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Abstract.

The project aims clarifying the involvement of B cells in the initiation and progression
of multiple sclerosis (MS) using a transcriptomic analysis of B cells in cervical lymph nodes
(CLNSs) and brain of a transgenic mouse model of spontaneous experimental autoimmune
encephalomyelitis (EAE). In this model called TCR®4, transgenic TCR (T cell receptor) for
MOGag2-106 are supposed to recruit MOG-specific B cells from the endogenous repertoire to

initiate EAE.

The objective of the thesis was to evaluate the dynamics of MOG-specific B cells at the
initiation of EAE in the secondary lymphoid organs and the brain. In this TCR'*®*° model in
Lille, the EAE incidence was from 85% at 700 days of life. We checked the performance of a
MOG tetramer (MOGtet) to detect and isolate MOGet" B cells. This MOGtet allowed us to
identify rare MOGet™ B cells primarily in CLNs and brains of diseased TCR%*° mice. Anti-
MOG antibodies in serum were quantified by ELISA and detected in disease-free and diseased
TCR™4 mice, without correlation with their age, delay of EAE and clinical score. However,
serum transfer experiments showed that there was a difference in humoral activity between sera
of diseased and disease-free TCR%4° mice, which aggravated incidence and severity of EAE in
the 2D2 mouse (another EAE model). These results suggested the dynamics of the repertoire
of MOG¢" or total B cells to a pathogenic repertoire for the EAE development. Induced
germinal center B cells culture (iGB) and expansion (on 40LB fibroblasts) of MOGe:" or total
B cells sorted from CLNs and brain of disease-free and diseased TCR%4° mice allowed to define
some clonotypes for IgLK chains and IgHG chains considering the variable parts of the Ig

chains.
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Our findings highlight the potential pathogenicity supported by the repertoire of MOG-
specific B cells in TCR®* mice. The difficulty of the iGB single cell culture to expand effector
cells will motivate to go furtherly to direct single cell sequencing of sorted CLNs-derived-
MOGtet" B cells and CNS-derived (central nervous system) MOGtet" B cells from TCR%4° mice

to complete the repertoire exploration .
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. Introduction.

A.  Multiple sclerosis.

1. Epidemiology.

Multiple sclerosis (MS) is a chronical neuroinflammatory, demyelinating and
degenerative disease of the CNS (central nervous system) including brain, spinal cord and
optical nerve. MS affect 2,5 million of people in the world and induce physical disability
(motor, sensory, urinary issues, visual, pain, fatigue and cognitive impairment) in young adult
at a mean age of 30 years old and especially in women with a sex ratio closed to 3 women for

1 mant.

During MS, lesions are disseminated in the CNS leading multiple disabilities. The
different neurological functions (sensitive, motor, gait, bladder functions, cognition, cranial
nerves, etc...) are transmitted in the form of nerve impulses carried by the nerve fibers of the
white matter in brain or spinal cord. In the case of MS, the nerve impulse is interrupted in the
lesions and is not transmitted to the rest of the body. This leads to the development of variable
symptoms such as the temporal-spatial spread of lesions in the brain and bone marrow (Fig. 1)

of MS patients.

Two forms of the disease are usually described: primary progressive (PPMS) form
(15%) and relapsing-remitting (RRMS) form (85%). Relapsing-remitting form is characterized
by relapses, corresponding to the development of new neurological signs followed by partial or
total remissions. Inside the group of patients affected by the relapsing-remitting form, 50% will

evolve into a secondary progressive (SPMS) form 2.
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Figure 1 : Lesions in Multiple Sclerosis.

Detection of lesion using magnetic resonance imaging (MRI) in brain (A) and spinal cord (B)
of MS patient. White arrows indicate T2-hypersignal lesions in white matter observed by MRI
in MS patient. Adapted from Compston and Coles, 2008 3.

2. Risk factor.

MS is a multifactorial disease within some factors were established like genetic
predispositions supported by studies in twins *. In addition, the genetic predisposition
associated with certain allele of the HLA-DR 2 locus has been known °. Moreover, screening
of SNP (Single Nucleotide Polymorphisms) databases using Genome-Wide Association Studies
data (GWAS) have identified many genetic variants linked to MS susceptibility and some of
these variants are linked to the immune system and especially to the T cell response ©. In
addition, GWAS supports the hypothesis that MS is initially an immune disease with the human
Leukocyte Antigen (HLA) like major susceptibility gene located on the locus of the human

Major Histocompatibility Complex (MHC) ©. However, many environmental factors have been
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highlighted such as smoking 7, Epstein Barr virus exposition &, obesity ° and vitamin D deficit

10

3. Diagnostic.

After observation of clinical symptoms, MS is diagnosed according to Mc Donald's
criteria which have evolved from 2001 to 2017 and is characterized by definition of temporal
and spatial dissemination of the lesions on MRI 1! (Fig. 2, A-B). Oligoclonal bands (OCB) can
also be observed in cerebrospinal fluid (CSF) for 90% of MS patients ** (Fig. 2, C). The
detection of these intrathecal productions contributes to the diagnostic of MS in the last Mc

Donald's 2017 criteria due to the prognosis factor of such findings for MS 12,

’

B

'
—————
L T

CSF serum
Figure 2 : Criteria of a diagnostic for MS.

Detection of lesion using magnetic resonance imaging (RMI) in brain (A) and spinal cord (B)
of MS patient. White arrows indicate T2 hypersignal lesions observed on MRI in MS patient.
Detection of oligoclonal bands after protein electrophoresis of the cerebrospinal fluid and the
serum (C) of MS patient. More numerous oligocloclonal bands of IgG can be counted after
isoelctrofocalisation of CSF proteins compared to serum of the same individual, showing
intrathecal synthesis of Ig. A and B adapted from Filippi et al. 2019 **. C adapted from
Compston and Coles, 2008 2.

14



4, Mechanisms implicated in MS.

Pathologically, MS is characterized by inflammation, demyelination, reactive gliosis,
and neuroaxonal damage. Indeed, MS is characterized by inflammatory reaction associated with
demyelination in the CNS. In parallel with demyelination, a suffering of the axon can lead to
axon ruptures and neurodegeneration *. During remissions, the inflammation is reduced and
may disappear from the lesion site. This might allow an initiation of remyelination 1°.

Remyelination partially restores nerve conduction and reduces clinical symptoms.

The hallmark of MS is the perivenular presence of focal immune cell infiltrates
involving macrophages, CD4+ and CD8+ T cells '/, B cells, plasma cells, IgG antibodies and
resident activated microglia cells 8. Lesions are classified in active, inactive and shadow
plaques 1°. Active lesions are characterized by the presence of activate macrophages containing
myelin debris. Inactive lesions are characterized by the demyelination of the tissue and the
absence of activated macrophages containing myelin debris. Shadow plaques are characterized

by focal scar and low density of myelin on the surface of axons.

a) Inflammation
Concerning inflammation, early lesions present infiltrates of immune cells through the
blood brain barrier (BBB). In these lesions, macrophages containing myelin debris dominate
the infiltrate (Fig. 3), followed by CD8+ T cells, whereas lower numbers of CD4+ T cells (Fig.
3), B cells and plasma cells can also be found. When the disease is advanced and due to a
chronical in-situ inflammation, tertiary lymphoid structures called ectopic lymphoid follicles

were detected ?°. These ectopic lymphoid follicles would contribute to differentiation and

15



maturation of specific effector cells in CNS antigens. This will allow continued spread of

inflammation effector cells to CNS antigen behind a closed BBB?.

C g R D',}f":.',-: QI
o A, o DR NSRS, AN AN RGN
Figure 3 : Inflammation, demyelination and axonal injury in white matter active lesion of MS
patient.

Different stainings show an active lesion from a patient with acute multiple sclerosis with active
demyelination (A), profound macrophage (B) and T-cell infiltration (C) and extensive acute
axonal injury (D). A, myelin staining in blue using Luxol fast blue. B, Macrophages and
microglia staining using anti CD68 T cell staining using anti CD3 and axon staining using
amyloid precursor protein. Adapted from Frischer et al 2009 22,
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Note that the lesions sites have variable compositions and were classified in four
patterns . Patterns | and Il lesions were localized on small veins and venules and mainly
associated with T cells and macrophages infiltration. In addition, the pattern Il included Ig and
complement deposits and would be the most prevalent lesion pattern in RRMS. Pattern Il
lesions were not localized on small veins and venules but were diffused and presented a
decrease in myelin around inflamed vessels. Pattern IV lesions were diffused and was
associated to ring of dead oligodendrocytes around the site of demyelination. The
diversification of MS clinical symptom may reflect the complexity of the immune response

invading CNS %,

The infiltration of immune cells allows the recruitment of immune cells from the
periphery to the CNS through the blood-brain barrier. Cells involved in inflammation can
interact with each other in order to activate, differentiate and expand. Macrophages may have
degraded antigens and present antigens on their surface to initiate activation of T-cells to CD8
T cells (cytotoxic) 24, T cells allow the activation of B lymphocytes and then their differentiation
and expansion into memory B cells and plasma cells producing antibodies. B cells can produce
a specific response to antigens implicated in the inflammatory process. The B cell response will
evolve by epitope spreading to target antigens on the inflammatory lesions site. Epitope
spreading is defined by the diversification of epitope specificity from the initial focused.
Epitope spreading applies to situations in which tissue damage from a primary inflammatory
process causes the release and exposure of a previously “sequestered” antigen, leading to a

secondary autoimmune response against the newly released antigen 2°.

17



During inflammation, the assay of cytokines produced by immune cells show a
predominantly pro-inflammatory cytokine production like IL-6 by macrophages, IL-17 (Th17)
and IFNy (Th1) by T cells " but also 1L-12, IL-6, IL-15 and GM-CSF (granulocyte macrophage
colony-stimulating factor) by activate B cells 2 /. In SPMS, BBB remains intact and the
inflammatory response is compartmentalized in the CNS 2. The anatomy of demyelinating
lesions evolves with the appearance of lesions in the cortex. Demyelination occurs by expansion
of existing lesions, with few de novo lesions appearing in the white substance. Chronic neuronal
deterioration or neurodegeneration is important. In PPMS, lesions in the active tissue are mainly
associated with the activation of the pro-inflammatory microglia and the recruitment of
macrophages. Ectopic lymphoid follicles were detected and contribute to the differentiation and
maturation of specific effector cells to CNS 2. At this stage of the disease the inflammatory
reaction is compartmentalized and works independently of the peripheral influx of immune

cells.

In addition, lymphatic vessels have a key role for the circulation of lymphocytes in the
immune system. Inthe CNS, CD4+ T cells, monocytes and dendritic cells can use cerebrospinal
fluid to circulate from the arachnoid mater to the cervical lymph nodes (CLNs) 28, allowing

exchanges between CNS compartments and periphery.

b)  Demyelination
As a result of inflammation, demyelination (Fig. 3,A) is initiated and characterized by
the destruction of myelin oligodendrocytes (or myelin sheath), axons and neurons from CNS
(Fig. 3,C). Myelin corresponds to the extensions of the plasma membrane of oligodendrocytes
coiled around the axons. These structures are separated by bare axon spaces where ion channels

are concentrated (called Ranvier nodes) and where the ion channels involved into nerve

18



impulse. This nerve impulse travels from Ranvier's node to another one. The function of this
transit is to greatly increases the impulse speed (Fig. 4,A). Demyelination leads to a decrease
in the rate of nerve impulses propagation and a redistribution of the different nerve channels
(Fig. 4,B). This, accentuate the disorders of the conduction of the nervous message and then,
the clinical signs. Following the attack of myelin, the myelin sheath thins and may disappear
(Fig. 5), resulting in axonal loss ?° (Fig. 4,C).

