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second, la théorie des cordes expliquant entre autres l’univers, les planètes, les étoiles. Une femme apparâıt comme
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Synthèse en français

Le défi majeur de la physique fondamentale moderne est de construire une théorie quantique

cohérente de l’interaction gravitationnelle. Plus largement, le besoin de nouvelle physique au-

delà du modèle standard de la physique des particules et de la relativité générale est motivé par

différents facteurs : premièrement, le modèle standard de la physique des particules qui décrit toutes

les autres interactions dans un cadre à la fois quantique et relativiste ne rend pas compte de cer-

taines observations. Tout d’abord, les neutrinos oscillent, ce qui est incompatible avec leur masse

nulle dans le modèle standard. Certaines observables, mesurées expérimentalement avec une grande

précision, ne s’accordent pas avec la valeur théorique attendue. C’est le cas du moment magnétique

anomal du muon ou encore de taux de désintégration de certains mésons. Nous pouvons aussi citer

des mesures du moment magnétique du neutron qui contraignent un paramètre du lagrangien de

la chromodynamique quantique à être extrêmement petit, ce qui ne semble pas naturel. En plus

de ces tensions entre théorie et expérience, l’observation à l’échelle cosmologique des effets induits

par la matière noire et l’énergie noire, qui représentent 95% du contenu énergétique de l’univers, ne

trouvent pas d’explications au sein du modèle standard. Enfin, des raisons purement théoriques jus-

tifient le désir de posséder une théorie quantique de la gravitation. Nous connaissons des systèmes

physiques comme les trous noirs ou encore notre univers à ses débuts dans lesquels les effets associés

à la gravitation ou à la mécanique quantique ne peuvent pas être négligés et où une unification des

deux théories semble inévitable.

Dans cette quête, la théorie des cordes est une candidate possible, qui offre un cadre cohérent

de gravitation quantique en unifiant également toutes les autres interactions de jauge et la matière.

Cela est fait simplement en modifiant la nature des degrés de liberté des particules fondamentales

pour les décrire comme des cordes étendues plutôt que comme des objets ponctuels. Ce simple

postulat de départ produit des théories cohérentes qui possèdent la relativité générale comme limite

à basse énergie tout en possédant des symétries de jauge suffisamment élaborées pour contenir le

modèle standard de la physique des particules.

La théorie est construite grâce à un élément essentiel qu’est la supersymétrie, reliant les champs

bosoniques et fermioniques. Cet ingrédient est cependant problématique car le monde dans lequel

nous vivons n’est manifestement pas supersymétrique et si la supersymétrie doit être présente au

niveau fondamental alors elle doit être brisée d’une certaine manière à notre échelle. Ces mécanismes

de brisure et l’étude de leurs conséquences sont au cœur de cette thèse.

Après un premier chapitre qui rappelle brièvement quelques ingrédients clés de la théorie des

cordes et de sa construction, le deuxième chapitre présente un nouveau mécanisme de brisure de

supersymétrie dans des modèles de cordes ouvertes. Ce mécanisme partage des similarités avec un

mécanisme existant appelé “brane supersymmetry breaking” avec notamment une brisure possible

à l’échelle de la corde et une réalisation non-linéaire de la supersymétrie. Cependant, contrairement
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à ce mécanisme, notre construction évite les tadpoles de Neveu–Schwarz–Neveu–Schwarz (NS-NS)

habituels et un regard attentif porté sur le secteur fermé y révèle une brisure spontanée de super-

symétrie à la Scherk–Schwarz.

Dans le troisième chapitre, nous étudions les propriétés du potentiel généré à une boucle par

un mécanisme de Scherk–Schwarz dans des modèles de type I avec une brisure de supersymétrie

N = 2 → N = 0. L’objectif est de déterminer les masses à une boucle acquises par la grande

variété de modules présents au niveau des arbres. Leur diversité implique l’utilisation de différentes

méthodes pour calculer ces masses à une boucle et conclure quant à leur stabilité ou non. Cela passe

par exemple par le calcul de l’expansion de Taylor du potentiel effectif, par l’évaluation de fonctions

de corrélation à deux points à une boucle ou encore par l’utilisation d’arguments de dualité entre

la théorie des cordes de type I et les cordes hétérotiques.

Le quatrième chapitre explore les conséquences cosmologiques induites par le potentiel à une

boucle dans les théories de cordes hétérotiques avec brisure spontanée de supersymétrie. L’objectif

est d’étudier l’influence du potentiel à une boucle sur des modèles appelés “sans échelle” dans

lesquels la supersymétrie est spontanément brisée et où l’échelle de brisure est une direction plate

du potentiel au niveau des arbres. Il est naturel de penser que les effets quantiques via la présence

du potentiel à une boucle vont drastiquement perturber la dynamique cosmologique. Cependant,

nous montrons que sous certaines conditions, la cosmologie n’est asymptotiquement pas modifiée

par la présence du potentiel à une boucle dont les effets sont complètement dominés. Dans un autre

projet, avec implémentation de la température au sein du modèle, nous élaborons un mécanisme

pour générer une densité relique de matière noire lors de l’évolution cosmologique de l’univers. Dans

des modèles spécifiques, un attracteur cosmologique impose la condensation d’un module qui a pour

effet de générer une masse soudaine à certains états interprétés comme des candidats de matière

noire. Le moment où cette transition de phase se produit modifie grandement le scénario standard

de gel (freeze-out) invoqué pour expliquer la création d’une densité relique de matière noire.
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Introduction

After more than a century of immense advances in fundamental physics, from the elaboration of the

theories of relativity and quantum mechanics to the successes of quantum field theory and particle

physics with the advent of the standard model, modern theoretical physics faces new challenges and

feels the need to move even further. This need originates from three different sources: Experimental

tensions between predictions of the standard model of particle physics and observations, unexplained

cosmological features and eventually theoretical reasons for the desire to possess a quantum theory

of gravity.

One important discrepancy between the standard model and experimental results concerns the

observation of neutrinos oscillation [1–3] which implies that they have a non-zero mass, not explained

by the standard model. Some specific experimentally measured quantities also do not match their

theoretical expectations with a quite high number of standard deviations. It is the case for the

anomalous magnetic dipole moment of the muon (for a very recent result, see [4]) or decay rates of

B-mesons [5,6]. Besides that, constraints on the neutron magnetic dipole moment [7,8] lead to the

so-called strong Charge-Parity (CP) problem (see [9] for recent lecture notes) implying a parameter

of the quantum chromodynamics Lagrangian to be extremely small, which seems unnatural. As for

cosmological observations, the explanation for the presence and nature of dark matter [10–12] and

dark energy [13,14], which represent roughly 95% of the energy content of the universe [15] cannot

be found inside the standard model.

As for the theoretical considerations, they are themselves diverse. Inspired by the famous unifica-

tions formalized in fundamental physics and the success of the quantization of the other interactions,

one would naively expect the need to marry general relativity with quantum mechanics. Besides

that, we know physical systems such as black holes or the singular past of our universe where the

effects associated with these two theories become comparable, near the Planck scale, so that a

unification seems unavoidable.

String theory is not only a consistent quantum gravity framework but also a unifying theory

describing all gauge interactions and matter. Only by revisiting the nature of the fundamental de-

grees of freedom of particles, promoting them from points to strings, the quantized theory naturally

contains a massless spin two state identified with the graviton and reproduces the general theory of

relativity at low energies. Besides that, several ingredients can generate non-abelian gauge groups

with far enough room to incorporate the standard model of particle physics while the first string rev-

olution uncovered fully consistent, anomaly-free theories. All this, even nowadays after few decades

of existence without any experimental confirmation that the theory provides a correct description

of fundamental particles, makes string theory a promising candidate for a correct quantum theory

of gravity.

The theory comes with a natural ingredient which is supersymmetry. It is a symmetry between
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bosonic and fermionic fields and it proves to be a powerful tool to guarantee stability in vacua

construction. However, we are obviously not living in an exactly supersymmetric universe and

supersymmetry must thus be broken in some way at our scales. Handling this breaking is a difficult

task that comes with a wide variety of problems, both at the field-theory and string levels. In this

thesis, we will be interested in breaking mechanisms realized directly at the perturbative string

level.

In the literature, a lot of different supersymmetry-breaking mechanisms have been explored,

all carrying interesting features as well as caveats. An important one for the works conducted in

this thesis is the Scherk–Schwarz breaking or coordinate-dependent compactification, which can

be implemented in field theory [16, 17] or directly at the perturbative string level [18–22]. The

scale of the spontaneous breaking induced by the mechanism is determined by the volume of the

internal space used to perform the breaking. Moreover, tree-level tachyonic instabilities yielding

Hagedorn-like phase transitions [23–32] are typically present for some range of this volume [33,34].

Also, the one-loop potential typically drives a runaway for the moduli associated with the breaking

scale which makes the task to find a true vacuum difficult. These difficulties have been addressed

in various works and as we will see soon, some studies are precisely the purpose and content

of this thesis. Tachyon-free models have been built [35, 36] and the running-away modulus can

be stabilized at the price of having a negative potential [37]. The effect of the runaway on the

cosmology of the models has been studied at finite temperature [38–42] or not [43, 44]. In models

showing a Bose/Fermi degeneracy at the massless levels, the one-loop potential is exponentially small

when the supersymmetry scale is low [45–51] but not vanishing [52–55] and the moduli stability in

this context can be studied [56–61]. Another important mechanism called brane supersymmetry

breaking has been extensively explored [62–67]. In these models, supersymmetry is non-linearly

realized [68, 69] and the supersymmetry-breaking scale is the string scale in the open sector while

the closed-string sector is insensitive to it. However, all these constructions suffer from uncancelled

Neveu–Schwarz–Neveu–Schwarz (NS-NS) tadpoles due to the presence of anti-D-branes. Attempts

to deal with these tadpoles have been pursued [70–73] but with limited applications. One can also

make use of internal magnetic fields to break supersymmetry [74–76] but this option will not be

evoked further in this thesis.

After an overview of the construction and key features of string theory presented in Chapter 1,

the works presented in this manuscript are organized as a triptych. The first part of it in Chap-

ter 2 concerns the very elaboration of supersymmetry-breaking mechanisms at the string-theory

level. The proposed mechanism takes place in orientifold models and shows similarities with brane

supersymmetry breaking. Crucially though, it avoids the usual NS-NS tadpoles and comes with

a breaking scale that can either be the string scale or a compactification scale. A close look at

the geometric interpretation of the mechanism as well as effective field-theory considerations will

however reveal a soft breaking in the closed sector, à la Scherk–Schwarz. The chapter is based on

the work [77], published during the thesis.

The second part of the triptych developed in Chapter 3 is about the moduli dependence of the

one-loop potential typically generated by supersymmetry-breaking mechanisms. Such potentials

can be independent on some scalars in which case these states remain moduli at one loop. However,

they can also induce a one-loop mass squared that can be positive or negative. In the former case,

the tree-level moduli are actually stabilized at one loop and in the latter case, a tachyonic instability

is created and the vacuum around which perturbation theory is performed is not valid anymore.
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We will perform such a stability analysis in the context of the type I string theory showing an

N = 2→ N = 0 spontaneous breaking of supersymmetry. The presence of a rich variety of moduli

in the model will require the use of various techniques to establish their one-loop stability, ranging

from Taylor expansion of the effective potential to the evaluation of genus-1 two-point correlation

functions through arguments arising from the duality between the heterotic and type I string. The

chapter is based on the works [59–61].

Eventually, the last part of the triptych presented in Chapter 4 treats the cosmological dynamics

induced at one loop by supersymmetry breaking. Indeed, after implementation of a breaking at the

string level and study of the one-loop potential, one generally does not have a true vacuum and the

full cosmological dynamics should be taken into account. More precisely, no-scale models [78–81]

are defined as classical models with spontaneously broken supersymmetry and a breaking scale that

is a flat direction of the tree-level potential (hence the name “no-scale”). Such models are expected

to be drastically disturbed by quantum effects and the generation of a one-loop potential. In spe-

cific cases, referred to as “super no-scale models”, the potential is exponentially suppressed at one

loop and the no-scale structure is preserved [45–47, 56, 57, 82–87]. In generic cases however, the

time-dependence of the one-loop potential should be taken seriously and its backreaction on the

cosmological equations of motion of the no-scale models carefully studied. We will study this back-

reaction and show that under certain conditions, a no-scale cosmological behaviour can effectively

be reached asymptotically. The two first sections of the chapter are based on the works [43, 44].

In a third section based on the works [88, 89], we put forward a new mechanism to generate a

dark-matter relic density in the cosmological story of the universe. This is done in a heterotic string

context with spontaneously broken supersymmetry and with implementation of finite temperature.

In specific setups, a cosmological attractor enforces the condensation of a modulus as the universe

evolves, that gives a sudden mass to some states playing the role of dark-matter candidates. The

moment when this phase transition occurs affects the standard scenario invoked for generating a

relic density.

The appendix A gives some notations used in this document about characters and Jacobi theta

functions while appendices B and C provide additional details about what is presented respectively

in Chapters 3 and 4.

The publications produced during the thesis upon which this manuscript rests are attached at

the very end of the manuscript.
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1 Key ingredients of string theory

The goal of this chapter is to introduce string theory and related concepts that are explored in this

thesis. After a brief overview about the construction of string theory and the various superstring

theories, we discuss the main ingredient of this thesis that is supersymmetry breaking and more

particularly the breaking by coordinate-dependent compactification. Eventually, we talk about

cosmology and how string theory could help in this vast domain.

1.1 Foundations of string theory

This section recalls the definition of the relativistic superstring, its equations of motion, boundary

conditions and constraints. The quantification procedure in light-cone gauge is then briefly reviewed.

This section is strongly inspired by the most famous textbooks and lectures which introduce string

theory and constitute permanent companions for the young string theorist [90–96].

1.1.1 The classical action of the relativistic string

The basic idea of string theory is to revisit what the degrees of freedom of fundamental particles

are. The replacement of a pointlike description by a string-like one allows for internal vibrating

modes associated to a new energy scale: The string scale. Formally, the relativistic particle of mass

m is promoted to a relativistic string by generalizing its dynamics as a variational principle. As the

particle action Spointlike is proportional to the invariant length of its trajectory Xµ(τ) in spacetime

parametrized by τ (called the worldline), the string one is proportional to the area spanned by the

string while it propagates, called the worldsheet. The worldsheet is parametrized by an additional

spacelike coordinate which we label by σ. The action thus becomes the following Nambu–Goto

action [97,98] SNG,

Spointlike = −m
∫

dτ

√
−gµν

dXµ

dτ

dXν

dτ
−→ SNG = −T

∫
d2σ
√
−h , (1.1.1)

where T denotes the tension of the string, d2σ = dτdσ is the area element and h is the determinant

of the induced metric on the worldsheet which is embedded in spacetime with coordinates Xµ(τ, σ),

µ ∈ {0, . . . , d − 1}. This metric is thus defined as the pullback of the spacetime metric gµν on the

worldsheet submanifold,

h = det(hαβ) and hαβ = gµν∂αX
µ∂βX

ν . (1.1.2)

In units where ℏ = c = 1, the string tension T has the dimension of a mass squared and it can be

expressed as the inverse of the Regge slope α′ as T = 1
2πα′ .
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Chapter 1. Key ingredients of string theory

In the Nambu–Goto formalism, one directly finds and solves the equations of motion in terms of

the embedding coordinates Xµ(τ, σ). However, this formalism is not convenient for quantizing the

theory and an equivalent one can be defined. It follows the same logic as for the relativistic particle

where an auxiliary field can be introduced to define a new action. In this formalism, both the

equations of motion for the auxiliary field and for the embedding coordinates must be worked out.

If a particular expression for the auxiliary field is chosen i.e. for a particular gauge, the dynamics

is given by the equations of motion of the embedding coordinates with the additional constraints

imposed by the validity of the equations of motion of the auxiliary field at the particular gauge value.

The string action SP in this formalism is called Polyakov action or sigma-model action [99–101] and

reads

SP = −T
2

∫
d2σ
√
−hhαβgµν∂αXµ∂βX

ν , (1.1.3)

where now the Minkowskian two-dimensional worldsheet metric hαβ plays the role of the auxiliary

field and is thus no more defined as the pullback of the spacetime metric which however appears

explicitly in the action. If one injects the equations of motion of the auxiliary metric into the

Polyakov action, one recovers the Nambu–Goto description which shows that the two formalisms

are equivalent.

The two local symmetries of the Polyakov action (1.1.3) that are reparametrization of the world-

sheet coordinates τ and σ and Weyl transformations (rescaling of the worldsheet metric) can be

used to completely gauge-fix hαβ. If no topological obstruction prevents from it, it is convenient to

fix the metric to the flat Minkowski one: hαβ = ηαβ. Note that this gauge is called the conformal

gauge. Worldsheet indices are thus raised and lowered with this flat metric and the action becomes

S = −T
2

∫
d2σ∂αXµ∂αXµ . (1.1.4)

The constraints imposed by the equations of motions of the auxiliary metric after gauge fixing should

not be forgotten. The variation of the action with respect to the metric defines the worldsheet

energy-momentum tensor Tαβ and the equations of motion impose it to vanish,

Tαβ ≡ −
2

T
√
−h

δSP

δhαβ
= 0 . (1.1.5)

In the flat gauge, this constraint reads

∂αX
µ∂βXµ −

1

2
ηαβ∂

γXµ∂γXµ = 0 . (1.1.6)

The bosonic string discussed so far yields, after quantization, a theory without fermions and which

in addition contains a tachyon. To remedy these issues, one can build the fermionic superstring

in what is called the Ramond–Neveu–Schwarz (RNS) formalism [102, 103] by adding fermionic

Majorana fields on the worldsheet ψµ(τ, σ) ≡
(
ψµ
−
ψµ
+

)
which are vectors from the spacetime point of

view. The superstring action in (super)conformal gauge is given by

S = −T
2

∫
d2σ

(
∂αXµ∂αXµ + α′ψµγα∂αψµ

)
, (1.1.7)

where the matrices γα, α = 0, 1, are two-dimensional Dirac matrices that satisfy the Clifford algebra

{γα, γβ} = 2ηαβ and the Dirac conjugate ψµ is defined as ψµ = iγ0ψµ†. Varying the action with
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Chapter 1. Key ingredients of string theory

respect to the bosonic and fermionic fields, one finds the equations of motion, which are simply the

usual two-dimensional wave equation and Dirac equation:

∂α∂
αXµ = 0 and γα∂αψµ = 0 . (1.1.8)

Like for the bosonic string, one should not forget the constraints coming from the vanishing of the

energy-momentum tensor which read

∂αX
µ∂βXµ −

1

2
ηαβ∂

γXµ∂γXµ +
α′

2
ψµγα∂βψµ +

α′

2
ψµγβ∂αψµ = 0 . (1.1.9)

Actually, other constraints need to be imposed. Note that the superstring action (1.1.7) is invariant

under global supersymmetry transformations to which a supercurrent is associated. In this setup,

nothing requires the vanishing of this supercurrent but in a more fundamental construction of the

superstring action which possesses local supersymmetry [104–106], this cancellation arises as the

equations of motion of a gravitino gauge field. Eventually, the additional constraints are

γβγαψ
µ∂βXµ = 0 . (1.1.10)

1.1.2 Boundary conditions and mode expansion

The equations of motion (1.1.8) and the constraints (1.1.9) and (1.1.10) need to be supplemented

by appropriate boundary conditions for the system to be fully defined. For the embedding bosonic

coordinates, one can talk about closed strings or open strings and we fix the range of the σ parameter

to be [0, π] for both kinds of strings. The closed strings satisfy a periodicity condition under

translation of the spacelike coordinate σ while for each end at σ = σe ≡ 0, π, the open strings can

verify either Neumann or Dirichlet boundary conditions. The possible bosonic boundary conditions

are then

Closed strings: X(τ, σ + π) = X(τ, σ) , Open strings:

{
Neumann: ∂σX

µ(τ, σ)|σ=σe = 0

Dirichlet: X(τ, σe) = cst
. (1.1.11)

The Dirichlet conditions which break Lorentz invariance will be discussed later when open-string

theories and D-branes are introduced.

From the fermionic fields point of view, several Lorentz-preserving conditions exist for which the

boundary terms arising when varying the superstring action vanish. These conditions are expressed

in terms of the Majorana components ψµ− and ψµ+ which describe respectively left-moving and

right-moving waves. For closed strings, ψµ− and ψµ+ can independently satisfy periodicity (Ramond

boundary condition) or antiperiodicity (Neveu–Schwarz boundary condition) under the translation

σ → σ + π. This naturally gives rise to four sectors: Ramond–Ramond (R-R), Ramond–Neveu–

Schwarz (R-NS), Neveu–Schwarz–Ramond (NS-R) and Neveu–Schwarz–Neveu–Schwarz (NS-NS).

For open strings, fixing without loss of generality ψµ−(τ, σ)|σ=0 = ψµ+(τ, σ)|σ=0, two inequivalent

choices arise if we choose the same condition at the other end σ = π (Ramond boundary condition)

or its opposite (Neveu–Schwarz boundary condition). The possible boundary conditions are thus

Closed strings:


R-R:

ψµ−(τ, σ + π) = ψµ−(τ, σ)

ψµ+(τ, σ + π) = ψµ+(τ, σ)
R-NS:

ψµ−(τ, σ + π) = ψµ−(τ, σ)

ψµ+(τ, σ + π) = −ψµ+(τ, σ)

NS-R:
ψµ−(τ, σ + π) = −ψµ−(τ, σ)
ψµ+(τ, σ + π) = ψµ+(τ, σ)

NS-NS:
ψµ−(τ, σ + π) = −ψµ−(τ, σ)
ψµ+(τ, σ + π) = −ψµ+(τ, σ)
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Chapter 1. Key ingredients of string theory

Open strings:

{
Ramond (R): ψµ−(τ, σ)|σ=π = ψµ+(τ, σ)|σ=π
Neveu–Schwarz (NS): ψµ−(τ, σ)|σ=π = − ψµ+(τ, σ)|σ=π

. (1.1.12)

Defining the light-cone coordinates σ± ≡ τ ±σ whose associated derivative read ∂± = 1
2
(∂τ ±∂σ),

the equations of motion (1.1.8) become

∂+∂−X
µ = 0 and

{
∂+ψ− = 0

∂−+ = 0
. (1.1.13)

Together with the various boundary conditions, they give rise to different mode expansions of the

bosonic and fermionic fields. Let us start with the bosonic ones. The equations of motion imply

that the most general form for Xµ(τ, σ) is a sum of right-moving and left-moving waves that depend

only on σ− and σ+ respectively,

Xµ(τ, σ) = Xµ
R(τ − σ) +Xµ

L(τ + σ) . (1.1.14)

Expanding this solution in Fourier modes yields the following mode expansions for the closed string

and the open string (assuming Neumann boundary conditions in all directions)

Closed strings:


Xµ

R(τ − σ) = 1
2
xµ + α′pµ(τ − σ) + i

√
α′
2

∑
n ̸=0

αµn
n
e−2in(τ−σ)

Xµ
L(τ + σ) = 1

2
xµ + α′pµ(τ + σ) + i

√
α′
2

∑
n̸=0

α̃µn
n
e−2in(τ+σ)

,

Open strings: Xµ(τ, σ) = xµ + 2α′pµτ + i
√
2α′
∑
n̸=0

αµn
n
e−inτ cos(nσ) .

(1.1.15)

In these expressions, xµ and pµ which appear as integration constants are the position and momen-

tum of the string center of mass. For the closed string, there are two sets of Fourier coefficients,

αµn and α̃µn and only one for the open string. A reality condition on the coordinate Xµ implies

that αµ−n = (αµn)
∗ and α̃µ−n = (α̃µn)

∗. It is convenient to define coefficients for n = 0 as follows:

αµ0 = α̃µ0 ≡
√

α′
2
pµ for the closed string and αµ0 ≡

√
2α′pµ for the open string.

Let us turn to the fermionic fields. For closed strings, ψµ− and ψµ+ can be independently periodic

or antiperiodic. For periodic boundary conditions (R), we denote the Fourier coefficients by dµn while

we write bµr for antiperiodic fields (NS). We add tildes on these coefficients for the right-movers ψµ+.

The idea is that the “d coefficients” will come with integer indices n while the “b coefficients” will

come with half-integer indices. For open strings, the coefficients dµn appear both in ψµ− and ψµ+ for

Ramond boundary conditions while they are replaced by bµr for Neveu–Schwarz conditions.
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Chapter 1. Key ingredients of string theory

Closed strings:



(R) (NS)

Right-movers: ψµ−(τ, σ) =
∑
n∈Z

dµne
−2in(τ−σ) ψµ−(τ, σ) =

∑
r∈Z+ 1

2

bµr e
−2ir(τ−σ)

Left-movers: ψµ+(τ, σ) =
∑
n∈Z

d̃µne
−2in(τ+σ) ψµ+(τ, σ) =

∑
r∈Z+ 1

2

b̃µr e
−2ir(τ+σ)

Open strings:


R: ψµ−(τ, σ) =

1√
2

∑
n∈Z

dµne
−in(τ−σ) and ψµ+(τ, σ) =

1√
2

∑
n∈Z

dµne
−in(τ+σ)

NS: ψµ−(τ, σ) =
1√
2

∑
r∈Z+ 1

2

bµr e
−ir(τ−σ) and ψµ+(τ, σ) =

1√
2

∑
r∈Z+ 1

2

bµr e
−inr(τ+σ) .

(1.1.16)

The Majorana conditions on the fermionic fields implies dµ−n = (dµn)
∗, bµ−r = (bµr )

∗ and similar rela-

tions for coefficients with tildes.

Inserting these mode expansions into the energy-momentum tensor and supercurrent, one obtains

the Fourier expansion of these currents whose vanishing must be ensured by the vanishing of each

individual Fourier coefficient. The energy-momentum coefficients are denoted Ln and are further

split into a bosonic and a fermionic contribution corresponding to the first and last two terms in

(1.1.9) respectively. We thus write Ln ≡ L
(b)
n +L

(f)
n . The bosonic part is given by (for closed strings,

all the following formulas are to be duplicated upon replacement of the coefficients by their tilde

version)

L(b)
n =

1

2

∑
m∈Z

α−m · αn+m for n ∈ Z , (1.1.17)

where the scalar product stands for a contraction of the Lorentz indices with the flat spacetime

metric ηµν . The expressions of the fermionic part along with the supercurrent coefficients depend

on the sector (Ramond or Neveu–Schwarz) under consideration. For Ramond fields, the supercurrent

coefficients are denoted by Fn and they are written Gr for Neveu–Schwarz expansions. They are

R sector: L(f)
n =

1

2

∑
m∈Z

(
m+

n

2

)
d−m · dn+m, n ∈ Z and Fn =

∑
m∈Z

α−m · dn+m, n ∈ Z

NS sector: L(f)
n =

1

2

∑
r∈Z+ 1

2

(
r +

n

2

)
b−r · bn+r, n ∈ Z and Gr =

∑
m∈Z

α−m · br+m, r ∈ Z+
1

2

(1.1.18)

The zero mode L0 and its counterpart L̃0 for closed strings are important since they involve pµp
µ

in the m = 0 term of the sum. This means that their vanishing gives a formula for the mass of the

strings. We will write these formulas in the next subsection after quantization of the theory.

1.1.3 Quantization and spectrum

A first challenge for the construction of string theory is to consistently quantify the relativistic

theory described so far. Here we will only review the fastest method to get to the spectrum which

is called light-cone quantization. It consists in fixing all the remaining gauge degrees of freedom

available to obtain the physical solutions before quantizing these solutions.
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Chapter 1. Key ingredients of string theory

The starting point is to realize that when going to flat gauge by making use of the reparametriza-

tion and Weyl invariance of the Polyakov action, there is still some remaining gauge invariance. This

means that there is an unphysical redundancy in the field solutions that we wrote. The remaining

freedom lies in the particular globally well-defined reparametrizations of the worldsheet coordinates

that only induce a rescaling of the flat worldsheet metric. These conformal transformations are

symmetries since the induced rescaling can be undone by a Weyl transformation. More specifically,

any change of coordinates which just redefines σ+ as a function of itself and independently σ− as a

function of itself also, only produces a rescaling of the flat metric.

We define the spacetime light-cone coordinates X+ and X− and the light-cone fermions ψ+ and

ψ− as1

X± ≡ X0 ±Xd−1

√
2

and ψ± ≡ ψ0 ± ψd−1

√
2

. (1.1.19)

We can make full use of the residual gauge freedom to fix the values of X+ and ψ+ to

X+ = x+ + α′p+τ and ψ+ = 0 , (1.1.20)

where x+ and p+ are integration constants. The constraints then completely determine the expres-

sions of X− and ψ− in terms of the other fields. The only remaining sets of non-trivial Fourier

coefficients are thus those associated with the transverse directions X i, i ∈ {1, . . . , d− 2}.

It is then possible to quantize the theory using the standard canonical way. In the classical theory,

for transverse directions, the momenta P i associated to the bosonic fields X i and Πi associated to

the fermionic ones ψi can be defined in the usual way from the superstring action (1.1.7),

P i(τ, σ) ≡ δS

δ(∂τXi)
= T∂τX

i , Πi
+ ≡

δS

δ(∂τψ+,i)
= − i

4π
ψi+ , Πi

− = − i

4π
ψi− . (1.1.21)

They obey canonical commutation and anticommutation rules in terms of the Poisson brackets

which are promoted to true commutators and anticommutators on the fields that are themselves

promoted to operators. The only non-trivial relations are[
P i(τ, σ), P j(τ, σ)

]
= iδijδ(σ − σ′) and

{
ψi±(τ, σ), ψ

j
±(τ, σ

′)
}
= πδijδ(σ − σ′) . (1.1.22)

Inserting the mode expansions of the fields, these commutation and anticummutation relations

translates into rules for the various Fourier coefficients that are promoted to operators called oscil-

lators. The non-trivial rules are (for closed strings, the same relations hold for tilde operators)[
αin, α

j
m

]
= nδn+m,0δ

ij ,
{
bir, b

j
s

}
= δr+s,0δ

ij ,
{
din, d

j
m

}
= δn+m,0δ

ij . (1.1.23)

The rescaling αin → αi
n√
n
together with the definitions αi†n ≡

αi
−n√
n

for n > 0, α̃i†n ≡
α̃i
−n√
n

for n > 0,

bi†r ≡ bi−r for r > 0 and di†n ≡ di−n for n > 0 yield usual algebras of raising and lowering operators. We

can thus build the spectrum starting from a vacuum state annihilated by all the lowering operators

and act on it with raising operators. The vacua |0⟩R and |0⟩NS in the R and NS sectors are such

that
αin |0⟩R = din |0⟩R = 0 for n > 0 ,

αin |0⟩NS = bir |0⟩NS = 0 for n, r > 0 ,
(1.1.24)

1When the plus or minus index is subscripted, as it was the case so far, this indicates the components of the worldsheet spinors while
when it is superscripted it denotes the light-cone definition of the fields.
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and the raising operators are the negative modes. For closed strings, the same relations must hold

for tilde operators. The vacua carry a momentum which is an eigenvalue of the operator pµ and up

to this momentum, the NS vacuum is unique and describes a zero-spin state. The raising operators

being Lorentz vectors, all states built from the NS vacuum are spacetime bosons. There is a subtlety

concerning the R vacuum since it turns out that the action of the operator di0 does not change the

mass of the state. The explanation for this is that the R vacuum is actually a spacetime fermion

carrying irreducible spinor quantum numbers in d − 2 dimensions. Because the raising operators

are Lorentz vectors, the states arising in the R sector are consequently spacetime fermions. Note

that for open strings, extra quantum numbers called Chan-Paton factors [107] that are carried by

the ends of the string can consistently be added. We will come back to this later when we study

more deeply the open-string theories.

To finalize the quantization procedure, the constraints must be imposed. Recall that they were

given classically by the vanishing of the Fourier coefficients of the energy-momentum tensor and

supercurrent. The coefficients are now operators which verify commutation rules of a super-Virasoro

algebra. They are defined to be normal ordered, with the raising operators on the left and the

lowering ones on the right. This produces an ambiguity for the zero mode L0 which is tackled

by adding extra constants aR and aNS in the corresponding sectors (the same formulas with tildes

define L̃0),

R sector: L0 ≡
α2
0

2
+

+∞∑
n=1

α−n · αn +
+∞∑
n=0

nd−n · dn − aR ,

NS sector: L0 ≡
α2
0

2
+

+∞∑
n=1

α−n · αn +
+∞∑
r= 1

2

rb−r · br − aNS .

(1.1.25)

The constraints then amount to impose the physical states to be annihilated by the positive modes

Ln and Fn, n ≥ 0 in the R sector and Ln, n ≥ 0 and Gr, r > 0 in the NS sector. As mentioned

earlier, the L0 constraint gives a formula for the mass squared M2 of the states since it involves

pµp
µ = −M2. Thanks to the light-cone gauge, everything can be expressed in terms of the transverse

oscillators and the result is (there is a factor 4 between open and closed strings due to the definition

of α0 which is different)

R sector:
α′

4
M2

closed = α′M2
open =

+∞∑
n=1

αi−nα
i
n +

+∞∑
n=0

ndi−nd
i
n − aR ,

NS sector:
α′

4
M2

closed = α′M2
open =

+∞∑
n=1

αi−nα
i
n +

+∞∑
r= 1

2

rbi−rb
i
r − aNS .

(1.1.26)

For closed strings, the same formulas hold for the sets of tilde oscillators. This means that the

right-hand sides are equal to the same expressions with tildes. This is called the level-matching

condition since it ensures that the number of excitations are the same for left- and right-movers.

The values of aR, aNS and the number of spacetime dimensions d are constrained by the requirement

to obtain in the end a Lorentz invariant theory, which was not guaranteed by the light-cone gauge

since it hides this symmetry. Several arguments can be invoked to find these values and they all

yield the same result: aR = 0, aNS = 1
2
and d = 10. Note that in the case of the bosonic string, the

constraint on the number of dimensions is d = 26.

10



Chapter 1. Key ingredients of string theory

In the R sector, because aR = 0, the ground state (which is a spacetime fermion) is massless.

The physical excited states are massive and are built by acting with the transverse oscillators αi−n
and di−n. In the NS sector, the ground state is a scalar and has a negative mass squared because of

aNS = 1
2
. Contrary to the bosonic string theory, we will see that there is a consistent way to project

out this tachyon. The first excited state is a massless vector obtained with the action of bi−1/2 on

the ground state.

For the closed string, remember that there are four sectors depending on the choice R or NS

both for left- and right-moving oscillators. The states are thus tensor products of the two sides

which then decompose into SO(8) representations (we will give the precise decomposition in the

next section because some work remains to be done to obtain fully consistent theories). The ground

states in the NS-NS, NS-R and R-NS are tachyons while the ground state in the R-R sector is

massless. The first excited state in the NS-NS sector obtained with the action of bi−1/2 and b̃i−1/2 is

massless and contains among other things (see next section) the graviton. The first excited states

in the R-NS and NS-R sectors obtained with the action of bi−1/2 or b̃
i
−1/2 in the NS side, are massless

and contain a gravitino.

1.2 The different superstring theories

Now that we have laid the basics of superstring theory and found its spectrum, we can go further

and discover the five types of string theories. For each one of them, we will discuss the one-loop

vacuum amplitudes, objects that are highly important in this thesis.

1.2.1 The one-loop torus amplitude

The one-loop vacuum amplitudes are very important objects in string theory and lie at the core of

this thesis. They are the analogue of their field theory counterparts which are given by Feynman

diagrams simply describing a loop of particles. Of course, the very values of the one-loop vacuum

amplitudes are important since they induce a quantum potential and possibly a cosmological con-

stant. But besides from their numerical values, it turns out that the structure of the partition

functions contains a lot of information about the spectrum of the theory.

In field theory, the one-loop vacuum amplitude captures the contributions of the whole spectrum

to the loop. Each contribution comes as an integral over a Schwinger parameter t weighted by

an exponential depending on the squared mass M2 of the state under consideration. In a theory

with bosonic and fermionic degrees of freedom, the sum over the spectrum is a supertrace and an

ultraviolet cutoff ϵ should be introduce to account for the divergence at low Schwinger parameter.

Denoting V the spacetime volume, the one-loop vacuum energy schematically takes the following

form

V1−loop ∝
∫ +∞

ϵ

dt

t1+
D
2

Str
(
e−tM

2
)
. (1.2.1)

In a closed-string theory, the loops undergone by the states are not circles anymore but tori repre-

senting the closed-strings going back to themselves. The diffeomorphism and Weyl invariance of the

theory can be used to map any torus metric to a flat one but it turns out that several conformally

inequivalent flat metrics exist. It is then natural to sum over all these inequivalent metrics to obtain

the vacuum energy. More specifically, a flat torus can be defined as an identification on the complex

plane which depends on a complex parameter τ ≡ τ1 + iτ2 called the Teichmüller parameter or

11



Chapter 1. Key ingredients of string theory

modulus of the torus2,

Torus: {z ∈ C with the identifications z ≡ z + 1, z ≡ z + τ} . (1.2.2)

The important thing is to determine the moduli space i.e. which Teichmüller parameters give

conformally inequivalent tori to sum only on them. Given a modulus τ , twomodular transformations

T and S generate the same torus:

T : τ → τ + 1 and S : τ → −1

τ
. (1.2.3)

The group generated by these transformations is PSL(2,Z) so that the moduli space is given by the

complex plane modded by this group. This defines the fundamental domain F over which we will

integrate and it reads

F :

{
τ ∈ C such that |τ | ≥ 1 and Re τ ∈

[
−1

2
,
1

2

]}
. (1.2.4)

The fact that the region near τ = 0 is not present in the fundamental domain implies that no

ultraviolet divergence can arise unlike in field theory. In the end, thanks to the mass formulas

(1.1.26), the vacuum energy involves four contributions coming from the four sectors. For example,

in the NS-NS sector, the contribution TNS-NS is given by

TNS-NS ≡
∫
F

d2τ

τ
1+ d

2
2

StrNS-NS q

∑+∞
n=1 α

i
−nα

i
n+

∑+∞
r=1

2

rbi−rb
i
r− 1

2 q̄

∑+∞
n=1 α̃

i
−nα̃

i
n+

∑+∞
r=1

2

rb̃i−r b̃
i
r− 1

2 , (1.2.5)

where we defined q = e2iπτ and d2τ = dτ1dτ2. The integral over τ1 implements the level-matching

condition and the integral over τ2 is the analogue of the integral over the Schwinger parameter t in

field theory but without any ultraviolet divergence. Note that compared to t, τ2 is scaled with a

factor (α′π)−1.

To write things in a more compact way, we redefine L0 and L̃0 to be those of the Conformal Field

Theory (CFT) language. They only count the transverse oscillators acting on the ground state and

the R vacuum has conformal weight 1/2. Central charges must be taken into account in the trace

so that the full torus partition function T is expressed like

T ≡
∫
F

d2τ

τ
1+ d

2
2

Str
(
qL0− 1

2 q̄L̃0− 1
2

)
, (1.2.6)

where it is understood that the trace runs over the four sectors.

1.2.2 Type IIA and IIB

As we said in the previous section, the superstring spectrum contains an undesired tachyon in the NS

sector. More generally, it can be shown that the spectrum as a whole is not consistent with modular

invariance of the one-loop torus amplitude. Moreover, the spectrum has another problem: It is not

spacetime supersymmetric as it should be since it contains a massless gravitino, the gauge field

of local supersymmetry. To solve these problems and obtain consistent spectra, without tachyons

and supersymmetric in the ten-dimensional spacetime, we need to apply the Gliozzi–Scherk–Olive

2Note that the notation is the same but it has nothing to do with the timelike worldsheet coordinate τ .
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Chapter 1. Key ingredients of string theory

(GSO) projection [108, 109]. In the NS sector, it consists in keeping only states for which the

number of b-oscillators is odd. This obviously projects out the tachyon while keeping the massless

state. Some massive states disappear from the spectrum if they correspond to the action of an even

number of b-oscillators. In the R sector, the projection counts the number of d-oscillators and is

coupled to the chirality operator in ten dimensions. At the massless level, this amounts to choose

(equivalently) the fermionic ground state to have a definite positive or negative Weyl chirality in

ten dimensions. It can be shown that such a projection yields a spectrum that contains an equal

number of bosonic and fermionic on-shell degrees of freedom at all mass levels. Moreover, in the

Green–Schwarz formalism where spacetime supersymmetry is manifest, it is shown that after the

GSO projection, supersymmetry is indeed preserved [104–106].

Two consistent closed-string theories can be obtained from the projection. If the same Weyl

chirality of the ground state is chosen both for left and right oscillators, this gives the type IIB

theory. On the contrary, if opposite chiralities are chosen, this defines the type IIA theory. After

the GSO projection, the massless NS-NS sectors of the two theories are identical and contain, in

terms of SO(8) representations, the dilaton scalar, an antisymmetric two-form gauge field and the

spin two graviton which is symmetric and traceless. The NS-R and R-NS sectors each contain a

spin 3/2 Majorana-Weyl gravitino and the spin 1/2 Majorana-Weyl dilatino. In this sector, the

difference between the two theories lies in the chirality of the gravitinos: They are the same in type

IIB and are opposite in type IIA. In the R-R sector, one finds a one-form and a three-from gauge

fields in type IIA and a scalar, a two-form and a self-dual four-form gauge fields in type IIB.

From the spectrum in each sector, one can compute explicitly the supertraces in the partition

function (1.2.6) for the type IIA and IIB theories. The conventions used in this thesis for the SO(8)

characters, the Dedekind function and the Jacobi theta functions can be found in Appendix A. The

torus partition functions are

Type IIA: T =

∫
F

d2τ

τ 62

(
V8 − C8

η8

)(
V̄8 − S̄8

η̄8

)
, Type IIB: T =

∫
F

d2τ

τ 62

∣∣∣∣V8 − S8

η8

∣∣∣∣2 , (1.2.7)

in which the left-right symmetry of type IIB and the asymmetry of type IIA are explicit. The

expansions of the characters V8 and S8 with respect to q tell us the number of bosonic and fermionic

degrees of freedom at each mass level (they are of course equal thanks to supersymmetry). In

particular, at the massless level we have

V8
η8

=
S8

η8
=
C8

η8
= 8 +O(q) , (1.2.8)

from which we count 82 + 82 = 128 bosonic and fermionic degrees of freedom. This matches

the particle content of the theories displayed earlier. Indeed, on-shell, the NS-NS sector yields
8×9
2
− 1 = 35 (graviton traceless) +8×7

2
= 28 (two-form) +1 (dilaton) = 64 degrees of freedom. The

R-R sector gives 8×7×6
6

= 56 (three-form) +8 (one-form) = 64 for type IIA and 8×7×6×5
24

/2 = 35

(self-dual four-form) +8×7
2

= 28 (two-form) +1 (scalar) = 64 for type IIB. This gives the 128

bosonic degrees of freedom for the two theories. The NS-R and R-NS sectors give together 2 × 56

(two Majorana-Weyl spin 3/2) +2 × 8 (two Majorana-Weyl spin 1/2) = 128 fermionic degrees of

freedom.

13



Chapter 1. Key ingredients of string theory

1.2.3 Non-abelian gauge groups

In the ten-dimensional type IIA and IIB superstring theories, there is no non-abelian gauge symme-

tries. Generating non-abelian gauge groups is crucial since we ideally want to recover the standard

model at low energies which involves the gauge group SU(3)×SU(2)×U(1). Let us mention various

strategies to generate non-abelian gauge groups in string theory.

� Toroidal compactification of the bosonic string theory generically leads to abelian U(1) gauge

factors coming from the dimensional reduction of the background spacetime metric and an-

tisymmetric tensor. However, a pure stringy effect called symmetry enhancement can occur.

It has the effect of producing additional gauge bosons for particular values of the background

fields. This means that at particular points in the moduli space of the compactification, an

abelian U(1) factor is enhanced to a non-abelian group. The simplest example arises in com-

pactification on a single circle where a U(1)×U(1) becomes SU(2)× SU(2) if the radius is the

self-dual radius
√
α′. One can understand why this is a pure stringy effect because the addi-

tional massless states have non-trivial winding numbers which are themselves characteristic to

strings. At first sight, this seems to be an efficient way for generating non-abelian groups but

it turns out that such symmetry enhancements are impossible in the superstring formalism

where the supergravity multiplets cannot be enlarged. The idea to combine both the bosonic

and fermionic frameworks to benefit from both the symmetry enhancement mechanism as well

as the superstring features leads to the heterotic string theories [110–112] whose description is

given in the next subsection. The heterotic string is the framework inside which cosmological

considerations and moduli dynamics have been worked out during this thesis (see Chapter 4).

� Actually, away from the enhancement points, the generic U(1) factors that arise in toroidal

compactifications reflect the symmetries of the internal space itself (in this case a torus) which

are abelian. Other compact spaces like spheres for example produce non-abelian gauge sym-

metries at generic points of the moduli space.

� Another possibility for producing non-abelian symmetries is to introduce Chan-Paton factors

[107] for open strings. These are non-dynamical degrees of freedom carried by the ends of the

strings which are attached to D-branes. The rich variety of open-string theories constitutes

the playground for some of the works done in the thesis that are presented in Chapters 2 and

3. The construction and features of open-string theories are described just after the heterotic

string.

1.2.4 The heterotic string theories

The heterotic string [110–112] is a peculiar closed-string theory which uses at the same time the 26-

dimensional bosonic framework for the left-movers and the 10-dimensional fermionic description for

the right-movers. In its bosonic construction (there is also an equivalent fermionic construction), in

addition to the 10 usual left-moving coordinatesXµ
L(τ+σ), µ ∈ {0, . . . , 10}, we introduce 16 compact

coordinates XI
L(τ+σ), I ∈ {10, . . . , 25} which describe a 16-dimensional torus T 16. As evoked in the

previous subsection, a non-abelian gauge structure can come from the compact space for left-movers

thanks to enhancements. Crucially, the constraint of modular invariance of the ten-dimensional

theory drastically reduces the consistent possibilities for the allowed lattice of momenta along the

torus T 16 (the lattice must be even and self-dual). As a result, in ten dimensions, the generic
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U(1)16 gauge structure associated to the torus T 16 is automatically enhanced to either Spin(32)/Z2

or E8×E8. This means that the moduli space is only composed of two points corresponding to the

two theories. The one-loop partition function is given by

Heterotic: T =

∫
F

d2τ

τ 62

(
V8 − C8

η8

)
Γ̄16

η̄16
, (1.2.9)

where Γ̄16 is the lattice corresponding to either the Spin(32)/Z2 or E8 × E8 theory. In terms of

Jacobi theta functions, we have

Γ̄Spin(32)/Z2 =
1

2

∑
a,b=0,1

ϑ̄[ ab ]
16 and Γ̄E8×E8 =

(
1

2

∑
a,b=0,1

ϑ̄[ ab ]
8

)2

. (1.2.10)

When the theory is further compactified for both left- and right-movers on a n-dimensional

torus T n, n > 0, the lattice of momenta includes the original 16 left-moving dimensions plus n

additional left- and right-moving dimensions. Modular invariance again constrains this so called

Narain lattice [113, 114] to be even and self-dual and the moduli space is now much richer than

in ten dimensions. It is parametrized by the background internal values of the spacetime metric

and antisymmetric tensor as well as by the scalars arising from the dimensional reduction of the

gauge fields associated to the Spin(32)/Z2 or E8×E8 groups. The moduli space is described by the

following n(16 + n)-dimensional manifoldM16+n,n

M16+n,n =
O(16 + n, n;R)

O(16 + n;R)×O(n;R)
, (1.2.11)

up to a quotient by the T-duality group O(16 + n, n;Z).

In the fermionic construction of the heterotic string, there are 10 bosonic left- and right-movers, 10

fermionic right-movers and instead of adding 16 left-moving bosons like in the bosonic construction,

32 left-moving fermions are added. These additional fermions are however not like the other ones

since they are assumed to be singlets under Lorentz spacetime transformations. In this construction,

which is equivalent to the bosonic one, it is less mysterious that the theory is ten dimensional since

only 10 bosonic fields are present, both left- and right-moving.

1.2.5 Type I string theory

In this subsection, we discuss quite deeply the type I superstring theory to prepare the groundwork

of the results presented in Chapter 2 and 3. Reviews about open-string theories can be found

in [115,116].

Chan-Paton factors and orientifold

All the theories presented so far only contain closed strings and as we saw, open strings can be

used to generate a non-abelian gauge structure thanks to Chan-Paton factors [107]. Let us start

by defining precisely what they are. The idea is to associate a number N of non-dynamical degrees

of freedom to each of the strings ends. An open-string state is then characterized by its number of

transverse oscillators, its momentum k and two integers i, j ∈ {1, . . . , N} labelling each end of the

string. The number of states is thus multiplied by N2 and the spectrum is N2 times larger. Without
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writing the oscillators, a state has the following form: |k, ij⟩. A generic state |k, λ⟩ is then given by

a linear combination of these states with coefficients λij which are the so-called Chan-Paton factors,

|k, λ⟩ =
N∑

i,j=1

|k, ij⟩λij . (1.2.12)

The generic string states are thus N × N matrices and in all amplitudes, the Chan-Paton factors

appear as products in traces which are invariant under a global U(N) transformation. From the

spacetime point of view, it can be shown that the global U(N) becomes local and yield a U(N) gauge

symmetry [117]. Geometrically, the Chan-Paton factors are interpreted in terms of coincident D-

branes, extended objects where the ends of the strings can attach with Dirichlet boundary conditions

[118].

One way to build a consistent theory incorporating open strings is to start with the type IIB

theory and use its symmetry under the worldsheet reversal by gauging it. This parity operation Ω

is called orientifold projection and its action on the spacelike worldsheet coordinate σ is

Closed strings: Ω : σ → −σ , Open strings: Ω : σ → π − σ . (1.2.13)

This translates into a non-trivial action on the open-string oscillators. For Neumann boundary

conditions, the action is

Open strings: Ω : αµn → (−1)nαµn , dµn → (−1)ndµn , bµr → i2rbµr . (1.2.14)

Gauging this transformation means that we project the theory onto states that survive the projection
1+Ω
2
. As a result, the strings are unoriented and the states are left-right symmetric. This defines

the type I superstring theory.

The projection also affects the behaviour of the Chan-Paton factors. The action of Ω on states

|k, ij⟩NS and |k, ij⟩R in the NS and R sectors reverses i and j and acts with a unitary matrix γΩ up

to phases ϵNS and ϵR:

|k, ij⟩NS →
N∑

i′,j′=1

ϵNS (γΩ)ii′ |k, j′i′⟩NS

(
γ−1
Ω

)
j′j , |k, ij⟩R →

N∑
i′,j′=1

ϵR (γΩ)ii′ |k, j′i′⟩R
(
γ−1
Ω

)
j′j . (1.2.15)

The phases and the γΩ matrix are constrained by consistency conditions of the action of Ω on the

spectrum. One must take ϵNS = −i and ϵR = −1 and two choices are possible for the matrix γΩ,

yielding different gauge groups. The matrix can be the N×N identity matrix IN and the associated

gauge group is SO(N), or it can be the matrix iJN where JN is defined as

JN =

(
0 IN

2

−IN
2

0

)
, (1.2.16)

which gives a USp(N) gauge group. We will see later that anomaly cancellation provides additional

constraints on the number N and forbids the USp(N) type I theory.

One-loop amplitudes

In open-string theories, additional one-loop diagrams exist besides the torus one. The one-loop

amplitude of an oriented open string has the topology of an annulus (or cylinder). In type I string
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which is an unoriented theory, two more unoriented surfaces appear: The Klein bottle for closed

strings and the Möbius strip for open strings.

The orientifold projection [119] is realized by inserting 1+Ω
2

inside the traces in the definition of

the one-loop amplitudes. In the closed-string sector, the term with 1 gives half of the previously

defined torus amplitude T in (1.2.6) and the insertion of Ω defines the Klein bottle amplitude K,

K ≡
∫ +∞

0

dτ2

τ
1+D

2
2

Str

(
Ω

2
qL0− 1

2 q̄L̃0− 1
2

)
. (1.2.17)

Because the orientifold projection is on the type IIB string theory, the torus partition function is

simply given by half of the IIB one expressed in (1.2.7). In the Klein bottle, only the invariant

states under Ω contribute. In particular, the NS-R and R-NS sectors do not contribute and thus

fermions do not run in the Klein bottle. The characters are taken at the parameter of its doubly

covering torus which is τ = 2iτ2. We do not write the argument but it is understood to be the

correct one for each amplitude (we will mention the correct argument when we meet the various

surfaces for the first time). Integrating over the different Klein bottles amounts to integrate over

all positive τ2. We obtain

K =

∫ +∞

0

dτ2
τ 62

V8 − S8

η8
. (1.2.18)

We can count the number of closed-string states in 1
2
T + K using (1.2.8) where T is the type IIB

torus in (1.2.7). We find 64 bosonic and fermionic degrees of freedom. This is consistent with the

action of the orientifold which projects out the left-right asymmetric part of the type IIB spectrum.

What remains in the NS-NS sector is the graviton and the dilaton (35+ 1 = 36 degrees of freedom)

while in the R-R sector, only the two form survives (28 degrees of freedom). This yields the 64

bosons. In the NS-R and R-NS sectors which are swapped under Ω, only one linear combination

of the two gravitinos and one combination of the two dilatinos remain. This gives 64 fermions

matching the number of bosons.

The open-string sector can be seen as the twisted sector associated with the orientifold projection.

As we will see soon, its existence is required to obtain a consistent anomaly-free theory. The oriented

one-loop annulus topology A and the unoriented Möbius strip surfaceM are defined as

A ≡
∫ +∞

0

dτ2

τ
1+D

2
2

Str

(
1

2
q

1
2
(L0−1)

)
, M≡

∫ +∞

0

dτ2

τ
1+D

2
2

Str

(
Ω

2
q

1
2
(L0−1)

)
. (1.2.19)

In the annulus, the sum over the Chan-Paton indices of the strings produces a multiplicity N2 (we

do not consider Wilson lines for now). In the Möbius strip, the action of Ω (1.2.15) on the Chan-

Paton indices produces a factor ϵNS/Rtr
(
γTΩγ

−1
Ω

)
. In the NS sector, the product of ϵNS = −i by the

±i factor induced by the action of Ω on the oscillators produces alternate signs in the characters,

starting with a minus that we factorize. One obtains the same structure in the R sector and the

trace tr
(
γTΩγ

−1
Ω

)
together with the factorized minus sign gives an overall factor ϵN where ϵ = −1 if

γΩ = IN or ϵ = 1 if γΩ = iJN . The amplitudes are then

A =
N2

2

∫ +∞

0

dτ2
τ 62

V8 − S8

η8
, M =

ϵN

2

∫ +∞

0

dτ2
τ 62

V̂8 − Ŝ8

η̂8
. (1.2.20)

In the annulus, the characters are taken at argument i τ2
2
and the hatted characters in the Möbius,

defined in Appendix A, are taken at argument 1
2
+ i τ2

2
. In this case, the fact that the covering torus

is tilted induces the alternate signs in the characters.
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We can recover the open-string gauge groups associated with the value of ϵ (coming from the

choice of orientifold action on the Chan-Paton indices) by writing the zero modes of A+M. This

gives the following “field-theory” spectrum

A+M|FT =

∫ +∞

0

dτ2
τ 62

N(N + ϵ)

2

V8 − S8

η8

∣∣∣∣
0

, (1.2.21)

where the index 0 stands for the constant mode of the characters (hatted or not). With ϵ = −1, we
recognize the dimension N(N−1)

2
of the adjoint representation of SO(N) while if ϵ = +1, we recognize

the dimension N(N+1)
2

of the adjoint representation of USp(N). We will be able to conclude on the

allowed group and value of N in the next paragraph.

Tree-level channel and tadpoles

The tree-level channel amplitudes are defined by performing a S-transformation (1.2.3) on the one-

loop amplitudes. More precisely, for the Möbius strip, in order to keep a 1
2
real part of the parameter

and inverse the imaginary part (1
2
+ i τ2

2
→ 1

2
+ i

2τ2
), the transformation to be performed is the

combination TST 2S. The behaviours of the characters under these transformations are displayed

in Appendix A. In the tree-level amplitudes, the integration parameter is written l and its precise

definition from τ2 depends on the surface,

Klein bottle and Möbius strip: l ≡ 1

2τ2
, Annulus: l ≡ 2

τ2
. (1.2.22)

The tree-level amplitudes denoted with tildes are then

K̃ =
25

2

∫ +∞

0

dl
V8 − S8

η8
, Ã =

2−5N2

2

∫ +∞

0

dl
V8 − S8

η8
, M̃ =

ϵN

2

∫ +∞

0

dl
V̂8 − Ŝ8

η8
, (1.2.23)

where the characters are all taken at argument il in the Klein bottle and Annulus and 1
2
+ il in

the Möbius strip. The ultraviolet divergences near τ2 = 0 in K, A andM are mapped to infrared

divergences near l = +∞. These divergences only occur for the constant modes of the characters

since no exponentially suppressed contribution is there to soften the behaviour at infinity.

The cancellation of the divergences (with the specific definitions (1.2.22) for l) is required for

the theory to be consistent. This is because it can be tracked back to anomalies whose vanishing

is mandatory [120–124]. Such a cancellation is also called R-R tadpole cancellation since it can be

linked to tadpole diagrams for the R-R closed-string fields (more on this in the next paragraph).

From (1.2.23), the contributions from the zero modes are

K̃ + Ã+ M̃|0 =
(N + ϵ25)2

26

∫ +∞

0

dl
V8 − S8

η8

∣∣∣∣
0

. (1.2.24)

The only possibility for this to vanish is to choose ϵ = −1 and N = 32. As a consequence, the only

consistent type I ten-dimensional theory has an SO(32) gauge group.

Geometrical interpretations

A very nice and important feature of unoriented string theories is the possible geometrical inter-

pretation of lots of things, in terms of orientifold planes and D-branes. Geometrical considerations

will be very helpful for the work presented in Chapter 2.
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The orientifold planes are defined as the fixed points of the orientifold projection Ω. In the

type I theory, Ω is just the worldsheet parity so that the whole spacetime is a fixed point. This

is interpreted by the presence of a spacetime-filling orientifold plane: An O9-plane. Typically, if

some dimensions are compactified, the theory obtained after a T-duality on the internal directions

corresponds to an orientifold projection Ω′ which is the original Ω times parities along the compact

dimensions. Let us understand this basic fact with the following diagram:

Type IIB, compactified
T-duality

←−−−−−−−−−−−−−−−→ T-dual, type IIAyΩ |m⃗, n⃗⟩ = |m⃗,−n⃗⟩
yΩ′ |m⃗, n⃗⟩ = ?

Type I: |m⃗, 0⃗⟩
T-duality

←−−−−−−−−−−−−−−−→ Type I′: |⃗0, n⃗⟩
Starting from the upper-left corner with the type IIB theory compactified on say n dimensions, the

usual orientifold projection acts on lattice states with momentum and windings numbers m⃗ and

n⃗ by changing the sign of the winding numbers. In the obtained type I theory in the bottom-left

corner, lattice states have thus trivial windings. A T-duality along the compact directions on this

type I theory gives the type I′ in the bottom-right corner where momentum and winding numbers

are exchanged, so that the surviving states have now trivial momenta. Going back to the type

IIB, the T-duality applied here gives type IIA in the upper-right corner. Because the T-duality

and the orientifold projection should commute, the question is: What projection Ω′ on type IIA

should we take to obtain the type I′ found earlier with trivial momenta? The combination of Ω with

the parity reversal operation Πn along the n compact directions does the trick. Indeed, we have

ΩΠn |m⃗, n⃗⟩ = Ω |−m⃗,−n⃗⟩ = |−m⃗, n⃗⟩. The fixed points of Ω′ are no more everywhere in spacetime

but are localized at specific coordinates in the compact directions while filling the extended ones.

More precisely, the original O9-plane becomes 2n O(9− n)-planes in the T-dual picture. Note that

unlike D-branes, the orientifold planes are non-dynamical objects.

The tree-level amplitudes can be interpreted as describing closed-string states propagation be-

tween O-planes and D-branes. More specifically, the Klein bottle tree-level amplitude describes the

propagation of closed strings between two O-planes, the annulus represents the propagation of closed

strings between two D-branes and the Möbius strip describes the closed-sates propagation between

an O-plane on one side and a D-brane on the other. Remarkably, the amplitudes are completely

determined by the geometry of the theory i.e. where the O-planes and D-branes are and what are

their precise types. Let us understand how this precisely works.

We assume the following typical setup mentioned above: n dimensions are compactified on circles

of radii Ri, i ∈ {1, . . . n} and O(9−n)-planes as well as D(9−n)-branes, orthogonal to the n compact

directions, sit at some positions in the internal space. We consider the propagation of a closed-string

state labelled by an index a and Kaluza-Klein momentum numbers m⃗ along the circles between two

objects A and B referring independently to an O-plane or to a D-brane. The whole tree-level

amplitude Σ̃ ≡ K̃ + Ã+ M̃ is formally given by

Σ̃ =
∑
a,m⃗

∑
A,B

(−1)FLCaACaBGa,m⃗(x⃗A, x⃗B) . (1.2.25)

The sum is over all closed-string NS-NS and R-R states and all objects A and B. FL denotes the

left fermion number so that the overall sign depends on the sector in which the state a is: +1 for
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NS-NS states and −1 for R-R states. The closed-string states have different Lorentz structures but

their propagators and their couplings to A and B can be written as a universal scalar propagator

Ga,m⃗(x⃗A, x⃗B) with effective couplings CaA and CaB. For NS-NS states, the coupling CaA is given by

the tension TA of object A while it is given by its charge qA for R-R states. When A and B refer to

O-planes, the contribution is K̃. When they refer to D-branes, this gives Ã and when they refer to

an O-plane on one side and a D-brane on the other, it gives M̃. The scalar propagator for state a

of mass squared M2
a and internal momentum p|| is given by

Ga,m⃗(x⃗A, x⃗B) =
eim⃗·(x⃗A−x⃗B)

p2|| +M2
a +

∑n
i=1

m2
i

R2
i

=
πα′

2
eim⃗·(x⃗A−x⃗B)

∫ +∞

0

dle
−π l

2
α′

(
M2

a+
∑n

i=1

m2
i

R2
i

)
, (1.2.26)

where the coordinate components xiA, x
i
B are normalized by the radius Ri so that xiA, x

i
B ∈ [−π, π].

Note that the expression of the scalar propagator is a bit schematic since the Möbius contribution

should alternate signs between the mass levels. The total tree-level contribution is then

Σ̃ ∝
∑
a,m⃗

(−1)FL

( ∑
A∈O-planes
B ∈O-planes︸ ︷︷ ︸

K̃

+
∑

A∈D-branes
B ∈D-branes︸ ︷︷ ︸

Ã

+2
∑

A∈O-planes
B ∈D-branes︸ ︷︷ ︸

M̃

)
CaACaBe

im⃗·(x⃗A−x⃗B)

∫ +∞

0

dle
−π l

2
α′

(
M2

a+
∑n

i=1

m2
i

R2
i

)
.

(1.2.27)

We see that the sole knowledge of the O-planes/D-branes positions as well as their tensions and

charges completely determines the tree-level amplitudes K̃, Ã and M̃ by telling us what is the

projector on the momentum numbers. When M2
a = 0 and m⃗ = 0⃗, the integral diverges and Σ̃

factorizes as a perfect square:

Σ̃|0 ∝
∑

a|M2
a =0

(−1)FL

( ∑
A∈O-planes

CaA +
∑

A∈D-branes

CaA

)2 ∫ +∞

0

dl (1.2.28)

∝

 ∑
a|M2

a =0
a∈NS-NS

( ∑
A∈O-planes

TA +
∑

A∈D-branes

TA

)2

−
∑

a|M2
a =0

a∈R-R

( ∑
A∈O-planes

qA +
∑

A∈D-branes

qA

)2
∫ +∞

0

dl .

Diagrammatically, this formula is the square of massless tadpoles in front of O-planes (crosscaps)

and D-branes (boundaries). Even though the expression automatically gives zero in supersymmetric

cases where the objects all have their tensions equal to their charges, the NS-NS and R-R tadpoles

should vanish independently. The cancellation is ensured if the global tension and charge of the

O-planes and D-branes vanish independently. Note that actually, consistency of the theory only

requires the cancellation of the R-R tadpole. The NS-NS divergence is a usual tadpole signalling

a perturbation expansion around a point which is not a vacuum but does not make the theory

inconsistent by introducing anomalies. In a supersymmetric theory, cancellation of the one implies

vanishing of the other but not necessarily in non-supersymmetric setups.

In this thesis, we will encounter all four types of orientifold and antiorientifold planes: O− and

O+-planes as well as O− and O+-planes. They differ by the signs of their tensions and charges,

which are equal in absolute value. In this work, we use the conventions displayed in Table. 1.1,

Moreover, regular D-branes have positive tension and positive charge and the absolute value of

an O-plane tension extended in p dimensions is related to the tension of a Dp-brane through the
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Orientifold plane type Tension T Charge q

O−-plane < 0 < 0

O+-plane > 0 > 0

O−-plane < 0 > 0

O+-plane > 0 < 0

Table 1.1: Conventions for the signs of tensions and charges of the various orientifold planes.

expression

|TOp| = 2p−4TDp . (1.2.29)

One can then recover the consistency conditions of type I theory with a purely geometrical

interpretation. The action of Ω on the Chan-Paton indices with γΩ = IN produces a spacetime-

filling O9−-plane while the choice γΩ = iJN produces a spacetime-filling O9+-plane. Since the

O9+-plane has positive tension and charge, the addition of regular D-branes cannot compensate the

tadpole and thus USp(N) is not allowed. The O9−-plane has negative tension and charge whose

absolute value is equal to 32 times the tension and charge of a D9-brane as can be seen from (1.2.29).

Thus, the addition of N = 32 D9-branes cancels the tadpole, which leaves the SO(32) type I theory

as the only consistent choice.

1.3 Supersymmetry breaking in string theory

Consistency of string theory requires the ingredient of supersymmetry. However, a strictly super-

symmetric universe does not look like ours since for all light particles we know, their superpartners

should exist with the same masses. This is of course not what we observe. If supersymmetry is to be

kept as a fundamental feature carried by the underlying theory describing elementary particles and

their interactions, it must be broken in some way to allow superpartners to have different masses.

In this thesis, we are interested in supersymmetry-breaking mechanisms that can be implemented

at the string theory level and not directly in the effective field theory. To begin this section, we

present in detail the Scherk–Schwarz mechanism or coordinate-dependent compactification which is

extensively used in the works presented in this thesis to implement the supersymmetry breaking.

We will then mention another mechanism and its features called brane supersymmetry breaking.

This will motivate the work presented in Chapter 2.

1.3.1 Scherk–Schwarz mechanism

The mechanism makes use of compactified dimensions to generate a spontaneous breaking of super-

symmetry. It is not stringy in nature and can be implemented at the field-theory level [16,17]. We

will start by understanding the key idea of the mechanism and then move onto its implementation

at the string-theory level [18–22] described right after.

The mechanism

Extra compact dimensions are required for the mechanism to take place. Let us assume a very

general setup where the geometrical background consists in the four extended spacetime dimensions

R
1,3 times some compact manifold C. We denote by x a point in the Minkowski spacetime and by
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y a point in the compact manifold. This compact manifold is expressed as a quotient of some non-

compact spaceM by a discrete group G which is freely-acting onM with operators τg : M→M,

g ∈ G forming a representation of the group. The points y and τg(y) are identified in the compact

manifold and a trivial boundary condition for some field ϕ(x, y) is simply ϕ(x, y) = ϕ(x, τg(y)). This

boundary condition can actually be twisted using some element T of a global symmetry group of

the theory and becomes ϕ(x, y) = T (ϕ(x, τg(y))).

As an example, we take the compact manifold C to be a circle of radius R obtained from the real

line R modded by G = Z with operators τn, n ∈ Z such that τn(y) = y + 2πnR. Using an U(1)

global symmetry, we write T = eiπQ for some charge Q and the boundary condition becomes

ϕ(x, y + 2πR) = eiπQϕ(x, y) . (1.3.1)

Solving this equation by expanding the field in Fourier modes along the circle, we find

ϕ(x, y) = e
iQy
2R

∑
m∈Z

ϕm(x)e
imy
R =

∑
m∈Z

ϕm(x)e
i(m+

Q
2 )y

R , (1.3.2)

from which we see that the usual Kaluza-Klein mass m
R

of ϕm(x) receives a correction from Q,

Mϕm(x) =

∣∣m+ Q
2

∣∣
R

. (1.3.3)

The mechanism thus provides a mass shift for states associated to a non-trivial charge Q. To

introduce supersymmetry breaking, the simplest choice of Q is F , the fermion number of the field.

Then, bosons keep the usual Kaluza-Klein mass since Q = F = 0 and fermions acquire a mass shift
1
2R

since Q = F = 1. From the lower dimensional point of view, the breaking is spontaneous and

the mass shift defines the supersymmetry-breaking scale. We see that in the typical case where

a circle of radius R is used, the scale behaves like 1
R

so that supersymmetry is recovered in the

decompactification limit.

Implementation in string theory

The simplest way to implement such a shift in momenta in string theory is to couple a freely-acting

orbifold on an internal circle to a the non-supersymmetric operator (−1)F where F is the spacetime

fermion number. Let us build the corresponding one-loop amplitudes for the type IIB theory and

its type I open descendants.

To implement the mechanism, as in field theory, we need at least one compact direction. We thus

compactify the X9 direction on a circle of radius R9. Along a compact direction, in addition to the

Kaluza-Klein momentum number m9, a closed-string possesses a winding number n9 corresponding

to the number of times the string wraps the internal direction before closing itself. These winding

numbers are specific to closed string and they have no equivalent for pointlike particles or open

strings. The block
∑

m9,n9
Λm9,n9 of the partition function describing the closed string along the

circle then involves momentum and winding numbers through the following expression

Λm9,n9 = q
α′
4

(
m9
R9

+
n9R9
α′

)2

q̄
α′
4

(
m9
R9

−n9R9
α′

)2

. (1.3.4)

This Hamiltonian form reveals how the winding number affects the mass of the closed string from

the nine-dimensional point of view:

M2
closed ≡ oscillators +

m2
9

R2
9

+
n2
9R

2
9

α′2 , (1.3.5)
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while the mass of the open string only has the momentum term. Before any orbifold, the torus

partition function of type IIB compactified on a circle S1(R9) is (for lighter expressions throughout

this thesis, we choose sometimes not to write the sums over momenta and winding numbers)

T =

∫
F

d2τ

τ
11
2

2

∣∣∣∣V8 − S8

η8

∣∣∣∣2 Λm9,n9 , (1.3.6)

where the τ2 power is lowered by one half due to the lack of one extended direction compared to

the ten-dimensional case.

The orbifold is implemented by inserting 1+g′

2
inside the traces in the definitions of the amplitudes

where g′ = (−1)F δp9 and δp9 is the following freely-acting generator (called momentum shift),

g′ = (−1)F δp9 and δp9 : X
9 → X9 + πR9 . (1.3.7)

The insertion of g′ in the trace changes the sign of the spinorial character S8 and produces a sign

(−1)m9 in the circle lattice. However, this cannot be the end of the story since the obtained partition

function would not be modular invariant. This is because the presence of g′ allows for additional

boundary conditions. All states satisfying such new conditions constitute the twisted sector and

one must not forget to trace over this sector in order to obtain the full one-loop amplitude. The

result is

T =
1

2

∫
F

d2τ

τ
11
2

2

{(∣∣∣∣V8 − S8

η8

∣∣∣∣2 + (−1)m9

∣∣∣∣V8 + S8

η8

∣∣∣∣2
)
Λm9,n9

+

(∣∣∣∣O8 − C8

η8

∣∣∣∣2 + (−1)m9

∣∣∣∣O8 + C8

η8

∣∣∣∣2
)
Λm9,n9+

1
2

}
.

(1.3.8)

Rescaling R9 → 2R9 and splitting spacetime bosons and fermions gives

T =

∫
F

d2τ

τ
11
2

2

{(
|V8|2 + |S8|2

)
Λm9,2n9 −

(
V8S̄8 + S8V̄8

)
Λm9+

1
2
,2n9

+
(
|O8|2 + |C8|2

)
Λm9,2n9+1 −

(
O8C̄8 + C8Ō8

)
Λm9+

1
2
,2n9+1

}
1

|η8|2 .
(1.3.9)

We see that the fermions have a half-shifted momentum compared to bosons which implies a mass

gap between them. At the massless level (m9 = n9 = 0), only bosons remain in the first term of the

first line. Note that the character |O8|2 starts with a negative power of q, meaning that if the radius

R9 is not large enough (R9 <
√
2α′), a tachyon is present. This is a characteristic feature of the

Scherk–Schwarz mechanism in string theory and it signals Hagedorn-like phase transitions [23–34] .

In the type I string amplitudes, only momentum numbers are present through lattices Pm9 ≡
Λm9,0. Their expressions (without Wilson lines) are

K =
1

2

∫ +∞

0

dτ2

τ
11
2

2

V8 − S8

η8
Pm9 , A =

N2

2

∫ +∞

0

dτ2

τ
11
2

2

V8Pm9 − S8Pm9+
1
2

η9
,

M = −N
2

∫ +∞

0

dτ2

τ
11
2

2

V8Pm9 − S8Pm9+
1
2

η9
,

(1.3.10)

where N = 32. We observe that the Klein bottle is insensitive to the mechanism and stays super-

symmetric unlike the annulus and Möbius strip.
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One-loop potential

We give here the generic form of the one-loop potential generated by the Scherk–Schwarz mechanism

as it will be important in Chapters 3 and 4. When the Scherk–Schwarz radius is sufficiently large

and if there is no mass scale in the model below the breaking scale M ∝ 1/R9, the dominant

contributions arise from the Kaluza-Klein modes along the Scherk–Schwarz direction. The states

associated with any other mass scale generically written cMs, with Ms ≡ 1/
√
α′ and where c is

some O(1) moduli-dependent constant, yield exponentially suppressed contributions. The one-loop

potential then takes the following generic form at an extremal point3 in d dimensions [45–51,56–61]:

V1-loop = ξd(nF − nB)M
d +O

(
(MsM)

d
2 e−2πcMs

M

)
, (1.3.11)

where ξd is a positive constant which depends on the dimension d, and nF and nB counts the

numbers of massless fermionic and bosonic degrees of freedom. We see that the sign of the potential

is determined by the number of light bosons relatively to light fermions. Note that the Scherk–

Scwharz radius does not need to be huge for the dominated contributions to be small. If cMs is

roughly a tenth of the the Planck scale, a radius of only 102
√
α′ makes the exponential terms highly

negligible compared to the dominant O(Md) term. Also, a big radius ensures to be far away from

the Hagedorn value.

One disadvantage of the Scherk–Schwarz mechanism is that it only shifts the masses of the

fermions. At the massless level, one thus ends up with a theory without fermions and a generic

negative potential. One way to complexify the mechanism to leave both massless fermions and

massless bosons is to combine it with non-trivial Wilson lines in type I string (or non-trivial D-

brane positions in the T-dual picture). Such a setup is the framework of Chapter 3. Another way

to achieve that is to turn on discrete deformations in the internal lattice of the heterotic string.

This is used in the works presented in Chapter 4. In this latter case, it is useful to implement the

Scherk–Schwarz supersymmetry breaking following another strategy without mentioning orbifolds

and starting directly with modular-invariant deformed partition functions. This way of performing

the Scherk–Schwarz mechanism is easier to manipulate when one wants to introduce more complex

breaking patterns from which the simple realization presented before is just a particular case.

Also note that in the little example in type I presented here, the Scherk–Schwarz direction is

parallel to the spacetime-filling D9-branes. In the setups where D-branes are not filling the whole

spacetime and where the mechanism is implemented in a direction orthogonal to the branes, the

open spectrum is not “Scherk–Schwarz-like” since it remains supersymmetric at tree level. Such

breaking is called M-theory breaking or brane supersymmetry [86, 87,125–127] in the literature.

1.3.2 Brane supersymmetry breaking

In a standard Scherk–Schwarz mechanism, the supersymmetry-breaking scale, defined as the mass

shift between bosons and fermions, depends on the size of the internal space along which the mecha-

nism is performed. In the case of a circle, the scale is the inverse of the radius and supersymmetry is

restored in the decompactification limit. In brane supersymmetry breaking setups [62–67], the break-

ing scale is the string scale. In the simplest models in ten dimensions, the R-R tadpole condition

imposes to add anti-D-branes to compensate the charge of an O9+-plane. The annulus amplitude

is the supersymmetric one and only the Möbius strip displays supersymmetry breaking. Moreover,
3With respect to all other moduli but the breaking scale.
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typically, the presence of a massless singlet fermions signals a non-linear realization of supersym-

metry [68, 69]. In such a setup however, the global tension is not zero and the model suffers from

NS-NS tadpoles.

This motivates the work exposed in Chapter 2 where we explore a novel realization of brane

supersymmetry breaking with only regular branes and without NS-NS tadpoles while avoiding

brane instabilities.

1.4 Cosmology and string theory

Because string theory provides a framework for quantum gravity, it seems natural to study cosmology

in a string context in order to derive the features of the standard model for cosmology and try to

overcome its pitfalls. In this section, we very briefly describe the standard model of cosmology

and review the state of the art concerning the universe, its past evolution and characteristics. We

then evoke how string-theory ingredients affect cosmology and how they could help solving issues

of the standard cosmology. This section will not be exhaustive at all since string cosmology is a

vast domain that is only slightly touched in this thesis. The idea is to introduce the concepts that

will motivate and be useful for the works presented in Chapter 4.

1.4.1 Basics of cosmology

Classically, the ansatz for a d-dimensional spacetime metric to describe an homogeneous and

isotropic universe is the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric. It takes the fol-

lowing form in spherical coordinates,

ds2 = −dt2 + a(t)2
(

dr2

1− kr2 + r2dΩ2
d−2

)
, (1.4.1)

where dΩ2
d−2 is the metric of the unit (d−2)-sphere, k ∈ {−1, 0, 1} characterizes the space curvature

and a(t) is the scale factor, which describes the size of the universe. In such a framework, the

dynamics is entirely given by that of the scale factor and it is obtained by solving the Einstein

equations. The solutions depend on the precise nature of the universe content, whose energy-

momentum tensor is characterized by a density ρ and a pressure p. With a cosmological constant

Λ and defining the Hubble factor H(t) ≡ ȧ(t)/a(t), the Einstein equations with the FLRW metric

read in Planck units

(d− 1)(d− 2)

2
H2 = ρ− k

a2
+ Λ and (d− 2)Ḣ +

(d− 1)(d− 2)

2
H2 = −p+ Λ . (1.4.2)

If the total density is positive, the cosmologies derived from these equations describe an expanding

universe (ȧ(t) > 0) which, by time reversal, starts from a singularity where a = 0: The Big Bang.

The paradigm of an expanding universe starting from a small size explains lots of observations:

The expansion can be measured, the relative abundance of elements can be computed and the

presence of the observed Cosmological Microwave Background (CMB) is a natural consequence.

Postulating in addition a phase of extremely rapid growth in the early universe called inflation [128]

then explains how seemingly causally disconnected parts of the CMB were connected before and why

we observe an homogeneous and almost flat space. Formally, the simplest realization of inflation

is described with the dynamics of a single scalar field called inflaton. A popular setup is called
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“slow-roll inflation” where the scalar starts on an almost flat plateau producing inflation before

stabilizing in a well. While the scalar goes to its minimum (either with damped oscillations or not),

it transfers its energy to produce the particles we see now. This phase is called reheating and is

assumed to be followed by baryogenesis, the phase where matter slightly dominates antimatter.

The paradigm must be supplemented by additional ingredients: Most importantly dark matter

and dark energy. Dark matter is required to explain the behaviours of galaxy clusters [10–12] and

dark energy to explain the acceleration of the expansion of the universe observed nowadays [13,14].

Dark matter and dark energy constitute roughly 95% of the energy content of the universe [15].

After baryogenesis, the universe entered a radiation-dominated era, followed by a matter-dominated

one to eventually reach a dark-energy-dominated epoch in which we are living now.

The Big Bang paradigm together with inflation and the incorporation of dark matter and dark

energy define the standard model of cosmology.

1.4.2 Dark-matter relic density

Dark matter is responsible for about 27% of the energy content of the universe [15]. It is com-

monly assumed to be composed of weakly interacting and yet undiscovered particles which are

non-relativistic (this defines cold dark matter). Cosmology needs to face the challenge to generate

such a relic density, decoupled from the standard model particles. The usual scenario invoked to

produce such a relic density is called thermal freeze-out and we explain how it goes in this subsection.

An initial density of dark matter particles is assumed in the early stage of the universe where the

temperature is high. Relativistic dark-matter particles and standard-model particles are in equilib-

rium through annihilation processes with cross-section σDM↔SM. This equilibrium is perturbed by

the expansion rate of the universe which tends to reduce the interactions. Formally, the dynamics

of the dark-matter density nDM as a function of time t, is described by the Boltzmann equation

dnDM

dt
+ (d− 1)HnDM = −⟨σDM↔SMv⟩

[
n2
DM − n2

DM,eq

]
, (1.4.3)

where nDM,eq is the equilibrium density, v is the dark-matter velocity and the brackets stand for

the mean over velocity distribution so that ⟨σDM↔SMv⟩ characterizes the efficiency of the particles

creation or annihilation to reach the equilibrium. On the left-hand side, the term (d − 1)HnDM

describes the universe expansion. It is useful to describe things as functions of the temperature

T rather than time t. Then, instead of showing the typical evolution of the dark-matter density

nDM(T ), we define the dark-matter yield YDM(T ) like

YDM(T ) =
nDM(T )

s(T )
, (1.4.4)

where s(T ) is the entropy density of the thermal bath which goes like T d−1 in d dimensions. The

behaviour of the dark-matter yield depends on the ratio x = mDM/T which increases as the universe

evolves and its temperature drops. The typical evolution of the yield in the standard freeze-out

scenario is plotted in Fig. 1.1 (blue line).

� As said before, when the temperature is far greater than the dark-matter mass, an equilibrium

is maintained between dark matter and standard-model particles. The dark-matter density

goes like T d−1 so that the yield is constant at this stage.
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� As the temperature begins to drop, the density decreases and follows the Boltzmann equilibrium

(black dashed line in figure 1.1).

� This depletion of dark matter can no more occur when the expansion of the universe makes in-

teractions between particles unlikely, which formally happens when (d−1)H ≲ nDM⟨σDM↔SMv⟩.
In four dimensions, the points (x, YDM) where (d− 1)H = nDM⟨σDM↔SMv⟩ form a straight line

(the red dashed line in Fig. 1.1 which does not appear straight because of a log scale along the

x-axis). When the yield crosses this line, particles depletion stops and dilution keeps going so

that the yield remains constant at some relic value.

Figure 1.1: Evolution of the dark-matter yield YDM = nDM/s as a function of x = mDM/T in the standard thermal
freeze-out scenario, in 4 dimensions (blue solid line). The black-dashed line represents the value that the yield would
follow if thermal equilibrium could be maintained all along the history of the universe. Freeze-out takes place when
interactions with the standard-model particles are too weak, as compared to the expansion rate of the universe (after
crossing of the red dashed line).

When the decoupling occurs near x = 1, the dark matter is cold i.e. non-relativistic. This

is in agreement with preservation of the large-scale structures in the universe and cosmological

measurements [129]. If the decoupling happened earlier when x ≪ 1, the dark matter would be

relativistic at the freeze-out and we would talk about a hot dark matter relic density.

1.4.3 String theory ingredients

The past singularity at the core of the standard model of cosmology and the breakdown of general

relativity there, is the obvious reason why a UV-complete theory such as string theory may provide

crucial ingredients to better understand cosmology and its beginning. A lot of efforts have been put

in trying to describe the inflation era in a string-theory framework (see e.g. [130, 131] for reviews).

Moduli arising in string theory provide good candidates for inflatons but they are numerous and

massless so that it is hard to obtain a fully consistent model reproducing a slow-roll scenario for

example. Also, string theory comes with a wide variety of new particles, some of which could be

dark-matter candidates and illuminate this (dark) side of cosmology.
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Chapter 1. Key ingredients of string theory

In this thesis, we tackle cosmological considerations in string theory of another kind. In Chapter

4, we study the quantum stability of flat Minkowski spacetime in a heterotic string framework. The

idea is the following: If one assumes a classically flat expanding universe, quantum corrections should

backreact on the system and potentially break down the flat expanding dynamics. In heterotic string

models with Scherk–Schwarz breaking of supersymmetry, the one-loop potential can be computed

and its influence on the cosmology of the classical background studied. The analysis is performed

in a toy model and in a more generic one where the moduli dynamics is further discussed.

We also propose a new scenario for generating a cold dark-matter relic density again in a heterotic

string-theory framework. It exploits the fact that throughout the cosmological evolution of the

universe in some models, as the temperature drops, a modulus can become tachyonic, acquire a

vacuum expectation value and suddenly give a mass to some dark-matter particle. Depending on

when the transition occurs, this perturbs the standard thermal freeze-out scenario.
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2 A supersymmetry-breaking mechanism in ori-
entifold models

This chapter delves into the first component of the triptych underlying this thesis: The very con-

struction of supersymmetry-breaking mechanisms. We describe a mechanism to break supersym-

metry in orientifold models, without introducing tadpoles, anti-branes and brane instabilities. The

mechanism shares common features with brane supersymmetry breaking but it does not introduce

NS-NS tadpoles.

As mentioned in Chapter 1 and in the introduction, the mechanism of brane supersymmetry

breaking has been extensively explored [62–67]. In these models, supersymmetry is non-linearly

realized [68, 69] and the supersymmetry-breaking scale is the string scale in the open sector while

the closed-string sector is insensitive to it. All these constructions suffer from uncancelled NS-NS

tadpoles due to the presence of anti-D-branes. Attempts to deal with these tadpoles have been

pursued [70–73] but with limited applications.

The goal of the work presented in this chapter is to build brane-supersymmetry-breaking-like

vacua without introducing NS-NS tadpoles [77]. Starting with a supersymmetric orientifold model

containing O− and O+-planes, the mechanism amounts to consistently replace O− - O+ pairs into

their counterparts which preserve the other half of the supersymmetries i.e. O− - O+ pairs. Both

kind of pairs having zero net tension and charge, neither R-R nor NS-NS tadpoles are generated.

As we will see, in such models the supersymmetry-breaking pattern in the open sector depends

on the location of the D-branes and on the value of some internal radius. In the closed-string

sector, arguments coming from the detailed study of the orientifold projection giving rise to the

supersymmetry-breaking geometry suggest a soft-breaking à la Scherk–Schwarz. Field-theory con-

siderations also tend to lead to the same conclusion.

Such constructions were already anticipated in the pioneering paper [132]. This was done using

the tools of the so-called “Tor-Vergata school” [115,116,133–139] and we provide here the appropri-

ate geometric interpretation of the models. Also, we give arguments in favour of the inconsistency

of the supersymmetric torus shown in [132] and we give configurations without tachyonic brane

instabilities.

In this chapter, we first define the basic supersymmetric model upon which our mechanism

will be applied. It is the rank 8 orientifold projection of type IIB in eight dimensions. We then

implement our mechanism which breaks supersymmetry and we explore its features. After that,

the closed-string sector is discussed and the correct torus partition function is built and motivated.

Eventually, we investigate consistency constraints coming from the addition of probe branes and we

end the chapter with some outlooks for future works.
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Chapter 2. A supersymmetry-breaking mechanism in orientifold models

2.1 The rank 8 supersymmetric orientifold of type IIB

2.1.1 The torus amplitude

We start with the construction of a known alternative orientifold projection of type IIB which

features a gauge group of rank 8 which is half of the rank of the SO(32) type I string. Spacetime

is compactified on two circles of radii R8 and R9 and the orientifold projection is performed. If

nothing new is introduced, this would simply yield the usual type I theory in eight dimensions in

which the internal antisymmetric tensor Bij, i, j ∈ {8, 9} is projected out. The key idea [140, 141]

is that it is possible to keep a discrete background for Bij that survives the orientifold projection.

The metric Gij of the internal squared T 2 and its antisymmetric tensor are then1

G =
1

α′

(
R2

8 0

0 R2
9

)
and B =

(
0 1

2

−1
2

0

)
. (2.1.1)

Using the definition of the circle lattice (1.3.4) along direction X9, straightforwardly generalized for

an arbitrary direction, the torus partition function becomes (remember that we omit the sums over

momentum and winding numbers for lighter expressions)

T =

∫
d2τ

τ 52

[
Λm9,2n9Λm8,2n8 + Λm9+1/2,2n9Λm8,2n8+1

+Λm9,2n9+1Λm8+1/2,2n8 + Λm9+1/2,2n9+1Λm8+1/2,2n8+1

] ∣∣∣∣V8 − S8

η8

∣∣∣∣2 . (2.1.2)

A feature of this partition function is that it is invariant under a T-duality transformation (R8, R9)→(
α′
2R8

, α′
2R9

)
.

The same model can be built following another strategy [142] by applying a specific freely-acting

orbifold on the usual eight-dimensional IIB theory without antisymmetric tensor. The generator is

g = δw8δp9 where δp9 is the momentum shift already encountered in (1.3.7) whose action is repeated

below and δw8 is a winding shift which acts asymmetrically on the left and right coordinates:

δw8 :

{
X8

L → X8
L +

α′π
2R8

X8
R → X8

L − α′π
2R8

, δp9 : X
9 → X9 + πR9 . (2.1.3)

The momentum shift produces a sign (−1)m9 when inserted in the trace and the winding shift

produces a sign (−1)n8 . As usual with orbifold constructions, there is a twisted sector required for

modular invariance. The obtained torus amplitude is then

T =
1

2

∫
d2τ

τ 52

[
1 + (−1)n8+m9

] (
Λm8,n8Λm9,n9 + Λm8+

1
2
,n8

Λm9,n9+
1
2

) ∣∣∣∣V8 − S8

η8

∣∣∣∣2 , (2.1.4)

which is the same as (2.1.2) up to a rescaling R9 → 2R9.

2.1.2 The open-string amplitudes

To easily determine the open-string partition functions, we will fully make use of the geometrical

interpretation of the tree-level amplitudes. In the T-dual type I′ theory along the internal circles,

1We define the tensors G and B to be dimensionless in this thesis. This contrasts with [77].
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Chapter 2. A supersymmetry-breaking mechanism in orientifold models

the orientifold projection becomes Ω′ = ΩΠ8Π9(−1)FL , where Πi is the parity operation X i → −X i

and FL is the left fermion number. The presence of the parities is explained in Chapter 1 and the

naively unexpected (−1)FL factor is necessary for consistency. The original spacetime filling O9−-
plane becomes four O7−-planes whose locations in the internal space are the fixed points of Ω′. It

has actually only one fixed point which is the origin but it needs to be combined with the periodicity

conditions δ2pi : X
i → X i + 2πRi for i ∈ {8, 9}. The fixed points of Ω′, Ω′δ2p8 , Ω

′δ2p9 and Ω′δ2p8δ2p9
are thus respectively the origin and the points of coordinates (πR8, 0), (0, πR9) and (πR8, πR9). The

geometry is depicted in Fig. 2.1a. The four O7−-planes have global tension and charge equal to −32
in units of a D7-brane tension requiring the addition of 32 objects and gauge group SO(32). Because

the projection Ω′ gives rise to pairs of branes, we refer to 32 “half-D7-branes” or alternatively to 16

regular D7-branes whose tensions are twice the ones involved in (1.2.29).

X8

X9

O7− O7−

O7− O7−

(a) Geometry of the standard SO(32)
superstring. There is an O7−-plane at
each of the four fixed points.

X8

X9

O7+ O7−

O7− O7−

(b) Geometry of the supersymmetric
USp(16) model. There is 1 O7+-plane
at (0, 0) and 3 O7−-planes at (πR8, 0),
(0, πR9) and (πR8, πR9).

X8

X9

O7+ O7−

O7− O7−

(c) Geometry of the non-
supersymmetric USp(16) model.
There is 1 O7+-plane at (0, 0), 1 O7−-
plane at (πR8, 0) and 2 O7−-planes at
(0, πR9) and (πR8, πR9).

Figure 2.1: Eight-dimensional T-dual geometries: The standard SO(32) superstring theory, the USp(16) supersym-
metric theory and its non-supersymmetric version.

The geometry is different for the model with discrete Bij where it has been shown [143] that

the orientifold plane at the origin becomes an O7+-plane (see Fig. 2.1b). This change has dramatic

consequences since now the global tension and charge of the O7-planes is −16, requiring the addition
of only N = 16 half-D7-branes (8 D7-branes) to cancel the tadpoles. The rank of the gauge group is

thus divided by two compared to the usual type I theory. As explained in Chapter 1, the positions

of the O7-planes and their kinds completely determine the Klein-bottle tree-level amplitude. The

phases eim⃗·(x⃗A−x⃗B) in (1.2.27) take values 1, (−1)m8 , (−1)m9 and (−1)m8+m9 . Weighted by the correct

product of tension and charge, this gives rise to a projector on the momentum numbers. In the

SO(32) theory, the 16 terms corresponding to the 4×4 O-plane pairings yield a projection onto even

momentum numbers. On the contrary, in the rank 8 case, no projection remains when summing

the 16 contributions because of the presence of the O7+-plane. The respective projectors Π
(16)

K̃
and

Π
(8)

K̃
are

Π
(16)

K̃
= 4 [1 + (−1)m8 ] [1 + (−1)m9 ] and Π

(8)

K̃
= 4 . (2.1.5)
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Chapter 2. A supersymmetry-breaking mechanism in orientifold models

For the tree-level annulus amplitude, it is trivial with no projection if we restrict to the case of a

single stack of N half-D7-branes. The Möbius tree-level amplitude depends on where the stack is

placed since it will produce different phases. Let us assume the branes to sit on top of the O7+-plane

at the origin. The four possible pairings D7-branes/O7-planes (with multiplicity N) weighted by

the correct tensions and charges give the following projector:

Π =
1− (−1)m8 − (−1)m9 − (−1)m8+m9

2
. (2.1.6)

Then, the tree-level amplitudes of the rank 8 theory read

K̃ =
25α′

8R9R8

∫ ∞

0

dl Pm9Pm8

V8 − S8

η8
, Ã =

2−5N2α′

2R9R8

∫ ∞

0

dl Pm9Pm8

V8 − S8

η8
,

M̃ =
Nα′

2R9R8

∫ ∞

0

dl
[
P2m9+1 − (−1)m8P2m9

]
Pm8

V̂8 − Ŝ8

η̂8
. (2.1.7)

The lattices Pmi
in the amplitudes, which depend on l and the coming lattices Wni

in the loop

amplitudes which depend on τ2 are defined as

Pmi
≡ e

−π l
2
m2

i
α′
R2
i and Wni

≡ e−πτ2n
2
i

R2
i

α′ . (2.1.8)

Back to the loop channel, we obtain

K =
1

2

∫ ∞

0

dτ2
τ 52

W2n9W2n8

V8 − S8

η8
, A =

N2

2

∫ ∞

0

dτ2
τ 52

Wn9Wn8

V8 − S8

η8
,

M =
N

2

∫ ∞

0

dτ2
τ 52

Wn9

[
(−1)n9W2n8 −W2n8+1

] V̂8 − Ŝ8

η̂8
, (2.1.9)

from which the field-theory spectrum can be read

(A+M)|FT =

∫ ∞

0

dτ2
τ 52

[
N(N + 1)

2
W2n9W2n8 +

N(N − 1)

2

(
W2n9+1W2n8 +Wn9W2n8+1

)] V8 − S8

η8

∣∣∣∣
0

.

(2.1.10)

In this case, we read the dimension of the adjoint of an unitary symplectic group at the massless level

and thus the open-string sector carries a USp(16) gauge group. We can show that when the branes

are put on top of one of the three O7−-planes, the detailed structure of the low-lying spectrum

changes but the gauge group is always SO(16).

2.2 The supersymmetry-breaking mechanism

We are now ready to implement our supersymmetry-breaking mechanism, starting from the eight-

dimensional rank 8 orientifold model described in the previous section. We first build the orientifold

amplitudes (K, A and M) from the geometrical interpretation of the mechanism and then we

uncover the corresponding altered orientifold projection. After that, we discuss how the torus

partition function is affected and we end the section with a discussion on the different possible

breaking patterns in this eight-dimensional setup2.
2The followed logic for the description of the breaking mechanism, starting by the orientifold amplitudes and then turning to the torus

partition function, matches the way we have built and uncovered the model and is chosen here for pedagogical purposes. Note that in
the end, the model turns out to be an open descendant of a Scherk–Scwharz compacitfication and could have been described this way.
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Chapter 2. A supersymmetry-breaking mechanism in orientifold models

2.2.1 Orientifold amplitudes

Geometrically, we want to replace a pair of O7− and O7+-planes which has net tension and charge

zero by its counterpart with an O7− and a O7+-plane which also has zero net tension and charge.

This replacement does not change the tadpole cancellation condition and consequently does not

introduce anomalies or even NS-NS tadpoles. As it will be seen explicitly in the amplitudes, the

simultaneous presence of anti-orientifold planes with regular D7-branes breaks supersymmetry.

We thus consider the model with geometry depicted on Fig. 2.1c where, compared to the rank 8

supersymmetric geometry, the pair O7+ - O7− at the bottom is replaced by a pair O7+ - O7−. This
changes the computation of the tree-level Klein-bottle amplitude but it turns out that the result is

the same as in the supersymmetric case i.e. without any projection on the momentum numbers.

The tree-level annulus amplitude is also not affected by the supersymmetry breaking since it only

feels the D7-branes which are untouched. Among the orientifold amplitudes, only the Möbius strip is

sensitive to the breaking mechanism. Again, the precise expression of the tree-level Möbius depends

on where the D7-branes are. When put at the origin on the O7+-plane, the projector now depends

on the nature (NS-NS or R-R) of the closed-string state propagating between the O7-planes and

the D7-branes. We thus have two projectors ΠNS-NS and ΠR-R,

ΠNS-NS =
+1− (−1)m9 − (−1)m8 − (−1)m9+m8

2

ΠR-R = (−1)m8ΠNS-NS =
−1− (−1)m9 + (−1)m8 − (−1)m9+m8

2
, (2.2.1)

where ΠNS-NS is the same as in the supersymmetric case in (2.1.6). The geometry is neatly encoded

in these projectors: A change of sign among the four terms between the two projectors signals that

the O7-plane at the corresponding fixed point has been promoted to an O7-plane. The sign changes

for the terms 1 and (−1)m8 , consistently with the locations of the anti-orientifold planes in our

geometry at the origin and at coordinates (πR8, 0). Altogether, the tree-level amplitudes are

K̃ =
25α′

8R9R8

∫ ∞

0

dl Pm9Pm8

V8 − S8

η8
, Ã =

2−5N2α′

2R9R8

∫ ∞

0

dl Pm9Pm8

V8 − S8

η8
,

M̃ =
Nα′

2R9R8

∫ ∞

0

dl
[
P2m9+1 − (−1)m8P2m9

]
Pm8

V̂8 − (−1)m8Ŝ8

η̂8
, (2.2.2)

where supersymmetry breaking is indeed visible in the Möbius strip. By modular transformation,

the loop-channel amplitudes are

K =
1

2

∫ ∞

0

dτ2
τ 52

W2n9W2n8

V8 − S8

η8
, A =

N2

2

∫ ∞

0

dτ2
τ 52

Wn9Wn8

V8 − S8

η8
,

M =
N

2

∫ ∞

0

dτ2
τ 52

Wn9

[
(−1)n9W2n8 −W2n8+1

] V̂8 + (−1)n9Ŝ8

η̂8
. (2.2.3)

The changing compared to the supersymmetric case can be interpreted as a modification of the

orientifold projection performed on the type IIB theory. Remembering that a winding shift δw9

along direction X9 acts with (−1)n9 on the lattice states, we deduce an orientifold projection Ω′′

which is

Ω′′ ≡ Ω′(−δw9)
F = ΩΠ8Π9(−1)FL(−δw9)

F . (2.2.4)
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Chapter 2. A supersymmetry-breaking mechanism in orientifold models

In this expression, F is the spacetime fermion number and ensures that the winding shift is only

present in the projection for fermions. As evoked in Chapter 1, no fermions run in the Klein bottle

so it is natural that Ω′′ does not perturb it. A look at the field-theory spectrum gives3

(A+M)|FT =

∫ ∞

0

dτ2
τ 52

[
N(N + 1)

2

V8
η8

∣∣∣∣
0

− N(N − 1)

2

S8

η8

∣∣∣∣
0

]
. (2.2.5)

It is not supersymmetric with breaking at the string scale. The gauge group is still USp(16) but the

fermions live in the antisymmetric representation. As it is typically the case in brane supersymmetry

breaking scenarios, this antisymmetric representation contains a goldstino singlet which indicates a

nonlinear realization of supersymmetry.

If the D7-branes rather sit at another fixed point, the gauge group is SO(16). When the branes

are on the O7−-plane, we still interpret a nonlinear supersymmetry while when they are on either

of the two O7−-planes, the spectrum is supersymmetric at the massless level and the breaking only

occurs at the massive levels.

2.2.2 Brane stability

We described the field-theory interpretations depending on where the D7-branes are without men-

tioning their stability. Actually, they have no net interactions with orientifold planes but are at-

tracted by the O7+-plane and repelled by the O7−-planes. We thus anticipate that the only stable

configuration is when the branes are at the origin on the O7+-plane. The instability of branes sitting

elsewhere could naively be circumvented by placing only rigid half-branes there and put the rest

at the origin. However, for consistency, single half-branes can only be put on O− or on O−-planes
and we can show that in eight dimensions, constraints coming from probe D5-branes forbid such

configurations (see Sect. 2.3).

These energetic considerations can be recovered numerically by plotting the one-loop potential

for arbitrary brane positions or equivalently, the vector field defined as minus the derivative of the

potential with respect to the positions along X8 and X9. To plot such a vector field, we need the

expression of the Möbius amplitude for arbitrary half-brane positions 2πaiα, α ∈ {1, . . . , 16} along
X i, i ∈ {8, 9},

M =
1

2

∑
α

∫
dτ2
τ 52

{ [
(−1)n9W2n8+2a2α

−W2n8+1+2a2α

] V̂8
η̂8

−
[
(−1)n9W2n8+1+2a2α

−W2n8+2a2α

] Ŝ8

η̂8

}
Wn9+2a1α

,

M̃ =
α′

2R9R8

∑
α

∫
dl e4iπm9a1α e2iπm8a2α Pm8

{ [
e2iπa

1
αP2m9+1 − (−1)m8P2m9

] V̂8
η̂8

−
[
e2iπa

1
α(−1)m8P2m9+1 − P2m9

] Ŝ8

η̂8

}
.

(2.2.6)

From these expressions, the dependence of the one-loop potential on the positions aiα can be found

in various regimes for the radii. Labelling the dynamical branes (at most 8) with an index r, the

3Here we assume the radii to not introduce scales lower than the string scale. The other possibilities will be discussed in Sect. 2.2.4
once the closed sector is better understood.
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typical vector field
(
− ∂V
∂a8r
,− ∂V

∂a9r

)
for brane r at an arbitrary position is plotted in Fig. 2.2. We see

that all positions but the origin yield unstable configurations.

X8

X9

O7+ O7−

O7− O7−

Figure 2.2: Example of vector field
(
− ∂V

∂a8
r
,− ∂V

∂a9
r

)
obtained numerically. The lighter the color, the longer the vector

norm. We observe an attraction towards the origin, as expected.

2.2.3 The closed sector

We need now to discuss what happens in the torus partition function. Naively, one could think

the supersymmetric torus (2.1.2) remains valid for the non-supersymmetric model. If this was the

case, one would have completely supersymmetric closed-string one-loop amplitudes. This would not

be equivalent to a supersymmetric closed-string sector since transmission of the breaking from the

open sector should happen. Ignoring this transmission, we will argue in this subsection that the

supersymmetric torus is not consistent and should actually reveal a soft breaking of supersymmetry

à la Scherk–Schwarz.

Before arguing on the consistency or not of the closed sector with the breaking mechanism, let us

construct a softly broken version of the supersymmetric torus (2.1.2). To this end, the construction

of the model via the freely-acting orbifold g = δw8δp9 is useful since it is easy to build a Scherk–

Schwarz deformation from it: One simply couples g with the usual non-supersymmetric generator

(−1)F . Gauging the type IIB theory with g′ = (−1)F δw8δp9 we obtain as usual four contributions

in the torus: With or without the g′ insertion and the twisted sector. The partition function is

T =
1

2

∫
d2τ

τ 52

{
Λm8,n8Λm9,n9 |V8 − S8|2 + (−1)n8+m9Λm8,n8Λm9,n9 |V8 + S8|2

+ Λm8+
1
2
,n8

Λm9,n9+
1
2
|O8 − C8|2 + (−1)n8+m9Λm8+

1
2
,n8

Λm9,n9+
1
2
|O8 + C8|2

}
1

|η8|2 .
(2.2.7)
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We then perform the rescaling of the radius R9 → 2R9 and we obtain

T =

∫
d2τ

τ 52

{ (
Λm8,2n8Λm9,2n9 + Λm8,2n8+1Λm9+

1
2
,2n9

) (
|V8|2 + |S8|2

)
−
(
Λm8,2n8+1Λm9,2n9 + Λm8,2n8Λm9+

1
2
,2n9

) (
V8S8 + V 8S8

)
+
(
Λm8+

1
2
,2n8

Λm9,2n9+1 + Λm8+
1
2
,2n8+1Λm9+

1
2
,2n9+1

) (
|O8|2 + |C8|2

)
−
(
Λm8+

1
2
,2n8+1Λm9,2n9+1 + Λm8+

1
2
,2n8

Λm9+
1
2
,2n9+1

) (
O8C8 +O8C8

)} 1

|η8|2 .

(2.2.8)

From the second line of this expression, we read the two masses M1 and M2 acquired by the

gravitinos:

M1 =
R8

α′ and M2 =
1

2R9

, (2.2.9)

which go to zero in the two supersymmetric limits R8 → 0 and/or R9 → +∞. In M2, we recognize

the usual Scherk–Schwarz mass proportional to the inverse of the radius R9. In M1, the mass is

proportional to the radius because along direction X8, g′ acts with a winding shift instead of a

momentum shift. As it is the case with the standard mechanism described in Chapter 1, there is a

tachyon due to the twisted |O8|2 character if the radii satisfy

α′2

4R2
8

+R2
9 < 2α′ . (2.2.10)

We can now understand why the supersymmetric torus seems inconsistent with the broken open

sector and why the softly broken version seems much more plausible. We saw that the orien-

tifold planes are the fixed points of the orientifold projection, modulo the periodicity identifica-

tions. With the supersymmetric torus, the identifications are simply the classical ones for circles,

δ2p8 : X8 → X8 + 2πR8 and δ2p9 : X9 → X9 + 2πR9. As for the orientifold projection of the

broken model Ω′′, it contains the non-supersymmetric generator (−δw9)
F . Because the presence of

a non-supersymmetric generator should produce an anti-orientifold plane, the four fixed points of

Ω′′, Ω′′δ2p8 , Ω
′′δ2p9 and Ω′′δ2p8δ2p9 should be anti-orientifold planes and preserve the same supersym-

metries, which is inconsistent with the geometry of the model displayed in Fig. 2.1c.

On the contrary, in the softly broken torus, the periodicity along X9 is replaced by the action

of g′ in which the rescaling of the radius R9 → 2R9 has been performed. The periodicity condition

thus becomes δ′2p9 ≡ (−1)F δw8δ2p9 . The four fixed points are then:

� Fixed point of Ω′′ = ΩΠ8Π9(−1)FL(−δw9)
F : The projection contains a non-supersymmetric

generator and the two parities. The fixed point is thus at the origin and is an anti-orientifold

plane.

� Fixed point of Ω′′δ2p8 = ΩΠ8δ2p8Π9(−1)FL(−δw9)
F : The parity along X8 combined with the

periodicity fixes the point (πR8, 0) and we still have an anti-orientifold plane.

� Fixed point of Ω′′δ′2p9 = ΩΠ8δw8Π9δ2p9(−1)FL(−δw9)
F (−1)F : The two non-supersymmetric

factors cancel each other to yield an orientifold plane. Due to the combination of the parity

along X9 with the periodicity δ2p9 , it is located at (0, πR9).
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� Fixed point of Ω′′δ2p8δ
′
2p9

= ΩΠ8δ2p8δw8Π9δ2p9(−1)FL(−δw9)
F (−1)F : This is again an orientifold

plane and it is located at (πR8, πR9) due to the presence of the two periodicities together with

the two parities.

All this gives a geometrical interpretation consistent with the model depicted in Fig. 2.1c. If one

performs the same analysis with the supersymmetric torus and hence with the standard periodicity

δ2p9 , one would not understand why both kinds of orientifold planes appear in the model.

We expect that the fundamental reason why the supersymmetric torus is not compatible with

the projection Ω′′ is simply because it is not a symmetry of the supersymmetric spectrum and it

is therefore not allowed to gauge it. However, the detailed demonstration of this fact has not been

carried out. Also note that the presence of massless gravitinos along with broken supersymmetry

would also be difficult to explain from a supergravity point of view.

2.2.4 Breaking scales and gravitino mass

As a consequence of the soft breaking in the closed sector, our eight-dimensional model contains

two breaking scales. The one from the closed sector is the usual momentum scale or winding scale

and in the open-string sector, it can be the string scale or the winding scale depending on which

one is smaller. Let us begin by a deeper study of the supersymmetry-breaking pattern in the stable

configuration where the branes are put at the origin on top of the O7+-plane.

The full field-theory spectrum (2.2.5) without omitting the winding modes is

(A+M)|FT =

∫ ∞

0

dτ2
τ 52

{
N(N + 1)

2
W2n9

(
W2n8

V8
η8
−W2n8+1

S8

η8

)∣∣∣∣
0

+
N(N − 1)

2

[
W2n9

(
W2n8+1

V8
η8
−W2n8

S8

η8

)
+W2n9+1Wn8

V8 − S8

η8

]∣∣∣∣
0

}
.

(2.2.11)

At the zero-winding level, we recover (2.2.5). As already said, the open-string gauge group is

USp(16) and we see in (2.2.11) that the breaking scale depends on the value of R8. If it is large, the

breaking scale is the string scale and we interpret a nonlinear realization of supersymmetry. As R8

goes to zero, the even-windings and odd-windings lattices become equal and the spectrum (2.2.11)

becomes supersymmetric. In this case, we can interpret a spontaneous breaking in the open sector

with a familiar winding Scherk–Schwarz scale proportional to R8. From another point of view,

the breaking shares common features with brane supersymmetry breaking since only the Möbius

is affected4 by exchanging symmetric and antisymmetric representations for fermions compared to

bosons.

In the other closed-string supersymmetric limit R9 → +∞, supersymmetry is not recovered in

the open sector and this regime looks like a true brane supersymmetry breaking mechanism with

untouched closed sector. However, it is highly likely that the two limits R8 → 0 and R9 → +∞
are not consistent from a field-theory point of view. In the former limit, the spectrum cannot be

interpreted from a nine-dimensional perspective. Indeed, in this limit, the first and second terms in

(2.2.11) combine together with an overall multiplicity N2. Such a multiplicity cannot be interpreted

in terms of representations of the USp(N) gauge group. In the latter limit, there are local tensions

and charges that generate a strong backreaction i.e. local tadpoles remain uncancelled because of

the collapse of a Kaluza–Klein tower of states. From a more general point of view, the fact that

4In Chapter 1 in (1.3.10), we saw that in a standard Scherk–Schwarz mechanism, both the annulus and Möbius are affected.
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the effective theory breaks down in some limits is just the consequence of the existence of moduli

branches that only exist in lower dimensions and which are not connected to moduli spaces in higher

dimensions.

If the D7-branes are put on the upper-right O7−-plane, the field-theory spectrum is

(A+M)|FT =

∫ ∞

0

dτ2
τ 52

{
N(N − 1)

2

[
W2n9Wn8

V8 − S8

η8
+W2n9+1

(
W2n8

V8
η8
−W2n8+1

S8

η8

)]∣∣∣∣
0

+
N(N + 1)

2
W2n9+1

(
W2n8+1

V8
η8
−W2n8

S8

η8

)∣∣∣∣
0

}
. (2.2.12)

In this case the gauge group is SO(16). The R8 → 0 limit gives again a supersymmetric spectrum

with a spontaneous breaking interpretation. When R9 → +∞, the non-zero winding states along

X9 become supermassive and decouple. But again, these limits are certainly not consistent at the

field-theory level.

2.3 Probe branes

In this section, we explore consistency conditions coming from the insertion of probe branes in

the model. The probe branes carrying an SU(2) gauge group are subject to the Witten four-

dimensional SU(2) anomalies, related to consistency constraints coming from K-theory [144–147].

The term probe branes refer to D-branes that are not subject to consistency constraint from the

tadpole cancellation condition unlike the background branes. The background branes are D9-branes

in type I string and the probe branes can be D7, D5, D3 or D1-branes. Because we are interested

in four-dimensional probe gauge theories for constraints to arise, we will ignore the D1-branes that

lead to two-dimensional theories.

In type I, the D7 and D3-branes carry unitary gauge groups U(M) for some M while the D5-

branes support USp(M) gauge groups for Bij = 0 [148,149]. In the case Bij ̸= 0, SO(M) groups are

also possible but we are only interested in SU(2) anomalies with SU(2) ⊂ U(2), USp(2). The Witten

anomaly arises from strings stretched between the background D9-branes and the probe branes

which transform in the fundamental representation of the SU(2) probe-brane gauge group: The

number of SU(2) doublets should be even to avoid anomalies. Such states only arise in the cylinder

amplitude and thus our supersymmetry-breaking mechanism does not change the discussion. After

T-duality, one obtains a geometry with O+, O−, O+ and O−-planes but we focus on supersymmetric

geometries without anti-orientifold planes due to the argument above and we assume the background

branes to sit on O−-planes for constraints to arise.

In eight dimensions, the strongest constraint comes from the addition of two probe D5-branes

before T-duality. The D9-D5 states contain six-dimensional Majorana-Weyl fermions in the (M, 2)

representation of SO(M)9 × USp(2)5. When the D5-branes (extended along the four spacetime

dimensions) wrap the compactified T 2, the states becomes D7-D3 strings after T-duality and the

probe gauge theory is indeed four-dimensional. The following tables show what the branes become

under T-duality. The dimensions labels are written in the first line and for each kind of brane, a

cross means that it wraps the corresponding direction while a dot means it does not.
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8d 0 1 2 3 4 5 6 7 8 9

D9 x x x x x x x x x x

D5 x x x x · · · · x x

T-duality
−→

8d 0 1 2 3 4 5 6 7 8 9

D7 x x x x x x x x · ·
D3 x x x x · · · · · ·

In this case, if we place M D7-branes and probe D3-branes on an O7−-plane, because the D3-

branes are points inside the T 2, the number of SU(2) doublets is equal to M . We thus learn that

M should be even. We conclude that in eight dimensions, configurations with rigid half-D7-branes

are forbidden for consistency.

If before T-duality the probe D5-branes wrap the T 2 differently, this will not produce a four-

dimensional probe gauge theory after T-duality and thus there is no constraint. A similar argument

holds for probe D7-branes. As for the probe D3-branes, they indeed yield a four-dimensional probe

gauge theory after T-duality but the obtained probe D5-branes wrap the whole T 2 so that no con-

straint arises since they see all the background branes (see table below).

8d 0 1 2 3 4 5 6 7 8 9

D9 x x x x x x x x x x

D3 x x x x · · · · · ·
T-duality

−→

8d 0 1 2 3 4 5 6 7 8 9

D7 x x x x x x x x · ·
D5 x x x x · · · · x x

2.4 Conclusions and outlook

In this first part of the thesis, we explored a new mechanism to break supersymmetry at the string

level in orientifold models. By consistently replacing pairs of orentifold planes that have zero net

tension and charge by their anti-orientifold counterparts, the breaking affects only the Möbius

amplitude in the open sector and does not introduce NS-NS tadpoles. We saw that the breaking

scale can either be the string scale or a compactification scale depending on the location in moduli

space.

We gave strong arguments to discard the supersymmetric torus amplitude as the correct closed

sector for our model with broken supersymmetry. We suggested instead a soft breaking in the

torus, which seems in agreement with the geometry. However, it would be interesting to study

further the field-theory limits to completely settle the question. If it is consistent to keep the

supersymetric torus with the supersymmetric open sector, this would provide new perfect models

of brane supersymetry breaking type, without tadpoles. Such orientifold vacua would be at odds

with the gravitino mass conjecture [150,151] whereas our models are in agreement with it since the

supersymmetric limits exhibited in our models are argued not to be consistent from a field-theory

point of view.

Note that all brane supersymmetry breaking models which feature a supersymmetric closed-

string sector suffer from NS-NS tadpoles that may induce a breakdown of the effective field theory

around the true vacuum so that in the end, the models would be in agreement with the gravitino

mass conjecture. Also, even when we talk of a supersymmetric closed-string sector, it is understood

to be at tree-level since because the open-string sector is broken, it should transmit the breaking to

the closed sector via quantum corrections. It is unclear to us if the conjecture should hold for the

tree-level spectrum or for the quantum theory. A last remark is that in our models, the gravitino

mass can be much lower than the typical scale of the quantum potential. This could be useful in

inflationary models of the type studied in [152–157].
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As a complexification of the models described here, it would be very interesting to consider non-

freely-acting orbifold compactifications in order to produce a more realistic chiral spectrum in four

dimensions. The combination of our supersymmetry-breaking mechanism with orbifolds may yield

interesting new breaking patterns.
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3 Open-string moduli stabilization

This chapter tackles the second part of our guiding tryptich: The generic study of moduli stabi-

lization in models with perturbative spontaneous breaking of supersymmetry. We do this in the

context of open-string models to develop an intuitive geometric reasoning in terms of D-brane po-

sitions. Supersymmetry is broken with a Scherk–Schwarz mechanism performed along a circle and

we focus on the regime where the radius of the circle is moderately large without any mass scale

below the breaking scale so that the approximation (1.3.11) for the one-loop potential holds, up to

exponentially suppressed terms.

Generically, the Scherk–Schwarz mechanism yields an excess of massless bosons so that the one-

loop potential is negative. However, the addition of open-string Wilson lines can help uplifting the

potential and maybe reach a vanishing potential up to the exponentially suppressed terms. Such

uplifting is expected to be hard to achieve while maintaining a non-tachyonic configuration, as can

be understood from the schematic Taylor expansion of the one-loop potential with respect to the

Wilson lines generically denoted ϕI here, around an extremal point with respect to them [44,56–59]:

V1-loop ≈ ξd(nF − nB)M
d + ξd−2(TRB

− TRF
)(ϕI)2Md + · · · . (3.0.1)

In this schematic expression (the precise formula in an N = 4→ N = 0 context is given in (3.1.28)),

we have already defined the positive constant ξd and the numbers of massless fermionic and bosonic

degrees of freedom nF and nB. ξd−2 is another positive constant and TRB
and TRF

are the Dynkin

indices of the representations in which the massless bosons and fermions live. We see that on the

one hand, increasing the number of massless fermions tends to increase the value of the potential

but on the other hand, it tends to degrade the stability of the moduli and to generate tachyonic

instabilities.

Let us briefly review the results of [58], where the stability analysis is done in an N = 4→ N = 0

open-string model. The authors try to increase the value of the potential by increasing the number

of massless fermions compared to bosons while keeping a non-tachyonic configuration. This is done

thanks to the interplay between the Sherk–Schwarz mechanism and the open-string Wilson lines to

give the mass shift to some bosons instead of only to fermions. The stability is ensured by the use

of rigid/frozen half-branes that are stuck at a fixed point and, if single, produce a “gauge factor”

SO(1). Upon compactification to lower dimensions, they can produce enough such factors to uplift

the potential to zero (up to the exponentially small contributions) or to slightly positive values. In

the obtained configurations, all moduli are non-tachyonic. Of course, these conclusions may not hold

once the cosmology of the system is studied but as an approximate general rule in Scherk–Schwarz

setups, the mere implementation of finite temperature makes the naive expectations correct.

We will start this chapter by explaining the results of [59] where the stability analysis is done

in a more complex setup with a non-freely acting orbifold producing N = 2 → N = 0 models. As
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we will see, the stability study will lead us to the need to evaluate one-loop masses of states in the

Neumann–Dirichlet sector of the theory. To evaluate the masses of such states, we compute their

one-loop correlation functions [60,61], an involved task requiring the technology of twist fields.

3.1 Stability of open-string orbifold models

Let us begin with the description of the supersymmetric model which constitute the basis of the work

presented here: The Bianchi-Sagnotti-Gimon-Polchinski (BSGP) model [158–160] compactified to

four dimensions.

3.1.1 Supersymmetric setup

The model is the orientifold projection of type IIB with the following background:

R
1,3 × T 2 × T 4

Z2

. (3.1.1)

The Z2 orbifold is non-freely acting on the T 4 along directions X6, X7, X8, X9 with a generator g,

g : (X6, X7, X8, X9) −→ (−X6,−X7,−X8,−X9) . (3.1.2)

Two kinds of orientifold planes are present: An O9−-plane which is the fixed point of the orientifold

projection Ω and 16 O5−-planes which are the fixed points of Ωg (modulo the periodicities inside

T 4). Two kinds of branes need to be added to cancel the tadpoles: 32 D9-branes and 32 D5-branes

orthogonal to the internal T 4/Z2. The gauge groups carried by both kinds of branes are unitary so

that the biggest gauge group that can be achieved without introducing Wilson lines or non-trivial

brane positions is U(16)×U(16). Note that the directions spanning the T 2 are denoted X4 and X5.

The four-dimensional extended spacetime is described by the remaining directions X0, X1, X2 and

X3.

The goal of the work presented here is to study the stability at one loop after supersymmetry

breaking of all possible deformations of the model. The moduli under consideration are:

� The positions of the D5-branes along the internal T 4/Z2.

� The Wilson lines along the T 2 for the gauge group supported by the D5-branes.

� The Wilson lines along the whole internal space for the gauge group supported by the D9-

branes.

� Scalars in the Neumann–Dirichlet (ND) sector of the theory, whose stability analysis requires

more work and is carried out in the last section of this chapter.

� In the closed-string sector, there are the usual NS-NS moduli: The internal metric denoted

GIJ where calligraphic indices refer to all the internal directions (I,J ∈ {4, . . . , 9}) and the

dilaton. The antisymmetric tensor is projected out by the orientifold.

� In the R-R sector, there are moduli associated with the surviving two-form CIJ .

