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Résumé

Cette thèse est consacrée à l’étude d’événements dynamiques rares dans des systèmes de parti-
cules en interaction. Deux modèles sont considérés : le processus d’exclusion simple symétrique
unidimensionnel interagissant avec des réservoirs, et un modèle de dynamiques d’interfaces se rap-
prochant de la dynamique de Glauber du modèle d’Ising bidimensionnel à température nulle.
Dans le cadre du modèle d’exclusion simple, les travaux présentés visent à l’étude des corrélations
à deux points hors équilibre. Plus précisément, le but est d’estimer la probabilité d’obtenir une
valeur atypique des corrélations à deux points moyennées en temps dans la limite hydrodynamique
et en temps long. Pour étudier les corrélations à deux points avec le niveau de précision requis,
il est nécessaire d’améliorer les techniques existantes. En raffinant la méthode d’entropie relative
initialement développée par Yau, un principe de grandes déviations pour les corrélations à deux
points est obtenu.
La dynamique d’interface modélise l’évolution d’une goutte de spins − d’Ising immergés dans une
mer de spins + sur un réseau carré. Dans le cas de la dynamique d’Ising à température nulle, la
frontière de cette goute évolue selon un mouvement à courbure moyenne anisotrope, comme a été
rigoureusement établi par Lacoin, Simenhaus et Toninelli il y a quelques années. Dans la thèse, c’est
la structure des trajectoires atypiques que l’on cherche à comprendre. Pour ce faire, une dynamique
d’interface, appelée dynamique de contour et très similaire à la dynamique d’Ising à température
nulle est introduite. La seule dissemblance vient de la présence d’un paramètre supplémentaire,
jouant le rôle d’une (faible) température agissant localement sur l’interface. En particulier, les
dynamiques d’Ising et de contour cöıncident quand ce paramètre est nul. Il est montré que la
trajectoire typique d’une interface sous la dynamique de contour évolue également par mouvement
par courbure moyenne anisotrope, avec une influence du paramètre de température. Un principe
de grandes déviations est alors obtenu pour la dynamique de contour, permettant de relier les tra-
jectoires atypiques à des perturbations d’un mouvement à courbure moyenne anisotrope, toujours
avec une influence du paramètre de température.



Abstract

The objective of this thesis is the study of rare dynamical events in some interacting particle
systems. Two models are considered : the one dimensional symmetric simple exclusion process
interacting with reservoirs, and an interface dynamics related to the zero temperature Glauber
dynamics for the two dimensional Ising model.
In the case of the simple exclusion process, the work presented in the manuscript concerns the
study of the out of equilibrium two-point correlation field. More precisely, the objective of the work
is to estimate the probability of observing anomalous time-averaged two-point correlations, in the
hydrodynamics scaling and the long time limit simultaneously. Studying two-point correlations at
a suitable level of precision requires improving existing techniques. A refinement of the relative
entropy method initially due to Yau provides a sufficient toolbox, thanks to which a large deviation
principle for time-averaged two-point correlations is obtained.
The interface dynamics aims at modelling the evolution of the interface separating a droplet of −
Ising spins in a sea of + spins in the zero temperature Ising model. In the zero temperature Ising
case, the boundary of this droplet has been shown to follow an anisotropic motion by curvature by
Lacoin, Simenhaus and Toninelli a few years ago, rigorously establishing a long standing conjecture.
In the manuscript, we aim to investigate the structure of atypical interface trajectories. To do so,
another interface dynamics, called the contour dynamics, is introduced. Very similar to the zero
temperature Ising dynamics, it differs by the presence of an additional parameter, which plays
the role of a (small) temperature acting locally on the interface. In particular, Ising and contour
dynamics coincide when this parameter vanishes. We show that the typical interface trajectory in
the contour dynamics is still given by an anisotropic motion by curvature, with an influence of the
temperature-like parameter. A large deviation principle is also established, characterising atypical
trajectories as perturbations of the anisotropic motion by curvature, again with an influence of the
temperature-like parameter.
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3 Interfaces d’Ising et dynamique de contour . . . . . . . . . . . . . . . . . . . . . . . 51

3 Anomalous correlations in the open symmetric simple exclusion process 53
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2 Notations and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.1 Notations and definition of the microscopic model . . . . . . . . . . . . . . . 58
2.2 The topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3 Large deviations for time-averaged correlations . . . . . . . . . . . . . . . . . 61
2.4 The relative entropy method . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.5 Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3 Main ingredient: the entropic estimate . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.1 The relative entropy method and Feynman-Kac inequality . . . . . . . . . . 67
3.2 Estimates on L∗

h1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3 Adjoint at the boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.4 Adjoint in the bulk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4



3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.6 The Radon-Nikodym derivative . . . . . . . . . . . . . . . . . . . . . . . . . 87

4 Long-time behaviour: upper bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.1 Upper bound for open and compact sets . . . . . . . . . . . . . . . . . . . . 89
4.2 An L2 estimate and a first Poisson equation . . . . . . . . . . . . . . . . . . 95
4.3 Energy estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 Lower bound for smooth trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.1 Estimate of the cost of changing initial condition . . . . . . . . . . . . . . . 103
5.2 Law of large numbers and Poisson equation . . . . . . . . . . . . . . . . . . 104
5.3 Estimating the dynamical part . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.4 Conclusion of the lower bound for smooth trajectories and accessible corre-

lations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
A Correlations and concentration under discrete Gaussian measures . . . . . . . . . . 112

A.1 Bound on the partition function and correlations . . . . . . . . . . . . . . . 112
A.2 Exponential moments of higher order correlations . . . . . . . . . . . . . . . 120
A.3 Gaussian behaviour of the invariant measures and computation of the par-

tition function ZNg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
B Integration by parts formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

B.1 Integration by parts in the bulk . . . . . . . . . . . . . . . . . . . . . . . . . 129
B.2 Integration by parts at the boundary and boundary correlations . . . . . . . 131

C Control of the error terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
C.1 Estimate of X2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
C.2 Proof of Proposition C.2 and Corollary C.3 . . . . . . . . . . . . . . . . . . . 137

D The Neumann condition on the diagonal . . . . . . . . . . . . . . . . . . . . . . . . 140
E Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
F Poisson equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

F.1 Existence and uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
F.2 Regularity estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4 Ising interfaces and contour dynamics 153
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
2 Model and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

2.1 The contour model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
2.2 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
2.4 Comments on metastability . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
2.5 Structure of the proof of large deviations . . . . . . . . . . . . . . . . . . . . 173

3 Some relevant martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
3.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
3.2 Computation of N2Lr,β,H

〈

Γ·, G·
〉

. . . . . . . . . . . . . . . . . . . . . . . . 174
4 Large deviation upper-bound and properties of the rate functions . . . . . . . . . . 188

4.1 The upper bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
4.2 Properties of the rate function . . . . . . . . . . . . . . . . . . . . . . . . . . 193

5 Lower bound large deviations and hydrodynamic limits . . . . . . . . . . . . . . . . 196
5.1 Large deviation lower-bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

5



5.2 The droplet moves on a diffusive scale . . . . . . . . . . . . . . . . . . . . . 198
5.3 Characterisation of limit points . . . . . . . . . . . . . . . . . . . . . . . . . 203

6 Behaviour of the poles and 1pk=2 terms . . . . . . . . . . . . . . . . . . . . . . . . 205
6.1 Size of the poles and local equilibrium . . . . . . . . . . . . . . . . . . . . . 205
6.2 Convergence of the 1p=2 term at fixed β and slope around the poles . . . . . 210

A Replacement lemma and projection of the dynamics . . . . . . . . . . . . . . . . . . 227
A.1 Replacement lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
A.2 Projection of the contour dynamics in the good state space . . . . . . . . . . 231
A.3 Equilibrium estimates at the pole . . . . . . . . . . . . . . . . . . . . . . . . 233

B Topology results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
B.1 Definition of Er and topological properties . . . . . . . . . . . . . . . . . . . 236
B.2 The set E([0, T0], Er(d)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
B.3 Proof of the sufficient condition for exponential tightness . . . . . . . . . . . 245

Bibliography 250

6



Chapter 1

Introduction

1 General context

The central premise of statistical physics can be stated as follows: the behaviour of matter at a
large, or macroscopic scale can be described in terms of the interaction of a very large number
of small, or microscopic elementary components. For simplicity, there should be as few different
types of elementary components as possible. Over the past one and a half century, this premise has
not been fundamentally called into question. To the contrary, statistical physics has enjoyed many
successes, such as modelling phase transitions or, more recently, the modelling of fluid dynamics,
with which this thesis is concerned.

As the name indicates, a statistical physics description of fluid dynamics involves a notion
of randomness. The microscopic components in the description, that we shall call particles for
convenience, are assigned evolution and interaction rules. The resulting description is then called
an interacting particle system. The randomness in such a description may either concern the initial
configuration of particles, their evolution rule, the interactions, or a mixture of all three. Given
an interacting particle system, the objective is then to estimate the probability that macroscopic
observables take certain values. Informally, an observable is a quantity of physical interest, for
instance the local density of particles, the density of particles of a certain type if not all particles are
identical, etc. It is represented by a real-valued function F , which takes as argument a description
X1(t), ..., XN(t) of the N particles at time t ≥ 0. One is then led to estimate objects of the form:

P
(

F (X1(t), ..., XN(t)) ≈ F0(t)
)

, F0(t) ∈ R, (1.1)

where P is a probability accounting for the aforementioned randomness. The integer N is the num-
ber of particles in the model, assumed to be large, X1, ..., XN are labels denoting the N particles
which move around in a space Ω, and t ≥ 0 is a time. Finally, the notation ≈ indicates that the
observable F at time t should be close to the real number F0(t).

If the modelling is accurate, the probability in (1.1) should be close to 1 when F0(t) corresponds
to the value of the observable F predicted by the macroscopic equations of fluid dynamics. One
may then ask about the probability that the observable F takes atypical values when N is large,
try to quantify the probability of such occurrences, and understand how particles must behave to
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create a given atypical macroscopic dynamical evolution. The study of all these questions falls
under the general topic of large deviations, which is at the heart of this thesis. Large deviations
are introduced on a prototypical interacting particle system in the next section: the symmetric
simple exclusion process.

2 A prototype of interacting particle system: the symmet-

ric simple exclusion process

2.1 The model

The symmetric simple exclusion process (henceforth SSEP), presented here in one dimension, is a
simple interacting particle system defined as follows. For a scaling parameter N ∈ N∗, particles
evolve on a domain ΛN = {−(N − 1), ..., N − 1} with 2N − 1 sites (i.e. space is discretised).
There can be at most one particle per site, and the evolution is random: at each time t ≥ 0,
independently of all other particles, a particle at site i ∈ ΛN has a probability dt/2 of jumping
to a neighbouring site between times t and t + dt, with dt ≪ 1. The only interaction between
particles arises when a particle jumps on an already occupied neighbouring site. In this case, the
jump is cancelled. At the boundary sites ±(N − 1) of the domain ΛN , one can connect reservoirs
of particles at respective density ρ± ∈ [0, 1], which pump particles in and out of ΛN . The SSEP
with boundary reservoirs will be called the open SSEP (see Figure 1.1).

The open SSEP is a model of dynamics for a high temperature gas of particles with hard-core
exclusion. The ”high temperature” part is related to the fact that particles do not interact except
when they collide, see also some more context in [Spo83]. By definition, particles evolve on a
discrete lattice, are identical, and have no memory. These simplifying assumptions make mathe-
matical analysis much easier. For this reason, the open SSEP and more or less close variants (with
non nearest-neighbour hopping, asymmetric hopping rates, in higher dimension, with more than
one particle per site...) have been studied at length in the past fifty years, be it their invariant
measures and the required time to reach stationarity; or hydrodynamics, the behaviour of a tracer
particle, fluctuations or large deviations. The literature on these topics is extensive, both in the
mathematics and physics community, and here we only wish to indicate the books [Lig05], [Spo12]
and [KL99], in which the interested reader will find much material and more references.

The open SSEP will serve as a reference example for the rest of this introduction. All models
studied in this manuscript are related to the open SSEP by some choice of boundary dynamics.
Let us first give a rigorous definition of the model. Formally, the open SSEP on ΛN = {−(N −
1), ..., N − 1} is a Markov process on the state space ΩN = {0, 1}ΛN . Elements η ∈ ΩN are called
configurations, and ηi is the occupation number at site i ∈ ΛN , with ηi = 1 if and only if there is a
particle. The generator L = L0 +L− +L+ of the open SSEP can be split into two parts: the bulk
dynamics L0, and the boundary dynamics L−, L+. Several choices of boundary dynamics can be
considered. To fix ideas, we shall consider L as the operator acting on functions f : ΩN → R as

8



Figure 1.1 – The one dimensional symmetric simple exclusion process interacting with reservoirs of parti-
cles at densities ρ± ∈ [0, 1] (open SSEP for short). Possible dynamical updates are represented by arrows.
A particle can jump to either neighbouring site at rate 1/2. The jump is cancelled if the site is already
occupied. Particles can hop in and out of the reservoirs, at respective rates ρ±, 1 − ρ± with the choice
(2.1). If the site closest to a reservoir is already filled, the exclusion rule prevents a new particle from
entering the system at that site.

follows: for each η ∈ ΩN ,

Lf(η) = L0f(η) + L−f(η) + L+f(η), L0f(η) =
1

2

∑

i<N−1

c(η, i, i+ 1)
[

f(ηi,i+1)− f(η)
]

,

L±f(η) =
1

2
c(η,±(N − 1))

[

f(η±(N−1))− f(η)
]

. (2.1)

In (2.1), the jump rates c are defined, for each η ∈ ΩN , by:

c(η, i, i+ 1) = ηi+1(1− ηi) + ηi(1− ηi+1), i < N − 1,

c(η, ε(N − 1)) = ηε(N−1)(1− ρε) + (1− ηε(N−1))ρε, ε ∈ {−,+}. (2.2)

In addition, for i, j ∈ ΛN and η ∈ ΩN , the configurations ηi,j and ηi are defined as:

ηi,jk =











ηk if k /∈ {i, j},
ηj if k = i,

ηi if k = j,

ηi(k) =

{

ηk if k 6= i,

1− ηi if k = i.
(2.3)

The open SSEP can equivalently be considered as a process on the discretisation N−1ΛN of the
interval (−1, 1).

2.2 Dynamical large deviations and invariant measures

2.2.1 The general method

Recall that the goal is to study (1.1). As all particles are identical in the SSEP, one can only
measure local numbers of particles, and variations of these numbers. As a consequence, the natural
macroscopic observables associated with the SSEP are the density ρ = (ρ(t, x))t≥0,x∈(−1,1) and its
variations, such as the current j = (j(t, x))t,x. The goal is then, starting from the microscopic
dynamics (2.1), to characterise the time evolution of the density of particles in the scaling limit.
This is usually referred to as proving hydrodynamics for the density.
Let us do so in an informal manner. For a configuration η ∈ ΩN , ε > 0 and a point i ∈ ΛN
in the bulk (N(−1 + ε) < i < N(1 − ε)), denote by ηεNi the density of particles in the box

9



i
N
+ [−ε, ε] ⊂ (−1, 1):

ηεNi =
1

2εN + 1

∑

|j−i|≤εN
ηj.

Let C∞([−1, 1]) be the set of smooth functions on [−1, 1]. Assume that ρ0 ∈ C∞([−1, 1]) is given,
and the microscopic dynamics start from configurations that are macroscopically close to ρ0, so
that:

∀x ∈ (−1, 1), E

[

∣

∣ηεN⌊xN⌋(0)− ρ0(x)
∣

∣

]

→ 0 when N →∞, then ε→ 0. (2.4)

Above, ⌊xN⌋ is the integer part of xN . Then, for each x ∈ (−1, 1) and each t ≥ 0, one has (see
[ELS90]):

∀t ≥ 0, E

[

∣

∣ηεN⌊xN⌋(tN
2)− ρ(t, x)

∣

∣

]

→ 0 when N →∞, then ε→ 0, (2.5)

where ρ = (ρ(t, x))t≥0,x∈(−1,1) is the solution of the heat equation on (−1, 1) starting from ρ0, with
boundary conditions prescribed by the reservoirs:











∂tρ =
1
2
∆ρ for t > 0, x ∈ (−1, 1),

ρ(0, ·) = ρ0(·),
ρ(t,±1) = ρ±, for t > 0.

(2.6)

Note the N2 rescaling of time in (2.5): since particles do not preferentially move in a single direc-
tion, it typically takes a diffusive amount of time to obtain a macroscopic change in the density
of particles. Using standard hydrodynamics argument, see e.g. Chapter 4 in [KL99], one can
in fact prove that, for times TN ≪ N2, the macroscopic density of particles has not changed;
while for times TN ≫ N2, it has already reached a stable profile, which in the case of (2.6) is
the solution of ∆ρ = 0 with ρ(±1) = ρ±. In particular, all interesting dynamical effects for the
density at the macroscopic scale occur on theN2, diffusive time-scale, on which we focus on for now.

Remarkably, the macroscopic evolution (2.6) of the density for the SSEP is the same as for
independent symmetric random walkers on ΛN . Intuitively, if one starts from a density profile ρ0
with a lot of particles around the same position, one could expect that the exclusion rule of the
microscopic dynamics is going to play a role. Equations (2.5)-(2.6) tell us that this intuition is
not correct as far as the typical evolution of the density is concerned. To understand better the
effect of the exclusion interaction and the detailed structure of the dynamics is a first motivation
for studying dynamical large deviations, as we now explain.
The question is now the following. Consider a trajectory ρ̃ ∈ C∞(R+ × (−1, 1)), assumed to be
smooth for simplicity, and such that 0 < ρ̃ < 1. For a time T ≥ 0, can one find a functional I on
trajectories such that, when N is large and ε, δ are small, one has informally:

P

(

∀t ∈ [0, T ], ∀x ∈ (−1, 1),
∣

∣ηεN⌊xN⌋(tN
2)− ρ̃(t, x)

∣

∣ ≤ δ
)

≍ e−N [I(ρ̃)+oε,δ(1)], (2.7)

with oε,δ(1) a quantity that vanishes when ε, δ become small, and ≍ indicating logarithmic equiv-
alence when N is large.
The now standard method to find such a functional for interacting particle systems was pioneered
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on the SSEP, in a paper by Kipnis, Olla and Varadhan [KOV89]. They treat the case of the SSEP
on a torus, but the method was used in [Ber+03] to obtain the result for the open SSEP (2.2).
Rather than using average occupation numbers in small macroscopic boxes, it is convenient to
work with the empirical measure πN , defined as an element of the set M≤1((−1, 1)) of positive
measures with mass at most 1 on (−1, 1) as follows:

∀η ∈ ΩN , πN(η) =
1

N

∑

i∈ΛN

ηiδi/N . (2.8)

In this case, the event in (2.7) can be written {(πNt )t≤T ≈ (ρ̃(t, x)dx)t≤T}, where ≈ means prox-
imity in a suitable topology. The answer to (2.7) then takes the following form: on the set
D(R+,M≤1((−1, 1))) of càdlàg trajectories with values in M≤1((−1, 1)), there is a functional I,
taking values in R+∪{+∞}, with the following property. The probability of observing a trajectory
ρ̃ of density profiles has ”weight” I((ρ̃(t, x)dx)t≤T ), in the sense:

∀T > 0,
1

N
logP

(

(πNtN2)t≤T ≈ (ρ̃(t, x)dx)t≤T
)

N≫1
= −I

(

(ρ̃(t, x)dx)t≤T
)

. (2.9)

To prove (2.9), the main idea of [KOV89] is the following. To force the microscopic density to
stay close to a trajectory ρ̃, more precisely to enforce that πN stay close to (ρ̃(t, x)dx)t in an
appropriate topology, one modifies the jump rates (2.2) of the open SSEP by means of a time-
dependent function h ∈ C∞(R+ × [−1, 1]) with h(·,±1) = 0; setting, for each time t ≥ 0 and each
η ∈ ΩN :

cht(η, i, i+ 1) = ηi(1− ηi+1) exp
[

h
( t

N2
,
i+ 1

N

)

− h
( t

N2
,
i

N

)]

(2.10)

+ ηi+1(1− ηi) exp
[

− h
( t

N2
,
i+ 1

N

)

+ h
( t

N2
,
i

N

)]

, i < N − 1,

cht(η,±(N − 1)) = c(η,±(N − 1)) exp
[

(1− 2ηi)h
( t

N2
,
±(N − 1)

N

)]

. (2.11)

Above, ht := h(t, ·) for t ≥ 0. Such an h is called a bias, and the resulting dynamics is referred
to as the dynamics tilted by h. One can again determine the typical evolution ρh of the density
under this dynamics. It satisfies:

∂tρ
h =

1

2
∆ρh −∇ ·

(

σ(ρh)∇h
)

, (2.12)

where σ(r) = r(1−r) for r ∈ [0, 1]. σ is called the mobility, and its structure depends on the choice
of the microscopic jump rates. Equation (2.12) gives a way to choose h such that ρ̃ = ρh (since we
assumed 0 < ρ̃ < 1 so that σ(ρ̃)−1 is well defined). The cost of observing ρ̃ then corresponds to
the cost of changing dynamics, from the open SSEP to the inhomogeneous Markov process (2.10).
This change of dynamics can be computed explicitly through Feynman-Kac formula, see Appendix
A1.7 in [KL99]. In the large N limit and assuming one starts from an initial configuration ηN ∈ ΩN

satisfying (2.4), one then obtains for each T > 0:

1

N
logP

(

πN ≈ (ρ̃(t, x)dx)t≤T |πN0 ≈ ρ̃0dx
) N≫1

= −1

2

∫ T

0

∫

(−1,1)

[

∇h(t, x)
]2
σ
(

ρ̃(t, x)
)

dxdt

=: −I
(

(ρ̃(t, x)dx)t≤T |ρ̃0
)

, (2.13)
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where h is the bias chosen according to (2.12), when ρh = ρ̃.

The above sketch of the method of [KOV89] omits a crucial part of the argument, required to
change scales from microscopic to macroscopic. Indeed, the Radon-Nikodym derivative between
the open SSEP and the dynamics (2.10), at each fixed value N ∈ N∗ of the scaling parameter,
cannot directly be written in terms of the functional I. This is because I depends only on the
empirical measures πNt , t ≥ 0 (defined in (2.8)). Due to the exclusion interaction between particles,
the Radon-Nikodym derivative however does not have a closed expression in terms of the empirical
measure.
A key step in establishing large deviations for the open SSEP (and more generally for interacting
particle systems) is to derive what is known as local equilibrium. Mathematically, this is achieved
by the so called Replacement Lemma, that turns the Radon-Nikodym derivative into a function of
the empirical measure. Such a result, first proven by Guo, Papanicolaou and Varadhan in [GPV88],
states that, inside a small macroscopic box around x ∈ (−1, 1), the time it takes for the SSEP to
approach equilibrium is much smaller than the time, of order N2, required to change the density
macroscopically at x.
In the proof of large deviations for the SSEP, this statement takes the more formal expression: for
each T ≥ 0, each δ > 0 and each bias h ∈ C∞(R+ × [−1, 1]),

1

N
log P

(
∣

∣

∣

∣

∫ TN2

0

1

N

∑

i<N−1

[

ηi(t)(1− ηi+1(t))− σ
(

ηεNi (t)
)

]

∣

∣∇h
( t

N2
,
i

N

)

∣

∣

2
dt

∣

∣

∣

∣

> δ

)

→ −∞,

when N →∞ then ε→ 0. (2.14)

The function σ(r) = r(1−r), r ∈ [0, 1], appearing in (2.14), is the same as the one in the expression
(2.13) of the functional I(·|ρ̃0). Since ηεN· is a function of the empirical measure, the replacement
(2.14) turns the Radon-Nikodym derivative into a function of the empirical measure as desired.

To summarise, [KOV89] provides a general method to establish dynamical large deviations for
a large class of interacting particle systems evolving on a diffusive time-scale, provided one knows
enough information on their invariant measure. It has been used successfully in the Ginzburg-
Landau model, where the occupation number at each site is replaced by a real parameter [DV89],
in the zero-range process [BKL95], in the SSEP with more general jump rates [QRV99], in the SSEP
and WASEP connected with reservoirs [Ber+03]-[BLM09] and for more general exclusion processes
[FLM11], for reaction diffusion models [JLV93]-[BL12], and more. All these models possess the
so-called gradient property, which makes microscopic computations much easier. Non-gradient
large deviations have been studied in [Qua95], [BFG13].

2.2.2 Equilibrium and non-equilibrium steady states

As mentioned at the end Section 2, the method of [KOV89] relies on the knowledge of the invariant
measure. In many models mentioned at the end of the previous section, the invariant measures of
the microscopic dynamics are well known. In particular, for the open SSEP defined in (2.1), when
both reservoirs have the same density ρ− = ρ+ = ρ ∈ [0, 1], the Bernoulli product measure νNρ on
ΩN is invariant. This measure is defined as follows:

νNρ :=
⊗

i∈ΛN

Ber(ρ), (2.15)
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where Ber(ρ) is the Bernoulli measure on {0, 1} giving probability ρ to 1. Recall that a measure
µN on ΩN is invariant for the open SSEP if, for all test functions φ : ΩN → R,

µN(Lφ) = 0,

where µN(·) denotes expectation under µN , and L is the generator of the open SSEP defined in
(2.1).

In contrast, as soon as the reservoirs in the open SSEP impose different densities ρ− 6= ρ+,
a macroscopic flow of particles is maintained by the dynamics in the steady state. Following
[Ber+15], an invariant measure with a macroscopic flow of particles is called a non-equilibrium
steady state. When instead ρ− = ρ+ = ρ ∈ [0, 1], i.e. both reservoirs impose the same density at
the boundaries, no such macroscopic flow exists. The corresponding invariant measure νNρ , defined
in (2.15), is then called an equilibrium state.
Compared to the product structure of the equilibrium state of the open SSEP with both reservoirs
at the same density ρ− = ρ+ = ρ ∈ [0, 1], when ρ− 6= ρ+ the steady state of the SSEP is a
considerably more complicated object: it does not have an explicit expression, and exhibits long
range correlations [Spo83][DLS02]. The proofs of large deviations in models with a non-equilibrium
steady state (corresponding to [Ber+03][BLM09][FLM11][BL12] above) then rely on the fact that,
to control the density, one does not have to know the whole invariant measure: the knowledge of
the macroscopic density profile prescribed by the invariant measure is enough.

To better understand this last claim, let us change our starting point and assume that, instead
of a microscopic model, we are given the expression (2.13) of the large deviation functional I. One
can then heuristically deduce what the steady state density profile of an associated microscopic
model should be. Indeed, I is minimal when no bias is applied to the open SSEP, corresponding
to the following equation on the density ρ:

∂tρ = ∆ρ.

Due to the two reservoirs imposing densities ρ−, ρ+ at the boundaries −1, 1 respectively, one must
additionally have ρ(t,−1) = ρ−, ρ(t, 1) = ρ+ for each time t ≥ 0 [Ber+03]. This equation has only
one stationary solution ρ̄, which solves:

∆ρ̄ = 0, ρ̄(−1) = ρ−, ρ̄(1) = ρ+.

The stationary measure of the open SSEP should thus have density given by ρ̄ in the scaling
limit, a fact rigorously established e.g. in [ELS90]. A rigorous microscopic application of these
heuristics, comparing the steady state measure at each N with a product measure with the correct
macroscopic densities, is used to obtain the large deviations in [Ber+03].

In Chapter 3 of this thesis, we will investigate large deviations not for the density, but for
correlations. In this case, the knowledge of the macroscopic density of the invariant measure is
not enough any more, and more information on the invariant measure is required. In Section 2.3,
we explain how to obtain more information on the invariant measure through the study of large
deviations for dynamical quantities, in particular through the rate function (2.13).
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2.3 Large deviations and invariant measures

Besides dynamical large deviations as in Section 2.2.1, a second, related topic of investigation
concerns large deviations for the invariant measure of the microscopic dynamics. When it is an
equilibrium state i.e., for the open SSEP, when both reservoirs have the same density, it is well-
known that there is a functional F , called the free energy, such that, for any smooth density profile
ρ : (−1, 1)→ [0, 1] (see e.g. Chapter 11 in [KL99])

1

N
lim
N→∞

πNinv
(

πN ≈ ρ(x)dx
)

= −F(ρ). (2.16)

Recall that πN is the empirical measure defined in (2.8). Out of equilibrium, the functional F
satisfying (2.16) is referred to as the out of equilibrium free energy. Finding a candidate for
such a functional out of equilibrium is a more difficult problem. In particular, the presence of
a macroscopic current of particles in the steady state is reflected in a non-local structure of this
functional [Der07][Ber+15]. The next two sections present two approaches to investigate the
invariant measure through two different types of large deviations.

2.3.1 Steady state large deviations: the quasi-potential

In the previous section, we saw how to formally determine the density profile in the steady state
from the rate function. Obtaining more information, such as the structure of correlations, is a
difficult problem for dynamics with a non-equilibrium steady state. For general diffusive models,
a systematic argument, as part of the more general macroscopic fluctuation theory, is put forward
in [Ber+02], then in the review [Ber+15] in a more comprehensive form. Asymptotic probabilities
under the steady state measure πNinv are characterised in terms of a functional V :M≤1((−1, 1))→
R+ ∪ {+∞}, called the quasi-potential. The quasi-potential V is defined in terms of a variational
problem involving the dynamical rate function (2.13). This variational problem can be solved
for equilibrium systems, but is in general very complicated in non-equilibrium situations. The
functional V then plays the role of an out of equilibrium free energy for the steady state measure
πNinv, in the sense that, for each smooth density profile ρ : (−1, 1)→ [0, 1]:

lim
N→∞

1

N
log πNinv

(

πN ≈ ρ(x)dx
)

= −V (ρ), (2.17)

where πN is the empirical measure defined in (2.8). For the open SSEP in one dimension with
reservoirs at different densities (i.e. with a non-equilibrium steady state), the functional satisfying
(2.17) has been obtained through a static approach in [DLS02]. Formally, the knowledge of the
quasi-potential gives access to the moment generating function of density correlations [Der07],
through a Taylor expansion.

2.3.2 Long-time large deviations: the Donsker Varadhan formula

So far in this introduction, the focus was on the diffusive time-scale, on which interesting dynamical
effects arise in the open SSEP. Obtaining information about the steady state of a model can then
be done, at least at the heuristics level, through the computation of the quasi-potential (2.17). In
terms of scaling limits, this procedure corresponds to looking at the microscopic model at time
TN2 when N is taken large, then T as well.
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One can however adopt another point of view. For an irreducible Markov chain on a finite state
space ΩN , the steady state πNinv at each value N ∈ N∗ of the scaling parameter satisfies:

∀η ∈ ΩN , lim
T→∞

P
[

ηt = η′|η0 = η
]

= πNinv(η
′), η′ ∈ ΩN .

The Donsker-Varadhan formula [DV75] then gives a framework to estimate the probability of
observing statistics that differ from the steady state πNinv. To state this formula, introduce, for
T > 0 and a trajectory (ηtN2)t≤T ⊂ ΩN , the time empirical measure π̃T on ΩN as follows:

∀η ∈ ΩN , π̃T (η) :=
1

T

∫ T

0

δηtN2=ηdt. (2.18)

Note the diffusive scaling, kept for convenience. In words, π̃T associates, with each trajectory
(ηtN2)t≤T of configurations, a measure given by T−1 times the local time on each configuration.
The Donsker-Varadhan formula then establishes large deviations for π̃T , seen as an element of the
setM1(ΩN) of probability measures on ΩN . In our context, this formula reads:

∀µ ∈M1(ΩN), lim
T→∞

1

T
logP

(

π̃T ≈ µ
)

= −INDV (µ), (2.19)

where ≈ means proximity in the weak topology of measures, and the functional INDV is defined by
the variational principle (recall the definition (2.1) of the generator L):

INDV (µ) := sup
f :ΩN→R∗

+

µ
((−N2Lf)

f

)

. (2.20)

From this large-time result, one of the goal of this thesis, corresponding to Chapter 3, is to take the
large N limit and recover explicit information on the scaling limit of the interacting particle system.

However, the variational problem defining INDV is difficult to work with in general, and obtaining
information on its large N limit is a hard problem. The notable exception concerns systems with
reversible dynamics, that is a dynamics with jump rates (c(η, η′))η,η′∈ΩN

satisfying:

∀(η, η′) ∈ Ω2
N , c(η, η′)πNinv(η) = c(η′, η)πNinv(η

′).

This is the case for the open SSEP with reservoirs at the same density ρ− = ρ+ = ρ ∈ [0, 1]. For
this model, the invariant measure πNinv = νNρ is given in (2.15), and INDV reads:

∀µ ∈M1(ΩN), INDV (µ) = N2DN
SSEP (f

1/2
µ ), (2.21)

where fµ = µ/νNρ , and D
N
SSEP is the Dirichlet form of the open SSEP dynamics on ΩN , acting on

f : ΩN → R+ according to:

DN
SSEP (f

1/2) = νNρ
(

− f 1/2Lf 1/2
)

=
1

4
νNρ

(

∑

i<N−1

c(η, i, i+ 1)
[

f 1/2(ηi,i+1)− f 1/2(η)
]2

+
∑

i∈{±(N−1)}
c(η, i)

[

f 1/2(ηi)− f 1/2(η)
]2
)

. (2.22)
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Reversibility does not hold, however, as soon as the reservoir densities are different: ρ− 6= ρ+.
This is intuitively understandable: reversibility would mean an equilibrium steady state, whereas
one expects, on the basis of Fick’s law, that imposing different densities at the extremities of the
system will create a macroscopic current of particles proportional to the difference in density (this
is actually proven rigorously in [FLM11]).

For the open SSEP with reservoirs at different densities, the functional INDV is very complicated,
as expected from the previous discussion. In Section 3, we present heuristics to argue that, at least
at equilibrium, one can still obtain information about the largeN limit of the invariant measure πNinv
from Donsker-Varadhan’s formula. These heuristics serve as intuition for the content of Chapter 3
of this thesis, where the probability of observing anomalous correlations in the out of equilibrium
open SSEP is investigated in the long, diffusive time scale (i.e. at times TN2 with N large, then
T large).

2.4 Summary and objectives of the thesis

In Section 2, dynamical large deviations were introduced on the SSEP. Two motivations for the
study of large deviations were highlighted.

• Large deviations give information on the kind of anomalous trajectories that the microscopic
dynamics can follow at the macroscopic level. These trajectories typically look like solutions
of:

∂tρ =
1

2
∆ρ−∇ · (σ(ρ)∇h),

where h is an applied external field.

• Large deviations give information on the invariant measure, either through a large deviation
functional for the steady state which can be interpreted as a quasi-potential; or indirectly,
through a study of the deviations of the time empirical measure, via the Donsker-Varadhan
formula.

In this thesis, we shall consider two models, which can both be seen as limit cases of the framework
of dynamical large deviations introduced in Section 2.2.1. In both cases, reservoirs play a key role.
The first model is the one-dimensional open SSEP, in Section 3. We do not study the density,
which is well-known, but the two-point correlations. We address the problem of estimating the
probability to observe time-averaged correlations very different from the ones of the steady state
πNinv, in the long, diffusive time scale, i.e. at times TN2 when N , then T are large.
The second model is introduced in Section 4. It is an interface model on the square lattice Z2,
related to the zero temperature Ising model. The dynamics on these interfaces can be understood as
one-dimensional interacting particle systems which enter into the framework presented in Section
2. However, the domain on which these interacting particle systems are defined - previously,
{−(N − 1), ..., N − 1} - is now itself modified by the dynamics.
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3 Anomalous correlations in the open symmetric simple

exclusion process

In this section, we introduce the results of Chapter 3. Unless mentioned otherwise, notations in
the section agree with those of Chapter 3. When they do not, modified notations are indicated in
the following by a˜symbol.

3.1 Invariant measures and Donsker-Varadhan formula in the scaling
limit

In Sections 2.3.1-2.3.2, the general question of how to gain explicit information on the scaling
limit of a non-equilibrium steady state was raised. Recall that such a state is characterised by the
fact that, in the scaling limit, the average current does not vanish [Ber+15]. Understanding the
structure of the steady state is motivated by the profound differences between equilibrium- and
non-equilibrium situations. Let us again illustrate these differences through the open SSEP (2.1)
on ΛN = {−(N − 1), ..., N − 1}, with reservoirs at densities 0 < ρ− ≤ ρ+ < 1.

• Assume both reservoirs impose the same density of particle 0 < ρ− = ρ+ =: ρ < 1. The
SSEP then admits the Bernoulli product measure νNρ =

⊗

ΛN
Ber(ρ) as its invariant measure,

where Ber(ρ) is the probability measure on {0, 1}, with Ber(ρ)({η = 1}) = ρ. In particular,
the dynamics is reversible with respect to νNρ , there is no macroscopic current and particles
are uncorrelated. In particular, the quasi-potential (2.17) is known explicitly [Ber+15], and
is a local function of the density. The Donsker-Varadhan rate function at each N ∈ N∗ has
an explicit expression (2.21), and can be used to compute various dynamical quantities in
the large N limit, see Sections 3.2.1-3.2.2.

• Assume now that 0 < ρ− < ρ+ < 1. The non-equilibrium steady state πNinv is then not
known explicitly. It has long-range correlations, in particular n-point cumulants of the den-
sity decay like N−n+1 [DLS07]. In one dimension, the quasi-potential can be computed
[DLS02][Ber+03][BG04]. It is a non-local function of the density. This property is conjec-
tured to be generic in dynamics with a non-equilibrium steady state [Spo83][Gar+90][BLM09].
The Donsker-Varadhan rate function is not explicit in general.

As already mentioned, Donsker-Varadhan formula (2.19) quantifies the probability that the time
empirical measure π̃T (recall (2.18)) have statistics different from the steady state πNinv. The
resulting rate function INDV (2.20) is defined at each value of the scaling parameter N ∈ N∗ through
a variational principle. When πNinv in an out of equilibrium steady state, this variational principle
is hard to work with. However, one may hope that it simplifies in the large N limit, so that one
could identify a sequence aN , N ∈ N∗ increasing to infinity and a limiting rate function IDV such
that, for any measure µ on a suitable limit of the configuration space ΩN :

lim
N→∞

lim
T→∞

1

aNT
logP

(

π̃T ≈ µ
)

= −IDV (µ). (3.1)

In particular, this rate function should vanish only on the large N limit of the invariant measure
πNinv, so that one could hope to extract information on this limiting measure from (3.1).
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Before even attempting to prove (3.1), one has to find a suitable space for the large N limit of
measures on ΩN . This is in fact a major difficulty because, informally, not all information in the
measure π̃T is stored at the same scale in N . We substantiate this claim in Section 3.2 in the case
of the open SSEP with reservoirs at the same density, for which the dynamics is reversible and the
Donsker-Varadhan rate function INDV is known explicitly at each N ∈ N∗. We estimate the cost
of changing the macroscopic density on the one hand, and the cost of keeping the same density
but changing the macroscopic two-point correlations on the other hand. We find that these two
costs do not scale with N in the same way. Indeed, changing the density occurs with probability
of order e−TN when T , then N are large. In contrast, changing only the two-point correlations is
possible with probability of order e−T , again when T , then N are large.

3.2 Scaling of correlations at equilibrium in the long-time, large N
limit

Consider the open SSEP as given in (2.1) with two reservoirs at equal densities ρ− = ρ+ = ρ ∈
(0, 1). In this setting, the dynamics is reversible with respect to νNρ as defined in (2.15), and the
Donsker-Varadhan rate function at each N ∈ N∗ is given by the Dirichlet form (2.22).

In the next two sections, we show that there is little chance of establishing a formula such as
(3.1) at the level of the time empirical measure. This is done by computing the cost of observing
an anomalous macroscopic density, in Section 3.2.1, and the cost of an anomalous macroscopic
two-point correlations, in Section 3.2.2.

3.2.1 Changing the macroscopic density

Consider a smooth density profile ρ̂ : [−1, 1]→ (0, 1). For simplicity, assume that the density close
to the boundaries is unchanged, i.e. that ρ̂(x) = ρ for x in an open neighbourhood of ±1. Define
then:

µN =
⊗

i∈ΛN

Ber
(

ρ̂(i/N)
)

.

For a function q : (−1, 1) → R, write for short qi := q(i/N) for i ∈ ΛN . Introduce the chemical
potential λ and its discrete derivative ∂Nλi, defined by:

∀x ∈ (−1, 1), λ(x) := log
( ρ̂(x)

1− ρ̂(x)
)

, ∂Nλi = N
[

λi+1 − λi
]

, i < N − 1. (3.2)

Recall that µN [·] (or µN(·)) denotes expectation under the measure µN , and the definition (2.18) of
the time empirical measure π̃T . Elementary computations using (2.21) then give, for each N ∈ N∗:

lim
T→∞

1

T
logP

(

π̃T ≈ µN
)

= −N
2

4
µN

[

∑

i<N−1

c(η, i, i+ 1)
(

exp
[

− (ηi+1 − ηi)
2N

∂Nλi

]

− 1
)2
]

. (3.3)

Note that there is no contribution from the boundary dynamics, since ρ̂ is constant and equal
to ρ close to ±1 by assumption. Expanding the right-hand side of (3.3), one finds, recalling
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σ(r) = r(1− r) for r ∈ [0, 1]:

lim
T→∞

1

T
logP

(

π̃T ≈ µN
)

= − 1

16
µN

[

∑

|i|<N−1

c(η, i, i+ 1)
[

∂Nλi
]2
]

+ON(1)

= −N
8

∫

(−1,1)

σ(ρ̂(x))|∇λ(x)|2dx+ON(1), (3.4)

where we used the smoothness of ρ̂, and µN(c(η, i, i+ 1)) = 2σ(ρ̂i) + O(N−1) for each i < N − 1,
with the O(N−1) uniform on i. It follows that a macroscopic change of density is observed with
probability of order e−TN in the large T , then large N limit.

For future reference, notice that, up to factors of N, T , the right-hand side of (3.4) is the same
as the one given by the dynamical rate function (2.13). To see it, recall that the rate function
ISSEP evaluated at the constant profile ρ̂ on the time interval [0, T ] for T > 0 is given by:

ISSEP
(

(ρ̂(x)dx)t≤T )|ρ̂
)

=
1

2

∫ T

0

∫

(−1,1)

|∇h(t, x)|2σ(ρ̂(x))dxdt,

where h is the bias such that h(t,±1) = 0 for each t ∈ [0, T ], and:

∂tρ̂ = 0 =
1

2
∆ρ̂−∇ ·

(

σ(ρ̂)∇h
)

.

In particular, integrating the divergence operator, there is a divergence-free function j on (−1, 1)
(the current), i.e. a constant in our one-dimensional setting, such that:

∇h =
(1/2)∇ρ̂+ j

σ(ρ̂)
⇒ ISSEP

(

(ρ̂(x)dx)t≤T )|ρ̂
)

=
T

2

∫

(−1,1)

(

(1/2)∇ρ̂+ j
)2

σ(ρ̂(x))
dx.

In the present case, h(·,±1) = 0 and ∇λ = ∇ρ̂/σ(ρ̂) implies that j = 0, with λ defined in (3.2).
As a result:

∀t ≥ 0, x ∈ (−1, 1), ∇h(t, x) = ∇λ(x)/2.
The right-hand side above divided by T thus reduces to N−1 times (3.4) in the large N limit, and
we find:

lim
N→∞

lim
T→∞

1

NT
logP

(

π̃T ≈ µN
)

= lim
T→∞

lim
N→∞

1

NT
logP

(

(πNt )t≤T ≈ (ρ̂(x)dx)t≤T
)

. (3.5)

In other words, the long time, large N limit and the long diffusive time limits coincide.

3.2.2 Changing the macroscopic correlations

Consider again the open SSEP at equilibrium at density ρ ∈ (0, 1). For simplicity, set ρ = 1/2.
For a bounded function ψ : [−1, 1]→ R, define the fluctuation field Y N(ψ) by:

∀η ∈ ΩN , Y N(ψ) =
1√
N

∑

i∈ΛN

η̄iψ(i/N), with η̄· = η· − 1/2.
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Under the invariant measure νN1/2, Y
N(ψ) vanishes. However, at each time t, the fluctuation field

Y N
tN2(ψ) can be proven to converge to a Gaussian random variable, and is in particular typically

of order 1 in N (see Chapter 11 in [KL99], or [Der+05][LMO06] when ρ− 6= ρ+). The two-
point correlations Y (ψ1)Y (ψ2) are thus also of order 1 in N for bounded functions ψ1, ψ2 (see e.g.
[GJ19] for the reversible SSEP on the torus, and [Spo93] for correlations in the steady state when
ρ− 6= ρ+). Define more generally the (off diagonal) correlation field ΠN , acting on a bounded
function φ : [−1, 1]2 → R according to:

∀η ∈ ΩN , ΠN(φ) =
1

4N

∑

i 6=j∈ΛN

η̄iη̄jφ
( i

N
,
j

N

)

. (3.6)

In view of the above discussion, to find a measure that is close to νNρ but with a different correlation
structure, it is reasonable to look at:

µN = νN1/2,φ :=
1

ZN1/2,φ
e2Π

N (φ)νN1/2, ZN1/2,φ a normalisation factor.

Assume ‖φ‖∞ is sufficiently small and φ is smooth, symmetric, i.e.:

∀(x, y) ∈ [−1, 1]2, φ(x, y) = φ(y, x).

Assume also that φ(x, ·) = 0 for x in an open neighbourhood of ±1. n-point correlations under
the measure µN can then be estimated for each n ∈ N∗. Let UN

φ be the matrix:

∀(i, j) ∈ Λ2
N , UN

φ (i, j) = σ(1/2)−11i=j +
1

N
φ
( i

N
,
j

N

)

1i 6=j.

One can then prove (see Appendix A of Chapter 3) that the inverse (UN
φ )−1 has diagonal coefficients

bounded with N , off-diagonal coefficients of order N−1, and:

sup
i∈ΛN

|µN(η̄i)| = O(N−1), sup
i 6=j∈ΛN

∣

∣µN(η̄iη̄j)−
[

(UN
φ )−1

]

(i, j)
∣

∣ = o(N−1). (3.7)

In other words, the macroscopic density is still given by ρ = 1/2, but there are now long-range
correlations parametrised by φ. Let us again compute the Donsker-Varadhan rate function at each
fixed N .

Lemma 3.1. For φ and µN as above, one has:

lim
T→∞

1

T
logP

(

π̃T ≈ µN
)

= −CN , 0 ≤ CN ≤ sup
N
CN <∞.

Proof. Write:

φi,j := φ
( i

N
,
j

N

)

, ∂N1 φi,j = N [φi+1,j − φi,j], (i, j) ∈ Λ2
N .

Notice then that, for each η ∈ ΩN :

∀i < N − 1, ΠN(φ)(ηi,i+1)− ΠN(φ)(η) = −(ηi+1 − ηi)
2N2

∑

j /∈{i,i+1}
η̄j∂

N
1 φi,j.
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In particular, as φ is smooth, the above difference is bounded by O(N−1) uniformly in i < N − 1.
By definition, the Donsker-Varadhan rate function reads:

INDV (µ
N) =

N2

4
µN

[

∑

i<N−1

c(η, i, i+ 1)
(

exp
[

2ΠN(φ)(ηi,i+1)− 2ΠN(φ)(η)
]1/2 − 1

)2]

. (3.8)

To compute this quantity, we need a bound on correlations under µN . In Appendix A of Chapter
3, we prove that, for each n ≥ 2:

sup
I⊂ΛN

|I|∈{n−1,n}

∣

∣

∣
µN

(

∏

i∈I
η̄i

)∣

∣

∣
= O(N−n/2). (3.9)

Expanding the exponential in (3.8) using |ex − 1− x| ≤ Cx2 for some C > 0 and all |x| ≤ 2‖φ‖∞,
(3.8) reads:

INDV (µ
N) =

1

4
µN

[

∑

i<N−1

c(η, i, i+ 1)
( 1

2N

∑

j /∈{i,i+1}
η̄j∂

N
1 φi,j

)2]

+O(N−2). (3.10)

Recall that η̄i = ηi − 1/2 at density ρ = 1/2 for each i ∈ ΛN , and notice:

∀i < N − 1, c(η, i, i+ 1) := ηi(1− ηi+1) + ηi+1(1− ηi) = 2σ(1/2)− 2η̄iη̄i+1.

Moreover, (η̄i)
2 = σ(1/2) for each i ∈ ΛN . Separating diagonal and off-diagonal terms in (3.10),

Donsker-Varadhan’s formula (2.19) yields:

lim
T→∞

1

T
logP

(

π̃T ≈ µN
)

= − 1

2N2
µN

[

∑

i<N−1

σ(1/2)
∑

j 6=ℓ/∈{i,i+1}
η̄j η̄ℓ∂

N
1 φi,j∂

N
1 φi,ℓ

]

− 1

2N2

∑

i<N−1

∑

j /∈{i,i+1}
σ(1/2)2

[

∂N1 φi,j
]2

+O(N−2).

Using (3.7), the first line is bounded with N :

lim
T→∞

1

T
logP

(

π̃T ≈ µN
)

= −σ(1/2)
2N2

∑

i<N−1

∑

j 6=ℓ/∈{i,i+1}

[

(UN
φ )−1

]

(j, ℓ)∂N1 φi,j∂
N
1 φi,ℓ

− 1

2N2

∑

i<N−1

∑

j /∈{i,i+1}
σ(1/2)2

[

∂N1 φi,j
]2

+O(N−2). (3.11)

The right-hand side above is consequently bounded with N . The probability of observing the
measure µN with the same density but correlations macroscopically different from those of νN1/2
thus scales like eT in the large T , then large N limit.

The large N limit of the expression (3.11) reads:

lim
N→∞

lim
T→∞

1

T
logP

(

π̃T ≈ µN
)

= −1

8

∫

(−1,1)

σ(1/2)
〈

∂1φ(z, ·), (Uφ)−1∂1φ(z, ·)
〉

dz, (3.12)
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where
〈

·, ·
〉

is the scalar product in L2((−1, 1)), and U−1
φ is the inverse of the operator Uφ, acting

on ψ ∈ L2((−1, 1)) according to:

∀x ∈ (−1, 1), Uφψ(x) := σ(1/2)−1ψ(x)−
∫

(−1,1)

φ(x, y)ψ(y)dy.

The formula (3.12) will be generalised below to a non-equilibrium situation, in Theorem 3.2. As
was the case for the density (3.5), we will see that the formula (3.12) again agrees with the one
that can be obtained in the long diffusive time limit. In other words, the observation (3.5) that the
time and scaling limits can be exchanged in the case of the density is also valid for correlations.

3.3 Contribution of the thesis

In view of Section 3.2, rather than obtaining a global formula such as (3.1), it seems relevant to
split the study of the time empirical measure in the large N to separately study the different scales
in N . In Chapter 3, we make a first step in that direction in the case of the open SSEP with
reservoirs at different densities ρ− 6= ρ+. We study the probability to observe anomalous values of
the time average of the two-point correlation field ΠN , i.e. of the quantity;

1

T

∫ T

0

ΠN
tN2dt, T > 0, N ∈ N∗. (3.13)

3.3.1 Results

When ρ− 6= ρ+, the correlation field ΠN is defined as in (3.6), but with η̄· := η· − ρ̄·, and ρ̄ stands
for the steady state profile in the large N limit:

∆ρ̄ = 0, ρ̄(±1) = ρ±. (3.14)

The method used to study ΠN is not specific to the SSEP, and applies to a large class of interact-
ing particle systems, see Section 3.3.2. Let us present our results. In the following, we simply say
correlations for two-point correlations.

In the spirit of Donsker-Varadhan’s formula, one would like to prove a large deviation result in
large time, then investigate its scaling limit, i.e. establish an estimate of the form:

lim
N→∞

lim
T→∞

1

T
logP

( 1

T

∫ T

0

ΠN
tN2dt ≈ Π

)

= −I(Π), (3.15)

with P the probability associated with the open SSEP dynamics, and for a rate function I acting
on a correlation field Π defined in a suitable space. Taking the long-time limit at fixed value of
the scaling parameter as in (3.15) turns out to be out of reach. The reason is that, at each N ,
the candidate for a rate function is not a closed functional of the correlation field, but instead also
involves n-point correlations with n ≥ 3. We have no way to estimate these correlations in the
long-time limit.

Instead, we look at the field (3.13) in the long diffusive time-scale, i.e. times TN2 with N
large, then T large. From the heuristics presented in (3.5) and at the end of Section 3.2.2, we can
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expect that these limits coincide with the large T , then large N limits of (3.15). A variety of tools
to study hydrodynamics are available on time windows of the form [0, TN2] with T fixed and N
large, such as the relative entropy method of Yau [Yau91]. By a refinement of this method (see
Section 3.3.2), we obtain uniform estimates in T when N is large. We manage to quantify, for a
large class of correlation fields, the quantity:

lim
T→∞

lim
N→∞

1

T
logP

( 1

T

∫ T

0

ΠN
tN2dt ≈ Π

)

. (3.16)

In the rest of this section, we give a precise large deviation statement, before explaining, in Section
3.3.2, the ideas of proof and the difficulties. Let us first fix some notations. The correlation kernel
k0 in the steady state πNinv of the open SSEP with reservoirs at density ρ− 6= ρ+ is known explicitly
[Spo83][DLS02]:

k0 = (ρ̄′)2∆−1
1d , (3.17)

where ∆−1
1d is the inverse of the Dirichlet Laplacian on (−1, 1) with 0 boundary conditions.

Denote by � the open set (−1, 1)2, by D = {(x, x) : x ∈ (−1, 1)} its diagonal, and let
:= � \ D. Let also ⊲ := {(x, y) ∈ � : x < y} and ⊳ = \ ⊲. For the open SSEP with

reservoirs at density (ρ−, ρ+), we estimate the cost of observing a given correlation field Π, seen
as an element of T̃ ′, the set of continuous linear forms on T̃ , with:

T̃ :=
{

φ ∈ C0(�̄) : φ|⊲̄ ∈ C2(⊲̄), φ|⊳̄ ∈ C2(⊳̄), φ|∂� = 0
}

.

Note that, if
〈

·, ·
〉

denotes the standard scalar product on L2( ) and duality pairing between

elements of T̃ and T̃ ′, one can always represent Π ∈ T̃ ′ by a distribution kΠ such that:

∀φ ∈ T̃ , Π(φ) :=
1

4

〈

kΠ, φ
〉

=
1

4

∫

(−1,1)2
kΠ(x, y)φ(x, y)dxdy, (3.18)

where the last equality makes sense as soon as kΠ ∈ L2( ). In such a case, define also the operator
CΠ := σ(ρ̄) + kΠ on L2((−1, 1)) as follows:

∀f ∈ L2((−1, 1)), CΠf(x) = σ(ρ̄(x))f(x) +

∫

(−1,1)

kΠ(x, y)f(y)dy, x ∈ (−1, 1). (3.19)

Theorem 3.2. Assume ρ−, ρ+ ∈ (1/2 − ε, 1/2 + ε) for a sufficiently small ε > 0. For a suitable
family of measures (µN)N which serve as initial condition, there is a functional I with values in
R ∪ {+∞} such that, for any compact set K in the weak∗ topology of T̃ ′,

lim sup
T→∞

lim sup
N→∞

1

T
logPµ

N
( 1

T

∫ T

0

ΠN
tN2dt ∈ K

)

≤ − inf
Π′∈K
I(Π′). (3.20)

If the kernel kΠ associated with Π ∈ T̃ ′ via (3.18) is both sufficiently smooth and close to k0 (defined
in (3.17)), then, for any weak∗ open neighbourhood O of Π:

lim sup
T→∞

lim sup
N→∞

1

T
logPµ

N
( 1

T

∫ T

0

ΠN
tN2dt ∈ O

)

≥ −I(Π), (3.21)
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where the correlations CΠ are defined in (3.19). Moreover, in this case, there is a smooth function
hΠ ∈ T̃ , such that the rate function I reads:

I(Π) = 1

8

∫

(−1,1)

σ(ρ̄(z))
〈

∂1hΠ(z, ·), CΠ∂1hΠ(z, ·)
〉

dz. (3.22)

The initial condition will be the measures νNg0 , defined in (3.31) and Theorem 3.3 below, which
have both the same macroscopic density and the same macroscopic correlations as the invariant
measure πNinv of the open SSEP.

Let us give a very informal justification for the formula (3.22). Consider a density profile
ρ(t, x) = ρ̄(x)+φ(t, x) with a time-dependent fluctuation profile φ of order N−1/2, and take a bias
H : (−1, 1)→ R of the form:

∀x ∈ (−1, 1), ∇H(x) :=
1

2

∫

(−1,1)

∂1h(x, y)φ(y)dy, (3.23)

Contrary to (2.12), the bias H is now non-local. Then, to lowest order in φ, the rate function
(2.13) at each fixed time T > 0 becomes, at a strictly formal level:

I((ρ(t, x)dx)t≤T |ρ0) =
1

8

∫ T

0

∫

(−1,1)

σ(ρ̄(z))

[
∫

(−1,1)2
∂1h(z, x)∂1h(z, y)φ(t, x)φ(t, y)dxdy

]

dz.

(3.24)

Under an assumption of ergodicity and sufficiently fast time decorrelation, the ”correlations”
(

1
T

∫ T

0
φ(t, x)φ(t, y)dt

)

(x,y)∈� in (3.24) can be expected to average to Ch, the macroscopic cor-

relations in the invariant measure of the open SSEP dynamics biased by H. Dividing (3.24) by T
and taking the large T limit, the formula (3.22) can be recovered:

lim
T→∞

1

T
I((ρ(t, x)dx)t≤T |ρ0) =

1

8

∫

(−1,1)

σ(ρ̄(z))
〈

∂1h(z, ·), Ch∂1h(z, ·)
〉

dz = I(Πh).

3.3.2 The method and context

Let us now explain how to prove Theorem 3.2. The framework is still the one of Section 2: the
dynamics is tilted by suitable biases, and the cost of the tilt must be estimated. The difficulty,
however, lies in the fact that correlations are objects that live on a much finer scale than the
density. This means that Replacement Lemma-type results (recall (2.14)), known in this context
as Boltzmann-Gibbs principles, are much more difficult to prove. In the context of the open SSEP,
one would typically need the following estimate to study correlations:

lim sup
T→∞

lim sup
N→∞

1

T
logP

(
∣

∣

∣

1

T

∫ T

0

1

N

∑

i1<N−1
i2 /∈{i1,i1+1}

Ai1,i2 η̄i1(t)η̄i1+1(t)η̄i2(t)dt
∣

∣

∣
> ε

)

= −∞, (3.25)

for each ε > 0 and each tensor (Ai1,i2)(i1,i2)∈(ΛN )2 with entries uniformly bounded with N .
Estimates such as (3.25) have not been established before, be it at, or out of equilibrium. Existing
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results on correlations are restricted to a finite time window, and concern either correlations at equi-
librium [Ass07][GJ19], or rely on certain duality property of the underlying models [ACR21][CS20].

In fact, let alone correlations, even studying out of equilibrium fluctuations is difficult. Studies
are often model-dependent, in particular much work has been carried out on the SSEP [LMO06]
and WASEP [Der+05][Gon+20], and earlier on the zero range process [FPV88], see also the book
[KLO12]. Earlier, specific model could be studied using duality techniques, see e.g. [DFL86] for
an example, and Sections II.3 and III.4 of the book [Lig05] for a presentation. Though obtaining
an estimate such as (3.25) would be easier at the level of fluctuations (one would only need to es-
timate (3.25) with the sum replaced with N−1/2

∑

i<N−1 η̄iη̄i+1Bi for some bounded B : ΛN → R),
existing methods are still insufficient.
To summarise, there are thus two issues: first, there are no known general methods to study corre-
lations out of equilibrium. Secondly, existing methods to study long time asymptotics only apply
at the level of the density, and do not easily carry over to fluctuations, much less correlations. In
the following, we first present the method used to obtain (3.25), then explain how it is applied to
derive Theorem 3.2.

The relative entropy method for correlations.
A recent breakthrough by Jara and Menezes [JM18b][JM18a] paves the way towards a solution of
the first problem, i.e. a general approach to studying correlations out of equilibrium. They propose
a general method to study out of equilibrium fluctuations for a large class of interacting particle
systems which evolve in diffusive time, relying on the relative entropy method of Yau [Yau91].
The idea in [Yau91] is that, at each time, one should compare the actual law of the dynamics with
a reference measure, supposed to mimic the large-scale behaviour of the dynamics. The distance
between these two measures is controlled in terms of the relative entropy: if µN , πN ∈ M1(ΩN)
with infη∈ΩN

πN(η) > 0,

H(µN |πN) := πN
[µN

πN
log

(µN

πN

)]

= µN
[

log
(µN

πN

)]

.

Above, πN [·] (or πN(·)) denotes expectation under πN . The law ftπ
N of the dynamics at time t ≥ 0

can then be controlled in terms of H(ftπ
N |πN) using the entropy inequality: for each V : ΩN → R,

πN(ftV ) ≤ H(ftπ
N |πN) + log πN

[

eV
]

. (3.26)

The relative entropy method of Yau [Yau91] then consists in bounding the quantity ∂tH(ftπ
N |πN),

known as the entropy dissipation. In [JM18b], the entropy dissipation is shown to satisfy:

∀t ≥ 0, ∂tH(ftπ
N |πN) ≤ −πN

(

Γ(
√

ft)
)

+ πN
(

L∗1ft
)

, (3.27)

where L∗1 is the adjoint of the generator L in the space {f : ΩN → R :
∫

f 2dπN < ∞}, and Γ is
the carré du champ operator associated with the dynamics, acting on f : ΩN → R+ according to:

∀η ∈ ΩN , Γ(
√

f) =
1

2

∑

i<N−1

c(η, i, i+ 1)
[
√

f(ηi,i+1)−
√

f(η)
]2

+
1

2

∑

i∈{±(N−1)}
c(η, i)

[
√

f(ηi)−
√

f(η)
]2
.
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When πN = πNinv is the invariant measure, L∗1 = 0 and the right-hand side of (3.27) is negative. If
πN 6= πNinv, the term πN(ftL

∗1) can be understood as way to quantify the proximity of πN to the
invariant measure. The goal of the relative entropy method is then to find a measure πN for which
good bounds on πN(ftL

∗1) can be obtained via the entropy inequality (3.26), and computation
of exponential moments under πN . In practice, πN must be chosen simple enough to compute
exponential moments, and yet close to the invariant measure. The usual choice consists in taking
a product measure, in our set-up the product measure with densities given by the invariant profile
ρ̄ at each site:

ν̄N =
⊗

i∈ΛN

Ber(ρ̄i), (3.28)

with Ber(ρ) the Bernoulli measure on {0, 1} such that Ber(ρ)({η = 1}) = ρ, ρ ∈ [0, 1]. Informally,
if one considers an interacting particle system in dimension d, the relative entropy method allows
for the study of hydrodynamics for the density provided one has an upper bound of the form:

∀t ≥ 0, H(ftN2πN |πN) ≤ Cd(t)εN , Cd(t) > 0, εN = o(Nd).

Comparing the law of the dynamics at each time with a reference measure πN given by a product
measure, the relative entropy method has been successfully used to determine the hydrodynamics
of the density in many models. Starting with the seminal paper [Yau91] on the Ginzburg-Landau
model, many results have been obtained in the 90’s, a list of which can be found in Section 2 of
Chapter 6 of [KL99]. More recent works include the hydrodynamics of an interface appearing in
a superposition of Glauber and Kawasaki dynamics [FT19], or Glauber and zero-range dynamics
[Ket+20].

When one is interested in a finer scale than the density, such as the scales of dynamical fluctu-
ations; much sharper bounds on the relative entropy are required:

∀t ≥ 0, H(ftN2πN |πN) ≤ C ′
d(t)εN , Cd(t) > 0, εN = o(Nd/2). (3.29)

If one still takes a product measure for πN , say πN = ν̄N as in (3.28), it may not be possible
to prove (3.29) simply by using the entropy inequality to estimate ν̄N(ftL

∗1). Indeed, some
quantities arising in the computation of L∗1 may be very singular, with the consequence that their
exponential moments are too big [JM18b]. The improvement on the relative entropy method in
[JM18b] is a general procedure to renormalise such singular terms. The idea is to make use of
the dissipative carré du champ term in (3.27) to turn singular terms into functions for which the
entropy inequality is effective. This method enabled Jara and Menezes in [JM18b] to considerably
improve existing relative entropy bounds. They obtain bounds of the form:

∀t ≥ 0, H(ftN2 ν̄N |ν̄N) ≤ C ′′
d (t)gd(N)Nd−2, C ′′

d (t) > 0, gd(N) =











N if d = 1,

logN if d = 2,

1 if d ≥ 3.

In view of (3.29), the above bounds are good enough to allow for the study of out of equilibrium
fluctuations in dimension d < 4, for a large class of models (see in particular Section 8 of [JM18b]).
Here, we build on the idea of Jara and Menezes to improve relative entropy bounds in order to
study correlations as in (3.6), which are objects that live on a still finer scale than fluctuations. To
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do so, informally, the bounds on the relative entropy one would need are, in an interacting particle
system in dimension d:

∀t ≥ 0, H(ftN2πN |πN) ≤ Kd(t)εN , Kd(t) > 0, εN = oN(1), (3.30)

for a suitable reference measure πN . To establish (3.30) in order to study correlations, it is not
possible to take πN = ν̄N to be a measure without correlations as before. In the context of the
one-dimensional open SSEP, as defined in (2.1), we propose instead to consider discrete Gaussian
measures of the form:

νNg =
(

ZNg
)−1

e2Π
N (g)ν̄N , ZNg a normalising factor, (3.31)

where g : → R is a bounded function to be determined, and ΠN is defined in (3.6). Recall that
= � \D is the open square without its diagonal D = {(x, x) : x ∈ (−1, 1)}.

The function g is supposed to encode the correlation structure of the dynamics. For a large
choice of g, the measure νNg has the same macroscopic density ρ̄i at each site i ∈ ΛN as the invariant
measure πNinv, and its two-point correlations depend on g. Exponential moments under νNg of either
ΠN or the three-point correlations appearing in (3.25) can be computed for sufficiently smooth
and small g; this is done in Appendix A.2 of Chapter 3, following the method of [G+19][SS20].
The entropy inequality (3.26) can therefore still be used, with πN = νNg as a reference measure.
Let us illustrate the role of the function g in the particular case of the unbiased dynamics, where
νNg is supposed to approximate the invariant measure πNinv. Write g = g0 in this case. The invariant
measure πNinv has correlation kernel k0 in the scaling limit (recall (3.17). The function g0 is given
in terms of the macroscopic correlations (3.17) of the invariant measure in the following sense: if
C0 is the operator σ(ρ̄) + k0, acting on f ∈ L2((−1, 1)) according to:

∀x ∈ (−1, 1), C0f(x) = σ(ρ̄(x))f(x) +

∫

(−1,1)

k0(x, y)f(y)dy,

Then:
C−1

0 := σ(ρ̄)−1 − g0. (3.32)

One can then check that the measure νNg0 , defined through (3.31), has macroscopic density profile
given by ρ̄ (recall (3.14)). Moreover, νNg0 satisfies, for each bounded test function φ : (−1, 1)2 → R:

lim
N→∞

νNg0
(

ΠN(φ)
)

=
1

4

∫

k0(x, y)φ(x, y)dxdy = lim
N→∞

πNinv
(

ΠN(φ)
)

. (3.33)

In other words, the measure νNg0 approximates πNinv at the level of two-point correlations. A similar
function g is built for the tilted processes used to prove large deviations, as we will now see.

The large deviations.
Let us now explain how one obtains the large deviation results of Theorem 3.2. The method is
still the one of [KOV89] presented in Section 2, in which the dynamics is tilted by suitable biases
to explore all possible correlations. In view of the heuristics (3.23), we consider biases of the form
ΠN(h) for suitable functions h : → R, so that the new jump rates read:

∀η ∈ ΩN , ∀i ∈ {±(N − 1)}, ch(η, i) = c(η, i) exp
[

ΠN(h)(ηi)− ΠN(h)(η)
]

,

∀j < N − 1, ch(η, j, j + 1) = c(η, j, j + 1) exp
[

ΠN(h)(ηj,j+1)− ΠN(h)(η)
]

. (3.34)
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The aim is then to compute the Radon-Nikodym derivative between the dynamics with jump rates
ch(η, i, i+1), ch(η, j), call it Ph, and the open SSEP dynamics P with jump rates c(η, i, i+1), c(η, j),
for η ∈ ΩN , i < N −1 and j ∈ {±(N −1)}. This Radon-Nikodym derivative is given by Feynman-
Kac formula (Appendix A.7 in [KL99]), and reads, for a time T > 0 and trajectory (ηtN2)t≤T :

log
dPh
dP

(ηtN2)t≤T = ΠN
T (h)− ΠN

0 (h)−N2

∫ T

0

e−ΠN
t (h)LeΠ

N
t (h)dt, (3.35)

with L the generator (2.1) of the open SSEP. The right-hand side (3.35) involves, on the one hand,
the field ΠN applied to h and its derivatives. On the other hand, it also involves time integrals of
three-point and four-point correlations, such as the one appearing inside the probability in (3.25).
The challenge is then to control the size of these objects, when N , then T are large, under the
tilted dynamics Ph. This is achieved through our main result on the relative entropy, stated next
and corresponding to Theorem 2.5 of Chapter 3.

Theorem 3.3. Let ρ− < ρ+ ∈ (0, 1) be sufficiently close to 1/2, and let h ∈ T be a smooth bias
with ‖h‖∞, ‖∇h‖∞ sufficiently small. There is a function g = gh : → R, the unique classical
solution of:







































∆(g − h)(x, y) + ρ̄′σ′(ρ̄(x))

σ(ρ̄(x))
∂1(2g − h)(x, y) +

ρ̄′σ′(ρ̄(y)))

σ(ρ̄(y))
∂2(2g − h)(x, y) for (x, y) ∈

+

∫

(−1,1)

σ(ρ̄(z))
[

∂1(g − h)(z, x)∂1g(z, y) + ∂1g(z, x)∂1(g − h)(z, y)
]

= 0,

g = 0 on ∂�,

(∂2 − ∂1)(g − h)(x+, x) = (∂1 − ∂2)(g − h)(x−, x) =
(ρ̄′)2

σ(ρ̄(x))2
for x ∈ (−1, 1).

(3.36)

In addition, there is C > 0 such that, for each T ≥ 0, the relative entropy H(ftN2νNgh |νNgh) for
t ∈ [0, T ] satisfies:

∀N ∈ N∗, sup
t∈[0,T ]

H
(

ftN2νNgh |ν
N
gh

)

≤ CeCT

N1/2
. (3.37)

It is then possible to use Theorem 3.3 in order to prove that (3.25) holds, as well as a similar
statement for four-point correlations. Thanks to these Replacement lemma-type estimates, it be-
comes possible to obtained a closed expression of the Radon-Nikodym derivative in (3.35) in terms
of the correlation field, up to well-controlled errors. From this closed expression, the resulting rate
function I of Theorem 3.2 is built.

Let us explain the role of the function g appearing in Theorem 3.3, and make a connection
with the heuristics at equilibrium of Section 3.2. Recall from Theorem 3.2 that the objective is to
observe a given correlation kernel k. The function g in (3.36) is in fact the correlation kernel of the
inverse of the correlation operator Ck := σ̄+k. Precisely, assume that k is such that Ck := σ(ρ̄)+k
is invertible. One can then define a function g by:

Ck := σ(ρ̄) + k =
(

σ(ρ̄)−1 − g
)−1

. (3.38)
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If the kernel k is sufficiently smooth and close to the steady state correlation kernel k0 (3.17), then
we can show that there is a bias hk such that k is the typical correlation kernel, in the long diffusive
time scale, under the dynamics Ph. The resulting g = gk built through (3.38) then solves (3.36).
Moreover, Theorem 3.2 then states that the rate function at the correlation field Πk := (1/4)

〈

k, ·
〉

is given by:

I(Πk) =
1

8

∫

(−1,1)

σ(ρ̄(z))
〈

∂1hk(z, ·), Ck∂1hk(z, ·)
〉

dz

=
1

8

∫

(−1,1)

σ(ρ̄(z))
〈

∂1hk(z, ·),
(

σ(ρ̄)−1 − gk
)−1

∂1hk(z, ·)
〉

dz. (3.39)

Compare the last expression with the equilibrium setting (3.12): at equilibrium, tilting the dy-
namics by ΠN(h) modifies the steady state from the Bernoulli product measure νNρ to e2Π

N (h)νNρ
up to a normalisation factor. The resulting correlation matrix then reads (σ(ρ)−1 − h)−1, so that
the equilibrium geq satisfies geq = h, and the formula (3.12) coincides with (3.39).
Out of equilibrium, however, the invariant measure πNinv,h of the dynamics tilted by h is not simply

given by a constant times e2Π
N (h)πNinv, so that its inverse correlation kernel g in the scaling limit

is different from h. This is reflected in the partial differential equation (3.36) through the fact
that g = h is not a solution, due to the term involving the first derivatives of 2g − h, which is
proportional to ρ̄′.

3.4 Perspectives

In this section, we mention several directions in which the results of Theorem 3.2 could be improved
(Section 3.4.1), and those of Theorem 3.3 could be applied to other situations (Sections 3.4.2-3.4.3)

3.4.1 The large deviations

Initial condition.
In Theorem 3.2, the large deviation result is stated for the dynamics starting for a sequence of
measures (µN)N , later identified with the measures (νNg0)N defined in (3.31); with g0 related to
correlations in the steady state via (3.32).
A natural question is to ask whether the dynamics could start from the invariant measure πNinv
rather than from νNg0 . Derrida, Lebowitz and Speer [DLS07] present heuristics on the behaviour of
the entropy of the steady state which in particular imply ‖πNinv − νNg0‖TV = oN(1), where the total
variation ‖ · ‖TV is defined as:

‖πNinv − νNg0‖TV :=
1

2

∑

η∈ΩN

|πNinv(η)− νNg0(η)|.

These heuristics immediately imply that ‖PπN
inv(·) − Pν

N
g0 (·)‖TV = oN(1), and Theorem 3.2 would

hold also starting from πNinv. Further discussion on this topic can be found in Appendix A.3 of
Chapter 3.
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It is also possible to start from a measure νNg with a function g 6= g0, which does not have the
same correlations as the invariant measure. To treat such a case, one would need to adapt the rel-
ative entropy estimates of Theorem 3.3 to a time-dependent setting, where the initial condition is
g. From the point of view of microscopic computations, this does not change anything. Additional
work would however be required to check that the solution (gt)t≥0 of a time-dependent version of
the partial differential equation of Theorem 3.3 is sufficiently well-behaved.

The Neumann condition on the diagonal for correlations.
The strength of correlations in the steady state of the open SSEP is proportional to (ρ̄′)2, with
ρ̄′ = (ρ+ − ρ−)/2. In fact, the macroscopic correlation kernel k0 in the steady state solves the
following partial differential equation. Recall that � = (−1, 1)2 is the open square, with diagonal
D = {(x, x) : x ∈ (−1, 1)}.











∆k0 = 0 on = � \D,
k0 = 0 on ∂�,

(∂1 − ∂2)k0(x±, x) = ±(ρ̄′)2 for x ∈ (−1, 1).
(3.40)

When ρ̄′ = 0, k0 = 0 and there are no macroscopic correlations. The Neumann condition the
diagonal in (3.40) is therefore central, and it is interesting to try to observe correlation profiles
which have a normal derivative on the diagonal that differs from the one in (3.40).

The Neumann condition is a boundary condition. Estimating the cost of changing boundary
conditions is difficult in general. For large deviations of the density in the open SSEP, the proba-
bility of observing a density profile with different boundary conditions is not of order e−TN in the
long diffusive time limit, but in fact smaller. In our context, observing correlations that do not
vanish at the reservoirs similarly has a probability much smaller than e−T in the long diffusive time
limit. However, we manage to tune the Neumann boundary condition to a large extent, basically
allowing for (ρ̄′)2 to be replaced with (ρ̄′)2+q, where q is any smooth function which vanishes at the
two extremities of the diagonal. It is not clear whether this restriction is only technical (it arises
in the study of regularity of solutions of the partial differential equation (3.36)), or more essential
in nature. In particular, we would like to estimate the probability of observing no correlations at
all:

P

( 1

T

∫ T

0

ΠN
tN2dt ≈ 0

)

. (3.41)

The estimate of this probability is not part of the result of Theorem 3.2. Understanding whether
our framework can be extended to study (3.41) without essential change as well as the structure
of the bias one should apply to the dynamics to not see any correlation will be the object of future
work.

3.4.2 The relative entropy method

Out of equilibrium correlations.
The relative entropy method was initially introduced in a time-dependent context [Yau91]. In
this case, the macroscopic density of particles, rather than equal to ρ̄ at each time, is given by a
trajectory 0 ≤ ρt(x) ≤ 1, x ∈ (−1, 1), t ≥ 0. If one defines the correlation field in terms of the
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variables η̃· = η· − ρ(t, ·/N) instead of the η̄· as in (3.6), the result of Theorem 3.2 carries over
with minimal change. This is in particular the case for a large class of one-dimensional diffusive
systems satisfying the technical gradient condition, such as the models mentioned in Section 8 of
[JM18b].

Higher dimensions.
The comparison of the dynamics with reference measures of the form (3.31) is not restricted to
dimension 1. In dimension d on a lattice ΛdN = {−N − 1, ..., N − 1}d, the correlation field around
a density profile ρ : [−1, 1]d → [0, 1] would act on functions g : [−1, 1]d → R as:

ΠN(g) =
1

Nd

∑

i 6=j∈Λd
N

η̄iη̄jgi,j, η̄· = η· − ρ·, η ∈ ΩN ,

The corresponding d-dimensional discrete Gaussian measure νNg,d is then defined as in (3.31). A
result similar to Theorem 3.3 can then informally be stated in any dimension in the following form.
Consider any nice gradient interacting particle systems, such as the ones mentioned in Section 8 of
[JM18b]. For d ≥ 2, if there is a sufficiently nice function gd solution of a d-dimensional analogue
of the partial differential equation (3.36) in Theorem 3.3, then the relative entropy, with respect to
νNgd,d, of the law of the dynamics at time tN2, is bounded by C(T )(1 +Nd−4) uniformly in t ≤ T .
Such a bound can be used to study out of equilibrium fluctuations as in [JM18b]. The maximal
dimension d in which this study can be carried out is improved, from d < 4 there, to d < 8.

3.4.3 Fluctuations and correlations for the SSEP conditioned to an atypical current

In this section, we present an ongoing work done in a different perspective. Consider the one-
dimensional SSEP on a ring conditioned to having a strong current on average. Precisely, let P

denote the SSEP dynamics on the torus, with associated expectation E, and define, for λ ∈ R and
a time T > 0, the dynamics Pλ,T conditioned to having an atypical current with strength tuned
by λ on [0, T ] as follows:

Pλ,T (·) :=
E

[

· eλNQTN2

]

E

[

eλNQTN2

] , (3.42)

where, for t ≥ 0,

Qt =
1

N2

∑

i∈TN

Qi,i+1
t , TN := Z/NZ.

Above, for i ∈ TN , Q
i,i+1
t ∈ Z is the signed number of particles having jumped across the edge

(i, i+1) up to time t, counting +1 for each particle jumping from site i to site i+1, and −1 from
site i + 1 to site i. The additional factor of 1/N in the definition of Qt is related to the diffusive
scaling: a macroscopic current of particles means that QtN2 is of order 1 in N .

At equilibrium under, observing a macroscopic current is a rare dynamical event. The prob-
ability of such an event has been investigated for a large class of interacting particle systems
in [Ber+07], and shown to scale like e−NT when N is large, up to sub-exponential corrections.
Under the dynamics Pλ,T , one can thus prove that there is typically a macroscopic current with
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strength tuned by the parameter λ. The dynamics induced by Pλ,T , however, is a complicated,
time-inhomogeneous Markov process. The presence of the current is known to create a rich corre-
lation structure [Bod+08]. An expression of these correlations in the long time limit has also been
conjectured in [Bod+08]. Due to the complexity of the dynamics, however, an analysis of these
correlations or even of the structure of fluctuations has so far remained out of grasp.

The relative entropy estimate presented in Theorem 3.2 offers a powerful tool to study this
dynamics. The idea is to find a time-homogeneous Markov process, sometimes referred to as the
driven process, a notion introduced in [CT15a][CT15b] and built on ideas originating in [Doo57],
see also Chapter X of Part 2 in the book [Doo01]. This driven process mimics the dynamics Pλ,T
at least for times 1 ≪ t ≪ T assuming T large. This process can be characterised in terms of
spectral quantities involving the dynamics and the current [CT15a], which are in general hard
to access. However, one can look for an approximate driven process, in the sense that it only
approximates Pλ,T at some given level of precision. In our case, we would like this approximate
driven process Pdriv to have the same macroscopic current and macroscopic correlation structure,
so that, informally, for each set χ of trajectories for the correlations:

Pλ,T

(

(ΠN
tN2)1≪t≪T ∈ χ

)

= Pdriv
(

(ΠN
tN2)1≪t≪T ∈ χ

)

+ εN,T (χ), (3.43)

with:
lim sup
T→∞

lim sup
N→∞

|εN,T (χ)| = 0

To look for Pdriv, we first enforce the correct current, by modifying the jump rates of the SSEP as
follows:

c(η, i, i+ 1)→ cλ(η, i, i+ 1) := ηi(1− ηi+1)e
λ/N + ηi+1(1− ηi)e−λ/N , i ∈ TN , η ∈ {0, 1}TN .

We then implement the large deviation ideas leading to Theorem 3.2 on the dynamics with jump
rates cλ, call it Pλ, looking for a function hλ : T

2 → R (T is the unit torus) such that the dynamics
Pλ biased by ΠN(hλ) as in (3.34) satisfies (3.43). This step is at present not carried out in a
fully rigorous manner. One of the main issue is the possibility to control the error terms arising
in such a change of dynamics, about which the relative entropy estimates of Theorem 3.3 play a
crucial role. If these error terms can be controlled (work in progress), we find that, for a statement
such as (3.43) to hold, say for the SSEP at density 1/2, the bias hλ must satisfy a certain partial
differential equation. This partial differential equation is similar to (3.36), and the parameter λ
tuning the strength of the current again enters as a Neumann boundary condition:














∆hλ(x, y) + σ(1/2)

∫

T

∂1hλ(z, x)∂1hλ(z, y)dz = 0 for (x, y) ∈ T2 \ {(x, x) : x ∈ T},

(∂1 − ∂2)hλ(x±, x) = ±λ2 for x ∈ T,

(3.44)

where we recall σ(r) := r(1− r) for r ∈ [0, 1]. The macroscopic correlations under the conditioned
measure Pλ,T in the long time limit would then be given by (σ(1/2)−hλ)−1, at least for sufficiently
small λ. The fluctuation process under Pλ,T at times tN2 with 1≪ t≪ T can also be characterised.

To make fully rigorous the arguments leading to (3.44) and to better understand the resulting
correlations is the subject of ongoing work.
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4 Ising interfaces at zero temperature

In this section, we introduce the contour dynamics, a family of interface dynamics on Z2 related
to the zero temperature Ising model. This dynamics has deep links with the open SSEP. The
notations in this section coincide with the ones of Chapter 4 except when mentioned otherwise. In
this case, modified notations are indicated by the˜symbol.

4.1 The Ising and stochastic Ising models

Here, we introduce the Ising model and associated dynamics on Z2. The proof of all statements
in this section can be found in [Mar99] or [BIV99].

4.1.1 The model

The Ising model, here on the graph Z2, is a toy model for modelling magnetism in solids, in
which an arrow, either upwards (or +1) or downwards (or −1), is associated with each face of
the graph Z2. Each arrow is called a spin, and each spin interacts with its neighbours in a way
that promotes alignment with them. The interaction strength is parametrised by the temperature:
the lower the temperature, the higher the interaction. More precisely, consider the box BN =
(1/2, 1/2) + Z2 ∩ [−N,N ]2, and let ΣN = {−1,+1}BN be the set of all configurations of arrows
on BN (elements of BN are centres of faces of Z2). For β > 0, define then the Ising measure at
inverse temperature β on ΣN as follows:

µNβ (σ) =
1

ZNβ
exp

[β

4

∑

(i,j)∈B2
N

|j−i|=1

σiσj

]

, σ ∈ ΣN ,

where the distance above is in 1-norm, and the partition function ZNβ is a normalisation factor. A
vertex i ∈ BN is the center of the square Ci = i+[−1/2, 1/2]2. The vertex i and the corresponding
square Ci are associated, so that two spins are neighbours if and only if their corresponding squares
have an edge in common.

The stochastic Ising model then corresponds to a ”single flip” dynamics, reversible with respect
to the Ising measure, i.e. a dynamics with jump rates (c(σ, σ′)) satisfying:

∀σ ∈ ΣN , c(σ, σ′) 6= 0 ⇔ ∃i ∈ BN , σ
′ = σi, with σi(j) :=

{

σ(j) if j 6= i,

−σ(i) if j = i.

The configuration σi then corresponds to σ in which the spin at i ∈ BN has been flipped. Moreover,
the reversibility condition on the jump rates reads:

∀(σ, σ′) ∈ Σ2
N , c(σ, σ′)µNβ (σ) = c(σ′, σ)µNβ (σ

′). (4.1)

Define then the empirical magnetisation mN as follows:

mN(σ) =
1

|BN |
∑

i∈BN

σi, σ ∈ ΣN .
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When the temperature is low enough, i.e. for β > βc for some βc ∈ R∗
+, in the large N limit, the

Ising model has a phase transition: for each β > βc, each limit point of the sequence (µNβ )N is
a convex combination of two ergodic, translation-invariant measures µ±,β on Z2, characterised by
their magnetisation:

µ±,β(σ0) := ±mβ, mβ > 0.

Above, µ±,β(·) denotes the expectation with respect to µ±,β(·).

At each fixed N ∈ N∗, however, the measure µNβ is symmetric and does not select an orientation
for the spins, i.e. a configuration σ with predominant + spins has exactly the same weight as the
configuration −σ. This has very interesting dynamical consequences. For instance, the stochastic
Ising dynamics takes an extremely large time to approach the equilibrium measure µNβ . Precisely,

this time diverges as the eNc(β) for a parameter c(β) > 0 that can be made explicit.
One can however decide to favour an orientation, either by adding a small magnetic field h 6= 0
to the measure µNβ or, as we consider here, by setting boundary conditions. Precisely, to each i at
distance 1 from BN in 1 norm, associate a + spin. The modified measure µN+,β reads:

µN+,β(σ) =
1

ZN+,β
exp

[β

4

∑

(i,j)∈B2
N

|j−i|=1

σiσj +
β

2

∑

i∈BN ,j /∈BN
|i−j|=1

σi

]

, σ ∈ ΣN .

Consider the stochastic Ising dynamics, defined with respect to µN+,β rather than µNβ . In [Lif62],
Lifshitz formulated a conjecture which, in the present setting, amounts to the following. Start the
dynamics from the configuration σ = −1. Then, in a diffusive time-scale, when N is large, the
spin configuration is close to a configuration with a well defined interface between two regions,
one with magnetisation mβ, the other one with magnetisation −mβ. This interface evolves locally
with a speed that is proportional to the curvature. In particular, the area with magnetisation −mβ

disappears after a time of order N2. This is conjectured to be true in any dimension d ≥ 2.

The conjecture is very hard to prove for β ∈ (βc,∞). So far, the only known proof is in di-
mension d = 2 at zero temperature, i.e. β = +∞, where mβ = 1. Heuristics and exact results for
special initial configurations where given in [Spo93]. A similar dynamics was analysed in [CSS95],
for which the − region is shown to disappear in diffusive time. The conjecture was fully proven
in [LST14b]-[LST14a]. In dimension d ≥ 3 (still at zero temperature), the precise motion of the
interface is not known. However, a region of − spins of side-length N is known to disappear in a
time of order N2 up to logarithmic corrections [Cap+11][Lac13]. In dimension d = 2, at any inverse
temperature β > βc, the best known bounds provide a quasi-polynomial disappearance time of the
region of − spins in the following sense: the mixing time of the stochastic Ising dynamics with +
boundary conditions is bounded by N c(β) logN for some c(β) > 0 [Lub+13]. In the following, we
focus on the d = 2, β = +∞, i.e. zero temperature case.

Before defining the zero temperature dynamics, let us introduce a standard one-to-one map-
ping between spin configurations in the Ising model, and contour configurations, where a contour
configuration is a union of contours. A contour is defined as a non self-intersecting closed lattice
paths in Z2, through the following rule.
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For σ ∈ ΩN , the contour configuration γ(σ) is defined as the boundary of the set of − spins:

γ(σ) = ∂

(

⋃

i∈BN :σi=−1

Ci

)

, Ci = i+ [−1/2, 1/2]2, i ∈ BN . (4.2)

Through the mapping (4.2), the measure µN+,β has the expression:

µN+,β(σ) =
1

ZN+,β
exp

[

− β|γ(σ)|
]

, σ ∈ ΣN , (4.3)

where |γ(σ)| is the length of the boundary γ(σ). We will later focus on the case in which the
contour configuration γ(σ) contains a single contour, in which case γ(σ) is simply called a contour.

At zero temperature, the measure µN+,∞ is degenerate, and equal to δ+, the Dirac measure
on the configuration with only + spins. The zero temperature stochastic Ising dynamics is then
defined through the following jump rates (see Figure 1.2 for an illustration on a special case):

∀i ∈ ΛN , c(σ, σi) =











0 if σi and at least three neighbours have the same sign,

1/2 if σi has two neighbours of each sign,

+∞ if σi has at least three neighbours with opposite sign.

(4.4)

The choice (4.4) differs from those in [LST14b] and [Spo93], but has useful implications. Moreover,
the results of [LST14b] are also valid for this choice of rates.
In (4.4)A jump rate equal to +∞ must be understood as follows. Suppose that flipping spin
i ∈ BN creates a configuration in which a spin at position i′ ∈ BN has at least three neighbours of
opposite sign. In this case, the spin at i′ is flipped instantaneously, and the procedure is iterated
until no spin has three or more neighbours of opposite sign.
The resulting dynamics is not reversible any more, and admits δ+ as its invariant measure. It has
many nice properties. For instance, it is monotonous in the following sense. For two configurations
σ, σ′, write σ ≤ σ′ if σi ≤ σ′

i for each i ∈ BN . Then:

∀(σ, σ′) ∈ Σ2
N , σ ≤ σ′ ⇒ ∀t ≥ 0, σ(t) ≤ σ′(t). (4.5)

Another nice property is the following. Let γ be a continuous, closed, non self-intersecting curve
in R2. By Jordan’s theorem, the curve γ splits R2 into two regions. We henceforth say that γ is a
Jordan curve, and let Γ denote the closed, bounded region with boundary γ.
For a Jordan curve γ delimiting a convex Γ, assume that the zero temperature stochastic Ising
model starts from the configuration with − spins in Z2 ∩NΓ, + outside. Such a configuration is
called a droplet associated with γ (or with Γ). In the following, we will only consider the dynamics
on droplets, as illustrated on Figure 1.2. A useful property, established in [LST14b] in the case
of the Ising dynamics, then states that the interface γ(σ(t)) associated with configuration σ(t) at
time t through (4.2) is still a Jordan curve for sufficiently short times. As we will see, this property
also holds starting from more general configurations than convex droplets.
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Figure 1.2 – The Ising dynamics starting from a droplet. The red zone corresponds to a region where all
spins are −, the white zone to + spins. Examples of dynamically allowed moves are indicated by arrows,
with the corresponding rate. If there are only two spins left on a line (e.g. at the bottom) or a column
(on the right), when either of the two spins disappears, which occurs at rate 1/2, then so does the other,
instantaneously. Such groups of two spins are thus flipped at rate one.