Chronic inflammation would also produce inflammatory neurotoxic mediators such as
metabolites oxygen and nitrogen reagents by microglia and resident astrocytes of the CNS.
These inflammatory neurotoxic mediators cause deleterious mutations in mitochondrial DNA
and metabolic stress accentuating neuronal degradation. This can lead to apoptosis or necrosis

of pre- and post-synaptic neurons °.
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A. Normal neuron
Cellular body Myelin Axon

—
>

Normal nervous message conduction

B. Demyelination
Myelin damage

el P e

Disorder of nervous message conduction

C. Axonal loss

Axon destruction

\
S\

Loss of nervous message conduction

Figure 4 : Representation of axonal demyelination and axonal loss.
Representation of normal neuron (A), demyelination (B) and axonal loss (C) according to the
nervous message conduction. Adapted from Florence Higue-van Steenbrugghe 2016 .
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Figure 5 : Axonal demyelination in lesions of MS patient.

Non-phosphorylated neurofilaments staining in green and myelin staining in red show three
large, non-phosphorylated-neurofilament—positive axons undergoing active demyelination
(arrowheads) and one axon ends in a large terminal ovoid (full arrow). The scale bars represent
45 um. Adapted from Trapp et al., 1998 3.

5. Remyelination and/or neurodegeneration.

As a result of inflammation, demyelination is initiated remyelination and/or
neurodegeneration. Oligodendrocyte progenitor cells participate to remyelination using their
membrane to repair damages engaged by inflammation and immune cells in parallel to the
clearance of debris realised by microglial cells and macrophages *2. If the remyelination was
not sufficiently efficient, the oxidative stress of neuron and the ion channel dysfunction can
induce the axonal loss and neuron apoptosis 1°. With age the pathological processes are

accentuated in parallel with reduced remyelination and reconstruction at the lesions sites 3.
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B. Physio-pathological hypothesis in MS.

The current consensus is that the disease is initiated by peripheral activation of self-
reactive lymphocytes targeting CNS autoantigens *’. Molecular mimicry mechanisms may
explain the development of the immune response in the periphery made on a genetic field
predisposed to **. Many myelin antigens have been studied trying to track and define targets
supporting this autoimmune disease *. However, to date, no studies have been able to formally
explain the involvement of a specific antigen responsible for the MS disease, in myelin

candidates as well as in myelin and oligodendrocytes *.

In addition, the development of inflammation can lead to epitope spreading mechanisms
that are characterized by the development of the immune response to other variable auto-
antigens involved in the inflammatory mechanisms. Indeed, the degradation of CNS tissues
during lesions reveals autoantigens normally inaccessible to the immune system 2. This
presentation of these autoantigens by immune cells will induce the formation of new specialized

self-reactive cells.

Thus, the lesions observed are the result of the infiltration of macrophages, T and B cells
through the blood-brain barrier or the cerebrospinal fluid barrier at the choroid plexus 8. This
cell infiltration of adaptive and innate immunity induces the triad "inflammation /
demyelination / neurodegeneration™ with an evolution of the antigenic targets of the CNS.
Before the inflammation step, an unknow peripheral activation of self-reactive lymphocytes
will begin to initiate the inflammatory reaction. The activation of self-reactive lymphocytes will
induce the migration of these cells to the brain and the spinal cord. When the activated cells
arrived in the brain and the spinal cord, a pro-inflammatory environment will be established.

These pro-inflammatory environments will recruit other lymphocytes to complete the
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inflammatory response. Macrophages, T cells and B cells cooperate leading to demyelination.
This will induce the maturation of B cells into plasma cells and the secretion of anti-myelin
specific antibodies. It was demonstrated an overlap of the cerebrospinal fluid 1gG-H and Ig-L-
chain proteomes with the Ig-transcriptomes from cerebrospinal fluid and from brain lesions ¥'.
This supposes that the antibody B cells repertoire present in the cerebrospinal fluid reflects Ig-
transcripts of B cells populating and CSF-resident antibodies were produced by B cells at the

lesion site and by CSF-resident B cells %’

In parallel of direct cellular interactions, cells also produce cytokines participating to
inflammation. It should be noted that many pro-inflammatory cytokines are found at the lesion
level. For example, T cells (mostly Th1l and Th17) produce IFN gamma, TNF alpha, and IL-17
38 macrophages produce IL-6 and B cells produce I1L-12, IL-6, IL-15 and GM-CSF % 2, These
soluble chemical mediators allow the recruitment of immune cells in the CNS. They also have
a key role in the activation of cells and their maturation to generate a targeted response of

inflammation.

These different conditions will lead to the demyelination of axons and the subsequent

neurodegeneration. During the humoral response, some targets will evolve according to

macrophage and microglia clearance of debris. Z.
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C. Immunotherapy.

Immunomodulation and immunosuppression are used to slow the disease and reduce
clinical progression without curing the disease 3. These treatments allow controlling the
inflammatory parameters (clinical relapses, accumulation of T2 lesions and gadolinium-

enhanced lesion on MRI).

Interferons and copolymer-1 were the first immunomodulating drugs to be validated as
modifying the disease course by controlling annualized relapses rates and cumulative lesions
on MRI %, IFNB performs several immuno-suppressive functions and induce inhibition of
lymphocyte infiltration into the CNS #*. Copolimer-1 is a synthetic copolymer identical in part
to MBP known to be an encephalitogenic protein of myelin. This copolymer was able to bind
with a strong affinity to MHC class Il molecules carried by the APCs. This binding competition
between the copolymer and myelin sheath proteins partially prevents the activation of the T

response 4.

Some cytotoxic therapy as mitoxantrone, highly efficient in aggressive forms of MS
were also used before biotherapies arrival 3. Mitoxantrone is an anthracycline, initially
prescribed in oncology for its cytotoxic properties (breast cancer, leukemia). This intercalating
agent of DNA inhibits RNA and DNA synthesis by inhibiting type Il topoisomerase. Its
immunomodulatory capacity is made through inhibition of T cell and B cell proliferation and

by induction of cell lysis or activation of programmed cell death %4,

Natalizumab was the first biotherapy and is a monoclonal antibody targeting integrins
preventing activated lymphocytes to cross the BBB #°. Teriflunomide is an immunostatic drug

used as first line therapy in MS 6. Dimethyl fumarate would act on the NRF2 (NF-E2-related
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factor 2) pathway to be anti-inflammatory and can be considered as an immunosuppressant 4.
Fingolimod is an anti sphingosin-1-phosphate receptor preventing activated T cells to egress
from lymphoid organ 8. As for mitoxantrone, alemtuzumab (anti CD52) allow an induction
therapy. Alemtuzumab largely deplete T cells #°. The first clinical trials using B cell depletion
in MS were supported by the animal studies showing that B cell depletion could influence EAE
50 51 Anti-CD20 therapies showed a high efficiency also on controlling inflammatory
parameters of MS disease and is the first drug demonstrating a slowing capacity in primary
progressive disease, supporting the inflammatory compound in the worsening and progressing
mechanisms of MS. B cell depletion by rituximab remains the strongest evidence of the key

role of B cells in pathology of MS *°.

D. Model of Experimental Autoimmune Encephalomyelitis (EAE).
In order to better understand MS, animal models have been developed. Each of these

models has benefits and issues that give to each model a study target.

Initially, EAE models were based on rabbit and monkey brain by repeated injection of
normal brain tissues in rabbits and monkey 2. Then, it was shown the involvement of
encephalitogenic peptides characteristics. Myelin basic protein (MBP) in this model as well as
other myelin proteins such as protheolipoprotein (PLP) or myelin oligodendrocytes
glycoprotein (MOG) in active immunization using Freund adjuvant (CFA) and pertussis toxin
to break down the BBB. Many models have been developed to respond to specific hypotheses
considering inflammation and/or demyelination processes of the autoimmune experimental
disease induced. There are 4 types of EAE model: the induced model, the passive model, the

adoptive model and the spontaneous model.
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1. Induced model of EAE.

Active EAE is induced by animal immunization using CNS protein homogenates,
myelin peptides, emulsified in a complete Freund adjuvant (CFA) of virus. The key component
of CFA is the inactivated heated Mycobacterium tuberculosis bacterium °3. The peptide-
adjuvant solution induces the presentation of the antigen by the MHC class Il to CD4 T cells in
a highly inflammatory context. The highly inflammatory context is necessary for the activation
of specific auto-reactive T cells. These self-reactive T cells activated at the peripheral level in
the draining lymph nodes (Th1 and Th1l7 T cells) then migrate into the CNS with activated B
cells and inflammatory monocytes. This leads to a high incidence of the disease in susceptible
animals with clinical signs induction 9 to 12 days after immunization. Active immunization
using CNS protein homogenates or myelin peptides and CFA emulsified is one of the most
commonly used protocols to induce EAE because it is easily executable and generally
reproducible. For example, two monophasic models of EAE: C57BL/6 mouse after
immunization with MOGssss (myelin oligodendrocyte glycoprotein) and CFA >*; rat after
immunization with MBPe3.s1 and CFA. These EAE models usually lead to a monophasic
experimented disease. Other models more resembling to MS have also been developed such as
SJL/J mice immunized once with PLP139.151 and CFA that develops multiphase EAE with
relapses and remissions characterized by the evolution of the epitope spreading, due to the I-A°

background 5.

2. Passive and adoptive model of EAE.
Passive or adoptive EAE can also be induced in recipient animal by the transfer of
specific pathogenic myelin-specific CD4 T cells generated by active immunization of the donor
animal *°. Passive EAE established the key role of T cells directed against CNS proteins in the

pathogenicity of the disease.
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3. Spontaneous model of EAE.
Trying to avoid artificial peripheral increase inflammation and polyclonal inflammation,
transgenic models called "spontaneous model of EAE" have been generated. These models are
transgenic mice for myelin-specific TCRs or/and BCRs. They spontaneously develop

neurological disorders with a broad variety of clinical incidence and phenotype 657,

Spontaneous EAE is based on genetic modification usually associated with specific
targeting of myelin proteins by immune cells such as T and B lymphocytes For example, in the
2D2 mice model which are transgenic C57BL/6 mice for the expression of a specific TCR for
the peptide MOGgs-s5, 50% of mice develop an EAE 8. Moreover, 35% of 2D2 mice develop
optic neuritis with similar but restricted lesions to the optic nerve and no progression to clinical
EAE. This preferential phenotype of optic neuritis reflects the differential expression of MOG

which is 2-fold more represented in optical nerve compared to spinal cord.

Another mice model called OSE mouse was developed on C57BL/6 transgenic mouse
which expresses TCR specific for the peptide MOGazs.s5 and B cells producing antibodies with
the heavy chain of a demyelinating MOG-specific antibody (8.18C5) *°. In this model, mice
developed inflammatory and demyelinating lesions located in the optic nerve and spinal cord,
sparing brain and cerebellum. In comparison, in the IgHM® model, mice were only transgenic
to produce B cells producing antibodies with the heavy chain of a demyelinating antibody
specific for MOG (8.18C5); mice do not develop inflammatory and demyelinating lesions. But
the presence of the transgene accelerates and exacerbates experimental autoimmune
encephalitis ®°. These models suggest that a recruitment of myelin protein-specific B cells by

myelin protein-specific T cells may lead to an autoimmune disease in CNS.
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TCR?*4% mice model aims to be closer to the pathophysiology of MS. The TCR**4° mice
are TCR¥ (specific for MOGg,-106) transgenic SJL/J mice. It was obtained by Hartmut
Wekerle's team in the Max Planck Institute in Martinsried .. Most of female TCR*° mice
developed relapsing form of EAE versus only half male TCR®* mice. Remaining mice
developed chronical form of EAE. At least 70% of TCR of TCR®*° mice were transgenic. The
T cell response would recruit MOG-specific B cells from the endogenous repertoire to initiate
EAE. In this model, the hypothesis is that B cells response is essential in the disease process
because it has been shown that MOG-deficient mice and B cell depleted mice (Fig. 6,A) are
protected from EAE 5. Note that in this model, mice in EAE have a cellular infiltrate and
demyelination similar to that of MS patient. Mice with ataxic form displayed large
inflammatory and demyelinated lesions in cerebellum and brain stem. Mice affected by the
conventional EAE displayed lesions distributed throughout the spinal cord, brain stem, and
optic nerve %, In the CNS of diseased-TCR®*° mice were found macrophages, activated CD4
T cells (Th1 and Th17), CD8 T cells and B cells and lg deposits %, Inflammatory infiltrates
were embedded in large areas of demyelination and axon destruction. Moreover, as with MS
patients, the microbiota is involved in the development of EAE in the TCR®* mice model 2
(Fig. 6,B). The characteristics of this model make this model a unique model to study the natural

evolution of the B cells repertoire in an EAE model.
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Figure 6 : Protection to EAE using anti-CD20 antibodies or germ-free food in TCR4° mice

model.

