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opérée au sein de l’École Centrale de Lyon
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ordination du projet FOLDING dans laquelle cette dernière s’inscrit. Merci pour sa
bienveillance, ses encouragements et son humanité, en autres. Je remercie enfin Yan-
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d’équipe.

Je remercie chaleureusement les doctorants et post-doctorants de la « bétaillère »
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Marc et Amélie pour chacune de nos retrouvailles toujours festives et joyeuses. Mention
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Abstract

Inspired from the Origami art of folding, the rolled-up nanotechnology has proved to be
a competitive alternative toward the production of 3D microstructures through the self-
rolling of pre-stressed membranes. This technique has enriched the palette of existing
3D microstructures, proposing unconventional geometries (tubes, coils, etc.) accessible
with a large range of materials. Based on the stress-engineering method, a high de-
gree of control over the size and geometry of the structures can be achieved, making
them suitable in a wide range of applications. Among the variety of 3D architectures,
rolled-up tubular microcavities have drawn great interest for optofluidic applications
by combining their microchannel geometry and particular optical properties of the tube
to produce highly sensitive fluid sensors.

Applying the stress-engineering method to fold more complex surfaces such as pho-
tonic nanostructured membranes generates a new class of 3D photonic micro-objects
with original designs and tailored optical properties. Micrometer-sized patterning pro-
vides additional degrees of freedom with the modification of the dispersion of the planar
membrane, leading to various optical functionalities including the guiding, the trap-
ping, or the slowing of light. In particular, the combination between photonic crystal
patterns and 3D rolled-up geometries offers new strategies for the management of light.

In this thesis, we propose the conception and characterization of “photon cages”
based on the rolling of highly reflective 2D photonic crystal membranes. The reflecting
walls allow to trap efficiently the light in the hollow low-index core, optimizing the
overlap between the localized electromagnetic field and the surrounding medium, a
keystone in sensing operations. Parameters of the photonic crystal membrane were ad-
justed to obtain an efficient reflector (reflectivity R>95 %) over a large spectral range
(>100 nm) in near infrared domain. The cylindrical cavity resonator model and FDTD
simulations were used to predict the optical response of the rolled-up membrane. Tubu-
lar cavities were then fabricated using stress engineering technique. Near-field optical
measurements were carried out to investigate the modes in the hollow of the cavity,
revealing the presence of cavity modes in compliance with theoretical computations,
and bringing an experimental validation to the photon cage concept.

In this work, we also exploit the rolled-up nanotechnology to extend the analogy
between solid-state and photonic structures toward the fabrication and characteriza-
tion of photonic crystal analogues of carbon nanotubes. Numerical simulations were
performed to design graphene-like photonic structures with a Dirac point centred at
1.55 µm. Numerical calculations of the topological invariant and the band structure of
graphene-like photonic ribbons with zig-zag edge shape demonstrated the existence of
edge states. We calculated the optical dispersion of photonic microtubes in accordance
with zone-folding predictions. We report highly reproducible fabrication of photonic
nanotubes with honeycomb pattern. Preliminary angular-resolved spectral measure-
ments of the structures have revealed dispersive features of the membrane wall but no
signature of the microtube yet.

Keywords: rolled-up nanotechnology, photonic crystals, stress engineering, near-field
optical microscopy, Fourier optics, topological edge states.
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Résumé

Inspirée de l’art du pliage papier Origami, la nanotechnologie par enroulement s’est
avérée être une alternative compétitive à la production de microstructures 3D par auto-
enroulement de nano-membranes précontraintes. Cette technique a élargi la palette de
microstructures 3D en proposant des géométries originales (tubes, spires, etc.) associées
à une large gamme de matériaux. Basée sur la méthode d’ingénierie des contraintes,
elle permet aussi un contrôle très précis sur la taille et la géométrie des structures 3D
obtenues, ainsi adaptées à un large éventail d’applications. Parmi les architectures 3D
réalisables, les microcavités tubulaires ont suscité un grand intérêt pour les applications
opto-fluidiques en combinant leur géométrie de microcanaux et les propriétés optiques
particulières du tube pour produire des capteurs de fluide très sensibles.

L’ingénierie des contraintes appliquée au pliage de surfaces plus complexes, telles
que des membranes photoniques microstructurées, aboutit à une nouvelle classe de
micro-objets photoniques 3D aux formes et propriétés originales. La microstructuration
offre des degrés de liberté supplémentaires en modifiant la dispersion de la membrane
plane, permettant diverses fonctionnalités optiques tel que le guidage, le piégeage, ou le
ralentissement de la lumière. En particulier, les combinaisons de réseaux cristallins avec
des géométries 3D enroulées ouvrent de nouvelles stratégies de gestion de la lumière.

Dans cette thèse, nous proposons la conception et la caractérisation de « cages
à photons » basées sur l’enroulement de membranes à cristaux photoniques 2D très
réfléchissantes. Les parois réfléchissantes piègent alors efficacement la lumière dans
le noyau creux à faible indice, optimisant l’interaction entre le champ électromagné-
tique localisé et le milieu environnant au fondement des applications de détection.
Les paramètres de la membrane à cristal photonique ont été ajustés pour obtenir un
réflecteur efficace (réflectivité R>95 %) sur une large gamme spectrale (>100 nm)
dans le proche infrarouge. Le modèle de résonateur à cavité cylindrique et des simula-
tions FDTD ont été utilisés pour prédire la réponse optique de la membrane enroulée.
Les cavités tubulaires ont ensuite été fabriquées via la technique d’ingénierie des con-
traintes. Des mesures optiques en champ proche ont été réalisées pour étudier les modes
à l’intérieur de la cavité, révélant la présence de modes de cavité prédite théoriquement,
et apportant une validation expérimentale au concept de cage à photons.

Dans ce travail, nous exploitons également la nanotechnologie par enroulement afin
d’étendre l’analogie entre les structures de la physique du solide et celles de la pho-
tonique à la conception d’analogues de nanotubes de carbone dans la classe des cristaux
photoniques. Des simulations numériques ont été réalisées pour concevoir des struc-
tures photoniques de type graphène avec un point de Dirac centré à 1,55 µm. Des
calculs numériques d’invariant topologique et de structure de bandes de rubans pho-
toniques, avec un réseau nid d’abeille et un bord en zigzag, ont démontré l’existence
d’états de bord. Nous avons calculé la dispersion optique des microtubes photoniques
qui concorde avec les prédictions de la méthode de repliement de zone. Nous rap-
portons la fabrication très reproductible de nanotubes photoniques avec motif en nid
d’abeille. Des mesures spectrales et résolues en angle préliminaires des structures ont
révélé des caractéristiques dispersives de la paroi de la membrane mais aucune signature
du microtube pour le moment.

Mots clés: nanotechnologie par enroulement, cristaux photoniques, ingénierie de con-
traintes, champ proche optique, optique de Fourier, états de bords topologiques.

ix





Contents

Contents xi

List of figures xiii

List of Tables xix

Introduction 1

1 Origami-based photonic crystals 5
1.1 Towards 3D rolled-up photonic structures . . . . . . . . . . . . . . . . . 6
1.2 Concept of tubular photon cages . . . . . . . . . . . . . . . . . . . . . 28
1.3 Photonic crystal analogues of solid-states structures . . . . . . . . . . . 43
1.4 Conclusion of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . 60
1.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2 Numerical, fabrication and optical characterization methods 75
2.1 Simulations of optical properties . . . . . . . . . . . . . . . . . . . . . . 76
2.2 Fabrication process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.3 Optical characterization . . . . . . . . . . . . . . . . . . . . . . . . . . 97
2.4 Conclusion of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . 105
2.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3 Design and simulation of photon cages 109
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.2 Design of the planar two-dimensional photonic crystal mirror . . . . . . 111
3.3 Analytical model of the cylindrical cavity resonator . . . . . . . . . . . 120
3.4 Numerical study of tubular photon cages . . . . . . . . . . . . . . . . . 129
3.5 Conclusion of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . 147
3.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4 Fabrication and optical characterization of photon cages 149
4.1 Fabrication of tubular photon cages . . . . . . . . . . . . . . . . . . . . 150
4.2 Optical characterization of the photon cages . . . . . . . . . . . . . . . 155
4.3 Conclusion of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . 171

5 Photonic crystal analogues of carbon nanotubes 173
5.1 Graphene VS honeycomb lattice photonic crystal . . . . . . . . . . . . 174
5.2 Graphene ribbons and honeycomb lattice photonic crystal ribbons . . . 187
5.3 Carbon nanotubes and rolled-up honeycomb lattice photonic crystal . . 200
5.4 Conclusion of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . 223
5.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

xi



CONTENTS

A Mechanical model I

B 1D SSH model III

C Fresnel coefficients IV

D Cylindrical cavity model VI

E Mode surface of FDTD modes IX

F Grazing reflection onto the PCM X

G Reflection of small radius photon cages XI

H Parameters of triangular-hole HC-PCM XII
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Introduction

History of nanophotonics has known a turning point with the development in the end
of the 80s of photonic crystals as artificial photonic analogues of solid-state crystals.
In particular, the analogy between the propagation of electrons in semi-conductors and
the propagation of light in photonic crystals has opened new opportunities to achieve
the spatial and temporal control of light, at the wavelength scale, in one, two or three
directions. Moreover, the variety and tunability of the photonic crystal lattice patterns
have offered a wide palette of optical functionalities such as the guiding, the trapping,
or the slowing of light. For instance, 1D photonic crystals consisting of multi-layered
dielectric stacks have served as reflective coating and high reflective mirrors in laser
cavities. Similar effects have also been reported in 2D photonic crystals obtained by
patterning dielectric substrate membranes. The realization of 3D photonic crystals
exhibiting a complete photonic band gap has also aroused much interest toward the
harnessing of light in all directions. However, the production of such 3D photonic crys-
tal architectures generally involves complex fabrication technologies based for instance
on the stacking of two-dimension layers, laser writing or drilling under different angles.

Toward the development of 3D photonic structures, the PHOLDING (for FoLDING
PHOtonic Crystals: Semiconductors ORIGAMI) ANR project, in which this thesis
is inscribed, has proposed to apply the technology of stress relaxation to photonic
crystal membranes. Indeed, the mechanical elastic relaxation of pre-stressed patterned
multilayers can give rise to 3D micro-object which final shapes are determined by the
initial stress distribution. The fabricated structures are sometimes called ”photonic
origamis” as this fabrication process borrows the idea from the Japanese art of paper
folding. The general purpose of this work is to explore the paths opened by this
fabrication method to produce original photonic structures.

Among them, new families of 3D hollow optical micro-resonators with the peculiar
properties of enabling a strong trapping and enhancement of light in a low index media,
are especially targeted. In these microresonators, the confinement of light is based on
the concept of ”photon cages” which consists in enclosing a small region of space with
a folded photonic crystal membrane designed to present a broad-band and high reflec-
tivity in the wavelength range of interest. The idea is to achieve very open resonators
where strong light-matter interaction can be exploited in optical devices comprising an
active material embedded in a low index matrix like polymer, liquid or even gas. In-
deed, hollow 3D resonators hold much interest for sensing operations as they not only
maximize the 3D light confinement but also optimize the overlap between the elec-
tromagnetic field and potential sensing micro-sized targets. Using stress engineering
technique, these 3D microresonators can be manufactured by rolling up 2D photonic
crystal membranes to form tubular ”photon cages”. If the concept of photon cage has
been studied theoretically at INL in the case of one-dimensional photonic crystal, no
experimental validation has been brought yet. In this thesis, we first address the con-
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ception and the optical characterization of tubular photon cages produced upon the
rolling of 2D photonic crystal membranes mirrors. In particular, we aim at bringing
an experimental proof of concept of the confinement of light inside the tubular photon
cages.

Another application of photonic origamis deals with the common exploration of the
correspondence between condensed matter and photonic systems. Indeed, the produc-
tion of photonic crystal analogues of atomic crystals has paved the way to new perspec-
tives in the light engineering. In particular, graphene-like photonic crystals have drawn
interest as, like their electronic counterparts, they exhibit remarkable properties such
as the presence of a Dirac point in their band diagram. By contrast with solid-state
structures, photonic crystal equivalents present design flexibility through notably the
change of their lattice parameters, allowing to explore new optical effects. In partic-
ular, beyond the linear dispersion around the Dirac point, it has been proved that by
opening a gap around this peculiar point, topological edges states could be observed.

Stress-engineering based fabrication also allows us to pursue the analogy and ex-
plore the properties of carbon nanotubes photonic crystal analogues, namely rolled-up
honeycomb lattice photonic crystal membrane microtube. Indeed, depending on the
direction of rolling of the graphene sheet, also known as the chirality, the carbon nan-
otubes may (or not) present a band-gap. Therefore, a natural question we address
in this work concerns the existence of a rolling-induced band gap in the case of the
photonic micro-tubes. If so, another legitimate question that we raise deals with the
topological nature of this gap.

