 2016) and estimating the nitrogen concentration in biomass, height and vegetation fraction of wheat and rapeseed (Ganeva et al. 2019). [START_REF] Wang | Sensitivity studies of the moisture effects on MODIS SWIR reflectance and vegetation water indices[END_REF] also demonstrated that WC increases with the decreasing of SWIR reflectances, with a saturation from LAI of 3. Besides, we showed that MTCI saturated when the LAI was high, which confirms observations of Mercier et al. (2020) over rapeseed fields in northern France. 

Estimating crop biophysical parameters using S-1 images

Concerning estimation of wheat crop biophysical parameters using S-1 features, the ratio was the most strongly correlated feature with LAI (adj. R² max = 0.91) (Figure 678). More specifically, figure 9 shows the best relationships obtained between wheat crop biophysical parameters and S-1 features. The LAI increased with the ratio and saturated when LAI was high (2.5-3). Previous studies demonstrated the suitability of polarization ratios for estimating LAI of wheat [START_REF] Dente | Assimilation of leaf area index derived from ASAR and MERIS data into CERES-Wheat model to map wheat yield[END_REF]Jin et al. 2015). Veloso et al. (2017) concluded that the influence of the ground was similarly reduced for wheat using compared to and . performed best for estimating WB (adj. R² = 0.66) (Figure 678). More specifically, there was a linear and negative relation between WB and (Figure 6789). The tillering (BBCH = 18) and ripening (BBCH = 89) stages had low WB values, while the stem elongation (BBCH = 31) and inflorescence (BBCH = 55) stages had higher WB values, Because tillering and ripening stages have a more fragmented and less vertical structure than the other two stages; they cause more disorder in the signal. The SE is influenced more by complex geometry during growth stages (Betbeder et al. 2016a).

performed best for estimating WC (adj. R² max = 0.78) (Figure 678). There was a sigmoidal and positive relation between WC and ,, because the increase of the WC of the wheat crop induced lower wave penetration into the soil (Betbeder et al. 2016b). This is consistent with observations of Betbeder et al. (2016b) who showed a decrease of during the first phenological stages of wheat, an increase from the beginning of the leaf development stage and a saturation at the end of this stage. Correlations between DB and S-1 features did not exceed an adj. R² of 0.55 (Figure 678). However, Kumar et al. (2018) found an R² of 0.68 between S-1 VV-polarization and the DB of wheat in northern India based on 112 samples; thus, either our results underestimated the performance of S-1 data, or the weak relationship was due to external conditions related to the study area, such as the moisture content in the top few cm of the soil, the roughness of the soil surface, or the absorption and scattering characteristics of the vegetation canopy.

For rapeseed, the ratio and performed best for estimating DB and WB (Figure 6-10) and increased as the rapeseed crop biophysical parameters increased . Rapeseed has a complex structure, with stems that develop without a preferred orientation, which results in an increase in the volume-scattering mechanism (VH) (Betbeder et al. 2016a), while the VV polarization is particularly sensitive to the WC of vegetation (Cookmartin et al. 2000). However, Veloso et al. (2017) concluded that compared to and was generally more consistent for rapeseed. Betbeder et al. (2016b) found that the volume scattering (= decreased due to a strong decline of the WC of the top vegetation layer inducing higher wave penetration into the soil and thus a decrease of the volume scattering. The adj. R² of the VV and VH polarization was higher for wheat than for rapeseed biomass (Figures 6-8 

Relative contributions of S-1 and S-2 images for estimating crop biophysical parameters

The GPR results obtained with S-2 features were similar or better to those obtained with S-1 features to estimate crop biophysical parameters of wheat and rapeseed crops (Table 67). For example, the goodness of fit using S-1 features was similar to the one obtained using S-2 for wheat LAI (adj. R² = 0.91) and rapeseed WC (adj. R² = 0.60). We can note that the results for estimating rapeseed DB and WB using S-1 features were good, with a maximum adj. R² of 0.80 and 0.75, respectively. While C-band polarizations have shown good results for estimating crop biophysical parameters (Betbeder et al. 2016b;Mandal et al. 2018b;Vreugdenhil et al. 2018;Kumar et al. 2018;Song and Wang 2019;[START_REF] Nasrallah | Sentinel-1 Data for Winter Wheat Phenology Monitoring and Mapping[END_REF]), this study highlighted the importance of the VH:VV ratio and the polarization of SE for estimating wheat LAI and WC (adj. R² > 0.75) and rapeseed WB and WC (Figure 6-8 and 10 and Table 67). These results are very promising since a continuous time-series of optical images is difficult -if not impossible -to acquire due to the cloud-free dependence of optical acquisitions.

Part III -Characterization of crops using Sentinel-1 and 2 time series 134 Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020. The small number of field surveys was a limiting factor when testing statistical models, most of studies using at least thirty field samples to perform GPR for monitoring crop biophysical parameters [START_REF] Verrelst | Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3[END_REF][START_REF] Upreti | A Comparison of Hybrid Machine Learning Algorithms for the Retrieval of Wheat Biophysical Variables from Sentinel-2[END_REF]Ganeva et al. 2019;[START_REF] Pipia | Fusing optical and SAR time series for LAI gap filling with multioutput Gaussian processes[END_REF]. The lower the sample size, the lower the power of the statistical test, that is the probability of rejecting the null hypothesis when it is false (the absence of statistical relationship in this study). Small sample size can lead to over-fitting, although crossvalidation can address this issue. In this study, we used a cross-validation procedure to avoid over-fitting and reduce the bias in the classification performance estimate. We applied a repeated cross-validation since [START_REF] Chen | Sensitivity Analysis with Cross-Validation for Feature Selection and Manifold Learning[END_REF]. and [START_REF] Rodriguez | Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation[END_REF]. have shown that this method stabilizes the prediction error estimation, and thus reduces the variance of the K-fold cross-validation estimator, especially for small samples. Some resampling methods such as leave-one-out or bootstrap are also well suited to small sample sizes. However, the leave-one-out method is an unbiased estimator but suffers from a high variance [START_REF] Devroye | A Probabilistic Theory of Pattern Recognition[END_REF], while the bootstrap method has a smaller variance and a shorter confidence interval but suffers from a bias problem [START_REF] Jain | Bootstrap Techniques for Error Estimation[END_REF]. Other methods could be tested with a larger set of samples (e.g. random forest algorithm), given the good performance they demonstrated for estimating wheat and rapeseed crop biophysical parameters using optical and SAR data. Wang et al. (2016b) estimated the DB of wheat using vegetation indices derived from HJ-CCD and had better results using RF compared to support vector regression and an artificial neural network. Kumar et al. (2018) also demonstrated that RF provided better results than support vector regression, linear regression, and artificial neural network regression for estimating the crop parameters of wheat (LAI, WC WB, DB and plant height) using S-1 VV polarization. [START_REF] Ahmadian | Biomass Assessment of Agricultural Crops Using Multi-temporal Dual-Polarimetric TerraSAR-X Data[END_REF] estimated the DB and WB of wheat, barley and rapeseed using a combination of polarizations derived from TerraSAR-X. They concluded that the RF approach provided better results than a stepwise regression approach and the approach they used (i.e. the "Water Cloud Model").

Future studies could focus on comparing the use of C-and L-bands for wheat and rapeseed, since the L-band signal has a longer wavelength and thus penetrates vegetation more deeply than the C-band (Woodhouse 2017). [START_REF] Inoue | Season-long daily measurements of multifrequency (Ka, Ku, X, C, and L) and full-polarization backscatter signatures over paddy rice field and their relationship with biological variables[END_REF] showed that the C-band was more effective for estimating the LAI of rice, while the L-band was better for estimating fresh biomass. [START_REF] Hosseini | Using multi-polarization C-and L-band synthetic aperture radar to estimate biomass and soil moisture of wheat fields[END_REF] demonstrated that the C-band outperformed the L-band in estimating biomass and soil moisture of wheat. However, they indicated that it was difficult to compare the two frequencies directly due to variance in the temporal sequence of data collection and the acquisition of the C-band by satellite and of the L-band by airborne remote sensing.

Conclusion

This study demonstrated the potential of SAR S-1 and optical S-2 time series to estimate crop biophysical parameters (LAI, WB, DB and WC) of wheat and rapeseed. The results show that best S-2 based models were achieved using the green band, NIR bands and vegetation indices for the wheat WC, LAI and biomass respectively, and the SWIR bands for rapeseed biomass. Concerning S-1 based models, the ratio was the most relevant feature for wheat LAI and rapeseed biomass, and the SE polarization contribution best performed for wheat WC. Results obtained using S-2 features were similar or higher to those obtained using of S-1 features for estimating crop biophysical parameters of wheat and rapeseed crops. For wheat, the highest correlations using S-1 features were the polarization ratio with LAI (adj. R² = 0.91) and the SE polarization contribution with WC (adj. R² = 0.78), while best S-2 based models were achieved using the green band for WC (adj. R² = 0.82), NIR-band 8 for LAI (adj. R² = 0.91), WDVI for DB (adj. R² = 0.72) and MTCI for WB (adj. R² = 0.71). For rapeseed, the highest correlations were the ratio and the SE polarization contribution with WB and DB (adj. R² > 0.75), while the SWIR bands of S-2 appeared promising for estimating DB (adj. R² = 0.85) and WB (adj. R² = 0.77). The results also highlighted, for the first time, the importance of polarimetric indicators (SE and span) derived from S-1 time series for estimating biophysical crop biophysical parameters of wheat and rapeseed.

Introduction

The last and fourth part of this manuscript is devoted to the analysis of the relationships between maps of landscape metrics derived from Sentinel images and species surveys. We propose to use the WDVI derived from S-2 images to evaluate landscape biophysical heterogeneity, i.e. the spatial diversity of the phenological stages in the crop mosaic in Brittany, Picardy and Wallonia study areas.

In chapter 7, we analyze the influence of biophysical heterogeneity on wheat phenology and associated biodiversity First; we analyzed the relationships between crop mosaic, landscape grain and biophysical heterogeneity. Then, we studied the effect of biophysical heterogeneity on wheat phenology. Finally, the distribution of two carabid beetle species was estimated using the biophysical heterogeneity metric. 

Reproduced from the article:

Mercier A, Hubert-Moy L, Baudry J (2021b) Sentinel-2 images reveal functional biophysical heterogeneities in crop mosaics. Landscape Ecol. https://doi.org/10.1007/s10980-021-01331-6

Introduction

In crop-dominated landscapes, spatial and temporal heterogeneities are key elements for biodiversity (Baudry et al. 2003). The more diverse the land use types and the more complex their configuration, the higher the spatial heterogeneity is [START_REF] Fahrig | Functional landscape heterogeneity and animal biodiversity in agricultural landscapes[END_REF]. Furthermore, temporal heterogeneities result from the crop rotation, crop phenology and farming practices [START_REF] Vasseur | The cropping systems mosaic: How does the hidden heterogeneity of agricultural landscapes drive arthropod populations? Agriculture[END_REF]). These heterogeneities influence the movement and distribution of species across the landscape (Baudry et al. 2003;[START_REF] Fahrig | Functional landscape heterogeneity and animal biodiversity in agricultural landscapes[END_REF][START_REF] Vasseur | The cropping systems mosaic: How does the hidden heterogeneity of agricultural landscapes drive arthropod populations? Agriculture[END_REF]. Many studies describe the influence of the landscape on protecting crops against pests [START_REF] With | Threshold Effects of Landscape Structure on Biological Control in Agroecosystems[END_REF][START_REF] Gagic | Food web structure and biocontrol in a four-trophic level system across a landscape complexity gradient[END_REF][START_REF] Gurr | Landscape ecology and expanding range of biocontrol agent taxa enhance prospects for diamondback moth management. A review[END_REF][START_REF] Chaplin-Kramer | Measuring What Matters: Actionable Information for Conservation Biocontrol in Multifunctional Landscapes[END_REF]. They show the importance of wooded elements (woods, hedgerows) as refuge for predators. Before these studies in landscape ecology, the role of wooded elements as windbreaks to protect crops had been demonstrated in many regions [START_REF] Kawatani | Turbulence and wind speed characteristics within a model canopy flow field[END_REF][START_REF] Kort | Benefits of windbreaks to field and forage crops[END_REF]). Their effects have been studied mainly at the field scale (Cleugh 2002;[START_REF] Kanzler | Microclimate effects on evaporation and winter wheat (Triticum aestivum L.) yield within a temperate agroforestry system[END_REF][START_REF] Kučera | The Effect of Windbreak Parameters on the Wind Erosion Risk Assessment in Agricultural Landscape[END_REF]. Results of these studies indicate that microclimatic heterogeneity is a major factor that influences crop development (Cleugh 2002;[START_REF] Kanzler | Microclimate effects on evaporation and winter wheat (Triticum aestivum L.) yield within a temperate agroforestry system[END_REF][START_REF] Kučera | The Effect of Windbreak Parameters on the Wind Erosion Risk Assessment in Agricultural Landscape[END_REF]. The diverse plant cover (crops and non-crops) produces heterogeneity in surface temperatures that causes energy fluxes [START_REF] Ryszkowski | Impact of agricultural landscape structure on energy flow and water cycling[END_REF]. Heterogeneity in crop phenology results in differences in albedo and evapotranspiration between crops, which generates lateral fluxes. For example, when a tractor lifts dust, some of the dust floats away, but some of it returns to fields surrounded by hedgerows, which may be warmer (Figure 7-1). Few scientific literature focuses on this type of heterogeneity caused by energy fluxes [START_REF] Ryszkowski | Impact of agricultural landscape structure on energy flow and water cycling[END_REF]. The direct relationship between the landscape mosaic and crop phenology at the field scale has not been investigated. This hinders understanding of crop dynamics and associated biodiversity. The heterogeneity of phenological stages of crop/vegetation cover induces differences in solar energy capture and evaporation at the field scale [START_REF] Ryszkowski | Impact of agricultural landscape structure on energy flow and water cycling[END_REF]. Since thermodynamics states that this kind of heterogeneity generates heat fluxes, we hypothesized that the overall landscape mosaic has an effect on the dynamics of crop phenology and associated biodiversity. [START_REF] Veste | Windbreaks as part of climate-smart landscapes reduce evapotranspiration in vineyards, Western Cape Province, South Africa[END_REF] quantified effects of a tree hedgerow planted in a vineyard on wind speed and evapotranspiration, which decreased by up to 20% to about five times the hedgerow height. These effects can improve growing conditions of crops in the local climate and increase the soil water content. Crop phenology also influences energy fluxes. Wind speed is related in part to the surface roughness of the field [START_REF] Kawatani | Turbulence and wind speed characteristics within a model canopy flow field[END_REF], which differs between maturity and senescence. As the wheat grows, its canopy attenuates the net radiation, which influences the soil heat flux [START_REF] Choudhury | Analysis of an empirical model for soil heat flux under a growing wheat crop for estimating evaporation by an infrared-temperature based energy balance equation[END_REF] or albedo [START_REF] Clothier | Estimation of soil heat flux from net radiation during the growth of alfalfa[END_REF]). Evaporative processes dominate in vegetative-stage vegetation, while radiative processes dominate in senescent vegetation [START_REF] Jacob | Mapping surface fluxes using airborne visible, near infrared, thermal infrared remote sensing data and a spatialized surface energy balance model[END_REF].

Remote sensing images are commonly used in landscape ecology [START_REF] Crowley | Remote Sensing's Recent and Future Contributions to Landscape Ecology[END_REF]. Optical and radar images from unmanned aerial vehicles (UAVs) and airborne and spaceborne systems have been used to study the structure, change and function of the landscape [START_REF] Crowley | Remote Sensing's Recent and Future Contributions to Landscape Ecology[END_REF]. Satellite images and field samples are used to classify land-cover types (e.g. forest, hedgerow, grassland, wetland) to analyze landscape structure. Remote sensing images collected on different dates are used to detect changes in landscape structure over space and time. Landscape function can be assessed by combining information from remote sensing data (e.g. topography derived from radar data, vegetation indices derived from optical data) and from landscape ecology datasets (e.g. spatial distribution of species, meteorological measurements). Energy flux models commonly incorporate remote sensing data [START_REF] Schmugge | Monitoring land surface fluxes using ASTER observations[END_REF][START_REF] Olioso | Estimation of Evapotranspiration and Photosynthesis by Assimilation of Remote Sensing Data into SVAT Models[END_REF][START_REF] Bindlish | Influence of near-surface soil moisture on regional scale heat fluxes: model results using microwave remote sensing data from SGP97[END_REF][START_REF] Bastiaanssen | SEBAL Model with Remotely Sensed Data to Improve Water-Resources Management under Actual Field Conditions[END_REF]. Soil-vegetation-atmosphere transfer models (SVAT) simulate energy and mass transfers between soil, vegetation and the atmosphere based on radiative, turbulent, heat and water transfers. Remote sensing data provide input data to SVAT models such as canopy structure, surface temperature and surface soil moisture [START_REF] Olioso | Estimation of Evapotranspiration and Photosynthesis by Assimilation of Remote Sensing Data into SVAT Models[END_REF]. For example, thermal images provide a picture of surface temperature heterogeneity [START_REF] Zellweger | Advances in Microclimate Ecology Arising from Remote Sensing[END_REF]. [START_REF] Bastiaanssen | SEBAL Model with Remotely Sensed Data to Improve Water-Resources Management under Actual Field Conditions[END_REF] developed the surface energy balance algorithm for land (SEBAL), which estimates wind speed and air temperature based on the spatial variability in convective fluxes. They demonstrated that remote sensing is a direct method to estimate evapotranspiration without prior knowledge about soil, crop and management conditions. [START_REF] Schmugge | Monitoring land surface fluxes using ASTER observations[END_REF] predicted surface heat fluxes in an arid watershed in Arizona, USA, using surface temperatures derived from an airborne thermal infrared sensor and land cover from a Landsat Thematic Mapper image. [START_REF] Bindlish | Influence of near-surface soil moisture on regional scale heat fluxes: model results using microwave remote sensing data from SGP97[END_REF] used soil moisture derived from a passive microwave sensor (ASTER) to estimate heat fluxes. These measures are complex and time consuming. In the present study, we used a landscape heterogeneity metric as a proxy of energy fluxes and its relationships with crop phenology and biodiversity.

Satellite images can be used to identify landscape heterogeneities. Mercier et al. (2020b, a) showed that features of radar Sentinel-1 and optical Sentinel-2 satellite images can accurately predict phenological stages and crop biophysical parameters of wheat. For example, the most accurate Sentinel-2 based models used the green band, near-infrared (NIR) bands and vegetation indices to determine wheat's water content, leaf area index and biomass, respectively (Mercier et al. 2020b). In the present study, we explored the potential of remote sensing to derive spatio-temporal ecological metrics that may be related to energy flows. We used the weighted difference vegetation index (WDVI) derived from Sentinel-2 satellite images as an index of wheat plant growth due to its demonstrated ability to monitor phenological stages and crop biophysical parameters of wheat (Mercier et al. 2020b, a).

We analyzed the ecological function of biophysical heterogeneity using carabid beetle samples. Ground beetles (Coleoptera, Carabidae) are relevant indicators of environmental quality or change [START_REF] Pearson | Selecting indicator taxa for the quantitative assessment of biodiversity[END_REF]. The objectives of this article are to (i) evaluate optical remote sensing data to measure the biophysical heterogeneity generated by landscape mosaic heterogeneity at the field scale, and (ii) assess the influence of the biophysical heterogeneity on the distribution of carabid beetles at the landscape scale. 

Study area

We analyzed three study sites in France (Brittany and Picardy) and three in Belgium (Wallonia) (Figure 7-2). These six landscapes are distributed along gradients of landscape grain and spatial heterogeneity (Appendix F, G and C and https://woodnetweb.wordpress.com). The landscape grain is related to the spatial organization of hedgerows and woods (Le [START_REF] Féon | Solitary bee abundance and species richness in dynamic agricultural landscapes[END_REF]. Landscape grain chaHacterizes structures from fine to coarse grain. This metric, which incorporates hedgerow density and mesh shape (elongated meshes interact more with surrounding hedgerows than compact, square, ones) is useful to measure the effect of the hedgerow network on the surrounding landscape. In this study, landscape grain varies from fine grain, (i.e. closed landscapes), to coarse, (i.e. open landscape with few hedgerows and little interface with fields). The value of landscape grain ranges from 0 (fine grain) to 1 (coarse grain) (see section 3.1.3).

The study site in Brittany, located to the south of the Bay of Mont Saint Michel, France, covers 130 km² (Figure 7-2). It is a Long-Term Ecological Research (LTER) site called "Zone Atelier Armorique" that is part of the European LTER and international ILTER networks (https://osur.univ-rennes1.fr/za-armorique/). Its climate is temperate, with a mean annual temperature of 12°C and mean annual precipitation of 650 mm (Source: Meteo France weather station of Trans-la-Forêt). The study site is dominated by maize, wheat, grassland and barley. Its landscape grain is the finest of the six study landscapes (Appendix F), and the density of its hedgerow network increases from north to south (Appendix G).

The two study sites in Picardy (West and East) are two 5 km × 5 km areas (Figure 7-2). Their climate is oceanic, with a mean annual temperature of 10°C and mean annual precipitation of 702 mm (Source: Meteo France weather station of Saint Quentin). The West site is the most open of the six study landscapes, with intensively cultivated wheat and sugar beet. The East site is located in a "bocage" landscape (fields enclosed by a network of hedgerows) [START_REF] Forman | Hedgerows and hedgerow networks in landscape ecology[END_REF]. dominated mainly by grassland, with some maize and wheat fields. Both landscapes contain fragments of managed forests used mainly for hunting and timber production (Jamoneau 2010). Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

The three study sites in Belgium (Northeast, Northwest and South) are located in western Wallonia (Figure 7-2). Their climate is temperate, with a mean annual temperature of 9.4-10.5°C and mean annual precipitation of 822-912 mm (http://en.climate-data.org). The Northeast site is an open (i.e. coarse-grain) landscape dominated mainly by wheat, but also has a high proportion of beet, potato and maize. Grassland is the main land cover of the Northwest site, followed by wheat, maize, potato, barley and beet. This landscape has an intermediate grain (landscape grain metric = 0.3 -0.6). The South site is dominated by wheat, beet, barley, grassland and, to a lesser extent, potato and rapeseed, depending on the year. These crops vary in their distance to hedgerows depending on the coarseness of the landscape grain. 

Materials and methods

The WDVI [START_REF] Clevers | The derivation of a simplified reflectance model for the estimation of leaf area index[END_REF] derived from Sentinel-2 images was used as an indicator of wheat phenology named Diff WDVI and metric of biophysical heterogeneity (WDVI SD) (detailed in section 3.1.2, Figure 7-3). First, we computed the crop mosaic heterogeneity reflecting the diversity of crops and their spatial distribution (detailed in section 3.1.1) and landscape grain (detailed in section 3. 1.3,. Then, we analyzed the relationships between landscape grain, crop mosaic heterogeneity and biophysical heterogeneity (WDVI SD) (detailed in section 3.3.1, Figure 7-3). Second, we studied the effects of biophysical heterogeneity (WDVI SD) on wheat phenology (detailed in section 3.3.2, Figure 7-3). Last, we used WDVI SD to estimate the distribution of carabid beetles (detailed in section 3.3.3, Figure 7-3). 

Maps and landscape heterogeneities

We analyzed heterogeneity in 1) the crop mosaic, 2) its phenological stages and 3) the associated hedgerow network. This required three types of maps, which had a 2 km buffer around each study site to avoid edge effects when calculating the metrics. The metrics (crop mosaic heterogeneity, landscape grain and biophysical heterogeneity) were calculated using the "Chloé -métriques paysagères" software, developed by INRAE [START_REF] Boussard | Chloe2012: a software for landscape pattern analysis Bréda NJJ (2003) Ground-based measurements of leaf area index: a review of methods, instruments and current controversies[END_REF], which is a mapping analysis tool based on landscape ecology concepts. For all of the analyses, we calculated all metrics in circular windows of five different radii (255, 505, 1005, 1505 and 2005 m). Circular windows used for computing the metrics were defined along a gradient of spatial scales from field scale (255m radius) to landscape scale (2005m radius).

Land-cover/ maps

The crop mosaic was the first type of heterogeneity. We used the agricultural Land Parcel Information System (LPIS), a European Union (EU) system to monitor agriculture [START_REF] Inan | Data model for the collaboration between land administration systems and agricultural land parcel identification systems[END_REF], to determine the land cover of the study sites in 2017 and 2018 . In it, polygons that correspond to fields are mapped at 1:15 000 scale, and farmers declare the main land cover types per polygon each year. The French LPIS, called the "Registre Parcellaire Graphique", is produced annually by the National Institute of Geographic and Forestry Information (https://www.data.gouv.fr/fr/datasets/registre-parcellaire-graphique-Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

rpg-contours-des-parcelles-et-ilots-culturaux-et-leur-groupe-de-cultures-majoritaire/). The Walloon LPIS, called the "Parcelle agricole anonyme", is produced by the Public Service of Wallonia (http://geoportail.wallonie.be/catalogue/44b10a46-4025-4020-a943-e8ffd5ccbd21.html).

We used two national land-cover maps to supplement the non-agricultural areas of these maps. For France, we used the OSO Land Cover product developed by the Land Cover Scientific Expertise Centre of the French Theia Land Data and Services Centre (http://osrcesbio.ups-tlse.fr/~oso/). The land-cover maps were produced using a fully automated method for processing Sentinel-2 and Landsat-8 time series and contained 17 classes at 20 m spatial resolution and 23 classes at 10 m for 2017 and 2018, respectively [START_REF] Inglada | Operational High Resolution Land Cover Map Production at the Country Scale Using Satellite Image Time Series[END_REF]. For Wallonia, we used a 2 m land-cover map with 10 land cover classes [START_REF] Radoux | Improving Ecotope Segmentation by Combining Topographic and Spectral Data[END_REF] .

For hedgerow networks at the French study sites, maps of woods and hedgerows were produced by the French company KERMAP (https://kermap.com/). Hedgerows were extracted automatically with a 0.20 m spatial resolution from aerial photographs from 2013 in Picardy and 2015 in Brittany and were corrected manually. For Wallonia, we extracted woods and hedgerows from a 2 m land-cover map developed in the Lifewatch-WB project, funded by the Fédération Wallonie-Bruxelles [START_REF] Radoux | Improving Ecotope Segmentation by Combining Topographic and Spectral Data[END_REF]). This map is composed of ecotopes, i.e. small ecologically homogeneous landscape units, which resulted in 10 land cover classes. This map is based on a majority classification system computed from analysis of aerial, LiDAR and Sentinel-2 images. To optimize the calculation time, we scaled the hedgerow maps to 10 m spatial resolution. We grouped land-use classes to compare Belgium and France and merged maps of hedgerows, crop types and land cover at 10 m spatial resolution. The final land-use maps had 30 land-use classes for France and 45 for Wallonia (Appendix H). There are differences in the number of classes in the final output maps because the crop type classes in Wallonia were more detailed than those in France. The classes of Wallonia with a high level of detail (i.e. cereals, cereals and vegetables and greenhouse vegetables) occupy little area and do not influence the crop mosaic heterogeneity since this metric is derived from the main crop types in terms of area.