A, cell depletion protects TCR** mice from spontaneous EAE. B cells were depleted from
TCR4% mice by twice weekly injections of anti-CD20 antibodies from day 3 after birth (in
red), and control mice received mouse 1gG2a control isotype antibodies (in blue). Adapted from
Pollinger et al., 2009. B, Mice with germ-free food were protected from spontaneous EAE.
Incidence (in percent) of TCR®*° mice housed in germ-free food (in dashed lines) or specific
pathogen-free food (in full line). Adapted from Berer et al., 2011 %%,
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E. B cells.

B lymphocytes are actors of lot of mechanisms of immunity like antibodies production,
T cell activation and inflammation regulation using cytokine secretion. Ig deposits, B cells
localization at the inflammatory lesion and the efficacity of treatment anti-B cells demonstrate

the key role of B cells in MS.

1. Ontogeny and role of B cells in human.

The origin of B cell is found in the bone marrow (Fig. 7). In the bone marrow, pro-B
cells are formed from hematopoietic stem cells. These pro-B cells (CD19+, CD38+) have the
ability to recognize the native form of antigen using B cell receptor (BCR) which is a
transmembrane immunoglobulin (1g). The Ig is a protein heterodimer (Fig. 8) consisting of two
identical heavy (H) chains and two identical light chains (L). Each H or L chain includes a
constant region (C) and variable region (V), the combination of variable domains defining the
antigen binding site. The formation of the H and L chains is the result of the combination of
several gene segments organized in different chromosomes. The locus of heavy chain genes is
located on the Humans chromosome 14. Variability (V), diversity (D) and Junction (J) genes

encoding for the variable domain are present in this locus (Fig. 7).
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Figure 7: Ontogeny of B cells
Ontology of B cells and maturation in from bone marrow to peripheral compartment. Adapted
from MedicoAID on http://www.medicoaid.com/qod-618-b-cell-maturation/
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Figure 8 : VDJ recombination and formation of BCR

BCR structure and construction of the BCR specificity using the VDJ recombination.
Adapted from https://www.10xgenomics.com/blog/immune-repertoire-profiling-at-single-cell-
resolution
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Pro-B cells were selected by negative selection leading to the elimination of immature
B cells expressing specific self-lgMs. After this step, immature B cells (CD19+, CD138-, GL7-
, FAS-, PNA-, IgM+, CD38-) migrate to spleen, where a second negative selection start. Then,
immature LB begin mature naive LB (CD19+, CD138-, IgM+, CD38+/-) and migrate to
follicles of secondary lymphoid organs and will start T-dependent immune responses 5.
Following the recognition of the antigen by the BCR, signal transduction results in antigen
endocytosis followed by its degradation and presentation in the MHC class I1/peptide complex.
Cell cooperation between B cells and helper follicular T cells permit B cell activation and clonal

amplification (Fig. 9)

Antigen

Peptide-

MHC class Il

[ Antigen presentation

Figure 9 : Activation of B cells by T cells.
B cell was activated by cross presentation of antigen on her MHC class Il to the TCRof a T
cell. Adapted from http://molbiol4masters.masters.grkraj.org/html/Cell_And_Molecular_
Immunology2-Innate_Humoral _And_Cell _Mediated_Immunity.htm

Then, some activated B cells differentiate to plasma cells (CD38-, CD19+, CD138+) or
follicular B cells (Fig. 7). Follicular B cells migrate to an area of the follicle, forming a transient
structure called the germinal center (GC) expressing GL7, FAS, PNA markers on surface.
Within GC, B cells are subjected to somatic hypermutation (SHM) and class switch
recombination (CSR) to increase the diversification of B cells and generate more refined
receptors for antigen. SHM consists of point mutations in variable segments and adjacent

sequences of heavy and light chains. SHM contribute to increase the BCR's affinity for its
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target. CSR consists on secretion of Ig whose isotype is most suited to the antigen encountered.
If the antigenic specificity of Ig is determined by the variable regions of the H and L chains, the
effector functions depend on the constant regions of the heavy chains and vary according to the

isotypes.

Somatic hypermutation and class switching depend on the expression of the Activation
Induced Cytosine Deaminase (AID) enzyme during the transcription mechanism ®* (Fig. 10).
These steps are essential in order to initiate a specific immune-response with a high specificity

for the Ig target.
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class switching

Figure 10 : Hypermutation somatic of B cells
Adapted from Bowers et al. 2011 ®°

After these steps, B cells evolve to plasma cells and memory B cells (Fig. 7). Plasma
cells (CD19", CD138", GL7*, FAS*, PNA*, IgM", CD38") will produce specific antibodies
targeting antigen initially recognized by the BCR and mediate the humoral response in
correlation with the complement. Memory B cells (CD19*, CD38", IgM", PNA") migrate to
lymphoid organs and await a second contact to the antigen target to speedily initiate the plasma
cells amplification and the humoral response highly specific for again the antigen target. During
these steps of maturation, activation, amplification and antibody production, B cells secrete
cytokines modulating inflammation . For example, after antigenic presentation of lg target on

MCH class Il to helper follicular T cell, activated B cells can secrete pro-inflammatory
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cytokines like IL-12, 11-6, IL-15 and GM-SCF but also anti-inflammatory cytokines like 1L-35,

IL-10 and TGFB ©’.

2. B cells in Multiple sclerosis.
B cells roles are (i) secreting injuring auto-antibodies, (ii) transporting antigens, (iii) to

present antigens to T cells, (iv) producing cytokines.

Oligoclonal bands in MS. Normal CSF is devoid of Ig and other plasma proteins. OCB
in CSF are a valuable biomarker in MS with a temporal invariance and clonal uniformity
demonstrated for a long time %. OCB are one of the key feature of the MS diagnosis ®°. Their
cellular origin is now well established. The transcriptomic analysis of Ig repertoire of individual
CSF B cells and the protemic sequencing of isolated OCB proved that most of OCB were the
product of local CSF or parenchyma resident B cells *”. The persistency of the OCB over time
in MS argues for appropriate survival conditions for B cells in CNS or CSF. Moreover, it was
shown that astrocytes which are a major plurifonctional CNS glia lineage produce B cell growth
factors including BAFF, CXCL 10, CXCL13 to support B cell survival ". Interestingly deep
sequencing analysis identifyed similar gene pedigrees in CSF as well as in the periphery

suggesting exchanges between CNS and peripheral B cell populations ™.

B cell auto-antigens. Lucchinetti et al '® described that in the major form of MS
(RRMS), CNS lesions involved activated C9neo indicating an antibody reaction. Moreover,
plasmatic exchanges could improve neurological disabilities in a cohort of patient presenting
pattern Il lesions 2. Leptomeningeal B cells aggregates are furtherly shown associated with
demyelination and neuronal degeneration with arguments for humoral factors and antibodies
diffusion in tissues 3. Lastly B cell depletion is a powerful therapy in MS *° and contribute to

think that B cells in MS play a key role in the cumulative lesion processes. However, the target
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antigens still remain a debate. Today no demyelinating candidates can be found an no myelin
or other glia autoantigen are identified . Some conflicting results were published considering
ion channels on synaptic structures ™ ’®, The most intriguing target remain MOG, a major
encephalitogen in rodent EAE, MOG is a protein on the surface of myelin, directly accessible
to humoral antibody. Anti-MOG can be transient found in childhood MS and acute
demyelinating encephalitis and is now considered in human associated with a new entity in
between MS and neuromyelitis optical (NMO), the MOG autoimmune disease (MOGAD) "
8 7 It is interesting to highlight that human anti-MOG antibodies are species-specific

recognizing conformational epitopes on Human not on rodent MOG .

Cytokines. B cells act as a source of both pro- and anti-inflammatory cytokines 8% 2,
Naive and activated B cells are potent producers of protective and pathogenic cytokines. B cells
are involved in regulating other immune cells that affect inflammatory responses. B cells can
produce IL-6, enhance Th17 cells differentiation, and prevent the production of regulatory T
cells 2. In EAE, deficiency of IL-6 producing B cells reduce the experimental disease as in MS
8 Peripheral B cells can increase the secretion of many inflammatory factors such as 1L6, TNF
alpha and lymphotoxin alpha. B cells facilitate pro-inflammatory B cell responses such as
polyclonal stimulation in MS &, In the same way increase of IL17 and IFN gamma worsen MS
severity 8. Inflammatory B cells are also represented by GM-CSF-producing B cells which
facilitate 1L-6 and TNF expressions. Deletion of those GM-SCF-producing B cells lead to
decrease myeloid cells and pathogenic immune responses 3. Anti-inflammatory cytokines are
usually represented by TFGbeta-1, IL-35 and IL-10 cytokines. B cells are able to produce a
large amount of IL-10, compromising the action of various antigen presenting cells and
inhibiting the process of TH1 and TH17 cells &. Mice deficient in IL-35 and IL-10 producing

B cells may not recover from auto-immune attacks. Production of IL-10 is conferred to naive

35



B cells &. Recent animal studies revealed that antigen experienced B cells affect plasma cells
differentiation and the production of IL-10, IL-35 and regulatory B cells cytokines 8¢ 87,

These results are linked to the critical role of B cells in regulating immunopathological
synapses and T cell production. Questions remained on which functions may be exploited and

targeted to improve MS conditions.

B cell treatment. The most successful therapy targeting B cells are anti-CD20 therapies.
CD20 is a broad marker of B cell differential from B cell to mature B cell but no plasma cell.
The mechanism of rituximab is however not fully understanding and is not linked to the
antibody-dependent B cell properties, but probably more to the antigen-presenting cell
properties or cytokines properties. It is interesting to highlight that neutralization of B cell
activation factor (BAFF) which is essential for B cell survival factor , is inefficient in MS, but

exacerbates MS 82,

Mechanisms that lead to recruitment of autoimmune B cells in a developing CNS brain

autoimmune disease and their function in the pathogenesis of MS remain to be clarified.

EAE. Classical induced EAE models are of limited values because of the artificial
methods of use of adjuvants, immunisation, or cell transfer. Spontaneous model of EAE may
give some clues in initiation of autoimmune conditions leading to develop the disease.

In OSE mouse model which is a double transgenic C57BL/6 model with MOG specific T cells
expressing a MOG specific TCR along with a knocked-in MOG-specific H chain in its B cells,
B cells capture soluble MOG antigen to cognate T cells to amplify the autoimmune response
%1, In TCR*° mouse model, B cell have a non-manipulated BCR and are recruited from the

endogenous repertoire by transgenic TCR, to produce anti-MOG antibodies. That EAE model
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need availability of MOG and does not develop in germ-free condition (no anti-MOG antibody
in germ-free condition) 2. The recruitment of MOG-specific B cells seems to condition in that
model the expansion and activation of autoimmune B cells and to lead to initiation and

development of the autoimmune processes in CNS.
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1. Objective.

As the TCR¥0 model can contribute to explore initiating mechanisms in autoimmune
processes by through the recruitment of MOG-specific B cells, we propose to track these cells
in time and location and describe how their BCR repertoire can be changed and evolve towards

a pathogenic process.

This project, in collaboration with the Ludwig-Maximilians-University of Munich, aims
to analyze the evolution of B cell repertoire in TCR¥®* mice. MOG-specific B cells were
sequentially collected during the initiation and development of the disease in lymphoid organs

and CNS of TCR* mice. It could identify new markers and potential therapeutic targets.
For the realization of the project, TCR®*° mice model has been implanted in the animal
facilty of Lille and chararacterized. MOG-specific B cells will be searched in different

lymphoid organs and CNS of TCR%4° mice.