� There is also a twisted closed-string sector which contains 16 quaternionic moduli, localized at

the fixed points of T 4/Z2.
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It is useful to have a geometric representation of the first three items i.e. the open-string moduli in

the Neumann–Neumann (NN) and Dirichlet–Dirichlet (DD) sectors. The D5-branes already have a

geometric interpretation with their positions inside the T 4/Z2. To convert the Wilson lines along

the T 2 into positions as well, we can consider the theory where this T 2 is T-dualized to a T̃ 2 with

coordinates X̃4 and X̃5 on which the orientifold now acts with an additional parity I45 creating fixed

points. In this T-dual picture, the original D5-branes are D3-branes and their positions completely

characterize the moduli in the DD sector. Fig. 3.1a shows such a geometric configuration. The

four fixed points of the T̃ 2/I45 are represented while schematically, only two fixed points along the

T 4/Z2 are drawn (in total 4 × 2 = 8 fixed points are represented). Anticipating on the sequel,

the D3-branes are localized at the fixed points of the whole internal space T 4 × T̃ 2/I45 and the

direction X̃5 is referred to as the Scherk–Schwarz direction. To convert the Wilson lines associated

with the D9-branes into positions, we define another T-dual theory where the whole internal space

is T-dualized to T̃ 2/I45 × T̃ 4/Z2. The original D9-branes also become D3-branes in this theory

and the positions completely describe the moduli in the NN sector. Fig. 3.1b represents such a

configuration. Even if it is somewhat abusive because the two pictorial representations for the

original D5-branes and D9-branes are not in the same T-dual theory, we will draw brane/Wilson

lines configurations on a single picture like in Fig. 3.1c. With the appropriate interpretation we

just gave for such representations, this is fully correct and it highly facilitates the manipulation of

brane configurations/Wilson lines.

The geometrical representations are useful to understand what are the true dynamical degrees of

freedom of the brane positions and thus the true dynamical Wilson lines compared to the discrete

ones. Along the T 4/Z2, the actions of the orientifold projection and the non-freely-acting orbifold

divide by 4 the maximum number of dynamical brane positions. The branes are associated by

pairs and can only move by packets of four, symmetrically around the fixed points of T 4/Z2. We

thus conclude that if 2n + 2, n ∈ N, branes sit at a fixed point, two of them are rigid and cannot

move. There is a maximum of 8 independent positions along T 4/Z2 when all stacks are multiple of

four and a minimum of 0 dynamical degrees of freedom if the branes are all isolated by stacks of

two. Along the T 2, there is no action of the orbifold so that the maximum number of degrees of

freedom is 16 and the branes also move by mirror pairs. Actually, this number cannot be decreased

by isolating single branes on fixed points since this would be inconsistent with the unitary gauge

groups supported by the branes1.

The configurations of interest to us correspond to D3-branes placed at fixed points in the ap-

propriate T-dual pictures since, as we will see later, they correspond to extrema of the effective

potential in presence of supersymmetry breaking. We thus introduce a specific labelling for these

64 fixed points. A fixed point is denote ii′ where i ∈ {1, . . . , 16} indicates one of the 16 fixed

points along the T 4/Z2 and i′ ∈ {1, . . . , 4} denotes one of the four T 2 fixed points. Anticipating

on the supersymmetry breaking, it is useful to follow a specific convention for the labelling of the

T 2 fixed points in order to distinguish those that are at the origin along direction X̃5 and those

that are at π
√
G55. The index i′ is thus chosen to be odd for points at the origin and even for

the others. Fig. 3.1d schematically represents this labelling. Restricting to brane configurations

(in the appropriate T-dual picture) with branes located at the fixed points, we define Nii′ and Dii′

the number of D3-branes, T-dual to D9-branes and D5-branes respectively, sitting at fixed point

ii′. As we saw, each fixed point carries zero or at least two D3-branes so that these numbers are
1It would be possible with an orthogonal group. This is what is used to uplift the potential without introducing instabilities in [58].
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X̃4

X̃5

T 4

Direction of Scherk-Schwarz

(a) A configuration of D3-branes associated with the D5-
branes of the initial type I theory, once T 2 is T-dualized. In
this example, the D3-branes sit on O3-planes.

X̃4

X̃5

T̃ 4

Direction of Scherk-Schwarz

(b) A configuration of D3-branes associated with the D9-
branes of the initial type I theory, once both T 2 and T 4/Z2

are T-dualized. In this example, the D3-branes sit on O3-
planes.

X̃4

X̃5

T 4, T̃ 4

Direction of Scherk-Schwarz

(c) Superposition of pictures (a) and (b). D3-branes asso-
ciated with the D5-branes (D9-branes) of the initial type I
theory are shown in orange (green).

i′ = 3
i′ = 4

i = 1
i′ = 1

i′ = 2

i = 2

i = 3

X̃4

X̃5

T 4, T̃ 4

Direction of Scherk-Schwarz

(d) Labelling of the T̃ 2 fixed points i′ = 1, 2, 3, 4, and
schematic labelling of the T 4/Z2 or T̃ 4/Z2 fixed points
i = 1, . . . , 16. Odd i′ correspond to points located at X̃5 = 0,
while even i′ are associated with points at X̃5 = π

√
G55,

where X̃5 is the coordinate T-dual to the direction along
which the Scherk–Schwarz mechanism is implemented.

Figure 3.1: Geometric T-dual description of the moduli arising from the NN and DD sectors of the orientifold theory.
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even and consequently written as Nii′ ≡ 2nii′ and Dii′ ≡ 2dii′ . With these definitions, the tadpole

cancellation condition is∑
i,i′

Nii′ = 32 ⇐⇒
∑
i,i′

nii′ = 16 ,
∑
i,i′

Dii′ = 32 ⇐⇒
∑
i,i′

dii′ = 16 , (3.1.3)

and the open-string gauge group Gopen of the model reads (it is understood that if nii′ or dii′ is zero,

it does not produce any gauge group)

Gopen =
∏
i,i′

U(nii′)× U(dii′) . (3.1.4)

For such configurations, the D3-branes positions in the appropriate T-dual pictures (normalized

by the internal radii), take values 2πa⃗ii′ for the D3-branes T-dual to the D9-branes and 2πb⃗ii′ for

the D3-branes T-dual to the D5-branes. The vector a⃗ii′ ≡ (⃗ai′ , a⃗i), where a⃗i′ and a⃗i are two- and

four-dimensional vectors, has components which take values 0 or 1
2
.

Note that there are non-perturbative constraints for the consistency of the BSGP model [160].

In the original model in only six dimensions, the moduli space has several disconnected components

defined by the even number R = 0, 2, . . . , 16 of pairs of D5-branes that have rigid positions along

the T 4/Z2. The constraint is on the allowed values for R that can only be equal to 0, 8 or 16.

Moreover, when R = 8, the 8 rigid pairs of branes must be on one of the hyperplanes XI = 0 or

XI = π
√
GII , I ∈ {6, . . . , 9}. Same constraints arise for the D9-branes, viewed as D5-branes in the

theory where the T 4/Z2 is T-dualized. This defines R̃ = 0, 8 or 16. Up to a T-duality, this gives

rise to 6 consistent disconnected parts for the moduli space:

(R, R̃) = (0, 0), (0, 8), (0, 16), (8, 8), (8, 16), (16, 16) . (3.1.5)

Note that these parts of moduli space are actually connected by deformations of the T 4/Z2 into

smooth K3 manifolds [160]. Compactifying the model further on an additional T 2 does not bring

new consistency constraints.

3.1.2 Breaking, amplitudes and spectrum

Supersymmetry breaking

We now perform the Scherk–Schwarz mechanism (see Sect. 1.3.1) along direction X5 and build the

one-loop partition functions of the model. The freely-acting orbifold along X5 coupled to (−1)F
produces an N = 2→ N = 0 spontaneous supersymmetry breaking with scale M which reads

M =

√
G55

2
Ms . (3.1.6)

In the closed sector, this produces the usual shift for the momentum number m5. Defining m⃗′ ≡
(m4,m5) and the shift vector a⃗′S ≡ (0, 1

2
), the deformation of the original supersymmetric model is

Closed sector: m⃗′ −→ m⃗′ + F a⃗′S . (3.1.7)

Crucially, in the open sector, the Scherk–Schwarz shift combines with the Wilson lines along T 2

which take discrete values proportional to a⃗i′ . The deformation of the original model is

Open sector: m⃗′ −→ m⃗′ + F a⃗′S + a⃗i′ − a⃗j′ , (3.1.8)
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for string stretched between branes located at the fixed points ii′ and jj′. This has dramatic

consequences since the Scherk–Scwharz mass can be given to fermions or bosons depending on

the Wilson lines. If i′ and j′ refer to fixed points at the same position along the Scherk–Schwarz

direction X5, the fermions get a mass. But if they refer to fixed points at opposite positions along

X5, it is now the bosons that get a mass. We will see soon precisely how this affects the massless

spectrum of the model.

One-loop amplitudes

We can now write the partition functions of the theory. They are defined as the usual traces with

the additional projections associated with the non-freely-acting Z2 orbifold and with the Scherk–

Schwarz orbifold. The torus amplitude thus contains the action of the Z2 orbifold, the action of the

Scherk–Schwarz orbifold and the combination of the two. This creates three twisted sectors and

thus a lot of terms. For the sake of compactness, the torus partition function is not displayed in

the main text and can be found in Appendix B.1. The internal six-dimensional zero-mode lattice

with arbitrary metric tensor is

Λ
(6,6)

M⃗,N⃗
(τ) = q

α′
4
PL
I G

IJ PL
J q̄

α′
4
PR
I G

IJ PR
J ,

PL
I = mI +GIJnJ , PR

I = mI −GIJnJ , I = 4, . . . , 9 ,
(3.1.9)

and can be split into a four-dimensional lattice along T 4 and a two-dimensional one along T 2,

Λ
(6,6)

M⃗,N⃗
(τ) ≡ Λ

(2,2)
m⃗′,n⃗′(τ)Λ

(4,4)
m⃗,n⃗ (τ) = q

α′
4
PL
I′G

I′J′
PL
J′ q̄

α′
4
PR
I′G

I′J′
PR
J′ × q α′

4
PL
I G

IJPL
J q̄

α′
4
PR
I G

IJPR
J . (3.1.10)

The unprimed latin indices I, J take values in {6, . . . , 9} and the primed indices take values in

{4, 5}. For the Klein-bottle and the open-string amplitudes, we define

P
(4)
m⃗ ≡ Λ

(4,4)

m⃗,⃗0
, W

(4)
n⃗ ≡ Λ

(4,4)

0⃗,n⃗
, P

(2)
m⃗′ ≡ Λ

(2,2)

m⃗′ ,⃗0
, W

(2)
n⃗′ ≡ Λ

(2,2)

0⃗,n⃗′ . (3.1.11)

The Klein bottle is much simpler since only left-right symmetric states contribute. It reads

K =
1

4

∫ +∞

0

dτ2
τ 32

{
(V4O4 +O4V4)

(
P

(4)
m⃗

η4
+
W

(4)
n⃗

η4

)
+ 32 (O4C4 + V4S4)

(
η

ϑ4

)2

− (S4S4 + C4C4)

(
P

(4)
m⃗

η4
+
W

(4)
n⃗

η4

)
− 32 (S4O4 + C4V4)

(
η

ϑ4

)2}
P

(2)
m⃗′

η4
.

(3.1.12)

For the open amplitudes, we need to define matrices γ acting on the Chan-Paton indices both

for the orientifold action (as in (1.2.15)) and the orbifold action (without exchange of the Chan-

Paton indices). For practical purpose, we also define matrices for the action without any generator

insertion which are just identity matrices. We define such matrices both for the Neumann and

Dirichlet sectors, indicated as a subscript, and for each fixed point ii′ of the appropriate T-dual

theory, indicated as a superscript. This choice leads to the use of “small matrices” whose sizes are

given by the numbers Nii′ or Dii′ . This contrasts with [159,160] where they always manipulate “big”

32× 32 matrices but consider traces of submatrices. The precise dictionary between our notations

and theirs can be found in Appendix B.2. The matrices for the actions of the generators 1, g, Ω

and Ωg, displayed as subscripts, are [159]

γii
′

N,1 = INii′ , γii
′

N,g = JNii′ , γii
′

N,Ω = INii′ , γii
′

N,Ωg = JNii′ ,

γii
′

D,1 = IDii′ , γii
′

D,g = JDii′ , γii
′

D,Ω = JDii′ , γii
′

D,Ωg = IDii′ ,
(3.1.13)
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Chapter 3. Open-string moduli stabilization

where Ik is the k × k identity matrix and for k even,

Jk =

(
0 I k

2

−I k
2

0

)
. (3.1.14)

Note the following subtlety: The matrices describing the action of the orientifold Ω and the action

of the combination Ωg are exchanged between the Neumann and Dirichlet sectors. There is another

subtlety when writing the amplitudes in the ND and DN sectors with action of the orbifold. Indeed,

one has to multiply all Neumann matrices by signs following the transformation rule,

γii
′

N,g −→ e4iπa⃗i ·⃗ajγii
′

N,g , (3.1.15)

where the index j refers to the fixed point of T 4/Z2 where the stack of D5-branes sits. This is

explained in [160] and the demonstration for the translation into our notations can be found in

Appendix B.2. Thanks to all these definitions, the annulus and Möbius strip amplitudes read

A =
1

4

∫ +∞

0

dτ2
τ 32

∑
i,i′
j,j′

{[
(V4O4 +O4V4)

(
tr(γii

′
N,1)tr(γ

jj′ −1
N,1 )

P
(4)
m⃗+a⃗i−a⃗j
η4

+ tr(γii
′

D,1)tr(γ
jj′ −1
D,1 )

W
(4)
n⃗+a⃗i−a⃗j
η4

)

− (V4O4 −O4V4) δij
(
tr(γii

′
N,g)tr(γ

jj′ −1
N,g ) + tr(γii

′
D,g)tr(γ

jj′ −1
D,g )

)(2η

ϑ2

)2

+ (O4C4 + V4S4)
(
tr(γii

′
N,1)tr(γ

jj′ −1
D,1 ) + tr(γii

′
D,1)tr(γ

jj′ −1
N,1 )

)( η

ϑ4

)2

− (O4C4 − V4S4) e
4iπa⃗i ·⃗aj(tr(γii′N,g)tr(γ

jj′ −1
D,g ) + tr(γii

′
D,g)tr(γ

jj′ −1
N,g )

)( η

ϑ3

)2 ]P (2)
m⃗′+a⃗i′−a⃗j′

η4
(3.1.16)

−
[
(S4S4 + C4C4)

(
tr(γii

′
N,1)tr(γ

jj′ −1
N,1 )

P
(4)
m⃗+a⃗i−a⃗j
η4

+ tr(γii
′

D,1)tr(γ
jj′ −1
D,1 )

W
(4)
n⃗+a⃗i−a⃗j
η4

)
− (C4C4 − S4S4) δij

(
tr(γii

′
N,g)tr(γ

jj′ −1
N,g ) + tr(γii

′
D,g)tr(γ

jj′ −1
D,g )

)(2η

ϑ2

)2

+ (S4O4 + C4V4)
(
tr(γii

′
N,1)tr(γ

jj′ −1
D,1 ) + tr(γii

′
D,1)tr(γ

jj′ −1
N,1 )

)( η

ϑ4

)2

− (S4O4 − C4V4) e
4iπa⃗i ·⃗aj(tr(γii′N,g)tr(γ

jj′ −1
D,g ) + tr(γii

′
D,g)tr(γ

jj′ −1
N,g )

)( η

ϑ3

)2 ]P (2)

m⃗′+a⃗′S+a⃗i′−a⃗j′

η4

}
.

and

M = −1

4

∫ +∞

0

dτ2
τ 32

∑
i,i′

{[
(V̂4Ô4 + Ô4V̂4)

(
tr(γii

′ T
N,Ω γ

ii′ −1
N,Ω )

P
(4)
m⃗

η̂4
+ tr(γii

′ T
D,Ωgγ

ii′ −1
D,Ωg )

W
(4)
n⃗

η̂4

)

− (V̂4Ô4 − Ô4V̂4)
(
tr(γii

′ T
N,Ωgγ

ii′ −1
N,Ωg ) + tr(γii

′ T
D,Ω γ

ii′ −1
D,Ω )

)(2η̂

ϑ̂2

)2 ]
P

(2)
m⃗′

η̂4

−
[
(Ĉ4Ĉ4 + Ŝ4Ŝ4)

(
tr(γii

′ T
N,Ω γ

ii′ −1
N,Ω )

P
(4)
m⃗

η̂4
+ tr(γii

′ T
D,Ωgγ

ii′ −1
D,Ωg )

W
(4)
n⃗

η̂4

)
− (Ĉ4Ĉ4 − Ŝ4Ŝ4)

(
tr(γii

′ T
N,Ωgγ

ii′ −1
N,Ωg ) + tr(γii

′ T
D,Ω γ

ii′ −1
D,Ω )

)(2η̂

ϑ̂2

)2 ]P (2)

m⃗′+a⃗′S

η̂4

}
,

(3.1.17)
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Massless spectrum

From these one-loop amplitudes, we can uncover the structure of the massless spectrum of the

model. In the open sector, the origin of the T 2 lattice (3.1.8) tells us what kind of strings are

massless depending on their spacetime fermion number. For bosons i.e. when F = 0, massless

states arise if, in the D3-brane pictures, the ends of the strings are attached to branes located at

the fixed points ii′ and jj′ satisfying

Massless bosons: a⃗i′ − a⃗j′ = 0⃗ ⇐⇒ i′ = j′ . (3.1.18)

For fermions i.e. when F = 1, the condition becomes

Massless fermions: a⃗i′ − a⃗j′ = ∓a⃗′S ⇐⇒


i′ = 2i′′ − 1 , j′ = 2i′′

or

i′ = 2i′′ , j′ = 2i′′ − 1

, i′′ = 1, 2 . (3.1.19)

In the NN and DD sectors, massless states also correspond to the origin of the T 4 lattice. The

condition reads

Massless NN or DD states: a⃗i − a⃗j = 0⃗ ⇐⇒ i = j , (3.1.20)

while in the ND or DN sector, the T 4 is not involved and no special condition must hold:

Massless ND states: i, j arbitrary . (3.1.21)

From this we conclude that massless NN and DD states correspond to strings stretched between

branes that are at the same T 4/Z2 fixed point. Moreover, if the string ends are attached to the same

stack of branes, this gives a massless boson while if the string crosses the T-dual Scherk–Schwarz

direction X̃5 to end on the facing stack, this produces a massless fermion. For ND states, the

conclusions apply but without the constraint for the strings to be stretched between branes that are

at the same T 4/Z2 fixed point. We can make use of our somewhat abusive pictorial representation

shown in Fig. 3.1c to draw such massless states in Fig. 3.2.

To interpret the representations in which the massless spectrum lives, we evaluate the traces

appearing in the one-loop amplitudes with the following definitions

Nii′ ≡ nii′ + n̄ii′ = trγii
′

N,1 = trγii
′ −1

N,1 = tr(γii
′ T

N,Ω γ
ii′ −1
N,Ω ) = tr(γii

′ T
N,Ωgγ

ii′ −1
N,Ωg ) ,

Dii′ ≡ dii′ + d̄ii′ = trγii
′

D,1 = trγii
′ −1

D,1 = tr(γii
′ T

D,Ωgγ
ii′ −1
D,Ωg ) = tr(γii

′ T
D,Ω γ

ii′ −1
D,Ω ) ,

(3.1.22)

and
0 ≡ i(nii′ − n̄ii′) = trγii

′
N,g = −trγii

′ −1
N,g ,

0 ≡ i(dii′ − d̄ii′) = trγii
′

D,g = −trγii
′ −1

D,g .
(3.1.23)

The traces whose value is zero are expressed as a difference i(nii′ − n̄ii′) or i(dii′ − d̄ii′) using the

fact the matrix Jk has an equal number of eigenvalues i and −i. In A+M, we read the following

field-theory spectrum:
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Bosons:
∑
i,i′

{[
nii′n̄ii′ + dii′ d̄ii′

] V4O4

η8

∣∣∣∣
0

+

[
nii′(nii′ − 1)

2
+
n̄ii′(n̄ii′ − 1)

2
+
dii′(dii′ − 1)

2
+
d̄ii′(d̄ii′ − 1)

2

]
O4V4
η8

∣∣∣∣
0

+
∑
j

[
1− e4iπa⃗i ·⃗aj

2

(
nii′dji′ + n̄ii′ d̄ji′

)
+

1 + e4iπa⃗i ·⃗aj

2

(
nii′ d̄ji′ + n̄ii′dji′

) ] O4C4

η8

∣∣∣∣
0

}
,

Fermions:
∑
i,i′′

{[
ni,2i′′−1n̄i,2i′′ + n̄i,2i′′−1ni,2i′′ + di,2i′′−1d̄i,2i′′ + d̄i,2i′′−1di,2i′′

] C4C4

η8

∣∣∣∣
0

(3.1.24)

+
[
ni,2i′′−1ni,2i′′ + n̄i,2i′′−1n̄i,2i′′ + di,2i′′−1di,2i′′ + d̄i,2i′′−1d̄i,2i′′

] S4S4

η8

∣∣∣∣
0

+
∑
j

[
1− e4iπa⃗i ·⃗aj

2

(
ni,2i′′−1dj,2i′′ + n̄i,2i′′−1d̄j,2i′′ + ni,2i′′dj,2i′′−1 + n̄i,2i′′ d̄j,2i′′−1

)
+

1 + e4iπa⃗i ·⃗aj

2

(
ni,2i′′−1d̄j,2i′′ + n̄i,2i′′−1dj,2i′′ + ni,2i′′ d̄j,2i′′−1 + n̄i,2i′′dj,2i′′−1

) ] S4O4

η8

∣∣∣∣
0

}
.

In products of SO(4) characters, the first factor indicates the Lorentz structure of the state while

the second acts like a multiplicity. For bosons, we thus read in the first line the bosonic parts of an

N = 2 vector multiplet in the adjoint representation of the open-string gauge group (3.1.4). The

second line corresponds to scalars of an hypermultiplet living in the antisymmetric ⊕ antisymmetric

representation of each unitary factor. The last line corresponds to scalars of an hypermultiplet living

in the fundamental ⊗ fundamental or fundamental ⊗ fundamental of U(nii′)×U(dji′) depending on

the sign e4iπa⃗i ·⃗aj . The fermions are all parts of hypermultiplets in the fundamental ⊗ fundamental

or fundamental ⊗ fundamental of products of unitary factors “facing each other” along the Scherk–

Schwarz direction X̃5. As we saw, these factors are at the same T 4/Z2 or T̃ 4/Z2 fixed points for

NN and DD states and at arbitrary fixed points for ND and DN states. In total, we can count the

number of massless bosonic and fermionic degrees of freedom in the open sector:

nopen
B = 4

[
2
∑
ii′

(
n2
ii′ + d2ii′

)
+
∑
i,i′,j

nii′dji′ − 32

]
,

nopen
F = 4

[
4
∑
i,i′′

(ni,2i′′−1ni,2i′′ + di,2i′′−1di,2i′′) +
∑
i,i′′,j

(ni,2i′′−1dj,2i′′ + ni,2i′′dj,2i′′−1)

]
.

(3.1.25)

We end this section by mentioning the closed-string massless spectrum. The Scherk–Schwarz

mechanism gives a mass to all fermions since, contrary to the open sector with the Wilson lines,

nothing can compensate the shift. The massless spectrum is thus the bosonic part of the BSGP

spectrum. From a six-dimensional point of view, there are the (6− 2)× (6− 2) on-shell degrees of

freedom associated with G + C along the extended dimensions and the 4 × 4 degrees of freedom

associated with G+C along the four internal directions. In addition, there are 4 scalars in each of

the 16 twisted hypermultiplets. This yields

nclosed
B = 4× (4 + 4 + 16) , nclosed

F = 0 . (3.1.26)
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Chapter 3. Open-string moduli stabilization

(a) Bosonic NN and DD states (solid strings) are massless
when they correspond in the D3-brane picture to strings with
both ends attached to the same stack of branes. By contrast,
fermionic NN and DD states (dashed strings) are massless
when they correspond to strings stretched between corners
of the six-dimensional box that are adjacent along the T-dual
Scherk–Schwarz direction.

(b) ND states correspond to strings stretched between a stack
of D3-branes T-dual to D9-branes and a stack of D3-branes
T-dual to D5-branes. Bosonic ND states (solid strings) are
massless when the stacks are located on corners with common
coordinates in T̃ 2/I45. Fermionic ND states (dashed strings)
are massless when the corners have common coordinate X̃4

and distinct coordinate X̃5.

Figure 3.2: Open-string massless modes.

The total number of bosonic and fermionic degrees of freedom in the model, taking into account

both the open- and closed-string sector, is

nF − nB = 4
[
8− 2

∑
i,i′′

(ni,2i′′−1 − ni,2i′′)2 − 2
∑
i,i′′

(di,2i′′−1 − di,2i′′)2

−
∑
i,i′′,j

(ni,2i′′−1 − ni,2i′′) (dj,2i′′−1 − dj,2i′′)
]
.

(3.1.27)

As it will be useful in the next subsection, let us summarize all degrees of freedom and their

representations under the gauge groups U(ni,2i′′−1) and U(ni,2i′′) for i ∈ {1, . . . , 16} and i′ ∈ {1, 2}
(the counting for U(di,2i′′−1) and U(di,2i′′) is the same up to the exchange n↔ d). The summary is

given in Table. 3.1.

3.1.3 Stability conditions

In this section, we compute the masses of the moduli in the NN and DD sector and describe

a generalized Green–Schwarz mechanism occurring in our setup. The signs of the masses can

be computed in a quick way with the sole knowledge of the massless spectrum and the various

representations under which it transforms. A less subtle way to proceed is to Taylor expand the

one-loop potential with respect to the moduli and extract the mass term. We will show the two
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Chapter 3. Open-string moduli stabilization

Massless representations of U(ni,2i′′−1)

Bosonic degrees of freedom: Fermionic degrees of freedom:

• 4 adjoint • 8ni,2i′′ (fundamental ⊕ fundamental)
• 4 (antisymmetric ⊕ antisymmetric)

• 2
∑
j

dj,2i′′−1 (fundamental ⊕ fundamental) • 2
∑
j

dj,2i′′ (fundamental ⊕ fundamental)

Massless representations of U(ni,2i′′)

Bosonic degrees of freedom: Fermionic degrees of freedom:

• 4 adjoint • 8ni,2i′′−1 (fundamental ⊕ fundamental)
• 4 (antisymmetric ⊕ antisymmetric)

• 2
∑
j

dj,2i′′ (fundamental ⊕ fundamental) • 2
∑
j

dj,2i′′−1 (fundamental ⊕ fundamental)

Table 3.1: Representations of U(ni,2i′′−1) and U(ni,2i′′) into which the massless degrees of freedom are organized.

derivations and conclude that they fully agree between each other. In our setup, a generalized

Green–Schwarz mechanism takes place, that can generate a tree-level mass for some of the NN

and DD moduli as well as for some quaternionic scalars, thus improving the global stability of the

model. After the description of this mechanism, we give the result for the masses of the scalars

in the ND sector of the theory. The detailed computation of these masses thanks to two-point

correlation functions is performed in the last section 3.2 of this chapter. The subsection ends with

a brief discussion on the moduli in the closed-string sector.

Quick answer with Dynkin indices

As we will see in Chapter 4, one can derive an expression for the one-loop potential in a heterotic

framework with arbitrary Wilson lines and supersymmetry breaking à la Scherk–Schwarz under

the assumption of a low supersymmetry-breaking scale M and absence of lower scales [44, 56, 57].

Let us assume a gauge group G decomposed into factors like G =
∏

κ Gκ. Applied to a four-

dimensional setup with breaking along direction X5 and denoting generically the Wilson lines yIrκ
where rκ ∈ {1, . . . , rankGκ} indicates the Cartan U(1) under consideration for the gauge factor Gκ
and I denotes the internal directions (up to 26 in heterotic string), the expression reads

V1-loop = ξd(nF−nB)M
4 + ξd−2

∑
κ

∑
u

(
TR(κ)

Bu
− TR(κ)

Fu

)( 26∑
I=4
̸=5

(yIrκ)
2

3G55
+(y5rκ)

2
)
M4 + · · · . (3.1.28)

In this formula, ξd and ξd−2 with d = 4 in this case are positive coefficients which capture the

contributions of the Kaluza-Klein modes propagating along the Scherk–Schwarz direction. The nB

and nF massless degrees of freedom at zero Wilson lines transform into irreducible representations

R(κ)
Bu and R(κ)

Fu labelled by an index u, of the gauge factor Gκ. Then, TR(κ)
Bu

and TR(κ)
Fu

are the Dynkin

indices of these representations. The signs of the masses of the Wilson lines yIrκ can consequently

be extracted from the following formula:

∂2V
(∂yIrκ)

2

∣∣∣∣
y=0

∝
∑
u

TR(κ)
Bu
−
∑
u

TR(κ)
Fu
, rκ = 1, . . . , rankGκ , I = 4, . . . , 26 . (3.1.29)
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The sole knowledge of the representations and the corresponding Dynkin indices allows to establish

the tachyonic nature or not of the Wilson lines. Let us apply this to our model with spectrum

(3.1.24).

The Wilson lines along T 2 are true Wilson lines so that the formula can be applied as it is,

using the Dynkin indices of unitary groups. They can be found in Table. 3.2. Thanks to the list of

representations in Table. 3.1, we conclude that the masses2 are proportional to

4(ni,2i′′−1 − ni,2i′′ − 1) +
16∑
j=1

(dj,2i′′−1 − dj,2i′′) for U(ni,2i′′−1) ,

4(ni,2i′′ − ni,2i′′−1 − 1) +
16∑
j=1

(dj,2i′′ − dj,2i′′−1) for U(ni,2i′′) ,

4(di,2i′′−1 − di,2i′′ − 1) +
16∑
j=1

(nj,2i′′−1 − nj,2i′′) for U(di,2i′′−1) ,

4(di,2i′′ − di,2i′′−1 − 1) +
16∑
j=1

(nj,2i′′ − nj,2i′′−1) for U(di,2i′′) .

(3.1.30)

The above expressions are valid for unitary factors of rank at least two but can be extended to the

U(1) case thanks to the universality of the U(1) charges.

Gauge factor Gκ Representation R(κ)
u dimR(κ)

u T
(κ)
Ru

SU(q), q ≥ 2 fundamental q 1

fundamental q 1
adjoint q2 − 1 2q

antisymmetric q(q−1)
2 q − 2

antisymmetric q(q−1)
2 q − 2

SO(p), p ≥ 2 fundamental p 1

adjoint p(p−1)
2 p− 2

Table 3.2: Dimensions and Dynkin indices of representations of special orthogonal and unitary groups. The Dynkin
indices of the fundamental representations are normalized to 1 by convention.

One cannot apply directly the method of Dynkin indices for unitary gauge groups to establish

the masses of the D3-branes positions along T 4/Z2 or T̃
4/Z2 in the correct T-dual framework. But

a careful look at the loop amplitudes A and M reveals that such moduli only appear in the NN

and DD sectors where the Z2 orbifold g does not act. This means that up to an overall 1
2
factor,

the contributions of these moduli to the one-loop potential are those of the parent N = 4→ N = 0

theory studied in [58] showing orthogonal gauge groups. In the parent theory, stacks of Ni,2i′′−1

and Ni,2i′′ D3-branes T-dual to original D9-branes produce a gauge group SO(Ni,2i′′−1)×SO(Ni,2i′′).

There are 8 bosons in the adjoint representation of SO(Ni,2i′′−1) and 8Ni,2i′′ in the fundamental

coming from bifundamentals of the two gauge factors. The representations of SO(Ni,2i′′) are the

same up to the exchange Ni,2i′′−1 ↔ Ni,2i′′ . With the Dynkin indices for orthogonal groups displayed

2Before implementation of the Green–Schwarz mechanism.

52



Chapter 3. Open-string moduli stabilization

in Table. 3.2, we conclude as in [58] that the masses are proportional to

Ni,2i′′−1 −Ni,2i′′ − 2 for SO(Ni,2i′′−1) ,

Ni,2i′′ −Ni,2i′′−1 − 2 for SO(Ni,2i′′) .
(3.1.31)

In the N = 2→ N = 0 model, this translates into the following masses for the moduli along T 4/Z2

or T̃ 4/Z2 (both for D3-branes T-dual to the original D9-branes or T-dual to the original D5-branes)

ni,2i′′−1 − ni,2i′′ − 1 for U(ni,2i′′−1) , ni,2i′′−1 ≥ 2 ,

ni,2i′′ − ni,2i′′−1 − 1 for U(ni,2i′′) , ni,2i′′ ≥ 2 ,

di,2i′′−1 − di,2i′′ − 1 for U(di,2i′′−1) , di,2i′′−1 ≥ 2 ,

di,2i′′ − di,2i′′−1 − 1 for U(di,2i′′) , di,2i′′ ≥ 2 .

(3.1.32)

These formulas only hold for unitary factors of rank at least two since for U(1)’s, the D3-branes are

rigid along T 4/Z2 or T̃ 4/Z2.

Taylor expansion of the potential

Let us recover these results by a direct computation of the one-loop potential and a Taylor expansion

up to quadratic order with respect to the moduli to obtain their masses. The first step is to express

the potential in terms of arbitrary continuous D3-branes positions 2πaIα (for original D9-branes)

and 2πbIα (for original D5-branes), α ∈ {1, . . . , 32} and I ∈ {4, . . . , 9}. These positions are defined

as fluctuations ϵIα and ξIα around the fixed points:

aIα = ⟨aIα⟩+ ϵIα , ⟨aIα⟩ ∈
{
0,

1

2

}
, bIα = ⟨bIα⟩+ ξIα , ⟨bIα⟩ ∈

{
0,

1

2

}
. (3.1.33)

The regime in which we perform the computation is characterized by a large Scherk–Schwarz direc-

tion and the absence of mass scales below the supersymmetry-breaking scale. More precisely, this

translates into

G55 ≪ G44, |GIJ | ≪ G55 , |G45|, |G5J | ≪
√
G55 , I, J = 6, . . . , 9 , G55 ≫ 1 . (3.1.34)

The computation of the potential is carried in Appendix. B.3 for a lighter main text and the result

takes the following form:

V1-loop =
Γ
(
5
2

)
π

13
2

M4
∑
l5

N2l5+1(ϵ, ξ, G)

|2l5 + 1|5 +O
(
(MsM)2e−2πcMs

M

)
, (3.1.35)

where c is an order one positive constant and

N2l5+1(ϵ, ξ, G) = nclosed
F − nclosed

B +N open
2l5+1(ϵ, ξ, G) , (3.1.36)

with N open
2l5+1(ϵ, ξ, G) capturing the dependence of the potential on ϵIα and ξIα and which is displayed

in (B.3.14).

Before expanding to quadratic order, the potential must be expressed in terms of the dynamical

degrees of freedom only. Denoting such degrees of freedom with an index r, we already explained
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that they take the form

ϵIr , I = 6, . . . , 9, r = 1, . . . ,
∑
i,i′

⌊Nii′

4

⌋
=
∑
i,i′

⌊nii′
2

⌋
≤ 8− R̃

2
,

ξIr , I = 6, . . . , 9, r = 1, . . . ,
∑
i,i′

⌊Dii′

4

⌋
=
∑
i,i′

⌊dii′
2

⌋
≤ 8− R

2
,

ϵI
′
r′ , ξ

I′
r′ , I ′ = 4, 5, r′ = 1, . . . , 16 ,

(3.1.37)

which reflects the fact that 16 fluctuations along T 2 are dynamical while only a maximum of 8 are

dynamical along T 4/Z2 or T̃
4/Z2 depending on the numbersR and R̃ of frozen D3-branes pairs. We

further label by i(r)i′(r) the corner in the appropriate T-dual picture around which the fluctuations

occur and by i(r)̂ı(r) the corner facing i(r)i′(r) along the Scherk–Schwarz direction. We use similar

definitions for the index r′. The expansion up to quadratic term yields

N2l5+1(ϵ, ξ, G) = nF − nB + 32π2(2l5 + 1)2

{
∑
r

(
ni(r)i′(r) − ni(r)ı̂′(r) − 1

)
ϵIr∆

IJϵJr +
∑
r

(
dj(r)j′(r) − dj(r)ȷ̂′(r) − 1

)
ξIr∆IJξ

J
r

+
∑
r′

(
ni(r′)i′(r′) − ni(r′)ı̂′(r′) − 1 +

1

4

∑
i

(
dii′(r′) − dîı′(r′)

))
ϵI

′
r′∆

I′J ′
ϵJ

′
r′ (3.1.38)

+
∑
r′

(
dj(r′)j′(r′) − dj(r′)ȷ̂′(r′) − 1 +

1

4

∑
j

(
njj′(r′) − njȷ̂′(r′)

))
ξI

′
r′∆

I′J ′
ξJ

′
r′

+O
(
ϵ4, ξ4

)}
.

The delta tensors involved in this expression are

∆I′J ′
=

1

3

(
GI′J ′

G55
+ 2

G5I′

G55

G5J ′

G55

)
, ∆IJ =

2

3

GIJ

G55
, ∆IJ =

2

3

GIJ

G55
, (3.1.39)

and have positive eigenvalues. The signs of the masses are thus given by the signs of the various

prefactors which reproduce exactly what we found with the Dynkin indices. The result (3.1.38)

also demonstrates that the configurations with D3-branes at fixed points in the T-dual pictures

correspond to extremal points for the one-loop potential since there is no linear term.

Generalized Green–Schwarz mechanism

Moduli found to be unstable after the study performed so far may not necessarily be tachyonic after

a generalized Green–Schwarz mechanism is taken into account in the model [160]. In the original

supersymmetric BSGP T 4/Z2 model in six dimensions, the anomalies cancel in a non-trivial way. At

the level of the effective action, there are tree-level couplings between the R-R fields (the two-form

C and the 16 four-form Ci
4, i ∈ {1, . . . , 16}) and the Cartan U(1)’s of the gauge group which is

simply that of the four-dimensional model (3.1.4) but without the primed index:∏
i

U(ni)× U(di) , (3.1.40)
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with the tadpole condition
∑

i ni =
∑

i di = 16. Denoting Fa = dAa, a = 1, . . . , 16 the field

strengths of the Cartan U(1)’s of
∏

iU(di) and Fa = dAa, a = 17, . . . , 32 those of
∏

iU(ni), the

tree-level couplings are

∑
i,a

cia

∫
Ci

0 ∧ F 3
a +

∑
i,a

cia

∫
Ci

4 ∧ Fa =
∑
i

∫ (
Ci

0 +
∑
a

ciaAa

)
∧ ⋆
(
Ci

0 +
∑
b

cibAa

)
. (3.1.41)

The coefficients cia have the following expressions:

cia = 4δa∈i , for a = 1, . . . , 16 ,

cia = −e4iπa⃗i ·⃗aj(a) , for a = 17, . . . , 32 ,
(3.1.42)

where δa∈i = 1 when the a-th U(1) belongs to the Cartan subalgebra of U(di), and δa∈i = 0 otherwise.

Moreover, j(a) indicates the fixed point of T̃ 4/Z2 which supports the Cartan U(1) labelled by

a ∈ {17, . . . , 32} of ∏iU(ni). From (3.1.41), we extract the tree-level mass term generated for the

abelian vectors,

1

2

∑
a,b

AaM2
abAb where the mass matrix is M2

ab =
∑
i

ciacib . (3.1.43)

The non-zero eigenvalues of the mass matrix tell us which combinations of abelian U(1)’s eat a

field Ci
0 and get a tree-level mass so that they are ensured to be stable at one loop. Supersymmetry

implies that as many quaternionic scalars as eaten Ci
0’s also get a mass. It is shown [160] that the

number of non-zero eigenvalues for the mass matrix is at least 2 and at most 16. This is because if

there are fewer than 16 unitary factors (at least two are present in the U(16) × U(16) case), they

are all broken to SU groups while if there are more than 16 unitary factors, a maximum of 16 are

broken.

Let us write Pab the orthogonal transformation which diagonalizes the mass matrix such that

Aa ≡ PabÂb. When the theory is compactified on an additional T 2, the Wilson lines along this T 2

are ÂI
′
a , I

′ ∈ {4, 5}. In addition to the mass term generated by the one-loop potential, transformed

in the diagonal basis, the Wilson lines ÂI
′
a get the tree-level mass contribution M̂2

a which is defined

to be the a-th eigenvalue of the mass matrix. In total, the mass terms are

ÂI
′
a

[
M̂2

aδabδI′J ′ + Pca
∂V1-loop
∂ÂI′c ∂Â

I′
d

Pdb
]
ÂI

′
b . (3.1.44)

With our notations (3.1.37), ÂI
′
a is simply ξI

′
a when a ∈ {1, . . . , 16} and ϵI′a−16 when a ∈ {17, . . . , 32}.

The tree-level mass always dominates the one-loop contribution in the regime of low supersymmetry-

breaking scale. Hence, the Wilson lines ÂI
′
a for which the eigenvalue M̂2

a is non-zero can safely be

set to zero during the one-loop stability analysis. If we label the remaining non-zero Wilson lines

with an index u or v, their stability at one loop depends on the eigenvalues of the submatrix

Pcu
∂V1-loop
∂ÂI′c ∂Â

I′
d

Pdv . (3.1.45)

Non-negative eigenvalues are required to ensure the absence of tachyonic instabilities.
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Let us look at the simplest realization of the generalized Green–Scwharz mechanism in (naively)

[U(16)]DD × [U(16)]NN configurations3 and see how it affects the Wilson lines along T 2. We will

discuss all other moduli in the next subsection since here, we simply want to illustrate the Green–

Scwharz mechanism. In each T-dual pictures, the 32 D3-branes are gathered in a single stack. We

assume the stack of D3-branes T-dual to D5-branes to sit at fixed point i0 along T 4/Z2 and we

assume the stack of D3-branes T-dual to D9-branes to sit at fixed point j0 along T̃ 4/Z2. In four

dimensions, three inequivalent configurations exist depending on the relative positions of the two

stacks inside the T̃ 2/I45. Mixing the two T-dual pictures, the three configurations are depicted

in Fig. 3.3 where orange branes correspond to D3-branes T-dual to D5-branes and the green ones

correspond to D3-branes T-dual to D9-branes.

32

32
X̃4

X̃5

T 4, T̃ 4

Direction of Scherk-Schwarz

(a) The two stacks of 32 D3-branes T-
dual to the D5- or D9-branes have com-
mon positions in T̃ 2/I45.

32

32

X̃4

X̃5

T 4, T̃ 4

Direction of Scherk-Schwarz

(b) The two stacks have the same co-
ordinates along X̃4 and distinct coor-
dinates along X̃5.

32

32

X̃4

X̃5

T 4, T̃ 4

Direction of Scherk-Schwarz

(c) The two stacks have distinct coor-
dinates along X̃4.

Figure 3.3: The simplest D3-branes configurations in component (R, R̃) = (0, 0) of the Wilson lines moduli space.

For clarity, let us define r′ ≡ a when a ∈ {1, . . . , 16} and r̃′ ≡ a − 16 when a ∈ {17, . . . , 32}
(this means that r′ refers to the original D5-branes and r̃′ to the original D9-branes). With these

definitions and in such configurations, the cia coefficients yield the following 32 × 32 mass matrix

M2 expressed in terms of 16× 16 blocks,

M2 =

(M2
r′s′ M2

r′s̃′

M2
r̃′s′ M2

r̃′s̃′

)
, (3.1.46)

where the blocks are given by

M2
r′s′ = 16 , M2

r′s̃′ = −4 e4iπa⃗i0 ·⃗aj0 ,
M2

r̃′s′ = −4 e4iπa⃗j0 ·⃗ai0 , M2
r̃′s̃′ = 16 .

(3.1.47)

3The subscripts DD or NN indicate if the gauge factors arise from the original D5-branes or D9-branes respectively.

56



Chapter 3. Open-string moduli stabilization

Such a matrix always has 30 zero eigenvalues and 2 strictly positive ones. This indicates that two

U(1)’s disappear and the naive U(16)×U(16) gauge group is actually broken to SU(16)× SU(16).

From (3.1.30) or (3.1.38), we conclude that in the three configurations, the Wilson lines along T 2

are massive since the exhibited coefficients are equal to 19, 11 or 16 respectively for the configurations

displayed in Figs. 3.3a, 3.3c and 3.3c. Thus, of course, the Green–Schwarz mechanism does not

change the stability conclusions for those moduli. But still, it removes two combinations that

are deduced from the eigenvectors of the mass matrix associated with the non-zero eigenvalues by

allowing us to set them to zero:

−
∑
r′

ξI
′
r′ +

∑
r̃′

ϵI
′
r̃′ = 0 and

∑
r′

ξI
′
r′ +

∑
r̃′

ϵI
′
r̃′ = 0 . (3.1.48)

After removal of these two combinations, the resulting 30× 30 one-loop mass matrix still has only

strictly positive eigenvalues of course.

Moduli in the Neumann–Dirichlet sector

As explained before, the computation of the one-loop masses of these moduli is performed in

Sect. 3.2. They correspond to strings stretched between stacks of D5-branes and D9-branes in

the original picture and they transform in bifundamental representations of gauge groups U(nii′)×
U(dji′). Note that the two T 2 indices must be identical to produce massless states at tree level. In

our pictorial representations with D3-branes, this means that massless ND scalars arise only if some

orange and green stacks share the same position in T̃ 2/I45, whatever their positions along T
4/Z2 or

T̃ 4/Z2.

Here, we only display the sign-dependent part of the final result to be able to fully conclude on

the stability of some models in the next subsection. The result is only known up to subdominant

corrections of order α′/G2
55. We have

M2
ND ∝ (nii′ − nîı′ − 1 + dji′ − njı̂′ − 1) +O

(
α′

G2
55

)
. (3.1.49)

Closed-string moduli

The last moduli that need to be discussed, apart from the ND scalars whose stability study is

postponed to the last section of this chapter, are those of the closed-string sector. Thanks to the

Green–Schwarz mechanism, at least 2 and up to 16 quaternionic scalars get a mass at tree level. In

configurations where some of them do not acquire a tree-level mass, we have not computed their

one-loop masses. The closed-sector contribution to the one-loop potential is given in (3.1.35) and

depends only on M =
√
G55 up to exponentially suppressed contributions. All other components

GIJ are flat directions at one loop. When nF ̸= nB, M undergoes a runaway while in configurations

such that nF = nB, M is also a flat direction (up to the suppressed contributions).

For the R-R two-form components CIJ , such a straightforward method cannot be followed since

the partition function in presence of vacuum expectation values for these fields is unknown. However,

they can be argued to be flat directions as well (up to the exponentially small terms), using heterotic-

type I duality arguments. Such a duality in four dimensions is a weak/weak correspondence [161–

164] and C is mapped to the antisymmetric tensor B on the heterotic side. Without the orbifold

action, as explained in Sect. 4.2.1 in Chapter 4, the deformations of the Narain lattice on the

57



Chapter 3. Open-string moduli stabilization

heterotic side are parametrized by (G + B)IJ as well as Wilson lines of a rank 16 gauge group

along the compactified directions. At specific values of (G+ B)IJ , symmetry enhancements occur

and additional states become massless which contribute to the effective potential when running

in the loop. These states have non-trivial winding numbers and produce a dependence of the

potential on (G+B)IJ (see for instance (4.2.6)). On the type I side, these winding states have no

non-perturbative counterparts. They are mapped to D1-branes belonging to the non-pertubative

spectrum and thus the components CIJ should be flat directions of the one-loop potential up to

exponentially suppressed terms.

Considering now the effect of the Z2 orbifold on the heterotic side, it turns out that the states in

the twisted sector cannot induce symmetry enhancements. Non-trivial winding states in this sector

are thus necessarily massive and give exponentially suppressed contributions in the potential so that

the previous conclusion about the independence of the potential on CIJ on the type I side (where

the twisted winding states are mapped to “twisted D1-branes”) still holds. Moreover, the presence

of the Scherk–Schwarz breaking of supersymmetry is expected not to spoil the heterotic-type I

equivalence using the adiabatic argument [165].

3.1.4 Stability synthesis

We are now able to conclude on the stability or not of different models.

SU(16) × SU(16) configurations

Let us begin by completing the discussion of the three typical configurations displayed in Fig. 3.3.

We saw that two combinations of Wilson lines along T 2 are massive at tree-level and that all the

others are massive at one loop. Along T 4, the results (3.1.32) or (3.1.38) show that everything is

massive since the coefficients are equal to 15. There are 14 remaining quaternionic scalars whose

stability is unknown and the model of Fig. 3.3a contains massless scalars in the ND sector since

the two stacks are at the same T̃ 2/Z2 position. The application of the result (3.1.49) gives a

proportionality coefficient 30 for the mass squared of these scalars so that they are massive at one

loop. If we define δ such that

� δ = +1 if i′0 = j′0 (like in Fig. 3.3a),

� δ = −1 if i′0 and j′0 are facing each other along X̃5 (like in Fig. 3.3b),

� δ = 0 if i′0 and j′0 do not have the same position along X̃4 (like in Fig. 3.3c),

then we conclude from (3.1.27) that the model satisfies nF − nB = −4064− 1024δ which is strictly

negative whatever δ. The breaking scale M thus runs away and as argued in the last subsection,

all other untwisted closed-string moduli are flat directions up to suppressed contributions.

A model in the branch (R, R̃) = (16, 16)

The models in this branch are characterized by the presence of 16 stacks of two D3-branes associated

to D5-branes and 16 stacks of two D3-branes associated to D9-branes spread along the 16 fixed points

of T 4/Z2 and T̃
4/Z2. In such configurations, everything is rigid along T 4 and the gauge group before

Green–Schwarz mechanism is [U(1)16]DD × [U(1)16]NN. The blocks of the mass matrix which takes
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the same form (3.1.46) are now

M2
r′s′ = 16δr′s′ , M2

r′s̃′ = −4e4iπa⃗i(r′) ·⃗ai(s̃′) ,
M2

r̃′s′ = −4e4iπa⃗i(r̃′) ·⃗ai(s′) , M2
r̃′s̃′ = 16δr̃′s̃′ .

(3.1.50)

The matrix has 16 positive eigenvalues and 16 vanishing ones as expected (16 is the maximum

possible positive eigenvalues when the number of unitary factors exceeds 16). Thus, 16 combinations

of Wilson lines along T 2 can be set to zero according to the eigenvectors associated with the positive

eigenvalues. They can be used for example to eliminate all the ϵI
′
r̃′ degrees of freedom:

4ϵI
′
r̃′ = −

∑
s′

e4iπa⃗i(r̃′) ·⃗ai(s′)ξs′ . (3.1.51)

In this case, the whole 16 quaternionic scalars also get a tree-level mass and the gauge group is

broken to U(1)16.

Let us study an interesting case where the naive tachyonic instabilities induced by some Wilson

lines along T 2 actually disappear thanks to the Green–Schwarz mechanism. The corresponding

brane configuration is depicted in Fig. 3.4.

X̃4

X̃5

T 4, T̃ 4

Direction of Scherk-Schwarz

Figure 3.4: 15 pairs of each kind are located at the same T̃ 2/I45 fixed point and the remaining pairs, shifted along
X̃4, are facing each other along X̃5.

We can read from (3.1.30) or (3.1.38) that the mass coefficients associated with the 2× 15 pairs

of branes are equal to 15
4

while those associated with the two remaining stacks are equal to −1
4
.

However, the elimination of the ϵI
′
r̃′ thanks to (3.1.51) yields the following 16× 16 submatrix of the

one-loop mass matrix in the correct basis:

1

2


29

(0). . .

(0)
29

13

− 1

2


0

(1)...

(1)

...

0

 . (3.1.52)
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This matrix has only positive eigenvalues so we conclude that the naive instability is washed out

by the Green–Schwarz mechanism. In such configurations though, the ND scalars are found to be

massless up to the subdominant contributions in (3.1.49). Also, the breaking scale runs away since

we have in this case nF − nB = −1120.

Models with nF − nB = 0

As one can expect from the typical expression of the one-loop potential (3.1.28), uplifting the

potential while maintaining stability of the moduli is not easy to achieve. This is because the

uplifting requires to increase the number of massless fermions and lower the number of massless

bosons while improving stability requires the opposite. In an N = 4 → N = 0 framework [58],

stable models with zero or positive potential were indeed very rare.

In order to find stable models with a non-negative potential in our setup, we performed a nu-

merical exploration of all possibilities in all consistent non-perturbative branches. The exploration

goes as follows:

� For each non-perturbatively consistent component of the moduli space, we loop over all possible

distributions of D3-branes in T 4/Z2 and T̃ 4/Z2.

� For each such distributions, the tree-level mass matrixM2 of the Cartan U(1)’s is computed

and diagonalized.

� We then loop over all possible distribution of the D3-branes along the T̃ 2/I45 and we check

that the positions in T 4/Z2 and T̃ 4/Z2 given in (3.1.32) or (3.1.38) are non-tachyonic.

� Before going further and apply the Green–Scwharz mechanism to the positions along T̃ 2/I45,

we reject all distributions for which nF − nB < 0 thanks to (3.1.27).

� For each distribution that reaches this step, we compute the naive mass matrix for the Wilson

lines along T̃ 2/I45 with (3.1.30) or (3.1.38), we go to the basis which diagonalizes M2, we

remove the combinations that get a tree-level mass and we diagonalize again the resulting

(smaller) mass matrix. Configurations for which this matrix possesses at least one strictly

negative eigenvalue are rejected.

Only eight models are found to pass all these filters among the hundreds of billions of possibilities

and three of them have an exponentially suppressed one-loop potential (nF − nB = 0). Let us de-

scribe theses three models in detail and check the status of the moduli not treated by the numerical

exploration. The brane configurations of these three models are drawn in Fig. 3.5.

• The model displayed in Fig. 3.5a contains 16 unitary factors from a six-dimensional point of view

(and 17 in four dimensions). Thus, 16 U(1)’s disappear from the naive gauge group [U(1)7×U(2)×
U(7)]DD × [U(1)6 × U(5)2]NN to yield

Model (a): U(1)× SU(2)× SU(7)× SU(5)2 . (3.1.53)

Also, the 16 quaternionic scalars get a tree-level mass. Of course, because the model has survived to

all filters, all dynamical D3-branes positions are non-tachyonic and turn out to be strictly massive.

No ND scalars exist in this model and, up to suppressed terms, all closed-string moduli are flat
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directions of the potential, even the breaking scale M thanks to the Bose/Fermi degeneracy at the

massless level. The massless bosons are the bosonic parts of N = 2 vector multiplets in the adjoint

representations of the groups in (3.1.53) together with the scalars of hypermultiplets in antisym-

metric ⊕ antisymmetric of the non-abelian factors. This gives nopen
B = 800 and the closed sector

contributes with nclosed
B = 96 for a total of nB = 896. The massless fermions are the fermionic part

of hypermultiplets in the ND sector in bifundamental representations of all pairs of gauge factors

(one N and one D) facing each other along X̃5 in Fig. 3.5a. This gives nF = 4 × 14 × 16 = 896,

which exactly compensates the bosonic degrees of freedom.

• The model displayed in Fig. 3.5b also contains 16 unitary factors from a six-dimensional point of

view (and 17 in four dimensions). Thus, 16 U(1)’s disappear from the naive gauge group which is

slightly different than in model (a), [U(1)7 × U(3)× U(6)]DD × [U(1)6 × U(5)2]NN to yield

Model (b): U(1)× SU(3)× SU(6)× SU(5)2 . (3.1.54)

The 16 quaternionic scalars get a tree-level mass and all dynamical D3-branes positions are strictly

massive. No ND scalars exist in this model and all closed-string moduli are flat directions of the

potential. In this case, the counting of massless degrees of freedom yields nB = nF = 832.

14 10

10
X̃4

X̃5

T 4, T̃ 4

Direction of Scherk-Schwarz

(a) Configuration tachyon-free at one
loop with gauge group U(1)× SU(2)×
SU(7)× SU(5)2.

12 10

10
X̃4

X̃5

T 4, T̃ 4

Direction of Scherk-Schwarz

(b) Configuration tachyon-free at one
loop with gauge group U(1)× SU(3)×
SU(6)× SU(5)2.

8

8+2

8

8

10

X̃4

X̃5

T 4, T̃ 4

Direction of Scherk-Schwarz

(c) Configuration tachyon-free at one
loop with gauge group U(1)2×SU(4)4×
SU(5) up to stability of two quater-
nionic scalars.

Figure 3.5: Two brane configurations (a) and (b) in component (R, R̃) = (8, 8) of the moduli space, and one
configuration (c) in component (R, R̃) = (0, 8). They all have a Bose/Fermi degeneracy at the massless level and
thus an exponentially suppressed potential.

• The model displayed in Fig. 3.5c contains only 14 unitary factors from a six-dimensional point of

view (and 16 in four dimensions). Thus, 14 U(1)’s disappear from the naive gauge group [U(4)4]DD×
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[U(1)11× U(5)]NN to yield

Model (c): U(1)2 × SU(4)4 × SU(5) . (3.1.55)

Only 14 quaternionic scalars get a tree-level mass and the stability status of the remaining two is

unknown. All dynamical D3-branes positions are massless except one that is strictly massive. The

model contains ND scalars whose “mass” is given by (3.1.49). Applied with Nii′ = 1, Nîı′ = 0 (in

Fig. 3.5c, it corresponds to the stack of two green branes mixed with the orange ones) and Dji′ = 8,

Djı̂′ = 0 (it correspond to one of the four stacks of eight orange branes in the figure), we have

(nii′ − nîı′ − 1 + dji′ − njı̂′ − 1) = 3 > 0 . (3.1.56)

We thus conclude that the ND scalars are massive. All closed-string moduli are flat directions of

the potential and the counting of massless degrees of freedom gives nB = nF = 832.

3.2 Mass of Neumann–Dirichlet scalars

This section is dedicated to the computation of the mass of scalars in the ND sector of the BSGP

model. The followed strategy is to evaluate the one-loop two-point correlation function of such states

to extract their mass from it. The difficulty of this evaluation is due to the presence of boundary-

changing fields [166] in the vertex operators of the ND states that handle the change of boundary

conditions from Neumann to Dirichlet on the wolrdsheet. It is the evaluation of correlators of

boundary-changing fields involved in the two-point correlation function that constitutes a hard task.

The correspondence between these boundary-changing fields and so-called twist fields for closed-

strings, that are the operators that create states in twisted sectors of non-freely acting orbifolds

in the Hilbert space, is a key ingredient to evaluate the correlators of such fields at one loop.

Indeed, the boundary-changing and the twist operators share the same OPE’s [166, 167] so that

their correlation functions are linked. To go from the closed string to the open string at one-loop,

it is useful to define the Euler characteristic zero open-string surfaces from doubly-covering tori

modded by involutions [115,162,168,169].

In this section, we will derive the full expression of the one-loop two-point correlation function of

the scalars in the ND sector and find the field-theory limit of this quite involved result. Note that

the Appendix C.1 reviews the twist-field technology at one loop, necessary to evaluate correlators

involving the boundary-changing fields by using the correspondence between those two kind of

operators. References to this appendix will be done but it has been chosen not to incorporate it in

the main text for a less technical manuscript. From the field-theory limit, we will be able to justify

the expression (3.1.49) that we used to conclude on the stability of these moduli in the previous

section.

3.2.1 Two-point correlation functions of ND moduli

We want to evaluate the one-loop two-point correlations functions of scalars in the ND sector. Such

kinds of correlation functions involving Neumann–Dirichlet states have already been computed in

the literature in supersymmetric theories, either at tree level [170–175] or at one loop [176–181].

In this subsection, we give a precise definition of what we want to compute and then we express

the relevant vertex operators for ND states to derive the two-point correlation function in terms

of various correlators whose expressions are given afterwards, in a new subsection, for clarity. The
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synthesis of all these results is displayed in a third subsection and we give a full exact result for the

one-loop two-point correlation function of ND scalars.

The setup

We are in the context of the BSGP model with broken supersymmetry compactified down to four

dimensions, described in Sect 3.1. Massless scalars in the ND sector of the theory correspond to

strings stretched between D9-branes and D5-branes in the original picture. For such strings to be

massless and with spin zero, the stacks of D3-branes T-dual to the D9-branes or D5-branes in the

proper T-dual theories should be located at fixed points with same positions inside T̃ 2/I45. Let us

call i0i
′
0 the fixed point where the 2ni0i′0 D3-branes T-dual to the D9-branes are and j0i

′
0 the fixed

point where the 2di0i′0 D3-branes T-dual to the D5-branes sit. The same primed index ensure the

ND states to be massless scalars.

The ND string is characterized by a Chan-Paton index α0 which refers to one of the 2ni0i′0 D3-

branes T-dual to D9-branes and another index β0 referring to one of the 2di0i′0 D3-branes T-dual to

the D5-branes. The two-point function at one loop have two external legs and can have the topology

of an annulus of that of a Möbius strip. In the former case, the diagram has two boundaries: One

on which the incoming ND state and outgoing DN state are inserted and the other which carries an

arbitrary Chan-Paton index γ referring either to the N or D sector. These two cases are depicted in

the two first diagrams on the left in Fig. 3.6. The string which is drawn is the state running inside

the loop. On the right of the figure, the diagrams are mapped to double-cover tori with Teichmüller

parameters τdc ≡ iτ2
2

on which the involution I(z) : z → 1 − z̄ gives back the annulus topology.

The two external legs representing the ND state are mapped to vertex operators inserted at z1 and

z2. In the case of the Möbius strip topology (third figure on the left in Fig. 3.6), there is only one

boundary and no free index γ. The double-cover torus has Teichmüller parameter τdc ≡ 1
2
+ iτ2

2
.

Denoting V α0β0(z1, k) the vertex operator inserted at z1 and V β0α0(z2,−k) the one inserted at z2,

what we want to compute is the following quantity

∑
Σ∈{A,M}

Ni0i
′
0∑

α0=1

Dj0i
′
0∑

β0=1

〈
V α0β0(z1, k)V

β0α0(z2,−k)
〉Σ

. (3.2.1)

Let us define additional useful notations. States that transform under the bifundamental repre-

sentation of U(ni0i′0)× U(dj0i′0) are labelled by a matrix λ which takes the following form [159]

λ ≡
(

Λ1 Λ2

−Λ2 Λ1

)
, (3.2.2)

where Λ1 and Λ2 are arbitrary real ni0i′0 × dj0i′0 matrices. Eventually, like in (C.1.1), we define a

complex basis both for the bosonic worldsheet coordinates Xµ, µ ∈ {0, . . . , 3}, XI′ , I ′ ∈ {4, 5}, XI ,

I ∈ {6, 7, 8, 9} and for the fermionic fields ψµ, ψI
′
, ψI ,

Zu ≡ X2u + iX2u+1

√
2

, Zu ≡ X2u − iX2u+1

√
2

,

Ψu ≡ ψ2u + iψ2u+1

√
2

≡ eiHu , Ψu ≡ ψ2u − iψ2u+1

√
2

≡ e−iHu , u ∈ {0, . . . , 4} ,
(3.2.3)
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Figure 3.6: Open-string diagrams with two external legs in the ND and DN sectors (left panel). On the double-cover
tori (right panel), the external legs are mapped to boundary-changing vertex operators at positions z1, z2.

where the scalars Hu are introduced to bosonize the fermionic fields. In the same spirit, it is also

useful to define the external complexified momentumKu for u ∈ {0, 1} from the external momentum

kµ of the ND state like

Ku =
k2u + ik2u+1

√
2

. (3.2.4)

For simplicity in the following, we restrict our analysis to the case where the internal metric, both

along the T 2 and T 4 is diagonal with radii R4, R5 in the T 2 and R6, R7, R8, R9 in the T 4.
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Vertex operators and amplitudes

Along the boundary of the Möbius strip and along that of the annulus where the vertex operators

are inserted, there is a change of boundary condition for the state running in the loop from Neumann

to Dirichlet or the contrary at the insertion points. This implies the presence of boundary-changing

field [166] in the vertex operators to account for this change. In ghost-picture −1 (indicated with

a subscript), the vertex operators V α0β0
−1 (z1, k) at z1 and V β0α0

−1 (z2,−k) at z2 are

V α0β0
−1 (z1, k) = λα0β0 e

−ϕ eik·X e
i
2
(H3−H4) σ3σ4(z1) ,

V β0α0

−1 (z2,−k) = λTβ0α0
e−ϕ e−ik·X e−

i
2
(H3−H4) σ3σ4(z2) .

(3.2.5)

They involve the element α0β0 of the matrix λ and the element β0α0 of its transpose. The field ϕ(z)

is the scalar ghost coming from the bosonization of the superconformal ghosts. The momentum

involved in eik·X refers to the external momentum kµ only and the operators e±i(H3−H4) are spin

fields to describe states that are spinors from the T 4/Z2 point of view. Indeed, remember that in

Table. 3.1, the ND states are associated with characters O4C4 with a spinorial internal structure

of negative chirality. Finally, the fields σ3 and σ4 are the boundary-changing fields and handle the

change of boundary conditions along the complex directions 3 and 4.

To proceed with the evaluation of the correlation function (3.2.1), it is useful to transform the

vertex operators to ghost-picture zero with the formulas

V α0β0
0 (z, k, ϵ) = lim

w→z
eϕ TF(w)V

α0β0
−1 (z, k, ϵ) ,

V β0α0

0 (z,−k,−ϵ) = lim
w→z

eϕ TF(w)V
β0α0

−1 (z,−k,−ϵ) ,
(3.2.6)

where TF is the supercurrent given by

TF(z) =
1√
α′ ∂X

µψµ(z) =
1√
α′

(
∂ZuΨu(z) + ∂ZuΨu(z)

)
. (3.2.7)

The picture changing requires the use of OPE’s between the various involved operators. Most

importantly, the OPE’s between the fields ∂Zu(z), ∂Zu(z) and the boundary-changing fields σu,

u ∈ {3, 4} are identical to those of ground-state twist fields in (C.1.2) with N = 2 and κ
N

= 1
2
:

∂Zu(z)σu(w) ∼
z→w

(z − w)− 1
2 τu(w) + finite ,

∂Zu(z)σu(w) ∼
z→w

(z − w)− 1
2 τ ′u(w) + finite .

(3.2.8)

This introduces the excited boundary-changing fields τu and τ ′u, the counterparts of the excited

twist fields.

The vertex operators in ghost-picture zero then naturally split into an “external part” V α0β0
0,ext (zi,±k)

corresponding to the action of the part of the supercurrent with u = 0, 1, 2 and an “internal part”

V α0β0
0,int (zi,±k) for the action of the u = 3, 4 terms. In the external parts of the vertex operators, the

momentum along complex direction u = 2 i.e. along the T 2 is set to zero since we are interested

in massless states at tree level. The total amplitude (3.2.1) splits into an external contribution and
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an internal one. For a given α0 and β0, the external amplitude is

Aα0β0
extΣ ≡

〈
V α0β0
0,ext (z1, k)V

β0α0

0,ext (z2,−k)
〉Σ

= α′ λα0β0λ
T
β0α0
⟨eik·X(z1)e−ik·X(z2)⟩ ⟨e

i
2
H3(z1)e

− i
2
H3(z2)⟩ ⟨e−

i
2
H4(z1)e

i
2
H4(z2)⟩×

⟨σ3(z1)σ
3(z2)⟩ ⟨σ4(z1)σ

4(z2)⟩
1∑

u=0

KuKu
[
⟨eiHu(z1)e

−iHu(z2)⟩+ ⟨e−iHu(z1)e
iHu(z2)⟩

]
.

(3.2.9)

This amplitude contains the one-loop corrections to the Kähler potential for the ND scalars. It is

the internal part that contains the one-loop correction to the mass of these moduli that we want to

extract and it reads

Aα0β0
intΣ ≡

〈
V α0β0
0,int (z1, k)V

β0α0

0,int (z2,−k)
〉Σ

=
1

α′ λα0β0λ
T
β0α0
⟨eik·X(z1)e−ik·X(z2)⟩

×
[
⟨e− i

2
H3(z1)e

i
2
H3(z2)⟩ ⟨e−

i
2
H4(z1)e

i
2
H4(z2)⟩ ⟨τ 3(z1)τ ′3(z2)⟩ ⟨σ4(z1)σ

4(z2)⟩

+ ⟨e i
2
H3(z1)e

− i
2
H3(z2)⟩ ⟨e

i
2
H4(z1)e

− i
2
H4(z2)⟩ ⟨σ3(z1)σ

3(z2)⟩ ⟨τ ′4(z1)τ 4(z2)⟩
]
.

(3.2.10)

Several things are understood in these formulas: For the annulus topology (Σ = A), there is a sum

over the other boundary γ and the sums over the spin structures of the fermions Ψu are also left

implicit. The next step in the computation consists in evaluating the various correlators on the

surfaces Σ = A orM involved in the amplitudes and more particularly the correlators of (excited)

boundary-changing fields.

3.2.2 One-loop correlators

Here we express all the correlators involved in the amplitudes. They are given on the double-cover

tori of the open-string surfaces before finding their open expressions. To be clear with the notations,

we will denote the correlators on the covering tori with a superscript “dc” and without anything for

the correlators on the open-string worldsheets. To determine the correlators involving boundary-

changing fields and their excited versions, we use the twist-field technology at one-loop [167, 182]

reviewed in Appendix C.1.

Ground-state boundary-changing fields correlators

We start with the most complicated correlators involving the boundary-changing fields. We first

evaluate the correlators on the double-cover tori T with Teichmüller parameter τdc before going to

the annulus or Möbius strip topology thanks to the method of images. For correlators of ground-

state boundary-changing fields ⟨σu(z1)σu(z2)⟩dc, u ∈ {3, 4}, we use the correspondence between

these boundary-changing fields and ground-state twist fields of a Z2 orbifold. As explained in the

appendix, the correlator is expressed in terms of a classical action and a quantum correlator. The

latter given by (C.1.23) applied with N = 2, L = 2, M = 1 and κ1
N

= κ2
N

= 1
2
. We thus have

⟨σu(z1, z̄1)σu(z2, z̄2)⟩dcqu = fdc(τ
dc; 1

2
, 1
2
) (detW )−1 ϑ1(z1 − z2)−

1
4 ϑ1(z1 − z2)−

1
4 , (3.2.11)

where the 2 × 2 cut-period matrix Wa
A (see Eq. (C.1.21)) is expressed in terms of a single cut

differential ω (see Eq. C.1.15)),

ω(z) = ϑ1(z − z1)−
1
2 ϑ1(z − z2)−

1
2 ϑ1

(
z − z1 + z2

2

)
, (3.2.12)
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integrated over the two cycles of the torus γ1 : z → z + 1 and γ2 : z → z + τdc,

W =

(
W1 W 1

W2 W 2

)
, where Wa =

∮
γa

dz ω , a ∈ {1, 2} . (3.2.13)

In this case, the classical action (C.1.27) for directions u = 3 and 4 i.e. along the internal T 4 is

ST ,T 4

cl =
4∑

u=3

1

4πα′ Im(W 1W2)

(∣∣W 2v
u
1 −W 1v

u
2

∣∣2 + ∣∣W2v
u
1 −W1v

u
2

∣∣2) , (3.2.14)

where the displacement vectors vua , a ∈ {1, 2} reflects how many times the instantonic solution winds

around the internal T 4 when z is transported along the paths γ1 and γ2. We define the winding

numbers nI , I ∈ {6, . . . , 9} associated with γ1 and the wrapping numbers lI associated with γ2 such

that:

vu1 =
2πR2un2u + 2iπR2u+1n2u+1√

2
, vu2 =

2πR2ul2u + 2iπR2u+1l2u+1√
2

. (3.2.15)

Note that this formalism is fully compatible with the complex direction u = 2 describing the T 2

which is not twisted. Along this direction, the cut differential is trivial i.e. ω(z) = 1 yielding the

trivial cut-period matrix (
1 1

τdc τ̄dc

)
. (3.2.16)

Defining the displacements exactly like in (3.2.15), the obtained action is the usual result for a

two-torus:

ST ,T 2

cl =
π

α′ Imτdc
(
R2

4|n4τ
dc − l4|2 +R2

5|n5τ
dc − l5|2

)
. (3.2.17)

A takeaway is that the sum over instantons which appears in (C.1.5) translates into a sum over all

the internal winding and wrapping numbers in our case.

For open-string topologies that are of interest in this work, the quantum correlator of ground-

state boundary-changing fields is found in [176] using the method of images. The result turns out

to be, for u = 3 or 4,

⟨σu(z1)σu(z2)⟩qu = f(τdc; 1
2
, 1
2
) (detW )−

1
2 ϑ1(z1 − z2)−

1
4 . (3.2.18)

As for the classical action, instantonic worldsheets can have NN, DD, ND or DN boundary conditions

for the annulus topology and N or D for the Möbius strip. For NN or N conditions, the winding

numbers must vanish while for DD and D conditions, we define T-dual winding numbers that should

also vanish. For ND and DN boundary conditions, both winding and wrapping numbers (and their

T-dual counterparts) must be zero. In addition, a division by two must be performed compared

to the torus action due to the involution that creates the open-string surfaces which halves the

wolrdsheet surface. The total classical action on an open-string surface Σ ∈ {A,M}, which is the

sum of the T 2 and T 4 contributions then reads

SΣ
cl =

π[(R4l4)
2 + (R5l5)

2]

α′τ2
+

|W1|2
4πα′ Im(W 1W2)

×



4∑
u=3

|vu2 |2 for NN and N ,

4∑
u=3

|ṽu2 |2 for DD and D ,

0 for ND and DN ,

(3.2.19)
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where vu2 is defined like in (3.2.15) while the T-dual version denoted with a tilde is defined as

ṽu2 =
2π α′

R2u
l̃2u + 2iπ α′

R2u+1
l̃2u+1√

2
, u ∈ {3, 4} . (3.2.20)

Excited boundary-changing fields correlators

To determine the correlator ⟨τu(z1)τ ′u(z2)⟩dc whose open-string version is present in (3.2.10), we

apply a technique used in [176, 178–180] which exploits the OPE (3.2.8) between the coordinates

derivatives and the boundary-changing fields. This allows to write

⟨τu(z1, z̄1)τ ′u(z2, z̄2) ⟩dcqu = lim
z→z1
w→z2

[
(z − z1)

1
2 (w − z2)

1
2 ⟨∂Zu(z)∂Zu(w)σu(z1, z̄1)σ

u(z2, z̄2)⟩dcqu
]
,

(3.2.21)

which decomposes into two parts ⟨τu(z1, z̄1)τ ′u(z2, z̄2)⟩dc,(1)qu and ⟨τu(z1, z̄1)τ ′u(z2, z̄2)⟩dc,(2)qu following

the decomposition (C.1.4) of the coordinates into the classical background and quantum fluctuations:

⟨τu(z1, z̄1)τ ′u(z2, z̄2)⟩dc,(1)qu = ⟨σu(z1, z̄1)σu(z2, z̄2)⟩dcqu lim
z→z1
w→z2

[
(z − z1)

1
2 (w − z2)

1
2 ∂Zu

cl(z)∂Z
u
cl(w)

]
,

⟨τu(z1, z̄1)τ ′u(z2, z̄2) ⟩dc,(2)qu = lim
z→z1
w→z2

[
(z − z1)

1
2 (w − z2)

1
2 ⟨∂Zu

qu(z)∂Z
u
qu(w)σ

u(z1, z̄1)σ
u(z2, z̄2)⟩dcqu

]
.

(3.2.22)

Part (1) is found using (C.1.25) in our special case which yields

⟨τu(z1, z̄1)τ ′u(z2, z̄2)⟩dc,(1)qu = is (W−1)1
a
vua(W

−1)2
b
v̄ub

ϑ1(
z1−z2

2
)2

ϑ′
1(0)ϑ1(z1 − z2)

⟨σu(z1, z̄1)σu(z2, z̄2)⟩dcqu ,
(3.2.23)

where we have introduced a sign ambiguity s such that

s i ≡
(
z2 − z1
z1 − z2

) 1
2

. (3.2.24)

To evaluate part (2), we use the Green’s function (C.1.11) applied to our case. The expressions

(C.1.19) and (C.1.22) take the following form

g(z, w) = gs(z, w) + C ω(z)ω(w)

= gs(z, w)− ω(z)(W−1)1
a
∮
γa

dζ gs(ζ, w) ,
(3.2.25)

where we need an explicit expression for gs(z, w) defined in (C.1.18). Such an expression is found

in [167] which, in our case, reduces to

gs(z, w) = γ(z)γ(w)

(
ϑ′
1(0)

ϑ1(z − w)

)2
1

2

[
F1(z, w)ϑ1(w − z1)ϑ1(z − z2)

+F1(w, z)ϑ1(w − z2)ϑ1(z − z1)
]
.

(3.2.26)
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It is expressed in terms of a unique function γ (see Eq. (C.1.16))

γ(z) = ϑ1(z − z1)−
1
2 ϑ1(z − z2)−

1
2 , (3.2.27)

and the function F1 is

F1(z, w) =
ϑ1(z − w + U1)

ϑ1(U1)

ϑ1

(
z − w + z2−z1

2
− U1

)
ϑ1

(
z2−z1

2
− U1

) , A ∈ {1, 2} ,

where U1 is such that ∂zF1(z, w)
∣∣
z=w

= 0 .

(3.2.28)

The part (2) eventually reads

⟨τu(z1, z̄1)τ ′u(z2, z̄2) ⟩dc,(2)qu = −is α′⟨σu(z1, z̄1)σu(z2, z̄2)⟩dcqu

[
C

ϑ1(
z1−z2

2
)2

ϑ′
1(0)ϑ1(z1 − z2)

+
ϑ′
1(0)F1(z1, z2)

2ϑ1(z1 − z2)

]
,

(3.2.29)

and we can switch to another formulation without C and fully in terms of gs(z, w) (see Eq. (3.2.25))

thanks to the correspondence

C
ϑ1(

z1−z2
2

)2

ϑ′
1(0)ϑ1(z1 − z2)

= −1

2
ϑ′
1(0)ϑ1

(z1 − z2
2

)
(W−1)1

a
∮
γa

dz
F1(z, z2)

ϑ1(z − z1)
1
2 ϑ1(z − z2)

3
2

. (3.2.30)

Note that the correlator ⟨τ ′u(z1)τu(z2)⟩dc is identical up to the exchange z1 ↔ z2.

When going to the open-string topologies, the correlators involving excited boundary-changing

fields keep the same forms since such fields are only excited on their holomorphic sides (see Eq. (C.1.2)

or (3.2.8)). To be consistent with the open-string action that displays a division by two compared

to the closed-string action, parts (1) of the correlators ⟨τu(z1)τ ′u(z2)⟩dc and ⟨τ ′u(z1)τu(z2)⟩dc should
be modified with the replacements |vu2 |2 → |vu2 |2/2 and |ṽu2 |2 → |ṽu2 |2/2. Putting the two parts

together, we have, on open-string surfaces,

⟨τu(z1)τ ′u(z2)⟩qu = ⟨τ ′u(z1)τu(z2)⟩qu = −s i ⟨σu(z1)σu(z2)⟩qu ×[(
α′C +

W 2
1 |vu2 |2

8[Im(W 1W2)]2

)
ϑ1(

z1−z2
2

)2

ϑ′
1(0)ϑ1(z1 − z2)

+ α′ϑ
′
1(0)F1(z1, z2)

2ϑ1(z1 − z2)

]
,

(3.2.31)

when the worldsheet has NN or N boundary conditions on the annulus or Möbius strip. For DD

or D boundary conditions, the correlators take identical forms up to the change vu2 → ṽu2 . Finally,

for boundary conditions ND or DN on the annulus, the classical displacements vanish and only the

pure quantum contributions proportional to α′ survive.

Bosonic and fermionic correlators

The other correlators in (3.2.9) and (3.2.10) involving the bosonic fields and the bosonized fermions

are given in this paragraph. On the torus, the propagator of spacetime coordinates Xµ is

⟨Xµ(z1)Xν(z2)⟩dc = δµν

[
− α′

2
ln

∣∣∣∣ϑ1(z1 − z2)
ϑ′
1(0)

∣∣∣∣2 + α′π [Im(z1 − z2)]2
Imτdc

]
, (3.2.32)
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and the propagator of the bosonized fermions Ψu, u ∈ {0, . . . , 4}, for each spin structure ν ∈
{1, 2, 3, 4} and arbitrary Hu-charge q is

⟨eiqHu(z1)e
−iqHu(z2)⟩dcν = Kν,|q| ϑν(q(z1 − z2))ϑ1(z1 − z2)−q

2

, (3.2.33)

with Kν,|q| a normalization factor which depends on τdc.

The bosonic correlator on the annulus and Möbius strip is obtained by symmetrizing the double-

cover torus correlator with respect to the involution I(z) : z → 1− z̄,

⟨Xµ(z1)Xν(z2)⟩ =
1

2

[
⟨Xµ(z1)Xν(z2)⟩dc + ⟨Xµ(z1)Xν(I(z2))⟩dc

+ ⟨Xµ(I(z1))Xν(z2)⟩dc + ⟨Xµ(I(z1))Xν(I(z2))⟩dc
]

= δµν

[
− α′ ln

∣∣∣∣ϑ1(z1 − z2)
ϑ′
1(0)

∣∣∣∣2 + 4πα′ [Im(z1 − z2)]2
τ2

]
. (3.2.34)

From this formula, we deduce the following correlator of interest to us:

⟨eik·X(z1)e−ik·X(z2)⟩ =
(∣∣∣∣ϑ1(z1 − z2)

ϑ′
1(0)

∣∣∣∣ e− 2π[Im(z1−z2)]
2

τ2

)−2α′k2

. (3.2.35)

As for the correlators of the bosonized fermions on the open-string worldsheets, it is shown [176]

that they are identical to those on the double-cover tori:

⟨eiqHu(z1)e
−iqHu(z2)⟩ν = ⟨eiqHu(z1)e

−iqHu(z2)⟩dcν = Kν,|q| ϑν(q(z1 − z2))ϑ1(z1 − z2)−q
2

. (3.2.36)

3.2.3 Final result

In this subsection, we use the results (3.2.18), (3.2.19), (3.2.31), (3.2.35) and (3.2.36) to express

the amplitudes (3.2.9) and (3.2.10). They are derived up to an instanton-dependent normalization

that we will have to determine using the coalescence limit and the collapse of the amplitudes to the

partition function in this regime. The external amplitude is

Aα0β0
extΣ = α′k2 λα0β0λ

T
β0α0

[∣∣∣∣ϑ1(z12)

ϑ′
1(0)

∣∣∣∣ e− 2π
τ2

[Im(z12)]2
]−2α′k2

1

detW ϑ1(z12)2

×
∑
νext ̸=1

Kνext,1 ϑνext(z12)
∑
νint

(−1)δνint,1 ϑνint
(z12
2

)2
×
∑
l⃗′

e
− π

α′τ2
∑

I′ (RI′ lI′ )
2

[∑
l⃗

e
− |W1|2(|v32 |

2+|v42 |
2)

4πα′Im(W1W2) CΣl⃗′ l⃗νint
+
∑
⃗̃
l

e
− |W1|2(|ṽ32 |

2+|ṽ42 |
2)

4πα′Im(W1W2) C̃Σl⃗′⃗̃lνint

]
,

(3.2.37)

where the index I ′ takes values in {4, 5} and l⃗′ ≡ (l4, l5). The vectors l⃗ and ⃗̃l are the four-vectors

with components lI and l̃I , I ∈ {6, . . . , 9}. The expression displays a sum over the “external” spin

structure νext of the complex fermions Ψ0, Ψ1 and Ψ2 and over the “internal” spin structure νint of

Ψ3 and Ψ4. The normalization factor Kνext,1 is given by [95]

Kνext,1 =
ϑ′
1(0)

ϑνext(0)
, νext ∈ {2, 3, 4} . (3.2.38)
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We also defined z12 ≡ z1 − z2. Eventually, the coefficients CΣl⃗′ l⃗νint
and C̃Σl⃗′⃗̃lνint

are instanton-dependent

normalization functions arising from the various normalizations in the correlators. For the annulus,

we also expect them to contain a sum over the free boundary condition γ. Similarly, the internal

amplitude is

Aα0β0
intΣ = −s i

α′ λα0β0λ
T
β0α0

[∣∣∣∣ϑ1(z12)

ϑ′
1(0)

∣∣∣∣ e− 2π
τ2

[Im(z12)]2
]−2α′k2 ϑ1(

z12
2
)2

detW ϑ1(z12)2 ϑ′
1(0)

× 4
∑
νint

ϑνint
(z12
2

)2 ∑
l⃗′

e
− π

α′τ2
∑

I′ (RI′ lI′ )
2

×
{∑

l⃗

e
− |W1|2(|v32 |

2+|v42 |
2)

4πα′Im(W1W2) CΣl⃗′ l⃗νint

[
W 2

1 (|v32|2 + |v42|2)
8[Im(W 1W2)]2

+ 2α′(C + Ĉ)

]

+
∑
⃗̃
l

e
− |W1|2(|ṽ32 |

2+|ṽ42 |
2)

4πα′Im(W1W2) C̃Σl⃗′⃗̃lνint

[
W 2

1 (|ṽ32|2 + |ṽ42|2)
8[Im(W 1W2)]2

+ 2α′(C + Ĉ)

]}
,

(3.2.39)

where for compactness we have defined

Ĉ ≡ ϑ′
1(0)

2

2ϑ1(
z12
2
)2
F1(z1, z2) . (3.2.40)

The evaluation of the normalization functions is a crucial step to determine the full expressions

of the amplitudes. To do this, we use the fact that in the coalescence limit z1 → z2, the ground-

state boundary-changing fields compensate each other so that the external part of the amplitude

reduces to pieces of the partition function, up to multiplicative factors. It is important to determine

precisely which pieces we should find to correctly identify the normalization factors. To help us

in this task, we redraw the double-cover diagrams of Fig. 3.6 in the coalescence limit. Note that

assuming z1 fixed, we can either imagine z2 descending down to z1 or alternatively going up along

the boundary, reappearing at the bottom and reach z2 from below. For each diagram, this yields

two contributions to the limit that we have drawn in Fig. 3.7.

In the coalescence limit, the cut differential (3.2.12) becomes also trivial in directions u = 3 and 4

(ω(z)→ 1) and the cut-period matrix takes the same form as for direction u = 2 (see Eq. (3.2.16)).

The external amplitude in the limit is then to be identified with (up to pre-factors not written here)

32+32∑
γ=1

Str
α0γ+β0γ

1

2

1 + g

2
q

1
2
(L0−1) for A ,

and Str
α0α0+β0β0

Ω

2

1 + g

2
q

1
2
(L0−1) forM .

(3.2.41)

The traces are restricted to the contributions drawn in Fig. 3.7 i.e. to states with Chan-Paton

indices α0γ or γβ0 in the annulus, with a sum over the free boundary γ, and to the state with

indices α0β0 in the Möbius strip. We can extract these contributions from the full annulus and

Möbius strip one-loop amplitudes of our model written in (3.1.16) and (3.1.17) by picking the

correct terms in the various traces involving the matrices which act on the Chan-Paton indices. In

the annulus, we extract the following contributions in the NN and ND sectors, which correspond to

the two annulus diagrams on the left of Fig. 3.7 (the contributions of the DD and DN sector easily

found by exchanging N ↔ D and α0 ↔ β0),
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Figure 3.7: Open-string diagrams of Fig. 3.6 in the limit z1 → z2.

NN:
∑
i,i′; j,j′

tr(γii
′

N,1)tr(γ
jj′ −1
N,1 ) −→ (γ

i0i′0
N,1 )α0α0

∑
j,j′

Njj′∑
γ=1

(γjj
′ −1

N,1 )γγ =
∑
j,j′

Njj′ ,

∑
i,i′; j,j′

tr(γii
′

N,g)tr(γ
jj′ −1
N,g ) −→ (γ

i0i′0
N,g )α0α0

∑
j,j′

Njj′∑
γ=g

(γjj
′ −1

N,g )γγ = 0 ,

ND:
∑
i,i′; j,j′

tr(γii
′

N,1)tr(γ
jj′ −1
D,1 ) −→ (γ

i0i′0
N,1 )α0α0

∑
j,j′

Djj′∑
γ=1

(γjj
′ −1

D,1 )γγ =
∑
j,j′

Djj′ ,

∑
i,i′; j,j′

tr(γii
′

N,g)tr(γ
jj′ −1
D,g ) −→ (γ

i0i′0
N,g )α0α0

∑
j,j′

Djj′∑
γ=1

(γjj
′ −1

D,g )γγ = 0 .

(3.2.42)
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In the Möbius strip partition function, we extract the following terms, both in the N and D sectors

which correspond respectively to the bottom-left and bottom-right Möbius diagrams in Fig. 3.7,

N: tr(γii
′ T

N,Ω γ
jj′ −1
N,Ω ) −→ (γ

i0i′0 T
N,Ω )α0α0(γ

jj′ −1
N,Ω )α0α0 = 1 ,

tr(γii
′ T

N,Ωgγ
jj′ −1
N,Ωg ) −→ (γ

i0i′0 T
N,Ωg )α0α0(γ

jj′ −1
N,Ωg )α0α0 = 0 ,

D: tr(γii
′ T

D,Ω γ
jj′ −1
D,Ω ) −→ (γ

i0i′0 T
D,Ω )α0α0(γ

jj′ −1
D,Ω )α0α0 = 0 ,

tr(γii
′ T

D,Ωgγ
jj′ −1
D,Ωg ) −→ (γ

i0i′0 T
D,Ωg )α0α0(γ

jj′ −1
D,Ωg )α0α0 = 1 .

(3.2.43)

Notice that in the Möbius, the non-zero contributions come from the action of Ω in the N sector

and from the action of Ωg in the D sector. For a lighter main text, the results of the identifications

and some details are only presented in Appendix C.2.

The expression (3.2.39) together with formulas (C.2.4) and (C.2.6), up to the sum over α0 and

β0 that just produces a trace tr(λλT), is the final result for the computation of the correlation

functions defined in (3.2.1). To obtain the true two-point function, one needs to perform a last

step, namely to integrate over the moduli of the open-string surfaces i.e. on the imaginary parts

of the double-cover tori and on the vertex operators insertion points modulo the conformal Killing

group [91]. Instead of integrating over all positions z1 and z2 and then dividing by the volume of the

group, we fix z2 ≡ 1
2
and integrate only on the position z1. For the annulus, z1 must be on the same

boundary as z2 so we write z1 ≡ 1
2
+ iy1 and integrate over the imaginary part y1, from 0 to Imτdc.

For the Möbius strip topology, because there is only one boundary, we have either z1 = 1
2
+ iy1

or z1 = iy1 and we integrate y1 from 0 to Imτdc for both cases. Denoting the integrated internal

amplitudes with calligraphic letters, we have

A
α0β0
intA =

∫ +∞

0

dImτdc
∫ Imτdc

0

dy1 A
α0β0
intA

∣∣∣
z1 =

1
2
+iy1,z2 =

1
2

,

A
α0β0
intM =

∫ +∞

0

dImτdc
∫ Imτdc

0

dy1
(
Aα0β0

intM

∣∣∣
z1 =

1
2
+iy1,z2 =

1
2

+ Aα0β0
intM

∣∣∣
z1 = iy1,z2 =

1
2

)
.

(3.2.44)

3.2.4 Field-theory limit and low breaking scale

The full result without approximation for the one-loop two-point function of the ND scalars is quite

involved and hard to exploit. In the same spirit as for the other moduli, we want to take a limit

where we can throw out all states other than the Kaluza–Klein modes along the Scherk–Schwarz

direction by making them supermassive. To throw out the string modes, we consider the field-theory

limit α′ → 0. In order to implement it, we rescale the Teichmüller parameters of the covering tori

of the annulus and Möbius strip like

Imτdc =
τ2
2
≡ t

2πα′ ≫ 1 , where t ∈ (0,+∞) . (3.2.45)

In the α′ → 0, the non-trivial string oscillators become supermassive and from practical point

of view, all Jacobi theta functions can be restricted to their dominant terms up to exponentially

suppressed contributions.

For all mass scales other than the supersymmetry-breaking scale to be very large, we assume the

radii R4 and RI , I ∈ {6, . . . , 9} as well as their T-dual counterparts α′/RI to be small. Defining
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dimensionless radii r4 and rI like

R4 = r4
√
α′ , RI = rI

√
α′ ,

α′

RI

=

√
α′

rI
, (3.2.46)

we see that both the torus T 4 and T-dual torus T̃ 4 become small in the α′ → 0 limit. In such a

regime, it is convenient to perform a Poisson summation over the indices l4, l⃗ and
⃗̃l before throwing

out exponentially suppressed terms. The dominant contributions come from terms with trivial

resummed indices m4 = 0 and m⃗ = n⃗ = 0⃗. Moreover in the annulus, only specific fixed points ii′ in
the sum yield non-exponentially small contributions. One must have i = i0 or i = j0 and i′ can be

either i′0 or the opposite fixed point along X̃5 denoted ı̂0. Defining u ≡ |y1 − y2|/Imτdc ∈ (0, 1), we

obtain

Aα0β0
intA =− 16Cs√π λα0β0λ

T
β0α0

α′3R5

t
7
2

∑
l5

e−
π2

t
R2

5(2l5+1)2
(
Ni0i′0 −Ni0 ı̂′0 +Dj0i′0 −Dj0 ı̂′0

)
×
{
2π3 + 2π

[
t(1− u)
α′ + 2 ln 4 + · · ·

]
(C + Ĉ)

}
+ · · · ,

Aα0β0
intM = 16Cs√π λα0β0λ

T
β0α0

α′3R5

t
7
2

∑
l5

e−
π2

t
R2

5(2l5+1)2 (1 + 1)

×
{
2π3 + 2π

[
t(1− u)
α′ + 2 ln 4 + · · ·

]
(C + Ĉ)

}
+ · · · ,

(3.2.47)

where the dots represent exponentially small contributions. In the limit, the integrals (3.2.44) over

Imτdc and y1 translate into integrals over the parameters t and u,∫ +∞

0

dImτdc
∫ Imτdc

0

dy1 =
1

(2πα′)2

∫ +∞

0

t dt

∫ 1

0

du1 . (3.2.48)

The evaluation of C and Ĉ, whose origin lies in the correlators of excited boundary-changing

fields, in the limit of small α′ is not an easy task. One must find an explicit expression for the

function F1 defined in (3.2.28) in the field-theory limit and compute the integrals over the torus

cycles involved in C (see Eq. 3.2.30). The result turns out to yield (the details are presented in

Appendix C.3)

2π

[
t(1− u)
α′ + 2 ln 4 + · · ·

]
(C + Ĉ) = −4π3 + · · · . (3.2.49)

Note that the evaluations of these limits and everything that has been said so fare is valid for

generic values of the insertion points locations, excluding the special values at 0 and Imτdc for the

imaginary parts. In these particular cases, some contributions in the ellipses are actually no more

exponentially suppressed. In the strict limit α′ = 0, the contributions have a zero measure in the

integrals over t and u but at small and finite α′, they contribute with subdominant terms in powers

of α′/R2
5. The integration thus gives

A
α0β0
intA +A

α0β0
intM =

4

π
Cs λα0β0λ

T
β0α0

∑
l5

1

|2l5 + 1|3

× α′

R2
5

(
Ni0i′0 −Ni0 ı̂′0 − 2 +Dj0i′0 −Dj0 ı̂′0 − 2

)
+O

(
α′2

R4
5

)
.

(3.2.50)
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To extract the mass M2
ND acquired at one loop by the ND states, we divide by α′ and sum over the

indices α0 and β0. This yields

M2
ND =

1

α′

Ni0i
′
0∑

α0=1

Dj0i
′
0∑

β0=1

(
A
α0β0
intA +A

α0β0
intM

)
(3.2.51)

=
32

π
Cs
∑
l5

1

|2l5 + 1|3 tr(λλ
T)M2 (ni0i′0 − ni0 ı̂′0 − 1 + dj0i′0 − dj0 ı̂′0 − 1) +O

(
α′M4

)
.

Because tr(λλT) > 0 and because from a field-theory point of view we expect bosons running in the

loop to contribute positively and fermions to contribute negatively, we deduce that Cs > 0. The

sign of the mass squared is thus given by the terms insides the brackets.

3.3 Conclusions

In this second part of the thesis, we explored the one-loop stability of moduli in type I string theory

showing an N = 2 → N = 0 spontaneous breaking of supersymmetry. Different techniques have

been used to treat the variety of moduli present in the model. The NN and DD moduli masses

at one loop could be determined equivalently with two methods: An algebraic computation with

Dynkin indices and the sole knowledge of the massless spectrum and the representations in which

it transforms, and a more direct evaluation by Taylor expanding the effective Coleman–Weinberg

potential up to quadratic order. We saw however that the stability conclusions drawn at this stages

are not complete since a generalized Green–Schwarz mechanism that gives a tree-level mass to some

moduli is to be taken into account and improves the stability. The mechanism also generates a mass

to some, and sometimes every, quaternionic scalars of the twisted closed-string sector.

The computation of the Coleman–Weinberg potential demonstrates that up to exponentially

suppressed contributions, it does not depend on the NS-NS metric except the breaking scale. In

generic models, the scale runs away except in special cases where a Bose/Fermi degeneracy is present

at the massless level. In this case, the one-loop potential is exponentially small. To conclude on

the independence of the potential on the R-R two-form, we invoked weak/weak duality arguments

between type I string theory and heterotic strings.

Eventually, to determine the masses of the moduli lying in the ND sector of the theory, we have

computed their two-point correlation functions at one loop. Most importantly, this computation

involves boundary-changing fields present in the vertex operators of the ND states that handle

the change from Neumann to Dirichlet conditions on the worldsheet. Thanks to a correspondence

between such operators and closed-string twist fields that create states in twisted sectors of ZN
orbifolds, we could make use of the technology developed for them in the literature in our case.

With all the stability conditions in our hands, we numerically searched for fully stable brane

configurations showing an exponentially suppressed potential. Among the O(1012) possibilities,

only three satisfy all the criteria.
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4 Cosmological considerations

The last part of the tryptich concerns the study of the cosmology induced by the one-loop potential

created by the Scherk–Schwarz mechanism in a heterotic string context. In a first work, we take

seriously the dynamical consequences of the one-loop potential and study its backreaction on the

cosmological equations of motion of no-scale models [78–81]. These classical models show a spon-

taneously broken supersymmetry in flat space with a scale that is a flat direction of the classical

potential. Of course, such no-scale structures are expected not to hold once quantum corrections are

taken into account except in specific models in type II theories [82–85], open-string theories [86,87]

or in heterotic string models showing a Bose/Fermi degeneracy at the massless level [45–47, 56, 57]

to yield so-called “super no-scale models”.

In a toy model where the dynamics of a restricted number of moduli is considered, we show

the existence of an attractor towards FLRW expanding universes whose asymptotic cosmological

behaviour is identical to that of an exact no-scale model. We refer to this asymptotic regime as

a “quantum no-scale regime”, where flatness of the Minkowski spacetime is not destabilized by

the quantum corrections. We will show that the derived cosmologies depend on subsets of initial

conditions as well as on the characteristic of the one-loop potential and more precisely on its sign,

given by the number of massless bosonic and fermionic degrees of freedom.

In the continuity of this work, we turn on Wilson lines and study their dynamics to determine

how the previous conclusions are affected. To do this, we first briefly review the computation of the

one-loop potential around backgrounds where no mass scale is present below the supersymmetry-

breaking scale and then focus on configurations where we can consistently freeze to zero the vast

majority of the Wilson lines and restrict to those along two directions comprising the Scherk–

Schwarz one. We will demonstrate that quantum no-scale regimes still exist and that global attractor

mechanisms are present under some conditions on the one-loop potential. All the results derived

analytically will be confirmed with numerical simulations.

Eventually, in a third work, we develop a new mechanism for the creation of a cold dark-matter

relic density, a necessary ingredient to tell a realistic cosmological story. This is done at finite tem-

perature and the mechanism exploits the condensation of a modulus along a cosmological attractor

that gives a sudden mass to some dark-matter candidate particle [88,89].

4.1 Cosmological stability of the no-scale structure: A toy model

We begin with the cosmological study of a toy model where only the dynamics of a restricted

number of fields is considered. In a first subsection, we describe the setup of our study and derive

the equations of motion of the relevant fields. Then, we comment on the solutions of these equations

by exhibiting several behaviours depending on the values of various integration constants. In some
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of these cases, we will find and define the “quantum no-scale regimes” where the cosmological

evolution converges towards that of a no-scale model.

4.1.1 Setup

We consider the heterotic string in arbitrary dimension d ≥ 3 compactified on n circles of radii Ri,

i ∈ {d, . . . , d+ n− 1} and on a (10− d− n)-dimensional torus. The background is thus

d+n−1∏
i=1

S1(Ri)× T 10−d−n . (4.1.1)

All the n circles are used to perform the Scherk–Schwarz mechanism. This a bit different of what

we encountered so far in this thesis but it is just a simple generalization of the use of only one circle.

In this case, the supersymmetry-breaking scale denoted M(σ) involves all the radii and read1,

M(σ) ≡
Ms(

d+n−1∏
i=1

Ri

) 1
n

. (4.1.2)

We use the subscript “(σ)” to refer to the breaking scale in sigma-model frame. Because we will

study cosmological equations of motion, we will almost always work in Einstein frame and thus

for the sake of simplicity, we prefer to use the notation M without any subscript to describe the

breaking scale in this case. As explained in Chapter 1, if we assume the Scherk-Schwarz radii Ri

to be large to have a small breaking scale and the volume of the torus T 10−d−n to be intermediate

in order to ensure the absence of intermediate mass scales below M(σ), the one-loop potential in

sigma-model frame V(σ)
1-loop takes the generic form (1.3.11)

V(σ)
1-loop = ξd,n(nF − nB)M

d
(σ) +O

(
(MsM(σ))

d
2 e

−2πc Ms
M(σ)

)
. (4.1.3)

The positive constant ξd,n is denoted with an additional subscript n because in addition to depend

on the dimension d, it depends on the n−1 complex structure moduli Ri/Rd, i ∈ {i = d+1, . . . , d+

n − 1}. Decomposing the dilaton field ϕdil into a background value ⟨ϕdil⟩ and a fluctuation ϕ, the

low-energy effective action S at one loop, restricted to the graviton, the dilaton fluctuation ϕ and

the circles radii reads

S =
1

κ2

∫
ddx
√−g

[R
2
− 2

d− 2
(∂ϕ)2 − 1

2

d+n−1∑
i=d

(
∂Ri

Ri

)2

− κ2V1-loop
]
, (4.1.4)

whereR is the Ricci curvature, κ2 = e2⟨ϕdil⟩/Md−2
s is the Einstein constant and the one-loop potential

is written in Einstein frame with a dilaton-dependent dressing:

V1-loop ≡ e
2d
d−2

ϕV(σ)
1-loop ≃ ξd,n(nF − nB)M

d where M ≡ e
2

d−2
ϕM(σ) . (4.1.5)

1Note that we assume the complex structures i.e. the ratios of the radii to be close to unity so that all radii are equivalent. The
expression (4.1.2) for the supersymmetry-breaking scale is then arbitrary but chosen for its explicit invariance under the exchange of the
radii.
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It is useful to perform some field redefinitions for the action to be expressed in terms of fields

that have canonical kinetic terms. To this end, we define Φ, Φ⊥ and φk, k ∈ {1, . . . , n− 1} like

αΦ ≡ 2

d− 2
ϕ− 1

n

d+n−1∑
i=d

lnRi , Φ⊥ ≡
1√

d− 2 + n

(
2ϕ+

d+n−1∑
i=d

lnRi

)

φk ≡
1√

k(k + 1)

(
k lnRd+k −

d+n−1∑
i=d

lnRi

)
, for k ∈ {1, . . . , n− 1} ,

(4.1.6)

where α is a constant defined like α ≡
√

1
d−2

+ 1
n
. These definitions ensure that the breaking scale

M depends only on the field Φ, called the “no-scale modulus”:

M = eΦMs , (4.1.7)

and the effective action takes the form

S =
1

κ2

∫
ddx
√−g

[R
2
− 1

2
(∂Φ)2 − 1

2
(∂Φ⊥)

2 − 1

2

n−1∑
k=1

(∂φk)
2 − κ2V1-loop

]
, (4.1.8)

where the one-loop potential in terms of the redefined fields is

V1-loop = ξd,n(nF − nB)e
dαΦMd

s . (4.1.9)

To further simplify the problem, we assume the complex structure moduli φk to be constants so

that the only dynamical degree of freedom coming from the circles is the volume
∏d+n−1

i=d Ri involved

in Φ and Φ⊥. Because we are interested in homogeneous and isotropic cosmological evolutions in

flat space, we assume a FLRW metric with lapse function N and scale factor a

ds2 = −N(x0)2(dx0)2 + a(x0)
[
(dx1)2 + · · ·+ (dxd−1)2

]
, (4.1.10)

and we suppose the fields Φ and Φ⊥ to depend on the timelike coordinate x0 only. In the gauge

N ≡ 1, x0 = t, the cosmic time. In this case, the two Einstein equations are the ones displayed

in (1.4.2) in the case k = 0 and where the density and pressure for the scalar fields Φ and Φ⊥ are

simply their kinetic energies K. The cosmological constant Λ is not there and is instead replaced by

the one-loop potential. In addition, varying the action with respect to Φ and Φ⊥ yields two more

equations. Overall we have

1

2
(d− 1)(d− 2)H2 = K + κ2V1-loop , K ≡ 1

2
Φ̇2 +

1

2
Φ̇2

⊥ , (4.1.11)

(d− 2) Ḣ +
1

2
(d− 1)(d− 2)H2 = −K + κ2V1-loop , (4.1.12)

Φ̈ + (d− 1)H Φ̇ = −dακ2V1-loop , (4.1.13)

Φ̈⊥ + (d− 1)H Φ̇⊥ = 0 . (4.1.14)

Let us manipulate these equations a bit. Firstly, we can suitably combine the three first equations

(4.1.11), (4.1.12) and (4.1.13) to eliminate both K and V1-loop in the right-hand side. The result is

a free-field equation identical to the one satisfied by Φ⊥,(
αΦ̇ +

α2

2
d(d− 2)H

)·
+ (d− 1)H

(
αΦ̇ +

α2

2
d(d− 2)H

)
= 0 . (4.1.15)
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Integrating this equation and (4.1.14) yields

Φ̇⊥ =
√
2
c⊥
ad−1

, αΦ̇ +
α2

2
d(d− 2)H =

cΦ
ad−1

, (4.1.16)

where c⊥ and cΦ are arbitrary integration constants which acquire a minus sign upon time reversal.

The one-loop potential can be eliminated from the two first equations (4.1.11) and (4.1.12) to give

1

2
(d− 2)Ḣ = −K . (4.1.17)

The insertion of the solutions (4.1.16) in this equation then gives a differential equation on the scale

factor a only. If cΦ ̸= 0, we can define a dimensionless time variable τ like

τ ≡ 2A

dcΦ
ȧ ad−2 with A =

ω

4
d2(d− 2)α2 and ω = 1− 4(d− 1)

d2(d− 2)α2
∈ (0, 1) . (4.1.18)

With this definition, the obtained differential equation takes the simple form

τdτ = −AP(τ) da
a

where P(τ) = τ 2 − 2τ + ω
[
1 + 2α2

(c⊥
cΦ

)2]
. (4.1.19)

Eventually, the solutions (4.1.16) injected in the Friedmann equation (4.1.11) gives the breaking

scale M as a function of a and τ :

(nF − nB) ξn κ
2Md = − c2Φ

2α2ω

P(τ)
a2(d−1)

. (4.1.20)

The characteristics of the polynomial P(τ) is of crucial importance in the form of the solutions for

the scale factor and the breaking scale. It can have zero, one or two real roots depending on the

value of c⊥/cΦ. Defining the critical value

γc =

√
1− ω
2α2ω

, (4.1.21)

we have

Supercritical case:

∣∣∣∣c⊥cΦ
∣∣∣∣ > γc , no real roots, P(τ) > 0 ,

Subcritical case:

∣∣∣∣c⊥cΦ
∣∣∣∣ < γc , two real roots,

Critical case:

∣∣∣∣c⊥cΦ
∣∣∣∣ = γc , one real root, P(τ) ≥ 0 .

(4.1.22)

The three next subsections treat the cosmologies arising from these three cases and we will not

describe the case when cΦ = 0 for brevity.

Note that to control the validity of string perturbation theory, it is useful to determine the

evolution of the dilaton ϕ which by definition is

e2dα
2ϕ =

(
M

Ms

)dα
e

d
n

√
d−2+nΦ⊥ , (4.1.23)

and is deduced from the evolution of M and also Φ⊥ whose behaviour is dictated by the equation

dΦ⊥
dτ
P(τ) = −2

√
2

d

c⊥
cΦ

. (4.1.24)

It is also useful to relate the parameter τ with the cosmic time t through the differential equation

dτ

dt
= −d

2

cΦ
ad−1
P(τ) . (4.1.25)
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4.1.2 Supercritical case

As we already said, in this case P(τ) has no real roots and it is always positive. We deduce from

(4.1.20) that the supercritical case can only arise for models with nF−nB < 0. We also conclude that

the classical limit κ2 → 0 is not allowed. This means that in this case, the cosmological evolution

of the universe is intrinsically quantum and the one-loop potential can never be neglected. The

integration of (4.1.19) gives the following behaviour for the scale factor,

a = a0
e−

1
As

arctan( τ−1
s

)

P(τ) 1
2A

, where s ≡
√
1− ω

√( c⊥
γccΦ

)2
− 1 , (4.1.26)

and where a0 is some positive integration constant. Inserting this expression in (4.1.20) yields

Md = − c2Φ
2α2ωκ2

a2A0
(nF − nB) vd,n

e−
2
s
arctan( τ−1

s
)

a2(A+d−1)
. (4.1.27)

The shape of the scale factor as a function of τ is drawn in Fig. 4.1a. As explained in the legend

of the whole figure, the black arrow shows the direction of evolution for cΦ > 0 and the red arrow

indicates a remarkable tangent. In the supercritical case, all the solutions describe an expanding

universe that reaches a maximum size before contracting.

In the limits of high τ in absolute value: τ → ϵ∞ with ϵ = ±1, the scale factor expressed in

terms of the cosmic time t thanks to (4.1.25) is

a(t) ∼
[
d(A+ d− 1)

2A
aA0 e

− ϵπ
2s ϵcΦ(t− tϵ)

] 1
A+d−1

, (4.1.28)

where tϵ is an integration constant. If ϵcΦ > 0, it describes a Big Bang at t ≳ tϵ and a Big Crunch

at t ≲ tϵ if ϵcΦ < 0. Comparing the magnitude of the energy sources, we have

H2 ∼ #Φ̇2 ∼ #κ2V1-loop ∼ #
a2A0 c2Φ

a2(A+d−1)
≫ 1

2
Φ̇2

⊥ =
c2⊥

a2(d−1)
, (4.1.29)

from which we see that the kinetic energy of the no-scale modulus Φ is of the same order as the

one-loop potential and it dominates the kinetic energy of the orthogonal combination. When a

reaches its maximum value, the potential exactly compensates the kinetic energy.

The validity of perturbation theory is given by the evolution of the dilaton ϕ. In the limits

τ → ±∞, Eq. (4.1.24) shows that Φ⊥ converges to a constant which, when inserted in (4.1.23),

gives the behaviour

e2dα
2ϕ ∼ #|τ | 2ω → +∞ , (4.1.30)

which shows that the dilaton diverges. In addition, the scale factor is supposed to be large enough

for the kinetic energies to be small compared to the string scale. If not, higher derivative terms

should be incorporated to the effective action. For these two reasons, we thus conclude that our

one-loop analysis is only valid far enough in time from the Big Bang and Big Crunch.

The supercritical case described here realizes a universe entirely driven by quantum effects and

which is sentenced to live for only a finite cosmic time. We interpret this situation as an “unstable

flat FLRW universe” since quantum effects destroy the classical conclusions on the cosmology. Note

that because perturbation theory cannot be trusted until the Big Crunch, a correct analysis there

may resolve the singularity.
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(a) This is the evolution of a in the supercritical case. It
reaches a maximum value before contracting and is only
allowed for models with nF − nB < 0.

(b) The subcritical case allows for three different branches
depending on the sign of the one-loop potential. The two
blue branches are possible when nF − nB < 0 while the
orange branch is allowed when nF − nB > 0.

(c) In the critical case, the two roots of the polynomial
P(τ) are 1 and the two possible branches correspond to
nF − nB < 0. It is not obvious here but the tangent at 1
from the left is horizontal. The plot on the right of this one
displays a zoom near τ = 1.

(d) In the critical case, zoom near τ = 1. The tangent is
horizontal.

Figure 4.1: Behaviours of the different branches of the scale factor a as a function of τ in the three cases, supercritical,
subcritical and critical for d = 4 and n = 1. Remarkable tangents are drawn with red arrows and the black arrows
show the direction of evolution along the various branches for cΦ > 0.

4.1.3 Subcritical case

The subcritical case turns out to be very rich. Now the polynomial P(τ) has two real roots

τ± = 1± r , where r ≡
√
1− ω

√
1−

( c⊥
γccΦ

)2
. (4.1.31)

All signs for the potential are allowed and the massless content of the models determines the allowed

branches for the variations of τ :
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nF − nB < 0 =⇒ τ < τ− or τ > τ+ ,

nF − nB = 0 =⇒ τ ≡ τ− or τ ≡ τ+ ,

nF − nB > 0 =⇒ τ− < τ < τ+ .

(4.1.32)

The classical trajectories for which κ2 → 0 correspond to τ(t) = τ± and are identical to the quantum

evolutions of super no-scale models characterized by nF = nB. Let us describe these particular

evolutions before studying the generic case with arbitrary nF − nB.

Super no-scale case

When τ = τ±, it is trivial to obtain for the two possibilities

a =

[
d(d− 1)

2A
(1± r) cΦ(t− t±)

] 1
d−1

, (4.1.33)

where t± are integration constants. With cΦ > 0, it describes a never-ending era of expansion

starting with a Big Bang at t±. By time reversal, one obtains contracting solutions down to a Big

Crunch at t±. The breaking scale satisfies

Md =
edαΦ±

a2(d−1)+K±
Md

s , where K± ≡ ±
2Ar

1± r , (4.1.34)

and Φ± are two integration constants. The kinetic energies of Φ and Φ⊥ are of the same order and

dominate the cosmology

H2 ∼ #Φ̇2
⊥ ∼ #Φ̇ ∼ #

c2Φ
a2(d−1)

. (4.1.35)

From the study of the dilaton, the conditions for perturbative consistency in the large scale factor

limit along the solution τ = τ+ translate into constraints on the initial condition c⊥
cΦ

and read

− γc <
c⊥
cΦ

< γ+ when n <
d2(d− 2)

4(d− 1)
, −γc <

c⊥
cΦ

< γc when n >
d2(d− 2)

4(d− 1)
, (4.1.36)

where

γ± ≡
(1− ω)

√
2(d−2)
n
± α

√
2(1− ω)(d− 2)

2α(ω d−2
n

+ 1)
. (4.1.37)

In a similar way, the solution τ = τ− is perturbative in the small scale factor limit if and only if

γ− <
c⊥
cΦ

< γc when n <
d2(d− 2)

4(d− 1)
, γ− <

c⊥
cΦ

< γ+ when n >
d2(d− 2)

4(d− 1)
. (4.1.38)

Generic case

The scale factor takes the form

a =
a0

|τ − τ−|
1

K− |τ − τ+|
1

K+

, (4.1.39)
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and the breaking scale reads

Md =
Md

+

a2(d−1)+K+
|τ − τ−|

2
τ+ where Md

+ =
c2Φ

2α2ωκ2
a
K+

0

|nF − nB| vd,n
. (4.1.40)

The evolution of a as a function of τ is shown in Fig. 4.1b. The ranges τ < τ− and τ > τ+, where the

polynomial P(τ) is positive, define two allowed branches (blue trajectories) satisfying nF− nB < 0.

The range τ− < τ < τ+ defines a single allowed trajectory (in orange) corresponding to nF−nB > 0.

Like before, the arrows indicate the direction of evolution for a positive constant cΦ.

Crucially, it is possible in all branches to approach the super no-scale solutions τ = τ±. In this

regime, the scale factor evolution is identical to that found in the super no-scale case (4.1.33) and

the breaking scale also behaves like (4.1.34). We conclude that the cosmological evolution of the

universe as a whole and the behaviours of the scalar fields approach the super no-scale evolution

where nF = nB i.e. for an exponentially suppressed one-loop potential. We thus define these limits

τ → τ± as “quantum no-scale regimes” since the classical no-scale structure is not spoiled by the

quantum potential. The magnitudes of the kinetic energies are the same as in (4.1.35) and here

they dominate the one-loop potential:

H2 ∼ #Φ̇2
⊥ ∼ #Φ̇ ∼ #

c2Φ
a2(d−1)

≫ κ2 |V1-loop| ∼ #
a
K±
0 c2Φ

a2(d−1)+K±
. (4.1.41)

Note that the left branch describes an evolution similar to the supercritical case with a scale factor

that reaches a maximum before contracting and an energy content similar to (4.1.29), intrinsically

quantum.

The conditions for perturbative consistency in the quantum no-scale regimes are the same as

in the super no-scale case (4.1.36) and (4.1.38). In particular, the branch with nF − nB > 0 (the

orange branch on Fig. 4.1b), is all the way perturbative from τ− to τ+ regardless of d and n if

γ− <
c⊥
cΦ
< γ+. The one-loop potential is dominated everywhere except near τ = 1 where it induces

the transition from a quantum no-scale regime to the other. Finally, as before, the behaviours at

τ → ±∞ can only be trusted up to a certain time.

The subcritical case is also interesting from the point of view of the dynamics of the breaking

scale. If we assume cΦ > 0, three distinct behaviours arise:

� If
√
ωγc < |c⊥/cΦ| < γc, the evolution of the breaking scale as a function of τ is displayed

in Fig. 4.2a in the three branches (the two blue ones allowed when nF − nB < 0 and the

orange one when nF − nB > 0). The black arrows show the directions of evolution. Along

the branch on the right where τ > τ+, we saw that the universe is attracted to the ever-

expanding quantum no-scale regime but the figure shows that M decreases i.e. it forever

climbs its negative potential [183]. In the other branches, the situation is more natural at late

times since M is either attracted to large values when the potential is negative after a phase

of decreasing (along the blue branch on the left) or drops along its positive potential along the

orange branch.

� If |c⊥/cΦ| <
√
ωγc, the evolution of M is displayed in Fig. 4.2b. Along the branch τ > τ+ the

same unnatural behaviour occurs andM climbs its negative potential while for τ < τ−,M drops

along its negative potential and reaches large values. Along the orange branch τ− < τ < τ+,

the breaking scale starts climbing its positive potential and then drops. The turning point is
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at τ = ω and there we have Φ̇ = 0 and V1-loop > 0 which allows an acceleration phase for the

scale factor [184–205] but which turns out not to yield a big enough e-folding number.

� If |c⊥/cΦ| =
√
ωγc, then the situation is the same as in the previous case with ω = τ−. The

conclusions are easily found from the evolution of M shown in Fig. 4.2c.

(a) Evolution of M when
√
ωγc <

∣∣∣ c⊥cΦ ∣∣∣ < γc. (b) Evolution of M when
∣∣∣ c⊥cΦ ∣∣∣ < √

ωγc.

(c) Evolution of M when
∣∣∣ c⊥cΦ ∣∣∣ = √

ωγc.

Figure 4.2: Evolution of M in the three allowed branches in the subcritical case with cϕ > 0 for three different ranges

of the initial condition
∣∣∣ c⊥cΦ ∣∣∣. The directions of evolution are indicated by the black arrows and the red arrows show

remarkable tangents.

4.1.4 Critical case

The evolution of the scale factor in the critical case is displayed in Fig. 4.1c and the conclusions

on the behaviours of the cosmological evolutions are similar to those of the subcritical case. We

thus do not say more on this case. Note that the zoom near τ = 1 in Fig. 4.1d shows an horizontal

tangent for the branch τ < 1. However, in terms of the cosmic time t, the tangent is vertical as in

a classical Big Bang/Big Crunch.
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4.1.5 Summary

Let us summarize the different cosmologies taking place in our setup i.e. in heterotic no-scale models

compactified down to arbitrary d ≥ 3 dimensions on tori where the one-loop potential induced by a

Scherk–Schwarz mechanism backreacts on the classical background. We have reduced the analysis

to a restricted number of fields: The scale factor a(t) of an homogeneous and isotropic FLRW

universe, the no-scale modulus Φ(t) driving the breaking scale and the free field Φ⊥(t). We can

parametrize the space of solutions by the couple ( c⊥
cΦ
, τi) where c⊥ and cΦ are integration constants

and τi is the initial value of the parameter τ , a dimensionless time variable defined in (4.1.18). Note

that the interpretation as a time variable is correct for all trajectories except those with constant

τ = τ± along which the cosmic time t keeps flowing. The partition of the R2-plane ( c⊥
cΦ
, τi) depicted

in Fig. 4.3 shows five distinct regions in which the cosmologies have specific behaviours.

Figure 4.3: Partition of the R2-plane (c⊥/cΦ, τi) of cosmological solutions. The supercritical regions satisfy |c⊥/cΦ| >
γc and nF − nB < 0. The subcritical region, |c⊥/cΦ| < γc, contains an ellipse τ− < τi < τ+, the interior (exterior)
of it corresponding to models satisfying nF − nB > 0 (< 0). The trajectories τ(t) for increasing cosmic time t are
represented by dashed lines, for cΦ > 0. The hatches indicate where perturbative consistency is expected to break
down.

Regions (I) and (I′) correspond to the supercritical case where |c⊥/cΦ| is bigger than a critical

value γc. In these regions, the dashed-blue trajectories whose directions of evolution for cΦ > 0

are indicated with a black arrow describe intrinsically quantum universes. The dynamics is always

dominated both by the kinetic energy of the no-scale modulus and by the one-loop potential that

can never be neglected. In this situation, the universe starts with a Big Bang, grows, reaches a

maximal size and ends with a Big Crunch. However, the singular behaviours at too early or too

late times cannot be trusted since perturbative consistency breaks down. This is illustrated with
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hatches on the figure.

Inside the subcritical area in which |c⊥/cΦ| < γc, the interior of the green ellipse corresponds

to a parameter τ confined between the particular values τ− (bottom of the ellipse) and τ+ (top

of the ellipse) and thus to the orange trajectories of Figs. 4.1b and 4.2. There, the potential is

positive (nF − nB > 0) and for cΦ > 0, the dashed-orange trajectory goes from a Big Crunch at

τ− to an ever-expanding era at τ+. Asymptotically near these values, the dynamics is identical to

that of a super no-scale model where the one-loop potential vanishes up to exponentially suppressed

contributions. The classical no-scale structure is preserved in the sense that quantum corrections do

not disturb the asymptotic cosmological evolution and we thus define these cosmologies as “quantum

no-scale regimes”. In these regimes, the dynamics is driven by the kinetic energies of Φ and Φ⊥,
which dominate the one-loop potential. Moreover, depending on their locations in region (III),

such orange trajectories in Fig. 4.3 can easily be consistent with perturbation theory. The endless

expansion and flatness of the universe near τ+ is not destabilized by quantum corrections.

In region (II) outside the ellipse and thus with a negative potential, the dashed-blue trajectory

comes from a Big Crunch at τ → +∞ (where pertubation theory cannot be trusted) and ends in an

ever-expanding quantum no-scale regime near τ+ where perturbative consistency can be achieved.

In region (IV), the potential is also negative and the cosmology is that of Big Bang in a quantum

no-scale regime near τ− and a Big Crunch at τ → −∞, where the universe is intrinsically quantum

like in regions (I) and (I′) and whose behaviour cannot be trusted at too late times.

