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À mes parents et ma soeur bubu,

1



Remerciement
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accepté de rapporter ce manuscrit et aussi pour leurs nombreuses questions très intéressantes
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Foreword

I discovered low Reynolds fluid mechanics and the world of research during an exper-
imental internship at CEMES in 2016 under the supervision of Thierry Ondarçuhu. The
research project tackles the issue of wetting at the nanoscale and specifically aims to un-
derstand dissipation phenomena that occur when a needle of a 10nm radius oscillates at
the surface of a liquid. Thanks to this internship, I had the opportunity to meet other
researchers, amongst which Michael Benzaquen. After a Master’s degree in Aeronautical
Engineering at the Imperial College of London, I decided to dive deeper into fluid mechanics
at small scale during my Master’s internship under the supervision of Michael Benzaquen
at LadHyX (École polytechnique) and Olivier Dauchot at GULLIVER (ESPCI Paris). The
project was dedicated to the study of acoustically levitating nanoparticles, which display
spontaneous rigid body motions. In particular, we focused on acoustic streaming around a
nearly-spherical particle to look for an explanation of such spontaneous motions (see Ap-
pendix C).

I started my PhD at the end of this internship, in October 2017, under the supervi-
sion of Sébastien Michelin and Michael Benzaquen. The main topic of this PhD was to
study autonomous micro-metric systems, called active droplets, which self-propel in liquids
as the result of Marangoni stresses on their surface. The origin of these Marangoni flows
is explained by surface tension gradients induced by complex interactions between chemical
species in the outer fluid with the interface of the droplet. In addition to industrial or medi-
cal applications such as drug delivery or new water treatment processes, such self-propelled
active droplets represent a promising system to study active matter. More specifically, the
main goal of the PhD was to accurately study collisions of one droplet against a boundary,
or interactions between several active droplets.

During this PhD, I had the opportunity to collaborate with Matvey Morozov, who pro-
vided useful asymptotic computations to gain insights into the physics involved in the head-
on collision of two active droplets. Besides, Sébastien Michelin and I were able to take part in
a research project at Institut-Pasteur carried out by Adrien Saint-Sardos, Gabriel Amselem,
Sébastien Sart, Elodie Brient-Litzler and Charles Baroud. This project aimed to study the
dynamics of human Mesenchymal Stem Cells spheroid secretions inside a droplet. Sébastien
and I provided theoretical and numerical results regarding the diffusive VEGF transport
inside the droplet that is captured by magnetic beads. Finally, Olivier Dauchot introduced
me to Charlotte de Blois, at that time finishing her PhD at GULLIVER (ESPCI Paris),
who was studying active droplets under his supervision and the one of Mathilde Reyssat.
Fruitful discussions with them enabled me to discuss the similarities and differences between
their experimental observations and our theoretical predictions.

The manuscript is organised as follows: in the first chapter, we introduce some key
aspects of low Reynolds number fluid mechanics and describe the physical system of interest,
namely active droplets like those used in recent experiments. The mathematical framework
employed to model the self-propulsion of active droplets is presented in chapter two, together
with a preliminary discussion of the hydro-chemical interactions involved in the presence of
multiple droplets and generic boundaries. In chapter three we provide the exact derivation of
the hydro-chemical interactions involved for a droplet colliding against a rigid wall, or with
another active droplet. In the fourth chapter, we study the influence of the size-ratio on head-
on collisions of two droplets. Here we show that collision dynamics are highly dependent
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on the droplet’s size-ratio, leading to three different regimes, i.e. rebound, chasing and
pausing. In chapter five we introduce a simplified framework for modelling the behaviour
of active droplets’ dynamics, which is then employed to study the general case of oblique
collisions. While we notice a significant alignment of the droplets when initial conditions are
symmetric, we show that the system can become highly asymmetric with the introduction of
a misalignment in the droplets’ initial conditions. In the sixth and final chapter, we provide
several perspectives regarding the study of active droplet interactions.

Intuition has to lead knowledge, but it can’t be out there alone.

Bill Evans
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Résumé substantiel

La Nature témoigne d’un grand nombre de comportements collectifs : un banc de pois-
sons formant un tourbillon en présence d’un prédateur, un ensemble d’oiseaux volant de
manière structurée ou encore un mouvement d’une foule d’humains. Si ces comportements
sont souvent observés à l’échelle macroscopique, des dynamiques similaires existent parmi
les microorganismes comme des bactéries, micro-algues ou même des filaments d’actine. À
cette échelle, les systèmes cognitifs y sont absents et le mouvement des individus survient
sans inertie. On peut alors se demander si ces mouvements collectifs peuvent être expliqués
par des interactions physiques ou biologiques. Comprendre le comportement de systèmes mi-
croscopiques s’avère important à la fois d’un point de vue de physique fondamentale, mais
présente également un intérêt pour le développement de technologies micro-chirurgicales,
de nouvelles méthodes de traitement de l’eau ou encore de systèmes d’administration de
médicaments. Pour caractériser la coordination au sein d’une multitude d’agents actifs,
une approche populaire consiste à analyser les effets du couplage physico-chimique dans
l’interaction d’une paire de ces agents. Cependant, comprendre le comportement collectif
d’organismes biologiques est une tache complexe du fait de la multiplicité de phénomènes
pouvant être à leur l’origine. Le développement de systèmes artificiels offre alors une bonne
alternative. Parmi les candidats prometteurs, on peut citer les gouttes actives. Ces gouttes
d’huile ou d’eau mesurant quelques dizaines de microns s’auto-propulsent à une vitesse de
quelques rayons par seconde lorsqu’elles sont immergées dans un autre liquide saturé en
surfactants.

L’approche combinée d’expériences et de travaux théoriques a permis d’identifier que
la dissolution des gouttes dans leur milieu est à l’origine de leur mouvement. Une goutte
active peut alors être vue comme la source d’une espèce chimique modifiant la tension de
surface à son interface avec le liquide qui l’entoure. Ainsi, une distribution non-homogène
de l’espèce chimique génère un écoulement Marangoni qui déplace la goutte vers des zones
où la concentration en espèce chimique est la plus basse. Le couplage non-linéaire entre la
dynamique de transport de l’espèce chimique et le mouvement du fluide a alors un rôle cen-
tral dans l’instabilité à l’origine de l’auto-propulsion des gouttes. De plus, en raison de leurs
signatures chimique et hydrodynamique, ces gouttes actives modifient la trajectoire de leurs
voisines, ouvrant ainsi la possibilité à des mouvements collectifs de se développer. Compren-
dre l’origine et la physique des interactions entre ces gouttes ou avec des parois est primordial
pour expliquer les comportements observés expérimentalement. Cette problématique con-
stitue l’objectif principal de cette thèse. La première question abordée est la suivante : laque-
lle des deux types d’interactions (hydrodynamique ou chimique) est prédominante lorsque
deux gouttes actives interagissent ? Répondre à cette question est un challenge technique,
car ce problème à deux corps implique la résolution d’équations différentielles instation-
naires et non-linéaires décrivant le couplage entre transport chimique et le mouvement du
fluide en géométrie complexe.

La première contribution de cette thèse concerne le développement du premier modèle
théorique exact décrivant l’interaction entre deux gouttes actives ainsi que celle d’une goutte
active avec un mur passif. On propose alors une approche analytique nouvelle, basée sur
une grille bi-spherique dynamique fournissant un système de coordonnées toujours parfaite-
ment adapté à la géométrie du problème. Cette approche permet la résolution complète du
problème hydro-chimique quelque soit la distance relative entre les gouttes à la différence
de la plupart des modèles existant qui se focalisent sur des interactions en champ lointain.
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Lorsque deux gouttes actives s’approchent, la concentration en espèce chimique augmente
dans la région entre les gouttes. En conséquence, la tension de surface augmente également
dans cette zone. Il arrive un moment où la concentration à l’avant des gouttes dépasse celle
à l’arrière, provoquant alors leur répulsion. Les résultats obtenus montrent que pour des
effets advectifs modérés (en comparaison aux effets diffusifs), les interactions chimiques sont
prédominantes lors d’une collision frontale entre deux gouttes actives et que les interactions
hydrodynamiques sont quant à elles négligeables. Dans ce cas, une collision frontale peut
être décrite en considérant uniquement les forces Marangoni générées par la variation de la
tension de surface à l’interface des gouttes. En revanche, les interactions hydrodynamiques
ne sont plus négligeables lorsque les effets advectifs deviennent significatifs (dans le cas d’une
diffusion lente). Dans cette situation, l’espèce chimique à l’arrière d’une goutte, à l’origine
de sa propulsion, s’oppose à la répulsion chimique due à la présence de l’autre goutte. Les
deux gouttes restent alors proches pendant un certain temps, ce qui ralentit leur dynamique
de rebond. Le couplage entre le transport chimique et le mouvement du fluide est ici crucial
et ne peut être capturé que par une résolution complète du problème.

La deuxième contribution de cette thèse aborde le rôle d’une différence de rayon lors
de l’interaction entre deux gouttes. Cette étude a permis de montrer que la dynamique de
collision est fortement sensible à la différence de rayons et conduit à deux régimes fonda-
mentalement différents en plus du rebond symétrique constaté pour des gouttes de même
taille : premièrement, un régime de chasse survient et dans lequel la plus grosse goutte suit
la plus petite à la suite de leur collision. Dans ce cas, les gouttes finissent par adopter un état
d’équilibre où elles se propulsent dans le même sens avec des vitesses identiques. Le second
régime est encore moins intuitif et appelé le régime de pause. Dans ce cas, la grosse goutte
s’arrête de nager juste après la collision avec la plus petite. Un écoulement quadripolaire se
forme alors autour de la grosse goutte, permettant de maintenir une accumulation en espèce
chimique à l’avant et à l’arrière de cette dernière. L’analyse de ces deux régimes semble
prometteuse notamment pour décrire théoriquement de récentes observations expérimentales
dans lesquelles des trains de gouttes se forment spontanément lorsque ces dernières évoluent
dans un capillaire.

La troisième et finale contribution de cette thèse concerne le développement d’un modèle
théorique simplifié appelé modèle de singularité dynamique. Ce modèle est suffisamment sim-
ple pour permettre l’analyse de situations plus complexes incluant des collisions générales
entre deux ou un ensemble de gouttes actives. Le modèle exact présenté précédemment a
permis de conclure que les effets hydrodynamiques peuvent raisonnablement être négligés
lorsque l’advection est modérée. Le présent modèle simplifié néglige alors la dynamique
complète de l’advection autour des gouttes. Néanmoins, il retient la caractéristique fonda-
mentale de l’asymétrie avant-arrière en espèce chimique à l’origine de la propulsion d’une
goutte active. La signature chimique d’une goutte active est alors représentée par la super-
position d’un monopôle et d’un dipôle positionnés en son centre. Lorsque les effets advec-
tifs sont modérés, le modèle de singularité dynamique est alors capable de reproduire de
façon très proche la dynamique de collision frontale obtenue en utilisant le modèle exact. Ce
résultat fournit alors une validation quantitative du modèle réduit. Si l’approche exacte s’est
focalisée sur des problèmes de collisions frontales, le modèle réduit est utilisé pour traiter
des interactions plus génériques telles que des collisions obliques. De façon surprenante, on
constate alors un alignement significatif des gouttes lors de telles collisions obliques. De plus,
une fois que les gouttes ont retrouvé une trajectoire rectiligne après leur collision, l’angle
relatif entre leur direction est le même pour une grande gamme de directions initiales. Ce
résultat remarquable résulte de la dynamique du sillage chimique à l’arrière des gouttes. En-
fin, cette thèse a montré que l’interaction entre des gouttes actives peuvent conduire à une
dispersion importante de leur trajectoire lorsqu’une des deux est en retard par rapport à
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l’autre et interagit avec son sillage chimique.

En conclusion, cette thèse a permis de remplir deux objectifs différents : premièrement,
elle constitue une étape clef dans la compréhension des gouttes actives en fournissant le
premier modèle exacte d’interaction entre deux gouttes actives. Deuxièmement, elle suggère
un modèle numérique simplifié robuste permettant d’étudier des collisions génériques au
sein d’un ensemble de gouttes actives. En particulier, ce modèle est facilement adaptable
pour prendre en compte la variation du rayon des gouttes au cours du temps du fait de leur
dissolution ou même pour décrire l’influence chimique de murs passifs sur leur dynamique.
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1
Active matter and active

droplets

Active matter is a branch of physics that yearns to study the behaviour of an assembly of
active systems such as birds, bacteria or microtubules that may develop collective motion in
response to external stimuli (like the presence of a predator in the vicinity of a school of fish),
or even spontaneously. In this chapter, we suggest how studying the interactions between
such active agents may highlight some of the mechanisms at the origin of the observed
collective behaviour. After providing the reader with the hydrodynamical framework that
governs fluids at small scales, we introduce artificial micro-swimmers of particular interest:
the active droplets. This swimmers happen to spontaneously swim in a liquid under specific
conditions, making them promising autonomous systems to mimic living microorganisms.

50µm10mm1m

Left: fish school, Simon Tuckett, http://simontucket.com, 2009. Centre: colony generated by
the chiral morphotype bacteria of P. dendritiformis, Eshel Ben-Jacob, 2011. Right: collective
swirling motion of actin filaments [1]
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Chapter 1. Active matter and active droplets

1

1.1 Collective motion and interactions

We may be both intrigued and astonished by some persisting patterns and ordered mo-
tions which are appearing in the animal world. If army ants sometimes perform fast-rotating
circles [2] (panel (a) of Fig. 1.1) some humans may also adopt such collective dynamics when
attending some musical festivities (panel (b) of Fig. 1.1). Herds of sheep, traffic jams and
bird flocks are some of many examples of the collective dynamics we can observe in nature
[3]. The following questions may then arise: Is the intelligence of each individual necessary
in such spontaneous collective dynamics? How does the motion of each individual synchro-
nise with the rest of the group?

If any would argue that one leader orders the motion of everyone in the group, such an
assertion seems hard to believe when the number of individuals increases drastically, forcing
each of them to interact only with few others that surround it. In particular, it is not rare to
observe that schools of fish adopt milling dynamics in the presence of predators (panel (f) of
Fig. 1.1). Some decades ago, Ref. [4] showed that such collective motion occurs without the
help of any leader. Instead, both behavioural rules and hydrodynamic interactions between
the fish lead to such a circular pattern when alignment and attraction between the fish are
comparable in magnitude (panel (g) of Fig. 1.1) [5]. This particular example gives the feeling
that studying interactions between individuals in a group enables to highlight the necessary
ingredients to observe collective dynamics, and therefore to learn more about their origin.
Such an approach has already proven to be useful in providing physical explanations of the
diamond pattern whales adopt when swimming together [6], in giving interpretations of the
intermittent collective motion observed in sheep herds [7] and even in quantifying jammed
dynamics when too many people aim to exit a room as fast as possible while using the same
door [8].

If social interactions or planned collective organisations were possible at the macro-
scale, they would become much more unlikely to justify group patterns as we focus on the
micrometric scales, where we still observe collective dynamics: swarming of actin filaments
[1] (panel (h) of Fig. 1.1), swarming of bacteria [9] (panel (i) of Fig. 1.1) or even bacteria
combat strategies [10] (panel (j) of Fig. 1.1). Keeping the same approach based on the
study of interactions, researchers have developed artificial devices called microswimmers,
which happen to share similarities with propulsion and dynamics of living microorganisms.
If the collective dynamics observed for microorganisms also happen to occur for artificial
swimmers, we may hope to identify the minimal ingredients at their origin. In the following
sections, we first introduce the framework called low-Reynolds fluid mechanics that governs
any fluid’s motion at such small scales. In a second stage, starting from the example of
the paramecia, we show how tangential velocity at the surface of a body may lead to its
propulsion. This swimming mechanism has inspired the design of artificial microswimmers
such as active droplets, which are the last focus of this chapter and the main topic of this
manuscript.
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(a) (b)

(d)

(e)

(g)

(c)

(j)

(f)

(h) (i)

(e)

Figure 1.1: Pictures of collective dynamics illustrating the possible existence of very general
behavioural patterns: (a) A rotating colony of army ants from https://onedio.com (b) Pogo
circle pit in a concert, Sebastian Dominguez Urzua-2011 (c) Traffic jam in Los Angeles,
credit: californiadreamin (d) A herd of sheep, www.unsplash.com (e) Birds flocks, credit:
Robert Wolstenholme (f): Milling motion for fish schools, iStock.com/armiblue (g): Nu-
merical simulations of fish schooling [5]. (h): Swarming of actin filament [1]. (i): Bacteria
swarming [9]. (j): Bacteria combat strategy [10].
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1.2 Propulsion of microorganisms

Microswimmers, either biological or synthetic, swim at the microscale using different
locomotion strategies. Aiming to study their interactions, we first need to know how they
swim. We suggest in this section a brief overview of the microscale world, to introduce some
of the existing natural propulsion mechanisms.

While visiting a warm-blooded organism body, we may encounter an Escherichia coli
[11], a rodlike bacterium 2µm long and 0.2 to 1µm in diameter that uses several rotating
rigid and helical flagella to propel up to 35 body lengths per second (panel (a) of Fig. 1.2).
While lingering into the human body, we may also witness the frantic race of spermatozoa
[12] performing fast oscillations of their single 50µm long whip-like tail to swim about 40 to
100µm/s in the direction of the ovum (panel (b) of Fig. 1.2). Pursuing our journey in fresh-
water basins, we may have the chance to come across a Chlamydomonas reinhardtii [13], a
single-cell microalgae of about 10µm. The latter achieves propulsion in steering through the
fluid in a breaststroke movement enabled by its two flagella, except for the fact it performs
50 motions per second and reaches a velocity close to 70µm/s (panel (c) of Fig. 1.2). Finally,
in the same aqueous environment, we may notice the presence of a paramecium [14], a cell
of 50-300µm, which takes advantage of the coordinated action of thousands of cilia that lie
at its surface to propel up to 500µm/s (panel (d) of Fig. 1.2).

However, such a journey in the microscopic world may be exhausting since all these
propulsion mechanisms are far from being energetically efficient. Let us choose the defini-
tion of efficiency according to Lighthill [15], which compares the work of the net propulsive
force to all the dissipated energy. We realise the maximum propulsion efficiency of a mi-
croorganism is about 3% regarding cilia-based propulsion [16] and only 2% for an Escherichia
Coli bacterium and its rotating helixes [17]. Indeed, swimming at those scales is quite a feat
due to the absence of inertia, a framework for which the next section aims to provide more
in-depth details.

(d) (e)

(f) (g)

(b)(a) (c)

Figure 1.2: Propulsion strategies at the microscale: (a): Microscope picture of a Escherichia
coli bacterium from microbiologybytes.com. (b): Spermatozoon as seen under the scanning
electron microscope, adapted from [18] (c): Microscope picture of a Chlamydomonas Rein-
hardtii algae from Ref. AlgaeIndustryMagazine.com (d): Photomicrograph of a paramecium,
www.micropia.nl. (e): Enveloppe model of ciliary propulsion from Ref. [19]. (f): Schematic
of one cilia dynamics from 1 to 8 from Ref. [20]. (g): Schematic of a metachronal wave
which arises from the coordinated beating of cilia drawn from Ref. [20].
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1.3 Fluid mechanics at vanishing Reynolds number

Unsurprisingly, swimming in a pool can be achieved through the action of our arms and
legs that expell water in the direction opposed to our motion. We then expect that swimming
in honey should be more exhausting due to the surge of viscous dissipation that we should
overcome to move. At the microscale, it is quite the opposite. Microorganisms move thanks
to the drag forces that result from fluid viscosity. To understand such a surprising assertion,
we can start by considering that a liquid flows in response to external forces such as gravity
or electromagnetic fields, and is also driven among other things by pressure forces, density
gradients or viscous interactions. Within the framework of classical mechanics, we consider
that two quantities are conserved: (i) the mass and (ii) the momentum, which thus provides
two local relations:

∂ρ

∂t
+ ∇ · (ρu) = 0, (1.1)

ρ

(
∂u

∂t
+ ∇u · u

)
= ∇ · σ + f , (1.2)

where ρ is the fluid density, u the Eulerian velocity field, f an external body force and σ
the Cauchy stress tensor. In the particular case of an incompressible and Newtonian fluid,
we may write:

σ = −pI + η
(∇u+ ∇Tu

)
, (1.3)

where η is the fluid viscosity and p the pressure field. The fluid flow dynamics is then
described by the Navier-Stokes and continuity equations:

ρ

(
∂u

∂t
+ ∇u · u

)
= −∇p+ η∇2u+ f , (1.4)

∇ · u = 0. (1.5)

To assess the significance of the fluid’s inertia in comparison to its viscosity, we consider a
dimensionless number called Reynolds number (noted Re) which reads:

Re =
V ∗L∗

ν∗
∼ Inertial terms

Viscous terms
∼ |ρ∇u · u||η∇2u| , (1.6)

where V ∗, L∗ and ν∗ are the characteristic velocity, length and kinematic viscosity of the
considered problem. While Re ∼ 106 for a human swimming in a pool, it collapses to
Re ∼ 10−4 in the case of swimming bacteria. We then expect that if inertia seems crucial
for a human to swim, viscous contributions are essential for microorganisms’ motion. The
Reynolds number may also be seen differently as the ratio of the diffusive time (driven by
viscosity) to convective one (driven by inertia). In the case of vanishing Reynolds number,
any perturbation in the flow diffuses in a very short time, and thus any action appears to have
almost immediate consequences. Focusing on the case of microorganisms, we can reasonably
simplify the Navier-Stokes equation by removing the inertial terms. In the absence of an
external body force, we obtain the Stokes equation [21]:

∇p = η∇2u, ∇ · u = 0. (1.7)

The Stokes equation also neglects what is sometimes called the unsteady Reynolds number
Reω = ρL∗ω2/η, where ω is the characteristic frequency that arises in unsteady situations
like beating flagella or waving cilia for instance. Such a simplified version of the Navier-
Stokes equation has several specific features that deserve to be noted.
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First, the Stokes’ equation is linear, which implies that the force F and torque T ex-
perienced by a swimmer are linear functions of its angular and linear velocities, Ω and V
respectively:

[
F
T

]
= ηR ·

[
V
Ω

]
, (1.8)

where R, called the resistance matrix, is only function of the swimmer’s geometrical prop-
erties such as its size, shape or orientation with the flow [22, 23].

F

T

⌦

V

Figure 1.3: Schematic of the rigid body motion (V ,Ω) experienced by an object subjected
to a force F and a torque T . The directions and magnitudes of the resulting velocities
depend on the resistance matrix R of the object [22, 23].

Secondly, neglecting the swimmer’s inertia implies the total forces and total torques it
experiences vanish exactly. By noting S its surface, we obtain the force-free and torque-free
relations:

∫

S
σ · ndS = 0,

∫

S
r × σ · ndS = 0, (1.9)

where r is the position vector on its surface. Those relations tell us that viscous drag forces
dissipate any propulsion work. In the case of an E. Coli bacterium, its rotating helixes
generate an amount of work entirely dissipated by the drag forces experienced by the rest
of its body.

Finally, the absence of a time-derivative in the Stokes equation implies the flow solution
depends on time only through its boundary conditions. Any variation of the flow field prop-
agates with an infinite speed everywhere in the medium. In particular, the time-reversed
Stokes flow and associated pressure field solve the same equation. As a result, if a microor-
ganism performs a time-reciprocal stroke (like a human does by flapping his legs in a pool for
instance), the drag force it experiences in the second half of the motion is then exactly the
opposite of the one it has experienced during the first half. As a result, the microorganism
comes back to its initial position and therefore remains, on average, at the same location.
Such a result, which we owe to Purcell (1977) [24], is called the Scallop theorem and remains
valid for Newtonian fluids in the limit of vanishing Reynolds numbers. Microorganisms have
then adopted specific strategies, briefly mentioned in section 1.2, which break the necessary
spatiotemporal symmetry to achieve a net motion.
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1.4 Propulsion induced by surface velocity

In this section, we focus on one particular propulsion strategy, which enables the swim-
mer to generate tangential velocities at its surface. First of all, we provide the reader with
a convenient method specific to the low Reynolds fluid mechanics, called the Lorentz recip-
rocal theorem, which enables us to compute a system’s net motion from the knowledge of
the velocity field at its surface. We then consider the particularly enlightening case of a
swimming paramecium before focusing on some artificial microswimmers that also use such
a propulsion strategy.

1.4.1 Lorentz’ reciprocal theorem

Let us consider a swimmer (called 1) that generates a tangential velocity us at its surface
S. The goal of this approach is to compute its resulting velocity V 1. To do this, we consider
an auxiliary problem (called 2) involving a passive and rigid object of same geometry that
experiences a rigid body motion (V 2,Ω2) in reaction to an imposed external force taken in
the same direction as V 1. We may note that while the swimmer 1 is force-free and satisfies
Eq. (1.9), the swimmer 2 is not, since an external force drags it. The velocity field in each
problem satisfies the Stokes equation. Considering both flow problems in the lab frame, it
comes:

∇ · σ1 = 0, ∇ · σ2 = 0, (1.10)

∇ · u1 = 0, ∇ · u2 = 0, (1.11)

u1|S = us + V 1 + Ω1 × r, u2|S = V 2 + Ω2 × r, (1.12)

u1|r→∞ = 0, u2|r→∞ = 0, (1.13)∫

S
σ1 · ndS = 0,

∫

S
σ2 · ndS = F 2, (1.14)

∫

S
r × σ1 · ndS = 0,

∫

S
r × σ2 · ndS = 0. (1.15)

r

x

us

Problem (1) Problem (2)

V 1

V 2

n

⌦2

Figure 1.4: Schematic of the flow problems used in the Lorentz reciprocal theorem. (1):
Force-free swimmer that moves at the velocity V 1 (to determine) resulting from known
tangential velocities us. (2): Object of same geometry that experiences a rigid body motion
(V 2,Ω2) resulting from an external force taken in the same direction as V 1.

Contracting the Stokes equation of each problem against the Eulerian velocity field of
the dual problem and integrating the result over the outer volume V, we obtain the Lorentz
reciprocal theorem [25]:

∫

V

[
(∇ · σ1) · u2 − (∇ · σ2) · u1

]
dV = 0. (1.16)
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Using the incompressibility condition Eq. (1.11), the divergence theorem, the force-free
conditions Eq. (1.14) and Eq. (1.14) and finally the boundary conditions Eq. (1.12) and
Eq. (1.13), Eq. (1.16) becomes:

V 1 · F 2 +

∫

S
us · σ2 · ndS = 0. (1.17)

Knowing the flow field around the steadily translating object of the problem (2) at vanishing
Reynolds [22], we are then able to determine the swimmer’s velocity:

V1 = − 1

F 2 · ex

∫

S
us · σ2 · ndS. (1.18)

We notice from Eq. (1.18) that we do not need to know the velocity field of the problem
(1) everywhere in the medium but only at the surface S to compute the propulsion velocity
V 1.

1.4.2 Paramecia

Let us now go back to the example of the paramecium, observed for the first time in 1645
by Dutch microscopist Leeuwenhoek, who used the term cilia to describe the “incredibly
thin feet or little legs by which a small animal can propel itself through water”. We can
indeed represent a paramecium approximately as an elongated body (panel (d) of Fig. 1.2)
with a multitude of ciliary hairs. Two cilia beating side by side tend to synchronise their
motion [26]. However, metachronal waves occur spontaneously when several of them are
involved (thousands in the case of a paramecium), which generate a net flow at the surface
of the paramecium (panel (g) of Fig. 1.2).

If full numerical models of ciliary propulsion have been carried out [27, 28, 29], we focus
here on the pioneering work of Lighthill (1952) [30] and Blake (1971) [19], who considered a
simplified approach also known as the squirmer model, which approximates the paramecium
as a sphere and the cilia as a small and unsteady deformation of the body. Following their
approach and taking advantage of the axial symmetry of the problem, the radius R and
angle θ that characterise the surface geometry (panel (e) of Fig. 1.2) are decomposed in
Legendre modes:

R(θ0, t) = a

(
1 + ε

N∑

n=2

αn(t)Pn(cos θ0)

)
, (1.19)

θ = θ0 + ε
N∑

n=1

βn(t)Vn(cos θ0), (1.20)

where ε� 1, a the average radius of the envelope composed of the cilia and the paramecium
body, αn and βn are periodic functions of time, Pn the n-th Legendre polynomial and
Vn = −2/(n(n+ 1))P 1

n . If Blake computed the entire velocity field solution, we may notice
the cilia coordinated motions provide a non-zero value regarding the tangential velocity at
the vicinity of the paramecium body. Such an apparent slip-velocity may be approximated
at the leading order by:

uθ||r|=a = −aεβ̇1 sin θ0eθ. (1.21)

By a direct application of the Lorentz-reciprocal theorem on the sphere of radius a, we
may determine the paramecium propulsion speed which results from the tangential velocity
induced by the ciliary motion.
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1.4.3 Interfacial microswimmers

If nature has found ways to generate slip-velocities, it has also inspired researchers in
the design of microswimmers. According to Eq. (1.18), a body experiencing appropriate
tangential velocities at its surface can self-propel in a viscous fluid. In particular, some
swimmers can generate a surface tension imbalance at their surface that induces a stress
jump. The latter is balanced by viscous dissipations and create a tangential flow. While
section 1.5 gives more physical details, the goal of this section is to provide the reader with a
global overview of several experimental systems that use interfacial stresses to self-propel in
their medium. In the following, we first introduce swimmers which exploit interactions with
a surface to achieve self-propulsion. In a second stage, we draw our attention to droplets,
which swim as the result of chemical reactions that modify the surface activity of their sur-
factant coverage. Finally, we focus on droplets that propel as a result of micellar interactions
with the outer fluid that alter the surfactant distribution at their surface.

First, let us consider swimmers that self-propel on a surface. The experiments carried
out in Ref. [31] involve a pure oil droplet of about 2mm radius, placed on a glass plate cov-
ered with surfactants and partially pre-treated with acid. As the droplet moves, it modifies
the surfactant distribution on the plate and thus experiences surface tension stresses (panel
(a) of Fig. 1.5). Experiencing interfacial forces, the droplet reaches a velocity of about
60mm/s within the zones delimited by the acid boundaries. Differently, droplets containing
surfactants and deposited on a clean plate may also self-propel. The study from Ref. [32]
presents water droplets containing surface-active agents and put on a glass plate. Initially
pushed, the droplet is destabilised and self-propels at a velocity of a few centimetres per
second (panel (b) of Fig. 1.5). In this case, the droplet uses interfacial stresses coming from
the trace of surface-active agent it leaves on its path, which imposes a front-back force dif-
ference. We should note the droplet is either dragged or pushed by surface tension stresses
that result from a non-uniform surface tension on the rigid plate.

(a) (b)

Figure 1.5: Swimmers that self-propel in reaction to interfacial stresses with a surface. (a):
Schematic of an oil droplet that propels on a glass plate partially covered with surfactant
molecules [31]. (b): Schematic of a water droplet containing surface active agent that moves
on a glass plate due to the trace it leaves on its path, which imposes a front-back force
difference [32].

Recent experiments have shown that droplets can spontaneously swim using comparable
mechanisms without needing any interaction with a boundary. In the following, we dis-
tinguish two kinds of self-propelled droplets: (i) the ones that take advantage of chemical
reactions to induce variations of the surface tension activity along their surface, and (ii)
the ones that experience a solubilisation process with the outer fluid which modifies the
surfactant distribution on their surface.
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About 15 years ago, the study from Ref. [33] and Ref. [34] showed that an oil droplet
with a radius of between 50 and 120µm, deposited in an aqueous micellar solution can
swim autonomously at a maximal speed of 11µm/s. In its motion, the droplet emits giant
vesicles at its back. The study claims that interactions between the micelles present in the
solution and the droplet’s surface lead to the dehydrocondensation of the oil into vesicular
amphiphile. As a consequence, the presence of two different species in the vicinity of the
droplet (the surfactant molecules and the vesicles) alters the surface tension activity along
with its interface, generating interfacial stresses that trigger its propulsion.

Another possibility has been explored in Ref. [35] and involves an oil droplet of nitroben-
zene floating in an aqueous phase containing oleic acid. The pH of the aqueous phase is set
sufficiently high so that oleate molecules act as surfactants. The spontaneous propulsion
mechanism depicted on the panel (b) of Fig. 1.6 is observed as follows: (i) Initially, the
droplet has a uniform distribution of oleate molecules on its surface. (ii) It experiences a
hydrolysis reaction which distorts its coverage of oleate molecules. As a consequence, the
droplet becomes turbid and performs jerky motions. (iii) The symmetry is finally broken
and internal convection flows provide the leading edge with new anhydride molecules. The
latter rolls thus sustain a front-back surface tension difference that enables the droplet to
swim.

(b)

(a)

(i) (ii) (iii)

Figure 1.6: (a) figure drawn from Ref. [33]. Left: Phase-contrast microscopic images on self-
propelled motion of an oil emulsion droplet (site P) with a trail of giant vesicles (site Q).
Right: Schematic of the dynamics. (b): Schematic model of the initial stages in oil droplet
movement drawn from Ref. [35]. (i): A fresh oil droplet (amber sphere) is introduced to
the aqueous phase. The droplet appears symmetric and is coated in surfactant (blue line),
and the oil phase is clear. (ii): Internal structures form within the oil droplet and begin to
move as spontaneous oscillations exposing precursor to the water phase. Potential sites of
hydrolysis are shown in red. The oil droplet now appears turbid. (iii): Symmetry is broken,
convection begins (arrows within the oil), surfactant (blue) moves to the anterior pole (blue
arrows), and hydrolysis of the precursor is localised (red circle). The blue lines behind the
droplet represent surfactant coming off the interface. The green zone indicates a zone of low
pH.
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In the previous situations, specific chemical reactions happen to modify the surface ac-
tivity of the droplets’ surfactant coverage, leading to interfacial stresses and self-propulsion.
Besides, solubilisation processes occurring at the droplet’s interface may result in a non-
uniform distribution of the surfactants on the droplet’s surface, leading to similar interfacial
stresses and propulsion.

Let us consider the swimming water droplets from Ref. [36], which evolve in an organic
phase composed of a solution of nonionic surfactants. While the droplets’ radii range be-
tween 20 and 60µm, they reach a velocity between 10 and 50µm/s. It can be noticed that
(i) the droplets shrink over time and (ii) they slow down as well (see panel (g) of Fig. 1.7).
Besides, each droplet’s velocity appears to evolve proportionally to its radius, as reported
on the left of the panel (g) of Fig. 1.7. However, the droplets do not both self-propel in
situations where the solution is already saturated in water or if the surfactant concentra-
tion is too low (the reader may refer to the section 1.5 for more details about surfactant
molecules and CMC). Actually, the droplet solubilises as a result of the interactions with the
micelles present in the outer fluid. Such a solubilisation process creates depletion zones on
the droplet’s surfactant coverage, which generate interfacial stresses that propel the droplet
(see section 1.5 for more details). Additionally, we may refer to the recent experiments of
Ref. [37], which provide an example of the reversed system: oil droplets, with radii ranging
between 25 and 35µm, immersed in a water reservoir containing surfactants. Their self-
propulsion velocities may reach up to 450µm/s and are thus almost ten times higher than
the ones recorded in Ref. [36].

On the other hand, an active droplet may consist of liquid crystals and be immersed in
an aqueous medium containing surfactants [38]. It is important to note its nematic state
does not happen to play any role in the droplet’s self-propulsion mechanism but is con-
venient in the experiments to visualise its direction of motion by looking at the position
of the topological defect. However, active nematic droplets may exhibit specific swimming
regimes at high advection-to-diffusion ratio (see section 1.6.3 for more details). Such nematic
droplets self-propel at a velocity between 5 and 25µm/s in the case where the surfactant
concentration lies above 5wt%. Besides, in a similar way as in Ref. [36], we witness a linear
decrease of the droplet size and velocity over time, indicating the presence of a solubilisa-
tion process. Finally, both shrinking rate and velocity magnitude tend to increase with the
surfactant concentration [38, 37] as reported on the panel (b) of Fig. 1.7 drawn from Ref. [38].

Let us consider a spherical active droplet undergoing a solubilisation process and evolving
far from any boundary. The solubilisation is then isotropic and does not breaks any spatio-
temporal symmetry. It appears thus very surprising that active droplets self-propel since
the scallop theorem prevents any swimmer that does not break such a symmetry to have
a net displacement. The answer to this apparent paradox lies in the coupling between the
solubilisation process and the flow field around the droplet (see section 1.6).
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(a) (c)

(b) (d)

Figure 1.7: (a) single active droplet swimming. Upper left: Picture from Ref. [39] represent-
ing a liquid crystal droplet of radius approximately of 25µm that moves from left to right.
Lower left: Schematic from Ref. [39] illustrating the flow field (arrow) inside and outside
of the droplet and distorted nematic director field (black lines). Right: Velocity field (in
laboratory frame) around a liquid crystal droplet as revealed by PIV [38]. The yellow lines
are streamlines of the flow. (b): Velocity of a liquid crystal droplet as function of the surfac-
tant concentration in the medium [38] (c)-left: Trajectories of approximately 50 pure water
droplets in the observation room of length 0.5cm recorded during 500s [36]. Each droplet
trajectory is color-coded with the time preceding its present location. (c)-right: Transport
of salt crystals and colloids from Ref. [36]. (d)-left: Velocity v and relative diameter a/a(0)
versus time for three droplets under different conditions: water in Sq-MO (blue squares),
water in Td-MO (green diamonds), water−26wt%NaCl in Sq-MO (red circles) [36]. (d)-
right: Velocity as function of κa (where a is the droplet diameter and κ = 5 × 10−3µm/s
the characteristic radius rate of decay) from Ref. [36].
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1.5 Surface tension and Marangoni flows

In this section, we introduce surface tension and explain how the presence of surfactant
molecules influence it. In a second stage, we provide the reader with a physical description
of Marangoni flows which appear in the presence of surface tension gradients at an interface.

Figure 1.8: (a) Image of a Gerris remigis on water, credit: Deep Look. (b) Bug trapped
in a spherical water droplet, credit: Paul Jones. (c) Pin floating upturned on water, image
drawn from Ref. [40]

1.5.1 Surface tension

While observing flows in our daily life, we may wonder why a droplet is almost spherical?
Why some insects successfully run across water surface? Why soap bubbles in a bathtub
attract each other and finally merge into a bigger one? All these effects involve surface
tension, briefly introduced below.

Let us consider a liquid-vapour interface such as water and air. The water molecules exert
electrostatic forces between each other, and while most are located in the bulk, surrounded
everywhere by other molecules, others lie at the water-air interface and only interact with
molecules on their side or below them (see Fig. 1.9). This anisotropy of interactions causes
the liquid surface to be attracted towards the interior region. At the equilibrium, the surface
area at the interface is minimal and the surface contraction balances the interactions with
other molecules.

Air

Water

Figure 1.9: Schematic of the water-air interface: other molecules well surround the molecules
of water in the bulk, unlike the ones at the interface.
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1.5.2 Surfactant molecules

As schematised in the panel (a) of Fig. 1.10, a surfactant molecule consists of a hy-
drophilic head and a hydrophobic tail. In a mixture of oil and water, the water-oil interface
adsorbs surfactant molecules where they can satisfy both head and tail affinities. The in-
teractions between surfactants and water molecules are much lower than between two water
ones. As a result, the energy of the interface decreases, which leads to a lower surface tension
value. These local variations of surface tension are not without consequence on the flow, as
detailed in the following section.