The objective of the PhD was to confirm the role of MOG-B cell repertoire changing in

the dynamics of EAE development through TCR%4° model.
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I11. Materials and Methods.

A. Mice.

TCR% mice were TCR4 transgenic SJL/J mice generated by the Max Planck
Institute of Neurobiology (Martinsried, Germany) and imported in Lille in 2016 according to
an MTA L. Nontransgenic littermate (NTL) mice were obtained by crossing of TCR%4
transgenic mice and SJL/J mice. IgH® mice were transgenic mice with Jh locus of the
immunoglobulin heavy chain replaced by the VDJ gene segment of the monoclonal antibody
8-18C5. Homozygous mice were used for breeding of IgHMOC mice . Phenotype of IgHMOC
mice was performed by immuno-staining of splenocytes using 7AAD viability (BioLegend,
San Diego, CA), anti-B220 antibody coupled to PerCP-Cy5.5 (BD Biosciences, San Jose, CA),
anti-lgM? coupled to PE (BD Biosciences, San Jose, CA) and anti-lgMP coupled to FITC
(BioLegend, San Diego, CA) presented in table 1. Homozygous IgHMO® mice presented an
IgM? detection of more than 95% of B cells (Fig. 11). 2D2 mice were C57BL/6 mice transgenic
for a TCR with specificity for the peptide MOGss 55 °8. All mouse strains were bred and
experimented in the specific pathogen free (SPF) animal facilities of the University of Lille
according to the authorization number (APAFIS#5157-201611 101 1562655 v3) for the animal

experimentation.
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Figure 11 : B cell phenotype of IgHMOC mice determined by flow-cytometry.

Splenocytes from IgHM® mice were stained with 7AAD (viability dye), anti-B220, anti-lgM?
and anti-lgMP antibodies. A and E, selection of lymphocyte population. B and F, selection of B
cells marked by B220 marker (B cell marker for mice). C and G, detection of IgM? positive B
cell. A, B and C show phenotype of heterozygous IgHY® mouse. E, F and G show phenotype
of homozygous IgHM°® mouse. Homozygous IgHM®® mice were considered when more than
95% of B cells were positive for IgM2.1gM ™ B cells are transgenic MOG-specific B cells.
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_ 8 -E" Staining Fluorochrome Isotype | Source |Dilution| clone Supplier Reference
e E o B220 PerCP-Cy5 lgG2a, K Rat 1/200 |RA3-6B2| BD Biosciences | 561101
a I ‘g IgMa PE 1gG1,k | Mouse | 1/200 | DS-1 |BD Biosciences| 553517
s % [1gMb FITC 1gG1, k [ Mouse 1/200 | AF6-78 BioLegend 406206
8 =§n Panel "Efficiency MOG tetrame|Fluorochrome Isotype | Source |Dilution| clone Supplier Reference
S £ |7AAD viability 1/100 BioLegend 420404
I E % |cD19 PE-Cy5 18G2a, K Rat 1/200 | 6Ds BioLegend 115510
& :E E CD45.1 APC 1gG2a, k | Mouse 1/200 A20 BioLegend 110714
E g CD45.2 PE lgG2a, k [ Mouse 1/200 104 BioLegend 109808
= 8 [mMOG tetramer FITC 1/100
o Staining Fluorochrome Isotype | Source |Dilution| clone Supplier Reference
& 7AAD Viability 1/100 BioLegend 420404
g E I [cD19 Pacific Blue 1gG2a, K Rat 1/200 | 6D5 BioLegend 115523
a g‘; $ |B220 PerCP-Cy5 lgG2a, k Rat 1/200 |RA3-6B2| BD Biosciences | 561101
g CD4 APC-Cy7 1gG2a, K Rat 1/200 | RM4-5 | Biolegend 100526
: mMOG tetramer FITC & PE 1/100
) Staining Fluorochrome Isotype | Source |Dilution| clone Supplier Reference
T 3 |7AAD Viability 1/100 BioLegend 420404
a é Streptavidin PE 1/200 BioLegend 405204
= Biotinylated CD40L (CD154) g Arm Ham | 1/200 MR1 Biolegend 106503
=E" Staining Fluorochrome Isotype | Source |Dilution| clone Supplier Reference
= '*g 7AAD Viability 1/100 BiolLegend 420404
§ > |cpi9 PE-Cy5 18G2a, K Rat 1/200 | 6D5 BioLegend 115510
g |copa BV786 18G2a, K Rat 1/200 | RM4-5 | Biolegend 100552
= mMOG tetramer FITC & PE 1/100
Staining Fluorochrome Isotype | Source |Dilution| clone Supplier Reference
7AAD Viability 1/100 BioLegend 420404
- Biotinylated peanut aglutinin 1/100 Vector B-1075
E Streptavidin FITC 1/200 Biolegend 405202
E FAS PE-Cy7 1gG2 12 [Arm Ham | 1/200 Jo2 BD Biosciences | 557653
E E GL-7 Alexa Fluor 647 IgM, K Rat 1/200 GL7 Biolegend 144606
a % CD38 Pacific Blue 1gG2a, Kk Rat 1/200 6D5 Biolegend 102720
; CD138 PE 1gG2a, k Rat 1/200 281-2 Biolegend 142504
2 |cpiss APC 12G2a, K Rat 1/200 | 281-2 BioLegend 142505
1gG1 FITC 1gG1, K Rat 1/200 | A85-1 | BD Biosciences| 553443
IgM PE 1gG1, k [ Mouse 1/200 DS-1 | BD Biosciences | 553517
CcD19 Brilliant Violet 605 | 1gG2a, k Rat 1/200 1D3 | BD Biosciences | 563148

Table 1:

Antibodies used in flow cytometry experiments.
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B. Scoring.

Clinical scoring of EAE was performed as follows: score 0, for disease-free; 1 for atony
of the tail; 2 for delayed rightening; 2.5 for one hind leg paralyzed; 3 for paralysis of the hind
limbs; 4 for paralysis of the anterior limbs; and 5 for complete paralysis or death of the animal.
Mice were scored by Florent Salvador (level 1 animal experimentation accreditation since

2017/12/22) every 1 to 2 days.

C.  Serum transfer experiment.

After sedation using isofluorane, 2D2 mice were injected by retro-orbital infusion with
200ng of pertussis toxin (List Biological Laboratories, Campbell, CA) at day 0. At days 2, mice
were injected by retro-orbital injection with 200ng of pertussis toxin associated with 50pL of
PBS or serum from NTL mice, IgHM®® mice, disease-free or diseased TCR!%*° mice.

These injections were performed with Dr Nathalie Journiac.

D.  Samples collection.

For the detection of anti-MOG antibodies in serum, mice were sacrificed by cervical
dislocation or terminal anaesthesia by injection of sodium barbital. Blood was collected in the
heart. Serum was extracted after blood centrifugation (1000g) a 4°C and stored at -20°C. To
determine the localisation of MOG-specific B cells and to perform iGB culture, mice were
sacrificed by cervical dislocation or terminal anaesthesia by injection of ketamine/xylazine.
Spleen, CLN (cervical lymph nodes), Payer patches (PP), axillary lymph nodes (ALN), inguinal
Ilymph nodes (ILN) and mesenteric lymph nodes (MLN) were collected and stored on ice. Cells
were dissociated using cell strainer of 40um and stored on ice. Cells from brains were collected
after dissociation, digestion using collagenase D (Roche, Basel, Switzerland) and

ultracentrifugation on Percoll /RPMI gradient. Cells were stored on ice waiting for the step for
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counting and FACS (Fluorescence-activated cell sorting) staining. Cell counting was performed

using COVA slide after 1/10 dilution in trypan blue solution.

E. Cell culture.

Table 2 presents the composition of medium used for different cell culture. HEK (human
embryonic kidney) cell culture were cultured in freestyle medium (Thermo Fisher Scientific,
Waltham, MA) under antibiotic selection (Thermo Fisher Scientific, Waltham, MA) at 37°C,
0% CO.. 40LB cell culture was realized with 40LB medium (Thermo Fisher Scientific,
Waltham, MA) with G-418 antibiotic selection (Thermo Fisher Scientific, Waltham, MA) at
37°C, 5% COz. 40LB feeder cells were supplied by the MP1 and approved by an MTA with its
inventor Professor Kitamura. For iGB single cell culture, one single total B cell or single MOG-
specific B cell from spleen, CLNs or brain was sorted by FACS sorter and seeded in 96-well
plate precoated with 600 live 40LB feeder cells 8 8%, The iGB medium was supplemented with
IL-4 (R&D Systems, Minneapolis, MN) [2ng/mL] and IL-21 (R&D Systems, Minneapolis,
MN) [10ng/mL] at day 0, 2 to the end of the culture. iGB culture lasted 8-12 days at 37°C, 5%
CO:s.. 40LB cells viability of more than 90% was obtain after 2 weeks of culture. The expression
of CD40 ligand on the surface of 40LB was checked using 7AAD viability (BioLegend, San
Diego, CA), biotinylated anti-CD40L antibody (BioLegend, San Diego, CA) and streptavidin

coupled to PE (BioLegend, San Diego, CA) presented in table 1 by FACS staining (Fig. 12).
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iGE medium Informations Supplier Reference
Fetal Bovine Serum 10% Gibco 10270-098
L-Glutamin 2m Gibco 25030-081
Mon Essential Amino Acid 0,1mmA Gibco 11140-035
Sodium pyruvate 1mM Gibco 11360-070
HEPES 10mM Sigma HO887

Penicillin-Streptomycin 1% Gibco 15140-122
B mercaptohetanol S0pM SIGMA M-7154

REMPI 1640 450mL Gibco 61870-010
40LB medium Informations Supplier Reference
Fetal Bovine Serum 10% Gibco 10270-038
L-Glutamin 2mm Gibco 25030-081
Mon Essential Amino Acid 0,1mM Gibco 11140-035
Sodium pyruvate 1mmM Gibco 11360-070
Penicillin-Streptomycin 1% Gibco 15140-122
B mercaptohetanol 30nM SIGMA M-7154

DMEM 450mL Merck D5796

HEK medium Informations Supplier Reference
Freestyle medium 450mL Fisher Scientifid 11550426

Table 2 : Composition of iGB medium, 40LB medium and HEK medium.
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Figure 12 : 40LB cells and control of CD40 ligand expression.
A, Photography of cells. B, 40LB cells were stained with 7AAD (viability dye) and anti-CD40
ligand (CD40L) coupled with PE. 90,6% of CD40L cells were live CD40L positive cells.
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F. Anti-MOG and anti-total 1gG1 antibodies quantification by ELISA.

Serially diluted serum (1/100 to 1/1 000) or iGB supernatant (1/100 to 1/1 000) collected
from transgenic mice were transferred to 96-well ELISA plates (Thermo Fisher Scientific,
Waltham, MA) precoated with recombinant MOG protein (produced in the laboratory) or
purified anti-lgG1 antibodies (BD Biosciences, San Jose, CA). Detection used biotinylated anti-
IgG1 for primary antibody (BD Biosciences, San Jose, CA) and a streptavidin-HRP complex
(BD Biosciences, San Jose, CA) for the detection. TMB solutions (BioLegend, San Diego, CA)
were used to reveal substrate reaction and stopped the reaction with hydrochloric acid
(BioLegend, San Diego, CA). Measurements at 450 nm on FLUOstar Omega. Two standards
were used for these quantifications: purified 8.18C5 antibodies produced in the laboratory by
Dr. Mathide Bas and Dr. Nathalie Journiac to quantify anti-MOG antibodies in AU (Arbitrary
Unit) and purified IgG1 (BD Biosciences, San Jose, CA) antibodies to quantify total 1gG1

antibodies in ng/mL.

