
HAL Id: tel-03378446
https://theses.hal.science/tel-03378446v1

Submitted on 14 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantum purity and symmetry control of single-photon
sources based on semiconductor quantum dots

Hélène Ollivier

To cite this version:
Hélène Ollivier. Quantum purity and symmetry control of single-photon sources based on semicon-
ductor quantum dots. Quantum Physics [quant-ph]. Université Paris-Saclay, 2021. English. �NNT :
2021UPASP054�. �tel-03378446�

https://theses.hal.science/tel-03378446v1
https://hal.archives-ouvertes.fr


Th
ès

e 
de

 d
oc

to
ra

t
N

N
T:

2
0
2
1
U

PA
S
P
0
5
4

Quantum purity and symmetry
control of single-photon sources

based on semiconductor
quantum dots

Pureté quantique et contrôle de symétrie de
sources de photons uniques basées sur des

boîtes quantiques semiconductrices

Thèse de doctorat de l’Université Paris-Saclay

École doctorale n◦ 572, ondes et matière (EDOM)
Spécialité de doctorat: physique

Unité de recherche: Université Paris-Saclay, CNRS, Centre de
Nanosciences et de Nanotechnologies, 91120, Palaiseau, France.

Référent: : Faculté des sciences d’Orsay

Thèse présentée et soutenue à Paris-Saclay, le 16 juillet 2021,
par

Hélène OLLIVIER
Composition du Jury

Rosa Tualle-Brouri Présidente
Professeur, IOGS, Université Paris-Saclay
Carole Diederichs Rapportrice
Maître de conférence, Sorbonne Université
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Synthèse

Les technologies quantiques promettent d’importantes améliorations dans plusieurs domaines
scientifiques et commerciaux, en particulier dans les domaines des communications, des
mesures et de l’informatique. Comme pour les technologies quantiques, la lumière joue un
rôle clé, en tant que porteur naturel d’information sur de longues distances. Différentes
saveurs de lumière quantique sont explorées dans ce contexte. Pendant cette thèse, nous avons
étudié des sources de lumière quantique basées sur des bôıtes quantiques semiconductrices.
Ces dernières décennies, diverses technologies ont été développées et améliorées au Centre
de Nanosciences et Nanotechnologies pour fabriquer de façon fiable des sources de photons
uniques basées sur des bôıtes quantiques semiconductrices. Notre approche est de graver des
cavités en forme de micropilier autour de bôıtes quantiques pré-sélectionnées, en utilisant
la procédure de lithographie in situ. Les propriétés de ces sources de photons uniques sont
constamment optimisées pour leur utilisation dans des applications quantiques. La source
idéale devrait produire des photons uniques de façon cadencée, avec une efficacité et une
indiscernabilité proches de l’unité.

Dans cette thèse, on décrit dans un premier temps la majorité des principes physiques
fondamentaux qui gouvernent la génération de lumière à partir de bôıtes quantiques semicon-
ductrices. Nous introduisons les différentes transitions optiques (des excitons constitués d’une
paire électron-trou, ou des trions, qui contiennent une charge supplémentaire) et les règles de
sélection. Par exemple, les excitons présentent deux vecteurs propres qui sont usuellement
séparés par une quantité appelée le dédoublement de structure fine. Nous discutons comment
une cavité peut être utilisée pour accélérer l’émission spontanée et collecter efficacement les
photons générés. Nous étudions comment les propriétés des photons uniques dépendent de la
nature de la transition qui les génère. En particulier, nous explorons l’influence sur le pro-
fil temporel du paquet d’onde, la pureté quantique, l’indiscernabilité et le taux de photons
maximum atteignable. Nous présentons aussi une étude comparative de quinze sources de
photons uniques pour démontrer la reproducibilité de leurs performances et la robustesse de
leur procédé de fabrication.

De façon à mesurer l’indiscernabilité des photons uniques, il est d’usage d’utiliser
l’interférométrie de Hong-Ou-Mandel puisque la visibilité des interférences dans cette
expérience est liée à l’indisernabilité des photons uniques. En revanche, la pureté des photons
uniques influence ces interférences. Par conséquent, les scientifiques de la communauté
corrigent habituellement la visibilité des interférences par une quantité qui dépend de la
pureté des photons uniques. Cependant, jusqu’à présent, cette connexion ne prenait pas
en compte l’origine de la pureté imparfaite des photons uniques. Dans cette thèse, nous
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présentons un modèle qui donne le facteur de correction adéquat selon cette origine. Nous
appliquons ensuite ce modèle à des sources imparfaites que nous réalisons artificiellement
à partir de sources presque idéales auxquelles nous ajoutons du bruit. Finalement, nous
identifions l’origine du bruit dans le cas de nos sources afin de déduire l’indiscernabilité des
photons uniques.

Enfin, contrôler le dédoublement de structure fine est une aptitude prometteuse pour
générer des qubits encodés en fréquence ou des paires de photons intriqués. Nous pro-
posons une nouvelle méthode pour contrôler le dédoublement de structure fine compatible
avec l’insertion d’une bôıte quantique dans une cavité en forme de micropilier. Elle est basée
sur l’utilisation de trois sources de tension que l’on utilise pour contrôler le champ électrique
en trois dimensions à la position de la bôıte quantique. Nous présentons la démonstration
expérimentale du contrôle du dédoublement de structure fine de deux différentes bôıtes quan-
tiques sur deux échantillons différents, ainsi que des résultats théoriques de simulations
réalisées avec COMSOL, qui permettent de comprendre le fonctionnement de la méthode.
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Abstract

Quantum technologies promise important improvements in several scientific and commercial
domains, especially in the fields of communications, sensing and computing. Like in classical
technologies, light plays a key role, as a natural carrier of information on long distances. Dif-
ferent flavours of quantum light are explored in this context. During this thesis, we studied
quantum light sources based on semiconductor quantum dots. Over the past decades, various
technologies have been developed and improved at the Center for Nanosciences and Nanotech-
nologies to reliably fabricate efficient single-photon sources based on semiconductor quantum
dots. Our approach is to etch micropillar cavities around pre-selected quantum dots making
use of the in-situ lithography procedure. The properties of these single-photon sources are
constantly optimized for use in quantum applications. The ideal source should produce single
photons in a clocked manner, with near-unity efficiency and indistinguishability.

In this thesis, we first describe most of the fundamental physics principles which govern
the generation of light from semiconductor quantum dots. We introduce the different optical
transitions (excitons made of an electron-hole pair, or trions, that have an extra charge) and
their selection rules. For example, excitons show two eigenstates that are usually separated
by a quantity called the fine structure splitting (FSS). We discuss how a cavity can be used
to enhance the spontaneous emission and efficiently collect the generated photons. We study
how the properties of the single photons depend on the nature of the transition that gener-
ates them. In particular, we explore the influence on the temporal wavepacket profile, the
single-photon purity, the indistinguishability and the maximum reachable photon rate. We
also present a benchmarking of fifteen single-photon sources to demonstrate their performance
reproducibility and the robustness of the fabrication process.

In order to measure the indistinguishability of single-photons, it is common to use Hong-
Ou-Mandel interferometry since the visibility of interferences in such an experiment is linked
to the single-photon indistinguishability. However, the single-photon purity influences these
interferences. Consequently, scientists from the community commonly “correct” the interfer-
ence visibility by a quantity that depends on the single-photon purity. However, so far, this
connection did not take into account the origin of the imperfect single-photon purity. In this
thesis, we present a model that gives the proper correction factor to use depending on this
origin. We then apply this model to imperfect sources that we emulate from near-ideal sources
to which we add noise. Finally, we identify the origin of the noise in our sources to deduce
their single-photon indistinguishability.

Finally, controlling the excitonic fine structure splitting is a promising feature to generate
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qubits encoded in frequency or entangled photon pairs. We propose a new method to control
the fine structure splitting compatible with the insertion of the QD in a micropillar cavity. It is
based on three remote voltage knobs used to control the electric field in three dimensions at the
position of the dot. We present the experimental demonstration of the fine structure splitting
tuning on two different quantum dots from two different samples, as well as theoretical results
obtained from COMSOL simulations that allow comprehending the device operation.
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Abbreviations

FWHM = Full Width at Half Maximum
FSS= Fine Structure Splitting
HOM = Hong Ou Mandel
HWP = Half Waveplate
MBE = Molecular Beam Epitaxy
MHB = Mixed Holes Basis
PBS = Polarizing Beam Splitter
QD = Quantum Dot
QWP = Quarter Waveplate
SLM = Spatial Light Modulator
SPDC = Spontaneous Parametric Down-Conversion
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Introduction

In 1900, Lord Kelvin claimed, in a lecture he gave at the Royal Institution of Great Britain
[1], that there were two mysteries left in physics. He referred to them as “dark clouds”. The
first one was embodied by the Michelson-Morley experiment, which led Kelvin to say “I am
afraid we must still regard Cloud No. I as very dense”. The clearing of this cloud led to
the development of the theory of relativity. Cloud No. II, “which has obscured the brilliance
of the molecular theory of heat and light during the last quarter of the nineteenth century”,
was what Paul Ehrenfest called “the ultraviolet catastrophe”. It refers to the divergence be-
tween the experimental observations on the black-body radiation at short wavelengths and
the Rayleigh-Jeans model. Planck derived an expression admitting that the electromagnetic
field is absorbed and emitted by discrete packets of energy, proportional to its frequency. The
proportionality factor was named after him as “Planck’s constant”, h. He never really believed
in this assumption, describing his derivation as an “act of desperation” [2] and he tried to
explain it by classical arguments. Other physicists understood the physical insight provided
by Planck, especially Einstein, who embraced and developed the concept of the photon. With
that new idea, Einstein was able to explain the photoelectric effect, for which he was awarded
the Nobel Prize in 1921.

Quantum mechanics has been expansively investigated since then, and it gave rise to plenty
of applications. Many of them come from the field of light-matter interaction, such as lasers
[3] and magnetic resonance imaging for example. Scientists and engineers are now working
towards taking advantage of the quantum behaviour of light and matter to develop quantum
computing, quantum communication and quantum sensing.

A quantum computer is based on manipulating quantum bits (qubits), which are two-level
systems that can be in any coherent superposition of two states, instead of the usual 0 and
1 bits we are used to in classical computation. It should allow for the preparation and mea-
surement of a large number of qubits, with logic gates to implement algorithms. A quantum
computer could require way less resources in time and memory space than a classical one [4].
It would allow solving problems that are either hard or impossible to solve with a classical
computer. A quantum computer is expected to solve massive quantum systems that could
never be solved on a classical computer. A quantum computer could also simulate quantum
systems [5] in a more efficient way than a classical computer. For example, quantum simu-
lation might allow for the discovery of new chemical processes, which are based on quantum
evolution of a large number of particles. This may include the discovery of a new way to
generate ammonia. That molecule, which is commonly used as a fertilizer, is today produced
through the Haber-Bosch process, requiring high temperatures and pressures, consuming up
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to 2% of the world’s energy [6]. We know there is a more energy-efficient way to synthetize
ammonia, since the enzyme nitrogenase does it under ambient conditions [7]. Other applica-
tions involve finances [8] and machine learning [9] among many others. All these applications
are the origin for a strong enthusiasm towards future quantum technologies and involvement
of many research groups and already established companies. It is also leading to the emer-
gence of multiple start-up companies all over the world to participate in this global effort. We
recently witnessed the beginning of a “quantum computing race” towards the demonstration
of “quantum computing supremacy” or rather “quantum computational advantage”. Google
claimed in 2019 [10], that they had implemented a quantum algorithm on a superconductor
based quantum machine, taking 200 seconds instead of 10, 000 years on the most powerful
classical supercalculator. However, the task they performed with their quantum computer
was claimed to be solvable by a classical one within 2.5 days by IBM. In December 2020,
the team of Jian-Wei Pan in Hefei, China performed a boson-sampling computation with 50
squeezed states [11]. The experiment itself took about 1014 less time than the one it would
take on a classical supercomputer (200 seconds instead of 2.5 billion years). The demonstrated
computations do not yet appear particularly useful, but both works represent an important
milestone for quantum computing. Although there would be many benefits for having quan-
tum algorithms that can vastly outperform classical algorithms, quantum computing may also
undermine encryption protocols that are designed around computational complexity. Indeed,
a quantum computer that would be powerful enough to implement Shor’s algorithm [12],
and determine the prime factors of large numbers in a short enough time, could break RSA
cryptography, a public-key cryptosystem used to keep emails and online transactions confiden-
tial. Although such perspective is not within reach in the near future considering the current
status of the technological developments, strategies are already explored to counter this threat.

One way to ensure that communication is secure against a future quantum computer is to
implement quantum cryptographic protocols [13]. This can be accomplished by transmitting
quantum information from one place to another in order to generate a secure key to encrypt
information. A well-known example of such a scheme is the BB84 protocol [14]. However,
long-distance quantum cryptography requires a quantum network to transmit quantum infor-
mation. This involves the transfer of the state of a qubit from one place to another, using the
principles of superposition and entanglement of states [15]. Quantum information can then
be used to implement long-distance quantum encryption protocols. Setting up a quantum
network would require quantum communication between quantum nodes, forming the basis of
a quantum internet [16–18]. For that purpose, it may be necessary to build quantum repeaters
[19], quantum satellites for free-space transmission [20] and low-loss fiber optics engineering
to overcome losses for long distance communication. Quantum networks would also allow for
more fundamental applications such as testing Bell’s inequalities [21–23], or quantum gravity
[24].

Finally, another field of application of quantum technologies is quantum sensing, which
comprises quantum metrology and uses quantum measurements to reach higher precision than
classical measurements [25, 26]. Quantum sensing covers a wide range of measurable quan-
tities [27]. For example, quantum imaging is being investigated to exceed the capacities of
classical imaging and get a lower shot noise [28].
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In order to conceive a quantum computer or a quantum network, one needs to find ways
to prepare qubits, to store them, to transfer their information, to measure them and to imple-
ment logic gates with them. Different approaches are being explored for these purposes, such
as atoms [29] or trapped ions [30, 31], two approaches that can implement quantum gates with
high fidelity. Another set of candidates, integrated in the solid-state, such as superconduct-
ing qubits [32], nitrogen-vacancy centers in diamond or semiconductor quantum dots are more
compact, and more promising for scalability. NV centers in diamond are promising candidates
for sensing for instance, since they have a very long spin coherence time (' ms) and can be
used at room temperature [33]. It is likely that a successful quantum computer or quantum
network architecture will be a hybrid system [34], based on a combination of these different
approaches to take advantage of the assets of each platform.

Given that photons can interact with most of the systems mentioned above, they would be
adapted to carry information from one local quantum platform to another. In that context,
single photons should ideally be emitted on-demand (so only when they are triggered) and at
a high rate to increase the speed of operations. For some applications, they also need to be
identical i.e. in a pure quantum state. Single-photon sources can also be used to construct
entangled photonic states [35] that are useful for applications such as linear optical computing
[36] and all-optical repeaters [37].

Several types of single-photon sources have been developed to date. The most common one
is spontaneous parametric down-conversion (SPDC) sources. They are based on the genera-
tion of two photons in a non-linear crystal by frequency down-conversion of an excitation laser
pulse. They are said to be “heralded” because one photon detected on one output heralds the
presence of another on the other output. A considerable advantage of these sources is that
they can be operated at room temperature. However, they do not lead to a true single photon
generation, there is always the possibility to obtain more than one photon, a possibility that
increases linearly with the source efficiency. This intrinsic drawback is being overcome by
exploring multiplexing strategies [38]. Another way to generate single photons that has been
explored for more than two decades is based on the long-known ability of atoms to emit one
photon at a time [39]. This approach has led to the generation of single-photon emission with
single atoms [40], as well as NV centers [41, 42], molecules [43, 44], or quantum dots [45].
In this thesis, we study semiconductor quantum dots [46], nanostructures that confine charge
carriers in three dimensions.

Over the last two decades, semiconductor quantum dots have become interesting systems
for quantum technologies, able to generate single photons or other quantum states of light
[47–49], as well as store information in electron or hole spins that are considered as stationary
qubits [50]. We focus on the single-photon generation aspect of semiconductor quantum dots.
The first demonstration of single-photon generation with quantum dots was reported in 2000
[45]. Semiconductor quantum dots are also the only known type of solid-state emitter that
can emit on-demand entangled photon pairs [51], which was proposed in 2000 [52] and first
demonstrated in 2006 [53]. They are thus promising systems to implement quantum relays
[54–56] and quantum repeaters based on the Shapiro Lloyd scheme [57]. When located in the
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bulk material, semiconductor quantum dots emit isotropically which reduces the photon rate
in the collected direction. But like for any atom, placing a cavity around them enhances the
light emission in one direction via the Purcell effect. This was demonstrated with quantum
dots in 1998 [58], and applied specifically to the generation of single photons in 2002 [59].
Quantum dots can also be coupled to waveguides [60, 61] or plasmonic resonators [62]. In
terms of generation of entangled photon pairs, ultrabright sources of entangled photon pairs
were fabricated in my team, using semiconductor QDs embedded into coupled microcavities
[48]. The best entangled photon source to date was demonstrated in 2019 [63].

In order to work towards large-scale quantum operations, it is necessary to reproducibly
fabricate single-photon sources. This is why methods allowing for coupling deterministically
a QD with a cavity are developed. The first one was carried out in 2005 [64, 65] where the
QD was coupled to a photonic crystal cavity. In 2008 my group invented a way to couple
QDs to microcavities where it is possible to fabricate several devices at once on a given sam-
ple of semiconductor wafer [66]. Ultrabright single-photon sources were obtained by coupling
QDs to nanowires [61] or to micropillars [67]. Indistinguishable photons were obtained from
a QD single photon source under resonant excitation since 2013 [68, 69]. When I joined the
C2N team, the state of the art was set by the near-ideal single-photon sources obtained by
the fabrication methods developed in the group before my arrival [70]. The first applications
with these sources were carried out during my PhD including several experiments of Boson
sampling, with 3 photons with a source of our group sent to the group of Pr. Andrew White
[71], then with 5, 7 and 20 photons by the group of Jian-Wei Pan [72–74] with similar devices
fabricated in the university of Wurzburg. Our group also realized the first interfacing of a QD
single-photon source with a photonic chip and performed a three-photon interference. This
was done with the groups of Pr. Fabio Sciarrino (Rome) and Pr. Roberto Osellame (Milan)
with a reconfigurable photonic chip on glass [75]. More recently, our single-photon sources
were used to generate 4-photon linear cluster states in collaboration with the group of Pr.
Hagai Eisenberg (Jerusalem) [35].

This thesis details the results I have obtained for my graduate studies with the group of
Pr. Pascale Senellart in the Photonics Department at the Centre for Nanosciences and Nan-
otechnologies (C2N). My work started in 2017 in Marcoussis and ended in Palaiseau - which
means that I experienced the adventure of moving an experimental laboratory at the end of
2018. The C2N is known for its large and efficient cleanroom facilities, where semiconductors
nanoprocessing is mastered at the best level. Moreover, our team developed the know-how to
fabricate components in large numbers using the in situ lithography technique that allows us
to precisely position a single quantum dot in a cavity.

My PhD project was centered on two main topics: better understanding the physics deter-
mining the single-photon source performances and develop new tools to control the quantum
dot energy levels. I conducted an in-depth study of the single-photon sources’ performances
to understand the various physical phenomena that impose limits on them and on their repro-
ducibility. We took advantage of the deterministic fabrication techniques to benchmark many
sources and we propose different ways to overcome these limits and fabricate identical sources
of highly indistinguishable photons. I also revisited the usual characterization tools, such as
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the Hong-Ou-Mandel interference, that is routinely used to determine the indistinguishability
of the emitted single photon. Finally, we proposed a new method to control the QD symmetry
that is at the core of the generation of entangled photon pairs.

This manuscript is structured as the following:

• In Chapter 1, I introduce the fundamentals of single-photon emission from semiconductor
quantum dots in cavities. We discuss the various optical transitions and the subtle
physics that govern their polarization. I present the basics of light-matter interaction and
briefly describe the experimental techniques and the figures of merit used to characterize
single-photon sources.

• In Chapter 2, I investigate the reproducibility of our single-photon sources technology
and the robustness in terms of performance. I discuss how the source operation and
performances differ when based on a neutral or charged quantum dot and discuss per-
formance reproducibility. These results have been published in ACS Photonics in 2020
[76].

• In Chapter 3, I revisit a critical tool used to characterize single-photon sources: the HOM
interference. Over the course of this thesis, we realized that the HOM interference can
allow accessing the true single-photon indistinguishability, even for a source that presents
a residual probability of emitting more than one photon. A theoretical framework was
developed by Dr. S. Wein in the team of Pr. C. Simon that we tested experimentally.
We then applied this method to our single-photon sources. These results were published
in Physical Review Letter in 2021 [77].

• In Chapter 4, we present a new method to control the symmetry governing the optical
selection rules of a quantum dot exciton. Such control is highly sought after for the
generation of entangled photon pairs, but could also be used for other purposes. Our
method relies on the remote application of an electric potential and is fully compatible
with the insertion of quantum dots in micropillar cavities for efficient photon extraction.
The content of this latter chapter gave rise to a patent and an article is under preparation.

Finally, the last chapter of this manuscript summarizes the main results obtained during
this thesis and drafts future studies and challenges.
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Chapter 1

Fundamentals of single-photon sources
based on quantum dots in micropillar
cavities

Quantum dots (QDs) are semiconductor nanostructures that allow a confinement of carriers
in three dimensions. In this manuscript, we specifically study III-V InGaAs/GaAs naturally
grown QDs that have shown state-of-the-art performances for quantum technologies. When
excited with a light of high enough frequency, the QD experiences a transition of an electron
from the valence to the conduction band. When returning to its initial state, the QD emits
a photon of equal energy to the transition. This concept is the basis for using semiconductor
QDs as a single-photon source [45]. In this chapter, we present the fundamentals of single-
photon sources based on QDs embedded in micropillar cavities. In a first section we focus
on the physics of the QD itself, its growth and optical transitions. Some of these optical
selection rules arise from asymmetries in the QD carrier wavefunctions that are at the core
of Chapter 4 where we present a new way to control them. Next, we discuss the basics of
spontaneous emission control for a QD coupled to a cavity. Finally, we present the metrics
and experimental tools used to study and characterize our single-photon sources. These first
sections set the ground for what will follow in Chapter 2 where we study the optical properties
governing the single-photon source performances and benchmark fifteen sources. We further
use these tools and definitions in Chapter 3 to revisit the HOM interference of imperfect
single-photon sources.

1.1 Quantum dots as artificial atoms

1.1.1 Growth of self-assembled quantum dots

In this thesis we study self-assembled QDs made of indium gallium arsenide (InGaAs) and
gallium arsenide (GaAs). The semiconductor nanostructures are grown by stacking layers of
atoms by molecular beam epitaxy (MBE). The first material deposited in the process is GaAs,
which forms the host material. The next step is to deposit indium arsenide InAs. The first
layer of InAs, called the wetting layer, is a thin quantum well. GaAs and InAs present the
same crystal structure but different lattice constants: the mismatch is about 7%. Hence, when
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the InAs that is deposited on top of the GaAs becomes thicker than about 1.7 monolayers
[78], it energetically favors the formation of nano-islands because it reduces the strain energy
in the crystal. This is called the Stranski-Krastanov transition [79]. These islands appear at
random positions on the sample and show random sizes, as illustrated in figure 1.1. More
layers of GaAs are then deposited on top of the InAs to enclose the QDs.

The bandgap of InAs (' 0.35 eV at 300 K) is lower than that of GaAs (' 1.42 eV at 300
K) [80] so that the embedded islands create a three-dimensional (3D) confinement potential
for the charge carriers. This confinement leads to a discretization of the electronic energy
levels, forming a QD with behaviours similar to those of a natural atom, as first evidenced in
1994 [78]. Over the years, QDs have been referred to as artificial atoms, although they are
made of about 104 atoms.

Figure 1.1: Atomic force microscope image of the surface of a QD InAs layer. Image extracted
from [81].

After GaAs regrowth, Ga/In interdiffusion takes place so that the QD material is a In-
GaAs alloy. The InGaAs nano-islands present flat lenses shapes with a height of about 3 nm
in the growth direction (z) and a diameter of 10 to 20 nm in the (xy) plane. The wetting
layer is a 2-dimensional quantum well with a bandgap of 1.45 eV at 10K, which corresponds
to a wavelength of 855 nm [82]. The QDs studied in this manuscript confine the carriers in 3
dimensions, with an energy difference between the ground state and the first excited state of
about 1.34 eV at 10K, which corresponds to a wavelength around 925 nm.

The QDs density can be tuned from about 10 µm−2 to 500 µm−2 [82–84] and are usually a
bit asymmetric in the (xy) plane. In this PhD work, the samples are annealed at a temperature
between 850 and 950 ◦C after growth, leading to further interdiffusion of InAs and GaAs in
the QDs. This reduces the difference of energy between the bulk and the nano-island. The
annealing also leads to a more homogeneous energy distribution and an overall larger QD size
[85].

1.1.2 Energy levels

The electronic wavefunction Ψ(r) in a crystal lattice can be approximated using Bloch’s the-
orem, which states that the eigenfunctions are formed by a product of a plane wave eik.r and
a periodic function u(r) with translation symmetry dictated by the lattice structure. Hence

18



Ψ(r) is constructed from a superposition of eigenfunctions

ψn(r,k) = un(r)eik·r (1.1)

The orthogonal periodic functions un satisfy un(r) = un(r + T), where T is a primitive
translation vector of the lattice and the index n labels the band constructed from the molecular
orbitals of a unit cell [86].

The growth of the QD introduces a potential well that modifies the electronic wavefunction.
Since the well is spatially much larger than the periodicity of un(r), then for small k (near
the Γ point), un(r) varies fast compared to eik·r with respect to r. Thus, the electronic
wavefunction can be obtained by quantizing the plane-wave component eik·r while leaving
un(r) unperturbed. This leads to QD eigenfunctions near the Γ point in the form of

ψn,k(r) = un(r)φk(r), (1.2)

where un is dictated by the material band structure and the quantized QD envelope function
φk(r) is dictated by the dot shape.

Since GaAs and InAs have different bandgaps, as represented on the energy diagram
in figure 1.2, electrons and holes can be trapped in the corresponding potential well. In an
extreme simplified picture, we can approximate a QD as a 3D infinite potential well and obtain
a first approximation for the envelop functions φk of electrons and holes. In the effective mass
approximation, this simplified model gives the energy between the excited states and the
fundamental state as [87]:

Ee,h =
~2π2

2m∗e,h

(
n2
x

L2
x

+
n2
y

L2
y

+
n2
z

L2
z

)
(1.3)

where nx, ny, nz are strictly positive integers labeling the quantization of k in each Cartesian
direction, me (resp. mh) is the effective mass of the electron (resp. of the hole) and Lx, Ly
and Lz are the dimensions of the well along x, y and z respectively. This 3D confinement
gives rise to ‘shells’ for the electron and the hole labeled s-shell, p-shell, and so on, analogous
to atomic physics.

In our case, the QDs are mostly flat in the (xy) plane and have a very small height, which
entails that there is only one accessible energy level in the z direction (nz = 1). Moreover, the
recombination time of an excited state corresponding to nx,y > 1 at 10 K is much slower (' 1
ns) than the thermalization of high-energy carriers to the lowest-energy state (< 50 ps). In the
following, we will be mostly interested in the optical recombination of single QDs brought to
their first excited state either by direct excitation or through non-resonant excitation followed
by rapid relaxation. Therefore we will only consider the ground state and first excited state
of the in-plane quantization to explain the transitions studied in this thesis.
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Figure 1.2: Sketch of the energy structure of a quantum dot. The energy gap for the wetting
layer and GaAs are also indicated. Here, s and p label the shell arising from the 3D confinement
of the slowly-varying component of the electronic wavefunction.

1.1.3 Occupancy of a quantum dot

The properties of the single-photons emitted by a QD depend strongly on the optical transi-
tion. In this section, I present the different accessible states for the QD, and relate them to the
different chapters of the thesis where I explore their properties in the context of single-photon
emission.

Different accessible states

The energy levels of the QD can be filled in different ways, as shown in figure 1.3. When they
contain an electron-hole pair, the corresponding state is often called exciton (X) although
the Coulomb interaction of the electron and hole is a perturbation. When there is an extra
hole (resp. electron) in the valence (resp. conduction) band, the transition is a positive (resp.
negative) charged exciton, also called trion, written X+ (resp. X−). Most charged exciton
transitions studied in this thesis are X+ transitions and will be referred to as trions unless
stated otherwise. Finally, QDs can also contain two electrons and two holes, in which case the
transition is called biexciton (XX). In this case, because of the Coulomb interaction between
the carriers, the energy of the biexciton is not exactly equal to twice the energy of the exciton.
For all these possible transitions, the recombination of an electron and a hole give rise to
the emission of a photon. The polarization of the emitted photon is governed by the optical
selection rules that we will discuss in section 1.2.
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Figure 1.3: Accessible first excited states of a QD.

Using n− i− p diode structures, it is possible to control the occupancy of a QD [88, 89].
In order to study the spin of trions, a 20 nm-thick Ga0.1Al0.9As barrier can be added above
the QD layer on the p-doped side in order to increase the hole capture time inside the QD
[90]. By creating an electron-hole pair in the QD with an additional laser, we can then trap a
hole since the electron quickly escapes whereas the hole can not, as shown in figure 1.4 [91].
It is even possible to have several extra charges, in which case we talk about X2+, X2−, etc.

Figure 1.4: Schematic of a doping structure allowing to trap a hole in a QD: a tunneling
barrier reduces the hole tunneling rate. Extracted from [91].

Excitons and trions optical transitions can both be used to generate single photons. When
the trion decays, the systems ends up in a state made of a single charge, which has a spin and
so can be used as a stationary qubit [92]. The generation of single photons using trions and
excitons is discussed in Chapter 2.

Biexcitons can be used to generate entangled photon pairs via the radiative cascade XX →
X → ground state. For that purpose, the excitonic wavefunction must have a specific level of
symmetry. This mechanism is the initial motivation for Chapter 4 of this thesis.

1.1.4 Hole energy levels

Every possible configuration of occupancy of the QD previously described contains a hole.
This brings up a more detailed discussion about the hole energy levels, since they influence
the properties of the emitted photons when this hole recombines with an electron.
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Figure 1.5: Schematic of the conduction and valence bands in the zincblende structure. Here, s
and p label the bands composed of molecular orbitals described by the fast-varying component
of the electronic wavefunction.

Let us consider an exciton in a QD and restrict ourselves to the highest occupied and
lowest unoccupied levels. Figure 1.5 presents the bulk valence and conduction bands for a
semiconductor with a zincblende structure such as GaAs and InAs. Each band from the
diagram corresponds to a given index n of the periodic component of the QD electronic wave-
function un(r) formed from the molecular orbitals of the lattice unit cell [86] (referred to as
s, p, d, etc., not to be confused with the shells introduced previously). As we can see on the
figure, the electron is in an s antibonding orbital of the conduction band and so its orbital
angular momentum Le is equal to 0, with only one projection m−l = 0. Its spin is equal to 1/2
and so it also has two possible states corresponding to the two projections of its spin along
the z axis: m−s = 1/2 and −1/2. We can also see that the hole is in a p bonding orbital of
the valence band and so its orbital angular momentum Lh is equal to 1, giving rise to three
possible projections: m+

l = −1; 0 or −1. Its spin is also 1/2, with two projections m+
s = 1/2

and −1/2. The electron has 2 possible states while the hole has 6 and so the total number of
accessible states for an exciton is 2× 6 = 12.

Let us first focus on the states of the hole. The six accessible states are represented in
figure 1.6.

Figure 1.6: Possible states for the hole of the exciton (tensor basis).

Following rules for the addition of angular momenta, the total angular momentum takes
two possible values (|1/2 + 1 = 3/2| or |1/2 − 1| = 1/2). The eigenstates for the hole in
the coupled basis are actually combinations of the six states constituting the tensor basis
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When we introduce the notations |⇑〉 for |m+
s = +1/2〉, |⇓〉 for |m+

s = −1/2〉, and |X±iY 〉√
2

for |m+
l = ±1〉, we retrieve the states given in reference [93], shown in table 1.1. The corre-

sponding energy diagram is plotted in figure 1.7.

Expression Name Notation
1√
2
|(X − iY ) ⇓〉 Heavy hole hh |−3/2〉

− 1√
3
|Z ⇓〉+ 1√

3
|(X − iY ) ⇑〉 Split-off so√

2
3
|Z ⇓〉+ 1√

6
|(X − iY ) ⇑〉 Light hole lh |−1/2〉

− 1√
3
|Z ⇑〉 − 1√

3
|(X + iY ) ⇓〉 Split-off so√

2
3
|Z ⇑〉 − 1√

6
|(X + iY ) ⇓〉 Light hole lh |+1/2〉

− 1√
2
|(X + iY ) ⇑〉 Heavy hole hh |+3/2〉

Table 1.1: Eigenstates for the hole.

Figure 1.7: Schematic of
zincblende bands in the
presence of spin-orbit cou-
pling. Eg is the gap energy
and ∆ the spin-orbit split-
ting.

The spin-orbit coupling results in a degeneracy lifting leading to a band called the “split-
off” band. The energy difference ∆ is big enough to not consider any mixing with the split-off
band (in the few hundreds meV range). This band structure describes the bulk crystal where
light holes and heavy holes are degenerate at k=0. The strain between the InGaAs and GaAs
layers actually entails a deformation that induces a large splitting between the heavy and
light hole bands [94]. Furthermore, when considering the QD confinement, the difference in
effective masses further splits those bands. In the end, the splitting between heavy and light
holes bands is on the order of 50 meV at k=0.

1.1.5 Excitonic case: exchange Hamiltonian

We consider now that the hole described so far is trapped with an electron in the QD. These
two particles are coupled by a direct Coulomb interaction, making them attract each other
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because they have opposite charges. If there is no extra charge involved, namely if the dot
is occupied by an exciton and not a trion, the hole and the electron are also coupled by a
Coulomb exchange interaction. This interaction is commonly split into two terms, namely
the short-range and the long-range exchange interactions [95]. The long-range part originates
from the interaction between dipoles located in different bulk unit cells [96], and is sometimes
neglected for solid-state QDs because its effect is screened by the bulk dielectric tensor [97].
In the following, we neglect the long-range interaction, but the concepts would stay similar
even if we were to take it into account. The spin Hamiltonian for the short-range part of the
electron-hole exchange interaction of an exciton is given by [98]:

Ĥexch. = −
∑
i=x,y,z

(aiJh,iSe,i + biJ
3
h,iSe,i) (1.5)

with Jh the spin of the hole, Se the spin of the electron and ai and bi the spin coupling con-
stants along each axis [99].

Using the electron spin matrices and heavy holes total angular momentum matrices, given
by:

Sx =
1

2

(
0 1
1 0

)
Sy =

1

2i

(
0 1
−1 0

)
Sz =

1

2

(
1 0
0 −1

)
(1.6)

Jx =
1

2


0
√

3 0 0√
3 0 2 0

0 2 0
√

3

0 0
√

3 0

 Jy =
1

2i


0

√
3 0 0

−
√

3 0 2 0

0 −2 0
√

3

0 0 −
√

3 0

 (1.7)

Jz =


3/2 0 0 0
0 1/2 0 0
0 0 −1/2 0
0 0 0 −3/2


In the basis {|+3

2
,+1

2
〉 , |+3

2
,−1

2
〉 , |+1

2
,+1

2
〉 , |+1

2
,−1

2
〉 , |−1

2
,+1

2
〉 , |−1

2
,−1

2
〉 , |−3

2
,+1

2
〉 , |−3

2
,−1

2
〉},

we get:

Ĥexch. =



δ0 0 0 δ3 0 0 0 −δ2

0 −δ0 δ4 0 0 0 −δ1 0
0 δ4 δ7 0 0 δ5 0 0
δ3 0 0 −δ7 δ6 0 0 0
0 0 0 δ6 −δ7 0 0 δ3

0 0 δ5 0 0 δ7 δ4 0
0 −δ1 0 0 0 δ4 −δ0 0
−δ2 0 0 0 δ3 0 0 δ0


(1.8)

where the couplings δk, k ∈ {1, ..., 7} are defined as follows:
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δ0 = −3/4(az + 9/4bz) δ4 = −
√

3
4

(ax + ay + 7
4
(bx + by))

δ1 = 3
8
(bx − by) δ5 = −1

2
(ax − ay + 5

2
(bx − by))

δ2 = 3
8
(bx + by) δ6 = −1

2
(ax + ay) + 5

2
(bx + by))

δ3 = −
√

3
4

(ax − ay + 7
4
(bx − by)) δ7 = −1

4
(az + 1

4
bz)

The exchange Hamiltonian is not sufficient to describe the band structure, especially to
consider for heavy/light hole splitting or mixing. For that purpose, we also take into account
the Luttinger-Kohn Hamiltonian [100, 101], which governs the behaviour of holes bands.
It was derived from the k ·p method using Bloch wavefunctions and is given in the basis
{|3/2, 3/2〉 , |3/2, 1/2〉 , |3/2,−1/2〉, |3/2,−3/2〉} by:

ĤLK =


P +Q −S R 0
−S∗ P −Q 0 R
R∗ 0 P −Q S
0 R∗ S∗ P +Q

 (1.9)

where P , Q, R and S are parameters that depend on the coupling between the bands, and
also on strain tensors if we take them into account through the Bir-Pikus term [102]. In the
basis {|+3

2
,+1

2
〉 , |+3

2
,−1

2
〉 , |+1

2
,+1

2
〉 , |+1

2
,−1

2
〉 , |−1

2
,+1

2
〉 , |−1

2
,−1

2
〉 , |−3

2
,+1

2
〉 , |−3

2
,−1

2
〉}, the

expression of these two Hamiltonians Ĥexch. and ĤLK combined into one is:

Ĥexch.+LK =



δ0+P +Q 0 −S δ3 R 0 0 −δ2

0 −δ0+P +Q δ4 −S 0 R −δ1 0
−S∗ δ4 δ7+P−Q 0 0 δ5 R 0
δ3 −S∗ 0 −δ7+P−Q δ6 0 0 R
R∗ 0 0 δ6 −δ7+P−Q 0 S δ3

0 R∗ δ5 0 0 δ7+P−Q δ4 S
0 −δ1 R∗ 0 S∗ δ4 −δ0+P+Q 0
−δ2 0 0 R∗ δ3 S∗ 0 δ0+P+Q


(1.10)

The heavy holes and light holes are split by ∆lh = |2Q|. In practice, this value is on the
order of magnitude of tenths of meV, and the heavy hole band is the closest in energy to the
conduction band (see figure 1.7), so we can neglect the light holes, under the condition that
there is no mixing of light holes and heavy holes (i.e. S = R = 0). This mixing effect will be
developed later.

Restriction to heavy holes

The total angular momentum component along the z axis (growth axis) is given by Jh,z = ±3/2
for the heavy holes and Se,z = ±1/2 for the electrons. Therefore, there are four possible
combinations to give excitonic states:
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|ψ+1
HH〉 =

∣∣∣∣32 ,+3

2

〉
hole

⊗
∣∣∣∣−1

2

〉
electron

|ψ−1
HH〉 =

∣∣∣∣32 ,−3

2

〉
hole

⊗
∣∣∣∣+1

2

〉
electron

|ψ+2
HH〉 =

∣∣∣∣32 ,+3

2

〉
hole

⊗
∣∣∣∣+1

2

〉
electron

|ψ−2
HH〉 =

∣∣∣∣32 ,−3

2

〉
hole

⊗
∣∣∣∣−1

2

〉
electron

(1.11)

These states are characterized by their angular momentum projections M = Se,z + Jh,z.
When the electron and the hole of these states recombine, the system is left in its ground
state that has a zero angular momentum. Then, the states with M = ±2 are not optically
active since light matter interaction conserves the angular momentum. They are thus called
dark excitons while the states with M = ±1 are called bright excitons.

In the basis (|ψ+2
HH〉 , |ψ

+1
HH〉 , |ψ

−1
HH〉 , |ψ

−2
HH〉), the Hamiltonian (1.8) is reduced to:

Ĥexch.+LK, HH =


δ0+P+Q 0 0 −δ2

0 −δ0+P−Q −δ1 0
0 −δ1 −δ0+P−Q 0
−δ2 0 0 δ0+P+Q

 (1.12)

The diagonal terms of this Hamiltonian show that there is a splitting between the bright
and dark states, equal to 2δ0. The off-diagonal terms δ2 show a mixing and splitting of the
dark states. Finally, the off-diagonal terms δ1 imply a mixing and splitting of the bright states
in the case where the in-plane rotational symmetry is broken, that is when bx 6= by. In terms
of symmetry, this means that the D2d symmetry is reduced to C2v (corresponding to one C2

axis and 2 σv planes, see figure A.1(c) in Appendix A). This splitting of the bright states is
called the fine structure splitting (FSS) [103].