If adding surfactant molecules reduces the surface tension of the interface, there is a
critical surfactant concentration called CMC (critical micelle concentration), above which
the surfactant molecules spontaneously gather and form micelles. This phenomanon occurs
in the bulk and does not depend on the interface but is instead a specificity of the surfactant
molecule itself (see panel (b) and (d) of Fig. 1.10). A surfactant molecule may not be
adsorbed at the interface but gathers with other molecules to gain in stability instead. As a
result, the surface tension at the interface remains approximately constant above the CMC.

Head

Tail Micelle

(a) (b)

(c) (d)

Figure 1.10: (a) Schematic of a surfactant molecule with a hydrophilic head and a hydropho-
bic tail. (b) Schematic of a micelle composed of several surfactant molecules. (c) Schematic
illustrating a situation below the CMC, where surfactant molecules are still adsorbed at
the interface. (d) Schematic illustrating a situation above the CMC, where micelles are
spontaneously formed.
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1.5.3 Marangoni effect

When observing the robe of a wine containing a high alcohol content, we may notice the
interface between wine, glass and air – called the triple line – has a wavy shape (panel (a)
of Fig. 1.11). Moreover, we often hear that the stronger the wine, the larger the oscillation
amplitude. This phenomenon is known as the tears of wine, phenomenon first discovered by
James Thomson in 1855 [41] and then studied in more details by Carlo Marangoni during
its PhD in 1865 [42].

r�
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(a) (b) (c)

Figure 1.11: (a): Picture of a glass of wine which illustrates the tears of wine effect, credit:
Wikipedia (b): Schematic of the meniscus created at the interface between the air, glass and
wine. The meniscus moves up in reaction to a surface tension gradient ∇γ. (c): Schematic
of the Marangoni flows induced by the presence of a surface tension gradient ∇γ at the
interface of two fluids. The figure illustrates one possible origin of such a gradient with a
non-uniform distribution of surfactant molecules at the interface.

Without wishing to offend wine amateurs, we can consider that wine is simply a mixture
of water and alcohol. The surface tension differences between the three phases lead to higher
adhesion forces between glass and wine compared to the cohesive forces within the wine. As
a result, a concave meniscus appears on the edge of the glass [43] (panel (b) of Fig. 1.11).
Alcohol evaporates faster than water due to its lower vapour pressure value. Since alcohol
also has a lower surface tension, its evaporation induces a local surface tension gradient.
The latter generates a flow, called Marangoni flow, towards the evaporation zone. As a
result, the height of the wine meniscus increases. Besides, this old problem has recently
been revisited, and the regular wavy pattern of wine tear formation happens to result from
a Rayleigh-Plateau instability. The interested reader may thus consult Ref. [44] for more
information.

If we notice Marangoni flows in the case of alcohol evaporation, they may also result from
many other events such as a lack of temperature homogeneity or a non-uniform distribution
of surfactants. Willing to remain general, let us consider the interface between two fluids
noted 1 and 2, where we denote by σ(1,2) the Cauchy stress tensors in each fluid and by S
the surface of the interface. Neglecting inertia, the balance of stresses at the interface reads
[45]:

n ·
(
σ(2) − σ(1)

)∣∣∣
S
· t = −∇γ|S · t, (1.22)

where n and t are normal and tangential vectors to the interface (panel (c) of Fig. 1.11).
The fluid is hence not at the equilibrium, and a flow arises in response to the viscous stress
jump at the interface. Let us consider a droplet of radius R and viscosity η(i) immersed
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in another liquid of viscosity η(o), in the presence of an external surface tension gradient
∇γ. This gradient leads to Marangoni flows at the interface of the droplet, which therefore
swims towards the zone of lower surface tension. Following the work of Hadamard (1911)
[46] and Young (1959) [47], we can derive the velocity V of the droplet:

V =
−R

2η(o) + 3η(i)
∇γ. (1.23)

Let us consider a chemical solute of concentration C, composed of molecules, which linearly
modifies the surface tension of the droplet via the relation:

γ = γ0 + γ1C, (1.24)

where γ1 > 0. The presence of the solute then increases the surface tension of the fluid.
Let us consider a droplet immersed in a liquid in the presence of an external uniform
solute gradient ∇C = −A/De, where A denotes the external flux of solute whose diffusion
coefficient is noted D. Using Eq. (1.23) together with Eq. (1.24), the droplet’s velocity
finally follows [48]:

V =
ARγ1

(2η(o) + 3η(i))D
e = V ∗e. (1.25)

In the following, the drift velocity V ∗ is chosen as a reference velocity with which the self-
propulsion velocity of the active droplets introduced in section 1.4.3 may be compared.

1.6 Active droplets

In this section, we first introduce the notion of activity and mobility specific to an active
droplet. Then, we provide a physical explanation of an active droplet’s spontaneous self-
propulsion, which results from their coupling. The second part tackles the issue of solute
dynamics and provides the general transport equations used in this manuscript. Finally,
the third part presents some observed behaviours displayed by a single active droplet in
addition to collective dynamics manifested by an assembly of active droplets in the presence
of boundaries.

1.6.1 Activity, mobility and self-propulsion

Let us consider a droplet immersed in a liquid medium saturated with surfactants. We
consider the concentration of surfactant in the bulk phase to be sufficiently high so that the
average concentration is above the CMC. This implies that micelles (called empty micelles)
spontaneously form in the outer fluid. Complex interactions between the droplet and the
micelles lead to the production of swollen micelles and the consumption of free-surfactant
molecules (see Fig. 1.12). Such physicochemical phenomena deplete the surfactant coverage
at the droplet interface. In the following, we consider an effective solute of concentration
C, produced at the droplet’s surface, which increases the surface tension at the interface of
the droplet.

In the so-called molecular pathway framework [38], the effective solute concentration may
refer to C = C∞−Cs, where Cs is the concentration of free-surfactant molecules that tends
to C∞ infinitely far from the droplet. C has a positive value in the vicinity of the droplet as
the result of the consumption of free-surfactant molecules and vanishes far from the droplet.
Besides, since any increase of C is related to a decrease in the number of free-surfactant
molecules, the zones of high concentration represent the regions with high surface tension.
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On the other hand, in the framework called micellar pathway [36], the effective solute
concentration C may be directly identified as the concentration of swollen micelles produced
at the droplet’s surface. The micelles deplete the surfactant coverage of the droplet as they
get swollen. As a result, a local increase of C in the vicinity of the droplet leads to a local
increase of surface tension.

In particular, within the case of small concentration variation, we assume the link between
such an effective solute and surface tension γ to follow a linear relation:

γ = γ0 + γ1C, (1.26)

where γ1 is a positive constant. A reader willing to get more information of the physico-
chemical dynamics may consult the very recent theoretical work of Ref. [49], which derives
both the advection-diffusion dynamics of the swollen micelles in the bulk and surfactant
molecules motion at the droplet’s surface.

Droplet

Outer fluid

Empty micelle

Free surfactant

Swollen micelle

Droplet

Outer fluid
Free surfactant

Swollen micelle

Liquid from the 
droplet

Coverage depletion

Micellar pathway Molecular pathway

Figure 1.12: Overview of two possible interfacial mechanisms at the origin of the droplet’s
self-propulsion. Left: Micellar pathway in which empty micelles get swollen in interacting
with the surface of the droplet. Right: Molecular pathway in which the droplet solubilises
in the outer fluid. As a consequence, empty micelles get swollen without interacting with
the interface.

In the activity mechanism previously introduced, the interactions of micelles and sur-
factant molecules with the droplet surface results in an increase of the surface tension in
the region of high effective solute concentration C. As a consequence, any solute gradient
in the vicinity of the droplet causes a gradient of surface tension. The latter then generates
Marangoni flows towards the zone of high concentration. This mechanism, which converts
solute imbalance in a flow, is called mobility.

Gathering activity and mobility enables us finally to provide a physical explanation of
the instability at the origin of an active droplet’s self-propulsion (see Fig. 1.13): (i) Initially,
let us consider an active droplet with a uniform solute distribution on its surface. In this
situation, the droplet remains immobile and generates no flow. (ii) A small motion of
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the droplet induces a flow, which transports the solute by advection at its back. As a
consequence, solute gradients arise at the droplet’s surface. (iii) Since the solute locally
increases the surface tension of the interface, Marangoni flows are generated and transport
even more solute towards the back of the droplet. (iv) The enhanced solute gradient thus
reinforces the Marangoni flows as well as the droplet’s velocity. In that way, solute advection
plays a crucial role since it consists of a positive feedback loop of solute at the back of the
droplet. The latter sustains Marangoni flows at the surface of the droplet, which hence
keeps swimming. Previously, the steps (ii) and (iii) coincide but we have split them apart
solely for pedagogical reasons.

(i) (ii) (iii) (iv)

r�

V

U

V

rC

(iv)

(ii)

(iii)

Figure 1.13: Schematic of the instability phenomenon at the origin of the spontaneous
propulsion of an active droplet. (i): Uniform solute distribution around an immobile droplet
in a quiescent fluid. (ii): Small velocity perturbation that induces a solute gradient ∇C
towards the back of the droplet. (iii): Induced surface tension gradient ∇γ and Marangoni
flows U that transports even more solute at the back of the droplet. (iv): Enhanced
propulsion of the droplet resulting from the solute gradients reinforced by advection.
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1.6.2 Solute transport at the microscale

We have learnt from the previous section that micelles and surfactants dynamics are crit-
ical to understand the behaviour of active droplets. In this section, we provide the necessary
mathematical framework regarding transport phenomena. The latter will be very useful in
the following chapters to compute droplets’ self-propulsion as well as their interactions.

1.6.2.1 Brownian diffusion

The name of Brownian diffusion is a tribute to the work of Robert Brown (1827) who
was the first to observe a diffusion process in studying the random walk of pollen seeds
in water [50]. Later, the theoretical work of Einstein (1905) [51], Sutherland (1905) [52],
Smoluchowski (1906) [53], in addition to experimental studies by Jean Perrin in 1909 [54]
were carried out. Let us consider N particles immersed in a fluid of viscosity η, which
perform a random motion: each particle has an equal probability of moving towards any
direction in space. We define the mean squared displacement (MSD) of the assembly:

〈∆x2〉 =
1

N

N∑

i=1

|xi(t)− xi(0)|2, (1.27)

where xi(t) stands for the position of the particle i at the time t. After computations, it
turns out the MSD follows the relation:

〈∆x2〉
2t

= D = µkBT, (1.28)

where D is a constant called diffusion coefficient proper to the particles, T the absolute
temperature, kB the Boltzmann constant and µ the thermal mobility which reads:

µ =
Drift velocity

Applied force
. (1.29)

For spherical particles of radius R, Eq. (1.29) simplifies to µ = (6πηR)−1. In particular,
we can find D = 10−10-10−9m2/s for stationary bacteria and D = 10−10m2/s for typical
surfactant molecules.

1.6.2.2 Transport equations

Considering a sufficiently large number of particles, we may adopt a point of view from
larger length scales. To do so, we consider a continuous description of the particles we now
call solute, which volume’s concentration is denoted by C. Diffusion is a phenomenon that
tends to homogenise the solute distribution, and Adolf Fick developed a phenomenological
law in 1855, which describes the tendency of the particles to travel from zones of higher
concentration towards zones of lower ones [55]. Denoting by jd the diffusion flux that
represents the amount of particles per unit area and per unit time that travels in the
medium through diffusive processes, Fick’s law reads:

jd = −D∇C, (1.30)

where D is the previously defined diffusion coefficient relative to the solute. In addition to
the diffusive flux, the fluid transports the solute by advection. We define the advective flux
ja:

ja = UC, (1.31)
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where U stands for the Eulerian velocity field. The local solute concentration thus varies (i)
as a result of fluxes (either of advective or diffusive nature) and (ii) because of the presence
of local sources (chemical reactions in the medium for instance). In other words, the solute
concentration C satisfies the local partial differential equation:

∂C

∂t
+ ∇ · j = Q, (1.32)

where Q is a solute source and j = ja + jd the total flux of solute. Combining Eq. (1.30)
and Eq. (1.31) together with Eq. (1.32), we obtain the advection-diffusion equation:

∂C

∂t
+U ·∇C = D∇2C +Q. (1.33)

Denoting by L∗, V ∗ and C∗ the characteristic length, velocity and concentration of the
problem respectively, we define u = U/V ∗, c = C/C∗ and q = QL∗/(V ∗C∗) as dimensionless
Eulerian velocity field, solute concentration and source intensity respectively. Finally, we
obtain a dimensionless version of Eq. (1.33):

Pe

(
∂c

∂t
+ u ·∇c

)
= ∇2c+ s, (1.34)

where Pe is a dimensionless number called Péclet number, which gauges the contribution of
advective transport compared to diffusive ones and is defined as:

Pe =
V ∗L∗

D
. (1.35)

Since advection of micelles appears crucial for an active droplet to sustain its propulsion,
we expect Pe to be finite in the solute transport dynamics involving active droplets. In
particular, the experiments of Ref. [56] provide R ∼ 40µm and V ∼ 40 × µm/s as typical
values for a droplet radius and velocity. We thus estimate Pe ∼ 16 using typical diffusivity
of surfactants D = 10−10m2/s. Besides, as mentioned in section 1.4.3, radius and velocity
both decrease throughout the length of the experiments. Using the minimum droplet size
for self-propulsion reported in Ref. [57], the estimate becomes Pe ∼ 10.

Choosing the radius R and the drift velocity V ∗ computed in equation Eq. (1.25) as
characteristic radius and velocity respectively, we can find the following expression for Pe:

Pe =
AR2γ1

(2η(o) + 3η(i))D2
. (1.36)

We thus may adopt various strategies to modify Pe: (i) changing the droplet’s activity A, in
varying the surfactant concentration for instance [37], (ii) changing viscosity ratio η(i)/η(o)

[58] or changing the droplet’s size [57].
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1.6.3 Self-propulsion of active droplets

In this section, we first briefly present various behaviours that may be adopted by a
single active droplet. In a second stage, we will focus on collective dynamics exhibited by an
assembly of active droplets in the presence of boundaries. This last part raises the question
of interactions between active droplets and boundaries, an issue further detailed in chapter 2.

Convinced of the crucial role of advection in an active droplet’s self-propulsion mecha-
nism, we can wonder the effect of the Péclet number has on its dynamics. In the following,
we make a distinction between liquid crystal droplets in a nematic state and the isotropic
active droplets made of oil (resp. made of water) and immersed in an aqueous medium
(resp. in an oil medium). We remind that an active droplet shrinks and slows down over
time as the result of the solubilisation process it experiences. As a consequence, Pe being
proportional to V ∗L∗, it will necessarily decrease over time. In the particular case of ne-
matic droplets, Ref. [57] reports three different regimes adopted by a droplet as it shrinks
(see Fig. 1.14): (i) chaotic motions at early stages when the droplet has a diameter of
110µm, (ii) helicoidal trajectories at intermediate times when the droplet’s diameter has
reduced to approximately 50µm and finally (iii) straight motions when the droplet is small
(which diameter being approximatively 20µm). Besides, we can note the helicoidal regime
is specific to the nematic nature of the droplet as shown in Ref. [39]. Theoretically, Ref. [59]
provides a reduced model of nematic droplets. This model informs that in addition to its
self-propulsion instability, a nematic active droplet may experience a second one resulting
from the coupling between surfactant transport (through advection) and nematic orienta-
tion. Indeed, a small concentration disturbance on one side of the droplet makes it rotate,
which enhances the initial concentration perturbation and reinforces the rotation of the
liquid crystal droplet. Besides, a transition to chaos at sufficiently high Pe is predicted in
Ref. [59].

Figure 1.14: Trajectories of a nematic droplet over 30s drawn from Ref. [57]. The shrinking of
an active droplet over time leads to a succession of three regimes: random, helical, straight.
The scale bars represent 50µm.

In the case of isotropic active droplets, we no longer notice helicoidal trajectories but
still witness chaotic ones. The droplet’s liquid and outer fluid have distinct viscosities. It is
possible to modify the Péclet number of the problem in varying such a viscosity difference
(see Eq. (1.36)) as done in Ref. [58] for an active droplet confined in a Hele-Shaw cell. In
the latter, we notice first that for Pe close to the instability threshold Pec = 4, the droplet
performs a ballistic regime where it swims in a straight line. Secondly, at higher Pe (when
advection contributes much greater than diffusion in the surfactants transport dynamics),
the droplet loses its directionality and performs sudden reorientations. If we may think
such erratic reorientations are of thermal nature, we realise this would be very unlikely
when comparing the thermal contribution kBT/(2R) ∼ 10−16N, with the typically involved
drag forces 6πη(o)RV ∼ 10−10N. Instead, as a result of the non-linear coupling between the
solute transport and flow field, higher-order instabilities arise when increasing Pe. While at
low Pe the flow field around a droplet appears mainly dipolar, at larger Pe, a quadrupolar
structure arises and results in an extensile flow field around the droplet. The droplet then
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experiences frequent reorientations and thus a chaotic behaviour. Finally, increasing the
surfactant concentration in the medium enhances the shrinking rate of the oil droplet con-
sidered in Ref. [37]. The enhanced activity thus increases the Péclet number, which results
in a transition from a ballistic to an anomalous diffusive regime [37]. In addition to such
experimental evidences of chaotic behaviour, theoretical and numerical approaches based on
reduced models have recently confirmed the transition from ballistic to chaotic behaviour
experienced by an active droplet as Pe is increased [60, 61].

To conclude this chapter, we provide some recently observed collective dynamics, which
appear for active droplets in specific geometries. First, let us consider the situation where
we place an assembly of nematic active droplets in a reservoir of water containing the right
amount of surfactants so that the droplets exhibit self-propulsion. In doing so, clusters
spontaneously form at a finite distance from the bottom of the tank (panel (b) of Fig. 1.15)
[39]. Even if the droplets remain fixed in the cluster, they pump some flow, leading to the
formation of large convection rolls. Such rolls are suspected of stabilising the cluster in
bringing a constant flux of droplets at its centre. In increasing the confinement by reducing
the distance between the top and bottom walls, the clusters break and become long lines
of droplets that swim side by side [62]. Finally, in a Hele-Shaw cell, those lines become
metastable and break after some time [62] (panel (a) of Fig. 1.15). Finally, the study from
Ref. [63] considers several water active droplets placed in a microfluidic serpentine full of oil
and surfactants. After some time, spontaneous one-dimensional collective motion emerges.
In such lines, called trains, the droplets are separated by a fix distance and swim in the
same direction (panel (c) of Fig. 1.15). The velocity difference between two colliding active
droplets appears essential for a train to form. We may thus wonder if a size difference among
the droplets would be sufficient to observe such trains (see chapter 4).

30



1.7. Conclusion and discussion

1

(b)

(a)

(c)

(b)

Figure 1.15: (a): Figure drawn from Ref. [62]. (Top) Schematic of confinement. (Upper
Middle) The exterior flow field produced by the active particles (of radius b) in each boundary
condition considered. Lower Middle and Bottom contain snapshots from simulations and
experiments, respectively. Different boundary conditions: A Hele-Shaw (H/b ≈ 2), B two
planar walls (H/b ≈ 8), C a single planar wall (H/b ≈ 400) and finally D an air-water
interface (H/b ≈ 400). Here τ = b/v0 is the time in which the active droplet moves a
distance equal to its radius. (b): Clustering in a liquid crystal droplet system in a three-
dimensional sample chamber, figure from Ref. [64]. (left) Micrograph of two stable clusters
in a three-dimensional reservoir but without buoyancy matching. The diameter of the
droplets is 50µm. (right) Schematic of emerging convection roll around a stable cluster. H:
reservoir height, h: distance between cluster and reservoir bottom. The red arrows indicate
the symmetry axis of the droplets (i.e., the direction in which they try to self-propel), and
blue arrows indicate the convection roll. (c): Collective dynamics of swimming droplets in
a microfluidic serpentine from Ref. [63]

1.7 Conclusion and discussion

Assemblies of active systems such as bird flocks, human crowds or bacterium colonies
happen to perform complex and sometimes spectacular collective motion. In this chapter,
we put forth the idea that studying interactions between them may be the first step to
decipher their collective dynamics. If artificial swimmers have gained a renewed interest
within the scientific community as promising systems to mimic microorganisms, we casted
a particular one in this manuscript under the spotlight: active droplets. For those experi-
encing a solubilisation process, the micelles present in the outer fluid induce surface tension
gradients, which generate Marangoni flows. The resulting advection of micelles and surfac-
tants appears therefore essential in the droplet’s self-propulsion as it sustains a front-back
surface tension difference on the droplets.

Studying active droplets (and more generally microswimmers) enables us to put aside
the complexity of living organisms and to retain only a few physical ingredients that enable
them to self-propel autonomously in a liquid. As claimed in this chapter, the first step
to better understand the collective dynamics of active droplets is to accurately describe
elementary interactions such as collisions of an active droplet against a flat wall or another
droplet. In doing so, we aim to quantify the role of hydrodynamic and chemical interactions,
and in particular to determine if one is dominant or negligible during a collision. Providing
an accurate description of theses interactions may also be used to build more approximate
models, maybe more adapted (especially in terms of numerical cost) to deal with numerous
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droplets and boundaries. For active systems such as Janus particles [65], that are intrinsically
asymmetric, it is not necessary to include advection in the solute transport dynamics to
provide accurate self-propulsion or interaction models. On the contrary, active droplets are
isotropic at rest, and advection is then essential to explain their propulsion. On the one
hand, such a non-linearity introduced in the effective solute transport dynamics leads to non-
trivial regimes where a single droplet may exhibit helicoidal and chaotic trajectories. We
thus expect complex but exciting dynamics to emerge from the interactions between active
droplets. On the other hand, such a non-linearity introduces a significant mathematical
challenge since it prevents the use of superposition methods and imposes the treatment of the
full coupled hydro-chemical problem. Interested in the modelling of those interactions, we
introduce in the next chapter a mathematical model regarding the self-propulsion of a single
active droplet in addition to qualitative insights regarding the hydro-chemical interactions
between several active droplets.
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Take home message of Chapter 1

1. Scallop theorem and propulsion: At the microscale, the Reynolds number
vanishes. As a consequence, a swimmer performing a time-reciprocal stroke in a
Newtonian fluid cannot achieve a net displacement. To propel, it should break
a spatio-temporal symmetry, for example by generating tangential flows at its surface.

2. Droplet’s activity: A complex chemical interplay between surfactant molecules,
micelles and the surface of a droplet leads to a situation where the droplet appears
to emit an effective solute that increases the surface tension locally.

3. Marangoni flows: Any surface tension gradient at the interface of two fluids
leads to a stress jump that induces a flow. In particular, a depletion in the surfactant
coverage of an active droplet generates Marangoni flows towards the depletion zone.

4. Spontaneous swimming of active droplets: An active droplet spontaneously
swims as a result of the coupling between flow field and solute transport. Indeed, an
increase of the solute concentration on one side of the droplet induces Marangoni flows
that advect even more solute towards the zone of high concentration. As a result of
this positive feedback loop, the droplet swims spontaneously and autonomously. We
should remember that solute advection is crucial in the droplet’s propulsion, which
arises only if the solute advection is strong enough.
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2
Theoretical modelling of single
and interacting active droplets

In the previous chapter, we discovered that Marangoni flows and the resulting solute dy-
namics are essential in the self-propulsion of an active droplet. The first part of this chapter
provides the reader with a spectral decomposition method that mathematically models the
phenomenon of instability at the origin of the droplet’s spontaneous motion. The aim of this
section is to introduce a typical procedure that will be adapted in chapter 3 and 4 to compute
the full dynamics of two colliding active droplets. The second part focuses on hydrodynamic
interactions between active droplets. In particular, we present a singularity approach drawn
from the literature that can be used to estimate far-field hydrodynamic interactions between
several active droplets or in the presence of boundaries. Finally, the third part is dedicated
to chemical interactions between two active droplets or in the presence of boundaries.

Left: simulation of the concentration field and streamlines involved in the collision between
two active droplets (from chapter 3). Right: picture of active droplets from Ref. [36]
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2.1 Self-propulsion of a single active droplet

In this section, we will focus on the behaviour of a single active droplet in bulk and show
how both activity and Marangoni flows work hand in hand and lead, if the advection-to-
diffusion ratio (Pe) is large enough, to the droplet’s self-propulsion. Sections 2.1.1, 2.1.2,
2.1.4 and 2.1.5 are based on derivations drawn from Ref. [66] and Ref. [36] and aim to provide
the reader with a guideline using spectral decomposition to solve the coupled hydro-chemical
problem at the origin of the droplet’s motion. The same approach will be adapted in chapters
3 and 4 to compute exact interactions between a pair of active droplets.

2.1.1 Mathematical description

v0

R
x

r

✓

c

ere✓

Figure 2.1: Schematic of an active droplet of radius R, which generates a concentration field
c and swims at the self-propulsion velocity v0ex.

Let us consider a spherical droplet of radius R composed of a Newtonian fluid of viscosity
η(i) and density ρ(i), which swims at a velocity V in another Newtonian fluid of viscosity η(o)

and density ρ(o). Without privileging any particular physicochemical mechanism introduced
in section 1.5, the droplet appears to emit a given solute at its surface S. We denote by A
the flux of solute. Within the limit of small variations, C is assumed to linearly modify the
surface tension of the fluid and thus satisfies Eq. (1.26), reminded below for convenience:

γ = γ0 + γ1C, (2.1)

Besides, computing the capillary number Ca = ηV/γ for typical experimental viscosity,
velocity and surface tension values (η = 10−2m2.s, V = 10 − 50µm/s, γ = 2mN/m), we
obtain Ca ∼ 10−5 − 10−4, which thus confirms the droplet’s deformation can indeed be
neglected. Since the solute both diffuses and is transported by advection, denoting by U (i,o)

the Eulerian velocity field either inside or outside the droplet, we consider the following
advection-diffusion problem:

∂C

∂t
+U (o) ·∇C = D∇2C, ∇C · n|S = −A

D
, C|r→∞ = 0, (2.2)

where D denotes the solute diffusion coefficient. Using typical radii and velocities involved
in experiments (R ∼ 20µm and V ∼ 50µm/s), we can realise that at such scales, inertia is
negligible (i.e. characteristic Reynolds number is Re = ρ(o)V R/η(o) ∼ 10−3). The flow field
satisfies therefore the Stokes equation:

∇ · σ(i,o) = 0, ∇ ·U (i,o) = 0, (2.3)

where σ(i,o) denotes the Cauchy stress tensor either inside or outside the droplet. While the
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velocity field satisfies the impermeability condition, it is continuous at the droplet’s interface
(phoretic effects are indeed considered negligible compared to Marangoni ones [36]). In the
frame of reference of the droplet, such boundary conditions read:

U (i)
∣∣∣
S

= U (o)
∣∣∣
S
, U (o)|r→∞ = −V . (2.4)

In reaction to surface tension gradients, the fluid experiences a stress jump at the droplet’s
interface expressed by the Marangoni condition:

n ·
(
σ(o) − σ(i)

)∣∣∣
S
· (I − nn) = −γ1 (I − nn) ·∇C|S , (2.5)

where equation 2.1 was used to link surface tension gradients with solute ones. Finally,
neglecting the droplet’s inertia enables to obtain the force-free condition:

∫

S
σ(o) · ndS = 0,

∫

S
r × σ(o) · ndS = 0. (2.6)

In order to compute the flow field, we define the streamfunction ψ(i,o) (inside or outside the
droplet) that satisfies:

U (i,o) = − 1

r2

∂ψ(i,o)

∂µ
er −

1

r
√

1− µ2

∂ψ(i,o)

∂r
eθ, (2.7)

with µ = cos θ, and where radial and azimuthal vectors er and eθ are defined in figure 2.1.

2.1.2 Spectral decomposition of ψ and C

Taking advantage of the axial symmetry of the problem, ψ(i,o) is decomposed in Legendre
modes:

ψ(i,o)(r, µ, t) =

∞∑

n=1

2n+ 1

n(n+ 1)
α(i,o)
n (t)ψ(i,o)

n (r)(1− µ2)L′n(µ), (2.8)

ψ(i,o)
n (r) = E(i,o)

n rn+3 + F (i,o)
n rn+1 +G(i,o)

n r2−n +H(i,o)
n r−n, (2.9)

where E
(i,o)
n , F

(i,o)
n , G

(i,o)
n and H

(i,o)
n are constants to determine, and the prime symbol

stands for the derivative of Ln (Legendre polynomial of order n, see appendix A.1) with µ.
Using the boundary conditions on the droplet’s surface and at infinity Eq. (2.4) together
with the force-free condition Eq. (2.6), we obtain:

ψ
(o)
1 =

R3

3r
− r2

3
, ψ(o)

n =
1

2

(
Rn+2

rn
− Rn

rn−2

)
for n > 1 (2.10)

ψ(i)
n =

1

2

(
rn+1

Rn−1
− rn+3

Rn+1

)
for n > 0. (2.11)

In the same manner, we decompose the concentration field c in Legendre modes:

C(r, µ, t) =

∞∑

p=0

Cp(r, t)Lp(µ), (2.12)
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which enables to express the diffusion advection equation 2.2 projected on each mode p ≥ 0:

∂Cp
∂t

+
1

r2

∞∑

m=0

∞∑

n=1

α(o)
n (t)

(
Amnp

∂Cm
∂r

ψ(o)
n +BmnpCm

∂ψ
(o)
n

∂r

)

=
D

r2

(
∂

∂r

(
r2∂Cp

∂r

)
− p(p+ 1)Cp

)
, (2.13)

where Amnp and Bmnp are defined as follow:

Amnp =
(2n+ 1)(2p+ 1)

2

∫ 1

−1
Lm(µ)Lm(µ)Lp(µ)dµ, (2.14)

Bmnp =
(2n+ 1)(2p+ 1)

2n(n+ 1)

∫ 1

−1
(1− µ2)L′m(µ)L′m(µ)Lp(µ)dµ. (2.15)

In addition, the projection of Eq. (2.4), provides:

α(o)
p = α(i)

p for p > 0, (2.16)

while we use the expression of the shear stress:

σ
(i,o)
r,θ = η(i,o)

(
r
∂

∂r

(
u

(i,o)
θ

r

)
−
√

1− µ2

r

∂u
(i,o)
r

∂µ

)

= −η(i,o)
√

1− µ2

∞∑

n=1

2n+ 1

n(n+ 1)
α(i,o)
n L′n(t)

(
r
d

dr

(
1

r2

dψ
(i,o)
n

dr

)
+
n(n+ 1)

r2
ψ(i,o)
n

)
, (2.17)

together with the Marangoni condition Eq. (2.5) to obtain:

3η(o)α
(o)
1 +

9η(i)

2
α

(i)
1 = −γ1C1|r=R, (2.18)

η(o)α(o)
p + η(i)α(i)

p = − p(p+ 1)

(2p+ 1)2
γ1Cp|r=R for p > 1. (2.19)

Using Eq. (2.16), Eq. (2.18) and Eq. (2.19) leads to the following relations for α
(o)
p :

α
(o)
1 = − 2γ1

3(2η(o) + 3η(i))
C1|r=R, (2.20)

α(o)
p = − p(p+ 1)γ1

(η(o) + η(i))(2p+ 1)2
Cp|r=R for p > 1. (2.21)

In order to get access to the unsteady dynamics of the droplet, we may consider a truncated
concentration field composed of the N first modes. Eq. (2.13) then provides N partial
differential equations for each mode, which could be numerically solved using for instance
a finite difference scheme. In addition, the resulting flow field is directly computed as the
instantaneous and linear response to the concentration field moments Cp via Eq. (2.20) and
Eq. (2.21).
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2.1.3 Solute polarity and droplet velocity

In this part, we suggest an extended version of the Lorentz reciprocal theorem of section
1.4.1 to the case of an active droplet. The aim of this derivation is to establish a direct
relation between the droplet’s velocity and the solute distribution at its surface.

In a similar manner as introduced in section 2.1, we consider a force-free active droplet
that self-propels at a velocity V in reaction to Marangoni stresses at its surface S. In the
following, V(i) (resp. V(o)) denotes the inner volume (resp. outer volume) of the droplet. In
the lab-frame, the flow problem is thus described by the following system of equations:

∇ · σ(i,o) = 0, ∇ ·U (i,o) = 0, (2.22)

U (i)
∣∣∣
S

= U (o)
∣∣∣
S
, U (i)

∣∣∣
S
· n = 0, U (o)|r→∞ = −V , (2.23)

n ·
(
σ(o) − σ(i)

)∣∣∣
S
· (I − nn) = −γ1 (I − nn) ·∇C|S . (2.24)

F =

∫

S
σ(o) · ndS = 0. (2.25)

In addition, we consider an auxiliary problem involving a passive droplet, of same geometry,
that swims at the velocity V̂ in reaction to an external force F̂ . A similar system of
equations characterising the auxiliary flow problem reads:

∇ · σ̂(i,o) = 0, ∇ · Û (i,o)
= 0, (2.26)

Û
(i)
∣∣∣
S

= Û
(o)
∣∣∣
S
, Û

(i)
∣∣∣
S
· n = 0, Û

(o)|r→∞ = −V̂ , (2.27)

n ·
(
σ̂(o) − σ̂(i)

)∣∣∣
S
· (I − nn) = 0, (2.28)

F̂ =

∫

S
σ̂(o) · ndS. (2.29)

In the same manner as in section 1.4.1, contracting the Stokes equation of each problem
with the dual Eulerian velocity field gives two relations respectively inside and outside the
droplets:

∫

V(o)

[(
∇ · σ(o)

)
· Û (o) −

(
∇ · σ̂(o)

)
·U (o)

]
dV(o) = 0, (2.30)

∫

V(i)

[(
∇ · σ(i)

)
· Û (i) −

(
∇ · σ̂(i)

)
·U (i)

]
dV(i) = 0. (2.31)

Using the incompressibility relations together with the divergence theorem provides:

∫

S∞−S

(
n · σ(o) · Û (o) − n · σ̂(o) ·U (o)

)
dS = 0, (2.32)

∫

S

(
n · σ(i) · Û (i) − n · σ̂(i) ·U (i)

)
dS = 0, (2.33)

where S∞ denotes the surface infinitely far from the droplet. Using the boundary conditions
of each problem, Eq. (2.32) becomes:

−V̂ ·
∫

S∞
σ(o) · ndS + V ·

∫

S∞
σ̂(o) · ndS −

∫

S

(
n · σ(o) · Û (o) − n · σ̂(o) ·U (o)

)
dS = 0. (2.34)

Since ∇ ·σ(o) = 0 and ∇ · σ̂(o) = 0, using the divergence theorem enables us to identify the
first two integrals in Eq. (2.34) to F and F̂ respectively. Then, summing Eq. (2.33) with
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Eq. (2.34) and using the continuity of the velocity field at the interface of the droplet for
each problem Eq. (2.23) and Eq. (2.27), we get:

−V̂ · F + V · F̂ −
∫

S

[
n ·
(
σ(o) − σ(i)

)
· Û (o) − n ·

(
σ̂(o) − σ̂(i)

)
·U (o)

]
dS = 0. (2.35)

The first term of Eq. (2.35) vanishes according to the force-free condition Eq. (2.25). Using
the impermeability condition of the velocity field in each problem together with the conti-
nuity of the tangential stress (resp. Marangoni condition) at the interface of the droplet in
the auxiliary problem (resp. main problem) Eq. (2.28) (resp. Eq. (2.24)), Eq. (2.35):

V · F̂ + γ1

∫

S
∇C · (I − nn) · Û (o)

dS = 0. (2.36)

Choosing V̂ in the same direction as V , the classical results from Ref. [46] provide:

Û
(o)|S · (I − nn) = − V̂ · (I − nn)

2(η̃ + 1)
, (2.37)

F̂ = −4πη(o)R(3η̃ + 2)

2(1 + η̃)
V̂ . (2.38)

Finally, integrating by part the right-hand-side of Eq. (2.36) leads to:

V = − γ1

2π(2η(o) + 3η(i))R2

∫

S
CndS. (2.39)

Eq. (2.39) therefore establishes a direct link between the velocity of the droplet and the
solute distribution at its surface. It specifically informs the droplet moves in reaction to any
imbalance of solute at its surface. Nevertheless, we should remind that Eq. (2.39) is only
valid for a single active hydrodynamically isolated droplet.

Choosing R, C∗ = AR/D and V ∗ = ARγ1/D(2η(o) +3η(i)) as resp. characteristic length,
concentration and velocity (see section 1.5 for more details about these scales) enables to
write a dimensionless relation between the solute distribution and droplet’s velocity:

v = − 1

2π

∫

S
cndS = Π, (2.40)

where v = V /V ∗, c = C/C∗ and Π is called the solute polarity.
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2.1.4 Spontaneous propulsion

Refocusing on the single droplet problem, we present the results from Ref. [66] and
Ref. [36] regarding the instability phenomenon at the origin of the droplet’s self-propulsion.
In the following, we only deal with the dimensionless quantities c = C/C∗ and u(i,o) = U (i,o)/V ∗,
while keeping the same other notations to ease the reading. Besides, we denote by η̃ = η(i)/η(o)

the viscosity ratio. The advection-diffusion problem Eq. (2.2) thus becomes:

Pe

(
∂c

∂t
+ u(o) ·∇c

)
= ∇2c, ∇c · n|S = −1, c|r→∞ = 0, (2.41)

where Pe = AR2γ1/((2η
(o) +3η(i))D2) as defined in section 1.6.2. Then, considering a small

perturbation c̃ from the quiescent state c̄(r) = 1/r, where the droplet is fixed in space and
generates no flow. At the leading order, the first azimuthal mode c̃1 satisfies:

Pe
∂c̃1

∂t
− 1

r2

(
∂

∂r

(
r2∂c̃1

∂r

)
− 2c̃1

)
= −Pe

2c̃1|r=R
3r2

(
1

r3
− 1

)
, (2.42)

∂c̃1

∂r

∣∣∣∣
r=R

= 0, c̃1(r →∞, t) = 0. (2.43)

The linear stability analysis provides that for Pe > Pec = 4, advection effects are sufficient
to amplify the initial perturbation [66, 36]. Consequently, we may remember that an active
droplet spontaneously swim when Pe is above this threshold.

2.1.5 Self-propulsion velocity of a single active droplet

Finally, we provide the self-propulsion velocity v0(Pe) of a single active droplet, numeri-
cally computed in Ref. [36]. Fig. 2.2 shows the evolution of v0 as function of Pe. We notice
that v0 promptly grows from the critical threshold Pec = 4, then reaches a maximal value
around Pe = 12 before finally decaying slowly for even greater Pe.
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Figure 2.2: Active droplet’s self-propulsion velocity v0 as function of Pe taken from Ref. [36].
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2.2 Hydrodynamic interactions

As seen previously, an imbalance of solute at the surface of an active droplet induces
Marangoni flows. Therefore, a swimming droplet locally steers the fluid. Since the Stokes
equation drives the flow problem, the flow field generated by the droplet propagates at an
infinite speed in the outer fluid. We thus expect that a second droplet (or a boundary)
would instantaneously feel the hydrodynamic signature coming from the first one. The flow
field induced by each droplet alters the viscous stresses and thus the drag forces experienced
by the other droplet. Finally, we expect hydrodynamic interactions between several droplets
(or in the presence of a boundary) to decay with the separation distance.

This section will be dedicated to hydrodynamic interactions between active droplets.
First, we will examine the leading order hydrodynamic signature generated by an active
droplet and determine its far-field approximation. In a second stage, we will provide a qual-
itative discussion of the expected hydrodynamic interactions between two active droplets.
Finally, we will introduce briefly the method of images that enables to estimate quantita-
tively far-field hydrodynamic interactions between several active droplets or in the presence
of a boundary.