G. MOG monomer and tetramer production.

HEK cells at more than 90% of viability were transfected with a ratio of 1/2 of MOG1.-
125 plasmid (Fig. 14) /Polyethylenimine linear (CliniSciences, Nanterre, France). The efficiency
of transfection was evaluated with a ratio of 1/2 of plasmid control GFP
(pSUPER.retro.neo+gfp, OligoEngine, in figure 13)/Polyethylenimine linear in OptiPro
solution (Thermo Fisher Scientific, Waltham, MA). After 24h, GFP expression was analysed
by fluorescence microscopy using a Leica DMI8 at objective X40 (Fig. 15) and analysed by
flow cytometry (Fig. 16). More than 21% of transfected cell express GFP using cytometric
analysis. On day 2, the medium was supplemented with lactaloumin (Merck KGaA, Darmstadt,
Germany). On day 9, the MOGm (MOG monomer) was eluted using an imidazole gradient

ranging from 20 to 500mMol (Merck KGaA, Darmstadt, Germany) and purification column
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(Cytivia, Marlborough, MA). To control the presence of MOGm in elution fractions, Western
blotting was performed to identify MOG protein band at the expected size of 20KDa (Fig. 17).
Western blotting was performed using anti-MOG antibodies at 1pug/mL (clone 8-18C5, Merck
KGaA, Darmstadt, Germany) detected using anti-1gG (Heavy + Light chain) antibodies coupled
to peroxidase at 1/10 000 (Jackson ImmunoResearch, Sacramento, CA). ECL solution (Thermo
Fisher Scientific, Waltham, MA) was used for the revelation. MOGm proteins were purified by
dialyse using tube (Merck KGaA, Darmstadt, Germany) in PBS (Thermo Fisher Scientific,
Waltham, MA) and stored at 4°C. Biotinylated MOG monomer (MOGhbiot) was built using the
BirA kit (Avidity, Aurora, CO) and purified by dialyse using tube in PBS. To produce
recombinant murin myelin oligodendrocyte glycoprotein tetramerized (MOGtet), MOGbiot
previously produced was conjugated with a ratio of 4 mol of MOGbiot for 1 mol of streptavidin-
FITC (BioLegend, San Diego, CA) or streptavidin-PE (BioLegend, San Diego, CA) coated
microbeads. The quality of each production was monitored with splenocytes from IgHM9C mice.
Cells were stained with MOGtt, 7AAD viability (BioLegend, San Diego, CA), and an anti-
CD19 antibody coupled to Pacific Blue (BioLegend, San Diego, CA). To determine the
efficiency of MOGtet to detect rare MOG-B cell specificity, B cells were purified using the
EasySep™ Mouse B Cell Isolation Kit (StemCell, Cologne, Germany). Several known cell mix
starting from mix equivalent to 1 B cell from IgHMO® mouse inside 100000 B cells from
C57BL/6 mouse and finishing at 1 B cell from IgHM®® mouse inside 1 B cells from C57BL/6
mouse. Cells were labelled using extracellular and intracellular staining (Table 1). Extracellular
staining was made using 7AAD viability (BioLegend, San Diego, CA), anti-CD19 antibody
coupled to BV605 (BD Biosciences, San Jose, CA), Biotinylated peanut agglutinin (cat.
Bektop, Koltsovo, Russia), Streptavidin coupled to FITC (BioLegend, San Diego, CA), anti-
FAS coupled to PE-Cy7 (BD Biosciences, San Jose, CA), anti-GL-7 coupled to Alexa Fluor

647 (BioLegend, San Diego, CA), anti-CD38 coupled to Pacific Blue (BioLegend, San Diego,
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CA) and anti-CD138 coupled to PE (BioLegend, San Diego, CA) presented in table 1.
Intracellular staining was made using anti-CD19 antibody coupled to BV605 (BD Biosciences,
San Jose, CA), anti-CD138 coupled to APC (BioLegend, San Diego, CA), anti-IlgM coupled to

PE (BD Biosciences, San Jose, CA) and anti-lgG1coupled to FITC (BD Biosciences, San Jose,

pPSR-GFP/Neo suffer
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Figure 13 : Map of pSUPER.retro.neo+gfp vector.
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Figure 14 : Map of the constructed MOG!1% vector used to synthesize the extracellular part of
MOG]'_]'ZS.

AmpR promoter is the promoter of the AmpR gene. AmpR encodes the f-Lactamase which is
involved in resistance to ampicillin. ColE1 origin is the origine of replication. CMV promoter
is a strong promoter of transcription. Avitag is a short sequence implicate in the biotinylation
of MOG protein. MOGj1.125 is the coding sequence of the extracellular part of MOG. 6His is a
tag histidin used for purify the MOGj1.125 protein.
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White light GFP MERGE

Figure 15 : Control of HEK cells transfection efficiency by microscopy.

Transfection test on HEK cells with the GFP control vector. Cells observed at 24h post-
transfection by fluorescence microscopy. A, Transfected cells were observed with white light.
B, GFP fluorescence was observed on transfected cells. C, Merge of white light and GFP
observations to confirm the expression of GFP by transfected cells.
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Figure 16 : Control of HEK cells transfection efficiency by cytometry.

Transfection test on HEK cells with the GFP control vector. Cells observed at 24h post-
transfection by cytometry. A and B, untransfected cells. C and D, transfected cells. A and C,
selection of cells at expected granularity and height. B and D, GFP fluorescence signal was
researched. 21,6% of transfected HEK cells expressed GFP.
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@ MOGm

Figure 17 : Western blot showing the productions of mMMOGt.

Production of MOGm proteins using HEK cells and purification using gradient of imidazole.
Detection of MOGm production using anti-MOG antibodies at 1ug/mL (clone 8-18C5) and
anti-lgG (H+L) antibodies coupled to peroxidase at 1/10 000 and detection by ECL solution.
MOGM proteins were detected in supernatant of transfected cells and in elution fraction.
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H.  RNA extraction.
After iGB culture, amplified cells and 40LB feeder cells were collected using Tris-
EDTA solution. RNAs were extracted using Trizol/chlorophorm process (TRI Reagent® Merck

KGaA, Darmstadt, Germany) or the RNeasy Mini Kit (Qiagen, Courtaboeuf, France).

l. RT and PCRs.

RNA was retrotranscribed into cDNA using the kit (Thermo Fisher Scientific, Waltham,
MA). cDNA was used to amplify target sequences of IgHG and IgLK primers (Table 3) using
PCR programs presented in table 4 and validated in figure 18. To control the efficiency of
primers, RNA extracted of B cells from spleen of C57BL/6 mice, SJL/J mice were
retrotranscribed. cDNA were amplified using couples of primers IgH forward /IgHG reverse
and IgLK forward/IgHK reverse designed by Dr Anneli Peters (2015), Taqg DNA Polymerase
(Qiagen, Courtaboeuf, France) and on thermocycler (Eppendorf, Hamburg, Germany).
Migration of PCR products was made on 4% agarose gel (Thermo Fisher Scientific, Waltham,
MA). After revelation of bands on UV machine, bands at the expected sizes were collected by
cutting the gel. PCR products were purified using the kit QIAquick Gel extraction (Qiagen,

Courtaboeuf, France).
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Target Degenerate sequences (5'->3")

IgH forward SAGGTSCAGCTGCAGSAGTGTGG
IgHG reverse CTCAGGGGAARTAVCCYTTGAC
IgLK forward GAYATTGTGMTSACMCARWCTMCA
IgLK reverse GATGGTGGGAAGATGGATACAGTT

Table 3 : Degenerate sequences of primers used for IgHG and IgLKappa (IgLK) target
sequences.

94°C 94°C 67°C 72°C 94°C 57°C 72°C 72°C

IgHG 3min 10sec 20sec 20sec 30sec 30sec 1min 10min
X1 X20-0,5°C/cycle X35 X1

94°C 94°C 68°C 72°C 94°C 58°C 72°C 72°C

IgHK 3min 10sec 10sec 20sec 30sec 30sec 1min 10min
X1 X20-0,5°C/cycle X35 X1

Table 4 : Programs used for IgHG and IgLK PCRs.
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Figure 18 : Validation of IgHG and IgLK primers. PCR

performed on H20 and DNA extracted from B cells of spleen collected from C57BL/6, SJL/J.
Bands were detected for the amplification of IgHG sequences (expected size at 500kDa) of
SJL/J mice. Bands were detected for the amplification of IgLK sequences (expected size at 400
kDa) of C57BL/6 and SJL/J mice.
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J. Flow cytometric analysis.

Table 4 presents panels of antibodies used to determine the genotype of IgHM® mice,
the efficiency of MOG tetramer to detect MOG-specific B cells, the localization of MOG-
specific B cells in TCR®4? mice, to control the expression of CD40L by 40LB feeder cells, to
seed total and MOG-specific B cells for iGB single cell culture and to determine the phenotype
of cells obtained after iGB culture. To determine the genotype of IgHMOC mice, Navios
cytometer (Beckman Coulter) was used according the software (Kaluza®). LSR Fortessa™ X-
20 (BD) according the software (DiVa®) was used to determine the efficiency of MOGtet to
detect MOG-specific B cells, the localisation of MOG-specific B cells, the expression of
CD40L by 40LB feeder cells, the phenotype of cells obtained after iGB culture and the
phenotype of cells obtained after iGB single cell culture. To sort total B cells and MOG-specific
B cells, FACS ARIA (BD) was used according the software (DiVa® V7). Data obtained with
Navios and Fortessa X-20 cytometers were respectively analysed using (Kaluza® software V2)

and FlowJo® software VV10.5.3.

K.  Sequencing.

Samples sequencing by SANGER technology at the sequencing platform of

GENOSCREEN (Lille, France).

L. Analyses of sequences.

Sequences obtained for IgLK and IgHG chains were submitted to IMGT/V quest and
tools (http://www.imgt.org/) to define junction decryptions for each sequences and

corresponding amino-acid sequences to find out the different clonotypes.
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M.  Statistical analyses.

GraphPad PRISM version 9 (CA, USA) was used for statistical analyses and graphs.
EAE incidence was analyzed by Kaplan-Meier plots and statistical significance was calculated
using the logrank test. Two-way ANOVA allowed to compare the clinical score evolution of
2D2 mice receiving passive transfer of serum. Simple linear regression evaluated correlations
between EAE scores, age and measurements of antibodies in serum, and between EAE score
and delay after EAE onset and percentage of MOGtt" B cells in CLN or CNS. T-tests were
used for comparing means of measurements of antibodies in supernatants from cell cultures. p-

values < 0.05 were considered significant.
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V. Results.

A. Characterization of TCR° mice model in the LIRIC animal
facility.

A cohort of 180 TCR mice (82 females and 98 males) was followed during a mean
of 236+113 days. In this cohort, the total incidence of EAE was at last follow up of 93.9%
(n=169 TCR%4° mice) (Fig. 19). The total incidence in female subgroup at last follow up was
of 96.7% in the female subgroup and of 90.2% in the male subgroup without significant

difference (p=0.06).
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Figure 19: EAE incidence of TCR%4? mice.
TCR*®4 mice are shown in black, female mice in red, male mice in blue and NTL mice in grey.
Percentage of EAE incidence in TCR%4° mice and NTL mice according to the number of post-
natal days at the University of Lille.

EAE started at a mean age of 19787 days. In the female subgroup (n=74), EAE started
at a mean age of 184+79 days and at 207+92 days in the male subgroup (n=95) without
significant difference (p=0.2). In female TCR4° mice, 25% mice started EAE at 131 days and

75% at 239 days. In male TCR®*° mice, 25% mice started EAE at 129 days and 75% at 271

days.
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Concerning the mortality, in this cohort 76.7% (n=138) of TCR®*° mice died because
of EAE, 4.4% (n=8) died due to other disease or for old age and 18.9% (n=34) were sacrificed
for experimentation. TCR%*° mice death due to EAE occurred at a mean delay of 45+61 days
after EAE onset or a median delay of 27 days [1+295] after EAE onset (Fig. 20). Death due to
EAE occurred at a mean of 53167 days after EAE onset in the female subgroup (n=61) and
37+54 days in the male subgroup (n=77) without significant difference (p=0.23). In the female
TCR4° mice subgroup, 25% of the mice died due to EAE at 10 days after EAE onset and 75%
at 70 days after EAE onset. Concerning male TCR%° mice, 25% of the mice died due to EAE

at 10 days after EAE onset and 75% at 40 days after EAE onset.
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Figure 20: Mortality of TCR4° mice due to EAE.