Synthesis

All these considerations are synthetized in the diagram shown in figure 1.8.
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Figure 1.8: Diagram summarizing the accessible states for an exciton and their degeneracies
g (proportional to the thickness of the levels on the schematic).

In our samples, the fine structure splitting is usually on the order of 0 to 20 µeV.
We will see in Chapter 2 how the fine structure splitting influences the QD emission. There
are different ways to control the FSS that have been explored to allow for various applications.
This topic will be developed in Chapter 4.

1.2 Optical selection rules

Polarization is a very important property of light, especially in the context of quantum oper-
ations, since it is commonly used as a measured and encoded quantity. In QDs like in atoms
in general, the polarization of the emitted light depends on the states involved in the recom-
bination, following optical selection rules. In this section, we discuss the polarization of single
photons emitted from exciton and trion-based sources, that will be a central topic of Chapter
2. I will also use the fundamentals presented here for the optical selection rules of biexcitonic
radiative cascades in Chapter 4.

The optical selection rules in the dipole approximation are given by the dipole vector op-
erator d̂ =

∑
i qir̂i, where qi is the charge of particle i and r̂i is its position operator. In the

semi-classical approximation where we treat the field classically, the optical coupling between
an initial |i〉 and final |f〉 state is given by |dif · pl|2, where dif = 〈f |d̂|i〉 is the transition
dipole moment vector and pl is one of two orthogonal polarization unit vectors in the plane of
the QD. In the Bloch function approximation and for interband transitions, the selection rules
and emission polarization are governed by the change in band occupancy and the overlap of
the envelope functions dif ' 〈uf,n′|d̂|ui,n〉 〈φf |φi〉. Here, we consider s states of the envelope
function of both the electron and hole. Then, we focus only on the first term that determines
whether or not a QD optical transition is allowed and also its emission polarization properties.
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First, we define a quantum basis vectors for all the bright exciton states: we do not restrict
the discussion to the heavy holes. We thus consider heavy holes and light holes with an angular
momentum projection M = ±1:

|ψground〉 = |g〉

|ψ+1
HH〉 =

∣∣3
2
,+3

2

〉
hole
⊗
∣∣−1

2

〉
electron

|ψ+1
LH〉 =

∣∣3
2
,+1

2

〉
hole
⊗
∣∣+1

2

〉
electron

|ψ−1
LH〉 =

∣∣3
2
,−1

2

〉
hole
⊗
∣∣−1

2

〉
electron

|ψ−1
HH〉 =

∣∣3
2
,−3

2

〉
hole
⊗
∣∣+1

2

〉
electron

We know that states that have an angular momentum projection M = ±1 give rise to
circularly polarized photons when decaying to the ground state [104]. Left or right polar-
ization depends on the sign of M . Right circular arises from the recombination of |ψ+1

LH〉
and |ψ+1

HH〉, and left circular from the recombination of |ψ−1
LH〉 and |ψ−1

HH〉. The optical dipole
vector operator is given by the outer tensor product of the initial and final states multiplied
by their dipole moment vector giving rise to emission. Under its matrix form, in the basis
{|ψground〉 , |ψ+1

HH〉 , |ψ
+1
LH〉 , |ψ

−1
LH〉 , |ψ

−1
HH〉}, it is given by:

d̂ ' d


0 σ+ σ+ σ− σ−

σ− 0 0 0 0
σ− 0 0 0 0
σ+ 0 0 0 0
σ+ 0 0 0 0

 (1.13)

where d is the dipole magnitude and σ± are unit vectors giving rise to circular polarization.
For simplicity, we assume that the dipole magnitude for each optically-allowed transition is
roughly equal. In reality, the envelope functions for heavy and light holes may differ leading
to different dipole magnitudes. However, such a case does not alter the following discussion.

From now on, to compute the polarization vector of any transition from an initial state
to the ground state, we just evaluate the element of the dipole operator. For example, we
recover a σ+ polarization when computing 〈ψground| d̂ |ψ+1

HH〉.

1.2.1 Polarization emitted by excitons in absence of FSS or by
trions

In this section, we aim at determining the polarization emitted when an electron hole pair re-
combines in the case of an exciton showing a zero FSS. We will see that the same polarization
arises from the recombination of an electron-hole pair from a trion.

We focus on the bright states of the exciton and restrict Hamiltonian (1.10) to the basis:
{|ψ+1

HH〉 , |ψ
+1
LH〉 , |ψ

−1
LH〉 , |ψ

−1
HH〉}, corresponding to the combinations giving an angular momen-

tum projection of M = ±1. In this basis, the exciton Hamiltonian is written:

Ĥexch.+LK, Br. St. =


−δ0 + P +Q δ4 R −δ1

δ4 δ7 + P −Q δ5 R
R∗ δ5 δ7 + P −Q δ4

−δ1 R∗ δ4 −δ0 + P +Q

 (1.14)
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In this section, we suppose that there is no fine structure splitting (δ1 = 0), and that the hole
states are purely heavy (R = 0 and δ4 = 0). In that case, the eigenvectors of matrix (1.14)
are:

|ψ+1
HH〉 1√

2
(− |ψ+1

LH〉+ |ψ−1
LH〉)

|ψ−1
HH〉 1√

2
(|ψ+1

LH〉+ |ψ−1
LH〉)

The two eigenstates on the left contain purely heavy holes, whereas the two eigenstates
on the right contain mixtures of light holes. We are interested in the emission from the two
eigenstates of the left, since they correspond to the lowest-energy excited states.

In the case of a trion, one of the charges (either the hole for a positive trion or the electron
for a negative trion) is paired with the exciton. This pairing must satisfy the Pauli exclu-
sion principle. For example, in the case of a negative trion, we cannot have |ψ+1

HH〉 |−1
2
〉
electron

because this implies the state has two spin-down electrons occupying the s band. Hence,
the two lowest-energy excited states of the trion are |ψ+1

HH〉 |+1
2
〉
electron

and |ψ−1
HH〉 |−1

2
〉
electron

.

The corresponding ground states are then simply |ψground〉 |+1
2
〉
electron

and |ψground〉 |−1
2
〉
electron

.
This pairing of spins prohibits the exchange interaction in the excited state [105]. Thus, due
to spin-conservation, the polarization selection rules of the degenerate negative trion are also
dictated by the recombination of the heavy-hole eigenstates |ψ+1

HH〉 or |ψ−1
HH〉.

In both cases, excitons with no FSS or trions, the light-matter interaction governed by the
optical dipole vector operator (1.13) gives that the emitted polarizations are:

〈ψground| d̂ |ψ+1
HH〉 = dσ+

〈ψground| d̂ |ψ−1
HH〉 = dσ−

(1.15)

We can visualize the polarizations in polar plots as the one below in figure 1.9(a), that corre-
sponds to the polarizations σ+ and σ−.

1.2.2 Polarization emitted by excitons in presence of FSS

In that case, we set δ4 = 0 and δ1 6= 0. The eigenvectors of matrix (1.14) are:

1√
2

(|ψ+1
HH〉+ |ψ−1

HH〉)

1√
2

(− |ψ+1
HH〉+ |ψ−1

HH〉)

1√
2

(− |ψ+1
LH〉+ |ψ−1

LH〉)

1√
2

(|ψ+1
LH〉+ |ψ−1

LH〉)
(1.16)

The two eigenstates on the right are the same mixtures of light holes as previously. Here again,
the ones we are interested in are the two eigenstates on the left, since they are combinations
of excitons that correspond to the lowest-energy excited states.
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The optical dipole vector operator (1.13) gives that the emitted polarizations are:

1√
2
〈ψground| d̂(|ψ+1

HH〉+ |ψ−1
HH〉) =

d√
2

(σ+ + σ−)

1√
2
〈ψground| d̂(− |ψ+1

HH〉+ |ψ−1
HH〉) =

d√
2

(−σ+ + σ−)

(1.17)

These polarizations correspond to two orthogonal linear polarizations illustrated in figure 1.9.

(a) (b)

Figure 1.9: (a) Intensity of emission (in units of dipole magnitude d) along a linear polarization
in polar coordinates, for the recombination of an exciton made of an electron and a purely
heavy hole and a zero fine structure splitting δ1 = 0. The two eigenstates recombinations
give rise to perfectly circularly polarized light, in opposite directions (since they have +1 and
−1 angular momenta). (b) Same for a non-zero fine structure splitting δ1 6= 0. The fact
that the lines go through zero shows that the emission is perfectly linearly polarized: the two
eigenstates recombinations give rise to perfectly linear and orthogonally polarized light.

In practice, the polarizations emitted by trions are not always perfectly circular: they
sometimes show some ellipticity. Also, polarizations emitted by excitons showing a non-zero
FSS are not always orthogonal, as we will observe experimentally in Chapter 2. This comes
from the heavy-light hole mixing, as we will see in the next section.

1.2.3 Polarization emitted by trions in presence of heavy/light hole
mixing

In the previous section, we explored the case where the energy eigenstates are composed
of electron spin states and pure heavy holes. However, in some cases, a mixing can occur
between the heavy holes and the light holes. This heavy/light hole mixing appears through
the non-diagonal terms of the Luttinger-Kohn Hamiltonian (1.9) through the coefficients R
and S.

It has been shown that these terms are non-zero when the QD presents an in-plane shape
anisotropy and when its major axis does not align with any of the cristallographic axes of
the semiconductor [106]. It can also arise from strain anisotropy [102]. In either case, a
heavy/light hole mixing occurs. Then, one can write the states of the lowest-energy holes (the
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ones recombining with the electrons to give a photon), as the following:

|φ±H〉 =
1√

1 + β2

(
|±3/2〉 − βe±2iθs |∓1/2〉

)
(1.18)

where β2/(1 + β2) is the probability for the hole to be light. If the mixing arises from strain,
then β = ρs/∆lh in the approximation of weak valence-band mixing (ρs � ∆lh), where θs
is the strain orientation and the quantity ρs is the strain coupling amplitude [102]. For the
electron-hole pair, the state can then be written:

|ψ±H〉 =
1√

1 + β2

(
|ψ±1

HH〉 − βe
±2iθs |ψ∓1

LH〉
)

(1.19)

The optical dipole vector operator (1.13) gives that the emitted polarizations are:

〈ψground| d̂ |ψ+
H〉 =

d√
2

(σ+ − βe2iθsσ−)

〈ψground| d̂ |ψ−H〉 =
d√
2

(σ− − βe−2iθsσ+)

(1.20)

These two polarizations correspond to two elliptical counter-rotating polarizations. The re-
combination of electrons with light hole states |±1/2〉 gives photon polarization that is oppo-
site to the one rising from a recombination of electrons with heavy hole states |±3/2〉. The
corresponding polar plots are presented in figure 1.10.

(a) (b)

Figure 1.10: Intensity of the emission (in units of dipole magnitude d) along a linear polariza-
tion in polar coordinates, for the recombination of an electron with (a) a purely heavy hole
(β = 0). The emission is perfectly circularly polarized, as for an exciton without FSS. (b) a
mixed heavy/light hole state |φ+

H〉 (β = 0.2). The emission is not perfectly circularly polarized
anymore but elliptical: it contains a degree of linear polarization.

1.2.4 Polarization emitted by excitons with FSS and heavy/light
hole mixing

To take into account the fine structure splitting in the presence of heavy/light hole mixing,
we write the Hamiltonian in the mixed holes basis (MHB) {|ψ+

H〉 , |ψ
−
H〉}, with |ψ±H〉 defined
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in equation (1.19). The exchange Hamiltonian has the same expression as in the other basis,
with an extra phase:

Ĥexch., MHB =

(
δ′0 δ′1e

2iθ′d

δ′1e
−2iθ′d δ′0

)
(1.21)

where δ′0 and δ′1 are not necessarily equal to δ0 and δ1 respectively because they include
contributions from splitting and mixing between the light hole components of |ψ±H〉. The
quantity θ′d depends primarily on the dot shape orientation θd [102] but can also be influenced
by the strain orientation θs due to the hole mixing. Hence, the polarization selection rules
can be influenced by the subtle interplay between strain and shape anisotropy [102]. The
eigenstates of this matrix are:

|X〉 =
1√
2

(e2iθ′d |ψ+
H〉+ |ψ−H〉)

|Y 〉 =
1√
2

(−e2iθ′d |ψ+
H〉+ |ψ−H〉)

(1.22)

After replacing |ψ+
H〉 and |ψ−H〉 by their complex expressions given in equation (1.19), we get:

|X〉 =
1√

2(1 + β2)

(
e2iθ′d |ψ+1

HH〉 − βe
−2iθs |ψ+1

LH〉 − βe
2i(θ′d+θs) |ψ−1

LH〉+ |ψ−1
HH〉
)

|Y 〉 =
1√

2(1 + β2)

(
−e2iθ′d |ψ+1

HH〉 − βe
−2iθs |ψ+1

LH〉+ βe2i(θ′d+θs) |ψ−1
LH〉+ |ψ−1

HH〉
) (1.23)

The optical dipole vector operator (1.13) gives that the emitted polarizations are:

〈ψground| d̂ |X〉 =
d√

2(1 + β2)

(
σ+(e2iθ′d − βe−2iθs)− σ−(βe2i(θs+θ′d) − 1)

)
〈ψground| d̂ |Y 〉 =

d√
2(1 + β2)

(
−σ+(e2iθ′d + βe−2iθs) + σ−(βe2i(θs+θ′d) + 1)

) (1.24)

These two polarizations are linear and not perfectly orthogonal. The corresponding polar
plots are presented in figure 1.11.
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Figure 1.11: Intensity of the emission (in units of dipole magnitude d) along a linear polar-
ization in polar coordinates, for the recombination of an exciton that are made of an electron
and a mixed heavy/light hole. The emission is still perfectly linearly polarized, but the po-
larizations of the two dipoles are no longer orthogonal.

A mixing between the light and heavy holes arises from non-diagonal terms in the Luttinger-
Kohn Hamiltonian. These terms are large when the in-plane anisotropy of the QD is large
or when there is an anisotropic relaxation of strains in the QD plane, which contributes to
the non-diagonal terms through the Bir-Pikus term [102]. In our case, the elastic constants
tensor is very symmetric for InAs which is cubic. Thus if there are non-negligible non-diagonal
terms in the Luttinger-Kohn Hamiltonian, it is most likely due to an in-plane anisotropy of
the QD. Furthermore, our QDs are annealed, which relaxes the strains and makes them more
symmetric than before the annealing. Hence these effects should be relatively weak when
present.

1.3 Light-matter interaction

In this section, we further describe light-matter interaction phenomena at the core of our
studies. An excited QD can spontaneously emit a single photon with near unity efficiency,
but in all directions of space. To counter this issue, spontaneous emission can be controlled to
ensure that a QD emits in a well defined mode of the electromagnetic field. This can be done
by coupling the QD to a cavity [107]. In the first two subsections, we explore spontaneous
emission and its enhancement by a cavity using Fermi’s golden rule. We then discuss how to
deterministically prepare the QD in the excited state by introducing the Jaynes-Cummings
model to describe the coherent control of the QD using optical pulses.

1.3.1 Spontaneous emission in the bulk

We describe in this subsection the spontaneous emission rate by the QD in a bulk material [3,
108]. This gives us a reference for the spontaneous emission rate when the QD environment is
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not engineered to enhance the emission in a particular mode. We consider a two-level system
located in a dielectric material, such as GaAs in our samples, at position r = 0. The two-
level system has been brought to its excited state by optical excitation. Once the excitation
laser is off, the state of the electromagnetic field around the artificial atom is vacuum. The
phenomenon of spontaneous emission populates a state of the electromagnetic field with a
photon with a wavevector k and polarization p and leaves the two-level system in its ground
state. Such situation can be described using perturbation theory in the framework of Fermi’s
golden rule, that allows to calculate the transition rate from an initial state |i〉 to a final state
|f〉 given by [109]:

Γi→f =
2π

~
| 〈f | Ĥpert. |i〉 |2δ(Ef − Ei) (1.25)

where Ĥpert. is the perturbation undergone by the system.

Here the initial state is |i〉 = |e, 0〉 (an artificial atom in its excited state, and no photon)
and the final state can be |f〉 = |g, {k,p}〉 (the artificial atom in its ground state and a
photon in any mode of the continuum). Ei = Ee −Eg is the difference in energy between the
excited and the ground states. We sum over all the possible final states to obtain the total
spontaneous emission rate Γbulk

sp .

In the dipole approximation, the perturbation Hamiltonian is given by:

Ĥpert = −d̂ · Ê (1.26)

where d̂ is the dipole and Ê the electric field operators in the second quantization framework,
expressed as:

Ê(r, t) =
∑
k,p

i

√
~ω

2ε(ω)V
p(âk,pe

ik.r − â†k,pe
−ik.r) (1.27)

where âk,p and â†k,p are respectively the annihilation and the creation operators in the mode
{k,p}. ε(ω) is the dielectric permittivity of the medium and is equal to n2ε0. The quantiza-
tion volume is written V = L3.

We then obtain:

Γi→f =
2π

~

∣∣∣−〈g,k,p| d̂ · Ê |e, 0〉∣∣∣2 δ(Ef − Ei)

=
2π

~
Ef

2|n|2ε0V
d2|ez · p|2δ(Ef − Ei)

(1.28)

where d = | 〈g| d̂ |e〉 |, Ef = ~ω, and ez is a unitary vector aligned along the dipole direction.

For GaAs at 930 nm, the index real and imaginary parts values are respectively Re(n) = 3, 5
and Im(n) ' 0. We then assume that |n|2 ' Re(n)2 and write Re(n) = n.

We can also explicit the term |ez · p|2. Each wavevector k has two possible orthogonal
states of polarization, p1 and p2, but we can always choose them so that one of them (say
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p1) is orthogonal to the dipole oriented along ez. Then its contribution to the emitted field
is zero, as shown in figure 1.12. Hence, we take into account only the contribution from p2,
which is |ez · p|2 = sin2 θ where θ is the angle between the dipole d and the wavevector k.

Figure 1.12: Schematic showing how only one of the two possible polarization states (here
called p2) can be considered for each wavevector (see text).

The total spontaneous emission rate is given by the integral, over all the accessible energies
and solid angles, of Γi→f weighted by the density of states ρ(Ω, E) defined as:

dN = ρ(Ω, E)dEdΩ (1.29)

where dN is the number of states with energy in the range [E,E+ dE] and whose wavevector
points into the solid angle dΩ.

The corresponding volume in the wavevectors space is equal to d3k = k2dkdΩ, with dΩ =
sin θdθdφ, see figure 1.13.

Figure 1.13: Schematic of the elementary integration volume.

We obtain the density of states, or electromagnetic modes, in 3D by choosing a quantization
volume notated L3. With E = ~ω = ~kc

n
, we obtain d3k = n3E2

(~c)3 dEdΩ. We then divide this

volume by the volume of a single mode (2π/L)3 to obtain the number of modes in d3k. Then:

dN =

(
L

2π

)3
n3E2

(~c)3
dEdΩ (1.30)
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from which we deduce the density of modes:

ρ(Ω, E) =

(
L

2π

)3
n3E2

(~c)3
(1.31)

We can sum over the final states and obtain the total emission rate in an homogeneous
medium of refractive index n:

Γbulk
sp =

∫
Df

Γi→fdN =

∫∫
Γi→fρ(Ω, Ef)dEfdΩ (1.32)

where Df is the domain of final states. Replacing the different terms, one gets:

Γbulk
sp =

∫
Ef∈Df

∫∫
Ω

2π

~
Ef

2n2ε0V
d2 sin2 θδ(Ef − Ei)

(
L

2π

)3
n3E2

f

(~c)3
dEf sin θdθdφ (1.33)

and so

Γbulk
sp =

2π

~
Ei

2n2ε0

d2 8π

3

(
1

2π

)3
n3E2

i

(~c)3
=

d2nE3
i

3ε0π~4c3
(1.34)

Knowing that Ei = Ee − Eg = ~ω0, we finally obtain:

Γbulk
sp =

nω3
0d

2

3πε0~c3
(1.35)

with ω0 being the resonance frequency of the two-level system transition. The radiative lifetime
of the exciton in the bulk is given by T = (Γbulk

sp )−1. The order of magnitude of this value
when the QD is in a GaAs bulk is about 1 ns. Note that we get Γbulk

sp = nΓ0 with Γ0 being the
spontaneous emission rate in vacuum. Expression (1.35) was derived assuming a point dipole
in a continuous homogeneous medium.

1.3.2 Spontaneous emission in a cavity: the Purcell effect

The emission rate we just calculated corresponds to a quasi-isotropic emission in the bulk. It
has been shown that the fraction of photons one can actually collect from a source built from
a single InGaAs QD in bulk GaAs is lower than 1% [61]. This value can be increased [110]
by taking advantage of cavity quantum electrodynamics that makes it possible to collect the
emission into a well defined and oriented mode of the electromagnetic field. In this section,
we derive the emission rate of an emitter placed into a cavity [111], in order to then be able
to compare it to the spontaneous emission by the same atom in the bulk material described
in the previous subsection. The enhancement of spontaneous emission by a cavity is called
the Purcell effect [112].
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Figure 1.14: QD-cavity coupling parameters involved: γ is the QD spontaneous emission rate
derived earlier (Γbulk

sp ), κ is the cavity mode damping rate and g is the coupling between the
QD and the cavity mode.

The different parameters involved in the QD-cavity system are shown in figure 1.14. The
QD spontaneous decay rate γ was derived in 1.3.1 as Γbulk

sp , g is the atom-field coupling, and
κ is the cavity damping rate. We can define two regimes for the cavity’s behaviour: the
bad-cavity (resp. good-cavity) regime corresponds to R� κ (resp. R� κ) where [113]

R =
4g2(κ+ γ)

(κ+ γ)2 + 4δ2
(1.36)

is the effective rate of population transfer between the QD and the cavity mode, where δ
is the QD-cavity detuning. Typically in the samples studied in this thesis, we have ~g '
17 µeV, ~κ '500 µeV and ~γ '0.6 µeV. Hence we have κ � γ. In addition, under resonant
or quasi-resonant operation, we have that κ2 � δ2. Thus R ' 4g2/κ and then the condition
R � κ (⇔ R/κ � 1) effectively reduces to requiring g � κ. From the above quantities, we
can see that our samples are far into the bad-cavity regime since 17 µeV� 500 µeV.

Since the device operates in the bad cavity limit (g � κ), the spontaneous emission from
the QD is irreversible (the photons quickly escape from the cavity). Thus, here again we can
apply Fermi’s golden rule (recall equation (1.25)).

The density of electromagnetic modes coupled to the atom is modified when the atom
is placed into a cavity compared to when it is in the bulk. For an ideal cavity with no
losses, the mode density along the direction of quantization becomes discretized into a series
of infinitely narrow resonances with a separation dictated by the cavity geometry. However,
a cavity with losses will instead have a mode density given by a series of resonances with
Lorentzian shapes [114], each with a FWHM given by the damping rate of that resonance.
We can assume the cavity resonance ωc nearest to the QD resonance ω0 has a width κ that
is much smaller than the spectral separation between other cavity resonances. In this case,
since the QD resonance is much narrower than the cavity resonance (γ � κ), the QD will only
couple to one cavity resonance ωc. Then, since the mode density ρcav,1D(ω) has to respect the
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normalization condition: ∫ ∞
0

ρcav,1D(ω)d(~ω) = 1, (1.37)

the density of modes coupled to the QD, within the condition that κ� ωc, is:

ρcav,1D(ω) =
2

π~κ
κ2

4(ω − ωc)2 + κ2
. (1.38)

In practice, the cavity is a three-dimensional object that affects the density of modes in all
directions. However, to simplify the description, we consider that the total density of modes
can be separated into a sum of the density of modes of the bulk and the density of modes
of the cavity. This approximation is commonly done for micropillar cavities where no clear
modification of the spontaneous emission has been observed for a QD in a pillar detuned from
the cavity mode with respect to QDs in bulk [58]. Using equation (1.28) and integrating
over all the possible final states, we can express this idea mathematically by the following
expression:

ρ(ωf) = ρbulk(ωf) + δ(Ω− Ωcav axis)ρcav,1D(ωf) (1.39)

with Ωcav axis the direction of the emission in the cavity.

The total decay rate of the QD is then given by:

Γ = Γbulk
sp +

∫
Ef∈Df

∫
Ω

2π

~
Ef

2n2ε0V
d2 sin2 θδ(Ef − Ei)δ(Ω− Ωcav axis)

× 2

π~κ
κ2

4(Ef/~− ωc)2 + κ2
dEfdΩ,

(1.40)

where Ei = ω0/~. By evaluating Eq. (1.40), we obtain

Γ = Γbulk
sp +

2ω0d
2 sin2 θ

n2~ε0V

κ

κ2 + 4(ω0 − ωc)2
(1.41)

At perfect resonance between the atom and the cavity (ωc − ω0 = δ = 0) and assuming that
the dipole is oriented to maximize the light-matter coupling (θ = π/2), the rate of emission
is Γ = Γbulk

sp + Γcavity
sp where

Γcavity
sp =

2Qd2

n2~ε0V
, (1.42)

and where Q = ωc/κ is the cavity quality factor.

We define the Purcell factor by the ratio between the spontaneous emission rate from an
emitter in a cavity and the spontaneous emission rate from the same emitter in the bulk:

FP =
Γcavity

sp

Γbulk
sp

(1.43)

Substituting (1.35) and (1.42) into (1.43), we get:

FP = 6π
Qc3

n3ω3
0V

=
3

4π2

Q(λ/n)3

V
(1.44)
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where ω0/c is equal to 2π/λ. The Purcell enhancement is proportional to the ratio Q/V which
means that the higher the Q-factor is, or the smaller the mode volume of the cavity is, the
more the emission is accelerated into the cavity mode.

We can also define the mode coupling β as the fraction of photons emitted by the QD into
the cavity:

β =
Γcavity

sp

Γbulk
sp + Γcavity

sp

=
FP

FP + 1
(1.45)

This expression highlights that the higher the Purcell factor is, the closer to 1 is the fraction
of photons emitted into the cavity mode.

1.3.3 Jaynes-Cummings model and the semi-classical approxima-
tion

To observe spontaneous emission of indistinguishable single photons from our QD-cavity de-
vice, it is necessary to deterministically prepare the QD in the excited state [68]. This can be
done by applying a coherent pulse to the cavity, which in-turn excites the QD. In the bad-
cavity regime, if the timescale of the pulse is much faster than the Purcell-enhanced lifetime
of the QD, then we can approximate the excitation dynamics by neglecting the QD decay. In
addition, if the timescale of the pulse is much slower than the cavity lifetime, the cavity mode
amplitude becomes proportional to the incident coherent state amplitude. This allows us to
also neglect the cavity losses and instead treat the excitation dynamics as a simple coherent
interaction between a two-level system and a single electromagnetic mode.

The Jaynes-Cummings model describes the coupling between a two-level system and a
single electromagnetic mode [115, 116]. It is primarily used to capture the dynamics of a
QD in a high Q factor cavity, close to the strong coupling regime. However, in this section,
we present it to introduce the semi-classical approximation for a coherently-driven two-level
system. The Jaynes-Cummings model is also used in Chapter 2 to describe the coherent
dynamics of sources based on excitons coupled to a micropillar cavity.

Derivation of the Jaynes-Cummings Hamiltonian

The total Hamiltonian of the coupled light-matter system is written:

Ĥ = ĤA + ĤF + ĤAF (1.46)

where ĤA accounts for the atom, ĤF for the field and ĤAF for the interaction between the
two. Their respective expressions are:

ĤA = ~ω0 |e〉 〈e| (1.47)

with |g〉 the ground state, |e〉 the excited state and ω0 the atomic transition frequency,

ĤF = ~ω
(
â†â+

1

2

)
(1.48)
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with ω the cavity resonance frequency corresponding to a single mode, and

ĤAF = −d̂ · Ê (1.49)

just like in equation (1.26).

The dipole operator can be written d̂ = 〈e| d̂ |g〉 (|g〉 〈e|+ |e〉 〈g|) since 〈e| d̂ |e〉 = 〈g| d̂ |g〉 =
0 (by parity considerations). Then:

d̂ = dge(σ̂ + σ̂†) (1.50)

where σ̂ = |g〉 〈e| and σ̂† = |e〉 〈g| are the atomic lowering operator and raising operator
respectively, and dge = 〈e| d̂ |g〉 is the dipole moment of the atomic transition.
As before, in the second quantization framework, the electric field mode of the cavity is
written:

Ê(r) =

√
~ω

2n2ε0V
(f(r)â+ f∗(r)â†) (1.51)

where f(r) is the normalized spatial mode profile. Let r0 be the position of the QD with dipole
d̂. We define the phase reference of Ê so that f(r0) is real. Then:

Ê(r0) =

√
~ω

2n2ε0V
f(r0)(â+ â†) (1.52)

The interaction Hamiltonian becomes:

ĤAF =

√
~ω

2n2ε0V
dge · f(r0)(σ̂ + σ̂†)(â+ â†)

= ~g(σ̂ + σ̂†)(â+ â†)

(1.53)

where we defined the atom-field coupling energy as:

~g =

√
~ω

2n2ε0V
dge · f(r0) (1.54)

The quantity g is the atom-field coupling defined in the previous subsection. We assume now
that the QD is at the field maximum so that f(r0) = e where e is a real unit vector. Then
dge.f(r0) = |dge| cosϑ, where ϑ is angle between the dipole dge and polarization of the cavity
mode e. When dge and e are parallel, ϑ = 0 and:

~g = d

√
~ω

2n2ε0V
(1.55)

When g � ω, the terms σ̂†â† and σ̂â do not conserve energy since they would correspond
to the emission of a photon as the atom goes from the ground state to the excited state, and
to the absorption of a photon as the atom goes from the excited state to the ground state
respectively. From a more mathematical perspective, we can use the following reasoning. In
the free-field case, the operators â and â† evolve as:

â(t) = â(0)e−iωt â†(t) = â†(0)eiωt (1.56)
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Similarly, for the free-atomic case:

σ̂(t) = σ̂(0)e−iω0t σ̂†(t) = σ̂†(0)eiω0t (1.57)

Then we have

σ̂â ∝ e−i(ω+ω0)t σ̂â† ∝ e−i(ω0−ω)t σ̂†â ∝ ei(ω0−ω)t σ̂†â† ∝ ei(ω+ω0)t (1.58)

For |ω−ω0| � ω+ω0, the first and last terms vary much faster than the two others. Then their
contribution would average to zero when integrating over time. Using that approximation,
called rotating wave approximation, the interaction Hamiltonian can then be written:

ĤAF = ~g(σ̂â† + σ̂†â) (1.59)

and the total Hamiltonian is:

Ĥ = ĤA + ĤF + ĤAF = ~ω0σ̂
†σ̂ + ~ωâ†â+ ~g(σ̂â† + σ̂†â) (1.60)

This Hamiltonian defines the Jaynes-Cummings model, which corresponds to an atom inter-
acting with a single and nearly resonant optical mode, within the rotating wave approximation,
ignoring any dissipation process such as spontaneous emission or any input or output from
the cavity [117].

Dynamics of a QD excited by a laser pulse

We use the Jaynes-Cummings model, and from equation (1.60), we move into the rotating
frame of mode â. The Hamiltonian becomes:

Ĥ = ~∆σ̂†σ̂ + ~g(σ̂â† + σ̂†â) (1.61)

where ∆ = ω0 − ω is the detuning between the field frequency ω and the natural oscillation
frequency of the atomic dipole ω0. We populate the cavity with laser pulses, that are coherent
states of light and that in turn excite the QD. Assuming that these coherent states of light
are intense (|α|2 � 1) so that it is not affected by the state of the QD, we can write the full
system state as:

|ψ(t)〉 = |φ(t)〉A |α〉F (1.62)

where |α〉 is a coherent state. This leads to the semi-classical Hamiltonian describing the
evolution of the two-level system:

ĤA = 〈α| Ĥ |α〉 = ~∆σ̂†σ̂ + ~g(σ̂α∗ + σ̂†α) (1.63)

We choose that α is real and let ΩR = 2gα be the Rabi frequency, that quantifies the strength
of the light-matter interaction. On resonance (∆ = 0), the atom Hamiltonian is then equal
to:

ĤA =
~ΩR

2
(σ̂ + σ̂†) =

~ΩR

2
σ̂x with σ̂x =

(
0 1
1 0

)
(1.64)

We can now solve the Schrödinger equation:

∂t |φ(t)〉 = −iΩR

2
σ̂x |φ(t)〉 (1.65)
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The solution has the form:

|φ(t)〉 = e−i
ΩR
2
σ̂xt |φ(0)〉 =

(
cos ΩR

2
t −i sin ΩR

2
t

−i sin ΩR

2
t cos ΩR

2
t

)
|φ(0)〉 = Û(t) |φ(0)〉 (1.66)

where Û(t) is the unitary transformation governing the state evolution. If the atom is initially
in the state |g〉 coupled to a resonant field, the populations in the two levels |g〉 and |e〉 are
given by:

Pe =

∣∣∣∣(1 0
)
Û(t)

(
1
0

)∣∣∣∣2 = sin2

(
ΩR

2
t

)
(1.67)

Pg =

∣∣∣∣(0 1
)
Û(t)

(
0
1

)∣∣∣∣2 = cos2

(
ΩR

2
t

)
(1.68)

Finally

Pe =
1

2
[1− cos(ΩRt)] (1.69)

Pg =
1

2
[1 + cos(ΩRt)] (1.70)

There is an oscillation in the populations between the two states |g〉 and |e〉, at an angular
frequency ΩR = 2~gα, called the Rabi frequency. Note that the coherent state amplitude
varies with time in the case of a pulsed laser excitation.

1.4 Description of our QD-cavity devices

1.4.1 Structures under study

In the context of this thesis, we study two-level systems in our InGaAs QDs artificial atoms
coupled to micropillar cavities as illustrated in figure 1.15(a). The devices are made from
a planar cavity made of 34 pairs of λ/(4n) thick GaAs/AlGaAs layers (λ being the QD
emission wavelength and n the material index of the layer), a λ/n thick layer of GaAs which
constitutes the cavity spacer and 16 other pairs of λ/(4n) thick GaAs/AlGaAs layers. The
layer of InAs QDs is vertically located at the center of the spacer. The top and bottom
layers act as distributed Bragg reflectors (DBRs) and allow for a vertical confinement of the
electromagnetic field. The pillar cavity is etched vertically from the top from this planar
sample to obtain a 3D optical confinement. The field is confined vertically by the two DBRs
and the vertical edges of the micropillar confine the field horizontally like in an optical fiber.
Finally, the cavity is a cylinder with a 13 µm height and a few micrometers wide, depending
on the sample and its purpose. In the (xy) plane, the QD should lie at the maximum of the
cavity electric field, which for a circular pillar fundamental mode corresponds to its center. In
the vertical direction z, the QD is also located at the antinode of the planar cavity mode.
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(a) (b)

Figure 1.15: (a) Sketch of QD-micropillar cavity device. (b) QD-cavity coupling: various
channels for the cavity mode damping (see text).

The different parameters involved in the QD-cavity system (spontaneous decay rate γ,
atom-field coupling g and cavity damping rate κ = κtop + κside + κbottom) are recalled in figure
1.15(b). Here, instead of considering the total cavity damping rate κ as in figure 1.14, we
consider the various channels for a photon to escape outside the cavity: from the top (κtop),
the side (κside), the bottom (κbottom). Only the fraction escaping from the top can be collected
to obtain a bright single-photon source. The micropillar is not perfectly circular and therefore
the cavity itself presents a small anisotropy leading to two nearly-degenerate linearly polar-
ized fundamental cavity modes. The energy difference typically amounts to 30-70 µeV which
is smaller than the cavity spectral linewidth of κ =200-500 µeV.

1.4.2 Deterministic QD-cavity assembling: in situ lithography

Quantum dots grow at random positions, but the light-matter coupling is optimized when the
QD is at the maximum of the cavity mode electromagnetic field. Before the development of
deterministic techniques to couple QDs to cavities, it was necessary to randomly build devices
and explore large numbers of sources in order to find one with good characteristics. The
cryogenic in situ lithography technique [66] allows to position the pillar center within 50 nm
of the QD and to adjust the pillar cavity diameter to ensure the spectral resonance between
the QD and the cavity lines. This technique was developed in our group in 2008. I briefly
present its principle.

Spatial matching

We recall that prior to this in situ lithography step, the sample is made of a planar cavity
with a layer of QDs in the middle of the λ/n thick GaAs spacer. The planar cavity is spin-
coated with an optical photo-resist, and set up on a motorized platform, that can be moved
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in all three directions of space. The sample is placed in a cryostat at around 7 K where an
optical lithography is performed while monitoring the QD emission properties. A red laser
(λr ' 830 nm) is used to non-resonantly excite the QDs in the sample. The photoluminescence
(PL) signal obtained is detected in a spectrometer equiped with a camera. When a QD with
the desired wavelength is detected, the sample is then moved around the position of this QD,
to get a scan of PL. This signal presents a spatial Gaussian shape with a FWHM of about
1 µm, and the QD can then be positioned at the maximum of PL, with an accuracy of ±50 nm.
Once the location is determined, a green laser (λg ' 530 nm) is switched on to expose the
photo-resist, which creates a circular mask later used to define the micropillar cavity. That
way, we ensure that the QD is positioned at the maximum of the pillar fundamental mode.

Figure 1.16: Schematic of the in situ lithography technique.

Spectral matching

The next important point is to have a spectral matching between the QD transition and the
micropillar fundamental mode. The wavelength of the cavity is determined by its radius. In
the first implementation of the lithography, we used the fact that a longer exposure and a
higher power of the green laser resulted in a larger radius of the mask defining the micropillar.
The resist exposure time was adjusted to obtain the desired pillar diameter.

After these two steps, the sample is brought back to room temperature. The photo-resist is
developed and used to obtain a hard mask for the etching of the planar cavity into micropillar
cavities.

1.4.3 Electrical control of the QD wavelength

The in situ lithography technique was improved over time and since 2014 [118], it is possible
to write an arbitrary pattern in the resist centered on the QD. This is especially useful to
implement an electrical control of the device. Indeed, the rough spectral matching obtained
with the in situ lithography process can be finely tuned by using an electrical control of the
QD transition wavelength through the confined Stark effect. For that purpose, each pillar
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is now connected through 1D ridges to a circular frame and a large mesa structure where
electrical contacts are defined, as shown in figure 1.17.

(a) (b)

Figure 1.17: (a) Schematic of an electrically controlled device. Figure taken from [119]. (b)
SEM image of one of the samples under study in this thesis: each wheel-shaped structure
represents a single microcavity coupled to a single QD transition.

The semiconductor layering is doped to obtain a p-i-n-type band structure, and allows us
to apply a bias voltage to the QD. This can be used to fine-tune the QD-cavity resonance
after fabrication via the Stark effect [118]. Applying a voltage also strongly reduces the charge
noise in the etched pillar samples. The particular geometry chosen to apply the bias plays a
key role in the new approach proposed in Chapter 4 to control the QD FSS.

All the concepts presented above, together with the endeavour to optimize the performance
of our devices, culminated in 2016 with the demonstration of a near-optimal solid-state source
of indistinguishable single photons [70]. Since then, our devices have been used in many
quantum optics applications both by our group and our collaborators, such as boson sampling
[71], single-photon filtering [120] and tomography of QD-induced polarization rotation [119].
More recently, they have been used to create path-entangled two-photon states [121], generate
photon-number superposition states [47] and construct linear cluster states [35]. In the next
section we present the experimental techniques used to characterize our devices.

1.5 Experimental techniques: excitation, collection and

characterization

In this section, we briefly describe the experimental techniques that we use to operate the
sources and collect the single photons. Then, we define the different figures of merit that are
commonly used in the community to characterize single-photon sources.

1.5.1 Excitation and collection of the single photons

The wavelength-tunable excitation lasers available in our lab are a Mira laser (from Coherent)
and a Tsunami laser (from Spectra-Physics), with repetition rates around 81 MHz. We control
the pulse duration by shaping the laser pulses using a 4-f filter, depicted in figure 1.18. The
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pulse is spectrally dispersed using a diffraction grating, and a narrow portion is selected using
a slit in order to obtain a pulse with a duration varying from 3 ps up to 25 ps. To achieve
even longer pulses, it is possible to use an etalon to filter an even narrower portion of the laser
spectrum. This technique is used in Chapter 3, where durations up to 80 ps are achieved.