To measure the crop mosaic heterogeneity, we used the number of pairs of adjacent pixels of land-use classes of the main crop types: wheat, grassland, maize, rapeseed, beet, barley and potato. We performed correspondence factor analysis (CFA) of the interface metrics (number of pairs (i, j), with i and j as the land-use classes) using the "FactoMineR" v. 2.3 package [START_REF] Lê | FactoMineR : An R Package for Multivariate Analysis[END_REF]) of R software v. 3.6.3 (TEAM, R. Core et al. 2018). CFA is a multivariate technique that detects associations and oppositions among data and measures their contribution to the total inertia for each factor (Teil 1975). We used factor 1 of the CFA as a measure of crop mosaic heterogeneity.

Heterogeneity in phenological stages in the crop mosaic

We downloaded Sentinel-2 images from the EU's Copernicus website (https://scihub.copernicus.eu) in level 2A, which provides top-of-canopy reflectance, for dates as close as possible to the sampling dates of the carabid beetles (Table 7-1). The WDVI, which is related to the chlorophyll content of the canopy, is a two-dimensional greenness index derived from bands 4 (red) and 8 (NIR) of Sentinel-2 images [START_REF] Bouman | Standard relations to estimate ground cover and LAI of agricultural crops from reflectance measurements[END_REF].

Part IV -Functional assessment of the ecological continuities identified and characterized by Sentinel-1 and 2 148 Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020. Mercier et al. (2020b) found a positive correlation between WDVI and leaf area index or water content of wheat (Appendix I). They also observed that biomass is high at ripening, while WDVI is low when wheat turns brown. Consequently, WDVI increases from tillering to flowering (Appendix I). Wheat, the target crop, was present in each landscape. The other crops were diverse: maize, beets, grassland and rapeseed. They have different phenologies, cover the soil differently and mature at different dates. Therefore, their chlorophyll activity generates the heterogeneity in WDVI across the landscapes. We used the standard deviation (SD) of the WDVI as a proxy of the heterogeneity in crop development. We developed this method following articles showing the potential of WDVI for wheat monitoring (Mercier et al 2020a, b). The two landscape metrics were the 1) hedgerow network grain and 2) SD of the WDVI in the given buffer. The objective was to detect effects of both metrics. WDVI indices were calculated using the Sentinel-2 NIR and red bands at 10 m spatial resolution as follows [START_REF] Clevers | The derivation of a simplified reflectance model for the estimation of leaf area index[END_REF]):

WDVI = NIR -1.5 × RED (1)
We calculated the SD from all pixels with vegetated landscape elements except for hedgerows and woods. WDVI SDs were calculated around the carabid beetle sampling points in circular windows of five different radii (255, 505, 1005(255, 505, , 1505(255, 505, and 2005 m) (Figure 7-4) m) (Figure 7-4). Changes in the WDVI (Diff WDVI) of wheat fields were calculated around the carabid beetle sampling points using a buffer of 15 m radius. We measured the median WDVI from Sentinel-2 images at 3 dates delimiting two periods: (1) wheat's stem-extension period, from date 1 to 2 and ( 2) ripening period, from dates 2 to 3. The phenological stages of wheat were based on the field surveys of the Brittany and Picardy study sites used by Mercier et al. (2020b, a). Diff WDVI was calculated as follows: (2) where t corresponds to an acquisition date of Sentinel-2 images. The WDVI SD in windows around the carabid beetle sampling point was calculated at each scale as follows: (3) where n is the number of pixels in the circular window around the carabid beetle sampling point. Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020. 

Landscape grain

Hedgerow density does not assess the influence of hedgerow networks on landscapes well since it has no spatial dimension. We previously showed that landscape grain, which has a spatial dimension, performs better (Le [START_REF] Féon | Solitary bee abundance and species richness in dynamic agricultural landscapes[END_REF]. The landscape grain metric incorporates both hedgerow density and mesh shape (elongated meshes interact more with surrounding hedgerows than compact, square ones). We used the metric "MD", which corresponds to a distance weighted by the landscape-grain distance. It equals the mean distance to a hedgerow, with distances truncated at 100 m because hedgerows have no windbreak effect beyond this distance. MD was calculated in sliding windows using the following equation:

(4) (5) where d is the distances to the wooded elements.

Carabid beetle data

Carabid beetles were sampled at the six sites from April-July in 2017 and 2018 in 40 and 39 wheat fields, respectively, which yielded 157 sampling points (Table 7-1, Appendix G and H). Adult beetles were caught in pitfall traps filled with 200 ml of water saturated with salt and a few drops of soap. Two sampling stations were located in each wheat field (except in one field in Picardy-East in 2018): one 40 m from a hedgerow edge and one 40 m from a grassed strip edge. Each sampling station consisted of two pitfall traps set 1 m apart. Traps were left open for two weeks before they were collected from the field. The number of carabid beetles trapped is their activity-density, a combination of the overall density and their movement causing their trapping. In this study, we analyzed only two carabid beetle species for the sake of clarity. Since it focuses on the phenology of wheat fields, we selected the two most abundant species in agricultural areas: Poecilus cupreus and Pterostichus melanarius. Both species are common in fields, move more by walking than by flying, are predators and contribute to biological control [START_REF] Holland | Farm-scale spatiotemporal dynamics of predatory beetles in arable crops[END_REF]. P. cupreus and P. melanarius reproduce in spring-summer and autumn, respectively. 

Relationship between crop mosaic heterogeneity and biophysical heterogeneity

We performed linear regressions between WDVI SD and CFA factor 1 to understand the influence of crop mosaic heterogeneity (CFA factor 1) on biophysical heterogeneity (WDVI SD). The relationships were calculated during the stem-extension and ripening periods of wheat, with 2017 and 2018 data pooled, using the "stats" v. 3.6.3 package of R. For each relationship, we calculated the adjusted R² (i.e. a modified version of R-squared useful for comparing models as it is adjusted for the number of predictors in the model) and the relative root mean square error (rRMSE) (i.e. RMSE divided by the mean of the observed data). Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

Relationship between biophysical heterogeneity and wheat phenology at field scale

We used generalized additive models (GAMs), a modeling technique commonly used by ecologists, to understand effects of biophysical heterogeneity (WDVI SD) on wheat phenology (Diff WDVI) during the stem-extension and ripening periods of wheat. GAMs with regression splines were created using the "caret" v. 6.0 package of R [START_REF] Kuhn | caret: Classification and Regression Training[END_REF]. A GAM is a non-parametric model that is an extended version of a generalized linear model [START_REF] Hastie | Generalized Additive Models[END_REF]. The smoothing operator, here a regression spline, was used to estimate the unknown function that described the relationship between the dependent and independent variables. The degree of freedom, which indicates the degree of smoothing, was optimized with a tuning parameter that ranged from 1-4 (with a step of 0.5) to avoid overfitting. The relationships between WDVI SD and Diff WDVI was investigated at the carabid beetle sampling points and for each landscape scale (5 in total). The Diff WDVI value correspond to the median value in the analysis window (landscape scale) around the carabid beetle sampling point. In total, we created 20 GAMs (2 periods × 2 years × 5 landscape scales). For each relationship, we calculated adj. R² and RMSE.

Species response to biophysical heterogeneity

To describe dynamics of the activity-density of P. cupreus and P. melanarius, we computed a CFA per year (Figure 7-5). CFAs were computed using a matrix of P. cupreus and P. melanarius activity-density from all samples at the end of the stem-extension (date 2) and ripening (date 3) periods. Then, we created GAMs between WDVI SD and CFA factor 1 (Figure 7-5) to understand effects of biophysical heterogeneity during the stem-extension and ripening periods of wheat on the activity-density of carabid beetles at the end of these periods. 

Results

Structural and functional evaluation of the crop mosaic

In the biplot resulting from CFA of 2005 m circular windows, factor 1 explained 58.8% of the variance, while factor 2 explained 20.7% (Figure 7-6). Interfaces with maize were most common in the Brittany landscape, while interfaces with grassland were most common in Picardy-East. In Picardy-West, interfaces with beet and wheat dominated. The landscapes in Wallonia varied more, with interfaces mainly between potato, wheat, beet and barley in Wallonia-South; barley, wheat and beet in Wallonia-Northeast; and grassland, potato and rapeseed in Wallonia-Northwest. A gradient was observed for factor 1 from Picardy-East to Picardy-West that described extensive (dominated by permanent and multi-annual grassland) to intensive (dominated by annual crops) landscapes (Appendix E). Relationships between WDVI SD and factor 1 varied (the 2005 m scale in Figure 7-7; see Appendix G for the other scales). During the stem-extension period (Dates 2-1), WDVI SD decreased as the landscape intensified, while the opposite was observed during the ripening period (Dates 3-2). The crop mosaic gradient expressed by factor 1 explained 37% of the variance of WDVI SD during stem extension (adj. R²=0.37) and 53% during ripening (adj. R²=0.53). Linear regressions showed strong positive relationships between landscape grain and factor 1 that increased as the scale increased (Appendix F); the strongest relationship (adj. R² = 0.81) was at the 2005 m scale (Figure 7-7).

WDVI SD changed completely from the stem-extension period to the ripening period along the same crop mosaic gradient (Figure 7-7). During the former, landscapes dominated by grassland or maize were highly heterogeneous, while those dominated by wheat and other annual crops were homogeneous. The crop types that increase WDVI SD were maize and grassland (Figure 78). In spring, maize fields were first bare, and then maize developed a little until June, which explains the high WDVI SD. Grassland may have been heterogeneous as well (in term of biomass and photosynthesis activity). Some of it was grazed (low biomass), some mown for silage (yellowish), and some used to make hay (green and high biomass). At the other end of the crop mosaic gradient, wheat dominated. During the ripening period, the WDVI SD of wheat and beet, and to a lesser extent, rapeseed, barley and potato, increased. Thus, WDVI SD inverted between the stem-extension and ripening periods: it increased and then decreased in landscapes with maize and grassland, while it decreased and then increased in landscapes with wheat, beet, barley, potato and rapeseed. Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020. 

Effects of biophysical heterogeneity on wheat phenology

During the stem-extension period, the increase in WDVI is explained by the higher chlorophyll content of wheat (Mercier et al. 2020a) and biophysical parameters increase (e.g. biomass, leaf area index, water content) as WDVI increases (Mercier et al. 2020b) (Appendix I). Thus, the higher the WDVI, the greater is the wheat growth. Conversely, during the ripening period, WDVI decreases as the chlorophyll content decreases, as the wheat dries (Mercier et al. 2020a), while the water content and leaf area index decrease as the biomass continues to increase (Mercier et al. 2020b) (Appendix I).

Based on the best results (highest adj. R 2 ) of the GAMs between Diff WDVI and WDVI SD, for the stem-extension period in 2017, Diff WDVI increased as WDVI SD increased, while in 2018, the relationship was negative and then positive (Figure 789). In 2017, only the 255 m Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

scale was significant, with an adj. R² of 0.11. In 2018, all scales were significant, and the adj. R² ranged from 0.19 (505 m) to 0.32 (1505 m) (Table 7-2). During the ripening period, the relationship was negative and slightly positive in 2017 but negative in 2018 (Figure 789). The scales of analysis were significant from 1005 m upwards, and the larger the scale, the stronger was the correlation (Table 7-2).

The landscapes exhibited different patterns, some of them significant (Figure 7-10, Table 7-3). The landscapes with the finest grain, Brittany and Picardy-East, had positive relationships between Diff WDVI and WDVI SD during the stem-extension period in both years but negative relationships during the ripening period in 2017. Picardy-East, Wallonia-South and Picardy-West, which have the most intensive and open landscapes, had negative relationships during the stem-extension period in 2018, while Picardy-West and Wallonia-Northwest had a positive relationship during the ripening period in 2017. Conversely, in the open field landscape of Wallonia-Northeast, the relationship was positive during the stemextension period of 2017 but negative during the ripening period of 2018. The dynamics of the number of the two species captured varied among the landscapes in 2017 and 2018 . The CFA results (Figure 7-12) highlight the characteristics of study sites regarding activity-density of carabid beetles per year. We analyzed the effect of WDVI SD during the stem-extension and ripening periods of wheat on the activity-density of carabid beetles at the end of these periods. Brittany and Picardy-East, the landscapes with the finest grain, had the most P. cupreus and fewest P. melanarius, while the opposite was observed in Wallonia-South, Picardy-West and Wallonia-Northeast, the most open landscapes. Wallonia-Northwest was intermediate, with few carabid beetles in both years, without either species dominating. CFA factor 1 explained 61.0% and 60.2% of the variance in activity-density in 2017 and 2018, respectively (Figure 7 -12). It described a gradient from P. cupreus to P. melanarius and also from fine (Brittany) to coarse grain (Wallonia-South). Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020. Highly significant correlations were found between factor 1 and WDVI SD at the 2005 m scale (Figure 7 -13). The relationships were negative during the stem-extension period, with an adj. R² of 0.62 in 2017 and 0.24 in 2018. During the ripening period, the relationship was positive in 2017, with an adj. R² of 0.47, but in 2018, factor 1 increased with WDVI SD and then decreased (adj. R 2 = 0.62). A high activity-density of P. cupreus corresponded to negative values of factor 1, while a high activity-density of P. melanarius corresponded to positive values from 1-2. As mentioned, in fine-grain landscapes, the biophysical heterogeneity (WDVI SD) increased during the stem-extension period and decreased during the ripening period, while the opposite was observed for coarse-grain landscapes. Thus, during the stemextension period, biophysical heterogeneity, fine landscape grain and/or extensive crop mosaics were favorable to P. cupreus but unfavorable to P. melanarius. During the ripening period, biophysical heterogeneity, coarse landscape grain and/or intensive crop mosaics were favorable to P. melanarius but unfavorable to P. cupreus. 

Discussion

Effects of landscape structure on biophysical heterogeneity

The landscape grain correlated strongly with the crop mosaic gradient; indeed, land-use organization depends on the hedgerow density [START_REF] Thenail | Relationships between farm characteristics and the variation of the density of hedgerows at the level of a micro-region of bocage landscape. Study case in Brittany[END_REF]). From 1940[START_REF] Hastie | Generalized Additive Models[END_REF] in France, much of the hedgerow network was removed due to land consolidation programs to support agricultural intensification [START_REF] Baudry | Remembrement": Landscape consolidation in France[END_REF]. Fine-grain landscapes are related mostly to extensive livestock and grassland systems (fodder, cattle), while coarse-grain landscapes are dominated more by crop rotations. For example, at the Brittany study site, the proportion of maize increases and grassland decreases from fine-to coarse-grain landscapes [START_REF] Thenail | Variation of farm spatial land use pattern according to the structure of the hedgerow network (bocage) landscape: a case study in northeast Brittany[END_REF]. This explains why this study site often extended over larger sections of gradients in this study. The sampling points in Brittany extend more widely on the x-axis or y-axis of the established relationships compared to the other sites (Figures 7-7 and9). The fragmentation of farming territories in fine-grain landscapes has simplified crop successions and circulating cattle lots. Conversely, large fields in coarse-grain landscapes are likely to have similar physical conditions; therefore, many land islets formed into a single field are used for cash crops. The finest-grain landscapes were found in Brittany, Picardy-West and Wallonia-Northwest, which contained mainly grassland and variable proportions of wheat and maize. The coarsest-grain landscapes were found in Wallonia-South, Wallonia-Northeast and Picardy-West, which contained mainly beet and wheat. The landscape grain of the six study sites appears along the crop mosaic gradient since it represents a gradient from grassland and maize to wheat and beet (Figure 7-6). The two factors, landscape grain and crop mosaic, are confounded, however, so their effects on wheat phenology may be either confounded or complementary. Either the effect of landscape grain has an effect on crop mosaic (or inversely), thus one of them influences wheat phenology, or their effects are merged (by addition for example) and affect wheat phenology together.

Effects of biophysical heterogeneity on wheat phenology

Based on the combined analysis of all sites, biophysical heterogeneity (WDVI SD) had a positive effect on wheat growth (Diff WDVI) during the ripening period, since Diff WDVI decreased as WDVI SD increased. Biophysical heterogeneity causes lateral energy flows that benefit wheat growth. However, analysis of individual sites showed that biophysical heterogeneity (WDVI SD) appears to benefit wheat growth in fine-grain landscapes but is a disadvantage in coarse-grain landscapes. Thus, fluxes are beneficial exchanges in fine-grain landscapes but are disturbances in coarse-grain landscapes. This phenomenon is likely explained by the nature of fluxes in each landscape. [START_REF] Alford | The effect of landscape complexity and microclimate on the thermal tolerance of a pest insect[END_REF] found that open landscapes are warmer than complex landscapes, which have more extreme and variable temperatures. Local temperatures increase because the coarse-grain landscape is exposed to more shortwave radiation during the daytime [START_REF] Chen | Microclimate in Forest Ecosystem and Landscape EcologyVariations in local climate can be used to monitor and compare the effects of different management regimes[END_REF]. In fine-grain landscapes, hedgerows function as windbreaks that reduce local wind speed and increase the relative humidity by condensing fresh dense air [START_REF] Kort | Benefits of windbreaks to field and forage crops[END_REF]. [START_REF] Alford | The effect of landscape complexity and microclimate on the thermal tolerance of a pest insect[END_REF] observed that the passage from winter to spring increased vegetation growth and buffered temperatures. Differences between landscapes decrease, but fine-grain landscapes remain colder than coarse-grain landscapes. Temperature differences between day and night are largest on sunny days, and woods intercept solar radiation, which reduces the amplitude of the daytime temperature [START_REF] Zellweger | Advances in Microclimate Ecology Arising from Remote Sensing[END_REF]. Thus, biophysical heterogeneity in coarse-grain Part IV -Functional assessment of the ecological continuities identified and characterized by Sentinel-1 and 2 162 Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

landscapes would cause temperature fluxes and extreme temperatures that reduce wheat growth.

Importance of the landscape scale

Relationships between the crop mosaic gradient and biophysical heterogeneity (WDVI SD) had higher adj. R² at larger scales. As the scale of analysis increased, the variability within each study site decreased, but the variability among study sites increased. Thus, if a relationship exists between two metrics analyzed in windows, it will be stronger at larger scales.

Landscape structure influenced changes in wheat within the field. For all sites analysis, the scales that explained the most variance between biophysical heterogeneity (WDVI SD) and wheat phenology (Diff WDVI) had a radius larger than 1505 m, except for the stemextension period in 2017 (Table 7-2).

For some sites, the 255 and 505 m scales showed significant relationships between biophysical heterogeneity (WDVI SD) and wheat phenology (Diff WDVI) during wheat ripening in 2017 and 2018 (Table 7-3, Figure 7-14). However, these scales were no longer present when all sampling points from the six study sites were considered (Table 7-2, Figure [7][8][9][START_REF] Doraiswamy | Crop condition and yield simulations using Landsat and MODIS[END_REF][START_REF] Mulla | Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps[END_REF][START_REF] Bontemps | Building a Data Set over 12 Globally Distributed Sites to Support the Development of Agriculture Monitoring Applications with Sentinel-2[END_REF][START_REF] Betbeder | Contribution of multitemporal polarimetric synthetic aperture radar data for monitoring winter wheat and rapeseed crops[END_REF][START_REF] Delegido | Evaluation of Sentinel-2 Red-Edge Bands for Empirical Estimation of Green LAI and Chlorophyll Content[END_REF]. As the extent of the WDVI SD maps increased, WDVI SDs became more homogeneous. At the European scale, the diversity of local practices contributes increasingly less to the explanation of differences among sites as the scale increases. However, the 255 m scale was significant during the stem-extension period in both years, which indicates that local practices influence wheat growth more during this period. Distribution of P. melanarius and P. cupreus at the landscape scale P. melanarius and P. cupreus were found in different landscapes and locations. [START_REF] Thomas | P. cupreus était plus abondant dans les paysages à grains fins de Bretagne et de Picardie-Est, tandis que P. melanarius était plus abondant dans les paysages à grains grossiers de Picardie-Ouest et de Wallonie-Sud. P. cupreus reste près des haies, tandis que P. melanarius en est plus éloigné[END_REF] observed spatial separation between these species in different fields. These two carabid beetle species have different ecological requirements. P. cupreus was more abundant in the fine-grain landscapes of Brittany and Picardy-East, while P. melanarius was more abundant in the coarse-grain landscapes of Picardy-West and Wallonia-South. P. cupreus remains near hedgerows, while P. melanarius remains further from them [START_REF] Winder | Modelling the dynamic spatio-temporal response of predators to transient prey patches in the field[END_REF][START_REF] Rouabah | Response of carabid beetles diversity and size distribution to the vegetation structure within differently managed field margins[END_REF], although neither species crosses hedgerows [START_REF] Holland | The spatial dynamics and movement of Pterostichus melanarius and P. madidus (Carabidae) between and within arable fields in the UK[END_REF]. P. melanarius is adapted to temperature variations [START_REF] Holland | Farm-scale spatiotemporal dynamics of predatory beetles in arable crops[END_REF], and open landscapes have more extreme and variable temperatures than complex landscapes [START_REF] Alford | The effect of landscape complexity and microclimate on the thermal tolerance of a pest insect[END_REF]). Thus, this biological feature of P. melanarius makes it suitable for coarse-grain landscapes.

Some habitat preferences of P. melanarius and P. cupreus remain unclear due to opposite results. For example, [START_REF] Thomas | P. cupreus était plus abondant dans les paysages à grains fins de Bretagne et de Picardie-Est, tandis que P. melanarius était plus abondant dans les paysages à grains grossiers de Picardie-Ouest et de Wallonie-Sud. P. cupreus reste près des haies, tandis que P. melanarius en est plus éloigné[END_REF] found P. cupreus in fields, while [START_REF] Rouabah | Response of carabid beetles diversity and size distribution to the vegetation structure within differently managed field margins[END_REF] found them near hedgerows. [START_REF] Hassan | Does the presence of grassy strips and landscape grain affect the spatial distribution of aphids and their carabid predators?[END_REF] found lower abundance of P. cupreus in fine-grain landscapes, which is opposite to our results. These contrasting results may be due to other factors that influence carabid beetle distribution, such as crop types, hedgerow age, soil moisture, prey density, competitive exclusion, mutual predation and the management system [START_REF] Winder | Modelling the dynamic spatio-temporal response of predators to transient prey patches in the field[END_REF][START_REF] Holland | The spatial dynamics and movement of Pterostichus melanarius and P. madidus (Carabidae) between and within arable fields in the UK[END_REF]Rouabah et al. 2015). 7.5.5. Using remote sensing to characterize landscapes Free remote sensing images, such as Sentinel data, can address data collection limitations and the financial cost of images. [START_REF] Crowley | Remote Sensing's Recent and Future Contributions to Landscape Ecology[END_REF] reviewed landscape ecology research from the past five years and identified future contributions of remote sensing to landscape ecology. Based on this review, innovations in our study are the use of intra-annual monitoring to analyze landscapes, comparison of different landscapes and use of continuous values (WDVI) rather than discrete classes. Sentinel-2 time series provide the opportunity to monitor landscape dynamics regularly at the field scale. Using a variety of study sites generated a continuous landscape gradient, which allowed us to identify patterns that developed along gradients, while each landscape maintained its own identity. This is in contrast with many studies pooling data from different landscapes without making them distinct in the analysis (e.g. [START_REF] Alignier | Configurational crop heterogeneity increases within-field plant diversity[END_REF]. In our study, patterns emerged due to the diversity of landscapes. It is difficult to map the crop mosaic accurately and consistently using satellite images of different study areas or over a large scale. The accuracy of a map can be measured using quality estimators (e.g. kappa statistic, overall accuracy, F-score). Nevertheless, assessing accuracy depends greatly on the validation data, and uncertainty is unavoidable due to classification errors that occur at different stages of map production [START_REF] Friedl | An Overview of Uncertainty in Optical Remotely Sensed Data for Ecological Applications[END_REF][START_REF] Congalton | Global Land Cover Mapping: A Review and Uncertainty Analysis[END_REF]. Continuous values such as WDVI overcome this problem because WDVI uses two variables (red and NIR bands) that were measured consistently in all images. [START_REF] Crowley | Remote Sensing's Recent and Future Contributions to Landscape Ecology[END_REF] recommended shifting from categorical indices to continuous values for habitat assessments to better evaluate impacts of landscape change on biodiversity and quantify error in landscape ecology models. Several authors (e.g. [START_REF] Mcgarigal | Surface metrics: an alternative to patch metrics for the quantification of landscape structure[END_REF][START_REF] Lausch | Understanding and quantifying landscape structure -A review on relevant process characteristics, data models and landscape metrics[END_REF] recommend shifting the representation of landscapes from a mosaic to a gradient. Moreover, continuous values are the most suitable for capturing gradients in a landscape. Optical remote sensing reflects the phenological Part IV -Functional assessment of the ecological continuities identified and characterized by Sentinel-1 and 2 164 Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

dynamics of crops (Diff WDVI) independent of neighboring crops. Mercier et al. (2020b) found that variables (backscattering coefficients and polarimetric indicators) derived from the radar sensor Sentinel-1 were suitable for monitoring phenological stages and crop biophysical parameters of wheat. The microwave domain (radar) captures the geometry of wheat, while the optical domain is sensitive to the chlorophyll content. Moreover, the roughness of wheat, related to its geometry, influences wind speed directly [START_REF] Kawatani | Turbulence and wind speed characteristics within a model canopy flow field[END_REF]. Therefore, it would be interesting to compare the results of Sentinel-1 and Sentinel-2 to study biophysical heterogeneity. No fluxes were measured or modeled in this study, so further research is needed to confirm the ability of WDVI SD to represent the physical energy of landscapes. However, this study provides a framework for sampling fluxes in landscapes. WDVI SD could be used at relevant scales as an indicator for targeted areas. Previous studies developed methods to produce microclimate maps that incorporate remote sensing data, such as those from LiDAR, [START_REF] George | Using LiDAR and remote microclimate loggers to downscale near-surface air temperatures for site-level studies[END_REF], unmanned aerial vehicles [START_REF] Maes | Optimizing the Processing of UAV-Based Thermal Imagery[END_REF]) and the MODIS satellite [START_REF] Metz | Surface Temperatures at the Continental Scale: Tracking Changes with Remote Sensing at Unprecedented Detail[END_REF][START_REF] Fick | WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas[END_REF].

Future studies could analyze correlations between WDVI SD and microclimate maps or field sampling.

7.5.6.

Using remote sensing to understand biodiversity

We showed that the distributions of P. melanarius and P. cupreus were related to biophysical heterogeneity (WDVI SD). However, biophysical heterogeneity (WDVI SD) correlated strongly with the crop mosaic gradient and landscape grain. Therefore, we could not quantify the effect of each variable on P. melanarius and P. cupreus; however, the landscape effect (landscape grain and crop mosaic gradient) can be assessed using WDVI SD. Remote sensing enables carabid beetle distribution to be studied without the need for a landuse or hedgerow map. In this study, we use continuous values independent of any classification system. In addition, it is consistent across crop types and locations, which makes it possible to address ecological issues using free images that are available for any area on Earth (Sentinel data available at https://scihub.copernicus.eu). Conversely, for fixed variables such as crop mosaics, WDVI SD varies over time. The relationship between WDVI SD and CFA factor 1 explains a state (i.e. the distribution of two carabid beetle species) but not its dynamics. Since WDVI SD is a spatio-temporal index, future studies could use it to focus on the dynamics of species. 7.5.7.

Synthesis of the discussion

The strong correlation between landscape grain and crop mosaic gradient is explained by the dependence of land-use organization to hedgerow density. As a result, the effects of landscape grain and crop mosaic on wheat phenology may be either confounded or complementary.