In Chapter 1, we first introduce the rolled-up nanotechnology based on the self-
rolling of stress-engineered nanomembranes, as a competitive micro-fabrication method
to the challenging production of 3D micro-objects. On the basis of the multiple re-
views recently published, we present a update state of the art of the technique, giving
an overview of the range of materials, the variety of the 3D architectures accessible
with the technique, and the scope of applications. We focus notably on the utilization
of tubular microstructures as photonic microcavities with tunable optical properties.
In the second section, we present the concept of photon cages based on the deforma-
tion of highly reflective photonic crystal membranes as a alternative solution to the
confinement of light in air. We explain the mechanisms behind the reflective proper-
ties of photonic crystal. We then formulate the first objective of this thesis dealing
with the conception of tubular photon cages based on the rolling of highly reflective
2D photonic crystal membranes. In the third section, after reviewing the properties of
graphene and carbon nanotubes, we introduce the second objective of the thesis which
concerns the production and optical characterization of photonic crystal analogues of
carbon nanotubes.

In Chapter, 2, we present the numerical, fabrication, and optical characterization
methods used in this thesis to achieve the conception and characterization of the rolled-
up photonic crystal microtubes. The first section focuses on two numerical tools, the
rigorous coupled-wave analysis and the finite-difference time-domain method, employed
to simulate the optical response of planar and rolled-up photonic crystals. The second
section details the fabrication processes of the rolled-up microstructures, involving the
production of the multi-layered precursors by epitaxial deposition, the design and fab-
rication of the planar mask by e-beam lithography and reactive ion etching process,
and the rolling of the photonic crystal membrane by underetching. In the last section,
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we describe the two main techniques used in this thesis to perform the optical charac-
terization of the fabricated rolled-up photonic structures, namely scanning near-field
optical measurements and angular-resolved spectral measurements.

In Chapter 3, we address the design and the simulation of the tubular photon cages.
The first section deals with the conception of a broadband and high performance 2D
photonic crystal membrane mirror constituting the membrane wall of photon cages.
The second section concentrates on the simulation of optical response of the photonic
cages with infinite and finite size, using the analytical model of the cylindrical cavity
resonator and more realist modelling of the rolled-up structures.

In Chapter 4, we complete the study of the tubular photon cages with the fab-
rication and optical characterization steps. In the first section, we present the main
results of the fabrication of the rolled-up photonic crystal membranes, precising the
composition of the multi-layered stack, the conception of the planar mask and describ-
ing one typical sample. In the second section, we present and analyze the near-field
optical measurements carried out inside different specimens of tubular cages and bring
the experimental proof of the the confinement of light in the air-filled hollow part of
the tubular photon cages.

In Chapter 5, we tackle the conception and explore the optical properties of photonic
crystal analogues of carbon nanotubes. In the first section, after reviewing the struc-
tural and electronic dispersion of graphene approached with the tight-binding model,
we present the simulated photonic dispersion of a honeycomb lattice photonic crystal
membrane constituting the building block of the carbon nanotube-like photonic micro-
tube. In the second section, we first describe the topological properties of graphene
ribbons following the literature. We then assess numerically the topological behaviour
of their photonic crystal equivalents, ribbons of honeycomb lattice photonic crystal
membranes, by estimating the topological invariants and simulating the photonic band
diagram at the edge of the ribbon. In the third section, we review the structural
properties, the electronic dispersion using the zone-folding method and the topological
classication of carbon nanotubes with respect to their chirality. We then investigate
the optical properties of their photonic crystal analogues by simulating numerically
the photonic band structure on planar and rolled-up structures. We present afterward
main fabrication results of the photonic microtubes, precising their composition and
evaluating the quality of the rolled-up microstructures as well as the reproducibility of
the method. We finally present preliminary results on the optical characterization of
the fabricated honeycomb lattice photonic crystal microtubes through angular-resolved
spectral measurements allowing to extract experimental photonic band diagrams.
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Chapter 1

Origami-based photonic crystals

Light thinks it travels faster than anything but it is wrong.
No matter how fast light travels, it finds the darkness has always got
there first, and is waiting for it.

Terry Pratchett (Reaper Man)
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CHAPTER 1. ORIGAMI-BASED PHOTONIC CRYSTALS

In this chapter, we introduce the rolled-up fabrication technique with a focus on
its application to the fabrication of photonic structures. We will then see how the use
of this manufacturing method, with the use of photonic crystal membranes, is relevant
for making hollow photonic resonators, which allow light to be strongly confined in a
low index medium. A part from this application, we will show that the rolled-up of a
photonic crystal membrane also makes it possible to explore the field of correspondences
between electronic systems of condensed matter and photonic systems. In this work,
we are interested in the link between carbon nanotubes and their photonic analogues
obtained by the rolled-up technique. More precisely, we will study the relationships that
can be established between these systems at the level of their dispersion band diagrams
and their topological properties. These aspects, including elements of topology usefull
to understand our study, will be presented in the last part of this chapter.

1.1 Towards 3D rolled-up photonic structures

This section introduces the rolled-up nanotechnology based on the self-rolling of pre-
stressed planar nano-membranes, and developed in the last two decades to address
the challenging fabrication of 3D micro-structures. It will explain at first the main
mechanisms at stake: the introduction of an inhomogenous strain in the membrane
and the bending predicted by the classical plate theory when releasing the stress. It
will then give an insight into the large variety of 3D micro-objects achievable with this
technique, considering the multiple combinations of 3D geometries and materials. It
will finally focus on the use of tubular rolled-up microstructures in photonic applications
such as lasing and optofluidic sensing.

1.1.1 Introduction to the rolled-up nanotechnology

In the scope of 3D fabrication techniques

The production of 3D micro-structures has raised scientific enthusiasm in the last
decades owing, among other motivations, to the growing demand for the miniaturisation
of devices and the reduction of energy consumption. The development of microstruc-
tures with complex 3D architectures has also opened new horizons for the production
of 3D micro-objects exhibiting novel functionalities [1] which find applications in a wide
variety of fields such as biology [2], electronics [3–5], photonics [6], to name but a few.
However, the production of such 3D microstructures remains challenging as existing
fabrication techniques strive to interweave all at once high pattern resolution, materials
flexibility, variety of 3D shapes and scaling properties.

The case of 3D optical metamaterials epitomizes the delicate transition between
theoretical predictions and their practical realization at the micro- and nanometer
scales. Indeed, metamaterials as 3D assembly of artificial optical elements have drawn
a peculiar attention on account of their outstanding range of optical functionalities
such as negative refraction, perfect lensing effect or invisibility cloaking [7]. Despite
achievements in the microwave regime, the transposition to optical frequencies, hence
with micro- and nanometer resolution, encounters challenging fabrication requirements
owing partly to the multi-scale nature of the structures. Indeed, conventional planar
technologies, including UV or electron-beam lithography for instance, enable the planar
patterning of material layers with a resolution up to few nanometers but limit to simple
3D stacking layout [8]. In parallel, other 3D fabrication methods have recently been
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developed to push the limits of 2D planar fabrication. In particular, 3D printing [9–11]
or laser direct writing (LDW) [12–17] methods have proved their efficiency to create a
large range of complex 3D forms from various materials and with competitive resolution.
Nevertheless, their sequential nature implies significant fabrication duration and thus
impedes the scaling-up or the production of high-aspect ratio microstructures.

Figure 1.1: Strategies for the bending of thin material sheets with non-uniform or uniform prop-
erties across the thickness. In the bimorph and material gradient approaches, the coloured arrows
represent the vertical distribution of the internal forces in the membranes. In the external field ap-
proach, external forces symbolized by green oblique arrows are applied on the membrane. In the three
configurations, opposite forces (not depicted on the drawings) are needed to maintain the static equi-
librium of the membranes which relax into a downwards curved form upon a proper trigger mechanism.
Drawings inspired from [18].

Rolling at the micro- and nano-scale: the Origami technique

Another strategy toward the fabrication of 3D microstructures has emerged drawing
inspiration from the Origami art of folding which turns planar templates, originally
planar paper-based templates, into 3D architectures. Transposing the concept at micro-
and nanometric scales, the key point in the production of Origami-based 3D micro-
objects rests upon the folding of thin material films. The folding of thin material
layers can be achieved according to two mechanisms: the bending by generating an in-
plane moment or the buckling by applying compressive forces on the layer. Two generic
methods described below and schematized on the two colour-shaded panels on Figure
1.1 allow to bend or buckle thin material layer systems. The ensemble of methods fall
into the generic framework of the so-called rolled-up nanotechnology [19].

On the right panel, the material properties of the layer represented by a blue patch
are distributed uniformly along the thickness of the layer. The bending of the layer
is then carried out by the application of an external force depicted as incident green
arrows, it is so-called the external field approach. This method involves driving forces
of various natures such as capillary [20] or magnetic [21] effects. Moreover, a buckling
phenomenon may occur when the entire film thickness experiences compressive forces
[22].

On the two left panels, the system corresponds either to a bilayer system (bimorph
approach) or to a single material layer (material gradient approach), both defined by
a non-uniform distribution of material properties (elastic modulus, lattice parameters)
across the total thickness. In general, we introduce a differential strain in the material
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layers which causes the bending of system. In particular, in the bimorph approach,
two material layers with mismatch strains are adjoined together whereas in the mate-
rial gradient approach, the strain changes gradually along the thickness of the single
material layer. Among the driving mechanisms employed to induce strain in material
membranes, we can cite residual stress, swelling, liquid crystal alignment and shape-
memory effect, described in [18].

Stress-engineering

In particular, the residual stress, obtained through compressive or tensile strain, is
typically introduced in crystalline material layer during epitaxial growth. It is generally
considered as an undesirable effect of the film growth as it may generate crystal defects
such as dislocations or roughening on the deposited film in case of large amount of pre-
stress. However, it can also be advantageously exploited toward the bending of a bilayer
system composed of two prestrained material layers. For instance, the thermal growth
of a metallic film on top of a SiO2 layer induces compressive and tensile prestrains,
respectively, owing to the different thermal expansion coefficients of the materials [23].
Opposing forces in the two layers generate an nonzero bending moment which result
in the bending of the bilayer upon release from its substrate.

In a similar way, Prinz et al. have exploited in a series of seminal works [24–
26], the prestrains induced in semi-conducting material films inherently to epitaxial
deposition techniques, to roll material bilayers up. We schematize in Figure 1.2.a) the
process originally proposed to produce free-standing rolled-up InAs/GaAs membranes.
The fabrication scheme begins with the epitaxial growth of successive AlAs, InAs and
GaAs material layers on top of an InP substrate, with thicknesses controlled down to the
atomic monolayer (ML). In Figure 1.2, each layers are depicted as periodic assemblies
of rectangular shapes in order to emphasize their crystallographic nature. The length
of each rectangles indicates the lattice parameter of the material composing the layer in
both horizontal and vertical directions. We remark that the epitaxial growth supposes
the adjustment of the in-plane lattice parameters of deposited layers to that of the
substrate.

This adjustment is inherent to the lattice mismatch between the materials of the
deposited and subtrate layers. In particular, the different lattice parameters of InAs
(aInAs ' 6.06 Å) and GaAs (aGaAs ' 5.65 Å) materials induces respective compressive
and tensile forces in the layers, symbolized by thick black arrows of opposite directions.
The selective etching of the underlying sacrificial AlAs layer releases the pre-strains in
the InAs/GaAs bilayer. Opposite forces in the bilayer generates a nonzero moment
noted M which induces a natural curvature of the bilayer membrane. We demonstrate
in later developments that, in the framework of a linear elastic mechanical model, the
induced curvature, defined by the curvature radius ρ, depends mainly on the thicknesses
and the composition of the layers. Moreover, for rectangular shapes, the dimensions
and the orientation of the planar precursor determines the number of rolling and the
3D shape of the final structures. Therefore, the SEM picture of Figure 1.2.b) shows
a typical array of high aspect ratio microtubes obtained in [27] at the end of one
fabrication cycle. The diameter of the so-formed cylindrical microstructures reaches
about 2 µm for wall thickness estimated to about 10 nm and lengths reckoned to few
centimetres. Additional realizations were carried out in [27] while varying the thickness
of InGaAs and GaAs layers of a InGaAs-GaAs bilayer, down to few ML, and the Indium
(In) proportion x of the InxGa1−xAs layer to achieve diameters within [2 nm - 2 µm].
The cross-sectional high resolution transmission electronic microscopy (HRTEM) view
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Figure 1.2: a) Schematized self-rolling of a prestrained InAs-GaAs membrane upon selective etching
of underlying AlAs sacrificial layer. The periodic assemblies of rectangular shapes reproduces the
crystalline nature of the material layers grown epitaxially. Tension and compression in InAs and
GaAs layers generate a non-zero moment for the bilayer which starts to curve with a radius ρ. b)
SEM picture of an array of rolled-up InAs-GaAs microtubes obtained in [27]. c) Cross-sectional SEM
picture, also extracted from [27], of a multilayered InAs-GaAs microtube.

in Figure 1.2.c) of a microtube based on InGaAs-GaAs bilayer reveals the multi-layered
nature of the membrane wall composed of a 4 ML-thick InGaAs layer adjoined to a 4
ML-thick GaAs layer. This example also demonstrates the successful implementation
of the rolled-up nanotechnology for the rolling of extremely thin layers of only few
microlayers thickness.