4.1.2 Typical interface motion in the scaling limit

In [LST14b]-[LST14a], the authors establish the Lifshitz law as follows. Let γ0 be a C∞, closed,
non self-intersecting curve with a finite number of inflection points. For t ≥ 0, let Γt be the droplet
associated with the family (γt)t≥0 = (∂Γt)t≥0 of curves satisfying the following anisotropic motion
by curvature:

v := ∂tγt ·N = a(θ)k, (4.6)

whereN is the inwards normal vector, v is the inwards normal speed, each γt, t ≤ T is parametrised
as (γt(u))u∈T on the torus T and the time-derivative is taken at fixed u ∈ T. The function
θ = θ(γt(u)), t ≤ T is the angle between the tangent vector T at γt(u) and the first basis vector
e1, so that T(θ) = cos(θ)e1 + sin(θ)e2. Finally, k is the curvature, and a is the anisotropy, defined
as:

a(θ) :=
1

2
[

| cos θ)|+ | sin(θ)|
]2 , θ ∈ [0, 2π]. (4.7)

The existence of the family (γt)t≥0 is part of the results of [LST14b]-[LST14a]. After a time
Tf = area(Γ0)/2, γt and Γt are reduced to a point for t ≥ Tf .
Assume the zero temperature stochastic Ising model starts from the droplet configuration associ-
ated with γ0. Define then γ

N(t) as the curve separating + and − spins at time t ≥ 0, and ΓN(t) as
the associated droplet. Finally, for a set A ⊂ R2, define respectively the ε-fattening and ε-thinning
of A as follows:

A(ε) :=
⋃

x∈A
B(x, ε), A(−ε) :=

(

⋃

x/∈A
B(x, ε)

)c

, ε > 0, (4.8)
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where B(x, ε) is the ball of center x ∈ R2 and radius ε > 0, e.g. in 2-norm. The results of [LST14b]-
[LST14a] establish the convergence in probability of the microscopic droplet to the solution (4.6)
in the following sense.

Theorem 4.1 ([LST14b]-[LST14a]). Let (γt)t≥0 solve (4.6) starting from a Jordan curve γ0 with a
continuous curvature and a finite number of inflection points. Let (Γt)t≥0 be the associated droplets,
and let Tf be the first time t ≥ 0 at which Γt is reduced to a point. Then, for each ε > 0,

lim
N→∞

P

(

∀t ≥ 0, Γ
(−ε)
t ⊂ N−1ΓN(tN2) ⊂ Γ

(ε)
t

)

= 1, (4.9)

and:
lim
N→∞

P

(

∀t ≥ Tf + ε, ΓN(tN2) = ∅
)

= 1.

The proof in [LST14b]-[LST14a] relies on two key ingredients: the fact that the interface
dynamics can locally be mapped onto a version of the SSEP, and the monotonicity property (4.5).

• The monotonicity (4.5) of the dynamics allows one to prove that the Ising interface for the
full droplet stays sandwiched between interfaces corresponding to droplets in which some
spins are frozen to their initial value, with probability close to 1. This reduces the global
control in the probability in (4.9) to a finite number of local controls on portions of the
interface.

• In [LST14b], the authors note that, if one freezes suitable portions of the Ising interface,
then the Ising dynamics on the non-frozen part can be mapped either to the one dimensional
SSEP (see Figure 1.4 below), or to a variant of the zero-range process (on small portions
of the boundary). In both cases, the interface dynamics is compared with one dimensional
interacting particle systems for which the scaling limit can be established, and, informally,
the evolution of the interface can be deduced from the hydrodynamics for the SSEP. The
heat equation satisfied by the SSEP corresponds to the anisotropic motion by curvature (4.6)
in a suitable reference frame.

4.1.3 The mapping to the SSEP

The mapping of portions of an interface undergoing Ising dynamics to the SSEP is central in the
argument of [LST14b]-[LST14a], and we now rigorously define it in the following case. Let γ be a
Lipschitz convex Jordan curve, the boundary of a bounded, convex set Γ. The curve γ is oriented
clockwise by convention.

Let T be the tangent vector at γ, defined almost everywhere:

T = cos(θ)e1 + sin(θ)e2, θ ∈ [0, 2π]. (4.10)

At a point of γ where T is well defined, the corresponding angle θ is referred to as the tangent
angle.
By convexity, γ can be split into four connected regions of maximal length, such that the tangent
angle θ is in [0, π/2]−kπ/2 in region 1 ≤ k ≤ 4. In fact, region 1 corresponds to the portion of the
boundary between points with the highest ordinate, and points with the highest abscissa; while
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Figure 1.3 – The Lipschitz convex curve γ rescaled by a factor N , and the droplet ΓN . On Nγ, the four
regions in which the tangent vector points towards the same quarter plane are delimited by brackets, with
the corresponding direction of the tangent vector indicated by arrows pointing in a red square. On the
boundary γN of ΓN , there are still four regions, different from those of Nγ, delimited by parentheses.
These regions intersect on portions of the interface with extremal ordinate or abscissa. Such portions will
be called poles in Section 4.2 and play an important role. The − spins in ΓN that are closer to each pole
are represented in green (lighter colour).

region 2 is the portion between points with highest abscissa and those with lowest ordinate, etc.
(see Figure 1.3).
Consider the droplet configuration ΓN associated with Γ:

ΓN =
⋃

i∈(1/2,1/2)+Z2

Ci⊂NΓ

Ci, Cx := x+ [−1/2, 1/2]2, x ∈ R2.

Then ΓN has Lipschitz boundary γN , and its tangent vector is parallel to e1 or e2 at every point
where it is defined. Although ΓN is not convex, there are still four connected regions of the bound-
ary γN of maximal length such that, in region 1 ≤ k ≤ 4, the tangent angle θ is in [0, π/2]− kπ/2
whenever it is well defined (see Figure 1.3).

Fix 1 ≤ k ≤ 4. Rotating the axis (e1, e2) by π/4+(k−1)π/2, region k of the boundary is turned
into the graph of a 1-Lipschitz function fk, which has slope ±1. The k = 1 case is illustrated on
Figure 1.4. With each edge in the original region, associate a site. Put a particle in the site if
the corresponding edge corresponds to a position in which fk has slope −1, and no particle if fk

has slope 1. By this procedure, region k is mapped onto a particle configuration with at most one
particle per site.
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Figure 1.4 – The mapping from a portion of region 1, delimited by the two big black dots, to the graph
of a Lipschitz function f1 in the reference frame materialised by the two gray arrows. This Lipschitz
function is then mapped to a particle configuration. Each edge of the initial interface corresponds to a
possible site for particles. In the region delimited by the black dots, no dynamical update can modify the
length of the region. Allowed dynamical moves, which are single spin flips, correspond to allowed moves
in the SSEP dynamics (2.1) with no boundary interaction, i.e. setting the boundary generators L± in
(2.1) to 0.

Consider now the dynamics. Assume that all updates of the Ising dynamics that change the
length of region k are cancelled, see Figure 1.4. Fix k = 1 for clarity. The remaining updates can
happen only when two consecutive edges of the original interface are perpendicular, e.g. the first
edge is parallel to e2, the second to e1 (see Figure 1.2). In the graph of f 1, this corresponds to a
change in monotonicity, in the present example from decreasing to increasing. The corresponding
particle configuration then has two neighbouring sites, with the first one filled and the second one
empty. An Ising update, which occurs at rate 1/2 (recall (4.4)), then changes this order (look e.g.
at the jump indicated by the first blue arrow): the new first edge is now parallel to e1, the second
to e2, corresponding to a jump of the particle to the empty site.

4.2 Contribution of the thesis

The statement (4.9) characterises the typical motion of the interface. To analyse more closely the
stochastic structure of the dynamics, the next step is to study the probability of observing a tra-
jectory that is not given by (4.6), i.e. to investigate the large deviations for the zero temperature
stochastic Ising dynamics.

Assume that the Ising interface has Gaussian fluctuations around its typical trajectory (4.6) in
some sense. For a trajectory (γt)t≤T of smooth Jordan curves, if s denotes the arclength coordinate
on γt for t ≤ T , one would have:

I
(

(γt)t≤T
)

=
1

2

∫ T

0

∫

γt

(v − ak)2
2µ

dsdt. (4.11)

In (4.11), recall that v = v(γt(s)) is the inwards normal speed at the point γt(s), and k = k(γt(s))
the curvature for t ≤ T . The quantity a(θ(s)) = a(θ(γt(s))) is the anisotropy (4.7), and the func-
tion µ(θ(s)) = µ(θ(γt(s))) is the mobility of the model, defined later in (4.18). Both depend only
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Figure 1.5 – The north pole of an interface, delimited by black dots dots, and in cyan, two positions at
which a growth at rate e−2β is possible. In this case, two contiguous blocks are added on top of the pole.
A point i ∈ Z2 in the north pole is at a position where growth can occur if it is at distance at least 2
from the right extremity of the north pole. This corresponds to asking that [i, i+2e+i ] be a subset of the
pole, with e+i the vector indicating the direction of the edge starting at i in clockwise orientation. If a
growth takes place, the new interface is materialied by the cyan dashed lines, and the new north pole is
delimited by the two cyan dots.

on the tangent angle θ(γt(s)) (recall (4.10)) at the point γt(s), t ≤ T .

Studying large deviations and proving that I is indeed the correct rate function cannot easily
be done through the program outlined at the end of the previous section. Indeed, the comparison
of the Ising interface to macroscopic ones using the monotonicity (4.5) is not valid when the Ising
interface follows an atypical trajectory.
This is not the only difficulty. The large deviation techniques presented in Section 4, particularly
the Replacement Lemma in Equation (2.14), require the invariant measure of the dynamics to be
”smooth” in the following sense: the law of the dynamics at each time needs at least to be absolutely
continuous with respect to the invariant measure. Here, the invariant measure δ+ is too degenerate.

In Chapter 4 of this thesis, both difficulties are solved by introducing the contour dynamics, a
dynamics on closed, non self-intersecting lattice paths on Z2 (recall (4.2)). This dynamics, defined
in Section 4.2.1, is nearly identical with the stochastic Ising dynamics (recall (4.4)).
The main ideas, difficulties and results of Chapter 4 are then presented in Sections 4.2.2-4.2.3.

4.2.1 The contour dynamics

The contour dynamics is a dynamics on interfaces parametrised by a parameter β, which plays the
role of an inverse temperature acting on small portions of the interface. This parameter β makes
the contour dynamics reversible with respect to a nice invariant measure, namely the measure νNβ
in (4.3) conditioned on a suitable set of interfaces (see Definition 4.2 for a complete description):

ν̃Nβ (γ) ∝ e−β|γ|, for admissible γ.

The admissible interfaces will correspond to all curves that can be split into four regions as in
Figure 1.3. The parameter β will only influence the dynamics on small portions of the interface
(those mapped to a zero-range process in [LST14b]), so that practically every dynamical update
follows the same rules as the zero temperature stochastic Ising dynamics (4.4). These portions
where β acts are called poles. They correspond to the portions of a curve with extremal abscissa
or ordinate, see Figure 1.3. We call north pole the portion with highest ordinate, east pole the one
with highest abscissa, and so on. In addition, the dynamics is stopped before a curve disappears;
and we can restrict to curves with poles containing at least two edges of Z2. Indeed, a pole with
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only one edge corresponds to a spin with three neighbours of opposite sign, which must disappear
instantaneously according to the Ising rules (4.4).

Figure 1.6 – Summary of dynamical moves in the contour dynamics at β > 0, with associated rates. The
only jumps added compared to the zero temperature stochastic Ising dynamics occur at the poles, and
make the droplet grow.

The additional updates in the contour dynamics compared to the Ising case can then be de-
scribed as follows (see Figure 1.5). Let i ∈ Z2 be a point of an interface γN = ∂ΓN , and denote by
e+i the vector which indicates the direction of the edge of which i is the first extremity, with γN

oriented clockwise.
Assume that i is in a pole of γN , and is at distance at least 2 from the right extremity of the pole.
Then, with rate e−2β, independently of all the rest, add to ΓN the two blocks, corresponding to +
spins, which respectively have i, i+ e+i as their lower left corner.
Examples of all possible updates are represented in Figure 1.6. Note that, in the β → ∞ limit,
the contour dynamics on non-empty curves has the same updates as the stochastic Ising dynamics
(4.4). We stress that, due to the pole updates, the contour dynamics at each β > 0 however does
not have the monotonicity property (4.5).

In the rest of this introduction, we restrict all contours we consider to those that lie in the
neighbourhood of a nice reference curve. A more general situation is considered in Chapter 4, see
Section 2.1. The state space ẼNr , r > 0 of the microscopic interfaces is then defined as follows.

Definition 4.2. Let γref be a Lipschitz convex Jordan curve, delimiting a bounded, convex domain

Γref. For r > 0, recall from (4.8) the definition of Γ
(−r)
ref , and take r > 0 such that Γ

(−2r)
ref 6= ∅.

Define then a set Ẽr = Ẽr(γref) containing all Lipschitz Jordan γ ⊂ R2 such that:
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• The curve γ can be split into four regions of maximal length with the following property. For
every point in region 1 ≤ k ≤ 4 for which the tangent vector T = cos(θ)e1 + sin(θ)e2 is well
defined, the tangent angle θ is in [0, π/2]− kπ/2.

• If Γ is the bounded set with boundary γ, then:

Γ
(−r)
ref ⊂ Γ ⊂ Γ

(r)
ref .

The set ẼNr is then defined as the set of all curves in N Ẽr ∩ Z2, with all four poles having length
at least 2.
The jump rates of the contour dynamics are modified to ensure that any update that breaks one
of the above conditions is cancelled. As a result, the measure ν̃Nβ is reversible for the contour

dynamics on ẼNr , with:

ν̃Nr,β :=
(

Z̃Nr,β
)−1

e−β|γ|, γ ∈ ẼNr , Z̃Nr,β a normalising factor. (4.12)

The probability associated with the contour dynamics is denoted by P̃Nr,β.

4.2.2 Mapping to one dimensional interacting particle systems and moving reservoirs

Fix β > 0. In the spirit of [LST14b], it is still possible to map portions of interfaces following the
contour dynamics onto one-dimensional interacting particle process. In fact, the contour dynamics
can be mapped on a collection of SSEP defined on varying domains, see Figure 1.7. These SSEP
interact through very complicated dynamical mechanisms depending on β at the poles (part of the
pole dynamics consists in changing the size of the domains on which the SSEP are defined). In
fact, recalling the mapping to the SSEP in Figure 1.4, the pole dynamics have the following effect,
e.g. on the north pole for concreteness.

• Assume the north pole has length 2, corresponding to two isolated − spins atop a droplet (as
in Figure 1.7). Both − spins can then disappear, i.e. the north pole goes down. Regions 1
and 4 (recall Figure 1.3) are consequently modified. Through the mapping to the SSEP as in
Figure 1.4, this means that the number of sites in each region changes. In addition, e.g. for
region 1, the disappearance of the − spins means that the associated particle configuration
has one less particle.

• The north pole can also go up through one of the moves with rate e−2β of Figure 1.5. Again,
regions 1 and 4 are modified, which amounts to a change of the number of sites in the SSEPs
associated via the mapping of Figure 1.4. E.g. in region 1, the north pole going up means
that the SSEP contains one more particle.

These effects are illustrated on Figure 1.7, in the particular case where an update at the north
pole only modifies the ordinate of the north pole, but not its lateral position.

Understanding the effect of the pole dynamics is a central ingredient in the study of the contour
dynamics. We prove that, for large enough β, the pole dynamics produce the same effect as
reservoirs in the open SSEP: they fix the average number of particles in their vicinity to a density
that depends on β. This amounts to fixing the slope at the interface on either side of each pole.
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Figure 1.7 – Left figure: a portion of interface delimited by the two black dots, corresponding to the graph
of a function f1; with some dynamically allowed updates represented by arrows. The left dot is at the
left extremity of the north pole. The single flips (i.e. the updates that flip a single spin, corresponding to
single arrows) do not modify the ordinate of the pole. The double flips either reduce, or increase it by 1,
and the new position of the left extremity of the pole is indicated by the magenta dot.
Right figure: a π/4 rotation turns the portion of the interface between the black dots into a path that is
the graph of a 1-Lipschitz function. This path is mapped to a particle configuration as follows. Each edge
on the path corresponds to a site. A site contains a particle if the associated edge points downwards, and
no particle if it points upwards.
If one only considers single flips on the contour dynamics of the left figure, the corresponding dynamics
on particles is the SSEP (middle line). However, flipping two + spins (upper line) or two − spins (lower
line) at the pole changes the number of sites, and adds/deletes a particle respectively.

This density can be explicitly computed. Let [Lk, Rk] be the segment composing pole k, 1 ≤ k ≤ 4.
Fix 1 ≤ k ≤ 4. At the left extremity of the domain of the kth SSEP, corresponding to Lk, it is
equal to e−β. At the right extremity, corresponding to Rk+1, it is equal to 1− e−β.
By the mapping of Figure 1.4, the average number of particles determines the average slope at
the poles, i.e. the macroscopic tangent vector T = cos(θ)e1 + sin(θ)e2. E.g. at the north pole, a
slope e−β translates into a tangent angle θ

(

(L1)±
)

of the macroscopic curve on either side of L1

satisfying:

tan
(

θ
(

(L1)±
))

= ∓ e−β

1− e−β . (4.13)

For all four poles 1 ≤ k ≤ 4, the condition (4.13) reads:

tan
(

θ
((

Lk
)

−
)

+
(k − 1)π

2

)

=
eβ

1− e−β = − tan
(

θ
((

Lk
)

+

)

+
(k − 1)π

2

))

. (4.14)

The derivation of the reservoir-like behaviour of the dynamics at the poles is the main difficulty
of the paper at the microscopic level. The analysis of the behaviour of the poles relies on three
ingredients. First, a priori estimates to ensure that the contour dynamics cannot maintain long,
thin filaments atop a pole for a positive time. Secondly, a very precise microscopic control of the
contour dynamics around a pole, rewriting it as a zero-range process in a moving domain, the
definition of which is one of the difficulties. The first point then can be understood as proving that
the zero-range process does not exhibit condensation. Thirdly, equilibrium computations in the
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Figure 1.8 – A neighbourhood of the north pole including portions of regions 1 and 4, i.e. portions of the
graphs of functions f1, f4 in the indicated reference frames. The left extremity L1 or the north pole is
materialised by the black dot. Examples of points i, j with associated edge labels ξi, ξj and vectors e+i ,
e+j are given. The portion of the interface between L1 and the cyan dot, materialised by the cyan dashes

contains 9 points in γN ∩ Z2. The associated ξ+,9L1
is equal to 2/9.

resulting model to identify the dependence of the ”density” that is imposed by the reservoir-like
pole dynamics in terms of β. The corresponding results are stated in the next proposition.

For γN ∈ ẼNr , and i, j ∈ γN , write i ≤ j if j is encountered after i when travelling from i to j
clockwise on γN . Let i ∈ γN ∩ Z2, and recall that j = i + e+i ∈ γN ∩ Z2 is the first point after i.
Define then ξi ∈ {0, 1} as follows (see Figure 1.8):

ξi = 1 if e+i //e2, ξi = 0 if e+i //e1.

Finally, denote by Lk the left extremity of pole k of a curve and, for ε > 0, denote by ξ±,εNLk
the

quantity:

ξ+,εNLk
:=

1

εN

∑

i∈Z2∩γN∩B1(Lk,εN)
Lk≤i

ξi, ξ−,εNLk
:=

1

εN

∑

i∈Z2∩γN∩∈B1(Lk,εN)
i≤Lk

ξi,

where B1(Lk, εN) := {j ∈ Z2 : ‖j − Lk‖1 ≤ εN}. The following proposition states that the slope
at the poles have a fixed value in terms of β.

Proposition 4.3. Let β > 0 be large enough and take a time T > 0. Then:

∀δ > 0, lim sup
ε→0

lim sup
N→∞

1

N
log P̃Nr,β

(

∀t ∈ [0, T ], γNt ∈ ẼNr/2;
∣

∣

∣

1

T

∫ T

0

ξ±,εNLk(t)
dt− 1k∈{1,3}e

−β − 1k∈{2,4}(1− e−β)
∣

∣

∣
> δ

)

= −∞.

Let us use Proposition 4.3 to propose a conjecture for the rate function of the contour dynamics.
Considering the contour dynamics as four SSEP connected by reservoirs, we can express the rate
function of the contour dynamics in terms of the rate functions of the four SSEP. Consider a
trajectory (γt)t≤T with values in Ẽr/2 (recall Definition 4.2). Let [Lk(t), Rk(t)] be the k

th pole of γt,
1 ≤ k ≤ 4, so that Lk(t) and Rk+1(t) are the two extremities of region 1 ≤ k ≤ 4, with k + 1 := 1
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if k = 4 (see Figure 1.3). Associate with (γt)t≤T the trajectories (ρkt )t≤T of the four SSEP. If we
believe in the analogy of the poles with reservoirs, one can check that the SSEP should satisfy:

∀t ≤ T, ρk(t, Lk(t)) = e−β = 1− ρ(t, Rk+1(t)), 1 ≤ k ≤ 4. (4.15)

The rate function of the contour dynamics would then be given by:

Iheurβ

(

(γt)t≤T |γ0
)

=
4

∑

k=1

ISSEP,k
(

(ρkt )t≤T |ρk0
)

. (4.16)

The precise comparison of the pole dynamics to reservoirs is complicated, since the position of
the reservoirs also changes, and the conjecture (4.16) is not completely accurate. To obtain large
deviations for the contour dynamics, we therefore do not exclusively rely on the SSEP picture, but
instead use a more direct approach, as presented in the next section.

4.2.3 The large deviations

We do not directly use the mapping with the SSEP to compute the rate function at the microscopic
level (although it constantly serves as a guideline, and at the macroscopic level). To apply the
method of [KOV89] presented in Section 2, we need to find a suitable way to tilt the contour
dynamics. Recall that this dynamics originates from a two dimensional dynamics for the Ising
model. It is thus natural to tilt the contour dynamics with a time-dependent magnetic field
H : R+ × R2 → R. We find that, for a large class of trajectories (γt)t≤T , one can construct a
magnetic field H such that the rate function is given, for large enough β > 0, by:

Iβ
(

(γt)t≤T |γ0
)

=



























1

2

∫ T

0

∫

γt

µ(θ(s))H(γt(s))
2dsdt if (γt)t≤T satisfies (4.14) for

almost every time, and γt=0 = γ0;

+∞ otherwise.

(4.17)

In (4.17), s is the arclength coordinate on the curve γt, t ≤ T . The angle θ(s) = θ(γt(s)) is the
tangent angle at γt(s), i.e. the tangent vector T satisfies:

T(γt(s)) = cos(θ(s))e1 + sin(θ(s))e2.

The function µ in (4.17) is the mobility of the model:

µ(θ) =
| sin(2θ)|

2
[

| sin(θ)|+ | cos(θ)|
] , θ ∈ [0, 2π]. (4.18)

The mobility agrees with the formula obtained by Spohn for the stochastic Ising model in the zero
temperature limit, using linear response arguments [Spo93].
To obtain the formula (4.17) directly from the microscopic model turns out to be quite technical.
Indeed, one has to pass from discrete sums to line integrals, and to find a way to express the
tangent angle θ in terms of microscopic quantities.

The central result of Chapter 4, the large deviations, is stated in the next two theorems. The
first one gives an upper bound.
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Theorem 4.4. Assume that β > 0 is large enough, take a time T > 0 and let F be a closed set
of trajectories in a suitable topology, containing only trajectories with values in Ẽr/2 and starting

from γ0 ∈ Ẽr/2. Then:

1

N
lim sup
N→∞

log P̃Nr,β

(

(γNtN2)t≤T ∈ F
)

≤ − inf
(γt)t≤T∈F

Iβ
(

(γt)t≤T |γ0
)

.

The precise topology in which Theorem 4.4 must be understood is very complicated, so we chose
not to state it in this introduction. It is defined below (2.30) and in Appendix B.2 in Chapter 4.
The reason is the peculiar nature of the β-dependent part of the contour dynamics. Basically, its lo-
cal nature makes it tremendously difficult to control exponential moments involving the poles, and
we have to forego any point-wise control of their trajectories. Trajectories of points in the poles are
in fact treated as elements of L1([0, T ],R2), even though they are càdlàg at the microscopic level.
We can then only prove that, at almost every time, the poles are indeed point-like and (4.14) holds.

The magnetic field H : R+ × R2 → R appearing in (4.17) is the bias one has to apply to the
dynamics to create the trajectory (γt)t≤T . For a smooth bias H, the representation enables us to
characterise atypical trajectories as solutions of an anisotropic motion by curvature with a drift
term (recall the notations of (4.6)):

{

v := ∂tγ ·N = ak − µH(t, γt) away from the poles,

the tangent angles θ
(

(Lk(t))±
)

on either side of each junction almost always satisfy (4.14).

(4.19)
More precisely, we obtain a weak formulation of (4.19), in terms of integrals on the droplets (Γt)t≤T
against test functions, see Proposition 2.5 in Chapter 4. Under a uniqueness assumption for weak
solutions to (4.19), we obtain a lower bound on the cost of observing a trajectory associated with
a smooth magnetic field, as stated in the next theorem.

Theorem 4.5. Let H ∈ C∞(R+ × R2,R), and assume that there is a unique weak solution γH to
(4.19) in a suitable sense, that is almost always in Ẽr/2 until a time T . Then:

lim inf
N→∞

1

N
log P̃Nr,β

(

(γNtN2)t≤T ≈ γH
)

≥ −Iβ
(

(γH)t≤T |γ0
)

.

Above, ≈ must be understood as proximity in the same topology as in Theorem 4.4.

In the above theorem, the only assumption concerns the uniqueness of solutions to (4.19), since
we can prove that trajectories with a drift typically stay in the set Ẽr/2 until some time. This does
not particularly require new ideas. It relies on the one hand on the form of the invariant measure
(4.12) to control that the poles do not rise too high. On the other hand, one has to make sure the
droplet does not shrink too fast, which can be done using estimates similar to the Ising case in the
spirit of Section 8 in [Cap+11].

Let us conclude this section by comments on the rate function (4.17) of the contour dynamics.
At the formal level, (4.19) means that H = (v−ak)/µ, where v is the inwards normal speed ∂tγ ·N.
The expression of the rate function (4.17) thus formally agrees with the one in (4.11).
Consider now the β →∞ case. If one formally takes the limit β →∞ in the rate function (4.17),
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the conditions (4.15) can be shown to be satisfied for curves with a tangent vector that is continuous
at the junctions between SSEP. In particular, a trajectory (γt)t≤T that is both continuous in time
and has curvature defined everywhere will correspondingly satisfy equation (4.19) at each time
t ≤ T and every point of γt (i.e. even at the junctions between SSEP). The connection between
anisotropic motion by curvature with drift and fluctuations in the zero-temperature stochastic
Ising model (i.e., formally, when β → ∞) was made by Spohn [Spo93], who showed that the
response of the Ising interface to a small magnetic field in the large temperature limit is described
by anisotropic motion by curvature with drift.

4.3 Conclusion and perspectives

In the previous section, the conjecture (4.11) was established on a large class of trajectories, under
a uniqueness assumption on weak solutions of anisotropic motion by curvature with a smooth drift
(4.19). Let us summarise the key ingredients of the proof:

• First and foremost, an understanding of the behaviour of the contour dynamics at the poles
is crucial, i.e. Proposition 4.3. It is the main difficulty of the paper at the microscopic level.
It relies on finding an appropriate reference frame in which the dynamics at the poles is
mapped onto variants of one dimensional zero range processes; then on a priori estimates to
prove that these particle systems are well-behaved (i.e. no condensation occurs); finally on
equilibrium computations.

• To quantify the difference between the contour dynamics with or without a bias H : R+ ×
R2 → R, very technical microscopic computations are required. Indeed, it is for instance
not easy to make sense of the tangent angle to a macroscopic curve in terms of microscopic
quantities.

• The upper bound of Theorem 4.4 then follows from the large deviation techniques of [KOV89],
as presented in Section 2 for the SSEP. Two additional difficulties arise. On the one hand, the
functionals under consideration do not have good continuity property (an intrinsic problem,
unrelated to our special choice of topology). On the other hand, the lack of point-like control
of the motion of the poles forces us to work in a weaker, but unconventional topology. The
proof of exponential tightness in this weaker topology is nonetheless still difficult.

• The lower bound of Theorem 4.5 in fact relies on a generalisation of the upper bound to
the contour dynamics tilted by a bias H, and on the uniqueness assumption of solutions to
(4.19).

The above few point outline several perspectives that could be investigated.

1. From a technical viewpoint, a substantial part of the proofs could be simplified with a point-
wise control of the trajectory of the poles. At present, this is difficult to obtain, because
exponential moments of the size of a pole are hard to estimate, as a pole could theoretically
have size of order N .

2. Uniqueness of weak solutions to (4.19) has to be looked into. If one fixes the trajectory of
the poles and assumes that it is sufficiently regular in time, then uniqueness boils down to
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proving uniqueness for SSEP in domains that vary with time. This can be done using results
of [Can84]. The problem is therefore to understand how the interface motion influences
the motion of the poles. In this sense, the equation (4.19) can be viewed as four one-
dimensional Stefan problems (one for each SSEP), coupled by their boundary conditions.
Stefan problems have been studied as limits of interacting particle systems in several contexts,
see e.g. [CS96][CK08][CKG12] and [Lac14]. However, the methods devised in these papers
apply only to a single Stefan problem at a time, and it is not clear whether they could be
used for four coupled Stefan problems.

3. The large deviations give some insights on the nature of the stochastic corrections to the
anisotropic motion by curvature (4.6). It would be interesting to investigate the fluctuations
around the typical trajectory. Using the analogy with the SSEP, it may be possible to say
something about the structure of the fluctuations at least away from the poles.
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Chapter 2

Résumé

Ce chapitre de présentation de la thèse est un abrégé du Chapitre 1.

1 Cadre et objectif de la thèse

Cette thèse est consacrée à l’étude d’événements dynamiques rares dans des systèmes de particules
en interaction. Le cadre théorique est celui de la physique statistique : la matière est modélisée,
à l’échelle microscopique, par le biais d’un grand nombre de composants fondamentaux, appelés
particules dans la suite, et interagissant entre eux de manière aléatoire. Un modèle est adapté
si, dans la limite d’échelle (grand nombre de particules, grand volume du modèle. . . ), ou échelle
macroscopique, le comportement typique d’observables telle que la densité locale de particules
correspond à celui prédit par ailleurs par les lois de la physique.

Dans cette thèse, nous nous intéressons plus spécifiquement à des modèles de dynamique des
fluides. Notre objectif : étudier les comportements atypiques du système de particules micro-
scopiques, afin de mieux comprendre la structure du modèle. Cet objectif rentre dans le cadre
général de la théorie des grandes déviations. Pour notre étude, nous utilisons de manière centrale
la méthode de Kipnis, Olla et Varadhan [KOV89] d’études des grandes déviations. Cette méthode
procède de l’idée suivante, bien connue dans la théorie des grandes déviations : pour quantifier
la probabilité d’obtenir un événement dynamique rare, il est possible de perturber la dynamique
microscopique de telle sorte que l’événement rare devienne typique sous la dynamique perturbée.

Deux modèles sont considérés dans la thèse : le processus d’exclusion simple symétrique unidi-
mensionnel en contact avec des réservoirs, et un modèle de dynamiques d’interfaces se rapprochant
de la dynamique de Glauber du modèle d’Ising bidimensionnel à température nulle.

2 Corrélations atypiques dans l’exclusion simple symétrique

avec réservoirs

Le modèle d’exclusion simple symétrique avec réservoirs (abrégé en SSEP ouvert), ici unidimen-
sionnel, (cf Figure 2.1) est un système de particules prototypique. Dans ce modèle, des particules
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Figure 2.1 – Le SSEP ouvert unidimensionnel avec réservoirs de particules à densité ρ± ∈ [0, 1]. Certains
mouvement permis par la dynamique sont représentés par des flèches. Une particule peut sauter vers un
de ses voisins à taux 1/2. Le saut n’a pas lieu si le site de destination est déjà occupé. Les réservoirs
fournissent des particules au système et en absorbent, avec un taux lié à la densité ρ± du réservoir. Si
le site voisin d’un réservoir est déjà plein, la règle d’exclusion empêche une nouvelle particule de rentrer
dans le système à cet endroit.

suivent une marche aléatoire symétrique indépendamment les unes des autres, sautant à taux 1/2
sur un site voisin. La seule interaction survient lorsqu’une particule tente de sauter vers un site déjà
occupé, auquel cas le saut est annulé. Des réservoirs, connectés à chaque extrémité du système,
imposent une certaine densité de particules dans leur voisinage en échangeant des particules avec
le système à un certain taux.

Malgré sa simplicité apparente, le SSEP ouvert est un modèle très riche, qui a été con-
sidérablement étudié, cf. [KL99][Lig05] et références ci-incluses. Dans le cadre de cette thèse,
l’aspect qui nous intéresse est le suivant. Lorsque les deux réservoirs (voir Figure 2.1) imposent
des densités ρ± ∈ [0, 1] différentes, le SSEP ouvert se stabilise en temps long dans un état station-
naire hors équilibre, caractérisé par la présence d’un courant macroscopique de particules induisant
des corrélations à longue portée [Spo83][DLS02]. Ces corrélations sont des objets difficiles à étudier,
car évoluant à une échelle bien plus fine que, par exemple, celle de la densité de particules. Le
but du travail présenté au Chapitre 3 est précisément l’étude des corrélations à deux points, dans
le but de quantifier la probabilité d’observer, en temps long, des corrélations dont la valeur ne
correspond pas à celle de la mesure invariante.

Pour étudier les corrélations à deux points avec le niveau de précision requis, l’outil de base
reste la méthode de grandes déviations de Kipnis, Olla et Varadhan [KOV89]. Il est nécessaire
d’améliorer substantiellement la précision des estimations existantes, usuellement formulées au
niveau de la densité de particules. Cette amélioration est obtenue en raffinant la méthode d’entropie
relative initialement développée par Yau. La méthode d’entropie relative consiste à estimer, à
chaque temps, la proximité de la loi de la dynamique à une mesure de référence à choisir. La
distance entre ces deux mesures est quantifiée par leur entropie relative. L’idée sous-jacente à
cette méthode est liée à la notion d’équilibre local, et peut être illustrée comme suit dans le cas
du SSEP ouvert. La dynamique dans une petite portion du système s’équilibre beaucoup plus vite
que la dynamique globale. Localement, la loi de la dynamique devrait donc ressembler à la mesure
invariante d’un SSEP, avec un nombre de particules correspondant à celui présent dans la petite
portion. En pratique, cette méthode a été utilisée dans de nombreux systèmes de particules en
interaction (voir [KL99], Chapitre 6 et références ci-incluses) afin de déterminer l’évolution typique
de la densité de particules dans le système. Pour étudier cette évolution, il suffit de considérer une
mesure de référence produit, imposant seulement la bonne densité macroscopique.
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La méthode d’entropie relative a récemment été considérablement améliorée par Jara et Menezes
[JM18b][JM18a]. En analysant finement l’effet de la composante dissipative de la variation de
l’entropie relative en fonction du temps, ils parviennent à obtenir des bornes sur l’entropie relative
suffisamment précises pour étudier les fluctuations hors équilibre d’une large classe de systèmes de
particules en interaction, évoluant à une échelle diffusive en temps (comme le SSEP ouvert), en
dimension d ≤ 3. Dans leur méthode, les mesures de référence sont toujours produit.

Dans cette thèse, la méthode de Jara et Menezes est raffinée en dimension 1, en incorporant
des informations sur la structure des corrélations hors équilibre d’un système de particules en
interaction. En comparant la loi de la dynamique en chaque temps avec une mesure imposant non
seulement la bonne densité macroscopique, mais aussi les bonnes corrélations à deux points ; nous
obtenons des bornes suffisamment précises sur l’entropie relative pour étudier les corrélations hors
équilibre et en temps long. Bien que présenté dans le cadre du SSEP ouvert, ce raffinement de la
méthode d’entropie relative, intéressant en lui même, s’applique à une large classe de systèmes de
particules en interaction.

3 Interfaces d’Ising et dynamique de contour

Une deuxième direction de la thèse concerne l’étude d’une dynamique d’interface. Cette dynamique
d’interface modélise l’évolution d’une goutte de spins −, immergés dans une mer de spins +, sur
un réseau carré. Il est conjecturé de longue date que, pour une large classe de telles dynamiques
d’interface, la frontière de la goutte de spins − dans la limite d’échelle devrait évoluer typiquement
selon un mouvement par courbure moyenne anisotrope [Lif62][Spo93]. Dans le cas de la dynamique
d’Ising à température nulle, Lacoin, Simenhaus et Toninelli [LST14b][LST14a], ce fait a été établi
rigoureusement, confirmant des résultats partiels et heuristiques [Spo93][CSS95].
La preuve du comportement typique de l’interface des articles [LST14b][LST14a] utilise de manière
centrale la monotonie de la dynamique d’Ising, qui peut informellement se définir comme suit : si
une goutte de spins − est initialement incluse dans une autre, alors cette inclusion est préservée
par la dynamique. Dans [LST14b][LST14a], cette propriété est utilisée pour encadrer, avec une
probabilité proche de 1, la goutte microscopique par une goutte dont la frontière suit un mouve-
ment par courbure moyenne anisotrope.

Dans la thèse, on cherche à comprendre la structure des trajectoires atypiques. Les estimations
utilisant la monotonie dans le cas d’Ising dans [LST14b][LST14a] ne s’appliquent pas aisément à
l’étude d’événements rares. Pour étudier la structure des trajectoires atypiques, une dynamique
d’interface est introduite dans la thèse, appelée dynamique de contour et très similaire à la dy-
namique d’Ising à température nulle. La seule dissemblance vient de la présence d’un paramètre
supplémentaire, jouant le rôle d’une (faible) température agissant localement sur l’interface. En
particulier, les dynamiques d’Ising et de contour cöıncident quand ce paramètre est nul.
On montre que la trajectoire typique d’une interface sous cette dynamique de contour évolue
également selon un mouvement par courbure moyenne anisotrope, avec une influence du paramètre
de température. A l’aide de la méthode de Kipnis, Olla et Varadhan [KOV89], un principe de
grandes déviations est alors obtenu pour la dynamique de contour, permettant de relier les tra-
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jectoires atypiques à des perturbations d’un mouvement à courbure moyenne anisotrope, toujours
avec une influence du paramètre de température.

L’intuition dirigeant la preuve repose sur une comparaison microscopique de la dynamique
de contour avec des processus d’exclusion simple symétrique. Ces SSEP ouverts sont reliés par
une dynamique de bord complexe, qui agit notamment comme un réservoir mobile de densité.
L’analyse de cette dynamique de bord est la difficulté majeure de la preuve.
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Chapter 3

Anomalous correlations in the open
symmetric simple exclusion process

In this chapter, we investigate the probability to observe anomalous two-point correlations in the
one dimensional symmetric simple exclusion process connected with reservoirs.
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1 Introduction

Correlations in a fluid in thermal equilibrium have been well-understood for decades. They decay
exponentially, except in the vicinity of a phase transition. In particular, each macroscopic portion
of the fluid is basically independent from the rest. For fluids driven out of equilibrium, e.g. by
contact with reservoirs at two different temperatures, this picture breaks down. The fluid settles
in a steady state where heat and/or matter are transported at a macroscopic level. This transport
induces long-range correlations, which can be modelled by a variety of approaches at different
scales and that have been observed experimentally, see [Spo83][Gar+90] and references therein.

The derivation, from a microscopic model, of such correlations of a genuinely dynamical nature,
is usually a difficult problem. Rigorous results are mostly obtained for certain simple interacting
particle systems on a lattice. The Symmetric Simple Exclusion Process connected with reservoirs
(henceforth open SSEP) is a paradigmatic example for which this correlation structure can be
analysed. In the open SSEP, defined in Section 2, identical particles follow independent symmetric
random walks on vertices (or sites) of an underlying lattice, which in the following will always be
a subset ΛN of Z, where N is the scaling parameter. The only interaction between particles is
an exclusion rule: no two particles may occupy the same site. Reservoirs pump particles in and
out of the system, at rates that fix a certain density of particles in their vicinity. When reservoirs
are at the same density, the open SSEP dynamics is reversible. However, when connected with
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reservoirs which enforce a different density of particles, this dynamics settles in long time in a
non-equilibrium steady state, characterised by a macroscopic current of particles. The strength of
this current is proportional to the density difference between the reservoirs [ELS90][FLM11]. Two-
point correlations in the steady state are known exactly [Spo83], as well as all higher cumulants
[DLS07][Der07][DR13] in dimension one. The correlation structure of the steady state of the open
SSEP is conjectured to be representative of a large class of out of equilibrium systems [Spo83].
However, much less is known rigorously about steady state correlations for general lattice gases.

In this paper, the broad objective is to study the long-time behaviour of a large class of inter-
acting particle systems in the scaling limit N → ∞. The main question we wish to address is to
estimate the asymptotic probability of observing a correlation structure that is different from the
one of the steady state, thereby also gaining information on this invariant measure.
When the value N of the scaling parameter is fixed, this question has already received a compre-
hensive answer by Donsker and Varadhan [DV75]. For a general, irreducible Markovian dynamics
on a finite state space ΩN , they study the time empirical measure π̃T , defined for each T > 0 as a
probability measure on the configuration space ΩN by:

∀η ∈ ΩN , π̃T =
1

T

∫ T

0

1ηt=ηdt.

The quantity π̃T (η) then corresponds to the proportion of time spent at a configuration η ∈ ΩN .
A full large deviation principle with speed T and rate function INDV is then provided in [DV75]
for the time empirical measure π̃T , in the sense that, if µN is a probability measure on ΩN and P

denotes the probability associated with the dynamics:

lim
T→∞

1

T
logP

(

π̃T ≈ µN
)

= −INDV (µN), (1.1)

where ≈ means proximity in the weak topology of measures. The rate function INDV vanishes only
at the invariant measure πNinv of the dynamics, and is defined through a complicated variational
problem. When the underlying dynamics is reversible, however, this variational problem can be
solved, and INDV is expressed in terms of the Dirichlet form of the dynamics.

The question is then how to study the scaling limit (i.e. the large N limit) of the probability in
(1.1). The key observation is that one cannot naively take the large N limit in (1.1) without losing
information, because not all the information contained in a measure µN is stored at the same scale
in N . Let us explain this claim in the case of the one dimensional open SSEP, assuming that the
dynamics is reversible (i.e. with reservoirs at the same density). The method we propose in the
article however applies to the non-equilibrium situation, as well as to a wide range of diffusive
one-dimensional interacting particle systems.
In the one dimensional SSEP, the scaling parameter N is the order of magnitude of the number of
sites in the model. In the reversible case, where the explicit expression of INDV allows for compu-
tations, one can prove that observing a macroscopic density profile different from the one of the
invariant measure has a probability that scales like e−TN

−2·N in the large T , then large N limit,
up to sub-exponential corrections. In contrast, changing the two-point correlation structure only
requires a cost of order e−TN

−2
(see the heuristics presented in Section 3.2 of Chapter 1 where T
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is replaced by TN2).
To study the scaling limit of (1.1), one therefore has to choose a scale. Out of equilibrium, the
rate function INDV is not known explicitly, and the above equilibrium heuristics cannot be used. A
different approach to study the scaling limit of the formula (1.1) is therefore needed.

In this article, we focus on the two-point correlation scale, and quantify the probability of
observing anomalous two-point correlations in the one dimensional, out of equilibrium open SSEP
in the large N, T limits. We establish a large deviation principle for the time-averaged two-point
correlation field, in Theorem 2.2 below. The technique employed to prove large deviations has
two main features. The first is a variant of the standard large deviation argument introduced in
[KOV89] (see also Chapter 10 of [KL99] for a review). It consists in estimating the probability of
rare events by considering tilted dynamics, under which this rare event becomes typical. The sec-
ond feature is the introduction of appropriate Poisson equations to study the long-time behaviour
of macroscopic correlations.
The difficulty in establishing large deviations lies in the fact that two-point correlations are objects
that live on a much finer scale than the density, which makes precise controls difficult to obtain.
As a consequence, the limit we consider is not the long time, then large N limit in the spirit of
Donsker-Varadhan’s formula (1.1), but the long, diffusive time scale TN2 where N is taken large
before T also, for reasons explained in the next paragraph. Let us note however that, for the open
SSEP, the two ways to take limits coincide at least when the dynamics is reversible, see again the
heuristics of Section 3.2 in Chapter 1.

The two-point correlation field, defined below in (2.6), is also called quadratic field, or quadratic
fluctuation field in the literature [Ass07][GJ19]. Both of these works are concerned with two-point
correlations at equilibrium. The difficulty when trying to estimate its long-time behaviour is hinted
at by the structure of the invariant measure: two-point correlations in the steady state of the open
SSEP are long range, and scale like O(N−1), compared to ON(1) for the density of particle at a
given site. For this reason, and while model-dependent estimates on correlations have been ob-
tained e.g. in [Spo83][Der+05][LMO06][Gon+20], to our knowledge there is no general method to
study the out of equilibrium behaviour of the two-point correlation field in the long-time, large N
limits.
On the other hand, on the diffusive time scale TN2 with N large and T > 0 fixed, there are well-
established, general methods to study the density of particles (see e.g. Chapters 4-6 in [KL99])
and its fluctuations (Chapter 11 of [KOV89] at equilibrium, or [JM18b] out of equilibrium). Based
on entropy considerations originating in [GPV88] and [Yau91], these methods allow for obtaining
closed equations on the density or fluctuation field, through so-called Replacement Lemmas. Such
estimates, crucial in our case as well, do not hold in the literature with the level of precision
required to study correlations on a diffusive time scale TN2 with N large. A fortiori, nothing is
known in the long diffusive time limit where T also becomes large after N . As explained in the
next paragraphs, our approach consists in building on the improvement to the relative entropy
method obtained in [JM18b], in order to obtain results valid at the levels of correlations on the
one hand, and on the other hand results that are sufficiently precise to investigate the long time
limit.

The relative entropy method dates back to Yau [Yau91] (see also Chapter 6 in [KL99] for a re-
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view), and has recently been considerably improved upon by Jara and Menezes in [JM18b]-[JM18a].
It consists in quantifying, at each time and in terms of the relative entropy, the proximity of the
law of the Markovian dynamics in an interacting particle system with a known reference measure.
The idea behind the method is that, locally, the dynamics in large microscopic boxes equilibrates
much faster than the typical time-scale at which the system evolves macroscopically. If one has
a proposal for the evolution of macroscopic variables of interest, say, henceforth, the density in
a lattice gas; one can then expect to prove that the corresponding microscopic variables, when
averaged over a large microscopic box, are close to their macroscopic counterpart. This property
is known as local equilibrium.
If one is interested only in the density or its fluctuations, then only the knowledge of the macro-
scopic evolution of the density is required to construct a suitable reference measure to which to
compare the microscopic dynamics, see Chapter 6 in [KL99] and references therein. In particular,
the reference measure does not need to contain any information on correlations. To study two-point
correlations, however, the knowledge of only the density is not enough any more. Thus, our key
argument introduces a correlation term in the reference measure. In the case of the open SSEP,
since density fluctuations around the typical density profile at each time (and in the steady state
[LMO06]) are known to be Gaussian [JM18b], our candidates for reference measures are discrete
Gaussian measures, see (2.21). One expects that a good choice of discrete Gaussian measure will
contain all leading-order information about the two-point correlation field. This statement is made
precise in Theorem 2.5 where we obtain, for each suitably tilted dynamics, a characterisation of the
correlations in the long diffusive time limit as the solution of a certain partial differential equation
(see also Appendix A.3 for a discussion).

The approach used in this paper can be used for a large class of one-dimensional diffusive in-
teracting particle systems (see Section 8 in [JM18b]). In this sense, it allows for what we believe is
the first quite general method to study two-point correlations out of equilibrium. Let us however
mention that, at equilibrium, the behaviour of n-point correlation fields has come under much
scrutiny in the past few years. In [Ass07], the two-point correlation field around the diagonal is
studied in the SSEP on Z. In [GJ19], this study is carried out on the one-dimensional torus using
a different approach, and as a means to defining squares of distributions arising in certain ill-posed
stochastic partial differential equations. In [ACR21] and [CS20], interacting particle systems en-
joying a self-duality property are investigated in all dimensions. In that context, fluctuation fields
involving n-point functions are investigated for any n.

The rest of the article is structured as follows. In Section 2, we present the model and results.
Section 3 gives the main microscopic tool for the study of two-point correlations: the relative
entropy estimate when the reference measure is a certain discrete Gaussian measure. Properties
of these measures are established in Appendix A. Together with Appendices B, C and D, sharp
relative entropy bounds are derived. These in particular allow for the computation of the Radon-
Nikodym derivative between the open SSEP and the tilted processes introduced to estimate rare
events.
The large deviations are then established, in Section 4 for the upper bound, and 5 for the lower
bound. Control of the open SSEP dynamics in long-time is obtained via the study of certain Poisson
equations. Well-posedness of these equations is investigated in Appendix F, while Appendix E
gathers useful topological facts.
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2 Notations and results

2.1 Notations and definition of the microscopic model

The model. For N ∈ N∗, let ΛN := {−N + 1, ..., N − 1} and ΩN = {0, 1}2N−1. Elements of ΩN ,
denoted by the letter η, will be called configurations. We say that there is a particle at site i ∈ ΛN
if ηi = 1, and no particle if ηi = 0. The variable ηi is called the occupation number (of site i).
On ΩN , we consider the dynamics given by the Symmetric Simple Exclusion Process connected to
reservoirs at position ±N (henceforth open SSEP), which we now describe.
Let ρ− < ρ+ ∈ (0, 1) be the densities of the left (for ρ−) and the right (ρ+) reservoirs. The open
SSEP is defined through its generator N2L := N2(L0 +L− +L+). It is made up of two parts, the
bulk and boundary dynamics, corresponding to L0 and L± respectively. The operators L0 and L±
act on f : ΩN → R as follows:

∀η ∈ ΩN , N2L0f(η) =
N2

2

∑

i<N−1

c(η, i, i+ 1)
[

f(ηi,i+1)− f(η)
]

, (2.1)

N2L±f(η) =
N2

2
c(η,±(N − 1))

[

f(η±(N−1))− f(η)
]

. (2.2)

Above, the jump rates c are defined, for each η ∈ ΩN , by:

c(η, i, i+ 1) = ηi+1(1− ηi) + ηi(1− ηi+1), i < N − 1,

c(η,±(N − 1)) = (1− ρ±)η±(N−1) + ρ±(1− η±(N−1)), (2.3)

and for i, j ∈ ΛN and η ∈ ΩN , the configurations ηi and ηi,j read:

ηiℓ =

{

ηℓ if ℓ 6= i,

1− ηi if ℓ = i; ,
ηi,jℓ =











ηℓ if ℓ /∈ {i, j},
ηj if ℓ = i,

ηi if ℓ = j.

(2.4)

We write Pη,Eη be the probability/expectation under this dynamics starting from η ∈ ΩN .

The invariant measure and the correlation field. For each N ∈ N∗, let πNinv denote the
unique invariant measure of the open SSEP. If ρ+ = ρ− = ρ ∈ (0, 1), πNinv is simply the Bernoulli
product measure on ΛN with parameter ρ. If ρ− < ρ+, however, the measure πNinv is not product.
The average occupation number at each site was computed in [Spo83]: it is given in terms of an
affine function ρ̄, with:

∀i ∈ ΛN , πNinv(ηi) := ρ̄(i/N) =
(

1− i

N

)ρ−
2

+
(

1 +
i

N

)ρ+
2
. (2.5)

Note that, as ρ̄ is affine, ρ̄′ = (ρ+ − ρ−)/2 is a constant. As πNinv is invariant, one has, for
F : ΩN ⇒ R:

∀t ≥ 0, πNinv(F ) :=
∑

η∈ΩN

πNinv(η)F (η) = Eπ
N
inv

[

F (ηt)
]

.
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The measure πNinv exhibits long-range correlations. To make this statement precise, let us first
define the main object of interest in this article, the correlation field ΠN . It is a distribution,
acting on test functions φ : (−1, 1)2 → R according to:

∀η ∈ ΩN , ΠN(φ) = ΠN(φ)(η) =
1

4N

∑

i 6=j∈ΛN

η̄iη̄jφ(i/N, j/N), η̄· := η· − ρ̄(·/N). (2.6)

Notations. Throughout, we write ρ̄i := ρ̄(i/N) for i ∈ ΛN . More generally, for a function
φ : [−1, 1]p → R, p ∈ N∗, we write φi1,...,ip for φ(i1/N, ..., ip/N), (i1, ..., ip) ∈ ΛpN . The letters
i, j, ℓ..., when used as indices, index elements of ΛN ; while x, y, z are used for continuous variables.
More generally, when we speak of n-point correlations, n ∈ N∗ in the text, it will always mean
products of centred variables, the η̄’s, of the form η̄i1 ...η̄in for some (i1, ..., in) ∈ ΛnN that are all
different. When considering a trajectory ηt ∈ ΩN , t ≥ 0, we write ΠN

t for ΠN(·)(ηt).

Note the scaling of (2.6) with N : the sum contains N2 terms, and the normalisation is only
proportional to N−1. This is related to the following fact. The variable η̄·, which measures the
difference of the density at a given site compared to ρ̄(·/N), is a trivial quantity when looking at
a single site, and bounded away from 0 independently of N . However, when averaged over many
sites as in (2.6) the scaling changes and, informally, ΠN(f) is typically bounded with N under
πNinv. More precisely, let σ(ρ) = ρ(1− ρ), ρ ∈ [0, 1], and define:

∀x ∈ [−1, 1], σ̄(x) := σ(ρ̄(x)). (2.7)

The average value of the correlation field under the invariant measure was obtained in [Spo83],
and again in [DLS02] in the large N limit. If D = {(x, x) : x ∈ (−1, 1)} denotes the diagonal of
the open square, then, for each f ∈ C0([−1, 1]2):

lim
N→∞

πNinv
(

ΠN(f)
)

=
1

4

∫

(−1,1)2
f(x, y)k0(x, y)dxdy. (2.8)

In the remainder of this section, we collect some properties of the correlations under πNinv in the
large N limit, which may be skipped on a first reading.
The kernel k0 is a symmetric function, equal to (ρ̄′)2∆−1

1d , where ∆−1
1d denotes the inverse of the

one-dimensional Dirichlet Laplacian on (−1, 1) with 0 boundary conditions:

∀(x, y) ∈ (−1, 1)2, k0(x, y) = −
(ρ̄′)2

2

[

(1 + x)(1− y)1x≤y + (1 + y)(1− x)1x≥y
]

. (2.9)

It follows that k0 is continuous on [−1, 1]2, and that its restriction to the triangle {(x, y) ∈ [−1, 1]2 :
x ≤ y} is C∞, idem for the other triangle. Moreover, the difference ρ̄′ = (ρ+ − ρ−)/2 in the
reservoir densities determines the size of the correlations. This is reflected in the jumps of the
normal derivative of k0 on the diagonal D = {(x, x) : x ∈ (−1, 1)}:

∀x ∈ (−1, 1), (∂1 − ∂2)k0(x±, x) = ±(ρ̄′)2.

Above x± = limh↓0(x ± h). From the explicit expression for k0 and ρ̄, one has, for ρ̄′ sufficiently
small:

∫

(−1,1)2
σ̄−1(x)k0(x, y)

2σ̄−1(y)dxdy < 1. (2.10)
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We will always work under the assumption that (2.10) holds. In the large N limit, by (2.8), the
correlations under the steady state are therefore given by the operator C0 = σ̄ + k0, where σ̄ is
identified with the operator mapping f ∈ L2((−1, 1)2) to σ̄f , and k0 with the kernel operator
k0f(x) =

∫

(−1,1)
k0(x, y)f(y)dy, x ∈ [−1, 1]. It follows in particular from (2.10) that the inverse

C−1
0 of C0 can be expressed as a series:

C−1
0 := σ̄−1 − g0, g0 = σ̄−1 − (σ̄ + k0)

−1 = −σ̄−1/2

∞
∑

n=1

(−1)n
(

σ̄−1/2k0σ̄
−1/2

)◦n
σ̄−1/2, (2.11)

where A◦n denotes the n-times composition of an operator A for n ∈ N∗. The inverse correlation
kernel g0 inherits the regularity of k0. This kernel g0 will play an important role throughout the
chapter. Note that both k0 and g0 are negative operators on L2((−1, 1)2):

∀f ∈ L2((−1, 1)2),
∫

(−1,1)2
f(x)k0(x, y)f(y)dxdy ≤ 0,

∫

(−1,1)2
f(x)g0(x, y)f(y)dxdy ≤ 0. (2.12)

For k0, this follows from the negativity of ∆−1
1d . On the other hand, g0 is negative as (−1) times a

limit of sums of compositions of positive kernels, see [Ber74].

2.2 The topology

To study the field ΠN , we need to choose a space to which ΠN belongs, and equip it with a topology.
Let us start with a few observations. By definition (2.6), ΠN can be seen as a bounded linear form
on several function spaces. Let � = (−1, 1)2 and notice:

∀f : �→ R, ΠN(φ) = ΠN(φs), φs(x, y) = f(x, y)/2 + f(y, x)/2, (x, y) ∈ �. (2.13)

Note also that any function φ ∈ C1(�) which is symmetric, i.e. φ = φs, is such that:

∀(x, y) ∈ �, ∂1φ(x, y) = ∂2φ(y, x) ⇒ ∀x ∈ (−1, 1),
(

∂1 − ∂2
)

φ(x±, x) = 0.

In view of (2.9), it seems important to be able to evaluate ΠN on functions with non-vanishing
normal derivative on the diagonal D of �, defined by:

D :=
{

(x, x) : x ∈ (−1, 1)
}

. (2.14)

We therefore cannot only consider symmetric φ that are smooth on the whole of �. Finally, to
account for the reservoirs, we require φ|∂� = 0.
With the above discussion, let us now define the test functions ΠN will act on. Split � as follows:

� = ⊲ ∪D ∪⊳ = ∪D, ⊲ = {(x, y) ∈ � : x < y}, ⊳ = {(x, y) ∈ � : x > y}, = ⊲ ∪⊳.

For n ∈ N and p ≥ 1, let Wn,p( ) be the Sobolev space of functions with distributional derivatives
up to order n in Lp( ). By definition of , those are exactly the functions with restriction to ⊲,⊳
in Wn,p(⊲),Wn,p(⊳) respectively. Properties of these spaces are recalled in Appendix E. Note
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that Lp(�) = Lp( ) since the diagonal has vanishing two-dimensional Lebesgue measure. The
difference between functions on � and arises in the integration by parts formula defining their
weak derivatives. If p = 2, we simply write Hn(⊲) := Wn,2(⊲). Define then the set T as follows:

T =
{

φ ∈ H2( ) : φ|∂� = 0
}

. (2.15)

The set T is a separable Hilbert space, and elements of T ⊂ C0(⊲̄)∩C0(⊳̄) by Sobolev embedding,
see Appendix E, so the above definition is meaningful. Denote then by T ′ the set of bounded linear
forms on T , and by T ′

s ⊂ T ′ the subset of those forms that are symmetric (recall (2.13))

T ′
s =

{

Π ∈ T ′ : ∀φ ∈ T , Π(φs) = Π(φ)
}

. (2.16)

To keep topology-related issues as simple as possible, we equip T ′
s with the weak∗ topology, i.e.

(Πn)n ⊂ T ′
s converges to Π ∈ T ′

s if and only if limn→∞ Πn(f) = Π(f) for each f ∈ T (or,
equivalently, each f ∈ T⊲). To avoid ambiguities, we write (T ′

s , ∗) when we explicitly refer to the
weak∗ topology.
As a bounded linear form on (a closed subset of) the Hilbert space H2( ), the Riesz representation
theorem allows each Π ∈ T ′

s to be written as:

∀f ∈ T , Π(f) =
1

4

〈

kΠ, f
〉

. (2.17)

Above,
〈

·, ·
〉

denotes the standard scalar product on L2( ) and duality pairing between elements
of Hn( ) and (Hn( ))′, n ∈ N. The norm on L2(�) = L2( ) is denoted by ‖ · ‖2. We use both Π
and kΠ indifferently in the following.

2.3 Large deviations for time-averaged correlations

As explained in the introduction, we study the following problem: for a given Π ∈ T ′
s and an initial

measure µN on ΩN , estimate:

Pµ
N
( 1

T

∫ T

0

ΠN
t dt ≈ Π

)

when N and T are large. (2.18)

The symbol ≈ is to be understood in the sense of the weak∗ topology described in the previous
section. To study (2.18), we use large deviation techniques (see e.g. chapter 10 in [KL99]),
modifying the jump rates of the open SSEP dynamics in such a way that, loosely speaking, the
event in (2.18) becomes typical when N, T are large. The corresponding modified dynamics have
generator Lh parametrised by a function h : [−1, 1]2 → R that we call a bias. The modified jump
rates ch read:

∀η ∈ ΩN , ∀i ∈ {±(N − 1)}, ch(η, i) = c(η, i) exp
[

ΠN(h)(ηi)− ΠN(h)(η)
]

,

∀j < N − 1, ch(η, j, j + 1) = c(η, j, j + 1) exp
[

ΠN(h)(ηj,j+1)− ΠN(h)(η)
]

. (2.19)

We write Ph,Eh for the probability/expectation under this dynamics, and P
µN

h ,Eµ
N

h when starting
from the measure µN on ΩN . Once the correct bias h has been found, one has to prove that:

P
µN

h

( 1

T

∫ T

0

ΠN
t dt ≈ Π

)

≈ 1. (2.20)
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Via (2.20), to each bias h will correspond a correlation kernel kh : → R, in a sense made precise
in Section 2.4. Let CB = {kh : h is a bias} be the set of these correlation kernels, defined precisely
in (2.32). CB is viewed as a subset of T ′

s through (2.17).
Our main result concerns the large deviation behaviour of the probability (2.18), when the large
N limit is taken before the large T limit. To state it, we need more notations. The method of
proof is discussed later, in Section 2.4.

The initial condition. The dynamics are started from a discrete approximation νNg0 of the
invariant measure πNinv. It reads:

∀η ∈ ΩN , νNg0(η) =
(

ZNg0
)−1

exp
[

2ΠN(g0)
]

ν̄N(η), with ν̄N(η) :=
⊗

i∈ΛN

Ber(ρ̄i). (2.21)

Above, for ρ ∈ [0, 1], Ber(ρ) is the Bernoulli measure on {0, 1} with parameter ρ. The partition
function ZNg0 is a normalisation factor, and g0, defined in (2.11), is the inverse correlation kernel of
the large N limit of the steady state πNinv. Motivations for the definition of this measure are given
in Section 2.4.

Main assumption and characterisation of the biases. In theory, one could define the open
SSEP dynamics with any value of the reservoir densities ρ−, ρ+, and consider any sufficiently
regular h ∈ T and any k ∈ T ′

s in (2.18). In practice, for technical reasons, we have to restrict the
range of ρ−, ρ+, as well as the size of the biases h, in a sense made precise in (2.22). This limits
the choice of k in (2.18) to kernels close to k0, the large N limit of correlations in the steady state,
defined in (2.9). The restriction, that we call the size assumption, is given next.
Let ±1⊲ denote the two corners of the triangle ⊲ corresponding to extremities of the diagonal D
(defined in (2.14)):

1⊲ = (1−, 1), −1⊲ = (−1,−1+).
For ε ∈ (0, 1/2), define:

S(ε) =
{

h ∈ T : ∃p > 2, h ∈W4,p( ), h is symmetric,

‖h‖2, ‖∇h‖2 ≤ ε, (∂1 − ∂2)h(±1⊲) = 0
}

. (2.22)

The size assumption then reads:

Assumption 2.1 (Size Assumption). There are sufficiently small εres, εB ∈ (0, 1/2) such that
ρ−, ρ+ ∈ [1/2− εres, 1/2 + εres], and each bias h belongs to S(εB).

The quantity εres is in particular chosen to esnure that (2.10) holds.

The rate function. Introduce the bilinear mapping I from L2( )2 to L2( ), defined for (u, v) ∈
L2( )2 by:

∀(x, y) ∈ , I(u, v)(x, y) =

∫

(−1,1)

u(z, x)σ̄(z)v(z, y)dz, (2.23)
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where σ̄ was defined in (2.7). Let h be a bias in the set S(εB) as in Assumption 2.1. Introduce
the functional Jh, defined for Π ∈ T ′

s ∩H1( ) by:

Jh(Π) = −
1

2
Π
(

∆h+ I(∂1h, ∂1h)
)

+
1

4

∫

(−1,1)

trD(kΠ)(x)(∂2 − ∂1)h(x+, x)dx

+
(ρ̄′)2

4

∫

(−1,1)

h(x, x)dx− 1

8

∫

σ̄(x)σ̄(y)
[

∂1h(x, y)
]2
dxdy, (2.24)

and such that Jh(Π) = +∞ if Π /∈ T ′
s ∩H1( ). In (2.24), trD(kΠ) is the trace of kΠ on the diagonal

D (defined in (2.14)), with kΠ related to Π via (2.17). It is well defined for elements of H1( ), see
Theorem 1.5.1.3 in [Gri11]. Moreover, Π ∈ T ′

s ∩H1( ) implies that kΠ is symmetric, thus its trace
on either side of the diagonal is the same and the notation trD(kΠ) is not ambiguous.
Define then a functional I : (T ′

s , ∗)→ R+ as follows:

I = sup
h∈S(εB)

Jh. (2.25)

For each T > 0, let Q
νNg0
T denote the law of 1

T

∫ T

0
ΠN
t dt starting from νNg0 , defined as in (2.21):

Q
νNg0
T (O) := Pν

N
g0

(

1

T

∫ T

0

ΠN
t dt ∈ O

)

, O a Borel set in (T ′
s , ∗). (2.26)

The next theorem gives a large deviation result for the family (Q
νNg0
T )N,T

Theorem 2.2. Let O,K ⊂ (T ′
s , ∗) respectively be an open, compact set. Then:

lim sup
T→∞

lim sup
N→∞

1

T
logQ

νNg0
T (K) ≤ − inf

K
I. (2.27)

A lower bound also holds for smooth correlations. Recall that CB ⊂ T ′
s is the set of all correlation

kernels associated with biases h ∈ S(εB), defined in (2.32) below. Then:

lim inf
T→∞

lim inf
N→∞

1

T
logQ

νNg0
T (O) ≥ − inf

O∩CB
I. (2.28)

Remark 2.3. Recall that the kernel k0 of the steady state πNinv of the open SSEP in the large N
limit, defined in (2.9), was observed to be smooth away from the diagonal. As Theorem 2.2 shows,
it is in fact a general property that the time-average of ΠN

· is much more regular than an element
of T ′

s when N, T are large: it belongs to T ′
s ∩H1( ). �

Remark 2.4. Due to the restriction on the size of biases in S(εB), the rate function I is correct
only for kernels sufficiently close to k0. This point is further discussed in Section 2.5. The restriction
on the smoothness of the kernels one can approximate is not essential, and could likely be lifted
with more work on I. �

63



2.4 The relative entropy method

In this section, we explain the method used to establish Theorem 2.2. To establish the theorem,
we wish to study, i.e. to study, for some Π ∈ Ts, the probability:

Pν
N
g0

( 1

T

∫ T

0

ΠN
t dt ≈ Π

)

when N , then T are large, (2.29)

with νNg0 the measure defined in (2.21). Understanding correlations out of equilibrium is notoriously
difficult. Existing results in the literature deal either with the equilibrium case ρ− = ρ+, see e.g.
[GJ19] for the h = 0 case, or use methods particular to the h = 0 case, which cannot easily be
generalised to h 6= 0 [Gon+20]. The methods rely on explicit knowledge of the invariant measure
of the dynamics. However, for h 6= 0, the invariant measure πNinv,h of Ph (recall (2.19)) is not
known explicitly. Even for h = 0, where the invariant measure πNinv is well understood [DLS02], its
complexity makes the study of the probability in (2.29) difficult. To study (2.29) in full generality,
we therefore need a different approach.

We will use the generalisation by Jara and Menezes [JM18b] of the relative entropy method of
Yau [Yau91]. This method is presented in detail in Section 3.1, and here we only say a few words
about it. In our context, the relative entropy method consists in finding a measure µN on the state
space ΩN , that is both sufficiently simple to perform explicit computations, and as close as possible
to the invariant measure πNinv,h. This closeness to the invariant measure aims at ensuring that, if
the dynamics Ph starts from µN then, at time t ≥ 0, the law ftµ

N of the dynamics is still close
to µN . The proximity to the invariant measure is quantified by the relative entropy H(ftµ

N |µN).
The level of precision needed on this relative entropy depends both on the quantity to study - e.g.
the density, the density fluctuations, or in our case the correlations; and on the time range one
wishes to probe.

Here, we improve on the estimates of Jara and Menezes [JM18b], obtaining sufficiently precise
estimates to study (2.29) in the diffusive time-scale TN2 with N , then T large. To do so, for each
bias h in the set S(εB), defined in (2.22), we compare the law of the dynamics at each time with
a discrete measure µN = νNgh of the form already encountered in (2.21):

∀η ∈ ΩN , νNgh(η) =
(

ZNgh
)−1

exp
[

2ΠN(gh)
]

ν̄N(η), with ν̄N(η) :=
⊗

i∈ΛN

Ber(ρ̄i). (2.30)

The partition function ZNgh is a normalisation factor.
The function gh : → R, which solves a partial differential equation depending on h, is the
function that allows us to minimise the entropy production ∂tH(ftν

N
gh
|νNgh), as stated in Theorem

2.5 below. When h = 0, gh=0 = g0, the inverse correlation kernel of the invariant measure πNinv of
the open SSEP in the large N limit, introduced in (2.11). The measure νNg0 is an approximation of
the invariant measure πNinv: we prove in Appendix A that it has both the same occupation numbers
at each site, and the same two-point correlations in the large N limit.

Theorem 2.5. Under Assumption 2.1, there is εG ∈ (0, 1/2) such that the following holds. Take
a bias h ∈ S(εB) and consider the following problem with unknown g, referred to as the main
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equation:







































∆(g − h)(x, y) + σ̄′(x)

σ̄(x)
∂1(2g − h)(x, y) +

σ̄′(y)

σ̄(y)
∂2(2g − h)(x, y) for (x, y) ∈

+

∫

(−1,1)

σ̄(z)
[

∂1g(z, x)∂1(g − h)(z, y) + ∂1g(z, y)∂1(g − h)(z, x)
]

dz = 0,

g = 0 on ∂�,

(∂2 − ∂1)(h− g)(x+, x) = (∂1 − ∂2)(h− g)(x−, x) =
(ρ̄′)2

σ̄(x)2
for x ∈ (−1, 1).

(2.31)

Then (2.31) has a unique solution gh ∈ g0 + S(εG). Let ftν
N
gh

denote the law of Ph at time t ≥ 0.
For each T > 0, there is then C = C(h, ρ±) > 0 such that:

∀t ≤ T, H(ftν
N
gh
|νNgh) ≤ CeCT

(

H(f0ν
N
gh
|νNgh) +

1

N1/2

)

.

Remark 2.6. The main equation (2.31) is really an equation on the triangle ⊲. It is written on
the whole of to have a compact expression for the integral term. �

It is now possible to state precisely the definition of the set CB of correlation kernels associated
with a bias h. For each h ∈ S(εB), let gh ∈ g0 + S(εG) be given by Theorem 2.2, and notice that
σ̄−1 − gh = σ̄−1(I − σ̄gh) is invertible, since ‖σ̄gh‖2 ≤ εG/4 ≤ 1/8 by hypothesis on εG. Define
then:

CB =
{

kh := −σ̄ + (σ̄−1 − gh)−1 : h ∈ S(εB)
}

. (2.32)

Note that kh is indeed a kernel operator for h ∈ S(εB), in the sense that there is a function
k̃h ∈ L2( ) such that:

∀f ∈ L2((−1, 1)), ∀x ∈ (−1, 1) khf(x) =

∫

(−1,1)

kh(x, y)f(y)dy.

This follows from the fact that kh(σ̄
−1 − gh) = σ̄gh is a kernel operator, see the first Theorem in

section 4.6.1 in [BKM96].

Remark 2.7. If h = 0, the explicit expression of k0 allows one to check, after long and tedious
computations, that g0 indeed satisfies (2.31). The g0 minimising the entropy production is therefore
related to the invariant measure, as one expects.
When h 6= 0, in analogy with the h = 0 case in (2.11), it is tempting to think that the kernel
kh, defined in (2.32), is the correlation kernel, in the large N limit, of the invariant measure πNinv,h
of the dynamics biased by h. We can prove such a statement only in a very indirect way, with
additional hypotheses on πNinv,h, so we do not state a precise result and rather refer to Appendix
A.3 for a discussion. �

We conclude this section with a discussion of the consequence of the Size Assumption 2.1 on
the large deviation result of Theorem 2.2. The functionals Jh for h ∈ S(εB), defined in (2.24),
determine the kind of anomalous correlations one expects to observe. Due to the Size Assumption
2.1, we focus on small biases h ∈ S(εB), for which it is reasonable to expect that the corresponding
correlation kernels are close to k0 (recall (2.8)). This is however a priori not obvious: one could
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imagine that, for some reason, tilting the dynamics with a small h result in correlations far from
k0. Conversely, some correlations very close to k0 may be accessible only by imposing a very large
bias h. In Proposition 2.8, we argue that this pathological situation indeed does not happen, at
least for a class of correlation kernels with good properties.

Proposition 2.8 (Accessible kernels). Assume the Size Assumption 2.1 holds. There is ε > 0
depending only on ρ± such that, if k ∈ k0 + S(ε), one can find h ∈ S(εB) and a corresponding
gh ∈ g0 + S(εG) given by Theorem 2.5 such that gh = σ̄−1 − (σ̄ + k)−1, and the rate function I(Π)
reads:

I
(

(1/4)
〈

k, ·
〉)

= Jh
(

(1/4)
〈

k, ·
〉)

=
1

8

∫

(−1,1)

σ̄(z)
〈

∂1h(z, ·), (σ̄ + k)(∂1h(z, ·))
〉

dz. (2.33)

2.5 Conclusion and perspectives

The large deviations. The large deviation result of Theorem 2.2 is stated starting from the
measure νNg0 . One could hope to have the same result starting from the invariant measure πNinv of
the open SSEP. We can in fact prove such a result if we admit heuristics of Derrida et al. [DLS07]
on the behaviour of the entropy of the steady state, see the discussion in Appendix A.3.
More generally, assume that one starts from a probability µN = eQνNg0 with νNg0(Q) = oN(1). Then:

∣

∣Pµ
N

(·)− Pν
N
g0 (·)

∣

∣ ≤
∑

η∈ΩN

|µN(η)− νNg0(η)| = oN(1),

since the hypothesis νNg0(Q) = oN(1) implies H(νNg0 |µN) = oN(1), and the total variation distance

between νNg0 and µN is bounded by
√

2H(νNg0 |µN) (see the proof of Corollary 3.4).

The Size Assumption 2.1 has two components: one assumption on the possible reservoir den-
sities ρ−, ρ+, and another on the size of biases. The assumption on the reservoir densities is only
needed in the method we use to prove the existence of solutions to the main equation (2.31), so it
should be possible to remove it with more work on the main equation (2.31).

The assumption on the size of the biases means that the rate function I, defined in (2.25), only
correctly approximates the cost of correlation kernels close to the steady state kernel k0. It should
in contrast be at least partly essential.
Indeed, if the bias h is too large, one can expect that the correlation structure, and even the den-
sity of the corresponding biased dynamics changes. On the other hand, the precise restrictions in
(2.22) is most likely too strong. Indeed, consider a correlation kernel k = k− + k+ with a negative
part k− and positive part k+. The restriction in (2.22) on the possible biases implies that k can
be reached by a bias h ∈ S(εB) only if k+ is sufficiently small, and k− sufficiently close to k0.
However, one may wish to observe a correlation kernel k for which the positive part k+ is not close
to 0. For such kernels, the correlation operator σ̄ + k is still well behaved, in particular one can
define an inverse correlation kernel g, and the result of Theorem 2.5 may still hold.

The relative entropy method. In dimension 1, the relative entropy approach used to obtain
large deviations can be applied to study the following, still in dimension 1:
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1. Two-point correlations as a time-dependent distribution-valued process. One can prove that
it solves an appropriate martingale problem in the spirit of [GJ19].

2. Correlations and long-time fluctuations around a density profile evolving in a diffusive time-
scale.

3. Other diffusive gradient systems, see the discussion in Section 8.1. in [JM18b].

One could also try to study fluctuations in a system conditioned to a rare dynamical event. For
instance, the SSEP on the one-dimensional discrete torus, conditioned to a macroscopic current
on average on the time interval [0, T ], is known to develop correlations. An expression of these
correlations in the long time limit has been conjectured in [Bod+08]. The rigorous derivation of
the correlation and fluctuation processes for this system is the subject of ongoing work.

Another direction of inquiry concerns the extension of the relative entropy results to higher
dimensions. Extending the entropy estimates of the paper to higher dimensions is possible, but at
present our bounds worsen. Fix a dimension d ≥ 1, take the interacting particle systems of Jara
and Menezes in [JM18b], and assume that one can find a regular, small enough function g solving
the equivalent of the main equation (2.31) in dimension d. We claim that, using only concentration
bounds, we can prove:

∃K > 0, ∀T ≥ 0, H(fµt ν
N
g |νNg ) ≤ KeKT

(

H(µ|νNg ) + 1 +Nd−4
)

. (2.34)

This is a sizeable improvement on existing bounds as soon as d ≥ 2, see the discussion at the
beginning of Section 3.1. The condition d ≤ 4 is actually an intrinsic limitation, that has nothing
to do with the correlation structure of an interacting particle systems. It comes from the error
that one makes when approximating a macroscopic PDE on a non-equilibrium density profile by
a discrete difference equation. This error does not scale with dimension.

3 Main ingredient: the entropic estimate

In this section, we provide the key microscopic estimates to study the long-time behaviour of the
process (ΠN

t )t≥0, i.e. we prove Theorem 2.5. We do so by a careful use of the relative entropy
method of Jara and Menezes [JM18b]-[JM18a]. The same kind of computations give the expression
of the Radon-Nikodym derivative Dh = dPh/dP for h ∈ S(εB), stated in Proposition 3.10 at the
end of the section.

3.1 The relative entropy method and Feynman-Kac inequality

The relative entropy method, introduced by Yau [Yau91], has been used extensively to derive
hydrodynamic limit-type results. The method is used in the following context. Let (ωt)t≥0 be a
Markov chain on a state space Ω, assumed to be finite for simplicity. Let P,E denote the associated
probability and expectation. Let V : Ω→ R. One would like to estimate quantities of the form:

E
[

V (ωt)
]

, t > 0. (3.1)
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The entropy inequality provides a tool to estimate (3.1). Let µ be any probability measure on Ω
and ftµ be the law of ωt, t ≥ 0. Then, for any γ > 0:

∀t ≥ 0, E
[

V (ωt)
]

≤ γ−1H(ftµ|µ) + γ−1 log µ
(

exp[γV ]
)

.

Remark 3.1. The symbol E[·] (or E(·)) always denotes dynamical expectations with respect to
a dynamics. In contrast, static expectations with respect to a measure µ are denoted by µ[·] (or
µ(·)). �

In this way, the dynamical problem (3.1) is reduced to a static problem: a relative entropy
estimate, and a concentration-of-measure result under µ. The relative entropy method aims at
finding a measure µ which satisfies the following two criteria: exponential moments must be under
control, and the relative entropy H(ftµ|µ), t ≥ 0 must be sufficiently small, the size depending on
the kind of observables V one is interested in.
It is therefore crucial to estimate H(ftµ|µ), t ≥ 0. Recently, in [JM18b]-[JM18a], Jara and Menezes
managed to use the relative entropy method to study out of equilibrium fluctuations around
hydrodynamic limits in diffusive systems. Their analysis greatly improves the existing method to
control H(ftµ|µ), t ≥ 0. As a starting point, they revisit Yau’s entropy bounds in the following
form.

Lemma 3.2 (Lemma A.1 in [JM18b]). Let (ωt)t≥0 be a Markov chain on a finite state space Ω,
with jump rates (c(ω, ω′))(ω,ω′)∈Ω2. Denote by L its generator and by Γ the corresponding carré du
champ operator:

∀ω ∈ Ω, ∀f : Ω→ R, Γf(ω) =
∑

ω′∈Ω
c(ω, ω′)

[

f(ω′)− f(ω)
]2
. (3.2)

Let µ be a probability measure on Ω satisfying infΩ µ > 0. Let ftµ be the law of ωt at time t ≥ 0.
Then:

∀t ≥ 0, ∂tH(ftµ|µ) ≤ −µ
(

Γ(
√

ft)
)

+ µ
(

ftL
∗1
)

, (3.3)

where L∗ is the adjoint of L in L2(µ) = {f : Ω→ R : µ(f 2) <∞}. It acts on f : Ω→ R according
to:

∀ω ∈ Ω, L∗f(ω) =
∑

ω′∈Ω

[

c(ω′, ω)f(ω′)
µ(ω′)

µ(ω)
− c(ω, ω′)f(ω)

]

. (3.4)

For future reference, we also state the Feynman-Kac inequality (Lemma A.2. in [JM18b]): for any
function V : Ω→ R and time T ≥ 0,

logEµ
[

exp

∫ T

0

V (ωt)dt
]

≤ T sup
f≥0:µ(f)=1

{

µ(fV )− 1

2
µ
(

Γ(
√

f)
)

+
1

2
µ
(

fL∗1
)

}

. (3.5)

Since the adjoint L∗ is known explicitly in terms of µ, (3.3) provides a way to estimate
∂tH(ftµ|µ), t ≥ 0. An estimate of H(ftµ|µ) follows by applying the entropy and Gronwall in-
equalities.
Note that the carré du champ is always positive. Moreover, L∗1 = 0 if and only if µ = π is the
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invariant measure. The quantity L∗1 thus appears as a way to quantify the proximity of µ to the
invariant measure π. This serves as an informal guiding principle for the choice of µ:

for each f ≥ 0 with µ(f) = 1, µ
(

fL∗1
)

must be small. (3.6)

We are going to apply Lemma 3.2 to the dynamics Ph, defined in (2.19), for h ∈ S(εB). Let us
emphasize again that ”small” must always be understood in comparison with the size of the V ’s
one wishes to estimate as in (3.1). Typically, if one wants to study the hydrodynamic limit of the
density of particles in a d-dimensional open SSEP on a lattice of side-length N , then o(Nd) bounds
on the relative entropy are sufficient. These can be achieved if µ is a product measure with the
same densities as those of the invariant measure at each site, i.e:

µ = ν̄N =
⊗

i∈ΛN

Ber(ρ̄i), (3.7)

with Ber(ρ) the Bernoulli measure on {0, 1} with parameter ρ ∈ (0, 1), and ρ̄ the steady state
density profile in the large N limit, see (2.5) In contrast, consider the fluctuation field:

∀φ : (−1, 1)→ R, Y N
t (φ) =

1

N1/2

∑

i∈ΛN

η̄i(t)φ(i/N),

To study Y N
· , one needs o(N1/2) bounds on the relative entropy (in fact o(Nd/2) bounds in dimen-

sion d). Remarkably, while one could expect that some information on the correlation structure
of the invariant state should be necessary to study Y N , Jara and Menezes [JM18b] managed to
obtain such bounds on the relative entropy by still taking µ product as in (3.7). To do so, they set
up a general renormalisation scheme to bound µ(fL∗1), for a µ-density f , in terms of the carré
du champ, and objects that can be estimated by the entropy inequality. Precisely, they manage
to prove gd(N)Nd−2 relative entropy bounds, with g1(N) = N , g2(N) = logN and gd(N) = 1 for
d ≥ 3; where the factor gd(N) arises from the renormalisation scheme. This is enough to study
fluctuations in dimension d < 4. They also argue that these bounds are the best possible when µ
is product.

Let us come back to the study of the correlation process ΠN
· in the (one-dimensional) open

SSEP. We need oN(1) bounds on the relative entropy at each time. The measure µ therefore cannot
be taken product. With (3.6) in mind, we look for µ that has both the same density at each site,
and the same correlations as the invariant measure - which are in general not known - when N in
large. We therefore look for them in an indirect way, taking a smooth function g : → R, and
looking for the optimal choice of g such that the measure µ = νNg satisfies (3.6), with:

νNg :=
1

ZNg
exp

[

2ΠN(g)
]

ν̄N , ZNg a normalisation factor, (3.8)

For each bias h ∈ S(εB), the optimal g = gh arises as the solution of a certain partial differential
equation, the main equation (2.31). For this gh, the method of [JM18b], adapted to this context,
yields the bound of Theorem 2.5:

∃C > 0, ∀t ≥ 0, H(ftν
N
gh
|νNgh) ≤ CeCt

(

H(f0ν
N
g |νNg ) +N−1/2

)

. (3.9)
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The exponent −1/2 is related to the size of exponential moments of three-point and four-point
correlation functions for product measures (see Section A.2), and thus cannot be improved without
adding a correction to νNg . The proof of (3.9) is the main technical result of the article. Its precise
statement is the content of the next lemma, a more comprehensive reformulation of Theorem 2.5.
For h ∈ S(εB) and f : ΩN → R+, let Γh(

√
f) be the carré du champ operator associated with the

generator Lh biased by h, with jump rates ch defined in (2.19):

∀η ∈ ΩN , Γh(
√

f)(η) =
1

4

∑

i<N−1

ch(η, i, i+ 1)
[
√

f(ηi,i+1)−
√

f(η)
]2

+
1

4

∑

i∈{±(N−1)}
ch(η, i)

[
√

f(ηi)−
√

f(η)
]2
. (3.10)

Lemma 3.3. Let h ∈ S(εB), and denote by gh ∈ g0 + S(εG) the solution of the main equation
(2.31). The set S(ε) for ε > 0 is defined in (2.22). For N ∈ N∗, let νNgh be the associated measure
via (3.8). Then, for any N ∈ N∗, there is a function E : ΩN → R such that, for any νNgh-density f ,
the adjoint L∗

h of Lh in L2(νNgh) satisfies:

νNgh
(

fL∗
h1

)

≤ νNgh(fE) +
N2

2
νNgh

(

Γh(
√

f)
)

. (3.11)

Moreover, there are constants γ, C = C(gh, h) > 0 such that:

∀N ∈ N∗, γ−1 log νNgh

(

exp
[

γ|E|
]

)

≤ C

N1/2
. (3.12)

As a consequence, if ftν
N
gh

denotes the law of the dynamics at time t, then for the constants γ, C
of (3.12):

∀t ≥ 0, ∀N ∈ N∗, ∂tH(ftν
N
gh
|νNgh) ≤

H(ftν
N
gh
|νNgh)

γ
+

C

N1/2
− N2

2
νNgh

(

Γh(
√

ft)
)

. (3.13)

Applying Gronwall inequality to H(ftν
N
gh
|νNgh), t ≥ 0 in (3.13) yields:

∀t ≥ 0, H(ftν
N
gh
|νNgh) ≤ et/γ

(

H(f0ν
N
gh
|νNgh) +

γC

N1/2

)

,

which implies the statement of Theorem 2.5. We will often use the following corollary.

Corollary 3.4. Let h ∈ S(εB), let gh solve the main equation (2.31) with bias h, and let νNgh be
the associated measure. There is K > 0, such that for any FN : ΩN → R and each T ≥ 0:

sup
t∈[0,T ]

∣

∣

∣
E
νNgh
h

[

FN(ηt)
]

− νNgh(FN)
∣

∣

∣
≤ K‖FN‖∞eKT

N1/4
. (3.14)

Proof. The corollary follows immediately from Theorem 2.5 and the following inequality, known
as Pinsker’s inequality in the literature for the second part: for any two measures µN1 , µ

N
2 on ΩN ,

‖µN1 − µN2 ‖TV =
1

2

∑

η∈ΩN

|µN1 (η)− µN2 (η)| ≤
√

2H(µN1 |µN2 ).
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Lemma 3.3 is derived in the next four subsections. Functions h ∈ S(εB) and g ∈ g0 + S(εG)
(these sets are defined in Assumption 2.1 and Theorem 2.5) are fixed throughout the rest of the
section. Recall in particular that h, g are symmetric functions, and that their restriction to ⊲ is
in C3(⊲̄). We do not assume a priori that g solve the main equation (2.31).

3.2 Estimates on L∗h1

To prove Lemma 3.3, we need to compute L∗
h1. Before doing so in the next subsections, we

introduce some notations and discuss how to identify whether terms arising in the computation of
L∗
h1 are ”big” or ”small”. Consider a density f for νNg , and a function XN : ΩN → R. Our main

tool to estimate the scaling of XN with N is the entropy inequality, which states:

∀γ > 0, νNg (fXN) ≤ γ−1H(fνNg |νNg ) + γ−1 log νNg

(

exp
[

γ|XN |
]

)

. (3.15)

Informally, XN will be small if its moment generating function under νNg vanishes with N in an
N -independent neighbourhood of 0: this is the kind of characterisation of smallness that is used
to estimate the size of the function E in Lemma 3.3. In some cases, typically when dealing with
the effect of the reservoirs, we will encounter an XN that is not small, but can be transformed
into some YN that indeed is, up to a cost estimated by the carré du champ operator. The next
definition formalises these considerations.

Definition 3.5. Let aN ∈ R∗
+, N ∈ N∗. A family XN : ΩN → R, N ∈ N∗ is said to be:

• Controllable with size aN if there is γ independent of N , and K > 0 independent of N, aN ,
such that:

∀N ∈ N∗, γ−1 log νNg

(

exp
[

γ|XN |
]

)

≤ KaN . (3.16)

By K independent of N, aN , we mean that if aN = aN(p) is a function of N and a parameter
p, then K depends neither on N nor on p.
By the entropy inequality (3.15), (3.16) implies, for each density f for νNg :

∀N ∈ N∗, νNg
(

f |XN |
)

≤ γ−1H(fνNg |νNg ) +KaN .

• Γ-controllable with size aN if one can transform XN , using the carré du champ Γh, into a
controllable function with size aN . More precisely: XN is Γ-controllable with size aN if, for
each δ > 0, there are controllable functions Y δ

N,± with size aN such that, for each N ∈ N∗

and each density f for νNg :

νNg (f(±XN)) ≤ δN2νNg
(

Γh(f
1/2)

)

+ νNg (fY
δ
N,±),

in which case there are γδ > 0 independent of N , and Kδ > 0 independent of N, aN ; such
that:

νNg (f(±XN)) ≤ δN2νNg
(

Γh(f
1/2)

)

+ γ−1
δ H(fνNg |νNg ) +KδaN .

• An error term with size aN , or error term for short, if it is either controllable or Γ-controllable
with size aN , and aN = oN(1).
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To illustrate the notion of controllability, the following corollary states its consequence on the
dynamical behaviour of observables. A more general result is proven in Proposition C.2.

Corollary 3.6. Let h ∈ S(εB), and let gh be the associated solution of the main equation (2.31)
as in Lemma 3.3. Let EN : ΩN → R be an error term, and let FN be controllable with size 1 and
associated constant K. There are then C(h), C(K) > 0 such that, for each T > 0:

lim sup
N→∞

E
νNgh

[∣

∣

∣

∫ T

0

EN(ηt)dt
∣

∣

∣

]

= 0, and E
νNgh

[∣

∣

∣

∫ T

0

FN(ηt)dt
∣

∣

∣

]

≤ C(K)T
(

1 +
C(h)eC(h)T

N1/2

)

.