4.2 Cosmological stability of the no-scale structure: Influence of defor-
mations

The goal of this subsection is to study the influence of the dynamics of marginal deformations on

the emergence of quantum no-scale regimes. We will see new effects occurring due to the presence of

non-trivial deformations and the existence of enhanced symmetry points. The first subsection will

briefly review how more involved Scherk–Schwarz mechanisms can be implemented to yield richer

breaking patterns in the presence of deformations and the generic form of the one-loop potential in

the regime of low supersymmetry-breaking scale in such context, already encountered in (3.1.28),

will be presented. Next, we will consider a setup with a specific background and a restricted

number of small deformations to see if quantum no-scale regimes are still allowed in the presence

of the deformations. We will end the section with a discussion on the existence of global attractors

by relaxing the smallness assumption of the deformations.

4.2.1 Arbitrary deformations and one-loop potential

This subsection will not be exhaustive at all about the deformed partition function of the heterotic

string and the derivation of the one-loop potential in the low breaking scale limit. Lots of details

can be found in the self-contained appendix of [44]. The most general modular invariant one-loop

amplitude in d dimensions, for arbitrary internal metric and antisymmetric tensors G and B and

deformations Y⃗ (more details on them soon) takes the form [18–22,44,56,57,206]

T =

∫
F

d2τ

τ
d
2
+1

2

1

η12η̄24
1

|Ξ|
∑
a⃗,⃗b∈Ξ

C
[
a⃗
b⃗

]
Z [⃗a, b⃗, G,B, Y⃗ ] , (4.2.1)
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where Ξ is the set of spin structures a⃗ ≡ (⃗aL, a⃗R) and b⃗ ≡ (⃗bL, b⃗R) of the 10 left-moving complex

fermions and the 16 right-moving ones along the two cycles of the torus. The factor C
[
a⃗
b⃗

]
is a phase

such that the partition function at Y⃗ = 0⃗ is modular invariant and Z is

Z [⃗a, b⃗, G,B, Y⃗ ] =

√
detG

τ
10−d

2
2

∑
m̃d,...,m̃9
nd,...,n9

e
− π

τ2
(m̃I+nI τ̄)(G+B)IJ (m̃I+nIτ)

× eiπnI Y⃗I ·(⃗b−m̃J Y⃗J )

4∏
A=1

θ
[
aLA−2nIY

L
IA

bLA−2m̃IY
L
IA

]
(τ)

25∏
J=10

θ̄
[
aRJ−2nIY

R
IJ

bRJ−2m̃IY
R
IJ

]
(τ̄) . (4.2.2)

The sum in the first line is the contribution of the bosonic zero modes on the internal torus T 10−d

with tensors GIJ and BIJ , I ∈ {d, . . . , 9} in Lagrangian form. In the second line, the holomorphic

Jacobi theta functions describe the left-moving fermions with spin structures aL1 = · · · = aL4 and

bL1 = · · · = bL4 for a maximally supersymmetric background. The antiholomorphic Jacobi functions

describe the right-moving fermions with arbitrary spin structures aRJ and bRJ , J ∈ {10, . . . , 25}
before deformation. The Y L

IA ∈ Z, I ∈ {d, . . . , 9}, A ∈ {1, . . . , 4} are deformations of the left

superconformal theory. They take integer values for the holomorphic supercurrent to be conserved.

The Y R
IJ , I ∈ {d, . . . , 9}, J ∈ {10, . . . , 25} are arbitrary deformations of the right conformal theory,

interpreted as Wilson lines of a rank 16 gauge group along the internal right torus. We define

Y⃗I ≡ (Y⃗ L
I , Y⃗

R
I ) ≡ (YIΥ,Υ ∈ {d, . . . , 25}) that can be interpreted as Wilson lines along T 10−d of a rank

16 gauge group. Eventually, the phase in the second line ensures that the modular transformations

of Z are independent of the deformations so that if the partition function is modular invariant at

zero deformations, it remains consistent when they are turned on. Note that the scalar product

involved in the phase dresses the left part with a plus sign and the right part with a minus sign.

These expressions are the most general formulas of which the supersymmetric Spin(32)/Z2 and

E8 × E8 heterotic string theories as well as Scherk–Schwarz realizations are just particular cases.

Let us see precisely how to recover: (1) The undeformed heterotic string compactified on T 10−d (2)
The simplest Scherk–Schwarz realization along the single direction Xd (3) A more involved pattern

involving large discrete deformations as a background which yield an nF − nB of arbitrary sign

depending on the location in moduli space and eventually (4) How a discrete background for the

antisymmetric tensor can change the nature of the states that become massless at enhancement

points.

� The compactified Spin(32)/Z2 heterotic string corresponds to

Ξ =
{
(4, 16)-tuples (a, . . . , a; γ, . . . , γ) , where a, γ ∈ Z2

}
,

C[a;γb ;δ ] = (−1)a+b+ab ,
Y⃗ L
I = 0⃗ , Y⃗ R

I = 0⃗ , I ∈ {d, . . . , 9} .
(4.2.3)

The Y ’s are all set to zero and the phase C is the standard one. Going to the Hamiltonian form

by Poisson summation over the m̃I , I ∈ {d, . . . , 9}, the light spectrum is found to be a super-

gravity multiplet in d dimensions coupled to a vector multiplet in the adjoint representation

of G10−d × Spin(32)/Z2 where G10−d is a rank 10− d group arising from compactification (this

gauge factor can have symmetry enhancements for special values of G as evoked in Chapter 1).

To obtain the group E8 × E8 instead of Spin(32)/Z2, one needs to consider

Ξ =
{
(4, 8 + 8)-tuples (a, . . . , a; γ, . . . , γ, γ′, . . . , γ′) , where a, γ, γ′ ∈ Z2

}
. (4.2.4)
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� From these undeformed theories, the simplest Scherk–Schwarz mechanism implemented along

direction Xd amounts to take Y L
IA = δIdδA1, I ∈ {d, . . . , 9}, A ∈ {1, . . . , 4}. The phase in the

second line of (4.2.2) combined with the shift of argument of the holomorphic theta functions

gives an overall modular invariant phase (−1)m̃da+ndb+m̃dnd . Because it depends on a, which

determines the NS or R boundary conditions of the fermions, it introduces a 1
2
shift to the

Hamiltonian momentum number md only to the fermions which yields a theory with only

bosonic light states. The gauge group G10−d is broken to U(1)× G9−d in this case.

� Something very interesting occurs if in addition one considers large discrete deformations Y R
IJ =

δIdη
R
J , I ∈ {d, . . . , 9}, J ∈ {10, . . . , 25} with η⃗R · a⃗R ≡ η ∈ Z. Now the bosonic or fermionic

nature of the light states depends on η. If η is even, the fermions acquire the mass shift as usual

whereas for η odd, it is the bosons that get the mass shift and the fermions that remain light.

Starting from the E8×E8 theory, a suitable choice for η⃗R breaks the group to SO(16)×SO(16)

with massless bosons in the adjoint representation and massless fermions in the spinorial one.

If we call den the number of roots of the enhanced U(1)’s in G9−d, we obtain

nB = 8× (8 + 120 + 120 + den) and nF = 8× (128 + 128) . (4.2.5)

Simply by considering SU(2) enhancements, depending on how many are present in the group

G9−d, we see that nF − nB can be negative, vanishing or positive.

� Finally, when a Scherk–Schwarz mechanism is implemented along Xd, the generalized momen-

tum Pd along that direction becomes

Pd ≡ md +
1

2
[F + 2(G+B)djnj] . (4.2.6)

At enhancement points in moduli space where vector multiplets with windings nj = ±1,
j ∈ {d + 1, . . . , 9} become massless in a supersymmetric theory, we see that for an even

background integer value for 2(G + B)djnj, the bosonic part is indeed massless while the

fermionic one get a mass. In this case, the gauge symmetry is still enhanced like in the

supersymmetric case. However, an odd background integer value for 2(G+B)djnj produces a

mass shift for the bosonic part of the multiplet and keeps the fermionic part massless. In this

case the gauge symmetry is not enhanced.

Defining small deformations yIΥ, I ∈ {d, . . . , 9}, Υ ∈ {d, . . . , 25} around a Scherk–Schwarz

background (using only direction Xd) with an enhanced massless spectrum where nF and nB light

fermions and bosons are present and where the supersymmetry-breaking scale in sigma-model frame

M(σ) =
√
GddMs is the lowest scale, the one-loop potential V(σ)

1-loop in the regime of low breaking scale

and up to quadratic order in the yIΥ’s is [44,56,57]

V(σ)
1-loop = ξd(nF − nB)M

d
(σ) +

ξd−2

2π

25∑
Υ=d+1

cΥ

[
(d− 1)y2dΥ +

1

Gdd

9∑
i=d+1

y2iΥ

]
Md

(σ) + · · ·

+O
(
(cMsM(σ))

d
2 e−2πcMs/M(σ)

)
.

(4.2.7)

The constant c is of order one and ξd, already encountered several times and never given explicitly,

is

ξd =
Γ
(
d+1
2

)
ζ(d+ 1)

2d−1π
3d+1

2

(
1− 2−(d+1)

)
. (4.2.8)
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The coefficient cΥ determines whether the Wilson lines yiΥ are massive, massless or tachyonic at one

loop2 and is related to the Dynkin indices in which the massless background spectrum transforms,

as mentioned around Eq. (3.1.28).

4.2.2 Dynamics with a restricted number of small deformations

Setup and objectives

In the sequel, we study the cosmology of models with the specific following deformations along

directions d and d+ 1:

(G+B)Ij =

(
R2
d/α

′ ϵ
2
+
√
2yd,d+1

− ϵ
2
+
√
2yd+1,d 1 +

√
2yd+1,d+1

)
, I, j ∈ {d, d+ 1} . (4.2.9)

The internal metric and antisymmetric tensors along the remaining 8 − d internal directions are

arbitrary and we freeze for simplicity all other deformations

yI,d+2 = · · · = yI,25 = 0 , I ∈ {d, . . . , 9} and yId = yI,d+1 = 0 , I ∈ {d+ 2, . . . , 9} . (4.2.10)

As mentioned in the previous subsection, the parity of ϵ determines if the additional massless states

arising at Rd+1,d+1 =
√
α′ are bosons with an enhancement from U(1) to SU(2) or fermions without

enhancement. In Eq. (4.2.7) applied to this case, the coefficient cΥ is then accordingly either +16

for ϵ even and −16 for ϵ odd.

In this subsection, we only want to show that quantum no-scale regimes exist in the presence

of the deformations yd,d+1, yd+1,d and yd+1,d+1 so that it is enough to assume them to be small,

|yd,d+1|, |yd+1,d| ≪ 1 and |yd+1,d+1| ≪
√
Gdd ≪ 1. Denoting nF and nB the number of background

massless fermionic and bosonic degrees of freedom without counting those arising at Rd+1,d+1 =
√
α′,

we have from (4.2.7),

V(σ)
1-loop = ξd(nF−nB+(−1)ϵ8×2)Md

(σ)+(−1)ϵ 8
π
ξd−2

(
(d− 1)y2d,d+1 +

y2d+1,d+1

Gdd

)
Md

(σ)+· · · . (4.2.11)

Up to quadratic order in the y’s, the one-loop effective action we consider takes the form

S =
1

κ2

∫
ddx
√−g

[R
2
− 1

2
(∂Φ)2 − 1

2
(∂Φ⊥)

2 − 1

4
(∂yd+1,d+1)

2

−G
dd

4
(∂yd,d+1)

2 − Gdd

4
(∂yd+1,d)

2 + · · · − κ2V1-loop
]
,

(4.2.12)

where V1-loop ≡ edαΦV(σ)
1-loop. Like before, we assume a FLRW metric (4.1.10) and we assume the

fields to depend only on x0. The equations of motion for the lapse N and scale factor a have the

same forms as before (Eqs. (4.1.11) and (4.1.12)), with the new expression for V1-loop and a kinetic

energy K given by

K =
1

2
Φ̇2 +

1

2
Φ̇2

⊥ +
Gdd

4
ẏ2d,d+1 +

Gdd

4
ẏ2d+1,d +

1

4
ẏ2d+1,d+1 . (4.2.13)

We are looking for quantum no-scale regimes and thus for solutions where the scale factor diverges

at t→ +∞ or goes to zero at t→ t− and where the effective potential is dominated by H2. Defining

2If we forget the runaway of M(σ).
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constants κ± such that ±κ± > 0 that are to be determined by consistency, we look for solutions

a(t) −→
t→+∞

+∞ or a(t) −→
t→t−

0 where κ2Md
s e

dαΦ = O
(
H2

aκ±

)
. (4.2.14)

Resolution of the equations of motion

The above assumptions to find a quantum no-scale regime imply a behaviour for the scale factor

like a ∼ t
1

d−1 or a ∼ |t − t−|
1

d−1 . The sign (−1)ϵ inside the potential before the quadratic terms in

y’s turns out to be irrelevant in the equations of motion for yd+1,d and yd,d+1 so that

ẏd+1,d ∼ ẏd,d+1 ∼
1

ad−1Gdd
. (4.2.15)

Injecting these expressions in the kinetic energy gives a constraint on the behaviour of Gdd for

the Friedmann equation (4.1.11) to be consistent with H2 ∼ t−2 or H2 ∼ (t − t−)−2. We thus

assume Gdd ∼ tJ+ or Gdd ∼ (t − t−)J− with constants J± to be determined and that must satisfy

±J± > 0. With this assumption, we conclude from (4.2.15) that the fields yd,d+1 and yd+1,d converge

to small arbitrary constants. Notice that even when the “mass term” is negative when ϵ is odd, the

deformations do not automatically reach large expectation values that would destabilize the initial

background. The equation of motion for yd+1,d+1 yields, with cy an integration constant,

ẏd+1,d+1 ∼
2cy
ad−1

=⇒ |yd+1,d+1| ∼ | ln(t)| or | ln(t− t−)| ≪
√
Gdd . (4.2.16)

The logarithm behaviour is not inconsistent with the smallness of yd+1,d+1 since the behaviour of

Gdd with ±J± > 0 ensures that |yd+1,d+1|/
√
Gdd decreases. The dominant behaviours of Φ and Φ⊥

are the same as the exact ones in (4.1.16) with two integration constants c⊥ and cΦ. Eventually,

going back to Friedmann equation, it is consistent only if c⊥ , cΦ and cy satisfy a subcriticality

condition similar to the one in the underformed analysis(
c⊥
γccΦ

)2

+

(
cy
γccΦ

)2

≤ 1 (4.2.17)

where the critical value γc is the same as before (see Eq. (4.1.21)) with n = 1. The subcritical

region is thus now the disk of radius one in the plane ( c⊥
γccΦ

, cy
γccΦ

) instead of being just the segment∣∣∣ c⊥γccΦ ∣∣∣ ≤ 1.

Consistency of the analysis requires to determine κ± and J± and check if they indeed satisfy

±κ± > 0 and ±J± > 0. It turns out that κ± does not introduce any constraint in the subcritical

region depicted in Fig. 4.4 while J± restrict ( c⊥
γccΦ

, cy
γccΦ

) to lie in the schematic blue shaded regions.

The left crescent yields a quantum no-scale regime a→ +∞ which is always perturbative while the

right one gives rise to a quantum no-scale regime a→ 0 perturbative everywhere except at the tips

of the crescent.

We thus conclude that quantum no-scale regimes exist even when the dynamics of internal moduli

fields is considered. It is important to note that Fig. 4.4 is only schematic and that for 3 ≤ d ≤ 9,

the width of the left crescent along the horizontal axis is actually very small. It approximately

ranges from 10−3 to 10−2. We should not conclude that some fine tuning is required for ever-

expanding quantum no-scale regimes to exist since global attractor may be present. This analysis

is the purpose of the next subsection.
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Figure 4.4: The points ( c⊥
γccΦ

,
cy

γccΦ
) of the disk of radius 1 that lie in the shaded regions yield quantum no-scale

regimes. The universe is forever expanding in the left crescent and goes to a Big Crunch in the right crescent. The
hatches schematically indicate where perturbative consistency breaks down.

4.2.3 Global attractor mechanism

We use numerical tools to investigate if global attractors towards quantum no-scale regimes with

a → +∞ exist in order to avoid the fine tuning of the integration constants. We are particularly

interested in the evolutions of the simulated quantities in d = 4 dimensions

csim⊥ =
ad−1

√
2
Φ̇⊥ , csimΦ = ad−1

(
αΦ̇ +

α2

2
d(d− 2)H

)
, csimy =

ad−1

2
ẏ55 . (4.2.18)

Note that before simulating the whole system, we checked that starting from the tiny left crescent

indeed yields a quantum no-scale regime where the above simulated quantities freeze. We also

observed the expected non-trivial behaviours: The climbing of M of its negative potential and the

stabilization of the y’s even when they have negative “mass terms” in the potential.

To simulate the whole system and allow for the y’s to reach arbitrary large values, the exact

potential without approximation to quadratic order in the y’s needs to be implemented [44]. For

simplicity, the simulations have been performed with y55 = 0⇒ cy = 0. Note that the parity of ϵ is

no more relevant in this context since the exploration of a large range of values by the moduli fields

interpolates between different values for nF − nB + (−1)ϵ8 × 2. An important feature of the exact

potential in our specific setup is that depending on nF − nB, its sign can be always positive for all

values of yd,d+1, always negative or without a definite sign. The results of the simulations are the

following:

� When V1-loop < 0 for some values of y45, the universe collapses after a certain time unless the

trajectory happens to sit in the tiny left crescent. In this case, the dynamics of the Wilson lines

thus drastically impacts the possibility of emergence of quantum no-scale regimes compared to

the toy model.
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� When V1-loop ≥ 0 for all values of y45, the quantity
csim⊥
γccsimΦ

is always attracted inside the tiny

crescent where it freezes and the system enters a quantum no-scale regime. This global attractor

makes a flat expanding universe much more likely when the one-loop potential is positive rather

than negative where fine tuning is required for the universe not to collapse.

It is interesting to see how the system evolves before reaching a quantum no-scale regime when

V1-loop ≥ 0. Remember that in such a regime, the scale factor satisfies ad−1 ∼ t so that (ad−1)· is
constant. Fig. 4.5a shows the evolution of (ad−1)· for a set of small initial velocities for y45 and y54.

We observe that a structure of plateaux arises, that can be understood as follows:

� For small velocities, the dynamics temporarily matches the one of the toy model where we have

shown that the system always enters a quantum no-scale regime since V1-loop ≥ 0. That is why

(ad−1)· follows a first plateau.

� It is unlikely that the system initially sits in the tiny crescent and thus the value of J sim
+ (which

is dynamical at this stage) is almost certainly negative. The kinetic energies of y45 and y54
inevitably end up dominating in Friedmann equation and destabilize the initial approximate

quantum no-scale regime. Thanks to the positivity of the one-loop potential, the quantity

(ad−1)· starts increasing.
� The kinetic energies of y45 and y54 cannot dominate forever since no such asymptotic solutions

exist. The energy must be released at some point and the system reaches a new approximate

quantum no-scale regime.

� At each plateaux, the dynamical value of J sim
+ gets closer to the tiny crescent and after enough

plateaux, it stabilizes to a positive value (see Fig. 4.5b).

� This convergence to the tiny crescent can be checked by plotting
csim⊥
γccsimΦ

in Figs. 4.5c and 4.5d.

� Once this is the case, the universe stays in this final quantum no-scale regime forever.

4.3 Thermal cosmology: A model for dark-matter relic generation

Inspired by the effect of a discrete antisymmetric tensor on the bosonic or fermionic nature of the

additional massless states at specific points in moduli space, we describe how it can affect the

cosmology considered at finite temperature T(σ) in sigma-model frame. We exhibit a mechanism

where a cosmological attractor triggers a phase transition and implies the condensation of initially

massless scalars. Assuming such states to be dark-matter candidates, we study how this sudden

mass increase affects the standard freeze-out scenario of dark matter presented in Chapter. 1.

This study is again performed in a heterotic string framework in d dimensions with spontaneously

broken supersymmetry à la Scherk–Schwarz in the low breaking scale regime and this time with

the additional implementation of finite temperature. In a first subsection, we express the one-

loop thermal potential Vth,(σ)
1-loop in our setup. We then briefly define and review the existence of an

attractor to a so-called “radiation-like era” in this configuration [38–42]. After that, we show how

the evolution of the universe along such an attractor can trigger a destabilization of some initially

massless states before entering a second radiation-like era. In a fourth and last subsection, we

describe how this mechanism impacts the standard freeze-out scenario to yield a relic density of

dark matter at late times.
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(a) Convergence of (ad−1)· towards a constant, signalling
the entrance of the universe in a quantum no-scale regime.
The plateaux correspond to approximate intermediate
quantum no-scale regimes before reaching the exact final
one.

(b) Evolution of Jsim
+ . It oscillates between positive and

negative values before stabilizing at a positive value when
the final exact quantum no-scale regime is reached.

(c) Convergence of
csim⊥

γcc
sim
Φ

towards the tiny range

[−1,−0.9941]. The next plot on the right zooms over this
range to better see the convergence.

(d) Zoom over the entrance of
csim⊥

γcc
sim
Φ

into the tiny range

[−1,−0.9941] represented by the orange shaded area.

Figure 4.5: Evolution of the simulated quantities (ad−1)·, J sim
+ and

csim⊥
γccsimΦ

as a function of time with d = 4.

4.3.1 Thermal potential at one loop

We consider the E8 × E8 heterotic string compactified on

S1
E(R0)×Rd−1 × S1(Rd)× T 8−d × S1(R9) . (4.3.1)

The first circle of radius R0 is the compactified Euclidean time that implements the finite temper-

ature [22]. The temperature is then proportional to the inverse of the radius R0 and the associated

Matsubara excitations have a momentum m0 which is unshifted for boson and shifted for fermions:

T(σ) ≡
1

2πR0

and m0 −→
m0 +

F
2

R0

,m0 ∈ Z . (4.3.2)

Note the following difference of notation compared to the other studies presented in this thesis: We

will perform the Scherk–Schwarz mechanism responsible for the spontaneous breaking of supersym-

metry along the direction X9 with radius R9. The radius Rd of the other factorized circle will play
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the role of the (de)-stabilized modulus throughout the cosmological evolution of the universe. To

have more flexibility for the possible values of nF − nB, we break E8 × E8 to SO(16) × SO(16) as

explained in Subsect. 4.2.1. Note that here, we define den to be the number of roots of the enhanced

U(1)’s excluding direction Xd. We then define nF and nB to be the massless degrees of freedom

which do not contain the possible additional states coming from direction Xd,

nB = 8× (8 + 120 + 120 + den) and nF = 8× (128 + 128) . (4.3.3)

As described in the same subsection, we also turn on a discrete background value for 2Bd9 ≡ ϵ so

that its parity determines if the additional massless states at the self-dual radius Rd =
√
α′ are

bosons (producing a gauge symmetry enhancement) or fermions. This will be very important to

trigger or not a phase transition as the universe evolves. More precisely, the whole Kaluza-Klein

tower along X9 with momentum m9 ∈ Z and with momentum and winding numbers along Xd

satisfying md = ±nd = ±1 has squared mass(
Rd

α′ −
1

Rd

)2

+

(
m9 +

F+2Bd9nd

2

R9

)2

=

(
Rd

α′ −
1

Rd

)2

+

(
m9 +

F±ϵ
2

R9

)2

. (4.3.4)

Denoting ñB and ñF the additional numbers of bosonic and fermionic degrees of freedom at the

self-dual radius, we have

ñB = 8× 2(1− ϵ) and ñF = 8× 2ϵ . (4.3.5)

To proceed, we define the following quantities,

ζ ≡ ln

(
Rd

α′

)
, z ≡ ln

(
R0

R9

)
= ln

(
M(σ)

T(σ)

)
. (4.3.6)

We do not write the full result for Vth,(σ)
1-loop that can be found in [39] but we display its Taylor expansion

up to quadratic order around ζ = 0:

Vth,(σ)
1-loop = T 4

(σ)

[
−(NF +NB)f

(d)
T (z) + (NF −NB)f

(d)
V (z)

]
+
T d−2
(σ) ζ

2

π
(ñF + ñB)

[
f
(d−2)
T (z) + (−1)ϵf (d−2)

V (z)
]
+O(ζ4) ,

(4.3.7)

where NF = nF + ñF and NB = nB + ñB are the total number of fermionic and bosonic degrees of

freedom at ζ = 0 and the function fT and fV are

f
(d)
T (z) =

Γ
(
d+1
2

)
π

d+1
2

∑
k̃0,k̃9 ∈Z

edz[
e2z(2k̃0 + 1)2 + (2k̃9)2

] d+1
2

, f
(d)
V (z) = e(d−1)zf

(d)
T (−z) . (4.3.8)

Note that at ζ = 0, we see that the thermal one-loop potential displays a competition between

the thermal effects in f
(d)
T (z) and the usual quantum effects in f

(d)
V (z). When the temperature is

dominated by the supersymmetry-breaking scale (z → +∞), the expression of Vth,(σ)
1-loop matches the

one of V(σ)
1-loop (Eq. 1.3.11). On the contrary, when the temperature dominates (z → −∞), Vth

1-loop

reduces to the first thermal term. Notice also that the thermal contribution is always negative with

a pre-factor −(NF + NB) while the quantum effects are dressed with the usual (NF − NB) factor

that can be of arbitrary sign and can potentially compensate the thermal part when NF > NB.
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4.3.2 Attraction to a radiation-like era

When ϵ is even, the shape of the thermal potential as a function of ζ is drawn in Fig. 4.6. It

is drawn in the case T(σ) > M(σ) but the qualitative shape is the same if T(σ) < M(σ) up to the

replacement R0 → R9 in the figure. We see that there is a local minimum at ζ = 0 and we can

naively expect a stabilization. The well centred at the origin is surrounded by two plateaux where

the contributions to the thermal potential of the ñB and ñF states become exponentially suppressed

so that it does not depend on ζ any more. If the the radius Rd is too big (Rd ≳ R0) or to small

(Rd ≲ 1/R0), the Kaluza–Klein modes or winding modes contribute significantly and produce an

exponential behaviour that can be decreasing or increasing depending on the sign nF − nB and the

value of z.

Figure 4.6: Qualitative shape of the thermal potential as a function of ζ = ln(Rd) in the case ϵ even and T(σ) > M(σ).
If T(σ) < M(σ), the shape is the same up to the change R0 → R9.

In this case, it has been shown in [41] that the naive expectation for a stabilization of ζ is indeed

correct and the dynamics shows a peculiar cosmological behaviour. With the usual definitions (4.1.6)

applied with n = 1 for the no-scale modulus Φ and the orthogonal combination Φ⊥ in function of

R9 and the dilaton ϕ, the action in Einstein frame reads

S =

∫
ddx
√−g

[R
2
− 1

2
(∂Φ)2 − 1

2
(∂Φ⊥)

2 − 1

2
(∂ζ)2 − Vth

1-loop

]
, (4.3.9)

where Vth
1-loop ≡ e

2d
d−2

ϕVth,(σ)
1-loop. The temperature and supersymmetry-breaking scale in Einstein frame

without subscript (σ) are defined from the expression in sigma-model frame with the multiplicative

factor e
2

d−2
ϕ. It is also convenient to define β = 1/T . With a FLRW ansatz,

ds2 = −β(x0)2(dx0)2 + a(x0)2
d−1∑
i=1

(dxi)2 , Φ(x0) , Φ⊥(x
0) , ζ(x0) , (4.3.10)

and the definition of a cosmic time t ≡ βx0, the equations of motion for β, the scale factor a and

the fields Φ, Φ⊥ and ζ can be worked out. Provided that the massless spectrum satisfies

0 <
NF −NB

NF +NB

<
1

2d − 1
, (4.3.11)

they admit as a solution a behaviour where ζ = 0, Φ⊥ = ϕ⊥0 = cst and z keeps a constant value

z̃c that can range from −∞ to +∞ depending on the precise values of NF and NB. In such a
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solution, ζ does not move and the the breaking scale M is proportional to the temperature T with

proportionality constant equal to ez̃c . Both M and T decrease like the inverse of the scale factor

which itself grows like t
d
2 . The cosmology then looks like that of a universe filled only by radiation

with H2 ∝ T d. Of course, the energy density ρ and pressure P derived from the thermal potential

do not satisfy the state equation of pure radiation ρ = (d − 1)P but when the kinetic energy of

the no-scale modulus Φ is taken into account, the total energy density ρtot and pressure Ptot indeed

verify ρtot = (d−1)Ptot. This is the reason why this cosmological behaviour is called “radiation-like”.

This solution has been shown to be robust to small fluctuations in d ≥ 4 [39] so that the generic

evolution of a trajectory not too far from the critical behaviour converges towards the critical

evolution. In the transient regime, the value of z can oscillate or not while ζ undergoes damped

oscillations around zero. Such oscillating scalars usually give rise to the so-called “cosmological

moduli problem” since their energies do not dilute fast enough as the universe expands and do not

stabilize. Some authors invoked decays of the scalars to solve the problem but this gives rise to

new difficulties such as an excessive entropy production [207, 208]. Note that our setup avoids the

cosmological moduli problem and ζ indeed stabilizes thanks to the drop of its mass as the universe

evolves.

If ζ starts too far from zero along one of the plateaux in Fig. 4.6, the setup is the same as

before but without the additional ñF and ñB massless states contributing. A local attractor again

exists [39], very similar to the previous one but this time with ζ = ζ0 = cst and a new critical value

zc provided that now

0 <
nF − nB

nF + nB

<
1

2d − 1
. (4.3.12)

Notice also that when ζ starts on the exponential part of the potential in Fig. 4.6, even if this part is

exponentially decreasing, the plateau width is dynamical and always ends up catching ζ, preventing

it from eternally falling out.

4.3.3 Conditions for a dynamical phase transition

Let us now look at the qualitative shape of the potential as a function of ζ in the case where ϵ is

odd. When the temperature dominates the supersymmetry-breaking scale, the shape is the same

as in Fig. 4.6. However, when the ratio M/T becomes greater than one, the well centered at the

origin becomes a bump as can be seen from Fig. 4.7.

We want to use this change of behaviour as the temperature drops to trigger a phase transition

responsible for the generation of a large mass to some states that will be interpreted as dark-matter

candidates. In this subsection, we describe qualitatively what we naively expect to happen and

then check these conclusions thanks to numerical simulations.

Expected behaviour

� At large temperature, we assume ζ to sit not too far from the origin inside the well formed by

its potential and we assume condition (4.3.11) to be valid. We then expect the cosmological

evolution to converge towards the critical solution with z = z̃c.

� If ez̃c = M/T < 1, the temperature never drops below the breaking scale and the potential

keeps its well shape as in Fig. 4.6 forever and nothing special happens.
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Figure 4.7: Qualitative shape of the thermal potential as a function of ζ = ln(Rd) in the case ϵ odd and T(σ) < M(σ).
When T(σ) > M(σ), the shape is the same as the one drawn in Fig. 4.6.

� However, if ez̃c > 1, at the inevitable moment when the breaking scale starts to dominate the

temperature, the potential develops a bump and ζ is destabilized.

� We then expect ζ to slide along the bump until it freezes along the plateau. From there, if

condition (4.3.12) is satisfied, the universe follows another radiation-like critical solution with

z = zc > 1.

For this expected scenario to take place in our setup, the three following conditions must hold:

(i) 0 <
nF − nB

nF + nB

,
NF −NB

NF +NB

<
1

2d − 1
(zc and z̃c exist),

(ii) ϵ ∈ 2Z+ 1 (necessary for a possible destabilization of ζ),

(iii) z̃c > 0 (ζ indeed becomes tachyonic).

(4.3.13)

We thus choose ϵ odd and condition (i) can be written like

0 <
8− den
504 + den

,
10− den
506 + den

<
1

2d − 1
. (4.3.14)

Condition (iii) can be checked by determining z̃c explicitly [41],

z̃c is the unique root of the equation
NF −NB

NF +NB

− f
(d)
T + ∂zf

(d)
T

f
(d)
V + ∂zf

(d)
V

= 0 . (4.3.15)

We find that:

� For d = 3 and d = 4, condition (i) holds with den = 0, 2, 4, 6 and also den = 8 if we allow the

critical value zc to be +∞. The critical value z̃c is positive in all cases so condition (iii) is also

verified and the phase transition occurs.

� For d = 5, condition (i) holds with den = 0, 2, 4, 6 (and 8) but z̃c turns out to be positive only

for den = 4, 6 (and 8).

� For d = 6, condition (i) implies den = 2, 4, 6 (and 8) but z̃c is always negative.

� For d = 7 and 8, condition (i) can no more be satisfied.
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Numerical simulations

To confirm all these expectations, we have numerically simulated the system of differential equations

to see if the phase transition indeed occurs during a transient regime. We choose initial conditions

with an expanding universe (ȧ(0) > 0) and a temperature higher than the supersymmetry-breaking

scale (z(0) < 0). We also choose ζ(0) to be inside the well of the potential and with a low enough

initial velocity. Note that a medium size for the initial radius R0 (few units of
√
α′) is enough to

throw out the exponentially suppressed contributions and gives a well width large enough not to

require an important initial fine tuning.

The simulated evolutions of the fields ζ(t), z(t), Φ⊥(t) and a(t)T (t) in dimension d = 4 are

depicted in Fig. 4.8a. We observe that ζ(t) (blue curve) undergoes damped oscillations around the

origin at the beginning. In the meantime, z(t) (orange curve) increases from its initial negative value

to try to approach the positive value z̃c. Once z(t) becomes positive, the potential well becomes

a bump as we saw and as expected, ζ(t) slides along this bump before freezing somewhere. The

field z(t) converges to the new critical value zc and Φ⊥(t) also freezes. The final regime is indeed

radiation-like as the product a(t)T (t) becomes constant. It could be surprising at first sight that

the absolute value of the constant reached by ζ(t) is lower than the initial one since one could

naively think that it remains stuck on top of the bump. Actually, the bump width is dynamical

and decreases with time as shown in Fig. 4.8b. We see that the end value of ζ(t) is indeed far away

from the bump. In the simulation, the mass acquired by the ñF states is roughly 2% of the string

scale, which is much larger than T(σ) and M(σ) that keeps decreasing.

(a) Evolution of ζ(t), z(t), Φ⊥(t) and a(t)T (t) in a model
that realizes the dynamical phase transition.

(b) Evolution of the dynamical well/bump width (purple
shaded area). The oscillations at the beginning are within
the well and the ζ eventually freezes away from the bump.

Figure 4.8: Numerical simulations of the phase transition for d = 4.

4.3.4 Dark-matter freeze-out and relic density

In this subsection, we want to show how the phase transition exhibited so far, which suddenly gives

a large mass compared to the temperature to some particles, can produce a non-trivial relic density

of cold (non-relativistic) dark matter3. More particularly, we will see how it affects the standard

thermal freeze-out scenario presented in Chapter 1. In order to describe qualitatively what happens,

we assume the mass jump from 0 to mDM of the dark-matter particles mass m(T ) occurring at the

3The identification of the enhanced states with dark-matter candidates is very formal here since we did not even talk about the
standard model. For a good candidate, the gauge group should be decoupled enough from the standard model, either with weakly
interacting particles or states only coupled to gravity yielding a more complex dark sector.
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critical temperature Tc to be very quick compared to all other processes so that we can write

m(T ) =

{
0 for T > Tc

mDM for T < Tc
. (4.3.16)

Different behaviours arise for the evolution of the dark-matter yield depending on the value of the

critical temperature Tc and more precisely depending on the value of the equilibrium density for

particles of mass mDM compared to the curve nDM⟨σDM↔SMv⟩ = (d− 1)H at Tc, which indicates if

the expansion rate of the universe dominates in Boltzmann equation (1.4.3) or not. We distinguish

three qualitatively different evolutions, drawn in Fig. 4.9:

Figure 4.9: Evolution of the dark-matter yield before and after the phase transition in three cases differing by the
moment (or temperature) when the transition occurs.

� Case 1: At xc ≡ mDM/Tc, indicated by the vertical blue dotted line, the Boltzmann equilibrium

for particles of mass mDM (black dashed curve) is above the red dashed curve representing

nDM⟨σDM↔SMv⟩ = (d − 1)H. The dark matter being initially massless, the yield (blue curve)

at the beginning is constant. After the phase transition, the yield has enough time to reach

the equilibrium before the expansion rate dominates and this gives a relic density identical to

the standard freeze-out mechanism.

� Case 2: At xc ≡ mDM/Tc, indicated by the vertical orange dotted line, the Boltzmann equilib-

rium for particles of mass mDM (black dashed curve) is below the red dashed curve. The yield

(orange curve) starts to decrease but is frozen out before being able to reach the equilibrium.

This produces a higher relic density compared to the standard case.

� Case 3: At xc ≡ mDM/Tc, indicated by the vertical green dotted line, the Boltzmann equilib-

rium for particles of mass mDM (black dashed curve) is well below the red dashed curve and

the initial constant yield (green line) is also already below it. This means that the chemical

decoupling has already occurred when the dark-matter particles acquire their masses. The

yield thus remains constant after the transition and in this case we have a hot (relativistic)
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dark-matter relic density. Note that such a hot scenario is what is thought to have happened

for the actual neutrino relic density.

4.4 Conclusions

In the last part of this thesis, we investigated the cosmology derived in heterotic models with sponta-

neous breaking of supersymmetry. We wanted to analyze the quantum backreaction of the one-loop

potential generated by the supersymmetry breaking on the no-scale structure of classical models.

In a simplified model where only the dynamics of few moduli is taken into account, we showed,

under some conditions, the existence of quantum no-scale regimes characterized by a dominated

potential and a cosmology identical to that of a classical no-scale model. In such universes, the flat

and expanding Minkowski dynamics is not spoiled by quantum effects. This contrasts with some

cosmologies put forward in the setup where the universe evolution is intrinsically quantum and

driven by the one-loop potential. In these cases, the universe is inexorably sentenced to undergo a

Big Crunch.

After this work, it was natural to study the effect of the addition of other deformations on the

previous conclusions. In a framework with a specific background and three additional deformations

of the internal metric and antisymmetric tensor, assumed to be small, we showed the existence

of local attractors towards quantum no-scale regimes. It turned out that the allowed parameter

space for a quantum no-scale regime describing an ever-expanding universe is very tiny. However, a

numerical study of the dynamics with deformations of arbitrary magnitude exhibited the existence of

global attractors towards such evolutions. These global attractors exist when the one-loop potential

is positive for all values of the deformations. This makes stability of flat Minkowski spacetime much

more natural in this case compared to when the potential can be negative and where some fine

tuning is required to avoid a collapse of the universe.

In a third project, we studied the cosmology of heterotic models at finite temperature, motivated

by the purpose of generating a dark-matter relic density, a crucial ingredient of the standard model

of cosmology. Thanks to the condensation of a modulus during the universe evolution, some states

(dark-matter candidates) initially massless acquire a big mass. While massless, the dark-matter

particles can be abundantly created and the moment when they acquire their mass drastically

impacts the usual freeze-out scenario for dark-matter relic production and can for instance yield a

much higher relic density.
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5 Outlook: The challenges of string theory

This thesis delved into three different aspects of string theory with firstly, the very elaboration of

supersymmetry breaking mechanisms at the perturbative string level in the framework of orientifold

models. Secondly, we studied “moduli stability” in models with spontaneously broken supersymme-

try. Talking about stability from the sole investigation of the one-loop potential and its dependences

on the moduli is a bit naive since it is the cosmological dynamics that truly stabilizes the scalars or

not. It was the object of the third aspect treated in this work to study cosmological implications

of the potential generated at one loop by supersymmetry breaking.

Of course, this thesis is just a modest exploration of these various aspects through the study of

specific mechanisms which do not pretend to solve the big questions of modern theoretical physics.

String theory has not yet been able to prove that it is indeed a good theory to describe the funda-

mental degrees of freedom of our world and their interactions, despite a lot of theoretically appealing

facets. For now, even if great theoretical successes have been achieved, the theory remains too flexi-

ble and cannot satisfyingly explain the black-hole information loss paradox or the de Sitter nature of

our universe. Moreover, it faces the big difficulty of collecting data, both from particle physics and

from cosmological observations, to constrain the models and parameters. This difficulty can have

two distinct origins: Because the energy scale at which new physics appears is much higher than

what we can experimentally achieve and does not leave big enough effects in precision experiments

; Or because of the environmental nature of some parameters that may have specific values for no

specific reasons inside a multiverse.

In the seek of constraints for string theory, the swampland program initiated quite recently tries

to establish criteria that field theories must satisfy to consistently be effective low-energy limits of

quantum theories of gravity. Among the whole ensemble of field theories, those that can indeed be

consistent low-energy limits are part of the “landscape” while the others form the “swampland”.

In this bottom-up approach, the delineation of the landscape and the features of the theories inside

it could provide constraints for the “up” part i.e. at the string-theory level. The landscape is now

full of conjectures about effective field theories that have been shown to be related to each other as

a complex web of features that are expected in consistent theories.

More work in the future, both from the theoretical physics community, the experimentalists and

the engineers, will hopefully bring answers to the deepest questions of fundamental physics and

unravel the description of quantum gravity.
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A Conventions and notations for the charac-
ters

Our definitions of the Jacobi modular forms and Dedekind function are

ϑ
[
α
β

]
(z|τ) =

∑
m

q
1
2
(m+α)2e2iπ(z+β)(m+α) , η(τ) = q

1
24

+∞∏
n=1

(1− qn) . (A.0.1)

It is standard to denote

ϑ
[
0
0

]
(z|τ) = ϑ3(z|τ) , ϑ

[
0
1
2

]
(z|τ) = ϑ4(z|τ) , ϑ

[ 1
2

0

]
(z|τ) = ϑ2(z|τ) , ϑ

[ 1
2
1
2

]
(z|τ) = ϑ1(z|τ) , (A.0.2)

and to keep implicit both arguments when z = 0. In these notations, the SO(2n) affine characters

can be written as

O2n =
ϑn3 + ϑn4
2ηn

, V2n =
ϑn3 − ϑn4
2ηn

, S2n =
ϑn2 + i−nϑn1

2ηn
, C2n =

ϑn2 − i−nϑn1
2ηn

. (A.0.3)

They satisfy the following modular properties:
O2n

V2n
S2n

C2n

(τ + 1) = e−inπ/12diag
(
1,−1, einπ/4, einπ/4

)
O2n

V2n
S2n

C2n

(τ) ,

O2n

V2n
S2n

C2n

(− 1

τ

)
=

1

2


1 1 1 1

1 1 −1 −1
1 −1 i−n −i−n
1 −1 −i−n i−n



O2n

V2n
S2n

C2n

(τ) ,
(A.0.4)

which are relevant for the amplitudes T , K and A. For the Möbius strip, it is convenient to switch

from the characters χ to the real “hatted” characters χ̂ defined by [115,116]

χ̂
(1
2
+ iτ2

)
= e−iπ(h−

c
24

) χ
(1
2
+ iτ2

)
, (A.0.5)

where h is the weight of the associated primary state and c is the central charge. The so-called

P-transformation then takes the form
Ô2n

V̂2n
Ŝ2n

Ĉ2n

(12 +
i

2τ2

)
=


c s 0 0

s −c 0 0

0 0 ζc iζs

0 0 iζs ζc



Ô2n

V̂2n
Ŝ2n

C2n

(12 + i
τ2
2

)
, η̂

(1
2
+

i

2τ2

)
=
√
τ2 η̂
(1
2
+ i

τ2
2

)
.

(A.0.6)
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where c = cos(nπ/4), s = sin(nπ/4) and ζ = e−inπ/4. Throughout this work, the implicit arguments

of the characters are τ , 2iτ2, iτ2/2 and (1 + iτ2)/2 for the torus, Klein bottle, annulus and Möbius

strip amplitudes respectively.
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B BSGP model with Scherk–Schwarz mecha-
nism

Appendix B.1: Torus partition function

Given the notations defined in the main text and the conventions for characters defined in Ap-

pendix A, the torus amplitude of the BSGP model with Scherk–Schwarz mechanism along direction

X5 takes the following form,

T =
1

4

∫
d2τ

τ 32

{[ (
|V4O4 +O4V4|2 + |S4S4 + C4C4|2

) Λ(4,4)
m⃗,n⃗

|η4|2

+
(
|V4O4 −O4V4|2 + |S4S4 − C4C4|2

) ∣∣∣∣2ηϑ2

∣∣∣∣4
+ 16

(
|O4C4 + V4S4|2 + |S4O4 + C4V4|2

) ∣∣∣∣ ηϑ4

∣∣∣∣4
+ 16

(
|O4C4 − V4S4|2 + |S4O4 − C4V4|2

) ∣∣∣∣ ηϑ3

∣∣∣∣4 ]Λ(2,2)
m⃗′,(n4,2n5)

|η4|2

−
[ (

(V4O4 +O4V4)(S̄4S̄4 + C̄4C̄4) + (S4S4 + C4C4)(V̄4Ō4 + Ō4V̄4)
) Λ(4,4)

m⃗,n⃗

|η4|2

+
(
(V4O4 −O4V4)(S̄4S̄4 − C̄4C̄4) + (S4S4 − C4C4)(V̄4Ō4 − Ō4V̄4)

) ∣∣∣∣2ηϑ2

∣∣∣∣4
+ 16

(
(O4C4 + V4S4)(S̄4Ō4 + C̄4V̄4) + (S4O4 + C4V4)(Ō4C̄4 + V̄4S̄4)

) ∣∣∣∣ ηϑ4

∣∣∣∣4 (B.1.1)

+ 16
(
(O4C4 − V4S4)(S̄4Ō4 − C̄4V̄4) + (S4O4 − C4V4)(Ō4C̄4 − V̄4S̄4)

) ∣∣∣∣ ηϑ3

∣∣∣∣4 ]Λ(2,2)

m⃗′+a⃗′S,(n4,2n5)

|η4|2

+

[ (
|O4O4 + V4V4|2 + |C4S4 + S4C4|2

) Λ(4,4)
m⃗,n⃗

|η4|2
+
(
|O4O4 − V4V4|2 + |S4C4 − C4S4|2

) ∣∣∣∣2ηϑ2

∣∣∣∣4
+ 16

(
|O4S4 + V4C4|2 + |S4V4 + C4O4|2

) ∣∣∣∣ ηϑ4

∣∣∣∣4
+ 16

(
|O4S4 − V4C4|2 + |S4V4 − C4O4|2

) ∣∣∣∣ ηϑ3

∣∣∣∣4 ]Λ(2,2)
m⃗′,(n4,2n5+1)

|η4|2

−
[ (

(O4O4 + V4V4)(C̄4S̄4 + S̄4C̄4) + (C4S4 + S4C4)(Ō4Ō4 + V̄4V̄4)
) Λ(4,4)

m⃗,n⃗

|η4|2
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+
(
(O4O4 − V4V4)(S̄4C̄4 − C̄4S̄4) + (S4C4 − C4S4)(Ō4Ō4 − V̄4V̄4)

) ∣∣∣∣2ηϑ2

∣∣∣∣4
+ 16

(
(O4S4 + V4C4)(S̄4V̄4 + C̄4Ō4) + (S4V4 + C4O4)(Ō4S̄4 + V̄4C̄4)

) ∣∣∣∣ ηϑ4

∣∣∣∣4
+ 16

(
(O4S4 − V4C4)(S̄4V̄4 − C̄4Ō4) + (S4V4 − C4O4)(Ō4S̄4 − V̄4C̄4)

) ∣∣∣∣ ηϑ3

∣∣∣∣4 ]Λ(2,2)

m⃗′+a⃗′S,(n4,2n5+1)

|η4|2
}
.

The sums over the momentum and winding numbers are implicit, as usual in this thesis.

Appendix B.2: Conventions of matrix actions on Chan–Paton indices

In [160], the actions of the group elements G ∈ {1, g,Ω,Ωg} on the Dirichlet or Neumann Chan–

Paton indices α ∈ {1, . . . , 32} are always represented by 32 × 32 matrices. If needed, they define

traces with an index I (that would be denoted i in our notations) labelling a fixed point of T 4/Z2

to indicate when they restrict to the matrix entries associated with the fixed point I (see their

Eq. (2.22)). In our conventions, we work directly with smaller matrices, one for each fixed point

ii′ of T̃ 2 × T 4/Z2 or T̃ 2 × T̃ 4/Z2, which are submatrices of those used in [160]. In this appendix,

we give a detailed correspondence between their notations and ours for the traces appearing in the

open-string one-loop amplitudes.

Let us focus on the matrices acting on the Neumann Chan–Paton factors. In order to avoid any

ambiguity, we first define the sets of indices Hii′ associated with the fixed points ii′ that are used to

generate the submatrices from the big ones. To this end, we label the fixed points in lexicographical

order, (11, 12, 13, 14, 21, . . . ), and introduce a function p(i, i′) that gives the predecessor in this list,

p(i, i′) =

{
i, i′ − 1 if i′ ∈ {2, 3, 4}
i− 1, 4 if i′ = 1

. (B.2.1)

The sets are then

H11 =

{
∅ if N11 = 0{
1, . . . , N11

2

}
∪
{
17, . . . , 16 + N11

2

}
if N11 ̸= 0

. (B.2.2)

and for ii′ ̸= 11,

Hii′ =

{
∅ if Nii′ = 0{
Np(i,i′)

2
+ 1, . . . ,

Np(i,i′)
2

+
Nii′
2

}
∪
{
Np(i,i′)

2
+ 17, . . . , 16 +

Np(i,i′)
2

+
Nii′
2

}
if Nii′ ̸= 0

.

(B.2.3)

Our Nii′ ×Nii′ matrices γii
′

N,G are formed from 32× 32 matrices γN,G as follows,

γii
′

N,G = γN,G|Hii′
, (B.2.4)

where the notation in the right-hand side means that we form submatrices by keeping the rows and

columns α ∈ Hii′ . The traces of 32× 32 matrices can then be expressed as

tr(γN,G) =
32∑
α=1

(γN,G)αα =
∑
i,i′

∑
α∈Hii′

(γN,G)αα =
∑
i,i′

tr(γN,G|Hii′
)

=
∑
i,i′

tr(γii
′

N,G) ,

(B.2.5)
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and similarly for the matrices associated with the Dirichlet sector.

Moreover, in order to justify the replacement (3.1.15), let us define in our notations the 32× 32

matrix Wj that is denoted WI and appears in Eq. (2.22) of [160],

Wj =
9∏
I=6

W2aIj
I , where WI = I2 ⊗


e2iπa

I
1IN1

2 0
. . .

0 e2iπa
I
16IN16

2

 , Ni ≡
∑
i′

Nii′ . (B.2.6)

For G = g we have to compute

tr(WjγN,g) =
32∑
α=1

(WjγN,g)αα =
32∑
α=1

32∑
β=1

(Wj)αβ(γN,g)βα =
32∑
α=1

(Wj)αα(γN,g)αα

=
∑
i,i′

∑
α∈Hii′

(Wj)αα(γN,g)αα =
∑
i,i′

e4iπa⃗i ·⃗aj
∑
α∈Hii′

(γN,g)αα

=
∑
i,i′

e4iπa⃗i ·⃗ajtr(γii
′

N,g) .

(B.2.7)

In this derivation, we have used the fact that the matrix Wj is diagonal and that its components

αα for α ∈ Hii′ are e
4iπa⃗i ·⃗aj .

Appendix B.3: One-loop potential

In this section, we express the one-loop potential of the model for arbitrary deformations in a

regime where the Scherk–Schwarz radius is large and where there is no mass scale lower than the

supersymmetry-breaking scale. The final result is meant to be developed up to quadratic order in

order to determine the masses of the Wilson lines.

In terms of arbitrary D3-branes positions (not necessarily independent) 2πaIα (for original D9-

branes) and 2πbIα (for original D5-branes), α ∈ {1, . . . , 32}, the annulus and Möbius strip one-loop

amplitudes are numerically

A =
1

4

∫ +∞

0

dτ2
τ 32

∑
α,β

∑
m⃗′

{
(V4O4 +O4V4)

η8

(
P

(4)
m⃗+a⃗α−a⃗βP

(2)

m⃗′+a⃗′α−a⃗′β
+W

(4)

n⃗+b⃗α−b⃗β
P

(2)

m⃗′+b⃗′α−b⃗′β

)

+ 2(O4C4 + V4S4)

(
η

ϑ4

)2 P
(2)

m⃗′+a⃗′α−b⃗′β
η4

(B.3.1)

−
[
(S4S4 + C4C4)

η8

(
P

(4)
m⃗+a⃗α−a⃗βP

(2)

m⃗′+a⃗′S+a⃗
′
α−a⃗′β

+W
(4)

n⃗+b⃗α−b⃗β
P

(2)

m⃗′+a⃗′S+b⃗
′
α−b⃗′β

)

+ 2(S4O4 + C4V4)

(
η

ϑ4

)2 P
(2)

m⃗′+a⃗′S+a⃗
′
α−b⃗′β

η4

]}
.

and

M = −1

4

∫ +∞

0

dτ2
τ 32

∑
α

∑
m⃗′

{
(V̂4Ô4 + Ô4V̂4)

η̂8

(
P

(4)
m⃗+2a⃗α

P
(2)
m⃗′+2a⃗′α

+W
(4)

n⃗+2⃗bα
P

(2)

m⃗′+2⃗b′α

)
(B.3.2)

− (Ĉ4Ĉ4 + Ŝ4Ŝ4)

η̂8

(
P

(4)
m⃗+2a⃗α

P
(2)

m⃗′+a⃗′S+2a⃗′α
+W

(4)

n⃗+2⃗bα
P

(2)

m⃗′+a⃗′S+2⃗b′α

)}
.
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The characters are expanded like

V4O4 +O4V4
η8

=
C4C4 + S4S4

η8
= 8

∑
k≥0

cke
−πkτ2 ,

V̂4Ô4 + Ô4V̂4
η̂8

=
Ĉ4Ĉ4 + Ŝ4Ŝ4

η̂8
= 8

∑
k≥0

(−1)kcke−πkτ2 ,

2(O4C4 + V4S4)

(
η

ϑ4

)2
1

η4
= 2(S4O4 + C4V4)

(
η

ϑ4

)2
1

η4
= 4

∑
k≥0

dke
−π

2
kτ2 ,

(B.3.3)

where c0 = d0 = 1, to yield

A = 2

∫ +∞

0

dτ2
τ 32

∑
k≥0

∑
α,β

∑
m⃗′

{
cke

−πkτ2
[∑

m⃗

P
(4)
m⃗+a⃗α−a⃗β

(
P

(2)

m⃗′+a⃗′α−a⃗′β
− P (2)

m⃗′+a⃗′S+a⃗
′
α−a⃗′β

)
+
∑
n⃗

W
(4)

n⃗+b⃗α−b⃗β

(
P

(2)

m⃗′+b⃗′α−b⃗′β
− P (2)

m⃗′+a⃗′S+b⃗
′
α−b⃗′β

)]
+ dke

−π
2
kτ2

(
P

(2)

m⃗′+a⃗′α−b⃗′β
− P (2)

m⃗′+a⃗′S+a⃗
′
α−b⃗′β

)}
,

(B.3.4)

and

M = −2
∫ +∞

0

dτ2
τ 32

∑
k≥0

∑
α

∑
m⃗′

{
(−1)kck

[∑
m⃗

P
(4)
m⃗+2a⃗α

(
P

(2)
m⃗′+2a⃗′α

− P (2)

m⃗′+a⃗′S+2a⃗′α

)
+
∑
n⃗

W
(4)

n⃗+2⃗bα

(
P

(2)

m⃗′+2⃗b′α
− P (2)

m⃗′+a⃗′S+2⃗b′α

)]}
.

(B.3.5)

In the regime (3.1.34) we are interested in, a Poisson summation over the indexm5 which becomes

l5 is useful. The amplitudes become

A =
(
G55
)2 Γ(52)

π
5
2

4
∑
k≥0

∑
α,β

∑
m4

∑
l5

1

|2l5 + 1|5{∑
m⃗

ck cos

[
2π|2l5 + 1|

(
a5α − a5β +

G54

G55
(m4 + a4α − a4β)

)]
H 5

2

(
π|2l5 + 1|MA1√

G55

)
+
∑
n⃗

ck cos

[
2π|2l5 + 1|

(
b5α − b5β +

G54

G55
(m4 + b4α − b4β)

)]
H 5

2

(
π|2l5 + 1|MA2√

G55

)
+
dk
2
cos

[
2π|2l5 + 1|

(
a5α − b5β +

G54

G55
(m4 + a4α − b4β)

)]
H 5

2

(
π|2l5 + 1|MA3√

G55

)}
,

(B.3.6)

and

M =−
(
G55
)2 Γ(52)

π
5
2

4
∑
k≥0

(−1)kck
∑
α

∑
m4

∑
l5

1

|2l5 + 1|5{∑
m⃗

cos

[
2π|2l5 + 1|

(
2a5α +

G54

G55
(m4 + 2a4α)

)]
H 5

2

(
π|2l5 + 1|MM1√

G55

)

+
∑
n⃗

cos

[
2π|2l5 + 1|

(
2b5α +

G54

G55
(m4 + 2b4α)

)]
H 5

2

(
π|2l5 + 1|MM2√

G55

)}
,

(B.3.7)
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where the function Hν is expressed in terms of the modified Bessel function Kν :

Hν(z) =
1

Γ(ν)

∫ +∞

0

dx

x1+ν
e−

1
x
−z2x =

2

Γ(ν)
zνKν(2z) , (B.3.8)

whose arguments are given by characteristic mass scalesMA1 ,MA2 ,MA3 andMM1 ,MM2 which

depend on the sector (NN, DD or ND and DN).

In the annulus, we have

M2
A1

= (mI + aIα − aIβ)GIJ(mJ + aJα − aJβ) + (m4 + a4α − a4β)2Ĝ44 + k ,

M2
A2

= (nI + bIα − bIβ)GIJ(nJ + bJα − bJβ) + (m4 + b4α − b4β)2Ĝ44 + k ,

M2
A3

= (m4 + a4α − b4β)2Ĝ44 +
k

2
,

(B.3.9)

where Ĝ44 = G44− G45

G55 G
55 G54

G55 . With the decomposition of the Wilson lines into fluctuations around

fixed points displayed in (3.1.33), the characteristic masses (B.3.9) are either of order one, yielding

exponentially suppressed corrections, or proportional to the fluctuations and thus contributing

significantly to the result. The non-suppressed contributions arise for k = 0, m⃗ = 0⃗, m4 = 0

and specific values of α and β depending on the characteristic mass under considerations. We

denote the sets of couples (α, β) for whichMA1 ,MA2 andMA3 yield non-suppressed contributions

respectively by LNN, LDD and LND.

The set LNN is such that the D3-branes α, β T-dual to D9-branes

� belong to the same stack of Nii′ branes, i = 1, . . . , 16, i′ = 1, . . . , 4,

� or belong respectively to stacks of Ni,2i′′−1 and Ni,2i′′ branes, i = 1, . . . , 16, i′′ = 1, 2,

� or belong respectively to stacks of Ni,2i′′ and Ni,2i′′−1 branes, i = 1, . . . , 16, i′′ = 1, 2.

The set LDD is such that the D3-branes α, β T-dual to D5-branes

� belong to the same stack of Dii′ branes, i = 1, . . . , 16, i′ = 1, . . . , 4,

� or belong respectively to stacks of Di,2i′′−1 and Di,2i′′ branes, i = 1, . . . , 16, i′′ = 1, 2,

� or belong respectively to stacks of Di,2i′′ and Di,2i′′−1 branes, i = 1, . . . , 16, i′′ = 1, 2.

The set LND such that the D3-branes α, β T-dual to a D9-brane and a D5-brane

� belong respectively to stacks of Nii′ and Dji′ branes, i, j = 1, . . . , 16, i′ = 1, . . . , 4,

� or belong respectively to stacks of Ni,2i′′−1 and Dj,2i′′ branes, i, j = 1, . . . , 16, i′′ = 1, 2,

� or belong respectively to stacks of Nj,2i′′ and Di,2i′′−1 branes, i, j = 1, . . . , 16, i′′ = 1, 2.

Similarly, the characteristic masses involved in the Möbius are

M2
M1

= (mI + 2aIα)G
IJ(mJ + 2aJα) + (m4 + 2a4α)

2Ĝ44 + k ,

M2
M2

= (nI + 2bIα)GIJ(nJ + 2bJα) + (m4 + 2b4α)
2Ĝ44 + k ,

(B.3.10)

and yield non-suppressed terms when k = 0, mI = −2⟨aIα⟩, m4 = −2⟨a4α⟩, or nI = −2⟨bIα⟩,
m4 = −2⟨b4α⟩.
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The closed-sector contribution to the one-loop effective V1-loop defined as

V1-loop ≡ −
M4

s

2(2π)4
(T +K +A+M) , (B.3.11)

is just nclosed
F −nclosed

B up to exponentially suppressed terms. The end result can thus be written like

V1-loop =
Γ
(
5
2

)
π

13
2

M4
∑
l5

N2l5+1(ϵ, ξ, G)

|2l5 + 1|5 +O
(
(MsM)2e−2πcMs

M

)
, (B.3.12)

where

N2l5+1(ϵ, ξ, G) = nclosed
F − nclosed

B +N open
2l5+1(ϵ, ξ, G) , (B.3.13)

and

N open
2l5+1(ϵ, ξ, G) = 2

{
−
∑

(α,β)∈LNN

(−)F cos

[
2π|2l5 + 1|G

5I′

G55

(
ϵI

′
α − ϵI

′
β

)]

×H 5
2

(
π|2l5 + 1|

[
(ϵIα − ϵIβ)GIJ(ϵJα − ϵJβ) + (ϵ4α − ϵ4β)2Ĝ44

] 1
2

√
G55

)

−
∑

(α,β)∈LDD

(−)F cos

[
2π|2l5 + 1|G

5I′

G55

(
ξI

′
α − ξI

′
β

)]

×H 5
2

(
π|2l5 + 1|

[
(ξIα − ξIβ)GIJ(ξ

J
α − ξJβ ) + (ξ4α − ξ4β)2Ĝ44

] 1
2

√
G55

)
(B.3.14)

− 1

2

∑
(α,β)∈LND

(−)F cos

[
2π|2l5 + 1|G

5I′

G55

(
ϵI

′
α − ξI

′
β

)]
H 5

2

(
π|2l5 + 1|

[
(ϵ4α − ξ4β)2Ĝ44

] 1
2

√
G55

)

+
∑
α

cos

[
4π|2l5 + 1|G

5I′

G55
ϵI

′
α

]
H 5

2

(
2π|2l5 + 1|

[
ϵIαG

IJϵJα + (ϵ4α)
2
Ĝ44
] 1

2

√
G55

)

+
∑
α

cos

[
4π|2l5 + 1|G

5I′

G55
ξI

′
α

]
H 5

2

(
2π|2l5 + 1|

[
ξIαGIJξ

J
α + (ξ4α)

2
Ĝ44
] 1

2

√
G55

)}
.
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C Two-point functions of Neumann–Dirichlet
states at one loop

Appendix C.1: Twist-field technology

In [167], the authors derive arbitrary genus-g correlators of an arbitrary product of twist fields

associated with a ZN orbifold. Here, we first give some definitions and then explain the followed

strategy in [167] to derive the correlators. We end by showing the result for our case of interest i.e.

for a genus-1 Riemann surface.

C.1.1 Definitions

The twist fields σκ(z, z̄) create ground states in the κ-th twisted sector of the orbifold with κ ∈
{1, . . . , N − 1}. It is useful to define a new complex basis for the bosonic fields Xµ(z, z̄), µ ∈
{0, . . . , 9} as follows:

Zu(z, z̄) ≡ X2u + iX2u+1

√
2

and Zu(z, z̄) ≡ X2u − iX2u+1

√
2

, u ∈ {0, . . . , 4} . (C.1.1)

To make contact with our setup, we will assume a six-dimensional model, compactified on T 4/ZN
along directions X6, X7, X8, X9. The twist fields σκ(z, z̄) thus decompose into the complex direc-

tions u ∈ {3, 4}. From now on, we only focus on one given direction u and twist fields along this

direction σuκ(z, z̄). The OPE’s between the derivative fields ∂Zu(z) and ∂Zu(z) (and ∂̄Zu(z̄) and

∂̄Zu(z̄)) are determined by the annihilations of the twisted ground states by the positive frequency

modes of the coordinates:

∂Zu(z)σuκ(w, w̄) ∼
z→w

(z − w)−(1−κ/N) τuκ (w, w̄) + finite ,

∂Z̄u(z)σuκ(w, w̄) ∼
z→w

(z − w)−κ/N τ ′uκ (w, w̄) + finite ,

∂̄Zu(z̄)σuκ(w, w̄) ∼
z̄→w̄

(z̄ − w̄)−κ/N τ̃uκ (w, w̄) + finite ,

∂̄Z̄u(z̄)σuκ(w, w̄) ∼
z̄→w̄

(z̄ − w̄)−(1−κ/N) τ̃ ′uκ (w, w̄) + finite .

(C.1.2)

The fields τuκ , τ
′u
κ , τ̃uκ and τ̃ ′uκ appearing in the right-hand sides create excited states in the κ-th

twisted sector of the Hilbert space. These OPE’s capture the local behaviour of the coordinate

Zu which undergoes a ZN rotation Zu −→ e2iπκ/NZu upon parallel transport. However, they are

blind to the translation Zu −→ Zu+ vu induced by the transport where vu is a displacement vector

implementing the periodicity along internal direction u. This data is recovered by imposing global

monodromy conditions which describe how the coordinates change when they are carried around a
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Chapter C. Two-point functions of Neumann–Dirichlet states at one loop

set of twist fields σuκi(z, z̄), i ∈ {1, . . . , n} with vanishing total twist i.e. with
∑n

i=1 κi = 0 mod N ,

following a loop γ: ∮
γ

dz∂Zu +

∮
γ

dz̄∂̄Z = vuγ . (C.1.3)

If we split the coordinates into a classical background Zcl and quantum fluctuations Zqu like

Zu(z, z̄) ≡ Zu
cl(z, z̄) + Zu

qu(z, z̄) , (C.1.4)

then the displacement only arises from the classical part and the global monodromy condition for

Zqu is trivial.

The correlator of L ≥ 2 twist fields σκA(zA, z̄A), A ∈ {1, . . . , L} with zero net twist i.e. with∑L
A=1 κA = 0 mod N on a Riemann surface R of genus g ≥ 0 takes the form〈

L∏
A=1

σκA(zA, z̄A)

〉
=
∑
Zcl

e−S
R
cl

4∏
u=3

〈
L∏

A=1

σuκA(zA, z̄A)

〉
qu

, (C.1.5)

where for each instanton Zcl, the classical worldsheet action SRcl is

SRcl =
i

2πα′

∫
R

dz ∧ dz̄
4∑

u=3

(
∂Zu

cl∂̄Z
u
cl + ∂Zu

cl∂̄Z
u
cl

)
. (C.1.6)

C.1.2 Stress-tensor method

For a given u, the quantum part of the correlator
〈∏L

A=1 σ
u
κA
(zA, z̄A)

〉
qu

is found using the stress-

tensor method. The idea is to exploit the form of the OPE’s between the stress tensor T u(z) and

primary fields. For twist fields σκA(zA, z̄A) with conformal weight hA = 1
2
κA
N
(1− κA

N
), the OPE is

T u(z)σuκA(zA, z̄A) ∼z→zA

hA
(z − zA)2

σuκA(zA, z̄A) +
1

z − zA
∂zAσ

u
κA
(zA, z̄A) + finite . (C.1.7)

The goal is to find a set of differential equations satisfied by the quantum part of the correlator. If

one considers the quantity

⟨⟨T u(z)⟩⟩ ≡
〈
T u(z)

∏
A σ

u
κA
(zA, z̄A)

〉
qu〈∏

A σ
u
κA
(zA, z̄A)

〉
qu

, (C.1.8)

then, thanks to (C.1.7), a set of differential equations is found by subtracting the double pole of

⟨⟨T u(z)⟩⟩ when z → zB for B ∈ {1, . . . , L}:

∂zB ln
〈∏

A

σuA(zA, z̄A)
〉
qu

= lim
z→zB

[
(z − zB) ⟨⟨T u(z)⟩⟩ −

hB
(z − zB)

]
. (C.1.9)

One thus needs to evaluate ⟨⟨T u(z)⟩⟩. For this, a useful OPE is

− 1

α′ ∂Z
u
qu(z) ∂Z

u
qu(w) ∼

z→w

1

(z − w)2 + T u(w) +O(z − w) . (C.1.10)

Defining the Green’s function in presence of twist fields g(z, w) like

g(z, w) ≡ ⟨−∂Z
u
qu(z) ∂Z

u
qu(w)

∏
A σ

u
κA
(zA, z̄A)⟩qu

α′ ⟨∏A σ
u
κA
(zA, z̄A)⟩qu

, (C.1.11)
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then the quantity ⟨⟨T u(z)⟩⟩ is given by subtracting the double pole of the Green’s function,

⟨⟨T u(z)⟩⟩ = lim
w→z

[
g(z, w)− 1

(z − w)2
]
. (C.1.12)

The starting point of the method is thus to evaluate the Green’s function in presence of twist

fields (C.1.11). This is done by writing the most general possible formula with the appropriate local

and global behaviours. Once the expression is obtained, ⟨⟨T u(z)⟩⟩ is deduced and from it, a set of

differential equations is found. Eventually, the final result is obtained by solving these differential

equations.

C.1.3 Genus-1 result: Quantum correlator

Let us review the process for the correlator at one loop where the Riemann surface R is simply a

torus of Teichmüller parameter denoted1 τdc. As mentioned above, the first step consists in writing

the most general expression for the Green’s function in presence of twist fields (C.1.11) as well as

for the auxiliary Green’s function h(z̄, w) defined as

h(z̄, w) ≡ ⟨−∂̄Z
u
qu(z̄) ∂Z

u
qu(w)

∏
A σ

u
κA
(zA, z̄A)⟩qu

α′ ⟨∏A σ
u
κA
(zA, z̄A)⟩qu

. (C.1.13)

The expressions g(z, w) and h(z̄, w) must be doubly periodic on the torus. This means that they

should be invariant under z → z + 1 and z → z + τdc (or z̄ → z̄ + 1 and z̄ → z̄ + τdc for h) and

w → w + 1 and w → w + τdc. They should also have the correct behaviours dictated by (C.1.2)

when z (or z̄) and w tend to the zA’s (or z̄A’s). From (C.1.10), we see that g should have a double

pole when z → w and the OPE ∂̄Zu
qu(z̄) ∂Z

u
qu(w) ∼

z→w
finite imposes finiteness of h when z → w.

Moreover, g and h must be consistent with the trivial global monodromy condition for Zqu.

To satisfy the local behaviours, the authors of [167] define a basis of L holomorphic one-forms

on the torus with appropriate local properties called cut differentials and express g and h in this

basis. To proceed, we define

M ≡
L∑

A=1

κA
N

, (C.1.14)

which is an integer taking values in the set {0, . . . , L− 1} (because the fields in the correlator have

a zero net twist). Choosing arbitrarily two subsets {zα1 , . . . , zαL−M
} and {zβ1 , . . . , zβM} among the

insertion points, the basis is given by the functions

ωαA
N−κ(z) = γN−κ(z)ϑ1(z − zαA

− yN−κ)
L−M∏
B ̸=A

ϑ1(z − zαB
) , A ∈ {1, . . . , L−M} ,

ωβAκ (z) = γκ(z)ϑ1(z − zβA − yκ)
M∏
B ̸=A

ϑ1(z − zβB) , A ∈ {1, . . . ,M} ,
(C.1.15)

where

γN−κ(z) ≡
L∏

A=1

ϑ1(z − zA)−(1−κA/N) , γκ(z) ≡
L∏

A=1

ϑ1(z − zA)−κA/N , (C.1.16)

1The superscript “dc” stands for “double cover”. It will be useful later.
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and

yN−κ ≡
L∑

A=1

(
1− kA

N

)
zA −

L−M∑
B=1

zαB
, yκ ≡

L∑
A=1

κA
N
zA −

M∑
B=1

zβB . (C.1.17)

Note that the subscripts N −κ and κ are just names and do not refer to varying indices. Using this

basis is not enough for g to satisfy all local properties since the double pole when z → w must be

handled separately. For this, we define the function gs(z, w), doubly periodic on the torus in both

variables and with the correct double-pole structure [167]:

gs(z, w) ≡ γN−κ(z) γκ(w)

(
ϑ′
1(0)

ϑ1(z − w)

)2

P (z, w) , (C.1.18)

where the function P (z, w), which must satisfy correct conditions, turns out not to appear in the

final result so that an explicit knowledge of it is unnecessary. This function plays a role in the

correlator of excited twist fields though, and we will need to have an explicit expression for it. This

expression will be shown later in the particular case of interest for this thesis with only two twist

fields in the correlator. The Green’s functions can then generically be written in the basis of cut

differentials with components CAB and BAB (they depend on τdc and on the insertion points) like

g(z, w) = gs(z, w) +
L−M∑
A=1

M∑
B=1

CAB ω
αA
N−κ(z)ω

βB
κ (w) ,

h(z̄, w) =
M∑
A=1

M∑
B=1

BAB ω̄
βA
κ (z̄)ωβBκ (w) ,

(C.1.19)

Only the global behaviour remains to be handled by consistency with the trivial monodromy

condition for Zqu. We can restrict to loops γa which form a basis of the homology group of the

Riemann surface under considerations with L punctures. For a genus-g surface, the cardinal of such

a basis is L+2g− 2 [167] which gives L loops in the torus case. The conditions on g and h are thus∮
γa

dz g(z, w) +

∮
γa

dz̄ h(z̄, w) = 0 , a ∈ {1, . . . , L} . (C.1.20)

It is convenient to define an L× L cut-period matrix Wa
A like

Wa
A ≡

∮
γa

dz ωαA
N−κ(z) , A ∈ {1, . . . , L−M} ,

Wa
L−M+A ≡

∮
γa

dz̄ ω̄βAκ (z̄) , A ∈ {1, . . . ,M} ,
(C.1.21)

from which the Green’s functions, satisfying both local and global properties, can be written:

g(z, w) = gs(z, w)−
L−M∑
A=1

ωαA
N−κ(z)

L∑
a=1

(W−1)A
a
∮
γa

dζ gs(ζ, w) ,

h(z̄, w) = −
M∑
A=1

ωβAκ (z̄)
L∑
a=1

(W−1)L−M+A
a
∮
γa

dζ gs(ζ, w) .

(C.1.22)

Finding these explicit expressions for the Green’s function is the first step of the stress-tensor

method. From them, ⟨⟨T u(z)⟩⟩ can be derived to be ready to express the differential equations.
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It turns out that the equations involving the derivative of the correlator with respect to insertion

points that are in the subset {zα1 , . . . , zαL−M
} are easier to determine. Moreover, the function

P (z, w) can be eliminated from those differential equations. After integration of this subset of

differential equations, it can be shown that the result actually contains the full dependence on

all the insertion points so that considering the remaining equations is unnecessary. The last step

consists in performing the exact same computations using the Green’s functions ḡ(z̄, w̄) and h̄(z, w̄)

to find the antiholomorphic dependence of the correlator. For a given complex direction u ∈ {3, 4},
the final result is [167]〈

L∏
A=1

σuκA(zA, z̄A)

〉
qu

= f(τdc;κ1, . . . , κL)
1

detW
ϑ1(yN−κ)

L−M−1 ϑ1(yκ)
M−1

×
L−M∏
A,B=1
A<B

ϑ1(zαA
− zαB

)
M∏

A,B=1
A<B

ϑ1(zβA − zβB) (C.1.23)

×
L∏

A,B=1
A<B

ϑ1(zA − zB)−(1−κA/N)(1−κB/N) ϑ1(zA − zB)−(κA/N)(κB/N) ,

where f(τdc;κ1, . . . , κL) is an integration constant that can be determined in the coalescence of all

insertion points in which the left-hand side reduces to the partition function ⟨1⟩.

C.1.4 Genus-1 result: Classical action

To determine the full correlator, the classical action (C.1.6) present in (C.1.5) must be computed.

For this, we need to express the fields ∂Zu
cl(z) and ∂̄Zu

cl(z̄) that satisfy the global monodromy

condition ∮
γa

dz∂Zu
cl +

∮
γa

dz̄∂̄Zcl = vua , a ∈ {1, . . . , L} . (C.1.24)

Moreover, the fields must be linear combination of the cut-differentials and the monodromy condition

constrains the coefficients. Solving it yields

∂Zu
cl(z) = ωA′(z) (W−1)A′

a
vua , ∂̄Zu

cl(z̄) = ω̄A′′(z̄) (W−1)A′′
a
vua , (C.1.25)

where the index A′ is summed from 1 to L−M while A′′ is summed from L−M +1 to L. Written

like this, the cut differentials with an index A′ lower than L −M are defined to be the ω
αA′
N−κ(z)

while those with an index A′′ higher than L−M + 1 are defined to be the ω
βA′′−L+M
κ (z). With the

following definition of the Hermitian inner product for differential forms

(ωA, ωB) ≡ i

∫
R

dz ∧ dz̄ωA(z)ω̄B(z̄) , (C.1.26)

the classical action reads

SRcl =
4∑

u=3

vua v̄
u
b

2πα′

[
(W−1)A′

a
(W−1)B′

b
(ωA′ , ωB′) + (W−1)A′′

a
(W−1)B′′

b
(ωA′′ , ωB′′)

]
. (C.1.27)
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Appendix C.2: Normalization coefficients in the amplitudes

In the coalescence limit, the external amplitude (3.2.37) becomes

Aα0β0
extΣ ∼

z12→0

3

2iπ
α′k2 λα0β0λ

T
β0α0

1

z212

1

τ2η3

∑
νint

(−1)δνint,1 ϑ2
νint
×

∑
l⃗′

e
− π

α′τ2
∑

I′ (RI′ lI′ )
2

[∑
l⃗

e
− π

α′τ2
∑

I(RI lI)
2

CΣl⃗′ l⃗νint
+
∑
⃗̃
l

e
−πα′

τ2

∑
I(l̃I/RI)

2 C̃Σl⃗′⃗̃lνint

]
.

(C.2.1)

Factorizing all unwanted prefactors and up to a constant C, this is to be identified with

3

2iπ
α′k2 λα0β0λ

T
β0α0

8C
z212
× 1

τ 22

32+32∑
γ=1

Str
α0γ+β0γ

1

2

1 + g

2
q

1
2
(L0−1) for A ,

and
3

2iπ
α′k2 λα0β0λ

T
β0α0

8C
z212
× 1

τ 22
Str

α0α0+β0β0

Ω

2

1 + g

2
q

1
2
(L0−1) forM .

(C.2.2)

The details on how to identify the correct relevant parts of the partition functions are given in

the main text. To be able to identify these contributions with the external amplitude, we must

transform the T 2 and T 4 lattices in the partition functions to Hamiltonian form thanks to Poisson

summation over the momentum numbers m⃗′ (which become l⃗′), over the momentum numbers m⃗

(which become l⃗) and over the winding numbers n⃗ (which become l̃),∑
m⃗

P
(4)
m⃗+a⃗i−a⃗j =

v4
α′2 τ 22

∑
l⃗

e
− π

α′τ2
∑

I(RI lI)
2

e2iπl⃗·(a⃗i−a⃗j) ,

∑
m⃗

W
(4)
n⃗+a⃗i−a⃗j =

α′2

v4 τ 22

∑
⃗̃
l

e
−πα′

τ2

∑
I(l̃I/RI)

2

e2iπ
⃗̃
l·(a⃗i−a⃗j) ,

∑
m⃗′

P
(2)

m⃗′+F a⃗′S+a⃗i′−a⃗j′
=

v2
α′ τ2

∑
l⃗′

e
− π

α′τ2
∑

I(RI′ lI′ )
2

e2iπl⃗
′·(a⃗i′−a⃗j′ )e2iπF l⃗

′ ·⃗a′S ,

(C.2.3)

where v4 ≡ R6R7R8R9 and v2 ≡ R4R5. For the annulus, the identification then yields

CAl⃗′ l⃗1 =
C

τ 22 η
3
fAl⃗′ l⃗
α0D

, C̃Al⃗′⃗̃l1 =
C

τ 22 η
3
fAl⃗′⃗̃l
β0N

,

CAl⃗′ l⃗2 =
C

τ 22 η
3

ϑ2
3

ϑ2
4

fAl⃗′ l⃗
α0D
− C ϑ

2
2

τ 42 η
9
fAl⃗′ l⃗
α0N

e2iπl⃗
′ ·⃗a′S , C̃Al⃗′⃗̃l2 =

C
τ 22 η

3

ϑ2
3

ϑ2
4

fAl⃗′⃗̃l
β0N
− C ϑ

2
2

τ 42 η
9
fAl⃗′⃗̃l
β0D

e2iπl⃗
′ ·⃗a′S ,

CAl⃗′ l⃗3 =
C ϑ2

3

τ 42 η
9
fAl⃗′ l⃗
α0N
− C
τ 22 η

3

ϑ2
2

ϑ2
4

fAl⃗′ l⃗
α0D

e2iπl⃗
′ ·⃗a′S , C̃Al⃗′⃗̃l3 =

C ϑ2
3

τ 42 η
9
fAl⃗′⃗̃l
β0D
− C
τ 22 η

3

ϑ2
2

ϑ2
4

fAl⃗′⃗̃l
β0N

e2iπl⃗
′ ·⃗a′S ,

CAl⃗′ l⃗4 = − C ϑ
2
4

τ 42 η
9
fAl⃗′ l⃗
α0N

, C̃Al⃗′⃗̃l4 = − C ϑ
2
4

τ 42 η
9
fAl⃗′⃗̃l
β0D

, (C.2.4)

where

fAl⃗′ l⃗
α0N
≡ v2v4

α′3

∑
i,i′

Nii′ e
2iπl⃗·(a⃗i0−a⃗i)e

2iπl⃗′·(a⃗i′0−a⃗i′ ), fAl⃗′⃗̃l
β0D
≡ v2 α

′2

α′ v4

∑
i,i′

Dii′ e
2iπ

⃗̃
l·(a⃗j0−a⃗i)e

2iπl⃗′·(a⃗i′0−a⃗i′ ) ,

fAl⃗′ l⃗
α0D
≡ δl⃗,⃗0

v2
α′

∑
i,i′

Dii′ e
2iπl⃗′·(a⃗i′0−a⃗i′ ), fAl⃗′⃗̃l

β0N
≡ δ⃗̃

l,⃗0

v2
α′

∑
i,i′

Nii′ e
2iπl⃗′·(a⃗i′0−a⃗i′ ) . (C.2.5)

115



Chapter C. Two-point functions of Neumann–Dirichlet states at one loop

For the Möbius strip we find

CMl⃗′ l⃗
1 = 0 , C̃Ml⃗′⃗̃l

1 = 0 ,

CMl⃗′ l⃗
2 =

C ϑ2
2

τ 42 η
9

v2v4
α′3 e2iπl⃗

′ ·⃗a′S , C̃Ml⃗′⃗̃l
2 =

C ϑ2
2

τ 42 η
9

v2 α
′2

α′ v4
e2iπl⃗

′ ·⃗a′S ,

CMl⃗′ l⃗
3 = − C ϑ

2
3

τ 42 η
9

v2v4
α′3 , C̃Ml⃗′⃗̃l

3 = − C ϑ
2
3

τ 42 η
9

v2 α
′2

α′ v4
,

CMl⃗′ l⃗
4 =

C ϑ2
4

τ 42 η
9

v2v4
α′3 , C̃Ml⃗′⃗̃l

4 =
C ϑ2

4

τ 42 η
9

v2 α
′2

α′ v4
.

(C.2.6)

Appendix C.3: Field-theory limit of the excited boundary-changing
fields correlators

The correlators of excited boundary-changing fields involved in the two-point functions of ND scalars

imply the presence of the terms C and Ĉ in (3.2.39). These terms contain the function F1 implicitly

defined in (3.2.28) and integrals of this function over the torus cycles (see Eq. (3.2.30)). In this

appendix, we derive the α′ → 0 limit of C and Ĉ.

C.3.1 Explicit expressions for F1

Lots of Jacobi functions ϑ1 are involved in the computations. In the α′ → 0 limit, we can write

ϑ1(z) ≡ −2 q
1
8
dc sin(πz)

∏
n≥1

[
(1− qndc)(1− qndcz−2iπz)(1− qndcz2iπz)

]
, qdc ≡ e2iπτ

dc

,

= −2 q
1
8
dc sin(πz)(1 + · · · ) , when |Imz| < Imτdc ,

(C.3.1)

which is only valid for |Imz| < Imτdc. If it is not the case, one has to shift the argument before

applying the formula. In the following, we will consider τdc to be arbitrary and z1 and z2 are taken

anywhere inside the fundamental cell of the torus i.e. the parallelogram with corner 0, 1 and τdc.

We want to determine explicitly the function F1 defined in (3.2.28). This amounts to find the

parameter U1 defined as a root of

Γ(U) ≡ ∂zF1(z, w)|z=w =
ϑ′
1

ϑ1

(U) +
ϑ′
1

ϑ1

(Y1 − U) , where Y1 = −
z12
2

. (C.3.2)

The function Γ is doubly periodic on the torus and because it is meromorphic with two simple poles

at U = 0 and U = Y1, it has two simple zeros inside the fundamental cell. We write these zeros U1

and Y1 − U1. Because we have

− 3

2
Imτdc < Im(Y1 − U1) <

1

2
Imτdc , (C.3.3)

we cannot use directly (C.3.1) and we must proceed in two steps:

� If 0 < ImY1 <
1
2
Imτdc, (C.3.1) can be applied and the equation Γ(U) = 0 becomes

π
sin(πY1)

sin(πU1) sin[π(Y1 − U1)]
+ 2iπqdce

−2iπU1 + · · · = 0 . (C.3.4)
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We wrote the first subdominant term in the left-hand side because looking at the dominant

term only tells us that U1 should be such that ImU1 → +∞ and Im(Y1 − U1) < 0. The

subdominant contribution allows us to refine these conclusions. The equation implies the

following asymptotic equivalence

− e−iπY1 ∼
α′→0

e−iπU1 eiπ(Y1−U1) qdc e
−2iπU1 , (C.3.5)

which leads us to redefine

U1 ≡
τdc + Y1

2
+

1

4
+
m

2
+ ε for some m ∈ Z , with |Re ε| < 1

2
, (C.3.6)

and ϵ→ 0 in the limit to satisfy the asymptotic equivalence.

� If −1
2
Imτdc < ImY1 < 0, the redefinition yields

− 3

4
Imτdc − Im ε < Im(Y1 − U1) < −

1

2
Imτdc − Im ε , (C.3.7)

that allows to use (C.3.1) for sufficiently small α′ if we suppose ϵ to be bounded. This yields to

an equation equivalent to (C.3.5) from which we conclude that again ϵ→ 0 and the boundedness

assumption was correct.

The two roots of Γ inside the fundamental cell of the torus are thus

U1 =
τdc + Y1

2
+

1

4
+ · · · or

τdc + Y1
2

+
3

4
+ · · · . (C.3.8)

Now that we know U1, we can express F1(z, z2) and F1(z1, z2) involved in C and Ĉ. We have

F1(z, z2) =
ϑ1

(
z + τdc

2
− 1

4
z1 − 3

4
z2 +

1
4
+ · · ·

)
ϑ1

(
z − τdc

2
− 1

4
z1 − 3

4
z2 − 1

4
+ · · ·

)
ϑ1

(
τdc

2
− z12

4
+ 1

4
+ · · ·

)
ϑ1

(
− τdc

2
− z12

4
− 1

4
+ · · ·

) . (C.3.9)

Several cases must be handled depending on the value of 1
2
y1 +

3
2
y2 and Imz to apply correctly

(C.3.1). We obtain

• when 0 < 1
2
y1 +

3
2
y2 < Imτdc , then (C.3.10)

F1(z, z2) =

{
1 + · · · if 0 < y < 1

2
Imτdc + 1

4
y1 +

3
4
y2 ,

e−4iπ(z− τdc

2
− 1

4
z1− 3

4
z2) (1 + · · · ) if 1

2
Imτdc + 1

4
y1 +

3
4
y2 < y < Imτdc .

and

• when Imτdc < 1
2
y1 +

3
2
y2 < 2 Imτdc , then (C.3.11)

F1(z, z2) =

{
e4iπ(z−

1
4
z1− 3

4
z2+

τdc

2
) (1 + · · · ) if 0 < y < 1

4
y1 +

3
4
y2 − 1

2
Imτdc ,

1 + · · · if 1
4
y1 +

3
4
y2 − 1

2
Imτdc < y < Imτdc .

From these formulas, we deduce

F1(z1, z2) =


e2iπ(τ

dc− 3
2
z12)(1 + · · · ) if 2

3
Imτdc < Imz12 < Imτdc ,

(1 + · · · ) if −2
3
Imτdc < Imz12 <

2
3
Imτdc ,

e2iπ(τ
dc+ 3

2
z12)(1 + · · · ) if −Imτdc < Imz12 < −2

3
Imτdc.

(C.3.12)
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C.3.2 Limit of Ĉ

From (C.3.12), we directly conclude that the contributions in the amplitudes (3.2.47) proportional

to C are

2π

[
t(1− u)
α′ + 2 ln 4 + · · ·

]
Ĉ = −4π3

[
t(1− u)
α′ + 2 ln 4 + · · ·

]
×

e2iπ(τ
dc−z12)(1 + · · · ) if 2

3
Imτdc < Imz12 < Imτdc ,

eiπz12(1 + · · · ) if 0 < Imz12 <
2
3
Imτdc ,

e−iπz12(1 + · · · ) if −2
3
Imτdc < Imz12 < 0 ,

e2iπ(τ
dc+z12)(1 + · · · ) if −Imτdc < Imz12 < −2

3
Imτdc ,

= · · · , (C.3.13)

which is exponentially suppressed for generic values of Imz12. Thus, only C contributes to the result.

C.3.3 Limit of C

Using the integral form of C displayed in (3.2.30), the contributions in the amplitudes (3.2.47)

proportional to Ĉ are

2π

[
t(1− u)
α′ + 2 ln 4 + · · ·

]
C = −2iπ4 cos

(π
2
z12

)[
W 2F1 −F2

]
,

where Fa =
∮
γa

dz
F1(z, z2) (1 + · · · )

sin[π(z − z1)]
1
2 sin[π(z − z2)]

3
2

, a ∈ {1, 2} ,
(C.3.14)

To evaluate F1, we parametrize the cycle γ with Imz ≡ 1
2
Imτdc. The integral becomes

F1 =

∫ 1

0

dx
1 + · · ·

sin[π(x+ τdc

2
− z1)]

1
2 sin[π(x+ τdc

2
− z2)]

3
2

. (C.3.15)

Using a primitive, the integral with 1 in the denominator gives an identically zero result. To

conclude, we need to look at the ellipsis that can possibly be large once multiplied by the cosine

cos(πz12/2). Depending on the signs of 1
2
Imτdc − y1, 1

2
Imτdc − y2 and y1 − y2, we can find upper

bounds for the integrand by approximating the sines with exponentials and show that the integral

multiplied by the cosine always gives an exponentially suppressed result.

The evaluation of F2 requires to consider two cases: When 0 < 1
2
y1 +

3
2
y2 < Imτdc and when

Imτdc < 1
2
y1 +

3
2
y2 < 2Imτdc. Let us describe in details the former case. The expression (C.3.10)

for F (z, z2) allows us to split the integral into two pieces,

F2 = F (1)
2 + F (2)

2 ,

where F (1)
2 =

∫ τdc

2
+ 1

4
z1+

3
4
z2

0

dz
1 + · · ·

sin[π(z − z1)]
1
2 sin[π(z − z2)]

3
2

,

F (2)
2 =

∫ τdc

τdc

2
+ 1

4
z1+

3
4
z2

dz
e−4iπ(z− τdc

2
− 1

4
z1− 3

4
z2) (1 + · · · )

sin[π(z − z1)]
1
2 sin[π(z − z2)]

3
2

.

(C.3.16)

Using a primitive for F (1)
2 , two subcases arise, namely (a) : y1 − y2 > 2

3
Imτdc and (b) : y1 − y2 >
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2
3
Imτdc, but they give the same result in the α′ → 0 limit which is

cos
(π
2
z12

)∫ τdc

2
+ 1

4
z1+

3
4
z2

0

dz
1

sin[π(z − z1)]
1
2 sin[π(z − z2)]

3
2

=
2i

π
+ · · · . (C.3.17)

We can show that the contribution coming from the ellipsis is dominated by this finite result.

This is not obvious since the dominant term in the ellipsis in F (1)
2 turns out to be 1 at the upper

bound of the integral. However, if we split the integration region from 0 to some z0 and from

z0 to the upper bound, with z0 such that the sines in the denominator can be replaced by their

dominant exponentials in the second domain, then the first piece can be trivially bounded by

an exponentially suppressed majorant while the second piece is easily integrable and yields an

exponentially suppressed result.

For F (2)
2 , the sine sin[π(z − z2)] can always be replaced by the dominant exponential. For the

other sine sin[π(z − z1)], it depends on if we consider the subcase (a) or (b). In subcase (a),

the integration domain does not contain z1 so that the second sine can also be replaced by an

exponential. The integration is then easy to perform and is exponentially suppressed. In subcase

(b), the sine sin[π(z − z1)] cannot be substituted. However, the piece with 1 in the numerator

can be integrated using a primitive. It is exponentially suppressed and can be shown to dominate

the integral of the ellipsis with the same method as for F (1)
2 . We then conclude that F (2)

2 does not

contribute to the result. In the second case Imτdc < 1
2
y1+

3
2
y2 < 2Imτdc, the splitting of the integral

is different but the logic is the same and so is the final result.

Gathering everything, we eventually obtain

2π

[
t(1− u)
α′ + 2 ln 4 + · · ·

]
(C + Ĉ) = −4π3 + · · · , (C.3.18)

where the finite contribution only comes from F (1)
2 in C.
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Abstract

We show that in generic no-scale models in string theory, the flat, expanding cosmological evolutions 
found at the quantum level can be attracted to a “quantum no-scale regime”, where the no-scale structure is 
restored asymptotically. In this regime, the quantum effective potential is dominated by the classical kinetic 
energies of the no-scale modulus and dilaton. We find that this natural preservation of the classical no-scale 
structure at the quantum level occurs when the initial conditions of the evolutions sit in a subcritical region 
of their space. On the contrary, supercritical initial conditions yield solutions that have no analogue at the 
classical level. The associated intrinsically quantum universes are sentenced to collapse and their histories 
last finite cosmic times. Our analysis is done at 1-loop, in perturbative heterotic string compactified on 
tori, with spontaneous supersymmetry breaking implemented by a stringy version of the Scherk–Schwarz 
mechanism.
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Postulating the classical Lagrangian of the Standard Model in rigid Minkowski spacetime 
proved to be a very efficient starting point for computing quantum corrections. However, beyond 
this Standard Model, theories sometimes admit a gravitational origin. In particular, considering 
N = 1 supergravity models in dimension d = 4, where local supersymmetry is spontaneously 
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broken in flat space, and restricting the Lagrangians to the relevant operators gives renormalizable 
classical field theories in rigid Minkowski spacetime, where supersymmetry is softly broken [1]. 
In that case, consistency of the picture should imply the possibility to commute the order of the 
above operations, namely first computing quantum corrections and then decoupling gravity.

To explore this alternative point of view in arbitrary dimension d , the classical supergravity 
theories may be viewed in the framework of no-scale models [2] in string theory, for loop cor-
rections to be unambiguously evaluated. By definition, the no-scale models are classical theories 
where local (extended) supersymmetry is (totally) spontaneously broken in flat space. In this 
context, the supersymmetry breaking scale is a scalar field which is a flat direction of a positive 
semi-definite classical potential. Therefore, if its vacuum expectation value is undetermined clas-
sically, a common wisdom is that this no-scale structure breaks down at the quantum level (see 
e.g. [3]).

One way to implement a spontaneous breaking of supersymmetry in string theory is via
coordinate-dependent compactification [4,5], a stringy version of the Scherk–Schwarz mecha-
nism [6]. An effective potential is generated at 1-loop and is generically of order O(Md), where 
M is the supersymmetry breaking scale measured in Einstein frame. Assuming a mechanism 
responsible for the stabilization of M (above 10 TeV for d = 4) to exist, one then expects the 
quantum vacuum to be anti-de Sitter- or de Sitter-like, with no way to obtain a theory in rigid 
Minkowski space, once gravity is decoupled. Exceptions may however exist. In type II [7] and 
open [8] string theory, the 1-loop effective potential V1-loop of some models vanishes at specific 
points in moduli space. In heterotic string, the closest analogous models [9] are characterized 
by equal numbers of massless bosons and fermions (observable and hidden sectors included), so 
that V1-loop is exponentially suppressed when M(σ), the supersymmetry breaking scale measured 
in σ -model frame, is below the string scale Ms [10–12]. These theories, sometimes referred as 
super no-scale models, can even be dual to the former, where V1-loop vanishes [13]. However, all 
these particular type II, orientifold or heterotic models are expected to admit non-vanishing or 
non-exponentially suppressed higher order loop corrections [14], in which case they may lead to 
conclusions similar to those stated in the generic case. Moreover, the particular points in mod-
uli space where V1-loop vanishes or is exponentially small are in most cases saddle points. As a 
consequence, moduli fields are destabilized and, even if their condensations induce a small mass 
scale MH < M such as the electroweak scale, the order of magnitude of 〈V1-loop〉 ends up being 
of order O(Md−2M2

H ) [11], which is still far too large to be compatible with flat space.
In the present work, we will not assume the existence of a mechanism of stabilization of M

that would lead (artificially) to an extremely small cosmological constant. Instead, we take se-
riously the time-dependance of M induced by the effective potential, in a cosmological setting. 
We show the existence of an attractor mechanism towards flat Friedmann–Lemaître–Robertson–
Walker (FLRW) expanding universes, where the effective potential is dominated by the kinetic 
energies of M and φ, the dilaton field. Asymptotically, the cosmological evolution converges to 
that found in the classical limit, where the no-scale structure is exact. For this reason, we refer to 
this mechanism as an attraction to a “quantum no-scale regime”. In these circumstances, flatness 
of the universe is not destabilized by quantum corrections, which justifies that rigid Minkowski 
spacetime can be postulated in quantum field theory. We stress that even if the effective poten-
tial, which scales like Md , is negligible from a cosmological point of view, the net value of the 
supersymmetry breaking scale M remains a fundamental ingredient of the theory in rigid space-
time, since it determines the order of magnitude of all soft breaking terms. Note however that the 
analysis of the constraints raised by astrophysical observations about the constancy of couplings 
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and masses, or the validity of the equivalence principle, stand beyond the scope of the present 
work [15].

The above statements are shown in heterotic string compactified on a torus, with the total 
spontaneous breaking of supersymmetry implemented by a stringy Scherk–Schwarz mechanism 
[4,5]. Actually, we analyze a simplified model presented in Sect. 2, where only a small num-
ber of degrees of freedom are taken into account. To be specific, we consider in a perturbative 
regime the 1-loop effective action restricted to the scale factor a, as well as M and φ. In terms 
of canonical fields, the scalars can be described by a “no-scale modulus” � with exponential 
potential, and a free scalar φ⊥. Notice that numerous works have already analyzed such systems, 
namely scalar fields with exponential potentials [16,17], sometimes as autonomous dynamical 
systems or by finding explicit solutions. Motivated by different goals, these studies often stress 
the onset of transient periods of accelerated cosmology. Such models have been realized by clas-
sical compactifications involving compact hyperbolic spaces, S-branes or non-trivial fluxes (field 
strengths) [18].

In the present paper, we find that the space of initial conditions of the equations of motion 
can be divided into two parts, and we present explicitly the resulting cosmologies in Sects. 3–6.2

In the first region, which is referred as supercritical and exists only if V1-loop is negative, no 
classical limit exists. Thus, the universe is intrinsically quantum and its existence is found to 
be limited to a finite lapse of cosmic time. On the contrary, when the initial conditions sit in 
the so-called subcritical second region, the perturbative solutions can be seen as deformations of 
classical counterparts. It is in this case that attractions to quantum no-scale regimes take place. 
If, as mentioned before, the latter can correspond to flat expanding evolutions, we also find that 
other quantum no-scale regimes exist, which describe a Big Bang (or Big Crunch by time rever-
sal). Moreover, when V1-loop is positive, a short period of accelerated expansion can occur during 
the intermediate era that connects no-scale regimes of the two previous natures [18]. Whereas 
when V1-loop is negative, M decreases as the universe expands and is thus forever climbing its 
potential [17]. Notice that this behaviour contradicts the naive expectation that M should run 
away to infinity and lead to large, negative and a priori non-negligible potential energy. We 
also point out that the above perturbative properties are expected to be robust when higher or-
der loop corrections are taken into account.3 Finally, we summarize our results and outlooks in 
Sect. 7.

2. The setup

In this section, we consider a simplified heterotic string no-scale model in dimension d ≥ 3, 
in the sense that the dynamics of only a restricted number of light degrees of freedom is taken 
into account. Our goal is to derive the 1-loop low energy effective action and associated field 
equations of motion to be solved in the following sections.

At the classical level, the background is compactified on n ≥ 1 circles of radii Ri , times a 
torus,

2 A particular case in dimension 4 is already presented in Ref. [19], and describes the cosmological evolution of a 
universe at finite temperature T , when T � M .

3 This supposes the implementation of a regularization scheme to get rid off infrared divergences arising at genus g, 
when massless propagators and non-vanishing tadpoles at genus g − 1 exist. This may be done by introducing a small 
mass gap by curving spacetime [20].
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d+n−1∏
i=d

S1(Ri) × T 10−d−n . (2.1)

The volume moduli of T 10−d−n are supposed to be small enough for the lightest Kaluza–Klein 
(KK) mass scale cMs associated with this torus to be very large, c � 1. On the contrary, the n
circles are supposed to be large, Ri � 1, and are used to implement a coordinate-dependent com-
pactification responsible for the total spontaneous breaking of supersymmetry [4,5]. In σ -model
frame, we define the resulting low supersymmetry breaking scale to be

M(σ) ≡ Ms( d+n−1∏
i=d

Ri

) 1
n

� cMs . (2.2)

At the quantum level, assuming a perturbative regime, an effective potential is generated at 
1-loop [10,11,21],

V(σ )
1-loop ≡ − Md

s

(2π)d

∫
F

d2τ

2τ 2
2

Z

= (nF − nB) vd,n Md
(σ) + O

(
(cMsM(σ))

d
2 e−cMs/M(σ)

)
, (2.3)

where Z is the genus-1 partition function and F is the fundamental domain of SL(2, Z), pa-
rameterized by τ ≡ τ1 + iτ2. In the second expression, nF, nB count the numbers of massless 
fermionic and bosonic degrees of freedom, while vd,n > 0 depends (when n ≥ 2) on the n − 1
complex structure moduli, Ri/Rd , i = d + 1, . . . , d + n − 1. The origins of the different contri-
butions are the following:

– The nB + nF towers of pure KK modes associated with the massless states and arising from 
the n large directions yield the term proportional to Md

(σ).
– On the contrary, the pure KK towers based on the states at higher string oscillator level lead 

to the exponentially suppressed contribution.
– Finally, all states with non-trivial winding numbers along the n large directions, as 

well as the unphysical i.e. non-level matched states yield even more suppressed corrections, 

O
(
e
−M2

s /M2
(σ )

)
.

Since we restrict in the present paper to the regime where M(σ) � cMs, we will neglect from now 
on the exponentially suppressed terms. Splitting the dilaton field into a constant background and 
a fluctuation, φdil ≡ 〈φdil〉 + φ, the 1-loop low energy effective action restricted to the graviton, 
φ and the radii Ri ’s takes the following form in Einstein frame4:

S = 1

κ2

∫
ddx

√−g

[R
2

− 2

d − 2
(∂φ)2 − 1

2

d+n−1∑
i=d

(
∂Ri

Ri

)2

− κ2V1-loop

]
. (2.4)

4 The 1-loop effective potential induces a backreaction implying a motion of the classical background. Adding the 
1-loop correction to the kinetic terms is then unnecessary since it would introduce a correction to the cosmological 
evolution effectively at second order in string coupling gs .
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In this expression, R is the Ricci curvature, κ2 = e2〈φdil〉/Md−2
s is the Einstein constant, and the 

potential is dressed with the dilaton fluctuation,

V1-loop ≡ e
2d

d−2 φ V(σ )
1-loop � (nF − nB) vd,n Md , (2.5)

where M is the supersymmetry breaking scale measured in Einstein frame,

M ≡ e
2

d−2 φ M(σ) . (2.6)

Note that the classical limit of the theory is recovered by taking κ2 → 0.
In order to write the equations of motion, it may be convenient to perform field redefinitions. 

The kinetic term of the scalar field M being non-canonical, we define the so-called “no-scale 
modulus” � as

M ≡ eα�Ms i.e. α� = 2

d − 2
φ − 1

n

d+n−1∑
i=d

lnRi , (2.7)

where α is an appropriate normalization factor,

α =
√

1

d − 2
+ 1

n
. (2.8)

Moreover, the effective potential being by construction independent on the orthogonal combina-
tion

φ⊥ = 1√
d − 2 + n

(
2φ +

d+n−1∑
i=d

lnRi

)
, (2.9)

the latter is a canonical free field. By also redefining the complex structure deformations as

ϕk = 1√
k(k + 1)

(
k lnRd+k −

d+k−1∑
i=d

lnRi

)
, k = 1, . . . , n − 1 , (2.10)

the action takes the final form

S = 1

κ2

∫
ddx

√−g

[R
2

− 1

2
(∂�)2 − 1

2
(∂φ⊥)2 − 1

2

n−1∑
k=1

(∂ϕk)
2 − κ2V1-loop

]
, (2.11)

where the 1-loop effective potential is

V1-loop = (nF − nB) vd,n(ϕ1, . . . , ϕn−1) edα� Md
s . (2.12)

To keep the toy model as simple as possible, we treat the complex structures as constants, 
ϕk ≡ cst., k = 1, . . . , n − 1, and ignore as well the remaining internal moduli (other than the 
volume 

∏d+n−1
i=d Ri appearing in the definitions of � and φ⊥). Looking for homogeneous and 

isotropic cosmological evolutions in flat space, we consider the metric and scalar field anzats5

ds2 = −N(x0)2(dx0)2 + a(x0)2
(
(dx1)2 + · · · + (dxd−1)2

)
, �(x0) , φ⊥(x0) .

(2.13)

5 When d = 4, we also take the axion field dual to the spacetime antisymmetric tensor to be constant.
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The equations of motion for the lapse function N , scale factor a, no-scale modulus � and φ⊥
take the following forms, in the gauge N ≡ 1 which defines cosmic time x0 ≡ t ,

1

2
(d − 1)(d − 2)H 2 = K + κ2V1-loop , K = 1

2
�̇2 + 1

2
φ̇2⊥ , (2.14)

(d − 2) Ḣ + 1

2
(d − 1)(d − 2)H 2 = −K + κ2V1-loop , (2.15)

�̈ + (d − 1)H �̇ = −dακ2V1-loop , (2.16)

φ̈⊥ + (d − 1)H φ̇⊥ = 0 , (2.17)

where H ≡ ȧ/a. In order to solve the above differential system, we consider a linear combination 
of the three first equations that eliminates both K and V1-loop,

(
α�̇ + α2

2
d(d − 2)H

)· + (d − 1)H
(
α�̇ + α2

2
d(d − 2)H

)
= 0 , (2.18)

which is a free field equation identical to that of φ⊥. Integrating, we have

φ̇⊥ = √
2

c⊥
ad−1 , α�̇ + α2

2
d(d − 2)H = c�

ad−1 , (2.19)

where c⊥, c� are arbitrary constants. Note that under time-reversal, the constants c�, c⊥ change 
to −c�, −c⊥. To proceed, it is useful to eliminate the effective potential between Eqs. (2.14)
and (2.15),

1

2
(d − 2) Ḣ = −K . (2.20)

The above equation is however a consequence of the others, as can be shown by taking the time 
derivative of Eq. (2.14) and using the scalar equations (2.16), (2.17). Therefore, we can solve it 
and insert the solution in Friedmann equation (2.14) in order to find, when nF −nB = 0, the fully 
integrated expression of the no-scale modulus or M .

To reach this goal, we first use Eqs. (2.19) to express the scalar kinetic energy K as a function 
of the scale factor and H , so that Eq. (2.20) becomes a second order differential equation in a
only. Second, when c� = 0, we introduce a new (dimensionless) time variable τ , in terms of 
which this equation becomes

τdτ = −AP(τ )
da

a
, P(τ ) = τ 2 − 2τ + ω

[
1 + 2α2

(c⊥
c�

)2]
, (2.21)

where we have defined

τ ≡ 2A

dc�

ȧ ad−2 , A = ω

4
d2(d − 2)α2 , ω = 1 − 4(d − 1)

d2(d − 2)α2 . (2.22)

Note that using the definition of α in Eq. (2.8), we have 0 < ω < 1, for arbitrary d ≥ 3 and 
n ≥ 1. Finally, using again Eqs. (2.19), Friedmann equation (2.14) takes an algebraic form, once 
expressed in terms of time τ ,

(nF − nB) vd,n κ2Md = − c2
�

2α2ω

P(τ )

a2(d−1)
. (2.23)

We will see that the forms of the solutions for the scale factor a and the supersymmetry break-
ing scale M depend drastically on the number of real roots allowed by the quadratic polynomial 
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P(τ ). Moreover, in order to find the restrictions for string perturbation theory to be valid, we 
will need to display the dilaton field evolution. Using the definitions of the scalars � and φ⊥, we 
have

e2dα2φ = edα� e
d
n

√
d−2+n φ⊥ , (2.24)

where φ⊥ is determined by its cosmic time derivative, or

dφ⊥
dτ

P(τ ) = −2
√

2

d

c⊥
c�

. (2.25)

To derive the above relation, we have used the definition of τ and Eq. (2.21) to relate the time 
variables t and τ ,

dτ

dt
= −d

2

c�

ad−1 P(τ ) . (2.26)

In the following sections, we describe the cosmological evolution obtained for arbitrary 
c⊥/c�, which admits a critical value

γc =
√

1 − ω

2α2ω
, (2.27)

corresponding to a null discriminant for P(τ ).

3. Supercritical case

When c⊥ and c� = 0 satisfy the supercritical condition∣∣∣∣c⊥
c�

∣∣∣∣ > γc , (3.1)

P(τ ) has no real root. Due to Friedmann equation (2.23), the no-scale model must satisfy nF −
nB < 0. Moreover, the classical limit κ2 → 0 is not allowed (!) This very fact means that in 
the case under consideration, the cosmological evolution of the universe is intrinsically driven 
by quantum effects. In particular, the time-trajectory cannot allow any regime where the 1-loop 
effective potential may be neglected.

To be specific, integrating Eq. (2.21), we find

a = a0
e− 1

As
arctan( τ−1

s
)

P(τ )
1

2A

, where s = √
1 − ω

√( c⊥
γcc�

)2 − 1 (3.2)

and a0 is an integration constant, while combining this result with Eq. (2.23) yields

Md = − c2
�

2α2ωκ2

a2A
0

(nF − nB) vd,n

e− 2
s

arctan( τ−1
s

)

a2(A+d−1)
. (3.3)

Fig. 1(i) shows the qualitative shape of the scale factor as a function of τ . The arrow shows the 
direction of the evolution for increasing cosmic time t , when c� > 0. The opposite direction is 
realized by time-reversal, i.e. by choosing c� < 0. We see that all solutions describe an initially 
growing universe that reaches a maximal size before contracting.

In the limits τ → ε∞, ε = ±1, the expression a(τ) together with the definition of τ yield

a(t) ∼
[
d(A + d − 1)

2A
aA

0 e− επ
2s εc�(t − tε)

] 1
A+d−1

, (3.4)
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Fig. 1. Qualitative behaviours of the allowed branches of the scale factor a as a function of time τ : (i) In the supercritical, 
(ii) subcritical and (iii) critical cases. The directions of the evolutions for increasing cosmic time t are indicated for 
c� > 0. Solid curves correspond to no-scale models with nF −nB < 0. The dashed curve corresponds to no-scale models 
with nF − nB > 0. Dotted lines correspond to super no-scale models, nF − nB = 0.

where tε is an integration constant. For εc� > 0, this describes a Big Bang at t � tε , while 
εc� < 0 corresponds to a Big Crunch at t � tε . Since A > 0, we have in these regimes

H 2 ∼ # �̇2 ∼ #κ2V1-loop ∼ #
a2A

0 c2
�

a2(A+d−1)
� 1

2
φ̇2⊥ = c2⊥

a2(d−1)
, (3.5)

which shows that the evolution of the universe at the Big Bang and Big Crunch is dominated by 
the no-scale modulus kinetic energy, partially compensated by the negative potential energy. As 
announced at the beginning of this section, the quantum effective potential plays also a funda-
mental role at the bounce, since

H = 0 =⇒ 1

2
(d − 2)

ä

a
= −K = κ2V1-loop < 0 . (3.6)

To study the domain of validity of perturbation theory during the cosmological evolution, it is 
enough to focus on the dilaton in the above τ → ε∞ limits. Eq. (2.25) shows that asymptotically, 
φ⊥ converges to an integration constant, so that Eq. (2.24) leads to

e2dα2φ ∼ # |τ | 2
ω → +∞ . (3.7)

Thus, the consistency of the 1-loop analysis is guaranteed late enough after the Big Bang and 
early enough before the Big Crunch. Moreover, the scale factor is assumed to be large enough, 
for the kinetic energies in Eq. (3.5) to be small compared to the string scale. This is required 
not to have to take into account higher derivative terms in the effective action or, possibly, the 
dynamics of the whole string spectrum. For the above two reasons, the cosmological evolution 
can only be trusted far enough from its formal initial Big Bang (t � tsign c�

) and final Big Crunch 
(t � t−sign c�

).
To summarize, the supercritical case realizes a quantum universe whose existence is only 

allowed for a finite lapse of cosmic time (unless string theory resolves the Big Crunch and allows 
a never-ending evolution). Since the quantum corrections to the off-shell classical action allow 
new cosmological evolutions which describe the birth of a world sentenced to death, we may 
interpret this finite history as that of an “unstable flat FLRW universe” arising by quantum effects. 
It is however not excluded that the expanding phase of the solution (3.2), (3.3), (2.25) may be 
related in some way to some cosmological era of the real world.

4. Subcritical case and quantum no-scale regimes

When the integration constants c⊥ and c� = 0 satisfy the subcritical condition∣∣∣∣c⊥
c�

∣∣∣∣ < γc , (4.1)
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P(τ ) admits two distinct real roots,

τ± = 1 ± r , where r = √
1 − ω

√
1 −

( c⊥
γcc�

)2
. (4.2)

Important remarks follow from Friedmann equation (2.23). First, the bosonic or fermionic nature 
of the massless spectrum determines the allowed ranges of variation of τ ,

nF − nB < 0 =⇒ τ < τ− or τ > τ+
nF − nB = 0 =⇒ τ ≡ τ− or τ ≡ τ+
nF − nB > 0 =⇒ τ− < τ < τ+ . (4.3)

Second, taking the classical limit κ2 → 0 is allowed, and yields evolutions τ(t) ≡ τ− or 
τ(t) ≡ τ+. Therefore, the classical trajectories are identical to those obtained for quantum super 
no-scale models, i.e. when nF − nB = 0. In the following, we start by describing the cosmolog-
ical solutions in the super no-scale case, and then show that the quantum evolutions for generic 
no-scale models (nF − nB = 0) admit quantum no-scale regimes, i.e. behave the same way.

4.1. Case nF − nB = 0

When τ ≡ τ±,6 Eqs. (2.21) and (2.23) being trivial, we use the definition of τ given in 
Eq. (2.22) to derive the scale factor as a function of cosmic time t ,

a =
[

d(d − 1)

2A
(1 ± r) c�(t − t±)

] 1
d−1

, (4.4)

where t± is an integration constant. For c� > 0, this describes a never-ending era t > t± of 
expansion, initiated by a Big Bang occurring at t = t±. Of course, the solution obtained by 
time-reversal satisfies c� < 0 and describes an era t < t± of contraction that ends at the Big 
Crunch occurring at t±. Integrating the no-scale modulus equation in (2.19), we find

Md = edα�±

a2(d−1)+K± Md
s , (4.5)

where �± is an integration constant and

K± = ± 2Ar

1 ± r
. (4.6)

In total, when the 1-loop effective potential vanishes (up to exponentially suppressed terms), the 
cosmological evolution is driven by the kinetic energies of the free scalar fields,

H 2 ∝ φ̇2⊥ ∝ �̇2 ∝ c2
�

a2(d−1)
. (4.7)

The dilaton evolution is found using Eq. (2.24),

e2dα2φ = edα�± e
d
n

√
d−2+n φ⊥±

aP± , (4.8)

6 One may think that the space of solutions in the super no-scale case is divided in two parts, corresponding to either 
τ ≡ τ+ or τ ≡ τ− . This is however not true. Including the critical case of Sect.5.1, all the evolutions are actually of the 
form τ ≡ τi , where 1 − √

1 − ω ≤ τi ≤ 1 + √
1 − ω.
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where φ⊥± is an integration constant and

P± = K±
ωr

(
r ± (

1 − ω − ω

n

√
2(d − 2 + n)

c⊥
c�

))
. (4.9)

Unless P± vanishes, in which case the dilaton is constant, the string coupling gs = eφ varies 
monotonically between perturbative and non-perturbative regimes. For instance, the solution τ ≡
τ+ is perturbative in the large scale factor limit, c�(t − t+) → +∞, when P+ > 0. In order to 
translate this condition into a range for c⊥/c�, we introduce

γ± =
(1 − ω)

√
2(d−2)

n
± α

√
2(1 − ω)(d − 2)

2α(ωd−2
n

+ 1)
, (4.10)

which satisfy 0 < ± γ± < γc, and find P+ > 0 if and only if

−γc <
c⊥
c�

< γ+ when n <
d2(d − 2)

4(d − 1)
, −γc <

c⊥
c�

< γc when n >
d2(d − 2)

4(d − 1)
.

(4.11)

In a similar way, the solution τ ≡ τ− is perturbative in the small scale factor limit, c�(t − t−) →
0+, when P− < 0 i.e.

γ− <
c⊥
c�

< γc when n <
d2(d − 2)

4(d − 1)
, γ− <

c⊥
c�

< γ+ when n >
d2(d − 2)

4(d − 1)
.

(4.12)

As already mentioned in the supercritical case, beside the conditions for the gs-expansion to be 
valid, the above solutions suppose the scale factor to be large enough, for the higher derivative 
terms (α′-corrections) to be small. Because of this constraint, the Big Bang (t � t±) and Big 
Crunch (t � t±) behaviours are only formal.

4.2. Case nF − nB = 0

Let us turn to the analysis of a generic no-scale model, thus characterized by nF − nB = 0. In 
this case, τ can actually be treated as a time variable and, integrating Eq. (2.21), we find

a = a0

|τ − τ−| 1
K− |τ − τ+| 1

K+
, (4.13)

where a0 > 0 is an integration constant. Using this result with Friedmann equation (2.23) yields 
Md , which can be written in two different suggestive ways,

Md = Md+
a2(d−1)+K+

∣∣∣∣ τ − τ−
τ+ − τ−

∣∣∣∣
2

τ+ = Md−
a2(d−1)+K−

∣∣∣∣ τ+ − τ

τ+ − τ−

∣∣∣∣
2

τ−
, (4.14)

where we have defined

Md± = c2
�

2α2ωκ2

a
K±
0

|nF − nB|vd,n

|τ+ − τ−| 2
τ± . (4.15)

Fig. 1(ii) shows schematically the scale factor a as a function of τ . As expected from Eq. (4.3), 
two branches (in solid lines) exist when nF − nB < 0. Thus, depending on the choice of initial 
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condition τi ≡ τ(ti), the scale factor evolves along one or the other. When nF − nB > 0, a single 
branch (in dashed line) can be followed by the universe. For completeness, the constant τ ≡ τ±
trajectories found in the previous subsection for the super no-scale case nF − nB = 0 are also 
displayed (in dotted lines). The arrows indicate the directions of the evolutions for increasing 
cosmic time t , when c� > 0. The opposite directions are realized by time-reversal, with c� < 0. 
We see that all branches start and/or end with a vanishing scale factor, when τ → ±∞ or τ →
τ−.7 In all cases, whether da/dτ vanishes, is infinite or is finite when a(τ) → 0, we will see that 
da/dt diverges at a finite cosmic time, thus describing a formal Big Bang or Big Crunch.

Note that when nF − nB = 0, all branches allow τ to approach τ+ and/or τ−. When this is the 
case, the behaviour τ(t) → τ± yields, using the definition of τ given in Eq. (2.22),

a ∼
[

d(d − 1)

2A
(1 ± r) c�(t − t±)

] 1
d−1

, Md ∼ Md±
a2(d−1)+K± , (4.16)

for some integration constant t±. This shows that the cosmological evolution of the universe 
as well as that of the scalars � and φ⊥ approach those found in the super no-scale case nF −
nB = 0, i.e. for vanishing 1-loop effective potential (up to exponentially suppressed terms). For 
this reason, we define the limits τ → τ± of the generic no-scale models as “quantum no-scale 
regimes”. These are characterized by phases of the universe dominated by the scalar kinetic 
energies,

H 2 ∼ # φ̇2⊥ ∼ # �̇2 ∼ #
c2
�

a2(d−1)
� κ2|V1-loop| ∼ #

a
K±
0 c2

�

a2(d−1)+K± . (4.17)

In fact, when τ → τ+, the divergence of the scale factor, a(τ) → +∞, and the fact that K+ > 0
imply that the quantum potential is effectively dominated. Moreover, Eq. (4.16) shows that this 
regime lasts for an indefinitely long cosmic time, c�t → +∞. In a similar way, when τ →
τ−, since a(τ) → 0 and K− < 0, the effective potential is again dominated, and this process 
is realized when cosmic time approaches t−, c�(t − t−) → 0+. To summarize, when τ → τ±, 
assuming a perturbative regime, the quantum cosmological evolution of the no-scale model is 
attracted to that of a classical background (κ2 = 0), where the no-scale structure is exact. In 
particular, the temporal evolution of the no-scale modulus � approaches that of a free field, so 
that the no-scale structure tends to withstand perturbative corrections. Note however that the 
cosmological solutions found for no-scale models satisfying nF − nB < 0 can also admit other 
regimes. As in the supercritical case, the latter correspond to limits τ → ε∞, ε = ±1, describing 
a formal Big Bang or Big Crunch,

a(t) ∼
[
d(A + d − 1)

2A
aA

0 εc�(t − tε)

] 1
A+d−1

, (4.18)

where tε is an integration constant. In these circonstances, the universe is dominated by the 
kinetic energy and negative potential of the no-scale modulus, as summarized in Eq. (3.5).

7 The trajectories allowing τ to approach τ− are shown in Fig. 1(ii) in the case da/dτ → ±∞, when τ → τ−. This 

occurs when |c⊥/c�| < γM , where γM = [( 1
ω (1 − 1

(1+2A)2 ) − 1) 1
2α2 ] 1

2 . On the contrary, when γM < |c⊥/c�| <
γc , one has da/dτ = 0 at τ = τ− . Finally, |c⊥/c�| = γM implies |da/dτ | to be finite and non-vanishing at τ = τ−. 
However, these different behaviours do not play any important role in the sequel.
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Fig. 2. Qualitative behaviours of the allowed branches of Md as a function of τ , in the subcritical case: (i) When √
ωγc < |c⊥/c�| < γc , (ii) when |c⊥/c�| < √

ωγc , (iii) or when |c⊥/c�| = √
ωγc . The directions of the evolutions 

for increasing cosmic time t are indicated for c� > 0. Solid curves refer to no-scale models with nF − nB < 0, while the 
dashed ones refer to no-scales models with nF − nB > 0.