Figure 1.18: Experimental setup used to shape the laser pulses based on a 4-f optical system.

Contrarily to non-resonant excitation schemes, resonant excitation of the QDs enables one
to reach near-unity indistinguishability by deterministically bringing the QD to its excited
state [68, 70, 122]. In order to excite the QDs resonantly, we reject the reflected excitation
pulse by filtering in polarization. The principle of the experimental setup to excite the QD
and collect the single photons from the devices is shown in figure 1.19.

Collection telescope

Excitation telescope

Excitation fiber

Collection fiber

Linear 
Polarizer

PBS

Objective

Cryostation

HWP

QWP

Collimator

Collimator

Mirror

Figure 1.19: Schematic of the optical setup used for resonant excitation of the QD devices.
The collection is crossed polarized to the excitation line. PBS: polarizing beam splitter, QWP:
quarter waveplate, HWP: half waveplate.

After choosing its wavelength and shaping its pulse, the excitation laser beam enters the
setup through a single-mode fiber; then a first telescope optimizes the spatial overlap of the
beam with the fundamental mode of the micropillar [66, 123]. An input polarizer sets the
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polarization along the reflection axis of a polarizing beam splitter (PBS). The beam is sent
through a 0.45 NA objective to a low vibration cryostat where the sample is cooled down
to 7 K. The QD emission is collected in the transmission mode of the PBS, orthogonal to
the input polarization. A half waveplate (HWP) and a quarter waveplate (QWP) are used
together to control the linear polarization sent on the cavity and to correct for any polar-
ization ellipticities. The laser reflected by the cavity is sent back into the excitation path.
In the collection path, a second polarizer improves laser extinction and a second telescope
adjusts the single-photon beam diameter to match the collection fiber mode. The collected
signal is then sent either into our spectrometer from Horiba, that allows for a spectral resolu-
tion corresponding to 75 pixels per nanometer, or into superconducting nanowire single-photon
detectors (SNSPDs), that show a jitter time of about 50 ps at the full width at half maximum.

We present in figure 1.20 an example of spectrum of the light collected via this setup from
one of our sources. A single emission line appears over the full spectrum with a linewidth of
18.5± 0.3 pm limited by the apparatus spectral resolution.

Figure 1.20: Example of spectrum acquired on one of our sources with the experimental setup
described in this section. The inset is a zoom on the QD emission line data and a fit by a
Lorentzian function of FWHM equal to 18.5± 0.3 pm.

1.5.2 Coherent control of a QD

Coherently controlling the QD allows for the deterministic preparation of the QD excited
state, leading to the generation of indistinguishable photons [68]. The coherent excitation of
QDs was theoretically described in section 1.3.3 making use of the Jaynes-Cummings model.
We can observe the derived Rabi oscillations (see equations (1.68) and (1.70)) by measuring
the countrate of emitted single photons while varying the excitation power in the pulsed
regime. The Rabi oscillation occurs during the excitation laser pulse. When the pulse ends,
the system returns to the ground state within a given decay time, emitting a photon with a
probability that is proportional to the probability for the system to be in the excited state.
This latter probability, given by equation (1.67), shows a dependence on sin2(ΩRt). The Rabi
frequency ΩR is proportional to the electric field amplitude [3], and so to the square root of
the excitation pulse power P . Thus, the QD emission oscillates with a phase ΩRτP (with
τP the pulse duration) that is proportional to

√
P . Such a power measurement is shown in

figure 1.21, for which the pulse duration was set to τP = 40 ps. The highest countrate of
single photons from the QD is obtained for ΩRτp ' π. In that situation, the probability of
excitation approaches 1. We call this condition as π-pulse excitation. Note that the contrast
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of the oscillation quickly decreases with the power. This is due to the Purcell-enhanced
spontaneous emission [124] that was not taken into account in the model discussed in section
1.3.3, but is non negligible on the timescale of the 40 ps pulses.

Figure 1.21: QD emission as a function of the square root of the power of excitation laser.
The pulse duration is set to 40 ps for the whole measurement. We define the π-pulse as the
power leading to the first maximum of emission intensity.

1.5.3 Temporal wavepacket profile

(a) (b)

Figure 1.22: (a) Experimental setup to determine the temporal wavepacket profile of the
emitted photons. (b) Typical measured temporal profile.

The temporal wavepacket profile gives information about the distribution in time of the pho-
tons emitted by the QD. It is measured by connecting the output single-mode fiber from the
setup to a single-photon detector, itself connected to a correlator as shown in figure 1.22(a).
The clock from the laser is sent to the correlator as well, giving a time reference at the repe-
tition rate of the laser (81 MHz, which corresponds to a pulse period of Tp ' 12 ns). We then
obtain a histogram representing the probability of photon arrival as a function of the arrival
time after the clock signal. An example is shown in figure 1.22(b).

In terms of quantum operators, the temporal wavepacket profile is characterized by the
average photon number detected per unit of time, written N(t) = 〈N̂(t)〉 = 〈â†(t)â(t)〉 where
â(t) and â†(t) are the propagating modes annihilation and creation operators respectively,
in units of

√
Hz and the expectation is taken for the quantum state of light produced by
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the QD. Note that here and everywhere in this section, we use the notation â(t) to describe
the continuum of propagating mode outside of the cavity in the time basis. This is not
to be confused with the stationary cavity mode â used to describe the Jaynes-Cummings
Hamiltonian in section 1.3.3.

1.5.4 Brightness

The efficiency of a single-photon source determines the speed of optical computation [125],
the rate of quantum communications [126] and the sensitivity in quantum sensing [127]. It
is then important to define universal quantities to compare the different single-photon source
technologies, quantify progress and identify the remaining challenges.

In the pulsed regime, the relevant value to characterize the efficiency of the source is the
average number of photons produced by the device after applying one excitation pulse, also
called brightness. In terms of quantum operators, this is the average number of photons
µ =

∫
N(t)dt from the source, where the integral is taken over one period of device excitation.

This can also be written in terms of the probability pn of obtaining n photons: µ =
∑

n npn.

In practice, the average number of photons is degraded by transmission losses incurred
after emission but before collection into an optical fiber. The average number of photons Bsmf

collected at the output of the single-mode fiber is the relevant figure for experiments exploiting
single photons. This is measured by connecting single-photon detectors to the collection fiber
(see figure 1.23) and then dividing the detection rate by the pulsed excitation repetition rate
[46] and correcting for the detector efficiency. Because the fibered brightness Bsmf depends on
losses that are independent of the single-photon source quality, it is still useful to estimate the
brightness from the source in order to compare different devices. To do this, we can correct
the value Bsmf by the global efficiency of our setup (transmission and output coupling), which
is approximately 40% in the present work, to obtain the first lens brightness B. This is the
average number of photons entering into the collection objective per excitation pulse.

ො𝑎𝑖

Collection 
setup

Single-mode 
fiber

First-lens
brightness

Fibered 
brightness

Figure 1.23: Experimental setup to measure the brightness of a source.

If the probability for the source to produce more than one photon per excitation is small,
then B ' p1 provides a good estimate of the single-photon brightness at the first lens Bs. We
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will discuss more about how to more accurately estimate Bs from B in the following section.

The single-photon first lens brightness of our sources is governed by the product of multiple
factors:

Bs = βηtoppQDηpol. (1.71)

The first factor β is the ratio Fp/(Fp+1) which is the probability for the photon to be emitted
in the cavity mode, as described in section 1.3.2. We refer to the second factor ηtop as the
extraction efficiency, which is the proportion of photons that are extracted from the top of the
pillar, over the whole cavity emission: ηtop = κtop/κ (see figure 1.15(b)). It is reduced when
photons are lost through the edges, through the bottom or through the arms of the device.
The third factor pQD is the occupation probability of the QD which is a combination of the
excitation probability discussed in section 1.5.2 and the probability of staying in a given charge
state. This latter probability can be different from 1 when the QD oscillates between two
optical transitions (blinking). Finally, ηpol is the degree of linear polarization and participates
in the brightness since the photons collected via the setup described in section 1.5.1 filters the
light from the pillar in polarization. Then, any light that is not linearly polarized, or that is
linearly polarized but not parallel to the PBS angle, is rejected. We will detail in Chapter 2 all
these factors, their impact on the brightness of the sources and how they could be improved.

1.5.5 Single-photon purity

Another important figure of merit is the single-photon purity. This quantity is used to charac-
terize the probability to obtain no more than one photon per pulsed excitation of the source.
It is measured using a Hanbury Brown and Twiss interferometer. The output beam from the
setup is sent into a beam splitter. The two outputs from this beam splitter are then monitored
by single-photon detectors, as shown in figure 1.24(a).

(a) (b)

Figure 1.24: (a) Hanbury Brown and Twiss interferometer. (b) Typical second-order correla-

tion histogram G
(2)
34 (τ) as a function of the delay between two detectors’ clicks.

A typical second-order correlation histogram characterizing the single-photon purity is
presented in figure 1.24(b). The peak at zero time delay on the obtained histogram is non-
zero when there is a non-zero probability for one excitation pulse to give two or more photons.
The expression of the plotted quantity is described by:

G
(2)
34 (τ) =

∫
G

(2)
34 (t, τ)dt (1.72)
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where the integral is taken over one period of excitation, and where G
(2)
34 is called the unnor-

malized second order correlation function. Its expression is:

G
(2)
34 (t, τ) = 〈â†3(t)â†4(t+ τ)â4(t+ τ)â3(t)〉 (1.73)

where the modes are represented in figure 1.24(a). For a perfectly balanced beam-splitter, the
input modes â1 and â2 and the output modes â3 and â4 are linked by the relation:(

â3(t)
â4(t)

)
=

1√
2

(
1 −1
1 1

)(
â1(t)
â2(t)

)
(1.74)

Here â1 is in the vacuum state. Consequently, we have that:

G
(2)
34 (t, τ) =

1

4
〈â†1(t)â†1(t+ τ)â1(t+ τ)â1(t)〉 =

1

4
G

(2)
11 (t, τ) (1.75)

We see that measuring G
(2)
34 (τ) then gives us access to the autocorrelation of our emission

G
(2)
11 (t, τ).

We quantify the single-photon purity by 1− g(2) where g(2) is the normalized second-order
correlation and which is given by the integrated coincidences around zero delay normalized
by the area of the side-band peaks:

g(2) =
A0

Auncorr

(1.76)

with A0 the area of the central peak of the interferogram, and Auncorr the average area of the
uncorrelated peaks.

In terms of correlation functions, these peak areas are given by:

A0 =

∫
τ'0

G
(2)
34 (τ)dτ =

1

4

∫
τ'0

G
(2)
11 (τ)dτ =

1

4

∫∫
τ'0

G
(2)
11 (t, τ)dtdτ

Auncorr =

∫
τ'Tp

G
(2)
34 (τ)dτ =

1

4

∫
τ'Tp

G
(2)
11 (τ)dτ =

1

4

∫∫
τ'Tp

G
(2)
11 (t, τ)dtdτ

(1.77)

For the case of Auncorr, the time τ ' Tp is much larger than the photon lifetime and so we can
assume the pulses are uncorrelated. This allows us to separate the intensity correlation by:∫∫

τ'Tp
G

(2)
11 (t, τ)dtdτ =

∫∫
τ'Tp
〈â†1(t)â†1(t+ τ)â1(t+ τ)â1(t)〉dtdτ

=

∫∫
τ'Tp
〈â†1(t)â1(t)〉〈â†1(t+ τ)â1(t+ τ)〉dtdτ = µ2

(1.78)

So, finally [128]:

g(2) =
1

µ2

∫∫
G

(2)
11 (t, τ)dtdτ (1.79)

The example in figure 1.24(b) corresponds to g(2) = 0.0237± 0.0004.
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Similar to the average photon number µ, we can also write the integrated intensity corre-
lation g(2) in terms of the photon number probabilities pn using the well-known [129] relation:

g(2) =
1

µ2

∑
n

n(n− 1)pn. (1.80)

From this relation we can see that, if the probability for more than two photons to be emitted
is small, then g(2) is well-approximated by g(2) ' 2p2/µ

2. In this same regime, the average
photon number is approximated by µ ' p1 + 2p2. Hence, we can then get a more accurate
estimate of the single-photon first lens brightness using the simple correction:

Bs ' B − B2g(2). (1.81)

However, this correction is very small for the values reported in this thesis, typically less than
1% of B.

1.5.6 Indistinguishability

(a) (b)

Figure 1.25: (a) Hong-Ou-Mandel interferometer. (b) Typical second-order correlation mea-
sured in a Hong-Ou-Mandel two-photon interference experiment. The peaks at ±12 ns present
a reduced area because of the unbalanced Mach-Zehnder configuration.

To implement logical gates between single photons, it is important that the generated pho-
tons are identical, or indistinguishable. This allows exploiting the quantum interference to
obtain probabilistic gates as introduced in the KLM scheme [130]. The indistinguishability
of successively emitted photons is quantified by the mean wavepacket overlap M between a
wavepacket emitted from a given excitation pulse and the one emitted from another excitation
pulse. In terms of quantum operators, its expression is the following:

M =
1

µ2

∫∫
|G(1)(t, τ)|2dtdτ (1.82)

where G(1)(t, τ) is the first order correlation function, defined as 〈â†(t+ τ)â(t)〉.

The photons produced by the source are temporally separated by a duration Tp ' 12 ns.
To measure their mean wavepacket overlap M , we first split the stream of photons into two
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paths using a beam splitter. We then delay one path by Tp and then input both paths into
a second beam splitter. With a probability 1/4, two photons from successive pulses arrive
simultaneously on the BS and interfere, providing information about their wavepacket overlap
[70, 131]. The experimental setup is shown in figure 1.25(a).

The measurement is based on the Hong-Ou-Mandel effect [132] which occurs when two
indistinguishable photons arrive at two different inputs from a beam-splitter. The quantum
character of the light leads to a coalescence of the photons, in other words they leave the
beam splitter through the same output. To explain it simply we can take the example of two
single photons in the same plane wave mode described by |ψ〉 = â†1â

†
2 |00〉12 arriving at a beam

splitter. Relation 1.74 gives that:

ψ =
1

2

(
(â†3)t + (â†4)r

)(
−(â†3)r + (â†4)t

)
|00〉34

=
1

2
(|2tr0〉+ |1t1t〉 − |1r1r〉+ |02rt〉),

(1.83)

where the indices r and t hold for reflected and transmitted respectively. When the photons
are indistinguishable, we have |1t1t〉 = |1r1r〉 so these two possible outcomes cancel out and
we are left only with situations where the two photons bunch.

The two outputs of the interferometer are monitored by single-photon detectors linked to
a correlator, and a typical histogram characterizing the photons indistinguishability is shown
in figure 1.25(b). If the two photons show any distinguishability, they have a non-zero proba-
bility to entail coincidences (simultaneous ”clicks” on the detectors). This increases the area
of the central peak on the interferogram. The HOM visibility is VHOM = 1−2A0/Auncorr where
A0/Auncorr is the ratio of coincidences to the uncorrelated peaks.

The example in figure 1.25(b) corresponds to VHOM = 0.895± 0.002.

As for the single-photon purity, we can describe this measurement in terms of mode oper-
ators and correlation functions. The measured quantity is, here again:

G
(2)
34 (τ) =

∫
〈â3(t)â4(t+ τ)â4(t+ τ)â3(t)〉dt (1.84)

We now use the methods presented in reference [133], to obtain the indistinguishability
from cross-correlations of the input states of the HOM beam-splitter.

To link the input state to the measured quantity G
(2)
34 (τ), we again use the beam splitter

relations. However this time, â2 is not in the vacuum state. We use relation (1.74) and inject

the expressions of â3 and â4 as a function of â1 and â2 in the definition of G
(2)
34 (t, τ). By

considering a separable input state (ρ̂12(t) = ρ̂†1(t) ⊗ ρ̂2(t)), we can split the averages: for
example 〈â†1(t)â†2(t + τ)â1(t)â2(t + τ)〉 = 〈â†1(t)â1(t)〉〈â†2(t + τ)â2(t + τ)〉. This assumption
is valid so long as the photons are not initially correlated, which is the usual case when the
excitation pulses are further separated in time than the lifetime of the source (T � 1/γ), or
if the photons arrive from independent sources.
Furthermore, we assume that the sources emitting into â1 and â2 are driven with a π-pulse
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and show a very low g(2) so that the single-photon coherence in the photon number basis is
almost zero 1. Then, we neglect the terms 〈â1,2(t)〉, 〈â1,2(t + τ)〉, 〈â†1,2(t)〉 and 〈â†1,2(t + τ)〉.
There is also no two-photon coherence, so the terms 〈â†1(t)â†1(t + τ)〉〈â2(t + τ)â2(t)〉 and
〈â1(t+ τ)â1(t)〉〈â†2(t+ τ)â†2(t)〉 vanish as well. Then expression 1.72 reduces to:

4G
(2)
34 (t, τ) = 〈â†1(t)â†1(t+ τ)â1(t+ τ)â1(t)〉 − 〈â†1(t)â1(t+ τ)〉〈â†2(t+ τ)â2(t)〉

+ 〈â†1(t)â1(t)〉〈â†2(t+ τ)â2(t+ τ)〉+ 〈â†1(t+ τ)â1(t+ τ)〉〈â†2(t)â2(t)〉
− 〈â†1(t+ τ)â1(t)〉〈â†2(t)â2(t+ τ)〉+ 〈â†2(t)â†2(t+ τ)â2(t+ τ)â2(t)〉

(1.85)

The second and fifth terms of equation (1.85) are conjugates:

− 〈â†1(t)â1(t+ τ)〉〈â†2(t+ τ)â2(t)〉 − 〈â†1(t+ τ)â1(t)〉〈â†2(t)â2(t+ τ)〉

= −2Re
(
〈â†1(t)â1(t+ τ)〉〈â†2(t+ τ)â2(t)〉

)
= −2Re

(
〈â†1(t)â1(t+ τ)〉〈â†2(t)â2(t+ τ)〉∗

)
(1.86)

Similarly to g(2) for the case of the single-photon purity (see equation (1.76)), we define

g
(2)
HOM as [133]:

g
(2)
HOM =

∫∞
t=0

∫
τ,0
G

(2)
34 (t, τ)dtdτ∫∞

t=0

∫
τ,n
G

(2)
34 (t, τ)dtdτ

(1.87)

In the numerator, integral in τ is taken over the 0th peak of the interferogram, whereas in
the denominator this integral is taken over any nth uncorrelated peak where n is an integer
strictly larger than 1.

The numerator of 1.87 is:∫ ∞
t=0

∫
τ,0

G
(2)
34 (t, τ) =

1

4

(
µ2

1g
(2)
1 + µ2

2g
(2)
2 + 2µ1µ2 − 2µ1µ2M12

)
(1.88)

and the denominator is:∫ ∞
t=0

∫
τ,n

G
(2)
34 (t, τ) =

1

4

(
µ2

1 + µ2
2 + 2µ1µ2

)
=

1

4
(µ1 + µ2)2 (1.89)

where we have introduced:

• g(2)
1 and g

(2)
2 the integrated second-order intensity auto-correlation function of modes â1

and â2:

g
(2)
i =

1

µ2
i

∫∫
〈â†i (t)â

†
i (t
′)âi(t

′)âi(t)〉dtdt′ (1.90)

which was already introduced in equation (1.79), and where µ1 and µ2 are the time-
integrated mean photon numbers, given by

µi =

∫
〈â†i (t)âi(t)〉dt (1.91)

1Note that when exciting with a pulse area lower than π, it was shown in reference [47] that the single-
photon wavepackets present a vacuum component with a coherence in the photon number basis.
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• The mean wavepacket overlap between modes âi and âj:

Mij =
1

µiµj

∫∫
Re
(
〈â†i (t′)âi(t)〉〈â

†
j(t
′)âj(t)〉∗

)
dtdt′ (1.92)

The separation in time between pulses Tp being much larger than the photon lifetime, we
can consider that the correlation between fields at times t and t + Tp is zero like we did for
equation (1.78). This is why M12 appears in the numerator (where τ is taken over the 0th

peak), and not in the denominator (where τ is taken over another peak). For the same reason,
in the denominator, 〈â†i (t)â

†
j(t+ τ)âj(t+ τ)âi(t)〉 → 〈â†i (t)âi(t)〉〈â

†
j(t+ τ)âj(t+ τ)〉 when τ is

of the order of magnitude of Tp or more. It then gives µ1µ2 after integration. In a nutshell,
in this section we make the assumption that there is no correlation between photons from
successive pulses.

We introduce ḡ(2), which is the weighted average of g
(2)
1 and g

(2)
2 by the ratio of µ1 and µ2:

ḡ(2) =
1

2

(
µ1

µ2

g
(2)
1 +

µ2

µ1

g
(2)
2

)
(1.93)

Finally:

g
(2)
HOM =

1−M12 + ḡ(2)

(µ1 + µ2)2/2µ1µ2

(1.94)

The interference visibility, defined by VHOM = 1− 2g
(2)
HOM, is given by:

VHOM = 1− 1−M12 + ḡ(2)

(µ1 + µ2)2/4µ1µ2

(1.95)

If the interference is balanced, then µ1 = µ2 and VHOM = M12 − (g
(2)
1 + g

(2)
2 )/2 can be

used to solve for the mean wavepacket overlap M12. If both fields are in the same state, which
would be the case for a usual HOM interference characterizing our sources (see figure 1.25(a)),
the visibility reduces to the following correction factor:

VHOM = M − g(2) (1.96)

where M = M12 = M11 = M22 and g(2) = g
(2)
1 = g

(2)
2 .

This relation is valid for any two unentangled and identical input states.

When the beam splitter used to implement the HOM interference measurement is not
perfectly 50 : 50, relation (1.74) becomes:(

â3(t)
â4(t)

)
=

(
cosα − sinα
sinα cosα

)(
â1(t)
â2(t)

)
(1.97)

In that case, relation (1.96) becomes:

VHOM = 4RT (M + 1− g(2))− 1 (1.98)

where R = sin2 α and T = cos2 α are the reflection and transmission coefficients of the beam
splitter respectively.
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To sum up
In this chapter, we have introduced the fundamentals of single-photon emission from
semiconductor QDs in cavities. We have described the various optical transitions
and their optical selection rules, that are key features to understand the operation of
the single-photon sources studied in this thesis. We have detailed the subtle physics
that govern the polarization of the emitted photon and how the quantum dot reduced
symmetry plays a key role in it. We have then recalled the basics of light-matter
interaction to describe the spontaneous emission control exploited in this thesis to
obtain efficient single-photon sources and to coherently control the quantum dot
excitation. Finally, we have briefly described the experimental techniques adopted
during this work and introduced the various figures of merit to characterize single-
photon sources.
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Chapter 2

Trions and excitons as single-photon
sources: operation and reproducibility

High-quality single-photon sources are needed for quantum technologies: we need them to
show high brightness, good single-photon purity and high indistinguishability. These charac-
teristics are defined in Chapter 1. A high brightness ensures that quantum operations can
be performed at a high rate while a good single-photon purity and indistinguishability allow
for high fidelity and reliability of these operations. Several groups in the QD community
have achieved the fabrication of single-photon sources with state-of-the-art performances [61,
134–136]. However, another important feature that single-photon sources should provide is
reproducibility, to allow for future scalability. When quantum dots form during growth on
an etched substrate, they show inhomogeneous spectral resonances spanning 2 to 30 meV
[137–140]. In the case of a planar substrate, they appear at random positions on the samples.
Most high-performance sources rely on fabrication techniques where the spatial and spectral
matching of the QD-cavity coupling is not fully controlled. In that case, finding a source
showing a high QD-cavity coupling requires an exploration among a large number of devices -
sometimes in the thousands. This is not a feasible protocol for scalability, since the QD-cavity
coupling determines the source brightness, its spectral bandwidth through the Purcell effect
[112], and its degree of indistinguishability [141, 142]. More recently, several groups have
developed techniques to precisely position the QD in a photonic structure [143–145], but only
a few of them [70, 146] report the performance of more than one or two devices. To maximize
the possibilities of our semiconductor QDs for single-photon generation, we need to study a
large number of devices and understand the underlying physics.

The performance of the source depends on the precise QD transition on which it operates
and on the cavity properties. In this chapter, we first discuss the physics that determines the
source performance. The cavity birefringence imposes important constraints on the source
operation that we first discuss in section 2.1. Each source type is based on one of the two
different optical transitions described in section 1.1.3: the charged exciton (trion) or the
neutral exciton. In the context of single-photon generation, the trion-based sources are simpler
than the exciton-based sources. For this reason, I will first describe the case of the trion in
section 2.2 and then describe the case of the exciton in section 2.3. This analysis shows the
importance of properly identifying the QD transition. We then propose a new technique for
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identifying these optical transitions, based on their different behaviours when rotating the
excitation laser polarization. In section 2.5, we address the question of large-scale production
of identical single-photons by benchmarking fifteen of our sources from different samples,
showing their performance reproducibility. These sources were fabricated using the in situ
cryogenic photolithography technique [66], presented in 1.4.2, and studied in our group over
several months. Finally, we outline the remaining challenges for larger scale fabrication of
identical sources.
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2.1 Constraints imposed by the cavity birefringence

2.1.1 Position of the problem

The micropillar cavities in which the QDs are embedded do not show perfect cylindrical
symmetry. This is due to the etching step that is always slightly anisotropic: the [110] and
[1−10] directions of GaAs are not equivalent because of the chemical bounds’ orientations. The
micropillars thus present two perpendicular eigenaxes, that are associated with polarization
orientations labelled H and V [147]. We use the experimental configuration where the single
photons are collected (presented in figure 1.19 from chapter 1) in a cross-polarization with
respect to the laser polarization. I define the Hcoll axis as the collection orientation of the PBS,
which makes a 90◦ angle with the excitation polarization axis Vexc. These vectors orientations
are summarized in figure 2.1.

Figure 2.1: Polarization directions: cavity axes V and H and polarization of the excitation
and collection Vexc and Hcoll, respectively.

Let us consider now that a QD is embedded into the cavity, and is excited with a laser
with the aim of producing single photons. For φ 6= 0, we experimentally observe that part
of the excitation pulse is thus collected in the cross-polarized collection path, which severely
degrades the quality of the light emitted by the source, especially in terms of single-photon
purity and indistinguishability. This comes from the cavity birefringences which effectively act
as a waveplate as soon as φ 6= 0. In the following, we call “cavity-rotated light” the portion
of laser light that is collected in the cross-polarized collection path.

To avoid collecting cavity-rotated light from the excitation pulse, and instead collect only
the emission from the QD, it is thus necessary to align the excitation polarization Vexc with
the cavity polarization V . A pulsed excitation of the cavity mode aligned with V will in
turn excite the QD optical transition corresponding to that polarization. Then, if the cavity
dissipates much faster than the QD, the remaining light in the V -polarized mode of the cavity,
that has not been absorbed by the QD, will quickly dissipate and not be collected or affect
the emission dynamics of the QD.

Since the cavity and its birefringence have an effect on the characteristics of the light
collected from the sample in a cross-polarized configuration, we first provide a theoretical
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Figure 2.2: Representation of the cavity with the input and output modes, 〈âin〉 and 〈âout〉
respectively.

description for it.

2.1.2 Theoretical description of the cavity

The classical equation of motion for a cavity mode amplitude 〈â(t)〉 is [148, 149]:

d〈â(t)〉
dt

= −iωc〈â(t)〉 − κ

2
〈â(t)〉 − √ηtopκ〈âin(t)〉 (2.1)

where ωc is the central cavity frequency, ηtopκ is the coupling rate between the cavity mode
and the collection mode with κ being the Lorentzian FWHM of the cavity mode. The quan-
tity ηtop alone represents the proportion of light that is emitted upwards into the collection
mode, over the total emitted light. It accounts for the absorption by the material, scattering
in the arms of the device or emission towards the bottom of the pillar. In the devices studied
in this manuscript, ηtop is approximately equal to 80 − 90% [123]. The first term of equa-
tion (2.1), including ωc, corresponds to the classical oscillator dynamics. The second term
(κ/2)〈â(t)〉 leads to the damping of the cavity field amplitude with a rate κ/2. Finally, the
term −√ηtopκ〈âin(t)〉 takes into account the input (driving amplitude) incident on the cavity.
A diagram of the cavity is represented in figure 2.2. The output mode is given by the input-
output relation:

〈âout(t)〉 = 〈âin(t)〉+
√
ηtopκ〈â(t)〉 (2.2)

Let us solve these equations for a plane-wave input of frequency ω. To do so, we take
the Fourier transform of the equation of motion. Then, the Fourier transform of d〈â(t)〉/dt is
−iω〈â(ω)〉. For simplicity, we chose the same notation â for the Fourier-transformed amplitude
and for the time-dependent one. The differential equation (2.1) becomes:

−iω〈â(ω)〉 = −iωc〈â(ω)〉 − κ

2
〈â(ω)〉 − √ηtopκ〈âin(ω)〉 (2.3)

By dividing equation (2.2) by 〈âin(t)〉 and introducing the amplitude reflection coefficient
r(ω) = 〈âout(ω)〉/〈âin(ω)〉, we get that 〈â(ω)〉 = 〈âin(ω)〉(r − 1)/

√
ηtopκ. By injecting this in

equation (2.3), we get:

r(ω) = 1− 2ηtopκ

κ− 2iω + 2iωc

or r(δ) = 1 +
2iηtopκ

2δ − iκ

(2.4)

where δ = ωc−ω is the cavity-probe detuning. The real and imaginary parts of the reflection
coefficient as a function of δ/κ are plotted in figure 2.3(a).
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The squared modulus of the reflection coefficient |r(δ)|2 is shown in figure 2.3(b).

(a) (b)

Figure 2.3: (a) Reflection coefficient real (red solid line) and imaginary (dashed blue line)
parts, as a function of the cavity-probe detuning δ, for ηtop = 75%. (b) Squared modulus
of the reflection coefficient of the cavity, as a function of the cavity-probe detuning δ, for
ηtop = 75%. The value of ηtop governs the amplitude of the dip while the value of κ governs
its width.

We see next how one can experimentally obtain the curve from figure 2.3(b) and extract
some cavity parameters.

2.1.3 Reflectivity measurement

To obtain the cavities’ parameters, it is usual to realize a reflectivity measurement. This is
done by exciting the pillar with a continuous wave laser and scanning across the cavity modes
frequencies, or with a wide spectrum pulsed laser. The two methods are equivalent, although
in the second case it is necessary to normalize the reflectivity spectrum by the excitation laser
spectrum. The experimental setup is presented in figure 2.4.

Figure 2.4: Experimental setup for the measurement of the reflected light.

By looking at the signal from the collection path in a spectrometer, we can turn the
HWP and the QWP to extinguish the cavity-rotated light. We then know that the ex-
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citation polarization is aligned with H or V . In that configuration, the reflectivity spec-
trum gives the characteristics of the corresponding cavity mode only. To get the parame-
ters of the other cavity mode, we need to rotate the HWP by 45◦ and look at the reflec-
tivity spectrum again. As an example, we present reflectivity spectra for the two cavity
modes of one of our micropillars, in figure 2.5. Panels 1(a) and 1(b) correspond to the
normalized intensity of the laser (in orange) and the intensity reflected by the cavity (in
blue), for modes H and V respectively. For both sets H and V, the reflected intensity di-
vided by the laser intensity is shown on panels 2(a) and 2(b) respectively, together with
a Lorentzian fit. It corresponds to the theoretical figure 2.3(b). We extract the follow-
ing parameters: FWHMh = 0.358 ± 0.013 nm and λh = 924.551 ± 0.004 nm from panel
2(a), and FWHMv = 0.347 ± 0.014 nm and λv = 924.500 ± 0.004 nm from panel 2(b). In
units of energy, these correspond to ~ωh = 1.341949 ± 0.000006 eV, ~κh = 520±22 µeV,
~ωv = 1.342024± 0.000006 eV and ~κv = 504±20 µeV. The splitting between the two cavity
modes energies is equal to ∆c = 74±8 µeV, well below the cavity linewidth.

Figure 2.5: Normalized intensity of the laser pulse (orange solid line) of duration 2 ps corre-
sponding to a 0.66 nm width in wavelength, and intensity of the signal reflected by the cavity
(blue solid line) for the mode aligned with H (resp. V ) of the cavity in panel 1(a) (resp.
1(b)). For both sets of data, the reflected intensity is divided by the input intensity (blue
data points) and fit with a Lorentzian function. The result is displayed on panels 2(a) and
2(b).

2.1.4 Cavity-rotated light

Now let us suppose that we have an input polarization Vexc 6= V (see figure 2.1). We can then
define an input vector aligned with this polarization, with coordinates (− sinφ, cosφ) (along
the H and V axes respectively). Each polarization undergoes a transformation according
to the reflection coefficient for that mode. Since the H and V polarizations of the cavity
modes are orthogonal, their equations of motion are not coupled, and we can write the output
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polarization vector as follows:

vout =


− sinφ

(
−1 +

4iδh
2iδh + κh

)

cosφ

(
−1 +

4iδv
2iδv + κv

)
 (2.5)

Finally, to get the collected amplitude, we filter by the orthogonal polarization Hcoll, namely
take the scalar product of vout with the vector of coordinates (cosφ, sinφ). We obtain the
following expression for the collected amplitude:(

cosφ
sinφ

)
· vout =

i(δvκh − δhκv)
(κh/2 + iδh)(κv/2 + iδv)

sin(2φ) (2.6)

The different detunings involved are sketched in figure 2.6(a): δh (resp. δv) is the detuning
between the probe frequency of the exciting laser ωp and the h mode (resp. v mode) of the
cavity. We introduce the frequency detuning ∆p between the laser of frequency ωp and the
mean cavity frequency (ωh+ωv)/2, and the cavity splitting ∆c = δv− δh. Figure 2.6(b) shows
the intensity collected as a function of frequency detuning ∆p and cross-polarization HWP
angle φ. The intensity for ∆p = 0 is presented in figure 2.6(c). If Vexc does not align with
the cavity polarization V , namely if φ 6= 0◦[90◦], the cavity is excited in a superposition state
of the H and V polarization states of the cavity. If these two modes are not degenerate,
then the light in the cavity experiences a rotation of polarization, or birefringence. Such
polarization rotation has been recently used in the team of Löıc Lanco to measure the cavity
coupling accurately [123]. Over time after the excitation, the cavity-rotated light is reflected
off the cavity in a polarization that is not perfectly parallel to its initial polarization, so not
completely orthogonal to the collected polarization Hcoll. When we set κh = κv and ∆c = 0,
the 2D map from figure 2.6(b) is uniformly zero.

(a) (b) (c)
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Figure 2.6: (a) Diagram showing the different parameters: δh, δv, ∆p, ∆c. ωp is the probe
frequency of the exciting laser. (b) Theoretical map of the cavity-rotated light intensity for
the following set of parameters: κh = κv = κ and ∆c = 0.1κ. (c) Intensity of the light reflected
by the cavity as a function of the excitation polarization angle, for a probe laser frequency
half-way between the cavity mode resonances corresponding to H and V .
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Note that measuring a map of the intensity of the cavity-rotated light such as shown in
figure 2.6(b) does not allow us to extract precisely the parameters of the cavities (central
wavelength or width). The light collected is a superposition of both modes of the cavity, and
these modes are not resolved enough to allow for a reliable fit.

We focus now on what happens if a QD is coupled to such a birefringent cavity. We have
seen in Chapter 1 that there are several possible occupancies for QDs depending on its charge
state. We first focus on the case of the trion.

2.2 Trion-based sources

Trions are composed of an electron-hole pair with an extra charge. Once the electron-hole
pair radiatively decays, one charge is left, and its spin can be used as a stationary qubit.
In this section, I will talk about the characteristics of trions in the context of single-photon
generation, especially when embedded into a cavity and operated under resonant excitation
in a cross-polarization configuration.

2.2.1 Operation in crossed polarization

For the devices studied in this thesis, the trions are usually positively charged, since we set a
barrier reducing the hole tunneling rate [91], as shown in figure 1.4.

Figure 2.7: Panel (a) is a schematic of the energy levels and optical selection rules for a
single-photon source based on a positive trion. Panel (b) shows them with spin projections
expressed along an in-plane axis x (without magnetic field).

In the case of a positive trion, the system ground state is composed of two energy levels
of the hole spin state |⇑z〉 and |⇓z〉, which we define with a vertical quantization axis z. The
excited trion states |⇑⇓↑z〉 and |⇓⇑↓z〉 correspond to two holes with opposite spin states and
one electron. The optical selection rules governing the transitions are summarized in the en-
ergy diagram in figure 2.7(a). Similar rules apply in the case of a negative trion.

In the absence of an in-plane magnetic field, the two possible ground states |⇑z〉 and |⇓z〉
are degenerate, as are the two possible excited states |⇑⇓↑z〉 and |⇓⇑↓z〉. In that case, the

64



states and optical transition rules can be written in another basis. For example, we define:

|⇑x〉 =
1√
2

(|⇑z〉+ |⇓z〉)

|⇓x〉 =
1√
2

(|⇑z〉 − |⇓z〉)
(2.7)

and similar expressions for the excited states |⇑⇓↑x〉 and |⇓⇑↓x〉. These excited states are
then connected to the ground states |⇑x〉 and |⇓x〉 by linearly polarized optical transitions:

|H〉 =
1√
2

(|σ+〉+ |σ−〉)

|V 〉 =
−i√

2
(|σ+〉 − |σ−〉)

(2.8)

The subsequent optical selection rules in that new basis are shown in figure 2.7(b).

In the absence of spin initialization, namely when the hole spin is in a mixture of spin
up and down states, a Vexc-polarized optical excitation populates both trion states. If the
cavity is not too asymmetric, each of these excited states radiates Hcoll-polarized light with a
probability of 50%, for any value of φ.

The expression of the source brightness is given in section 1.5.4. The maximum brightness
one can extract from a trion in a cross-polarization setup would then be equal to one half of
βηtop multiplied by the probability of occupation (P (|⇑⇓↑x〉) + P (|⇓⇑↓x〉)).

2.2.2 Temporal wavepacket profile

The trion emission takes place in crossed polarization as soon as the excited state is popu-
lated. This happens on the excitation pulse timescale. The illustrated selection rules lead to
the generation of single-photon wavepackets with a mono-exponential decay, where the rise
time is governed by the excitation pulse length and the decay time by the Purcell-enhanced
spontaneous emission rate.

Figure 2.8 shows the emission dynamics of a trion-based single-photon source. It is
obtained by sending the collected signal from the collection setup into a superconducting
nanowire single-photon detector (with a given finite response), connected to an autocorrelator
as well as the laser clock as a synchronization entry, as described in section 1.5.3. The emission
intensity shows a short rise time followed by a mono-exponential decay.
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Figure 2.8: Time evolution of the emission for a source based on a trion, plotted linearly in
the upper panel and logarithmically in the lower one. The black points are the experimental
data, the red curves are the fits to the theoretical models for total intensity. The orange curve
presents the expected 15 ps FWHM Gaussian laser pulse, as measured by our detectors with
a finite temporal jitter of ∼ 40 ps.

The data (black points in figure 2.8) is fit using a mono-exponential decay, convolved with
a Gaussian function, to account for the finite detector response:

f(t) = αe−Γt ∗ e−t2/(2σ2) (2.9)

where t > 0, σ = FWHM
2
√

2ln2
is the Gaussian standard deviation and α is a free amplitude parame-

ter that depends on the integration time of the histogram. The fit gives a value of 164.9±0.9 ps
for the decay time, and a FWHM of 46 ps for the Gaussian to be in agreement with the mea-
sured rise time. This last value shows that the rise time is limited by the detector response,
since the excitation pulse was much faster (about 15 ps), while the finite detector response is
roughly 40 ps.

2.3 Exciton-based sources

We now turn to the more complex situation where a neutral QD is coupled to the cavity.

An exciton can be modelled by a three-level system: it comprises a single ground state
|g〉 and the two intrisic exciton eigenstates - hereafter labelled |x〉 and |y〉 - leading to an
emission in the corresponding linear polarizations X and Y . The two exciton states show a
fine-structure splitting (FSS) ∆FSS = Ey − Ex = ~ωxy presented in section 1.1.4.

The neutral exciton states of the QDs are coupled to the two orthogonal polarization
modes of the micropillar cavity. In the present section, we use the following notations, drawn
in figure 2.9: θ is the angle going from the x dipole of the exciton to the H polarization
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orientation and φ is still the angle going from the H polarization orientation to the collection
mode orientation, aligned along Hcoll. θ is random since we have no control over it in the
growth process. We will also use the notation h (resp. v) which is used to designate the index
of the cavity mode with H-polarization (resp. V -polarization).

Figure 2.9: Polarization directions: cavity axes V and H, exciton axes X and Y and polariza-
tion of the excitation and collection Vexc and Hcoll, respectively.