The analysis per site showed that biophysical heterogeneity (WDVI SD) appears to benefit wheat growth (Diff WDVI) in fine-grain landscapes but is a disadvantage in coarsegrain landscapes. Thus, while fluxes are beneficial exchanges in fine-grain landscapes (higher relative humidity, lower amplitude of the daytime temperature), they are disturbances in coarse-grain landscapes (more extreme and variable temperature).

The combined analysis of all sites shows that the relationships between biophysical heterogeneity (WDVI SD) and wheat phenology (Diff WDVI) were significant at local scale (255m and 505m) during the stem extension period but not during the ripening period. Thus, local agricultural practices influence wheat growth more during the stem-extension period.

We showed that the distributions of P. melanarius and P. cupreus were related to biophysical heterogeneity (WDVI SD). Remote sensing images enable carabid beetle distribution to be studied without the need for a land-cover or hedgerow map. Only optical bands are required to compute WDVI SD. They are continuous values independent of any classification system, they vary over time and overcome the problem of map accuracy assessment.

No fluxes were measured or modeled in this study, so further research is needed to confirm the ability of WDVI SD to represent landscape energy . Future studies could analyze correlations between WDVI SD and microclimate maps or field sampling.

P. cupreus and P. melanarius species have different ecological requirements. Our results showed that P. cupreus was more abundant in fine-grain landscapes while P. melanarius was more abundant in coarse-grain landscapes. This is consistent with other studies founding that P. cupreus is present near hedgerows, while P. melanarius moves further from them [START_REF] Winder | Modelling the dynamic spatio-temporal response of predators to transient prey patches in the field[END_REF][START_REF] Rouabah | Response of carabid beetles diversity and size distribution to the vegetation structure within differently managed field margins[END_REF]. P. melanarius is adapted to temperature variations [START_REF] Holland | Farm-scale spatiotemporal dynamics of predatory beetles in arable crops[END_REF] higher in open landscapes than in complex landscapes [START_REF] Alford | The effect of landscape complexity and microclimate on the thermal tolerance of a pest insect[END_REF].

Conclusion

This study aimed to understand the influence of biophysical heterogeneity on wheat phenology and biodiversity using optical satellite images. More specifically, we showed that:

 In all cases, the larger the scale, the stronger was the correlation.  Landscape grain and the crop mosaic gradient were strongly correlated (maximum adj. R²=0.81 at the 2005 m scale).  WDVI SD inverted between the stem-extension and ripening periods: it increased and then decreased in landscapes with maize and grassland, while it decreased and then increased in landscapes with wheat, beet, barley, potato and rapeseed.  For the combined analysis of all sites, biophysical heterogeneity (WDVI SD) appeared beneficial for wheat phenology (Diff WDVI) during the ripening period, since Diff WDVI decreased as WDVI SD increased.  Analysis of each site showed that biophysical heterogeneity (WDVI SD) appeared to benefit wheat growth in fine-grain landscapes but disadvantage it in coarse-grain landscapes during the stem-extension and ripening periods.  Biophysical heterogeneity (WDVI SD) estimated the distribution of carabid beetle species accurately (max adj. R² = 0.62) at the 2005 m scale. During the stemextension period, biophysical heterogeneity, fine landscape grain and/or extensive crop mosaics were beneficial to P. cupreus but unfavorable to P. melanarius, while the opposite was observed during the ripening period.  We can consider the crop mosaic as a green infrastructure to manage landscape scale biodiversity. Local farming organization could design these infrastructures as they do to combat erosion [START_REF] Joannon | The determinants of local collective action on erosive runoff. An analysis of farmers' geographical proximities in Upper Normandy, France[END_REF]). Overall, the study highlighted the benefit of using optical remote sensing data to understand wheat dynamics and their associated biodiversity. To understand the ecological function of biophysical heterogeneity further, the WDVI SD developed should be compared Part IV -Functional assessment of the ecological continuities identified and characterized by Sentinel-1 and 2 166 Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

to energy flux measurements. It also would be interesting to evaluate the contribution of radar images, since the microwave domain is sensitive to plant structure. Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

The objective of the thesis was twofold : 1) comparatively evaluate the S-2 optical and S-1 SAR time series to identify and characterize the constituent elements of ecological continuities using land cover and land use classifications and crop characterization in wooded and crop-dominated landscapes, 2) assess the influence of the spatio-temporal structuring these landscape mosaics on biodiversity using metrics derived from S-1 and S-2 time series.

We exposed in the first part of the thesis the challenges posed by landscape ecology and remote sensing applied to ecological continuities.

The second part consisted of a comparative evaluation of the potential of variables derived from S-1 and S-2 data to identify and characterize the elements constituting ecological continuities in wooded landscapes. Land cover was identified and characterized in forest-agriculture mosaics in Brazil and Spain.

In a third part, we comparatively evaluated the potential of variables derived from S-1 and S-2 data to identify and characterize the elements constituting ecological continuities in crop-dominated landscapes. S-1 and S-2 sensors were also evaluated to estimate phenological stages and biophysical variables in wheat and rapeseed crops.

A fourth section was dedicated to the analysis of the relationships between maps of landscape metrics derived from Sentinel images and species surveys. We analyzed the influence of biophysical heterogeneity derived from S-2 on wheat phenology and the distribution of two agricultural carabid beetle species in six crop-dominated landscapes.

More specifically, the second part of the thesis aimed at answering the question: What are the most efficient Sentinel sensor and variables to identify the potential constitutive elements of ecological continuities in wooded landscapes?

To answer this question, we evaluated the potential of S-1 data alone, S-2 data alone and combined S-1 and S-2 data to identify and characterize land cover types in forest-agricultural mosaic landscapes. The study focused on two wooded landscapes with contrasting vegetation gradients: a temperate mountainous landscape in the Cantabrian Range (Spain) and a tropical humid forest landscape in Paragominas (Brazil). Although these landscape mosaics differ greatly, they have similar ecological functions (biodiversity conservation and carbon storage). The satellite images were classified using an incremental procedure based on the ranks of importance of the input variables derived from S-1 and S-2 time series. The S-2 data alone produced better results (mean kappa index=0.59-0.83) than the S-1 data alone (mean kappa index=0.28-0.72), while the combination of the two types of data slightly improved the results (mean kappa index=0. 55-0.85). The method used allows defining the number and type of variables that optimally discriminate the land use classes according to the type of landscape considered. The best configuration for the Spanish and Brazilian study areas includes respectively 5 and 10 variables for the S-2 data and 10 and 20 variables for the S-1 data. The NIR and the VV and VH polarizations are the most discriminating variables for the S-2 and S-1 data, respectively. In addition, the method allowed the definition of key periods for the discrimination of land cover and land use classes according to the type of images used. For example, in the Cantabrian Mountains, winter and summer are key periods for the S-2 time series, while spring and winter are key periods for the S-1 time series. Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

The third part of the thesis aimed at answering the question: What are the most efficient Sentinel sensor and variables to identify and characterize the potential constitutive elements of ecological continuities in crop-dominated landscapes? This part focuses on crop characterization with the study of wheat and rapeseed, which are two of the most important crops in the world in terms of harvested area.

We evaluated the potential of S-1 data alone, S-2 data alone and of combined S-1 and S-2 data to identify the main and secondary phenological stages of wheat and rapeseed in Picardy (France). More specifically, the aim of this study was to evaluate the interest of polarimetric indicators derived from S-1 data and to determine the number and type of S-1 and S-2 variables necessary to discriminate the phenological stages of wheat and rapeseed. We estimated the performance of spectral bands and vegetation indices derived from S-2 and backscatter coefficients and polarimetric indicators derived from S-1. Satellite images were classified using the incremental method developed in the previous study (Mercier et al. 2019b). Results showed that the combined use of S-1 and S-2 data (mean kappa = 0.53-0.82 and 0.74-0.92 for wheat and rapeseed, respectively) provided higher accuracy than the use of S-1 data alone (mean kappa = 0. 48-0.61 and 0.61-0.64 for wheat and rapeseed, respectively) or S-2 alone (mean kappa = 0.54-0.75 and 0.67-0.86 for wheat and rapeseed, respectively) for the identification of principal and secondary phenological stages. The most important variables were the VH:VV ratio and polarimetric indicators for S-1 and NDVI and S2REP indices and the biophysical variable, LAI, for S-2. Overall, this study highlighted the interest of polarimetric indicators and the combined use of S-1 and S-2 data to monitor the phenology of wheat and rapeseed.

We continued our research on crop characterization by evaluating the potential of S-1 and S-2 images to estimate the LAI, WB, DB and moisture content of wheat and rapeseed. We compared the predictive power of 22 S-2 optical variables (10 spectral bands and 12 vegetation indices) and 7 S-1 SAR variables (2 backscatter coefficients, 1 ratio and 4 polarimetric indicators) using GPR. This study, applied to the study area of Brittany, showed the potential of S-1 and S-2 data to estimate these 4 crop parameters for wheat and rapeseed. The performance of the S-2 variables is equivalent or superior to that of S-1 variables. The best models obtained with S-1 use the green, NIR bands and vegetation indices respectively for LAI (adjusted R² = 0.91), biomass (adjusted R² > 0.70) and WC (adjusted R² = 0.82) of wheat, and SWIR bands for DB (adjusted R² = 0.85) and WB (adjusted R² = 0.77) of rapeseed. For the S-1 variables, the VH:VV ratio was most relevant for wheat LAI (adjusted R² = 0.91) and rapeseed biomass (adjusted R² >0.75), versus SE for wheat WC (adjusted R² = 0.78). While confirming the interest of S-2 data, the results highlighted, in an unprecedented way, the importance of polarimetric indicators derived from S-1 for the estimation of biophysical parameters of wheat and rapeseed.

Finally, the fourth and last part of the thesis aimed at answering the question: What is the impact of landscape structure on crop phenology and biodiversity in crop-dominated landscapes?

Based on the results obtained in the previous part, we assessed the impact of the spatiotemporal structuring of the crop mosaic on biodiversity. For that purpose, we analyzed the influence of biophysical heterogeneity on wheat phenology and associated biodiversity in Brittany, Picardy and Wallonia study areas. The vegetation index named WDVI calculated from S-2 data was used as a metric of biophysical heterogeneity and as an indicator of wheat phenology. First, we analyzed the relationships between crop mosaic, landscape grain and biophysical heterogeneity. Then, we studied the effect of biophysical heterogeneity on wheat phenology. Finally, the distribution of two carabid beetle species was estimated using the biophysical heterogeneity metric. The results showed that landscape grain and crop mosaic gradient were highly correlated (maximum adjusted R² = 0.81). For the joint analysis of all sites, biophysical heterogeneity was beneficial for wheat phenology during the ripening period. The analysis by site showed that biophysical heterogeneity was beneficial for wheat growth in the fine grain but disadvantaged it in the open field landscapes both during stem extension and ripening periods. The biophysical heterogeneity metric was used to accurately estimate the distribution of two carabid beetle species (maximum adjusted R² = 0.62). This study highlighted the value of using S-2 data to understand wheat dynamics and associated biodiversity.

In general, this thesis assessed the potential of S-2 optical and S-1 SAR time series to identify and characterize ecological continuities in wooded and crop-dominated landscapes. More specifically, we showed that although S-2 data are more suitable than S-1 data for discriminating land cover/land use types as well as phenological stages and biophysical variables of wheat and rapeseed, the combined use of S-2 and S-1 data improves the accuracy of the classifications, with S-1 data also showing high interest in cloudy areas. Our research also showed the interest of polarimetric indicators derived from S-1 data to characterize wheat and rapeseed crops inserted in crop-dominated landscapes. Finally, this thesis highlighted the interest of the biophysical heterogeneity metric derived from S-2 data that allowed estimating precisely the distribution of two carabid beetle species. The crop mosaic can be considered as a green infrastructure to manage biodiversity at the landscape scale. The biophysical heterogeneity metric derived from S-2 images is continuous, consistent across locations and crop types and able to address ecological issues using free satellite images available for any area on Earth.

Based on these findings, we also highlight several issues that need to be addressed in ongoing and future work.

Concerning the combination of S-1 and S-2 data to identify constituent elements of ecological continuities, the fusion methods used in this thesis are called low-level or preclassification fusions because they consist in combining optical and SAR « raw » variables. High-level fusions (or post-classification fusions) consist in combining information extracted from independent data sets. For example, in the case of land cover maps, the classes best identified by the S-2 data alone and S-1 data alone could be combined to form a final map. However, this method requires an initial analysis of the classifications derived from each independent data set and decision making appropriate to the study objective to obtain a relevant final map. Therefore, it would be interesting to comparatively evaluate fusion methods with different semantic levels in order to optimize the fusion of SAR and optical data to identify and characterize the potential elements constituting ecological continuities.

Regarding the phenological stage prediction model that we developed in the second part of this thesis on the study area located in Picardy, we evaluated the robustness of the model by applying it on the study area of Brittany. The results show that principal phenological stages of rapeseed have been very well predicted (kappa = 0.75, OA = 80%) while numerous misclassifications have been observed for secondary phenological stages. For wheat, the interpretation of results was more difficult due to different typologies between the training (Picardy) and validation samples (Brittany). However, results showed a correct prediction of the stem elongation stage and a coherent succession of principal and secondary phenological stages. These results confirmed that the method used was robust in predicting the principal phenological stages of rapeseed and promising for the principal and secondary phenological stages of wheat. These results have been valued in the SPIE Remote Sensing International Symposium (Mercier et al. 2019a). Besides, the use of samples collected in several study areas could also contribute to test the robustness of the model applied to the estimate crop biophysical variables (Part 2), especially since the sampling used was small. Small number of crops surveys for the estimation of crop biophysical variables derived from S-1 and S-2 data was a limiting factor when testing statistical models. Indeed, the lower the sample size, the lower the predictive power of the statistical test. A larger sample size would allow testing more powerful modeling methods such as RF or SVM.

The biophysical heterogeneity (WDVI SD) measured from S-2 data is a continuous metric that reflects a biophysical state rather than discretized classes of crops. This continuous value is relevant for generalist species. Indeed, these species are not specialized in one type of land cover/land use or plant species, since they use several types of land cover/land use during their life cycle. Moreover, in crop-dominated landscapes, the landscape heterogeneity is generally beneficial for generalist species. Habitat suitability maps could be derived from the WDVI SD to highlight the connectivity or fragmentation of potential habitats. Finally, WDVI variations around an element beneficial for a specialist species could be studied to better understand the resistance of landscape elements to the movement of this species. Finally, the influence of hedgerow network on biophysical heterogeneity could be studied with the use of a very high spatial resolution satellite data such as SPOT-6 images.

During this thesis, a study has started in close collaboration with the Spanish team of the WOODNET project. We used a brown bear habitat suitability model developed by the Spanish team and detailed in an article published by [START_REF] Gastón | Species' habitat use inferred from environmental variables at multiple scales: How much we gain from high-resolution vegetation data[END_REF]. Landscape metrics that we calculated from land cover maps derived from the combined use of S-1 and S-2 data were incorporated into the brown bear habitat suitability model. This study aimed to evaluate the value of the Spanish land cover maps produced in Mercier et al. (2019b) for the identification and characterization of ecological continuities for brown bears. Landscape metrics were derived from the most accurate land cover map, i.e., the map derived from the combined use of Sentinel-1 and 2 data. These landscape metrics correspond to landscape heterogeneity (Appendix M, Figure M-1), landscape grain (Appendix M, Figure M-2) and interfaces between land cover types (Appendices M, Figures M-3 and M-4). First results showed that the proportion of brown bear increases with fine grain and decreases with landscape heterogeneity. Overall, interfaces containing "bare soil" class have a negative effect on the proportion brown bears while interfaces including forested surfaces have a positive effect. Perspectives emerged from these first results and further work will be done in close collaboration with the Spanish team of the WOODNET project. We plan to further analyze the choice of input parameters of the model by removing the interface metrics including misclassified land cover types (water and artificial surfaces) and create new landscape parameters by combining other land cover types (scrubland/bare soil) at different spatial scales.

Finally, the database we developed in the second part of this thesis to characterize wheat and rapeseed will soon be available in a data paper to share the data further with the scientific community. Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

Ganeva D, Roumenina E, Jelev G, et al (2019) Applicability of parametric and nonparametric regression models for retrieval of crop canopy parameters for winter rapeseed and wheat crops using Sentinel-2 multispectral data. In: Seventh International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2019 Satellite images are commonly used to estimate crop parameters over large areas, and the freely available Synthetic Aperture Radar (SAR) Sentinel-1 (S-1) and optical Sentinel-2 (S-2) images are relevant for that purpose combining high temporal resolution and high spatial resolution. For this data article, field surveys were conducted from January to July 2017 in France to sample wheat and rapeseed crop parameters during the entire crops cycle. Phenological stages were identified in 83 wheat fields and 32 rapeseed fields in Brittany and Picardy regions. Moreover, Leaf Area Index (LAI), wet biomass, dry biomass and water content were sampled in three wheat fields and three rapeseed fields in Brittany. We assigned to each field sample 10 spectral bands and 12 vegetation indices from S-2 images and two backscattering coefficients, one backscattering ratio and four 

Value of the Data

• The datasets provide crop biophysical parameters (LAI, biomass and phenological stages) during the crop cycles of wheat and rapeseed and associated S-1 and S-2 features for crop monitoring.

• The datasets can be used in many fields of research (Agronomy, Climatology, Ecology...) to analyze the relationships between crop growth and agricultural practices, climatic variables, landscape structure or species distribution. • These datasets can be used for crop monitoring in other regions, as well as for modelling development.

Data Description

The datasets include a vector GIS shapefile (RGF93/Lambert-93 system, ESPG 2154) containing 55 polygons located in Picardy [ 2 , 3 ] and 60 in Brittany regions [ 3 , 4 ] (France). The 115 polygons correspond to 32 rapeseed fields and 83 wheat fields sampled in 2017 during one crop cycle. Five attribute tables were assigned to each sampled field, which are crop types (wheat/rapeseed), LAI and biomass ( i.e ., LAI, wet biomass, dry biomass, water content), phenological stages, S-1 features (i.e., backscattering coefficients and polarimetric indicators) and S-2 features ( i.e ., spectral values and vegetation indices). The three last table columns that are labeled "DOY", "Region" and "ID" correspond to the acquisition dates of satellite images or crop parameters in Day Of Year (DOY) 2017, region of France (Brittany or Picardy) and field identifier, respectively. Table 1 provides a full description of the acronyms and abbreviations used in this article.

Experimental Design, Materials and Methods

Concerning crop parameters, phenological stages were identified over the 115 field samples based on the Biologische Bundesanstalt, Bundessortenamt and Chemical industry (BBCH) scale [5] . These data were used in Mercier et al [ 2 , 3 ]. LAI, wet biomass, dry biomass and water content surveys were conducted on three wheat fields and three rapeseed fields in Brittany region. For this purpose, 10 digital hemispherical photographs were taken at each sampled field on each date. These data were used in Mercier et al [4] . LAI was estimated from the hemispherical photographs using CAN-EYE software [1] and averaged per date and field sample. Biomass measurements were performed in homogeneous areas (20 × 20 m) where five samples of wheat 50 cm and five rapeseed plants were collected during the field surveys. The wet biomass was directly weighed in situ , and the dry biomass was measured after drying the crop (oven, 65 °C, 48 h). Water content in the plant equals wet biomass minus dry biomass.

Concerning remote sensing features, S-1 and S-2 images were downloaded from the Copernicus Open Access Hub ( https://scihub.copernicus.eu/ ). Cloud-free S-2 images used correspond to Level-2A products providing top of canopy reflectances. Twelve vegetation indices were calculated from S-2 spectral bands ( Table 1 ). S-1 images used were acquired in Interferometric Wide (IW) swath mode and correspond to Single Look Complex (SLC) products. The backscattering coefficients (sigma VH and sigma VV) extraction process was performed using the S-1 Toolbox ( http://step.esa.int/main/toolboxes/sentinel-1-toolbox/ ). This process includes (1) radiometric calibration, (2) speckle filtering using a Lee Refined 7 × 7 filter [6] , (3) geometric corrections using Shuttle Radar Topography Mission data [7] , (4) calculation of the sigma VH: sigma VV ratio and ( 5) conversion from linear to decibel values. The polarimetric indicators extraction process was performed using PolSARpro version 5.1.3 software [8] . This process includes (1) the extraction of a 2 × 2 covariance matrix, (2) a speckle filtering using a Lee Refined 7 × 7 filter, (3) the extraction of four polarimetric indicators (the Shannon entropy, the intensity, the degree of polarization and the span), ( 4) the normalization of the Shannon entropy, the intensity and the degree of polarization. Finally, all S-1 and S-2 images were projected onto the RGF93/Lambert-93 system (EPSG 2154) and resampled with bilinear interpolation to the resolution of 10 m. The median value was computed at the field scale with a negative buffer of 15 m and 10 m in Picardy and Brittany, respectively, to select only pixels fully contained within each field. 

INTRODUCTION

Crop monitoring is crucial for many agricultural and ecological applications such as crop yield estimation 1,2 , prevention of diseases and pest outbreaks 3,4 , water resources management 5 and fertilizer application 6,7 . Leaf area index (LAI), DB, WB, water content and PS are commonly used for these purposes. Most of these data are acquired using time-consuming ground surveys and therefore cannot be collected at a landscape scale 8 . Remote sensing data can be used to map large spatial areas while maintaining a fine spatial resolution. The free availability of Synthetic Aperture Radar (SAR) Sentinel-1 (S-1) and optical Sentinel-2 (S-2) time series offers a unique opportunity to monitor crops at a high temporal frequency (5-days) and high spatial resolution (10m).

Many studies have focused on the use of optical data (AVHRR, SPOT, Landsat, MODIS, IRS, IKONOS, QuickBird, Formoat-2, Sentinel-2) to estimate crop parameters demonstrating the high performance of vegetation indices and biophysical variables 9-13 . More specifically about Sentinel-2 time series, they showed great potential on pasture and various crops in the estimation of LAI 14-18 , biomass 19,20 and phenological stages 19,21 . However, optical data have limitations because they are sensitive to weather conditions and capture top of canopy information rather than vegetation structure. Radar data can be collected regardless of the weather or light conditions. Microwaves are sensitive to the internal structure of vegetation 22,23 , but the signal is affected by soil conditions (roughness and moisture) 24 . Polarimetric indicators derived from RADARSAT-2 and TerraSAR-X have showed high sensitivity to biomass 23,25,13,26 , LAI 27,25,13,28 and phenological stages 29,30 of various crops.

Several studies have highlighted the potential of S-1 time series to estimate crop parameters. A high potential of backscattering coefficients and the ratio of VH:VV polarizations was found in detecting changes in vegetation structure for rapeseed, maize and winter cereals 31 . The S-1 VV polarization have showed high correlations with water content, wet biomass, dry biomass and LAI of wheat 32 , while the VH and VV polarizations were relevant for identifying phenological stages of wheat and rice 33,34 . Despite these encouraging results, to our knowledge, polarimetric indicators derived from S-1 data have not been used to study crop parameters.

The objective of this study was to assess the potential of S-1 data alone, S-2 data alone and their joint use to derive WB, DB, water content and crop PS. We evaluated the performance of spectral bands and vegetation indices derived from S-2 time-series and backscattering coefficients and polarimetric indicators derived from S-1 time-series. We focused on two of the most important crops in the world in terms of harvested area: wheat and rapeseed (Food and Agriculture Organization of the United Nations, 2017). We first assessed the potential of Sentinel data to estimate CP of wheat and rapeseed computing linear regressions between CP including WB, DB and water content and S-1 and S-2 features. Then, we classified principal and secondary PS of wheat and rapeseed. Principal PS are defined as long-duration developmental phases of plants, while secondary PS are short developmental steps within them 35 . In a precedent study 36 , we demonstrated the high capacity of S-2 data alone and the combined S-1 & 2 data to predict principal and secondary PS of wheat and rapeseed over northern France. Combined use of S-1 & 2 data and S-2 data alone was significantly more accurate than using S-1 data alone with similar performances in identifying principal and secondary PS for both crops. The ratio and polarimetric indicators were important for obtaining accurate classifications for both crops. LAI, NDVI and S2REP were the most important features for both crop types while the MCARI was not important. In order to validate these results, we applied the best models developed on the northern France to the study area of Brittany.

MATERIALS

Study areas

Satellites and ground data were collected over two French temperate agricultural landscapes, in northern France and Brittany.

The study area of northern France consisted of two 5 × 5 km sub-sites (Fig. 1). The climate is oceanic with a mean annual temperature of 10°C and mean annual precipitation of 700 mm (Météo France). The western site is located in an open field landscape with intensive cultivation of cereals and sugar beet. The eastern site is located in a "bocage" landscape dominated by grasslands and is characterized by less intensive farming activities (mainly dairy cattle) and smaller fields that tend to be enclosed by hedgerows. Both landscapes contain managed forest fragments that are used mainly for hunting and production of wood 37 .

The study area of Brittany is a Long Term Ecological Research site named 'Zone Atelier Armorique (130km²), located in the southern part of the Bay of the Mont-Saint-Michel, France (Fig. 2). The area has a temperate climate with an annual mean temperature of 12 °C and mean annual precipitation of 650 mm. The site contains ca. 7000 agricultural fields surrounded by a hedgerow network. The main annual crops are maize, wheat, rapeseed and barley. 

Satellite imagery

A series of five and four optical S-2 and eight and five SAR S-1 images were downloaded over the northern France and Brittany respectively. The entire crop cycles of wheat and rapeseed were recorded downloading images from January to July 2017 (Fig. 3). The S-1 images were acquired in Interferometric Wide (IW) swath mode and delivered with VV and VH polarizations ). We used the Single Look Complex (SLC) product, which consists of focused SAR data that use the full C-signal bandwidth and preserve the phase information, to derive polarimetric indicators. The incidence angle of images ranged from 30.6-46.0° (Table 1). The spatial resolution ranged from 2.7-3.5 m, the azimuth spatial resolution was 22 m, and the pixel spacing was 2.3 × 14.1 m (Table 1). According to data recorded at the Météo-France weather station in Saint Quentin (49°49′N, 3°12′E) for northern France and Vieux-Viel for Brittany (48°51′N, 1°55′W), the radar signal was not affected by rainfall or freezing on acquisition dates (Fig. 3). 

Field data collection

Ground surveys were conducted on 36 and 19 fields of wheat and rapeseed, respectively over the northern France study areas (Fig. 1) while 47 and 12 fields were sampled over the study area of Brittany (Fig. 3). Sizes of wheat and rapeseed fields ranged from 0.27-31.65 ha (mean=5.69 ha) and 0.45-20.92 ha (mean=3.50 ha, median=1.83 ha), respectively. PS were identified on 8 and 5 dates from January to July 2017 over northern of France and Brittany respectively (Fig. 3) based on the Biologische Bundesanstalt, Bundessortenamt and CHemical industry (BBCH) scale 35 . Five principal PS were observed for both crops in the northern of France (Table 3 and4) and 4 and 5 principal PS were observed in Brittany for wheat and rapeseed, respectively (Table 5 and6). In addition, for the northern of France study areas, 29 and 15 secondary PS were identified for wheat (Table 3) and rapeseed (Table 4), respectively. The samples of secondary PS available for wheat and rapeseed were grouped into sub-classes to obtain a sufficient number of samples per class to train and validate the classifications.

Biomass measurements were performed in 3 fields of wheat and rapeseed (Fig. 3). In homogeneous areas (20 x 20m), 5 samples with a length of 50 cm were collected for wheat and 5 feet for rapeseed. The WB of each sample was directly weighed in situ, and the DB was measured after crop drying (oven, 65•C, 48 h). The difference between total biomass and DB correspond to the water content in the plant. 

