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THÈSE présentée par

HUU QUAN DO
pour obtenir le

Grade de Docteur de
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INTRODUCTION

MOTIVATION OF THE DISSERTATION

In this dissertation, we are interested in control problems, in view of distributed control on
distributed computing architectures. Namely, we consider a class of systems governed by
linear partial differential equations in which the observations and controls are distributed
in large numbers. Achieving global control of such systems remains a challenging task.

The applications mainly concern matrices of micro-systems and smart distributed sys-
tems. In such applications, the realization of optimal controllers seems to be impossible
if the calculation is performed on centralized architectures computers. This is due to the
limitations firstly in transmitting information and secondly computing power. To deal with
this difficulty, we consider the use of semi-decentralized architectures, that is, elementary
matrices interconnected only between neighbouring computers as illustrated in Fig. 1.

The design of semi-decentralized controllers (that is, controllers are suitable for implanta-
tion on semi-decentralized architectures) has attracted the attention of many researchers.
This interest is then reinforced since the technological progress in the field of matrices
MEMS (i.e., MicroElectroMechanical Systems). Indeed, the manufacture of large arrays
of micro-mechanical devices with distributed sensors and actuators has become both fea-
sible and promising from an economic point of view, as for example, the micro-cantilever
arrays and micro-mirrors.

The problem encountered is that the optimal control operators are by nature very non-
local and therefore not suitable for implantation in semi-decentralized architectures. For
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FIGURE 1 – Continuous system properties can be sensed, processed in a computing ele-
ment, and actuated. Sensors, actuators, and computing elements are at discrete locations
and can communicate locally.
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FIGURE 2 – An illustration of a computation in distributed architecture with the global
inputs requirement.
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FIGURE 3 – An illustration of a computation in distributed architecture with the local inputs
requirement.

example, we consider a kernel operator P in the form

Pu(x) =

∫ 1

0
p(x, y)u(y)dy, (1)

where p is the kernel of P and u is an input function. In view of distributed control, the
computing unit receives discrete values of the input u from sensors, and Pu is the control
function whose values are used to send to actuators. In view of distributed architecture,
this integral can be approximated by a quadrature rule

Pu(x`) ≈ h
H−1∑
k=0

p(x`, yk)u(yk), ` = 0, 1, ...,H − 1. (2)

To compute the Pu(x`), global inputs are required. Any node involved in the computation
needs all inputs uk = u(yk) as illustrated in Fig. 2. Our method provides an approximation
such that the same computation only requires local inputs. In practice, our computation
only needs the information from few neighbours as illustrated in Fig. 3.

The work presented in this thesis focuses on that method in the context of approximation
of linear operators, solutions of linear partial differential operatorial equations. Such
approximations allow us to implement real time applications on semi-decentralized
network architectures. Our method is based on the diffusive representation [26]. We
propose two approaches to approximate those equations in one-dimensional domains.
We emphasize that our goal is not to solve control problems. We aim at building a basic
tool that will help researchers to make control problems with distributed architectures.
Namely, we continue the development of the diffusive realization (DR) theory [15], [36],
then we study its implementation in distributed computing environment. For the latter, we
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study some parallel topologies and study the implementation of the DR method on these
topologies.

One of the main recognized advantages of DR of a linear operator is its low computa-
tional cost, see for example the papers of G. Montseny et al. [2], [3], [13], [17], [25], and
by D. Matignon et al. [9], [10], [22] for representations of various pseudo-differential ope-
rators, and for their approximation. C. Lubich et al. [6], [21] and López-Fernández et al.
[18], [19], [20], [29], apply a similar idea to convolution operators and develop optimized
numerical methods. They have reported detailed performance analysis of their methods
in comparison with a direct approach via quadratures.

MAIN CONTRIBUTIONS OF THIS DISSERTATION

This thesis includes three main contributions. In Chapter 1, we complete a theoretical fra-
mework of diffusive realizations for state-realizations of some linear operators developed
in Yakoubi [36] and Lenczner et al. [15]. The realization of a linear operator u → z = Pu,
by the DR method, was addressed to causal operators when the kernel p of P is expli-
citly known, and analytic in its second variable, see Montseny [26]. The case where P
is the solution of an operator equation, so p is neither explicitly given nor analytic, was
reported in Yakoubi et al. [37]. Their method was announced in Lenczner and Montseny
[26] and fully developed in Lenczner et al. [16]. The numerical method was implemented
for an operator P solution of Lyapunov equation issued from optimal control of the heat
equation. A slightly simplified version reads as

−
d2

dx2 Pu − P
d2

dx2 u = Qu for all u ∈ H1
0(0, 1), (3)

Q being a given operator. An overview of the theory and of the numerical results was
presented in the PhD thesis of Yakoubi [36]. We notice that their results were suffering
from a poor accuracy. Precisely, the DR theory requires an analytic extension of the
kernel p which was obtained after approximation by Legendre polynomials and extension
out of the interval ω̂ = (−1, 1). This leads to non-uniformly bounded extensions with
respect to the number of polynomials which causes high numerical errors. In this thesis,
we introduce an additional change of variables to the kernel p and its extension so that
the latter is defined in ω̂ which eliminates an important source of error.

In Chapter 2, we implement our method in view of parallel computation, which is a
good choice for real-time, embedded, massive, and low-cost computation. Communica-
tion speed is highly dependent on the network topology [24] that affects the computational
properties of the system. Moreover, a main part of our algorithm can be reformulated into
a prefix sum which is very suitable for parallel computation [14]. A study of our algorithm
in a parallel implementation is thus presented for three parallel topologies introduced in
[4], [8], [27], [28] : line topology, hypercube topology and binary topology. In order to
implement the DR method close to the system to control, we use microcontrolers whose
advantages are small, cheap and which have real-time computing capacity [12], [23], [30].
In this implementation, we estimate the number of operations and transmissions, namely,
the number of additions and multiplications and the number of real values sent during
communication process. Three topologies with the DR and the line topology for the direct
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method have been considered. Based on that, we also estimate their computation time
and make comparison of the computation time. These results show us the effeciency of
our method. Therefore, we can choose a suitable network for designing realistic applica-
tions which reach high-effect economic.

As in [35], but with a significantly different theoretical approach, in Chapter 3 we also
provide, for the first time, an error estimate of the DR and use it in a contour optimization
method. In this related field of numerical inversion of the Laplace transform of a function,
Stenger [31], [32], [33] provided a discretization error based on the trapezoidal formula.
His important results was applied in many works. Above all, Weideman and Trefethen
[35] provided an error estimate and its application to contour optimization for computation
cost reduction. It is based on the balancing of discretization and truncation errors in which
they assumes that the function decays rapidly. López-Fernández et al. [20] showed that a
faster decay of the function provides a better error estimate. Optimal parameters for three
classes of contours (parabolas, hyperbolas, and cotangent contours) in the framework
of numerical inversion of the Laplace transform were studied by various authors. In this
thesis, we only consider hyperbolic contours as the best ones. The method has been
extensively tested and significant results are reported.

DISSERTATION OUTLINE

This dissertation is organized as follows. In Chapter 1, we introduce the DR theory. We
also formulate the extension of the kernel. Then we build the approximation of the diffusive
realization. We illustrate our method on a Lyapunov equation arising from the optimal
control theory of the heat equation. Chapter 2 implements this theory on different parallel
computer topologies. Results are presented for three parallel topologies : line topology,
hypercube topology, binary topology. We also compare the computation times between
our algorithm with these topologies and a direct spectral method with a line topology. With
a significantly different theoretical approach, we provide an error estimate of the DR and
use it in a contour optimization method in Chapter 3. There are three sources of errors
in the algorithm. They come from the discretization of the contour integral, the piecewise
constant interpolation of the input u and the application of the Galerkin method in the
kernel computation. The latter is not taken into account in this dissertation. Moreover, the
method has been extensively tested and some significant results are reported. We draw
our conclusion in Chapter 4 with some remarks on future research work.



1
DIFFUSIVE REALIZATION : THEORY
AND NUMERICAL APPROXIMATION

This chapter is devoted to the diffusive realization theory introduced in Subsection 1.1.1,
to the formulation of the extension of the kernel in Subsection 1.1.2, and to the approxima-
tion of the diffusive realization in Subsection 1.1.3. The diffusive realization of an operator
P is based on a decomposition into causal and anti-causal parts. Sufficient conditions of
existence of the diffusive realization on the contour θ± are stated in Theorem 1. A hy-
perbolic contour lying the singularities in a sectorial region around the negative real axis
is used. We also use a change of variables to transform the kernel. Then, its transfor-
mation is approximated based on a Legendre basis. The inversion of the approximation
extension is now an approximation extension of the kernel. Finally, the approximations of
the diffusive symbol, of history functions and the computation algorithm for the diffusive
realization are derived. A complete example illustrates this theory in Section 1.2.

1.1/ DIFFUSIVE REALIZATION OF INTEGRAL OPERATORS

1.1.1/ DIFFUSIVE REALIZATION THEORY

We consider operators P bounded in L2(ω) formulated in the general integral form

Pu(x) =

∫
ω

p(x, y)u(y) dy,

where ω = (0, 1), and where the regularity of the kernel p(x, y) will be specified later.
An operator P is said to be causal (respectively anti-causal) if p(x, y) = 0 for y ≥ x
(respectively for y ≤ x). Diffusive realizations of P are based on its decomposition
into causal and anti-causal parts : P = P+ + P− where P+u(x) =

∫ x
0 p(x, y)u(y) dy and

P−u(x) =
∫ 1

x p(x, y)u(y) dy. Throughout this work, we shall use the superscripts + or − to
refer to causal or anti-causal operators, and the convention ∓ = −(±). The so-called im-
pulse response p̃ is defined by p̃(x, y) = p(x, x − y). We introduce the modified impulse
responses p̃±(x, y) = p̃(x,±y). The variables x and y are treated on an unequal footing,
assuming that the causal (resp. anti-causal) impulse response is analytic with respect to
y, with analytic extension to R+∗

y (resp. R−∗y ) locally integrable, and that for each y, the
function x 7−→ p(x, y) belongs to L2(ω).
For given a± ∈ R, we consider ξ 7−→ θ±(ξ) two complex Lipschitz functions from R to

5



6 CHAPITRE 1. DIFFUSIVE REALIZATION : THEORY AND APPROXIMATION

[a±,+∞) + iR ⊂ C such that |θ±′| ≥ b > 0 almost everywhere which define simple arcs clo-
sed at infinity. Moreover we assume that they are included in some sector k + ei[−α,+α]R+

with 0 ≤ α < π
2 .

From now on, we use the convenient notation, 〈µ, ψ〉 :=
∫
R µ(ξ)ψ(ξ)dξ and we remark that

in the case where µ would not be a locally integrable function, a more general duality
product, to be specified in each concrete case, would be involved in place of the integral.
Consider also the so-called θ±−representations of u, denoted by ψ±(u) and defined as the
unique solutions of the following direct and backward Cauchy problems (parameterized
by ξ ∈ R), of diffusive type thanks to the sector condition on θ± :

∂xψ
+(x, ξ) = −θ+(ξ)ψ+(x, ξ) + u(x),∀x ∈ (0, 1), ψ+(0, ξ) = 0 (1.1)

and ∂xψ
−(x, ξ) = θ−(ξ)ψ−(x, ξ) + u(x),∀x ∈ (0, 1), ψ−(1, ξ) = 0.

We shall say that a causal operator P+ (resp. anti-causal operator P−) admits a θ+-
diffusive realization (resp. θ− -diffusive realization) if there exists a so-called diffusive
symbol µ+(x, ξ) (resp. µ−(x, ξ)) so that P+u(x) = 〈µ+, ψ+(u)〉 (resp. P−u(x) = 〈µ−, ψ−(u)〉).
Similarly, we say that an operator P admits a θ±-diffusive realization if both its causal and
anti-causal parts P+ and P− admit a diffusive realization associated respectively to θ+ and
θ−.
Let us state some sufficient conditions for the existence of the so-called canonical diffu-
sive realization of an operator P for general paths θ±. They pertain to the Laplace trans-
forms with respect to y of the causal and anti-causal parts of the impulse response :
P+(x, y) := Ly( p̃(x, y)) and P−(x, y) := Ly( p̃(x,−y)). Therefore, the function y 7→ p̃±(x, y)
should be extended to R+. Their extensions are considered in the next section.

Theorem 1 : Adapted from [16]

For a given path θ+ (resp. θ−), a causal (resp. anti-causal) operator P+ (resp. P−)
admits a diffusive symbol if the two following conditions are fulfilled :
(i) the Laplace symbol λ 7→ P+(x, λ)( resp. λ 7→ P−(x, λ)) is holomorphic in a
domain D+ (resp. D−) that contains the closed set located at right of the arc −θ+

(resp. −θ−) ;
(ii) P±(x, λ) vanish when |λ| → ∞ uniformly with respect to arg λ.
Then the so-called canonical θ±-symbols are given by

µ+(x, ξ) = −
θ+′(ξ)

2iπ
P+(x,−θ+(ξ)) and µ−(x, ξ) =

θ−′(ξ)
2iπ

P−(x,−θ−(ξ)) (1.2)

and have the same regularity as θ±.

In this thesis, we only use the hyperbolic contours −θ± proposed by Weideman and Tre-
fethen in [35], in the context of inverse Laplace transform computation, namely

− θ±(ξ) = θ±h (1 + sin(iξ − α±)) for ξ ∈ R, (1.3)

where θ±h > 0 regulates the width of the contours and α± is the hyperbola’s asymptotic
angle. This contour allows for singularities with an unbounded imaginary part, provided
that they lay in a sectorial region around the negative real axis ; see Figure 1.1.

1.1.2/ FORMULATION OF THE EXTENSION

As mentioned before, to define the Laplace transform the function y 7→ p(x, x ∓ y) should
be extended to R+. In other words, y 7→ p(x, y) has an analytic extension to (−∞, 1) in the
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The blue color refers to the Bromwich line. The singularities (cyan color) lay in a sectorial
region Σδ defined by {z ∈ C : |arg(z)| ≤ δ}. The green color refers to two parts of a circle
C(O,R), with R→ +∞, which connect two vertices of the contour and the Bromwich line.

causal case and to (0,+∞) in the anti-causal case. Indeed, the function y 7→ p(x, x ∓ y)
defined over R+ implies that −∞ < x − y < x for the causal part and x < x + y < +∞ for the
anti-causal part. Since x ∈ (0, 1), −∞ < x − y < 1 for the causal part and 0 < x + y < +∞ for
the anti-causal part.
The aforesaid change of variables is defined in the following subsection.

1.1.2.1/ CHANGE OF VARIABLES

Since an analytic extension cannot be built numerically, we build an extension based on
a change of variable mapping Ω to Ω̂∗± and an approximation by Legendre polynomials,
where Ω = (0, 1)2, Ω̂∗± = (−1, 1) × ω̂∗± and ω̂∗± ⊂ (−1, 1). Precisely, let us define the
change of variable T± : (x, y) 7→ (s, z) to transform the domain Ω of p(x, y) into a subset
Ω̂∗±. The method amounts to building approximations z 7→ p̂N±(s, z) of the mapping z 7→
p̂±(s, z) = p◦ (T±)−1(s, z) in an N dimensional Legendre basis in z and the basis of modified
Legendre polynomials in s. The calculations have been carried out in the set Ω∗±. Then
the approximation of p̂± is naturally extended to the entire set (−1, 1)2. We observe that
T± transforms Ω±∞ into (−1, 1)2 with Ω+

∞ = (0, 1)× (−∞, 1) and Ω−∞ = (0, 1)× (0,+∞), thus the
inverse mapping of the extension approximation of p̂± is an extension approximation of p
over Ω±∞.
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Remark 1 :

We have used a spectral method to discretize both s− and z−directions. In the
z−direction we actually need to use global basis functions so that they can be
analytically extended. On the contrary, there is no particular restriction regarding
approximations in the s−direction. For instance a local basis as a finite element
basis might be used.

The domain ω is extended by its left- and right-extensions on ω+
∞ = (−∞, 1) and ω−∞ =

(0,+∞). The kernel p is defined on Ω extended by its lower- and upper-extensions Ω±∞ =

ω × ω±∞. The mapping x 7→ T±x (x) = 2x − 1 changes ω into its transformed set ω̂ = (−1, 1).
The mapping y 7→ T +

y (y) = 2eσ(y−1)−1 changes ω+
∞ into ω̂ and changes ω into ω̂∗+ = (−z∗, 1)

with z∗ = 1−2e−σ, σ > 0. Moreover, the mapping y 7→ T−y (y) = −2e−σy +1 changes ω−∞ into ω̂
and changes ω into ω̂∗− = (−1, z∗). We define Ω̂ = ω̂2. Therefore, the change of variables
(s, z) = T±(x, y) maps the unbounded sets Ω±∞ into the reference set Ω̂ and the kernel
domain Ω into Ω̂∗± ⊂ Ω̂,

T±(x, y) = (T±x (x),T±y (y)). (1.4)

Figure 1.2 shows the domain Ω+
∞ and its image through T +. Similarly, Figure 1.3 shows

the domain Ω−∞ and its image through T−. In particular,

T±x (0) = −1, T±x (1) = 1,

T +
y (−∞) = −1, T +

y (0) = −z∗, T +
y (1) = 1,

T−y (−1) = −1, T−y (1) = z∗, T−y (∞) = 1.

The inverse of T± is

(T±)−1(s, z) =

(
s + 1

2
, (T±y )−1(z)

)
,

with

(T +
y )−1(z) = 1 +

1
σ

log(
z + 1

2
)and (T−y )−1(z) = −

1
σ

log(
1 − z

2
).

So

D(T±)−1 =

( 1
2 0
0 1

χ±(z)

)
and det(D(T±)−1) =

1
2χ±(z)

,

with χ±(z) = σ(1 ± z). Moreover, since

DT± =

(
∂xT±x ∂yT±x
∂xT±y ∂yT±y

)
=

(
2 0
0 ∂yT±y

)
, (1.5)

with

∂yT +
y (y) = 2σeσ(y−1) and ∂yT +

y (y) = 2σe−σy,

so

DT± ◦ (T±)−1(s, z) =

(
2 0
0 σ(1 ± z)

)
.
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FIGURE 1.2 – (a) The domain Ω+
∞ and (b) its image Ω̂ = T +(Ω+

∞). The cyan color refers to
the original domains, and the blue color refers to the extended parts.

1.1.2.2/ APPROXIMATION OF THE KERNEL AND ITS EXTENSION

The extension approximation of the kernel p states as

pN±(x, x ∓ y) =

N1∑
k=2

N2∑
`=0

p±k`ηk(2x − 1)L`(ρ±(x)e−σy + τ±). (1.6)

where ρ+(x) = 2eσ(x−1), ρ−(x) = −2e−σx and τ± = ∓1. Moreover, the coefficients p±k` are the
coefficients of the spectral decomposition of p based on the Legendre basis L`(z) and a
modal basis ηk(s).

First of all we discuss an approximation of the kernel with respect to y and its extension.
Since the transformed kernel z 7→ p̂±(x, z) = p(x, (T±y )−1(z)) is defined over ω̂∗± ⊂ (−1, 1), it
can be decomposed with a spectral method. Using the Legendre basis L`(z), ` = 0, ...,N,
made of the first N + 1 Legendre polynomials detailed in Section 2.3 of [5] as a spectral
basis, its decomposition is of the form

p̂±(x, z) =

∞∑
`=0

p̂±` (x)L`(z) for z ∈ ω̂∗±, (1.7)

where p̂±` are the coefficients of the projection of p̂±(x, z) in L2(ω̂∗±), i.e., they are solution
of

+∞∑
`=0

ak` p̂±` (x) = bk, for all k ∈ N. (1.8)
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FIGURE 1.3 – (a) The domain Ω−∞ and (b) its image Ω̂ = T−(Ω−∞). The cyan color refers to
the original domains, and the blue color refers to the extended parts.

with ak` =
∫
ω̂∗±

Lk(z)L`(z)dz and bk =
∫
ω̂∗±

p̂±(x, z)Lk(z)dz.

We can compute the exact value of akl and the approximation value of bk by using a
change of variable to change the integration domain into (−1, 1) and applying Lobatto
quadrature (see Legendre Gauss-Lobato nodes as (2.3.12) in [5]). Equation (1.8) reads

Ap = b,

where p designates an (N +1)-column vector ( p̂±0 (x), ..., p̂±N(x)), and A is the (N +1)× (N +1)
matrix

A =


a00 a01 . . . a0N

a10 a11 . . . a1N

. . . . . . . . . . . .

aN0 aN1 . . . aNN


and the (N + 1) × 1-column vector b is (b0, ..., bN)T .

Now the truncation of the sum yields the approximation

p̂N±(x, z) =

N∑
`=0

p̂±` (x)L`(z),

which is analytic in ω̂, so we can naturally extend it to ω̂. Its extension is still denoted by
p̂N±. It is bounded over ω̂ since L`(z) is bounded by 1. Such bounded extensions allow
good approximation accuracy.
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We determine two approximated extensions of p for the causal and the anti-causal parts,

pN±(x, y) = p̂N±(x,T±y (y))

=

N∑
`=0

p̂±` (x)L`(T±y (y)) for y ∈ ω±∞,

giving T±y (x ∓ y) = ρ±(x)e−σy + τ± : the extension of y 7→ pN±(x, x ∓ y) over y ∈ (0,+∞) states
as

pN±(x, x ∓ y) =

N∑
`=0

p̂±` (x)L`(ρ±(x)e−σy + τ±),

for any x ∈ ω.

For the sake of the uniformity of the method, the change of variable s = 2x − 1 is used
to map ω into ω̂, so the discretization with respect to x is done with a basis of modified
Legendre polynomials as the formula (2.3.30) in [5], vanishing at the boundaries,

ηk(s) = (Lk−2(s) − Lk(s))/
√

2(2k − 1), (1.9)

for k ≥ 2 with η0(s) = 1−s
2 and η1(s) = 1+s

2 . The extension is thus of the form

p̂N±(s,T±y (y)) =

N1∑
k=2

N2∑
`=0

p±k`ηk(s)L`(T±y (y)),

N1,N2 being the numbers of base functions of a spectral method. The two first terms
with respect to k = 0, k = 1 are ignored since the kernel satisfies the Dirichlet boundary
conditions. The expression (1.6) is obtained by using pN±(x, y) = p̂N±(2x − 1,T±y (y)).

1.1.3/ DIFFUSIVE REALIZATION APPROXIMATION

The proposed approximation includes three steps : kernel approximation, discretization of
the history functions with respect to x, and finally evaluation of the integrals thanks to the
trapezoidal rule. It is stated under the form of algorithms in Subsection 1.1.3.1. Next sub-
sections detail all steps of derivation. In Subsection 1.1.3.2, we present an approximation
of the diffusive symbols µ± based on the approximation extension of the kernel p. Then,
computational algorithms for history functions ψ± and for P±u are derived in Subsection
1.1.3.3 and 1.1.3.4.

1.1.3.1/ STATEMENT OF THE APPROXIMATION

We recall the diffusive realization of an operator Pu(x) = P+u(x) + P−u(x) where

P±u(x) =

∫
R
µ±(x, ξ)ψ±(x, ξ)dξ. (1.10)

The approximations µN± of the symbols µ± are based on the approximated extension of
the kernel p, so they are the linear combinations,

µN±(x, ξ) = ∓
θ±′(ξ)

2iπ

N1∑
k=2

N2∑
`=0

p±k`νk(x)ζ±` (x,−θ±(ξ)), (1.11)
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of basis functions νk(x) and ζ±` (x,−θ±(ξ)). Here νk(x) = ηk(2x − 1) defined in (1.9) are mo-
dified Legendre polynomials in x, satisfying the Dirichlet condition. The rational fractions
ζ±` in ξ are determined by the recurrence equation

ζ±0 (x, λ) =
1
λ
, ζ±1 (x, λ) =

β±(x)
λ + 1

+
γ±

λ
, (1.12)

ζ±k+1(x, λ) =
2k + 1
k + 1

(
β±(x)ζ±k (x, λ + 1) + γ±ζ±k (x, λ)

)
−

k
k + 1

ζ±k−1(x, λ).

Indeed, the Legendre polynomials satisfy the recursion relation (see the expression
(2.3.3) in [5])

Lk+1(z) =
2k + 1
k + 1

zLk(z) −
k

k + 1
Lk−1(z), (1.13)

where L0(z) = 1 and L1(z) = z. Substituting z by β±(x)e−y + γ± and applying the Laplace
transform to this expression, we get (1.12).

To discretize ψ± with respect to x, two x-discretizations are considered. They are based on
two different interpolations of discrete inputs (un)n+ 1

2
or (un)n located at regularly spaced

nodes (xn+ 1
2
)n or (xn)n separated by a distance h, where xn = nh and xn+ 1

2
= (n + 1

2 )h. In the
interval [xn, xn+1), the first one is piecewise constant u(x) = un+ 1

2
, and the second one is

piecewise linear and continuous, u(x) = un +
un+1−un

h (x − xn). We define H = 1
h the number

of discretization nodes in x. With the piecewise constant interpolation of u, the recurrence
relations of the approximations ψh± of ψ± yield

ψh+(xn+1, ξ) = α+(ξ)ψh+(xn, ξ) + β+(ξ)un+ 1
2
, with ψh+(0, ξ) = 0,

ψh−(xn, ξ) = α−(ξ)ψh−(xn+1, ξ) − β−(ξ)un+ 1
2
, with ψh−(1, ξ) = 0, (1.14)

where α±(ξ) = e−θ
±(ξ)h, and β±(ξ) =

α±(ξ)−1
−θ±(ξ) . Moreover, with the piecewise linear interpola-

tion of u, the recurrence relations of the approximations ψh± of ψ± yield

ψh+(xn+1, ξ) = α+(ξ)ψh+(xn, ξ) + γ+(ξ)un + δ+(ξ)un+1, with ψh+(0, ξ) = 0,

ψh−(xn, ξ) = α−(ξ)ψh−(xn+1, ξ) + δ−(ξ)un + γ−(ξ)un+1, with ψh−(1, ξ) = 0, (1.15)

where δ±(ξ) = ∓ 1
−θ±(ξ) +

β±(ξ)
−θ±(ξ)h , and γ±(ξ) = ±

α±(ξ)
−θ±(ξ) −

β±(ξ)
−θ±(ξ)h .