TCR4% mice are shown in black, female mice in red and male mice in blue. Percentage of
TCR%? mice died by EAE according to the number of days after EAE onset at the University
of Lille.

In the TCR4° model, there is no difference between the gender of the mice and the
incidence of the disease, the time to onset EAE and the mortality according to the age and the

number of days after EAE onset.
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Within the all cohort, a small cohort of 8 females and 13 males were followed just after
weaning to be more accurately scored and examined daily during a mean of 264+105 days. In
this subgroup, EAE incidence at last follow up was 90.5% (n=19) of TCR®*° mice. EAE started

at a mean age of 221+84 days (Fig. 21).
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Figure 21: Clinical evolution of EAE in TCR!%4? mice.
Female TCR®* mice are shown in red and male mice in blue. Mean clinical score of TCR% mice
according to the number of days after EAE onset at the University of Lille.

Figure 22 illustrates the average of EAE evolution in the female and male groups. We
observed two clinical forms of the disease: 47.7% presented a single inflammatory event
leading quickly to death (Fig. 22 A-C); 52.6% of TCR®° mice developed more than one relapse

with a mean of 2.8+0.8 relapses at last follow up (Fig. 22 B-D).
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Figure 22: Clinical evolution of EAE in TCR®® mice depending to the form of the disease.
Representative TCR4° mouse are shown in black, Female TCR*®*° mice in red and male
TCR*® mice in blue. Clinical score of a representative TCR®4° mouse in aggressiveness form
of the EAE (A) or relapsing-remitting form of EAE (B) are shown according to the number of
days after EAE onset at the University of Lille. Mean clinical score of TCR?®* mice in
aggressiveness form of the EAE (C) or relapsing-remitting form of EAE (D) are shown
according to the number of days after EAE onset at the University of Lille.

Concerning the mice affected by the relapsing-remitting form of EAE, the mean of
maximal clinical was of 2.2+0.4 during the first relapse, 3.2£1.5 during the second relapse,

4+1.4 during the third relapse and 50 during the fourth relapse (Fig. 23).
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Figure 23: Clinical evolution of EAE in TCR**° mice depending to the number of relapses.
Mean clinical score of TCR*%4° mice affected by the relapsing-remitting form of EAE are show
according to the number of relapses.

In conclusion, these results show a delay in the development of spontaneous EAE in
TCR*% mice, variation in the form of the disease with an aggressive form and a relapsing

remitting form with no significant difference between male and female.
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B. Anti-MOG response in the TCR1640 mice model.

Sera from IgHMOC mice (n=13), NTL mice (n=21), disease-free (n=15) and diseased
TCR4 mice (n=28) were collected in order to determine the presence of total IgG1 and 1gG1

anti-MOG antibodies by ELISA assay (Fig. 24).
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Figure 24 : Quantification of total IgG1 and anti-MOG IgG1 antibodies in serum.
Total IgG1 in ng/mL (A) and anti-MOG IgG1 antibodies in AU (B) in serum using ELISA assay.
**=p<0.001 and ***=p<0.0001.

Total 1gG1 were observed in all groups of mice without significant difference. Anti-
MOG IgG1 were only observed in sera from disease-free TCR®4° mice (23078+4281UA) and
diseased TCR% mice (31780+7039AU) without significant difference between both TCR640
mice group. Disease-free and diseased TCR%*° mice presented significantly higher
concentration of anti-MOG IgG1 antibodies compared to NTL control mice, with respectively

p value of p<0.0001 and p=0.001. The same observation was made for disease-free and diseased

TCR4% mice compared to IgHM°® mice (data not showed).

Figure 25 shows the total IgG1 and anti-MOG 1gG1 antibodies concentration in sera
from diseased TCR*%4° mice according to the clinical score (A and B), the number of days after
EAE onset (C and D) and the age of mice (E and F). Concerning the clinical score, no
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correlation was observed between both parameters with respectively r>=0.03; p=0.35 for total
IgG1 and r’=0.01; p=0.54 for 1gG1 anti-MOG. Concerning the number of days after EAE onset,
no correlation was observed between both parameters with respectively r?=0.05; p=0.27 for
total 1gG1 and r?>=0.02; p=0.47 for 1gG1 anti-MOG. Concerning the age of mice in days, no
correlation was observed between both parameters with respectively r>=0.06; p=0.09 for total

IgG1 and r?=0.003; p=0.73 for 1gG1 anti-MOG.

These findings show that anti-MOG antibodies are a biomarker in TCR4° mice model

without any correlation with the clinical status, the delay after EAE onset or the age of mice.
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Figure 25 : Correlation between concentration of total IgG1, anti-MOG IgG1 antibodies and
clinical score (A & B) or days after EAE onset (C & D) or age in days (E & F).

A-C and E show the total 1gG1 concentration (ng/mL). B-D and F, show the anti-MOG IgG1
concentration (AU).
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Figure 26 shows how serum from IgHMOC mice, NTL mice, disease-free TCR®4° mice
and diseased TCR®4° mice influence the EAE incidence and the EAE clinical score of 2D2
mice. Serum from diseased TCR®4° mice (A) increases significantly the incidence (p=0.03) and
the severity (p<0.001) of EAE in 2D2 mice. Other serum did not have any influence on the

incidence or the severity of EAE in 2D2 mice in our animal facility.

A . B
100 --------------=-~ - 54 -e- PBS(n=10)
—*= |gH"°® (n=9)
-e- NTL (n=10)
-#- Disease free TCR'%*° (n=4)
80 41 -~ Diseased TCR'®* (n=9)
S o
604 N
§ 8 * %k %
[+}] —
©
8 9 1T
=
= 40- E 2 ns
< 0 ns
w ns
+
20 14
0_
P I T T ' 1 T
& M oy P» Y ®
]Q J0 22 Days after serum transfer
PT + +
Serum +

Figure 26 : Incidence (A) and clinical evolution (B) in 2D2 mice after injection of PBS or serum
from IgH MOG mice, disease-free TCR®4? mice or diseased TCR®*? mice. ***=p<0.001.

These data support the role of a humoral factor present in serum of diseased TCR®40

mice which contributes to a higher incidence and to the severity of EAE in 2D2 mice.
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C. Localisation of MOG tetramer positive B cells in TCR4? mice model.

1. MOG monomer staining compare to MOG tetramer staining to track
MOG-specific B cells.

An IgHMOC mouse was sacrificed and spleen was collected to purified B cells which are
in this mice MOG-specific B cells. Cells were stained using the MOG monomer and revelled
by the Streptavidin coupled to a dye or stained using the MOG tetramer. Figure 27 shows the
percentage of MOG-specific-B cells stained by MOG monomer and MOG tetramer. The MOG
monomer detected 58.3% of MOG specific B cells and the MOG tetramer detected 83% of
MOG-specific B cells. These results show that, the MOG tetramer are more sensitive to detect
MOG-specific B cells compare to MOG monomer. It is explained by a higher avidity of the

MOG tetramer due to its ability to simultaneously engage its binding on three BCRs

no MOG staining MOG monomer MOG tetramer

1o 0.04 1o 58.3 1o 83.8

MOG
L
L

CD19 >
Figure 27 : Detection of MOG specific B cells by MOG monomer and MOG tetramer
production. B cells purified from spleen of Homozygous IgHM°® mouse were labelled with
7AAD, anti-CD19, MOG monomer or MOG tetramer.
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2. Efficiency of MOG tetramer staining to track MOG-specific B cells.

An IgHMO¢ mouse with CD45.2 leucocytes and an C57-BL/6 mouse with CD45.1 mice
were sacrificed and spleens were collected. B cells were purified and several known mix of B
cells from IgHM®® mouse and WT mouse were realized for respectively 50%, 10%, 5%, 4%,
2%, 1%, 0.1%, 0.01% and 0.001% B cells from IgHMOC mice with respective detection of IgH
MOG B cells (CD45.2 B cells) equal to 33.1%, 4.7%, 2.8%, 1.9%, 1.2%, 0.65%, 0.057%,
0.0048% and 0.0022% in B cells. Figure 28 shows the percentage of MOG-specific-B cells
stained by MOG¢ in different mix of CD45.2+ MOG-specific B cells / CD45.1+ B cells. In a
cell suspension containing 100% of MOG-specific-B cells (Fig. 28-A) MOGtet detected closed
to 70% of MOG-specific B cells. In preparation containing 33.1% of MOG-specific B cells
detectable, MOGtet detected 23% of MOG-specific-B cells (Fig. 28-B). In preparation
containing 4.7% of MOG-specific B cells detectable, MOGte detected 3,47% of MOG-specific
B cells (Fig. 28-C). In preparation containing 0.058% of MOG-specific B cells detectable,
MOGtet detected 0,05% of MOG-specific B cells (Fig. 28-D). In preparation containing 0.004%
of MOG-specific B cells detectable, MOGtet did not allow to detect precisely MOG-specific B
cells (Fig. 28-E). In a cell suspension containing only WT CD45.1 cells (Fig. 28-A) MOGt did
not allow to detect any B cells with high affinity for MOG (Fig. 28-F). These results are
graphically projected in Figure 29 and show that under a ratio of 1/3000, MOGtet staining

became unspecific.

64



“JaWR118) DO 10U 10 pUB Z'GydD-nue ‘T°'Gyad-hue ‘6Tdd-hue ‘avv.

Uum pajage aam sj8d *(T1 pue 4) s190 g +T°GAD %00T pue (M pue J) s||8d g 914198ds-90IN +2°SG7AdD %8¥00°0 ‘(¢ pue @) s|18d g d1108ds
-90N +2'S7AD %850°0 ‘(I pue D) s|199 g 214193ds-O0IN +2°SAD %.Lv ‘(H pue g) s[180 g 914199ds-90IN +2'S¥AD %%T €€ PaAIasqo pue
(9 pue v) s]189 g 914199ds-9O0IN +2°SrAD %00T 40 Pasodwiod s|189 J0 XIIAl S|[39 +T'GyAD YHM S[199 g 914193dS-O0IN +2'GyAdD 40 XIW UMOU
e Ul (7 pue M ‘C 1 *H ‘D) 18190 Inoyum Jo (4 pue 3 ' ‘D ‘g V) 18190IN Ag pauress s|180 g 214108ds-9QIA 40 abejusaled ay) psmoys ereq
'S[189 g 213199ds-OOIN 19919p 03 181D0N 40 Adusioye ayy Bululsp Bulurels-ounwwi SOV : 8z anbi4

'Svad

T
Buiuieys
J13weu3a1 9O ON

%0 w |[° %0 %0 %0 %E000 %0 %0

JawWel3dy OO

Suiuieys
Jawesyay oo

E o

E 0 E o E 0
%0 %10°0 %500 %200 RLY'E : %0

s|199 g LM %00T d S1189 g 914193ds-O0N 3 S1189 g 914193ds-O0N a S]199 g 213198ds-90IN J S1189 g 914193ds-O0ON 2 S1189 g 9141930ds-O0N v
%000 %8500 %LV %T'€E %00T

%0°€T %0 %L'69 %0

65



PolyclonalB  IgHMOCG B

= 10
KU
< 109
O
o 10"
1,
2 1072 =
S oo
10°
= t
1074
L B L BLLL Bl Ll Bl |
L X © L X d 4 N QA
&)
X W IgHMOG | total B cells

Figure 29 : Detection of MOG specific B cells in a known mix of B cells. B cells purified from
spleen of Homozygous IgHM®® mouse (CD45.2) and WT mouse (CD45.1) were mixed in known
proportion. Cells were labelled with 7AAD, anti-CD19, anti-CD45.1, anti-CD45.2 with MOG
tetramer. Experimental background and possible endogenous MOG-specific B cells were
represented in black and red by the CD45.2"MOGtt" population in WT B cells stained or not with
the MOG tetramer. Percentages of CD45.2"MOGtt" B cells (in blue) were quantified in several
mix of B cells. Under a ratio of 1/3000, MOGtet staining became unspecific.
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3. Search of MOG tetramer positive B cells in different organs.