RESULTS AND DISCUSSION

Crop parameters estimation

Concerning the estimation of wheat CP using S-2 features, the correlations were highest with fcover, LAI, REIP and S2REP to estimate the water content (Fig. 4). The band 2 (blue) demonstrated the best performance for estimating DB and WB while other S-2 features demonstrated poor capacity (Fig. 4). The results of the blue band are to be confirmed because previous studies have showed better sensitivities of wheat biomass in the green or NIR spectral domains 56,57 . The relationships between wheat CP and the blue band (Fig. 6a) was very influenced by 3 points with a low biomass, the distribution of points along the regression line was not homogeneous, thus a larger sample size would confirm the performance of the blue band. For rapeseed, the best results for all CP were from the bands 11 and 12 corresponding to the SWIR domain, while vegetation indices appeared not useful (Fig. 5). Some studies have already demonstrated the high performance of the SWIR bands for vegetation mapping 58,59 but to our knowledge, none of them have studied its interest in rapeseed mapping, thus further research is warranted. For both crop types, water content was better estimated using S-1 features than S-2 features (Fig. 7 and8). For wheat, correlations between DB and S-1 features did not exceed 0.4 of adj. R² (Fig. 7). This may be explained by the sensitivity of SAR signal to the wetness of the vegetation 22,60 . The ratio VH:VV polarizations and the polarization of the Shannon entropy showed the best performances for rapeseed (Fig. 8) and the lowest for wheat (Fig. 7). The Shannon entropy decreased with wheat biomass (Fig. 9a and table 9) and the ratio VH:VV increased with rapeseed biomass (Fig. 9b and table 9). Compared to wheat, rapeseed have a more complex structure with a development of the stems without preferred orientations, this induces an increase of the disorder encountered in the radar signal (Shannon entropy) and the volume-scattering mechanism (VH) 61 . 

Phenological stages predictions

The figures 10 and 11 present the predictions of principal and secondary PS of wheat respectively, on the Brittany study area. Based on the ground surveys (Table 10), on January 24, 2017, the wheat was at the leaf development stage, this stage was not observed on the training data, in the northern France, thus the predictions of the first class "tillering" as the principal PS (Fig. 10) and "beginning of tillering" as the secondary PS (Fig. 11) were coherent. On March 3, 2017, there was much confusion between the observed stage "stem elongation" and the tillering and flowering stages for both PS typologies. On April 22, 2017, the map was correct by predicting the stem elongation stage. The inflorescence stage was observed on May 16, 2017, however, this stage was not present in the training data, the prediction of principal PS result was a prediction of stem elongation and flowering which is consistent since these are the two adjacent stages of the observed stage. Finally, on June 21, 2017, the classifier predicted development of fruit for principal and secondary PS while we supposed the wheat was at the beginning of ripening since we observed the end of ripening on July, 5 2017. The figures 12 and13 present the predictions of principal and secondary PS of rapeseed respectively, on the Brittany study area. The principal PS were very well predicted with a kappa of 0.75 and an overall accuracy of 80% (Table 12), only one confusion between fruit development and ripening occurred on May 16, 2017 (Table 11 and 12, Fig. 12). The secondary PS were misclassified except for the ripening on June 21, 2017 (Table 11, Fig. 13). The principal PS of rapeseed have been very well predicted with training using data from the northern France and validation from Brittany. However, numerous misclassifications have been observed to predict the secondary PS because they are more sensitive to phenomena occurring at landscape and local scales. For wheat, results of principal and secondary PS were moderate. Due to the typology of the validation samples, it was difficult to confirm each predicted class but we can note a correct prediction of the stem elongation stage and a consistent succession of PS. These results confirmed that the method used was robust in predicting the principal PS of rapeseed and promising for the principal and secondary PS of wheat.

CONCLUSION

This study evaluated the potential of SAR S-1 and optical S-2 time series to estimate CP (WB, DB and water content), principal and secondary PS of wheat and rapeseed. For wheat CP estimation results, highest correlations were found using the blue band of S-2 and the Shannon entropy of S-1. Based on the distribution of points along the regression lines, the results obtained with S-1 features are more reliable than those obtained with S-2 features. For rapeseed, S-1 features showed better performance than S-2 features to estimate CP, the best performances were obtained using he ratio VH:VV polarizations (adj. R² > 0.79 for DB and WB). For PS predictions, the results confirmed that the incremental method used was robust by training the model on one site and validating on another. Combined used of S-1 & 2 was accurate to identify the principal PS of rapeseed while the results of wheat PS are promising.

Funding: Dans ce contexte, les séries temporelles d'images satellite offrent une alternative pour cartographier et effectuer le suivi des éléments constituant les continuités écologiques dans les paysages agricoles et boisés sur de vastes étendues. Les images acquises par les satellites optiques ont déjà montré un fort potentiel pour identifier et caractériser les caractéristiques écologiques des éléments du paysage. Les capteurs optiques MODIS, AVHRR et Landsat ont été largement utilisés pour cartographier l'occupation et l'usage des sols [START_REF] Congalton | Global Land Cover Mapping: A Review and Uncertainty Analysis[END_REF][START_REF] Gómez | Optical remotely sensed time series data for land cover classification: A review[END_REF], la déforestation et la dégradation des forêts (Bourgoin 2019) à large échelle du fait de leur haute résolution temporelle et leur grande fauchée. Cependant la faible résolution spatiale des données acquises par ces capteurs (30m à 1,1km) ne permet pas d'identifier finement les éléments paysagers ou d'aller jusqu'à leur caractérisation. En revanche, les données à haute résolution spatiale comme les images SPOT et Formosat-2 (< 5m) et à très haute résolution spatiales telles que images Quickbird, WorldView et IKONOS (<1m) ont montré un bon potentiel pour identifier des haies fines [START_REF] Vannier | Multiscale comparison of remote-sensing data for linear woody vegetation mapping[END_REF], estimer le rendement, l'indice de surface foliaire (ISF), la biomasse et le stade phénologique des cultures (Quarmby et al. 1993;Doraiswamy et al. 2004;Mulla 2013;Bontemps et al. 2015;[START_REF] Pan | Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data[END_REF]Betbeder et al. 2016b) ou encore cartographier la biomasse de surface des forêts tropicales [START_REF] Singh | Biomass estimation of mixed forest landscape using a Fourier transform texture-based approach on very-high-resolution optical satellite imagery[END_REF][START_REF] Pargal | Inverting Aboveground Biomass?Canopy Texture Relationships in a Landscape of Forest Mosaic in the Western Ghats of India Using Very High Resolution Cartosat Imagery[END_REF]. La résolution temporelle des capteurs est également un élément essentiel pour caractériser la dynamique temporelle des éléments paysagers. Par ailleurs, depuis les années 2000, des études ont montré l'intérêt des données satellitaires RSO à haute résolution spatiale pour cartographier les cultures et les caractériser [START_REF] Steele-Dunne | Radar Remote Sensing of Agricultural Canopies: A Review[END_REF]. Ainsi, les indicateurs polarimétriques dérivés de RADARSAT-2 ou TerraSAR-X se sont montré pertinents pour estimer les stades phénologiques, la hauteur et la biomasse de diverses cultures (Jiao et al. 2009;Wiseman et al. 2014;[START_REF] Mascolo | Retrieval of phenological stages of onion fields during the first year of growth by means of C-band polarimetric SAR measurements[END_REF]Jin et al. 2015;Betbeder et al. 2016b;[START_REF] Pacheco | Using RADARSAT-2 and TerraSAR-X satellite data for the identification of canola crop phenology[END_REF]Canisius et al. 2018;McNairn et al. 2018;Homayouni et al. 2019). Dans les paysages boisés, le capteur ALOS-SAR a permis de produire une carte globale forêt/non forêt [START_REF] Shimada | New global forest/non-forest maps from ALOS PALSAR data (2007-2010)[END_REF][START_REF] Zhou | Research of forest type identification based on multi-dimensional POLSAR data in Northeast China[END_REF]. Toutefois, la faible répétitivité de ces capteurs, leur nécessaire programmation ainsi que le coût des images constituent des contraintes fortes pour le suivi des paysages agricoles et boisés.

LIST OF ILLUSTRATIONS

Les données gratuites à hautes résolutions spatiale et temporelle acquises par les satellites RaDAR à Synthèse d'Ouverture (RSO) Sentinel-1 (S-1) depuis 2014 et optiques Sentinel-2 (S-2) depuis 2016 offrent de nouvelles possibilités pour la cartographie et le suivi des continuités écologiques. Des études récentes ont démontré le potentiel des séries temporelles S-2 pour cartographier l'occupation du sol dans des paysages boisés [START_REF] Jönsson | A Method for Robust Estimation of Vegetation Seasonality from Landsat and Sentinel-2 Time Series Data[END_REF]) et des paysages agricoles (Denize et al. 2019a). Concernant les cultures, les bandes spectrales, les indices de végétation et les variables biophysiques dérivés des données S-2 ont permis d'estimer avec une bonne précision l'ISF (Delegido et al. 2011b;Frampton et al. 2013;Clevers et al. 2017;Pan et al. 2018;Wang et al. 2019), la biomasse (Veloso et al. 2017;Ghosh et al. 2018;Ganeva et al. 2019) et les stades phénologiques (Veloso et al. 2017;Ghosh et al. 2018;Stendardi et al. 2019) des cultures. Cependant, l'exploitation de ces données optiques est limitée par la présence d'une couverture nuageuse. De plus, elles ne fournissent de l'information que sur la couche haute de la végétation et le signal sature avec un niveau élevé de biomasse et d'ISF (Wang et al. 2016a). En dépit du fait que les données S-1 sont sensibles aux conditions du sol (rugosité, humidité), elles constituent une alternative aux données S-2 car elles ne sont pas influencées par les conditions atmosphériques, et le signal RaDAR pénètre la canopée [START_REF] Lee | Polarimetric Radar Imaging: From Basics to Applications[END_REF]. Des études récentes ont montré l'intérêt des coefficients de rétrodiffusion et du ratio dérivés des données S-1 pour la cartographie de cinq types d'occupation du sol globales (eau, forêt, urbain, sol nu et surface agricole) en Turquie [START_REF] Abdikan | Land cover mapping using sentinel-1 SAR data[END_REF]) et la détection des forêts de conifères, des forêts de feuillus et des terres arables non irriguées en Allemagne [START_REF] Balzter | Mapping CORINE land cover from Sentinel-1A SAR and SRTM digital elevation model data using random forests[END_REF]. Dans les paysages agricoles, le potentiel de ces mêmes variables S-1 a été démontré pour la détection des changements dans la structure du colza, du maïs et des céréales d'hiver (Vreugdenhil et al. 2018), l'identification des stades phénologiques du blé (Song and Wang 2019) et l'estimation de la biomasse, la teneur en eau (WC) et l'ISF du blé (Kumar et al. 2018). Toutefois, à notre connaissance, aucune étude n'a été menée avec des indicateurs polarimétriques dérivés de S-1 pour caractériser les cultures.

En conséquence, l'utilisation combinée des capteurs optiques et RSO devrait permettre d'améliorer la cartographie des continuités écologiques. En effet, la fusion des données optiques et RSO améliore l'identification des occupations/usages des sols [START_REF] Kussul | Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data[END_REF][START_REF] Zhou | Exploring the Impact of Seasonality on Urban Land-Cover Mapping Using Multi-Season Sentinel-1A and GF-1 WFV Images in a Subtropical Monsoon-Climate Region[END_REF][START_REF] Laurin | Above-ground biomass prediction by Sentinel-1 multitemporal data in central Italy with integration of ALOS2 and Sentinel-2 data[END_REF][START_REF] Reiche | Improving near-real time deforestation monitoring in tropical dry forests by combining dense Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2[END_REF]) et des types de cultures [START_REF] Orynbaikyzy | Crop type classification using a combination of optical and radar remote sensing data: a review[END_REF]. Le domaine optique est sensible à la physiologie de la végétation, tandis que les micro-ondes sont influencées par la géométrie (rugosité, texture, structure interne) et l'humidité des surfaces. Cette complémentarité entre les domaines optique et RSO est peu exploitée pour caractériser les continuités écologiques. Quelques études ont utilisé à la fois les données optiques et RSO pour caractériser des cultures (Betbeder et al. 2016a;Veloso et al. 2017;[START_REF] El Hajj | Penetration Analysis of SAR Signals in the C and L Bands for Wheat, Maize, and Grasslands[END_REF]. Cependant, ces études utilisent l'indice de végétation, NDVI, dérivé des données optiques comme référence pour évaluer les données RSO. Bien que la réelle combinaison des données optiques et RSO améliore les résultats de classification de l'occupation du sol et des types de cultures, elle reste peu exploitée pour prédire les paramètres de cultures (Stendardi et al 2019, Jin et al 2015).

Si la télédétection est couramment utilisée pour cartographier les éléments constitutifs des continuités écologiques, qu'il s'agissent d'éléments semi-naturels, de prairies permanentes ou de parcelles cultivées, elle l'est aussi en écologie du paysage, notamment pour étudier la structure, le changement et la fonction du paysage [START_REF] Crowley | Remote Sensing's Recent and Future Contributions to Landscape Ecology[END_REF]. La structure du paysage peut être analysée à partir d'indicateurs dérivés de données de télédétection (hétérogénéité du paysage, topographie,…). Les séries temporelles d'images satellite permettent d'identifier les changements intervenus dans le paysage à travers l'étude de l'évolution de ces indicateurs. La fonction du paysage peut être évaluée en combinant ces indicateurs et des informations issues de modèles d'écologie du paysage (distribution spatiale d'une espèce, mesures météorologiques,…). C'est dans ce contexte que s'inscrivent ces travaux de thèse dont l'objectif est double : Evaluer comparativement les séries temporelles optiques S-2 et RSO S-1 pour identifier et caractériser les éléments constitutifs des continuités écologiques à travers des classifications de l'occupation et de l'utilisation des sols et la caractérisation de cultures dans les paysages de mosaïques boisées et agricoles ; Evaluer l'impact de la structuration spatio-temporelle de ces mosaïques paysagères sur la biodiversité en utilisant des métriques dérivées des séries temporelles Sentinel. Plus précisément, ces recherches ont permis de mettre en exergue les trois points suivants :

1-Les contributions relatives des données S-1 et S-2 à la cartographie de l'occupation des sols des mosaïques forêt-agriculture :

Les classes d'occupation des sols qui composent les mosaïques forêt-agriculture sont réparties le long d'un gradient de paysage, avec des classes de transition telles que les arbustes vers la forêt ou les pâturages vers les jeunes forêts secondaires, ce qui entraîne des erreurs de classification. Les données S-1 seules sont les moins précises pour la cartographie de l'occupation des sols dans les mosaïques forêt-agriculture, avec un meilleur indice kappa Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020. moyen de 0,73, contre 0,87 et 0,89 pour les données S-2 seules et les données S-1 et S-2 combinées, respectivement. Par exemple, sur la zone d'étude brésilienne, les données S-2 ont permis de mieux distinguer les zones boisées des jeunes forêts secondaires que les données S-1. Cela peut s'expliquer par le fait que les capteurs RSO sont sensibles à la structure de la végétation, tandis que les capteurs optiques sont sensibles à la teneur en chlorophylle. Ainsi, lorsqu'elles ont été observées à une résolution de 10 m, les grandes classes de végétation ont été plus facilement discriminées par leur physiologie que par leur structure physique. De plus, les polarisations VV et VH sont les variables S-1 les plus importantes pour discriminer les classes d'occupation des sols, alors que le rapport n'apparaît pas utile. Bien que l'on sache que la polarisation VH est plus sensible à la végétation que la polarisation VV [START_REF] Patel | Comparative evaluation of the sensitivity of multi-polarized multi-frequency SAR backscatter to plant density[END_REF], les résultats montrent que les deux polarisations contribuent peu à la classification des mosaïques forêt-agriculture, tout comme le ratio . Nous pouvons conclure que dans ce cas, la bande C de S-1 n'est pas pertinente pour classer les classes de végétation. En général, le RSO en bande C est moins adapté que la bande L pour la surveillance des changements forestiers en raison d'une profondeur de pénétration plus faible et d'une saturation rapide du signal [START_REF] Woodhouse | Introduction to Microwave Remote Sensing[END_REF]. Par exemple, [START_REF] Patel | Comparative evaluation of the sensitivity of multi-polarized multi-frequency SAR backscatter to plant density[END_REF] ont démontré que la bande L est plus sensible à la densité de la végétation que la bande C, et que la bande C interagit principalement avec les premières branches de la canopée, tandis que la bande L pénètre l'intérieur de la canopée. Nous avons utilisé des produits GRD S-1 qui enregistrent les coefficients de rétrodiffusion (VV et VH) car ils nécessitent moins de temps de traitement que les produits SLC, qui préservent l'information de phase. Cependant, l'utilisation de la texture, de la cohérence et des indices polarimétriques dérivés des données RaDAR polarimétriques complètes, telles que les données RADARSAT-2, pourrait améliorer la classification basée ici sur les seules données S-1 (Roychowdhury ; [START_REF] Ranson | Characterization of Forests in Western Sayani Mountains, Siberia from SIR-C SAR Data[END_REF][START_REF] Sonobe | Discrimination of crop types with TerraSAR-X-derived information[END_REF][START_REF] Du | Correlating the subsidence pattern and land use in Bandung, Indonesia with both Sentinel-1/2 and ALOS-2 satellite images[END_REF]. Ainsi, bien que Bagdhadi et al. ( 2016) aient conclu que l'utilisation d'indices polarimétriques, tels que l'entropie de Shannon (SE) et le span, dérivés d'images polSAR RADARSAT-2 n'améliorait pas les estimations de l'humidité du sol et des paramètres de la végétation, Betbeder et al. (2014) ont démontré que SE était plus utile que les coefficients de rétrodiffusion pour cartographier la végétation des zones humides à l'aide de séries chronologiques TerraSAR-X à deux polarisations.

Le meilleur indice kappa moyen obtenu avec les données S-1 est plus élevé pour la zone d'étude espagnole que pour la zone d'étude brésilienne (0,73 contre 0,60, respectivement). Cela pourrait être dû à des différences dans les méthodes de classification (nombre différent de classes et de types d'occupation des sols) et au nombre d'images S-1 utilisées pour classifier les types d'occupation des sols (22 dates pour la zone d'étude espagnole contre 14 dates pour la zone d'étude brésilienne). Un nombre plus important d'erreurs de classification ont été observées dans les zones à fort relief, ce qui est conforme à la littérature [START_REF] Lee | Polarimetric Radar Imaging: From Basics to Applications[END_REF]. Pour la zone d'étude espagnole, les résultats de classification obtenus en utilisant uniquement les données S-1 montrent que les erreurs de classification sont le plus souvent localisées sur les pentes des montagnes. Ces erreurs sont dues à l'acquisition d'images RSO en géométrie oblique qui provoque des effets de repliement et de raccourcissement [START_REF] Lee | Polarimetric Radar Imaging: From Basics to Applications[END_REF]. De plus, on sait que l'humidité et la rugosité du sol influencent la rétrodiffusion RaDAR en fonction de la fréquence, de la polarisation et de l'angle d'incidence de la microonde. [START_REF] Holah | Potential of ASAR/ENVISAT for the characterization of soil surface parameters over bare agricultural fields[END_REF] ont constaté que la sensibilité à la rugosité de surface est plus importante en utilisant les polarisations HH et HV que la polarisation VV. Cependant, [START_REF] Baghdadi | Operational performance of current synthetic aperture radar sensors in mapping soil surface characteristics in agricultural environments: application to hydrological and erosion modelling[END_REF] ont démontré que la sensibilité du capteur à l'humidité du sol Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

dépendait peu de la polarisation. Les effets de l'humidité du sol sur la classification forêtagriculture sont plutôt limités en utilisant la bande C en raison d'une faible profondeur de pénétration des micro-ondes par rapport à la bande L [START_REF] Ulaby | Radar mapping of surface soil moisture[END_REF], alors que la bande C est plus sensible à la rugosité [START_REF] Mattia | The effect of surface roughness on multifrequency polarimetric SAR data[END_REF]. Enfin, plus l'angle d'incidence est élevé, plus la sensibilité du RSO à la rugosité de surface est importante [START_REF] Fung | Dependence of the surface backscattering coefficients on roughness, frequency and polarization states[END_REF]. Cependant, les données S-1 discriminent parfois mieux que les données S-2 les sols nus et les surfaces artificielles car le signal RSO réagit différemment à ces deux classes d'occupation des sols, avec un double rebond sur les bâtiments et un simple rebond sur les sols nus plats [START_REF] Lee | Polarimetric Radar Imaging: From Basics to Applications[END_REF], alors que leurs signatures spectrales dans le domaine optique sont similaires (valeurs de réflectance élevées dans les bandes verte, bleue et rouge).

En utilisant uniquement les données S-2, les bandes SWIR sont les variables les plus importantes pour discriminer les classes d'occupation des sols. L'importance des bandes SWIR de S-2 a été démontrée pour la cartographie de la végétation et des forêts (Immitzer et al. 2016 ;[START_REF] Chrysafis | Assessing the relationships between growing stock volume and Sentinel-2 imagery in a Mediterranean forest ecosystem[END_REF]. Les indices de végétation dérivés des données S-2 (par exemple SAVI, NDVI, NDWI) ont été plus pertinentes que les bandes spectrales pour la zone d'étude espagnole, tandis que le NDWI était l'indice de végétation le plus important pour la zone d'étude brésilienne. La sensibilité de la bande bleue à l'eau contenue dans la végétation pourrait expliquer pourquoi le NDWI est bien adapté à la végétation tropicale, alors que le NDVI sature à des valeurs de biomasse élevées [START_REF] Huete | Overview of the radiometric and biophysical performance of the MODIS vegetation indices[END_REF][START_REF] Jackson | Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans[END_REF]). L'indice EVI, qui a été développé pour MODIS, est une variable moins importante que les autres indices de végétation pour les deux zones d'étude. Il pourrait être intéressant de calculer d'autres indices de végétation qui sont utilisés pour la discrimination des cultures comme le S2REP, l'IRECI, le MTCI ou le SRI [START_REF] Jordan | Derivation of leaf-area index from quality of light on the forest floor[END_REF]Frampton et al. 2013).

L'indice de kappa moyen utilisant les données combinées S-1 et S-2 (0,88) diffère peu de celui qui utilise les données S-2 seules (0,86). Ainsi, l'utilisation des données S-2 seules est suffisante pour discriminer les classes d'occupation des sols avec une grande précision. Cependant, l'intensité de rétrodiffusion des données S-1 seules a fourni des informations supplémentaires pertinentes, puisque les prédictions des classes d'occupation des sols utilisant les données S-1 seules, les données S-2 seules et les données S-1 et S-2 combinées diffèrent selon le test X² de McNemar. Par exemple, l'erreur de classification entre les terres cultivées et les surfaces artificielles pour la zone d'étude brésilienne, lorsqu'on utilise les données S-2 seules, a été partiellement corrigée en utilisant les données S-1 et S-2 combinées.

2-L'utilisation des données S-1 et S-2 pour identifier les périodes clés pour la classification de l'occupation des sols :

Sur la base des résultats de la classification utilisant les données S-1 seules, les données S-2 seules et les données S-1 et S-2 combinées, la précision de la classification est fortement liée au nombre de dates. La précision de la classification augmente lorsque des dates sont ajoutées au classificateur random forest. La pertinence d'une haute résolution temporelle souligne l'importance de la description et de la prise en compte de la phénologie de la végétation pour cartographier les mosaïques forêt-agriculture.

Pour la zone d'étude espagnole, les variables de janvier, mars, juin et juillet figurent parmi les 20 variables S-2 les plus importantes. Cela peut s'expliquer par le fait que le capteur S-2 est sensible à la teneur en chlorophylle de la végétation, et que ces mois sont des périodes clés de l'activité chlorophyllienne. Les variables des mois de décembre à mai figurent parmi les 20 variables S-1 les plus importantes pour cette zone d'étude, alors que la période estivale n'est pas pertinente. Cela est probablement dû au fait que les capteurs RSO, qui sont sensibles à la structure interne des éléments, pénètrent mieux dans la végétation pendant la période de feuillaison.

Une seule date S-2 a été utilisée pour la zone d'étude brésilienne, ce qui a empêché d'étudier l'importance de la période de temps. En outre, aucune période de temps précise n'est ressortie des rangs d'importance de la série temporelle S-1. Ainsi, aucune période intraannuelle ne semble plus importante que les autres pour les séries temporelles S-1 pour discriminer les types d'occupation des sols à Paragominas. Contrairement à la chaîne cantabrique, où les saisons diffèrent, les températures et les précipitations sont relativement constantes au Pará, avec une saison plus sèche de juillet à octobre (https://www. worldweatheronline.com/para-weather/para/br.aspx). En outre, la dynamique des pratiques humaines dans les pâturages, les zones forestières et les plantations est interannuelle plutôt qu'intra-annuelle [START_REF] Piketty | Multi-level Governance of Land Use Changes in the Brazilian Amazon: Lessons from Paragominas, State of Pará[END_REF].

3-La robustesse de la méthode pour différents paysages : Les résultats montrent que la méthode peut être appliquée aux mosaïques forêtagriculture dans des paysages au climat (tropical, tempéré) et au type de végétation contrastés (par exemple, forêts tropicales, arbustes, forêts de conifères et de feuillus). Les variables S-1 et S-2 ont été sélectionnées en fonction de leur importance respective dans chaque zone d'étude, ce qui a permis de mettre en évidence les variables et les périodes pertinentes pour les deux zones. Les cartes de l'occupation des sols des deux zones d'étude ont été produites avec un degré élevé de précision et un temps de traitement court. Les séries temporelles sont utilisées pour cartographier l'occupation des sols des mosaïques forêtagriculture, mais leur traitement nécessite une grande capacité de calcul. La méthode a permis de se concentrer sur des périodes et des variables spécifiques afin de réduire le temps nécessaire au traitement des images.

En conclusion, une procédure incrémentale basée sur le classement de l'importance des variables d'entrée dérivées des séries temporelles S-1 et S-2 a été utilisée pour distinguer les classes d'occupation des sols dans les mosaïques forêt-agriculture. La méthode a automatiquement sélectionné les variables pertinentes (bandes spectrales et/ou indices de végétation) et les périodes de temps pour classer les types d'occupation des sols dans ces paysages. Les résultats montrent que les données S-2 seules sont plus pertinentes que les données S-1 seules pour cartographier l'occupation des sols des mosaïques forêt-agriculture, et que la combinaison des données S-1 et S-2 améliore légèrement les résultats par rapport à ceux des données S-2 seules. L'utilisation d'indices polarimétriques, tels que l'indice SE, qui a déjà montré son potentiel pour la caractérisation de la végétation, peut améliorer les prédictions des données S-1 seules. En effet, les données RSO sont utiles dans les régions nuageuses : la forte couverture nuageuse dans la série temporelle S-2 a été la principale source d'erreurs de classification. Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

Ensuite, nous nous sommes focalisés sur la caractérisation des cultures avec l'étude du blé et du colza, qui sont deux des cultures les plus importantes au monde en termes de surface récoltée (FAO, 2017). Nous avons évalué le potentiel des données S-1 seules, des données S-2 seules et de la combinaison des données S-1 et S-2 pour identifier les stades phénologiques principaux et secondaires du blé et du colza en Picardie (France).

Plus spécifiquement, cette étude avait pour but d'évaluer l'intérêt des indicateurs polarimétriques dérivés des données S-1 et de déterminer le nombre et le type de variables S-1 et S-2 nécessaires pour discriminer les stades phénologiques du blé et du colza.