Let φ : ΛN → R. To determine whether a field is an error term or not, one must keep in mind
the following heuristics: the νNg are discrete Gaussian measures, in the sense that the fluctuation
field Y N(φ), which reads:

Y N(φ) :=
1

N1/2

∑

i∈ΛN

η̄iφ(i), (3.17)

is close to a Gaussian random variable when N is large, provided N−1/2‖φ‖∞ <∞. In particular,
λ 7→ νNg (exp[λY

N(φ)]) is bounded uniformly in N in a neighbourhood [0, γ) of 0 for some γ > 0.
By (3.16), this means that Y N(φ) is controllable with size 1. In analogy with Gaussian random
variables, one can prove that Y N(φ)2 is controllable with size 1, but Y N(φ)n for n ≥ 3 is not.
Similarly, the quantity:

ZN(φ) :=
1

N1/2

∑

i<N−1

η̄iη̄i+1φ(i) (3.18)

should have the same concentration properties as Y N(φ). In contrast with a genuine Gaussian
random variable, however, Y N(φ) and ZN(φ) are bounded by C‖φ‖∞N1/2 for some C > 0. As a
result, it is always possible to find aN small enough such that aN(Y

N(φ))n is controllable with size
1. This discussion is summarised in the next lemma.

Lemma 3.7. For n ∈ N∗, let φn : ΛnN → R satisfy supN ‖φn‖∞ < ∞. Define, for N ∈ N∗ and
either J = {0} or J = {0, 1}, the functions (an empty sum is by convention equal to 0):

∀η ∈ ΩN , Xφn
n,J(η) =

∑

i0<N−1

∑

i1,...,in−1∈ΛN

∏

j∈J
φn(i0, ..., in−1)η̄i0+j

(

n−1
∏

a=1

η̄ia

)

,

U ε
0 (η) = η̄ε(N−1), U ε

1 (η) = η̄ε(N−1)

∑

i 6=ε(N−1)

η̄iφ1(i), ε ∈ {−,+}. (3.19)

• The function U±
0 is Γ-controllable with size N−2, and U±

1 is Γ-controllable with size ‖φ1‖∞N−1.
Moreover, N−1/2Xφ1

1,J is controllable with size ‖φ1‖2∞.

• For n ∈ {2, ..., 4}, N−(n−1)Xφn
n,J is controllable with size ‖φn‖∞N−(n−2)/2.

Remark 3.8. Note that, for n ∈ N∗, if φn(i1, ..., in) =
∏n

i=1 φ1(i), then:

Xφn
n,J = (Y N(φ1))

n+1−|J |ZN(φ1)
|J |−1,

with Y N(φ), ZN(φ) defined in (3.17)-(3.18). Moreover, Xφ2
2,{0} = ΠN(φ2) if φ2(i, i) = 0 for each

i ∈ ΛN . The estimate of Lemma 3.7, however, does not require φ2 to vanish on the diagonal. �
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Lemma 3.7 is proven in Appendix A.2 for the variables Xφn
n,J . The statement for U±

0 , U
±
1 is

proven in Appendix B.2.

We now turn to computing L∗
h1, in the next two subsections. We split L∗

h into L
∗
h = L∗

h,0+L
∗
h,±,

the adjoint dynamics respectively in the bulk and at the boundaries, and study each contribution
separately.

3.3 Adjoint at the boundary

In this section, we compute L∗
h,±1, the part of the adjoint L

∗
h1 of Lh corresponding to the dynamics

at the boundary. By (3.4), it reads:

N2L∗
h,±1(η) =

N2

2

∑

i∈{±(N−1)}

[

ch(η
i, i)

νNg (η
i)

νNg (η)
− ch(η, i)

]

=
N2

2

∑

i∈{±(N−1)}

[

c(ηi, i)
( ρ̄i
1− ρ̄i

)1−2ηi
exp

[(1− 2ηi)

2N

∑

j 6=i
η̄j(2g − h)i,j

]

− c(η, i) exp
[(1− 2ηi)

2N

∑

j 6=i
η̄jhi,j

]

]

. (3.20)

The jump rates c(η, i), i ∈ {±(N − 1)} are defined in (2.3). To compute (3.20), recall that both
h, g satisfy h(±1, ·) = 0 = g(±1, ·) by hypothesis. It follows that the arguments of the exponentials
in (3.20) are bounded by O(N−1). Moreover, introduce:

∀i ∈ ΛN , λi := log
( ρ̄i
1− ρ̄i

)

, λ±N = log
( ρ±
1− ρ±

)

. (3.21)

With this notation and by reversibility, one has for i ∈ {±(N − 1)}:

c(ηi, i) = c(η, i)
( ρsign(i)
1− ρsign(i)

)2ηi−1

.

As a result:

c(ηi, i)
( ρ̄i
1− ρ̄i

)1−2ηi
= c(η, i) exp

[(1− 2ηi)

N

(

1i=−(N−1)∂
Nλ−N − 1i=N−1∂

NλN−1

)

]

. (3.22)

Write for short:
Λi := 1i=−(N−1)∂

Nλ−N − 1i=N−1∂
NλN−1.

Using (3.22) and the existence of Ch,g,ρ̄ = C(‖h‖∞, ‖g‖∞, ‖ρ̄‖∞) > 0 such that |ex − 1 − x2/2| ≤
Ch,g,ρ̄|x|3 for |x| ≤ 2(‖h‖∞ + 2‖g‖∞ + ‖λ‖∞), (3.20) becomes:

N2L∗
h,±1(η)−

N

2

∑

i∈{±(N−1)}
c(η, i)(1− 2ηi)

[ 1

N

∑

j 6=i
η̄jN(g − h)i,j + Λi

]

(3.23)

− 1

4

∑

i∈{±(N−1)}
c(η, i)

[

( 1

N

∑

j 6=i
η̄jN(2g − h)i,j + Λi

)2

−
( 1

N

∑

j 6=i
η̄jNhi,j

)2
]

:= δN,1± (η),
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with |δN,1± | ≤ Ch,g,ρ̄/N . To compute the two terms in the left-hand side of (3.23), let i ∈ {±(N−1)}
and let us first rewrite the jump rate in terms of η̄i in two different ways. One has:

c(η, i) := (1− ηi)ρsign(i) + (1− ρsign(i))ηi = asign(i) + η̄i(1− 2ρsign(i)), (3.24)

with:
asign(i) := (1− ρ̄i)ρsign(i) + (1− ρsign(i))ρ̄i. (3.25)

Moreover, it also holds that:

(1− 2ηi)c(η, i) = −(ηi − ρsign(i)) = −η̄i + (ρsign(i) − ρ̄i)

= −η̄i −
1

N

[

1i=−(N−1)∂
N ρ̄−N − 1i=N−1∂

N ρ̄N−1

]

. (3.26)

Using (3.26) in the first sum in (3.23), one finds:

N

2

∑

i∈{±(N−1)}
c(η, i)(1− 2ηi)

[ 1

N

∑

j 6=i
η̄jN(g − h)i,j +

(

1i=−(N−1)∂
Nλ−N − 1i=N−1∂

NλN−1

)

]

= −N∂
Nλ−N
2

[

η̄−(N−1) +
∂N ρ̄−N
N

]

+
N∂NλN−1

2

[

η̄N−1 −
∂N ρ̄N−1

N

]

+ δN,2± (η), (3.27)

where δN,2± is an error term that reads:

δN,2± (η) = −1

2

∑

i∈{±(N−1)}

(

η̄i +
1

N

[

1i=−(N−1)∂
N ρ̄−N − 1i=N−1∂

N ρ̄N−1

]

)

∑

j 6=i
η̄jN(g − h)i,j.

The term involving η̄i above is of the same form as U±
1 in Lemma 3.7, thus Γ-controllable with size

N−1. The other term is of the form N−1/2Y N(φ) for a bounded φ (recall (3.17)), and therefore
controllable with size N−1. It follows that δN,2± is Γ-controllable with size N−1.
Consider now the second sum in (3.23). Using (3.24) and recalling the definition (3.25) of a±, it
reads:

1

4

∑

i∈{±(N−1)}
c(η, i)

[

( 1

N

∑

j 6=i
η̄jN(2g − h)i,j +

(

1i=−(N−1)∂
Nλ−N − 1i=N−1∂

NλN−1

)

)2

−
( 1

N

∑

j 6=i
η̄jNhi,j

)2
]

=
a−(∂Nλ−N)2

4
+
a+(∂

NλN−1)
2

4
+ δN,3± (η), (3.28)

where δN,3± is an error term that contains all other contributions:

δN,3± (η) =
1

4

∑

i∈{±(N−1)}
c(η, i)

[

( 1

N

∑

j 6=i
η̄jN(2g − h)i,j

)2

−
( 1

N

∑

j 6=i
η̄jNhi,j

)2
]

+
1

2N

∑

i∈{±(N−1)}
c(η, i)

[

(

1i=−(N−1)∂
Nλ−N − 1i=N−1∂

NλN−1

)

∑

j 6=i
η̄jN(2g − h)i,j

]

+ η̄−(N−1)(1− 2ρ−)
(∂Nλ−N)2

4
+ η̄N−1)(1− 2ρ+)

(∂NλN−1)
2

4
.
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With the notations of Lemma 3.7 and bounding c(η, ·) by C(ρ̄), the first line of δN,3± is bounded

by a term of the form N−2Xφ2
2,{0}, thus controllable with size N−1. Similarly, the second line is

bounded by a term of the form N−1/2|Y N(φ)| (recall (3.17)) for bounded φ, and therefore also
controllable with size N−1. Finally, the third line is of the form U±

0 , therefore Γ-controllable with
size N−2. If follows that δN,3± is Γ-controllable with size N−1.

Putting together (3.27) and (3.28), we have obtained the following expression of the adjoint at
the boundary:

N2L∗
h,±1(η) = −

N∂Nλ−N
2

[

η̄−(N−1) +
∂N ρ̄−N
N

]

+
N∂NλN−1

2

[

η̄N−1 −
∂N ρ̄N−1

N

]

+
a−

(

∂Nλ−N
)2

4
+
a+

(

∂NλN−1

)2

4
+

3
∑

q=1

δN,q± (η).

It remains to notice that the constant terms in the last equation compensate each other to obtain
the final expression for N2L∗

h,±1(η). Indeed, for each i ∈ {±(N − 1)}, a Taylor expansion yields:

asign(i) = 2σ̄i +O(N−1), ∂Nλi =
∂N ρ̄i
σ̄i

+O(N−1). (3.29)

It follows that there is a configuration-independent δN,4 with δN,4 = O(N−1), such that:

N2L∗
h,±1(η) = −

N∂Nλ−N
2

η̄−(N−1) +
N∂NλN−1

2
η̄N−1 + δN± (η), δN± :=

4
∑

q=1

δN,q± (η). (3.30)

The quantity δN± is, by definition, Γ-controllable with size N−1.

3.4 Adjoint in the bulk

We now compute L∗
h,01. For each i < N − 1, define Bh

i , C
h
i , D

h
i as follows:

Bh
i (η) =

1

2N

∑

j /∈{i,i+1}
η̄j∂

N
1 hi,j, Dh

i (η) =
∂N ρ̄ihi,i+1

2N
, Ch

i = Bh
i +Dh

i , (3.31)

where, for u : Z2 → R:

∀(i, j) ∈ Z2, ∂N1 u(i, j) = N [u(i+ 1, j)− u(i, j)].

With these definitions,

∀i < N − 1, ΠN(h)(ηi,i+1)− ΠN(h)(η) = −(ηi+1 − ηi)
N

Ch
i (η).

Define similarly Cg
· , and notice that, since h, g are regular:

sup
N∈N∗

sup
η∈ΩN

sup
i<N−1

(

|Ch
i (η)|+ |Cg

i (η)|
)

<∞. (3.32)
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By (3.4), the adjoint L∗
h,0 in the bulk reads, by definition:

N2L∗
h,01(η) =

N2

2

∑

i<N−1

[

ch(η
i,i+1, i, i+ 1)

νNg (η
i,i+1)

νNg (η)
− ch(η, i, i+ 1)

]

.

With the above notations, this becomes:

N2L∗
h,01(η) =

N2

2

∑

i<N−1

c(η, i, i+ 1)

[

exp
[(ηi+1 − ηi)

N
(Ch

i − 2Cg
i )
][ ρ̄i(1− ρ̄i+1)

ρ̄i+1(1− ρ̄i)
]ηi+1−ηi

− exp
[

− (ηi+1 − ηi)
N

Ch
i

]

]

. (3.33)

To compute (3.33), recall the definition of λ:

∀i ∈ ΛN , λi := log
( ρ̄i
1− ρ̄i

)

.

Notice that Ch
· − 2Cg

· = Ch−2g
· . Moreover, c(η, i, i + 1) = (ηi+1 − ηi)2 for each i < N − 1. With

these notations, (3.33) reads:

N2L∗
h,01(η) =

N2

2

∑

i<N−1

(ηi+1 − ηi)2
[

exp
[(ηi+1 − ηi)

N
(Ch−2g

i − ∂Nλi)
]

− exp
[

− (ηi+1 − ηi)
N

Ch
i

]

]

. (3.34)

To compute (3.34), we expand the above exponentials. Write (N2L∗
h,01)order p for the term of order

p ∈ N. From the existence of Ch,g = C(‖h‖∞, ‖g‖∞) > 0 such that |ex−1−x−x2/2−x3/6| ≤ Ch,gx
4

when |x| ≤ 2(‖h‖∞ + 2‖g‖∞), one has |δN0,order≥4(η)| ≤ 2Ch,g/N , with:

N2L∗
h,01(η) =

N

2

∑

i<N−1

(ηi+1 − ηi)
[

2Ch−g
i − ∂Nλi

]

(3.35)

+
1

4

∑

i<N−1

(ηi+1 − ηi)2
[

(

Ch−2g
i − ∂Nλi

)2 −
(

Ch
i

)2
]

(3.36)

+
1

12N

∑

i<N−1

(ηi+1 − ηi)
[

[

Ch−2g
i − ∂Nλi

]3
+
(

Ch
i

)3
]

+ δN0,order≥4(η). (3.37)

The sum in the last line (3.37) will later be found to be an error term, in Section 3.4.3. The
important terms are therefore the sums in (3.35)-(3.36), which we will see impose conditions on
the choice of g.
To highlight the structure of L∗

h1, let us rewrite the sums in (3.35)-(3.36) by grouping together
terms involving n-point correlations, n ∈ N∗. By (3.31), C is the sum of B, which involves one-
point correlations (i.e. one η̄); and of D, which is configuration-independent, like λ. Moreover, the
sum in (3.35) will have to be integrated by parts to remove the N factor. To do so, write:

∀i < N − 1, ηi+1 − ηi = η̄i+1 − η̄i + ρ̄i+1 − ρ̄i = η̄i+1 − η̄i +N−1∂N ρ̄i. (3.38)
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The sum in (3.35) therefore contains constant terms, fluctuations and two-point correlations. Let
us similarly analyse the second line (3.36). The jump rate (ηi+1− ηi)2, i < N − 1 can be expressed
in terms of η̄i and η̄i+1 as follows:

∀i < N − 1, (ηi+1 − ηi)2 = ai + σ′(ρ̄i)η̄i+1 + σ′(ρ̄i+1)η̄i − 2η̄iη̄i+1, (3.39)

where ai = ρ̄i+1(1 − ρ̄i) + ρ̄i(1 − ρ̄i+1), i < N − 1. The sum in (3.36) therefore involves constant
terms and n-point correlations for each 1 ≤ n ≤ 4. In Section 3.4.3, we prove that three-point
and four-point correlations lead to an error term δN0,3−4, while the sum in the third line (3.37) is
an error term δN0,order 3. The adjoint in the bulk thus reads:

N2L∗
h,01 = Const + Fluct + Corr + δN0,3−4 + δN0,order 3 + δN0,order≥4, (3.40)

where Const, Fluct, Corr respectively denote the constant terms, the fluctuations and the correla-
tions. The expression of these terms is given in the next three sections. Informally, these are small
only when νNg satisfies specific conditions. Namely, the fluctuations term Fluct is small because,
by definition, νNg has the same average occupation number as the invariant measure in the large N
limit, see Section 3.4.1. On the other hand, the correlations Corr are small provided g solves the
partial differential equation (2.31), as shown in Section 3.4.2. Finally, the constant Const is small
provided all other terms are, as established in Section 3.4.4. We will repeatedly use the following
estimates (recall the definition (3.31) of D):

sup
i<N−1

|Di| = O(N−1), sup
i<N−1

∣

∣

∣

ai∂
Nλi
2

− ∂N ρ̄i
∣

∣

∣
= O(N−1) = sup

i<N−1

∣

∣

∣
∂Nλi −

∂N ρ̄i
σ̄i

∣

∣

∣
. (3.41)

3.4.1 The fluctuations

Here, we estimate the fluctuations term Fluct in (3.40), which we recall accounts for all terms with
a single η̄ in the two sums (3.35)-(3.36). Recalling (3.39), it reads:

Fluct =
1

2

∑

i<N−1

[

N(η̄i+1 − η̄i)
(

2Dh−g
i − ∂Nλi

)

+ 2∂N ρ̄iB
h−g
i

+
ai
2

[

2Bh−2g
i

(

Dh−2g
i − ∂Nλi

)

− 2Bg
iD

g
i

]

+
1

2

[

σ′(ρ̄i)η̄i+1 + σ′(ρ̄i+1)η̄i
][

(Dh−2g
i − ∂Nλi)2 − (Dg

i )
2
]

]

. (3.42)

To estimate the size of each term above, recall from Lemma 3.7 that a term of the form Y N(φ)
(defined in (3.17)), with φ : (−1, 1) → R bounded, is controllable with size 1. Anything of the
form εNY

N(φ), with εN = oN(1), is therefore an error term with size ε2N . Using (3.41), (3.42) thus
turns into:

Fluct =
1

2

∑

i<N−1

[

N(η̄i+1 − η̄i)
(

2Dh−g
i − ∂Nλi

)

+ 2∂N ρ̄iB
h−g
i − ai∂NλiBh−2g

i

+
(∂Nλi)

2

2

[

σ′(ρ̄i)η̄i+1 + σ′(ρ̄i+1)η̄i
]

]

+ δN,10,1 (η), (3.43)

77



where δN,10,1 (η) reads:

δN,10,1 (η) :=
1

2

∑

i<N−1

[

ai
[

Bh−2g
i Dh−2g

i − Bg
iD

g
i

]

+
[

σ̄′(ρ̄i)η̄i+1 + σ′(ρ̄i+1)η̄i
]

×
[

(Dh−2g
i )2 − 2Dh−2g

i ∂Nλi − (Dg
i )

2
]

]

.

Recall from (3.31) that each B·
i for i < N −1 is of the form N−1/2Y N(φ) for a bounded function φ,

and that supi |Di| = O(N−1). As a result, all terms composing δN,10,1 are of the form N−1/2Y N(ψ)

or N−3/2Y N(ψ) for a bounded ψ, thus controllable with size at most N−1 by Lemma 3.7. It follows
that δN,10,1 is controllable with size N−1.
Let us compute (3.43). From (3.31) and the regularity of h, g, one draws, for each i < N − 1:

Dh−g
i−1 −Dh−g

i = − 1

2N2

[

(h− g)i,i+1∆
N ρ̄i +N

[

(h− g)i,i+1 − (h− g)i−1,i

]

∂N ρ̄i−1

]

, (3.44)

where ∆N ρ̄i = ∂N(∂N ρ̄i−1) = N2[ρ̄i+1 + ρ̄i−1 − 2ρ̄i]. As a result, supi
∣

∣Dh−g
i−1 − Dh−g

i

∣

∣ = O(N−2).

Moreover, g(±1, ·) = 0 = h(±1, ·), which implies that Dh−g
−(N−1) = O(N−2) = Dh−g

N−2. An integration

by parts therefore turns (3.43) into:

Fluct =
1

2

∑

|i|<N−1

η̄i∆
Nλi −

N

2
η̄N−1∂

NλN−2 +
N

2
η̄−(N−1)∂

Nλ−(N−1) (3.45)

+
∑

i<N−1

[

∂N ρ̄iB
h−g
i − ai∂

Nλi
2

Bh−2g
i +

(∂Nλi)
2

4

[

σ′(ρ̄i)η̄i+1 + σ′(ρ̄i+1)η̄i
]

]

+
2

∑

q=1

δN,q0,1 (η),

where δN,20,1 is a controllable error term with size N−1, as it reads:

δN,20,1 (η) =
1

N

∑

|i|<N−1

η̄iN
2
[

Dh−g
i−1 −Dh−g

i

]

+ η̄N−1D
h−g
N−2 − η̄−(N−1)D

h−g
−(N−1).

Using (3.41) to express a·∂Nλ· in terms of ∂N ρ̄· in the terms involving B in the second line, (3.45)
becomes:

Fluct =
1

2

∑

|i|<N−1

η̄i∆
Nλi −

N

2
η̄N−1∂

NλN−2 +
N

2
η̄−(N−1)∂

Nλ−(N−1)

+
∑

i<N−1

[

∂N ρ̄iB
g
i +

(∂Nλi)
2

4

[

σ′(ρ̄i)η̄i+1 + σ′(ρ̄i+1)η̄i
]

]

+
3

∑

q=1

δN,q0,1 (η), (3.46)

with δN,30,1 (η) of the form N−1/2Y N(φ) (recall (3.17)) with φ bounded, thus controllable with size
N−1. Indeed, recalling the estimates (3.41) and the definition (3.31) of B, it reads:

δN,30,1 (η) = −
1

2N

∑

j∈ΛN

η̄j

(

1

N

∑

i/∈{j−1,j,N−1}
N
[ai∂

Nλi
2

− ∂N ρ̄i
]

∂N1 (h− 2g)i,j

)

,
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and the term between parenthesis is bounded uniformly in j ∈ ΛN and N ∈ N∗. Let us
now compute the term involving B in (3.46). Recall that g ∈ C3(⊲̄) and is symmetric, thus
sup|j|<N−1N |gj−1,j−gj+1,j| is bounded uniformly in N . Integrating by parts and using g(±1, ·) = 0,
and the symmetry of g in the last line below; we find:

∑

i<N−1

∂N ρ̄iB
g
i =

1

2N

∑

i<N−1

∂N ρ̄i
∑

j /∈{i,i+1}
η̄j∂

N
1 gi,j =

1

2N

∑

j∈ΛN

η̄j
∑

i/∈{j−1,j,N−1}
∂N ρ̄i∂

N
1 gi,j

= − 1

2N

∑

j∈ΛN

η̄j

[

∑

|i|<N−1
|j−i|>1

∆N ρ̄igi,j + ∂N ρ̄j−2(Ngj−1,j)− ∂N ρ̄j+1(Ngj+1,j)

+ ∂N ρ̄N−2(NgN−1,j)− ∂N ρ̄−N+1(Ng−N+1,j)

]

=: − 1

2N

∑

j∈ΛN

η̄j
∑

|i|<N−1
|j−i|>1

∆N ρ̄igi,j + δN,40,1 (η)

=: −1

2

∑

j∈ΛN

η̄j
(

N−1Mg

)

(∆ρ̄·)(j) + δN,50,1 (η), (3.47)

where δN,40,1 , δ
N,5
0,1 are of the form N−1/2Y N(φ) (Y N(φ) is defined in (3.17)) for bounded φ, and

therefore controllable error terms with size N−1. Mg is the matrix (gi,j)(i,j)∈Λ2
N

and (∆ρ̄·) the

vector (∆ρ̄i)i∈ΛN
, so that δN,50,1 accounts for the replacement of ∆N ρ̄ by ∆ρ̄ (this cost vanishes in

our case since ρ̄ is linear, but we do not use this fact at this point), as well as the addition of
missing terms in the sum on i:

δN,50,1 (η) = −
1

2N

∑

j∈ΛN

η̄j
∑

−N+1<i<N−1
|j−i|>1

[

∆N ρ̄i −∆ρ̄i
]

gi,j −
1

2N

∑

j∈ΛN

η̄j
∑

i∈{±(N−1),j,j±1}
∆ρ̄igi,j.

Consider now the sums involving λ· in (3.46). Elementary computations give, for each i < N − 1:

∆Nλi = N [∂Nλi − ∂Nλi−1] =
∆N ρ̄i
σ̄i
−

(

∂N ρ̄i
)2
σ′(ρ̄i)

(σ̄i)2
+ εNi , sup

|i|<N−1

|εNi | = O(N−1).

By (3.41), we also know supi |∂Nλi − ∂N ρ̄i/σ̄i| = O(N−1). As a result:

1

2

∑

|i|<N−1

η̄i∆
Nλi +

∑

i<N−1

(∂Nλi)
2

4

[

σ′(ρ̄i)η̄i+1 + σ′(ρ̄i+1)η̄i
]

− N

2
η̄N−1∂

NλN−2 +
N

2
η̄−(N−1)∂

Nλ−(N−1)

=
1

2

∑

i∈ΛN

η̄i
∆ρ̄i
σ̄i
− N

2
η̄N−1∂

NλN−2 +
N

2
η̄−(N−1)∂

Nλ−(N−1) + δN,60,1 (η), (3.48)
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where δN,60,1 reads:

δN,60,1 (η) :=
1

2

∑

|i|<N−1

η̄i

[

∆Nλi +
1

4

[

(∂Nλi−1)
2σ′(ρ̄i−1) + (∂Nλi)

2σ′(ρ̄i+1)
]

− ∆ρ̄i
σ̄i

]

+
η̄N−1(∂

NλN−2)
2σ′(ρ̄N−2)

4
+
η̄−(N−1)(∂

Nλ−(N−1))
2σ′(ρ̄−(N−2))

4

− η̄N−1
∆ρ̄N−1

σ̄N−1

− η̄−(N−1)

∆ρ̄−(N−1)

σ̄−(N−1)

.

The function δN,60,1 involves terms of the form η̄±(N−1)u(±(N − 1)) with u bounded (the last two

lines), and N−1/2Y N(φ) for bounded φ : (−1, 1)→ R (the first line). It is therefore Γ-controllable
with size N−1 by Lemma 3.7. Note that the last line actually vanishes since ∆ρ̄ = 0. We do not
need this fact at this point.
Putting (3.46), (3.47) and (3.48) together, we have computed the fluctuations term (3.42) in
N2L∗

h,01:

Fluct =
1

2

∑

i∈ΛN

η̄i
(

σ̄−1 −N−1Mg

)(

∆ρ̄·)(i)−
N

2
η̄N−1∂

NλN−2

+
N

2
η̄−(N−1)∂

Nλ−(N−1) +
6

∑

q=1

δN,q0,1 (η).

Since ∆ρ̄· = 0, the first sum vanishes, and:

Fluct = −N
2
η̄N−1∂

NλN−2 +
N

2
η̄−(N−1)∂

Nλ−(N−1) + δN0,1(η), δN0,1 :=
6

∑

q=1

δN,q0,1 . (3.49)

By definition of error terms, see Definition 3.5, we have proven the following: for any θ > 0, there
are γθ, Cθ > 0 such that, for any density f for νNg :

νNg
(

f · Fluct
)

≤ N

2
νNg

(

f [−η̄N−1∂
NλN−2 + η̄−(N−1)∂

Nλ−(N−1)]
)

+ θN2νNg
(

Γh(
√

f)
)

+
H(fνNg |νNg )

γθ
+
Cθ
N
. (3.50)

3.4.2 The correlations

In this section, we compute the Corr term in (3.40) and obtain the partial differential equation that
an optimal g must solve. Recall that Corr corresponds to all terms in (3.35)-(3.36) that involve
products of two η̄’s. It reads:

Corr =
∑

i<N−1

[

N(η̄i+1 − η̄i)Bh−g
i − aiBg

iB
h−g
i − 1

2
η̄iη̄i+1

[(

Dh−2g
i − ∂Nλi

)2 − (Dh
i )

2
]

+
1

2

[

σ′(ρ̄i)η̄i+1 + σ′(ρ̄i+1)η̄i
][

Bh−2g
i

(

Dh−2g
i − ∂Nλi

)

− Bh
i D

h
i

]

]

(3.51)
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Recall from Lemma 3.7 that terms of the form ΠN(u), or N−1/2Xv
1,{0,1} = N−1/2

∑

i<N−1 η̄iη̄i+1vi,
are controllable with size 1 as soon as the test functions u, v are bounded. Multiplying them by εN
with εN = oN(1) therefore turns them into controllable error terms with size εN , ε

2
N respectively.

As in Section 3.4.1, we first use the estimate (3.41) on the size of D to remove some terms from
(3.51):

Corr =
∑

i<N−1

[

N(η̄i+1 − η̄i)Bh−g
i − aiBg

iB
h−g
i − 1

2
η̄iη̄i+1

(

∂Nλi
)2

− 1

2

[

σ′(ρ̄i)η̄i+1 + σ′(ρ̄i+1)η̄i
]

∂NλiB
h−2g
i

]

+ δN,10,2 (η), (3.52)

with δN,10,2 controllable with size N−1, that reads:

δN,10,2 (η) := −
1

2N

∑

i<N−1

η̄iη̄i+1N
[

(Dh−2g
i )2 − 2Dh−2g

i ∂Nλi − (Dh
i )

2
]

+
1

2N

∑

i<N−1

[

σ′(ρ̄i)η̄i+1 + σ′(ρ̄i+1)η̄i
]

N
[

Bh−2g
i Dh−2g

i − Bh
i D

h
i

]

.

Let us integrate by parts the term involving η̄i+1 − η̄i in (3.52), i < N − 1. To do so, notice first
that, for each i with |i| < N − 1:

N
[

Bh−g
i−1 − Bh−g

i

]

= N
[

Bg−h
i − Bg−h

i−1

]

=
1

2N

∑

j:|j−i|>1

η̄j∆
N
1 (g − h)i,j

+
1

2

[

η̄i−1∂
N
1 (g − h)i,i−1 − η̄i+1∂

N
1 (g − h)i−1,i+1

]

,

with ∆N
1 u(i, j) = ∂N1 (∂N1 u(i− 1, j)) for u : Z2 → R and (i, j) ∈ Z2. As a result:

∑

i<N−1

N(η̄i+1 − η̄i)Bh−g
i = Nη̄N−1B

h−g
N−2 −Nη̄−(N−1)B

h−g
−(N−1) +

∑

|i|<N−1

η̄iN
[

Bh−g
i−1 − Bh−g

i

]

= δN,20,2 (η) +
1

2N

∑

|i|<N−1

∑

j:|j−i|>1

η̄iη̄j∆
N
1 (g − h)i,j

+
1

2

∑

|i|<N−1

η̄i
[

η̄i−1∂
N
1 (g − h)i,i−1 − η̄i+1∂

N
1 (g − h)i−1,i+1

]

, (3.53)

where δN,20,2 (η) := Nη̄N−1B
h−g
N−2−Nη̄−(N−1)B

h−g
−(N−1). δ

N,2
0,2 involves correlations between the reservoir

and the bulk, of the same form as the function U±
1 defined in Lemma 3.7. δN,20,2 is thus Γ-controllable

with size N−1. On the other hand, the last line of (3.53) can be integrated by parts once again:

∑

|i|<N−1

η̄i
[

η̄i−1∂
N
1 (g − h)i,i−1 − η̄i+1∂

N
1 (g − h)i−1,i+1

]

=
∑

−(N−1)<i<N−2

η̄iη̄i+1

[

∂N1 (g − h)i+1,i − ∂N1 (g − h)i−1,i+1

]

+ δN,30,2 (η),
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with:

δN,30,2 (η) := η̄−(N−1)η̄−(N−2)∂
N
1 (g − h)−(N−2),−(N−1) − η̄N−2η̄N−1∂

N
1 (g − h)N−3,N−1.

δN,30,2 is again a Γ-controllable error term with size N−1 (in fact N−2), as it is of the same form as
the function U±

1 of Lemma 3.7. Equation (3.53) thus reads:

∑

i<N−1

N(η̄i+1 − η̄i)Bh−g
i =

1

2N

∑

|i|<N−1

∑

j:|j−i|>1

η̄iη̄j∆
N
1 (g − h)i,j

+
1

2

∑

−(N−1)<i<N−2

η̄iη̄i+1

[

∂N1 (g − h)i+1,i − ∂N1 (g − h)i−1,i+1

]

+
3

∑

q=2

δN,q0,2 (η). (3.54)

The other terms in (3.52) are simpler. Indeed, recall that:

sup
i<N−1

|ai − 2σ̄i| = O(N−1), sup
i<N−1

∣

∣

∣
∂Nλi −

∂N ρ̄i
σ̄i

∣

∣

∣
= O(N−1).

Using these estimates in (3.52), Corr becomes:

Corr =
1

2N

∑

|i|<N−1

∑

j:|j−i|>1

η̄iη̄j∆
N
1 (g − h)i,j

+
1

2

∑

−(N−1)<i<N−2

η̄iη̄i+1

[

∂N1 (g − h)i+1,i − ∂N1 (g − h)i−1,i+1 −
(∂N ρ̄i)

2

(σ̄i)2

]

−
∑

i<N−1

[

[

σ′(ρ̄i)η̄i+1 + σ′(ρ̄i+1)η̄i
]∂N ρ̄i
2σ̄i

Bh−2g
i + 2σ̄iB

g
iB

h−g
i

]

+
4

∑

q=1

δN,q0,2 (η), (3.55)

where δN,40,2 is an error term with size N−1, that reads:

δN,40,2 (η) = −
1

2N

∑

i<N−1

[

σ′(ρ̄i)η̄i+1 + σ′(ρ̄i+1)η̄i
]

[

∂Nλi −
∂N ρ̄i
σ̄i

]

Bh−2g
i − 1

N

∑

i<N−1

N
[

ai − 2σ̄i
]

Bg
iB

h−g
i

− 1

2N

∑

−(N−1)<i<N−2

η̄iη̄i+1N
[

(∂Nλi)
2 − (∂N ρ̄i)

2

σ̄2
i

]

− 1

2

[

η̄−(N−1)η̄−(N−2)

(

∂Nλ−(N−1)

)2
+ η̄N−2η̄N−1

(

∂NλN−2

)2
]

.

The last line comes from the fact that the sum involving η̄iη̄i+1 in (3.52) and in (3.54) do not have
the same range. It is of the same form as U+

1 in Lemma 3.7, thus is Γ-controllable with size N−1 (in
fact N−2). The first line above is of the form N−2Xφ2

2,{0}, while the second line reads N−1/2Xφ1
1,{0,1};

for bounded tensors φ1, φ2. As a result, δN,40,2 is Γ-controllable with size N−1 by Lemma 3.7.
To conclude on the expression of the correlations, it remains to take care of the two terms involving
B in (3.55). Recalling the definition (3.31) of B, using the regularity of h, g and ρ̄ and changing
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indices, one can write:

1

2

∑

i<N−1

[

σ′(ρ̄i)η̄i+1 + σ′(ρ̄i+1)η̄i
]∂N ρ̄i
σ̄i

B2g−h
i

=
1

2N

∑

|i|<N−1

σ′(ρ̄i)∂N ρ̄i
σ̄i

η̄i
∑

j /∈{i,i+1}
η̄j∂

N
1 (2g − h)i,j + δN,50,2 (η),

where δN,50,2 is an error term that reads:

δN,50,2 (η) =
1

2N

∑

|i|<N−1

η̄iN
[

σ′(ρ̄i+1)− σ′(ρ̄i)
]∂N ρ̄i
σ̄i

B2g−h
i

+
1

2N

∑

|i|<N−1

η̄iN
[

σ′(ρ̄i−1)
∂N ρ̄i−1

σ̄i−1

B2g−h
i−1 − σ′(ρ̄i)

∂N ρ̄i
σ̄i

B2g−h
i

]

+ η̄N−1
σ′(ρ̄N−2)∂

N ρ̄N−2

2σ̄N−2

B2g−h
N−2 + η̄−(N−1)

σ′(ρ̄−(N−2))∂
N ρ̄−(N−1)

2σ̄−(N−1)

B2g−h
−(N−1).

δN,50,2 is of the form N−1Xφ2
2,{0} for a bounded φ2 for the first two lines, and N−1U±

1 for the third line.

By Lemma 3.7, it is therefore Γ-controllable with size N−1. Finally, recall that (η̄·)2 = σ̄·+σ′(ρ̄·)η̄·.
Separating diagonal and off-diagonal contributions, the term involving Bg

· B
h−g
· in (3.55) reads:

−2
∑

i<N−1

σ̄iB
g
iB

h−g
i =

1

2N2

∑

i<N−1

σ̄i
∑

j,ℓ/∈{i,i+1}
η̄j η̄ℓ∂

N
1 gi,j∂

N
1 (g − h)i,ℓ

=
1

2N

∑

|j|<N−1
ℓ6=j

η̄j η̄ℓ

( 2

2N

∑

i/∈{j−1,j,ℓ−1,ℓ,N−1}
σ̄i∂

N
1 gi,j∂

N
1 (g − h)i,ℓ

)

+
1

2N2

∑

i<N−1

∑

j /∈{i,i+1}
σ̄iσ̄j∂

N
1 gi,j∂

N
1 (g − h)i,j + δN,60,2 (η),

where δN,60,2 is an error term of the form N−1/2Y N(φ) +U±
1 (recall (3.17)), thus Γ-controllable with

size N−1 by Lemma 3.7, which reads:

δN,60,2 (η) =
1

2N2

∑

i<N−1

∑

j /∈{i,i+1}
σ̄iσ

′(ρ̄j)η̄j∂
N
1 gi,j∂

N
1 (g − h)i,j

+
∑

j∈{±(N−1)}

∑

ℓ6=j
η̄j η̄ℓ

( 2

2N

∑

i/∈{j−1,j,ℓ−1,ℓ,N−1}
σ̄i∂

N
1 gi,j∂

N
1 (g − h)i,ℓ

)

.
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The correlations (3.51) have so far been rewritten as follows:

Corr =
∑

|i|<N−1
j 6=i

η̄iη̄j

{

1

2N

[

1|i−j|>1∆
N
1 (g − h)i,j + 1j 6=i+1∂

N ρ̄i
σ′(ρ̄i)

σ̄i
∂N1 (2g − h)i,j (3.56)

+
1

N

∑

ℓ/∈{i−1,i,j−1,j,N−1}
σ̄ℓ∂

N
1 gℓ,i∂

N
1 (g − h)ℓ,j

]

+ 1j=i+1<N−1
1

2

[

∂N1 (g − h)i+1,i − ∂N1 (g − h)i−1,i+1 −
∂N ρ̄i
(σ̄i)2

]}

(3.57)

+
1

2N2

∑

i<N−1

∑

j /∈{i,i+1}
σ̄iσ̄j∂

N
1 gi,j∂

N
1 (g − h)i,j +

6
∑

q=1

δN,q0,2 (η). (3.58)

We claim that the curly bracket is a discrete version of the partial differential equation (2.31).
To see it, first use the symmetry of g, h and exchange i, j. Recall then that, by assumption,
h, g ∈ W 4,s( ) for some s > 2. By Sobolev embedding, W 4,s( ) ⊂ C3(⊲̄) ∩ C3(⊳̄), see Appendix
E. As a result, approximating discrete derivatives by continuous ones and the Riemann sum in the
second line of (3.57) by an integral, there is a controllable error term δN,70,2 with size N−1, of the
form N−1ΠN(u) +N−1Xv

1,{0,1} for bounded u, v, such that:

(3.56) + (3.57) = ΠN
(

∆(g − h) + (σ̄)′

σ̄
∂1(2g − h) + ∂2(2g − h)

(σ̄)′

σ̄

)

+ΠN
(

I(∂1g, ∂1(g − h)) + I(∂1(g − h), ∂1g)
)

+
∑

i<N−1

η̄iη̄i+1

[

∂1(g − h)i+,i − ∂1(g − h)i−,i −
(ρ̄′)2

σ̄2
i

]

+ δN,70,2 (η), (3.59)

with I the integral operator defined in (2.23) and the convention wφ(x, y) = w(x)φ(x, y), φw(x, y) =
φ(x, y)w(y) if φ : → R, w : (−1, 1) → R and (x, y) ∈ . If g is chosen as the solution gh of the
main equation (2.31), then the right-hand side of (3.59) reduces to δN,70,2 (η), whence:

Corr =
1

2N2

∑

i<N−1

∑

j /∈{i,i+1}
σ̄iσ̄j∂

N
1 (gh)i,j∂

N
1 (gh − h)i,j + δN0,2(η), δN0,2 =

7
∑

q=1

δN,q0,2 . (3.60)

By definition of error terms (see Definition 3.5), for any θ > 0, there are thus γθ, Cθ > 0 such that,
for any density f for νNg = νNgh :

νNgh
(

f · Corr
)

≤ 1

2N2

∑

i<N−1

∑

j /∈{i,i+1}
σ̄iσ̄j∂

N
1 (gh)i,j∂

N
1 (gh − h)i,j + θN2νNgh

(

Γh(
√

f)
)

+
H(fνNgh |νNgh)

γθ
+
Cθ
N
. (3.61)

Remark 3.9. The choice of g = gh cancelling (3.56)+(3.57) is optimal in the following sense: for
another g, the first two terms in the right-hand side of (3.59) are not even error terms, but only
controllable with size 1. As a result, for g 6= gh, (3.61) can only be true with Cθ replacing Cθ/N
in the right-hand side, which breaks the oN(1) bound on the entropy obtained in Section 3.5. �

84



3.4.3 Higher-order correlations

In this section, we need not assume that g = gh, and we estimate the third order term (N2L∗
h1)order 3

in the development (3.37) of the exponentials making up the adjoint in the bulk, as well as three-
point and four-point correlations arising in (3.36).
From (3.37)-(3.38)-(3.39), the latter read:

δN0,3−4(η) :=
∑

i<N−1

[

−
[

σ′(ρ̄i)η̄i+1 + σ′(ρ̄i+1)η̄i
]

Bg
iB

h−g
i + η̄iη̄i+1B

g
i

(

D2h−2g
i − ∂Nλi

)

(3.62)

+ η̄iη̄i+1

(

D2g
i + ∂Nλi

)

Bh−g
i

]

+ 2
∑

i<N−1

η̄iη̄i+1B
g
iB

h−g
i . (3.63)

The first sum (3.62) involves three-point correlations, albeit of the form η̄iη̄i+1η̄j for the second
term. Lemma 3.7 only yields that it is controllable with size 1. However, using the renormalisation
scheme of Jara and Menezes, we prove that it is Γ-controllable with size N−1/2 for all g ∈ g0+S(εG),
in Appendix C. The last sum in (3.63) involves four-point correlation, suitably rescaled with N .
By Lemma 3.7, it is controllable with size N−1, again for all g ∈ g0 + S(εG). It follows that δN0,3−4

is Γ-controllable with size N−1/2.
Consider now (N2L∗

h1)order 3, which by (3.37) reads:

(N2L∗
h1(η))order 3 =

1

12N

∑

i<N−1

(ηi+1 − ηi)
[

[

Ch−2g
i − ∂Nλi

]3
+
[

Ch
i

]3
]

.

For i < N − 1, write ηi+1 − ηi = η̄i+1 − η̄i +N−1∂N ρ̄i as before, and recall from (3.32) that Ch−2g
· ,

Ch
· are bounded with N . As a result:

∣

∣

∣
(N2L∗

h1(η))order 3 −
1

12N

∑

i<N−1

(η̄i+1 − η̄i)
[

[

Ch−2g
i − ∂Nλi

]3
+
[

Ch
i

]3
]∣

∣

∣
≤ C(h, g)

N
. (3.64)

One need not even integrate by parts to find that the sum in (3.64) is small. Indeed, developing
the cubes and recalling that C = B +D (see (3.31)) with ND bounded, one finds:

1

12N

∑

i<N−1

(η̄i+1 − η̄i)
[

[

Ch−2g
i − ∂Nλi

]3
+
[

Ch
i

]3
]

=
4

∑

n=1

N−nXφn
n,{0}(η),

for bounded φn, 1 ≤ n ≤ 4, depending on h, g, λ. By Lemma 3.7, N−nXφn
n,{0} is controllable with

size N−1 at most for 1 ≤ n ≤ 4. This observation and (3.64) yield:

∣

∣(N2L∗
h1(η))order 3

∣

∣ ≤ δN0,order 3(η) :=
C(h, g)

N
+
∣

∣

∣

4
∑

n=1

N−nXφn
n,{0}(η)

∣

∣

∣
, (3.65)

and δN0,order 3 is controllable with size N−1.
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3.4.4 The constant terms

Here, we prove that the configuration-independent terms appearing in the full adjoint L∗
h1 are

small when g = gh, with gh the solution of the main equation (2.31). The terms in question
correspond to various constant terms bounded by O(N−1) encountered in the previous subsections
and the computation of L∗

h,±1, which already are error terms; and the sum of the constant term
in (3.60), as well as the Const term of (3.40), which reads:

Const :=
∑

i<N−1

[

∂N ρ̄i

(

Dh−g
i − ∂Nλi

2

)

+
ai
4

[(

Dh−2g
i − ∂Nλi

)2 − (Dh
i )

2
]

]

. (3.66)

By definition of L∗
h1, one has:

νNgh
(

L∗
h1

)

= νNgh
(

Lh1
)

= 0.

We can also estimate νNgh(L
∗
h1) through the expression (3.30) of the adjoint at the boundary and

the expansion (3.37) of the adjoint in the bulk. Indeed, Lemmas A.1-A.3 and Proposition A.5 tell
us:

∀n ≥ 1, sup
J⊂ΛN

|J |∈{2n−1,2n}

νNgh

(

∏

j∈J
η̄j

)

= O(N−n),

∀j /∈ {±(N − 1)}, νNgh(η̄±(N−1)η̄j) = O(N−2) = νNgh(η̄±(N−1)).

These bounds can be used on the adjoint at the boundary (3.30), the error term δNorder≥3,0 defined in
(3.65), the error term δN3−4,0 accounting for three and four point correlations defined in (3.62)-(3.63),
the estimate (3.49) of the fluctuations, and (3.60) of the correlations. They yield:

νNgh
(

N2L∗
h1

)

= 0 = Const +
1

2N2

∑

i<N−1

∑

j /∈{i,i+1}
σ̄iσ̄j∂

N
1 gi,j∂

N
1 (g − h)i,j +O(N−1)

=: δN0,0 +O(N−1).

The configuration-independent terms δN0,0 arising in L∗
h,01 are thus bounded by O(N−1).

3.5 Conclusion

Let us put together the estimates obtained so far to conclude the proof of Lemma 3.3. The
expression of the adjoint at the boundary was obtained in (3.30), while the adjoint in the bulk has
been estimated in the last three sections, provided one takes g = gh, with gh the solution of the
main equation (2.31). One has therefore:

N2L∗
h1(η) = N2L∗

h,±1(η) +N2L∗
h,01(η)

=
N

2
η̄−(N−1)

(

∂Nλ−N − ∂Nλ−(N−1)

)

− N

2
η̄N−1

(

∂NλN−1 − ∂NλN−2

)

+ δN(η)

=
η̄−(N−1)

2
∆Nλ−(N−1) −

η̄N−1

2
∆NλN−1 + δN(η),

with δN a Γ-controllable error term with size N−1/2, given by:

δN(η) = δN± (η) + δN0,0 + δN0,1(η) + δN0,2(η) + δN0,3−4(η) + δN0,order 3(η) + δN0,order≥4(η).
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Since supN |∆Nλ±(N−1)| <∞, the quantity:

η̄−(N−1)

2
∆Nλ−(N−1) −

η̄N−1

2
∆NλN−1

is Γ-controllable with size N−1 by Lemma B.3. It follows that N2L∗
h1 is Γ-controllable with size

N−1/2. Thus, by Definition 3.5 of controllability, for any θ > 0, there is a controllable random
variable Eθ with size N−1/2 and γθ, Cθ > 0 such that, for any density f for νNgh :

νNgh
(

fN2L∗
h1

)

= νNgh(fδ
N) ≤ νNgh(fEθ) + θN2νNgh

(

Γh(
√

f)
)

≤ H(fνNgh |νNgh)
γθ

+ θN2νNgh
(

Γh(
√

f)
)

+
Cθ
N1/2

.

This concludes the proof of Lemma 3.3. �

3.6 The Radon-Nikodym derivative

Coming back to the time-independent case with η̄· = η·− ρ̄·, the computations in the previous sub-
sections can be used to obtain an expression of the Radon-Nikodym derivativeDh = dPh/dP, h ∈ S.
By definition, Dh reads (see Appendix A.7 in [KL99]):

logDh((ηt)t≤T ) = ΠN
T (h)− ΠN

0 (h)−N2

∫ T

0

e−ΠN
t (h)LeΠ

N
t (h)dt. (3.67)

The field ΠN is defined in (2.6).

Proposition 3.10. Let h ∈ S(εB), and recall that I(u, v)(x, y) =
∫

(−1,1)
u(z, x)σ̄(z)u(z, y)dz for

u, v ∈ L2( ) and (x, y) ∈ . Then, for each η ∈ ΩN :

N2e−ΠN (h)LeΠ
N (h)(η) =

1

2
ΠN

(

∆h+ I(∂1h, ∂1h)
)

− (ρ̄′)2

4

∫

(−1,1)

h(x, x)dx (3.68)

+
1

4

∑

i<N−1

η̄iη̄i+1

(

∂1hi+,i − ∂1hi−,i
)

+
1

8

∫

σ̄(x)σ̄(y)
[

∂1h(x, y)
]2
dxdy + εN(h),

where εN(h) is a Γ-controllable error term with size N−1/2.

Remark 3.11. A bias h ∈ S(εB) is a symmetric function by definition. As a result, for each
(x, y) ∈ :

∂1h(x, y) = ∂2h(y, x) ⇒ ∂1h(x+, x)− ∂1h(x−, x) = (∂1 − ∂2)h(x+, x).

The first term in the second line of (3.68) thus corresponds to a contribution of the derivative of
h normal to the diagonal. �

The following corollary will be useful in the proof of lower bound large deviations.
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Corollary 3.12. Consider the Ph-martingale MN,φ, defined for T ≥ 0 and φ ∈ T (T is defined
in (2.15)) by:

MN,φ
T = ΠN

T (φ)− ΠN
0 (φ)−

∫ T

0

N2LhΠ
N
t (φ)dt. (3.69)

If additionally φ is a symmetric function in C3(⊲̄), there is a Γ-controllable error term ε̃N(h, φ)
with size N−1/2 such that, for any T ≥ 0:

MN,φ
T = ΠN

T (φ)− ΠN
0 (φ)−

1

2

∫ T

0

ΠN
t

(

∆φ+ I(∂1φ, ∂1h) + I(∂1h, ∂1φ)
)

dt

+
1

4

∫ T

0

∑

i<N−1

η̄i(t)η̄i+1(t)
(

∂1φi+,i − ∂1φi−,i
)

dt+
(ρ̄′)2T

4

∫

(−1,1)

φ(x, x)dx

− T

4

∫

σ̄(x)σ̄(y)∂1φ(x, y)∂1h(x, y)dxdy +

∫ T

0

ε̃Nt (h, φ)dt.

When φ = h, one has in particular:

MN,h
T − logDh = −

1

2

∫ T

0

ΠN
t

(

I(∂1h, ∂1h)
)

dt− T

8

∫

σ̄(x)σ̄(y)
[

∂1h(x, y)
]2
dxdy

+

∫ T

0

ε̂Nt (h)dt,

for a Γ-controllable error term ε̂N(h) with size N−1/2.

4 Long-time behaviour: upper bound

In this section, we establish the upper bound in Theorem 2.2, i.e. the following result. Recall that,
for N ∈ N∗, νNg0 is the discrete Gaussian measure (2.21) built from the inverse correlation kernel
g0 of the steady state of the open SSEP. We prove that, for any compact set K in (T ′

s , ∗),

lim sup
T→∞

lim sup
N→∞

1

T
logQ

νNg0
T

(

K
)

≤ − inf
Π∈K
I(Π), (4.1)

with I the functional defined in (2.25). This result is established in Section 4.1, relying on a
regularity estimate in the space H1( ), proven in Section 4.3. The proof of this regularity estimate
makes use of an L2( ) estimate, obtained in Section 4.2.

Before we start, let us make some remarks and fix notations. For T > 0 and O a Borel set in
(T ′

s , ∗), we use the notation OT for the set:

OT :=
{ 1

T

∫ T

0

Πtdt ∈ O
}

⇒ P(OT ) := QT (O).

We will repeatedly use the following bound: if O ⊂ (T ′
s , ∗) and X ⊂ D([0, T ],ΩN) are Borel sets,

lim sup
N→∞

logQ
νNg0
T

(

O
)

≤ log 2 + max
{

lim sup
N→∞

logPν
N
g0

(

OT ∩X
)

, lim sup
N→∞

logPν
N
g0

(

Xc
)

}

. (4.2)
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4.1 Upper bound for open and compact sets

Fix an open set O ⊂ (T ′
s , ∗). We wish to estimate Q

νNg0
T (O) as in (4.1). We do so by the martingale

method presented in Chapter 10 of [KL99], which relies on the computation of the Radon-Nikodym
derivatives Dh = dPh/dP, h ∈ S(εB). In Section 4.1.1, a first upper bound on compact sets with
a rate function Ĩ ≤ I is established. The bound is then improved to I in Section 4.1.2.

4.1.1 A first upper bound

Here, we build a functional Ĩ : (T ′
s , ∗)→ R+ such that, if K ⊂ (T ′

s , ∗) is a compact set,

lim sup
T→∞

lim sup
N→∞

1

T
logQ

νNg0
T (K) ≤ − inf

K
Ĩ. (4.3)

Let h ∈ S(εB). In Proposition 3.10, we proved that, for any T > 0 and any trajectory (η(t))t≤T :

logDh

(

(η(t)
)

t≤T ) = ΠN
T (h)− ΠN

0 (h)−
1

2

∫ T

0

ΠN
t

(

∆h+ I(∂1h, ∂1h)
)

dt

− 1

4

∫ T

0

∑

i<N−1

η̄i(t)η̄i+1(t)
(

∂1hi+,i − ∂1hi−,i
)

+
(ρ̄′)2T

4

∫

(−1,1)

h(x, x)dx (4.4)

− T

8

∫

σ̄(x)σ̄(y)
[

∂1h(x, y)
]2
dxdy −

∫ T

0

εNt (h)dt,

with εN(h) a Γ-controllable error term with size N−1/2 (see Definition 3.5 for the definition of error
terms). As a consequence of (4.2), one can write, for any set X:

lim sup
N→∞

1

T
logQ

νNg0
T (O) ≤ log 2

T
+max

{

lim sup
N→∞

1

T
logE

νNg0
h

[

1OT∩X(Dh)
−1
]

,

lim sup
N→∞

1

T
logPν

N
g0 (Xc)

}

. (4.5)

To obtain (4.1), we rewrite Dh as a closed expression in terms of 1
T

∫ T

0
ΠN
t dt. This requires taking

care of εN ,ΠT (h),Π0(h) and the sum involving η̄iη̄i+1, i < N−1. We do so by choosing the set X in
a suitable manner. The setX will be a union of sets, described below, which control the error terms.

The error term εN . For δ > 0, introduce the set:

AT (δ, h) =

{

(ηt)t≤T :

∣

∣

∣

∣

1

T

∫ T

0

εNt (h)dt

∣

∣

∣

∣

≤ δ

}

. (4.6)

The function εN is an error term (recall Proposition 3.10), so the event AT (δ, h)
c is unlikely

according to Corollary 3.6:
lim sup
N→∞

Pν
N
g0

(

AT (δ, h)
c
)

= 0. (4.7)

The diagonal term. In Appendix D, we estimate the cost of rewriting the sum on η̄iη̄i+1, i < N−1
in (4.4) in terms of the correlation field ΠN . Consider a function χε ∈ C∞(�̄) with χε = 0 on ∂�,
0 ≤ χε ≤ 2/ε, such that χε(x, ·) is supported on (x, x+ ε) ∩ (−1, 1) for each x ∈ (−1, 1), and:

∀x < 1− ε,
∫

(x,x+ε)

χε(x, y)dy = 1, ∀x ≥ 1− ε,
∫

(x,x+ε)

χε(x, y)dy ≤ 1. (4.8)
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Define then N ε
h(x, y) for (x, y) ∈ as follows:

N ε
h(x, y) =

σ̄(x)

σ̄(y)
χε(x, y)

(

∂1 − ∂2)h(x+, x). (4.9)

Then N ε
h ∈ T , and we prove the following in Proposition D.1. For T > 0, define:

RT (ε, δ, h) =

{

∣

∣

∣

1

T

∫ T

0

[1

4

∑

i<N−1

η̄i(t)η̄i+1(t)
(

∂N1 hi+,i − ∂N1 hi−,i
)

− ΠN
t

(

N ε
h

)

]

dt
∣

∣

∣
≤ δ

}

. (4.10)

There is then c′(h) > 0 and ε(δ, h) ∈ (0, 1) such that, for each T > 0 and each ε < ε(δ, h):

D∞
T (ε, δ, h) ≤ ce−c

′(h)ε−1/2δT , with D∞
T (ε, δ, h) := lim sup

N→∞
Pν

N
g0

(

RT (ε, δ, h)
c
)

. (4.11)

The time boundaries ΠN
0 (h),Π

N
T (h). We are now going to introduce a set in order to control

the large values of ΠN
T (h). Within this set, we will show in Lemma 4.1 below that ΠN

0 (h),Π
N
T (h)

do not to contribute to the right-hand side of (4.1) when N , T are large. We prove it by estimating
exponential moments of these quantities independently of N, T . For ΠN

0 (h), this follows from the
fact that the initial measure is νNg0 . At time T , we make use of Corollary 3.4 to reduce our claim
to a static estimate.

Lemma 4.1. Let T > 0, and define:

BT (h) =
{

∣

∣ΠN
T

(

h
)∣

∣ ≤ T 2
}

. (4.12)

Then, for any h ∈ S(εB), one has:

lim sup
N→∞

Pν
N
g0

(

BT (h)
c
)

≤ c(h)e−T
2

. (4.13)

In addition, there is C(h) > 0 such that:

lim sup
N→∞

logE
νNg0
h

[

exp
[

− ΠN
T (h) + ΠN

0 (h)
]

1BT (T 2,h)

]

≤ C(h). (4.14)

Proof. Let h ∈ S(εB). We first prove (4.13). By Corollary 3.4, one has:

lim sup
N→∞

∣

∣

∣
Pν

N
g0

(

BT (h
)c)− νNg0

(∣

∣ΠN
(

h
)∣

∣ > T 2
)

∣

∣

∣
= 0. (4.15)

Moreover, since ‖h‖2 ≤ 1/2 for h ∈ S(εB), Lemma A.1 yields the existence of c(h) > 0 with:

∀λ > 0, sup
N
νNg0

(
∣

∣ΠN
(

h
)∣

∣ > λ
)

≤ c(h)e−λ, (4.16)

and (4.13) follows.
We now prove (4.14). To estimate the exponential moment of ΠN

T (h) under Eh, we need the
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starting measure to be νNgh . Write thus, using Cauchy-Schwarz inequality:

logE
νNg0
h

[

exp
[

− ΠN
T (h) + ΠN

0 (h)
]

1BT (h)

]

= logE
νNgh
h

[

1BT (h) exp
[

− ΠN
T

(

h
)

+ΠN
0

(

h
)]dνNg0
dνNgh

]

≤ 1

2
logE

νNgh
h

[

1BT (h) exp
[

− 2ΠN
T (h)

]

]

+
1

2
log νNg0

[

exp
[

2ΠN
(

h+ g0 − gh
)]

]

+
1

2
log

(ZNgh
ZNg0

)

. (4.17)

As gh ∈ g0 + S(εG) and h ∈ S(εB) with εB, εG ∈ (0, 1/2), thus supN ZNgh/ZNg0 =: C1(h) < ∞,
where the partition function ZNgh is defined in (2.30). The constants εB, εG are chosen to ensure
‖h + g0 − gh‖2 < 1/2, which by Lemma A.1 means that the expectation under νNg0 in (4.17) is
bounded by some C2(h) > 0. Finally, Corollary 3.4 applied to the first expectation in (4.17) yields
the existence of C3(h) > 0, such that:

E
νNgh
h

[

1BT (h) exp
[

− 2ΠN
T (h)

]

]

≤ C3(h)e
C3(h)T e2T

2

N1/2
+ νNgh

[

exp
[

− 2ΠN(h)
]

]

.

Taking the large N limit and again writing gh − h = gh − g0 − h+ g0 concludes the proof:

lim sup
N→∞

logE
νNgh
h

[

1BT (h) exp
[

−2ΠN
T (h)

]

]

≤ lim sup
N→∞

log νNgh

[

exp
[

− 2ΠN(h)
]

]

= lim sup
N→∞

log

[ZNg0
ZNgh

νNg0

[

exp
[

2ΠN(gh − g0 − h)
]

]

]

≤ C4(h).

In view of the last three points, let ε ∈ (0, 1), δ > 0 and define:

X = AT (δ, h) ∩RT (ε, δ, h) ∩BT (h). (4.18)

Let also Jεh be the following continuous functional on (T ′
s , ∗):

∀Π ∈ T ′
s , Jεh(Π) = −

1

2
Π
(

∆h+ I(∂1h, ∂1h)
)

+Π
(

N ε
h

)

+
(ρ̄′)2

4

∫

(−1,1)

h(x, x)dx− 1

8

∫

σ̄(x)σ̄(y)
[

∂1h(x, y)
]2
dxdy. (4.19)

With these notations, (4.5) becomes:

lim sup
N→∞

Q
νNg0
T (O) ≤ lim sup

N→∞
E
νNg0
h

[

1X exp
[

− ΠN
T (h) + ΠN

0 (h)−
∫ T

0

εNt (h)dt
]]

exp
[

sup
Π∈O

(

− Jεh(Π)
)]

+ lim sup
N→∞

Pν
N
g0 (Xc)

≤ exp
[

δT + C(h) + T sup
Π∈O

(

− Jεh(Π)
)

]

+ lim sup
N→∞

Pν
N
g0 (Xc), (4.20)
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with, using (4.7) to estimate the probability of AT (δ, h) and (4.11) for D∞
T (ε, h, δ):

lim sup
N→∞

Pν
N
g0 (Xc) ≤ lim sup

N→∞
Pν

N
g0

(

AT (h, δ)
)

+D∞
T (ε, h, δ) + ec(h)−T

2

= ce−c
′(h)ε−1/2δT + ec(h)−T

2

. (4.21)

Take now the logarithm of (4.20), divide by T and take the large T limit to find, using (4.2) and
the definition (4.11) of D∞

T (h, ε, δ):

lim sup
T→∞

lim sup
N→∞

1

T
logQ

νNg0
T (O) ≤ sup

O
J̃εh,δ, J̃εh,δ := max

{

δ − Jεh,−c′(h)ε−1/2δ
}

. (4.22)

Let ε0 ∈ (0, ε(δ, h)), where ε(δ, h) is defined in (4.11). Taking the infimum on ε ∈ (0, ε0), δ > 0
and h ∈ S(εB) yields a first bound on open sets:

lim sup
T→∞

lim sup
N→∞

1

T
logQ

νNg0
T (O) ≤ inf

h∈S(εB)
inf
δ>0

inf
ε∈(0,ε0)

sup
O
J̃εh,δ. (4.23)

We now extend the bound (4.23) to compact sets. The argument is standard and relies on Lemmas
3.2 and 3.3 in Appendix 2 of [KL99]. Let K ⊂ (T ′, ∗) be compact. We wish to prove:

lim sup
T→∞

lim sup
N→∞

1

T
logQ

νNg0
T (K) ≤ sup

K
inf

h∈S(εB)
lim inf
ε→0

(

− Jεh
)

. (4.24)

Since (J̃εh,δ)h,ε,δ is a family of continuous functionals on (T ′
s , ∗), Lemmas 3.2 and 3.3 in Appendix 2

of [KL99] allow for the exchange of the infima on h, δ, ε and the supremum on (open covers of) K:

lim sup
N→∞

1

T
logQ

νNg0
T (K) ≤ sup

K
inf

h∈S(εB)
inf
δ>0

inf
ε∈(0,ε0)

J̃εh,δ. (4.25)

Owing to the bound (4.11), for each Π ∈ K and h, δ, there is ε0(Π, h, δ) < ε(δ, h) below which the
maximum in J̃εh,δ (defined in (4.22)), is achieved by the first member. Since ε0 7→ infε<ε0 increases
when ε0 shrinks, (4.25) becomes:

lim sup
N→∞

1

T
logQ

νNg0
T (K) ≤ sup

Π∈K
inf

h∈S(εB)
inf
δ>0

inf
ε∈(0,ε0(Π,δ,h))

[

δ − Jεh(Π)
]

≤ sup
Π∈K

inf
h∈S(εB)

lim inf
ε→0

(−Jεh(Π)).

This yields a first bound on compact sets and proves (4.3):

lim sup
T→∞

lim sup
N→∞

1

T
logQ

νNg0
T (K) ≤ − inf

K
Ĩ, Ĩ = sup

h∈S(εB)

lim sup
ε→0

Jεh. (4.26)

4.1.2 Refinement of the upper bound to more regular correlations

Let Π = 1
4

〈

kΠ, ·
〉

∈ T ′
s . If kΠ ∈ H1( ), then kΠ has well-defined trace on either side of the diagonal

D = {(x, x) : x ∈ (−1, 1)}. As Π ∈ T ′
s ∩ H1( ), kΠ is a symmetric function, and the traces on

both sides coincide. We thus write trD(kΠ) for the trace of kΠ on the diagonal. One has then:

lim
ε→0

Π
(

N ε
h

)

= lim
ε→0

1

4

〈

kΠ,N ε
h

〉

=
1

4

∫

(−1,1)

tr(kΠ)(x, x)(∂2 − ∂1)h(x+, x)dx. (4.27)
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For such Π ∈ T ′
s ∩ H1( ), lim supε→0 |Jεh(Π) − Jh(Π)| = 0, with Jh the functional equal to +∞

outside of T ′
s ∩H1( ), and:

∀Π ∈ T ′
s ∩H1( ), Jh(Π) = −

1

2
Π
(

∆h+ I(∂1h, ∂1h)
)

+
1

4

∫

(−1,1)

trD(kΠ)(∂2 − ∂1)h(x+, x)dx

+
(ρ̄′)2

4

∫

(−1,1)

h(x, x)dx− 1

8

∫

σ̄(x)σ̄(y)
[

∂1h(x, y)
]2
dxdy. (4.28)

As a result, for Π ∈ T ′
s ∩ H1( ), I(Π) = Ĩ(Π), with Ĩ defined in (4.26), and I the rate function

defined in (2.25). For general Π ∈ T ′
s , however, kΠ is not regular enough to make sense of the

small ε limit of N ε
h(Π). We shall introduce another set U ⊂ T ′

s to restrict the upper bound to Π’s
with enough regularity in the large N limit, and prove the following result.

Lemma 4.2. Let K ⊂ (T ′
s , ∗) be a compact set. Then:

lim sup
T→∞

lim sup
N→∞

1

T
logQ

νNg0
T (K) ≤ − inf

K
I. (4.29)

To prove Lemma 4.2, consider the functionals Q and Qf , defined for each f 6= 0 in C∞
c ( ), the

set of compactly supported, C∞ functions on , by:

∀Π ∈ T ′
s , Qf (Π) =

Π(∂1f)

‖f‖2
, Q = sup

f∈C∞
c ( )\{0}

Qf , (4.30)

In the following lemma, we argue that Q controls the regularity of elements of T ′
s .

Lemma 4.3. For Π ∈ T ′
s , Π ∈ H1( ) if and only if Q(Π) < ∞. Moreover, Q is weak∗ lower

semi-continuous on (T ′
s , ∗).

Proof. We first prove the equivalence. Let Π ∈ T ′
s . If Π ∈ H1( ), then Π(∂1f) = −1

4

〈

∂1kΠ, f
〉

for
each f ∈ C∞

c ( ), and Cauchy-Schwarz inequality gives:

Q(Π) = sup
f∈C∞

c ( )\{0}

1

4

〈

∂1kΠ,−f
〉

‖f‖2
≤ ‖∂1kΠ‖2

4
.

Conversely, assume Q(Π) < ∞. Notice that, if f ∈ C∞
c ( ), then Π(∂1f) = Π(∂2f̌) as Π ∈ T ′

s ,
with f̌ ∈ C∞

c ( ) defined by f̌(x, y) := f(y, x) for (x, y) ∈ . It is therefore enough to prove that
kΠ admits a weak first derivative. As Q(Π) <∞, one has:

∀f ∈ C∞
c ( ), |ℓΠ(f))| ≤ Q(Π)‖f‖2, ℓΠ(f) := Π(∂1f).

By density of C∞
c in L2( ), ℓΠ(·) can be extended to a bounded linear form on L2( ). By Riesz

representation theorem, there is ∂1kΠ ∈ L2( ) with ℓΠ(·) = −1
4

〈

∂1kΠ, ·
〉

, which concludes the proof
of the equivalence.
For the weak∗ lower semi-continuity of Q on (T ′

s , ∗), simply notice that it is a supremum over the
Qf for f ∈ C∞( ) \ {0}; each Qf being weak∗ continuous, since ‖f‖2Qf (Π) is the evaluation of Π
at ∂1f ∈ T for Π ∈ T ′

s .
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Proof of Lemma 4.2. We now begin the proof of the large deviation bound (4.29). Consider a
sequence fj ∈ C∞

c ( ) \ {0}, j ∈ N∗, dense in {f ∈ H3( ) : tr∂�(f) = 0}. Introduce then, for each
ℓ ∈ N∗ and each A > 0:

U(ℓ, A) =
{

max
1≤j≤ℓ

Qfj ≤ A
}

. (4.31)

In Lemma 4.6, we prove the existence of C,C ′ > 0 such that, for A larger than some A0 > 0 and
each ℓ ∈ N∗:

lim sup
N→∞

Q
νNg0
T

(

(U(ℓ, A))c
)

≤ Cℓe−C
′AT . (4.32)

Notice also that, for Π ∈ T ′
s , if (fjn) converges to f ∈ C∞

c ( ) in the norm of H3( ), then ∂1fnj

converges to ∂1f in T , so that limnQfjn (Π) = Qf (Π), and:

Q(Π) = sup
j∈N∗

Qfj(Π). (4.33)

Let ℓ ∈ N∗ and A > A0. Recall the notation:

U(ℓ, A)T :=
{ 1

T

∫ T

0

Πtdt ∈ U(ℓ, A)
}

,

so that P(U(ℓ, A)T ) = QT (U(ℓ, A)), and let O ⊂ (T ′
s , ∗) be an open set. We again estimate

Q
νNg0
T (O), starting from (4.20), but considering X ∩U(ℓ, A)T instead of X (X is defined in (4.18)).

Equation (4.20) consequently becomes:

lim sup
N→∞

Q
νNg0
T (O) ≤ exp

[

δT + C(h) + T sup
O∩U(ℓ,A)

(

− Jεh
)

]

+ lim sup
N→∞

Pν
N
g0

(

(X ∩ UT (ℓ, A))c
)

, (4.34)

with:

lim sup
N→∞

Pν
N
g0 ((X ∩ UT (ℓ, A))c) ≤ ce−c

′(h)ε−1/2δT + ec(h)−T
2

+ Cℓe−C
′AT . (4.35)

For each h, ε, ℓ, A, let Jεh,ℓ,A be equal to Jεh on U(ℓ, A), to +∞ outside. Proceeding as in (4.22) and
using (4.2), one finds:

lim sup
T→∞

lim sup
N→∞

1

T
logQ

νNg0
T (O) ≤ sup

O
J̄εh,δ,ℓ,A, (4.36)

with:

J̄εh,δ,ℓ,A := max
{

δ − Jεh,ℓ,A,−C ′A,−c′(h)δε−1/2
}

. (4.37)

Let ε0 ∈ (0, ε(δ, h)), where ε(δ, h) is defined in (4.11), and recall the definition of A0 from above
(4.32). Equation (4.36) yields a second bound on open sets:

lim sup
T→∞

lim sup
N→∞

1

T
logQ

νNg0
T (O) ≤ inf

h∈S(εB)
inf
δ,ℓ,A,ε

sup
O
J̄εh,δ,ℓ,A, (4.38)

where the infimum is taken on ℓ ∈ N∗, A > A0, δ > 0 and ε ∈ (0, ε0).
Let us obtain a bound on compact sets from (4.38). Let K ⊂ (T ′

s , ∗) be compact. Since U(ℓ, A)
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is weak∗ closed by continuity of Qfj , 1 ≤ j ≤ ℓ, (J̄εh,δ,ℓ,A)h,ε,ℓ,A is a family of weak∗ upper semi-
continuous functionals. Lemmas A.2.3.2 and A.2.3.3 in [KL99] thus give as before:

lim sup
T→∞

lim sup
N→∞

1

T
logQ

νNg0
T (K) ≤ sup

K
inf

h∈S(εB)
inf
δ,ℓ,A,ε

J̄εh,δ,ℓ,A, (4.39)

with the infimum again taken on ℓ ∈ N∗, A > A0, δ > 0 and ε ∈ (0, ε0).
Proceeding as in (4.25) to (4.26), one can take the infimum on ε, δ and turn (4.39) into:

lim sup
T→∞

lim sup
N→∞

1

T
logQ

νNg0
T (K) ≤ sup

K
inf

h∈S(εB)
inf
ℓ,A

max
{

lim inf
ε→0

(−Jεh,ℓ,A),−C ′A
}

. (4.40)

Let A > A0. As U(ℓ, A) ⊂ U(ℓ′, A) if ℓ ≤ ℓ′, the argument of the supremum on K in (4.40) is equal
to −∞ when evaluated at any Π /∈ ⋂

ℓ∈N∗ U(ℓ, A). By definition of U(ℓ, A) in (4.31) and using
(4.33), one has:

⋂

ℓ∈N∗

U(ℓ, A) = {Q ≤ A}.

Equation (4.40) thus becomes:

lim sup
T→∞

lim sup
N→∞

1

T
logQ

νNg0
T (K) ≤ sup

K
inf

h∈S(εB)
inf
A>A0

max
{

lim inf
ε→0

(−Jεh,A),−C ′A
}

, (4.41)

with, for each h, ε, A, Jεh,A = +∞ on {Q > A}, and Jεh,A = Jεh on {Q ≤ A}. Consider again
A > A0. For each Π ∈ {Q ≤ A}, the associated kΠ via the Riesz representation theorem can be
taken in H1( ). In particular, by (4.27), if h ∈ S(εB) and Π ∈ {Q ≤ A},

lim inf
ε→0

(−Jεh,A(Π)) = −Jh,A(Π).

Above, Jh,A = Jh on {Q ≤ A}, Jh,A = +∞ outside, and Jh is defined in (4.28). Equation (4.41)
thus becomes:

lim sup
T→∞

lim sup
N→∞

1

T
logQ

νNg0
T (K) ≤ sup

K
inf

h∈S(εB)
inf
A>A0

max
{

− Jh,A,−C ′A
}

.

Finally, note that Jh,A ≥ Jh for A > A0, since Jh may be finite on {Q > A} while Jh,A may not.
Lemma 4.2 is proven:

lim sup
T→∞

lim sup
N→∞

1

T
logQ

νNg0
T (O) ≤ − inf

K
I, I := sup

h∈S(εB)

Jh. (4.42)

4.2 An L2 estimate and a first Poisson equation

In this section, we begin the proof of the energy estimate (4.32). We first argue that, in the large
N , then large T limits, the time-averaged correlation field behaves like a bounded linear form on
L2( ). The following proposition gives the main ingredient.
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Proposition 4.4. There are constants C,C ′ > 0 such that, for any large enough A > 0, any
T > 0, and any φ ∈ T ∩ C2(⊲̄) ∩ C2(⊳̄) with ‖φ‖2 ≤ 1, one can find C(T, φ) > 0 satisfying:

∀N ∈ N∗, Pν
N
g0

(
∣

∣

∣

1

T

∫ T

0

ΠN
t (φ)dt

∣

∣

∣
≥ A

)

≤ C exp
[

− C ′AT
]

+
C(T, φ)

AN1/2
. (4.43)

Proof. To prove (4.43), we need to estimate exponential moments of 1
T
|
∫ T

0
ΠN
t (φ)dt|. Up to con-

sidering φ and −φ, we may remove the absolute value in the probability in (4.43). Moreover, as
ΠN(φ) = ΠN(φ̌), with φ̌(x, y) = φ(y, x) for x, y ∈ ; we may assume without loss of generality
that φ is symmetric. The next lemma provides the desired estimates by means of a certain Poisson
equation.

Lemma 4.5. For symmetric φ ∈ T ∩ C2(⊲̄) ∩ C2(⊳̄) with ‖φ‖2 ≤ 1 (recall that φ ∈ T implies
φ|∂� = 0), denote by fφ ∈ C3(⊲̄) ∩ C3(⊳̄) a symmetric function, the classical solution of:











1
2
∆f(x, y) + 1

2

∫

(−1,1)
∂1f(z, x)σ̄(z)∂1f(z, y)dz = −φ(x,y)

2
for (x, y) ∈ ,

f = 0 on ∂�,

(∂1 − ∂2)f(x±, x) = 0 for x ∈ (−1, 1).
(4.44)

Then:

1

2
ΠN(φ) = −e−ΠN (fφ)N2LeΠ

N (fφ) + εN(fφ)−
(ρ̄′)2

4

∫

(−1,1)

fφ(x, x)dx

+
1

8

∫

σ̄(x)σ̄(y)
[

∂1fφ(x, y)
]2
dxdy, (4.45)

where εN(fφ) is the error term with of Proposition 3.10. There is C(T, fφ) > 0 such that it satisfies:

Eν
N
g0

[∣

∣

∣

∫ T

0

εNt (fφ)dt
∣

∣

∣

]

≤ C(T, fφ)N
−1/4. (4.46)

Equation (4.45) is proven in Proposition 3.10, while the estimate (4.46) is established in Corol-
lary C.3. Using Lemma 4.5, let us conclude the proof of Proposition 4.4. From (4.45), one has for
any A, T > 0:

Pν
N
g0

( 1

T

∫ T

0

ΠN
t (φ)dt > A

)

= Pν
N
g0

(

− 1

T

∫ T

0

e−ΠN
t (fφ)N2LeΠ

N
t (fφ)dt+

1

T

∫ T

0

εNt (fφ)dt

− (ρ̄′)2

4

∫

(−1,1)

fφ(x, x)dx+
1

8

∫

σ̄(x)σ̄(y)
[

∂1fφ(x, y)
]2
>
A

2

)

. (4.47)

By Proposition F.2, ‖fφ‖H1( ) ≤ 3, which bounds the last two terms in (4.47) by continuity of
the trace mapping trD : H1( ) → L2(D), see Theorem 1.5.2.1 in [Gri11]. As a result, as soon as
A/4 > 6, one has using (4.46):

Pν
N
g0

( 1

T

∫ T

0

ΠN
t (φ)dt > A

)

≤ Pν
N
g0

(

− 1

T

∫ T

0

e−ΠN
t (fφ)N2LeΠ

N
t (fφ)dt > A/8

)

+
8C(T, fφ)

AN1/4
. (4.48)
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Note that the object inside the probability in (4.48) satisfies:

− 1

T

∫ T

0

e−ΠN
t (fφ)N2LeΠ

N
t (fφ)dt =

1

T
logDfφ − ΠN

T (fφ)/T +ΠN
0 (fφ)/T, (4.49)

where the Radon-Nikodym derivative Dfφ was computed in Proposition 3.10. We estimate these
three terms separately. For ΠN

0 (fφ), the fact that the starting measure is νNg0 , that ‖fφ‖2 ≤ 3 and
Corollary A.9 yield the existence of c > 0 such that:

Pν
N
g0

(

ΠN
0 (fφ)/T > A/24

)

= νNg0

(

ΠN(fφ)/T > A/24
)

≤ ce−cAT . (4.50)

Consider now ΠN
T (fφ), which requires more care. Directly using Corollary 3.4 would yield, for some

C0 > 0:

Pν
N
g0

(

ΠN
T (fφ)/T > A/24

)

≤ C0e
C0T

N1/2
+ νNg0

(

ΠN(fφ)/T > A/24
)

. (4.51)

In the bound (4.51), the first term is independent of A, which is not what we want. To remedy
this situation, we will make use of a moment bound on ΠT (fφ). In Lemma 5.5, we prove that there
is C1(‖fφ‖∞) > 0 such that:

sup
N∈N∗

Eν
N
g0 [|ΠT (fφ)|3/2]2/3 ≤ C1(‖fφ‖∞)eC3(‖fφ‖∞)T = C2e

C2T , (4.52)

where we used the fact that ‖fφ‖∞ is bounded independently of φ, as proven in Proposition F.2.
Using this bound and (4.51), one can write:

Pν
N
g0

(

ΠN
T (fφ)/T > A/24

)

≤ 24

AT
Eν

N
g0

[

∣

∣ΠN
T (fφ)

∣

∣1|ΠN
T (fφ)|>AT/24

]

≤ 24

AT
Eν

N
g0

[

∣

∣ΠN
T (fφ)

∣

∣

3/2
]2/3

Pν
N
g0

(

∣

∣ΠN
T (fφ)

∣

∣ > AT/24
)1/3

≤ C3(T )

ATN1/6
+

24C2c
1/3

AT
e−cAT/3+C2T . (4.53)

This bound now depends on A, as in the statement of the Proposition.
Finally, the last term to estimate in (4.49) is Dfφ . It is a mean 1 martingale, thus:

Pν
N
g0

( 1

T
logDfφ > A/24

)

≤ e−AT/24. (4.54)

Putting (4.48), (4.50), (4.53) and (4.54) concludes the proof of (4.43): there are C,C ′ > 0 such
that, for any T > 1, any large enough A > 0 (precisely: A > 3C2/c), there is C(T, φ) > 0 such
that:

Pν
N
g0

( 1

T

∫ T

0

ΠN
t (φ)dt > A

)

≤ Ce−C
′AT +

C(T, φ)

AN1/6
. (4.55)
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4.3 Energy estimate

In this section, we prove the energy estimate (4.32). The key argument is the following lemma.

Lemma 4.6. Let A > 0 be larger than some A0 > 0 and let φ ∈ C2
c ( ), where the subscript c

stands for compactly supported. There are constants C,C ′ independent of φ such that:

lim sup
N→∞

Pν
N
g0

(∣

∣

∣

1

T

∫ T

0

ΠN
t (∂1φ)dt

∣

∣

∣
> A‖φ‖2

)

≤ Ce−C
′AT . (4.56)

Assuming the lemma, (4.32) immediately follows by a union bound.

Proof of Lemma 4.6. Up to considering −φ, it is enough to prove the result without the absolute
value. Without loss of generality, we assume that the support of φ is contained in {z ∈ :
d(z, ∂ ) > 2/N}, so that φi,i+1 = 0 = ∂1φi,i+1 for each i < N − 1. As was done in the proof
of Proposition 4.4, we may assume without loss of generality that φ is symmetric owing to the
identity ΠN(φ) = ΠN(φ̌), with φ̌(x, y) = φ(y, x) for x, y ∈ . Starting from νNg0 , we use Feynman-

Kac inequality to rewrite
∫ T

0
ΠN
t (∂1φ)dt as

∫ T

0
ΠN
t (F (φ))dt, where F (φ) is a function in which only

φ appears, and not its first partial derivative. This involves a microscopic integration by parts,
which is controlled by Lemma B.2. We then use the L2( ) estimate of Proposition 4.4 to control

the resulting
∫ T

0
ΠN
t (F (φ))dt in terms of ‖φ‖2.

Let A > 0, and let V : ΩN → R be a function to be made explicit later. By Feynman-Kac
inequality (3.5), one has:

lim sup
N→∞

logPν
N
g0

( 1

T

∫ T

0

[

‖φ‖−1
2 ΠN(∂1φ)− V

]

(ηt)dt > A/2
)

(4.57)

≤ −AT
2

+ T sup
f≥0:νNg0 (f)=1

{

νNg0
(

f(‖φ‖−1
2 ΠN(∂1φ)− V )

)

+
1

2
νNg0

(

fN2L∗1)− N2

2
νNg0

(

Γ(f 1/2)
)

}

,

where L∗ is the adjoint of L in L2(νNg0). The function X will later on be chosen such that the

above supremum vanishes, and also controllable with size oN(1), so that
∫ T

0
V (ηt)dt vanishes in

probability.
Recall first that, according to Lemma 3.3, there is a Γ-controllable random variable E with size
N−1/2 such that, for each density f for νNg0 :

νNg0(fN
2L∗1)−N2νNg0

(

Γ(
√

f)
)

≤ νNg0(fE)−
N2

2
νNg0

(

Γ(
√

f)
)

.

Set therefore V := E/2 + V ′, and look for a controllable error term V ′ such that the supremum in
(4.57) vanishes. To see how, fix η ∈ ΩN and write out ‖φ‖−1

2 ΠN(∂1φ):

‖φ‖−1
2 ΠN(∂1φ) =

1

4‖φ‖2N
∑

i<N−1

[

∑

j /∈{i,i+1}
η̄iη̄j∂

N
1 φi,j + η̄iη̄i+1∂1φi,i+1

]

+
1

N‖φ‖2
ΠN(b), (4.58)
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where b = N [∂1φ− ∂N1 φ] is the discretisation error, which is bounded with N . By assumption on
the compact support of φ in , ∂1φi,i+1 = 0 for each i < N − 1, and (4.58) becomes:

‖φ‖−1
2 ΠN(∂1φ) =

1

4‖φ‖2N
∑

i<N−1

∑

j /∈{i,i+1}
η̄iη̄j∂

N
1 φi,j +

1

N‖φ‖2
ΠN(b).

By Lemma 3.7, as b is bounded, the last term above is controllable with size N−1. Let us rewrite
the first term through an integration by parts:

1

4‖φ‖2
∑

i<N−1

∑

j /∈{i,i+1}
η̄iη̄j

(

φi+1,j − φi,j
)

=
1

4‖φ‖2
∑

|i|<N−1

∑

j:|j−i|>1

(η̄i−1 − η̄i)η̄jφi,j

+
1

4‖φ‖2
∑

|i|<N−1

η̄i−1(η̄i+1φi,i+1 − η̄iφi,i−1)

=
1

4‖φ‖2
∑

|i|<N−1

∑

j:|j−i|>1

(η̄i−1 − η̄i)η̄jφi,j =: S, (4.59)

where the first equality makes use of φ±(N−1),· = 0, while the second equality follows from φi,i±1 = 0
for each |i| < N − 1. To choose V ′ in the supremum in (4.57), we have to estimate νNg0(fS). This
is done through the integration by parts Lemma B.2. This lemma is formulated with the variables
ωi = η̄i/σ̄i for i ∈ ΛN , so we need to rewrite (4.59). For |i| < N − 1, using the identity:

η̄i−1 − η̄i = σ̄i−1(ωi−1 − ωi)− (σ̄i − σ̄i−1)ωi

= σ̄i(ωi−1 − ωi)−
ρ̄′

N

(

σ′(ρ̄i) +
ρ̄′

N

)

ωi,

S can be rewritten as follows:

S =
1

4‖φ‖2
∑

|i|<N−1

∑

j:|j−i|>1

σ̄i−1(ωi−1 − ωi)η̄jφi,j −
1

‖φ‖2
ΠN

( ρ̄′

σ̄

(

σ′(ρ̄) +
ρ̄′

N

)

φ
)

=: S ′ +ΠN(Y (0)), Y (0) = − 1

‖φ‖2
ρ̄′

σ̄

(

σ′(ρ̄) +
ρ̄′

N

)

φ, (4.60)

with the convention that qφ(x, y) = q(x)φ(x, y) when q : (−1, 1) → R and (x, y) ∈ . The last
term is already of the form ‖φ‖−1

2 ΠN(qφ) with q bounded independently of φ, so it remains to
estimate S ′. Define, for |i| < N − 1, a function vi on ΩN as follows:

∀η ∈ ΩN , vi(η) =
1

4

∑

j:|j−i|>1

η̄jσ̄i−1
φi,j
‖φ‖2

. (4.61)

Recall also the notation Cg0
· defined in (3.31):

∀η ∈ ΩN , ∀i < N − 1, ΠN(g0)(η
i,i+1)− ΠN(g0)(η) =: −(ηi+1 − ηi)

N
Cg0
i .
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With these notations, we can apply the integration by parts Lemma B.2 to each |i| < N − 1 with
u = vi, and obtain the existence of C > 0 such that, for each δ > 0 and each density f for νNg0 :

νNg0(fS
′) ≤ δN2νNg0

(

Γ(f 1/2)
)

+
C

δN2

∑

|i|<N−1

νNg0
(

f(vi)
2
)

+
∑

|i|<N−1

(ρ̄i − ρ̄i−1)ν
N
g0

(

ωi−1ωife
−(ηi−ηi−1)C

g0
i−1/Nvi

)

(4.62)

−
∑

|i|<N−1

νNg0

(

(

ωi − ωi−1)
(

1− e−(ηi−ηi−1)C
g0
i−1/N

)

fvi

)

.

We express each term appearing in (4.62) as ΠN(F (φ)) plus error terms, for an explicit F . Consider
first the second term on the first line. By definition (4.61) of v and using (η̄·)2 = σ̄· + σ′(ρ̄·)η̄·, it
reads:

C

16δN
νNg0

(

f
∑

j,ℓ∈ΛN

η̄j η̄ℓ
N

∑

|i|<N−1:
|i−j|>1,|i−ℓ|>1

σ̄2
i

φi,jφi,ℓ
‖φ‖22

)

= νNg0
(

fΠN(Y (1))
)

+
C

16δ

∫

σ̄(x)σ̄(y)2
φ(x, y)2

‖φ‖22
dxdy + νNg0

(

fθN,1(φ)
)

, (4.63)

with Y (1) the function recording the off-diagonal, ℓ 6= j contribution:

∀(x, y) ∈ , Y (1)(x, y) =
C

4δ

∫

(−1,1)

σ̄(z)2
φ(z, x)φ(z, y)

‖φ‖22
dz. (4.64)

The error term θN,1(φ) in (4.63) involves discretisation errors and the diagonal, ℓ = j contributions.
It is given for η ∈ ΩN by:

θN,1(φ)(η) =
C

16δ

∫

σ̄(x)σ̄(y)2
φ(x, y)2

‖φ‖22
dxdy − C

16δN2

∑

|i|<N−1
|j−i|>1

σ̄iσ̄
2
j

φ2
i,j

‖φ‖22

+
C

16δN2
νNg0

(

f
∑

|i|<N−1
|j−i|>1

η̄iσ̄
2
j

φ2
i,j

‖φ‖22

)

+
1

N
ΠN(c),

where c is a discretisation error arising in the replacement of (4.63) by Y (1). The first line of
θN,1(φ) is configuration-independent, and bounded by C(φ)/N . The first sum on the second line
is of the form N−1/2Y N(u) for u : (−1, 1) → R bounded, with Y N(u) the fluctuations defined in
(3.17). θN,1(φ) is therefore controllable with size N−1 by Lemma 3.7. For later use, note that the
middle term in (4.63) is bounded by C/(210δ) for all large enough N , as σ̄ ≤ 1/4.

Consider now line 2 of (4.62). Using the identity ex = 1 +
∫ 1

0
xetxdt for x ∈ R, there is C(ρ±) > 0

such that:
∑

|i|<N−1

(ρ̄i − ρ̄i−1)ν
N
g0

(

ωi−1ωife
−(ηi−ηi−1)C

g0
i−1/Nvi

)

≤ ρ̄′

N

∑

|i|<N−1

νNg0
(

ωi−1ωifvi
)

+
C(ρ±)

N2

∑

|i|<N−1

νNg0
(

f
∣

∣viC
g0
i−1

∣

∣

)

=: νNg0
(

fθN,2(φ)
)

.
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The first term in θN,2(φ) already involves three point correlations. It is shown to be Γ-controllable
with size N−1/2 in Proposition C.1. The second term is of the form N−1Xv2

2,{0} in the notations of

Lemma 3.7, and therefore controllable with size N−1. As a result, θN,2(φ) is Γ-controllable with
size N−1/2.
Consider finally line 3 of (4.63). Let C(ρ̄) > 0 be such that:

∀|i| < N − 1, |ωi − ωi−1| ≤ C(ρ̄).