2.3.1 Theoretical description of an exciton-based SPS

The model presented in this section was developed in the frame of a collaboration between our
group and Dr. Stephen Wein from the group of Pr. Christoph Simon (University of Calgary).

Hamiltonian

The exciton-based sources can be modeled by two dipoles of a three-level system coupled
to two harmonic oscillators, corresponding to the h and v optical modes of the cavity, via
Jaynes-Cummings interactions (see section 1.3.3). This gives rise to a Hamiltonian with four
Jaynes-Cummings interaction terms between each combination of dipole and cavity mode:

1

~
Ĥ=δxx̂

†x̂+δyŷ
†ŷ+δhĥ

†ĥ+δvv̂
†v̂+gxh(x̂

†ĥ+x̂ĥ†)+gxv(x̂
†v̂+x̂v̂†)+gyh(ŷ

†ĥ+ŷĥ†)+gyv(ŷ
†v̂+ŷv̂†)

(2.10)
as written in the x–y linear dipole basis of the QD where ĥ and v̂ are the photon annihilation
operators of the horizontally and vertically polarized cavity modes, respectively, with detun-
ings δh and δv from the QD exciton transition. The QD is written in its eigenbasis of |x〉 and
|y〉 with a fine-structure splitting defined as ~ωxy = 2~δy = −2~δx and a ground state |0〉,
as shown in figure 2.10. The QD operators are defined as x̂ = |0〉 〈x| and ŷ = |0〉 〈y|. The
cavity bosonic operators follow ĥ |n〉 =

√
n |n− 1〉 and v̂ |n〉 =

√
n |n− 1〉 and δh and δv are

the cavity-probe detunings of the cavity modes. Note that for the sake of succinctness, we use
x̂† and ŷ† to represent the QD raising operators. They should not be confused with harmonic
oscillator creation operators or position operators.
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ħωxy 0

Figure 2.10: Energy level diagram for the exciton states coupled to two orthogonal cavity
modes where we define the zero-energy reference such that δy = −δx and where ~ωxy =
2~δy = −2~δx is the FSS. Arrows pointing down indicate negative detunings. The diagram
also includes the cavity mode detunings δh and δv; the four Jaynes-Cummings interaction
rates gxh, gyh, gxv, and gyv; and finally the dissipation rates from |x0〉, |y0〉, |0h〉 and |0v〉: γx,
γy, κh and κv respectively. These coefficients are taken into account in the model through the
Markovian master equation presented later.

The cavity-QD interaction arises from an electric dipole approximation, where the cou-
plings are given by equation (1.54). Let θij be the angle between the dipole di and the electric
field Ej.

gij = di.Ej = |di| cos θij

√
ωj

2~n2ε0Vj
, (2.11)

where i ∈ {x, y}, j ∈ {h, v}, with the notations introduced in section 1.3.1. Using the
orthogonality of the x–y and h–v axes, all the θij can be expressed as a function of θxh, that
is simply equal to θ, shown in figure 2.9. Then the cavity couplings are given by

gxh = gh cos θ, gxv = −gv sin θ, gyh = gh sin θ, and gyv = gv cos θ, (2.12)

where gj = d
√
ωj/(2~n2ε0Vj) and d = |dx| = |dy| (with j ∈ {h, v}). This last assumption

means that the two transitions have the same oscillator strength, which is not exactly the case,
but they are often quite similar. Although we will use these assumptions on the relationship
between cavity coupling rates to simplify our solutions, we will still use the former notation
during the majority of the derivations.

Single-excitation approximation

In order to analytically solve the dynamics of QD-based single-photon sources, it is useful to
use the so-called “single-excitation approximation”. This approximation consists in consider-
ing that there is at most one “excitation” in the system, which could be held in the QD or
the cavity, or any superposition of these. In other words, it is accurate so long as the energy
of the system is equal to or less than one quantum ~ω above the ground state energy, where
ω ' ωQD ' ωcav. It is a common assumption used to derive the standard Purcell factor [113,
150]. Here, it allows us to model the emission dynamics of the system, which can capture its
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basic characteristics in terms of intensity profile and brightness under certain conditions that
we will detail below.

In section 1.4, we have seen that under some conditions, Rj ' 4g2
j/κj where j ∈ {h, v}.

These conditions are that κ � γ (which is the case for our samples typical values) and that
κ2 � δ2, which is the case when we use resonant or quasi-resonant excitation. We recall
that for the samples we studied in this thesis, the different parameters are ~gj '17 µeV,
~κj '500 µeV and ~γ '0.6 µeV. These parameters mean that our samples are within the
bad-cavity regime since κj � Rj.

We assume that our system is initially constituted by the QD in its ground state with no
photons in the cavity. If one of the cavity modes (say V ) is excited with a laser pulse, the
cavity mode will quickly be populated with n photons. Thus, during the excitation pulse,
the populated cavity mode will increase the cavity-QD coupling to ∼

√
n+ 1gv. This allows

the pulse to quickly excite the QD. The timescale of the QD decay, defined as 1/(Rj + γ),
is approximately equal to 230 ps, which is very long compared to the timescale of the cavity
mode decay (1/κj ' 1.3 ps). Thus, when the pulse finishes, the cavity population decays
rapidly whereas the QD remains almost fully excited. In this situation, the single-excitation
approximation is accurate and the emitted single photon is dominated by the decay dynam-
ics occuring when the QD goes from its excited state to its ground state. Although I have
illustrated each of these steps discretely, in reality they all overlap. In particular, the QD
will begin being excited as soon as the cavity mode is populated with 1 photon and will
only finish being excited once the cavity has fully decayed. In addition, the above scenario is
valid only when the excitation laser pulse duration is much smaller than 1/(Rj + γ) so that
excitation and emission can be separated into two distinct timescales. It is mostly the case
in our experiments since we use durations up to 15 ps, which is very small compared to 230 ps.

In that single-excitation approximation, the subspace available to the evolving state is
then: {|g00〉 , |x00〉 , |y00〉 , |g10〉 , |g01〉} where we have dropped the commas for the sake of
clarity. From now on, since we are in the single-excitation approximation, we can restrict our
notation to (in the same order): {|00〉 , |x0〉 , |y0〉 , |0h〉 , |0v〉}. These states correspond to :

|00〉 ≡ |g00〉 = |g00〉 ↔ ground state of the total system (QD and cavity),

|x0〉 ≡ |x00〉 = x̂† |g00〉 ↔ one quantum of energy in the x dipole of the QD,

|y0〉 ≡ |y00〉 = ŷ† |g00〉 ↔ one quantum of energy in the y dipole of the QD,

|0h〉 ≡ |g10〉 = ĥ† |g00〉 ↔ one quantum of energy in the h axis of the cavity,

|0v〉 ≡ |g01〉 = v̂† |g00〉 ↔ one quantum of energy in the v axis of the cavity.

(2.13)

Without the single-excitation approximation, the available Hilbert space would be
{|000〉 , |x00〉 , |y00〉 , |010〉 , |001〉 , |x10〉 , |y10〉 , |x01〉 , |y01〉 , ...}, where we could have more than
one quantum of energy in the system at once.

In the single-excitation approximation, the Hamiltonian (2.10) can then be written in the
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matrix formalism, in the basis {|00〉 , |x0〉 , |y0〉 , |0h〉 , |0v〉}, as follows:

Ĥ = ~


0 0 0 0 0
0 δx 0 gxh gxv
0 0 δy gyh gyv
0 gxh gyh δh 0
0 gxv gyv 0 δv

 (2.14)

Note that without the single-excitation approximation, the Hamiltonian would be a matrix
of infinite dimension. See Figure 2.10 for an energy level diagram of this Hamiltonian in the
basis truncated to a single excitation.

Including dissipation: master equation

The dissipation of the QD and cavity modes, schematically represented in figure 2.10, can be
included formally using a Markovian master equation approach [151]:

d

dt
ρ̂(t) = − i

~

[
Ĥ, ρ̂(t)

]
+ γxD(x̂)ρ̂(t) + γyD(ŷ)ρ̂(t) + κhD(ĥ)ρ̂(t) + κvD(v̂)ρ̂(t) (2.15)

where D(Â)ρ̂ = Âρ̂Â† −
{
Â†Â, ρ̂

}
/2 for the cavity-QD system density operator ρ̂ and a

general system operator Â. The curly brackets represent the anti-commutator, such that{
Â†Â, ρ̂

}
= Â†Âρ̂ + ρ̂Â†Â. The term

{
Â†Â, ρ̂

}
is responsible for causing the amplitude

damping, or decoherence, of the excited state. That is, it is responsible for reducing the
probability of finding the state in the excited state corresponding to Â†Â. This reduction in
probability is perfectly compensated by the term Âρ̂Â†, which is responsible for causing the
system to ‘jump’ to the ground state so that the trace of ρ̂ is preserved.
The rates γx and γy correspond to the decay rate of the QD exciton states in the bulk, including
both radiative and potential non-radiative components.

Effective non-Hermitian Hamiltonian

Let us consider that the QD is excited at a time preceding t = 0, with a π-pulse excitation.
In that case, the initial state does not include coherence with the state |00〉. In addition, the
master equation (2.15) can never generate coherence between the ground state |00〉 and any
other state since it only models the passive system emission. Therefore, 〈00| ρ(t) |Φ〉 = 0 for
|Φ〉 in {|x0〉 , |y0〉 , |0h〉 , |0v〉} at all times t ≥ 0. In other words, the ground state |00〉 can only
ever incoherently collect population from the 4 decaying excited states. As a result, the only
nonzero density matrix element associated with |00〉 is the population 〈00| ρ(t) |00〉, which is
fully described by the evolution of the excited states by 1 −

∑
|Φ〉 〈Φ| ρ(t) |Φ〉. That is, the

ground state evolution is superfluous since it can be solely obtained by accounting for what
population is missing from the excited states. It is then possible to describe the evolution
of the full system with an effective non-Hermitian Hamiltonian [152], that includes all the
terms that govern only the evolution of the subspace {|x0〉 , |y0〉 , |0h〉 , |0v〉}. We can obtain
this Hamiltonian by rearranging the master equation (2.15), including the amplitude damping

part
{
Â†Â, ρ̂

}
of the dissipative operator D(Â) into the effective Hamiltonian.
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d

dt
ρ̂(t) = − i

~

[
Ĥρ̂− ρ̂Ĥ†

]
+ γxx̂ρ̂x̂

† + γyŷρ̂ŷ
† + κhĥρ̂ĥ

† + κvv̂ρ̂v̂
† (2.16)

where

Ĥ = Ĥ − i~
2

(
γxx̂

†x̂+ γyŷ
†ŷ + κhĥ

†ĥ+ κvv̂
†v̂
)
. (2.17)

This way of writing the master equation is equal to equation (2.15). In this form, we can
see that the evolution of the subspace {|x0〉 , |y0〉 , |0h〉 , |0v〉} is fully governed by the non-
Hermitian Hamiltonian Ĥ. The remaining terms in equation (2.16) serve only to connect the
subspace {|x0〉 , |y0〉 , |0h〉 , |0v〉} to the ground state |00〉.

In the matrix formalism, Ĥ is written as follows in the subspace {|x0〉 , |y0〉 , |0h〉 , |0v〉}:

Ĥ = ~


δx − i

2
γx 0 gxh gxv

0 δy − i
2
γy gyh gyv

gxh gyh δh − i
2
κh 0

gxv gyv 0 δv − i
2
κv

 . (2.18)

In the end, by analyzing only the time dynamics of the non-Hermitian Schrödinger equation

d

dt
|ψ(t)〉 = − i

~
Ĥ |ψ(t)〉 , (2.19)

we can obtain the dynamics of the intensity of the photons emitted by the QD into the cavity.

Initial state

To collect only the emission from the QD, and no cavity-rotated light from the excitation pulse,
as explained in section 2.1.1, we align the excitation polarization along one of the cavity polar-
ization, say V (that is φ = 0). We can then approximate the initial state of the excited system
to be the |v0〉 state, where |v0〉 = − sin θ |x0〉+ cos θ |y0〉 and |h0〉 = cos θ |x0〉+ sin θ |y0〉 rep-
resent the excited state of the QD dipoles that are aligned parallel to V and H, respectively.
These states correspond to one quantum of energy in a superposition of x and y dipoles of
the QD. They should not be confused with |0v〉 and |0h〉, which are the states of the system
corresponding to the QD in the ground state and one photon in the cavity with a polarization
V or H, respectively.

Change of basis

To obtain a simplified solution for |ψ(t)〉, we apply the relations of equation (2.12) and assume
γx = γy = γ. Then, we write the non-Hermitian Hamiltonian in the {|h0〉 , |v0〉} basis of the
QD defined above.

In the basis {|h0〉 , |v0〉 , |0h〉 , |0v〉}, the matrix Ĥ becomes

Ĥ =
~
2


−ωxy cos 2θ − iγ ωxy sin 2θ 2gh 0

ωxy sin 2θ ωxy cos 2θ − iγ 0 2gv
2gh 0 2δh − iκh 0
0 2gv 0 2δv − iκv

 . (2.20)
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Here we clearly see that the |v0〉 state of the QD only couples to the |0v〉 state of the cavity,
and likewise for the h-polarization. However, because |v0〉 and |h0〉 are not energy eigenstates
of the QD, they are coupled by the fine-structure splitting term ωxy sin 2θ. The energy diagram
of the exciton can then be represented as in figure 2.11.

Figure 2.11: Schematic of the energy levels and optical selection rules for a single-photon
source based on an exciton shown in the cavity polarization basis when φ = 0. This diagram
illustrates the {|h0〉 , |v0〉} basis of the exciton, which is not an energy eigenbasis. Thus the
blue arrows represent the off-diagonal elements and the gray double arrow represents the
difference in diagonal elements of the exciton Hamiltonian in the {|h0〉 , |v0〉} basis (the top
left 2× 2 matrix in (2.20)).

We can already comprehend why there is light from the QD coming out of the cavity col-
lected in the cross-polarization configuration. The coupling between the |v0〉 and |h0〉 states
of the exciton, which is proportional to the FSS, entails an oscillation of population between
those states (provided that θ 6= 0). Then, when the photon is emitted by the QD, it has a
time-evolving probability of being H-polarized.

On the other hand, if the FSS coupling was zero, the photons emitted by the QD would
be polarized in the same way as the exciting light, and then would be rejected by the PBS in
the collection setup. Also, if the FSS coupling was non zero but we were to excite the exciton
with a light polarized along |x0〉 or |y0〉 (which would be the case if θ = 0◦[90◦]), no signal
would be collected in crossed polarization either.

In the end, this behaviour where there is an exchange of population between the two
exciton eigenstates in time is similar to the cavity birefringence described in section 2.1, this
time driven by the emitter birefringence. Effectively, we align the excitation polarization so
that φ = 0 to not get any cavity-rotated light. If the QD and cavity do not have degenerate
axes (θ 6= 0), we then get light ’rotated’ by the QD.

Adiabatic elimination

To obtain an effective non-Hermitian Hamiltonian just for the QD states, we can ‘adiabatically
eliminate’ [150] the cavity state amplitudes by imposing 〈0h|ψ̇〉 = 〈0v|ψ̇〉 = 0. In physical
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terms, this approximation makes the assumption that dissipative rates κh and κv are much
larger than the coupling rate g so that the probability of having a photon in a cavity mode
h or v is proportional to the probability of the QD being in the corresponding state |h0〉 or
|v0〉, respectively. We are allowed to apply this adiabatic elimination only if the cavity is not
initially populated, which is the case since we approximate the initial state to be |v0〉 here.
Using the Schrödinger equation, we find the following proportionality relations:

〈0h|ψ〉 = − 2gh
2δh − iκh

〈h0|ψ〉 ,

〈0v|ψ〉 = − 2gv
2δv − iκv

〈v0|ψ〉 .
(2.21)

By substituting these relations back into the equations of motion for |h0〉 and |v0〉, we find
that the effective non-Hermitian Hamiltonian governing the evolution of the QD is

Ĥeff =
~
2

(
−ωxy cos 2θ − 2∆h − i(γ +Rh) ωxy sin 2θ

ωxy sin 2θ ωxy cos 2θ − 2∆v − i(γ +Rv)

)
, (2.22)

where ∆h = Rhδh/κh and ∆v = Rvδv/κv are the cavity-induced Lamb shifts with Rh =
4g2

h/κh(1 + 4δ2
h/κ

2
h)
−1 and Rv = 4g2

v/κv(1 + 4δ2
v/κ

2
v)
−1. These quantities Rj with j ∈ {h, v}

are the enhancements of the QD decay rate due to the Purcell effect, introduced in section
1.4 (equation (1.36) with γ � κj). Finally, θ is the angle between the QD x-dipole axis and
the cavity h polarization. Recall that this effective Hamiltonian reduced to the QD states is
only valid so long as κh and κv dominate the system rates. Hence, this adiabatic elimination
is only valid so long as the system is far in the bad-cavity regime (gh � κh and gv � κv), and
the initial state is within the QD subspace {|h0〉 , |v0〉}.

2.3.2 Temporal wavepacket profile

The evolution of the initial QD state |ψ(0)〉 = |v0〉 can now be solved exactly by diagonalizing
the 2× 2 effective non-Hermitian Hamiltonian. The population in |h0〉 is given by

|〈h0|ψ(t)〉|2 = |〈h0| e−itĤeff |v0〉|2

=
ω2
xy

2

(
cosh(Ωit)− cos(Ωrt)

Ω2
r + Ω2

i

)
sin2(2θ)e−Γt,

(2.23)

where Γ = γ + (Rh +Rv)/2 is the Purcell-enhanced decay rate and

Ωr + iΩi =
√
λ2 + ω2

xy + 2λωxy cos(2θ), (2.24)

where Ωr and Ωi are real numbers, and where λ = (∆h −∆v) + i(Rh − Rv)/2. The complex
parameter λ captures possible asymmetry of the couplings between the QD and the cavity
modes: λ is non-zero when the QD is closer in energy to one cavity mode than to the other
(namely δh 6= δv) and/or when the cavity axes show different linewidths (κh 6= κv). The
different configurations giving a non-zero λ are sketched in figure 2.12. The value Ωr is the
frequency of oscillation in the emission intensity. Under most conditions, Ωr is nearly equal
to the FSS of the exciton states (see below).
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Figure 2.12: Schematics of the different configurations where λ is zero (top left panel, where
κh = κv and δh = δv) or non-zero (panels (b) where κh = κv and δh 6= δv, (c) where κh 6= κv
and δh = δv and (d) where κh 6= κv and δh 6= δv). The green (resp. blue) curves represent the
QD dipoles (resp. the cavity modes).

From equation (2.21), the cavity population 〈ĥ†ĥ〉 is proportional to the population in the
QD excited state, by a factor |2gh/(2δh − iκh)|2 = Rh/κh. Hence, the emitted single photon’s
intensity will have the temporal shape given by

〈ĥ†ĥ〉 =
Rh

κh
|〈h0|ψ(t)〉|2

=
Rh

κh

ω2
xy

2

(
cosh(Ωit)− cos(Ωrt)

Ω2
r + Ω2

i

)
sin2(2θ)e−Γt.

(2.25)

In the particular case where the Purcell effect induced by each cavity mode is nearly equal
Rh ≈ Rv ≈ R and the cavity modes are nearly degenerate δh ≈ δv ≈ 0 so that |λ| � |ωxy|,
then Ωi ≈ 0 and Ωr ≈ ωxy, and the emission intensity simply becomes

〈ĥ†ĥ〉 =
R

2κh
(1− cos(ωxyt)) sin2(2θ)e−Γt (2.26)

where Γ = γ +R = γ(1 +Fp) is the Purcell-enhanced decay rate of the QD and R = 4g2/κ =
γFp is the emission rate via the cavity mode.

This model explains important features. The initial exciton state has no overlap with
the collection mode at t = 0. Thus the single-photon emission along Hcoll is delayed from
the excitation, with a timescale inversely proportional to the FSS. While both components of
the excited state decay with the total decay rate Γ, the emission in the Hcoll polarization is
modulated in time by the oscillation induced by ~ωxy. In the limit where ~ωxy → 0, we find
that no emission from an exciton in the cross-polarized collection mode is expected.
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An example of measured decay dynamics of an exciton is shown in figure 2.13. For visual-
ization purposes, I did not set the angle φ perfectly equal to zero for these data, so that some
cavity-rotated light is measured (see subsection 2.1.1). Hence, we detect both the laser pulse
rotated by the cavity and the exciton emission dynamics to compare the relative timescales.
The maximum of the single-photon emission is delayed by approximately 200 ps from the laser
excitation pulse. The overall exponential decay is governed by the Purcell-enhanced sponta-
neous emission rate, and is also modulated by the phase dependence of the frequency compo-
nents |x0〉 and |y0〉 at the rate ωxy. The experimental observations are accurately reproduced
by equation (2.26) using the parameters τ = 1/Γ = 252±3 ps and ~ωxy = 8.58±0.03 µeV.
The reduced contrast in the oscillations observed in the lifetime curve (the fact that it does
not go to zero in the dips) was found to be consistent with a finite gaussian detector response
time with a full width at half maximum (FWHM) of 53 ps (very similar to the one obtained
with the trion lifetime fit) which also dominated the observed width of the 15 ps Gaussian
excitation pulse.

Figure 2.13: Time evolution of the emission for a source based on an exciton, plotted linearly
in the upper panel and logarithmically in the lower one. The black points are the experimental
data. The blue curve is the calculated temporal profile for an exciton (equation (2.26)) after
taking into account the timing response of the detector and the orange curve is the contribution
from the laser. The red curves are the total intensities.

Note however that if |λ| is not very small compared to |ωxy|, the temporal profile of the
emitted single-photons might not be described by equation (2.26) anymore. In our case, the H
and V cavity parameters usually slightly differ (see figure 2.5). To get an idea of the effect of
this difference, I used expression 2.23 to plot in figure 2.14 the temporal profile of the emission
from a QD for which λ = 0 (a QD which energy is half-way between the two mode energies
of the cavity, that have equal energy linewidths), to compare with one corresponding to our
measured parameters orders of magnitude. We can conclude that in figure 2.13, although the
reduction of the contrast of the oscillations is probably also affected by this phenomenon, the
detector response clearly dominates this effect.
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Figure 2.14: Comparison of the temporal profiles of the emission from a QD coupled in the
same way to both modes of the cavity, namely when λ = 0 (solid red line), and from one
being coupled in different ways to the two modes of the cavity, namely when λ 6= 0 (dashed
black line). The upper panel shows a linear scale while the lower one is logarithmic. For the
case λ = 0, the parameters in units of energy are: κh = κv = 515 µeV, gh = gv = 17 µeV,
and δh = δv = 0. For the case where λ 6= 0, κh = 505 µeV, κv = 525 µeV, gh = gv = 17 µeV,
δh = − 40 µeV and δv = 40 µeV. For both cases, ω = 8 µeV, γ = 0.5 µeV and θ = 22.5◦.

2.3.3 Brightness from an exciton in the bad-cavity regime

A quantity we are interested in is the emission brightness B, as defined in section 1.5.4. The
brighter a source is, the higher the rate at which quantum operations or experiments can be
implemented is. Under resonant excitation, the physics described above in case of an exciton
sets an upper limit to this brightness.

The brightness emitted from the collected mode of the cavity, that we note ĥout, is given
by the integrated average photon number in that mode. It is equal to

∫∞
0
〈ĥ†out(t)ĥout(t)〉 dt.

Since we assume 〈ĥin(t)〉 = 0 during decay, we have from the input-output relation (2.2)
that 〈ĥ†out(t)ĥout(t)〉 = ηtopκh 〈ĥ†(t)ĥ(t)〉. Hence, the brightness is B = ηtopκh

∫∞
0
〈ĥ†(t)ĥ(t)〉 dt

where
∫∞

0
〈ĥ†(t)ĥ(t)〉 dt is the cavity population given in equation (2.25) (or in equation (2.26)

in the case that λ�FSS). We obtain:

B =
R

2
ηtop

∫ ∞
0

(1− cos(ωxyt)) sin2(2θ)e−Γtdt (2.27)

The analytical result is:

B =
1

2
ηtop

R

R + γ

ω2
xy

(R + γ)2 + ω2
xy

sin2(2θ) (2.28)

We recognize β = R/(R + γ) and ηtop from the definition of the brightness given in section
1.5.4. We have not considered the reduction of efficiency related to pQD, that leaves us with
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ηpol = 1
2

ω2
xy

(R+γ)2+ω2
xy

sin2(2θ).

The maximum of B is equal to 1/2 and is obtained when the following four conditions
are all satisfied: when ωxy � R + γ, R/γ (the Purcell factor) is big, θ is equal to 45◦ and
ηtop = 100%.
This means that the brightness is limited to 1/2 in the bad-cavity regime, which is defined by
R� κh, κv [113], in a cross-polarization setup.

If we take values (in units of energy) that correspond to our situation, for example
ωxy =8 µeV as in the case of figure 2.13, g =17 µeV, κ =500 µeV, γ =0.6 µeV and ηtop '
80 − 90% the conditions to reach B = 1/2 mentioned above are not fulfilled. The brightness
in that case is equal to approximately 30% (in the case where θ = 45◦).

We have seen earlier that our systems operate in the bad-cavity regime. But if the param-
eters turned out to be such that we are not as far into the bad-cavity regime, for example if
κ is smaller, then the brightness can slightly exceed 1/2 and the maximum is equal to 9/16.
The demonstration of this result is developed in Appendix B.

2.4 Rotated emission identification method

As shown before, the nature of the optical transition does not only control the temporal profile
but also determines the brightness of the sources. It is therefore important to develop tools
to identify the transition.

2.4.1 Motivation

Advanced equipment is required to observe the exciton FSS splitting. It can be done by means
of high resolution spectral analysis, which we use in Chapter 4, and that consists in rotating the
excitation polarization and measuring the wavelength of the emitted light with a high spectral
resolution system. This gives a sinusoidal behaviour and the wavelengths of the minima and
maxima correspond to the wavelength of the two dipoles. Another method is to measure the
emission dynamics with high temporal resolution, as shown in figure 2.13. In this section,
we propose another simple identification tool based on the polarization-dependent optical
selection rules. Thanks to this method, we are able to immediately determine the nature of
the transition we are studying in the lab, just using a standard resolution spectrometer.

2.4.2 Characterization using cavity-rotated light

The brightness of each source is determined both by the nature of the transition and, in
the case of excitons, the orientation of the cavity axes with respect to the QD dipoles, which
arises randomly during the growth process. In this context, it is useful to analyze the emission
collected in cross-polarization when turning the excitation polarization Vexc by an angle φ with
respect to the cavity axes, recall figure 2.9. For φ = 0, the excitation is parallel to the V cavity
axis and only the spectrally narrow emission arising from the QD is collected in the H-mode,
which corresponds to the configuration used for the source operation. However, when φ is
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different from 0◦ or 90◦, we can see a broader line, as shown in figure 2.15 for an exciton and a
trion. This is the cavity-rotated light, presented in 2.1. From an experimental point of view,
to vary φ and obtain figure 2.15, we turn the HWP after the PBS by an angle φ/2 in the
experimental setup described in section 1.5.1. To be able to visualize the cavity-induced light
rotation, we use 3 ps laser pulses, which are broader and filtered by the cavity mode. This
gives a result that is qualitatively similar to what would be obtained by scanning a narrow
band laser as calculated in figure 2.6. The emission of the cavity-rotated light is maximal for
around φ = 45◦ and 135◦ [123].

Figure 2.15: Spectra obtained for different values of the polarization angle of the excitation
φ, illustrating the cavity birefringence contribution. The upper (lower) panel corresponds to
an exciton (a trion), with the narrower signal from the QD highlighted in green (pink). In
both panels, the broader blue curve is the cavity-rotated light.

Case of a trion

The selection rules illustrated in figure 2.7 can be rewritten in any two-orthogonal linear
polarization basis, and the amplitude of the QD emission in the polarization orthogonal to
the excitation is independent of the orientation of the excitation.

Case of an exciton

In this section, we use the effective non-Hermitian Hamiltonian (2.22) again, describing the
evolution of the exciton. If the initial state is not equal to |v0〉 as in section 2.3.2, but to
|vexc0〉 instead, meaning that the excitation laser polarization makes an angle φ with the |0v〉
cavity axis, then the QD contribution to the collection will be given by the population in
|hcoll0〉, that is:

|〈hcoll0|ψ(t)〉|2 = |〈hcoll0| e−itĤeff |vexc0〉|2 (2.29)

For the sake of simplicity, we consider already that the coupling of the QD to both cavity
modes is symmetric, meaning that Rh = Rv = R and δh = δv = δ (case (a) in figure 2.12).
The effective non-Hermitian Hamiltonian (2.22) reduces then to:

Ĥeff = −1

2
(2∆ + i(γ +R))Î − ωxy

2
P̂ (−θ)σ̂zP̂ (θ) (2.30)
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where

P̂ (θ) =

(
cos θ − sin θ
sin θ cos θ

)
and σ̂z =

(
1 0
0 −1

)
(2.31)

are a rotation matrix by an angle θ and the z Pauli matrix respectively.

Since P̂ (−θ)P̂ (θ) = Î, we have:

Ĥeff = P̂ (−θ)
[
−
(

∆ +
i

2
(γ +R)

)
Î − ωxy

2
σ̂z

]
P̂ (θ) (2.32)

We notice that Ĥxy = −
(
∆ + i

2
(γ +R)

)
Î − ωxy

2
σ̂z, which is the effective Hamiltonian in the

x− y basis, is diagonal.
Also, we have (see figure 2.9):{

|hcoll0〉 = − cos(θ + φ) |x0〉+ sin(θ + φ) |y0〉
|vexc0〉 = − sin(θ + φ) |x0〉+ cos(θ + φ) |y0〉

(2.33)

We can now expand equation (2.29), knowing that 〈x0| e−itĤeff |y0〉 = 〈y0| e−itĤeff |x0〉 = 0,
since Ĥeff is diagonal in the x− y basis.

〈hcoll0| e−itĤeff |vexc0〉 = − cos(θ + φ) sin(θ + φ) 〈x0| e−itĤxy |x0〉

..................+ cos(θ + φ) sin(θ + φ) 〈y0| e−itĤxy |y0〉
(2.34)

Finally:

| 〈hcoll0| e−itĤeff |vexc0〉 |2 = sin2(2(θ + φ)) sin2

(
ωxyt

2

)
e−(γ+R)t (2.35)

This equation is equivalent to equation (2.26), but now the emission from the exciton is
proportional to the sine squared of 2(θ+ φ) instead of 2θ. It is then minimal if the excitation
polarization is aligned with an axis of the exciton. The signal from the exciton is maximal if
the sum θ + φ is equal to 45◦. So, to maximize the emission one needs to excite the QD with
a polarization that is half way between the two excitonic axes, but this does not coincide, a
priori, with the orientation of H or V , that are the excitation polarization orientations needed
to get no cavity-rotated light along with the single photons from the device. The ideal case
for the use of an exciton would then to get control of the relative axes orientation of the cavity
and QD, and then be able to set it at 45◦.

2.4.3 Experimental results

We now turn to experimental observations, one based on a trion and one based on an exciton.
By turning the half-waveplate angle, we vary the angle φ of the linear polarization with which
the QD gets excited, relatively to one of the cavity axes.
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Figure 2.16: Emission spectra measured as a function of φ for two devices: an exciton on the
left panel and a trion on the right one.

Figure 2.16 shows the spectra obtained by continuously rotating the HWP, as a function
of φ. The broader emission lines correspond to the cavity birefringence signal, the narrower
lines to the QD emission. We already notice that on the left panel, the intensity coming from
the QD varies with φ, while it barely varies on the right panel.

Figure 2.17: (a,b) Emission spectra measured as a function of φ for two devices: an exciton (a)
and a trion (b). The broader emission lines correspond to the cavity birefringence signal, the
narrower lines to the QD emission. (c) and (d) Peak intensity of the rotated light (blue) and
the QD emission (green, pink) as a function of the angle φ. The rotated light curve in panels
(c,d) are the maximum of the broader peak in panels (a) and (b) respectively, determined
by neglecting points surrounding the QD resonance. The QD trends are then estimated by
taking the maximum of the narrow QD resonance and subtracting the interpolated value of
the rotated light.

Figure 2.17(a) shows the emission spectra measured for the exciton, as a function of φ.
The fact that the cavity-rotated light spectrum is a bit more stretched on one side than on the
other could be explained by different cavity linewidths (κh 6= κv). To show this, figure 2.18
represents the same map as in figure 2.6(b) but with different parameters, especially κv 6= κh.
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Figure 2.18: Theoretical map obtained in the same way as figure 2.6(b), with the following
set of parameters: ~κh = ~κ =500 µeV, ~κv = 1.1~κ =550 µeV, ∆c = 0.1κ, and (λ1 + λ2)/2 =
925.2 nm. Here the intensity is plotted as a function of the wavelength on the horizontal axis,
to make the comparison with the experimental figures 2.17(a) and (b) easier.

Figure 2.17(c) presents the intensity of the cavity-rotated light and the QD emission (from
figure 2.17(a)) as a function of φ. The emission intensity arising from the exciton resembles
the squared sinusoidal dependance on φ predicted by equation (2.35). A laser polarized along
one of the exciton axes X or Y (φ+ θ = 90◦ or 0◦) excites an eigenstate of the system and no
emission takes place in the orthogonal polarization. The emission of the exciton thus depends
on the angle between the incident polarization and the exciton axes (θ+φ). This measurement
also allows to estimate θ by taking the difference between emission peaks or dips of the exciton
and the rotated light. For the exciton-based device in figure 2.17, this angle is estimated to
be θ ' −22◦ ± 6◦. The observed deviations from the expected squared sinusoidal trends may
indicate some non-orthogonality of the QD dipole axes, which can be explained by phenomena
presented in subsection 1.2, or a slight misalignment when turning the HWP. Figure 2.17(b)
and (d) show the same experiment and analysis on a trion-based source. The rotated light
arising from the cavity has a similar squared sinusoidal dependence but the trion emission is
roughly independent of φ, which is consistent with the explanation from section 2.4.2.

In the end, we have shown that we can easily identify the studied transition (exciton or
charged state). When turning the HWP, if the intensity of the light emitted from the QD
stays constant, we can deduce that we are observing a charged state. On the contrary, if the
intensity of the light shows a sinusoidal dependence on the HWP angle, then we know that we
are observing an exciton. The technique also allows identifying the various important angles
defining H, V , X and Y . We now use this identification technique to study 15 sources and
investigate how the source performances depend on the QD state.

2.5 Performance: benchmarking of sources

The structure of the sources reported here [70] are described in subsection 1.1.1. They have
been designed following the in situ process, presented in section 1.4.2. More specifically, the
layering comprises 14 (28) GaAs/AlAs Bragg pairs in the top (bottom) mirror. A 20 nm-thick
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Ga0.1Al0.9As barrier, positioned 10 nm above the QD layer, is used to increase the hole capture
time inside the QD [90] as mentioned in subsection 1.1.3.
The experimental setup is still the one described in 1.5.1. Using this cross-polarization con-
figuration, the source operation relies on the ability of the QD optical transition to generate
light in a polarization orthogonal to the excitation. In this section, we show that following the
optical transition under consideration (exciton or trion), the performance of a single-photon
source is significantly different due to the substantial differences in the emission process, that
were described in the previous section.

2.5.1 Presentation of the devices

Figure 2.19: Optical microscope image of a sample under study. Labels refer to the source
numbering used hereafter in the benchmarking.

We report sources from five samples (labelled from A to E) fabricated from the same 2-inch
wafer grown by MBE, allowing to process QDs with similar properties even before selection.
Each sample contains 15 to 30 sources. Only a few sources were investigated on samples A
to C and all sources were investigated on samples D and E. Among the studied sources, we
selected those giving a first lens brightness (see subsection 1.5.4) greater than 5%. For sam-
ples D and E, 6 and 4 sources passed this criteria respectively, corresponding to 20 to 25% of
sources per sample. In total, fifteen sources were selected. The labels in figure 2.19 show the
corresponding sources for sample D.

2.5.2 Measurement protocol

The sources are operated under resonant excitation in order to obtain the highest degree of
quantum purity. For each source, we determine the voltage maximizing the brightness and
then measure not only the figures of merit defining each source performance (single-photon
purity, indistinguishability and brightness), but also the emission wavelength and temporal
profile, that are critical characteristics for large-scale fabrication of identical sources.
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All figures of merit are reported using π-pulse excitation [153] with 15 ps pulses at a
repetition rate of 81 MHz. See Appendix C for g(2) and HOM histograms for each source.
The characteristics of a given source in different figures have been measured under the same
conditions.

2.5.3 Results and interpretation

We now present the main quantum properties of the fifteen selected devices.

Emission wavelength

Figure 2.20: QD emission wavelength, measured when the sources were tuned for maximum
brightness. The green squares represent sources based on excitons; the orange diamonds
sources based on trions.

The source operation wavelength is a key parameter for scalability. The typical inhomoge-
neous broadening of the InGaAs QDs spectrum is around 30 nm. However, this variation is
reduced when we implement the in situ lithography since we select QDs in a small spectral
range and fabricate pillars with the correct diameter to match the QD resonance, as described
in section 1.4.2. Figure 2.20 shows the QD emission wavelength at maximal brightness. We
observe an average wavelength of 924.7 nm with a standard deviation of 0.5 nm. The operation
wavelength of each device has been stable after more than 10 cooling cycles over their lifetime
of 3 years. The samples studied come from different locations of the same wafer. When con-
sidering sources from a given sample, which means from the same area of the original wafer,
the standard deviation is substantially reduced with 0.06 nm for sample D and 0.12 nm for
sample E, showing the high degree of control provided by the in situ lithography. The fact
that the average wavelength of the QDs varies from one location of the initial wafer to another
comes from the epitaxial growth process implemented in the C2N cleanroom. The different
molecular beams come with different angles with respect to the wafer. Thus, although we
make the wafer spin to homogenize the thickness of the different component layers across it,
the wafer is not perfectly invariant by translation in the plane. In industrial epitaxy growth
systems, the fabrication process would increase the yield of sources operating at the same
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wavelength.

The QD wavelengths reported in figure 2.20 were not optimized with the aim of getting a
high wavelength homogeneity but to have the maximum brightness. We could have reached
a higher spectral homogeneity by shifting the QD wavelength using the Stark tuning. With
modest applied voltages it is easy to tune the QD wavelength on the order of 0.1 nm. Tuning
the QD wavelength by about 0.06 nm would only lead to a small reduction to the brightness
since the typical spectral width of the cavity is about 0.2 nm.

Single-photon purity

Figure 2.21: Second-order correlation values g(2)(0), characterizing the single-photon purity,
measured when the sources were tuned for maximum brightness. The green squares represent
sources based on excitons; the orange diamonds sources based on trions. The horizontal solid
lines show the mean value for each type of source. The excitons present an average g(2)(0) of
2.89± 0.74% and the trions present an average g(2)(0) of 5.42± 0.92%.

Figure 2.21 shows the g(2)(0) values of the sources, with an average of 4.6±1.5%. The principle
of that measurement is described in section 1.5.5. We note that the single-photon purity
(1−g(2)(0)) is systematically higher for excitons than for trion sources. This can be understood
by comparing the different emission processes for each source type in cross-polarization (shown
in figure 2.8 and figure 2.13). Since the emission from the exciton through the H mode of
the cavity is delayed compared to the excitation pulse, the probability that the QD gets
re-excited afterwards is low because the excitation pulse is over. In the case of a trion, the
emission process in cross-polarization begins on the same timescale as the pulse and so there is
a higher probability of re-excitation of the transition within the same excitation pulse, leading
to the emission of a second photon [47, 154]. We will study this more in detail in Chapter 3.
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Indistinguishability

Figure 2.22: Measured visibility V of the photons (smaller points) and single-photon indistin-
guishability Ms, measured when the sources were tuned for maximum brightness. The green
squares represent sources based on excitons; the orange diamonds sources based on trions.
The horizontal solid lines show the mean value of indistinguishability for each type of source.