Nous avons estimé la performance des bandes spectrales et des indices de végétations dérivés de S-2 et des coefficients de rétrodiffusion et indicateurs polarimétriques dérivés de S-1. Les images satellites ont été classées en utilisant la méthode incrémentale développée dans l'étude précédente (Mercier et al. 2019b). Globalement, les résultats ont montré que l'utilisation combinée des données S- Plus précisément, ces recherches ont permis de mettre en exergue les quatre points suivants :

1-La relation entre les variables S-2 et les stades phénologiques du blé et du colza : Pour les deux types de cultures, les profils temporels des bandes S-2 sont conformes à ceux observés par [START_REF] Ashourloo | Automatic canola mapping using time series of sentinel 2 images[END_REF]. Une saturation a été observée de l'allongement de la tige à la floraison pour le blé et de la floraison au développement des fruits pour le colza. Cependant, il convient de noter que l'analyse des profils temporels a été effectuée à partir de 5 dates seulement en raison de la forte couverture nuageuse sur la zone d'étude entre les jours de l'année (DoY) 72 et 152, c'est-à-dire pendant l'élongation de la tige, la montaison et les premiers stades de floraison pour le blé et la floraison et le développement du fruit pour le colza. Wilson et al. (2014) ont mentionné la saturation du signal pour le blé et le colza avec l'utilisation de données hyperspectrales dans une plage de 400-900 nm et ont identifié des bandes optimales pour l'identification des cultures dans les longueurs d'onde du vert, du bord rouge et du proche infrarouge. Sur la base de cette étude et de nos observations, nous avons sélectionné les bandes S-2 3, 5, 6, 7, 8 et 8A comme entrée pour la classification incrémentale. Sur les profils temporels des indices de végétation et de l'ISF dérivés de S-2, l'écart-type atteint son maximum à la fin de l'inflorescence pour le blé et à la fin du développement du fruit pour le colza. Ainsi, l'hétérogénéité de la phénologie des cultures entre les champs au cours des enquêtes sur le terrain atteint un pic lors de l'élongation de la tige pour le blé et au début du développement du fruit pour le colza. Tous les indices de végétation saturent lorsque l'ISF est élevé (1-2 pour le blé et 3-4 pour le colza, selon l'indice de végétation), ce qui confirme les observations de Haboudane et al. (2004) pour le blé.

Pour le blé, les indices de végétation et l'ISF commencent à augmenter lorsque la teneur en chlorophylle augmente au stade du tallage. Ils diminuent tous pendant la maturation, au fur et à mesure que les plantes sèchent.

Pour le colza, des diminutions sont observées pendant la maturation en raison de la diminution de la teneur en chlorophylle au fur et à mesure que les plantes sèchent. L'ISF et le « Weighted Difference Vegetation Index » (WDVI) commencent à augmenter au début de l'inflorescence jusqu'au début de la floraison, au fur et à mesure de l'expansion de la surface des plantes. Le WDVI diminue pendant le développement des feuilles au fur et à mesure que celles-ci se déploient. 2013) qui ont observé une WC maximum au stade de l'élongation de la tige. Les deux polarisations augmentent pendant le tallage (DoY 18-72). L'augmentation du nombre de tiges par plante et de la longueur des tiges entraîne une augmentation de la polarisation VH, qui est dominée par des mécanismes de double rebond et de diffusion volumique [START_REF] Lopez-Sanchez | Estimating Phenology Of Agricultural Crops From Space[END_REF]Wiseman et al. 2014 ;Veloso et al. 2017) et une forte augmentation de la polarisation VV, qui est dominée par l'influence du sol et du couvert végétal. Tant que diminuent tout au long de l'élongation de la tige mais augmentent de l'inflorescence à la maturation, comme l'ont observé Fieuzal et al. (2013), en raison d'une augmentation de l'absorption des cultures lorsque la végétation est humide, et diminue lorsque la végétation s'assèche. La polarisation VV est atténuée par la transformation verticale de la structure du blé pendant l'élongation de la tige [START_REF] Brown | High-resolution measurements of scattering in wheat canopies-implications for crop parameter retrieval[END_REF]. Le rapport varie peu pendant les stades de tallage, ce qui ne permet pas d'identifier les stades phénologiques secondaires. Ce rapport est davantage corrélé à la biomasse fraîche qu'à l'activité photosynthétique (Veloso et al. 2017). Pour le colza, les polarisations VH et VV augmentent légèrement au cours du développement des feuilles à mesure que la biomasse augmente. Elles varient peu pendant l'inflorescence et diminuent pendant la floraison. En effet, la transformation verticale du colza atténue la polarisation VV, tandis que sa faible densité atténue la polarisation VH. Les deux polarisations augmentent du développement du fruit au début de la maturation, ce qui a également été observé dans d'autres études (Fieuzal et al., 2013 ;[START_REF] Lopez-Sanchez | Estimating Phenology Of Agricultural Crops From Space[END_REF]Wiseman et al., 2014 ;Veloso et al., 2017). Le développement progressif de la structure sans orientations privilégiées entraîne une géométrie plus complexe, induisant une forte augmentation du mécanisme de diffusion volumique (Betbeder et al. 2016b). Les polarisations VH et VV diminuent jusqu'à la fin de la maturation en raison de la diminution de la WC dans la couche supérieure du colza. La polarisation VV est particulièrement sensible à la WC de la végétation (Cookmartin et al. 2000), et la polarisation VH est atténuée par l'augmentation de la pénétration des ondes dans le sol. Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

3-La relation entre les indicateurs polarimétriques S-1 et les stades phénologiques du blé et du colza :

Pour les deux types de cultures, les comportements temporels du span, de et de sont similaires puisque le span correspond à la puissance totale difusée. Pour le blé, SE normalisée et l'intensité de l'entropie de Shannon ( ) normalisée augmentent d'abord lors du tallage mais diminuent ensuite pendant l'élongation de la tige et l'inflorescence. L'augmentation du normalisée est liée au développement de la tige pendant le tallage. Cette complexité de la structure de la plante augmente le désordre rencontré dans le signal RaDAR. Le contraire a été observé pendant l'élongation de la tige, en raison de la structure moins complexe du blé, ce qui entraîne une diminution de la puissance de rétrodiffusion. Betbeder et al. (2016) ont démontré une forte corrélation positive (r²=0,7) entre l'humidité de la surface et pendant le développement des feuilles et le tallage en raison d'une faible pénétration des ondes dans le sol. La polarisation de l'entropie de Shannon (

) normalisée varie peu dans un premier temps, mais augmente ensuite de manière significative pendant l'élongation de la tige, ce qui indique que la polarisation varie beaucoup en raison de l'hétérogénéité des structures végétales dans les champs de blé. normalisée diminue de façon linéaire de la fin de la floraison à la maturation, le blé devenant homogène à l'échelle du champ. SE normalisée et normalisée ont permis d'identifier le stade de développement des fruits, contrairement aux autres variables S-1, puisqu'elles diminuent légèrement au cours de ce stade.

Pour le colza, les changements temporels de SE normalisée et normalisée sont similaires à ceux observés sur le blé. Comme le mentionnent Betbeder et al. (2016), l'intensité de SE est sensible aux différents stades phénologiques. La légère augmentation de normalisée pendant la floraison est associée à des changements dans la structure du colza, ce qui entraîne une forte variation de la polarisation de rétrodiffusion (Betbeder et al. 2016b). L' normalisée augmente avec l'augmentation de la biomasse du colza ; ainsi, il augmente pendant la floraison et diminue pendant la maturation (Betbeder et al. 2016b).

4-Les contributions relatives des données S-1 et S-2 à la cartographie des stades phénologiques du blé et du colza :

En ce qui concerne la prédiction des principaux stades phénologiques du blé à l'aide des données S-2 seules, l'ISF est la variable la plus importante, suivie par le S2REP, le red-edge2 (B06), le WDVI, le NDVI et le red-edge1 (B05). Pour le colza, les variables les plus importantes sont le NDVI, le S2REP, la bande 3 (vert), l'ISF et le WDVI. Les stades phénologiques principaux et secondaires du blé et du colza ont été bien identifiés par l'indice ISF dérivé des données S-2, puisque cet indice est lié à la surface recouverte par la végétation verte. Les résultats de la classification incrémentale ont démontré la pertinence de l'indice S2REP pour les deux types de culture, ce qui est conforme aux résultats de Frampton et al. (2013). Le S2REP, qui est très sensible à la teneur en chlorophylle, est calculé à partir des bandes S-2 du red-edge qui réagissent à des changements importants de la réflectance des feuilles [START_REF] Hatfield | Application of Spectral Remote Sensing for Agronomic Decisions[END_REF]. L'importance des bandes rouges de S-2 a été démontrée pour l'estimation de l'IFS dans des parcelles cultivées, y compris le blé en Espagne et en Allemagne (Delegido et al. 2011b). Nous avions noté le potentiel du WDVI pour la prédiction des stades phénologiques du colza sur la base de notre analyse des profils temporels; il s'agit du seul indice sensible au stade de développement des feuilles. Wilson et al. (2014) ont expliqué que le colza avait une réflectance plus élevée dans les parties verte et rouge du spectre que les autres cultures en raison de ses fleurs jaunes.

Concernant la classification des stades phénologiques principaux et secondaires du blé en utilisant uniquement les données S-1 seules, le rapport s'est classé premier pour les deux cultures, tandis que s'est classé troisième. Des études antérieures ont démontré la pertinence des coefficients de rétrodiffusion ( , ) et du rapport de polarisation (

) pour l'estimation de la biomasse et de l'ISF du blé [START_REF] Dente | Assimilation of leaf area index derived from ASAR and MERIS data into CERES-Wheat model to map wheat yield[END_REF]Jin et al. 2015b ;Betbeder et al. 2016b) et du maïs [START_REF] Gao | Estimating the Leaf Area Index, height and biomass of maize using HJ-1 and RADARSAT-2[END_REF]. Veloso et al. (2017) ont conclu que l'influence du sol était réduite pour le blé en utilisant par rapport à et . Pour le colza, le rapport est la variable la plus importante en utilisant uniquement les données S-1 pour classer les stades phénologiques principaux et secondaires.

Le rapport s'est révélé très performant pour l'identification des principaux stades phénologiques des deux cultures, confirmant sa grande fiabilité pour l'identification des stades phénologiques principaux et secondaires.

Conformément aux résultats de Betbeder et al. (2016), les indicateurs polarimétriques sont importants pour le blé et le colza : plusieurs d'entre eux figurent parmi les 4 variables d'entrée sélectionnées sur la base du seuil défini automatiquement pour les prédictions des stades phénologiques principaux et secondaires des deux cultures.

et le span ont été sélectionnés pour prédire les stades phénologiques principaux du blé et a été sélectionné pour le colza, tandis que pour les stades phénologiques secondaires, la sélection comprenait et SE pour le blé et et SE pour le colza.

De façon générale, cette étude visait à évaluer le potentiel des données S-1 seules, des données S-2 seules, et leur utilisation combinée pour prédire les stades phénologiques du blé et du colza. Pour le blé, l'utilisation combinée des données S-1 et S-2 a été plus performante que l'utilisation des données S-1 ou S-2 seules pour détecter les principaux stades phénologiques du blé et du colza.

Les stades phénologiques secondaires du blé ont été mieux identifiés en utilisant les données S-2 qu'en utilisant les données S-1. Sur la base de l'écart-type de l'indice kappa moyen, des résultats similaires ont été obtenus en utilisant les données S-2 seules ou les données S-1 et S-2 combinées pour les stades phénologiques secondaires du blé. Le tallage est le stade phénologique principal et secondaire le plus précisément classé en utilisant les données S-1 seules, les données S-2 seules et leur utilisation combinée. Du DoY 18 à 72, le blé est au stade du tallage et un comportement temporel spécifique des variables S-1 et S-2 a été observé par rapport à tous les autres stades phénologiques. Cependant, le stade de tallage a été mieux identifié en utilisant les données de S-1 que celles de S-2, tandis que les stades de floraison, de développement du fruit et de maturation ont été mieux identifiés en utilisant S-2 que S-1. Le signal RSO est sensible à la géométrie (par exemple la rugosité, la texture, la structure interne) et à l'humidité des cibles observées, tandis que la réflectance optique est influencée par leur physiologie. Ainsi, nous pouvons conclure que le stade de tallage du blé a été mieux discriminé par la structure du champ de blé plutôt que par sa physiologie. À partir du stade de l'élongation de la tige, la géométrie du blé est verticale et varie peu jusqu'à la maturation, tandis que la teneur en chlorophylle augmente puis diminue. Ainsi, les variables S-2 sont plus efficaces que les variables S-1 pour discriminer ces stades phénologiques du blé. Pour les principaux stades phénologiques du blé, l'utilisation combinée des données S-1 et S-2 a permis d'améliorer la précision utilisateur (UA) du tallage, de l'élongation de la tige et de la maturation ; seule l'UA des stades d'élongation de la tige et de floraison a été inférieure à celle de S-2. Ceci est cohérent avec les études précédentes qui ont montré la saturation de la bande C [START_REF] El Hajj | Penetration Analysis of SAR Signals in the C and L Bands for Wheat, Maize, and Grasslands[END_REF]) et des bandes optiques [START_REF] Haboudane | Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture[END_REF]) à des niveaux élevés de biomasse de blé.

Pour les principaux stades phénologiques du colza, l'indice de kappa moyen en utilisant les données combinées S-1 et S-2 est plus élevé et fortement supérieur à ceux obtenus avec les données S-2 seules et les données S-1 seules respectivement. Pour les stades phénologiques secondaires, les résultats de l'utilisation combinée des données S-1 et S-2 sont similaires à ceux obtenus avec les données S-2 seules. Cependant, l'utilisation combinée des données S-1 et S-2 a permis d'augmenter la précision de l'identification du stade de développement des feuilles du colza grâce à des informations complémentaires sur la physiologie à partir de S-2 et la géométrie à partir de S-1. Le développement du fruit est le principal stade phénologique le plus difficile à identifier en utilisant les données S-1 seules et l'utilisation combinée des données S-1 et S-2, en raison de la confusion avec le stade de maturation. Les variables les plus importantes en utilisant les données S-1 seules sont , le et . L'analyse des profils temporels a montré que le rapport est stable entre le développement du fruit et la maturation, tandis que et augmentent légèrement. La structure des stades du colza est très similaire pendant le développement du fruit et la maturation, les éléments de la canopée étant orientées de manière aléatoire. Cette grande similitude peut s'expliquer par le fait que les observations sur le terrain ont été effectuées au cours de stades phénologiques successifs (c'est-à-dire la fin du développement du fruit (BBCH = 77 et 79) et le début et la fin de la maturation (BBCH = 80 et 89)). Cependant, bien que le développement du fruit ait été beaucoup mieux classé en utilisant les données S-1 et S-2 combinées (UA max = 0,87, précision producteur (PA) max = 0,75) qu'en utilisant les données S-1 seules (UA max = 0,32, PA max = 0,21), ce stade phénologique est le moins bien prédit. Les variables les plus importantes en utilisant des données combinées S-1 et S-2 sont dérivé de S-1 suivi du NDVI et du S2REP dérivés de S-2 et ensuite SE, le span, normalisée, et le et le dérivés de S-1. Ainsi, l'utilisation des données RSO S-1 entraîne une confusion accrue entre le développement du fruit et les stades de maturation. Le développement du fruit est le stade phénologique secondaire le plus difficile à identifier en utilisant uniquement les données S-1, tandis que le début et le milieu de la floraison sont les moins bien prédits en utilisant uniquement les données S-2 et les données combinées S-1 et S-2. Des erreurs de prédiction se sont produites entre les deux stades phénologiques secondaires de la floraison, le premier correspondant aux premières fleurs ouvertes et le second à la pleine floraison jusqu'à la fin de la floraison. Il convient de noter que cette période coïncide avec l'absence de données S-2 en raison de la couverture nuageuse, tandis que les profils temporels S-1 montrent peu de variation.

Les résultats de la classification obtenue avec l'utilisation combinée des données S-1 et S-2 ont mis en évidence la grande contribution des variables S-1 pour le colza. L'utilisation combinée des données S-1 et S-2 a permis de mieux identifier les principaux stades phénologiques du colza que les données S-2 seules ; en outre, l'identification du stade de développement des feuilles a été améliorée par l'ajout des variables S-1. Les résultats sont plus équilibrés pour les stades phénologiques secondaires du blé, car les résultats des données S-2 seules sont similaires à ceux obtenus avec des données S-1 et S-2 combinées, sauf pour le stade de tallage. Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

Nous avons ensuite poursuivi nos recherches sur la caractérisation des cultures en cherchant à évaluer le potentiel des images S-1 et S-2 pour estimer l'ISF, la biomasse humide (WB), la biomasse sèche (DB) et la WC du blé et du colza. En ce qui concerne les modèles basés sur S-1, le rapport s'avère être la variable la plus pertinente pour l'ISF du blé et la biomasse du colza, et la contribution de la polarisation SE la plus performante pour la WC du blé. Les résultats obtenus en utilisant les variables S-2 étaient similaires ou supérieurs à ceux obtenus en utilisant les caractéristiques S-1 pour l'estimation des paramètres biophysiques des cultures de blé et de colza.

Pour le blé, les corrélations les plus élevées en utilisant les variables S-1 étaient le ratio avec l'ISF (R² = 0,91) et la contribution de la polarisation de SE avec la WC (R² = 0,78), tandis que les meilleurs modèles basés sur S-2 ont été obtenus en utilisant la bande verte pour la WC (R² = 0,82), la bande proche infrarouge 8 pour l'ISF (R² = 0,91), l'indice WDVI pour la DB (R² = 0,72) et l'indice MTCI pour la WC (R² = 0,71). Pour le colza, les corrélations les plus élevées étaient le rapport et la contribution de la polarisation de SE avec la WB et la DB (R² ajusté > 0,75), tandis que les bandes SWIR de S-2 semblaient prometteuses pour l'estimation de la DB (R² ajusté = 0,85) et de la WB (R² ajusté = 0,77). Les résultats ont également mis en évidence, pour la première fois, l'importance des indicateurs polarimétriques (SE et portée) dérivés des séries temporelles de S-1 pour l'estimation des paramètres biophysiques des cultures de blé et de colza. Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

Sur la base des résultats obtenus dans les deux études précédentes, nous avons cherché à évaluer l'impact de la structuration spatio-temporelle des mosaïques paysagères forêtagriculture sur la biodiversité.

Pour cela, nous avons analysé l'influence de l'hétérogénéité biophysique sur la phénologie du blé et la biodiversité qui y est associée sur les sites en Bretagne, en Picardie et en Wallonie. L'indice de végétation WDVI a été utilisé comme métrique de l'hétérogénéité biophysique et indicateur de la phénologie du blé. D'abord, nous avons analysé les relations entre la mosaïque des cultures, le grain du paysage et l'hétérogénéité biophysique. Puis, nous avons étudié l'effet de l'hétérogénéité biophysique sur la phénologie du blé. Enfin, la distribution des espèces de carabes a été estimée en utilisant la métrique d'hétérogénéité biophysique.

Les résultats ont montré que le grain du paysage et le gradient de mosaïque des cultures était fortement corrélés (R² ajusté maximum = 0.81). En ce qui concerne l'analyse conjointe de tous les sites, l'hétérogénéité biophysique était bénéfique pour la phénologie du blé pendant la période de maturation. L'analyse par site a montré que l'hétérogénéité biophysique était bénéfique pour la croissance du blé dans le grain fin mais la désavantageait dans les paysages de plein champ tant pendant la période d'extension de la tige que la maturation. La métrique d'hétérogénéité biophysique a permis d'estimer avec précision la distribution des espèces de carabes (R² ajusté maximum = 0,62). Cette étude a souligné l'intérêt d'utiliser les données S-2 pour comprendre la dynamique du blé et la biodiversité qui lui est associée.

Plus précisément, ces recherches ont permis de mettre en exergue les six points suivants:

1-L'intérêt de l'utilisation de la télédétection pour caractériser les paysages : Les images de télédétection gratuites, telles que les données Sentinel, permettent de remédier aux limites de la collecte de données et au coût financier des images. [START_REF] Crowley | ont recommandé de passer d'indices catégoriels à des valeurs continues pour les évaluations d'habitats afin de mieux évaluer les impacts des changements de paysages sur la biodiversité et de quantifier les erreurs dans les modèles d'écologie des paysages[END_REF] ont passé en revue les recherches sur l'écologie du paysage des cinq dernières années et ont identifié les contributions futures de la télédétection à l'écologie du paysage. Sur la base de cette revue, les innovations de notre étude sont l'utilisation d'un suivi intraannuel pour analyser les paysages, la comparaison de différents paysages et l'utilisation de valeurs continues (WDVI) plutôt que de classes discrètes.

Les séries temporelles S-2 permettent de suivre régulièrement la dynamique des paysages à une échelle fine. L'utilisation d'une variété de zones d'étude a généré un gradient continu du paysage, ce qui nous a permis d'identifier des modèles de paysage qui se développent le long des gradients, alors que chaque paysage conservait sa propre identité. Cela contraste avec de nombreuses études qui mettent en commun des données provenant de différents paysages sans les rendre distinctes dans l'analyse (par exemple, [START_REF] Alignier | Configurational crop heterogeneity increases within-field plant diversity[END_REF].

Dans notre étude, les modèles de paysage sont apparus en raison de la diversité des paysages. Il est difficile de cartographier la mosaïque des cultures de manière précise et cohérente en utilisant des images satellites de différentes zones d'étude ou à grande échelle. La précision d'une carte peut être mesurée en utilisant des estimateurs de qualité (par exemple, l'indice de kappa, la précision globale, le F-score). Néanmoins, l'évaluation de la précision dépend en grande partie des données de validation, et l'incertitude est inévitable en raison des erreurs de classification qui se produisent à différents stades de la production Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

principalement des prairies et des proportions variables de blé et de maïs. Les paysages à grains grossiers se trouvaient en Wallonie-Sud, en Wallonie-Nord-Est et en Picardie-Ouest, qui contenaient principalement de la betterave et du blé. Le grain des paysages des six zones d'étude apparaît le long du gradient de la mosaïque de cultures puisqu'il représente un gradient allant des prairies et du maïs, au blé et à la betterave (figure . Les deux facteurs, grain paysager et mosaïque de cultures, sont toutefois confondus, de sorte que leurs effets sur la phénologie du blé peuvent être soit confondus, soit complémentaires.

3-Les effets de l'hétérogénéité biophysique sur la phénologie du blé : Sur la base de l'analyse combinée de tous les sites, l'hétérogénéité biophysique (WDVI SD) a eu un effet positif sur la croissance du blé (Diff WDVI) pendant la période de maturation, puisque la Diff WDVI a diminué alors que la WDVI SD a augmenté. L'hétérogénéité biophysique provoque des flux d'énergie latéraux qui favorisent la croissance du blé. Cependant, l'analyse des sites individuels a montré que l'hétérogénéité biophysique (WDVI SD) semble être bénéfique à la croissance du blé dans les paysages à grains fins, mais qu'elle est un inconvénient dans les paysages à grains grossiers. Ainsi, les flux sont des échanges bénéfiques dans les paysages à grains fins mais sont des perturbations dans les paysages à grains grossiers. Ce phénomène s'explique probablement par la nature des flux dans chaque paysage. [START_REF] Alford | The effect of landscape complexity and microclimate on the thermal tolerance of a pest insect[END_REF] ont constaté que les paysages ouverts sont plus chauds que les paysages complexes, qui ont des températures plus extrêmes et plus variables. Les températures locales augmentent parce que le paysage à grains grossiers est exposé à plus de rayonnement à ondes courtes pendant la journée [START_REF] Chen | Microclimate in Forest Ecosystem and Landscape EcologyVariations in local climate can be used to monitor and compare the effects of different management regimes[END_REF]. Dans les paysages à grains fins, les haies fonctionnent comme des brise-vent qui réduisent la vitesse du vent local et augmentent l'humidité relative en condensant l'air frais et dense [START_REF] Kort | Benefits of windbreaks to field and forage crops[END_REF]. [START_REF] Alford | The effect of landscape complexity and microclimate on the thermal tolerance of a pest insect[END_REF] ont observé que le passage de l'hiver au printemps augmentait la croissance de la végétation et amortissait les températures. Les différences entre les paysages diminuent, mais les paysages à grains fins restent plus froids que les paysages à grains grossiers. Les différences de température entre le jour et la nuit sont plus importantes les jours ensoleillés, et les bois interceptent le rayonnement solaire, ce qui réduit l'amplitude de la température diurne [START_REF] Zellweger | Advances in Microclimate Ecology Arising from Remote Sensing[END_REF]. Ainsi, l'hétérogénéité biophysique dans les paysages à grain grossier provoquerait des flux de température et des températures extrêmes qui réduisent la croissance du blé.

4-L'importance de l'échelle du paysage : Les relations entre le gradient de la mosaïque des cultures et l'hétérogénéité biophysique (WDVI SD) avaient un R² ajusté plus élevé à des échelles plus grandes. À mesure que l'échelle d'analyse augmentait, la variabilité au sein de chaque zone d'étude diminuait, mais la variabilité entre les zones d'étude augmentait. Ainsi, si une relation existe entre deux mesures analysées dans des fenêtres, elle sera plus forte à des échelles plus grandes. La structure du paysage a influencé les changements dans le blé au sein du champ. Pour tous les sites, les échelles qui expliquaient le plus de variance avaient un rayon supérieur à 1505 m, sauf pour la période d'extension des tiges en 2017. Pour certains sites, les échelles de 255 et 505 m ont montré des relations significatives entre l'hétérogénéité biophysique (WDVI SD) et la phénologie du blé (Diff WDVI) pendant la maturation du blé en 2017 et 2018. Toutefois, ces échelles n'étaient plus présentes lorsque tous les points d'échantillonnage des six zones d'étude ont été pris en compte. À mesure que l'étendue des cartes WDVI SD augmentait, les valeurs de WDVI SD devenaient plus homogènes. À l'échelle européenne, la diversité des Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

L'objectif de la thèse était double : 1) évaluer comparativement les séries temporelles optiques S-2 et RSO S-1 pour identifier et caractériser les éléments constitutifs des continuités écologiques en utilisant les classifications d'occupation des sols et d'utilisation des sols et la caractérisation des cultures dans les paysages boisés et dominés par les cultures, 2) évaluer l'influence de la structuration spatio-temporelle de ces mosaïques de paysages sur la biodiversité en utilisant les mesures dérivées des séries temporelles S-2.

Nous avons exposé dans la première partie de la thèse les défis posés par l'écologie paysagère et la télédétection appliquées aux continuités écologiques.

La deuxième partie a consisté en une évaluation comparative du potentiel des variables dérivées des données S-1 et S-2 pour identifier et caractériser les éléments constituant les continuités écologiques dans les paysages boisés. L'occupation et l'utilisation des sols ont été identifiées et caractérisées dans des mosaïques forêt-agriculture au Brésil et en Espagne.

Dans une troisième partie, nous avons évalué de manière comparative le potentiel des variables dérivées des données S-1 et S-2 pour identifier et caractériser les éléments constituant les continuités écologiques dans des paysages dominés par les cultures. Les capteurs S-1 et S-2 ont également été évalués pour estimer les stades phénologiques et des variables biophysiques dans les cultures de blé et de colza.