2.2.1 Singularities expansion

Let us start from the flow field solution of the single droplet problem of section 2.1. Using
the expression of the streamfunction ψ(i,o) expressed in Eq. (2.9) and using the relation
Eq. (2.7), we find that in the lab frame, the far-field leading order of the flow generated by
an active droplet follows:

U (o) ∼ 5α
(o)
2 R2

4r2
(1− 3µ2)er. (2.44)

The intensity of the flow is driven by the coefficient α
(o)
2 that may be expressed as function of

the solute distribution at the surface of the droplet via the relation Eq. (2.21). Consequently,
we get:

U (o) ∼ 3γ1R
2C2|r=R

10
(
η(i) + η(o)

)
r2

(3µ2 − 1)er. (2.45)

Seen from a far distance, the leading hydrodynamic signature of an active droplet is then
radial, scales as 1/r2 and is proportional to the second moment of the concentration field
C2|(r=R).

To understand why such a behaviour is expected from an active droplet, we can start by
computing the flow field created by a point force Fe located at the origin of the coordinates
system for convenience. Dropping the exponent (o) for convenience, the flow problem then
reads:

∇ · σ + Fδ(x)e = 0, (2.46)

∇ ·U = 0, (2.47)

where δ is the Dirac function and x denotes the position in the fluid relative to the point
force location. Eq. (2.46) and Eq. (2.47) are solved using the Green function G [67]:

U s =
F

8πη(o)
G =

F

8πη(o)

(
e

|x| +
(e · x)x

|x|3
)
. (2.48)
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This flow field, called a Stokeslet [68], slowly decays from the droplet’s position as ∼ 1/|x|.
However, because the droplet is force-free, such a singularity naturally does not appear
in Eq. (2.45). Since the Stokes equation is linear, any derivative of a Stokeslet is also a

solution. Taking the derivative of U
(o)
s along the direction ed provides the solution called

Stokes dipole [68]:

U sd = −ed ·∇U s =
F

8πη(o)
GD (2.49)

GD =
1

|x|2
(

(ed · x)e− (e · x)ed − (ed · e)x

|x| +
3(e · x)(ed · x)x

|x|3
)
. (2.50)

In the particular situation of axial symmetry (which is the case for a single active droplet),
the Stokes dipole solution is called a Stresslet solution:

U sd =
F

8πη(o)

(
− x

|x|3 +
3(e · x)2x

|x|5
)
. (2.51)

where e represents the swimming direction of the droplet. The expression obtained in
Eq. (2.51) echoes the far-field leading order of an active droplet obtained in Eq. (2.45). Be-
cause the droplet’s inertia is negligible, we realise that the induced flow field decays faster
than the one generated by a droplet dragged by an external force [69, 70]. Physically, the
propulsion force resulting from Marangoni stresses at the droplet’s surface is exactly bal-
anced by the drag forces it experiences, a situation already encountered in Eq. (1.9).

In coming back to Eq. (2.45), we notice that C2 may be computed using the orthogonal
properties of the Legendre modes by:

C2(t) =
5

4

∫ 1

−1
(3µ2 − 1)C(R,µ, t)dµ. (2.52)

C2 turns out to be positive for a self-propelling active droplet. As a consequence, an active
droplet belongs to the pusher kind of swimmers [71, 20] and expels the flow at its head and
tail (µ = −1, µ = 1) while pumping it for its sides (µ = 0) (see Fig. 2.3) [72, 73].
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Figure 2.3: Streamlines relative to the streamfunction ψ = −2µ(1−µ2)(1/r2−1). While the
second part : 2µ(1−µ2) is associated to a stresslet velocity field, the first one: −2µ(1−µ2)/r2,
is associated to a source quadrupole that enables the flow to satisfy the impermeability
condition at the surface of the droplet. The vector e represents the velocity direction of the
droplet.
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2.2.2 Hydrodynamic interactions between active droplets or boundaries

First, let us qualitatively describe the expected hydrodynamic interactions experienced
by an active droplet in the presence of a second one. According to the last section, the
leading order flow field generated by an active droplet is a Stresslet solution, where the flow
is pumped on the side of the droplet while is expelled at its back and front. We thus expect
two droplets to repel each other if their centre-to-centre axis is collinear to their swimming
direction [74, 69] (see panel (a) of Fig. 2.4). Besides, two droplets swimming side-by-side are
expected to experience attraction [74] as depicted in the panel (b) of Fig. 2.4. Furthermore,
denoting by d the separation distance between the droplets, such repulsion and attraction
interactions result from the stresslet intensity of each droplet, which is expected to decay
as 1/d2.

(a) (b)

d

d

Figure 2.4: Schematic of the far-field hydrodynamic interactions between two active droplets
separated by a distance d (a): Two colliding active droplets experiencing repulsive hydro-
dynamic forces. (b): Two side-by-side active droplets experiencing attractive hydrodynamic
forces. The red arrows in both panels represent the directions of the hydrodynamic force
experienced by each droplet while the blue arrows represent the flow field they generate.

Besides, the presence of boundaries in the vicinity of an active droplet is not without
consequence on its dynamics [75, 62, 64]. Several methods are available to compute hy-
drodynamic interactions between bodies, and among other, one can think of the method
of reflections suggested by Smoluchowski (1911) [76] or the exact treatment in bi-spherical
coordinates in the case of axisymmetric problems provided by Stimson & Jeffrey (1926)
[77]. Willing to provide the reader with a physical understanding and scaling laws regarding
the hydrodynamic influence of a boundary on a swimmer, we briefly provide a method we
owe to Blake (1974) [78] and later revisited in Refs. [69, 79, 62] to compute hydrodynamic
interactions of a swimmer with a rigid wall or a free-surface.

From Eq. (2.45) and Eq. (2.51) we remind the far-field signature of an active droplet
located in x0 may be written as:

U = KGD(x− x0, e, e) (2.53)

where K is a positive constant and e the droplet’s swimming direction. To compute the
hydrodynamic influence of a rigid wall at a distance dc from the droplet, we add a set of
singularities KG∗D located on x∗0, symmetric point of x0 about the wall (see Fig. 2.5):

G∗D(x− x∗0) = −GD(x− x∗0,n,n) + 4hD(x− x∗0,n)

+ 2hGQ(x− x∗0,n,n,n)− 2h2Q(x− x∗0,n,n), (2.54)

44



2.2. Hydrodynamic interactions

2

where n denotes the normal unit vector on the boundary that points toward the fluid region
(see figure 2.5). The Stokes quadrupole GQ, source dipole D and source quadrupole Q
involved in equation (2.54) follow:

GQ(x) =
1

|x|3
(
n− 3(x · n)

|x|2
(
3x+ (x · n)2n

)
+

15(x · n)3x

|x|4
)
, (2.55)

D(x) =
1

|x|3
(
−n+

3(x · n)x

|x|2
)
, (2.56)

Q(x) = − 3

|x|4
(

3(x · n)n

|x| − 5(x · n)2x

|x|3
)
. (2.57)

x⇤
0

x0
n

dc dc

Figure 2.5: Schematic of the method of images considering a droplet located at a distance
dc from a wall of normal n.

Let us assume for a moment that the propulsion mechanism of the droplet is not modified
by the presence of the wall (i.e the solute concentration around the droplet is not modified
the presence of the wall). Using an adapted version of the Faxén’s law [80], we can compute
the leading order of the velocity correction experienced by a droplet in the presence of a
rigid wall located at a distance dc:

vwall
+ =

3K

4d2
c

n. (2.58)

We may notice the hydrodynamic influence of the wall on the droplet scales as 1/d2
c in a

similar way to the case of the active droplets pair seen previously. The same derivation may
be performed in the case of a free surface [69, 62], which is hydrodynamically equivalent
to the situation of two identical droplets separated by a distance 2dc. In that particular
situation, the leading order velocity correction reads:

vfree-surf
+ =

K

2d2
c

n. (2.59)

If the scaling of the velocity correction is identical for both kinds of boundary, we however
notice the pre-factor is smaller in the case of a free-surface. Consequently, we expect a
droplet swimming towards a rigid wall to be slowed down sooner than two droplets involved
in a head-on collision. Such a singularity approach has been used to deal with hydrodynamic
interactions between active droplets and boundaries [62].

Finally, we find essential to stress that an active droplet induces a flow field as the result of
the solute distribution at its surface (see Eq. (2.45)). Consequently, the flow field generated
by one droplet alters the solute distribution around the second, which thus modifies its
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hydrodynamic signature. Besides, recent experiments presented in Ref. [75] have shown
that the hydrodynamic flow field induced by an active droplet in the vicinity of a rigid wall
may indeed be accurately approximated by few hydrodynamic modes. However the presence
of the wall induces an accumulation of the solute (i.e swollen micelles in that case) emitted
by the droplet that generates a significant dipolar flow field in a direction orthogonal to
the wall. Because an active droplet self-propels and stirs the flow as a result of the solute
dynamics, in the next section, we discuss about the expected chemical interactions involving
several active droplets or in the presence of boundaries.

2.3 Chemical interactions

In this section, we will focus on the chemical aspect of the interactions between active
droplets. First, in a similar way as for the hydrodynamic flow field, we will briefly introduce
the multipole expansion that may be used to approximate the far-field chemical signature
induced by an active droplet. In the second part, we will provide a qualitative discussion
regarding the expected chemical influence of an active droplet (or boundary) on the dynamics
of a second one. Finally, we will provide a derivation of the far-field chemical interactions
between two active particles in the purely diffusive limit. The aim of this last part is first
to provide an expression of the drift velocity experienced by one particle as the result of
the concentration field emitted by the second one. Having in mind such leading order
results for two active particles may thus enable us to note the differences with the full
interaction model for active droplets provided in chapters 3 and 4. Besides, this example is
a convenient opportunity to stress the fundamental differences between active droplets and
active particles and the role of advection in the swimmers’ dynamics in particular.

2.3.1 Multipole expansion of the concentration field

First, let us briefly mention that in the same way as for the flow field of section 2.2.1,
an observer that looks at an active droplet from a far distance may approximate the con-
centration field it creates as a superimposition of singularities located at the position of
the droplet x0. In this situation, an active droplet reduces to a point where the solute is
emitted. The resulting transport problem reads [81]:

Pe

(
∂c

∂t
+ u ·∇c

)
= ∇2c+ a0δ(x− x0) + a1 ·∇δ(x− x0) + a2 : ∇∇δ(x− x0) + ..., (2.60)

where δ is the Dirac function and a0, a1 and a2 are tensors of increasing order named
monopole, dipole and quadrupole intensities, which are illustrated on Fig. 2.6 in the case
of purely diffusive regimes (Pe = 0). Approximating the chemical signature of an active
droplet by a superposition of few singularities may thus significantly simplify the solving of
the solute dynamics [82, 83]. This approach will be used in chapter 5 to derive a moving
singularity model that approximates an active droplet as the superposition of a source and
a source-dipole.
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Figure 2.6: Concentration field generated by a monopole of intensity a0 = 4π (a), a dipole
of intensity a1 = 4πe (b) and a quadrupole of intensity a2 = 4πee (c).

2.3.2 Qualitative discussion regarding chemical interactions

We remind from section 2.1 that an active droplet emits at its surface a constant flux
of solute that increases the surface tension of the outer-fluid. Consequently, any solute
imbalance induces a surface tension gradient that generates Marangoni flows towards the
zone where the solute concentration is the highest. The active droplet thus swims towards
the zone of lower concentration in reaction to the Marangoni stresses exerted on its surface.
Active droplets are said to be antichemotactic, as they swim in the direction opposite to
solute gradients.

Let us consider two active droplets initially motionless and separated by a distance dc.
Since the droplets emit a flux of solute at their surface, the solute concentration increases
in the region between them. The resulting increase of surface tension induces Marangoni
flows at their surface that are directed towards the region between the droplets (see panel
(a) of Fig. 2.7). As a consequence, each droplet swims away from the other one. The motion
of a droplet resulting from the perturbation of the solute distribution around it and due
to the presence of a second is called a chemical interaction, which is thus expected to be
repulsive. The repelling dynamics previously described have been investigated recently in
Ref. [56], where two oil active droplets of approximately 30µm radius are initially placed
side-by-side for various separation distances dc. The droplets then swim away from each
other at a velocity that decreases with the separation distance. More precisely, such an
escaping velocity is noticed to scales in 1/d2

c [56].

(a)

rC rC

UU

VV

(b)

rC

U

V

dc

Figure 2.7: Schematic of the repulsion experienced by an active droplet in the presence of a
second one (a) or a boundary (b). The presence of a second droplet or a boundary induces
solute gradient ∇C (red arrows) that generate tangential Marangoni flows U (blue arrows)
towards the zone of higher concentration. Consequently, the droplets swim away at the
velocity V (black arrows).
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Besides, we have seen in section 2.1 that the solute distribution and swimming velocity
are directly proportional in the case of a single active droplet hydrodynamically isolated (see
Eq. (2.40)). This means that a swimming droplet has more solute at its back (called the
solute wake) than at its front. In other words, a swimming droplet maintains a self-induced
gradient of solute towards its back. Due to the repulsive nature of the chemical interactions,
we would expect two active droplets that swim towards each other to slow down as they
get closer. Eventually, each droplet will stop as the increase of solute concentration at its
front resulting from the presence of the other one balances its self-induced gradient. If the
droplets are identical, they will stop simultaneously, and we find the case discussed in the
previous paragraph. Finally, we then expect that two colliding droplets would experience
a rebound as the result of (i) their constant emission of solute (i.e. their activity) and (ii)
the induced Marangoni flows (i.e their mobility).

Similarly, let us consider an active droplet close to a boundary impermeable to the
solute. The confinement imposed by the boundary induces a rise in solute concentration in
the confined region (see panel (b) of Fig. 2.7). Consequently, we expect a similar rebound
dynamic to occur in the presence of a rigid wall or a free-surface. Experimentally, when
an active droplet is more dense than the outer fluid it may sediment towards the bottom
of the tank that contains the medium [56, 64]. As a consequence of the chemical repulsion
with the boundary, the droplet is observed to hover at a finite distance from it [75, 56].
Besides, we remind that increasing the surfactant concentration in the outer fluid provides
the droplet with a stronger activity. Interestingly, the experimental results of Ref. [56] show
that the hovering distance from the wall increases for higher surfactant concentration, which
evidences the chemical nature of the repulsion.

2.3.3 Far-field chemical interactions of two active particles in the purely
diffusive limit

In the present paragraph, we find enlightening to consider the situation of two interact-
ing active particles at Pe = 0. The purpose of the following derivation is to quantitatively
provide the resulting drift velocity experienced by one active particle in the presence of the
concentration field generated by another one. This situation constitutes a reference case that
should be kept in mind when dealing with exact interactions between active droplets pre-
sented in chapters 3 and 4. The absence of advection in the present situation suggests that
the concentration field C is not influenced by the flow. In that way, the chemical and hydro-
dynamical problems are fully decoupled and we can focus here on chemical interactions only.

r

R
✓

Re

dc � R

G1 =
AR2

Dd2
c

e

Figure 2.8: Schematic of two active particles separated by a distance dc � R that interact
chemically via the concentration field generated at their surfaces.
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First, let us examine the problem of a single force-free active particle of radius R, fixed in
a quiescent fluid. We consider the particle emits a constant flux of solute A at its surface S.
In the purely diffusive limit, the solute transport dynamics satisfies the following diffusion
problem:

∇2C = 0, ∇C · n|S = −A/D , C|r→∞ = 0. (2.61)

Similary to the case of active droplets, the flow problem is described by the Stokes equation:

∇ · σ = 0, ∇ ·U = 0, (2.62)

where U denotes the Eulerian velocity field in the surrounding fluid. Besides, the mobility
mechanism considered for an active particle is slightly different from the one of an active
droplet. Indeed, the flow generated by an imbalance of solute in the vicinity of the particle
does not result from Marangoni stresses but comes from phoretic effects instead, which
induces a slip velocity at the surface of the particle proportional to tangential solute gradients
[84, 48]:

U |S · (I − nn) = M∇C|S · (I − nn) , (2.63)

where M is a positive coefficient called mobility. We note that for both active particles
and active droplets, the induced flow in the vicinity of the swimmer is oriented towards
positive solute gradients. The sphericity of the particle surface enables to easily compute
the concentration field solution of Eq. (2.61):

C(r) =
AR2

Dr
. (2.64)

In this case, the concentration field is uniform around the particle. Consequently, Eq. (2.62)
together with Eq. (2.63) imply U = 0.

Adding a second identical active particle in the medium disturbs the concentration field
of Eq. (2.64). Using the linearity of the Laplace equation and considering the limit where
dc � R, the concentration field felt by the first particle in the presence of the second can
be reasonably approximated by the superposition of (i) a uniform increase of the solute
concentration, AR2/(Ddc), and (ii) a uniform solute gradient whose intensity is denoted by
G1 = AR2/(Dd2

c)e = G1e (see Fig. 2.8). While the uniform contribution does not impact the
particle dynamics (according to Eq. (2.63)), we may focus on the influence of the external
solute gradient G1. In the presence of G1, the solute transport problem Eq. (2.61) becomes:

∇2C = 0, ∇C · n|S = −A/D, C|r→∞ = rG1 · e+ C∞, (2.65)

where C∞ is a constant set to zero in the following since it corresponds to a uniform concen-
tration field variation. Besides, taking advantage of the axial symmetry of the problem, we
may decompose the concentration field solution of equation Eq. (2.65) in Legendre modes:

C(r) =
∞∑

k=0

ck(r)Lk(θ), (2.66)

where ck are coefficients to be determined and θ the azimuthal angle (see Fig. 2.8). Limiting
the study to the first three modes enables to find a concentration field solution of the form:

C(r) = λ0 +
λ1

r
+

(
λ3r +

λ4

r2

)
G1 · e, (2.67)
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where λi (i ∈ {0, 1, 2, 3}) are constants to determine. Using the boundary conditions
Eq. (2.65) we finally get:

C(r) =
AR2

Dr
+

(
r +

R3

2r2

)
G1 · e. (2.68)

First, the concentration field at the surface of the first particle is no longer uniform. Indeed,
in addition to the concentration field solution of the single-particle case Eq. (2.64), the addi-
tional term proportional to G1 induces an azimuthal variation. According to Eq. (2.63), any
solute gradient at the surface of the particle generates a flow. Using the Lorentz reciprocal
theorem Eq. (1.18) in the case of a force-free particle, we obtain the velocity of the first
droplet V 1 [25]:

V 1 = − 1

4πR2

∫

S
U · (I − nn) dS. (2.69)

Then, using Eq. (2.63) provides a relation similar to Eq. (2.40) in the case of an active
particle:

V 1 = − M

2πR3

∫

S
CndS. (2.70)

Finally, using Eq. (2.68) together with Eq. (2.70) provides:

V 1 = −MG1e = −MAR
2

Dd2
c

e. (2.71)

First, the minus sign on the right-hand side of Eq. (2.71) informs that we recover the
antichemotactic feature both shared by active particles and active droplets. Besides, we
notice that the drift velocity of the first particle in the presence of the other scales in
1/d2

c . This scaling echoes the result obtained in the previous section regarding far-field
hydrodynamic interactions. Consequently, we may expect both hydrodynamic and chemical
interactions to play comparable roles in the presence of two active droplets.

2.4 Conclusion

In this chapter, we have first provided the reader with a useful spectral decomposition
method regarding the exact model of a single self-propelled active droplet. This approach
shows that an active droplet self-propels as the result of an instability phenomenon that
occurs above a critical Péclet number (Pec = 4). In this case the induced Marangoni flows
transport a sufficient amount of solute at the back of the droplet to sustain its net propul-
sion. After a brief qualitative discussion of the hydrodynamic interactions between two
active droplets (or in the presence of a boundary), we have provided a singularity approach
that enables to estimate their far-field hydrodynamic interactions. Then, we have stressed
the antichemotactic nature of active droplets and suggested the expected dynamics resulting
from chemical interactions between two of them (or in the presence of a boundary). Finally,
we have derived a canonic example of far-field chemical interactions between two active
particles in the purely diffusive limit.

The far-field chemical interactions presented in the last part of this section allows re-
minding a fundamental difference with the case of active droplets. Experimentally, the self-
propulsion of a phoretic active particle is often driven by an intrinsic asymmetry. Indeed,
non-uniform mobility or activity on the particle surface are convenient strategies (adopted
among others by Janus particles [65]) to achieve propulsion. Consequently, the leading or-
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der mechanism at the origin of the self-propulsion is predominantly diffusive. Within that
framework, the linearity of Laplace and Stokes equations enable the use of superposition
methods to compute hydro-chemical interactions among an assembly of active particles [79]
or the influence of a boundary [85]. However, as seen at the beginning of this chapter,
advection is essential for an active droplet to self-propel. The resulting non-linearity in
the transport dynamics prevents the use of the previously mentioned methods to describe
the interactions between several active droplets and boundaries. Due to the mathematical
complexity of the coupled hydro-chemical interactions, existing models in the literature es-
timate them by making approximations. While some consider the sole effect of chemical
interactions [56], others focus on hydrodynamic interactions only [86, 62] or suggest far-field
models that remain valid only when the droplets are far from each other [87, 88, 83]. In the
next chapter, we suggest a new approach to compute exact hydro-chemical interactions at
finite Pe between two active droplets.
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Take home message of Chapter 2

1. Self-propulsion of active droplets: An instability phenomenon resulting
from the coupling between flow field and solute transport leads to the spontaneous
self-propulsion of an active droplet for Pe > Pec = 4.

2. Solute polarity and droplet’s velocity: The solute polarity quantifies the
solute distribution on the droplet’s surface. We can show that in the particular case
of a single hydrodynamically isolated droplet, the dimensionless velocity and solute
polarity are equal. Consequently, an active droplet swims as a result of any solute
imbalance at its surface.

3. Hydrodynamic interactions: The leading order far-field hydrodynamic
signature of an active droplet is called a stresslet and scales as 1/r2. Hydrodynamic
interactions between two active droplets swimming side by side are attractive,
whereas they become repulsive when the droplets swim on the same axis. Superpo-
sition methods are helpful to compute far-fields hydrodynamic interactions between
several swimmers and boundaries.

4. Chemical interactions: From a far distance, an active droplet may be
approximated by a source of solute. Due to the antichemotactic nature of active
droplets, chemical interactions between active droplets (or in the presence of a
boundary) are repulsive and scale as 1/r2.

5. Active droplets and active particles: Advection phenomena are inseparable
from active droplets’ self-propulsion. As a result of the non-linearity introduced
in the transport dynamics, the usual superposition methods employed to compute
interactions between active particles cannot be used in the case of active droplets.
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3
Head-on collision of an active
droplet with a flat surface

In this chapter, we will present a novel approach based on a moving body-fitted bi-spherical
grid to solve exactly the fully-coupled nonlinear dynamics of the chemical solute and flow
fields. This method will then be used to characterise in detail the axisymmetric collision of
an active droplet with a rigid wall (or with a second droplet). The results of this chapter
were published in the Journal of Fluid Mechanics [89].

Concentration field around an active droplet which collide a rigid and passive wall frontally.
The bi-spherical grid used for the computation is represented by the solid red (iso-µ) and
dashed blue (iso-ξ) lines.
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3.1 Motivations for a full interaction model

Most models available so far for both phoretic particles and active droplets consider a
single micro-swimmer in an unbounded fluid medium (i.e. far from any confining boundary).
Yet, most experiments involve many swimmers. Furthermore, the density of the particles
or droplets does not match that of the surrounding fluid, and as a consequence, many if not
most of them swim close to a bottom rigid wall or a free surface [90, 91, 64]. This interaction
and collective dynamics of multiple swimmers is the focus of an increasing attention from
the modelling point of view to understand the formation of clusters of particles [92, 93], in
particular as a result of the multiple interaction routes available [94, 79] or of the effect of
the walls on their interactions [95, 62]. The dynamics of a rigid phoretic particle close to
a rigid wall has become a canonical problem to analyse such interactions and the resulting
complex dynamics [96, 85, 97, 98]. It was also shown that interaction and self-assembly of
active but individually non-motile particles may also lead to self-propulsion at the collective
level [99, 100]. In most experimental systems, the chemical dynamics leading to the self-
propulsion of phoretic particles is dominantly diffusive, and most of the models discussed
above exploit the resulting linearity of the underlying Laplace and Stokes’ problems.

However, advection and the non-linear coupling it introduces between the chemical and
hydrodynamic fields, play a critical role in the emergence of self-propulsion for active droplets
and thus can not be simply neglected. Yet, accounting for this full non-linear coupling in a
model or a numerical simulation is no easy task. Several studies have attempted to model
the interactions of active droplets, at least within a simplifying limit. The approach of
Ref. [56] focused on a purely diffusive limit with no hydrodynamic interactions. Ref. [87]
considered the influence of both chemical and hydrodynamic interactions during the collision
of two self-propelled droplets, but the approach, which relies on the linear superposition of
the hydrodynamic and chemical signature of each droplet, is intrinsically limited to the case
of far-field interactions (i.e. when the relative distance of the droplets is large compared
to their radii) and to the vicinity of the self-propulsion threshold. Numerically, Ref. [86]
proposed a simulation of the collision problem using a Lattice-Boltzmann framework focus-
ing on the velocity field generated by the two droplets; yet, the solute chemical dynamics
and its coupling to the flows it produces, as well as the impact of the proximity of the two
droplets, remain elusive at this point.

In contrast with existing modelling efforts on the interaction of two self-propelled droplets
(or the interaction of a droplet with a confining wall), this chapter aims at the full description
of the nonlinearly coupled hydrodynamic and chemical dynamics involved during a head-on
(normal) collision. The present approach takes advantage of the axisymmetric setting of
the problem but does not require any restrictive assumption regarding either the relative
distance of the droplet and the wall (or between the droplets), the origin of the Marangoni
flow which is entirely driven by solute concentration gradients at the droplet’s surface or
the magnitude of the convective transport with respect to diffusion (finite Péclet number
Pe). The goal is twofold: (i) provide an in-depth physical insight into the chemical and
fluid dynamics involved during the interaction, in particular to understand how the relative
magnitude of advection and diffusion may modify or condition the droplets’ collision and re-
bound; (ii) establish a benchmark study for the collision dynamics, to which reduced model
used to analyse the collective behaviour of many droplets could be confronted and validated.

To this end, we develop a novel framework to analyse the unsteady dynamics of non-
linearly coupled hydrodynamic and physicochemical systems using a semi-analytical treat-
ment of both problems using bi-spherical harmonic decompositions on a moving conformal
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grid, which could be used for the treatment of more generic problems (e.g. bubble dynam-
ics). For simplicity and clarity, because of the strong physical and mathematical similarity
between the droplet-droplet and droplet-wall collisions, we focus specifically in the follow-
ing on the latter problem (i.e. the canonical droplet-wall interaction, Fig. 3.1-a) before
extending the simulation framework and results to the droplet-droplet collision (Fig. 3.1-b,
§ 3.6.2). We provide in section 3.3.1 the coupled hydrodynamic and chemical problems
involved in the interaction, together with the governing equations. In § 3.3.2 and 3.3.3, a
novel treatment of the problem using a spectral decomposition of the fields onto a moving
bi-spherical grid is presented. This approach is used in § 3.4 and 3.5 to analyse in detail the
interaction and rebound of a droplet onto a rigid wall, above the self-propulsion threshold,
and the different behaviours observed depending on the advection-to-diffusion ratio. The
results for a droplet-droplet collision are also presented and discussed. To provide further
insight into the behaviour of the system in the vicinity of the self-propulsion threshold (i.e.
for small velocity magnitude), a rigorous asymptotic treatment of the interaction performed
by Matvey Morozov a former postdoctoral researcher at LadHyX is presented in § 3.7. The
numerical and asymptotic results are then used to propose a quantitatively-accurate effec-
tive model of the rebound in § 3.8, and the findings are finally summarised and discussed in
§ 3.9.

3.2 Modelling the interactions between an active droplet and
a rigid wall

(a)

(b)2d

d

RV

Figure 3.1: (a): Collision between an active droplet and a rigid and passive wall. (b):
Collision between two active droplets of same size.

Let us study a spherical active droplet immersed in another fluid, both characterized
as Newtonian. The droplet frontally swims toward a rigid and passive wall (z = 0) at a
velocity V = V (t)ez. The droplet being active, it releases a net flux A > 0 of a chemical
solute from its surface. As seen in the first chapter, due to their low shrinking rate [36],
we can assume (i) that an active droplet has a constant radius and (ii) that the flux A
remains constant over time. We also remind the solute (which concentration is denoted by
C) modifies the fluid’s surface tension locally and satisfies for small enough concentration
differences the linear relation Eq. (1.26), reminded below for convenience:

γ = γ0 + γ1C, (3.1)
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where γ0 and γ1 are two positive constants [36, 101].

In the following, and unless stated otherwise, we focus primarily on the droplet-wall
interactions, and briefly analyse the case of two colliding identical active droplets in sec-
tion 3.6.2. We denote by d the distance between the droplet’s surface and the wall (Fig. 3.1).
In the following we keep the same characteristic length, concentration and velocity scales as
in section 2.1, so that all quantities of interest are made dimensionless.

3.2.1 Chemical problem

The droplet steers some flow as it swims and we thus expect the solute it emits at its
surface to both diffuse and be advected by the fluid’s motion. In a similar manner as in the
single droplet case, we note u(i,o) the Eulerian velocity field in the outer and inner fluids
measured in the fixed laboratory frame and in order to describe the solute dynamics we
consider the dimensionless concentration c satisfies the advection-diffusion equation:

Pe

(
∂c

∂t
+ u(o) ·∇c

)
= ∇2c with Pe =

V ∗R

D
=

AR2γ1

(2η(o) + 3η(i))D2
· (3.2)

A critical parameter in the study is the Péclet number. If Pe = 0, the solute would diffuse
instantaneously in the medium whereas if Pe � 1 its transport results only from the flow
motion. Besides, the solute is emitted via a fixed chemical flux from the droplet’s surface
and we further assume that the rigid wall is unable to exchange any solute with the fluid.
Boundary conditions for the solute concentration c are therefore obtained as:

∇c|S · n = −1, ∇c|W · n = 0, (3.3)

c|r→∞ = 0, (3.4)

where S (resp. W ) denotes the surface of the droplet (resp. the wall) and n the unit normal
vector pointing into the outer fluid domain.

3.2.2 Hydrodynamic problem

Inertia being negligible as such scales, the flow velocity and pressure satisfy a steady
Stokes equation in both phases:

∇2u(i,o) = ∇p(i,o), ∇ · u(i,o) = 0. (3.5)

In the labframe, u(o) vanishes far away from the droplet. At the droplet’s interface, the
velocity field is continuous and Marangoni stresses result in a jump in tangential hydrody-
namic stresses. Additionally, a no-slip condition is imposed at the wall surface. Noting σ(i,o),
the Cauchy stress tensor in each fluid and η̃ = η(i)/η(o) the viscosity ratio, the boundary
conditions for the hydrodynamic problem are therefore obtained as

(I − nn) · (σ(o) − η̃σ(i))
∣∣∣
S
· n = −(I − nn) · (2 + 3η̃) ∇c|S , (3.6)

u(o)
∣∣∣
S

= u(i)
∣∣∣
S
, u(o)

∣∣∣
W

= 0, u(o)
∣∣∣
r→∞

= 0, (3.7)

and recalling that v is the dimensionless droplet’s velocity, the impermeability condition
further imposes:

(u(o) · n)
∣∣∣
S

= v · n, (3.8)
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Neglecting inertia, the droplet must remain force-free, imposing Eq. (1.9) to be satisfied (re-
minded below for convenience), which provides an additional implicit relation to determine
v:

F =

∫

S
σ(o) · ndS = 0, T =

∫

S
r × σ(o) · ndS = 0. (3.9)

Invoking the linearity of the Stokes equation, one can split the total hydrodynamic force
F into the Marangoni forces Fm experienced by a fixed droplet and the drag forces Fd
resulting from its translation. Because of the presence of the rigid wall the drag experienced
by the droplet follows Fd = −Rd · v with Rd the resistance matrix which is a function only
of the geometry of the problem (i.e. the droplet radius and its distance to the wall). As a
direct consequence of Eq. (3.9),

v = −R−1
d · Fm. (3.10)

While we expect Rd to significantly vary with d when the droplet is close to the wall, we
remind that Rd = 2π(3η̃ + 2)/(η̃ + 1) when the droplet is infinitely far from it. Fig. 3.2
reports in solid red line the evolution of the drag coefficient Cd experienced by the droplet
as function of its distance to the wall d. In order to track the front-back concentration
asymmetry along the collision, we keep the same definition of the polarity Π introduced
in section 2.1, and remind that Π = v for any Pe in the case of the single active droplet
isolated hydrodynamically.
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Figure 3.2: Drag coefficient evolution Cd = Rd : ezez of a passive droplet of unit radius
moving toward a rigid wall as function of the separation distance d and for η̃ = 1 (solid
red line). The figure also reports in dashed red line the drag coefficient value of the single
droplet in bulk: Cd = 5π.
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3.3 Solving for the coupled hydrodynamic and chemical fields

The physical effect of the wall on the approaching droplet is a priori two-fold: hydrodynam-
ically, the confinement of the fluid between the droplet and the bounding wall modifies the
viscous stresses (and droplet’s resistance matrix Rd); furthermore, the chemically-inert wall
reduces the effective solute diffusion away from the droplet resulting in an accumulation of
solute in front of the approaching droplet. Because the active droplet is anti-chemotactic
(it swims down the solute concentration gradient), such accumulation is expected to repel
the droplet away. To account in details for these two effects and their coupling, a novel
analytical and numerical framework is proposed and detailed here to solve exactly for the
non-linearly coupled dynamics of the flow field and solute advection-diffusion using a moving
bi-spherical coordinate system matching the moving droplet’s boundary.

Cartesian coordinates are well-adapted to describe fluid motion or solute transport above
a flat wall, yet spherical coordinates are typically more convenient to describe the flow and
solute dynamics near a droplet surface. A body-fitted mesh is thus defined to describe simply
both boundaries using bi-spherical coordinates, an approach that is convenient to apply
boundary conditions (Fig. 3.3). In contrast with many studies using such coordinates [77,
102, 103, 104], the droplet is not fixed with respect to the wall so that the bi-spherical
system needs to be modified at each time to match the evolving boundaries.

3.3.1 Bi-spherical grid adaptation for unsteady problems

⇢

z0

⇠
=

0

iso
-⇠

is
o-

µ

⇠ = 1

Figure 3.3: Bi-spherical coordinate system. Contours of fixed µ (solid-red) and fixed ξ
(dashed blue) are shown at a given time t. The surfaces of the wall and droplet are given
by ξ = 0 and ξ = 1, respectively.

At a given time t, a point located at (z, ρ, φ) in the fixed cylindrical coordinate system
(with ez the axis of symmetry of the problem and the origin located on the wall) has
bi-spherical coordinates (ξ, µ, φ) defined by:

ρ =
a(t)

√
1− µ2

Γ
, z =

a(t) sinh(λ(t)ξ)

Γ
with Γ(ξ, µ, t) = cosh(λ(t)ξ)− µ, (3.11)

where a(t) and λ(t) are functions of time to account for the time-dependent stretching of
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the grid. Surfaces of constant ξ represent a set of non-intersecting spheres (see Fig. 3.3).
At any time t, the wall and droplet’s surfaces correspond to ξ = 0 and ξ = 1, respectively.
The functions a(t) and λ(t) are determined uniquely from the droplet’s radius and distance
to the wall:

λ(t) = cosh−1

(
d(t)

R
+ 1

)
, a(t) = R

√
d(t)(d(t) + 2R). (3.12)

In addition, the unit vectors of the bi-spherical basis are defined as (eξ, eµ, eφ) with:

eξ =
1− µ cosh(λξ)

Γ
ez −

√
1− µ2 sinh(λξ)

Γ
eρ, (3.13)

eµ =

√
1− µ2 sinh(λξ)

Γ
ez +

1− µ cosh(λξ)

Γ
eρ. (3.14)

and the corresponding metric coefficients are:

hξ =
aλ

Γ
, hµ =

a

Γ
√

1− µ2
, hφ =

a
√

1− µ2

Γ
· (3.15)

Because of the motion of the droplet (and resulting grid adaption depicted in Fig. 3.4), a
point of fixed (ξ, µ, φ) is not fixed in the labframe, i.e. it has time-dependent (ρ, z)-coordinates.
This has consequences when solving time-dependent equations such as Eq. (3.2). Indeed,
considering the local change in time of the concentration field c at a fixed point (ρ, z) now
introduces a material derivative when considering c as a function of (ξ, µ, t), and we must
thus replace:

∂c

∂t

∣∣∣∣
ρ,z

=
∂c

∂t

∣∣∣∣
ξ,µ

− χ ·∇c, (3.16)

where χ is the velocity of a point with fixed (ξ, µ) in the physical space, and is obtained
from Eq. (3.11). The advection-diffusion equation for c(ξ, µ, t) is therefore obtained as

∂c

∂t

∣∣∣∣
ξ,µ

+ (u− χ) ·∇c =
1

Pe
∇2c, (3.17)

where, noting time derivatives of single-variable functions with a dot symbol (see Appendix
A for calculation details),

χ ·∇c =

(
λ̇ξ

λ
− ȧµ sinh(λξ)

λa

)
∂c

∂ξ
+
ȧ

a
(1− µ2) cosh(λξ)

∂c

∂µ
. (3.18)

t

Figure 3.4: Distortion of the bi-spherical grid as the droplet gets closer to the wall. Solid
red lines: contours of fixed µ, dashed blue lines: contours of fixed ξ.
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3.3.2 Hydrodynamic problem

Solving the transport equation Eq. (3.17) requires knowing the velocity field u. As noted
before, the hydrodynamic (Stokes) problem is instantaneous and linear and the classical
method to obtain Stokes flow solutions in bi-spherical geometries can be used [77]. The
(inner and outer) flow fields are obtained in terms of streamfunctions ψ(i,o) [103]:

u
(i,o)
ξ =

Γ2

a2

∂ψ(i,o)

∂µ
, u(i,o)

µ = − Γ2

a2λ
√

1− µ2

∂ψ(i,o)

∂ξ
, (3.19)

which can be written for an axisymmetric problem as [77]:

ψ(i,o)(ξ, µ, t) = Γ−3/2
∞∑

n=1

(1− µ2)L′n(µ)U i,on (ξ, t), (3.20)

where L′n is the first derivative of Ln, the Legendre polynomial of degree n, and the functions
U i,on are given by:

U i,on (ξ, t) = αn cosh

[(
n+

3

2

)
λξ

]
+ βn sinh

[(
n+

3

2

)
λξ

]
+ γn cosh

[(
n− 1

2

)
λξ

]

+δn sinh

[(
n− 1

2

)
λξ

]
, (3.21)

U in(ξ, t) = α̃ne
−(n+3/2)λ|ξ| + β̃ne

−(n−1/2)λ|ξ|, (3.22)

where αn, βn, γn, δn, α̃n and β̃n are determined independently at each instant t from the
kinematic and dynamic boundary conditions on the droplet and the wall surfaces. The
continuity and impermeability conditions at the droplet’s boundary, Eqs. (3.7) and (3.8),
become using both Eq. (3.19) and Eq. (3.13):

∂ψ(i)

∂µ

∣∣∣∣∣
ξ=1

=
∂ψ(o)

∂µ

∣∣∣∣∣
ξ=1

=
a2(1− µ coshλ)

(coshλ− µ)3
v. (3.23)

Integrating with respect to µ along the droplet’s boundary (and imposing ψ(i) = ψ(o) = 0
on the axis of symmetry which is a streamline of the problem) we obtain:

ψ(i)
∣∣∣
ξ=1

= ψ(o)
∣∣∣
ξ=1

=
(1− µ2)a2

2(coshλ− µ)2
V. (3.24)

The continuity of the velocity field at the droplet’s boundary further imposes:

∂ψ(o)

∂ξ

∣∣∣∣∣
ξ=1

=
∂ψ(i)

∂ξ

∣∣∣∣∣
ξ=1

, (3.25)

and the Marangoni condition in Eq. (3.6) at the surface of the droplet becomes:

(σ
(o)
ξµ − η̃σ

(i)
ξµ)
∣∣∣
ξ=1

= − (2 + 3η̃)(coshλ− µ)
√

1− µ2

a

∂c

∂µ

∣∣∣∣∣
ξ=1

. (3.26)

Finally, the no-slip boundary condition at the wall, Eq. (3.7), becomes:

ψ(o)
∣∣∣
ξ=0

= 0,
∂ψ(o)

∂ξ

∣∣∣∣∣
ξ=0

= 0. (3.27)
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Eqs. (3.24)–(3.27) projected in the polar direction along the n-th Legendre polynomial
provide n sets of 6 linear equations. In each one, αn, βn, γn, δn, α̃n and β̃n (and thus the
streamfunction) only involve terms related to the surface concentration.