We replace µ± and ψ± by their approximations µN± and ψh±. So the diffusive realization is
approximated by

P±u(xn) '
∫
R
µN±(xn, ξ)ψh±(xn, ξ)dξ, for all n. (1.16)

Evaluating the integrals thanks to the trapezoidal rule with 2M + 1 quadrature nodes re-
gularly spaced at a distance ~ yields the final approximations, for the piecewise constant
interpolation of u

P+un+1 = ~
M∑

k=−M

µN+
n+1,k

(
α+

k ψ
h+
n,k + β+

k un+ 1
2

)
,

P−un = ~
M∑

k=−M

µN−
n,k

(
α−k ψ

h−
n+1,k − β

−
k un+ 1

2

)
, (1.17)
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and for the piecewise linear interpolation of u

Pu+
n+1 = ~

M∑
k=−M

µN+
n+1,k(α+

k ψ
h+
n,k + γ+

k un + δ+
k un+1),

Pu−n = ~
M∑

k=−M

µN−
n,k (α−k ψ

h−
n+1,k + δ−k un + γ−k un+1), (1.18)

where P±un = P±u(xn), µN±
n,k = µN±(xn, ξk), ψh±

n,k = ψh±(xn, ξk), α±k = α±(ξk), β±k = β±(ξk),
γ±k = γ±(ξk), δ±k = δ±(ξk).

Moreover, we notice that a direct application of the residue theorem yields to eliminate
the terms without exponential,∫

R

µN±(x, ξ)
θ±(ξ)

dξ =

∫
R

µN±(x, ξ)
θ±

2(ξ)
dξ = 0. (1.19)

These results will be proved in Lemma 1. So for the piecewise constant interpolation of u,
from (1.19) the diffusive realization is approximated by

P±u(xn) '
∫
R
µN±(xn, ξ)ψh±(xn, ξ)dξ, for all n,

=

∫
R
µN±(xn, ξ)

(
ψh±(xn, ξ) ±

un∓ 1
2

−θ±(ξ)

)
dξ. (1.20)

Therefore, the final reformulated approximations,

P+un+1 = ~
M∑

k=−M

µN+
n+1,k

(
α+

k ψ
h+
n,k + β̃+

k un+ 1
2

)
,

P−un = ~
M∑

k=−M

µN−
n,k

(
α−k ψ

h−
n+1,k − β̃

−
k un+ 1

2

)
, (1.21)

where β̃±k = β̃±(ξk) = β±(ξk) + 1
−θ±(ξk) .

For the piecewise linear interpolation of u, we follow the same route to find

Pu+
n+1 = ~

M∑
k=−M

µN+
n+1,k(α+

k ψ
h+
n,k + γ+

k un + δ
+

k un+1),

Pu−n = ~
M∑

k=−M

µN−
n,k (α−k ψ

h−
n+1,k + δ

−

k un + γ−k un+1), (1.22)

with

γ±k = γ±(ξk) =
α±(ξk)
−θ±(ξk)

−
γ±(ξk)
−θ±(ξk)h

, δ
±

k = δ
±

(ξk) =
γ±(ξk)
−θ±(ξk)h

.

For the sake of clarity, our method is synthesized in Algorithms 1 - 4. In the next chapter,
these algorithms will be rewritten under a form of a prefix sum which is very suitable for
parallel computation.
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Offline computation of diffusive symbol µN+(x, ξ)
Online computation
for ` = 0, ...,H do

for k=1,...,M do
ψh+
`+1,k = α+

k ψ
h+
`,k + β+

k u`+ 1
2
, ψh+

0,k = 0

end

P+u`+1 ' 2~<
(∑M

k=1 µ
N+
`+1,k(α+

k ψ
h+
`,k + β̃+

k u`+ 1
2
)
)

end
Algorithme 1: Diffusive realization of P+u(x) for the piecewise constant interpolation.

Offline computation of diffusive symbol µN−(x, ξ)
Online computation
for ` = 0, ...,H do

for k=1,...,M do
ψh−
`,k = α−k ψ

h−
`+1,k − β

−
k u`+ 1

2
, ψh−

H,k = 0

end

P−u` ' 2~<
(∑M

k=1 µ
N−
`,k (α−k ψ

h−
`+1,k − β̃

−
k u`+ 1

2
)
)

end
Algorithme 2: Diffusive realization of P−u(x) for the piecewise constant interpolation.

1.1.3.2/ APPROXIMATION OF DIFFUSIVE SYMBOLS

As mentioned before, the approximations of the diffusive symbols are based on the ap-
proximated extension of the kernel p, and its final expression is stated in (1.11). In Chapter
3, an explicit approximation form of µN± is used for contour optimization which avoids the
recurrence scheme. For convenience, we mention it here, namely,

µN+(x, ξ) = −
θ+′(ξ)

2iπ

N2∑
`=0

p̂+
` (x)

∑̀
s=0

es(x−1)d+(`, s)
−θ+(ξ) + s

,

µN−(x, ξ) =
θ−′(ξ)

2iπ

N2∑
`=0

p̂−` (x)
∑̀
s=0

e−sxd−(`, s)
−θ−(ξ) + s

, (1.23)

where p̂±` are defined by

p̂±` (x) =

N1∑
k=2

p±k`νk(x), with p±k` being already defined in (1.11) (1.24)

and

d+(`, s) = (−1)`+sCs
`C

s
`+s, d−(`, s) = (−1)sCs

`C
s
`+s. (1.25)

Indeed, to derive these expression, we use explicit expressions of the shifted Legendre
polynomials L+

` (x) = L`(2x − 1) and L−` (x) = L`(−2x + 1). From the formula (6) of Bhrawy et
al. [1],

L+
` (x) =

∑̀
s=0

d+(`, s)xs and L−` (x) =
∑̀
s=0

d−(`, s)xs,
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Offline computation of diffusive symbol µN+(x, ξ)
Online computation
for ` = 0, ...,H do

for k=1,...,M do
ψh+
`+1,k = α+

k ψ
h+
`,k + γ+

k u` + δ+
k u`+1, ψh+

0,k = 0
end
P+u`+1 = 2~<

(∑M
k=1 µ

N+
`+1,k(α+

k ψ
h+
`,k + γ+

k u` + δ
+

k u`+1)
)

end
Algorithme 3: Diffusive realization of P+u(x) for the piecewise linear interpolation.

Offline computation of diffusive symbol µN−(x, ξ)
Online computation
for ` = 0, ...,H do

for k=1,...,M do
ψh−
`,k = α−k ψ

h−
`+1,k + δ−k u` + γ−k u`+1, ψh−

H,k = 0
end
P−u` = 2~<

(∑M
k=1 µ

N−
`,k (α−k ψ

h−
`+1,k + δ

−

k u` + γ−k u`+1)
)

end
Algorithme 4: Diffusive realization of P−u(x) for the piecewise linear interpolation.

and since

L`(x) = L+
`

(
1 + x

2

)
= L−`

(
1 − x

2

)
,

thus

L`(ρ+(x)e−y + τ+) = L+
`

(
1 + ρ+(x)e−y + τ+

2

)
= L+

`

(
ex−1e−y

)
,

L`(ρ−(x)e−y + τ−) = L−`

(
1 − ρ−(x)e−y − τ−

2

)
= L−`

(
e−xe−y) ,

and

ζ+
` (x,−θ+(ξ)) = Ly

(
L+
`

(
ex−1e−y

))
(−θ+(ξ)) =

∑̀
s=0

es(x−1)d+(`, s)
−θ+(ξ) + s

,

ζ−` (x,−θ−(ξ)) = Ly
(
L−` (e−xe−y)

)
(−θ−(ξ)) =

∑̀
s=0

e−sxd−(`, s)
−θ+(ξ) + s

.

1.1.3.3/ DISCRETIZATION OF ψ± WITH RESPECT TO x

We detail the calculation for both causal and anti-causal parts used in Subsection 1.1.3.1,
since it is not so trivial to deduce from each other. To proceed, we firstly consider the
integral forms of (1.1), i.e.,

ψ+(x, ξ) =

∫ x

0
e−θ

+(ξ)(x−y)u(y) dy, (1.26)

ψ−(x, ξ) = −

∫ 1

x
eθ
−(ξ)(x−y)u(y) dy.
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In particular, at a point x = xn+1, we have

ψ+(xn+1, ξ) =

∫ xn+1

0
e−θ

+(ξ)(xn+1−y)u(y) dy

=

∫ xn

0
e−θ

+(ξ)(xn+1−y)u(y) dy +

∫ xn+1

xn

e−θ
+(ξ)(xn+1−y)u(y) dy,

and at a point x = xn,

ψ−(xn, ξ) = −

∫ 1

xn

eθ
−(ξ)(xn−y)u(y) dy

= −

∫ 1

xn+1

eθ
−(ξ)(xn−y)u(y) dy −

∫ xn+1

xn

eθ
−(ξ)(xn−y)u(y) dy.

Remarking that xn+1 − xn = h, for all n ∈ {0, 1, ...,H − 1}, we deduce the recurrence relations

ψ+(xn+1, ξ) = e−θ
+(ξ)hψ+(xn, ξ) +

∫ xn+1

xn

e−θ
+(ξ)(xn+1−y)u(y) dy, ψ+(0, ξ) = 0,

ψ−(xn, ξ) = e−θ
−(ξ)hψ−(xn+1, ξ) −

∫ xn+1

xn

eθ
−(ξ)(xn−y)u(y) dy, ψ−(1, ξ) = 0.

Piecewise constant interpolation of u : The integrals turns to be equal to∫ xn+1

xn

e−θ
+(ξ)(xn+1−y)u(y) dy ' un+ 1

2

[e−θ
+(ξ)(xn+1−y)

θ+(ξ)

]y=xn+1

y=xn
= β+(ξ)un+ 1

2
,

and
∫ xn+1

xn

eθ
−(ξ)(xn−y)u(y) dy ' un+ 1

2

[eθ
−(ξ)(xn−y)

−θ−(ξ)

]y=xn+1

y=xn
= β−(ξ)un+ 1

2
.

So the recurrence relations yield (1.14). We denote by ψh± the approximations of ψ± which
are solution to the exact recurrence relations,

ψh+(xn+1, ξ) = α+(ξ)ψh+(xn, ξ) + β+(ξ)un+ 1
2

with ψh+(0, ξ) = 0,

and ψh−(xn, ξ) = α−(ξ)ψh−(xn+1, ξ) − β−(ξ)un+ 1
2

with ψh−(1, ξ) = 0.

In Chapter 2, we require the solution of the above recurrence relation,

ψh+(xn+1, ξ) = β+(ξ)
n∑

j=0

(α+(ξ))n− ju j+ 1
2

and ψh−(xn, ξ) = −β−(ξ)
H−1∑
j=n

(α−(ξ)) j−nu j+ 1
2
. (1.27)

Piecewise linear interpolation of u : The integrals are∫ xn+1

xn

e−θ
+(ξ)(xn+1−y)u(y) dy '

∫ xn+1

xn

e−θ
+(ξ)(xn+1−y)

(
un +

un+1 − un

h
(y − xn)

)
dy

=

[
e−θ

+(ξ)(xn+1−y)

θ+(ξ)

(
un +

un+1 − un

h
(y − xn)

)
−

(un+1 − un

h

) e−θ
+(ξ)(xn+1−y)

θ+(ξ)2

]y=xn+1

y=xn

=
1

θ+(ξ)
un+1 −

e−θ
+(ξ)h

θ+(ξ)
un −

(un+1 − un

h

) 1 − e−θ
+(ξ)h

θ+(ξ)2

= γ+(ξ)un + δ+(ξ)un+1,
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and ∫ xn+1

xn

eθ
−(ξ)(xn−y)u(y) dy '

∫ xn+1

xn

eθ
−(ξ)(xn−y)

(
un +

un+1 − un

h
(y − xn)

)
dy

=

[
eθ
−(ξ)(xn−y)

−θ−(ξ)

(
un +

un+1 − un

h
(y − xn)

)
−

(un+1 − un

h

) eθ
−(ξ)(xn−y)

θ−(ξ)2

]y=xn+1

y=xn

=
e−θ

−(ξ)h

−θ−(ξ)
un+1 −

1
−θ−(ξ)

un −

(un+1 − un

h

) e−θ
−(ξ)h − 1
θ−(ξ)2

= δ−(ξ)un + γ−(ξ)un+1.

So the recurrence relations are rewritten in (1.15). The approximations ψh± of ψ± are
solution to

ψh+(xn+1, ξ) = α+(ξ)ψh+(xn, ξ) + γ+(ξ)un + δ+(ξ)un+1 with ψh+(0, ξ) = 0,

and ψh−(xn, ξ) = α−(ξ)ψh−(xn+1, ξ) − δ−(ξ)un − γ
−(ξ)un+1 with ψh−(1, ξ) = 0.

1.1.3.4/ APPROXIMATION OF DIFFUSIVE REALIZATIONS OF P±u

Using the above recurrence relations, we establish the final approximations Pu+
n+1 and

Pu−n of P+u and P−u at the input nodes. Before describing them, we give an elementary
lemma.

Lemma 1 :

For µN± defined as in (1.11) and θ± defined as in (1.3), we have∫
R

µN±(x, ξ)
−θ±(ξ)

dξ =

∫
R

µN±(x, ξ)
θ±2(ξ)

dξ = 0.

Proof of Lemma 1

A standard proof of this lemma can be implemented by using a direct application of the
residue theorem. However, we here give a more intuitive way. Namely, from (1.23), the
diffusive symbol can be rewritten as

µN±(x, ξ) =
θ±′(ξ)

2iπ

N∑
s=0

a±s (x)
−θ±(ξ) + s

,

where

a+
s (x) = −

N∑
`=s

p̂+
` (x)es(x−1)d+(`, s) and a−s (x) =

N∑
`=s

p̂−` (x)e−sxd−(`, s).

So we seek the value of

I±(x, t) =

∫
R

e−θ
±(ξ)t µ

N±(x, ξ)
−θ±(ξ)

dξ at t = 0.

We operate a change of the variable by posing λ = −θ±(ξ), so dλ = −θ±′(ξ)dξ, then

I±(x, t) = −
1

2πi

∫
−θ±(R)

eλt 1
λ

N∑
s=0

a±s (x)
λ + s

dλ.
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As in Talbot [34] and Weideman et al.[35], the contour −θ±(R) can be replaced by an
equivalent Bromwich contour a+ iR where a > a0 and a0 is the convergence abscissa, i.e.,

I±(x, t) = −
1

2πi

∫
a+iR

eλt 1
λ

N∑
s=0

a±s (x)
λ + s

dλ

= −a±0 (x)tH(t) −
N∑

s=1

1
s

(1 − e−st)a±s (x)H(t),

where H(t) is the Heaviside step function. So I±(x, 0) = 0.

Similarly, we also have

J±(x, t) :=
∫
R

e−θ
±(ξ)t µ

N±(x, ξ)
θ±2(ξ)

dξ

= −
1

2πi

∫
a+iR

eλt 1
λ2

N∑
s=0

a±s (x)
λ + s

dλ

= −
1

2πi

∫
a+iR

eλt

a±0 (x)

λ3 +

N∑
s=1

(
1
λ2 −

1
λ(λ + s)

)
a±s (x)

s

 dλ

= −a±0 (x)
t2H(t)

2
−

N∑
s=1

(
tH(t) −

1
s

(1 − e−st)H(t)
)

a±s (x)
s

.

Therefore, J±(x, 0) = 0. �

Piecewise constant interpolation of u : We recall the formula of diffusive realizations
P±u = 〈µ±, ψ±〉. We replace µ± and ψ± by their approximations µN± and ψh±. So, from
Lemma (1) the diffusive realization is approximated by

P±u(xn) '
∫
R
µN±(xn, ξ)ψh±(xn, ξ)dξ, for all n,

=

∫
R
µN±(xn, ξ)ψ

h±
(xn, ξ)dξ, (1.28)

where

ψ
h+

(xn, ξ) = ψh+(xn, ξ) +
un− 1

2

−θ+(ξ)
,

ψ
h−

(xn, ξ) = ψh−(xn, ξ) −
un+ 1

2

−θ−(ξ)
.

These changes of ψh± are introduced to improve the numerical simulation. Indeed,
when the input function u is constant in a neighbourhood of x, then ψ±(x, ξ) contain the

terms
∓un∓ 1

2
−θ±(ξ) . The diffusive realization zN± thus consist of the terms without exponential

∓un∓ 1
2

∫
R
µN±(x,ξ)
−θ±(ξ) dξ and so decaying less fast than other parts. Moreover, we notice that an

applying of the formula (1.19) allows to eliminate these terms. The approximation of the
integrals

∫
R using the trapezoidal rule thus avoids errors caused by these terms. Equiva-

lently,

ψ
h+

(xn+1, ξ) = α+(ξ)ψh+(xn, ξ) + β̃+(ξ)un+ 1
2
,

ψ
h−

(xn, ξ) = α−(ξ)ψh−(xn+1, ξ) − β̃−(ξ)un+ 1
2
. (1.29)
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Then we consider the discretization of the parameter ξ ∈ R of the contours −θ± by 2M + 1
points ξk with k = −M,−M + 1, ...,M − 1,M. From this discretization, we can deduce the
approximation of diffusive realizations of P±u(xn) by the trapezoidal rule

(
PN,h,M±u

)
(xn) = ~

M∑
k=−M

µN±(xn, ξk)ψ
h±

(xn, ξk), for all n,

with the step size ~ > 0. This constitutes the approximation of diffusive realization

Pun '
(
PN,h,Mu

)
(xn) = ~

M∑
k=−M

µN+
n,k ψ

h+

n,k + µN−
n,k ψ

h−
n,k, (1.30)

where ψ
h±
n,k = ψ

h±
(xn, ξk).

Piecewise linear interpolation of u : We follow the same route to find

P±un = ~
M∑

k=−M

µN±
n,k ψ

h±
n,k, (1.31)

where

ψ
h+

n+1,k = α+
k ψ

h+(xn, ξk) + γ+
k un + δ

+

k un+1,

ψ
h−
n,k = α−k ψ

h−(xn+1, ξk) + δ
−

k un + γ−k un+1.

1.1.3.5/ RELATIONSHIP BETWEEN THE APPROXIMATION OF DR AND THE INVERSION OF

LAPLACE TRANSFORMS

We establish that the approximation of the realization P±u can be written like a linear
combination of inverse Laplace transforms L−1. We recall that

P±u(xn) '
∫
R
µN±(xn, ξ)ψh±(xn, ξ)dξ, for all n. (1.32)

Piecewise constant interpolation of u : Replacing ψh±(xn, ξ) by the formula (2.1), we get

P±u(xn) ' ±
∑
j∈J±n

u j+ 1
2
×

(∫
R

e−θ
±(ξ)(±tn±1, j)

−θ±(ξ)
µN±(xn, ξ)dξ −

∫
R

e−θ
±(ξ)(±tn, j)

−θ±(ξ)
µN±(xn, ξ)dξ

)
(1.33)

for all n ∈ {0, 1, ...,H − 1}, with J+
n = {0, 1, ..., n − 1}, J−n = {n, n + 1, ...,H − 1}, tn, j = (n − j)h.

We see that ∫
R

e−θ
±(ξ)t

−θ±(ξ)
µN±(xn, ξ)dξ =

1
2πi

∫
R

e−θ
±(ξ)t

−θ±(ξ)
P(xn,−θ

±(ξ))(−θ±′(ξ))dξ

= L−1
(
−θ±′(ξ)P(xn,−θ

±(ξ))
−θ±(ξ)

)
(t).

So if we pose

F±n (−θ±) =
−θ±′(ξ)P(xn,−θ

±(ξ))
−θ±(ξ)

,
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then

P±u(xn) ' ±
∑
j∈J±n

u j+ 1
2
×

(
L−1(F±n (−θ±))(±tn±1, j) − L−1(F±n (−θ±))(±tn, j)

)
. (1.34)

Weideman and Trefethen [35] have developed a contour optimization based on a balance
between the truncation error and the discretization error for the numerical integration of
the Laplace inversion at points t`, j ∈ I = {h, 2h, ..., 1} excluding the point 0. This approach
is not effective in the present case since the ratio between the upper and lower bounds
of the set I, i.e. H = 1

h , is very large for a fine mesh and the numerical inversion of
Laplace transform is relatively expensive. To circumvent this problem, we apply the results
regarding the error estimate from Theorem 4.1 of Stenger [32]. They are applied for the
evaluation of the discretization error of each pair L−1[F±(−θ±)](±t`, j)− [F±(−θ±)](±t`, j+1) of
Laplace inverses. Moreover, the combination of these evaluations and the corresponding
truncation errors gives us a global error estimate. Contour optimization based on such
error estimates is reported in Chapter 3.
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1.2/ AN EXAMPLE OF LYAPUNOV EQUATION AND THE NUMERICAL

APPROXIMATIONS OF ITS SOLUTION

We consider a non-negative constant c and a positive, self-adjoint operator Q ∈ L(L2(ω))
with kernel q and admitting a diffusive representation with symbols ν±. The Lyapunov
equation states : find P ∈ L(H1

0(ω)) such that

∫
ω

(
du
dx

d(Pv)
dx

+
d(P∗u)

dx
dv
dx

)
dx =

∫
ω

(Quv + c uv)dx for all u, v ∈ H1
0(ω), (1.35)

We divide Ω into two open sets Ω+ and Ω− corresponding to the causal (y < x) and anti-
causal (y > x) parts of Ω. The boundary of Ω+ is split into Γ+

y = {1} × ω, Γ+
x = ω × {0} and

Γ0 = {(x, y) ∈ Ω s.t. x = y}, when the boundary of Ω− is split into Γ−y = {0} × ω, Γ−x = ω × {1}
and Γ0. We define Γ̂±x = T±(Γ±x ), Γ̂±y = T±(Γ±y ) and Γ̂±0 = T±(Γ0).

We will seek the solution P as a kernel operator with kernel p(x, y), the kernel of its adjoint
P∗ being p∗(x, y) = p(y, x). We can readily prove that p is symmetric, i.e., that p∗ = p, by
interchanging u with v, and then x with y. Now, we derive the equations satisfied by the
kernel p in Ω+ and in Ω−. For brevity, we use the notations p+ and p− for p|Ω+ and p|Ω− the
kernel of the causal and anti-causal parts.

Proposition 1 : Adapted from Proposition 19 in [16]

The causal part p+ and the anti-causal part p− of the kernel p are the unique
solutions to the two uncoupled boundary value problems

−∆p± = q± in Ω±,

(−∂x + ∂y)p± = ±
c
2

on Γ0, p± = 0 on Γ±x ∪ Γ±y . (1.36)

In the particular case c = 0, p is the unique solution to

−∆p = q in Ω, and p = 0 on ∂Ω. (1.37)

1.2.1/ CHANGE OF VARIABLES

The construction of the approximation of p± is built by using the mapping T±. The weak
formulation corresponding to (1.36) is : p± ∈ H1

Γ±x∪Γ±y
(Ω) satisfies

∫
Ω±
∇p±∇w±dydx =

1
√

2

∫
Γ0

cw±ds +

∫
Ω±

q±w± dydx for all w± ∈ H1
Γ±x∪Γ±y

(Ω±).

We remark that with parameterized curves

Γ0 = {(x(t), y(t)) = (t, t) : t ∈ (0, 1)}

and Γ̂±0 =
{
(x̂(t), ŷ(t)) =

(
t,T±y (

t + 1
2

)
)

: t ∈ (−1, 1)
}
,
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I :=
1
√

2

∫
Γ0

c w±(x, y)ds =

∫ 1

0
c w±(t, t)dt

=

∫ 1

0
c

(
w± ◦ (T±)−1

)
◦ (T±)(t, t)dt =

∫ 1

0
c ŵ±

(
2t − 1,T±y (t)

)
dt

=
1
2

∫ 1

−1
c ŵ±

(
t,T±y (

t + 1
2

)
) 

√
1 +

(
∂tT±y (

t + 1
2

)
)2

 r±
(
T±y (

t + 1
2

)
)

dt,

where

r±(̂y) =

(√
1 +

(
∂t̂y(t)

)2
)−1

=


√

1 +
σ2

4
(1 ± ŷ(t))2

−1

=


√

1 +
χ2±(̂y)

4

−1

(note : χ was defined in (1.5)).

So

I =
1
2

∫
Γ̂±0

c ŵ±(x̂, ŷ)r±(̂y)ds.