Using this time the existence of K(g0) > 0 such that |ex − 1− x| ≤ K(g0)x
2 for all |x| ≤ 2‖g0‖∞,

one can write, for each η ∈ ΩN :

−
∑

|i|<N−1

(

ωi − ωi−1)
(

1− e−(ηi−ηi−1)C
g0
i−1/N

)

vi ≤ −
1

N

∑

|i|<N−1

(ωi − ωi−1)(ηi − ηi−1)C
g0
i−1vi

+
K(g0)C(ρ̄)

N2

∑

|i|<N−1

|vi|
(

Cg0
i−1

)2
. (4.65)

The last term is an average over i of terms of the form N−3|Xwi
3

3,{0}| with the notations of Lemma

3.7, where the wi3 satisfy supN,i supΛ3
N
|wi3| < ∞. It is therefore controllable with size N−3/2. To

estimate the first sum in the right-hand side of (4.65), we use the following elementary identity,
valid for each |i| < N − 1:

(ωi − ωi−1)(ηi − ηi−1) =
[

2 + (1− ρ̄i − ρ̄i−1)[ωi + ωi−1]− (σ̄i−1 + σ̄i)ωi−1ωi

]

. (4.66)

This identity can be obtained by making the following observation:

∀i ∈ ΛN , ηiωi := ηi
(ηi − ρ̄i)

σ̄i
=
ηi
σ̄i
(1− ρ̄i) =

η̄i
ρ̄i

+ 1.

Looking at (4.65), we see that the term Cg0
i−1vi already contains two-point correlations for each

|i| < N − 1. We therefore claim that only the constant term in the identity (4.66) will give
something that is not an error term in (4.65). More precisely, we claim that one can obtain the
following bound for line 3 of (4.63):

−
∑

|i|<N−1

νNg0

(

(

ωi − ωi−1)
(

1− e−(ηi−ηi−1)C
g
i−1/N

)

fvi

)

≤ νNg0
(

fΠN(Y (2))
)

− 1

4

∫

σ̄(x)σ̄(y)
φ(x, y)

‖φ‖2
∂1g(x, y)dxdy + νNg0

(

fθN,3(φ)
)

,

where θN,3(φ) is controllable with size N−1/2. There is C(g0) > 0 independent of φ bounding the
middle term above, and Y (2) is defined as:

∀(x, y) ∈ , Y (2)(x, y) = −4
∫

(−1,1)

σ̄(z)∂1g0(z, x)
φ(z, y)

‖φ‖2
dz. (4.67)

We may now define the function V of (4.57):

V = ΠN(Y (0) + Y (1) + Y (2)) + C ′(g0) + ζN(φ) + E/2,
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where E is the error term of Lemma 3.3, ζN(φ) :=
∑3

k=1 θ
N,k(φ) + (N‖φ‖2)−1ΠN(b), and C ′(g0) =

(C(g0) + C/(210δ)). The Feynman-Kac inequality in (4.57) then yields:

lim sup
N→∞

Pν
N
g0

( 1

T

∫ T

0

[

‖φ‖−1
2 ΠN

t (∂1φ)− ΠN
t

(

2
∑

k=0

Y (k)
)

− C ′(g0)− ζNt (φ)− Et
2

]

dt > A/2
)

≤ e−AT/2.

Moreover, by Corollary 3.6, the error term ζN(φ) + E/2 satisfies:

∀T > 0, ∀ε > 0, lim sup
N→∞

Pν
N
g0

(∣

∣

∣

1

T

∫ T

0

[

ζNt (φ) +
Et
2

]

dt
∣

∣

∣
> ε

)

= 0,

and we have established:

lim sup
N→∞

log Pν
N
g0

( 1

T

∫ T

0

‖φ‖−1
2 ΠN

t (∂1φ)dt > A
)

≤ max
{

− AT

2
, lim sup
N→∞

logPν
N
g0

( 1

T

∫ T

0

[

ΠN
t

(

2
∑

k=0

Y (k)
)

+ C ′(g0)
]

dt > A/4
)}

.

To conclude the proof of the lemma, it remains to prove that there are constants c, c′ > 0, inde-
pendent of φ, such that:

lim sup
N→∞

Pν
N
g0

( 1

T

∫ T

0

[

ΠN
t

(

2
∑

k=0

Y (k)
)

+ C ′(g0)
]

dt > A/4
)

≤ ce−c
′AT . (4.68)

If A > 8C ′(g0), A/4− C ′(g0) > A/8, and (4.68) satisfies:

lim sup
N→∞

Pν
N
g0

( 1

T

∫ T

0

[

ΠN
t

(

2
∑

k=0

Y (k)
)

+ C ′(g0)
]

dt > A/4
)

≤ lim sup
N→∞

Pν
N
g0

( 1

T

∫ T

0

ΠN
t

(

2
∑

k=0

Y (k)
)

dt > A/8
)

. (4.69)

Recall moreover that Y (0) has 2-norm bounded by 4 and, by Cauchy-Schwarz inequality, Y (1) has
2-norm bounded by 2−6δ−1C, and Y (2) by

√
2‖∇g0‖2/8. If K(g0) denotes the sum of these three

norms, (4.69) becomes:

lim sup
N→∞

Pν
N
g0

( 1

T

∫ T

0

ΠN
t

(

2
∑

k=0

Y (k)
)

dt > A/4
)

≤ lim sup
N→∞

Pν
N
g0

( 1

T

∫ T

0

ΠN
t

(

2
∑

k=0

Y (k)
)

dt >
A‖∑2

k=0 Y
(k)‖2

8K(g0)

)

. (4.70)

To estimate the last line (4.70), let us use the exponential control in L2( ) stated in Proposition

4.4. To do so, we need to check that Y
(i)
∂� = 0 for 1 ≤ i ≤ 3. This follows from the definition for

i ∈ {1, 2}, and for i = 3 (recall (4.67)) it follows from the fact that ∂1g(z,±1) = 0 for z ∈ (−1, 1).
Moreover, each Y (i) is in C2(⊲̄) ∩ C2(⊳̄) for 1 ≤ i ≤ 3. Proposition 4.4 thus applies to (4.70) to
yield (4.68), which concludes the proof.
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5 Lower bound for smooth trajectories

In this section, we give a lower bound on (2.26) when O is an open subset of (T ′
s , ∗), in terms of

the kernels kh, h ∈ S(εB). As for standard large deviations (see Chapter 10 in [KL99]), we consider
the tilted dynamics Ph, h ∈ S(εB) such that 1

4

〈

kh, ·
〉

∈ O, and obtain a lower bound by proving

that the measure Ph concentrates on O. In the following, let QT,h denote the law of 1
T

∫ T

0
ΠN
t dt

under Ph.
Using Jensen inequality to obtain the last line below, one finds, with Dh = dPh/dP (see (3.67)):

logQ
νNg0
T (O) = logE

νNgh
h

[

1O
νNg0(η0)

νNgh(η0)
(Dh)

−1
]

= logE
νNgh
h,O

[νNg0(η0)

νNgh(η0)
(Dh)

−1
]

+ logQ
νNgh
T,h(O)

≥ E
νNgh
h,O

[

− logDh

]

+ E
νNgh
h,O

[

log
(νNg0(η0)

νNgh(η0)

)]

+ logQ
νNgh
T,h(O). (5.1)

Above, P
νNgh
h,O is the probability P

νNgh
h conditional to

{

1
T

∫ T

0
ΠN
t dt ∈ O

}

:

P
νNgh
h,O(·) =

P
νNgh
h

(

· ∩
{

1
T

∫ T

0
Πt ∈ O

})

Q
νNgh
T,h(O)

, E
νNgh
h,O[·] =

∫

· dPν
N
gh
h,O.

The terms appearing in (5.1) are of three types: the change of initial condition corresponding to

νNg0/ν
N
gh
, the dynamical part with logDh, and the term Q

νNgh
T,h(O). The latter is well controlled only

if h is such that, under Q
νNgh
T,h, correlations are typically in O when N, T are large. For such h’s,

upon dividing by T and taking the large T limit, only the dynamical part will contribute. This is
proven in the next subsections, where the above terms are estimated one by one.

5.1 Estimate of the cost of changing initial condition

Here we prove that changing the initial condition does not affect the long-time behaviour.

Lemma 5.1. Let h ∈ S(εB). If:

lim inf
T→∞

lim inf
N→∞

Q
νNgh
T,h(O) > 0, (5.2)

then the lower bound (5.1) becomes:

lim inf
T→∞

lim inf
N→∞

1

T
logQ

νNg0
T (O) ≥ lim inf

T→∞
lim inf
N→∞

1

T
E
νNgh
h,O

[

− logDh

]

. (5.3)

Proof. By assumption (5.2),

lim inf
T→∞

lim inf
N→∞

1

T
logQ

νNgh
T,h(O) = 0, (5.4)
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and it is sufficient to estimate the middle term in the right-hand side of (5.1). It reads:

E
νNgh
h,O

[

log
(νNg0(η0)

νNgh(η0)

)]

=
∑

η∈ΩN

νNgh(η) log
(νNg0(η)

νNgh(η)

)Q
η
T,h(O)

Q
νNgh
T,h(O)

. (5.5)

To bound this term, we would like to express it in terms of the relative entropy H(νNgh |νNg0), which
can be bounded explicitly. Due to conditioning on the set O, this is however not directly possible.
Instead, write O = T ′

s \Oc to obtain:

E
νNgh
h,O

[

log
(νNg0(η0)

νNgh(η0)

)]

≥ Q
νNgh
T,h(O)

−1
[

∑

η∈ΩN

νNgh(η) log
(νNg0(η)

νNgh(η)

)

−
∑

η∈ΩN

νNgh(η) log
(νNg0(η)

νNgh(η)

)

Q
η
T,h(O

c)
]

= Q
νNgh
T,h(O)

−1

[

−H(νNgh |ν
N
g0
) + νNg0

[

dνNgh
dνNg0

log
(dνNgh
dνNg0

)

Q·
T,h(O

c)

]]

.

Since x 7→ x log x is bounded below by −1/e on R∗
+ and Q·

T,h(O
c) ∈ [0, 1], we obtain:

E
νNgh
h,O

[

log
(νNg0(η0)

νNgh(η0)

)]

≥ Q
νNgh
T,h(O)

−1
[

−H(νNgh |ν
N
g0
)− 1

e

]

.

Let us now estimate H(νNgh |νNg0). It reads:

H(νNgh |ν
N
g0
) = 2

∑

η∈ΩN

νNgh(η)Π
N(gh − g0)(η)− logZNgh + logZNg0 .

Since gh ∈ g0+S(εG), defined in (2.22), and g0 is a negative kernel, ZNgh and ZNg0 are bounded with
N by Lemma A.1. The first sum is moreover bounded with N by Proposition A.5, which states:

sup
i 6=j∈ΛN

∣

∣νNgh(η̄iη̄j)
∣

∣ = O(N−1) ⇒ sup
N

∣

∣

∣
νNgh

(

ΠN(gh − g0)
)
∣

∣

∣
<∞.

Under assumption (5.2), dividing by T and taking the large N , large T limits as in (5.3) thus
yields:

lim inf
T→∞

lim inf
N→∞

1

T
E
νNgh
h,O

[

log
(νNg0(η0)

νNgh(η0)

)]

= 0.

Together with (5.4), this concludes the proof.

In the next section, the assumption (5.2) on the limit of Q
νNgh
T,h(O) is established.

5.2 Law of large numbers and Poisson equation

In this section, we establish (5.2).
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Proposition 5.2. Let h ∈ S(εB), and let kh be the large N limit of the correlations under νNgh,

where gh solves the main equation (2.31). If O ⊂ (T ′
s , ∗) is an open set containing 1

4

〈

kh, ·
〉

, then:

lim inf
T→∞

lim inf
N→∞

Q
νNgh
T,h(O) = 1. (5.6)

An open set in (T ′
s , ∗) is a (possibly uncountable) union of finite intersections of sets of the

form
{∣

∣

∣

1
T

∫ T

0
ΠN
t (φ)dt− 1

4

〈

kh, φ
〉

∣

∣

∣
∈ U

}

, for an open set U ⊂ R and φ ∈ T . It is therefore enough

to prove (5.6) for those sets, with U = (−ε, ε) for ε > 0. This is done in the next proposition, by
means of a Poisson problem associated with the large N limit of the generator N2Lh.

Proposition 5.3. Let φ ∈ T ∩ C2(⊲̄) be a symmetric function, with T defined in (2.15), and let
h ∈ S(εB). Then, for any ε ∈ (0, 1) and any T > 0, there are positive constants C(h, T ), C ′(h, T, φ)
such that:

P
νNgh
h

(

∣

∣

∣

1

T

∫ T

0

ΠN
t (φ)dt−

1

4

〈

kh, φ
〉

∣

∣

∣
≥ ε‖φ‖2

)

≤ C(h, φ)

ε2T
+
C ′(h, φ, T )

ε2N1/4
. (5.7)

Proof. Fix a symmetric φ ∈ T ∩C2(⊲̄). To prove Proposition 5.3, we express the difference appear-
ing in the probability in (5.7) as a time integral involving the generator N2Lh, plus a martingale
term. The martingale term is then proven to fluctuate like

√
T when N is large. It thus vanishes

in the large T limit upon dividing by T . Recall that I(u, v)(x, y) =
∫

(−1,1)
u(z, x)σ̄(z)v(z, y)dz for

any u, v ∈ L2( ). The key ingredient is the following Poisson equation:



















1
2
∆f(x, y) + 1

2
I(∂1f, ∂1h) +

1
2
I(∂1h, ∂1f) =

φ(x, y)

‖φ‖2
for (x, y) ∈ ,

f = 0 on ∂�,

(∂1 − ∂2)f(x±, x) = 0 for x ∈ (−1, 1).

(5.8)

In Appendix F, (5.8) is proven to have a unique solution fφ ∈ T ∩ C3(⊲̄), a symmetric function
on . For this fφ, the martingale decomposition of Corollary 3.12 gives:

∀T ≥ 0, ΠN
T (fφ) = ΠN

0 (fφ) +

∫ T

0

N2LhΠ
N
t (fφ)dt+M

N,fφ
t . (5.9)

Let us first use the Poisson equation (5.8) to express N2LhΠ
N(fφ) in terms of ΠN(φ). We prove:

Lemma 5.4.

N2LhΠ
N(fφ) =

1

‖φ‖2

(

ΠN(φ)− 1

4

〈

kh, φ
〉

)

+ θN(fφ), (5.10)

where θN(fφ) is an error term (recall Definition 3.5 of error terms) satisfying, for each T ≥ 0 and
some C(h, T, φ) > 0:

E
νNgh
h

[

∣

∣

∣

∫ T

0

θ̃Nt (fφ)dt
∣

∣

∣

]

≤ C(h, T, φ)N−1/4. (5.11)
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Assuming Lemma 5.4 for the moment, let us prove Proposition 5.3. For each T > 0 and ε > 0,
integrate (5.10) between 0 and T and use the martingale decomposition (5.9) to find:

P
νNgh
h

(

∣

∣

∣

1

T

∫ T

0

ΠN
t (φ)dt−

1

4

〈

kh, φ
〉

∣

∣

∣
≥ ε‖φ‖2

)

≤ P
νNgh
h

(

1

T

∣

∣

∣
ΠN
T (fφ)− ΠN

0 (fφ)−M
N,fφ
T −

∫ T

0

θNt (fφ)dt
∣

∣

∣
> ε

)

.

Let us estimate each of the terms appearing in the last probability. Equation (5.11) takes care of
θN(fφ). By Markov- and Chebychev inequalities:

P
νNgh
h

(

∣

∣

∣

1

T

∫ T

0

ΠN
t (φ)dt−

1

4

〈

kh, φ
〉

∣

∣

∣
≥ ε‖φ‖2

)

≤ 3C(h, T, φ)

εN1/4T
+

3

Tε
E
νNgh
h

[

∣

∣ΠN
T (fφ)− ΠN

0 (fφ)
∣

∣

]

+
9

ε2T 2
E
νNgh
h

[

〈

MN,fφ
〉

T

]

. (5.12)

Consider first the terms ΠN
T (fφ), Π

N
0 (fφ). As fφ is bounded, one can use the C(h)eC(h)TN−1/2

relative entropy bound of Theorem 2.5 and estimate moments of ΠN(fφ) under ν
N
gh

by Lemma 3.7
to find that there are c(fφ), c

′(fφ) > 0 such that:

3

Tε
E
νNgh
h

[

∣

∣ΠN
T (fφ)− ΠN

0 (fφ)
∣

∣

]

≤ 3

Tε
E
νNgh
h

[

∣

∣ΠN
T (fφ)

∣

∣

]

+
3

Tε
νNgh

[

∣

∣ΠN(fφ)
∣

∣

]

≤ 3c(φ)

Tε

[

H(fTν
N
gh
|νNgh) + log νNgh

[

exp
[

c(fφ)
−1ΠN(fφ)

]

]

+
3

Tε
νNgh

[

∣

∣ΠN(fφ)
∣

∣

]

≤ 3c′(fφ)

Tε

[

1 +
C(h)eC(h)T

N1/2

]

. (5.13)

Let us prove that the quadratic variation ofMN,fφ has average bounded linearly in time in the large
N limit, which will be enough to conclude the proof of Proposition 5.3. The quadratic variation
is given for each t ≥ 0 by:

〈

MN,fφ
〉

t
=

1

2

∫ t

0

∑

i<N−1

ch(η(s), i, i+ 1)
[ ρ̄′

4N
(fφ)i,i+1 +

1

2N

∑

j /∈{i,i+1}
η̄j(s)∂

N
1 (fφ)i,j

]2

ds. (5.14)

Recall from the definition (2.19) of ch that supN,ΩN
ch ≤ c(h). Using the inequality (a + b)2 ≤

2a2 + 2b2 for a, b ∈ R as well as the fact that fφ is bounded, one has:

E
νNgh
h

[

〈

MN,fφ
〉

T

]

≤ c(h)E
νNgh
h

[
∫ T

0

∑

i<N−1

( 1

2N

∑

j /∈{i,i+1}
η̄j(t)∂

N
1 (fφ)i,j

)2

dt

]

+
Tc(h)‖fφ‖∞

N
.

The integrand at each time t ≤ T is of the form N−1Xu
2,{0} in the notations of Lemma 3.7, with

u = (ui,j)i,j∈ΛN
given by:

ui,j =
1

N

∑

k/∈{i−1,i,j−1,j,N−1}
∂N1 (fφ)k,i∂

N
1 (fφ)k,j =

∫

(−1,1)

∂1fφ(z, i/N)∂1fφ(z, j/N)dz +
vNi,j
N
,
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where vN is a discretisation error bounded by C(φ) > 0. It is thus controllable with size 1, and
Corollary 3.6 concludes the proof: there are C(h, φ) > 0, C ′(h, φ, T ) > 0 such that:

9

ε2T 2
E
νNgh
h

[

〈

MN,fφ
〉

T

]

≤ 1

ε2

(C(h, φ)

T
+
C(h, φ, T )

N1/2

)

.

This estimate and (5.12)-(5.13) conclude the proof of Proposition 5.3 assuming Lemma 5.4, that
we now prove.

Proof of Lemma 5.4. To prove Lemma 5.4, the starting point is the expression of N2LhΠ
N(fφ)

worked out in Corollary 3.12: there is an error term ε̃N(h, fφ) such that:

N2LhΠ
N(fφ) =

1

2
ΠN

(

∆fφ + I(∂1fφ, ∂1h) + I(∂1h, ∂1fφ)
)

− (ρ̄′)2

4

∫

(−1,1)

fφ(x, x)dx

+
1

4

∫

σ̄(x)σ̄(y)
[

∂1fφ(x, y)∂1h(x, y)
]

dxdy + ε̃N(h, fφ). (5.15)

Note the absence of the diagonal term
∑

i<N−1 η̄iη̄i+1(∂1(fφ)i+,i − ∂1(fφ)i−,i). Recall from Remark
3.11 that this term corresponds to the derivative of fφ in the normal direction to the diagonal,
which vanishes according to (5.8). By Corollary C.3, there is C(h, T, φ) > 0 with:

E
νNgh
h

[

∣

∣

∣

∫ T

0

ε̃Nt (h, fφ)dt
∣

∣

∣

]

≤ C(h, T, φ)N−1/4. (5.16)

As fφ solves (5.8), (5.15) can be written as:

N2LhΠ
N(fφ) =

1

‖φ‖2
ΠN(φ)− (ρ̄′)2

4

∫

(−1,1)

fφ(x, x)dx

+
1

4

∫

σ̄(x)σ̄(y)
[

∂1fφ(x, y)∂1h(x, y)
]

dxdy + ε̃N(h, fφ). (5.17)

Equation (5.17) will correspond to (5.10) with θN(fφ) = ε̃N(h, fφ), if we can prove:

− 1

4‖φ‖2
〈

kh, φ
〉

= −(ρ̄′)2

4

∫

(−1,1)

fφ(x, x)dx+
1

4

∫

σ̄(x)σ̄(y)
[

∂1fφ(x, y)∂1h(x, y)
]

dxdy. (5.18)

There is no clear visible link between kh that is obtained as a function of gh in Proposition A.5,
and the constant terms in (5.17). We prove (5.18) in an indirect way, starting from the martingale
decomposition of ΠN(fφ) given in (5.9):

∀T ≥ 0, ΠN
T (fφ) = ΠN

0 (fφ) +

∫ T

0

N2LhΠ
N
t (fφ)dt+M

N,fφ
t . (5.19)

Assume we can prove that, for symmetric f̃ ∈ C2(⊲̄):

lim sup
N→∞

sup
t≤T

∣

∣

∣

∫ t

0

E
νNgh
h

[

N2LhΠ
N
s (f̃)

]

ds
∣

∣

∣
= 0. (5.20)
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Since νNgh(Π
N(fφ)) = (1/4)

〈

kh, φ
〉

+ oN(1), (5.20) is equivalent, using (5.19) with f̃ instead of fφ,
to:

lim sup
N→∞

sup
t≤T

∣

∣

∣
E
νNgh
h

[

ΠN
t (f̃)

]

− 1

4

〈

kh, f̃
〉

∣

∣

∣
= 0. (5.21)

Taking expectations in (5.17) and estimating ε̃N(h, fφ) through (5.16), we find, using (5.20) with
f̃ = fφ in the first line, and (5.21) with f̃ = φ to obtain the last equality:

0 = lim sup
N→∞

∫ T

0

E
νNgh
h

[

N2LhΠ
N
t (fφ)

]

dt

= lim sup
N→∞

∫ T

0

[

E
νNgh
h

[ΠN
t (φ)

‖φ‖2

]

− (ρ̄′)2

4

∫

(−1,1)

fφ(x, x)dx

+
1

4

∫

σ̄(x)σ̄(y)
[

∂1fφ(x, y)∂1h(x, y)
]

dxdy

]

dt

=
T

4‖φ‖2
〈

kh, φ
〉

− T (ρ̄′)2

4

∫

(−1,1)

fφ(x, x)dx+
T

4

∫

σ̄(x)σ̄(y)
[

∂1fφ(x, y)∂1h(x, y)
]

dxdy.

It follows that (5.20) implies the thesis of Lemma 5.4 with θN(fφ) = ε̃N(h, fφ). Equation (5.20) is
proven next in Lemma 5.5.

Lemma 5.5. For any T > 0 and any continuous and bounded F : → R, there is C(h, ‖F‖∞) > 0
such that:

sup
N∈N∗

sup
t≤T

E
νNgh
h

[

|ΠN
t (F )|3/2

]

≤ C(h, ‖F‖∞)eC(h,‖F‖∞)T , (5.22)

and, for each ε ∈ (0, 1/2):

lim sup
N→∞

sup
t≤T

E
νNgh
h

[

|ΠN
t (F )|1+ε

]

≤ C(h, ‖F‖∞). (5.23)

As a result, (5.20)-(5.21) hold.

Remark 5.6. Here, we do not use the specific form of the bound in (5.22). It is however used
in the proof of the L2( ) estimate of Proposition 4.4 (see (4.52)), and (5.23) is useful in the next
section. �

Proof. Let φ, fφ be as in the proof of Proposition 5.3. One could prove (5.21) through a direct
application of the entropy inequality. However, the moment bounds (5.22)-(5.23) have other uses,
so we obtain (5.21) as a consequence of these bounds.
Assume first that (5.22)-(5.23) hold and let us explain how they give (5.21), which will then imply
(5.20) as noticed below (5.20). Fix F ∈ C0(⊲̄) ∩ C0(⊳̄) and assume the moment bound (5.22)
holds. For t ≤ T , write:

E
νNgh
h

[

ΠN
t (F )

]

= E
νNgh
h

[

ΠN
t (F )1|ΠN

t (f)|<logN

]

+ E
νNgh
h

[

ΠN
t (F )1|ΠN

t (f)|≥logN

]

. (5.24)

By Hölder inequality with exponents (3/2, 3), the second expectation is bounded by C1(logN)−1/3,
C1 = C1(T, F ) > 0, uniformly in t ∈ [0, T ]. On the other hand, Corollary 3.4 can be used on the
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first expectation to obtain:

sup
t≤T

∣

∣

∣
E
νNgh
h

[

ΠN
t (F )

]

− νNgh
[

ΠN(F )
]

∣

∣

∣
≤ νNgh

[

ΠN(F )1|ΠN (f)|≥logN

]

+ C2(T )N
−1/2 logN

+ C1(logN)−1/3,

with C2(T ) > 0. As ΠN(F ) has bounded moments of all orders under νNgh , as also νNgh(Π
N(F ))

converges to 1
4

〈

kh, F
〉

, (5.20)-(5.21) are proven:

lim sup
N→∞

sup
t∈[0,T ]

∣

∣

∣
E
νNgh
h

[

ΠN
t (F )

]

− 1

4

〈

kh, F
〉

∣

∣

∣
= 0. (5.25)

We now prove the moment bounds (5.22)-(5.23). Fix t ∈ [0, T ] and let ε > 0 to be chosen later.
We estimate the moment of order 1 + ε of ΠN

t (F ). The moment bound is obtained by a careful
application of the entropy inequality, putting to good use the O(N−1/2) estimate on the size of
the entropy of Theorem 2.5. Note that |ΠN

t (F )| ≤ ‖F‖∞N . As a result, fixing c > 0 to be chosen
later and applying the entropy inequality to cλ1|ΠN (F )|>λ for each λ > 1 in the second line below:

E
νNgh
h

[∣

∣ΠN
t (F )

∣

∣

1+ε] ≤ 1 + (1 + ε)

∫ ‖F‖∞N

1

λεPν
N
gh

(

|ΠN
t (F )| > λ

)

dλ

≤ 1 + (1 + ε)

∫ ‖F‖∞N

1

c−1λ−1+ε
[

H(ftν
N
gh
|νNgh) + log

(

1 + (ecλ − 1)νNgh
(

|ΠN(F )| > λ
)

)]

dλ.

By Theorem 2.5, H(ftν
N
gh
|νNgh) ≤ C(h)eC(h)TN−1/2 for some C(h) > 0. Moreover, by Corol-

lary A.9, the probability involving νNgh above is bounded by C(h, ‖F‖∞)e−c(h,‖F‖∞)λ for some
C(h, ‖F‖∞), c(h, ‖F‖∞) > 0. Choosing c = c(h, ‖F‖∞)/2, one obtains the existence of C ′(h, ‖F‖∞) >
0 such that:

sup
t≤T

E
νNgh
h

[∣

∣ΠN
t (F )

∣

∣

1+ε] ≤ 1 +
(1 + ε)C ′(h, ‖F‖∞)eC(h,‖F‖∞)T

εN1/2−ε

+
2(1 + ε)

c(h, ‖F‖∞)

∫ ‖F‖∞N

1

λ−1+εe−c(h,‖F‖∞)λ/2dλ.

The integral is bounded withN whatever ε. Overall, the right-hand side above is therefore bounded
with N as soon as ε ∈ (0, 1/2], which yields (5.22). This bound is independent of T in the large
N limit if ε ∈ (0, 1/2), hence (5.23). This concludes the proof of the Lemma.

5.3 Estimating the dynamical part

In this section, we estimate the term E
νNgh
h,O

[

− logDh

]

arising in (5.1). Recall from Corollary 3.12

the definition of the martingale MN,h
T . Then E

νNgh
h,O

[

− logDh

]

reads:

E
νNgh
h,O

[

− logDh

]

=
(

Q
νNgh
T,h(O)

)−1

E
νNgh
h

[

1O

(

−MN,h
T − 1

2

∫ T

0

ΠN
t

(

I(∂1h, ∂1h)
)

dt
)

]

− T

8

∫

σ̄(x)σ̄(y)
[

∂1h(x, y)
]2
dxdy +

E
νNgh
h

[

1O
∫ T

0
ε̂N(h)(ηt)dt

]

Q
νNgh
T,h(O)

, (5.26)
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with ε̂N(h) the error term defined in Corollary 3.12. As such, the expectation in (5.26) vanishes
in the large N limit by Proposition C.2. Moreover, Proposition 5.2 establishes the convergence of

Q
νNgh
T,h(O) to 1 as N , then T become large. In particular, this quantity is bounded from below, and:

lim sup
N→∞

∣

∣

∣

∣

∣

E
νNgh
h

[

1O
∫ T

0
ε̂N(h)(ηt)dt

]

Q
νNgh
T,h(O)

∣

∣

∣

∣

∣

= 0. (5.27)

Consider now the expectation in the first line of (5.26). By Cauchy-Schwarz inequality and the
fact that

〈

MN,h
〉

T
grows at most linearly in time when N is large (see the proof of Proposition

5.3), the contribution of the martingale term scales like
√
T , thus will vanish upon dividing by T

in the large T limit.
Consider now the term involving ΠN

· (I(∂1h, ∂1h)). With 1O = 1 − 1Oc and recalling (5.21), one
has:

lim sup
N→∞

∣

∣

∣

∫ T

0

E
νNgh

[

1OΠ
N
t

(

I(∂1h, ∂1h)
)]

dt− T

4

〈

kh, I(∂1h, ∂1h)
〉

∣

∣

∣

≤ lim sup
N→∞

∣

∣

∣

∫ T

0

E
νNgh
h

[

1OcΠN
t

(

I(∂1h, ∂1h)
)]

dt
∣

∣

∣
.

To compute the last expectation, use the moment bound (5.23) of Lemma 5.5 and Hölder inequality
to find, for any θ ∈ (0, 1/2):

lim sup
N→∞

sup
t≤T

E
νNgh
h

[

1OcΠN
t

(

I(∂1h, ∂1h)
]

≤ C(h, θ) lim sup
N→∞

Q
νNgh
T,h

(

Oc
)θ/(1+θ)

= oT (1). (5.28)

From (5.27) to (5.28), we obtain:

lim inf
T→∞

lim inf
N→∞

1

T
E
νNgh
h,O

[

− logDh

]

= −1

8

∫

dxdy σ̄(x)σ̄(y)
[

∂1h(x, y)
]2 − 1

8

〈

kh, I(∂1h, ∂1h)
〉

= −1

8

∫

(−1,1)

dzσ̄(z)
〈

∂1h(z, ·), (σ̄ + kh)∂1h(z, ·)
〉

. (5.29)

Adapting the method of Lemma 5.3 in Chapter 10 of [KL99], it is not difficult to prove:

Jh(kh) = I(kh) =
1

8

∫

(−1,1)

dzσ̄(z)
〈

∂1h(z, ·), (σ̄ + kh)∂1h(z, ·)
〉

. (5.30)

Equations (5.29)-(5.30) enable us to recover the expected large deviation functional:

lim inf
T→∞

lim inf
N→∞

1

T
E
νNgh
h,O

[

− logDh

]

≥ −1

8

∫

(−1,1)

dzσ̄(z)
〈

∂1h(z, ·), (σ̄ + kh)∂1h(z, ·)
〉

= −I(kh).

Above, we write Jh(kh) as short for Jh
(

1
4

〈

kh, ·
〉)

. �
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5.4 Conclusion of the lower bound for smooth trajectories and acces-
sible correlations

The previous three sections provide the following bound: for each open set O ⊂ (T ′
s , ∗),

lim inf
T→∞

lim inf
N→∞

1

T
logQ

νNg0
T (O) = − inf

h∈S(εB):kh∈O
I(kh). (5.31)

This concludes the proof of the lower bound in Theorem 2.2.
Yet, so far, we have only proven that the rate function I properly estimates the cost of observing
smooth kernels kh corresponding to some h ∈ S(εB), i.e. to h’s which are sufficiently small in the
sense that h ∈ S(εB) (recall (2.22)). For the rate function to be useful, we need to make sure that
any kernel k close to the typical kernel k0 (recall (2.8)), at least sufficiently smooth, will actually
look like one of the kh, h ∈ S(εB). This is the claim of Proposition 2.8, that we now prove.

Proof. Let ε > 0 and let k ∈ k0+S(ε), where k0 is the correlation kernel of the steady state defined
in (2.9). If ε is small enough, g := σ̄−1−(σ̄+k)−1 is a well-defined kernel operator. Indeed, writing
k = k − k0 + k0:

g − g0 = (σ̄ + k0)
−1 − (σ̄ + k)−1 = (σ̄ + k0)

−1
(

I −
(

(σ̄ + k0 + k − k0)(σ̄ + k0)
−1
)−1

)

= (σ̄ + k0)
−1
(

I −
(

I + (k − k0)(σ̄ + k0)
−1
)−1

)

= (σ̄ + k0)
−1

(

I −
∞
∑

p=0

(

− (k − k0)(σ̄ + k0)
−1
)p
)

= −(σ̄ + k0)
−1

∞
∑

p=1

(

− (k − k0)(σ̄ + k0)
−1
)p

. (5.32)

The series expansion is legitimate for ε small enough, since (σ̄ + k0)
−1 = C−1

0 = σ̄−1 − g0 with
‖g0‖2 bounded, and if ε is small enough:

‖(k − k0)(σ̄ + k0)
−1‖2 = ‖(k − k0)σ̄−1 − (k − k0)g0‖2 ≤

(
√
2‖σ̄−1‖L2((−1,1)) + ‖g0‖2

)

ε < 1.

Since it starts at p = 1, the series is a kernel operator, thus g as well. Moreover, g is in W 4,p( ) for
some p > 2 and, differentiating inside the sum in (5.32), (∂1−∂2)(g−g0) vanishes at the extremities
of the diagonal D. The function g is thus in g0 + S(ε′) for some ε′ > 0. In Appendix F, the main
equation (2.31), seen as an equation with data g ∈ g0 + S(ε′) and unknown h, is shown to have
a unique solution h ∈ S(ε′′), and S(ε′′) ⊂ S(εB) as soon as ε′′ ≤ εB. The associated correlation
kernel kh is given by kh = −σ̄ + (σ̄−1 − g)−1 = k. The expression 2.33 of the rate function at k
then follows from (5.30):

I(k) = Jh(k) =
1

8

∫

(−1,1)

σ̄(z)
〈

∂1h(z, ·), (σ̄ + k)∂1h(z, ·)
〉

dz.
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A Correlations and concentration under discrete Gaussian

measures

In this section, we investigate the measures νNg , defined for g : → R as follows:

ν̄N =
⊗

i∈ΛN

Ber(ρ̄i), ∀η ∈ ΩN , νNg (η) =
1

ZNg
exp

[

1

2N

∑

i 6=j∈ΛN

gi,j η̄iη̄j

]

ν̄N(η), (A.1)

where the partition function ZNg is a normalising constant.

A.1 Bound on the partition function and correlations

Lemma A.1 (Bound on the partition function). Let g : � → R be a continuous, bounded and
symmetric function, and suppose that g = g− + g+, where g+ (resp.: g−) is a continuous positive
(negative) kernel on L2(�), i.e. ±

∫

�
f(x)g±(x, y)f(y)dxdy ≥ 0 for any f ∈ L2((−1, 1)). Assume

also that the positive part satisfies:
∫

�

σ̄(x)g+(x, y)
2σ̄(y)dxdy < 1/16 or, more simply, as σ̄ ≤ 1/4 :

∫

�

g+(x, y)
2dxdy < 1. (A.2)

Then, there is αg > 0 such that:

sup
N≥1

ν̄N
[

exp
[(1 + αg)

2N

∑

i 6=j∈ΛN

η̄iη̄jgi,j

]]

<∞. (A.3)

In particular, as the inverse correlation kernel g0 of the steady state of the open SSEP is a negative
kernel, such an αg exists for each g in the set g0 + S(εG) defined in (2.22) and Theorem 2.5.

Proof. Since ((g−)i,j)(i,j)∈Λ2
N
is a negative quadratic form, one has:

ZNg := ν̄N
[

e2Π
N (g−+g+)

]

= ν̄N
[

e2Π
N (g+) exp

[ 1

2N

∑

(i,j)∈Λ2
N

η̄iη̄j(g−)i,j −
1

2N

∑

i∈ΛN

(η̄i)
2(g−)

2
i,j

]]

≤ ZNg+e‖g‖∞ .
The result then follows from the so-called Hanson-Wright inequality. Proofs of this inequality
for independent sub-Gaussian random variables and ‖g+‖2 smaller than a non-explicit constant
abound in the literature, see e.g. [RV13] and references therein. The sufficiency of (A.2) follows
from the proof of Lemma F.13 in [JM18b].

Remark A.2. The boundedness of g in Lemma A.1 is used only for the diagonal terms. The
continuity of g+ implies that it is Riemann integrable, so that (A.2) in particular implies:

for all large enough N,
1

N2

∑

i 6=j∈ΛN

σ̄i(g+)
2
i,jσ̄j < 1/8.

The sum above is the trace norm of the matrix
(

N−1σ̄
1/2
i (g+)i,jσ̄

1/2
j 1i 6=j

)

(i,j)∈Λ2
N
. Note, for future

reference, that assumption (A.2) therefore implies that the matrix (σ̄−1
i 1i=j − N−1gi,j1i 6=j)i,j is

invertible for all large enough N . �
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Lemma A.3. Let g : �→ R satisfy the hypotheses of Lemma A.1. Then:

∀n ∈ N∗, sup
I⊂ΛN :|I|=n

∣

∣

∣
νNg

(

∏

a∈I
η̄a

)
∣

∣

∣
= O(N−n/2). (A.4)

Moreover, if g ∈ C1(⊲̄) ∩ C1(⊳̄) with g(±1, ·) = 0, then:

∀n ∈ N∗, ∀ε ∈ {+,−}, sup
I⊂ΛN

ε(N−1)∈I and |I|=n

∣

∣νNg

(

η̄ε(N−1)

∏

a∈I\{ε(N−1)}
η̄a

)

∣

∣ = O(N−n/2−1). (A.5)

Proof. Let I ⊂ ΛN with |I| = n ∈ N∗. A proof for general n is very cumbersome, so we focus on
the n ∈ {1, 2} case that contains the important ideas. Define:

∀ηI ∈ {0, 1}ΛN\I , GIc(ηIc) =
1

4N

∑

i 6=j∈ΛN\{I}
η̄iη̄jgi,j. (A.6)

Let also νNI be the Bernoulli product measure
⊗

a∈I Ber(ρ̄i). Consider first a single site a ∈ ΛN ,
in which case (A.4) says that νNg and ν̄N have practically the same average occupation number.
For each η = (ηa, η{a}c) ∈ ΩN , one has:

2ΠN(g) = 2G{a}c(η{a}c) +
1

N

∑

i 6=a
η̄aη̄iga,i. (A.7)

As a result:

ZNg νNg
[

η̄a
]

=
∑

η{a}c

ν̄{a}c(η{a}c)e
2G{a}c ν̄{a}

[

η̄a exp
[ 1

N

∑

i 6=a
η̄aη̄iga,i

]]

. (A.8)

Fix η{a}c ∈ {0, 1}ΛN\{a}, and use ex = 1 + x
∫ 1

0
etxdt for x ∈ R to obtain:

ν̄{a}
[

η̄a exp
[ 1

N

∑

i 6=a
η̄aη̄iga,i

]]

=
1

N

∑

i 6=a
(η̄a)

2η̄iga,i

∫ 1

0

exp
[ t

N

∑

i 6=a
η̄aη̄iga,i

]

dt. (A.9)

Recalling the identity (A.7), it follows that νNg (η̄a) reads:

νNg (η̄a) =

∫ 1

0

νNg

[(η̄a)
2

N

∑

i 6=a
η̄iga,i exp

[(t− 1)

N

∑

i 6=a
η̄aη̄iga,i

]]

(A.10)

≤ e2‖g‖∞νNg

[
∣

∣

∣

1

N

∑

i 6=a
η̄iga,i

∣

∣

∣

]

,

where in the second line we used |η̄a| ≤ 1. To estimate this last expectation, let αg be as in
Lemma A.1, and let p ∈ N∗ be odd and such that 1/p < αg. By Hölder inequality with exponents
(1 + 1/p, p+ 1), νNg (η̄a) can be bounded as follows:

∣

∣νNg (η̄a)
∣

∣ ≤
(

ZNg
)−1

ν̄N
[

e2(1+1/p)ΠN (g)
]p/(p+1)

ν̄N
[( 1

N

∑

i 6=a
η̄iga,i

)p+1]1/(p+1)

. (A.11)
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The exponential moment of 2(1+1/p)ΠN(g) is bounded by Lemma A.1. On the other hand, there
is Cp+1 > 0 such that:

ν̄N
[( 1

N

∑

i 6=a
η̄iga,i

)p+1]

≤ Cp+1‖ga,·‖p+1
∞ N−(p+1)/2. (A.12)

Since ν̄N is product and ν̄N(η̄i) = 0, i ∈ ΛN , the last equality follows either from a combinatorial
argument (developing the sum, a product η̄i1 ...η̄ip+1 contributes to the average if and only if each
site j ∈ {i1, ..., ip+1} appears at least twice); or from the computation of the moment generating
function of

∑

i 6=a η̄iga,i in a neighbourhood of 0, and elementary computations to bound its (p+1)-
times derivative:

∀t ∈ R, ν̄N
[

exp
[

t
∑

i 6=a
η̄iga,i

]

]

= exp

[

∑

i 6=a

[

− tρ̄iga,i + log
(

ρ̄i
(

etga,i − 1
)

+ 1
)]

]

.

Since ZNg is also bounded by Lemma A.1, we have proven:

sup
a∈ΛN

∣

∣νNg (η̄a)
∣

∣ = O(N−1/2).

Suppose now that a ∈ {±(N − 1)} and g is C1 with g(±1, ·) = 0. As a result, Nga,· is bounded
uniformly in a,N , and (A.12) can be written:

ν̄N
[( 1

N

∑

i 6=a
η̄iga,i

)p+1]

≤ Cp+1‖Nga,·‖p+1
∞ N−(p+1)N−(p+1)/2.

Using this bound in (A.11) yields (A.5) when |I| = 1.

Consider now the case of two-point correlations: I = {a, b} ⊂ ΛN with a 6= b. The idea is the
same, starting with: for each η ∈ ΩN ,

2ΠN
g = 2G{a}c(η{a}c) +

1

N

∑

i 6=a
η̄aη̄iga,i

= 2GIc(ηIc) +
1

N

∑

i 6=a
η̄aη̄iga,i +

1

N

∑

j /∈I
η̄bη̄jgb,j. (A.13)

We proceed as in (A.9) and first develop the exponential involving η̄a to find:

ZNg νNg (η̄aη̄b) =
∫ 1

0

ν̄N
[

η̄be
2G{a}c

(η̄a)
2

N

∑

i 6=a
η̄iga,i exp

[ ta
N

∑

i 6=a
η̄aη̄iga,i

]

]

dta. (A.14)

Use then (A.13) and the identity ex = 1 +
∫ 1

0
etxdt for x ∈ R to obtain:

ZNg νNg (η̄aη̄b) =
∫ 1

0

ν̄N
[

e2GIc η̄b

(

1 +

∫ 1

0

∑

j 6=a,b

η̄bη̄jgb,j
N

exp
[ tb
N

∑

j 6=a,b
η̄bη̄jgb,j

]

dtb

)

(A.15)

(η̄a)
2

N

∑

i 6=a
η̄iga,i exp

[ ta
N

∑

i 6=a
η̄aη̄iga,i

]

]

dta.
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In the one-point case, the 1 in the parenthesis above vanished because the average of η̄· under ν̄N

is exactly zero. Here, because of the exponential of the sum ta
N

∑

i 6=a η̄aη̄iga,i that involves η̄b, the

average does not vanish. It is instead shifted by an amount bounded by O(N−1), as we shall see.
Developing the parenthesis in the first line above and isolating the index i = b in the sums, one
finds:

νNg (η̄aη̄b) =
(

ZNg
)−1

∫ 1

0

dtaν̄
N

[

e2GIc η̄b(η̄a)
2
( η̄bga,b

N
+

1

N

∑

i 6=a,b
η̄iga,i

)

(A.16)

× exp
[ ta
N

∑

i 6=a,b
η̄aη̄iga,i +

taη̄aη̄bga,b
N

]

]

dta

+

∫

[0,1]2
dtadtbν

N
g

[

[(η̄aη̄b)
2

N2

∑

i 6=a
η̄iga,i

∑

j 6=a,b
η̄jgb,j

]

(A.17)

× exp
[(ta − 1)

N

∑

i 6=a
η̄aη̄iga,i +

(tb − 1)

N

∑

j 6=a,b
η̄bη̄jgb,j

]

]

.

Bounding (η̄aη̄b)
2 by 1 and the exponential by e4‖g‖∞ , the expectation (A.17) spanning the last two

lines is shown to be bounded by O(N−1) as in the one-point case (respectively: O(N−2) if either
a or b is in {±(N − 1)}). Let us now check that the first term (A.16) in the right-hand side is also
bounded by O(N−1) (resp. O(N−2)). Taking expectations with respect to ηb ∈ {0, 1}, it can be
written as:

∫ 1

0

dtaν̄
N

[

e2GIc exp
[ ta
N

∑

i 6=a,b
η̄aη̄iga,i

]

(η̄a)
2

{

ν̄N{b}

[(η̄b)
2ga,b
N

exp
[taη̄aη̄bga,b

N

]]

+ ν̄N{b}

[

η̄b exp
[taη̄aη̄bga,b

N

]]( 1

N

∑

i 6=a,b
η̄iga,i

)

}]

dta.

The first expectation under ν̄N{b} is bounded by O(N−1) (resp: O(N−2)) as desired, due to the

factor ga,b/N . The identity ex = 1 +
∫ 1

0
xetxdt shows that the second expectation has the same

scaling. Putting together the estimates of (A.16)-(A.17) yields the claim of Lemma A.3 for |I| = 2.

The general case follows by a cumbersome iteration of the above procedure. If I ⊂ ΛN and a
new point is added to the set I, then the starting point is again the identity:

2GIc = 2G(I∪{a})c +
1

N

∑

i/∈I∪{a}
η̄aη̄iga,i.

One then successively expands all exponentials using ex = 1 +
∫ 1

0
xetxdt, x ∈ R. If I = {i1, ..., in}

and i0 := a, this procedure yields:

ZNg νNg
(

η̄a
∏

i∈I
η̄i

)

=

∫

[0,1]n+1

ν̄N
[

e2G(I∪{i0})
c (η̄2i0)

(

n
∏

ℓ=1

η̄iℓ

)

exp
[t0η̄i0
N

∑

i 6=i0
η̄igi0,i

]

×
n
∏

ℓ=1

(

1 +
η̄iℓ
N

∑

i∈ΛN
i 6=i0,...,iℓ−1

η̄igip,i exp
[tℓη̄iℓ
N

∑

i∈ΛN
i 6=i0,...,iℓ−1

η̄igiℓ,i

]

)] n
∏

i=0

dti.
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Averages of the resulting sums and exponentials under ν̄N{i} for each i ∈ I ∪ {a} = {i0, ..., in}
are then performed iteratively. Each successive average shifts the average occupation numbers of
remaining sites by O(N−1) as in (A.16). As long as |I| is independent from N , these O(N−1) shifts
do not change the scaling of correlations.

Remark A.4. Note that, if g is a negative kernel, then one can simply write:

∀λ ∈ R, νNg
[

eλη̄a
]

≤
(

ZNg
)−1

ν̄N
[

eλη̄a
]

≤
(

ZNg
)−1

eλ
2/8, (A.18)

where the last inequality comes from the fact that, by Hoeffding’s lemma, η̄a is sub-Gaussian under
ν̄N , with variance 1/4 (it takes values 1 − ρ̄a,−ρ̄a with average 0). Equation (A.18) implies that
η̄a is sub-Gaussian under νNg , hence has vanishing expectation (see Appendix F of [JM18b] for
properties of sub-Gaussian random variables in the present context). �

We now exactly compute two-point correlations under νNg . In the following, denote by σ̄ the
diagonal matrix with entries σ̄i1i=j. Define also the matrix MN

g by:

∀(i, j) ∈ Λ2
N , MN

g (i, j) = gi,j, MN
g (i, i) = 0. (A.19)

The two point correlations under νNg are denoted by the matrix CN
g :

∀(i, j) ∈ (ΛN)
2, CN

g (i, j) = νNg (η̄iη̄j)− νNg (η̄i)νNg (η̄j). (A.20)

Proposition A.5. Let g : �→ R satisfy the hypotheses of Lemma A.1. Then:

sup
a∈ΛN

|νNg (η̄a)| = O(N−1). (A.21)

Moreover, the correlations under νNg are given by:

CN
g =

(

σ̄−1 −N−1MN
g

)−1

+ eN , MN
g = N

(

σ̄−1 −
(

CN
g

)−1)
+Ne′N ,

with eN a matrix satisfying supi |eN(i, i)| = O(N−1), supi 6=j |eN(i, j)| = O(N−3/2), idem for e′N .

Proof. The method of proof is the same as for Lemma A.1, except that bounds on higher order
correlations can now be used to get exact results. Consider first a ∈ ΛN . From (A.10), one has:

νNg (η̄a) =

∫ 1

0

νNg

[

(η̄a)
2

N

∑

i 6=a
η̄iga,i exp

[t− 1

N

∑

i 6=a
η̄aη̄iga,i

]

]

dt. (A.22)

Recall the identity:
(η̄·)

2 = σ̄· + σ′(ρ̄·)η̄·, σ̄· := ρ̄·(1− ρ̄·).
Using this identity and expanding the exponential in (A.22) using ex ≤ 1 + C|x| if |x| ≤ 2‖g‖∞,
we find:

∣

∣

∣
νNg (η̄a)−

σ̄a
N

∑

i 6=a
ga,iν̄

N
g (η̄i)−

σ′(ρ̄a)

N

∑

i 6=a
ga,iν

N
g (η̄aη̄i)

∣

∣

∣
≤ 2CνNg

[

|η̄a|3
( 1

N

∑

i 6=a
η̄iga,i

)2]

.
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Bounding |η̄a| by 1, the right-hand side involves two-point correlations, thus is bounded by O(N−1)
uniformly on a ∈ ΛN by Lemma A.1. The same can be said for the term involving σ′(ρ̄a) in the
left-hand side. As a result:

νNg (η̄a) =
σ̄a
N

∑

i 6=a
ga,iν̄

N
g (η̄i) + εN(a), sup

b∈ΛN

εN(b) = O(N−1).

Let νNg (η̄·) be the vector (νNg (η̄a))a∈ΛN
, and εN the vector (εN(a))a. We have just proven:

(

σ̄−1 −N−1MN
g

)

νNg (η̄·) = εN .

To obtain the claim (A.21), it is enough to prove that the matrix on the left-hand side is invertible,
and has a sufficiently nice inverse, as we now explain. The structure of the inverse is the content
of the following lemma.

Lemma A.6. Let M be the set of sequences of matrices on Λ2
N , N ∈ N∗ defined as follows.

(AN)N ∈ M if and only if there are sequences (DN)N , (RN)N of matrices and c > 0 such that,
for each large enough N ∈ N∗, DN is diagonal, RN(i, i) = 0 for i ∈ ΛN , AN = DN + N−1RN .
Moreover, (DN)N , (RN)N must satisfy:

for all large enough N, inf
i∈ΛN

|DN(i, i)| ≥ c, sup
(i,j)Λ2

N

|RN(i, j)| ≤ c−1.

If (AN)N ∈M is symmetric and invertible, then (A−1
N )N ∈M.

Momentarily admitting Lemma A.6, one can apply Lemma A.6 to AN := σ̄−1 −N−1MN
g , N ∈

N∗, which is invertible for large enough N as a consequence of Remark A.2. Equation (A.21)
follows:

νNg (η̄·) = A−1
N ε, sup

b∈ΛN

∣

∣(A−1
N εN)(b)

∣

∣ = O(N−1).

Let us now compute two-point correlations. The idea is the same: we build on the computation in
Lemma A.3 to obtain that, for b ∈ ΛN , AN applied to the vector (νNg (η̄aη̄b))a is small away from
the diagonal a = b. On the diagonal, the identity (η̄·)2 = σ̄· + σ′(ρ̄·)η̄· and (A.21) give:

sup
a∈ΛN

∣

∣νNg
(

(η̄a)
2
)

− σ̄a
∣

∣ = O(N−1). (A.23)

Fix now a 6= b ∈ ΛN . Recall the identity:

2ΠN(g) = 2G{a}c +
1

N

∑

i 6=a
η̄iη̄aga,i, η ∈ ΩN .

The starting point is (A.14), on which we use the last identity as well as ex = 1+ x+
∫ 1

0
tx2etxdt,
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x ∈ R, to obtain:

ZNg νNg (η̄aη̄b) =
∫ 1

0

ν̄N
[

η̄be
2G{a}c

(η̄a)
2

N

∑

i 6=a
η̄iga,i exp

[ t

N

∑

i 6=a
η̄aη̄iga,i

]

]

dt

= ZNg
∫ 1

0

ν̄Ng

[

η̄b
(η̄a)

2

N

∑

i 6=a
η̄iga,i

{

1 (A.24)

+
(1− t)η̄a

N

∑

i 6=a
η̄iga,i (A.25)

+

∫ 1

0

((1− t)η̄a
N

∑

i 6=a
η̄iga,i

)2

exp
[(1− t)s

N

∑

i 6=a
η̄aη̄iga,i

]

ds

}]

dt. (A.26)

Let us separately compute the contribution of each of the terms in the curly bracket, corresponding
to (A.24)-(A.25)-(A.26). We will repeatedly make use of the following two identities:

(η̄·)
2 = σ̄· + σ′(ρ̄·)η̄·. (A.27)

Moreover, let (qNj )j∈ΛN
satisfy supN,j |qNj | < ∞ and let I ⊂ ΛN with |I| = n ∈ N∗ and p ∈ N∗.

Then, by Lemma A.3:

νNg

(

∏

i∈I
η̄i

( 1

N

∑

j∈ΛN

η̄jq
N
j

)p)

= O
(

N−(n+p)/2
)

. (A.28)

In other words, the above correlation has average under νNg that scales like (n+ p)-points correla-
tions, even though the sums contain elements of I.
Consider first (A.24). Using (A.27), the first line (A.24) reads:

(A.24) =
σ̄a
N
ZNg νNg

[

η̄b
∑

i 6=a
η̄iga,i

]

+
σ′(ρ̄a)

N
ZNg νNg

[

η̄bη̄a
∑

i 6=a
η̄iga,i

]

=: ZNg
(

σ̄N−1MN
g

)

νNg (η̄·η̄b)(a) + δ1N(a, b), sup
i 6=j∈Λ2

N

|δ1N(i, j)| = O(N−3/2),

where νNg (η̄·η̄b) is the vector (νNg (η̄iη̄b))i∈ΛN
, and we used (A.28) with I = {a, b} and p = 1 to

estimate δ1N .
Consider now the contribution of the second line (A.25). Recalling (A.27), one has:

∫ 1

0

νNg

[

η̄b
(1− t)(η̄a)3

N2

(

∑

i 6=a
η̄iga,i

)2]

dt

=

∫ 1

0

(1− t)νNg
[

η̄b
[

σ̄a(1 + σ′(ρ̄a)) + η̄aσ
′(ρ̄a)

2
]

( 1

N

∑

i 6=a
η̄iga,i

)2]

dt =: δ2N(a, b).

Using (A.28) with I = {b} and p = 2 for the term involving σ̄a(1 + σ′(ρ̄a)), and I = {a, b} and
p = 2 for the other one, we find:

sup
i 6=j∈ΛN

|δ2N(i, j)| = O(N−3/2).
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Finally, the third line (A.26) is bounded by:

ZNg e2‖g‖∞νNg
[∣

∣

∣

1

N

∑

i 6=a
η̄iga,i

∣

∣

∣

3]

=: δ3N(a, b), sup
i 6=j∈ΛN

|δ3N(i, j)| = O(N−3/2),

Due to the absolute value, this bound is not a consequence of (A.28), but is instead obtained as
in (A.11)-(A.12). We have obtained:

νNg (η̄aη̄b) =
(

σ̄N−1MN
g

)

νNg (η̄·η̄b)(a) +
3

∑

k=1

sup
a 6=b∈ΛN

|δkN(a, b)|,
3

∑

k=1

δkN(a, b) = O(N−3/2).

Multiplying by the diagonal matrix σ̄−1 from the left and recalling the estimate (A.23) of the
diagonal correlations, we have obtained, for each b ∈ ΛN :

(

σ̄−1 −N−1MN
g

)

νNg (η̄·η̄b) =
(

1 +O(N−1)
)

IN +
∑

k=1

(

σ̄−1
a δkN(a, b)

)

a 6=b∈ΛN
,

with IN the identity matrix. Using Lemma A.6 and the identity:

CN
g (a, b) := νNg (η̄aη̄b)− νNg (η̄a)νNg (η̄b), sup

(a,b)∈Λ2
N

∣

∣νNg (η̄a)ν
N
g (η̄b)

∣

∣ = O(N−2), (A.29)

we obtain the existence of matrices eN , e
′
N as in Proposition A.5 such that:

CN
g =

(

σ̄−1 −N−1MN
g

)−1
+ eN , MN

g = N
(

σ̄−1 − (CN
g )−1

)

+Ne′N . (A.30)

Remark A.7. As in the proof of Proposition A.5, it is possible to exactly compute the leading
order term of all n-point correlations, n ∈ N∗. One can in fact prove that the leading order in N
of the 2n-point correlations under νNg satisfies Wick theorem. On the other hand, 2n + 1-point

correlations in fact decay faster than O(N−n−1/2). More precisely, one can prove:

∀n ∈ N∗, sup
I⊂ΛN :|I|=n

∣

∣

∣
νNg

(

∏

i∈I
η̄i

)∣

∣

∣
=

{

O(N−n/2) as before if n is even,

O(N−(n+1)/2) if n is odd.
(A.31)

�

Proof of Lemma A.6. Let N0 ∈ N∗ and (AN)N≥N0 ∈ M be a family of symmetric and invertible
matrices. Then (AN(i, j))1≤i,j≤n is also invertible for each n ≤ 2N − 1 (this is the only place
where the symmetry assumption on AN is used). This implies (see Theorem 4.3.1 in [Cia89]) that,
for each N ≥ N0, there is a lower triangular matrix LN with diagonal equal to 1, and an upper
triangular matrix UN such that:

∀N ∈ N∗, AN = LNUN .
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LN is invertible by assumption, thus UN is invertible by invertibility of AN . The claim of Lemma
A.6 thus boils down to proving that (U−1

N L−1
N )N ∈M. Let us first prove that (LN)N , (UN)N ∈M.

The coefficients of these matrices can be computed explicitly: for each N ≥ N0,

∀1 ≤ i ≤ 2N − 1, UN(i, j) = AN(i, j)−
i−1
∑

ℓ=1

LN(i, ℓ)UN(ℓ, j) for j ≥ i,

LN(j, i) =
1

UN(i, i)

(

AN(j, i)−
i−1
∑

ℓ=1

LN(j, ℓ)UN(ℓ, i)
)

for j > i.

In particular, (LN)N , (UN)N indeed belong toM. In fact, so do their inverses. Indeed, the inverse
L−1
N of LN is also lower triangular, and can be computed straightforwardly: for N ≥ N0,

∀i ≥ j, [L−1
N ](i, j) =

1

AN(i, i)

(

δi,j −
i−1
∑

ℓ=1

LN(i, ℓ)[L
−1
N ](ℓ, j)

)

, δi,j :=

{

1 if i = j,

0 otherwise.

The same result holds for the upper-triangular UN . Thus, (L−1
N )N , (U

−1
N )N ∈ M. It remains to

notice that M is stable by multiplication: (BN)N , (CN)N ∈ M implies (BNCN)N ∈ M. This
concludes the proof of Lemma A.6.

A.2 Exponential moments of higher order correlations

Let g ∈ g0 + S(εG) be fixed throughout, where this set is defined in (2.22) and Theorem 2.5. In
this section, we give bounds on the size of exponential moments, under νNg , of random variables
involving n-point correlations, n ≥ 1. These are useful when applying the entropy inequality.
Such concentration results are established in the literature by means of a logarithmic Sobolev
inequality, see [G+19]-[SS20]. Such an inequality could be shown to hold for νNg by [BB19].
However, g ∈ g0 + S(εG) means that it is enough to only obtain concentration bounds under the
product measure ν̄N . Indeed, by Lemma A.1, there is αg > 0 such that, by Hölder inequality, for
any F : ΩN → R:

νNg
(

exp[F ]
)

≤
(

ZNg
)−1

ν̄N
[

exp[α−1
g (1 + αg)F ]

]

αg
1+αg

ν̄N
[

exp
[

2(1 + αg)Π
N(g)

]

]
1

1+αg
, (A.32)

and both exponential moments are bounded with N . For d ∈ N, let A : ΛdN → R be a tensor.
Define its Hilbert-Schmidt norm by:

‖A‖HS =
(

∑

(i0,...,id−1)∈Λd
N

(

A(i0, ..., id−1)
)2
)1/2

. (A.33)

For J ⊂ Z containing 0, let XA
d,J be defined as:

∀η ∈ ΩN , XA
d,J(η) =

∑

(i0,...,id−1)∈Λd
N

i0+J⊂ΛN

A(i0, ..., id−1)η̄i0+J

d−1
∏

p=1

η̄ip , η̄i0+J :=
∏

j∈J
η̄i0+j. (A.34)

The next theorem gives concentration estimates of XA
d,J under ν̄N for J ⊂ Z and d ∈ N∗. The case

J = {0}, d ≤ 4 corresponds to Theorem 1.4. in [G+19], but their proof extends to any d ∈ N∗.
However, we use in the article the case J = {0, 1}, for which a proof is needed.
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Theorem A.8. Let J ⊂ Z contain 0 and d ∈ N∗. Assume that A is such that A(i0, ..., id−1)
vanishes whenever the same site appears twice in η̄i0+J

∏d−1
p=1 η̄ip for η ∈ ΩN , i.e. assume:

∀(i0, ..., id−1) ∈ ΛdN ,
(

∃j ∈ J, |{i0 + j, i1, ..., id−1}| < d
)

⇒ A(i0, ..., id−1) = 0. (A.35)

There are then constants cd > 0 depending only on d such that, for any c ∈ (0, cd) and any N with
J ⊂ ΛN :

ν̄N
(

exp

[

(c|XA
d,J |)2/d

‖A‖2/dHS

])

≤ 2. (A.36)

Proof. The proof for general J and the J = {0} case in [G+19] are very similar, so we only give a
sketch. Without loss of generality, A can be assumed to be invariant under permutation of its last
d−1 indices. The idea is to proceed by recursion on d, noticing that, for each ℓ ∈ ΛN and η ∈ ΩN :

∇ℓX
A
d,J(η) : = XA

d,J(η
ℓ)−XA

d,J(η)

= (1− 2ηℓ)
[

∑

i0:i0+J∋ℓ
A(i0, ..., id−1)η̄(i0+J)\{ℓ}

d−1
∏

a=1

η̄ia

+ (d− 1)A(i0, ..., id−2, ℓ)η̄i0+J

d−2
∏

a=1

η̄ia

]

. (A.37)

Fix d ∈ N, J ⊂ Z with 0 ∈ J , and N with J ⊂ ΛN . For brevity, simply write Xd for X
A
d,J .

Step 1: reduction to moment bound. To prove (A.36), it is enough to prove the existence of
Cd > 0 such that:

∀p ∈ N∗, Mp(Xd) := ν̄N
[

|Xd|p
]1/p ≤ Cd‖A‖HS p

d
2 . (A.38)

Indeed, assuming such a bound, one has, for each c > 0, using Jensen inequality when d ≥ 2 for
the convex function f(x) = xd/2, x ∈ R:

ν̄N
[

exp
(

c|Xd|2/d
)]

= 1 +
∞
∑

p=1

cp

p!
ν̄N

(

|Xd|2p/d
)

≤ 1 +
∞
∑

p=1

(

cCdp‖A‖2/dHS

)p

p!
.

As pp ≤ p!ep for each p ≥ 1, taking c ≤ cd := (2Cde)
−1 yields (A.36).

Step 2: moment estimate. It is enough to prove (A.38) for p ≥ 2, since the first moment
can be estimated by Cauchy-Schwarz inequality. We will restrict to p ≥ 2 at some point in the
computation. For now, we treat p as a continuous variable in R∗

+ and differentiate M·(Xd). For
each p > 0, one has:

dMp(Xd)

dp
=

d

dp

(

exp
[1

p
log ν̄N

(

|Xd|p
)

])

= − log ν̄N
(

|Xd|p
)

p2
Mp(Xd) +

1

p

ν̄N
(

|Xd|p log |Xd|
)

ν̄N
(

|Xd|p
) Mp(Xd),
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which can be written as:

∀p > 0,
dMp(Xd)

dp
=
Mp(Xd)

1−p

p2
Ent(|Xd|p), (A.39)

with Ent(F 2) the entropy of F 2 against ν̄N , given by:

∀F : ΩN → R, Ent(F 2) = ν̄N(F 2 logF 2)− ν̄N(F 2) log ν̄N(F 2).

The entropy on the right-hand side of (A.39) is estimated by means of a logarithmic Sobolev
inequality, satisfied by ν̄N for the Glauber dynamics on ΩN (see e.g. Theorem A.1. in [DS96]):
there is CLS > 0, independent of N , such that:

∀F : ΩN → R+, Ent(F 2) ≤ CLS ν̄
N
(

∑

i∈ΛN

[

∇iF
]2
)

, (A.40)

where, for i ∈ ΛN and η ∈ ΩN , ∇iF (η) = F (ηi)−F (η) for each F : ΩN → R. Similarly, a Poincare
inequality holds with constant CLS/2:

∀F : ΩN → R+, ν̄N(F 2)− ν̄N(F )2 ≤ CLS
2
ν̄N

(

∑

i∈ΛN

[

∇iF
]2
)

. (A.41)

Injecting (A.40) in (A.39) and proceeding as in [G+19], one successively obtains, restricting to
p > 2:

∀p > 2,
dMp(Xd)

2

dp
≤ 2CLSMp(Xd)

2−p

p2
ν̄N

(

∑

i∈ΛN

[

∇i(|Xd|p/2)
]2
)

≤ CLSMp(Xd)
2−pν̄N

(

|Xd|p−2
∑

i∈ΛN

[

∇i|Xd|
]2
)

.

Applying Hölder inequality with exponents (p/(p− 2), p/2) then yields, for each p > 2:

dMp(Xd)
2

dp
≤ CLSMp/2

(

∑

i∈ΛN

[

∇i|Xd|
]2
)

≤ CLSMp/2

(

∑

i∈ΛN

[

∇iXd

]2
)

.

The function M·(Xd) is increasing for p > 0 by (A.39). As a result, integrating between 2 and p
and using the Poincare inequality (A.41) to estimate M2(Xd) yields:

∀p ≥ 2, Mp(Xd)
2 ≤M2(Xd)

2 + CLS(p− 2)Mp/2

(

∑

i∈ΛN

[

∇iXd

]2
)

≤ CLS pMp/2

(

∑

i∈ΛN

[

∇iXd

]2
)

. (A.42)

Step 3: recursion on d. Let p ≥ 2. For j ∈ ΛN and 0 ≤ a ≤ d − 1, define A(ia=j) as the
d−1-tensor

(

A(i0, ..., ia−1, j, ia+1, ..., id−1)
)

(iq)q 6=a
, and note that A(ia=j) also satisfies the assumption

(A.35). Recall that Xd was short for X
A
d,J . Let us prove by recursion on d:

∀p ≥ 2, Mp

(

XA
d,J

)2 ≤ 2d−1(CLS p)
d(d!)2|J |2‖A‖2HS. (A.43)
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Proving such a result would conclude the proof. In the d = 1 case, (A.42) yields, for each p ≥ 2:

Mp(X
A
1,J)

2 ≤ CLS pMp/2

(

∑

i∈ΛN

[

∇iX
A
1,J

]2
)

≤ CLS p
∑

i∈ΛN

Mp

(

∇ℓX
A
1,J

)2
.

By (A.37), bounding η̄· by 1, the result for d = 1 is proven:

∀p ≥ 2, Mp(X
A
1,J)

2 ≤ CLS p
∑

ℓ∈ΛN

[

∑

i0+J∋ℓ
A(i0)

]2

≤ CLS p|J |2‖A‖2HS.

For d ≥ 2, (A.42) similarly gives, bounding η̄· by 1:

Mp/2

(

∑

ℓ∈ΛN

[

∇ℓX
A
d,J

]2
)

≤
∑

ℓ∈ΛN

Mp

(

∇ℓX
A
d,J

)2

≤
∑

ℓ∈ΛN

[

(d− 1)Mp

(

XA(id−1=ℓ)

d−1,J

)

+
∑

i:i+J∋ℓ
Mp

(

XA(i0=i)

d−1,{0}
)

]2

.

For each ℓ ∈ ΛdN , the recursion hypothesis at rank d− 1 applied to XA(id−1=ℓ)

d−1,J , and to XA(i0=i)

d−1,{0} for
each i+ J ∋ ℓ, yields:

Mp/2

(

∑

ℓ∈ΛN

[

∇ℓX
A
d,J

]2
)

≤ 2d−2(CLS p)
d−1((d− 1)!)2

∑

ℓ∈ΛN

[

|J |(d− 1)‖A(id−1=ℓ)‖HS +
∑

i:i+J∋ℓ
‖A(i0=i)‖HS

]2

≤ 2d−1(CLS p)
d−1((d− 1)!)2d2|J |2‖A‖2HS = 2d−1(CLSp)

d−1(d!)2|J |2‖A‖2HS,

where we used (a+ b)2 ≤ 2a2+2b2 for a, b ∈ R and bounded (d−1)2+1 by d2 to obtain the second
inequality. Injecting this bound in (A.42) yields (A.43) at rank d, concluding the proof.

In the next corollary, we use Theorem A.8 to establish the controllability results of Lemma 3.7
on the variables XA

d,J .

Corollary A.9. Let J ⊂ Z contain 0 and, for N ∈ N∗ and d ∈ N∗, let A = A(d,N) be a d tensor.
We do not assume that A satisfy (A.35), but instead that supN∈N∗ supΛd

N
|A| < ∞. Recall the

definition of αg from (A.32). There are constants γd = γd(αg) > 0, Cd > 0 that are independent

of A, with γ1 = +∞, such that, for each γ < γd
(

supΛd
N
|A|

)−1
:

for each N ∈ N∗ with J ⊂ ΛN ,







log νNg
(

exp
[

γN−1/2XA
0,J

])

≤ C0γ
2 supΛd

N
|A|2 if d = 1,

log νNg
(

exp
[

γN−(d−1)XA
d,J

])

≤
Cdγ supΛd

N
|A|

N
d−2
2

if d ≥ 2.

(A.44)

Proof. Fix J ⊂ Z with 0 ∈ J , and N such that J ⊂ ΛN . We will use Theorem A.8 to obtain
(A.44). Let us first explain why it is not necessary to assume the condition (A.35) on the tensor A
if it is bounded. Without this condition, N−(d−1)XA

d,J contains products of terms of the form (η̄·)p

123



for p ≥ 2. Let us explain why these terms are not a problem through an example: take d = 3 and
J = 0. Using (η̄·)2 = σ′(ρ̄·)η̄· + σ̄·, one has:

1

N2
XA

3,{0} =
1

N2

∑

(i0,i1,i2)∈Λ3
N

η̄i0 η̄i1 η̄i2A(i0, i1, i2) =
1

N2

∑

(i0,i1,i2) all different

η̄i0 η̄i1 η̄i2A(i0, i1, i2)

+
1

N2

∑

i0 6=i1

[

σ′(ρ̄i0)η̄i0 η̄i1 + σ̄i0 η̄i1
][

A(i0, i0, i1) + A(i0, i1, i0) + A(i1, i0, i0)
]

+
1

N2

∑

i0

[

σ′(ρ̄i0)
2η̄i0 + σ′(ρ̄i0)σ̄i0

]

A(i0, i0, i0).

The first term is N−2XA′

3,{0}, for a bounded tensor A′ that satisfies (A.35). All other terms are either

of the form N−2XB
d′,{0} for B a bounded d′-tensor, 1 ≤ d′ ≤ 2 that satisfies (A.35); or constant and

bounded by N−2‖A‖∞N . If one proves the corollary by recursion on d, then the N−1N−1XB
d′,{0}

are already known to concentrate nicely, thanks to the extra factor of N−1. The constant term is
bounded by O(N−1), and O(N−1) = o(N

d−2
d ) for any d ≥ 2. The case where A satisfies (A.35)

therefore reduces to the case where it does not in this example. For J 6= {0} and higher d, the
argument is similar. The general case N−(d−1)XA

d,J for A bounded therefore follows from the case
of tensors satisfying (A.35), and a recursion on d. A is henceforth assumed to satisfy (A.35).
We first obtain estimates of tail probabilities of Xd = XA

d,J under νNg . These are then used to

obtain (A.44). Fix αg > 0 as in (A.32), and let ζ > 0 satisfy ζ(1 + αg)
d/2α

−d/2
g < cd. Then, by

Theorem A.8,

νNg

(

exp

[

(ζ|Xd|)2/d

‖A‖2/dHS

])

≤
Z

1
1+αg

(1+αg)g

ZNg
ν̄N

(

exp

[

(1 + αg)(ζ|Xd|)2/d

αg‖A‖2/dHS

])

αg
1+αg

≤ 2
(

ZNg
)−1

,

It follows that there is ζ = ζd(cd, g) > 0 such that, for each t ≥ 0,

νNg

(

∣

∣Xd

∣

∣ > t
)

≤ 2
(

ZNg
)−1

exp
[

− ζt2/d

‖A‖2/dHS

]

. (A.45)

At this point the proof is the same for each d ≥ 1. We focus on the d ≥ 2 case. Let γ > 0 and
write:

νNg
[

exp(γN−(d−1)|Xd|)
]

= 1 +

∫ ∞

0

etνNg (γN
−(d−1)|Xd| > t)dt. (A.46)

By assumption on A,
sup
N∈N∗

‖N−d/2A‖HS <∞.

Note that γN−(d−1)Xd is bounded by γC‖N−d/2A‖HSN for some numerical constant C > 0 and
each N ∈ N∗. Define Ã := N−d/2A. Then, with ζ given by (A.45):

νNg
[

exp[γN−(d−1)|Xd|]
]

≤ 1 + 2
(

ZNg
)−1

∫ γC‖Ã‖HSN

0

exp
[

t− ζt2/dN (d−2)/d

γ2/d‖Ã‖2/dHS

]

dt

=: 1 + 2
(

ZNg
)−1

∫ γC‖Ã‖HSN

0

qγ(t)dt.
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If γ is small enough, we claim that the negative part of the exponential is dominant. Indeed, one
has:

∀t ≤ γC‖Ã‖HSN, qγ(t) ≤ exp
[

− ζt2/dN (d−2)/d

2γ2/d‖Ã‖2/dHS

]

⇔ γ ≤ γ0

‖Ã‖HS
, γ0 = γ0(d, ζ) :=

C(2−d)/dζ

2
.

For any γ < γ0/‖Ã‖HS, one has then:

νNg
[

exp[γN−(d−1)|Xd|]
]

≤ 1 + 2
(

ZNg
)−1

∫ ∞

0

exp
[

− ζt2/dN (d−2)/d

2γ2/d‖Ã‖2/dHS

]

dt.

The change of variable u = tζd/2‖Ã‖−1
HSγ

−1N (d−2)/2, the boundedness of (ZNg )N by Lemma A.1 and

the inequality ‖Ã‖HS ≤ ‖A‖∞ conclude the proof: for each γ < γ0/‖Ã‖HS ≤ γ0/ supΛd
N
|A|,

νNg
[

exp[γN−(d−1)|Xd|]
]

≤ 1 +
2γ supΛd

N
|A|ζ2/d

N (d−2)/2

(

ZNg
)−1

∫ ∞

0

exp
[

− u2/d

2

]

dt.

A.3 Gaussian behaviour of the invariant measures and computation of
the partition function ZN

g

In this section, we discuss the relation between νNg for g ∈ g0 + S(εG) and the invariant measure
of a dynamics Ph, h ∈ S(εB). These sets are defined in Assumption 2.1, (2.22) and Theorem 2.5.
In the h = 0 case corresponding to the open SSEP, we have an explicit expression for g0, and in
particular we know that πNinv and ν

N
g0

have the same average at each site and two-point correlations
to leading order in N . It is therefore natural to expect these measures to be close in some sense.
This is the statement of our first result, which is conditional to heuristic computations on the
entropy of πNinv in [DLS07], described afterwards.

Lemma A.10. Assume the heuristic entropy computations of [DLS07] hold, i.e., if CN
0 is the

correlation matrix of the steady state πNinv at each N ∈ N∗, assume:

lim sup
N→∞

∣

∣

∣
H(πNinv|ν̄N) +

1

2
log det

( 1√
σ
CN

0

1√
σ

)∣

∣

∣
= 0. (A.47)

Then limN→∞H(πNinv|νNg0) = 0.

Remark A.11. Assuming Lemma A.10 holds, the large deviation results of Theorem 2.2 are also
valid with the invariant measure πNinv as initial condition by Pinsker’s inequality, see Corollary
3.4. �

Observe that the relative entropy H(πNinv|νNg0) is given by:

H(πNinv|νNg0) =
∑

η∈ΩN

πNinv(η) log
(πNinv(η)

ν̄N(η)

)

− logZNg0 +
1

2N

∑

(i,j)∈Λ2
N

CN
0 (i, j)MN

g0
(i, j).
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The last sum is the trace of MN
g0
CN

0 (recall that MN
g0
(i, i) = 0 for each i ∈ ΛN by construction. By

Proposition A.5, one has:

1

2N
Tr

(

CN
0 M

N
g0

)

=
1

2N
Tr

(

CN
0 σ̄

−1 − IN + CN
0 e

′
N

)

= O(N−1/2).

Proving Lemma A.10 therefore boils down to proving:

lim sup
N→∞

∣

∣

∣
logZNg0 −

1

2
log det

( 1√
σ
CN

0

1√
σ

)∣

∣

∣
= 0.

The partition function ZNg is computed for general g in Lemma A.12 below.

Lemma A.12. Assume that g : �→ R satisfies the hypotheses of Lemma A.1, as well as:
∫

�

σ̄(x)g(x, y)2σ̄(y)dxdy < 1/16. (A.48)

Compare with (3.6), which requires the same bound only of g+, not g. Then:

logZNg =
1

2
log det

(

1√
σ̄
CN
g

1√
σ̄

)

+ oN(1). (A.49)

Proof. Fix g satisfying (A.48). We construct a path (gt)t∈[0,1] between g and 0, composed of func-
tions satisfying the hypotheses of Lemma A.1, and compute the partition function by differentiating
along this path. Define:

∀t ∈ [0, 1], gt = tg, MN
t :=MN

gt , MN,σ
t = σ̄1/2MN

t σ̄
1/2, C̃N

t :=
(

νNgt (η̄iη̄j)
)

(i,j)∈Λ2
N

Note that each gt, t ≥ 0 satisfies (A.48). In particular, Proposition A.5 holds, and gives (see
(A.29)(A.30)):

∀t ∈ [0, 1], C̃N
t =

(

σ̄−1 −N−1MN
t

)−1

+ eN(t),

where diagonal terms of supt∈[0,1] eN(t) are uniformly bounded by O(N−1), and off-diagonal ones

by O(N−2) by Remark A.7. One then has, for each t ∈ (0, 1), recalling ∂tM
N
t =MN

g :

∂t logZNgt = νNgt (∂t2Π
N(gt)) =

1

2N

∑

i 6=j
C̃N
t (i, j)∂tM

N
t (i, j)

=
1

2N
Tr

[

(

σ̄−1 −N−1MN
t

)−1

∂tM
N
t

]

+
1

2N
Tr

[

eN(t)M
N
g

]

,

where we used MN
g (i, i) = 0 for each i ∈ ΛN . By definition of eN(t), this yields:

∀t ∈ (0, 1), ∂t logZNgt = Tr

[

(

IN −N−1MN,σ
t

)−1( 1

2N
∂tM

N,σ
t

)

]

+O(N−1). (A.50)

We could directly diagonalise this expression to obtain the claim of Lemma A.12 up to replacing
σ̄−1/2CN

g σ̄
−1/2 by σ̄−1/2((CN

g )−1 − eN)
−1σ̄−1/2. As we lack sufficient control on eN to relate the

determinant of these two quantities, we proceed differently. By assumption (A.48), the inverse of
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IN − N−1MN,σ
t exists and can be expressed as a series. More precisely, (A.50) becomes, for each

t ∈ (0, 1):

∂t logZNgt =
1

2

∞
∑

n=0

Tr

[

N−1∂tM
N,σ
t

(

N−1MN,σ
t

)n
]

+O(N−1)

=
1

2

∞
∑

n=0

1

n+ 1
Tr

[

∂t

(

N−1MN,σ
t

)n+1
]

+O(N−1). (A.51)

Integrate (A.51) between 0 and 1 and exchange
∫

and
∑

, which is legitimate by (A.48), to find:

logZNg −O(N−1) =
1

2

∞
∑

n=0

1

n+ 1
Tr

[

(

N−1MN,σ
g

)n+1
]

.

To obtain (A.49), recall from Proposition A.5 that N−1MN
g =

(

σ̄−1−CN
g

)−1
+ e′N , with ‖e′N‖HS =

O(N−1/2). The series
∑

n

(

N−1MN,σ − σ̄1/2/e′N σ̄
1/2

)n
thus converges for large enough N , and the

mean value inequality applied to the function t 7→ A+ tB for A = N−1MN,σ, B = barσ1/2/e′N σ̄
1/2

gives:

∞
∑

n=0

1

n+ 1
Tr

[

(

σ̄1/2
[(

σ̄−1 − CN
g

)−1
+ e′N

]

σ̄1/2
)n+1

]

=
∞
∑

n=0

1

n+ 1
Tr

[

(

(

IN − σ̄−1/2CN
g σ̄

−1/2
)−1

)n+1
]

+O(N−1).

To conclude the proof, let sp ⊂ (−1, 1) denote the spectrum of σ̄−1/2CN
g σ̄

−1/2. Then:

logZNg −O(N−1) =
1

2

∞
∑

n=0

1

n+ 1
Tr

[

(

IN −
(

σ̄−1/2CN
g σ̄

−1/2
)−1)n+1

]

=
1

2

∞
∑

n=1

1

n

∑

λ∈sp

(

1− λ−1
)n

= −1

2

∑

λ∈sp
log

(

1− (1− λ−1)
)

=
1

2
log

(

∏

λ∈sp
λ
)

=
1

2
log det

(

σ̄−1/2CN
g σ̄

−1/2
)

.

Let us now discuss the results of [DLS07] in more details. The formula (A.47) in [DLS07] is
actually given in the form:

lim sup
N→∞

∣

∣

∣
H(πNinv)−H(ν̄N)− 1

2
log det

( 1√
σ
CN

0

1√
σ

)∣

∣

∣
= 0, (A.52)

where the entropy H(µN) of a measure µN on ΩN reads:

H(µN) := −
∑

η∈ΩN

µN(η) log µN(η).
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The equivalence between (A.47) and (A.52) follows from the observation that, since ν̄N(ηi) = ρ̄i =
πNinv(ηi) for each i ∈ ΛN by definition:

H(πNinv|ν̄N) =
∑

η∈ΩN

πNinv(η) log
(πNinv(η)

ν̄N(η)

)

= −H(πNinv)−
∑

η∈ΩN

[

πNinv(η)− ν̄N(η)
]

log ν̄N(η) +H(ν̄N)

= −H(πNinv) +H(ν̄N).

The computation of H(πNinv) in [DLS07] relies on the representation of a measure in terms of its
truncated correlation functions. πNinv is written as ν̄N(η)(1+xN(η)), with xN that can be expressed
as a function F of two-point correlations, plus a correction term, that should be of sub-leading
order in N . The study of F relies on clever combinatorial arguments. Rigorously establishing
that the correction term is indeed small, however, appears to be very complicated, and only a
conjecture is offered in [DLS07].

Let us comment on the expression (A.47) of H(πNinv|ν̄N). First, it is one whole order of magni-
tude lower than the entropy H(πNinv) or H(ν̄N). Estimates on the relative entropy of the invariant
state πNinv with respect to a product measure with the correct averages have been obtained for a
large class of dynamics by Bahadoran [Bah07]. However, only an oN(1) estimate on this relative
entropy is available.
Secondly, the relative entropy H(πNinv|ν̄N) involves only two-point correlations at leading order.

Both points are related to the fact that cumulants of the occupation numbers (ηi)i∈ΛN
under

πNinv have a very particular scaling: any cumulant built from η at k ∈ N∗ different sites is bounded
by O(N−k+1). A similar bound for the entropy H(πNinv|ν̄N) is therefore expected to hold for any
dynamics with invariant measure featuring such a scaling behaviour for cumulants. In particular,
such a bound on the entropy may be used to prove that, for a bias h ∈ S(εB) (defined in (2.22)), the
scaling limit σ̄+kh of correlations under the measure νNgh indeed coincides with the scaling limit of
correlations under the invariant measure πNinv,h of the dynamics Ph (although in a weaker sense than
(2.8)). Recall that gh is the function obtained through the relative entropy method of Theorem 2.5.

Let us explain how. Assume that the following relative entropy bound holds:

lim sup
N→∞

H(πNinv,h|ν̄N) <∞, (A.53)

To study the scaling limit of correlations under πNinv,h, we proceed indirectly. First, the relative
entropy method presented in Section 3.1 can be applied to the study of the distribution-valued
valued process ΠN

· starting from νNgh , in the large N limit. This process can be characterised as the
solution of a certain martingale problem, and one can study its stationary measures. It is possible
to prove that there is but one: the large N limit of the law νNgh ◦ (ΠN)−1 of correlations under νNgh .

This limit can be described explicitly: the law of the fluctuation field Y N = N−1/2
∑

i∈ΛN
η̄iδi/N

under νNgh converges to a Gaussian field with covariance (σ̄−1 − gh)−1.
Now, under assumption (A.53), the law of ΠN

0 starting from πNinv,h is tight. Any of its weak limit
points is naturally invariant for the limiting correlation process. Since there is only one invariant
measure for the limiting correlation process, the limit of νNgh ◦ (ΠN)−1, πNinv ◦ (ΠN)−1 converges
weakly to this measure, which characterises the correlations under πNinv,h in terms of kh.
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B Integration by parts formulae

Fix h ∈ S(εB) and g ∈ g0+S(εG) (the set S(ε) is defined in (2.22) for each ε > 0). In this section,
we provide an integration by parts formula under the measure νNg , both in the bulk and close
to the reservoirs. The formula close to the reservoirs proves the Γ-controllability of the variables
U±
0 , U

±
1 encountered in Lemma 3.7.

B.1 Integration by parts in the bulk

Before stating the result, let us give some notations and explain what we mean by an integration
by parts formula. Fix a density f : ΩN → R for νNg . For i < N − 1, let Γi,i+1

h be defined as:

∀η ∈ ΩN , Γi,i+1
h (

√

f)(η) =
1

2
ch(η, i, i+ 1)

[

∇i,i+1

√

f(η)
]2
, (B.1)

with, for any u : ΩN → R and any i < N − 1:

∀η ∈ ΩN , ∇i,i+1u(η) = u(ηi,i+1)− u(η).
The jump rates ch are defined in (2.19).
Consider a family (ωi)i∈ΛN

of functions on ΩN . By an integration by parts formula under νNg , we
mean:

∑

η∈ΩN

(ωi+1 − ωi)f(η)νNg (η) =
∑

η∈ΩN

q(η)[f(ηi,i+1)− f(η)]νNg (η) + νNg (fX), (B.2)

where q,X are explicit functions, and X hopefully has good concentration properties under νNg .
The point of such a formula is that the first term in the right-hand side above can be expressed
in terms of Γi,i+1

h (
√
f). The equality (B.2) amounts to turning a discrete spatial gradient (here

ωi+1 − ωi) into a gradient on the dynamics, along an edge η → ηi,i+1. The natural choice for ω· in
our case is ω· = η̄·, however a simpler formula (B.2) is obtained, following [JM18b], through the
choice:

∀i ∈ ΛN , ωi =
η̄i
σ̄i
, η̄i = ηi − ρ̄i, σ̄i = ρ̄i(1− ρ̄i). (B.3)

We are now ready to state the integration by parts formula.

Lemma B.1. Let f be a νNg -density. Fix i < N − 1 and let u : ΩN → R be such that ∇i,i+1u = 0.
Then:

νNg
[

u(ωi+1 − ωi)f
]

= νNg
(

uq∇i,i+1f
)

− (ρ̄i+1 − ρ̄i)νNg
[

ωiωi+1e
−(ηi+1−ηi)Cg

i /Nuf
]

+ νNg

[

(ωi+1 − ωi)
(

1− e−(ηi+1−ηi)Cg
i /N

)

uf
]

, (B.4)

where the function q also depends on i:

∀η ∈ ΩN , q(η) =
ηi(1− ηi+1)

ρ̄i(1− ρ̄i+1)
e−(ηi+1−ηi)Cg

i /N . (B.5)

Recall that, for each i < N − 1, N−1(ηi− ηi+1)C
g
i = ∇i,i+1Π

N(g) is defined in (3.31), and satisfies
‖Cg

· ‖ ≤ 2‖g‖∞.
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Proof. Let i < N − 1 and q : ΩN → R. Notice that, by definition of ∇i,i+1:

νNg
[

uq∇i,i+1f
]

=
∑

ΩN

uq∇i,i+1fν
N
g =

∑

ΩN

f
∇i,i+1(uqν

N
g )

νNg
νNg = νNg

[

uf
∇i,i+1(qν

N
g )

νNg

]

, (B.6)

where we used ∇i,i+1u = 0 to obtain the second equality. The gradient in the right-hand side
reads:

∀η ∈ ΩN ,
∇i,i+1(qν

N
g )(η)

νNg (η)
= q(ηi,i+1) exp

[

− (ηi+1 − ηi)
N

(

2Cg
i + ∂Nλi

)

]

− q(η),

where λi = log(ρ̄i/(1− ρ̄i)). We need to choose a suitable q in order to have a difference ωi+1− ωi
arise above. In the g = 0 case, corresponding to [JM18b], one can take:

q̃(η) :=
ηi(1− ηi+1)

ρ̄i(1− ρ̄i+1)
.

When g 6= 0, the exponential of Cg
i does not change things much, and if q is taken as in (B.5),

then:

∇i,i+1(qν
N
g )

νNg
(η) =

[

ηi+1(1− ηi)
ρ̄i+1(1− ρ̄i)

− ηi(1− ηi+1)

ρ̄i(1− ρ̄i+1)

]

e−(ηi+1−ηi)Cg
i /N . (B.7)

The variables ω· (see (B.3)) are tailored to give the above bracket a nice expression (see (A.3) in
[JM18b]):

[

ηi+1(1− ηi)
ρ̄i+1(1− ρ̄i)

− ηi(1− ηi+1)

ρ̄i(1− ρ̄i+1)

]

= ωi+1 − ωi + (ρ̄i+1 − ρ̄i)ωiωi+1.