3.3.3 Transport problem

To solve the transport equation Eq. (3.17), we also exploit the spectral decomposition
of c along the Legendre polynomials in the polar direction. Inspired by the separated form
of the solution for Laplace’s equation in bi-spherical coordinates, the relative concentration
field c (which vanishes at infinity here) is thus decomposed as:

c(ξ, µ, t) = Γ1/2
∞∑

n=0

cn(ξ, t)Ln(µ), (3.28)

where the cn(ξ, t) functions are yet to be determined. One difficult aspect of the bi-spherical
coordinates system is its distortion with the separation distance d (directly linked to λ). In
the case of a single active droplet, after a transient regime, the droplet swims at its constant
self-propulsion speed. In this situation, the solute dynamic reaches a steady state and the
concentration field around the droplet remains constant over time. Consequently, using the
spherical coordinates system, the coefficients Cn that characterise the concentration field
from the Legendre expansion Eq. (2.12) remain constant over time. On the other hand, in
the bi-spherical coordinates system, the coefficients cn relative to the bi-spherical expansion
Eq. (3.28) vary significantly as the droplet moves. Indeed, even if the concentration field
around the droplet remains constant, the term Γ1/2 in the concentration field expansion of
Eq. (3.28) depends on the separation distance d and thus distorts the coordinates system
as the droplet gets closer to the wall.

Using Eqs. (3.15) and (3.19), the advection-diffusion equation Eq. (3.17) is written:

∂c

∂t

∣∣∣∣
ξ,µ

+

[
ȧµ sinh(λξ)

λa
− λ̇ξ

λ
+
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∂µ

]
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∂ξ
−
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ȧ

a
(1− µ2) cosh(λξ) +

Γ3

λa3

∂ψ(o)

∂ξ

]
∂c

∂µ

=
1
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[
1

λ

∂

∂ξ

(
1

Γ

∂c

∂ξ

)
+

∂

∂µ

(
(1− µ2)

Γ

∂c

∂µ

)]
, (3.29)

and substituting ψ and c from Eqs. (3.20) and (3.28) yields:

∞∑

n=0

{
Ln

Γ1/2

∂cn
∂t

+
ȧ

a

[
(1 + µ cosh(λξ))Ln − 2 cosh(λξ)(1− µ2)L′n

2Γ1/2

]
cn
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(
ȧµ sinh(λξ)− λ̇ξa

λa

)
Ln

Γ1/2

∂cn
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+
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3
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∂cn
∂ξ

+
λ sinh(λξ)
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2
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(
1

λ2

∂2cn
∂ξ2

−
(
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1

2

)2

cn

)
Ln. (3.30)

Projecting the advection-diffusion equation, Eq. (3.30), onto Lp(µ) provides a set of cou-
pled partial differential equations for C̃(ξ, t) = [c0(ξ, t), c1(ξ, t), ..., cN (ξ, t)] (see Appendix
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A) which can be formally written as:

H · ∂C̃
∂t

+

(
B1 ·U +B2 · ∂U

∂ξ
+G1

)
· C̃

+
(
B3 ·U +G2

)
· ∂C̃
∂ξ

=
1

Pe

(
A1 · C̃ +A2 · ∂

2C̃

∂ξ2

)
, (3.31)

where the second-order tensorsH,Ai,Gi (i = 1, 2) and the third-order tensorBj (j = 1, 2, 3)
have coefficients that are obtained in terms of integrals of appropriate combinations of Legen-
dre polynomials and depend on ξ (see Appendix A). Physically, terms in H, Gi, Bj and Ai

are related to the local time-derivative (for fixed ξ and µ), the grid adaptation, convection by
the Marangoni flow and diffusion, respectively. Besides, U(ξ, t) = [Uo1 (ξ, t), Uo2 (ξ, t), ..., UoN (ξ, t)]
is a linear and instantaneous function of C̃ (see § 3.3.2).

Finally, this set of evolution equations for cn(ξ, t), Eq. (3.31), which are second-order in
space, must be complemented by appropriate boundary conditions. After substitution of
Eq. (3.28), and projection onto the n-th Legendre polynomial the flux conditions, Eqs. (3.3),
at the droplet’s (ξ = 1) and wall’s (ξ = 0) surfaces become:

(
λ sinhλ

2
cn + coshλ

∂cn
∂ξ
− n+ 1

2n+ 3

∂cn+1

∂ξ
− n

2n− 1

∂cn−1

∂ξ

)∣∣∣∣
ξ=1

=
√

2aλe−(n+1/2)|λ|,

(3.32)
(
∂cn
∂ξ
− n+ 1

2n+ 3

∂cn+1

∂ξ
− n

2n− 1

∂cn−1

∂ξ

)∣∣∣∣
ξ=0

= 0. (3.33)

At each time-step, the functions (Uon)n are obtained from (cn)n following the results of Sec-
tion 3.3.2. Note that only the outer flow needs to be known explicitly. The set of non-linear
partial differential equations Eq. (3.31) is then solved using finite differences and a uniform
grid of Nξ points with 0 ≤ ξ ≤ 1. Advective terms, i.e. those involving Uon(ξ), are treated
explicitly while a Crank-Nicholson scheme is used to account for the diffusive terms. In ad-
dition we use a Richardson extrapolation method to get an adaptative time step. We show
on Fig. 3.5 the concentration field and streamlines in the lab-frame that one can obtaine by
the present derivation.

To clearly identify the hydro-chemical interactions experienced by an active droplet in
the presence of a wall, the droplet should reach its self-propelling steady state before it feels
any influence form it. Therefore, in the case of a head-on collision, the droplet must begin
its journey sufficiently far away from the wall. As the droplet swims, the bi-spherical grid
experiences distortions (see Fig. 3.4). Consequently, the farther the droplet, the coarser the
spatial resolution. Furthermore, we expect that the solute azimuthal distribution at the
droplet surface will significantly vary when the droplet approaches the wall. Therefore, to
grasp the physics of the collision, the sufficient number of bi-spherical modes one needs to
consider increases as the droplet gets closer to the wall. Finally, for the collision dynamics to
be accurately resolved we chose both a sufficiently large number of modes and grid points to
reach a numerical convergence (in practice by examining the velocity and the solute polarity
for different modal and spatial resolutions).
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Figure 3.5: Concentration field and streamlines in the lab-frame around an active droplet
that swims toward a wall

Finally, it should be noted the present framework can easily be adapted to consider the
collision of two droplets rather than a droplet with a wall: for two symmetric droplets, the
ξ-grid is simply extended to −1 ≤ ξ ≤ 1 with the boundary conditions at the wall (ξ = 0)
being replaced by appropriate conditions on the second droplet (ξ = −1). Alternatively, for
a purely symmetric situation (see section 3.6.2), we only need to solve the right-half plane
problem by imposing the symmetry of the concentration and velocity field on ξ = 0.

3.3.4 Validation of the numerical model

The validity and accuracy of the present approach are tested by comparison with the case
of a single self-propelled droplet considered by Ref. [36]. To this end, we consider the case of
two droplets initially separated by a distance d = 48, i.e. far enough that one expects their
interaction to be only weak and to recover the single-droplet results. The concentration
field is initialised using the purely-diffusive solution (Pe = 0) of two droplets, for which an
analytical solution can be computed using the same approach of [103]. At t > 0, the previ-
ous simulation framework is used for a fixed non-zero value of Pe; both droplets are initially
forced to move at a fixed positive velocity v = 0.1 until t = 2 and are let to evolve force-free
for t > 2; after a transient regime, their velocity relaxes toward a fixed and common value
identified as their self-propulsion velocity v0 when isolated.

The mean long-time velocity of the droplets is measured at t = 3000; it is reported
on Fig. 3.6 and compared to the results of Ref. [36] for a single droplet. The results are
in excellent agreement and validate the present framework: the maximum relative errors
obtained are around 2% for 6 ≤ Pe ≤ 20, when using N = 60 polar modes and Nξ = 100
regularly-spaced grid points in ξ, a resolution precise enough to guarantee the accurate
description of the physical processes, yet light enough to analyse the time-dependent rebound
dynamics of the droplet as well as the influence of Pe on the detailed chemo-hydrodynamic
interaction between the droplet and the wall.
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Figure 3.6: (a) Mean velocity of two active droplets initially located at d = 48 from each
other and moving in the same direction at Pe = 6 and η̃ = 1/36 (red solid line). The
self-propulsion velocity v0 for a single active droplet drawn from Ref. [36] (same viscosity
ratio and Pe) is also reported by a red dashed line. (b) Mean self-propulsion velocity v0 of
two active droplets for Pe = 6 and η̃ = 1/36 (red crosses). The results of Ref. [36] for a
single active droplet with the same viscosity ratio are also reported (black solid line). (c)
concentration field around an active droplet for Pe = 6 and Pe = 20.

3.4 Collision at moderate Péclet number

We first analyse the collision dynamics for moderate advection, i.e. for Pe slightly above
the instability threshold (Pe = 6 is chosen here). For simplicity, the inner and outer fluid
viscosities are assumed identical from now on (η̃ = 1). The motion of the droplet as
well as the front-back asymmetry of the concentration field, i.e. the motion’s primary
driving mechanism, are monitored by the droplet’s velocity v and the polarity of the surface
concentration Π defined in section 2.1. Fig. 3.7 displays the evolution of v = v · ez and
Π = Π ·ez with the distance between the droplet and the wall d. Initially, the droplet swims
toward the wall with a constant self-propulsion velocity −v0, where v0(Pe) is the magnitude
of self-propulsion of an isolated droplet. As it approaches the wall, it decelerates and reverses
direction (v = 0) at a finite distance dmin(Pe) from the wall (dmin = 1.4 for Pe = 6). In a
second phase, the droplet accelerates away from the wall and eventually reaches again its
self-propulsion velocity v0. A main observation of Fig. 3.7 is that the velocity and polarity
are almost equal throughout the collision and the consequence of this is discussed in more
depth below. In the following, we analyse each sequence of the interaction to identify the
roles of the different mechanisms.
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3.4.1 Far-field interactions

The droplet is expected to respond to the wall’s influence on both the chemical and
hydrodynamic fields. Chemically, the droplet acts as a source of solute. The no-flux bound-
ary condition prevents the diffusion of solute through it which essentially amounts to an
elevation of the solute content in the wall’s vicinity. When the droplet is far enough from
the wall, this amounts to an effective image source of chemical located in the z < 0 half-
plane creating a 1/d2 chemical gradient and repulsive Marangoni force on the droplet (see
section 2.3). When the droplet is close enough, this repulsion eventually dominates the
self-propulsion maintained by the chemical polarity at the droplet’s surface.

Hydrodynamically, the wall modifies the drag coefficient on the droplet but also modifies
the swimming velocity resulting from a given traction applied at the droplet’s surface (here
Marangoni stress). Fig. 3.7 shows that the polarity and velocity remain almost identical
throughout the collision, as for a single isolated droplet, although both quantities evolve in
time due to the modification of the concentration field. The equality of v and Π for a single
isolated droplet, Eq. (2.40), solely stems from the hydrodynamic problem, which suggests
that the hydrodynamic influence of the wall is weak here; in other words, changes in the
droplet velocity result mainly from the modification of the concentration distribution at its
surface (i.e. chemical interactions) and not from hydrodynamic interactions with the wall
which appear subdominant.
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Figure 3.7: Collision of an active droplet with a rigid wall at Pe = 6. The evolution of the
droplet velocity v (solid blue) and polarity Π (dashed red) during the collision are reported
in terms of the distance d between the droplet’s surface and the wall (b). Snapshots of the
concentration (a) and stream-function (c) are also shown for four representative positions
indicated as (A-D) on panel (b).
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3.4.2 Near field and re-acceleration toward self-propulsion

When the droplet velocity vanishes (see Fig. 3.7b), the polarity of the concentration field
also comes close to zero. A closer look at the distribution of chemical on the surface at
that instant in fact reveals that the concentration distribution is almost homogeneous (its
variance is reduced by an order of magnitude, when compared to the initial self-propelling
state): this results in the droplet’s arrest as there is no longer a Marangoni effect acting on
the surface of the droplet and the fluid is at rest.

However, this equilibrium is only ephemeral as the presence of the wall promptly breaks
this uniform distribution: the chemical flux at the droplet’s surface being spatially uniform,
the confinement on the side of the wall leads to an increased solute concentration there. As
a result, a repelling Marangoni effect forces the droplet to drift away from the wall.

Because Pe is greater than the instability threshold, this perturbation of the concen-
tration field simultaneously leads to the development of the same instability phenomenon
that conferred the droplet its initial velocity, until it reaches v0 as the droplet moves far
away from the wall. In order to study the influence of the wall in the droplet “forced”
re-acceleration, Fig. 3.8 compares this second phase of the motion with the situation of a
single isolated droplet initially pushed at a finite velocity in the positive z direction before
left force-free. The acceleration is initially greater in the second part of the droplet collision
with the wall than in the reference isolated droplet case. Indeed, the presence of the wall
reinforces the droplet acceleration (by accumulating more solute at its back) than in the
case where the solute is able to diffuse freely.
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Figure 3.8: Evolution in time of the droplet’s velocity for Pe = 6 during its re-acceleration
after its collision with the wall (solid blue). This evolution is compared to the acceleration
of an isolated droplet initially forced with a positive velocity v = 0.1 before being released
force free at t = 0 (dashed red).
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Figure 3.9: Collision of an active droplet with a rigid wall at Pe = 20. The evolution of the
droplet velocity v (blue solide) and polarity Π (red dashed) during the collision are reported
in terms of the distance d between the droplet’s surface and the wall (b). Snapshots of the
concentration (a) and streamfunction (c) are also shown for four representative positions
indicated as (A-D) on panel (b).

The results obtained for moderate Pe presented a rather simple picture of the collision
dynamics: dominated by the chemical interactions with the wall, it amounts to a slowing
down and repulsion of the droplet under the effect of the accumulating chemical solute
in front of it due the confining presence of the wall, the wall’s hydrodynamic effect being
mostly subdominant. The picture becomes however much more complex as the importance
of convection of solute vs. diffusion is increased, and the focus of this section is to analyse
how wall interactions and collision dynamics are modified as Pe is increased.

Fig. 3.9 presents the evolution of velocity and polarity throughout the collision for
Pe = 20. As for Pe = 6, the droplet initially propels at −v0 toward the wall and decel-
erates up to a stopping point. This minimum rebound distance, dmin is however much
lower, e.g. dmin = 0.3 for Pe = 20. Also, unlike for moderate Pe, the re-acceleration of
the droplet is not a smooth process. In particular it displays a clear velocity plateau right
after the rebound during which the droplet velocity remains almost constant. Eventually,
and as expected, the droplet reaches once again its self-propulsion velocity as it moves away
from the wall whose influence becomes negligible. In contrast with the moderate-Pe colli-
sion (Fig. 3.7), we note that the polarity and velocity do not match one another anymore
during most of the near-field interactions with the wall, suggesting a stronger hydrodynamic
influence of the confinement.
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3.5.1 Early interactions and droplet deceleration

In contrast with the case of moderate advection (Pe = 6) for which the droplet starts
to slow down at a distance d ≈ 4.5 away from the wall, the velocity of the droplet remains
relatively unchanged for larger Pe (e.g. down to a distance d ≈ 3 for Pe = 20, Fig. 3.9).
This slowing down of the droplet was identified as predominantly associated with the chem-
ical repulsion resulting from the confinement of its own chemical signature. This approach
of the droplet closer to the wall is therefore consistent with the faster (exponential) decay
of the concentration field in front of the droplet as a result of the solute advection, while
the decay is only algebraic in its wake [105, 106, 101]. The asymmetric structure of the
concentration field can be observed by comparing the instant A of each panel (a) relative
to the Figs. 3.7 and 3.9. As a result, the direct influence of the wall on the concentration
field arises belatedly during the interaction for larger Pe.

One already noted that v and Π do not match one another anymore, contrary to the
moderate Pe regime, indicating a direct hydrodynamic influence of the wall. Strikingly,
and contrary to the intuition that chemical confinement would reduce the front-back con-
centration contrast at the droplet’s surface, we also note that the polarity of the surface
concentration |Π| is increased as the droplet approaches the wall, and reaches its maxi-
mal value close to d = 1 before sharply reversing as the droplet stops. To understand
this phenomenon in greater depth, the front-back concentration difference at the surface
∆c = cfront − cback is represented on Fig. 3.10. Note that ∆c is a second measure of the
asymmetry in surface concentration which evolves in the same manner as |Π| during the
first part of the motion. During the approach of the droplet, both back and front concen-
trations are observed to increase (down to a distance d = 3). In a second phase, v starts
to decrease under the effect of hydrodynamic interactions. Yet, the Marangoni flow is not
stopped, and in fact contributes to maintain the concentration contrast responsible for a net
pumping flow toward the back of the droplet effectively expelling more solute toward the
droplet’s wake (illustrated by the decrease of cfront), which therefore explains the increase
of |Π|. As in the moderate-Pe case, solute accumulates between the wall and the droplet as
they get closer to each other, but the minimum distance dmin of the droplet surface to the
wall is now significantly smaller as a result of the sharper decay of the surface concentration
ahead of the droplet during the approaching phase. This induces a sharper increase of the
concentration between the wall and droplet, resulting in the fast inversion of v observed in
Fig. 3.9. In addition, Fig. 3.10 shows how the inversion of v can directly be correlated to
the increase of Π.

3.5.2 Rebound and velocity plateau

A distinguishing feature of the collision dynamics for higher Pe is the existence, shortly
after the rebound of the droplet (Fig. 3.9b), of a velocity plateau during which the droplet’s
velocity remains relatively constant, and significantly smaller than v0, while the droplet
moves away from the wall by about one radius.

To understand its origin, Fig. 3.7 and Fig. 3.9 provide the evolution of the flow field
(streamlines) in the frame of reference of the droplet for Pe = 6 and Pe = 20. For Pe = 6,
the flow field is very weak at the instant of rebound, a consequence of the homogeneity
of the surface concentration and resulting absence of Marangoni forcing. In contrast, at
that same instant for Pe = 20, a strong flow in and around the droplet is observed to
persist as a consequence of the surface concentration inhomogeneity (Fig. 3.9b). Within the
present Stokesian approach, this flow field is an instantaneous response to the concentration
distribution at the droplet surface. This flow helps sustain the polarity of the arrested
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Figure 3.10: Evolution as a function of the droplet-wall distance d of the velocity
v (solid blue) the polarity (red dashed) and front-back surface concentration contrast
∆c = cfront − cback (black dashed-dotted) at Pe = 20. The inset shows the evolution of
cback and cfront with d individually and the definition of these two quantities is given at the
top of the figure.

droplet while balancing the chemical repulsion introduced by the wall; as a result, a velocity
plateau develops until the flow within the droplet reverses. The structure of the flow within
the droplet is quadrupolar (in contrast with the dipolar flow observed during self-propulsion)
and is a direct result of the surface concentration distribution, whose slow relaxation for
larger Pe introduces a delay before the instability leading to the droplet’s self-propulsion
away from the wall may develop again. The evolution of cback in Fig. 3.10 illustrates the
mitigation of the residual amount of solute at the back of the droplet during the second part
of the rebound.

3.5.3 Re-acceleration toward self-propulsion

Since dmin is lower at higher Pe, one would expect an enhanced repulsion from the
wall and therefore an even faster re-acceleration of the droplet (when compared to the
development of the self-propulsion instability for an isolated droplet) than was observed for
moderate Pe (Fig. 3.8). This is however not the case: strikingly, and in contrast with the
moderate-Pe situation, the droplet actually takes more time to recover its propulsion velocity
v0 after the rebound than if it was alone (Fig. 3.11). This effect is a direct consequence of
the persistence of an excess of solute in the droplet’s wake after its approach to the wall,
which was already shown to create a pumping flow that holds the droplet back.
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Figure 3.11: Evolution in time of the droplet’s velocity for Pe = 20 during its re-acceleration
after its collision with the wall (solid blue). This evolution is compared to the acceleration
of an isolated droplet initially forced with a positive velocity v = 0.1 before being released
force free at t = 0 (dashed red).

3.6 Rebound distance and two-droplet collision

In the previous sections, the droplet-wall interaction was analysed in details for two
different values of Pe. One key feature was that, due to the structure of the concentration
field ahead of the moving droplet, the rebound distance (i.e. the minimum distance of
approach of the droplet to the wall) is reduced when advection plays a more important role in
the solute transport. The goal of this section is to provide a more complete characterisation
of this phenomenon and we thus now focus on the evolution with Pe of the distance dmin

between the wall and the front of the droplet at the time it reverses direction (Fig. 3.12).

3.6.1 Rebound distance with varying Pe

A monotonic decrease of dmin is observed, as expected from the structure of the concen-
tration field ahead of the moving droplet (see top panels of Fig. 3.12). We also note the
existence of two distinct regimes in this decrease. For moderate Pe, and as Pe approaches
the minimum value for self-propulsion Pec = 4 [66, 36, 101], dmin diverges as (Pe−Pec)

−1:
close to the self-propulsion threshold, the droplet is more sensitive to the wall’s influence and
is repelled at much greater distances. For larger Pe (typically Pe & 10), a slower decrease
is observed as (Pe− Pec)

−1/2. The asymptotic analysis of the collision near Pec, presented
in section 3.7, confirms the former scaling and provides more depth on the interaction and
rebound dynamics.

3.6.2 Two-droplet collision

The interaction of a droplet with a chemically-inert wall shares many similarities to the
symmetric interaction of two identical droplets. Mathematically, the chemical problem is
in fact identical, the no-flux condition at the wall in Eq. (3.3) being strictly equivalent to
a perfect symmetry of the concentration field as for the case of two symmetric droplets.
The only difference therefore lies in the hydrodynamic problem and resulting flow field: a
no-slip condition is applied for the case of rebound on a wall, Eq. (3.7), while symmetry
conditions on the velocity field would hold on z = 0 for the case of two droplets (effectively
amounting to the presence of a free surface rather than a rigid wall). The modification
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Figure 3.12: Evolution of the rebound distance dmin (measured when v = 0) for the droplet-
wall collision (red crosses). The inset reproduces the same data in log-log scales to identify
the asymptotic scaling for near critical and large Pe. The concentration fields around an
active droplet approaching the wall (i.e. propelling to the left) are also shown for three
representative Péclet numbers Pe = 6, 13 and 20.

of the hydrodynamic field may nevertheless have significant consequences, in particular at
larger Pe due to the importance of advection by this flow field on the solute dynamics.

Before closing this section, we therefore briefly analyse the difference between the two
situations in more details. Defining 2d the minimum distance between the surfaces of the
two droplets (Fig. 3.1b), and performing the same numerical approach as for the droplet-
wall interaction, one reports in Fig. 3.13 the evolution with d of the velocity and polarity
of the right-hand droplet for moderate and higher Pe, and compare those results to that
obtained for the wall collision. Both configurations lead to the same dynamics except in
the immediate vicinity of the stopping point where some small variations can be identified.
These differences are more pronounced for larger Pe, which is likely due to the closer prox-
imity to the wall.

Indeed, the free-surface boundary condition for the velocity field in the plane z = 0 has
two main consequences. First, consistent with the asymptotic results of section 2.2, Fig. 3.15
shows the drag coefficient experienced by each droplet is lower in the two-droplet collision
when compared to the droplet-wall situation for the same separation distance d [22, 107].
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Figure 3.13: Collision between two active droplets at Pe = 6 (top) and Pe = 20 (bottom).
In each case, the evolution with d, the half-distance between the two droplets, of the droplet
velocity v (solid blue) and polarity Π (dashed red) is shown. For reference the corresponding
results for the collision of a single droplet with a no-slip wall are also shown for the velocity
(solid black) and polarity (dashed black).

Indeed, in the case of the symmetric collision of two droplets, the free-surface at z = 0 is
mobile and does not generate additional viscous dissipation as in the case of a rigid wall
which imposes the flow to vanish. Having a lower drag coefficient, Eq. (3.10) implies directly
that the same solute distribution around the droplet’s surface leads to a greater propulsion
velocity. Besides, the solute is evacuated by advection more easily from the zone between
the droplets, since the flow field have a component along ey on the z = 0 plan. The latter
results in the mitigation of the solute concentration in the region between the droplets,
which therefore approach closer before experiencing a rebound. Fig. 3.14 further reports
the evolution of dmin with Pe for the droplet-wall and droplet-droplet collisions. Once again,
the evolutions are similar, although the rebound distance is systematically smaller in the
case of two droplets (or of a free surface) than for a droplet and a no-slip wall.
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3.7 Asymptotic calculations

The asymptotic computations of this section have been carried out by Matvey Morozov, a
former postdoctoral researcher at LadHyX. So far we have accrued a general understanding
of the droplet-wall and droplet-droplet interactions in the presence of advection. In this
section, we employ asymptotic methods to explain some of the findings in more detail for
the symmetric collision of two identical droplets (although most of the reasoning below will
be shown to be straightforwardly applicable to the collision of a single droplet with a no-slip
wall). Since explicit analytical treatment of advection-diffusion in bi-spherical coordinates
is exceedingly complex, we consider a pair of identical active droplets separated by a large
center-to-center distance 2dc ≡ 2Dc/ε, where ε� 1. We postulate that the system remains
symmetric at all times, i.e., droplets either approach each other with velocity −2v or part
ways with velocity 2v. We also assume that the Péclet number is close to the critical value
Pec = 4 corresponding to the spontaneous onset of self-propulsion,

Pe = Pec + εδ, (3.34)

where δ = O(1) is the supercriticality parameter. In this case, a weakly-nonlinear theory
of droplet interaction may be constructed using only axisymmetric spherical coordinates
in the vicinity of each droplet. In particular, we will obtain an asymptotic solution to
the problem formulated by Eqs. (3.2)–(3.9) by considering each of the droplets separately
using axisymmetric spherical coordinates co-moving with the corresponding droplet. In the
vicinity of the self-propulsion threshold (i.e. for ε� 1), the droplet velocity is expected to
be small,

vi = εv
(1)
i + ε2v

(2)
i + . . . for i = 1, 2, (3.35)

and, thus, advection is weak [108, 101]. In the limit of weak advection, the chemical footprint
of an individual droplet is known to consist of a near-field part, N(r), valid for r � 1/ε,
and a far-field contribution, F (r), valid for r � 1 [105, 108, 101]. Accordingly, we seek for a
quasi-steady solution of the problem and expand the near- and far-field components of the
concentration field of each droplet in powers of ε,

Ni(ri) = N
(0)
i (ri)+ εN

(1)
i (ri) + ε2N

(2)
i (ri) + . . . for i = 1, 2, (3.36)

Fi(ρi) = εF
(1)
i (ρi) + ε2F

(2)
i (ρi) + . . . for i = 1, 2, (3.37)

where ri ≡ (ri, θi) and ρi ≡ (ρi, θi) = (εri, θi) are unstretched and stretched radius vectors
in the frame of reference co-moving with the i-th drop, respectively (Fig. 3.16). In what
follows we will show that interaction of a pair of distant droplets is encapsulated within

N
(2)
i , while terms N

(0)
i , N

(1)
i , F

(1)
i , and F

(2)
i may be computed for each droplet individually.

3.7.1 Problems at ε0 and ε1: isolated drops

To compute the terms N
(0)
i , N

(1)
i , and F

(1)
i of expansions (3.36)–(3.37), we consider

each of the droplets separately. That is, we substitute Eqs. (3.36)–(3.37) into the problem
formulated by Eqs. (3.2)–(3.9) in the case of a solitary spherical active drop. We then collect
O(1) terms and recover the isotropic solution,

N
(0)
i (ri) = 1/ri, (3.38)

that corresponds to a motionless droplet and quiescent fluid.

We proceed with the solution of the problem formulated by the O(ε) terms. Since the
flow field does not vanish at ε1, we need to write a solution to Stokes equations (3.5) within
and around a spherical drop. In contrast to advection-diffusion equation that requires a
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departing (bottom) active droplets. The direction of reference of each system of spherical
coordinates (i.e. θi = 0) is given by the swimming direction of the corresponding droplet,
and is therefore opposite for the two droplets.

composite solution, Eqs. (3.36)–(3.37), Stokes equations are linear and admit a solution
that is uniformly valid. At each order in ε, the axisymmetric solution of the Stokes problem,
Eq. (3.5), within and outside of the spherical droplet is given by a superposition of orthogonal
modes [109, 23, 110],

ψ(i)
n (r) = rn+1

(
1− r2

) (
1− µ2

)
L′n(µ), (3.39)

ψ(o)
n (r) =

{(
1− r3

) (
1− µ2

)
/r n = 1(

1− r2
) (

1− µ2
)
L′n(µ)/rn n > 1

, (3.40)

where ψ
(i,o)
n denote the streamfunctions corresponding to the n-th mode of the flow decom-

position within and outside of the drop, respectively.

Eq. (3.40) implies that in the reference frame co-moving with the drop, the far-field flow
at O(ε) is unidirectional and the far-field advection-diffusion equation for each droplet may
thus be rewritten as,

− Pev
(1)
i ·∇ρF

(1)
i (ρi) = ∇2

ρF
(1)
i (ρi), (3.41)

where ∇ρ denotes the gradient in stretched coordinates. Since we disregard the droplet

interactions at this order, we may adopt the corresponding solutions for N
(1)
i , and F

(1)
i

obtained by Ref. [101, 61],

N
(1)
i (ri) = −2v

(1)
i

(
1 + µi + µi

2− 3ri
4r3
i

)
, F

(1)
i (ρi) =

e−2v
(1)
i ρi(1+µi)

ρi
, (3.42)

where v
(1)
i =

∣∣v(1)
i

∣∣ and µi ≡ cos θi. Note this effectively implies that v
(1)
i > 0 and that we

define θi (and therefore µi) from an axis of reference that is oriented along the direction
of propulsion of each droplet, i.e. toward (resp. away from) the second droplet for the
approaching (resp. departing) case (Fig. 3.16).

Also note that Eqs. (3.36), (3.40) and (3.38) indicate that in the lab frame the leading
order flow at a distance 1/ε from an active droplet is O(ε4) (recall that at ε0 the fluid is
motionless), while the droplet’s chemical footprint is O(ε). That is, at a distance 1/ε from
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both droplets, the advection diffusion equation, Eq. (3.2), reduces to an unsteady diffusion
equation in the lab frame,

Pe
∂F

∂t
= ∇2F +O(ε4), (3.43)

where F denotes the combined far-field concentration footprint of a pair of active drops,
time derivative accounts for the displacement of the droplets in the lab frame, and O(ε4)
corresponds to the contribution of the flow field. Eq. (3.43) is linear, therefore F can be
found as a superposition of the contributions from the individual droplets,

F = F1 + F2 = ε
(
F

(1)
1 + F

(1)
2

)
+ ε2

(
F

(2)
1 + F

(2)
2

)
+ . . . . (3.44)

Finally, we demonstrate that interaction between the droplets appears only in the prob-
lem at O(ε2). To this end, we write the concentration field of droplet 2 in the coordinate
system of droplet 1 and expand the result in powers of ε in the cases of approaching and
departing drops, respectively,

F2,approach = ε
e−8Dcv(1)

2Dc
− ε2 e

−8Dcv(1)
(
1 + 8Dcv

(1)
)

4D2
c

r1µ1 +O(ε3), (3.45)

F2,departure = ε
1

2Dc
+ ε2

r1µ1

4D2
c

+O(ε3), (3.46)

where v(1) ≡ v(1)
1 = v

(1)
2 . Note that the first term in the right-hand side of Eqs. (3.45)–(3.46)

is constant and, thus, can not produce any Marangoni stresses. In turn, the second term
in the right-hand side of Eq. (3.45) constitutes a unidirectional concentration gradient that
implements the effect of droplet 2 onto droplet 1. This term is quadratic in ε, which justifies
that the droplets may be considered separately at O(ε0) and O(ε1).

3.7.2 Problem at ε2: droplet interaction

Section 3.7.1 established that the interaction of a pair of distant droplets is implemented
by a linear concentration gradient in (3.45). On the other hand, in the reference frame
co-moving with the drop, the near-field advection-diffusion, Eq. (3.2), reduces to an inhomo-
geneous steady diffusion equation [101, 61] that admits Eq. (3.45) as a solution. Therefore,
the influence of the concentration gradient imposed by droplet 2 in the vicinity of droplet 1
only appears in the boundary conditions for droplet 1 and vice versa. As a result, general

solutions for N
(2)
i , and F

(2)
i may be adapted directly from Ref. [101, 61],

N
(2)
i (ri) =

C0,i

ri
+

(v(1))2

30r5
i

(
8− 15ri + 20r3

i + 80r6
i

)
− 1

2

(
δv(1) + 8A1,i

)

+ L1(µi)

(
C1,i

r2
i

+ 4ri(v
(1))2 − 1 + 2r3

i

4r3
i

(
δv(1) + 8A1,i

))

+ L2(µi)

(
C2,i

r3
i

+
(v(1))2

21r5
i

(
10− 21ri + 70r3

i − 42r4
i + 28r6

i

)
− 4 + 6r2

i

r4
i

A2,i

)
, (3.47)

F
(2)
i (ρi) = −1 + µi

2
e−2v(1)ρi(1+µi)

(
δv(1) + 8A1,i

)
, (3.48)

where A1,i, A2,i, C0,i, C1,i, and C2,i are unknown coefficients to be determined from the

boundary conditions. Following the procedure described by Ref. [101], we substitute N
(2)
i (ri)

and F
(2)
i (ρi) into the boundary conditions at ε2 and obtain a set of algebraic equations in

terms of the coefficients A1,i, A2,i, C0,i, C1,i, and C2,i. Solvability condition of this set of
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Figure 3.17: Bifurcation diagram (3.49): leading-order self-propulsion velocities of a pair
of identical active droplets located at a distance 2d = 2Dc/ε with Dc = 10. Top and
bottom branches correspond to departing and approaching drops, respectively. A solid
(resp. dashed) line denotes a stable (resp. unstable) propulsion regime.

equations yields the leading-order self-propulsion velocity of the droplet exposed to a weak
concentration field,

v(1) =
δ ±
√
δ2 + 256G

32
, (3.49)

where

G = Gapproach ≡ −
e−8Dcv(1)

(
1 + 8Dcv

(1)
)

4D2
c

or G = Gdeparture ≡
1

4D2
c

(3.50)

for approaching and departing drops, respectively. We emphasise that v(1) ≥ 0 by definition.
As a result, the departing configuration for which G > 0 is used in Eq. (3.49)), always admits
a single solution while the approaching configuration for which G < 0 may have zero or two
solutions depending on the magnitude of the concentration gradient.

Reconstructing the absolute relative velocity of the droplets is achieved as v = −εv(1)
approach

(resp. v = εv
(1)
departure) for the approaching (resp. departing) case. In the numerical analy-

sis, droplet approach corresponds to negative velocity (as shown in Fig. 3.7, Fig. 3.9 and
Fig. 3.13), and the bifurcation diagram (3.49) is plotted in Fig. 3.17 to match this conven-
tion. Eq. (3.49) corresponds to an imperfect transcritical bifurcation implying that not all
of the branches of the bifurcation diagram (3.49) are stable, as shown in Fig. 3.17. Also
note that the bifurcation diagram corresponding to Eq. (3.49) is quasistatic, i.e., it depends
on time through the separation distance between the droplets Dc only.

In essence, Eq. (3.49) establishes that the regime of steadily approaching droplets does
not exist when Gapproach < Gc ≡ −δ2/256 < 0. As the droplets approach each other, G
is negative and increases in magnitude as Dc decreases, up to a point where the quasi-
steady approach branch ceases to exist, which is identified to the droplet’s velocity reversal
and rebound dynamics. This event is associated with a critical center-to-center distance
D̃c/ε = d̃c which provides an estimate for the rebound distance dmin and satisfies

(
D̃cδ/4

)2
= 4

(
1 + D̃cδ/4

)
e−D̃cδ/4 (3.51)
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and

d̃c ≈
5.98

Pe− 4
. (3.52)

Estimation of the droplet rebound distance (3.52) reproduces the scaling obtained from the
numerical simulations (section 3.6). This asymptotic estimate dc of the rebound distance
differs however slightly from the value estimated form the numerical results in Fig. 3.14.
Such discrepancy is to be expected, since in numerical simulations rearrangement of the
concentration field in the course of the rebound is not immediate, and in fact even in the
quasi-steady framework presented here, |v| = v0/2 6= 0 when the approaching branch ceases
to exist (Fig. 3.17). Instead, droplets take some time to slow down. This regime of transitory
approach is beyond reach of the asymptotic analysis and, thus, the real rebound distance is
shorter, compared to the theoretical prediction, Eq. (3.52).

The analysis presented here is focused on the case of two symmetric droplets. Yet, as
emphasised throughout the analysis the coupling between the droplets is purely chemical.
Indeed, the flow field contribution is limited to the near-field dynamics of the flow field and
does not influence the far-field signature (only the displacement of the droplet does). This
further validates that, near the self-propulsion threshold, hydrodynamic interactions play
a subdominant role. While chemical interactions are mediated through chemical gradients
which decay as 1/d2, direct hydrodynamic interactions (i.e. the drift of a droplet in the flow
field of the second one) would be dominated by the stresslet flow created by each droplet,
which also decays as 1/d2. However, the intensity of the stresslet itself is weak for Pe ≈ Pec,
namely scaling as ε2 [101], so that hydrodynamic interactions are O(ε4) in contrast with
O(ε2) chemical interactions. As a consequence, the present asymptotic analysis applies ex-
actly to the case of a droplet collision with a no-slip wall.