Une quatrième partie a été consacrée à l'analyse des relations entre les cartes des mesures du paysage dérivées des images Sentinel et les données relevées sur les espèces. Nous avons analysé l'influence de l'hétérogénéité biophysique dérivée de S-2 sur la phénologie du blé et la distribution de deux espèces de carabes agricoles dans six paysages dominés par des cultures.

Plus précisément, la deuxième partie de la thèse visait à répondre à la question : Quels sont les capteurs et les variables Sentinel les plus efficaces pour identifier les éléments potentiellement constitutifs des continuités écologiques dans les paysages boisés ?

Pour répondre à cette question, nous avons évalué le potentiel des données S-1 seules, des données S-2 seules et des données S-1 et S-2 combinées pour identifier et caractériser les types d'occupation des sols dans des paysages de mosaïque forêt-agriculture. L'étude s'est concentrée sur deux paysages boisés présentant des gradients de végétation contrastés : un paysage montagneux tempéré dans la monts cantabriques (Espagne) et un paysage forestier tropical humide à Paragominas (Brésil). Bien que ces mosaïques de paysages soient très différentes, elles ont des fonctions écologiques similaires (conservation de la biodiversité et stockage du carbone). Les images satellites ont été classées selon une procédure incrémentielle basée sur le rang d'importance des variables d'entrée dérivées des séries temporelles S-1 et S-2. Les données S-2 seules ont donné de meilleurs résultats (indice kappa moyen = 0,59-0,83) que les données S-1 seules (indice kappa moyen = 0,28-0,72), tandis que la combinaison des deux types de données a légèrement amélioré les résultats (indice kappa moyen = 0, [START_REF] Baudry | Hedgerows: An international perspective on their origin, function and management[END_REF]. La méthode utilisée permet de définir le nombre et le type de variables qui discriminent de manière optimale les classes d'utilisation des terres en fonction du type de paysage considéré. La troisième partie de la thèse visait à répondre à la question : Quels sont le capteur et les variables Sentinel les plus efficaces pour identifier et caractériser les éléments constitutifs potentiels des continuités écologiques dans les paysages dominés par les cultures ? Cette partie se concentre sur la caractérisation des cultures avec l'étude du blé et du colza, qui sont deux des cultures les plus importantes au monde en termes de surface récoltée.

Nous avons évalué le potentiel des données S-1 seules, des données S-2 seules et des données S-1 et S-2 combinées pour identifier les stades phénologiques principaux et secondaires du blé et du colza en Picardie (France). Plus spécifiquement, le but de cette étude était d'évaluer l'intérêt des indicateurs polarimétriques dérivés des données S-1 et de déterminer le nombre et le type de variables S-1 et S-2 nécessaires pour discriminer les stades phénologiques du blé et du colza. Nous avons estimé la performance des bandes spectrales et des indices de végétation dérivés de S-2 et des coefficients de rétrodiffusion et des indicateurs polarimétriques dérivés de S-1. Les images satellites ont été classées en utilisant la méthode incrémentale développée dans l'étude précédente (Mercier et al. 2019b). Les résultats ont montré que l'utilisation combinée des données S-1 et S-2 (kappa moyen = 0,53-0,82 et 0,74-0,92 pour le blé et le colza, respectivement) offrait une plus grande précision que l'utilisation des données S-1 seules (kappa moyen = 0. 48-0,61 et 0,61-0,64 pour le blé et le colza, respectivement) ou S-2 seules (kappa moyen = 0,54-0,75 et 0,67-0,86 pour le blé et le colza, respectivement) pour l'identification des stades phénologiques principaux et secondaires. Les variables les plus importantes étaient le ratio et les indicateurs polarimétriques pour S-1 et les indices NDVI et S2REP et la variable biophysique, ISF, pour S-2. Dans l'ensemble, cette étude a souligné l'intérêt des indicateurs polarimétriques et de l'utilisation combinée des données S-1 et S-2 pour suivre la phénologie du blé et du colza.

Nous avons ensuite poursuivi nos recherches sur la caractérisation des cultures en évaluant le potentiel des images S-1 et S-2 pour estimer l'ISF, la WB, la DB et la WC du blé et du colza. Nous avons comparé le pouvoir prédictif de 22 variables optiques S-2 (10 bandes spectrales et 12 indices de végétation) et de 7 variables RSO S-1 (2 coefficients de rétrodiffusion, 1 rapport et 4 indicateurs polarimétriques) en utilisant la régression par processus gaussien (GPR). Cette étude, appliquée à la zone d'étude de la Bretagne, a montré le potentiel des données S-1 et S-2 pour estimer ces 4 paramètres de culture pour le blé et le colza. La performance des variables S-2 est équivalente ou supérieure à celle des variables S-1. Les meilleurs modèles obtenus avec S-1 utilisent les bandes verte, PIR et les indices de végétation respectivement pour l'ISF (R² ajusté = 0,91), la biomasse (R² ajusté > 0,70) et la WC (R² ajusté = 0,82) du blé, et les bandes infraouge-courtes pour la DB (R² ajusté = 0,85) et la WB (R² ajusté = 0,77) du colza. Pour les variables S-1, le ratio était le plus pertinent pour l'ISF du blé (R² ajusté = 0,91) et la biomasse du colza (R² ajusté > 0,75), par rapport à SE pour la WC du blé (R² ajusté = 0,78). Tout en confirmant l'intérêt des données S-2, les résultats ont mis en évidence, de manière inédite, l'importance des indicateurs polarimétriques dérivés de S-1 pour l'estimation des paramètres biophysiques du blé et du colza.

Enfin, la quatrième et dernière partie de la thèse visait à répondre à la question : Quel est l'impact de la structuration spatio-temporelle du paysage sur la phénologie des cultures et la biodiversité dans les paysages dominés par les cultures ?

Sur la base des résultats obtenus dans la partie précédente, nous avons évalué l'impact de la structuration spatio-temporelle de la mosaïque de cultures sur la biodiversité. Pour cela, nous avons analysé l'influence de l'hétérogénéité biophysique sur la phénologie du blé et la biodiversité associée dans les zones d'étude de Bretagne, de Picardie et de Wallonie.

L'indice de végétation nommé WDVI calculé à partir des données S-2 a été utilisé comme mesure de l'hétérogénéité biophysique et comme indicateur de la phénologie du blé. Nous avons d'abord analysé les relations entre la mosaïque des cultures, le grain du paysage et l'hétérogénéité biophysique. Ensuite, nous avons étudié l'effet de l'hétérogénéité biophysique sur la phénologie du blé. Enfin, la distribution de deux espèces de carabes a été estimée en utilisant la métrique de l'hétérogénéité biophysique. Les résultats ont montré que les gradients de la mosaïque des céréales et des cultures étaient fortement corrélés (R² maximum ajusté = 0,81). Pour l'analyse conjointe de tous les sites, l'hétérogénéité biophysique a été bénéfique pour la phénologie du blé pendant la période de maturation. L'analyse par site a montré que l'hétérogénéité biophysique était bénéfique pour la croissance du blé à grain fin mais la défavorisait dans les paysages de plein champ tant pendant la période d'extension des tiges que pendant la période de maturation. La mesure de l'hétérogénéité biophysique a été utilisée pour estimer avec précision la distribution de deux espèces de carabes (R² maximum ajusté = 0,62). Cette étude a souligné l'intérêt d'utiliser les données S-2 pour comprendre la dynamique du blé et la biodiversité associée. D'une façon générale, cette thèse a permis d'évaluer le potentiel des séries temporelles optiques S-2 et RSO S-1 pour identifier et caractériser les continuités écologiques dans des paysages boisés et dominés par les cultures. Plus spécifiquement, nous avons montré que bien que les données S-2 soient plus appropriées que les données S-1 pour discriminer les types d'occupation et d'utilisation des terres ainsi que les stades phénologiques et les variables biophysiques du blé et du colza, l'utilisation combinée des données S-1 et S-2 améliore la précision des classifications, les données S-1 montrant également un grand intérêt pour les zones nuageuses. Nos recherches ont également montré l'intérêt des indicateurs polarimétriques dérivés des données S-1 pour caractériser les cultures de blé et de colza insérées dans des paysages dominés par les cultures. Enfin, cette thèse a mis en évidence l'intérêt de la métrique d'hétérogénéité biophysique dérivée des données S-2 qui a permis d'estimer précisément la distribution de deux espèces de carabes. La mosaïque de cultures peut être considérée comme une infrastructure verte pour gérer la biodiversité à l'échelle du paysage. La mesure de l'hétérogénéité biophysique dérivée des images S-2 est continue, cohérente entre les lieux et les types de cultures et capable de traiter des questions écologiques en utilisant des images satellites gratuites disponibles partout sur la Terre.

Sur la base de ces résultats, nous mettons également en évidence plusieurs questions qui doivent être abordées dans le cadre des travaux en cours et futurs.

Concernant la combinaison des données S-1 et S-2 pour identifier les éléments constitutifs des continuités écologiques, les méthodes de fusion utilisées dans cette thèse sont appelées fusion de bas niveau ou de pré-classification car elles consistent à combiner des variables "brutes" optiques et RSO. Les fusions de haut niveau (ou fusions de postclassification) consistent à combiner des informations extraites de jeux de données indépendants. Par exemple, dans le cas des cartes d'occupation des sols, les classes les mieux identifiées par les données S-2 seules et les données S-1 seules pourraient être combinées pour former une carte finale. Cependant, cette méthode nécessite une analyse initiale des classifications dérivées de chaque ensemble de données indépendant et une prise de décision adaptée à l'objectif de l'étude pour obtenir une carte finale pertinente. Par conséquent, il serait intéressant d'évaluer comparativement les méthodes de fusion avec différents niveaux sémantiques afin d'optimiser la fusion des données RSO et optiques pour identifier et caractériser les éléments constitutifs des continuités écologiques. dire la carte dérivée de l'utilisation combinée des données S-1 et S-2. Ces mesures du paysage correspondent à l'hétérogénéité du paysage, au grain du paysage et aux interfaces entre les types d'occupation des sols. Les premiers résultats ont montré que la proportion d'ours bruns augmente avec le grain fin et diminue avec l'hétérogénéité du paysage.

Dans l'ensemble, les interfaces contenant la classe "sol nu" ont un effet négatif sur la proportion d'ours bruns, tandis que les interfaces comprenant des surfaces boisées ont un effet positif.

Des perspectives se sont dégagées de ces premiers résultats et des travaux complémentaires seront effectués en étroite collaboration avec l'équipe espagnole du projet WOODNET. Nous prévoyons d'analyser plus profondémment le choix des paramètres d'entrée du modèle en supprimant les métriques d'interface incluant des types d'occupation des sols mal classés (eau et surfaces artificielles), et de créer de nouvelles métriques paysagères en combinant d'autres d'occupation des sols (formations arbustives/sol nu) à différentes échelles spatiales.

Enfin, la base de données que nous avons développée dans la deuxième partie de cette thèse pour caractériser le blé et le colza sera bientôt disponible dans un document de données afin de partager plus largement les données avec la communauté scientifique Abstract : Habitat loss is now considered one of the most serious threats to biodiversity. While many studies have focused on the circulation role of woodland features, very few have focused on the role of ecological continuities within agricultural mosaics. The objectives of this thesis were (1) to assess the combined use of Sentinel 1 and 2 time series to identify and characterize the elements of ecological continuities through land cover classifications and crop characterization in wooded and cropdominated landscapes and (2) to estimate the impact of the spatio-temporal structuring of these landscape on biodiversity using metrics derived from Sentinel time series. The results showed that although S-2 data are more adapted than S-1 data to discriminate between land cover/land use types in wooded landscapes and phenological stages of wheat and rapeseed in crop-dominated landscapes, the combined use of S-2 and S-1 data improves their accuracy of the classifications, with S-1 data also showing a strong interest in cloudy areas. They also showed the interest of polarimetric indicators derived from S-1 data to characterize wheat and rapeseed crops. Finally, they highlighted the interest of the biophysical heterogeneity metrics derived from S-2 data to accurately estimate the distribution of carabid beetle species. The use of this metric, calculated with free images available everywhere on Earth, continuous and consistent from one site to another and from one type of crop to another, should contribute to the study of the impact of ecological continuities on biodiversity.

  , Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.
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 12 Figure 1-2. Elements composing an ecological continuity. Source: Bennett 2004.
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 15 Figure 1-5. Carabid movements between maize and pea fields, and crop vegetation height from May to September. Source: Burel et al. 2013

  Heavy pressure has been exerted on Brazil since the Earth Summit in Rio to conserve forests. The State has implemented numerous environmental measures such as the Satellite Project to Monitor Deforestation in Legal Amazonia (PRODES) in 1988, the creation of the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA) in 1989, the Action Plan for the Prevention and Control of Deforestation in the Legal Amazon (PPCDAm) in 2004, the "Black list" published by the Brazilian Ministry of Environment in 2007 (subject municipalities with the highest deforestation to restrictions such as access to agricultural credits) and the National Policy for the Restoration for Native Vegetation Recovery Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.
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 16 Figure 1-6. National synthesis of regional "trames vertes". This map shows the ecological continuities identified within the framework of regional ecological coherence schemes (SRCE) in metropolitan France.. "Réservoirs de biodiversité" = Biodiversity reservoirs. "Corridors écologiques" = Ecological corridors. Source: https://inpn.mnhn.fr/
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 17 Figure 1-7. Ecological continuities adopted by the Walloon government. Massifs forestiers feuillus = deciduous forest massifs. Pelouses calcaires et milieux associés = limestone grasslands and associated environments. Crêtes ardennaises = Ardennes ridges. Hautes vallées ardennaises = high Ardennes valleys. Plaines alluviales = alluvial plains. Source: http://environnement.wallonie.be/legis/consnat/cons070.htm

  ) be specially dedicated to the protection and maintenance of biological diversity, geodiversity and associated natural and cultural resources. At the state level, these areas are classified into five categories (Parks, Nature Reserves, Protected Marine Areas, Natural Monuments and Protected Landscapes), while autonomous communities use more than forty different designations. Examples of areas protected by international instruments in Spain are Wetlands of International Importance under the Ramsar Convention, Protected Areas under the Convention for the Protection of the Marine Environment of the North-East Atlantic (OSPAR), Biosphere Reserves declared by UNESCO, and Biogenetic Reserves of the Council of Europe. A national register listing the various protected areas is being prepared as a result of the 2007 law (https://www.miteco.gob.es/). Ecological corridors between Natura 2000 areas were identified by a team of researchers from the ETSI of Forestry and Environment of the Polytechnic University of Madrid (UPM) in collaboration with the WWF (De la Fuente et al. 2018).Figure 1-8 shows the map of the ecological continuities to be conserved and restored (De la Fuente et al. 2018).
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 18 Figure 1-8. Priority connectors for conservation and restoration for the network of Natura 2000 woodland sites in mainland Spain. Source: De la fuente et al. (2018)
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 2 Figure 2-). Passive sensors record radiations emitted by an external source, either solar or thermal radiations emitted from the Earth. On the contrary, active sensors emit radiations and record their returns. These types of sensors emit microwaves in the case of SAR sensor and optical laser pulses in the case of Light Detection And Ranging (LiDAR) sensor. Radiations are absorbed, transmitted and reflected differently depending on the materials encountered and the part reflected to the atmosphere is registered by airborne, UAV or spaceborne sensors.
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 21 Figure 2-1. Electromagnetic spectrum and related fields, By Philip Ronan, file licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.

  -2). Spectral resolution is the ability Chapter 2 -The use of remote sensing imagery for the identification and characterization of ecological continuities 27 Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.
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 22 Figure 2-2. Different spatial resolutions (10cm -8m) for the same landscape. Source: Wegmann et al. 2016.
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 23 Figure 2-3. Spectral signatures of dry and green vegetation. Source: Clark 1999.
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 2 The use of remote sensing imagery for the identification and characterization of ecological continuities29Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.
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 24 Figure 2-4. Main diffusers of vegetation according to SAR bands. Souce: Le Toan 2007
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 25 Figure 2-5. SAR imaging geometry in strip-map mode. and =physical dimensions of the antenna, =Velocity, H=Height, =incidence angle, r="slant-range", x="ground range", y="azimuth range", =distance between the sensor and the antenna footprint center, =range swath, =azimuth swath. Source: Lee and Pottier 2009

  -6Figure 2-7). Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.
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 26 Figure 2-6. Illustration of distortion effects. Source: Lillesand et al. 2015.
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 27 Figure 2-7. Geometric distortions observed in SAR images. Adapted from Toth et al. 2014.
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 28 Figure 2-8. The main scattering mechanisms.

  are used to extract the different scattering mechanisms of targets to better discriminate objects. Canonical targets are used to partially analyze the results of polarimetric decompositions. The aim is to analyze an incoherent matrix, such as or , and to translate it into a sum of matrices associated with canonical targets. The best known decompositions are the Freeman-Durden (Freeman and Durden 1998) based on the matrix and the Cloude and Pottier (Cloude and Pottier 1996) based on the matrix. The first decomposition aims to separate the scattering mechanisms. As the penetration capacity increases with the wavelength, the induced mechanisms differ according to the SAR sensors (Figure 2-9).Figure 2-10 gives an example of a classification processed by Cloude and Pottier based on the Freeman-Durden decomposition (Lee and Pottier 2009). Specular returns occur on smooth surfaces such as still water. Surface scattering occurs on more or less rough surfaces such as water or bare soil. Double bounce is produced by two locally orthogonal surfaces. Finally, the volume scattering is observed on objects with complex structures such as trees.Figure 2-10 shows that surface scattering corresponds to the ocean and the specular returns are due to the small incidence angles on the ocean surfaces and are scattered in city blocks. Volume scattering correspond to trees and vegetation. Finally, double bounce show street patterns associated with the city blocks and are scattered in park areas (Lee and Pottier 2009). Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.
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 29 Figure 2-9. Example of scattering mechanisms on a wetland landscape with different wavelengths. Short wavelength = X-band and C-band, Long wavelenght = L-band. Source: Wohlfart et al. 2018.
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 210 Figure 2-10. Classification map using the Freeman and Durden decomposition and dominant scattering properties. San Francisco image taken by the airborne system AIRSAR (Lee and Pottier 2009).
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 31 Figure 3-1. Location of the Cantabrian range study area. Satellite imagery accessed through Bing Aerial (Microsoft® Bing™ Maps).
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 32 Figure 3-2. Location of Paragominas. Image Landsat Copernicus (© 2020 Google).
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 33 Figure 3-3. Location of the study areas of Picardy. Aerial photographs accessed through Bing Aerial (Microsoft® Bing™ Maps).
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 34 Figure 3-4. Location of the study area of Britanny. Satellite images accessed through Bing Aerial (Microsoft® Bing™ Maps).
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 35 Figure 3-5. Location of the study areas of Wallonia. Aerial photographs accessed through Bing Aerial (Microsoft® Bing™ Maps).

  ha. Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.
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 36 Figure 3-6. Location of crop parameters field surveys in Picardy. Satellite images and aerial photographs accessed through Bing Aerial (Microsoft® Bing™ Maps).
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 37 Figure 3-7. Location of crop parameters field surveys in Brittany. Satellite images and aerial photographs accessed through Bing Aerial (Microsoft® Bing™ Maps).
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 41 Figure 4-1.Location of (a) the Spanish study area (© EuroGeographics for the country boundaries) and (b) the Brazilian study area (© 2018 GADM for the state boundaries).

  Part II -Identification and description of land cover types in forest-agriculture mosaics using Sentinel-1 and -2 time series 70 Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.
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 42 Figure 4-2. Flowchart of the image processing procedure.

  . Vegetation indices calculated from S-2 images for the Spanish study area. B= Blue band, G = Green band, R = Red band.
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 43 Figure 4-3. Mean kappa index of the incremental classifications for S-1 data alone (green), S-2 data alone (red), and combined Sentinel-1 & 2 data (blue) as a function of the number of input features for (a) the Spanish study area and (b) the Brazilian study area.
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 44 Figure 4-4. Mean rank of importance of the most important features for S-2 data alone for (a) the Spanish study area and (b) the Brazilian study area.
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 4546 Figure 4-5. Mean rank of importance of the most important features for S-1 data alone for (a) the Spanish study area and (b) the Brazilian study area.
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 47 Figure 4-7. Mean percentage of pixels confused per pair of classes in relation to the total number of misclassified pixels using (a) the top 20 S-1 features and (b) the top 10 S-2 features of the Spanish study.Using the S-1 features for the Brazilian study area, most forested areas and young secondary forests pair of classes was confused, unlike the other pairs of classes, including forested areas vs. pastures (Figure4-8a). Using the S-2 features, cropland vs. bare soils, pastures vs. young secondary forests, and forested areas vs. young secondary forests were
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 48 Figure 4-8. Mean percentage of pixels confused per pair of classes in relation to the total number of misclassified pixels using (a) the top 10 S-1 features area and (b) the top 7 S-2 features of the Brazilian study area.
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 49 Figure 4-9.Classification of the Spanish study area using combined Sentinel-1 & 2 data.
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 4 Figure 4-10. Classification of the Brazilian study area using combined Sentinel-1 & 2 data.
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  (Jamoneau 2010)). The topography of the study area is quite flat, elevation of the "bocage" and open field landscapes ranging from 125 to 224 m (mean = 180 m) and 72 to 158 m (mean = 114 m), respectively. The geological substrate is composed of chalk in the open field landscape and silt in the "bocage" landscape (Jamoneau 2010).
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 51 Figure 5-1. Location of the two sub-sites of the study area (bocage at the top, open field at the bottom) and the sampled fields. Satellite imagery and aerial photographs accessed through Bing Aerial using OpenLayers QGIS plugin 1.4.8 (Microsoft®Bing™Maps).
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 53 Figure 5-3. Flowchart of the image processing procedure applied to S-1 and S-2 time series to identify wheat and rapeseed secondary phenological stages.
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 54 Figure 5-4. Detailed flowchart of the incremental classification procedure applied to S-1 data alone, S-2 data alone and combined S-1 & 2 data.
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 5 . Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.
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 55 Figure 5-5. Mean temporal profiles of S-2 reflectance and main phenological stages for (a) wheat and (b) rapeseed (Bleiholder, et al. 2001) (B02 = blue, B03 = green, B04 = red, B05 = Red-edge 1, B06 = Red-edge 2, B07 = Red-edge 3, B08 = NIR wide, B8A = NIR narrow, B11= SWIR1, B12= SWIR2).
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 56 Figure 5-6. Mean temporal profiles of S-2 vegetation indices and LAI and main crop phenological stages for wheat and rapeseed (Bleiholder, et al. 2001). Error bars indicate 1 standard deviation.

  -7). VH and VV polarizations increased slightly during leaf development, varied little during inflorescence and decreased during flowering. Both polarizations increased Chapter 5 -Evaluation of Sentinel-1 and 2 time series for predicting wheat and rapeseed phenological stages 103 Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020. from development of fruit to the beginning of ripening. They decreased until the end of ripening. Like for wheat, the temporal profiles of span, and for rapeseed were similar. varied little throughout the rapeseed cycle. Temporal changes in and were similar to those of wheat, increased during flowering and decreased during ripening. SAR S-1 features were more sensitive to the development of fruit stage for rapeseed (Figure 5-7) than optical S-2 features, which saturated from development of fruit (DoY 86) to beginning of ripening (DoY 163) (Figure 5-5 and 6).
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 57 Figure 5-7. Mean and standard deviation of the S-1 backscattering coefficients and polarimetric indicators and main crop phenological stages for wheat and rapeseed (Bleiholder, et al. 2001) (VH = , VV = , VH:VV = , = total scattered power, = normalized SE, = normalized SE Intensity, = normalized SE Polarization). Error bars indicate 1 standard deviation.
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 58 Figure 5-8. Mean kappa index of incremental classifications of principal phenological stages for S-1 data alone, S-2 data alone, and combined Sentinel-1 & 2 data as a function of the number of input features for (a) wheat and (b) rapeseed. The dashed lines indicate the number of features automatically selected for the predictions. The combined use of S-1 & 2 data outperformed use of S-1 or S-2 data alone in detecting the principal crop stages of wheat and rapeseed.
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 15 -9e), the top 3 features were NDVI, S2REP and band 3 (green) (mean ranks of 1.4, 2.Evaluation of Sentinel-1 and 2 time series for predicting wheat and rapeseed phenological stages 105 Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.
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 59 Figure 5-9. Mean rank of importance of the most important features to identify the 5 principal phenological stages of (a, b, c) wheat and (d, e, f) rapeseed for (a, d) S-1 data alone, (b, e) S-2 data alone and (c, f) combined Sentinel-1 & 2 data.The ratio was a relevant feature using S-1 data alone for both crops, while LAI and NDVI were the most important features using S-2 data alone for wheat and rapeseed, respectively.

  ). S-2 data alone provided better results than S-1 data alone for all classes (Figures 5-10d-e, 11d-e), while their combined use improved the PA of the leaf development stage from 0.8 (S-2) to 1 (S-1 & 2) (Figures 5-10e-f, 11e-f).
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 5 Figure 5-10. Mean UA of incremental classifications as a function of the number of input features to identify the 5 principal phenological stages of wheat and rapeseed. The colored lines refer to the crop phenological stages.
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 5 Figure 5-11. PA of incremental classifications as a function of the number of input features to identify the 5 principal phenological stages of wheat and rapeseed. The colored lines refer to the crop phenological stages.
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 5 12a and 12b). Several S-1 features were present in the top ranks of importance for the combined S-1 & 2 data (Figures5-13c and 13f). Considering standard deviation of the mean kappa index, the classification accuracy using S-2 data alone or combined S-1 & 2 was not significantly different. For rapeseed, the mean kappa index was very similar regardless of the number of input features. For wheat, S-2 data alone results were superior to combined S-1 & 2 results until 5 inputs features. Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.
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 5 Figure 5-12. Mean kappa index of incremental classifications of secondary phenological stages for S-1 data alone (green), S-2 data alone (red), and combined Sentinel-1 & 2 data (blue) as a function of the number of input features for (a) wheat and (b) rapeseed. The classification accuracy using S-2 data alone or combined S-1 & 2 was not significantly different.
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 5 Figure 5-14. Mean UA of incremental classifications as a function of the number of input features to identify the 7 secondary phenological stages of wheat and rapeseed. The colored lines refer to thesecondary phenological stages.
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 5 Figure 5-15. Mean PA of incremental classifications as a function of the number of input features to identify the 7 secondary phenological stages of wheat and rapeseed. The colored line refer to the secondary phenological stages.
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 61 Figure 6-1. Location of the study area. Satellite imagery and aerial photographs accessed through Bing Aerial using OpenLayers QGIS plugin 1.4.8 (Microsoft®Bing™Maps).
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 63 Figure 6-3. Temporal profiles of crop biophysical parameters for the wheat and rapeseed fields sampled.
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 66 Vegetation indices calculated from S-2 images. G = Green, R = Red, RE = Red-Edge.
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 64 Figure 6-4. Adjusted R² and rRMSE (red dots) of empirical relationships between S-2 features and crop biophysical parameters (LAI, DB, WB and WC) of wheat fields. The highest adjusted R² values are highlighted in green.
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 65 Figure 6-5. Best relationships obtained between wheat LAI, DB, WB and WC and S-2 features.
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 66 Figure 6-6. Adjusted R² and rRMSE (red dots) of empirical relationships between S-2 features and crop biophysical parameters (LAI, DB, WB and WC) of rapeseed fields. The highest adjusted R² values are highlighted in green.
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 67 Figure 6-7 .Best relationships obtained between rapeseed LAI, DB, WB and WC and S-2 features.
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 68 Figure 6-8. Adjusted R² and rRMSE (red dots) of empirical relationships between S-1 features and crop biophysical parameters (LAI, DB, WB and WC) of wheat fields. The highest adjusted R² values are highlighted in green.
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 69 Figure 6-9. Best relationships obtained between wheat LAI, DB, WB and WC and S-1 features.

  and 10), as[START_REF] Ahmadian | Biomass Assessment of Agricultural Crops Using Multi-temporal Dual-Polarimetric TerraSAR-X Data[END_REF] found with TerraSAR-X andBetbeder et al. (2016b) with RADARSAT-2.The results of estimating LAI and WC of rapeseed were poor with a maximum adj. R² of 0.60 and 0.35, respectively (Figure6-10). More specifically, no relation was found between LAI and at leaf development (BBCH = 18), inflorescence (BBCH = 53) and development of fruit (BBCH = 71) stages (Figure 6-11). The WC values in the "RAPE15" field were similar for all field samples (Figure 6-11) reducing the variance of the dataset. Thus, the model showed a low predictive power.
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 6 Figure 6-10. Adjusted R² and rRMSE (red dots) of empirical relationships between S-1 features and crop biophysical parameters (LAI, DB, WB and WC) of rapeseed fields. The highest adjusted R² values are highlighted in green.
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 611 Figure 6-11. Best relationships obtained between rapeseed LAI, DB, WB and WC and S-1 features.
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 71 Figure 7-1. Evidence of dust fluxes moving in different directions in an agricultural landscape (Source: Air Papillon)
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 72 Figure 7-2. Location of study sites in France and Belgium © EuroGeographics for the administrative boundaries
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 73 Figure 7-3. Flowchart describing the relationships hypothesized among carabid beetles, crop phenology and the crop mosaic.
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 74 Figure 7-4. Flowchart describing the derivation of Diff WDVI and then WDVI SD from Sentinel-2 images during the ripening period of wheat in Brittany.