Figure 2.22 shows the visibility of the HOM interference between two consecutive single pho-
tons emitted with a 12 ns delay, as well as the single-photon indistinguishability. The descrip-
tion of the setup used to measure the visibility is given in section 1.5.6, as well as the definition
of the interference visibility and total mean wavepacket overlap. The single-photon indistin-
guishability is computed from the visibility following the formula Ms = (V + g(2)(0))/(1 −
g(2)(0)) [77]. We will detail the full justification for this expression in Chapter 3. The quantity
Ms is limited by inherent decoherence processes of the emitter rather than non-zero g(2)(0).
The average visibility of the various sources is 83.4± 4.3%. Their mean wavepacket overlap is
quite homogeneous, with an average value of 88.0± 3.1% corresponding to an average single-
photon indistinguishability of 92.2 ± 2.6%. Note that this indistinguishability is obtained
without spectral filtering and thus it includes the contribution from the phonon sideband,
which is partially suppressed by the cavity funneling effect [142, 155]. The excitons present
an average visibility of 87.8 ± 1.4%, a total mean wavepacket overlap of 90.7 ± 1.1% and
a single-photon indistinguishability of 93.4 ± 1.1%. The trions present an average visibility
81.2 ± 3.4%, a total mean wavepacket overlap of 86.6 ± 2.9% and a single-photon indistin-
guishability of 91.6± 2.9%. The slightly lower indistinguishability values of the sources from
sample E are likely due to a higher temperature on that chip (around 10–11 K instead of 7 K).
The higher temperature increases the rate of phonon-induced decoherence processes. When
neglecting sources from sample E, we find that there is no significant difference between the
single-photon indistinguishability of exciton and trion sources at 7 K. These observations also
show that, despite a very different temporal structure of the single-photon wavepacket in the
case of excitons, the coherence is highly preserved in the frequency domain over the emission
process.
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First lens brightness

Figure 2.23: Extracted single-photon rates at the output of a single-mode fiber, deduced using
a ∼ 30% efficient single-photon detector.

The measurement is performed by plugging the output single-mode fiber into a single-photon
detector, as described in 1.5.4. The table in figure 2.23 presents the fibered single-photon rates
obtained by dividing the detected count rates by the efficiency of our silicon based avalanche
photodiode (30% detection efficiency at ∼925 nm).

Element Transm. Uncert.
Cryostation
glasses 0.954 0.010
Objective 0.865 0.022
Waveplates 0.992 0.001
PBS 0.881 0.013
5 mirrors 0.981 0,010
Telescope 0.941 0.006
Collimator
+ collection fiber 0.65 0.05
Total 0.43 0.04

Table 2.1: Transmission coefficients and uncertainties for elements of the collection line.

Figure 2.24: First lens brightness, measured when the sources were tuned for maximum bright-
ness. The green squares represent sources based on excitons; the orange diamonds sources
based on trions. The horizontal solid lines show the mean value for each type of source. The
excitons present an average first lens brightness of 11.5 ± 3.7% and the trions present an
average first lens brightness of 14.7± 4.6%.
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The first lens brightness is obtained by correcting the values from table 2.23 by the trans-
mission losses of the setup, presented in table 2.1, and dividing by the repetition rate of the
excitation laser. The results are presented in figure 2.24. The average first lens brightness is
13.6 ± 4.4%. There is a big variation in brightness from pillar to pillar. For exciton-based
sources, the difference is mainly due to the variation in θ and FSS, which significantly affect
the source brightness in cross-polarization as described in section 2.3.3, and are not controlled
during the growth process. For trion-based sources the variation is most likely due to the
occupation probability, or the proportion of time that the QD spends in the desired charge
state, which can vary from device to device. The average first lens brightness of exciton-
based sources is lower than the one of trion-based sources, which can be explained by the
emission dynamics described earlier. The typical values of FSS we measure for the excitons
limit the ηpol factor in the definition of the brightness, whereas ηpol is just equal to 1/2 for
the trion-based sources. Note that when using equation (2.28) with the set of parameters
{ηtop = 85%, γ = 0.6 µeV, g = 17 µeV, κ = 500 µeV, ωxy = 8 µeV, θ = 22.5◦}, we obtain a first
lens brightness of 14.9%, which is within the uncertainty of the average first lens brightness
restricted to exciton-based sources given in figure 2.24, namely 11.5± 3.7%. I chose θ = 22.5◦

because it is the average value between 0◦ that would correspond to a 0-brightness and 45◦

that would correspond to a maximum brightness. These two extreme values θ = 0◦ and
θ = 45◦ give a first lens brightness of 0% and 29.8% respectively. Then we expect exciton-
based sources brightness to go from 0% to 29.8% in this configuration, depending on the value
of θ. For our devices based on trions, we expect a maximum brightness of βηtop/2 = 34%
in a cross-polarized setup with nearly degenerate cavity modes. This is a lot higher than
the average first lens brightness of 14.7 ± 4.6% for trions given in figure 2.24, which can be
explained by several reasons that are developed in the next section.
The obtained brightness values were on par with state-of-the-art values using a 0.45 NA collec-
tion objective, at the beginning of my PhD, in 2018. When the lab was moved from Marcoussis
to Palaiseau in 2018, the cleanroom stopped working and with the pandemic only restarted
end of 2020. We did not make any new sample for almost 3 years.

Temporal wavepacket profiles

To obtain identical remote single-photon sources, the temporal profile of the single-photon
wavepackets is another important feature to consider. The physics explained above about
the different time dynamics of the emission for excitons and trions in a cross-polarized setup
shows that the challenges are different for the two types of sources.
All the different excitons studied in this work show a FSS value ranging roughly from 5 to
10 µeV. I have shown in section 2.3 that their emission temporal profile is governed by this
FSS value as well as the asymmetry in the couplings of the QD to the cavity modes. This
adds extra challenges to the fabrication of identical sources, although many tools have been
developed in the last few years to get control over both the FSS [156] and the cavity birefrin-
gence [146]. We propose a new way of controlling the FSS in Chapter 4.

These complex features are circumvented when one considers sources based on a trion.
As we can see in figure 2.25, the temporal profiles of trion-based sources are more likely
to overlap, with an average decay time of 171 ps and a standard deviation of 27 ps (see
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figure 2.25). The variations in the decay time from device to device arises from variation of
the Purcell effect, considering that the QD-cavity detuning is set to maximize the brightness
and not the acceleration of spontaneous emission. We estimate that the mismatch between the
two trions in figure 2.25 with the most different temporal profiles (130 ps and 210 ps) would
reduce the maximum accessible mean wavepacket overlap between them to 94.4%. This latter
value has been obtained by applying the following formula: Mγ = 4γ1γ2/(γ1 + γ2)2 [157] with
γ1 = 1/130 ps−1 and γ2 = 1/210 ps−1. Thus, the variation in trion temporal profiles will likely
not be the primary limitation on the indistinguishability of remote sources in the near future.

Figure 2.25: Temporal profiles of trion-based sources corresponding to the wavelengths in 2.20
that are optimized for brightness. The profiles show an average exponential decay of 171 ps
with a standard deviation of 27 ps. The uncertainty in each fit is about 1 ps.

2.6 Discussion and perspectives

We now discuss the limitations to the source brightness, which appear as the next main
challenges for our technology. As described in section 1.5.4, the single-photon brightness
depends on several parameters as Bs = βηtoppQDηpol which should all be maximized. In the
devices studied during this thesis, a strong limitation comes from an imperfect extraction
coupling of βηtop ' 65%. Moreover, the use of a cross-polarization configuration of the setup
intrinsically limits ηpol. Finally many sources were not bright enough to be included in this
benchmarking because of a non-optimal occupation probability of the QD state and the limited
tuning range provided by the Stark effect. We discuss in details these various parameters.

Degree of linear polarization ηpol

In the present work, we studied cavities with a small birefringence in a cross-polarization
setup. We have shown that both the first lens and fibered brightness are then limited to at
most 50% for trions, 9/16 for excitons, due to the rejection of photons orthogonally polarized
to the collection mode. This limitation accounts for the ηpol factor in the definition of the
brightness, introduced in 1.5.4.

For a cavity extraction efficiency of 85% and a large enough NA, we expect a maximum
first lens brightness of 34% for our devices based on trions and 30% (based on the brightness B
calculated in section 2.3.3) for those based on excitons, in a cross-polarized setup with nearly

88



degenerate cavity modes. Trion-based sources with a perfect control of the occupation prob-
ability should be able to approach this 34% limit. On the other hand, bright exciton-based
sources require θ close to ±45◦ and a large fine-structure splitting ωxy to reach the brightness
limit of 30%. We present a method to control the FSS in Chapter 4, which might be used in
the future to reach a higher brightness in that context.

In 2019, the limit of 1/2 (resp. 9/16) for the brightness of a single-photon source based on
a trion (resp. exciton) in a cross-polarization configuration has been overcome using polarized
cavities [146]. In that paper, the authors use a strongly elliptical cavity, with a 2.1 µm-long
(resp. 1.4 µm-long) major (resp. minor) axis. The detuning between these two modes allow
them to have two different Purcell factors, say a small one for the V -polarized mode and a
large one for the H-polarized mode. The QD is excited with a V -polarized laser at a π-pulse
power (that corresponds to a stronger pulse than in the case of an isotropic cavity) and its
emission is far more enhanced in the H-polarized mode of the cavity, which is collected, than
in the V -polarized one. This strategy allows to go from a 50% loss due to polarization in the
case of nearly circular micropillars to a 3.8% loss only.

Another method to excite the QDs has been developed and is now routinely used by our
team. A diagram of its principle is shown in figure 2.26. It consists in using longitudinal
acoustic phonon-assisted excitation [158–161]. The excitation laser is set at an energy which
is the sum of the QD energy and the energy of one longitudinal acoustic phonon. This method
allows us to filter the reflected excitation laser in wavelength instead of in polarization. To
reach a high polarized brightness, the excitation is now polarized along one of a neutral
exciton’s axes, leading to a near-unity polarization for the emission. Using this approach,
we can overcome the ηpol brightness limitation due to polarization filtering, in addition to no
longer requiring a FSS larger than the decay rate for exciton-based sources. We obtained 51%
first lens brightness [162] with source 5 from the benchmarking study outlined in this chapter,
compared to the 15% presented here using resonant excitation.

Figure 2.26: schematic showing the principle of longitudinal acoustic phonon-assisted excita-
tion. Figure taken from [162].
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Extraction efficiency ηtop

The extraction efficiency, corresponding to the ηtop factor in the brightness definition, is in-
trinsic to the cavity and is very similar for all pillars (∼ 80−90%). This value is due to leakage
of photons through the arms of the wheel-shaped device (see figure 1.17(a)) or through the
vertical edge of the pillars. It can also be due to absorption losses in the doped layer designed
to apply the voltage. A detailed study of these various effects is under way within the postdoc
of Thi Huong Au and PhD of Mathias Pont.

Occupation probability and QD-cavity detuning

The average first lens brightness is further affected by the trion and exciton occupation prob-
abilities pQD. In our case, the occupation probability of the various QD states (empty QD or
charged QD) depends on two parameters.

• One of them is the applied voltage. However, this parameter is also used to control the
detuning between the QD and the cavity. Hence, the voltage that is chosen to tune the
QD in resonance with the cavity mode is unlikely to also be the optimal one for the cho-
sen charge state. This results in a large majority of devices with a reduced brightness.
This issue could be solved if the wavelength of the charge state corresponding to the
voltage maximizing its occupancy was known while implementing the in situ lithography
process, described in section 1.4.2. This is an ongoing project of the team.

• The other tool is the use of a second laser, detuned from the resonance. This second
approach is used in [91] where the authors use a CW laser at 901 nm wavelength to
control the occupation probability of source numbered 3 in this Chapter, reaching a
33 ± 5% first lens brightness, which is higher than the one displayed in figure 2.24
for the same pillar (around 19%). However, the brightness of source 3 given in [91]
was measured in a setup where the excitation laser was not as well filtered as in the
setup used to measure the data presented in 2.24. Consequently, the corresponding
single-photon purity and indistinguishability were worse. For this study, we chose a
set of data where the brightness was lower but where the single-photon purity and the
indistinguishability were better.

Even if we knew the exact wavelength of the QD charge state before etching, the diffraction
of the green spot on the photo-resist leads to a typical error of 200 nm in the pillar diameter
control. Also, a residual strain relaxation during the etching can deviate the cavity mode
energy from the expected one by typically 0.5 nm. Compensating the subsequent cavity-QD
detuning by applying a voltage can then move the state away from its optimal wavelength and
lead to a reduction of the occupation probability. New methods for mask lithography fabri-
cation were developed based on direct laser writing and allowing to reach nanoscale precision
on the designed microstructures [163, 164].
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Truncation of the single-photon beam by the objective

For the measurements shown in the benchmarking section, we used a long-distance microscope
objective with a numerical aperture of 0.45 placed outside the cryostat. The spatial truncation
of the beam caused by this objective leads to a deformation of the wavefront which reduces the
coupling into the single-mode fiber by 50 to 60%. Marie Billard, PhD student in Quandela,
showed that installing a high NA lens into the cryostat itself allows to strongly increase the
fibered brightness [165].

To sum up
We have studied how the micropillar cavities birefringence impacts the single-photon
sources operation under resonant excitation, investigated two different transitions in
QDs (trions and excitons) and their emission’s characteristics in a cross-polarization
setup. We have benchmarked 15 single-photon sources based on semiconductor QDs
for which we determined their optimal operation wavelength, single-photon purity,
indistinguishability, fibered brightness (for all the sources), and temporal profiles
(for the trion-based sources). By deterministically etching tailored cavities around
the QDs, we are able to obtain a large number of sources with highly homogeneous
properties, an important step towards scalability. We have finally discussed various
paths for further optimization.
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Chapter 3

Hong-Ou-Mandel interference with
imperfect single photon sources

For many quantum technologies, single photons with a high degree of indistinguishability are
needed. This is the case for quantum repeaters [166, 167] for example, that are necessary to
counter the optical losses when the photons go through fibers for secure long-distance com-
munications. Many quantum repeater protocols require Bell state measurements based on the
quantum interference of identical photons. Logical photon-photon gates in the framework of
linear optical computing [168, 169] also exploit their quantum interference. It is thus of crucial
importance to be able to precisely measure the indistinguishability of the light wavepackets
generated by our devices, as we did in the benchmarking presented in section 2.5.3. To quantify
the indistinguishability of single-photon wavepackets, we usually perform a Hong-Ou-Mandel
(HOM) interference [132], as described in section 1.5.6. Two indistinguishable single photons
incident at each input of a 50:50 beam splitter will exit the beam splitter together, resulting
in no two-photon coincidental detection events at both outputs. When the single photons
only exhibit partial indistinguishability described by a non-unity mean wave-packet overlap
M (that is also defined as the single-photon trace purity [170, 171]), coincidental detection
events are detected at the outputs and reduce the HOM interference visibility. In such case,
the interference visibility VHOM gives direct access to the single-photon indistinguishability,
M = VHOM [171].

For realistic sources, the wavepackets arriving at the beam splitter generally contain multi-
photon components that are quantified by the second order intensity autocorrelation at zero
time delay g(2), defined in section 1.5.5. These multi-photon components reduce the measured
visibility of HOM interference, since the cases where two photons arrive on the same input
of the beam splitter have a 1/2 probability of ending up on different detectors, increasing
the probability of coincidental detection. Even for an ideal single-photon indistinguishability
(corresponding to M = 1), the HOM interference does not show a 100% visibility if g(2) is
non-zero. In most cases and in particular for QD based sources, the multi-photon component
of the photonic wavepacket depends on the system parameters in a manner that is completely
independent of the single photon indistinguishability. To understand the physics at play in
our single-photon sources and improve their performance, it is critical to be able to access the
single-photon indistinguishability from the measured HOM interference visibility, knowing the
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single-photon purity.

It has been shown that the mean wavepacket overlap of the total input state Mtot (including
multi-photon components) is linked to the visibility of the HOM interference by VHOM =
Mtot− g(2) [133, 171, 172]. This formula, that we derived in section 1.5.6, can only be used to
estimate the indistinguishability of the single-photon part of the wavepacket in the limited case
where the additional photons are in the same spectral and temporal mode as the predominant
ones [173–175]. In section 3.2, we discuss how to access the single-photon indistinguishability
from the HOM interference visibility, knowing the single-photon purity. We limit the present
study to the case where the additional photons are separable from the main single-photon
wavepacket. We distinguish two limit cases, namely where the extra-photons that reduce the
single-photon purity are distinguishable from or identical to the main stream of single-photons.
In section 3.3, I show how we emulated the different cases. Then we identify the origin of the
imperfections for a source based on a trion and on an exciton, and apply the relevant formula
to correctly extract their intrisic single-photon indistinguishability Ms, in sections 3.4.1 and
3.4.2 respectively.
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3.1 Position of the problem

When a source shows a non-zero g(2), the visibility of its HOM interference is reduced since
the two detectors can detect coincidences even if the photons are indistinguishable. This
phenomenon is taken into account by the community, but no consensus had been found so
far about how to proceed. Indeed, in the literature for QD based single-photon sources, dif-
ferent correction factors have been used to account for an imperfect g(2). Some use M =
VHOM + g(2) [135, 155], others use M = VHOM + 2g(2) [70, 146], and some use M = VHOM ×
(1 + 2g(2)) [176].

Knowing the visibility of the HOM interference VHOM and the normalized second-order
intensity correlation function g(2) for a given source single-photon stream allows us to access
the mean wavepacket overlap of the state exiting the collection setup, using equation (1.96).
In this chapter, we differentiate the total state mean wavepacket overlap, that is the one of the
whole collected state (after losses) and that we write Mtot, from the mean wavepacket overlap
of the single-photon component at the source that we write Ms. This is relevant because it
is Ms, not Mtot, that tells us about the severity of various dephasing mechanisms impacting
the single-photon source. In addition, the multi-photon components that increase g(2) do not
come exclusively from the source, but may also arise from imperfect excitation laser rejection.
If any of these unwanted photons, or noise photons, do not have a good mean wavepacket
overlap with the single-photon component, which we define as Msn, then they inevitably con-
tribute to a reduced measurement of Mtot.

This project was conducted in close collaboration with Dr. Stephen Wein under the su-
pervision of Pr. Christoph Simon, from the University of Calgary. In particular, the model on
which this work was based and that is presented in section 3.2 was developed by Dr. Stephen
Wein. It is possible to derive the final formula from the Schödinger picture as we did in ref-
erence [77]. Here we present the derivation using the Heisenberg formalism as in section 1.5.

3.2 Relation between visibility and source mean

wavepacket overlap

The aim of this section is to derive a theoretical expression of the single-photon indistinguisha-
bility as a function of the measured quantities, namely the HOM interference visibility and
the single-photon purity.

The first step of the model is to build the imperfect “single-photon” state (g(2) > 0)
by mixing a true single photon (g(2) = 0) with a small amount of separable noise using a
beam splitter, as shown on the left part of figure 3.1. This assumption is valid when the
noise is not correlated with the main single-photon stream. The annihilation operators in
the various modes of the beam splitter are defined as âs, âr, ân and ât for “single photons”,
“reflected”, “noise” and “transmitted” respectively. This approach allows us to consider that
the additional photons leading to g(2) 6= 0 may not be in the same temporal mode as the
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main single photon. We limit our analysis to small g(2) values so that the noise field itself is
well-approximated by an optical field with at most one additional photon and a large vacuum
contribution. This restriction to a weak, separable noise field is relevant in practice for many
single-photon sources, as discussed later.

Figure 3.1: Diagram depicting the HOM measurement of an imperfect single photon modeled
by separable noise added to a perfect single photon.

We now calculate the total mean wavepacket overlap Mtot and g(2) of these imperfect single
photons, and use equation (1.96) to deduce the visibility.

In section 1.5.6, we derived the following general relation between the mean wavepacket
overlap of a state, that we write here Mtot and its g(2):

VHOM = Mtot − g(2) (3.1)

Expression of the first order correlation of the imperfect photon

Mtot is given by:

Mtot =
1

µ2

∫∫
|G(1)

tot(t, τ)|2dtdτ where G
(1)
tot(t, τ) = 〈â†t(t+ τ)ât(t)〉 (3.2)

where µ is the average number of photons from the source, defined in section 1.5.4. The beam
splitter that mixes the stream of single photons with the noise photons is characterized by the
following matrix relation: (

ât(t)
âr(t)

)
=

(
cos θ − sin θ
sin θ cos θ

)(
âs(t)
ân(t)

)
(3.3)
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where θ is the parameter that determines the amount of additional noise photons added to
the single photons. Then we can expand:

G
(1)
tot(t, τ) = 〈â†t(t+ τ)ât(t)〉

= cos2 θ〈â†s(t+ τ)âs(t)〉−cos θ sin θ
(
〈â†s(t+ τ)ân(t)〉+〈â†n(t+ τ)âs(t)〉

)
+sin2 θ〈â†n(t+ τ)ân(t)〉

(3.4)

We make the separable noise approximation so that cross-correlations between signal and
noise can be separated into coherence terms. For example 〈â†s(t+τ)ân(t)〉 ' 〈â†s(t+τ)〉〈ân(t)〉.
We assume that there is no single-photon coherence so that these terms vanish: 〈â†s(t+ τ)〉 '
〈ân(t)〉 ' 0. This assumption was also used to derive equation (3.1). Thus:

G
(1)
tot(t, τ) = cos2 θG(1)

s (t, τ) + sin2 θG(1)
n (t, τ) (3.5)

Taking the square of the absolute value, we get:

|G(1)
tot(t, τ)|2 =cos4θ|G(1)

s (t, τ)|+ 2 cos2θ sin2θ Re
(
G(1)
s (t, τ)G(1)

n (t, τ)
)

+ sin4θ|G(1)
n (t, τ)| (3.6)

Expression of the second order correlation function of the imperfect photon

We now determine the expression of the second-order correlation of the total built wavepackets.
We showed in section 1.5.5 that:

G(2)
measure(t, τ) =

1

4
G

(2)
tot(t, τ) =

1

4
〈â†t(t)â

†
t(t+ τ)ât(t+ τ)ât(t)〉 (3.7)

We make the same separability approximation as for Mtot. Here, we assume the signal and
noise are uncorrelated and have no single-photon coherence in the number basis. We also
assume there is no two-photon coherence, so that the terms 〈â†s(t)â†s(t + τ)〉〈ân(t + τ)ân(t)〉
and 〈â†n(t)â†n(t+ τ)〉〈âs(t+ τ)âs(t)〉 vanish. We are left with the following cross terms:

G
(2)
tot(t, τ) = cos4 θ〈â†s(t)â†s(t+ τ)âs(t+ τ)âs(t)〉+ cos2 θ sin2 θ〈â†s(t)âs(t+ τ)〉〈â†n(t+ τ)ân(t)〉

+ cos2 θ sin2 θ〈â†s(t)âs(t)〉〈â†n(t+ τ)ân(t+ τ)〉+ sin2 θ cos2 θ〈â†n(t)ân(t)〉〈â†s(t+ τ)âs(t+ τ)〉
+ sin2 θ cos2 θ〈â†n(t)ân(t+ τ)〉〈â†s(t+ τ)âs(t)〉+ sin4 θ〈â†n(t)â†n(t+ τ)ân(t+ τ)ân(t)〉

(3.8)

We can now apply our assumption that both the signal and the noise are single photons so
that G

(2)
s = G

(2)
n = 0, making the first and last terms vanish. The second and fifth terms

are conjugate. By recognizing the average photon number detected per unit of time Ni(t) =

〈N̂i(t)〉 = 〈â†i (t)âi(t)〉 as well as the first order correlation functions G
(1)
i (t, τ) = 〈â†i (t+τ)âi(t)〉

where i ∈ {s, n}, we obtain finally:

G
(2)
tot(t, τ) = cos2 θ sin2 θ

(
Ns(t)Nn(t+ τ) +Nn(t)Ns(t+ τ) + 2 Re

(
G(1)
s (t, τ)G(1)∗

n (t, τ)
))
(3.9)
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Average photon number µ

The average photon number detected per unit of time is given by:

Ntot(t) = 〈â†t(t)ât(t)〉 = cos2Ns(t) + sin2 θNn(t) (3.10)

The average photon number µ of the input into the Mach-Zehnder interfometer is then:

µ =

∫
N(t)dt = p1,s cos2 θ + p1,n sin2 θ (3.11)

since we assume the signal and noise are single photons, and where p1,i =
∫
Ni(t)dt for

i ∈ {s, n}.

Linking g(2) and Mtot

Integrating equations (3.9) and (3.6) over t and τ and normalizing by µ, we have that:

µ2g(2) = 2p1,sp1,n cos2 θ sin2 θ(1 +Msn) (3.12)

and
µ2Mtot = p2

1,s cos4 θMs + 2p1,sp1,n cos2 θ sin2 θMsn + p2
1,n sin4 θMn (3.13)

where

Msn =
1

p1,sp1,n

∫∫
Re
(
G(1)
s (t, τ)G(1)∗

n (t, τ)
)
dtdτ (3.14)

and

Mi =
1

p2
1,i

∫∫
|G(1)

i (t, τ)|2dtdτ where i ∈ {s, n} (3.15)

Msn quantifies the mean wavepacket overlap between the noise photons and the single photons,
and Ms (resp. Mn) is the mean wavepacket overlap of the single (resp. noise) photons with
themselves.

We can reparametrize by defining η so that:

cos2 η =
ps,1 cos2 θ

ps,1 cos2 θ + pn,1 sin2 θ

sin2 η =
pn,1 sin2 θ

ps,1 cos2 θ + pn,1 sin2 θ

(3.16)

Using equations (3.1), (3.12) and (3.13), the new expressions of the visibility and g(2) can
be derived:

V (η) = Ms cos4 η +Mn sin4 η − 2 cos2 η sin2 η

g(2)(η) = 2(1 +Msn) cos2 η sin2 η
(3.17)

We are interested in solving for the visibility V to first order in g(2). Since they are
implicitly dependent through the parameter η, we can look at how the parametric curve
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{g(2)(η), V (η)} approaches g(2)(0) = 0. First, it is clear that for η = 0, we have V (0) = Ms,
as expected. Second, the slope of this parametric curve in the limit of small η is given by:

lim
η→0

dV (η)

dg(2)(η)
= − 1 +Ms

1 +Msn

(3.18)

Finally:

VHOM = Ms −
(

1 +Ms

1 +Msn

)
g(2) (3.19)

This formula shows that the relation between the visibility and the single-photon indistin-
guishability depends on the overlap between the additional noise and the single photon.

Case of an unbalanced beam splitter

When the beam splitter used to implement the HOM interference measurement is not
perfectly balanced, we need to use expression (1.98) instead of expression (1.96), with M =
Mtot. In that case equation (3.19) becomes:

VHOM = 4RT

(
1 +Ms −

(
1 +Ms

1 +Msn

)
g(2)

)
− 1 (3.20)

where R and T are the reflection and transmission coefficients of the beam splitter respectively.

Limiting cases

In particular, it is instructive to look at the two following extreme cases:

• If the additional photons are identical to the single photons, i.e. Msn = Ms, then equa-
tion (3.19) reduces to the simple case that VHOM = Ms − g(2), showing that the total
and single photon mean wavepacket overlaps coincide, Ms = Mtot.

• On the contrary, if the noise has no overlap with the single photons and Msn = 0 , then
the visibility is further reduced and given by VHOM = Ms − (1 +Ms) g

(2).

How the HOM interference is affected by a non-zero g(2) therefore depends on the origin
of the additional photons. In the next section, we will test experimentally the two limiting
cases of equation (3.19) described above.

3.3 Experimental study of the limiting cases

We now test this theory by building artificial sources. We prepare a train of near-optimal
single photons from one of our single-photon sources and add noise photons via a beam
splitter, just like in the model. We can tune the g(2) of the artificial source by controlling the
amount of additional photons. We can then measure the visibility VHOM while varying g(2), and
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see if it follows the trend predicted by the model. We experimentally create two situations
corresponding to the limiting cases described above, namely Msn = 0 and Msn = Ms. To
measure the g(2) and HOM interference visibility of the resultant wavepacket, we use the
experimental methods presented in sections 1.5.5 and 1.5.6.

3.3.1 Preparation of the near-optimal sources

We start by choosing one of our single-photon sources and optimize the experimental con-
ditions (setup alignment and voltage applied) so that the photons show high single-photon
purity and indistinguishability. The source we chose is a trion corresponding to device 8
from the benchmarking of Chapter 2. After optimization we obtained for example a g(2) of
2.8 ± 0.3% and a HOM visibility of 86.3 ± 0.8%. These values correspond to a total mean
wavepacket overlap Mtot equal to 89.1 ± 0.9%. The corresponding histograms are shown in
figure 3.2. The experimental setup used to prepare this main stream of nearly ideal single
photons is the one described in figure 1.19. A half waveplate and quarter waveplate are used
to align the polarization of the excitation pulse along one of the microcavity axes, and the
single photon emission is separated from the excitation laser via cross polarization, as it was
the case for the results of Chapter 2. The QD is resonantly excited, with a pulse that is
derived from a 3 ps Ti-Sapph pulsed laser with a repetition rate of 81 MHz and a central
wavelength at 924.9 nm.

Figure 3.2: Correlation interferograms measured on the QD source used for generating the
main stream of single photons. The value of g(2) was calculated from the left panel and VHOM

from the right panel.

Note that in this chapter we show g(2) values for source 8 that are lower than the one
presented in Chapter 2. In the benchmarking its g(2) was measured to be about 6.9 % and
its HOM visibility was 81.0 %. This is because these latter values were obtained when trying
to optimize the collected photon rate B, which is not our aim here. Going slightly beyond π-
pulse decreases the single-photon brightness Bs but increases B up to a certain point because
multi-photon components increase B at the detriment of g(2) (see equation (1.81)).

The additional noise is prepared differently according to the limiting case under study.
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3.3.2 Adding distinguishable photons

We first optimized the alignment on QD 8 to have the lowest g(2) and highest VHOM reachable.
Here we obtained a g(2) equal to 4.8± 0.5% and a HOM visibility of VHOM = 84.0± 1.3%, cor-
responding to Mtot = 88.8± 1.4%. We then add fully distinguishable photons. To accomplish
this, the broad spectrum of the 3 ps laser pulse is spread using a diffraction grating, as shown
in figure 3.3(b). A narrow portion is spatially selected to use as a 15 ps resonant excitation
pulse for the QD. We then select a spectrally distinct part of the laser spectrum to play the
role of noise. We can see both these components on the spectrum shown in figure 3.3(a).

(a) (b)

Distinguishable 

Mirror

Mirror

f f

fiber

excitation
BS

QD

Distinguishable noise preparation noise

Laser

Figure 3.3: (a) Spectrum showing the QD emission (in red) and the portion of laser (in
purple) added to the main stream of photons to play the role of distinguishable noise. (b)
Experimental setup used to prepare the two parts of the laser: the one dedicated to the QD
excitation and the one used as a distinguishable noise.

The experimental preparation of the artificial source is presented in figure 3.4. We make
sure that the noise photons have the same polarization as the single-photons by using a
polarizer before the beam splitter used to mix them together. A HWP upstream of this
polarizer allows to control the amount of distinguishable noise we add to the single-photons,
and so the artificial source’s g(2). Finally, by appropriately tuning the time delay between the
two beams, we ensure that the QD single photons and the spectrally distinguishable photons
arrive at the beam splitter at the same time.

Figure 3.4: Experimental setup used to emulate an imperfect single photon source with dis-
tinguishable noise.
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For different values of the HWP angle, we measure the second order intensity autocorrela-
tion at zero time delay g(2) and the HOM visibility of the effective source. Since the photons
emitted by the QD and the additional laser photons are spectrally distinguishable, we expect
Msn = 0, so our model predicts that VHOM = Ms − (1 +Ms)g

(2).

All the correlation histograms to measure g(2) and VHOM are shown in figure 3.5. As ex-
pected, the central peak rises with g(2), and so the visibility of the HOM interference decreases
when the g(2) increases. We plot this evolution in figure 3.6.

Figure 3.5: Second-order correlation histogram as a function of the delay between two detectors
on the left column, and corresponding HOM interferograms on the right column. This plot
corresponds to the case where distinguishable noise is added to the photons from the source.

Figure 3.6: Visibility of HOM interference VHOM measured as a function of g(2) in the case
where distinguishable noise is added to the photons from the source. The line is the prediction
from the theoretical model (VHOM = Ms − (1 +Ms)g

(2), with Ms = 0.94± 0.02).
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The line in figure 3.6(b) shows that this model fits the data very well with Ms = 0.94±0.02.
This is remarkable since Ms is the only parameter that governs both the slope and the intersect
of the line. This value Ms is higher than the value of Mtot = VHOM + g(2) = 88.8 ± 1.4%
calculated earlier from the initial near-optimal source g(2) and VHOM values. This is because
Mtot does not take into account that the noise could be distinguishable from the “useful”
single photons and thus further decreases the visibility of the HOM interference.

3.3.3 Adding indistinguishable photons

Here again, we add noise to a stream of single photons coming from the same QD based single
photon source as in the previous subsection.

Figure 3.7: Experimental setup used to emulate an imperfect single photon source with iden-
tical noise.

To emulate the other limiting case, we build another effective source where the added
photons are identical to the predominant single photon component. For that purpose, we use
photons from the source itself but emitted at a different time to play the role of noise. The
setup is represented in figure 3.7. More specifically, we split the stream of photons coming
from the source into two beams using a polarizing beam splitter. One of these two beams
is used to simulate the indistinguishable noise. We use a HWP to tune the amount of noise
we want relatively to the main single-photon stream. The noise photons are delayed by the
time Tp between two successive excitation pulses, and their polarization is modified using a
HWP and a QWP, to match the polarization of photons in the other arm. That way, when
they are recombined with the main stream of photons thanks to a 50:50 beam splitter, some
of them are added to pulses that already contain a single photon. Actually, since the photons
from the two streams come from the same source and furthermore were emitted subsequently,
they are nearly indistinguishable. They arrive at the same time at the 50:50 beam splitter
where the HOM effect occurs and the two photons exit through the same output. Then there
is a half probability that they exit together towards the output we measure. The artificial
source’s g(2) is increased because some of the output pulses now contain two identical photons.

Turning the first HWP allows us to tune the relative intensity of the predominant single
photon pulse and the additional photons, and thus governs the g(2) of the output states. The
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Figure 3.8: Second-order intensity correlation function g(2) as a function of θ, the first HWP
angle that governs how much noise photons we let through the PBS in figure 3.6.

evolution of g(2) as a function of the HWP angle is shown in figure 3.8.

By rotating the HWP over a range of about 25◦, we tune the g(2) up to about 0.4. For
each of measured value of g(2), we implement a HOM measurement. All the histograms are
shown in figure 3.9 on the following page, ordered from the lowest value of g(2) to the highest.
As expected, the visibility of the HOM interference decreases when g(2) increases.

Figure 3.10: Visibility of HOM interference VHOM measured as a function of g(2) in the case
where identical noise is added to the photons from the source. The line is the prediction from
the theoretical model (VHOM = Ms − g(2), with Ms = 0.89± 0.01).

Figure 3.10 presents the HOM visibility as a function of g(2) that we tune by adding iden-
tical photons. When injecting Msn = Ms into equation (3.19), we get VHOM = Ms − g(2): the
model predicts a linear dependence with slope of −1. The line in Figure 3.10 again demon-
strates that the model gives a very good fit to the data, with an extracted Ms = 0.89± 0.01.
Here we made the assumption that the noise photons are indistinguishable from the “useful”
single photons, so that they do not dampen the visibility of the HOM interference as much as
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Figure 3.9: Second-order correlation histogram as a function of the delay between two detectors
on the left column, and corresponding HOM interferograms on the right column. This plot
corresponds to the case where indistinguishable noise is added to the photons from the source.

104



distinguishable noise photons would have. In that case, we have Ms = Mtot, which is coherent
with the value of Mtot equal to 87.9 % calculated in section 3.3.1 from the values of g(2) and
VHOM given in the benchmarking of Chapter 2 from this source.

This value of Ms is different from the one obtained in the previous subsection, since we
made a different assumption for the origin of the noise. Which one we should retain depends
on the nature of the actual noise causing the g(2) of emission from the QD. More specifically, if
the noise that causes the lowest g(2) value we obtain is distinguishable (resp. indistinguishable)
from the “useful” single photons, then we retain thatMs = 0.94±0.02 (resp. Ms = 0.89±0.01).

3.3.4 Discussion

We gathered the two curves obtained adding either distinguishable or indistinguishable noise
on the same graph in figure 3.11.

Figure 3.11: Visibility of HOM interference, VHOM measured as a function of g(2) for dis-
tinguishable (green squares) and identical (black circles) noise sources. The lines are the
predictions from the theoretical model.

The extracted values of Ms given by the intercepts of the curves with the vertical axis
(g(2) = 0) in the two cases represent the upper and lower bound of the intrinsic single photon
indistinguishability of the QD single-photon source used in these measurements. Indeed, we
know that if the unwanted emission increasing the g(2) is distinguishable (resp. indistinguish-
able) from the single-photons, then Ms = 0.94 ± 0.02 (resp. Ms = 0.89 ± 0.01). It is then
crucial to know the origin of the unwanted photon emission in order to be able to extrapolate
the data back to g(2) = 0. In the following, we discuss how to properly estimate the single
photon indistinguishability for exciton and trion-based single-photon sources.
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3.4 Application to our single-photon sources

As shown in chapter 2, the optical selection rules and photon emission processes differ signif-
icantly between the excitons and trions, which lead to a different origin of the multi-photon
component. Then, it could be necessary to adapt the formula we apply to each case to retrieve
the single-photon mean wavepacket overlap Ms from the measured quantities g(2) and VHOM.

3.4.1 Trion-based sources

Origin of the multi-photon components

The description of a trion is shown in 2.2. We recall that it is a four-level system, made of
two ground states and two excited states. The two ground states contain one charge each,
with opposite spins. The two excited states contain an electron-hole pair with an extra charge
each, with opposite spins as well. The optical selection rules entail that the two excited states
decay to (resp. are reached from) the two ground states by emitting (resp. receiving) circularly
polarized photons, with opposite directions according to the spins involved. Thus, linearly
polarized light like we use in our experimental setup excites the ground state whatever its
spin is, and the emission in the crossed polarization is instantaneous. This is why in a cross-
polarized setup, the single photon emission shows a rapid rise time and mono-exponential
decay as we saw in figure 2.8. Since the single photon emission process is fast, there is a
chance that the photon gets emitted during the laser pulse. In that case, the system is back in
its ground state while the pulse has not finished, so it can be excited a second time and emit
another photon. In paper [177] from Fischer et al, the authors give a plot (see figure 3.12)
showing the probability of two-photon emission when the excitation is realized by a π-pulse
excitation for a two-level system. The red area shows that a first photon can be emitted soon
enough within the excitation pulse to leave time for another excitation and thus give rise to
another photon emission. Therefore, re-excitation is the primary origin of a non-zero g(2) for
a trion-based source.

Figure 3.12: Re-excitation dynamics for a two-level system under interaction with an ex-
tremely short π-pulse. This plot was extracted from reference [177]. The abscissa variable
A(t1) is the integrated pulse area, that increases when t1 increases and reaches π when the
pulse ends. Pe is the probability that the system is in the excited state if no emissions occur,
p1(t1) is the probability density to have a single photon emission at time t1 and p2(t1) is the
probability density to have a pair of photon emission beginning at time t1.
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To experimentally confirm this, we study the evolution of g(2) at maximum emitted photon
rate for a QD source based on a trion, whilst varying the duration of the excitation pulse from
3 ps up to 25 ps, using the 4-f setup shown in figure 1.18 in Chapter 1. To achieve even
longer pulses, an etalon is used to spectrally filter the laser spectrum even further so that
pulse durations up to 80 ps can be achieved. This experiment was carried out with the same
source as the one we used in the previous section, namely source 8 from the benchmarking of
Chapter 2. The results are presented in figure 3.13.

Figure 3.13: Measured g(2) for a source based on a trion as a function of the excitation pulse
duration at π−pulse. The error bars are within the size of the plotted points.

As expected, we see that when the pulse duration increases, the reexcitation becomes more
and more probable, increasing its g(2).

We notice that the single-photon purity degrades for very short pulses. The extra photons
that increase the g(2) in this case actually come from the portion of laser that is not properly
rejected in polarization by the polarizing beam splitter in the collection setup. The intensity
of that portion of laser is proportional to the number of photons sent to excite the QD, and the
shorter the excitation pulse is, the more photons we need to send to reach π-pulse. To simplify
the explanation, we consider a square pulse of duration τP and the laser power is chosen so
that ΩRτP = π to maximize the excitation probability. We have seen in the section about Rabi
oscillations with power, in section 1.3.3, that the Rabi frequency ΩR is proportional to the
square root of the excitation pulse power P . We have then that the excitation pulse power is
proportional to 1/τ 2

P . The total energy per pulse, that is given by τP ×P , is then proportional
to 1/τP . Hence for very short pulses (< 10 ps), more photons are needed to reach π-pulse and
the g(2) is limited by imperfect suppression of the excitation laser. Sources based on trions
are limited by re-excitation for pulses longer than 15 ps.