This formula can be checked by looking for the left-hand side as a polynomial in ωi, ωi+1, of the
form a+ bωi + cωi+1 + dωiωi+1 for real numbers a, b, c, d. Equation (B.7) then becomes:

∇i,i+1(qν
N
g )

νNg
(η) = ωi+1 − ωi + (ωi+1 − ωi)

(

e−(ηi+1−ηi)Cg
i /N − 1

)

+ (ρ̄i+1 − ρ̄i)ωiωi+1e
−(ηi+1−ηi)Cg

i /N ,

which proves the lemma when plugged into (B.6).

The next lemma rewrites the result of Lemma B.1 in terms of the carré du champ operator.

Lemma B.2. Let i < N−1 and let u : ΩN → R be such that ∇i,i+1u = 0. There is then a constant
C = C(h, g, ρ̄) > 0 such that, for any δ > 0:

νNg
[

u(ωi+1 − ωi)f
]

≤ δN2νNg
[

Γi,i+1
h (f 1/2)

]

+
C

δN2
νNg

[

fu2
]

(B.8)

− (ρ̄i+1 − ρ̄i)νNg
[

ωiωi+1e
−(ηi+1−ηi)Cg

i /Nuf
]

+ νNg

[

(ωi+1 − ωi)
(

1− e−(ηi+1−ηi)Cg
i /N

)

uf
]

.
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Proof. Let i < N − 1 and β > 0. In (B.4), write, for each η ∈ ΩN :

∇i,i+1f(η)u(η)q(η) = β1/2[f 1/2(ηi,i+1)− f 1/2(η)] · β−1/2u(η)q(η)[f 1/2(ηi,i+1) + f 1/2(η)].

Apply then Cauchy-Schwarz inequality to obtain:

νNg
[

u(ωi+1 − ωi)f
]

≤ β

2
νNg

[(

∇i,i+1f
1/2

)2]
+

1

β
νNg

[(

f(η) + f(ηi,i+1)
)

u2q2
]

(B.9)

− (ρ̄i+1 − ρ̄i)νNg
[

ωiωi+1e
−(ηi+1−ηi)Cg

i /Nuf
]

+ νNg

[

(ωi+1 − ωi)
(

1− e−(ηi+1−ηi)Cg
i /N

)

uf
]

.

Changing variables η ← ηi,i+1, since ρ̄i ∈ [ρ−, ρ+] ⊂ (0, 1), the second expectation in (B.9) reads:

1

β
νNg

[(

f(η) + f(ηi,i+1)
)

u2q2
]

=
1

β

∑

η∈ΩN

f(η)u2(η)
[

q2(η) + q2(ηi,i+1)
νNg (η

i,i+1)

νNg (η)

]

νNg (η)

≤ e4‖g‖∞M

β
νNg

[

fu2
]

,

where M = max{(ρ̄j(1− ρ̄j+1))
−2, (σ̄jσ̄j+1)

−1 : j < N − 1} depends only on ρ±.
Consider now the first term in the right-hand side of (B.9). Since ch(η, i, i+1) ≥ c(η, i, i+1)e−2‖h‖∞

for each η ∈ ΩN , it reads:

β

2

∫

[

∇i,i+1f
1/2

]2
dνNg ≤ βe2‖h‖∞νNg

(

Γi,i+1
h (

√

f)
)

.

Taking β = δN2e2‖h‖∞ concludes the proof.

B.2 Integration by parts at the boundary and boundary correlations

Here, we estimate dynamical correlations involving sites close the reservoirs, i.e. correlations of
the form η̄±(N−1)XN for a function XN : ΩN → R. Recall that h ∈ S(εB), g ∈ g0+S(εG) are fixed,
and the definition (2.2) of the jump rates at the boundary. Define, for f : ΩN → R:

∀η ∈ ΩN , Γ±
h (f) =

ch(η,±(N − 1))

2

[

f(η±(N−1))− f(η)
]2
, (B.10)

and observe:
ch(η,±(N − 1)) ≥ e−2‖h‖∞ min{ρε1 , (1− ρε2) : ε1, ε2 ∈ {−,+}}. (B.11)

Lemma B.3. Fix n ∈ N∗ and, for each N ∈ N∗, let φn : ΛnN → R satisfy:

sup
N∈N∗

sup
Λn
N

|φn| <∞.

For ε ∈ {+,−}, define U ε
0 (η) = η̄ε(N−1) for η ∈ ΩN , and:

∀η ∈ ΩN , U ε
n(η) = η̄ε(N−1)V

ε
n (η), V ε

n (η) =
1

Nn−1

∑

i1,...,in 6=ε(N−1)

η̄i1 ...η̄inφn(i1, ..., in).
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Then, for each n ∈ N, U ε
n is Γ-controllable with size N−1 in the sense of Lemma 3.7. More

precisely, there is C > 0 such that, for any νNg -density f and any δ ∈ (0, 1):

νNg
(

fU ε
n

)

≤ δN2νNg
(

Γεh(
√

f)
)

+ νNg

(

f
C

N2

((V ε
n )

2

δ
+
∣

∣

∣
V ε
n

∑

j 6=ε(N−1)

η̄j(Ngε(N−1),j)
∣

∣

∣

)

)

+ αNn , (B.12)

setting V ε
0 := 1 by convention and with αNn = O(N−1) if n ≥ 1 and αN0 = O(N−2).

Remark B.4. The estimate on the size of U ε
n is optimal only if n ≤ 1. U ε

n with n ≤ 1 are used in
the computation of the adjoint in Section 3.2, while U ε

2 is useful in Section C. �

Proof. Let n ∈ N∗. Using the notations of Corollary A.9, the term in the expectation in the right-
hand side of (B.12) is of the formN−1·

(

N−(2n−1)Xψ2n

2n,{0}+N
−nXψn+1

n+1,{0}
)

with supN∈N∗ ‖N−qψq‖HS <
∞, q ∈ {n, 2n}. It is thus controllable with size (at most) N−1 as claimed, and it is enough to prove
(B.12). We do so for the left boundary ε = −, the proof for the right boundary being identical.
The goal is to create a gradient of f of the form (B.10). We use the shorthand notation b =
−(N − 1). Notice that V −

n (ηb) = V −
n (η) for any η. The mapping η 7→ ηb is bijective on ΩN , thus:

νNg (fη̄bV
−
n ) =

1

2

∑

η∈ΩN

νNg (η)V
−
n (η)

[

f(η)(ηb − ρ̄b) + f(ηb)(1− ηb − ρ̄b)
νNg (η

b)

νNg (η)

]

. (B.13)

For η ∈ ΩN , let us compute the ratio νNg (η
b)/νNg (η):

νNg (η
b)

νNg (η)
=

(1− ηb)ρ̄b + ηb(1− ρ̄b)
ηbρ̄b + (1− ηb)(1− ρ̄b)

e2Π
N (g)(ηb)−2ΠN (g)(η)

=
( ρ̄b
1− ρ̄b

)1−2ηb
exp

[(1− 2ηb)

N

∑

j 6=b
η̄jgb,j

]

. (B.14)

For future reference, notice that (B.14) is bounded by C(ρ±)e2‖g‖∞ for some C(ρ±) > 0. Forgetting
g for a second in (B.13), notice also that, for each η ∈ ΩN :

f(η)(ηb − ρ̄b) + f(ηb)(1− ηb − ρ̄b)
( ρ̄b
1− ρ̄b

)1−2ηb

= ηb(1− ρ̄b)
[

f(η)− f(ηb)
]

− (1− ηb)ρ̄b
[

f(η)− f(ηb)
]

= η̄b
(

f(η)− f(ηb)
)

, (B.15)

which involves a gradient of f as desired. Coming back to (B.14), note that, since g(±1, ·) = 0, the
argument of the exponential in (B.14) is bounded by O(N−1). Equation (B.15) and the existence
of C(g) > 0 such that |ex − 1− x| ≤ C(g)x2 holds for x ≤ 2‖g‖∞ therefore yield the bound:

∣

∣

∣
νNg (fη̄bV

−
n )− 1

2

∑

η∈ΩN

νNg (η)V
−
n (η)η̄b

[

f(η)− f(ηb)
]

− 1

2N2

∑

η∈ΩN

νNg (η)V
−
n (η)f(ηb) (B.16)

× (1− ηb − ρ̄b)
( ρ̄b
1− ρ̄b

)1−2ηb
(1− 2ηb)

∑

j 6=b
η̄j(Ngb,j)

∣

∣

∣
≤ C(g)‖V −

n ‖∞
N2

=: αnN .
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It remains to estimate the second and third terms in the left-hand side. Consider first the third
term. Using the bijection η 7→ ηb to turn f(ηb) into f(η), recalling that V −

n (ηb) = V −
n (η) for each

η ∈ ΩN , and bounding the ratio (B.14) by C(ρ±)e2‖g‖∞ , one finds:

∣

∣

∣

1

2N2

∑

η∈ΩN

νNg (η)V
−
n (η)f(ηb)(1− ηb − ρ̄b)

( ρ̄b
1− ρ̄b

)1−2ηb ∑

j 6=b
η̄j(Ngb,j)

)∣

∣

∣

≤ C(ρ±)e2‖g‖∞

N2
νNg

(

f
∣

∣

∣
V −
n

∑

j 6=b
η̄j(Ngb,j)

∣

∣

∣

)

, (B.17)

which is one of the terms appearing in (B.12). Consider now the second term in the left-hand side
of (B.16). For β > 0 and η ∈ ΩN , split [f(η)−f(ηb)] into β[f 1/2(η)−f 1/2(ηb)]β−1[f 1/2(η)+f 1/2(ηb)]
and apply Cauchy-Schwarz inequality twice to find, bounding (η̄b)

2 by 1:

1

2

∑

η∈ΩN

V −
n (η)η̄b

[

f(η)−f(ηb)
]

≤ β

4

∑

η∈ΩN

[

f 1/2(η)−f 1/2(ηb)
]2
+

1

2β

∑

η∈ΩN

νNg (η)
[

f(η)+f(ηb)
]

(V −
n )2(η).

As for (B.17), the last expectation is bounded by β−1C(g)νNg (f(V
−
n )2). To conclude the proof,

recall from (B.10) the expression of Γ−
h and from (B.11) the lower bound C(ρ±)e−‖h‖∞ on the jump

rates. Choose β = 2C(ρ±)e−2‖h‖∞δN2 for δ > 0. Then:

1

2

∑

η∈ΩN

V −
n (η)η̄b

[

f(η)− f(ηb)
]

≤ δN2νNg
(

Γ−
h (
√

f)
)

+
C(g)C(ρ±)e2‖h‖∞

2δN2
νNg

(

f(V −
n )2

)

,

which together with (B.16) and (B.17) is precisely the right-hand side of (B.12).

C Control of the error terms

Fix h ∈ S(εB) and an associated gh ∈ g0 + S(εG), solution of the main equation (2.31). Recall
that the set S(ε), ε > 0 is defined in (2.22). In this section we estimate, for each density f for νNgh ,

the average against fνNgh of the function Xφ
2,{0,1}, φ : Λ2

N → R, defined below in (C.1). This proves

the claim on the size of (3.62) in the proof of Lemma 3.3. We also estimate the expectation of the
time average of any error term encountered in the text.

Proposition C.1. Let φ ∈ Λ2
N → R satisfy supN∈N∗ ‖φ2‖∞ <∞. Recall that Xφ

2,{0,1}, abbreviated

as X2, was defined in (A.34) by:

∀η ∈ ΩN , X2(η) =
∑

i<N−1

∑

j /∈{i,i+1}
η̄iη̄i+1η̄jφ(i, j). (C.1)

Then N−1X2 is Γ-controllable with size N−1/2 (recall Definition 3.5).

The next proposition controls in particular the size of error terms.
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Proposition C.2. Let EN be an error term, and let FN be either controllable or Γ-controllable
with size 1 (recall Definition 3.5). There is then C > 0 such that:

∀T > 0, lim sup
N→∞

E
νNgh
h

[
∣

∣

∣

∫ T

0

EN(ηt)dt
∣

∣

∣

]

= 0,

E
νNgh
h

[∣

∣

∣

∫ T

0

FN(ηt)dt
∣

∣

∣

]

≤ C(1 + T ) + CT
C(h)eC(h)T

N1/2
, (C.2)

If the error term is known explicitly, the estimate (C.2) can be made quantitative.

Corollary C.3. For p ∈ N∗, let φp : ΛpN → R satisfy supN ‖φp‖∞ < ∞. Let J = {0} or {0, 1},
and recall the definition of X

φp
p,J from Theorem A.8 and of U±

p from Lemma B.3.

If EN is either EN
1 = N−1Xφ1

1,J , N
−2Xφ2

2,J or EN
p ∈ {N−(p−1)X

φp
p,J , U

±
p−1} if p ≥ 3, then for any

T > 0, there is C(T, h) > 0 such that:

∀p ∈ N∗, E
νNgh
h

[∣

∣

∣

∫ T

0

EN
p (ηt)dt

∣

∣

∣

]

≤ C(T, h)(1 + ‖φp‖∞)N−1/4. (C.3)

Propositions C.1-C.2 and Corollary C.3 are proven in the next two sections.

C.1 Estimate of X2

In this section, we prove Proposition C.1. Fix φ : Λ2
N → R, N ∈ N∗ as in the proposition. Fix also

a density f for νNgh once and for all. The proof of Proposition C.1 being very technical, we first
present its general structure.
The idea is to smoothen the product η̄iη̄i+1 into a quantity that depends on all η̄’s in a box of size
ℓ with ℓ sufficiently large, then use the entropic inequality to estimate the resulting term. The
cost of this replacement will be estimated by an integration by parts formula, see Section B.
We need room between the indices i, i + 1 and j in the definition (C.1) of X2 to take averages in
a box. Let Iℓ be the segment {0, ..., ℓ− 1} and split the sum on j in (C.1) as follows:

∀η ∈ ΩN ,
1

N
X2(η) =

−→
X ℓ

2 +
←−
X ℓ

2,
−→
X ℓ

2 =
1

N

∑

i<N−1

∑

j∈ΛN
j /∈i+1+Iℓ

η̄iη̄i+1η̄jφ(i, j) (C.4)

←−
X ℓ

2 =
1

N

∑

i<N−1

∑

j∈ΛN\{i,i+1}
j∈i+1+Iℓ

η̄iη̄i+1η̄jφ(i, j) (C.5)

The direction of the arrow indicates the direction in which the replacement of η̄i (←) or η̄i+1 (→)
by averages on sites to the left of i (←) or to the right of i + 1 (→) is going to be performed.

Estimates for
←−
X ℓ

2 and
−→
X ℓ

2 are identical, so we only estimate the latter. In practice, the replacement
is made thanks to the integration by parts Lemma B.2, which uses ω· = η̄·/σ̄· as main variable.
Write:

A(i, j) := σ̄i+1φ(i, j), i < N − 1, j ∈ ΛN .

Then:
∀η ∈ ΩN ,

−→
X ℓ

2(η) =
∑

−(N−1)≤i<N−1

∑

j∈ΛN
j /∈i+1+Iℓ

η̄iωi+1η̄jA(i, j), (C.6)
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and we replace ωi+1 by
1
ℓ

∑

a∈i+1+Iℓ
ωa. If i+1 is too close to the reservoirs, i.e. if i+1+ℓ > N−1,

then this replacement does not make sense. In this case, we spread the unit mass at i + 1 to 1/ℓ

at each site in i+ 1+ Iℓ ∩ ΛN , and leave the remaining 1− N−(i+1)
ℓ

mass at the boundary. This is
summarised in the following definition:

∀i < N − 1, −→ω ℓ
i+1 =

1

ℓ

min{i+ℓ,N−1}
∑

a=i+1

ωa + 1i+1+ℓ>N−1

(

1− N − (i+ 1)

ℓ

)

ωN−1.

Choice of ℓ. Let
−→
Y ℓ

2 denote the averaged version of
−→
X ℓ

2:

∀η ∈ ΩN ,
−→
Y ℓ

2(η) =
−→
Z ℓ

2(η) (C.7)

+
1

N

∑

−(N−1)≤i<N−1

∑

j∈ΛN
j /∈i+1+Iℓ

η̄iη̄j1i+ℓ>N−1

(

1− N − (i+ 1)

ℓ

)

ωN−1A(i, j),

with:

∀η ∈ ΩN ,
−→
Z ℓ

2(η) =
1

N

∑

−(N−1)≤i<N−1

∑

j∈ΛN
j /∈i+1+Iℓ

η̄iη̄j

(1

ℓ

min{i+1+ℓ,N−1}
∑

a=i+1

ωa

)

A(i, j).

The last term in (C.7) is Γ-controllable with size N−1 by Lemma B.3. For the replacement of
−→
X ℓ

2

by
−→
Y ℓ

2 to be useful,
−→
Z ℓ

2 should be controllable with size oN(1). This requirement will fix the choice
of ℓ. Looking at Corollary A.9, we see that any ℓ such that ℓ = o(N) fails, so we take:

ℓ := N. (C.8)

The entropy inequality is then effective on
−→
Z N

2 . Indeed, it is of the form:

∀η ∈ ΩN ,
−→
Z N

2 (η) =
1

N2

∑

(i,j,a)∈Λ3
N

|{(i,j,a)}|=3

η̄iη̄j η̄aÃ(i, j, a),

for some function Ã satisfying |Ã(i, j, a)| ≤ |A(i, j)| for each (i, j, a) ∈ Λ3
N . By Corollary A.9,

−→
Z N

2

is therefore controllable with size N−1/2: there are γ, C > 0 such that:

νNgh
(

f
−→
Z N

2

)

≤ H(fνNg |νNg )
γ

+
1

γ
log νNg

[

exp
(

γ
−→
Z N

2

)

]

≤ H(fνNg |νNg )
γ

+
C

N1/2
.

Cost of the replacement. Let us estimate the cost of replacing
−→
XN

2 by
−→
Y N

2 , defined in (C.7).
To do so, we use of the following integration by parts identity, which explicitly describes how to
spread the unit mass at i + 1, i < N − 1, to 1/N on every site up to the boundary, where the
remaining mass is then left. One has:

ωi+1 −−→ω N
i+1 =

min{i+N,N−1}−1
∑

a=i+1

φN(a− (i+ 1))(ωa − ωa+1), φN(b) =
N − 1− b

N
10≤b<N , b ∈ Z.
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For brevity, for a ∈ ΛN , let ua denote the quantity:

∀η ∈ ΩN , ua(η) =
1

N

∑

i<N−1
a−N≤i<a

φN(a− (i+ 1))η̄i
∑

j∈ΛN
j /∈i+1+IN

η̄jA(i, j). (C.9)

Then, for each η ∈ ΩN : −→
XN

2 −
−→
Y N

2 =
∑

a<N−1

(ωa − ωa+1)ua(η),

To estimate the expectation of the right-hand side above under fνNg , apply, for each a < N − 1,
the integration by parts formula of Lemma B.2, with u = −ua. There is thus a constant C > 0
such that, for each δ > 0:

∑

a<N−1

νNgh
(

f(ωa − ωa+1)ua
)

≤ δN2

4
νNgh

(

Γh(
√

f)
)

+
C

δN2

∑

a<N−1

νNgh
(

u2af
)

(:= νNgh(fR1)) (C.10)

+
∑

a<N−1

(ρa+1 − ρa)νNgh
(

ωaωa+1e
−(ηa+1−ηa)Cgh

a /Nuaf
)

(:= νNgh(fR2)) (C.11)

−
∑

a<N−1

νNgh

(

(ωa+1 − ωa)
(

1− e−(ηa+1−ηa)Cgh
a /N

)

uaf
)

(:= νNgh(fR3)). (C.12)

Let us estimate one by one each of (C.10)-(C.11)-(C.12). Consider first νNgh(fR3), and note that:

sup
N

sup
a∈ΛN

|(ωa+1 − ωa)(ηa+1 − ηa)| ≤ C(ρ±).

As a result, using the identity ex = 1 +
∫ 1

0
xetxdt for x ∈ R and the fact that |Cgh· | ≤ 2‖gh‖∞,

νNgh(fR3) can be bounded as follows:

∣

∣νNgh(fR3)
∣

∣ ≤ C(ρ±)e
2‖g‖∞νNgh

(

1

N

∑

a<N−1

f
∣

∣Cgh
a ua

∣

∣

)

.

By definition of Cgh· (see e.g. Lemma B.1) and of u· in (C.9), the product Cgh· u· is of the form:

∀a ∈ ΛN , Cgh
a ua =

1

N2

∑

(i,j,b)∈Λ3
N

η̄iη̄j η̄bψ
a
i,j,b +

1

N3

∑

(i,j)∈Λ2
N

η̄iη̄jψ̃
a
i,j,

where the functions ψa, ψ̃a : (−1, 1)3 → R are bounded uniformly in a. It follows by Corollary A.9
that R3 is controllable with size N−1/2.
Consider now R2, defined in (C.11). Again using ex = 1 +

∫ 1

0
xetxdt for x ∈ R, we can bound

νNgh(fR2) as follows:

νNgh(fR2) ≤
ρ̄′

N

∑

a<N−1

νNgh
(

fωaωa+1ua
)

+
ρ̄′e2‖gh‖∞

N2

∑

a<N−1

1

σ̄aσ̄a+1

νNgh

(

f
∣

∣Cgh
a ua

∣

∣

)

. (C.13)

Recalling the definition of u· from (C.9), the first term in (C.13) is of the form N−2XB
3,{0,1} in the

notations of Theorem A.8, i.e. of the form N−2
∑

i,j,b η̄iη̄i+1η̄j η̄bB(i, j, b), with B bounded. Corol-
lary A.9 tells us that this function does not behave worse than a sum of three-point correlations,
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and is therefore controllable with size N−1/2. In addition, the second term in (C.13) has the same
structure as N−1R3, and is therefore controllable with size N−3/2.
Consider finally R1 in (C.12). It reads:

νNgh(fR1) =
C

δN4

∑

a<N−1

∑

i,j<N−1
a−N≤i,j<a

φN(a− (i+ 1))φN(a− (j + 1))η̄iη̄j
∑

(b,c)∈Λ2
N

b/∈i+1+IN
c/∈j+1+IN

η̄bη̄cA(i, b)A(j, c).

In particular, it is of the form N−3Xv4
4,{0} for a v4 : Λ4

N → R satisfying supN supΛ4
N
|v4| < ∞, and

therefore controllable with size N−1 by Corollary A.9. For each δ > 0, we have proven the existence
of a controllable function Rδ : ΩN → R such that:

∣

∣

∣
νNgh

(−→
XN

2

)
∣

∣

∣
≤ δN2

2
νNgh

(

Γh(
√

f)
)

+ νNgh
(

f(
−→
Y N

2 +Rδ)
)

, Rδ := Rδ
1 +R2 +R3.

The arguments above do not depend on the sign of A in the definition (C.5) of
−→
XN

2 . This implies

that
−→
XN

2 is Γ controllable with size N−1/2 in the sense of Definition 3.5. Since the same arguments

also apply to
←−
XN

2 , Proposition C.1 is proven.

C.2 Proof of Proposition C.2 and Corollary C.3

We now have all we need to prove Proposition C.2 and Corollary C.3.

Proof of Proposition C.2. Fix a time T > 0. Write GN for either EN of FN . The proof of
Proposition C.2 for a controllable function GN with size sN = ON(1) (sN = oN(1) corresponding
to a controllable error term, recall Definition 3.5) follows immediately from the entropy inequality:
by Theorem 2.5, there is C(h) > 0 such that, applying the entropy inequality at each time:

E
νNgh
h

[∣

∣

∣

∫ T

0

GN(ηt)dt
∣

∣

∣

]

≤ E
νNgh
h

[

∫ T

0

∣

∣GN(ηt)
∣

∣dt
]

≤ T

γ

(

C(h)eC(h)T

N1/2
+ log νNgh

(

exp(γ|GN |)
)

)

. (C.14)

By definition of controllability, there are γ(G), C(G) > 0 independent of N such that the expo-
nential moment above is bounded by γ(G)C(G)sN . As a result:

E
νNgh
h

[∣

∣

∣

∫ T

0

GN(ηt)dt
∣

∣

∣

]

≤ TC(h)eC(h)T

γ(G)N1/2
+ TC(G)sN . (C.15)

If GN is controllable with size 1, sN is bounded. If instead GN is a controllable error term,
sN = oN(1) and (C.15) becomes:

lim sup
N→∞

E
νNgh
h

[∣

∣

∣

∫ T

0

GN(ηt)dt
∣

∣

∣

]

= 0.
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Assume now that GN be Γ-controllable with size sN = ON(1). The important observation is that
aG is then also Γ-controllable with size c(a)sN for some c(a) > 0. Indeed, for each δ′ > 0, by
definition of Γ-controllability, there are functions Ỹ δ′

GN ,± such that, for each density f for νNgh :

νNgh
(

f(±GN)
)

≤ δ′N2νNgh
(

Γh(
√

f)
)

+ νNgh
(

fỸ δ′

GN ,±
)

.

For each a > 0 and each δ > 0, the above equation with δ′ = δ/a yields:

νNgh
(

f(±aGN)
)

≤ δN2νNgh
(

Γh(
√

f)
)

+ νNgh
(

fY a,δ
GN ,±

)

, Y a,δ
GN ,± := aỸ

δ/a

GN ,±, (C.16)

and Y a,δ
GN ,± is indeed controllable with size c(a)sN for some c(a) > 0.

Let a > 0 to be chosen later. In the following, we set:

δ :=
1

4
, Y a

GN ,± := Y
a,1/4

GN ,±.

To estimate E
νNgh
h [|

∫ T

0
GN(ηt)dt|], recall from Lemma 3.3 the existence of a controllable function E

with size N−1/2 such that, for any ν̄gh-density f ,

νNgh
(

fL∗
h1

)

≤ N2

2
νNgh

(

Γh(
√

f)
)

+ νNgh(fE). (C.17)

Write then:

E
νNgh
h

[∣

∣

∣

1

T

∫ T

0

GN(ηt)dt
∣

∣

∣

]

=

∫ ∞

0

P
νNgh
h

(∣

∣

∣

∫ T

0

GN(ηt)dt
∣

∣

∣
> λT

)

dλ

≤
∫ ∞

0

P
νNgh
h

(

∫ T

0

aGN(ηt)dt > aλT
)

+

∫ ∞

0

P
νNgh
h

(

−
∫ T

0

aGN(ηt)dt > aλT
)

dλ. (C.18)

Recall the definition of E from (C.17). Add and subtract Y a
GN ,+ + E/2 to the argument of the

integral in the first probability, Y a
GN ,− + E/2 to the argument of the second to find that (C.18) is

bounded from above by:
∫ ∞

0

P
νNgh
h

(

∫ T

0

[

aGN − Y a
GN ,+ −

E
2

]

(ηt)dt > aλT/2
)

dλ (C.19)

+
2

aT
E
νNgh
h

[∣

∣

∣

∫ T

0

[

Y a
GN ,+ +

E
2

]

(ηt)dt
∣

∣

∣

]

+

∫ ∞

0

P
νNgh
h

(

∫ T

0

[

− aGN − Y a
GN ,− −

E
2

]

(ηt)dt > aλT/2
)

dλ (C.20)

+
2

aT
E
νNgh
h

[∣

∣

∣

∫ T

0

[

Y a
GN ,− +

E
2

]

(ηt)dt
∣

∣

∣

]

.

The functions Y a
GN ,±, E have been defined in (C.16)-(C.17) in such a way that, applying Feynman-

Kac inequality (3.5) to each of the probabilities in (C.19)-(C.20) yields, for each λ > 0:

logP
νNgh
h

(

∫ T

0

[

± aGN − Y a
GN ,± −

E
2

]

(ηt)dt > aλT/2
)

≤ −aλT/2 + T sup
f≥0:νNgh

(f)=1

{

νNgh

(

f
[

± aGN − Y a
GN ,± −

E
2
+
L∗
h1

2

])

− N2

2
νNgh

(

Γh(
√

f)
)

}

.
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Recalling (C.16) and (C.17), the above supremum is negative and one finds, for each λ > 0:

P
νNgh
h

(

∫ T

0

[

± aGN − Y a
GN ,± −

E
2

]

(ηt)dt > aλT/2
)

≤ e−aλT/2.

As a result, putting together the last equation and the estimate (C.15), which holds for some
constants C(e), C(a) > 0 for E , Y a

GN ,± instead of C(G):

E
νNgh
h

[∣

∣

∣

∫ T

0

GN(ηt)dt
∣

∣

∣

]

≤ 2

∫ ∞

0

e−aλ/2dλ+
TC(h)eC(h)T [C(e) + C(a)]

aN1/2
+
TC(e)

aN1/2
+
TC(a)sN

a

=
4

a
+
TC(h)eC(h)T [C(e) + C(a)]

aN1/2
+
TC(e)

aN1/2
+
TC(a)sN

a
. (C.21)

If sn = oN(1), corresponding to an error term, then taking N large followed by a large concludes
the proof of Proposition C.2. Otherwise, if sN = ON(1), taking any a > 0 independent of N yields
the claim.

Proof of Corollary C.3. Let EN be one of the error term amongstN−1Xφ1
1,J , N

−2Xφ2
2,J orN

(−p−1)X
φp
p,J

for p ≥ 3 and bounded φp : ΛpN → R, p ≥ 1, as in Corollary C.3. Write EN = EN
p for the cor-

responding p ∈ N∗. Then EN
p is a controllable error term with size at most N−1/2. The estimate

(C.15) thus applies to GN = EN
p and yields the claim.

Assume now that EN
p is either U±

p for p ∈ N, or Xφ2
2,{0,1}. Then EN

p is a Γ-controllable error

term with size at most N−1/2 by Lemma B.3 and Proposition C.1. It can then be seen from (B.12)
and the proof of Proposition C.1 (see Equations (C.10) to (C.12)) that the Y a

EN
p ,± associated with

EN
p in fact read:

Y a
EN

p ,± = aYEN
p ,± + a2ZEN

p ,±,

where YEN
p ,±, ZEN

p ,± are independent of a, and controllable with size N−1/2. Indeed, the a2 factor
arises due to the integration by parts formulae of Appendix B, as a consequence of the use of
Cauchy-Schwarz inequality to have the Dirichlet form appear. On the other hand, aYEN

p ,± is the
sum of the other terms that appear when using the integration by parts formula.
From this observation, one can see that both YEN

p ,± and ZEN
p ,± are of the form X

ψq

q,J or U±
q for some

q ∈ N∗. The tensor ψq has entries bounded by C‖φp‖∞ for YEN ,±, and by C ′‖φp‖2∞ for ZEN ,± for
some C,C ′ independent of φp. The constant C(a) in (C.21) thus satisfies:

C(a) ≤ aC ′′‖φp‖∞
(

1 + a‖φp‖∞
)

,

for some C ′′ > 0 independent of φp, where from (C.21) becomes:

E
νNgh
h

[∣

∣

∣

∫ T

0

EN
p (ηt)dt

∣

∣

∣

]

≤ 4

a
+
[

TC(h)eC(h)T + T
][ C(e)

aN1/2
+
C ′′‖φp‖∞(1 + a‖φp‖∞)

N1/2

]

.

Taking a = min{1, ‖φp‖−1
∞ }N1/4 then yields the claim (C.3).
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D The Neumann condition on the diagonal

Let h ∈ S(εB) and let gh ∈ g0 + S(εG) be the associated solution of the main equation (2.31),
where the set S(ε), ε > 0 is defined in (2.22). In this section, we rewrite the term:

1

4

∑

i<N−1

η̄iη̄i+1

(

∂1hi+,i − ∂1hi−,i
)

(D.1)

as a function of the two-point correlations field ΠN , defined in (2.6). This is necessary in the proof
of the upper-bound large deviations, in order to obtain a closed expression of the Radon-Nikodym
derivative in terms of the field ΠN . It is done through the integration by parts Lemma B.1. As
h ∈ S(εB), the function q(x) = ∂1hx+,x − ∂1hx−,x, x ∈ (−1, 1) can be extended into an element of
C2([−1, 1]), still denoted by q, which satisfies q(±1) = 0 (by hypothesis on S(εB), see (2.22)).
Let ε ∈ (0, 1) ∈ N∗ and INε := {0, ..., Nε− 1}, writing Nε for ⌊Nε⌋. As the correlation field ΠN is
defined on T , which contains sufficiently smooth functions only, we cannot simply replace ωi+1 by
a uniform average of ω· on i + 1 + INε. Consider instead a function χε ∈ C∞(�̄) with χε = 0 on
∂�, 0 ≤ χε ≤ 2/ε, such that χε(x, ·) is supported on (x, x+ ε)∩ (−1, 1) for each x ∈ (−1, 1), and:

∀x < 1− ε,
∫

(x,x+ε)

χε(x, y)dy = 1, ∀x ≥ 1− ε,
∫

(x,x+ε)

χε(x, y)dy ≤ 1. (D.2)

For i < N − 1, write then ωχ
ε

i+1 for the average of ω· on i+ 1 + INε with weights given in terms of
χε as follows:

∀η ∈ ΩN , ωχ
ε

i+1(η) =
1

N

min{i+εN,N−1}
∑

j=i+1

ωj

∫ 1

0

χε
(i+ 1

N
,
j

N
+

r

N

)

dr

+ 1i+εN>N−1ωN−1

[

1−
∫ 1

i+1
N

χε
( i+ 1

N
, y
)

dy
]

. (D.3)

In other words, the mass is spread according to χε up to the reservoir, where the remaining mass
is piled up on ωN−1. Define then, recalling that σ̄(x) = ρ̄(x)(1− ρ̄(x)) for x ∈ [−1, 1]:

∀(x, y) ∈ , N q
ε (x, y) =

σ̄(x)

σ̄(y)
q(x)χε(x, y),

and note that N q
ε belongs to T , defined in (2.15), since it is a regular function which vanishes on

∂�.

Proposition D.1. Let q ∈ C2([−1, 1]) satisfy q(±1) = 0. Define, for η ∈ ΩN :

Wq(η) =
1

4

∑

i<N−1

η̄iη̄i+1qi.

There are then c > 0, c′(h, q) > 0 independent of χε such that, for each T > 0 and each θ > 0,
there is ε(θ, h, q) ∈ (0, 1) independent of T, χε satisfying:

∀ε < ε(θ, h, q), lim sup
N→∞

P
νNgh
h

(

∣

∣

∣

1

T

∫ T

0

[

Wq(ηt)− ΠN
t

(

N q
ε

)]

dt
∣

∣

∣
> θ

)

≤ ce−c
′(h,q)θε−1/2T . (D.4)
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Proof. Let ε ∈ (0, 1), θ > 0. Up to considering q and −q in the definition of Wq, the absolute value
inside the probability can be removed. The proof follows the same line as that of Proposition C.2,
but estimates on the dependence of Wq −ΠN(N q

ε ) in ε are required, so we give the full argument.
The idea is again to decompose, for each λ > 0, λWq − λΠN(N q

ε ) = λWq − λΠN(N q
ε )− λEλ + λEλ

for a suitable function Eλ : ΩN → R. The function Eλ is built to ensure that λWq−λΠN(N q
ε )−λEλ

can be shown to be small by Feynman-Kac inequality. This time, however, the function Eλ is not
an error term and Proposition C.2 is not sufficient to obtain (D.4). A suitable bound on the time
average of Eλ can instead be obtained through Proposition 4.4.
By Feynman-Kac inequality, for any λ > 0 and any function Eλ : ΩN → R, one has:

logP
νNgh
h

(

1

T

∫ T

0

[

Wq − ΠN
(

N q
ε

)

− Eλ
]

(ηt)dt > θ

)

≤ −λθT + logE
νNgh
h

[

exp
[

λ

∫ T

0

[

Wq − ΠN
(

N q
ε

)

− Eλ
]

(ηt)dt
]

]

≤ −λθT +

∫ T

0

sup
f≥0:νNgh

(f)=1

{

λνNgh

(

f
[

Wq − ΠN
(

N q
ε

)

− Eλ
]

)

− N2

2
νNgh

(

Γh(
√

f)
)

+
1

2
νNgh

(

fL∗1
)

}

.

To estimate the expectation of Wq −ΠN(N q
ε ), we will use the integration by parts Lemma B.1. It

is formulated with the variables ωi = η̄i/σ̄i, i ∈ ΛN , for which Wq becomes:

∀η ∈ ΩN , Wq(η) =
1

4

∑

i<N−1

ωiωi+1σ̄iσ̄i+1qi =
1

4

∑

i<N−1

ωiωi+1(σ̄i)
2qi + θN,0(η),

where θN,0 is the error term:

∀η ∈ ΩN , θN,0(η) =
1

4N

∑

i<N−1

ωiωi+1Nσ̄i
[

σ̄i+1 − σ̄i
]

qi.

It is of the form N−1Xv
1,{0,1} with the notations of Theorem A.8, thus controllable with size N−1.

In addition, in (D.3), χε appears inside an integral, rather than directly being evaluated at lattice
points. One thus also has:

∀η ∈ ΩN , ΠN
(

N q
ε

)

=
1

4N

∑

i<j

ωiωj(σ̄i)
2qi

∫ 1

0

χε
( i+ 1

N
,
j

N
+

r

N

)

dr − θ̃N,0(η),

where θ̃N,0 is of the form N−1Xv
2,{0} for a bounded v, thus controllable with size N−1:

θ̃N,0(η) := − 1

4N2

∑

i<j

η̄iη̄j
qiσ̄i
σ̄j

N
[

χεi,j −
∫ 1

0

χε
( i+ 1

N
,
j

N
+

r

N

)

dr
]

.

Introduce, for each x ∈ (−1, 1) and z ∈ R, the remaining mass φχε(x, z) after spreading the unit
mass at x between x and x+ 1z≥0(z + 1/N) according to χε(x, ·):

φχε(x, z) =
[

1−
∫ x+z+ 1

N

x

χε(x, y)dy
]

10≤z<ε, z ∈ R.
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For future use, recall that χε(x, ·) is supported in an interval of length ε at most for each x ∈ (−1, 1).
As a result, bounding χε by 1 when it does not vanish and using the definition (D.2) of χε, there
is K > 0 that depends neither on ε, nor on the precise choice of χε, such that:

∑

a∈N
|φχε(i/N, a)| ≤ KNε,

∑

a∈N
|φχε(i/N, a)|2 ≤ KNε, i < N − εN,

‖φχε‖2 ≤ Kε1/2. (D.5)

For each i < N − 1, one can then write:

ωi+1 − ωχ
ε

i+1 =

min{N−1,i+εN}−1
∑

j=i+1

φχε

( i+ 1

N
,
j − (i+ 1)

N

)

(ωj − ωj+1).

Define then uj : ΩN → R for j > −(N − 1) as follows:

∀η ∈ ΩN , uj(η) =
∑

i<j

σ̄2
i qiωiφχε

(i+ 1

N
,
j − (i+ 1)

N

)

. (D.6)

With this definition, the quantity λWq − λΠN
(

N q
ε

)

reads, for each η ∈ ΩN :

λ
[

Wq(η)− ΠN
(

N q
ε

)]

= λ
∑

j>−(N−1)

(

ωj − ωj+1

)

uj(η)

+ λωN−1

∑

i<N−1

(σ̄i)
2qiωiφχε

(i+ 1

N
, 1− i+ 1

N

)

+ λ
[

θN,0(η) + θ̃N,0(η)
]

. (D.7)

Fix a density f for νNgh . As it involves boundary correlations, the first term in the second line is
Γ-controllable with size N−1: by Lemma B.3, for each δ > 0, there is a function Dδ,λ, controllable
with size N−1 such that:

λνNgh

(

fωN−1

∑

i<N−1

(σ̄i)
2qiωiφχε

(i+ 1

N
, 1− i+ 1

N

)

)

≤ δνNgh
(

Γh(
√

f)
)

+ νNgh
(

fDδ,λ
)

. (D.8)

It therefore remains to estimate the other term in the right-hand side of (D.7). By the integration
by parts Lemma B.2 applied to uj for each j < N − 1, there is a constant C > 0 such that, for
any δ > 0:

λνNgh

(

f
∑

j<N−1

(

ωi − ωi+1

)

uj

)

≤ δN2νNgh
(

Γh(
√

f)
)

+
Cλ2

δN2

∑

j<N−1

∫

f |uj|2dνNgh (:=
λ2

δ
νNgh(fN1))

+ λ
∑

j<N−1

(ρ̄j+1 − ρ̄j)
∫

ωjωj+1fujdν
N
gh

(:= λνNgh(fN2))

− λ
∑

j<N−1

∫

[

ωj+1 − ωj
]

(

1− e−(ηj+1−ηj)Cgh
j /N

)

fujdν
N
gh

(:= λνNgh(fN3)). (D.9)

The function N2 is of the form N−1Xv2
2,{0,1}, and is therefore a Γ-controllable error term with size

N−1/2 by Proposition C.1. Define:
θN,2 := N2.
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Consider now N1. For each η ∈ ΩN , it reads:

N1(η) : =
C

N2

∑

j<N−1

|uj|2.

Recall the identity (η̄·)2 = σ̄·+σ′(ρ̄·)η̄· and the definition (D.6) of uj, j < N − 1. Developing |uj|2,
then separating diagonal and off-diagonal contributions, one finds:

N1(η) =
C

N2

∑

i1,i2<N−1

η̄i1 η̄i2σ̄i1qi1σ̄i2qi2

[

∑

j<N−1

φχε

( i1 + 1

N
,
j − (i1 − 1)

N

)

φχε

(i2 + 1

N
,
j − (i2 − 1)

N

)

]

=: ΠN(Y (1)) +
C

N2

∑

i<N−1

σ̄3
i q

2
i

∑

j<N−1

φχε

( i

N
,
j − (i− 1)

N

)2

+ θN,1(η).

In the last line, the middle term is bounded by KC(q)ε using (D.5). The function Y
(1)
ε reads:

∀(x, y) ∈ , Y (1)
ε (x, y) := 4Cq(x)q(y)σ̄(x)σ̄(y)

∫

(−1,1)

φχε(x, z − x)φχε(y, z − y)dz, (D.10)

and θN,1 is a controllable error term with size N−1 that reads, for each η ∈ ΩN :

θN,1(η) =
1

N2

∑

i1 6=i2<N−1

η̄i1 η̄i2N

[

− (Y
(1)
ε )i1,i2
4

+
Cσ̄i1qi1σ̄i2qi2

N

×
∑

j<N−1

φχε

( i1 + 1

N
,
j − (i1 − 1)

N

)

φχε

( i2 + 1

N
,
j − (i2 − 1)

N

)

]

+
C

N2

∑

i<N−1

η̄iσ̄
2
i σ

′(ρ̄i)q
2
i

∑

j<N−1

φχε

( i

N
,
j − (i− 1)

N

)2

,

where the last line corresponds to the error terms coming from the diagonal.
Consider finally N3. defined in (D.9). Using |ex − 1 − x| ≤ C(‖gh‖∞)x2 for x ≤ ‖gh‖∞ and
bounding ωj − ωj+1 by C(ρ̄) > 0 for each j < N − 1, we may write, for each η ∈ ΩN :

N3(η) ≤ −
λ

N

∑

j<N−1

[ωj+1 − ωj](ηj+1 − ηj)Cgh
j uj +

λC(ρ̄)C(gh)

N2

∑

j<N−1

∣

∣uj
(

Cgh
j

)2∣
∣. (D.11)

Bounding C2
· by 2B2

· +2D2
· (defined in (3.31)) with D· bounded by O(N−1), the last term in (D.11)

satisfies:

λC(ρ̄)C(gh)

N2

∑

j<N−1

∣

∣uj
(

Cgh
j

)2∣
∣ ≤ λC(ρ̄)C(gh)

N2

∑

j<N−1

∣

∣uj
(

Bgh
j

)2∣
∣+

λC ′(ρ̄, gh)

N2
.

The term involving B· above is an average over j < N − 1 of terms of the form N−3|Xvj3 |3,{0} with
the notation of Corollary A.9, for tensors vj3 satisfying supN,j supΛ3

N
|vj3| <∞. It is therefore con-

trollable with size N−3/2. Proceeding as in the proof of Lemma 4.6 (see between (4.65) and (4.67))
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to estimate the first sum in (D.11), we conclude that there is a function Y
(3)
ε and a controllable

error term θN,3 with size N−1/2 such that, for each η ∈ ΩN :

N3(η) ≤ ΠN
(

Y (3)
ε

)

− 1

N2

∑

j<N−1

∑

i/∈{j,j+1}
σ̄2
i qi∂

N
1 (gh)j,iφχε

( i+ 1

N
,
j − (i+ 1)

N

)

+ θN,3(η).

By (D.5), the middle term is bounded by KC(h)‖q‖∞ε for some C(h) = C(gh) > 0. The function

Y
(3)
ε is defined as:

∀(x, y) ∈ , Y (3)
ε (x, y) = −4

∫

(−1,1)

∂1gh(z, y)φχε(x, z − x)q(x) σ̄(x)
σ̄(y)

dz. (D.12)

To summarise, we have established the following. Take δ = 1/6, recall that D1/6,λ is given in (D.8),

recall the definition (D.10)-(D.12) of Y
(1)
ε , Y

(2)
ε and define:

λZλ,ε :=
λ2

6
Y (1)
ε + λY (3)

ε , (D.13)

and:

λEλ := ΠN(λZλ,ε) +D1/6,λ +
E
2
+ λ

[

θN,0 + θ̃N,0
]

+
λ2

6
θN,1 + λ

3
∑

p=2

θN,p,

where E is the random variable of Lemma 3.3. There is then c(h) > 0 such that, by Feynman-Kac
inequality, for each λ > 0:

lim sup
N→∞

P
νNgh
h

(

1

T

∫ T

0

[

[

Wq − ΠN
(

N q
ε

)

− Eλ
]

(ηt)− c(h)K(λ+ 1)ε
]

dt > θ

)

≤ e−λθT . (D.14)

As D1/6,λ, E , θ̃N,0, θN,i are error terms for i ∈ {0, ..., 3}, thus have time average vanishing with N
according to Proposition C.2, we have proven:

lim sup
N→∞

P
νNgh
h

(

1

T

∫ T

0

[

Wq − ΠN
(

N q
ε

)]

(ηt) > θ

)

≤ e−λθT/2

+ lim sup
N→∞

P
νNgh
h

(

1

T

∫ T

0

Zλ,ε(ηt)dt+ c(h, q)K(λ+ 1)ε > θ/2

)

. (D.15)

Taking λ = ε−1/2, we see that it remains to evaluate the probability in the right-hand side. We do
so through Lemma 4.4. Assume that ε is smaller than some ε(θ, h, q) ∈ (0, 1), chosen such that:

∀ε < ε(θ, h, q), c(h, q)K(ε−1/2 + 1)ε < θ/4.

Then, for any ε < ε(θ, h, q):

lim sup
N→∞

P
νNgh
h

(

1

T

∫ T

0

Zε−1/2,ε(ηt)dt+ c(h, q)K(ε−1/2 + 1)ε > θ/2

)

≤ lim sup
N→∞

P
νNgh
h

(

1

T

∫ T

0

Zε−1/2,ε(ηt)dt > θ/4

)

.
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The function Zε−1/2,ε, defined in (D.13), is in C2(⊲̄)∩C2(⊳̄), and limx→±1 q(x) = 0, ∂1g(·,±1) = 0
implies that Zε−1/2,ε vanishes on ∂�. Moreover, from (D.10)-(D.12) and (D.5), we find:

‖Zε−1/2,ε‖2 ≤ C(h, q)ε1/2.

Proposition 4.4 thus applies and gives the existence of c, c′ > 0 such that, for each ε < ε(θ, h, q):

lim sup
N→∞

P
νNgh
h

(

1

T

∫ T

0

Zε−1/2,ε(ηt)dt > θ/4

)

≤ c exp
[

− c′θT

4‖Zε−1/2,ε‖2

]

≤ c
[

− c′θT

4C(h, q)ε1/2

]

. (D.16)

Putting (D.15) and (D.16) together concludes the proof of Proposition D.1.

E Sobolev spaces

Definition E.1. Let U ⊂ R2 be a bounded open set with Lipschitz boundary. For n ∈ N and p ≥ 1,
let Wn,p(U) be the following space. If n = 0, it is simply Lp(U). If n ≥ 1, Wn,p(U) is the set of
functions f ∈ Lp(U) such that, for any (n1, n2) ∈ N2 with n1 + n2 ≤ n, there is fn1,n2 ∈ Lp(U)
satisfying:

∀u ∈ C∞
c (U),

∫

U

f(x, y)∂n1
1 ∂

n2
2 u(x, y)dxdy = (−1)n1+n2

∫

U

fn1,n2(x, y)u(x, y)dxdy.

Wn,p(U) is a separable Banach space for the norm:

∀f ∈Wn,p(U), ‖f‖Wn,p(U) =
[

∑

(n1,n2)∈N2

n1+n2≤n

‖fn1,n2‖2Lp(U)

]1/2

.

Moreover, the set C∞(Ū) of restrictions of elements of C∞(R2) to Ū is dense in Wn,p(U) for
‖ · ‖Wn,p(U). In the special case p = 2, define Hn(U) := Wn,p(U). This is a Hilbert space.

Along the text, we make use of the following Sobolev embedding results (see Theorem 4.12 in
[AF03] and Theorem 1.4.4.1 in [Gri11]).

Proposition E.2. Let U ⊂ R2 be a bounded set with Lipschitz boundary. The following embeddings
hold.

• Let p > 2 and n ∈ N∗, then Wn,p(U) ⊂ Cn(Ū).

• Let p ≥ 2 and n ∈ N∗, then Wn,p(U) ⊂Wℓ,q(U) for any ℓ ≤ n− 1 and any q ≥ 1.

In our case, U = = ⊳ ∪⊲, where we recall that � = (−1, 1)2, = � \D and ⊲ = {(x, y) ∈
: x < y} = \{⊳}. We are interested in the subset T ′

s , defined in (2.16), of the topological dual
T ′ of T .

Definition E.3. If (X, ‖ · ‖X) is a Banach space, let X ′ be its topological dual, equipped with the
norm:

∀φ ∈ X ′, NX(φ) = sup
x∈X\{0}

|φ(x)|
‖x‖X

. (E.1)
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If f : → R, let fs(x, y) = [f(x, y) + f(y, x)]/2 denote its symmetric part, and let T ′
s ⊂ T be the

subset of elements Π satisfying Π(f) = Π(fs) for any f ∈ T . Then:

∀Π ∈ T ′
s , NT (Π) := sup

f∈T \{0}

|Π(f)|
‖f‖H2( )

= sup
f∈T \{0}

|Π(fs)|
‖fs‖H2( )

= sup
f∈T \{0}

|Π(f|⊲)|
‖f|⊲‖H2(⊲)

, (E.2)

where f|⊲ is the restriction of f to ⊲. T ′
s is closed for the norm (E.2).

The weak∗ topology on T ′ is the topology of simple convergence: a sequence (Πn) ∈ (T ′)N weak∗

converges to Π ∈ T ′ if and only if:

∀f ∈ T , lim
n→∞

Πn(f) = Π(f) ⇔ ∀f ∈ T⊲, lim
n→∞

Πn(f|⊲) = Π(f|⊲)

The set T ′
s is also closed for the weak∗ topology. We write

(

T ′
s , ∗

)

when explicitly referring to this
topology.

F Poisson equations

In this section, we give conditions for the existence and uniqueness of solutions of the various
Poisson equations - among which the main equation (2.31) - encountered along the text. We
rewrite them all in a common framework, for which we need to introduce some notations.
Recall that � := (−1, 1)2, = � \ D and ⊲ = {(x, y) ∈ : x < y}, ⊳ = \ ⊲. The Poisson
equations encountered in the text are formulated as equations on involving symmetric functions.
To solve them, it is therefore enough to look at the equation in a single triangle, say ⊲. For
u, v : H1(⊲)→ R, define a function I⊲(u, v) as follows:

∀(x, y) ∈ ⊲, I⊲(u, v)(x, y) =

∫ x

−1

∂1φ(z, x)σ̄(z)∂1ψ(z, y)dz +

∫ y

x

∂2φ(x, z)σ̄(z)∂1ψ(z, y)dz

+

∫ 1

y

∂2φ(x, z)σ̄(z)∂2ψ(y, z)dz. (F.1)

Finally, let ν⊲ denote the outwards normal from ⊲ to the diagonal. Given symmetric φ, ψ : → R

and a ∈ {0, 1, 2}, η1 ∈ {0, 1}, η2 ∈ {0, 1, 2}, we say that f : → R solves the Poisson problem
(P ) = (Pφ,ψ,a,η1,η2) if f is symmetric, and f|⊲ is a classical solution of (P⊲), where:

(P⊲) :



























∆f(x, y) +
aσ̄′(x)

σ̄(x)
∂1f(x, y) +

aσ̄′(y)

σ̄(y)
∂2f(x, y) + η2I⊲(f, f)

+η1I⊲(f, ψ) + η1I⊲(ψ, f) = φ(x, y) for (x, y) ∈ ⊲,

∂ν⊲f = 0 on D,

f = 0 on (∂⊲) \D.

(F.2)

Remark F.1. • When u, v are defined on and symmetric, I⊲(u, v) is simply:

∀(x, y) ∈ ⊲, I⊲(u, v)(x, y)

∫

(−1,1)

∂1φ(z, x)σ̄(ρz)∂1ψ(z, y)dz = I(∂1φ, ∂1ψ)(x, y),

with I(u, v) =
∫

(−1,1)
u(z, x)σ̄(z)v(z, y)dz.
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• If a = 0, ψ = h ∈ S(εB), η1, η2 ∈ {0, 1} and φ ∈ C2
c,s( ) has norm 1, then (P ) corresponds

to the Poisson problems encountered in the proof of large deviations, in (4.44) and (5.8)
respectively.
If a ∈ {1, 2}, (P ) is a rewriting of the main equation (2.31) with unknown f = g − g0 − h,
where g0 is the inverse correlation kernel of the steady state of the open SSEP in the large
N limit. If h ∈ S(εB) is known and one seeks to find a solution g ∈ g0 + S(εG), then this
amounts to solving (P⊲) with η1 = 1, η2 = 2, a = 2, ψ = h+ 2g0 and:

∀(x, y) ∈ ⊲, φ(x, y) = −I⊲(g0, h)(x, y)− I⊲(h, g0)(x, y)−
σ̄′(x)

σ̄(x)
∂1h(x, y) (F.3)

− σ̄′(y)

σ̄(y)
∂2h(x, y).

If instead g ∈ g0 + S(εG) is known and one seeks h ∈ S(εB), then η1 = 1, η2 = 0, a = 1,
ψ = g and:

∀(x, y) ∈ ⊲, φ(x, y) = −I⊲(g0, g − g0)(x, y)− I⊲(g − g0, g0)(x, y)

− σ̄′(x)

σ̄(x)
∂1(g − g0)(x, y)−

σ̄′(y)

σ̄(y)
∂2(g − g0)(x, y). (F.4)

�

In the remainder of the section, we study existence, uniqueness and regularity of solutions of
(P ). For ⋆ ∈ {⊲,⊳}, we write

〈

·, ·
〉

⋆
for the usual scalar product on L2(⋆), and simply

〈

·, ·
〉

as
before for the scalar product on L2(�) = L2( ). The norm on L2( ) is denoted by ‖ · ‖2. Let also
tr denote the trace operator on the boundary of . When interested only in a portion Γ of the
boundary, we may write trΓ.
We will use the fact that the Laplacian with 0 Dirichlet boundary condition on (∂⊲) \ D and 0
Neumann boundary condition on the diagonal D has a gap α > π2/4 > 0, see e.g. Equation 5
in Section 3.3. of [Siu16]. This means that, for any symmetric f ∈ T satisfying the boundary
conditions of (P⊲), one has:

‖f|⊲‖2⊲ ≤ α−1‖∇f|⊲‖2⊲ ⇒ ‖f‖22 ≤ α−1‖∇f‖22. (F.5)

F.1 Existence and uniqueness

We first obtain existence and uniqueness of solutions of (P ) in the set T(P ) ⊂ T of functions satis-
fying the boundary conditions of (P ) by a fixed point argument. The set T(P ) and its counterpart
T(P⊲) for functions on ⊲ are defined as follows:

T(P ) = T ∩
{

f : trD(∂ν⊲f) = 0
}

,

T(P⊲) = H2(⊲) ∩
{

f : tr(f) = 0 on ∂(⊲) \ D̄, trD(∂ν⊲f) = 0
}

=
{

f|⊲ : f ∈ T(P )

}

. (F.6)

Proposition F.2 (Solving (P )). Let φ ∈ L2( ), ψ ∈ T be symmetric functions. Let a ∈ {0, 1, 2}
and η ∈ {0, 1}. For f ∈ T(P ), define Sf as the symmetric function such that, for (x, y) ∈ ⊲,

Sf(x, y) = −∆−1
⊲

[

− φ(x, y) + aσ̄′(x)

σ̄(x)
∂1f(x, y) +

aσ̄′(y)

σ̄(y)
∂2f(x, y) + η2I⊲(f, f)

+ η1I⊲(f, ψ) + η1I⊲(ψ, f)

]

. (F.7)
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Above, ∆−1
⊲

is the inverse of the Laplacian on ⊲ with 0 Dirichlet condition on (∂⊲) \ D, and 0
Neumann conditions on the diagonal D.
Then Sf ∈ T(P ). Moreover, if a = 0 and ‖∇ψ‖2 ≤ 1, ‖φ‖2 ≤ 1, then S has a unique fixed point

fφ,ψ ∈ T(P ) with ‖fφ,ψ‖H1( ) ≤
√
2 and ‖fφ,ψ‖∞ ≤ C, for a numerical constant C > 0.

If a ∈ {1, 2}, there are εa, ε
′
a > 0 such that, whenever (ρ−, ρ+) ∈ (1/2 − εa, 1/2 + εa) and

‖φ‖2, ‖∇ψ‖2 ≤ ε′a, there is δ(εa) > 0 such that S has a unique fixed point fφ,ψ ∈ T(P ), with
‖fφ,ψ‖H1( ) ≤ δa(εa, ε

′
a) and lim(x,y)↓0 δ(x, y) = 0.

Proof. We prove that S is a contraction on T(P ) for the norm ‖∇ · ‖2. Let us start by showing that
S is well defined. The inverse operator ∆−1

⊲
exists by Lemma 4.4.3.1 in [Gri11] and, by Theorem

4.4.3.7 in [Gri11], maps L2(⊲) onto T(P⊲). It follows that S(T(P )) ⊂ T(P ).
We now prove that S is a contraction. For f ∈ T(P ), one has:

‖∇Sf‖22 =
〈

(∇Sf)|⊲, (∇Sf)|⊲
〉

⊲
+
〈

(∇Sf)|⊳, (∇Sf)|⊳
〉

⊳
(F.8)

= −
〈

(Sf)|⊲, (∆Sf)|⊲
〉

⊲
−

〈

(Sf)|⊳, (∆Sf)|⊳
〉

⊳
= −

〈

Sf,∆f
〉

(F.9)

The integration by parts is legitimate by Theorem 1.5.3.1 in [Gri11]. Let us compute the right-
hand side. For f ∈ T(P ), write σ̄′ for ρ′σ′(ρ̄). By convention, if q : (−1, 1) → R, we write
qf(x, y) := q(x)f(x, y), fq(x, y) := f(x, y)q(y) for (x, y) ∈ . The symmetry of f, ψ enables one
to extend I⊲(f, ψ), I⊲(ψ, f) and I⊲(f, f) to with a nicer expression, e.g. for I⊲(f, ψ):

∀(x, y) ∈ , I⊲(f, ψ)(x, y) = I(∂1f, ∂1ψ)(x, y) =

∫

(−1,1)

∂1f(z, x)σ̄(z)∂1ψ(z, y)dz

≤
(

∫

(−1,1)

σ̄(z)∂1f(z, x)
2dz

)1/2(
∫

(−1,1)

σ̄(z)∂1ψ(z, y)
2dz

)1/2

As a result, by Cauchy-Schwarz inequality and using ‖∂1f‖2 = 2−1/2‖∇f‖2 as implied by the
symmetry of f , one has:

∣

∣

∣

〈

Sf, I(f, ψ)
〉

∣

∣

∣
≤ ‖Sf‖2‖∂1f‖2‖σ̄∂1ψ‖2 ≤ 2−1/2‖Sf‖2‖∇f‖2‖σ̄∂1ψ‖2.

Recalling the expression of Sf from (F.7) and using σ̄ ≤ 1/4, (F.9) is therefore bounded as follows:

‖∇Sf‖22 ≤ ‖Sf‖2
(

‖φ‖2 + a‖σ̄−1σ̄′∂1f‖2 +
‖∇f‖2

8

[

η2‖∇f‖2 + 8
√
2η1‖σ̄∂1ψ‖2

])

.

Since Sf ∈ T(P ), the Poincaré inequality F.5 can be applied to Sf and yields:

‖∇Sf‖2 ≤ α−1/2
(

‖φ‖2 + a‖σ̄−1σ̄′∂1f‖2 +
‖∇f‖2

8

[

η2‖∇f‖2 + 8
√
2η1‖σ̄∂1ψ‖2

])

. (F.10)

By similar computations, if f1, f2 ∈ T(P ), one obtains:

‖∇(Sf1 − Sf2)‖2 ≤ α−1/2
(

a‖σ̄−1σ̄′∂1(f1 − f2)‖2

+
‖∇(f1 − f2)‖2

8

[

η2‖∇f1‖2 + η2‖∇f2‖2 + 8
√
2η1‖σ̄∂1ψ‖2

])

. (F.11)

148



To prove that S is a contraction, due to the quadratic term in (F.10), we first look for c > 0 such
that the ball B(0, c) = {u ∈ H1( ) : tr(u) = 0 on ∂�, ‖∇u‖2 ≤ c} is stable under S. Let us
separately treat the different values of a, η1, η2.
Consider first a = 0 and η1, η2 ∈ {0, 1}. Bounding σ̄ by 1/4 in ‖σ̄∂1ψ‖2 turns (F.10) into:

‖∇Sf‖2 ≤ α−1/2
(

‖φ‖2 +
‖∇f‖2

8

[

‖∇f‖2 + 2‖∇ψ‖2
]

)

.

Recall that α > π2/4. Taking ‖φ‖2 ≤ 1, we see that e.g. B(0, 1) is stable under S as soon as
‖∇ψ‖2 ≤ 2π − 9/2, in particular 2π − 9/2 ≥ 1. This value of ‖∇ψ‖2 also ensures that S is a
contraction, as (F.11) becomes, since

√
2‖σ̄∂1ψ‖2 ≤ 4‖∇ψ‖2:

‖∇(Sf1 − Sf2)‖2 ≤
(

1− 7

4π

)

‖∇(f1 − f2)‖2 ≤
1

2
‖∇(f1 − f2)‖2.

There is thus a unique fixed point fφ,ψ ∈ T(P )∩B(0, c) with c = 1. Poincaré inequality (F.5) yields

‖fφ,ψ‖H1( ) ≤ (1 + 4/π2)1/2 ≤
√
2, and Theorem 4.3.1.4 in [Gri11] yields ‖fφ,ψ‖H2( ) ≤ C for some

universal C > 0. The Sobolev embedding H2( ) ⊂ C0(⊲̄) ∩ C0(⊳̄) implies ‖fφ,ψ‖∞ ≤ C ′ for a
universal C ′ > 0 as claimed.
Consider now the case a ∈ {1, 2}. Letting A := 2−1/2 supx |σ̄′(x)/σ̄(x)|, (F.9) becomes:

‖∇Sf‖2 ≤ α−1/2
(

‖φ‖2 +
(

aA+
√
2‖σ̄∂1ψ‖2

)

c+
c2

4

)

.

B(0, c) is stable under S as soon as:

c2

4
+ c

(

aA− α1/2 +
√
2‖σ̄∂1ψ‖2

)

+ ‖φ‖2 ≤ 0. (F.12)

There are εa, ε
′
a > 0 such that, for any ε ∈ (0, εa], ε

′ ∈ (0, ε′a], whenever (ρ−, ρ+) ∈ (1/2−ε, 1/2+ε)
and ‖φ‖2, ‖σ̄∂1ψ‖2 ≤ ε′a, the above polynomial has at least one real root ca(ε, ε

′) > 0. This ensures
that B(0, ca(ε, ε

′)) is stable under S. Using (F.12), (F.11) then becomes:

∥

∥∇(Sf1 − Sf2)
∥

∥

2
≤ α−1/2

[ca(ε, ε
′)2

4
+ ca(ε, ε

′)α1/2 − ‖φ‖2
]

‖∇(f1 − f2)‖2.

Choosing ε = εa, ε
′ = ε′a small enough ensures that S is a contraction, thus has a unique fixed point

fφ,ψ ∈ T(P ) ∩ B(0, ca(εa, ε
′
a)). By Poincaré inequality (F.5), ‖fφ,ψ‖H1( ) ≤ ca(εa, ε

′
a)(1 + α−1/2) =:

δa(εa, ε
′
a), with limR2∋x↓0 δa(x) = 0. This concludes the proof.

To define the quantities εB, εG arising in Assumption 2.1 and Theorem 2.5. For h ∈ S(α) for
some α > 0, let φ = φ(h, ρ+, ρ−), ψ = ψ(h, ρ+, ρ−) be given in and above (F.3). Then:

‖φ‖2, ‖∇ψ‖2 ≤ ω(ρ+, ρ−) + C(ρ±)‖∇h‖2, (F.13)

for a constant C(ρ±) > 0, and a positive continuous function ω which vanishes when |ρ+−1/2|, |ρ−−
1/2| are small. With the notations of the proof of Proposition F.2, the solution gh of the main
equation is then given by:

gh = fφ,ψ + g0 + h ⇒ ‖∇(gh − g0)‖2 ≤ c2(ε2, ε
′
2) + ‖∇h‖2, (F.14)

and we can now define the εB, εG arising in Assumption 2.1 and Theorem 2.5.
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Definition F.3. Consider the a = 2 case, corresponding to the main equation (2.31) with data
h ∈ S(εB) for some εB > 0 to be chosen below, the corresponding φ, ψ being given in and above
(F.3). Recall that h ∈ S(εB) implies ‖h‖2, ‖∇h‖2 ≤ εB. For any ε2 > 0 such that ρ+, ρ− ∈
[1/2− ε2, 1/2 + ε2], choose εB ∈ (0, 1/2) such that:

• The contraction S has a fixed point fφ,ψ.

• α−1/2
(

c2(ε2, ε
′
2) + εB

)

+ εB < 1/2, ε′2 := ω(ρ+, ρ−) + C(ρ±)εB.

Such an εB exists for small enough ε2 by the proof of Proposition F.2 and (F.13). To define εG,
recall that α > π2/4 is the spectral gap of −∆ on the triangle ⊲, and define:

εG := α−1/2
(

c2(ε2, ε
′
2) + εB

)

+ εB < 1/2.

The definition is meant to ensure the following: by (F.14), Poincaré inequality and the fact
that the fixed point fφ,ψ = gh − g0 − h in the a = 2 case lies in B(0, εG),

‖∇(gh − g0)‖2 ≤ c2(ε2, ε
′
2) + εB ≤ εG,

and:

‖gh − g0‖2 ≤ ‖h‖2 + ‖gh − g0 − h‖2 ≤ εB + α−1/2
(

c2(ε2, ε
′
2) + ‖∇h‖2

)

≤ α−1/2
(

c2(ε2, ε
′
2) + εB

)

+ εB = εG.

F.2 Regularity estimates

In Proposition F.2, the solution of (P ) has been shown to be in a certain H2 space. In this section,
we use results of [Gri11] to argue that the solution of (P ) is more regular if the data φ, ψ are
regular. The study of regularity is made very complicated by the presence of corners.

Proposition F.4 (Theorem 5.1.3.1. in [Gri11]). Let b ∈ N and let q ∈ Wb,p(⊲). Let S1, S2, S3

denote the corners of ⊲ numbered in a counter-clockwise fashion, with S1 the upper left corner.
Consider on ⊲ the problem ∆f = q, with the boundary conditions of (P⊲). If b = 0, then f ∈
W2,p(⊲). If b ≤ 3, f ∈Wb+2,p(⊲) provided q vanishes at the corners, i.e. provided:

∀j ∈ {1, 2, 3}, q
(

Sj
)

= 0. (F.15)

Remark F.5. Though the statement of Proposition F.4 makes no mention of them, we recall
notations from [Gri11] so that the reader may check that Theorem 5.1.3.1 applies to our case.
Label by j ∈ {1, ..., 3} the line segments composing ∂⊲ in a counter clockwise fashion, with the
convention that j = 1 for the y = −1 segment. Sj is then the point joining segments j, j + 1 in
∂⊲. Let ωj be the counter-clockwise measure of the inwards angle at Sj:

ωj =

{

π/2 if j = 1,

π/4 if j ∈ {2, 3}.
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Let νj = µj denote the unit outwards normal and τj be the (counter clockwise) unit tangent vector
on the line segment j. Define also Φj = π/2 if j ∈ {1, 2}, Φj = 0 if j = 3 and Φ3+1 := Φ1. Finally,
for m ∈ Z and each j, define:

λj,m =
Φj − Φj+1 +mπ

ωj
=











2m if j = 1,

2 + 4m if j = 2,

−2 + 4m if j = 3.

(F.16)

�

In our context, Proposition F.4 translates to the following result.

Proposition F.6 (Regularity of solutions of (P△)). Let φ, ψ be such that the solution fφ,ψ given
by Proposition F.2 exists.

1. Assume a = 0, let φ ∈ C2(⊲̄) ∩ C2(⊲̄) be symmetric, and let ψ ∈ S(εB). If φ|∂� = 0, then
fφ,ψ ∈W4,p( ) for any p > 2.

2. If a = 1 and r > 0 is small enough, let g ∈ g0 + S(r) and define h := fφ,ψ − g0 + g with the
choice of φ, ψ given in and above (F.4). Then fφ,ψ ∈ W4,p( ) for any p > 2, and h ∈ S(r′)
for some r′ > 0.

3. If a = 2 and h ∈ S(εB), define gh := fφ,ψ + g0 + h, with the φ, ψ given in and above (F.3).
Then fφ,ψ ∈W4,p( ) for any p > 2, and gh ∈ g0 + S(εG).

Proof. Since fφ,ψ is symmetric, we work only on ⊲. Let us first treat all claims of items 2 and 3
that do not have to do with the regularity of fφ,ψ.
Recall the definition (2.22) of S(ε) for ε > 0. E.g. for item 3, the estimates on ‖∇fφ,ψ‖2 in
Proposition F.2 already prove that, if h ∈ S(εB) and φ, ψ are chosen as in and above (F.3), then
gh = fφ,ψ + g0 + h satisfies ‖gh − g0‖2, ‖∇(gh − g0)‖ ≤ εG. Let us check that gh − g0 satisfies the
boundary conditions in S(εG). By definition, of g0 and S(εB), (g0)∂� = 0 = h|∂�. gh = fφ,ψ+g0+h
already gives (gh)|∂� = 0. Moreover, using ∂ν⊲fφ,ψ = 0 (∂ν⊲fφ,ψ ∈ H1(⊲) has a well defined trace
on ∂⊲), one has:

∂ν⊲(g − g0)
(

Sj
)

= ∂ν⊲
(

fφ,ψ + h
)(

Sj
)

= 0.

It follows that gh ∈ g0 + S(εG). Similar statements hold for item 2.
Let us now focus on establishing that fφ,ψ is regular. For short, write f = fφ,ψ, and qf for the
bracket in the right-hand side of (F.7); so that ∆f = qf in ⊲. Let p > 2. The idea is classical:
if f ∈ W2+n,p( ), n ∈ N, we want to prove that qf ∈ W1+n,p( ), from which f ∈ W3+n,p( )
by Proposition F.4 provided qf satisfies suitable boundary conditions. To implement this recur-
sion scheme, we first prove that qf ∈ Lp( ). By assumption on φ, ψ in the a = 0 case (using
C2(⊲̄) ⊂ W2,s(⊲) for any s > 2), and from (F.3)-(F.4) if a ∈ {1, 2}, we see that it is the regu-
larity of f only that limits the regularity of qf . The fact that qf ∈ Lp( ) then follows from the
embedding H1( ) ⊂ Ls( ), valid for any s > 2, see Proposition E.2. It follows that f ∈ W2,p( )
by Proposition F.4.

To obtain further regularity on f , we need to check that qf is inWb−1,p( ) whenever f ∈Wb,p( )
for b ∈ N∗, and also that qf satisfies the condition (F.15) in Proposition F.4.
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The refularity of qf boils down to proving that I⊲(u, v), defined in (F.1), is in Wb,p(⊲), b ∈ N∗,
whenever u, v ∈Wb,p(⊲). This is the claim of the following lemma.

Lemma F.7. Let p ≥ 2 and 1 ≤ b ≤ 4. Let u, v ∈Wb,p(⊲), and recall from (F.1) the definition of
I⊲. Then I⊲(u, v) ∈Wb,p(⊲).

Lemma F.7 is easily proven by approximating u, v in Wb,p(⊲) by sequences in C∞(⊲̄), and
integrating by parts.
It remains to prove that qf satisfies the condition of Proposition F.4, i.e. that qf (Sj) = 0 for
j ∈ {1, 2, 3}. By assumption in the a = 0 case, and from (F.3)-(F.4) if a ∈ {1, 2}, one has φ = 0
on ∂�. Integrating by parts, I⊲(f, f) and I⊲(f, ψ), I⊲(ψ, f) also vanish on ∂�. It follows that
qf (Sj) = 0 for j ∈ {1, 2, 3}, thus f ∈ W4,p( ). Since p > 2 was arbitrary, this concludes the
proof.
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Chapter 4

Ising interfaces and contour dynamics

This chapter contains an article that was first put up on the Arxiv in May 2020. Compared to the
online version, some notations have been modified and some mistakes fixed.

Abstract: We study large deviations for a Markov process on curves in Z2 mimicking the
motion of an interface. Our dynamics can be tuned with a parameter β, which plays the role of
an inverse temperature, and coincides at β =∞ with the zero-temperature Ising model with
Glauber dynamics, where curves correspond to the boundaries of droplets of one phase immersed
in a sea of the other one. We prove that contours typically follow a motion by curvature with an
influence of the parameter β, and establish large deviations bounds at all large enough β <∞.
The diffusion coefficient and mobility of the model are identified and correspond to those
predicted in the literature.
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1 Introduction

A basic paradigm in non-equilibrium statistical mechanics is the following. Consider a system with
two coexisting pure phases separated by an interface, and undergoing a first-order phase transition
with non-conserved order parameter. Then, macroscopically, the interface should evolve in time
to reduce its surface tension, according to a motion by curvature. For microscopic models on
a lattice, some trace of the lattice symmetries should remain at the macroscopic scale, and the
resulting motion by curvature should be anisotropic. The following general behaviour, known as
the Lifshitz law, is expected: if a droplet of linear size N ≫ 1 of one phase is immersed in a sea of
the other phase, then it should disappear in a time of order N2. (Anisotropic) motion by curvature
should correspond to the limiting dynamics, when N is large, under diffusive rescaling of space
and time. Phenomenological arguments in favour of this picture go back to Lifshitz [Lif62], and
can be summarised as follows. Consider a model with surface tension t = t(N), which depends
on the local inwards normal N to an interface. We work in two dimensions to keep things simple.
The surface energy associated with a curve γ separating two phases reads

F (γ) =

∫

γ

t(N(s))ds,

where s is the arclength coordinate on γ. The postulate, on phenomenological grounds, is that the
local inwards normal speed v to the interface reads

v = µ
δF

δγ
. (1.1)

The quantity µ = µ(N) is the mobility of the model, computed by Spohn in [Spo93] using linear
response arguments. Let us relate (1.1) and motion by curvature. The change in energy induced
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by the motion of a length ds in the normal direction N is equal to (t(N)/R(N))ds, with R(N) the
radius of curvature at N. As such,

v = µtk =: ak, with a(N) = µ(N)t(N) the anisotropy and k = 1/R the curvature. (1.2)

A closed curve satisfying (1.2) is said to evolve according to anisotropic motion by curvature. A
set with boundary following this equation is known to shrink to a point in finite time for a wide
range of anisotropies a, see e.g. [LST14a] and references therein.

Ideally, one would like to start from a microscopic model with short-range interactions, with
at least two different phases initially segregated on a macroscopic scale, and derive motion by
curvature (1.2) of the boundaries between the phases in the diffusive scaling. To this day however,
results on microscopic models are scarce. Let us provide a (non-exhaustive) account of works on
the subject.
The paper [Spo93], already cited, is a landmark in the rigorous study of interface motion starting
from microscopic models. A major difficulty is to understand how to decouple, from the compar-
atively slower motion of the interface, the fast relaxation inside the bulk of each phase. Indeed,
in a diffusive time scale and at least for models with local interactions, one expects the bulk to
behave as if at equilibrium.
In one dimension, motion by curvature has been proven for a number of interacting particle sys-
tems. It usually boils down to the heat equation in this case, and the Lifshitz law is related
to freezing/melting problems, see [CS96][CK08][CKG12], as well as [Lac14] and the monograph
[Car+16].
In two dimensions, a landmark is the proof of anisotropic motion by curvature for the zero tem-
perature Ising model with Glauber dynamics (or zero-temperature stochastic Ising model). The
drift at time 0 was computed in [CL07] before the full motion by curvature (1.2) was proven in
[LST14b]-[LST14a]. Their proof crucially relies on monotonicity of the Glauber dynamics.
More is known on another type of microscopic models for which some sort of a mean-field meso-
scopic description can be achieved. This comprises the so-called Glauber+Kawasaki process
[DFL86] (see also [BBP18] for an account of works on the model), which has local evolution rules,
and models with long range interactions such as the Ising model with Kac potentials [Com87][De
+93][De +94][KS94]. For these models, studied in any dimension, the derivation takes place in two
steps: first deriving a mean-field description of the dynamics, then rescaling space-time to derive
motion by curvature. As a result, lattice symmetries are blurred and the resulting motion by cur-
vature is isotropic. Note however the recent works [FT19][Ket+20], where a Glauber+Kawasaki
dynamics is considered (respectively Glauber+Zero-range), in dimension two and above. In these
works, the existence of an interface between regions at high-and low-density is established, and
motion by curvature for this interface is obtained directly from the microscopic model, in a suitable
scaling of the Glauber part of the dynamics.
A last category of models comprises the so-called effective interface models. By definition, the
bulk of each phase is disregarded. One associates an ”interfacial” cost to the graph of a given
function, seen as an interface between phases. These comprise the so Ginzburg-Landau model in
any dimension, see [FS97], and more recently Lozenge-tiling dynamics in dimension three [LT18].

Another related line of investigation concerns large deviations of the interface dynamics around
motion by curvature. Assuming Gaussian-like fluctuations around the mean behaviour (1.2), the
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rate function describing the cost of observing an abnormal trajectory γ· = (γt)t≤T should read

I(γ·) =

∫ T

0

dt

∫

γt

(v − ak)2
2µ

ds, (1.3)

with s the arclength coordinate on γt. In the assumption of Gaussian fluctuations leading to (1.3),
one of the difficulties is that it is not even clear how the noise should be incorporated into the
deterministic equations describing the interface motion. Extensive work on this question has been
carried out for some of the models listed above in recent years, notably in [BBP17a]-[BBP18] (see
also the references there). In [BBP17a], the stochastic Allen-Cahn equation is considered. It is
known that, in the diffusive (or sharp interface) limit, solutions to the Allen-Cahn equation satisfy
motion by mean curvature in some sense, see [Ilm93] [ESS92] [BSS93]. In [BBP17b], regularity of
solutions to the stochastic Allen-Cahn equation depending on how the noise is added are studied,
and a large deviation upper-bound in the joint diffusive, small noise and vanishing regularisation
limits is established in [BBP17a]. The associated rate function coincides with (1.3) in simple cases,
e.g. for a droplet trajectory with smooth boundary. The authors however use tools from geometric
measure theory, which enable them to consider very general trajectories that may feature nucle-
ation events.
In [BBP18], upper bound large deviations for both Glauber+Kawasaki process and Ising model
with Kac potentials are investigated. They prove that (1.3) is the correct rate function for smooth
trajectories and discuss how to extend it to more general paths.

To the best of our knowledge however, no large deviations result for microscopic dynamics with
local interactions have yet been published. In particular the question of large deviations for the
zero temperature stochastic Ising model is still open.
In this work, we make a contribution in that direction. To do so, we study a microscopic modi-
fication of the zero-temperature Ising dynamics in terms of a parameter β > 0. At each β > 0,
we consider contours evolving according to zero-temperature Ising rules, except for the parameter
β, which plays the role of an inverse temperature acting on local portions of the contours. The
model at each β > 0 has reversible dynamics and, contrary to the zero-temperature Ising case,
the dynamics is not monotonous. The β = ∞ case corresponds to the zero-temperature Ising
dynamics.
We implement in our framework the large deviation method initiated by Kipnis, Olla and Varad-
han in [KOV89] (see also [KL99]). There are substantial difficulties as we are dealing with curves,
i.e. one-dimensional objects, evolving in two-dimensional space. One of the advantages of the
method is that we no longer rely on monotonicity of the dynamics as in [LST14a]. Monotonicity
appears difficult to use for large deviations in any case, as atypical events, such as closeness to some
atypical trajectory, are in general not monotonous. At each large enough β > 0, we prove that the
dynamics approaches anisotropic motion by curvature in the large size limit, with a dependence
on the parameter β. At the formal level, the β =∞ case indeed corresponds to anisotropic motion
by curvature in the sense of [LST14b]. We also obtain large deviations for the model. The large
deviations results give upper- and lower-bounds, which coincide for smooth trajectories.

As opposed to the zero-temperature stochastic Ising model, an interesting feature of our model
at finite β is that its dynamics is reversible. This enables us to connect our results with metasta-
bility for the Ising model initially at equilibrium in one phase, forced out of equilibrium with a
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small magnetic field of opposite sign [SS98]. We briefly discuss in Section 2.4 the existence of a
threshold value of the volume of a droplet, depending on the strength of the magnetic field, below
which droplets typically do not grow and above which they typically do. The speed at which the
droplet grows is also easily estimated thanks to the large deviation results. The interested reader
will find an up to date account of results on metastability in the Ising model in [GMV20], and may
refer to the books [OV05]-[BD16].

The rest of this article is structured as follows. In Section 2, we introduce the microscopic
model and fix notations. The dynamics is introduced in details, while useful topological facts are
collected in Appendix B. The main results of the paper are listed in Section 2.
In Section 3, we investigate some martingales used to obtain large deviations, and show how
motion by curvature emerges from the microscopic dynamics. Though computationally intensive,
we have tried to use this section to showcase the main differences between dealing with a one-
dimensional interface in two dimensions, and a purely one-dimensional system. A number of
technical results and sub-exponential estimates are postponed to Section 6 and Appendices A-B.
Section 6 is a collection of estimates that are genuinely particular to our model, concerning the
dynamical behaviour of the poles, i.e. the sections of the contours on which the parameter β
acts. Albeit very technical, the estimates on the poles are essential. We also explain there the
connection between our dynamics and suitable one-dimensional exclusion and zero range processes
as in [LST14b]. This connection is again used in Appendix A to prove an adaptation of the so-
called replacement lemma to our model. An important estimate allowing the restriction of the
contour dynamics to a nicer state space is also proven there, as well as some equilibrium estimates
around the pole. Appendix B gathers useful topological properties and the proof of exponential
tightness.
In Section 4, we obtain upper-bound large deviations for large enough β > 0. Finally, Section 5
deals with lower-bound large deviations, i.e. with hydrodynamic limits for tilted processes.

2 Model and results

2.1 The contour model

Consider the zero temperature, two-dimensional stochastic Ising model on (Z∗)2, that we now de-
fine, with Z∗ the dual graph of Z. On configurations, i.e. elements σ of {−1, 1}(Z∗)2 , one defines a
dynamics as follows: at rate 1, each vertex x ∈ (Z∗)2 is updated independently, and σ(x) takes the
same value as the majority of its neighbours. If it has exactly two neighbours of each sign, then
with probability 1/2 it remains unchanged, and with probability 1/2 it is flipped. This dynamics
is well defined for all time on any subset of (Z∗)2, and the so-called graphical construction of the
dynamics (see Section 3.3 in [Mar99]) enables one to couple the dynamics starting from any initial
configurations and with any boundary conditions. It is also monotonous in the following sense.
Write σ ≤ η when σ(x) ≤ η(x) for each x ∈ (Z∗)2. Then σt ≤ ηt for all t ≥ 0, with probability 1.
The dynamics is however not reversible.

The hydrodynamical behaviour of this dynamics is proven in [LST14b]-[LST14a]. Let us provide
an informal description of their results. Start from a configuration with + everywhere except in
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an area of linear size N (a ”droplet” of − spins), corresponding to the discretisation on (Z∗)2

of ND0, where D0 ⊂ [−1, 1]2 is a nice enough domain, say with smooth, simple boundary with
a finite number of inflection points. Rescale space by 1/N and time by N2. Then, in the large
N limit, with probability going to one, the rescaled droplet converges uniformly in time and in
Hausdorff distance to the unique solution of an anisotropic motion by curvature starting from D0.
This flow of sets (Dt)t≥0 is defined as follows. It starts from D0 and, until a time Tf after which
Dt = ∅, t ≥ Tf , the boundaries (γt)t≥0 of the Dt satisfy (1.2):

∀u ∈ T, ∀t < Tf , ∂tγ(t, u) = a(θt(u))∂
2
sγ(t, u) = a(θt(u))k(t, u)Nt(u), (2.1)

where u ∈ T 7→ γt(u) is a parametrisation on the torus T = [0, 1) of each of the γt, t < Tf ; k is
the curvature, θ(u) = θt(u) is the angle between the tangent vector at point γt(u) and e1 = (1, 0),
N = Nt(u) is the inwards normal vector at γt(u). The π/2-periodic anisotropy a is a factor
reflecting the symmetries of the square lattice:

a(θ) :=
1

2(| sin(θ)|+ | cos(θ)|)2 , θ ∈ [0, 2π]. (2.2)

Existence and uniqueness of such a flow is part of the results in [LST14b]-[LST14a]. The proof of
the hydrodynamic limit relies strongly on monotonicity properties of the dynamics, which allow
local comparison of the dynamics with nicer ones.

The contour dynamics
Take a spin configuration σ such that σx = + for x outside a finite subset Λ∗ of (Z∗)2. The
boundaries between − and + spins form closed contours on edges of Z2. In this picture, a spin
x ∈ Λ∗ is identified with the square x + [−1/2, 1/2]2, which we call a ”block”, and spin-flips
correspond to adding or deleting blocks. At strictly positive temperature β−1 > 0, a contour
of length L should occur with probability roughly proportional to exp[−βL]. Let νβ denote the
associated probability measure:

νβ(γ) ∝ e−β|γ|.

At zero temperature however, in a fixed volume with e.g. all + boundary conditions, the only
possible configuration contains only + spins.
We consider a model on closed paths on edges of ΛN = [−N,N ]2 ∩ Z2 for N ∈ N∗. For simplicity,
we only allow configurations with a single contour. We want to build a dynamics that is as close
as possible to the zero-temperature Ising dynamics, but has νβ as an invariant measure. One way
to do this is to take the dynamical moves allowed in the stochastic Ising model, and add regrowth,
β-dependent moves to obtain a reversible dynamics with respect to νβ. Proximity to the zero-
temperature Ising dynamics is ensured by allowing droplet regrowth only at small zones on the
droplet (see Figure 4.2). We call this dynamics the contour dynamics. Importantly, and contrary
to the stochastic Ising model, the contour dynamics is not monotonous. This is illustrated on
Figure 4.3 below.
Additional constraints, e.g. boundary effects, will be placed on the dynamics and on the state
space. We also restrict the study to specific droplet shapes for simplicity. We need however more
notations to state these conditions. Let us now precisely define the contour model and dynamics;
further heuristics can be found in Section 2.2. Take N ∈ N∗, recall that ΛN = Z2 ∩ [−N,N ]2 and
let EN = {(x, y) : x, y ∈ ΛN , ‖x − y‖1 = 1} be the corresponding set of edges. Define first the
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Figure 4.1 – Example of a curve in XN
r . The thick pale dashed line delimits the rectangle R. The

quadrants are quarterplanes which depend on the curve. Here (part of) the first three quadrants are
represented: C1 is the dark shaded area, C2 the checkered area and C3 the light-shaded one. In this
example, C1 and C3 have the same origin; this is not true in general. Note that C1 and C2 intersect. The
vectors e±x are represented for a vertex x.

state space XN
r of the dynamics (see Figure 4.1), which depends on an additional parameter r > 0,

independent of N .

• Elements of XN
r , denoted by γ, are closed paths on edges in EN .

• (Four poles). Each γ in XN
r is contained in a unique rectangle of least area, call it R,

which contains the extremal faces of γ, i.e. edges (x, y) where x, y are vertices of γ with
one coordinate that is extremal. We impose that each extremal face of γ be connected. For
k ∈ {N,E, S,W} = {1, 2, 3, 4}, we call Pk the pole number k, corresponding to the vertices
of γ on face k of R. We also impose that the number pk = |Pk| − 1 of edges with both
extremities inside Pk be always greater than 2. Equivalently, pk is the number of blocks with
two corners in Pk.

• (Monotonicity condition). Denote by L1, R1, ..., L4, R4 ∈ ΛN the leftmost and rightmost
extremities of the poles P1, ..., P4 when γ is travelled on clockwise. We impose that the part
of γ between L1 and R2 is a south-east path, the part between L2 and R3 is a south-west
path, the part between L3 and R4 is a north-west path and, finally, the part between L4 and
R4 is a north-east path.

• (Macroscopic droplet condition). Further impose that if γ ∈ XN
r , then ymax − ymin ≥ ⌈Nr⌉,

xmax − xmin ≥ ⌈Nr⌉, where ymax is the maximum ordinate of a point in γ, etc.
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Figure 4.2 – Some moves and associated jump rates for a typical contour configuration. Positions of
Lk, Rk, k ∈ {1, ..., 4}, the points that delimit the poles, i.e. the zones where regrowth can occur, are
represented at time t− in dark dots. Possible pole positions after a jump at time t are represented by
light dots. L1, R1 are omitted for legibility. Dynamical moves amount to adding or deleting squares of
side-length 1 (”blocks”). Just before the jump, at t−, the pole P3(t−) had length p3 = 2 and both blocks
are removed at the same time.

Figure 4.3 – Two configurations equal everywhere except at the pole: the configuration represented by
the black line has a pole of size 2. Initially, the droplet delimited by the black line contains the droplet
in light colour. A possible update after which the inclusion does not hold is represented in dashed lines:
the contour dynamics is not monotonous.

The last condition ensures that contours delimit macroscopic droplets. It is useful for technical
reasons, see e.g. the proof of the Replacement lemma in Appendix A. We will always consider
droplets larger than what this condition allows for, so that the parameter r will play no role at
the macroscopic level.

For γ ∈ XN
r , call quadrants C1, ..., C4 the quarter-planes delimited by portions of γ between

consecutive (clockwise) poles. More precisely, define C1 as the quarter plane delimited by the verti-
cal line going through L1 and the horizontal one going through R2. We similarly define C2, C3, C4,
which may intersect (see Figure 4.1).
Let also V (γ) ⊂ ΛN be the set of all points encountered when travelling on γ. For x ∈ V (γ),
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Figure 4.4 – A configuration γ in XN
r with a forbidden single-flip: the dot denotes a point that, if flipped,

makes γ non-simple. The jump rate for such flips is a non-local function of the curve. Rescaled by N , γ
converges in Hausdorff distance to a curve with self-intersections at points inside quadrants 1 and 3.

define an edge label ξx ∈ {0, 1} to be 1 if the edge exiting from x when travelling clockwise on γ is
vertical, and 0 if it is horizontal. Let e+x , e

−
x be the unitary vectors with origin x such that e+x gives

the direction of the edge exiting from x, and e−x points towards the vertex before x (see Figure 4.1).