To determine the domain of validity of perturbation theory, we integrate Eq. (2.25), which 
introduces an arbitrary constant mode φ⊥0, and use Eq. (2.24) to derive the time dependance of 
the dilaton,

e2dα2φ = c2
�

2α2ωκ2Md
s

1

|nF − nB|vd,n

e
d
n

√
d−2+n φ⊥0

a
2(d−1)
0

|τ −τ+|L+ |τ −τ−|L− , L± = P±
K±

,

(4.19)

where P± is defined in Eq. (4.9). Therefore, the conditions L± > 0 for perturbative consistency 
of the attractions to the quantum no-scale regimes τ → τ± are those found in the super no-
scale case: For τ → τ+, c⊥/c� must satisfy Eq. (4.11), while for τ → τ−, c⊥/c� must respect 
Eq. (4.12). In particular, when nF − nB > 0, the cosmological evolution between τ− and τ+ is 
all the way perturbative if γ− < c⊥/c� < γ+. In this case, the quantum potential is negligible, 
V1-loop � K, throughout the evolution, except in the vicinity of τ = 1, where it induces the tran-
sition from one no-scale regime to the other. On the contrary, the regimes τ → ε∞, which can be 
reached when nF −nB < 0, can be trusted up to the times the evolutions become non-perturbative, 
as follows from Eq. (3.7), which is valid for arbitrary c⊥/cφ ∈ R.

For nF −nB = 0, the subcritical case can also give rise to non-trivial dynamics of the no-scale 
modulus, which can be summarized as follows, for instance in the case c� > 0:

(i) When 
√

ωγc < |c⊥/c�| < γc , even if the effective potential is dominated in the no-scale 
regime τ → τ−, Md turns out to diverge, as can be seen in Fig. 2(i), which shows the three 
branches Md can follow as a function of τ . The directions of the evolutions for increasing cosmic 
time t are again indicated for c� > 0. Along the trajectories satisfying τ > τ+, the universe 
expands and is attracted to the no-scale regime τ → τ+, while M(t) decreases. Thus, even if 
this is counterintuitive, the supersymmetry breaking scale forever climbs its negative effective 
potential (nF − nB)vd,nM

d [17]. This fact contradicts the expectation that M should increase 
and yield a large, negative potential energy. On the contrary, the situation is more natural in 
the other branches. For the solutions satisfying τ < τ−, if M(t) also starts climbing its negative 
potential, it is afterwards attracted back to large values, with the turning point sitting at τ = ω. 
Finally, along the branch τ− < τ < τ+, the universe expands and is attracted to the no-scale 
regime τ → τ+, while M(t) drops along its positive potential (nF − nB)vd,nM

d .
(ii) When |c⊥/c�| < √

ωγc , as shown in Fig. 2(ii), Md vanishes when τ → τ−. Along the 
branch τ > τ+, M(t) climbs as before its negative potential [17], while for τ < τ−, it drops. 
The branch τ− < τ < τ+ is the most interesting one: While the scale factor increases, M(t) first 
climbs the positive potential (nF −nB)vd,nM

d , and then descends. At the turning point located at 
τ = ω, we have �̇ = 0 and V1-loop > 0, which is enough to show that for small enough |c⊥|, the 
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scale factor accelerates for a lapse of cosmic time [16–18]. However, the resulting e-fold number 
being of order 1, this acceleration of the universe does not yield any efficient inflationary effect.8

(iii) Finally, Fig. 2(iii) plots Md(τ) in the limit case |c⊥/c�| = √
ωγc.

To conclude on the subcritical case, let us stress again that the dynamics arising from initial 
conditions such that

c� > 0 when nF − nB ≥ 0 , or c� > 0 and τi > τ+ when nF − nB < 0 , (4.20)

and satisfying Eq. (4.11) to insure validity of perturbation theory, forces the universe to enter 
the no-scale regime τ(t) → τ+.9 After the Big Bang, the solutions describe flat, ever-expanding 
FLRW universes that are not destabilized by quantum effects. Instead of generating a cosmologi-
cal constant, quantum corrections induce a time-dependent effective potential proportional to Md

and asymptotically negligible, from a cosmological point of view. Note however that M plays a 
fundamental role in the effective d-dimensional renormalizable theory in rigid Minkowski space, 
which is found by keeping only the relevant operators present in supergravity. In fact, M deter-
mines the order of magnitude of all soft breaking terms in the resulting MSSM-like theory of 
particles [1].

5. Critical case

In the critical case, which corresponds to∣∣∣∣c⊥
c�

∣∣∣∣ = γc , (5.1)

the polynomial P(τ ) has a double root τ+ = τ− = 1, and the no-scale model must satisfy nF −
nB ≤ 0, as follows from Eq. (2.23). In the sequel, we show that the qualitative behaviour of the 
associated cosmological evolutions are similar to those found in the subcritical case.

5.1. Case nF − nB = 0

The solutions in the super no-scale case are actually those found in the subcritical case for 
c⊥/c� = ηγc, η = ±1, i.e. for r = 0:

a =
[

d(d − 1)

2A
c�(t − t0)

] 1
d−1

, Md = edα�0

a2(d−1)
Md

s , e2dα2φ = edα�0 e
d
n

√
d−2+n φ⊥0

aP0
,

(5.2)

where t0, �0, φ⊥0 are integration constants and

P0 = 2(d − 1)

(
1 − η

√
d − 2

n

ω

1 − ω

)
. (5.3)

The above evolutions are perturbative in the large scale factor regime, c�(t − t0) → +∞, when 

P0 > 0. This is the case for c⊥/c� = −γc, as well as for c⊥/c� = γc if n > d2(d−2)
4(d−1)

.

8 We warmly thank Lucien Heurtier to have analyzed the magnitude of the e-fold number.
9 At 1-loop, the super no-scale models, nF − nB = 0, also admit the expanding solution cφ > 0, τ(t) ≡ τ− , which is 

perturbative if |c⊥/c�| < γc satisfies the condition complementary to that given in Eq. (4.12). However, we expect this 
statement to be invalidated when higher order corrections in gs are taken into account and the effective potential is no 
more vanishing (up to exponentially suppressed terms).
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5.2. Case nF − nB < 0

For the no-scale models with negative 1-loop effective potentials, Eqs. (2.21) and (2.23) yield

a = a0
e

1
A(τ−1)

|τ − 1| 1
A

, Md = c2
�

2α2ωκ2

−1

(nF − nB) vd,n

(τ − 1)2

a2(d−1)
, (5.4)

where a0 > 0 is an integration constant. Fig. 1(iii) shows in solid lines the two branches τ > 1
and τ < 1 the scale factor a(τ) can follow, while the dotted line τ ≡ 1 corresponds to the critical 
super no-scale case. The trajectories admit one of the two limits τ → 1+ or τ → 1−, which lead 
in terms of cosmic time to

a ∼
[
d(d − 1)

2A
c�(t − t±)

] 1
d−1

, (5.5)

where t± is an integration constant. The behaviour τ → 1+ describes an expanding or contracting 
flat FLRW solution, c�(t − t+) → +∞, while τ → 1− corresponds to a Big Bang or Big Crunch, 
c�(t − t−) → 0+. Note that even if K± in Eq. (4.6) vanishes for r = 0, the effective potential is 
still dominated by the moduli kinetic energies,

H 2 ∼ # φ̇2⊥ ∼ # �̇2 ∼ #
c2
�

a2(d−1)
� κ2|V1-loop| ∼ # c2

�

(τ − 1)2

a2(d−1)
, (5.6)

which proves that the limits τ → 1± describe quantum no-scale regimes. On the contrary, the lim-
its τ → ε∞, ε = ±1, yield Big Bang/Big Crunch behaviours, as shown in Eqs. (4.18) and (3.5).

Finally, for c⊥/c� = ηγc, η = ±1, the dilaton trajectory is given by

e2dα2φ = c2
�

2α2ωκ2Md
s

−1

(nF − nB) vd,n

e
d
n

√
d−2+n φ⊥0

a
2(d−1)
0

(τ − 1)
2
ω e

− P0
A(τ−1) , (5.7)

where P0 is defined in Eq. (5.3) and φ⊥0 is the arbitrary constant mode of φ⊥. Thus,10 the 
no-scale regime τ → 1+ is perturbative for c⊥/c� = −γc, as well as for c⊥/c� = γc if n >
d2(d−2)
4(d−1)

. On the contrary, the regime τ → 1− is perturbative only for c⊥/c� = γc, if n < d2(d−2)
4(d−1)

. 
In the limits τ → ε∞, ε = ±1, the models are non-perturbative (see Eq. (3.7)).

6. Case c� = 0

What remains to be presented is the cosmological evolution for c� = 0. The supersymmetry 
breaking scale can be found by integrating the no-scale modulus equation in (2.19), which gives

Md = edα�0

a2(A+d−1)
Md

s , (6.1)

where �0 is a constant. This result can be used to write Friedmann equation (2.14) as

A

2
(d − 2)H 2 = − c2⊥

a2(d−1)
− (nF − nB) vd,n

edα�0

a2(A+d−1)
κ2Md

s , (6.2)

which for c⊥ = 0 requires the no-scale model to satisfy nF − nB < 0. Note that this is not sur-
prising since this case is somehow “infinitely supercritical”. As a result, no-scale regimes are not 

10 These remarks can be recovered from Eqs. (4.11) and (4.12) by taking c⊥/c� → ηγc .
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expected to exist. To be specific, when c⊥ = 0, the above differential equation can be used to 
determine the cosmic time as a function of the scale factor,

t = t∗ − ε
aA+d−1

max

cv

1∫
a/amax

xA+d−2 dx√
1 − x2A

, where ε = ±1 ,

a2A
max = |nF − nB|vd,n edα�0

c2⊥
κ2Md

s , c2
v = 2

d − 2

|nF − nB|vd,n edα�0

A
κ2Md

s , (6.3)

and t∗ is an integration constant. Defining

tε = t∗ − εt0 , t0 = aA+d−1
max

cv

1∫
0

xA+d−2 dx√
1 − x2A

, (6.4)

the time variable t varies from t+ to t−. At t = t+, a Big Bang initiates an era of expansion that 
stops when the scale factor reaches its maximum amax at t = t∗. Then, the universe contracts until 
a Big Crunch occurs at t = t−. Close to the initial and final times t±, the scale factor behaves as

a(t) ∼ (
cv (A + d − 1) ε(t − tε)

) 1
A+d−1 , (6.5)

which leads to scalings similar to those given in Eq. (3.5), namely

H 2 ∼ # �̇2 ∼ #κ2V1-loop ∼ #
c2
v

a2(A+d−1)
� 1

2
φ̇2⊥ = c2⊥

a2(d−1)
. (6.6)

However, the scalar φ⊥ converges in this case to a constant, so that Eq. (2.24) yields

e2dα2φ ∼ #

c2
v(t − tε)2 → +∞ . (6.7)

As a result of Eqs. (6.6) and (6.7), the cosmological solution we have found can only be trusted 
far enough from the formal Big Bang and Big Crunch, not to have to take into account α′- and 
gs-corrections.

Finally, when c⊥ = 0 and nF − nB < 0, the maximum scale factor amax is formally infinite, 
so that no turning point exists anymore. In fact, relations (6.5) and (6.7) become equalities: The 
evolution for ε = +1 describes a never-ending era t > t+ of expansion, while the trajectory for 
ε = −1 describes an era t < t− of contraction. For super no-scale models, i.e. when nF −nB = 0, 
the case c⊥ = 0 yields the trivial solution where all fields a, �, φ⊥ are static.

7. Summary and conclusion

We have considered the low energy effective action of heterotic no-scale models compacti-
fied on tori down to d dimensions. At 1-loop, the effective potential backreacts on the classical 
background, which is therefore time-dependent. Interested in homogeneous and isotropic cos-
mological evolutions, we have restricted our analysis to the dynamics of the scale factor a(t), 
the no-scale modulus �(t) and a free scalar φ⊥(t), which is a combination of the dilaton and the 
volume involved in the stringy Scherk–Schwarz supersymmetry breaking [4,5]. The space of so-
lutions can be parameterized by (c⊥/c�, τi), where c⊥, c� are integration constants and τi is the 
initial value of τ(t) = 2A

dc�
ȧ ad−2 (see Eq. (2.22)). Fig. 3 shows the partition of the R2-plane of 

cosmological solutions: The interior of the ellipse is realized by models where nF − nB > 0, and 
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Fig. 3. Partition of the R2-plane (c⊥/c�, τi ) of cosmological solutions. The supercritical regions satisfy |c⊥/c�| > γc

and nF − nB < 0. The subcritical region, |c⊥/c�| < γc , contains an ellipse τ− < τi < τ+, the interior (exterior) of it 
corresponding to models satisfying nF −nB > 0 (< 0). The trajectories τ(t) for increasing cosmic time t are represented 
by dashed lines, for c� > 0.

yields trajectories τ(t) which follow dashed vertical lines, from bottom to up when c� > 0. Sim-
ilarly, the exterior of the ellipse corresponds to models having nF − nB < 0, with τ(t) following 
vertical lines from up to bottom when c� > 0.

The trajectories in the supercritical regions (I) and (I′), which have no classical counterparts, 
are characterized by a bounded scale factor. The evolution starts and ends with a Big Bang and a 
Big Crunch, where the universe is dominated by the kinetic energy and quantum potential of the 
no-scale modulus. Translated in terms of a perfect fluid of energy density ρ and pressure P , we 
have

ρ ∼ 1

2
�̇2 + κ2V1-loop , P ∼ 1

2
�̇2 − κ2V1-loop , P ∼

(
2A

d − 1
+ 1

)
ρ . (7.1)

However, the above regime τ → ±∞ of low scale factor can only be trusted until higher order 
corrections in gs and α′ become important.

On the contrary, the solutions in the subcritical regions (II) and (III) are attracted to the quan-
tum no-scale regime τ → τ+, which restores the no-scale structure [2] as the universe expands, 
and is easily (if not always, see Eq. (4.11)) perturbative in gs. As a result, the evolution is 
asymptotically dominated by the classical kinetic energies of � and φ⊥. The endless expansion 
and flatness of the universe are compatible with quantum corrections, which justifies that rigid 
Minkowski spacetime may be postulated in quantum field theory. Moreover, the evolutions in the 
subcritical regions (III) and (IV) admit the second quantum no-scale regime τ → τ−, which is 
realized as the scale factor tends (formally) to 0. In total, the trajectories in region (III) connect 
two regimes where

P ∼ ρ ∼ 1

2
�̇2 + 1

2
φ̇2⊥ , (7.2)

with possibly an intermediate period of accelerated cosmology, however too short to account 
for inflation. In regions (II) and (IV), the state equation of the fluid evolves between P ∼ ρ and 

P ∼
(

2A
d−1 + 1

)
ρ.

On the one hand, the drop in M(t), which takes place in the quantum no-scale regime τ → τ+
and is independent of the sign of the potential, forbids the existence of any cosmological con-
stant i.e. fluid satisfying P ∼ −ρ. On the other hand, neglecting the time-evolution (which makes 
sense at a cosmological scale) of the scale factor and scalar fields to end up with a theory in rigid 
Minkowski spacetime valid today, the energy density Md is effectively constant but not coupled 
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to gravity. Thus, from either of these points of view, the words “cosmological” and “constant” 
exclude somehow each other. Note that this is also the case in other frameworks. For instance, 
compactifying a string theory on a compact hyperbolic space, flat FLRW solutions can be found, 
where the volume of the internal space is time-dependent and plays formally the role of M(t)

in the present work. Its associated canonical field, which is similar to �, admits an exponential 
and positive potential, however arising at tree level [16–18]. This setup can be realized by con-
sidering S-brane backgrounds or non-trivial fluxes. In all these cases, it is important to study the 
constraints arising from variations of couplings and masses at cosmological time scales, as well 
as present violations of the equivalence principle [15].

The simple model we have analyzed in details in the present work can be upgraded in various 
ways. First of all, the full dependence of the 1-loop effective potential on the internal metric, 
internal antisymmetric tensor and Wilson lines can be computed [11]. New effects then occur, 
due to the non-trivial metric of the moduli space and the existence of enhanced symmetry points 
[22]. Another direction of study consists in switching on finite temperature T [5,23,19,24,25]. 
To see that the qualitative behaviour of the evolutions may be modified, let us assume T � M

and an expanding universe in quantum no-scale regime τ → τ+. In this case, we have [19]

Md = Md+
a2(d−1)+K+ , T d ∼ #

ad
, (7.3)

so that M/T decreases and the screening of thermal effects by quantum corrections eventually 
stops. In fact, new attractor mechanisms exist [19,24]. For instance, when nF − nB > 0, quantum 
and thermodynamic corrections balance so that the free energy, which is nothing but the effective 
potential at finite temperature, yields a stabilization of M(t)/T (t). At late times, the evolutions 
satisfy

1

a(t)
∼ #M(t) ∼ #T (t) ∼ # e2α2φ(t) ∼ #

t
2
d

, (7.4)

and are said “radiation-like”. This is justified since the total energy density and pressure satisfy 
ρtot ∼ (d − 1)Ptot, where ρtot, Ptot take into account the thermal energy density and pressure 
derived from the free energy, as well as the kinetic energy of the no-scale modulus � [23,19,24].

Acknowledgements

We are grateful to Steve Abel, Carlo Angelantonj, Keith Dienes, Emilian Dudas, Sergio Fer-
rara, Lucien Heurtier, Alexandros Kahagias and Costas Kounnas for fruitful discussions. The 
work of H.P. is partially supported by the Royal Society International Cost Share Award. H.P. 
would like to thank the C.E.R.N. Theoretical Physics Department, the Simons Center for Geom-
etry and Physics, and the IPPP in Durham University for hospitality.

References

[1] R. Barbieri, S. Ferrara, C.A. Savoy, Gauge models with spontaneously broken local supersymmetry, Phys. Lett. B 
119 (1982) 343;
E. Cremmer, P. Fayet, L. Girardello, Gravity induced supersymmetry breaking and low-energy mass spectrum, Phys. 
Lett. B 122 (1983) 41.

[2] E. Cremmer, S. Ferrara, C. Kounnas, D.V. Nanopoulos, Naturally vanishing cosmological constant in N = 1 super-
gravity, Phys. Lett. B 133 (1983) 61;
J.R. Ellis, C. Kounnas, D.V. Nanopoulos, Phenomenological SU(1, 1) supergravity, Nucl. Phys. B 241 (1984) 406;



252 T. Coudarchet et al. / Nuclear Physics B 930 (2018) 235–254

J.R. Ellis, A.B. Lahanas, D.V. Nanopoulos, K. Tamvakis, No-scale supersymmetric standard model, Phys. Lett. B 
134 (1984) 429;
J.R. Ellis, C. Kounnas, D.V. Nanopoulos, No scale supersymmetric GUTs, Nucl. Phys. B 247 (1984) 373.

[3] S. Weinberg, The cosmological constant problem, Rev. Mod. Phys. 61 (1989) 1.
[4] R. Rohm, Spontaneous supersymmetry breaking in supersymmetric string theories, Nucl. Phys. B 237 (1984) 553;

C. Kounnas, M. Porrati, Spontaneous supersymmetry breaking in string theory, Nucl. Phys. B 310 (1988) 355;
S. Ferrara, C. Kounnas, M. Porrati, Superstring solutions with spontaneously broken four-dimensional supersym-
metry, Nucl. Phys. B 304 (1988) 500;
S. Ferrara, C. Kounnas, M. Porrati, F. Zwirner, Superstrings with spontaneously broken supersymmetry and their 
effective theories, Nucl. Phys. B 318 (1989) 75.

[5] C. Kounnas, B. Rostand, Coordinate-dependent compactifications and discrete symmetries, Nucl. Phys. B 341 
(1990) 641.

[6] J. Scherk, J.H. Schwarz, Spontaneous breaking of supersymmetry through dimensional reduction, Phys. Lett. B 82 
(1979) 60.

[7] S. Kachru, J. Kumar, E. Silverstein, Vacuum energy cancellation in a non-supersymmetric string, Phys. Rev. D 59 
(1999) 106004, arXiv :hep -th /9807076;
G. Shiu, S.H.H. Tye, Bose–Fermi degeneracy and duality in non-supersymmetric strings, Nucl. Phys. B 542 (1999) 
45, arXiv :hep -th /9808095;
Y. Satoh, Y. Sugawara, T. Wada, Non-supersymmetric asymmetric orbifolds with vanishing cosmological constant, 
J. High Energy Phys. 1602 (2016) 184, arXiv :1512 .05155 [hep -th];
Y. Sugawara, T. Wada, More on non-supersymmetric asymmetric orbifolds with vanishing cosmological constant, 
J. High Energy Phys. 1608 (2016) 028, arXiv :1605 .07021 [hep -th].

[8] R. Blumenhagen, L. Gorlich, Orientifolds of non-supersymmetric asymmetric orbifolds, Nucl. Phys. B 551 (1999) 
601, arXiv :hep -th /9812158;
C. Angelantonj, I. Antoniadis, K. Forger, Non-supersymmetric type I strings with zero vacuum energy, Nucl. Phys. 
B 555 (1999) 116, arXiv :hep -th /9904092.

[9] S. Groot Nibbelink, O. Loukas, A. Mütter, E. Parr, P.K.S. Vaudrevange, Tension between a vanishing cosmological 
constant and non-supersymmetric heterotic orbifolds, arXiv :1710 .09237 [hep -th].

[10] H. Itoyama, T.R. Taylor, Supersymmetry restoration in the compactified O(16) × O(16)′ heterotic string theory, 
Phys. Lett. B 186 (1987) 129;
S. Abel, K.R. Dienes, E. Mavroudi, Towards a non-supersymmetric string phenomenology, Phys. Rev. D 91 (2015) 
126014, arXiv :1502 .03087 [hep -th].

[11] C. Kounnas, H. Partouche, Super no-scale models in string theory, Nucl. Phys. B 913 (2016) 593, arXiv :1607 .01767
[hep -th];
C. Kounnas, H. Partouche, N = 2 → 0 super no-scale models and moduli quantum stability, Nucl. Phys. B 919 
(2017) 41, arXiv :1701 .00545 [hep -th].

[12] I. Florakis, J. Rizos, Chiral heterotic strings with positive cosmological constant, Nucl. Phys. B 913 (2016) 495, 
arXiv :1608 .04582 [hep -th].

[13] J.A. Harvey, String duality and non-supersymmetric strings, Phys. Rev. D 59 (1999) 026002, arXiv :hep -th /9807213.
[14] K. Aoki, E. D’Hoker, D.H. Phong, Two-loop superstrings on orbifold compactifications, Nucl. Phys. B 688 (2004) 

3, arXiv :hep -th /0312181;
R. Iengo, C.J. Zhu, Evidence for nonvanishing cosmological constant in nonSUSY superstring models, J. High 
Energy Phys. 0004 (2000) 028, arXiv :hep -th /9912074;
S. Abel, R.J. Stewart, On exponential suppression of the cosmological constant in non-SUSY strings at two loops 
and beyond, Phys. Rev. D 96 (2017) 106013, arXiv :1701 .06629 [hep -th].

[15] T. Damour, F. Piazza, G. Veneziano, Violations of the equivalence principle in a dilaton runaway scenario, Phys. 
Rev. D 66 (2002) 046007, arXiv :hep -th /0205111;
T. Damour, F. Piazza, G. Veneziano, Runaway dilaton and equivalence principle violations, Phys. Rev. Lett. 89 
(2002) 081601, arXiv :gr-qc /0204094;
T. Damour, J.F. Donoghue, Equivalence principle violations and couplings of a light dilaton, Phys. Rev. D 82 (2010) 
084033, arXiv :1007 .2792 [gr-qc];
T. Damour, J.F. Donoghue, Phenomenology of the equivalence principle with light scalars, Class. Quantum Gravity 
27 (2010) 202001, arXiv :1007 .2790 [gr-qc].

[16] J.J. Halliwell, Scalar fields in cosmology with an exponential potential, Phys. Lett. B 185 (1987) 341;
A.B. Burd, J.D. Barrow, Inflationary models with exponential potentials, Nucl. Phys. B 308 (1988) 929, Nucl. Phys. 
B 324 (1989) 276 (Erratum);



T. Coudarchet et al. / Nuclear Physics B 930 (2018) 235–254 253

L.P. Chimento, General solution to two-scalar field cosmologies with exponential potentials, Class. Quantum Grav-
ity 15 (1998) 965;
I.P.C. Heard, D. Wands, Cosmology with positive and negative exponential potentials, Class. Quantum Gravity 19 
(2002) 5435, arXiv :gr-qc /0206085;
Z.K. Guo, Y.S. Piao, Y.Z. Zhang, Cosmological scaling solutions and multiple exponential potentials, Phys. Lett. B 
568 (2003) 1, arXiv :hep -th /0304048;
P.K. Townsend, Cosmic acceleration and M-theory, arXiv :hep -th /0308149;
I.P. Neupane, Accelerating cosmologies from exponential potentials, Class. Quantum Gravity 21 (2004) 4383, 
arXiv :hep -th /0311071;
P. Vieira, Late-time cosmic dynamics from M-theory, Class. Quantum Gravity 21 (2004) 2421, arXiv :hep -th /
0311173;
E. Bergshoeff, A. Collinucci, U. Gran, M. Nielsen, D. Roest, Transient quintessence from group manifold reductions 
or how all roads lead to Rome, Class. Quantum Gravity 21 (2004) 1947, arXiv :hep -th /0312102;
J.G. Russo, Exact solution of scalar tensor cosmology with exponential potentials and transient acceleration, Phys. 
Lett. B 600 (2004) 185, arXiv :hep -th /0403010;
L. Jarv, T. Mohaupt, F. Saueressig, Quintessence cosmologies with a double exponential potential, J. Cosmol. As-
tropart. Phys. 0408 (2004) 016, arXiv :hep -th /0403063;
P.K. Townsend, M.N.R. Wohlfarth, Cosmology as geodesic motion, Class. Quantum Gravity 21 (2004) 5375, arXiv :
hep -th /0404241;
A. Collinucci, M. Nielsen, T. Van Riet, Scalar cosmology with multi-exponential potentials, Class. Quantum Gravity 
22 (2005) 1269, arXiv :hep -th /0407047.

[17] E. Dudas, N. Kitazawa, A. Sagnotti, On climbing scalars in string theory, Phys. Lett. B 694 (2011) 80, arXiv :
1009 .0874 [hep -th].

[18] P.K. Townsend, M.N.R. Wohlfarth, Accelerating cosmologies from compactification, Phys. Rev. Lett. 91 (2003) 
061302, arXiv :hep -th /0303097;
N. Ohta, Accelerating cosmologies from S-branes, Phys. Rev. Lett. 91 (2003) 061303, arXiv :hep -th /0303238;
S. Roy, Accelerating cosmologies from M/string theory compactifications, Phys. Lett. B 567 (2003) 322, arXiv :
hep -th /0304084;
M.N.R. Wohlfarth, Accelerating cosmologies and a phase transition in M-theory, Phys. Lett. B 563 (2003) 1, arXiv :
hep -th /0304089;
R. Emparan, J. Garriga, A Note on accelerating cosmologies from compactifications and S-branes, J. High Energy 
Phys. 0305 (2003) 028, arXiv :hep -th /0304124;
N. Ohta, A Study of accelerating cosmologies from superstring/M theories, Prog. Theor. Phys. 110 (2003) 269, 
arXiv :hep -th /0304172;
C.M. Chen, P.M. Ho, I.P. Neupane, J.E. Wang, A Note on acceleration from product space compactification, J. High 
Energy Phys. 0307 (2003) 017, arXiv :hep -th /0304177;
C.M. Chen, P.M. Ho, I.P. Neupane, N. Ohta, J.E. Wang, Hyperbolic space cosmologies, J. High Energy Phys. 0310 
(2003) 058, arXiv :hep -th /0306291;
M.N.R. Wohlfarth, Inflationary cosmologies from compactification?, Phys. Rev. D 69 (2004) 066002, arXiv :hep -
th /0307179.

[19] F. Bourliot, C. Kounnas, H. Partouche, Attraction to a radiation-like era in early superstring cosmologies, Nucl. 
Phys. B 816 (2009) 227, arXiv :0902 .1892 [hep -th].

[20] E. Kiritsis, C. Kounnas, Infrared regularization of superstring theory and the one-loop calculation of coupling con-
stants, Nucl. Phys. B 442 (1995) 472, arXiv :hep -th /9501020.

[21] A.E. Faraggi, C. Kounnas, H. Partouche, Large volume susy breaking with a solution to the decompactification 
problem, Nucl. Phys. B 899 (2015) 328, arXiv :1410 .6147 [hep -th].

[22] T. Coudarchet, H. Partouche, work in progress.

[23] T. Catelin-Jullien, C. Kounnas, H. Partouche, N. Toumbas, Thermal/quantum effects and induced superstring cos-
mologies, Nucl. Phys. B 797 (2008) 137, arXiv :0710 .3895 [hep -th];
T. Catelin-Jullien, C. Kounnas, H. Partouche, N. Toumbas, Induced superstring cosmologies and moduli stabiliza-
tion, Nucl. Phys. B 820 (2009) 290, arXiv :0901 .0259 [hep -th].

[24] F. Bourliot, J. Estes, C. Kounnas, H. Partouche, Cosmological phases of the string thermal effective potential, Nucl. 
Phys. B 830 (2010) 330, arXiv :0908 .1881 [hep -th];
J. Estes, C. Kounnas, H. Partouche, Superstring cosmology for N4 = 1 → 0 superstring vacua, Fortschr. Phys. 59 
(2011) 861, arXiv :1003 .0471 [hep -th].



254 T. Coudarchet et al. / Nuclear Physics B 930 (2018) 235–254

[25] J. Estes, L. Liu, H. Partouche, Massless D-strings and moduli stabilization in type I cosmology, J. High Energy 
Phys. 1106 (2011) 060, arXiv :1102 .5001 [hep -th];
L. Liu, H. Partouche, Moduli stabilization in type II Calabi–Yau compactifications at finite temperature, J. High 
Energy Phys. 1211 (2012) 079, arXiv :1111 .7307 [hep -th].



Available online at www.sciencedirect.com

ScienceDirect

Nuclear Physics B 933 (2018) 134–184

www.elsevier.com/locate/nuclphysb

Quantum no-scale regimes and moduli dynamics

Thibaut Coudarchet, Hervé Partouche ∗

Centre de Physique Théorique, Ecole Polytechnique, CNRS 1, Université Paris-Saclay, Route de Saclay, 91128 
Palaiseau, France

Received 12 April 2018; accepted 14 June 2018
Available online 18 June 2018

Editor: Stephan Stieberger

Abstract

We analyze quantum no-scale regimes (QNSR) in perturbative heterotic string compactified on tori, with 
total spontaneous breaking of supersymmetry. We show that for marginal deformations initially at any 
point in moduli space, the dynamics of a flat, homogeneous and isotropic universe can always be attracted 
to a QNSR. This happens independently of the characteristics of the 1-loop effective potential V1-loop, 
which can be initially positive, negative or vanishing, and maximal, minimal or at a saddle point. In all 
cases, the classical no-scale structure is restored at the quantum level, during the cosmological evolution. 
This is shown analytically by considering moduli evolutions entirely in the vicinity of their initial values. 
Global attractor mechanisms are analyzed numerically and depend drastically on the sign of V1-loop. We 
find that all initially expanding cosmological evolutions along which V1-loop is positive are attracted to the 
QNSR describing a flat, ever-expanding universe. On the contrary, when V1-loop can reach negative values, 
the expansion comes to a halt and the universe eventually collapses into a Big Crunch, unless the initial 
conditions are tuned in a tiny region of the phase space. This suggests that flat, ever-expanding universes 
with positive potentials are way more natural than their counterparts with negative potentials.
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1. Introduction

To account for an extremely small cosmological constant, a natural starting point in super-
gravity is the class of no-scale models [1]. The latter describe the spontaneous breaking of local 
supersymmetry at a scale M that parameterizes a flat direction of a positive semi-definite po-
tential. In perturbative string theory in d dimensions, this setup can be realized at tree level 
by coordinate-dependent compactification [2,3], which implements the Scherk–Schwarz mecha-
nism [4]. The magnitude of the supersymmetry breaking scale measured in σ -model frame, M(σ), 
can be restricted to be lower than the string scale Ms, for Hagedorn-like instabilities [3,5] to be 
avoided. However, quantum effects lift in general the classical flat directions. At 1-loop, sup-
posing for simplicity that there is no non-trivial mass scale lower than M , a contribution of 
order (nF − nB)Md to the effective potential is generated, where nF and nB are the numbers of 
massless fermionic and bosonic degrees of freedom. In this case, a mechanism responsible for 
the stabilization of M would generically yield a large cosmological constant. For this reason, 
the theories satisfying nF = nB, which are sometimes referred as “super no-scale models”, have 
attracted attention [6–8], since their 1-loop effective potentials turn out to be exponentially sup-
pressed. In some models, the potentials can even vanish exactly at 1-loop, at specific points in 
moduli space [9]. However, even in these instances, the smallness of the potential happens to be 
invalidated once Higgs masses lower than M are introduced [7,8], and/or generic higher order 
loop corrections are taken into account [10].

Alternatively, one may not assume the stabilization of the supersymmetry breaking scale. In 
this case, the motion of M induced by the effective potential may be analyzed in a cosmological 
framework [11,12], and eventually at finite temperature [12–15]. One of the main motivations 
of [11] was to find conditions (which we extend in the present paper) for flat, homogeneous and 
isotropic expanding universes to be allowed by the dynamics. In this reference, the analysis is 
done by taking into account a reduced set of fields, namely the volume vol of the torus involved in 
the Scherk–Schwarz supersymmetry breaking, the dilaton φ and the scale factor a of the universe. 
For convenience, the degrees of freedom associated with ln(vol) and φ are implemented by two 
canonical fields � and φ⊥. They are orthogonal linear combinations, where � is the “no-scale 
modulus” which satisfies M ≡ eα�Ms, with α a normalization factor. The history of the universe 
described by a flat Friedmann–Lemaître–Robertson–Walker (FLRW) metric proves to depend 
drastically on the sign of the 1-loop effective potential2:

• For nF ≥ nB, up to time reversal, the evolution is ever-expanding. At initial and late times, 
it is driven by the kinetic energies of � and φ⊥, which dominate over the quantum effective 
potential. As a result, the cosmological solution converges in both limits to classical ones, which 
are characterized by exact no-scale structures with free scalars � and φ⊥.3 For this reason, the 
universe is said to be at early and late times in “quantum no-scale regime” (QNSR). It is only 
during an intermediate era that connects both QNSRs that the effective potential is relevant. The 
latter may even induce a transient period of acceleration.

• For nF < nB, up to time reversal, three different histories can be encountered. In two of 
them, the universe starts with a Big Bang dominated by the total energy (kinetic plus potential) 
of �. Then, it may forever expand by entering in QNSR, or it may reach a maximum size, before 

2 Technically, similar analyzes involving scalar fields with exponential potentials can be found in Ref. [16]. They can 
be realized at tree level in string theory, with backgrounds involving compact hyperbolic internal spaces, S-branes or 
non-trivial fluxes [17].

3 These limit solutions become exact trajectories in the super no-scale models i.e. when nF − nB = 0.
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collapsing into a Big Crunch again dominated by the total energy of the no-scale modulus. In the 
third kind of trajectories, the universe starts with a Big Bang in QNSR, reaches a maximal size 
and then collapses as before in a Big Crunch dominated by the total energy of �.

The goal of the present work is to improve the analysis of Ref. [11] by taking into account 
the dynamics of other moduli fields. To be specific, we consider the heterotic string compactified 
on a torus, where the Scherk–Schwarz spontaneous breaking of all supersymmetries involves a 
single internal direction Xd . The latter is large, for M(σ) to be lower than Ms. Due to the under-
lying maximally supersymmetric structure of the setup, all classical marginal deformations can 
be interpreted as Wilson lines yIϒ, I ∈ {d, . . . , 9}, ϒ ∈ {d, . . . , 25}. In Sect. 2, we first present 
the generic expression of the 1-loop effective potential obtained by switching on small defor-
mations of any background (that has initially no non-trivial mass scale below M). The Wilson 
lines associated with each gauge group factor can be massive, massless or tachyonic. Then, we 
focus on a specific configuration to be analyzed in great details, where the moduli of the internal 
directions Xd and Xd+1 are allowed to vary, while all other deformations are frozen at extrema 
of the effective potential.

Sect. 3 is devoted to the derivation of exact results in the framework of the above simple 
model. Beside �, the effective potential depends on φ⊥, which is no longer a free field, and on 
three Wilson lines yd,d+1, yd+1,d and yd+1,d+1. Physically, yd+1,d+1 parameterizes a Coulomb 
branch, and |yd+1,d+1|Ms is a contribution to the σ -model frame mass of the component fields 
belonging to supermultiplets charged under the gauge group. When |yd+1,d+1|Ms � M(σ), su-
permultiplets are light and their Kaluza–Klein (KK) towers of states along the large direction Xd

contribute effectively to the 1-loop potential. In this case, yd,d+1 (or a combination of all three 
Wilson lines when yd+1,d+1 is not exactly vanishing) plays the role of a phase, which deter-
mines whether it is the fermions or the bosons within these charged supermultiplets that acquire 
a mass by the supersymmetry breaking mechanism. The exact kinetic terms of the model are also 
presented.

QNSRs compatible with weak string coupling are described in this setup in Sect. 4. They 
involve the scale factor a, the scalars �, φ⊥, and the Wilson lines yd,d+1, yd+1,d , yd+1,d+1

which at this stage are restricted to be small perturbations of the initial background. Both types 
of regimes are considered, namely expanding eras t → +∞ or Big Bangs t →

>
tBB, where t is 

cosmic time and tBB a constant. Their existence is shown, regardless of the sign of nF − nB

and whether the small Wilson lines are massive, massless or tachyonic at 1-loop. Compared to 
Ref. [11], a novelty is that the moduli space metric is curved, which implies non-canonical kinetic 
terms. We find that this fact imposes a new condition for the universe to be in QNSR: The scale 
M(σ) of supersymmetry breaking measured in sigma-model frame must increase as t → +∞
or t →

>
tBB. As a result, the regimes are valid until M(σ) reaches Ms, when new stringy effects 

are expected to arise. Moreover, the new constraint reduces drastically the phase space where 
the system in QNSR can evolve. For instance, it reduces it by a factor of about 170 for d = 4. 
However, this does not mean that the initial conditions that yield such regimes must be tuned 
within very narrow ranges, due to possible global attraction mechanisms.

In Sect. 5, all results valid for small Wilson lines are checked by numerical simulations, in 
the case of the QNSR t → +∞. Moreover, it turns out that the quadratic kinetic terms are exact 
for arbitrary yd,d+1 and yd+1,d , as long as yd+1,d+1 is restricted to vanish. In Sect. 6, we use 
this fact to simulate large deformations of the initial background parameterized by the Wilson 
lines yd,d+1, yd+1,d . When the effective potential is positive, we find that for arbitrary initial 
conditions (up to time reversal), the universe expands and is attracted to the QNSR t → +∞. On 



T. Coudarchet, H. Partouche / Nuclear Physics B 933 (2018) 134–184 137

the contrary, when the potential is negative, for the universe to be in QNSR t → +∞, its initial 
conditions must sit in the tiny phase space associated with this regime. Otherwise, the initially 
growing scale factor reaches a maximal size before collapsing. Altogether, these remarks suggest 
that in order to describe expanding universes in the framework we have considered, naturalness 
favors models having more fermions than bosons in their light spectra, nF − nB ≥ 0.

Our concluding remarks are given in Sect. 7, while technical derivations can be found in 
a long but self-content Appendix. The latter describes the implementation of continuous and 
discrete Wilson lines in an heterotic toroidal partition function, the spontaneous breaking of 
supersymmetry, and generic formulas for the effective potential.

2. 1-Loop effective potential

The notion of QNSR in string theory was introduced in Ref. [11], in the context of the het-
erotic string compactified on tori, where the total spontaneous breaking of supersymmetry is 
implemented by a stringy Scherk–Schwarz mechanism. However, beside the scale factor of the 
universe, only the dynamics of the dilaton and that of the internal volume involved in the break-
ing of supersymmetry were taken into account. In order to remedy this fact, we consider in this 
section features about the dependence of the 1-loop effective potential on all moduli fields. We 
restrict our analysis to the case where the breaking of supersymmetry is induced along a single 
internal direction.

Marginal deformations

To be specific, we consider a Minkowskian heterotic background in dimension d ≥ 3,4 with 
internal space T 10−d ,

R0,d−1 × T 10−d , (2.1)

where the total spontaneous breaking of supersymmetry is induced by a coordinate-dependent 
compactification along the direction Xd . The gauge symmetry group arising in this no-scale 
model from the Kac–Moody algebra realized on the right-moving bosonic side of the string is 
G26−d , where gauge groups of rank r will in general be denoted Gr . At this stage, the background 
sits at a specific point of the Narain lattice moduli space [18]

SO(10 − d,26 − d)

SO(10 − d) × SO(26 − d)
, (2.2)

whose real dimension is (10 −d) × (26 −d). This manifold can be parameterized by the internal 
metric GIJ , the antisymmetric tensor BIJ , I, J ∈ {d, . . . , 9}, and the Wilson lines YIJ , J ∈
{10, . . . , 25}. However, all of these (10 − d) × (26 − d) moduli fields can be interpreted from 
a KK point of view as the components along T 10−d of 10-dimensional vector bosons in the 
Cartan subalgebra of G26−d . Thus, they can be viewed as Wilson lines, and it is natural to split 
the associated degrees of freedom into initial background values (G + B)

(0)
IJ , Y (0)

IJ and arbitrary 
Wilson line deformations5

4 The equations of motion and solutions we will derive in Sect. 4 are formally valid for arbitrary real dimension d > 2. 
Cosmological evolutions in 2 dimensions could be found by taking the limit d → 2+ .

5 Notations used in the core of the paper are slightly different from those used in the Appendix. The antisymmetric 
tensor B stands for B + �B in Appendices A.4–A.6. Moreover, in Eq. (A.25), Y (0)

dJ is denoted ηR
J , the arbitrary origin 

of the fields YiJ is chosen so that Y (0)
iJ = 0, and the continuous Wilson lines are denoted with upper indices “R”.
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(G + B)IJ =
(

(G + B)dd (G(0) + B(0))dj + √
2ydj

(G(0) + B(0))id + √
2yid (G(0) + B(0))ij + √

2yij

)
,

YdJ = Y
(0)

dJ + ydJ , YiJ = Y
(0)

iJ + yiJ , i, j ∈ {d + 1, . . . ,9}, J ∈ {10, . . . ,25}.
(2.3)

In our conventions, yIϒ, I ∈ {d, . . . , 9}, ϒ ∈ {d, . . . , 25}, is the Wilson line along XI of the U(1)

Cartan generator arising from the right-moving bosonic coordinate ϒ. In particular, factors 
√

2
are introduced in components of the matrix (G + B) to account for the conventional length 

√
2

of the roots of the simply laced Lie groups. In this setup, the scale of supersymmetry breaking 
measured in σ -model frame can be defined as the KK mass

M(σ) =
√

Gdd Ms , (2.4)

where GIJ ≡ (G−1)IJ . As long as Gdd is at least slightly larger than 1, in which case 
M(σ) � Ms/

√
Gdd , no scalar field can be tachyonic at tree level, i.e. there is no possibility for 

a Hagedorn-like instability to take place [5]. Moreover, the gauge symmetry G26−d is sponta-
neously broken to U(1) × G25−d .

Higgs instabilities may however occur at the quantum level. In fact, if the classical no-scale 
structure guaranties M(σ) and all other marginal deformations y’s to be flat directions of a posi-
tive semi-definite tree-level potential [1], this is no longer the case when perturbative corrections 
are taken into account. As described extensively in the Appendix, a non-trivial effective potential 
V(σ )

1-loop is already generated at 1-loop. Assuming that M(σ) is lower than the string scale Ms, and 
that the spectrum in the initial background has no mass scale below M(σ),6 the generic form of 
V1-loop for small Wilson line deformations is [7,8]

V(σ )
1-loop = (nF − nB) vd Md

(σ)

+ Md
(σ)

vd−2

2π

25∑
ϒ=d+1

cϒ

[
(d − 1)y2

dϒ + 1

Gdd

9∑
i=d+1

y2
iϒ

]
+ · · ·

+ O
(
(cMsM(σ))

d
2 e−2πcMs/M(σ)

)
, (2.5)

where the ellipses stand for higher order interactions in y’s. In this expression, nB and nF are the 
numbers of massless bosonic and fermionic degrees of freedom in the undeformed background, 
while vd is a dressing coefficient that accounts for the towers of associated KK modes arising 
from the large supersymmetry breaking compact direction Xd ,

vd = 
(d+1
2 ) ζ(d + 1)

2d−1 π
3d+1

2

(
1 − 1

2d+1

)
. (2.6)

In the last line, cMs is the lowest mass scale above M(σ). When the former is much larger than the 
latter, all states that are not in the above mentioned KK towers yield exponentially suppressed 
contributions. We see that the scalars yid , i ∈ {d + 1, . . . , 9}, are massless. Moreover, for all 
Cartan generator ϒ ∈ {d + 1, . . . , 25}, the coefficient cϒ determines whether the Wilson lines 

6 Relaxing this hypothesis amounts to shifting Wilson lines by small constant backgrounds, thus inducing tadpoles in 
Eq. (2.5).
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yIϒ, I ∈ {d, . . . , 9}, are massive, massless or tachyonic at 1-loop.7 Actually, decomposing G25−d

into simple Lie groups and U(1) factors as follows,

G25−d =
∏
λ

G(λ)
rλ

where
∑
λ

rλ = 25 − d , (2.7)

the Wilson lines yIϒ, I ∈ {d, . . . , 9}, where ϒ takes values corresponding to the Cartan genera-
tors of G(λ)

rλ , share a common coefficient cϒ ≡ cG(λ)
rλ

. The latter is related to the quadratic charges 

of the representations R(λ)
B and R(λ)

F of the massless bosons and fermions charged under G(λ)
rλ in 

the initial background (see Eq. (A.78)),

cG(λ)
rλ

= 8
(
CR(λ)

B
− CR(λ)

F

)
. (2.8)

By switching on small y-deformations of the background we started with, some charged and 
initially massless states acquire Higgs masses lower than M(σ). This reduces the dimension (but 
not the rank) of the gauge symmetry, which enters a Coulomb branch.

Example 1. To illustrate the above generalities, let us consider the supersymmetric E8 × E′
8

heterotic string compactified on T 10−d . Taking Gdd  1, the gauge symmetry arising from the 
right-moving sector is G26−d = U(1) × G9−d × E8 × E′

8. When we sit at a point in moduli space 
where G9−d is maximally enhanced i.e. contains no U(1) factor, the model presents only two 
scales, namely the KK mass M(σ) and the much greater string scale Ms. As reviewed in Appen-
dices A.1–A.3, denoting a ∈ Z2 the fermionic number, the simplest choice of implementation of 
the Scherk–Schwarz breaking of supersymmetry along the large compact direction Xd induces 
KK masses8 1

2aM(σ) to all initially massless degrees of freedom. As a result, the no-scale model 
has no massless fermions, nF = 0, and its mass coefficients are positive, cG(λ)

rλ

= 8CR(λ)
B

. For 

instance, one obtains for G9−d = SU(2)9−d

nB = 8
[
d − 2 + dim

(
U(1) × SU(2)9−d × E8 × E′

8

)] = 8 (522 − 2d) ,

cSU(2) = 8 × C[3]SU(2)
= 8 × 2 = 16 for the 9 − d SU(2) factors ,

cE8 = 8 × C[248]E8
= 8 × 30 = 240 for E8 and E′

8 . (2.9)

This yields a negative effective potential and no Higgs instabilities for the y-fields at the quantum 
level.

Example 2. For massless fermions to be present in the no-scale model, a more sophisticated 
choice of supersymmetry breaking must be considered.9 For instance, one can define a charge 
γ ∈ Z2 in terms of which the affine character of E8 can be divided into SO(16) ones,

1

2

∑
γ,δ∈Z2

(
θ̄ [γδ ]
η̄

)8

= Ō16 + S̄16 . (2.10)

7 Strictly speaking, the notion of “mass” here is a misnomer when M(σ) is treated as a dynamical field, in which case 
all terms in Eq. (2.5) are interactions.

8 The representative of a ∈ Z2 in {0, 1} is understood.
9 In the notations of Appendix A.6, this can be done by switching on discrete Wilson lines, as in Eq. (A.54), (A.55).
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In this relation, γ = 0 leads to the unit character Ō16, while γ = 1 corresponds to the spino-
rial one S̄16. At the massless level, this amounts to splitting the adjoint representation of E8
into adjoint and spinorial representations of SO(16), [248]E8 = [120]SO(16) ⊕ [128]SO(16). As 
seen in Appendix A.4, it is possible to implement a Scherk–Schwarz supersymmetry break-
ing that induces KK masses10 1

2 (a + γ + γ ′)M(σ) to all initially massless degrees of free-
dom, where γ ′ ∈ Z2 is the charge similar to γ but associated with E′

8. As in Example 1, the 
fermions acquire masses if they belong to supermultiplets with γ + γ ′ even. The situation is 
however reversed when γ + γ ′ is odd, since it is the bosons which become massive. As a re-
sult, the mechanism breaks spontaneously all supersymmetries as well as the gauge symmetry 
E8 ×E′

8 → SO(16) ×SO(16)′. The gauge group G9−d can be chosen as before to be SU(2)9−d . 
However, it is instructive to also consider Coulomb branches G9−d = SU(2)9−d−s × U(1)s , 
s ∈ {0, . . . , 9 − d}, when the masses of the non-Cartan gauge bosons are greater than M(σ), for 
Eq. (2.5) to be valid. In this case, we obtain

nB = 8
[
d − 2 + dim

(
U(1) × SU(2)9−d−s × U(1)s

) + 120 + 120
] = 8 (266 − 2d − 2s) ,

nF = 8 (128 + 128) = 8 × 256 ,

cSU(2) = 8 × C[3]SU(2)
= 8 × 2 = 16 for the 9 − d − s SU(2) factors ,

cU(1) = 0 for the s U(1) factors of G9−d ,

cSO(16) = 8 × (C[120]SO(16)
− C[128]SO(16)

) = 8 (14 − 16) = −16 for SO(16) and SO(16)′ .
(2.11)

We see that nF − nB = 8(2d + 2s − 10), which is greater or equal to 0 for d ≥ 5 and can be 
positive, negative or null for d = 3 and 4. However, the Wilson lines of SO(16) × SO(16)′ are 
all tachyonic at 1-loop and Higgs instabilities may arise.

Example 3. We are naturally invited to reconsider Example 2 after Higgs transition, in the 
Coulomb branch where SO(16) × SO(16)′ → U(1)16. Again, we assume the masses of the 
2 × 112 non-Cartan gauge bosons to be greater than M(σ), for Eq. (2.5) to be applicable. Since 
all states in the spinorial representations [128]SO(16) and [128]SO(16)′ are also massive, we auto-
matically obtain vanishing mass coefficients cU(1)’s for the 16 Cartan U(1)’s. Moreover, we are 
back to a configuration where nF = 0, and the effective potential is necessarily negative. In fact, 
we could have reached the same point in moduli space by considering the Coulomb branch in 
Example 1, where E8 × E′

8 → U(1)16.
The above 3 simple examples illustrate the fact that at the quantum level, local stability (even-

tually marginal) of the Wilson lines (CR(λ)
B

≥ CR(λ)
F

, for all λ) and non-negativity of the effective 

potential (nF ≥ nB) are conditions that are easily in contradiction. Actually, it would be interest-
ing to clarify whether they may be compatible. However, insofar as in the present paper we are 
interested in flat FLRW cosmological evolutions where the effective potential is dominated by 
the kinetic energies of moduli fields, it happens that the sign of nF − nB as well as those of the 
mass coefficients cG(λ)

rλ

’s do not play significant roles in the existence of QNSRs. Before show-

ing this in Sect. 4 in an heterotic context we will now describe, we signal that global attractor 
mechanisms are nonetheless sensitive to the signs, as will be seen in the numerical simulations 
of Sect. 6.

10 The representative of a + γ + γ ′ ∈ Z2 in {0, 1} is understood.
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A specific setup

Before y-deformation, we consider from now on a background to be studied in great details,

R0,d−1 × S1
SS(Rd) × S1(Rd+1 = 1) × T 8−d , (2.12)

where the index SS signals a supersymmetry breaking coordinate-dependent compactification 
along the circle of radius Rd ≡ √

Gdd  1. Note that the block-diagonal form of the internal 
space metric does not say anything about the antisymmetric tensor, so that we may choose

2B
(0)
d,d+1 = ηR

d+1 ∈ Z , G
(0)
d,d+1 = 0 , G

(0)
d+1,d+1 = 1 . (2.13)

Altogether, these data imply the gauge symmetry group generated by the right-moving sector to 
be factorized as G26−d = U(1) ×G1 ×G8−d ×G16.11 In the decompactification limit Rd → +∞, 

where supersymmetry is restored, our choice of radius Rd+1 ≡
√

G
(0)
d+1,d+1 = 1 for the second 

circle implies an SU(2) enhancement of the gauge symmetry (in 5 dimensions). However, as 
explained at the end of Appendix A.4, two cases can arise at finite Rd , depending on the parity of 
the “discrete Wilson line” ηR

d+1 ≡ 2(G(0) +B(0))d,d+1 ∈ Z (see Eq. (A.36)). When ηR
d+1 is even, 

all fermionic degrees of freedom of the supermultiplets in the adjoint representation of SU(2)

acquire a mass 1
2M(σ). In this case, the enhancement of the gauge symmetry is preserved, and 

G1 = SU(2). On the contrary, when ηR
d+1 is odd, the spontaneous breaking operates simultane-

ously on supersymmetry and on the SU(2) gauge symmetry. In practice, the bosonic degrees 
of freedom of the SU(2) non-Cartan supermultiplets acquire a mass 1

2M(σ). As a result, only 
the Cartan gauge symmetry is preserved, G1 = U(1), and the latter is coupled to the massless 
fermions belonging to the non-Cartan supermultiplets of charges ±√

2. In all instances, the mass 
coefficients are given by

ηR
d+1 = 0 even =⇒ G1 = SU(2) , cG1 = 8 × C[3]SU(2)

= 8 × 2 = 16 ,

ηR
d+1 = 0 odd =⇒ G1 = U(1) , cG1 = −8 × C±√

2 = −8 × 2 = −16 . (2.14)

Our goal being to switch on moduli fields in order to study their dynamics later on, we will 
make further assumptions for the sake of simplicity. We suppose that the undeformed back-
ground (2.12) does not introduce mass scales below M(σ). As already mentioned in Footnote 6, 
this ensures that the 1-loop potential does not induce tadpoles for the y-fields. This can be real-
ized by considering maximally enhanced gauge groups G8−d × G16 or points in their Coulomb 
branches where the non-Cartan generators have masses above M(σ). Under these conditions, it is 
consistent to freeze to 0 the Wilson lines of G8−d × G16 along S1

SS(Rd) × S1(Rd+1 = 1) × T 8−d , 
as well as those of U(1) × G1 along T 8−d . In fact, the configuration

yI,d+2 ≡ · · · ≡ yI,25 ≡ 0, I ∈ {d, . . . ,9} , yid ≡ yi,d+1 ≡ 0, i ∈ {d + 2, . . . ,9} ,

(2.15)

solves trivially the equations of motion of the associated degrees of freedom, even when the 
1-loop potential is included in the effective supergravity. Given these restrictions, we are left 
with non-trivial Wilson lines yd,d+1, yd+1,d , yd+1,d+1, which are those of U(1) × G1 along the 
compact directions Xd and Xd+1. For small deformations, the effective potential then becomes:

11 This is clear for B(0)
d,d+1 = 0 mod 2 but remains true for arbitrary real B(0)

d,d+1, as will be described in details in 
Sect. 3.
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V(σ )
1-loop = (nF − nB) vd Md

(σ)

+ Md
(σ)

vd−2

2π
cG1

[
(d − 1)y2

d,d+1 + y2
d+1,d+1

Gdd

]
+ · · ·

+ O
(
(cMsM(σ))

d
2 e−2πcMs/M(σ)

)
. (2.16)

Of course, if M(σ) acquired a vacuum expectation value, it would be very artificial to impose 
Eq. (2.15) and expand V (σ )

1-loop at yd,d+1 = yd+1,d = yd+1,d+1 = 0, when cG(λ)
rλ

< 0 for some λ’s. 

However, as already announced, the situation happens to be drastically different in a QNSR. 
Before observing this fact for cG1 = −16 in Sect. 4, we find instructive to make explicit the 
ellipses in Eq. (2.16), by presenting the exact expression of V (σ )

1-loop valid for arbitrary Wilson 
lines yd,d+1, yd+1,d , yd+1,d+1.

3. Exact formulas

In this section, we would like to have a better idea of the global structure of the “reduced” 
moduli space parameterized by the continuous Wilson lines yd,d+1, yd+1,d , yd+1,d+1. In partic-
ular, we will describe periodicity properties of the effective potential, as well as the exact kinetic 
terms.

Effective potential

For arbitrary deformations, the expression of the 1-loop effective potential V(σ )
1-loop is ob-

tained by applying the generic formula Eq. (A.52), derived in Appendix A.5. Up to the 
O

(
(cMsM(σ))

d
2 e−2πcMs/M(σ)

)
exponentially suppressed terms, V(σ )

1-loop can be written as a sum 
over a finite number of KK towers of states associated with the large compact direction Xd (along 
which they have vanishing winding numbers, nd = 0). These KK towers are those characterized 
by mass scales denoted M′

L0 that are lower than the KK i.e. supersymmetry breaking scale M(σ). 
They always appear in groups of 8, due to the degeneracy arising from the left-moving super-
symmetric side of the string. For the initial background satisfying Eqs (2.12), (2.13), they can be 
listed as follows:

(i) The 8 KK towers at right-moving oscillator level �R = 0, whose right-moving quantum 
numbers are a given root of SU(2), and that are neutral under G8−d × G16. For each root ε

√
2, 

ε ∈ {−1, 1}, the momentum and winding numbers along T 8−d are

md+1 = −nd+1 = −ε , mi = ni = 0 , i ∈ {d + 2, . . . ,9} . (3.1)

These towers arise in the Neveu–Schwarz sector of the 32 extra right-moving worldsheet 
fermions, �aR = �0.

(ii) The 8 KK towers at oscillator level �R = 0, whose right-moving quantum numbers are a 
given root or weight12 vector (of length equal to 

√
2) of a representation of G8−d , and that are 

neutral under G1 × G16. They have non-trivial momentum and winding numbers along T 8−d and 
arise in sector �aR = �0.

12 In the notations of Eq. (A.36), non-adjoint representations of G8−d exist when some of the discrete Wilson lines 
ηR
j

∈ Z, j ∈ {d + 2, . . . , 9}, are odd. In this case, G8−d may contain U(1) factors coupled to fermions, with non-trivial 
charges we still refer as weight vectors’ components.
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(iii) The 8 KK towers at oscillator level �R = 0, whose right-moving quantum numbers are a 
given root or weight vector (of length equal to 

√
2) of a representation of G16, and that are neutral 

under G1 × G8−d . They have trivial momentum and winding numbers along T 8−d and arise in 
any sector �aR .

(iv) The 8 × 24 KK towers at oscillator level �R = 1 that are neutral under G1 × G8−d × G16. 
They have trivial momentum and winding numbers along T 8−d and arise in sector �aR = �0.

Due to our restriction on the allowed non-trivial Wilson line deformations, Eq. (2.15), all KK 
towers (ii)–(iv) have characteristic masses M′

L0 = 0 (see Eq. (A.50)) and “phases” ζ d = 0. 
Defined in Eq. (A.48), ζ d actually determines the relative weights of the bosonic and fermionic 
modes within a given KK tower. The non-trivial Wilson lines yd,d+1, yd+1,d , yd+1,d+1 however 
impact the characteristic masses and phases of the 8 × 2 KK towers (i). In total, the 1-loop 
effective potential given in Eq. (A.52) takes the specific form

V(σ )
1-loop = (

nF − nB + (−1)η
R
d+1 8 × 2

)
vd Md

(σ)

− (−1)η
R
d+1 8 × 2

2Md
(σ)

(2π)
3d+1

2

∑
m̃d

cos
(
2π(2m̃d + 1)z

)
|2m̃d + 1|d+1 F

(
2π |2m̃d + 1| M

M(σ)

)

+ O
(
(cMsM(σ))

d
2 e−2πcMs/M(σ)

)
. (3.2)

In this formula, the definition of the function F can be found in Eq. (A.51), we have introduced 
z instead of ζ d for notational convenience, and the non-trivial characteristic mass is denoted M,

z = √
2

(
yd,d+1 − yd,d+1 + yd+1,d√

2
(

1 + √
2yd+1,d+1

) yd+1,d+1

)
, M =

√
2 |yd+1,d+1|√

1 + √
2yd+1,d+1

.

(3.3)

If it is physically natural to use M(σ) and yd,d+1, yd+1,d , yd+1,d+1 to parameterize the classical 
moduli space, it is however a matter of convention. Another choice may be to consider the “vol-
ume” Gdd as the remaining degree of freedom independent of yd,d+1, yd+1,d , yd+1,d+1, in terms 
of which the supersymmetry breaking scale satisfies

M2
(σ ) ≡ GddM2

s = M2
s

Gdd

(
1 − (yd,d+1 + yd+1,d )2

2Gdd (1 + √
2yd+1,d+1)

) . (3.4)

Some remarks about Eq. (3.2) are in order:
• The dependence in Wilson lines of V(σ )

1-loop involves only two combinations of fields, 
z and M. Thus, a flat direction exists at 1-loop.

• The expansions of the cosine and function F for small arguments contain exclusively even 
powers. However, depending on d , only a finite number of monomials can be summed term by 
term. At order z2 and M2, summing over m̃d and restricting to the quadratic terms in Wilson 
lines, one obtains the approximate result (2.16).

• Due to the factor |2m̃d + 1|d+1 in the denominator, as well as the exponential suppression 
of the function F for large argument, the discrete sum in Eq. (3.2) is numerically very close to 
that restricted to m̃d = 0 and −1. The error introduced this way in the sum is about 1% or (much) 
less.
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• The potential is 1-periodic in z. A half-period shift z → z + 1
2 flips the sign of the second 

line in Eq. (3.2).
• The mass M, which characterizes as a whole each KK tower (i), depends only on yd+1,d+1, 

due to an exact cancellation of the contributions of yd,d+1 and yd+1,d in the general expres-
sion (A.50). This is remarkable, since the mass of each KK mode (see Eq. (A.46)) does depend 
on the three Wilson lines.

• For instance in the case ηR
d+1 even, when M = 0 i.e. yd+1,d+1 = 0, the lightest KK masses 

and z (for example in the range [− 1
2 , 12 ]) satisfy

m2 =
(a

2
− |z|

)2
M2

(σ ) , z = √
2yd,d+1 . (3.5)

For z = 0, the associated states are the massless SU(2) non-Cartan gauge and scalar bosons 
(a = 0) and their fermionic superpartners (a = 1) of masses 1

2M(σ). As a result, the second line 
of Eq (3.2) cancels the contribution 8 × 2 in the first line. The situation is reversed for z = ± 1

2 , 
for which the fermions are massless and the bosons massive, so that the role of the second line 
of Eq (3.2) is to shift nF → nF + 8 × 2 in the first line. When z varies between these two extreme 
cases, the KK towers do not contain massless states. Their absolute contributions are lower and 
actually vanish for z = ± 1

4 . In fact, when |z| ∈ (0, 12 ], the gauge symmetry is in the Coulomb 
branch, SU(2) → U(1). On the contrary, when ηR

d+1 is odd, a is replaced with 1 − a in the mass 
formula of Eq. (3.5) and the roles of bosons and fermions are reversed. In particular, for z = ± 1

2 , 
the second line of Eq (3.2) simply shifts nB → nB + 8 × 2.

• When yd+1,d+1 is switched on, the dependence of z and thus V1-loop on yd+1,d becomes 
non-trivial. For instance, in the neighborhood of the undeformed background, yd+1,d appears at 
lowest order in Eq. (3.2) in the interaction term

−Md
(σ)

vd−2

2π
cG1 (d − 1)

√
2yd+1,d yd,d+1 yd+1,d+1 . (3.6)

Thus, even if it is still massless, it is not identified anymore with the flat direction of the 1-loop 
potential.

• The function F is even, positive, shaped like a bell centered at the origin, and exponentially 
suppressed for large a argument. As a result, when M is non-vanishing but still smaller than 
M(σ), the magnitude (at fixed phase z) of the contributions of the 8 ×2 KK towers (i) is lowered. 
In fact, yd+1,d+1 induces a small Higgs mass, so that the towers do not contain massless modes, 
even for z = 0 or 1

2 mod 1, and the gauge theory always sits in the Coulomb branch SU(2) →
U(1). When M is greater than M(σ), the Higgsing is large and we are free to omit the second 
line of Eq. (3.2).13 In this case, the Wilson lines yd,d+1, yd+1,d , yd+1,d+1 are flat directions, up 
to exponentially suppressed terms.

Kinetic terms

At tree level, imposing the restriction (2.15), the massless degrees of freedom allowed to have 
non-trivial homogeneous and isotropic backgrounds14 are the graviton, the dilaton and the com-
plex moduli

13 At the transition, i.e. when M is slightly greater than M(σ) , omitting the second line should be accompanied by 
fixing c = M in the last one.
14 In dimension d = 4, we also impose the axion field dual to the spacetime antisymmetric tensor to be constant.
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T = Bd,d+1 +i

√
GddGd+1,d+1 − G2

d,d+1 , U =
Gd+1,d + i

√
GddGd+1,d+1 − G2

d,d+1

Gdd

.

(3.7)

Splitting the dilaton into a constant plus a dynamical field, φdil ≡ 〈φdil〉 + φ, the Einstein frame 

metric is defined as gμν = e− 4
d−2 φGμν and the classical effective action of the above degrees of 

freedom reduces to their kinetic terms,

Stree = 1

κ2

∫
ddx

√−g gμν

[Rμν

2
− 2

d − 2
∂μφ∂νφ + ∂μT ∂ν T̄

(T − T̄ )2
+ ∂μU∂ν Ū

(U − Ū)2

]
. (3.8)

In our conventions, the signature of the metric is (−, +, · · · , +), Rμν is the Ricci tensor and 
κ2 = e2〈φdil〉/Md−2

s is Einstein’s constant. To make contact with the arbitrary Wilson lines yd,d+1, 
yd+1,d , yd+1,d+1, the following dictionary can be used,

Gd+1,d+1 = 1 + √
2yd+1,d+1 ,

Gd,d+1 = 1√
2

(yd,d+1 + yd+1,d ) ≡ hd,d+1 ,

Bd,d+1 = ηR
d+1

2
+ 1√

2
(yd,d+1 − yd+1,d ) . (3.9)

Moreover, the supersymmetry breaking scale measured in Einstein frame is dressed with a dilaton 
factor and can be redefined in terms of the so-called “no-scale modulus” �,

M ≡ e
2

d−2 φ M(σ) ≡ eα�Ms , where α� = 2

d − 2
φ + ln

√
Gdd , α =

√
d − 1

d − 2
.

(3.10)

Noticing that the kinetic terms of T and U yield, among other things, a contribution − 1
2 ×

(∂ ln
√

Gdd)2, it is natural to relate the latter to − 1
2(∂ ln

√
Gdd)2 by using the identity

GddGdd = 1 + √
2yd+1,d+1

1 + f
, where f = √

2yd+1,d+1 − h2
d,d+1

Gdd

. (3.11)

In this way, the kinetic terms of φ and ln
√

Gdd can be combined into those of � and an “orthog-
onal” combination φ⊥,

√
d − 1φ⊥ = 2φ − ln

√
Gdd . (3.12)

In total, we ultimately find

Stree = 1

κ2

∫
ddx

√−g

[R
2

− 1

2
(∂�)2 − 1

2
(∂φ⊥)2

− �1

4
Gdd

(
(∂yd,d+1)

2 + (∂yd+1,d )2
)

− �2

4
(∂yd+1,d+1)

2 + �3

]
,

(3.13)

where we have defined
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�1 = 1

1 + √
2yd+1,d+1

, �2 =
1 − h4

d,d+1

G2
dd

(1 + f )2 ,

�3 = ∂yd+1,d+1

2
√

2

(
∂
(h2

d,d+1

Gdd

) 1 − h2
d,d+1
Gdd

(1 + f )2 + ∂Gdd

Gdd

h2
d,d+1

Gdd

1

(1 + √
2yd+1,d+1)(1 + f )

)
.

(3.14)

Local marginal deformations

With exact formulas for the potential and kinetic terms at hand, we can make precise the 
notion of “small Wilson lines deformations” used in Sect. 2, for the backgrounds satisfying 
Eqs (2.12), (2.13) and (2.15):

|yd+1,d+1| �
√

Gdd � 1 , |yd,d+1| � 1 , |yd+1,d | � 1 . (3.15)

Our goal being to study the dynamics of moduli fields, the restriction on yd+1,d+1 implies M �
M(σ) so that the three Wilson lines are not flat directions. The conditions on yd,d+1 and yd+1,d

imply |hd,d+1| � 1. Noticing that

�3 = Gdd

2
√

2
∂yd+1,d+1 ∂h2

d,d+1 + · · · , (3.16)

where the ellipses stand for at least quartic terms in Wilson lines, it is then consistent at leading 
order to set (�1, �2, �3) = (1, 1, 0) in the kinetic terms. Moreover, the cubic interaction (3.6)
and higher order ones in the potential can also be neglected, compared to the quadratic mass 
terms in Eq. (2.16).

4. Quantum no-scale regimes

Our goal in this section is to show that QNSRs do exist when the dynamics of marginal 
deformations of the internal space are taken into account. Indeed, we will find conditions under 
which such regimes can be reached in the setup described at the end of Sect. 2.

When the assumptions (3.15) are fulfilled, the 1-loop effective action in Einstein frame can be 
written as

S1-loop = 1

κ2

∫
ddx

√−g

[R
2

− 1

2
(∂�)2 − 1

2
(∂φ⊥)2

− Gdd

4
(∂yd,d+1)

2 − Gdd

4
(∂yd+1,d )2 − 1

4
(∂yd+1,d+1)

2 + · · · − κ2V1-loop

]
, (4.1)

where the potential is given by,

V1-loop = edα�Md
s

[
(nF − nB) vd + vd−2

2π
cG1

(
(d − 1)y2

d,d+1 + y2
d+1,d+1

Gdd

)]
+ · · · . (4.2)

In the kinetic terms, the ellipses correspond to 2-derivatives, cubic and higher order terms in 
Wilson lines yd,d+1, yd+1,d , yd+1,d+1, while in V1-loop they stand for cubic and higher order 
interactions, or exponentially suppressed corrections when c/

√
Gdd  1. In the following, we 

will neglect all of these subdominant contributions.
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Equation for a

Focusing on homogeneous and isotropic cosmological evolutions in flat space, we consider a 
metric and scalar field ansatz

ds2 = −N(x0)2(dx0)2 + a(x0)2
(
(dx1)2 + · · · + (dxd−1)2

)
,

�(x0) , φ⊥(x0) , yd,d+1(x
0) , yd+1,d (x0) , yd+1,d+1(x

0) . (4.3)

The equations of motion for the lapse function N and scale factor a take the following forms, in 
the gauge N ≡ 1 which defines cosmic time x0 ≡ t ,

1

2
(d − 1)(d − 2)H 2 = K + κ2V1-loop , (4.4)

(d − 2)Ḣ + 1

2
(d − 1)(d − 2)H 2 = −K + κ2V1-loop , (4.5)

where H ≡ ȧ/a and the kinetic terms are

K = 1

2
�̇2 + 1

2
φ̇2⊥ + Gdd

4
ẏ2
d,d+1 + Gdd

4
ẏ2
d+1,d + 1

4
ẏ2
d+1,d+1 . (4.6)

Interested in QNSRs, we eliminate K between Eqs (4.4) and (4.5),

1

d − 1

(ad−1)··
ad−1 ≡ Ḣ + (d − 1)H 2 = 2

d − 2
κ2V1-loop , (4.7)

and look for cosmological evolutions satisfying either

a(t) −→
t−t+→+∞ +∞ or a(t) −→

t−t−→0+
0 , (4.8)

for some constants t±, with the effective potential dominated by H 2. To be specific, we assume 
the solutions to satisfy

κ2Md
s edα� = O

(
H 2

aK±

)
(4.9)

in the above limits, where ±K± > 0 are constants to be determined. The t − t+ → +∞ asymp-
totic regime describes an ever-expanding universe, while t − t− → 0+ corresponds to a Big Bang 
arising at t = t−. Of course, contracting evolutions in QNSR may also be found by time reversal. 
Under these hypotheses, and supposing a power law behavior of the scale factor, Eq. (4.7) can be 
integrated once,

C± − 1

H
= −(d − 1)(t − t±)

(
1 + O

(
1

aK±

))
. (4.10)

Without loss of generality, the constant C+ can be absorbed in a redefinition of t+, while C− has 
to vanish for a(t) to vanish at t−. Integrating a second time, one obtains

a = A (t − t±)
1

d−1

(
1 + O

(
1

aK±

))
, (4.11)

where A > 0 is a not yet specified constant. Up to the subdominant term O(1/aK±), the time-
dependence of the scale factor is by no way surprising since a negligible potential energy implies 
the evolution of the universe to be driven by the moduli kinetic energies, i.e. a cosmic fluid of 
energy density ρ and pressure P satisfying ρ ∼ P .
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Equation for yd+1,d

At quadratic order in Wilson line deformations, yd+1,d has a vanishing potential but a non-
canonical kinetic term. Thus, its equation of motion is that of a free field, with non-conventional 
friction term,

ÿd+1,d + [
(d − 1)H + (lnGdd)·] ẏd+1,d = 0 , (4.12)

which yields

ẏd+1,d = 2 cd+1,d

ad−1Gdd
, (4.13)

where cd+1,d is an integration constant. A consequence of Eq. (4.11) is that the l.h.s. of Fried-
mann equation (4.4) is

1

2
(d − 1)(d − 2)H 2 = d − 2

2(d − 1)

A 2(d−1)

a2(d−1)

(
1 + O

(
1

aK±

))
, (4.14)

while the kinetic and potential terms in the r.h.s. satisfy

K ≥ c2
d+1,d

a2(d−1)Gdd
, |κ2V1-loop| � H 2 . (4.15)

For these facts to be consistent, we proceed by assuming a power law behavior

Gdd ∼ G (t − t±)J± , (4.16)

for some coefficient ±J± > 0 to be determined, and a constant G > 0. In this case, the kinetic 
term of yd+1,d is subdominant in K,

H 2O1 ≡ O
(
Gddẏ2

d+1,d

)
= O

(
c2
d+1,d

A 2(d−1)

H 2

Gdd

)
� K = O(H 2) . (4.17)

In the end, we obtain

yd+1,d � y
(0)
d+1,d − Cd+1,d

J±(t − t±)J± , where Cd+1,d = 2 cd+1,d

A d−1G , (4.18)

and the second integration constant satisfies |y(0)
d+1,d | � 1.

Notice that in the QNSR t − t+ → +∞, the initial hypothesis (4.9) implies M to drop. This 
is also the case for the QNSR t − t− → 0+, if |K−|

d−1 > 2. On the contrary, Eq. (4.16) implies 
the supersymmetry breaking scale measured in σ -model frame, M(σ), to rise and formally tend 
to infinity, when t − t+ → +∞ (or t − t− → 0+). This means that in the QNSRs, t should not 
exceed some maximal value tf (or reach values below tf) such that Gdd(tf) = c2. After (or before) 
tf, the exponential terms in the effective potential (2.16) are no more suppressed.15

Equation for yd+1,d+1

In order to determine yd+1,d+1 in the QNSRs, one can insert in its equation of motion,

ÿd+1,d+1 + (d − 1)H ẏd+1,d+1 + 2vd−2

π
cG1κ

2Md
s

edα�

Gdd
yd+1,d+1 = 0 , (4.19)

15 When c = O(1), Hagedorn-like transitions may even occur when Gdd = O(1).
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the behaviors of (d −1)H ∼ 1/(t − t±), Gdd ∼ G (t − t±)J± and edα� ∼ #H 2/aK± . For cG1 > 0, 
the generic solution of the differential equation can be expressed in terms of Bessel functions of 
the first kind, J0, and second kind, Y0,

yd+1,d+1 = C J0

(
L

(t − t±)
1
2 (J±+ K±

d−1 )

)
+ C′ Y0

(
L

(t − t±)
1
2 (J±+ K±

d−1 )

)
, (4.20)

where L > 0 and the arbitrary C, C′ are constants. For cG1 < 0, the Bessel functions are “modi-
fied” into I0 and K0. In both cases, the value of L is irrelevant when taking the limit t− t+ → +∞
or t − t− → 0+, and we obtain

yd+1,d+1 � Cd+1,d+1 ln
t − t±
t0 − t±

, (4.21)

where Cd+1,d+1 and t0 are constants. Notice that this logarithmic behavior is not in contradiction 
with the smallness of yd+1,d+1 we have assumed in Eq. (3.15). This follows from the fact that in 
a QNSR, |yd+1,d+1|/

√
Gdd decreases, due to the power-dependence of Gdd in time. Physically, 

the supersymmetry breaking scale in σ -model frame M(σ) grows faster than the Higgs mass 
|yd+1,d+1|Ms.

Before proceeding, it is instructive to use

ẏd+1,d+1 ∼ Cd+1,d+1

t − t±
, (4.22)

in order to evaluate the mass term,

O
(

κ2Md
s

edα�

Gdd
yd+1,d+1

)
= O

(
Hẏd+1,d+1

1

aK±Gdd
ln

t − t±
t0 − t±

)
≡ Hẏd+1,d+1O2 .

(4.23)

With this result, Eq. (4.19) becomes

ÿd+1,d+1 + (d − 1)H ẏd+1,d+1
(
1 + O2

) = 0 , (4.24)

which can be integrated once to yield the more accurate result

ẏd+1,d+1 = 2 cd+1,d+1

ad−1

(
1 + O2

)
, where Cd+1,d+1 = 2 cd+1,d+1

A d−1 . (4.25)

Equation for yd,d+1

As before, one can solve the equation of motion of yd,d+1,

ÿd,d+1 + [
(d − 1)H + (lnGdd)·] ẏd,d+1 + 2vd−2

π
(d − 1) cG1κ

2Md
s

edα�

Gdd
yd,d+1 = 0 ,

(4.26)

after substituting H , Gdd and edα� with their limit behaviors. For cG1 > 0, the generic solution 
turns out to be expressed in terms of Bessel functions of the first kind,
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yd,d+1 = C

(t − t±)
J±
2

Jk

(
L

(t − t±)
1
2 (J±+ K±

d−1 )

)
+ C′

(t − t±)
J±
2

J−k

(
L

(t − t±)
1
2 (J±+ K±

d−1 )

)
,

(4.27)

where k = J±/(J± + K±
d−1 ). For cG1 < 0, the Bessel functions are “modified”, Jk, J−k → Ik, I−k . 

In the limit t − t+ → +∞ or t − t− → 0+ we are interested in, this leads to

yd,d+1 � y
(0)
d,d+1 − Cd,d+1

J±(t − t±)J± ≡ y
(0)
d,d+1(1 + Õ1) , (4.28)

where y(0)
d,d+1 and Cd,d+1 are integration constants, with |y(0)

d,d+1| � 1. Alternatively, one can 
write

ẏd,d+1 ∼ 2 cd,d+1

ad−1Gdd
, where Cd,d+1 = 2 cd,d+1

A d−1G . (4.29)

The kinetic energies of yd,d+1 and yd+1,d are thus of same order,

H 2O1 ≡ O
(
Gddẏ2

d,d+1

)
= O

(
c2
d,d+1

A 2(d−1)

H 2

Gdd

)
� K = O(H 2) . (4.30)

Equation for φ⊥
Once Wilson lines are taken into account, the scalar φ⊥ is no longer a free field. Due to the fact 
that

Gdd = e
2
α
� e

− 2√
d−1

φ⊥
, (4.31)

φ⊥ couples non-trivially to kinetic and mass terms, and its equation of motion is highly non-
linear,

φ̈⊥ + (d − 1)H φ̇⊥ = − Gdd

2
√

d − 1

(
ẏ2
d,d+1 + ẏ2

d+1,d

)− vd−2

π
√

d − 1
cG1κ

2Md
s

edα�

Gdd
y2
d+1,d+1 .

(4.32)

However, up to a numerical factor, the two terms in the r.h.s. show up respectively in K and 
κ2V1-loop. We have already seen that the former is of order H 2O1, while the second is of order

H 2O3 ≡ O
(

κ2Md
s

edα�

Gdd
y2
d+1,d+1

)
= O

(
H 2

aK±
y2
d+1,d+1

Gdd

)
� H 2 . (4.33)

For reasons that will become clearer later, it is useful to explain the term O1. Assuming φ̇⊥ =
O(H), we define the constant C⊥ such that

1

a2(d−1)
∼ C⊥(d − 1)H φ̇⊥ , (4.34)

and write Eq. (4.32) in the following form,

φ̈⊥ + (d − 1)H φ̇⊥

(
1 + 2C⊥√

d − 1

c2
d,d+1 + c2

d+1,d

Gdd
+ · · · + O3

)
= 0 (4.35)

where the ellipses stand for subdominant contributions in the O1 term. Integrating once, we 
obtain
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φ̇⊥ = √
2

c⊥
ad−1

(
1 + 2C⊥√

d − 1

c2
d,d+1 + c2

d+1,d

J± Gdd
+ · · · + O3

)
, (4.36)

where c⊥ is an arbitrary constant. Using the above result, Eq. (4.34) is consistent and we can 
identify

C⊥ = 1√
2 c⊥ A d−1

. (4.37)

Equation for �

The treatment of the no-scale modulus � can be similar. Its equation of motion,

α�̈ + (d − 1)Hα�̇ = − dα2κ2Md
s V1-loop + Gdd

2

(
ẏ2
d,d+1 + ẏ2

d+1,d

)
+ vd−2

π
cG1κ

2Md
s

edα�

Gdd
y2
d+1,d+1 , (4.38)

can be linearly combined with Eq. (4.7) to eliminate the term proportional to V1-loop. One obtains

(
α�̇ + α2

2
d(d − 2)H

)· + (d − 1)H
(
α�̇ + α2

2
d(d − 2)H

)
=

Gdd

2

(
ẏ2
d,d+1 + ẏ2

d+1,d

)+ vd−2

π
cG1κ

2Md
s

edα�

Gdd
y2
d+1,d+1 , (4.39)

which is an equation whose form is identical to that of φ⊥. Thus, assuming �̇ = O(H), we can 
proceed in a similar way to obtain

α�̇ + α2

2
d(d − 2)H = c�

ad−1

(
1 − 2C�

c2
d,d+1 + c2

d+1,d

J± Gdd
+ · · · + O3

)
, (4.40)

where c� is an arbitrary constant and

C� = 1

c� A d−1 . (4.41)

Friedmann constraint

We started our discussion by solving Eq. (4.7) for the scale factor a(t), which introduced two 
integration constants A and t± in the solution (4.11). However, Friedmann differential equa-
tion (4.4) being only first-order, it can be used to fix A in terms of the other parameters.

To reach this goal, we first collect all results found for the scalar fields to write the total kinetic 
energy as

K = 1

8
d2(d − 2)2α2H 2 − 1

2
d(d − 2)H

c�

ad−1 +
c2
�

2α2 + c2⊥ + c2
d+1,d+1

a2(d−1)

+ c2
d,d+1 + c2

d+1,d

a2(d−1)Gdd
(CK + · · · ) + H 2O3 + c2

d+1,d+1

a2(d−1)
O2 , (4.42)

where
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CK = 1 + 1

J±

(√
2

d − 1

2c⊥
A d−1 − 2

α2

c�

A d−1 + d

α2

)
. (4.43)

In the expression of K, all terms in the first line are O(H 2). In the second line, the contribution 
proportional to 1/(a2(d−1)Gdd) and H 2O3 arise from the kinetic terms of yd,d+1 and yd+1,d , 
as well as the subdominant contributions of those associated with φ⊥ and �. Moreover, the last 
term, which is the subdominant part of the kinetic energy of yd+1,d+1, can be compared to the 
other contributions by noticing that

c2
d+1,d+1

a2(d−1)
O2 = O

(
H 2C 2

d+1,d+1

)
O2 = O

(
H 2

aK±
y2
d+1,d+1

Gdd

1

ln
( t−t±

t0−t±
)
)

= H 2 O3

ln
( t−t±

t0−t±
) .

(4.44)

The latter being dominated by H 2O3, it can be omitted in Eq. (4.42). In a similar spirit, the 
1-loop effective potential can be written as

V1-loop = edα�Md
s

[
(nF − nB) vd + vd−2

2π
cG1(d − 1)y

(0)2

d,d+1(1 + Õ1)
]
+ H 2O3 . (4.45)

Finally, we may follow Ref. [11] by defining

τ ≡ (d2 − 4)(d − 1)

2dc�

Had−1 = (d2 − 4)

2dc�

(ad−1)· , (4.46)

in terms of which the l.h.s. of Friedmann equation (4.4) and the dominant terms O(H 2) of K
combine into a suitable form. The result is

− d2c2
�

2(d − 1)(d + 2)

P(τ )

a2(d−1)
= κ2Md

s edα�
[
(nF − nB) vd

+ vd−2

2π
cG1(d − 1)y

(0)2

d,d+1(1 + Õ1)
]

+ c2
d,d+1 + c2

d+1,d

a2(d−1)Gdd
(CK + · · · ) + H 2O3 , (4.47)

where P is a quadratic polynomial,

P(τ ) = τ 2 − 2τ +
(

1 − 4

d2

)(
1 + 2α2

c2⊥ + c2
d+1,d+1

c2
�

)
. (4.48)

In the limits we are interested in, the behavior (4.11) of the scale factor implies τ to converge 
to a constant,

τ = τ0

(
1 + O

(
1

aK±

))
, where τ0 = d2 − 4

2d

A d−1

c�

, (4.49)

and P(τ ) to satisfy

P(τ ) = P(τ0) + O
(

1

aK±

)
. (4.50)

Thus, for Eq. (4.47) to be consistent, two conditions must be fulfilled:
(i) τ0 must be a root of P . In this instance only, instead of being O(H 2), the l.h.s. of Eq. (4.47)

satisfies
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− d2c2
�

2(d − 1)(d + 2)

P(τ )

a2(d−1)
= O

(
H 2

aK±

)
. (4.51)

(ii) We must have

O
(

H 2

aK±

)
 c2

d,d+1 + c2
d+1,d

a2(d−1)Gdd
(CK + · · · ) , O

(
H 2

aK±

)
 H 2O3 , (4.52)

for our initial defining assumption of a QNSR to be true, Eq. (4.9).
Condition (i) requires the discriminant of P to be positive, which amounts to having

( c⊥
γcc�

)2 +
(cd+1,d+1

γcc�

)2 ≤ 1 , where γc =
√

2

(d − 1)(d + 2)
. (4.53)

In this case, the value of A , which appears in the definition of τ0, is determined up to a sign ε,

A =
[

2d

d2 − 4
(1 + ε r) c�

] 1
d−1

, (4.54)

where c� > 0 is required and r defined as

r = 2

d

√
1 −

( c⊥
γcc�

)2 −
(cd+1,d+1

γcc�

)2
. (4.55)

In condition (ii), the inequality that involves O3 is always satisfied, as follows from the 
decrease in |yd+1,d+1|/

√
Gdd , (see Eq. (4.33)). However, the other constraint may be more in-

triguing. If CK �= 0, it would imply ±J± > ± K±
d−1 , which would restrict the choices of integration 

constants characterizing the QNSRs (see the next paragraph). However, such a reduction of the 
set of solutions should not occur, since we have already solved all differential equations and the 
only remaining piece of information captured by Friedmann equation must be the value of A . As 
we will now check, CK actually does vanish. Moreover, all implicit contributions in Eq. (4.52)
in the dots should respect the inequality, without imposing further constraints on the existence of 
QNSRs, as will be checked numerically in Sects 5 and 6.

Determination of K± and J±
Using the value of A , Eq. (4.40) yields

dα�̇ ∼ −
(

2 + ε
r(d2 − 4)

2(1 + ε r)

)
1

t − t±
, (4.56)

where the overall coefficient is to be identified with −(2 + K±
d−1 ), as follows from Eq. (4.9). The 

fact that ±K± > 0 fixes ε = ±, and we obtain

edα� ∼ edα�±

[Ms(t − t±)]2+ K±
d−1

, where K± = ± r(d2 − 4)

2(1 ± r)
(4.57)

and �± is an integration constant.
The coefficient J± can be determined in a similar way by using the linear relation between 

(lnGdd)·, �̇ and φ̇⊥. The result is

J± = d

α2

((
1 − α2

√
2

d − 1

c⊥
c�

)1 − 4
d2

1 ± r
− 1

)
, (4.58)
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Fig. 1. The points 
( c⊥
γcc�

, cd+1,d+1
γcc�

)
of the disk of radius 1 that yield a QNSR t − t+ → +∞ sit in the left crescent of 

figure (a). Those in the right crescent lead to a QNSR t − t− → 0+ . The former are always perturbative, while the latter 
are compatible with weak string coupling when d ≥ 3 if 

( c⊥
γcc�

, cd+1,d+1
γcc�

)
is also located in the shaded era of figure (b).

which leads as anticipated to CK = 0. With the expression of J±, we are ready to solve the only 
non-trivial consistency condition for QNSRs to exist. The points 

(
c⊥

γcc�
, cd+1,d+1

γcc�

)
of the disk of 

radius 1, Eq. (4.53), compatible with the constraint

±J± > 0 (4.59)

sit outside an ellipse( c⊥
γcc�

− u

1 + v

)2 + v

1 + v

(cd+1,d+1

γcc�

)2 ≥ v

(1 + v)2 (1 + v − u2) ,

where u = − 2√
d + 2

, v = d2

d + 2
. (4.60)

As shown in Fig. 1(a), for arbitrary dimension d > 2, this ellipse is located in the interior of 
the disk and is tangential to it at c⊥

γcc�
= u. The points in the left crescent 

(
c⊥

γcc�
≤ u

)
allow a 

QNSR t − t+ → +∞, while those in the right crescent 
(

c⊥
γcc�

≥ u
)

yield a regime t − t− → 0+. 
In reality, the left crescent is more tiny than the one shown on the qualitative Fig. 1(a). Its width 
at cd+1,d+1

γcc�
= 0 is 3–11 · 10−3 for 3 ≤ d ≤ 9, and actually vanishes when d → 2+. Thus, we have 

r � 0 in the left crescent, so that Md and H 2 evolve approximately at the same cosmological 
speed.

Finally, we can make some remark about Cd+1,d+1, which is related to cd+1,d+1 in Eq. (4.25)
and must be small, as required by our assumption on yd+1,d+1 given in Eq. (3.15). If the left 
and right crescents allow Cd+1,d+1 to be as small as desired, its maximal value is reached for (

c⊥
γcc�

, cd+1,d+1
γcc�

) = (0, 1), which yields

|C max
d+1,d+1| =

√
2(d + 2)

d − 1

d − 2

d
. (4.61)

This expression being of order 1, it is consistent as a limiting case.
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Perturbative condition

At this stage, we have found time-dependent fields that extremize the 1-loop effective action in 
the limit t − t+ → ∞ or t − t− → 0+. To make sense, however, this analysis requires string 
perturbation theory to be valid in these regimes. Expressing φ̇ as a linear combination of �̇ and 
φ̇⊥, one obtains

e2dα2φ ∼ edα�± ed
√

d−1 φ⊥±

[Ms(t − t±)] P±
d−1

, (4.62)

where φ⊥± is the constant arising by integration of Eq. (4.36) and

P± = K±
(1 − 4

d2 ) r

[
r ±

( 4

d2 − (
1 − 4

d2

)√
2(d − 1)

c⊥
c�

)]
. (4.63)

The QNSR t − t+ → +∞ happens to be perturbative, since P+ > 0 is always satisfied when 
the point 

(
c⊥

γcc�
, cd+1,d+1

γcc�

)
sits in the left crescent in Fig. 1(a). For the regime t − t− → 0+, string 

perturbation theory is valid when P− < 0. If d ≥ dc � 2.90, this condition is satisfied for c⊥
γcc�

≥ ũ

or when 
(

c⊥
γcc�

, cd+1,d+1
γcc�

)
sits in the interior of an ellipse

( c⊥
γcc�

− ũ

1 + ṽ

)2 + ṽ

1 + ṽ

(cd+1,d+1

γcc�

)2 ≤ ṽ

(1 + ṽ)2 (1 + ṽ − ũ2) ,

where ũ = 2

(d − 2)
√

d + 2
, ṽ = d2

(d − 2)2(d + 2)
. (4.64)

As shown in Fig. 1(b), this second ellipse is inside the disk of radius 1 and tangential to it at 
c⊥

γcc�
= ũ. As a result, the right part of the right crescent in Fig. 1(a) yields perturbative QNSRs 

t − t− → 0+. If 2 < d < dc, ũ being greater than 1, the condition P− < 0 is true only inside the 
ellipse (4.64), which now sits entirely in the interior of the disk. However, the intersection of this 
perturbative domain with the right crescent of in Fig. 1(a) is always non-empty. It is only in the 
limit d → 2+, where the ellipse (4.64) vanishes, that the QNSRs t − t− → 0+ are always formal 
because non-perturbative (unless we fine tune 

(
c⊥

γcc�
, cd+1,d+1

γcc�

)
to be exactly (0, 0)).

To summarize, the QNSRs we have found in arbitrary dimension d > 2 depend on 5 velocity 
parameters c� > 0, c⊥, cd+1,d+1, cd,d+1, cd+1,d , 5 zero modes �±, φ⊥±, t0, y(0)

d,d+1, y(0)
d+1,d , and 

the last constant t± arising by integration of the scale factor. Therefore, they are limit behaviors 
of generic solutions, even if the left crescent in Fig. 1(a) is tiny.

5. Simulations of QNSRs at small Wilson lines

From now on, we study numerically the dynamics of the scale factor a, no-scale modulus �

and scalar φ⊥, in the presence of the moduli fields yd,d+1, yd+1,d , yd+1,d+1. Our goal in the 
present section is to check the validity of QNSRs described in Sect. 4, where the Wilson lines 
implement small deformations of the initial background. We fix in the analysis the spacetime 
dimension to be d = 4 and focus only on the expanding solutions where t → +∞ (we set t+ = 0). 
In all simulations, we take 〈φdil〉 = 0 so that κ2 = 1/M2

s , thus identifying the Planck mass with 
the string scale. This has the advantage of matching the weak string coupling condition with the 
negativity of φ. Once the range of time compatible with perturbation theory is identified, it is 
always possible to restore a sensible value of the Planck mass by shifting the dilaton zero-mode.
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As can be seen in Eq. (4.57), one feature of the QNSR t → +∞ is that the supersymme-
try breaking scale M always drops. If this may be expected when V1-loop is positive, it may be 
counterintuitive when it is negative, since M climbs the potential in this case. Moreover, the 
behaviors of yd,d+1 and yd+1,d+1 are independent of the fact that these moduli are massive or 
tachyonic at 1-loop. To check these striking properties, we simulate solutions of the differential 
equations of Sect. 4, which are valid for small Wilson lines deformations. This is done for 4 
initial backgrounds characterized by different signs for nF − nB and cG1 :

(i) nF − nB > 0, cG1 > 0: This case can be achieved in Example 2 of Sect. 2. For d = 4
and s = 4, the right-moving gauge group is U(1) × G1 × U(1)4 × SO(16) × SO(16)′, where 
G1 = SU(2), which corresponds in the setup described below Eq. (2.12) to ηR

5 even. In this 
model, one obtains nF − nB = 8 × 6 and cG1 = 8 × 2.

(ii) nF − nB > 0, cG1 < 0: To flip the sign of cG1 , it is enough to choose ηR
5 odd in setup (i). 

This yields G1 = U(1), with nF − nB = 8 × 10 and cG1 = −8 × 2.
(iii) nF − nB < 0, cG1 > 0: This case can be realized in Example 1 of Sect. 2. The right-

moving gauge group for d = 4 is U(1) × G1 × SU(2)4 × E8 × E′
8, where G1 = SU(2), which 

corresponds to ηR
5 even. This leads to nF − nB = −8 × 514 and cG1 = 8 × 2.

(iv) nF − nB < 0, cG1 > 0: To flip the sign of cG1 , one can take ηR
5 odd in setup (iii). This 

yields G1 = U(1), nF − nB = −8 × 510 and cG1 = −8 × 2.
To set initial conditions adapted to our purpose, we proceed as follows:
• We consider the case analyzed in Ref. [11], where no y-deformation is implemented. All 

trajectories that reach a QNSR t → +∞ are characterized by two constants c⊥0, c�0 (defined as 

c⊥ and c� in the present work) such that 
∣∣∣ c⊥0
γcc�0

∣∣∣ < 1. In order to allow the Wilson lines to vary, 
we take c⊥0, c�0 for the expression of J+ in Eq. (4.58) evaluated at (c⊥, c�, c55) = (c⊥0, c�0, 0)

to be positive. This imposes ≈0.9941 <
∣∣∣ c⊥0
γcc�0

∣∣∣ < 1, thus reducing the allowed range of this ratio 
by approximately a factor of 170.

• In the presence of Wilson lines, we define dynamical quantities

c
dyn
⊥ = ad−1

√
2

φ̇⊥ , c
dyn
� = ad−1

(
α�̇ + α2

2
d(d − 2)H

)
, c

dyn
55 = ad−1

2
ẏ55 , (5.1)

which are expected to converge to the constants c⊥, c� and c55 introduced in Sect. 4.
• For the initial conditions at t = 0, we set a(0) to be of order 1 and cdyn

⊥ (0) = c⊥0 to fix 

φ̇⊥(0). We also take cdyn
� (0) = c�0, which can be translated into �̇(0) by the knowledge of 

H(0). The latter, which we take to be positive, is determined by Friedmann equation at t = 0, for 
a given choice of �(0) and initial conditions for the Wilson lines. To ensure that the evolution 
of the system starts close to the QNSR expected to arise at late times, �(0) is chosen for the 
quantity

τ dyn ≡ (d2 − 4)(d − 1)

2dc
dyn
�

Had−1 , (5.2)

which is inspired by Eq. (4.46), to be at t = 0 very close to the asymptotic value it would reach 
when no Wilson lines are introduced. To be specific, this means

τ dyn(0) � 1 + r0, where r0 = 2

d

√
1 −

( c⊥0

γcc�0

)2
, (5.3)
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Fig. 2. Convergence of (ad−1)· towards its limit A d−1, in cases (i) and (iv). The evolution is monotonically increasing 
or decreasing, depending on the sign of nF − nB.

as follows from Eqs (4.49) and (4.54). The choice of φ⊥(0) is of order 1 and such that the range of 
cosmic time compatible with weak string coupling and M(σ)(t) < cMs is large in the simulations.

• The remaining initial conditions are those of the Wilson lines: y45(0), ẏ45(0), y54(0), ẏ54(0)

and y55(0), ẏ55(0). Their absolute values are chosen small enough (compared to 1 and Ms) for 

the trajectory of 
(

c
dyn
⊥

γcc
dyn
�

,
c

dyn
55

γcc
dyn
�

)∣∣∣∣
t

to be entirely in the left crescent in Fig. 1(a). The motion of 

this point is expected to converge to 
(

c⊥
γcc�

,
c55

γcc�

)
, when t → +∞.

Due to Eq. (4.7), whether (ad−1)· increases of decreases with time is determined in full gen-
erality by the sign of V1-loop. In order to discriminate when the universe is in QNSR, the most 
decisive criterion is the asymptotic behavior of the scale factor, Eq. (4.11), which must satisfy

(ad−1)· −→ A d−1 , when t → +∞ . (5.4)

In all cases (i)–(iv), the numerical simulation confirms the above convergence to a constant, 
either upward or downward depending on the sign of the potential i.e. nF − nB. The plots in 
Fig. 2 show the evolutions of (ad−1)· as a function of t for the backgrounds (i) and (iv). The 
curves in models (ii) and (iii) are qualitatively similar to those obtained respectively in cases 
(i) and (iv).

Solving the system of differential equations makes sense as long as the weak coupling condi-
tion is fulfilled, φ(t) < 0, and the supersymmetry breaking scale measured in σ -model frame is 
small, 

√
Gdd(t) < c. It turns out that the numerical evolutions of φ, ln(Gdd) and y55 as functions 

of t present similar features when cG1 > 0 i.e. in models (i) and (iii), and when cG1 < 0 i.e. in 
models (ii) and (iv). The only qualitative difference may occur at early times, where y55 may 
oscillate when it is massive, cG1 > 0. The curves are shown in Fig. 3 in cases (i) and (iv), where 
the cosmic times above which the simulations cannot be trusted are respectively tf � 10110M−1

s
and tf � 10185M−1

s , for c = 1. The fact that φ, ln(Gdd) and y55 depend asymptotically linearly 
on ln(tMs) proves that the velocities �̇, φ̇⊥ and ẏ55 are inversely proportional to cosmic time, 
i.e. that

(c
dyn
⊥ , c

dyn
� , c

dyn
55 ) −→ (c⊥, c�, c55) , when t → +∞ . (5.5)

In particular, we can identify from Eq. (4.16) the limit reached by the dynamical quantity

Jdyn ≡ t (lnGdd)· = t

(
2

α
�̇ − 2√

d − 1
φ̇⊥

)
−→ J+ > 0 , when t → +∞ . (5.6)
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Fig. 3. The behaviors of the dilaton φ (gray curves), ln(Gdd ) (dotted curves) and 103y55 (black curves) as functions of 
cosmic time (in logarithmic scale) are asymptotically linear in cases (i) and (iv). The evolutions can be trusted as long 
as φ(t) < 0 and ln

(
Gdd(t)

)
< 0, for c = 1. Oscillations of y55 may occur at early times when it is massive, cG1

> 0.

Fig. 4. Convergences of the Wilson lines y45 (gray curves) and y54 (dotted curves) to constants, and of y55/
√

Gdd to 0, 
in cases (i) and (iv). Oscillations of y45 and y55 may occur when they are massive, cG1

> 0.

What remains to be checked are the behaviors of y45 and y54, as well as the smallness of all 
Wilson lines. Fig. 4 shows y45(t), y54(t) and y55(t)/

√
Gdd(t) simulated in model (i) (which is 

similar to (iii)) and in model (iv) (which is similar to (ii)). As predicted in Sect. 4 when J+ > 0, 
all curves converge to constants,

y45 −→ y
(0)
45 , y54 −→ y

(0)
54 ,

y55√
Gdd

−→ 0 , when t → +∞ , (5.7)

while their upper and lower bounds are small, in the sense of Eq. (3.15). Let us stress again that 
even when cG1 < 0, contrary to common sense, the tachyonic scalars y45 and y55 do not induce 
large destabilizations of the backgrounds, when the universe enters the QNSR regime. These 
remarks complete our numerical validation of the existence of the QNSR t → +∞, demonstrated 
in the previous section. Note however that even if the solutions can be trusted all the way until tf, 
the universe enters the QNSR only after a certain duration, as can be seen in all Figs. 2–4. During 
this transient period, the dynamics is affected by the effective potential, as shown on Figs. 3
and 4. In fact, when cG1 > 0 i.e. case (i) and (iii), the Wilson lines y45 and y55 are massive and 
oscillate around minima of V1-loop. It is only when the universe enters the QNSR that the potential 
is dominated by the canonical kinetic energies of �, φ⊥ and y55, so that not only y54 but also 
y45 freeze at arbitrary values, while �, φ⊥ and y55 behave logarithmically with cosmic time. On 
the contrary, when cG1 < 0 i.e. case (ii) and (iv), the tachyonic Wilson lines y45 and y55 do not 
oscillate during the early transient regime.
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Before proceeding, we would like to provide comments on the first constraint appearing in 
Eq. (4.52), for a QNSR to be reached. As was argued below Eq. (4.55), it is expected to be 
trivial, a fact that implies CK to vanish, which we have verified analytically in Sect. 4. In fact, 
when a QNSR yields ±J± > ± K±

d−1 > 0, the kinetic terms of yd,d+1 and yd+1,d , as well as all 
terms subdominant compared to 1 in the parentheses appearing in Eqs (4.36) and (4.40) are 
all individually dominated by V1-loop. However, when ± K±

d−1 > ±J± > 0, it is remarkable that 
the leading contributions of these terms cancel one another, so that CK = 0. To check that this 
cancellation is actually exact, we have varied the initial conditions of our simulations of the 
QNSR t → +∞, for the characteristic point 

(
c⊥

γcc�
, c55

γcc�

)
to explore all of the left crescent in 

Fig. 1(a). This means that the condition for the existence of the QNSR t → +∞ is J+ > 0, and 
nothing more.

6. Global attractor mechanisms

The numerical validation of the QNSR t → +∞ in presence of small Wilson line deforma-
tions being established, we would like to consider possible global attractor mechanisms. Our aim 
is to see whether it is possible to relax, at least in come cases, the constraint of imposing the tra-
jectories to be entirely in the tiny phase space described in the previous sections. It turns out that 
the kinetic terms in Eq. (3.13) become quadratic in Wilson lines, when yd+1,d+1 is identically 
frozen at the origin. As a result, the action (4.1) is exact in yd,d+1 and yd+1,d , provided we set 
yd+1,d+1 ≡ 0 and use the full 1-loop effective potential,

V1-loop = (
nF − nB + (−1)η

R
d+1 8 × 2

)
vd Md

− (−1)η
R
d+1 8 × 2

2Md

(2π)
3d+1

2

∑
m̃d

cos
(
2π(2m̃d + 1)

√
2yd,d+1

)
|2m̃d + 1|d+1 F(0) + · · · ,

(6.1)

where the ellipses stand for the exponentially suppressed contributions we neglect as before. In 
the following, we use this fact to simulate numerically the 1-loop dynamics of the scale factor a, 
no-scale modulus � and scalar φ⊥, in the presence of arbitrary Wilson lines deformations yd,d+1
and yd+1,d of the initial background.

We will find that the sign of V1-loop plays a critical role. Depending on the integer nF −nB, the 
latter can be fixed,

(−1)η
R
d+1 (nF − nB) ≥ 0 =⇒ (−1)η

R
d+1V1-loop ≥ 0 for all yd,d+1 ,

(−1)η
R
d+1 (nF − nB) ≤ −32 =⇒ (−1)η

R
d+1V1-loop ≤ 0 for all yd,d+1 , (6.2)

or varying,

−31 ≤ (−1)η
R
d+1 (nF − nB) ≤ −1 =⇒ the sign of V1-loop varies with yd,d+1 . (6.3)

Note that since yd,d+1 is allowed to explore a large range of values during its evolution, there is 
no need to consider separately the cases ηR

d+1 even or odd. For instance, in spacetime dimension 
d = 4 we consider from now on, a half-period shift 

√
2y45 → √

2y45 + 1
2 maps into each other 

backgrounds (i) and (ii) which have V1-loop > 0 for all y45, or (iii) and (iv) which have V1-loop <

0 for all y45.
In the simulations, we take as initial conditions y45(0), y54(0), a(0) and c⊥0 ≡ c

dyn
⊥ (0), c�0 ≡

c
dyn
� (0) to be of order 1. This fixes φ̇⊥(0) and �̇(0), provided H(0) (which we take to be positive) 
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or equivalently τ dyn(0) (see Eq. (5.2)) is known. The latter is related to �(0) via Friedmann 
equation at t = 0, which we write in the following form

− d2c2
�0

2(d − 1)(d + 2)

P0
(
τ dyn(0)

)
a(0)2(d−1)

= Gdd(0)

4
ẏ45(0)2 + Gdd(0)

4
ẏ54(0)2

+ V1-loop
(
�(0), y45(0)

)
, (6.4)

where P0 is the degree two polynomial

P0(τ ) = τ 2 − 2τ +
(

1 − 4

d2

)(
1 + 2α2 c2⊥0

c2
�0

)
. (6.5)

We impose the Wilson lines’ kinetic terms at t = 0 to be of the order of 
∣∣V1-loop

(
�(0), y45(0)

)∣∣. 
This fixes ẏ45(0) and ẏ54(0), once we make our choices for �(0) and φ⊥(0). The latter is deter-
mined a posteriori for the numerical simulation to satisfy the conditions of weak string coupling 
and low supersymmetry breaking scale M(σ), for a long period of cosmic time. The last initial 
data �(0) is equivalent to choosing τ dyn(0):

• When V1-loop
(
�(0), y45(0)

)
> 0, Eq. (6.4) imposes∣∣∣∣ c⊥0

γcc�0

∣∣∣∣ < 1 and 1 − r0 < τ dyn(0) < 1 + r0 , (6.6)

where r0 is defined in Eq. (5.3). We have already studied in Sect. 5 the case where τ dyn(0) �
1 + r0, which corresponds to a cosmological evolution starting almost in QNSR t → +∞. Thus, 
we will consider the two remaining qualitatively different types of initial conditions (a) and (b), 
defined as follows:

(a) For τ dyn(0) � 1, the cosmological evolution is generic, in the sense that the initial kinetic 
energies of �, φ⊥, y45 and y54 as well as the potential are all of the order of H(0)2.

(b) For τ dyn(0) � 1 − r0, the potential and Wilson lines’ kinetic energies are small compared 
to H(0)2. This is clear by looking at Eq. (6.4), whose l.h.s. vanishes in the limit τ dyn(0) →

>
1 −r0. 

As a result, the motion of the Wilson lines and the effective potential become irrelevant and the 
cosmological evolution is expected to approach that of the classical theory, with frozen Wilson 
lines, i.e. (ad−1)· ≡ 2dc�0

d2−4
(1 − r0) [11].

• When V1-loop
(
�(0), y45(0)

)
< 0, the r.h.s. of Eq. (6.4) can be negative or positive. In the 

former case, τ dyn(0) is arbitrary if 
∣∣∣ c⊥0
γcc�0

∣∣∣ ≥ 1, while it must satisfy τ dyn(0) > 1 +r0 or τ dyn(0) <

1 − r0 if 
∣∣∣ c⊥0
γcc�0

∣∣∣ < 1. When the r.h.s. of Eq. (6.4) is positive, condition (6.6) applies.

In the models where V1-loop is negative for some/all y45, which are illustrated by the back-
grounds (iii) or (iv), we find that the numerical simulations yield the following scenario: The 
universe expands, reaches a maximal size and then collapses into a Big Crunch, unless the ini-
tial conditions are tuned so that the whole trajectory sits inside the tiny phase space that yields 
the ever-expanding QNSR t → +∞, as described in Sect. 5. Notice that in Ref. [11], where the 
dynamics of the Wilson lines is not taken into account, the initially expanding cosmological so-
lutions arising when V1-loop < 0 are also either attracted to the QNSR t → +∞, or lead in the end 
to a Big Crunch. However, we emphasize again that in this case, the attraction to the QNSR fol-

lows from initial conditions chosen in a much larger space, namely 
∣∣∣ c⊥0
γcc�0

∣∣∣ < 1, τ dyn(0) > 1 + r0. 
In other words, the dynamics of internal moduli fields provides a severe source of instability for 
a flat, expanding universe, when the quantum potential can reach negative values.



T. Coudarchet, H. Partouche / Nuclear Physics B 933 (2018) 134–184 161

Fig. 5. Convergence of (ad−1)· towards its limit A d−1 in model (ii), for initial conditions (a) or (b). Moving from 
case (a) to (b), a structure of plateaux appears.

Fig. 6. The behaviors of the dilaton φ (gray curves), ln(Gdd ) (black curves) as functions of cosmic time (in logarithmic 
scale) are asymptotically linear in model (ii), for initial conditions of type (a) or (b). The evolutions can be trusted as 
long as φ(t) < 0 and ln

(
Gdd(t)

)
< 0, for c = 1.

To describe a flat, expanding universe, the numerical simulations show that the models where 
V1-loop ≥ 0 for all y45 are much more appealing, due to a global attraction mechanism to the 
QNSR t → +∞. Fig. 5(a) presents the temporal evolution of (ad−1)· obtained in Example (ii)

which has ηR
5 odd, for initial conditions of type (a). The potential being positive, the curve 

is monotonically increasing, and turns out to converge to a constant, as in Eq. (5.4). Note the 
existence of several inflection points, which are not numerical artefacts. Actually, by choosing 
initial values of type (b), a structure of plateaux appears, as shown in Fig. 5(b). The latter are 
longer and longer and, after a finite number of steps, the last one is endless. Comments on this 
peculiar dynamics will be given at the end of the section. In any case, this phenomenon is the 
way the trajectory evolves, in order to converge to the straight line encountered in the extreme 
initial condition τ dyn(0) →

>
1 − r0.

To figure out when string perturbation theory is valid and M(σ) < cMs, we plot in Fig. 6 the 
dilaton and ln(Gdd) as functions of time. The constraints φ(t) < 0 and ln(Gdd(t)) < ln c deter-
mine the ranges of time [ti, tf] where the simulations can be trusted. In model (ii), with c = 1, an 
example of initial conditions (a) yields [ti, tf] = [105M−1

s , 1059M−1
s ], while for initial values of 

type (b) we obtain [ti, tf] = [106M−1
s , 1065M−1

s ]. In both simulations, the final asymptotes are 
reached before tf. At late times (in logarithmic scale), the linearity of the plots and the positivity 
of the slope of ln(Gdd) show the convergences

(c
dyn
⊥ , c

dyn
� ) −→ (c⊥, c�) and Jdyn −→ J+ > 0 , when t → +∞ . (6.7)
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Fig. 7. Convergence of Jdyn towards a positive value J+ in model (ii), for initial conditions of type (a) or (b).

Fig. 8. Attraction of cdyn

γccdyn towards the tiny range [−1, ≈−0.9941] in model (ii), for initial conditions of type (a) or (b)

(upper plots). The ratio stabilizes once it enters the interval (lower plots).

Fig. 7 details the evolution of Jdyn(t), which describes a transient regime of damped oscillations 
between positive and negative values, followed by a stabilization at a positive constant J+. In 

view of our analysis in Sect. 4, the sign of J+ suggests that the trajectory of the point 
( c

dyn
⊥

γcc
dyn
�

, 0
)

enters the left crescent in Fig. 1(a). This is confirmed by the upper plots in Fig. 8. Even if the 

initial value c⊥0
γcc�0

is far above the tiny range [−1, ≈−0.9941], the ratio
c

dyn
⊥

γcc
dyn
�

is inexorably 

attracted to this interval, where it stabilizes. The lower plots in Fig. 8 zoom the entrance and 

freezing of 
c

dyn
⊥

γcc
dyn
�

in the range.
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Fig. 9. Convergence of y45 (black curves) and y54 (gray curves) to their limits y(0)
45 and y(0)

54 in model (ii), for initial 
conditions of type (a) or (b) (upper plots). If the curve y54(t) is always monotonic, that of y45(t) may not be so in 
case (b). The final value y(0)

45 is random in case (a), while it is close to a minimum of V1-loop in case (b), due to the 
existence of damped oscillations (lower plots).

The remaining numerical behaviors to be described are those of the Wilson lines. The upper 
plots in Fig. 9 show the evolutions of y45(t) and y54(t), which converge to constants y

(0)
45 , y

(0)
54 . 

Due to Eq. (4.13), which is exact when y55 ≡ 0, the curve y54(t) is monotonic. This however may 
not be the case for y45(t), which is not a free field. Actually, accentuating the plateaux structure 
i.e. in case (b), the magnitudes of both velocities ẏ45, ẏ54 drop during the transient eras of quasi 
static (ad−1)·, and y45 may even stop and go backward. Notice that these effects are consistent 
with the fact that in the limit τ dyn(0) →

>
1 − r0 of the initial conditions, the Wilson lines are 

expected to become static, ẏ45 ≡ ẏ54 ≡ 0.
Since 

√
2y45 can be very large, its convergence to 

√
2y

(0)
45 is more accurately accounted for 

by the effective potential, which is 1-periodic. As shown in the lower plots in Fig. 9, 
V1-loop
vdMd

oscillates over time between 80 and 48, which are the values of nF − nB in backgrounds (ii)

and (i), when they are not deformed. For initial conditions of type (b), we see that before 
√

2y45

starts freezing, its kinetic energy is larger than the potential, since 
√

2y45 evolves quickly, passing 
easily the maxima and minima. This does not last, however, and 

√
2y45 ends up oscillating 

around a minimum, until it stabilizes at a random value close to it. The last fluctuations are those 
described in Sect. 5, in the massive case in Fig. 4(i). As a result, 

√
2y

(0)
45 � 2k + 1, where k ∈ Z, 

i.e. the dynamics has driven spontaneously the system from the initial state (ii) to a slightly 
deformed background (i). Remarkably, soon after y45 is stabilized, we have checked that its 
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remnant kinetic energy starts again to dominate over the potential, and their ratio even tends to 
infinity (!). In the notations used at the end of the previous section, the case at hand leads to 
K+
d−1 > J+ > 0, which is nevertheless compatible with the stability of the cosmological solution. 
Concerning the modulus y54, its monotonicity and the fact that it is a flat direction of the potential 
when y55 ≡ 0 imply its stabilization not to be preceded by oscillations, and its limit value y

(0)
54 to 

be fully arbitrary. As described for y45, the remnant kinetic energy of y54 is greater than V1-loop

right before and soon after its stabilization process. On the contrary, as seen in the lower plot 
in Fig. 9(a), the attraction of y45 to the neighborhood of a minimum of V1-loop turns out to be 
inefficient for generic initial conditions of type (a). This is due to the fact that as soon as the 
Wilson line cannot pass the next maximum of the potential, it freezes.

To summarize, the simulated cosmological evolutions in model (ii) are attracted to the QNSR 
t → +∞, for both initial conditions (a) and (b). The asymptotic behaviors are reached in a finite 
number of steps, more visible in case (b), where the dynamics can be described as follows:

• The plateaux present in Fig. 5(b) are characterized by almost constant (ad−1)·.
• At the beginning of each plateau, the kinetic energy of y45 and y54 is lower than the effective 

potential. The motion of these moduli is slowing down, especially for y45 whose time-derivative 
may change sign. As a result, the universe enters an approximate QNSR (see Ref. [11] for the 
limit case of frozen Wilson lines, which yields a global attraction to the QNSR t → +∞).

• However, except at the last step, Jdyn reaches negative minimum values at the beginning of 
each plateau, as seen in Fig. 7(b). As a result, the domination of the potential over the Wilson 
lines’ kinetic energies does not last. When the latter become greater than the canonical kinetic 
energies of � and φ⊥, the approximate QNSR is destabilized and (ad−1)· leaves its current 
plateau.

• We have checked analytically that there is no power-like asymptotic solution that describes 
an ever-expanding flat universe, dominated by the Wilson lines’ kinetic energies.16 Thus, y45
and y54 have to release their kinetic energies to the rest of the system, so that the universe is 
again attracted to an approximate QNSR. In other words, (ad−1)· has moved from one plateau 
to the next.

• This process of climbing steps ends when the system enters a plateau where Jdyn is positive. 
In this case, the Wilson lines’ kinetic energies may soon dominate over the effective potential 
(when K+

d−1 > J+), but never over the canonical kinetic energies of � and φ⊥ (because J+ > 0). 
As a result, the universe remains in QNSR for good.

For generic initial conditions of type (a), even if the plateaux of (ad−1)· and the slowdowns 
of the Wilson lines are less pronounced, the correspondence between the negative minima of Jdyn
and the transient dominations of the potential over the kinetic energies of y45 and y54 remains 
valid.

7. Conclusion

In this work, we have shown that the notion of QNSR introduced in Ref. [11] for toy models 
involving only the scale factor a, the supersymmetry breaking scale M ≡ eα� and the dila-
ton φ can be extended to full string theories. This has been done at the 1-loop level in toroidally 
compactified heterotic string at weak coupling, where a Scherk–Schwarz mechanism involving a 

16 Power-like limit behaviors describing a Big Crunch (or Big Bang) dominated by the Wilson lines’ kinetic energies 
however exist.
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single internal direction Xd breaks spontaneously all supersymmetries. The key point is the pres-
ence of a bunch of marginal deformations: 

√
Gdd and φ, which are equivalent to the canonical 

no-scale modulus � and scalar φ⊥, and the Wilson lines ydϒ, yid , yiϒ, for ϒ ∈ {d + 1, . . . , 25}, 
i ∈ {d + 1, . . . , 9}. If we have analyzed in great details the dynamics involving the moduli where 
ϒ = i = d + 1, our results should be more general. In the QNSRs describing an ever-expanding 
universe or a Big Bang, the kinetic energies of �, φ⊥, yiϒ are expected to dominate over those of 
ydϒ, yid and the effective potential V1-loop. As a result, the classical no-scale structure is restored 
at the quantum level during the cosmological evolution of the flat universe.

The existence of the QNSRs is independent of the characteristics of V1-loop. Denoting the 
values at t = 0 of the scale factor and moduli fields as a(0) and (�(0), φ(0), y(0)), the initial 
time derivatives (�̇(0), φ̇(0), ẏ(0)) can always be set in a phase space region for the universe 
to be attracted to a QNSR. This turns out to be the case whether V1-loop(�(0), φ(0), y(0)) is 
positive, negative or null, as well as maximal, minimal or at a saddle point.

Global effects, however, depend drastically on the sign of V1-loop. We have “shown numer-
ically” in dimension 4 that when y45 and y54 vary arbitrarily, while keeping y55 frozen at 
a point of extended light spectrum, the initially growing universes always end in the QNSR 
a → +∞, provided V1-loop ≥ 0 for all y45. Allowing all y-deformations to be dynamical, we 
expect this attraction to be true when the trajectory does not explore regions in moduli space 
where V1-loop < 0.17 As noticed before, this sufficient condition is not necessary, when the initial 
conditions are tuned in tiny intervals. On the contrary, when an initially growing cosmological 
evolution does not converge to the QNSR a → +∞, which requires V1-loop to reach negative 
values, the simulated expansion of the scale factor comes to a halt and the universe eventually 
collapses. In Ref. [11], such a Big Crunch can be realized in two ways: With the QNSR a → 0
(by applying time reversal on the Big Bang solution), or as an evolution dominated by the no-
scale modulus kinetic and potential energies. As noticed in Footnote 16, taking into account the 
Wilson lines’ dynamics, the kinetic energies of the scalars ydϒ, yid may also dominate. It would 
be interesting to extend the analysis of the system to derive an overview of all possible limit 
behaviors of the solutions and associated attractor mechanisms.