Example of determination of indistinguishability

In this section, we increase the g(2) of the same trion-based single-photon source by tuning the
main parameter that is responsible for the multi-photon component, namely the probability
of re-excitation. For each measured value of g(2), we measure the visibility of the HOM
interference as well. By deliberately introducing noise with the same origin as that which
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limits the g(2), we ensure that we can extrapolate the relationship between g(2) and VHOM to
values below the lowest g(2) that we can measure.

Here we identified the main source of multi-photon components to be the re-excitation of
the QD during the laser pulse. We then measured the g(2) and the HOM visibility for a set of
different pulse durations, from 15 ps to 50 ps, at π-pulse. The results are shown in figure 3.14.

Figure 3.14: Measured HOM visibility as a function of the g(2) for a trion source as the pulse
duration is increased. The solid line gives the theoretical prediction for these data. The error
bars are within the size of the plotted points.

Since the extra photon is necessarily emitted during the laser pulse for re-excitation to
occur [177], we can assume that it is temporally distinguishable from the main single photon
emission that typically takes place after the laser pulse with the trion radiative decay time of
approximately 170 ps. This noise is thus expected separable and distinguishable. We apply
equation (3.19) to fit our observations and we find Ms = 0.93± 0.01 and Msn = 0.09± 0.02,
indicating that the overlap between the noise photons and the single photons from the QD is
indeed very low. If we fit the data using the distinguishable noise model (Msn = 0) we extract
a single parameter Ms = 0.94±0.01, which is very close to the value extracted using equation
(3.19).

3.4.2 Exciton-based sources

Origin of the multi-photon components

An exciton is described by a three level system (see figure 2.11), where the excitation pulse
creates a superposition of the two excitonic linear dipoles with an energy difference given by
the fine-structure splitting [178]. The temporal wavepacket profile is shown in figure 2.13:
we see a beating due to the time-dependent phase between the two exciton eigenstates, with
a period related to the fine structure splitting [76, 179]. The optical selection rules imply
that the single photon emission in cross polarization happens mostly after the excitation
pulse is over, leading to a very small probability of collecting two photons via re-excitation.
This implies that the g(2) for the exciton-based source is likely dominated by imperfect laser
rejection, rather than re-excitation.
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Here again, just like we did for the trion, we vary the pulse duration and measure the
obtained g(2) from a source based on an exciton. More precisely, we used source 10 from the
benchmarking of Chapter 2. The results are shown in figure 3.15.

Figure 3.15: Measured g(2) for a source based on an exciton (source 10 from the benchmarking
of Chapter 2) as a function of the excitation pulse duration at π−pulse. The error bars are
within the size of the plotted points.

As expected, we see that when the pulse duration increases, the exciton-based source keeps
showing a low g(2) for pulse durations higher than 20 ps. Any extra photon that would increase
g(2) is emitted during the laser pulse and is rejected by the laser filtering of the setup because
of its polarization. For the same reasons as in the case of the trion, the single-photon purity
degrades for very short pulses. This remains the dominant source of an imperfect g(2) for
exciton sources up to a pulse duration of 80 ps.

Example of determination of indistinguishability

For the exciton-based source, we found that laser photons that are not rejected by the col-
lection setup are responsible for the non-zero value of g(2). It is thus by purposely adding
laser photons to the single photon emission from the QD that we are able to tune the g(2) in
this case. There are two available ways to do so. First, we can decrease the pulse duration
which means that we require more power to reach π-pulse, and therefore there is a higher
probability of detecting a laser photon. Second, we can slightly rotate the quarter waveplate
(QWP) of the excitation pulse (see Figure 1.19), so that the excitation polarization is no
longer perfectly aligned along one of the polarization axes of the cavity. The light then ex-
periences a polarization rotation due to the birefringence of the cavity, described in section
2.1.4. Some fraction of the excitation pulse will now be collected in the orthogonal polariza-
tion with the single photons. By adjusting the QWP we can tune the amount of laser photons
we collect. We use these two methods to vary the g(2) of two different exciton-based sources:
the decrease of the pulse duration on source 10 and the QWP rotation on source 7 from the
benchmarking of Chapter 2. In each case we acquire a set of couples {g(2), VHOM} to see how
the multiphoton-component affects the HOM interference. The data is shown in figure 3.16.

109



Figure 3.16: Measured HOM visibility as a function of the g(2) for exciton sources. The g(2)

is increased by two different methods consisting of either decreasing the pulse duration of the
excitation pulse (red), or decreasing the suppression of the excitation laser (blue). The two
methods are performed on different exciton sources (sources 10 and 7 respectively). The solid
line gives the theoretical prediction for these data. The error bars are within the size of the
plotted points.

We use equation (3.19) to fit the data. We extractMs = 0.94±0.01 (resp. Ms = 0.91±0.01)
and Msn = −0.02 ± 0.09 (resp. Msn = 0.03 ± 0.06) for the case where we change the pulse
duration (resp. degree of polarization extinction). In both cases, the extracted value of Msn

is equal to zero within error. This was expected since there is very little temporal overlap
between the noise from the laser and the single photons, as we can see in figure 2.13. We
note that the two data sets were performed on different excitons (sources 7 and 10 from the
benchmarking of Chapter 2) which explains the slight difference in Ms of the two devices.

3.5 Conclusion

In this chapter, we revisited the use of the visibility of the Hong-Ou-Mandel interference to
determine the single-photon indistinguishability for imperfect sources. We proposed a reliable
method to take into account for the first time the nature of the noise that increases the
multi-photon component. Then, we studied the origin of that noise in our sources. Despite
their different physical origins, we find that the multi-photon component of both exciton and
trion-based sources can be treated as separable distinguishable noise. In the limit of low g(2),
the single photon indistinguishability can thus be obtained using:

Ms =
VHOM + g(2)

1− g(2)
. (3.21)

In the case where the beam splitter where the HOM interference occurs is unbalanced, we
use equation (3.20) and obtain that the equation should be adapted as follows:

Ms =
VHOM + 4RT (1 + g(2))− 1

4RT (1− g(2))
(3.22)
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where R and T are the reflection and transmission coefficients of the beam splitter respectively.
This formula allows us to extract the single-photon indistinguishability Ms of a single-photon
source from the measurement of its visibility of HOM interference and knowing its single-
photon purity. Ms gives the upper bound to the indistinguishability that could be achieved
with an ideal experimental setup and fundamentally quantifies how temporally coherent the
source itself is. We now use this correction for our sources, as we did for the benchmarking
in Chapter 2. Although the overall mean wavepacket overlap is what matters for setting up
efficient quantum technologies, this understanding is necessary to quantify the intrisic indis-
tinguishability of the single photons from the source and identify the next challenges towards
an ideal one. For both the exciton and trion-based sources we experimented on in this chap-
ter, the extracted single-photon indistinguishability Ms is approximately equal to 0.93. The
residual distinguishability, which is not due to a non-zero g(2), is due to phonon-induced deco-
herence such as phonon-assisted emission into the phonon sideband, or pure dephasing of the
zero phonon line. We underline here that, as compared to reference [70], the cavities under
study show a lower Q and hence a lower filtering of the phonon sideband. Values closer to 1
can be obtained using an additional etalon.

Recently, our team explored a new technique to increase the source efficiency, consisting of
using longitudinal acoustic phonon-assisted excitation [162]. In that configuration, we collect
the emitted light without rejecting any polarization so the source brightness is increased by a
factor of 2 when exciting an exciton along one of its intrisic polarizations. There is no longer a
delay between the excitation and the emission in the case of sources based on excitons. Then
we expect that the noise will be temporally distinguishable from the main single photons
stream, similarly to the case of resonantly excited trion-based sources. The formula 3.21 will
still apply.

Finally, we note that the model developed in section 3.2 of this chapter should be ap-
plied to QD-based single-photon sources in general. This implies that some research group
mentioned in section 3.1 underestimated the “corrected” indistinguishability of their sources
[135, 155]. Our approach is also applicable beyond the scope of QDs and applies to many
other types of single quantum emitters, whether the residual g(2) arises from imperfect laser
filtering or re-excitation. In some cases, it is also applicable to single-photon sources based
on non-linear optical frequency conversion. The non-zero g(2) in sources based on SPDC is
either due to imperfect suppression of the pump laser or to multi-photon pair generation. In
the first case, our model can be applied because the laser is separable and distinguishable
from the single photons. However, for multi-photon pair generation, we need to distinguish
two configurations characterized by their joint spectral intensity. This latter can be defined
as the two-dimensional probability distribution associated with signal and idler emission fre-
quencies [180] and carries information about their correlations. If the source is single-mode,
i.e. its joint spectral intensity between the signal and the idler photons is separable, then the
generation of two {signal+idler} pairs in the same excitation pulse gives a two-photon Fock
state where the two photons are identical and separable. This can be repoduced by the beam
splitter model presented here via photon-bunching, and hence the separable noise model with
indistinguishable noise photons applies. In the second scenario, the source is multi-mode and
its joint spectral intensity is correlated. In that case, the signal and idler photons are entan-
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gled in a given degree of freedom. The detection of the idler photon projects the signal photon
into a mixed state of all possible modes, leading to a low visibility of the HOM interference
even if the g(2) is low. Similarly, if two pairs are generated in the same pulse, the two signal
photons will not necessarily be in the same mode and our model does not apply in principle.
Such a situation requires further theoretical investigation.

To sum up
We have revisited the HOM experiment for imperfect single-photon sources. We have
both theoretically and experimentally shown that the nature of the noise (indistin-
guishable or distinguishable) strongly modifies the impact on the HOM visibility.
We have then applied this general study to the specific cases of an exciton and trion-
based single-photon sources showing that the distinguishable noise model should be
adopted. This study refines the diagnostic tools that we use to improve the perfor-
mances of our single-photon sources.
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Chapter 4

Controlling the symmetry of a
quantum dot via remote electric
potentials

Quantum dots have been shown to be reliable for the generation of single-photons, which are
basic elements for the implementation of optical quantum networks as well as quantum proces-
sors. We have seen in Chapter 1 that QDs usually show an in-plane asymmetry that leads to
a fine structure splitting when it contains an exciton. The brightness of single-photon sources
based on excitons depends on this parameter, thus tuning the FSS would allow one to reach
a higher brightness from excitons in a cross-polarization setup. Moreover, our team recently
demonstrated that an excitation scheme based on LA phonon assisted excitation allows for
reaching high brightness and indistinguishability. This scheme allows for collecting the single
photons in all polarization directions and make use of the exciton FSS for the generation
of frequency-encoded qubits. Another characteristic that makes QDs very attractive is their
ability to produce on-demand polarization entangled photon pairs via the biexciton-exciton
radiative cascade [52]. The photons are entangled when the excitonic fine structure splitting
is reduced to less than the photons linewidth. Entangled photon pairs are highly sought after
to realize quantum repeaters [181] and quantum relays [54] as well as quantum teleportation.
Again, bright sources of entangled photon pairs can be obtained using individual epitaxial
semiconductor QDs in microcavity structures [63]. Developing tools to control the FSS of an
exciton thus appears essential for multiple applications.

Over the past years, several techniques have been proposed to tune the excitonic fine struc-
ture splitting [182], including rapid thermal annealing [183], mechanical strain [184], magnetic
or electric fields [185, 186] or strain manipulation [187, 188] among others. The aim is to
restore the D2d symmetry of the quantum dot. Later on, it was shown that it is possible
to eliminate the fine structure splitting by combining the use of large strains and/or electric
fields along the three directions of space [189]. This led to generation of entangled photon
pairs with a record fidelity [190]. To the best of our knowledge, such a control has not been
implemented for QDs that are coupled to a cavity so far. In this chapter, we present a new
technique that we developed to control the exciton fine structure splitting based on the use
of three electrical knobs that allow us to manipulate the electric field at the position of the
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dot in the three dimensions of space. In this case, the voltages needed are much lower than
the ones required for piezoelectric strain (about 102 less). Moreover, this control is applied
to QDs in microcavities, which would simultaneously allow for a high brightness by taking
advantage of the Purcell enhancement of the radiative transitions.

The chapter is organized as follows. We first detail the motivations of this work by de-
scribing the potential applications of fine structure splitting tuning. Then we give an overview
of the state of the art in FSS control. In a third section, we present the principle of the tech-
nique we propose. We then present simplified simulations with COMSOL that allow exploring
the physics behind our approach, in section 4. We then present our experimental study and
demonstrate an electrical control of the exciton FSS for QDs in pillar cavities. We finally
discuss the quality of the generated photons and remaining challenges.
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4.1 Motivation

As briefly introduced, controlling the FSS of an exciton offers many possibilities. Under
resonant excitation, it allows to maximize the single-photon source brightness as shown in
2.3.3. For many years now, QDs with zero FSS have been explored to generate entangled
photon pairs. Most recently, using a slightly detuned excitation, our group showed that the
FSS can be exploited to generate frequency-polarization hyper-encoded qubits. Since the first
application has been discussed in Chapter 2, I briefly present the last two motivations below.

4.1.1 Entangled photon pairs via a biexcitonic cascade

A QD can confine a biexciton made of two electron-hole pairs coupled by the Coulomb in-
teraction and sharing the same ground state. As the biexciton decays, it cascades first to
the exciton state before reaching the ground state, emitting two photons of different energy.
There are two possible cascades that take the system to the ground state, as we can see in
figure 4.1.

Figure 4.1: Diagram showing the optical selection rules for a biexciton in two cases: a zero
FSS on the left panel, and a non zero FSS on the right panel. α and α′ depend on the shape
anisotropy and strain of the QD. In the absence of strain, α = 2θd (see section 1.2 from
Chapter 1).

We can distinguish two configurations for the biexciton cascades depending on the exciton
symmetry. These two configurations give rise to different polarizations for the emitted photons
when the recombinations take place. We detail these two cases that allow understanding of
what gives rise to entanglement for one of them. We restrict ourselves to the cases where
there is no heavy-/light-hole mixing.

Case of a symmetric exciton wavefunction

If the exciton wavefunction has a D2d or higher symmetry (see Appendix A), the intermediate
excitonic states are degenerate. These states either correspond to:
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• the eigenstate we referred to as |ψ+1
HH〉 in Chapter 1, namely a pair composed of a

Jz = +3/2 heavy-hole and a Jz = −1/2 electron (case where the other pair, Jz = −3/2
heavy-hole and the Jz = +1/2 electron recombined first),

• the eigenstate we referred to as |ψ−1
HH〉 in Chapter 1, namely a pair composed of a

Jz = −3/2 heavy-hole and a Jz = +1/2 electron (reverse order of recombinations).

We can describe these two cases in terms of annihilation operators as introduced in refer-
ence [185]. They correspond respectively to â+1â−1 and to â−1â+1 where â±1 is the annihilation
of the |ψ±1

HH〉 bright exciton, appearing in the recombination of the electron-hole pair and al-
lowing for the emission of a photon. In QDs, excitons behave like fermions and respect Pauli
exclusion principle: two excitons cannot occupy the same quantum state (the biexciton does
not have twice the energy of the exciton). Then we have that â+1â+1 = 0 and â−1â−1 = 0,
but â+1â−1 6= 0 and â−1â+1 6= 0. The total angular momenta of these states are respectively
M = +1 and M = −1. Then, a first recombination giving rise to a σ+-polarized (resp.
σ−-polarized) photon has to be followed by a σ−-polarized (resp. σ+-polarized) photon. The
emitted light state is then:

|ψ〉 =
1√
2

(|σ+σ−〉+ |σ−σ+〉) (4.1)

|ψ〉 is a Bell state that shows perfect correlation for the polarization of the two photons. The
circular polarization is usually chosen as a convention to describe the generated state, like in
figure 4.1. But actually for degenerate exciton states, it can be re-written in any basis. For
example in the {|H〉 , |V 〉} basis where |σ+〉 = 1√

2
(|H〉 + i |V 〉) and |σ−〉 = 1√

2
(|H〉 − i |V 〉),

we have:

|ψ〉 =
1√
2

(|HH〉+ |V V 〉) (4.2)

a state that also shows perfect correlation in linear polarization. However, the quantum
correlation in circular polarization is not maintained when an FSS is introduced, whereas a
classical correlation between |H〉 and |V 〉 is maintained with a large FSS. The correlations in
the circular basis are then usually used to demonstrate entanglement.

Case of an exciton wavefunction with low degree of symmetry

If the exciton wavefunction has a symmetry lower than D2d, the electron-hole exchange inter-
action mixes the bright exciton states into a non-degenerate doublet, as shown in section 1.2.
Recall that the two states of this doublet can be written:

1√
2

(|ψ+1
HH〉+ eiα |ψ−1

HH〉)

1√
2

(− |ψ+1
HH〉+ eiα

′ |ψ−1
HH〉)

(4.3)

where α (resp. α′) is the polarization angle of the photon emitted first in the cascade through
the top (resp. bottom) eigenstate, with respect to an arbitrary direction. Let us write β the
polarization angle of the second emitted photon, with respect to the same arbitrary direction.
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The annihilation operators corresponding to the cascade through the 1√
2
(|ψ+1

HH〉 + eiα |ψ−1
HH〉)

path are then:

âα =
1√
2

(â+1 + eiαâ−1)

âα+β =
1√
2

(â+1 + eiα+βâ−1)
(4.4)

Here Pauli exclusion principle imposes âαâα+β = 0. One can develop the calculation:

âαâα+β =
1

2

(
â+1â+1 + ei(α+β)â+1â−1 + eiαâ−1â+1 + ei(2α+β)â−1â−1

)
(4.5)

As previously, we have â+1â+1 = â−1â−1 = 0 but â+1â−1 6= 0 and â−1â+1 6= 0. Knowing that
â+1 and â−1 anticommute, the only way âαâα+β is allowed is if β = 0[2π], which means that
a first photon linearly polarized along a given direction must be followed by a second photon
that is also linearly polarized along the same direction. A similar calculation holds for the
path passing through the other eigenstate 1√

2
(− |ψ+1

HH〉+ eiα
′ |ψ−1

HH〉).

These selection rules are sketched in figure 4.1.

FSS, radiative lifetime and entanglement

In the case of a D2d (or higher) symmetry of the excitonic wavefunction, the two paths are
indistinguishable, as shown on the left panel of figure 4.1. Then the so-called which-path
information is erased: one cannot tell which transition gave rise to the emitted photons. The
two photons are then maximally polarization-entangled. On the contrary, when the degree
of symmetry is lower, the energy diagram corresponds to the right panel of figure 4.1. In
that case, one could tell which path was followed by the system, for example by precisely
measuring the photon(s) wavelength. There is no entanglement in polarization in principle.
However, distinguishability in wavelength can be overcome by resolving the entangled state
in time, which reveals that the FSS causes a time-dependent phase evolution of the entangled
state [191].

Physically, the two paths are indistinguishable if the FSS ~ωxy is smaller than the emitted
photon emission linewidth. Indeed, it is in that case that measuring the wavelength of an
emitted photon does not allow to know which path has been experienced by the system. Note
that the Purcell effect widens the radiative linewidth, so the entanglement can be restored by
accelerating spontaneous emission [48].

If there is a heavy-light hole mixing, as described in 1.2, the selection rules lead to slightly
differently polarized light in the different scenarios. If the eigenstates are not degenerate (case
of an asymmetric excitonic wavefunction), the emitted photons are not H and V polarized any
more, and are not perfectly orthogonal. When the eigenstates are degenerate (zero FSS, in
the case of a symmetric excitonic wavefunction), then the photons emitted via the biexcitonic
cascade are no longer perfectly σ+ and σ− polarized, but contain some σ− and σ+ components
respectively.
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History and state of the art

Since the original proposal was published over two decades ago [52], the possibility to gen-
erate entangled photon pairs from QDs has been a primary motivating factor in QD device
development. Unlike spontaneous parametric down conversion, which suffers from a funda-
mental efficiency-quality trade-off [70], QD devices promise near deterministic generation of
high-quality polarization-entangled photon pairs.

The first demonstrations of polarization correlations from a biexciton cascade were pub-
lished soon after the initial proposal [192–194]. However, the presence of large excitonic FSS
prohibited the observation of quantum entanglement. In 2006, the first observations of po-
larization entanglement were achieved by spectrally filtering classically correlated emission
to recover entanglement, at the cost of a significant reduction in efficiency [53]. It was also
demonstrated in the same year that some QDs with naturally small FSS can be tuned using
an external magnetic field to provide entangled emission [195]. In the following years, the lim-
itations on the quality of entanglement due to the finite FSS were studied in depth [196–198],
emphasizing the need for a fine control over the FSS. However, all these demonstrations so far
had only been implemented using QDs in bulk or planar cavities, which significantly limited
the pair collection efficiency.

Collection efficiency can be improved by embedding the QD inside an optical cavity. For
the biexciton cascade, this is challenging because it requires a cavity geometry tailored for two
different QD transitions with different frequencies of emission. This challenge was overcome
in 2010 by our group using the in situ lithography technique to fabricate a molecular cavity
mode that couples to both transitions of the cascade [48], leading to a significant enhancement
in entangled pair collection rate. However, the fabricated device still relied on the chance to
obtain a QD with a naturally small FSS, and could not tune the cascade emission wavelengths
post-fabrication. In addition, for many applications in quantum technology, pair generation
efficiency and degree of polarization entanglement are not the only requirements; each indi-
vidual photon must also be sequentially indistinguishable.

Evidence of spectrally coherent emission under continuous wave excitation was observed
in 2012 [199]. However, indistinguishability in time requires deterministic excitation. Inter-
estingly, because of the Coulomb interaction, the biexciton is not exactly twice the energy
of one exciton. The biexciton state can thus be prepared using two-photon excitation with
a laser energy set at the mean energy between the X and XX transitions [200, 201], which
allows for efficient filtering of the excitation pulse. Using this technique, the generation of
entangled photon pairs with high indistinguishability was demonstrated in 2014 [202]. In
combination with advances in growing naturally symmetric droplet-etched GaAs QDs, two-
photon excitation also led to the current state-of-the-art in photon pair quality, showing an
indistinguishability up to 0.93±0.07 [138] and entanglement fidelity as high has 0.978±0.005
[203]. The entanglement fidelity is computed by performing polarization tomography to ob-
tain the density matrix of the entangled polarization state of light. Then, the fidelity is given
by the expectation value of the measured density matrix with respect to an ideal maximally
entangled state. Hence, a value of 0.5 represents a classically-correlated state and a value of
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1 represents a maximally entangled state.

In 2019 it was demonstrated that limits on extraction efficiency and entanglement fidelity
due to finite FSS could be simultaneously overcome by coupling a QD to a broadband cir-
cular Bragg grating [63, 204]. Although this approach showed an impressive pair generation
probability of 0.59± 0.01 and extraction efficiency of 0.62± 0.06, the measured entanglement
fidelity (0.90± 0.01) and indistinguishability (0.90± 0.01) did not improve upon the state-of-
the-art. In particular, the plateau in achievable indistinguishability opened questions about
the fundamental limits due to the biexciton and exciton lifetimes [51].

4.1.2 Frequency-encoded qubits

In this section, we discuss how the exciton FSS can be used to generate frequency-encoded
qubits. We have seen in section 2.3 that the temporal wavepacket of the photons emitted
by a QD based on an exciton shows an oscillation with a frequency that is proportional to
the fine structure splitting. Very recently, it has been experimentally shown in the group
that we are able to excite the QDs using longitudinal acoustic phonon-assisted excitation, a
configuration where the excitation laser can be rejected simply by frequency filtering [162]. In
this assisted excitation process, the polarization of the excitation laser still dictates the QD
excited state. Now, since polarization filtering is no longer necessary, we can either collect all
the polarizations or to choose in which polarization basis we collect. For example, if we excite
the QD with a linear superposition of the two excitonic dipoles, |x〉 and |y〉, oriented along an
angle θ from the X axis, the initial state of the QD is written |ψθ(t = 0)〉 = cos θ |x〉+sin θ |y〉.
Then, the temporal evolution of the QD state is given by:

|ψθ(t)〉 = cos θe−iωxte−t/2τ |x〉+ sin θe−iωyte−t/2τ |y〉 (4.6)

In the bad-cavity regime, the state of light collected by the cavity is proportional to the state
of the QD. Hence, the state of the emitted light can be approximately represented by

|Ψθ(t)〉 = cos θe−iωxte−t/2τ |ωx, X〉+ sin θe−iωyte−t/2τ |ωy, Y 〉 (4.7)

where ωx (res. ωy) and X (res. Y ) is the frequency and polarization of state |x〉 (resp. |y〉).
This expression corresponds to a hyper-encoded state since it is encoded in both frequency and
polarization, these two quantities being entangled. By filtering the emission in polarization
using a filter with an angle φ from the |x〉 dipole orientation |φcoll〉 = cosφ |X〉+ sinφ |Y 〉, we
obtain a frequency-encoded qubit:

〈φcoll|Ψθ(t)〉 = e−t/2τ
(
cos θ cosφe−iωxt |ωx〉+ sin θ sinφe−iωyt |ωy〉

)
(4.8)

This expression shows that by choosing the relative angle between θ and φ, we can generate
any qubit encoded with two frequencies |ωx〉 and |ωy〉.
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Figure 4.2: Temporal profiles of the emitted photons when exciting with diagonal polarization
D (corresponding to θ = π/4). The blue (resp. red) curve corresponds to the measured
intensity in the D polarization, corresponding to φ = π/4 (resp. A polarization, corresponding
to φ = 3π/4).

Figure 4.2 shows the temporal wavepacket profile of the emitted photons for an excitation
polarized at π/4 from the exciton axes. The temporal profiles of the emitted photons in the
diagonal D (φ = π/4) and antidiagonal A (φ = 3π/4) polarizations evidence the different
quantum superpositions of the frequency qubits.

The state |ωx〉 (|ωy〉) represents a single photon occupying the mode with a resonance
centered at ωx (ωy). These states form the basis of the frequency qubit. By tuning the FSS
(ωx − ωy), we can control the spectral separation of these two frequency modes in which we
can encode information.

4.2 State of the art for FSS tuning

For the two applications presented in the last section, control over the QD FSS would be
useful. For the generation of frequency-encoded qubits, controlling the QD symmetry would
allow for controlling the FSS ωx − ωy but also the mean frequency of the source (ωx + ωy)/2.
In the case of entangled photon pair generation, relying on the probabilistic growth of dots
with naturally small FSS poses a problem for scalability, as it greatly reduces the fabrication
yield. The aim of tuning the FSS to zero has generated a lot of interest for applications
in photon pair generation. Furthermore, this new proposed application of using the exciton
as a frequency-encoded qubit has introduced a new application for FSS splitting, and it is
advantageous to be able to precisely control and even increase the FSS. In this section, I
describe some of the state of the art in terms of FSS tuning.

120



4.2.1 Irreversible FSS control

Growth methods

In general, self-assembled semiconductor QDs show an in-plane asymmetry, which leads to a
C2v symmetry, while we need a D2d symmetry to have a zero FSS. However, it has been shown
that some growth methods can lead to low values of FSS.

• It has been shown that the FSS is lower for smaller QDs. In reference [205], the authors
characterized a large number (200) of InAs/GaAs QDs grown under various conditions
and concluded that the small dots with the most symmetric electron and hole wavefunc-
tions and emitting at an energy of around 1.4eV (λ ' 880nm) were the ones showing the
lowest FSS (no more than 10 µeV and as low as about 1 µeV which is lower than 1pm
between the two dipoles at this wavelength). One of them has been used to demonstrate
the generation of entangled photon pairs with high-fidelity [197].

• The fabrication by droplet epitaxy of GaAs/AlGaAs QDs leads to high symmetry and
very low FSS values were reported in [206]. Holes with controllable symmetry were
etched into GaAs and were then filled with AlGaAs or vice versa. The weak intermixing
between GaAs and AlGaAs allows them to assume that the QDs take the shape of the
etched hole. Three samples were fabricated, corresponding to a given QD aspect ratio
each, and the FSS was measured on a large number of QDs for each sample. The sample
with the most symmetric QDs (aspect ratio equal to 1.02) gives an average FSS value
of 3.9 ± 1.8µeV (' 2pm), compared to 49 ± 6µeV (' 25pm) for an aspect ratio equal
to 1.13. However, the success of this method highly depends on which materials are
used as substrates [207]: using materials that show more intermixing and diffusion in
preferential directions is likely to make the QD geometry less controllable [208].

Thermal annealing

It has been shown that it is possible to modify excitons spectra by using rapid thermal anneal-
ing. A transmission electronic microscope image of one of our QDs before and after annealing
is shown in figure 4.3. In reference [209], the authors work with individual self-assembled

(a) (b)

Figure 4.3: Transmission microscope image of one of our QD (a) before and (b) after annealing.

InAs QDs on which they perform short steps of annealing at relatively low temperature.
They show that this reproducibly blueshifts the excitonic transition lines, as well as varies the
FSS through zero (see figure 4.4(a)) and controls the energy difference between the biexcitonic
and the excitonic transitions (see figure 4.4(b)). However, these three parameters (wavelength,
FSS and biexciton binding energy) are not controllable separately. This technique is useful
to cancel a given QD FSS definitively which is an advantage for the generation of entangled
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(a) (b)

Figure 4.4: (a) Photoluminescence spectra from an individual InAs QD, taken in between
successive 5 minutes long annealing steps. The line labelled X (resp. X2) corresponds to the
exciton (resp. biexciton) transition. (b) Fine structure splitting as a function of the exciton
energy, for two different InAs QDs. Each point is measured after an annealing step of the
sample. These figures are taken from [209].

photon pairs, but the modification is irreversible so it can not be used to tune the FSS in situ.

The inversion of the FSS can be explained by the competition between the shape of the QD
and the strain of its environment. Annealing modifies the shape so if the strain has a different
direction than the initial shape and becomes dominant as the annealing is implemented, the
FSS can change sign.

For the generation of frequency-encoded qubits described in section 4.1.2, it is useful to
be able to tune the FSS in situ. This is not allowed by the two methods described previously
that are irreversible, and requires other FSS tuning techniques.

4.2.2 FSS tuning with one knob

Off-plane electric fields

An off-plane electric field allows one to tune the wavelength of the transitions, as we saw in
Chapter 1. It is possible to use it to tune the FSS since the two excitonic transitions do not
shift with the same dependence on the electric field.
Vertical electric fields are easy to implement on samples made by molecular beam epitaxy for
example, can be varied in situ and do not require very high voltages. The main drawback
of this technique is that the accessible range over which one can tune the QD wavelength
and FSS is quite limited, since there is a point where the carriers tunnel out of the dot. In
reference [210], the authors overcome this issue by using a specific doping configuration shown
in figure 4.5(a). They report a linear dependence of the FSS over the vertical electric field over
100 µeV. However, this linear dependence does not hold when the FSS is close to zero: the
authors observe for the first time an anticrossing of the exciton states (see figure 4.5(b)). The
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FSS reaches a non-zero minimum. For some QDs, this minimum is lower than the emission
linewidth so they can generate entangled photon pairs.

(a) (b)

Figure 4.5: (a) Design of the device used to apply an off-plane electric field to InAs/GaAs
QDs. (b) Evolution of the FSS with the electric field. F0 is the electric field corresponding to
the minimum reachable FSS. These figures are extracted from [210].

In-plane electric field

Self-assembled QDs that are elongated along a given direction usually show a non-zero FSS
because their electron and hole wavefunctions are asymmetric. A possible approach to tune
the FSS is then to use in-plane electric fields, by taking advantage of the quantum confined
Stark effect. It is the case for example in reference [211] where the effect of an in-plane electric
field is investigated using the device design shown in figure 4.6.

Figure 4.6: Steps of fabrication of the device used in reference [211] to apply an in-plane
electric field on InAs/GaAs QDs (figure extracted from [185]). (a) metal deposition of Ohmic
contact, (b) diffusion by annealing, (c) Schottky barrier deposition. Panel (d) was extracted
from [211] and shows the experimental results: the upper plot is the FSS (anisotropic exchange
splitting) and the lower one is the average exciton energy, both as the applied voltage is varied.
This figure was extracted from [211].
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The semiconductor device has a Ohmic contact on one side that diffused downwards by
annealing of the sample, and a Schottky contact deposited on the sample surface on the other
side. The field was applied in the dot elongation direction, which turns out to be roughly the
same for all the QDs in the sample (their eigenaxes were aligned along the crystallographic
axes of the sample). A variation of the FSS from 140 to 60 µeV and a shift of the average wave-
length by about 70 µeV were observed. Many QDs from the sample showed similar behaviours.

A larger tuning range (about 100 µeV) was achieved in reference [186], again using an in-
plane electric field. This time the electric field is applied using two Schottky gates deposited
on the surface of the sample. The evolution of the FSS with applied bias for three different
QDs is shown in figure 4.7(a). We see in figure 4.7(b) that the intensity of the photolumines-
cence signal decreases while the emission linewidth increases as the Stark shift is increased.
This makes this technique applicable only for QDs that originally have a relatively low FSS.

(a) (b)

Figure 4.7: (a) FSS of three QDs as a function of Stark shift. In dot A, the splitting shows a
square root dependence on the Stark shift. Dots B and C exhibit a splitting with an oscillatory
response to the Stark shift. (b) Evolution of the photoluminescence intensity (in black) and
the emission linewidth (in blue) as the Stark shift is increased. These figures are extracted
from [186].

For both of these last mentioned experiments, this technique allows to tune the FSS. How-
ever, here again the average wavelength and the FSS can not be tuned independently, and
the field has to be applied along the QD elongation axis. Finally, a too high horizontal field
can lead to the reduction of exciton oscillator strength and can make the charges tunnel out
of the QD, reducing the radiative efficiency. This limits the range of voltage one can use to
tune the FSS.

In 2019, a new scheme was proposed [212] to apply a quadrupole electric field to a QD
embedded in a nanowire, in order to cancel its FSS while maintaining a strong electron-hole
overlap and a high extraction efficiency. The authors describe a device made of four electric
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Figure 4.8: Evolution of the FSS with the in-plane magnetic field applied to InAs/GaAs
QDs. The green line shows a quadratic fit, with a coefficient of 1.05µeV/T 2. This figure was
extracted from [205].

gates around a nanowire structure embedding a QD. They show theoretically that this device
should allow for reaching a near-zero FSS (0.05 µeV) with a 90% electron-hole overlap. This
scheme has not been experimentally implemented yet.

In-plane magnetic field

It is also possible to apply in-plane magnetic fields to change the fine structure splitting, as
it was demonstrated in [205] where the authors apply up to 4T and observe an increase of
the FSS. Their results are shown in figure 4.8. The evolution of the FSS shows a quadratic
dependence on the magnetic field.
Here again the FSS and the wavelength can not be tuned independently, and the magnetic

field has to be aligned along the dot elongation axis.

4.2.3 FSS tuning with two knobs to overcome anticrossing

These last mentioned techniques give only one degree of freedom because they are applied
only in one direction. It was shown theoretically [213] and demonstrated experimentally [184]
that in such case, the FSS can not reach zero unless the applied field is aligned along the
direction of the dot elongation. Hence, as mentioned earlier tuning the external knob leads to
an anti-crossing of the excitonic states, due to the coherent coupling between them.

In reference [189], the authors show that a zero FSS can be recovered for any QD using one
knob controlling a biaxial in-plane mechanical strain and another one controlling a vertical
electric field. The QD orientation is first modified using the mechanical strain so that it is
aligned along the orientation of the other perturbation. After that, the vertical electric field
is varied to reduce the FSS to zero. The results are shown in figure 4.9: we see that choosing
the proper value of Vp brings the minimum of the FSS as a function of Vd to zero. Without
applying the in-plane strains beforehand, there would be an anticrossing as described earlier.
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(a) (b)

Figure 4.9: (a) Design of the device: n-i-p structure on top of a piezoactuator: Vp controls an
anisotropic biaxial strain and Vd a vertical electric field. (b) Evolution of the FSS with the
two applied voltages. These figures are extracted from [189].

This technique led to generation of entangled photon pairs with a high degree of entangle-
ment [190].

More generally, reaching a zero FSS is possible using any pair of independent and non-
parallel external knobs.

4.2.4 Tuning the FSS and the average wavelength: need for three
knobs

For quantum protocols such as the implementation of quantum relays, it is necessary to gen-
erate entangled photons from two sources that present the same wavelength. However, the
FSS is lower than the emission linewidth over a very small range of average wavelength, which
leaves very little freedom to tune the average excitonic energy while keeping a high degree of
entanglement for the generated photon pairs. In reference [156], the authors show that three
knobs are necessary to simultaneously tune the FSS and the wavelength in an independent
way. The authors propose a design of piezoelectric actuator with six legs, represented in figure
4.10(a) that allows them to apply in-plane stress fields which naturally represent three knobs
(three components of the stress tensor σxx, σyy and σxy). The results from the experimental
implementation of this technique was reported in reference [214]. As we can see in figure 4.10,
a zero FSS was obtained for different values of average exciton energy over a large energy range.
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(a) (b)

Figure 4.10: (a) Design of the six-legs device. Three independent voltages control the in-plane
biaxial stress. (b) Behaviour of the FSS as a function of the average exciton energy. The orange
and purple curves show the anticrossing due to a non-alignment of the dot elongation with
the last knob direction (it is the same phenomenon as the one described in figure 4.9). Tuning
one of the three voltages and then using the two others to recover a zero-FSS allows to obtain
zero-FSS for several exciton wavelengths. These figures are extracted from [214].

This technique is applicable to any QD to simultaneously tune the FSS and the wavelength.

4.2.5 Challenge to overcome: FSS tuning in cavities

In order to obtain a high brightness for the generation of entangled photon pairs or for the
other application exploiting a control of the FSS, it is critical to combine FSS tuning with a
cavity providing a large Purcell factor. To the best of our knowledge, such approach remains
quite challenging and very few works have reported such effort so far. In reference [215], the
authors developed a QD micropillar cavity on a piezoelectric actuator in order to use strain to
tune the QD in resonance with the cavity. A compressive (resp. tensile) biaxial strain leads
to a linear increase (resp. decrease) of the QD energy. The dependence is linear. On one
hand, etching the micropillar down to the bottom strongly reduces the transfer of the strain
from the substrate to the QD, restricting the tuning range of the QD energy. On the other
hand, leaving DBR mirrors not etched at the bottom of the micropillar reduces the Q-factor,
increases the mode volume and thus reduces the Purcell factor. Furthermore, it reduces the
photon extraction efficiency. There is thus a trade-off between the Q factor of the cavity and
the obtainable tuning range. In the paper, the authors chose to etch the micropillar down to
2 to 4 pairs of bottom DBR layers, losing a factor of 2 for the Q factor in comparison with a
pillar that would be etched down to the bottom. The extraction efficiency is decreased by 10
to 40%. At this cost, applying 27 kV/cm to the piezoactuator allows the authors to sweep the
QD energy over a 0.75 meV range (about 0.5 nm). No report of the QD FSS was presented
in this work.
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4.3 Principle of our approach

We propose a device configuration where the user can control the electric field in the three
directions of space at the position of the QD which is embedded in a pillar cavity. This is done
by applying three voltages and allows for controlling both the FSS and the average wavelength
of the exciton.

In the framework of developing single-photon sources, we showed that we apply an electric
field to tune the QD wavelength and suppress charge noise. The way we apply this voltage is
recalled in figure 4.11(a): we use pillar cavities connected to a frame, which itself is connected
to a large mesa where the electrical contact is defined. An observation one can make from this
figure is that the contact is not on top of the micropillar but on the side at a given distance,
which probably creates a horizontal component of the electric field. Indeed when varying this
electric field, we noticed that the splitting between the wavelengths of the fundamental modes
h and v of the cavity can change. Such observation is presented in figure 4.11(b).

(a) (b)

Figure 4.11: (a) Drawing showing the position of the electrical contact with respect to the
micropillar for single-photon sources studied in the previous chapters. (b) Reflectivity mea-
surement showing the cavity splitting, that changes with the applied voltage.

Such a modification in the cavity splitting is explained by a change of symmetry of the
pillar in the horizontal plane. This is probably due to the piezoelectric properties of GaAs
[216] that lead to a change in refractive index, and so to a modification of the cavity modes
properties when an electric field is applied.

This phenomenon has been used in 2018 in reference [217] to cancel the cavity splitting of
a micropillar containing QDs. This would for instance allow excitation of the QD in a cross-
polarization configuration with any polarization angle without collecting any rotated light
from the cavity. Since the cavity rotated light is the main origin for multi-photon components
in the case of exciton-based sources (see section 3.4.2), having degenerate cavity modes would
lead to higher values of single-photon purity. In practice, the authors of [217] deposited three
electrical contacts on a structure that is shown in figure 4.12(a). The contact deposited on the
top mirror allows to fine tune the cavity polarization splitting that arises from asymmetries
of the cavity, using the electro-optic effect. The two cavity mode frequencies are plotted as a
function of the applied top voltage in figure 4.12(b). A clear crossing between the two curves is
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(a) (b)

Figure 4.12: (a) Drawing of the structure allowing for tuning of the cavity modes splitting.
(b) Cavity mode frequencies varying with the applied top voltage. These figures are extracted
from [217] and [218].

observed, corresponding to a perfectly degenerate configuration. The other contacts allow the
authors to still be able to tune the QD wavelength. Note that despite their visual similarities,
the cavity structure of reference [217] strongly differs from ours in size (>100 µm) and optical
field confinement mechanism.