Thus the weak formulation satisfied by p̂± = p± ◦ (T±)−1 is : p̂± ∈ H1
Γ̂±x∪Γ̂±y

(Ω̂∗±)

∫
Ω̂∗±

â±∇ p̂±.∇ŵ± dsdz =
1
2

∫
Γ̂±0

cŵ±r±ds +

∫
Ω̂∗±

q̂±ŵ±
dsdz
2χ±

, (1.38)

for all ŵ± ∈ H1
Γ̂±x∪Γ̂±y

(Ω̂∗±),

where

â±jk =

∂T±j
∂x
◦ (T±)−1 ∂T±k

∂x
◦ (T±)−1 +

∂T±j
∂y
◦ (T±)−1 ∂T±k

∂y
◦ (T±)−1

 | det(D(T±)−1)|

and q̂± = q ◦ (T±)−1.

If we detail the expressions

â±11 =
2
χ±

, â±22 =
χ±

2
, â±12 = â±21 = 0,

then the associated boundary value problem is

−4
∂2 p̂±

∂s2 − χ
± ∂

∂z
(χ±

∂p̂±

∂z
) = q̂± in Ω̂∗±, (1.39)

and (−2∂s + χ±∂z) p̂± = ±
c
2

on Γ̂±0 , p̂± = 0 on Γ̂±x ∪ Γ̂±y .

We restart from

−
4
χ±

∂2 p̂±

∂s2 −
∂

∂z
(χ±

∂ p̂±

∂z
) =

q̂±

χ±
in Ω̂∗±,
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and multiply by any v ∈ H1
Γ̂±x∪Γ̂±y

(Ω̂∗±) so that to get∫
Ω̂∗±

4
χ±

∂ p̂±

∂s
∂̂v±

∂s
+ χ±

∂ p̂±

∂z
∂̂v±

∂z
dsdz =

1
2

∫
Γ̂±0

ĉv±r±dS +

∫
Ω̂∗±

q̂±

χ±
v̂± dsdz. (1.40)

Finally, Dirichlet condition is penalized,∫
Ω̂∗±

4
χ±

∂ p̂±

∂s
∂̂v±

∂s
+ χ±

∂ p̂±

∂z
∂̂v±

∂z
dsdz +

1
ε

∫
Γ̂±x∪Γ̂±y

p̂±v̂±ds (1.41)

=
1
2

∫
Γ̂±0

ĉv±r±ds +

∫
Ω̂∗±

q̂±

χ±
v̂± dsdz for all v̂± ∈ H1(Ω̂∗±).

1.2.2/ APPROXIMATION OF p̂± AND ITS EXTENSION

The solution p̂± and the test function v̂± are decomposed on the same modal basis

Φk`(s, z) = ηk(s)L`(z)

defined in Ω̂∗± with polynomial degrees N1 and N2.

The Galerkin method states as
N1∑

k′=2

N2∑
`′=0

∫
ω̂

∫
ω̂∗±

(∇Φk′`′)T B± (∇Φk`) B±
dsdz
χ±

+
1
ε

∫
Γ̂±x∪Γ̂±y

Φk′`′Φk`ds
 p̂±k′`′

=
1
2

∫
Γ̂±0

c Φk`r±ds +

∫
ω̂

∫
ω̂∗±

q̂±Φk`
dsdz
χ±

,

with

B± =

(
2 0
0 χ±(z)

)
.

We pose

fk`k′`′ =
1
χ±

[(∇Φk′`′)T B±].[(∇Φk`)T B±],

hk`k′`′ =
1
ε

Φk′`′Φk`, gk` =
q̂±Φk`

χ±
,

dk`(s) =
1
2

c Φk`

(
s,T±y (

s + 1
2

)
)
.

The G-NI method states as (based on the Legendre Gauss-Lobato quadrature rule)

N1∑
k′=2

N2∑
`′=0

N3∑
i=0

 N4∑
j=0

fklk′`′(xi, x′j)w
′
j + hk`k′`′(xi,±1)

 wi p̂±k′`′

=

N3∑
i=0

dk`(xi)wi +

N3∑
i=0

N4∑
j=0

gk`(xi, x′j)wiw′j.

This yields the linear system

N1∑
k′=2

N2∑
`′=0

A±k`k′`′ p̂
±
k′`′ = F±k`,
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where

A±k`k′`′ =

N3∑
i=0

 N4∑
j=0

fk`k′`′(xi, x′j)w
′
j + hk`k′`′(xi,±1)

 wi,

and F±k` =

N3∑
i=0

dk`(xi)wi +

N3,N4∑
i, j=0

gk`(xi, x′j)wiw′j.

The transformed kernel p̂± of p± defined on Ω̂∗± has the form,

p̂N±(s, z) =

N1∑
k=2

N2∑
`=0

p±k`ηk(s)L`(z).

Then this approximation will be naturally extended to Ω̂. We still keep denoting by p̂N±

these two extensions

p̂N±(s,T±y (y)) =

N1∑
k=2

N2∑
`=0

p±k`ηk(s)L`(T±y (y)), for z ∈ Ω̂±.

1.2.3/ DIFFUSIVE REALIZATION APPROXIMATION

– The approximations µN± of the diffusive symbols µ± based on the above approxima-
tion extension of the kernel p read as (1.11).

– The discretizations of ψ± with respect to x based on the piecewise constant inter-
polation of u state as (1.14) and the discretizations of ψ± based on the piecewise
linear interpolation of u state as (1.15).

– The approximations of diffusive realizations of P±u based on some changes of ψ±

to improve the numerical simulation state as (1.17) for the piecewise constant inter-
polation of u, and state as (1.31) for the piecewise linear interpolation of u.

1.2.4/ NUMERICAL TEST

Referring to the example (1.37) introduced above, wherein the kernel

q(x, y) = −1(1 − 3z)(1 − y)y2 − 2(1 − x)x2(1 − 3y). (1.42)

The analytic solution of this system is the kernel p

p(x, y) = (1 − x)x2(1 − y)y2, for all (x, y) ∈ Ω. (1.43)

Offline computation : In Figure 1.4, we present the relative errors in L2(Ω) norm

e± =
‖p± − pN±‖L2(Ω)

‖p±‖L2(Ω)
(1.44)

between p± and their approximation pN± as a function of N = N1 = N2, with N = 1, 2, ..., 20.
In the following, the polynomial degrees of pN± are fixed at sufficiently large values, N1 =

N2 = 10, so that the relative error e± is negligible, namely in the order of magnitude of e−10

as shown in Figure 1.5 representing p and its approximations.
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1.3/ CONCLUSION

In this chapter, we have presented both the general theory of the DR and its approxima-
tion. The approximation of diffusive symbols is based on the dedicated spectral approxi-
mation of the kernel. The spectral method combines the basis of Legendre polynomials in
both x and y with an extension in y. Two x-discretizations of the history function are based
on two different interpolations of discrete inputs located at regularly spaced nodes (xn)n

separated by a distance h. In the interval [xn, xn+1), the first one is a piecewise constant
interpolation u(x) = un+ 1

2
, and the second one is a piecewise linear and continuous in-

terpolation, u(x) = un +
un+1−un

h (x − xn), where un = u(nh), un+ 1
2

= u(nh + 1
2 h). Moreover, our

general approach is presented through the example of a Lyapunov equation arising in
optimal control theory of the one-dimensional heat equation.

In the next chapter, we evaluate the performance of the method for three parallel topolo-
gies : line topology, hypercube topology, binary topology. We also compare the computa-
tion times between our algorithm with these topologies and a direct spectral method with
a line topology. All these results are carried out on the same operator P as in [16].
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2
PARALLEL COMPUTATION

As we have already mentioned in the previous chapter, one of main advantages of the
diffusive realization (DR) is its very low computational cost. We also observed that the
diffusive realization decomposes an operator as a linear combination of local operators
namely of differential operators. Such decomposition seems to be well suited for imple-
mentation on distributed computing architectures. Combining the two features opens a
new direction to develop embedded real-time computation for distributed system on dis-
tributed architectures with parallel implementation. Hence, it yields embedded, massive,
scalable and low-cost computation.

In order to implement the DR method close to the system to control, it seems interesting
to use microcontrollers. In fact, they have the advantages to be small, to be cheap and
they have real-time computing capacity. In order to control a system which is distributed
a network of microcontroller can be used. In fact, field-programmable gate array (FPGA)
based solutions can also be viewed as microcontrollers because they can be cheap and
they are real-time. In this chapter, our effort are focused on the algorithms and not on a
real implementation.

In order to propose a scalable solution, an architecture with communications between
direct neighbours is preferred. Considering only the case where the control is performed
in one dimension (1D), there are different possible topologies to make the microcontrolers
communicate. In this chapter, three network topologies are considered : a line, a binary
tree and a hypercube. The line topology is the simplest one. The binary tree and the
hypercube allow faster diffusion of the information in the network.

The computation of ψ± - a main part of our algorithm synthesized in Algorithm 5 - can be
reformulated into a prefix sum which is very suitable for parallel computation (see also
Leighton [14], Chapter 1, Section 1.2.2). We will describe and present results for three
parallel architectures well suited for prefix computation. We also compute and compare
the computation time between our algorithm with topologies and a direct method with a
line topology.

The parallel computation of a prefix sum with a line topology is impossible with one sensor
per processor or microcontroller. Hence, we consider that our network is composed of k
processors and that a processor controls m ≥ 2 sensors (i.e., inputs). So the input u is
discretized by k × m points.

The outline of this chapter is as follows. In Section 2.1 we estimate not only the number of
operations but also the execution time of three topologies of the DR method. The similar
estimation for direct method is considered in Section 2.2. Some comparisons of number

27
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of operations and the computation time between two methods are presented in Section
2.3.

2.1/ PARALLEL ALGORITHM FOR THE DR METHOD

In this section we describe the implementations of our algorithm on different parallel topo-
logies. We recall that both ψ+ and ψ− store a part of the history of the input data u. They
are respectively solution to the forward and backward ordinary differential equation in x,

∂xψ
+(x, ξ) + θ+(ξ)ψ+(x, ξ) = u(x), with ψ+(0, ξ) = 0,

∂xψ
−(x, ξ) − θ−(ξ)ψ−(x, ξ) = u(x), with ψ−(1, ξ) = 0,

parametetrized by ξ ∈ R.

The algorithm is based on the history function ψ+ for the diffusive realizations of the causal
part z+. Applying the elementary lemma 2, the equation

ψ+(x`+1, ξk) ' α+(ξk)ψ+(x`, ξk) + β+(ξk)u`, ψ+(0, ξk) = 0, (2.1)

can be rewritten under a general form.

Lemma 2 :

The general form of the sequence of numbers y`+1 = αy` + b`, with y0 = 0, ` =

0, 1, ... is

y`+1 =
∑̀
i=0

α`−ibi.

Proof A standard proof of this lemma can be implemented by using the inductive reaso-
ning. However, we here give a more intuitive way. We have

y`+1 = αy` + b`
αy` = α2y`−1 + αb`−1

α2y`−1 = α3y`−2 + α2b`−2

. . . . . . . . .

α`y1 = α`+1y0 + α`b0.

So the summation of all left sides is equal to the summation of all right sides. It means

y`+1 = α`+1y0 +
∑̀
i=0

α`−ibi.

The term α`+1y0 is suppressed since y0 = 0, so

y`+1 =
∑̀
i=0

α`−ibi.�
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Namely, the equation (2.1) is rewritten as

ψ+
`+1,k =

∑̀
i=0

(α+
k )`−iβ+

k ui,

with ψ+
`,k = ψ+(x`, ξk), α+

k = α+(ξk), β+
k = β+(ξk). So if we define ϕ+

`,k as

ϕ+
`,k =

∑̀
i=0

(α+
k )−iβ+

k ui,

then ψ+
`+1,k = ϕ+

`,k(α+
k )`. The variable ϕ+ is used to make a prefix sum.

Definition The prefix sum (scan, or cumulative sum) of a sequence of numbers
x0, x1, x2, ... is a second sequence of numbers y0, y1, y2, ..., the sums of prefixes (running
totals) of the input sequence :

y0 = x0

y1 = x0 + x1

y2 = x0 + x1 + x2

...

It should be noticed that prefix sums have been well studied in parallel algorithms.

The resulting algorithm is summarized in Algorithm 5. Note that the implementation of the

Offline computation of diffusive symbol
µN+(x, ξ), (α+)−`β+ and (α+)`, ` ∈ {0, ...,H − 1}.
Online computation
for ` = 0, ...,H − 2 do

for k=1,...,M do
ϕ+
`+1,k = ϕ+

`,k + (α+
k )−`−1β+

k u`+1, ϕ+
0,k = 0 ;

end
end
for ` = 0, ...,H − 2 do

for k=1,...,M do
ψ+
`+1,k = ϕ+

`,k(α+
k )` ;

end
z+
`+1 = 2hξ<

(∑n
k=1 µ

N+
`+1,k(α+

k ψ
+
`,k + γ+

k u`)
)
;

end
Algorithme 5: Reformulated algorithm for the diffusive realization of z+(x).

anti-causal part is done in a similar way, and will not be described in detail. Consequently,
we will drop all upper indices “+” without any risk of confusion.

To be able to implement this algorithm in parallel, the first loop, which intends to compute
a prefix sum, needs to be executed in parallel. Then the estimate of the contour is a com-
putation where no communication between the nodes is required. The computation time
is optimized by adapting the topologies in order to implement efficiently a prefix sum. In
Subsection 2.1.1-2.1.3, we derive three parallel topologies, well suited for the diffusive
realization. Namely, they are a line topology, a hypercube topology and a binary topology.
Each of them is considered by designing its corresponding network, estimating the num-
ber of operations and transmissions, then inferring its execution time. A line topology for
a direct spectral method is also described in Section 2.2.
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2.1.1/ DR ALGORITHM WITH A LINE TOPOLOGY

2.1.1.1/ DESCRIPTION OF A LINE NETWORK

We consider a line network. In the general case, a processor in this network is connected
with bidirectional links to its left neighbour and right neighbour. The outermost processors
may have just one connection each. We consider that each processor has a local program
which can read a few inputs. The complexity of the local program and the size of the local
memory may vary. We assume that the local program is simple (i.e., it consists of a few
operations). At each step, each processor :

1. receives input from its neighbours,

2. reads a few inputs,

3. performs a computation,

4. generates output for its neighbours.

If each processor of the line network only controls one sensor (i.e., one input), the parallel
computation of a prefix sum on this line is impossible. In this case, the Hth prefix sum
cannot be computed until the (H−1)st prefix sum has been computed, which in turn cannot
be computed until the (H−2)nd prefix sum has been computed, and so on. Therefore, with
this line network we need at least H steps to add H inputs in the Hth processor (where
the Hth prefix sum is stored). In other word, a prefix sum on a line can not be computed
in parallel.

In order to maximize parallelism we consider that our network is composed of k proces-
sors and that a processor controls m ≥ 2 sensors (i.e., inputs). So the input u is discretized
by k × m points. In this case there are (k − 1) links. We assume that there are two lines in
our network, one for the causal part and another one for the anti-causal part. The com-
munication of the causal part starts from the first processor to the last one, while that
of the anti-causal starts from the last one to end on the first one. In fact, in order to im-
plement the computation of the causal part, a processor should receive data from its left
neighbour. In order to implement the computation of the anti-causal part it should receive
data from its right neighbour. The detail of communications is shown in Figure 2.1.

1 2 3 j k-2

m sensors

u
jm

u
jm

+
1

u
jm

+
2

u
jm

+
m

-1

...

kk-1

anti-causal partcausal part

FIGURE 2.1 – A line network with k processors.
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2.1.1.2/ ESTIMATION OF THE NUMBER OF OPERATIONS AND TRANSMISSIONS FOR THE

DR METHOD WITH A LINE

We emphasize that we just consider the computation of the causal part if there are no
other mentions. As mentioned the first loop of Algorithm 5 needs to be executed in paral-
lel. This loop is rewritten as the following prefix sum :

ϕ`+1 = ϕ` + B`+1U`+1,

where the output vector is defined by ϕ`+1 = (ϕ+
`+1,1, ϕ

+
`+1,2, . . . , ϕ

+
`+1,M), the vector

B`+1 = (α−`−1
1 β1, α

−`−1
2 β2, . . . , α

−`−1
M βM) is computed offline and where U`+1 = u(x`+1) is the

input value.

We remark that in our computation the value of ϕ` and B` are complex-valued vec-
tors. Thus the additions and the multiplications here are complex operations. To be
convenient we count the number of operations and transmissions with real numbers
using a below remark :

Remark 2 :

Assume that z1 = a + bi, z2 = c + di ∈ C, we have

z1 + z2 = (a ⊕ c) + (b ⊕ d)i,

z1 × z2 = (a ⊗ c ⊕ (−b) ⊗ d) + (b ⊗ c ⊕ a ⊗ d)i.

So a complex addition can be carried out using only two real additions, whereas
a complex multiplication can be carried out using four real multiplications and
two real additions.

To be efficient, we suggest proceed by using three steps : Initial cumulation, Communi-
cation and Ending cumulation.

The first step is to compute the local prefix sum on all processors. Each processor re-
ceives m inputs from its m sensors, then m local prefix sums are computed. Namely, at
( j + 1)st processor, m local prefix sums are computed by

(local prefix)(m j+p) =

p−1∑
i=0

Bm j+i × Um j+i, with p = 1, ...,m.

The second step is to communicate. Any processor except the first one receives the
message from its left neighbour. In order to compute this step quickly, the processor adds
this value to its last prefix sum. Its last prefix sum is now updated. This updated result is
saved in its message to send to its right neighbour. The last local prefix sum of the first
processor is considered as its last updated prefix sum. This process continues until the
last processor receives and adds the message of its left neighbour. The computation of
this step can be summarized by

(last updated prefix)1 = (last local prefix)1,

(last updated prefix) j = (last updated prefix) j−1 + (last local prefix) j,

with j = 2, 3, ..., k,
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where (last local prefix) j = (local prefix)m j. Then the third step is to add previous up-
dated prefix sum to all local elements. Now m final prefix sums at ( j + 1)st processor are
computed by

ϕm j+p = (last updated prefix) j + (local prefix)(m j+p), with p = 1, ...,m − 1,

We note that ϕm j+m is (last updated prefix) j+1 and it is computed in previous step. To
complete our online computation part, we add more a new step called Estimation of the
contour which performs the computation of z+

` .

1. Step 1 - Initial cumulation :

Sensor
jm+1

 .   .   .

Processor
   (j+1)th

Sensor
jm+m

Sensor
jm+2

Sensor
jm+3

U
jm

U
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+
1

U
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+
2

U
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+
m

-1

y1=0
+Bjm*Ujm

y2=y1
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ym=ym-1

+Bjm+m-1*Ujm+m-1

Inputs

Offline 
computation

Bjm Bjm+1 Bjm+2 Bjm+m-1

 .   .   .

 .   .   .

FIGURE 2.2 – Computation of step 1 at the ( j + 1)st processor.

Local prefix sums are computed on all processors. As mentioned previously, each
processor needs to compute its local prefix sum with m inputs. This step is illustrated
in Figure 2.2. Each computation requires a complex multiplication since we multiply
the input U jm+i by the vector B jm+i (which contains M elements), with i = 0, 1, ...,m−1.
It also requires a complex addition since we add results of the previous element to
it. Therefore, this step involves (m×M) complex multiplications and (m×M) complex
additions at each processor. Thanks to Remark 2, we have the total number of real
operations for the causal part of this step

Oinit cumul = (4k × m × M) ⊗ +(4k × m × M) ⊕, (2.2)

where the symbols ⊗,⊕ and s refer to a real multiplication, a real addition and a
real-valued transmission, respectively.

2. Step 2 - Communication : The goal of this step is to communicate the local sum
with the next processor if the processor is not the first one. It consists of receiving
the last updated prefix sum of the previous processor and adding to its last local
prefix sum. We note that this last updated prefix sum has M complex numbers. It
requires M complex additions. If the processor is not the last one, the result of the
last updated prefix sum is sent to the next processor. So a vector with M complex
numbers is sent. We note that this step is executed by all the processors except
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the first one, so there are (k − 1) communications. So (k − 1) × M complex additions
are used and (k − 1) × M complex numbers are transmitted. Figure 2.3 illustrates
this step. The ( j + 1)st processor receives the value (last updated prefix) j from its
left neighbour and adds to its last local prefix sum. The result of this addition called
(last updated prefix) j+1 is used to send to its right neighbour. We note that the
communication C j is only executed if (last updated prefix) j is already computed.
Thus the total number of operations and transmissions for the causal part of this
step is given by

Ocomm = 2(k − 1) × M ⊕ +2(k − 1) × M s. (2.3)
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FIGURE 2.3 – Communication of the causal part between k processors.

3. Step 3 - Ending cumulation : The goal of this step is to complete all prefix sums in
all processors. This step is executed by all the processors except the first one. It
includes adding the last updated prefix sum of the previous processor to all local
elements. Figure 2.4 illustrates this computation.
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FIGURE 2.4 – Prefix sums completed on all elements.

We also note that this last updated prefix sum is received in the previous step. We
only need to add it to (m − 1) local elements since the last local element was added
in the previous step. So this step requires (m − 1) × M complex additions at each
processor except the first one. Thus the total number of operations for the causal
part of this step is given by

Oend cumul = 2(k − 1) × (m − 1) × M ⊕ . (2.4)

Therefore the total number of operations and transmissions to compute prefix sums
in parallel for the causal part is

OCumul = Oinit cumul + Ocomm + Oend cumul (2.5)
= (4k × m × M) ⊗ +(2(3k − 1) × m × M) ⊕ +(2(k − 1) × M) s.

4. Step 4 - Estimation of the contour : After the computation of prefix sums, the esti-
mation of the contour which corresponds to the second loop of Algorithm 5 is exe-
cuted. We note that no communication between the nodes is required in this step.
For each processor, the computation of ψ+ involves (2m×M) complex multiplications
and (m × M) complex additions. Then the computation of z+ involves a summation
of real part of multiplications, so it involves (2m × M) real additions and (2m × M)
real multiplications. Thus the number of operations for the causal part of this step is
given by

OEstim contour = (10k × m × M) ⊗ +(8k × m × M) ⊕ . (2.6)

Therefore the total number of operations and transmissions for the causal part is

ODR causal = OCumul + OEstim contour

= (14k × m × M) ⊗ +(2(7k − 1) × m × M) ⊕ +(2(k − 1) × M) s. (2.7)
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Basic step Notation Basic step Notation
Step 1 of causal part Step 1c Step 1 of anti-causal part Step 1a
Step 2 of causal part Step 2c Step 2 of anti-causal part Step 2a
Step 3 of causal part Step 3c Step 3 of anti-causal part Step 3a
Step 4 of causal part Step 4c Step 4 of anti-causal part Step 4a

TABLE 2.1 – Some notations of some basic steps of causal and anti-causal part.

We remark that the anti-causal part is symmetric and that its communication starts from
the last processor to end on the first. So a processor should receive the message from its
right neighbour. The computation of both parts is similar. Thus here is the total number of
operations and transmissions for the DR method

ODR = 2ODR causal

= (28k × m × M) ⊗ +(4(7k − 1) × m × M) ⊕ +(4(k − 1) × M) s. (2.8)

2.1.1.3/ ESTIMATION OF THE EXECUTION TIME OF THE DR METHOD WITH A LINE

To clarify the explanation, we give some notations as Table 2.1. We need some assump-
tions as follows :

– Each step of both parts is executed for all processors.

– The step 2c only starts on the second processor when its step 1c finishes, whereas
the step 2a starts on the processor (k − 1)st when its step 1a finishes.

– At each processor, the step jc (resp. ja) only starts after step ( j− 1)c (resp. ( j− 1)a)
finishes, with j = 2, 3, 4.

The computation of both causal and anti-causal parts uses the same network, so we
should find the best effective way to arrange the order of steps of both parts such that the
computation time is the least. In order to do that we choose a strategy to overlap some
steps of both parts, namely

– The step 1c is executed at all processors of the first half of the network while the
step 1a is executed at all processors of its second half ahead.

– Then the step 2c starts on the second processor, and the step 2a starts on the (k−1)st

processor. We note that on each processor there is an idle time between above
steps during which some other operations can be executed. Figure 2.5 illustrates
our strategy, for example, the idle time between steps 1c and 2c or between 2c and
2a in the first half network can be seen. We have three idle times between these
steps. We denote these idle times by I1, I2 and I3 respectively as in Table 2.2.

– The step 1a of each processor in the first half of the network should be executed
in the idle time I1 or the idle time I2. The step 3c and 4c of each processor in the
first half of the network can be executed in the idle time I2 or the idle time I3 while
the step 3a and 4a of these processors should be executed in the idle time I3. It is
similar for the steps of processors in the second half of the network.

Therefore, it is possible, in some cases, to overlap some steps of both parts. Before
describing these different cases, we introduce some notations given in Table 2.3 and
estimate the computation time of each step.
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FIGURE 2.5 – The computation time scheme consisting of some basis steps and idle
times.

Order Basis step Note
1 Initial cumulation (causal part) 1c
2 First idle time I1

3 Communication (causal part) 2c
4 Second idle time I2

5 Communication (anti-causal part) 2a
6 Third idle time I3

TABLE 2.2 – The order of some basic steps at each processor in the first half of the
network.