An important consequence of the above remarks is that a flat expanding universe is more natu-
rally described by a model with positive potential, while Big Crunch solutions arise in most cases 
when the potential is negative. This result is in the spirit of Refs. [12–15], where hot universes 
are considered, i.e. when finite temperature T is switched on in addition to the implementation 
of the spontaneous breaking of supersymmetry. In this case, when the zero-temperature effective 
potential is positive, the trajectory of the flat universe at finite T is attracted to an expanding 
solution satisfying proportionality properties [12,14],

1

a(t)
∼ #

M(t)

Ms
∼ #

T (t)

Ms
∼ # e2α2φ(t) ∼ #

(tMs)
2
d

. (7.1)

The above asymptotic evolution is said to be “radiation-like”, due to the state equation ρtot ∼
(d − 1)Ptot satisfied by the total energy density ρtot and pressure Ptot present in the universe. The 
latter take into account the thermal contributions derived from the 1-loop free energy, as well as 
the kinetic energy of the no-scale modulus �. On the contrary, when the zero-temperature 1-loop 
potential is negative, the universe at finite T collapses into a Big Crunch, where temperature 
effects tend to be screened, T/M → 0.

17 In any case, the evolutions along which V1-loop ≥ 0 are ever-expanding, due to the monotonicity of (ad−1)· > 0 (see 
Eq. (4.7)), which forbids H to vanish.
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Appendix A. Moduli dependence of the effective potential

For the present work to be self-content, let us review how discrete deformations responsible 
for the total spontaneous breaking of supersymmetry, as well as continuous Wilson lines, can be 
introduced in maximally supersymmetric heterotic string. Our final goal is to derive an expression 
of the effective potential valid when the supersymmetry breaking scale is low, compared to the 
string scale Ms.

A.1. The deformations

In the 1-loop partition function, the relevant deformed conformal block to be considered turns 
out to be

Z[�a, �b,G,B, �Y ] =
√

detG

τ
10−d

2
2

∑
m̃d ,...,m̃9
nd ,...,n9

e
− π

τ2
(m̃I +nI τ̄ )(G+B)IJ (m̃I +nI τ)

× eiπnI
�YI ·(�b−m̃J

�YJ )

4∏
A=1

θ

[
aL
A−2nI YL

IA
bL
A−2m̃I YL

IA

]
(τ )

25∏
J =10

θ̄

[
aR
J −2nI YR

IJ
bR
J −2m̃I YR

IJ

]
(τ̄ ) ,

(A.1)

where sums over repeated indices I, J ∈ {d, . . . , 9} are understood. Our notations are as follows:
• The first line is the contribution of the zero modes of the 10 − d bosonic coordinates com-

pactified on a torus, whose metric and antisymmetric tensor are GIJ , BIJ , I, J ∈ {d, . . . , 9}. 
Written in Lagrangian form, this expression involves a discrete sum over the integers m̃I and 
winding numbers nI .

• In the second line, the holomorphic Jacobi θ functions arise from the partition functions θ/η

of the 4 complex left-moving fermions of the superstring, where η is the Dedekind function.18 In 
their brackets, aL

A and bL
A, A ∈ {1, . . . , 4}, define their boundary conditions before deformation, 

along the cycles z → z + 1 and z → z + τ of the genus-1 worldsheet parameterized by z and of 
Teichmüller parameter τ ≡ τ1 + iτ2. Similarly, the antiholomorphic θ̄ functions arise from the 
contributions θ̄/η̄ associated with the 16 complex right-moving fermions of the bosonic string, 
with boundary conditions before deformation determined by aR

J and bR
J , J ∈ {10, . . . , 25}. In 

the derivation to come, �a ≡ (�aL, �aR) and �b ≡ (�bL, �bR) can have arbitrary real entries. However, 
modular invariance of the entire model imposes constraints on the set of values they can take. 
For instance, in our maximally supersymmetric case of interest, we have aL

1 = · · · = aL
4 and 

bL
1 = · · · = bL

4 . However, we will keep the 4-components of �aL and �bL independent, since this 

18 Our conventions for θ and η functions can be found in Ref. [19].
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can be useful when dealing with non-maximally supersymmetric models. (See Ref. [8] for an 
example in 4 dimensions realizing the N = 2 → 0 spontaneous breaking.)

• Beside the torus moduli (G +B)IJ , we introduce deformations of the left- and right-moving 
(super)-conformal theories,

YL
IA , YR

IJ , I ∈ {d, . . . ,9} , A ∈ {1, . . . ,4} , J ∈ {10, . . . ,25} . (A.2)

For the holomorphic supercurrent to be preserved, the left-moving ones are quantized [2], 
YL

IA ∈ Z. Thus, different choices of YL
IA’s yield different models. On the contrary, the right-

moving YR
IJ ’s are arbitrary marginal deformations. In each given model, they are moduli fields 

that can be interpreted as Wilson lines along T 10−d of a rank 16 gauge group G16.
• In the second line of Eq. (A.1), the overall phase uses the following definition of scalar 

product: For two vectors �v ≡ (�vL, �vR) and �w ≡ ( �wL, �wR) in R4,16, we write

�v · �w = �vL · �wL − �vR · �wR =
4∑

A=1

vL
AwL

A −
25∑

J =10

vR
J wR

J . (A.3)

The phase is introduced for the following modular transformations of the entire conformal block 
to be independent of �YI ≡ ( �YL

I , �YR
I ):

τ → − 1

τ
⇐⇒

{
(nI , m̃I ) → (nI , m̃I )S
(aL

A, bL
A) → (aL

A, bL
A)S , (aR

J , bR
J ) → (aR

J , bR
J )S

τ → τ + 1 ⇐⇒
{

(nI , m̃I ) → (nI , m̃I )T
(aL

A, bL
A) → (aL

A, bL
A + aL

A − 1) , (aR
J , bR

J ) → (aR
J , bR

J + aR
J − 1)

where S =
(

0 −1
1 0

)
, T =

(
1 1
0 1

)
. (A.4)

Thus, any 1-loop partition function, which is modular invariant for �YI = �0, I ∈ {d, . . . , 9}, re-
mains consistent when arbitrary Y -deformations are switched on.

Another way to write Eq. (A.1) clarifies the spectrum interpretation of the conformal block, 
at the cost of obscuring the modular transformation τ → −1/τ . It is obtained by inserting in 
Z[�a, �b, G, B, �Y ] the definition of the θ functions in terms of a sum over N ∈ Z,

θ [ab](τ ) =
∑
N

q
1
2 (N− a

2 )2
e−biπ(N− a

2 ), where q ≡ e2iπτ , (A.5)

and applying a Poisson summation over the integers m̃d, . . . , m̃9. The result is the Hamiltonian 
form [20],

Z[�a, �b,G,B, �Y ] =
∑

md,...,m9
nd ,...,n9

∑
�N

e−iπ �b· �Q q
1
4

[
PL

I GIJ PL
J +2( �QL+nI

�YL
I )2

]

× q̄
1
4

[
P R

I GIJ PR
J +2( �QR+nI

�YR
I )2

]
, (A.6)

where we have defined �N ≡ ( �NL, �NR), GIJ ≡ (G−1)IJ and

P L
I = mI − �Y · �Q − 1

2
�YI · nJ

�YJ + (B + G)IJ nJ , I ∈ {d, . . . ,9} ,
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P R
I = mI − �Y · �Q − 1

2
�YI · nJ

�YJ + (B − G)IJ nJ ,

�Q ≡ ( �QL, �QR) = �N − �a
2

. (A.7)

The genus-1 partition function of a model takes the following form

Z[G,B, �Y ] = 1

τ
d−2

2
2

1

η12 η̄24

1

|�|
∑

�a,�b∈�

C
[�a
�b
]
Z[�a, �b,G,B, �Y ] , (A.8)

where � is the set of spin structures �a and �b take, |�| is the cardinal of �, and C
[�a
�b
]

are complex 

numbers of modulus 1, so that Z[G, B, �0] is modular invariant. Expanding

1

η12 η̄24 = 1

q
1
2 q̄

∑
�L,�R≥0

cL
�L

cR
�R

q�L q̄�R , (A.9)

we obtain

Z[G,B, �Y ] = 1

τ
d−2

2
2

1

|�|
∑

�a,�b∈�

∑
�N

C
[�a
�b
]
e−iπ �b· �Q ∑

�L,�R≥0

cL
�L

cR
�R

∑
md,...,m9
nd ,...,n9

q
1
4 M2

L/M2
s q̄

1
4 M2

R/M2
s ,

(A.10)

in terms of left- and right-moving squared masses

M2
L = M2

s

[
PIG

IJ PJ + 2( �QL + nI
�YL
I )2 + 4�L − 2

]
,

M2
R = M2

s

[
P̄IG

IJ P̄J + 2( �QR + nI
�YR
I )2 + 4�R − 4

]
. (A.11)

In Eq. (A.10), the sum over �b ∈ � divided by |�| implements the generalized GSO projection. 
Since

q
1
4 M2

L/M2
s q̄

1
4 M2

R/M2
s = e

2iπτ1
M2

L
−M2

R

4M2
s e

−πτ2
M2

L
+M2

R

2M2
s , (A.12)

invariance under τ1 → τ1 + 1 implies

M2
L − M2

R

4M2
s

≡ mInI + 1

2

( �Q2 + 1
) + �L − �R ∈ Z , (A.13)

for all states that survive the GSO projection. Among them, the physical ones are those which 
contribute to the integral over τ1 ∈ [− 1

2 , 12 ] i.e. whose squared masses satisfy M2 = M2
L = M2

R .

A.2. The SO(32) and E8 × E′
8 heterotic string

As a warm up, let us recover the massless spectrum of the SO(32) and E8 × E8 heterotic 
string compactified on T 10−d . In the former case, the partition function is obtained with

� = {
(4,16)-tuples (a, . . . , a;γ, . . . , γ ) , where a, γ ∈ Z2

} =⇒ |�| = 22 ,

C[a;γ
b ;δ ] = (−1)a+b+ab ,

�YL
I = �0 , �YR

I = �0 , I ∈ {d, . . . ,9} . (A.14)
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The lightest physical states have, on the left-moving side, �L = 0 and P L
I = 0, I ∈ {d, . . . , 9}. 

The sector a = 0 yields spacetime bosons, whose charges �QL are the weights of the 8v vectorial 
representation of the SO(8) affine Lie algebra, while a = 1 leads to fermions in the 8s spinorial 
representation. All are massless. On the right-moving side, this implies γ = 0. Moreover, at 
oscillator level �R = 1, we have P R

I = 0, I ∈ {d, . . . , 9}, and �QR = �0, corresponding to cR
1 = 24

modes. For �R = 0, the charges �QR are either the roots of G16 = SO(32) with P R
I = 0, I ∈

{d, . . . , 9}, or �QR = �0 with 1
2P R

I GIJ P R
J = 2. In the latter case, the modes have charges equal 

to the roots of a gauge group G10−d of rank 10 − d . Writing 24 = (d − 2) + (10 − d) + 16, the 
massless states are organized as follows,

(8v ⊕ 8s) ⊗ ([d − 2] ⊕ AdjG10−d
⊕ AdjG16

)
, (A.15)

corresponding to a supergravity multiplet in d dimensions, coupled to a vector multiplet in the 
adjoint representation of G10−d × G16.

The 1-loop partition function of the E8 × E′
8 heterotic strings is realized with

� = {
(4,8 + 8)-tuples (a, . . . , a;γ, . . . , γ, γ ′, . . . , γ ′) , where a, γ, γ ′ ∈ Z2

} =⇒
|�| = 23 ,

C[a;γ,γ ′
b ;δ, δ′ ] = (−1)a+b+ab ,

�YL
I = �0 , �YR

I = �0 , I ∈ {d, . . . ,9} . (A.16)

The left-moving side of the lightest physical states is identical to that encountered in the SO(32)

case. It is massless, which implies (γ, γ ′) �= (1, 1) on the right-moving side. At oscillator level 
�R = 1, there are again cR

1 = 24 modes with P R
I = 0, I ∈ {d, . . . , 9}, and �QR = �0 (implying 

(γ, γ ′) = (0, 0)). For �R = 0, the charges �QR in the sector (γ, γ ) = (0, 0) are either the roots 
of SO(16) × SO(16)′ with P R

I = 0, I ∈ {d, . . . , 9}, or �QR = �0 with 1
2P R

I GIJ P R
J = 2, corre-

sponding to states whose charges are the roots of a gauge group G10−d . For (γ, γ ′) = (1, 0)

or (0, 1), �QR is a weight of the spinorial representation of SO(16) or SO(16)′ with P R
I = 0, 

I ∈ {d, . . . , 9}. Noticing that the adjoint of E8 can be decomposed into the adjoint plus spinorial 
representation of SO(16), [248]E8 = [120]SO(16) ⊕ [128]SO(16), the massless spectrum is given 
in Eq. (A.15), with G16 = E8 × E′

8.

A.3. Spontaneous supersymmetry breaking and Wilson lines

The spontaneous breaking of all supersymmetries can be realized by a suitable choice of 
discrete left-moving deformations. For instance, for a stringy Scherk–Schwarz [2,3] mechanism 
implemented along a single internal direction Xd , we can take

YL
IA = δId δA1 , YR

IJ arbitrary , I ∈ {d, . . . ,9} , A ∈ {1, . . . ,4} , J ∈ {10, . . . ,25} ,

(A.17)

in terms of which the conformal block in Eq. (A.1) becomes
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√
detG

τ
10−d

2
2

∑
m̃d ,...,m̃9
nd ,...,n9

e
− π

τ2
(m̃I +nI τ̄ )(G+B)IJ (m̃+nI τ)

e−iπ(m̃daL
1 −ndbL

1 +m̃dnd )

× e−iπnI
�YR
I ·(�bR−m̃J

�YR
J )

4∏
A=1

θ

[
aL
A

bL
A

]
(τ )

25∏
J =10

θ̄

[
aR
J −2nI YR

IJ
bR
J −2m̃I YR

IJ

]
(τ̄ ) . (A.18)

Compared to Z[�a, �b, G, B, (�0L, �YR)], a pure phase appears in the first line. Consistently, the lat-
ter is invariant under the modular transformations (A.4). The key point is that it depends on aL

1 , 
which determines the Neveu–Schwarz (aL

1 = 0) or Ramond (aL
1 = 1) boundary condition of the 

light cone worldsheet fermions ψ2, ψ3, i.e. the bosonic or fermionic nature of the states. By Pois-
son summation, the momentum along the direction Xd being shifted by aL

1 /2, the boson/fermion 
degeneracy is lifted.

To see how this works explicitly, we consider the Hamiltonian form given in Eq. (A.6). It is 
convenient to write the latter using redefined internal metric, antisymmetric tensor and Wilson 
lines,

(G′ + B ′)IJ =
(

4(G + B)dd 2(G + B)dj
2(G + B)id (G + B)ij

)
,

�Y ′R
d = 2 �YR

d , �Y ′R
i = �YR

i , i, j ∈ {d + 1, . . . ,9} , (A.19)

as well as new momenta, winding numbers and indices N ′’s,

m′
d = 2(md − NL

1 ) + aL
1 − nd , m′

i = mi , i ∈ {d + 1, . . . ,9}
n′

d = nd

2
, n′

i = ni ,

N ′L
1 = NL

1 + nd , N ′L
A = NL

A , N ′R
J = NR

J , A ∈ {2,3,4} , J ∈ {10, . . . ,25} , (A.20)

where n′
d ∈ Z ∪ (Z + 1

2 ). Given the above notations, we set

P ′L
I = m′

I + �Y ′R
I · �Q′R + 1

2
�Y ′R
I · n′

J
�Y ′R
J + (B ′ + G′)IJ n′

J , I ∈ {d, . . . ,9} ,

P ′R
I = m′

I + �Y ′R
I · �Q′R + 1

2
�Y ′R
I · n′

J
�Y ′R
J + (B ′ − G′)IJ n′

J ,

�Q′ ≡ ( �Q′L, �Q′R) = �N ′ − �a
2

, (A.21)

in terms of which the conformal block (A.6) becomes

∑
md
nd

e2iπbL
1 n′

d

∑
m′

d+1,...,m
′
9

n′
d+1,...,n

′
9

∑
�N ′

e−iπ �b· �Q′
q

1
4

[
P ′L

I G′IJ P ′L
J +2( �Q′L)2

]
q̄

1
4

[
P ′R

I G′IJ P ′R
J +2( �Q′R+n′

I
�Y ′R
I )2

]
.

(A.22)

As a result, the partition function takes the suggestive form
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Z′[G′,B ′, �Y ′R] = 1

τ
d−2

2
2

1

|�|
∑

�a,�b∈�

∑
�N ′

C
[�a
�b
]
e−iπ �b· �Q′ ∑

�L,�R≥0

cL
�L

cR
�R

×
∑

n′
d∈Z ∪ (Z+ 1

2 )

e2iπbL
1 n′

d δaL
1 ,m′

d−2n′
d mod 2

∑
m′

d ,...,m′
9

n′
d+1,...,n

′
9

q
1
4 M ′2

L /M2
s q̄

1
4 M ′2

R /M2
s ,

(A.23)

where the left- and right-masses satisfy

M ′2
L = M2

s

[
P ′L

I G′IJ P ′L
J + 2( �Q′L)2 + 4�L − 2

]
,

M ′2
R = M2

s

[
P ′R

I G′IJ P ′R
J + 2( �Q′R + n′

I
�Y ′R
I )2 + 4�R − 4

]
. (A.24)

Comparing Z′[G′, B ′, �Y ′R] with the supersymmetric partition function Z[G, B, (�0L, �YR)], we 
observe three modifications:

• The exchange of the moduli fields, as shown in Eq (A.19).
• The winding number n′

d along the Scherk–Schwarz breaking direction can be integer or 
half-integer. In the latter case, the GSO-projection is reversed.

• The fermionic number aL
1 is restricted to be equal to the parity of m′

d − 2n′
d , which shows 

that there is no more boson/fermion degeneracy.
Note however that when the compact direction Xd is large compared to the string scale, and 

the right-moving Wilson lines are small compared to 
√

G′dd , the states lighter than the KK mass 
M ′

(σ ) = Ms
√

G′dd have vanishing momentum and winding numbers, m′
d = n′

d = 0. Therefore, 

they are bosons, aL
1 = 0, while their superpartners, m′

d = 1, n′
d = 0, acquire a KK mass M ′

(σ )

identified with the supersymmetry breaking scale. For light fermions to exist, we consider in the 
following more general patterns of supersymmetry breaking.

A.4. Supersymmetry breaking, discrete and continuous Wilson lines

In the setup described in the previous section, when the supersymmetry breaking scale M ′
(σ ) =

Ms
√

G′dd is low compared to the string scale Ms, one way to have fermions lighter than M ′
(σ ) is 

to introduce large Y -deformations. For this purpose, we consider left- and right-moving discrete 
Wilson lines along the direction Xd ,

YL
IA = δId δA1 ,

YR
IJ = δId ηR

J + yR
IJ , I ∈ {d, . . . ,9} , A ∈ {1, . . . ,4} , J ∈ {10, . . . ,25} ,

where �ηR · aR ∈ Z , yR
J arbitrary . (A.25)

In the above notations, �ηR can be interpreted as a constant background, while �yR plays the role 
of continuous Wilson lines. Using properties of the θ functions,19 the conformal block (A.1)
becomes

19 We use the fact that �ηR has integer entries. More specifically, in a consistent model, the components of �aR are of the 
form aR

J = k/χJ , J ∈ {10, . . . , 25}, where χJ ∈ N∗ and k spans the set {0, . . . , χJ − 1}. Thus, ηR
J ∈ χJ Z.
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√
detG

τ
10−d

2
2

∑
m̃d ,...,m̃9
nd ,...,n9

e
− π

τ2
(m̃I +nI τ̄ )(G+B)IJ (m̃+nI τ)

eiπ �ηR ·�yR
i (nd m̃i−nim̃d )

× e
−iπ

[
m̃d (aL

1 −ηR ·�aR)−nd(bL
1 −ηR ·�bR)+m̃dnd (1−(�ηR)2)

]

× e−iπnI �yR
I ·(�bR−m̃J �yR

J )

4∏
A=1

θ

[
aL
A

bL
A

]
(τ )

25∏
J =10

θ̄

[
aR
J −2nI yR

IJ
bR
J −2m̃I yR

IJ

]
(τ̄ ) , (A.26)

where sums over repeated indices i ∈ {d + 1, . . . , 9} are understood. The phase in the second 
line generalizes that found in Eq. (A.18), and will be shown to yield a new pattern of sponta-
neous breaking of supersymmetry in the light spectrum. In the first line, another phase, which is 
�ηR-dependent, has appeared. Consistently, it is invariant under the transformations (A.4), so that 
the modular properties of the whole conformal block are not spoiled. Actually, since

eiπ �ηR ·�yR
i (nd m̃i−nim̃d ) = e

− π
τ2

(m̃I +nI τ̄ )�BIJ (m̃J +nJ τ)
, (A.27)

where �BIJ is antisymmetric and defined as

�Bdj = 1

2
ηR · �yR

j , �Bij = 0 , i, j ∈ {d + 1, . . . ,9} , (A.28)

it is natural to write Eq. (A.26) in the following form
√

detG

τ
10−d

2
2

∑
m̃d ,...,m̃9
nd ,...,n9

e
− π

τ2
(m̃I +nI τ̄ )(G+B+�B)IJ (m̃+nI τ)

× e
−iπ

[
m̃d (aL

1 −ηR ·�aR)−nd(bL
1 −ηR ·�bR)+m̃dnd (1−(�ηR)2)

]

× e−iπnI �yR
I ·(�bR−m̃J �yR

J )

4∏
A=1

θ

[
aL
A

bL
A

]
(τ )

25∏
J =10

θ̄

[
aR
J −2nI yR

IJ
bR
J −2m̃I yR

IJ

]
(τ̄ ) . (A.29)

The Hamiltonian form of the above result can be expressed in terms of

(G′ + B ′)IJ =
(

4(G + B)dd 2(G + B)dj
2(G + B)id (G + B)ij

)
,

�y ′R
d = 2�yR

d , �y ′R
i = �yR

i , i, j ∈ {d + 1, . . . ,9} ,

�B ′
IJ antisymmetric , �B ′

dj = ηR · �y ′R
j , �B ′

ij = 0 , (A.30)

and by redefining the momenta, winding numbers and indices N ′’s as

m′
d = 2(md − NL

1 + �ηR · �NR) + aL
1 − �ηR · �aR − (1 − (�ηR)2) nd ,

m′
i = mi , i ∈ {d + 1, . . . ,9} ,

n′
d = nd

2
, n′

i = ni ,

N ′L
1 = NL

1 + nd , N ′L
A ∈ NL

A , N ′R
J = NR

J + nd ηR
J , A ∈ {2,3,4} , J ∈ {10, . . . ,25} ,

(A.31)

where n′
d ∈ Z ∪ (Z + 1

2 ). With these conventions, we set
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P ′L
I = m′

I + �y ′R
I · �Q′R + 1

2
�y ′R
I · n′

J �y ′R
J + (B ′ + �B ′ + G′)IJ n′

J , I ∈ {d, . . . ,9} ,

P ′R
I = m′

I + �y ′R
I · �Q′R + 1

2
�y ′R
I · n′

J �y ′R
J + (B ′ + �B ′ − G′)IJ n′

J ,

�Q′ ≡ ( �Q′L, �Q′R) = �N ′ − �a
2

, (A.32)

and write the conformal block (A.6) as∑
md
nd

e2iπ(bL
1 −�ηR ·�bR)n′

d

∑
m′

d+1,...,m
′
9

n′
d+1,...,n

′
9

∑
�N ′

e−iπ �b· �Q′

× q
1
4

[
P ′L

I G′IJ P ′L
J +2( �Q′L)2

]
q̄

1
4

[
P ′R

I G′IJ P ′R
J +2( �Q′R+n′

I �y ′R
I )2

]
. (A.33)

As a result, when the condition �ηR · �aR ∈ Z is satisfied for all sectors �a ∈ �, the partition function 
takes the final form

Z′[G′,B ′, �y ′R]�ηR = 1

τ
d−2

2
2

1

|�|
∑

�a,�b∈�

∑
�N ′

C
[�a
�b
]
e−iπ �b· �Q′ ∑

�L,�R≥0

cL
�L

cR
�R

×
∑
m′

d

n′
d∈Z ∪ (Z+ 1

2 )

e2iπ(bL
1 −�ηR ·bR)n′

d δaL
1 ,m′

d+�ηR ·aR−(1−(�ηR)2)2n′
d mod 2

×
∑

m′
d+1,...,m

′
9

n′
d+1,...,n

′
9

q
1
4 M ′2

L /M2
s q̄

1
4 M ′2

R /M2
s , (A.34)

where the left- and right-masses satisfy

M ′2
L = M2

s

[
P ′L

I G′IJ P ′L
J + 2( �Q′L)2 + 4�L − 2

]
,

M ′2
R = M2

s

[
P ′R

I G′IJ P ′R
J + 2( �Q′R + n′

I �y ′R
I )2 + 4�R − 4

]
. (A.35)

Comparing with the case �ηR = �0R given in Eq (A.23), there are two differences:
• There is a shift �B ′

IJ of the antisymmetric tensor. In the core of the present paper, we 
however denote B + �B as B (or B ′ + �B ′ as B ′), using a field redefinition.

• The states m′
d = n′

d = 0 have fermionic number aL
1 equal to the parity of �ηR ·aR , which may 

be even or odd. When the compact direction Xd is large compared to the string scale, and the 
components of the Wilson line vector �y ′R are small compared to 

√
G′dd , the lightest states may 

therefore be bosons or fermions, while their superpartners acquire a KK mass M ′
(σ ) = Ms

√
G′dd

(see next section).
Additional discrete Wilson lines can also be switched on as follows. Without loss of generality, 

we can split the internal metric plus antisymmetric tensor component (d, J ) into a quantized 
background and continuous Wilson line deformations:

(G′ + B ′ + �B ′)dJ = ηR
J + √

2y′R
dJ , J ∈ {d, . . . ,9} , where ηR

J ∈ Z , y′R
dJ arbitrary .

(A.36)
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In terms of the redefined momentum quantum number m̂′
d = m′

d + ηR
J n′

J , we obtain new expres-
sions for

P ′L
d = m̂′

d + �y ′R
d · �Q′R + 1

2
�y ′R
d · n′

J �y ′R
J + √

2y′R
dJ n′

J ,

P ′R
d = m̂′

d + �y ′R
d · �Q′R + 1

2
�y ′R
d · n′

J �y ′R
J + (

√
2y′R − 2G′)dJ n′

J , (A.37)

and the partition function takes the alternative form

Z′[G′,B ′, �y ′R]ηR
d ,...,ηR

9 ,�ηR = 1

τ
d−2

2
2

1

|�|
∑

�a,�b∈�

∑
�N ′

C
[�a
�b
]
e−iπ �b· �Q′ ∑

�L,�R≥0

cL
�L

cR
�R

×
∑
m̂′

d

n′
d∈Z ∪ (Z+ 1

2 )

e2iπ(bL
1 −�ηR ·bR)n′

d

× δaL
1 ,m̂′

d−ηR
J n′

J +�ηR ·aR−(1−(�ηR)2)2n′
d mod 2

×
∑

m′
d+1,...,m

′
9

n′
d+1,...,n

′
9

q
1
4 M ′2

L /M2
s q̄

1
4 M ′2

R /M2
s , (A.38)

where one argument of the Kronecker symbol is shifted. To conclude, we stress that the above 
partition function is equivalent to the initial one in Eq. (A.8), with left-moving discrete Wilson 
lines given in Eq. (A.17). It is therefore independent of ηR

d , . . . , ηR
9 , �ηR . However, in order to 

describe the light spectrum encountered in a given region of moduli space, it may be helpful to 
choose ηR

d , . . . , ηR
9 , �ηR suitably.

A.5. Low supersymmetry breaking scale

From now on in the Appendix, we consider the case where 
√

G′
dd  1, while all other com-

ponents of the internal metric and antisymmetric tensor are of order 1. We find convenient to set 
ηR

d = 0 and use only the notation G′
dd (rather than y′R

dd ), in terms of which the supersymmetry 

breaking scale M ′
(σ ) = Ms

√
G′dd = O(Ms/

√
G′

dd) is low. In the following, our goal is to derive 
in these conditions expressions of the effective potential,

V(σ )
1-loop ≡ − Md

s

(2π)d

∫
F

d2τ

2τ 2
2

Z′[G′,B ′, �y ′R]0,ηR
d+1,...,η

R
9 ,�ηR . (A.39)

In the Hamiltonian form of the partition function (A.38), the left- and right-moving masses 
satisfy

q
1
4 M ′2

L /M2
s q̄

1
4 M ′2

R /M2
s = O

(
e−πτ2

(
G′

ddn′2
d +O(1)

))
, where τ2 >

√
3

2
. (A.40)

Therefore, all strings stretched non-trivially along the very large direction Xd are supermassive 
(even much more than oscillator states) and yield contributions to V(σ )

1-loop that are exponentially 
suppressed in G′

dd . Thus, we proceed by focusing on the modes having trivial winding number, 
n′

d = 0.
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Next, we note that in the Langrangian formulation of the conformal block (A.26), the phase 
responsible for the spontaneous breaking of supersymmetry is trivial when nd = 2n′

d and m̃d

are even. Hence, in the sector nd = 2n′
d = 0, the only non-vanishing contributions arise for m̃d

odd. In this case, denoting m̃d = 2k̃d + 1, each term of the integrand in Eq. (A.39) contains a 
τ2-dependent factor

1

τ
2+ 10−d

2
2

e
− π

τ2
[(2k̃d+1)2Gdd+O(1)]

e−πτ2O(1) . (A.41)

The latter allows an extension of the integration over the fundamental domain F to the “upper 
half strip”,

∫
F

dτ1dτ2 −→
1
2∫

− 1
2

dτ1

+∞∫
0

dτ2 , (A.42)

at the price of introducing an error exponentially suppressed in G′
dd . Note that no ultraviolet 

divergence occurs as τ2 → 0.
Switching back to the Hamiltonian picture, the integration over τ1 projects out the non-level 

matched states. Therefore, we obtain

V(σ )
1-loop = − Md

s

(2π)d

+∞∫
0

dτ2

2τ
d+2

2
2

∑
s

(−1)
m̂′

d−ηR
j n′

j +�ηR ·�aR

e−πτ2M
′2
L /M2

s + O
(
e−#G′

dd
)
, (A.43)

where # is an order 1 positive coefficient and the discrete sum is over all physical states s having 
n′

d = 0. To be explicit, they belong to some sector labeled by �aR ∈ � and have arbitrary quantum 
numbers m̂′

d, m′
d+1, . . . , m

′
9, n′

d+1, . . . , n
′
9 and �L, �R . Notice that we have used the spin-statistics 

theorem as well as the Kronecker symbol appearing in the partition function (A.38) to fix the sign 
of the contribution of s. Since the level matching condition

1

4
(M ′2

L − M ′2
R ) ≡ M2

s

[
(m̂′

d − η′R
I n′

I )n
′
d + m′

in
′
i + 1

2

( �Q2 + 1
) + �L − �R

]
∈ Z (A.44)

is independent of m̂′
d when n′

d = 0, the states s are actually organized in KK towers of modes of 
arbitrary momentum m̂′

d , so that we may write

V(σ )
1-loop = − Md

s

(2π)d

∑
s0

(−1)
�ηR ·�aR−η′R

j n′
j

+∞∫
0

dτ2

2τ
d+2

2
2

∑
m̂′

d

(−1)m̂
′
d e−πτ2M

′2
L /M2

s + O
(
e−#G′

dd
)
,

(A.45)

where the first discrete sum is over the physical states s0 having m̂′
d = n′

d = 0. In the above 
expression, M ′

L is the mass of the KK mode of momentum m̂′
d ,

M ′2
L = M2

s

[
m̂′2

d G′dd + 2m̂′
dζ d

]
+ M ′2

L0 , (A.46)

where M ′
L0 is that of the zero-momentum state s0,

M ′2
L0 = M2

s

[
ξ2
d G′dd + 2ξdG′djP ′L

j + P ′L
i G′ijP ′L

j + 2( �Q′L)2 + 4�L − 2
]
, (A.47)
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and ξd, ζ d are introduced for notational convenience,

ξd = �y ′R
d · �Q′R + 1

2
�y ′R
d · n′

j �y ′R
j + √

2y′R
dj n′

j , ζ d = G′ddξd + G′djP ′L
j . (A.48)

By Poisson summation over m̂′
d , one obtains a mixed Lagrangian/Hamiltonian form of the 

effective potential, where the order of the integral and the discrete sum can be inverted. One 
finds

V(σ )
1-loop = − Md

s

(2π)d

∑
s0

(−1)
�ηR ·�aR−ηR

j n′
j

∑
m̃′

d

e
iπ(2m̃′

d+1)
ζd

G′dd
1√
G′dd

×
+∞∫
0

dτ2

2τ
d+3

2
2

e
−π

(m̃′
d
+ 1

2 )2

τ2G′dd
e−πτ2M′2

L0

+ O
(
e−#G′

dd
)
, (A.49)

where M′
L0 is a characteristic mass associated with the KK tower labeled by s0,

M′2
L0 ≡ M ′2

L0 − (ζ dMs)
2

G′dd
= M2

s

[
P ′L

i G′ijP ′L
j − (G′djP ′

j )
2

G′dd
+ 2( �Q′L)2 + 4�L − 2

]
≥ 0 .

(A.50)

The result of the integration over τ2 can be formulated in terms of a function

F(z) ≡ z
d+1

2 Kd+1
2

(z) = 2
d−1

2 

(d + 1

2

)[
1 − z2

2(d − 1)
+ O(z4)

]
, when z → 0 ,

∼ z
d
2 e−z

√
π

2
, when z → +∞ , (A.51)

where Kd+1
2

is a modified Bessel function of the second kind. If F is finite at z = 0, it happens to 
be exponentially suppressed for z  1, thus implying that only a finite number of towers yields 
significant contributions. To be specific, let us consider the nB (or nF) KK towers having M′

L0
lower than a few times M ′

(σ ) (say �M ′
(σ ) for some � = O(1)), and such that �ηR · �aR − ηR

j n′
j is 

even (or odd). Defining cMs to be the lowest mass M′
L0 of the infinite number of heavier KK 

towers, we obtain20

V(σ )
1-loop = − M ′d

(σ )

(2π)
3d+1

2

nB+nF∑
s0=1

(−1)
�ηR ·�aR−ηR

j n′
j

∑
m̃′

d

cos

(
π(2m̃′

d + 1)
ζ dM2

s

M ′2
(σ )

)
|m̃′

d + 1
2 |d+1

× F

(
π |2m̃′

d + 1|M
′
L0

M ′
(σ )

)

+ O
(
(cMsM

′
(σ ))

d
2 e

−πcMs/M
′
(σ )

)
. (A.52)

20 Choosing for instance � = 3, the most unfavorable configuration, which corresponds to cMs = �M ′
(σ )

, implies the 
non-explicit terms in the second line of Eq. (A.52) to be about 1% of the contribution of a KK tower with vanishing 
characteristic mass. Of course, Ms ≥ cMs > �M ′

(σ )
yields much lower errors.
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In fact, the KK towers with characteristic masses M′
L0 > �M ′

(σ ) are almost supersymmetric and 
do not contribute significantly to the effective potential. Going back to the Hamiltonian picture 
given in Eq. (A.45), we also have

V(σ )
1-loop = − Md

s

(2π)d

nB+nF∑
s0=1

(−1)
�ηR ·�aR−ηR

j n′
j

+∞∫
0

dτ2

2τ
d+2

2
2

∑
m̂′

d

(−1)m̂
′
d e−πτ2M

′2
L /M2

s

+ O
(
(cMsM

′
(σ ))

d
2 e

−πcMs/M
′
(σ )

)
. (A.53)

Some remarks are in order:
• The gauge symmetry arising from the 10 − d + 16 internal directions and extra dimensions 

of the right-moving bosonic string yield an U(1) × G9−d+16 gauge symmetry, where the rank of 
G9−d+16 is 9 − d + 16. When G9−d+16 is “maximally enhanced”, i.e. contains no U(1) factor, 
we have in particular y′R

dj = 0, j ∈ {d + 1, . . . , 9}, �y ′R
d = �0, so that ξd = 0.21 Moreover, except 

the KK scale M ′
(σ ) itself, there is no mass scale between 0 and Ms. As a result, there are nB + nF

KK towers with exactly vanishing characteristic masses, M′
L0 = 0, while all other towers are 

very heavy, M′
L0 = O(Ms). The former satisfy P ′L

i = 0, i ∈ {d + 1, . . . , 9}, ( �Q′L)2 = 1, �L = 0, 
so that ζ d = 0. From the Hamiltonian point of view, the nB + nF zero-modes s0 are massless, 
M ′

L0 = 0, their KK counterparts satisfy M ′
L ≥ M ′

(σ ), and the string states belonging to other KK 
towers satisfy M ′

L = O(Ms).
• The situation presents mild differences when some moduli fields are switched on and bring 

the model slightly away from the background where G9−d+16 is maximally enhanced. This 
happens when deviations of (G′ + B ′ + �B ′)ij , i, j ∈ {d + 1, . . . , 9}, from the initial back-
ground are smaller (in absolute value) than �

√
G′dd , or when some non-vanishing |y′R

dj |, |y′R
dJ |, 

j ∈ {d + 1, . . . , 9}, J ∈ {10, . . . , 25}, are lower than 1. In both cases, new scales lower than 
�
√

G′ddMs are introduced, whose effects are to induce small Higgs masses to some of the 
nB + nF initially massless modes s0. However, the KK towers they belong to remain light, in 
the sense that their characteristic masses still satisfy M′

L0 < �M ′
(σ ).

• When a deviation ς of some (G′ + B ′ + �B ′)ij , i, j ∈ {d + 1, . . . , 9}, becomes larger 
(in absolute value) than �

√
G′dd , the number nB + nF of KK towers such that M′

L0 < �M ′
(σ )

decreases. Physically, the gauge theory enters a Coulomb branch where the component (G′ +
B ′ + �B ′)ij is a flat direction of the effective potential, up to O

(
(|ς |MsM

′
(σ ))

d
2 e

−π |δ|Ms/M
′
(σ )

)
terms.

A.6. Example with nF greater, lower or equal to nB

In order to illustrate the results of Sects (A.4) and (A.5), we consider the E8 × E′
8 heterotic 

string compactified on S1(Rd) × T 9−d , where Rd is the radius of the circle, in the presence of 
discrete deformations,

� = {
(4,8 + 8)-tuples (a, . . . , a;γ, . . . , γ, γ ′, . . . , γ ′) ,

where a, γ, γ ′ ∈ Z2
} =⇒ |�| = 23 ,

C[a;γ,γ ′
b ;δ, δ′ ] = (−1)a+b+ab ,

21 An arbitrary component (G′ + B ′)id , i ∈ {d + 1, . . . , 9}, is however allowed.
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YL
IA = δId δA1 , I ∈ {d, . . . ,9} , A ∈ {1, . . . ,4} ,

YR
IJ = δIdηR

J i.e. yR
IJ = 0 , J ∈ {10, . . . ,25} ,

0 = (G′ + B ′ + �B ′)dJ = ηR
J i.e. y′R

dJ = 0 , J ∈ {d, . . . ,9} . (A.54)

As explained before, the left-moving discrete deformation implements a spontaneous breaking 
of supersymmetry via a stringy Scherk–Schwarz mechanism along the direction Xd . Moreover, 
when the supersymmetry breaking scale is low, the bosonic or fermionic nature of the lightest 
states is determined by �ηR , a fact that has a direct impact on the gauge symmetry. In the following, 
we consider in details the example where

ηR
J = δJ ,10 + δJ ,18 , J ∈ {10, . . . ,25} . (A.55)

We first derive the partition function of the model under the above assumptions. Then, we switch 
on arbitrary (but small) Wilson line deformations around such a background and derive the 1-loop 
effective potential at low supersymmetry breaking scale.

Using Eq. (A.29), the 1-loop partition function (A.8) can be written as

Z = 1

τ
d−2

2
2

1

η12 η̄24

1

2

∑
a,b

(−1)a+b+ab θ [ab]4 1

2

∑
γ,δ

θ [γδ ]8 1

2

∑
γ ′,δ′

θ [γ ′
δ′ ]8

× Rd√
τ2

∑
m̃d ,nd

e
− π

τ2
R2

d |m̃d+ndτ |2

9−d,9−d (−1)m̃d (a−γ−γ ′)−nd(b−δ−δ′)−m̃dnd ,

(A.56)

where we have used the fact that the lattice of zero-modes associated with the internal torus is 
factorized, 
10−d,10−d = 
1,1(Rd) × 
9−d,9−d . Defining R′

d = 2Rd and m̃d = 2k̃d + g, nd =
2ld + h, where g, h ∈ Z2, the above formula becomes

Z = 1

τ
d−2

2
2

1

η8 η̄8 
9−d,9−d

1

2

∑
h,g


1,1

[
h
g

]
(R′

d)

× 1

2

∑
a,b

(−1)a+b+ab θ [ab]4

η4 (−1)ga−hb−hg 1

2

∑
γ,δ

θ̄ [γδ ]8

η̄8 (−1)gγ−hδ

× 1

2

∑
γ ′,δ′

θ̄ [γ ′
δ′ ]8

η̄8 (−1)gγ ′−hδ′
, (A.57)

where we have introduced shifted lattices, which can be considered either in Langrangian or 
Hamiltonian forms,


1,1

[
h
g

]
(R′

d) = R′
d√
τ2

∑
k̃d ,ld

e
− π

τ2
R′2

d

∣∣∣k̃d+ g
2 +(ld+ h

2 )τ

∣∣∣2

=
∑
kd ,ld

eiπgkd q

1
4

(
kd
R′

d

+(ld+ h
2 )R′

d

)2

q̄

1
4

(
kd
R′

d

−(ld+ h
2 )R′

d

)2

. (A.58)

In terms of the O(2n) affine characters
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O2n = θ [0
0]n + θ [0

1]n
2ηn

, V2n = θ [0
0]n − θ [0

1]n
2ηn

,

S2n = θ [1
0]n + (−i)nθ [1

1]n
2ηn

, C2n = θ [1
0]n − (−i)nθ [1

1]n
2ηn

, (A.59)

and

γ1,1

[
h
g

]
(R′

d) = 1

2

(

1,1

[
h
0

]
(R′

d) + (−1)g 
1,1

[
h
1

]
(R′

d)
)

=
∑
k′
d ,ld

q

1
4

(
2k′

d
+g

R′
d

+(ld+ h
2 )R′

d

)2

q̄

1
4

(
2k′

d
+g

R′
d

−(ld+ h
2 )R′

d

)2

, (A.60)

we obtain the final expression

Z = 1

τ
d−2

2
2

1

η8 η̄8 
9−d,9−d

[
γ1,1

[0
0

]
(R′

d)
(
V8(Ō16Ō

′
16 + S̄16S̄

′
16) − S8(Ō16S̄

′
16 + S̄16Ō

′
16)

)

+ γ1,1
[0

1

]
(R′

d)
(
V8(Ō16S̄

′
16 + S̄16Ō

′
16) − S8(Ō16Ō

′
16 + S̄16S̄

′
16)

)
+ γ1,1

[1
0

]
(R′

d)
(
O8(V̄16C̄

′
16 + C̄16V̄

′
16) − C8(V̄16V̄

′
16 + C̄16C̄

′
16)

)
+ γ1,1

[1
1

]
(R′

d)
(
O8(V̄16V̄

′
16 + C̄16C̄

′
16) − C8(V̄16C̄

′
16 + C̄16V̄

′
16)

)]
.

(A.61)

To make contact with the notations of the previous subsections, we identify R′
d =

√
G′

dd , and 

recognize the momentum m̂′
d ≡ 2k′

d + g and winding number n′
d = ld + h

2 ∈ Z ∪ (Z + 1
2 ). When 

R′
d  1, the states contributing in the third and fourth lines of Eq. (A.61) are super massive. The 

physical states s0, which have m̂′
d = n′

d = 0, are massless and arise in the first line. They are 
nB = 8 × [(d − 2) + 1 + dimG9−d + 2 × 120] bosonic degrees of freedom,

8v ⊗ ([d − 2] ⊕ AdjU(1)×G9−d
⊕ AdjSO(16)×SO(16)′

)
, (A.62)

where G9−d is the gauge symmetry induced by the 
9−d,9−d lattice, and nF = 8 × 2 × 128
fermionic degrees of freedom,

8s ⊗ (
SpinorialSO(16) ⊕ SpinorialSO(16)′

)
. (A.63)

Their superpartners, which have m̂′
d = 1, n′

d = 0, show up in the second line and have masses 
Ms/R

′
d . The sign of nF − nB can be arbitrary, as can be seen for example by choosing G9−d =

SU(2)9−d−s ×U(1)s , which yields nF −nB = 16(d + s −5). In dimension d = 4, this is negative 
for s = 0, vanishes for s = 1 and is positive for s = 2, 3, 4, 5.

To see explicitly the dependence of the 1-loop effective potential on the Wilson lines, let us 
consider as an example in arbitrary dimension d ≥ 3 the case of an initial background character-
ized by a maximally enhanced gauge group G9−d = SU(2)9−d . In the notations of Eq. (A.30), 
the y-deformations we introduce are given by

(G′ + B ′ + �B ′)IJ =
(

G′
dd

√
2y′R

dj√
2y′R

id δij + √
2y′R

ij

)
, �y ′R

d , �y ′R
i , i, j ∈ {d + 1, . . . ,9} ,

�B ′
IJ antisymmetric , �B ′

dj = y′R
j,10 + y′R

j,18 , �B ′
ij = 0 . (A.64)
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We are going to apply Eq. (A.52), which is valid when G′
dd  1, in the case the continuous 

Wilson lines are small, namely

|y′R
ij |, |y′R

iJ | � �
√

G′dd ,

|y′R
dj |, |y′R

dJ |, |y′R
id | � 1 , i, j ∈ {d + 1, . . . ,9} , J ∈ {10, . . . ,25} . (A.65)

For this purpose, we list the KK towers s0, which satisfy ( �Q′L)2 = 1, �L = 0:
• For any given j ∈ {d + 1, . . . , 9} and ε ∈ {−1, 1}, there are 8 KK towers s0 associated with 

the root ε
√

2 of the SU(2) factor, and corresponding to momentum states along the direction 
Xj . The quantum numbers of the KK modes are (γ, γ ′) = (0, 0), �Q′R = �0, �R = 0 and

m̂′
d ∈ Z , n′

d = 0 , m′
j = −n′

j = −ε , m′
i = n′

i = 0 , i ∈ {d + 1, . . . ,9}, i �= j .

(A.66)

Using these data, we derive

ξd = ε
√

2
(
y′R
dj + 1

2
√

2
�y ′R
d · �y ′R

j

)
, P ′

i = ε
√

2
(
y′R
ij + 1

2
√

2
�y ′R
i · �y ′R

j

)
, i ∈ {d + 1, . . . ,9} ,

(A.67)

and find

ζ dMs

M ′
(σ )

= y′R
dj ε

√
2 + · · · , M′2

L0 =
9∑

i=d+1

(
y′R
ij ε

√
2
)2 + · · · , (A.68)

where the ellipses stand for higher order terms in Wilson line deformations. The contribution of 
the 8 KK towers to the effective potential is then found to be

V(σ )j,ε
1-loop =8M ′d

(σ )

{
− vd 2d + vd−2

4π
2d−2

×
[
(d − 1)

(
y′R
dj ε

√
2
)2 + 1

G′dd

9∑
i=d+1

(
y′R
ij ε

√
2
)2

]}
+ · · · , (A.69)

where we have defined

vd = 
(d+1
2 ) ζ(d + 1)

2d−1 π
3d+1

2

(
1 − 1

2d+1

)
. (A.70)

• For any root �QR of SO(16) × SO(16)′, or any weight �QR of the spinorial representation 
of SO(16) or SO(16)′, there are 8 KK towers s0. The former have (γ, γ ′) = (0, 0) and the latter 
(γ, γ ′) = (1, 0) or (0, 1). The other quantum numbers of the KK modes are m̂′

d ∈ Z, n′
d = 0, 

m′
i = n′

i = 0, i ∈ {d + 1, . . . , 9}, �R = 0. This leads

ξd = �y ′R
d · �QR , P ′

i = �y ′R
i · �QR , i ∈ {d + 1, . . . ,9} , (A.71)

so that

ζ dMs

M ′
(σ )

= �y ′R
d · �QR + · · · , M′2

L0 =
9∑

i=d+1

(�y ′R
i · QR

)2 + · · · . (A.72)

The contribution of the 8 KK towers of charge �QR to the effective potential is then
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V(σ ) �QR

1-loop = (−1)γ+γ ′
8M ′d

(σ )

{
− vd 2d + vd−2

4π
2d−2

×
[
(d − 1)

(�y ′R
d · �QR

)2 + 1

G′dd

9∑
i=d+1

(�y ′R
i · �QR

)2
]}

+ · · · . (A.73)

• Finally, there are 8 KK towers s0 for each of the 24 states at right-moving oscillator level 
�R = 1. Being neutral with respect to SU(2)9−d × SO(16)2, the quantum numbers of the KK 
modes are m̂′

d ∈ Z, n′
d = 0, m′

i = n′
i = 0, i ∈ {d + 1, . . . , 9}, �QR = �0 and (γ, γ ′) = (0, 0). There-

fore, ξd = 0 and P ′
i = 0, i ∈ {d + 1, . . . , 9}, which implies

ζ dMs

M ′
(σ )

= 0 , M′2
L0 = 0 . (A.74)

For each e ∈ {2, . . . , 25}, the contribution of the 8 neutral KK towers to V (σ )
1-loop is therefore

V(σ )e
1-loop = 8M ′d

(σ )

{
− vd 2d

}
. (A.75)

Combining the above results, the total 1-loop effective potential takes the form
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where we have defined

cSU(2) = 8C[3]SU(2)
= 8 × 2 = 16 ,

cSO(16) = 8
(
C[120]SO(16)

− C[128]SO(16)

) = 8 × (14 − 16) = −16 , (A.77)

in terms of coefficients CR considered for any representation R of a gauge group G,

1

2

∑
weights Q

of R

rank G∑
I=1

AIQI
rank G∑
J =1

BJ QJ = CR
rank G∑
I=1

AIBI . (A.78)

As a result, the Wilson lines of SU(2)9−d along T 10−d are massive at 1-loop, while those 
of SO(16)2 are tachyonic. Notice that y′R

id , i ∈ {d + 1, . . . , 9}, multiplies n′
d in Eq. (A.32). 

Therefore, the non-exponentially suppressed contributions of V1-loop involve them only via the 
expressions of G′dd, G′dj , j ∈ {d + 1, . . . , 9}. Expanding the cosine in Eq. (A.52), it happens 
that the y′R

id ’s appear in at least cubic interactions with other Wilson lines. In other words, they 
remain massless at 1-loop, but are no more flat directions of the effective potential.

Using the dictionary (A.30) and defining

(G + B + �B)IJ =
(

Gdd

√
2yR

dj√
2yR

id δij + √
2yR

ij

)
, i, j ∈ {d + 1, . . . ,9} , (A.79)
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where �B is given in Eq. (A.28), we obtain the final result,

V(σ )
1-loop = (nF − nB) vd Md

(σ)

+ Md
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2π
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2
]

+ cSO(16)

[
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+ O
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d
2 e−2πMs/M(σ)

)
, (A.80)

which is written using the redefined supersymmetry breaking scale

M(σ) = Ms

√
Gdd . (A.81)

Eq. (A.80) is an example of the expression we use in the main text of the present work, Eq. (2.5), 
up to the minor change of notations consisting in omitting the upper indices “R”.
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1 Introduction

As an ultraviolet complete theory unifying gravity with gauge interactions, string theory is

a natural framework to study the primordial universe and describe cosmology using a top-

down approach. In modern language, a possible question to be asked is whether ingredients

which are used in the most common cosmological scenarios — such as models including a

cosmological constant and a cold dark-matter component (ΛCDM) — can be derived from

models of the string theory landscape, rather than embedded in only apparently consistent

low energy field theories of the swampland [1, 2].

It is nowadays established that our universe is constituted of three crucial components,

which are dark energy, dark matter and Standard-Model particles. The amount of each of

these ingredients have been measured with very good accuracy in the present universe [3],

indicating that a very large portion of the universe energy density is shared by dark energy

and dark matter rather than baryons and radiation. Furthermore, the study of the cosmic

microwave background has shown to be compatible with dark energy and non-relativistic

matter playing a key role in diluting the inhomogeneities of the primordial universe at early

times, throughout a phase of so-called cosmic inflation (see e.g. [4] for a review). If a lot

of the string-cosmology literature has been focusing on finding a way to generate enough

e-folds of inflation in the primordial universe (see debates on such a possibility [1, 2, 5–

8]), studies trying to obtain a phase of matter domination during the late cosmological

evolution of the universe are much more rare [9–18]. In practice, most of the dark-matter

– 1 –
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models which have been proposed in the context of string theory are string inspired, in

the sense that the particle interactions and mass spectrum are derived from string-theory

models. Therefore, in such a framework, the discussion of dark-matter decoupling and

non-relativistic matter production remains to be an effective, low-energy discussion, or

relies on purely geometrical effects such as domain-walls or cosmic-strings decay. The

interesting possibility that a whole tower of KK-states contribute collectively to the dark-

matter relic density, while different species decay at different time scales, was also proposed

in [19–21] under the name dynamical dark-matter. In these models, the relic density is

typically produced in the early universe through a misalignment mechanism. The freeze-

out mechanism was also considered in [22], although in such context the particle spectrum

is taken to be a time-independent data set, contrary to what we will consider.

In particular, in the usual thermal freeze-out scenario, it is assumed that a significant

amount of dark matter is produced in the early universe, before it decouples from the

thermal bath when the temperature drops under the dark-matter mass. In this paper, we

present an alternative mechanism in which dark matter is naturally abundantly produced

while still relativistic, and then decouples from the thermal bath due to the brutal vari-

ation of its mass above the temperature. This scenario arises within a class of explicit

string models in d dimensions, due to cosmological attractors that yield a phase transition

responsible for the spontaneous mass generation of the dark-matter particles. Note that

the possibility of a variable-mass dark-matter particle has already been proposed in [23] in

a different context, but relatively unexplored from the phenomenological perspective.

In the past literature, heterotic string models compactified on tori (or orbifolds) with

spontaneously broken supersymmetry [24–28] à la Scherk-Schwarz [29, 30] have been consid-

ered at finite temperature [28] and weak string coupling. It was shown that in the context

of flat, homogeneous and isotropic cosmological evolutions, the universe is attracted to-

wards a “radiation-like critical solution” [31–35], along which the supersymmetry breaking

scale M(t), the temperature T (t) and the inverse of the scale factor a(t) evolve propor-

tionally, M(t) ∝ T (t) ∝ 1/a(t). The denomination “radiation-like” is motivated by the

fact that the total energy density and pressure arising from (i) the thermal bath of the

infinite towers of Kaluza-Klein (KK) states along the internal Scherk-Schwarz directions

and (ii) the coherent motion of M(t) satisfy the same state equation as pure radiation,

ρtot = (d− 1)Ptot [32, 33]. If helpful to understand the behavior of the early universe after

reheating, when the light matter content of the universe is in thermal equilibrium, such

a critical solution cannot be a low energy attractor for our universe since we know that

(i) at present time the supersymmetry breaking scale is extremely large as compared to

the universe temperature, and (ii) that the universe is matter dominated. Therefore, one

needs to complexify the picture in order to open the possibility that part of the massless

spectrum becomes massive and then decouples, while the universe evolves.

This is precisely what we do in the present work. We use the fact that at special points

in moduli space, states which are generically very heavy become massless [36]. When these

states contain more fermions than bosons, the free energy density F arising from their

thermalized towers of KK modes shows very peculiar properties. First of all, at such a

point in moduli space, F is extremal. Second, this extremum is a minimum (maximum)

– 2 –
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for large enough (low enough) temperature T , as compared to the supersymmetry breaking

scale M . Assuming generic initial conditions compatible with a minimum, the destabiliza-

tion of the order parameter, which is a modulus, then occurs dynamically, provided the

attractor mechanism described in the above paragraph enforces T (t)/M(t) to reach low

enough values. As a result, while the universe expands and the temperature (as well as

the supersymmetry breaking scale) drops, for the evolution dictated by the radiation-like

critical solution to be approached, a phase transition takes place, where the condensation

of the order-parameter modulus induces a large mass to the whole initially light KK towers.

We will see that such a condensation is naturally pushed up to values which are necessarily

larger than the temperature of the thermal bath, generating spontaneously an important

amount of non-relativistic matter that may freeze-out later on i.e. quit equilibrium, due to

the expansion of the universe.

The paper is organized as follows: in section 2, we construct the simplest heterotic

models for which the free energy density presents suitable features for developing the in-

stability required for the spontaneous dark-matter mass generation. Section 3 is devoted to

the analytical description of the attractor mechanisms. In a first stage, the order-parameter

modulus is attracted towards the minimum of its potential well, while the whole cosmo-

logical evolution approaches a radiation-like critical solution [34, 35]. This effect is already

non-trivial, in the sense that the mechanism avoids the so-called “cosmological moduli

problem” [37, 38].1 Then, the ratio T/M being dynamically pushed to some low enough

value, the phase transition suddenly takes place, inducing the dark-matter particle to be-

come heavier than the temperature scale. In section 4, we first review how dark-matter

particles decouple from a thermal bath in the context of the usual thermal freeze-out sce-

nario. Then, we present the new mechanism which we propose in this paper to make dark

matter decouple spontaneously from the thermal bath, when the phase transition happens.

We finally relate the relic energy density of cold dark matter to the scale factor of the

universe and the freshly acquired dark-matter mass. Our conclusions and perspectives can

be found in section 5, where we summarize our results and present futur prospects.

2 Thermal effective potential

Throughout this paper, all dimensionful quantities will be expressed in string units (α′ = 1),

and denoted with suffixes “(σ)” when measured in string frame i.e. σ-model frame. In this

section, we consider models realizing a spontaneous breaking of supersymmetry at a scale

M(σ), and derive their free energy density F(σ) at finite temperature T(σ). To be more

specific, we would like F(σ), which is nothing but the effective potential at finite tempera-

ture, to depend on a modulus that will be massive at high temperature and tachyonic at

low temperature, as compared to the supersymmetry breaking scale. As will be shown in

section 3, the dynamics of the universe may then enforce the time evolutions of T(σ) and

1Typically encountered in inflationary scenarios, the universe at intermediate times may be dominated

by the energy stored in massive scalars, which cannot stabilize. Their eventual decay into radiation can

lead to an entropy excess.
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M(σ) to trigger a destabilization of the modulus, which is responsible for a dark-matter

mass generation.

2.1 Heterotic models and free energy

Our starting point is the E8 × E8 heterotic string compactified on the background

S1
E(R0)× Rd−1 × T 2 × T 8−d, (2.1)

where time is Euclidean and compactified on a circle of radius R0, and Rd−1 stands for the

spatial directions. For simplicity, we consider the internal space to be factorized in two

tori. The radius of one direction in T 2, say Xd, is the modulus to be (de-)stabilized, while

the second direction, which we denote by X9, is responsible for the spontaneous breaking

of supersymmetry. On the contrary, all moduli associated with T 8−d will play a minor role

in the sequel.

Technically, both finite temperature and spontaneous breaking of supersymmetry can

be implemented by a stringy version of the Scherk-Schwarz mechanism [24–28]. At 1-loop,

the free energy density can be written as

F(σ) = − 1

2(2π)d

∫
F

dτ1dτ2

τ
1+ d+2

2
2

∑
g0,h0

∑
k̃0,l0

e
−πR

2
0

τ2
|2k̃0+g0+(2l0+h0)τ |2

1

2

∑
g9,h9

√
detG

∑
k̃d,ld
k̃9,l9

e
− π
τ2

[
k̃i+

gi
2

+(li+
hi
2

)τ̄
]
(Gij+Bij)

[
k̃j+

gj
2

+(lj+
hj
2

)τ
]

1

2

∑
a,b

(−1)a+b+abθ[ab ]
4 (−1)g0a+h0b+g0h0 (−1)g9a+h9b+g9h9

1

2

∑
γ,δ

θ̄[γδ ]8 (−1)g9γ+h9δ+g9h9 1

2

∑
γ′,δ′

θ̄[γ
′

δ′ ]
8 (−1)g9γ

′+h9δ′+g9h9

Γ8−d,8−d
η12η̄24

,

(2.2)

where we use the following notations:

• τ = τ1 + iτ2 is the Teichmüller parameter of the genus-1 Riemann surface and F the

fundamental domain of the modular group. η(τ) and θ[αβ ](τ) are the Dedekind and

Jacobi modular forms, for which conventions can be found in [39].

• The lattices of zero modes associated to the Euclidean circle and the T 2 coordinates

are in the first and second lines. The numbers k̃0, k̃d, k̃9 and l0, ld, l9 are arbitrary

integers, while g0, h0 and g9, h9 are parities i.e. equal to 0 or 1. For notational com-

pactness, we have also introduced gd, hd but those are simply vanishing. Moreover,

Gij and Bij are the metric and antisymmetric tensor background values on T 2, to be

specified shortly.

• The worldsheet left-moving fermions contribute to the conformal block in the third

line. The latter is dressed with “cocycles” i.e. phases that couple the above mentioned
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lattices to the spin structures a, b ∈ {0, 1}, thus implementing finite temperature and

spontaneous breaking of supersymmetry [28]. In string frame, the temperature is the

inverse of the Euclidean-time circle circumference,

T(σ) =
1

2πR0
. (2.3)

• In the fourth line, the 16 extra right-moving coordinates of the bosonic string yield

two E8 lattices, where γ, δ and γ′, δ′ ∈ {0, 1}. Cocycles responsible for the E8×E8 →
SO(16)× SO(16) spontaneous breaking are also included [40]. In total, the lattice of

the direction X9 is involved in the phase

(−1)g9(a+γ+γ′)+h9(b+δ+δ′)+g9h9 , (2.4)

which shows that super-Higgs and Higgs mechanisms combine in a non-trivial way.

Consider an initially massless, supersymmetric pair of bosonic (a = 0) and fermionic

(a = 1) degrees of freedom: if their gauge charge γ + γ′ is even, then the Scherk-

Schwarz mechanism along X9 induces a non-trivial mass to the fermion, while the

boson remains massless. On the contrary, when γ + γ′ is odd, the mass splitting is

reversed, in the sense that the boson becomes massive, while the fermion remains

massless [32, 33, 41, 42].

• The last line contains the lattice of zero modes associated to the internal directions

Xd+1, . . . , X8, and worldsheet left- or right-moving oscillator contributions.

• We consider a T 2 metric and antisymmetric tensor

(G+B)ij =

(
R2
d ε

−ε 4R2
9

)
, i, j ∈ {d, 9}, (2.5)

where Rd and R9 are dynamical radii, while ε ∈ Z is a constant background. To

motivate this choice, notice that in the absence of any cocycle responsible for finite

temperature and supersymmetry breaking along X9, we would have an U(1)→ SU(2)

enhancement of the gauge symmetry at Rd = 1 and arbitrary ε ∈ Z. In fact, a

pair of non-Cartan vector multiplets would be exactly massless at such a point in

moduli space. As shown in great details in [43],2 once supersymmetry breaking is

implemented along X9, the effect of an even value of the “discrete Wilson line” ε is to

induce a tree-level mass 1/(2R9) (equal to that of the gravitini) only to the fermions of

the non-Cartan vector multiplets. Conversely, an odd value of ε implies the fermions

to remain massless, while their bosonic superpartners become massive. In both cases,

we may define the scale of supersymmetry breaking in string frame to be

M(σ) =
1

2πR9
. (2.6)

2In the appendix of [43], all marginal deformations of the heterotic theory are taken into account.

However, for the sake of clarity and simplicity in the present work, we only discuss and keep dynamical the

moduli relevant to the phase transition under consideration.
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In the remaining part of this subsection, we show how the picture is generalized in

presence of both supersymmetry breaking and finite temperature.

Redefining a = â + h0 + h9, b = b̂ + g0 + g9, and using the Jacobi identity to handle

the sum over â, b̂, the free energy density becomes

F(σ) =
1

2(2π)d

∫
F

dτ1dτ2

τ
1+ d+2

2
2

∑
g0,h0

∑
k̃0,l0

e
−πR

2
0

τ2
|2k̃0+g0+(2l0+h0)τ |2

Rd
∑
m̃d,nd

e
−πR

2
d

τ2
|m̃d+ndτ |2 R9

∑
g9,h9

∑
k̃9,l9

e
−πR

2
9

τ2
|2k̃9+g9+(2l9+h9)τ |2

(−1)ε(m̃dh9+ndg9)

θ
[1−h0−h9
1−g0−g9

]4 1

2

∑
γ,δ

θ̄[γδ ]8
1

2

∑
γ′,δ′

θ̄[γ
′

δ′ ]
8 Γ8−d,8−d
η12η̄24

(−1)ϕ,

where ϕ = g0 + g9 + h0 + h9 + g9h0 + g0h9 + g9(γ + γ′) + h9(δ + δ′). (2.7)

To proceed, we assume that the radii of the periodic directions X0, X9, are large compared

to the Hagedorn radius, in order for Hagedorn-like instabilities not to occur,

R0, R9 � RH =
1 +
√

2√
2

. (2.8)

This guarantees that the integrand does not develop level-matched tachyonic modes and

the free energy to be well defined. By noticing that all contributions with non-vanishing

winding numbers 2l0 + h0 or 2l9 + h9 yield contributions O(e−#R2
0) or O(e−#R2

9), where #

is positive and O(1), we may focus on the sectors h0 = h9 = 0, with l0 = l9 = 0. Due to

the θ
[

1
1−g0−g9

]4
factor, non-trivial contributions arise only for (g0, g9) = (1, 0) or (0, 1). As

a result, we obtain

F(σ) =
R9

2(2π)d

∫
F

dτ1dτ2

τ
1+ d+1

2
2

∑
(g0,g9)=

(1,0) or (0,1)

∑
k̃0,k̃9

e
− π
τ2

[R2
0(2k̃0+1)2+R2

9(2k̃9+1)2] ∑
md,nd

q
1
2
p2L q̄

1
2
p2R (−1)εndg9

θ
[
1
0

]4
η12η̄24

1

2

∑
γ,δ

θ̄[γδ ]8 (−1)g9γ
1

2

∑
γ′,δ′

θ̄[γ
′

δ′ ]
8 (−1)g9γ

′
Γ8−d,8−d +O(e−#R2

0) +O(e−#R2
9), (2.9)

where q = e2iπτ . In this expression, we have written the lattice of zero modes associated

to S1(Rd) in Hamiltonian form, where

pL =
1√
2

(md

Rd
+ ndRd

)2
, pR =

1√
2

(md

Rd
− ndRd

)2
. (2.10)

Due to the presence of factors e
−πR

2
0

τ2
(2k̃0+1)2

or e
−πR

2
9

τ2
(2k̃9+1)2

in the integrand, we may

extend the fundamental domain F of integration to the “upper half strip”,∫
F

dτ1dτ2 ( · · · ) =

∫ 1
2

− 1
2

dτ1

∫ +∞

0
dτ2 ( · · · ) +O(e−#R2

0) +O(e−#R2
9). (2.11)

Hence, integrating over τ1 projects on the physical i.e. level-matched spectrum.
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To evaluate explicitly the free energy, we expand

θ4
2

η12
= 16

(
1 +O(q)

)
,

1

2

∑
γ,δ

θ̄
[γ
δ

]8
(−1)g9γ = 1 + 112q̄ + (−1)g9128q̄ +O(q̄2),

1

η̄24
=

1

q̄

(
1 + 24q̄ +O(q̄2)

)
.

(2.12)

Moreover, choosing the radius of the direction Xd to be “moderate”,

1

R0
,

1

R9
� Rd � R0, R9, (2.13)

Rd may sit in the neighborhood of 1, where the states with momenta and winding numbers

md = −nd = ±1 become massless. We may then write

∑
md,nd

q
1
2
p2L q̄

1
2
p2R (−1)εndg9 = 1 + 2(−1)εg9 q̄ e

−πτ2
(
Rd− 1

Rd

)2
+ · · · , (2.14)

where the ellipses stand for all other modes, mdnd 6= −1. Note that the latter cannot yield

states in the spectrum simultaneously level-matched and lighter than T(σ) and M(σ). In a

similar way, we assume the size of T 8−d,8−d to be “moderate”, i.e. with metric satisfying

1

R2
0

,
1

R2
9

� |GIJ | � R2
0, R

2
9, I, J ∈ {d+ 1, . . . , 8}. (2.15)

Hence, (G + B)IJ may sit at a point of enhanced gauge symmetry in moduli space,

U(1)8−d → Gen, so that

Γ(8−d,8−d) = 1 + denq̄ + · · · . (2.16)

In the above formula, we take for simplicity (G+B)IJ to sit exactly at such a point, or to

be outside of their neighborhoods, in which case den = 0. We are now ready to integrate

physical mode by physical mode. This can be done using the identity

Hν(x) ≡ 1

Γ(ν)

∫ +∞

0

du

u1+ν
e−

1
u
−x2u =

2

Γ(ν)
xνKν(2x), (2.17)

where Kν is the modified Bessel function of the second kind. In practice, x is essentially the

ratio of mass in the spectrum, to T(σ) or M(σ). As a consequence, different contributions

can have different orders of magnitude, as follows from the behaviors of Hν(x) at large and

small arguments,

Hν(x) ∼
√
π

Γ(ν)
xν−

1
2 e−2x when x� 1,

Hν(x) = 1− x2

ν − 1
+O(x4) when |x| � 1.

(2.18)

The dominant contribution to F(σ) arises from the (nearly) massless states, including those

with md = −nd = ±1 when Rd ' 1, together with their towers of KK modes associated
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to the Euclidean time and direction X9. All other states yield exponentially suppressed

contributions. They include in particular those arising from oscillator modes at the string

scale, or from the states winding around the large compact directions X0, X9.

To write the final result, it is convenient to define

ζ = ln(Rd), η = ln(R9), z = ln

(
R0

R9

)
= ln

(
M(σ)

T(σ)

)
, (2.19)

in terms of which we find

F(σ) = T d(σ)f(z, η, ζ) +O
(

(cMsT(σ))
d
2 e−cMs/T(σ)

)
+O

(
(cMsM(σ))

d
2 e−cMs/M(σ)

)
. (2.20)

In this expression, cMs > 0 is the lowest (Higgs-like) mass scale generated by the moduli

GIJ . As follows from eq. (2.15), it is heavier than T(σ) and M(σ), thus yielding exponential

suppression.3 The dominant contribution in F(σ) involves

f(z, η, ζ) =− (nF + nB)f
(d)
T (z) + (nF − nB)f

(d)
V (z)

− (ñF + ñB)f̃
(d)
T (z, η, ζ) + (ñF − ñB)f̃

(d)
V (z, η, ζ),

(2.21)

where nB and nF are the numbers of bosonic and fermionic massless states for generic Rd,

while ñB and ñF count those becoming massless at Rd = 1. The dressing functions account

for the corresponding towers of KK modes along X0, X9 [34, 35],

f
(d)
T (z) =

Γ
(
d+1

2

)
π
d+1
2

∑
k̃0,k̃9

edz[
e2z(2k̃0 + 1)2 + (2k̃9)2

] d+1
2

,

f̃
(d)
T (z, η, ζ) =

Γ
(
d+1

2

)
π
d+1
2

∑
k̃0,k̃9

edzH d+1
2

(
π|eζ − e−ζ |eη

√
e2z(2k̃0 + 1)2 + (2k̃9)2

)
[
e2z(2k̃0 + 1)2 + (2k̃9)2

] d+1
2

,

(2.22)

while the last two functions can be defined by

f
(d)
V (z) ≡ e(d−1)zf

(d)
T (−z), f̃

(d)
V (z, η, ζ) ≡ e(d−1)z f̃

(d)
T (−z, η + z, ζ). (2.23)

To be specific, the massless spectrum satisfies

nB = 8× (8 + 120 + 120 + den), nF = 8× (128 + 128),

ñB = 8× 2 (1− ε), ñF = 8× 2 ε.
(2.24)

There is a universal degeneracy factor 8 arising from the fact that at zero temperature

and supersymmetry breaking scale, the theory is maximally supersymmetric i.e. with 16

supercharges (N = 4 in 4 dimensions). In nB, the 8 × 8 degrees of freedom are those

of the metric, antisymmetric tensor and dilaton field dimensionally reduced from 10 to

d dimensions. The 120’s are the dimensions of the two SO(16) gauge groups, while den

is the number of roots of the enhanced U(1)8−d → Gen gauge factor. They all satisfy

3For instance, if GIJ = O(1), then so is c.
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(γ, γ′) = (0, 0). In nF, the 128’s are the dimensions of the spinorial representations of

the SO(16) factors, corresponding to (γ, γ′) = (1, 0) and (0, 1). At Rd = 1, modes having

md = −nd = ±1 are massless, with charges pR = ±
√

2 under the right-moving U(1)

isometry group of S1(Rd). Either ñB or ñF is non-trivial: when ε = 0, the modes are

bosons corresponding to the roots of the enhanced U(1) → SU(2) and on the contrary,

ε = 1 yields a pair of fermionic states, charged under U(1) which is not enhanced.

2.2 Properties of the free energy

From now on, we will neglect in F(σ) (and omit in all formulas) the exponentially-suppressed

contributions in eq. (2.20). Some remarks are in order:

• F(σ) is the free energy density valid for arbitrary mass |Rd − 1/Rd| of the ñB or ñF

states, provided eq. (2.13) holds. Consistently, we find that when they are massless,

i.e. at Rd = 1,

f(z, η, 0) = −(NF +NB)f
(d)
T (z) + (NF −NB)f

(d)
V (z),

where NF = nF + ñF, NB = nB + ñB.
(2.25)

• The above split of f into two pieces is motivated by taking the limit z → +∞, where

thermal effects are screened by quantum effects. In fact, we have

F(σ)|Rd=1 ∼
z→+∞

Md
(σ) (NF −NB) ξ, where ξ =

Γ
(
d+1

2

)
π
d+1
2

∑
m

1

|2m+ 1|d+1
, (2.26)

which reproduces the expression of the 1-loop effective potential at zero temperature

in a theory where supersymmetry is spontaneously broken by the Scherk-Schwarz

mechanism [32, 33, 44].

• Conversely, when z → −∞, quantum corrections are screened by thermal effects. As

a result, we recover

F(σ)|Rd=1 ∼
z→−∞

− 2πR9 T
d+1
(σ) (NF +NB) ξ, (2.27)

which is the Stefan-Boltzmann law for radiation in d+1 dimensions. The overall factor

2πR9 arises consistently with the interpretation of the density in d+ 1 dimensions.

• Expanding around ζ = 0, we identify the mass term of ζ,

f(z,η,ζ) =−(NF+NB)f
(d)
T (z)+(NF−NB)f

(d)
V (z)

+
ζ2

πT 2
(σ)

[
(ñF+ñB)f

(d−2)
T (z)−(ñF−ñB)f

(d−2)
V (z)

]
+O(ζ4),

where ñF+ñB = 8×2, −(ñF−ñB) = (−1)ε 8×2.

(2.28)

When the extra massless states at Rd = 1 are bosons (ε even), ζ is massive. Thus,

as a function of ζ, F(σ) presents a local minimum at ζ = 0, as shown in the qual-

itative figure 1. However, the situation is more involved when the massless states
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Figure 1. Qualitative shape of the free energy density F(σ) as a function of ζ = lnRd, when

ñF − ñB ≤ 0, or for low enough M(σ)/T(σ) when ñF − ñB > 0. Several phases can be identified: a

well of size max(1/R0, 1/R9). On both of its sides, plateaus extend until ±min(lnR0, lnR9). The

latter are followed/preceded by exponential falls if nF−nB ≤ 0, or for low enough M(σ)/T(σ) when

nF−nB > 0. The exponential behavior is increasing for large enough M(σ)/T(σ), when nF−nB > 0.

Figure 2. Qualitative shape of the free energy density F(σ) as a function of ζ = lnRd, in the

case ñF − ñB > 0, when M(σ)/T(σ) is large enough. Several phases can be identified: a bump

of size max(1/R0, 1/R9). On both of its sides, plateaus extend until ±min(lnR0, lnR9). The

latter are followed/preceded by exponential falls if nF−nB ≤ 0, or for low enough M(σ)/T(σ) when

nF−nB > 0. The exponential behavior is increasing for large enough M(σ)/T(σ), when nF−nB > 0.

are fermions (ε odd). By noticing that the limits z → +∞ and −∞ of the functions

f
(d)
T (z) and f

(d)
V (z) that we took in eqs. (2.26) and (2.27) can be easily applied to

the d − 2 case, we conclude that for large enough ez, ζ is tachyonic, while for low

enough ez, it is massive. The tachyonic case is illustrated in figure 2, where F(σ) has a

maximum at ζ = 0. The massive case is as before, shown in figure 1. The dynamical

switch from the massive case to the tachyonic case will be used in the next section

to trigger the destabilization of Rd, which is responsible for the mass generation of

fermionic dark matter.
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• For Rd sufficiently far from the self-dual point, the masses of the ñB or ñF states

(depending on the parity of ε) exceed T(σ) and M(σ). Thus, their contributions to the

free energy become exponentially suppressed and the second line of eq. (2.21), which

captures all ζ- and η-dependences, can be omitted. Hence, as a function of ζ, F(σ)

develops a well or a bump around ζ = 0, whose size is max(1/R0, 1/R9), and on both

sides of which is a plateau (see figures 1, 2).

Large extra dimension regime. For completeness, we may ask what is the behavior

of the free energy when the condition (2.13) is relaxed. When Rd & R0 or R9, KK modes

along Xd are lighter than T(σ) or M(σ) and their contributions to the free energy are no more

exponentially suppressed. Similarly, the winding modes along S1(Rd) start contributing to

the free energy when Rd . 1/R0 or 1/R9. On the contrary, the ñB and ñF states being

even heavier than when ζ sits on a plateau discussed above, they can be omitted in the

evaluation of F(σ). Under such conditions, one obtains [34]

f(z,η,ζ) =−(nF+nB)
[
f

(d)
T (z)+k

(d)
T (z,η−|ζ|)

]
+(nF−nB)[f

(d)
V (z)+k

(d)
V (z,η−|ζ|)

]
= e|ζ|−η−z

[
−(nF+nB)F

(d+1)
T (z,η−|ζ|)+(nF−nB)F

(d+1)
V (z,η−|ζ|)

]
, (2.29)

where, in the first line, the functions k
(d)
T and k

(d)
V account for the additional corrections

attributed to the KK or winding states,

k
(d)
T (z, η − |ζ|) =

Γ
(
d+1

2

)
π
d+1
2

∑
md 6=0

∑
k̃0,k̃9

edzH d+1
2

(
π|md|eη−|ζ|

√
e2z(2k̃0 + 1)2 + (2k̃9)2

)
[
e2z(2k̃0 + 1)2 + (2k̃9)2

] d+1
2

,

k
(d)
V (z, η − |ζ|) = e(d−1)z k

(d)
T (−z, η − |ζ|+ z). (2.30)

In the second line of eq. (2.29), a Poisson summation on the momentum (or winding

number) along S1(Rd) is performed, which yields

F
(d+1)
T (z, η − |ζ|) =

Γ
(
d+2

2

)
π
d+2
2

∑
k̃0,k̃9,m̃d

e(d+1)z[
e2z(2k̃0 + 1)2 + (2k̃9)2 + e−2(η−|ζ|)m̃2

d

] d+2
2

,

F
(d+1)
V (z, η − |ζ|) = edzF

(d+1)
T (−z, η − |ζ|+ z).

(2.31)

Much of the behavior of the free energy is captured in the regime Rd � R0, R9 (or Rd �
1/R0, 1/R9), which can be derived from the second expression in eq. (2.29). Defining u = 1

or −1 to treat both cases simultaneously, we obtain

F(σ) = 2πRud T
d+1
(σ)

[
−(nF+nB)f

(d+1)
T (z)+(nF−nB)f

(d+1)
V (z)−

(
R0

Rud

)d
nBξ

′+· · ·

]
, (2.32)

where the ellipses stand for exponentially suppressed terms in Rud/R0 and Rud/R9, and

ξ′ =
Γ
(
d
2

)
π
d
2

ζ(d). (2.33)
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The factor 2πRud of eq. (2.32) may be used to interpret the result in d + 1 dimensions.

However, from the d-dimensional point of view, this translates into an exponential behavior,

F(σ) ∝ e|ζ| for |ζ| → ∞, which we took to be decreasing in figures 1 and 2. If this is so when

nF − nB ≤ 0, this is not always true when nF − nB > 0. In the latter case, we can use for

d+ 1 the limits z → ±∞ taken in eqs. (2.26) and (2.27) to conclude that the exponential

behavior is decreasing for low enough ez, and increasing for large enough ez.

3 Dynamical stabilization / destabilization

In this section, we consider the free energy F(σ) = T d(σ)f in generic models, namely with

the function f given in eq. (2.21) (or (2.29)), for arbitrary nF, nB and ñF, ñB. We want

to show how the nature of the ñF + ñB states becoming massless at Rd = 1 impacts the

dynamics and final expectation value of Rd. After deriving the cosmological equations of

motion, we review the evolution found for ñF − ñB < 0, which was considered in [34] and

yields a stabilization of the modulus at the self-dual point. Then, we turn to our main case

of interest, namely ñF − ñB > 0, which can trigger dynamically the destabilization of Rd
from its self-dual point. During this process, the ñF + ñB initially massless states acquire

a large mass. Becoming non-relativistic, we will see in section 4 that they may realize a

component of cold dark matter in our universe, given that they are stable on cosmological

time scales.

3.1 Equations of motion and thermodynamics

Our starting point is the 1-loop effective action in d dimensions. Considering only the

degrees of freedom relevant for the (de-)stabilization mechanism, we have

S =

∫
ddx
√
−g(σ)

[
e−2φ

(R(σ)

2
+ 2 ∂µφ∂

µφ− 1

2

∂µR9∂
µR9

R2
9

− 1

2

∂µRd∂
µRd

R2
d

)
−F(σ)

]
,

(3.1)

where g(σ) is the string frame metric with signature (−1,+ . . . ,+), R(σ) is the associated

Ricci curvature, and φ is the dilaton in d dimensions. Defining the Einstein frame metric as

gµν = e−
4
d−2

φg(σ)µν , (3.2)

all dimensionful quantities acquire a dilaton dressing. In Einstein frame, the temperature,

supersymmetry breaking scale and free energy density are therefore

T =
e

2
d−2

φ

2πR0
, M =

e
2
d−2

φ

2πR9
=
e

√
d−1
d−2

Φ

2π
, F = e

2d
d−2

φF(σ) = T df(z, η, ζ). (3.3)

Note that we have introduced a new field Φ, the so-called “no-scale modulus” [45–48]. In

fact, defining

Φ =

√
d− 2

d− 1

(
2φ

d− 2
− η
)
, Φ⊥ =

1√
d− 1

(2φ+ η), (3.4)

the action takes a suitable form in terms of canonical fields,

S =

∫
ddx
√
−g
[
R
2
− 1

2
∂µΦ∂µΦ− 1

2
∂µΦ⊥∂

µΦ⊥ −
1

2
∂µζ∂

µζ −F
]
. (3.5)
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Interested in flat, homogeneous and isotropic cosmological evolutions, we consider a

Friedmann-Lemâıtre-Roberstson-Walker metric and space-independent scalar fields,

ds2 = −β(x0)2(dx0)2 + a(x0)2
d−1∑
i=1

(dxi)2, Φ(x0), Φ⊥(x0), ζ(x0), (3.6)

where the lapse function β is found by analytic continuation of the Euclidean background.

Hence, it is the circumference of S1(R0) measured in Einstein frame, which is nothing but

the inverse temperature,

β = e−
2
d−2

φ2πR0 =
1

T
. (3.7)

Friedmann equations can be found by varying the action with respect to β and a. They

can be rewritten in terms of the more conventional cosmic time defined by dt = βdx0:

(d− 1)(d− 2)

2
H2 = K + ρ, (3.8)

(d− 1)(d− 2)

2
H2 + (d− 2)Ḣ = −K − P, (3.9)

where dot-derivatives are with respect to t and H = ȧ/a. In the above equations, K is the

kinetic energy of the scalars, while ρ and P are the energy density and pressure arising

from the 1-loop contribution F ,

K =
1

2

(
Φ̇2 + Φ̇2

⊥ + ζ̇2
)
, ρ = F − T ∂F

∂T
, P = −F . (3.10)

Notice that the variational principle we have used matches perfectly with the thermody-

namics laws,

ρ =
1

V

(
∂(βF )

∂β

)
V

, P = −
(
∂F

∂V

)
β

, where V = (2πa)d−1, F = V F . (3.11)

For convenience, we may write the thermal energy density and pressure as

ρ = T dr(z, η, ζ), P = T dp(z, η, ζ), where r = fz − (d− 1)f, p = −f, (3.12)

and fx = ∂f/∂x, for x = z, η, ζ. With these notations, the scalar-field equations of motion

take the form,

Φ̈ + (d− 1)HΦ̇ = −∂F
∂Φ

= −T d
(√

d− 1

d− 2
fz −

√
d− 2

d− 1
fη

)
, (3.13)

Φ̈⊥ + (d− 1)HΦ̇⊥ = − ∂F
∂Φ⊥

= − T d√
d− 1

fη, (3.14)

ζ̈ + (d− 1)Hζ̇ = −∂F
∂ζ

= −T dfζ . (3.15)

Combining the equations, it can be seen that eq. (3.9) can be replaced by an equation

that can be solved [34],

ρ̇+ Ṗ

ρ+ P
+ (d− 1)H =

Ṫ

T
=⇒ (aT )d−1

(
r(z, η, ζ) + p(z, η, ζ)

)
= S, (3.16)
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where S is the integration constant. The latter can be interpreted as the entropy of the

universe since the above result implies

U − TS = −PV ≡ F, where U = V ρ. (3.17)

3.2 Radiation-like dominated solutions and stabilization

When the supplementary massless states at the self-dual point contain more bosons than

fermions, ñF− ñB < 0 (recall that this means ε even in our example as defined in eq. (2.5)),

the thermal effective potential F admits a local minimum at ζ = 0 (see figure 1). As

shown in [34], this can yield a dynamical stabilization of ζ at the origin. In this subsection,

we review these results, since they will be used later on to infer the behavior of the more

involved mechanism of mass generation for dark matter.

Stabilization at the bottom of the well. Let us first describe a particular cosmological

solution. Clearly, ζ ≡ 0 solves eq. (3.15). Since f(z, η, 0) is independent of η, eq. (3.14)

is satisfied for an arbitrary constant Φ⊥ ≡ Φ⊥0. It turns out to be convenient to replace

eq. (3.13) by a differential equation for z. The latter involves a potential for z, which

admits a minimum at some critical point z̃c if and only if the massless spectrum of the

model satisfies

0 <
NF −NB

NF +NB
<

1

2d − 1
. (3.18)

In that case, z ≡ z̃c is a solution, where z̃c is the unique root of the equation

r̃(z̃c) = dp̃(z̃c), where r̃(z) ≡ r(z, η, 0), p̃(z) ≡ p(z, η, 0) > 0. (3.19)

Note that this corresponds to the state equation of radiation in d+1 dimensions, ρ = d×P .4

When the model-dependent quantity (NF−NB)/(NF+NB) varies from 0 to its upper bound,

z̃c varies from +∞ to −∞.5 We are left with the Friedmann equation (3.8), which turns

out to take the form H2 = C̃r/a
d. Ultimately, we find a critical solution

ζ ≡ 0, Φ⊥ ≡ Φ⊥0, M(t) ≡ T (t)× ez̃c ≡ 1

a(t)
× ez̃c

(
S

r̃(z̃c) + p̃(z̃c)

) 1
d−1

,

where a(t) = t
2
d ×

(d
2

√
C̃r

) 2
d
, C̃r =

2(d− 1)

d(d− 2)2
r̃(z̃c)

(
S

r̃(z̃c) + p̃(z̃c)

) d
d−1

> 0.

(3.20)

To summarize, the supersymmetry breaking scale and the temperature evolve proportion-

ally to the inverse of the scale factor. Moreover, this solution is compatible with weak string

coupling. This can be seen by using eq. (3.4) to derive the time-dependence of the dilaton,

e2 d−1
d−2

φ(t) = 2πM(t) e
√
d−1Φ⊥0 , (3.21)

which decreases with time.
4With n internal circles involved in the Scherk-Schwarz breaking of supersymmetry, this generalizes to

ρ = (d− 1 + n)P [33].
5We may include the lower bound 0 in eq. (3.18), at which we formally have z̃c = +∞. In that case, z(t) is

actually running away rather than being stabilized at some finite value. The class of theories satisfying NF =

NB and sometimes referred to as “super no-scale models” may be of particular interest [41, 42, 44, 49–54].
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Note that along this very peculiar trajectory, H2 ∝ T d as if the universe was filled with

pure radiation in d dimensions, which seems in contradiction with the result ρ = d × P .

In fact, using Friedmann equation (3.8), the puzzle is resolved by observing that the total

energy density and pressure satisfy

ρtot =
1

2
Φ̇2 + ρ =

(d− 1)2

d(d− 2)
ρ

Ptot =
1

2
Φ̇2 + P =

d− 1

d(d− 2)
ρ

 =⇒ ρtot = (d− 1)Ptot. (3.22)

In other words, the classical kinetic energy of the no-scale modulus combines with the

thermal free energy of the infinite towers of KK modes along X9, to yield a “radiation-

like” cosmological evolution i.e. indistinguishable with that of a universe only filled with

thermalized massless states.

The local stability of this solution against small fluctuations has been shown analyti-

cally in [34] for d ≥ 4.6 Hence, for arbitrary initial conditions close enough to the trajectory

of eq. (3.20), the generic evolution is attracted to the critical one. For this reason, we refer

to these generic cosmological evolutions as “radiation-like dominated solutions”. When

converging to z̃c, z(t) may or may not oscillate, depending on the initial conditions. More-

over, ζ always undergoes damped oscillations and eventually stabilizes at 0. Notice that

this is a remarkable effect. In the literature, when such a scalar field has a constant mass

and oscillates in a well, its energy does not dilute fast enough when the universe expands,

the scalar does not stabilize, and the universe is not entering in a radiation-dominated era.

To bypass this fact, known as the “cosmological moduli problem”, the decay of the mas-

sive scalar field is invoked, which can lead to new difficulties such as an excessive entropy

production [37, 38].

The cosmological moduli problem does not occur in our string theory framework be-

cause the mass m (measured in Einstein frame) of ζ is not constant. From eq. (2.28),

we find

m2 =
2

π
e

4
d−2

φ T d−2, (3.23)

which drops with time and increases the damping of the oscillations of ζ, which is not

anymore solely due to the friction resulting from the expansion of the universe. Eventually,

the energy stored in the modulus dilutes faster than the radiation-like density ρtot (or its

component associated with the NF +NB true species of radiation), so that ζ stabilizes.7

For completeness, we point out that when (NF−NB)/(NF +NB) > 1/(2d− 1), the su-

persymmetry breaking direction X9 spontaneously decompactifies, and the supersymmetry

6See also [55, 56], for supersymmetric theories at finite temperature.
7The generic solution for d = 3 turns out to be “marginally radiation-like dominated”, in the following

sense. As in higher dimensions, t−
2
3 a(t) and a(t)T (t) converge to constants, while z(t)→ zc and ζ(t)→ 0.

However, the asymptotic behavior of Φ⊥(t) is logarithmic rather than constant, and ζ̇2/H2 oscillates without

damping. Altogether, we have #H2 ∼ #Φ̇2
⊥ ∼ 1

2
Φ̇2 + 1

2
ζ̇2 + ρ. This means that for d = 3, the definitions

of ρtot and Ptot should include the kinetic energies of Φ⊥ and ζ in addition to that of Φ, to satisfy the

“radiation-like” state equation ρtot ∼ 2Ptot. If the above behavior can be checked numerically, it could

also be shown as in [56], which analyzes the pure thermal case (i.e. without supersymmetry breaking).

In the latter case, though, the generic solution is “marginally radiation-like dominated” for d = 4, rather

than d = 3.
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breaking is screened by thermal effects. The generic evolution is naturally interpreted in a

(d + 1)-dimensional anisotropic universe, which is radiation dominated [35]. Our purpose

being eventually to describe the destabilization of ζ arising when supersymmetry breaking

effects dominate over thermal ones, this case in not interesting to us in the present work.

Alternatively, when (NF − NB)/(NF + NB) < 0, the initially expanding universe stops

growing and then collapses, with domination of moduli kinetic energy [31]. These remarks

justify why we restrict our models to satisfy eq. (3.18).

Freezing along the plateaus. The above attractor mechanism is only local, in the

sense that initial conditions too far from the critical solution with ζ = 0 may yield a

different behavior. In particular, when ζ is along one of the plateaus shown in figure 1, the

ñF + ñB states are heavier than T and M and yield exponentially suppressed contributions.

Neglecting these terms, we have

f(z, η, ζ) = −(nF + nB)f
(d)
T (z) + (nF − nB)f

(d)
V (z). (3.24)

Let us first describe a new critical solution. Clearly, the equations of motion (3.15)

and (3.14) of ζ and Φ⊥ are satisfied when these fields are arbitrary constants ζ0 and Φ⊥0. As

explained in [34], one can proceed as before and find that, provided that the model satisfies

0 <
nF − nB

nF + nB
<

1

2d − 1
, (3.25)

a particular solution exists with constant z ≡ zc, where zc is the unique root of the equation8

r̂(zc) = dp̂(zc), where r̂(z) ≡ r(z, η, 0), p̂(z) ≡ p(z, η, 0). (3.26)

Altogether, this peculiar evolution is

ζ ≡ ζ0, Φ⊥ ≡ Φ⊥0, M(t) ≡ T (t)× ezc ≡ 1

a(t)
× ezc

(
S

r̂(zc) + p̂(zc)

) 1
d−1

,

where a(t) = t
2
d ×

(d
2

√
Ĉr

) 2
d
, Ĉr =

2(d− 1)

d(d− 2)2
r̂(zc)

(
S

r̂(zc) + p̂(zc)

) d
d−1

> 0,

(3.27)

which is radiation-like. It is also stable against small fluctuations. In other words, initial

conditions close enough to the trajectory (3.27) yield evolutions attracted to the critical

one, and are therefore radiation-like dominated.

No eternal fall out of the plateaus. For completeness, even if we will not make use of

this property in the dark-matter generation mechanism described in the following section,

we mention that the attraction towards the flat regions of the thermal effective potential

of ζ is even stronger than may be expected. When the exponential behavior of F(σ) is

decreasing, as shown in figures 1 and 2, we may worry about the possibility that |ζ| falls

out of the plateaus when it rolls enough to exceed min(lnR0, lnR9). In that case, one may

8As in footnote 5, we may include the lower bound 0 in eq. (3.25), and have z(t) running away towards

zc formally equal to +∞.
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(a) (b)

Figure 3. (a) Numerical simulation of ζ(t), z(t), Φ⊥(t) and a(t)T (t), when ζ sits initially in the

decreasing exponential part of its potential (see figures 1 and 2). The purple dashed curve shows

the width of the plateau which increases with time. ζ(t) begins by increasing while falling along the

potential until it is caught by the growing plateau. It then stabilizes while z(t), Φ⊥(t) and a(t)T (t)

eventually reach their asymptotic values. (b) Same simulation when the exponential region of the

thermal potential increases with ζ, at initial time. ζ(t) begins by decreasing, thus approaching the

plateau where it eventually freezes.

think that the internal direction Xd may spontaneously decompactify. However, analytic

arguments in favor of an attraction of |ζ| back to the plateaus was raised in [34, 35]. To

figure out what is going on, we can simulate numerically the system of differential equations

when ζ is initially located on the waterfall part of the potential, with low enough velocity.

The evolutions in 4 dimensions of ζ(t), z(t), Φ⊥(t) and the product a(t)T (t) are plotted

for a set of generic initial conditions in figure 3a. While it is not a surprise to see |ζ(t)| to

increase, the boundary min(lnR0(t), lnR9(t)) of the plateau (delimited by the shaded area)

increases faster and eventually catches up ζ(t). When the latter is back to the plateau, the

evolution is attracted as before towards the critical solution of eq. (3.27).

When nF − nB > 0 while ez is large enough, the exponential behavior of F(σ) as a

function of ζ is increasing. When this is the case, the attraction back to the plateau is

naturally expected to be even more efficient than in the above waterfall case. As shown

in figure 3b, this expectation turns out to be confirmed by numerical simulation. As seen

on the plots, |ζ(t)| starts by decreasing and then freezes once it is caught by the plateau.

Notice however, that as long as z(t) > 0 holds, the width of the plateaus is given by

lnR9(t), while when z(t) < 0 it is determined by lnR0(t). As a result, a change of the

slope of the time-dependent length of the plateaus is observed when z(t) ' 0.

3.3 Dynamical phase transition and mass generation

We are now ready to describe the mechanism that triggers the phase transition responsible

for generating large masses for states that will be interpreted as dark-matter constituents

in the next section. The key point is to have an excess of massless fermionic modes at the

self-dual point, ñF − ñB > 0 (ε odd in our example).
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Qualitative expectations and specification of the models. In order to infer what

the mechanism will turn to lead to, let us remind what we learned from eq. (2.28). When T

is sufficiently larger than M (i.e. ez is small enough), ζ is massive. Assuming ζ to be initially

in its potential well (see figure 1), provided that eq. (3.18) holds, we expect the generic

cosmological evolution to approach the critical solution of eq. (3.20). This attraction may

be definitive, if ez̃c is low enough for maintaining ζ massive throughout the convergence of

the evolution towards the critical one. In that case, the behavior of the universe is identical

to that described for ñF − ñB < 0, with a stabilization of ζ at the origin.

However, in models such that ez̃c is large enough for ζ to be tachyonic, the above at-

traction of z(t) towards z̃c forces the squared mass of ζ to change sign during the evolution.

The critical solution still exists, but becomes unstable at this stage. In fact, the potential

well of ζ becomes the bump shown in figure 2 and a Higgs-like transition is expected to

occur, responsible for the destabilization of ζ away from the origin. The latter slides along

the bump until it reaches one of the plateaus. Once there, assuming that eq. (3.25) is sat-

isfied, we have shown in the previous section that ζ gets frozen, due to the friction arising

from the expansion of the universe. The final behavior of the evolution is thus attracted

to the critical solution, eq. (3.27), and is therefore radiation-like dominated.

To summarize, for the mechanism to take place, the following conditions must hold:

(i) ñF − ñB > 0 (more extra massless fermions than bosons at ζ = 0),

(ii) 0 <
nF − nB

nF + nB
and

NF −NB

NF +NB
<

1

2d − 1
(zc and z̃c exist),

(iii) f
(d−2)
T (z̃c) <

ñF − ñB

ñF + ñB
f

(d−2)
V (z̃c) (ζ tachyonic at z = z̃c).

(3.28)

In our examples, these constraints translate into

(i) ε odd, (ii) 0 < 8− den and
10− den

506 + den
<

1

2d − 1
, (iii) z̃c > 0, (3.29)

which admit solutions in various dimensions:

• For d = 3, we can have den = 0, 2, 4, 6. The limit case den = 8 can be included if

we allow z̃c to be +∞. The den roots of Gen can be realized at SU(2) and/or SU(3)

enhanced gauge symmetry points of the Narain lattice of the internal T 5.

• For d = 4, den = 0, 2, 4, 6 (and possibly 8) are allowed. The den roots can be realized

at SU(2) and/or SU(3) points of the Narain lattice of T 4.

• For d = 5, only den = 4, 6 (or 8) are allowed and realized at SU(2) and/or SU(3)

points of the Narain lattice of T 3.

• There is no solution for d = 6, 7 and 8 in our examples.

Numerical simulations. Unlike critical solutions that describe asymptotic behaviors,

the phase transition is a transient regime. Thus, solving analytically the equations of mo-

tions to describe explicitly the associated solutions for generic initial conditions is difficult.
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(a) (b)

Figure 4. (a) Numerical simulation for d = 4 of ζ(t), z(t), Φ⊥(t) and a(t)T (t), in a model that

realizes the dynamical phase transition responsible for a large mass generation of initially massless

states. ζ(t) oscillates with damping around 0 as long as z(t) < 0. When the latter become positive,

ζ(t) condenses away from the origin. (b) The shaded area represents the width of the well or bump.

The oscillations are within the well, while freezing takes place away from the bump, where the

potential for ζ is flat.

For this reason, we have simulated numerically the system of differential equations. The

results match with all the qualitative expectations described above.

Our choice of initial conditions at t = 0 is such that the universe expands (ȧ(0) > 0),

with the temperature T (0) slightly higher than the supersymmetry breaking scale M(0)

(z(0) . 0). Moreover, ζ(0) is anywhere in its well, with low enough velocity. Notice that if

we assume throughout this paper the temperature (and supersymmetry breaking scale) to

be lower than the Hagedorn temperature, R0 > RH , naturalness invites us to choose R0(0)

equal to few units (counted in
√
α′).9 Note that such a radius R0(0) is enough for neglecting

the exponentially suppressed contributions to the free energy, as done in section 2. Second,

the well has an initial width which is not very small, say of order 1/10, and no severe fine

tuning is required for ζ(0) to sit inside it.

As shown in figure 4a, letting the system evolve in d = 4 dimensions, ζ(t) starts

oscillating with damping around the origin, while z(t) is increasing (to approach z̃c > 0).

It is only when z(t) becomes positive, so that the well turns into a bump, that ζ, which

is still close to 0, acquires some potential energy and eventually starts sliding along the

hill before freezing. Meanwhile, z(t) and Φ⊥(t) converge to zc > 0 and some constant

Φ⊥0, while the product a(t)T (t) also reaches a constant value. Notice that in figure 4a,

because the final value of |ζ| is lower than |ζ(0)|, one may think that the modulus remains

stuck on the bump. However, the width of the hill decreases with time and eventually the

motion of the modulus is coming to an end along a plateau. This can be seen on figure 4b,

which shows the evolution of the width of the bump with time. To be specific, for the

particular initial conditions we have chosen in the simulation, the final (string frame) mass

|Rd − 1/Rd| ' 2|ζ| of the ñF + ñB states is of the order of 2% of the string scale, which is

9This is at least the case if we imagine that the cosmological era we describe is occurring right after

a Hagedorn era characterized by a temperature T(σ) comparable to the string scale. Such an intrinsically

stringy epoch may describe a change of string vacuum [57–60], or bouncing cosmologies [61, 62], which are

alternative to the big bang and inflationary scenarios.
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rapidly several orders of magnitude larger than T(σ) and M(σ) that keep on dropping. As a

result, the ñF + ñB modes yield exponentially suppressed contributions to the free energy,

thus implying ζ to sit on a plateau.

Before proceeding, we would like to stress that for the sake of simplicity, we have

only allowed in our analytic and numerical analyzes a minimal set of moduli fields to vary.

In particular, we could have treated the 4 degrees of freedom (G + B)ij in eq. (2.5) as

dynamical, by generalizing the results of [43] in presence of finite temperature. However,

the mass generation mechanism we have presented would still take place. Moreover, it

turns out that in our simple model, the SO(16) × SO(16) Wilson lines are tachyonic for

large enough ez [41–43], and it could be artificial to maintain them static.10 However, type

I string models that satisfy the constraint nF − nB > 0 and are tachyon free have been

recently constructed [63], and the phase transition we have discussed may be implemented

in their heterotic dual descriptions.

4 Relic density evolution

The ratio of the mass induced by the phase transition to the temperature being large, the

Boltzmann number density of the ñF + ñB (with ñF − ñB > 0 in generic models) initially

massless degrees of freedom may drastically decrease. In the present section, we explain

how the expansion of the universe may nevertheless imply a non-trivial relic density of

non-relativistic matter to survive.

4.1 Dark-matter thermal freeze-out

In the well-known thermal scenario of cosmology, the dark-matter number density evolution

throughout the universe history results from the competition between two opposite effects:

on the one hand, number-depleting interactions between dark matter and the Standard

Model11 (typically, through its annihilation cross-section σDM↔SM) give the possibility for

dark-matter particles to constantly readjust their number density nDM to its Boltzmann

equilibrium value nDM,eq. The processes by which this happens are two-to-two, of the form

DM + DM→ SM + SM. On the other hand, the expansion of the universe tends to make

interactions between dark-matter and Standard-Model particles more unlikely to happen,

since it lowers their respective number densities. Hence, such a dilution renders a thermal

equilibrium between dark-matter and Standard-Model particles more difficult to maintain.

Before presenting how our string theory framework provides an alternative way to

generate a non-relativistic component of the universe energy density, let us first review how

a non-vanishing relic density of dark matter is generated in the usual thermal scenario.

10To figure out whether they can be destabilized or not, the ratio M/T above which they are tachyonic

should be compared with ezc .
11Note that number-depleting interactions within the dark sector could also maintain a thermal equi-

librium in the dark sector with its own temperature. In that case, all occurrences of “Standard-Model

particles” in the coming text should be replaced by “massless dark-matter particles”. However, it is nat-

ural to assume gauge interactions between the dark sector and the visible sector if we deal with only

one temperature.
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FIG. 1. SM-neutrinos, total probability of τ -exit at the Earth surface per angle under the horizon, for an incoming

neutrino of energy Eν = 10 EeV.
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FIG. 2. SM-neutrinos, total probability of τ -exit at the Earth surface per angle under the horizon, for an incoming

neutrino of energy Eν = 10 EeV.
Figure 5. Evolution of the dark-matter yield YDM = nDM/s as a function of x = mDM/T in the

standard thermal scenario, in 4 dimensions (green solid line). The black-dotted line represents the

value that the yield would follow if thermal equilibrium could be maintained all along the history

of the universe. Freeze-out takes place when interactions with the Standard-Model particles are too

weak, as compared to the expansion rate of the universe (after crossing of the red dashed line).

Cold dark matter scenario. In the standard thermal scenario,12 a dark-matter parti-

cle has a constant mass mDM, and interacts with the Standard Model through two-to-two

processes, whose annihilation cross-section is denoted σDM↔SM. For visualizing the chronol-

ogy of the dark-matter number density, we draw in figure 5 the typical evolution of the

so-called yield,

YDM =
nDM(T )

s(T )
, (4.1)

where s(T ) ∝ T d−1 ∝ 1/ad−1 is the entropy density of the thermal bath. In this figure,

the evolution is parametrized by x = mDM/T , and we have chosen arbitrary values of the

dark-matter mass and annihilation cross-section. The thermal scenario of cold dark-matter

production can be summarized as follows:

• T � mDM: at early times, both dark-matter and Standard-Model particles are rela-

tivistic. If their interactions are strong enough, dark matter is maintained chemically

in thermal equilibrium with the Standard-Model bath so that nDM = nDM,eq ∝ T d−1.

The entropy density of the universe evolving as s ∝ T d−1, the dark-matter yield

YDM = n/s is initially constant, as can be seen on the left-hand side of figure 5.

Quantitatively, the interaction is strong enough when (d − 1)H < nDM〈σDM↔SMv〉,
where v stands for the dark-matter particles relative velocities and the brackets 〈 · · · 〉
denote the mean over velocity distribution.

12In standard cosmology, there is no dynamical dilaton field and the Einstein frame is always implicit.
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• T . mDM: when the temperature drops under the dark-matter mass, dark-matter

particles become non-relativistic. The Boltzmann distribution becomes exponentially

suppressed, nDM,eq ∼ e−m/T , and dark-matter particles tend to annihilate more and

more into Standard-Model particles in order to maintain equilibrium, therefore low-

ering their number density (see figure 5, where the black-dotted and green-solid lines

drop together). Standard-Model particles which have energy 〈E〉 ∼ T are less and

less able to produce them back. Again, such number depletion is possible as long

as interactions are strong enough i.e. the condition (d − 1)H < nDM〈σDM↔SMv〉 is

still satisfied.

• T . mDM and (d−1)H & nDM〈σDM↔SMv〉: after dark-matter particles started anni-

hilating significantly into Standard Model particles, the expansion rate of the universe

can dominate over the annihilation rate, which leads to a chemical decoupling. In

figure 5, this corresponds to the point where the red dashed curve is crossed. The

universe being radiation dominated before chemical decoupling, this curve turns out

to satisfy YDM ∝ x
d
2
−1, which is linear for d = 4. At the crossing, the annihilation of

dark matter stops, dark-matter particles freeze-out, and a relic density of dark-matter

particles remains as a non-relativistic component of the universe. Thus, the number

density evolves again as nDM ∝ 1/ad−1 ∝ T d−1 and the yield becomes constant.

Formally speaking, such a freeze-out can be described by the Boltzmann equation, in

terms of the dark-matter number density nDM(t),

dnDM

dt
+ (d− 1)HnDM = −〈σDM↔SMv〉

[
n2

DM − n2
DM,eq

]
. (4.2)

In this formulation, Standard-Model particles are assumed to be in thermal equilibrium.

Moreover, the dark-matter particles number density at equilibrium is defined as

nDM,eq(t) = ñ

∫
dd−1~k

(2π)d−1

1

e

√
m2

DM
+~k2

T (t) ± 1

, (4.3)

where ñ is the number of dark-matter degrees of freedom, with either Bose-Einstein of

Fermi-Dirac statistics and the integration runs over the momentum ~k of the particles.

Neglecting the expansion rate (d − 1)HnDM in eq. (4.2), an over-density (under-density)

of dark-matter particles as compared to the equilibrium value would pull (push) the dark-

matter density back to its equilibrium value. Therefore, as long as the expansion term can

be neglected as compared to the interaction term in the right-hand side of eq. (4.2), the

dark-matter density follows its equilibrium value,

nDM ' nDM,eq (before freeze-out). (4.4)

Conversely, when the expansion starts dominating over interactions in the equation, one

can neglect the right-hand side and obtain

nDM ∝
1

ad−1
(after freeze-out). (4.5)
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The neutrino case. So far, we have been discussing the case of a cold dark matter,

decoupling from the thermal bath after it becomes non-relativistic. This guarantees that

the dark matter is cold enough for not streaming freely on large distances after it is pro-

duced, ensuring that the large scale structures are preserved, in agreement with present

cosmological measurements [64].

Nevertheless, the condition that a particle becomes non-relativistic before it decouples

from the thermal bath is not necessary. In fact, as long as its interaction with Standard-

Model particles becomes weak enough at a temperature larger than the dark-matter mass,

dark-matter particles can still be relativistic when they freeze-out. This is exactly what

happens to neutrinos, which decouple at a temperature T ∼ MeV from the thermal bath, far

before they become non-relativistic. This mechanism will take place in some circumstances

in the string theory framework we are now turning to.

Our string theory scenario. As mentioned above, experimental constraints on struc-

ture formation impose that dark matter constitutes today a large, non-relativistic compo-

nent of the energy density.

Moreover, we have seen that the key point for a cold dark-matter scenario to be

successful is to have at some point the temperature lower than the dark-matter mass,

and to ensure that its interaction with radiation is weak enough, for a significant amount

of dark-matter particles to remain frozen after they decouple. In string theory, gauge

interactions between the dark and visible sectors may or may not exist. In the examples we

have constructed in section 2, our main motivation was to present the simplest realization

of a phase transition responsible for a mass generation of initially massless states. Being

maximally supersymmetric (in a spontaneously broken version, e.g. N = 4 → N = 0

in 4 dimensions), massless matter cannot be chiral and there is no Standard-Model to

discuss in this context. However, models compatible with chirality [65–68] and realizing

an N = 1 → N = 0 spontaneous breaking of supersymmetry in four dimensions may be

considered. For instance, they can be realized via orbifold compactifications or fermionic

constructions. Implementing the mass generation mechanism in such models, dark and

Standard-Model sectors may for instance be unified prior to the phase transition in a

gauge theory based on E6, SO(10), a Pati-Salam gauge group, etc. In such a case, a

significant annihilation cross section σDM↔SM is then natural. In the following, we assume

the string theory model to be realistic enough for such a non-trivial cross-section to exist.

Other possibilities may however be considered, as noticed in footnote 11.

In the standard thermal scenario, before freeze-out, when the universe is radiation

dominated, as well as after dark matter decouples, the (approximate) relations s ∝ T d−1 ∝
1/ad−1 we have used extensively hold. Instead, the cosmological evolution derived from

string theory before freeze-out is radiation-like dominated and satisfies eq. (3.16). To be

specific, prior to the phase transition, ζ oscillates in the well, and the evolution approaches

the critical, radiation-like solution (3.20). Similarly, if the destabilization process ends and

ζ is stuck on a plateau, the evolution is attracted towards the second critical, radiation-like

evolution, eq. (3.27). Hence, before freeze-out, the (approximate) relations s ∝ T d−1 ∝
1/ad−1 hold and the yield definition in eq. (4.1) can be used as in the standard thermal
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scenario. However, after dark matter decouples from the thermal bath and eventually

dominates, z(t) and Φ⊥(t) have no more reason to be static, implying S/(aT )d−1 not to be

a constant. Consequently, we will use in this regime an alternative definition of the yield,

YDM ∝ nDM ad−1, (4.6)

which clearly matches with eq. (4.1) before freeze-out.

The main difference of our scenario with the usual thermal case is that the dark-matter

particles masses are driven by the value of ζ = lnRd and suddenly increase after the phase

transition described in section 3.3 takes place. Since we have shown that the transition

is sufficient to render part of the spectrum spontaneously non-relativistic, such particles

can freeze-out and constitute a dark component of the universe. To describe qualitatively

this mechanism, we consider in the following the limit case where the condensation of ζ,

i.e. the mass jump, is much faster than all other processes, such as the evolutions of the

temperature and number density nDM. Hence, we assume from now on that while the

temperature drops, ñF and ñB (with ñF − ñB > 0) dark-matter fermionic and bosonic

degrees of freedom are massless before the phase transition, and acquire “instantaneously”

a mass mDM at a temperature T = Tc (both measured in Einstein frame)

m(T ) =

{
0 for T > Tc,

mDM for T < Tc.
(4.7)

Notice that Tc is not determined a priori. Our assumption of instantaneity supposes ζ(t)

starts sliding from the top of the hill when z(t) ' zc (its final value after the transition) but

this condition fixes only the ratio M/T to its critical value ezc = Mc/Tc at the transition. It

turns out that depending on the ratio xc = mDM/Tc, two qualitatively different situations

may occur, as can be seen in figure 6, which represents the evolution of the yield. For

completeness, a third case is also shown on this figure. To describe them, we define the

dark-matter number densities right before and right after the transition as n0
DM,eq and

nmDM
DM,eq, respectively. Moreover, we treat 〈σDM↔SMv〉 as not varying at the transition.

• Case 1. At T = Tc,
n0

DM,eq〈σDM↔SMv〉 > (d− 1)H

and nmDM
DM,eq〈σDM↔SMv〉 > (d− 1)H.

In figure 6, this corresponds to the case where the black dotted curve is above the

red dashed curve at xc = mDM/Tc: before xc, the dark-matter constituent being

thermal radiation, the yield is constant. After the dark matter acquires its mass, it

can annihilate sufficiently for its number density to drop all the way down to its new

equilibrium value (see the violet line in figure 6). Then, one recovers the case of a

standard thermal cold dark-matter scenario. Chemical decoupling eventually occurs,

the density quits equilibrium and the yield of eq. (4.6) freezes-out.

• Case 2. At T = Tc,
n0

DM,eq〈σDM↔SMv〉 > (d− 1)H

and nmDM
DM,eq〈σDM↔SMv〉 < (d− 1)H.

In figure 6, the black dotted curve is below the red dashed curve at xc = mDM/Tc:

in this case, the massless dark matter acquires a mass while its number density is
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FIG. 1. SM-neutrinos, total probability of τ -exit at the Earth surface per angle under the horizon, for an incoming

neutrino of energy Eν = 10 EeV.
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FIG. 2. SM-neutrinos, total probability of τ -exit at the Earth surface per angle under the horizon, for an incoming

neutrino of energy Eν = 10 EeV.

Figure 6. Evolution of the dark-matter yield YDM = nDMa
d−1 (∝ nDM/s before freeze-out) as

a function of x = mDM/T in the string theory scenario, in 4 dimensions. The black-dotted line

represents the value that the yield would follow if the dark-matter particles always had a constant

mass equal to mDM, and if thermal equilibrium could be maintained all along the history of the

universe. In Cases 1 (violet line) and 2 (yellow line), two different values of the phase transition

temperature Tc are considered. In Case 3 (green line), the decoupling from the thermal bath takes

place while dark matter is still relativistic, and no phase transition can take place thereafter.

still sufficient for the annihilation process to be efficient for a while. However, while

decreasing, the chemical decoupling limit is reached before a new thermal equilibrium

can be established. Therefore, dark matter freezes-out at an intermediate relic density

(see the yellow line in figure 6).

• Case 3. Thermal decoupling may also occur while dark-matter particles are still

massless. In figure 6, the red dashed curve intersects the green horizontal line, while

ζ has not been destabilized yet. Before decoupling, the number density follows the

relativistic equilibrium value nDM,eq ∝ T d−1. Then, dark-matter decouples while

still relativistic, similarly to the neutrino case. The particle number gets frozen and

its density keeps evolving as 1/ad−1 due to the universe expansion. Therefore, the

alternative definition of the yield, eq. (4.6), remains constant. In fact, it turns out

that no mass generation can take place after decoupling, and we recover a usual hot

dark-matter scenario. To reach these conclusions, let us focus on the free energy

density component associated with the ñF + ñB massless states, accompanied with

their KK modes along the supersymmetry breaking direction X9. Before freeze-out,

the result (in string frame) can be extracted from eq. (2.28),

FDM(σ) =T d(σ)

{
−(ñF+ñB)f

(d)
T (z)+(ñF−ñB)f

(d)
V (z)

+
ζ2

πT 2
(σ)

[
(ñF+ñB)f

(d−2)
T (z)−(ñF−ñB)f

(d−2)
V (z)

]
+O(ζ4)

}
,

(4.8)
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where ζ ' 0 is massive. If at the decoupling from the thermal bath the dark-matter

energy density ρf
DM(σ) and pressure P f

DM(σ) = −F f
DM(σ) can be derived from the above

formula, the corresponding expressions at later times are

ρDM(σ) = ρf
DM(σ)

(af
(σ)

a(σ)

)d−1

, PDM(σ) = P f
DM(σ)

(af
(σ)

a(σ)

)d−1

. (4.9)

In our notations, af
(σ) is the scale factor when dark matter freezes out, and the

scaling rule of the energy density and pressure results from the dilution arising from

the universe expansion. Therefore, Friedmann equations (3.8) and (3.9) are affected.

However, more important to us is that the potential of ζ in this regime is nothing but

FDM(σ) = F f
DM(σ)

(af
(σ)

a(σ)

)d−1

. (4.10)

Up to an irrelevant overall scaling, its shape is frozen to that given at the decoupling,

which we know is of a well shape around ζ = 0. As a result, the possibility that

any phase transition would be responsible for the mass generation of dark-matter

particles is ruled out. In fact, when decoupling occurs in the massive phase of ζ, dark

matter remains hot, no matter the sign of ñF − ñB is.

Let us finally comment on the fact that, so far, we have assumed the phase transition

to happen instantaneously, as compared to the time scale necessary for dark-matter par-

ticles to readjust their number density to its equilibrium value. Indeed, while the mass of

dark matter varies with time, the shape of the equilibrium density as defined in eq. (4.3)

also changes with time. If the mass variation is slow enough, dark-matter particles could

adiabatically annihilate into Standard-Model particles (i.e. with nDM following its mass-

dependent equilibrium value), modifying the temperature at which the chemical decoupling

would happen, and therefore the final value of the relic density. A careful solving of Boltz-

mann equation, together with a precise computation of the annihilation cross-section would

be necessary to describe correctly such a situation, which will be addressed in a more com-

plete study of the phenomenon in the future.

4.2 Dark-matter relic energy density

Our aim is now to partially compute the relic energy density after phase transition and

freeze-out, in Cases 1 and 2. In the examples of section 2, the dark-particles spectrum

for ε odd amounts to ñF KK towers of fermionic degrees of freedom, together with their

bosonic superpartners. The former have KK momentum m9/R9 along the Scherk-Schwarz

direction X9, while the latter have shifted momentum (m9 + 1
2)/R9.13

To proceed, we need to specify the velocity distribution of each dark-matter KK species

after the phase transition. Since the lowest string-frame mass |Rd − 1/Rd| of the KK

modes is already much higher than the temperature T(σ), we will simply assume a Dirac

distribution of all velocities i.e. that all dark-matter particles are at rest. The total energy

13This can be seen by taking the limit R0 → +∞ in eq. (2.2) and applying a Poisson summation over k̃9.
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associated to the dark sector has then two origins. On the one hand, for each KK species,

the mass has to be weighted by the particle number obtained when all particles have

decoupled from the thermal bath (see the final constant values reached by the yield in

Cases 1, 2 in figure 6). On the other hand, the vacuum energy of all degrees of freedom

also contributes. The latter is the effective potential at zero-temperature associated to

the KK towers of fermionic and bosonic modes. As can be seen from section 2, such an

energy is exponentially suppressed in R9|Rd − 1/Rd| � 1, since the mass of the zero-

momentum mode along X9 is much larger than the supersymmetry breaking scale M(σ).
14

To be consistent with the fact that we have neglected throughout this paper all such

exponentially suppressed heavy modes contributions, we restrict to the energy arising from

the relic particles at rest.

From the above considerations, the total relic dark-matter energy measured in string

frame can be expressed in terms of the particle numbers and dynamical radii Rd, R9

as follows,15

E(σ) = ñF(af
(σ))

d−1

∫
dd−1~k(σ)

∑
m9

N f
B,m9+ 1

2

(
~k(σ)

)√√√√(Rd− 1

Rd

)2

+

(
m9+ 1

2

R9

)2

−N f
F,m9

(
~k(σ)

)√(
Rd−

1

Rd

)2

+

(
m9

R9

)2
 .

(4.11)

Of course, a precise computation of the cross-section σDM↔SM is required to determine

when decoupling takes place. This is compulsory to derive the value of the scale factor af
(σ)

at this time. Knowledge of σDM↔SM is also necessary to figure out the final value of the

yield (see figure 6) i.e. the distributions N f
B,m9+ 1

2

, N f
F,m9

. However, computing the cross

section and distributions goes beyond the scope of the present paper and we leave this

study for later works.

In the end, the dark-matter contribution to the action for a homogeneous and isotropic

universe is

SDM = −
∫
N(σ)a

d−1
(σ) dxd ρDM(σ) = −

∫
Nad−1dxd ρDM, (4.12)

where we have expressed the result in either string or Einstein frames, with arbitrary

definition of time i.e. generic lapse functions N(σ) and N , respectively. From eq. (3.2), the

relic dark-matter energy densities are

ρDM(σ) = ñF E (η, ζ)

(
af

(σ)

a(σ)

)d−1

, ρDM = ñF

(
af

(σ)

)d−1
E (η, ζ)

e
2
d−2

φ

ad−1
, (4.13)

14In field theory, this vacuum energy is infinite for the bosonic modes alone, infinite for the fermionic

modes alone, but their sum turns out to be finite for arbitrary |Rd−1/Rd|. Technically, this finiteness arises

exactly as that of the free energy at finite temperature evaluated for a supersymmetric spectrum. String

theory yields the same final answer, up to contributions arising from stringy heavy modes not present in

field theory (see [69] for more details).
15If R9 is time-dependent, ζ = lnRd may evolve again once the universe is matter dominated.