Finally, we note that the present approach and bifurcation diagram in Eq. (3.49) applies
to any active droplet exposed to a concentration field, ce, that allows for an expansion in
powers of ε as shown in Eqs. (3.45)–(3.46). The physical meaning of this mathematical
requirement is twofold: (i) the evolution of ce must be slow, that is, in the lab frame ce
should satisfy the steady diffusion equation up to O(ε3),

∇2ce = O(ε3), (3.53)

and (ii) the gradient of ce must be weak, namely, ce may only contribute to N
(2)
i , that is,

∇ce = O(ε2). (3.54)

Any ce that satisfies these requirements, Eqs. (3.53)-(3.54), may be seamlessly included in
the superposition in Eq. (3.44) and subsequently expanded in powers of ε to obtain the
corresponding value of G for the bifurcation diagram (3.49).
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3.8 Effective model of the collision dynamics

The results of § 3.5 emphasised the complexity of the interaction of the droplet with the
confining wall (or with a second droplet) and the diversity of detailed behaviour when vary-
ing Pe. These results provide significant insight into such interactions and collisions that we
may wish to implement in the modelling of more complex systems where full treatment of
the coupled chemical and hydrodynamic problems is not achievable anymore. This includes,
for example, the dynamics of a large number of droplets as observed experimentally, where
the dynamics of each droplet can be seen as the succession of self-propelling stages (i.e.
isolated dynamics) and collisions with neighbours and/or boundaries.

The purpose of the present section is therefore to provide a global effective character-
isation of the rebound. The results of § 3.5 show that each collision is not simply the
sequence of a self-propulsion with v = −v0ez toward the wall followed by a propulsion one
at v = v0ez away from it. Indeed, the droplet may experience gradual slowdowns or a
velocity plateau and may rebound at a different distance dmin depending on the exact ratio
of diffusion and advection of the solute as quantified by Pe. However, the initial and final
stages of the sequence are always the same, namely propulsion with velocity ±v0ez, so that
the main quantity of interest when looking at the long-term dynamics is the total duration
of the collision, or equivalently the excess time taken in comparison with an elastic shock
(i.e. where a droplet would self-propel constantly at ±v0ez and rebound on the wall).

We attempt to characterise here this quantity, and therefore the collision, using the
following protocol: considering a (large) reference distance dm away from the wall, we
measure the corresponding time ∆t needed for an active droplet to travel from d = dm
towards the wall, rebound and come back at the same location. This lapse of time is then
compared to 2dm/v0, which is the time taken by a particle moving at the constant velocity
−v0ez and experiencing a rigid collision on the wall before returning to its original position
with constant velocity V0ez. Their difference is the delay introduced by the full hydro-
chemical dynamics with respect to a simple elastic shock, and we thus define the relative
excess collision time as

T =
V0∆t− 2dm

R
. (3.55)

The variations of T (Pe) are shown on Fig. 3.18(a). First, one should observe that, within
the range of Pe explored here, the relative collision time, T , is positive, meaning that the
collision of a self-propelled droplet takes always more time than the rigid particle collision.
This is a result of two competing effects, the rebound of the droplet at a finite distance away
from the wall (i.e. it actually travels a distance shorter than 2dm) and its slowed-down dy-
namics in the vicinity of the wall, and T > 0 suggests that the latter is dominant. Secondly,
two different regimes can be identified: for moderate Pe and up to Pe ≈ 12 the relative
collision time T evolves concavely whereas it is mostly linear for higher Pe.

A better understanding of the origin of these two regimes stems from two main phe-
nomena that cause an increase of ∆t (and T ) with Pe. As Pe increases away from Pec,
the rebound distance dmin decreases and the droplet travels a longer distance before coming
back. A particle propelling at velocity ±v0 and bouncing back at a distance dmin from
the wall would take a time 2(dm − dmin)/v0 before returning to its initial position, and
the corresponding relative excess collision time would be −2dmin/R. The asymptotic linear
dependence between T and dmin, observed in Fig. 3.18(b), therefore suggests that the in-
crease in relative collision time T for the active droplet is caused by the change of dmin with
Pe. This argument only explains the increase with Pe rather than the absolute variations:
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Figure 3.18: Time needed for the droplet to travel from a distance d = dm from the wall
and coming back after collision at the same distance. (a): Ratio of the time travel ∆t to
the time 2dm/v0 corresponding to the time taken by a particle travelling at velocity v0 from
d = dm to the same point after a rigid collision with the wall. (b): Extra time taken by the
droplet compared to the rigid collision case as function of the rebound distance dmin. (c):
f evolution as function of Pe.

indeed, the droplet’s velocity magnitude is smaller than v0 for a significant part of the se-
quence so that T > 0 while T < 0 for the particle rigid collision at dmin. Nevertheless, these
observations suggest variations of T for moderate Pe of the form:

T =
∆tv0 − 2dm

R
= K1 +K2drb, (3.56)

Using a Gauss-Newton method, the best least-square fit for K1 and K2 is obtained as
K1 = 1.75 and K2 = −0.83.

Fig. 3.12 shows that the decrease of dmin is less pronounced for higher Pe, which suggests
that a second phenomenon is responsible for the increase in relative collision time T at
higher Pe. As emphasised in section 3.5, a distinctive feature of the larger Pe collisions is
the development of a velocity plateau during which the droplet maintains a rather constant
velocity smaller than v0 after rebounding on the wall. This plateau is Pe-dependent and
Fig. 3.18(c) shows the evolution of the function f defined by the difference at larger Pe
between the actual value of T and its prediction of Eq. (3.56):

f = T −K1 −K2
dmin

R
. (3.57)

Fig. 3.18(c) shows that f is reasonably well approximated by a linear function of Pe, so that
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a global effective model for the relative collision time is obtained as:

T =
∆tv0 − 2dm

R
= = K1 +K2

dmin(Pe)

R
+K3,max(0,Pe− 12), (3.58)

where the coefficientK3 = 0.05 is fitted through Gauss-Newton non-linear regression method.
Obtaining an effective model finally requires an expression of dmin as a function of Pe. In-
spired by the asymptotic approach of section 3.7, a simple model is chosen of the form:

dmin(Pe) =
K4

Pe− 4
+

K5√
Pe− 4

, (3.59)

with fitted constants K4 = 1.89 and K5 = 0.61 determined from the data of Fig. 3.12.

The resulting effective model for the excess relative collision time T is shown on Fig. 3.18(a)
as a solid black line, and appears to provide a reasonable estimate of the collision time T
for the range of Pe investigated here (i.e. Pe ∈ [6 , 20]). It includes the two main physical
features of the collision dynamics for varying Pe, namely the change in rebound distance
and the existence of a velocity plateau.

3.9 Conclusion

The present chapter provides a unique insight into the interaction and rebound dynamics
of a chemically-active droplet with a rigid confining wall (as well as the related problem of
the symmetric collision of two such droplets). In contrast with most existing studies that
rely on some assumptions regarding either the simplified solute transport or the relative
distance to the wall, the unsteady dynamics of the solute concentration and its coupling
to the hydrodynamic here are fully resolved here for any relative distance. This provides
a quantitative analysis of the detailed solute transport around the droplet during its rebound.

In particular, we show that for moderate Pe, namely the ratio of convective and diffusive
solute transport, the rebound dynamics is well-captured by neglecting the hydrodynamic
effect of the wall and can be understood as the slowdown, reversal and re-acceleration of the
droplet in an adverse chemical gradient whose magnitude increases as the relative distance
is decreased. In contrast, when advection becomes more dominant, the complex hydrody-
namic flow around the confined droplet imposes a reorganisation of the chemical field that
profoundly alters its swimming and rebound dynamics, with a significant reduction in the
minimum distance to the wall and the emergence of a velocity plateau after the rebound,
during which the droplet maintains a reduced and somewhat constant velocity before ac-
celerating again to its nominal value as it escapes the region of influence of the wall. This
phenomenon can be related to the self-sustained gradients in surface solute concentration
by the Marangoni flows they generate, even when the droplet is forced to slow down and
stop by the hydrodynamic effect of the wall.

To retain the relative simplicity of an axisymmetric problem, the configuration consid-
ered here is highly symmetric as only the normal approach of a single droplet to a flat
wall is considered. Yet, this provides an important physical insight into the interaction and
rebound dynamics, which could contribute significantly to a better understanding of exper-
imental studies involving confined active droplets: several recent contributions have indeed
suggested that the collective behaviour of many self-propelled droplets is greatly influenced
by the role of confinement on their interactions [64, 62]. The present analysis also provides
a critically-valuable benchmark analysis for the validation of simpler models (e.g. relying
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on far-field approximations or simplified interactions) that could be used for more complex
problems (non-normal rebound or interactions of many droplets).

In the vicinity of the self-propulsion threshold, Pe ∼ Pec, weakly-nonlinear theory of
the droplet-droplet interaction confirms that the flow field created around a given droplet
by the presence of the wall or another droplet is negligible and that the coupling is purely
chemical (§ 3.7). Thereby, it rigorously establishes that the symmetric collision of two
droplets and the rebound on a rigid wall or free-surface are equivalent at leading order in
that limit. The slowdown, and eventual rebound dynamics, are then interpreted in the
framework of imperfect transcritical bifurcations as the disappearing of one of the stable
solution branches, corresponding to the propulsion of the droplet against a steepening chem-
ical gradient (Fig. 3.17). Such an event occurs for distances that scale as d ∼ 1/(Pe−Pec),
which is validated against the numerical solution of the full problem (Fig. 3.14). We further
demonstrate that due to the purely chemical nature of weak droplet-droplet interactions,
this framework and the resulting bifurcation diagram, Fig. 3.17, applies to any active droplet
exposed to an externally-imposed spatially-evolving solute concentration ce(r), provided the
variations of ce are slow enough on the scale of the droplet, Eqs. (3.53)–(3.54). As such, the
conclusions of the weakly-nonlinear analysis capture a universal feature of active droplet
dynamics.

From a more technical point of view, the numerical approach followed here provides a
novel framework for the simulation and spectral analysis of time-dependent problems in
a bi-spherical geometry. At each instant, a coordinate system is used that fits the natural
boundaries of the problem which is particularly well-suited for time-dependent multi-physics
problems where two different dynamics are coupled on the moving boundary (here the hy-
drodynamic flow field and the solute concentration). In this chapter, we use this framework
to analyse two geometrically-simple problems (i.e. a single droplet and a flat wall or two
identical droplets), yet, it can be straightforwardly used to treat more complex situations
such as the rebound on a curved wall or droplets of different sizes (see chapter 4). In partic-
ular, phoretic particles are known to exhibit non-reciprocal interactions [103, 111, 99] which
stem from the coupling of two distinct physicochemical properties (activity and mobility) to
generate self-propulsion and that can result in complex dynamics when coupling particles of
different nature or sizes. A similar property can thus be expected for active droplets since
their self-propulsion also rely on this activity-mobility combination.

While bi-spherical coordinates system have been already used in the past to solve diffusion
or viscous flow problems, it was always limited to quasi-steady problems where Laplace or
Stokes equations are solved independently at each instant [77, 102, 103, 112]. In contrast
here, the advection-diffusion dynamics requires accounting for the non-trivial evolution of
the grid. This is particularly useful for active droplets whose underlying physics critically
relies on the non-linearity introduced by the advection-diffusion of the solute. Yet, it may
also prove particularly useful to analyse a variety of other time-dependent problems such as
the unsteady mass transfer and viscous growth/dissolution of gas bubbles (e.g. near catalytic
surfaces or during boiling), or the collective dynamics of such bubbles or droplets [113].
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Take home message of Chapter 3

1. Numerical approach using moving bi-spherical coordinates: Using a
spectral decomposition method based on moving bi-spherical coordinates, we are able
to compute the exact hydro-chemical interactions involved in the frontal collision of
an active droplet against a rigid wall (as well as symmetric head-on collisions of two
active droplets).

2. Interactions at moderate Péclet: The presence of a rigid wall in the path
of an active droplet has two main consequences: (i) it increases the drag force
experienced by the droplet and (ii) it increases the solute concentration in the
confined area. As a result, the droplet slows down and eventually rebounds. At
moderate Pe, we find that hydrodynamic interactions are subdominant. It is worth
to recall that in this situation, the droplet’s velocity can be reasonably approximated
by using the polarity relation v = Π.

3. Interactions at higher Péclet: At higher Pe, advection flows transport more
solute at the back of the droplet and thus decrease the solute concentration at its
front. Therefore, in comparison to the moderate Pe case, an active droplet must go
closer to the wall in order to rebound. Unlike the case at moderate Pe, both chemical
and hydrodynamic interactions are significant. In particular, the solute wake at the
back of an active droplet takes some time to diffuse and slows down the droplet in
the second half of its rebound.
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4
Size sensitivity in the collision

of active droplets
Chemically-active droplets exhibit complex avoiding trajectories. While heterogeneity is

inevitable in active matter experiments, it is mostly overlooked in their modelling. In this
chapter, exploiting its geometric simplicity, we fully-resolve the head-on collision of two
swimming droplets of different radii and demonstrate that even a small contrast in size crit-
ically conditions their collision and subsequent dynamics. We identify three fundamentally
different regimes. The resulting high sensitivity of pairwise collisions is expected to affect
their collective dynamics profoundly. The results of this chapter were published in Physical
Review Fluids [114]

A collision of active droplets of different sizes. Top: concentration field resulting from
the head-on collision of two active droplets obtained from bi-spherical simulations [114].
Bottom: picture of the collision of active droplets in a microfluidic capillary drawn from the
experimental results of Charlotte de Blois during her PhD at Gulliver under the supervision
of Olivier Dauchot and Mathilde Reyssat.
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4.1 Experimental motivations

In chapter 1, we introduced active droplets that swim as a result of a solubilisation
process. Recent studies then reported that due to micellar interactions at their surface,
such active droplets would shrink and slow down over time [36, 57, 38, 37]. Fig. 4.1 reports
the evolution of the velocities and radii of several active droplets drawn from Ref. [36]. In
particular, the panel (b) of Fig. 4.1 informs that the shrinking rate might be different between
two droplets. Therefore, even if two active droplets are initially identical, they might not be
after a while. As a consequence, in experiments involving several active droplets: either in
a circular arena [36], a Hele-shaw cell [37, 62, 115] or a large reservoir [64], we then expect
interactions between active droplets of distinct sizes to occur. Hence we may thus wonder
if a size difference between two active droplets has any influence on their interaction.

Figure 4.1: Size and velocity evolution for a pure water droplets (a) Velocity and (b) diameter
versus time for a selection of eight trajectories. Insets: Linear-log plot for a selection of 35
trajectory parts. Both panels are drawn from Ref. [36].

Besides, we may also consider the one-dimensional collective behaviour already mentioned
in section 1.6 as an additional motivation to study size heterogeneity in active droplets. In-
deed, Ref. [63] reported spontaneous formations of lines of droplets that swim in the same
direction and at a fix separation distance from each other (called trains by the authors, see
Fig. 4.2). At the origin of such a collective dynamics, the results of Ref. [63] suggest that
the velocity difference between two colliding droplets is essential to notice a chasing state
between the droplets. Keeping in mind that droplets of distinct sizes also have distinct ve-
locities, it appears then natural to study the interactions between active droplets of various
radii.

Adopting a more theoretical point of view, we remind that interactions between active
systems of distinct sizes may result in complex behaviours. Indeed, even in the purely
diffusive situation (Pe = 0), where the solute transport equation is linear, the results of
Ref. [103] show non-trivial dynamics of two rigidly-bound active particles of different sizes.
In particular, the considered active dumbbell self-propels in a direction that depends on the
separation distance between the particles. We may then wonder about the resulting out-
come following a collision between two self-propelled active droplets of distinct sizes, whose
propulsion and interactions depend on a non-linear solute transport dynamics.

Inspired by the theoretical and experimental motivations described above, we focus on
the interactions between two active droplets of different sizes. In particular, we study how
the results of the head-on collisions presented in chapter 3 are affected by a difference in
size.
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Figure 4.2: One-dimensional collective dynamics of swimming active droplets in a microflu-
idic serpentine from Ref. [63]. The red arrows illustrate the droplets’ direction of motion.

4.2 Mathematical modelling of the collision

We consider the axisymmetric dynamics of two droplets of fixed radii R1 and R2, and of
identical chemical properties and separated by a distance d (Fig. 4.3). We name droplet 1
(resp. droplet 2) the large droplet (resp. the small droplet) and thus impose that R1 ≥ R2.
Since droplets of distinct sizes are involved, a choice should be made regarding the character-
istic quantities of the problem. First let us remind the characteristic drift velocity of a droplet
of radius Ri in an externally-imposed gradient A/D [48]: V ∗i = Aγ1Ri/[D(2η(o) + 3η(i))]
(see section 1.5). Without loss of generality we consider R2, V ∗2 and AR2/D as reference
length, velocity and concentration respectively. Besides, the viscosity ratio η̃ = η(i)/η(o) is
again set to unity for simplicity. The problem is fully-determined by two independent non-
dimensional parameters, namely the specific Péclet number Pei = RiV

∗
i /D of each droplet

in addition to their size ratio ξ = R1/R2 =
√

Pe1/Pe2 ≥ 1.

R2

z

R1

v1v2

d

Figure 4.3: Collision of two chemically-active self-propelled droplets. The colour shades
show typical solute concentration distributions around the moving droplets.

The Péclet number plays a key role for an individual droplet’s dynamics, and we remind
that for Pei ≥ Pec = 4, a droplet of radius Ri starts swimming spontaneously as a result of
a transcritical bifurcation [36, 101]. Above this threshold, the active droplets i self-propels
at a velocity v0(Pei) in units of V ∗i , where the evolution of v0 is reported on Fig. 2.2.
The previous choice regarding the characteristic quantities of the problem implies that the
speed of each droplet is expressed in units of V ∗2 . As a result, the self-propulsion velocity
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of droplet 1 (resp. of droplet 2) in units of V ∗2 follows v0,1 = v0(Pe1)V ∗1 /V
∗

2 = ξv0(Pe1)
(resp. v0,2 = v0(Pe2)). Firstly because Pe1 evolves quadratically with ξ and also because
of the factor ξ in the expression of v0,1, we realise that droplet 1 and droplet 2 do not have
identical self-propulsion velocities in units of V ∗2 . For that reason, we find useful to provide
on Fig. 4.4 the evolution of the self-propulsion velocity v0,1 in units of V ∗2 as function of Pe2

and the size ratio ξ.
P
e 2

⇠

v 0

0.2

0.0

Figure 4.4: Self-propulsion velocity magnitude v0,1 of droplet 1 (in units of V ∗2 ) as function
of the size ratio ξ and Pe2

4.2.1 Chemical problem

Using the previously introduced characteristic quantities, the resulting dimensionless
concentration field c satisfies the following advection-diffusion problem in the outer phase:

Pe2

(
∂c

∂t
+ u(o) ·∇c

)
= ∇2c, ∇c|Si · n = −1, c|r→∞ = 0, (4.1)

where Si denotes the surface of droplet i and u(o) denotes the outer Eulerian velocity field.

4.2.2 Hydrodynamic problem

Due to the microscopic droplet’s size inertial effects are negligible and the velocity of the
fluid is found by solving Stokes’ equations in each phase, coupled through the Marangoni
and continuity conditions (4.3) and (4.4):

∇2u(i,o) = ∇p(i,o), ∇ · u(i,o) = 0, (4.2)

(I − nn) · (σ(o) − η̃σ(i))
∣∣∣
Si
· n = −(I − nn) · (2 + 3η̃) ∇c|Si , (4.3)

u(o)
∣∣∣
Si

= u(i)
∣∣∣
Si
, u(o)

∣∣∣
r→∞

= 0,
(
u(o) · n

)∣∣∣
Si

= vi · n. (4.4)

Finally, the droplets being force-free, Eq. (2.6) is satisfied at each droplet’s surface, which
enables to determine the droplets’ velocities v1 and v2 through the relation:

[
v1

v2

]
= −R−1

d ·
[
F 1
m

F 2
m

]
, (4.5)
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where Rd is the resistance matrix known from Ref. [77] and F im the Marangoni forces ap-
plied on droplet i, measured positively along the axis of symmetry z. The Marangoni forces
F im are computed in the same way as in chapter 3, in evaluating the hydrodynamic forces
experienced by each droplet that comes only from the solute distribution around its sur-
face. The full nonlinear coupling of the Stokes and chemical transport problems is solved
semi-analytically for arbitrary distance using the efficient scheme based on a time-dependent
bi-spherical grid presented in detail in chapter 3.

4.2.3 Three identified regimes

To identify the effect of the size ratio, ξ, the results are reported in the following chapter
in terms of ξ ≥ 1 and of the Péclet number of droplet 2, Pe2 ≥ 4, for the time-dependent
dynamics of two droplets initially located far apart (d � 1) and swimming towards each
other (v2 > 0 and v1 < 0).

Depending on the value of (ξ,Pe2), three different collision regimes are observed and
reported in the phase diagram of Fig. 4.5. First, a rebound regime (blue square) is observed
for droplets of almost the same size (ξ ≈ 1), which self-propel in opposed direction after
the collision. Secondly, a chasing regime (green triangle) arises at moderate Pe and above
a critical size ratio (which depends on Pe), for which droplet 1 swims behind droplet 2 and
in the same direction. Finally, a pausing regime at higher Pe and above a critical size ratio
(that depends also on Pe) is observed, for which droplet 1 is stopped after the collision
with droplet 2 and remains at the same location for a long time (in comparison to the time
scales involved in the collision dynamics). Each regime is analysed in details in the following
sections.
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Figure 4.5: Regime selection for the axisymmetric dynamic collision of two droplets for
varying (ξ,Pe2): rebound (blue squares), chasing (green disks) and pausing regimes (red
triangles).
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4.3 Rebound regime

Regardless of the advection-to-diffusion ratio associated to the small droplet, Pe2, and
for sufficiently small contrast in size (ξ − 1 � 1), the collision always lead to a reversal of
the swimming direction of both droplets (Fig. 4.5, blue).

The general dynamics associated with this regime is similar to that identified for sym-
metric collisions of chapter 3: at sufficiently large distances, both droplets swim at their
self-propulsion velocities and the flow field around each one has a dipolar structure, as de-
picted on the panel A of Fig. 4.6. As the droplets get closer, the solute accumulates between
them, reducing the polarity of their surface concentration and effectively acting as a chem-
ical repulsion.

It should be however noted that the variations of each droplet’s axial velocity are not
symmetric with respect to the collision. Specifically, the droplets temporarily swim away
more slowly than in their approach phase. This effect is even more pronounced for droplet 1.
The delayed dynamic reversal of the concentration asymmetry is likely explained by a slower
diffusion (Pe1 ≥ Pe2) as it is the case in chapter 3 regarding symmetric collisions at high
Pe. Such a “chemical inertia” regarding droplet 1 indeed results from the presence of two
concentration spots: (i) the one at the back of droplet 1 coming from its former wake which
takes time to diffuse, and (ii) the one at its front, carried by droplet 2. Such spots generate a
quadrupolar flow field in the vicinity of droplet 1, as shown on the panels B and C of Fig. 4.6.

After a sufficient time, both droplets recover their self-propelling state and swim away
from each other (panel C of Fig. 4.6). In addition, the minimal separation distance reached
by the droplets decreases with Pe2, a tendency consistent with the results obtained in chapter
3 for symmetric rebounds.
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Figure 4.6: Rebound regime dynamics. Left panel reports the v1 (solid blue) and v2 (dashed
blue) velocities as function of the position of each droplets on the z axis. Right panel shows
snap-shots of the concentration field and streamlines in the frame of reference of droplet 1 at
different instants along the collision: A long before the collision, B just before the collision,
C just after the collision and D long after the collision.

4.4 Chasing regime

For moderate Pe2 and larger size ratio ξ, a chasing regime is observed rather than an
asymmetric collision one. While droplet 2 still experiences a similar repulsion and rebound
dynamics, the effective repulsion it exerts on droplet 1 is not sufficient to reverse its swim-
ming direction (Fig. 4.7, green solid line). As droplet 2 swims away, the polarity of droplet
1 still allows it to accelerate and recover its original direction, effectively chasing droplet 2.
Because the absolute self-propulsion velocity increases with the droplet’s size, droplet 1 is
able to catch up and a bound state arises, where the two droplets maintain a fixed distance
deq and swim together. Their velocity results from the balance of their self-propulsion and
mutual chemical repulsion.

For a given Pe2, the rebound to chasing transition illustrated in Fig. 4.8 depends on
the detailed dynamics of the collision and occurs above a precise value ξc(Pe2). Since the
Péclet number associated to droplet 1 increases with ξ (Pe1 = ξ2Pe2), the wake of the larger
droplet is more persistent, and as a result the same is true for its chemical polarity and self-
propulsion. In addition, the small droplet faces an even bigger gradient. The former reduces
the effective interaction time with the smaller droplet which is quickly repelled away, while
the latter increases the larger droplet’s resistance to the chemical perturbations undergone
during the collision.

The conditions of the emergence of a stationary chasing regime is further analysed here.
In this bound state, both droplets have the same swimming velocity v0,2 < vb < v0,1 with
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Figure 4.7: Chasing regime dynamics. Left panel reports the v1 (solid green) and v2 (dashed
green) velocities as function of the position of each droplets on the z axis. Right panel shows
snap-shots of the concentration field and streamlines in the frame of reference of droplet 1
at different instants along the collision
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Figure 4.8: Rebound-to-chasing transition: influence of the size ratio ξ on the evolution of
the larger droplet velocity, v1, parameterized by the droplet position.

v0,i the steady velocity of each droplet when isolated. First the smaller droplet is pushed
forward by the increase in solute concentration in its wake due to the presence of the larger
droplet. Meanwhile, the larger droplet is slowed down by the adverse chemical gradient cre-
ated by the wake of the smaller one at its front. Increasing the distance between the droplets
reduces both effects leading to the larger droplet swimming faster than, and chasing, the
smaller droplet. Conversely, a decrease in d induces larger chemical repulsions and thus the

92



4.4. Chasing regime

4

acceleration (resp. deceleration) of the smaller (resp. larger) droplet. This provides the
physical ingredients to understand the existence of a stable equilibrium distance deq whose
evolution with ξ for fixed Pe2 is shown on Fig. 4.10.

Following the asymptotic approach of chapter 3, these arguments can be formulated
quantitatively in the asymptotic limit of small supercriticality, i.e. when ∆Pei = Pei − Pec
is small for i = 1, 2 (which imposes ξ − 1 � 1). The velocity of droplet i is then obtained
at leading order as a function of the leading chemical gradient generated by droplet j,

|vi| =
v0,i

2

(
1 +

√
1 + sgn(vi)

256Gj→i
(∆Pei)2d2

)
, (4.6)

where v0,i = ∆Pei/16 denotes the reference velocity of each droplet for small ∆Pei and small
ξ − 1 [101]. In Eq. (4.6), Gj→i is proportional to the chemical repulsion exerted by droplet
j on droplet i (which satisfies either Eq. (4.7) or Eq. (4.8) depending on the droplet one is
looking at) and may either slow down or speed up the motion of droplet i depending on the
relative signs of vi and Gj→i. Its exact expression depends on the swimming direction of j,
as the decay of concentration in the vicinity of the droplet j is either exponential, in front
of the it, or algebraic, behind it:

G1→2 =

{ −1 if v1 > 0, (see Fig. 4.9c),

−e−4d|v1|(1 + 4d|v1|) if v1 < 0 (see Fig. 4.9a− b), (4.7)

G2→1 =

{
1 if v2 < 0, (see Fig. 4.9b− c),
e−4d|v2|(1 + 4d|v2|) if v2 > 0, (see Fig. 4.9a).

(4.8)

(a)

(b)

(c)

Figure 4.9: Three possible configurations for the active droplet’s pair. (a): Droplets swim-
ming towards each other, both exerting a chemical repulsion that decays exponentially with
the distance. (b): Droplets chasing each other, with the small droplet feeling an exponen-
tially decaying repulsion coming from the bigger one, while its wake exerts an algebraic
repulsion on it. (c): Droplets swimming away from each other and exerting a chemical
repulsion forces that decay algebraically with the distance.
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Figure 4.10: Evolution with the size ratio ξ of the equilibrium distance deq between the
droplets in the bound state for Pe2 = 6. The inset is in log-log scale. Results are obtained
from the time-dependent dynamics of two droplets initially swimming in the same direction
(black crosses) or towards each other (green dots).

Using these results and considering the situation where the leading droplet is the smaller
one and ξ − 1 � 1, the leading order value of the equilibrium distance deq for which
v1 = v2 < 0 is obtained as (see Appendix A.6 for more details):

deq =
2
√

2√
(ξ − 1)(Pe2 − 4)

· (4.9)

This result quantifies the physical divergence of deq when both droplets have the same size
or swim near the critical threshold: in both cases, the swimming velocities are small so
that their difference can only be compensated by a weak chemical repulsion (or large inter-
droplet distance). The results of the full model, Fig. 4.10, show a good agreement with
the (ξ − 1)−1/2 scaling despite the large value of ∆Pe2, which is the most likely origin of
any difference in prefactor. It should be further noted from Fig. 4.10 that deq presents a
minimum for intermediate ξ, which is consistent with its divergence for small ξ.

For very large ξ, the influence of the chemical repulsion on the velocity of the larger
droplet is negligeable and the whole assembly swims at a velocity v∞1 � v∞2 which scales
in non-dimensional units as ξ. For the smaller droplet, this must now be the magnitude of
the gradient of concentration experienced from its larger neighbour, which scales as ξ2/d2

so that deq ∼ ξ1/2.

Fig. 4.10 in fact reports two sets of results for the long-time dynamics of two droplets that
are initially swimming in the same direction (black crosses) or towards each other (green
dots). While the bound states emerging from this chasing regime exist for any ξ, they can
not follow a collision when ξ is too small (ξ ≤ 1.7 when Pe2 = 6). The exact history of
the droplets’ motion therefore appears critical in setting their long-term dynamics, thus
underlining the nonlinearity and complexity of the transition to such bound states.
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To conclude this section, we provide some pictures drawn from unpublished experiments
carried out by Charlotte De Blois during her PhD at the Gulliver’s lab under the supervi-
sion of Olivier Dauchot and Mathilde Reyssat for illustrative purpose only. Fig. 4.11 shows
two active droplets made of water which swim inside a microfluidic capillary full of oil and
surfactants. Both droplets initially swim in opposed directions, and while a rebound occurs
when the droplets are almost the same size (ξ ≈ 1.05), we notice that a sufficient increase
of the size ratio (ξ ≈ 1.1) leads to a situation where the bigger droplet chases the smaller one.

If we are tempted to compare directly the theoretical approach introduced above with
the results of the experiments, several remarks deserve to be made. First, the very confined
geometry of the experimental set up differs with the system considered in the theoretical ap-
proach in two important ways: (i) we expect hydrodynamic interactions to play a significant
role, even regarding the dynamics of a single droplet; (ii) the lateral sides of the capillary
prevent the solute (i.e swollen micelles in this particular case) to diffuse freely unlike the
unbounded case of the theoretical model. As a direct consequence of the latter, we expect
the droplets to be even more slowed down right after a rebound since the diffusion of their
wake is limited by the lateral sides of the capillary.

Nevertheless, the situation where a large droplet chases a smaller one implies that the
large droplet must have overcome the chemical repulsion from the smaller one. This phe-
nomenon is similar in the theoretical model. In conclusion, even if we do not expect either
the critical size ratio at the transition or the equilibrium distance value deq to match exactly
between such experiments and the theoretical results of this chapter, they are a good illus-
tration of a rebound to chasing transition caused by a sufficiently high size ratio difference.

t
(a) (b)

Figure 4.11: Collisions of two active droplets of distinct sizes in a microfluidic capillary. (a):
R1 = 94µm, R2 = 89µm (ξ = 1.05), (b): R1 = 103µm, R2 = 93µm (ξ = 1.1). The pictures
are drawn from unpublished experimental results of Charlotte de Blois during her PhD at
Gulliver under the supervision of Olivier Dauchot and Mathilde Reyssat.
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4.5 Pausing regime

For larger Pe2, and even for relatively small contrasts in size, a rather surprising regime
arises. Indeed, droplet 1 is slowed down by the excess concentration generated by the ap-
proach with droplet 2. Very much like for the other regimes, droplet 2 quickly reverses
direction and propels away from the collision site. However, the chemical repulsion ex-
perienced by droplet 1 during this brief encounter is neither sufficiently large nor long to
reverse its chemical polarity and provoke its rebound. Instead, some solute accumulates at
its front, resulting in a symmetric but non-uniform surface concentration, driving pusher-
like Marangoni flows from the equatorial plane towards its poles. Such quadrupolar flow is
able to balance diffusion and maintain this stationary regime where the droplet acts as a
symmetric pump (see Fig. 4.12).

This quadrupolar structure cannot avoid reminding the situation encountered in the re-
cent experimental results of Ref. [58], which reveal that higher modes of the hydrodynamic
field emerge spontaneously at sufficiently high Pe even regarding the dynamics of a sin-
gle droplet in the bulk. Besides, the specific Péclet number of droplet 1 in this regime,
Pe1 = ξ2Pe2, is greater than the critical instability threshold of the quadrupolar mode for
a non-deformable active droplet computed in Refs. [101, 49]. The emergence of the paus-
ing regime can therefore be interpreted as the non-linear transition between two solution
branches of the single droplet dynamics, in response to the finite perturbation induced by
the collision.
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Figure 4.12: Pausing regime dynamics. Left panel reports the v1 (solid orange) and v2

(dashed orange) velocities as function of the position of each droplets on the z axis. Right
panel shows snap-shots of the concentration field and streamlines in the frame of reference
of droplet 1 at different instants along the collision.

The stability analysis of this pumping state lies beyond the scope of this chapter and is left
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for future research. Yet, regardless of the detailed stability properties, the dominance of the
dipolar propelling mode in the dynamics of a single non-deformable droplet [66, 101, 116],
suggests that sufficiently large perturbations of the concentration or flow fields (e.g. by
another droplet) would likely provoke a new mode switching and self-propulsion of the
larger droplet. This may however occur long after the first collision so that memory of
the initial propulsion direction will be lost, reminiscent of the run-and-tumble motion of
swimming bacteria [117, 118]. This is in stark contrast with the bouncing and chasing
regimes, which do preserve the collision’s directionality. Such memory loss is expected to
significantly affect the collective long-term dynamics of droplets, by introducing an effective
rotational diffusion. If such reorientation phenomenon is already noticed both in experiment
[37, 58] and theory [60] in the case of a single droplet at sufficiently high Pe, it may thus
arise at more reasonable ones in the case of an assembly of active droplets.

4.6 Conclusion

In summary, this chapter has shown how variability in the size of active droplets pro-
foundly affects their collision dynamics. Although not considered here explicitly, variability
in chemical properties likely has a similar effect, since regime selection results mainly from
the droplet’s chemical signature intensity and specific Péclet number. Once again, the
strength of the advective coupling is a key factor: for moderate advection, the dynamics
are only weakly modified by the symmetric collision, and large size contrast is required for
more complex regimes. However, for large advective effects, non-symmetric bouncing, chas-
ing or scattering may develop, even for droplets of comparable sizes, stressing the extreme
sensitivity of the interaction.

If this chapter aims to provide the reader with three possible dynamics that may arise
after a perfect head-on collision of two active droplets, it would be insightful to broach the
issue of oblique collisions. Indeed, the main limitation of the current approach lies in the
imposed axial-symmetry, which prevents the droplets to leave the z axis. On the contrary,
the experiments show that active droplets do not swim in a perfect straight line, even at
small Pe when their behaviour is still ballistic [58, 119, 57]. Therefore, there is only a small
chance that perfect head-on collisions occur in experiments. For that reason, the issue of
oblique collisions together with the influence of the droplets’ wake in the interaction are
tackled in the following chapter.
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Take home message of Chapter 4

1. Rebound regime: A head-on collision between two active droplets always
lead to a rebound for sufficiently small size contrasts ξ. While the smaller droplet
promptly reverses its direction, the larger one takes more time to recover its
self-propulsion velocity in the opposite direction.

2. Chasing regime: For a given Pe, there is a critical size ratio ξc, above which
the bigger droplet keeps its initial swimming direction and chases the smaller one.
After a time, the droplets reach an equilibrium state where they are separated by a
fixed distance and swim at the same velocity.

3. Pausing regime: At high Pe, a pausing regime can arise as the result of a
collision between two active droplets of different radii. In this regime, the larger
droplet is trapped by a symmetric but non uniform solute distribution on its
surface. As a result, it is immobile and behaves as an active pump by generating a
quadrupolar flow field.
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5
Oblique collisions of active

droplets
In this chapter, we aim to extent the framework of the two previous ones by studying

more generic collisions of two co-planar active droplets. The first goal of this study is to
quantify the influence of the relative initial angle on the collision dynamics. Besides, recent
experiments reported the significant influence of the solute trace left by active droplets on
their swimming dynamics. For that reason, in this chapter, we also study asymmetric initial
conditions and the resulting wake influence on the collision dynamics. The results of this
chapter are currently in review.

t

Left panel: concentration field snapshots along the oblique collision of two active droplets
(numerics). Right panel: phase contrast microscopy picture from Ref. [120] of a droplet
swimmer that leaves a trail on its path (left part). Picture of three droplet swimmers from
Ref. [120] being repelled from each other’s trails (trajectories represented by solid color lines)
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5.1 Motivations to study oblique collisions of active droplets

We have learnt from chapter 1 that active droplets do not swim in a perfect straight line
even at low Pe where they still exhibit a ballistic regime [58]. As a consequence, if the exact
results of chapters 3 and 4 provide a better understanding of the complex hydro-chemical
interactions between two active droplets that collide frontally, they have only little chance
to occur in experiments. For that reason, in this chapter we open the question of oblique
collisions between two self-propelled droplets.

Let us first consider the experiments of Ref. [56], which provide interesting results regard-
ing the oblique collision of two active droplets of radius R ≈ 20µm and velocity V ≈ 30µm/s.
The Péclet number in this experiment may then be estimated to Pe ∼ 6 when estimating the
diffusivity D ≈ 10−10 for typical surfactant molecules. As expected, the chemical repulsion
felt by each droplet leads to a rebound. Nevertheless, a further look on the trajectories
depicted on the panel (a) of Fig. 5.1 enables us to realise that the collision is not symmetric
but one droplet appears ahead of a distance ` ≈ 6 radii. If the solute transport at finite Pe
is expected to play a role on the collision dynamics, we may also wonder about the effect of
a collision asymmetry.

(a)

(b)

✓0

✓f

(c)

Figure 5.1: (a): Two oil droplets swimming in given initial directions repel one another as
a result of their concentration gradients. Circles map their trajectories over time. Figure
taken from Ref. [56]. (b): Schematic representing of a symmetric collision between two active
droplets with θ0 (resp. θf ) the initial (resp. final) collision angle. (c): evolution taken from
Ref. [87] of the final collision angle (θf ) as function of the initial one (θ0), without the
hydrodynamic interaction (red), without the concentration-mediated interaction (blue) and
with both contribution (black).

A first attempt to characterise oblique collision dynamics between two active droplets
is provided in Ref. [87], in the particular case of far-field interactions, where both hydro-
dynamic and chemical problems may be decoupled. Such a decoupling between the solute
dynamics and the flow field enables to study each of their contribution in the collision sep-
arately. Besides, the droplets are considered to be slightly above the instability threshold,
so that (i) their velocities are very small and (ii) the concentration field around each of
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them is almost isotropic. Denoting by θ0 (resp. θf ) the initial (resp. final) collision angle
(see the panel (b) of Fig. 5.1), Ref. [87] provides the evolution of θf as function of θ0 in
the particular case of symmetric collisions (see the panel (c) of Fig. 5.1). This results in
a perfect alignment of the droplets when only hydrodynamics interactions are considered,
while a rebound with a weak alignment is noticed in the situation with chemical interactions
only. Finally, summing both contributions only slightly modify the results from the case of
purely chemical interactions and always lead to a rebound, which tends to slightly align the
droplets (θ0−θf ≈ 10◦ for θ0 ≈ 45◦). However, in the experiments presented in Ref. [56], the
velocity of each droplet is not negligible and we expect the concentration field around each
droplet to be anisotropic. Since the solute distribution around each droplet significantly
influence the chemical interactions (see chapter 3), we may thus wonder about the outcome
of two self-propelling active droplets that collide each other at a finite speed.