Theoretical expression of the induced curvature

The systematic production of rolled-up micromembranes upon relaxation of induced
residual strain necessitates to find the relation between the structural parameters of the
bilayer membrane (composition and thickness) and the curvature radius ρ of the final
multilayered microstructure. To this end, we use a mechanical model derived from the
thin plates theory, also known as the Love-Kirchhoff theory, which applies especially
to the study of bending of single and multi-layer structures. In this model, we consider
the simplest system composed of two crystalline material layers A1 and A2 defined by
their respective lattice parameters a1 and a2 verifying, for instance, a2 < a1. The two
separated layers are depicted on Figure 1.3.a) using the same schematic representation
of crystalline layers in Figure 1.2.a).

We seek to describe the mechanical behaviour of the bilayer A1-A2 formed after the
epitaxial deposition of layer A2 onto layer A1. We define a reference configuration for
which layer A1 is naturally relaxed while layer A2 fits its crystallographic parameters
to that of A1 substrate layer. The study of the mechanical behaviour of the bilayer
decomposes into two steps. We first establish the constitutive relations of the two
layers with respect to the reference configuration. We determine then the behaviour
in the free bilayer when subjected to null forces and moments since, in practice, the
prestrained bilayer is free when it detaches from the substrate during the etching of
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the sacrificial layer. We emphasize the independence of the final result with respect to
the choice of the reference configuration.

Assuming a linear elastic behaviour and plane stresses for each layer, we can write
the constitutive relation for each material layer i (i = {1, 2}) in the following form:

σ = C(i)
[
ε+m(i)

]
, (1.1)

where σ, ε designate respectively the stress and strain symmetric second-order (6
independent components) tensors. The elements C(i) and m(i) stand respectively for
the fourth-order (21 independent terms) Hooke tensor and the pre-strain of the i-th
layer, i.e. the strain with respect to the fixed reference configuration, of thermal and/or
microscopic origin. In the case of materials defined by a cubic crystal system, which
includes Indium Phosphide (InP) and Gallium Phosphide (GaP) semiconductors, and
using the Voigt notation, the Equation (1.1) reduces to:

σ11

σ22

σ33

σ23

σ13

σ12

 =


C11 C12 C12 0 0 0

C11 C12 0 0 0
C11 0 0 0

C44 0 0
sym C44 0

C44




ε11 +m11

ε22 +m22

ε33 +m33

2ε23

2ε13

2ε12

 . (1.2)

Figure 1.3: Schematic introduction of pre-strains in a bilayer membrane. a) Layer A2 with lattice
parameter a2 is grown epitaxially on substrate layer A1 with lattice parameter a1 > a2. The periodic
assemblies of square forms symbolizes the cubic crystallographic nature of the layers in the (x1, x3)
plane. b) After deposition and due to the lattice mismatch, layer A2 undergoes bi-axial tensile strains
and compression in the x3 vertical direction.

We form the material bilayer A1-A2 by depositing epitaxially layer A2 on layer A1

as sketched on Figure 1.3.b). The epitaxial growth imposes that the material layer
A2 adopts the cristallographic structure and orientation of the supporting layer A1.
Therefore, in the plane of the membrane, namely along both directions x1 and x2, the
lattice parameter of layer A2 fits with that of A1: a‖ = a1. For simplicity, we represent
the lattice matching exclusively along the x1 direction but identical mechanism occurs
along the x2 axis due to the cubic symmetry. Moreover, inherently to the deposition
method, the structural parameters of layer A2, at a given deposited thickness, evolve
freely along the x3 axis normal to the membrane plane. The situation then changes in
the course of the growth due to the increase in the thickness of the deposited layer, such
that the amount of stress in the membrane changes too. However, in our model, we
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only consider plane stresses in the membrane to calculate the final induced curvature
of the bilayer.

In the reference configuration, the layer A1 is characterized by m(1) = 0, such that
the constitutive law merely reads:

σ = C(1)ε. (1.3)

Conversely, on account of the lattice mismatch, the constitutive law of layer A2 with
respect to relaxed layer A1 expresses as:

σ11

σ22

σ33

σ23

σ13

σ12

 = C(2)


ε11 +m
ε22 +m
ε33 + ε0

33

2ε23

2ε13

2ε12

 , (1.4)

where the misfit parameter m defines as:

m =
a1 − a2

a2

. (1.5)

In other words, layer A2 undergoes a biaxial strain m in the membrane plane while
ε0

33 indicates the strain in the out-of-plane direction, in the reference configuration.
Moreover, the growth process supposes that the material layers form freely in the
vertical direction which allows to consider plane stresses, namely σ23 = σ13 = σ33 = 0,
in the bilayer system. In particular, the application of plane-stress assumptions in the
reference configuration gives the following expression of the out-of-plane strain:

ε0
33 = −2m

C
(2)
12

C
(2)
11

, (1.6)

while the remaining relations σ23 = σ13 = 0 always hold true.
In particular, if a2 < a1, hence m > 0, we infer that, with respect to its natural

relaxed configuration, the layer A2 undergoes:

• a tensile strain; as a consequence, in-plane compressive strains ε11, ε22 < 0 are
needed to satisfy σ11 = σ22 = 0;

• a compressive strain ε0
33 < 0 in the out-of-plane direction, as a tensile strain

ε33 > 0 cancels out the stress component σ33,

as schematized with thick black arrows on Figure 1.3.b). Furthermore, for both mate-
rials, the application of the plane-stress assumption σ33 = 0 using Equations 1.4 and
1.6 leads to an expression of ε33 depending exclusively on ε11 and ε22:

ε33 = −C
(i)
12

C
(i)
11

(ε11 + ε22). (1.7)

Combining Equations 1.4 and 1.7, the constitutive relation for layer A2 rewrites in a
more compact way as:σ11

σ22

σ12

 =

 Ĉ11 Ĉ12 0

Ĉ11 0
sym C44

ε11 +m
ε22 +m

2ε12

 (1.8)
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where the coefficients Ĉ11 and Ĉ12 defined by:

Ĉ11 = C11 −
C2

12

C11

, (1.9)

Ĉ12 = C12 −
C2

12

C11

, (1.10)

refer to the reduced elastic constants in the formalism of the classical plate theory of
Love-Kirchhoff. The reduced form of the constitutive law of layer Ai writes then:

σ = Ĉ(i)
[
ε+m(i)

]
, (1.11)

where m(1) =
[
0 0 0

]t
and m(2) =

[
m m 0

]t
.

We have demonstrated so far the introduction of biaxial pre-strains in the mis-
matched layer A2 inherent to its epitaxial growth on relaxed layer A1, and directly
related to the lattice mismatch m. We have also established a compact expression of
the constitutive law for both material layers A1 and A2 with the assumption of plane
stresses. The second step consists then in determining the behaviour of the bilayer in
response to the internal strain in layer A2.

We consider the bifilm A1-A2 as a thin plate due to its small thickness as compared
to lateral dimensions. The study of the motion of the bilayer reduces then to the
study of the motion of its mid-surface. The mid-surface refers to the plane located at
the middle of the bilayer thickness, taken as the origin of the x3 coordinate. In the
Kirchhoff-Love theory for thin plates, the kinematic assumptions formulate as:

u1(x1, x2, x3) = u0
1(x1, x2)− x3

∂u3

∂x1

,

u2(x1, x2, x3) = u0
2(x1, x2)− x3

∂u3

∂x2

,

u3(x1, x2) = u0
3(x1, x2),

(1.12)

where u = (u1, u2, u3) designates the displacement field in the mid-surface along the di-
rections x1, x2 and x3, respectively. The motion of the mid-surface described in Equa-
tion (1.12) combines therefore in-plane (u0

1, u0
2) and out-of-plane (u0

3) displacements
completed by the conservation of the angles between the normal to the mid-plane and
the in-plane directions.

Supposing small deformations, the strain components εij with (i, j) = {1, 2, 3}
relates to the displacement field u = (u1, u2, u3) with the Green-Lagrange operator as:

εi,j =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (1.13)

From Equation (1.13), we verify that ε23 = ε13 = 0 which validates the plane
stresses assumptions σ23 = σ13 = 0, so that we can rewrite the in-plane strain in the
following form:

ε =

 ε11

ε22

2ε12

 =

 ε0
11

ε0
22

2ε0
12

+ x3

 κ11

κ22

2κ12

 ≡ ε0 + x3κ, (1.14)

where ε0 = (ε0
11, ε

0
22, ε

0
12) refer to the bilayer membrane strains and express according

to Equation (1.13) as:

ε0
11 =

∂u0
1

∂x1

, ε0
22 =

∂u0
2

∂x2

, ε0
12 =

1

2

(
∂u0

1

∂x2

+
∂u0

2

∂x1

)
, (1.15)
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whereas κ = (κ11, κ22, κ12) corresponds to the bilayer membrane (linearized) curva-
tures, expressed in m−1, given also according to Equation (1.13) by:

κ11 = −∂
2u3

∂x2
, κ22 = −∂

2u3

∂x2
2

, κ12 = − ∂2u3

∂x1∂x2

. (1.16)

We notice for instance that for κ11 > 0, the bilayer membrane acquires along the x1

direction a natural convex shape.
In the framework of the plate theory, efforts and moments are defined as average

quantities over the thickness of the plate, and calculated from the displacement fields
known on the mid-surface. Therefore, we evaluate the efforts F in the bilayer membrane
by integrating, over the membrane thickness h = h1 +h2, the reduced constitutive laws
established in Equation (1.11) for each layer:

F =

ˆ h/2

−h/2
σdx3 =

ˆ h/2

−h/2
Ĉ [ε+m] . (1.17)

Similarly, we obtain the expression of the moments M in the bilayer membrane by
integrating, over the total thickness h, the reduced constitutive laws multiplied by x3:

M =

ˆ h/2

−h/2
x3σdx3 =

ˆ h/2

−h/2
x3Ĉ [ε+m] . (1.18)

Neglecting boundary effects, in the case of a free bilayer membrane, the strains ε0 and
curvatures κ adjust to realize zero efforts and moments in the membrane, noted F
and M respectively. Null efforts and moments in the membrane traduces by the two
systems F = 0 and M = 0 each composed of three equations. The third equations
of both systems leads to ε0

12 = κ12 = 0 while the four remaining equations admit a
solution for ε0

11 = ε0
22 ≡ ε and κ0

11 = κ0
22 ≡ κ. The resolution of the previous systems,

detailed in Appendix A, gives then the following general solution:

ε =
−mξ(ξ3 + 3Cξ2 + 3Cξ + C)

C2 + 2Cξ(2ξ2 + 3ξ + 2) + ξ4
, κ̂ =

−6mCξ2(1 + ξ)

C2 + 2Cξ(2ξ2 + 3ξ + 2) + ξ4
, (1.19)

where C = E1(1− ν2)/E2(1− ν1) designates the elastic constrast defined with Ei and
νi ( i = {1, 2}) the Young modulus and Poisson coefficients of the i-th material layer,
and ξ = h2/h1. We retrieve the historical results obtained in Timoshenko’s theoretical
macroscopic study on the bending of bi-metal structures [28].