  Part IV -Functional assessment of the ecological continuities identified and characterized by Sentinel-1 and 2 150 Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.
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 75 Figure 7-5. Flowchart describing the carabid beetle species response to biophysical heterogeneity in Brittany.
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 7677 Figure 7-6. Correspondence factor analysis biplot of the number of interfaces (triangles) in the six landscapes. Circles represent carabid beetle sampling points. The closer the symbols (of each type), the more similar are their profiles. The colored ellipsoids correspond to the 6 study sites.
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 78 Figure 7-8. Relationships between WDVI SD and surface area of crop types at the 2005 m scale during the (a, c) stem-extension (Dates 2-1) and (b, d) ripening (Dates 3-2) periods of wheat in (a, b) 2017 and (c, d) 2018. Grey zone = the 95% confidence interval.
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 79 Figure 7-9. The best relationships (i.e. highest adj. R 2 ) between Diff WDVI and WDVI SD for the six study landscapes during the (a, c) stem-extension (Date2_Date1) and (b, d) ripening (Date3_Date2) periods of wheat in (a, b) 2017 and (c, d) 2018.
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 710 Figure 7-10. Significant relationships between Diff WDVI and WDVI SD per study site during the (a, c) stem-extension (Date2_Date1) and (b, d) ripening (Date3_2) periods in (a, b) 2017 and (c, d) 2018.
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 711712 Figure 7-11. Dynamics of the number of carabid beetles Poecilus cupreus and Pterostichus melanarius captured in 2017 and 2018.

  Part IV -Functional assessment of the ecological continuities identified and characterized by Sentinel-1 and 2 160 Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.
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 713 Figure 7-13. Relationships between factor 1 of the correspondence factor analysis and WDVI SD at the 2005 m scale for the six study landscapes during the (a, c) stem-extension (Dates 2-1) and (b, d) ripening (Dates 3-2) periods of wheat in (a, b) 2017 and (c, d) 2018.
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 714 Figure 7-14. Scematic explanation of relationships between WDVI SD and Diff WDVI with 255 and 505m radii sliding windows.
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 1 Figure 1. Location of the two sub-sites of the study area of northern France (Sources: © EuroGeographics for the administrative boundaries; Bing © 2019, Microsoft Corporation © 2019, and DigitalGlobe © CNES 2019 Distribution Airbus DS for aerial photographs).
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 2 Figure 2. Location of the sub-site of the study area of Brittany (Sources: © EuroGeographics for the administrative boundaries; Bing © 2019, Microsoft Corporation © 2019, and DigitalGlobe © CNES 2019 Distribution Airbus DS for aerial photographs).
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 3 Figure 3. Days of year of satellite images, field surveys and main crop phenological stages over the study area of northern France for wheat and rapeseed 35 . The ombrothermal diagram (Météo France) shows climatic conditions on the image acquisition dates.
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 4 Figure 4. Adjusted R² and rRMSE of empirical relationships established between the S-2 features and the crop parameters on wheat fields.
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 5 Figure 5. Adjusted R² and rRMSE of empirical relationships established between the S-2 features and the crop parameters on rapeseed fields.
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 6 Figure 6. Best relationships obtained between wheat (a) and rapeseed (b) DB, WB and water content and S-2 features.
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 7 Figure 7. Adjusted R² and rRMSE of empirical relationships established between the S-1 features and the crop parameters on wheat fields.
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 8 Figure 8. Adjusted R² and rRMSE of empirical relationships established between the S-1 features and the crop parameters on rapeseed fields.
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 9 Figure 9. Best relationships obtained between wheat (a) and rapeseed (b) DB, WB and water content and S-1 features.
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 10 Figure 10. Classification of the principal phenological stages of wheat in the Brittany study area.
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 11 Figure 11. Classification of the secondary phenological stages of wheat in the Brittany study area.
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 12 Figure 12. Classification of the principal phenological stages of rapeseed in the Brittany study area.
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 13 Figure 13. Classification of the secondary phenological stages of rapeseed in the Brittany study area.
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  Plus précisément, les recherches ont été principalement concentrées sur quatre sites et deux espèces animales: les carabes en Bretagne, Picardie (France) et Wallonie (Belgique) et les ours bruns en Cantabrie (Espagne). D'une part, les travaux ont focalisé sur l'exploitation de séries temporelles S-1 et S-2 afin (1) d'effectuer un suivi intra-annuel de l'occupation et de l'utilisation des sols permettant d'identifier les éléments constitutifs des continuités écologiques et d'élaborer des métriques paysagères spatio-temporelles sur les sites d'étude et(2) de caractériser les cultures de blé et de colza qui sont des éléments clés de connectivité Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.dans les mosaïques agricoles étudiées. D'autre part, les travaux ont porté sur la mise en relation des cartes des métriques paysagères précédemment élaborées à partir des données Sentinel avec les relevés d'espèces afin d'évaluer l'impact de la structure des mosaïques paysagères sur la biodiversité.Cette thèse contribue au projet WOODNET (Connectivity patterns and processes along a gradient of European landscapes with woody vegetation and spatial heterogeneity), qui fait partie du Programme européen BIODIVERSA. Il s'agit d'un projet interdisciplinaire qui combine l'écologie, la géographie, l'hydrologie, l'agronomie et le droit et implique des chercheurs de Belgique, de France et d'Espagne. Les recherches qui sont présentées dans cette thèse se concentrent sur l'une des principales activités du projet WOODNET, c'est-àdire l'évaluation de nouvelles images satellites pour la cartographie des paysages (https://woodnetweb.wordpress.com/project/). du type de paysage considéré. La meilleure configuration pour les sites d'étude espagnol et brésilien comprend respectivement 5 et 10 variables pour les données S-2 et 10 et 20 variables pour les données S-1. Le proche infrarouge et les polarisations VV et VH sont les variables les plus discriminantes pour les données S-2 et S-1, respectivement. De plus, la méthode a permis de définir les périodes clés pour la discrimination des classes d'occupation et d'utilisation des sols en fonction du type d'images utilisées. Par exemple, dans les Monts Cantabriques, l'hiver et l'été sont des périodes clés pour les séries temporelles S-2, tandis que le printemps et l'hiver sont des périodes clés pour les séries temporelles S-1. L'identification des types d'occupation du sol dans ces deux paysages boisés est une première étape essentielle avant la cartographie des continuités écologiques. En effet, ces dernières peuvent être révélées par la mise en relation des cartes d'occupation du sol produites avec des données d'espèces. La caractérisation des éléments paysagers en termes de structure, composition, dynamiques spatio-temporelles permet une compréhension plus fine des diversités de fonctions écologiques existantes pour les espèces.

  Nous avons comparé le pouvoir prédictif de 22 variables optiques S-2 (10 bandes spectrales et 12 indices de végétation) et 7 variables RSO S-1 (2 coefficients de rétrodiffusion, 1 ratio et 4 indicateurs polarimétriques) en utilisant des régressions par processus gaussien. Cette étude, appliquée au site breton, a montré le potentiel des données S-1 et S-2 pour estimer ces 4 paramètres de cultures pour le blé et le colza. Cette étude a démontré le potentiel des séries chronologiques RSO S-1 et optiques S-2 pour estimer les paramètres biophysiques des cultures (ISF, WB, DB et WC) du blé et du colza. Les résultats montrent que les performances des variables S-2 sont équivalentes ou supérieures à celles des variables S-1. Les meilleurs modèles obtenus avec S-2 utilisent les bandes vertes, proche-infrarouge et les indices de végétation respectivement pour l'ISF (R² ajusté = 0.91), la biomasse (R² ajusté > 0.70) et la WC (R² ajusté = 0.82) du blé, et les bandes infrarouge-courtes pour la DB (R² ajusté = 0.85) et la biomasse humide (R² ajusté = 0.77) du colza.

  La meilleure configuration pour les zones d'étude espagnole et brésilienne comprend respectivement 5 et 10 variables pour les données S-2 et 10 et 20 variables pour les données S-1. Le PIR et les polarisations VV et VH sont les variables les plus discriminantes pour les données S-2 et S-1, respectivement. En outre, la méthode a permis de définir des périodes clés pour la discrimination des classes d'occupation et d'utilisation des sols selon le type d'images utilisées. Par exemple, dans les montagnes cantabriques, l'hiver et l'été sont des périodes clés pour la série temporelle S-2, tandis que le printemps et l'hiver sont des périodes clés pour la série temporelle S-1. Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

Titre:

  Evaluation des séries temporelles Sentinel-1 & 2 pour l'identification et la caractérisation des continuités écologiques, des paysages boisés aux paysages agricoles. Mots clés : Télédétection, Agriculture, images satellite optiques et RSO, écologie du paysage Résumé : La perte des habitats est aujourd'hui considérée comme l'une des plus sérieuses menaces sur la biodiversité. Si de nombreuses études se sont concentrées sur le rôle de « conduit » des éléments boisés, très peu d'entre elles se sont focalisées sur le rôle des continuités écologiques au sein des mosaïques agricoles. Les objectifs de cette thèse étaient (1) d'évaluer la synergie des séries temporelles Sentinel 1 et 2 pour identifier et caractériser les éléments constitutifs des continuités écologiques à travers des classifications de l'occupation et de l'utilisation des sols et la caractérisation de cultures dans les paysages boisés et agricoles et (2) d'estimer l'impact de la structuration spatio-temporelle de ces paysages sur la biodiversité en utilisant des métriques dérivées des séries temporelles Sentinel. Les résultats ont mis en évidence que bien que les données S-2 soient plus adaptées que les données S-1 pour la discrimination des types d'occupation du sol dans les paysages boisés et des stades phénologiques du blé et du colza dans les paysages agricoles, l'usage combiné des données S-2 et S-1 améliore la précision des classifications les données S-1 présentant de surcroît un fort intérêt dans les zones nuageuses. Ils ont aussi montré l'intérêt des indicateurs polarimétriques dérivés des données S-1 pour caractériser les cultures du blé et de colza. Enfin, ils ont permis de souligner l'intérêt de la métrique d'hétérogénéité biophysique dérivée des données S-2 pour estimer précisément la distribution des espèces de carabes. L'usage de cette métrique, calculée avec des images gratuites et disponibles partout sur la Terre, continue et cohérente d'un site à l'autre et d'un type de culture à l'autre, devrait contribuer à l'étude de l'impact des continuités écologiques sur la biodiversité. Title : Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, form wooded to crop domined landscapes. Keywords : Remote sensing, Agriculture, Optical and SAR satellite images, landscape ecology

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Table 2 -

 2 1. SAR bands and their associated frequencies and wavelengths.

	Band Frequency (GHz) Wavelength (cm)
	P	0.03-3	100-30
	L	0.3-1	30-15
	S	2-4	15-7.5
	C	4-8	7.5-3.75
	X	8-12.5	3.75-2.4
	Ku	12.5-18	2.4-1.67
	K	18-26.5	1.67-1.13
	Ka	26.5-40	1.13-0.75

Table 2 -

 2 

2. Geometric representation of canonical targets and associated Sinclair matrix adapted from

[START_REF] Lee | Polarimetric Radar Imaging: From Basics to Applications[END_REF]

.

Table 3 -

 3 1. Main characteristics of S-2 MSI L1C / L2A images used.

	Spatial and spectral	10 × 10 m
	resolutions		B2 (490 nm), B3 (560 nm), B4 (665 nm) and B8 (842 nm)
			20 × 20 m
			B5 (705 nm), B6 (740 nm), B7 (783 nm), B8a (865 nm), B11 (1610 nm),
			B12 (2190nm)
	Temporal resolution	5 days
	Swath		290km
	3.3.1.1.	Forest-agriculture mosaics

Table 3 -2. Details of Sentinel-2 dates downloaded on the Spanish study area. Mosaic Tiles Dec./Jan. Feb./March April/May Mercier

 3 , Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

Table

  

Table 3 -

 3 3. S-2 dates downloaded on Brittany, Picardy and Wallonia study areas.

	Brittany Wallonia-3.3.2. Picardy Wallonia-South Wallonia-Northwest SAR Sentinel-1 images
	3.3.2.1.	Forest-agriculture mosaics

Table 3 -

 3 

		4. Main characteristics of S-1 L1C images
		Band	C (center frequency of 5 405 GHz)
		Mode	Interferometric Wide Swath
		Product type	Ground Range Detected
		Pixel resolution	20 × 22 m (range × azimuth)
		Pixel spacing	10 × 10 m (range × azimuth)
		Temporal resolution 6 days (Spain) and 12 days (Brazil)
		Orbit	Ascending
		Polarization	VV & VH
		Swath	250 km
		Incidence angle (°)	29.1-46.0
	For Cantabrian range, 22 mosaics of 3 images (66 images in total) were produced from
	December 2016 to September 2017. For Paragominas, 14 mosaics of 3 images (42 images in
	total) were produced from November 2016 to December 2017.
	3.3.2.2.	Crop-dominated landscapes
	For crop-dominated landscapes, S-1 images were used in Brittany and Picardy to
	characterize crop parameters from January to July 2017 (Erreur

! Source du renvoi

  

	Chapter 3 -Study areas and data
	ntrouvable.). S-1 images were acquired in dual polarization (VV and VH), Interferometric
	Wide (IW) swath mode and in Single Look Complex (SLC) format (Erreur !
	53
	Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological
	continuities, from wooded to crop-dominated landscapes, 2020.

Source du renvoi ntrouvable.). SLC

  products contain both amplitude and phase information, which enables to derive polarimetric indicators. The incidence angle of images ranged from 30.6-51.3° and the spatial resolution was 2.3 × 13.9 m.

Table 3

 3 

		-5. Main characteristics of S-1 SLC images.
	Band	C (center frequency of 5 405 GHz)
		Interferometric Wide Swath
		Single Look Complex
		2.3 m
		13.9 m
		6 days
		Ascending
		Dual (VV & VH)
		250 km
		29.1-46.0°

Mode Product type Ground Resolution Azimuth resolution Temporal resolution Orbit Polarization Swath Incidence angle Dates(Y-M-D) Brittany

  

	3.3.3.	Time-series pre-processing
		3.3.3.1.	Pre-processing of optical Sentinel-2 time series

Table 3 -

 3 6. Vegetation indices calculated from S-2 images. G = Green, R = Red, RE = Red-Edge.

	Index	Equation	Sentinel-2 bands used	Original author
	EVI	2.5×(NIR-R)/(NIR+6×R-7.5×B)+1)		

Table 3 -

 3 7. Dates of crop parameters field surveys s in Brittany and Picardy.

	Brittany	Picardy
	Wheat	Rapeseed Wheat and rapeseed
	2017-03-16	
	2017-04-	

Table 3 -

 3 8. Dates of carabid beetles sampling in crop-dominated landscapes.

	Brittany	Picardy	Wallonia-	Wallonia-
			South	Northwest

Wallonia-Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

II IDENTIFICATION

AND DESCRIPTION OF LAND COVER TYPES IN FOREST- AGRICULTURE MOSAICS USING SENTINEL-1 AND -2 TIME SERIES

  

	Contents	
	CHAPTER 4	Evaluation of Sentinel-1 and 2 time Series for land cover classification of
	forest-agriculture mosaics in temperate and tropical landscapes	65

Table 4 -

 4 1. Main characteristics of S-1A L1C images (https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar).

	Band	C (center frequency of 5.405 GHz)
	Mode	Interferometric Wide Swath
	Product type	Ground Range Detected
	Pixel resolution	20 × 22 m (range × azimuth)
	Pixel spacing	10 × 10 m (range × azimuth)
	Temporal resolution 5 days (Spain) and 12 days (Brazil)
	Orbit	Ascending
	Polarization	VV & VH
	Swath	250 × 350 km
	Incidence angle (°)	30.6-46.0

Table 4 -

 4 2. Main characteristics of S-2 L1C/ L2A images (sentinel.esa.int/web/sentinel/userguides/sentinel-2-msi).

	Spatial and spectral	10 × 10 m
	resolutions	B2 (490 nm), B3 (560 nm), B4 (665 nm) and B8 (842 nm)
		20 × 20 m
		B5 (705 nm), B6 (740 nm), B7 (783 nm), B8a (865 nm), B11 (1610 nm),
		B12 (2190nm)
	Temporal resolution	5 days
	Swath	290km
	Tile size	100 x 100 km

Table 4 -

 4 5. McNemar's X² test results for the Spanish and Brazilian case studies. The X² value less than 3.14 indicates that the two classifications were not significantly different.

				Spain		Brazil
		Classifications compared	X²	p-value	X²	p-value
		S-1 data alone vs. S-2 data	113.23 <0.0001 368.47 <0.0001
		alone S-1 data alone vs. S-1 & 2	379.82 <0.0001 439.00 <0.0001
		S-2 data alone vs. S-1 & 2	105.39 <0.0001		NS
	4.5. Discussion			
	4.5.1.	Relative contributions of S-1 and S-2 data to map land cover of forest-agriculture
		mosaics			

OF CROPS USING SENTINEL-1 AND 2 TIME SERIES

  

	Contents	
	CHAPTER 5	Evaluation of Sentinel-1 and 2 time series for predicting wheat and
	rapeseed phenological stages	89
	CHAPTER 6	Evaluation of Sentinel-1 and 2 time series for estimating LAI and biomass
	of wheat and rapeseed crop types

Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

III CHARACTERIZATION

Table 5 -

 5 1. Main characteristics of S-1 SLC images.

	Band	C (center frequency of 5 405 GHz)
	Mode	Interferometric Wide Swath
	Product type	Single Look Complex
	Ground Resolution	2.3 m
	Azimuth resolution	13.9 m
	Temporal resolution	6 days
	Orbit	Ascending
	Polarization	Dual (VV & VH)
	Swath	250 km
	Incidence angle	30.6-46.0°

Table 5 -

 5 2. Main characteristics of S-2 MSI L2A images.

	Spatial and spectral	10 × 10 m
	resolutions	B2 (490 nm), B3 (560 nm), B4 (665 nm) and B8 (842 nm)
		20 × 20 m
		B5 (705 nm), B6 (740 nm), B7 (783 nm), B8a (865 nm), B11 (1610 nm), B12 (2190
	nm) Temporal resolution 5 days
	Swath	290 km
	5.2.3.	znd and

Table 5 -

 5 3. Phenological stages of wheat considered in this study and number of field observations for each secondary stage

	Principal stage	Sub-class	2° stage	Description

Table 5 -

 5 

	Principal stage	Sub-class	2° stage	Description	Number of observations
			17	7 leaves unfolded	4
	Leaf development	1	18	Beginning of tillering: first tiller detectable	7
			19	2 tillers detectable	7
	Inflorescence emergence	2	50 51	Flower buds present, still enclosed by leaves Flower buds visible from above ("green bud")	10 26
			60	First flowers open	1
		3	62 63	20% of flowers on main raceme open 30% of flowers on main raceme open	1 5
	Flowering		64	40% of flowers on main raceme open	5
			65	Full flowering	7
		4	67	Flowering declining: majority of petals fallen	7
			69	End of flowering	12
	Development of fruit	5	77 79	70% of pods have reached their final size Nearly all pods have reached final size	1 12
	Ripening	6 7	80 89	Beginning of ripening Fully ripe	25

4. Phenological stages of rapeseed considered in this study and number of field observations for each secondary stage

Table 5 -

 5 

	Index	Equation	S-2 bands used	Original author
	NDVI	(NIR-R)/(NIR+R)	(B7-B4)/(B7+B4)	(Rouse et al. 1973)
	S2REP	-RE1)) 705 + 35 -((((NIR + R)/2) -RE1)/(RE2	B5)/(B6 B5)) 705 + 35 * ((((B7 + B4)/2)	(Guyot and Baret

5. Vegetation indices calculated from S-2 images. G = Green, R = Red, RE = Red-Edge.

Table 5 -

 5 6. Number of samples per pair (training + validation samples) used to classify phenological stages of wheat and rapeseed. OS = observed samples in the field, SS = selected samples for classification

		Wheat fields			Rapeseed fields		
	Class code Principal stages Sub-classes Principal stages Sub-classes OS SS OS SS OS SS OS SS
	1	105	52	49	49	18	18	18	18
	2	72	52	56	52	36	35	36	35
	3	21	21	72	52	38	35	12	12
	4	52	52	21	21	13	13	26	26
	5	35	35	52	52	44	35	13	13
	6			18	18			25	25
	7			17	17			19	19

  Mercier A,Betbeder J, Rapinel S, et al. (2020b) Evaluation of Sentinel-1 and -2 time series for estimating LAI and biomass of wheat and rapeseed crop types. JARS 14:024512. https://doi.org/10.1117/1.JRS.14.024512 

		Introduction	118
	6.2.	Materials and Methods	120
	6.3.	Results and discussion	126
	6.4.	Conclusion	135
		Reproduced from the article:	

Table 6 -

 6 1. Main characteristics of S-1 SLC images used in this study.

	Frequency	C-band (center frequency of 5 405 GHz)
	Mode	Interferometric Wide Swath
	Product type	Single Look Complex
	Ground resolution	2.3 m
	Azimuth resolution	13.9 m
	Temporal resolution	6 days
	Orbit	Descending
	Polarization	Dual (VV & VH)
	Swath	250 km
	Incidence angle	36.9-51.3°

Table 6 -

 6 2. Main characteristics of S-2 MSI L2A images used in this study.

	Spatial and	10 × 10 m
	spectral	B2 (490 nm), B3 (560 nm), B4 (665 nm) and B8 (842 nm) 20 × 20 m
	resolutions	B5 (705 nm), B6 (740 nm), B7 (783 nm), B8a (865 nm), B11 (1610 nm), B12 (2190 nm)
	Temporal	5 days
	resolution Swath	290 km
	6.3.3.	
		znd and

Table 6 -

 6 3. Phenological stages of wheat considered in the study area.

	Principal stage	BBCH Description
	Tillering	23	3 tillers detectable
	Stem elongation 31	First node at least 1 cm above tillering node
	Inflorescence	55	Middle of heading: half of inflorescences emerged
	Ripening	89	Fully ripe: grain hard, difficult to divide with thumbnail

123
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Table 6 -

 6 4. Phenological stages of rapeseed considered in the study area.

	Principal stage	BBCH Description
	Leaf development	18	Beginning of tillering: first tiller detectable
	Inflorescence emergence 53	Flower buds raised above the youngest leaves
	Flowering	67	Flowering declining: most petals fallen
	Development of fruit	71	10% of pods have reached their final size
	Ripening	89	Fully ripe

Table 6 -

 6 5. Crop biophysical parameters for wheat and rapeseed fields.

		Wheat			Rapeseed		
	Parameter	LAI WB	DB	WC	LAI WB	DB	WC
	Minimum	0.00 18.70	7.78	10.92	0.01 61.30	13.38	47.48

Maximum 2.87 424.74 141.20 329.56 5.31 713.80 178.42 

604.80 Mean 1.43 187.71 66.15 121.56 2.29 317.40 84.82 232.93 Standard deviation 1.19 136.02 43.62 114.44 1.67 190.26 60.40 151.22

Table 6 -

 6 7. Adjusted coefficient of determination (Adj. R2) and rRMSE of the best relationships between the crop biophysical parameters of wheat and rapeseed and S-1 and S-2 features. CP, crop parameters. The bold characters highlight the best results obtained for the crop biophysical parameters.

			S-2			S-1	
	CP	Feature	Mean Adj. R²	Mean rRMSE	Feature	Mean Adj. R²	Mean rRMSE
	Wheat						
	LAI	Band 8	0.91	0.124	VH:VV	0.91	0.122
	DB	WDVI	0.72	0.138		0.55	0.229
	WB	MTCI	0.71	0.142		0.66	0.163
	WC	Band 3	0.82	0.148		0.78	0.157
	Rape						
	LAI	MTCI	0.68	0.122	VV	0.36	0.167
	DB	Band 11	0.85	0.094	VH:VV	0.80	0.095
	WB	Band 11	0.77	0.100	VH:VV	0.75	0.105
	WC	Band 11	0.60	0.126	VH	0.60	0.114

Table 7 -

 7 1. Dates of field sampling of carabid beetles and corresponding Sentinel-2 images

	Study site	Field sampling	Sentinel-2 images
		2017-04-21	
	Brittany		

Table 7 -

 7 2. Adjusted R 2 and root mean square error (RMSE) associated with significant relationships between Diff WDVI and WDVI SD. Scale refers to the length of radii of circular windows.

	Year	2017	2017	2018	2018
	Period	Dates2-1	Dates3-2	Dates2-1	Dates3-2
	Scale (m)	255	1505 2005 255 505 1005 1505 2005 1005 1505 2005
	Adj. R²	0.11	0.25 0.29 0.23 0.19 0.31 0.32 0.26 0.23 0.36 0.39
	RMSE	0.07	0.08 0.08 0.04 0.04 0.04 0.04 0.04 0.09 0.08 0.08

Table 7 -

 7 3. Adjusted R 2 and root mean square error (RMSE) associated with significant relationships between Diff WDVI and WDVI SD during stem-extension and ripening periods per study site. "+" = Positive trend, "-" = Negative trend. Scale refers to the length of radii of circular windows.