We can now precisely define the contour dynamics. For each curve γ, the following moves are
allowed, summed up in Figure 4.2.

• (Single spin flips). Suppose x ∈ V (γ) is not in a pole of size 2, and the curve at x has a corner,
i.e. e+x and e−x are orthogonal. Then, independently of the other vertices, add/remove a
block of extremity x at rate 1/2 whenever possible (i.e. when the curve after the flip remains
simple, or equivalently the event described in Figure 4.4 does not occur).

• (Shrinking the droplet). Assume the pole Pk is made of only two blocks. Suppose e.g.
that k = 1, the others are the same. If y(P1) − y(P3) ≥ ⌈Nr⌉ + 1, then, with rate 1 and
independently from the rest, delete both blocks with vertices in P1.

• (Added regrowth term). Suppose that x ∈ V (γ) is in one of the poles, and such that x+2e+x is
in the same pole (this is simply a way of enumerating elements of a given pole). If x /∈ ∂ΛN ,
then with rate e−2β, independently from the rest, add two blocks on top of the segment
[x, x+ 2e+x ].

The set XN
r is stable under the dynamics. Moreover, the dynamics was built to be reversible with

respect to the measure νNr,β on XN
r , with:

∀γ ∈ XN
r , ν(γ) = νNr,β(γ) := e−β|γ|/ZNr,β, (2.3)

where |γ| is the length of γ in 1-norm. When ambiguities may arise, |γ|1 will denote the length
in 1 norm and |γ|2 the length in 2-norm. Note that the two coincide for γ ∈ XN

r . The dynamics
described above is not monotonous because of the regrowth part. The parameter β > 0 plays
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the role of an inverse temperature, but only at the pole. The quantity Z = ZNr,β is the partition
function on XN

r :

Z = ZNr,β =
∑

γ∈XN
r

e−β|γ|. (2.4)

In the following, we always assume that β is large enough to ensure that Z is bounded with N .
In practice, β > 3 is enough except in Lemma 5.2, where we use β > 64 log 3 for convenience (it
is a technical condition that could be relaxed by considering curves in a larger square than [−1, 1]2).

Let us write out the jump rates c(γ, γ′) associated with the contour dynamics, γ, γ′ ∈ XN
r .

Reversibility with respect to νNr,β means:

c(γ, γ′)e−β|γ| = c(γ′, γ)e−β|γ
′|.

Single spin flips. Let x ∈ V (γ). It is convenient to express the jump rate in terms of edges,
and thus draw a parallel with the Symmetric Simple Exclusion Process (SSEP). Assume x is a
corner of γ, i.e. a point where e−x and e+x are orthogonal. Define a curve γx in which the block of
diagonal [x, x+ e−x + e+x ] is added/removed compared to γ. In terms of edges, this corresponds to
exchanging (x+ e−x , x) and (x, x+ e+x ), which leads to a change in γ whenever:

ξx+e−x (1− ξx) + ξx(1− ξx+e−x ) = 1. (2.5)

Note that if x is not a corner, γx = γ. If the case of Figure 4.4 occurs or x is in a pole of size 2,
the flip is impossible and γx /∈ XN

r , otherwise γx ∈ XN
r . Note also that the left-hand side in (2.5)

is exactly the jump rate on an edge connecting two neighbouring sites in a SSEP. Define:

c(γ, γx) := 1γx∈XN
r
cx(γ), cx(γ) :=

1

2

[

ξx+e−x (1− ξx) + ξx(1− ξx+e−x )
]

. (2.6)

Double flips at the poles: if x is a point of pole Pkx , kx ∈ {1, ..., 4} such that x + 2e+x ∈ Pkx ,
and x /∈ ∂ΛN , let γ+,x be the curve γ on which two blocks with basis [x, x + 2e+x ] are added (see
Figure 4.2). Then |γ+,x| = |γ|+ 2, and we set:

c(γ, γ+,x) = 1x,x+2e+x ∈Pkx
x/∈∂ΛN

e−2β. (2.7)

Finally, if the pole Pk of γ has size 2 and x ∈ Pk, we let γ−,x or γ−,k be the curve γ with this pole
deleted and define the corresponding jump rate:

c(γ, γ−,x) = 1pk=2,γ−,x∈XN
r
. (2.8)

Let Vr, Hr be the sets enforcing that poles can be shrunk, i.e. that opposite poles are at least at
vertical or horizontal distance ⌈Nr⌉+ 1 (1 more than the minimum value for curves in XN

r ):

Vr =
{

γ ∈ Xr : y(P1)− y(P3) ≥ ⌈Nr⌉+ 1
}

(2.9)

Hr =
{

γ ∈ Xr : x(P2)− x(P4) ≥ ⌈Nr⌉+ 1
}

. (2.10)
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Let also DP k
r denote Hr or Vr depending on k ∈ {1, ...4}.

The generator Lr,β corresponding to the contour dynamics acts on bounded function f : XN
r 7→ R

as:

Lr,βf(γ) =
∑

x∈V (γ)

c(γ, γx)
[

f(γx)− f(γ)
]

(2.11)

+
4

∑

k=1

∑

x∈Pk(γ):x+2e+x ∈Pk(γ)

[

1DPk
r ,pk=2

[

f(γx,−)− f(γ)
]

+ e−2β1x/∈∂ΛN

[

f(γx,+)− f(γ)
]

]

.

Recall that writing x, x+ 2e+x ∈ Pk is just a way of enumerating vertices in Pk such that γ+,x can
exist, and that pk = |Pk| − 1 is the number of blocks in the pole Pk. It will be convenient later on
to transform the first line a bit, and allow for fictitious single flips of a block of a pole of size 2.
The first line is then recast as (recall (2.6)):

∑

x∈V (γ)

cx(γ)
[

f(γx)− f(γ)
]

− 1

2

4
∑

k=1

1pk=2

∑

x∈{Rk,Lk}

[

f(γx)− f(γ)
]

. (2.12)

Define the set C of test functions:

C =
{

G ∈ Cc
(

R+ × [−1, 1]2
)

: ∂tG, ∂iG, ∂i∂jG ∈ C(R+ × [−1, 1]2), (i, j) ∈ {1, 2}2
}

, (2.13)

where the c subscript means compactly supported. Then (C, ‖ · ‖∞) is separable.
We shall later need to consider a larger class of dynamics. For H ∈ C, define another (time-
inhomogeneous) Markov chain with generator Lr,β,H by modifying the jump rates as follows (recall
that Γ is the set with boundary γ):

∀t ≥ 0, cHt(γ, γ′) := c(γ, γ′) exp

[

1

N

∫

Γ′

Ht/N2 − 1

N

∫

Γ/N

Ht

]

. (2.14)

The probability measure associated with the speeded-up generator N2Lr,β,H will be denoted by
PNr,β,H , or simply PNr,β when H ≡ 0. The corresponding expectations are denoted by ENr,β,H ,E

N
r,β

respectively, and the law of the process induced by PNr,β,H ,P
N
r,β is denoted by QN

r,β,H , Q
N
r,β.

Macroscopic and effective macroscopic state spaces. We define here the space of macro-
scopic curves. All microscopic curves, rescaled by N−1, are elements of the set X of non-empty,
connected compact subsets of [−1, 1]2 with perimeter bounded by 8. This set is compact for the
topology associated with the Hausdorff distance dH. It is of course much too large, and we work
instead with an effective state space Er, which contains only curves with four poles satisfying a
monotonicity condition similar to the one for XN

r . In addition, we shall define Er to ensure that
the constraints Vr, Hr defined in (2.9)-(2.10) are satisfied, and that any pathological curve, like the
one of Figure 4.4, is discarded. Informally, one should think of Er as follows:
Er = X ∩

{

Γ ⊂ [−1, 1]2 : Γ has four non-intersecting poles, satisfies a monotonicity condition

and ∂Γ is a simple curve
}

. (2.15)

In practice, the definition of Er is more subtle, as we want it to be closed for the Hausdorff
distance and we need to allow droplets with non-simple boundaries, corresponding to curves with
poles standing atop vertical or horizontal lines. It is detailed in Appendix B.
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Figure 4.5 – A possible initial condition Γ0. The reference frame R1 = (O, e−π/4, eπ/4) is represented, and
the graph of f1 appears in light colour. The position of the origin O is not relevant.

Definition 2.1 (Initial condition and notations). In the rest of this article, unless explicitly stated
otherwise, parameters r > 0, β > log 3, H ∈ C are fixed once and for all (or β > 64 log 3 in Lemma
5.2, see (2.4)). A parameter r0 > r is also fixed and we consider, for N ∈ N∗, the dynamics given
by PNr,β,H that starts from some ΓN0 ∈ NEr0 satisfying:

• (N−1ΓN0 )N converges in Hausdorff distance to a set Γ0 ∈ Er0, and each N−1ΓN0 and Γ0 are at
a distance at least d0 = 1/2 in 1-norm from the boundary of [−1, 1]2. We call Er0(1/2) ⊂ Er0
the subset of such curves, and in general Er(d) ⊂ Er is the set of droplets at 1-distance at
least d > 0 from the domain boundaries.

• The boundary γ0 of Γ0 is a Jordan curve, nowhere flat or vertical, i.e. there is no point
x ∈ γ0 admitting an open neighbourhood inside γ on which the curvature vanishes.

Unless otherwise said, d is a fixed number in (0, 1/4). Travelling on a curve in XN
r is always done

clockwise. Moreover, we set P5 := P1, P6 := P2. In this article, OG(δ) always means: bounded by
a constant depending on an object G times δ for δ > 0 sufficiently small. The letter C is used to
denote a constant that may change from line to line, and C(G, δ) means that the constant depends
only on G, δ and a numerical factor.
Importantly, if γN ∈ XN

r , we unambiguously write γN ∈ NEr instead of ΓN ∈ NEr, when γN =
∂ΓN . We also sometimes treat PNr,β as a measure on trajectories taking values in N−1XN

r instead
of XN

r . The letter Γ will always denote a ”droplet”, i.e. a compact subset of R2, or a trajectory
or droplets; and the letter γ its boundary, or the trajectory of the boundaries.

2.2 Heuristics

Before stating the results, let us give an idea of what the contour dynamics does, and describe how
it relates to the Symmetric Simple Exclusion Process (SSEP). One should always have in mind
this connection, which serves as a guideline for many intuitions and computations presented in
this article.
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Microscopic curves, i.e. elements of XN
r , can by definition be split in four quadrants C1, ..., C4.

Inside quadrant k, consider the reference frame Rk obtained by rotating the canonical frame by
π/4 plus a multiple of π/2:

Rk = (O, eπ/4−kπ/2, eπ/4−(k−1)π/2) for k ∈ {1, ..., 4}. (2.16)

In quadrant k ∈ {1, ..., 4}, the curve is given by the graph {(xk, fk(xk))Rk
: xk ∈ Ik} of a function

fk : Ik ⊂ R→ R, see Figure 4.5. Assimilate each vertical edge to a particle, each horizontal edge
to an empty site. Away from the poles, adding or removing a block is then possible whenever a
corresponding particle can jump according to the exclusion rule (i.e. at most one particle per site),
and the ”occupation number” at a point y = (xk, fk(xk)) ∈ V (γ) reads

ξy =
1 + (−1)k(fk(xk + 2−1/2)− f(xk))

2
. (2.17)

This correspondence is detailed in the proof of Lemma 6.5, see Figure 4.9.

Consider now the macroscopic counterparts of elements of XN
r : denote again by (fk(t, ·))t≥0

the family of functions representing quadrant k ∈ {1, ..., 4} of a macroscopic trajectory (γt)t≥0 of
curves taking values in Er (defined in Appendix B). Consider a parametrisation of each γt, t ≥ 0
on the unit torus T. Recall from (2.1) that the family (γt)t≥0 is said to satisfy anisotropic motion
by curvature until a time T > 0 if it solves:

∀t < T, ∀u ∈ T, ∂tγ(t, u) = a(θt(u))k(t, u)Nt(u). (2.18)

In this equation, the time derivative is taken at fixed values of the parameter u, and k(t, u) is the
curvature of γt at γt(u). The vector Nt(u) is the inwards normal vector at γt(u), θt(u) is the angle
between the tangent vector T and e1 and, finally, a is the anisotropy:

a(θ) :=
1

2
(

| sin(θ)|+ | cos(θ)|
)2 =

1

2‖T(θ)‖21
, θ ∈ [0, 2π]. (2.19)

One can check that, for each x ∈ R and k ∈ Z, a(arctan(x)+π/4+kπ/2) = (1+x2)/2. Elementary
computations on a formal level then yield that, away from each pole, equation (2.18) translates
into the heat equation on each quadrant:

∂tf
k =

1

4
∂2xkf

k,

where the time derivative is taken at fixed value of the parameter xk. This observation was already
made by Spohn in [Spo93], and is used in the proof of the hydrodynamic limit in [LST14b]-
[LST14a].
Assume that the poles of (γt) are fixed in time. Its four quadrants are then also fixed in time, hence
each interval of definition Ik of fk as well for k ∈ {1, ..., 4}. Define ρk = 1/2 + (−1)k∂xkfk/2. The
function ρk : I1 → [0, 1] is the density of the equivalent SSEP on the first quadrant (compare with
(2.17)). Forgetting about boundary conditions for now, recall e.g. from [KL99] large deviations
results for the density of a SSEP: trajectories occurring with probability of order e−N are solutions,
in a suitable sense, of:

∂tρ
k =

1

4
∂2xkρ

k − (1/2)∂xk
(

σ(ρk)∂xkHk

)

, (2.20)
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for some (possibly irregular) function Hk : Ik → R, and with σ(ρk) = ρk(1 − ρk). By analogy
with (2.20), interfaces occurring with probability of order e−N should be solutions, inside each
quadrant, to:

∂tf
k =

1

4
∂2xkf

k + σ(fk)∂xkHk, (2.21)

with σ(fk) = ρk(1 − ρk) = (1 − (∂xkf
k)2)/4. Recall that (2.21) is written under the assumption

that Ik does not change with time. However, in the contour dynamics, poles move, as they are
coupled together by the dynamics on each quadrant. Thus each interval Ik, k ∈ {1, ..., 4} depends
on time, and it is not possible to define a single function H depending only on xk, simultaneously
in the four quadrants and for each time. This leads one to replace each of the ∂xkHk, k ∈ {1, ..., 4}
by a single function H : R2 → R. As a consequence, H now also depends on fk(xk) inside each
quadrant, and not just on xk. The behaviour of (2.21) is still expected to be valid away from
the poles, i.e. in the interior of Ik(t) for each time, thus we expect that interfaces occurring with
probability of order e−N should satisfy:

∀t > 0, ∀x ∈ I̊k(t), ∂tf
k =

1

4
∂2xkf

k +
√
2σ(fk)H

(

(·, fk(·))Rk

)

. (2.22)

The additional
√
2 factor compared to (2.21) comes from the derivative ∂xkH that was removed.

Let us obtain from (2.22) a parametrisation independent equation on the family (γt). To do so,
write for the tangent vector:

T(θ) = cos(θ)e1 + sin(θ)e2 =
[

1 + (∂xkf
k)2

]−1/2(
1, ∂xkf

k
)

Rk
, θ = θ(xk) ∈ [0, 2π]. (2.23)

If v = (‖T‖1)−1 and a is the anisotropy (2.19), then

a(θk) = a(π/4− kπ/2 + arctan(∂xkf
k)) =

1 + (∂xkf
k)2

4
,

v(θk)2

2
= a(θk). (2.24)

After some elementary computations, one finds that trajectories (γt)t≥0 at scale e−N , away from
their poles, should look like solutions of an anisotropic motion by curvature with drift:

∂tγ ·N = ak − µH. (2.25)

Recall that N is the inwards normal vector, a is the anisotropy defined in (2.19), and µ is the
mobility of the model, defined as:

µ(θ) :=
| sin(2θ)|

2(| sin(θ)|+ | cos(θ)|) =
|T(θ) · e1||T(θ) · e2|

‖T(θ)‖1
, θ ∈ [0, 2π]. (2.26)

Indeed, e.g. in the first quadrant at time t0 ≥ 0, one has for each x1 ∈ I1(t0):

µ(θ(x1)) =
√
2
[

1 + (∂x1f
1)2

]1/2
σ(f 1(x1)).

From (2.25), we see that the function H, that we introduced from considerations on the SSEP on
each quadrant, plays the role of a magnetic field applied to ± Ising spins (see [Spo93]), separated
by an interface corresponding to our contours γ.
It remains to somehow add in the contribution of the poles to that picture. It turns out (see
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Proposition 2.2) that due to the regrowth, β-dependent part of the microscopic dynamics, poles
act as moving reservoirs which, at each time t ≥ 0, fix the value of ∂xkf

k(t, ·) in terms of β at
the extremities of its interval of definition Ik(t). We shall loosely refer to ∂xkf

k as the slope.
Equation (2.25) can then be interpreted as the coupling of four equations of the type (2.22) via
Stefan-like boundary conditions at the poles, each of these equations being written in a domain
Ik(t), k ∈ {1, ..., 4} that depends on time. Understanding how this coupling works and how to deal
with the motion of the poles without any monotonicity in the dynamics is the main challenge of
this work.

2.3 Results

We now state our results, starting with the behaviour of the slope at the poles, in Proposition 2.2.
This result is the most important specificity of our model. Define the microscopic averaged slope
on either side of a pole as follows. For γ ∈ NEr, k ∈ N∗ and x ∈ V (γ), denote by ξ+,kx the quantity:

ξ+,kx =
1

k + 1

∑

y∈V (γ),y≥x
‖x−y‖1≤k

ξy.

By y ≥ x we mean that y is encountered after x when travelling on γ clockwise (N ≫ k). We
define the other slope ξ−,kx similarly by averaging over points that are before x on γ.

Proposition 2.2. For d > 0, recall that Er(d) is the subset of Er of curves at 1-distance at least d
from the domain boundary ∂([−1, 1]2). For a trajectory (γt)t≥0 of curves, let (Lk(t))t≥0 denote the
trajectories of the left extremities of pole k, 1 ≤ k ≤ 4. Let T0 > 0. Then, for any test function
G ∈ C and δ > 0, if k ∈ {1, 3}:

lim sup
ε→0

lim sup
N→∞

1

N
logPNr,β

(

for a.e. t ∈ [0, T0], γ(t) ∈ NEr(d);
∣

∣

∣

∣

∫ T0

0

G(t, N−1Lk(t))
(

ξ±,εNLk(t)
− e−β

)

dt

∣

∣

∣

∣

≥ δ

)

= −∞.

If on the other hand k ∈ {2, 4}:

lim sup
ε→0

lim sup
N→∞

1

N
logPNr,β

(

for a.e. t ∈ [0, T0], γ(t) ∈ NEr(d);
∣

∣

∣

∣

∫ T0

0

G(t, N−1Lk(t))
(

1− ξ±,εNLk(t)
− e−β

)

dt

∣

∣

∣

∣

≥ δ

)

= −∞.

Remark 2.3. The result of Proposition 2.2 is stated only for trajectories with values in NEr(d)
for almost every time. Whether a trajectory stays in NEr(d) on a time interval [0, T0], T0 > 0 is a
separate question, addressed in Proposition 2.4. �

This proposition shows that the time average of the slopes at the poles are fixed and form a
cusp. This is reminiscent of the SSEP in contact with reservoirs which fix the density at the points
of contact [ELS90]. In our case, the exclusion dynamics on each quadrant are coupled by the fixed
value of the slope.

167



Take a sequence γN ∈ XN
r ∩ NEr(d), N ∈ N∗, and assume N−1γN converges to some γ ∈ Er(d)

in Hausdorff distance. For future reference, assume that the condition on the slope at the pole of
Proposition 2.2 holds for γN , in the sense that:

∀1 ≤ k ≤ 4, lim sup
ε→0

lim sup
N→∞

∣

∣ξ±,εN
Lk(γN )

− 1k∈{1,3}e
−β − 1k∈{2,4}(1− e−β)

∣

∣ = 0.

One can then prove that γ has point-like poles (this is done in a different context in Appendix
B.3), and the above condition can be translated into a condition on the angle θ(Lk(γ)±) between
the tangent vector T approaching Lk(γ) from the left (−) or the right (+), and the vector e1:

tan
(

θ(Lk(γ)−) +
(k − 1)π

2

)

=
e−β

1− e−β = − tan
(

θ(Lk(γ)+) +
(k − 1)π

2

)

, 1 ≤ k ≤ 4. (2.27)

Our second result justifies the definition of the ”effective” state space Er: first, configurations
starting inside the restricted configuration space NEr0 take a time of order N2 to exit this set. The
arguments for this point are inspired by [Cap+11]. Second, any trajectory that starts from Γ0,
which is at distance 1/2 from the domain boundary ∂([−1, 1]2), takes at least a diffusive time to
first reach ∂([−1, 1])2. As in the proof of the large N behaviour for the zero-temperature stochastic
Ising model in [LST14b], this proposition is crucial to be able to say anything about the typical
behaviour of the contour process, meaning also about lower-bound large deviations.

Proposition 2.4. Recall that r, β,H, r0, d0 = 1/2 are fixed as in Definition 2.1.

1. Let r1 ∈ (r, r0) and define τ = τNr1,β,H as the time for which the dynamics induced by PNr,β,H
first leaves NEr1. There are constants c0, α that depend only on Γ0, H, r0, r1 (but not on r, β)
such that:

PNr,β,H
(

τ < c0
)

≤ exp[−αN ]. (2.28)

2. Assume β > 64 log 3. For each d < 1/4, there is a time T0 = T0(Γ0, d, d0, β,H) ∈ (0, c0],
with c0 as in (2.28), such that:

PNr,β,H

(

∀t ∈ [0, T0], γt ∈ Er;
∫ T0

0

1dist(γt,∂([−1,1]2))<ddt > 0
)

= oN(1). (2.29)

Hydrodynamic limit
Next, we investigate the hydrodynamic limit of the contour process. This requires choosing a
suitable topology on trajectories. In the proof of the hydrodynamic limit for the zero temperature
stochastic Ising model in [LST14b]-[LST14a], the authors prove uniform convergence in time for
the Hausdorff topology. The Hausdorff distance between sets appears as a natural distance to
put on the state space: inside each quadrant, it is equivalent to weak convergence of the slopes, a
topology in which hydrodynamics are known for the SSEP.

In the case of the contour model, the Skorokhod topology associated with the Hausdorff distance
seems like a suitable choice. However, the regrowth part of the dynamics at the poles makes it
very complicated to estimates of the position of the poles at each time. We thus equip the set
DH([0, T0], Er) of càdlàg functions in Hausdorff distance with a weaker topology, without any point-
like control at the pole, induced by the distance (2.30).
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Let T0 > 0 be a time given by Proposition 2.4. Recall that X ⊃ N−1XN
r is the macroscopic state

space and consider the distance:

∀Γ,Γ′ ∈ X [0,T0], dE(Γ,Γ
′) = dL

1

S (Γ,Γ′) +

∫ T0

0

dH(Γt,Γ
′
t)dt. (2.30)

Above, dL
1

S is the Skorokhod distance associated with L1([−1, 1]2) topology, and dH is the Haus-
dorff distance on X. More is said on these objects in Appendix B.
For d ∈ (0, d0/2) = (0, 1/4), recall that Er(d) is defined in Definition 2.1 as the subset of the
effective state space Er with curves at 1-distance at least d from the domain boundary. A suitable
set of trajectories for the contour dynamics will be E([0, T0], Er(d)), defined as the completion of
DH([0, T0], Er(d)) for the distance dE. An explicit characterisation of elements in E([0, T0], Er(d))
and topological properties are given in Appendix B.2.

The hydrodynamic limit result is the following: {QN
r,β,H : N ∈ N∗} has weak limit points

supported on E([0, T0], Er(d)), and any weak limit point concentrates onto weak solutions, in the
sense defined below in (2.32), of (recall (2.27)):

{

∂tγ ·N = a∂2sγ ·N− µH = ak − µH away from the poles,

(γt)t≤T0 satisfies (2.27) at almost every t ∈ [0, T0].
(2.31)

with N the inwards normal vector, a the anisotropy (2.19), k the curvature, µ the mobility (2.26),
and s the arclength coordinate.

Proposition 2.5. Let β > 64 log 3. The set {QN
r,β,H : N ∈ N∗} is relatively compact in the set

M1(E([0, T0], X)) equipped with the weak topology associated with dE. Moreover, if Q∗
r,β,H is one

of its weak limit points, then it is concentrated on trajectories in E([0, T0], Er(d)) satisfying the
following. These trajectories have almost always point-like poles, i.e. for a.e. τ ∈ [0, T0], each
Pk(γτ ) := [Lk(τ, Rk(τ)] is reduced to the point Lk(τ), 1 ≤ k ≤ 4. Moreover, for any test function
G in the set C defined in (2.13),

∫

ΓT0

GT0 −
∫

Γ0

G0 −
∫ T0

0

∫

Γτ

∂τGτdτ =

∫ T0

0

∫

γτ\P (γτ )

α(θ(s))∂sG(τ, γτ (s))dsdτ

−
4

∑

k=1

∫ T0

0

(1

2
− e−β

)

G(τ, Lk(τ))dτ.

+

∫ T0

0

∫

γτ

µ(θ(s))(HG)(τ, γτ (s))dsdτ. (2.32)

Above, µ is the mobility of the model, defined in (2.26), and s is the arclength coordinate on γτ ,
τ ∈ [0, T0]. For each θ ∈ [0, 2π] \ (π/2)Z, α is related to the anisotropy a by α′(θ) = −a(θ). One
has:

α(θ) =
a(θ)

2

sin(2θ) cos(2θ)

| sin(2θ)| =
T(θ) · e1T(θ) · e2

4‖T(θ)‖1

[ 1

|T(θ) · e2|
− 1

|T(θ) · e1|
]

, (2.33)

where T(θ) = cos(θ)e1 + sin(θ)e2.
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The proof relies on well-known martingale methods [KL99]. However, the fact that configurations
are one-dimensional objects moving in a two-dimensional space introduces major difficulties. At
the microscopic level, the main issue is that the vertices or edges of a curve cannot be labelled in
a fixed reference frame.

Remark 2.6. The value of the slope at the pole of curves satisfying (2.32) is fixed as in Proposition
2.2 by the term on the second line of (2.32). Indeed, assume the curvature kτ on a solution (γτ )τ≤T0
of (2.32) is, say, continuous away from each pole. By definition, the tangent angle s 7→ θ(s) =
θ(γτ (s)) then satisfies ∂sθ(s) = −kτ (s), with the − sign due to the clockwise parametrisation of
γτ . Let G ∈ C. Integrating α∂sG(τ, ·) by parts on each quadrant in (2.32) for a fixed τ ∈ [0, T0],
one then finds, by definition (2.33) of α:

∫

γτ\P (γτ )

α(θ(s))∂sG(τ, γτ (s))ds

=
4

∑

k=1

[

α
(

(Lk+1(τ))−
)

G(τ, Lk+1(τ))− α
(

(Rk(τ))+
)

G(τ, Rk(τ))
]

−
∫

γτ\P (γτ )

a(θ(s))kτ (s)G(τ, γτ (s))ds.

Since Lk(τ) = Rk(τ) for each k and almost every τ ∈ [0, T0], the first sum compensates the second
line of (2.32) provided α

(

(Lk+1(τ))−
)

= 1/4 − e−β/2 = −α
(

(Lk(τ))+
)

. This means that the
tangent angle on either side of each pole satisfying (2.27). �

Large deviations
We obtain upper-bound large deviations for the contour dynamics at finite β > log 3. Assuming
solutions of (2.32) to be unique, lower-bound large deviations also follow. Upper and lower bounds
match for smooth trajectories. Specific to our model is, again, the control of the poles of the
curves.
Let T0 > 0 and consider r, β,H, d as in Definition 2.1. Given a trajectory Γ ∈ E([0, T0], Er(d)) with
boundaries γt = ∂Γt, t ≤ T0, define, recalling that Lk, Rk are the extremities of the pole Pk:

ℓβH(Γ) =
〈

ΓT0 , HT0

〉

−
〈

Γ0, H0

〉

−
∫ T0

0

〈

Γτ , ∂τHτ

〉

dτ −
∫ T0

0

dτ

∫

γτ\P (γτ )

α(θ(s))∂sH(τ, γτ (s))ds

+
(1

4
− e−β

2

)

∫ T0

0

4
∑

k=1

[

H(τ, Lk(τ)) +H(τ, Rk(τ))
]

dτ. (2.34)

Define also:

JβH(Γ) = ℓβH(Γ)−
1

2

∫ T0

0

∫

γτ

µ(θ(s))H2(τ, γτ (s))dsdτ, Γ ∈ E([0, T0], Er(d)) (2.35)

where the mobility µ is defined in (2.26).
To build the rate function, we will have to restrict the state space to control the behaviour of the
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poles. Introduce thus the subset Epp([0, T0], Er(d)) ⊂ E([0, T0], Er(d)) of trajectories with almost
always point-like poles:

Epp([0, T0], Er(d)) =
{

Γ ∈ E([0, T0], Er(d)) :
4

∑

k=1

∫ T0

0

|Lk(t)−Rk(t)|dt = 0

}

. (2.36)

Recall that Rk (Lk) is the right (left) extremity of pole k ∈ {1, ..., 4}. Let us now define the rate
function Iβ(·|Γ0):

Iβ(Γ|Γ0) =

{

supH∈C J
β
H(Γ) if Γ ∈ Epp([0, T0], Er(d)),

+∞ otherwise,
(2.37)

Remark 2.7. • Note that it is possible by Proposition 2.2 to enforce that only trajectories with
slope e−β at the poles have finite rate function. One would expect this condition to already
be present in (2.37), but the very weak topology at the poles makes it more complicated to
see than e.g. for a SSEP with reservoirs, see [BLM09].

• If β = ∞ and Γ is a smooth trajectory in C([0, T0], Er(d)) starting from Γ0 (i.e. it has well
defined, continuous normal speed and curvature at each time t ∈ (0, T0]), then setting β =∞
in (2.37) one obtains:

I∞(Γ|Γ0) =
1

2

∫ T0

0

∫

γt

(v − ak)2
µ

dsdt.

As conjectured in (1.3), the rate function I∞(·|Γ0) thus measures the quadratic cost of devi-
ations from anisotropic mean-curvature motion. At β < ∞, the same picture holds except
that trajectories with finite rate function are not smooth: they have kinks at the poles in
the sense of Proposition 2.2. �

In the proof of large deviations, trajectories associated with a smooth bias H ∈ C play a special
role. Define the set of trajectories AC

T0,r,β
⊂ E([0, T0], Er) as follows:

AC
T0,r,β

=
{

Γ ∈ E([0, T0], Er(d)) : there is a bias H ∈ C such that (2.32) has a

unique solution in E([0, T0], Er(d)), which is continuous in time in Hausdorff

topology, and this solution is Γ}. (2.38)

Theorem 2.8. Let r < r0. For any d ∈ (0, 1 − r), any closed set F ⊂ E([0, T0], Er(d)) and any
β > log 3:

lim sup
N→∞

1

N
logQN

r,β(F ) ≤ − inf
F
Iβ(·|Γ0). (2.39)

For any open set O ⊂ E([0, T0], Er(d)) with d ∈ [1/2, 1− r) and any β > 64 log 3,

lim inf
N→∞

1

N
logQN

r,β(O) ≥ − inf
O∩AC

T0,r,β

Iβ(·|Γ0). (2.40)

Remark 2.9. • The restriction to d > 1/2 and β > 64 log 3 for the lower bound is purely
technical. It is a consequence of item 2 in Proposition 2.4, and smaller d’s or smaller β’s
could be considered, without change to the proofs, by enlarging the state space to droplets
in [−A,A]2, A > 1.
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• We consider large deviation events on trajectories avoiding the domain boundary ∂([−1, 1]2)
to avoid additional boundary conditions in (2.32).

• The choice of initial condition is for convenience only. We could also consider large deviations
on the initial condition, with minor changes.

• One expects that the set AC
T0,r,β

contain all sufficiently regular trajectories which satisfy the
angle constraint (2.27) at each time at the poles. Typically, classical solutions of (2.31) for
each H ∈ C should belong to AC

T0,r,β
until some time T0. Existence and uniqueness of classical

solutions of (2.31) could be studied at β =∞ by the methods of [LST14b][LST14a]. When
β < ∞ however, the study of uniqueness of classical solutions to (2.31), let alone of (2.32),
appears to be very complicated. �

2.4 Comments on metastability

Before starting our study, we make some comments about metastability properties of the contour
model. The reversibility introduced in the microscopic dynamics and the large deviation results of
Theorem 2.8 give us a lot of information, as illustrated below.

Nucleation with a small magnetic field:
At equilibrium under νNr,β (defined in (2.3)) with r small, contours are typically small as well. If a
small magnetic field h/N , h > 0 is added to the dynamics as in (2.14) with H ≡ βh, it remains
reversible with respect to the measure νh defined by:

∀γ ∈ XN
r , νh(γ) = νNr,β,h(γ) = (Zr,β,h)−1 exp

[

− β|γ|+ 2βhVol(γ)/N
]

,

where Zr,β,h =
∑

γ∈XN
r
exp[−β|γ| + βhVol(γ)/N ] is the associated partition function, and Vol(γ)

is the volume of the droplet that γ delimits. We can use the large deviations result (Theorem 2.8
above) to inquire about the typical volume above which a nucleated droplet can grow, as well as
the shape that a droplet has while it grows or shrinks, depending on its size.

The surface tension tβ = tβ(θ), θ ∈ [0, 2π] of the contour model plays a key role in the nucleation.
Away from the pole, it is equal, for each tangent angle θ /∈ (π/2)Z and inverse temperature β, to
the surface tension for the Ising model at first order in the large β limit, as given in [Spo93]:

tβ(θ) = | cos(θ)|+ | sin(θ)|+ β−1

[

| sin(θ)| log
[ | sin(θ)|
| cos(θ)|+ | sin(θ)|

]

+ | cos(θ)| log
[ | cos(θ)|
| cos(θ)|+ | sin(θ)|

]]

.

The results of Section 6, Proposition A.3 yield the value of the surface tension at the poles, i.e.
for a tangent angle θ ∈ (π/2)Z. It reads:

∀k ∈ Z, tβ(kπ/2) = 1 +
1

β
log

(

1− e−β
)

< 1. (2.41)

The parameter β introduces a discontinuity at the poles: for k ∈ Z, limθ→kπ/2 tβ(θ) = 1 6= tβ(kπ/2).
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Speed of growth:
Another question of interest is the magnitude of the typical speed at which a big enough droplet
grows to cover the whole space. The conjecture is that the microscopic speed Vmicro reads

Vmicro ∼ CH, (2.42)

see [SS98] for details, with H the amplitude of the magnetic field. This conjecture is easily verified
in our case, where H = h/N with a fixed h > 0. Indeed, we establish in Section 5, see particularly
Lemma 5.5, that away from the poles droplets grow in volume with (inwards, macroscopic) normal
speed:

v = ak − µh, (2.43)

and the curvature should reasonably stay bounded as the droplet grows. The quantity a is the
anisotropy defined in (2.19) and µ the mobility, see (2.26). As space is rescaled by 1/N and time
by N2, one can relate microscopic and macroscopic speed by

v ∼ (1/N)×N2Vmicro ⇒ Vmicro ∼ N−1 ∼ H,

and (2.42) holds for the contour dynamics. The typical growth trajectory will satisfy (2.32).

2.5 Structure of the proof of large deviations

The proof of Theorem 2.8 takes up nearly whole of the paper.

• Before looking at rare events specifically, an understanding of the dynamics at the poles is
required. This is the object of the very technical Section 6, where in particular a proof that
poles behave like reservoirs in the sense of Proposition 2.2 is carried out.

• The proof of large deviations starts in Section 3. Following the standard techniques of
[KOV89] (see also Chapter 11 in [KL99]), we introduce dynamics tilted by a biasH ∈ C, where
C is defined in (2.13), and compute the Radon-Nikodym derivative between the contour and
tilted dynamics. To avoid pathological issues with the contour dynamics, the computation
is carried out for trajectories with values in NEr, with Er the nice set of droplets, defined
heuristically in (2.15), and precisely in Appendix B.
There are then two difficulties. The first one is the understanding of the contribution of
the poles, which is made possible through Section 6. The second one is related to the fact
that, at the microscopic level, we obtain discrete sums on points in a contour, on objects
that do not directly make sense at the macroscopic level. These discrete objects have to be
interpreted in terms of line integrals and tangent angles to obtain the functionals ℓH , JH for
H ∈ C, defined in (2.34)-(2.35), from which the rate function (2.37) is built.

• Section 4 contains upper bound large deviations. The proof mirrors that of Chapter 10 in
[KL99]. The added difficulty comes from the fact that the functional JH does not have nice
continuity property, so the state space needs to be further restricted. This involves a lot of
work on the functional JH itself, as well as a refinement of the estimates of Section 6 on the
dynamics at the poles, which is carried out in Appendix B.3.
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• Section 5 contains the lower bound, which amounts to laws of large numbers for the tilted
processes, i.e. Proposition 2.5. As a first step, we need to make sure that the tilted con-
tour dynamics takes a diffusive time to exit a nice subset of the state space, i.e. we prove
Proposition 2.4. Due to the lack of suitable continuity of the functional JH , H ∈ C, it is
difficult to directly obtain the lower bound, and thus Proposition 2.5; through a standard
hydrodynamic limit approach (see e.g. Chapters 4-5 in [KL99]). Instead, the lower bound of
Theorem 2.8 is obtained through upper bound large deviations for the tilted processes.

3 Some relevant martingales

3.1 Motivations

To investigate rare events, we are going to consider a tilted probability measure, as in Chapter 10 of
[KL99]. Fix a time T0 > 0 throughout the rest of Section 3, and introduce a magnetic field H ∈ C
(defined in (2.13)), so that for any Borel set B ⊂ DH([0, T0], N−1XN

r ) (the set of Hausdorff-càdlàg
trajectories with values in N−1XN

r ):

QN
r,β(B) = ENr,β[1γ∈B] = ENr,β,H

[

(DN
r,β,H)

−11γ∈B
]

,

where DN
r,β,H = dPNr,β,H/dP

N
r,β is the Radon-Nikodym derivative until time T0, defined by:

N−1 logDN
r,β,H =

〈

ΓT0 , HT0

〉

−
〈

Γ0, H0

〉

−
∫ T0

0

e−N
〈

Γτ ,Hτ

〉

(

∂τ +N2Lr,β
)

eN
〈

Γτ ,Hτ

〉

dτ. (3.1)

In (3.1), for a domain Γ ∈ N−1XN
r and G : [−1, 1]2 → R, we write

〈

Γ, G
〉

:=
∫

Γ
G.

Obtaining lower-bound large deviations from that method requires computing hydrodynamic
limits for all sequences of laws (QN

r,β,H)N with bias H ∈ C. To do so, we investigate the behaviour

of the projected processes
〈

Γ·, G·
〉

, Γ· ∈ DH([0, T0], N−1XN
r ), for a large class of test functions G

(here, G ∈ C), for which Ito’s formula reads:

∀t ≤ T0,
〈

Γt, Ht

〉

=
〈

Γ0, H0

〉

+

∫ t

0

(

∂τ +N2Lr,β,H
)〈

Γτ , Hτ

〉

dτ +MG
t , (3.2)

where (MG
t )t∈[0,T0] is a martingale. It turns out that the computations of the action of the generator

in (3.1) and in (3.2) are similar. Moreover, for the specific choice G = H, (3.2) is nearly identical
to (3.1) to highest order in N . For this reason, as (3.2) is slightly more general, we detail the
computation of MG

· rather than that of DN
r,β,H . The only non-trivial part is the computation of

N2Lr,β,H
〈

Γ·, G·
〉

, which we now perform. For the rest of Section 3, we fix a test function G ∈ C.

3.2 Computation of N 2Lr,β,H

〈

Γ·, G·
〉

We rewrite N2Lr,β,H
〈

Γ·, G·
〉

as a term depending on the pole dynamics, plus another term that
corresponds to the exclusion process on each quadrant of Γ. With particles corresponding to
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vertical edges, the exclusion term is rewritten in terms of local averages ξεNx of the ξ’s, where for
γ ∈ XN

r and x ∈ V (γ), ε > 0 and N ∈ N∗, the local density of vertical edges ξεNx is defined as:

ξεNx =
1

2εN + 1

∑

y∈B(x,εN)∩V (γ)

ξy. (3.3)

The ball is taken with respect to ‖ · ‖1, and we omit integer parts for ease of notation. In our case,
it will be convenient to write ξεNx as a function of the tangent vector at x. Recall that we always
enumerate elements of V (γ) clockwise, and define tx = e+x as the vector tangent to γ between x
and x+ e+x . In this case, the average tangent vector tεNx reads:

tεNx =
1

2εN + 1

∑

y∈B(x,εN)∩V (γ)

e+y = ±(1− ξεNx )e1 +±ξεNx e2. (3.4)

In the following, we shall consider rescaled microscopic curves γ ∈ N−1XN
r , and we write ξx, t

εN
x

for x ∈ γ to denote ξy, t
εN
y with y ∈ Nγ ∈ XN

r , y = Nx.
The signs in (3.4) depend on the quadrant x belongs to. For instance, if B(x, εN) is included in
the first quadrant,

tx = (1− ξx)e1 − ξxe2 ⇒ tεNx = (1− ξεNx )e1 − ξεNx e2.

We stress the fact that due to the lattice structure, ‖tεNx ‖1 = 1 6= ‖tεNx ‖2. This is where the
anisotropy (2.2) in the macroscopic motion by curvature (2.18) comes from. Define consequently
the norm and normalised tangent vector:

∀x ∈ V (γ), vεNx := ‖tεNx ‖2, TεN
x = tεNx /vεNx . (3.5)

As ‖tεN‖1 = 1, we get:

vεNx = ‖tεNx ‖2 =
(

‖TεN
x ‖1

)−1
. (3.6)

For d ∈ (0, 1/4), recall from Definition 2.1 the definition of N−1XN
r ∩ Er(d), the set of (rescaled)

microscopic curves in the effective state space Er which, in addition, are at distance at least d from
∂([−1, 1]2). Take a contour γ in that set and let J ∈ C2([−1, 1]2). We are going to prove:

N2Lr,β,H
〈

Γ, J
〉

=
[

line integral on γ of a function of tεN and J,H
]

+ o(1), (3.7)

where o(1) is shorthand for error terms in N, ε, and other parameters that will appear along the
proof, whose time integral is small. The precise statement of (3.7) is given later on in Proposition
3.9; for now we give a microscopic expression of N2Lr,β,H

〈

Γ, G
〉

.

Proposition 3.1. Fix a time T0 > 0. For any δ > 0, there is ε0(δ) ∈ (0, 1) such that, for any ε ∈
(0, ε0(δ)) smaller than some ε(δ) and any d ∈ (0, 1/4), there is a set Z = Z(δ, ε, d) ⊂ E([0, T0], X)
such that, for trajectories in Z:
∫ T0

0

N2Lr,β,H
〈

Γτ , Gτ

〉

dτ = −
(

1

4
− e−β

2

)
∫ T0

0

4
∑

k=1

[

G(τ, Lk(τ)) +G(τ, Rk(τ))
]

dτ + C(G,H)oδ(1)

+OG,H

(
∫ T0

0

dτ

4
∑

k=1

pk(τ)

N

)

+
1

4N

∫ T0

0

dτ
∑

x∈V ε(γτ )

(vεNx )2
[

TεN
x ·m(x)

]

TεN
x · ∇G(τ, x)dτ

+
1

N

∫ T0

0

dτ
∑

x∈V (γτ )

(vεNx )2|TεN
x · e1||TεN

x · e2|(GH)(τ, x). (3.8)
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Recall that pk is the number of edges in Pole k ∈ {1, ..., 4}. The vector TεN
· is defined in (3.5),

and the quantity m = (±1,±1) is a sign vector with value determined only by the quadrant, see
Definition 3.6. For γ ∈ XN

r , V ε(γ) ⊂ V (γ) is the subset of vertices at 1-distance at least εN from
the poles.
Moreover, Zc ∩ E([0, T0], Er(d)) satisfies:

lim sup
ε→0

lim sup
N→∞

1

N
logPNr,β,H

(

Zc ∩ E([0, T0], Er(d))
)

= −∞.

The set E([0, T0], Er(d)) is defined in Appendix B.2.

The rest of Section 3 is devoted to the proof of Proposition 3.1 (and its statement in the contin-
uous limit, Proposition 3.9). We write the different terms in (3.8) for fixed time whenever possible,
in which case the time dependence on G and H is omitted.

Notation: in the rest of Section 3, we consider only rescaled microscopic curves in N−1XN
r , and

fix γ ∈ N−1XN
r ∩ Er. Γ ⊂ [−1, 1]2 is the corresponding droplet: γ = ∂Γ. We still denote by V (γ)

the points of N−1Z2 that γ passes through, and by Pk(γ), k ∈ {1, ...4} the poles of γ. We write
abusively x, x+ 2e+x ∈ Pk(γ) for x ∈ V (γ), instead of x, x+ 2e+x /N ∈ Pk(γ).

Proof of Proposition 3.1.
Recall from (2.14) the definition of the jump rates under the dynamics with bias H. We claim
that, to highest order in N , the bias does not change the jump rate at the pole. Indeed, if x is in
a pole of γ and t ∈ [0, T0],

cHt(γ, γ±,x) = c(γ, γ±,x)(1 +OH(N
−1)), (3.9)

so that the bias changes the jump rate at pole Pk(t), k ∈ {1, ...4} by at most OH(pk(t)/N), with
pk(t) = |Pk(t)|. As proven later (in Section 6), the time integral of this quantity is of order 1/N .
To highest order in N , N2Lr,β,H

〈

Γ, G
〉

thus reads, omitting the time dependence:

N2Lr,β,H
〈

Γ, G
〉

= Bulk term + Pole terms,

with (recall (2.14) for the definition of the jump rates):

Bulk term = N2
∑

x∈V (γ)

cHt
x (γ)

[〈

Γx, G
〉

−
〈

Γ, G
〉]

, (3.10)

and, by (2.11)-(2.12):

Pole terms = N2

4
∑

k=1

∑

x∈Pk(γ)

x+2e+x ∈Pk(γ)

[

1DPk
r ,pk=2

[〈

Γx,−, G
〉

−
〈

Γ, G
〉]

+e−2β1x/∈∂([−1,1]2)

[〈

Γx,+, G
〉

−
〈

Γ, G
〉]

]

− N2

2

4
∑

k=1

1pk=2

∑

x∈{Rk,Lk}

[〈

Γx, G
〉

−
〈

Γ, G
〉]

+OH

(

4
∑

k=1

pk
N

)

. (3.11)
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DP k
r is the set Vr or Hr, defined in (2.9)-(2.10), depending on the value of k ∈ {1, ..., 4}. The

second line in (3.11) corresponds to the rate 1/2 jumps that delete only one of two blocks of a pole
of size 2, that are forbidden by the dynamics. However, it is convenient to incorporate them in
the Bulk term (3.10), hence the need to subtract them.
The notation

∑

x,x+2e+x ∈Pk
is a way of enumerating all pk − 1 vertices in the pole Pk, k ∈ {1, ..., 4}

such that two blocks can be placed atop [x, x + 2e+x ] or removed below [x, x + 2e+x ]. Finally, the
error term OH

(
∑4

k=1 pk/N
)

is a consequence of (3.9); its time integral is of order OH(1/N) as
proven in Section 6.
To prove Proposition 3.1, we treat the Bulk and Pole terms separately.

• Section 3.2.1 deals with the Pole terms (3.11), which are a specificity of the contour dynamics.
We state all useful results; proofs are postponed to Section 6.

• Section 3.2.2 contains all results on the Bulk term (3.10). We explain how to express them
in terms of local averages of the tangent vector tεNx , by tweaking the usual methods used e.g.
for the exclusion process. This concludes the proof of Proposition 3.1. The Bulk term (3.10),
which will correspond to the last two terms in (3.8), is then recast in terms of N -independent
line-integrals. This is the content of Proposition 3.9, stated at the end of the section.

3.2.1 Pole terms

Fix d ∈ (0, 1/4) and recall notations and the definition of Er(d) from Definition 2.1; of E([0, T0], Er(d))
from Appendix B.2. In this section, we compute the Pole terms (3.11), and obtain the following
result:

Lemma 3.2. For each δ > 0, there is a set ZP = ZP (d, δ) ⊂ E([0, T0], X) such that, for trajectories
in ZP :

∫ T0

0

dτ
[

Pole terms for γτ
]

= C(G)oN(1) +OG(δ) +
e−β

2

∫ T0

0

[

G(τ, Rk(τ)) +G(τ, Lk(τ))
]

dτ.

(3.12)

Moreover:

lim sup
N→∞

1

N
logPNr,β,H

(

(ZP )
c ∩ E([0, T0], Er(d))

)

= −∞.

Proof. Notice first that deleting a single block with extremity x means subtracting to
〈

Γ, G
〉

the
contribution of G on a block of side-length 1/N , i.e. N−2G(x/N) + OG(N

−3). Similarly, adding
one block contributes N−2G(x/N) + OG(N

−3). As a result, N2
∑

x∈{Rk,Lk}
〈

Γx, G
〉

contributes

−G(Lk/N)−G(Rk/N) to highest order in N for each k ∈ {1, ..., 4}, so that (3.11) reads:

Pole terms =
1

2

4
∑

k=1

1pk=2

[

G(Lk/N) +G(Rk/N)
]

(3.13)

+ 2
4

∑

k=1

∑

x∈Pk(γ)

x+2e+x ∈Pk(γ)

[

e−2β1x/∈∂([−1,1]2) − 1DPk
r ,pk=2

]

G(x/N) +OG,H

(

N−1

4
∑

k=1

pk

)

(3.14)
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The claim of Lemma 3.2 is then a simple consequence of the following three lemmas, the proofs
of which, postponed to Section 6, are one of the major technical difficulties of this article. In
each of the lemmas, the condition {∀τ ∈ [0, T0], γτ ∈ Er} (or Er(d)) is enforced to control the
change of probability between PNr,β,H and PNr,β, as will be seen in the computations of Section 3.2.2.
Parameters r, β are chosen as in Definition 2.1.

Lemma 3.3. For each pole k ∈ {1, ..., 4} and each A > 1,

lim sup
N→∞

1

N
logPNr,β,H

(

∀τ ∈ [0, T0], γτ ∈ Er;

1

T0

∫ T0

0

1Pk(γτ )∩∂([−1,1]2)=∅ e
−2β(pk(τ)− 1)dτ > A

)

= −∞.

For trajectories taking values in Er(d) ⊂ Er, this lemma implies that the time integral of the
∑4

k=1 pk/N error term in (3.14) is of order 1/N , hence vanishes to leading order in N as previously
claimed.

Lemma 3.4. Let G ∈ C0,1(R+ × [−1, 1]2) be compactly supported in time, recall the definition of
DP k

r from (2.9)-(2.10) and let WG
t be defined, for t ≥ 0, as:

WG
t =

4
∑

k=1

∑

x∈Pk(t)

x+2e+x ∈Pk(t)

[

1pk(t)=2,DPk
r
− 1Pk(t)∩∂([−1,1]2)=∅ e

−2β
]

G(t, x). (3.15)

We write G(t, x) instead of G(t, x/N) as we work on rescaled microscopic curves. Then:

∀δ > 0, lim sup
N→∞

1

N
logPNr,β,H

(

∀τ ∈ [0, T0], γτ ∈ Er;
∣

∣

∣

∣

∫ T0

0

WG
τ dτ

∣

∣

∣

∣

> δ

)

= −∞. (3.16)

Thanks to Lemma 3.4, the time integral of the first term in (3.14) vanishes to leading order in
N . It remains to compute (3.13), i.e. the 1pk=2

∑

x∈{Rk,Lk} term. Its value is in fact fixed by the
dynamics in terms of β, and can be computed.

Lemma 3.5. For each pole k ∈ {1, ..., 4}, each δ > 0 and each G ∈ C,

lim sup
N→∞

1

N
logPNr,β,H

(

for a.e. τ ∈ [0, T0], γτ ∈ Er(d);
∣

∣

∣

∣

∫ T0

0

G(τ, Lk(τ))
(

1pk(τ)=2 − e−β
)

dτ

∣

∣

∣

∣

> δ

)

= −∞.

We now define the set ZP mentioned in Lemma 3.2. For A > 1, define the set of trajectories
with poles of size less than Ae2β:

BN
p = BN

p (A, β) :=
4
⋂

k=1

{

(γNτ )τ∈[0,T0] ∈ E([0, T0], N−1XN
r ) :

1

T0

∫ T0

0

(

pk(τ)− 1
)

e−2β1Pk(γNτ )∩∂([−1,1]2)=∅dτ ≤ A
}

. (3.17)
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On this set, the error term
∫ T0
0
dτ

∑

k pk(τ)/N is of order N−1 as claimed below (3.11). By Lemma
3.3, (BN

p )
c ∩ E([0, T0], Er) has probability super-exponentially small under PNr,β,H . Define then

ZP = ZP (A = 2, β, δ) as:

ZP = BN
p (2, β) ∩

{
∣

∣

∣

∫ T0

0

WG
τ dτ

∣

∣

∣
≤ δ

}

∩
{

4
∑

k=1

∣

∣

∣

∫ T0

0

G(t, Lk(t))
(

1pk(τ)=2 − e−β
)

dτ
∣

∣

∣
≤ δ

}

. (3.18)

On the subset of trajectories taking values in N−1XN
r ∩ Er(d) for almost every time, (ZP )

c has
indeed probability super-exponentially small under PNr,β,H . This completes the proof of Lemma
3.2.

3.2.2 Bulk terms

In this section, we focus on the Bulk term. The proof of Proposition 3.1 is completed, and discrete
sums recast in terms of line integrals in Proposition 3.9. As the time dependence of H,G plays no
role in the detail of the computations, we consider H,G as functions in C2([−1, 1]2). We proceed
in several steps.

Step 1: discrete Bulk terms.
Recall from (3.4) that the microscopic tangent vector tεNx has coordinates ±ξεNx , ±(1− ξεNx ) with
signs that vary depending on the quadrant. It is useful to define a function m that contains
information on how these signs vary.

Definition 3.6. Recall that γ is a curve in N−1XN
r ∩Er, and define a function m(γ) : γ\P (γ)→ R2

as follows:
∀x ∈ γ \ P (γ), m(x) := m(γ, x) = −

√
2eπ/4−(k(x)−1)π/2, (3.19)

where P (γ) = ∪kPk(γ) is the union of the poles of γ. In (3.19), k(x) ∈ {1, ..., 4} is the index of the
quadrant of γ the point x belongs to. This means that m(x) = (−1,−1) for x in the first quadrant,
m(x) = (−1, 1) in the second quadrant, etc.

Lemma 3.7. For fixed δ > 0, there is ε0(δ) ∈ (0, 1) such that, for each ε ∈ (0, ε0(δ)), there is a
set ZB = ZB(δ, ε) ⊂ E([0, T0], X), on which:

∫ T0

0

dτ
[

Bulk term for γτ
]

= −1

4

∫ T0

0

dτ
4

∑

k=1

[

G(τ, Lk(γτ )) +G(τ, Rk(γτ ))
]

+ CG,H
(

oδ(1) + oN(1)
)

+
1

N

∫ T0

0

dτ
∑

x∈V (γτ )

|t1t2|H(τ, x)G(τ, x) +
1

4N

∫ T0

0

dτ
∑

x∈V ε(γτ )

[

t ·m(x)
]

t · ∇G(τ, x). (3.20)

In this formula, t, ti are short for t
εN
x , tεNx ·ei, i ∈ {1, 2}, with tεNx defined in (3.4). For γ ∈ N−1XN

r ,
the set V ε(γ) ⊂ V (γ) contains all points at 1-distance at least ε from the poles of γ.
In addition, the set ZB = ZB(δ, ε) satisfies:

lim sup
ε→0

lim sup
N→∞

1

N
logPNr,β,H

(

Zc
B ∩ E([0, T0], Er)

)

= −∞.
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Figure 4.6 – Definition of the V k, k ∈ {1, ...4}, represented for a curve in XN
r (i.e. non rescaled by N−1)

for legibility. The black dots are the first vertices and the light dots the last vertices of each V k. Three
points are marked by empty circles, with the corresponding value of ε(γ). The block that is deleted if y
is flipped is represented, the two arrows correspond to e+y and e−y .

Proof of Lemma 3.7. As for the Pole terms in Section 3.2.1, we work at fixed time and omit the
time dependence. The letter γ still denotes a curve in N−1XN

r ∩Er. Let x ∈ V (γ) not be in a pole
of size 2. Recall that e+x , e

−
x are the unit vectors with origin x, pointing respectively towards the

next and the previous point of V (γ) when travelling clockwise. If x is flipped, then:

∫

Γx

G−
∫

Γ

G = εx(γ)

∫

[x,x+e−x /N ]×[x,x+e+x /N ]

G =
εx(γ)

N2

∫

[0,1]2
G
(

x+
u

N
e−x +

v

N
e+x

)

dudv

=
εx(γ)

N2

(

G(x) +
1

2N

(

∂e−x + ∂e+x
)

G(x)
)

+O(N−4),

which is the contribution of the integral of G over the block that is added or removed when flipping
x. Above, εx(γ) is 1 if flipping x means adding one block, and −1 if it means deleting one (see
Figure 4.6). Recall from (2.6)-(2.14) that for x ∈ V (γ) and t ∈ [0, T0],

cHt
x (γ) = cx(γ)

(

1 +N
〈

Γx, Ht

〉

−N
〈

Γ, Ht

〉

+OH(N
−2)

)

. (3.21)

Since γ ∈ Er, the jump rate cHt(γ, γx) is equal to cHt
x (γ), i.e. it is local, see (2.6). The Bulk term

(3.10) thus reads:

Bulk term =
1

N

∑

x∈V (γ)

cx(γ)(HG)(x) +
∑

x∈V (γ)

cx(γ)εx(γ)G(x)

+
1

2N

∑

x∈V (γ)

cx(γ)εx(γ)
(

∂e−x + ∂e+x
)

G(x) +OG(N
−1). (3.22)

At first sight, the second sum is of order N since |V (γ)| ≈ N , whereas we want something of
order 1. We split it along each quadrant and show that we can perform another integration by
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parts. To decompose the curves on each quadrant Ck(γ), k ∈ {1, ..., 4}, consider the subset Vk of
V (γ) ∩ Ck(γ) composed of all vertices starting from the first vertex of Pk after Lk, and ending at
Lk+1 (L5 := L1), see Figure 4.6. In that way, on each of the Vk, the computation of (3.22) is the
same as for a SSEP. Indeed, with this definition of the Vk, for each k and x ∈ Vk, εx(γ) and cx(γ)
can be expressed in terms of the local ”occupation numbers” ξy, ‖y−x‖1 ≤ N−1 only. For instance
for x ∈ V1:

2cx(γ)εx(γ) = ξx+e−x − ξx. (3.23)

With that splitting along the Vk, (3.22) becomes:

Bulk term :=
1

N

∑

x∈V (γ)

cx(γ)(HG)(x) +
4

∑

k=1

Bk +
4

∑

k=1

B′
k +OG(N

−1), (3.24)

where:

Bk =
∑

x∈Vk

cx(γ)εx(γ)G(x), B′
k =

1

2N

∑

x∈Vk

cx(γ)εx(γ)
(

∂e−x + ∂e+x
)

G(x). (3.25)

1) Bk terms: using equation (3.23), B1 reads:

B1 =
∑

x∈V1
cx(γ)εx(γ)G(x) =

1

2

∑

x∈V1
G(x)(ξx+e−x − ξx)

=
1

4

∑

x∈V1
G(x)

[

ξx+e−x − ξx + (1− ξx)− (1− ξx+e−x )
]

. (3.26)

The passage from first to second line aims at making the expression symmetrical with respect to
the transformation ξ ← 1 − ξ. The reason is that the contour model is symmetrical with respect
to a global π/2 rotation, whereas the notation ξx is not: in terms of SSEP, ξx is one if there is a
particle in quadrants 1 and 3, but is 1 if there is a hole instead in quadrants 2 and 4.
By definition, the first edge in V1, write it (R1+1, R1+2), is always horizontal: 1− ξR1+1 = 1. On
the other hand, V1 ends at L2 and ξL2 = 1 by definition of L2. Integrating (3.26) by parts, some
of the boundary term thus vanish, whence:

B1 = −
1

4

(

G(L1) +G(L2)
)

+
1

4N

∑

x∈V1

[

ξx∂e+xG(x)− (1− ξx)∂e+xG(x)
]

+OG(N
−1). (3.27)

On V1, ξxe
+
x is either 0 if ξx = 0, or −e2 if ξx = 1. Similarly, (1 − ξx)e

+
x is either 0 or e1. In

any case, the sign of e+x · ei is fixed in a given quadrant whenever e+x · ei 6= 0. Thus, to obtain an
expression for the Bk that does not explicitly depend on the quadrant, we keep in mind Figure 4.6
and define signs σ1, σ2 constant on a given quadrant:

σ1 :=

{

1 if x ∈ V4 ∪ V1
−1 if x ∈ V2 ∪ V3

, σ2 :=

{

1 if x ∈ V3 ∪ V4
−1 if x ∈ V1 ∪ V2

. (3.28)

The idea behind (3.28) is that (σ1, σ2) is ”the direction of the tangent vector to a curve” in each
quadrant. For instance, in the first quadrants, curves are south-east paths and (σ1, σ2) = (1,−1),
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in quadrant 2 curves are south-west paths and (σ1, σ2) = (−1,−1), etc. Compare with m in
Definition 3.6, which gives ”the direction of the inwards normal”:

m = −(−σ2, σ1) = (σ2,−σ1). (3.29)

Repeating the computations leading to (3.27) on the other quadrants V k, one finds for the Bk:

4
∑

k=1

Bk = −
1

4

4
∑

k=1

[

G(Lk) +G(Rk)
]

+OG

(

N−1

4
∑

k=1

pk

)

(3.30)

+
1

4N

∑

x∈V (γ)\P (γ)

(

− ξxσ1∂2 + (1− ξx)σ2∂1
)

G(x).

Equation (3.30) is now clearly composed of terms of order at most 1 in N . The error term is com-
prised of two contributions. On the one hand, summing the Bk yields a term −(1/2)∑kG(Lk).
It is more convenient to symmetrise this term and write it as −(1/4)∑k[G(Rk) + G(Lk)], which
creates an error bounded by ‖∇G‖∞

∑

k pk/N . On the other hand, the sum in (3.27) bore on the
entirety of V (γ), while in (3.30) all points in P (γ) are removed. There are

∑

k pk such points,
which are responsible for an error term bounded by N−1

∑

k pk‖G‖∞.

2) B′
k terms (defined in (3.25)): Notice that if cx(γ) 6= 0, then εx(γ)(∂e+x + ∂e−x ) is the same

whether a block is added or deleted at x. Moreover, it depends only on the value of k ∈ {1, ..., 4}
with x ∈ Vk, thus:

4
∑

k=1

B′
k =

1

2N

∑

x∈V (γ)

cx(γ)
(

− σ2∂1 + σ1∂2

)

G(x). (3.31)

To conclude the proof of Lemma 3.7 from (3.24)-(3.30)-(3.31), it remains to replace ξx and cx(γ)
by local averages on small macroscopic boxes. It is simple for ξx, and requires only an integration
by parts and the smoothness of G. For cx(γ), this is the content of the so-called Replacement
lemma, stated below and proven in Appendix A.

Lemma 3.8 (Replacement lemma). Consider a function φ on N−1XN
r defined as follows:

∀γ′ ∈ N−1XN
r , ∀x ∈ V (γ′), φ(γ′, x) := cx(γ

′).

For ε > 0, recall from (3.3) the definition of ξεNx and define:

φ̃(ρ) = ρ(1− ρ), ρ ∈ [0, 1].

For and F : R+ × [−1, 1]2 bounded, define W φ,F
εN on (τ, γ′) ∈ [0, T0]×N−1XN

r by:

W φ,F
εN (τ, γ′) =

1

N

∑

x∈V (γ′)

F (τ, x)

[

φ(γ′, x)− φ̃(ξεNx )

]

. (3.32)

Then, for each δ > 0,

lim sup
ε→0

lim sup
N→∞

1

N
logPNr,β,H

(

∀τ ∈ [0, T0], γτ ∈ Er;
∣

∣

∣

∣

∫ T0

0

W φ,F
εN (τ, γτ )dτ

∣

∣

∣

∣

> δ
)

= −∞.
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Using Lemma 3.8, we conclude the proof of Lemma 3.7. Define:

BF (δ, ε) =

{

(γτ )τ∈[0,T0] ∈ E([0, T0], Er) :
∣

∣

∣

∣

∫ T0

0

W φ,F
εN (τ, γτ )dτ

∣

∣

∣

∣

≤ δ

}

. (3.33)

By Lemma 3.8, for each δ > 0, (BF (δ, ε)
c ∩ E([0, T0], Er) satisfies:

lim sup
ε→0

lim sup
N→∞

1

N
logPNr,β,H

(

(BF (δ, ε)
c ∩ E([0, T0], Er)

)

= −∞.

has probability super-exponentially small under PNr,β,H when N is large and ε small. Define then

Z̃B := (Z̃B)
N
H,G(δ, ε) = B∇G(δ, ε) ∩ BHG(δ, ε). (3.34)

The computations leading to (3.24)-(3.30)-(3.31) are valid at each time for a trajectory γ· taking
values in N−1XN

r ∩ Er. Recall from Lemma 3.7 that we are interested in time integrals of (3.24)-
(3.30)-(3.31). By Lemma 3.8, for trajectories in Z̃B, replacement of local quantities by averages in
these equations yields an error term with time integral bounded by δ. To not burden the notations
with a time dependence however, we continue to work with a curve γ ∈ N−1XN

r ∩Er and formally
replace local functions ξx, e

+
x , cx(γ) by their averages on an εN -neighbourhood, knowing by Lemma

3.8 that the procedure is legitimate when integrating in time, up to an error δ.
We start by applying Lemma 3.8 to the first term in (3.24). Recalling that |tεNx · e2| = ξεNx =
1− |tεNx · e1|, we find:

1

N

∑

x∈V (γ)

cx(γ)(HG)(x) =:
1

N

∑

x∈V (γ)

|tεNx · e1||tεNx · e2|(HG)(x) + ωHGε (γ). (3.35)

Let us now turn to the Bk terms (3.30) and the B′
k terms (3.31). Removing portions of length ε

on either side of each pole of γ and replacing t1, t2 by local averages, the sum in the second line
of the Bk terms (3.30) is equal to:

1

4N

∑

x∈V ε(γ)\P (γ)

[

− |tεNx · e2|σ1∂2 + |tεNx · e1|σ2∂1
]

G(x) + ω∇G,1
ε (γ). (3.36)

Similarly, the sum in the B′
k terms (3.31) is equal to:

1

2N

∑

x∈V ε(γ)

|tεNx · e2||tεNx · e1|
(

− σ2∂1 + σ1∂2

)

G(x) + ω∇G,2
ε (γ). (3.37)

By Lemma 3.8, we know that, if ωε ∈ {ωHGε , ω∇G,1
ε , ω∇G,2

ε }:

∀δ > 0, lim sup
ε→0

lim sup
N→∞

1

N
logPNr,β,H

(

∀τ ∈ [0, T0], γτ ∈ Er
∣

∣

∣

∫ T0

0

ωε(γ
′
τ )dτ

∣

∣

∣
> δ

)

= −∞. (3.38)

To conclude the proof of Lemma 3.7, it remains to prove that there is a function ω∇G
ε of γ, also

satisfying (3.38), and such that the contribution of (3.36) and (3.37) is given by:

(3.36) + (3.37) =
1

4N

∑

x∈V ε(γ)

[

t ·m(x)
]

t · ∇G(x) + ω∇G
ε (γ), (3.39)
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where the vector m is defined in Definition 3.6, and t is short for tεNx ; write also t1, t2 for tεNx ·
e1, t

εN
x · e2, x ∈ V ε(γ). To prove (3.39), write, not explicitly mentioning the error terms:

(3.36) + (3.37)− ω′
ε(γ) =

1

4N

∑

x∈V ε(γ)

[

(

− |t2|σ1 + 2|t1||t2|σ1
)

∂2 +
(

|t1|σ2 − 2|t1||t2|σ2
)

∂1

]

G(x)

=
1

4N

∑

x∈V ε(γ)

[

σ1|t2|
(

|t1| − |t2|
)

∂2 + σ2|t1|
(

|t1| − |t2|
)

∂1

]

G(x). (3.40)

To obtain the second line, we used |t1|+ |t2| = 1 by definition of t, see (3.4).
Recall from (3.28) the definition of (σ1, σ2), and by the ensuing discussion and (3.29) the fact that
m = (σ2,−σ1), with m as in Definition 3.6. Recall moreover that V ε(γ) ⊂ V (γ) is the set of points
at 1-distance more than ε to the poles to obtain:

∀x ∈ V ε(γ), |t1| := |tεNx · e1| = σ1t1, |t2| := |tεNx · e2| = σ2t2.

This is because all points in B1(x, ε) are in the same quadrant for x ∈ V ε(γ), thus σ1, σ2 are
constant on B1(x, ε). As a result, (3.40) becomes:

(3.36) + (3.37)− ω′
ε(γ) =

1

4N

∑

x∈V ε(γ)

[

σ1σ2t2
(

σ1t1 − σ2t2
)

∂2 + σ2σ1t1
(

σ1t1 − σ2t2
)

∂1

]

G(x)

=
1

4N

∑

x∈V ε(γ)

[

σ2t1 − σ1t2
][

t1∂1 + t2∂2
]

G(x)

=
1

4N

∑

x∈V ε(γ)

[

t ·m(x)
]

t · ∇G(x). (3.41)

Now properly integrating (3.24) in time and including all error terms in (3.30)-(3.35)-(3.39), one
obtains that, on Z̃B, (defined in (3.34)),

∣

∣

∣

∫ T0

0

ωε(γτ )dτ
∣

∣

∣
≤ 2δ + C(G,H)εT0 = OG,H(δ), ωε := ωHGε + ω∇G

ε ,

and:

∫ T0

0

[Bulk term evaluated at γτ ]dτ = C(G,H)oδ(1) +OG,H

(
∫ T0

0

dτ

4
∑

k=1

pk(τ)

N

)

+
1

4N

∫ T0

0

dτ
∑

x∈V ε(γτ )

[

tεNx ·m(x)
]

tεNx · ∇G(τ, x)dτ (3.42)

− 1

4

∫ T0

0

4
∑

k=1

[

G(τ, Lk(τ)) +G(τ, Rk(τ))
]

dτ +
1

N

∫ T0

0

dτ
∑

x∈V (γτ )

|tεNx · e1||tεNx · e2|(GH)(τ, x).

This is equation (3.20) in Lemma 3.7, up to the error term
∫ T0
0

∑

k pk/N . We defined in (3.17) the
set BN

p (2, β) in which it is of order N−1, so that if the set ZB in Lemma 3.7 is defined as:

ZB := (Z̃B)
N
H,G(δ, ε) ∩ BN

p (2, β), (3.43)
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then, on this set,
∫ T0
0
pk(t)/N = O(N−1), and ZB satisfies

lim sup
ε→0

lim sup
N→∞

1

N
logPNr,β,H

(

∀τ ∈ [0, T0], γτ ∈ Er; γ· /∈ ZB
)

= −∞.

This concludes the proof of Lemma 3.7.

Let us summarise our results and conclude the proof of Proposition 3.1. We have shown the
existence of two sets ZP , ZB of trajectories in (3.18)-(3.43), with (ZP )

c ∪ (ZB)
c ∩ E([0, T ], Er(d))

having super-exponentially small probability under PNr,β,H . This yields the set Z in Proposition
3.1, setting:

Z = ZN
H,G(A = 2, β, δ, ε) := ZP (2, β, δ) ∩ (ZB)

N
H,G(2, β, δ, ε). (3.44)

In Section 3.2.1, all Pole terms (3.13)-(3.14) were computed, and shown to yield the e−β term
contribution of the last line of (3.53). In Section 3.2.2, the other terms in (3.53) have been
identified. Proposition 3.1 is thus proven, once one recalls the definitions (3.5) of vεN , T εN and
replaces tεN by vεNT εN in (3.42).

�
Proposition 3.1.

Step 2: Replacement of the discrete sums by line integrals
In Proposition 3.1, discrete sums on all vertices of a contour in N−1XN

r appear. In the large
N limit for element of Er, the corresponding N -independent object should be some sort of line
integral, thus depends on the contour. In comparison, in the exclusion process the domain on
which configurations live is fixed. Correspondingly, only integrals on a fixed interval arise in the
large N limit.
If γ ∈ N−1XN

r ∩Er and s is the arclength coordinate on γ, for any continuous mapping f : γ → R:

1

N

∑

x∈V (γ)

f(x) =
∑

x∈V (γ)

f(x)[s(x+ e+x /N)− s(x)] =
∫

γ

fds. (3.45)

In writing (3.45), information about the lattice structure was omitted, and the resulting functional
on the right-hand side of (3.45) is not continuous on Er, not even if f ≡ 1. Indeed, take a sequence
γN ∈ N−1XN

r ∩ Er converging to some γ∞ ∈ Er. The left-hand side of (3.45) converges, for f ≡ 1,
to the length of γ∞ in 1-norm, whereas the right-hand side evaluated at γ∞ is equal to the length
in 2-norm, which is in general not the same.
The correct way to write the left-hand side of (3.45), that retains sufficient information on the
lattice structure to yield a continuous functional on (a nice subset of) Er, is the following:

1

N

∑

x∈V (γ)

f(x) =
1

N

∑

x∈V (γ)

f(x)‖Tx‖1 =
∫

γ

fv−1ds, (3.46)

where T is the tangent vector normed by ‖T‖2 = 1 and v−1 = ‖T‖1 is almost everywhere equal to
1 on γ ∈ N−1XN

r ∩Er, hence the equalities in (3.46). The proof of the continuity of the right-hand
side of(3.46) in Hausdorff distance is not related to microscopic computations, so we postpone it
to Proposition 4.3.
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Let us however motivate the factor v−1 in (3.46), when e.g. v−2 would a priori also work.
Take γN ∈ N−1XN

r and x ∈ V ε(γN), i.e. x is at 1-distance at least ε from the poles. For
definiteness take x in the first quadrant. By definition of XN

r , see Figure 4.1, in the reference
frame R1 = (O, e−π/4, eπ/4), the curve γN ∩ B1(x, ε) is the graph of a 1-Lipschitz function f 1:

γN ∩ B1(x, ε) =
{

(y, f 1(y))R1 : y ∈ u+ [−ε/
√
2, ε/
√
2]
}

, u := x · e−π/4.

As a result, tεNx reads:

tεNx =
1√
2ε

∫ u+ε/
√
2

u−ε/
√
2

t(y)dy, t(y) =

√
2

2

(

1, ∂yf
1(y)

)

R1
(3.47)

where t is the tangent vector normed by ‖t‖1 = 1, defined almost everywhere for a Lipschitz curve.
Since γN ∈ N−1XN

r , ‖t‖2 = 1 almost everywhere, but this is not the case in general for Lipschitz
curves. Recall that, by definition:

t = vT, ‖t‖1 = 1, ‖T‖2 = 1, v = ‖t‖2 = (‖T‖1)−1. (3.48)

Expression (3.47) does not explicitly depend on N any more, thus can also be written for a curve
γ ∈ Er. Define the set γ(ε) ⊂ γ of points at 1-distance ε or more to the poles, and similarly write:

∀k ∈ {1, ..., 4}, ∀x ∈ γ(ε) ∩ Ck(γ), tε(x) =
1√
2ε

∫ x·eπ/4−kπ/2+ε/
√
2

x·eπ/4−kπ/2−ε/
√
2

t(y)dy. (3.49)

Recall that Ck(γ) is quadrant k of γ, defined in Figure 4.1 or in Appendix B. The vector tε(x)
indeed satisfies ‖tε(x)‖1 = 1, and coincides with tεNx if γ ∈ N−1XN

r and x ∈ V (γ). Let us now
change variables to obtain a line integral in (3.49). To do so, define d±ε (·) ≥ 0 as the functions of
the arclength coordinate s on γ that satisfy:

∀s ≤ |γ|2, ‖γ(s± d±ε (s))− γ(s)‖1 = ε. (3.50)

The quantity |γ|2 is the usual Euclidean length of γ. Recall the notations (xk, fk)Rk
of Section

2.2 to write the portion in quadrant k of γ as the graph of the function fk in the reference frame

Rk, k ∈ {1, ..., 4}. With xk = x · eπ/4−kπ/2 if x ∈ Ck(γ) and dxk =
[

1 + (∂xkf
k)2

]−1/2
dσ, (3.49)

becomes, if s(x) denotes the value of the arclength coordinate associated with x, dσ denotes an
integration with respect to arclength coordinate, and d±ε is short for d±ε (s(x)):

∀k ∈ {1, ..., 4}, ∀x ∈ γ(ε) ∩ Ck(γ),

tε(x) =
1√
2ε

∫ s(x)+d+ε

s(x)−d−ε

t(σ)dσ
√

1 + (∂xkfk)2
=

1

2ε

∫ s(x)+d+ε

s(x)−d−ε
T(σ)dσ, (3.51)

where we used t = vT, which implies ‖t‖2 = v. In other words, the factor v−1 in (3.46) is exactly
what is needed to pass from the parametrisation by 1-Lipschitz curves on each quadrants, inherited
from the lattice structure, to a line integral formulation. Define now Tε and vε from tε:

∀s ≤ |γ|2, Tε(s) := tε(s)/‖tε(s)‖2, vε(s) := ‖tε(s)‖2 =
1

‖Tε(s)‖1
. (3.52)

Using (3.51)-(3.52), it is straightforward to transform Proposition 3.1 into the following.
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Proposition 3.9. With the notations and the set Z defined in Proposition 3.1, trajectories in Z
satisfy:

∫ T0

0

N2Lr,β,H
〈

Γτ , Gτ

〉

dτ =
1

4

∫ T0

0

dτ

∫

γτ (ε)

(vε)2

v

[

Tε ·m(γτ (s))
]

Tε · ∇G(τ, γ(s))ds

+
1

2

∫ T0

0

dτ

∫

γτ (ε)

(vε)2

v
|Tε

1||Tε
2|(HG)(τ, γτ (s))ds+ C(G,H)(oδ(1) + oN(1))

− 1

2

∫ T0

0

4
∑

k=1

(1/2− e−β)
[

G(τ, Lk(Γτ )) +G(τ, Rk(Γτ ))
]

dτ, (3.53)

where s is the arclength coordinate on γτ , γτ (ε) is the set of points in γτ at 1-distance at least ε
from the poles and m = (±1,±1) is the sign vector in Definition 3.6. The Tε

i , i ∈ {1, 2} stand
for the components of Tε defined in (3.52). Note that both v and vε appear in (3.53). There is a
vεTε for each tε in Lemma 3.7, while the v comes from the change of variable (3.46) to get a line
integral from discrete sums.

Remark 3.10. • Note that the line integral on the second line of (3.53) bears on γτ (ε), whereas
the corresponding sum in Proposition 3.1 bore on the whole of V (γτ ). This change is purely
for convenience and induces an error OG,H(ε) = C(G,H)oδ(1) independent of the curve.

• To connect (3.53) to the weak formulation (2.32) of anisotropic motion by curvature with
drift, notice from (3.49) that limε→0 t

ε(x) = t(x) for almost every point x of a curve that is
at 1-distance ε or more to the poles. As a result, Tε, vε, defined in (3.52), converge a.e. to
T, v on such portions of a curve, and:

lim
ε→0

[

(vε)2

v
|Tε

1T
ε
2|
]

(θ) =
(

v|T1T2|
)

(θ) =
| sin(2θ)|

2(| sin(θ)|+ | cos(θ)|) for θ ∈ [0, 2π].

This quantity is precisely µ(θ), see (2.26). In the same way, if θ ∈ [0, 2π] \ π
2
Z:

lim
ε→0

[

(vε)2

v
[Tε ·m]

]

(θ) Tε(θ) · ∇ =
[

v[T ·m]
]

(θ) T(θ) · ∇ = α(θ)∂s,

where α is defined in (2.33) and ∂s = ∂T is the derivative with respect to the arclength
coordinate, almost everywhere well defined.

• In (3.53), the tangent vector at each point is averaged on a portion of 1-length ε of the curve.
Away from the poles, this is a natural choice, well adapted to the underlying SSEP structure,
see Section 2.2.
At the poles however, this requires the knowledge of the position of the pole, that is the
position of a point whereas the droplets are volumic objects. Even more, the line integrals
bear on γτ (ε), τ ∈ [0, T0], the set of points at 1-distance ε from the poles of γτ , and the last
line of (3.53) explicitly requires the knowledge of the Lk, Rk, k ∈ {1, ..., 4}. If the droplet
boundaries were less regular, such a requirement would not be reasonable.
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Instead, as in the BV setting (see e.g. [EG15]), it would make sense to define a weaker notion
of neighbourhood of the pole in terms of volume, replacing e.g. Lk, Rk by an average over
all points of the droplet in an area of volume ε around pole k ∈ {1, ..., 4}. This definition
would then be relevant even with less regular droplets, and we use it in Section 4 to control
the poles.
However, the formulation of Proposition 3.9 for N2Lr,β,H

〈

Γ, G
〉

is useful for the following
reason. When integrating by parts the α term in (2.32) assuming the corresponding curves to
be smooth, the position of the pole actually arises as a boundary term. This fact is retained
in our microscopic computations, where the Lk, Rk terms naturally come out. �

4 Large deviation upper-bound and properties of the rate

functions

In this section, we prove upper bound large deviations, i.e. the upper bound in Theorem 2.8. Many
results presented below are well-known, so we only detail model-specific results. A time T0 > 0 is
fixed throughout the section. Parameters r, β are fixed according to Definition 2.1. The parameter
r is omitted in the notations.
For H ∈ C, the Radon-Nikodym derivative DN

β,H = dPNβ,H/dP
N
β until time T0 reads:

N−1 logDN
β,H((Γτ )τ≤T0) =

〈

ΓT0 , HT0

〉

−
〈

Γ0, H0

〉

−
∫ T0

0

e−N
〈

Γτ ,Hτ

〉

(

∂τ +N
2Lβ

)

eN
〈

Γτ ,Hτ

〉

dτ. (4.1)

Recall from (3.44) the definition of ZN
H,H(A = 2, β, δ, ε) =: Z, the set of trajectories in which the

computations of Section 3 can be performed, and from Definition 3.6 that of m. Refer to Appendix
B.2 for properties of E([0, T0], Er(d)), d ∈ (0, 1). For a trajectory (Γτ )τ∈[0,T0] in Z∩E([0, T0], Er(d)),
the results of Proposition 3.9 apply with next to no change to (4.1), so that on Z, DN

β,H satisfies:

N−1 logDN
β,H(Γ) = JβH,ε(Γ) + C(H)(oδ(1) + oN(1)), (4.2)

where JβH,ε is the functional defined on E([0, T0], Er) by (γτ = ∂Γτ , τ ∈ [0, T0]):

∀Γ ∈ E([0, T0], Er), JβH,ε(Γ) := ℓβH,ε(Γ)−
1

2

∫ T0

0

∫

γτ (ε)

|Tε
1T

ε
2|
(vε)2

v
H2(τ, γτ (s))dsdτ. (4.3)

The functional ℓβH,ε is defined as:

∀Γ ∈ E([0, T0], Er), ℓβH,ε(Γ) :=
〈

ΓT0 , HT0

〉

−
〈

Γ0, H0

〉

−
∫ T0

0

〈

Γτ , ∂τHτ

〉

dτ

− 1

4

∫ T0

0

dτ

∫

γτ (ε)

(vε)2

v

[

Tε ·m(γτ (s))
]

Tε · ∇H(τ, γ(s))ds (4.4)

+
(1

4
− e−β

2

)

∫ T0

0

4
∑

k=1

[

H(τ, Lk(τ)) +H(τ, Rk(τ))
]

dτ.
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Recall that, for τ ∈ [0, T0], γτ (ε) is the set of points in γτ at 1-distance at least ε from the poles,
and s is the arclength coordinate.

Formally taking the limit ε ↓ 0, we claim that JβH,ε, ℓ
β
H,ε converge point-wise to JβH , ℓ

β
H re-

spectively, defined in (2.35)-(2.34). Furthermore, the functionals JβH,ε, ℓ
β
H,ε are continuous on

Epp([0, T0], Er), the subset of E([0, T0], Er) with trajectories with almost always point-like poles.
These claims, assumed for the moment, are established in Section 4.2.

4.1 The upper bound

Fix d, T0 > 0. In this section, we establish the upper bounds in Theorem 2.8 for open and compact
sets in

(

E([0, T0], Er(d)), dE
)

(see Appendix B.2), with dE the distance defined in (B.4). To do so,

we temporarily admit the continuity of the functionals (JβH,ε)ε and their point-wise convergence to

JβH on Epp([0, T0], Er(d)) (defined in (2.36)). These properties are established in Section 4.2.

4.1.1 Restriction of the dynamics to good sets and behaviour of the poles

Let us start by listing the several sets with sub-exponential probability on which the dynamics will
be restricted to obtain the upper bound of Theorem 2.8. These include both the sets occurring in
the computation of the Radon-Nikodym derivative in Proposition 3.1, and additional sets used to
better control the pole dynamics.

Let O ⊂ E([0, T0], Er(d)) be a measurable set of trajectories. Recall that Er(d) is the set of
droplets at distance at least d > 0 from ∂([−1, 1])2. Recall also from (3.44) the definition of the
set Z, on which the pole size is microscopic and the Replacement lemma 3.8 holds, and define:

UN = UN(H,A = 2, β, δ, ε) :=
1

N
logENβ,H

[(

DN
β,H

)−1
1O1Zc

]

=
1

N
logENβ

[

1O1Zc

]

. (4.5)

We argue in the proof of the Replacement lemma in Appendix A that, for any δ > 0,

lim sup
ε>0

lim sup
N→∞

UN = −∞.

In particular, for each δ > 0, there is ε0(δ) > 0 such that:

lim sup
0<ε<ε0(δ)

lim sup
N→∞

UN = −δ−1. (4.6)

Let us now turn to the behaviour of the poles. It is proven in Section 6.2.4 that the time integrated
slope around the pole is e−β up to a small error, with probability super-exponentially close to 1
(see Corollary 6.11). This is better stated in terms of volume below the pole (see the last item
of Remark 3.10): for η > 0, define Vη as the volume of points with ordinate at most η below the
north pole:

∀Γ ∈ Er, Vη(Γ) =
∣

∣

{

x ∈ Γ : ymax(Γ)− x · e2 ≥ η
}∣

∣. (4.7)

Compared to the slope, the volume Vη is more robust to changes in the position of the pole: Vη is
continuous on Er equipped with the Hausdorff distance dH, since ymax, the ordinate of the highest
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point of an element of Er, also is (and similarly for the volumes beneath the other three poles).
By Lemma B.14, for each q, n ∈ N∗, there is η(q, n) > 0 such that, for any η ≤ η(q, n):

lim sup
N→∞

1

N
logPNr,β,H

(

for a.e. t ∈ [0, T0],Γt ∈ Er(d);

1

T0

∫ T0

0

1
{

∣

∣η−2Vη(Γt)− (eβ − 1)
∣

∣ >
1

n

}

dt

∣

∣

∣

∣

>
1

n

)

≤ −q. (4.8)

Simply by inclusion between the sets in the above probability, n 7→ η(q, n) can be taken to be
decreasing. Define then a set Dq,n as follows to control the poles:

Dq,n :=

{

∀1 ≤ m ≤ n,
1

T0

∫ T0

0

1
{∣

∣

∣

(η(q,m)

m

)−2

Vη(q,m)/m(Γt)− (eβ − 1)
∣

∣

∣
>

1

m

}

dt ≤ 1

m

}

∩ {similar event for the other three poles} ∩ E([0, T0], Er(d)). (4.9)

Since Vη is continuous on Er for the Hausdorff distance and the indicator function of an open set
is lower semi-continuous, the set Dq,n is closed in E([0, T0], Er(d)) for each q, n ∈ N∗. Moreover, by
(4.8):

lim sup
N→∞

PN
q,n := lim sup

N→∞

1

N
logPNβ,H

(

Dc
q,n ∩ E([0, T0], Er(d))

)

≤ −q. (4.10)

By construction, for q ∈ N∗, Dq,n ⊂ Dq,n′ if n ≤ n′. For q ∈ N∗, define then Dq as:

Dq :=
⋂

n≥1

Dq,n. (4.11)

We claim that trajectories in a Dq, q ∈ N∗ have almost always point-like poles, with kinks at each
pole with slope e−β. This claim is proven in the following lemma.

Lemma 4.1. Fix q ∈ N∗, and let (Γt)t≤T0 ∈ Dq. Then:

for a.e. t ∈ [0, T0], lim inf
η→0

∣

∣η−2Vη(Γt)− (eβ − 1)
∣

∣ = 0.

This in particular implies that (Γt)t≤t0 has almost always point-like poles.

Proof. We consider the north pole, the others are similar. Due to the monotonicity condition in
the definition of Er, a droplet Γ′ ∈ Er does not have point-like north pole if and only if there is
c > 0 (the width of the north pole) such that, for any η > 0 smaller than some η0 which only
depends on Γ′,

Vη(Γ
′) ≥ ηc.

In particular, Γ′ has point-like north pole as soon as:

lim inf
η→0

η−1Vη(Γ
′) = 0. (4.12)

Fix a trajectory (Γt)t≤T0 ∈ Dq and let ε > 0. For each integer n ≥ 1/ε, one has by definition of
Dq:

1

T0

∫ T0

0

1
{∣

∣

∣

(η(q, n)

n

)−2

Vη(q,n)/n(Γt)− (eβ − 1)
∣

∣

∣
> ε

}

dt ≤ 1

n
.
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Since n can be chosen to make η(q, n)/n arbitrarily small as n 7→ η(q, n) is decreasing, thus
bounded, this implies:

lim inf
η→0

∫ T0

0

1
{∣

∣η−2Vη(Γt)− (eβ − 1)
∣

∣ > ε
}

dt = 0.

Using Fatou inequality, we find:
∫ T0

0

lim inf
η→0

1
{
∣

∣η−2Vη(Γt)− (eβ − 1)
∣

∣ > ε
}

dt = 0

⇒ lim inf
η→0

1
{
∣

∣η−2Vη(Γt)− (eβ − 1)
∣

∣ > ε
}

= 0 for a.e t ∈ [0, T0]

⇒ lim inf
η→0

∣

∣η−2Vη(Γt)− (eβ − 1)
∣

∣ ≤ ε for a.e t ∈ [0, T0].

Since ε is arbitrary, the lemma is proven recalling (4.12).

4.1.2 Upper bound large deviations

We are now ready to obtain the upper bound large deviations. Recalling the expression (4.2) of
the Radon-Nikodym derivative, one has, for any Borel set O ⊂ E([0, T0], Er(d)):

1

N
logQN

β (O) ≤ max

{

1

N
logENβ,H

[(

DN
β,H

)−1
1O1Z1Dq,n

]

, UN , PN
q,n

}

+
log 3

N

≤ max

{

C(H)(oδ(1) + oN(1)) + sup
Γ∈O∩Dq,n

(−JβH,ε(Γ)), UN , PN
q,n

}

+
log 3

N
.

Taking the limit in N yields, recalling the estimates (4.6)-(4.10) of UN , PN
q,n:

lim sup
N→∞

1

N
logQN

β (O) ≤ max
{

C(H)oδ(1) + sup
Γ∈O∩Dq,n

(−JβH,ε(Γ)),−δ−1UN ,−q
}

.