A cohort of 14 TCR*%*° mice (10 females and 4 males) were sacrificed at different time
points before and after onset of symptoms: 2 TCR4° mice were sacrificed before EAE onset
at an age of 234+91 days; 12 TCR®% mice (9 females and 3 males) were sacrificed after EAE
onset at respectively a mean age of 157+59 days and a mean of 24+25 (median=21[1;70]) days
after EAE onset with a mean clinical score of 2.75+0.5. MOGtt" B cells were quantified in
spleen, Payer plate (PP), axillary lymph nodes (ALN), inguinal lymph nodes (ILN) and
mesenteric lymph nodes (MLN), CLN (cervical lymph nodes) and brain according to the

procedure presented in Figure 30.
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Figure 30 : Selection of live MOGtt" B cells in lymphoid organs. Selection pathway for MOGtet™
B cells. Here, cells come from the deep cervical lymph nodes of IgHMOC mouse and NTL mouse.
A, selection of cells corresponding to B cells sizes. B, selection of live cells. C, selection of the
B cell population. D, selection of MOGet" B cells in total B cells. MOGtet" specific B cells were
detected only in CLNs from IgHMA® mice and not in NTL mice.
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Figure 31 shows the absolute number of total B cells in the different lymphoid organs
(data not shown for PP, ALN, ILN and MLN) and brain of each group of mice. As expected, B
cells were detected in spleen and CLNs for each group of mice without significant difference
between the groups of mice. B cells were present in brain for diseased TCR*%4° mice but also in
heathy TCR®4° mice. No B cells were present in the brain for NTL and IgH°® mice. B cells

were significantly more numerous in brain of diseased TCR%4° mice compared to NTL and

IgHMOC mice.
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Figure 31 : Absolut number of B cells counted in spleen, CLN and brain.
Quantification of B cells counted in spleen (A), CLN (B) and brain (C) of TCR*%*° mice before
and after EAE onset, NTL mice and IgHM°® mice. (*= p<0.05).
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Figure 32 shows the proportion of T cells and B cells in the different lymphoid organs
(data not shown for PP, ALN, ILN and MLN) and brain of each group of mice. As expected, T
(24+12%) cells and B cells (38+20) were detected in spleen for each group of mice. In CLN
and moreover in brain, it was difficult to detect proportion of T cells and B cells similar to cells
detected in spleen. In CLN, proportions of T cells and B cells were respectively equal to
27+25% and 24+21. In brain, proportions of T cells and B cells were respectively equal to 7£6%

and 12+14.
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Figure 32 : Proportion of T cells
and B cells counted in spleen CLN
and brain. Percentage of T cells
and B cells counted in spleen (A),
CLN (B) and brain (C) of TCR64
mice before and after EAE onset,
NTL mice and IgHMOC mice.
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Figure 33 illustrates MOGt:™ B cells quantification into total B cells in different

lymphoid organs and brain (data in ALN, ILN, MLN and PP are not shown). As expected

MOGtt+ B cells were detected in all lymphoid organs for IgHMOC mice. No MOG:" B cells

were detected in brain for these former mice. No MOGt:" B cells were detected in lymphoid

organs or brain for NTL and disease-free TCR*%4° mice. MOGtt* B cells were detected at a low

proportion in CLN only considering the lymphoid organs and in brain of diseased TCR*4° mice.
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Figure 33 : Selection of live MOGtt+ B cells in different type of organs. Example of the
MOGtt" B cells quantification in total B cells. Here, cells come from spleen, PP, ALN, ILN,
MLN, CLN and brain of IgHM°® mice, NTL mice and TCR*%° mice before and after EAE onset.

Figure 34 shows the percentage data of MOGtt" B cells into total B cells in mice in the

different organs (data in ALN, ILN, MLN and PP are not shown). In spleen, as expected,

MOGet" B cells were observed in IgHMOC® mice (43.3+ 9.8%); no MOGtt" B cells were
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observed in NTL, disease-free and diseased TCR*®*° mice. In CLN, as expected, MOGet" B
cells were observed in lgHMC® mice (27.67+16.8%) but also in diseased TCR%° mice at a low
proportion (0.84+0.27%); no MOGtt* B cells were observed in NTL and disease-free TCR64°
mice. In CLN, a significant high proportion of MOGi" B cells (p=0.03) were observed in
diseased TCR%4° mice compared to control mice (NTL and disease-free TCR4° mice). In
brain, MOGet" B cells were observed in diseased TCR%4° mice at a low proportion (0.73 +
0.19%) but at a significatively higher proportion (p=0.03) compared to control mice (IgHM°®,

NTL and disease-free TCR®4° mice); no MOGtt" B cells were observed in IgHMO® and NTL

mice).
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Figure 34 : Proportion of MOGt:" B cells in the total B cells. Data from several experiments
were pooled. Cell populations representing fewer than 200 total B cells were excluded. The
labelled cells came from spleen (A), CLN (B) and brain (C) of TCR*®*° mice before and after
EAE onset, NTL mice and IgHM9® mice. (*=p<0.05, ***=p<0.0001).
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Figure 35 shows the percentage of MOG-specific B cells in CLN and brain according
to the delay after EAE onset. No correlation was observed between both parameters (CLN

R?=0.009; p=0.793 and brain R?=0.235; p=0.2).
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Figure 35 : Correlation between live MOGtt" B cells and number of days after EAE onset.
Percentages of live MOGet" B cells into total B cells were represented according to the number
of days after EAE onset for CLN (A) and brain (B) of diseased TCR*4° mice.

These results highlight the presence of MOGeet™ B cells in diseased TCR®4° mice after
EAE onset in brain and CLN without correlation between the proportion of MOGe" B cells and

the delay of EAE.

D. iGB single cell culture and construction of sequences bank.

To initiate iGB culture, a cohort of 9 TCR¥®* mice (4 females and 8 males) were
sacrificed at different time points before and after onset of symptoms: 3 disease-free TCR640
mice (2 females and 1 male) were sacrificed at mean age of 104+31 days; 9 TCR° mice (2
females and 7 males) were sacrificed after EAE onset at a mean age of 228+113 days and a

mean of 41 days after EAE onset with a mean clinical score of 2.6+0.6.
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Table 5 reports information concerning groups of mice sacrificed for iGB single cell
culture from spleens, CLNs and brains. Details concerning number of cells counted before
sorting and concerning the number of seeded vials after sorting are given on Table 5. A
maximum of one 96-well plate was used for B cells from 5 spleen. We used the maximum of

sorted B cells from CLN and brain.
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Table 6 reports information concerning the efficiency of the iGB single cell culture and
the number of ELISA assay of supernatants from iGB culture. A little less of 50% and 15% of
the B cells seeded for single cell culture from spleen of respectively NTL mice and MOG-
specific B cells from spleen of IgHV°® mice led to cluster after 9 days. Concerning total B cells
from spleen of diseased TCR®*° mice, we observed about 40% of clusters after 8 days of iGB
single cell culture. Total B cells and MOGe:" B cells from CLNs of disease-free TCR%4° mice
led to about 40% of cluster after 9 days of single cell culture. Total B cells sorted from CLNs
of disease-free and diseased TCR®* mice led also to about 40% of clusters after 9 days of iGB
single cell culture. This efficiency of single cell culture dropped to about 15% and less for
MOGt" B cell from CLNs of diseased TCR%*° mice and for total B cells and MOG" B cells
from CLNs and brain of disease-free and diseased TCR%4® mice. Notice that, some total B cells
could be sorted from brain of disease-free TCR®4° mice for single cell culture but no MOGtet*
B cell was sorted from these mice. Single cell culture of total B cells and MOGt:" B cell from

spleen, CLNs and brain of IgHM®® mice gave very low percentage of clusters.

Concerning supernatants of iGB culture analysed by ELISA (Fig. 35), higher
concentration of total IgG1 was observed in supernatants of single cell culture with MOGy" B
cell from CLNs of disease-free and diseased TCR®*° mice compared to supernatants of single
cell culture with total B cells from these same mice (p<0.0001). Anti-MOG activity was
detected only in supernatants from single cell culture with MOGt" B cells in CLN from disease-

free and diseased TCR** mice (p<0.0001).
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Figure 37 illustrates cluster development of total B cell and MOGt" B cells sorted from
CLNs and brains. Figure 38 and 39 show the phenotype of cells obtained after 8 days of iGB
single cell culture from CLN and brain of diseased TCR%4° mice at 4 days after EAE onset and
clinical score equal to 3,5. In cell obtained from CLN and brain, plasma cells (CD138) and B
cells (CD19) were identified. The expression of FAS, GL7, PNA and 1gG1 were detected
without detection of CD38 and IgM. The phenotype of these cells corresponded to plasma cells

and activated B cells.

CLN Brain

Total B cell

MOG specific B cell

B cell and moa. B cell after 8-12 days of culture. Total B cells and moa.." B cells extracted
from CLN and brain of disease-free and diseased TCR*®*° mice. A, iGB cluster of total B cell
from CLN of diseased TCR'®*° mice. B, iGB cluster of total B cell from brain of disease-free
TCR mice. C, iGB cluster of MOGt* B cell from CLN of diseased TCR*®* mice. D, iGB
cluster of MOGtt* B cell from brain of diseased TCR'*®*° mice.
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Figure 38 : Extracellular phenotype of 10 cells amplified using iGB culture.
Cells obtained after 8 days of iGB culture from 10 B cells from CLN or brain of diseased
TCR% mice at 4 days after EAE onset, clinical score 3.5. A, selection of cells corresponding
to B cells sizes. B, selection of B cells (CD19) and plasma cells (CD138). C, in B cells
population, quantification of GL7 and FAS expression. D, in B cells population, quantification
of CD38 and PNA expression.
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Figure 39 : Intracellular phenotype of 10 cells amplified using iGB culture.

Cells obtained after 8 days of iGB culture from 10 B cells from CLN or brain of diseased
TCR% mice at 4 days after EAE onset, clinical score 3.5. A, selection of cells corresponding
to B cells sizes. B, selection of B cells (CD19) and plasma cells (CD138). C, in B cells,
population, quantification of IgM and 1gG1 expression.
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E. PCR products and bank construction.

Figure 40 illustrates PCRs realised after RNA extraction from cluster obtained after
single cell culture. Bands at the expected sizes of 500kDa for IgHG and 400kDa for IgLK were
collected. Purified PCRs products were sequencing by SANGER technology at the sequencing
platform of GENOSCREEN (Lille, France). Table 6 presents the number of PCRs performed,
the PCR efficiency and the number of analysable sequences obtained. Readable sequences

represented a low percentage of samples sequenced (less than 50%) for each sequence obtained.
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F. Transcriptomic analysis.

Table 7 shows the results of the different sequences obtained and analyzed within the
IMGT tool (http://www.imgt.org). All the genomic sequences and amino-acid sequences
obtained for IgHG chains were different and no genomic clonotype was found twice. For IgLK
chains, 13 different genomic clonotypes were identified and 3 of them were found 3 times and
in different organs and concerning total B cells as well as MOGt:" B cells. No IgHG sequence
could be paired to any corresponding IgLK sequence. A consensual amino-acid sequence was
found for the different genomic clonotypes found for IgLK. Submitted to the protein BLAST
tool from NCBI with mus musculus (taxid:10090) as targeted organism
(http://blast.ncbi.nim.gov/Blast.cgi?PAGE=Proteins), this short consensual amino-acid
sequence for IgLK fave a correspondence to 97 different proteins which were mostly IgL
proteins according to NCBI database. Distance tree of this analysis (Fig. 41) confirmed the
relevance of this consensual amino-acid sequence to rodents and especially in mus musculus
part of the IgLK region sequences (Fast Minimum Evolution, 0.90 of max sequence difference,

distance of Grishin for proteins).
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< immunoglobulin light chain junction region [Mus musculus]
monoclonal autoantibody light chain variable region [Mus musculus]
anti-A 14 immunoglobulin light chain variable region [Mus musculus]
immunoglobulin kappa light chain variable region [Mus musculus]
IgK light chain V-region | Mus musculus|

Ganti-A14 immunoglobulin light chain variable region [Mus musculus]
IgK light chain V-region [Mus musculus]

rodents | 7 leaves

rodents | 24 leaves

anti-C reactive protein immunoglobulin light chain variable region [Mus musculus’
rodents | 11 leaves

rodents | 12 leaves

rodents | 8 leaves

rodents | 14 leaves

immunoglobuli kappa light chain [Mus musculus]

| 0.01 I
rodents and unknown | 13 leaves

Figure 41 : Distance tree of NCBI protein blast.
Distance tree of NCBI protein blast with mus musculus (taxid:10090) as targeted organism and

the short consensual sequence CQQWSSYPLT observed in our sequence analysis (Fast Minim
Evolution, 0.90 of max sequence difference, distance of Grishin for proteins).
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V. Discussion.