Note
The computation time of the jth step, j = 1, 2, 3, 4 T j

The computation time of the step jc (resp. ja), j = 1, 2, 3, 4 T j(c) (resp. T j(a))
The first idle time of the jth processor I1 j

The second idle time of the jth processor I2 j

The third idle time of the jth processor I3 j

The time taken a real multiplication tm
The time taken a real addition ta

The time taken a real-valued transmission (sent) ts

TABLE 2.3 – The notations concerning the computation time.
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We have the following remark :

Remark 3 :

The computation time of each step is

T1 = 4m × M × tm + 4m × M × ta,

T2 = 2M × ta + 2M × ts,

T3 = 2(m − 1) × M × ta,

T4 = 10m × M × tm + 8m × M × ta. (2.9)

The overlapping now depends on the computation time of each step and the number of
nodes in the network. Precisely, it depends on the ratio of the time taken by a multiplication
tm, an addition ta and a transmission ts. It also depends on the number of processors in
network. We consider all possible cases where other steps can be added into each idle
time :

Case 1 : If the communication time to cross a half of the network is not greater than the
computation time T1 of the step 1, i.e.,

(k/2 − 1) × T2 ≤ T1,

then there is no more overlap. In this case, data are awaited in the first idle time I1
and the step 1a of the first half (resp. the step 1c of the second half) of the network
must be executed in the second idle time I2. Step 3 and 4 for both parts are executed
in the third idle time I3.
We note that the first processor and the last one receive data (in the step 2) finally,
so the computation time at these ones is greater than others as the illustration
in Figure 2.6. However, the computation time should be an upper bound of the
time of all processors. It is easy to compute this estimation by counting at the first
processor. Namely,

Tno overlap = T1(c) + T1(a) + k/2 × T2(c) + k/2 × T2(a)

+ T3(c) + T4(c) + T3(a) + T4(a).

In other words, the necessary time of the DR method in this case is

Tno overlap = 2T1 + (k − 1) × T2 + 2T3 + 2T4 = 28m × M × tm
+ 2(14m + k − 3) × M × ta + 2(k − 1) × M × ts. (2.10)

The estimation time and the order of steps in this case are shown in Figure 2.6.
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FIGURE 2.6 – The estimation time and the order of steps in Case 1 : no overlap. The red
ones represent the new steps added into idle times.

We note that in this case there is no overlap, so we can execute both step 1a and
1c before starting the communication step 2.

Case 2 : Otherwise, if the communication time to cross the half of network is greater than the
implementation time of the step 1, i.e.,

T1 < k/2 × T2, (2.11)

then the overlapping situation is possible, namely, the step 1a (resp. the step 1c) of
some processors in the first half (resp. the second half) of the network can be exe-
cuted during the idle time I1. We just consider the first half of the network sufficiently
since another half is symmetric. The step 1a is able to execute in the first idle time
I1 from some processors of the first half of the network. So the first idle time and the
second idle time at the jth processor are given by

I1 j = ( j − 2) × T2(c) = ( j − 2) × T2

if 2 ≤ j ≤ k/2, and I11 = 0, (2.12)

and

I2 j = (k/2 − j) × T2(c) + (k/2 − j) × T2(a)

= (k − 2 j) × T2, j ≤ k/2. (2.13)
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We only firstly consider the case (2.12) and (2.13). The condition to overlap can be
rewritten by

T1 < I1 j or T1 < I2 j, for all j = 1, 2, ..., k/2.

It is equivalent to

T1 < max{I1 j, I2 j}, for all j = 1, 2, ..., k/2

⇐⇒ T1 < min
j∈{1,2,...,k/2}

(
max{I1 j, I2 j}

)
. (2.14)

Since

max{I1 j, I2 j} = max{( j − 2) × T2, (k − 2 j) × T2} = max{ j − 2, k − 2 j} × T2

=

{
( j − 2) × T2 if j ≥ k+2

3
(k − 2 j) × T2 if j ≤ k+2

3
, (2.15)

the inequality (2.14) is equivalent to

T1 <
k − 4

3
× T2. (2.16)

In this case, the step 1a can be put in the first idle time I1 from the ( k+2
3 )th processor

to the k
2

th processor and in the second idle time I2 from the first processor to the
( k+2

3 − 1)st processor. This scheme is illustrated in Figure 2.7.
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FIGURE 2.7 – The estimation time in Case 2 : overlap step 1. The red ones represent step
1a added into idle times.

With the condition (2.16), the step 1a of some processors can be executed during
idle times. Now we have two new idle times as shown in Figure 2.7 in which the step
3c, and 4c can be executed for some conditions considered later. If there is only the
overlap of the step 1a then the total time to complete computations in this case is

Toverlap step1 = T1 + (k − 1) × T2 + 2 × T3 + 2 × T4 (2.17)
= 24m × M × tm + 2(12m + k − 3) × M × ta

+2(k − 1) × M × ts,

since it is easy to compute the time by counting at the first processor, i.e.

Toverlap step1 = T1(c) + (k/2 − 1) × T2(c) + k/2 × T2(a)

+T3(c) + T4(c) + T3(a) + T4(a).

An illustration of this case is shown in Figure 2.8.
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FIGURE 2.8 – The overlap only occurs for step 1a of the first half of network.

Case 3 : Now we consider conditions in order to overlap the step 3c of the first half of the
network. From Figure 2.7 we can see that the step 3c of the first (k/3−1) processors
can be executed in the second new idle time or the third idle time I3 while the step
3c of the last k/6 processors can be executed in the first new idle time or the third
idle time I3. We denote by I′2 j the second new idle time, and we denote by I3 j the
third idle time of the jth processor , j ≤ k/2. We also give their formula

I′2 j = I2 j − T1(a) = (k − 2 j) × T2 − T1 if j < k/3,

I′2 j = 0 if k/3 ≤ j ≤ k/2,

I3 j = ( j − 1) × T2 if j ≤ k/2. (2.18)

In fact the idle time I3 j can be extended infinitely. Theoretically, I3 j can be infinity if
other steps haven’t started yet, but in order to overlap the step 3c, the formula (2.18)
should be satisfied. The condition in order to overlap the step 3c is for all processors
if the time of the step 3 is less than the second new idle time I′2 or the third idle time
I3 at each processor. This condition can be rewritten by

T3 < I′2 j or T3 < I3 j, for all j = 1, 2, ..., k/2.
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It is equivalent to

T3 < max{I′2 j, I3 j}, for all j = 1, 2, ..., k/2

⇐⇒ T3 < min
j∈{1,2,...,k/2}

(
max{I′2 j, I3 j}

)
. (2.19)

Since

max{I′2 j, I3 j} = max{(k − 2 j) × T2 − T1, ( j − 1) × T2}

=

{
( j − 1) × T2 if j ≥ k+1−T1/T2

3 := k0
(k − 2 j) × T2 − T1 if j ≤ k0

,

the inequality (2.19) is equivalent to

T3 <
k − 2

3
× T2 −

T1

3
. (2.20)

In this case, the step 3c can be executed in the third idle time I3 from the processor
k0 to (k/2) and in the second new idle time I′2 from the first processor to (k0 −1). This
case is illustrated in Figure 2.9.
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FIGURE 2.9 – The overlap of both step 1a and step 3c.
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So the total time in this case is

Toverlap step3 = T1 + (k − 1) × T2 + T3 + 2 × T4

= 24m × M × tm + 2(11m + k − 2) × M × ta
+2(k − 1) × M × ts, (2.21)

since it is easy to see by counting at the first processor, i.e.,

Toverlap step3 = T1(c) + (k/2 − 1) × T2(c) + k/2 × T2(a)

+T3(a) + T4(c) + T4(a).

We remark that the overlap of the step 4c seems to be impossible since its computation
time gets a large proposion. Therefore, we ignore this case. Moreover, the steps 3a and
4a should be executed after the step 2a, so there are no overlap of these steps.

Finally, our parallel computation is summarized as follows

1. Case 1 : No overlap if the condition holds

T1 ≥
k − 4

3
× T2,

then the total computation time is

Tno overlap = 28m × M × tm + 2(14m + k − 3) × M × ta
+2(k − 1) × M × ts. (2.22)

2. Case 2 : Only overlap of the step 1 if the conditons hold

T1 <
k − 4

3
× T2, and T3 ≥

k − 2
3
× T2 −

T1

3
,

then the total computation time is

Toverlap step1 = T1 + (k − 1) × T2 + 2 × T3 + 2 × T4 (2.23)
= 24m × M × tm + 2(12m + k − 3) × M × ta

+2(k − 1) × M × ts.

3. Case 3 : Overlap of both step 1 and step 3 if the conditons hold

T1 <
k − 4

3
× T2, and T3 <

k − 2
3
× T2 −

T1

3
,

then the total computation time is

Toverlap step3 = T1 + (k − 1) × T2 + T3 + 2T4 (2.24)
= 24m × M × tm + 2(11m + k − 2) × M × ta

+2(k − 1) × M × ts.

2.1.2/ DR ALGORITHM WITH A GENERAL HYPERCUBE TOPOLOGY

A general hypercube topology is also used to implement our algorithm in parallel. This
topology executes a prefix sum algorithm in the first loop of Algorithm 5.
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2.1.2.1/ DESCRIPTION OF A HYPERCUBE NETWORK

We consider that the d−dimensional hypercube network has k = 2d processors and d ×
2d−1 links. Each processor corresponds to a d−bit binary string, and two processors are
connected with a link if and only if their binary strings differ in precisely one bit. As a
consequence, each processor is incident to d = log2 k other processors, one for each
bit position. For example, we have drawn the hypercube networks with 2, 4, 8 and 16
processors in Figure 2.10.
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FIGURE 2.10 – The k−processor hypercube for k = 2, 4, 8 and 16. Two processors are
connected with a link if and only if their strings differ in precisely one bit position. Dimen-
sion 1 links are shown in boldface.

The links of a hypercube network can be naturally partitioned according to the dimensions
that they traverse. In particular, a link is called a dimension j link if it connects two pro-
cessors that differ in the jth bit position. We will call the neighbour of a processor across
dimension j link to be its (d − j + 1)st neighbour. We also consider that each processor in
our network controls m ≥ 1 sensors.

Our network is designed for both causal and anti-causal parts. In order to use as less
links as possible, only one link is used to connect each pair of processors. It means
we only use d × 2d−1 links as a classical hypercube. Each processor maintains a causal
result buffer and an anti-causal result buffer. It also requires a causal message and an
anti-causal message.

2.1.2.2/ PREFIX SUM ALGORITHM FOR A HYPERCUBE

A prefix sum algorithm for a hypercube can be implemented very similarly to the all-to-all
broadcast on a hypercube. It is outlined in Algorithm 6 (referenced from the page 168 in
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Ananth Grama [8]).

Require : An associative binary operator ⊕ and k = 2d processes.
Ensure : Computes the partial reductions datao ⊕ ... ⊕ datah for h = 0, 1, ..., k − 1, where k
is the number of processors and datah denotes the data initially stored on (h + 1)th

processor, and stores the hth partial on (h + 1)th processor. The (h + 1)th processor has
the rank h.
Let me denote the rank (between 0 and k − 1) of the calling processor.
msg← datame

res← datame

for h = 0, 1, ...d − 1 do
partner← me XOR 2h

Send msg to partner and at the same time receive data from partner
msg← msg ⊕ data
if partner < me then

res← res ⊕ data
end

end
Return res.

Algorithme 6: Prefix sum on d-dimensional hypercube for the causal part.

It should be noticed that a hypercube prefix sum algorithm of the anti-causal part is per-
formed by replacing partner < me in the algorithm of the causal part into partner > me.

See Figure 2.11 for an illustration of the hypercube prefix sum algorithm for both causal
and anti-causal parts on an eight-node hypercube (it is also a hypercube of dimension
3). The contents of the msg buffers are shown in (.) and the contents of the res buffers
are shown in [.]. The contents of causal (resp. anti-causal) result buffers are shown in
upper-left (resp. lower-right) buffers. At the end of a communication step, the content of
a causal (resp. anti-causal) incoming message is added to the causal (resp. anti-causal)
result buffer only if the message comes from a processor with a smaller (resp. larger)
rank than that of the recipient processor. The contents of the causal (resp. anti-causal)
outgoing message (denoted by parentheses in the figure) are updated with every causal
(resp. anti-causal) incoming message. For instance, after the first communication step,
processors 0, 2, and 4 do not add the data of the causal part received from processors
1, 3, and 5 to their causal result buffers. However, the contents of the causal outgoing
messages for the next step are updated.
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FIGURE 2.11 – Computing prefix sums on an eight-node hypercube for both parts. At
each node, square brackets show the local prefix sum accumulated in the result buffer
and parentheses enclose the contents of the outgoing message buffer for the next step.
Two small tables illustrate the input-output for both parts in detail.

2.1.2.3/ ESTIMATION OF THE NUMBER OF OPERATIONS AND TRANSMISSIONS

For simplicity we only consider the causal case. The anti-causal case is treated in sub-
sequent remarks. We suggest to proceed in four steps to implement the algorithm for
the causal part. Four similar steps for the anti-causal part are presented in subsequent
remarks.

1. Step 1 - Initial cumulation : This step is similar as Step 1 of the line topology. It
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means the local prefix sums are computed on all processors. So the number of
operations of this step for the causal part is given by

Oinit comp causal = (4m × M × 2d) ⊗ +(4m × M × 2d) ⊕ . (2.25)

The causal outgoing message of each processor saves its last local prefix sum. For
example, if the inputs for the prefix sum computation of a processor are 1, 2,−2, 3, 4
then the local prefix sums of the causal part are 1, 3, 1, 4, 8 respectively. The causal
outgoing message thus saves 8 since it is the last local prefix sum.

Remark 4 :

The computation of the anti-causal part is similar as the causal part. Since
we use the same links for both parts, this computation can be executed right
after the computation of the causal part. However, the local prefix sums of
the anti-causal part are the results of an inverse progress of the causal
part. So the anti-causal outgoing message of each processor saves its first
local prefix sum. For example, if the inputs for the prefix sum computation
of a processor are 1, 2,−2, 3, 4 then the local prefix sums of the anti-causal
part are 8, 7, 5, 7, 4 respectively. The anti-causal outgoing message saves 8
since it is the first local prefix sum.
Therefore, the number of operations of this step for the anti-causal part is
given by

Oinit comp anti = Oinit comp causal.

2. Step 2 - Communication : The goal of this step is to communicate and it is divided
by d small steps named the sub-step 2. j (with j = 1, ..., d). At each sub-step 2. j, all
pairs of processors connected by a dimension (d− j + 1) link communicate together.
Each processor receives M complex-numbers, namely the contents of the causal
incoming message, from its jth neighbour. In order to compute this step quickly, at
the end of this communication step, the contents of the causal outgoing message
are updated with the causal incoming message. At the same time, the content of
this causal incoming message is added to the causal result buffer only if the rank of
the processor is larger than that of its neighbour. So there is always a half of proces-
sors executing additions for their causal result messages. The number of operations
and transmissions for these processors is thus M complex-numbers received and
2M complex-additions (add to its causal outgoing message and its result buffer),
whereas for other processors there is only M complex-numbers received and M
complex-additions.

So the number of operations and transmissions for the causal part at each sub-step
is

Ocomm subs causal = (4M × 2d−1) ⊕ +(2M × 2d−1) s + (2M × 2d−1) ⊕

+ (2M × 2d−1) s = 3M × 2d ⊕ +2M × 2d s. (2.26)

There are d sub-steps as above, so the number of operations and transmissions of
this step for the causal part is given by

Ocomm causal = (3M × d × 2d) ⊕ +(2M × d × 2d) s. (2.27)
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Remark 5 :

To save the total computation time, communications of the anti-causal part
are executed right after that of the causal part finishes. Its computation is
executed similarly as the computation of the causal part. The only different
point is that the content of the anti-causal incoming message is added to
the anti-causal result buffer only if the rank of the processor is smaller than
that of its neighbour. So the number of operations and transmissions of this
step for the anti-causal part is given by

Ocomm anti = Ocomm causal.

We consider an example as in Figure 2.11. Let us consider the communication of
the causal part between the 3rd-processor with the initial value resc

3 = 1, mesc
3 = 1

and the 4th-processor with the initial value resc
4 = 4, mesc

4 = 4, see Figure 2.11(A).
Recalling that in this case the rank of the 3rd-processor is 2 which corresponds to
3−bit binary string 010 and the rank of the 4th-processor is 3 which corresponds
to 3−bit binary string 011. So the 3rd-processor is the first neighbour of the 4th-
processor, and thus this communication is implemented in the sub-step 2.1.
The 3rd-processor receives M complex-numbers (in this example, M = 1, the ima-
ginary part is equal to 0) as the content of its causal incoming message from the
4th-processor and add this value into only its message since its rank (equal to 2)
is less than that of its neighbour (equal to 3). Its causal outgoing message is now
updated, namely mesc

3 = 5.
The 4th-processor receives the value 1, the old content of the causal outgoing mes-
sage of the 3rd-processor, as the content of its causal incoming message and add
this value into both its causal outgoing message and its result buffer since its rank is
larger. Now its causal outgoing message is updated, namely mesc

4 = 5. The causal
result buffer is also updated, namely resc

4 = 5. Other processors and other sub-
steps communicate and compute similarly. The results of the sub-step 2.2, 2.3 and
2.4 are shown in Figure 2.11(B), 2.11(C) and 2.11(D), respectively.

Remark 6 :

With the same example for the anti-causal part, considering the same com-
munication, the 3rd-processor with the initial value resa

3 = −4, mesa
3 = −4

receives the value 3 from the 4th-processor with the initial value resa
4 =

3, mesa
4 = 3. This value is added to both its anti-causal outgoing mes-

sage and its anti-causal result buffer. Its anti-causal outgoing message
and its anti-causal result buffer are now updated, namely mesa

3 = −1, and
resa

3 = −1.
The 4th-processor receives the value −4, the old content of the anti-causal
outgoing message of the 3rd-processor, as the content of its anti-causal
incoming message. This value is then added to its anti-causal outgoing
message. This message is thus updated, namely mesa

4 = −1.

3. Step 3 - Ending cumulation : This step is executed by all processors except the first
processor since the first processor already executed its computation in Step 1. It
consists of adding the previous prefix sum to all the local elements.
It means the jth processor requires the last prefix sum of the ( j − 1)st processor.
However, this previous prefix sum is not available in the jth processor. It should be
sent from the ( j − 1)st processor or it should be computed at the jth processor. We
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note that this prefix sum is the result of a subtraction between the context of the
causal result buffer as a minuend and the last initial input as a subtrahend.
For example, seeing Figure 2.11(D), the processor 111 requires the last prefix sum
of the processor 110, i.e., the value 7. This value is the result of subtracting 5 (the
initial input of the processor 111, see Figure 2.11(A)) from 12 (the context of the
causal result buffer of the processor 111).
We avoid adding more than one communication step by computing this previous
prefix sum at the jth processor. Namely, we use an addition storage to save its last
initial input which will be used as above subtrahend. This storage is updated by
substituting its old value by the result of subtracting “its old value” from “the context
of the causal result buffer of the jth processor”. This result is used as the previous
prefix sum in this step. In this case, we should add k subtractions (i.e., additions) in
the number of operations of this step.
It thus requires [(m−1)×M +1] complex-additions at each processor except the first
processor. So the number of operations of this step for the causal part is given by

Oend cumul causal = 2(m − 1) × M × (2d − 1) + 2(2d − 1) ⊕ . (2.28)

So the total number of operations and transmissions to implement the prefix sums
for the causal part is

Ocumul causal = Oinit comp causal + Ocomm causal + Oend cumul causal (2.29)
= (4m × M × 2d) ⊗ +M × (6m × 2d + 3d × 2d − 2d+1 − 2m + 2)

+2(2d − 1) ⊕ +(2M × d × 2d) s.

Remark 7 :

Similarly to the anti-causal part, this step is executed by all processors ex-
cept the last processor. But it adds the last prefix sum to all local elements.
By similar deductions, the number of operations of this step for the anti-
causal part is

Oend cumul anti = Oend cumul causal,

and the total number of operations and transmissions to implement the pre-
fix sums for the anti-causal part

Ocumul anti = Ocumul causal.

4. Step 4 - Estimation of the contour : This step is similar as the step 4 of the line
topology. So the number of operations and transmissions for the causal part is

Oestim contour causal = (10m × M × 2d) ⊗ +(8m × M × 2d) ⊕ . (2.30)

Remark 8 :

This step of the anti-causal part is also computed similarly to the one of the
causal part. Therefore, the number of operations and transmissions for the anti-
causal part is

Oestim contour anti = Oestim contour causal.
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We see that the number of operations and transmissions of all steps of the anti-causal
part is equal to that of the causal part. Since the total operations and transmissions for
the causal part are

ODR causal = Ocumul causal + Oestim contour causal (2.31)
= 14m × M × 2d ⊗ +M × (14m × 2d + 3d × 2d

−2d+1 − 2m + 2) + 2(2d − 1) ⊕ +(2M × d × 2d) s,

and the total number of operations and transmissions for both parts is

ODR = 2 × ODR causal = 28m × M × 2d ⊗

+2M × (14m × 2d + 3d × 2d − 2d+1 − 2m + 2) + 2(2d − 1) ⊕

+(4M × d × 2d) s. (2.32)

2.1.2.4/ ESTIMATION OF THE EXECUTION TIME OF THE DR METHOD WITH A HYPER-
CUBE

We only consider the causal case. The anti-causal case is similar. In Step 1, there are 2d

processors to compute parallelly. Thus the computation time of this step is

Tinit comp causal = 4m × M × tm + 4m × M × ta. (2.33)

At every sub-step 2. j, a half of processors executes 2M complex-additions (M complex
additions for the message, M complex-additions for the result buffer) and another half of
processors only executes M complex-additions for the message. However, we have to
take the upper bound of computation time. So

Tsmall step causal = 4M × t2 + 2M × ts. (2.34)

In Step 3, all processors expect the first processor compute parallelly, so

Tend cumul causal = 2(m − 1) × M × ta + 2ta. (2.35)

To implement the estimation of the contour, all the processors should implement the com-
putation parallelly. So total time of this computation in parallel is

Testim contour causal = 10m × M × tm + 8m × M × ta. (2.36)

We use the same network for both parts, so the computation time of DR is twice as much
as the computation time of the causal part, namely,

T = 2 × Tinit comp causal + 2d × Tsmall step causal + 2 × Tend cumul causal

+2 × Testim contour causal = 28m × M × tm
+2M × (14m + 4d − 2) × ta + 2ta + 4M × d × ts. (2.37)

2.1.3/ DR ALGORITHM WITH A BINARY TREE TOPOLOGY

2.1.3.1/ DESCRIPTION OF A BINARY TREE TOPOLOGY

We consider a binary tree network which contains k = 2d processors and each of them is
able to control m ≥ 1 sensors in general case. The (2i× j+2i−1)th processor communicates
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with i other processors, i ≤ d − 1, j ≤ 2d−i − 1. The kth processor communicates with d
other processors. Therefore, there are k − 1 links in this network. See Figure 2.12 for an
illustration of a binary tree network with k = 24 processors.

m sensors

u
8m

u
8m

+
1

u
8m

+
2

u
8m

+
m

-1

...

2 3 4 5 6 7 81

10 11 12 13 14 15 169

FIGURE 2.12 – A binary tree network which is suitable for the causal part with 16 proces-
sors.

This network is suitable to compute prefix sums for the causal part. For the anti-causal
part, we have two choices. The first choice is to use another network which is symmetric
with the network of the causal part. Figure 2.13 illustrates for this choice. In this case,

2 3 4 5 6 7 81

10 11 12 13 14 15 169

FIGURE 2.13 – A binary tree network which is suitable for the anti-causal part with 16
processors.

the parallel algorithm of the anti-causal part can be implemented similarly to the one of
the causal part. Therefore, a common network for both parts is a combination of both
networks as in Figure 2.12 and Figure 2.13.
The second choice is to use the same network as in the causal part. In this case, we
should build a new algorithm for the anti-causal part.

The advantages of the first choice are a similar algorithm used for both parts and its ca-
pacity for saving computation time. Namely, both parts are implemented simultaneously.
However, its biggest drawback is to use more (k − 1) links. This implies that its cost in-
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creases. To avoid this drawback, we use the second choice. This is more realistic in
application. In Subsection 2.1.3.2, we describe algorithms for both parts with the second
choice. However, to have a comprehensive view, we also describe the first choice through
subsequent remarks.

2.1.3.2/ ESTIMATION OF THE NUMBER OF OPERATIONS AND TRANSMISSIONS

For the causal part
] We suggest to proceed in 3 steps to implement the prefix sum and one step to estimate
the contour. In order to understand easily, we give an example throughout a series of
figures from Figure 2.12-A to Figure 2.12-L. This example is considered with 16 proces-
sors, and each of them controls three sensors by using three result buffers. Its initial data
for the prefix sum computation are illustrated in Figure 2.12-A.

Figure 2.12-A : Input data illustrated for the causal part.

1. Step 1 - Initial cumulation : The local prefix sums are computed on all processors.
This step is illustrated in Figure 2.12-B. This step involves m×M complex multiplica-
tions and m × M complex additions at each processor. So the number of operations
of this step is given by

Oinit comp causal = (4m × M × 2d) ⊗ +(4m × M × 2d) ⊕ . (2.38)

Figure 2.12-B : The result of step 1 illustrated for the causal part.

2. Step 2 - Communication : The goal of this step is to communicate. This step is
divided into two steps since it requires both up-sweep and down-sweep to complete
the prefix sum as in the first loop of Algorithm 5. We denote by Step 2a Up-sweep
computation and denote by Step 2b Down-sweep computation.

2a. Step 2a - Up-sweep : In this step all leaves send their results to their parents.
It is divided into d sub-steps. They are illustrated from Figure 2.12-C to Figure
2.12-F.
At sub-step 2a-ith (1 ≤ i ≤ d), the (2i j)th processor receives and adds the M
complex values from the (2i−1(2 j − 1))th processor (1 ≤ j ≤ 2d−i) and other
processors have no computation. So at this each sub-step, there are M × 2d−i

complex numbers sent and M × 2d−i complex numbers added. The number of
operations and transmission of this each sub-step is summarized in Table 2.4.