Finally, active droplets are known to modify the physico-chemical properties of the
medium on their path and recent experiments have highlighted such a “pollution” may
influence the motion of other droplets [120, 121]. The trajectories of active droplets de-
picted on Fig. 5.2 show how active droplets may be deviated or even experience a rebound
from the presence of the solute trace left by another active droplet [120]. As a result, not
only the collision angle but also the wake relaxation is expected to have direct consequences
in the collision dynamics.

Figure 5.2: (A) A droplet swimmer leaves a trail that can be seen under phase-contrast
microscopy from the slightly different refractive index from Ref. [120]. (B) Free swimmers
avoiding each other’s trails from Ref. [120]. Sphere drawings (to scale) mark the trajectory
end points, timing marks on trajectories time points in the experiment.

Adapting the bi-spherical framework developed in chapter 3 to deal with generic collisions
is expected to be quite a feat since it would require the use of the full bi-spherical coordinates
system (see the section conclusion and perspectives in chapter 6). In this chapter, inspired
by the model of Ref. [82] and Ref. [87], we instead suggest an approximate model for self-
propelled active droplets. Such a model enables us to investigate generic collisions (in
the plane) while still providing a reasonable head-on collision dynamics when compared
to the exact results of chapter 3. First, we will introduce the physical framework and
adopted numerical method. In a second part we will present the results obtained for oblique
symmetric collisions. Finally we will focus on asymmetric collisions, for which one of the
droplets is initially delayed.
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5.2 Modelling droplet collisions

In the following, the physical properties of the droplets are not different from the pre-
vious chapters but we place ourselves in the case of droplets of the same radius R. We
remind that both droplets emit a chemical solute of diffusivity D with a constant total flux
4πR2DA > 0. The solute of concentration C interacts with the droplets’ surface so that sur-
face chemical gradients induce local Marangoni stresses, ∇‖γ = γ1∇‖c where γ1 is a positive
constant [89, 101, 36]. Keeping the same notations as in the previous chapters, we choose
R, C∗ = AR/D and V ∗ = ARγ1/(D(2η(o) + 3η(i))) as characteristic length, concentration
and velocity scales.

5.2.1 Interactions of swimming droplets

As seen in the previous chapters, droplets influence each other both hydrodynamically
and chemically by emitting solute and driving a fluid flow. Yet, the complete modelling of
two-droplet head-on collisions of chapter 3 demonstrated that the hydrodynamic interac-
tions only have a subdominant contribution to the collision dynamics, at least for moderate
Pe, providing quantitative arguments for the simplified model detailed below, where direct
hydrodynamic coupling between droplets is neglected. It can however be noted that non-
linear convective solute transport around each droplet, and the emergence of a chemical
wake, are the essence of the self-propulsion mechanism, and should necessarily be retained
at the individual droplet level, in particular their positive feedback on the polarity of the
concentration distribution around the droplet.

As a consequence, using the Lorentz Reciprocal Theorem for Stokes flow (see section
2.1.3), the dimensionless swimming velocity of each isolated droplet vi can be obtained
from the mean Marangoni stress at its surface or equivalently the chemical polarity of its
surface Si equation (2.40) reminded here for convenience:

vi = − 1

2π

∫

Si
cndS = Πi, (5.1)

where c denotes the dimensionless concentration field and n the outward-pointing normal
on the surface Si.

5.2.2 Moving singularity model

The moving singularity model introduced in this section approximates the effect of each
droplet on the concentration distribution by a moving singularity. The chemical transport
dynamics is therefore governed by an unsteady diffusion equation:

Pe
∂c(r, t)

∂t
= ∇2c(r, t) + 4π

N∑

i=1

(I + ζ(vi)vi ·∇) δ(r − xi(t)), (5.2)

where xi(t) denotes the instantaneous position of droplet i, whose velocity ẋi = vi is ob-
tained from Eq. (5.1), thus accounting indirectly for the interfacial stress balance and the
nonzero size of the droplet.

The advantage of this formulation is to retain the effect of the droplet motion on the
polarity of the distribution (a chemical “wake” can form behind the moving point source)
while allowing for linear superposition (since equation Eq. (5.2) is linear) of the chemical
fields created by each droplet independently. Each droplet is represented as (i) a moving
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source of known intensity (i.e. total activity) and (ii) a moving source dipole oriented along
the swimming direction, that accounts empirically for the convective transport associated
with near-field flows around each moving droplet. The intensity of the moving source dipole,
ζ(v), depends on the velocity magnitude, and is set so that the present moving singularity
model applied to a single isolated droplet matches the exact result obtained from the full
advection-diffusion problem for all Pe [36].

It can be noted that Eqs. (5.1) and (5.2) are linear so that the concentration field is the
superposition of the concentration emitted by each droplet independently, c =

∑
j cj where

cj is the solution of Eq. (5.2) forced by droplet j only. As a result, the velocity vj of droplet
j is obtained from Eq. (5.1) as the superposition of the contributions of:

1. the polarity at its surface Sj of its own concentration footprint, i.e. the asymmetry of
its “wake”, Πj = −(1/2π)

∫
Sj cjndS,

2. the polarity at its surface Sj of the concentration emitted by other droplets,
−(1/2π)

∫
Sj ckndS with k 6= j.

In the case of a single isolated droplet in steady self-propulsion with velocity v, the dimen-
sionless concentration field writes:

c = (I + ζ(v)v ·∇) ·
{

1

r
exp

[
−Pe

(vr + v · r)

2

]}

=
1

r

[
1− ζ(v)

(
v · r
r2

+ Pe
v(vr + v · r)

2r

)]
exp

[
−Pe

(vr + v · r)

2

]
, (5.3)

where r is the radial vector taken from the droplet’s center. Using this result of Eq. (5.1),
and defining λ = vPe/2, provides the dipole intensity ζ uniquely in terms of the exact result
for the non-dimensional velocity v0(Pe) [36]:

ζ(λ) =
Pe

2

[
λ2eλv0/2− λ coshλ+ sinhλ

2 sinhλ− (2λ+ 2λ2 + λ3)e−λ

]
· (5.4)

It can be noted that in its non-dimensional form and for a fixed viscosity ratio (which will
affect v0(λ)), the dipole intensity only depends on λ. In the following, η(i) = η(o) is assumed.

Eq. (5.1), Eq. (5.2) and Eq. (5.4) together with the definition of the droplets’ velocity
ẋi = vi provide a closed set of equations for the droplets’ dynamics and concentration
distribution. These equations are solved spectrally (see Appendix B.2). In the following,
we apply this moving singularity model to analyse collision dynamics of N = 2 droplets.
Initially, the droplets are located at a dimensionless center-to-center distance dc that is large
enough that they essentially behave as isolated and have a steady self-propulsion velocity
of magnitude v0(Pe). After the encounter with the second droplet, each droplet recovers
a steady self-propulsion regime albeit with a modified orientation. Note that the model
proposed here is fully three-dimensional. Yet, motivated in part by the quasi-2D motion of
active droplets in experiments, we restrict our discussion of the collision problem to planar
trajectories of both droplets (the chemical dynamics remains however three-dimensional).
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5.3 Validation of the numerics

Here we provide several tests aiming to check the validity and relevance of the numerical
model introduced in the last section. First, in order to verify the implementation of the
solute diffusive dynamics, we compare the concentration field generated by a single fixed
source of solute with analytical computations. The obtained results provided in Appendix
B.3 confirm the good numerical solving of Eq. (5.2). Secondly, aiming to check the ex-
pression of the dipole intensity provided by Eq. (5.4) as well as its implementation in the
code, we have confronted the self-propulsion dynamics of a single active droplets for various
Pe obtained by the moving singularity model with the exact dynamics given in chapter 3
(see Appendix B.3). As expected by the choice of the dipole intensity, the self-propulsion
velocities in the steady state provide a good match with the analytical ones. The slight dif-
ference is a direct consequence of the finite resolution in the code, which provides solutions
at a reasonable numerical cost. Besides, considering the significant modelling simplification
in comparison to the approach suggested in chapter 3, the transitory regime in the self-
propulsion obtained using this reduced model appears reasonably close to the exact ones.

Furthermore, aiming to assess the relevance of the moving singularity model, we focus
on the axisymmetric collision of two active droplets, for which the exact dynamics have
been solved completely for various Pe in chapter 3. Active swimming droplets are anti-
chemotactic, and thus swim away from the zones of higher concentration, e.g. their own
wake or the proximity with other emitting droplets [36, 119, 120]. In a head-on collision,
the droplets thus slow down and stop at a minimum distance dmin from each other. The
confinement-induced accumulation of the emitted solute between the droplets reverses the
chemical polarity of the droplets which start swimming in the opposite direction and re-
bound. This dynamics is clearly visible in the evolution of the droplets’ axial velocity with
their relative distance (see Fig. 5.3), and the moving singularity model provides a good
approximation of the exact rebound dynamics provided by the chapter 3. The rebound dis-
tance dmin is slightly underestimated in the moving singularity model, which is consistent
with the modelling of the droplet as point singularities for the chemical field which reduces
the confinement-induced accumulation of solute between the droplets.
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Figure 5.3: Droplet axial velocity in an axisymmetric head-on collision with a second iden-
tical droplet for Pe=6 (red) and Pe = 8 (blue) as obtained using the moving singularity
model, Eqs. (5.1)–(5.2) (solid) and the exact result [89] (dashed).
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Finally, the Fourier spectral method used to solve the droplets’ dynamics (see Appendix
B.3) imposes the boundaries to be periodic (such a choice would be in particular useful
in the study of an assembly of active droplets, tackled in the chapter 6.2.1). As a result,
the solute cannot escape from the box and its absolute concentration keeps increasing over
time. After having checked the amount of solute present in the box satisfies well the con-
servation law imposed by Eq. (5.2) (see Appendix B.3 for more details), we have analysed
the robustness of the interaction dynamics for several Pe. Indeed, the spatial periodic-
ity of the problem infers the droplets also interact with their periodic counterpart. As a
consequence, two droplets involved in a symmetric head-on collision experience a periodic
collision dynamics as illustrated by the schematic on the panel (a) of Fig. 5.4. Besides, for
a sufficiently large box, the droplets recover their self-propelled regime between each colli-
sion. This tells the only difference between the several collisions is the presence of the solute
“pollution” generated by the active droplets which increases the average concentration level.

Considering the framework of the head-on collision between two identical active droplets,
Fig. 5.4-b provides the evolution of the axial velocity vx = v · ex of the droplet located on
the right part of the box as function of its x position. Besides, sufficient time is let so that
each droplet experiences 20 collisions (10 cycles). We therefore notice the periodic velocity
evolution reported on the panel (b) of Fig. 5.4 remains unchanged even in the presence of the
pollution and resulting increase of the average solute concentration. We may thus confirm
the interaction dynamic provided by the present numerical approach appears robust even
in the presence of periodic boundary conditions.
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Figure 5.4: Periodic boundary conditions impose the collision to occur also at the boundary,
leading to an oscillatory collision dynamics. (a): Schematic of the looped collision dynamics.
(b): Evolution the right droplet velocity vx = v · ex as function of its position x at Pe=6
(red) and Pe = 8 (blue). In each case, the droplet performs 10 cycles.
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Active swimming droplets are anti-chemotactic, and thus swim away from the zones of
higher concentration, e.g. their own wake or the proximity with other emitting droplets [36,
119, 120]. During the encounter of two droplets, the confinement-induced accumulation of
the emitted solute between them modifies the orientation of their chemical polarity and
velocity: after a transient interaction, the droplets swim away from each other in different
and modified directions (Fig. 5.7). In a head-on collision, the axisymmetry of the problem
imposes that the droplet velocity is strictly zero when they are closest to each other.

This is however not necessarily the case in oblique collisions, for which the droplets
can maintain a non-zero velocity at all time, and the location of the chemical wake can
rotate around the droplet as a result of the change in swimming direction (see Fig. 5.7).
The outcome of such oblique collisions is therefore not obvious, in particular for the final
direction of the droplets as they swim away from each other. In particular, it is intimately
linked to the detailed unsteady dynamics of the droplets’ chemical wake. This is the main
focus of the present chapter and in the following, we analyse in detail the influence of generic
droplet-droplet interactions on their directional dynamics. Symmetric oblique collisions are
first analysed, where the two droplets are initially exactly on a collision course: by this
terminology, we mean that the droplets are initially at the same distance of the crossing
point of their incoming trajectory. In this situation, the problem maintains therefore a
reflection symmetry at all times. In a second step, the general case is considered, where one
of the droplets (termed droplet 2 by convention) is lagging by a finite distance.

5.4 Symmetric oblique collisions

We first consider the symmetric collision of two active droplets, initially separated by a
large distance dc � 1 and swimming towards each other (Fig. 5.5). The droplets’ motion is
completely symmetric and we thus focus exclusively on the dynamics of the left-most droplet
(droplet 1). When the two droplets are sufficiently far from each other the concentration
field they create does not influence the other’s swimming motion. As a result, long before
and after the collision, each droplet swims as if it was isolated, with a constant velocity v0

along a straight trajectory.

5.4.1 Collision-induced alignment

Defining (v0
1,v

0
2) and (vf

1,v
f
2) the initial and final droplets’ velocities (Fig. 5.5 and

Fig. 5.9), as well as their relative direction sines and cosines

χ =
v1 · v2

|v1||v2|
, ζ =

ez · (v1 × v2)

|v1||v2|
, (5.5)

the effect of the collision on the droplets’ alignment can be quantified by relating their rel-
ative direction cosine before (χ0) and after (χf ) the collision (Fig. 5.6).

In sharp contrast with a perfect elastic shock of rigid passive spheres (for which χ0 = χf ),
the symmetric collision of active droplets results in a systematic alignment of the droplets re-
gardless of their initial relative angle (χf > χ0). This alignment is most striking for rather
frontal collisions for which χ0 ∈] − 1, 0], which corresponds to droplets initially heading
mostly toward each other. Qualitatively, we understand this as the result of the droplets
coming closer to each other in such configurations (smaller dmin): the chemical repulsion
induced by the other droplet, at the origin of the droplet’s reorientation and rebound, is a
decreasing function of their relative distance.
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Figure 5.5: Symmetric collision of two active droplets. dc denotes the center-to-center
separation distance and (v0
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2) (resp. (vf
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2)) denote the initial (resp. final) droplets’

velocities.

Furthermore, a plateau can clearly be seen for χ0 ∈ [−0.9, 0.5]: within that range, the
droplets swim away from each other with a relative angle corresponding to χf ≈ 0.5 that
is essentially independent of their incoming orientation. For greater χ0 (i.e. almost parallel
incoming trajectories), the elastic rebound dynamics is recovered χf ≈ χ0 as a result of the
weak interaction of the droplets which remain far from each other at all times. For almost
head-on collisions (χ0 < −0.9), the final direction of the droplets is extremely sensitive to
the exact impinging angle. Perfect head-on collisions (χ0 = −1) result in a normal rebound
(χf = −1) by complete reversal of the chemical wake and of their swimming velocity; but
a small departure from this situation (e.g. χ0 = −0.93) results in a sharp alignment of the
droplets (χf = 0.5). This sensitivity is intimately linked to the complex reorganisation of
the chemical polarity in this type of collisions and suggests furthermore that purely head-on
collisions are unstable.

Greater physical insight into the collision dynamics is provided by the dynamic evolution
of the chemical wake which is represented at different stages of a collision with χ0 = 0.5
and Pe = 6 on Fig. 5.7. The unsteady nature of solute diffusion is retained in the moving
singularity model, and it should thus be noted that the direction of the wake created by
a droplet’s own chemical footprint pi does not align instantaneously to its velocity vi, but
instead takes a finite time to adjust to changes in the swimming direction induced by the
additional drift created by the other droplet’s chemical footprint.
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Figure 5.7: (Left) Oblique symmetric collision of two active droplets in exact collision course.
Schematic snapshots of the polarity direction p1 = Π1/Π1 and velocity v1 are provided
along the collision (left) as well as the corresponding concentration fields (right) χ0 = 0.5
and Pe = 6.

5.4.2 Minimal collision model

These observations provide the basic ingredients of an even simpler dynamic model for
the collision, which is referred to in the following as minimal collision model, with only two
degrees of freedom: the separation distance dc between the droplets and the direction, p1,
of the chemical wake of the left-most droplet, i.e. the polarity of its own concentration
footprint c1 at its surface S1. When the droplet is isolated, its velocity is aligned with p1,
i.e. v1 = Π1 = v0p1. In a more general situation, invoking (5.1) and (5.2), its total velocity
v1 is obtained as the sum of two contributions:

v1 = Π1 + vr1, (5.6)
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with vr1 the chemical repulsive drift induced on droplet 1 by droplet 2. For simplicity, this
repulsion velocity vr1 is modelled here as resulting from the chemical gradient generated by
a fixed source of dimensionless intensity 4π at the location of a second droplet, which allows
us to retain only the slowest decaying singularity signature of the moving singularity model:

vr1 = M
x1 − x2

|x1 − x2|3
= −M

d2
c

ex, (5.7)

where M is a positive constant characterising the mobility of a passive droplet in a chemical
gradient. In the full moving singularity model, the evolution of a droplet’s wake in response
to changes in its total velocity is a complex process and involves both changes of direction
and magnitude in the chemical self-polarity (i.e. corresponding to its own chemical footprint)
under the effect of diffusion and of the droplet’s translation. The simplified model considered
here is based on two important physical properties of the droplets’ polarity, namely that (i)
it evolves in response to changes in the droplet’s velocity and (ii) relaxes with a finite delay
τ to the droplet’s swimming direction in steady state. As a result, and further assuming
that the magnitude of the self-polarity Π1 does not change in time, the evolution equation
for the velocity v1 and wake direction p1 become (see Appendix B.4)

v1 = v0p1 + vr1, (5.8)

dp1

dt
=

1

τv0
(p1 × v1)× p1 =

κ(p1 · ey)
d2
c

ez × p1, (5.9)

where κ = M/(τv0) is a positive constant. The reorientation of the polarity is then solely
the result of the chemical repulsion by the other droplet, Eq. (5.9).

The essence of the collision dynamics observed for the full system is well captured by this
simplified model: as the droplets get closer to each other, the chemical repulsion reduces
the magnitude of their relative velocity (i.e. the velocity component along the x-axis on
Fig. 5.7) which eventually vanishes at a distance dmin; at that instant, the component of
self-propulsion in the x direction balances the chemical repulsion exactly. However, p1 is
not yet aligned with v1 as a result of the finite time delay τ : the wake continues rotating
for a finite time, reducing (and eventually reversing) the self-propulsion component along
ex which cannot balance the chemical repulsion vr1 ‖ −ex: this generates the rebound of
droplet 1 away from its neighbour.

The results of the minimal collision model can now be compared with those of the orig-
inal dynamics obtained from the moving singularity description. In the simplified model,
the self-propulsion velocity v0 is directly imposed by the choice of Péclet number [36]; for
fixed Pe, the minimal model, Eqs. (5.8)–(5.9), therefore includes a single fitting parameter
κ. Fig. 5.6 confronts the final relative angle characterised by χf , plotted against χ0 and
predicted by the simplified model (solid lines). The complete numerical results obtained for
Pe = 6 and Pe = 8 (respectively red crosses and blue stars) are also reported. We note that
for χ0 > −0.93 the simplified model captures the emergence of the constant χf plateau for
a large range of approaching angles.

In head-on collisions, the norm of the droplets’ polarity vanishes to zero at the moment
they are closest (see Fig. 5.3). This is expected as the minimal collision model only describes
the direction of polarity and not its magnitude, and is thus naturally unable to reproduce
the physics of such specific configurations.
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angles: solid red line χ0 = −0.98, dashed blue line χ0 = 0.17, dashed dotted green line
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The problem is invariant by translation along y, and the simplified model provides a two-
degree-of-freedom description of the collision dynamics, namely the x position of droplet 1
and the angle of its polarity direction p1 with the y-axis. The dynamics can therefore be
fully characterised by the system trajectories in the (x,p1 · ex)-plane (Fig. 5.8). We note
an accumulation of the trajectories near the minimum distance and onto the trajectory
emerging from a perturbation of the head-on collision (χ0 ≈ −1), which is indeed consistent
with the emergence of the plateau-behaviour of the outgoing relative angle, regardless of
the initial orientation of the droplets.

5.5 Delayed collisions: several collisions regimes
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Figure 5.9: Generic collisions of two active droplets where (v0
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2)) denote the

initial (resp. final) droplets’ velocities. If dc would have been the droplet-droplet distance in
the symmetric case, ` further denotes the lead distance of droplet 1 on the second droplet.
The final velocity directions of droplets 1 and 2 are not symmetric anymore.
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We now turn to the general problem of asymmetric or delayed collisions, which are char-
acterised in this paragraph using the full moving singularity model introduced in section 5.2.
In such collisions, droplet 2 is initially located further than droplet 1 by a “delay” distance
` from the virtual crossing point of the initial trajectories (Fig. 5.9). In contrast with many
active particle systems, active droplets leave a chemical “trail” that extends over several
tens of radii and is known to influence critically their collective dynamics and trajecto-
ries [120, 121]: when crossing another droplet’s trail, a second droplet is expected to be
deviated away or repelled by the slowly-diffusing solute left by the first droplet when it went
by. This interaction and deviation is obviously stronger for close interactions, i.e. when ` is
small.

In the following paragraphs, we analyse the possible outcome of such general encounter of
two droplets and impact on their subsequent relative dynamics. By convention, and without
any loss of generality, droplets 1 (resp. 2) is initially located on the left (resp. right) and
both droplets are heading toward each other, so that ζ > 0, see Eq. (5.5). Depending both
on their initial relative alignment, χ, and on the delay length `, the droplets can either cross
paths (ζ0ζf > 0) or rebound (ζ0ζf < 0).
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Figure 5.10: Four possible regimes following asymmetric (delayed) collisions of two droplets.
Top: Initial and final relative orientations of the droplets in each regime. Bottom: Illus-
tration of each regime. Acute rebound (blue, χ0 = −0.77, ` = 2), obtuse rebound (green,
χ0 = −0.34, ` = 30), opposed crossing (red, χ0 = −0.77, ` = 8) and parallel crossing (brown,
χ0 = 0.34, ` = 30). In each case, the droplets’ trajectories are provided together with their
position at a given time before the collision.

Each of these two general behaviours is further divided into two different regimes de-
pending on the sign of their final relative alignment, χf (Fig. 5.10):

• In the crossing regimes, ζf < 0, droplet 2 passes through the chemical wake of
droplet 1. In their final state, the droplets can either swim in opposite direction
(opposed crossings, χf < 0, red color on Fig. 5.10), or in the same direction (aligned
crossings, χf > 0, brown color on Fig. 5.10).

• In the rebound regimes, ζf > 0, droplet 2 is repelled by droplet 1 and its chemical
trail and is deviated away before crossing its path (for sufficiently small `, droplet 1
may also be deviated by the oncoming droplet 2). Again, the final relative orientation

111



Chapter 5. Oblique collisions of active droplets

5

of the droplets provides a distinction between acute rebounds (χf > 0, blue color on
Fig. 5.10) and obtuse rebounds (χf < 0, green color on Fig. 5.10).

These four different regimes are illustrated on Fig. 5.10 and the influence of the delay length
` and the initial alignment χ0 on the regime type following a collision is fully characterised
below.

�0.8 �0.4 0.0 0.4 0.8
�0

0

4

8

12

16

20

24

28

l/
R

�0.8 �0.4 0.0 0.4 0.8
�0

0

4

8

12

16

20

24

28

l/
R

�1.0

�0.8

�0.6

�0.4

�0.2

0.0

0.2

0.4

0.6

0.8

1.0

�0.8 �0.4 0.0 0.4 0.8
cos(v0

1, v
0
2)

2

6

10

14

18

22

26

30

l/
R

�1.0

�0.8

�0.6

�0.4

�0.2

0.0

0.2

0.4

0.6

0.8

1.0

�1

�1

0 �f

(a) (b)

Figure 5.11: (a): Final alignment, χf , as a function of the initial alignment χ0 and delay
length `. (b): Phase diagram of the collision outcome depending on the initial relative
alignment, χ0, and delay length, `: Acute rebound (blue), obtuse rebound (green), opposed
crossing (red) and parallel crossing (brown)

When ` is small, the problem is almost symmetric so that both droplets rebound around
the same time under the effect of their repulsive interaction, oriented along e, defined as
the unit vector orthogonal to the average initial direction of both droplets. This symme-
try is broken when ` is increased; as a result, when the droplets are closest, the repulsive
interactions experienced by each of them point along distinct directions, and can lead to
completely different dynamics for the leading and trailing droplets.

Section 5.4 demonstrated that symmetric collisions (` = 0) systematically lead to acute
rebounds provided χ0 > −0.98, while obtuse rebound are observed for strictly head-on colli-
sions (χ0 = −1). It is therefore no surprise that such observations are maintained for small
enough delay length `. Note that Fig. 5.11 does not include strict head-on and parallel
collisions, for which χ0 = ±1 and ` cannot be defined.

In fact, acute rebounds are observed for most initial relative orientations when `/R < 5,
and for even larger delay lengths when the droplets are initially swimming in rather parallel
directions (χ0 > 0). For more frontal collisions (χ0 < −0.3), alignment of the droplets and
acute rebounds are still observed for small `, but the second (delayed) droplet follows a
drastically different dynamics emerges when a critical delay length `c is exceeded, leading
to obtuse rebounds. To understand this acute-to-obtuse rebound transition, the detailed
dynamics of the droplets must be analysed in the closest interaction region, loosely defined
here as the region where their relative distance is at its minimum.

We noted previously the asymmetry of the chemical footprint of a swimming droplet:
most of the chemical released by a droplet is left in its wake. As a result, the interaction
region is almost solute-free as the first (leading) droplet crosses it, and for larger delay
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length, droplet 1 is therefore only weakly deviated. In contrast, when it finally crosses the
interaction region, droplet 2 is repelled by the wake of droplet 1 in a direction that depends
both on ` (i.e. how long ago droplet 1 went by) and χ0. For large enough ` and small χ0

(droplets heading toward each other), this repulsion includes a component along −e. This
justifies the existence of a critical delay length `c for the acute-to-obtuse rebound transi-
tion observed on Fig. 5.11: for ` ≈ `c, the repulsion of droplet 2 along −e compensates its
initial velocity component along +e, which increases with χ0. As the interaction strength
decreases with the droplet separation, `c is an increasing function of χ0, which is consistent
with the positive slope of the separation between acute and obtuse rebound regimes on the
panel (a) of Fig. 5.11.

For larger ` (typically ` & 5–10), the sign of the droplets’ alignment, χ, is conserved be-
tween the initial and final configurations: droplets initially swimming along rather parallel
directions (χ0 > 0)) experience an acute rebound or a parallel crossing while droplets head-
ing more directly toward each other (χ0 < 0), experience an obtuse rebound or an opposed
crossing. In both cases, a rebound-to-crossing transition is observed when the delay ` is
large enough (Panel (a) of Fig. 5.11). This is consistent with the physical intuition that the
droplets essentially do not interact and maintain a straight trajectory for sufficiently large `,
as the wake of the leading droplet has diffused away by the time the second droplet crosses
the interaction region.

It can be noted that the critical delay length `∗c required for this rebound-to-crossing
transition varies non-monotonically with χ0: it is minimum for χ0 ≈ 0 and diverges for
rather parallel or head-on configurations (χ0 → ±1). This feature results from the com-
bined effect of (i) the sensitivity of initial trajectory to a rebound-to-crossing transition and
(ii) the non-trivial variations of the minimum distance of the two droplets with ` and χ0.

The minimum distance observed between the droplets generally increases with χ0 (see
Fig. 5.8 for the case of symmetric collisions, ` = 0), and diverges for parallel configurations
(χ0 → 1). To experience a rebound, the repulsive interaction between the droplets must ex-
ceed the component of their relative velocity normal to e, which is proportional to

√
1− χ0.

For greater initial alignment (larger χ0), this happens at greater distances (the chemical re-
pulsion decreases as 1/d2). Furthermore, the interaction of the droplets is stronger as their
alignment increases due to the angular asymmetry of their chemical wake (see Eq. (5.3)). As
a result, a much greater delay length ` is required to avoid a rebound when the droplets are
initially swimming parallel to each other, which is consistent with the critical delay `∗c for a
rebound-to-crossing transition being an increasing function of χ0 when χ0 > 0 (Fig. 5.11-a).

Additionally, a first estimate of the minimum distance of the two droplets is provided by
the minimum distance reached by two non interacting droplets d∗min ∼ `

√
1 + χ0, which is

always small for head-on configurations, even for large `. As a result, a rebound is observed
for larger delay ` when χ0 → −1 (head-on collisions), which is consistent with `∗c being a
decreasing function of χ0 for χ0 < 0 (Fig. 5.11-a).

Finally, in addition to the phase diagram provided on the panel (a) of Fig. 5.11, the
panel (b) of Fig. 5.11 provides the evolution of the final relative alignment of the droplets,
χf , in the (χ0, `)-parameter space. Two regions can be distinguished in this figure. Acute
rebounds (small ` or large χ0) are characterised, as for symmetric collisions, by a rather fixed
directional outcome which corresponds to a general alignment of the droplets (χf is almost
constant and greater than χ0). This region is separated by a sharp transition from the rest
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of the map in which the relative direction is mostly conserved (χf ≈ χ0) and depends only
weakly on `. This sharp transition stems from sudden changes in the reorientation direction
of the trailing droplet under the effect of the chemical wake left behind the leading droplet.
It emphasizes the sensitivity of the collision outcome to ` and the scattering ability of such
collisions on the collective behaviour of the droplets.

5.6 Conclusion

Swimming droplets influence each other’s dynamics through the wake of chemical solute
they generate in order to self-propel. These chemical interactions are repulsive and have
been identified as the dominant contribution to the droplets’ collective dynamics, both in
experiments [120] and from a complete modelling of the two-droplet dynamics as seen in
chapters 3 and 4. Based on this observation, this chapter proposed a general simplified
framework in terms of moving singularities to analyse the collisions of N -droplet collisions.
This model was then exploited to characterise in detail the generic (oblique) planar collisions
of two droplets.

Our results show that symmetric collisions systematically align the droplets’ after their
encounter (χf ≥ χ0), leading to a surprisingly constant relative final alignment χf , re-
gardless of the incoming orientation χ0. This phenomenon was proved to result essentially
from the reorientation dynamics of each droplets’ own wake during the collision, and was
rationalised using a simple two-degree-of-freedom model in terms of the wake orientation
and inter-droplet distance. This alignment ability of the droplet interactions is maintained
for significant asymmetry in the droplets’ oncoming dynamics, at least for effective delay
length of a few droplet radii. When the asymmetry of the droplet interaction is greater
(i.e. when the trailing droplet crosses the interaction region long enough after the leading
droplet did), the interaction outcomes are much more diverse, and both rebound regimes
(where the droplets’ relative velocity is reversed) and crossing regimes (where the droplets
are only deviated away from their original trajectory) were observed. Two sharp transitions
between fundamentally different outcomes were observed as a result of the strong sensitivity
of the trailing droplet’s trajectory and final heading to the exact timing of its crossing of
the solute-rich region left behind the first droplet.

The relative alignment resulting from droplets interaction is expected to favour a certain
collective coherence of the droplets’ trajectory at large scales. On the other hand, sharp
transitions in the final dynamic regime denote the scattering ability of such collisions, which
provide the droplets with the ability to explore new spatial directions.

Building upon a detailed understanding of the axisymmetric configuration, for which a
full solution of the chemo-hydrodynamic system is available [89, 114], this chapter provides
an analysis of the generic oblique collisions, which is more relevant to experimental condi-
tions. It is shown that such axisymmetric or head-on collisions are very specific in terms of
the droplets’ wake dynamics whose polarity must vanish in a rebound, while it is able to
rotate around the droplet in a more generic setting. As a result, mostly (but not strictly)
head-on collisions lead to a significant scattering. Similarly, introducing a small delay in
the oncoming dynamics of the two droplets in an oblique symmetric collision triggers the
emergence of a large variety of different dynamic regimes.

For simplicity, we specifically focused here on the planar dynamics of the two droplets,
still accounting for the fully-3D diffusion of the chemical solute. The stability of such
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planar collisions remain however to be studied. Yet, in experimental situations, an external
mechanism (in general confinement or buoyancy-induced trapping close to a boundary)
maintains such planar configurations and we therefore expect the present findings to be
relevant to such situations. It can be also noted, that the present framework could be
generalised to include the effect of confinement on the solute dynamics, e.g. exploiting the
linearity of the chemical problem through the method of images.
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Take home message of Chapter 5

2. Moving singularity model: At moderate Pe, we approximate an active
droplet by the superposition of a source and source-dipole located at its centre. In
particular, this reduced model provides consistent results of head-on collisions in
comparison to the exact ones provided in chapter 3.

2. Symmetric oblique collisions: We find that oblique symmetric collisions of
active droplets tend to induce a relative alignment of their swimming direction.
Besides, the final relative angle between each droplet’s direction is almost the same
for a large range of incoming angles. This last feature results from the particular
dynamics of the solute wake around each droplet.

3. Delayed oblique collisions: We find that introducing a delay on one droplet
during an oblique collision can lead to the emergence of four different regimes. In
particular, for almost head-on collisions, the system can exhibit scattering events with
the introduction of a misalignment in the droplets’ initial conditions.
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6
Conclusion and perspectives

In this last chapter, we will conclude this manuscript by first of all providing a summary
of the results introduced in the previous chapters. Besides, we suggest four possible future
projects that may help gain insight into the interactions and collective dynamics among
active droplets.

Left panel: concentration field of several active droplets driven according to the moving
singularity model. Right panel: assembly of active water droplets in a circular arena from
Ref. [36]
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The central objective of this PhD has been to characterise the interactions between self-
propelling active droplets by the mean of theoretical and numerical tools. Before this PhD
started, an extensive amount of work had already been done regarding the theoretical mod-
elling of the single active droplet’s self-propulsion enabling to gain insight into the involved
mechanisms. If knowledge of single droplet dynamics was advanced, the number of studies
that examined their interactions remained small. Several attempts have been performed to
characterise the collision of two self-propelled active droplets. First, an interaction model
in the purely diffusive limit (Pe = 0) and with no hydrodynamic interactions has been de-
veloped by Ref. [56]. Besides, the numerical simulations from Ref. [86] tackle the collision
problem by focusing on the hydrodynamic interactions between two active droplets. Finally,
the far-field model from Ref. [87] consider the influence of both chemical and hydrodynamic
interactions during the collision of two self-propelled droplets. It should be noted that the
latter model remains valid for far-appart active droplets close to the self-propulsion thresh-
old. When this PhD started, the effect of the hydro-chemical coupling on the interaction
remained thus unclear. Therefore, the first objective of this thesis has been to provide an
exact interaction model between active droplets, to characterise their interactions and de-
termine which of the hydrodynamical or the chemical contribution is the most important
during a collision. Another objective has been to provide a benchmark for more effective
models and understand the behaviours of active droplets observed in the experiments.

6.1 Summary

In the first chapter of this manuscript, we analysed the study of interactions between
active individuals (birds, ants, active emulsions), which can help understand the physical
origin of some of their intriguing collective dynamics. We then realised that at a microscale,
in the absence of inertia, a swimmer needs to break spatio-temporal symmetry to achieve
propulsion. In using the example of the paramecium, we saw that generating a slip velocity
at the surface of a body appears to be a convenient swimming strategy at those small scales.
The latter inspired a wide range of artificial microswimmers that use interfacial stresses to
propel. In particular, we focused on microdroplets that experience a solubilisation process
when immersed in a liquid saturated with surfactant molecules. After briefly presenting
the activity mechanism at the droplet surface, we provided a qualitative explanation of the
instability phenomenon at the origin of the self-propulsion of the droplet. We specifically
stressed the importance of the coupling between solute dynamics and flow field, which ap-
pears essential for a droplet to swim. Finally, we concluded this first chapter by providing
some observed exotic behaviour adopted by a single active droplet at high Pe, in addition
to some collective motion that can appear in specific geometries.

In the second chapter, we presented a spectral decomposition approach [66, 36], which
helps compute the exact dynamics of a single self-propelled active droplet. Then, we pro-
vided some qualitative descriptions of the hydrodynamic and chemical interactions that arise
in the presence of several droplets or boundaries. Moreover, in order to better grasp the
fundamental difficulty to determine these hydro-chemical interactions, we briefly mentioned
the case of interacting active particles in a purely diffusive limit. Consequently, this second
chapter opened the question of the modelling of those interactions, which seems not possible
with the current models of the literature.

The third chapter of the manuscript provided a new semi-analytical method that com-
putes the exact interactions between an active droplet which frontally collides with a rigid
wall . To solve this problem, we adapted the bi-spherical coordinates system to solve both
Stokes and advection-diffusion equations in a situation where the droplet moves. The latter
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imposes the grid to experience inconvenient distortions. If bi-spherical coordinates have
been used for a long time to deal with quasi-steady problems (where Stokes and Laplace
equations are decoupled), the developed framework may be used and rather easily adapted
to deal with any axisymmetric boundary value problem between two spheres of any radius
(where a sphere for which R → ∞ appears as a plane), involving unsteady transport dy-
namics coupled to low Reynolds flows and for which the involved boundaries may move and
deform over time (as soon as the surfaces remain either spherical or flat). Such a situation
may, for instance, be encountered in the growth or dissolution of gas bubbles near a heating
plate or to study the effect of shrinkage in the dynamics of active dumbbells [103]. The first
result of this chapter regards the case of moderate Pe (illustrated by Pe = 6), where chem-
ical effects turn out to be predominant in the interactions. Within this limit, a reasonable
approximation of the head-on collision involving two active droplets may thus be imagined
in neglecting any hydrodynamical influence on their velocities. However, when increasing
Pe, the enhanced advection leads to a decrease of the solute concentration at the front of the
droplet, which therefore needs to get closer to the wall before experiencing a rebound. In
particular, for higher Pe (illustrated by Pe = 20) and during the second half of the collision,
the droplet is held back by the trace of its former wake which needs some time to diffuse. As
a result, the droplet experiences a velocity plateau during which it spends some time with
an average speed before re-accelerating up to its self-propulsion velocity. Chapter 3 then
provides a useful benchmark against which the single active droplet dynamics obtained from
reduced models may be confronted. In the same manner, the results regarding the collision
durations and rebound distances of sections 3.6.2 and 3.8 may be used to check the validity
of a reduced model regarding pairwise interactions.

In the fourth chapter, we applied the same mathematical framework to study head-on
collisions between active droplets of distinct sizes. Surprisingly, even a slight difference in
size may lead to significantly distinct behaviours: first a rebound regime for almost identical
droplets and second a chasing regime achieved at moderate Pe for droplets above a critical
size ratio and for which both droplets eventually swim in the same direction and at the
same speed. In the third regime, called pausing, the bigger droplet is stopped right after the
collision and behaves as an active pump. While the second regime may be a possible track to
follow to learn more about the one-dimensional collective dynamics observed experimentally
[63], the pausing regime depicts somehow a situation where the big droplet loses its memory.
Regarding the latter regime, in a situation involving more than two droplets, we can imagine
the bigger droplet would eventually recover a propulsion state after experiencing a second
collision with another small one. Then, after some time, the big droplet may be once more
stopped due to a third frontal collision with another active droplet. Such pattern reminds
somewhat of the run-and-tumble behaviour experienced notably by E.Coli bacteria [122],
which makes this regime an interesting issue to deepen.