– 27 –



J
H
E
P
0
3
(
2
0
1
9
)
1
1
7

where we have defined

E (η, ζ) =

∫
dd−1~k(σ)

(2π)d−1

∑
m9

N f
B,m9+ 1

2

(
~k(σ)

)√√√√(Rd − 1

Rd

)2

+

(
m9 + 1

2

R9

)2

−N f
F,m9

(
~k(σ)

)√(
Rd −

1

Rd

)2

+

(
m9

R9

)2
 .

(4.14)

Of course, varying SDM with respect to either of the scale factors, one derives trivial

pressures for cold dark-matter,

PDM(σ) = 0, PDM = 0. (4.15)

However, in string frame, the dark-matter energy density sources the equations of motion

for ζ = lnRd and M(σ) = 1/(2πR9). In the Einstein frame, it affects the dynamics of ζ,

the no-scale modulus Φ and Φ⊥, as follows from eq. (3.3) and the relation

e2 d−1
d−2

φ(t) = 2πM(t) e
√
d−1Φ⊥ . (4.16)

5 Conclusions and perspectives

The mechanism we have presented for generating non-relativistic dark matter may be

relevant for describing an intermediate era of the cosmological history of the universe. At

earlier times, the standard scenario assumes the existence of a period of inflation followed

by reheating. While the possibility of realizing this picture in a ultraviolet complete theory

is not clear so far [1, 2, 5–8], other possibilities, inherently stringy by nature, have also

been considered. Among these proposals, various pre-big bang scenarios [61, 62, 70–77]

have been analyzed, or Hagedorn phase transitions [57–60] may take place.

Whatever the very early eras look like, assuming that at some later time the uni-

verse is flat, homogeneous, isotropic and thermalized, we have found that the mechanism

that triggers the phase transition responsible for the dark matter mass is preceded by a

“Radiation-like Dominated” evolution, which is an attractor of the dynamics. This means

that the motion of the supersymmetry breaking scale M(t) together with the thermal en-

ergy density and pressure associated to KK towers of states conspire for the universe to

evolve as if it was dominated by pure radiation. In this regime, the temperature T (t)

and the supersymmetry breaking scale M(t) are of the same order of magnitude. How-

ever, when the dark-matter particles suddenly become massive and freeze-out, their energy

density eventually dominates over radiation and a preliminary numerical analysis of the

system seems to yield a rapid increase of the ratio M(t)/T (t). Hence, a large hierarchy

M � T is dynamically generated, as must be the case to account for the smallness of the

cosmic microwave background temperature, as compared to the very large supersymmetry

breaking scale.

For the matter domination to end once dark energy takes over, the motion of M(t)

should come to a halt. We let for future work the proposal of a mechanism responsible
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for the stabilization of M . However, models yielding an extremely small (and positive)

cosmological constant should be very peculiar. It could be that they satisfy conditions

similar, and actually stronger, than those considered in [41, 42, 44, 49–52], which have

vanishing effective potential at 1-loop.
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Abstract

We consider an open-string realisation of N = 2 → N = 0 spontaneous breaking of supersymme-
try in four-dimensional Minkowski spacetime. It is based on type IIB orientifold theory compactified on 
T 2 × T 4/Z2, with Scherk–Schwarz supersymmetry breaking implemented along T 2. We show that in the 
regions of moduli space where the supersymmetry breaking scale is lower than the other scales, there ex-
ist configurations with minima that have massless Bose-Fermi degeneracy and hence vanishing one-loop 
effective potential, up to exponentially suppressed corrections. These backgrounds describe non-Abelian 
gauge theories, with all open-string moduli and blowing up modes of T 4/Z2 stabilized, while all untwisted 
closed-string moduli remain flat directions. Other backgrounds with strictly positive effective potentials ex-
ist, where the only instabilities arising at one loop are associated with the supersymmetry breaking scale, 
which runs away. All of these backgrounds are consistent non-perturbatively.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The question of how moduli come to acquire masses in the true vacuum is central in the con-
text of string phenomenology. Indeed the working hypothesis in much of string phenomenology 
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is that the system is initially supersymmetric, with supersymmetry being a powerful guarantor of 
vacuum stability. Non-perturbative effects then induce a spontaneous breaking of supersymme-
try at a scale much below the string scale Ms [1–6], introducing mild instabilities in only a very 
limited number of moduli that lead to phenomenologically desirable effects such as the Brout-
Englert-Higgs mechanism. An alternative and arguably more honest approach is to implement 
spontaneous supersymmetry breaking from the outset, at the classical level in flat space, and rely 
on perturbative calculations to derive interesting quantum physics. In this approach, loop correc-
tions generate an effective potential for the entire system, in which one must seek local minima 
for the moduli. Moreover, very few of these minima would be expected to yield a cosmological 
constant that is close to zero.

This general route was advocated in Refs. [7–17], and the question of stability was addressed 
in the heterotic string in [9,10,18–22], and more recently in the type I framework in [23,24]. 
In all these works, supersymmetry breaking was implemented by the string versions [25–37] of 
the Scherk–Schwarz mechanism [38], with the effective potential being studied directly using 
string perturbation theory at one loop. The type I framework has the advantage of providing via
T-dualities geometric descriptions of open-string moduli as positions of D-branes in the internal 
space [39]. The purpose of this paper is to demonstrate how the discussion can be extended to 
more phenomenologically interesting cases that also contain orbifolds.

Let us begin by making some general remarks and observations about the setup. In prac-
tice, the scale M of spontaneous supersymmetry breaking will be assumed to be lower than 
the other scales present, namely the string scale Ms = 1/

√
α′, and the other scales arising 

from compactification. In other words the directions involved in the Scherk–Schwarz super-
symmetry breaking are large compared to 

√
α′ and the other directions (or their T-duals). This 

restriction implies that the one-loop potential is dominated by the massless states and their 
Kaluza-Klein (KK) modes along the large “Scherk–Schwarz directions”, and its dependence 
on the moduli fields becomes tractable. Moreover, any potential tree-level instabilities occurring 
when M = O(Ms) [40,41], which are related to the Hagedorn transition, are avoided. Under this 
assumption, in the string frame the effective potential will inevitably take the following form at 
an extremal point [7–16,18–24]:

V = ξ(nF − nB)Md + O
(
(MsM)

d
2 e−2πc

Ms
M

)
, (1.1)

where d is the spacetime dimension. In this expression, nF and nB are the numbers of precisely 
massless fermionic and bosonic degrees of freedom, while ξ > 0 is a constant that accounts for 
the KK towers. Moreover, the exponentially suppressed terms arise from all other string states, 
where c is an O(1) moduli-dependent quantity, with the exponential factor corresponding to their 
Yukawa potential across the compact Scherk–Schwarz volume.1

Now let us summarise the specific results for toroidal compactification in type I found in 
Ref. [23], and then anticipate and review those that we will find here. Ref. [23] presented the 
rules for perturbatively consistent models to be tachyon free, which were based upon the fact 
that, when an odd number of Dp-branes is stacked on an orientifold plane (Op-plane), the po-
sition of one of the branes is rigid [42], thus enhancing the stability of the setup. Most of these 
configurations yield nF − nB < 0, while some others satisfy nF − nB = 0, which is an interesting 

1 Note that throughout our work, our use of the words “extremal point of the potential” is somewhat abusive, since V
is in fact extremal with respect to all moduli except M itself, which has a tadpole unless nF = nB. In addition when we 
assert properties such as “tachyon free”, “flat direction”, and so forth, these properties are all to be understood at one 
loop, and when all exponentially suppressed corrections are neglected.
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choice for generating a small cosmological constant. The idea being that, if the one-loop effective 
potential is exponentially suppressed, then it may conspire with higher loops effects to stabilise 
M and the dilaton, and eventually yield a cosmological term smaller than in generic models. 
However, after imposing all known non-perturbative consistency conditions [43–47] on configu-
rations satisfying nF − nB ≥ 0 for d ≥ 5, it was found that there is only one survivor which has 
dimension d = 5, and nF − nB = 8 × 8 [48]. T-dualizing the internal T 5, it corresponds to ren-
dering all of the 32 D5-branes2 rigid, by distributing them one by one on 32 distant O5-planes. 
The open-string “gauge group” denoted SO(1)32 is trivial, where SO(1) = {e}, with e being the 
neutral element.

In the present work, we extend the above analysis to d = 4 dimensions, when N = 2 super-
symmetry is spontaneously broken to N = 0. We show that there exist non-perturbatively con-
sistent models that are tachyon free at one loop, with exponentially suppressed (nF − nB = 0) or 
positive (nF − nB > 0) potentials V . We will construct them in the framework of the Bianchi–
Sagnotti–Gimon–Polchinski (BSGP) model [49–51], with the type I theory being compactified 
on the partially orbifolded space T 2 × T 4/Z2. We choose the Scherk–Schwarz mechanism to 
act along the T 2 [30–37,53,54], which implies that the entire spectrum (including the “twisted 
states”) is sensitive to the supersymmetry breaking. As well as the usual closed strings, the model 
contains open strings that have Neumann (N) (or Dirichlet (D)) boundary conditions when they 
are attached to one of the 32 D9-branes (or 32 D5-branes) [39]. There are corresponding moduli 
fields of various kinds, which will be the focus of our attention. Their masses arise at the quan-
tum level once supersymmetry is broken, and can be studied from various perspectives. Indeed 
one of the more general aspects of this paper is the array of tools that can be brought to bear on 
these questions. These will allow us to make the following conclusions about the behaviour of 
the zoo of moduli:

• Applying suitable T-dualities, all Wilson lines (WL’s) on the worldvolumes of the D9- and 
D5-branes can be mapped into positions of 32 + 32 D3-branes. The one-loop effective potential 
is extremal with respect to these moduli when all D3-branes sit on O3-planes. We will derive the 
signs and magnitudes of the quadratic mass terms at one loop using two different (but related) 
methods. The first, which is purely algebraic, is based on the knowledge of the massless spectrum 
that is charged under the Cartan U(1)’s associated with the WL’s. The second method is to 
evaluate the one-loop Coleman–Weinberg effective potential with WL’s switched on, and take 
the double-derivative at the origin of the WL moduli space. The mass matrices of these states is 
derived also taking into account the effect of six-dimensional anomaly-induced masses.

• In general the open-string sector also contains moduli in the ND sector, whose condensa-
tion if they are tachyonic would correspond to “recombinations of branes” [55–58]. One way to 
determine the masses of these states when the D3-branes sit on O3-planes is to compute the two 
points functions of “boundary changing vertex operators”. The computation of such amplitudes 
in non-supersymmetric backgrounds is an interesting and delicate question, that will be presented 
in a companion paper [59].

• The closed strings also yield moduli, namely the internal metric and the dilaton in the 
Neveu–Schwarz-Neveu–Schwarz (NS-NS) sector, as well as the internal components of the 
Ramond-Ramond (RR) two-form. The expression of the one-loop potential V as a function of 
the metric can be derived explicitly. However, because this dependence becomes trivial when the 

2 We make the choice to call “branes” objects that live in the parent type IIB theory, i.e. before any orientifold (or 
orbifold) action is implemented. In other words, there are as many “branes” as Chan–Paton indices. In the descendant
theories, these “branes” are non-dynamically independent objects.
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potential is extremal with respect to the open-string WL’s (see Eq. (1.1)), all degrees of free-
dom of the internal metric are flat directions (up to exponentially suppressed terms), except the 
supersymmetry breaking scale M itself when nF �= nB. Of course, the dilaton remains a flat di-
rection at one loop. To study the dependence of V on the RR moduli, we use type I/heterotic 
duality [60–67], which maps the RR two-form to the antisymmetric tensor. At one loop, the het-
erotic effective potential receives contributions from winding modes running in the virtual loop, 
whose masses depend on the antisymmetric tensor. Up to exponentially suppressed terms, there 
is no additional dependence of the potential on this tensor. Hence, because winding modes on 
the heterotic side are dual to non-perturbative D1-branes in type I, we will conclude that V does 
not depend on the RR moduli (up to the exponentially suppressed terms).

• Finally the moduli arising in the twisted closed-string sector belong to the quaternionic 
scalars of the 16 twisted hypermultiplets localized at the 16 fixed points of T 2 × T 4/Z2 in the 
BSGP model. Thanks to the generalized Green–Schwarz mechanism taking place in six dimen-
sions [51], between two and sixteen of these moduli acquire a large supersymmetric mass. We 
do not analyze the masses, which are generated at one loop by the supersymmetry breaking, of 
the remaining (up to fourteen) twisted quaternions.

The plan of this work is as follows. In Sect. 2, we describe the BSGP model on T 2 × T 4/Z2, 
with the Scherk–Schwarz mechanism implemented along T 2 to break N = 2 → N = 0. In par-
ticular, we derive the massless spectrum and the one-loop effective potential when all D3-branes 
(in suitable T-dual descriptions) sit on O3-planes. In Sect. 3, we determine the mass terms of 
the open-string WL’s, the effects of the Green–Schwarz mechanism, and derive the flatness of 
the untwisted closed-string sector moduli. In Sect. 4, we first discuss the stability/instability 
of representative examples of brane configurations, which belong to distinct non-perturbatively 
consistent components of the open-string moduli space [51].

We then perform a full scan of the hundreds of billions of possible distributions of the 
D3-branes on the O3-planes, which correspond to extremal points of the one-loop effective 
potential.1 We find that at the one-loop level, there are only two non-perturbatively consistent 
marginally stable setups with exponentially suppressed effective potential (nF − nB = 0). All 
open-string moduli are stabilised, together with the blowing up modes of the orbifold, while 
all untwisted closed-string moduli are flat directions. The anomaly free gauge symmetries are 
U(1) × SU(2) × SU(5)2 × SU(7) and U(1) × SU(3) × SU(5)2 × SU(6). There also exist four 
configurations that are tachyon free and have positive potential at one loop (nF − nB > 0), im-
plying that M runs away. There are two further brane distributions that are tachyon free, but 
modulo possible instabilities associated with moduli existing in the ND sector: the relevant one-
loop masses will be studied elsewhere [59]. One of these models has nF − nB = 0, while the 
other has nF − nB > 0.

Our conclusions can be found in Sect. 5. The core of the paper is accompanied by Appen-
dices A and B, which collect those technical details required for Sects. 2 and 3, respectively.

2. N = 2 → N = 0 open-string model

In this section, we will describe the broad features of toroidal orbifold models of type I that 
realize N = 2 → N = 0 spontaneous breaking of supersymmetry in four dimensions. We will 
consider the partition function that takes into account arbitrary marginal deformations arising 
from the NN and DD sectors of the open strings, as well as from the NS-NS closed-string sector 
i.e. the internal metric. We also discuss the associated spectrum of the states that are massless at 
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tree level. This will prepare us for the following sections, where we consider the response of the 
system to the breaking of supersymmetry, in particular its one-loop stability.

2.1. The supersymmetric setup

Original BSGP model: Before implementation of the spontaneous breaking of supersymmetry, 
our framework is the Bianchi–Sagnotti–Gimon–Polchinski model [49–51] compactified down to 
four dimensions. It is obtained by applying an orientifold projection to the type IIB theory, with 
background

R1,3 × T 2 × T 4

Z2
, (2.1)

where we will take Minkowski spacetime to span the directions X0, X1, X2, X3, while the T 2

torus directions are X4, X5. The remaining coordinates, corresponding to the T 4 torus, are 
twisted by the Z2 orbifold generator,

g : (X6,X7,X8,X9) −→ (−X6,−X7,−X8,−X9) , (2.2)

implying that the model has N = 2 supersymmetry. The background contains orientifold planes, 
which are the fixed loci of the orientifold generator � and of the combination �g. Hence, an 
O9-plane lies along the nine spatial directions (the “fixed locus” of �), while an O5-plane is 
located at each of the 16 fixed points of T 4/Z2. In order to cancel their RR charges, the open-
string sector comprises 32 D9-branes, as well as 32 D5-branes transverse to the T 4/Z2 factor. 
Consistency conditions require the algebra of Chan–Paton factors to correspond to unitary or 
symplectic gauge groups rather than orthogonal ones [50]. The simplest configuration, which has 
a U(16) ×U(16) open-string gauge group, is obtained when no WL deformations are introduced 
on the worldvolumes of the D9-branes and D5-branes, and when all D5-branes are coincident on 
a single O5-plane. The only marginal deformations in this system would be those associated with 
the NS-NS internal metric GIJ , I, J = 4, . . . , 9, which we can split into its T 2 components 
GI ′J ′ , I ′, J ′ = 4, 5, and T 4 components GIJ , I, J = 6, . . . , 9.

At one loop, the partition function includes contributions arising from worldsheets of closed 
strings and open strings, with the topologies of a torus and Klein bottle, and an annulus and 
Möbius strip respectively. Accordingly, the one-loop effective potential (which of course van-
ishes at this stage) involves four vacuum-to-vacuum amplitudes T , K, A, M, as shown in 
Eq. (A.2). Using the conventions for lattices and characters given in Appendix A.1, these contri-
butions in the “undeformed” BSGP model are displayed in Appendix A.2.

Marginal deformations: The original model with U(16) × U(16) open-string gauge group can 
be deformed by turning on (i.e. giving a vev to) any of the available marginal deformations 
arising from the open-string or closed-string sectors. In the effective supersymmetric theory these 
correspond to exactly F - and D-flat directions. Let us first enumerate them and then describe 
them in detail:

(i) Generic positions of the D5-branes in T 4/Z2.
(ii) Wilson lines along T 2 for the gauge group associated with the D5-branes (in the DD sec-

tor).
(iii) WL’s along all of the six internal directions for the gauge group generated by the D9-branes 

(in the NN sector). In fact “Wilson line” is a misnomer along T 4/Z2 since we will see that 



6 S. Abel et al. / Nuclear Physics B 957 (2020) 115100

non-trivial vev’s of these moduli reduce the rank of the gauge group. It is only in the N = 4
parent theory, without the orbifold generated by g, that these moduli are truly WL’s.

(iv) Non-trivial vev’s of the moduli in the ND sector. When the latter condense, the background 
can be described in terms of brane recombinations or magnetized branes [55–58].

(v) Non-trivial vev’s of the RR moduli, namely the 2-form components CI ′J ′ , I ′, J ′ = 4, 5, 
and CIJ , I, J = 6, . . . , 9.

(vi) Non-trivial vev’s of the quaternionic scalars of the 16 twisted hypermultiplets in the closed-
string sector. These are the blowing up modes of the orbifold, which are localized at the 16 
fixed points of T 4/Z2. When they are turned on, the T 4/Z2 is deformed into a smooth K3
manifold.

In the present work, we will not consider deformations of the ND sector moduli (iv).3 On the 
contrary, we will justify that the RR moduli (v) do not yield relevant effects. We will also dis-
cuss how the twisted quaternionic moduli in (vi) acquire supersymmetric masses thanks to a 
generalized Green–Schwarz mechanism.

Let us start the detailed discussion of actual deformations, with the moduli (i) corresponding 
to the positions along directions X6, X7, X8, X9 of the 32 D5-branes of the type IIB theory. 
These must be symmetric with respect to the generators � and g, hence the orientifold projection 
requires that if a brane is located at XI , I = 6, . . . , 9, then a distinct brane sits at −XI [39].4

Similarly, the Z2 twist projection correlates the position of a brane at XI , with that of a brane 
(distinct or otherwise) at −XI . Broadly speaking, in the type I string theory, D5-brane positions 
in T 4/Z2 vary in 4’s. For instance, if 2n D5-branes are sitting at a fixed point, they support a 
gauge symmetry U(n) that can be broken to U(n −2k) ×USp(2k), with rank reduced to n −k, if 
2k branes move away from the fixed point together with their 2k “mirror branes” at the opposite 
coordinates. Hence the moduli space splits into disconnected components characterized by the 
value of 2n modulo 4, which can be either 0 or 2. In other words, the parity of n matters.5

The Wilson lines (ii) along the T 2 of the D5 gauge groups parameterise the Coulomb branch 
of the gauge symmetry, and therefore preserve the rank. These also have a geometric interpreta-
tion. Upon T-dualizing T 2, the D5-branes become D3-branes transverse to the six-dimensional 
internal space, and the WL’s can then be thought of as the positions of the D3-branes along the 
T-dual torus T̃ 2 of coordinates X̃4, X̃5. Moreover, the 16 O5-planes become 64 O3-planes sitting 
at the fixed loci of �I45g, where I45 is the inversion (X̃4, X̃5) → (−X̃4, −X̃5). Similarly to the 
deformations (i), the position of a D3-brane in X̃I ′

, I ′ = 4, 5, is correlated with that of a distinct 
partner D3-brane at −X̃I ′

. Hence, brane positions along T̃ 2/I45 vary in 2’s. In this T-dual geo-
metric picture, the six-dimensional internal space can be thought of as a “box”, a generalization 
of a one-dimensional segment, with an O3-plane sitting at each of its 64 corners. This box along 
with the D3-branes sitting on O3-planes is depicted in Fig. 1a.

In the original type I picture, D5-branes and D9-branes are on an equal footing, in the sense 
that a T-duality on T 4/Z2 turns the former into the latter and vice versa. Hence, the moduli 

3 A subsequent work [59] will be entirely devoted to the delicate computation of their masses generated at one loop 
when supersymmetry is spontaneously broken.

4 Before implementation of the Z2 orbifold action, this can be understood by T-dualizing T 4 in order to translate the 
D5-brane positions into D9-brane Wilson lines along the T-dual torus. These WL’s are associated with orthogonal gauge 
groups [39].

5 Even though configurations with an odd number of D5-branes sitting on an O5-plane are symmetric under XI →
−XI , they are not allowed due to the unitary structure of the gauge group factors.
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Fig. 1. Geometric T-dual description of the moduli arising from the NN and DD sectors of the orientifold theory. (For 
interpretation of the colours in the figure, the reader is referred to the web version of this article. This is valid for all 
subsequent figures in this article as they follow the same colour code.)

(iii) associated with the gauge group induced by the D9-branes can also be given a geometric 
interpretation in terms of positions of D3-branes, upon T-dualizing all the directions of T 2 ×
T 4/Z2. An example of a configuration in which the resulting D3-branes sit on O3-planes is 
shown in Fig. 1b, where T̃ 4 denotes the T-dual four-dimensional torus.
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Despite the fact that Figs. 1a and 1b refer to T-dual theories, it is convenient to represent all the 
D-branes on a single picture, as shown in Fig. 1c. Although this depiction is certainly abusive, 
it turns out to be very useful to understand and manipulate various moduli configurations. In 
practice, we will refer interchangeably to “positions” and “Wilson lines” bearing in mind that 
they refer to the appropriate T-dual pictures.

Let us now define the Wilson lines in detail. We should repeat that the denomination “Wilson 
line” is only fully justified along the T 2, or in the parent type I model, when no orbifold action 
is implemented. In such an N = 4 theory, a Wilson line matrix living in the Cartan subgroup 
of the D9-brane SO(32) gauge group can be associated with every direction in T 2 × T 4. For 
I = 4, . . . , 9, it can be parameterised as

WD9
I = diag

(
e2iπaI

α , α = 1, . . . ,32
)

= diag
(
e2iπaI

1 , e−2iπaI
1 , e2iπaI

2 , e−2iπaI
2 , . . . , e2iπaI

16 , e−2iπaI
16

)
,

(2.3)

where α labels the 32 D9-branes, and the corresponding D3-brane positions in T̃ 2 × T̃ 4 are 
X̃I = 2πaI

α . In the orbifold model, the number of degrees of freedom of the matrices associated 
with the T 4/Z2 directions is reduced, and there are nine disconnected components in the moduli 
space corresponding to different numbers of fixed points supporting 2 modulo 4 branes:

• The first component of moduli space contains a Higgs branch parameterised by

WD9
I = diag

(
e2iπaI

1 , e−2iπaI
1 , . . . , e2iπaI

8 , e−2iπaI
8 , e−2iπaI

1 , e2iπaI
1 , . . . , e−2iπaI

8 , e2iπaI
8
)
,

(2.4)

where I = 6, . . . , 9. Generically this yields a gauge symmetry USp(2)8 of rank 8, whose 
Coulomb branch is parameterised by the WL matrices I ′ = 4, 5,

WD9
I ′ = diag

(
e2iπaI ′

1 , e−2iπaI ′
1 , . . . , e2iπaI ′

8 , e−2iπaI ′
8 , e2iπaI ′

1 , e−2iπaI ′
1 , . . . , e2iπaI ′

8 , e−2iπaI ′
8
)
,

(2.5)

and along which the gauge symmetry is reduced at generic points to U(1)8. However, USp(2)8

can be initially enhanced up to U(16) of rank 16 at the points aI
1 = · · · = aI

8 ∈ {0, 12 }, I =
6, . . . , 9, and the Coulomb branch is then parameterised by

WD9
I ′ = diag

(
e2iπaI ′

1 , e−2iπaI ′
1 , e2iπaI ′

2 , e−2iπaI ′
2 , . . . , e2iπaI ′

16 , e−2iπaI ′
16
)

(2.6)

for I ′ = 4, 5. This leads generically to an Abelian symmetry U(1)16, with the 8 positions in 
T̃ 4/Z2 stabilised.6

• A second component of the moduli space contains a Higgs branch that may be parameterised 
as

WD9
I = diag

(
e2iπaI

1 , e−2iπaI
1 , . . . , e2iπaI

7 , e−2iπaI
7 , ηI

8, ηI
8,

e−2iπaI
1 , e2iπaI

1 , . . . , e−2iπaI
7 , e2iπaI

7 , ηI
16, η

I
16

)
,

where ηI
8, ηI

16 ∈ {1,−1} , (η6
8, η

7
8, η

8
8, η

9
8) �= (η6

16, η
7
16, η

8
16, η

9
16) .

(2.7)

6 From the gauge theory perspective, they acquire tree level Higgs masses. From the geometric point of view, two pairs 
of D3-branes at a fixed point of T̃ 4/Z2 can only move away from it if the coordinates of the pairs along T̃ 2/I45 match, 
in order to respect the Z2 symmetry in T̃ 4. When this is the case for all 8 pairs of pairs, the Coulomb branch takes 
consistently the form given in Eq. (2.5).
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Generically, the gauge symmetry is USp(2)7 × U(1)2, which can again be enhanced up to 
U(15) × U(1). In the former case, the gauge group in the Coulomb branch is U(1)9 for generic 
matrices WD9

I ′ , while in the second case it is U(1)16 with all positions in T̃ 4/Z2 stabilised.
• There are seven more disconnected components of moduli space. In the ultimate one, the 

Higgs branch is zero-dimensional, the positions of all 32 branes in T̃ 4/Z2 being rigid. To be 
specific, we have

WD9
I = diag

(
ηI

1, ηI
1, . . . , ηI

16, η
I
16

)
,

where ηI
α ∈ {1,−1} , α = 1, . . . ,16 , (η6

α, η7
α, η8

α, η9
α) �= (η6

β, η7
β, η8

β, η9
β) , α �= β .

(2.8)

There is only a Coulomb branch with the gauge symmetry always being U(1)16, regardless of 
the WL’s along T 2,

WD9
I ′ = diag

(
e2iπaI ′

1 , e−2iπaI ′
1 , e2iπaI ′

2 , e−2iπaI ′
2 , . . . , e2iπaI ′

16 , e−2iπaI ′
16
)
. (2.9)

Similarly, the positions in T̃ 2 × T 4/Z2 of the D3-branes T-dual to D5-branes α = 1, . . . ,32
can be written as X̃I ′ = 2πbI ′

α , I ′ = 4, 5, XI = 2πbI
α , I = 6, . . . , 9. They span 9 disconnected 

components that admit various Higgs, Coulomb or mixed Higgs/Coulomb branches. The latter 
can be parameterised with matrices WD5

I exactly analogous to those of the D9-branes, up to the 
exchange aI

α → bI
α .

Discrete deformations: In what follows we will be mostly interested in configurations where all 
branes are located at the corners of the appropriate six-dimensional “boxes”.7 In order to write 
the corresponding one-loop amplitudes, we label the 64 corners by a pair of indices ii′, where 
i ∈ {1, . . . , 16} refers to the T 4/Z2 (or its T-dual counterpart) fixed points, and i′ ∈ {1, . . . , 4}
specifies the T̃ 2/I45 fixed points. Fig. 1d shows schematically how the labelling works. At a given 
corner ii′, we denote Nii′ the number of D3-branes T-dual to D9-branes, and Dii′ the number 
of D3-branes T-dual to D5-branes. In this setup, the Wilson lines/D3-brane positions 2πaI

α and 
2πbI

α , α = 1, . . . , 32, associated with the D9-branes and D5-branes take values equivalent to the 
coordinates of some corner ii′, which we denote by the six-vectors 2π 	aii′ . It is also convenient 
to write 	aii′ ≡ (	ai′ , 	ai), where 	ai′ , 	ai are two- and four-vectors, whose components take values 0 
or 1

2 . With these definitions, the amplitudes A and M arising from the open-string sector are as 
shown in Appendix A.3. In the closed-string sector, the amplitudes T and K are independent of 
the WL’s/brane positions, and their expressions are simply those of the “undeformed” U(16) ×
U(16) BSGP model (see Appendix A.2). On the contrary, A and M involve the numbers of 
branes Nii′ , Dii′ , as well as their counterparts RN

ii′ and RD
ii′ under the orbifold action. These 

coefficients can be parameterised as

Nii′ = nii′ + n̄ii′ , Dii′ = dii′ + d̄ii′ , RD
ii′ = i(nii′ − n̄ii′) , RD

ii′ = i(dii′ − d̄ii′) ,

(2.10)

where nii′ = n̄ii′ and dii′ = d̄ii′ are positive integers. The tadpole cancellation condition then 
implies

7 We will see in Sect. 3 that in the presence of spontaneous supersymmetry breaking, such configurations yield extrema 
of the effective potential.
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∑
i,i′

nii′ = 16 ,
∑
i,i′

dii′ = 16 , (2.11)

which leads to the open-string gauge group

Gopen =
∏

ii′/nii′ �=0

U(nii′) ×
∏

jj ′/djj ′ �=0

U(djj ′) . (2.12)

Non-perturbative consistency: Although consistent at the perturbative level, the models con-
structed so far must satisfy additional requirements to remain valid at the non-perturbative 
level [51]. To state these additional constraints, let us first consider the BSGP model in six dimen-
sions. We have seen that the moduli space of the positions of the D5-branes in T 4/Z2 splits into 
9 disconnected pieces. These are characterized by the even number R = 0, 2, . . . , 16 of pairs of 
D5-branes mirror to each other with respect to � that have rigid positions at distinct fixed points 
of T 4/Z2. To be consistent non-perturbatively, a model must have R = 0, 8 or 16. When R = 8, 
the mirror pairs must sit on the 8 corners of one of the hyperplanes XI = 0 or π , I = 6, . . . , 9. 
Similarly, the number of mirror pairs of D5-branes T-dual to the D9-branes with rigid positions 
in T̃ 4/Z2 must be R̃ = 0, 8 or 16. Hence, there are only 3 × 3 fully consistent components in the 
moduli space, which can be further reduced to 6 by T-duality8:

(R, R̃) = (0,0) , (0,8) , (0,16) , (8,8) , (8,16) , (16,16) . (2.13)

Compactifying down to four dimensions and T-dualizing T 2, there are no additional constraints 
on the distribution of D3-branes. The latter, including the 2R + 2R̃ ones with rigid positions in 
T 4/Z2 or T̃ 4/Z2, can move in pairs along the directions of T̃ 2/I45.

2.2. Spontaneous breaking of supersymmetry

What remains to be implemented is the spontaneous breaking of N = 2 supersymmetry. This 
can be done via a stringy version [30–37] of the Scherk–Schwarz mechanism [38]. To this end, 
we consider an additional Z2 orbifold shift on the fifth direction, X5 → X5 + π , coupled to 
(−1)F , where F is the spacetime fermion number. Denoting the integer momenta along T 2 in 
the “undeformed” supersymmetric BSGP model by 	m′ ≡ (m4, m5), the combined effects of the 
continuous deformations considered so far plus the extra freely acting orbifold action amounts 
to the following shifts:

	m′ −→ 	m′ + F 	a′
S in the closed-string sector ,

	m′ −→ 	m′ + F 	a′
S + 	a′

α − 	a′
β in the NN sector ,

	m′ −→ 	m′ + F 	a′
S + 	b′

α − 	b′
β in the DD sector ,

	m′ −→ 	m′ + F 	a′
S + 	a′

α − 	b′
β in the ND sector .

(2.14)

In the above, we have defined

	a′
S =

(
0,

1

2

)
, (2.15)

while 	a′
α ≡ (a4

α, a5
α) and 	b′

α ≡ (b4
α, b5

α), α = 1, . . . , 32, denote the WL’s along T 2. Equivalently, 
in the D3-brane picture where 2π 	a′

α (or 2π 	b′
α) and 2π 	a′

β (or 2π 	b′
β ) are the positions of the two 

8 They can be connected to each other by deforming T 4/Z2 into smooth K3 manifolds [51].
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ends of the open strings in T̃ 2, the components of 	m′ are winding numbers. The key point is of 
course that the gravitini have acquired masses

M =
√

G55

2
Ms , (2.16)

showing that the breaking of N = 2 → N = 0 supersymmetry is spontaneous. Moreover, M
itself is one of the marginal deformations, provided it is less than the critical value of order of 
the string scale Ms, at which a tree-level tachyonic instability arises [40,41]. In the language of 
supergravity, the background is then a “no-scale model” [68], which means that the tree-level 
potential is positive, semi-definite, and admits a flat direction parameterised by M .

As described above, when the WL deformations are discrete (the D3-branes sit on the O3-
planes of the six-dimensional boxes), the vectors 	a′

α and 	b′
α take values equal to the appropriate 

	ai′ , i′ = 1, . . . , 4. This has an important consequence for the light spectrum, because KK modes 
in the open-string sector are massless if

	m′ + F 	a′
S + 	ai′ − 	aj ′ = 	0 . (2.17)

This equation admits solutions for both bosons (F = 0) and fermions (F = 1) depending on the 
relative displacements. This will be detailed in the next paragraph.

The potential and tree-level massless spectrum: The one-loop effective potential in the non-
supersymmetric case no longer vanishes. For discrete WL deformations, the amplitudes T , K, 
A and M take the form displayed in Appendix A.4. They are expressed in terms of partition 
functions, from which we can derive the massless bosonic and fermionic spectra. To this end, it 
is useful to specify the labelling of the T̃ 2/I45 fixed points as follows: we will denote by i′ = 1, 3
those located at the origin of the T-dual Scherk–Schwarz direction, X̃5 = 0, and by i′ = 2, 4 those 
at X̃5 = π (see Fig. 1d). From Eqs. (A.23)–(A.26), we can then read off the massless spectrum of 
the N = 2 → N = 0 model when the WL’s take discrete values as described above. Knowledge 
of the massless-state representations will be important to derive conditions for the stability of the 
one-loop potential using a simple algebraic method in Sect. 3.1.

In the open-string sector, the massless states arise from characters appearing in A and M at 
the origin of the T 2 and T 4 lattices. Eq. (2.17), which defines the origin of the T 2 lattice, implies 
that massless bosons require the ends of the strings (in the D3-brane picture) to be located on 
fixed points of coordinates 	aii′ ≡ (	ai′ , 	ai) and 	ajj ′ ≡ (	aj ′ , 	aj ) satisfying

massless bosons: 	ai′ − 	aj ′ = 	0 ⇐⇒ i′ = j ′ . (2.18)

On the contrary, massless fermions require

massless fermions: 	ai′ − 	aj ′ = ∓	a′
S ⇐⇒

⎧⎨
⎩

i′ = 2i′′ − 1 , j ′ = 2i′′
or
i′ = 2i′′ , j ′ = 2i′′ − 1

, i′′ = 1,2 ,

(2.19)

implying that in the T̃ 2/I45, the string is stretched along the T-dual Scherk–Schwarz direction 
X̃5. For such states the contributions to the mass induced by the spontaneous breaking of super-
symmetry and by the WL’s cancel exactly, i.e. the Superhiggs and the Higgs mechanisms offset 
each other. In the NN and DD sectors, whose contributions to the partition functions involve 
respectively T 4 momentum and T 4 winding number lattices (in the D9- and D5-brane picture), 
massless states must also satisfy
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Fig. 2. Open-string massless modes.

massless NN or DD states: 	ai − 	aj = 	0 ⇐⇒ i = j . (2.20)

Finally, because the ND sector does not involve T 4 lattices, i and j need not be correlated to 
yield massless states, hence

massless ND states: i, j arbitrary . (2.21)

To illustrate the above considerations, Fig. 2a displays massless states arising in the NN sector 
(green) and DD sector (orange) that are bosonic (solid strings) or fermionic (dashed strings). 
Similarly, Fig. 2b shows massless strings in the ND sector (khaki) which are bosonic (solid 
strings) or fermionic (dashed strings).

At the origin of the lattices appearing in the amplitude A + M, the massless states arise 
from the constant terms in the combinations of characters O4/η

4, V4/η
4, S4/η

4, C4/η
4 (see 

Eqs. (A.25), (A.26)) (i.e. the terms q0 in the notations of Appendix A, where q = e−πτ2 and τ2
is the Schwinger parameter).9 These combinations are dressed with coefficients which can be 
expressed using the unitary parameterisation (2.10). For the bosons and fermions, the relevant 
characters are respectively

Bosons:
1

η8

∑
i,i′

{
V4O4

[
nii′ n̄ii′ + dii′ d̄ii′

]

9 O4, V4, S4, C4 are SO(4) affine characters arising from the breaking of the ten-dimensional little group SO(8) →
SO(4) × SO(4) imposed by the Z2-orbifold action.
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+ O4V4

[
nii′(nii′ − 1)

2
+ n̄ii′(n̄ii′ − 1)

2
+ dii′(dii′ − 1)

2
+ d̄ii′(d̄ii′ − 1)

2

]

+ O4C4

∑
j

[
1 − e4iπ 	ai ·	aj

2

(
nii′dji′ + n̄ii′ d̄j i′

)+ 1 + e4iπ 	ai ·	aj

2

(
nii′ d̄j i′ + n̄ii′dji′

)]}
,

Fermions:
1

η8

∑
i,i′′

{
C4C4

[
ni,2i′′−1n̄i,2i′′ + n̄i,2i′′−1ni,2i′′ + di,2i′′−1d̄i,2i′′ + d̄i,2i′′−1di,2i′′

]
+ S4S4

[
ni,2i′′−1ni,2i′′ + n̄i,2i′′−1n̄i,2i′′ + di,2i′′−1di,2i′′ + d̄i,2i′′−1d̄i,2i′′

]
(2.22)

+ S4O4

∑
j

[
1 − e4iπ 	ai ·	aj

2

(
ni,2i′′−1dj,2i′′ + n̄i,2i′′−1d̄j,2i′′ + ni,2i′′dj,2i′′−1 + n̄i,2i′′ d̄j,2i′′−1

)

+ 1 + e4iπ 	ai ·	aj

2

(
ni,2i′′−1d̄j,2i′′ + n̄i,2i′′−1dj,2i′′ + ni,2i′′ d̄j,2i′′−1 + n̄i,2i′′dj,2i′′−1

)]}
.

We can immediately read off from these formulae the numbers of massless bosonic and fermionic 
open-string degrees of freedom:

n
open
B = 4

[
2
∑
ii′

(
n2

ii′ + d2
ii′
)

+
∑
i,i′,j

nii′dji′ − 32

]
,

n
open
F = 4

[
4
∑
i,i′′

(
ni,2i′′−1ni,2i′′ + di,2i′′−1di,2i′′

)+ ∑
i,i′′,j

(
ni,2i′′−1dj,2i′′ + ni,2i′′dj,2i′′−1

)]
.

(2.23)

We can also deduce the representations in which these massless modes are organized. For the 
bosons, the first line in Eq. (2.22) corresponds to the bosonic content of N = 2 vector multi-
plets in the adjoint representations of the U(nii′) and U(dii′) gauge groups. The second line 
is associated with the scalars of N = 2 hypermultiplets in the antisymmetric ⊕ antisymmetric
representations of U(nii′) and U(dii′). Finally, the last line corresponds to the scalars of hyper-
multiplets in the ND sector, which are in bifundamental representations of U(nii′) × U(dji′). 
To be more precise, they are in tensor products of fundamental ⊗ fundamental or fundamental
representations, depending on the parity of 4	ai · 	aj ∈ Z. The massless fermions in the NN, DD 
and ND sectors are those of hypermultiplets, all in various bifundamental representations of uni-
tary gauge groups supported on stacks of D3-branes separated along the T-dual Scherk–Schwarz 
direction (and possibly for the ND states also along T 4 or T̃ 4).

For later use in Sect. 3.1, it is relevant to perform a precise counting of the representations 
of each individual unitary gauge group factor. In Table 1 we gather the massless states charged 
under U(ni,2i′′−1) and U(ni,2i′′) for given i = 1, . . . , 16 and i′′ = 1, 2, which are found from 
Eq. (2.22). The counting for the gauge groups U(di,2i′′−1) and U(di,2i′′), which are generated by 
the D5-branes, is of course identical, up to the exchange of all coefficients nkk′ ↔ dkk′ .

In the closed-string sector, all the initially massless fermions in the BSGP model acquire a 
mass M after implementation of the Scherk–Schwarz mechanism. The massless spectrum thus 
reduces to the bosonic one encountered in the BSGP model, and is more easily described from a 
six-dimensional point of view. In the untwisted sector, we have the components of (G + C)μ̂ν̂ , 
μ̂, ν̂ = 2, . . . , 5, and the internal components (G + C)IJ , I, J = 6, . . . , 9, which yield in light-
cone gauge (6 − 2) × (6 − 2) + 4 × 4 degrees of freedom. Moreover, there are also the scalars of 
the 16 twisted hypermultiplets. Hence, we obtain a total of
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Table 1
Representations of U(ni,2i′′−1) and U(ni,2i′′ ) into which the massless degrees of freedom 
are organized.

Massless representations of U(ni,2i′′−1)

Bosonic degrees of freedom: Fermionic degrees of freedom:

• 4 adjoint • 8ni,2i′′ (fundamental ⊕ fundamental)

• 4 (antisymmetric ⊕ antisymmetric) • 2
∑
j

dj,2i′′ (fundamental ⊕ fundamental)

• 2
∑
j

dj,2i′′−1 (fundamental ⊕ fundamental)

Massless representations of U(ni,2i′′ )
Bosonic degrees of freedom: Fermionic degrees of freedom:

• 4 adjoint • 8ni,2i′′−1 (fundamental ⊕ fundamental)

• 4 (antisymmetric ⊕ antisymmetric) • 2
∑
j

dj,2i′′−1 (fundamental ⊕ fundamental)

• 2
∑
j

dj,2i′′ (fundamental ⊕ fundamental)

nclosed
B = 4 × (4 + 4 + 16) , nclosed

F = 0 (2.24)

bosonic and fermionic degrees of freedom. In terms of six dimensional N = 1 supermultiplets, 
the nclosed

B states comprise the bosonic components of the gravity multiplet (gμ̂ν̂ , C
+
μ̂ν̂

), where 

gμ̂ν̂ is the traceless graviton and C+
μ̂ν̂

is a self-dual 2-form, a tensor multiplet (C−
μ̂ν̂

, φ), where 

C−
μ̂ν̂

is an anti self-dual 2-form and φ is the dilaton, and 4 + 16 hypermultiplets.
Taking into account both the closed-string and open-string sectors, the numbers nF and nB of 

massless fermionic and bosonic degrees of freedom in the N = 2 → N = 0 model that includes 
discrete WL deformations satisfy

nF − nB = 4
[
8 − 2

∑
i,i′′

(
ni,2i′′−1 − ni,2i′′

)2 − 2
∑
i,i′′

(
di,2i′′−1 − di,2i′′

)2
−
∑
i,i′′,j

(
ni,2i′′−1 − ni,2i′′

) (
dj,2i′′−1 − dj,2i′′

) ]
.

(2.25)

3. Stability conditions

Let us now consider the model described in the previous section at those points in moduli 
space where the WL’s take discrete values. In this section we will show that, at such points, 
the one-loop effective potential is extremal with respect to the WL’s,10 and we will derive the 
masses of these moduli at the quantum level. We will also determine the masses of (some of) 
the 16 twisted quaternionic moduli acquired by a generalized Green–Schwarz mechanism in six 
dimensions. For the WL’s, we use an algebraic method based on our knowledge of the repre-
sentations of the massless spectrum, as well as a direct derivation from the one-loop effective 
potential. We will see that the final answer for the WL masses is obtained by combining these 
results with a detailed analysis of the one-loop anomaly cancellation mechanism that involves 
couplings of anomalous U(1) gauge bosons to twisted Stueckelberg fields.

10 It is also extremal with respect to the scalars in the ND sector [59].
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3.1. Signs of the Wilson line masses

In this and the following subsection, we consider the WL mass terms arising from the one-
loop Coleman–Weinberg effective potential. However, we will see in Sect. 3.3 that additional 
large contributions (still proportional to the open-string coupling) arise from a generalized 
Green–Schwarz mechanism that takes place in six dimensions. This effect implies that tachy-
onic instabilities at the one-loop level can only arise in submanifolds of the WL moduli space 
described in Sect. 2.1. Therefore, negative signs of the WL mass terms derived in the present 
subsection do not necessarily imply tachyonic instabilities, as will be seen in Sect. 4.

In Refs. [9,10,21], an expression for the one-loop effective potential V was derived for het-
erotic string compactified on a torus, when supersymmetry is broken by the Scherk–Schwarz 
mechanism acting along one compact coordinate, say X5. It applies in the local neighbourhood
of points in moduli space where extra massless states arise, and is valid provided the size of X5

is greater than the string length as well as all the other compactification length scales (or their 
T-dual counterparts). In four dimensions, denoting the WL of the r-th Cartan U(1) of the gauge 
group G along the internal direction XI by yI

r , we can develop the potential to second order 
around a point of enhanced massless spectrum as follows:

V = M4(nF −nB)ξ + M4
( ∑

weightsQ∈RB

−
∑

weightsQ∈RF

)
ξ ′QrQs

( 9∑
I=4�=5

yI
r yI

s

3G55
+y5

r y5
s

)
+· · · ,

(3.1)

where ξ, ξ ′ > 0, the supersymmetry breaking scale is M , and where nF, nB denote the numbers 
of massless fermionic and bosonic degrees of freedom at yI

r = 0, living respectively in reducible 
representations RF, RB of G. Note that there is no WL tadpole. This follows from the fact that 
linear terms in WL’s are also linear in Cartan charges Qr and that the latter can be paired for 
particles and antiparticles. Writing the gauge group as G ≡∏κ Gκ , the sums over the weights of 
RF, RB can be expressed in terms of Dynkin indices TR(κ)

u
of irreducible representations R(κ)

u

of the gauge group factors Gκ , using the relation

TR(κ)
u

δrs = 1

2

∑
weightsQ∈R(κ)

u

QrQs , r, s = 1, . . . , rankGκ . (3.2)

Indeed, we may write (with no sum over r and I)

∂2V
(∂yI

r )2

∣∣∣∣
y=0

∝
∑
u

TR(κ)
Bu

−
∑
u

TR(κ)
Fu

, r = 1, . . . , rankGκ , I = 4, . . . ,9 , (3.3)

where R(κ)
Bu and R(κ)

Fu are the bosonic and fermionic massless representations of Gκ .
Note that in Eq. (3.1) the coefficients ξ, ξ ′ capture the contributions of the KK modes propa-

gating along the large extra dimension X5, while all corrections arising from the other massive 
states (level-matched or not) are exponentially suppressed. Therefore, the resulting expression 
holds in more general contexts, such as the type I string theory compactified on tori studied in 
Ref. [23], or in the orbifold model considered in the present work, for the WL’s along T 2. In 
particular, the signs of the one-loop contributions to their squared masses can be found by sub-
tracting the Dynkin indices of the fermionic representations from those of the bosonic ones. From 
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Table 2
Dimensions and Dynkin indices of representations of special orthogonal and 
unitary groups. The Dynkin indices of the fundamental representations are nor-
malized to 1 by convention.

Gauge factor Gκ Representation R(κ)
u dimR(κ)

u T
(κ)
Ru

SO(p), p ≥ 2 fundamental p 1

adjoint p(p−1)
2 p − 2

SU(q), q ≥ 2 fundamental q 1
fundamental q 1
adjoint q2 − 1 2q

antisymmetric q(q−1)
2 q − 2

antisymmetric q(q−1)
2 q − 2

Table 1, which lists the relevant representations of SU(q), and Table 2 which gives the associ-
ated Dynkin indices, we find that the one-loop contributions to the squared masses of the WL’s 
along T 2, of the special unitary groups supported by the stacks of D9-branes and D5-branes are 
proportional (up to positive dressing factors) to11

4(ni,2i′′−1 − ni,2i′′ − 1) +
16∑

j=1

(dj,2i′′−1 − dj,2i′′) for U(ni,2i′′−1) ,

4(ni,2i′′ − ni,2i′′−1 − 1) +
16∑

j=1

(dj,2i′′ − dj,2i′′−1) for U(ni,2i′′) ,

4(di,2i′′−1 − di,2i′′ − 1) +
16∑

j=1

(nj,2i′′−1 − nj,2i′′) for U(di,2i′′−1) ,

4(di,2i′′ − di,2i′′−1 − 1) +
16∑

j=1

(nj,2i′′ − nj,2i′′−1) for U(di,2i′′) .

(3.4)

Note that at this stage, these mass-term coefficients have been derived assuming nii′ ≥ 2 and 
dii′ ≥ 2. To extend them to the case where nii′ = 1 or dii′ = 1, one may consider Eq. (3.3)
where the adjoint representations have vanishing charges and the antisymmetric representations 
are zero-dimensional, so that only “fundamental” or “fundamental” representations contribute. 
Then Eq. (3.3) is still applicable but the corresponding coefficients TR(κ)

Bu

and TR(κ)
Fu

are no longer 

strictly speaking Dynkin indices. As the associated U(1) charges are universal Chan–Paton fac-
tors, one finds that the conditions (3.4) remain valid.

On the contrary, because WL is a misnomer for the moduli describing the positions of 
the D3-branes along T̃ 4/Z2 (or T 4/Z2), the signs of their squared masses cannot be deter-
mined by applying Eq. (3.3) for unitary groups. However, inspecting the amplitude A + M in 
Eqs. (A.25), (A.26), we see that small (continuous) deformations of these positions appear only 

11 The effect of a generalised Green–Schwarz mechanism must be taken into account to determine if the WL’s along 
T 2 are stable or not (see Sect. 3.3).
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in the NN sector (or DD sector), when the Z2-orbifold generator g does not act.12 Consequently, 
up to an overall factor of 1

2 , the NN sector contribution is simply that of the open-string sec-
tor in the parent N = 4 → N = 0 model studied in [23], which has orthogonal gauge groups. 
The signs of the moduli masses arising at one loop can therefore be found using Dynkin in-
dices of representations of special orthogonal groups, which are shown in Table 2. In the parent 
N = 4 → N = 0 model, a pair of stacks of Ni,2i′′−1 and Ni,2i′′ D3-branes T-dual to D9-branes 
produces an SO(Ni,2i′′−1) × SO(Ni,2i′′) gauge factor. The states charged under SO(Ni,2i′′−1)

are 8 bosons in the adjoint representation, and 8Ni,2i′′ fermions in the fundamental arising from 
bifundamentals of SO(Ni,2i′′−1) × SO(Ni,2i′′). The representations of the degrees of freedom 
charged under SO(Ni,2i′′) are identical, up to the exchange Ni,2i′′−1 ↔ Ni,2i′′ . The end result is 
that the masses of the WL’s along T 4 of the special orthogonal groups are non-negative when

Ni,2i′′−1 − Ni,2i′′ − 2 ≥ 0 for SO(Ni,2i′′−1) ,

Ni,2i′′ − Ni,2i′′−1 − 2 ≥ 0 for SO(Ni,2i′′) .
(3.5)

In the N = 2 → N = 0 orbifold model, this result implies that the masses of the position moduli 
of the D3-branes in T̃ 4/Z2 (or T 4/Z2) are non-negative when

ni,2i′′−1 − ni,2i′′ ≥ 1 for U(ni,2i′′−1) , ni,2i′′−1 ≥ 2 ,

ni,2i′′ − ni,2i′′−1 ≥ 1 for U(ni,2i′′) , ni,2i′′ ≥ 2 ,

di,2i′′−1 − di,2i′′ ≥ 1 for U(di,2i′′−1) , di,2i′′−1 ≥ 2 ,

di,2i′′ − di,2i′′−1 ≥ 1 for U(di,2i′′) , di,2i′′ ≥ 2 .

(3.6)

In the above, the conditions for the D5-brane locations are deduced by T-dualizing T 4/Z2, which 
amounts to changing all coefficients nkk′ → dkk′ . Finally we recall the special cases: namely that 
when ni,2i′−1, ni,2i′ , di,2i′−1 or di,2i′ = 1, the antisymmetric and antisymmetric representations 
are zero-dimensional, so the positions of the D3-branes in T̃ 4/Z2 or T 4/Z2 are no longer moduli 
fields.13 Notice that the conditions (3.6) are valid even when there are fewer than 8 dynamical po-
sitions in T̃ 4/Z2 or T 4/Z2 (see Sect. 2.1), i.e. when there are U(k) gauge group factors with odd 
k’s. This follows from the fact that the remaining dynamical positions of the branes generating 
the U(k)’s must not be tachyonic.

Notice that the two first (last) inequalities in (3.6) are incompatible. Hence, one of them must 
be absent, which means that either ni,2i′′−1 or ni,2i′′ (di,2i′′−1 or di,2i′′ ) must be 0 or 1. In other 
words, the WL positions along T̃ 4/Z2 and T 4/Z2 are non-tachyonic if and only if the configu-
ration satisfies

∀ i , i′′ : (ni,2i′′−1, ni,2i′′) , (di,2i′′−1, di,2i′′) ∈ {(0,p), (p,0), (1,p), (p,1) where p ∈ N
}
.

(3.7)

3.2. Wilson line masses and effective potential

Prior to taking into account the effect of the Green–Schwarz mechanism in the next subsec-
tion, let us also discuss how the signs and absolute values of the open-string WL masses may 

12 Explicit expressions are actually given in Eqs. (B.2) and (B.3).
13 As explained in Sect. 2.1, the cause of the rigidity of the position in T̃ 4/Z2 or T 4/Z2 of a pair of coincident 
D3-branes can be six-dimensional (in all components of the moduli space with (R, R̃) �= (0, 0)). Or it can be four-
dimensional, by splitting two pairs of pairs of D3-branes at fixed points ii′ and ij ′ , where i′ �= j ′ .
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be inferred from the one-loop Coleman-Weinberg effective potential V . This is a check on the 
above stability conditions. To this end, the potential may be evaluated for arbitrary (continuous) 
D3-brane positions 2πaI

α , 2πbI
α , α = 1, . . . , 32, and Taylor expanded at quadratic order around 

the backgrounds of interest corresponding to branes localized on O3-planes. Hence, we define 
the WL fluctuations as

aI
α = 〈aI

α 〉 + εI
α , 〈aI

α 〉 ∈
{

0,
1

2

}
,

bI
α = 〈bI

α 〉 + ξI
α , 〈bI

α 〉 ∈
{

0,
1

2

}
.

(3.8)

As in the previous subsection, we are interested in regions of moduli space in which the KK 
mass scale associated with the large Scherk–Schwarz direction X5 is lower than the string scale 
as well as all other mass scales induced by the compactification moduli GIJ . In practice, this 
translates to the conditions

G55 � G44, |GIJ | � G55 , |G45|, |G5J | � √
G55 , I, J = 6, . . . ,9 , G55 � 1 .

(3.9)

The detailed computation of the open-string contribution to the one-loop potential is per-
formed in Appendix B. For the closed-string sector, the derivation proceeds as in the N = 4 case 
in four dimensions which can be found in Ref. [23]. The full result takes the form

V = �
( 5

2

)
π

13
2

M4
∑
l5

N2l5+1(ε, ξ,G)

|2l5 + 1|5 + O
(
(MsM)2e−2πc

Ms
M

)
, (3.10)

where c is a positive constant of order 1. In this expression, we have defined

N2l5+1(ε, ξ,G) = nclosed
F − nclosed

B + N open
2l5+1(ε, ξ,G) , (3.11)

where N open
2l5+1(ε, ξ, G) is given in Eq. (B.19). The above quantity captures the dominant contribu-

tions to V , which arise from the massless states as well as their towers of KK modes propagating 
along the direction X5. As compared to M , all other string modes are super heavy, yielding (to-
gether with the non level-matched states in the closed-string sector) exponentially suppressed 
corrections, as indicated in Eq. (3.10). Hence, N open

2l5+1(ε, ξ, G) is expressed as a sum over mass-

less open strings stretched between pairs (α, β) of branes in the NN, DD or ND sectors. The 
dependencies on the WL fluctuations εI

α , ξI
α appear in the arguments taken by a function H 5

2

given in Eq. (B.9), which is dressed by oscillatory cosines. Finally, the definition of Ĝ44 can be 
found in Eq. (B.11).

In order to find the effective potential contribution to the WL masses, we must expand 
N2l5+1(ε, ξ, G) to quadratic order using the small argument behaviour of the function H 5

2
shown 

in Eq. (B.13). As seen in Sect. 2.1, the εI
α , ξI

α are however correlated or frozen to zero. To take 
this fact into account, we label the independent degrees of freedom with indices r and r ′ as 
follows,
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εI
r , I = 6, . . . ,9, r = 1, . . . ,

∑
i,i′

⌊Nii′

4

⌋
=
∑
i,i′

⌊nii′

2

⌋
≤ 8 − R̃

2
,

ξ I
r , I = 6, . . . ,9, r = 1, . . . ,

∑
i,i′

⌊Dii′

4

⌋
=
∑
i,i′

⌊dii′

2

⌋
≤ 8 − R

2
,

εI ′
r ′ , ξ I ′

r ′ , I ′ = 4,5, r ′ = 1, . . . ,16 ,

(3.12)

where R̃ and R were defined previously as the numbers of pairs of D3-branes with rigid positions 
either in T̃ 4/Z2 or T 4/Z2. To write the expansion in compact notations, it is convenient to 
introduce the following notations:

• i(r)i′(r) denotes the corner of T̃ 2/I45 × T̃ 4/Z2 around which 2πεI
r fluctuates, and i(r)ı̂′(r)

denotes the adjacent corner along the Scherk–Schwarz direction X̃5. Note that because εI
r is 

dynamical, the two pairs of D3-branes whose position it describes are at the same fixed point of 
T̃ /I45.

• Similarly, j (r)j ′(r) denotes the corner of T̃ 2/I45 × T 4/Z2 around which 2πξI
r fluctuates, 

and j (r)ĵ ′(r) denotes the adjacent corner along the Scherk–Schwarz direction X̃5.
• i(r ′)i′(r ′) denotes the corner of T̃ 2/I45 × T̃ 4/Z2 around which 2πεI ′

r ′ fluctuates, and 
i(r ′)ı̂′(r ′) the adjacent corner along the Scherk–Schwarz direction X̃5.

• Similarly, j (r ′)j ′(r ′) denotes the corner of T̃ 2/I45 ×T 4/Z2 around which 2πξI ′
r ′ fluctuates, 

and j (r ′)ĵ ′(r ′) the adjacent corner along the Scherk–Schwarz direction X̃5.
With these conventions, we obtain

N2l5+1(ε, ξ,G) = nF − nB + 32π2(2l5 + 1)2

{
∑

r

(
ni(r)i′(r) − ni(r)ı̂′(r) − 1

)
εI
r �IJ εJ

r

+
∑

r

(
dj (r)j ′(r) − dj (r)ĵ ′(r) − 1

)
ξI
r �IJ ξJ

r

+
∑
r ′

(
ni(r ′)i′(r ′) − ni(r ′)ı̂′(r ′) − 1 + 1

4

∑
i

(
dii′(r ′) − diı̂′(r ′)

))
εI ′
r ′ �I ′J ′

εJ ′
r ′

(3.13)

+
∑
r ′

⎛
⎝dj (r ′)j ′(r ′) − dj (r ′)ĵ ′(r ′) − 1 + 1

4

∑
j

(
njj ′(r ′) − njĵ ′(r ′)

)⎞⎠ ξI ′
r ′ �I ′J ′

ξJ ′
r ′

+ O
(
ε4, ξ4

)}
,

where we have defined

�I ′J ′ = 1

3

(
GI ′J ′

G55
+ 2

G5I ′

G55

G5J ′

G55

)
, �IJ = 2

3

GIJ

G55
, �IJ = 2

3

GIJ

G55
. (3.14)

Because the above tensors have positive eigenvalues, the signs of the WL masses reproduce 
exactly the results displayed in Eqs. (3.6) and (3.4).
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3.3. Mass generation via generalized Green–Schwarz mechanism

In this subsection, we discuss how Abelian vector bosons in six dimensions become massive 
thanks to a generalized Green–Schwarz mechanism [51]. As a result, their WL’s along T 2 are 
automatically heavy, improving the overall stability of the models.

Since all N = 1 supersymmetric theories are chiral, anomaly cancellations in the BSGP 
type IIB orientifold model proceed in a non-trivial way. For any values of the WL’s along T 4/Z2
for the D9-brane gauge group, and arbitrary positions of the D5-branes in T 4/Z2, the fermionic 
spectrum ensures the cancellation of the irreducible gauge and gravitational anomalies. However, 
there are residual reducible anomalies, which are described by an anomaly polynomial I8 explic-
itly written down in Ref. [51]. When the WL’s and positions take discrete values 	ai , the gauge 
symmetry generated by the D9-branes and D5-branes is a product of unitary groups,∏

i/ni �=0

U(ni) ×
∏

j/dj �=0

U(dj ) , where
∑

i

ni =
∑

i

di = 16 , (3.15)

and where the rank is 32. As usual in six dimensions, the anomaly polynomial I8 does not fac-
torise, reflecting the fact that massless forms transform nonlinearly under gauge transformations 
and diffeomorphisms. In the case at hand, these forms are RR fields belonging to the closed-
string spectrum: there is the 2-form C in the untwisted sector, as well as sixteen 4-forms Ci

4 in 
the twisted sector. By Hodge duality (dCi

4 = ∗dCi
0), the magnetic 4-form degrees of freedom 

are equivalent to electric pseudoscalars Ci
0. Each of them combines with 3 NS-NS scalars of the 

twisted sector, thus realizing the bosonic part of the massless twisted hypermultiplet localized at 
the fixed point i of T 4/Z2.

Anomaly cancellation requires the effective action to contain tree-level couplings proportional 
to ∫

C ∧ X4 or
∑
i,a

cia

∫
Ci

0 ∧ F 3
a +

∑
i,a

cia

∫
Ci

4 ∧ Fa , (3.16)

where Fa , a = 1, . . . , 16, are the field strengths of the Cartan U(1) generators of 
∏

i/di �=0 U(di), 
while Fa , a = 17, . . . , 32, are those of 

∏
i/ni �=0 U(ni). Similar couplings involving trR2 also 

exist. In the above expressions, the coefficients are

cia = 4δa∈i , for a = 1, . . . ,16 ,

cia = −e4iπ 	ai ·	aj (a) ,for a = 17, . . . ,32 ,
(3.17)

where δa∈i = 1 when the a-th U(1) belongs to the Cartan subalgebra of U(di), and δa∈i =
0 otherwise. Moreover, we denote by 2π 	aj (a) the coordinate vector of the corner of T̃ 4/Z2
which supports the Cartan U(1) labelled by a of 

∏
j/nj �=0 U(nj ) (in a T-dual description). The 

Lagrangian can be cast into a local form by dualizing the last term in Eq. (3.16), which becomes∑
i

∫ (
Ci

0 +
∑
a

ciaAa

)∧ ∗(Ci
0 +

∑
b

cibAb

)
, (3.18)

where the Aa’s denote the Abelian vector potentials, Fa = dAa . As a result, the latter admit a 
tree-level mass term

1

2

∑
a,b

AaM2
abAb , where M2

ab =
∑

i

ciacib . (3.19)
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The mass matrix M2 can be diagonalized by an orthogonal transformation, Aa = PabÂb . De-
noting the eigenvalues by M̂2

a , the nonzero ones (which are actually positive) are in one-to-one 
correspondence with the Stueckelberg fields Ci

0 which are eaten by the Âa’s that gain a mass. 
One can see that if there are 16 or fewer unitary factors in Eq. (3.15), all of them are broken to SU

groups, while if there are more than 16 unitary factors, exactly 16 are broken to SU groups [51]. 
By supersymmetry, all twisted hypermultiplets initially containing the Ci

0’s which are eaten also 
become massive. They combine with Abelian vector multiplets to become long massive vector 
multiplets. As a result, there are between 2 and 16 twisted quaternionic scalars for which stability 
is automatically guaranteed.

Compactifying down to four dimensions, we may define the WL’s along T 2 as ÂI ′
a = ξ̂ I ′

a , 
and write their total mass terms by adding the tree-level contributions to the one-loop effective 
potential corrections,

ξ̂ I ′
a

[
M̂2

a δab δI ′J ′ + Pca

∂V

∂ξI ′
c ∂ξJ ′

d

Pdb

]
ξ̂ J ′
b , (3.20)

where (ξ I ′
1 , . . . , ξI ′

32) ≡ (ξ I ′
1 , . . . , ξI ′

16, ε
I ′
1 , . . . , εI ′

16). In the above formula, both contributions are 
proportional to the open-string coupling. However, while the first one is a supersymmetric mass 
term proportional to M2

s , the second one scales like (M2/Ms)
2, which is always subdominant in 

the regime M < Ms. Hence, all WL’s of massive Âa’s are super heavy and can be safely set to 
zero in a study of moduli stability,

ξ̂ I ′
a ≡ 0 , when M̂2

a > 0 . (3.21)

For the remaining WL’s denoted ξ̂ I ′
u to be non-tachyonic at one loop, one needs to find brane 

configurations such that the mass matrix

Pcu

∂V

∂ξI ′
c ∂ξJ ′

d

Pdv , for u,v such that M̂2
u,M̂2

v = 0 , (3.22)

has non-negative eigenvalues.

3.4. Untwisted closed-string moduli

So far, we have mainly discussed the generation of masses for the open-string moduli, as well 
as for those arising in the closed-string twisted sector. We continue the discussion by considering 
the dependencies of the effective potential on the closed-string untwisted moduli.

We see from Eqs. (3.10) and (3.13) that when the vev’s of the WL’s vanish, the one-loop 
effective potential reduces to

V = ξ(nF −nB)M4 +O
(
(MsM)2e−2πc Ms

M

)
, where ξ = �

( 5
2

)
π

13
2

∑
l5

1

|2l5 + 1|5 . (3.23)

Up to the exponentially suppressed corrections, the dependence on the NS-NS internal metric 
GIJ has disappeared, except via the supersymmetry breaking scale M . Therefore, when the 
D3-branes sit on O3-planes, all components of the (inverse) metric except G55 are flat directions. 
Moreover, unless the potential vanishes i.e. nF = nB, G55 = 4M2 has a tadpole and must run 
away. In the NS-NS sector, the remaining untwisted modulus is the dilaton. However, since the 
one-loop potential is independent of it, that remains a flat direction at this order.
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The components CI ′J ′ of the RR two-form along T 2 can be interpreted as Wilson lines of 
Abelian vector bosons Cμ̂J ′ in six dimensions. Therefore the algebraic method presented in 
Sect. 3.1 can be applied to determine their masses at the quantum level. Using the fact that the 
perturbative type I spectrum does not admit charged states under the RR gauge fields, we can 
conclude that the moduli CI ′J ′ remain massless at one loop. It is however possible to draw much 
stronger statements using heterotic/type I duality as follows. For the case at hand, we have been 
careful to consider type I models that are expected to be well defined at the non-perturbative 
level, so that heterotic duals should exist. In four dimensions, the above equivalence of the two 
theories compactified on T 2 ×T 4/Z2 turns out to be a weak coupling/weak coupling duality [64–
67]. Using the adiabatic argument [69], the equivalence remains valid once the Scherk–Schwarz 
breaking of supersymmetry is implemented along the large periodic direction X5.

Let us consider first the case when the Z2 action generated by g is not implemented yet. 
The duality maps the type I variables (G + C)IJ into (G + B)IJ on the heterotic side, where 
BIJ is the internal antisymmetric tensor. The moduli deformations of the Narain lattice �6,6+16

can be parameterised by (G + B)IJ ≡ YIJ , I, J = 6, . . . , 9, as well as the WL’s of SO(32)

along T 6 denoted as YIJ , J = 10, . . . , 25. Actually, all of these 6 × (6 + 16) moduli are the 
WL’s of SO(44) along T 6. At a generic point in moduli space (the Coulomb branch), the gauge 
symmetry is reduced to U(1)6 × U(1)16. Conversely, non-Abelian gauge symmetries are re-
stored at enhanced gauge symmetry points. In particular, non-Cartan states charged under U(1)6, 
which are generically massive, become massless at special values of (G + B)IJ ≡ YIJ . Their 
Cartan charges are the winding numbers nI , I = 4, . . . , 9. Because the Coleman–Weinberg 
effective potential is expressed in terms of the tree-level mass spectrum, its dependence on 
(G + B)IJ ≡ YIJ can arise only from the aforementioned non-Cartan states running in the 
loop.14 Turning back to the type I picture, these windings states are D1-branes, which belong to 
the non-perturbative spectrum. As a result, when M < Ms, the one-loop effective potential does 
not depend on CIJ , I, J = 6, . . . , 9, up to exponentially suppressed corrections.

Notice however that even though the masses of these D1-branes scale like the inverse string 
coupling, there is a moduli-dependent dressing that can vanish, implying such states to be in 
principle observable in low energy experiments. In the spirit of the seminal works of Seiberg and 
Witten [70] or Strominger [71], their effects in virtual loops are also captured by the heterotic 
effective potential [72,73]. In that case, some of the scalars (G + C)IJ , or rather (G + B)IJ , 
can be stabilised at the enhanced gauge symmetry points described above [74]. As shown in 
Ref. [21], all components (G + B)IJ , I �= 5, J �= 5 can be stabilised. Moreover, the potential 
is periodic in all (G + B)I5 and the latter can also be stabilised. Finally, the moduli (G + B)5J
remain flat directions.15

Re-introducing the Z2-orbifold action generated by g, none of the states arising from the 
twisted sector in heterotic string can induce an enhancement of the gauge symmetry.16 They can 
however have non-trivial winding numbers along T 2 and thus introduce extra dependencies of 
the Coleman–Weinberg effective potential on the WL’s (G + B)I ′J ′ , I ′, J ′ = 4,5. However, due 
to their high masses, their contributions are exponentially suppressed. The type I counterparts 
of these states are “twisted D1-branes”, which would not be taken into account in perturbation 
theory.

14 We always assume that M < Ms, which implies the contributions of the non-level matched states to be suppressed.
15 We stress that this assumes M to be lower than the string scale i.e. the direction X5 to be large.
16 This follows from the fact that the zero-point energy of the twisted vacuum is higher than that of the untwisted sector.
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One might question the extensive use of heterotic/type I duality, because the open-string side 
contains a D5-brane sector, which is mapped to a non-perturbative NS5-brane sector on the 
heterotic side. However, the states that are potentially responsible for the non-perturbative stabil-
isation of type I moduli (G +C)I ′J ′ , I ′, J ′ = 4, 5 and (G +C)IJ , I, J = 6, . . . , 9, are D1-branes. 
The latter are electrically charged under the two-form C, and magnetically neutral (they are not 
dyonic D1-D5 bound states). As a result, the stabilisation mechanism is independent of the exis-
tence of a D5-brane sector.

4. Stability analysis of the models

Let us now turn to the analysis of the one-loop stability of the moduli (or at least a sub-set of 
them) encountered when all D3-branes are located at corners of the six-dimensional box depicted 
schematically in Fig. 1d. We will restrict the discussion to the configurations satisfying the non-
perturbative constraints presented at the end of Sect. 2.1. The mass terms of the WL’s can be 
read from Eq. (3.13), but a projection on the submanifold of the moduli not acquiring a six-
dimensional supersymmetric mass from the Green–Schwarz mechanism must simultaneously be 
applied. In our study, stability of the twisted quaternionic moduli is only guaranteed when they 
become massive due to this mechanism. We will not determine their stability at one loop when 
they remain massless in six dimension. Finally, a sufficient condition for instabilities not to arise 
from the ND sector of the theory is simply the absence of ND moduli, which is ensured if none 
of the D3-branes T-dual to the D9-branes and none of the D3-branes T-dual to the D5-branes 
share the same position in T̃ 2/I45,

no ND-sector moduli: nii′dji′ = 0 for all i, j, i′ (no sum on i′) . (4.1)

If this condition is not satisfied, then the radiatively induced masses-squared of the moduli in 
the ND sector must be computed. This can be done by considering the two-point functions of 
“boundary changing vertex operators”. This is an interesting problem in its own right, which will 
be studied in a companion paper [59].

In what follows, we will first present simple examples lying in the (R, R̃) = (0, 0) and 
(R, R̃) = (16, 16) components of the moduli space to get familiar with the implementation of 
the generalized Green–Schwarz mechanism. Thanks to a numerical exploration of all brane con-
figurations, we then list all setups that yield a vanishing or positive one-loop potential and that 
are tachyon free (up to exponentially suppressed terms).

4.1. Simple configurations in the component (R, R̃) = (0, 0)

At tree level in the branch (R, R̃) = (0, 0) of the WL moduli space, all 32 +32 D3-branes are 
free to move in 4’s in T 4/Z2 or T̃ 4/Z2. Let us consider the simplest configuration where all D3-
branes T-dual to the D5-branes have the same positions 2π 	ai0 in T 4/Z2, while those T-dual to 
the D9-branes have common positions 2π 	aj0 in T̃ 4/Z2. In six dimensions, the open-string gauge 
group before taking into account the Green–Schwarz mechanism is thus U(16) × U(16). To 
determine the anomalous U(1)’s that become massive, we need to write the mass matrix squared 
M2

ab of the 32 Abelian vector potentials Aa in six dimensions. To this end, it is convenient to 
refine our labelling as follows:

a ≡ r ′ = 1, . . . ,16 : Cartan generators of the U(16) arising from the D5-branes,

a ≡ r̃ ′ + 16 = 17, . . . ,32 : Cartan generators of the U(16) arising from the D9-branes.
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With this notation the mass matrix squared is

M2 =
(

M2
r ′s′ M2

r ′ s̃′
M2

r̃ ′s′ M2
r̃ ′ s̃′

)
, (4.2)

where the 16 × 16 blocks are given by

M2
r ′s′ = 16 , M2

r ′ s̃′ = −4 e4iπ 	ai0 ·	aj0 ,

M2
r̃ ′s′ = −4 e4iπ 	aj0 ·	ai0 , M2

r̃ ′ s̃′ = 16 .
(4.3)

Among the 32 eigenvalues, 2 are positive while the others vanish. Setting to zero the vev’s of the 
massive eigenvectors yields the conditions

−
∑
r ′

Ar ′ +
∑
r̃ ′

Ar̃ ′ = 0 and
∑
r ′

Ar ′ +
∑
r̃ ′

Ar̃ ′ = 0 , (4.4)

implying that U(16) × U(16) is actually reduced to SU(16) × SU(16), as expected.
To proceed, let us consider the examples where all D3-branes T-dual to the D5-branes are 

coincident at 2π 	ai′0 in T̃ 2/I45, and similarly those T-dual to the D9-branes are stacked at 2π 	aj ′
0
. 

The gauge symmetry in four dimensions is therefore still SU(16) × SU(16). The mass terms 
of the moduli/positions ξI

r along T 4/Z2 and εI
r along T̃ 4/Z2 (see Eq. (3.12)), I = 6, . . . , 9, 

r = 1, . . . , 8, can be read from Eq. (3.13). Omitting all dressing factors, they are given by nii′ -
and djj ′ -dependent coefficients equal to (16 −0 −1) = 15, which is positive. Hence, the positions 
of the D3-branes along the internal directions I = 6, . . . , 9 are stabilised.

As seen in Eq. (3.13), the mass terms of the T 2 WL’s ξI ′
r ′ and εI ′

r̃ ′ arising from the one-loop 
effective potential depend on the precise locations of the stacks in T̃ 2/I45. Omitting irrelevant 
dressings as earlier, they are given by coefficients (16 − 0 − 1 + δ

4 16) = 15 + 4δ, where

(a) δ = +1 if i′0 = j ′
0,

(b) δ = −1 if the corners i′0 and j ′
0 of T̃ 2/I45 are facing each other along the Scherk–Schwarz 

direction X̃5,
(c) δ = 0 if the corners i′0 and j ′

0 of T̃ 2/I45 have distinct positions along X̃4.

The three possibilities are depicted in Fig. 3. Note that δ = +1 (δ = −1) in Case (a) (Case (b)) 
thanks to the existence at tree level of massless scalars (fermions) in the ND sector. Because these 
mass terms are positive, we can immediately conclude that all positions in T̃ 2/I45 are stabilised. 
However, it is instructive to also take into account the effect of the generalized Green–Schwarz 
mechanism, which makes the components I ′ = 4, 5 of the linear combinations of six-dimensional 
vector bosons of Eq. (4.4) even more massive. Indeed, this can be used to eliminate say ξI ′

1 and 
εI ′

1 ,

ξI ′
1 = −

∑
r ′ �=1

ξI ′
r ′ , εI ′

1 = −
∑
r̃ ′ �=1

εI ′
r̃ ′ , (4.5)

in the mass terms of Eq. (3.13). This results in a new 30 × 30 mass matrix squared for the 
remaining moduli ξI ′

r ′ , εI ′
r̃ ′ , which of course has only strictly positive eigenvalues.17

17 14 are equal and the last one is 16 times larger.
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Fig. 3. D3-brane configurations in component (R, R̃) = (0,0) of the WL moduli space.

To conclude on the above examples, the masses of the moduli we have not analyzed are those 
of the 14 remaining hypermultiplets in the twisted closed-string sector, as well as those of the 
hypermultiplet in the single bifundamental of SU(16) ×SU(16) arising from the open-string ND 
sector in Case (a). Using Eq. (2.25), we have nF −nB = −4064 − 1024 δ < 0, which implies that 
the supersymmetry breaking scale (i.e. gravitino mass) M runs away, while all other components 
of the NS-NS metric GIJ and the dilaton as well as the RR two-form CIJ are flat directions.

4.2. Simple configurations in the component (R, R̃) = (16, 16)

In this case, all D3-branes positions in T 4/Z2 or T̃ 4/Z2 are rigid. Indeed, there is a mirror 
pair (with respect to the orientifold projection) of D3-branes T-dual to the D5-branes at each 
of the 16 fixed point of T 4/Z2, and similarly a mirror pair of D3-branes T-dual to the D9-
branes at each fixed point of T̃ 4/Z2. Before taking into account the effect of the Green–Schwarz 
mechanism, the gauge symmetry is U(1)16 × U(1)16. Hence, all antisymmetric representations 
are zero dimensional (see Eq. (2.22) or Table 1) and there is indeed no position modulus among 
them to consider. In this component of the moduli space, the only freedom is in the coordinates 
of the mirror pairs in T̃ 2/I45, which in our case of interest coincide with the positions of the four 
fixed points.

To study the masses of the moduli/positions along T̃ 2/I45, as well as those of the twisted 
quaternionic scalars in the closed-string sector, our starting point is the mass matrix squared 
M2

ab of the 32 Abelian vector potentials present in the six-dimensional theory. Its components 
are given by
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M2
r ′s′ = 16 δr ′s′ , M2

r ′ s̃′ = −4 e4iπ 	ai(r′)·	ai(s̃′) ,

M2
r̃ ′s′ = −4 e4iπ 	ai(r̃′)·	ai(s′) , Mr̃ ′ s̃′ = 16 δr̃ ′ s̃′ .

(4.6)

Because the gauge group contains more than 16 unitary factors, the matrix has 16 positive eigen-
values and 16 vanishing ones. This implies that the gauge symmetry U(1)32 is actually reduced 
to U(1)16, and that all of the 16 twisted quaternionic scalars are massive, ensuring that T 4/Z2
will not undergo deformation into a smooth K3 manifold. Setting to zero all massive linear com-
binations of vector potentials, we obtain for their components along T̃ 2/I45 the relations

4εI ′
r̃ ′ = −

∑
s′

e4iπ 	ai(r̃′)·	ai(s′) ξ I ′
s′ , (4.7)

showing that all εI ′
r̃ ′ can be eliminated in terms of the ξI ′

r ′ ’s. Let us now consider various D3-brane 
configurations and explore their stability along T̃ 2/I45.

Example 1: The simplest setup amounts to having all D3-branes T-dual to the D5-branes at the 
same position 2π 	ai′0 of T̃ 2/I45, and similarly all D3-branes T-dual to the D9-branes at some 
common position 2π 	aj ′

0
. Three cases (a), (b), (c) can be distinguished however, since all mass-

term coefficients of the ξI ′
r ′ and εI ′

r̃ ′ read from Eq. (3.13) are (1 − 0 − 1 + δ
4 16) = 4δ, where δ

is defined as explained below Eq. (4.4). Fig. 4 shows the three possibilities for distributing the 
pairs of branes. Therefore, we can conclude even before taking into account the Green–Schwarz 
mechanism that the positions of all the D3-branes are stabilised in Case (a), are unstable in 
Case (b), and are massless in Case (c). However, eliminating the εI ′

r̃ ′ thanks to the relations (4.7), 
it turns out that the mass terms of the remaining degrees of freedom ξI ′

r ′ are simply multiplied 
by a factor of 2. Moreover, nF − nB = −224 − 1024 δ, implying that M has a tadpole and runs 
away. In detail the behaviour of the configurations are as follows:

• In Case (a), the potential is negative, and there are 162 massless quaternionic scalars charged 
under U(1)16 arising from the ND sector. Their masses must be determined to make a conclusion 
about the stability/instability of the configuration, which we discuss in [59]. Note however that 
in component (R, R̃) = (16, 16) of the moduli space, Case (a) yields the most negative value of 
nF − nB. Hence, we do not expect the moduli of the ND sector to be tachyonic at one loop, and 
expect the configuration to be stable, except for the supersymmetry breaking scale M , and for 
the remaining closed-string moduli GIJ , CIJ and φ which are flat directions. The possibility 
that the model leads to brane recombination via condensation of the ND-sector moduli remains 
a possibility that is discussed further in [59].

• In Case (b), the potential is positive but the D3-brane positions are unstable, so the distribu-
tion will evolve in T̃ 2/I45.

• In Case (c), the potential is negative and the WL’s are massless. It turns out that (up to ex-
ponentially suppressed terms) the one-loop effective potential does not depend on these moduli, 
which are therefore flat directions.18 Hence, the configuration is marginally stable.

Example 2: Thus far, conclusions about the stability/instability of the WL positions in T̃ 2/I45
could be drawn without taking into account the effect of the Green–Schwarz mechanism. In 
fact, this is possible only for particularly simple choices of brane setups, when all mass terms of 
the ξ I ′

r ′ , εI ′
r̃ ′ in Eq. (3.13) have the same sign. To construct a more generic brane configuration, 

18 The one-loop potential dependencies on U(1) WL’s are identical to those of SO(2) factors treated in Ref. [23], which 
turn out to be trivial.
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Fig. 4. D3-brane configurations in component (R, R̃) = (16,16) of the WL moduli space.

consider Case (a) of Example 1, and move along X̃4 one pair of D3-branes T-dual to D5-branes, 
and move along X̃4 and X̃5 its initially coincident pair of D3-branes T-dual to D9-branes. The 
new configuration, denoted (d), is shown in Fig. 4d. The mass coefficients of fifteen ξI ′

r ′ and 
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fifteen εI ′
r̃ ′ are 15

4 , while those of the last two positions are − 1
4 . Hence, a priori the configuration 

seems unstable. However, eliminating in Eq. (3.13) all εI ′
r̃ ′ ’s by using Eq. (4.7) yields a new 

16 × 16 mass-squared matrix for the ξI ′
r ′ ’s which has only positive eigenvalues. As a result, the 

brane configuration turns out to actually be stable, provided the 152 quaternionic moduli of the 
ND sector do not introduce instabilities, as already mentioned in Case (a) of Example 1. In the 
present Case (d), nF − nB = −1120 is higher than in Case (a), but it remains negative.

4.3. Full scan of the six components of the moduli space

Among the configurations that have been presented so far, none of them is tachyon free with 
a positive or exponentially suppressed potential at one loop. In fact, setups with these properties 
are expected to be rare. For instance, in the case of a compactification on T 6 realising N =
4 → N = 0 breaking, this fact can be understood qualitatively by inspecting Eq. (3.1), where 
the massless fermions contribute positively to the potential and negatively to the WL squared 
masses, and vice versa for the massless bosons. Hence, the more positive the potential is, the 
more tachyonic instabilities are likely to arise. For instance, for toroidal compactifications in 
dimension d ≥ 5, it was shown in Refs. [23,48] that there exists only one orientifold model19

which is non-perturbatively consistent, tachyon-free at one loop and which has non-negative 
potential. It is defined in five dimensions, has a trivial open-string gauge group20 SO(1)32, and 
satisfies nF − nB = 8 × 8.

To determine if tachyon free brane configurations with zero or positive one-loop potentials 
exist in the Z2-orbifold case, we have performed a computer scan of all brane configurations as 
follows:

(i) In each of the six non-perturbatively consistent components of the moduli space, we loop 
over all distributions of mirror pairs (with respect to the orientifold action) of D3-branes in 
T 4/Z2 and T̃ 4/Z2.

(ii) For each configuration, we derive the squared-mass matrix M2 of the 32 Cartan U(1)’s.
(iii) We then loop over all possible distributions of the pairs along T̃ 2/I45. We restrict to the 

configurations that respect the condition (3.7) for the positions in T 4/Z2 and T̃ 4/Z2 not to 
be tachyonic, and eliminate those for which nF − nB < 0.

(iv) For each distribution satisfying the above constraints, we then compute the one-loop contri-
butions to the mass terms of the brane positions in T̃ 2/I45 (see Eq. (3.13)), and project out 
those combinations of moduli that become massive via the Green–Schwarz mechanism. 
We obtain the true squared-mass matrix of the remaining dynamical positions in T̃ 2/I45
and eliminate all configurations for which this matrix admits at least one strictly negative 
eigenvalue.

Among the hundreds of billions of initial possibilities,21 only eight emerge from the scan: six of 
them are tachyon free, and two are tachyon free up to possible instabilities that may arise from 

19 The assumptions are that (i) the Scherk–Schwarz mechanism is implemented along a single direction, (ii) there are 
no exotic orientifold planes, and (iii) there is no discrete background for the internal NS-NS antisymmetric tensor.
20 SO(1) denotes the group containing only the neutral element.
21 When moving a stack of branes from one fixed point to another the massless spectrum is invariant, so we count only 
one of these configurations. However, since the spectra whose masses are of the order of the string scale will in general 
differ, our counting of the inequivalent configurations is actually greatly underestimated.
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Fig. 5. Two brane configurations (a) and (b) in component (R, R̃) = (8, 8) of the moduli space, and one configuration 
(c) in component (R, R̃) = (0, 8).

ND-sector moduli. Most interestingly, two out of the six, and one out of the two configurations 
have vanishing one-loop potential (nF − nB = 0), up to exponentially suppressed terms. Let us 
summarise them:

Exponentially suppressed one-loop potentials:
• In the component (R, R̃) = (8, 8) the scan finds two configurations referred to as Case (a) 

and (b), which are free of tachyons and satisfy nF − nB = 0. The gauge groups generated by the 
D5-branes and D9-branes are

Case (a) :
[
U(1)7 × U(2) × U(7)

]
DD ×

[
U(1)6 × U(5)2

]
NN

,

Case (b) :
[
U(1)7 × U(3) × U(6)

]
DD ×

[
U(1)6 × U(5)2

]
NN

.
(4.8)

The D3-brane configurations are depicted in Figs. 5a and 5b, respectively. In the first case, the 
D3-branes T-dual to the D5-branes are distributed in T 4/Z2 as 7 pairs and one stack of 18 D3-
branes, which is split in T̃ 2/I45 into 14 + 4 branes. The D3-branes T-dual to the D9-branes are 
distributed as 6 pairs and two stacks of 10. The second configuration is identical to the previous 
one, up to the splitting of the 18 D3-branes now into 12 + 6.

In both cases, all dynamical brane positions in T 4/Z2 or T̃ 4/Z2 are stabilised. They are 
associated with the stacks of 2n branes with n ≥ 2, and their masses read from Eq. (3.6) are pro-
portional to n −1 > 0. All other pairs of branes have rigid positions in T 4/Z2 or T̃ 4/Z2 from the 
outset. Because there are initially 17 unitary gauge group factors, there are 16 anomalous U(1)’s 
becoming massive thanks to the Green–Schwarz mechanism, together with the 16 blowing-up 
modes arising from the twisted closed-string sector. The true gauge symmetries are therefore

Case (a) : U(1) × SU(2) × SU(7) × SU(5)2 ,

Case (b) : U(1) × SU(3) × SU(6) × SU(5)2 .
(4.9)
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Along T̃ 2/I45, all D3-brane positions are also stabilised, after freezing the super heavy combina-
tions associated with the anomalous U(1)’s. The ND sector does not contain moduli fields since 
condition (4.1) is satisfied. Thus, in Cases (a) and (b) and at the one-loop level, no tachyons are 
present and the potential admits flat directions parameterised by the internal metric (including 
G55 i.e. M , as justified in the next paragraph), the dilaton, and the RR two-form moduli. Notice 
that these configurations exist in four dimensions but not in five.

The massless spectrum of these two models contains the bosonic parts of N = 2 vector mul-
tiplets transforming under the adjoint representations of the groups given in Eq. (4.9), along 
with the scalars of N = 2 hypermultiplets in antisymmetric ⊕ antisymmetric representations of 
each non-Abelian factors. In terms of degrees of freedom, this yields nopen

B = 800 in Case (a), and 
n

open
B = 736 in Case (b). To this, one must add the 96 degrees of freedom coming from the closed-

string sector yielding nB = 896 in Case (a), and nB = 832 in Case (b). Finally, the massless 
spectrum contains the fermionic degrees of freedom of hypermultiplets in the ND sector. They 
transform under bifundamental representations of all pairs of gauge group factors supported by 
stacks of D3-branes (T-dual to D5-branes) and stacks of D3-branes (T-dual to D9-branes) facing 
each other along the T-dual Scherk–Schwarz direction X̃5. This leads to nF = 4 × 14 × 16 = 896
in Case (a), and nF = 4 ×13 ×16 = 832 in Case (b), which exactly equals the numbers of bosonic 
degrees of freedom.

• The scan also selects a third configuration with nF − nB = 0, in component (R, R̃) = (0, 8)

of the moduli space, which we will refer to as Case (c). The gauge symmetry (including anoma-
lous U(1)’s) is

Case (c) :
[
U(4)4

]
DD

×
[
U(1)11 × U(5)

]
NN

, (4.10)

and the configuration of branes is shown in Fig. 5c. The D3-branes T-dual to the D5-branes are 
distributed in T 4/Z2 as 4 stacks of 8. The D3-branes T-dual to the D9-branes are distributed as 
8 pairs (with rigid positions in T̃ 4/Z2), one stack of 4 split in T̃ 2/I45 into 2 + 2, and one stack 
of 12 split in T̃ 2/I45 into 10 + 2.

All positions along T 4/Z2 and T̃ 4/Z2 are rigid or massive. Because there are 16 unitary 
factors in Eq. (4.10), there are 16 anomalous U(1)’s which are actually massive, together with 
the 16 twisted moduli in the closed-string sector. The true gauge symmetry is thus

Case (c) : SU(4)4 × SU(5) . (4.11)

Taking into account the Green–Schwarz mechanism, the remaining positions along T̃ 2/I45 are 
all massless at one loop, except one which is massive. The internal metric and RR two-form, as 
well as the dilaton are flat directions of the one-loop potential (up to exponentially suppressed 
terms). However, we cannot determine if this configuration is fully marginally stable without also 
considering the masses of the ND sector moduli which are also present in this case: this is left 
for future work.

The massless bosonic degrees of freedom include those of an N = 2 vector multiplet in the 
adjoint representation of the group (4.10), along with the scalars of N = 2 hypermultiplets in an-
tisymmetric ⊕ antisymmetric representations for each non-Abelian factor. There are also bosonic 
degrees of freedom transforming under four bifundamental representations of U(4)DD×U(1)NN. 
Taking into account the closed-string degrees of freedom, we obtain nB = 832. The massless 
fermionic degrees of freedom are in the bifundamental representations of all pairs of gauge group 
factors supported by stacks of D3-branes (T-dual to D5-branes) and stacks of D3- branes (T-dual 
to D9-branes) facing each other along the T-dual Scherk–Schwarz direction X̃5. Their number is 
given by nF = 4 × 16 × 13 = 832, again equating to nB.



S. Abel et al. / Nuclear Physics B 957 (2020) 115100 31

Positive potentials: There also exist five configurations with strictly positive potential. They all 
lie in component (R, R̃) = (8, 8) and have an identical open-string (anomalous) gauge group[

U(1)6 × U(5)2
]

DD
×
[
U(1)6 × U(5)2

]
NN

. (4.12)

The configurations are depicted in Figs. 6a-6e. All position moduli along T 4/Z2 and T̃ 4/Z2 are 
massive. Taking into account the Green–Schwarz mechanism, the gauge symmetry is reduced to

SU(5)4 , (4.13)

all twisted closed-string moduli are massive, and the positions along T̃ 2/I45 are either massive 
or massless, depending on the case at hand.

The configuration in Fig. 6a yields nF − nB = 40. Notice that it may be considered in five 
dimensions by decompactifying the direction X4. In the case shown in Fig. 6b, the direction X̃4

is used to isolate one pair of D3-branes, which leads to nF − nB = 24. By displacing a second 
pair of the same kind as shown in Fig. 6c, one obtains nF −nB = 8. Starting from the distribution 
in Fig. 6c and displacing a pair of D3-branes of the other kind as shown in Fig. 6d, one obtains 
nF −nB = 10. Finally, the configuration in Fig. 6e yields nF −nB = 8, but contains moduli fields 
in the ND sector whose masses need to be analysed at one loop in order to make a conclusion 
about its stability/instability.

5. Conclusions

In this work, we have studied from various perspectives the generation at the quantum level 
of moduli masses in type I string theory compactified on T 2 × T 4/Z2, when N = 2 → N = 0
supersymmetry is spontaneously broken by the Scherk–Schwarz mechanism implemented along 
T 2. Our analysis is perturbative, restricted to the one-loop level, and our conclusions are valid 
when the supersymmetry breaking scale M is the lowest mass scale of the background. We have 
considered gauge-field backgrounds on the worldvolumes of the 32 D9-branes and 32 D5-branes, 
as well as positions of the D5-branes in T 4/Z2, that can be described from T-dual points of view 
as positions of 32 + 32 D3-branes distributed on 64 O3-planes. At such points in moduli space, 
the effective potential is extremal, except with respect to M which runs away when nF �= nB.

We find that the D3-brane positions/moduli that are not already heavy thanks to a generalized 
Green–Schwarz mechanism in six dimensions can be stabilised at one loop. However, up to ex-
ponentially suppressed corrections, all degrees of freedom of the internal metric GIJ (except 
M when nF �= nB), of the two-form CIJ and of the dilaton remain flat directions. From het-
erotic/type I duality, it is however possible to infer that some of the moduli (G + C)IJ can be 
stabilised non-perturbatively at points where D1-branes become massless [21,48]. When mod-
uli occur in the ND sector of the (non T-dualized) theory, their quantum masses can be derived 
by computing two-point functions. This will be presented elsewhere [59]. Finally, the models 
contain blowing-up modes, which belong to quaternionic scalars arising in the twisted closed-
string sector. While those involved in the Green–Schwarz mechanism are very heavy, we have 
not studied the masses generated for the remaining ones (if any).

Among the plethora of allowed distributions of D3-branes on O3-planes, only two are tachyon 
free at one loop, with an exponentially suppressed effective potential, i.e. with nF = nB. Recall 
that such set-ups may be interesting candidates for generating, after stabilisation of M and the 
dilaton, a cosmological constant which is orders of magnitude smaller than in generic models. 
Four more brane configurations lead to positive potentials, i.e. nF > nB, where the only insta-
bilities are associated with the run away of the supersymmetry-breaking no-scale modulus M . 
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Fig. 6. Brane configurations in component (R, R̃) = (8,8) of the moduli space.

Finally, two brane distributions with similar properties contain moduli in the ND sector, whose 
one-loop masses remain to be analysed. It is worth mentioning that in a phenomenological setup, 
these moduli would naturally contain the Standard-Model Higgs field, so it is not a priori obvi-
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ous that one needs to banish tachyonic masses from these states entirely. All of the above models 
are interesting in the sense that they describe non-Abelian gauge theories, with fermions that are 
massless at tree level transforming in bifundamental representations. It would be interesting to 
derive the masses acquired at one loop by this fermionic matter.

To explore further possibilities, it would also be interesting to relax some of the assumptions 
we have made. For instance, one may seek type I vacua that include “exotic” orientifold planes, 
often referred to as O+-planes, which can support even or odd numbers of branes [43]. O+-planes 
have RR charges and tensions opposite to those of the O−-planes we have used in the present 
work. Alternatively, when moduli in the ND sector are tachyonic and condense, branes recombine 
and the theory admits new vacua. Another possibility is to switch on discrete backgrounds for the 
internal components of the NSNS antisymmetric tensor (whose degrees of freedom are projected 
out by the orientifold action). Finally, one may analyze the theory when T 4/Z2 is deformed to a 
smooth K3 manifold.
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Appendix A. One-loop effective potential

In this appendix, our goal is to present in some details the expression of the one-loop effective 
potential arising in a four-dimensional orientifold model of type IIB that realizes the N = 2 →
N = 0 spontaneous breaking of supersymmetry. The background is

R1,3 × T 2 × T 4

Z2
, (A.1)

where a Scherk–Schwarz mechanism is implemented along one of the internal T 2 directions.
In an orientifold theory (see Refs. [52,75–80] for original papers and Refs. [39,53,54] for 

reviews), the one-loop effective potential may be divided into the contributions arising from the 
torus, Klein bottle, annulus and Möbius strip partition functions,

V = − M4
s

2(2π)4 (T + K + A + M) , where

T = 1

2

∫
F

dτ1dτ2

τ 3
2

Str
1 + g

2
qL0− 1

2 q̄L̃0− 1
2 , K = 1

2

+∞∫
0

dτ2

τ 3
2

Str�
1 + g

2
qL0− 1

2 q̄L̃0− 1
2 ,
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A = 1

2

+∞∫
0

dτ2

τ 3
2

Str
1 + g

2
q

1
2 (L0−1) , M = 1

2

+∞∫
0

dτ2

τ 3
2

Str�
1 + g

2
q

1
2 (L0−1) .

(A.2)

In the above formula, τ1, τ2 are the real and imaginary parts of the Teichmüller parameter τ , 
q = e2iπτ , F is the fundamental domain of SL(2, Z), L0, L̃0 are the zero frequency Virasoro 
operators, � is the orientifold generator and g is the twist generator acting on the T 4 coordi-
nates as (X6, X7, X8, X9) → (−X6, −X7, −X8, −X9). The factors 1

2 are due to the orientifold 
projection. In the following, we first introduce our notations and present the amplitudes in the 
supersymmetric BSGP model compactified down to four dimensions. Then, we implement dis-
crete deformations as well as the spontaneous breaking of N = 2 supersymmetry, and display 
the associated amplitudes.

A.1. Summary of conventions and notations

It is useful for reference to summarise the notation for the lattices of zero modes and for the 
characters that account for the oscillator excitations, that we use to write the one-loop amplitudes:

Indices: The metric of T 2 × T 4 is defined as GIJ , I, J = 4, . . .9. However, due to the fac-
torization of the internal space, it is convenient to introduce non-calligraphic indices that refer 
either to the T 2 or T 4 directions only. Hence, we will also use GI ′J ′ , I ′, J ′ = 4, 5 and GIJ , 
I, J = 6, . . . , 9.

Internal momentum and winding numbers along T 2 × T 4 are organized in six-vectors, 	M
and 	N , respectively. They can be split according to the tori factorization in the following way: 
	M = ( 	m′, 	m) and 	N = (	n′, 	n), where primed vectors components are two-vectors and the not 

primed ones are four-vectors.

Lattices: For the genus-1 Riemann surface, the expression of the amplitude T involves

�
(6,6)

	M, 	N(τ) = q
1
4 PL

I GIJ PL
J q̄

1
4 PR

I GIJ PR
J ,

P L
I = mI + GIJ nJ , P R

I = mI − GIJ nJ , I = 4, . . . ,9 ,

(A.3)

where GIJ = G−1
IJ . Due to the orientifold projection, the NS-NS antisymmetric tensor BIJ

present in the type IIB string vanishes. The (6, 6) lattice can again be divided into (2, 2) and 
(4, 4) lattices of zero modes associated with T 2 and T 4, as follows:

�
(6,6)

	M, 	N(τ) = �
(2,2)

	m′,	n′(τ )�
(4,4)

	m,	n (τ ) = q
1
4 PL

I ′GI ′J ′
PL

J ′ q̄
1
4 PR

I ′ GI ′J ′
PR

J ′ × q
1
4 PL

I GIJ PL
J q̄

1
4 PR

I GIJ PR
J .

(A.4)

By contrast, the states that are running in the Klein bottle, annulus or Möbius strip amplitudes 
have a vanishing momentum or winding number along each internal direction, so the relevant 
lattices can be defined as

P
(6)

	M (iτ2) = �
(6,6)

	M,	0 (τ ) = e−πτ2mIGIJ mJ ,

W
(4)

	n (iτ2) = �
(4,4)

	0,	n (τ ) = e−πτ2nI GIJ nJ .
(A.5)

As before, the momentum lattice can be factorized as
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P
(6)

	M (iτ2) = P
(2)

	m′ (iτ2)P
(4)

	m (iτ2) = e−πτ2mI ′GI ′J ′
mJ ′ × e−πτ2mI GIJ mJ . (A.6)

Throughout this work, the implicit arguments of the lattices are as indicated in the above defini-
tions.

Characters: Our definitions of the Jacobi modular forms and Dedekind function are

ϑ
[
α
β

]
(z|τ) =

∑
m

q
1
2 (m+α)2

e2iπ(z+β)(m+α) , η(τ ) = q
1
24

+∞∏
n=1

(1 − qn) . (A.7)

It is standard to denote

ϑ
[0

0

]
(z|τ) = ϑ3(z|τ) , ϑ

[0
1
2

]
(z|τ) = ϑ4(z|τ) ,

ϑ
[ 1

2

0

]
(z|τ) = ϑ2(z|τ) , ϑ

[ 1
2
1
2

]
(z|τ) = ϑ1(z|τ) , (A.8)

and to keep implicit both arguments when z = 0. In these notations, the SO(2n) affine characters 
can be written as

O2n = ϑn
3 + ϑn

4

2ηn
, V2n = ϑn

3 − ϑn
4

2ηn
, S2n = ϑn

2 + i−nϑn
1

2ηn
, C2n = ϑn

2 − i−nϑn
1

2ηn
.

(A.9)

They satisfy the following modular properties:⎛
⎜⎜⎝

O2n

V2n

S2n

C2n

⎞
⎟⎟⎠(τ + 1) = e−inπ/12diag

(
1,−1, einπ/4, einπ/4

)⎛⎜⎜⎝
O2n

V2n

S2n

C2n

⎞
⎟⎟⎠(τ ) ,

⎛
⎜⎜⎝

O2n

V2n

S2n

C2n

⎞
⎟⎟⎠(− 1

τ

)
= 1

2

⎛
⎜⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 i−n −i−n

1 −1 −i−n i−n

⎞
⎟⎟⎠
⎛
⎜⎜⎝

O2n

V2n

S2n

C2n

⎞
⎟⎟⎠(τ ) ,

(A.10)

which are relevant for the amplitudes T , K and A. For the Möbius strip, it is convenient to switch 
from the characters χ to the real “hatted” characters χ̂ defined by [53,54]

χ̂
(1

2
+ iτ2

)
= e−iπ(h− c

24 ) χ
(1

2
+ iτ2

)
, (A.11)

where h is the weight of the associated primary state and c is the central charge. The so-called 
P-transformation then takes the form⎛

⎜⎜⎝
Ô2n

V̂2n

Ŝ2n

Ĉ2n

⎞
⎟⎟⎠
(1

2
+ i

2τ2

)
=

⎛
⎜⎜⎝

c s 0 0
s −c 0 0
0 0 ζc iζ s

0 0 iζ s ζ c

⎞
⎟⎟⎠
⎛
⎜⎜⎝

Ô2n

V̂2n

Ŝ2n

C2n

⎞
⎟⎟⎠
(1

2
+ i

τ2

2

)
,

η̂
(1

2
+ i

2τ2

)
= √

τ2 η̂
(1

2
+ i

τ2

2

)
, (A.12)

where c = cos(nπ/4), s = sin(nπ/4) and ζ = e−inπ/4. Throughout this work, the implicit argu-
ments of the characters are τ , 2iτ2, iτ2/2 and (1 + iτ2)/2 for the torus, Klein bottle, annulus and 
Möbius strip amplitudes respectively.
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A.2. Bianchi–Sagnotti–Gimon–Polchinski model

Let us first consider the amplitudes arising in the simplest version of the BSGP model [49–51]
compactified on T 2. The background is as given in Eq. (A.1), with at this stage no Wilson lines 
switched on in the worldvolumes of the D9- and D5-branes, all D5-branes coincident on a single 
O5-plane, and as yet no implementation of the Scherk–Schwarz mechanism. Of course, in the 
absence of any breaking of supersymmetry, ultimately the total effective potential vanishes.

To write the one-loop vacuum amplitudes, we decompose the worldsheet fermion SO(8)

affine characters into characters of SO(4) × SO(4), where the first factor is the little group 
in six dimensions and the second is associated with the internal directions 6, 7, 8, 9:

O8 = O4O4 + V4V4 , V8 = V4O4 + O4V4 ,

S8 = S4S4 + C4C4 , C8 = S4C4 + C4S4 .
(A.13)

It is convenient to define characters that mix NS and R sectors but which diagonalize the action 
of the Z2 orbifold generator g. The transformations of the T4/Z2 characters under g is

g ·

⎛
⎜⎜⎝

O4
V4
S4
C4

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

O4
−V4
−S4
C4

⎞
⎟⎟⎠ , (A.14)

so that defining

QO = V4O4 − C4C4 , QV = O4V4 − S4S4 ,

QS = O4C4 − S4O4 , QC = V4S4 − C4V4 ,
(A.15)

the states belonging to the characters QO, QS on the one hand, and QV, QC on the other, have 
Z2 eigenvalues +1 and −1 respectively.

With these definitions and the conventions of Appendix A.1, the torus and Klein bottle ampli-
tudes read

T = 1

4

∫
F

d2τ

τ 3
2

{
|QO + QV|2

∑
	m,	n

�
(4,4)

	m,	n∣∣η4
∣∣2 + |QO − QV|2

∣∣∣∣2η

ϑ2

∣∣∣∣
4

+ 16 |QS + QC|2
∣∣∣∣ η

ϑ4

∣∣∣∣
4

+ 16 |QS − QC|2
∣∣∣∣ η

ϑ3

∣∣∣∣
4 }∑

	m′,	n′

�
(2,2)

	m′,	n′∣∣η4
∣∣2 , (A.16)

K = 1

4

+∞∫
0

dτ2

τ 3
2

{
(QO + QV)

(∑
	m

P
(4)

	m
η4 +

∑
	n

W
(4)

	n
η4

)
+ 32 (QS + QC)

(
η

ϑ4

)2}∑
	m′

P
(2)

	m′
η4 .

In the torus expression, the first term in the braces is the usual |V8 − S8|2 contribution occurring 
in type IIB. The second term is obtained by acting with the orbifold generator g, which imposes 
to be at the origin of the T 4 lattice. The last two terms correspond to the twisted sector and are 
also at the origin of the T 4 lattice.

The model contains D9-branes and D5-branes in order to cancel the RR charges of an O9-
plane and 32 O5-planes that are respectively the fixed point loci of � and �g. Denoting by N
and D the numbers of D9-branes and D5-branes, and by RN and RD their counterparts under the 
action of g on the associated Chan–Paton charges [52–54], the amplitudes are
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A = 1

4

+∞∫
0

dτ2

τ 3
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(QO + QV)

(
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∑
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(4)

	m
η4 + D2

∑
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M = −1

4

+∞∫
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dτ2

τ 3
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Q̂O + Q̂V

)(
N
∑
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P
(4)
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(4)

	n
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)
(A.17)

− (N + D)
(
Q̂O − Q̂V

)(2η̂

ϑ̂2

)2 }∑
	m′

P
(2)

	m′
η̂4 .

The first line in the amplitude A (M) contains the contributions of the NN, DD and ND sectors 
(N and D sectors), while the second line arises by acting with the orbifold generator g on these 
sectors.

The RR tadpole cancellation condition fixes the number of D9- and D5-branes to be N =
D = 32. Moreover, the structure of the open-string partition functions prevents orthogonal gauge 
groups. Unitary gauge group parameterisation of the Chan–Paton multiplicities is the only pos-
sibility, with

N = n + n̄ , D = d + d̄ , RN = i(n − n̄) , RD = i(d − d̄) , (A.18)

which gives n = n̄ = d = d̄ = 16. In this undeformed model, the open-string gauge group is 
U(16) × U(16).

A.3. Deformations of the BSGP model

The previous model can be deformed in various ways. In particular, the D5-branes can be 
displaced in T 4/Z2, Wilson lines along T 2 can be turned on for the gauge group associated with 
the D5-branes, and “Wilson lines” along all of the six internal directions can be switched on 
for the gauge group generated by the D9-branes. All these deformations spontaneously break 
the original gauge group. As described in Sect. 2.1 we are using a T-dual language in which all 
brane positions and WL’s are understood as D3-brane positions, with the understanding that this 
is merely a convenience, and that there is no common physical prescription where this is actually 
the case.

We are mostly interested in the case where the deformations take discrete values corre-
sponding to all 32 + 32 D3-branes (T-dual to the D9- and D5-branes) sitting on the corners 
of a six-dimensional box (T-dual to T 2 × T 4/Z2). The WL’s are equal to the components of 
	aii′ ≡ (	ai′ , 	ai) which are 0 or 1

2 , where the corners of the box are labelled by a double index ii′, 
in the notation of Sect. 2.1. The annulus amplitude in this case becomes
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A = 1

4

+∞∫
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τ 3
2
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∑
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RN
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N
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D
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2η

ϑ2

)2

+ 2e4iπ 	ai ·	aj RN
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D
jj ′ (QS − QC)

(
η
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)2 }∑
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P
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η4 ,
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and the Möbius amplitude reads

M = −1

4

+∞∫
0

dτ2

τ 3
2

∑
i,i′

{(
Q̂O + Q̂V

)(
Nii′

∑
	m

P
(4)

	m
η̂4 + Dii′

∑
	n

W
(4)

	n
η̂4

)

− (Nii′ + Dii′)
(
Q̂O − Q̂V

)(2η̂

ϑ̂2

)2 }∑
	m′

P
(2)

	m′
η̂4 .

(A.20)

By contrast, the amplitudes T and K in the closed-string sector are independent of the deforma-
tions (discrete or otherwise) that we have introduced, and are the same as the expressions given 
in Eq. (A.16).

There are two subtleties in the annulus amplitude of Eq. (A.19): first, in the term that corre-
sponds to the action of the generator g on the NN and DD sectors (the last term on the second 
line), the orbifold action enforces being at the origin of the T 4 or T̃ 4 lattice. This explains the 
presence of a Krönecker symbol δij . Second, the last contribution, which arises from the action 
of g on the ND sector, is dressed by signs e4iπ 	ai ·	aj which are necessary in the presence of discrete 
D9-brane WL’s [51].

This leads to the following open-string gauge symmetry in the presence of discrete deforma-
tions:

Gopen =
∏

ii′/nii′ �=0

U(nii′) ×
∏

jj ′/djj ′ �=0

U(djj ′) , where nii′ = Nii′

2
, djj ′ = Djj ′

2
.

(A.21)

A.4. Supersymmetry breaking

As anticipated in Sect. 2.2, the N = 2 → N = 0 spontaneous breaking of supersymmetry 
is induced by the Scherk–Schwarz mechanism [30–37]. Implementing the associated shifts in 
Eq. (2.14), the T 2 lattices of zero modes in presence of discrete WL’s are modified as follows:

�
(2,2)

	m′,(n4,2n5+h)
−→ �

(2,2)

	m′+F 	a′
S,(n4,2n5+h)

, h = 0,1 ,

P
(2)

	m′+	ai′−	aj ′ −→ P
(2)

	m′+F 	a′
S+	ai′−	aj ′ .

(A.22)
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As a result, the mass of the gravitino, which we may take as defining the scale of spontaneous 
supersymmetry breaking, is M = Ms

√
G55/2.

To write the amplitudes, we work in the so called “Scherk–Schwarz basis” [53] and change 
(G54, G55, G5I ) → (G54/2, G55/4, G5I /2), I = 6, . . . , 9. Moreover, for the massless spectrum 
to be easily readable, we split the result into the contributions of the bosonic and fermionic 
degrees of freedom running in the loops. The torus amplitude is lengthy, being given by

T = 1

4
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d2τ

τ 3
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+ 16
(
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+ ((O4O4 − V4V4)(S̄4C̄4 − C̄4S̄4) + (S4C4 − C4S4)(Ō4Ō4 − V̄4V̄4)
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4

+ 16
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) ∣∣∣∣ η

ϑ3

∣∣∣∣
4 ]

×
∑
	m′,	n′

�
(2,2)

	m′+	a′
S,(n4,2n5+1)∣∣η4
∣∣2

}
.

The proliferation of terms is due to the presence of an untwisted sector along with three twisted 
sectors, either twisted by g, the Scherk–Schwarz generator, or the combination of the two. The 
only states flowing in the Klein bottle are left/right-symmetric, leading to the simpler contribution

K = 1
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Finally, the open-string amplitudes are
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M = −1
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(
2η̂

ϑ̂2

)2 ]∑
	m′

P
(2)

	m′+	a′
S

η̂4

}
.

(A.26)

Appendix B. Potential and continuous Wilson lines

In this appendix, we derive the effective potential of the model realizing the N = 2 → N = 0
spontaneous breaking of supersymmetry, when continuous open-string WL’s are switched on. 
Our aim is to obtain expressions suitable for the derivation in Sect. 3.2 of the WL mass terms by 
taking two derivatives with respect to these moduli at points in moduli space where all D3-branes 
are coincident with O3-planes.

When generalizing the open-string amplitudes A and M given in Eqs. (A.25) and (A.26) to 
arbitrary positions of the D3-branes, the lattice deformations cannot be defined anymore by the 
positions 2π 	aii′ ≡ (	ai′ , 	ai) of the fixed points ii′. Instead, the deformations must be parame-
terised by the locations 2πaI

α and 2πbI
α , α = 1, . . . , 32, of the D3-branes in their appropriate 

six-dimensional boxes. However, as described in Sect. 2.1, the moduli space of WL’s admits 
disconnected components, themselves admitting various Higgs, Coulomb and mixed Higgs–
Coulomb branches. The number of moduli fields at tree level is thus highly dependent on the 
branch under interest. To capture the information needed to Taylor expand the potential at any 
point in moduli space where all D3-branes are stacked on O3-planes, we denote

	a′
α ≡ (a4

α, a5
α) , 	aα ≡ (a6

α, a7
α, a8

α, a9
α) ,

	b′
α ≡ (b4

α, b5
α) , 	bα ≡ (b6

α, b7
α, b8

α, b9
α) ,

(B.1)

and write the annulus amplitude as follows,
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+ 2(S4O4 + C4V4)
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α−	b′
β

η4

]}
.

Some remarks are in order:

• In this expression, even if all components aI
α , bI

α appear formally as independent variables, 
it is understood that they are correlated 4 by 4 or 2 by 2, or identically equal to 0 or 1

2 , 
according to the point in moduli space around which fluctuations are considered.

• All terms appearing in the braces are continuous deformations of the contributions propor-
tional to Nii′ or Dii′ coefficients in Eq. (A.25).

• When continuous WL’s are switched on only along T 2, the model sits in a Coulomb branch 
where the unitary nature of all gauge group factors persists. Hence, all terms proportional 
to coefficients RN

ii′ or RD
ii′ in Eq. (A.25) yield after deformation contributions vanishing 

identically.22

• When continuous WL’s are switched on only along T 4/Z2 or T̃ 4Z2, the model sits in a 
Higgs branch where unitary and symplectic gauge group factors cohabit. In that case, the 
coefficients RN

ii′ and RD
ii′ need to be re-evaluated with the numbers of D3-branes that remain 

localized on the O3-planes. Therefore, all terms proportional to coefficients RN
ii′ or RD

ii′ in 
Eq. (A.25) yield after deformation contributions vanishing identically.22

Similarly, the Möbius strip amplitude (A.26) reads in presence of continuous deformations
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η̂8

(∑
	m

P
(4)

	m+2	aα
P

(2)

	m′+	a′
S+2	a′

α
+
∑

	n
W

(4)

	n+2	bα
P

(2)

	m′+	a′
S+2	b′

α

)}
, (B.3)

where all aI
α , bI

α are again formally treated as free variables. In this expression, the terms pro-
portional to the combinations of SO(4) × SO(4) characters V̂4Ô4 − Ô4V̂4 or Ĉ4Ĉ4 − Ŝ4Ŝ4 are 
omitted, since they vanish identically.22

Next, we may expand the characters as follows,
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(B.4)

where c0 = d0 = 1, to obtain

22 This cancellation is only numerical, thanks to the pairing of degenerate modes of eigenvalues ±1 under the orbifold 
generator g.
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and

M = −2
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The moduli space region in which we are interested to find the WL masses is where the 
lightest non-vanishing scale of the model is the supersymmetry breaking scale M = Ms

√
G55/2. 

In terms of internal metric components, this means that

G55 � G44, |GIJ | � G55 , |G45|, |G5J | �√
G55 , I, J ∈ {6, . . . ,9} , G55 � 1 .

(B.7)

The Scherk–Schwarz compact direction X5 being large, it is convenient to Poisson sum over the 
momentum m5 (the new sum index is denoted l5). The annulus amplitude becomes
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where the function Hν can be expressed in terms of Kν , a modified Bessel function of the second 
kind,

Hν(z) = 1

�(ν)

+∞∫
0

dx

x1+ν
e− 1

x
−z2x = 2

�(ν)
zνKν(2z) . (B.9)

In Eq. (B.8), MA1 , MA2 and MA3 define three characteristic mass scales (in string units) 
satisfying
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M2
A1

= (mI + aI
α − aI
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(B.10)

where

Ĝ44 = G44 − G45

G55
G55 G54

G55
. (B.11)

Because we are interested in motions of D3-brane around O3-planes, we split the WL moduli 
into background values and fluctuations,

aI
α = 〈aI

α 〉 + εI
α , 〈aI

α 〉 ∈
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,
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2

}
,

(B.12)

which allow us to determine when the masses (B.10) are large or small compared to M . This is 
relevant since Hν is finite for small argument and exponentially suppressed for large argument:

Hν(z) = 1 − z2

ν − 1
+ O(z4) as |z| � 1 , Hν(z) ∼

√
π

�(ν)
zν− 1

2 e−2z as z � 1 .

(B.13)

For MA1/
√

G55 not to yield exponentially suppressed contributions to A, we need k = 0, mI +
〈aI

α〉 − 〈aI
β〉 = 0 and m4 + 〈a4

α〉 − 〈a4
β〉 = 0. This amounts to having 	m = 	0, m4 = 0 and (α, β) in 

the set LNN such that the D3-branes α, β T-dual to D9-branes

• belong to the same stack of Nii′ branes, i = 1, . . . , 16, i′ = 1, . . . , 4,
• or belong respectively to stacks of Ni,2i′′−1 and Ni,2i′′ branes, i = 1, . . . , 16, i′′ = 1, 2,
• or belong respectively to stacks of Ni,2i′′ and Ni,2i′′−1 branes, i = 1, . . . , 16, i′′ = 1, 2.

Similarly, for MA2/
√

G55 not to yield exponentially suppressed terms in A, we need k = 0, 
	n = 	0, m4 = 0 and (α, β) in the set LDD such that the D3-branes α, β T-dual to D5-branes

• belong to the same stack of Dii′ branes, i = 1, . . . , 16, i′ = 1, . . . , 4,
• or belong respectively to stacks of Di,2i′′−1 and Di,2i′′ branes, i = 1, . . . , 16, i′′ = 1, 2,
• or belong respectively to stacks of Di,2i′′ and Di,2i′′−1 branes, i = 1, . . . , 16, i′′ = 1, 2.

Finally, terms involving MA3/
√

G55 are relevant when k = 0 and m4 +〈a4
α〉 −〈b4

β〉 = 0. This is 
achieved if m4 = 0 and (α, β) is in the set LND such that the D3-branes α, β T-dual to a D9-brane 
and a D5-brane

• belong respectively to stacks of Nii′ and Dji′ branes, i, j = 1, . . . , 16, i′ = 1, . . . , 4,
• or belong respectively to stacks of Ni,2i′′−1 and Dj,2i′′ branes, i, j = 1, . . . , 16, i′′ = 1, 2,
• or belong respectively to stacks of Nj,2i′′ and Di,2i′′−1 branes, i, j = 1, . . . , 16, i′′ = 1, 2.
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Up to exponentially suppressed terms, we thus obtain

A =
(
G55

)2 �
( 5

2

)
π

5
2

×
∑
l5

4

|2l5 + 1|5
{ ∑

(α,β)∈LNN

(−)
2(〈a5

α〉−〈a5
β 〉) cos

[
2π |2l5 + 1|

(
ε5
α − ε5

β + G54

G55
(ε4

α − ε4
β)

)]

× H 5
2

(
π |2l5 + 1|

[
(εI

α − εI
β)GIJ (εJ

α − εJ
β ) + (ε4

α − ε4
β)2Ĝ44

] 1
2

√
G55

)

+
∑

(α,β)∈LDD

(−)
2(〈b5

α〉−〈b5
β 〉) cos

[
2π |2l5 + 1|

(
ξ5
α − ξ5

β + G54

G55
(ξ4

α − ξ4
β)

)]

× H 5
2

(
π |2l5 + 1|

[
(ξ I

α − ξI
β )GIJ (ξJ

α − ξJ
β ) + (ξ4

α − ξ4
β)2Ĝ44

] 1
2

√
G55

)
(B.14)

+ 1

2

∑
(α,β)∈LND

(−)
2(〈a5

α〉−〈b5
β 〉) cos

[
2π |2l5 + 1|

(
ε5
α − ξ5

β + G54

G55
(ε4

α − ξ4
β)

)]

× H 5
2

(
π |2l5 + 1|

[
(ε4

α − ξ4
β)2Ĝ44

] 1
2

√
G55

)}
+ O

(
G55e

− 2πc√
G55

)
,

where c is positive of order one.
Proceeding in a similar way with the Möbius amplitude, we may write

M = −
(
G55

)2 �
( 5

2

)
π

5
2

4
∑
k≥0

(−1)kck

∑
α

∑
m4

∑
l5

1

|2l5 + 1|5{∑
	m

cos

[
2π |2l5 + 1|

(
2a5

α + G54

G55
(m4 + 2a4

α)

)]
H 5

2

(
π |2l5 + 1|MM1√

G55

)

+
∑

	n
cos

[
2π |2l5 + 1|

(
2b5

α + G54

G55
(m4 + 2b4

α)

)]
H 5

2

(
π |2l5 + 1|MM2√

G55

)}
,

(B.15)

which involves characteristic mass scales

M2
M1

= (mI + 2aI
α)GIJ (mJ + 2aJ

α ) + (m4 + 2a4
α)2Ĝ44 + k ,

M2
M2

= (nI + 2bI
α)GIJ (nJ + 2bJ

α ) + (m4 + 2b4
α)2Ĝ44 + k .