TCR4% mice bred in our animal facility in Lille show a moderately different phenotype
of TCR mice compared to TCR!%%° mice mice bred in the Munich such that spontaneous
disease developed later, without any difference between male and female and with a relapsing-
remitting phenotype in half of the colony. Trying to characterize the anti-MOG response in our
colony, we found that, (i) serum anti-MOG titers in disease-free and diseased TCR%4° mice
have no correlation with age of mice, time after EAE onset, or EAE clinical score, (ii)
percentages of MOGt* B cells in CLN and brain of diseased TCR!%4° mice were not correlated
with the time after EAE onset, (iii) however serum from diseased TCR**° mice appeared to
significantly increase EAE incidence and EAE severity compared to serum from disease-free
TCR*% mice when transferred into 2D2 mice, suggesting potential different pathogenic
humoral features between disease-free and diseased TCR®° mice. Lastly (iv) the iGB single
cell culture approach did not lead to a successful and sufficient B cells amplification and only
few clonotypes were obtained for unpaired IgHG and IgLK chains. However, we found some
few common clonotypes between CLN-derived-B cells from disease-free and diseased TCR64

mice and brain-derived-B cells from diseased TCR%*° mice.

The strength of the work was based on the efficiency of the MOGtet as we showed that
it could detect MOG-specific B cells in a cell suspension containing 1 MOG-specific B cell into
3000 cells. This tool allowed to detect more than 70% of MOG-specific B cells in homozygous
IgHMOC mice (having more than 95% of MOG-specific B cells). Despite its efficiency, less than
2 % of MOG:tet* B cells were detected in CLN and brain of diseased TCR*° mice, which is not
unexpected given that MOGtt" B cells are recruited/expanded from an endogenous B cell

repertoire in this model. Of course, it is also possible that the MOGtt" B cells in TCR%*° mice
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have a lower affinity for MOG compared to B cells from IlgHM°® mice, which contain the heavy
chain of an anti-MOG antibody with very high affinity (8.18c5), which is reflected in a slightly

lower MFI of the MOGtet staining in TCR%4 vs IgHMOC mice (Figure 6).

The main limit of the study was the transcriptomic approach based on a B cell expansion
method-iGB single-cell culture) which appeared not appropriate for activated B cells. Indeed
iGB single-B cell was quite efficient with non-activated B cells as B cells isolated from spleen
B cells of BALB/c or NTL SJL/J mice, and clonal efficiency was better with BALB/c B cells,
maybe because 40LB feeder cells are BALB/c 3T3 fibroblasts . We obtained as expected 70%
clonal efficiency and more than 10000 expansion fold with spleen-derived B cells from BALB/c
mouse, and this result was closed to Kuraoka’s results 8. However, clonal efficiency and
expansion fold dramatically dropped with B cells isolated from CLN and brain of disease-free
and diseased TCR4° mice, especially for B cells from brains and brain-derived- MOGt" B
cells. Indeed, B cell isolation from brain may stress the cells and even if only live B cells were
sorted to be seeded in iGB single cell culture, those brain-derived B cells are probably more
activated and stressed and thus more prone to dying in the iGB culture. Kuraoka already
described a lower clonal efficiency of iGB single-cell culture used for expansion of activated B
cells (clonal efficiency of 23% versus 60% usually) . Given the paucity of sorted MOGtt* B
cells, we could not explore the phenotype of the sorted cells further before seeding them on
40LB for the iGB single cell culture. We confirm that iGB single-cell culture is not appropriate
for a representative expansion of MOGet* B cells from TCR4° mice. The absence of anti-MOG
activity detected in supernatant from cultures of TCR%*° mice brain-derived B cells may come
to the low expansion fold. Moreover, despite the fact that IgG1 and anti-MOG antibodies were
measured in supernatants from cultures derived from CLN-B cells, very few IgHG and IgLK

sequences were obtained from the B cells clusters collected at term. Genomic clonotypes
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obtained notably for IgLK allowed to obtain a consensual amino-acid sequence which could
align with 97 proteins and most are variable parts of IgL chains. A single cell sequencing
approach could at this step allow us to isolate more precisely in terms of quality and quantity

the whole Ig components of each of our mice.

The TCR*®* mouse model we have worked on was imported from the native model
from Munich. Berer et al. already demonstrated that the development of spontaneous EAE in
TCR™*4 mice model is dependent on the microbiota and no EAE developed in germ-free
conditions. In SPF conditions, the Munich team described that 80% of TCR®*° mice developed
EAE between 20 and 30 weeks of age 2. In our SPF conditions 80% of the mice presented EAE
after 42 weeks of age, and this could be due to mildly different environment and microbiota in
both sites. Pollinger et al., described a predominantly recurrent phenotype (71%) in female and
more often chronical in male TCR*®* mice (53%). In Lille, independent of the gender, half of

mice presented chronical spontaneous disease 5.

Péllinger showed that in TCR®4° mice, serum auto-antibodies were specific for MOG
and not for other myelin proteins . In line with the published hypothesis that MOGt" B cells
in TCR® mice could be recruited either in CNS tissue or in CNS draining cervical lymph
nodes with MOG imported from the CNS via lymphatic vessels 62, we did not find any MOGret*
B cells in other lymphoid organs than in CLN, especially none in mesenteric lymph nodes and
Peyer’s Patches (data not shown). The anti-MOG activity measured in the supernatants of iGB
single cells cultures from CLN of disease-free and diseased TCR®* mice confirmed the
presence of MOGet" B cells recruited to the CLN. The absence of data in brain B cells of
disease-free and diseased TCR®* mice in our work, potentially due to an inappropriate

expansion method, did not allow conclusions on the recruitment or not of MOGtt" B cells to
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the CNS of TCR4° mice. Otherwise, transfer experiments suggest a different pathogenic
humoral feature between disease-free and diseased TCR®*° mice: while other soluble factors
such as cytokines may also contribute to this difference, it is possible that the repertoire of
MOGtt" B cells undergoes pathogenic changes before and after EAE onset. Therefore, the
analysis of the dynamic change of this repertoire could help to understand how recruitment of

MOGt" B cells may induce and perpetuate the disease.
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V1. Conclusions and prospects.

In TCR%4% mice, where anti-MOG activity is detected early long before and after EAE
without any correlation between anti-MOG titers and age, time after EAE and EAE score,
differences observed between the influence of the disease-free serum or diseased serum in
transfer experiments suggest different anti-MOG antibodies properties between disease-free

and diseased status and dynamic changes of MOG-specific B cell repertoire.

Studying how purified anti-MOG antibodies from TCR®* sera may influence EAE
incidence and EAE severity in transfer experiments would help to confirm the different
pathogenic humoral feature between disease-free and diseased status of those mice. We also
suggest in perspective to directly evaluate the FACS-sorted MOG-specific B cells repertoire
directly from CLN and CNS of disease-free and early diseased TCR®° mice, to better

understand how B cell act in developing a chronical inflammatory and demyelinating process.
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Abstracts

The project aims to clarify the involvement of B cells in the initiation and progression
of multiple sclerosis (MS) using a transcriptomic analysis of B cells in cervical lymph nodes
(CLNSs) and brain of a transgenic mouse model of spontaneous experimental autoimmune
encephalomyelitis (EAE). In this model called TCR%4, transgenic TCR (T cell receptor) for
MOGag2-106 are supposed to recruit MOG-specific B cells from the endogenous repertoire. The
objective of the thesis was to evaluate the dynamics of MOG-specific B cells at the initiation
of EAE in the secondary lymphoid organs and the brain. In this TCR*®4° model in Lille, the
EAE incidence was from 85% at 700 days of life. We checked the performance of a MOG
tetramer to detect and isolate MOG-specific B cells. This MOG tetramer allowed us to identify
rare MOGt* B cells primarily in CLNs and brains of diseased TCR**° mice. Anti-MOG
antibodies in serum were quantified by ELISA and detected in disease-free and diseased
TCR4 mice, without correlation with their age, delay of EAE and clinical score. However,
serum transfer experiments showed that there was a difference in humoral activity between sera
of disease-free and diseased TCR%% mice, which aggravated incidence and severity of EAE in
the 2D2 mouse (another EAE model). These results suggested the dynamics of the repertoire
of MOGtt" or MOGtet- B cells to a pathogenic repertoire for the EAE development. Induced
germinal center B cells culture (iGB) and expansion (on fibroblasts called 40LB cells) of
MOGtet* or total B cells sorted from CLNs and brain of disease-free and diseased TCR*%4° mice
allowed to define only few clonotyps for IgLKappa chains and IgHG chains. Our findings
highlight the difficulty of the iGB single cell culture to expand effector cells and suggest to go
directly to single cell sequencing of sorted derived-CLNs and derived-CNS (central nervous
system) MOGeet* B cells from TCR%4? mice.

Résumeé

Le projet vise a préciser I’implication des lymphocytes B dans [I’initiation et la
progression de la sclérose en plaque (SEP) au travers d’une analyse transcriptomique des
lymphocyes B dans les ganglions cervicaux lymphatiques (CLN) et cerveau d’un modéle murin
transgénique d’encéphalomyélite auto-immune expérimentale (EAE) spontanée. Dans ce
modéle appelé TCR%, les TCR (récepteurs membranaire des lymphocytes T) transgéniques
pour MOGag>-106 SONt supposés recruter des lymphocytes B spécifiques de MOG du répertoire
endogéne. L’objectif de la thése était d’évaluer la dynamique des lymphocytes B spécifiques
de MOG a I’initiation de EAE, a la fois dans les organes lymphoides secondaires et le cerveau.
Dans ce modéle TCR% 3 Lille, I’incidence de I’EAE était de 85% a 700 jours de vie. Nous
avons Veérifié la performance d’un tétrameére de MOG pour détecter et isoler des lymphocytes
B spécifiques de MOG. Ce tétrameére de MOG nous a permis d’identifier de rares lymphocytes
B MOGt:" essentiellement dans les CLN et le cerveau des souris TCR*4 malades. Les
anticorps anti-MOG sériques ont été dosés par ELISA et retrouvés chez les souris TCR64
encore saines et les souris malades, sans corrélation avec leurs ages, leurs durées d’EAE et leurs
scores cliniques. Cependant, les expériences de transferts seriques montraient qu’il existait une
différence d’activité humorale entre les sérums de souris TCR'®4 encore saines et les sérums
de souris TCR*% malades, qui pour ces derniers aggravaient I’incidence et la sévérité de ’'EAE
chez la souris 2D2 (autre model d’EAE). Ces résultats suggéraient la dynamique du répertoire
des lymphocytes B MOGiet" ou MOGeet- Vers un répertoire pathogéne pour le développement
de ’EAE. La culture et I’expansion cellulaire en cellule unique (sur fibroblastes appelés 40LB)
de lymphocytes B MOGe:* ou B totaux triés des CLN et du cerveaux de souris TCR®4 saines
et malades ont permis de définir quelques clonotypes pour les chaines lourdes des IgG et Iégeres
des IgKappa. Nos resultats soulignent la difficulté de la culture cellulaire iGB en cellule unique.
Ce qui suggérent de séquencer directement les cellules uniques purifiées par cytométrie a partir
de lymphocytes B MOGr" issus des CLN et systéme nerveux central de souris TCR640,