In particular, for C = 1, the solutions reduce simply to:

ε =
−mξ
1 + ξ

, κ̂ =
−6mξ2

(1 + ξ)3
, (1.20)

with κ̂ = h2κ.
In conclusion, the linear elastic model applied to the prestrained bilayer A1-A2

brings out the following remarks, on the basis of the key expressions obtained in Equa-
tion (1.20):

• The free bilayer undergoes an in-plane deformation ε and spontaneously rolls up
with a normalized curvature κ̂, both of which depending proportionally to the
lattice mismatch m 6= 0;
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• In particular, we examine the two possible configurations according to the sign
of m

– m > 0 (layer A2 under tension): the free bilayer relaxes in compression since
ε < 0 and forms a convex shape as κ̂ < 0;

– m < 0 (layer A2 under compression): the free bilayer relaxes in extension
since ε > 0 and forms a concave shape as κ̂ > 0;

• We also point out the extreme evolutions of bilayer strains and curvatures for a
given m:

– h1 � h2: ξ → 0 and the bilayer remains in planar configuration as strain ε
and curvature both tend to zero;

– h2 � h1: ξ → ∞ and the bilayer should stay in planar form as κ̂ → 0 but
ε → −m. In practice, the uniform deposition of layer A2 is compromised
above a critical thickness depending on the lattice mismatch and experimen-
tal conditions;

– h2 = h1 = h/2: ξ = 1, the curvature κ reaches its maximum value
for a fixed h as plotted on Figure 1.4 for different misfit m;

Figure 1.4: Evolution of the curvature κ (in µm−1) of a prestrained bilayer upon relaxation, for
different prestrain m (in %), as a function of the ratio ξ = h2/h1 with h1 and h2 the thicknesses of
the two layers. The total thickness of the bilayer h = h1 + h2 is fixed to one micron.

Above all and most interestingly, we deduce the expression of the curvature radius ρ
of the rolled-up membrane directly from Equation (1.20) as:

ρ =
1

κ
=
h2

κ̂
=
h2(1 + ξ)3

−6mξ2
, if C = 1. (1.21)

We note that the previous expression holds true for materials with similar mechanical
behaviour, namely C = 1. In particular, we report small deviations (inferior to few %)
of the real radius ρ as compared to the exact expression in Equation (1.21) owing to
the very close values of our materials’ elastic constants.
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Figure 1.5: Study of the scalability of rolled-up microtubes from [29]. a) Cross-sectional transmission
electronic microscopy (TEM) picture of a multi-layered semiconductor stack grown by mocular beam
epitaxy (MBE). The oxide layer forms after exposition of the sample to ambient conditions. b) TEM
picture of a specimen of rolled-up InGaAs-GaAs microtubes formed after selective etching of the AlAs
layer. c) Evolution of the diameter of the microtubes calculated theoretically and experimentally as
a function of the thickness d of the InGaAs-GaAs bilayer. Different theoretical curves are proposed
according to the oxide monolayers (ML) subtracted to the estimation of the bilayer thickness. In the
symmetric case, InGaAs and GaAs material have identical thicknesses.

Validity of the model for microscopic rolls

Deneke and al. have then confronted in [29] theoretical and experimental estimations
of the curvature radius of rolled-up InGaAs-GaAs bilayers to assess the accuracy of the
mechanical model established hereinabove. Successive layers of AlAs, InGaAs, GaAs
materials are first deposited through MBE process on top of a GaAs substrate as illus-
trated on the cross-sectional transmission electronic microscopy (TEM) image in Figure
1.5.a. The GaAs is grown intentionally thicker to compensate the formation of a thin
layer of oxide (few ML-thick) on top of the multi-layered stack after exposition of the
sample to ambient conditions, and to obtain a symmetric bilayer. Moreover, the total
thickness of the bilayer d ranges from 7.4 ML to 33.6 ML. After the selective removal
of the AlAs sacrificial layer, the InGaAs-GaAs prestrained bilayers relax by rolling
into tubular shapes as showed on the TEM picture of Figure 1.5.b). The diameters
of the microtubes measured experimentally for increasing thickness d are reported on
the graph of Figure 1.5.c) and confronted to dashed line plots representing theoretical
predictions taking or not into account the oxide layer. The results of previous works
from same authors have also been added.

The evolution of experimental data points and theoretical curves shows a rather
close fit over the entire range of thicknesses. This agreement is explained by the fact
that the misfit m represents the only source of energy in the bilayer system. Conse-
quently, at the equilibrium, the non-homogeneity which stems from the spatial distribu-
tion of the initial misfit is such that in each point the strain is lower than that imposed
by the lattice mismatch. The slight experimental deviations observed at large diam-
eters can be attributed to the imprecision in the determination of the concentration
of Indium element. These results finally demonstrate the relevance of the mechanical
model to predict precisely the relaxation of pre-strained bilayers and the induced cur-
vature of the free bilayer membrane. The agreement between the small-strains theory
and the experimental data explains by the unique contribution of small strains but
large displacements/rotations in the roll-up process.
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Material compatibility

The material flexibility in 3D micro-fabrication techniques plays a crucial role as it de-
termines not only their field of applications but also the potential integration of the 3D
micro-objects in more complex devices or platforms. Concerning the generic rolled-up
nanotechnology, the range of accessible materials has evolved jointly with the advances
and technical improvements to offer thus far a wide variety of materials to be scrolled
up. To investigate this range, we need to consider the anatomy of the multi-layered
precursor produced beforehand and composed traditionally of functional layers includ-
ing the pre-strained layers and a sacrificial layer deposited on top a substrate layer.
The key process of the rolling of the functional layers relies on the relaxation of the
pre-strained layers by the removal of the sacrificial layer. This removal is performed
generally by a wet etching of the layer. It implies therefore an appropriate choice of the
etching solution to eliminate selectivity the sacrificial layer while preserving the upper
functional material layers, which limits de facto the range of possible materials. We
summarize hereinafter the main strategies adopted to extend the material choice to-
wards the fabrication of rolled-up microstructures compatible with various applications,
as described in details in [30].

Originally, sacrificial layers employed to realize rolled-up membranes were grown out
of inorganic materials, using epitaxial deposition methods. Therefore, pioneer works of
Prinz et al. [27] report the deposition of a AlAs layer as sacrificial layer on top of InP
substrate and supporting InGaAs-GaAs pre-strained bilayer. Benefiting, among other
assets, from the high-quality fabrication and the precise control of induced prestrain in
material layers grown epitaxially, semiconducting crystalline III-V compounds, includ-
ing AlGaAs, AlSb, AsSb or CdTe, have also extended the list of potential sacrificial
layers. The removal of such layers is commonly and efficiently carried out in hydroflu-
oric (HF)-based etchant. Prinz and its team also managed later to roll membranes
based on Silicon (Si) materials as in [26] for which the pre-strained bifilm composed of
two layers of doped Si and GeSi lie on top an undoped Si sacrificial layer. The under-
etching, namely the removal of the sacrificial layer, occurs by immersing the sample
in a NH4OH etching solution. We can mention multiple advantages in using Si-based
material structures. First, the deposition technique is no more restrained to sophis-
ticated and costly MBE method which consequently widens the choice of deposited
materials. Second, the fabrication technique based on mature semiconductor industry
ensures compatibility with planar technology and potential on-chip integration of the
3D microstructures. However, it is noteworthy that some of the etching solutions re-
main highly toxic, such as HF solutions, making the fabrication process incompatible
with bioapplications. Research works have then focused on finding more bio- and eco-
friendly etchant. For instance, etching solutions based on water [31] and H202 [32] have
proved to remove efficiently and selectively Ge and GeO2 sacrificial layers, respectively.

As an alternative to inorganic compounds which imply complex and multi-steps
fabrication process, the utilisation of organic sacrificial layers offers multiple assets. For
instance, the deposition of a photoresist sacrificial layer enables the deposition of various
materials including platinium (Pt) and aluminium oxyde (Al2O3) as demonstrated in
[33]. Moreover, the photoresist layer often associates with traditional lithographic
processes to realize a planar mask for the patterning of the upper functional layers.
Finally, dry-etching of polymethyl methacrylate (PMMA) sacrificial layers by a heating
procedure [34] have been proposed to circumvent surface tension issues encountered
when drying wet-etched-based rolled-up microstructures.

In conclusion, the material range accessible with the rolled-up nanotechnology in-
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timately relates to the choice of the sacrificial layer and its corresponding etchant.
Indeed, the deposition of the sacrificial layer supposes a compatibility with the growth
of upper functionnal layers which include the pre-strained films. Moreover, as a key
process of the rolling of the membrane, the etching of the sacrificial layer shall exhibit
high selectivity properties in order to limit at best deterioration of the upper layers.
Current solutions entail the use of inorganic and organic sacrificial layers with cor-
responding etching solutions exhibiting competitive etching efficiency and selectivity.
The decision will depend mostly on the type of targeted applications, favouring III-V
and Si-based material for integration in semiconductor technology, while an organic
sacrificial layer appears suitable for bio-related perspectives.

Accessible 3D shapes: rolling direction and planar design

We have introduced the principle of the rolled-up nanotechnology applicable to a wide
range of materials to achieve the rolling of pre-strained bilayer membranes. We have il-
lustrated the method with typical achievements of epitaxially-grown membranes rolled
up into elementary tubular shapes. Although extensively used and praised for its sim-
plicity and geometrical functionalities [35, 36], the tubular shape constitutes a tiny part
of the large variety of 3D architectures accessible with the rolled-up microfabrication
method. It is noteworthy that the final 3D shape of the microstructure results from
an appropriate and predetermined design of the precursor planar template. We denote
therefore three major leverages of action on the 2D design which allow to develop a
priori any targeted 3D architecture: the orientation, the dimensions and finally the
overall shape of the planar design.

We first examine the impact of the orientation of a simple planar design, a rectan-
gular strip, on the 3D shape of a self-rolling pre-strained bilayer membrane, following
the work in [37]. The pre-strained bifilm consists of two crystalline layers of SiGe and Si
materials epitaxially grown successively on top of a SiGe sacrificial layer. As mentioned
previously, the key step toward the rolling of a pre-strained bilayer membrane entails
the removal of the sacrificial layer which relaxes strains in the membrane and triggers
its spontaneous rolling. In crystalline sacrificial layers, the etching of the material ex-
hibits anisotropic behaviour. In other words, the etching rate varies according to the
direction of crystalline planes. In particular, for Si and Ge materials, the etching occurs
more compliantly, namely requiring minimal energy, in the crystallographic direction
〈100〉 defined according to Miller indices. Therefore, the planar design organizes in
two sets of multiple rectangular strips with prescribed orientation as depicted on Fig-
ure 1.6.a). On the left panel, the strips orient both along and perpendicularly to the
crystallographic direction 〈100〉 whereas the strips of the right panel point in the 〈110〉
direction and perpendicularly. The SEM pictures presented below the planar designs
show the resulting rolled-up microstructures obtained after the under-etching process.
It comes out that the strips along the most compliant direction 〈100〉 roll naturally
into nanorings while the strips along 〈110〉 form nanocoils. This simple experiment
demonstrates the importance of the orientation of the planar design with respect to
preferential etching directions defined in the crystal lattice of the sacrificial layer. The
orientation of the planar template introduces therefore another degree of freedom for
the fabrication of complex 3D forms.
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a

b

long side (b) rolled-up

short side (b) rolled-up

mixed (a) and (b)

Figure 1.6: a) Upper SEM pictures: planar strips of prestrained SiGe-Si membrane oriented along
(110) or (100) crystallographic directions. Lower SEM pictures: the strips oriented along (100) (or
(110)) direction roll into nanotubes (or nanocoils) upon strain relaxation [37]. b) SEM snapshots
showing the self-rolling of a 10 × 25 µm2 rectangular InGaAs/GaAs membrane after 30, 45, 55 and
60 seconds from the beginning of the isotropic under-etching process. c) Distribution of the rolling
direction for rectangular-shaped membrane with dimensions b and a (inset drawing) as a function of
the ratios b/a and c/a where c designates the circumference of the fabricated microtube. The complete
rolling can occur along the short side a (blue dots), along the long side b (red dots), or along both
sides (greend dots). Adapted from [38].