2.1. PARALLEL ALGORITHM FOR THE DR METHOD 53

Sub-step s (real number) ⊕ (real number)
2a-1 2M × 2d−1 2M × 2d−1

2a-2 2M × 2d−2 2M × 2d−2

... ... ...
2a-i 2M × 2d−i 2M × 2d−i

... ... ...
2a-d 2M × 20 2M × 20

Total 2M × (2d − 1) 2M × (2d − 1)

TABLE 2.4 – The number of operations and transmission of each sub-step.

Thus the number of operations and transmissions of this step is given by

Ocomm up causal = 2M × (2d − 1) s + 2M × (2d − 1) ⊕ . (2.39)

( since 2d − 1 = 2d−1 + 2d−2 + ... + 20)

Figure 2.12-C : The result of step 2a-1 illustrated for the causal part.

Figure 2.12-D : The result of step 2a-2 illustrated for the causal part.

Figure 2.12-E : The result of step 2a-3 illustrated for the causal part.

Figure 2.12-F : The result of step 2a-4 illustrated for the causal part.

2b. Step 2b - Down-sweep : This step should be executed since the following
remark.

Remark 9 :

The second loop in Algorithm 5 shows that the computation of the his-
tory function ψ+ at the (` + 1)st element requires the prefix sum ϕ+ of
the previous element. Therefore, this prefix sum should be sent quickly
or be implemented at the precessor which contains this element.
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In a binary tree network, this step (Down-sweep) fulfills Remark 9, i.e., the
`th prefix sum is implemented right on the processor containing the (` + 1)st

element. Before beginning this step, we replace the last prefix sum of last pro-
cessor by 0. It only takes a replacement, so we don’t count it. The result of this
replacement is illustrated in Figure 2.12-G.

Figure 2.12-G : The replacement of the last prefix sum of the last processor.

This step is also divided by d sub-steps. They are also illustrated from Figure
2.12-H to Figure 2.12-K.
At the sub-step 2b-ith (1 ≤ i ≤ d), the (2d−i+1 j)th processor receives and adds
the M complex numbers from the (2d−i(2 j − 1))th processor (1 ≤ j ≤ 2i−1),
while the (2d−i(2 j − 1))th processor receives the M complex values from the
(2d−i+1 j)th processor and replaces its old values. Other processors have no
computation. We count a replacement as an addition. So at this each sub-
step, there are 2M×2i−1 complex numbers sent and 2M×2i−1 complex numbers
added. Therefore the number of operations and transmissions of this step is
given by

Ocomm down causal = 4M × (2d − 1) s + 4M × (2d − 1) ⊕ . (2.40)

( since 2d − 1 = 20 + 21 + ... + 2d−1)

Figure 2.12-H : The result of Step 2b-1 illustrated for the causal part.

Figure 2.12-I : The result of Step 2b-2 illustrated for the causal part.

Figure 2.12-J : The result of Step 2b-3 illustrated for the causal part.

Figure 2.12-K : The result of Step 2b-4 illustrated for the causal part.
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3. Step 3 - Ending cumulation : This last step is executed by all processors. It consists
of adding the last prefix sum to all the local elements, then putting it in first location.
Here an opration which puts the last prefix sum in the first location is considered as
an addition. So the number of operations of this step is given by

Oend cumul causal = 2m × M × 2d ⊕ . (2.41)

Figure 2.12-L : The result of Step 4 illustrated for the causal part.

The results of this step of the example are illustrated in Figure 2.12-L.
For the anti-causal part, it is symmetric and starts for the last processor to end on
the first.
So the total number of operations and transmissions to compute the prefix sums in
parallel for the causal part is

Ocumul causal = Oinit comp causal + Ocomm up causal

+Ocomm down causal + Oend cumul causal

= (4m × M × 2d) ⊗ +
(
6m × M × 2d + 6M × 2d − 6M

)
⊕

+(6M × (2d − 1)) s. (2.42)

4. Step 4 - Estimation of the contour : After the computation of the prefix sums, the
estimation of the contour can be executed. It corresponds to the second line of the
second loop in Algorithm 5. At each processor, the computation of ψ+ involves (2m×
M) complex multiplications and (m × M) complex additions. Then the computation
of z+ involves a summation of real part multiplications, so it is real part of (m × M)
complex additions and complex multiplications. So the number of operations of this
step is given by

Oestim contour causal = (10m × M × 2d) ⊗ +(8m × M × 2d) ⊕ . (2.43)

Therefore, the total number of operations and transmissions for the causal part is

OBT causal = Ocumul causal + Oestim contour causal (2.44)

= (14m × M × 2d) ⊗ +
(
14m × M × 2d + 6M × 2d − 6M

)
⊕

+(6M × (2d − 1)) s.

Remark 10 :

With the first choice, the causal part is implemented as above. The anti-causal
part is symmetric, so all computation of the anti-causal part is similar as that of
the causal part, but it is executed from the last processor to the end at the first
processor. Therefore the total number of operations and transmissions for the
anti-causal part is

OBT anti = (14m × M × 2d) ⊗ +
(
14m × M × 2d + 6M × 2d − 6M

)
⊕

+(6M × (2d − 1)) s.
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For the anti-causal part
We also proceed in three steps to implement the prefix sum and one step to estimate the
contour. Some steps of this algorithm are illustrated throughout a series of figures from
Figure 2.14-A to Figure 2.14-L with the initial inputs for the prefix sum computation as in
Figure 2.14.

FIGURE 2.14 – Input data illustrated for anti-causal part

1. Step 1-Initial cumulation : This step is similar as in causal part. It means the lo-
cal prefix sums are computed. However, the local prefix sum starts from the last
element to the first element. The content of the anti-causal outgoing message is
the first local prefix sum. This step is illustrated in Figure 2.14-A. The number of
operations is given by

Oinit comp anti = (4m × M × 2d) ⊗ +(4m × M × 2d) ⊕ . (2.45)

Figure 2.14-A : The result of Step 1 illustrated for the anti-causal part.

2. Step 2-Communication : This step is divided into two steps since it requires both
up-sweep and down-sweep to complete the prefix sum.

2a. Step 2a - Up-sweep : In this step all leaves send their results to their parents.
It is divided into d sub-steps. At sub-step 2a− ith(1 ≤ i ≤ d), the (2i j)th processor
receives and adds the M complex values from the (2i−1(2 j − 1))th processor
(1 ≤ j ≤ 2d−i). At this step, a difference point of anti-causal part here is that
the (2i−1(2 j − 1))th processor also receives M complex values from the (2i j)th

processor and replaces its local prefix sum by these M complex values. Other
processors have no computation. So at this each sub-step, there are 2M × 2d−i

complex numbers sent and 2M × 2d−i complex numbers added. These sub-
steps are illustrated from Figure 2.14-B to Figure 2.14-E.
We consider a replacement is an addition. Thus the number of operations and
transmissions of this step for the anti-causal part is given by

Ocomm up anti = 4M × (2d − 1) s + 4M × (2d − 1) ⊕ . (2.46)

Figure 2.14-B : The result of step 2a-1 illustrated for the anti-causal part.
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Figure 2.14-C : The result of step 2a-2 illustrated for the anti-causal part.

Figure 2.14-D : The result of step 2a-3 illustrated for the anti-causal part.

Figure 2.14-E : The result of step 2a-4 illustrated for the anti-causal part.

2b. Step 2b - Down-sweep : Before beginning this step, we replace the last prefix
sum of last processor by 0. It only takes a replacement, so we don’t count it. It
is illustrated in Figure 2.14-F.

Figure 2.14-F : The replacement of the first prefix sum of last processor.

This step is also divided by d sub-steps. At the sub-step 2b-ith (1 ≤ i ≤ d),
the (2d−i(2 j − 1))th processor receives and adds the M complex values from
the (2d−i+1 j)th processor. Other processors have no computation. We count
a replacement as an addition. So at this each sub-step, there are M × 2i−1

complex numbers sent and M×2i−1 complex numbers added. These sub-steps
are illustrated from Figure 2.14-H to Figure 2.14-K. Therefore, the number of
operations and transmissions of this step for the anti-causal part is given by

Ocomm down anti = 2M × (2d − 1) s + 2M × (2d − 1) ⊕ . (2.47)

Figure 2.14-H : The result of Sub-step 2b-1 illustrated for the anti-causal part.

Figure 2.14-I : The result of Sub-step 2b-2 illustrated for the anti-causal part.
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Figure 2.14-J : The result of Sub-step 2b-3 illustrated for the anti-causal part.

Figure 2.14-K : The result of Sub-step 2b-4 illustrated for the anti-causal part.

3. Step 3 - Ending cumulation : This last step is executed by all processors. It consists
in adding the first prefix sum to all the local elements, then putting it in the last
location. Here an operation which puts the first prefix sum in the last location is
considered as an addition. The results of this step of the example are illustrated in
Figure 2.14-L.
So the number of operations of this step for the anti-causal part is given by

Oend cumul anti = 2m × M × 2d ⊕ . (2.48)

Figure 2.14-L : The result of Step 3 illustrated for the anti-causal part.

So the total number of operations and transmissions to compute prefix sums in
parallel for the anti-causal part is

Ocumul anti = Oinit comp anti + Ocomm up anti

+Ocomm down anti + Oend cumul anti

= (4m × M × 2d) ⊗ +
(
6m × M × 2d + 6M × 2d − 6M

)
⊕

+(6M × (2d − 1)) s. (2.49)

4. Step 4 - Estimation of the contour : It is as similar as for the causal part. It means
the number of operations of this step is given by

Oestim contour anti = (10m × M × 2d) ⊗ +(8m × M × 2d) ⊕ . (2.50)

Therefore, the total number of operations and transmissions for the anti-causal part
is

OBT anti = Ocumul anti + Oestim contour anti (2.51)

= (14m × M × 2d) ⊗ +
(
14m × M × 2d + 6M × 2d − 6M

)
⊕

+(6M × (2d − 1)) s.

Finally, the total number of operations and transmissions for both parts is given

OBT = OBT causal + OBT anti (2.52)

= (28m × M × 2d) ⊗ +
(
28m × M × 2d + 12M × 2d − 12M

)
⊕

+(12M × (2d − 1)) s.
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Remark 11 :

In the first choice, the communication of both parts can be implemented
independently. Therefore, the computation time in this case is

TBt 2 = TBT causal (2.53)
= 14m × M × tm + 2M × (7m + 2d) × ta + 6M × d × ts.

2.1.3.3/ ESTIMATION OF THE EXECUTION TIME OF THE DR METHOD WITH A BINARY

TREE

We consider the second choice as above. At the first step, all processors are computing
in parallel, so

Tinit comp = 4m × M × tm + 4m × M × ta. (2.54)

At each sub-step 2a-j ( j = 1, ..., 4), some processors receive and add M complex numbers
at the same time. Other processors have no computation but we take the upper bound
time. So the computation time of this step is given by

Tcomm up = 2M × d × ta + 2M × d × ts. (2.55)

At each sub-step 2b − j, some processors send M complex numbers, then they receive
and add M complex numbers from the processor which they sent. There are only 2 j

executing this task. We remark that these processors are separated into each pair and
there are two communicated directions (forward and backward) between that each pair.
The addition is overlapped, but the communication is not overlapped if we use only one
link between each pair of these processors. So the computation time of this step is given
by

Tcomm down = 2M × d × ta + 4M × d × ts. (2.56)

At the third step, all processors execute their computation in parallel.

So the computation time of this step is the computation time at each processor

Tend cumul = 2m × M × ta. (2.57)

For the estimation of the contour, its computation time is

TEstim contour = 10m × M × tm + 8m × M × ta. (2.58)

For the anti-causal part, it is symmetric. So

TBt1 = 2 × Tinit comp + 2 × Tcomm up + 2 × Tcomm down

+2 × Tend cumul + 2 × TEstim contour

= 28m × M × tm + 4M × (7m + 2d) × ta + 12M × d × ts. (2.59)
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2.2/ PARALLEL ALGORITHM FOR THE DIRECT METHOD WITH A LINE

TOPOLOGY

We recall the formula of the direct method

z(x`) ≈ hx

H−1∑
j=0

p(x`, y j)u(y j), for all `. (2.60)

In fact, this computation is represented as a product of a H × H real-valued matrix P
multiplied by a H × 1 real vector U with

P =


P11 P12 . . . P1H

P21 P22 . . . P2H
...

...
. . .

...

PH1 PH2 . . . PHH

 , U =


U1
U2
...

UH


where P`+1, j+1 = p(x`, y j) and U j+1 = u(x j), `, j = 0, 1, ...,H − 1. This method is summarized
in Algorithm 7. A similar line network as in DR method is used to implement this method
in parallel. An example for parallel computation of the direct method is shown in Figure
2.15.

Offline computation of the kernel p : P = (P`, j) = p(x`, y j).
Online computation
for ` = 0, ...,H − 1 do

z` = 0 ;
for j = 0, ...,H − 1 do

z` = z` + P`, ju j ;
end

end
Algorithme 7: The algorithm of the direct method.

2.2.1/ ESTIMATION OF THE NUMBER OF OPERATIONS AND TRANSMISSIONS

We suggest to proceed in k steps. The first step is to compute the local sums. The remai-
ning steps are to communicate in order to exchange the inputs U j. In these communica-
tion steps, there are two classes of processors. Each processor in the first class receives
only one input from either its right neighbour or its left neighbour.

They are illustrated in Figure 2.16. The parallel computation of this method is described
as follows :

1. Step 1 - Initial summation : The local sums are computed on all processors. Namely,
at the jth processor, j = 1, ..., k, there are m local sums

res` = res` +

m j∑
s=m( j−1)+1

P`,sUs, for all ` = m( j − 1) + 1, ...,m j.

We assume that the initial results res` are assigned by 0. This step involves m2 mul-
tiplications and m2 additions at each processor. So the total number of operations
of this step is given

Ostep 1 = m2 × k ⊗ +m2 × k ⊕ .
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FIGURE 2.15 – An illustration for parallel computation of a matrix-vector multiplication on
a line network with k processors. (A) Preparation step : the partitioning of the matrix and
the vector. (B) The distribution of the matrix, in this example each processor controls 3
sensors (i.e., inputs), namely, the jth processor stores three rows 3 j − 2, 3 j − 1, 3 j of the
matrix as its initial data. (C) Main computation steps of parallel algorithm.

2. Step 2 - The first communication : The first processor and the last processor belong
to the first class. Each of them only receives m real values (i.e., inputs) from its
neighbour and implements the computations as follows, at the first processor

res` = res` +

2m∑
s=m+1

P`,sUs for all ` = 1, ...,m,
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P1 P2 P3 P4 Pk/2-1 Pk/2 Pk/2+1 Pk/2+2 Pk-3 Pk-2 Pk-1 PkStep 
1

P1 P2 P3 P4 Pk/2-1 Pk/2 Pk/2+1 Pk/2+2 Pk-3 Pk-2 Pk-1 PkStep 
2

P1 P2 P3 P4 Pk/2-1 Pk/2 Pk/2+1 Pk/2+2 Pk-3 Pk-2 Pk-1 PkStep 
3

P1 P2 P3 P4 Pk/2-1 Pk/2 Pk/2+1 Pk/2+2 Pk-3 Pk-2 Pk-1 PkStep 
k/2

P1 P2 P3 P4 Pk/2-1 Pk/2 Pk/2+1 Pk/2+2 Pk-3 Pk-2 Pk-1 PkStep 
k/2+1

P1 P2 P3 P4 Pk/2-1 Pk/2 Pk/2+1 Pk/2+2 Pk-3 Pk-2 Pk-1 PkStep 
k/2+2

P1 P2 P3 P4 Pk/2-1 Pk/2 Pk/2+1 Pk/2+2 Pk-3 Pk-2 Pk-1 PkStep 
k-1

P1 P2 P3 P4 Pk/2-1 Pk/2 Pk/2+1 Pk/2+2 Pk-3 Pk-2 Pk-1 PkStep 
k

Inputs
V1 Vk/2+1 Vk/2+2Vk/2

Vk/2-1V4V3V2 Vk-3 Vk-2 Vk-1 Vk

Vk/2-1Vk/2 Vk/2+1Vk/2Vk/2+2Vk/2+1
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FIGURE 2.16 – A k-steps process of the direct method on a line network with k processors.
The V j, j = 1, ..., k represents the inputs U(m−1) j+1,U(m−1) j+2, ...,Um j which are exchanged
throughout communication steps. The yellow lines represent the connection links without
communication, the red arrows represent communications along one direction, and the
blue arrows represent communications along two directions.

and at the last processor

res` = res` +

m(k−1)∑
s=m(k−2)+1

P`,sUs for all ` = m(k − 1) + 1, ...,mk).

Thus each of these two processors requires

Oclass 1 = m s + m2 ⊗ +m2 ⊕ .

All processors expect the first processor and the last processor belong to the second
class. Each of them receives 2m real values from its two neighbours and implement
the computations. Precisely, at the jth processor, j = 2, ..., k − 1, there are m double



2.2. PARALLEL ALGORITHM FOR THE DIRECT METHOD WITH A LINE TOPOLOGY63

local sums

res` = res` +

m( j−1)∑
s=m( j−2)+1

P`,sUs +

m( j+1)∑
s=m j+1

P`,sUs for all ` = m( j − 1) + 1, ...,m j.

So each processor in the second class requires

Oclass 2 = 2m s + 2m2 ⊗ +2m2 ⊕ .

It is clear that there are two processors in the first class and (k−2) processors in the
second class. Therefore, the total number of operations and transmissions of this
step is given by

Ostep 2 = 2 × Oclass 1 + (k − 2) × Oclass 2

= 2m2 × (k − 1) ⊗ +2m2 × (k − 1) ⊕ +2m × (k − 1) s. (2.61)

3. Step 3 - The second communication :
The two first processors and the two last processor belong to the first class. So
each of them only receives m real values from neither its right neighbour nor its left
neighbour. Namely, two first processors receive data from their right neighbours,
and two last processor receive data from their left neighbours. Then they implement
the computations, at the two first processors (with j = 1 and j = 2)

res` = res` +

m( j+2)∑
s=m( j+1)+1

P`,sUs for all ` = m( j − 1) + 1, ...,m j,

and at the two last processors (with j = k − 1 and j = k)

res` = res` +

m( j−2)∑
s=m( j−3)+1

P`,sUs for all ` = m( j − 1) + 1, ...,m j.

These processors therefore require Oclass 1 = m s + m2 ⊗ +m2 ⊕ .

The (k−4) remaining processors belong to the second class. Each of them receives
2m real values from its two neighbours and implement the computations. Precisely,
at the jth processor, j = 3, ..., k − 2, there are m double local sums

res` = res` +

m( j−2)∑
s=m( j−3)+1

P`,sUs +

m( j+2)∑
s=m( j+1)+1

P`,sUs for all ` = m( j − 1) + 1, ...,m j.

Each of these (k − 4) processors requires Oclass 2 = 2m s + 2m2 ⊗ +2m2 ⊕ .

So the total number of operations and transmissions of this step is given by

Ostep 3 = 4 × Oclass 1 + (k − 4) × Oclass 2

= 2m2 × (k − 2) ⊗ +2m2 × (k − 2) ⊕ +2m × (k − 2) s.

In generally, if we assume that k is even then
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k/2-r. Step (k/2 − r)th - The (k/2 − r − 1)th communication, with r = 0, ..., k/2 − 2 :
The (k/2 − r − 1) first processors and the (k/2 − r − 1) last processors belong to the
first class. Each of the (k/2 − r − 1) first processors receives m real values from its
right neighbour and executes (with j = 1, ..., k/2 − r − 1)

res` = res` +

m( j+k/2−r−1)∑
s=m( j+k/2−r−2)+1

P`,sUs for all ` = m( j − 1) + 1, ...,m j,

Moreover, each of the (k/2 − r − 1) last processors receives m real values from its
left neighbour and executes (with j = k/2 + r + 2, ..., k)

res` = res` +

m( j−k/2+r+1)∑
s=m( j−k/2+r)+1

P`,sUs for all ` = m( j − 1) + 1, ...,m j.

Each of these (k − 2r − 2) processors requires Oclass 1 = m s + m2 ⊗ +m2 ⊕ .

The remaining processors belong to the second class. Each of them receives 2m
real values from its two neighbours and implements the computations. Namely, at
the jth processor, j = k/2 − r, ..., k/2 + r + 1, there are m double local sums

res` = res` +

m( j−k/2+r+1)∑
s=m( j−k/2+r)+1

P`,sUs +

m( j+k/2−r−1)∑
s=m( j+k/2−r−2)+1

P`,sUs

for all ` = m( j − 1) + 1, ...,m j. Each of these (2r + 2) processors requires Oclass 2 =

2m s + 2m2 ⊗ +2m2⊕. So the total number of operations and transmissions of this
step is given by

Ostep (k/2−r) = (k − 2r − 2) × Oclass 1 + (2r + 2) × Oclass 2

= 2m2(k/2 + r + 1) ⊗ +2m2(k/2 + r + 1) ⊕

+2(k/2 + r + 1) × m s.

Moreover, the next steps are generalized as follows :

k/2+r. Step (k/2 + r)th - The (k/2 + r − 1)th communication, r = 1, ..., k/2 :
The (k/2 − r + 1) first processors and the (k/2 − r + 1) last processors belong to the
first class. Each of the (k/2 − r + 1) first processors receives m real values from its
right neighbour and implements the computation (with j = 1, ..., k/2 − r + 1)

res` = res` +

m( j+k/2+r−1)∑
s=m( j+k/2+r−2)+1

P`,sUs for all ` = m( j − 1) + 1, ...,m j,

Moreover, each of the (k/2 − r + 1) last processors receives m real values from its
left neighbour and executes (with j = k/2 + r, ..., k)

res` = res` +

m( j−k/2−r+1)∑
s=m( j−k/2−r)+1

P`,sUs for all ` = m( j − 1) + 1, ...,m j.

Each of these (k − 2r + 2) processors requires Oclass 1 = m s + m2 ⊗ +m2 ⊕ .

The (2r−2) remaining processors have no computation since they have finished their
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The first class The second class Time (∗ts)
Step 1 0 0 0
Step 2 2 k-2 2m
Step 3 4 k-4 2m

. . . . . . . . . . . .
Step k/2-1 k-4 4 2m
Step k/2 k-2 2 2m

Step k/2+1 k 0 m
Step k/2+2 k-2 0 m

. . . . . . . . . . . .
Step k-1 4 0 m
Step k 2 0 m
SUM 2 × (2 + 4 + . . . 2 + 4 + . . . + (k − 2) 2m × (k/2 − 1)

+(k − 2)) + k = k2

2 = k
2

(
k
2 − 1

)
+m × k/2 = m

(
3k
2 − 2

)
TABLE 2.5 – The number of processor of each class and the computation time at each
step.

computations from previous steps. So the total number of operations and transmis-
sions is given by

Ostep (k/2+r) = (k − 2r + 2) × Oclass 1

= 2m2 × (k/2 − r + 1) ⊗ +2m2 × (k/2 − r + 1) ⊕

+2m × (k/2 − r + 1) s.

The number of processors of each class at each step is summarized by the second
and the third column of Table 2.5. From this table, we can compute the total number
of operations and transmissions of this method as follows

Odirect = Ostep 1 + ... + Ostep k

= [2 × (2 + 4 + . . . + (k − 2)) + k] × Oclass 1

+[2 + 4 + . . . + (k − 2)] × Oclass 2

= m2 × k2 ⊗ +m2 × k2 ⊕ +m × k × (k − 1) s. (2.62)

2.2.2/ ESTIMATION OF THE EXECUTION TIME OF THE DIRECT METHOD WITH A
LINE

To estimate the entire computation time, we evaluate the computation time at each step.
The communication time of each step is summarized in the last column of Table 2.5.

1. Step 1 : Since k processors are computed in parallel, the computation time is

Tstep 1 = m2 × tm + m2 × ta. (2.63)

2. Step 2 : There are two processors which only receive m real values from either
only from its right neighbour or from its left neighbour and implements their com-
putations. Other ones receive 2m real values and execute their computations. Their
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computations are also executed in parallel. So we have to take the upper bound of
the computation time, namely, it takes

Tstep 2 = 2m2 × tm + 2m2 × ta + 2m × ts. (2.64)

Generally,

k/2-j. Step (k/2 − j)th with j = 0, 1, ..., k/2 − 2 : There are 2(k/2 − j − 1) processors which
only receive m real values from its first or second neighbour and implement the
computations. There are 2 j+2 processors which receive 2m real values from its two
neighbours and implement the computations. So we should use the upper bound of
the computation time, namely, it takes

Tstep (k/2− j) = 2m2 × tm + 2m2 × ta + 2m × ts. (2.65)

Moreover,

k/2+j. Step (k/2 + j)th with j = 1, ..., k/2 : There are (2 j − 2) processors which execute the
computation from the last steps. The remaining 2(k/2− j+1) processors only receive
m real values from their right or left neighbour and implement the computations. So
we have to use the upper bound of the computation time, namely, it takes

Tstep (k/2+ j) = m2 × tm + m2 × ta + m × ts. (2.66)

Therefore, the total computation time of the direct method is

Tdirect = Tstep 1 + ... + Tstep k

= m2 × (1.5k − 1) × tm + m2 × (1.5k − 1) × ta
+m × (1.5k − 2) × ts. (2.67)

2.3/ COMPARISON THE NUMBER OF OPERATIONS AND THE COM-
PUTATION TIME

In this section, the computation time is considered as a function T (H) of the number
H of discretization points. This function also depends on some parameters such as the
number M of discretization nodes of the contour, the time tm taken a multiplication, the
time ta taken an addition and the time ts taken a transmission of a type processor used.
We report some simulations based on choosing different parameters for this function.