Finally, in the fifth chapter, we examined oblique collisions of active droplets by consid-
ering an approximate model based on moving singularities. This model, checked beforehand
with the exact interaction results of chapter 3, enabled to find out that symmetric oblique
collisions between active droplets induce an alignment of their directions. Besides, for a
large range of incoming angles, both droplets leave with almost the same final angle af-
ter the rebound. This identified plateau for the relative direction can be explained by the
particular wake dynamics around each droplet, which adjusts its direction in a finite time
as the droplet deviates. While such an alignment phenomenon would give some hope in
observing collective dynamics [123], we realise the great sensitivity of the collision outcome
to the delay between the droplets. Indeed, as a droplet leaves a trace of solute on its path,
it influences the motion of the other one, even a relatively long time after the first droplet
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has left. We demonstrated that within the range of near head-on collisions, a delay between
the droplets may lead to significantly different regimes, in which the droplets either bounce
back or are deviated as a result of the collision.

6.2 Perspectives and future work

In this section, we suggest four different paths that we may follow to better understand
the behaviour of active droplets. In the first, we focus on the behaviour of an assembly
of active droplets, by specifically providing preliminary results of the effect of the number
of droplets on the assembly dynamics. In the second, we open the question of multi-body
interactions, which appear to generate ephemeral alignment events. In the third, we tackle
the issue of the effect of size heterogeneity in polydisperse assemblies of active droplets.
Finally, in the fourth part, inspired by recent sliding behaviours empirically observed, we
suggest a generalisation of the exact model provided in chapter 3.

6.2.1 Interactions of several active droplets: diffusion properties and
transition

The experiments of Ref. [124] provide interesting results regarding the dynamics of an
assembly of active droplets. The active water droplets considered evolve in an oil medium
saturated with surfactant molecules and are confined by two hydrophobic glass plates sep-
arated by a distance of about one droplet in diameter. Consequently, the assembly is a
2-D monolayer of active droplets (see Fig. 6.1), for which we define the density of droplets
φ = Nd/N

max
d as the ratio of the number of active droplets Nd involved in the experiment to

the one reached for a maximal 2D hexagonal packing Nmax
d provided by Lagrange in 1773

[125].

As shown by the mean square displacement time evolution (MSD) of Fig. 6.1, we notice
that the behaviour of the assembly is ballistic at the short time scale and becomes eventually
diffusive at a larger time scale. In the particular case of dilute assemblies (0.005 < φ < 0.08),
we notice that the diffusivity of the assembly decreases as φ grows. This result may be
interpreted as the consequence of more frequent interactions between the droplets when
increasing φ [124]. However, at higher φ, the rope of the MSD instead slightly increases
(see panel (b) of Fig. 6.1). Such a diffusivity enhancement may be attributed to collective
swimming events among the assembly [62, 115, 126].

In the following, we present very preliminary numerical results and on-going work regard-
ing the effect of the density of droplets on the assembly dynamics. Let us consider Nd > 2
active droplets of equal radius R evolving in the same plane (x, y). Each droplet is described
by the moving singularity model introduced in chapter 5. Keeping the same notations as in
chapter 5, we deal with dimensionless quantities, where the time t is expressed in units of
the advective time R/V ∗. We consider that each active droplet emits a total flux of solute
4π inside a box of dimensions (Lx, Ly, Lz) with imposed periodic boundary conditions (see
Fig. 6.2). In the following, we keep the same definition of the density of droplets as in
Ref. [62]: φ = Nd/N

max
d , where Nmax

d denotes the maximum number of droplets, arranged
in a hexagonal lattice, that could fit inside the rectangle of dimensions (Lx, Ly) (Nd = 1039
for Lx = Ly = 60). We note that φ may be multiplied by π/

√
12 to recover a density in

terms of area fraction.

First, we randomly assign the initial positions of the droplets one by one. If the position
of the first droplet is rigorously random inside the box, the positions of the next ones are
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(a)

(b)

Figure 6.1: (a): Top view of a typical experiment involving an assembly of active droplets.
The droplet diameter is 80µm. The red arrows indicate the momentary direction of
the droplet motion. (b) Ensemble averaged mean square displacement (MSD) for a 2-
dimensional monolayer of squirmer population at different area fractions. Each population
has between 50-500 squirmer droplets. (a) and (b) panels are drawn from Ref. [115] and
Ref. [124] respectively.

chosen randomly in the available space so that their fictitious surfaces do not overlap. The
dynamics of the assembly is described (i) by the unsteady diffusion equation Eq. (5.2), (ii)
by the polarity relation Eq. (5.1) (providing the speed of each droplet) and (iii) by the value
of the dipole intensity for each droplet given by Eq. (5.4). The following system of equations
thus describes the global dynamics:

Pe
∂c(r, t)

∂t
= ∇2c(r, t) + 4π

Nd∑

i=1

(I + ζ(vi)vi ·∇) δ(r − xi(t)), c(r, 0) = 0, (6.1)

vi = − 1

2π

∫

Si
cndS = Πi, (6.2)

ζ(λi) =
Pe

2

[
λ2
i e
λiv0/2− λi coshλi + sinhλi

2 sinhλi − (2λi + 2λ2
i + λ3

i )e
−λi

]
, λi = |vi|Pe/2, (6.3)

where Pe = 6 in the simulations.
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cmin

cmin + 2

c

vi

Nd = 36 Pe = 6

Lx

Ly

x

y

Figure 6.2: Plot of the concentration field in the plane z = Lz/2 generated by Nd = 36 active
droplets (φ = 0.035) at Pe = 6. The velocity of each droplet is denoted by vi (i ∈ [1, 36]).
Since the solute concentration keeps increasing inside the box we choose the color-bar to
range from the current minimal concentration cmin to cmin + 2 for readability convenience

Interested in the influence of the density of droplets on the assembly dynamics, Fig. 6.3
reports the results obtained for four different densities: φ ∈ {0.010, 0.029, 0.115, 0.338}. For
each panel, the upper part represents the concentration field generated by the assembly,
where the colour-bar range between the minimal solute concentration cmin (which increases
with time due to the periodicity of the boundaries as seen in chapter 5) and cmin + 2. Such
a choice enables each situation to keep the same colour contrast between high and low con-
centration zones even if the total amount of solute inside the box varies.

Considering that periodic boundary conditions are equivalent to the situation where an
infinite number of identical boxes are juxtaposed, the lower part of each panel of figure
Fig. 6.3 represents the droplets’ trajectories as if each droplet were able to travel through
the boxes. Importantly, even if we may have the impression that the droplets move far away
from each other, the periodic boundary conditions maintain the same density of droplets
over time.

First, let us qualitatively describe the numerical results reported on Fig. 6.3. At a first
glance, increasing φ seems to lead to more frequent interactions within the droplet assembly.
Let us compare the trajectories provided by the lower part of each panel. We notice that
for most of the droplets, the separation distances between their initial positions and the
ones after ∆t = 9500 (in units of R/V ∗) seem to decrease when φ increases. Furthermore,
for φ = 0.115 (panel (c) of Fig. 6.3), the droplets perform fast oscillations due to frequent
interactions with their neighbours, whereas their net displacement appears significantly re-
duced. Finally, for φ = 0.338, the droplets become immobile after a short transitory regime,
in which they arrange in a hexagonal lattice. Willing to get a more quantitative analysis of
the assembly dynamics, we remind the definition of the mean square displacement:

〈∆r2〉 =
1

Nd

Nd∑

i=1

|xi(t)− xi(0)|2, (6.4)
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where xi(t) denotes the absolute position of the droplet i at the time t.
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Figure 6.3: Concentration field (top) and droplets’ trajectories after at time ∆t = 9500 in
units of R/V ∗ (down) for different densities. (a): φ = 0.010 ,(b): φ = 0.029, (c): φ = 0.115,
(d): φ = 0.338. In each panel, the gray zone delimited by black dashed lines represent a the
periodic box dimensions.

The time evolution of the mean square displacement for several φ informs that after a
transitory ballistic regime, the droplets among a dilute assembly (φ < 0.115) have a global
diffusive behaviour. We then define the self-diffusivity [127, 128]:

Deff = limt→∞
〈∆r2〉

4t
, (6.5)

which is reported for several φ on the panel (b) of Fig. 6.4 by fitting the long-time behaviour
of the average mean-square displacement. As expected from the previous paragraph, in-
creasing φ reduces Deff. Besides, it seems that Deff decreases exponentially as φ increases.
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Figure 6.4: (a) Log-log time evolution of the mean square displacement 〈∆r2〉 for various
densities (b): Semi-log evolution of the self-diffusivity Deff as function of the density of
droplets φ.

Finally, curious about the spatial structure of the droplet assembly, we introduce the
time-averaged density correlation function:

g(r) =

〈
1

Nd

Nd∑

i=1

N i
r,dr(t)

2πrdrφ

〉

t

, (6.6)

where N i
r,dr denotes the number of droplets that lie between the circles of radii r and r+ dr

both centred on the location of droplet i (where dr = LY /Ny with Ny the number of grid
points used along the y axis). This function is a useful tool to describe the structure of
a system, and especially to detect if the assembly shares similarities with a dilute gas, a
liquid or a crystalline structure [129, 130]. The panel (b) of Fig. 6.5 provides an exam-
ple of typical evolutions of g for three states of argon at different temperatures (solid for
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T = 50K, liquid for T = 80K, and gaseous for T = 300K). In the crystalline state, g
to exhibit a series of peaks that suggest the presence of a regular lattice among the parti-
cles. Secondly, due to their ability to flow, liquids do not have such a periodic evolution
and loose their long-range structure. Consequently, the function g for typical liquids per-
forms damped oscillations over r and tends to 1 at large distances. Finally, the gas phase
involves particles that do not have any regular structure and for which g decays rapidly to 1.

We report on the panel (a) of Fig. 6.5 the evolution of g for three different active droplet
densities (φ = 0.029, φ = 0.12 and φ = 0.34). The evolution of the spatial structure among
the droplet assembly seems to share some similarities with the gas, liquid and crystalline
phases. More time should be devoted to the study of the spatial structure of active droplet
assemblies. In particular, we expect that considering much more droplets and larger boxes
would enable to obtain a smoother g function and a more regular hexagonal lattice in the
case of denser assemblies.
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Figure 6.5: Evolution of the time averaged radial correlation function g for (a) an assembly
of active droplets at φ = 0.029 in red, φ = 0.12 in black and φ = 0.34 in blue, and (b)
molecules of argon at the gas state (T = 300K) in red, at the liquid state (T = 80K) in
black and at the solid-state (T = 50K) in blue. While in (a), r is the radial distance per unit
of the droplets’ radii, in (b), r is expressed in terms of the molecular diameter dmol = 3.822Å.
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6.2.2 Ephemeral alignment and multi-body interactions

Recently, the results of Ref. [62] showed that groups of droplets confined in a Hele-Shaw
cell may exhibit ephemeral collective dynamics. Indeed, several droplets are observed to
swim side-by-side and form a small unstable line that breaks after having travelled a dis-
tance of few radii. If far-field hydrodynamic interactions were considered in Ref. [62], we
may wonder if such lines can still be observed considering the influence of chemical inter-
actions only. Since an active droplet is a pusher kind of swimmer (see chapter 2), we thus
expect the hydrodynamic interactions between two side by side droplets to be attractive.
On the contrary, due to its antichemotactic nature, we expect chemical interactions to be
repulsive and not favour the formation of lines.

However, a diluted assembly of active droplets described by the moving singularity model
introduced in chapter 5 appears to exhibit short periods of alignment. The panel (a) of
Fig. 6.6 provides snapshots of the concentration field at Pe = 6 involving Nd = 6 active
droplets of unit radius which swim in the same plane of a periodic cubic box of side L = 60.
We notice the formation of small groups (indicated by red and yellow circles) that swim side
by side and in the same direction for a distance a few radii before being scattered. Within
a group, the droplet in the middle feels the chemical repulsion which comes from the ones
on its sides and appears somehow to be chemically guided. Furthermore, when increasing
the number of active droplets inside the box, such temporal alignment seems to result in
complex multi-body interactions as illustrated on the panel (b) of Fig. 6.6. Multi-body
interactions thus deserve to be studied more carefully and is identified as a possible future
project.

1 2 3 4 5

6 7 8 9 10
(a)

(b)

1 2 3

4

Figure 6.6: (a): Snapshots of the concentration field obtained from numerical simulations
(moving singularity model) involving Nd = 6 active droplets that swim in a cubic periodic
box of size L = 60 (in units of radius) at Pe = 6. The red and yellow dashed circles identify
two groups of three active droplets that swim together for a distance of few radii. (b):
Snapshots of the concentration field obtained at Pe = 6 with the same numerical approach
as in (a) for Nd = 36 active droplets in a cubic and periodic box of size L = 60. The droplets
involved in a complex multi-body interaction are surrounded by a dashed orange line. In
both panels, the time between each snapshot is constant and taken to 30 (in units of R/V ∗).
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6.2.3 Poly-disperse assembly of active droplets

As mentioned at the end of chapter 4, the recent experiments of Ref. [63] enable us to
identify that velocity differences among interacting droplets, when placed in a microfluidic
capillary beforehand, can lead to one-dimensional collective dynamics. The physical origin
of such train formations still remains an open question. As the droplets solubilise, they
shrink and thus slow down over time. Size heterogeneity appears therefore as a possible
route to observe interacting droplets at various velocities. As a consequence, we may hope
to notice such collective dynamics in studying a poly-disperse assembly of active droplets.

If the full hydro-chemical interactions between an assembly of active droplets in a capil-
lary appear intractable, we may use the exact results of chapters 3 and 4 as benchmarks to
develop more reduced models. First, we may think of using the moving singularity model
of chapter 5, which may be easily adapted to deal with droplets of various sizes. Indeed,
active droplets are modelled by a superimposition of chemical singularities, whose intensities
may be tuned to represent either smaller or larger droplets. Then, we may first focus on
collisions between identical droplets at a higher Pe to assess the ability of the reduced model
to reproduce the velocity plateau phenomenon which occurs as the result of their apparent
“chemical inertia”. If the moving singularity model fails to describe a similar behaviour,
we can think of adding higher-order chemical singularities, whose intensities may be chosen
to reproduce at best the effective collision dynamics provided at the end of chapter 3. If
conclusive, such an enhanced model may thus be used (i) to see if the regimes identified in
chapter 4 may be reproduced by a significantly simpler model and (ii) to study an assem-
bly of active droplets of various radii, evolving along the same axis, to see if the minimal
ingredients introduced in the model are sufficient to notice the one-dimensional collective
motion observed experimentally in Ref. [63].

Finally, such an enhanced version of the reduced model may thus be used to investi-
gate the situation of poly-disperse assemblies of droplets that are free to move in the entire
plane or volume. Even if an assembly of active droplets is always poly-dispersed in the
experiments, the situation of significant size difference has not yet been broached. Such a
numerical study would be a way to identify possible new regimes of interest that are worth
exploring. In effect, it is not an easy task to predict the behaviour of the assembly, which
would likely depend on the packing fraction, on the proportion of large droplets and finally
on the Péclet number. We may, for instance, witness a situation where the big droplets,
being faster and more chemically active, dominate the global motion and drive the trajec-
tory of the small ones, as herding dogs would do with a group of sheep. On the contrary,
it would also be possible to see the large droplets, ceaselessly disturbed in their motion by
frequent collisions with smaller ones, remain almost at the same location as the result of
their larger ‘chemical inertia”. In such a case, we may observe two existing phases, where
the large droplets would appear as a rigid matrix, inside which the smaller droplets swim.

Inspired (i) by the collective motion observed in the experiments of Ref. [63] and (ii) by
yet unexplored poly-disperse regimes, studying the influence of the size heterogeneity in an
assembly of active droplets appears thus as a promising subject.
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6.2.4 Generic collisions in bi-spherical coordinates

Let us consider the experiments of Ref. [36] that considers an assembly of active droplets
inside a circular arena. In this situation, we may sometimes notice an active droplet that
slides on the curved wall of the arena. Besides, experiments of Ref. [121] noticed such a
sliding behaviour when an active droplet collides against a circular pillar. An apparent
balance between a hydrodynamic attraction and a chemical repulsion enables the droplet to
orbit around the pillar.

An accurate description of oblique collisions involving both hydrodynamic and chemical
interactions appears then essential to properly describe such a subtle phenomenon. Adapt-
ing the approach of chapter 3 using generic bi-spherical coordinates system would enable
first to obtain exact results between a droplet sliding on a wall and also examine the influ-
ence of the hydrodynamic interactions in the oblique collision dynamics presented in chapter
5.

First, let us remind the experimental results of Ref. [58], which have shown that a single
droplet may perform perpendicular reorientations as a result of the spontaneous emergence
of a quadrupolar flow field. In this particular situation, the flow transports the solute on one
side of the droplet, leading to its lateral propulsion. On the other hand, chapter 3 tells us
that at sufficiently high Pe, a significant quadrupolar flow field emerges when the droplets
are about to rebound.

Secondly, let us thus consider a small deviation from the perfect head-on collision model
of chapter 3. In this case, the droplets collide almost frontally. Similarly to the axisymmetric
collision, we expect the bigger droplet to be, at least temporarily, trapped by the chemical
repulsion from the small one and its own solute wake. However, because the collision is
not perfectly frontal, advection may transport the solute from the front and back of the
bigger droplet towards one of its sides. As a result, the bigger droplet would swim in a
direction orthogonal to its initial one. This situation is not expected to differ much from the
case of an active droplet that collides almost frontally with rigid wall (as seen in chapter 3
for head-on collision). Consequently, a droplet that ends up swimming orthogonally to its
initial direction would then appear to slide over the wall.

Moreover, it would be interesting to compare the theoretical flow field induced by an ac-
tive droplet swimming parallel to a rigid wall with the one noticed in the recent experiments
of Ref. [75]. It would provide a theoretical insight regarding the origin of the monopolar
flow field that emerges from chemical interaction with the wall. Finally, such a model would
enable to examine the robustness of the behaviours identified in chapter 4 when the droplets
are not involved in a head-on collision.
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A
Exact interaction model:

mathematical framework and
bi-spherical coordinates

In this appendix, we provide the mathematical framework necessary for the use of

bi-spherical coordinates applied to the axi-symmetric collision of two self-propelled active

droplets. After a brief introduction of the Legendre polynomials, we introduce the adapted

bi-spherical coordinates in the generic problem of two spheres of different radii. The

following parts are dedicated to the projection of the advection-diffusion equation together

with the hydrodynamical problem. Finally, we provide some asymptotic computations

regarding the equilibrium state between two active droplets of distincts sizes.
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6

A.1 Legendre polynomials

In this section we provide some useful properties of the Legendre polynomials which
have been used in the bi-spherical approach as a decomposition basis for both hydrody-
namical and concentration fields. The Legendre polynomials are named after Adrien-Marie
Legendre, who discovered them in 1782 and are a system of orthogonal polynomials. If
several manners exist to define them, one can consider they are solution of the Legendre’s
differential equation:

d

dx

[
(1− x2)

dLn(x)

dx

]
+ n(n+ 1)Ln(x) = 0. (A.1)

Furthermore, they satisfy the following orthogonal property for n,m ∈ Z:

∫ 1

−1
Lm(x)Ln(x)dx =

2

2n+ 1
δnm, (A.2)

where δnm is the Kronecker delta function. For illustration purposes, we provide the first
six Legendre polynomials which are plotted on Fig. A.2:

L0(x) = 1, L1(x) = x, L2(x) =
3x2 − 1

2
, L3(x) =

5x3 − 3x

2

L4(x) =
35x4 − 30x2 + 3

8
, L5(x) =

63x5 − 70x3 + 15x

8
. (A.3)
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Figure A.1: Legendre polynomials Ln for n ∈ {0, 1, 2, 3, 4, 5} (respectively red, blue, green,
cyan, black and brown) as function of x ∈ [−1, 1]

An additional useful property of the Legendre polynomials is called the multipole expan-
sion:

1√
1 + η2 − 2ηx

=
∞∑

k=0

ηkLk(x), (A.4)

used repeatedly in the projection computations of the diffusion-advection equation in the
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bi-spherical coordinates system, for the particular case of η = 1. Finally, we conclude this
section with some useful properties satisfied by the Legendre polynomials:

Ln(−x) = (−1)nLn(x), (A.5)

in addition to the Bonnet’s recursion formulas:

(n+ 1)Ln+1(x) = (2n+ 1)xLn(x)− nLn−1(x), (A.6)

x2 − 1

n

dLn(x)

dx
= xLn(x)− Ln−1(x). (A.7)

A.2 Adapted bi-spherical coordinates system

Figure A.2: Bi-spherical grid where both droplets correspond to τ1 and τ2, where iso-τ are
plotted in blue and iso-µ in red.

In the general situation of two spheres of radiiR1 andR2 located at a distance respectively
d1 = R1 cosh τ1 and d2 = R2 cosh τ2 from the origin of the bi-spherical coordinates, the
relations between the cylindrical coordinates system and the bi-spherical one read:

ρ =
a(t)

√
1− µ2

cosh(α(t)ξ + β(t))− µ, (A.8)

z = z0 +
a(t) sinh(α(t)ξ + β(t))

cosh(α(t)ξ + β(t))− µ, (A.9)
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for which

α(t) =
τ1(t)− τ2(t)

2
, (A.10)

β(t) =
τ1(t) + τ2(t)

2
, (A.11)

a(t) = R1 sinh τ1(t) = −R2 sinh τ2(t), (A.12)

where ξ ∈ [−1, 1] and z0(t) is the position of the origin of the bi-spherical system. The
concentration field c(ξ, µ, t) in the new fitting grid coordinates system is linked to the con-
centration field C(ρ, z, t) in the cylindrical one through:



∂ξc|t,µ
∂µc|τ,t
∂tc|τ,µ


 =



Aξ Bξ 0
Aµ Bµ 0
At Bt 1


 ·



∂ρC|t,z
∂zC|t,ρ
∂tC|ρ,z


 (A.13)

With

Ai =
∂ρ

∂i
=

∂

∂i

( a(t)
√

1− µ2

cosh(α(t)ξ + β(t))− µ
)

(A.14)

Bi =
∂z

∂i
=

∂

∂i

(
z0(t) +

a(t) sinh(α(t)ξ + β(t))

cosh(α(t)ξ + β(t))− µ
)
, (A.15)

where i = ξ, µ, t. Inverting the previous relation we get:



∂ρC|t,z
∂zC|t,ρ
∂tC|ρ,z


 =

1

AξBµ −BξAµ




Bµ −Bξ 0
−Aµ Aξ 0

AµBt −BµAt −(AξBt −BξAt) AξBµ −BξAµ


 ·



∂ξc|t,µ
∂µc|ξ,t
∂tc|ξ,µ


 (A.16)

Aξ = −a(t)
√

1− µ2 sinh(α(t)ξ + β(t))α(t)

(cosh(α(t)ξ + β(t))− µ)2
(A.17)

Bξ = −a(t)α(t)(µ cosh(α(t)ξ + β(t))− 1)

(cosh(α(t)ξ + β(t))− µ)2
(A.18)

Aµ = − a(t)(µ cosh(α(t)ξ + β(t))− 1)√
1− µ2(cosh(α(t)ξ + β(t))− µ)2

(A.19)

Bµ =
a(t) sinh(α(t)ξ + β(t))

(cosh(α(t)ξ + β(t))− µ)2
(A.20)

At =

√
1− µ2(ȧ(t)(cosh(α(t)ξ + β(t))− µ)− a(t)

(
α̇ξ + β̇

)
sinh(α(t)ξ + β(t)))

(cosh(α(t)ξ + β(t))− µ)2
(A.21)

Bt = ż0(t)

+
ȧ(t) sinh(α(t)ξ + β(t))(cosh(α(t)ξ + β(t))− µ) + a(t)

(
α̇ξ + β̇

)
(1− cosh(α(t)ξ + β(t))µ)

(cosh(α(t)ξ + β(t))− µ)2
(A.22)

Those relations lead to:

AµBt −AtBµ
AξBµ −AµBξ

=
ȧµ sinh(αξ + β)

αa
− (α̇ξ + β̇)

α
− ż0(t)

1− µ cosh(αξ + β)

αa
(A.23)

AξBt −AtBξ
AξBµ −AµBξ

= ż0(t)
(1− µ2) sinh(αξ + β)

a
+
ȧ

a
(1− µ2) cosh(αξ + β) (A.24)

Finally we get the relation:
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∂tC|ρ,z =
∂c

∂t

∣∣∣∣
ξ,µ

+

(
ȧµ sinh(αξ + β)

αa
− (α̇ξ + β̇)

α
− ż0(t)

1− µ cosh(αξ + β)

αa

)
∂c

∂ξ

∣∣∣∣
t,µ

−
(
ż0(t)

(1− µ2) sinh(αξ + β)

a
+
ȧ

a
(1− µ2) cosh(αξ + β)

)
∂c

∂µ

∣∣∣∣
ξ,t

(A.25)

In the particular case of a droplet that collide with a wall we get z0(t) = 0, ξ ∈ [0, 1], α = λ
and β = 0 and thus the previous expression simplifies to:

∂tC|ρ,z =
∂c

∂t

∣∣∣∣
ξ,µ

+

(
ȧµ sinh(λξ)

λa
− λ̇ξ

λ

)
∂c

∂ξ

∣∣∣∣
t,µ

− ȧ

a
(1− µ2) cosh(λξ)

∂c

∂µ

∣∣∣∣
ξ,t

(A.26)

which provides the relation:

χ ·∇c =

(
λ̇ξ

λ
− ȧµ sinh(λξ)

λa

)
∂c

∂ξ
+
ȧ

a
(1− µ2) cosh(λξ)

∂c

∂µ
. (A.27)

A.3 Projection of the advection-diffusion equation

In the following, for simplicity, we consider the particular case of the collision of an active

droplet against a wall. As a result, ξ ∈ [0, 1], α = λ = cosh−1
(
d(t)
R + 1

)
, a(t) = R

√
d(t)(d(t) + 2R)

and β = 0. We remind that the expression of the diffusion-advection equation in such specific
coordinates system reads:

∞∑

n=0

{
Ln

Γ1/2

∂cn
∂t

+
ȧ

a

[
(1 + µ cosh(λξ))Ln − 2 cosh(λξ)(1− µ2)L′n

2Γ1/2

]
cn

+

(
ȧµ sinh(λξ)− λ̇ξa

λa

)
Ln

Γ1/2

∂cn
∂ξ

+
1

λa3

∞∑

k=1

[(
3

2
(1− µ2)L′kLn − k(k + 1)ΓLkLn

)
Uk
∂cn
∂ξ

+
λ sinh(λξ)

2

[
3(1− µ2)L′kL

′
n − k(k + 1)LnLk

]
Ukcn + (1− µ2)L′k

(
Ln
2
− ΓL′n

)
∂Uk
∂ξ

cn

]

=
Γ3/2

a2Pe

∞∑

n=0

(
1

λ2

∂2cn
∂ξ2

−
(
n+

1

2

)2

cn

)
Ln, (A.28)

where cn and Uk are the modes relative to the concentration field and the streamfunction
respectively. Using the multipole expansion (A.4) in the particular case of η = 1 we get:

1

Γ1/2
=

1√
cosh(λξ)− µ

=
√

2

∞∑

k=0

Lk(µ)e−(p+1/2)|λξ|, (A.29)

enabling to compute the projection of (A.28) on the Legendre basis, which provides the
following partial differential equation:

H · ∂C̃
∂t

+

(
B1 ·U +B2 · ∂U

∂ξ
+G1

)
· C̃

+
(
B3 ·U +G2

)
· ∂C̃
∂ξ

=
1

Pe

(
A1 · C̃ +A2 · ∂

2C̃

∂ξ2

)
, (A.30)
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for which C̃(ξ, t) = [c0(ξ, t), c1(ξ, t), ..., cN (ξ, t)], and the others terms can be obtained as:

Hpn =
√

2
∞∑

k=0

Q0
knpe

−(k+1/2)|λξ|, (A.31)

G1
pn =

ȧ

a
√

2

∞∑

k=0

(
Q0
knp + cosh(λξ)Q1

knp − 2 cosh(λξ)R0
knp

)
e−(k+1/2)|λξ|, (A.32)

G2
pn =

√
2

∞∑

k=0

(
ȧ sinh(λξ)

aλ
Q1
knp −

λ̇ξ

λ
Q0
knp

)
e−(k+1/2)|λξ|, (A.33)

B1
pnk =

1

a3

(
3 sinh(λξ)

2
S0
knp −

k(k + 1)

2
sinh(λξ)Q0

knp

)
, (A.34)

B2
pnk =

1

λa3

(
− cosh(λξ)S0

knp + S1
knp +

1

2
R0
nkp

)
, (A.35)

B3
pnk =

1

λa3

(
3

2
R0
nkp − k(k + 1)

(
cosh(λξ)Q0

knp −Q1
knp

))
, (A.36)

A2
pn =

√
2

λ2a2

∞∑

k=0

(
cosh2(λξ)Q0

knp − 2 cosh(λξ)Q1
knp +Q2

knp

)
e−(k+1/2)|λξ|, (A.37)

A1
pn = −λ2

(
n+

1

2

)2

A2
pn. (A.38)

where Qiknp, R
i
knp and Siknp are the following integrals of Legendre polynomials:

Qiknp =

∫ 1

−1
µiLnLkLpdµ, (A.39)

Riknp =

∫ 1

−1
µi(1− µ2)L′nLkLpdµ =

n(n+ 1)

2n+ 1

(
Qik,n−1,p −Qik,n+1,p

)
, (A.40)

Siknp =

∫ 1

−1
µi(1− µ2)L′nL

′
kLpdµ, (A.41)

and can be obtained recursively using classical relations between Legendre polynomials [131]:

Q0
0,n,p =

2

2p+ 1
δn,p, Q0

1,n,p =
n+ 1

2n+ 1
δp,n+1 +

n

2n+ 1
δp,n−1, (A.42)

Q0
k,n,p =

2k − 1

k

(
n+ 1

2n+ 1
Q0
k−1,n+1,p +

n

2n+ 1
Q0
k−1,n−1,p

)
− k − 1

k
Q0
k−2,n,p, (A.43)

Qi0,n,p = Qi−1
1np, Qik,n,p =

k + 1

2k + 1
Qi−1
k+1,n,p +

k

2k + 1
Qi−1
k−1,n,p, (A.44)

Si0,n,p = Sin,0,p = 0, S0
k,n,p = S0

k−1,n,p + (2k − 1)R0
k−1,n,p, (A.45)

Sik,n,p = Si−1
k+1,n,p − (k + 1)Ri−1

k,n,p. (A.46)
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A.4 Projection of the hydrodynamic boundary conditions

In order to solve Eq. (A.30) one should compute the modes Uk which determine the
streamfunction ψ(i,o), and thus the flow field around the droplets. Substituting the definition
of ψ(i,o), Eq. (3.20), as well as Eq. (A.29) into Eqs. (3.24) and (3.25) leads after projection
onto (1− µ2)L′n to:

U in
∣∣
ξ=1

= Uon|ξ=1 =

√
2va2

2

(
e−(n−1/2)|λ|

2n− 1
− e−(n+3/2)|λ|

2n+ 3

)
, (A.47)

∂Uon
∂ξ

∣∣∣∣
ξ=1

=
∂U in
∂ξ

∣∣∣∣
ξ=1

. (A.48)

Similarly, at the wall surface, the no-slip conditions simply reads:

Un,o|ξ=0 = 0, (A.49)

∂Un,o
∂ξ

∣∣∣∣
ξ=0

= 0. (A.50)

The tangential shear stress at the surface of the droplet is obtained as:

σi,oξµ

∣∣∣
S

= −Γ3/2

a3

∞∑

n=1

√
1− µ2L′n

[
1

λ2

∂2U i,on
∂ξ2

+

(
n(n+ 1)− 3

4

(
1 +

2 sinh(λξ)2

Γ2

))
U i,on

]

(A.51)

and substitution into the Marangoni condition, Eq. (3.26), provides the following condition
at the droplet surface (ξ = 1):

∞∑

n=1

L′n

{
Γ2

λ2

(
∂2Uon
∂ξ2

− η̃ ∂
2U in
∂ξ2

)
+

[(
n2 + n− 3

4

)
Γ2 − 3

2
sinh2(λξ)

] (
Uon − η̃U in

) }∣∣∣∣
ξ=1

= −(2 + 3η̃)a2
∞∑

n=0

[
cn

(
−ΓLn

2
+ Γ2L′n

)]∣∣∣∣
ξ=1

(A.52)

Projecting the previous equation onto (1− µ2)L′p(µ) finally leads to:

∞∑

n=1

S̄np(λ)

λ2

[
∂2Uon
∂ξ2

− η̃ ∂
2U in
∂ξ2

+ λ2

(
n2 + n− 3

4

)(
Uon − η̃U in

)]∣∣∣∣
ξ=1

−3p(p+ 1) sinh2 λ

2p+ 1

(
Uop − η̃U ip

)∣∣
ξ=1

= (2 + 3η̃)a2
∞∑

n=0

[
R̄np(λ)

2
− S̄np(λ)

]
cn|ξ=1, (A.53)

where the functions S̄np(λ) and R̄np(λ) are computed from the different integrals in Eqs. (A.39)–
(A.46) as:

S̄np(λ) = S0
np0 cosh2 λ− 2S1

np0 coshλ+ S2
np0, R̄np(λ) = R0

np0 coshλ−R1
np0. (A.54)
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A

A.5 Projection of the concentration boundary conditions

While the vanishing property of the concentration field at infinity is ensured by its chosen
form Eq. (3.28), the constant emission rate of solute (resp. no flux) at the surface of the
droplet (resp. at the wall) equation (3.3) are expressed in the bi-spherical coordinates
system:

cosh(λξ)− µ
λa

∂c

∂ξ
= −1,

∂c

∂ξ
= 0, (A.55)

which are also projected on the Legendre modes, providing the following additional relations
for the cp modes:

λ sinh(λ)cp(1) + 2 cosh(λ)c′p(1)− 2(p+ 1)

2p+ 3
c′p+1(1)− 2p

2p− 1
c′p−1(1) = −2aλ

√
2e−(p+1/2)|λ| (A.56)

2c′p(0)− 2(p+ 1)

2p+ 3
c′p+1(0)− 2p

2p− 1
c′p−1(0) = 0. (A.57)
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A.6 Equilibrium distance between active droplets of distinct
sizes

In this section we provide more details about the equilibrium distance given by Eq. (4.9)
while keeping the same notation of chapter 4. First, we remind the leading order velocity
of each droplet in the particular case where droplet 1 is chasing the droplet 2:

v1 =
v0,1

2

(
1 +

√
1− 256

(∆Pe1)2d2

)
, (A.58)

v2 =
v0,2

2


1 +

√
1 +

256e−4d|v1|(1 + 4d|v1|)
(∆Pe2)2d2


 , (A.59)

where v0,1 = (Pei − Pec)/16. When the equilibrium state is reached, both droplets swim at
the same velocity vb, which provides the relation v1 = v2 = vb. In the limit of almost same
size droplets (ξ − 1 � 1) close to the self-propulsion threshold (Pe2 − Pec � 1) we expect
d� 1. At the leading order, Eqs. (A.58)–(A.59) become:

v1 =
v0,1

2

(
1 +

√
1− 256

(∆Pe1)2d2

)
, (A.60)

v2 = v0,2. (A.61)

From the equilibrium condition v1 = v2, one obtains the following equation:

ξ2Pe2 − Pec
32

(
1 +

√
1− 256

(ξ2Pe2 − Pec)2d2

)
=

Pe2 − Pec
16

. (A.62)

Solving Eq. (A.62) provides an unique positive solution of the separation distance, deq, which
reads:

deq =
2
√

2√
(Pe2 − 4)(ξ − 1)

, (A.63)

where Pec = 4 has been used.
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B
Moving singularity model for
self-propelled active droplets

This appendix provides some calculation details of the reduced model of chapter 5. The

first section aims to compute the concentration field generated by a point source-dipole, the

second introduces the numerical approach, based on Fourier decomposition, used to

compute the droplets’ dynamics while imposing periodic boundary conditions. Finally,

some details about the two degrees of freedom dynamics are given.
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A

B.1 Point source-dipole concentration field

In this section we aim to compute the concentration field induced by the superposition
at the location of the droplet x(t) of a source of unit intensity (total flux equals 4π) and a
dipolar contribution whose intensity a1 is chosen so that the self-propulsion velocity of the
droplet matches the analytical one of [36]. Denoting by v = vp the velocity of the droplet,
the unsteady and dimensionless transport problem reads:

Pe
∂c

∂t
= ∇2c+ 4π

(
δx(t) + a1∇δx(t) · p

)
. (B.1)

As a result, the concentration field is a sum of all the contributions of the point source on
its path, meaning:

c(r)

4π
=

∫ 0

−∞

(
I + a1p ·∇

)
G(r − x(t),−t)dt (B.2)

G(r, t) =
1

(4πDt)3/2
e−

r2

4Dt . (B.3)

Interested in the steady state regime, the droplet’s velocity is considered constant and thus
x(t) = vt, which enables to compute the integral (B.2) [82]:

c(r) =
1

r

[
1− a1

(
λ+

(
1

r
+ λ

)
r · p
r

)]
e−λr(1+ r·p

r
), (B.4)

where λ = vPe/2.

B.2 Numerical solution of the moving source model

The dynamics of Nd active droplets is obtained by solving Eqs. (5.1), (5.2) and (5.4) in a
large periodic domain of dimensions (Lx, Ly, Lz). We therefore use a spectral decomposition
of the concentration field in Fourier modes:

c(r, t) =
∑

l,m,n

ĉl,m,n(t)e2πik·r, (B.5)

where k = l/Lxex + m/Lyey + n/Lzez with (l,m, n) ∈ N. The velocity vi of droplet i is
then computed by substitution of Eq. (B.5) into Eq. (5.1), as:

vi =
∑

l,m,n

ĉl,m,ne
2πik·xi

πk2

(
cos(2πk)− sinc(2πk)

)
k. (B.6)
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B.3 Additional validations of the numerical method

Aiming to compare the diffusion dynamics numerically solved on chapters 5 and 6.2.1,
we consider the canonic problem of a single source of intensity 4π located at the center x0

of a box of dimensions Lx = Ly = Lz = 60. The box is taken sufficiently large so that
the influence of the boundary is negligible on the time scale considered. Consequently, the
numerical solution may be compared with the case of a single source in an infinite medium.
Keeping the same notations introduced on chapter 5, the solute dynamics satisfies:

Pe
∂c(r, t)

∂t
= ∇2c+ 4πδ(r − x0). (B.7)

Initially the box is empty (c(r, 0) = 0), and we compare the evolution of the concentration
field towards the steady state of a single source in an infinite medium. The solution of the
latter may be computed analytically using Fourier transforms:

csteady(r) =
1

|r − x0|
. (B.8)

Concentration fields and intensity profiles are provided on Fig. B.1 at three different instants
t = 5, 50, 250. The resulting good match between numerics with analytics thus confirms the
validity of this part of the code.