In the same way, Chun et al. have investigated [38] the effect of a change in the
dimensions of a rectangular planar pattern on the shape of the final rolled-up micro-
structure. In particular, they analysed the self-rolling of a 10 × 25 µm2 rectangle of
InGaAs/GaAs pre-strained bilayer triggered by the isotropic etching of the underlying
AlGaAs sacrificial layer. To this end, they monitored the evolution of the under-etching
by generating SEM snapshots of the microstructure, represented on Figure 1.6.b), af-
ter 30, 45, 55 and 60 seconds from the beginning of the process. After 30 seconds, the
bending of the bilayer initiates on each sides of the rectangle characterized by identical
etching rates. However, at 45 seconds, the situation seems to reach a deadlock owing
to opposing bending effects perpendicularly to the length and width of the rectangu-
lar pattern. The bending perpendicularly to the width finally concedes to enable a
complete rolling of the membrane perpendicularly to the length into a 3 µm diameter
microtube. We also notice the elastic behaviour of the membrane which returns back
to its initial configuration along the width while maintaining the integrity of the final
structure. Varying the width a and the length b of the rectangular pattern, Chun and
its team has also conducted a systematic study on the rolling behaviour of the mem-
brane. The graph of Figure 1.6.c) present the main results of this study as a function of
the ratio c/a and b/a, where c denotes the circumference of the final microtube. Blue
and red dots indicate that the complete rolling of the membrane occurs perpendicularly
to the length and the width (red dots), respectively, of the rectangular pattern. The
green dots represent a mixed state for which rolling of the membrane in both direc-
tions are observed. The study reveals a predominant rolling of the bilayer membrane
along the width. Numerical finite element calculations corroborate the observed trend
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which explains by the relaxation of the membrane internal strains over a larger area
when the etching occurs along the width. Nevertheless, the few cases of rolling along
the length highlights in practice a more complex interplay between energetic consid-
erations, etching kinetics and deformation history of the membrane, at the origin of
the rolling direction. Moreover, several strategies have proved their efficiency to ensure
the rolling of a pre-strained membrane along a prescribed direction from a rectangular
template. Among them, we can mention the shallow etching [39], which involves a
preliminary mesa-structuration of the bilayer, the glancing angle deposition (GLAD)
[33] which exploits the shadowed material deposition on a tilted substrate and finally
the utilization of wrinkled pre-strained membranes [40].

Figure 1.7: a) Table of five distinct targeted 3D geometries with the rolled-up nanotechnology. First
row: planar templates. Second row: predicted 3D shapes from the previous planar designs. Third row:
SEM pictures of 3D-shaped nanocrystalline (NC) diamond membranes after self-rolling according to
the planar designs [41]. b) Inverse etching process for the production of 3D spiral curved geometry.
First plot: discretized 3D spiral curve. Second plot: planar template of the 3D spiral curve calculated
with a projection algorithm and oriented with respect to the crystallographic directions [100] and
[010]. The colour gradient indicates the exposure dose for the lithography process optimized with
Monte-Carlo method. SEM picture: 3D spiral microstructure obtained by self-rolling of a prestrained
InP-InGaP membrane according to the predicted planar template [42].

The realization of microstructures rolling up into more complex 3D shapes relies
therefore essentially on a proper adjustment of the orientation, with respect to poten-
tial preferential etching direction, the dimensions and the overall shape of the initial
planar membranes. In this way, Tian and al. have managed in [41] the production of
microstructures with various 3D shapes by the rolling of pre-strained membranes pat-
terned beforehand according to prescribed planar templates depicted on Figure 1.7.a).
The patterning of the nanocrystalline (NC) diamond membranes, exhibiting isotropic
material properties, was achieved by lithography and reactive ion etching (RIE) pro-
cesses. Figure 1.7.a) divides into four columns with illustrations of the predefined 2D
pattern on the first row, of the predicted 3D shape on the second row, and the SEM
picture of the fabricated microstructure on the third row. In particular, the under-
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etching of a circular pattern (first column) results in a traditional tubular form with
varying wall thickness along the length of the tube. In the same way, a jagged ribbon
(second column) rolls into a spring-like microstructure. An additional patterning of
the membrane with RIE process allows for the realization of ribbons with modulated
thickness. The relaxation of the membrane leads then to the creation of nested rings
or tubes as shown in the third and fourth columns, respectively. Finally, the release of
a membrane patterned into an asymmetric ribbon reminding of hockey sticks produces
an helical geometry in accordance with numerical predictions. For the latter pattern,
the minimisation of the total energy of the structure accounts for the rolling into a
helical geometry instead of a tubular shape.

It is worth noticing that the previous results rely on the prediction of the 3D shape
of a prescribed planar template of the membrane after stress relaxation. However, it is
most likely to reason in the reverse way for the conception of a 3D microdevice. There-
fore, the issue could formulates as: what is the corresponding planar geometry which
leads to the construction of a predefined 3D shape after relaxation of the membrane?
At INL, in the heteroepitaxy team, we have addressed in [42] the so-called reverse
etching process for high aspect ratio structures such as ribbons, toward the fabrication
of face-to-face chiral spherical mirrors represented by the left 3D curve in Figure 1.7.b).
Precisely, we have proposed an algorithm to flatten a discretized polygonal version of
the 3D curve onto the design plane. The resulting planar design is depicted on the
central plot of Figure 1.7.b). The color gradient indicates the variation of the expo-
sure dose parameter optimized numerically so as to prevent proximity effects during
the electron beam lithography. Finally, the fabricated structure, represented on the
right SEM picture of Figure 1.7.b), and obtained after the relaxation of a prestrained
InAsP/InGaP bilayer according to the simulated planar design, reproduces well the
targeted 3D geometry. Alexandre Danescu et al. have also introduced in a recent
paper [43] a stress-engineering method to fabricate geodesic objects such as the spher-
ical version of the truncated icosahedron associated to the C60 fullerene molecule. For
the latter structure, geodesic of the sphere replace the straight segments of the original
polyhedron. The projection of the parabolic arcs onto tangent planes of the sphere form
therefore the precursor planar template. We finally mention that the realization of pe-
culiar 3D architectures, such as conical shapes, requires a non-uniform distribution of
the strain in the bilayer membrane according to theoretical and numerical simulations
reported in [44].

Lastly, we report another stress-relaxation method developed by other groups to
fabricate 3D micro-structures based on the realization of folds connecting the planar
design, in the way of Origami planar templates. This technique applies in [45] to the
self-assembly of cubic hollow micro-containers. The planar pattern of the targeted
cubic form, as schematized in Figure 1.8.a), consists of an cruciform-like assembly of
square faces, each of them connected with black-shaded hinges. The self-assembly of
the faces relies on the bending of the hinges, namely trilayers of photoresist polymer,
Chromium (Cr) and Copper (Cu) materials, which play the role of real folds. The
thermal evaporation of successive layers of Cr and Cu material layers forms a pre-
strained metallic bilayer owing to thermal expansion mismatch and to tensile strains
accumulated in the Cr layer during the growth. A photoresist polymer layer grown
on top of the metallic bilayer and covering part of the Ni layer acts as motion trigger.
Indeed, the heating of the sample softens the photoresist and allows for the relaxation
of strains into the metallic bilayer which causes its bending. The thickness of the Cr
layer is adjusted to achieve a 90◦ angle between each faces of the cube. The metallic
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Figure 1.8: Fabrication of micro-Origamis. a) Upper drawing: planar template for the produc-
tion of a 3D cubic microstructure with the rolled-up nanotechnology. Middle drawing: the faces of
the cube consists of a Nickel material layer on top of a prestrained Copper/Chromium (Cu/Cr) or
Chromium/Copper (Cr/Cu) bilayer. They are connected with photoresist polymer hinges which also
maintains their planeness. Lower drawing: the heating of the sample softens the photoresist which
triggers downwards or upwards bending of the Cr/Cu bilayer. A proper adjustment of the thickness of
the Cr layer enables a 90◦ angle between faces upon bending. b) SEM pictures of cubic microstructures
after bending of the previous planar pattern with three distinct patterns on the faces.

bilayer bends either downwards or upwards depending on the deposition order of Cr
and Cu layers as depicted on the last sketch of Figure 1.8.a). The three SEM pictures
on Figure 1.8.b) illustrates fabricated hollow cubic microstructures upon relaxation
of the previous planar template with 50 µm-sized faces. The faces of the cube are
lithographically patterned beforehand to functionalize the surface of the 3D micro-
objects.

Multi-function 3D microstructures

Several reviews [19, 30, 46, 47] published in the last decade attest to the material flex-
ibility and the variety of 3D shapes henceforth accessible with the rolled-up nanotech-
nology. They also measure the full scope of these versatile 3D rolled-up micro-objects
through their utilization as multi-functional devices spanning a wide range of domains:
microelectronics, biology, energy storage, photonics, among others. To give an insight
on the field of applications, we present three different rolled-up systems dedicated to
the enhancement of energy storage, the realization of original optical materials and the
development of micro-/nano-motors as illustrated on the tree panels of Figure 1.9.
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Figure 1.9: a) Schematized rolled-up Carbon (C)/Silicon (Si)/Carbon (C) membrane, upon etching
of the burried-in sacrificial layer, which serves as the anode of a Lithium-ion battery. b) SEM picture
of multiple overlapping rolled-up anodes obtained after one fabrication cycle. c) Evolution of the
charge and discharge capacity of the battery as a function of the number of charge/discharge cycles
[48]. SEM pictures of d) the planar template of a cubic Origami with Au split-ring resonators (SRR)
patterned on Al2O3 faces; e) a typical cubic microstructure obtained after under-etching process.
f) Experimental reflection spectrum of the cubic photonic Origami for incident field polarized along
(red curve) or perpendicularly (blue curve) to the gap of the SRR as indicated on the inset SEM
picture. g) Simulated extinction spectrum of the cubic photonic Origami for the two polarizations
previously mentioned. The lateral maps represent the charge distribution simulated in the SRR at
the wavelengths identified by square and disk markers [49]. h) Left sketch: membrane composed of
Titanium (Ti), Iron (Fe), Gold (Au) and Platinium (Pt) material layers rolling up after removal of
photoresist sacrifial layer. Upper right SEM picture: fabricated microtube after the rolling of the
membrane over 100 µm distance. Lower right SEM picture: SEM perspective view of the microtube.
i) Live frames of the motion of the microtube due to thrust force created bubbles formed by catalytic
reaction of surrounding H2O2 solution with the Pt membrane surface and ejected out of the tube. j)
Modification of the motion direction of the microtube by the application of a magnetic field to achieve
turn and rotations.

The first application deals with the improvement of the performances of Lithium-
ion accumulators based on Silicon (Si) anode [48]. Though Si material provides high
theoretical performances (estimated to 4200 mA.h.g−1), the battery suffers in reality
from capacity retention due to large volume deformation of the Si electrode during
charge/discharge cycles. An alternative architecture of the anode electrode was then
proposed to circumvent the actual bottleneck. It consists of a trilayer composed of
successive Carbon (C), Si and another C layers, rolled up after stress-relaxation through
under-etching process into a multi-wall microtube as schematized on Figure 1.9.a).
The SEM picture of Figure 1.9.b) shows fabricated electrodes with diameters in the
range of 20 µm. The specific capacity during charge and discharge of the so-formed
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Li-ion batterie was then measured for 300 cycles which results in the plot of Figure
1.9.c). We observe that both charge and discharge capacities maintain at a high level
until 150 cycles from which they start to reduce very slowly. In particular, we notice
that after 300 cycles, the capacity reaches its value obtained after the second cycle.
These promising results explain partly by the role of carbon layers which ensure good
electronic transport properties while preserving the mechanical integrity of Si layers
severely tested during the cycling. The rolled-up shape confers therefore a better
stability to the Li-ion battery, hence enhanced performances.

The fabrication of 3D microstructures finds also interest in the realization of 3D
micro-objects with tunable optical response. We present thus the creation of 3D op-
tical micro-Origamis based on the self-folding of the planar template illustrated on
the SEM picture of Figure 1.9.d) into a cubic form. Each of the four faces in Al2O3

material of the final cube represented on SEM picture of Figure 1.9.e) are patterned
lithographically with gold split-ring resonator (SRR) structures. The simulation and
experimental measurement of the optical response of the so-formed optical cubic ob-
ject gives respectively the two plots depicted on Figure 1.9.f) and g). The red and
blue curve indicate the optical response for two polarizations of the field, along and
orthogonal to the gap of the SRR, respectively, as represented on the inset image of
Figure 1.9.f). We notice that the polarization dependence of the optical spectra pre-
dicted in the simulation is retrieved in the experiment. The differences observed in the
experimental spectrum stem from the presence of metallic hinges at the edges of each
faces of the cube which broaden and shifts the peaks. The two inset pictures in Figure
1.9.g) show the charge distribution of the modes indicated by square and circle black
dots which correspond to the first and second order dipole modes, respectively. We
finally remark that the SRR constitutes the traditional building block of metamaterials
as they exhibit a strong magnetic response. The periodic repetition along the three
directions of SRR elements, namely arrays of the previous cubic microstructures, forms
a metamaterial which should generate a negative refraction effect. Therefore, we can
envision to create such structure to achieve negative refraction at optical frequencies.