Take the liminf in n ∈ N∗, then minimise over ε ∈ (0, ε0(δ)) (recall (4.6), then over δ > 0, H ∈ C
and q ≥ 1 to obtain a first upper bound for general O:

lim sup
N→∞

1

N
logQN

β (O) ≤ inf
q≥1

inf
H∈C

inf
δ,ε

max
{

lim inf
n→∞

sup
Γ∈O∩Dq,n

(−JβH,ε(Γ)) + C(H)oδ(1),−δ−1,−q
}

.

(4.13)

Upper bound for compact sets. We now extend the bound (4.13) to a bound on compact sets.
Let K be a compact set in E([0, T0], Er(d)). Were JβH,ε a continuous functional on E([0, T0], Er(d))
for each H, ε, one could remove Dq,n in the maximum in the right-hand side of (4.13), which would
then also be continuous. Lemmas A.2.3.2 and A.2.3.3 in [KL99] could consequently be used to
exchange inf and sup in (4.13), yielding an upper bound on compact sets.

Unfortunately, JβH,ε is not a continuous functional on E([0, T0], Er(d)) for H ∈ C, ε > 0. How-
ever, in Proposition 4.3, we prove the following. Let Epp([0, T0], Er(d)) ⊂ E([0, T0], Er(d)) be the
set of trajectories with almost always point-like poles. Then any trajectory in Epp([0, T0], Er(d)) is
a point of continuity of each functional JβH,ε for H ∈ C and ε > 0. The introduction of the sets Dq,n

for (q, n) ∈ (N∗)2, defined in (4.9), aims at restricting to trajectories with almost always point-like
poles, as explained in the next lemma.
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Lemma 4.2. Let H ∈ C, ε > 0 and q ≥ 1. Let O ⊂ E([0, T0], Er(d)) be an open set. Then:

lim inf
n→∞

sup
O∩K∩Dq,n

(

− JβH,ε
)

= sup
O∩K∩Dq

(

− JβH,ε
)

.

Proof. Since Dq ⊂ Dq,n for each n ∈ N∗, we need only prove that the left-hand side is smaller
than the right-hand side, and we may assume without loss of generality that, for each n ∈ N∗,
O ∩ K ∩Dq,n is not empty. Assume by contradiction that there is n0 ∈ N∗, η > 0 and a sequence
Γn ∈ O ∩ K ∩Dq,n, n ≥ n0 such that:

−JβH,ε(Γn) ≥ η + sup
O∩K∩Dq

(

− JβH,ε
)

.

Since K is compact, (Γn)n converges to some Γ ∈ Ō ∩ K up to a subsequence. Since each Dq,n,
n ∈ N∗ is closed and Dq,n ⊂ Dq,n′ for n ≤ n′, Γ is in Dq. As Dq ⊂ Epp([0, T0], Er(d)) by Lemma

4.1, Γ is a point of continuity of JβH,ε by Proposition 4.3, thus:

−JβH,ε(Γ) ≥ η + sup
O∩K∩Dq

(

− JβH,ε
)

.

Since −JβH,ε has the same supremum on O ∩ K ∩Dq and Ō ∩ K ∩Dq, as it is continuous on both
sets due to Dq ⊂ Epp([0, T0], Er(d)), we obtain a contradiction:

−JβH,ε(Γ) ≤ sup
Ō∩K∩Dq

(

− JβH,ε
)

= sup
O∩K∩Dq

(

− JβH,ε
)

≤ −JβH,ε(Γ)− η.

Let O ⊂ E([0, T0], Er(d)) be an open set. Using Lemma 4.2, the general upper bound (4.13)
applied to O ∩K becomes:

lim sup
N→∞

1

N
logQN

β (O ∩K) ≤ inf
q≥1

inf
H∈C

inf
δ,ε

max
{

sup
Γ∈O∩K∩Dq

(−JβH,ε(Γ)) + C(H)oδ(1),−δ−1,−q
}

= inf
q≥1

inf
H∈C

inf
δ,ε

sup
O∩K

J̃βH,ε,δ,q,

where:
J̃βH,ε,δ,q := max

{

(

− JβH,ε
)

+ C(H)oδ(1),−δ−1,−q
}

. (4.14)

This time, for each fixed q ≥ 1 and each admissible H, ε, δ, J̃βH,ε,δ,q is a continuous functional on
Dq. Taking finite open covers of K, Lemmas A.2.3.2 and A.2.3.3 in [KL99] apply for each q ≥ 1

to the family (J̃βH,ε,δ,q)H,ε,δ on the compact set K ∩Dq, and we obtain:

lim sup
N→∞

1

N
logQN

β (K) ≤ inf
q≥1

sup
Γ∈K∩Dq

inf
H∈C

inf
δ,ε
J̃βH,ε,δ,q. (4.15)

Recall the definition (4.14). For each H ∈ C and each Γ ∈ Dq, by Proposition 4.3,

−JβH,ε(Γ) = −JβH(Γ) + C(Γ, H)oε(1) where C(Γ, H)oε(1) can be taken positive.
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Bounding the infimum on ε ∈ (0, ε0(δ)) in (4.15) by lim infε→0, (4.15) thus becomes:

lim sup
N→∞

1

N
logQN

β (K) ≤ inf
q≥1

sup
Γ∈K∩Dq

inf
H∈C

max
{

− JβH(Γ),−q
}

≤ − inf
K
Iβ(·|Γ0). (4.16)

The last bound comes from the fact that Dq ⊂ Epp([0, T0], Er(d)) for each q by Lemma 4.1, and
from the definition (2.37) of Iβ(·|Γ0). This is the desired upper bound for compact sets.

Upper bound for closed sets. Upper bound large deviations for closed sets follow from the
exponential tightness of

(

QN
r,β(·, E([0, T0], Er(d))

)

N
inM1(E([0, T0], Er(d))). Establishing exponen-

tial tightness is quite technical, so we postpone it to Appendix B.3 and conclude here the proof of
the upper bound in Theorem (2.8).

4.2 Properties of the rate function

In this section, continuity of the functional JβH,ε is established on the set Epp([0, T0], Er(d)) of
trajectories with almost always point-like poles (see (2.36)). A parameter d > 0 is fixed throughout
the section. The functional JβH,ε is defined in (4.3)-(4.4).

Proposition 4.3. Let H ∈ C and ε > 0. Recall the definition (4.3) of the functional JβH,ε. Then
each element of the set Epp([0, T0], Er(d)) of trajectories with almost always point-like poles, equipped

with the distance dE (see (2.30)), is a point of continuity of JβH,ε. Moreover,

lim
ε→0

JβH,ε(Γ) = JβH(Γ) pointwise on Epp([0, T0], Er(d)). (4.17)

The same holds for JH,ε.

Before proving Proposition 4.3, let us state an intermediate result which explains the advantage
of dealing with trajectories in Epp([0, T0], Er(d)) rather than in E([0, T0], Er(d)).

Lemma 4.4 (Convergence of the poles). For n ∈ N, let Γn ∈ E([0, T0], Er(d)) and assume that

(Γn) converges to Γ ∈ Epp([0, T0], Er(d)) for the distance
∫ T0
0
dH(·, ·)dt ≤ dE. Then Lk(Γt) = Rk(Γt)

for each k ∈ {1, ..., 4} and almost every time since Γ has almost always point-like poles, and:

∀k ∈ {1, ..., 4}, lim
n→∞

∫ T0

0

dt‖Lk(Γnt )− Lk(Γt)‖1 ∨ ‖Rk(Γ
n
t )−Rk(Γt)‖1dt = 0. (4.18)

Proof. We deal with the north pole, the others are the same. For Γ̃ ∈ Er, let ymax(Γ̃) be the ordinate
of its north pole. Notice that ymax is 1-Lipschitz in Hausdorff distance. Since L1 ·e2 = R1 ·e2 = ymax,
we find:

∫ T0

0

dt|L1(Γ
n
t ) · e2 − ymax(Γt)| ∨ |R1(Γ

n
t ) · e2 − ymax(Γt)|dt

=

∫ T0

0

dt
∣

∣ymax(Γ
n
t )− ymax(Γt)

∣

∣dt ≤
∫ T0

0

dH(Γ
n
t ,Γt)dt −→

n→∞
0.
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As for the second component of L1(Γ
n), R1(Γ

n), the two functionals R1·e1 and L1·e1 are respectively
upper and lower semi-continuous on Er. In particular, let t ∈ [0, T0] such that the droplet Γt has
point-like poles, and dH(Γnt ,Γt) = oN(1) vanishes. Then:

L1(Γt) · e1 ≤ lim inf
n→∞

L1(Γ
n
t ) · e1 ≤ lim sup

n→∞
R1(Γ

n
t ) · e1 ≤ R1(Γt) · e1 = L1(Γt) · e1.

Since almost every t ∈ [0, T0] satisfies this condition, we find:

lim
n→∞

∫ T0

0

∣

∣L1(Γ
n
τ ) · e1 − L1(Γτ ) · e1

∣

∣ ∨
∣

∣R1(Γ
n
τ ) · e1 −R1(Γτ ) · e1

∣

∣dτ = 0.

Proof of Proposition 4.3. In view of the expression (4.3)-(4.4) of JβH,ε, we need to prove that ele-
ments of Epp([0, T0], Er(d)) are points of continuity of the two terms:

(

1

4
− e−β

2

) 4
∑

k=1

∫ T0

0

[

H(τ, Rk(τ)) +H(τ, Lk(τ))
]

dτ, (4.19)

−
∫ T0

0

∫

γτ (ε)

(vε)2

4v

[

Tε ·m
]

Tε · ∇Hdsdτ − 1

2

∫ T0

0

∫

γτ (ε)

(vε)2

v
|Tε

1T
ε
2|H2ddτ. (4.20)

The functional in (4.19) has already been treated in Lemma 4.4: any trajectory in Epp([0, T0], Er(d))
is one of its points of continuity for

∫ T0
0
dHdt ≤ dE, hence for dE.

Consider now (4.20). Clearly, to prove that elements of Epp([0, T0], Er(d)) are points of continu-
ity of this functional, it is enough to prove that each Γ ∈ Eppr ⊂ Er, the set Eppr ⊂ Er of droplets with
point-like poles, is a point of continuity of the integrand at each fixed time, seen as a functional
on (Er, dH).
We prove it for the first term in (4.20), the second one is similar. For H ∈ C2([−1, 1]2), consider
the functional:

∀Γ ∈ Er, FH,ε(Γ) =

∫

γ(ε)

(vε)2

4v

[

Tε ·m
]

Tε · ∇Hds. (4.21)

The definition of Tε, vε is given in (3.52), v = ‖T‖−1
1 with T the tangent vector normed by

‖T‖2 = 1, and m is the sign vector in Definition 3.6.
Let Γn ∈ Er, n ∈ N converge in Hausdorff distance to Γ ∈ Eppr . The idea is to split the integral in
(4.21) between each quadrant of Γ. On each quadrant, the integrand, expressed in terms of the
equivalent SSEP, is easily shown to be continuous.

Let us first prove that we can consider the integrand on each quadrant of Γ separately. Recall
from Section 2.2 the definition of the functions fk : Ik → R, whose graph at each time in the
reference frame Rk, defined in (2.16), is the portion of γ in its quadrant k. Define similarly fkn for
the γn = ∂Γn, n ∈ N. For brevity, we write Tn,ε = Tε(Γn) and similarly vn,ε,mn for vε(Γn),m(Γn).
Let Ikn = [akn, b

k
n], I

k = [ak, bk] be the intervals of definition of the functions fkn(·), fk(·) respectively,
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for k ∈ {1, ..., 4}. As Γ ∈ Eppr , (Lk(Γ
n)), (Rk(Γ

n)) converge to Lk(Γ) as n is large by (the proof of)
Lemma 4.4. As a result, limn γn(ε) = γ(ε) in Hausdorff distance, and:

∀k ∈ {1, ..., 4}, lim
n→∞

akn = ak, lim
n→∞

bkn = bk. (4.22)

Equation (4.22) enables us to consider the integrand in (4.21) on each quadrant of Γ separately.
Indeed, fix η ∈ (0, ε/

√
2). For all n large enough and each k, (4.22) tells us that fnk is well

defined on [ak + η, bk − η], and in particular in the portion of γ(ε) in quadrant k of Γ, i.e. for
xk ∈ [ak + ε/

√
2, bk − ε/

√
2]. As a result, FH,ε can be recast as follows: for each Γ̃ ∈ Er,

FH,ε(Γ̃) =
4

∑

k=1

∫ b̃k+ε/
√
2

ãk+ε/
√
2

(vε(xk))2

2
√
2

[

Tε(xk) ·m(xk)
]

Tε(xk) · ∇H(τ, (xk, f̃k(xk))Rk
)dxk. (4.23)

To write (4.24), we used the relation:

ds(xk) =
(

1 + (∂xk f̃
k)2

)1/2
dxk =

√
2vdxk,

where the last equality comes from Section 2.2, see (2.24). As a consequence of (4.23), continuity
of FH,ε is proven as soon as, for each k ∈ {1, ..., 4}:

lim
n→∞

∫ bk−ε/
√
2

ak+ε/
√
2

(vn,ε(xk))2

2
√
2

[

Tn,ε(xk) ·mn(xk)
]

Tn,ε(xk) · ∇H
(

(xk, fkn(x
k))Rk

)

dxk (4.24)

=

∫ bk−ε/
√
2

ak+ε/
√
2

(vε(xk))2

2
√
2

[

Tε(xk) ·m(xk)
]

Tε(xk) · ∇H
(

(xk, fk(xk))Rk

)

dxk.

Note the replacement of akn, b
k
n by ak, bk in the first line of (4.24), thanks to (4.22) and the fact

that the integrand in (4.24) is bounded.
Fix k ∈ {1, ..., 4}. On quadrant k, the integral in (4.24) has a much simpler expression in terms of
the tangent vector tn,ε with 1-norm equal to 1, defined in (3.49). Indeed, recall from (3.52) that,
for each xk ∈ Ik,

vn,ε(xk)Tn,ε(xk) = tn,ε(xk) =

(
√
2

2
,
fkn(x

k + ε/
√
2)− fkn(xk − ε/

√
2)

2ε/
√
2

)

Rk

=:

√
2

2

(

1,∆εf
k
n(x

k)
)

Rk
. (4.25)

Moreover, the functionm, defined in Definition 3.6 is equal to a sign vector, determined only by the
index of the quadrant. As a result, for n large enough, mn = m for each xk ∈ [ak+ε/

√
2, bk−ε/

√
2],

k ∈ {1, ..., 4}, and vn,ε
[

Tn,ε ·mn
]

(θk) reads:

vn,ε
[

Tn,ε ·mn
]

(θk) = tn,ε(xk) ·m(xk) = −f
k
n(x

k + ε/
√
2)− fkn(xk − ε/

√
2)

2ε
= −∆εf

k
n(x

k).

The integral in (4.24) then becomes, for n large enough and with ∂yk = ∂eπ/4−(k−1)π/2
the partial

derivative with respect to the second basis vector in Rk:

− 1

4

∫ bk−ε/
√
2

ak+ε/
√
2

∆εf
k
n(x

k)
[

∂xk +∆εf
k
n(x

k)∂yk
]

H
(

(xk, fkn(x
k))Rk

)

dxk. (4.26)
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Observe that xk 7→ ∂ykH((xk, fkn(x
k)) is continuous, and that ∆εf

k
n(x

k) converges point-wise to
∆εf

k(xk), defined as in (4.25). As the integrand in (4.26) is bounded, the dominated convergence
theorem yields (4.24), hence the Hausdorff continuity of FH,ε and the dE-continuity of the first
term in (4.20). The second term in (4.21) is treated similarly.

We now turn to the point-wise convergence of JβH,ε to JβH as ε ↓ 0, i.e. the proof of (4.17).
The fact that Tε → T for almost every point of a curve and the dominated convergence theorem
immediately give the result. This concludes the proof of Proposition 4.3.

5 Lower bound large deviations and hydrodynamic limits

In this section, we prove lower bound large deviations for the measures {QN
r,β : N ∈ N∗}, i.e. the

lower bound in Theorem 2.8. The method is expounded in [KL99]. It consists in first proving
hydrodynamic limits for all the {QN

r,β,H : N ∈ N∗}, H ∈ C, which are shown to concentrate on
solutions to anisotropic motion by curvature with drift in the sense of (2.32). This yields a lower-
bound, that matches the upper-bound of Section 4 for smooth trajectories. In this article, we
will not consider more general trajectories, as the analysis of solutions to (2.32) proves to be very
difficult due to the motion of the poles.

5.1 Large deviation lower-bound

In this section, we explain how to obtain lower bound large deviations assuming the following
points:

1. trajectories typically remain in the effective state space Er(d) for some d ∈ (0, 1/4], which is
Proposition 2.4;

2. the hydrodynamic limit of the measures {QN
r,β,H : N ∈ N∗} can be characterised for each

H ∈ C (this is Proposition 2.5), and we consider only those H ∈ C for which the weak
formulation (2.32) of the anisotropic motion by curvature with drift has a unique solution,
which is additionally continuous in time in Hausdorff topology.

With these two assumptions, one concludes on a lower-bound in the same way as in [KL99],
Chapter 10, Section 5.
More precisely, let H ∈ C, and let ΓH ∈ E([0, TH),

⋃

r,d>0 Er(d)) be a solution of (2.32). Assume

that H is chosen such that ΓH is the only solution, and is continuous in time in Hausdorff topology.
ΓH exists until a maximal time TH , which is the first time ΓH reaches ∂([−1, 1]2), or has either
opposite quadrants touching each other, or two consecutive poles collapsing into a segment. For
any r ∈ (0, r0), there is a time Tr < TH such that:

• ΓH takes values in Er(1/2) on [0, Tr]. This is a technical point related to the proof of item 2
of Proposition 2.4 in Section 5.2.

• For any T0 ≤ Tr, the measures QN
r,β,H , N ∈ N∗ concentrate in the large N limit on δ(ΓH)t≤T0

.
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For each T0 ≤ Tr, recall from (2.38) the definition of the set AC
T0,r,β

. Let O ⊂ E([0, T0], Er(1/2))
be an open set. Assume there is H ∈ C such that ΓH|[0,T0] ∈ O ∩AC

T0,r,β
. Then:

lim inf
N→∞

N−1 logQN
r,β(O) ≥ −Iβ

(

(ΓH)t≤T0 |Γ0

)

⇒ lim inf
N→∞

N−1 logQN
r,β(O) ≥ − inf

O∩AC
T0,r,β

Iβ(·|Γ0).

(5.1)

We now prove (5.1) under the assumptions listed at the beginning of this section. As in [KL99],
the proof consists in a change of probability from PNr,β to a tilted measure PNr,β,H , and in using
Jensen inequality to bound from below logQN

r,β,H(O) by the entropy ENr,β,H [log dP
N
r,β/dP

N
r,β,H ].

The only difference in our case comes from the fact that the quantity N−1
(

log dPNr,β/dP
N
r,β,H

)

is
not bounded on E([0, T0], N

−1XN
r ). Indeed, from the proof of Proposition 3.1 (see in particular

(3.14)) which, although stated for Lr,β,H
〈

Γ, G
〉

for G ∈ C, is easily adapted to dPNr,β/dP
N
r,β,H(Γ), it

must satisfy:

N−1
(

log dPNr,β/dP
N
r,β,H

)

(Γ) =
4

∑

k=1

∫ T0

0

[

(pk(γt)− 1)e−2β1Pk∩∂([−1,1])2 − 1pk=2,DPk
r

]

dt

+ C(H)ON(1),

and pk can be of order N for each k ∈ {1, ..., 4}. Above, DP k
r is either Vr or Hr, defined in (2.9)-

(2.10), depending on the value of k ∈ {1, ..., 4}. This unbounded term is however easily controlled
as we shall see. Proceeding as in [KL99], one obtains, for each H such that (ΓH)t≤T0 ∈ O and each
δ > 0, each ε small enough as a function of δ:

N−1 logQN
r,β(O) ≥ ENr,β,H

[

− JβH,ε1Z∩O
]

+OH(δ) + oN(1) (5.2)

+ ENr,β,H

[

1O1Zc2
4

∑

k=1

∫ T0

0

[

(pk(γτ )− 1)e−2β1Pk∩∂([−1,1])2 − 1pk(γτ )=2,DPk
r

]

dt

]

.

Recall that JβH,ε is defined in (4.3), and Z is the set of (3.44), on which the Replacement lemma
applies with error δ and the pole terms are controlled. The set Zc ∩ O has probability super-
exponentially small in the large N , small ε limit. In particular, it has probability bounded by
e−c(ε)N for some c(ε) > 0 under PNr,β,H , for ε small enough uniformly on N large enough. This
accounts for the oN(1) term in the first line, and shows that the expectation on the second line is
oN(1) as well.

We now study the expectation in the first line of (5.2), and show that it is equal to −JβH,ε(ΓH).
As an element (in fact, the only one by hypothesis) in the support of the hydrodynamic limit of
(QN

r,β,H)N , Γ
H must have almost always point-like poles on [0, T0]. It is thus a point of continuity

of JβH,ε by Proposition 4.3. As such, for a fixed η > 0, one has:

sup
Γ∈BdE

(ΓH ,η)

∣

∣JβH,ε(Γ)− JβH,ε(ΓH)
∣

∣ = ωΓH ,H,ε(η).
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Above, BdE(Γ
H , η) is the open ball with radius η centred on ΓH , and ωΓH ,H,ε(·) is the modulus of

continuity of JβH,ε at Γ
H , in which we stress the dependence on both ΓH and H, and which vanishes

at 0. The first expectation in (5.2) is then recast as follows:

ENr,β,H
[

− JβH,ε1Z∩O
]

= −JβH,ε(ΓH)ENr,β,H
[

1Z∩O∩BdE
(ΓH ,η)

]

+Oη(ωΓH ,H,ε(η))

+ ENr,β,H
[

1Z∩O∩BdE
(ΓH ,η)c

(

− JβH,ε
)]

.

The expectation in the first term converges to 1 for N large, while the last one vanishes as JβH,ε is

bounded and QN
r,β,H

(

BdE(Γ
H , η)c

)

vanishes. It remains to let η, then ε go down to 0 to obtain the
left-hand side of (5.1). Taking the supremum of the resulting expression on all H such that ΓH

belongs to O then yields the right-hand side of (5.1).

To conclude the proof of lower-bound large deviations, it remains to prove the two assumptions
presented at the beginning of this section. This is the content of the next two sections. In Section
5.2, we prove that trajectories typically do not leave the good state space Er(d) on [0, η] for some
η > 0 and d ≤ 1/4. In Section 5.3, we prove that (QN

r,β,H)N concentrates on [0, η] on δΓH . The
trajectory ΓH , defined at the beginning of this section, is the solution of (2.32), and assumed to be
unique as well as continuous in time in Hausdorff topology. Since ΓH is almost always in Er(1/2)
before time Tr ≥ T0, it is in Er(1/2) on [0, Tr] by continuity. If T0 ≤ η, then the lower bound
is proven. Otherwise, the result until time T0 follows by recursion, re-starting the dynamics at
ΓHη ∈ Er(1/2).

5.2 The droplet moves on a diffusive scale

In this section, we prove Proposition 2.4. First, we show that a configuration in Er0 cannot have
left Er1 , for some r1 ∈ (r, r0), before a time of order N2. The set Er0 is defined in (2.15). The
techniques employed have the following two nice properties.

1. First, we obtain estimates depending only on the initial point and parameters of the model.

2. Second, we get quantitative estimates for all N large enough, in e−cN for some parameter
c. This is the best possible decay rate, as large deviations around the hydrodynamic limit
occur at the e−N scale.

Recall from Definition 2.1 the properties of the initial condition of the dynamics. Recall also that,
for r1 ∈ (r, r0) and β > 0, τ = τNr1,β,H is the first time at which the dynamics with generator
N2LNr,β,H starting from ΓN0 leaves NEr1 . We prove the following.

Lemma 5.1 (Item 1 of Proposition 2.4). For each r1 ∈ (r, r0), there are constants c0, α > 0 which
depend only on H,Γ0, r0, r1 (and in particular not on r, β), and a numerical constant C such that:

PNr,β,H(τ ≤ c0) ≤ Ce−αN . (5.3)

Proof. We adapt the method used in [Cap+11]. The idea is to show that exiting NEr1 , r1 < r0
from NEr0 requires moving a deterministic volume of blocks of order N2, which must take a time
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of order N2 when N is large.

Consider the first point, i.e. that for r1 ∈ (r, r0), leaving NEr1 when starting from NEr0 requires
moving at least ψN2 blocks, for ψ = ψ(Γ0, r0, r1) > 0. Recall that if γ ∈ XN

r , Γ is the droplet it
delimits. There are three ways of leaving the set NEr1 , defined in Appendix B:

a) breaking Vr1 or Hr1 (defined in (2.9)-(2.10));

b) having the difference in abscissa or in ordinate between two consecutive poles less than Nr1.

c) having two points in opposite quadrants become closer than r1 in 1-distance;

Notice that condition a) is necessarily realised after condition b), so we focus on conditions b)
and c). The set Er1 is defined to contain pathological limits of elements of N−1XN

r when N is
large. However, the dynamics starts from a nice initial condition, i.e. with simple boundary, see
Definition 2.1. The hitting time τ of conditions b) and c) is thus larger than the hitting time of
the following simpler conditions (see Figure 4.7):

1. At τ 1, the droplet first fails to contain the set D := N−1{x ∈ ΓN0 : d(x, γN0 ) ≥ Nε}; where
ε = ε(Γ0, r0, r1) is small enough to ensure that the heights (north and south poles) and
abscissas (west and east poles) of the poles of D differ from those of N−1ΓN0 by at most
(r0 − r1)/10.

2. At τ 2, one of the poles has first moved sideways by at least N(r0 − r1)/2 compared to ΓN0 .

Write Pk for the probability associated with the dynamics that stops upon reaching τ k, k ∈ {1, , 2}.
This (inhomogeneous) Markov chain has generator N2Lk equal to N2Lr,β,H (defined in (2.11)-
(2.14)) for times below τ k, and 0 strictly after. With the lower bound for τ provided by τ 1 ∧ τ 2
in conditions 1, 2 and Figure 4.7, we claim that there must be ψ = ψ(Γ0, r0, r1) > 0 and functions
G1, G2, corresponding to indicator functions of suitable sets, such that, for k ∈ {1, 2} and for the
dynamics induced by Pk:

{τ k ≤ t} ⊂
{
∫

N−1ΓN
0

Gk −
∫

ΓN
t

Gk ≥ ψ

}

. (5.4)

The probability of the event on the right in (5.4) is estimated by the computations of Section 3
as long as G1, G2 are replaced by smooth approximations, as we now explain.

Estimating τ 1:
Define G1 as the indicator function of the ring between the two droplets on the left Figure of 4.7.
For ζ > 0 sufficiently small, let Gζ

1 ∈ [0, 1] be a C2 approximation of G1 equal to 0 when G1 = 0, to
1 at 1-distance ζ or more to {G1 = 0}, and going down smoothly to 0 as a function of the distance
otherwise. Take then ψ1 = ψ1(Γ0, r0, r1) as the smallest volume to delete in order to reach D from
N−1ΓN0 . Then for t ≥ 0, up to dividing ψ1 by 2, for all ζ small enough:

PNr,β,H(τ
1 ≤ t) = P1(τ

1 ≤ t) ≤ P1

(
∫

N−1ΓN
0

Gζ
1 −

∫

N−1ΓN
t

Gζ
1 ≥ ψ1

)

. (5.5)
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Figure 4.7 – Initial condition/portion of the initial condition of the dynamics. Left figure: the shaded
area is the set of points of Γ0 at distance more than a suitable ε > 0 from the boundary (see item 1 for
the choice of ε). τ1 is the first time at which the boundary of the droplet touches the shaded area.
Right figure: The shaded areas, of smaller side of length (r0− r1)/2, have to be filled for either the north
or east pole to have moved sideways by (r0 − r1)/2. The dashed lines delimit areas which always stay
below the poles before time τ1.

Note that this ”volume” difference is always negative. By Chebychev exponential inequality, it is
sufficient to estimate, for t > 0, the quantityM1,ζ

t eAt , where (M1,ζ
t )t≥0 is the P1-martingale defined

for an XN
r -valued trajectory Γ = (ΓNt )t≥0 by:

∀t ≥ 0, M
Gζ

1
t = exp

[

−N
∫

N−1ΓN
t

Gζ
1 +N

∫

N−1ΓN
0

Gζ
1 − At

]

, (5.6)

and (At)t≥0 is the process:

∀t ≥ 0, At = N2

∫ t

0

e
N

∫
N−1ΓN

u
Gζ

1L1e
−N

∫
N−1ΓN

u
Gζ

1du. (5.7)

Since At = At∧τ1 for t ≥ 0, the droplets entering in the definition of (At) are all in NEr. The
computations of Section 3 thus apply: recall the notation εx = 1 if a block is added corresponding
to a vertex x, εx = −1 if it is removed. Then for each t ≥ 0, with γN = ∂ΓN :

At ≤
∫ t∧τ1

0

[

NC(H) +N
∑

x∈V (γNu )

εxcx(Γ
N
u )G

ζ
1(x/N)

− 2N
4

∑

k=1

∑

x∈Pk(u)

x+2e+x ∈Pk(u)

[

e−2β1Pk(u)∩∂ΛN=∅ − 1pk(u)=2,DPk
r

]

Gζ
1(x/N)

]

du

≤ N(C(Gζ
1) + C(H))t. (5.8)

To obtain the first inequality in (5.8), pk was bounded by N for k ∈ {1, ..., 4}. To obtain the
second line, the crucial point is that the contribution of the sum on Pk, which may be of order
N2, is negative (Gζ

1 ≥ 0), since it makes the droplet grow. Moreover, 1pk=2,DPk
r
was bounded by

1. For ζ = (r0 − r1)/100, C(Gζ
1) depends only on Γ0 and r1. The event DP k

r corresponds to Vr or
Hr, defined in (2.9)-(2.10), depending on the value of k ∈ {1, ..., 4}. Equation (5.8) concludes the
bound on τ 1:

PNr,β,H(τ
1 ≤ t) ≤ e−ψ1Ne(C(H)+C(Γ0,r1))NtE1[M

1,ζ
t ] = e−ψ1Ne(C(H)+C(Γ0,r1))Nt, (5.9)
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which decays exponentially fast to 0 as long as t < ψ1/(C(H) + C(Γ0, r1)).

Estimating τ 1 ∧ τ 2:
Equation (5.8) cannot be used to estimate τ 2 directly. Indeed, τ 2 occurs only after the initial
droplet has grown somewhere, which means that the poles may contribute. Define however G2 as
the indicator function of the zones delimited by the dashed lines in Figure 4.7 (in all quadrants,
not just the first one as represented). Take then ψ2 as the smallest volume of one of these dashed
area. Then as stated in (5.4), for t ≥ 0, under P2, the dynamics stopped at τ2:

{τ 1 ∧ τ 2 ≤ t} ⊂
{

τ 1 ≥ t,

∫

N−1ΓN
0

G2 −
∫

N−1ΓN
t

G2 ≥ ψ2

}

∪ {τ 1 ≤ t}.

The argument is then the same as for the estimate of τ 1, and we again obtain an exponential decay
for sufficiently short time. Since τ ≥ τ 1 ∧ τ 2, this concludes the proof.

Let us now prove the second item in Proposition 2.4.

Lemma 5.2 (Item 2 in Proposition 2.4). Let c0 > 0 be given by Lemma 5.1. For this lemma
only, take β > 64 log 3. Then, for each d ∈ (0, 1/4) and each H ∈ C, there is a time T0 =
T0(Γ0, d0, d, β,H), T0 ≤ c0 such that:

PNr,β,H

(
∫ T0

0

1dist(Γt,∂([−1,1]2))<d dt = 0

)

−→
N→∞

1. (5.10)

Proof. The idea is to use the structure of the invariant measure ν to estimate the cost of having
one pole come close to the boundary. Let η ≤ c0, with c0 given by Lemma 5.1. For short, let
(z1, ..., z4) = (ymax, xmax, ymin, xmin) be the extremal abscissas/ordinates of a droplet, and denote
by z0k, k ∈ {1, ..., 4} the corresponding values for the initial condition N−1ΓN0 of Definition 2.1.
Let also ℓN0 be the length in 1-norm of the boundary of N−1ΓN0 . Recall that N

−1ΓN0 is at distance
d0 ≥ 1/2 from ∂([−1, 1]2) for each N .
If x ∈ R, define x+ = max(x, 0) and notice that e.g. (z1(Γ)− z01)+ represents how much closer to
the boundary the highest point in a droplet Γ ∈ Er is compared to N−1ΓN0 . The lemma thus holds
if we can prove that there is η > 0 with:

PNr,β,H

(

sup
t≤η

max
1≤k≤4

(zk − z0k)+ > d0 − d
)

= oN(1). (5.11)

Let us rewrite the event in (5.11) in terms of the length of the interface. By definition, an interface
γ ∈ XN

r has length:
|γ| = 2

(

z1(γ)− z3(γ)
)

+ 2
(

z2(γ)− z4(γ)
)

. (5.12)

For each ζ > 0, let τ ζ be the first time at which one of the pole has gone down by at least ζ,
defined as follows:

τ ζ = inf
{

t ≥ 0 : min
1≤k≤4

[zk(t)− z0k] ≤ −ζ
}

.

As a consequence of Lemma 5.1, there are c(ζ), C(ζ) > 0 such that:

PNr,β,H
(

τ ζ ≤ c(ζ)
)

≤ C(ζ)e−C(ζ)N .
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Fix ζ > 0 to be chosen below. Equation (5.11) is proven if we can establish the existence of
η ∈ (0, c(ζ)) with:

PNr,β,H

(

τ ζ > c(ζ), sup
t≤η

max
1≤k≤4

(zk − z0k)+ > d0 − d
)

= oN(1). (5.13)

Recall (5.12). Since the length changes by 2/N when zk changes by 1/N for 1 ≤ k ≤ 4, the event
in (5.13) is included in:

{

sup
t≤η

[

|γ(t)| − ℓN0
]

> 2(d0 − d)− 6ζ
}

.

Take ζ = (d0 − d)/3, and let us estimate the probability of the above event. As η is chosen to
satisfy η ≤ c0 with the c0 of Lemma 5.1, we need only do so under PNr,β. Indeed, by Lemma 5.1:

PNr,β,H

(

sup
t≤η

[

|γ(t)| − ℓN0
]

> d0 − d
)

= PNr,β,H

(

∀t ∈ [0, η], γt ∈ Er; sup
t≤η

[

|γ(t)| − ℓN0
]

> d0 − d
)

+ oN(1)

≤ eC(H)ηN PNr,β

(

sup
t≤η

[

|γ(t)| − ℓN0
]

> d0 − d
)1/2

+ oN(1). (5.14)

The second line comes from Cauchy-Schwarz inequality and the fact that, by (4.2)-(4.3)-(4.4):

ENr,β
[

1{∀t∈[0,η],γt∈Er}(dP
N
r,β,H/dP

N
r,β)

2
[0,η]]

1/2 ≤ eC(H)ηN .

Change initial condition in (5.14) to obtain a probability starting from the invariant measure ν:

PNr,β

(

sup
t≤η

[

|γ(t)| − ℓN0
]

> d0 − d
)

≤ ν(γN0 )−1Pν

(

sup
t≤η

[

|γ(t)| − ℓN0
]

> d0 − d
)

. (5.15)

Let Nt be the number of updates in the dynamics Pν up to time t. (Nt)t≥0 is a Poisson process
with rate bounded by 20N3, which is a rough bound for the update rate of a curve under the
contour dynamics. To use the fact that ν is invariant under the dynamics, split [0, η] in, say, N4

intervals of length ηN−4. NηN−4 is thus a Poisson random variable with rate bounded by 20ηN−1,
and for N large enough:

Pν

(

NηN−4 ≥ 10βN

logN

)

≤ exp
[

− 10βN
]

. (5.16)

Since γN0 has length smaller than 4N and the partition function Z is bounded, one has ν(γN0 )−1 ≤
Ce−6βN for some C > 0, and (5.16) applied to (5.15) yields:

PNr,β

(

sup
t≤η

[

|γ(t)| − ℓN0
]

> d0 − d
)

≤ ν(ΓN0 )
−1N4Pν

(

sup
t≤N−4η

[

|γ(t)| − ℓN0
]

> d0 − d
)

= ν(ΓN0 )
−1N4Pν

(

sup
t≤N−4η

[

|γ(t)| − ℓN0
]

> d0 − d,NηN−4 ≤ 10βN

logN

)

+O(e−6βN).

= ν(ΓN0 )
−1N4ν

(

|γ| − ℓN0 > (d0 − d)/2
)

+O(e−6βN).
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To obtain the last equation, we assumed than N was large enough to have (d0 − d)/2 > 2 ·
10βN/ logN . Recalling (5.14), one obtains by definition of ν, for η < c/C(H):

PNr,β,H

(

sup
t≤η

[

|γ(t)| − ℓN0
]

> d0 − d
)

≤ eC(H)ηNN4e−βN(d0−d)/238N + oN(1),

where 38N is a rough upper bound for the number of curves with length larger than |ℓN0 |+(d0−d)/2.
As d < 1/4, d0 ≥ 1/2 and β ≥ 64 log 3 > 16 log 3/(d0 − d), there is η = T0 ≤ c0 small enough
satisfying the claim of the lemma.

Corollary 5.3 (Relative compactness of the sequence {QN
r,β,H : N ∈ N∗}). Let T0 be chosen ac-

cording to the previous lemma. Then {QN
r,β,H : N ∈ N∗} is relatively compact inM1(E([0, T0], X)),

and its weak limit points are supported in E([0, T0], Er(d)).

Proof. By Lemmas 5.1- 5.2, the first hypothesis of Corollary B.10 is satisfied. The second one
proceeds from Appendix B.3.

5.3 Characterisation of limit points

Fix H ∈ C and let T0 > 0 be a time given by Lemma 5.2. In this section, we prove Proposition 2.5,
i.e. we prove that any weak limit point Q∗

r,β,H of (QN
r,β,H)N inM1(E([0, T0], X)) is concentrated on

weak solutions (2.32) of anisotropic motion by curvature with drift in Epp([0, T0], Er(d)) (defined
in (2.36)). We start by extending upper-bound large deviations to the sequence (QN

r,β,H)N .

Lemma 5.4. For the sequence (QN
r,β,H), for any closed set C ⊂ E([0, T0], Er(d)):

lim sup
N→∞

1

N
logQN

r,β,H(C) ≤ − sup
q≥1

inf
C∩Dq

sup
G,ε

[

JG,ε − JH,ε
]

≤ − inf
C
Iβ,H . (5.17)

The set Dq =
⋂

n≥1Dq,n controls the neighbourhood of the poles, as defined in (4.9). The functional
Iβ,H is +∞ outside of Epp([0, T0], Er(d)), and is defined for Γ ∈ Epp([0, T0], Er(d)) as:

Iβ,H(Γ) = sup
G∈C

{

JβG(Γ)− JβH(Γ)
}

= sup
F∈C

{

JβF (Γ)−
∫ T0

0

dτ

∫

γτ

µFHds

}

. (5.18)

Recall that µ is the mobility defined in (2.26), and that Epp([0, T0], Er(d)) is defined in (2.36).

Proof. Simply write:

QN
r,β,H(C) = ENr,β

[

dPNr,β,H
dPNr,β

1C

]

,

and repeat the computations of Section 4 to obtain the large deviation upper bound (5.18) as well
as the first expression of Iβ,H . The second expression (5.18) is obtained by the change of functions
F = G−H and elementary computations.

It is a well-known fact that the only trajectories for which the rate function Iβ,H vanishes are
solutions of (2.32), which corresponds to its first variation. Let us provide a quick proof. Consider
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Γ ∈ E([0, T0], Er(d)) such that Iβ,H(Γ) = 0, and take ε > 0 and G ∈ C. Then Γ ∈ Epp([0, T0], Er(d)),
and:

0 ≥ Jβ±εG −±ε
∫ T0

0

dτ

∫

γτ

µHGds = ±ε
(

ℓβG −
∫ T0

0

dτ

∫

γτ

µHGds

)

− ε2

2

∫ T0

0

dτ

∫

γτ

µG2ds.

Taking ε small with G fixed, the term of order ε must vanish, and it is precisely (2.32) with test
function G. As this is true for all G ∈ C, Γ is a solution of (2.32). The converse is clearly true,
since if Γ satisfies (2.32), then:

Iβ,H(Γ) = sup
G∈C

{

− 1

2

∫ T0

0

dτ

∫

γτ

µG2ds

}

= 0.

We now conclude on the proof of Proposition 2.5 through the following Lemma.

Lemma 5.5. Recall from Section 5.1 the definition of ΓH|[0,T0] ∈ E([0, T0], Er(d)), still denoted by

ΓH , assumed to be the unique solution to (2.32) on [0, T0]. Then Q
∗
r,β,H is supported on {Iβ,H = 0},

thus:
Q∗
r,β,H = δΓH .

Proof. For ease of notation, we still denote by (QN
r,β,H)N a subsequence converging weakly to some

limit point Q∗
r,β,H . The idea is to use the large deviation upper-bound of Lemma 5.4 to obtain

the hydrodynamics limit. Although classical, this is made difficult in our case by the lack of lower
semi-continuity of the functional Iβ,H defined in (5.18) and, in a related manner, by the fact that
the set Epp([0, T0], Er(d)) on which it can be finite is not closed.

This justifies the introduction of the functional χ⋂
n≥1Dq,n supG,ε[JG,ε−JH,ε] in the middle term

in (5.17), where χA(x) = 1 if x ∈ A, χA(x) = +∞ if x /∈ A. This functional is infinite outside
the closed set Dp =

⋂

n≥1Dq,n ⊂ Epp([0, T0], Er(d)) (defined in (4.9)), and lower semi-continuous
by continuity of JG,ε(·) on Epp([0, T0], Er(d)) for G ∈ C.

Let (Kη)η>0 be a family of compact sets in E([0, T0], Er(d)), which exists by Corollary 5.3, such
that:

∀N ≥ 1, QN
r,β,H(Kη) ≥ 1− η.

Then Q∗
r,β,H(Kη) ≥ 1−η. Let ε > 0 and consider the open set B(ε) :=

{

Γ : dE(Γ, {Iβ,H = 0}) < ε}.
Let Bc(ε) be its closure. The complementary of Bc(ε) is open, thus:

Q∗
r,β,H

(

Bc(ε)
c
)

≤ lim inf
N→∞

QN
r,β,H

(

Bc(ε)
c
)

.

As Bc(ε)
c ⊂ B(ε)c,

QN
r,β,H

(

Bc(ε)
c
)

≤ QN
r,β,H

(

B(ε)c
)

≤ η +QN
r,β,H

(

B(ε)c ∩Kη

)

.

The set Kη ∩ B(ε)c is compact, thus by Lemma 5.4:

lim sup
N→∞

1

N
logQN

r,β,H

(

B(ε)c ∩Kη

)

≤ − sup
q≥1

inf
Kη∩B(ε)c∩Dq

sup
G,ε

[

JG,ε − JH,ε
]

< 0. (5.19)
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Let us explain the strict inequality in (5.19). Suppose by contradiction that the right-hand side
in (5.19) vanishes. The supremum on q can then be removed, so take q = 1 and let Γn ∈
D1 ∩Kη ∩ B(ε)c, n ∈ N be a sequence such that:

lim
n→∞

sup
G,ε

[

JG,ε − JH,ε
]

(Γn) = 0.

As D1 ∩ Kη ∩ B(ε)c is compact, (Γn) has a subsequence that converges to some Γ. By lower
semi-continuity of supG,ε

[

JG,ε − JH,ε
]

on D1,

∀ε > 0, ∀G ∈ C, JG,ε(Γ)− JH,ε(Γ) ≤ 0. (5.20)

In particular, Γ is a solution of (2.32), thus it is in {Iβ,H = 0} ⊂ B(ε) by the discussion preceding
the lemma, which is absurd. It follows that, for N large enough:

QN
r,β,H

(

Bc(ε)
c
)

≤ η +QN
r,β,H

(

B(ε)c ∩Kη

)

≤ 2η ⇒ Q∗
r,β,H

(

Bc(ε)
c
)

≤ 3η.

As this holds for all η > 0, Q∗
r,β,H is concentrated on {Iβ,H = 0}, which by hypothesis is simply

{ΓH}.

6 Behaviour of the poles and 1pk=2 terms

In this section, we focus on the specificity of the contour dynamics: the behaviour of the poles.
The main result is the proof of Proposition 2.2, which states that the regrowth, e−2β term in the
generator (2.11) acts as a reservoir, injecting particles into the SSEP on each quadrant. This
fixes the particle density around the poles, i.e. the tangent vector. It is shown to be discontinuous
across the pole, and depends only on the value of β. The proof of these statements is carried out in
Subsection 6.2. It makes crucial use of the irreducibility of the dynamics around the poles, which
is the single added feature in the contour dynamics compared to the zero temperature stochastic
Ising model.
Subsection 6.1 presents a useful bijection argument which yields an estimate of the pole size as
well as local equilibrium at the poles. These two statements were used in Sections 3-4. Parameters
r < r0, β > 0, H ∈ C are fixed throughout the section according to Definition 2.1, as well as a time
T0 > 0. All proofs are done for the north pole P := P1 with size p := p1 = |P1|− 1, the other poles
are similar. We work with elements of XN

r , rather than rescaled microscopic curves in N−1XN
r as

in Section 3.
Throughout the section, T0 > 0 is a fixed time.

6.1 Size of the poles and local equilibrium

In this section, we estimate (3.14), i.e. we estimate the pole size and the term

WG
t (γ) :=

∑

x∈P
x+2e+x ∈P

(

1p=2,Vr − e−2β1x/∈∂ΛN

)

G(t, x/N), γ ∈ XN
r , t ≥ 0 (6.1)

for any test function G ∈ C. The condition Vr, defined in (2.9), states that the north pole of a
curve is allowed to go down by the contour dynamics. Summing on x ∈ P such that x+ 2e+x ∈ P
is just a way of enumerating the different positions at which one can add two blocks atop the pole.
We prove:
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Lemma 6.1. Write P for the north pole of a curve in XN
r . For each A > 1,

lim sup
N→∞

1

N
logPNr,β

(

1

T0

∫ T0

0

1P (γt)∩∂ΛN=∅ e
−2β(pt − 1)dt ≥ A

)

= −∞. (6.2)

Moreover, for each δ > 0 and G ∈ C,

lim sup
N→∞

1

N
logPNr,β

(∣

∣

∣

∣

1

T0

∫ T0

0

WG
t dt

∣

∣

∣

∣

> δ

)

= −∞. (6.3)

Equations (6.2)-(6.3) hold also under PNr,β,H , with the additional condition {∀t ∈ [0, T0], γt ∈ NEr}.
The proof of Lemma 6.1 relies on a bijection argument to estimate the expectation of the terms

between parentheses in (6.1) one in terms of the other and the Dirichlet form. It is stated in the
following lemma.

Lemma 6.2. Let f be a density with respect to the contour measure ν = νNr,β, defined in (2.3), and
denote by Eνf the expectation under fdν. Then, for any A ≥ 2,

(

νf (p = 2, Vr, p
′ ≥ A)1/2 − Eνf

[

(p− 1)e−2β1x/∈∂ΛN
1p≥A

]1/2
)2

≤ 2DN(f), (6.4)

where DN(f) = −Eν
[

f 1/2Lr,βf 1/2
]

is the Dirichlet form of the contour dynamics, and p′ = p′(γ)
for γ ∈ XN

r is the number of blocks one level below the pole in the droplet Γ such that γ = ∂Γ.
Equation (6.4) also holds with p′ ≤ A, p ≤ A instead of p′ ≥ A, p ≥ A respectively in the probability
and in the expectation.

Proof. We prove the result with A = 2 (i.e. without constraint), the general case is similar. Fix a
density f and define the two sets Ir, Vr(2) as:

Ir = {γ ∈ XN
r : P (γ) ∩ ∂ΛN = ∅}, Vr(2) = Vr ∩ {p = 2}, (6.5)

with Vr defined in (2.9). Define U on XN
r as follows:

∀γ ∈ XN
r , U(γ) = 1Ir(γ)e

−2β(p(γ)− 1). (6.6)

Let us prove that νf (Vr(2)) and Eνf [U ] are comparable, up to an error that can be expressed in
terms of the Dirichlet form DN(f).

To each γ ∈ Ir (defined in (6.5)), it is dynamically allowed to add two blocks above the north
pole. Denote by γ(1), ..., γ(p−1) the p(γ)−1 corresponding curves, where γ(k) is identical to γ except
that two blocks sitting on the edges k, k+1 are added, counting the edges from the left extremity
of the pole (see Figure 4.8). Note that the γ(k) correspond to the γ+,x with x, x+2e+x ∈ P defined
above (2.7).
Conversely, the size 2 pole of each curve γ′ ∈ Vr(2) can be deleted, to obtain a curve γ = (γ′)−,1 ∈ Ir
with the notations of Section 2. The curve γ has length |γ| = |γ′| − 2. The same curve γ ∈ Ir
occurs p− 1 := p(γ)− 1 times when enumerating elements of Vr(2) and deleting their pole, thus:

νf (Vr(2)) =
∑

γ′∈Vr(2)
ν(γ′)f(γ′) =

∑

γ′∈Vr(2)

∑

γ∈Ir
1{∃k≤p−1:γ′=γ(k)}ν(γ)e

−2βf(γ(k))

=
∑

γ∈Ir
ν(γ)e−2β

p−1
∑

k=1

f(γ(k)).
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Figure 4.8 – Neighbourhood of the north pole of a curve γ ∈ Ir (thick line) and the γ(k), k ≤ p− 1 = 4.
γ(3) is the curve γ to which the two blocks delimited by dashed lines are added. Conversely, any of the
γ(k), k ≤ 4 is in Vr(2), and deleting the two blocks constituting their poles yields γ.

Add and subtract the quantities needed to bound the second line by the Dirichlet form DN(f):

νf (Vr(2)) =
∑

γ∈Ir
ν(γ)e−2β

p−1
∑

k=1

[

f(γ(k)) + f(γ)− 2f 1/2(γ)f 1/2(γ(k))
]

−
∑

γ∈Ir
ν(γ)e−2β

[

(p− 1)f(γ)− 2

p−1
∑

k=1

f 1/2(γ)f 1/2(γ(k))
]

. (6.7)

To estimate the second line of (6.7), apply Cauchy-Schwarz inequality to the sum
∑p−1

k=1 to obtain:

νf (Vr(2)) ≤ 2DN(f)− Eνf
[

e−2β(p− 1)1Ir
]

+ 2
∑

γ∈Ir
ν(γ)e−2β(p− 1)1/2f 1/2(γ)

[

p−1
∑

k=1

f(γ(k))
]1/2

.

Recall the definition of U from (6.6) and again use Cauchy-Schwarz on the sum on the curves in
Ir to find:

νf (Vr(2)) ≤ 2DN(f)− Eνf [U ] + 2
[

∑

γ∈Ir
ν(γ)e−2β(p− 1)f(γ)

]1/2[∑

γ∈Ir
ν(γ)e−2β

p−1
∑

k=1

f(γ(k))
]1/2

= 2DN(f)− Eνf [U ] + 2Eνf [U ]
1/2νf (Vr(2))

1/2.

Putting things together yields the claim of the lemma:

[

νf (Vr(2))
1/2 − Eνf [U ]

1/2
]2

≤ 2DN(f). (6.8)

Proof of Lemma 6.1. We now explain how to obtain Lemma 6.1 from (6.4). We need to do three
things:

1. bound from above the probabilities appearing in the claim by an expression involving (6.4);

2. prove that (6.3) holds forWG, with G ∈ C. The first point only gives the result for 1p=2,Vr−U ,
which corresponds to W 1;
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3. and prove the result under PNr,β,H up to adding the condition {∀t ≤ T0, γt ∈ NEr}.

The first and third points are classical and easily adapted to the present case. Since they are used
repeatedly in the article, we present them here once and for all. The second point requires some
care because the function G ∈ C may change sign, which breaks the upper-bounds in the proof of
Lemma 6.2.

Let us explain the general idea for the first point using (6.2) as an example. We wish to
estimate:

PNr,β

(

1

T0

∫ T0

0

e−2β1Ir(γt)(p(γt)− 1)dt ≥ A

)

,

where Ir is defined in (6.5). We do so using Feynamn-Kac formula. Let a > 0, and apply the
exponential Chebychev inequality to obtain

1

N
logPNr,β

(

1

T0

∫ T0

0

e−2β1Ir(γt)(p(γt)− 1)dt ≥ A

)

(6.9)

≤ −aAT0 +
1

N
logENr,β

[

exp

[

aN

∫ T0

0

1γt∈Ir e
−2β(pt − 1)dt

]]

.

Consider the generator N2Lr,β + aNU , with U defined in (6.6). This generator is self-adjoint for
the contour measure ν = νNr,β (2.3), and Feynman-Kac inequality plus a representation theorem
for the largest eigenvalue of a symmetric operator yield that, at equilibrium:

Eν

[

exp

[

aN

∫ T0

0

U(γt)dt

]]

≤ exp

∫ T0

0

dt sup
f≥0:Eν [f ]=1

{

aNEνf [U ]−N2DN(f)
}

. (6.10)

One can bound PNr,β from above by the probability Pν starting under the equilibrium measure ν:

PNr,β(·) ≤ Zr,βeβ|γ0|Pν(·) ≤ eCβNPν(·), (6.11)

for some constant C ≤ 8. Using (6.10)-(6.11), (6.9) becomes:

1

N
logPNr,β

(

1

T0

∫ T0

0

U(γt)dt ≥ A

)

≤ −aAT0 + Cβ + T0 sup
f≥0,∫
fdν=1

{

aEνf [U ]−NDN(f)
}

. (6.12)

At this point, we can use Lemma 6.2 to estimate the supremum in the right-hand side of (6.12).
U may be unbounded as a function of N , but the bound Eνf [U ] ≤ 1 + (2DN(f))

1/2 provided by
Lemma 6.2 and elementary computations show that the supremum is positive only for densities f
with DN(f) ≤ C(a)/N . For such densities, (6.4) yields:

Eνf [U ] ≤ νf (Vr(2)) + C(a)O(N−1/2) ≤ 1 + C(a)O(N−1/2).

Inject this result in (6.12), take the lim sup in N , then have a increase to infinity to conclude the
proof of (6.2). Equation (6.3) in the G ≡ 1 case follows similarly, using the identity x − y =
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(
√
x−√y)(√x +

√
y) valid for x, y ≥ 0. Indeed, for W 1, the quantity in the supremum in (6.12)

is now aEνf [W
1]−NDN(f), where by definition:

W 1 =
∑

x∈P
x+2e+x ∈P

[

1p=2,Vr − e−2β1Ir
]

= 1p=2,Vr − (p− 1)e−2β1Ir = 1Vr(2) − U.

As a result, Eνf [W
1] can be bounded from above as follows:

∣

∣Eνf
[

W 1
]
∣

∣ =
∣

∣

∣
νf (Vr(2))

1/2 − Eνf [U ]
1/2

∣

∣

∣

[

νf (Vr(2))
1/2 + Eνf [U ]

1/2
]

≤ (2DN(f))
1/2

[

2 + (2DN(f))
1/2

]

. (6.13)

Elementary computations again yield that the supremum in (6.12) withW 1 instead of U is positive
only for DN(f) ≤ C(a)/N2. This concludes the proof of the first point.

Let us now deal with the second point, i.e. proving (6.3) for any G and not just G ≡ 1. As
G may not have constant sign, one cannot directly use the bounds in the proof of Lemma 6.2.
However, if G is positive, it is not complicated to repeat the bijection argument of Lemma 6.2 to
obtain, for each t ≤ T0:

[

Eνf

[

e−2β1Ir
∑

x∈P
x+2e+x ∈P

G(t, x/N)
]1/2

− Eνf

[

1Vr(2)
∑

x∈P
x+2e+x ∈P

G(t, x/N)
]1/2

]2

≤ C(G)DN(f) +OG(N
−1). (6.14)

Recall that the summation on x ∈ P such that x+2e+x ∈ P is just a way of enumerating all places
where two blocks can appear atop the pole. For general G ∈ C, the result follows by splitting G
into its positive and negative parts G = G+ −G−, and estimating the contribution of G+, G− by
(6.14).

We now prove the third point, i.e. establish (6.2) and (6.3) under PNr,β,H assuming trajectories
take values in NEr. The point of this additional condition is the following. According to Section 3
(see (3.14) for the first term and (3.22)-(3.30) for the second one), for each NEr-valued trajectory
γ = (γt)t≤T0 ,

1

N
logDN

r,β,H(γ) =
4

∑

k=1

∫ T0

0

[

(pk(γt)− 1)e−2β1Pk∩∂ΛN=∅ − 1pk=2,DPk
r

]

dt+ C(H)T0ON(1), (6.15)

where DN
r,β,H = dPNr,β,H/dP

N
r,β until time T0, and DP

k
r is defined in (2.9)-(2.10). Let χ denote any

of the two events appearing in (6.2)-(6.3). In the proof of the first point, we saw for the north
pole:

ENr,β

[

exp
[

NC(H)

∫ T0

0

(p(γt)− 1)e−2β1Ir(γt)dt
]

]

≤ T0 + T0OH(N
−1/2).

This immediately generalises to the other three poles. As a result, using (6.15):

1

N
log PNr,β,H

(

∀t ∈ [0, T0], γt ∈ NEr;χ
)

=
1

N
logENr,β

[

1∀t∈[0,T0],γt∈NEr1χD
N
r,β,H

]

≤ 1

2N
logPNr,β(χ) + C(H)T0 +

1

2N
logENr,β

[

exp
[

2NC(H)

∫ T0

0

(p(γt)− 1)e−2β1Ir(γt)dt
]

]

.
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The last term is bounded: taking N to infinity proves item 3.

6.2 Convergence of the 1p=2 term at fixed β and slope around the poles

This section is devoted to the proof of Proposition 2.2: poles act as reservoirs that fix to e−β the
averaged slopes ξ±,εNL1

, 1 − ξ±,εNL1
at the poles. We prove this statement in several steps. First,

we explain how to use the effective state space Er (or Er(d)) to obtain a local dynamics from the
contour dynamics, which is non-local due to boundary conditions in the definition of XN

r , see
Section 6.2.1. This is a key technical argument to be able to compare the contour dynamics to
simpler 1-dimensional ones.
We then prove that the 1p=2 term fixes the slope around the poles, in the sense that the time

integrals of 1p=2 and ξ±,εNL1
are close, see Section 6.2.2. This should not come as a surprise if one

remembers that, in a Symmetric Simple Exclusion Process (SSEP) with reservoirs, the density
close to the reservoirs is fixed. The time average of 1p=2 is then proven to be equal to e−β in
Section 6.2.4. Preliminary microscopic estimates, crucial to Section 6.2 and thereby of central
importance to the paper, are carried out in Section 6.2.3.

6.2.1 Turning the contour dynamics into a local dynamics

To compare the non-local (due to boundary effects in the definition of XN
r ) 2-dimensional contour

dynamics to a local, 1-dimensional dynamics (in the present case the SSEP and a kind of zero range
process introduced in Section 6.2.4), we need to explain how to remove the non-local constraints.
For moves away from the poles (addition/deletion of a single block), the only non-local constraint
is that opposite quadrants of an element of XN

r cannot cross. For deletion or regrowth at the poles,
one has to make sure neither to touch ∂ΛN nor to shrink droplets too much, see the definition of
XN
r in Section 2.1.

In the ”good” state space NEr(d), all dynamical moves are local; this is why we introduced it in
the first place. The idea is then to prove that, under the condition {∀t ∈ [0, T0], γt ∈ NEr(d)}, for
d > 0 henceforth fixed, one can turn the contour dynamics into a local dynamics inside NEr(d).
This is the content of the following lemma. Since the proof is quite general, we postpone it to
Appendix A.2.

Lemma 6.3 (Projection onto a local dynamics in the effective state space NEr(d)). Let ψ :
[0, T0]×XN

r → R be bounded. Then, for some C > 0:

1

N
logENr,β

[

1{∀t∈[0,T0],γt∈NEr(d)} exp

[

N

∫ T0

0

ψ(t, γt)dt

]]

≤ Cβ +

∫ T0

0

sup
f≥0:νf (NEr(d))=1

{

Eνf
[

ψ(t, ·)
]

−NDN(f)
}

dt. (6.16)

The result is also valid with the weaker condition {∀t ∈ [0, T0], γt ∈ NEr} provided DN is replaced
by DS

N , the Dirichlet form of all SSEP jumps, i.e. DN without the regrowth/deletion jumps at the
poles corresponding to line 2 of (2.11).

Remark 6.4. Equation (6.16) looks like a standard Feynman-Kac estimate. Note however that
the supremum in (6.16) is on densities with full support in NEr(d). In general, if f is a ν-density,
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there is no way to control DN(f) by DN

(

f1NEr(d)
)

. Indeed, if f̃ = f1NEr(d), DN(f̃) contains terms
of the form:

∑

γ∈NEr(d)
γ′ /∈NEr(d)

[

ν(γ)c(γ, γ′)f(γ) + ν(γ′)c(γ′, γ)f(γ)
]

,

which have a priori no reason to be comparable to differences [f(γ)1/2 − f(γ′)1/2]2.
Note also that Lemma 6.3 is not a statement about the contour dynamics conditioned to stay inside
NEr(d), but about the full dynamics. This is an important point: the jump rates of a conditioned
dynamics would be non-local, whereas we really need locality to later project the dynamics onto
1-dimensional particle dynamics. �

6.2.2 The 1p=2 term coincides with the slope around the pole

The argument presented here is the same as for a SSEP with a reservoir. Indeed, informally,
one can think of the contour dynamics as four SSEP connected by four point-like reservoirs, as
explained in the proof of Lemma 6.5 below. As poles move, the lengths of these SSEP change;
however this does not change the average density around the pole much. The key observation is
the fact that 1p=2 coincides with the occupation number of the closest site to the reservoir in these
SSEP.

Lemma 6.5. Recall the notations of Proposition 2.2. For each δ > 0 and each G ∈ C, the slope
on each side of the pole satisfies a one block estimate:

lim sup
k→∞

lim sup
N→∞

1

N
logPNr,β

(

∀t ∈ [0, T0], γt ∈ NEr;
∣

∣

∣

∣

1

T0

∫ T0

0

G(t, L1(t)/N)
(

1p=2 − ξ±,kL1+2e1

)

dt

∣

∣

∣

∣

≥ δ

)

= −∞, (6.17)

and a two block estimate:

lim sup
ε→0

lim sup
N→∞

1

N
logPNr,β

(

∀t ∈ [0, T0], γt ∈ NEr;
∣

∣

∣

∣

1

T0

∫ T0

0

G(t, L1(t)/N)
(

1p=2 − ξ±,εNL1+2e1

)

dt

∣

∣

∣

∣

≥ δ

)

= −∞. (6.18)

Both estimates are valid under PNr,β,H , with the same proof as for Lemma 6.1.

The proof of Lemma 6.5 is used to showcase the connection between the contour dynamics and
the SSEP at the microscopic level, that is used numerous times in this article.

Proof. The proof relies on the key observation that the quantity 1p=2 can be controlled by the
edges of the poles:

1p=2 = ξL1+2e1 = ξR1−3, (6.19)

where we abuse notations and denote by R1−3 the vertex at distance three from R1 anticlockwise.
In other words, 1p=2 can be thought of as the occupation number of the closest site to a reservoir in

211



a SSEP, in which case (6.17)-(6.18) are well-known (see [ELS90]). We first prove (6.17). Building
on the observation (6.19), define φ as the function:

∀γ ∈ XN
r , φ(γ) = ξL1+2e1 − ξ+,kL1+2e1

. (6.20)

Let us slightly rewrite the probability in (6.17): it is enough to estimate, for each a > 0, the
quantity:

PNr,β

(

∀t ∈ [0, T0], γt ∈ NEr; exp
[

aN

∫ T0

0

G(t, L1(t)/N)φ(γt)dt

]

≥ exp[aNT0δ]

)

≤ e−aNT0δENr,β

[

1{∀t∈[0,T0],γt∈NEr} exp

[

aN

∫ T0

0

1NErG(t, L1(t)/N)φ(γt)dt

]]

. (6.21)

Let DS
N ≤ DN be the Dirichlet form of the contour dynamics without the regrowth/deletion terms,

i.e. without the jumps of line 2 of (2.11). Apply Lemma 6.3 to ψ = aGφ to obtain that (6.21) is
bounded from above by:

− aδT0 + Cβ +

∣

∣

∣

∣

∫ T0

0

dt sup
f≥0:νf (NEr)=1

{

aEνf [G(t, L1/N)φ]−NDS
N(f)

}

∣

∣

∣

∣

. (6.22)

Let us now compare the contour dynamics around the north pole to a SSEP. Fix t ∈ [0, T0] and a
ν-density f with support in NEr. Denote by (Ef ) the expectation in the supremum in (6.22). We
first take care of the dependence on L1 in G, by splitting (Ef ) depending on where L1 lies in ΛN .
Let M(x) ⊂ XN

r be all curves with L1 + 2e1 = x ∈ ΛN . Then, up to an error OG(N
−1) uniform in

f :

Eνf [G(t, L1/N)φ] =
∑

x∈ΛN

G(t, x/N)

[

∑

γ∈M(x)

ν(γ)f(γ)φ(γ)

]

. (6.23)

In the following, for γ ∈M(x), we refer to the edge (x, x+ e+x ) as edge 1, to the one following it as
edge 2, etc, up to edge k, and write ξ1(γ), ..., ξk(γ) for the corresponding values of the edge labels
(as usual, curves are travelled on clockwise). Notice that all these edges are in the same quadrant
(in fact quadrant 1), as we work with curves in NEr. Indeed, all four quadrants of curves in NEr
are macroscopic, thus contain much more than k edges, see the definition of Er in Appendix B.
Configurations in {0, 1}k =: Ωk, are denoted by the letter ξ. φ depends only on the k first edges,
so that the expectation in (6.23) reads:

Eνf [G(t, L1/N)φ] =
∑

x∈ΛN

νf (M(x))G(t, x)
1

|Ωk|
∑

ξ∈Ωk

fk,x(ξ)φ(ξ), (6.24)

where |Ωk| = 2k and if ξ(γ) denotes the collection ξ1(γ), ..., ξk(γ) for a given γ ∈ XN
r ,

∀ξ ∈ Ωk, fk,x(ξ) =
1

νf (M(x))

∑

γ∈M(x):ξ(γ)=ξ

|Ωk|ν(γ)f(γ). (6.25)

Note that we need only consider points x and densities f with νf (M(x)) > 0. This ensures that
fk,x is unambiguously defined. Moreover, fk,x is a density for the uniform measure on Ωk.
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Let us do the same operations on the Dirichlet form DS
N , in order to bound it from below by that

of the SSEP on configurations with k sites. Recall the definition of the bulk jump rates of the
contour dynamics in (2.6). The mapping to go from part of a curve γ ∈ NEr to an associated SSEP
configuration ξ(γ) ∈ Ωk is represented on Figure 4.9 for the first quadrant. The idea is to take the
portion of γ in quadrant k, turn it clockwise by kπ/4, and put a particle at site j whenever the
resulting path goes down between j

√
2 and (j + 1)

√
2, or no particle if it goes up.

Define thus DS
k , the Dirichlet form associated with the SSEP on Ωk: for any density g for the

Figure 4.9 – On the left, a portion of the interface delimited by the two black dots. On the right,
the corresponding path and simple exclusion particle configuration. The mapping is possible if the left-
extremity of the interface as well as its length are fixed.

uniform measure Uk on Ωk = {0, 1}k,

DS
k (g) =

1

2|Ωk|
∑

ξ∈Ωk

∑

1≤u≤v≤k
|u−v|=1

1

2
[ξu(1− ξv) + ξv(1− ξu)][g1/2(ξu,v)− g1/2(ξ)]2.

Recalling the definition of DS
N(g) from Lemma 6.3, a simple upper-bound and convexity yield:

DS
N(f) ≥

1

2

∑

x∈ΛN

∑

γ∈M(x)

ν(γ)
∑

y∈V (γ):(y,y+e+y )∈{1,...,k}

c(γ, γy+e
+
y )
[

f 1/2(γy+e
+
y )− f 1/2(γ)

]1/2

≥
∑

x∈ΛN

νf (M(x))DS
k (fk,x). (6.26)

The reason, as emphasised in Lemma 6.3, is that the jump rate c(γ, γ′) for all non-vanishing terms
in DS

N(f) is local, in particular all γx, x ∈ V (γ) are well-defined (i.e. elements of XN
r ) for these

jumps. As a result of (6.24)-(6.26), at time t ∈ [0, T0] the supremum in (6.22) can be bounded
from above by:

sup
f≥0:νf (NEr)=1

{

∑

x∈ΛN

νf (M(x))
[

aG(t, x/N)EUk

[

fk,xφ
]

−NDS
k (fk,x)

]

}

≤ sup
f≥0:νf (NEr)=1

{

∑

x∈ΛN

νf (M(x)) sup
g≥0:EUk

[g]=1

{

aG(t, x/N)EUk
[gφ]−NDS

k (g)
}

}

≤ sup
f≥0:νf (NEr)=1

{

∑

x∈ΛN

νf (M(x))a|G(t, x/N)|
}

sup
g≥0:EUk

[g]=1

DS
k (g)≤C(a)/N

∣

∣EUk
[gφ]

∣

∣. (6.27)
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The conclusion of the proof then follows, since the problem is reduced to a one-block estimate for
a SSEP of size k (see [KL99], Chapter 5): the expectation in (6.27) satisfies

lim sup
N→∞

sup
g≥0:EUk

[g]=1

DS
k (g)≤C(a)/N

∣

∣EUk
[gφ]

∣

∣ = O(k−1).

As the first term in the right-hand side of (6.27) is bounded by a‖G‖∞, the proof of the one block
estimate (6.17) is concluded. The two block estimate (6.18) is proven similarly.

Now that we know that the time integral of 1p=2 and of the slope at the poles are close, it
remains to compute their common value. This is the goal of the next two sections.

6.2.3 A compactness result

This section presents microscopic estimates used to control the pole terms. Although technical,
this estimate is crucial to prove that the contour dynamics does not behave too strangely around
the pole, leading to a control of the 1p=2 term in the next section.

To compute the time integral of 1p=2, we need to zoom in on the dynamics around the pole.
As used in the proof of the hydrodynamic limit in [LST14a], in a suitable frame around the pole
(the definition of which is one of the difficulties), the height-function describing the interface in
time can be interpreted as a kind of two-species zero-range process, in our case with a moving
reservoir in the middle. Leaving for later a detailed description of the mapping to the zero-range
process and the frame around the pole (see Figure 4.12), we will have to estimate expectations of
the form:

Eνf [1p=2] = Eµ[f̃1ηL1+2e1
6=0],

where f is a density for ν, f̃ its marginal against µ. The measure µ is the marginal of ν on
a well-chosen portion of the curve around the pole, in which the interface is described in terms
of a particle number η· taking values in Z, corresponding to the height difference between two
consecutive columns. f̃ is the marginal of f in this proper frame. To show that the expectation
of the right-hand side reduces to an estimate at equilibrium under µ up to a small error term, a
compactness argument is typically used to prove that particles do not condensate macroscopically
at a single site, as in [KL99], Chapter 5. In our cases, this compactness argument is provided by
the following lemmas.

The first estimate concerns the 1p=2 term, which as shown in Section 6.2.2 coincides with the
slope around each pole. We prove that poles are typically not flat.

Lemma 6.6 (Upper bound on the slope). For γ ∈ XN
r , γ = ∂Γ, let p′(γ) be the number of blocks

in Γ composing the level below the north pole. If C > 0 and A ≥ 2 is an integer:

lim sup
N→∞

sup
f :DN (f)≤C/N

νf
(

Vr(2), p
′ ≥ A

)

≤ 1

logA
, (6.28)

with Vr(2) = {p = 2, Vr}, and Vr defined in (2.9). In particular:

lim sup
N→∞

sup
f :DN (f)≤C/N

νf
(

Vr(2)
)

≤ 2

β
. (6.29)
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Proof. Fix a density f with DN(f) ≤ C/N . Notice that p′ ≥ p, the number of blocks in the
pole, by definition of XN

r . The idea is to estimate νf (p = 2, Vr, p
′ ≥ A) for A ≥ 2 in terms of

νf (p = A, Vr), using the fact that:
∑

B≥2

νf (p = B, Vr) ≤ 1. (6.30)

To do so, we use a bijection argument similar to the one in Lemma 6.2. Fix A ≥ 2, take γ in
{p = 2, Vr, p

′ ≥ A}, and turn it into an element F (γ) of {p = A, Vr} as follows. Add as many
blocks as possible to the left of the north pole of γ at the height of the pole. If A− 2 such blocks
can be added, an element of {p = A, Vr} has been created. If B < A− 2 blocks only can fit to the
left of the pole, add the remaining A− 2− B blocks to the right of the pole.
This procedure is nearly bijective in the following sense. Label the columns corresponding to blocks
of the level below the pole from 1 to p′, starting from the left.

• If the pole of γ ∈ {p = 2, Vr, p
′ ≥ A} is above the blocks with labels k, k + 1 with 1 ≤ k ≤

A − 1, which we write P = {k, k + 1}, then the procedure described above yields the same
F (γ) ∈ {p = A, Vr} for each k, and this F (γ) is the curve with a pole composed of the blocks
1, ..., A. Let {P = {1, ..., A}} refer to the set of such F (γ).

• If instead the pole of γ starts at column k ≥ A, which we write P ≥ A, then the resulting
curve F (γ) has a pole starting at k − (A − 2) > 1, and it is bijectively mapped into γ by
inverting the above procedure.

In terms of the mapping F , the previous two cases can be rewritten as:

∀k ≤ A− 1, F
({

p = 2, Vr, p
′ ≥ A,P = {k, k + 1}

})

=
{

Vr, p = A,P = {1, ..., A}
}

and:
F
({

p = 2, Vr, p
′ ≥ A,P ≥ A

})

=
{

P ≥ 2, Vr, p = A
}

.

Notice moreover that the mapping F leaves the equilibrium measure ν invariant, since the length
of γ ∈ XN

r and F (γ) are the same. Overall, writing also {P ≤ k} for the event that the pole starts
at or before column k, we obtain for the equilibrium measure ν:

ν(Vr(2), p
′ ≥ A) = ν(P ≤ A− 1, p = 2, Vr, p

′ ≥ A) + ν(P ≥ A, p = 2, Vr, p
′ ≥ A)

= (A− 1)ν(P = {1, ..., A}, Vr) + ν(P ≥ 2, p = A, Vr)

≤ (A− 1)ν(p = A, Vr). (6.31)

Let us prove that, up to an error that vanishes for N large, (6.31) holds also under νf for any ν-
density f with DN(f) ≤ C/N . The idea is that the mapping F described above for γ ∈ {Vr(2), p′ ≥
A} requires a number of moves that is independent of N , so f(γ) and f(F (γ)) are close.
We prove it for the {P = {1, ..., A}, Vr} term in (6.31), the P ≥ 2 term is similar. We proceed as
in Lemma 6.2.

(A− 1)νf (P = {1, ..., A}, Vr) = (A− 1)
∑

γ′∈F ({P≤A−1,p=2,Vr,p′≥A})
ν(γ′)f(γ′)

=
∑

γ′∈F ({P≤A−1,p=2,Vr,p′≥A})
ν(γ′)f(γ′)

∑

γ∈Vr(2),P≤A−1,p′≥A
1F (γ)=γ′

=
∑

γ∈Vr(2),P≤A−1,p′≥A
ν(γ)f(F (γ)). (6.32)
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The second line comes from the fact that F maps exactly A − 1 elements of {P ≤ A − 1, p =
2, Vr, p

′ ≥ A} onto the same curve in {P = {1, ..., A}, Vr}. The third line uses the fact that F does
not change the measure ν. The notation Vr(2) stands for Vr ∩ {p = 2}. One has then:

(6.32) =
∑

γ∈Vr(2),P≤A−1,p′≥A
ν(γ)

[

f 1/2(F (γ))− f 1/2(γ)
]2 −

∑

γ∈Vr(2),P≤A−1,p′≥A
νf (γ)

+ 2
∑

γ∈Vr(2),P≤A−1,p′≥A
ν(γ)f 1/2(γ)f 1/2(F (γ)).

Applying Cauchy-Schwarz inequality yields:

[

(A− 1)1/2νf (P = {1, ..., A},Vr)1/2 − νf (P ≤ A− 1, Vr(2), p
′ ≥ A)1/2

]2

≤
∑

γ∈Vr(2),P≤A−1,p′≥A
ν(γ)

[

f 1/2(F (γ))− f 1/2(γ)
]2
. (6.33)

It remains to bound the right-hand side of (6.33) from above in terms of the Dirichlet form.
Decompose the passage from γ to F (γ) in single-block flips: γ = γ0 → γ1 → ... → γA−2 = F (γ),
and apply Cauchy-Schwarz inequality to find:

∑

γ∈Vr(2),P≤A−1,p′≥A
ν(γ)

[

f 1/2(F (γ))− f 1/2(γ)
]2

≤ (A− 2)
∑

γ∈Vr(2),P≤A−1,p′≥A
ν(γ)

A−2
∑

k=1

[

f 1/2(γk+1)− f 1/2(γk)
]2
.

Each move above is authorised in the contour dynamics, at rate 1/2. A given curve corresponding
to one of the γk can occur at most A− 1 times in all paths γ → F (γ) for γ ∈ {Vr(2), P ≤ A− 1}.
As a result, and since ν(γk) = ν(γ) for all k ≤ A− 2:

[

(A−1)1/2νf
(

P = {1, ..., A}, Vr
)1/2−νf

(

P ≤ A−1, Vr(2), p
′ ≥ A

)1/2]2 ≤ 4(A−1)2DN(f). (6.34)

Similar computations give the same kind of bound for the second term in (6.31) under νf :

[

νf (1 /∈ P, p = A, Vr)
1/2 − νf (P ≥ A, Vr(2))

1/2
]2 ≤ 4(A− 1)DN(f). (6.35)

Let us use (6.34)-(6.35), to prove that (6.31) still holds under νf with a small error in N (recall
that DN(f) ≤ C/N). Equation (6.34) yields:

νf (Vr(2), P ≤ A− 1, p′ ≥ A) ≤ (A− 1)νf (P = {1, ..., A}, Vr) + C(A)
[

DN(f)
1/2 +DN(f)

]

≤ (A− 1)νf (P = {1, ..., A}, Vr) + C(A)N−1/2,

where the constant C(A) > 0 changes between inequalities. Similarly, (6.35) yields:

νf (P ≥ A, Vr(2)) ≤ νf (P ≥ 2, p = A, Vr) + C(A)N−1/2

≤ (A− 1)νf (P ≥ 2, p = A, Vr) + C(A)N−1/2,
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whence the following counterpart of (6.31) for νf :

νf (Vr(2), p
′ ≥ A) = νf (Vr(2), P ≤ A− 1) + νf (P ≥ A, Vr(2))

≤ (A− 1)νf (p = A, Vr) + C(A)N−1/2. (6.36)

Equation (6.36) is sufficient to conclude the proof of the upper bound in (6.29). Indeed, fix B ≥ 2
and apply (6.36) to each A ∈ {2, ..., B} to obtain (recall that Vr(2) = Vr ∩ {p = 2}):

1 ≥
B
∑

A=2

νf (p = A, Vr) ≥
B
∑

A=2

1

A− 1
νf (Vr(2), p

′ ≥ A) +O(N−1/2). (6.37)

For ℓ ≥ 2, let Hℓ =
∑ℓ

k=2(k − 1)−1, H1 := 0 and integrate the right-hand side of (6.37) by parts
to find:

1 ≥ νf (p = 2, Vr, p
′ ≥ B)HB +

B−1
∑

A=2

HAνf (Vr(2), p
′ = A) +O(N−1/2).

Equation (6.28) follows:

lim sup
N→∞

νf (p = 2, Vr, p
′ ≥ B) ≤ H−1

B ≤
1

logB
. (6.38)

From (6.38) we conclude the proof of Lemma 6.6 using again the correspondence of Lemma 6.2:

νf (Vr(2)) = νf (p = 2, Vr) = νf (p = 2, Vr, p
′ ≥ eβ) + νf (p = 2, Vr, p

′ ≤ eβ − 1)

≤ 1

β
+ Eνf [e

−2β(p− 1)1Ir,p≤eβ−1

]

+O(N−1/2)

≤ 1

β
+ e−β(1− e−β +O(N−1/2)) ≤ 2

β
+O(N−1/2),

with Ir defined in (6.5).

Next, we use Lemma 6.6 to bound the width of the droplet at a given depth below the pole,
and its depth at a given width to either side of the pole.
For γ ∈ XN

r ∩ NEr and k ≥ 1, the line y = ymax(γ) − k contains a certain number of horizontal
edges in γ, where ymax is the ordinate of the highest points in γ. Let ℓ(k) be the number of these
edges to the right of L1, and ℓ(−k) the number to the left of L1. Define also ℓ(0) = p(γ)− 2. For
N large enough, because γ ∈ NEr each of the ℓ(i), |i| ≤ k are well defined and the corresponding
edges are in quadrant 4 (i ≤ 0) or quadrant 1 (i ≥ 0) (see Figure 4.10).

Lemma 6.7 (Width of a curve at depth k below the north pole). For k ∈ N∗, C > 0, A ≥ 2,

∀|i| ≤ k, lim sup
N→∞

sup
f :DN (f)≤C/N

νf
(

NEr(d), ℓ(i) ≥ A
)

≤ e2β

(A+ 1) log(A+ 2)
. (6.39)

As a result, the numbers w+
k = 2+

∑k
i=0 ℓ(i) and w

−
k =

∑k
i=1 ℓ(−i) of blocks with centres at height

ymax(γ)− k − 1/2 in a droplet Γ ∈ NEr, respectively to the right/to the left of L1, satisfy:

lim sup
N→∞

sup
f :DN (f)≤C/N

νf
(

NEr(d), w±
k ≥ k2

)

≤ 3e2β

log k
. (6.40)
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Proof. Equation (6.40) follows from (6.39) by a union bound. Let us prove (6.40) by recursion on
|i| ≤ k. For ℓ(0), recall from Lemma 6.2 that, uniformly on ν-densities f with DN(f) ≤ C/N :

νf (p = 2, Vr, p
′ ≥ A+ 2) = Eνf

[

(p− 1)1Ire
−2β1p≥A+2

]

+ oN(1)

= Eνf [(ℓ(0) + 1)1Ire
−2β1ℓ(0)≥A

]

+ oN(1), (6.41)

Vr is defined in (2.9) and Ir in (6.5). In view of the following:

(A+ 1)νf (NEr(d), ℓ(0) ≥ A) ≤ e2βEνf [(ℓ(0) + 1)1Ire
−2β1ℓ(0)≥A

]

,

Equation (6.39) follows for i = 0 via (6.41):

(A+ 1)νf (NEr(d), ℓ(0) ≥ A)
(6.39)

≤ e2βνf (p = 2, Vr, p
′ ≥ A+ 2) + oN(1)

(6.38)

≤ e2β

log(A+ 2)
+ oN(1).

Now assume the result holds for |i| < k. To show it for e.g. i+ 1, we are going to prove:

νf (NEr(d), ℓ(i+ 1) ≥ A) = νf (NEr(d), ℓ(i+ 1) ≥ 0, ℓ(i) ≥ A) +O
(

DN(f)
1/2 +DN(f)

)

. (6.42)

The argument is very similar to the one used in the proof of Lemma 6.6. Consider the event
{ℓ(i + 1) ≥ A} and a curve γ in this event. This time, instead of adding blocks to the pole, we
add A blocks to line i below the pole of γ (see Figure 4.10 for a representation of ℓ(i)) to obtain a
curve F (γ). By this procedure, {ℓ(i+1) ≥ A} is sent onto {ℓ(i) ≥ A}, and both γ and F (γ) have
the same ν-measure.
The procedure γ → F (γ) requires A SSEP moves, corresponding to flipping blocks of line i one
after the other. None of these break any constraints involved in the definition of NEr(d), so that
in fact:

F ({NEr(d), ℓ(i+ 1) ≥ A}) = {NEr(d), ℓ(i) ≥ A}.
Moreover, each curve in the chain γ1 = γ → ... → γf = F (γ) appears at most A + 1 times when
effecting the procedure for all curves in {NEr(d), ℓ(i+1) ≥ A}. The difference of the square roots
of the two probabilities appearing in (6.42) is thus bounded by C(A)DN(f), which completes the
proof of (6.42), thus of Lemma 6.7.

Lemma 6.7 gives a bound on the width of a curve below its pole. Let us now show that, at
distance k ≥ 1 to the right or to the left of the north pole, the height cannot be too big as a
function of k. To do so, for k ∈ N∗ and |i| ≤ k, define δ(i) as the absolute value of the height
difference between columns i and i + 1, fixing δ0 = 0 to be the height difference of the columns
with left extremities L1 and L1 + e1 respectively (see Figure 4.10). Note the different choice in
labels of the δ’s compared to the ℓ’s to mark the symmetry between quadrants 1 and 4.

Lemma 6.8 (Height of a column at fixed distance to the pole). For k ∈ N∗ and each C > 0, A ≥ 1,

∀1 ≤ i, j ≤ k, lim sup
N→∞

sup
f :DN (f)≤C/N

νf
(

NEr(d), δ(i) ≥ A, δ(−j) ≥ A
)

≤ e−2β(A−1). (6.43)

Let ∆±
k =

∑k
i=1 δ(±i) be the heights that a curve has gone down after k horizontal steps on either

side of L1. Then (β > 1):

lim sup
N→∞

sup
f :DN (f)≤C/N

νf
(

NEr(d),∆+
k ≥ k(1 + log k),∆−

k ≥ k(1 + log k)
)

≤ 1

k2β−2
= ok(1). (6.44)
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Figure 4.10 – Definition of the δ(±i), ℓ(±i),∆±
k , w

±
k . The small black dots mark the centre of each

column, the shaded areas are blocks in columns/lines constituting one of the pictured ℓ(±i), δ(±i). Here,
ℓ(−2) = δ(−3) = 0.

Proof. Equation (6.44) follows from (6.43) by a union bound. To prove (6.43), we first treat the case
i = j = 1. {δ(1) ≥ A, δ(−1) ≥ A} is the event that the north pole is atop a column of width 2 and
height at least A. With γ ∈ {δ(1) ≥ A, δ(−1) ≥ A} associate a curveG(γ) ∈ {δ(1) ≥ 1, δ(−1) ≥ 1}
in which the north pole has been shrunk A − 1 times. G(γ) has length |γ| − 2(A − 1), thus has
higher equilibrium probability. In fact, up to boundary effects in the definition of XN

r , G is a
bijection between the above sets, and:

ν
(

δ(1) ≥ A, δ(−1) ≥ A
)

≃ e−2β(A−1)ν
(

δ(1) ≥ 1, δ(−1) ≥ 1
)

. (6.45)

Equation 6.45 is not an equality because of boundary conditions. Indeed, elements of XN
r must

satisfy ymax − ymin ≥ ⌈Nr⌉, with ymin the ordinate of the south pole of a curve, and be subsets of
ΛN . As a result, G is a mapping from XN

r onto itself provided we write:

{

δ(±1) ≥ A, ymax − ymin ≥ ⌈Nr⌉+ A− 1
} G−→

{

δ(±1) ≥ 1, ymax ≤ N − (A− 1)
}

. (6.46)

The condition on the first set ensures that deleting A − 1 levels of the north pole of one of its
element γ still yields a curve G(γ) ∈ XN

r . Conversely, the height of the north pole of G(γ) cannot
be higher than N − (A− 1), otherwise the original curve γ would have a north pole outside of ΛN .
The mapping G written as in (6.46) is bijective, and one has:

ν
(

δ(±1) ≥ A, ymax− ymin ≥ ⌈Nr⌉+A− 1
)

= e−2β(A−1)ν
(

δ(±1) ≥ 1, ymax ≤ N − (A− 1)
)

. (6.47)

In the same way as in Lemma 6.6, (6.47) holds under νf for any ν-density f up to a term bounded
by C(A)

(

DN(f)
1/2 + DN(f)

)

, quantifying the cost of deleting A − 1 lines of the pole of a curve
one by one. As a result, if f is a ν-density with DN(f) ≤ C/N :

νf
(

δ(±1) ≥ Aymax − ymin ≥ ⌈Nr⌉+ A− 1
)

≤ e−2β(A−1) +O
(

N−1/2
)

. (6.48)

The dependence in A in the error term is not kept, as we choose it independent of N . Each curve
involved in these strings of dynamical moves appears at most A times in all the strings of all the
curves, hence an error bounded by C(A)DN(f)

1/2. As curves in NEr(d) satisfy ymin − ymax ≥
2Nr ≥ ⌈Nr⌉+A− 1 (opposite poles must be at distance at least 2Nr), (6.43) holds for i = j = 1.
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To prove (6.43) for each (i, j) ∈ {1, ..., k}, let us first prove it for j = 1, i > 1. One has:

νf
(

NEr(d), δ(i) ≥ A, δ(−1) ≥ A
)

= νf
(

NEr(d), δ(i− 1) ≥ A, δ(−1) ≥ A
)

+ oN(1). (6.49)

Indeed, as in Lemma 6.7, a curve with δ(i) ≥ A is transformed into one with δ(i − 1) ≥ A by
deleting A blocks in column i− 1. These SSEP moves do not change the length of the curve, nor
do they affect whether a curve is in NEr(d) for N large enough, since all blocks involved in the
moves are at distance of order Nr to the other quadrants or any pole other than the north pole.
Iterating (6.49) from i to 1 and using (6.48) yields (6.43) for the couple (i,−1). Now if j 6= 1, the
same argument applies to go from −j to −1. This concludes the proof of (6.43).

6.2.4 Value of the slope at the pole

We now have all prerequisites to prove that the motion of the north pole imposes a particle density
of e−β on each side, as stated in Lemma 6.9. Its proof crucially makes use of the fact that the
contour dynamics around the pole is irreducible. This is due to the e−2β regrowth jumps allowed
in the contour dynamics which means, in particular, that it is not true for the zero temperature
stochastic Ising model.

Lemma 6.9. For each δ > 0 and test function G ∈ C,

lim sup
N→∞

1

N
logPNr,β

(

for a.e. t ∈ [0, T0], γt ∈ NEr(d);
∣

∣

∣

∣

1

T0

∫ T0

0

G(t, L1(t)/N)
(

1p=2 − e−β
)

dt

∣

∣

∣

∣

≥ δ

)

= −∞. (6.50)

The claim is also valid under PNr,β,H .

Proof. The proof only deals with G ≡ 1 and H ≡ 0. Generalisations to PNr,β,H follow as in the
proof of Lemma 6.5, and we explain how to include a test function G in Remark 6.10. Integer
parts are systematically omitted.
The proof is structured as follows. We first use Lemma 6.3 to project the dynamics inside NEr(d).
The compactness results provided by Section 6.2.3 are then incorporated to the probability in
(6.50). This enables us to define a proper frame around the pole. After conditioning to this frame,
the quantity to estimate in (6.50) can be retrieved from an equilibrium computation, which is the
last step of the proof.