(B.16)

The functions H 5
2

are exponentially suppressed unless their arguments satisfy k = 0 and mI =
−2〈aI

α〉, m4 = −2〈a4
α〉, or nI = −2〈bI

α〉, m4 = −2〈b4
α〉. As a result, the amplitude takes the 

following form



46 S. Abel et al. / Nuclear Physics B 957 (2020) 115100

M = −
(
G55

)2 �
( 5

2

)
π

5
2

∑
α

∑
l5

4

|2l5 + 1|5

⎧⎪⎪⎨
⎪⎪⎩cos

[
4π |2l5 + 1|

(
ε5
α + G54

G55
ε4
α

)]

× H 5
2

(
2π |2l5 + 1|

[
εI
αGIJ εJ

α + (ε4
α

)2
Ĝ44

] 1
2

√
G55

)

+ cos

[
4π |2l5 + 1|

(
ξ5
α + G54

G55
ξ4
α

)]
(B.17)

×H 5
2

(
2π |2l5 + 1|

[
ξI
αGIJ ξJ

α + (ξ4
α

)2
Ĝ44

] 1
2

√
G55

)⎫⎪⎪⎬
⎪⎪⎭

+ O
(

G55e
− 2πc√

G55

)
.

Adding the annulus and Möbius strip amplitudes, the contribution of the open-string sector to 
the one-loop effective potential can be written as

− M4
s

2(2π)4 (A + M) = �
( 5

2

)
π

13
2

M4
∑
l5

N open
2l5+1(ε, ξ,G)

|2l5 + 1|5 + O
(
(MsM)2e−2πc

Ms
M

)
, (B.18)

where N open
2l5+1(ε, ξ, G) is given by

N open
2l5+1(ε, ξ,G) = 2

{
−

∑
(α,β)∈LNN

(−)F cos

[
2π |2l5 + 1|G

5I ′
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β

)]
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2

(
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β)2Ĝ44
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2

√
G55

)

−
∑
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(−)F cos

[
2π |2l5 + 1|G
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(
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β

)]

× H 5
2

(
π |2l5 + 1|

[
(ξ I

α − ξI
β )GIJ (ξJ

α − ξJ
β ) + (ξ4

α − ξ4
β)2Ĝ44

] 1
2

√
G55

)
(B.19)

− 1

2

∑
(α,β)∈LND

(−)F cos

[
2π |2l5 + 1|G

5I ′

G55

(
εI ′
α − ξI ′

β

)]

× H 5
2

(
π |2l5 + 1|

[
(ε4

α − ξ4
β)2Ĝ44

] 1
2

√
G55
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+
∑
α

cos

[
4π |2l5 + 1|G

5I ′

G55
εI ′
α

]

× H 5
2

(
2π |2l5 + 1|

[
εI
αGIJ εJ

α + (ε4
α

)2
Ĝ44

] 1
2

√
G55

)

+
∑
α

cos

[
4π |2l5 + 1|G

5I ′

G55
ξI ′
α

]

× H 5
2

(
2π |2l5 + 1|

[
ξI
αGIJ ξJ

α + (ξ4
α

)2
Ĝ44

] 1
2

√
G55

)}
.

In this expression, F is the fermionic number of the string (α, β) ∈ LNN ∪ LDD ∪ LND.
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Abstract

We derive the masses acquired at one loop by massless scalars in the Neumann–
Dirichlet sector of open strings, when supersymmetry is spontaneously broken.
It is done by computing two-point functions of “boundary-changing vertex oper-
ators” inserted on the boundaries of the annulus and Möbius strip. This requires
the evaluation of correlators of “excited boundary-changing fields,” which are
analogous to excited twist fields for closed strings. We work in the type IIB
orientifold theory compactified on T 2 × T 4/Z2, where N = 2 supersymmetry is
broken toN = 0 by the Scherk–Schwarz mechanism implemented along T 2. Even
though the full expression of the squared masses is complicated, it reduces to a
very simple form when the lowest scale of the background is the supersymmetry
breaking scale M3/2. We apply our results to analyze in this regime the stability
at the quantum level of the moduli fields arising in the Neumann–Dirichlet sec-
tor. This completes the study of Ref. [32], where the quantum masses of all other
types of moduli arising in the open- or closed-string sectors are derived. Ulti-
mately, we identify all brane configurations that produce backgrounds without
tachyons at one loop and yield an effective potential exponentially suppressed,
or strictly positive with runaway behavior of M3/2.
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1 Introduction

Superstring-theory models based on two-dimensional conformal field theories of free fields
have the advantage of allowing, at least in principle, string amplitudes to be computed ex-
actly in string tension α′ by including all worldsheet instantons. Backgrounds whose internal
spaces are ZN -twist orbifolds of tori are of particular interest since their numbers of spacetime
supersymmetries are reduced in a “hard way” compared to the case of toroidal compactifi-
cations. In this framework, twisted states in the closed-string Hilbert space are mandatory
for modular invariance to hold, which implies “twist fields” to exist in the conformal field
theory to create them [1]. String amplitudes involving external states in the twisted sectors
are based on correlation functions of twist fields, which are notoriously difficult to handle.
Indeed, the seminal work of Ref. [2] presents results only for the case of twist fields creating
ground states in the closed-string sector.

In open-string theory, the consistency of orbifold models also implies the presence of
distinct D-brane sectors. For instance, in the type IIB orientifold on T 4/Z2 [3–5], open strings
have either Neumann (N) or Dirichlet (D) boundary conditions in the orbifold directions,
and are thus attached to D9- or D5-branes. In particular, strings with Neumann boundary
conditions at one end and Dirichlet conditions at the other end populate the ND sector. In
string amplitudes involving external states of this type, a conformal transformation maps
the legs of the diagram to vertex operators localized along the worldsheet boundary. The key
point is that the nature of an ND-sector state implies that the worldsheet boundary condition
changes from Neumann on one side of the vertex to Dirichlet on the other side. Hence, vertex
operators creating states in the ND sector involve “boundary-changing fields” [6] dressed by
other objects encoding the quantum numbers.

It turns out that twist fields and boundary-changing fields have identical OPE’s [2,6], up
to the fact that the former are inserted in the bulk of the worldsheet and the latter on the
boundary. Combining this with the method of images which defines surfaces with bound-
aries as Rienmann surfaces modded by involutions [7, 8], correlation functions of boundary-
changing fields can be related to those of twist fields. In the literature, this point of view
was applied for computing amplitudes with external states of ND sectors in supersymmetric
theories at tree level [9–12] and one loop [13–18], while other approaches were followed in
Refs. [19–21].
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In the present work, we consider the type IIB orientifold model of Refs. [3–5] compactified
on T 2 × T 4/Z2, when N = 2 supersymmetry is spontaneously broken to N = 0. The
implementation of the breaking consists of a string version [22–29] of the Scherk–Schwarz
mechanism [30, 31] along one direction of T 2. In this case, the supersymmetry breaking
scale, M3/2, is a modulus inversely proportional to the size of the compact direction involved
in the mechanism. Moreover, the free nature of the bosonic and fermionic fields defining
the worldsheet conformal field theory is preserved and the results of Ref. [2] apply. An
effective potential which depends on all moduli fields is generated by quantum corrections
and the question of their stability must be addressed. Assuming the string coupling to
be in perturbative regime, loci in moduli space where the one-loop effective potential is
extremal with respect to all moduli fields except M3/2 have been determined in Ref. [32], up
to exponentially suppressed terms. At these points, the potential reads

V1-loop = υ(nF − nB)M4
3/2 +O

(
(MsM3/2)2 e

−π cMs
M3/2

)
, (1.1)

where nF and nB are the numbers of massless fermionic and bosonic degrees of freedom
present at genus-0. Moreover, υ > 0 is a constant, Ms ≡ 1/

√
α′ is the string scale, and

cMs is the lowest non-vanishing mass scale other than M3/2, 0 < c ≤ 1. Hence, Eq. (1.1)
is of interest in all regions in moduli space where cMs, which is a compactification scale, is
greater than M3/2. When this is the case and the exponential contributions are neglected,
M3/2 runs away, except when the background satisfies a Bose/Fermi degeneracy at genus-0,
nF − nB = 0, implying M3/2 to be a flat direction (for other theories, see Refs. [33–43]).
For arbitrary nF − nB, though, stability of all remaining moduli fields can be analyzed from
different points of view.

In Ref. [32], the mass terms of all moduli fields in the NN and DD open-string sectors were
derived by direct computation of the potential for arbitrary backgrounds of these scalars.
The untwisted closed-string sector contains three types of moduli fields: Firstly, since the
internal metric components do not show up in the dominant term of Eq. (1.1) (except the
combination M3/2), they parametrize flat directions up to the suppressed terms. Secondly,
heterotic/type I duality was used to show that the Ramond-Ramond (RR) two-form moduli
are also flat directions. Finally, the same conclusion definitely applies to the dilaton at one
loop. The twisted closed-string sector contains 16 blowing-up modes of T 4/Z2 among which
2 to 16 are absorbed by anomalous U(1)’s, which become massive vector fields thanks to
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a generalized Green–Schwarz mechanism. In this regard, the present work can be seen as
a companion paper of Ref. [32], as it provides a derivation of the mass terms generated at
one loop by the remaining moduli fields, namely those belonging to the ND+DN open-string
sector. This will be done by computing two-point functions of boundary-changing vertex
operators of massless scalars in the ND+DN sector, on the annulus and Möbius strip.

In Sect. 2, we review the description of the type IIB orientifold model with broken N = 2
supersymmetry, which involves D9- and D5-branes. Alternative T-dual pictures are also
introduced for describing the NN- and DD-sector moduli as positions of D3-branes in the
internal space. Sect. 3 defines the string amplitudes we are interested in. Sect. 4 presents all
correlators needed to calculate these amplitudes on the double-cover tori of the annulus and
Möbius strip. In particular, we review the derivation of Ref. [2] of the correlation function
of twist fields that create ground states in the twisted sectors of closed strings. Following
the method introduced in Refs. [13–17], we extend the result to the case of “excited twist
fields” i.e. operators appearing as higher order terms in the OPE of ordinary twist fields.

In Sect. 5 we compute the two-point functions of interest. While the formulas can be
used to extract the one-loop corrections to the Kähler metric and masses of the classically
massless scalars of the ND+DN sector, they turn out to be rather cumbersome and obscure.
For this reason, we derive in Sect. 6 a simplified expression of the squared masses at one
loop that is valid when M3/2 is lower than all other non-vanishing mass scales present in the
background, precisely in the spirit of Eq. (1.1) which holds in this regime.

In Sect. 7, we apply this result to the last two models highlighted in Ref. [32], which
presented all brane configurations that are tachyon free (or potentially tachyon free) at one
loop1 and satisfy nF − nB ≥ 0. The outcome of the two papers is that among the O(1011)
non-perturbatively consistent brane configurations, there exist 2 tachyon free setups with
nF−nB = 0, and 5 with nF−nB > 0. A third configuration with nF−nB = 0 and ND+DN-
sector moduli is tachyon free at one loop, up to 2 blowing-up modes of T 4/Z2 for which we
have not computed the quantum mass terms.

Finally, our conclusions can be found in Sect. 8, while technical points are reported in
three appendices.

1When the suppressed terms in Eq. (1.1) can be neglected.
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2 The N = 2→ N = 0 open-string model

In this section, we review the open-string model considered in Ref. [32,44], which realizes at
tree level the spontaneous breaking of N = 2 supersymmetry in four-dimensional Minkowski
spacetime. Our goals are to fix our notations, list the massless spectrum at genus-0, and
specify the moduli fields whose masses will be computed at one loop in the sections to come.

2.1 The supersymmetric parent model

At the supersymmetric level, our starting point is the type IIB orientifold model constructed
in six dimensions by Bianchi and Sagnotti [3], as well as by Gimon and Polchinski [4, 5].
Compactified down to four dimensions, the full gravitational background becomes

R1,3 × T 2 × T 4

Z2
, (2.1)

whose coordinates will be labeled by Greek, primed Latin and unprimed Latin indices

spacetime: Xµ , µ ∈ {0, . . . , 3} ,
two-torus: XI′ , I ′ ∈ {4, 5} ,
four-torus: XI , I ∈ {6, . . . , 9} ,

(2.2)

and where the Z2-orbifold generator is defined as

g : (X6, X7, X8, X9) −→ (−X6,−X7,−X8,−X9) . (2.3)

The background also contains orientifold planes and D-branes. First of all, there is an
O9-plane and 32 D9-branes spanned along all spatial directions. Second, there is an O5-
plane localized at each of the 16 fixed points of T 4/Z2, and 32 D5-branes transverse to T 4/Z2.
Open strings with one end attached to a D9-brane have Neumann boundary conditions in all
spacetime coordinates, while those stuck to a D5-brane have Dirichlet boundary conditions
along the directions of T 4/Z2 (and Neumann along R1,3 × T 2).

Moduli fields:

• On the worldvolumes of the 32 D5-branes, the gauge bosons can develop vacuum
expectation values (vev’s) along T 2, which are Wilson lines. T-dualizing the two-torus,
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the 32 D5-branes become D3-branes whose positions along X̃I′ , the coordinates along
the T-dual torus T̃ 2 of metric G̃I′J ′ ≡ GI′J ′ , are nothing but the Wilson-line moduli of
the original description [45]. Because in the T-dual picture a D3-brane at (X̃I′ , XI) is
transformed under Ω, the orientifold generator, into an “orientifold-mirror” D3-brane
located at (−X̃I′ ,−XI) [45], there are 64 fixed points in this description, all supporting
one O3-plane.2 Moreover, at genus-0, there are only 16 independent positions along
T̃ 2, which are associated with the brane/mirror brane pairs.

• The locations of the 32 D3-branes (T-dual to the D5-branes) in T 4/Z2 are also allowed
to vary, provided this is done consistently with the symmetries generated by g and
Ω. Indeed, a D3-brane sitting at (X̃I′ , XI) must be paired with an image brane under
g at (X̃I′ ,−XI). Moreover, both admit “mirror branes” under Ω, which are located
at (−X̃I′ ,−XI) and (−X̃I′ , XI). Hence, there are at most 8 independent D3-brane
positions in T 4/Z2. Notice that this number is lowered when there are 2 modulo 4 D3-
branes sitting on one of the 64 O3-planes, since such a configuration is still symmetric
under g and Ω but does not allow 2 D3-branes to move in the bulk of T 4/Z2. In other
words, 2 D3-branes have rigid positions in T 4/Z2.

• Applying a T-duality on the four-torus of the background (2.1), D5-branes and D9-
branes are turned into each other. Therefore, all moduli fields described for the D5-
branes admit counterparts for the D9-branes. In particular, the D9-brane moduli are
mapped into positions of 32 D3-branes in T̃ 2× T̃ 4/Z2, where T̃ 4 is the dual four-torus
with metric G̃IJ ≡ GIJ and coordinates X̃I . In this alternative T-dual picture, there
are again 64 O3-planes at the fixed points of the inversion (X̃I′ , X̃I)→ (−X̃I′ ,−X̃I).3

• In the original picture involving D5- and D9-branes, all open-string moduli described
so far correspond to modes realized in the DD and NN sectors. However, open strings
stretched between one D5-brane and one D9-brane can also lead to moduli fields. The
present paper is devoted to the study of these moduli. To be specific, we will derive the
masses they acquire at one loop, when supersymmetry is spontaneously broken and
their vev’s vanish. When these moduli condense, the backgrounds can be described in
terms of brane recombinations or magnetized branes [46–49].

2In addition, the initial D9-branes become D7-branes.
3The initial D5-branes also become D7-branes in this alternative T-dual picture.
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X̃4

X̃5

T 4, T̃ 4

Direction of Scherk-Schwarz

(a) Configuration of D3-branes associated with D5-
branes (orange) and D9-branes (green) in T-dual
pictures. In this example, all D3-branes sit on O3-
planes (blue dots).

i′ = 3
i′ = 4

i = 1
i′ = 1

i′ = 2

i = 2

i = 3

X̃4

X̃5

T 4, T̃ 4

Direction of Scherk-Schwarz

(b) Labelling of the fixed points i′ ∈ {1, ..., 4} along
the directions of T̃ 2, and schematic labelling of the
fixed points i ∈ {1, ..., 16} along the directions of T 4

or T̃ 4. i′ = 1 or 3 correspond to points at X̃5 = 0,
while i′ = 2 or 4 correspond to points at X̃5 = π,
where X̃5 is the coordinate T-dual to the direction
along which the Scherk–Schwarz mechanism is im-
plemented.

Figure 1: Description in terms of D3-brane positions of the moduli arising from the NN and DD sectors of
the orientifold theory.

Geometric picture: In order to specify a particular set of vev’s for the moduli arising
from the DD and NN sectors, we will use a pictorial representation [32], as shown in Fig. 1a.
We represent the fundamental domain of T̃ 2×T 4/Z2 modded by the involution (X̃I′ , XI)→
(−X̃I′ ,−XI) by a schematic six-dimensional “box”, with an O3-plane represented by a dot
at each fixed point i.e. corner of the box. The moduli in the DD sector correspond to the
positions of the 32 D3-branes (drawn in orange) T-dual to the D5-branes. Similarly, we
consider a second box corresponding to the fundamental domain of T̃ 2 × T̃ 4/Z2 modded
by the involution (X̃I′ , X̃I) → (−X̃I′ ,−X̃I), with the moduli of the NN sector given by
the positions of the 32 D3-branes (drawn in green) T-dual to the D9-branes. Finally, we
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superpose the two boxes, keeping in mind that the resulting picture combines information
from two distinct T-dual descriptions of the same theory.

In the schematic example of Fig. 1a, all D3-branes are located on O3-planes. Indeed, it
has been shown in Ref. [32] that in presence of supersymmetry breaking (to be introduced in
the next subsection) these configurations are of particular interest, since they yield extrema
of the one-loop effective potential with respect to the moduli arising from the NN and DD
sectors (except forM3/2 when nF 6= nB), up to exponentially suppressed terms (see Eq. (1.1)).
Therefore, from now on, we will consider background values of the moduli in the DD and NN
sectors corresponding to stacks of D3-branes all located on corners of the six-dimensional
boxes. To this end, we label the 64 corners by a double index ii′, where i ∈ {1, . . . , 16} refers
to the fixed points of T 4/Z2 (or T̃ 4/Z2), and i′ ∈ {1, . . . , 4} is associated with those in the
T̃ 2 directions. Hence, the coordinates of corner ii′ are captured by a two-vector 2π~ai′ and a
four-vector 2π~ai, whose components satisfy

aI
′
i′ , a

I
i ∈

{
0, 1

2

}
, i′ ∈ {1, . . . , 4} , i ∈ {1, . . . , 16} . (2.4)

Fig. 1b shows how the labelling looks like when the fixed points i ∈ {1, . . . , 16} are schemat-
ically arranged linearly along a vertical axis. In these notations, we will denote by Dii′ and
Nii′ the numbers of D3-branes T-dual to the D5-branes and D9-branes that are located at
corners ii′ of the appropriate boxes.

2.2 Spontaneous supersymmetry breaking

In quantum field theory, the Scherk–Schwarz mechanism amounts to imposing fields to sat-
isfy boundary conditions along compact directions that are compatible with global sym-
metries and depend on associated conserved charges [30, 31]. When charges vary between
superpartners, distinct Kaluza–Klein masses arise in lower dimension and supersymmetry is
spontaneously broken. The implementation of this mechanism in closed-string theory was
developed in Refs. [50–54], and extended to the open-string framework in Refs. [22–29].

In the model based on the background (2.1), we make the choice to implement the Scherk–
Schwarz mechanism along the periodic direction X5 only, and to use the fermionic number
F as conserved charge. In practice, F = 0 for the bosonic degrees of freedom and F = 1
for the fermionic ones. Denoting ~m′ the two-vector whose components are the Kaluza–Klein
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momenta (m4,m5) ∈ Z2 along T 2, the lattices of zero modes appearing in the one-loop
partition function are shifted according to the rules4

~m′ + F ~a′S for closed string ,

~m′ + F ~a′S + ~ai′ − ~aj′ for open string ,
(2.5)

where we have defined
~a′S =

(
0, 1

2

)
. (2.6)

As a result, the two gravitino masses are

M3/2 =
√
G55

2 Ms , (2.7)

which is the scale of N = 2 → N = 0 spontaneous breaking of supersymmetry. In the
open-string case, the extra shift ~ai′ − ~aj′ arises from the Wilson-line background along T 2

of the gauge fields living on the worldvolumes of the D5- and D9-branes. In the D3-brane
T-dual pictures, it means that an open string is stretched between D3-branes sitting on
corners ii′ and jj′, regardless of whether they are dual to D5- or D9-branes.5 Because of the
particular role played by the direction X̃5, which is T-dual to the Scherk–Schwarz direction
X5 of the original picture, it is convenient to specify our labelling of the fixed points along
the directions of T̃ 2. We will denote by i′ = 1 and 3 those located at X̃5 = 0, and by i′ = 2
and 4 those located at X̃5 = π (see Fig. 1b).

Partition function: The one-loop partition function can be divided into four contribu-
tions ZΣ, which can be derived from path integrals on worldsheets whose topologies are those
of a torus (T ), Klein bottle (K), annulus (A) and Möbius strip (M). These contributions
can also be expressed as supertraces over the modes belonging to the untwisted and twisted
closed-string sectors, as well as over those in the NN, DD, ND and DN open-string sectors.
For the closed strings, we have

ZT = 1
τ 2

2
Str 1

2
1 + g

2 qL0− 1
2 q̄L̃0− 1

2 , ZK = 1
τ 2

2
Str Ω

2
1 + g

2 qL0− 1
2 q̄L̃0− 1

2 , q = e2iπτ , (2.8)

4In the closed-string sector, this is the only modification in the untwisted sector of the extra generator
that implements the Scherk–Schwarz breaking in orbifold language.

5 For the ND and DN sectors, our description in terms of “stretched strings” is somewhat abusive since
the corners ii′ and jj′ are to be understood in distinct T-dual descriptions.
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where τ is the Teichmüller parameter of the worldsheet torus with real and imaginary parts
denoted τ1 and τ2 > 0, while for the open strings we have

ZA = 1
τ 2

2
Str 1

2
1 + g

2 q
1
2 (L0−1) , ZM = 1

τ 2
2
Str Ω

2
1 + g

2 q
1
2 (L0−1) , q = e−2πτ2 . (2.9)

In these formulas, L0, L̃0 are the zero-frequency Virasoro operators.

In order to give explicit expressions of ZA and ZM, we first define four-vectors ~m and
~n whose components are the Kaluza–Klein momenta mI ∈ Z and winding numbers nI ∈ Z
along the directions of T 4. The lattices of zero modes (to be shifted by Wilson lines) of the
bosonic coordinates are then given by

∑

~m

P
(4)
~m (iτ2) =

∑

~m

e−πτ2mIG
IJmJ for the NN sector ,

∑

~n

W
(4)
~n (iτ2) =

∑

~n

e−πτ2nIGIJnJ for the DD sector ,

1 for the ND and DN sectors ,

(2.10)

while the lattice of momenta along T 2 is
∑

~m′
P

(2)
~m′ (iτ2) =

∑

~m′
e−πτ2mI′G

I′J′mJ′ (2.11)

in all open-string sectors.

In the annulus contribution to the partition function, the actions of the neutral group
element 1 and generator g on the Chan–Paton indices can be represented by matrices acting
on each Neumann or Dirichlet sector ii′ [4, 5],

γii
′

N,1 = INii′ , γii
′

N,g = JNii′ ,

γii
′

D,1 = IDii′ , γii
′

D,g = JDii′ ,
(2.12)

where Ik is the k × k identity matrix while for k even

Jk =
( 0 I k

2
−I k

2
0

)
. (2.13)

Actually, the precise dictionary between the above matrices and those defined in Refs. [4,5]
can be found in Appendix A. To be specific, by labelling the branes with Greek indices, the
actions of G = 1 or g are represented in the NN sector as follows:

∀α ∈ {1, . . . , Nii′} ,∀β ∈ {1, . . . , Njj′} , |αβ〉 →
Nii′∑

α′=1

Njj′∑

β′=1
(γii′N,G)αα′ |α′β′〉(γjj

′−1
N,G )β′β . (2.14)
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Similar expressions apply to the DD sector for G = 1, g, as well as to the ND and DN sectors
for G = 1. There exists only one subtlety in the ND and DN sectors for G = g, where one
has to multiply all Neumann matrices by signs in the transformation rules,

γii
′

N,g −→ e4iπ~ai·~ajγii
′

N,g , (2.15)

where the index j refers to the fixed point of T 4/Z2 where the stack of D5-branes sits. This is
explained in Ref. [5] and translated into the notations of our paper in Appendix A. Moreover,
the worldsheet fermions associated with the directionsX2, . . . , X5 on the one-hand, and those
associated with the directions X6, . . . , X9 on the other hand, yield contributions expressed
as characters of the SO(4) affine algebra. The latter are associated with a singlet (O),
vectorial (V) and two spinorial (S and C) conjugacy classes [55–57]. For the annulus partition
function, these characters denoted O4, V4, S4, C4 are defined in Eq. (B.4) and evaluated at
argument iτ2/2. Altogether, one obtains

ZA = 1
4

1
τ 2

2

∑

i,i′
j,j′

{[
(V4O4 +O4V4)

(
tr(γii′N,1)tr(γjj

′−1
N,1 )

∑

~m

P
(4)
~m+~ai−~aj
η4 + tr(γii′D,1)tr(γjj

′−1
D,1 )

∑

~n

W
(4)
~n+~ai−~aj
η4

)

− (V4O4 −O4V4) δij
(
tr(γii′N,g)tr(γ

jj′−1
N,g ) + tr(γii′D,g)tr(γ

jj′−1
D,g )

) (2η
ϑ2

)2

+ (O4C4 + V4S4)
(
tr(γii′N,1)tr(γjj

′−1
D,1 ) + tr(γii′D,1)tr(γjj

′−1
N,1 )

)( η
ϑ4

)2
(2.16)

− (O4C4 − V4S4) e4iπ~ai·~aj
(
tr(γii′N,g)tr(γ

jj′−1
D,g ) + tr(γii′D,g)tr(γ

jj′−1
N,g )

) ( η
ϑ3

)2
]∑

~m′

P
(2)
~m′+~ai′−~aj′
η4

−
[
(S4S4 + C4C4)

(
tr(γii′N,1)tr(γjj

′−1
N,1 )

∑

~m

P
(4)
~m+~ai−~aj
η4 + tr(γii′D,1)tr(γjj

′−1
D,1 )

∑

~n

W
(4)
~n+~ai−~aj
η4

)

− (C4C4 − S4S4) δij
(
tr(γii′N,g)tr(γ

jj′−1
N,g ) + tr(γii′D,g)tr(γ

jj′−1
D,g )

) (2η
ϑ2

)2

+ (S4O4 + C4V4)
(
tr(γii′N,1)tr(γjj

′−1
D,1 ) + tr(γii′D,1)tr(γjj

′−1
N,1 )

)( η
ϑ4

)2

− (S4O4 − C4V4) e4iπ~ai·~aj
(
tr(γii′N,g)tr(γ

jj′−1
D,g ) + tr(γii′D,g)tr(γ

jj′−1
N,g )

) ( η
ϑ3

)2
]∑

~m′

P
(2)
~m′+~a′S+~ai′−~aj′

η4

}
.

In the the Möbius-strip contribution to the partition function, the actions of Ω and Ωg
on the Chan–Paton indices can be represented by matrices associated with each Neumann
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or Dirichlet sector ii′,
γii
′

N,Ω = INii′ , γii
′

N,Ωg = JNii′ ,

γii
′

D,Ωg = IDii′ , γii
′

D,Ω = JDii′ .
(2.17)

Notice the inverted roles of Ω and Ωg in the Neumann and Dirichlet sectors. The precise
actions of ΩG for G = 1 or g on the NN sector are [4]

∀α ∈ {1, . . . , Nii′} ,∀β ∈ {1, . . . , Njj′} , |αβ〉 →
Nii′∑

α′=1

Njj′∑

β′=1
(γii′N,ΩG)αα′ |β′α′〉(γjj

′−1
N,ΩG )β′β , (2.18)

and similarly for the DD sector. As compared to Eq. (2.14), note the reversal α′β′ → β′α′ in
the transformation rule. As a result, the ND and DN sectors automatically yield vanishing
contributions in the defining trace of ZM. Moreover, all characters denoted generically as χ̂
appearing in the Möbius strip partition function can be defined in terms of their counterparts
χ in the annulus amplitude by the relation [58,59]

χ̂
(1

2 + i
τ2

2

)
= e−iπ(h− c

24 ) χ
(1

2 + i
τ2

2

)
, (2.19)

where h is the weight of the associated primary state and c the central charge of the Verma
module. With these notations, one obtains

ZM =− 1
4
∑

i,i′

{[
(V̂4Ô4 + Ô4V̂4)

(
tr(γii′ TN,Ω γ

ii′−1
N,Ω )

∑

~m

P
(4)
~m

η̂4 + tr(γii′ TD,Ωgγ
ii′−1
D,Ωg )

∑

~n

W
(4)
~n

η̂4

)

− (V̂4Ô4 − Ô4V̂4)
(
tr(γii′ TN,Ωgγ

ii′−1
N,Ωg ) + tr(γii′ TD,Ω γ

ii′−1
D,Ω )

)(2η̂
ϑ̂2

)2 ]∑

~m′

P
(2)
~m′

η̂4

−
[
(Ĉ4Ĉ4 + Ŝ4Ŝ4)

(
tr(γii′ TN,Ω γ

ii′−1
N,Ω )

∑

~m

P
(4)
~m

η̂4 + tr(γii′ TD,Ωgγ
ii′−1
D,Ωg )

∑

~n

W
(4)
~n

η̂4

)

− (Ĉ4Ĉ4 − Ŝ4Ŝ4)
(
tr(γii′ TN,Ωgγ

ii′−1
N,Ωg ) + tr(γii′ TD,Ω γ

ii′−1
D,Ω )

)(2η̂
ϑ̂2

)2 ]∑

~m′

P
(2)
~m′+~a′S
η̂4

}
,

(2.20)

where the arguments of all hatted characters are (1 + iτ2)/2, and the superscript T stands
for the transposition of the matrix to which it applies.

For completeness, the closed-string sector contributions to the partition function ZT and
ZK are displayed in Appendix B.

Spectrum: The classical massless spectrum can be read from the partition function. To
this end, it is useful to evaluate the traces over the Chan–Paton indices in the open string
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sector, which yields

Nii′ ≡ nii′ + n̄ii′ = trγii′N,1 = trγii′−1
N,1 = tr(γii′ TN,Ω γ

ii′−1
N,Ω ) = tr(γii′ TN,Ωgγ

ii′−1
N,Ωg ) ,

0 ≡ i(nii′ − n̄ii′) = trγii′N,g = −trγii′−1
N,g ,

Dii′ ≡ dii′ + d̄ii′ = trγii′D,1 = trγii′−1
D,1 = tr(γii′ TD,Ωgγ

ii′−1
D,Ωg ) = tr(γii′ TD,Ω γ

ii′−1
D,Ω ) ,

0 ≡ i(dii′ − d̄ii′) = trγii′D,g = −trγii′−1
D,g ,

(2.21)

where we use the fact that the matrix Jk for k even has equal number of eigenvalues i and −i.

From ZA+ZM, one finds that the massless bosonic degrees of freedom are the low-lying
modes of the combinations of characters

1
η8

∑

i,i′

{
V4O4

[
nii′n̄ii′ + dii′ d̄ii′

]

+O4V4

[
nii′(nii′ − 1)

2 + n̄ii′(n̄ii′ − 1)
2 + dii′(dii′ − 1)

2 + d̄ii′(d̄ii′ − 1)
2

]

+O4C4
∑

j

[
1− e4iπ~ai·~aj

2
(
nii′dji′ + n̄ii′ d̄ji′

)
+ 1 + e4iπ~ai·~aj

2
(
nii′ d̄ji′ + n̄ii′dji′

) ]}
.

(2.22)

In the products of SO(4) characters, the first is telling us whether the states belong to
vectorial or singlet representations of the six-dimensional Lorentz group. Hence, the first line
corresponds to the bosonic parts of an N = 2 vector multiplet in the adjoint representation
of the open-string gauge group

∏

ii′/nii′ 6=0
U(nii′) ×

∏

jj′/djj′ 6=0
U(djj′) , where

∑

ii′
nii′ =

∑

ii′
dii′ = 16 , (2.23)

while the second line corresponds to the bosonic parts of one hypermultiplet in the anti-
symmetric ⊕ antisymmetric representation of each unitary factor. All of these states, which
arise in the NN and DD sectors, are visualized in Fig. 2a as strings drawn in green (NN) or
orange (DD) solid lines with both ends attached to the same stacks of D3-branes. On the
contrary, the third line in (2.22), which is associated with the ND + DN sector, corresponds
to the bosonic part of one hypermultiplet in the fundamental ⊗ fundamental representation
of each U(nii′) × U(dji′) if e4iπ~ai·~aj = −1, and in the fundamental ⊗ fundamental of this
group product if e4iπ~ai·~aj = 1.6 They are depicted in Fig. 2b as khaki strings drawn in solid
lines stretched between corners ii′ and ji′, i.e. fixed points with identical positions in T̃ 2. As

6Each product of characters O4C4 yields 2 massless degrees of freedom which can be combined into
complex scalars.
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already mentioned in Footnote 5, even if convenient, the visualization in terms of stretched
strings is abusive in this case since corners ii′ and ji′ are understood in distinct T-dual
descriptions. Notice that the moduli whose masses we want to calculate in the present work
are among these scalars.

(a) Bosonic states in the NN and DD sectors are
massless when their ends are attached to the same
stack of branes. By contrast, fermionic states in the
NN and DD sectors are massless when they are real-
ized as strings stretched between corners of the six-
dimensional boxes that are facing each other along
the T-dual Scherk–Schwarz direction.

(b) Massless bosonic states in the ND+DN sector
are symbolized as strings attached to stacks of D3-
branes T-dual to D9-branes and D5-branes that are
located at corners having the same coordinates X̃4

and X̃5. For the massless fermionic states in the
ND+DN sector, the corners have same coordinate
X̃4 and distinct coordinate X̃5.

Figure 2: Visualization of the massless open-string states in the D3-brane pictures. The scalars are depicted
as solid lines and the fermions as dashed lines.

To proceed the same way for the fermions, it is convenient to define a new double-primed
index i′′ ∈ {1, 2} and write i′ = 2i′′ or 2i′′ − 1. The massless fermionic degrees of freedom
extracted from ZA+ZM are then identified as the low-lying modes of the following characters,

13



1
η8

∑

i,i′′

{
C4C4

[
ni,2i′′−1n̄i,2i′′ + n̄i,2i′′−1ni,2i′′ + di,2i′′−1d̄i,2i′′ + d̄i,2i′′−1di,2i′′

]

+ S4S4
[
ni,2i′′−1ni,2i′′ + n̄i,2i′′−1n̄i,2i′′ + di,2i′′−1di,2i′′ + d̄i,2i′′−1d̄i,2i′′

]

+ S4O4
∑

j

[
1− e4iπ~ai·~aj

2
(
ni,2i′′−1dj,2i′′ + n̄i,2i′′−1d̄j,2i′′ + ni,2i′′dj,2i′′−1 + n̄i,2i′′ d̄j,2i′′−1

)

+ 1 + e4iπ~ai·~aj

2
(
ni,2i′′−1d̄j,2i′′ + n̄i,2i′′−1dj,2i′′ + ni,2i′′ d̄j,2i′′−1 + n̄i,2i′′dj,2i′′−1

) ]}
.

(2.24)

They all correspond to fermionic parts of hypermultiplets in fundamental ⊗ fundamental or
fundamental ⊗ fundamental representations of pairs of unitary groups supported by stacks
of D3-branes (in the T-dual pictures) located at corners with distinct coordinates along
the Scherk–Schwarz direction X̃5 (and possibly distinct positions in T 4/Z2 or T̃ 4/Z2 in the
ND+DN sector). They appear as strings drawn in dashed lines in Fig. 2: Green and orange
for the NN and DD sectors in Fig. 2a, and khaki for the ND+DN sector in Fig. 2b. Actually,
massless fermions are realized as string stretched along the X̃5 direction, translating the
fact that the shifts of m′5 arising from the Wilson lines and the Scherk–Schwarz mechanism
compensate each other (see Eq. (2.5)).

Because the closed-string spectrum is neutral with respect to the gauge group generated
by the open strings, it is independent of the deformations ~ai and ~ai′ . As a result, all fermions
initially massless in the parent supersymmetric model of Sect. 2.1 acquire tree-level masses
equal to M3/2 thanks to the Scherk–Schwarz mechanism. At the massless level, we are left
with bosons, which are easily listed from a six-dimensional point of view. The untwisted
sector contains the components (G + C)µ̂ν̂ , µ̂, ν̂ ∈ {2, . . . , 5}, and the internal components
(G + C)IJ , which yield (6 − 2) × (6 − 2) + 4 × 4 degrees of freedom. Moreover, there are
4× 16 real scalars arising from the twisted hypermultiplets.

3 Two-point functions of massless ND and DN states

In Ref. [32] the masses at one loop of the open-string moduli arising from the NN and DD
sectors were derived by using the background field method. However, in the case of the
moduli in the ND+DN sector, the partition function for arbitrary vev’s of these scalars is
not known and this approach cannot be applied. Therefore, we will derive in Sects. 5 and 6
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the one-loop masses of all classically massless scalars in the bifundamental representations
of unitary groups supported by D9- and D5-branes by computing two-point correlation
functions with external states in the massless ND and DN bosonic sectors. This will be done
by applying techniques first introduced in classical open-string theories in Refs. [9–11], and
at one loop in Refs. [13–17]. For now, we define the relevant vertex operators and open-string
amplitudes.

3.1 Vertex operators and amplitudes

In the T-dual pictures, let us consider two corners i0i′0 and j0i
′
0 on which are located Ni0i′0 ≥ 2

and Dj0i′0 ≥ 2 D3-branes T-dual to D9-branes and D5-branes, respectively. As seen in
the third line of Eq. (2.22), the open strings “stretched” between these stacks give rise to
2ni0i′0dj0j′0 massless complex scalars (depicted as solid strings in Fig. 2b). In the initial
description in terms of D9- and D5-branes, we are interested in correlation functions of
vertex operators in ghost pictures p and −p of the form

Ni0i′0∑

α0=1

Dj0i′0∑

β0=1

〈
V α0β0
p (z1, k, ε)V β0α0

−p (z2,−k,−ε)
〉Σ

, (3.1)

where z1, z2 are insertion points on the boundary of a worldsheet whose topology is either
that of the annulus or Möbius strip, Σ ∈ {A,M}, and

V α0β0
−1 (z1, k, ε) = λα0β0 e

−φ eik·X eε
i
2 (H3−H4) σ3σ4(z1) ,

V β0α0
−1 (z2,−k,−ε) = λT

β0α0 e
−φ e−ik·X e−ε

i
2 (H3−H4) σ3σ4(z2) .

(3.2)

In the above definitions, we use the following notations:

• kµ is the external momentum satisfying on-shell the condition kµkµ = 0.

• φ(z) is the ghost field encountered in the bosonization of the superconformal ghosts [60].

• λ is the matrix
λ =

(
Λ1 Λ2
−Λ2 Λ1

)
, (3.3)

where Λ1, Λ2 are arbitrary ni0i′0×dj0i′0 real matrices [4]. It labels the states that trans-
form as the (ni0i′0, dj0i′0)⊕(n̄i0i′0, d̄j0i′0) or (ni0i′0, d̄j0i′0)⊕(n̄i0i′0, dj0i′0) bifundamental
representation of U(ni0i′0)× U(dj0i′0).
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• From now until Sect. 6, we restrict our analysis to the case where the internal metric
is diagonal,

GI′J ′ ≡ δI′J ′
R2
I′

α′
, GIJ ≡ δIJ

R2
I

α′
, (3.4)

for some radii RI′ , RI . In this case, the formalism of Ref. [2] applies without having
to generalize it. Denoting ψµ(z), ψI′(z), ψI(z) the Grassmann fields superpartners of
the bosonic-coordinate fields Xµ(z), XI′(z), XI(z), we define a new basis of degrees of
freedom

Zu ≡ X2u + iX2u+1
√

2
, Zu ≡ X2u − iX2u+1

√
2

,

Ψu ≡ ψ2u + iψ2u+1
√

2
≡ eiHu , Ψu ≡ ψ2u − iψ2u+1

√
2

≡ e−iHu , u ∈ {0, . . . , 4} ,
(3.5)

where Hu are scalars introduced to bosonize the fermionic fields.7

• The characters O4C4 tell us that the scalars we are interested in are organized as singlet
from a six-dimensional point of view, and spinors of the T 4/Z2 orbifold space. The
operators e±εi(H3−H4) are therefore spin fields, which means that the coefficients of H3,
H4 in the exponentials are the weights of the dimension-two spinorial representation
of negative chirality of SO(4), which are ε(1

2 ,−1
2), ε ∈ {−1,+1}.8

• σu, u ∈ {3, 4}, are so-called “boundary-changing fields” associated with the complex
directions Zu [6].

To understand the meaning and necessity of introducing operators σu, the open-string
diagrams we want to compute are displayed in Fig. 3 for some given α0 ∈ {1, . . . , Ni0i′0}
and β0 ∈ {1, . . . , Dj0i′0}. The left panel shows two annuli and one Möbius strip amplitudes.
Because the external legs bring quantum numbers (λα0β0 , ε) and (λT

β0α0 ,−ε) of the ND and
DN sectors, they must be attached to the same boundary of the annulus. Therefore, the
second boundary is sticked to another brane labelled γ, which can be any of the 32 D9-
branes (in green) or 32 D5-branes (in orange). On the center and right panels, the same
three diagrams are displayed, with the open-string worldsheets seen as fundamental domains
of the involution

z −→ I(z) ≡ 1− z̄ (3.6)
7These definitions apply to a Euclidean spacetime. In the Lorentzian case, replace (X0, ψ0)→ i(X0, ψ0).
8Characters O4S4 would yield states in the spinorial representation of positive chirality of SO(4), whose

weights are ε( 1
2 ,

1
2 ).
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acting on double-cover tori of Teichmüller parameters [7, 8, 58,61]

τdc = i
τ2

2 for the annulus and τdc = 1
2 + i

τ2

2 for the Möbius strip . (3.7)

In this description, the external legs are conformally mapped to points z1, z2, where vertex
operators change the boundary conditions of the worldsheet fields XI(z) (i.e. Z3(z), Z4(z))

α0

β0

α0

β0

γ

0 1

iτ22 �

�

γ

α0

α0

β0

z1

z2

0 1

iτ22 �

�

γ

β0

β0

α0

z1

z2

α0

β0

α0

β0

γ

0 1

iτ22 �

�

γ

α0

α0

β0

z1

z2

0 1

iτ22 �

�

γ

β0

β0

α0

z1

z2

α0

β0

α0

β0

0 1

1
2 + iτ22 �

�

α0

α0

α0

β0

z1

z2

0 1

1
2 + iτ22 �

�

β0

β0

β0

α0

z1

z2

Figure 3: Open-string diagrams with two external legs in the ND and DN sectors (left panel). On the
double-cover tori (center and right panels), the external legs are mapped to boundary-changing vertex
operators at z1, z2. One switches from center to right panel by transporting z2 along the entire edge it
belongs to.
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at one end of the intermediate open string running in the loop, from Neumann to Dirichlet
or vice versa. The diagrams in the center and right panels are obtained from one another by
transporting continuously z2 along its entire boundary: z2 → z2 + i Im τdc for the annulus
and z2 → z2 + 2i Im τdc for the Möbius strip, modulo 1 and τdc.

To conclude this subsection, notice that for consistency of the diagrams, the numbers of
boundary-changing vertex operators must be even on each connected component of an open-
string surface. Hence, all one-point functions i.e. tadpoles of states in the ND or DN sectors
vanish, which shows that the backgrounds we consider, i.e. where no brane recombination is
taking place [46–49], imply the effective potential to be extremal with respect to the scalars
in the ND+DN sector.

3.2 OPE’s and ghost-picture changing

In order to treat symmetrically both vertex operators when computing the correlation func-
tions (3.1), we switch to the ghost picture p = 0. This is done by applying the formula

V α0β0
0 (z, k, ε) = lim

w→z e
φ TF(w)V α0β0

−1 (z, k, ε) ,

V β0α0
0 (z,−k,−ε) = lim

w→z e
φ TF(w)V β0α0

−1 (z,−k,−ε) ,
(3.8)

where TF is the supercurrent given by

TF(z) = 1√
α′
∂Xµψµ(z) = 1√

α′

(
∂ZuΨu(z) + ∂ZuΨu(z)

)
. (3.9)

To this end, we display all necessary operator product expansions (OPE’s). First of all, for
the “ground-state boundary-changing fields”, we have

∂Zu(z)σu(w) ∼
z→w (z − w)− 1

2 τu(w) + finite ,

∂Zu(z)σu(w) ∼
z→w (z − w)− 1

2 τ ′u(w) + finite ,
(3.10)

which introduces “excited boundary-changing fields” τu, τ ′u. Moreover, the other fields
satisfy [13, 14]9

eaφ(z)ebφ(w) ∼
z→w (z − w)−ab e(a+b)φ(w) + finite ,

eiaHu(z)eibHu(w) ∼
z→w (z − w)ab ei(a+b)Hu(w) + finite , u ∈ {3, 4} , (3.11)

9The definitions of K0, K0 apply to a Euclidean spacetime. In the Lorentzian case, replace k0 → ik0.
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∂Zu(z) eik·X(w) ∼
z→w

iKu

z − w eik·X(w) + finite , where Ku = k2u + ik2u+1
√

2
,

∂Zu(z) eik·X(w) ∼
z→w

iKu

z − w eik·X(w) + finite , where Ku = k2u − ik2u+1
√

2
, u ∈ {0, 1, 2} .

Using these relations, we obtain for ε = +1

V α0β0
0 (z1, k,+1) = V α0β0

0,ext (z1, k,+1) + V α0β0
0,int (z1, k,+1) ,

V β0α0
0 (z2,−k,−1) = V β0α0

0,ext (z1,−k,−1) + V β0α0
0,int (z1,−k,−1) ,

(3.12)

where we have defined

V α0β0
0,ext (z1, k,+1) =

√
α′ λα0β0 e

ik·X i
1∑

u=0
(KuΨu + K̄uΨu) e i2 (H3−H4) σ3σ4(z1) ,

V α0β0
0,int (z1, k,+1) = λα0β0√

α′
eik·X

(
e−

i
2 (H3+H4) τ 3σ4(z1) + e

i
2 (H3+H4) σ3τ ′4(z1)

)
,

V β0α0
0,ext (z2,−k,−1) =

√
α′ λT

β0α0 e
−ik·X (−i)

1∑

u=0
(KuΨu + K̄uΨu) e− i

2 (H3−H4) σ3σ4(z2) ,

V β0α0
0,int (z2,−k,−1) =

λT
β0α0√
α′

e−ik·X
(
e−

i
2 (H3+H4) σ3τ 4(z2) + e

i
2 (H3+H4) τ ′3σ4(z2)

)
,

(3.13)

while the expressions for ε = −1 are obtained by exchanging all subscripts and superscripts 3
and 4. Because we are interested in states massless at tree level, the Kaluza–Klein momentum
in the T 2 complex direction u = 2 is set to 0 in the “external” parts of the vertex operators.
In the “internal” parts, notice the appearance of “excited boundary-changing operators”
τ 3, τ ′3, τ 4, τ ′4.

Given the above definitions, the correlation functions (3.1) split accordingly into external
and internal pieces. The former,

Aα0β0
extΣ ≡

〈
V α0β0

0,ext (z1, k,+1)V β0α0
0,ext (z2,−k,−1)

〉Σ

= α′ λα0β0λ
T
β0α0 〈eik·X(z1)e−ik·X(z2)〉 〈e i2H3(z1)e− i

2H3(z2)〉 〈e− i
2H4(z1)e i2H4(z2)〉 ×

〈σ3(z1)σ3(z2)〉 〈σ4(z1)σ4(z2)〉
1∑

u=0
KuKu

[
〈eiHu(z1)e−iHu(z2)〉+ 〈e−iHu(z1)eiHu(z2)〉

]
,

(3.14)

are useful to derive the one-loop corrections to the Kähler potential of the ND+DN sector
massless scalars. Note that in order to bypass the issue that on shell ∑1

u=0 |Ku|2 ≡ k2/2 = 0,
we may have kept the Kaluza–Klein momenta along T 2 arbitrary. On the contrary, the
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internal parts,

Aα0β0
intΣ ≡

〈
V α0β0

0,int (z1, k,+1)V β0α0
0,int (z2,−k,−1)

〉Σ

= 1
α′
λα0β0λ

T
β0α0 〈eik·X(z1)e−ik·X(z2)〉

×
[
〈e− i

2H3(z1)e i2H3(z2)〉 〈e− i
2H4(z1)e i2H4(z2)〉 〈τ 3(z1)τ ′3(z2)〉 〈σ4(z1)σ4(z2)〉

+ 〈e i2H3(z1)e− i
2H3(z2)〉 〈e i2H4(z1)e− i

2H4(z2)〉 〈σ3(z1)σ3(z2)〉 〈τ ′4(z1)τ 4(z2)〉
]
,

(3.15)

capture the mass corrections we are interested in. The amplitudes for ε = −1 are obtained
by exchanging all subscripts 3 and 4 in Eq. (3.14) and all superscripts 3 and 4 in Eq. (3.15).
For Σ = A, an implicit sum over a second boundary condition γ is understood. Likewise,
for Σ = A,M, sums over the spin structures of the fermions Ψ0, Ψ1, Ψ2 on the one hand,
and Ψ3, Ψ4 on the other hand are implicit.

4 Genus-1 twist-field correlation functions

The main difficulty in computing the two-point functions in Eqs. (3.14) and (3.15) is to
evaluate the correlators of the boundary changing operators. However, it turns out that
the OPE’s of ∂Zu, ∂Zu on these operators are identical to those found for the holomorphic
part of “Z2-twist fields” inserted on a closed-string worldsheet, i.e. for operators creating
closed strings in the twisted sector of a T 4/Z2 orbifold. As a result, we may apply techniques
relevant for the computation of correlation functions of twist fields in closed-string theory to
our open-string case. In the present section, we review the relevant ingredients for computing
correlators of twist fields at genus-1 in closed-string theory, or in the closed-string sector of
an open-string theory, compactified on toroidal ZN orbifolds, following the original works of
Refs. [1, 2].

4.1 Instanton decomposition of correlators

In closed-string theory compactified on T 2 × T 4/ZN where N ∈ N∗, the complex fields
defined in Eq. (3.5) depend on holomorphic and antiholomorphic worldsheet coordinates,
Zu(z, z̄). Moreover, upon parallel transport, the internal Zu undergo some ZN rotations and
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translations,
Z2 −→ Z2 + v2 ,

Zu −→ e2iπκ/NZu + vu , u ∈ {3, 4} , κ ∈ {0, . . . , N − 1} ,
(4.1)

where the shifts vu and v2 implement the T 4 and T 2 periodicities.

The twist fields create the states in the twisted sectors of the closed-string Hilbert space.
For some given κ ∈ {1, . . . , N − 1} and u ∈ {3, 4}, let us denote by σu(z, z̄) the one that
creates the ground state in the κ-th twisted sector. The requirement that positive frequency
modes in the expansions of ∂Zu and ∂Zu annihilate the twisted ground state determines the
OPE of ∂Zu(z) and ∂Zu(z) acting on σu(w, w̄) as z approaches w,

∂Zu(z)σu(w, w̄) ∼
z→w (z − w)−(1−κ/N) τu(w, w̄) + finite ,

∂Zu(z)σu(w, w̄) ∼
z→w (z − w)−κ/N τ ′u(w, w̄) + finite ,

∂̄Zu(z̄)σu(w, w̄) ∼
z̄→w̄

(z̄ − w̄)−κ/N τ̃u(w, w̄) + finite ,

∂̄Zu(z̄)σu(w, w̄) ∼
z̄→w̄

(z̄ − w̄)−(1−κ/N) τ̃ ′u(w, w̄) + finite .

(4.2)

In the right-hand sides, τu, τ ′u, τ̃u, τ̃ ′u create excited states in the κ-th twisted sector. The
OPE’s capture the local behavior corresponding to the rotations of the coordinates Zu but do
not carry information about the global translations vu. This data is recovered by imposing
global monodromy conditions which describe how Zu(z, z̄) and Zu(z, z̄) change when they
are carried around a set of twist fields with vanishing total twist. Splitting the coordinates
of T 2 and T 4 into background values and quantum fluctuations,

Zu(z, z̄) = Zu
cl(z, z̄) + Zu

qu(z, z̄) , u ∈ {2, 3, 4} , (4.3)

the whole global displacements arise from the classical parts Zu
cl(z, z̄).

With this decomposition, the correlators of interest on a Riemann surface Σ of genus
g ≥ 0 involve, for each complex direction u ∈ {3, 4}, L ≥ 2 ground-state twist fields σuA of
the κA-th twisted sector,

∑

Zcl

e−S
Σ
cl

4∏

u=3

〈
L∏

A=1
σuA(zA, z̄A)

〉

qu
, (4.4)

where the total twist is trivial, ∑A κA = 0 modulo N , for the result not to vanish [1]. In this
expression, the sum is over instantons with worldsheet actions

SΣ
cl = i

2πα′
∫

Σ
dz ∧ dz̄

4∑

u=2

(
∂Zu

cl ∂̄Z
u
cl + ∂Zu

cl ∂̄Z
u
cl

)
. (4.5)
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In the following, we first compute the “quantum parts” of the correlation functions and then
derive the classical actions.

4.2 Stress-tensor method

To determine for a given u ∈ {3, 4} the quantum part
〈∏L

A=1 σ
u
A(zA, z̄A)

〉
qu

of the cor-
relator (4.4), Ref. [2] uses the stress-tensor method. It consists in exploiting the OPE’s
between the stress tensor T u(z) and the primary fields σuA(zA, z̄A) of conformal weights
hA = 1

2(κA/N)(1− κA/N), namely

T u(z)σuA(zA, z̄A) ∼
z→zA

hA
(z − zA)2 σ

u
A(zA, z̄A) + 1

z − zA
∂Aσ

u
A(zA, z̄A) + finite . (4.6)

To this end, one considers the quantity

〈〈T u(z)〉〉 ≡
〈T u(z)∏A σ

u
A(zA, z̄A)〉qu

〈∏A σ
u
A(zA, z̄A)〉qu

, (4.7)

in terms of which we may write

∂B ln
〈∏

A

σuA(zA, z̄A)
〉

qu
= lim

z→zB

[
(z − zB) 〈〈T u(z)〉〉 − hB

(z − zB)

]
, (4.8)

upon using Eq. (4.6). To evaluate 〈〈T u(z)〉〉, one considers the Green’s function in the
presence of twist fields,10

g(z, w) ≡ 〈−∂Z
u
qu(z) ∂Zu

qu(w)∏A σ
u
A(zA, z̄A)〉qu

α′ 〈∏A σ
u
A(zA, z̄A)〉qu

, (4.9)

and exploits the OPE

− 1
α′
∂Zu

qu(z) ∂Zu
qu(w) ∼

z→w
1

(z − w)2 + T u(w) +O(z − w) (4.10)

to obtain
〈〈T u(z)〉〉 = lim

w→z

[
g(z, w)− 1

(z − w)2

]
. (4.11)

To summarise, the stress-tensor method amounts to determining the Green’s function
g(z, w), then deduce 〈〈T u(z)〉〉, and finally integrate the differential equations (4.8).

10Because the integers κA and insertion points zA are independent of u ∈ {3, 4}, the Green’s functions
derived for u = 3 and 4 are equal and do not need to be distinguished by an index u.
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4.3 Ground-state twist field quantum correlators on the torus

Let us specialize to the case where Σ is a genus-1 surface. We will denote its Teichmüller
parameter as τdc for future use, when we see the genus-1 Riemann surface as the double
cover of open-string surfaces.11

In order to derive the quantum part of the correlator (4.4) for a given u ∈ {3, 4},
〈∏L

A=1 σ
u
A(zA, z̄A)

〉
qu
, the starting point is to write the most general ansätze for g(z, w)

and the companion Green’s function

h(z̄, w) ≡ 〈−∂̄Z
u
qu(z̄) ∂Zu

qu(w)∏A σ
u
A(zA, z̄A)〉qu

α′ 〈∏A σ
u
A(zA, z̄A)〉qu

, (4.12)

satisfying the following properties:

• Double periodicity z → z+ 1, z → z+ τdc and w → w+ 1, w → w+ τdc (and similarly
for z̄ in h).

• Local monodromies consistent with the OPE’s given in Eq. (4.2). For instance, when
z is transported along a tiny closed loop encircling some zA, g must transform as
e−2iπ(1−κA/N)g.

• A double pole for g(z, w) as z → w dictated by Eq. (4.10), and finiteness of h(z̄, w) as
z̄ → w thanks to the OPE ∂̄Zu

qu(z̄)∂Zu
qu(w) ∼

z̄→w
finite.

This can be done by defining cut differentials [2] which form a basis of holomorphic one-forms
on the torus that possess suitable monodromy behaviors as their arguments approach each
of the insertion points zA. Denoting

M =
L∑

A=1

κA
N

, (4.13)

which takes some value in the set {1, . . . , L−1}, and following the notations of Ref. [2], such
a basis is given by

ωαAN−κ(z) = γN−κ(z)ϑ1(z − zαA − yN−κ)
L−M∏

B 6=A
ϑ1(z − zαB) , A ∈ {1, . . . , L−M} ,

ωβAκ (z) = γκ(z)ϑ1(z − zβA − yκ)
M∏

B 6=A
ϑ1(z − zβB) , A ∈ {1, . . . ,M} ,

(4.14)

11Throughout Sect. 4, the real part of τdc is arbitrary.
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where the second argument at τdc in the modular forms is implicit. In these formulas, we
have defined the functions

γN−κ(z) =
L∏

A=1
ϑ1(z − zA)−(1−κA/N) , γκ(z) =

L∏

A=1
ϑ1(z − zA)−κA/N , (4.15)

and denoted

yN−κ =
L∑

A=1

(
1− kA

N

)
zA −

L−M∑

B=1
zαB , yκ =

L∑

A=1

κA
N
zA −

M∑

B=1
zβB , (4.16)

while {zα1 , . . . , zαL−M} and {zβ1 , . . . , zβM} are subsets of twist insertion points chosen arbi-
trarily.12 The functions γN−κ and γκ implement the monodromies around the zA’s, while the
extra ϑ1 modular forms in the definitions (4.14) lead to the double periodicity with respect
to the variable z.13 Given these notations, the Green’s functions may be expressed as

g(z, w) = gs(z, w) +
L−M∑

A=1

M∑

B=1
CAB ω

αA
N−κ(z)ωβBκ (w) ,

h(z̄, w) =
M∑

A=1

M∑

B=1
BAB ω̄

βA
κ (z̄)ωβBκ (w) ,

(4.17)

where CAB and BAB are “constant coefficients.”14 The function gs(z, w) is doubly periodic
in z and w and handles the double-pole structure of g(z, w) as z approaches w. It can be
expressed as [2]

gs(z, w) = γN−κ(z) γκ(w)
(

ϑ′1(0)
ϑ1(z − w)

)2

P (z, w) , (4.18)

where explicit knowledge of the function P (z, w) is not required in the computation of
correlation functions of ground-state twist fields. However, it does matter for correlators of
excited twist fields, as will be seen in Sect. 4.5. We will come back to this issue at that stage.

The next step is to implement the global monodromy conditions, which by definition
are “trivial” for the quantum fluctuations Zu

qu(z, z̄) (see below Eq. (4.3)). In practice, this
implies that

0 =
∮

γa
dz g(z, w) +

∮

γa
dz̄ h(z̄, w) , a ∈ {1, . . . , L} , (4.19)

12The subscripts “N − κ” and “κ” are “names”. They do not refer to varying indices. Moreover, the
indices α1, . . . , αL−M and β1, . . . , βM here should not be confused with labels of branes also denoted by
Greek letters elsewhere in our work.

13Note that no periodicity condition is imposed for the individual variables zA (which are kept implicit in
the cut differentials). However, double periodicity in z implies double periodicity of the whole set of points
zA, when they are moved together.

14They depend only on the insertion points and τdc.
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where {γa, a = 1, . . . , L} is a basis of the homology group of the genus-1 surface with L

punctures.15 To solve these equations, it is convenient to define an L× L cut-period matrix
Wa

A as follows,

Wa
A =

∮

γa
dz ωαAN−κ(z) , A ∈ {1, . . . , L−M} ,

Wa
L−M+A =

∮

γa
dz̄ ω̄βAκ (z̄) , A ∈ {1, . . . ,M} .

(4.20)

Indeed, it is easily checked that the expressions

g(z, w) = gs(z, w)−
L−M∑

A=1
ωαAN−κ(z)

L∑

a=1
(W−1)A

a
∮

γa
dζ gs(ζ, w) ,

h(z̄, w) = −
M∑

A=1
ωβAκ (z̄)

L∑

a=1
(W−1)L−M+A

a
∮

γa
dζ gs(ζ, w) ,

(4.21)

satisfy the global monodromy conditions.

Finally, the correlator can be found by applying the stress-tensor method to find the
holomorphic dependence on the zA’s, and then a second time using the Green’s functions
ḡ(z̄, w̄) and h̄(z, w̄) to determine the antiholomorphic part. The result is for u ∈ {3, 4}

〈
L∏

A=1
σuA(zA, z̄A)

〉

qu
= f(τdc;κ1, . . . , κL) 1

detW ϑ1(yN−κ)L−M−1 ϑ1(yκ)M−1

×
L−M∏

A,B=1
A<B

ϑ1(zαA − zαB)
M∏

A,B=1
A<B

ϑ1(zβA − zβB) (4.22)

×
L∏

A,B=1
A<B

ϑ1(zA − zB)−(1−κA/N)(1−κB/N) ϑ1(zA − zB)−(κA/N)(κB/N) ,

where f(τdc, κ1, . . . , κL) is a function arising as an “integration constant”. The latter can be
determined by coalescing all insertion points, since the left-hand side reduces in this case to
〈1〉, which is the partition function.

4.4 Instanton actions

In the OPE’s (4.2), the actions of the background parts ∂Zu
cl(z) and ∂Zu

cl(z) on σu(w, w̄) for
u ∈ {3, 4} are trivial multiplications. Hence, for the monodomy properties to be satisfied as

15For a genus g surface with L punctures, the basis has dimension L+ 2g − 2 [2].
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z is transported along a tiny closed loop encircling any zA, the doubly-periodic ∂Zu
cl(z) and

∂Zu
cl(z) must be linear sums of cut differentials. To determine the coefficients, one imposes

the global monodromy conditions
∮

γa
dz ∂Zu

cl +
∮

γa
dz̄ ∂̄Zu

cl = vua , a ∈ {1, . . . , L} , (4.23)

where the vua ’s are displacement vectors. The solution of these equations can be expressed
in terms of the inverse cut-period matrix,

∂Zu
cl(z) = ωA′(z) (W−1)A′

a
vua , ∂̄Zu

cl(z̄) = ω̄A′′(z̄) (W−1)A′′
a
vua , (4.24)

where in the present context the index A′ is summed over 1, . . . , L−M , and A′′ is summed
over L−M + 1, . . . , L. Moreover, we have redefined in the above formulas

ωA(z) ≡ ωαAN−κ(z) , A ∈ {1, . . . , L−M} ,
ωL−M+A(z) ≡ ωβAκ (z) , A ∈ {1, . . . ,M} .

(4.25)

With the definition of the Hermitian product

(ωi, ωj) ≡ i
∫

Σ
dz ∧ dz̄ ωi(z) ω̄j(z̄) (4.26)

of one-forms on the torus, the classical action for a single complex coordinate u ∈ {3, 4}
reads

SΣ
cl

∣∣∣
u

= vua v̄
u
b

2πα′
[
(W−1)A′

a (W−1)B′
b (ωA′ , ωB′) + (W−1)A′′

a (W−1)B′′
b (ωA′′ , ωB′′)

]
. (4.27)

4.5 Useful correlators on the torus

In this subsection, we consider all correlators involved in the open-string amplitudes of
Eqs. (3.14) and (3.15), but display their values computed on a genus-1 surface. In this case,
they have holomorphic and antiholomorphic dependencies.

Correlator 〈σu(z1, z̄1)σu(z2, z̄2)〉qu: For the OPE’s of the twist fields to match those
of the boundary-changing fields we are interested in, we now consider the case where

N = 2 , L = 2 , κ1

N
= κ2

N
= 1

2 , M = 1 . (4.28)
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Because κ1 = κ2, we can omit from now on the subscripts A of the twist fields. Using
Eq. (4.22), we obtain for u = 3, 4

〈σu(z1, z̄1)σu(z2, z̄2)〉qu = f(τdc; 1
2 ,

1
2) (detW )−1 ϑ1(z1 − z2)− 1

4 ϑ1(z1 − z2)− 1
4 . (4.29)

The 2× 2 cut-period matrix Wa
i defined in Eq (4.20) involves only one cut differential,

ω(z) = ϑ1(z − z1)− 1
2 ϑ1(z − z2)− 1

2 ϑ1
(
z − z1 + z2

2
)
, (4.30)

to be integrated on the cycles of the genus-1 surface Σ, γ1 : z → z+ 1 and γ2 : z → z+ τdc,
which yields

W =
(
W1 W 1
W2 W 2

)
, where Wa =

∮

γa
dz ω , a ∈ {1, 2} . (4.31)

In these notations, the background action written in Eq. (4.27) reads for u =∈ {3, 4}

SΣ
cl

∣∣∣
u

= 1
4πα′ Im(W 1W2)

(∣∣∣W 2v
u
1 −W 1v

u
2

∣∣∣
2

+
∣∣∣W2v

u
1 −W1v

u
2

∣∣∣
2
)
, (4.32)

where vua , a ∈ {1, 2}, are the displacements introduced in Eq. (4.23). In our case of interest,
given an instanton solution, the real-coordinate background XI

cl(z, z̄), I ∈ {6, . . . , 9}, winds
nI times and lI times the circle S1(RI) as z is transported along γ1 and γ2, so that

vu1 = 2πR2un2u + 2iπR2u+1n2u+1√
2

, vu2 = 2πR2ul2u + 2iπR2u+1l2u+1√
2

. (4.33)

For the T 2 coordinate u = 2, which is not twisted, the above formula apply with cut dif-
ferentials that induce trivial local monodromies. In other words, replacing ω(z) by 1, the
relevant cut-period matrix becomes

(
1 1
τdc τ̄dc

)
. (4.34)

Defining displacements vua for u = 2 exactly as those given in Eq. (4.33), one obtains

SΣ
cl

∣∣∣
2

= π

α′ Im τdc

(
R2

4|n4τ
dc − l4|2 +R2

5|n5τ
dc − l5|2

)
, (4.35)

which is the well know result for the instanton action on a two-torus [62]. The sum over
instantons appearing in Eq. (4.4) translates therefore into a sum over winding numbers nI′ ,
nI , and wrapping numbers lI′ , lI , where I ′ ∈ {4, 5} and I ∈ {6, . . . , 9}.
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Correlator 〈τu(z1, z̄1)τ ′u(z2, z̄2)〉qu: To derive the correlator of excited twist fields,
we will follow the technique described in Refs. [13, 15–17]. Thanks to the OPE’s between
∂Zu, ∂Zu and the ground-state twist fields given in Eq. (4.2), and using the splitting defined
Eq. (4.3), we may divide accordingly this correlation function for u ∈ {3, 4} into two pieces,

〈τu(z1, z̄1)τ ′u(z2, z̄2)〉qu = 〈τu(z1, z̄1)τ ′u(z2, z̄2)〉(1)
qu + 〈τu(z1, z̄1)τ ′u(z2, z̄2)〉(2)

qu , (4.36)

where we have defined
〈τu(z1, z̄1)τ ′u(z2, z̄2)〉(1)

qu = 〈σu(z1, z̄1)σu(z2, z̄2)〉qu lim
z→z1
w→z2

[
(z − z1) 1

2 (w − z2) 1
2 ∂Zu

cl(z)∂Zu
cl(w)

]
,

〈τu(z1, z̄1)τ ′u(z2, z̄2) 〉(2)
qu = lim

z→z1
w→z2

[
(z − z1) 1

2 (w − z2) 1
2 〈∂Zu

qu(z)∂Zu
qu(w)σu(z1, z̄1)σu(z2, z̄2)〉qu

]
.

(4.37)

To derive part (1) of the correlator, we use Eq. (4.24) which becomes

∂Zu
cl(z) = ω(z) cu1 , ∂̄Zu

cl(z̄) = ω̄(z̄) cu2 , where cuA = (W−1)A
a
vua . (4.38)

Remember that due to their local monodromy behaviors, these expressions diverge at the
insertion points. Hence, the limits defined in Eq. (4.37) contribute a finite result which is

〈τu(z1, z̄1)τ ′u(z2, z̄2)〉(1)
qu = s i cu1 c̄

u
2

ϑ1( z1−z22 )2

ϑ′1(0)ϑ1(z1 − z2) 〈σ
u(z1, z̄1)σu(z2, z̄2)〉qu , (4.39)

where we denote
s i ≡

(
z2 − z1

z1 − z2

) 1
2
. (4.40)

Using the Green’s function g(z, w) defined in Eq. (4.9), part (2) of the correlator can be
expressed as

〈τu(z1, z̄1)τ ′u(z2, z̄2) 〉(2)
qu = −α′ 〈σu(z1, z̄1)σu(z2, z̄2)〉qu lim

z→z1
w→z2

[
(z − z1) 1

2 (w − z2) 1
2 g(z, w)

]
.

(4.41)
In the present case, Eqs. (4.17) and (4.21) become

g(z, w) = gs(z, w) + C ω(z)ω(w)

= gs(z, w)− ω(z)(W−1)1
a
∮

γa
dζ gs(ζ, w) ,

(4.42)

where gs(z, w) is defined in Eq. (4.18). The latter involves a function P (z, w) derived in
Ref. [2], and whose expression is given by

gs(z, w) = γ(z)γ(w)
(

ϑ′1(0)
ϑ1(z − w)

)2 1
2

[
F1(z, w)ϑ1(w − z1)ϑ1(z − z2)

+F2(z, w)ϑ1(w − z2)ϑ1(z − z1)
]
.

(4.43)
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The right-hand side is written in terms of a unique function γ (see Eq. (4.15))

γ(z) = ϑ1(z − z1)− 1
2 ϑ1(z − z2)− 1

2 , (4.44)

as well as

FA(z, w) = ϑ1(z − w + UA)
ϑ1(UA)

ϑ1(z − w + YA − UA)
ϑ1(YA − UA) , A ∈ {1, 2} ,

where YA = z1 + z2

2 − zA and UA is such that ∂zFA(z, w)
∣∣∣
z=w

= 0 .
(4.45)

Notice that in the above formula, we adopt the notations of Ref. [2] but it turns out that
F1(z, w) ≡ F2(w, z). Computing the limits in Eq. (4.41), we find

〈τu(z1, z̄1)τ ′u(z2, z̄2) 〉(2)
qu =− α′s i 〈σu(z1, z̄1)σu(z2, z̄2)〉qu

×

ϑ
′
1(0)F1(z1, z2)
2ϑ1(z1 − z2) + C

ϑ1( z1−z22 )2

ϑ′1(0)ϑ1(z1 − z2)


 .

(4.46)

Moreover, using in the derivation the second expression in Eq. (4.42), an explicit expression
for the term linear in C is obtained,

C
ϑ1( z1−z22 )2

ϑ′1(0)ϑ1(z1 − z2) = −1
2 ϑ
′
1(0)ϑ1

(z1 − z2

2
)
(W−1)1

a
∮

γa
dz F1(z, z2)

ϑ1(z − z1) 1
2 ϑ1(z − z2) 3

2
. (4.47)

Adding the pieces (1) and (2) of the correlator, we obtain for u ∈ {2, 3}
〈τu(z1, z̄1)τ ′u(z2, z̄2) 〉qu =− s i 〈σu(z1, z̄1)σu(z2, z̄2)〉qu

×

 (α′C − cu1 c̄u2)

ϑ1( z1−z22 )2

ϑ′1(0)ϑ1(z1 − z2) + α′
ϑ′1(0)F1(z1, z2)
2ϑ1(z1 − z2)


 .

(4.48)

Correlator 〈τ ′u(z1, z̄1)τu(z2, z̄2)〉qu: Proceeding the same way, and using the fact
that F2(z2, z1) = F1(z1, z2), we obtain the identity

〈τ ′u(z1, z̄1)τu(z2, z̄2) 〉qu = 〈τu(z1, z̄1)τ ′u(z2, z̄2) 〉qu . (4.49)

Bosonic correlator: The propagator of the spacetime coordinates Xµ is given by

〈Xµ(z1, z̄1)Xν(z2, z̄2)〉 = δµν

[
− α′

2 ln
∣∣∣∣∣
ϑ1(z1 − z2)
ϑ′1(0)

∣∣∣∣∣

2

+ α′π [Im(z1 − z2)]2
Im τ

]
, (4.50)

which leads to

〈eik·X(z1, z̄1)e−ik·X(z2, z̄2)〉 =
(∣∣∣∣∣
ϑ1(z1 − z2)
ϑ′1(0)

∣∣∣∣∣ e
−π[Im(z1−z2)]2

Im τ

)−α′k2

. (4.51)
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Bosonized-fermion correlators: Each complex fermion Ψu, u ∈ {0, . . . , 4}, has one
out of four pairs of periodic/antiperiodic boundary conditions on the genus-1 surface Σ, which
corresponds to a spin structure ν ∈ {1, 2, 3, 4}. In bosonized picture, for anyHu-charge q, one
finds by applying the stress-tensor method that the following correlator depends accordingly
on ν,

〈eiqHu(z1)e−iqHu(z2)〉ν = Kν,|q| ϑν(q(z1 − z2))ϑ1(z1 − z2)−q2
, (4.52)

where Kν,|q| is a τdc-dependent normalization factor [13].

5 Full amplitudes of massless ND and DN states

We are now ready to use all ingredients introduced in Sects. 3 and 4 to compute the two-
point functions of massless bosonic states in the ND and DN sectors. As depicted in Fig. 3,
the annulus and Möbius strip can be described as tori with Teichmüller parameters given in
Eq. (3.7) and modded by the involution (3.6). The boundaries of the open-string surfaces
being the fixed points, we may choose the insertion points of the boundary-changing vertex
operators to be

zA ≡ xA + iyA , where





0 ≤ yA ≤ Im τdc , A ∈ {1, 2} ,

x1 = x2 ∈
{

0, 1
2

}
for Σ = A ,

x1, x2 ∈
{

0, 1
2

}
for Σ =M .

(5.1)

5.1 Useful correlators on the annulus and Möbius strip

Let us first collect the correlators presented in the previous section now evaluated on the
open-string surfaces Σ = A and M, and to be used to express the amplitudes Aα0β0

extΣ and
Aα0β0

intΣ .

Correlator 〈σu(z1)σu(z2)〉qu: In Ref. [13], the method of images was applied on the
Green’s functions of Sects. 4.2 and 4.3 to define their open-string counterparts. The latter
were used to derive the correlator between two ground-state boundary-changing fields by
using the stress-tensor method. The result amounts essentially to take the “square root” of
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the closed-string result, i.e. for u ∈ {3, 4},

〈σu(z1)σu(z2)〉qu = fop(τdc; 1
2 ,

1
2) (detW )− 1

2 ϑ1(z1 − z2)− 1
4 , (5.2)

where fop is a normalization function. Notice that the product 〈σ3σ3〉qu 〈σ4σ4〉qu involves
ϑ1(z1 − z2)− 1

2 , which is well defined up to a sign. We will see in the next subsection how
such ambiguities can be lifted.

The instanton actions can also be derived from the closed-string result given in Eqs. (4.32)
and (4.35). These expressions must be divided by 2, the order of the involution I, to
account for the fact that the open-string worldsheets are halves of their genus-1 double-
covers. Moreover, we have to consider instantonic worldsheets with NN, DD, ND or DN
boundary conditions for A, and N or D boundary conditions forM. In the NN and N case,
all winding numbers along T 2 × T 4 must vanish, nI′ = nI = 0. The DD and D case is
similar, up to the T-duality transformation RI → α′/RI . Denoting the T-dual wrapping
numbers with “tildes”, we have ñI′ = ñI = 0. Finally, for worldsheets with ND or DN
boundary conditions in the annulus case, non-trivial instantons wrap T 2 only, i.e. satisfy
nI′ = nI = lI = 0 or ñI′ = ñI = l̃I = 0. In total, we thus have for Σ = A orM

SΣ
cl = π[(R4l4)2 + (R5l5)2]

α′τ2
+ |W1|2

4πα′ Im(W 1W2)
×





4∑

u=3
|vu2 |2 for NN and N ,

4∑

u=3
|ṽu2 |2 for DD and D ,

0 for ND and DN ,

(5.3)

where the displacements and their T-dual counterparts are given by

vu2 = 2πR2ul2u + 2iπR2u+1l2u+1√
2

, ṽu2 =
2π α′

R2u
l̃2u + 2iπ α′

R2u+1
l̃2u+1√

2
, u ∈ {3, 4} . (5.4)

Correlators 〈τu(z1)τ ′u(z2)〉qu and 〈τ ′u(z1)τu(z2)〉qu: On the genus-1 surfaces, the
twist fields τu(z, z̄) and τ ′u(z, z̄) are excited only on their holomorphic sides (see Eq. (4.2)).
Therefore, their correlation functions take formally the same forms as those of the excited
boundary-changing fields τu(z) and τ ′u(z) evaluated on A and M. There is however a
subtlety concerning part (1) of the correlator, Eq. (4.39).

When considering the full amplitudes i.e. with the instanton dressings e−SΣ
cl , the open-

string actions are divided by 2 compared to the closed-string case. Hence, for the full open-
string correlators to preserve their interpretations on double-cover tori, one should rescale
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the displacements in parts (1) as follows, |vu2 |2 → |vu2 |2/2 and |ṽu2 |2 → |ṽu2 |2/2. As a result
we have for u ∈ {3, 4}

〈τu(z1)τ ′u(z2)〉qu = 〈τ ′u(z1)τu(z2)〉qu = −s i 〈σu(z1)σu(z2)〉qu ×


(
α′C + W 2

1 |vu2 |2
8[Im (W 1W2)]2

)
ϑ1( z1−z22 )2

ϑ′1(0)ϑ1(z1 − z2) + α′
ϑ′1(0)F1(z1, z2)
2ϑ1(z1 − z2)


 ,

(5.5)

when the worldsheet has NN or N boundary conditions on the annulus or Möbius strip. For
DD or D boundary conditions, the correlators take identical forms up to the change vu2 → ṽu2 .
Finally, for boundary conditions ND or DN on the annulus, the classical displacements vanish
and only the pure quantum contributions proportional to α′ survive.

Note that 〈τ 3τ ′3〉qu 〈σ4σ4〉qu and 〈σ3σ3〉qu 〈τ ′4τ 4〉qu contain factors ϑ1(z1 − z2)− 1
2 , which

yield signs ambiguities.

Bosonic correlator: The spacetime-coordinate propagators on the annulus and Möbius
strip can be expressed in terms of those on the double-cover tori by symmetrizing with respect
to the involution. The result is

〈Xµ(z1)Xν(z2)〉 = δµν

[
− α′ ln

∣∣∣∣∣
ϑ1 (z1 − z2)

ϑ′1(0)

∣∣∣∣∣

2

+ α′4π [Im(z1 − z2)]2
τ2

]
, (5.6)

which can be used to derive

〈eik·X(z1)e−ik·X(z2)〉 =
(∣∣∣∣∣
ϑ1(z1 − z2)
ϑ′1(0)

∣∣∣∣∣ e
− 2π[Im(z1−z2)]2

τ2

)−2α′k2

. (5.7)

Bosonized-fermion correlators: In Ref. [13], it is shown by applying the method of
images on the Green’s functions used in the stress-tensor method that the correlators of
bosonized-fermion on the open-string worldsheets are identical to those on the double-cover
tori. They are given in Eq. (4.52). For q = ±1

2 , products of two such correlators are well
defined up to signs.

5.2 Full expressions of the amplitudes

Putting everything together and defining z12 = z1 − z2 to lighten notations, the full expres-
sion (3.14) of the external part of the one-loop two-point function of massless bosonic states
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in the ND and DN sectors is, for Σ ∈ {A,M},

Aα0β0
extΣ = α′k2 λα0β0λ

T
β0α0

[∣∣∣∣∣
ϑ1(z12)
ϑ′1(0)

∣∣∣∣∣ e
− 2π
τ2

[Im(z12)]2
]−2α′k2

1
detW ϑ1(z12)2

×
∑

νext 6=1
Kνext,1 ϑνext(z12)

∑

νint

(−1)δνint,1 ϑνint

(z12

2
)2

×
∑

~l′

e
− π
α′τ2

∑
I′ (RI′ lI′ )

2


∑

~l

e
− |W1|2(|v3

2 |
2+|v4

2 |
2)

4πα′Im (W1W2) CΣ~l′~l
νint +

∑

~̃l

e
− |W1|2(|ṽ3

2 |
2+|ṽ4

2 |
2)

4πα′Im (W1W2) C̃Σ~l′~̃l
νint


 ,

(5.8)

which is independent of the choice of ε ∈ {−1,+1}. In this expression, we use the following
notations:

• ~l′ stands for (l4, l5), and ~l, ~̃l are the four-vectors whose components are lI and l̃I .

• νext, νint ∈ {1, 2, 3, 4} denote the spin structures of the worldsheet complex fermions:
The former for Ψ0,Ψ1 (and Ψ2), and the latter for Ψ3,Ψ4.

• The normalization factor of the external fermion correlators is given by [62]

Kνext,1 = ϑ′1(0)
ϑνext(0) , νext ∈ {2, 3, 4} , where ϑ′1(0) = −2πη3 . (5.9)

• CΣ~l′~l
νint and C̃Σ~l′~̃l

νint are normalization functions to be determined. They stand for products
of the form

Kνint,
1
2
(τdc)2 fop(τdc; 1

2 ,
1
2) fop(τdc; 1

2 ,
1
2) , (5.10)

possibly dressed by signs that may depend on the instanton numbers ~l,~l′ or ~̃l,~l′. Indeed,
as stressed before, pairs of correlators of twist fields as well as pairs of correlators of spin
fields yield signs ambiguities. Moreover, for the amplitude computed on the annulus,
the normalization functions should contain sums over the free boundary condition
denoted γ. Furthermore, CA~l′~0νint takes into account two contributions associated with
the NN and ND worldsheet boundary conditions, while C̃A~l′~0νint describes those arising
from DD and DN boundary conditions.

Similarly, the internal piece (3.15) of the amplitude is independent of ε and can be
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expressed in terms of the same normalization functions,

Aα0β0
intΣ =− s i

α′
λα0β0λ

T
β0α0

[∣∣∣∣∣
ϑ1(z12)
ϑ′1(0)

∣∣∣∣∣ e
− 2π
τ2

[Im(z12)]2
]−2α′k2

ϑ1( z12
2 )2

detW ϑ1(z12)2 ϑ′1(0)

× 4
∑

νint

ϑνint

(z12

2
)2 ∑

~l′

e
− π
α′τ2

∑
I′ (RI′ lI′ )

2

×



∑

~l

e
− |W1|2(|v3

2 |
2+|v4

2 |
2)

4πα′Im (W1W2) CΣ~l′~l
νint


W

2
1 (|v3

2|2 + |v4
2|2)

8[Im (W 1W2)]2
+ 2α′(C + Ĉ)




+
∑

~̃l

e
− |W1|2(|ṽ3

2 |
2+|ṽ4

2 |
2)

4πα′Im (W1W2) C̃Σ~l′~̃l
νint


W

2
1 (|ṽ3

2|2 + |ṽ4
2|2)

8[Im (W 1W2)]2
+ 2α′(C + Ĉ)





 ,

(5.11)

where the factor 4 accounts for the trivial sum over the external-fermion spin structure νext,
C is given in Eq. (4.47), and we have defined

Ĉ ≡ ϑ′1(0)2

2ϑ1( z12
2 )2 F1(z1, z2) . (5.12)

In the following, we will not consider anymore in Eqs. (5.8) and (5.11) the irrelevant con-
tributions of the external bosonic correlators, [ · · · ]−2α′k2 , which are equal to 1 on shell. We
stress again that we could have introduced non-trivial Kaluza–Klein momenta along T 2 to
avoid ambiguities in extracting information from the amplitude Aα0β0

extΣ .

Normalization functions CΣ~l′~l
νint

and C̃Σ~l′~̃l
νint

: As said in the remark below Eq. (4.22), CΣ~l′~l
νint

and C̃Σ~l′~̃l
νint may be determined by using the fact that when z1 and z2 coalesce, the effects of the

ground-state boundary-changing operators compensate each other. Hence, the external part
of the amplitude reduces, up to a multiplicative factors, to selected pieces of the open-string
contributions to the partition function. To identify precisely which pieces are relevant, Fig. 4
shows what the diagrams in Fig. 3 become when z12 → 0. In this limit, the cut differential
associated with either of the complex directions u ∈ {3, 4} becomes trivial, ω(z) → 1, so
that

W1 −→
z12→0

1 , W2 −→
z12→0

τdc . (5.13)

This leads to

Aα0β0
extΣ ∼

z12→0

3
2iπ α

′k2 λα0β0λ
T
β0α0

1
z2

12

1
τ2η3

∑

νint

(−1)δνint,1 ϑ2
νint ×

∑

~l′

e
− π
α′τ2

∑
I′ (RI′ lI′ )

2


∑

~l

e
− π
α′τ2

∑
I
(RI lI)2

CΣ~l′~l
νint +

∑

~̃l

e
−πα′

τ2

∑
I
(l̃I/RI)2 C̃Σ~l′~̃l

νint


 ,

(5.14)
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which has to be identified with

3
2iπ α

′k2 λα0β0λ
T
β0α0

8C
z2

12
× 1
τ 2

2

32+32∑

γ=1
Str

α0γ+β0γ

1
2

1 + g

2 q
1
2 (L0−1) for A ,

and 3
2iπ α

′k2 λα0β0λ
T
β0α0

8C
z2

12
× 1
τ 2

2
Str

α0α0+β0β0

Ω
2

1 + g

2 q
1
2 (L0−1) forM .

(5.15)

0 1

iτ22 �

�

γ α0

0 1

iτ22 �

�

γ β0

0 1

iτ22 �

�

γ α0

0 1

iτ22 �

�

γ β0

0 1

1
2 + iτ22 �

�

α0 α0

0 1

1
2 + iτ22 �

�

β0 β0

Figure 4: Open-string diagrams of Fig. 3 in the limit z12 → 0.
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In these expressions, C is a constant number,16 while the supertraces are restricted to the
open-string modes with ends attached to branes as shown in Fig. 4. For the identification to
be possible, one has to switch the T 2, T 4 and T̃ 4 lattices in the partition functions ZA and
ZM from Hamiltonian to instantonic forms, which is done by Poisson summations,

∑

~m

P
(4)
~m+~ai−~aj = v4

α′2 τ 2
2

∑

~l

e
− π
α′τ2

∑
I
(RI lI)2

e2iπ~l·(~ai−~aj) ,

∑

~m

W
(4)
~n+~ai−~aj = α′2

v4 τ 2
2

∑

~̃l

e
−πα′

τ2

∑
I
(l̃I/RI)2

e2iπ~̃l·(~ai−~aj) ,

∑

~m′
P

(2)
~m′+F~a′S+~ai′−~aj′ = v2

α′ τ2

∑

~l′

e
− π
α′τ2

∑
I
(RI′ lI′ )2

e2iπ~l′·(~ai′−~aj′ )e2iπF~l′·~a′S ,

(5.16)

where we have defined
v4 = R6R7R8R9 , v2 = R4R5 . (5.17)

For the case of the annulus, using the definitions of the characters given in Eq. (B.4), we
identify

CA~l′~l1 = ρ
C

τ 2
2 η

3 f
A~l′~l
α0D , C̃A~l′~̃l1 = ρ

C
τ 2

2 η
3 f
A~l′~̃l
β0N ,

CA~l′~l2 = C
τ 2

2 η
3
ϑ2

3
ϑ2

4
fA

~l′~l
α0D −

C ϑ2
2

τ 4
2 η

9 f
A~l′~l
α0N e

2iπ~l′·~a′S , C̃A~l′~̃l2 = C
τ 2

2 η
3
ϑ2

3
ϑ2

4
fA

~l′~̃l
β0N −

C ϑ2
2

τ 4
2 η

9 f
A~l′~̃l
β0D e

2iπ~l′·~a′S ,

CA~l′~l3 = C ϑ
2
3

τ 4
2 η

9 f
A~l′~l
α0N −

C
τ 2

2 η
3
ϑ2

2
ϑ2

4
fA

~l′~l
α0D e

2iπ~l′·~a′S , C̃A~l′~̃l3 = C ϑ
2
3

τ 4
2 η

9 f
A~l′~̃l
β0D −

C
τ 2

2 η
3
ϑ2

2
ϑ2

4
fA

~l′~̃l
β0N e

2iπ~l′·~a′S ,

CA~l′~l4 = − C ϑ
2
4

τ 4
2 η

9 f
A~l′~l
α0N , C̃A~l′~̃l4 = − C ϑ

2
4

τ 4
2 η

9 f
A~l′~̃l
β0D , (5.18)

where we have defined

fA
~l′~l

α0N = v2v4

α′3
∑

i,i′
Nii′ e

2iπ~l·(~ai0−~ai)e
2iπ~l′·(~ai′0−~ai′ ) , fA

~l′~̃l
β0D = v2 α

′2

α′ v4

∑

i,i′
Dii′ e

2iπ~̃l·(~aj0−~ai)e
2iπ~l′·(~ai′0−~ai′ ) ,

fA
~l′~l

α0D = δ~l,~0
v2

α′
∑

i,i′
Dii′ e

2iπ~l′·(~ai′0−~ai′ ) , fA
~l′~̃l

β0N = δ~̃l,~0
v2

α′
∑

i,i′
Nii′ e

2iπ~l′·(~ai′0−~ai′ ) . (5.19)

To better understand how the discrete sums and coefficients Nii′ and Dii′ arise, let us display
as an example what the first product of traces in Eq. (2.16) becomes, when restricting to
open strings attached (in the T-dual picture) to the D3-brane α0, and to a D3-brane γ in

16It can be determined by replacing in Eq. (3.14) all correlators by their dominant poles, which can be
found by the OPE’s.
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the Neumann sector,

∑

i,i′
j,j′

tr(γii′N,1)tr(γjj
′−1

N,1 ) −→ (γi0i
′
0

N,1 )α0α0

∑

j,j′

Njj′∑

γ=1
(γjj

′−1
N,1 )γγ =

∑

j,j′
Njj′ . (5.20)

On the contrary, all terms associated with the group generator g vanish, due to the fact that
the diagonal components of the matrices Jk are zero. In the expressions of CA~l′~l1 and C̃A~l′~̃l1 , we
have introduced a coefficient ρ that accounts for the ambiguity arising in their determination,
since ϑ2

νint = 0 for νint = 1. This coefficient will be determined in the sequel. Finally, notice
that the identification has lifted all sign ambiguities associated with the twist- and spin-field
correlators. These signs depend on the instanton numbers ~l′, ~l, ~̃l and the positions of the
D3-branes α0, β0, γ.

To perform the similar computation in the Möbius strip case, note that ZM is expressed
in terms of “hatted characters” defined in Eq. (2.19). However, in light-cone gauge, the char-
acters associated with the worldsheet fermions multiplied by 1/η̂8 arising from the bosonic
coordinates yield low-lying states at the massless level. Hence, all phases e−iπ(h−c/24) appear-
ing in the definitions of the hatted characters cancel each other and we may simply remove
all “hats” on the ϑ and η functions when identifying Eq. (5.15) with the amplitude (5.14).
In that case, the normalization functions are found to be

CM~l′~l
1 = 0 , C̃M~l′~̃l

1 = 0 ,

CM~l′~l
2 = C ϑ

2
2

τ 4
2 η

9
v2v4

α′3
e2iπ~l′·~a′S , C̃M~l′~̃l

2 = C ϑ
2
2

τ 4
2 η

9
v2 α

′2

α′ v4
e2iπ~l′·~a′S ,

CM~l′~l
3 = − C ϑ

2
3

τ 4
2 η

9
v2v4

α′3
, C̃M~l′~̃l

3 = − C ϑ
2
3

τ 4
2 η

9
v2 α

′2

α′ v4
,

CM~l′~l
4 = C ϑ

2
4

τ 4
2 η

9
v2v4

α′3
, C̃M~l′~̃l

4 = C ϑ
2
4

τ 4
2 η

9
v2 α

′2

α′ v4
.

(5.21)

For instance, when one restricts to the boundary conditions shown in Fig. 4, the first trace
appearing in the expression of ZM yields,

tr(γii′ TN,Ω γ
jj′−1
N,Ω ) −→ (γi0i

′
0 T

N,Ω )α0α0(γjj
′−1

N,Ω )α0α0 = 1 . (5.22)

On the contrary, all traces in the second line of Eq. (2.20) yield vanishing contributions since
the selected diagonal matrix elements are zero.
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Consistency when supersymmetry is restored: All normalization functions can be
injected back in Eqs. (5.8) and (5.11) to obtain the full expressions of the amplitudes Aα0β0

extΣ

and Aα0β0
intΣ for arbitrary z1, z2. To analyze their structures in more details, let us focus on

the instantonic sums. For the internal part of the amplitude computed on the annulus, we
obtain for each given ~l′, ~l a contribution of the form

∑

νint

ϑνint

(z12

2
)2 CA~l′~lνint = C f

A~l′~l
α0N
τ 4

2 η
9

{
ϑ2

3ϑ3
(z12

2
)2 − ϑ2

4ϑ4
(z12

2
)2 − e2iπ~l′·~a′S ϑ2

2ϑ2
(z12

2
)2
}

+ C fA
~l′~l

α0D
τ 2

2 η
3 ϑ2

4

{
ϑ2

3ϑ2
(z12

2
)2

+ ρ ϑ2
4ϑ1

(z12

2
)2 − e2iπ~l′·~a′S ϑ2

2ϑ3
(z12

2
)2
}

= C
(
1− (−1)l5

){ fA~l′~lα0N
τ 4

2 η
9 ϑ

2
2ϑ2

(z12

2
)2

+
fA

~l′~l
α0D

τ 2
2 η

3 ϑ2
4
ϑ2

2ϑ3
(z12

2
)2
}

(5.23)

+ C (ρ− 1)
fA

~l′~l
α0D
τ 2

2 η
3 ϑ1

(z12

2
)2
,

where the second equality is obtained by applying a generalized Jacobi identities [62] with
non-zero first arguments, as well as the specific form of the vector ~a′S. For given ~l′, ~̃l, the
similar sum for the coefficients C̃A~l′~̃lνint is obtained by changing α0 → β0 and N↔ D. We are now
ready to determine the constant ρ by taking the limit R5 → +∞ in Eq. (5.11). Indeed, l5 = 0
is the only contribution in the sum over l5 that survives in this limit. Hence, Aα0β0

intA vanishes
when supersymmetry is restored if and only if ρ = 1, since in that case only, Eq. (5.23)
projects out all even values of the wrapping number l5. Indeed, in the supersymmetric case,
the effective potential cannot be corrected perturbatively, which implies ρ to be such that
the one-loop corrections to the masses we are computing vanish.

We can proceed the same way for the internal part of the amplitude computed on the
Möbius strip. For fixed ~l′, ~l, we have
∑

νint

ϑνint

(z12

2
)2 CM~l′~l

νint = C v2v4

α′3 τ 4
2 η

9

{
e2iπ~l′·~a′S ϑ2

2ϑ2
(z12

2
)2 − ϑ2

3ϑ3
(z12

2
)2

+ ϑ2
4ϑ4

(z12

2
)2
}

= − C v2v4

α′3 τ 4
2 η

9

(
1− (−1)l5

)
ϑ2

2ϑ2
(z12

2
)2
,

(5.24)

while for given ~l′, ~̃l, the analogous sum for C̃M~l′~l
νint is obtained by changing v4/α

′2 → α′2/v4.
In the limit R5 → +∞ where supersymmetry is restored, the amplitude Aα0β0

intM vanishes
consistently.

As can be seen from Eqs. (5.8) and (5.11), the sums over the spin structure νint in the
external and internal parts of the amplitudes are identical, up to the insertion of the sign
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(−1)δνint,1 for Aα0β0
extΣ . Of course, this does not make any difference in the case of the Möbius

strip since the normalization functions for νint = 1 vanish. On the contrary, for Σ = A,
the extra sign amounts to changing ρ→ −ρ in Eq. (5.23). As a result, the external part of
the amplitude, Aα0β0

extA, does not vanish in the decompactification limit, and yields a one-loop
correction to the Kähler potential of the massless scalars in the ND+DN sector, even in the
supersymmetric case.

Integration over the moduli and vertex positions: What remains to be done is
to integrate the amplitudes over the moduli of the open-string surfaces and vertex operator
positions modulo the conformal Killing group [63]. The moduli ofA andM are the imaginary
parts of the Teichmüller parameters of the double-cover tori, Im τdc. Moreover, instead of
integrating over the locations of both insertion points and dividing by the volume of the
conformal Killing group, we may simply fix to an arbitrary value the position of one vertex
operator, say z2 ≡ 1

2 , and integrate over the location of the other.

In the case of the annulus, both vertices must be located on the same boundary, so that
z1 ≡ 1

2 + iy1. As a result, denoting the integrated amplitudes by calligraphic letters, the
internal part reads

A
α0β0
intA =

∫ +∞

0
d Im τdc

∫ Im τdc

0
dy1 A

α0β0
intA

∣∣∣ 1
2 +iy1,

1
2
, (5.25)

and likewise for the external amplitude. Similarly, for the two-point function computed on
the Möbius strip, z1 must follow the entire boundary. However, the latter being twice longer
than the one considered on the annulus, z1 can actually be parametrized as z1 = x1 + iy1,
where x1 ∈ {0, 1

2}. As a result, the internal part of the integrated amplitude is

A
α0β0
intM =

∫ +∞

0
d Im τdc

∫ Im τdc

0
dy1

(
Aα0β0

intM
∣∣∣ 1

2 +iy1,
1
2

+ Aα0β0
intM

∣∣∣
iy1,

1
2

)
, (5.26)

and similarly for the external part.

In these forms, the full two-point functions are not particularly illuminating, while per-
forming explicitly the integrals is certainly a hard task. Hence, our goal in the next section
is to extract simpler answers valid in the case where the scale of supersymmetry breaking is
low.
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6 Limit of low supersymmetry breaking scale

The analysis of Ref. [32] is valid in regions of moduli space where the supersymmetry break-
ing scale M3/2 is lower than all other non-vanishing scales present in the model. The reason
of this restriction is that extrema of the one-loop effective potential are then easily found,
and correspond in the open-string sector to distributing all D3-branes (in the T-dual pic-
tures) on O3-planes. In such a case, the squared masses acquired at one loop by the moduli
fields arising from the NN and DD sectors take particularly simple forms, up to exponentially
suppressed corrections of order e−π

cMs
M3/2 , in the notations of Eq. (1.1). In practice, the fact

that M3/2 is lower than the string scale as well as all other scales generated by compactifica-
tion means that, effectively, the dominant contributions of the effective potential and masses
derived in Ref. [32] match those found in a Kaluza–Klein field theory in 4 + 1 dimensions.

In the present section, we would like to find similar results for the masses of the moduli
fields present in the ND+DN sector of the theory. This will be done by imposing all mass
scales other than M3/2 to be proportional to Ms = 1/

√
α′ and then taking the small α′ limit.

6.1 Limit of super heavy oscillator states

In order to treat all massive string-oscillator states as super heavy in the Hamiltonian forms of
the partition functions, let us rescale the Teichmüller parameters of the open-string surfaces
as follows17

Im τdc ≡ τ2

2 ≡
t

2πα′ � 1 , where t ∈ (0,+∞) . (6.1)

Physically, this amounts to stretching the surfaces along their proper times in order to look
like field-theory worldlines with topology of a circle. The main practical consequence of the
rescaling is the approximation

ϑ1(z) ≡ −2 q
1
8
dc sin(πz)

∏

n≥1

[
(1− qndc)(1− qndcz

−2iπz)(1− qndcz
2iπz)

]
, qdc ≡ e2iπτdc

,

= −2 q
1
8
dc sin(πz)(1 + · · · ) , when |Im z| < Im τdc ,

(6.2)

where from now on, ellipses stand for terms exponentially suppressed when α′ → 0, i.e.
of order e−L2/α′ for lengths L > 0. In particular, the cut differential associated with the

17This rescaling also implies that the imaginary parts of τ and 2iτ2, the Teichmüller parameters of the
torus and Klein bottle, are large. Hence, the massive oscillator states are super heavy also in the closed-string
sector.
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complex directions u ∈ {3, 4} becomes

ω(z) =
sin

(
π(z − z1+z2

2 )
)

sin
(
π(z − z1)

) 1
2 sin

(
π(z − z2)

) 1
2

+ · · · , when |Im z|, y1, y2 < Im τdc . (6.3)

Periodicity z → z+ 1 remains explicit, while periodicity z → z+ τdc is hidden in the ellipsis.
Notice that compared to Eq. (5.1), we impose y1, y2 to be strictly lower than Im τdc for the
above formula to always be valid. More generally, throughout the derivations to come, we
will write formulas in their generic forms. Indeed, because in the end all quantities will have
to be integrated, taking into account extra contributions arising only at special values of the
integration variables results in subdominant corrections for small α′. We will come back to
this issue at the end of this section.

Keeping this in mind, we redefine

yA ≡ uA Im τdc = t uA
2πα′ � 1 , uA ∈ (0, 1) , A ∈ {1, 2} , and u ≡ |u1 − u2| , (6.4)

in terms of which the components of the cut-period matrix can be expressed like

W1 = 1 + · · · ,

W2 = τdc − ξ(z1 − z2) + i

π
ln 4 + · · · , where ξ ≡ sign (y1 − y2) .

(6.5)

The first expression is easily found by integrating over z finite along γ1 and replacing all
sines in Eq. (6.3) by their dominant exponentials when Im τdc is large. By contrast, W2 can
be derived by integrating z between x0 and x0 + τdc, x0 ∈ R, using a primitive of ω in its
form given in Eq. (6.3). As a result, we obtain that

Im (W 1W2) = t(1− u)
2πα′ + ln 4

π
+ · · · . (6.6)

When taking the limit of small α′ in Eq. (5.23), it turns out that the terms proportional
to fA~l′~lα0D (and fA~l′~̃lβ0N for the formula involving C̃A~l′~̃lνint ) are exponentially suppressed. Notice that
they arise from the ND and DN sectors of the partition function ZA, which therefore cease
to contribute to the amplitudes in this limit. In the case of the annulus, we then arrive at
the expression

Aα0β0
intA =− 4Cs λα0β0λ

T
β0α0

∑

~l′

e−
π2
t

∑
I′ (RI′ lI′ )

2 ∑

~l

e
− π2
t(1−u)+α′(2 ln 4+···)

∑
I
(RI lI)2 ×
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(
1− (−1)l5

)
2π3 α

′4

t4
v2v4

α′3
∑

ii′
Nii′ e

2iπ~l·(~ai0−~ai)e
2iπ~l′·(~ai′0−~ai′ )× (6.7)

π

t(1− u) + α′(2 ln 4 + · · · )

[
π4 α′2

[t(1− u) + α′(2 ln 4 + · · · )]2
∑

J

(RJ lJ)2 + 2α′(C + Ĉ)
]

+ (~l, i0, Nii′ , RI)→ (~̃l, j0, Dii′ , α
′/RI) + · · · ,

while for the Möbius strip we obtain

Aα0β0
intM = 4Cs λα0β0λ

T
β0α0

∑

~l′

e−
π2
t

∑
I′ (RI′ lI′ )

2 ∑

~l

e
− π2
t(1−u)+α′(2 ln 4+···)

∑
I
(RI lI)2 ×

(
1− (−1)l5

)
2π3 α

′4

t4
v2v4

α′3
× (6.8)

π

t(1− u) + α′(2 ln 4 + · · · )

[
π4 α′2

[t(1− u) + α′(2 ln 4 + · · · )]2
∑

J

(RJ lJ)2 + 2α′(C + Ĉ)
]

+ (~l, RI)→ (~̃l, α′/RI) + · · · .

In the above formulas, the limit of small α′ in C and Ĉ will be derived in Sects. 6.3 and 6.4.

6.2 Limits of large compactification scales

We would like now to have all compactification mass scales other than M3/2 very large. In
practice, this amounts to taking small radii R4, RI and dual radii α′/RI limits. In order to
avoid having to consider very large instanton numbers in such a regime, it is convenient to
apply Poisson summations over l4, ~l and ~̃l [62], which lead for Σ = A to

Aα0β0
intA =− 16Cs√π λα0β0λ

T
β0α0

α′3R5

t
7
2

∑

l5

e−
π2
t
R2

5(2l5+1)2 ∑

ii′
Nii′ e

2iπ(a5
i′0
−a5

i′ )

×
∑

m4

e
−t
(m4+a4

i′0
−a4
i′

R4

)2 ∑

~m

e
−[t(1−u)+α′(2 ln 4+···)]

∑
I

(
mI+aI

i0
−aI
i

RI

)2

×
{
π3
[
2− [t(1− u) + α′(2 ln 4 + · · · )]

∑

J

(
mJ + aJi0 − aJi

RJ

)2
]

+ 2π
[
t(1− u)
α′

+ 2 ln 4 + · · ·
]
(C + Ĉ)

}

+ (~m, i0, Nii′ , RI)→ (~n, j0, Dii′ , α
′/RI) + · · · ,

(6.9)
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and for Σ =M

Aα0β0
intM = 16Cs√π λα0β0λ

T
β0α0

α′3R5

t
7
2

∑

l5

e−
π2
t
R2

5(2l5+1)2

×
∑

m4

e
−t(m4

R4
)2 ∑

~m

e
−[t(1−u)+α′(2 ln 4+···)]

∑
I
(mI
RI

)2

×
{
π3
[
2− [t(1− u) + α′(2 ln 4 + · · · )]

∑

J

(
mJ

RJ

)2
]

+ 2π
[
t(1− u)
α′

+ 2 ln 4 + · · ·
]
(C + Ĉ)

}

+ (~m,RI)→ (~n, α′/RI) + · · · .

(6.10)

One may think that considering T 4 to be small would imply having the T-dual torus T̃ 4

large. This is not true, as can be seen by redefining the radii as follows,

R4 = r4
√
α′ , RI = rI

√
α′ ,

α′

RI

=
√
α′

rI
, (6.11)

where r4, rI are fixed and dimensionless. Indeed, all radii and dual radii vanish as α′ → 0.
As a consequence, the limit of small R4 implies that we may restrict the dominant term in
Aα0β0

intA to m4 = 0 and i′ ∈ {i′0, ı̂′0}, where

ı̂′0 is the fixed point in T̃ 2 that faces i′0 along the direction X̃5 (6.12)

in the T-dual pictures. Similarly, the limits of small RI and α′/RI force ~m = 0, i = i0 on
the one hand, and ~n = 0, i = j0 on the other hand. All other contributions can be absorbed
in the ellipsis. In total, we obtain for the amplitude computed on the annulus

Aα0β0
intA =− 16Cs√π λα0β0λ

T
β0α0

α′3R5

t
7
2

∑

l5

e−
π2
t
R2

5(2l5+1)2 (
Ni0i′0 −Ni0 ı̂′0 +Dj0i′0 −Dj0 ı̂′0

)

×
{

2π3 + 2π
[
t(1− u)
α′

+ 2 ln 4 + · · ·
]
(C + Ĉ)

}
+ · · · ,

(6.13)

while on the Möbius strip we have similarly

Aα0β0
intM = 16Cs√π λα0β0λ

T
β0α0

α′3R5

t
7
2

∑

l5

e−
π2
t
R2

5(2l5+1)2 (1 + 1)

×
{

2π3 + 2π
[
t(1− u)
α′

+ 2 ln 4 + · · ·
]
(C + Ĉ)

}
+ · · · .

(6.14)
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6.3 Limit α′ → 0 of U1 and F1(z, z2)

In this subsection and the following, our aim is to derive the limits of C and Ĉ for small α′,
i.e. the contributions arising from parts (2) of the correlators 〈τuτ ′u〉qu = 〈τ ′uτu〉qu. Because
the results can be obtained with no more effort for any Teichmüller parameter, we will keep
the real part of τdc arbitrary, and z1, z2 will be chosen anywhere in the torus represented by
P in the complex plane, where

P is the parallelogram with corners at 0, 1 and τdc . (6.15)

The important thing, though, is that Eqs. (6.1) and (6.4) hold. Hence, our computations of
parts (2) are valid for excited twist fields (for closed strings) and excited boundary-changing
fields (for open strings). Let us start by deriving the limits of U1 and F1(z, z2), which will
be used in the next subsection to derive those of C and Ĉ.

U1 when α′ → 0: The function F1(z, w) defined in Eq. (4.45) involves U1 which is a
root of

Ω(U) ≡ ∂zF1(z, w)|z=w = ϑ′1
ϑ1

(U) + ϑ′1
ϑ1

(Y1 − U) , where Y1 = −z12

2 . (6.16)

To see that this definition makes sense, notice that the meromorphic function Ω(U) is doubly
periodic on the genus-1 Riemann surface Σ, with two simple poles at U = 0 and U = Y1.
Therefore, it has two simple zeros. Denoting one of them U1, the second is Y1 − U1.18

When considering the limit α′ → 0 in the equation Ω(U1) = 0, a difficulty we have to
face is the following: If we look for U1 such that 0 < ImU1 < Im τdc, using the fact that
|Im Y1| < 1

2 Im τdc we obtain that

−3
2 Im τdc < Im (Y1 − U1) < 1

2 Im τdc . (6.17)

Hence, it is not clear when we can apply Eq. (6.2) or not. For this reason, let us consider
two cases:

• When 0 < Im Y1 <
1
2 Im τdc, we obtain that |Im (Y1 − U1)| < 1

2 Im τdc which allows to
write

0 = Ω(U1) = π
(
cot(πU1) + cot[π(Y1 − U1)]

)
+ · · ·

= π
sin(πY1)

sin(πU1) sin[π(Y1 − U1)] + · · · .
(6.18)

18It is understood that poles and zeros are defined modulo 1 and τdc.
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For the right-hand side to vanish when α′ → 0, we see that U1 must satisfy ImU1 → +∞
and Im (Y1−U1) < 0. To determine U1 more precisely, let us keep the first subdominant
term in the ellipsis of Eq. (6.18), which is 2iπ qdc e

−2iπU1 .19 In that case, the equation
becomes

i sin(πY1) = 2 sin(πU1) sin[π(Y1 − U1)] qdc e
−2iπU1(1 + · · · ) , (6.19)

which implies the asymptotic equivalence

−e−iπY1 ∼
α′→0

e−iπU1 eiπ(Y1−U1) qdc e
−2iπU1 . (6.20)

Redefining

U1 ≡
τdc + Y1

2 + 1
4 + m

2 + ε for some m ∈ Z , with |Re ε| < 1
2 , (6.21)

Eq. (6.20) shows that ε→ 0 when α′ → 0.

• When −1
2 Im τdc < Im Y1 < 0, we can apply the change of variable (6.21) which yields

−3
4 Im τdc − Im ε < Im (Y1 − U1) < −1

2 Im τdc − Im ε . (6.22)

Hence, assuming that ε is bounded when α′ → 0, Eq. (6.18) is legitimate for small
enough α′. However, the first dominant term in the ellipsis is now −2iπ qdc e

2iπ(Y1−U1),19

and the equation becomes

i sin(πY1) = −2 sin(πU1) sin[π(Y1 − U1)] qdc e
2iπ(Y1−U1)(1 + · · · ) . (6.23)

Hence, we obtain that

eiπY1 ∼
α′→0

−e−iπU1 eiπ(Y1−U1) qdc e
2iπ(Y1−U1) , (6.24)

which is equivalent to Eq. (6.20) and leads to ε → 0 when α′ → 0. The assumption
on the boundedness of ε being consistent, we have also found solutions in the present
case.

In both instances, ε can be expressed in terms of exponentially suppressed contributions
subdominant to those we have taken into account explicitly. Its leading behavior is derived
in Appendix C.

19It can be found from Eq. (C.2) where the function H is defined in Eq. (C.1).
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By imposing U1 to be located in P , we find the two roots of Ω(U),

U1 = τdc + Y1

2 + 1
4 + · · · or τdc + Y1

2 + 3
4 + · · · . (6.25)

Since we know that there cannot be other solutions modulo 1 and τdc, a cross-check of this
result is to observe that Y1 − U1 satisfies consistently

Y1 − U1 + 1 + τdc = τdc + Y1

2 + 3
4 + · · · or τdc + Y1

2 + 1
4 + · · · . (6.26)

F1(z, z2) when α′ → 0: Both possible choices of U1 yield the same function F1(z, w).
What we need to analyze in order to derive the limits of C and Ĉ is its expression for
w = z2,

F1(z, z2) =
ϑ1
(
z + τdc

2 − 1
4 z1 − 3

4 z2 + 1
4 + · · ·

)
ϑ1
(
z − τdc

2 − 1
4 z1 − 3

4 z2 − 1
4 + · · ·

)

ϑ1
(
τdc

2 − z12
4 + 1

4 + · · ·
)
ϑ1
(
− τdc

2 − z12
4 − 1

4 + · · ·
) , (6.27)

where z ≡ x + iy ∈ P , and x, y ∈ R. Notice that Eq. (6.2) can be applied to both ϑ1

functions appearing in the denominator (for small enough α′).

For 0 < 1
2 y1+ 3

2 y2 < Im τdc, the second ϑ1 function in the numerator fulfils the hypothesis
of Eq. (6.2), while the first one requires more scrutiny:

• When 0 < y < 1
2 Im τdc + 1

4 y1 + 3
4 y2, Eq. (6.2) applies to the first ϑ1.

• When 1
2 Im τdc + 1

4 y1 + 3
4 y2 < y < Im τdc, we have (for small enough α′)

Im τdc < Im
(
z + τdc

2 −
1
4 z1 −

3
4 z2 + 1

4 + · · ·
)
<

3
2 Im τdc , (6.28)

which shows that we have to multiply the second line of Eq. (6.2) by an extra factor
−qdce

−2iπz to apply it to the first ϑ1 function in the numerator of Eq. (6.27).

In the end, we obtain that

when 0 < 1
2 y1 + 3

2 y2 < Im τdc , then (6.29)

F1(z, z2) =
{ 1 + · · · if 0 < y < 1

2 Im τdc + 1
4 y1 + 3

4 y2 ,

e−4iπ(z− τdc
2 −

1
4 z1−

3
4 z2) (1 + · · · ) if 1

2 Im τdc + 1
4 y1 + 3

4 y2 < y < Im τdc .

Conversely, for Im τdc < 1
2 y1 + 3

2 y2 < 2 Im τdc, it is the first ϑ1 function in the numerator
that satisfies the condition of validity of Eq. (6.2), while for the second one we have to
consider two possibilities:
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• When 1
4 y1 + 3

4 y2 − 1
2 Im τdc < y < Im τdc, Eq. (6.2) applies to this ϑ1 function.

• When 0 < y < 1
4 y1 + 3

4 y2 − 1
2 Im τdc, we have (for small enough α′)

−3
2 Im τdc < Im

(
z − τdc

2 −
1
4 z1 −

3
4 z2 −

1
4 + · · ·

)
< −1

2 Im τdc . (6.30)

Hence, the second line of Eq. (6.2) must contain an extra factor −qdce
2iπz to apply it

to the second ϑ1 function in the numerator of F1(z, z2).

All in all,

when Im τdc < 1
2 y1 + 3

2 y2 < 2 Im τdc , then (6.31)

F1(z, z2) =



e4iπ(z− 1

4 z1−
3
4 z2+ τdc

2 ) (1 + · · · ) if 0 < y < 1
4 y1 + 3

4 y2 − 1
2 Im τdc ,

1 + · · · if 1
4 y1 + 3

4 y2 − 1
2 Im τdc < y < Im τdc .

6.4 Limit α′ → 0 of C and Ĉ

We are now ready to evaluate the limits of C and Ĉ for small α′.

Ĉ when α′ → 0: The expression of Ĉ given in Eq. (5.12) involves F1(z1, z2). If this
quantity can certainly be obtained by taking z = z1 in the results we have just derived, it
can also be computed from scratch by reasoning in the same way, which turns out to be
easier. The result is

F1(z1, z2) =





e2iπ(τdc− 3
2 z12)(1 + · · · ) if 2

3 Im τdc < Im z12 < Im τdc ,

(1 + · · · ) if −2
3 Im τdc < Im z12 <

2
3 Im τdc ,

e2iπ(τdc+ 3
2 z12)(1 + · · · ) if −Im τdc < Im z12 < −2

3 Im τdc .

(6.32)

As a result, the contributions proportional to Ĉ in Eqs. (6.13) and (6.14) are of the form

2π
[
t(1− u)
α′

+ 2 ln 4 + · · ·
]
Ĉ = −4π3

[
t(1− u)
α′

+ 2 ln 4 + · · ·
]
×





e2iπ(τdc−z12)(1 + · · · ) if 2
3 Im τdc < Im z12 < Im τdc ,

eiπz12(1 + · · · ) if 0 < Im z12 <
2
3 Im τdc ,

e−iπz12(1 + · · · ) if −2
3 Im τdc < Im z12 < 0 ,

e2iπ(τdc+z12)(1 + · · · ) if −Im τdc < Im z12 < −2
3 Im τdc ,

= · · · , (6.33)
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which is exponentially suppressed. Note however that this statement is valid when the
intervals of Im z12 are open.

C when α′ → 0: Using the relation given in Eq. (4.47), the term linear in C in
Eqs. (6.13) and (6.14) can be written as

2π
[
t(1− u)
α′

+ 2 ln 4 + · · ·
]
C = −2iπ4 cos

(
π

2 z12

)[
W 2F1 −F2

]
,

where Fa =
∮

γa
dz F1(z, z2) (1 + · · · )

sin[π(z − z1)] 1
2 sin[π(z − z2)] 3

2
, a ∈ {1, 2} ,

(6.34)

and W2 is given in Eq. (6.5). We are going to show that F1 contributes exponentially
suppressed terms while F2 yields a finite result.

In order to evaluate F1, we impose the points z of the representative path of the cycle
γ1 to satisfy Im z ≡ 1

2 Im τdc. The advantage of this choice is that F1(z, z2) can be replaced
by 1 + · · · all along the path,

F1 =
∫ 1

0
dx 1 + · · ·

sin[π(x+ τdc

2 − z1)] 1
2 sin[π(x+ τdc

2 − z2)] 3
2
. (6.35)

Omitting the ellipsis, an explicit integration using a primitive of the integrand yields an
exactly vanishing result. However, the exponentially suppressed terms in the numerator
may be large once multiplied by cos(πz12/2). To take them into account, one can find upper
bounds valid for given signs of 1

2 Im τdc− y1, 1
2 Im τdc− y2 and y1− y2. As an example, when

(1
2 Im τdc − y1)(1

2 Im τdc − y2) < 0 we obtain
∣∣∣∣ cos

(
π

2 z12

)
F1

∣∣∣∣ ≤
∫ 1

0
dx 4 e−π| 12 Im τdc−y2|K = · · · , (6.36)

where the constant K is any majorant of |1 + · · · | for small enough α′. It turns out that in
all instances the contributions proportional to F1 are suppressed.

To compute F2, we have to consider two cases. When 0 < 1
2 y1 + 3

2 y2 < Im τdc, Eq. (6.29)
allows us to decompose the integral into two pieces,

F2 = F (1)
2 + F (2)

2 ,

where F (1)
2 =

∫ τdc
2 + 1

4 z1+ 3
4 z2

0
dz 1 + · · ·

sin[π(z − z1)] 1
2 sin[π(z − z2)] 3

2
,

F (2)
2 =

∫ τdc

τdc
2 + 1

4 z1+ 3
4 z2

dz e−4iπ(z− τdc
2 −

1
4 z1−

3
4 z2) (1 + · · · )

sin[π(z − z1)] 1
2 sin[π(z − z2)] 3

2
.

(6.37)
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A primitive of the leading term of the integrand of F (1)
2 can be found and the limit of small

α′ taken after integration. This second step requires considering two cases, namely

(a) : y1 − y2 <
2
3 Im τdc and (b) : y1 − y2 >

2
3 Im τdc , (6.38)

which turn out to yield identical finite results,

cos
(
π

2 z12

) ∫ τdc
2 + 1

4 z1+ 3
4 z2

0
dz 1

sin[π(z − z1)] 1
2 sin[π(z − z2)] 3

2
= 2i
π

+ · · · . (6.39)

The extra contribution arising from the ellipsis in the integrand of F (1)
2 turns out to be

exponentially suppressed. However, this is not totally obvious since the dominant implicit
term in the numerator is of the form e4iπ( τ

dc
2 + 1

4 z1+ 3
4 z2−z), which is 1 at the upper bound of

the integral. Hence, keeping only the ellipsis in the numerator, we divide the domain of
integration from 0 to some z0 and from z0 to τdc

2 + 1
4z1 + 3

4z2. The value of z0 is chosen
such that the first domain yields an integral multiplied by cos(πz12/2) admitting a trivial
exponentially suppressed majorant, and also such that in the second domain it is legitimate
to replace the two sines in the denominator by a single large exponential allowing an easy
integration. In both cases (a) and (b), we obtain that

cos
(
π

2 z12

)
F (1)

2 = 2i
π

+ · · · . (6.40)

In the integrand of F (2)
2 , sin[π(z − z2)] can always be replaced by a large exponential

thanks to the fact that Im (z − z2) 6= 0 throughout the integration domain. While the same
is true for sin[π(z − z1)] in case (a), it turns out that Im (z − z1) vanishes for some z in
case (b). In the first instance (a), it is therefore valid to write

|F (2)
2 | =

∣∣∣∣∣

∫ τdc

τdc
2 + 1

4 z1+ 3
4 z2

dz 4 e−iπ(2z−2τdc− 1
2 z1−

3
2 z2) (1 + · · · )

∣∣∣∣∣

<
∫ Im τdc

1
2 Im τdc+ 1

4y1+ 3
4y2

dy 4K
sinφ e

−π( 1
2 z1−

3
2 z2) e2π(y−Im τdc) ,

(6.41)

where we have chosen the path of integration for z to be the straight segment in the complex
plane, which forms an angle φ ∈ (0, π) with the horizontal axis. Integrating the majorant,
one obtains

∣∣∣∣ cos
(
π

2 z12

)
F (2)

2

∣∣∣∣ <
K

π sinφ ×



e−2πy2 if y1 − y2 > 0 ,
e−π(y1+y2) if y1 − y2 < 0 ,

= · · · ,
(6.42)

49



where in the last line we use the fact that sinφ → 1 when α′ → 0. On the contrary, in
case (b), only sin[π(z − z2)] can be replaced by a single large exponential. However, it is
possible to integrate the dominant term of the integrand, and show as we did for F (1)

2 that
the result dominates the integral arising from the ellipsis. Combining both pieces, we find
that the conclusion of Eq. (6.42) holds again.