In our experimental configuration, the observation of a change in the cavity birefringence
when applying a remote bias indicates the appearance of an in-plane electric field that we
could exploit to control the FSS. We use the semiconductor module of the software COMSOL
to explore theoretically the electric field profile in our structure when such remote voltages
are applied. We consider the geometry shown in figure 4.13. A 4 µm diameter pillar (on the
left of the figure) is connected to a 12 µm wide and 4 µm long mesa (on the right) through a
1.5 µm wide and 10 µm long arm. The dimension along z of these three elements is the real
sample one, namely 7.5 µm. They are positioned on a wafer to which we attributed a 45 µm
diameter and a 5 µm thickness, which is much smaller than in the real sample for the sake of
computation time. The voltage is applied on the metallic surface defined on the top of the
mesa. We defined the whole structure material to be only GaAs. We do not use the real
structure where GaAs and AlGaAs are alternated, as these Bragg mirror pairs are too thin
for COMSOL to take into account in reasonable computation durations. Moreover, this study
is not about the light confinement but only about the electric behaviour of the device. The
horizontal layers that we can see in figure 4.13(a) are the boxes where the different doping
values are defined. The corresponding doping profile is close to the actual doping structure
of our samples and is shown in figure 4.13(b). The intrisic region shows a 1014cm−3 residual
doping (both n and p) because of interdiffusion between the layers. We consider a QD located
at the bottom of the intrisic region in z (20 nm above the n-doping layer), as shown on the
right panel of figure 4.13, and we suppose that it is located in the middle of the pillar in x
and y. The temperature in the simulation was set equal to 10 K.
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(a) (b)

Figure 4.13: (a) Geometry of a semiconductor design with one pad, built in COMSOL to
simulate the behaviour of electric fields, current densities, etc. (b) Doping profile of the
structure, invariant by translation in the x and y directions. The orange (resp. blue) line
corresponds to the concentration of p-type (resp. n-type) dopants. The shaded orange area
corresponds to the wafer which has a thickness set to 5 micrometers. The vertical dashed lines
are guides for the eyes corresponding to the different concentrations of dopants in the device.
In the intrisic region, the doping is on the order of 1014 cm−3 in both p and n.

We swept the voltage from −2 to +2 V and calculated the electric field and current density
components at the position of the dot. We then obtain the curves presented in figure 4.14,
for both the electric field and current density at the QD position.

Figure 4.14(a) shows the Ez component of the electric field at the QD position. It is non-
zero and varies with the voltage between −2V (and probably lower) to about +1.5V. This is
the main regime that we use when we apply the bias voltage to tune the QD in resonance with
the cavity fundamental mode wavelength, via the confined Stark effect, as mentioned earlier.
We check (see figure 4.14(b)) that the component of the electric field Ey is zero, which is con-
sistent with the symmetry of the device with respect to the (xz) plane. However we observe
a non-zero horizontal component along x rising when the voltage is positive and beyond 1.3
V. The Ex component of the electric field for a top voltage set to 1.6V is presented in figure
4.15. Its amplitude is non-zero at the QD position.

Figure 4.14(c) shows the intensity of currents flowing through the top electric contact and
through the bottom of the wafer (set as the ground). We see that the voltage for which the
non-zero horizontal electric field component rises corresponds to the diode threshold since
a current flows through it (a current arrives in the structure from the top contact and is
evacuated through the bottom contact).
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(a) (b)

(c) (d)

Figure 4.14: Panels (a), (b) and (d) correspond to quantities evaluated at the QD position.
They correspond to: (a) Vertical component of the electric field (along z). (b) Horizontal
components of the electric fields (along x in blue and along y in orange). (d) Components of
the current density (along x in blue, along y in orange and along z in yellow). Panel (c) shows
the current intensities flowing through the electrical contacts (top of the diode and bottom of
the wafer, namely the ground).

Figure 4.15: Ex component of the electric field (in V/m), for a top voltage set to 1.6V.

Figure 4.16 shows the distribution of current density in the simulated device for an applied
voltage equal to 1.6V. We can see that most of the current is flowing vertically through the
diode, but a small component is also flowing towards and through the micropillar. The current
density thus existing at the position of the QD is plotted in figure 4.14(d). The amplitude
of this current, which could be detrimental to the QD optical properties, actually strongly
depends on the whole structure geometry as discussed later.
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Figure 4.16: Current density in the device, seen in the (xz) plane.

From figures 4.14(a) and (b) we see that around 1.3V, the vertical component of the electric
field drops whereas the horizontal one increases in absolute value. Figure 4.17 shows the ratio
Ex/Ez between 1.4 and 1.7V. The left panel is in linear scale and the right one represents the
absolute value of that ratio in log scale.

Figure 4.17: Left panel: ratio Ex/Ez as a function of the applied voltage, in linear scale. Right
panel: absolute value of the ratio Ex/Ez in logarithmic scale.

Figure 4.17 shows that we can set the ratio Ex/Ez to any value between 10−2 and infinity
as Ez crosses zero. We conclude that when applying a voltage on the top of the device
but not directly above the pillar, and around a value for which the diode defined by the
big mesa becomes conductive, it is possible to achieve, at the QD position, any direction of
E = Exex + Ezez with Ez > 0.

4.3.1 Proposed design to tune FSS and wavelength

Based on the previous study we propose a new technique to apply a three-dimensional electric
field to be able to simultaneously tune the FSS and the average energy of the exciton as it was
done with strain. This technique is fully compatible with all the light extraction methods that
we have already implemented to obtain bright single-photon and entangled photon sources
[48, 67]. The use of three knobs should allow us to make sure that the QD transition energy
matches the modes of the cavity while controlling the FSS. The idea is to use the same kind
of wafers as the ones presented so far, and implement the in situ lithography process as well.
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However, instead of etching a wheel-shape device as shown in figure 1.17, we would etch a
micropillar connected to three metal pads via long ridges. Each metal pad is then connected
to an independent voltage source. A picture of the typical structure is shown in figure 4.18(a),
where we added fake color for the deposited gold defining the top contact. The bottom contact
is applied to the back of the sample over the whole surface. Figure 4.18(b) presents an optical
microscope image of the sample with wire bonding.

(a) (b)

Figure 4.18: (a)Scanning electron microscope image of a micropillar optical microcavity host-
ing epitaxial quantum dots (QDs). We apply up to three voltages (V1-V3) to metal pads
(false color yellow) connected to the cavity via narrow ridges and remotely control the vecto-
rial electric field around the QDs. The micropillars have a 10 µm diameter and the ridges are
2 µm thick. (b) Optical microscope image of the sample with wire bonding.

This structure would allow to tune the FSS and the average excitonic energy, after the
processing, by allowing us to tune all the components of the electric field at the QD position.

4.4 Simulation of the electric field profile

In this section, we show that we can control both the horizontal component for the electric
field at the QD location, and the vertical one. More generally, we study the behaviour of
the electrical quantities in the devices. In particular, we investigate the currents flowing
through the device to see if there is a regime of voltage operation where we can obtain tunable
horizontal field components without a large current flowing through the QD. For that purpose,
we implemented simulations with COMSOL in the Semiconductor module.
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Figure 4.19: The model geometry developed in COMSOL to simulate the electrical properties
of devices fabricated to tune the exciton FSS.

The device designed in the software is shown in figure 4.19. The wafer is simulated by the
45 µm diameter and 5 µm thick bottom cylinder. The metallic contacts are the top surfaces
of the three rectangular pads that are 12 µm wide and 4 µm long. These pads are linked to
the 10 µm-diameter pillar through 10 µm long and 3 µm thick arms. In reality, the wafer is
a lot thicker in the z direction and wider in the (xy) plane, the arms are much longer and
the pads are much wider in the (xy) plane as well. To limit the calculation time, we had to
optimize the geometry. We will study the impact of the reduced arms length in section 4.4.3.
The doping profile is the same as shown in figure 4.13(b). The temperature is set equal to
10 K here as well. We swept the two voltages VA and VB from −2V to +2V and the third
diode is not connected to any voltage supply (open circuit). We plot maps of the electrical
quantities probed at the QD position, which we assume to be at x = y = 0 and 25 nm above
the bottom of the intrisic region.

4.4.1 Electric field

Figure 4.20: On the left (resp. right) panel, logarithm of the electron (resp. holes) concentra-
tion in the device, for VA = 0V and VB = 1.8V.
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Figure 4.20 shows the concentrations (in logarithmic scale) of electrons and holes in the device
for VA = 0V and VB = 1.8V. Since the voltage on diode B is positive and larger than the
threshold voltage of the diode, the electrons flow towards the top of diode B because the top
part is p-doped (and thus lets the electrons travel). Since the top part of diode B is very
rich in electrons, the bottom part, on the other side of the intrisic region, gathers a high
concentration in holes.
Figure 4.21 shows the three electric field components at the QD position.

Figure 4.21: From left to right, the panels show the Ex, Ey and Ez components of the electric
field. Since the scale does not allow us to see any variation of Ex and Ey other than on the
top and the right parts of the plots, we plot these three quantities over a smaller range in the
bottom line. All voltages are plotted in units of V and all electric field components are in
units of V/m.

As we saw from the one-dimensional model in figure 4.17, the dramatic drop of Ez matches
with a rise of the absolute values of the in-plane components Ex and Ey. Depending on which
diode is current-passing (A or B), the in-plane components Ex and Ey can be chosen to be
positive or negative. We conclude that we are able to control both the amplitude and the sign
of the in-plane electric field components.

Figure 4.22 shows the evolution of the three components of the electric field as a function
of VB, for fixed values of VA set to 0, 1 and 2V. Note that connecting the second electrical
contact makes the behaviour of Ex and Ey different from the one of Ex in figure 4.14(b).
We observe that for VA = 0V and 1V, the amplitude of Ez is much larger than the in-plane
components Ex and Ey. However, for VA = 2V, the three components are tunable with a
comparable amplitude. The ratios |Ex/Ez| and |Ey/Ez| tend to infinity as Ez crosses zero.
Also, the tuning range of Ex is larger than Ey in the present case since the swept voltage is
aligned along x with the pillar. Note that Ex also changes sign in figure 4.22(e) (for VA = 2V).
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Figure 4.22: (a) Vertical component of the electric field as a function of VB for VA = 0V.
(b) In-plane components of the electric field (Ex and Ey) as a function of VB for VA = 0V.
(c) Vertical component of the electric field as a function of VB for VA = 1V. (b) In-plane
components of the electric field (Ex and Ey) as a function of VB for VA = 1V. (e) Three
components of the electric field Ex, Ey and Ez, for VA = 2V. All the displayed electric fields
were evaluated at the QD position and are expressed in units of V/m.
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4.4.2 Current flowing through the terminals (metallic contacts)

We are interested in obtaining a controllable electric field in the three directions of space at
the QD position. In this section, we calculate the current intensity crossing the pads A, B and
the ground (that we write respectively IA, IB and Iground) as a function of the voltage values
applied to the two diodes. We have seen previously that we can control the ratio of horizontal
over vertical electric field when the diode lets current pass through. Calculating the current
crossing the terminals (metallic contacts) then enables us to establish the link between the
ranges of voltages where we can control Ex, Ey and Ez and its experimental signature: a
current crossing the diode.

Figure 4.23: On the top line, from left to right: current flowing out of the top of diode A,
current flowing out of the top of diode B, current flowing out of the bottom of the wafer
(ground). All these quantities are given in amps. Since the scale does not allow us to see any
variation other than on the top and the right parts of the plots, we plot these three quantities
over a smaller range, namely from -2V to 1V, in the bottom line.

On the top panels of figure 4.23, we see that when one voltage is too high, current flows
through the corresponding diode and goes to the ground. It corresponds to an IV curve in-
variant per translation along the other voltage. On the top right of the Iground curve, the
ground receives current from both diodes, so it receives twice as much as on the right edge
and top edge of the map. This is consistent with the conservation of the current intensity
in the device, that is Iground = −(IA + IB) Comparing to figure 4.21, we see that we can
experimentally identify the regime where we gain the most control on the electric field.

4.4.3 Control of the electric field in the passing diode regime

From the simulation plots obtained previously showing the possibility to apply an electric field
in the three directions of space, we expect to control the FSS in the areas on the top right
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of the maps, namely for VA and VB between 0V and 2V. To have a better insight of what
happens in these regions, we plot various quantities for VA =0V and VB = 1.8V.

(a) (b)

(c) (d)

Figure 4.24: Panels (a), (b) and (c) show the x, y and z components of the electric field
respectively (in V/m) in the y = 0 plane for VA = 0V and VB = 1.8V. At the position of the
QD, we have Ex = −1.8× 104V/m, Ey = 3.1× 103V/m and Ez = 2.9× 105V/m. (d) Current
density at every position in the y = 0 plane, for VA = 0V and VB = 1.8V. The length of the
arrows represents the current density magnitude, in a logarithmic scale.

Figure 4.24 shows the electric field components and the current density in the y = 0
plane of the device, evidencing an electric field component in the plane at the QD location.
Figure 4.24(d) shows that the current flows mainly through the large mesa diode or along the
surface of the device, and a current flowing through the intrisic region of the pillar lower than
elsewhere. An important question of this FSS control method is the current density created
at the QD position, since it could impact the properties of its emission. As discussed later
on (see section 4.5.4), the absolute value of the currents flowing at the QD position cannot
be deduced from these simplified calculations. Here we discuss the qualitative dependence on
the device geometry. From figure 4.24(d), we anticipate that if the arms are longer, then the
current density at the position of the dot is lower. To verify this, we ran a simulation with
the same geometry but longer arms (20 µm, which is the double of what we used in the rest
of the chapter). The results are summarized in figure 4.25.
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Figure 4.25: Comparison for the horizontal components of the electric field (Ex and Ey) and
the norm of the current density ||J||, between configurations with 20 and 10 micrometers long
arms. The top line corresponds to a geometry with 20 micrometers long arms. For comparison,
the bottom line corresponds to 10 micrometers long arms, which was the configuration used
in the previous section.

In the regime where the diode is not pass-through, increasing the length of the arms from
10 µm to 20 µm leads to a decrease by a factor 2 of the current intensity IA flowing through
the metallic contact on top of diode A, IB on top of diode B, the in-plane electric field com-
ponents Ex and Ey, and the current density at the QD position Jnorm, as well as Jx, Jy and
Jz (meaning that it has no impact on the current density direction). However, Ez does not
change.
In the other regime, namely when the diode becomes pass-through and shows a dependence
on the resistance, increasing the length of the arms by a factor of 2 does not impact the values
of IA nor IB. Figure 4.25 shows the horizontal components of the electric field Ex and Ey,
and the norm of the current density, for devices with 20 µm and 10 µm long arms. The electric
field components are about twice as low while the current density at the QD position is about
5 times lower than when the device has 10 µm long arms. We conclude that in the area where
the ratio Ex/Ez is tunable, an increase in the length of the arms results in a much quicker
decrease of the current density than for the electric field seen by the QD. This study shows
that controlling the arms length should allow controling the electric field at the QD position
without having a significant current flowing through.
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4.4.4 Regime of non-passing diode

(a) (b)

(c) (d)

Figure 4.26: (a), (b) and (c) correspond respectively to the x, y and z components of the
electric field (in V/m) in the (xz) slice of the device at x = 0. At the position of the QD,
we have Ex = 7.3× 102V/m, Ey = −3.4.102 × 103V/m and Ez = 2.3× 106V/m. (d) Current
density in the device. These four images were acquired for VA = 0V and VB = −1.8V.

We discuss here the other limit, where none of the diodes are passing. We set the voltages to
VA = 0V and VB = −1.8V. In figure 4.26, we see that the current flows through the top of the
device and that the electric field still shows horizontal components in the QD plane, but this
time its value is positive so it is oriented in the other direction compared to figure 4.24 where
VA and VB were set equal to 0V and +1.8V respectively. The Ez component is about 2× 105

in the intrisic region

However, the in-plane components of the electric fields are orders of magnitude lower than
the vertical one when none of the diodes is passing. The regime where at least one diode is
passing, is thus more likely to allow for control of the exciton FSS and wavelength.

4.5 Experimental study

We now turn to the experimental study of the proposed scheme. Since this project started not
long before the move of the lab, we did not have enough time to implement the in situ lithog-
raphy process on the sample before taking measurements. In order to have QDs in resonance

140



with the cavity, we then chose to work with a sample with a large number of QDs per unit
of energy. When working in the context of single-photon generation, we avoid having such a
high QD density to not have more than one transition line at the wavelength we are interested
within the diameter of a micropillar. A way to reduce this density is to anneal the samples.
As mentioned before, the annealing also leads to a reduction of the FSS [219, 220]. Here we
use a sample which had not been annealed, so where several QD transitions are measured in
the cavity modes spectral range. Since the position of the QD is not controlled within the
pillar, we do not study the effect of the cavity. However, the method described in this section
is fully compatible with the in situ technique developed to make bright photon sources in our
group.

We fabricated a sample with two different structures, which picture is shown in figure
4.27(b). The shape shown on the left of figure 4.27(a) was the initial idea, with 50 µm-long
2 µm thick arms. We also fabricated the one shown on the right, with a shorter portion of
the arms with a 2 µm width and a wider 15 µm thick second part, in case the long thin ridges
would not be wide enough to be etched properly. The pillars have a 10 µm diameter to observe
several QD lines per pillar.

Figure 4.27: (a) Drawings of the two explored geometries with the wires set up to connect
several pillars at once. (b) Picture of the sample using a microscope.

After implementing the wire bonding (that we can see in figure 4.18(b)), the sample was
cooled down to 7 K in a cryostation that has only 5 electrical outputs. Connecting one device
already requires 4 of these outputs, one per diode and one for the ground. In order to be
able to explore the characteristics of several devices without having to warm up, change the
connections and cool down the sample again, we connected several devices together at once,
as shown in figure 4.27(a).

4.5.1 Determination of the FSS

For the generation of entangled photon pairs, one needs to find a biexciton with the corre-
sponding exciton. A way of identifying such a set of states is to vary the excitation power
and observe the dependence of the transition emission intensity of the line. If the intensity
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increases linearly (resp. quadratically), it is a good indication that the line corresponds to an
exciton (resp. biexciton) [221]. This is due to the fact that the intensity of the exciton (resp.
biexciton) line is proportional to the probability to create one (resp. two) electron-hole pair(s)
with one excitation pulse. Once we know which transitions are excitons and which are biexci-
tons, we can vary the excitation polarization angle and see which couple has complementary
behaviours (EX + EXX = constant). With our sample presenting many QD lines, we had a
hard time adopting such approach. Instead, we focus on transitions that show an FSS, and
we work at low power so the studied transitions are mainly excitons.

The experiments of this chapter were implemented using the same cross-polarization setup
as used in the rest of the thesis, but using non-resonant excitation. An example of a spectrum
we obtained is shown in figure 4.28. Using a least-squares curve fit in MATLAB to fit individual
lines by Lorentzian functions, we could determine their central wavelength and intensity.

Figure 4.28: Example of a spectrum, taken at V1 = 0 and V2 = 0, with a 10 seconds integration
time. The excitation laser power was 86 µW and its wavelength was 830nm. The orange line
is the fit for one of the transition lines, using a Lorentzian function.

By rotating the HWP between the PBS and the sample, the polarization of the excitation
light was varied, as well as the polarization of the collected light. However, non-resonant ex-
citation is known to lead to a mostly non-polarized emission thanks to the rapid decoherence
of the hole spin during the relaxation towards the ground state [222]. Then whatever HWP
angle we use, both the QD exciton states are incoherently populated and we eventually only
control the collected light polarization. When exciting an exciton, we collect one of the two
excitonic states’ polarization (say X) for a given angle, and switch progressively to the other
one (Y ) by rotating the HWP, reaching it completely for a rotation of π/4.

We acquire spectra for a wide set of HWP angles and select several lines that look promis-
ing (isolated and bright) and fit them with a Lorentzian function. Plotting the obtained
wavelength of the peak as a function of the HWP angle allowed us to identify the interest-
ing transitions, namely those that showed an oscillation in wavelength when the HWP is
rotated. An example of such an oscillation is presented in figure 4.29. The FSS is equal to
the peak-to-peak amplitude of the sinusoid, here 9.2 ± 0.4 pm. This measurement allows us
to determine the two HWP angles corresponding to the lowest and highest wavelengths that
are the wavelengths of the two dipoles.
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Figure 4.29: Wavelength of the QD line which is fitted in figure 4.28 as a function of the HWP
angle. This measurement allows us to determine two angles of the HWP corresponding to an
excitation along the different dipoles. The expression used to fit is λ(φ) = c1 cos((2π/90)(φ−
c2))+c3 where ci are the fit parameters. The returned result was {c1 = 0.0046±0.0003 nm, c2 =
11.7±0.9◦, c3 = 922.3930±0.0002 nm}, corresponding to an FSS of 9.2±0.4 pm, HWP angles
for the maximum and minimum of wavelength of 11.7 ± 0.9◦ and 56.7 ± 0.9◦, and c3 is the
central wavelength.

We present results coming from two sets of measurements on two samples. For the first
one, we used non-resonant excitation, and the voltage control was manual. For the second
one, the QD density was too high and we used p-shell excitation to reduce the number of
emission lines, and the voltage variation was automated.

4.5.2 FSS control

In this section, the considered device has the geometry displayed on the left in figure 4.27(a).
We first determined the two angles for each QD as explained previously. For each of these two
angles, we acquired spectra for each set of voltages, exciting the dots with a 38 µW continuous
wave non-resonant laser (830 nm). Exciting that far off-resonance allows us to obtain spectra
with lots of visible lines. Only two voltages out of three were varied, to start simply, and
also because it was a very long process: the experiment was not automated yet. The third
diode was not connected. We fit each spectrum to get the wavelengths of both dipoles, cal-
culated the difference (equal to the FSS) and plotted it as a function of the two varied voltages.
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Figure 4.30: Left panel: spectrum, taken at V1 = 0 and V2 = 0, with a 10 seconds integration
time. The excitation laser power was 38 µW and its wavelength was 830 nm (non-resonant).
The orange line is the fit using a Lorentzian function, for one of the transition lines showing
an FSS. Right panel: fine structure splitting for the line fitted on the left panel, as a function
of two voltages V1 and V2, applied on two of the three diodes. The black points correspond to
inconclusive measurements due to the weak signal.

The white areas of the 2D map in figure 4.30 correspond to a zero FSS, which is reachable
for a continuous set of voltages. For this given QD, the FSS can be varied from around −5pm
to around +15pm and it is possible to tune it to zero with the two electrical knobs. The
FSS variation happens mostly for high values of V1, which most probably corresponds to the
regime where the diode is pass-through, as we saw in section 4.4.1. Furthermore, we notice
that the result is not symmetric with respect to the V1 = V2 line of the plot. This means the
influences of the two voltage sources are different: that may be explained by the fact that the
two different electrical paths have different resistances, and/or the fact that the dot might not
be positioned equidistantly from the diodes. The black area on the top right of the 2D map in
figure 4.30 are outliers (they correspond to failed fits). This is due to a drastic decrease of the
dipoles’ emission intensity for these sets of voltages, as shown in figure 4.31. This decrease
can be explained by the fact that the Stark effect has an impact not only on the wavelength
of a given dipole, but also on its strength.
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Figure 4.31: Intensity of the peak at wavelength 916.9 nm, for the two predetermined HWP
angles.

4.5.3 Simultaneous FSS and wavelength control

Another QD transition was analyzed from the same set of measurements, that demonstrates
both a control of the FSS and the wavelength. We found the HWP angles corresponding to
the exciton dipoles are the same as for the previous transition. This observation shows that
the various QD lines are likely to be determined by the crystal environment and strains that
do not change drastically within the excitation laser spot diameter. For the transition showing
a wavelength equal to 919.7 nm, the obtained map is shown in figure 4.32.

(a) (b)

Figure 4.32: (a) FSS as a function of two of the voltages, for an emission line of wavelength
around 919.7 nm. The black stars show the sets of voltages that I chose to investigate to see
if the dipoles rotate while we vary the voltages. (b) Corresponding average wavelength of the
two dipoles (λ1 + λ2)/2, in nm.

The intensity of this QD transition is shown in figure 4.33 for the two dipoles.
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Figure 4.33: Intensity of the peak at wavelength 919.7 nm, for the two predetermined HWP
angles.

The first observation we make is that it is possible to reach a zero FSS without having a
drop in intensity of the QD transition, for a continuous set of voltage values, corresponding
to the white area in figure 4.32(a).
We also see, when looking at figures 4.32(a) and (b), that a zero FSS is reached for a given av-
erage wavelength, and almost reached for two other average wavelengths. The use of the third
diode should allow for a perfectly zero FSS for several wavelengths. Overall, the wavelength
varies by around 50 pm, a small value compared to values reached with strain tuning in bulk
samples. However, this tuning range is close to the cavity linewidth used in our micropillar
cavity devices operating in the strong Purcell effect [70].

Finally, we checked that for this set of measurements the QD dipoles do not rotate with
the voltages, validating the results of figure 4.32. Indeed in case of dipole rotation, the HWP
angles we use would no longer correspond to the minimum and maximum of the abscissa of
the peak. For that purpose, we went back to some couples of voltages values (marked by black
stars in figure 4.32). For each of these points we acquired spectra for different HWP angles,
from 140 to 232 degrees, by steps of 4 degrees. The spectra are presented in figure 4.34.
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Figure 4.34: Spectra as a function of the HWP angle, for the couples {V1, V2} marked by black
stars in figure 4.32.

We fit all the spectra by Lorentzian functions and extracted the central wavelength, that
we plot as a function of the HWP angle in figure 4.35. We fit the obtained data with sinusoids
and extract the amplitude (equal to the FSS), the average (equal to the central wavelength)
and the phase (that indicates the dipoles orientation).
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Figure 4.35: Wavelength of the peak as a function of the HWP angle for different sets of
voltages, corresponding the the black stars shown in figure 4.32. The crosses (+) correspond
to the experimental data and the solid lines correspond to fits by sinusoids, of expression
λ(φ) = c1 cos((2π/90)(φ− c2)) + c3 where ci are the fit parameters. The parameter c1 is equal
to half the FSS, c2 is the phase in degrees and c3 is the central wavelength. The returned
results are displayed in the table on the right.

Figures 4.34 and 4.35 confirm that the set of parameters V1 = 1V and V2 = 0V allows for
a zero FSS. The phase varies by 2.2◦ at most. We see that, for the present QD, the dipoles
do not rotate when the voltages are varied.

4.5.4 Link with current flows

In this section, we evidence the connection between the observed FSS and the currents flowing
in the device.

Here a higher density sample is explored. In order to obtain spectra where the lines are
more isolated, we excited the QD transitions more selectively by using p-shell excitation. This
consists in using a lower excitation energy to excite only transitions corresponding to both
electron and hole states confined in the QD. Also at that point, we automated the data ac-
quisition: the two voltages were swept automatically, as well as the rotation of the HWP over
a range of 90◦ so that we can detect a variation of the sinusoid phase from one voltage to
another. This automatization allowed us to use much smaller steps and obtain more detailed
maps. For each set of parameters, the spectra were acquired, as well as the current flowing
into each terminal. We used a continuous wave laser with a power of 300 µW. The integration
time of each spectrum was set to 1 second and we swept the voltages from −3V to +5V. The
excitation wavelength is equal to 900.35 nm, thus closer to resonance than in the previous
study. To choose this wavelength, we scanned the continuous wave laser until we observed
isolated emission lines with a high intensity.
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(a) (b) (c)

Figure 4.36: (a) FSS given by the peak-to-peak amplitude of the sinusoid obtained by plotting
the central wavelength of the fit of the spectra. (b) Phase of the sinusoid mentioned before.
(c) Shift of the average wavelength of the two excitonic peaks, in pm. The central wavelength
corresponding to a 0 pm shift is 931.86± 0.03nm. The yellow region in the bottom left of the
map actually corresponds to a shift of up to +30 pm but was dominating the colormap so we
set it to zero.

Like in the previous study, a variation of the FSS is observed as a function of the two
applied biases (see figure 4.36(a)). This time, we had continuously access to the phase since
we rotated the HWP for each couple of voltages. We observe on figure 4.36(b) that the phase
changes by π when the voltages cross the FSS dip in the region corresponding to high voltages,
meaning that the FSS actually goes from positive to negative when crossing that dip. It thus
shows that a zero FSS is achievable for this QD with the two knobs used in this study. Here
we observe a significant variation in phase for the lowest values of V1, which shows that the
QD dipoles rotate when changing the voltages. The shift of the average peak position around
an average wavelength equal to 931.86± 0.03 nm is represented in figure 4.36(c). It varies as
well with the voltage, by around 60 pm.

(a) (b) (c)

Figure 4.37: Panels (a) and (b) show the currents flowing through the two connected pads.
Panel (c) corresponds to their sum. The flat blue areas on the top left and bottom right
regions in panel (c) correspond to the minimum detectable current.

For these measurements, we connected only one device at once, so the currents flowing in
the sample are determined only by the resistances in the studied device.
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Note that in figure 4.37(a) and (b), we retrieve the trend given by the simulation for the
currents IA and IB, when restricting the ranges of VA and VB to [-2V,+1V]. The corresponding
plot obtained from the COMSOL simulation was shown in the bottom panels of figure 4.23.
Figure 4.37(c) shows the sum of currents I1 + I2. When V1 increases, we approach the regime
where the ground receives current, which means that the diode becomes pass-through. The
transition towards that regime is where the FSS amplitude varies, which confirms that the
current flowing through the diode gives rise to a controllable horizontal component of the
electric field at the QD position.

4.6 Discussion

In this section, we discuss the differences between the features from the calculated maps of
electric field and from the measured FSS. We then discuss the outcome of this study in terms
of quality of the emitted photons and discuss the next steps of this study.

4.6.1 Difference between the numerical field maps and the FSS
experimental features

The experimental observations for the FSS and wavelength (see figures 4.32 and 4.36) do not
show the same symmetry as the theoretical calculated maps for the in-plane electric field such
as 4.21. Indeed, self-assembled QDs show random size and orientation, and their symmetry is
randomly reduced from combined mechanisms (in-plane asymmetry, heavy/light hole mixing).
We thus do not expect to observe an exact mapping between the calculated electric field 2D
maps and the measured FSS ones. Moreover, depending on the position of the QD and the
relative resistance of the ridges, asymmetries in the electric field itself can be retrieved by the
simulations, as shown in this section.
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(a) (b)

Figure 4.38: (a) Geometry built in COMSOL to simulate a device where the resistance of the
different arms is not equal. The arm connecting the micropillar to diode B is one micrometer
thick, which is half the thickness of the one connecting the micropillar to diode A. (b) Position
of the dot at which the quantities are evaluated to see the effect of a non-centered QD. The
coordinates of the dot are x = 4 micrometers and y = 0 micrometers).

Asymmetry of the resistance of the arms

In this section, we aim at studying the effect of having a device with arms of difference resis-
tances, which could arise from etching defects on very thin arms. To explore this numerically,
we ran a simulation where one of the arms is half as thick as the other, as shown in figure
4.38(a). The sweeping range is from 0V to 2V for both the connected diodes.

Figure 4.39 allows us to compare the behaviour of the Ez component of the electric field
between the geometry with one thinner arm and the geometry with equally thin arms. We see
that the drop happens for higher values of VB than VA. This change is visible on every other
quantity, as for the norm of the current density for example, which is shown in figure 4.39(b).
This could explain the fact that 3V is not a high enough upper bound for V2 to observe an
effect on the experimental figures 4.30 to 4.33 of the chapter.

Asymmetry of the QD position

To illustrate the asymmetry in electrical quantities due to the non-centering of the QD in the
micropillar, we evaluated the values of the electrical quantities for a QD located at x =4 µm
from the center of the 10 µm-diameter micropillar, as shown in figure 4.38(b).

In that configuration, the Ez component of the electric field and the norm of the current
density at the new position of the QD are presented in figure 4.40. At that position for exam-
ple, it requires less voltage on diode B than on diode A to reach the interesting regime where
we can control the ratio of electric field in the plane over the vertical field.

With smaller pillars comprising fewer QDs, the asymmetry related to the QD position
should vanish, but the conductivity of the arms is not easily controllable. For example, it
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(a) (b)

(c) (d)

Figure 4.39: Panels (a) and (b) show respectively the Ez component of the electric field (in
V/m) and the norm of the current density ||J|| (in A/m2), in the case where the device has
one arm (the one leading to diode B) that is half as thick as the others. For comparison,
panels (c) and (d) show the same quantities but in the case where all the device’s arms have
the same thickness.
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(a) (b)

(c) (d)

Figure 4.40: Panels (a) and (b) show respectively the Ez component of the electric field (in
V/m) and the norm of the current density ||J|| (in A/m2), in the case where the QD is not
at the center of the micropillar (x = 4 micrometers and y = 0). For comparison, panels (c)
and (d) show the same quantities but in the case where the QD is centered.
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happens that some of the devices arms are damaged, especially the long and thin ones (see
figure 4.18). This implies that the field at the position of the QD is not foreseeable. One thus
needs to first acquire spectra for each set of 3 voltages, see the effect on the wavelength and
on the FSS, and decide on which set of parameters it is best to operate.

4.6.2 Current flowing through the QD

While our technique is based on generating a current that flows vertically through the diodes,
we need to make sure that the current flowing at the vicinity of the QD remains quite low.
Indeed, the contrary could lead to charge instability and decrease the indistinguishability.

The experimental currents crossing the metallic contacts shown in figures 4.37(a) and (b)
are at least 5 orders of magnitude lower than the currents predicted by the simulation (see
the plots of IA and IB in figure 4.23). This is probably due to how simplified our COMSOL
model is. We assigned the material GaAs to the whole structure without taking into account
the alternated layers of GaAs and AlGaAs of the Bragg mirrors. These layers make the path
more difficult for charges to propagate through the structure.

On the edge of the Ez drop on the 2D maps from the simulation section, the norm of the
current density is on the order of magnitude of 108 A/m2. If we consider that the intensity
of current crossing the metallic contacts is proportional to the current density at the QD
position, then the actual current density is 5 orders of magnitude lower, meaning 103 A/m2.
Furthermore, we have seen in section 4.4.3 that an increase of a factor 2 of the arms length
leads to a decrease of the current density by a factor 5. This means that we can reasonably
assume that the real length of the arms of 50 µm leads to a reduction by a factor of at least
10. The QD in-plane (resp. vertical) cross-section is about 10nm × 10nm (10nm × 3nm) and
the current density at its position is on the order of 102 A/m2. We can calculate the current
crossing an area centered on the QD and 10 times larger in the two dimensions: S = 104nm2.
In that case J×S is of the order of 10−12 A, which corresponds to 6×106 electrons per second.
In a photon lifetime that is about 200 ps, there is on average 10−3 electrons crossing the QD in
one photon emission lifetime. Electrons crossing the QD with such a low probability would be
likely not to degrade the emitted photons’ properties. This calculation of order of magnitude
indicates that many parameters control the current actually flowing in the vicinity of the QD
and that practical configurations can allow to minimize it. This analysis is further supported
by experimental observations on the QD linewidth, as discussed now.

4.6.3 Quality of the generated photons

The current flowing through the QD is very low and is unlikely to degrade the photons’ prop-
erties.

A first indication of whether this FSS control method could preserve the photons’ quality
is to study the linewidth of the emission line. We thus studied the possible modifications of
linewidth and emission intensity as a function of the applied voltages. Note that here, the
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diameter of the pillars is so large that we can consider that the QD is embedded into a planar
cavity. We thus do not expect a modification of the spontaneous emission rate by cavity
quantum electrodynamics.

The linewidth we measure under non resonant continuous wave excitation is in general
determined by the charge noise at a long timescale (spectral wandering over a range on the
order of 1 ms or more) instead of by the radiative linewidth. This is confirmed by the obser-
vation of linewidths larger than the minimal spectral resolution of about 13 pm, much beyond
the transitions’ radiative linewidths (on the order of 1 pm). Then, the variations in linewidth
indicate a variation of the charge noise in the QD vicinity. However, this is true only as far as
the emission intensity is not very reduced. Indeed, the peak area in continuous wave excitation
is determined by the inverse of the transition radiative lifetime as well as by the probability
to find the state in the considered state (quantified by pQD introduced in section 1.5.4). A
reduction of the signal can thus mean an increase of the radiative lifetime (by a decrease of
the electron-hole overlap) or a decrease of the quantum efficiency due to charges tunneling
out of the QD. The first option translates into a smaller intrisic radiative linewidth, the sec-
ond one by an increase of the linewidth much beyond the radiative one. Then, a widened
linewidth together with a signal reduction is the signature of charges tunneling out of the QD
and of a reduction of quantum efficiency. This is what we observe at very high voltages (and
high current intensities) on all the data presented here. However, for lower voltages, various
behaviours are observed.
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(a) (b) (c)

(d) (e)

Figure 4.41: (a) and (b) show the linewidth (FWHM) of the emission from the two dipoles of
the exciton studied in section 4.5.3. (c) shows the corresponding measured FSS recalled from
figure 4.32. (d) and (e) are copied from figure 4.33 to make the comparison easier.

Figures 4.41(a) and (b) show the emission linewidth of the two dipoles for the device pre-
sented in section 4.5.3. We can see that while the FSS goes from positive to negative values
when V1 increases (between 1 and 2V), the emission linewidth does not increase. A decrease
of linewidth is actually observed while the signal intensity increases, indicating a reduction in
the charge noise, in the area where V1 is lower than in the passing regime of the diode.

The analysis of this section indicates that it is possible to find conditions where the FSS
can be tuned below the voltages for which a too high current flows through the QD’s vicinity.
These observations are confirmed by measurements made on our single-photon sources that
are often operated under positive voltages and for which very high indistinguishabilities are
measured. For example, a device from sample D from the benchmarking of Chapter 2 (see
figure 2.20) showed a mean wavepacket overlap of 94% while a voltage of 4V was applied.

4.7 Conclusion and perspectives

4.7.1 Summary of the results

We have developed a new method to control the FSS. In an original way, we exploit the differ-
ent resistances of the various elements of the device (pillar, arms and pads) to make a current
flow through a restricted part of the device in order to create a horizontal component of the
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electric field at the QD position.

We performed a numerical study with COMSOL that allows for understanding qualita-
tively the experimental observations. From our simulations, we have demonstrated a control
of the Ex, Ey and Ez with two of the three available knobs. Using them all could then allow
us to control Ex, Ey and Ez independently, and thus to tune simultaneously the FSS and
the average emission wavelength. This represents the first demonstration of FSS control in
a structure allowing for efficient light extraction, using all the already existing technologies
developed in the group.

We managed to tune the FSS over a range of typically 30 pm for various QDs in various
samples. For one QD, we also found several working points where the FSS vanishes, for dif-
ferent values of average wavelength. The tuning range in wavelength is much smaller than in
the case of strain tuning, but is well adapted to sources coupled to high Q-factor cavities.

4.7.2 Perspective

The structure could be optimized by playing on the length and shape of the arms to further
reduce the current at the QD position if needed. The vertical doping profile can also be stud-
ied to better control the ratios between the different components of the electric field.

In the future, we aim at implementing the in situ lithography process presented in Chapter
1, but with the device geometry presented in this chapter. This would allow us to target only
one exciton and address it with the three remote voltage knobs. From there, an aim of the
group is to experimentally demonstrate the generation of tunable frequency-encoded qubits.
Another natural application of this technique is the implementation of bright sources of en-
tangled photon pairs, by inserting the QDs into a cavity molecule. We discuss this perspective
in more details in Chapter 5.

To sum up
We have demonstrated a new method to tune the exciton fine structure splitting
based on the use of three voltages, that allow us to control independently the three
components of the electric field at the position of the QD. We showed the results
of numerical simulations as well as experimental data. The principle is to generate
a current that flows vertically through the diodes, while the current at the vicinity
of the QD remains negligible. This technique is fully compatible with the use of
cavities to simultaneously tune the FSS, the average wavelength and enhance the
spontaneous emission.
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Chapter 5

Conclusion and perspectives

With the acceleration of the development of quantum technologies in the last few years, the
competition has accelerated between the different physical platforms for each building block of
quantum computers and communications. In this thesis, we focused on semiconductor quan-
tum dots that are promising candidates for being used as single-photon sources, i.e. photonic
qubit generators.