The third application relies on the fabrication of micro-/nano-motors, namely micro-
/nano-machines capable of moving into complex, generally liquid, media. In particu-
lar, micro-/nano-motors with a tubular geometry are referred to as micro-/nano-jets
or rockets as they draw inspiration, in terms of shape and propulsion mechanism, from
macroscale prototypes. Solovev et al. have thus achieved the creation of micro-jets [50]
based on the self-rolling of a pre-strained Ti/Fe/Au/Pt multi-layered stack as depicted
in Figure 1.9.h). In practice, the multi-layered membrane rolls up over a distance of
about 100 µm into a 2 µm radius microtube as represented on the SEM pictures of
Figure 1.9.h). The catalytic decomposition of the Pt layer into a surrounding hydrogen
peroxide (H2O2) solution drives the motion of the microtube. Indeed, the chemical
reaction generates bubbles which are ejected at one end of the microtube. The ejec-
tion generates a thrust force which propels the microtube in the opposite direction as
showed on the time-lapse pictures in Figure 1.9.i). The Fe layer also enables to con-
trol the direction of the motion by applying a magnetic field. The pictures of Figure
1.9.j) demonstrate that the direction of the motion follows the orientation of the mag-
netic field so that turning and rotating movements of the microtube can be achieved.
Consequently, such tubular micro-objects can cumulate various functionalities such as
cargo collection, transport and delivery, which hold much promise for biomedical drug
delivery applications. Finally, the functionalization of the outer layer can also serve to
capture and isolate targeted molecules.
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1.1.2 Optical microcavities with tunable properties

Among the variety of 3D rolled-up architectures, tubular microstructures have drawn a
particular interest over the last decades for the realization of low-threshold microlasers
and opto-fluidic detection devices.

Indeed, the tubular shape, owing to inherent openness and geometry, acts as a
microfluidic channel as it can both host fluidic substances in the hollow part, poten-
tially carrying micro- or nano-sized sensing targets, and transport them towards other
devices. Cylindrical geometries with high surface-to-volume ratio also maximizes the
area of interaction between the analytes and the sensor surface, so as to achieve high
sensitivity and reduce the amount of fluid to inject.

Moreover, the rolled-up nanotechnology enables the simultaneous fabrication of
multiple tubular microstructures with controlled geometry (orientation, dimensions,
shape) resulting in high-yield and low cost fabrication process compatible with mass
production. The tunability of the geometric parameters (diameter, wall thickness)
for the realization of micro- and nano-sized tubes allows to miniaturize the sensors
and hence to increase their density in devices. Finally, the material flexibility of the
rolled-up microfabrication enables the functionnalization of the microtube surfaces for
label-free detection and its integration on lab-on-chip devices.

Figure 1.10: Schematics of whispering gallery modes (WGM) in tubular cavity. a) A tubular cavity
with a radius ρc in the cylindrical coordinate system; b) Cross-section view of the cavity: WGM forms
by total internal reflection of light rays (blue arrows) at the interface between the membrane wall and
the outside of the cavity. c) Spatial distribution of the WGM electromagnetic energy.

From the optical point of view, tubular microstructures have turned to be high-
performance cylindrical optical microcavities with tunable properties [51]. As in planar
optical ring resonators, the light can be confined in the membrane wall of a microtube
of radius ρc as schematized on Figure 1.10.a) by total internal reflection occurring at
the interface between high and low refractive index media. It forms whispering gallery
modes (WGMs) circulating around the microtubes as illustrated on Figure 1.10.b)
which satisfy the following condition for constructive interference after round trip:

neffL = λmm, (1.22)

where neff stands for the effective refractive index of the mode, L = 2πρ corresponds to
the perimeter of the microtube of radius ρ, λm refers to the vacuum wavelength of the
m-th mode and m denotes the azimuthal order. The azimuthal order m indicate the
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number of spatial variations of the electromagnetic fields of the mode in the azimuthal
direction with respect to the cylindrical coordinate reference. Moreover, though most
of the energy of WGM is confined in the membrane wall, the remaining part, also
called the evanescent tail, leaks out on both sides of the membrane as sketched on Fig-
ure 1.10.c). Therefore, the effective index neff takes into account the optical refractive
indices of both the cavity membrane wall and the surrounding medium. According
to Equation (1.22), we understand that a change in either neff or ρ (L = 2πρ) im-
plies a spectral shift of the modes, which constitutes the detection principle of optical
microtubular sensors.

In practice, Kipp et al. have first demonstrated [52], at cryogenic temperatures
and at near-infrared wavelengths, the presence of WGM in photoluminescence spec-
tra of self-standing rolled-up InGaAs/GaAs microtubes embedded with active InAs
quantum dots (QDs). The WGM appear as sharp peaks standing out of the broad
QDs luminescence background and strictly polarized along the axis of the microtubes.
Furthermore, the spectral positions and spacing of the modes concur with theoretical
predictions expressed in Equation (1.22). They also reported an energy shift within 15-
19 meV of the modes for a change of 50 nm of the microtube radius (about 4%), which
bodes well for high sensitivity detection purposes. However, estimations of the quality
factors Q of the modes (Q ' 3000) stay well below theoretical computations owing
to optical losses at the discontinuities of radii of the spiral-like microtubes. Finally, it
is noteworthy that the proper detection of the WGM requires the suspension of the
microtubes achieved for instance by a U-shaped planar design of the membrane. In-
deed, this operation prevents from optical leakage into the substrate which reduces the
lifetime of photons in the cavity and leads to weak and broad peaks hardly detectable.
Moreover, the breaking of the rotational symmetry due to the spiral shape of rolled-up
microtubes lifts the degeneracy of the two modes travelling around the microtubes in
clockwise and counterclockwise directions [53].

Songmuang et al. have also detected WGM in rolled-up SiOx/Si microtubes at
room temperature and in the visible range [54]. They observed inversely proportional
dependence between the spectral spacing of WGM and the diameter of microtubes
consistently with Equation (1.22) and finite difference simulations. For smaller di-
ameters, hence thinner membrane wall, the evanescent part of WGM widens and the
quality factor Q of the mode diminishes leading to a broad bandwidth of the mode.
Bolaños Quiñones et al. have reproduced in [55] a similar study with different di-
ameters of microtubes based on rolled-up SiO2-SiO bilayer membrane resulting from
various thickness of the bilayer as plotted in Figure 1.11.a). The photoluminescence
spectra of the microtubes labelled (I) to (IV) presented in Figure 1.11.b) confirm that
the spacing and the bandwidth of the WGMs increase for smaller diameter of the mi-
crotube. We also notice that below a critical diameter located between (I) and (II)
specimens, the WGMs peaks exhibit very weak intensities and very large bandwidths
so that they become indistinguishable. The same paper demonstrates that the shift-
ing of the WGMs energy can also be achieved by post-fabrication deposition of Al2O3

material layer which modifies the outer radius of the microtubes.

In addition to azimuthal confinement of light, the specific design of one rolling edge
allows to achieve confinement along the axis of rolled-up microtubes. Therefore, Strelow
and al. have proved in [56] and [57] the axial confinement of WGMs in semiconducting
rolled-up microtubes owing to the parabolic-shaped lobe designed at one rolling edge
as skectched on Figure 1.11.c). At fixed azimuthal order m, the WGMs decomposes
in harmonics with increasing energies and localized in the lobe. The evolution of the
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Figure 1.11: From [55]: a) Evolution of the diameter of microtubes based on rolled-up SiO2-SiO
bilayer membrane as a function of the bilayer thickness. Inset picture in upper left corner: macroscopic
view of the sample containing arrays of tubes deposited on glass substrate. Inset picture in lower right
corner: SEM picture of the fabricated microtubes. b) Micro-photoluminescence spectra of microtubes
with diameters labelled (I) to (IV) in the previous plot. c) Schematized rolled-up microtube with
a parabolic lobe at one rolling edge. d) PL spectra of rolled-up multi-layered InAlGaAs-InGaAs-
AlGaAs-GaAs microtube with triangular (upper plot) and rectangular (lower plot) shape of the lobe.
Adapted from [56].

energies and the spatial distribution of the axial modes agree very well with theoretical
predictions based on adiabatic approximation and numerical computations. Finally,
it is shown the distribution in energies of the axial modes can be tuned by the shape
of the lobe as represented on PL spectra of triangular and rectangular lobe in Figure
1.11.d).

A fine tuning of the structural parameters of microtubes allows then to achieve
efficient azimuthal and axial confinement of WGMs by minimizing potential sources
of optical losses. This enables the generation of high quality factor WGMs, estimated
to 5000 in rolled-up microstructures made of low-loss SiO2 material layer [58]. It has
also concretized with the realization of coherent emission in semiconducting microtubes
composed of QDs [59] or quantum wells (QWs) [60] layers as the gain medium optically
or electrically [61] pumped. Most interestingly, these so-formed microlasers exhibit very
low thresholds evaluated to few µW in [62] and [63].

Optical tubular microcavities as microfluidic channels endowed with resonant op-
tical properties described previously have turned out to be ideal candidates for the
production of opto-fluidic detection devices. Bernardi and al. have first developped an
on-chip refractometer based on a rolled-up Si-SiOx microtube as skecthed on Figure
1.12.a). An analyte solution is introduced at one end of the microtube and the optical
response of the microtube is collected via PL measurements with a laser excitation
source. The optical sensing mechanism relies on the variation of the effective refractive
index neff of WGM due to the introduction of an analyte solution in the hollow part of
the tube. This index variation explains by the interaction between the WGM and the
surrounding solution in the evanescent tail which triggers a shift of the energy of the
mode according to Equation (1.22). The graph in Figure 1.12.b) presents three differ-
ent PL spectra recorded at different positions on the microtube where the hollow core
is filled with air (blue curve), air and solution (dark curve), and solution (red curve).
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Figure 1.12: a) Schematized principle of an optofluidic refractometer based on Si-SiOx bilayer rolled
up into microtubular shape after etching of underlying Ge layer. The optical response of the microtube
is collected via photoluminescence (PL) measurements by laser excitation on the top of the microtube.
The analyte solution is introduced at one end of the microtube. b) PL spectra of the microtube filled
respectively with air (upper blue curve), with air and the analyte solution (middle dark curve) and
with the solution (lower red curve). c) Spectral shifts of the WGM with order m = 14 (blue curve),
15 (green curve) and 16 (red curve) as a function of the refractive index nInner of the hollow core of
the tube. Extracted from [64].

We observe a redshift of the WGM peaks when the analyte solution replaces the air as
surrounding medium of the tubular microcavity. In the intermediate situation where
the tube is filled with air and the solution, we retrieve peaks of both air and solution
spectra. The evolution of the spectral shift δλ (nm) of three WGMs with m =14, 15
and 16 as a function of the inner index nInner are plotted as green, red and blue curves,
respectively, on Figure 1.12.c). The sensitivity of the device, δλ/δnInner, estimates then
to about 62 nm/RIU, where nInner expresses in refractive index units (RIU).

Figure 1.13: a) Schematized rolling of SiO-SiO2 bilayer into a microtube and post-fabrication depo-
sition of HfO2 layer by atomic layer deposition (ALD). b) Temporal evolution of the energy position
of one WGM generated in the previous microtube during the desorption of water molecules on the
surface. Extracted from [65].

The axial confinement of the light and the enlargement of the evanescent zone,
achieved by a proper shape of the microtube rolling edge and thinner membrane wall,
increases the sensitivity up to 80 nm/RIU [66]. Furthermore, the fabrication of size-
tunable rolled-up microtubes sensors compatible with Si-based technology enables on-
chip integration along with the specific capture and detection of micro- or nano-sized
targets carried in biological medium [67]. The reduction of the microchannel cross-
section also limits advantageously the required volume of analyte solution down to
picoliters. Finally, the functionalization of rolled-up microtubes surfaces leads to spe-
cific and label-free detection. In particular, Ma and al. have accomplished in [65] the
coating of rolled-up SiO-SiO2 microtubes with HfO2 material grown by atomic layer
deposition (ALD) as schematized in Figure 1.13.a). This operation increases both the
effective refractive index which enhances light confinement in the membrane wall, and
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favours adsorption of water molecules owing to higher polarity of HfO2 material. They
have then performed real-time monitoring of water molecules desorption on the micro-
tube surface with photoluminscence measurements of one WGM energy as plotted in
Figure 1.13.b). This study provides quantitive information on the dynamic molecular
process such as the thickness of the water layer adsorbed onto the microtube surface.

1.2 Concept of tubular photon cages

In the previous section, we have introduced the rolled-up nanotechnology as a promising
route to produce versatile 3D micro-objects from the self-rolling of planar nanomem-
branes. In particular, the production of a targeted 3D geometry entails two essential
steps preceding the rolling: a specific engineering of the strain in the membrane and the
design of the planar template. Following the fabrication scheme inherited from Prinz
pioneer works, these two stages are carried out respectively via traditional bottom-
up (epitaxial growth) and top-down (lithography and etching) approaches. This leads
generally to the production of 3D rolled-up non-structured membranes with controlled
dimensions and 3D shapes. The same top-down processes can also be employed to
imprint patterns on the initial planar membrane so as to provide the final rolled-up
3D micro-object with additional (new) functionalities. In particular, photonic crystal
membranes (PCM), formed by 1D or 2D periodic repetition of subwavelength patterns,
accomplish various optical behaviours such as the guiding, the confinement or the rout-
ing of light, suitable for a wide range of applications, including waveguides, lasers, or
even mirrors. The rolled-up nanotechnology applied to the rolling of PCM provides
therefore a new strategy for the creation of 3D photonic micro-objects with original 3D
architectures and customized optical functions. This strategy was already approached
theoretically in [68] for the production of tubular rolled-up PCM exhibiting a complete
photonic bandgap, yet without experimental validation.