We also consider the number O(H) of operations and transmissions as a function of H.
We can summarize the functions O(H) and T (H) of the DR with three topologies and the
direct method with a line topology in Table 2.6.

We note that the discretization points (or inputs) are distributed in all processors through
sensors. It is assumed that each processor controls m sensors, so we have a new sum-
mary as in Table 2.7 if we fix the number m of sensors. Therefore, the number k of pro-
cessors equals H

m . In this case, the functions O(H) and T (H) depend on the variable H
and the parameter m.
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H O(H) T (H)
DR with a line 28m × M × tm
& no overlap +2M × (14m + k − 3) × ta

+2M × (k − 1) × ts

DR with line 28k × m × M ⊗ 24m × M × tm
and overlap k × m +4m × M × (7k − 1) ⊕ +2M × (12m + k − 3) × ta

Step 1 +4M × (k − 1) s +2M × (k − 1) × ts

DR with a line 24m × M × tm
and overlap +2M × (11m + k − 2) × ta
Step 1 & 3 +2M × (k − 1) × ts

28m × M × 2d ⊗ 28m × M × tm
DR with 2d × m +2M × (14m × 2d + 3d × 2d +4M × (7m + 2d − 1) × ta

a hypercube −2d+1 − 2m + 2) + 2(2d − 1) ⊕ +2ta + 4M × d × ts

+4M × d × 2d s
28m × M × 2d ⊗ 28m × M × tm

DR with 2d × m +2M × (14m × 2d + 6 × 2d − 6) ⊕ +4M × (7m + 2d) × ta
a binary tree +12M × (2d − 1) s +12M × d × ts

m2 × k2 ⊗ m2 × (1.5k − 1) × tm
Direct method k × m +m2 × k2 ⊕ +m2 × (1.5k − 1) × ta

with a line +m × k × (k − 1) s +m × (1.5k − 2) × ts

TABLE 2.6 – The number O(H) of operations and transmissions, and the computation time
T (H) considered as the functions of the number H of discretization points.

We recall that the time taken by an operation or a transmission of computation devices,
namely processors, depends on the type of processors used and the type of connection
links between processors. In the following, we report simulation results showing the com-
putation time for three sets of speeds. In order to have realistic values, we took the values
of a ADUC841 microcontroller. It takes 9 cycles at 20Mhz to execute an operation, so
it is 9/(20 × 106) second. It is about 0.45 micro-second. For the communication, we can
consider a speed of 4 mbits/s. If a float is coded with 18 bits then it means 18/(4000000).
It is about 4.5 micro-second. In order to see the influence of the communication, three
configurations are considered :

1. tm = ta = 0.45 µs, ts = 0.45 µs,

2. tm = ta = 0.45 µs, ts = 4.5 µs,

3. tm = ta = 0.45 µs, ts = 45 µs.

We use three different numbers of nodes m = 1, m = 16 or m = 64. The number of
quadrature points along the contour is fixed at M = 20. In the case m = 1, the result of the
DR with a line is not plotted to show the computation time. These simulations are shown
in a series of the figures in this section.

Obviously, the communication time has a significant effect on the performance of all the
parallel implementations and the number of sensors per processor is also very important.
The line topology is especially influenced by the number of sensors. This topology is
very efficient if the number of sensors per processor is large such in Figures 2.23, 2.24,
2.25. Moreover, the binary tree is less efficient. This topology is more efficient in the
case the ratio between the time taken an operator and the time taken a transmission
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k O(H) T (H)
DR with a line 28m × M × tm
& no overlap +2M × (14m + H

m − 3) × ta
+2M × ( H

m − 1) × ts

DR with a line 28H × M ⊗ 24m × M × tm
& overlap H

m +4M × (7H − m) ⊕ +2M × (12m + H
m − 3) × ta

Step 1 +4M × ( H
m − 1) s +2M × ( H

m − 1) × ts

DR with a line 24m × M × tm
and overlap +2M × (11m + H

m − 2) × ta
Step 1 & 3 +2M × ( H

m − 1) × ts

28H × M ⊗ 28m × M × tm
DR with H

m +2M × (14H + 3 log2( H
m ) × H

m +4M × (7m + 2 log2( H
m ) − 1) × ta

a hypercube −2 H
m − 2m + 2) + 2( H

m − 1) ⊕ +2ta + 4M × log2( H
m ) × ts

+4M × log2( H
m ) × H

m s
28H × M ⊗ 28m × M × tm

DR with H
m +2M × (14H + 6 H

m − 6) ⊕ +4M × (7m + 2 log2( H
m )) × ta

a binary tree +12M × ( H
m − 1) s +12M × log2( H

m ) × ts

H2 ⊗ m × (1.5H − m) × tm
Direct method H

m +H2 ⊕ +m × (1.5H − m) × ta
with a line +H × ( H

m − 1) s +(1.5H − 2m) × ts

TABLE 2.7 – The functions O(H) and T (H) of the number H of discretization points with
the number k sensors per processor fixed.
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FIGURE 2.17 – Computation time in seconds with M = 20,m = 1, ts = 0.45 µs.

is not so big such as in Figures 2.20, 2.23. As mentioned in the previous part, the only
solution to improve it, is to use more links so that some communications can be performed
in parallel. In all these simulations, the hypercube technology is, without surprise, the
most efficient. This topology has been used in many algorithms since it offers a good
compromise between the number of communication links used and the efficiency. The
next step will be to implement a real distributed control algorithm.
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FIGURE 2.18 – Computation time in seconds with M = 20,m = 1, ts = 4.5 µs.
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FIGURE 2.19 – Computation time in seconds with M = 20,m = 1, ts = 45 µs.

2.4/ CONCLUSION

This chapter described three network topologies : a line, a binary and a hypercube. The
number of operations and transmissions for DR method are evaluated for all three topolo-
gies. A similar evaluation is executed for the direct method with a line topologies. Moreo-
ver, we also computed and compared the computation time between our algorithm with
these topologies and the direct method with a line topology. Each node of these networks
only requires a few operations and each local program can read a few inputs. Therefore,
microcontrolers are well suitable for implementation of the DR method. They are small,
cheap, and they have real-time computing capacity, thus they are the best choice for a
control system.
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FIGURE 2.20 – Computation time in seconds with M = 20,m = 16, ts = 0.45 µs.
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FIGURE 2.21 – Computation time in seconds with M = 20,m = 16, ts = 4.5 µs.
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FIGURE 2.22 – Computation time in seconds with M = 20,m = 16, ts = 45 µs.
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FIGURE 2.23 – Computation time in seconds with M = 20,m = 64, ts = 0.45 µs.
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FIGURE 2.24 – Computation time in seconds with M = 20,m = 64, ts = 4.5 µs.
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FIGURE 2.25 – Computation time in seconds with M = 20,m = 64, ts = 45 µs.



3
ERROR ESTIMATES

In Chapter 1, we recall the DR theory of integral operators, then a numerical method is
detailed. The numerical method consists in the truncated trapezoidal rule for the inverse
Laplace transform computation, the spectral Galerkin method for the kernel approxima-
tion, and the piecewise constant interpolation or the piecewise linear interpolation for dis-
cretization of inputs u. In Chapter 2, estimates of numbers of operations and computation
times on parallel architectures are discussed in the framework of parallel implementation.
In this chapter, we establish the error estimates and its application to contour optimization.

As already mentioned, one of the main advantages of this method is its very low compu-
tation cost. However, in the framework of parallel implementation, this algorithm is more
effective if the number M of quadrature nodes along the contours is very small such as
M = 20. To achieve this, our main objective in this work is to derive estimates for the
parameters of the contour that will ensure, for given M, a small error.

Applying an idea similar to one of Weideman and Trefethen [35] in the framework of the
numerical inversion of the Laplace transform, we find optimal parameters that define an
hyperbolic contour based on the evaluation of an error estimate in our method. There
are three sources of errors in the algorithm. The first one is the quadrature error of the
contour integral, which is well controlled. The second one is due to the piecewise constant
interpolation of the input u by ũ as mentioned in Chapter 1. The third one comes from
the approximation of the kernel by the Galerkin method. We study two approaches in
evaluation of error estimates : one in view of discretization of input u executed before
discretization of the contour ; the other is the opposite case, i.e., in view of discretization
of the contour executed firstly as in [19]. To be convenient, we call them to be the first way
of error evaluation and the second way of error evaluation, respectively.

The methods for inverting the Laplace transform that Weideman and Trefethen [35] consi-
dered are all based on numerical integration of the Bromwich complex contour integral

f (x) =
1

2πi

∫
R

eθ(ξ)xF(θ(ξ))θ′(ξ)dξ.

In the diffusive realization, we consider the numerical integration

z±(x) =

∫
R
ψ±(x, ξ)µ±(x, ξ)dξ,

where ψ± are the integral forms of (1.1) as in (1.26) and µ± are the diffusive symbols
defined in (1.2).

73
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Evidently, not only the form of ψ±(x, ξ) is different from the corresponding form eθ(ξ)x but
also the Laplace transform P±(x,−θ±(ξ)) is more precise than F(θ(ξ)). Therefore, the Wei-
deman and Trefethen’s results [35] cannot be directly applied. However, if ψ±(x, ξ) is dis-
cretized with respect to x by approximating the input u by a piecewise constant function
then the numerical integration becomes as in (1.34)

z±(xn) ' ±
∑
j∈J±n

u j+ 1
2

(
L−1(F±n (−θ±))(±tn±1, j) − L−1(F±n (−θ±))(±tn, j)

)
.

This is a linear combination of inverse Laplace transforms at the times tn, j. Following
Weideman and Trefethen, the numerical integration formula along the contour can be
used to approximate each of these inverse Laplace transforms. The optimization of the
contours is found on a balance between the truncation error estimate and the quadrature
error estimate for the Laplace inversion at points tn, j ∈ I = {h, 2h, ...,H.h = 1} excluding the
point 0. The ratio H = 1

h between the upper and lower bounds of the set I is very large
for a fine mesh and the numerical inversion of Laplace transform is relatively expensive.
To avoid this problem, our strategy is to use a Stenger’s result to evaluate each of these
Laplace inversions, then the error estimate is a sum of these sub-error evaluations.

Remark 12 :

Another strategy would be to use a contour per Laplace inversion or use Remark
3.2 in Helie [10], at least each contour used for a given time interval, that is, long
time spans should be split into adjacent intervals of equal diameter in order to
maintain the desired convergence rate :

[h, 1] = [h,Λh] ∪ [Λh,Λ2h] ∪ ... ∪ [Λnh, 1].

This is not so costly as the parameters are optimized once for all for a fixed time
interval diameter Λ. However, this may not be the ideal solution for real-time
computation. The idea using many contours is not thus considered.

In the next section, we present analytical preliminaries in the framework of numerical
inversion of the Laplace transform which will be applied in our error estimates. We provide
then proof for the convenience of the reader. The error estimate problem and the results
are stated in Section 3.2. The proofs of theorems and lemmas are detailed in Section
3.3. Numerical simulations are presented in Section 3.4. Finally, other approaches are
discussed in Section 3.5.

3.1/ ERROR ESTIMATE OF INTEGRALS OVER R APPROXIMATED BY

A QUADRATURE FORMULA

Let f : R → R be an integrable mapping. We recall an accurate estimate for the quadra-
ture error

EM( f , ~) =

∫
R

f (ξ)dξ − ~
M∑

k=−M

f (ξk), with ξk = k~, ~ > 0,M ≥ 1, (3.1)

of the truncated trapezoidal rule, in the spirit of Stenger [32], [33], and adapted from López
[20].
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For d = (d1, d2) with d1 > 0 and d2 > 0, let Bd denote the family of all functions that are
analytic in the horizontal strip

Dd = {z ∈ C : −d1 ≤ =z ≤ d2}, (3.2)

such that ∫ d2

−d1

| f (ξ + iy)|dy→ 0 as ξ → ±∞, (3.3)

and

N( f ,Dd) :=
∫
R
| f (ξ − id1)|dξ +

∫
R
| f (ξ + id2)|dξ < ∞. (3.4)

We assume that f admits a holomorphic extension f : C \ Σδ → R to the complement of
some acute sector

Σδ = {z ∈ C : | arg(−z)| ≤ δ}, 0 < δ <
π

2
. (3.5)

Given δ, let us select α > 0, d1 > 0 and d2 > 0 such that

d1 < α <
π

2
− d2 and α + d2 + δ <

π

2
. (3.6)

The estimate is stated as follows.

Theorem 2 :

Assume that f ∈ Bd, for some d = (d1, d2) with d1, d2 > 0 and | f (ξ)| ≤
C
|ξ|α

with

some constant C > 0 and α > 1. Suppose further that for some N+ > 0 and
N− > 0 the function f satisfies∫

R
| f (ξ + ir)|dξ ≤ N+,

∫
R
| f (ξ − is)|dξ ≤ N−, (3.7)

for all 0 < r < d2 and 0 < s < d1. Then∣∣∣∣ ∫
R

f (ξ)dξ − ~
∑
k∈Z

f (ξk)
∣∣∣∣ ≤ E+ + E−, (3.8)

where

E+ =
N+

e2πd2/~ − 1
, E− =

N−

e2πd1/~ − 1
.

Proof
The first step is to establish a Poisson summation formula. We define a ~−periodic ana-
lytic function

T~(z) = ~
∑
j∈Z

f ( j~ + z). (3.9)
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The condition | f (ξ)| ≤
C
|ξ|α

ensures that this sum converges uniformly for 0 ≤ z ≤ ~. Hence,

we define the Fourier coefficients of T~

t~k =
1
~

∫ ~

0
T~(z)e−i2kπ z

~ dz. (3.10)

so that we have

T~(z) =
∑
k∈Z

t~k ei2kπ z
~ . (3.11)

Substituting equation (3.9) into (3.10), and inverting the summation and the integration
yields

t~k =
∑
j∈Z

∫ ~

0
f ( j~ + z)e−i2kπ z

~ dz.

Performing the change of variable ξ = j~ + z, we obtain

t~k =
∑
j∈Z

∫ ( j+1)~

j~
f (ξ)e−i2kπ ξ

~ ei2kπ jdξ =

∫
R

f (ξ)e−i2kπ ξ
~ dξ,

since ei2kπ j = 1,∀k, j. We introduce the Fourier Transform of the function f

f̂ (u) =

∫
R

f (t)e−iutdt,

thus

t~k = f̂
(
2kπ
~

)
,

wherefrom we infer

T~(z) =
∑
k∈Z

f̂
(
2kπ
~

)
ei2kπ z

~ . (3.12)

We remark that
∫
R

f (ξ)dξ = f̂ (0), so

T~(z) −
∫
R

f (ξ)dξ =
∑
k,0

f̂
(
2kπ
~

)
ei2kπ z

~ . (3.13)

Note that the above identity is valid for all real z thanks to the analytic condition in the strip
Dd and according to Theorem 10.6e in Henrici [11].
The next step uses the holomorphic extension to infer the estimate from the above Pois-
son summation formula (3.12). We use the holomorphic extension to obtain (since f (t) is
analytic on the strip 0 < r < d2,

∫
R f (t)e−iutdt =

∫
R+ir f (t)e−iutdt)

f̂ (u) = eur
∫
R

f (ξ + ir)e−iuξdξ,
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Thanks to the condition (3.7), we obtain∣∣∣∣ f̂ (
2kπ
~

) ∣∣∣∣ ≤ e
2kπ
~ r

∫
R

∣∣∣∣ f (ξ + ir)
∣∣∣∣|e−i 2kπ

~ ξ |dξ ≤ e
2kπ
~ rN+,∀r ∈ (0, d2).

In the same manner, using the holomorphic extension in the remaining part of the strip
yields ∣∣∣∣ f̂ (

2kπ
~

) ∣∣∣∣ ≤ e−
2kπ
~ sN−,∀s ∈ (0, d1).

Now, the formula (3.13) can be written as follows :

T~(z) −
∫
R

f (ξ)dξ =
∑
k∈N∗

f̂
(
−

2kπ
~

)
e−i2kπ z

~ + f̂
(
2kπ
~

)
ei2kπ z

~ .

So ∣∣∣∣T~(z) −
∫
R

f (ξ)dξ
∣∣∣∣ ≤ ∑

k∈N∗

∣∣∣∣ f̂ (
−

2kπ
~

) ∣∣∣∣ × ∣∣∣∣e−i2kπ z
~

∣∣∣∣ +
∣∣∣∣ f̂ (

2kπ
~

) ∣∣∣∣ × ∣∣∣∣ei2kπ z
~

∣∣∣∣
≤

∑
k∈N∗

∣∣∣∣ f̂ (
−

2kπ
~

) ∣∣∣∣ +
∣∣∣∣ f̂ (

2kπ
~

) ∣∣∣∣.
Therefore, using the two estimates obtained above at the limit points r = d2 and s = d1,
we get ∣∣∣∣T~(z) −

∫
R

f (ξ)dξ
∣∣∣∣ ≤ ∑

k∈N∗
N+e−

2kπ
~ d2 +N−e−

2kπ
~ d1 .

Computing the sums in the above expression establishes the estimate (by using the sum
of a geometric progression)∣∣∣∣T~(z) −

∫
R

f (ξ)dξ
∣∣∣∣ ≤ N+

e
2π
~ d2 − 1

+
N−

e
2π
~ d1 − 1

,∀z ∈ [0, ~].

We have the proof by choosing z = 0. �
Furthermore, we have

|EM( f , ~)| =
∣∣∣∣ ∫

R
f (ξ)dξ − ~

M∑
k=−M

f (ξk)
∣∣∣∣

≤

∣∣∣∣ ∫
R

f (ξ)dξ − ~
+∞∑

k=−∞

f (ξk)
∣∣∣∣ +

∣∣∣∣~ +∞∑
|k|=M+1

f (ξk)
∣∣∣∣.

The truncation error can be evaluated as follows∣∣∣∣~ +∞∑
|k|=M+1

f (ξk)
∣∣∣∣ ≤ ~

+∞∑
|k|=M+1

| f (ξk)|. (3.14)

Thus the global quadrature error estimate are

|EM( f , ~)| ≤
N+

e
2π
~ d2 − 1

+
N−

e
2π
~ d1 − 1

+ ~
+∞∑

|k|=M+1

| f (ξk)|.
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As mentioned in Chapter 1, we only use the hyperbolic contours

−θ±(ξ) = θ±h (1 + sin(iξ − α±)), ξ ∈ R, θ±h > 0. (3.15)

This contour allows for singularities with an unbounded imaginary part, provided they lay
in a sectorial region around the negative real axis. It is clear that −θ±(ξ) transforms the
strip Dd into a region laying outside the sector Σδ (see Figure 3.1).

Theorem 2 is applied to evaluate each of the Laplace inversions which has the form as

f (x) =
1

2πi

∫
R

eθ(ξ)xF(θ(ξ))θ′(ξ)dξ. (3.16)

Therefore, we should find the conditions on the parameter d in Theorem 2 and the condi-
tions on the parameters of the contours. We start from

θ±(w) = θ±h (1 + sin(iw − α±)), (3.17)

which is identical to (3.15) when w is real. The image of the horizontal line w = ξ + id2 is

θ±(w) = θ±h (1 − sin(α± + d2) cosh ξ) + iθ±h cos(α± + d2) sinh ξ,

which can be expressed as the hyperbola(
θ±h − ξ

sin(α± + d2)

)2

−

(
y

cos(α± + d2)

)2

= θ±2
h , θ± = ξ + iy. (3.18)

When d2 increases from 0, the hyperbola closes and degenerates into the negative real
axis when d2 reaches the value π

2 − α
±. Therefore, the condition d2 <

π
2 − α

± guarantee f
to admit a holomorphic extension in the strip 0 < y < d2.



3.2. STATEMENT OF THE PROBLEM AND RESULTS 79

We examine the lower half of the w-plane by considering −d1 < 0. When −d1 decreases
from 0 the hyperbola widens until it reaches the limiting value −d1 = −α±, at which point
the image in the z-plane becomes a vertical line. For Theorem 2 to remain valid, one
cannot decrease −d1 beyond this point, since the factor eθ

±x then grows unboundedly.
Therefore we take −d1 = −α±, or d1 = α±. Thus the condition of d = (d1, d2) is

d1 < α
±, and d2 <

π

2
− α±.

It means that the condition of α± is

d1 < α
± <

π

2
− d2. (3.19)

3.2/ STATEMENT OF THE PROBLEM AND RESULTS

We consider the kernel operator

Pu(x) =

∫ 1

0
p(x, y)u(y)dy,

and its unique decomposition Pu = z+ + z− into causal and anti-causal parts

z+(x) =

∫ x

0
p(x, y)u(y)dy and z−(x) =

∫ 1

x
p(x, y)u(y)dy. (3.20)

To achieve the final approximation (1.17), a process can be considered as follows.
Firstly, the realizations z± are approximated with respect to x as

zh+(x) =

∫ x

0
p(x, y)̃u(y)dy and zh−(x) =

∫ 1

x
p(x, y)̃u(y)dy, (3.21)

where ũ is a piecewise constant approximation of u equal to u(x`) on each interval
[x`, x`+1), x` = `h. The realizations of zh± are formulated, thanks to the diffusive repre-
sentation, in the form

zh±(x) =

∫
R
µ±(x, ξ)ψh±(x, ξ)dξ, (3.22)

where ψh± are defined by

∂xψ
h+(x, ξ) = −θ+(ξ)ψh+(x, ξ) + ũ(x),∀x ∈ (0, 1), ψh+(0, ξ) = 0 (3.23)

and ∂xψ
h−(x, ξ) = θ−(ξ)ψh−(x, ξ) + ũ(x),∀x ∈ (0, 1), ψh−(1, ξ) = 0.

Secondly, the diffusive symbols are approximated by µN± defined as in (1.11) which is
based on a dedicated spectral approximation of the kernel p. The diffusive realizations
are approximated by

zN,h±(x) =

∫
R
µN±(x, ξ)ψh±(x, ξ)dξ. (3.24)

Finally, the approximations of z± are given by (1.17), namely

zN,h±
~ (x) = ~

M∑
k=−M

µN±(x, ξk)ψh±(x, ξk), (3.25)
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where the integrals
∫
R are evaluated thanks to the trapezoidal rule with 2M + 1 quadrature

nodes regularly spaced at the distance ~.
Our problem is to evaluate the global error estimate in L j-norm, with j = 1, 2,

‖e‖L j(0,1) :=
(∫ 1

0
e(x) jdx

) 1
j

, with j = 1, 2, (3.26)

where e(x) = |z(x) − zN,h
~ (x)|. This error is bounded by the sum eh(x) + eN,h(x) + eN,h

~ (x) of
the error eh(x) = |z(x) − zh(x)| of quadrature in x, the error eN,h(x) = |zh(x) − zN,h(x)| of the
approximation of the symbols µ± based on approximating the kernel by a spectral method
and the error eN,h

~ (x) = |zN,h(x) − zN,h
~ (x)| of quadrature in ξ. Here z = z+ + z−, zh = zh+ + zh−,

zN,h = zN,h++zN,h− and zN,h
~ = zN,h+

~ +zN,h−
~ . Thus the L j−norm of the global error, with j = 1, 2,

is

‖e‖L j(0,1) ≤ ‖e
h‖L j(0,1) + ‖eN,h‖L j(0,1) + ‖eN,h

~ ‖L j(0,1).

The error of quadrature in x states as follows.

Theorem 3 :

For a piecewise constant approximation of u,

i) if u ∈ C1(0, 1) and p ∈ L1(Ω), then

‖eh‖L1(0,1) ≤ h × max
y∈[0,1]

|u′| × ‖p‖L1(Ω),

ii) if u ∈ H1(0, 1) and p ∈ L2(Ω), then

‖eh‖L2(0,1) ≤

√
2

2
h × ‖u′‖L2(0,1) × ‖p‖L2(Ω).

The error estimate eN,h from approximating the kernel by a spectral method is assumed to
be small enough. Then we ignore it in our estimate. Theorem 4 below provides the error
estimate of quadrature in ξ. Before stating it, we give some definitions. We define

gN,h±(x, ξ, t) = e−θ
±(ξ)|x−t| (e

−θ±(ξ)h − 1)
h

µN±(x, ξ)
−θ±(ξ)

, (3.27)

gN,h±
0 (x, ξ, t) = eθ

±
h |x−t|(1 + L(sin |x − t|))

(e−θ
±(ξ)h − 1)

h
µN±(x, ξ)
−θ±(ξ)

, (3.28)

where the function L is defined by

L(x) = 1 + | ln(1 − e−x)|, x > 0. (3.29)

Notice that L is decreasing, L(x) → 1 as x → +∞ and L(x) ∼ | ln x| as x → 0+. To be
convenient, we give an elementary lemma provided in Lopez [20]
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Lemma 3 :

There hold :

(1)
∫ +∞

0
e−γ cosh xdx ≤ L(γ), γ > 0.

(2)
∫ +∞

r
e−γ cosh xdx ≤ (1 + L(γ))e−γ cosh r, r > 0, γ > 0.

We also define the functions

f ±(x, t) =

2∑
`=1

∫
R
|gN,h±(x, ξ + i(−1)`d`, t)|dξ + max

ξ≥M~
|gN,h±

0 (x, ξ, t)|.

Remark 13 :

(i) We note that f ± are bounded for all x , t since gN,h± decrease exponen-
tially.