In Chapter 1, we have described the fundamentals of single-photon emission from QDs
coupled to microcavities. We have recalled the various energy levels of a QD and defined
the exciton fine structure splitting. These levels strongly depend on the QD cristallographic
and strain environment, and they govern the polarization of the emitted light through optical
selection rules. Finally, we gave the figures of merit used to characterize single-photon sources
as well as the techniques we use to measure them.

In Chapter 2, we have studied the characteristics of micropillar cavities as well as two differ-
ent transitions in QDs: trions and excitons. We have benchmarked 15 single-photon sources,
evaluating their optimal functioning point in terms of wavelength, single-photon purity, in-
distinguishability, fibered brightness, and finally their temporal profiles for the trion-based
sources. We work with naturally grown QDs, which currently have a higher single-photon
purity than site controlled QDs [223, 224]. By post-processing them, namely using the in situ
lithography process, we overcome the QD random distribution in both spatial and spectral de-
grees of freedom by selecting them and building a tailored cavity around them. This allows us
to obtain a large number of sources with highly homogeneous properties. This demonstrates
the reproducibility of our single-photon source technology, making it promising for large-scale
production which is a key element in the industrial development of quantum technologies. We
also discussed the physics of the sources’ behaviour in a cross-polarized resonant excitation
scheme, and identified the parameters controlling the wavepacket temporal profile and the
source brightness.

In Chapter 3, we have derived a general formula giving access to a source’s indistinguisha-
bility from the measured visibility of its HOM interference when the latter is affected by a
noise that can be distinguishable or indistinguishable from the main single-photon stream.
We have investigated the nature of the extra-photons for the two types of sources and found
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that, although the physics behind it differs strongly, both source types display mostly distin-
guishable noise.

In Chapter 4, we have described a new strategy to tune the FSS of excitonic photon
sources. The principle is based on the use of three electrical voltages applied to diodes that
are 120◦ apart around a micropillar embedding the studied exciton. We have numerically
shown that these knobs allow for controlling the electric field in three dimensions, which could
govern the FSS and the average wavelength independently. We have shown experimental re-
sults showing that it indeed allows for tuning the FSS and that the average wavelength can be
varied over about 30 pm. We propose two applications for this device. First, the generation of
entangled photon pairs from a biexciton cascade requires to erase the fine structure splitting.
Second, by doing the opposite and increasing the FSS, tuning would allow one to generate
frequency-encoded qubits. With a phonon-assisted excitation technique, we can excite the QD
off-resonantly and the filtering in polarization is no longer necessary: we can arbitrarily excite
and collect any polarization. If the FSS is large enough so that the two exciton eigenstates
can be separated by more than the individual linewidth, then the temporal wavepacket of the
emission can be encoded in frequency.

In the following, I sketch some possible perspectives to this PhD work.

5.1 Towards identical remote sources

Implementing quantum operations with photons coming from different places requires the
fabrication of identical sources to generate photons that can undergo a quantum interfere at a
beam splitter. In that context, a visibility of 51± 5% was reported in 2017 in reference [225],
from remote strain-tunable GaAs quantum dots emitting on-demand photon pairs. This was
done for QDs in bulk structures, without efficient collection.

5.1.1 Preliminary results

Within the PhD of Mathias Pont, the team is currently interfering photons coming from two
different samples (samples C and D, see figure 2.24). We tried to interfere a few pairs of
sources from these samples. As we mentioned in Chapter 2, trion-based sources are expected
to be better for remote interference since their temporal profiles should give a higher overlap
than exciton-based sources. However, the highest visibility we obtained, equal to 69%, was
reached so far by interfering photons from sources 5 and 10, which are both excitons. This
preliminary result is shown in figure 5.1. The two remote sources were excited resonantly.
This is a state-of-the-art value for interfering remote sources [21] along with a high collection
efficiency due to the cavity design. Note that a higher visibility was only observed for remote
QD sources for very low excitation where single photons preserve the laser spectrum (coherent
scattering) [226]. First analysis shows that the measured visiblity is currently limited by some
electrical and mechanical noises in our setup. In order to reach higher visibilities with remote
sources, the team is currently identifying and tackling the different potential sources of noise
that might explain these fluctuations.
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Figure 5.1: (a) Histogram of the Hong-Ou-Mandel interference obtained from remote sources
(labeled 5 and 10 in the benchmarking from Chapter 2) under resonant excitation. (b) Tem-
poral wavepacket profiles of the two corresponding sources (5 in red and 10 in blue).

5.1.2 Remaining fabrication challenges

All the experimental work reported in this manuscript has been done on devices fabricated
in 2018, since the cleanroom had to close mid-2018 and only reopened early 2021 due to the
pandemic. I sketch below some challenges that will be addressed in the near future now that
technological developments have restarted.

More uniform wafers

As shown in section 2.5.3, the average wavelength shows a standard deviation of 0.5 nm when
considering the sources from all the samples, whereas this value is reduced by a factor of ' 10
for sources within a given sample. This is due to the epitaxial growth process implemented in
the C2N cleanroom: the different elements deposited in the molecular beam epitaxy chamber
come with different angles with respect to the wafer. The wafer is set on a spinning platform
during the epitaxy to homogenize the thickness of the layers, but the wafer can still show
a variation on the order of 1 − 2% in thickness by translation, which makes the emission
wavelength vary significantly from one piece of the wafer to another and thus increases the
sources’ wavelength standard deviation. Growing the sources on a more industrial machine
would be one way to counter this issue.

Better control over the charge state

As explained in section 2.6, the voltage influences both the source QD-cavity detuning and
the QD charge state. Having only one knob for these two parameters prevents us from simul-
taneously minimizing the detuning and controlling the charge state. A way to overcome this
issue is to set up a way to apply a voltage during the lithography step. That way, we would
be able to explore the different available charge states and their wavelength prior to the QD
selection and cavity definition, and then etch the micropillar with a more appropriate diam-
eter. The optimization of the corresponding device brightness would then require a smaller
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Figure 5.2: Evolution of the QDs emission wavelength as a function of the applied voltage.
This was acquired on a sample where the micropillar cavity etching had not been implemented.
Each line corresponds to a given transition.

voltage tuning range.

An example of how the QD charge state and emission wavelength evolve with the applied
voltage is shown in figure 5.2. This was acquired from a planar cavity (no micropillar had been
etched yet), as it would be done during an in situ lithography process. If the objective were
to fabricate a longitudinal acoustic phonon-assisted single-photon source based on an exciton,
the wavelength would be the one corresponding to its highest occupancy, around 927.7 nm,
marked with a white line on figure 5.2.

5.2 Towards higher quantum purity

The very ambitious goal of using single-photon sources for quantum computing requires the
highest possible visibility of HOM interference (ideally VHOM = 1). In practice, the HOM
visibility is reduced both by the “true indistinguishability” of the sourcesMs and their non-zero
g(2). Together with increasing the source efficiency and fabrication reproducibility, pushing
its overall quantum purity towards unity is critical.

5.2.1 Improving the single-photon mean wavepacket overlap

As explained in [155], when the zero phonon line is resonant with a narrow cavity mode and
experiences a strong Purcell effect, the fraction of emission in the phonon sideband can be
strongly reduced. This allowed the team to obtain near-unity Ms with high Q-factor cavity.
In the results presented in this thesis, the samples were different from the ones used back
then: the Q factor of the cavity was lower as well as the Purcell factor, and there was more
emission from the phonon sideband. This entailed that the values of Ms presented in this
thesis are lower than the ones of the previously cited paper. Fabricating cavities with a higher
Q-factor would allow to enhance more of the the zero phonon line emission via the Purcell
factor, which leads to higher values of Ms. However, in that case the lifetime becomes shorter
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and then there is more re-excitation, which deteriorates the single-photon purity (and thus
also the total mean wavepacket overlap as well as the visibility of the HOM interference).

A way to overcome the problem of an increased re-excitation probability is to fabricate
cavities with higher Q-factor but not showing higher Purcell factors [155]. Figure 5.3(a) shows
the indistinguishability as a function of the cavity linewidth for a fixed Purcell factor of 24.
We see that the indistinguishability can reach very high values for low values of the cavity
linewidths (i.e. large Q-factors). In our case, this is achievable by increasing the thickness
of the pillar cavity along the growth direction for example. This increases the mode volume
V but maintains the same value of the Purcell factor because the Q-factor increases as well
since the photon travels over a longer distance in the cavity. However, the effective thickness
Leff of the spacer is actually not λ (the QD emission wavelength) but closer to 3λ because of
the penetration depth of the photons in the top and bottom mirrors, as shown in figure 5.4.
Then, increasing the spacer’s thickness by a factor of 10 leads to an effective thickness of Leff

around 12 and thus actually only increases the mode volume by a factor of 4. This approach
is promising but will require development on the growth and etching procedures. Moreover,
as we can see on figure 5.3(b), the fraction of emission into the cavity mode decreases as the
cavity linewidth decreases. Thus, there is a trade-off between high efficiency and high values
of Ms.

Figure 5.3: (a) Indistinguishability as a function of the cavity linewidth for a Purcell factor
equal to 24 and different temperatures. (b) Corresponding fraction of the emission into the
cavity mode. The QD and the cavity are assumed to be resonant. This figure was extracted
from [155].
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Figure 5.4: Schematic of a spacer of thickness equal to the QD emission wavelength λ on the
left, and 10λ on the right.

5.2.2 Improving the single-photon purity by pulse shaping

As discussed in Chapters 2 and 3, the HOM visibility is strongly dependent on the g(2). For
exciton sources, it is mostly limited by the laser rejection. For trion-based sources, it is lim-
ited by recapture phenomena (re-excitation). An interesting perspective could be to study
the influence of the excitation laser pulse shaping on the single-photon purity. In our team,
we simply shape the laser using the 4-f optical setup shown in section 1.5.1 to match the
excitation laser bandwidth with that of our micropillar cavity. This can be further improved
by replacing the slit used to select the spectral portion we select to excite the QD by a spatial
light modulator (SLM). This solution is investigated by the team of Pr. Andrew White who
implemented a feedback loop to control the phase of each pixel of the SLM until the g(2) reaches
the lowest possible value [227], opening a new path to improve the overall source performances.

5.3 Towards bright sources of entangled photons

In this thesis, we demonstrated a new control of the FSS (that reached values lower than the
QD linewidth) for QDs in large pillar cavities. The next step is to show such a control over a
QD that is embedded into a cavity with resonances that match its wavelengths. For that pur-
pose, new samples, annealed to have a low density of QDs, will be studied to identify biexciton
and exciton states before being processed with the in situ lithography. For efficient extraction
of both photons, coupled cavity structures will be defined around the QD as discussed now.

5.3.1 Efficient collection

In order to collect both photons from the cascade, and since each photon has a different
wavelength, we will use the concept of coupled microcavities, introduced by the team in 2010.
Such a structure, shown in figure 5.5(a), presents two modes: one for each photon wavelength.
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The dependence of the optical mode resonances as a function of the center-to-center distance
is presented in figure 5.5(b).

(a) (b)

Figure 5.5: (a) Coupled micropillars that allow for collecting both photons from the radiative
biexciton cascade efficiently, despite their different wavelengths. (b) Dependence of the optical
mode resonances of the coupled micropillars cavity as a function of the distance between their
centers. Both of these figures are extracted from reference [48].

It was shown that by choosing the proper diameter and center-to-center distance, one can
make each of the two optical transitions resonant with one of the two cavity modes. For the
current project, a study is needed to understand how the ridges used to apply the remote
bias for the FSS control may affect the cavity mode resonances. The geometry of the 3-ridges
connected coupled microcavities should be designed in such a way that the two energy modes
match the energies of the two photons emitted in the cascade. The final geometry and Q-factor
should also be chosen so that each cavity mode presents a polarization splitting negligible with
respect to their linewidth. For that purpose, a sample where coupled microcavities coupled
to 1D ridges were etched will be investigated (see figure 5.6). It contains a large number of
pillars with different diameters and center-to-center distances, and with arms to see how these
parameters affect the cavity modes.

164



Figure 5.6: Picture of the sample with coupled microcavities. The plan is to investigate the
fundamental modes of the different geometries (with different pillar diameters and center-to-
center distances).

The use of coupled cavity structures to extract the entangled photon pairs may allow for
solving an important challenge regarding the indistinguishability of each individual photon
emitted by the cascade as discussed now.

5.3.2 Indistinguishability of the entangled photon pairs

It was recently shown [51] that the indistinguishability of entangled photon pairs generated
through the biexcitonic cascade cannot exceed a given value. The authors analytically derive
that this higher bound to the indistinguishability is equal to the ratio γXX/(γX +γXX), where
γX and γXX are the decay rates of the excitonic and biexcitonic states, respectively. For quan-
tum dots, it is commonly assumed that γXX = 2γX , which corresponds to a higher bound for
the indistinguishability of ' 0.66. However, this ratio has been shown to depend on the QD
[228]. The authors give experimental data in agreement with this statement. Indeed, they
showed that excitons that give very high visibility when excited resonantly give a visibility
lower than 0.66 under two-photon excitation.

Qualitatively, this limit arises from the fact that the excitonic population builds up as the
biexciton decays, with a jitter linked to the emission rate of the biexcitonic state, γXX . This
makes the indistinguishability decrease since the jitter emission from the excitonic state does
not depend only on the excitonic emission rate γX any more, but on both γX and γXX . The
limitation in indistinguishability is then related to the entanglement in time of the cascaded
emission.

For short-distance or direct satellite-based quantum key distribution, the indistinguishabil-
ity of entangled photon pairs is not a requirement, showing that there are applications despite
this limitation. However, for long-distance quantum communications, high indistinguishabil-
ity is needed to implement quantum relays and repeaters. A way to overcome this limitation
would be to use an asymmetric Purcell enhancement. By decreasing the ratio γX/γXX , one
could increase the upper bound to the visibility. This would require to be able to accelerate
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the biexciton emission and/or inhibit the exciton emission, which is possible by coupling the
QD to confined Tamm plasmon modes for example [229]. It can also be done using coupled
microcavities: it was shown in reference [230] that different Purcell factors can be obtained
for the different modes of a coupled microcavity. Figure 5.7 (extracted from [230]) shows the
Purcell factor for two different modes of a coupled micropillar cavity (with a quality factor of
Q = 3000) as a function of the QD’s normalized position and G = CC ′/D − 1 where CC ′ is
the center-to-center distance and D is the diameter of the pillars. Such a scheme requires an
unprecedented level of control in QD position and cavity design during the in situ lithography.
Yet, such a technological challenge is foreseeable in the future if one considers the possibilities
offered by advanced lithography techniques [163].

Figure 5.7: Panels (a) to (d) show the intensity distribution of the electric field for the B
and AB modes for G = −0.1 (top row) and G = −0.3 (bottom row), G being defined as
G = CC ′/D − 1, where CC ′ is the distance between the two pillars’ centers and D is the
pillars’ diameter. Panels (e) and (f) show the Purcell factor calculated for the two modes (A
and AB) of a cavity of quality factor equal to Q = 3000 as a function of the QD’s normalized
position and G. This figure was extracted from [230].
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[134] I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E.
Reimer, and V. Zwiller, “Deterministic Integration of Single Photon Sources in Silicon
Based Photonic Circuits”, Nano Letters 16, 2289–2294 (2016).

[135] G. Kirsanske, H. Thyrrestrup, R. S. Daveau, C. L. Dreessen, T. Pregnolato, L. Midolo,
P. Tighineanu, A. Javadi, S. Stobbe, R. Schott, et al., “Indistinguishable and efficient
single photons from a quantum dot in a planar nanobeam waveguide”, Physical Review
B 96, 165306 (2017).

[136] X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C.
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Appendix A

Appendix: group theory

The symmetry of quantum dots greatly impacts its emission properties. In this appendix, we
give the definitions of the different symmetries mentioned in the main text.

Figure A.1: (a) Illustration of the cubic (Td) symmetry. (b) Tetragonal (D2d) symmetry. (c)
Orthorhombic (C2v) symmetry.

• The cubic (Td) symmetry defines geometries that are invariant by: 8C3 (rotations by
120◦ around axes C3, C ′3, C ′′3 and C ′′′3 ), 3C2 (rotations by 180◦ around the axes that
are halfway between C3 and C ′3, between C3 and C ′′3 and halfway between C3 and C ′′′3

that I did not draw for the sake of clarity), 6σd (reflections by the σd planes defined by
the couples of axes {C3;C ′3}, {C3;C ′′3}, {C3;C ′′′3 }, {C ′3;C ′′3}, {C ′3;C ′′′3 }, {C ′′3 ;C ′′′3 }) and
finally 6S4 operations (rotation by 90◦ around the axis bisecting C3 and C ′3 followed by
a reflection by the plane that is perpendicular to that axis, and 5 similar actions but
with the couples of axes {C3;C ′′3}, {C3;C ′′′3 }, {C ′3;C ′′3}, {C ′3;C ′′′3 } and {C ′′3 ;C ′′′3 }). An
example of molecule belonging to this symmetry group is the methane molecule CH4,
as shown on figure A.1(a).

• The tetragonal (D2d) symmetry is a lower symmetry than Td. It defines geometries that
are invariant by: C2 (rotation by 180◦ around the axis named C2), 2C ′2 (rotations by
180◦ around axes C ′2 and C ′′2 ), 2σd (reflections by the σd and σ′d) and 2S4 (clockwise and
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anticlockwise rotations by 180◦ around axis C2 followed by a reflection by the plane σh.
Planes σd are defined as planes that bisect the angle between two adjacent C2 rotation
axes. An example of molecule belonging to this symmetry group is the allene molecule
C3H4, as shown on figure A.1(b).

• The orthorhombic (C2v) symmetry: it is an even lower symmetry than D2d. It defines
geometries that are invariant by: C2 (rotation by 180◦ around the axis named C2) and
2σv (reflection by the planes σv and σ′v). An example of molecule belonging to this
symmetry group is the water molecule H2O, as shown on figure A.1(c).
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Appendix B

Appendix: derivation of the brightness
for an exciton-based single-photon
source in a cross-polarization setup

In the main part of the thesis, I have shown that the maximum brightness one can get from an
exciton-based source in a cross-polarized setup, in the bad-cavity regime, and with a symmetric
cavity, is equal to 1/2. In this appendix, we present the model developed by S. Wein to
derive an expression of the brightness coming out from an exciton-based single-photon source,
without making the bad-cavity assumption, as function of the different parameters involved.
I use an inversion of the Bloch equations, which allows me to find the brightness without
making any assumption about the relative magnitude of the parameters.

B.1 Optical Bloch Equations

From the master equation 2.15, we can derive a set of 16 coupled linear differential optical
Bloch equations that describe the dynamics of the 16 expectation values:

〈x̂†x̂〉 , 〈x̂†ŷ〉 , 〈ŷ†x̂〉 , 〈ŷ†ŷ〉 , 〈x̂†ĥ〉 , 〈x̂†v̂〉 , 〈x̂ĥ†〉 , 〈x̂v̂†〉 ,
〈ŷ†ĥ〉 , 〈ŷ†v̂〉 , 〈ŷĥ†〉 , 〈ŷv̂†〉 , 〈ĥ†ĥ〉 , 〈ĥ†v̂〉 , 〈v̂†ĥ〉 , 〈v̂†v̂〉 .

(B.1)

B.1.1 Derivation of the equation of motion for an example

We outline how to compute the optical Bloch equations using 〈x̂†x̂〉 as a case example. The
population in the state |x〉 is given by the equation of motion

d

dt
〈x̂†x̂〉 =

d

dt
Tr
(
x̂†x̂ρ̂(t)

)
= Tr

(
x̂†x̂

d

dt
ρ̂(t)

)
= −iTr

(
x̂†x̂
[
Ĥ, ρ̂(t)

])
+ γxTr

(
x̂†x̂D(x̂)ρ̂(t)

)
+ · · ·

(B.2)
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Homogeneous term

The homogeneous term can be solved by first rearranging the commutation using the linear
and cyclic properties of the trace:

Tr
(
x̂†x̂Ĥρ̂− x̂†x̂ρ̂Ĥ

)
= Tr

(
x̂†x̂Ĥρ̂− Ĥx̂†x̂ρ̂

)
= Tr

([
x̂†x̂, Ĥ

]
ρ̂(t)

)
. (B.3)

Then the commutation can be computed from equation 2.10:[
x̂†x̂, Ĥ

]
=δx

[
x̂†x̂, x̂†x̂

]
+ δy

[
x̂†x̂, ŷ†ŷ

]
+ δh

[
x̂†x̂, ĥ†ĥ

]
+ δv

[
x̂†x̂, v̂†v̂

]
+ gxh

([
x̂†x̂, x̂†ĥ

]
+
[
x̂†x̂, x̂ĥ†

])
+ gxv

([
x̂†x̂, x̂†v̂

]
+
[
x̂†x̂, x̂v̂†

])
+ gyh

([
x̂†x̂, ŷ†ĥ

]
+
[
x̂†x̂, ŷĥ†

])
+ gyv

([
x̂†x̂, ŷ†v̂

]
+
[
x̂†x̂, ŷv̂†

]) (B.4)

Some useful commutation relations for the three-level system are:[
x̂†x̂, x̂†

]
= x̂†,

[
x̂†x̂, x̂

]
= −x̂,

[
x̂†x̂, ŷ†

]
= 0,

[
x̂†x̂, ŷ

]
= 0,[

x̂†ŷ, x̂†
]

= 0,
[
x̂†ŷ, x̂

]
= −ŷ,

[
x̂†ŷ, ŷ†

]
= x̂†,

[
x̂†ŷ, ŷ

]
= 0.

(B.5)

Using symmetry of x̂ and ŷ, the other commutation relations can easily be obtained.
We also have the following rules about the full system:[

x̂†x̂, ĥ
]

= 0,
[
x̂†x̂, ĥ†

]
= 0,

[
x̂†x̂, v̂

]
= 0,

[
x̂†x̂, v̂†

]
= 0. (B.6)

Then, we have: [
x̂†x̂, x̂†x̂

]
= 0[

x̂†x̂, ŷ†ŷ
]

= ŷ†
[
x̂†x̂, ŷ

]
+
[
x̂†x̂, ŷ†

]
ŷ = 0[

x̂†x̂, ĥ†ĥ
]

= ĥ†
[
x̂†x̂, ĥ

]
+
[
x̂†x̂, ĥ†

]
ĥ = 0[

x̂†x̂, v̂†v̂
]

= v̂†
[
x̂†x̂, v̂

]
+
[
x̂†x̂, v̂†

]
v̂ = 0[

x̂†x̂, x̂†ĥ
]

= x̂†
[
x̂†x̂, ĥ

]
+
[
x̂†x̂, x̂†

]
ĥ = x̂†ĥ[

x̂†x̂, x̂ĥ†
]

= x̂
[
x̂†x̂, ĥ†

]
+
[
x̂†x̂, x̂

]
ĥ† = −x̂ĥ†[

x̂†x̂, x̂†v̂
]

= x̂†
[
x̂†x̂, v̂

]
+
[
x̂†x̂, x̂†

]
v̂ = x̂†v̂[

x̂†x̂, x̂v̂†
]

= x̂
[
x̂†x̂, v̂†

]
+
[
x̂†x̂, x̂

]
v̂† = −x̂v̂†[

x̂†x̂, ŷ†ĥ
]

= ŷ†
[
x̂†x̂, ĥ

]
+
[
x̂†x̂, ŷ†

]
ĥ = 0[

x̂†x̂, ŷĥ†
]

= ŷ
[
x̂†x̂, ĥ†

]
+
[
x̂†x̂, ŷ

]
ĥ† = 0[

x̂†x̂, ŷ†v̂
]

= ŷ†
[
x̂†x̂, v̂

]
+
[
x̂†x̂, ŷ†

]
v̂ = 0[

x̂†x̂, ŷv̂†
]

= ŷ
[
x̂†x̂, v̂†

]
+
[
x̂†x̂, ŷ

]
v̂† = 0

(B.7)

Finally: [
x̂†x̂, Ĥ

]
= gxh(x̂

†ĥ− x̂ĥ†) + gxv
(
x̂†v̂ − x̂v̂†

)
. (B.8)
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Inhomogeneous terms

The inhomogeneous (dissipative) part can be obtained by using the cyclic properties of the
trace and some commutation relations:

γxTr
(
x̂†x̂D(x̂)ρ̂

)
= γxTr

(
x̂†x̂
(
x̂ρ̂x̂† − x̂†x̂ρ̂/2− ρ̂x̂†x̂/2

))
= γxTr

((
x̂†x̂†x̂x̂− x̂†x̂x̂†x̂/2− x̂†x̂x̂†x̂/2

)
ρ̂
)

= −γxTr
(
[x̂†x̂, x̂†]x̂ρ̂

)
= −γxTr

(
x̂†x̂ρ̂

)
= −γx 〈x̂†x̂〉 .

(B.9)

It is useful to note that if
[
Ô, Â†

]
= 0 and

[
Ô, Â

]
= 0, then Tr

(
ÔD(Â)ρ̂

)
= 0. This can be

proven:

Tr
(
ÔD(Â)ρ̂

)
= γxTr

(
Ô
(
Âρ̂Â† − Â†Âρ̂/2− ρ̂Â†Â/2

))
= γxTr

((
Â†ÔÂ− ÔÂ†Â/2− Â†ÂÔ/2

)
ρ̂
)

= γxTr
(
Ô
(
Â†Â− Â†Â/2− Â†Â/2

)
ρ̂
)

= 0.

(B.10)

Then since
[
x̂†x̂, ŷ

]
= 0 and

[
x̂†x̂, ŷ†

]
= 0, we have Tr

(
x̂†x̂D(ŷ)ρ̂

)
= 0. In the same way,[

x̂†x̂, ĥ
]

= 0 and
[
x̂†x̂, ĥ†

]
= 0 so Tr

(
x̂†x̂D(ĥ)ρ̂

)
= 0 and finally

[
x̂†x̂, v̂

]
= 0 and

[
x̂†x̂, v̂†

]
= 0

imply that Tr
(
x̂†x̂D(v̂)ρ̂

)
= 0.

Conclusion

We have all the elements to write the equation of motion:

d

dt
〈x̂†x̂〉 = −igxh(〈x̂†ĥ〉 − 〈x̂ĥ†〉)− igxv

(
〈x̂†v̂〉 − 〈x̂v̂†〉

)
− γx 〈x̂†x̂〉 . (B.11)

This equation is the first of 16 equations that are needed. It also gives the next 4 that should
be derived. Namely, those for 〈x̂†ĥ〉, 〈x̂ĥ†〉, 〈x̂†v̂〉, and 〈x̂v̂†〉. Luckily, due to the symmetry
between x and y, and also between h and v, it is possible to derive only 5 equations and then
obtain the remaining ones by symmetry and conjugation. To identify x–y symmetries, it is
easier to have the Hamiltonian defined in the QD x–y basis instead of in the QD h–v basis
like in [124].

For example, from 〈x̂†x̂〉 we can easily obtain the equation of motion for 〈ŷ†ŷ〉:

d

dt
〈ŷ†ŷ〉 = −igyh(〈ŷ†ĥ〉 − 〈ŷĥ†〉)− igyv

(
〈ŷ†v̂〉 − 〈ŷv̂†〉

)
− γy 〈ŷ†ŷ〉 . (B.12)

Single-excitation approximation

Deriving some of the equations requires using the single-excitation approximation, meaning
that we limit ourselves to the subspace {|000〉 , |x00〉 , |y00〉 , |010〉 , |001〉}, as explained in
paragraph 2.3.1. Let us apply it on an example to make it more concrete. When calculating
the equation of motion for 〈x̂†ĥ〉, we need to calculate:[

x̂†ĥ, x̂ĥ†
]

= x̂†x̂
[
ĥ, ĥ†

]
+
[
x̂†, x̂

]
ĥ†ĥ = x̂†x̂+ x̂†x̂ĥ†ĥ− x̂x̂†ĥ†ĥ (B.13)
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where I used that
[
ĥ, ĥ†

]
= 1. In the single-excitation approximation, this term is equal to

x̂†x̂− ĥ†ĥ.

Indeed, the operator x̂†x̂ĥ†ĥ vanishes since ĥ would give a nonzero operator only if the
state it acts on is |010〉, but then it would be cancelled by x̂. The only states that would give
a non zero result are the states |xkk′〉 with k, k′ ∈ N which is not part of the subspace we
take into account in the single-excitation approximation.

And, about the term x̂x̂†ĥ†ĥ: in the same way, ĥ would give a nonzero operator only if
the state it acts on is |010〉. Since, x̂x̂† |010〉 = |010〉, we can say that x̂x̂†ĥ†ĥ = ĥ†ĥ in the
single-excitation approximation.
In other words, in the single-excitation approximation we have [x̂, x̂†Â] = Â.

Luckily, using x–y and h–v symmetries and conjugation, it is possible to obtain all 16
equations from only the following set of 5 equations of motion:

d

dt
〈x̂†x̂〉 = −igxh(〈x̂†ĥ〉 − 〈x̂ĥ†〉)− igxv

(
〈x̂†v̂〉 − 〈x̂v̂†〉

)
− γx 〈x̂†x̂〉 ,

d

dt
〈x̂†ŷ〉 = i(δx − δy) 〈x̂†ŷ〉+igxh 〈ŷĥ†〉+igxv 〈ŷv̂†〉−igyh 〈x̂†ĥ〉−igyv 〈x̂†v̂〉−

1

2
(γx + γy) 〈x̂†ŷ〉 ,

d

dt
〈ĥ†ĥ〉 = igxh

(
〈x̂†ĥ〉 − 〈x̂ĥ†〉

)
+ igyh

(
〈ŷ†ĥ〉 − 〈ŷĥ†〉

)
− κh 〈ĥ†ĥ〉 ,

d

dt
〈x̂†ĥ〉 = i (δx − δh) 〈x̂†ĥ〉 − igxh

(
〈x̂†x̂〉 − 〈ĥ†ĥ〉

)
........................................+ igxv 〈v̂†ĥ〉 − igyh 〈x̂†ŷ〉 −

1

2
(γx + κh) 〈x̂†ĥ〉 ,

d

dt
〈v̂†ĥ〉 = −i(δh − δv) 〈v̂†ĥ〉 − igxh 〈x̂v̂†〉+ igxv 〈x̂†ĥ〉

........................................− igyh 〈ŷĥ†〉+ igyv 〈ŷ†ĥ〉 −
1

2
(κh + κv) 〈v̂†ĥ〉 .

(B.14)
The remaining 11 equations can all by obtained by exchanging x with y and/or h with v

and/or by taking the complex conjugate.

To derive this system of equations, it is necessary to make the single-excitation approxi-
mation, described in 2.3.1. It means that the system of equations B.14 describes the dynamics
of the subsystem of only 5 states, that I gave before in 2.13: |00〉, |x0〉, |y0〉, |0h〉, and |0v〉.
This is necessary to truncate the number of coupled equations.

B.2 Matrix differential equation

The system of linear differential equations B.14 can be expressed as a matrix differential equa-
tion in the basis given by equation (B.1). Let u be a 16-vector of the expectation values, so
that u1 = 〈x̂†x̂〉, u2 = 〈x̂†ŷ〉, and so on. Also, let ek represent the unit vectors associated
with uk so that u =

∑
k ekuk. Then the system can be written u̇ = Mu, where M is a
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16 × 16 matrix. The solution for any initial state u0 is then given by u(t) = eMtu0 and the
kth expectation value can be obtained by the scalar product ek · u(t).

B.2.1 Initial state

For any initial QD state |ψ0〉 in the single-excitation approximation, there is a corresponding
initial vector u0. For example, in our current case where |ψ0〉 = |v0〉, the corresponding vector
is

u0 =
(
sin2 θ,− sin θ cos θ,− sin θ cos θ, cos2 θ, 0, 0, · · · , 0

)T
. (B.15)

That is 〈x̂†(0)x̂(0)〉 = 〈v0|x̂†x̂|v0〉 = sin2 θ, 〈x̂†(0)ŷ(0)〉 = 〈v0|x̂†ŷ|v0〉 = − sin θ cos θ, and so
on. Since we assume that the cavity modes are in the vacuum state, all the expectation values
involving cavity modes ĥ and v̂ (or their conjugates) will vanish.

B.2.2 Final state

If we are collecting the single photon from the H mode of the cavity, which is orthogonal to
the excitation polarization, then we are interested in knowing the cavity population in the
H-polarized mode. This corresponds to 〈ĥ†ĥ〉 = u13 and it is represented by the unit vector
e13 in the basis ordering given by equation (B.1).

B.3 Derivation of the brightness

Here again, like in the last section, we start from the general formula of the brightness β =
κh
∫∞

0
〈ĥ†ĥ〉 dt. For an initially prepared state of |ψ0〉 at t = 0 corresponding to u0, the

brightness from the H-polarized cavity mode is given by

β = κh

∫ ∞
0

〈ĥ†ĥ〉 dt = κh

∫ ∞
0

e13e
Mtu0dt = κhe13

∫ ∞
0

eMtdtu0

= κhe13 M−1eMt
∣∣∞
0

u0 = −κhe13M
−1u0,

(B.16)

where we have used that M is invertible and that limt→∞e
Mt = 0, which holds so long as

the system reaches a dark state such as |00〉. This is true when the system is only driven
by pulses of light far-separated in time relative to the decay rates. The result from equation
(B.16) is plotted in figure B.1. That expression means it is possible to solve the brightness
without solving the complicated time dynamics—instead we only need to invert the matrix M
[231]. In addition, this method does not require any assumptions about the magnitudes of the
parameters, it only relies on the single-excitation approximation. Thus it can be used even
if the cavity-emitter system is on the boundary of the bad-cavity regime where the Purcell
enhancement saturates.
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Figure B.1: Collection probability βc = β as a function of FSS ωxy and δh for a large but
fixed δv − δh = 100 computed numerically using the inverse method. The other parameters
are g = 20, a relatively small κ = 100, γ = 0.5, and θ = π/8. The units for all rates are µeV
and are chosen to demonstrate the method and shape of the solution.

B.3.1 Result and interpretation

Let us now assume that the cavity modes have roughly the same linewidths κ = κh = κv,
that both dipoles dissipate equally γ = γx = γy, and that the cavity linewidths are much
larger than the bare QD linewidth κ � γ. Under these conditions, the inverse of M can
be analytically computed. In particular, in the case where the cavity modes are degenerate
and equally detuned from both QD dipole resonances (δh = δv = 0), and the Purcell factor
R/γ > 1, the emission brightness takes a simple form

β =
1

2
ω2
xy

(κ2 +R2 + ω2
xy + κR)

(κ2 + ω2
xy)(R

2 + ω2
xy)

sin2(2θ), (B.17)

where R = 4g2/κ is the effective rate of population exchange between the QD and cav-
ity [150] in the limit of κ � γ. This function is maximized for arbitrary R and κ when

ωxy =
√
κR + (κ+R)

√
κR. Interestingly, β can exceed 1/2 when ω2

xy > κR and can reach a

maximum value of 9/16 when R = κ, implying ωxy =
√

3κ. Hence, the fundamental upper-
bound on brightness for an exciton in a cross-polarization setup with degenerate cavity modes
is 9/16, and this occurs exactly on the boundary of the strong cavity coupling regime (when
κ = 2g).

It seems counterintuitive to be able to exceed a probability of 1/2 in a cross-polarization
setup, but the coherent dynamics in the exciton excited state can be exploited to optimize
the population transfer through the orthogonal cavity mode by competing with the Purcell
effect. This becomes more clear when considering that the condition ω2

xy > κR to exceed 1/2
efficiency implies ωxy/2 > g. The coupling rate between |v〉 and |h〉 is ωxy cos(θ+φ) sin(θ+φ),
which maximizes at ωxy/2 for θ = π/4, so when exciting with a polarization at π/4 from
|x0〉 and |y0〉. When the FSS coupling exceeds the coupling to the cavity, population is more
quickly transferred from |v0〉 to |h0〉 than from |v0〉 to |0v〉.
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This 9/16 limit can be exceeded if there is a cavity mode splitting. If the mode splitting
is larger than the cavity linewidth, the different detunings can cause unequal decay rates
for |x0〉 and |y0〉, which can be engineered to favor decay from |0h〉. For example, suppose
that δh = 0, but δv = δ � κ, ωxy and ωxy > R. Then the limit to brightness becomes
β = 1 − (κ2 + ω2

xy)/(4δ
2), which approaches unity as δ is increased. A similar regime has

been recently utilized using a charged exciton by Jian-Wei Pan’s group [232], where they
hint at a similar scaling. However, a cavity mode splitting such as this necessarily requires
a stronger excitation pulse. The detuning between the excitation laser and the quantum dot
being bigger, the coupling between the cavity mode used to excite the quantum dot and the
quantum dot itself is smaller. Then the required power to excite the quantum dot is higher,
which may degrade other qualities of the single-photon source.
Alternatively, brightness can be improved if fast dynamic control of ωxy is available. The
simplest example would be to quickly turn off the FSS interaction at some time tc after
excitation. If for t < tc we have ωxy > g and for t > tc we have ωxy � R, then this can trap
population in the |0h〉 state and improve emission into the h-mode of the cavity. For example,
turning off an FSS of ωxy = 40µeV at tc = π/ωxy can increase the maximum brightness from
∼ 50% to ∼ 77% for a system with g = 20µeV, κ = 200µeV, and no cavity mode splitting.
Doing so would require FSS switching on the ps timescale.
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Appendix C

Appendix: g(2) and HOM histograms

C.1 Second-order correlation histograms

All the figures of this document contain on the left side the second-order correlation histogram
g(2)(τ) as a function of the delay between two detectors, and on the right side the second-order
correlation in a Hong-Ou-Mandel two-photon interference experiment.

(a) Source S1.

(b) Source S2.

(c) Source S3.
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(a) Source S4.

(b) Source S5.

(c) Source S6.

(d) Source S7.

(e) Source S8.

(f) Source S9.
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(a) Source S10.

(b) Source S11.

(c) Source S12.

(d) Source S13.

(e) Source S14.

(f) Source S15.
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Résumé: Les boîtes quantiques sont des élé-
ments clés pour le développement des technolo-
gies quantiques car elles peuvent générer des
photons uniques et des paires de photons in-
triqués. La fabrication déterministe de sources à
base de boîtes quantiques en cavité ouvre la voie
vers leur utilisation à grande échelle : nous mon-
trons ainsi pour la première fois qu’il est possi-
ble d’obtenir des propriétés homogènes, en étu-
diant en détails 15 de nos sources. Chacune des
caractéristiques de l’émission des boîtes quan-
tiques est mesurée avec un montage expérimen-
tal spécifique. Parmi celles-ci, l’indiscernabilité
est accessible via la visibilité de l’interférence
de Hong-Ou-Mandel. Nous étudions com-

ment cette dernière quantité est affectée par la
présence de photons additionnels, selon la na-
ture de ce bruit. Nous dérivons ainsi une formule
pour déduire la vraie indiscernabilité des pho-
tons uniques à partir de la visibilité mesurée, et
nous l’appliquons à nos sources. Enfin, les pro-
priétés de l’émission des boîtes quantiques sont
profondément liées à leur état de charge et à leur
symétrie. Nous proposons une nouvelle façon
de contrôler le dédoublement de structure fine
de l’exciton en appliquant trois tensions élec-
triques via une structure de contact déporté.
Cette étude expérimentale ouvre la voie à la
génération reproductible de paires de photons
intriqués avec une grande brillance, ainsi que de
qubits encodés en fréquence.

Title: Quantum purity and symmetry control of single-photon sources based on semicon-
ductor quantum dots

Keywords: Quantum dots, Single photons, Semiconductor

Abstract: Quantum dots are a key build-
ing block for quantum technologies as they are
able to generate single photons or entangled
photon pairs. The deterministic fabrication of
sources based on quantum dots in cavities paves
the way towards scalability: we show for the
first time that it is possible to obtain homo-
geneous properties, by studying in detail 15 of
our sources. Each characteristic of the quan-
tum dots’ emission is measured with a specific
setup. Among them, the indistinguishability is
accessible through the visibility of the Hong-Ou-
Mandel interference. We study how this latter

quantity is affected by the presence of additional
photons, depending on the nature of that noise.
We thus derive a formula to deduce the true
single-photon indistinguishability from the mea-
sured visibility and apply it to our sources. Fi-
nally, the properties of the emission from quan-
tum dots is deeply related to their charge state
and symmetry. We propose a new way to con-
trol the exciton’s symmetry by applying three
voltages via a specific structure. This experi-
mental study opens the way to the reproducible
generation of entangled photon pairs with a high
brightness as well as frequency-encoded qubits.
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