In this section, we introduce the concept of photon cages based on the deformation
of highly reflective 1D or 2D PCM so as to form 3D photonic micro-resonators capable
of confining the light in air and along multiple directions. In particular, we propose
the practical realization of tubular-shaped photon cages resulting from the rolling of
2D PCM mirrors.

1.2.1 Confining light in low-index media

Traditional routes to manipulate light often occur in high refractive index media. In-
deed, in optical fibres, total internal reflection (TIR) ensures the guiding of light ex-
clusively in high index cores encircled by a lower-index cladding. As another example,
photonic crystals slabs as 1D or 2D periodic corrugations in a high index material layer,
have turned to be choice components for the realization of various optical functional-
ities such as the trapping [69, 70] or the guiding of light in the membrane. However,
in several applications, there has been a high demand to realize the confinement of
light in low-index media so as to enhance the light-matter interactions. In particular,
a keystone of sensing applications consists in optimizing the overlap between the mode
field and the sensing targets. The latter correspond to either micro- or nano-sized
targets often carried in low refractive index fluid or to the fluid itself. This optimized
interaction serves for instance to the achievement of highest possible sensitivities with
minimum required volume of analyte solution.
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In particular, for opto-fluidic sensors based on rolled-up tubular optical microcavi-
ties described in Section 1.1.2, the sensing mechanism relies on the interaction between
WGMs formed inside the membrane wall and the sensing targets hosted in the hollow
core of the microtube. Precisely, the overlap between the electromagnetic energy and
the analyte solution restricts to the evanescent tail of the WGMs generated at the
surface of the microtubes. The optimization of the light-matter interactions supposes
therefore the production of high aspect ratio microtubes to compensate the narrow
penetration of the mode energy in the air-filled core.

Among existing strategies to tackle the confinement of light in air, two specific guid-
ance schemes have drawn much attention since the end of the 20th century involving
the photonic band gap effect and the anti-resonant effect.

The development of hollow core waveguides based on the photonic band gap effect
(PBG) originates in the combination of optical fibres and photonic crystal designs. The
traditional optical fibre, guiding light within doped silica (SiO2) core surrounded by
a SiO2 cladding, has for long time maintained its reputation as unrivalled candidate
for low-loss optical transmission, especially at telecom wavelengths. Since its first im-
plementation, improvements in the fabrication technique have increased significantly
the purity of silica material, bringing down the attenuation to its current lowest limit.
However, remaining optical losses stem from the Rayleigh scattering which occurs in-
evitably owing to thermal fluctuations in the course of the fabrication process. It
is also noteworthy that Rayleigh scattering scales in 1/λ4 which impedes the use of
conventional optical fibres at lower wavelengths, knowing that losses due to molecules
vibrations predominate at higher wavelengths. To cope with this deadlock, researchers
have approached the question differently, by proposing to rejuvenate the design of the
optical fibre rather than delving into incremental improvements of the traditional ar-
chitecture. Reversing the original trend, the confinement of light in low-index medium,
in air particularly, has thus become a tantalizing method to circumvent optical losses
inherent to material properties.

The first practical implementation of the guidance of light in air based on the PBG
effect came along with the advent of photonic crystals popularized by the seminal
paper of Yablonovitch [71], a milestone in photonics. Indeed, Yeh and Yariv have first
layed down theoretical foundations in [72] for the realization of a 1D photonic crystal
reflector, or Bragg reflector. Precisely, they showed that a multi-layered stack composed
of alternating layers of high and low index material with prescribed thicknesses can
constitute an efficient mirror along the direction normal to the stack. The explanation
of such optical behaviour relates to the existence of a photonic band gap which prohibits
the propagation of light along the stack. Consequently, incident light in air, with
frequencies within the gap, gets reflected after striking on the Bragg stack. Facing
two Bragg mirrors, we obtain a hollow-core waveguide as proposed and demonstrated
experimentally in [73]. Most interestingly, rolling the Bragg mirror stack leads to the
creation of a hollow-core fibre as suggested in [74] where light propagates in the air-filled
core unlike conventional fibres. Fink et al. have thus reported in [75] the first realization
of a Bragg fibre obtained by rolling a Bragg mirror composed of 9 alternations of
polystyrene (n ' 1.6) and tellurium (n ' 4.8) micrometre-thick layers and operating
in the infrared regime, near 10 µm. Unfortunately close in appellations, the Bragg
fiber should not to be confused with Bragg fiber gratings which incorporate the Bragg
mirror in the core of the fiber. Fink’s team also demonstrated omnidirectionality of the
Bragg mirror wall owing to the extension of the photonic band gap in the reciprocal
space of conserved wavevectors. The performances of Bragg fibers as omnidirectional

29



CHAPTER 1. ORIGAMI-BASED PHOTONIC CRYSTALS

dielectric reflector were then confirmed in [76] with a stratified structure of alternating
polyethylene sulfide (PES) and chalcogenide As2Se3 glass layers as depicted on the
SEM picture of Figure 1.14.a). The close-up SEM view zooms on the multi-layered
stack encircled by the PES cladding layer. The high optical index contrast obtained
with the two materials, ∆n ' 1.25, results in a large photonic bandgap centered at
around 3 µm. The article also proves the tunability of the position of the bandgap
by the control of the thicknesses of the material layers, achieving a shift of the high
reflection properties up to 10 µm.

The guidance of light in air via the photonic band gap effect was then extended to the
fabrication of hollow-core fibres with transverse micro-structures defined according to a
prescribed 2D lattice pattern. Cregan et al. have thus produced in [77] first specimens
of so-called photonic crystal fibers (PCFs), also referred as holey fibres, based on a
triangular lattice of air holes. In practice, the fibre was created by jointing long silica
rods together following the triangular lattice pattern as shown on the SEM picture of
Figure 1.14.b). The 2D photonic crystal presents a full broad photonic band gap in the
dispersion diagram, hence enables omni-directional reflection on the crystal, provided
a high air-filling factor of the lattice. Therefore, by omitting seven rods in the centre
of the fibre, a defect mode is created which frequency lies within the band gap so that
the light can propagate in the air-filled core.

Bragg fibers and PCF represent therefore promising members of the next gener-
ation of fibers. Indeed, their ability to guide light in air and their design flexibility
make them suitable for a wide variety of applications entailing strong light-matter in-
teractions. However, there is still room for improvement to reach low levels of optical
losses recorded with conventional optical fibres, and determined mostly by the quality
of the photonic mirror. For both Bragg fibers and PCF, the performances of the mir-
ror enhance with increasing size of the 2D lattice, namely the number of layers and
silica rods, at the expense of the final device compactness. Moreover, the fabrication of
high-performance PCF remains quite challenging as broad photonic bang gap requires
high air-filling factor lattice, hence ultra-thin silica rods. Finally, the surface roughness
of the silica rods contributes to a significant leakage of the air-core mode due to light
scattering phenomenom.

Concurrently, hollow core waveguides based on anti-resonance effects have also
drawn much attention for their ability to guide light in air-filled cores. We note
that the generic term of anti-resonant microstructures actually encompasses multi-
ple hollow-core micro-sized designs. Such structures usually exploit a combination of
anti-resonances and inhibited coupling between the hollow core and the cladding modes
to realize the propagation of light in air.

A first class of anti-resonant waveguides, anti-resonant reflecting optical waveguides
(ARROWs), has been developed in the early works of Duguay and his team [78]. The
article explains the strategy to confine light in a SiO2 core surrounded by air on one
side and layers of Si and SiO2 on the other side. At the air-SiO2 interface, light stays
confined in the core through traditional TIR phenomenom. However, at the SiO2-
Si-SiO2 interfaces, the guidance mechanism in the core relies on anti-resonances of
the cladding Si and SiO2 thin films which both act as Fabry-Pérot etalons in series.
More precisely, in between two transmission resonances of one etalon, reflected light
waves from the upper and lower boundary interfere constructively. It results in a
high reflection signal, namely a low-loss propagation of light in the silica core. Unlike
PCF, the high reflection zones span large spectral windows which makes ARROWs
suitable for a large range of applications. The same approach was then applied to
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the creation of hollow-core ARROWs with the aim of propagating light in air. The
SEM picture of Figure 1.14.c) presents a typical architecture of a hollow-core ARROW
fabricated and characterized in [79]. Thin layers of SiO2 and silicon nitride (SiN)
deposited on a Si substrate with predefined thicknesses serve as Fabry-Pérot resonators
and encircle a 12 × 3.5 µm2 rectangular air-filled cross-section to achieve transverse
and lateral confinement. We note that the thick cap layer of silica material maintains
the mechanical stability of the final waveguide. When coupled with 785 nm laser
excitation, the hollow-core waveguide exhibits a single mode propagation with optical
losses estimated to 6.5 dB/cm. The optimization of the design and fabrication processes
of ARROWs have been investigated during the last decades [80, 81] in order to lower
down the level of losses.

Figure 1.14: Hollow-core microdevices exploiting photonic band gap (upper blue-shaded panel) or
anti-resonant (lower green-shaded panel) effects for the confinement of light in air. SEM pictures of
a) a hollow-core Bragg fiber [76]. Close-up view on the alternating layers of chalcogenide As2Se3 glass
(n ' 2.8), in bright white, and polyether sulphone (PES) polymer (n ' 1.55), in light gray, forming
the Bragg mirror and surrounding the air core. The cladding is also made of PES material. b) a
hollow-core photonic crystal fiber (HC-PCF) [77]: triangular lattice of silica (SiO2) rods where the air
core is formed by omitting seven rods. c) an anti-resonant reflecting optical waveguide (ARROW) [79]:
alternating SiO2 and silicon nitride (SiN) deposited on Si substrate and surrounding a rectangular air
core. A silica cap lies over the multi-layered structure to ensure mechanical stability. d) a silica fiber
with kagomé lattice cladding [82]. e) a revolver-like fibre: eight inner non-touching silica capillaries
attached to a silica jacket. f) light cage formed by six polymer strands arranged around an hexagonal
air core [83];

Anti-resonant hollow-core waveguides with cylindrical geometries and microstruc-
tured cladding were also explored as an alternative to PCF to achieve low-loss trans-
mission of light in air. In particular, Kagomé fibers consist of Kagomé lattice silica
cladding attached to a thick silica tubular jacket with an air core left in the centre
as shown on the SEM image of Figure 1.14.d) extracted from [82]. They exhibit high
transmission bands where the light strongly localizes in the hollow core but little in
the cladding elements. Wrongly attributed to photonic band gap effects, the guidance
mechanism of light in the hollow core actually results from weak interaction between
core and cladding modes, in the way of bound states in the continuum (BICs). This
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is attested by the low, but nonzero, density of optical states (DOS) simulated numeri-
cally for the Kagomé fiber. We note that a reduction of the cladding element thickness
blueshifts the operational domain of the fiber. The performances of Kagomé fibers were
then further improved by removing competitive resonances emerging in the cladding
struts by the design of hypocycloid-shaped hollow cores [84].

Exploiting similar guidance mechanisms, hollow-core revolver-like fibers [85] have
also become serious contenders to efficient confinement of light in air. The SEM pic-
ture in Figure 1.14.e) depicts a hollow-core revolver-like fiber produced in [86] and
composed of eight silica glass capillaries arranged circularly on a silica tubular shelf.
The overlap between the core and cladding modes is strongly reduced by avoiding con-
tact between capillaries and by the negative curvature of the hollow core. Advanced
versions of hollow-core revolver-like fibers, also known as nested anti-resonant nodeless
fibres (NANFs) [87], include a second series of nested capillaries with smaller diameters.
The additional air-glass interfaces reinforce the reflection phenomenon and allow then
to minimize leakage of the core modes. Such hollow-core have proved to outperform
traditional optical fibres by achieving low losses between 600 and 1100 nm [88] in which
Rayleigh scattering normally predominates.