		Year	Period	Study site	Scale	Trend	Adj. R²	RMSE
			Stem	Brittany	255 m	+	0.30	0.03
			extension		505 m	+	0.36	0.03
				Picardy-East	255 m	+	0.42	0.03
				Wallonia-Northeast	505 m	+	0.39	0.02
					1005 m	+	0.33	0.03
					1505 m	+	0.46	0.02
					2005 m	+	0.36	0.03
			Ripening	Picardy-East	255 m	-	0.47	0.04
				Wallonia-Northwest	255 m	+	0.70	0.04
				Picardy-West	505 m	+	0.69	0.02
			Stem	Brittany	505 m	+	0.26	0.03
			extension		1005 m	+	0.35	0.03
					1505 m	+	0.63	0.02
				Wallonia-South	1005 m	-	0.58	0.02
					1505 m	-	0.59	0.02
					2005 m	-	0.65	0.02
				Picardy-West	505 m	-	0.58	0.01
			Ripening	Wallonia-Northeast	505 m	-	0.32	0.03
					1005 m	-	0.34	0.03
	7.4.3.	Species response to biophysical heterogeneity at the landscape scale

  Crop monitoring is essential for ensuring food security in a global context of population growth and climate change.
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Table 1

 1 List of acronyms and abbreviations.

	Acronyms and abbreviations	Description

  Confusion matrix of the principal phenological stages of wheat classification derived from the 8 most important features of S-2 data alone (lines) and the validation (columns). The classification was performed using the first pair of randomly generated

														Total
				1	2		3		4			5	
	Tillering	1		13								1		14
	Stem elongation	2			9		1		2					12
	Flowering	3			2		1		2			1		6
	Development of fruit	4			1		5		8			2		18
	Ripening	5										7	
	Total			14	13		8		14		11	
	Kappa index	0.54											
	Overall Accuracy	63%											
	Appendix C-2. Classification Tillering Classification	Code 1	Validation 1 13 Code	2 Validation 1 2	3	3	4	4	5	5	6	Total 13 7	Total
	Stem elongation Beginning of tillering	2	1		11 11	2			1					12	13
	Flowering Middle/end of tillering	3	2		1	16	6		1				1	7	17
	Development of fruit Stem elongation	4	3		2		2	12	12			4		20	12
	Ripening Flowering, anthesis	5	4	1						6	1	7		8	7
	Total Development of fruit		5	14	13		8	1	14	2	11 12	4	19
	Kappa index Middle of ripening	0.77	6								1		2	3
	Overall Accuracy End of ripening	82%	7		1								2	2	5
	Total				13	18		13		8	14	9	2
	Kappa index		0.75									
	Appendix C-3. Confusion matrix of the principal phenological stages of wheat classification Overall Accuracy 79%
	derived from the 9 most important features of combined S-1 & 2 data (lines) and the Appendix D-3. Confusion matrix of the secondary phenological stages of wheat classification validation (columns). The classification was performed using the first pair of randomly derived from the 9 most important features of combined S-1 & 2 data (lines) and the generated training and validation samples. validation (columns). The classification was performed using the first pair of randomly
	Classification Tillering Stem elongation Classification Flowering Beginning of tillering Development of fruit Middle/end of tillering Ripening Stem elongation Total Flowering, anthesis Kappa index Development of fruit Overall Accuracy Middle of ripening End of ripening	Code generated training and validation samples. Validation 1 2 3 4 1 13 2 8 2 Code Validation 1 2 3 4 3 6 1 12 1 4 4 2 12 2 1 17 5 1 1 3 9 1 14 13 8 14 4 5 5 3 2 0.75 6 1 80% 7	5 1 1 9 11 12 5 2	6 1 1 4 3	Total 14 7 10 6 19 11 2	Total 13 18 12 5 18 5 5
	Total				13	18		13		8	14	9	2
	Kappa index		0.75									
	Overall Accuracy		79%									

Table 1 .

 1 Main characteristics of Sentinel-1 SLC images.

	Band	C (center frequency of 5 405 GHz)
	Mode	Interferometric Wide Swath
	Product type	Single Look Complex
	Ground Resolution	2.3 m
	Azimuth resolution	13.9 m
	Temporal resolution	6 days
	Orbit	Ascending
	Polarization	Dual (VV & VH)
	Swath	250 km
	Incidence angle	30.6-46.0°
	The S-2 images were acquired with spatial resolutions of 10 and 20 m, and a spectral resolution of 10 bands
	(	

Table 2 )

 2 . The tiles were downloaded in level 2A, which provides Top of Canopy reflectance and a cloud and shadow mask (ESA, 2019b).

Table 2 .

 2 Main characteristics of Sentinel-2 MSI L2A images.

	Spatial and spectral	10 × 10 m
	resolutions	B2 (490 nm), B3 (560 nm), B4 (665 nm) and B8 (842 nm)
		20 × 20 m
		B5 (705 nm), B6 (740 nm), B7 (783 nm), B8a (865 nm), B11 (1610 nm), B12 (2190 nm)
	Temporal resolution	5 days
	Swath	290 km
		znd and

Table 3 .

 3 Phenological stages of wheat considered in the study area of northern France.

	Principal stage	Sub-class	2° stage	Description

Table 4 .

 4 Phenological stages of rapeseed considered in the study area of northern France.

	Principal stage	Sub-class	2° stage	Description	Number of observations
			17	7 leaves unfolded	4
	Leaf development	1	18	Beginning of tillering: first tiller detectable	7
			19	2 tillers detectable	7
	Inflorescence emergence	2	50 51	Flower buds present, still enclosed by leaves Flower buds visible from above ("green bud")	10 26
			60	First flowers open	1
		3	62 63	20% of flowers on main raceme open 30% of flowers on main raceme open	1 5
	Flowering		64	40% of flowers on main raceme open	5
			65	Full flowering	7
		4	67	Flowering declining: majority of petals fallen	7
			69	End of flowering	12
	Development of fruit	5	77 79	70% of pods have reached their final size Nearly all pods have reached final size	1 12
	Ripening	6 7	80 89	Beginning of ripening Fully ripe	25 19

Table 5 .

 5 Phenological stages of wheat considered in the study area of Brittany.In order to validate the results obtained on the northern France in a precedent study36 , we applied the best model developed to the study area of Brittany using a random forest classifier. Based on the results of Mercier et al36 , for the prediction of the principal and secondary PS of wheat, the number of input S-1 & 2 features were 6 (VH:VV, LAI, SEp norm, S2REP, VV, and SE norm) and 7 (VH:VV, LAI, NDVI, S2REP, SE norm, SEi norm, SEp norm), respectively. For rapeseed, we selected VH, NDVI, S2REP, SE norm and span for the principal PS prediction and NDVI, SE norm, LAI, VH and VH:VV for the secondary PS. The kappa index and the overall accuracy were calculated to estimate the accuracy of the classifications of rapeseed principal PS 55 , while visual analysis was conducted for principal PS classification of wheat due to different PS available between the northern France and Brittany study areas.

	Principal stage	2° stage	Description

Table 8 .

 8 Parameter values (a and b) of the best linear relationships established between the crop parameters of wheat and rapeseed and S-2 features. Their corresponding statistics for determination coefficient and relative root mean square error are also given.

	Crop parameter	RSI	a	b	Adj. R²	rRMSE

Table 9 .

 9 Parameter values (a and b) of the best linear relationships established between the crop parameters of wheat and rapeseed and S-1 features. Their corresponding statistics for determination coefficient and relative root mean square error are also given.

	Crop parameter	RSI	a	b	Adj. R²	rRMSE
	Wheat					
	DB	ES norm	-4.59	5.70	0.35	0.06
	WB	ES norm	-6.42	8.62	0.71	0.03
	Water content	ES norm	-7.64	8.04	0.79	0.04
	Rapeseed					
	DB	VH:VV	0.56	9.27	0.81	0.02
	WB	VH:VV	0.43	10.58	0.79	0.01
	Water content	VH:VV	0.39	9.85	0.67	0.02

Table 10 .

 10 Ground surveys dates for wheat

	Principal stage	2° stage Date of sample
	Tillering	23	17 march 2017
	Stem elongation	31	22 april 2017
	Inflorescence	55	16 may 2017
	Ripening	89	5 july 2017

Table 11 .

 11 Ground surveys dates for rapeseed

	Principal stage	2° stage Date of sample
	Leaf development	18	24 january 2017
	Inflorescence emergence	53	17 march 2017
	Flowering	67	22 april 2017
	Development of fruit	71	16 may 2017
	Ripening	89	5 july 2017

Table 12 .

 12 Confusion matrix of the principal phenological stages of rapeseed classification.

	Classification	Code	Validation 1 2	3	4	5	Total
	Leaf development	1	13	1				14
	Inflorescence emergence	2		12				12
	Flowering	3			13	1		14
	Development of fruit	4				2		2
	Ripening	5				10	12	22
	Total		13	13	13	13	12
	Kappa index	0.75					
	Overall Accuracy	80%					

  This research was funded through the 2015-2016 BiodivERsA COFUND call for research proposals, with the national funders ANR, MINECO, and BELSPO and was supported by the Kalideos project, funded by the CNES and the Zone Atelier Armorique project and a Ph.D. grant from the Ministry of Research for A. Mercier. Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

  Figure 1-1. Illustration of habitat loss and habitat fragmentation concepts in Fahrig (2017). Higher fragmentation results in higher number of smaller patches with less distance between them. Landsharing will usually result in a higher ecological value than land-sparing. Habitat fragmentation per se = habitat fragmentation independent of habitat amount. ............................................................................. 13 Figure 1-2. Elements composing an ecological continuity. Source: Bennett 2004. .................................... 14 Figure 1-3. The five potential negative effects of corridors reported by Simberloff et al. (1992) illustrated by Neil McCoy in Haddad et al., 2014. ......................................................................................... 15 Figure 1-4.Illustration of spatial heterogeneity and its two components: compositional heterogeneity and configurational heterogeneity. Source: (Fahrig et al. 2011) ................................................................... 18 Figure 1-5. Carabid movements between maize and pea fields, and crop vegetation height from May to September. Source: Burel et al. 2013 ............................................................................................................ 19 Figure 1-6. National synthesis of regional "trames vertes". This map shows the ecological continuities identified within the framework of regional ecological coherence schemes (SRCE) in metropolitan France.. "Réservoirs de biodiversité" = Biodiversity reservoirs. "Corridors écologiques" = Ecological corridors. Source: https://inpn.mnhn.fr/ ......................................................................................................... 21 Figure 1-7. Ecological continuities adopted by the Walloon government. Massifs forestiers feuillus = deciduous forest massifs. Pelouses calcaires et milieux associés = limestone grasslands and associated environments. Crêtes ardennaises = Ardennes ridges. Hautes vallées ardennaises = high Ardennes valleys.

	Plaines	alluviales	=	alluvial	plains.	Source:
	http://environnement.wallonie.be/legis/consnat/cons070.			

  .................................................................................................................................................. 144 Figure 7-2. Location of study sites in France and Belgium © EuroGeographics for the administrative boundaries ......................................................................................................................................................... 145 Figure 7-3. Flowchart describing the relationships hypothesized among carabid beetles, crop phenology and the crop mosaic. .................................................................................................................... 146 Figure 7-4. Flowchart describing the derivation of Diff WDVI and then WDVI SD from Sentinel-2 images during the ripening period of wheat in Brittany. ........................................................................... 149 Figure 7-5. Flowchart describing the carabid beetle species response to biophysical heterogeneity in Brittany. ............................................................................................................................................................. 151

  1 et S-2 (kappa moyen = 0.53-0.82 et 0.74-0.92 pour le blé et le colza, respectivement) apporte une précision supérieure à l'utilisation des données S-1 seules (kappa moyen = 0.48-0.61 et 0.61-0.64 pour le blé et le colza, respectivement) ou S-2 seules (kappa moyen = 0.54-0.75 et 0.67-0.86 pour le blé et le colza, respectivement) pour l'identification des stades phénologiques principaux et secondaires. Les variables les plus importantes sont le ratio et les indicateurs polarimétriques pour S-1 et les indices NDVI et S2REP et la variable biophysiques ISF pour S-2.

Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

June July August T29TPJ 2017-01-25 2017-03-16 2017-04-05 2017-06-14 2017-07-04 2017-08-13 T29TQJ 2017-01-25 2017-03-16 2017-05-25 2017-05-25 2017-07-04 2017-08-13 T29TPH 2017-01-25 2017-03-16 2017-04-05 2017-06-14 2017-07-04 2017-08-13 T29TQH 2017-01-25 2017-03-16 2017-04-05 2017-06-14 2017-07-04 2017-08-13 T30TUP 2016-12-13 2017-02-21 2017-04-22 2017-06-21 2017-07-11 2017-08-20 T30TVP 2016-12-13 2017-03-23 2017-04-22 2017-06-21 2017-07-11 2017-08-20 T30TUN 2016-12-13 2017-02-21 2017-04-22 2017-06-21 2017-07-11 2017-08-20 T30TVN 2016-12-13 2017-02-21 2017-04-22 2017-06-21 2017-07-11 2017-08-20 3.3.1.2. Crop-dominated landscapes S-2 images were downloaded from January to July 2017 for Brittany and Picardy study areas, corresponding to the entire wheat and rapeseed crop cycles (

Northeast 2017-01-19 2017-04-09 2017-05-09 2017-06-21 2018-04-22 2018-05-17 2018-06-26 2017-01-26 2017-02-15 2017-03-27 2017-05-26 2017-07-05 2018-04-21 2018-05-06 2018-06-30 2017-05-06 2017-05-26 2017-07-05 2018-04-21 2018-05-18 2018-06-27 2017-05-06 2017-05-26 2017-07-05 2018-04-21 2018-05-26 2018-06-30 2017-05-06 2017-05-26 2017-07-05 2018-04-21 2018-05-26 2018-06-27

Picardy 2017-01-28 2017-03-17 2017-04-22 2017-05-16 2017-06-21 2017-01-21 2017-02-14 2017-03-10 2017-04-08 2017-05-02 2017-06-02 2017-06-14 2017-07-01

Northeast 2017-04-18/21 2017-05-23 2017-06-20 2018-04-24 2018-05-29 2018-06-26 2017-05-02 2017-05-30 2017-06-27 2018-04-23 2018-05-29 2018-06-26 2017-05-11 2017-06-01 2017-07-12 2018-04-23 2018-05-28 2018-07-02 2017-05-10 2017-05-31 2017-07-11 2018-04-25 2018-05-30 2018-07-04 2017-05-12 2017-06-02 2017-07-14 2018-04-27 2018-05-31 2018-07-06

Part II -Identification and description of land cover types in forest-agriculture mosaics using Sentinel-1 and -2 time series

2017-05-23 2017-06-20 2018-04-24 2018-05-29 2018-06-26 2017-04-09 2017-05-09 2017-06-21 2018-04-22 2018-05-17 2018-06-26 Picardy 2017-05-02 2017-05-30 2017-06-27 2018-04-23 2018-05-29 2018-06-26 2017-03-27 2017-05-26 2017-07-05 2018-04-21 2018-05-06 2018-06-30 Wallonia-South 2017-05-11 2017-06-01 2017-07-12 2018-04-23 2018-05-28 2018-07-02 2017-05-06 2017-05-26 2017-07-05 2018-04-21 2018-05-18 2018-06-27 Wallonia-Northwest 2017-05-10 2017-05-31 2017-07-11 2018-04-25 2018-05-30 2018-07-04 2017-05-06 2017-05-26 2017-07-05 2018-04-21 2018-05-26 2018-06-30 Wallonia-Northeast 2017-05-12 2017-06-02 2017-07-14 2018-04-27 2018-05-31 2018-07-06 2017-05-06 2017-05-26 2017-07-05 2018-04-21 2018-05-26 2018-06-27

Appendix I-1. Relationships between wheat leaf area index, dry biomass, wet biomass, and water content and WDVI derived from S-2. .

Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.(d) (e)

Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020. (j) (k) (l) (m) (n) (o)

Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.Globalement, cette étude a permis de souligner l'intérêt des indicateurs polarimétriques et de la combinaison des données S-1 et S-2 pour suivre la phénologie du blé et du colza. Nous avons appliqué les modèles finaux développés en Picardie sur le site breton et avons obtenu des résultats similaires, ce qui confirme l'intérêt des données Sentinel et la robustesse de la méthode utilisée pour l'identification des stades phénologiques des cultures.

Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020. comparer le SD WDVI développé aux mesures de flux d'énergie. Il serait également intéressant d'évaluer la contribution des images RSO, car le domaine des micro-ondes est sensible à la structure des plantes.
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La Terre est menacée d'une crise d'extinction massive, avec un taux de disparition des espèces de 10 à 100 fois supérieur au taux naturel d'extinction (Pimm et al. 1995). Les pressions anthropiques telles que l'urbanisation et l'intensification agricole mènent à une dégradation et une perte des habitats, et la réduction de la taille des habitats et leur isolation conduisent à une perte de biodiversité (Hanski 2011). Or, le déplacement des espèces au cours de leur vie pour se nourrir, trouver refuge et se reproduire est indispensable à leur pérennité (Wiens et al. 1993). En outre, le brassage génétique améliore la résistance des individus aux maladies et diminue les risques de malformations (Clobert et al. 2012).

Les corridors écologiques permettent aux espèces de se déplacer entre les habitats, les habitats et les corridors formant les continuités écologiques (Bennett 2004). En plus de la conservation de la diversité biologique, les continuités écologiques assurent des services écosystémiques tels que la régulation du climat, le soutien à l'agriculture (fertilisation des sols, régulation des ravageurs), la production de ressources alimentaires et matérielles, ou la transformation des déchets et polluants (Bolund and Hunhammar 1999;Baudry et al. 2000;Krieger 2001) En milieu agricole, le réseau des continuités écologiques peut être constitué d'éléments semi-naturels et prairies permanentes, ou de parcelles cultivées entre des éléments semi-naturels, ou encore uniquement de parcelles cultivées (Burel et al. 2013).

L'inventaire et l'évaluation fonctionnelle des continuités écologiques, qui sont mis en oeuvre dans le cadre de programmes d'aménagement du territoire tels que celui des trames vertes et bleues en France, s'appuient sur des cartes (http://www.trameverteetbleue.fr/). Dans les paysages boisés, la menace principale pour la biodiversité et la déforestation et la dégradation des forêts. Les forêts primaires et les grands patches d'habitats sont considérées comme les éléments paysagers les plus efficaces pour la conservation de la biodiversité dans les paysages boisés. Cependant, les forêts secondaires et les petits patches d'habitats jouent un rôle important pour la persistance des espèces en augmentant potentiellement la connectivité du paysage (Lindenmayer et al. 2006;Vidal et al. 2016). Dans les paysages agricoles, la cartographie des continuités écologiques s'effectue le plus souvent en prenant en compte exclusivement des éléments naturels ou semi-naturels et en excluant les cultures (Burel et al. 2013) alors qu'elles constituent le mode d'utilisation des terres le plus répandu sur notre planète (FAO, 2017), et qu'elles ont un fort potentiel de biodiversité dans des paysages hétérogènes caractéristiques des systèmes agricoles semi-intensifs, constitués d'éléments semi-naturels et de cultures (Billeter et al. 2008). En effet, si les cultures sont régulièrement inventoriées dans le cadre de programmes de suivi de politiques agricoles, elles ne sont pas intégrées aux cartographies officielles des continuités écologiques qui privilégient les boisements et les prairies permanentes. De plus, les cartes réalisées sur les continuités écologiques sont figées dans le temps alors que les éléments qui les constituent ont des dynamiques intra et inter-annuelles spécifiques. Ceci s'explique par le fait que le suivi des continuités écologiques sur le terrain et l'interprétation de photographies aériennes constitue un coût non négligeable en termes de temps et de main d'oeuvre. Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

Nous avons tout d'abord évalué le potentiel des données S-1 seules, S-2 seules et des données S-1 et S-2 combinées pour identifier et caractériser l'occupation et l'utilisation du sol dans des paysages de mosaïques forêt-agriculture, le suivi de ces paysages étant crucial pour comprendre l'hétérogénéité des paysages et gérer la biodiversité. La cartographie de ces mosaïques à partir d'images de télédétection est un défi, car les gradients écologiques entre les zones forestières et agricoles rendent la caractérisation de la végétation plus difficile. L'étude a porté sur deux paysages aux gradients de végétation contrastés : un paysage montagneux tempéré dans les Monts Cantabriques (Espagne) et un paysage forestier tropical humide au Paragominas (Brésil). Bien que ces mosaïques paysagères diffèrent fortement, elles ont des fonctions écologiques similaires (conservation de la biodiversité et stockage du carbone).

Les images satellites ont été classées en utilisant une procédure incrémentale basée sur les rangs d'importance des variables d'entrée dérivées des séries temporelles S-1 et S-2. L'algorithme sélectionne automatiquement les variables et périodes de temps pertinentes à utiliser pour classifier au mieux l'occupation et l'utilisation du sol dans chaque paysage. Les données S-2 seules ont permis de produire de meilleurs résultats (indice de kappa moyen=0.59-0.83) que les données S-1 seules (indice de kappa moyen=0.28-0.72), la combinaison des deux types de données ayant légèrement amélioré les résultats (indice de kappa moyen=0. 55-0.85). La méthode utilisée a permis de définir le nombre et le type de variables qui discriminent de manière optimale les classes d'occupation des sols en fonction

Data in Brief

journal homepage: www.elsevier.com/locate/dib Code Validation Appendix F: Landscape grain of crop-dominated landscapes 505 m circular window.

Appendix F-1. Landscape grain of study sites in 505 m circular window.

Estimating crop parameters using Sentinel-1 and 2 datasets and geospatial field data
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Appendix B: Correlation matrices of features derived from S-2 images

Appendix B-1. Correlation matrix of features devived from S-2 images for wheat. Appendix C: Confusion matrices of the classifications of wheat and rapeseed principal phenological stages.

Appendix C-1. Confusion matrix of the principal phenological stages of wheat classification derived from the 4 most important features of S-1 data alone (lines) and the validation (columns). The classification was performed using the first pair of randomly generated Classification Mercier, Audrey, Evaluation of Sentinel-1 & 2 time series for the identification and characterization of ecological continuities, from wooded to crop-dominated landscapes, 2020.

Appendix C-4. Confusion matrix of the principal phenological stages of rapeseed classification derived from the 4 most important features of S-1 data alone (lines) and the validation (columns). The classification was performed using the first pair of randomly generated training and validation samples. Appendix C-5. Confusion matrix of the principal phenological stages of rapeseed classification derived from the 6 most important features of S-2 data alone (lines) and the validation (columns). The classification was performed using the first pair of randomly generated training and validation samples. Appendix C-6. Confusion matrix of the principal phenological stages of rapeseed classification derived from the 10 most important features of combined S-1 & 2 data (lines) and the validation (columns). The classification was performed using the first pair of randomly generated training and validation samples. Appendix D-5. Confusion matrix of the secondary phenological stages of rapeseed classification derived from the 5 most important features of S-2 data alone (lines) and the validation (columns). The classification was performed using the first pair of randomly generated training and validation samples. (a

Appendix L: Mercier A, Betbeder J, Baudry 

METHODS

First, the SAR S-1 and optical S-2 signals were preprocessed and the median was computed at the field scale. Second, we used linear models to estimate the crop parameters (WB, DB, water content) of wheat and rapeseed crops. Finally, we classify principal and secondary PS of wheat and rapeseed using the model developed by 39 , we applied the model trained with the northern of France data to the Brittany study area.

SAR Sentinel-1 image preprocessing

Backscattering coefficients from S-1 images were extracted using the Sentinel-1 Toolbox (ESA, http://step.esa.int/main/toolboxes/sentinel-1-toolbox/). The images were first radiometrically calibrated to transform the digital number (DN, amplitude of the backscattering signal) of each pixel into backscattering coefficients (σ•VV, σ•VH) on a linear scale using the following equation 40 :

(1

where A is the information necessary to convert SAR reflectivity into physical units provided in the Calibration Annotation Data Set in the image metadata.

A refined Lee filter was then applied in a window of 7 × 7 pixels to reduce speckle noise 41 . The images were geocoded using Shuttle Radar Topography Mission data to correct topographic deformations (geometric correction accuracy < 1 pixel). A backscattering ratio was calculated by dividing σ•VH by σ•VV. All images were then converted from linear to decibel (dB) scale using the following equation:

(

A 2 × 2 covariance matrix ( ) was first extracted from the scattering matrix S of each SLR image using PolSARpro version 5.1.3 software 42 . A refined Lee filter was then applied in a window of 7 × 7 pixels to reduce speckle noise 41 . Then, we calculated the SPAN, which corresponds to the total scattered power (sum of volumescattering, double-bounce scattering, and surface or single-bounce scattering mechanisms). Shannon Entropy (SE), which measures the randomness of scattering of a pixel (e.g. due to variation in backscattering power or polarization), was calculated from the covariance matrix ( ) using the following equation:

where is related to the intensity and to the degree of polarization.

Finally, , and were normalized as , and using PolSARpro version 5.1.3 software.

Optical Sentinel-2 image preprocessing

Twelve vegetation indices were calculated since their potential to monitor crop parameters (LAI, chlorophyll content and PS) using S-2 data has been demonstrated 43,15,44,45,16 . We calculated NDVI, the Green Normalized Vegetation Index (GNDVI), the Red-Edge Inflation Point (REIP) index, the Inverted Red-Edge Chlorophyll Index (IRECI), the Sentinel-2 Red-Edge Position (S2REP) index, the Modified Chlorophyll Absorption in Reflectance Index (MCARI), the MERIS Terrestrial Chlorophyll Index (MTCI), the Soil-Adjusted Vegetation Index (SAVI), the Modified Soil-Adjusted Vegetation Index (MSAVI), the Weighted Difference Vegetation Index (WDVI), the Pigment Specific Simple Ratio (PSSRa) and the Normalized Difference Index (NDI). LAI, fapar and fcover, three biophysical variables that describe the state of vegetation cover and provide information on the density of green vegetation, were also derived from S-2 images using the PROSAIL radiative transfer model implemented in SNAP v6.0 software. The spectral bands, vegetation indices and the biophysical variables were interpolated daily using a spline method to match the dates of SAR S-1 acquisition using the stats package of R software. All S-1 and S-2 images were projected onto the RGF93/Lambert-93 system (EPSG 2154).

In total, we preprocessed 325 S-2 features (10 spectral bands, 12 vegetation indices and 3 biophysical variable × 8 dates for northern France and 5 for Brittany) and 91 S-1 features (2 backscattering coefficients, 1 backscatter ratio and 4 polarimetric indicators × 8 dates for northern France and 5 for Brittany).

Crop parameters estimation

WB, DB, water content were transformed computing the binary logarithm (log2) to assess normal distribution. Then, linear regressions were established between S-1 & 2 features and the crop parameters using the following equation:

where CP is related to the crop parameter (WB, DB, water content) and RSI to the remote sensing indicator (S-1 or S-2 features). For each relation, we computed the adjusted R² related to the fraction of variance explained by the model and the relative root mean square error (rRMSE) calculated by dividing the RMSE by the mean observed data.

Appendix M: Landscape metrics derived in the Spanish study area from the land cover classification derived from S-1 & 2 (Mercier et al. 2019b)

Land cover classification derived from S-1 & 2 (Mercier et al. 2019b).

Appendix M-1. Landscape heterogeneity derived using a circular slidding window of 8km radii and derived from the land cover classification of Mercier et al (2019b). The higher theindex, the higher the heterogeneity.

Appendix M-2. Landscape grain derived using a circular slidding window of 8km radii and derived from the land cover classification of Mercier et al (2019b). The finer the landscape grain, the higher the index.

Appendix M-3.Number of interfaces between bare soil and permanent vegetation classes (in number of pixels) derived using a circular slidding window of 8km radii and derived from the land cover classification of Mercier et al (2019b). The more interfaces there are, the more the number of pixels increases.

Appendix M-4. Number of interfaces between forested areas and shrublands classes (in number of pixels) derived using a circular slidding window of 8km radii and derived from the land cover classification of Mercier et al (2019b). The more interfaces there are, the more the number of pixels increases. 
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