Let φ = 1p=2−e−β. By Markov inequality and Lemma 6.3, the left-hand side of (6.50) without
the limits is bounded from above, for each a > 0 by:

− aδT0 + Cβ + T0

∣

∣

∣
sup

f≥0:νf (NEr(d))=1

{

aEνf [φ]−NDN(f)
}∣

∣

∣
. (6.51)

Step 1: definition of a suitable frame around the pole.
The first step consists in writing the expectation in (6.51) as a quantity that depends only on the
dynamics around the pole. The idea is to compare the contour dynamics to a zero-range process
with two species of particles. The number of particles is given by the height difference between
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consecutive columns around the pole. The type of particle is determined by the sign of the height
difference. This process is irreducible and its invariant measure can be made explicit. More is
said on this dynamics below, see also Figure 4.12. To make such a comparison, we define a frame
around the pole without fixing its position, contrary to what was done e.g. in Lemma 6.5. This is
done as follows.

Fix an integer k, which will be the typical size of the frame around the pole, and consider the
following partition of XN

r ∩ NEr(d). For any curve γ, let hk(γ) be the smallest integer such that
the number of blocks in Γ (the droplet delimited by γ) with centre at height y = ymax−hk(γ)−1/2
is strictly larger than k (see Figure 4.11):

hk(γ) = min
{

y ∈ N : Ny(γ) > k}, (6.52)

where:
Ny(γ) = #

{

blocks in Γ with centre at height ymax(γ)− y − 1/2
}

.

Let xk(γ), yk(γ) denote the extremal vertices of the last level of Γ with width smaller than k, and

Figure 4.11 – Definition of hk, ℓk and xk, yk for a given curve. The first level of blocks with width strictly
larger than k corresponds to the filled area, unchanged by the ZRP dynamics. In this case there are k+1
such blocks, with centres indicated by black dots. The width ℓk of the last level of width smaller than
k is equal here to k − 1. The portion of the curve affected by the ZRP dynamics is delimited by dashed
lines and the segment [xk, yk].

let
ℓk(γ) := ‖yk(γ)− xk(γ)‖1 (6.53)

be this width, see Figure 4.11. For fixed k ∈ N∗ and 2 ≤ ℓ ≤ k, consider the set:

Mℓ =
{

γ ∈ XN
r : ℓk(γ) = ℓ

}

. (6.54)

Then (Mℓ)2≤ℓ≤k is a disjoint family, which partitions XN
r ∩NEr(d). This second point comes from

the fact that curves in NEr(d) have width at least Nr ≥ k at some level on each side of L1 for N
large enough. The expectation in (6.51) thus reads, for each ν-density f supported on NEr(d):

Eνf [φ] =
∑

2≤ℓ≤k
Eνf [1Mℓ

φ]. (6.55)

At this point, the splitting of curves in the different Mℓ in (6.55) suffers from two flaws. On the
one hand, the width ℓ, which will correspond to the number of sites in a ZRP, may not be large.
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This makes a local equilibrium argument impossible to apply. On the other hand, the pole may
be macroscopically higher than the points xk(γ), yk(γ). In other words, we must control both the
height hk(γ) below the pole and the width ℓk(γ) in terms of k. Lemmas 6.7-6.8 enable such a
control, as we now explain.

Consider first the height hk(γ), defined in (6.52). Then either hk(γ) = 0, which corresponds
to having a pole size p(γ) ≥ k, or hk(γ) > 1 and the level at height hk(γ)− 1 below the pole has
width strictly smaller than k, thus has width smaller than k on both sides of L1. Recalling from
Lemma 6.8 that ∆±

k (γ) is the depth at horizontal distance k on either side of the pole, we find:

hk(γ) ≤ min
{

∆+
k (γ),∆

−
k (γ)

}

.

Lemma 6.8 then yields, for each C > 0:

lim sup
N→∞

sup
f :DN (f)≤C/N

νf
(

NEr(d), hk ≥ k(1 + log k)
)

= ok(1). (6.56)

We now turn to the width ℓk = ℓk(γ) of the level at height hk below the pole. Recalling the
definition of the widths w± from Lemma 6.7, notice first the identity:

∀γ ∈ XN
r ∩NEr(d), ℓk(γ) = w+

hk(γ)−1 + w−
hk(γ)−1. (6.57)

Let ak > 0 to be chosen later, fix C > 0 and a ν-density f with DN(f) ≤ C/N . According to
(6.57), one has for instance:

νf
(

NEr(d), ℓk ≤ ak
)

≤ νf
(

NEr(d), w−
hk−1 ≤ ak

)

. (6.58)

If at level hk−1 below the pole one has gone left less than ak times, then one must be below hk−1
once reaching a distance ak to the left of the pole, i.e.:

w−
hk−1 ≤ ak ⇒ ∆−

ak
≥ hk − 1. (6.59)

Let us provide a lower bound on hk, then choose ak in terms of this upper bound such that (6.59)
with imply that the probability of the right-hand side of (6.58) is small. For bk > 0 to be chosen,
analogously to (6.59), one has:

hk ≤ bk ⇒ w−
bk
+ w+

bk
> k.

By Lemma 6.7, for bk = ⌊
√

k/2⌋:

lim sup
N→∞

sup
f≥0:DN (f)≤C/N

νf
(

NEr(d), hk ≤ bk
)

≤ 2 lim sup
N→∞

max
ε∈{−,+}

sup
f≥0:DN (f)≤C/N

νf
(

NEr(d), wεbk ≥ k/2
)

= ok(1). (6.60)

Using (6.60), the bound (6.58) then implies the following bound for ℓk:

lim sup
N→∞

sup
f≥0:DN (f)≤C/N

νf
(

NEr(d), ℓk ≤ ak
)

≤ lim sup
N→∞

sup
f≥0:DN (f)≤C/N

νf
(

NEr(d),∆−
ak
≥ hk ≥ bk + 1

)

+ ok(1), (6.61)
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where the error term is bounded from above by (6.60). It remains to choose ak as a function of
bk + 1 = ⌊

√

k/2⌋+ 1 such that the right-hand side of (6.61) vanishes for large k. By Lemma 6.8,
it suffices to take ak such that ak(1 + log(ak)) ≤ bk + 1, e.g. for large enough k:

ak = (1/2)k1/2/ log k =: ℓmin(k). (6.62)

With this choice of ak = ℓmin(k), (6.61) yields the desired control on ℓk:

lim sup
N→∞

sup
f≥0:DN (f)≤C/N

νf
(

NEr(d), ℓk ≤ ℓmin(k)
)

= ok(1). (6.63)

We now use equations (6.56)-(6.63) to restrict admissible configurations around the pole, thus
concluding the definition of the frame around the pole. Define hmax(k) := k(1 + log k) and recall
that ℓmin(k) := (1/4)k1/2/ log k. By the discussion of the previous paragraph, and as φ = 1p=2−e−β
is bounded, (6.51) is bounded from above by:

− aδT0+Cβ+T0

∣

∣

∣
sup

f≥0:νf (NEr(d))=1

{

a
∑

ℓmin(k)≤ℓ≤k
Eνf

[

1Mℓ
1hk≤hmax(k)φ

]

− N
2
DN(f)

}
∣

∣

∣
+ωN,k, (6.64)

where ωN,k satisfies by (6.56)-(6.63):

lim sup
N→∞

ωN,k ≤ a‖φ‖∞ lim sup
N→∞

sup
f :DN (f)≤2‖φ‖∞a/N

νf
(

NEr(d), hk > hmax(k) or ℓk < ℓmin(k)
)

= ok(1).

It is thus sufficient to estimate the supremum in (6.64).

Step 2: conditioning and mapping to a two-species zero-range process.
We now study the expectation in (6.64) in detail on Mℓ, defined in (6.54), for a given ℓmin(k) ≤
ℓ ≤ k, and obtain a local description of the contour dynamics around the pole. We claim that
to configurations in Mℓ corresponds a unique particle configuration in Ωℓ = Zℓ+1. The mapping
goes as follows. If γ ∈Mℓ, define, for 0 ≤ j ≤ ℓ, a particle number ηj corresponding to the height
increment at column j, with column 0 the one centred on xk(γ), as:

ηj = εj
∑

z∈ΛN :z·e1=x(γ)·e1+j
z·e2≥ymax(γ)−hk(γ)

ξz, εj =

{

1 if j ≤ L1 · e1,
−1 if j > L1 · e1.

If ηj < 0 for some j, we say that there are |ηj| antiparticles at site j. The constraint z · e2 ≥
ymax(γ)− h(γ) guarantees that only the vertical edges above the level of xk(γ), yk(γ) are counted
as particles. We let η(γ) denote the unique particle configuration in Ωℓ associated with γ ∈ Mℓ

(see Figure 4.12).
In the particle language, hk corresponds to the number of particles or antiparticles. The event
{hk ≤ hmax(k)} can thus be recast, for each ℓ, as the event:

W ℓ = {ρℓ ≤ Cℓ}, where ρℓ =
1

ℓ+ 1

ℓ
∑

j=0

|ηj|, Cℓ = Cℓ,k =
2

ℓ+ 1
hmax(k) =

2k(1 + log k)

ℓ+ 1
.

(6.65)
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Figure 4.12 – Portion of the interface of a curve around the north pole, and associated path and particle
configurations. Particles are in dark dots, antiparticles in light dots, and empty sites are white with a
dark contour. The grey arrows on the particle configuration correspond to jumps allowed by the contour
dynamics that conserve the particle number. A move reducing the length of the curve, materialised on
the curve by the vertical arrows, corresponds to a particle-antiparticle pair annihilation, represented by
the black crosses. No particle creation is represented here.

Let ℓ ∈ {ℓmin(k), ..., k}, f be a ν-density supported on NEr(d) with νf (Mℓ) > 0, and define:

∀η ∈ Ωℓ, f̄ℓ(η) =
1

νf (Mℓ)

∑

γ∈Mℓ:η=η(γ)

Z−1
r,βf(γ)e

−β|γ|+β|η|+βℓ. (6.66)

Define also the probability measure µ̄ℓ:

∀η ∈ Ωℓ, µ̄ℓ(η) = Z̄−1
ℓ exp

[

− βℓ− β
ℓ

∑

j=0

|ηj|
]

, (6.67)

where Z̄ℓ is a normalisation factor, and
∑ℓ

j=0 |ηj| + ℓ is the length of the path which corresponds

to the particle configuration η. Though we could factor it out as it is common to all η, the e−βℓ

factor in the definition of µ̄ℓ will be convenient later on. The expectation in (6.64) is recast in
terms of particle configurations as follows:

Eνf
[

1Mℓ
1hk≤hmax(k)φ

]

= νf (Mℓ)Eµ̄ℓ
[

f̄ℓ1Wℓ
φ
]

, , (6.68)

so that we know how to estimate the supremum in (6.51) as soon as we can estimate (recall the
definition (6.62) of ℓmin(k)):

sup
f≥0:νf (NEr(d))=1

{

k
∑

ℓ=ℓmin(k)

aνf (Mℓ)Eµ̄ℓ
[

f̄ℓ1Wℓ
φ
]

− N

2
DN(f)

}

, φ = 1p=2 − e−β. (6.69)
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Step 3: local equilibrium.
We now prove that estimating the supremum in (6.69) reduces to an equilibrium computation. At
this stage, the technique is the same as in [KL99]. Denote by D̄ℓ the reduced Dirichlet form on
Ωℓ, defined as follows. For η ∈ Ωℓ, let P (η) denote the pole of η, that is the subset {L, ..., R} of
{0, ..., ℓ} such that ηL is the last ηj that is strictly positive or L = 0 if there are none, ηR the first
to be strictly negative or R = ℓ if none exist. Let also p = |P (η)|− 1. For any µ̄ℓ-density g, define:

D̄ℓ(g) =
1

2

∑

η,η′∈Ωℓ

µ̄ℓ(η)c(η, η
′)
[

g1/2(η′)− g1/2(η)
]2
. (6.70)

Importantly, the positions of the extremal sites 0, ℓ (corresponding for curves γ compatible with
a given configuration to the points xk(γ), yk(γ)) are unchanged by the dynamics. This is because
the ZRP dynamics only acts on the portion of γ above xk(γ), yk(γ). In particular, the first level of
γ with width strictly larger than k, which defines the position of xk(γ), yk(γ), is never modified.
In (6.70), we abuse notations and still write c(·, ·) for the jump rates of the ZRP moves correspond-
ing to moves on the contour dynamics. This is legitimate, since if f is a ν-density supported on
NEr(d), any jump featured in D̄ℓ(f̄ℓ) is an allowed jump for DN with the same rate by definition
of NEr(d). Convexity then yields, recalling that ℓmin(k) is defined in (6.62):

DN(f) ≥
k

∑

ℓ=ℓmin(k)

νf (Mℓ)D̄ℓ(f̄ℓ). (6.71)

Reinjecting (6.71) into the supremum in (6.69), we see that it is enough to estimate:

sup
f≥0:νf (NEr(d))=1

{ k
∑

ℓ=ℓmin(k)

νf (Mℓ)
[

aEµ̄ℓ
[

f̄ℓ1Wℓ
φ
]

− N

2
D̄ℓ(f̄ℓ)

]

}

. (6.72)

We are nearly done with conditioning to a frame where we can compute the expectation in (6.72).
The remaining step is to reduce the state space Ωℓ = Zℓ+1 to something that is compact. By
definition of f̄ℓ, µ̄ℓ, D̄ℓ in (6.66)-(6.67)-(6.70) respectively, the process is painless: it is enough to
delete all jumps that increase the number of particles above what is authorised by Wℓ (defined in
(6.73)). Indeed, define µℓ as a measure on Wℓ as follows:

∀η ∈ Wℓ =
{

ρℓ ≤ Cℓ =:
2hmax(k)

ℓ+ 1

}

, µℓ(η) := Z−1
ℓ exp

[

− βℓ− β
ℓ

∑

j=0

|ηj|
]

=
Z̄ℓ
Zℓ
µ̄ℓ(η), (6.73)

where Zℓ is a normalisation factor on Wℓ. The marginal f̄ℓ is correspondingly modified into a
µℓ-density fℓ:

∀η ∈ Wℓ, fℓ(η) :=
Zℓ
Z̄ℓ

1

Eµ̄ℓ
[

f̄ℓ1Wℓ

] f̄ℓ(η).

Finally, the Dirichlet form Dℓ for the reduced dynamics (written here in compact form) reads, for
any µℓ-density g:

Dℓ(g) =
∑

η,η′∈Wℓ

c(η, η′)[g1/2(η′)− g1/2(η)]2. (6.74)
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Since we simply restricted allowed jumps, one has D̄ℓ(f̄ℓ) ≥ Dℓ(fℓ)Eµ̄ℓ [f̄ℓ1Wℓ
]. Under µℓ, the

quantity (6.72) to estimate is then bounded from above by:

sup
f≥0:νf (NEr(d))=1

{ k
∑

ℓ=ℓmin(k)

νf (Mℓ)Eµ̄ℓ
[

f̄ℓ1Wℓ

]

[

aEµℓ
[

fℓφ
]

− N

2
Dℓ(fℓ)

]

}

≤ a sup
f≥0:νf (NEr(d))=1

{ k
∑

ℓ=ℓmin(k)

νf (Mℓ)Eµ̄ℓ
[

f̄ℓ1Wℓ

]

[

sup
g≥0:Eµℓ

[g]=1

Dℓ(g)≤2a‖φ‖∞/N

Eµℓ
[

gφ
]

]}

, (6.75)

The proof of Lemma 6.9 will therefore be concluded if we can prove that, for fixed k andN large, the
supremum on g in the right-hand side of (6.75) is bounded by ok(1) uniformly in ℓmin(k) ≤ ℓ ≤ k.
Fix ℓ ∈ {ℓmin(k), ..., k}. As Wℓ is compact, the supremum on g in (6.75) is achieved by a density
gNℓ for each N . Up to taking a subsequence, by lower semi-continuity of Dℓ and continuity of the
expectation in (6.75) w.r.t weak convergence, we can take the large N limit and restrict ourselves
to studying:

sup
g∞:Dℓ(g∞)=0

Eµℓ [g
∞φ].

By definition of Dℓ, the corresponding dynamics is irreducible on Wℓ. This is the major difference
between the contour dynamics and the 0-temperature stochastic Ising model, which motivated the
introduction of the temperature-like parameter β to allow for regrowth. Irreducibility means that
any g∞ satisfying Dℓ(g

∞) = 0 is constant equal to 1, and we are left with the estimate of:

Eµℓ [φ] with φ = 1p=2 − e−β. (6.76)

Step 4: equilibrium large deviations and surface tension.
The expectation (6.76) is taken under the equilibrium measure of the zero-range dynamics. Prop-
erties of the measure µℓ are analysed in Appendix A.3. In particular, it is proven there that,
recalling the definition (6.62) of ℓmin(k):

lim
k→∞

sup
ℓmin(k)≤ℓ≤k

Eµℓ [φ] = 0. (6.77)

Equation (6.77) concludes the proof of Lemma 6.9 with G ≡ 1.

Remark 6.10. Lemma 6.9 holds for any test function G ∈ C and not just G ≡ 1: for each δ > 0,

lim sup
ε→0

lim sup
N→∞

1

N
logPNr,β

(

∀t ∈ [0, T0], γt ∈ NEr(d);
∣

∣

∣

∣

1

T0

∫ T0

0

G(t, L1(t))
(

1p=2 − e−β
)

dt

∣

∣

∣

∣

≥ δ

)

= −∞.

This is proven in the same way as Lemma 6.9, except that curves are further conditioned by fixing
the point xk(γ), which is the left extremity of the interval {0, ..., ℓ = ‖yk(γ)− xk(γ)‖1} for a curve
γ. The expectation in (6.64) becomes, for each t ≤ T0 and ν-density f supported in NEr(d):

∑

ℓmin(k)≤ℓ≤k
Eνf

[

1Mℓ
1hk≤hmax(k)φ G(t, L1/N)

]

=
∑

ℓmin(k)≤ℓ≤k

∑

x∈ΛN

Eνf
[

1Mℓ
1hk≤hmax(k)1x(γ)=xφ G(t, x/N)

]

+ oN(1),

226



with an error term uniform in f . Indeed, the difference betweenG(t, L1/N) andG(x/N) is bounded
by N−1(hmax(k) + k)‖∇G‖∞ = oN(1) thanks to the conditions ℓk ≤ k, hk ≤ hmax(k).
The position of xk(γ) is unchanged by the ZRP dynamics, see the discussion following (6.70). As
such, the rest of the arguments in the proof of Lemma 6.9 go through unchanged, except that one
has to rewrite everything with x fixed, e.g. to consider Mℓ,x = Mℓ ∩ {xk(γ) = x} instead of Mℓ

everywhere, and to correspondingly change fℓ into fℓ,x. The Dirichlet form Dℓ in (6.70), however,
does not depend on x, as in the proof of Lemma 6.5: the ZRP dynamics acts on the local gradients
of curves, not on their absolute position. �

The method of proof of Lemma 6.9 can be used to obtain tighter estimates on the slope at the
poles. An example is given in the following corollary, used in Appendix B.3 to obtain exponential
tightness.

Corollary 6.11 (One and two block estimates for deviations from the average). For each δ, η > 0:

lim sup
n→∞

lim sup
N→∞

1

N
logPNr,β

(

for a.e. t ∈ [0, T0],Γt ∈ Er(d);

1

T0

∫ T0

0

1|ξ±,n
L1

−e−β |≥δdt > η

)

= −∞. (6.78)

and:

lim sup
n→∞

lim sup
ε→0

lim sup
N→∞

1

N
logPNr,β

(

for a.e. t ∈ [0, T0],Γt ∈ Er(d);

1

T0

∫ T0

0

1|ξ±,n
L1

−ξ±,εN
L1

|≥δdt > η

)

= −∞. (6.79)

Remark 6.12. Note that 1|ξ±,n
L1

−e−β |≥δ is simply a cylindrical function, which has average on(1)

under the invariant measure ν. Corollary 6.11 thus says no more than the usual replacement
lemmas. �

Proof. Equation (6.79) is a two block estimate which uses only the SSEP part of the dynamics.
The method of proof has already been explained in Lemma 6.5.
Consider instead (6.78). The apparent difference with Lemma 6.9 is that, e.g. for ξ+,nL1

, we need
to focus on a frame around the pole which, in addition, has at least n edges to the the right of the
pole. The fact that it is possible has actually already been proven.
Indeed, by (6.60), the event hk ≥

√

k/2 − 1 is typical under νf for any f with DN(f) ≤ C/N ,
C > 0. To ensure that there are at least n edges on either side of the pole with probability going
to 1 in the large n limit, it is enough to choose k such that (k/2)1/2− 1 ≥ n, i.e. any k ≥ 2(n+1)2

works. It is convenient to take k independent from n and have k go to infinity before n. The proof
of (6.78) is then reduced, as in Lemma 6.9, to an elementary (though more intricate) equilibrium
computation under the measure µℓ, defined in (6.73).

A Replacement lemma and projection of the dynamics

A.1 Replacement lemma

In this section, we prove the Replacement Lemma 3.8. Let us first introduce some notations. For
each ε > 0 and x ∈ [−1, 1]2, denote by B(x, εN) the subset of ΛN of points at distance less than
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εN to x in 1-norm. For γ ∈ XN
r and x ∈ V (γ), define

φ(γ, x) = cx(γ) = ξx+e−x (1− ξx)/2 + ξx(1− ξx+e−x )/2.

Recall from (3.3) that ξεNx is the quantity

ξεNx =
1

2εN + 1

∑

y∈V (γ)∩B(x,εN)

ξy,

and define, as in Lemma 3.8, the function φ̃ by:

φ̃(ρ) = ρ(1− ρ), ρ ∈ [0, 1].

Let G ∈ C(R+ × [−1, 1]2) be a bounded function. By Chebychev exponential inequality and
Lemma 6.3, Lemma 3.8 holds if, uniformly on t > 0 and for each a > 0:

lim sup
ε→0

lim sup
N→∞

(A.1)

sup
f≥0:νf (NEr)=1

{

Eνf

[

a

{

1

|γ|
∑

x∈V (γ)

G(t, x/N)

[

φ(γ, x)− φ̃(ξεNx )

]}2
]

−NDS
N(f)

}

= 0.

Recall that DS
N is the Dirichlet form of the contour dynamics without the pole terms.

Following [ELS90] and as γ ∈ XN
r implies |γ| ≥ Nr, it is sufficient to prove the following two

estimates.

Lemma A.1. (One and two block estimates)
Fix d > 0. Let ε > 0, k ∈ N∗, and let (Vj)1≤j≤J denote a partition of {−εN, ..., εN} in J intervals
of length k, except maybe the last one that is of size at most 2k, such that maxVj = minVj+1 − 1
for j ≤ J − 1. For γ ∈ XN

r , x ∈ V (γ) and 1 ≤ j ≤ J , let Vj(x) be the set of vertices in
B(x, εN) ∩ V (γ), whose positions relative to x correspond to elements of Vj. Define also:

A(φ, Vj(x)) :=
1

|Vj(x)|
∑

y∈Vj(x)
φ(γ, y), ξVj(x) :=

1

|Vj(x)|
∑

y∈Vj(x)
ξy.

Then (one block estimate):

lim sup
k→∞

lim sup
ε→0

lim sup
N→∞

sup
1≤j≤J

(A.2)

sup
f≥0:νf (NEr)=1

{

a

∫

dν(γ)f(γ)
1

|γ|
∑

x∈V (γ)

∣

∣

∣
A(φ, Vj(x))− φ̃(ξVj(x))

∣

∣

∣

2

−NDS
N(f)

}

= 0,

and (two block estimate):

lim sup
k→∞

lim sup
ε→0

lim sup
N→∞

sup
1≤b,c≤J

(A.3)

sup
f≥0:νf (NEr)=1

{

a

∫

dν(γ)f(γ)
1

|γ|
∑

x∈V (γ)

∣

∣

∣
A(φ, Vb(x))− A(φ, Vc(x))

∣

∣

∣

2

−NDS
N(f)

]

}

= 0.
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Proof. All distances are in 1-norm. In this proof as in the proof of Lemma 6.5, it would be sufficient
to look at densities supported in NEr and not NEr(d). We work with NEr(d) to provide a unified
picture.
Fix φ ∈ {φ1, φ2} and let R ∈ {0, 1} be its range, i.e. φ(τxγ) depends only on B(x,R) ∩ V (γ)
for γ ∈ XN

r , x ∈ V (γ). The proof of (A.2)-(A.3) consists in showing that the one and two block
estimates for the contour dynamics amount to the same estimates for the SSEP, which are well
known [ELS90]. We do it for (A.2), (A.3) is similar. The first step is to discard all points in the
sum in (A.2) that are close to the poles, so that the pole dynamics can be neglected.
Define thus, for u > 0, the set W u(γ), which contains all points of V (γ) at distance at least u
from each Li, i ∈ {1, ..., 4} (compare with V u(γ), defined in Section 3, which contains points at
1-distance at least u from the poles, and not just their left extremities). For γ ∈ XN

r , as |γ| ≥ Nr,

1

|γ|
∑

x∈V (γ)

∣

∣

∣
A(φ, Vj(x))− φ̃(ξVj(x))

∣

∣

∣

2

≤ 1

Nr

∑

x∈W εN+R+3(γ)

∣

∣

∣
A(φ, Vj(x))− φ̃(ξVj(x)x )

∣

∣

∣

2

+ Cr−1‖φ‖∞ε. (A.4)

The second term in the right-hand side of (A.4) vanishes for ε small, and we now estimate the
sum.
Let us split the summand in (A.2) between each quadrant. Inside each quadrant, the arguments
of Lemma 6.5 will apply to compare the dynamics to a SSEP.
Denote by Mi the set of all maximal self avoiding paths in the i direction (corresponding to
quadrant i), for i ∈ {SE, SW,NW,NE} = {1, 2, 3, 4} (S means south, E east, etc.), defined as
follows. For γ ∈ XN

r , let γi denote the part of γ that comprises all vertices between Li + 2e+Li
and

the vertex before Li+1, these two vertices included (with L4+1 := L1). Mi is then defined as the
set of all γi for γ ∈ XN

r .
With this construction, if in addition γ ∈ NEr ⊂ NEr(d), if γ \γi is fixed, then so are the poles and
the single-flip (i.e. SSEP) part of the contour dynamics on γi is just the corner-flip dynamics as
described in the proof of Lemma 6.5: jump rates are local due to being in NEr, and no single-flip
inside γi could shrink a pole of size 2 due to the way the extremities of γi are defined.
Define µi as the marginal of ν (defined in (2.3)) on Mi:

∀ρ ∈Mi, µi(ρ) =
e−β|ρ|

Zi
, Zi =

∑

ρ∈Mi

e−β|ρ|.

Let f be a ν-density supported on NEr(d). Define the corresponding µi-marginal fi:

∀ρ ∈Mi, fi(ρ) =
1

µi(ρ)

∑

γ∈XN
r

1γi=ρf(γ)ν(γ).

In terms of the Mi, the Dirichlet form DS
N(f) is bounded from below by convexity according to:

DS
N(f) ≥

1

2

4
∑

i=1

∑

ρ∈Mi

µi(ρ)
∑

x∈V (ρ)

cx(ρ)
[

f
1/2
i (ρx,x+e

−
x )− f 1/2

i (ρ)
]2

=:
4

∑

i=1

DS
i (fi), (A.5)
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where for i ∈ {1, ..., 4} and a µi-density h, the Dirichlet form DS
i (h) corresponding to the SSEP

dynamics in quadrant i is given by:

DS
i (h) =

∑

ρ∈Mi

µi(ρ)
∑

x∈V (ρ)

cx(ρ)
[

h1/2(ρx,x+e
−
x )− h1/2(ρ)

]2
.

Indeed, the jump rates in (A.5) are functions of ρ ∈Mi only, i ∈ {1, ..., 4}, since f is supported on
NEr(d). Let us now see how to use this decomposition of the curves into quadrants to estimate
the sum appearing in the right-hand side of (A.4). For short, define Φj for 1 ≤ j ≤ J by:

Φj(γ, x) =
∣

∣

∣
A(φ, Vj(x))− φ̃(ξVj(x))

∣

∣

∣

2

, γ ∈ XN
r , x ∈ V (γ). (A.6)

Note that Φj only depends on the edge configuration in a neighbourhood of a curve around x, not
on the absolute position of x as a point of ΛN . We thus only need to keep track of the label of x
in a well chosen parametrisation of γ. We have:

(E) :=
1

Nr

∑

γ∈XN
r ∩NEr(d)

ν(γ)f(γ)
∑

x∈W εN+R+3(γ)

Φj(γ, x)

≤ 1

Nr

4
∑

i=1

∑

ρ∈Mi

µi(ρ)fi(ρ)
∑

x∈W εN+R(ρ)

Φj(ρ, x),

where Φj(ρ, ·) is defined as in (A.6) with ρ ∈ Mi, 1 ≤ i ≤ 4 instead of a curve γ ∈ XN
r , which is

not ambiguous as it is a local function.
So far, we proved that the one block-estimate (A.2) holds as soon as, for each j ∈ {1, ..., J}:

sup
f≥0:νf (NEr)=1

{ 4
∑

i=1

[

a
∑

ρ∈Mi

µi(ρ)fi(ρ)
∑

x∈W εN+R(ρ)

Φj(ρ, x)−NDS
i (fi)

]

}

≤ 0. (A.7)

The estimate for each quadrant i is similar, so we only do it for i = 1. Further split paths in M1

according to their number of vertices. Let M1(n) be the subset of M1 of paths with n+1 vertices.
All such paths have the same µi-measure, thus the marginal of µi onM1(n) is the uniform measure
Un on paths with n+1 vertices or, equivalently, by the correspondence expounded in Section 6.2.2
(see Figure 4.9), of SSEP configurations with n sites. Define f1,n as the corresponding Un-marginal
of f1 on M1(n):

∀ρ ∈M1(n), f1,n(ρ) = Eµ1
[

f11M1(n)

]−1
f1(ρ)µ1(ρ)|M1(n)| provided Eµ1

[

f1M1(n)
]

> 0.
(A.8)

It is a density for Un, so that by convexity of the Dirichlet form we have:

4N
∑

n=2εN+2R

Eµ1
[

f11M1(n)

]

D1,n(f1,n) ≤ D1(f1),

where D1,n is the Dirichlet form associated with the corner-flip dynamics on M1(n). The lower
bound on n comes from the fact that, for any ρ ∈M1(n) with n < 2εN +2R, W εN+R(ρ) is empty.
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The upper bound comes from the finite length of a quadrant for a curve in ΛN = [−N,N ]2 ∩ Z2.
Again by convexity,

DS
N(f) ≥

4N
∑

n=2εN+2R

Eµ1
[

f11M1(n)

]

D1,n(f1,n). (A.9)

With this decomposition, the term between brackets in (A.7) is bounded from above, for each
i ∈ {1, ..., 4}, by:

1

Nr

4N
∑

n=2εN+2R

Eµi
[

fi1Mi(n)

] 1

|Mi(n)|
∑

ρ∈Mi(n)

fi,n(ρ)
n−εN−R
∑

x=εN+R+1

Φj(τxρ)

=
1

Nr

4N
∑

n=2εN+2R

Eµi
[

fi1Mi(n)

] 1

|Mi(n)|
∑

σ∈Ωn

gi,n(σ)
n−εN−R
∑

x=εN+R+1

Φj(τxσ). (A.10)

In the last line, Ωn is the set of SSEP configurations on n sites, and gi,n is defined for σ ∈ Ωn by
gi,n(σ) = gi,n(ρ(σ)), with ρ(σ) the unique path in Mi(n) corresponding to the configuration σ, as
pictured in Figure 4.9. In view of (A.7)-(A.9)-(A.10), to prove the one block estimate (A.2), it is
sufficient to prove that, uniformly on j ∈ {1, ..., J}:

lim sup
N→∞

sup
n∈{2εN+2R,...,4N}

sup
g≥0:EUn [g]=1

{

1

N
EUn

[

g

n−εN−R
∑

x=εN+R+1

Φj(τx·)
]

−NDS
n(g)

}

≤ 0. (A.11)

The notation DS
n , already used in Section 6, stands for the Dirichlet form associated with a SSEP

on n sites. We are left with a usual one block estimate for a SSEP of size n, proven e.g. in [ELS90].
There, the size n of the SSEP becomes irrelevant due to conditioning on a neighbourhood of size
k of x, hence the proof of (A.2). The two block estimate (A.3) is proven similarly.

A.2 Projection of the contour dynamics in the good state space

In this section, we prove Lemma 6.3, which states that the contour dynamics can be projected to
the effective state space NEr(d). We state and prove a more general result.
Let (Xt)t≥0 be a continuous time Markov chain on a finite state space E, reversible with respect
to a measure ν. If x0 ∈ E, let PXx0 ,EXx0 be the associated probability and expectation. The jump
rates of the chain are denoted c(x, y), (x, y) ∈ E2, with associated Dirichlet form D:

∀f : E→ R, D(f) =
1

2

∑

(x,y)∈E2

ν(x)c(x, y)
[

f(y)− f(x)
]2
. (A.12)

Lemma A.2. Let A ⊂ E and x0 ∈ A. Let also T0 > 0 and ψ : [0, T0]×E → R be bounded. Then:

EXx0

[

1{∀t∈[0,T0],Xt∈A} exp

[
∫ T0

0

ψ(t,Xt)dt

]]

≤ 1

ν(x0)
exp

[
∫ T

0

dt sup
f≥0:ν(f1A)=1

{

νf (ψ(t, ·))−D(f 1/2)
}

]

.

Proof. Let (Yt)t≥0 be the Markov chain X restricted to live inside A for all time. Write PYx ,E
Y
x , x ∈

A the associated probability and expectation. On {∀t ∈ [0, T0], Xt ∈ A}, the two measures PXx0
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and PYx0 are equivalent, and the Radon-Nikodym derivative between PYx0 and PXx0 up to time T0 on
a trajectory (Xt)t≤T0 taking values in A reads:

dPXx0
dPYx0

((Xt)t≤T0) = exp

[
∫ T0

0

[

∑

y∈A
c(Xt, y)−

∑

y∈E
c(Xt, y)

]

dt−
∑

t≤T0
log

(

c(Xt−, Xt)

c(Xt−, Xt)

)]

= exp

[

−
∫ T0

0

∑

y/∈A
c(Xt, y)dt

]

.

Letting QA(x) =
∑

y/∈A c(x, y) denote the flux coming out of A from x, we find:

EXx0

[

1{∀t∈[0,T0],Xt∈A} exp

[
∫ T0

0

ψ(t,Xt)dt

]]

= EYx0

[

exp

[
∫ T0

0

{

ψ(t, Yt)−QA(Yt)
}

dt

]]

. (A.13)

By reversibility of X with respect to ν, the chain Y is still reversible with respect to ν(· ∩ A):
∀x, y ∈ A, c(x, y)ν(x) = c(y, x)ν(y).

Let us thus apply Feynman-Kac formula after changing the initial condition to ν(· ∩ A):

EYx0

[

exp

[
∫ T0

0

{

ψ(t, Yt)−QA(Yt)
}

dt

]]

≤ 1

ν(x0)
EYν(·∩A)

[

exp

[
∫ T0

0

{

ψ(t, Yt)−QA(Yt)
}

dt

]]

.

Consequently:

logEYx0

[

exp

[
∫ T0

0

{

φ(t, Yt)−QA(Yt)
}

dt

]]

≤ − log ν(x0) + log

∫ T0

0

sup
f≥0:ν(f1A)=1

{

ν
(

f
[

ψ(t, ·)−QA

]

)

−DA(f
1/2)

}

. (A.14)

Above, DA is the Dirichlet form of the dynamics restricted to A (compare with (A.12)):

∀g : E → R, DA(g) =
1

2

∑

(x,y)∈A2

ν(x)c(x, y)
[

g(x)− g(y)
]2
.

This is nearly the statement of Lemma 6.3, except that there the upper-bound involves the original
dynamics (in the present case, X) rather than the dynamics restricted to A. To obtain the desired
bound, let us write out D(f 1/2), defined in (A.12), for a ν-density f with ν(f1A) = 1:

D(f 1/2) =
1

2

∑

(x,y)∈A2

ν(x)c(x, y)
[

f 1/2(y)− f 1/2(x)
]2

(A.15)

+
1

2

∑

x∈A,y/∈A
ν(x)c(x, y)f(x) +

1

2

∑

x/∈A,y∈A
ν(x)c(x, y)f(y).

The first line is precisely DA(f
1/2). By reversibility, each term on the second line of (A.15) is

identical and equal to ν
(

fQA/2
)

:

ν
(

fQA

)

=
∑

x∈A,y/∈A
ν(x)c(x, y)f(x) =

∑

x∈A,y/∈A
ν(y)c(y, x)f(x) =

∑

x/∈A,y∈A
ν(x)c(x, y)f(y).
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As a result, (A.15) becomes:
D(f 1/2) = DA(f

1/2) + ν
(

fQA

)

.

Inject this equality in the bound (A.14) to find:

logEYx0

[

exp

[
∫ T0

0

{

φ(t, Yt)−QA(Yt)
}

dt

]]

≤ − log ν(x0) + log

∫ T0

0

sup
f≥0:ν(f1A)=1

{

ν
(

fψ(t, ·)
)

−D(f 1/2)
}

,

which is Lemma A.2 for ψ ← Nψ, A = NEr(d) and with a dynamics accelerated by N2.

A.3 Equilibrium estimates at the pole

In this section, we investigate the equilibrium measure µℓ (see (6.73)) of the zero-range process at
the poles. We prove:

Proposition A.3. The surface tension of the contour model around the pole is given by

tβ(P ) = − lim
ℓ→∞

1

βℓ
logZℓ = 1 +

1

β
log

(

1− e−β
)

. (A.16)

Moreover, the sequence (µℓ)ℓ satisfies a large deviation principle for the top height of a path (equiv-
alently: the number of particles or of antiparticles) with good, convex rate function given by:

∀u ≥ 0, C(u) = 2βu− 2u log
(

1 + 1/(2u)
)

− log(1 + 2u)− log
(

1− e−β
)

. (A.17)

In particular, recalling that ℓmin(k) := (1/2)k1/2/ log k:

lim
k→∞

sup
ℓmin(k)≤ℓ≤k

Eµℓ [φ] = 0, φ = 1p=2 − e−β. (A.18)

Proof. We speak alternately of paths or of particle/antiparticle configurations in the proof depend-
ing on what is easier to use, the height of a path corresponding to

∑

x≤L1
ηx = −

∑

x>L1
ηx.

Fix ℓmin(k) ≤ ℓ ≤ k throughout. Let us first study the probability to observe a given height under
µℓ. There are exactly

(

2q+ℓ−2
2q

)

configurations with height q ∈ N. To see it, notice that this is the
number of north-east path of length 2q + ℓ − 2 with 2q vertical edges. To each such path ρ, one
can associate a unique up-down path of length 2q + ℓ as follows (see also Figure 13)

• Travelling on the path ρ from its origin, stop at the first point X at height q and cut the
path there, in two parts ρ≤X and ρ>X .

• Add two horizontal edges to ρ≤X immediately after X, call ρX+2 the resulting path.

• Change ρ>X into its symmetrical ρ̃>X with respect to the horizontal, i.e. change every
upwards edge into a downwards one, leaving the horizontal edges unchanged. Stitch the last
edge of ρX+2 to the first of ρ̃>X to obtain an up-down path of height q and length 2q + ℓ.
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One easily checks that this mapping is a bijection, whence:

∀q ≤ hmax(k) = k(1 + log k), µℓ

(

∑

j≤L1

ηj = q
)

=

(

2q + ℓ− 2

2q

)

e−2βq−βℓ/Zℓ. (A.19)

Let us investigate the dependence of this quantity in q < hmax(k):

µℓ

(

∑

j≤L1

ηj = q + 1
)

/µℓ

(

∑

j≤L1

ηj = q
)

= e−2β (2q + ℓ)(2q + ℓ− 1)

(2q + 2)(2q + 1)
. (A.20)

This quantity increases until some value qc of q, given by

qc =
1

2
(eβ − 1)−1ℓ+ o(ℓ) =: ucℓ+ o(ℓ). (A.21)

In particular, due to the logarithm in (A.16), only the maximum value of
(

2q+ℓ−2
2q

)

e−2βq−βℓ will

matter to compute the surface tension tβ(P ). One thus needs only consider heights of order ℓ in
the large ℓ limit. For fixed u > 0, elementary computations give:

1

ℓ
log

[(

2⌊ℓu⌋+ ℓ− 2

2⌊ℓu⌋

)

e−2β⌊ℓu⌋−βℓ
]

= −β−2βu+2u log
(

1+1/(2u)
)

+log(1+2u)+oℓ(1). (A.22)

Define the function D(·) on R∗
+ by;

∀u ≥ 0, D(u) = β + 2βu− 2u log
(

1 + 1/(2u)
)

− log(1 + 2u) ≥ 0. (A.23)

From (A.22) and with uc =
1
2
(eβ − 1)−1, we obtain for the surface tension tβ(P ):

t(P ) = lim
ℓ→∞

1

βℓ
logZℓ =

D(uc)

β
= 1 +

1

β
log

(

1− e−β
)

. (A.24)

We now turn to the large deviation principle for the height of a path. From (A.22) and (A.24), we
obtain

1

ℓ
log µℓ

(

∑

j≤L1

ηj = ⌊ℓu⌋
)

= −(D(u)−D(uc)) + oℓ(1), (A.25)

Define the rate function C(·) on R∗
+ by

∀u ≥ 0, C(u) = D(u)−D(uc) ≥ 0. (A.26)

The function C is C∞ on R∗
+, and satisfies:

C(uc) = 0 = C ′(uc), C ′′(u) =
2

u+ 2u2
> 0 for each u > 0,

so that C is strictly convex, and a good rate function. The large deviation principle follows from
(A.25).
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Figure 13 – Bijection argument to count the number of paths with length ℓ and height q (top figure), and
with additionnally p = 2 (bottom figure). Dashed lines delimit portions of the paths, the red dot is the
place at which the initial north-east path is split, and the red, thick lines on the right-hand side are the
edges added to the initial path to obtain an up-down configuration with height q and length ℓ+ 2q.

It remains to prove (A.18). This follows from the large deviations principle (A.25) and the
following observation. Constructing a path with p = 2 and height q ∈ N∗ is done by building a
north-east path of length 2q − 1 + ℓ − 2 with 2q − 1 vertical edges, then cutting it as described
previously and taking the symmetric part of the path after the first point X at height q. The only
difference is that one now sticks not just two horizontal edges after X, but two horizontal edges
followed by a vertical one hanging from below, before stitching back the two parts of the path (see
Figure 13). There are thus

(

2q+ℓ−3
2q−1

)

configurations with p = 2 and height q ∈ N∗, and:

µℓ

(

p = 2,
∑

j≤L1

ηj = q
)

= Z−1
ℓ e−βℓ−2βq

(

2q + ℓ− 3

2q − 1

)

=
2q

2q + ℓ− 2
µℓ

(

∑

j≤L1

ηj = q
)

. (A.27)

From (A.27), using (ℓ + 1)ρℓ = 2
∑

j≤L1
ηj, the expectation in (A.18) for each ℓ ∈ {ℓmin(k), ..., k}

reads, with ℓmin(k) = (1/2)k1/2/ log k:

Eµℓ [φ] = −e−β +
∑

q≥1

µℓ

(

p = 2,
∑

j≤L1

ηj = q
)

(A.27)
= Eµℓ

[

2
∑

j≤L1
ηj

2
∑

j≤L1
ηj + ℓ− 2

− e−β
]

. (A.28)

Let ζ > 0. The integrand in (A.28) is bounded and, for all ℓ large enough,

1

ℓ
log µℓ

(1

ℓ

∑

j≤L1

ηj /∈ [uc − ζ, uc + ζ]
)

≤ −C(uc + ζ)/2 < 0. (A.29)
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Figure 14 – Example of a droplet in Er. Though microscopic curves are Jordan curves, their limits in
Hausdorff distance may have self-intersections. Taking curves in Er ensures that these self-intersections
only occur at the pole, this is condition 5 in Definition B.1 below.

As a result, since 2uc/(2uc + 1) = e−β, the expectation in (A.28) is recast as follows:

Eµℓ [φ] = Eµℓ

[(

2ℓ−1
∑

j≤L1
ηj

2ℓ−1
∑

j≤L1
ηj + 1

− e−β
)

1uc−ζ≤ℓ−1
∑

j≤L1
ηj≤uc+ζ

]

+O(ℓ−1)

= O(ζ) +O(ℓ−1).

The O(ζ) is independent of ℓ, which proves (A.18).

B Topology results

At the microscopic level, curves are defined in terms of their poles and four monotonous paths,
one on each quadrant. The position of the poles in particular plays a big role in the dynamics and
appears in the large deviations functional, see Section 4. At the macroscopic level however, the
decomposition in poles and quadrants is not very convenient to work with, see Figure 14, as we need
to deal with droplets with complicated boundaries. In this section, we define a suitable effective
state space and a good topology on trajectories, at the cost of model-specific considerations.
Exponential tightness of the laws of the contour dynamics is also shown in Appendix B.3.

B.1 Definition of Er and topological properties

In this section, we define the effective state space Er, prove that it is closed in Hausdorff topology
and establish some topological facts used in the body of the article. Recall that X is the set
of non-empty compact and connected subsets of [−1, 1]2. This set is compact for the topology
associated with the Hausdorff distance dH.

Definition B.1. For r > 0, define the space Er ⊂ X as follows. The first three points mirror the
conditions placed on elements of XN

r .
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1. (Four poles). If R is the rectangle with least area containing Γ, then R ∩ ∂Γ is composed of
at most four segments [Lk, Rk], k ∈ {1, ..., 4}, one on each side of R. These segments are
not necessarily disjoint and possibly reduced to a point. Fix [L1, R1] to be the segment with
highest ordinate and call it the north pole. The others are respectively the east, south and
west poles, where by convention ∂Γ is travelled on clockwise. Define then the first quadrant
as the quarter-space delimited by the vertical axis passing through L1(Γ), and the horizontal
axis through R2(Γ). The other quadrants are defined similarly; note that they can intersect
(see Figure 4.1).

2. (Monotonicity condition). The boundary of Γ between Lk and Rk+1 can be described as the
graph of a 1-Lipschitz function in the reference frame Rk = (O, eπ/4−kπ/2, eπ/4−(k−1)π/2) (if
k = 4, Rk+1 := R1).

3. (The droplet is not reduced to a point). One has ymax − ymin ≥ r, xmax − xmin ≥ r, where
these quantities respectively denote the highest/lowest ordinate/abscissa of points in Γ.

The last two conditions respectively ensure room in each quadrant by removing droplets that have
two different poles that coalesce, and exclude droplets with self-intersections in their bulk (recall
Figure 4.4).

4. (Distinguishable poles). For each k ∈ {1, ..., 4}:

|(Lk −Rk+1) · e1| ≥ r, |(Lk −Rk+1) · e2| ≥ r. (B.1)

5. (Simple boundary away from the poles). Any two points of the boundary that are not in a
pole and belong to opposite quadrants (i.e. quadrants 1 and 3 or 2 and 4) are at 1-distance
at least r.

Remark B.2. • Note that condition 4 is redundant with condition 3. We keep both, however,
as they have very different interpretations from the point of view of the dynamics.

• One can convince oneself by geometrical considerations that condition 5 ensures droplets
have volume at least (r

√
2)2/4 = r2/2. In fact, if Γ ∈ Er and x ∈ ∂Γ is e.g. in the first

quadrant and satisfies x · e1 ≥ L1(Γ) · e1 + r and x · e2 ≥ R2(Γ1) · e2 + r (a neighbourhood
around x intersects neither quadrant 2 nor 4), then (see Figure 15):

|B1(x, r) ∩ Γ| ≥ r2

2
, B1(x, r) = {y ∈ R2 : ‖y − x‖1 < r}. (B.2)

�

Lemma B.3. Conditions 1 and 2 on the one hand, and conditions 1 and 2 with any condition
from 3 to 5 in Definition B.1 on the other hand define a closed subset of X. As a result, the set
Er is closed for the Hausdorff topology, hence compact.

Proof. Let Γn ∈ Er, n ∈ N converge in Hausdorff distance to Γ ∈ X. The first three items boil
down to the fact that ymax, xmax, ymin and xmin are continuous in Hausdorff distance; as well as the
observation that a uniform limit of 1-Lipschitz functions is 1-Lipschitz.
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Figure 15 – For a point x of the boundary of a droplet Γ ∈ Er that is at vertical and horizontal distance
at least r from the pole, at least one fourth of the ball B1(x, r) is contained in Γ (shaded area).

4. (Distinguishable poles). Let us prove the result for the first quadrant, the others are similar.
By continuity of ymax, all limit points of (L1(Γ

n)) are inside P1(Γ), i.e. to the right of L1(Γ).
By continuity of xmax, (R2(Γ

n) · e1) = (xmax(Γ
n)) converges to R2(Γ) · e1. The function

Γ′ 7→
[

R2(Γ
′)−L1(Γ

′)
]

· e1 is thus upper semi-continuous, i.e. ”quadrants grow in the limit”,
which is the desired result. The same is true of Γ′ 7→ [L1(Γ

′)−R2(Γ
′)] · e2.

5. (Simple boundary away from the poles). For definiteness, take a point x of ∂Γ in the first
quadrant and assume x /∈ P1 ∪ P2, i.e. x · e2 < ymax(Γ) and x · e1 < xmax(Γ). Take also y in
C3(Γ) ∩ ∂Γ \ (P3 ∪ P4). For n large enough, x, y cannot be in a pole of Γn by continuity of
ymax, ..., xmin.
By upper semi-continuity of the size of quadrants for the inclusion (see item 4), d(x, C1(Γ

n)\
P n) and d(y, C3(P

n) \ P n) vanish for large n, thus:

d(x, y) ≥ d(C1(Γ
n) \ P n, C3(Γ

n) \ P n)− d(x, C1(Γ
n) \ P n)− d(y, C3(Γ

n) \ P n) ≥ r + on(1).

Recall from Definition 2.1 that for d > 0, Er(d) ⊂ Er is composed of droplets at 1-distance
at least d from the domain boundaries ∂([−1, 1]2). By continuity of ymax, ..., xmin, this set is also
compact in Hausdorff topology.

Elements of Er have very constrained boundaries. A difference in Hausdorff distance between
two sets translates into a difference in volume or in the position of the poles. The following two
lemmas give explicit control of the Hausdorff distance that are useful in Section B.2.

Definition B.4. For k ∈ {1, ..., 4}, define zk, wk : Er → R as the coordinates of the left-most point
Lk of pole k of a droplet:

z1 = ymax, z2 = xmax, z3 = ymin, z4 = xmin
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and the wk are the other four coordinates. A droplet Γ ∈ Er can be described in terms of the
position (zk, wk)k∈{1,...,4} of its four poles, and the largest droplet Γ′ ⊂ Γ with simple boundary such
that Γ = Γ′ up to a set of volume 0. In other words, Γ′ is the closure of the interior of Γ. Define:

Fr = {Γ′ : Γ ∈ Er}.

One can check that Fr satisfies items 1, 2, 3 and 5 in Definition B.1.

Lemma B.5. Let Γ1,Γ2 ∈ Er. Let k ∈ {1, ..., 4}. Then:

dH(Γ1,Γ2) ≥ |zk(Γ1)− zk(Γ2)|.

Moreover, if α > 0 and q > 1/α,

{

|wk(Γ1)− wk(Γ2)| ≥ α

∀i ∈ {1, 2}, |zk(Γi)− zk(Γ′
i)| ≥ 1/q

⇒ dH(Γ1,Γ2) ≥ 1/q. (B.3)

Proof. Fix k = 1 for definiteness. Only (B.3) requires a proof. Assume its left-hand side holds and,
without loss of generality, take k = 1 and assume that ymax(Γ1) ≥ ymax(Γ2). Then both droplets
have a line of length at least 1/q below their north pole. These lines have abscissas differing at
least by α > 1/q, which means a fortiori that they are at 1-distance at least 1/q. Consequently, if

ε ∈ (0, 1/q), dist1(P1(Γ1), (Γ2)
(1/q−ε)) > 0, where Γ

(ε)
i is the ε-fattening of Γi for i ∈ {1, 2}:

Γ
(ε)
i =

⋃

x∈Γi

B1(x, ε), B1(x, ε) = {y ∈ R2 : ‖y − x‖1 < ε} for x ∈ R2.

This implies dH(Γ1,Γ2) ≥ 1/q − ε and the result.

The next lemma gives some sort of a converse statement.

Lemma B.6. Let Γ1,Γ2 ∈ Er and ε ∈ (0, r). Then:

dH(Γ1,Γ2) ≥ ε ⇒ dL
1

(Γ1,Γ2) ≥ ε2/8 or

max
1≤k,ℓ≤4

{

‖Lk(Γ1)− Lk(Γ2)‖1, ‖Rℓ(Γ1)−Rℓ(Γ2)‖1
}

≥ ε/2.

Proof. Without loss of generality, assume that a := dH(Γ1,Γ2) = supx∈Γ1
dist1(x,Γ2), and let

x ∈ ∂Γ1 realise that supremum: x is at least as far away from Γ2 in 1-distance as any other point
of Γ1, and no point of Γ2 is at 1-distance strictly less than a from x.
There are two cases to consider: either x is close to a pole and the ball B1(x, a) ∩ Γ1 has a small
volume, or x is sufficiently far from the poles to ensure that B1(x, a)∩Γ1 is of order a

2. The latter
will lead to a difference in volume between Γ1 and Γ2, while the former implies that poles cannot
be too close. It is convenient to slightly reformulate this dichotomy.

• Suppose Γ1 has a non-simple boundary, i.e. Γ1 6= Γ′
1 with Γ′

1 as in Definition B.4. Suppose
further that x /∈ Γ′

1. Then, by definition of Er, Γ1 has at least one pole, say pole k ∈ {1, ..., 4},
that is point-like. By definition of x, x = Lk(Γ1) (= Rk(Γ1)). In particular, Lk(Γ2) is a
distance at least a from x:

‖Lk(Γ1)− Lk(Γ2)‖1 ≥ a.
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Figure 16 – An example where [x−L1(Γ1)] ·e1 ≤ a/2∧r with a/2 ≤ r. The shaded area delimited by light
dashed lines is the left half of B1(x, a). The darker dashed lines mark the left half of B1(x, a/2). ∂Γ1 is in
solid black lines, ∂Γ2 in solid light lines. Left figure: L2(Γ1) is left of B1(x, a), hence [L1(Γ1)−L1(Γ2)]·e1 ≥
a/2. Right figure: L2(Γ1) is below B1(x, a), hence ‖L1(Γ1)− L1(Γ2)‖1 ≥ ‖Q1 − L1(Γ2)‖1 ≥ a/2.

• Assume now that Γ1 = Γ′
1, or that Γ1 6= Γ′

1 and x ∈ Γ′
1. Without loss of generality, take x

in the first quadrant of Γ1. By definition of x and the monotonicity condition on elements
of Er, any point of Γ2 at 1-distance a from x must be in quadrant 1 of Γ2 (including poles 1
and 2).
Suppose first that [x − L1(Γ1)] · e1 > a/2 ∧ r and [x − L2(Γ1)] · e2 > a/2 ∧ r, i.e. the ball
B1(x, a/2∧ r)∩ ∂Γ1 only contains points to the right of L1(Γ1) and above L2(Γ1). Then, by
Remark (B.2),

|B1(x, a/2 ∧ r) ∩ Γ1| ≥
1

2
(a/2 ∧ r)2 ⇒ |B1(x, a) ∩ Γ1| ≥

1

2
(a/2 ∧ r)2.

Suppose instead that [x − L1(Γ1)] · e1 ≤ a/2 ∧ r: x is close to the left extremity of the first
quadrant. Let us prove that, necessarily, L1(Γ1) and L1(Γ2) are then at 1-distance at least
a/2 ∧ r.
Define Q1 as the highest point of ∂Γ

′
1 (defined in Definition B.4) with abscissa L1(Γ1) ·e1 and

intersecting the boundary of B1(x, a/2), see Figure 16. As Γ2∩B̊1(x, a) = ∅ by definition of x,
L1(Γ2) must be either to the left of B1(x, a), or below it. If it is to the left, then the abscissas
of L1(Γ1) and of L2(Γ1) must differ by at least a/2 ∧ r, i.e.: [L1(Γ1)− L2(Γ1)] · e1 ≥ a/2 ∧ r.
If it is below B1(x, a), then ‖Q1 − L1(Γ2)‖1 ≥ a/2 ∧ r, which by definition of Q1 implies
‖L1(Γ1)− L1(Γ2)‖1 ≥ a/2 ∧ r. Both cases are illustrated on Figure 16; they both yield:

‖L1(Γ1)− L1(Γ2)‖1 ≥ a/2 ∧ r.

Condition [x−L2(Γ1)] ·e2 ≤ a/2∧r is treated similarly, this time with R2(Γ1), R2(Γ2), thus:

max
{

‖L1(Γ1)− L1(Γ2)‖1, ‖R2(Γ1)−R2(Γ2)‖1
}

≥ a/2 ∧ r.
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B.2 The set E([0, T0], Er(d))
For T0 > 0, the set E([0, T0], Er(d)) was defined in Section 2.3 as the completion ofDH([0, T0], Er(d))
for the distance dE (see (B.4)), where DH([0, T0], Er(d)) is the set of Er(d)-valued trajectories that
are càdlàg in Hausdorff distance dH. The distance dE was defined as:

dE = dL1
S +

∫ T0

0

dHdt, (B.4)

with dL
1

S the Skorokhod distance associated with convergence in the L1([−1, 1]2) topology. This
topology is metricised by the distance dL

1
, defined on the set X of non-empty compact subsets of

[−1, 1]2 by:

∀Γ,Γ′ ∈ X, dL
1

(Γ,Γ′) =

∫

[−1,1]2
|1Γ − 1Γ′ |dx. (B.5)

For properties of the Skorokhod topology, we refer the reader to [EK09].
In this section, we study

(

E([0, T0], Er(d)), dE
)

for d ≥ 0. The case d = 0 corresponds to
E([0, T0], Er). We prove separability, completeness and characterise its relatively compact sub-
sets. The starting point is the following explicit characterisation of E([0, T0], Er(d)). Recall from
Definition B.4 that Fr ⊂ X is the set of droplets with simple boundary, that can be obtained by
removing all portions of volume 0 from a droplet in Er. Then:

E([0, T0], Er(d)) =
{

Γ ∈ DL1([0, T0],Fr) : for a.e. t ∈ [0, T0],Γt ∈ Er(d)
}

, (B.6)

where Er(d) ⊂ Er is the set of droplets at 1-distance at least d from the domain boundaries
∂([−1, 1]2).

B.2.1 Completeness and separability of E([0, T0], Er(d))
In this section, we prove that E([0, T0], Er(d)) as defined in (B.6) is separable, and that it is indeed
the completion, for the distance dE, of the set DH([0, T0], Er(d)) of Er(d)-valued Hausdorff-càdlàg
trajectories. Let us first prove that

(

E([0, T0], Er(d)), dE
)

is complete.

Lemma B.7. The space
(

E([0, T0], Er(d)), dE
)

is complete.

Proof. Consider a Cauchy sequence Γn ∈ E([0, T0], Er(d)), n ∈ N for dE. It is a Cauchy sequence
for dL

1

S in DL1([0, T0],Fr). The set Fr is closed, in L1 topology, in the set of non-empty droplets
with measure-theoretic perimeter bounded by 8. This set is compact, assimilating droplets to BV
functions with bounded measure-theoretic perimeter, see Theorem 5.5 in [EG15]. There is thus a
trajectory Γ0 in DL1([0, T0],Fr) with dL1

S distance to Γn vanishing with n. More precisely, consider
the sequence (Γ′

n) constructed from (Γn) as in Definition B.4. As Γn(t) and Γ′
n(t) are equal almost

everywhere in R2 for each t ∈ [0, T0] and each n, (Γ′
n) converges in DL1([0, T0],Fr) to a limit

Γ′
∞ = Γ0.

Γ′
∞ corresponds to the limiting trajectory of the ”bulk” of the Γn, i.e. without the poles. We

still need to figure out what the limiting poles should be, which we do using the
∫ T0
0
dHdt part of

dE.
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Recall the definitions of zk, wk from Definition B.4. For each k ∈ {1, ..., 4}, (zk(Γn)) is a Cauchy
sequence in L1([0, T0], [−1+d, 1−d]). It thus converges to some limit z∞k ∈ L1([0, T0], [−1+d, 1−d]).
Moreover, for each n, zk(Γn(t)) ≥ zk(Γ

′
n(t)) almost surely and, by convergence in dL

1

S of Γ′
n to Γ′

∞,

lim inf
n→∞

z1,2(Γ
′
n) ≥ z1,2(Γ

′
∞), lim sup

n→∞
z3,4(Γ

′
n) ≤ z3,4(Γ

′
∞) almost surely.

As a result, z∞1,2(t) ≥ z1,2(Γ
′
∞(t)) and z∞3,4(t) ≤ z3,4(Γ

′
∞(t)) for almost every t ∈ [0, T0], as desired

since the zk are supposed to play the role of the extremal coordinates of the ”real” limiting tra-
jectory of the sequence (Γn)n.

It remains to control the wk, defined in Definition B.4. Indeed, at present, if on some sub-
set U ⊂ [0, T0] of strictly positive measure Γ′

∞ has a flat pole k for some k ∈ {1, ..., 4}, and if
zk > zk(Γ

′
∞) for almost every time in U , then we need to determine where on this flat zone we

should add the line [zk(Γ
′
∞), zk] to construct a limiting trajectory Γ∞ for dE.

For k ∈ {1, ...4}, define Ik ⊂ [0, T0] as the set of times t for which pole k of Γ′
∞(t) is extended,

i.e. |Pk(Γ′
∞(t))| > 0. If t /∈ Ik, then there is exactly one point at which the change of monotonicity

at pole k in the boundary of Γ′
∞(t) occurs. This means that wk(Γn(t)) converges to wk(Γ

′
∞(t)) for

almost every t /∈ Ik.
To deal with what happens inside Ik, take k = 1 for simplicity, so that z1 = ymax. Split I1 into
J0 ∪ J>, where J0 is the largest subset of I1 such that z∞1 = ymax(Γ

′
∞) a.s.. J> is the largest subset

of I1 on which z∞1 > ymax(Γ
′
∞) a.s.. For t ∈ J0, we need not ask where the north pole should be

located, since it coincides with the north pole of Γ′
∞(t) almost surely. The set J> instead requires

more work.
Fix ε > 0. For all n, p large enough in terms of ε, the Cauchy condition implies:

∫ T0

0

1J> dH(Γn(t),Γp(t))dt ≤ ε. (B.7)

As 1z∞1 ≥ymax(Γ′
∞)+1/q converges pointwise to 1z∞1 >ymax(Γ′

∞) for large q, the integral in (B.7) can be
made to bear only on times where z∞1 is at least 1/q above z1(Γ

′
∞) almost surely. Call Jq> ⊂ J>

the largest subset for which this holds. By the monotone convergence theorem, for each δ > 0 and
q larger than some q(δ):

∫ T0

0

1Jq
>
dH(Γn(t),Γp(t))dt ≤ ε and |Jq>| − |J>| ≤ δ. (B.8)

Fix δ > 0 and such a q. By definition of z∞1 , for all n larger than some n(q), ymax(Γn(t)) ≥
ymax(Γ

′
∞(t))+1/(2q) for almost every t ∈ Jq>. Impose also that ymax(Γn(t)) > ymax(Γ

′
n(t))+1/(2q)

a.e. in Jq>.
Invoking Lemma B.5 yields that, for each α > 0, up to increasing q and n(q), for each n, p ≥ n(q),

∫ T0

0

1Jq
>
1|w1(Γn(t))−w1(Γp(t))|≥α ≤ q

∫ T0

0

dH(Γn(t),Γp(t))dt ≤ 2qε.

Summarising, for each δ > 0, choosing α such that 2αT0 ≤ δ/3, q > α−1 such that |J>|−|Jq>| ≤ δ/3
and ε to have 4εq ≤ δ/3; one has for all n, p large enough:

∫ T0

0

1J> |w1(Γn(t))− w1(Γp(t))|dt ≤ δ.
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Define w̃n to be w1(Γn) on J>, 0 elsewhere. Then (w̃n) is a Cauchy sequence in L1([0, T0], [−1 +
d, 1− d]), hence converges to some w̃∞ and we can define:

for almost every t ∈ [0, T0], w∞
1 (t) =

{

w̃∞(t) if t ∈ J>
L1(Γ

′
∞(t)) · e1 otherwise.

(B.9)

Functions w∞
2 , w

∞
3 , w

∞
4 are defined similarly for the other poles. Finally, let Γ∞ be such that

(Γ∞)′ = Γ∞ and, for almost every t ∈ [0, T0]:

Γ∞(t) = Γ′
∞(t) ∪

⋃

i∈{1,3}

{

wi(t)e1 + ue2 : u ∈ [zi(Γ
′
∞(t)), zi(t)]

}

∪
⋃

i∈{2,4}

{

ue1 + wi(t)e2 : u ∈ [zi(Γ
′
∞(t)), zi(t)]

}

. (B.10)

By construction, Γ∞ belongs to E([0, T0], Er(d)), and limn→∞ dE(Γn,Γ∞) = 0 by Lemma B.6, which
concludes the proof.

Characterisation (B.6) of E([0, T0], Er(d)) also yields thatDH([0, T0], Er(d)), the set of Hausdorff-
càdlàg Er(d)-valued droplet trajectories on [0, T0], is dense in E([0, T0], Er(d)) for dE. Indeed, con-
vergence of the volume is clear and for each Γ ∈ E([0, T0], Er(d)), one can find real càdlàg functions,
corresponding to the 8 coordinates of the poles, that converge in L1([0, T0], [−1 + d, 1− d]) to the
wk(Γ), zk(Γ), k ∈ {1, ..., 4}. E([0, T0], Er(d)) is thus indeed the completion of DH([0, T0], Er(d)) for
dE. As this set is separable for the Skorokhod topology associated with dH, we obtain:

Lemma B.8. The space
(

E([0, T0], Er(d)), dE
)

is separable.

B.2.2 Compact sets in E([0, T0], Er(d)) and exponential tightness

In the following subsection, we prove exponential tightness, for each bias H ∈ C, of the laws
(QN

r,β,H)N restricted to trajectories in E([0, T0], Er(d)). To do so, we need a sufficient condition for
a subset of E([0, T0], Er(d)) to be compact. This is the object of this section.

Proposition B.9 (Compact sets for dE). The following equivalence holds:

(i) K ⊂ E([0, T0], Er(d)) is relatively compact for the topology induced by dE.

(ii) If ωL
1

· (Γ) is the Skorokhod modulus of continuity associated with volume convergence for a
trajectory Γ ∈ E([0, T0], Er(d)) (see [EK09]), then:

lim sup
η→0

sup
h≤η

sup
Γ∈K

{

ωL
1

h (Γ) +

∫ T0−h

0

dH(Γt,Γt+h)dt
}

= 0. (B.11)

Proof. The proof uses notations and results from the proof of Lemma B.7. We only give details
for (ii)⇒ (i) as we do not need the converse implication, which follows from total boundedness of
relatively compact sets and the fact that (B.11) is true for singletons thanks to Lemma B.6.

(ii)⇒ (i). According to the characterisation of relatively compact sets in the Skorokhod topology
in [EK09], K is relatively compact in dL

1

S . Take {Γn, n ∈ N} ⊂ K and let Γ′
∞ be a limit point
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in dL
1

S of a subsequence that we still write (Γn)n. As in the proof of Lemma B.7, we can take
Γ′
∞ ∈ DL1([0, T0],Fr) such that ∂Γ′

t is a simple curve at all times t ∈ [0, T0]. Recall that Fr ⊂ Er
is the set of droplets for which items 1, 2, 3 and 5 in Definition B.1 hold.

Let us now prove that some subsequence of the (Γn) has converging znk , w
n
k , writing z

n
k = zk(Γ

n)
and similarly for wnk . zk, wk are defined in Definition B.4 and correspond to the coordinates of the
left extremity Lk of pole k ∈ {1, ..., 4}. The proof is very similar to that of the completeness of
E([0, T0], Er(d)) for dE in Lemma B.7. There, we had for each ε > 0 and some N(ε) ∈ N:

sup
n≥N(ε)

sup
p∈N

∫ T0

0

dH(Γ
n(t),Γn+p(t))dt ≤ ε.

Compare with:

sup
h≤η

sup
n∈N

∫ T0−h

0

dH(Γ
n(t),Γn(t+ h))dt ≤ ε. (B.12)

Here as well, Lemma B.5 yields that (B.12) holds with (znk ), (w
n
k ) replacing dH on [0, T0 − h]. By

the Kolmogorov-Riesz theorem (Theorem 4.26 in [Bre10]), this implies the relative compactness of
the sequences (znk ), (w

n
k ) in L

1([0, T0], [−1 + d, 1− d]). A trajectory Γ∞ to which (Γn) converges in
dE up to a subsequence is then built as in Lemma B.7. This concludes the proof of (ii)⇒ (i).

We now conclude the proof of tightness, and exponential tightness on trajectories restricted to
E([0, T0], Er(d)). This step is classical, but requires some care in our case as some estimates hold
only for Er(d)-valued trajectories and not on the whole state space.

Corollary B.10 (Sufficient condition for the tightness of (QN
r,β,H)N). Let T0 > 0. Assume that,

for each H ∈ C,
lim sup
N→∞

PNr,β,H
(

E([0, T0], Er(d))c
)

= oN(1), (B.13)

so that trajectories are typically almost always in Er(d) on [0, T0]. Assume further that, for each
G ∈ C2([−1, 1]2) and each ε > 0,

lim sup
η→0

lim sup
N→∞

1

N
logPNr,β

(

E([0, T0], Er(d)),
{

sup
|s−t|≤η

|
〈

Γt, G
〉

−
〈

Γs, G
〉

| (B.14)

+ sup
h≤η

4
∑

k=1

∫ T0−h

0

[

‖Lk(Γt)− Lk(Γt+h)‖1 + ‖Rk(Γt)−Rk(Γt+h)‖1
]

dt ≥ ε

})

= −∞.

Then for each H ∈ C and q ∈ N∗, there are compact sets Kq = Kq(H) such that:

sup
N
QN
r,β,H

(

(Kq)
c
)

≤ 2

q
, sup

N

1

N
logQN

r,β,H

(

E([0, T0], Er(d)) ∩ (Kq)
c
)

≤ −q.

In particular,
{

QN
r,β,H : N ∈ N∗} is relatively compact as a family of measures on trajectories up

to time T0, and its weak limit points are supported in E([0, T0], Er(d)).
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Proof. As (B.14) also holds under PNr,β,H for any H ∈ C, we prove the corollary only for H ≡ 0.
Consider a sequence Gℓ ∈ C2([−1, 1]2), ℓ ≥ 1, dense for the uniform norm. According to (B.14),
for each q, n ∈ N∗, there is η = η(q, ℓ, n) and N0 = N0(η) such that:

sup
N≥N(η)

1

N
logPNr,β

(

E([0, T0], Er(d)),
{

sup
|s−t|≤η

∣

∣

〈

Γt, Gℓ

〉

−
〈

Γs, Gℓ

〉∣

∣ (B.15)

+ sup
h≤η

4
∑

k=1

∫ T0−h

0

[

‖Lk(Γt)− Lk(Γt+h)‖1 + ‖Rk(Γt)−Rk(Γt+h)‖1
]

dt ≥ 1

n

})

≤ −qnℓ.

By (B.13), consider also N1 = N1(q, ℓ, n) such that:

sup
N≥N1

PNr,β
(

E([0, T0], Er(d))c
)

≤ 1

q2ℓ+n
.

Let N2 = max{N0, N1}. For N ≤ N2, Lk, Rk, k ∈ {1, ..., 4} are càdlàg functions in Hausdorff
distance onN−1XN

r . As a result, (B.15) holds forN ≤ N2 as well up to choosing η′ = η′(q, ℓ, n) ≤ η,
hence for all N in N∗. For G ∈ C2([−1, 1]2), let thus ωL1

·
(〈

Γ, G
〉)

be the Skorokhod modulus of
continuity associated with the trajectory

(〈

Γt, G
〉)

t
(see [EK09]); it satisfies:

∀θ > 0, ωL
1

θ

(〈

Γ, G
〉)

≤ sup
|s−t|≤θ

∣

∣

〈

Γt, G
〉

−
〈

Γs, G
〉∣

∣.

Define then Kq = Ūq, with Uq as follows:

Uq :=
⋂

ℓ,n∈N∗

{

ωL
1

η′

(〈

Γ, Gℓ

〉)

+ sup
h≤η′

4
∑

k=1

∫ T0−h

0

[

‖Lk(Γt)− Lk(Γt+h)‖1

+ ‖Rk(Γt)−Rk(Γt+h)‖1
]

dt ≥ 1

n

}

.

By Proposition B.9 and Lemma B.6, Kq is compact, and it satisfies by construction:

sup
N∈N∗

1

N
logQN

r,β

(

E([0, T0], Er(d)) ∩ (Kq)
c
)

≤ −q.

This concludes the proof of exponential tightness inside E([0, T0], Er(d)). Moreover, also by con-
struction and since e−Nqℓn ≤ 2−ℓ−n/q for each N ≥ 1,

sup
N
QN
r,β

(

(Kq)
c
)

≤ 2/q.

By Prohorov’s theorem (Theorem 2.2. p104 in [EK09]), (QN
r,β)N is relatively compact, and its weak

limit points are concentrated on E([0, T0], Er(d)) by (B.13). This concludes the proof.

B.3 Proof of the sufficient condition for exponential tightness

In this section, we provide the proof of the sub-exponential estimate in Corollary B.10, i.e. the
proof of (B.14). The first step is to control the volume variations of a droplet, in Section B.3.1.
Next, we prove that the (time integrated) volume beneath each pole has a fixed value in terms
of β, imposed by the reservoir-like behaviour of the poles. This estimate is used in Section B.3.3
to obtain a control on the motion of the poles. Parameters r, β,H are fixed throughout as in
Definition 2.1.

245



B.3.1 Estimate in L1([−1, 1]2) topology

In this section, we prove exponential tightness in volume, i.e. in L1([−1, 1]2) topology, with the
metric dL

1
defined in (B.5). Equivalently, dL

1
is characterised as follows.

Lemma B.11. Let (Gℓ)ℓ≥1 be a family of functions of C2([−1, 1]2,R), dense for the uniform
sup[−1,1]2 | · |. Then dL

1
is topologically equivalent to the distance d̃L

1
defined as follows:

∀Γ,Γ′ ∈ X, d̃L
1

(Γ,Γ′) =
∑

ℓ≥1

1

2ℓ

∣

∣

〈

Γ, Gℓ

〉

−
〈

Γ′, Gℓ

〉
∣

∣

1 +
∣

∣

〈

Γ, Gℓ

〉

−
〈

Γ′, Gℓ

〉∣

∣

.

In the sequel, d̃L
1
and dL

1
are identified.

Lemma B.12. Let T0 > 0 and G ∈ C2([−1, 1]2). Then, for each ε > 0:

lim sup
δ→0

lim sup
N→∞

1

N
logPNr,β

(

for a.e. t ≤ T0,Γt ∈ Er; sup
|t−s|≤δ

∣

∣

∣

∫

Γt

G−
∫

Γs

G
∣

∣

∣
> ε

)

= −∞. (B.16)

Proof. Compared to Chapter 10 in [KL99], the only subtleties to prove (B.16) are in the intro-
duction of the condition {for a.e. t ≤ T0,Γt ∈ Er} to be able to use the computations of Section
3, and in the control of the poles. As this does not present any particular difficulty, the proof is
omitted.

B.3.2 Precise control of the slope and volume around the poles

In this section, we prove that the volume below the pole is fixed by their reservoir-like behaviour
induced by the dynamics. This relies on a microscopic estimate of the slope at the pole, obtained
in Section 6.2.4 in Corollary 6.11.

Lemma B.13 (Control of the deviations of the width at distance α > 0 below the pole). For
α > 0 and Γ ∈ Er, let g+(α) = g+(α)(Γ) be the width of the horizontal segment of Γ at height
ymax(Γ)− α to the right of L1(Γ). Define similarly g−(α) to the left of L1(Γ). For each δ, η > 0:

lim sup
α→0

lim sup
N→∞

1

N
logPNr,β

(

for a.e. t ∈ [0, T0],Γt ∈ Er(d);

1

T0

∫ T0

0

1|α−1g±(α)−(eβ−1)|≥δdt > η

)

= −∞.

Proof. Take ζ1, ζ2 > 0 to be determined later, and θ > 0 which will be small. We prove the result
for g+, g− is similar. By Corollary 6.11, it is sufficient to prove:

lim sup
ζ1,ζ2→0

lim sup
α→0

lim sup
N→∞

1

N
logPNr,β

(

for a.e. t ∈ [0, T0],Γt ∈ Er(d);

1

T0

∫ T0

0

1|α−1g+(α)−(eβ−1)|≥δ1|ξ+,ζ1N−e−β |≤θ1|ξ+,ζ2N−e−β |≤θdt > η/3

)

= −∞.

Consider the event bearing on ξ+,ζ
1N . It enforces:

ξ+,ζ
1N ∈ [e−β − θ, e−β + θ].
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Choose ζ1 such that (e−β − θ)ζ1 = α. Then ζ1ξ+,ζ
1N ≥ α means that, by definition, g+(α) must

be smaller than ζ1(1− ξ+,ζ1N):

ξ+,ζ
1N ∈ [e−β − θ, e−β + θ] and (e−β − θ)ζ1 = α ⇒ α−1g+(α) ≤ 1− e−β + θ

e−β − θ = eβ − 1 +O(θ),

where O(θ) is a positive function. Similarly, choose ζ2 such that (e−β + θ)ζ2 = α. Then:

ξ+,ζ
2N ∈ [e−β − θ, e−β + θ] and (e−β + θ)ζ2 = α ⇒ α−1g+(α) ≥ 1− e−β − θ

e−β + θ
= eβ − 1−O(θ).

O(θ) is again a positive function. Taking θ small enough to contradict |α−1g+(α)− (eβ − 1)| ≥ δ
concludes the proof.

Lemma B.14 (Control of the deviations of the volume at distance α > 0 below the pole). For
Γ ∈ Er, let V α = V α(Γ) be defined as:

V α(Γ) = α−2
∣

∣{x ∈ Γ : x · e2 ≥ ymax(Γ)− α}
∣

∣.

Then for each δ, η > 0:

lim sup
α→0

lim sup
N→∞

1

N
logPNr,β

(

for a.e. t ∈ [0, T0],Γt ∈ Er(d);
1

T0

∫ T0

0

1|V α−(eβ−1)|>δdt > η

)

= −∞.

Proof. Fix k ∈ N∗ and θ > 0 to be chosen later. By Lemma B.13, it is sufficient to prove:

lim sup
α→0

lim sup
N→∞

1

N
logPNr,β

(

for a.e. t ∈ [0, T0],Γt ∈ Er(d); (B.17)

1

T0

∫ T0

0

1|V α−(eβ−1)|>δ1∀j∈{1,...,k},
∣

∣ k
jα
g±(jα/k)−(eβ−1)

∣

∣≤θdt > η/2

)

= −∞.

By definition of g±(α) for α > 0 (see Lemma B.13), for Γ ∈ Er the quantity V α(Γ) satisfies:

V α(Γ) = α−2

∫ α

0

(g+(u) + g−(u))du.

As microscopic curves have 1-Lipschitz boundaries, on the event that (k/jα)g±(jα/k) ∈ [eβ + 1−
θ, eβ − 1− θ] for each 1 ≤ j ≤ k, one obtains the following bound for V α:

α2V α(Γ) = |{x ∈ Γ : y(x) ≥ ymax − α}| ≥ 2
k−1
∑

j=1

j

kα
(eβ + 1− θ)× α

k
=
k − 1

k
(eβ − 1− θ)α2.

Similarly,

α2V α(Γ) ≤ 2
k

∑

j=1

j

kα
(eβ + 1− θ)× α

k
=
k + 1

k
(eβ − 1 + θ)α2.

To conclude the proof, it remains to take k, θ such that the indicator functions appearing in (B.17)
bear on incompatible events. This is achieved provided:

k − 1

k
(eβ − 1− θ) ≥ eβ − 1− δ and

k + 1

k
(eβ − 1 + θ) ≤ eβ − 1 + δ.
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B.3.3 Tightness in L1([0, T0]) distance for the motion of the poles

In this section, we prove exponential tightness for the motion of the poles assuming trajectories
live in Er(d) for almost every time. As argued in Appendix B.2.2, it is sufficient to find a compact
set of L1([0, T0], [−1 + d, 1 − d]2) in which the trajectories of the poles concentrate at scale e−N .
We proceed coordinates by coordinates of the Lk, k ∈ {1, ..., 4}. This will also work for the Rk

since they are microscopically close to the Lk by Lemma 6.1. According to the Kolmogorov-Riesz
compactness theorem (Theorem 4.26 in [Bre10]), a set K ⊂ L1([0, T0], [−1 + d, 1− d]) is relatively
compact if and only if:

sup
h≤η

sup
f∈K

∫ T0−h

0

|f(t+ h)− f(t)|dt = oη(1). (B.18)

To prove exponential tightness for the poles, we thus only have to prove that (B.18) holds for each
of the eight coordinates of the Lk, k ∈ {1, .., 4}. We prove it for the motion of y(L1) = ymax in the
following lemma. The proof for the other seven coordinates is similar.

Lemma B.15 (Tightness in L1 distance for ymax). Let ε > 0. Then:

lim sup
η→0

lim sup
N→∞

(B.19)

1

N
logPNr,β

(

for a.e. t ∈ [0, T0],Γt ∈ Er(d); sup
h≤η

1

T0

∫ T0−h

0

|ymax(t+ h)− ymax(t)|dt > ε

)

= −∞.

Proof. For each h ∈ [0, η] and t ∈ [0, T0 − h], write ∆h(t) = |ymax(t + h) − ymax(t)| for brevity.
Since ymax is bounded by 1, (B.19) is proven as soon as

lim sup
η→0

lim sup
N→∞

1

N
logPNr,β

(

for a.e. t ∈ [0, T0],Γt ∈ Er(d); sup
h≤η

1

T0

∫ T0−h

0

1∆h(t)≥ε/2dt > ε/4

)

= −∞.

Fix δ > 0 that will be chosen small enough in the following. Define, for α > 0 and t ∈ [0, T0], the
quantity ∆V α(t) as follows (recall Lemma B.14):

∆V α(t) = |V α(Γt)− (eβ − 1)|.

Lemma B.14 tells us:

lim sup
α→0

lim sup
N→∞

1

N
logPNr,β

(

for a.e. t ∈ [0, T0],Γt ∈ Er(d);
1

T0

∫ T0

0

1∆V α(t)>δdt > ε/12

)

= −∞.

Notice in addition that:

{

sup
h≤η

1

T0

∫ T0−h

0

1∆V α(t+h)>δdt > ε/12
}

⊂
{ 1

T0

∫ T0

0

1∆V α(t)>δdt > ε/12
}

.

As a result, (B.19) holds as soon as:

lim sup
α→0

lim sup
η→0

lim sup
N→∞

1

N
logPNr,β

(

for a.e. t ∈ [0, T0],Γt ∈ Er(d); (B.20)

sup
h≤η

λ
[

∆h(t) ≥ ε/2, |∆V α(t)| ≤ δ, |∆V α(t+ h)| ≤ δ
]

> ε/12

)

= −∞,
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where λ is T−1
0 times the Lebesgue measure on [0, T0]. By Lemma B.12 on exponential tightness

in dL
1

S topology, (B.20) is proven as soon as the following holds:

lim sup
α→0

lim sup
η→0

lim sup
N→∞

1

N
logPNr,β

(

for a.e. t ∈ [0, T0],Γt ∈ Er(d);

sup
(s,t)∈[0,T0]2

|s−t|≤η

dL
1

(Γs,Γt) < α2(eβ − 1)/2;

sup
h≤η

λ
[

∆h(t) ≥ ε/2, |∆V α(t)| ≤ δ, |∆V α(t+ h)| ≤ δ
]

> ε/12

)

= −∞, (B.21)

Take δ < (eβ−1)/2 and an arbitrary α ∈ (0, ε/2]. For any trajectory (Γt)t∈[0,T0] in the event inside
the probability in (B.21), there must be t ∈ [0, T0] and h < η such that, simultaneously:

• The north poles of Γt,Γt+h are at vertical distance at least ε/2, so that either {x ∈ Γt :
x · e2 ≥ ymax(Γt)− α} ∩ Γt+h = ∅ or {x ∈ Γt+h : x · e2 ≥ ymax(Γt+h)− α} ∩ Γt = ∅.

• Recall that V α(t) = α−2|{x ∈ Γt : x · e2 ≥ ymax(Γt)− α}|. V α(Γt) and V
α(Γt+h) are both at

least eβ − 1− δ > (eβ − 1)/2 so that, by the first point, the difference in volume between Γt
and Γt+h is at least α2(eβ − 1)/2;

• yet, dL
1
(Γt,Γt+h) < α2(eβ − 1)/2, which is incompatible with point 2. This concludes the

proof.

Remark B.16. The proof for ymin, xmin and xmax is identical to the above. For the wk, i.e.
L1 · e1, L2 · e2, L3 · e1 and L4 · e2, slight modifications are required: in addition to the indica-
tor functions on the volumes ∆V α(t) < δ, ∆V α(t + h) < δ, one has to introduce the events
{g±α (t + h) < δ}, {g±α (t) < δ}, where g±α , the width of the level at distance α beneath the pole, is
defined in Lemma B.13.

The idea is that if α is taken small enough as a function of ε and β (in practice, (eβ − 1)−1ε/2
times a numerical constant), then the horizontal distance between L1(t) · e1 and L1(t + h) · e1 is
going to be at least min{g+α (t+ h) + g−α (t), g

+
α (t) + g−α (t+ h)}.

As a result, the set of points above ymax(Γt)−α in Γt and the set of points above ymax(Γt+h)−α in
Γt+h are disjoint. Thanks to the indicator functions on the volumes ∆V α, this implies a difference
in volume, which is again impossible for η small enough. �
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[BBP18] L. Bertini, P. Buttà, and A. Pisante. “On Large Deviations of Interface Motions for
Statistical Mechanics Models”. In: Annales Henri Poincaré. Springer. 2018, pp. 1–37
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[Gon+20] P. Gonçalves, M. Jara, O. Menezes, and A. Neumann. “Non-Equilibrium and Sta-
tionary Fluctuations for the SSEP with Slow Boundary”. In: Stochastic Processes and
their Applications 130.7 (2020), pp. 4326–4357. issn: 0304-4149. doi: 10.1016/j.spa.
2019.12.006 (cit. on pp. 25, 56, 64).

[Ket+20] P. E. Kettani, T. Funaki, D. Hilhorst, H. Park, and S. Sethuraman. Mean Curvature
Interface Limit from Glauber+Zero-Range Interacting Particles. 2020. arXiv: 2004.
05276 (cit. on pp. 26, 155).

[SS20] H. Sambale and A. Sinulis. “Logarithmic Sobolev Inequalities for Finite Spin Sys-
tems and Applications”. In: Bernoulli 26.3 (2020), pp. 1863–1890. doi: 10.3150/19-
BEJ1172 (cit. on pp. 27, 120).

[ACR21] M. Ayala, G. Carinci, and F. Redig. “Higher Order Fluctuation Fields and Orthogonal
Duality Polynomials”. In: Electronic Journal of Probability 26 (none 2021), pp. 1–35.
issn: 1083-6489, 1083-6489. doi: 10.1214/21-EJP586 (cit. on pp. 25, 57).

257

http://dx.doi.org/10.1016/j.spa.2019.12.006
http://dx.doi.org/10.1016/j.spa.2019.12.006
http://arxiv.org/abs/2004.05276
http://arxiv.org/abs/2004.05276
http://dx.doi.org/10.3150/19-BEJ1172
http://dx.doi.org/10.3150/19-BEJ1172
http://dx.doi.org/10.1214/21-EJP586
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Résumé : Cette thèse est consacrée à l’étude

d’événements dynamiques rares dans des systèmes

de particules en interaction. Deux modèles sont

considérés : le processus d’exclusion simple

symétrique unidimensionnel interagissant avec des

réservoirs, et un modèle de dynamiques d’inter-

faces se rapprochant de la dynamique de Glauber du

modèle d’Ising bidimensionnel à température nulle.

Dans le cadre du modèle d’exclusion simple, les tra-

vaux présentés visent à l’étude des corrélations à

deux points hors équilibre. Plus précisément, le but

est d’estimer la probabilité d’obtenir une valeur aty-

pique des corrélations à deux points moyennées en

temps dans la limite hydrodynamique et en temps

long. Pour étudier les corrélations à deux points

avec le niveau de précision requis, il est nécessaire

d’améliorer les techniques existantes. En raffinant la

méthode d’entropie relative initialement développée

par Yau, un principe de grandes déviations pour les

corrélations à deux points est obtenu.

La dynamique d’interface modélise l’évolution d’une

goutte de spins − d’Ising immergés dans une mer

de spins + sur un réseau carré. Dans le cas de la

dynamique d’Ising à température nulle, la frontière

de cette goute évolue selon un mouvement à cour-

bure moyenne anisotrope, comme a été rigoureuse-

ment établi par Lacoin, Simenhaus et Toninelli il y a

quelques années. Dans la thèse, c’est la structure

des trajectoires atypiques que l’on cherche à com-

prendre. Pour ce faire, une dynamique d’interface,

appelée dynamique de contour et très similaire à

la dynamique d’Ising à température nulle est intro-

duite. La seule dissemblance vient de la présence

d’un paramètre supplémentaire, jouant le rôle d’une

(faible) température agissant localement sur l’inter-

face. En particulier, les dynamiques d’Ising et de

contour coı̈ncident quand ce paramètre est nul. Il

est montré que la trajectoire typique d’une interface

sous la dynamique de contour évolue également par

mouvement par courbure moyenne anisotrope, avec

une influence du paramètre de température. Un prin-

cipe de grandes déviations est alors obtenu pour la

dynamique de contour, permettant de relier les trajec-

toires atypiques à des perturbations d’un mouvement

à courbure moyenne anisotrope, toujours avec une

influence du paramètre de température.
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Abstract : The objective of this thesis is the study

of rare dynamical events in some interacting particle

systems. Two models are considered : the one dimen-

sional symmetric simple exclusion process interacting

with reservoirs, and an interface dynamics related to

the zero temperature Glauber dynamics for the two di-

mensional Ising model.

In the case of the simple exclusion process, the work

presented in the manuscript concerns the study of the

out of equilibrium two-point correlation field. More pre-

cisely, the objective of the work is to estimate the pro-

bability of observing anomalous time-averaged two-

point correlations, in the hydrodynamics scaling and

the long time limit simultaneously. Studying two-point

correlations at a suitable level of precision requires im-

proving existing techniques. A refinement of the rela-

tive entropy method initially due to Yau provides a suf-

ficient toolbox, thanks to which a large deviation prin-

ciple for time-averaged two-point correlations is obtai-

ned.

The interface dynamics aims at modelling the evolu-

tion of the interface separating a droplet of − Ising

spins in a sea of + spins in the zero temperature Ising

model. In the zero temperature Ising case, the boun-

dary of this droplet has been shown to follow an ani-

sotropic motion by curvature by Lacoin, Simenhaus

and Toninelli a few years ago, rigorously establishing

a long standing conjecture. In the manuscript, we aim

to investigate the structure of atypical interface tra-

jectories. To do so, another interface dynamics, cal-

led the contour dynamics, is introduced. Very similar

to the zero temperature Ising dynamics, it differs by

the presence of an additional parameter, which plays

the role of a (small) temperature acting locally on the

interface. In particular, Ising and contour dynamics

coincide when this parameter vanishes. We show that

the typical interface trajectory in the contour dynamics

is still given by an anisotropic motion by curvature,

with an influence of the temperature-like parameter. A

large deviation principle is also established, characte-

rising atypical trajectories as perturbations of the ani-

sotropic motion by curvature, again with an influence

of the temperature-like parameter.
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