(ii) Since the kernel p is approximated by Legendre polynomials which are
analytic, the diffusive symbols µN± are analytic. Therefore, we can apply
Theorem 2 for our analytic function on the strip Dd. Namely,

eN,h±(x, t) :=
∣∣∣∣ ∫

R
gN,h±(x, ξ, t)dξ − ~

M∑
k=−M

gN,h±(x, ξk, t)
∣∣∣∣ (3.30)

≤

2∑
`=1

∫
R |g

N,h±(x, ξ + i(−1)`d`, t)|dξ

e2πd`/~ − 1
+ ~

+∞∑
|k|=M+1

|gN,h±(x, ξk, t)|

≤ Kh,α(~) × f ±(x, t),

where Kh,α(~) is defined by

Kh,α(~) := max
{ 1
e2πd1/~ − 1

,
1

e2πd2/~ − 1
, e−h sinα cosh(M~)

}
. (3.31)

As in Weideman and Trefethen [35], we state a sufficient condition for such estimates to
exist.

Assumption 1 :

For each x, t, h,

(i) the functions w 7→ gN,h±(x, ξ + iw, t) are analytic in the strip −d1 < w < d2 for
some d1 > 0 and d2 > 0,

(ii) gN,h±(x, ξ+ iw, t) tend to 0 uniformly with respect to ξ as |ξ+ iw| → +∞ in that
strip.
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For simplicity’s sake, we only use the same contour θ+ = θ− = θ, and we define

F~(a, θh, α) = h
H∑

n=1

∫ xn+1

xn

∑
j∈J+

n

f +(x, x j+1) +
∑
j∈J−n

f −(x, x j)

 dx. (3.32)

and

G2
~(a, θh, α) = h2

H∑
n=1

∫ xn+1

xn

∑
j∈J+

n

f +(x, x j+1)2 +
∑
j∈J−n

f −(x, x j)2

 dx.

where J±n are defined in Section 1.1.3.5 of Chapter 1.

Theorem 4 :

Assume that Assumption 1 is satisfied, and

i) if u ∈ C0(0, 1) then

‖eN,h
~ ‖L1(0,1) ≤ max

y∈[0,1]
|u(y)| × F~(a, θh, α) × Kh,α(~).

ii) if u ∈ L2(0, 1) then

‖eN,h
~ ‖L2(0,1) ≤ max

y∈[0,1]
|u(y)|2 ×G~(a, θh, α) × Kh,α(~).

where F~,G~ are bounded functions defined above and Kh,α is defined in (3.31).

3.3/ PROOFS

3.3.1/ PROOF OF THEOREM 3

Before proving it, we give an elementary lemma.

Lemma 4 :

Assume that ũ is a piecewise constant approximation of the input function u,

i) if we assume that u ∈ C1(0, 1) then

|u(y) − ũ(y)| ≤ h × max
y∈[0,1]

|u′(y)|,

ii) if we assume that u ∈ H1(0, 1) then

‖u − ũ‖L2(0,1) ≤

√
2

2
h × ‖u′‖L2(0,1).

Proof of Lemma 4 :
i) Using the mean value theorem, ∀y ∈ (xi, xi+1) :

|u(y) − ũ(y)| = |u(y) − u(xi)| = |(y − xi)u′(c)|, c ∈ (xi, y)

≤ h × sup
c∈(xi,xi+1)

|u′(c)| ≤ h × max
y∈[0,1]

|u′(y)|.
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ii) Since u ∈ H1(0, 1), ∀y ∈ (xi, xi+1),

|u(y) − u(xi)|2 =
∣∣∣∣ ∫ y

xi

u′(t)dt
∣∣∣∣2 ≤ ∫ y

xi

1dt
∫ y

xi

|u′(t)|2dt

≤ |y − xi|

∫ xi+1

xi

|u′(t)|2dt.

Moreover,

‖u − ũ‖2L2(0,1) :=
∫ 1

0
|u(y) − ũ(y)|2dy =

H−1∑
i=0

∫ xi+1

xi

|u(y) − u(xi)|2dy

≤

H−1∑
i=0

∫ xi+1

xi

|y − xi|dy
∫ xi+1

xi

|u′(t)|2dt =
h2

2

H−1∑
i=0

∫ xi+1

xi

|u′(t)|2dt

≤
h2

2
‖u′‖2L2(0,1).

Therefore,

‖u − ũ‖L2(0,1) ≤

√
2

2
h × ‖u′‖L2(0,1).�

Returning to the proof of Theorem 3, setting

‖eh‖L1(0,1) =

∫ 1

0
|z+(x) + z−(x) − zh+(x) − zh−(x)|dx.

Using the formulas (3.20) and (3.21),

‖eh‖L1(0,1) =

∫ 1

0

∣∣∣∣ ∫ 1

0
p(x, y)(u(y) − ũ(y))dy

∣∣∣∣dx

≤

∫ 1

0

∫ 1

0
|p(x, y)| × |u(y) − ũ(y)|dydx.

By using i) of Lemma 4, it leads to

‖eh‖L1(0,1) ≤ h × max
y∈[0,1]

|u′(y)|
∫ 1

0

∫ 1

0
|p(x, y)|dydx.

Similarly,

‖eh‖2L2(0,1) =

∫ 1

0
|z+(x) + z−(x) − zh+(x) − zh−(x)|2dx.

=

∫ 1

0

∣∣∣∣ ∫ 1

0
p(x, y)(u(y) − ũ(y))dy

∣∣∣∣2dx

≤

∫ 1

0

(∫ 1

0
|p(x, y)|2dy

∫ 1

0
|u(y) − ũ(y)|2dy

)
dx.

By using ii) of Lemma 4, it leads to

‖eh‖2L2(0,1) ≤
h2

2
‖u′‖2L2(0,1)

∫ 1

0

∫ 1

0
|p(x, y)|2dydx. �
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3.3.2/ PROOF OF THEOREM 4

For any x ∈ [xn, xn+1), the formula ψh±(x, ξ) can be rewritten as

ψh±(x, ξ) = (α±(ξ) − 1))
∑
j∈J±n

u j+ 1
2

e−θ
±(ξ)(x−x j)

−θ±(ξ)
,

where α±(ξ) = e−θ
±(ξ)h and J±n are defined as in Section 1.1.3.5 of Chapter 1. Therefore,

for any x ∈ [xn, xn+1),

zN,h±(x) = ±h
∑
j∈J±n

u j+ 1
2

∫
R

α±(ξ) − 1
h

e−θ
±(ξ)(x−x j)

−θ±(ξ)
µN±(x, ξ)dξ.

Moreover, for any x ∈ [xn, xn+1),

eN,h
~ (x) =

∣∣∣∣zN,h+(x) − zN,h+

~ (x) + zN,h−(x) − zN,h−
~ (x)

∣∣∣∣
≤ h

∑
j∈J+

n

|u j+ 1
2
|eN,h+(x, x j) + h

∑
j∈J−n

|u j+ 1
2
|eN,h−(x, x j),

where eN,h± are defined in Remark 13. To evaluate these sub-error estimate (3.30), we
apply Theorem 2 for the functions gN,h±(x, ξ, t) as in Remark 13, namely

eN,h±(x, t) ≤ f ±(x, t) × Kh,α(~). (3.33)

Returning to the proof of this theorem, we consider the error of quadrature in ξ in each
norm.
i) Using the L1−norm : For any x ∈ [xn, xn+1), we have

eN,h
~ (x) ≤ max

y∈[0,1]
|u(y)| ×

∑
j∈J+

n

heN,h+(x, x j+1) +
∑
j∈J−n

heN,h−(x, x j)

 .
Therefore, the error estimate in ξ using the L1−norm is

‖eN,h
~ ‖L1(0,1) :=

∫ 1

0
eN,h
~ (x)dx =

H∑
n=1

∫ xn+1

xn

eN,h
~ (x)dx (3.34)

≤ max
y∈[0,1]

|u(y)|
H∑

n=1

∫ xn+1

xn

∑
j∈J+

n

heN,h+(x, x j) +
∑
j∈J−n

heN,h−(x, x j)

 dx.

Thus, combining (3.33) and (3.32),

‖eN,h
~ ‖L1(0,1) ≤ max

y∈[0,1]
|u(y)| × F~(a, θh, α) × Kh,α(~). (3.35)

ii) Using L2−norm : Using another inequality, we have another error estimate

eN,h
~ (x)2 =

∣∣∣∣zN,h+(x) − zN,h+

~ (x) + zN,h−(x) − zN,h−
~ (x)

∣∣∣∣2
≤ h2

H∑
k=1

|uk+ 1
2
|2

∑
j∈J+

n

eN,h+(x, x j+1)2 +
∑
j∈J−n

eN,h−(x, x j)2

 ,
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So the error estimate in ξ using L2−norm is

‖eN,h
~ ‖

2
L2(0,1) :=

∫ 1

0
eN,h
~ (x)2dx

=

H∑
n=1

∫ xn+1

xn

eN,h
~ (x)2dx (3.36)

≤ h
H∑

k=1

|uk+ 1
2
|2

H∑
n=1

∫ xn+1

xn

h ∑
j∈J+

n

eN,h+(x, x j)2 + h
∑

j∈J−n+1

eN,h−(x, x j)2

 dx.

Furthermore,

h
H∑

k=1

|uk+ 1
2
|2 ≤ max

y∈[0,1]
|u(y)|2.

Thus

‖eN,h
~ ‖L2(0,1) ≤ max

y∈[0,1]
|u(y)|2 ×G~(a, θh, α) × Kh,α(~).�

3.4/ NUMERICAL SIMULATIONS

We recall the model problem used in Section 1.2 of Chapter 1 : the operator P is solution
to the Lyapunov equation,

d2

dx2 Pu + P
d2

dx2 u = Qu (3.37)

in ω = (0, 1), for all u vanishing at the boundary, and where Q is a L2(ω)-bounded linear
kernel operator. This problem originates in optimal filtering or control theory of the heat
equation, ∂T

∂t −
∂2T
∂x2 = q in ω with Dirichlet boundary conditions. We recall that the kernel p

is the unique solution to the boundary value problem ∆p = q in the square Ω, p = 0 on the
boundary and q is the kernel of Q.

We compare the relative error between the direct quadrature method,

Pu(xn) = h
H∑

j=0

p(xn, y j)u(y j), for all n. (3.38)

and the DR method with optimal parameters.

F~(a∗, θ∗h, α
∗) = min

a∈(0,∞)
θh∈(0,∞)

α∈(d1,π/2−d2)

F~(a, θh, α). (3.39)

The above Approximation of the Diffusive Realization (ADR) with the contour optimization
is compared to a Direct Spectral method (DS) using the usual Legendre polynomials to
estimate p and a trapezoidal rule for z. Experiments have been carried out for two kernels
q, one kernel p and two inputs u. The kernels are a two-dimensional Gaussian density,

q1(x, y) =
C

σ22π
e−

(x−x0)2+(y−y0)2

2σ2 ,
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with σ = 0.2, x0 = y0 = 0.4, C = 10, an oscillating function,

q2(x, y) = 2a2π2 sin(bπx) sin(aπy),

with a = 3 and b = 5, and a function p3 satisfying to ∆p3 = q3,

p3(x, y) = x(x − 1)(2
√

10x −
√

10 + 2
√

6)

×
(
20e3y−3 − 24e2y−2 + (8 − 2w1)ey−1 + w0 + w1

)
, (3.40)

with w0 = 10−12e+2e3

e2−e3 ,w1 = 10−12e+4e2−2e3

e2−e3 . Figure 3.2 shows these kernels in R3. The inputs
are both oscillating functions,

u1(y) = 3y sin(6πy)2 and u2(y) = 15 sin(4πy4).

Figure 3.3 shows these inputs in R2. The function p3 is chosen since the error on µ+ is
equal to 0 and the error on µ− is small enough with only 5 × 5 polynomials. The errors
are evaluated using a reference solution zre f computed with the DS method with 30 × 30
polynomials (except the case p3 with only 5 × 5 polynomials) and with inputs discretized
with 1,024 nodes. Three parameters of discretization are used, the number N of Legendre
polynomials in each x- and y-directions to discretize the kernel p, the number H of discre-
tization points x` of the input, and the number M of quadrature nodes along the contours.
The contour parameters are chosen as the solution of the optimization problem (3.39).
The discrete outputs z` are evaluated at the same nodes as the input. The error function
is evaluated in the discrete `2-norm evaluated at the nodes x` of the input mesh

e =

(∑H
`=1(zre f (x`) − z`)2

)1/2(∑H
`=1(zre f (x`))2

)1/2 . (3.41)

Four values N = 10, 15, 20 and 25 have been tested when the other parameters are very
large, H = 1, 024 and M = 100. The DS method yields errors varying from 10−6 to 10−12

for q1 and from 10−2 to 10−15 for q2. For the ADR they vary from 10−5 to 10−6 for q1 and
from 10−1 to 10−3 for q2 when N varies from 10 to 20, and then increases. This lack of
convergence may come from the operations of extension of p± which exhibits oscillations
and also from the very high values of coefficients of the Legendre polynomials yielding
large truncation errors in the Laplace domain. In the following experiment, we consider
that N = 20 is the optimal value for the ADR. The input p3 yields errors 10−10 with the
value N = 5 for both the DS method and the ADR, so we didn’t test more with N.

To test the effect of the number H of discretization points in the input, experiments have
been carried out with H = 16, 32, 64, 128 and 256 while N = 20 (N = 5 for p3) and M = 100.
For both q1 and p3 (resp. q2), the minimal error of 10−6 (resp. 10−3) is reached for the ADR
with H = 256 (resp. H = 128). So, for H varying between 16 and 256 (resp. 128) the errors
of the ADR and of the DS method change from 10−3 to 10−6 and from 10−4 to 10−9 (resp.
from 10−2 to 10−3 and from 10−2 to 10−6). In all cases, we observe a better decay of the
error for the DS method with respect to H than for the ADR. The error of the DS method is
with infinite order, whereas for the ADR method the error follows the one of a quadrature
method.

Three values M = 20, 40 and 60 have been compared when N = 20 and H = 1, 024.
The ADR method has errors varying between 10−3 to 10−6 for q1, p3 and between 10−2

to 10−3 for q2. This confirms a very fast decay of the error with respect to the number of
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quadrature points in the contours. For the ADR method, which involves complex numbers,
a significant gain in terms of computation cost only exists if the number M can be as small
as discussed in Chapter 2. With an optimization of the contours to solve the optimization
problem (3.39), for M = 10, errors in the range of 10−3 for q1, p3 and of 10−2 for q2 have
been reached with the ADR method.

Figure 3.4 (resp. 3.5, 3.6) shows a contour plot of the relative error with q1(x, y) and u1(y) in
the (θh, α) (resp. (a, θh), (a, α))-parameter plane. Similarly, Figure 3.7 (resp. 3.8, 3.9) shows
a contour plot of the relative error with q2(x, y) and u1(y) in the (θh, α) (resp. (a, θh), (a, α))-
parameter plane. Figure 3.10 (resp. 3.11, 3.12) shows a contour plot of the relative error
with p3(x, y) and u1(y) in the (θh, α) (resp. (a, θh), (a, α))-parameter plane. Darker shades
represent higher accuracy. The cross represents the solution to the optimization problem
(3.39) with d1 = d2 = 0.5, h = 0.02. These figures show that the optimal parameters of the
contour are very effective.

In total, the new extension of p± yields a viable numerical method that might be used
when a limited precision is required, as, for example, applications in real-time distributed
control. Limitations of the ADR method have been well identified.

3.5/ OTHER APPROACHES OF ERROR ESTIMATES

In this section, we discuss other approaches to mainly evaluate the error of quadrature
in ξ. Subsection 3.5.1 only shows the discretization error based on an assumption that
the diffusive symbols belong to L2(R) and are analytic in the strip Dd. Subsection 3.5.2
presents the global error based on an assumption that the diffusive symbols are bounded.
In Subsection 3.5.3, another approach based on the balancing idea of Weideman and
Trefethen provides an error estimate and its application to find optimal parameters of the
contours.

3.5.1/ DISCRETIZATION ERROR ESTIMATE IN ξ

3.5.1.1/ STATEMENT OF THE PROBLEM AND RESULTS

We recall the diffusive realization of z± defined as in (1.10)

z±(x) =

∫
R
µ±(x, ξ)ψ±(x, ξ) dξ,

Ignoring the error from approximating the kernel by a spectral method, the diffusive reali-
zation thus are

zN±(x) =

∫
R
µN±(x, ξ)ψ±(x, ξ)dξ. (3.42)

where µN± is defined as in (1.11). These integrals are approximated by the trapezoidal
rule

zN±
~ (x) = ~

∞∑
k=−∞

µN±(x, ξk)ψ±(x, ξk). (3.43)
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In this subsection, our problem is to mainly evaluate the error of quadrature in ξ, namely

‖E±~ ‖L1(0,1) =

∫ 1

0
E±~ (x) dx with E±~ (x) = |zN±(x) − zN±

~ (x)|.

To estimate this error, we improve the following condition.

Assumption 2 :

For all x ∈ [0, 1],

(i) the mappings ξ 7→ µN±(x, ξ + id) and ξ 7→ ψ±(x, ξ + id) are in L2(R).

(ii) the function w 7→ µN±(x, ξ + iw)ψ±(x, ξ + iw) are analytic in the strip −d1 <

w < d2 for some d1 > 0 and d2 > 0.

Thanks to Theorem 2 and Assumption 2, we have

E±~ (x) ≤
2∑
`=1

∫
R |g

±(x, ξ + i(−1)`d`)|dξ

e2πd`/~ − 1
, (3.44)

where

g±(x, ξ) = µN±(x, ξ)ψ±(x, ξ).

We got the error estimate of quadrature in ξ.

Theorem 5 :

Assume that u ∈ L2(0, 1), p± ∈ L2(0, 1), and the hereafter expressions I±, J± are
bounded. Furthermore, if the assumption 2 is fulfilled then

‖E±~ ‖L1(0,1) ≤

2∑
`=1

‖u‖L2(0,1)

e2πd`/~ − 1
‖p±‖1/2

L2(0,1)
I±(θ±h , α

±, (−1)`d`)1/2J±(θ±h , α
±, (−1)`d`)1/2,

where

p±(x) =

N∑
`=0

p̂±2
` (x), and p̂±` are defined in (1.24) , (3.45)

I±(θ±h , α
±, d) =

∫
R

2Θ±(ξ, d) − 1 + e−2Θ±(ξ,d)

4Θ±(ξ, d)2 dξ, (3.46)

J±(θ±h , α
±, d) =

1
4π2

∫
R
|θ±′(ξ + id)|2

∫ 1

0

 N∑
`=0

∣∣∣∣ζ±` (x,−θ±(ξ + id))
∣∣∣∣2

2

dx


1/2

dξ,

and Θ±(ξ, d) = <(θ±(ξ + id)) = θ±h [sin(d + α±) cosh ξ − 1]. (3.47)
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3.5.1.2/ PROOF OF THEOREM 5

We start from (3.44)

‖E±~ ‖L1(0,1) ≤

2∑
`=1

1
e2πd`/~ − 1

∫ 1

0

∫
R
|g±(x, ξ + i(−1)`d`)|dξ dx.

Assumption 2 is fulfilled, so(∫ 1

0

∫
R
|g±(x, ξ + id)|dξdx

)2

≤

∫ 1

0

∫
R
|µN±(x, ξ + id)|2 dξdx

∫ 1

0

∫
R
|ψ±(x, ξ + id)|2 dξdx.

But,

|ψ+(x, ξ + id)|2 =
∣∣∣∣ ∫ x

0
e−θ

+(ξ)(x−y)u(y)dy
∣∣∣∣2

≤ e−2Θ+(ξ,d)x
∫ x

0
e2Θ+(ξ,d)y dy × ‖u‖2L2(0,x)

≤
1 − e−2Θ+(ξ,d)x

2Θ+(ξ, d)
× ‖u‖2L2(0,1),

thus ∫ 1

0

∫
R
|ψ+(x, ξ + id)|2 dξdx

≤ ‖u‖2L2(0,1) ×

∫
R

1
2Θ+(ξ, d)

(
1 −

∫ 1

0
e−2Θ+(ξ,d)x dx

)
dξ

≤ ‖u‖2L2(0,1) ×

∫
R

2Θ+(ξ, d) − 1 + e−2Θ+(ξ,d)

4Θ+(ξ, d)2 dξ.

The same calculation for ψ−

|ψ−(x, ξ + id)|2 =
∣∣∣∣ ∫ 1

x
eθ
−(ξ)(x−y)u(y)dy

∣∣∣∣2
≤

∫ 1

x
e2Θ−(ξ,d)(x−y) dy × ‖u‖2L2(x,1)

≤
1 − e−2Θ−(ξ,d)(1−x)

2Θ−(ξ, d)
× ‖u‖2L2(0,1),

thus ∫ 1

0

∫
R
|ψ−(x, ξ + id)|2 dξdx

≤ ‖u‖2L2(0,1) ×

∫
R

1
2Θ−(ξ, d)

(
1 −

∫ 1

0
e−2Θ−(ξ,d)(1−x) dx

)
dξ

≤ ‖u‖2L2(0,1) ×

∫
R

2Θ−(ξ, d) − 1 + e−2Θ−(ξ,d)

4Θ−(ξ, d)2 dξ.

Therefore, ∫ 1

0

∫
R
|ψ±(x, ξ + id)|2 dξdx ≤ I±(θ±h , α

±, d) × ‖u‖2L2(0,1). (3.48)
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Using the decomposition of µN±,∫ 1

0

∫
R
|µN±(x, ξ + id)|2 dξdx =

1
4π2

∫ 1

0

∫
R

∣∣∣∣ N∑
`=0

p̂±` (x)θ±′(ξ + id)ζ±` (x,−θ±(ξ + id))
∣∣∣∣2 dξdx

≤
1

4π2

∫
R
|θ±′(ξ + id)|2

∫ 1

0

∣∣∣∣ N∑
`=0

p̂±` (x)ζ±` (x,−θ±(ξ + id))
∣∣∣∣2 dxdξ. (3.49)

Since ∣∣∣∣ N∑
`=0

p̂±` (x)ζ±` (x,−θ±(ξ + id))
∣∣∣∣2 ≤ N∑

`=0

p̂±2
` (x)

N∑
`=0

∣∣∣∣ζ±` (x,−θ±(ξ + id))
∣∣∣∣2, (3.50)

so ∫ 1

0

∣∣∣∣ N∑
`=0

p̂±` (x)ζ±` (x,−θ±(ξ + id))
∣∣∣∣2dx ≤

∫ 1

0
p±(x)

N∑
`=0

∣∣∣∣ζ±` (x,−θ±(ξ + id))
∣∣∣∣2dx

≤ ‖p±‖L2(0,1)

∫ 1

0

 N∑
`=0

∣∣∣∣ζ±` (x,−θ±(ξ + id))
∣∣∣∣2

2

dx


1/2

. (3.51)

Combining the above results, we have the proof. �

Conclusion : This approach has presented a theoretical discretization error estimate for
quadrature in ξ. Although, this error has an exponential decay, its expressions is very
complex. Moreover, the truncation error hasn’t yet considered sufficiently. Thus it is diffi-
cult to apply in seeking optimal parameters of the contour.

3.5.2/ ERROR ESTIMATE BY APPLYING THE RESULTS OF LOPEZ [20]

Another way to evaluate error estimate is proposed in this subsection. The idea is to
start from the relationship between DR approximation and inversion of Laplace transform
which was presented in Subsubsection 1.1.3.5. Namely, the approximation of the DR can
be written like a linear combination of inverse Laplace transforms. Therefore, the results
of Lopez concerning the inversion of Laplace transform can be applied for each term in
that linear combination.

3.5.2.1/ STATEMENT OF THE PROBLEMS AND RESULTS

Firstly, we recall the diffusive realization of zN,h± in (1.33)

zN,h±(xn) = ±
∑
j∈J±n

u j+ 1
2

∫
R

(
e−θ

±(ξ)(±tn, j)

−θ±(ξ)
−

e−θ
±(ξ)(±tn, j+1)

−θ±(ξ)

)
µN±(xn, ξ)dξ.

Each integral is approximated by the trapezoidal rule, so we get the approximation

zN,h±
~ (xn) = ±

∑
j∈J±n

u j+ 1
2
~

M∑
k=−M

(
e−θ

±(ξk)(±tn, j) − e−θ
±(ξk)(±tn, j+1)

) µN±(xn, ξk)
−θ±(ξk)

.
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So the error estimate at xn are defined by

eN,h±
~ (xn) = |zN,h±(xn) − zN,h±

~ (xn)|. (3.52)

We notice that ±tn, j,±tn, j+1 > 0 for all j ∈ J±n . So we define

gN,h±
0 (x, ξ, t) = e−θ

±(ξ)|x−t|µ
N±(x, ξ)
−θ±(ξ)

. (3.53)

Thus zN,h±(xn) can be rewritten by

zN,h±(xn) = ±
∑
j∈J±n

u j+ 1
2

∫
R

(
gN,h±

0 (xn, ξ, x j) − gN,h±
0 (xn, ξ, x j+1)

)
dξ.