Let us move on to the second case, namely Im τdc < 1
2 y1 + 3

2 y2 < 2Im τdc, which can be
treated by following the same steps as before. The starting point is Eq. (6.31) which leads
to the decomposition

F2 = F (1)
2 + F (2)

2 ,

where F (1)
2 =

∫ τdc

1
4 z1+ 3

4 z2−
τdc
2

dz 1 + · · ·
sin[π(z − z1)] 1

2 sin[π(z − z2)] 3
2
,

F (2)
2 =

∫ 1
4 z1+ 3

4 z2−
τdc
2

0
dz e4iπ(z− 1

4 z1−
3
4 z2+ τdc

2 ) (1 + · · · )
sin[π(z − z1)] 1

2 sin[π(z − z2)] 3
2
.

(6.43)

Omitting the ellipsis in the integrand of F (1)
1 , a direct integration yields for

(c) : y1 − y2 > −
2
3 Im τdc and (d) : y1 − y2 < −

2
3 Im τdc , (6.44)

the same finite result we found in the previous case

cos
(
π

2 z12

) ∫ τdc

1
4 z1+ 3

4 z2−
τdc
2

dz 1
sin[π(z − z1)] 1

2 sin[π(z − z2)] 3
2

= 2i
π

+ · · · . (6.45)

Moreover, even if the ellipsis in the integrand of F (1)
2 equals 1 at the lower bound of the inte-

gral, it can be shown as before that it yields an extra exponentially suppressed contribution
after integration. Therefore, Eq. (6.40) remains valid.

In the integrand of F (2)
2 , it is always safe to replace sin[π(z− z2)] by a large exponential.

This is also the case for sin[π(z − z1)] in case (c), for which we can write

|F (2)
2 | =

∣∣∣∣∣∣

∫ 1
4 z1+ 3

4 z2−
τdc
2

0
dz 4 eiπ(2z+2τdc− 1

2 z1−
3
2 z2) (1 + · · · )

∣∣∣∣∣∣

<
∫ 1

4y1+ 3
4y2− 1

2 Im τdc

0
dy 4K

sinφ e
−π(2Im τdc− 1

2 z1−
3
2 z2) e−2πy .

(6.46)

In the first line, the path of integration for z is the segment that forms an angle φ ∈ (0, π)
with the horizontal axis. Integrating the upper bound, we conclude that

∣∣∣∣ cos
(
π

2 z12

)
F (2)

2

∣∣∣∣ <
K

π sinφ ×



e−π(2Im τdc−y1−y2) if y1 − y2 > 0 ,
e−2π(Im τdc−y2) if y1 − y2 < 0 ,

= · · · .
(6.47)
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In case (d), only sin[π(z− z2)] can be replaced by a large exponential. The integration using
a primitive as before shows that the conclusion of Eq. (6.47) is again true.

Taking into account all of the above results for the integrals Fa, and using the fact that
W2 does not grow exponentially fast as α′ → 0, Eq. (6.34) leads to the contribution

2π
[
t(1− u)
α′

+ 2 ln 4 + · · ·
]
C = −4π3 + · · · . (6.48)

6.5 Integration over τ2, z1, z2 and final result

Collecting the contributions of parts (1) and (2) (involving C and Ĉ) of the correlators
〈τuτ ′u〉qu = 〈τ ′uτu〉qu, the braces in the amplitudes (6.13) and (6.14) reduce to

{2π3 − 4π3 + · · · } = −2π3 + · · · . (6.49)

Because all the dependence in z1 and z2 of the amplitudes is now hidden in ellipses, the
integrations in Eqs. (5.25) and (5.26) can be performed easily. Using the identity

∫ +∞

0
d Im τdc

∫ Im τdc

0
dy1 ≡

1
(2πα′)2

∫ +∞

0
t dt

∫ 1

0
du1 , (6.50)

and the fact that the integration over u1 of the dominant contributions of the two-point
functions are trivial, we obtain

A
α0β0
intA + A

α0β0
intM = 4

π
Cs λα0β0λ

T
β0α0

∑

l5

1
|2l5 + 1|3

× α′

R2
5

(
Ni0i′0 −Ni0 ı̂′0 − 2 +Dj0i′0 −Dj0 ı̂′0 − 2

)
+O

(
α′2

R4
5

)
.

(6.51)

The origin of the terms of order α′2/R4
5 will be explained at the end of this section.

We are now ready to display the main result of our work. Implementing the correct
dimension, the mass squared acquired at one loop by the classically massless state (λ, ε)
belonging to the ND+DN bosonic sector realized by strings “stretched” between the stack
of Ni0i′0 ≥ 2 D3-branes (T-dual to D9-branes) and the stack of Dj0i′0 ≥ 2 D3-branes (T-dual
to D5-branes) is given by
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M2 = 1
α′

Ni0i′0∑

α0=1

Dj0i′0∑

β0=1

(
A
α0β0
intA + A

α0β0
intM

)
(6.52)

= 32
π
Cs
∑

l5

1
|2l5 + 1|3 tr(λλT)M2

3/2 (ni0i′0 − ni0 ı̂′0 − 1 + dj0i′0 − dj0 ı̂′0 − 1) +O
(
α′

R4
5

)
,

where the supersymmetry breaking scale (2.7) reduces to

M3/2 = 1
2R5

. (6.53)

From a field theory point of view, it can be seen that the bosonic (fermionic) degrees of
freedom charged under U(ni0i′0) or U(dj0i′0) which are running in the loop contribute positively
(negatively) to the mass-squared term. Because tr(λλT) > 0,20 this implies that Cs > 0.

To conclude this section, notice that Eq. (6.52) guaranties or rules out the stability of
moduli fields in the ND+DN sector only when the coefficient in parenthesis is not zero.
When the latter vanishes, one has to compute four-point functions to conclude.

Subdominant contributions: As announced below Eq. (6.3), all our derivations have
been presented at generic insertion points z1, z2. However, for special values of these vari-
ables, contributions we included in ellipses are actually no more exponentially suppressed
when α′ → 0.

When the limit is taken up to α′ = 0, all ellipses are identically zero, except at these
particular values of z1, z2 which are loci of zero measure in the final integrals. Hence, the
existence of such points does not affect the end result, which in this case is Eq. (6.52) with no
subdominant term at all. One may expect this expression to match exactly the outcome of
the computation of the masses in a pure Kaluza–Klein field theory in 4 + 1 dimensions, with
the field-theory Scherk–Schwarz mechanism implemented along the circle of radius R5. The
field content should include the Kaluza–Klein towers of modes (propagating along S1(R5))
present in the string model and associated with the massless states or their superpartners
charged under U(ni0i′0) × U(dj0i′0). However, this is not quite the case. Indeed, we already
noticed above Eq. (6.7) that the ND and DN sectors do not run in the loop when α′ = 0.

20Since λλT is a real symmetric ni0i′0 × ni0i′0 matrix, it is diagonalizable and its eigenvalues are real.
Moreover, since for any real ni0i′0-vector V we have V T(λTλ)V = (λV )T(λV ) = ||λV ||2 ≥ 0, we conclude
that all eigenvalues are nonnegative.
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Indeed, this has to be the case since otherwise they would contribute extra terms proportional
to δ~l,~0 or δ~̃l,~0 in Eq. (6.7). Because of the first factor π/[t(1− u1)] (for α′ = 0 and y2 = 0) in
the third line, such contributions would yield a divergence when integrating over u1. On the
contrary, the Poisson summations over the ~l- or ~̃l-dependent contributions cancel the factor
π/[t(1 − u1)] and yield a finite result interpreted as the contributions of states in the NN
and DD sectors running in the loop. Hence, from the point of view of a Kaluza–Klein field
theory in 4+1 dimensions, the states in the ND+DN sector are treated semi-classically i.e. as
classical backgrounds (with vanishing vev’s) in interaction with quantum matter in the NN
and DD sectors. Moreover, notice that the presence of infinite towers of Kaluza–Klein states
associated with the Scherk–Schwarz circle and running in the Feynman diagrams prevents
all ultraviolet divergences from occurring, in exactly the same way as it happens in the string
computation or in a supersymmetric quantum field theory at finite temperature.

By contrast, when α′ is not strictly zero, the neighborhoods of the special points in which
some ellipses are not exponentially small are no longer of measure zero. For instance, the term
given in Eq. (6.33) is finite for all α′ at the particular values y1 = Im τdc, y2 = 0, i.e. u = 1.
However, integrating it over y1 ∈ [2

3 Im τdc, Im τdc], one obtains a contribution O(α′/t) which
after insertion in the full amplitude and integration over t leads to a contribution O(α′/R2

5)
smaller than the dominant one shown in Eq. (6.51). Another example is given by the
contributions to the amplitudes arising from the massive Kaluza–Klein modes propagating
along T 4/Z2 or T̃ 4/Z2. As seen in Eqs. (6.9) and (6.10), they involve in the former case
factors

e
−[ t(1−u)

α′ +2 ln 4+···]∑I

(
mI+aI

i0
−aI
i

rI

)2

, (6.54)

where the discrete sum is non-zero. However, at the particular values y1 = Im τdc, y2 = 0,
i.e. u = 1, this factor is finite for all α′. Implementing the integrals shown in Eq. (6.50), one
obtains again corrections O(α′2/R4

5) in Eq. (6.51). However, throughout the computation of
the amplitudes, terms similar to the above examples are numerous and we have not dealt
with them in full detail.
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7 Stability analysis at one loop

As seen in Ref. [32], most of the brane configurations implying the one-loop effective potential
to be extremal and tachyon free21 yield a run away behavior of M3/2 with nF − nB < 0.
However, setups that lead to exponentially suppressed or positive values of V1-loop may be
of particular interest. Indeed, for nF − nB = 0, it is conceivable that the suppressed terms
at one loop combine with higher loop corrections to stabilize the dilaton and M3/2 in a
perturbative regime. In that case, the resulting cosmological constant should be small, and
the issue raised in Ref. [64] avoided. Moreover, cases where nF − nB > 0 may shed light
on the existence or non-existence of de Sitter vacua after stabilization of the string coupling
and supersymmetry breaking scale.

To be specific, the existence of 2 brane configurations without tachyons at one loop21 and
satisfying classically a Bose/Fermi degeneracy at the massless level were shown to exist in
Ref. [32]. Moreover, 4 more tachyon free setups with nF−nB > 0 were also found. In all these
instances, reaching these conclusions was possible thanks to the absence of moduli in the
ND+DN sectors, and thanks to anomaly-induced supersymmetric masses for all blowing-up
modes of T 4/Z2. Furthermore, 2 extra brane configurations were presented [32], one with
nF−nB = 0 and the other with nF−nB > 0, which we analyze further in the present section.
Indeed, it was established that they both yield nonnegative squared masses at one loop for
all moduli in the NN, DD and untwisted closed-string sectors, and that they possess moduli
fields in the ND+DN sectors. Given the result of the previous section, we are going to see
that the latter are non-tachyonic.

7.1 NN, DD and closed-string sector moduli masses at one loop

Before describing the two brane configurations of interest, let us review the stability condi-
tions established in Ref. [32] for all moduli fields that are not in the ND+DN sector.

Moduli in the NN and DD open-string sectors: The number of these scalars and
their masses can be determined in two steps. To start with, we can count the number of
positions in T̃ 2×T 4/Z2 of the D3-branes T-dual to the D5-branes that are allowed at genus-0

21Up to exponentially suppressed terms as shown in Eq. (1.1).
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to vary consistently with the orbifold and orientifold symmetries. In T̃ 2, we have explained
in Sect. 2.1 that there are 16 independent locations,22 which are associated with the pairs of
brane/mirror brane under Ω. Moreover, we have seen that when 2 modulo 4 D3-branes sit on
one of the 64 corners of the six-dimensional box in Fig. 1, 2 D3-branes have rigid coordinates
in T 4/Z2, which reduces the maximum number of 8 independent dynamical positions in this
orbifold space. Hence, for the D3-branes T-dual to the D5-branes and similarly for those
T-dual to the D9-branes, the numbers of moduli fields describing the positions in T 4/Z2 and
T̃ 4/Z2 are given by

∑

i,i′

⌊
dii′

2

⌋
and

∑

i,i′

⌊
nii′

2

⌋
. (7.1)

If perturbatively all choices of coefficients dii′ and nii′ are allowed, it turns out that they
must satisfy constraints, whose origin is six-dimensional, in order to guaranty the consistency
of the model at the non-perturbative level [5]. Before stating these conditions, we need to
define few quantities. Let us denote by Di ≡

∑
i′ Dii′ the number of D5-branes (in the

initial picture) sitting at the fixed point i of T 4/Z2. Defining R the number of coefficients
Di, i ∈ {1, . . . , 16}, that are equal to 2 modulo 4, a little thought allows to conclude that
R is even, i.e. R ∈ {0, 2, . . . , 16}. Moreover, there are at most 8 − R/2 independent
dynamical locations in T 4/Z2.23 Hence, denoting R̃ the counterpart of R for the D9-branes,
the following inequalities hold,

∑

i,i′

⌊
dii′

2

⌋
≤
∑

i

⌊∑
i′ dii′

2

⌋
≡ 8− R2 ,

∑

i,i′

⌊
nii′

2

⌋
≤
∑

i

⌊∑
i′ nii′

2

⌋
≡ 8− R̃2 . (7.2)

Notice that (R, R̃) characterizes disconnected components of the moduli space. Indeed,
when the model is decompactified to six dimensions, R is the number of rigid pairs of
D5-branes in T 4/Z2, while R̃ counts the pairs of D5-branes T-dual to the D9-branes that
are rigid in T̃ 4/Z2. There is no gauge-theory phase transition in six dimensions that can
describe a variation of (R, R̃). The components that are fully consistent non-perturbatively
have R and R̃ equal to 0, 8 or 16 [5].24 Moreover, when R (or R̃) is 8, the rigid pairs of
D5-branes (D5-branes T-dual to the D9-branes) must be located on the 8 fixed points of one

22We will see in a second step that some of the 16 + 16 positions in T̃ 2 of the D3-branes T-dual to the D5-
or D9-branes have a tree-level mass proportional to the open-string coupling.

23This number is not reached when the Wilson-line backgrounds on the worldvolumes of the D5-branes
lead to some Di = 0 modulo 4 with some Dii′ = 2 modulo 4. Physically, this corresponds to “eating” moduli
fields when the gauge group is Higgsed in its Coulomb branch.

24In four dimensions, this results in constraints on
∑
i′ dii′ and

∑
i′ nii′ .
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of the hyperplanes XI = 0 or π, I ∈ {6, . . . , 9}, (X̃I = 0 or π). Up to T-duality, there are
therefore six inequivalent consistent classes of brane configurations in six dimensions, which
are characterized by

(R, R̃) ∈
{

(0, 0), (0, 8), (0, 16), (8, 8), (8, 16), (16, 16)
}
. (7.3)

In the language of D3-branes, the mass-squared terms of the positions around the fixed
points ii′ have been derived in [32] by computing the effective potential at one loop and
extracting the quadratic contributions in moduli fields. Up to irrelevant positive numerical
factors, they are equal to M2

3/2 multiplied by coefficients listed below. For the locations in
T̃ 2, they are given by

dii′ − dîı′ − 1 + 1
4

16∑

j=1
(nji′ − njı̂′) for the D3’s T-dual to the D5’s, when dii′ ≥ 1 ,

nii′ − nîı′ − 1 + 1
4

16∑

j=1
(dji′ − djı̂′) for the D3’s T-dual to the D9’s, when nii′ ≥ 1 ,

(7.4)

while for the positions in T 4/Z2 and T̃ 4/Z2, they are

dii′ − dîı′ − 1 for the D3’s T-dual to the D5’s, when dii′ ≥ 2 ,

nii′ − nîı′ − 1 for the D3’s T-dual to the D9’s, when nii′ ≥ 2 .
(7.5)

In order to avoid tachyons, all mass-term coefficients of the locations in T 4/Z2 and T̃ 4/Z2

should be nonnegative. However, for the positions in T̃ 2, this is not necessarily the case. As
announced before, this follows from the fact that the true number of positions free to move
classically in T̃ 2 is less than 16 + 16 for the D3-branes T-dual to D5-branes or D9-branes. In
fact, the product of unitary open-string gauge-group factors present in six dimensions (when
all D5-branes and D5-branes T-dual to D9-branes sit on fixed points) contains anomalous
U(1)’s. To cancel the anomalies, a generalized Green–Schwarz mechanism takes place, which
implies the existence of large tree-level masses proportional to the open-string coupling for
the associated vector bosons [5, 32]. The net result is that if there are 16 or fewer unitary
factors in six dimensions, they are all broken to SU groups, while if there are more than 16
unitary factors, exactly 16 of them are broken to SU groups. Compatifying down to four
dimensions, no Wilson-line backgrounds on T 2 can be switched on for the massive vector
bosons. Hence, at least 2 and at most 16 linear combinations of the 16 + 16 D3-brane
positions in T̃ 2 are identically vanishing. Imposing these relations in the mass terms derived
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from the effective potential, one obtains the true mass matrix for the remaining degrees of
freedom associated with the Wilson lines along T 2. For the configuration to be potentially
tachyon free at one loop, it is only this matrix that should have non-negative eigenvalues.

Moduli in the twisted closed-string sector: The anomalous U(1)’s in six dimensions
become massive by “eating” Stueckelberg fields, which turn out to be blowing-up modes of
T 4/Z2. Hence, there are classically between 0 and 14 surviving moduli fields in the twisted
closed-string sector. When such modes exist, one may derive their squared masses at one
loop by computing two-point functions of massless twisted scalars, which can be done using
the results of Ref. [2] and/or our Sects. 4 and 6.

Moduli in the untwisted closed-string sector: The expression of the one-loop effec-
tive potential in the orientifold model with background (2.1) was computed in Ref. [32], for
vanishing vev’s of the RR two-form moduli. As can be seen in Eq. (1.1), when all D3-branes
sit on O3-planes (in the T-dual languages), all dependency on the metric components GI′J ′

and GIJ disappears up to exponentially small contributions, except for G55 ≡ 4M2
3/2/M

2
s .

Hence, up to neglected corrections, these moduli remain flat directions at one loop, along
with the dilaton at this order in string coupling. Moreover, in configurations showing a
Bose-Fermi degeneracy at the massless level, the tadpole of M3/2 vanishes and the latter is
an extra flat direction. In supergravity language, the spontaneous supersymmetry breaking
scale is known as the “no-scale modulus,” which parametrizes a flat direction of the clas-
sical potential in Minkowski space [65]. Hence, in the particular string setups satisfying
nF − nB = 0, the no-scale structures valid in the classical backgrounds are preserved at one
loop, up to exponentially suppressed terms. For this reason, they are designated as “super
no-scale models” [36,37,39].

As explained in Ref. [32], the heterotic/type I duality can be used to show that the
dependency of the one-loop effective potential on the RR two-form components CI′J ′ and
CIJ appears only in the exponentially suppressed terms (even when the D3-branes are located
in the bulk of the internal space). Hence, the expression (1.1) of critical points of V1-loop

remains valid when CI′J ′ and CIJ are switched on. In other words, these moduli parametrize
flat directions (up to the suppressed terms).

57



7.2 Configurations with non-tachyonic ND+DN-sector moduli

A complete computer scan of the 32+32 D3-brane distributions on O3-planes allowed in the
non-perturbatively consistent components of the moduli space was performed in Ref. [32].
Six tachyon-free configurations with nF−nB ≥ 0 were found, while two more deserved further
investigation due to the existence of moduli fields in their ND+DN sectors. Let us analyze
them.

Exponentially suppressed one-loop potential: The first of these D3-brane distribu-
tions satisfies Bose/Fermi degeneracy at the massless level and genus-0, nF− nB = 0. It lies
in the moduli-space component (R, R̃) = (0, 8) and is shown in Fig. 5a.25

The D3-branes T-dual to the D5-branes are distributed in T 4/Z2 as 4 stacks of 8. The
D3-branes T-dual to the D9-branes are distributed as 8 pairs (with rigid positions in T̃ 4/Z2),
one stack of 4 divided into 2 + 2 in T̃ 2, and one stack of 12 divided into 10 + 2 in T̃ 2. All
precise locations in T̃ 2 can be read from Fig. 5a.

The open-string gauge group including anomalous U(1)’s is
[
U(4)4

]
DD
×
[
U(1)8 × U(1)2 ×

(
U(1)× U(5)

)]
NN

. (7.6)

It descends from the gauge symmetry [U(4)4]DD × [U(1)8 × U(2) × U(6)]NN present in
six dimensions, which contains 14 unitary factors. As a result, there are 14 anomalous
U(1)’s becoming massive by “eating” 14 twisted moduli in the closed-string sector. More-
over, the mass acquired at one loop by the last 2 blowing-up modes of T 4/Z2 should be
computed in order to conclude whether the internal space is stabilized at the orbifold
point or not. The anomaly-free gauge symmetry in six dimensions may be written as
[SU(4)4]DD × [U(2)/U(1)diag × U(6)/U(1)diag ]NN, where U(2) and U(6) are spontaneously
broken to U(1) × U(1) ≡ U(1)diag × U(1)⊥ and U(1) × U(5) ≡ U(1)diag × U(1)⊥ × SU(5)
when the Wilson-line background on T 2 is switched on. The anomaly-free gauge group in
four dimensions is thus

[
SU(4)4

]
DD
×
[
U(1)⊥ ×

(
U(1)⊥ × SU(5)

)]
NN

. (7.7)

25It corresponds to Fig. 5c of Ref. [32].
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8+2

8

8

10

X̃4

X̃5

T 4, T̃ 4

Direction of Scherk-Schwarz

(a) Configuration in the component (R, R̃) = (0, 8)
of the moduli space, with nF − nB = 0. The masses
at one loop of two blowing-up moduli in the twisted
closed-string sector of T 4/Z2 deserve further study.

10

10

10

10

X̃4

X̃5

T 4, T̃ 4

Direction of Scherk-Schwarz

(b) Configuration in the component (R, R̃) =
(8, 8) of the moduli space, with nF − nB = 32. All
twisted-sector moduli are massive.

Figure 5: D3-brane configurations without tachyons at one loop in the NN, DD and ND+DN open-string
sectors, as well as in the untwisted closed string sector.

As follows from the mass-term coefficients (7.5), all D3-brane postions along T 4/Z2 and
T̃ 4/Z2 turn out to be rigid or massive. By taking into account the Green–Schwarz mechanism
which stabilizes automatically 14 linear combinations of continuous locations along T̃ 2, the
mass-matrix of the 18 remaining positions can be found and leads to the conclusion that
they are all massless except one which is massive. As explained in the previous subsection,
all untwisted closed-string moduli are flat directions, including M3/2 thanks to the vanishing
of nF − nB. The moduli in the ND+DN sectors are realized as strings “stretched” between
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the stack of 2 D3-branes T-dual to D9-branes located on the left side of Fig. 5a and any of
the four stacks of 8 D3-branes T-dual to D5-branes. Indeed, they share the same coordinates
in T̃ 2. In all four cases, we have in the notations of Eqs. (6.51) and (6.52,

Ni0i′0 = 2 , Ni0 ı̂′0 = 0 , Dj0i′0 = 8 , Dj0 ı̂′0 = 0 ,

=⇒ ni0i′0 − ni0 ı̂′0 − 1 + dj0i′0 − dj0 ı̂′0 − 1 = 3 > 0 ,
(7.8)

which shows that all moduli fields in the ND+DN sector are massive.

For completeness, let us review the counting of nB and nF. In the NN and DD sectors,
the bosonic degrees of freedom include those of an N = 2 vector multiplet in the adjoint
representation of the group (7.6), along with those of hypermultiplets in antisymmetric ⊕
antisymmetric representations of all non-Abelian factors. In the ND+DN sector, we have the
bosonic degrees of freedom of 4 hypermultiplets, all transforming under a “bifundamental”
representation of a U(1)NN × U(4)DD group. Adding the 96 degrees of freedom arising from
the closed-string sector, we obtain a total of nB = 832. On the contrary, nF contains only
contributions from the ND+DN sector. The latter correspond to the fermionic degrees of
freedom of hypermultiplets in the bifundamental representations of each pair of unitary group
factors supported by stacks of D3-branes T-dual to D5-branes and stacks of D3- branes T-
dual to D9-branes, provided they have distinct coordinates along X̃5 but not X̃4. Their total
number is given by nF = 4× 16× 13 = 832, which equals nB as claimed before.

Positive one-loop potential: The second configuration we are interested in lies in the
component (R, R̃) = (8, 8) of the moduli space. It yields a positive potential satisfying
nF − nB = 32 and is depicted in Fig. 5b.26 The D3-branes T-dual to the D5-branes are
distributed in T 4/Z2 as 6 pairs and 2 stacks of 10. Similarly, the D3-branes T-dual to the
D9-branes are located in T̃ 4/Z2 as 6 pairs and 2 stacks of 10. Because the precise positions
in T̃ 2 shown in Fig. 5b do not involve the direction X̃4, the configuration could be considered
in five dimensions.

Including the anomalous U(1)’s, the open-string gauge group is
[
U(1)6 × U(5)2

]
DD
×
[
U(1)6 × U(5)2

]
NN

, (7.9)

26It corresponds to the configuration shown in Fig. 6(e) of Ref. [32], after a T-duality on T 4/Z2 i.e. an
interchange D5 ↔ D9.
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both in four and six dimensions. It contains 16 unitary factors, which implies that all
twisted sector moduli are massive, i.e. that T 4/Z2 cannot be desingularized. Moreover, the
anomaly-free gauge symmetry is reduced to

[
SU(5)2

]
DD
×
[
SU(5)2

]
NN

. (7.10)

All D3-brane positions in T 4/Z2 or T̃ 4/Z2 turn out to be rigid of massive at one loop,
while the Green-Schwarz mechanism leaves 8 massive and 8 massless moduli associated
with the locations in T̃ 2. Moreover, all untwisted closed-string moduli are flat directions
except the supersymmetry breaking scale M3/2 which undergoes a runaway along a positive
potential. There are moduli in the ND+DN sector arising from strings “stretched” between
any stack of D3-branes T-dual to D5-branes and the pair of D3-branes T-dual to D9-branes
located on the same edged of the box. They include 2 copies of scalars in “bifundamental”
representations of U(1)NN×U(5)DD groups, and 6 copies in “bifundamental” representations
of U(1)NN × U(1)DD groups. In the former case the moduli are stabilized since we have

Ni0i′0 = 2 , Ni0 ı̂′0 = 0 , Dj0i′0 = 10 , Dj0 ı̂′0 = 0 ,

=⇒ ni0i′0 − ni0 ı̂′0 − 1 + dj0i′0 − dj0 ı̂′0 − 1 = 4 > 0 ,
(7.11)

while in the latter case they remain massless since

Ni0i′0 = 2 , Ni0 ı̂′0 = 0 , Dj0i′0 = 2 , Dj0 ı̂′0 = 0 ,

=⇒ ni0i′0 − ni0 ı̂′0 − 1 + dj0i′0 − dj0 ı̂′0 − 1 = 0 .
(7.12)

Finally, the counting of the classically massless degrees of freedom can be done as in the
brane configuration of Fig. 5a and leads to nF − nB = 32.

8 Conclusions

In this work, we have calculated the quadratic mass terms of the moduli fields arising in the
ND+DN sector of the type IIB orientifold model compactified on T 2 × T 4/Z2, when N = 2
supersymmetry is spontaneously broken via the Scherk–Schwarz mechanism implemented
along one direction of T 2. Assuming the string coupling is weak, this is done at one loop
by computing the two-point functions of “boundary-changing vertex operators” inserted on
the boundaries of the annulus and Möbius strip. The main difficulties of the derivation to
which we have paid particular attention are the following:
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• Using the stress-tensor method, the correlators of ground-state boundary-changing
fields and spin fields are found up to “integration constants,” which are functions of
the Teichmüller parameters of the double-cover tori. This leads to an ambiguity in the
full amplitude of interest, which is lifted by taking the limit where the insertion points
of the vertices coalesce. Indeed, the expression reduces in this case to contributions
of the partition function that arise from states with specific Chan–Paton indices only.
This very fact makes this step of the computation more involved than its counterpart
for closed-string amplitudes of twisted-sector states for which this identification is made
with the entire partition function.

• The two-point function can be split into two parts referred to as “external” and “inter-
nal.” The former, which is dressed by a kinematic factor, can be used to derive the one-
loop correction to the Kähler metric and involves only correlation functions of “ground-
state boundary-changing fields.” By contrast, the internal part which captures the mass
correction also requires correlators of “excited boundary-changing fields”. These extra
ingredients contain two contributions:27 One arises from periodicity properties of the
orbifold-background coordinates, and the other from pure local monodromy effects.
Although the latter have often been neglected in favor of the former in the literature,
both turn out to be of equal order of magnitude, as we have shown explicitly.

The squared masses of all moduli fields have been derived at one loop and up to contri-
butions that are suppressed28 when M3/2 is lower than the other scales of the background.
When the results are strictly positive, the corresponding scalars can be stabilized dynami-
cally during the cosmological evolution of the universe [38, 66–71] in the regions in moduli
space compatible with weak coupling and the assumption on M3/2. However the potentially
dominant contributions to the mass terms of moduli in the NN, DD or ND+DN open-string
sectors can accidentally vanish for certain brane configurations. In such cases, the issue of
quartic interactions potentially inducing instabilities of the backgrounds arises. The fact
that the untwisted closed-string moduli (G + C)I′J ′ and (G + C)IJ are flat directions (up
to exponentially suppressed corrections) seems to be a more severe difficulty. However, het-
erotic/type I duality can be used to show that non-perturbative contributions of D1-branes,

27Denoted as (1) and (2) in the correlators 〈τuτ ′u〉qu = 〈τ ′uτu〉qu.
28They can be exponentially or power-like suppressed.
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which are captured by a one-loop computation of the effective potential on the heterotic
side, can stabilize some of these moduli [38, 72–74].29 However, for large Scherk–Schwarz
direction i.e. smallM3/2 ≡Ms

√
G55/2 compared toMs, this mechanism is ineffective for the

components (G + C)5J and (G + C)5J ′ (which include the degree of freedom of M3/2 itself)
for which extra physics should be invoked to yield their stabilization.
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Appendix A: Conventions of matrix actions on Chan–
Paton indices

In Ref. [5], the actions of the group elements G ∈ {1, g,Ω,Ωg} on the Dirichlet or Neumann
Chan–Paton indices α ∈ {1, . . . , 32} are always represented by 32× 32 matrices. If needed,
they define traces with an index I (that would be denoted i in our notations) labelling a
fixed point of T 4/Z2 to indicate when they restrict to the matrix entries associated with
the fixed point I (see their Eq. (2.22)). In our conventions, we work directly with smaller
matrices, one for each fixed point ii′ of T̃ 2 × T 4/Z2 or T̃ 2 × T̃ 4/Z2, which are submatrices
of those used in Ref. [5]. In this appendix, we would like to give a detailed correspondance
between their notations and ours for the traces appearing in the open-string contributions
to the partition function.

Let us focus on the matrices acting on the Neumann Chan–Paton factors. In order to
avoid any ambiguity, we first define the sets of indices Hii′ associated with the fixed points
ii′ that are used to generate the submatrices from the big ones. To this end, we label the
fixed points in lexicographical order, (11, 12, 13, 14, 21, . . . ), and introduce a function p(i, i′)

29See also Ref. [75] for a stabilization of the Kähler and complex structure moduli of Calabi–Yau manifolds
in type IIB (type IIA) thanks to D3-branes (D4- and D6-branes) contributions to the free energy, whenN = 2
supersymmetry is effectively broken by thermal effects.
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that gives the predecessor in this list,

p(i, i′) =
{
i, i′ − 1 if i′ ∈ {2, 3, 4}
i− 1, 4 if i′ = 1

. (A.1)

The sets are then

H11 =
{
∅ if N11 = 0{

1, . . . , N11
2

}
∪
{

17, . . . , 16 + N11
2

}
if N11 6= 0 , (A.2)

and for ii′ 6= 11,

Hii′ =



∅ if Nii′ = 0{
Np(i,i′)

2 + 1, . . . , Np(i,i′)2 + Nii′
2

}
∪
{
Np(i,i′)

2 + 17, . . . , 16 + Np(i,i′)
2 + Nii′

2

}
if Nii′ 6= 0 .

(A.3)
Our Nii′ ×Nii′ matrices γii′N,G are formed from 32× 32 matrices γN,G as follows,

γii
′

N,G = γN,G|Hii′ , (A.4)

where the notation in the right-hand side means that we form submatrices by keeping the
rows and columns α ∈ Hii′ . The traces of 32× 32 matrices can then be expressed as

tr(γN,G) =
32∑

α=1
(γN,G)αα =

∑

i,i′

∑

α∈Hii′
(γN,G)αα =

∑

i,i′
tr(γN,G|Hii′ )

=
∑

i,i′
tr(γii′N,G) ,

(A.5)

and similarly for the matrices associated with the Dirichlet sector.

Moreover, in order to justify the replacement (2.15), let us define in our notations the
32× 32 matrix Wj that is denoted WI and appears in Eq. (2.22) of Ref. [5],

Wj =
9∏

I=6
W2aIj

I , where WI = I2 ⊗




e2iπaI1IN1
2 0

. . .
0 e2iπaI16IN16

2



, Ni ≡

∑

i′
Nii′ . (A.6)

For G = g we have to compute

tr(WjγN,g) =
32∑

α=1
(WjγN,g)αα =

32∑

α=1

32∑

β=1
(Wj)αβ(γN,g)βα =

32∑

α=1
(Wj)αα(γN,g)αα

=
∑

i,i′

∑

α∈Hii′
(Wj)αα(γN,g)αα =

∑

i,i′
e4iπ~ai·~aj

∑

α∈Hii′
(γN,g)αα

=
∑

i,i′
e4iπ~ai·~ajtr(γii′N,g) .

(A.7)

In this derivation, we have used the fact that the matrix Wj is diagonal and that its com-
ponents αα for α ∈ Hii′ are e4iπ~ai·~aj .
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Appendix B: Closed-string sector partition function

In this appendix, we display the closed-string contributions to the one-loop partition function
defined in Eq. (2.8).

In order to write ZT , we introduce the lattices of zero modes of the bosonic coordinates
associated with T 4 and T 2,

Λ(4,4)
~m,~n (τ) = q

1
4P

L
I G

IJPL
J q̄

1
4P

R
I G

IJPR
J , P L

I = mI +GIJnJ , PR
I = mI −GIJnJ ,

Λ(2,2)
~m′,~n′(τ) = q

1
4P

L
I′G

I′J′PL
J′ q̄

1
4P

R
I′G

I′J′PR
J′ , P L

I′ = mI′ +GI′J ′nJ ′ , PR
I′ = mI′ −GI′J ′nJ ′ ,

(B.1)

where ~m, ~n and ~m′, ~n′ are four-vectors and two-vectors whose components are integer mo-
menta and winding numbers.

Moreover, the worldsheet fermions generate an SO(8) affine symmetry broken to SO(4)×
SO(4) by the Z2-orbifold action. As a result, their contributions to the partition function
take the forms of ordered pairs of characters of SO(4). The latter can be expressed in terms
of Jacobi modular forms and the Dedekind function,

ϑ
[
α
β

]
(z|τ) =

∑

k∈Z
q

1
2 (k+α)2

e2iπ(z+β)(k+α) , η(τ) = q
1
24

+∞∏

n=1
(1− qn) , q = e2iπτ . (B.2)

Denoting as usual

ϑ
[

0
0

]
(z|τ) ≡ ϑ3(z|τ) , ϑ

[
0
1
2

]
(z|τ) ≡ ϑ4(z|τ) , ϑ

[ 1
2
0

]
(z|τ) ≡ ϑ2(z|τ) , ϑ

[ 1
2
1
2

]
(z|τ) ≡ ϑ1(z|τ) ,

(B.3)
the characters are given by [55–57]

O4 = ϑ2
3 + ϑ2

4
2η2 , V4 = ϑ2

3 − ϑ2
4

2η2 , S4 = ϑ2
2 + i−2ϑ2

1
2η2 , C4 = ϑ2

2 − i−2ϑ2
1

2η2 , (B.4)

where it is understood that ϑn ≡ ϑn(0|τ).

Given these notations, the torus contribution to the partition function takes the following
form,

ZT = 1
4

1
τ 2

2

{[ (
|V4O4 +O4V4|2 + |S4S4 + C4C4|2

)∑

~m,~n

Λ(4,4)
~m,~n

|η4|2

+
(
|V4O4 −O4V4|2 + |S4S4 − C4C4|2

) ∣∣∣∣
2η
ϑ2

∣∣∣∣
4

+ 16
(
|O4C4 + V4S4|2 + |S4O4 + C4V4|2

) ∣∣∣∣
η

ϑ4

∣∣∣∣
4
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+ 16
(
|O4C4 − V4S4|2 + |S4O4 − C4V4|2

) ∣∣∣∣
η

ϑ3

∣∣∣∣
4
] ∑

~m′,~n′

Λ(2,2)
~m′,(n4,2n5)

|η4|2

−
[ (

(V4O4 +O4V4)(S̄4S̄4 + C̄4C̄4) + (S4S4 + C4C4)(V̄4Ō4 + Ō4V̄4)
)∑

~m,~n

Λ(4,4)
~m,~n

|η4|2

+
(
(V4O4 −O4V4)(S̄4S̄4 − C̄4C̄4) + (S4S4 − C4C4)(V̄4Ō4 − Ō4V̄4)

) ∣∣∣∣
2η
ϑ2

∣∣∣∣
4

+ 16
(
(O4C4 + V4S4)(S̄4Ō4 + C̄4V̄4) + (S4O4 + C4V4)(Ō4C̄4 + V̄4S̄4)

) ∣∣∣∣
η

ϑ4

∣∣∣∣
4

(B.5)

+ 16
(
(O4C4 − V4S4)(S̄4Ō4 − C̄4V̄4) + (S4O4 − C4V4)(Ō4C̄4 − V̄4S̄4)

) ∣∣∣∣
η

ϑ3

∣∣∣∣
4
] ∑

~m′,~n′

Λ(2,2)
~m′+~a′S,(n4,2n5)

|η4|2

+
[ (
|O4O4 + V4V4|2 + |C4S4 + S4C4|2

)∑

~m,~n

Λ(4,4)
~m,~n

|η4|2
+
(
|O4O4 − V4V4|2 + |S4C4 − C4S4|2

) ∣∣∣∣
2η
ϑ2

∣∣∣∣
4

+ 16
(
|O4S4 + V4C4|2 + |S4V4 + C4O4|2

) ∣∣∣∣
η

ϑ4

∣∣∣∣
4

+ 16
(
|O4S4 − V4C4|2 + |S4V4 − C4O4|2

) ∣∣∣∣
η

ϑ3

∣∣∣∣
4
] ∑

~m′,~n′

Λ(2,2)
~m′,(n4,2n5+1)

|η4|2

−
[ (

(O4O4 + V4V4)(C̄4S̄4 + S̄4C̄4) + (C4S4 + S4C4)(Ō4Ō4 + V̄4V̄4)
)∑

~m,~n

Λ(4,4)
~m,~n

|η4|2

+
(
(O4O4 − V4V4)(S̄4C̄4 − C̄4S̄4) + (S4C4 − C4S4)(Ō4Ō4 − V̄4V̄4)

) ∣∣∣∣
2η
ϑ2

∣∣∣∣
4

+ 16
(
(O4S4 + V4C4)(S̄4V̄4 + C̄4Ō4) + (S4V4 + C4O4)(Ō4S̄4 + V̄4C̄4)

) ∣∣∣∣
η

ϑ4

∣∣∣∣
4

+ 16
(
(O4S4 − V4C4)(S̄4V̄4 − C̄4Ō4) + (S4V4 − C4O4)(Ō4S̄4 − V̄4C̄4)

) ∣∣∣∣
η

ϑ3

∣∣∣∣
4
] ∑

~m′,~n′

Λ(2,2)
~m′+~a′S,(n4,2n5+1)

|η4|2
}
,

where the momenta ~m′ of all fermionic degrees of freedom are shifted as shown in Eq. (2.5).

The expression of the Klein-bottle contribution to the partition function involves only
left-right symmetric states which are therefore bosonic. As a result it is identical to that
found in the supersymmetric model of Sect. 2.1,

ZK =1
4

1
τ 2

2

{
(V4O4 +O4V4)

(∑

~m

P
(4)
~m

η4 +
∑

~n

W
(4)
~n

η4

)
+ 32 (O4C4 + V4S4)

(
η

ϑ4

)2

− (S4S4 + C4C4)
(∑

~m

P
(4)
~m

η4 +
∑

~n

W
(4)
~n

η4

)
− 32 (S4O4 + C4V4)

(
η

ϑ4

)2
}∑

~m′

P
(2)
~m′

η4 ,

(B.6)

where all lattices are identical to those defined in the open-string sector, Eqs. (2.10) and (2.11),
and the characters and modular forms are evaluated at 2iτ2.
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Appendix C: Leading behavior of ε when α′ → 0

In this appendix, we reconsider the small α′ limit of the roots U1 of Ω(U) for arbitrary
|Im Y1| < 1

2 Im τdc, which are given in Eq. (6.21). Our goal is to find the leading behavior
of ε.

Using the full expansion of ϑ1(z) given in Eq. (6.2), one obtains
ϑ′1
ϑ1

(z) = π cot(πz) + 2iπ
∑

n≥1

[
H(qndc e

−2iπz)−H(qndc e
2iπz)

]
, H(z) ≡ z

1− z , (C.1)

which can be used to rewrite the equation Ω(U1) = 0 as follows,

i sin(πY1) = 2 sin(πU1) sin[π(Y1 − U1)]
∑

n≥1

[
H
(
qndc e

−2iπU1
)
−H

(
qndc e

2iπU1
)

(C.2)

+H
(
qndc e

−2iπ(Y1−U1)
)
−H

(
qndc e

2iπ(Y1−U1)
)]
.

Applying the change of variable given in Eq. (6.21), the above expression becomes

i sin(πY1) = 1
2
(
1− (−1)m i eiπ(τdc+Y1) e2iπε

)(
1− (−1)m i eiπ(τdc−Y1) e2iπε

)
e−2iπε

×


−

e−iπY1 e−2iπε

1 + (−1)m i eiπ(τdc−Y1) e−2iπε (C.3)

+ 2i
∑

n≥1

qndc e
−iπY1

(
sin(2πε) + (−1)m qndc e

iπ(τdc−Y1)
)

(
1 + (−1)m i qndc e

iπ(τdc−Y1) e−2iπε
)(

1− (−1)m i qndc e
iπ(τdc−Y1) e2iπε

)

− (Y1 → −Y1)


 ,

where the first term in the braces and its transformed under Y1 → −Y1 arise from the
contributions n = 1 of the first and fourth functions H in Eq. (C.2).

• If 0 < Im Y1 <
1
2 Im τdc, and assuming ε→ 0 when α′ → 0, Eq. (C.3) reads

(e2iπY1 − 1) e−iπY1 =
(
1− 2iπε− (−1)m i eiπ(τdc−Y1) + sub dom.

)

{
− e−iπY1

(
1− 2iπε− (−1)m i eiπ(τdc−Y1) + sub dom.

)

+ eiπY1
(
1− 2iπε− (−1)m i eiπ(τdc+Y1) + sub dom.

)}
,

(C.4)

where all contributions n ≥ 1 have been absorbed in “subdominant” contributions.
Simplifying this expression, one obtains

0 = 4iπε+ 2(−1)m i eiπ(τdc−Y1) + subdom. , (C.5)
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which leads to the asymptotics

ε ∼
α′→0

−(−1)m
2π eiπ(τdc−Y1) −→

α′→0
0 . (C.6)

Our assumption on the convergence of ε being consistent, we have shown the existence
of solutions U1 with the above behavior.

• If −1
2 Im τdc < Im Y1 < 0, Eq. (C.3) being invariant under Y1 → −Y1, one obtains

immediately from the previous analysis that

ε ∼
α′→0

−(−1)m
2π eiπ(τdc+Y1) −→

α′→0
0 . (C.7)
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1 Introduction

Supersymmetry breaking in string theory is notoriously difficult to achieve in a controllable
manner. There are several challenging and well-known problems to overcome at the string
level and at the effective field theory one.

A generic issue, both at string perturbative and effective supergravity levels, is that
supersymmetry breaking generates potentials for some moduli fields that are of runaway
type, which typically drive the dynamics towards zero or strong string coupling, and also
lead to decompactification or compactification of the internal space [1]. The state of the
art is to generate a local minimum somewhere far from the runaway regime, that is com-
putationally reliable and such that the corresponding lifetime is beyond the age of the
universe. Such a minimum is very hard to obtain in string perturbation theory, and easier
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in practice to obtain at the effective field-theory level, adding extra ingredients like fluxes
or nonperturbative effects.

At the string perturbative level, supersymmetry breaking generates a vacuum energy
(more precisely, a scalar potential) at some order in perturbation theory. In the first models
of supersymmetry breaking, so-called Scherk-Schwarz or breaking by compactification [2–7],
this arises at one loop.1 The generated scalar potential is typically of runaway type2 and the
classical vacuum used in perturbation theory is therefore not valid anymore. It is however
possible, in a more refined construction, to stabilize the corresponding modulus, yielding a
negative scalar potential [9]. In a subclass of models, which satisfy a classical Bose/Fermi
degeneracy at the massless level, this one-loop potential turns out to be exponentially
suppressed at low supersymmetry breaking scale [18–30], but not vanishing [31].

Later on, tachyon-free orientifold string models where supersymmetry is broken at the
string scale in the open-string (gauge) sector, whereas the closed-string (gravity) sector
is supersymmetric at lowest perturbative order were constructed [32–37]. Since in such
frameworks a massless gravitino is present, supersymmetry has to be nonlinearly realized
in the open sector and this was indeed shown explicitly in [38, 39]. Such models contain
non-BPS tachyon-free configurations. An important application of such setups is the KKLT
scenario of moduli stabilization [40], see e.g. [41–47]. There was also a recent simplification
in constructing supergravity models with nonlinear supersymmetry [48–52], stimulated in
part by “Brane Supersymmetry Breaking” (BSB) type models. In such settings, there is a
runaway scalar potential generated at the disk level. Ignoring the true vacuum state and
working naively at fixed values of moduli fields leads to so-called NS-NS tadpoles for the
corresponding moduli, which ruin perturbation theory since they generate unphysical UV
divergences. It is widely believed that this does not signal any inconsistency of the theory,
but just the fact that naive perturbation theory is performed around a point in field space
that is not an extremum. Indeed, all models of this type constructed in the literature
satisfy all known consistency conditions. Mechanisms of shifting the vacuum, in analogy
with field-theory examples, were proposed in the literature [53–56]. However their practical
implementation is limited to toy examples or to special models with small tadpoles. Hence,
whereas the BSB models are tachyon-free, the presence of NS-NS tadpoles raises the ques-
tion of the validity of perturbation theory and the fate of such constructions [57–60]. Let
us also mention that the coexistence of massless gravitinos and broken supersymmetry in
the open sector in BSB models is shared by compactifications with internal magnetic fields
that break supersymmetry [61–64].

In another class of non-supersymmetric models based on type II asymmetric orbifolds
or their orientifold descendants [65–71], a classical Bose/Fermi degeneracy valid at any mass
level implies that the potential arises only at two loops [72, 73]. In such frameworks, there
are no tadpoles at one loop and no need to shift scalar expectation values for describing
vacua at this order of perturbation theory. However, stability at one loop of the moduli
fields has not been analyzed.

1Scherk-Schwarz compactifications also have often additional, tachyonic-like instabilities in some range
of parameters. Tachyon-free examples however exist, see e.g. [8–10].

2The cosmological evolution of the moduli fields can be studied in a thermal [11–15] or cold [16, 17]
universe.
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The goal of the present paper is the construction of BSB string vacua without NS-
NS disk tadpoles. Recently, it was conjectured that massless gravitinos in string theory
with broken supersymmetry implies a breakdown of the effective field theory [74, 75]. It is
clearly of interest to check this conjecture in explicit string models, by trying to avoid NS-
NS tadpoles. In this paper we identify constructions in which the supersymmetry breaking
scale in the gauge (open) sector is much higher than in the closed-string sector. This
was actually achieved previously in [76]. However, our construction avoids the open-string
tachyonic instabilities typically present in such constructions. A runaway behaviour for
internal radii is however still present. We show that the limit of vanishing gravitino mass is
inconsistent. The existence of such constructions was already anticipated in the pioneering
paper [77] in an algebraic construction using the tools of the Tor-Vergata school [78–86]. We
provide here the correct geometric interpretation of the eight-dimensional class of models
proposed in [77], which turns out to contain several types of perturbative orientifold and
anti-orientifold planes. We also point out that the simultaneous presence of orientifold and
antiorientifold planes suggests that the closed-string sector is not exactly supersymmetric
at tree-level, but has softly broken supersymmetry. The basic mechanism goes as follows.

One starts with a supersymmetric orientifold model containing both O− (negative
tension, negative RR charge) and O+-planes (positive tension, positive RR charge). A
consistent supersymmetry-breaking deformation of the model turns one O−-O+ pair into
an O−-O+ pair, which is mutually BPS but preserves the other half of the supersymmetries
compared to the O±-planes and D-branes. Since both the initial O−-O+ pair and its SUSY
breaking avatar O−-O+ have zero total tension and charge, there will be no RR or NS-NS
tadpoles generated in the non-supersymmetric case. Depending on where the background
D-branes sit in the internal space, their massless spectrum can be supersymmetric (if they
sit on top of O− or O+-planes or in the bulk) or non-supersymmetric (if they sit on top
of O− or O+-planes, in which case supersymmetry is nonlinearly realized in their world-
volume). Such models also have a supersymmetric limit, when a certain radius is taken
to zero.3 For small values of this radius, the breaking can be interpreted as spontaneous,
whereas for large values, supersymmetry breaking can be considered as nonlinearly realized
if branes sit on top of anti-orientifold planes. Interestingly, naive energetic considerations
on brane-orientifold plane interactions suggest that the branes move towards stable con-
figurations with maximal (string scale) breaking of supersymmetry. Whereas at first sight
the closed-string spectrum could be supersymmetric, we show that a detailed look at the
orientifold projections leading to the geometry of O-planes and, independently, considera-
tions from low-energy effective field theory suggest that the correct option is a specific soft
supersymmetry breaking deformation in the closed-string sector. A more detailed analysis
of the effective field theory of this class of models deserves however a dedicated study.

The structure of the paper is the following: in section 2, we review the 8d USp(16)
supersymmetric orientifold theory and introduce the novel Brane Supersymmetry Breaking
(BSB) mechanism. In particular, we discuss the consistency between the soft breaking of

3A similar option is available in IIB flux compactifications [87]. We thank J. Mourad and A. Sagnotti
for sharing their results with us.
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supersymmetry in the closed-string spectrum and the supersymmetry breaking deformation
in the open-string sector. The generalization of the construction to dimensions lower than
8 turns out to be rich but straightforward. We give various examples in section 3. Section 4
discusses consistency conditions coming from probe branes as well as nonperturbative con-
straints to be satisfied by these models. In section 5, we study the supersymmetry breaking
mass scales in the closed- and open-string sectors for different positions of stacks of D7-
branes in 8d. We also comment on the limit of vanishing gravitino mass and the connexion
with the gravitino mass conjecture put forward recently in [74, 75], in the context of the
swampland program [88–90]. Conclusions and outlooks can be found in section 6, whereas
an appendix contains examples of consistent and inconsistent geometric configurations.

2 The 8d USp(16) superstring and its SUSY breaking avatar

In this section, we review the construction of the supersymmetric USp(16) orientifold model
in 8 dimensions and then present its non-supersymmetric version.

2.1 The type IIB torus amplitudes

Let us start by describing alternative viewpoints for deriving the supersymmetric and non-
supersymmetric torus amplitudes to be combined later on with orientifold amplitudes.

The original orientifold models described in [91, 92] make use of a non-trivial quantized
background for the internal components of the antisymmetric tensor field, Bij . This field is
odd under worldsheet parity and therefore it is projected out by the orientifold projection
Ω in type I superstring. However, this still leaves the possibility to add a quantized value
2
α′Bij ∈ Z, where α′ is the string tension. In this case, the left and right momenta of
closed-string states are given, for a torus factorized into two circles, by

p8
L,R = m8 + n9/2

R8
± n8R8

α′
, p9

L,R = m9 − n8/2
R9

± n9R9
α′

. (2.1)

The type IIB torus amplitude is given by

T =
∫ d2τ

τ5
2

[
Λm9,2n9Λm8,2n8 + Λm9+1/2,2n9Λm8,2n8+1

+Λm9,2n9+1Λm8+1/2,2n8 + Λm9+1/2,2n9+1Λm8+1/2,2n8+1
] ∣∣∣∣
V8 − S8
η8

∣∣∣∣
2
, (2.2)

where V8, S8 (along with O8, C8) are the SO(8) affine characters and η is the Dedeking
function. They all depend on the Teichmüller parameter τ of the genus-1 surface, whose
imaginary part is denoted τ2. Moreover, the lattices are expressed in terms of

Λmi,ni = q
α′
4

(
mi
Ri

+ni
Ri
α′
)2
q̄
α′
4

(
mi
Ri
−ni Riα′

)2
, q = e2iπτ , (2.3)

where mi, ni are the momentum and winding numbers along direction Xi.4 Note that this
amplitude is invariant under the T-duality transformation (R8, R9)→ (

α′
2R8

, α′
2R9

)
.

4Throughout our work, all discrete sums over integer mi, ni are implicit. The conventions used in
partition functions are those given e.g. in the reviews [85, 86].
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There is another particularly useful way of constructing the torus amplitude with non-
trivial discrete antisymmetric tensor uncovered by Pradisi [93]. The starting point is a
freely-acting orbifold of type IIB with B89 = 0 and generator g = δw8δp9 , where δw8 stands
for a winding shift along direction X8 while δp9 denotes a momentum shift along direction
X9. The action of this generator on the lattice states is

g|m,n〉 = (−1)n8+m9 |m,n〉 . (2.4)

The gauging of the theory with this generator implies the existence of four contributions
in the torus amplitude corresponding to the untwisted and twisted sectors, both with or
without insertion of the orbifold generator in the traces. One obtains

T = 1
2

∫ d2τ

τ5
2

[
1 + (−1)n8+m9

] (
Λm8,n8Λm9,n9 + Λm8+ 1

2 ,n8
Λm9,n9+ 1

2

) ∣∣∣∣
V8 − S8
η8

∣∣∣∣
2
. (2.5)

A rescaling of the radius R9 → 2R9 then leads to the torus amplitude with discrete anti-
symmetric tensor given in eq. (2.2).

Note that another derivation can be obtained by applying the T-duality transformation
R8 → α′

R8
= R̃8 on the freely-acting orbifold of type IIB with B89 = 0. In fact, the complex

coordinate Z = X̃8+iX9
2πR̃8

, where X̃8 is the T-dual coordinate, satisfies the identifications
Z = Z+ 1 = Z+ iR9

R̃8
. Moreover, the orbifold generator g = δw8δp9 is mapped to g̃ = δp8δp9

defined as (X̃8, X9) = (X̃8 +πR̃8, X9 +πR9). We have therefore three identifications, which
can be encoded in the following two:

Z = Z + 1 , Z = Z + U , where U = 1
2 + i

R9
2R̃8

. (2.6)

Hence, by rescaling R9 → 2R9, the coordinate Z is that of a tilted torus of complex
structure U = 1

2 + iR9
R̃8

. However, it is known that the type IIA theory compactified on this
tilted torus is T-dual to the type IIB theory with antisymmetric background B89 = α′

2 .
From the freely-acting orbifold perspective, it is now easy to build a non-super-

symmetric deformation of the type IIB model in a Scherk-Schwarz spirit. It is obtained by
replacing g with the generator g′ = (−1)F δw8δp9 , where F denotes the spacetime fermion
number. The construction of the torus amplitude is straightforward and the result is

T = 1
2

∫ d2τ

τ5
2

{
Λm8,n8Λm9,n9 |V8 − S8|2 + (−1)n8+m9Λm8,n8Λm9,n9 |V8 + S8|2

+ Λm8+ 1
2 ,n8

Λm9,n9+ 1
2
|O8 − C8|2 + (−1)n8+m9Λm8+ 1

2 ,n8
Λm9,n9+ 1

2
|O8 + C8|2

} 1
|η8|2 .

(2.7)
The rescaling of the radius R9 → 2R9 then leads to

T =
∫ d2τ

τ5
2

{(
Λm8,2n8Λm9,2n9 + Λm8,2n8+1Λm9+ 1

2 ,2n9

) (
|V8|2 + |S8|2

)
(2.8)

−
(
Λm8,2n8+1Λm9,2n9 + Λm8,2n8Λm9+ 1

2 ,2n9

) (
V8S8 + V 8S8

)

+
(
Λm8+ 1

2 ,2n8
Λm9,2n9+1 + Λm8+ 1

2 ,2n8+1Λm9+ 1
2 ,2n9+1

) (
|O8|2 + |C8|2

)

−
(
Λm8+ 1

2 ,2n8+1Λm9,2n9+1 + Λm8+ 1
2 ,2n8

Λm9+ 1
2 ,2n9+1

) (
O8C8 +O8C8

)} 1
|η8|2 .
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The type IIB gravitinos acquire masses

M1 = R8
α′

or M2 = 1
2R9

, (2.9)

which vanish in the supersymmetric limits R8 → 0 and/or R9 → ∞. Moreover, as usual
with a Scherk-Schwarz mechanism, a scalar in the twisted sector becomes tachyonic when
the radii satisfy

1
4R2

8
+ R2

9
α′2

<
2
α′
. (2.10)

Notice that, unlike its supersymmetric version (2.2), the torus amplitude (2.8) is not
invariant under the T-duality (R8, R9)→ (

α′
2R8

, α′
2R9

)
. Indeed, this transformation amounts

to exchanging the lattice sums of the two directions and thus switching X8 ↔ X9, leading
to the new amplitude

T̃ =
∫ d2τ

τ5
2

{(
Λm8,2n8Λm9,2n9 + Λm8+ 1

2 ,2n8
Λm9,2n9+1

) (
|V8|2 + |S8|2

)

−
(
Λm8,2n8Λm9,2n9+1 + Λm8+ 1

2 ,2n8
Λm9,2n9

) (
V8S8 + V 8S8

)

+
(
Λm8,2n8+1Λm9+ 1

2 ,2n9
+ Λm8+ 1

2 ,2n8+1Λm9+ 1
2 ,2n9+1

) (
|O8|2 + |C8|2

)

−
(
Λm8,2n8+1Λm9+ 1

2 ,2n9+1 + Λm8+ 1
2 ,2n8+1Λm9+ 1

2 ,2n9

) (
O8C8 +O8C8

)} 1
|η8|2 .

(2.11)

The latter can therefore be obtained by a free action generated by g′′ = (−1)F δp8δw9 ,
followed by the rescaling R8 → 2R8. In this case, the masses of the gravitinos are

M1 = 1
2R8

or M2 = R9
α′

(2.12)

and supersymmetry is restored in the limits R8 →∞ and/or R9 → 0.

2.2 The supersymmetric orientifold amplitudes

In eight dimensions, the gauge group in supersymmetric orientifold models has rank 16, 8
or 0.5 For rank 8, the gauge group of maximal dimension, i.e. in the absence of Wilson
lines, is USp(16). This 8d model was first constructed by Bianchi, Pradisi and Sagnotti in
terms of D9-branes and an O9−-plane [91, 92]. It also has a dual description in terms of
CHL strings [94]. Moreover, it admits a geometrical T-dual picture understood later on by
Witten, which we will consider hereafter [95].

In the case of the standard SO(32) type I superstring, i.e. with B89 = 0, the standard
T-duality transformation (R8, R9)→ ( α′R8

, α
′

R9
) turns the O9−-plane wrapping the torus into

four O7−-planes located at the orientifold fixed points of the generator Ω′ = ΩΠ8Π9(−1)FL .
In our notations, Πi is a parity operation Xi → −Xi and FL is the left-handed fermion
number. This geometry is depicted in figure 1a and the resulting model contains 16 D7-
branes6 in order to cancel the RR tadpole.

5We refer only to the gauge group arising from the open-string/D-brane sector.
6Or equivalently 32 “half-branes” of type IIB organized as 16 mirror pairs referred to as 16 “branes” in

the orientifold theory.
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X8

X9

O7− O7−

O7− O7−

(a) Geometry of the standard
SO(32) superstring. There is an
O7−-plane at each of the four
fixed points.

X8

X9

O7+ O7−

O7− O7−

(b) Geometry of the supersym-
metric USp(16) model. There is
1 O7+-plane at (0, 0) and 3 O7−-
planes at (πR8, 0), (0, πR9) and
(πR8, πR9).

X8

X9

O7+ O7−

O7− O7−

(c) Geometry of the non-
supersymmetric USp(16) model.
There is 1 O7+-plane at (0, 0),
1 O7−-plane at (πR8, 0) and
2 O7−-planes at (0, πR9) and
(πR8, πR9).

Figure 1. Eight dimensional T-dual geometries: the standard SO(32) superstring theory, the
USp(16) supersymmetric theory and its non-supersymmetric version.

On the other hand, it has been shown that for the USp(16) theory, i.e. with B89 = α′
2 ,

the T-duality transformation (R8, R9)→ ( α′
2R8

, α′
2R9

) turns the original O9−-plane into three
O7−-planes and one O7+-plane [95]. While an O7−-plane has charge (and tension) equal
to −4 in units of a regular D7-brane charge, an O7+-plane has charge (and tension) equal
to +4. The geometry is depicted in figure 1b, where R8, R9 now refer to the radii in the
T-dual theory. The switch O7− → O7+ has the overall effect of halving the RR tadpole, a
fact that requires the addition of only eight D7-branes (16 half-branes). The rank of the
gauge group is thus reduced to 8. Furthermore, while D7-branes on top of an O7−-plane
lead to an orthogonal (SO) gauge group, D7-branes on top of an O7+-plane lead to a
symplectic (USp) gauge factor. Therefore, the configuration with all the D7-branes sitting
on top of the O7+-plane yields the gauge symmetry USp(16).

From now on, the description of the USp(16) theory we choose is that of the type
IIB theory with orientifold projection Ω′ = ΩΠ8Π9(−1)FL , which involves O7±-planes and
D7-branes. The spectrum is encoded in the partition functions which can be worked out
using standard methods. The torus contribution is given by half that given in eq. (2.2).7
Moreover, the Klein, cylinder and Möbius amplitudes are

K = 1
2

∫ ∞

0

dτ2
τ5

2
W2n9W2n8

V8 − S8
η8

(
2iτ2

)
,

A = N2

2

∫ ∞

0

dτ2
τ5

2
Wn9Wn8

V8 − S8
η8

(
iτ2
2

)
,

M = N

2

∫ ∞

0

dτ2
τ5

2
Wn9

[
(−1)n9W2n8 −W2n8+1

] V̂8 − Ŝ8
η̂8

(
iτ2
2 + 1

2

)
, (2.13)

7Remind that the type IIB amplitude (2.2) is self-dual. Hence, it can be used in the orientifold theory
obtained by modding with Ω [91, 92] or that obtained with Ω′. Being T-dual, they are physically equivalent.
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where N is the number of half-D7-branes and the lattices of winding modes are defined as

Wni = e−πτ2n
2
i

R2
i
α′ . (2.14)

The “field-theory” open-string spectrum is encoded in

(A+M)|FT =
∫ ∞

0

dτ2
τ5

2

[
N(N + 1)

2 W2n9W2n8

+N(N − 1)
2

(
W2n9+1W2n8 +Wn9W2n8+1

)] V8 − S8
η8

∣∣∣∣
0
, (2.15)

where the index 0 stands for the constant mode of the characters. It is manifestly su-
persymmetric and describes a USp(N) gauge symmetry. The value N = 16 is found by
imposing the RR tadpole condition, which can be derived from the amplitudes in the
tree-level channel,

K̃ = 25α′

8R9R8

∫ ∞

0
dl Pm9Pm8

V8 − S8
η8

(
il
)
,

Ã = 2−5N2α′

2R9R8

∫ ∞

0
dl Pm9Pm8

V8 − S8
η8

(
il
)
,

M̃ = Nα′

2R9R8

∫ ∞

0
dl
[
P2m9+1 − (−1)m8P2m9

]
Pm8

V̂8 − Ŝ8
η̂8

(
il + 1

2

)
, (2.16)

where the lattices of momentum states are given by

Pmi = e
−π l2m2

i
α′
R2
i . (2.17)

The tree-level amplitudes encode uniquely the geometry of the D-branes and O-planes.
Indeed, the geometry can in general be revealed by remembering that the tree-level channel
amplitudes capture the propagation of closed strings between orientifold planes and/or D-
branes. As an example, a generic Klein-bottle amplitude can be formally written as

K̃ =
∑

a,m

∑

A,B

(−1)FLCaACaB Gam(xA,xB) , (2.18)

where a labels the NS-NS and RR closed-string degrees of freedom in ten dimensions and
m = (m8,m9) (in 8d models as above) are the internal momenta of their Kaluza-Klein
(KK) modes. Moreover, Gam(xA,xB) is the tree-level scalar propagator transverse to the
O-planes for a flat internal space, while CaA captures the coupling to the O-plane A located
at xA = (x8

A, x
9
A). In our examples, CaA ∝ TA for the NS-NS states and CaA ∝ QA for

the RR ones, where TA and QA denote the tension and charge of the O-plane A and the
proportionality constants are equal. Actually, the closed-string states a,m propagating in
K̃, which are bosons arising in the NS-NS and RR sector, have different Lorentz structures:
for instance the dilaton is a scalar, the graviton is a tensor, etc. Hence, they have different
propagators and couplings to branes and orientifolds. Contracting the couplings and the
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propagators, one obtains the effective couplings CaA and a scalar propagator Gam(xA,xB)
for each closed-string state. Explicitly, we have

Gam(xA,xB) = eim(xA−xB) 1
p2
‖ +M2

a +∑
i
m2
i

R2
i

= πα′

2 eim(xA−xB)
∫ ∞

0
dl e

−π l2α′
(
M2
a+
∑

i

m2
i

R2
i

)

, (2.19)

where by convention the variables xiA take values in the range [−π, π] and the internal
coordinates are defined as Xi = xiRi. The closed-string channel Klein-bottle amplitude is
therefore given by

K̃ = πα′

2
∑

a,m

∑

A,B

CaACaB

∫ ∞

0
dl e

im(xA−xB)−π l2α′
(
M2
a+
∑

i

m2
i

R2
i

)

. (2.20)

The factors eim(xA−xB) capture the locations of the O-planes and display the products of
the wavefunctions of a closed-string Kaluza-Klein mode a,m respectively located on the
O-planes A and B.

In the 8d examples of this section, there are four orientifold fixed points (0, 0), (0, πR9),
(πR8, 0), (πR8, πR9), where the O7-planes sit. The phases eim(xA−xB) encoding the prop-
agation between the four O-planes take values 1, (−1)m9 , (−1)m8 or (−1)m9+m8 . Once
dressed by the signs given by the tensions and charges, they produce projectors in the
tree-level channel amplitude. In the SO(32) type IIB orientifold case, which contains 4
O7−-planes, the projector in the tree-level Klein-bottle amplitude is

ΠK̃ ∝ 4[1 + (−1)m9 ][1 + (−1)m8 ] , (2.21)

which projects onto even KK states. In contrast, the corresponding one for the supersym-
metric USp(16) type IIB orientifold satisfies

ΠK̃ ∝ 4− 2(−1)m9 + 2(−1)m9 − 2(−1)m8 + 2(−1)m8 − 2(−1)m9+m8 + 2(−1)m9+m8

∝ 4 , (2.22)

leading to no projection of the KK states.
The tree-level channel cylinder and Möbius amplitudes take similar formal expressions.

In the former case, the objects A and B are D-branes while in the latter case they are a
D-brane and an O-plane. For instance, in the USp(16) model, the lattices in the Möbius
amplitude involve all momentum states subject to the projector

Π = 1− (−1)m9 − (−1)m8 − (−1)m9+m8

2 , (2.23)

which is consistent with the geometry of one stack of 8 (regular) D7-branes coincident with
the O7+-plane, whereas the three other orientifold fixed points are occupied by standard
O7−-planes. Moving all the D7-branes on top of one of the O7−-planes lead to an SO(16)
gauge group, whereas moving all of them into the bulk in one stack leads to a U(8) open-
string gauge group.
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2.3 The non-supersymmetric orientifold amplitudes

Let us now turn to the implementation of supersymmetry breaking in the Klein, cylinder
and Möbius amplitudes, without introducing perturbative instabilities or tadpoles. The al-
lowed form of the corresponding torus amplitude will be determined in the next subsection.

Geometrically, the mechanism of supersymmetry breaking is the following. A pair of
O7+-plane and O7−-plane have globally zero tension and RR charge. From a string-theory
viewpoint, it is possible to replace such a pair by an O7+ and O7− pair, which also has
vanishing total tension and charge. However, the second option breaks supersymmetry in
the presence of the 8 D7-branes needed to cancel the tadpoles. This geometry is depicted in
figure 1c. Supersymmetry breaking is not visible in the cylinder amplitude, which describes
D7-D7 amplitudes. It is less obvious but true that the orientifold configuration with 2 O7−,
1 O7+, 1 O7− and the supersymmetric one with 1 O7+ and 3 O7−-planes lead to identical
Klein-bottle amplitudes. Indeed, in the former case we have

K̃ ∝
{

[4− 2(−1)m8 + 2(−1)m8 ](V8 − S8)+

[−2(−1)m9 + 2(−1)m9 − 2(−1)m9+m8 + 2(−1)m9+m8 ](V8 + S8)
}
Pm8Pm9

∝ 4(V8 − S8)Pm8Pm9 , (2.24)

where the character V8 − S8 describes the tree-level propagation of closed strings between
mutually BPS O7-planes (O7−-O7−, O7±-O7±), whereas V8 + S8 describes the tree-level
propagation of closed strings between mutually non-BPS O7-planes (O7−-O7±, O7±-O7−).
The phases reflect the geometry of O-planes and lead to a cancellation of the non-BPS
terms, leaving the unprojected supersymmetric sum over all KK states as in the supersym-
metric case (see eqs. (2.16) and (2.22)).

As will be shown later, the configuration where the 8 D7-branes are coincident with the
O7+-plane is the only stable configuration at one loop. Using the above given geometrical
interpretation of O-planes, it is easy to check that the tree-level channel amplitudes are
given by

K̃ = 25α′

8R9R8

∫ ∞

0
dl Pm9Pm8

V8 − S8
η8

(
il
)
,

Ã = 2−5N2α′

2R9R8

∫ ∞

0
dl Pm9Pm8

V8 − S8
η8

(
il
)
,

M̃ = Nα′

2R9R8

∫ ∞

0
dl
[
P2m9+1 − (−1)m8P2m9

]
Pm8

V̂8 − (−1)m8Ŝ8
η̂8

(
il + 1

2

)
. (2.25)

Notice that the only change in (2.25) compared to the supersymmetric case (2.16) is the
extra phase (−1)m8 in the RR couplings of the closed strings propagating between the
D7-branes and the O7-planes in the Möbius amplitude. The projector in the RR sector is
thus transformed accordingly,

ΠNSNS = +1− (−1)m9 − (−1)m8 − (−1)m9+m8

2

ΠRR = (−1)m8ΠNSNS = −1− (−1)m9 + (−1)m8 − (−1)m9+m8

2 , (2.26)

– 10 –



J
H
E
P
0
7
(
2
0
2
1
)
1
0
4

where ΠNSNS is identical to that of the supersymmetric case, eq. (2.23). The above pro-
jectors encode all the information about the geometry. In fact, with all D-branes located
at the origin, the change of signs of the RR couplings at (0, 0) and (πR8, 0) tells us that
the orientifold planes located there preserve opposite supersymmetry as compared to the
D7-branes and are therefore O7+ and O7−.

The loop-channel amplitudes can be worked out by the usual methods, leading to

K = 1
2

∫ ∞

0

dτ2
τ5

2
W2n9W2n8

V8 − S8
η8

(
2iτ2

)
,

A = N2

2

∫ ∞

0

dτ2
τ5

2
Wn9Wn8

V8 − S8
η8

(
iτ2
2

)
,

M = N

2

∫ ∞

0

dτ2
τ5

2
Wn9

[
(−1)n9W2n8 −W2n8+1

] V̂8 + (−1)n9Ŝ8
η̂8

(
iτ2
2 + 1

2

)
. (2.27)

Comparing the Möbius amplitude with its supersymmetric counterpart (2.13) reveals a
supersymmetry breaking orientifold projection

Ω′′ = ΩΠ8Π9(−1)FL(−δw9)F , (2.28)

where, as before, Πi is the parity operation Xi → −Xi, FL is the left-moving fermion num-
ber, F is the spacetime fermion number and δw9 generates a winding shift in the coordinate
X9. The latter acts on the zero-modes as |m,n〉 → (−1)n9 |m,n〉, as follows from a left-
right asymmetric action X9

L → X9
L + πR9

2 , X9
R → X9

R − πR9
2 on the left- and right-moving

parts of the coordinate. Notice that since there is no fermion propagating in the Klein
bottle, the supersymmetry breaking deformation (−δw9)F has no effect in this amplitude.

The massless field-theory open-string spectrum is captured by

(A+M)|FT =
∫ ∞

0

dτ2
τ5

2

[
N(N + 1)

2
V8
η8

∣∣∣∣
0
− N(N − 1)

2
S8
η8

∣∣∣∣
0

]
(2.29)

and displays supersymmetry breaking at the string scale, of the brane supersymmetry
breaking type. The gauge group is USp(16) as before. The vector bosons are thus in
the symmetric representation, but the fermions are in the antisymmetric representation,
which contains in particular the gauge-singlet goldstino. This is the basic indication of
the nonlinear realization of supersymmetry where the D7-branes sit. It is then easy to
move D7-branes in the internal two-torus and derive the resulting spectrum. Putting all
D-branes on top of the O7−-plane leads to an SO(16) gauge group with massless fermions
in the symmetric representation. The latter contains the singlet goldstino implying again
a nonlinear supersymmetry and a supersymmetry breaking at the string scale. Putting
all D7-branes on top of one of the two remaining O7−-planes leads to a supersymmetric
massless spectrum with SO(16) gauge group and a supersymmetry breaking at the massive
level due to the far-away presence of the two O7-planes.

Let us stress again that despite the fact that the O7-planes are of types orientifold
and anti-orientifold, the Klein bottle amplitude is exactly the same as in the supersym-
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metric case, due to the cancellation of the supersymmetry-breaking contributions.8 At one
loop, only the Möbius amplitude “knows” about supersymmetry breaking, without how-
ever generating NS-NS tadpoles (of course, RR tadpoles are non-negotiable and always
have to cancel).

The precursor paper of Angelantonj and Cardella contains a model equivalent to the
one presented above [77].9 In our work, we provide a microscopic geometrical interpreta-
tion of the source of supersymmetry breaking in terms of the replacement of an O7+-O7−
pair by an O7+-O7− pair, which leads to a novel form of brane supersymmetry break-
ing without tadpoles. Moreover, as argued in the next subsection, we believe that the
closed-string sector is not supersymmetric at tree-level but features spontaneously broken
supersymmetry.

Notice that the cancellation of the disk NS-NS tadpoles in our class of models does not
imply an exact Bose/Fermi degeneracy at each mass level. Indeed, the latter is related to
the cancellation of the one-loop cosmological constant, whereas the NS-NS disk tadpoles
are of lower order in perturbation theory.

Let us now make considerations of energetics. The O-planes have no dynamical posi-
tions. The D7-branes, on the other hand, do have dynamical positions. To find which con-
figuration is expected to minimize the one-loop effective potential, recall that the D7-branes
are mutually BPS and have therefore no net interactions with the O7+ and O7−-planes. On
the contrary, they are attracted by the O7+-plane and repelled by the O7−-plane. Hence,
the only stable configuration is obtained by putting all D7-branes on top of the O7+-plane,
leading to a USp(16) gauge group and breaking SUSY at the string scale, as explained
above. At first sight, one could think that a second option would be to put some stuck (or
rigid) half-D7-branes on top of O7− or O7−-planes, with no gauge group (but a Z2 global
symmetry). As will be seen in section 4, such configurations are however inconsistent, a
fact that can be checked by adding probe D3-branes.

To confirm these expectations, we write the Möbius amplitude for arbitrary brane
positions along X9 and X8. To this end, we introduce vectors ~aα = (a8

α, a
9
α) such that the

8We will discuss in the next subsection the issue of supersymmetry in the closed-string spectrum. The
O-planes and anti O-planes are mutually non-BPS. The cancellation of the non-supersymmetric contribu-
tions in the Klein bottle does not mean that the closed-string sector is supersymmetric, even ignoring the
supersymmetry breaking transmission from the open sector. As we will see, the most plausible possibility
is that the tree-level closed-string spectrum has softly broken supersymmetry. Another possibility, which
we consider however unlikely, is that the closed-string spectrum is supersymmetric but the interactions
are not. Another insight about this issue is the gravitino masses: a supersymmetric closed-string spectrum
would be in contradiction with the presence of orientifold and anti-orientifold planes, which impose opposite
boundary conditions for the gravitinos.

9In the model constructed in section 3 of [77], the O7+-O7− pair sits on the diagonal of the two-torus,
which corresponds to a different choice of the projector in the Möbius, ΠRR = (−1)m9+m8ΠNSNS. The 8 D7-
branes were separated into two stacks of four branes, sitting on top of the anti-orientifolds. The attraction
of the D7-branes on top of O7+ cancels the repulsion of the D7-branes on top of O7−. However, as already
known by the authors of [77] and obvious from the discussion below, this configuration is unstable, since
the D7-branes on top of O7− are repelled by O7− and attracted towards the O7+ -plane, leading to the
stable configuration with one stack of eight coincident D7-branes, negative potential and USp(16) gauge
group discussed above.
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X8

X9

O7+ O7−

O7− O7−

Figure 2. Example of vector field
(
−∂V∂a8

r
,− ∂V

∂a9
r

)
obtained numerically. The lighter the color is, the

longer the vector norm is.

position of the half-brane α ∈ {1, . . . , 16} along direction Xi is 2πaiαRi. In both channels,
we obtain

M = 1
2
∑

α

∫ dτ2
τ5

2

{ [
(−1)n9W2n8+2a2

α
−W2n8+1+2a2

α

] V̂8
η̂8

−
[
(−1)n9W2n8+1+2a2

α
−W2n8+2a2

α

] Ŝ8
η̂8

}
Wn9+2a1

α
,

M̃ = α′

2R9R8

∑

α

∫
dl e4iπm9a1

α e2iπm8a2
α Pm8

{ [
e2iπa1

αP2m9+1 − (−1)m8P2m9

] V̂8
η̂8

−
[
e2iπa1

α(−1)m8P2m9+1 − P2m9

] Ŝ8
η̂8

}
.

(2.30)

The dependance of the one-loop effective potential V on the independent positions can
be derived solely from M and M̃ in various regimes of the internal radii. Among the
16 vectors ~aα, at most 8 are dynamical degrees of freedom since the half-branes move by
pairs and unpaired half-branes stuck at a fixed point are not dynamical. We will label the
dynamical ones by an index r. In figure 2, we display the vector field

(−∂V
∂a8
r
,− ∂V

∂a9
r

)
obtained

numerically for a given brane r of arbitrary position. As anticipated before, the minimum
of the potential is reached when the branes sit at the origin, on the O7+-plane.
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2.4 Consistent pairing of torus and orientifold amplitudes
At first sight, one may think that the supersymmetric torus amplitude (2.2) as well as
the non-supersymmetic ones (2.8) and (2.11) are all consistent with the supersymmetric
orientifold amplitudes (2.13) and their non-supersymmetric deformation (2.27). If true,
this would yield six different orientifold models. There are however arguments based on
the understanding of the orientifold projections as well as on the effective field theories
that suggest that only two options are consistent.

Let us combine the non-supersymmetric torus amplitude (2.8) with the non-super-
symmetric orientifold amplitudes (2.27). The torus amplitude can be constructed as an
orbifold generated by g′ = (−1)F δw8δp9 , while the orientifold amplitudes are obtained from
the action of Ω′′ = Π8Π9(−1)FL(−δw9)F . Hence, the (anti-)orientifold planes are located at
the fixed points of Ω′′ and Ω′′g′. To be specific, Ω′′ fixes (0, 0) as well as (πR8, 0), thanks to
the 2πR8 periodicity. Moreover Ω′′g′ fixes (0, πR9) because g′ contains a factor δp9 acting
as X9 → X9 + 2πR9 after rescaling of the radius R9 → 2R9. It also fixes (πR8, πR9)
thanks to the 2πR8 periodicity. Notice that the presence of a factor (−1)F in such a
group element changes the orientifolds into anti-orientifold planes, as can be seen in the
Möbius amplitude where (−1)F changes the sign of the RR coupling. As a result, the fixed
points of Ω′′ are anti-orientifold planes, while those of Ω′′g′ are orientifold planes due to
the cancellation of the factors (−1)F . Therefore, the nature of the O-planes derived from
the non-supersymmetric amplitudes (2.27) and shown in figure 1c are in agreement with
the non-supersymmetric torus amplitude (2.8).

As shown in section 2.1, the second non-supersymmetric torus amplitude (2.11) is
equivalent to (2.8) under the interchange of the coordinates X8 ↔ X9. Therefore, a
consistent orientifold model is obtained by applying the same operation on the non-
supersymmetric orientifold amplitudes (2.27) and orientifold action (2.28). The correspond-
ing geometry of O-planes is like in figure 1c, with the O7−-plane now located at (0, πR9).

Finally, reasoning as above with the generators g = δw8δp9 and Ω′ = ΩΠ8Π9(−1)FL ,
one concludes that the supersymmetric orientifold amplitudes (2.13) are compatible with
the supersymmetric torus amplitude (2.2).

In fact, the reason why the four other combinations of torus and orientifold amplitudes
are inconsistent is that the orientifold projections are not symmetries of the closed-string
spectrum. For instance, the supersymmetric torus amplitude (2.2) does not seem to be com-
patible with the orientifold projection (2.28). Indeed, because the factor (−δw9)F in Ω′′ is
equivalent to (−1)n9F , fermions with even and odd winding numbers n9 are projected differ-
ently. Due to interactions, the same conclusion should apply for bosons. However, there is
no such selection rule in (2.2), as opposed to the non-supersymmetric torus amplitude (2.8),
where fermions with even n9 are gravitinos while those with odd n9 are spin 1

2 particles.
Moreover, any attempt to combine the supersymmetric torus amplitude (2.2) with the

non-supersymmetric orientifold amplitudes (2.27) is unlikely to be consistent, since the
former implies the existence of massless gravitinos that would be difficult to explain from
the point of view of the effective field theory. Instead, there seems to be no obstruction,
from the point of view of the effective supergravity, to couple the non-supersymmetric torus
amplitude (2.8) with the orientifold ones (2.27), since in this case all gravitinos are massive.
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To understand a little better how the nature of (anti-)orientifold planes may or may
not induce gravitino masses, let us consider first the orientifold projection Ω′. In this case,
O±-planes, which preserve the same supersymmetry, are located at the four fixed points of
T 2. The action on the two gravitinos ψµ and ψ̃µ of the 10-dimensional type IIB is given by

Ω′ψµ(X8, X9)(Ω′)−1 = ψµ(−X8,−X9) = Γ8Γ9ψ̃µ(X8, X9) ,
Ω′ψ̃µ(X8, X9)(Ω′)−1 = ψ̃µ(−X8,−X9) = −Γ8Γ9ψµ(X8, X9) , (2.31)

where Γ8 and Γ9 are 10-dimensional gamma matrices. A minus sign appears for one of the
two gravitinos because of the presence of the factor (−1)FL in the orientifold projection Ω′.
Note that this is consistent with that fact that the action of (Ω′)2 is the identity:

Ω′
(
Ω′ψµ(X8, X9)(Ω′)−1

)
(Ω′)−1 = −Γ8Γ9Γ8Γ9ψµ(X8, X9) = ψµ(X8, X9) . (2.32)

As a consequence, the orientifold action (2.31) only preserves one linear combination of the
two gravitinos. Let us now consider a geometry where anti-orientifold planes are located
at the four fixed points. The corresponding orientifold projection denoted Ω̃′ contains an
additional factor (−1)F compared to Ω′ which, once combined with the term (−1)FL , yields
a factor (−1)FR . The action of Ω̃′ then gives a minus sign to the other gravitino,

Ω̃′ψµ(X8, X9)(Ω̃′)−1 = ψµ(−X8,−X9) = −Γ8Γ9ψ̃µ(X8, X9) ,
Ω̃′ψ̃µ(X8, X9)(Ω̃′)−1 = ψ̃µ(−X8,−X9) = Γ8Γ9ψµ(X8, X9) , (2.33)

and thus preserves the orthogonal linear combination of gravitinos compared to Ω′. We
have seen that the geometry corresponding to the non-supersymmetric orientifold ampli-
tudes (2.27) involves both orientifold and anti-orientifold planes, as shown in figure 1c.
Therefore, the boundary conditions of the gravitinos at X9 = 0 are of the type (2.33),
whereas at X9 = πR9 they are of the type (2.31). Overall, one obtains a shift in the
KK spectrum of gravitinos m9/R9 → (m9 + 1

2)/R9, which is precisely what features the
non-supersymmetric torus amplitude (2.8) (see eq. (2.9)).

3 Lower dimensional compactifications

In this section, we extend the mechanism of supersymmetry breaking to models in even
dimension d ≤ 6.

In type IIB, a change of basis can always put an arbitrary discrete background for the
antisymmetric tensor Bij into a block-diagonal form, with 2× 2 antisymmetric matrices,

B = α′




0 λd
−λd 0 (0)

. . .
(0) 0 λ9

−λ9 0



, λi ∈

{
0, 1

2

}
. (3.1)
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The rank of the tensor Bij is twice the number of non-zero λi’s. Since they play no
significant role in the sequel, we choose to set to zero the off-diagonal elements of the
symmetric tensor Gij . The internal space is thus a Cartesian product of circles of radii Ri.

In the supersymmetric case, one can switch on some λi’s by implementing a free-
orbifold action on the background where Bij = 0. For instance, λ9 = λ8 = 1

2 in 6d
is achieved by considering the orbifold generated by g1 = δw8δp9 and g2 = δw6δp7 . In
4d, for λ7 = 1

2 , one simply adds an extra generator g3 = δw4δp5 . By considering an
orientifold action involving parities in all internal directions, one obtains a model involving
210−d O(d − 1)±-planes. It is then allowed to turn some O(d − 1)+-O(d − 1)− pairs into
O(d− 1)+-O(d− 1)− ones in order to break supersymmetry.

In the following, we consider various configurations of orientifold planes of this type and
provide the corresponding Klein, cylinder and Möbius amplitudes. In orbifold language,
the corresponding type IIB backgrounds can be realized by including operators (−1)F in
the definition(s) of one or several of the generators gi.

3.1 Geometry description

The geometry of a model is given by the precise locations of the various O± and O±-planes.
Since pictorial representations become involved when the number of internal dimensions
increases, it is useful to consider another way to describe a generic geometry. If one specifies
an ordering for the labelling of the fixed points, the geometry can simply be given by the
list of O-plane types following this ordering. In the 10 − d dimensional internal space, a
fixed point can be represented by a (10− d)-vector with components 0 or 1 that indicate if
it is located at the origin or at πRi in each direction Xi, i ∈ {d, . . . , 9}. For example, in 6d
the fixed point located at (X6, X7, X8, X9) = (0, πR7, πR8, 0) is represented by (0, 1, 1, 0).

In practice, let us label the fixed points by an index A ∈ {0, . . . , 2(10−d) − 1}. With
this convention, their positions are given by A written as a binary number. For instance
in 6d, the fixed points are labelled as follows,

A = 0 = (0, 0, 0, 0) , A = 1 = (0, 0, 0, 1) , A = 2 = (0, 0, 1, 0) ,
A = 3 = (0, 0, 1, 1) , · · · A = 15 = (1, 1, 1, 1) . (3.2)

3.2 Models in six dimensions

Projectors on the momenta in the Klein-bottle and Möbius amplitude can either be fac-
torized in the two internal T 2’s, or non-factorized. However, to obtain fully consistent
models, compatibility of the projectors with the RR tadpole condition turns out not to
be sufficient. Indeed, we give in the appendix examples of non-factorizable projectors,
where one is consistent and another one is not. In the following, we will consider only
consistent factorizable projectors. Supersymmetry breaking in the orientifold amplitudes
will be implemented by choosing different projectors for the NS-NS and RR closed-string
states propagating between the D-branes and the O-planes in the Möbius amplitude. On
the contrary, the Klein-bottle and cylinder amplitudes will take forms identical to those in
the SUSY cases.
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In six dimensions, a non-trivial antisymmetric tensor can have rank B = 2 or 4.

• rank B = 2: 8d model compactified on T 2 (T-dualized)

By compactifying the 8d model on an extra T 2 and T-dualizing both of its coordinates,
one finds a 6d model with D5-branes and 16 O5-planes. In the supersymmetric case, one
would have 12 O5− and 4 O5+-planes. In the non-SUSY case, one obtains a configuration
with 8 O5− and 4 × (O5− + O5+)-planes, where the geometry is simply the 8d one
duplicated along the new compact dimensions. The rank of the gauge group is 8 and,
depending on the location of the stacks of D5-branes, one finds for a single stack USp(16)
if the D5-branes are on top of one O5+ or O5+-plane, SO(16) if the D5-branes are on
top of one O5−-plane or O5−-plane, or U(8) if the stack of D5-branes is in the bulk.
Supersymmetry is broken at the string scale (nonlinearly realized) if the D5-branes
are coincident with anti-orientifolds, and broken only at the massive level (due to the
separation in the internal space from the source of supersymmetry breaking) if the
D5-branes are coincident with orientifold planes.

When the D5-branes are put at the origin, the corresponding projectors on the momen-
tum states running in the Möbius amplitude are

ΠNSNS = 1− (−1)m9 − (−1)m8 − (−1)m9+m8

2 ×
7∏

i=6

1 + (−1)mi
2 ,

ΠRR = (−1)m8ΠNSNS . (3.3)

The torus amplitude can be constructed as a free-orbifold generated by g′1 =(−1)F δw8δp9 .

• rank B = 4

Following the ordering of the fixed points given in eq. (3.2), the list of O±-planes of the
SUSY model we discuss here is

(O5+,O5−,O5−,O5−,O5+,O5−,O5−,O5−,O5−,
O5+,O5+,O5+,O5+,O5−,O5−,O5−) , (3.4)

with a total of 10 O5− and 6 O5+-planes. There are several possible consistent SUSY
breaking deformations. One example corresponds to a configuration containing 8 O5−
and 4× (O5− + O5+)-planes as follows,

(O5+,O5−,O5−,O5−,O5+,O5−,O5−,O5−,O5−,
O5+,O5+,O5+,O5+,O5−,O5−,O5−) . (3.5)

The rank of the gauge group is 4 and, depending on the location of the stacks of D5-
branes, one finds for a single stack USp(8) if the D5-branes are on top of one O5+ or
O5+ -plane, SO(8) if the D5-branes are on top of one O5−-plane or O5−-plane, and
U(4) if the D5-brane stack is in the bulk. Supersymmetry breaking pattern is of course
the same as in the rank B = 2 case discussed above.
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When the 4 D5-branes (8 half-D5-branes) are coincident with the O5+-plane at the
origin of the internal space, the projectors on the momentum states in the tree-level channel
Möbius amplitude are

ΠNSNS = 1− (−1)m9 − (−1)m8 − (−1)m9+m8

2 × 1 + (−1)m7 − (−1)m6 + (−1)m7+m6

2 ,

ΠRR = (−1)m8ΠNSNS . (3.6)

In order to write the orientifold amplitudes, it is convenient to denote lattices and volume
factors as folows,

P
(10−d)
m =

9∏

i=d
Pmi , W

(10−d)
n =

9∏

i=d
Wni , v10−d =

9∏

i=d
Ri . (3.7)

In these notations, the tree-level channel amplitudes are given by

K̃ = (α′)2

v4

∫ ∞

0
dl P (4)

m
V8 − S8
η8

(
il
)
,

Ã = 2−5N2(α′)2

2v4

∫ ∞

0
dl P (4)

m
V8 − S8
η8

(
il
)
,

M̃ = N(α′)2

4v4

∫ ∞

0
dl
[
P2m9+1 − (−1)m8P2m9

]
Pm8

[
P2m7 − (−1)m6P2m7+1

]
Pm6

× V̂8 − (−1)m8Ŝ8
η̂8

(
il + 1

2

)
, (3.8)

while in the loop-channel they become

K = 1
2

∫ ∞

0

dτ2
τ4

2
W

(4)
2n
V8 − S8
η8

(
2iτ2

)
,

A = N2

2

∫ ∞

0

dτ2
τ4

2
W

(4)
n
V8 − S8
η8

(
iτ2
2

)
,

M = N

2

∫ ∞

0

dτ2
τ4

2
Wn9

[
W2n8 − (−1)n9W2n8+1

]
Wn7

[
W2n6 − (−1)n7W2n6+1

]

× (−1)n9 V̂8 + Ŝ8
η̂8

(
iτ2
2 + 1

2

)
. (3.9)

The torus amplitude can be constructed as a free-orbifold generated by g′1 = (−1)F δw8δp9
and g2 = δw6δp7 . The presence of the factor (−1)F in g′1 can be understood from the
difference between the NS-NS and RR projectors in eq. (3.6), which is the same as in 8d
examples. Actually, the same will be true for all models we construct in what follows, only
g′1 will contain the supersymmetry breaking deformation (−1)F .
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3.3 Models in four dimensions

In four dimensions, a non-trivial antisymmetric tensor can have rank B = 2, 4 or 6.

• rank B = 2: 8d model compactified on T 4 (T-dualized)
By compactifying the 8d model on T 4 and T-dualizing the four extra compact directions,
one finds a 4d model with D3-branes and 64 O3-planes. In the supersymmetric case,
one has 48 O3− and 16 O3+-planes. In the non-SUSY case, one obtains a configuration
with 32 O3− and 16 × (O3− + O3+)-planes. Like in the six dimensional rank B = 2
case, the geometry is simply the one of the 8d model duplicated along the new compact
directions. Since the model is T-dual to the 8d model compactified on an extra T 4, the
rank of the gauge group is 8. For a single stack of D3-branes, the gauge symmetry is
USp(16) if the D3-branes are on top of one O3+ or O3+-plane, SO(16) if the D3-branes
are on top of one O3−-plane or O3−-plane, and U(8) if the D3-brane stack is in the
bulk. Supersymmetry is broken at the string scale (nonlinearly realized) if the D3-
branes are coincident with anti-orientifolds, and broken only at the massive level (due
to the separation in the internal space from the source of supersymmetry breaking) if
the D3-branes are coincident with orientifold planes.
When the D3-branes are put at the origin, the corresponding projectors on the momen-
tum states running in the Möbius amplitude are

ΠNSNS = 1− (−1)m9 − (−1)m8 − (−1)m9+m8

2 ×
7∏

i=4

1 + (−1)mi
2 ,

ΠRR = (−1)m8ΠNSNS . (3.10)

• rank B = 4: 6d model compactified on T 2 (T-dualized)
By compactifying the 6d model on T 2 and T-dualizing the two extra compact directions,
one finds a 4d model where, in the supersymmetric case, one has 40 O3− and 24 O3+-
planes. In the non-SUSY case, one finds a configuration with 24 O3−, 8 O3+ and
16 × (O3− + O3+)-planes. The geometry is the one of the 6d model duplicated along
the two new dimensions. Since the model is T-dual to the 6d model compactified on T 2,
the rank of the gauge group is 4. For a single stack of D3-branes, the gauge symmetry
is USp(8) if the D3-branes are on top of one O3+ or O3+-plane, SO(8) if the D3-branes
are on top of one O3−-plane or O3−-plane, and U(4) if the D3-brane stack is in the
bulk. The supersymmetry breaking pattern is the same as in the previous cases.
The corresponding projectors on the momentum states in the Möbius for D3-branes put
at the origin are

ΠNSNS = 1− (−1)m9 − (−1)m8 − (−1)m9+m8

2

× 1 + (−1)m7 − (−1)m6 + (−1)m7+m6

2 ×
5∏

i=4

1 + (−1)mi
2 ,

ΠRR = (−1)m8ΠNSNS . (3.11)

– 19 –



J
H
E
P
0
7
(
2
0
2
1
)
1
0
4

• rank B = 6

Following our binary ordering, the geometry of the SUSY model discussed here is

(O3+,O3−,O3−,O3−,O3−,O3+,O3+,O3+,O3−,O3+,O3+,O3+,O3−,
O3+,O3+,O3+,O3−,O3+,O3+,O3+,O3+,O3−,O3−,O3−,O3+,O3−,
O3−,O3−,O3+,O3−,O3−,O3−,O3−,O3+,O3+,O3+,O3+,O3−,O3−,
O3−,O3+,O3−,O3−,O3−,O3+,O3−,O3−,O3−,O3−,O3+,O3+,O3+,

O3+,O3−,O3−,O3−,O3+,O3−,O3−,O3−,O3+,O3−,O3−,O3−) , (3.12)

with a total of 36 O3− and 28 O3+-planes. Again, there are several SUSY breaking
deformations that are possible. One example is a configuration with 20 O3−, 12 O3+
and 16× (O3− + O3+)-planes as follows

(O3+,O3−,O3−,O3−,O3−,O3+,O3+,O3+,O3−,O3+,O3+,O3+,O3−,
O3+,O3+,O3+,O3−,O3+,O3+,O3+,O3+,O3−,O3−,O3−,O3+,O3−,
O3−,O3−,O3+,O3−,O3−,O3−,O3−,O3+,O3+,O3+,O3+,O3−,O3−,
O3−,O3+,O3−,O3−,O3−,O3+,O3−,O3−,O3−,O3−,O3+,O3+,O3+,

O3+,O3−,O3−,O3−,O3+,O3−,O3−,O3−,O3+,O3−,O3−,O3−) . (3.13)

The rank of the gauge group is 2 and, depending on the location of the stacks of D3-
branes, one finds for a single stack USp(4) if the D3-branes are on top of one O3+ or
O3+-plane, SO(4) if the D3-branes are on top of one O3−-plane or O3−-plane, and U(2)
if the D3-brane stack is in the bulk.

When the 2 D3-branes (4 half-D3-branes) are at the origin, the projectors on the
momentum states in the Möbius amplitude are

ΠNSNS =
4∏

i=2

1− (−1)m2i+1 − (−1)m2i − (−1)m2i+1+m2i

2 ,

ΠRR = (−1)m8ΠNSNS . (3.14)

The tree-level amplitudes are given by

K̃ = (α′)3

4v6

∫ ∞

0
dl P (6)

m
V8 − S8
η8

(
il
)
,

Ã = 2−5N2(α′)3

2v6

∫ ∞

0
dl P (6)

m
V8 − S8
η8

(
il
)
,

M̃ = −N(α′)2

8v4

∫ ∞

0
dl

4∏

i=2

[
(−1)m2iP2m2i+1 − P2m2i+1+1

]
Pm2i

× V̂8 − (−1)m8Ŝ8
η̂8

(
il + 1

2

)
, (3.15)
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while in the loop-channel they become

K= 1
2

∫ ∞

0

dτ2
τ3

2
W

(6)
2n
V8−S8
η8

(
2iτ2

)
,

A= N2

2

∫ ∞

0

dτ2
τ3

2
W

(6)
n
V8−S8
η8

(
iτ2
2

)
,

M= N

2

∫ ∞

0

dτ2
τ4

2

4∏

i=2
Wn2i+1

[
(−1)n2i+1W2n2i−W2n2i+1

] V̂8+(−1)n9Ŝ8
η̂8

(
iτ2
2 + 1

2

)
. (3.16)

The torus amplitude can be constructed as a free-orbifold generated by g′1 = (−1)F δw8δp9 ,
g2 = δw6δp7 and g3 = δw4δp5 .

4 Consistency conditions from probe branes

It is well-known that the standard consistency rules of open-string partition functions are
not enough to define a consistent string model. There are indeed K-theory constraints [96,
97], which can also be understood in terms of the Witten SU(2) anomalies [98] on probe
branes [99]. We are therefore interested in probe branes with SU(2) gauge group. Probe
branes mean D-branes that are not constrained by the RR tadpole cancelation. In the
type I string, background branes are D9 and the probe branes can be of D7, D5, D3 or
D1 types, where the D5 and D1-branes are BPS, whereas the D7 and D3 are non-BPS.
Since D1-branes lead to a 2d theory, whereas we are interested in Witten four-dimensional
SU(2) anomalies, we will ignore D1-branes in what follows. D7 and D3-branes in type I
support unitary gauge groups U(M), D5-branes support USp(M) gauge groups [100, 101]
for Bij = 0, whereas SO(M) is also possible on D5-branes for Bij 6= 0. The cases of interest
for us are SU(2) ⊂ U(2) and USp(2), which will be implicitly assumed in what follows.
For Witten SU(2) anomaly, only the strings stretched between the background D9-branes
and the probe branes, which transform in the fundamental representation of the SU(2)
probe-brane gauge group, are relevant. Since the spectrum of these bifundamental strings
are given entirely by the cylinder amplitude, supersymmetry breaking by the orientifold
projection is not affecting our discussion below. In the following, we will first consider
the corresponding spectra in type I language and then perform T-dualities in all internal
directions. After T-duality, one obtains a geometry with O+, O−, O+, O−-planes, but due
to the argument above one can restrict to configurations with O±-planes only. The only
cases giving constraints are when background branes are located on O−-planes, which is
implicitly assumed in what follows.

4.1 Probe branes in eight dimensions

In the type I string compactified to eight dimensions on T 2, two T-dualities switch the
description into the type IIB/Ω′ orientifold framework, where Ω′ contains two parity op-
erations (X8, X9) → (−X8,−X9). One finds that: D9-D5 states contain six-dimensional
Majorana-Weyl fermions in the (M, 2) of the gauge group SO(M)9 × USp(2)5. After T-
duality, if the D5 probe brane wraps T 2, the configuration becomes D7-D3 with four-
dimensional Weyl fermions in the bifundamental representation. Placing some D7 and D3
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on the four O7-planes, we learn that at each orientifold fixed point, M should be even.
Therefore stuck half-D7-branes i.e. without dynamical positions, and in particular SO(1)
configurations, are not allowed.

Once this rule is satisfied, there are no further non-trivial constraints coming from D5
probe branes wrapped differently, or from D7 and D3 probe branes.

4.2 Probe branes in six dimensions

In type I string compactified to six-dimensions on T 4, the probe branes of interest are D5-
branes (which are not points in T 4), D7-branes whose worldvolume wrap T 4 and D3-branes.
The strongest constraints come from D9-D5 strings, which become D5-D5 strings after four
T-dualities, with the probe D5-branes wrapping a T 2 in the compact internal space. The
consistent configurations with stacks of odd numbers of background half-D5-branes on
orientifold fixed points must contain even numbers of such stacks in each T 2 in T 4.

4.3 Probe branes in four dimensions

In type I string compactified to four-dimensions on T 6, the only probe branes of interest
are D7-branes and D3-branes. The former give no constraint since the number of D9-D7
Weyl fermions after reduction to four dimensions is always even. Moreover, after six T-
dualities, the probe D3-branes become D9-branes which wrap the entire internal space,
while the background D9-branes become D3-branes. Hence, the probe D9-branes intersect
all background D3-branes, leading to no constraint.

4.4 Extra non-perturbative constraint

In addition to the Witten anomaly, another constraint on the allowed configurations comes
from imposing that, in any dimension, the Wilson lines (or brane positions after T-duality)
belong to SO(N) (actually Spin(N)) and not O(N). This is because at a nonperturbative
level, the component of O(N) disconnected from SO(N) cannot be defined [97]. This
implies that all determinants of Wilson-line matrices must equal one.

In practice, when the branes are located at fixed points, the matrix of Wilson lines
along a direction Xi is diagonal, with entries 1 or −1 only. The number of 1’s corresponds
to the number of half-branes sitting at the origin of direction Xi while the number of −1’s
is the number of half-branes at position Xi = πRi [18–30]. For the determinant to be one,
we thus conclude that the allowed brane configurations are the ones for which the number
of half-branes in each hyperplan Xi = 0 or Xi = πRi is even.

5 Gravitino mass versus SUSY breaking scale on D-branes

The main feature of the class of models constructed in this paper is the existence of two
supersymmetry breaking mass scales: one in the closed-string sector, which is related to the
compactification (KK or winding) scale, and another one in the open-string (gauge) sector,
which is either the winding scale or the string scale, depending on which one is smaller. As
mentioned in the introduction, this was already achieved in [76]. Our construction, which
is motivated by the orientifold projection put forward in the pioneering paper [77], allows
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one to avoid the open-string instabilities typically present in such constructions. In the
following, we discuss in some details the mass scales and the limits where supersymmetry
is restored in the non-SUSY 8d model of section 2.

In the geometry of O-planes shown in figure 1c, the 8 D7-branes can be put in a single
stack located in the bulk or coincident with one of the four orientifold planes. Let us
consider the latter case.

• Putting the stack on top of the O7−-plane closer to the O7−-plane, the Möbius contri-
bution to the vacuum energy is positive, since the D7-branes are repelled from the O7−
plane and attracted towards the O7+-plane. The Möbius amplitude takes the form

M = −N2

∫ ∞

0

dτ2
τ5

2
Wn9

[
W2n8 + (−1)n9W2n8+1

] V̂8 − (−1)n9Ŝ8
η̂8

(
iτ2
2 + 1

2

)
, (5.1)

while the cylinder amplitude is still given by (2.27). The “field-theory” open-string
spectrum is encoded in

(A+M)|FT =
∫ ∞

0

dτ2
τ5

2

{
N(N−1)

2

[
W2n9Wn8

V8−S8
η8 +W2n9+1

(
W2n8

V8
η8 −W2n8+1

S8
η8

)]∣∣∣∣
0

+N(N+1)
2 W2n9+1

(
W2n8+1

V8
η8 −W2n8

S8
η8

)∣∣∣∣
0

}
, (5.2)

and is supersymmetric at the massless level. The gauge group is SO(N), where N = 16
is fixed by the RR tadpole condition. Since the closed-string spectrum becomes super-
symmetric when R8 → 0 and/or R9 →∞ (in particular gravitinos become massless), it
is interesting to take these limits in the open (gauge) spectrum. The first limit R8 → 0
leads to a supersymmetric spectrum on the D7-branes. Indeed, the winding towers of
bosons and fermions collapse to the same value. Supersymmetry is broken only at the
massive winding level and for R8 ≤

√
α′ can therefore be considered as spontaneous at

the field-theory massless level, after including quantum corrections. In the other limit
R9 → ∞, the open-string states featuring supersymmetry breaking become infinitely
heavy and decouple at low energy.10

• Putting all D7-branes on one stack coincident with the O7−-plane closer to the O7+-
plane, the Möbius contribution to the vacuum energy is negative. Otherwise there are
no major differences.

• Let us now consider the case where all D7-branes are coincident with the O7+-plane,
whose amplitudes are displayed in eqs. (2.27) and (2.25). The “field-theory” open-string
spectrum is encoded in

(A+M)|FT =
∫ ∞

0

dτ2
τ5

2

{
N(N + 1)

2 W2n9

(
W2n8

V8
η8 −W2n8+1

S8
η8

)∣∣∣∣
0

+N(N − 1)
2

[
W2n9

(
W2n8+1

V8
η8 −W2n8

S8
η8

)
+W2n9+1Wn8

V8 − S8
η8

]∣∣∣∣
0

}
.

(5.3)
10However, none of the limits has a purely perturbative orientifold description. In the first case R8 → 0

the open-string spectrum does not have a 9d interpretation, whereas in the second case R9 →∞ there are
local charges and tensions that generate a strong backreaction (local tadpoles are not cancelled).
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The gauge group is USp(N), where N = 16 is fixed by the RR tadpole condition.
In this case, the pattern of supersymmetry breaking depends on the value of R8. If
this radius is large (and in general when branes are coincident with anti-orientifold
planes) the breaking is at the string scale, with nonlinearly realized supersymmetry.
This interpretation is valid in the regime of large R8 and R9 >

√
α′, when there are

light gravitinos in the spectrum.

In the limit R8 → 0, the spectrum becomes however supersymmetric. In fact, when R8
is small, supersymmetry can be interpreted as spontaneously broken, since there is a
shift in the fermion masses compared to the bosons in the winding sector. Although
this seems similar to the familiar Scherk-Schwarz breaking, the mechanism has also
features in common with Brane Supersymmetry Breaking since the deformation does
not affect the cylinder but acts in the Möbius amplitude by exchanging symmetric with
antisymmetric gauge-group representations for fermions (compared to bosons) in the
open-string spectrum. Throughout the paper, we have used the terminology “super-
symmetry breaking at the string scale” for this situation, in order to distinguish it with
the case where the D-branes are on top of O±-planes.

When R9 → ∞ at fixed R8, the spectrum encoded in (5.3) does not become super-
symmetric, whereas the closed-string spectrum does. This is interesting since one may
think that an exact Brane Supersymmetry Breaking Spectrum is realized in this limit.
If true, this would also be a counter-example of the gravitino mass conjecture put for-
ward recently in [74, 75]. However, when R9 → ∞, the local sources from D-branes
and O-planes generate local tadpoles and thus large backreactions responsible for the
breaking of the effective field theory description, as conjectured in [74, 75].11 On the
other hand, the model shows that the value of the gravitino mass m3/2 can be decoupled
from the size of the scalar potential V , for fixed values of the moduli. In particular,
|m3/2| � |V |1/d is possible. Hence, we do not see any fundamental reason in quantum
gravity to necessarily have a high gravitino mass compared to the Hubble scale [102],
as recently proposed in [103, 104].

• Finally, putting all D7-branes on one stack coincident with the O7−-plane, the Möbius
contribution to the vacuum energy is positive and the pattern of supersymmetry break-
ing is similar to that found in the previous case.

Let us summarize the similarities and differences between BSB models and the ones
we have constructed in this paper. In BSB models, the closed-string spectrum is super-
symmetric, therefore there are massless gravitinos, whereas in the open-string spectrum
supersymmetry is non-linearly realized, meaning that bosonic and fermionic degrees of
freedom do not match level by level. The price to pay is the presence of a disk NS-NS

11Note however that these references do not claim that a limit of zero gravitino mass is not possible.
There are known examples of Scherk-Schwarz type where the whole spectrum and interactions (closed and
open strings in orientifolds, or only closed strings in heterotic and type II strings) become supersymmetric
in the decompactification limit. The claim is that such a limit is not possible, within an effective field
theory description, if there is some sector breaking supersymmetry in the limit of vanishing gravitino mass.
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tadpole, which could signal a breakdown of perturbation theory. In the models we dis-
cussed in this paper, supersymmetry is broken in the closed sector at the compactification
scale, whereas the scale of supersymmetry breaking in the open sector can be the string
scale. There are no disk NS-NS tadpoles, but generically there is a one-loop cosmological
constant. There is a continuous modulus which in the limit R9 → ∞ seems to realize an
exact BSB setup. However, local sources (local tadpole cancelation conditions) generate a
strong backreaction and prevents this limit to be realized.

6 Conclusions and open questions

We have constructed supersymmetry-breaking orientifold models where a certain num-
ber n of O− (negative tension, negative charge) -O+ (positive tension, positive charge)
orientifold-plane pairs are transformed into n O− (negative tension, positive charge) -
O+ (positive tension, negative charge) pairs. The anti-orientifold plane pairs preserve
the other half of supersymmetries, compared to the other ingredients of the background,
which are O±-planes and D-branes. In the open-string sector, supersymmetry is only bro-
ken in the Möbius vacuum amplitude, whereas the closed-string sector has softly broken
supersymmetry.

The main interest of this mechanism is that both the original O−-O+ pairs and their
SUSY breaking cousins O−-O+ have zero tension and charge, so that the total tension and
charge of the models are unchanged upon replacement. Therefore there are neither NS-NS
nor RR tadpoles generated in the process.

Depending on where the background D-branes sit in the internal space, their massless
spectrum is supersymmetric or not. In the latter case, which corresponds to D-branes
located on anti-orientifold planes, the pattern of supersymmetry breaking depends on the
value of a radius. If it is large, the breaking is at the string scale, with nonlinearly realized
supersymmetry. On the contrary, if the radius is small, the same configuration describes
a spontaneous breaking of supersymmetry. In this regime, the winding states in the D-
brane spectrum are light and supersymmetry breaking can be interpreted as a shift in the
fermion masses compared to the bosons in the winding sector. This seems similar to the
more familiar breaking by compactification (Scherk-Schwarz), but it differs in detail in that
the brane-brane cylinder amplitude is not subject to this shift.

Constructions of this type naturally stabilize open-string moduli. Indeed, energetic
considerations favor the D-branes to sit on top of O+-planes, where the scale of supersym-
metry breaking on their worldvolume is maximal.

An interesting issue in such models is their effective field-theory limits. At first sight,
as initially considered in [77], it seems possible that the closed-string spectrum is super-
symmetric at tree level. However, we have provided arguments showing that this is not
plausible, as it would be at odds with the boundary conditions of the gravitinos imposed by
the simultaneous presence of orientifold and anti-orientifold planes, which suggests massive
gravitinos. In fact, we have given reasons in favor of a specific soft supersymmetry-breaking
deformation in the closed-string sector, rendering massive the gravitinos. Moreover, if an
exact supersymmetric closed-string spectrum would be compatible with the orientifold
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amplitudes discussed in our paper, one would obtain new models of Brane Supersymme-
try Breaking type. This would also give counter-examples of the gravitino mass conjec-
ture [74, 75], whereas the models constructed in our paper are in agreement with it. More
generally, existence of models with exact supersymmetry in the closed-string sector and
broken supersymmetry in the open-string sector would contradict the conjecture in [74, 75].
Three more comments are in order here.

First of all, all known models of this type, which are of BSB type or with internal
magnetic fields and broken supersymmetry, have NS-NS disk tadpoles that could plausibly
trigger a breakdown of the effective field theory in the perturbative vacuum, in agreement
with [74, 75]. Secondly, the exact supersymmetry in the closed-string sectors of such
models is valid only at tree-level, as it is broken by quantum corrections induced by the
open-string sector. It is unclear to us if the conjecture on the gravitino mass should apply
to the classical theory (tree-level spectrum) or to the quantum one. Lastly, in the string
models we have constructed, it is possible to decouple the gravitino mass from the size
of the scalar potential. In particular, the gravitino can be much lighter than the scale
determined by the magnitude of the quantum potential. This fact could play a role in
inflationary models of the type studied in [102–107].

Eventually, the string models we have considered are based on toroidal compactifica-
tions and the fermionic spectrum, once reduced to four dimensions, is non-chiral. It would
be of course very interesting to construct chiral four-dimensional models with supersymme-
try breaking, by combining the mechanism put forward in this paper with other ingredients
producing chirality, like orbifolds and/or fluxes. We hope to come back to this interesting
question in the near future.
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A Consistency of supersymmetric Möbius projectors

In the construction of models in even dimension lower than 8, we have chosen factorized
Möbius projectors for simplicity. However, this is not imposed by the RR tadpole condition.
In this appendix, we will confirm that non-factorized projectors can be fully consistent, but
we will also see that imposing the RR tadpole condition is not enough to obtain a Möbius
projector fully consistent. In the latter case, the inconsistency can only be seen in the
direct Klein-bottle amplitude, while it is invisible in the open-string sector. We will study
supersymmetric examples in 6d with rank B = 4.

A.1 A consistent non-factorized Möbius projector

In 6d, with all D-branes located at the origin, a generic Möbius projector contains 16 terms,
one for each fixed point with appropriate phases. The RR tadpole condition constrains the
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overall charge of the O-planes and thus the number of O− and O+-planes. In the projector,
this translates into a given number of minus and plus signs. In 6d with maximal rank for
Bij , there are 10 O5− and 6 O5+-planes. This yields 10 terms with a minus sign and 6
terms with a plus sign in the projector. The total number of possibilities that fulfils this
requirement is

(16
6
)

= 8008.
Let us look at the following projector,

Π = 1 + (−1)m9 + (−1)m8 − (−1)m9+m8 + (−1)m7 − (−1)m9+m7 − (−1)m8+m7

− (−1)m9+m8+m7 + (−1)m6 − (−1)m9+m6 − (−1)m8+m6 − (−1)m9+m8+m6

− (−1)m7+m6 − (−1)m9+m7+m6 − (−1)m8+m7+m6 + (−1)m9+m8+m7+m6 . (A.1)

With all D-branes at the origin, we deduce the geometry of the model,

(O5+,O5+,O5+,O5−,O5+,O5−,O5−,O5−,O5+,

O5−,O5−,O5−,O5−,O5−,O5−,O5+) . (A.2)

It turns out to give no projection in the tree-level channel Klein-bottle amplitude, as was
the case in eq. (3.8). This is thus consistent with the supersymmetric torus amplitude
generated by g1 and g2. The transverse cylinder amplitude is also the one obtained in
eq. (3.8), while the Möbius amplitudes, both in tree-level and loop channels, are

M̃=−N(α′)2

4v4

∫ ∞

0
dl
[
(P2m9 +P2m9+1(−1)m6)(P2m8P2m7+1+P2m8+1P2m7)

+(P2m9+1−P2m9(−1)m6)(P2m8P2m7−P2m8+1P2m7+1)
]
Pm6

V̂8−Ŝ8
η̂8

(
il+ 1

2

)

M=
∫ ∞

0

dτ2
τ4

2

[
Wn9 (W2n8W2n7−W2n8+1W2n7+1)(W2n6 +W2n6+1(−1)n9)

+(W2n8W2n7+1+W2n8+1W2n7)(W2n6(−1)n9−W2n6+1)
] V̂8−Ŝ8

η̂8

(
iτ2
2 + 1

2

)
. (A.3)

The tree-level channel Möbius amplitude contains all momentum states, just like the tree-
level Klein bottle and cylinder, so that the factorization property of the amplitudes is
satisfied. The loop-channel Möbius amplitude is also consistent with the cylinder since it
contains the contributions of the same states with signs. We conclude that the projec-
tor (A.1) yields a fully consistent model.

A.2 An inconsistent Möbius projector

Now consider the following projector, which has the correct number of signs to satisfy the
RR tadpole condition,

Π = 1 + (−1)m9 + (−1)m8 + (−1)m9+m8 + (−1)m7 + (−1)m9+m7 − (−1)m8+m7

− (−1)m9+m8+m7 − (−1)m6 − (−1)m9+m6 − (−1)m8+m6 − (−1)m9+m8+m6

− (−1)m7+m6 − (−1)m9+m7+m6 − (−1)m8+m7+m6 − (−1)m9+m8+m7+m6 . (A.4)
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With all D-branes at the origin, the distribution of O-planes is given by

(O5+,O5+,O5+,O5+,O5+,O5+,O5−,O5−,O5−,
O5−,O5−,O5−,O5−,O5−,O5−,O5−) . (A.5)

With this geometry, the tree-level channel Klein bottle is now different and not all mo-
mentum states are present. The tree-level and loop-channel Klein-bottle and Möbius am-
plitudes are

K̃ = (α′)2

v4

∫ ∞

0
dl P2m9 (Pm8Pm7Pm6 + 8P2m8P2m7P2m6+1) V8 − S8

η8
(
il
)
,

K = 1
4

∫ ∞

0

dτ2
τ4

2
Wn9 (W2n8W2n7W2n6 +Wn8Wn7(−1)n6Wn6) V8 − S8

η8
(
2iτ2

)
,

M̃ = N(α′)2

4v4

∫ ∞

0
dl P2m9

{
P2m8 [Pm7Pm6 − 2P2m7 (P2m6 − P2m6+1)]

+ P2m8+1 (P2m7 − P2m7+1)Pm6

} V̂8 − Ŝ8
η̂8

(
il + 1

2

)
,

M = N

2

∫ ∞

0

dτ2
τ4

2
Wn9Wn8 (W2n7W2n6 −Wn7W2n6+1 + (−1)n8W2n7+1W2n6)

× V̂8 − Ŝ8
η̂8

(
iτ2
2 + 1

2

)
. (A.6)

The loop-channel Möbius amplitude contains all states present in the cylinder. Moreover,
the tree-level Klein-bottle, cylinder and Möbius amplitudes respect amplitude factorization.
The only inconsistency comes from the Klein bottle in the loop-channel, which contains
states not present in the torus amplitude. This means that the RR tadpole condition is
not enough to produce a consistent Möbius projector. The inconsistency can only be seen
in the closed-string sector and comes from the geometry of the model.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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premier temps, nous définissons un nouveau
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exemple par le calcul de l’expansion de Taylor
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tions de corrélation à deux points à une boucle
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des cordes de type I. Enfin, dans le cadre de

modèles de cordes hétérotiques, nous étudions

l’effet sur la cosmologie du potentiel à une

boucle générée par la brisure de supersymétrie.

Nous recherchons des solutions d’espace-temps

plat en éternelle expansion et nous explorons

un nouveau processus pour générer une den-

sité relique de matière noire dans des modèles

avec implémentation de la température.

Title: String theory: Supersymmetry breaking, moduli stability and cosmological considera-

tions

Keywords: String theory, Supersymmetry breaking, Moduli, Cosmology

Abstract: The purpose of this thesis is to ex-

plore various aspects of string theory, a unified

theory of matter and all fundamental interac-

tions including gravity. Some useful key ingre-

dients of the theory and its construction are

reviewed before investigating three theoreti-

cal facets of it. First, a new supersymmetry-

breaking mechanism in open-string models is

developed and its features are described, com-

mented and put into perspective with other

existing mechanisms. Second, one-loop masses

acquired by tree-level moduli are studied in a

type I string context with N = 2 → N = 0

breaking of supersymmetry implemented by a

Scherk–Schwarz mechanism. Different strate-

gies are used to conclude on the stability or

not at one loop of the wide variety of mod-

uli present in the model, from Taylor expan-

sion of the effective potential to the evalua-

tion of genus-1 two-point correlation functions

through arguments arising from the duality be-

tween the heterotic and type I string. Even-

tually, in heterotic string models, the backre-

action of the one-loop potential generated by

supersymmetry breaking on the cosmology is

studied. Flat and ever-expanding solutions are

looked for in a cold setup while a new process

for generating a dark-matter relic density is

developed with implementation of finite tem-

perature.
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