Secondly, as mentioned on chapter 5, the total amount of solute keeps increasing due to
the periodicity of the boundaries. In order to check the conservation of the amount of solute
inside the box, we remind the unsteady diffusion equation satisfied by the c:

Pe
∂c(r, t)

∂t
= ∇2c(r, t) + 4π

N∑

i=1

(I + ζ(vi)vi ·∇) δ(r − xi(t)), (B.9)

where xi are the locations of the Nd active droplets. Integrating Eq. (B.9) on the whole box
(of volume V) and denoting by 〈c〉V = (1/V)

∫
V c(r, t)dV the volume averaged concentration,

one can write:

d〈c〉V(t)

dt
=

4πNd

PeV . (B.10)

To obtain Eq. (B.10), we have used the problem’s periodicity, which imposes a no-flux
boundary condition for c on the boundaries. Since the right hand side of Eq. (B.10) is
constant and reminding that c(t = 0) = 0, the average solute concentration reads:

〈c〉V(t) =
4πNd

PeV t. (B.11)

The spectral method used in the numerics enables directly to identify the mode relative to
the volume average. Fig. B.2 enables us to confront the time evolution of the latter with
the analytical result of Eq. (B.11). The perfect matching thus directly ensures the amount
of solute conservation in the simulations.

Finally, in order to check the validity of both computation and implementation of the
dipole intensity, one compares the self-propulsion dynamics of a single active droplet in a
periodic box (Lx = Lz = 15 an Ly = 120) obtained numerically with the exact dynamics
provided on chapter 3. In particular, a fine balance between accuracy and numerical cost is
reached for the following set of parameters:
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Figure B.1: Diffusion dynamics of a single and fixed point source. Right: concentration
field generated by the source at three different instants t = 5, 50, 250. Left: Concentration
profile on the regions marked by the black dashed on the concentration plots for the same
respective instants t = 5, 50, 250.

• Number of grid points Nx = Nz = 27 and Ny = 210

• Time step dt = 0.2
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Figure B.2: Evolution of the solute concentration volume average 〈c〉V as function of time.
Nd = 4, Lx = Ly = Lz = 60 and Pe = 6. Solid red line: numerics. Dashed blue line:
analytical results of Eq. (B.11).
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Figure B.3: Self-propulsion dynamics of a single active droplets at Pe = 6 (red) and Pe = 8
(blue). One compares the dynamics obtained with the reduced model (solid lines) and the
exact one provided on chapter 3 (dashed lines).

First, the steady self-propulsion velocity, imposed by the choice of the dipole intensity, has
a good match with the analytical results. Secondly, considering the significant simplifications
introduced in the point source-dipole model, the transitory regime appears reasonably close
to the exact one.

145



Appendix B. Moving singularity model for self-propelled active droplets

A

B.4 Simplified model for the evolution of the polarity evolu-
tion

For an isolated droplet in steady self-propulsion, we remind its velocity v and polarity Π
are equal. Along the oblique collision with a second droplet, the self-propulsion still adjusts
instantaneously to the chemical distribution in the Stokes regime, but the chemical polarity
now results from the translation of the droplet and the unsteady diffusion of the chemical
trail it leaves behind it. This introduces a finite relaxation time τ of the self-polarity, or
wake, towards v (or to zero if the droplet stops moving). One can thus establish a simple
model for the polarity dynamics as an overdamped relaxation:

dΠi

dt
=

1

τ
(vi −Πi) . (B.12)

As a result, the polarity magnitude Πi = |Πi| and direction pi = Πi/Πi satisfy:

dΠi

dt
=

1

τ
(vi · pi −Πi) (B.13)

dpi
dt

=
1

τΠi
(pi × vi)× pi. (B.14)

In the following, we further neglect changes in magnitude of the polarity; as a consequence,
the self-induced propulsion velocity (i.e. that due to the solute released by the droplet itself)
has constant magnitude v0 and Πi ≈ v0, and the wake’s orientational dynamics simplifies
into:

dpi
dt

=
(pi × vi)× pi

τv0
. (B.15)

Note that neglecting changes in the polarity magnitude is only valid when the wake reor-
ganization is dominated by its reorientation (as in Fig. 5.7) and certainly does not hold for
purely head-on collisions where the polarity must vanish in magnitude in order to reverse
direction [89].
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C
No net motion for oscillating
near-spheres at low Reynolds

numbers

We investigate the flow around an oscillating nearly-spherical particle at low, yet non-
vanishing, Reynolds numbers, and the potential resulting locomotion. We analytically demon-
strate that no net motion can arise up to order one in Re and order one in the asphericity
parameter, regardless of the particle’s shape. Therefore, geometry-induced acoustic stream-
ing propulsion, if any, must arise at higher order [132]

This project initially started during my Master internship between Ecole des Ponts et
Chaussées and the Imperial College of London under the supervision of Olivier Dauchot
and Michael Benzaquen. Then, we decided to pursue it during the first 6 months of my
PhD where Sébastien Michelin took part in the project. During this one-year project, I have
discovered the non-intuitive beauty of low Reynolds fluid mechanics. For that reason, I wish
to include this work in my thesis while thanking Olivier Dauchot, Michael Benzaquen and
Sébastien Michelin for their great help, their patience and finally their implication on this
project.
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We investigate the flow around an oscillating nearly spherical particle at low, yet
non-vanishing, Reynolds numbers (Re), and the potential resulting locomotion. We
analytically demonstrate that no net motion can arise up to order one in Re and
order one in the asphericity parameter, regardless of the particle’s shape. Therefore,
geometry-induced acoustic streaming propulsion, if any, must arise at higher order.

Key words: flow–structure interactions, propulsion

1. Introduction

Solid bodies forced to oscillate in a fluid may, as a result, undergo a net motion,
provided their shape breaks an appropriate symmetry. Yet, in the absence of inertia
(i.e. when the Reynolds number Re is strictly zero), no net motion can arise from
time-reciprocal actuation due to the linearity of Stokes’ equations (Purcell 1977).
Above a critical Rec = O(1), a symmetric rigid body can achieve unidirectional
locomotion as a result of symmetry-breaking instability resulting from the nonlinear
inertial contribution to the Navier–Stokes equations (Alben & Shelley 2005). The
purpose of the present work is to analyse the emergence of self-propulsion at small
but finite Re (i.e. the effect of inertia is weak but non-negligible) for oscillating
asymmetric particles. Indeed one could expect that asymmetric flows, resulting from
asymmetric boundary conditions, will push the particle, thereby inducing non-zero
average motion (Nadal & Lauga 2014).

Artificial microswimmers have received much recent attention, thanks to their
potential application to drug delivery or water treatment (Sundararajan et al. 2008;
Tiwari, Behari & Sen 2008; Martinez-Pedrero & Tierno 2015), or their fundamental
interest in the study of active matter (see, for example Buttinoni et al. 2013;
Palacci et al. 2013; Bechinger et al. 2016). Among the many possible routes
to self-propulsion, swimming in self-generated physico-chemical gradients, i.e.

† Email address for correspondence: michael.benzaquen@polytechnique.edu
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K. Lippera, O. Dauchot, S. Michelin and M. Benzaquen

autophoresis (Moran & Posner 2017), as well as bubble-generating (Wang & Wu
2014; Li, Rozen & Wang 2016) or magnetically actuated microswimmers (Dreyfus
et al. 2005) have received particular attention. In these examples, a front–back
asymmetry in the design of the system is necessary. Yet, symmetry-breaking and
self-propulsion can also be achieved by exploiting an instability (Bricard et al. 2013;
Michelin, Lauga & Bartolo 2013; Izri et al. 2014) or flexibility (Wiggins & Goldstein
1998).

Recently, passive rigid particles levitating in the nodal planes of an acoustic
stationary wave have been observed to self-propel in a plane orthogonal to their
direction of excitation (Wang et al. 2012). To explain such findings, Nadal & Lauga
(2014) proposed an acoustic streaming mechanism, suggesting that near-spherical
particles with asphericity parameter ε can achieve a net O(εRe) propulsion, in the
low-frequency limit. Several studies have since stood upon the results of Nadal &
Lauga to account for their observations (see, for example Ahmed et al. 2016; Soto
et al. 2016; Sabrina et al. 2018).

In contrast, we here demonstrate analytically that no net motion can arise at O(εRe)
from a time-reciprocal oscillation and that self-propulsion, if any, must arise at higher
order. In § 2, the governing equations for an oscillating particle are presented. In § 3,
we introduce the particle geometry and the Taylor expansions of the velocity fields in
Re and ε. In §§ 4 and 5, we compute the net motion of the particle at the first two
orders in Re. In § 6, we discuss our results and conclude.

2. Governing equations

We consider here a rigid and homogeneous particle of typical size R oscillating with
frequency ω and amplitude a in an incompressible and Newtonian fluid of kinematic
viscosity ν. Using R, aω and 1/ω, respectively, as reference length, velocity and time
scales, the dimensionless Navier–Stokes and continuity equations read (Zhang & Stone
1998)

λ2∂tu+ Re∇u · u=∇ · σ , ∇ · u= 0, (2.1a,b)

with σ =−pI + (∇u + ∇>u), the dimensionless stress tensor. The Reynolds number
and reduced frequency are respectively defined as Re= aωR/ν and λ2

= (R/δ)2, with
δ =
√
ν/ω the viscous penetration depth. More precisely, a translational oscillation is

imposed to the particle along the ex direction, Ũ = eitex, and the particle is free to
move along the other directions, and is thus force-free along the yz plane and torque-
free about any axis. The longitudinal and angular velocities of the particle resulting
from its imposed oscillation are U=Uyey+Uzez and Ω =Ωxex+Ωyey+Ωzez. In the
frame of reference of the laboratory, the boundary conditions read

u|S = Ũ+U+Ω × r, u|r→∞ = 0. (2.2a,b)

In order to determine U and Ω following an approach analogous to that of Lorentz’
reciprocal theorem (Happel & Brenner 1965), the auxiliary problem of a particle of
the same instantaneous geometry in a steady Stokes flow is considered:

∇ · σ̂ = 0, ∇ · û= 0, (2.3a,b)

with boundary conditions

û|S = Û+ Ω̂ × r, û|r→∞ = 0. (2.4a,b)
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No net motion for oscillating near-spheres at low Reynolds numbers

Let us stress that the particle is rigid so that by instantaneous geometry one should
understand that the surface boundary of the auxiliary problem matches that of its real
counterpart at each time. Using (2.1) and (2.3), one obtains

∫

V
[û · (∇ · σ )− u · (∇ · σ̂ )] dV = Re

∫

V
û · ∇u · u dV + λ2

∫

V
û · ∂tu dV. (2.5)

Using the divergence theorem together with the continuity equations, equation (2.5)
reduces to

∫

S∞−S
(û · σ − u · σ̂ ) · n dS= Re

∫

V
û · ∇u · u dV + λ2

∫

V
û · ∂tu dV. (2.6)

Because u, û∼ 1/r and σ , σ̂ ∼ 1/r2 when r→∞ (see e.g. Happel & Brenner 1965),
the surface integral at infinity in (2.6) vanishes. The boundary conditions (2.2) and
(2.4) then yield

(Ũ+U) · F̂+Ω · L̂− Û ·F− Ω̂ · L= Re
∫

V
û · ∇u · u dV + λ2

∫

V
û · ∂tu dV, (2.7)

with F =
∫

S σ · n dS and L =
∫

S(r × σ ) · n dS (respectively F̂ and L̂), the force and
torque in the real (respectively auxiliary) problem. For the real problem, F and L
derive from Newton’s laws:

F= ρ∂tU, L= ∂t(J ·Ω), (2.8a,b)

with ρ̄ the particle-to-fluid density ratio and J the particle’s inertia tensor. For the
auxiliary problem, F̂ and L̂ are linearly related to Û and Ω̂ through the possibly
non-diagonal resistance matrix (Kim & Karrila 1991). In order to compute the particle
motion (U, Ω), we shall consider in (2.7) either (i) an auxiliary steady propulsion
(Û, 0) with Û ‖ U to determine U, or (ii) an auxiliary steady rotation (0, Ω̂) with
Ω̂ ‖ Ω to determine Ω . Note that finding the contribution at O(Ren) of the first
term on the right-hand side of (2.7) relies on the knowledge of the velocity field
u at O(Ren−1) only, hence the possibility of a recursive calculation order by order
in Re. Conversely, computing the second term will rely on peculiar symmetry and
time-average considerations to be made explicit below. Note that for a homogeneous
particle, the above formulation also applies to the motion of a particle exposed to
a uniform oscillating flow −Ũ, once inertial forces are accounted for as a modified
pressure.

3. Nearly spherical particles in low-Re flows

We consider a nearly spherical particle of volume V and centre of mass O. By
choosing R= (3V/4π)1/3 and taking O as the origin of the system of axes, one can
define the particle’s geometry through r = 1 + εf (n) with ε � 1. By construction f
satisfies

∫

S
f (n) dS= 0,

∫

S
f (n)n dS= 0. (3.1a,b)

The governing equations are first linearised with respect to Re� 1, e.g. defining u=
u0 + Reu1 + O(Re2), and each order is further expanded as a regular perturbation
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K. Lippera, O. Dauchot, S. Michelin and M. Benzaquen

problem in ε� 1, e.g. uk = u0
k + εuεk +O(ε2) with k= 0, 1. Note that ε must remain

small compared to all other dimensionless length scales, i.e. ε � 1 (particle radius)
and ε� 1/λ (viscous boundary layer thickness). In the following sections, we shall
consider the problems at O(Rekε`), and successively look into the two leading orders
in Re.

4. Zeroth order in Re

At leading order O(Re0), equations (2.1) and (2.2) become

λ2∂tu0 =−∇p0 +∇
2u0, ∇ · u0 = 0, (4.1a,b)

u0|S = Ũ+U0 +Ω0 × r, u0|r→∞ = 0, (4.2a,b)

and (2.7) reduces to

(Ũ+U0) · F̂+Ω0 · L̂− Û ·F0 − Ω̂ · L0 = λ
2
∫

V
û · ∂tu0 dV, (4.3)

and this result is expanded as a linear perturbation in ε below.

4.1. Perfect sphere – O(Re0ε0)

While it is quite clear that no net motion can arise at O(ε0Re0) (i.e. unsteady Stokes
flow around a spherical particle), we briefly rederive this result to provide the reader
with the general methodology. At leading order O(ε0), equation (4.3) becomes

(Ũ+U0
0) · F̂

0
+Ω0

0 · L̂
0
− Û ·F0

0 − Ω̂ · L0
0 = λ

2
∫

V0

û0
· ∂tu0

0 dV, (4.4)

where V0 denotes the volume of fluid outside the reference unit sphere. First, recalling
Û ‖U0

0 provides Û · Ũ= 0. Second, the velocity field û0 (respectively u0
0) is linear with

respect to Û (respectively Ũ), and axisymmetric about the axis holding the vector Û
(respectively Ũ) and passing through the centre of mass of the particle. As a result,
using the expression of û0 and u0

0 (appendix A) shows that the RHS of (4.4) does
not include any contribution from the forcing Ũ. There is therefore no net motion at
this order, i.e. U0

0= 0. A similar reasoning shows that Ω0
0 = 0 as well. This last result

imposes the rotation velocity of the particle to be at least first order (either in ε or
Re). The forcing and induced rotation act therefore on two separate time scales. As
a consequence, at leading order, the geometry of the particle, f , can be considered
constant over the O(1) period of the forcing (fast time scale).

4.2. Near-sphere correction – O(Re0ε1)

At O(ε1), equation (4.3) becomes

Uε
0 · F̂

0
+Ωε

0 · L̂
0
+ Ũ · F̂

ε

− Û ·Fε
0 − Ω̂ · Lε0

= λ2
∫

V0

(ûε · ∂tu0
0 + û0

· ∂tuε0) dV − λ2
∫

S0

f û0
· ∂tu0

0 dS, (4.5)
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No net motion for oscillating near-spheres at low Reynolds numbers

where the surface integral is the O(ε) contribution from the difference of the volume
integrals on V and V0 (e.g. Zhang & Stone 1998). The analysis of Zhang & Stone
(1998) shows that the rotation of a torque-free homogeneous near-sphere resulting
from an O(1) imposed translation is O(ε2) and thus Ωε

0 = 0. Consequently the torque
Lε0 linked to Ωε

0 through Newton’s law (2.8) vanishes as well. Using (2.4) and (3.1),
the last term in (4.5) vanishes exactly:

∫

S0

f û0
· ∂tu0

0 dS= ( ˙̃U× Ω̂) ·

∫

S0

f n dS= 0. (4.6)

Since we are interested in the net motion of the particle, we take the time-average
over the fast time scale (forcing period) of (4.5). The 〈RHS〉t can be shown to
vanish because uε0 and u0

0 are periodic in time, and the integration domains are
time-independent. Therefore

〈Uε
0〉t · F̂

0
− Û · 〈Fε

0〉t = 0. (4.7)

Equation (4.7) is linear with no net contribution of the forcing Ũ: no net motion can
occur at O(Re0ε1), 〈Uε

0〉t = 0.

5. First order in Re

At O(Re1), equations (2.1) and (2.2) become

λ2∂tu1 +∇u0 · u0 =−∇p1 +∇
2u1, ∇ · u1 = 0, (5.1a,b)

u1|S =U1 +Ω1 × r, u1|r→∞ = 0, (5.2a,b)

and (2.7) reduces to

U1 · F̂+Ω1 · L̂− Û ·F1 − Ω̂ · L1 =

∫

V
û · ∇u0 · u0 dV + λ2

∫

V
û · ∂tu1 dV. (5.3)

Note that here, in addition to the unsteady forcing, the nonlinear convective term acts
as a source term in (5.3). Because it is quadratic in velocity, one might expect that
its average in time is non-zero, which could in turn yield net particle motion.

5.1. Perfect sphere – O(Re1ε0)

At leading order O(ε0) (5.3) becomes

U0
1 · F̂

0
+Ω0

1 · L̂
0
− Û ·F0

1 − Ω̂ · L0
1 =

∫

V0

û0
· ∇u0

0 · u
0
0 dV + λ2

∫

V0

û0
· ∂tu0

1 dV. (5.4)

The symmetry properties of û0 and u0
0 (appendix A) impose that the first term on the

RHS of (5.4) vanishes. The second term on the RHS vanishes as well because it is
the integral of the scalar product between two axisymmetric fields about orthogonal
principal directions. Therefore (5.4) becomes

U0
1 · F̂

0
+Ω0

1 · L̂
0
− Û ·F0

1 − Ω̂ · L0
1 = 0, (5.5)

implying that, very much like for O(Re0ε0), U0
1 = 0 and Ω0

1 = 0.
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K. Lippera, O. Dauchot, S. Michelin and M. Benzaquen

5.2. Near-sphere correction – O(Re1ε1)

At O(ε1), and using (2.8) together with (5.5), (5.3) becomes

Uε
1 · F̂

0
+Ωε

1 · L̂
0
− Û ·Fε

1 − Ω̂ · Lε1 =−
∫

S0

f û0
· ∇u0

0 · u
0
0 dS

+

∫

V0

(ûε · ∇u0
0 · u

0
0 + û0

· [∇u0
0 · u

ε
0 +∇uε0 · u

0
0]) dV

+ λ2
∫

V0

(û0
· ∂tuε1 + ûε · ∂tu0

1) dV − λ2
∫

S0

f û0
· ∂tu0

1 dS. (5.6)

Taking the average in time of (5.6) over the forcing period, and using that uε1 and u0
1

are periodic and that Fε
1 and Lε1 are temporal derivatives of periodic functions (2.8),

one finally obtains

6π〈Uε
1〉t · Û+ 8π〈Ωε

1 〉t · Ω̂ =−v
ε
1, with (5.7)

vε1 =

〈∫

V0

(ûε · ∇u0
0 · u

0
0 + û0

· [∇u0
0 · u

ε
0 +∇uε0 · u

0
0]) dV −

∫

S0

f û0
· ∇u0

0 · u
0
0 dS
〉

t

(5.8)

where we have used F̂
0
=−6πÛ and L̂

0
=−8πΩ̂ . Integrating by parts, and using the

expressions of û0 and u0
0 (appendix A), one obtains

vε1 =

∫

V0

(ûε ·G1(r)− 〈uε0 ·G2(r)〉t) dV, (5.9)

with the vector fields G1 and G2 defined as G1=〈∇u0
0 · u0

0〉t and G2=[∇û0
+(∇û0

)T]·u0
0,

whose expressions are provided in appendix A.
Using domain perturbation, the velocity field uε0 (respectively ûε) is solution of (4.1)

(respectively (2.3)) with the following boundary conditions on the unit sphere (see
appendix B):

uε0|r=1 =−f (n)∂ru0
0|r=1 +Uε

0 +Ωε
0 × r, (5.10a)

ûε|r=1 =−f (n)∂rû
0
|r=1. (5.10b)

A first simplification comes from recalling that Ωε
0 = 0. A second one arises from

the fact that the Stokes problem with the uniform boundary condition Uε
0 on the

unit sphere does not contribute to particle motion, as demonstrated in § 5.1. As a
consequence, only the first contribution to uε0|r=1 in (5.10a) provides a net contribution
to vε1 .

For clarity, we now distinguish the cases of pure translation and pure rotation.

5.2.1. Translation
Setting Ω̂ = 0, equation (5.9) simplifies after some algebraic calculations using the

definitions of G1, G2, ûε and uε0 (appendices A and B):

vε1 =K(λ)[ f nnn]n
... exexÛ, (5.11)

where [•]n denotes the average over the unit sphere: [•]n =
∫

S0
•(n) dS, and

... denotes the three-fold tensorial contraction. Quite remarkably, equation (5.11)
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No net motion for oscillating near-spheres at low Reynolds numbers

provides the expression of the net translational velocity as a product of a function
of λ and a functional of f . The tensorial contraction, together with the angular
symmetry properties of the inertial forcing, ensure that only a limited set of the
spherical harmonic components of the shape function f can contribute to a net
motion. Further algebraic calculations show that K(λ) conveniently reduces to
K(λ)=

∫
∞

r=1 (dJλ(r)/dr) dr with

Jλ(r) = −
1
4

Re
[

27(1− r2)

16λ4
0r8

(−3|Λ0|
2
+ 2Λ0(3+ 3λ0r− λ2

0r2)eλ0(1−r)

− (3+ 3λ0r+ (λ0r)2)(1+ λ0r− λ2
0r2)e2Re[λ0](1−r))

]
, (5.12)

where an overbar denotes the complex conjugate, Re[z] is the real part operator of z
and Λ0 = 1+ λ0 + λ

2
0/3 with λ0 = λe−iπ/4. Therefore, using Jλ(∞)= Jλ(1)= 0, one

finds the central result of the present communication:

〈Uε
1〉t = 0. (5.13)

No translational net motion can arise at first order (both in Re and non-sphericity
ε) from geometric asymmetry. This result stems from the fact that the near-field
(r = O(1)) and far-field (r � 1) contributions to the inertial forcing compensate
exactly.

5.2.2. Rotation
Considering now Û= 0, the same method provides

vε1 =L(λ)[ f nn]n : ex(ex × Ω̂), (5.14)

with

L(λ) = 1
256

Im
{

1
Λ0
[−48(λ0(λ0(λ0(λ0 + 6)+ 18)+ 30)+ 24)|λ0|

2F(2Re(λ0))

+ 3i(λ0(λ0(λ0(λ0 + 9)+ 27)+ 42)+ 30)λ2
0Λ̄0F(λ0)

+ 3i(λ0(λ0(λ0(λ0 + 3)+ 33)+ 78)+ 66)λ2
0Λ0F(iλ0)

+ (1− i)λ7
0 + (3− 7i)λ6

0 − (5+ 35i)λ5
0 − (6+ 108i)λ4

0 − (60+ 210i)λ3
0

− (264+ 306i)λ2
0 − (348+ 360i)λ0 − 132i]

}
, (5.15)

with F(z)= [Chi(z)− Shi(z)]ez where Chi/Shi are the hyperbolic cosine/sine integral
functions respectively (Abramowitz & Stegun 1965). We note from (5.8) and (5.14)
that (i) no rotation is obtained along the direction of oscillation (i.e. 〈Ωε

1 〉t · Ũ = 0)
and that (ii) the particle dynamics is an overdamped rotation towards an equilibrium
position. The oscillation direction Ũ is aligned with a principal direction of the
symmetric and traceless second-order tensor [ f nn]n with positive or negative
eigenvalue depending on the sign of L. Further, the function 〈L〉t changes sign
for λc ≈ 3.6, resulting in a shift in the equilibrium orientation between λ < λc and
λ > λc. This transition confirms fundamental differences in the streaming flow and
associated forcing between small and large frequencies, as already observed by
Collis, Chakraborty & Sader (2017) when studying numerically the propulsion of an
oscillating asymmetric dumbbell.
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K. Lippera, O. Dauchot, S. Michelin and M. Benzaquen

6. Conclusion

In this work, we analysed the translation and rotation resulting from the oscillation
of a homogeneous near-sphere up to O(εRe), showing analytically that no net
translation occurs regardless of the oscillation frequency and despite the geometric
asymmetry of the particle. This result, which contradicts the conclusions of Nadal &
Lauga (2014), stems from the exact cancellation of the streaming flow forcing in the
immediate vicinity of the particle and far away from it, making it difficult to capture
numerically, as any discretisation introduces necessarily a truncation error. We also
show that a transient rotation can stir back the particle towards one of its equilibrium
positions.

Notwithstanding, our results do not contradict the numerical observations of Collis
et al. (2017) for which a weak front–back asymmetry of a dumbbell was sufficient to
produce a net motion at that order: in that case, the elongated shape of the particle
combined with the small asymmetry of the two spheres leads to an O(1) periodic
rotation of the system, which is at the heart of the self-propulsion, when coupled to
the oscillating translation – in contrast, such rotation is absent at O(εRe) in the case
of a near-sphere. All together, developing net motion around an asymmetric particle
appears to require an O(ε) rotation/translation coupling, as obtained for instance using
density inhomogeneities.
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Appendix A. Unsteady Stokes flow past a spherical particle

A.1. Oscillating flow

The complex velocity field around a sphere oscillating at velocity Ũ reads (Kim &
Karrila 1991) u0

0 = AŨ+ B(Ũ · n)n where

A(r, λ)=
3

2λ2
0r3
[−Λ0 + (1+ λ0r+ λ2

0r2)eλ0(1−r)
], (A 1)

B(r, λ)=
3

2λ2
0r3
[3Λ0 − (3+ 3λ0r+ λ2

0r2)eλ0(1−r)
], (A 2)

and where λ0 = λe−iπ/4 and Λ0 = 1+ λ0 + λ
2
0/3. Recalling that

∇u0
0 = A′Ũn+ B′(Ũ · n)nn+

B
r
(I − nn)(Ũ · n)+

B
r

n(I − nn) · Ũ, (A 3)

one may compute G1 = 〈∇u0
0 · u0

0〉t, that is,

G1 =
1
2

Re[(A+ B)[A′In+ B′nnn] +
AB
r
[n(I − nn)+ (I − nn)n]] : exex. (A 4)
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No net motion for oscillating near-spheres at low Reynolds numbers

A.2. Steady translation

The particular case of a steady translating sphere (λ = 0) at velocity Û is given by
û0
= ÂÛ+ B̂(Û · n)n, where

Â(r)=
3
4r
+

1
4r3
, B̂(r)=

3
4

(
1
r
−

1
r3

)
. (A 5a,b)

One may compute G2 =∇û0
0 · u0

0 + u0
0 · ∇û0

0, that is,

G2 = Â′AnI : ÛŨ+ Â′(A+ B)In : ŨÛ+ (Â′B+ 2B̂′(A+ B))nnn : ŨÛ

+
B̂A
r
[n(I − nn) : ŨÛ+ 2(I − nn)n : ÛŨ] +

B̂(A+ B)
r

(I − nn)n : ŨÛ. (A 6)

A.3. Steady rotation

The velocity field around a steady rotating sphere reads û0
= Ω̂ × n/r2. Computing

∇û0
· u0

0 =
1
r3
[Ω̂ × u0

0 − 3(u0
0 · n)(Ω̂ × n)], (A 7)

u0
0 · ∇û0

=
1
r3
[u0

0 × Ω̂ − 3u0
0 · (Ω̂ × n)n], (A 8)

one obtains the expression of G2 =∇û0
0 · u0

0 + u0
0 · ∇û0

0 as

G2 =−
3A
r3
(Ũ× Ω̂) · nn−

3(A+ B)
r3

(Ũ · n)(Ω̂ × n). (A 9)

Appendix B. Unsteady Stokes flow past a nearly spherical particle

Here we compute the velocity field solution of the unsteady Stokes problem around
a nearly spherical particle:

λ2∂tuε0 =−∇pε0 +∇
2uε0, ∇ · u

ε
0 = 0, (B 1a,b)

uε0|r=1 =−f (n)∂ru0
0|r=1, u0|r→∞ = 0. (B 2a,b)

In Fourier space the boundary condition on the surface of the particle (B 2) takes the
form (Zhang & Stone 1998)

uε0|r=1 =
3f (n)

2
(1+ λ0)(I − nn) · Ũ. (B 3)

Following Sani (1963), we perform a reconstruction of the velocity field from its
radial component and associated vorticity:

uε0 = uε0,rn+ r2
∞∑

n=1

1
n(n+ 1)

[∇s(∇
2ur,n)− n×∇sχr,n], (B 4)

where ∇s =∇− n∂r and where ur,n denotes the nth mode in the spherical harmonics
basis of the radial component of uε0. The latter satisfies in time-Fourier space the
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K. Lippera, O. Dauchot, S. Michelin and M. Benzaquen

equation ∇2(iλ2
+ ∇

2)(ruε0,r) = 0. The function χr,n is the nth mode of the radial
component of ∇× uε0, satisfying (∇2

+ iλ2)(rχ εr )= 0. Defining p and q through

p=−
2∇s · uε0|r=1

3(1+ λ0)
, q=

2n · ∇s × uε0|r=1

3(1+ λ0)
, (B 5a,b)

one finally obtains

uε0 =
1
r

∞∑

n=1

n∑

m=−n

Unpm
n Ym

n n+
∞∑

n=1

n∑

m=−n

r2Vnpm
n

n(n+ 1)
∇Ym

n −

∞∑

n=1

n∑

m=−n

rXnqm
n

n(n+ 1)
n×∇Ym

n ,

(B 6)

where pm
n and qm

n denote respectively the modes of p and q in the spherical harmonics
basis (Ym

n ), and Un, Vn and Xn follow:

Un(r, λ)=
3
2
(1+ λ0)

h(1)n (λ0r)−
h(1)n (λ0)

rn+1

(2n+ 1)h(1)n (λ0)− λ0h(1)n+1(λ0)
, (B 7)

Vn(r, λ)=
Un(r, λ)

r2
+
∂rUn(r, λ)

r
, (B 8)

Xn(r, λ)=
3
2
(1+ λ0)

h(1)n (λ0r)
h(1)n (λ0)

, (B 9)

with hn the spherical Hankel function of the first kind and order n (Abramowitz &
Stegun 1965). In (B 5), the functions p and q defined on the surface of the unit sphere
are directly related to the shape function f through (B 2). Using (3.1), they further
satisfy

[p]n = [q]n = 0, [qn]n = 0, (B 10a,b)

[∇pn]n = [n∇p]n = [pnn]n =−2[ f nnn]n · Ũ. (B 11)

Note that these results can be transposed to obtain ûε taking λ= 0 for the translation
problem. And a similar approach can be used in the rotating case.
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[76] M. Smoluchowski. Über die Wechselwirkung von Kugeln die sich in einer zähen
Flüssigkeit bewegen. Akad. Umiejketności, 1911.

[77] M. Stimson and G. B. Jeffery. The motion of two spheres in a viscous fluid. Proceedings
of the Royal Society, 111(757):110–116, 1926.

[78] J.R. Blake and A.T. Chwang. Fundamental singularities of viscous flow. Journal of
Engineering Mathematics, 8(1):23–29, January 1974.

[79] A. Varma and S. Michelin. Modeling chemo-hydrodynamic interactions of phoretic
particles: A unified framework. Physical Review Fluids, 4(12), December 2019.

[80] Gad Hetsroni and Shimon Haber. The flow in and around a droplet or bubble sub-
merged in an unbound arbitrary velocity field. Rheologica Acta, 9(4):488–496, 1970.

[81] B.J. Kirby. Micro-and nanoscale fluid mechanics: transport in microfluidic devices.
Cambridge university press, 2010.

[82] D. Boniface, C. Cottin-Bizonne, R. Kervil, C. Ybert, and F. Detcheverry. Self-
propulsion of symmetric chemically active particles: Point-source model and experi-
ments on camphor disks. Physical Review E, 99(6):062605, 2019.

[83] N. Yoshinaga, K. H. Nagai, Y. Sumino, and H. Kitahata. Drift instability in the
motion of a fluid droplet with a chemically reactive surface driven by marangoni flow.
Physical Review E, 86(1):016108, 2012.

[84] R. Golestanian, T.B. Liverpool, and A. Ajdari. Designing phoretic micro- and nano-
swimmers. New Journal of Physics, 9(5):126–126, May 2007.

[85] Y. Ibrahim and T.B. Liverpool. How walls affect the dynamics of self-phoretic mi-
croswimmers. The European Physical Journal Special Topics, 225(8-9):1843–1874,
October 2016.

163



Bibliography

A

[86] F. Fadda, G. Gonnella, A. Lamura, and A. Tiribocchi. Lattice boltzmann study of
chemically-driven self-propelled droplets. The European Physical Journal E, 40(12),
December 2017.

[87] S. Yabunaka and N. Yoshinaga. Collision between chemically driven self-propelled
drops. J. Fluid Mech., 806:205–233, 2016.

[88] N. Yoshinaga. Simple models of self-propelled colloids and liquid drops: From in-
dividual motion to collective behaviors. Journal of the Physical Society of Japan,
86(10):101009, October 2017.

[89] K. Lippera, M. Morozov, M. Benzaquen, and S. Michelin. Collisions and rebounds of
chemically active droplets. Journal of Fluid Mechanics, 886, January 2020.

[90] I. Theurkauff, C. Cottin-Bizonne, J. Palacci, C. Ybert, and L. Bocquet. Dynamic
clustering in active colloidal suspensions with chemical signaling. Physical Review
Letter, 108:268303, 2012.

[91] J. Palacci, S. Sacanna, A.P. Steinberg, D.J. Pine, and P.M. Chaikin. Living crystals
of light-activated colloidal surfers. Science, 339:936–940, 2013.

[92] S. Saha, R. Golestanian, and S. Ramaswamy. Clusters, asters, and collective oscilla-
tions in chemotactic colloids. Physical Review E, 89(6):062316, 2014.

[93] O. Pohl and H. Stark. Dynamic clustering and chemotactic collapse of self-phoretic
active particles. Physical Review Letter, 112(23):238303, 2014.
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Titre : Gouttes actives autopropulsées: une histoire d’intéractions.

Mots clés : Gouttes actives, Micro-nageurs, Mécanique des fluides bas Reynolds, Matière active

Résumé : Une fois immergées dans un liquide saturé
en surfactants, une microgoutte composée d’eau ou
d’huile peut s’auto-propulser à une vitesse de l’ordre
de quelques rayons par seconde. Bien que l’origine
physico-chimique exacte de ce phénomène reste en-
core débattue, de recents travaux ont permis de com-
prendre qu’il est lié à la solubilisation de ces gouttes
dans leur milieu. Une goutte active apparaı̂t alors
comme émettant un ensemble d’espèces chimiques,
appelé soluté, qui a pour effet d’augmenter la tension
de surface. Par conséquent, une distribution inho-
mogène de soluté à l’interface de la goutte génère un
écoulement dit de Marangoni qui propulse la goutte.
L’autopropulsion s’explique alors par une instabilité
issue du couplage entre la dynamique de transport
du soluté et l’écoulement Marangoni qui en résulte.
Cette thèse a pour but d’étudier les interactions entre
plusieurs de ces gouttes ou en présence d’un confi-
nement. Le premier chapitre introduit des notions
générales de mécanique des fluides à bas Reynolds
ainsi qu’une description des systèmes de gouttes ac-
tives utilisées expérimentalement. Le deuxième cha-
pitre présente le cadre mathématique modélisant l’au-
topropulsion d’une goutte seule, puis fournit une dis-

cussion traitant des interactions hydro-chimiques at-
tendues en présence de plusieurs gouttes ou d’un
mur. Le troisième chapitre présente une dérivation
exacte des interactions hydro-chimiques entre une
goutte active et un mur dans le cas axisymétrique.
Cette approche a permis de quantifier l’influence de
l’advection du soluté sur la dynamique de collision
et de soulever des effets de retard survenant à haut
nombre de Péclet. Dans le quatrième chapitre, on
étudie alors les conséquences sur la dynamique de
collision d’une différence de taille entre deux gouttes
actives. On montre alors que la dynamique de colli-
sion est très sensible à une différence de rayon et peut
conduire à des régimes très différents et appelés re-
bond, poursuite et pause. Le cinquième chapitre intro-
duit un modèle simplifié de la dynamique d’une goutte
active, utilisé dans l’étude des collisions obliques. Si
une collision symétrique tend à aligner les gouttes,
des conditions initiales asymétriques peuvent à l’in-
verse les disperser. Enfin, le sixième chapitre apporte
la conclusion de ce manuscrit et suggère diverses
perspectives pour la suite de l’étude des interactions
de gouttes actives.

Title : Self-propelled active droplets: a short story of their interactions

Keywords : Active droplets, Microswimmers, Low Reynolds fluid mechanics, Active matter

Abstract : When immersed in a surfactant-saturated
fluid, droplets made out of oil or water can self-propel
at velocities attaining several radii per second. While
the exact physicochemical mechanisms underlying
this behaviour are still under debate, recent studies
have shown that they are related to the solubilisation
of the droplet. Indeed, these active droplets release a
mixture of chemical species, i.e. solute, locally modi-
fying their surface tension. When a non-uniform solute
distribution is attained at the droplet surface, the im-
balance in surface tension induces Marangoni flows,
producing a net fluid flow and the droplet’s swimming
motion. Thus, a droplet’s self-propulsion results from
the coupling of solute transport dynamics to the resul-
ting Marangoni flows. In this thesis, we aim to study
the behaviour of several active droplets interacting
with each other, as well as with fixed boundaries. In
the first chapter, we introduce some key aspects of
low Reynolds number fluid mechanics and describe
the physical system of interest, namely active droplets
like those used in recent experiments. The mathema-
tical framework employed to model the self-propulsion

of active droplets is presented in chapter two, together
with a preliminary discussion of the hydro-chemical in-
teractions involved in the presence of multiple droplets
and generic boundaries. In chapter three we provide
the exact derivation of the hydro-chemical interactions
involved for a droplet colliding against a rigid wall, or
with another active droplet. In the fourth chapter, we
study the influence of the size-ratio on head-on col-
lisions of two droplets. Here we show that collision
dynamics are highly dependent on the droplet’s size
ratio, leading to three different regimes, i.e. rebound,
chasing and pausing. In chapter five we introduce a
simplified framework for modelling the behaviour of
active droplets’ dynamics, which is then employed to
study the general case of oblique collisions. While we
notice a significant alignment of the droplets when ini-
tial conditions are symmetric, we show that the sys-
tem can become highly asymmetric with the introduc-
tion of a misalignment in the drops’ initial conditions.
In the sixth and final chapter, we provide several pers-
pectives regarding the study of active droplet interac-
tions.
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