Then we will obtain an accurate estimate for the quadrature error

eN,h±
0 (x, t) =

∣∣∣∣ ∫
R

gN,h±
0 (x, ξ, t)dξ − ~

M∑
k=−M

gN,h±
0 (x, ξk, t)

∣∣∣∣, (3.54)

of truncated trapezoidal rule. This estimate is split into the discretization error

ED(x, gN,h±
0 , t) =

∣∣∣∣ ∫
R

gN,h±
0 (x, ξ, t)dξ − ~

∞∑
k=−∞

gN,h±
0 (x, ξk, t)

∣∣∣∣, (3.55)

and the truncation error

ET (x, gN,h±
0 , t) =

∣∣∣∣~ ∞∑
|k|>M

gN,h±
0 (x, ξk, t)

∣∣∣∣. (3.56)

Assumption 3 :

For all x ∈ [0, 1], the function µN±(x, ξ) are bounded on R, i.e., there exists a
constant Cx > 0 such that

|µN±(x, ξ)| ≤ Cx. (3.57)

Theorem 6 below provides a estimate for eN,h±
0 (x, t).

Theorem 6 :

For all x, t ∈ (0, 1) and x , t, if Assumption 3 is fulfilled then

eN,h±
0 (x, t) ≤

2Cxeθ
±
h |x−t|

π(1 − sin(d2 + α±))
L(θ±h |x − t| sin(α± − d1)) ×(

1

e
2πd
~ − 1

+
1

eθ
±
h |x−t| sinα± cosh(M~)

)
, (3.58)

where d = min{d1, d2}.
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Theorem 7 :

For all xn ∈ (0, 1), if Assumption 3 is fulfilled then

eN,h±
~ (xn) ≤ 2C2|J±n |max

j∈J±n
eN,h±

0 (xn, x j+ 1∓1
2

), (3.59)

where C2 = max
x∈[0,1]

|u(x)|, |J+
n | = n and |J−n | = H − n.

3.5.2.2/ PROOF OF THEOREM 6

We note that −θ±(ξ) are the hyperbolic contours, so

|gN,h+
0 (x, ξ + iy, t)| ≤

eθ
+
h |x−t|

2π
e−θ

+
h |x−t| sin(y+α+) cosh ξ

cosh ξ − sin(y + α+)
Cx,

then

|gN,h±
0 (x, ξ, t)| ≤

Cxeθ
±
h |x−t|

2π(1 − sinα±)
e−θ

±
h |x−t| sinα± cosh ξ. (3.60)

We apply the result (2) of Lemma 3 and we get the truncation error

|ET (x, gN,h±
0 , t)| ≤ ~

∞∑
|k|>M

|gN,h±
0 (x, ξk, t)| ≤ 2

∫ ∞

M~
|gN,h±

0 (x, ξ, t)|dξ (3.61)

≤
2Cxeθ

±
h |x−t|(1 + L(θ±h |x − t| sinα±))

2π(1 − sinα±)
× e−θ

±
h |x−t| sinα± cosh(M~).

We also have

|gN,h±
0 (x, ξ + iy, t)| ≤

Cxeθ
±
h |x−t|e−θ

±
h |x−t| sin(y+α±) cosh ξ

2π(1 − sin(y + α±))
, y ∈ [−d1, d2]

≤
Cxeθ

±
h |x−t|e−θ

±
h |x−t| sin(α±−d1) cosh ξ

2π(1 − sin(d2 + α±))
. (3.62)

Moreover, applying the result (1) of Lemma 3 and get

N(x, gN,h±
0 ,Dd) = 4

∫ ∞

0
|gN,h±

0 (x, ξ + iy, t)|dξ (3.63)

≤ 4
Cxeθ

±
h |x−t|L(θ±h |x − t| sin(α± − d1))

2π(1 − sin(d2 + α±))
.

Thus

eN,h±
0 (x, t) ≤

N(x, gN,h±
0 ,Dd)

e
2πd
~ − 1

+ |ET (x, g±, ~)| ≤
2Cxeθ

±
h |x−t|

π(1 − sin(d2 + α±))
×(

L(θ±h |x − t| sin(α± − d1))

e
2πd
~ − 1

+
1 + L(θ±h |x − t| sinα±)

2eθ
±
h |x−t| sinα± cosh(M~)

)
,

since L decreases and L(γ) ≥ 1 so

1 + L(θ±h |x − t| sinα±)
2

≤ L(θ±h |x − t| sin(α± − d1)).
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Therefore

eN,h±
0 (x, t) ≤

2Cxeθ
±
h |x−t|

π(1 − sin(d2 + α±))
L(θ±h |x − t| sin(α± − d1)) ×(

1

e
2πd
~ − 1

+
1

eθ
±
h |x−t| sinα± cosh(M~)

)
.�

3.5.2.3/ PROOF OF THEOREM 7

Applying the result of Theorem 6, we have

eN,h±
~ (xn) ≤

∑
j∈J±n

|u j+ 1
2
|
(
eN,h±

0 (xn, x j) + eN,h±
0 (xn, x j+1)

)
≤

(
max
j∈J±n
|u j+ 1

2
|

) ∑
j∈J±n

eN,h±
0 (xn, x j) +

∑
j∈J±n

eN,h±
0 (xn, x j+1)


≤ 2C2

∑
j∈J±n

eN,h±
0 (xn, x j+ 1∓1

2
)

= 2C2|J±n |max
j∈J±n

eN,h±
0 (xn, x j+ 1∓1

2
).�

Conclusion : From Theorem 6 and Theorem 7, we see that the error estimate is de-
creasing exponentially. However, this is only evaluated at a given xn ∈ (0, 1). Therefore,
applying this estimate to find optimal parameters for all x with a contour is impossible.
Opposite, using many contours can not achieve real-time computation. We suggest ano-
ther approach to estimate the error so that it helps find optimal parameters of only one
contour.

3.5.3/ ERROR ESTIMATE BY USING BALANCING IDEAS

The idea of this approach is the balance of errors. Firstly, the balance of the discretization
error and the truncation error to get optimal parameters of the contour. After that, the
balance of the quadrature error in x and the quadrature error in ξ.

From (3.59), we can generalize

max
x∈[0,1]

eN,h±
~ (x) ≤

2C2

h
max
x∈[0,1]
|x−t|∈[h,1]

eN,h±
0 (x, t). (3.64)

Thanks to Theorem 2, we estimate

eN,h±
0 (x, t) ≤

∑
`=1,2

∫
R |g

N,h±
0 (x, ξ + i(−1)`d`, t)|dξ

e2πd`/~ − 1
+ ~

+∞∑
|k|>M

|gN,h±
0 (x, ξk, t)|,

We pose

f h+
` (θ+

h , α
+, ξ, x, y) =

eθ
+
h e−θ

+
h h sin(α+−d1) cosh ξ

cosh ξ − sin(α+ + d2)

∣∣∣∣1 − e−θ
+(ξ+iy)h

h

∣∣∣∣
×

∣∣∣∣ ∑̀
s=0

es(x−1)d+(`, s)[cosh2 ξ − sin2(α+ − d1)]1/2

θ+
h (1 + sin(iξ − y − α+)) + s

∣∣∣∣.
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and

f h−
` (θ−h , α

−, ξ, x, y) =
eθ
−
h e−θ

−
h h sin(α−−d1) cosh ξ

cosh ξ − sin(α− + d2)

∣∣∣∣1 − e−θ
−(ξ+iy)h

h

∣∣∣∣
×

∣∣∣∣ ∑̀
s=0

e−sxd−(`, s)[cosh2 ξ − sin2(α− − d1)]1/2

θ−h (1 + sin(iξ − y − α−)) + s

∣∣∣∣.
Theorem 8 :

For all x ∈ [0, 1], y ∈ [−d1, d2], ` = 0, 1, ...,N, assume that the mapping ξ 7→

f h±
`

(θ±h , α
±, ξ, x, y) are in L2(R), then the sub-error estimate

max
x∈[0,1]
|x−t|∈[h,1]

eN,h±
0 (x, t) ≤

1
2π

N∑
`=0

w±` × (3.65)

2 max
x∈[0,1]

y∈[−d1,d2]

∫
R f h±

`
(θ∗±h , α∗±, ξ, x, y)dξ

e2πd/~ − 1
+ max

x∈[0,1]
~
∞∑
|k|>M

f h±
` (θ∗±h , α∗±, ξk, x, 0)

 .
where w±` = max

x∈[0,1]
|p̂±` (x)|, d = min{d1, d2} and a∗±, θ∗±h , α∗± are solution to

D∗± = min
a∈(0,∞)
θ±h ∈(0,+∞)

α±∈(d1,π/2−d2)

D±(a, α±, θ±h ), (3.66)

where a = M~,

D±(a, α±, θ±h ) :=
N∑
`=0

w±2
` ×2 max

x∈[0,1]
y∈[−d1,d2]

∫
R f h±

`
(θ±h , α

±, ξ, x, y)dξ

e2πd/~ − 1
− max

x∈[0,1]
~
∞∑
|k|>M

f h±
` (θ±h , α

±, ξk, x, 0)


2

.

Proof of Theorem 8
We note that the condition (3.19) implies 0 < α± − d1 < α± < α± + d2 < π

2 . This infers
0 < sin(α± − d1) < sin(α±) < sin(α± + d2) < 1. Moreover, |x − t| ∈ [h, 1], so eθ

±
h |x−t| ≤ eθ

±
h and

e−θ
±
h sin(α±+d2) cosh ξ ≤ e−θ

±
h |x−t| sin(y+α±) cosh ξ ≤ e−θ

±
h h sin(α±−d1) cosh ξ. Therefore, we have

|gN,h+
0 (x, ξ + iy, t)| ≤

1
2π

N∑
`=0

|p̂+
` (x)|

eθ
+
h |x−t|(1−sin(y+α+) cosh ξ)

θ+
h (cosh ξ − sin(y + α+))

∣∣∣∣1 − e−θ
+(ξ+iy)h

h

∣∣∣∣
×

∣∣∣∣ ∑̀
s=0

es(x−1)d+(`, s)θ+
h [cosh2 ξ − sin2(y + α+)]1/2

θ+
h (1 + sin(iξ − y − α+)) + s

∣∣∣∣,
≤

1
2π

N∑
`=0

|p̂+
` (x)|

eθ
+
h e−θ

+
h h sin(α+−d1) cosh ξ

cosh ξ − sin(α+ + d2)

∣∣∣∣1 − e−θ
+(ξ+iy)h

h

∣∣∣∣
×

∣∣∣∣ ∑̀
s=0

es(x−1)d+(`, s)θ+
h [cosh2 ξ − sin2(α+ − d1)]1/2

θ+
h (1 + sin(iξ − y − α+)) + s

∣∣∣∣,
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and

|gN,h−
0 (x, ξ + iy, t)| ≤

1
2π

N∑
`=0

|p̂−` (x)|
eθ
−
h e−θ

−
h h sin(α−−d1) cosh ξ

cosh ξ − sin(α− + d2)

∣∣∣∣1 − e−θ
−(ξ+iy)h

h

∣∣∣∣
×

∣∣∣∣ ∑̀
s=0

e−sxd−(`, s)θ−h [cosh2 ξ − sin2(α− − d1)]1/2

θ−h (1 + sin(iξ − y − α−)) + s

∣∣∣∣.
So the sub-error estimate

eN,h±
0 (x, t) ≤

1
2π

N∑
`=0

|p̂±` (x)| × (3.67)2 max
y∈[−d1,d2]

∫
R f h±

`
(θ±h , α

±, ξ, x, y)dξ

e2πd/~ − 1
+ ~

∞∑
|k|>M

f h±
` (θ±h , α

±, ξk, x, 0)

 .
Thus we have

max
x∈[0,1]
|x−t|∈[h,1]

eN,h±
0 (x, t) ≤

1
2π

N∑
`=0

max
x∈[0,1]

|p̂±` (x)| × (3.68)

2 max
x∈[0,1]

y∈[−d1,d2]

∫
R f h±

`
(θ±h , α

±, ξ, x, y)dξ

e2πd/~ − 1
+ max

x∈[0,1]
~
∞∑
|k|>M

f h±
` (θ±h , α

±, ξk, x, 0)

 .
We balance this sub-error by finding

D∗± = min
a∈(0,∞)
θ±h ∈(0,+∞)

α±∈(d1,π/2−d2)

D±(a, α±, θ±h ), (3.69)

where

D±(a, α±, θ±h ) :=
N∑
`=0

w±2
` ×2 max

x∈[0,1]
y∈[−d1,d2]

∫
R f h±

`
(θ±h , α

±, ξ, x, y)dξ

e2πd/~ − 1
− max

x∈[0,1]
~
∞∑
|k|>M

f h±
` (θ±h , α

±, ξk, x, 0)


2

.

So we have the proof. �

We define the L∞-norm of the global error

‖e‖L∞(0,1) = max
x∈[0,1]

e(x), (3.70)

where e(x) is defined right after the formula (3.26). We have the global error estimate in
L∞-norm

‖e‖L∞(0,1) ≤ max
x∈[0,1]

∑
γ=+,−

(
ehγ(x) + eN,hγ(x) + eN,hγ

~ (x)
)
. (3.71)

We ignore the error estimate eN,h±(x) from approximating the kernel by a spectral method.
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Theorem 9 :

‖e‖L∞(0,1) ≤ C1h∗ +
C2

πh∗
max{Fh∗+(a∗+, α∗+, θ∗+h ), Fh∗−(a∗−, α∗−, θ∗−h )},

where h∗ is solution to

E∗ := min
h∈(0,1)

E(h), (3.72)

E(h) :=
(
C1h −

C2

πh
max{Fh+(a∗+, α∗+, θ∗+h ), Fh+(a∗−, α∗−, θ∗−h )}

)2
, (3.73)

and

Fh±(a±, α±, θ±h )

=

N∑
`=0

w±`

2 max
x∈[0,1]

y∈[−d1,d2]

∫
R f h±

`
(θ±h , α

±, ξ, x, y)dξ

e2πd/~ − 1
+ max

x∈[0,1]
~
∞∑
|k|>M

f h±
` (θ±h , α

±, ξk, x, 0)

 ,
where a∗±, α∗±, θ∗±h are solution to (3.69) and C1 = max

x∈[0,1]
‖p(x, .)‖L1(0,1) max

y∈[0,1]
|u′(y)|.

Proof of Theorem 9
From (3.64) and Theorem 8, we have

max
x∈[0,1]

eN,h
~ ≤

C2

πh

(
Fh+(a∗+, α∗+, θ∗+h ) + Fh+(a∗−, α∗−, θ∗−h )

)
(3.74)

Moreover, we also have

max
x∈[0,1]

eh = max
x∈[0,1]

∣∣∣∣ ∫ 1

0
p(x, y)(u(y) − ũ(y))dy

∣∣∣∣
≤ max

x∈[0,1]

(
h × max

y∈[0,1]
|u′(y)| ×

∫ 1

0
|p(x, y)|dy

)
≤ h × max

y∈[0,1]
|u′(y)| × max

x∈[0,1]
‖p(x, .)‖L1(0,1).

So we balance eh and eN,h
~ by finding E∗ as in 3.72. �

Remark 14 :

There is another approach without using the balance idea, that is, the optimal
parameters of the contour can be computed directly from

max
x∈[0,1]
|x−t|∈[h,1]

eN,h±
0 (x, t) ≤

1
2π

min
a±∈(0,∞)
θ±h ∈(0,∞)

α±∈(−d1,π/2−d2)

Fh±(a±, α±, θ±h ). (3.75)

Conclusion : This method is only effective if the weights w±` are small. This can be ex-
plained as follows. Since we used the strict inequality (3.67) to evaluate the norm of gN,h±,
this implies that the error will be large if |p̂±` (x)| are large. To avoid this we still keep the
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formula (3.27), then we continue the ideas optimization of the contours. We also note that
the signs of p`(x) change and the signs of coefficients of Legendre polynomials are alter-
nate. However, this approach can be applied in the case when the weights w are small.
Moreover, the error estimate (3.72) has no more meaning in application since we don’t
know the function u(y). The drawbacks of this approach are the computation time is so
long (few hours).

3.6/ CONCLUSION

We have presented a contour optimization based on a theoretical error estimate which
reduces computations. The approach has presented through a simple example of a Lya-
punov equation arising in optimal control theory from the one-dimensional heat equation.
However, the special features of this example are not taken into account and we do not
expect further limitations in broader applications. In order to have a global view, other
approaches are considered.
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FIGURE 3.2 – Profiles x − y of the kernels q1, q2, and q3.
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FIGURE 3.4 – Level lines of the logarithm log10 ‖e‖L2(0,1) of the error function for q1(x, y)
and u1(y) at a fixed a = 1. The cross represents the solution to the optimization problem
min
α,θh

F(a, θh, α) with d1 = d2 = 0.5, h = 0.02.
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FIGURE 3.5 – Level lines of the logarithm log10 ‖e‖L2(0,1) of the error function for q1(x, y) and
u1(y) at a fixed α = 0.7849. The cross represents the solution to the optimization problem
(3.39) with d1 = d2 = 0.5, h = 0.02.
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(3.39) with d1 = d2 = 0.5, h = 0.02.
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u1(y) at a fixed α = 0.8747. The cross represents the solution to the optimization problem
(3.39) with d1 = d2 = 0.5, h = 0.02.

a

α

 

 

1 1.5 2 2.5 3

0.5

1

1.5

−1.4

−1.35

−1.3

−1.25

−1.2

−1.15

−1.1

FIGURE 3.9 – Level lines of the logarithm log10 ‖e‖L2(0,1) of the error function for q2(x, y) and
u1(y) at a fixed θh = 25.2206. The cross represents the solution to the optimization problem
(3.39) with d1 = d2 = 0.5, h = 0.02.



102 CHAPITRE 3. ERROR ESTIMATES

α

θ
h

 

 

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

10

20

30

40

50

60

70

−1.55

−1.5

−1.45

−1.4

−1.35

−1.3

−1.25

−1.2

−1.15

−1.1
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problem (3.39) with d1 = d2 = 0.5, h = 0.02.





4
CONCLUSION AND PERSPECTIVE

The diffusive realization of operators was mainly applied to operators with analytically
known kernels. From the references in the field, it is known to be a very efficient me-
thod requiring little computation for real time realizations since small numbers of contour
quadrature points are generally enough to yield good approximations. In Lenczner et al.
[16] a mathematical framework was introduced to derive diffusive realization of operators
solution to linear operator partial differential equations in one-dimensional domains. Only
the premises of a numerical method were produced with very few numerical tests. Here,
a more complete numerical method is discussed and its performances are investigated.
In particular, it uses another method for analytic extension. The approach is presented
through a simple example of a Lyapunov equation arising in optimal control theory from
the one-dimensional heat equation. However, the special features of this example are not
taken into account and we do not expect further limitations in broader applications.

Furthermore, we have presented a contour optimization based on a theoretical error esti-
mate which reduces computations. We recognized that the DR approximation are a linear
combination of inverse Laplace transforms, so the error estimate can be archived by ap-
plying the Stenger’s results in the framework of the numerical inversion of the Laplace
transform. Some comparisons of the relative error based on the choice of parameters of
the contour of DR method and the direct method have presented. The contour optimiza-
tion is shown to be effective.

Now the advantages of this method are its computation only requiring local inputs, pa-
rameters of the contour optimized. The online computation can be reformulated into a
prefix sum which is very suitable for parallel computation. Therefore, combining these
features opens a new direction for developing embedded real-time computation for distri-
buted systems on distributed architectures. Namely, in view of real-time applications, we
have discussed the cost of this method for a parallel implementation throughout estima-
ting the numbers of operators and the computation time of both the DR method on three
topologies and the direct method on the line topology.

We propose some different perspectives :

1. Developing this method in higher dimensional domains such as 2D.

2. Application DR to the non-integer power of a partial differential operator such as the
square root of an operator, that is, P2 = Q with the kernels p and q satisfying

∫ 1

0

∫ 1

0
p(x, y)p(y, z)u(z)dzdy =

∫ 1

0
q(x, y)u(y)dy, for all u ∈ H1

0(ω),

105
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and the inversion of an operator, that is, Q = P−1 with the kernels p and q satisfying∫ 1

0
q(z, x)

∫ 1

0
p(x, y)u(y)dydx = u(z), for all u ∈ H1

0(ω).

3. Application DR to Riccati equations issued from distributed optimal control. Namely,
we will consider an operator is the unique self-adjoint non-negative solution of the
operational Riccati equation

(A∗P + PA − PBS −1B∗P + C∗C)z = 0,

for all z ∈ D(A)-a dense domain of an infinitesimal generator A of a continuous
semigroup on a some separable Hilbert space. A∗ is the adjoint of the unbounded
operator A. B∗ is the adjoint of a bounded control operator B. C∗ is the adjoint of an
observation operator C. S = Id is the weight operator. We note that the Lyapunov
equation is the special case of the Riccati equation when B = 0.

4. Application DR to engineering problems as noise reduction, etc ...

5. Implementation on real distributed architectures as FPGAs. Youssef has success-
fully implemented the parallel and the pipeline architectures in a Xilinx Spartan3A
XILINX [2010] comprising 200 kgates, 16 multipliers with 18-bit input data and 36-bit
output data, 16 RAM blocks of 16 kbits each, and a 100 MHz clock. However, he
only implemented for a vector of data (un)n with N = 8 components, for a quadrature
formula with M = 4 nodes. We intended to implement with the larger number of
components and nodes.
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RÉSUMÉ

Cette thèse est consacrée à la conception d’algorithmes dans la perspective d’implanta-
tion de contrôles distribués temps réel implémentés sur un ensemble d’unités de calcul
dont chacune ne peut communiquer qu’avec ses voisins directs et est associée à plu-
sieurs capteurs et actionneurs. La solution étudiée dans cette thèse est fondée sur la
théorie de la réalisation diffusive (RD) introduite pour des opérateurs temporels causaux
définis sur la demi-droite réelle.

Le premier chapitre est consacré au rappel du cadre théorique établi par M. Lenczner et
Y. Yakoubi pour la réalisation d’opérateurs linéaires solutions d’équations opérationnelles
sur des domaines bornés. La méthode numérique qu’ils ont introduite souffre d’un certain
nombre de limitations conduisant à des résultats numériques entachés d’erreurs impor-
tantes. La faiblesse principale de leur approche réside dans l’utilisation du prolongement
analytique hors de l’intervalle (-1,1) des polynômes de Legendre utilisés pour l’approxi-
mation du noyau de l’opérateur.

La solution proposée consiste à définir un changement de variable supplémentaire qui ga-
rantit que le prolongement analytique du noyau est confiné à l’intervalle (-1,1) et conduit à
une réduction drastique de l’erreur. Cette nouvelle approche est appliquée à une équation
de Lyapunov rencontrée dans le cadre du contrôle optimal de l’équation de la chaleur.

Le deuxième chapitre analyse les coûts en temps de calcul d’implémentations sur
différentes architectures parallèles. Trois architectures sont considérées : une ligne, un
hypercube et un arbre binaire. Les temps de calcul sont évalués pour chacune de ces
topologies et sont comparés à ceux d’une méthode directe mise en œuvre sur une archi-
tecture en ligne.

Finalement au troisième chapitre et pour la première fois des estimations d’erreur de
la RD sont établies. Elles servent de base à l’optimisation des paramètres et donc à la
minimisation du coût du calcul ce qui est déterminant dans la perspective d’applications
temps-réel. Différentes approches sont considérées, mais celle qui est préférée consiste
en la décomposition de la représentation diffusive en une combinaison linéaire d’inverses
de transformations de Laplace et en l’utilisation d’estimations d’erreur qui s’y rapportent.
Cette approche est validée par des expérimentations numériques.

Mots-clés : Réalisation diffusive, opérateur de calcul parallèle, contrôl distribué, calcul
architecture, topology parallèle.
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Abstract:

In this thesis, we study the design and the implementation of generic control algorithms for systems
composed of distributed MEMS in a semi-centralized context, i.e., only the direct neighbours can
communicate. The control is computed in real time by a network of independent microcontrollers,
each of them being associated with a couple of sensors and actuators. So the challenge is
to introduce the possibility of communications between neighbour microcontrollers in order to
implement control laws based on communications between neighbours. We focus on distributed
control applications of the diffusive application where real-time implementations are an essential
feature. To address this problem, the diffusive realization (DR) theory and its approximation are used.
The advantage of DR is to deal with nonlocal problems encountered in many physical situations.
Firstly, we recall the diffusive realization theory presented in the PhD thesis of Yakoubi [36]. However,
his results were rather inaccurate. More precisely, the DR theory requires an analytic extension of the
kernel p. This leads to non-uniformly bounded extensions with respect to the number of polynomials
which causes high numerical errors. Therefore, in this thesis we apply an additional change of
variables to the kernel p and its extension so that they become defined in an extension domain
which eliminates an important source of error. The DR theory and its approximation are illustrated on
a Lyapunov equation arising from the optimal control theory of the heat equation.
Then we discuss expected gains if the method is implemented on different parallel computer
topologies based on corresponding designed networks. The envisioned applications are for real-
time distributed control on distributed computing architectures. Namely, we present results for
three parallel topologies: line topology, hypercube topology, binary topology. We also compare the
computation times between our algorithm with these topologies and a direct spectral method with a
line topology. These implementations considered in [7] offer a suitable parallel topology which is a
good choice for real-time, embedded, massive, and low-cost computation.
Finally, as in Weideman and Trefethen [35], but with a significantly different theoretical approach,
we provide, an error estimate of the DR and use it in a contour optimization method. Namely, we
establish that the approximation of the DR can be decomposed into a linear combination of inverse
Laplace transforms. Then the error estimates from Theorem 4.1 of Stenger [32] are applied to the
evaluation of the discretization error of each term in that combination. Moreover, the method has
been extensively tested and some significant results are reported.

Keywords: Diffusive realization, parallel computing operator, distributed control, computing architectures,
parallel topology.
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