We finally mention the very recent development of light cages in [83] as assembly
of high aspect-ratio polymer strands around an hexagonal shaped hollow core as il-
lustrated on the SEM picture of Figure 1.14.f). Guidance of light in the core again
involves anti-resonant effect between core modes and cladding super-modes generated
by the coupling between each single strand modes. As compared to previous hollow-
core waveguide designs, light cages presents at least three distinctive assets. First, they
show diffractionless propagation in the core which covers large and tunable [89] spectral
window from the UV to the near-infrared. Second, the openness of the microstructures
allow any fluids for direct access to the core, hence to the modal fields. Third, a very
high fraction of the core mode energy (above 99.9 %) is contained in the hollow sec-
tion. For the three reasons above, light cages provide a very attractive platform for
the realization of diverse applications such as ultrafast spectroscopy [90], opto-fluidic
sensing, non-linear optics, directly integrated onto on-chip devices.

1.2.2 Tubular photon cages

At INL, another approach for the confinement of light in air has been developed via
the realization of photon cages. Photon cages designate 3D photonic micro-resonators
resulting from the bending of 1D or 2D planar photonic crystal membrane (PCM)
mirrors which aim to confine light in air or low-index media. Among conceivable
3D architectures, we have focused our attention on tubular photon cages obtained
consequently by the rolling of PCM mirrors into a cylindrical shape. We have indeed
stressed in Section 1.1.2 the advantages of using a tubular geometry which can both
act as a micro-channel and optical sensor, highly desirable features for opto-fluidic
detection purposes.

We present schematically in Figure 1.15 the production scheme of tubular photon
cages which divides into two key steps. In the first stage represented in the left blue
panel, 1D (upper drawing) or 2D (lower drawing) planar PCM are properly designed to
exhibit high reflective properties symbolized by the yellow-shaded light beam bouncing
on the mirror-like microstructures. The second step described in the right red panel
involves the folding of the 1D (upper drawing) or 2D (lower drawing) PCM mirror into
a cylindrical geometry so as to form 3D hollow photonic microresonators. Indeed, the
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Figure 1.15: Schematized production of hollow tubular photon cages. Left panel: planar photonic
mirrors consisting of photonic crystal membranes (PCM) with 1D (upper drawing) or 2D (lower
drawing) periodicity. Right panel: hollow cylindrical photonic micro-resonators, also called tubular
photon cages, obtained after rolling the planar 1D (upper drawing) or 2D (lower drawing) PCM mirrors
up.

reflecting PCM wall allows to trap the light in the hollow core of the tubular cavity as
depicted by the yellow-shaded light halo emerging in the cross-section of the so-formed
cylinders.

We highlight the originality of the concept of tubular-shaped photon cages which
differ from hollow cylindrical waveguides (PCF and anti-resonant structures) intro-
duced earlier according to the following points:

• Unlike photonic crystal fibers (PCF), the optical response of photon cages results
from the optical features of 1D or 2D photonic crystal membranes (PCMs) as
monolayer diffracting microstructures. This improves de facto the compactness
of the final micro-objects.

• Unlike PCF, reflecting properties of the PCM do not rely on the existence of
photonic band gaps but rather on the coupling between photonic crystal modes
and radiative modes as it will be explained later.

• Contrary to PCF and anti-resonant waveguides, photon cages take advantage
of strongly resonant modes in air able to sustain temporally and spatially in
long micro-structures. High concentration of light in air is highly desirable for
optimized overlap between mode fields and surrounding medium, a keystone in
sensing applications.

In the following parts, we delve into the practical conception of tubular photon
cages which entails two main steps already mentioned: the production of 1D or 2D
PCM mirrors and the rolling of the photonic mirrors into a cylindrical shape. We
start by explaining the physical principles at the basis of the high reflection behaviour
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observed in 1D or 2D PCM which find various applications in the creation of compact
photonic micro-devices. We also provide main guidelines for the design of PCMs with
the aim of producing high-performance and broadband photonic mirrors operating at
optical frequencies.

1.2.3 Photonic crystal membrane mirrors

Figure 1.16: Typical designs of photonic crystals periodic in one (a), two (b) and tree (c) directions.
The colours indicate the different dielectric constants of the constitutive materials. The 1D and 3D
photonic crystals correspond to a Bragg mirror and a woodpile design, respectively.

Before apprehending the case of photonic crystal membranes (PCM) and in antici-
pation to further developments of the thesis, we find appropriate to recall some general
methodological points in the study of photonic crystals. First of all, we call photonic
crystals (PCs) the analogues of solid-state crystals where 1D, 2D or 3D periodic mod-
ulations at the wavelength scale of the dielectric constant of a medium replace original
atoms and molecules arranged in a lattice system. Concretely, the three drawings of
Figure 1.16 illustrate three generic PC designs where the periodicity is achieved in one,
two and three directions. The different colours indicate the different dielectric constants
of the constitutive materials. We define therefore a PC by specifying its periodicity, its
lattice type whenever applicable, and the optical properties of the dielectric medium.

We use Maxwell’s equations to describe the propagation of light in any medium.
These equations relate temporal and spatial evolutions of electric ~E(~r, t) and magnetic
~H(~r, t) fields in the medium. In particular, in the absence of free charges and currents,
and assuming a linear, homogeneous, transparent and isotropic behaviour for all the
constitutive materials of the medium defined by the dielectric constant ε(~r) with ~r the
spatial position, Maxwell’s equations formulate as:

~∇ · ~H(~r, t) = 0, ~∇× ~H(~r, t) = ε0ε(~r)
∂ ~E(~r, t)

∂t
,

~∇ ·
[
ε(~r) ~E(~r, t)

]
= 0, ~∇× ~E(~r, t) = −µ0

∂ ~H(~r, t)

∂t
,

(1.23)

where ε0 and µ0 designate the vacuum permittivity and permeability, respectively. As-
suming time harmonic fields, namely ~H(~r, t) = ~H(~r)ejωt with ω the angular frequency,
we can decouple the curl equations in the system 1.23 to obtain the following master
equation for ~H(~r):

~∇×
(

1

ε(~r)
~∇× ~H(~r)

)
=
(ω
c

)2
~H(~r), (1.24)
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with c = 1/
√
ε0µ0, the speed of light. We note that we can establish a similar equation

for the electric field. Identifying the left term to an operator Θ̂ acting on ~H(~r), the
previous equation assimilates to an eigenvalue problem. The resolution of Equation
(1.24) consists then in finding all the eigenvalues (ω/c)2 ≥ 0 and associate eigenvectors
~H(~r), also called modes of the system. Moreover, we notice that the Hermitian nature
of the Θ operator ensures the positivity of the eigenvalues.

In the specific case of periodic structures such as PCs, we search for modes in the
form of Bloch waves defined as:

~H~k(~r) = ~h~k(~r)e
j~k·~r, (1.25)

where the function h~k(~r) shares the same periodicity as the PC lattice. In other words

the function h~k verifies h~k(~r + ~R) = h~k(~r) for any lattice vector ~R. The term ~k with

‖~k‖ = 2π/λ stands for the wave vector defined in the reciprocal lattice and λ, the
wavelength. The resolution of Equation (1.24) in a periodic system finally yields a set

of n eigenvalues ωn(~k), called photonic bands of the system, which dependence in ~k is
referred to as the dispersion relation, the dispersion diagram or even the band structure.
We also remark that ~H~k(~r+ ~R) = ~H~k(~r) implies the relation ~k · ~R = 2nπ (n ∈ Z) which

defines the lattice vectors in the reciprocal space also called ~k-space. Most importantly,
the modes of the system ~H~k(~r) can be completely characterized by their behaviour in
the primitive cell of the reciprocal lattice, also known as the Brillouin zone.

Figure 1.17: Photonic crystal membrane (PCM) designs. 1D periodicity: a) air holes in dielectric
membrane, b) dielectric pillars, c) fishbone-like grating; 2D periodicity: d) square lattic of dielectric
pillars, e) triangular lattice of air holes in a dielectric membrane. Adapted from [91].

For sufficiently high optical index contrast in PC, strong coupling between modes
occur and leads to the formation of photonic band gaps (PBGs) visible in the disper-
sion diagram. Similarly to their electronic counterparts, a PBG delimits a range of
frequencies and directions (~k) for which the propagation of light inside the PC is for-
bidden. In other words, the existence of a PBG traduces into a null density of optical

35



CHAPTER 1. ORIGAMI-BASED PHOTONIC CRYSTALS

states (DOS). A complete PBG refers to the extreme case for which the propagation
of light is forbidden along all possible directions. The utilization of PBGs of PC mi-
crostructures have thus raised much interest toward the harnessing of photons along
unique or multiple directions of space. However, though the quest for 3D confinement
of light reveals great potential, its implementation with 3D PC showing complete PBG
still faces fabrication challenges.

Alternatively, lots of efforts were gathered on the more convenient production of 1D
or 2D PC with a finite thickness, also known as photonic crystal membranes (PCM).
Possible designs of 1D PCM are presented in Figure 1.17 and consist of a unidimen-
sional periodic assembly of air holes in a dielectric membrane (a), of dielectric rods
(b), or of dielectric slits embedded in a fishbone-like architecture (c). Similarly, we
construct a 2D PCM by either arranging dielectric pillars (d) or drilling air holes in
a dielectric membrane (e) according according to a predefined 2D lattice system. The
accessibility of PCM designs as compared to 3D PC is explained by the compatibility
of their fabrication with standard planar technologies extensively used in the semicon-
ductor industry. Consequently, single-layer PCMs represent ideal building blocks for
the creation of versatile integrated photonic devices with a high degree of compactness.

In the field of integrated optics, planar photonic devices usually operate in the
waveguide regime which forbids any interaction between guided modes and radiated or
free-space modes. In a waveguiding slab, the in-plane confinement of light is achieved
via the index-guiding effect. In other words, the guidance of the modes results from
the vertical optical index distribution in the slab in the way of total internal reflection
(TIR) phenomenon. However, this vertical confinement is perfect (partial) for the
modes which lie under (above) the light line in the dispersion diagram of the photonic
membrane. We illustrate these notions in the case of a PCM as depicted on Figure
1.18 consisting of a 1D periodic assembly, of period a, of blue-shaded high-optical-index
rectangular rods embedded in air. For simplicity, we drew a cross-section view of the
PCM supposing that the rods extend infinitely in the remaining in-plane direction. The
central plot schematizes the dispersion diagram of the PCM for the first two bands as
a function of the in-plane component k‖ = |~k‖| of the wavevector along the periodicity.
Owing to the optical index contrast, a photonic band gap appears at the edge of the
Brillouin zone for k‖ = π/a. The black dashed line corresponds to the light line defined
by the equation ω = ck‖ which delimits two principal optical regimes of the photonic
membrane:

• the waveguide regime (white-shaded zone) for the modes located below the light
line also called guided modes as they travel in the PCM without interacting with
radiated modes. Consequently, the mode identified by a red dot and labelled
as number (2) in the diagram pertains to the class of guided modes which only
propagate laterally in the PCM as sketched with red arrows on the right panel.

• the free-space regime (gray-shaded zone) for the modes lying above the light
line also referred to as surface-addressable modes or leaky modes. In this case,
PCM modes can couple resonantly with radiated modes provided that they share
identical in-plane components k‖ and wavelengths. The resulting modes, such as
the green dot mode labelled (2), exhibit a hybrid nature as one part propagates
in the PCM (red arrows) while the other radiates in the out-of-plane direction
(green arrows) as represented on the left panel.

Toward the realization of integrated photonic circuits, one generally seeks to design
photonic building blocks, such as PCMs, which operate in the waveguide regime. In-
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Figure 1.18: Schematized dispersion diagram of a 1D photonic crystal membrane (PCM) consisting
of an a-periodic assembly of high-index infinitely long rectangular rods. Two kinds of modes exists
according to their position with respect to the light line (black dashed line) of equation ω = ck‖. The
term k‖ designates the in-plane component of the wavevector, evolving along the π/a-long part of the
1D Brillouin zone. Surface-addressable modes located above the light line, like mode 1 (green dot),
propagate in the PCM with the time constant τg but they can also couple with radiated modes with
the time constant τc. Conversely, the modes below the light line, like mode 2 (red dot), are guided in
the photonic slab as represented on the right panel.

deed, the coupling between guided modes and the radiation continuum hinders proper
in-plane guidance as it generates substantial out-of-plane optical losses. However, ap-
proaching the issue from a different perspective, we can take advantage of this resonant
out-coupling to achieve the control of light in the third (vertical) dimension of planar
photonic devices. Moreover, the optimization of the interplay between guided and ra-
diated modes enables tailored optical responses in transmission and reflection of the
planar devices. It leads then to the realization of a new class of planar photonic objects
addressable in the vertical direction, so-called 2.5D photonic microstructures.

In practice, guided-mode resonances in patterned photonic slab manifest themselves
by sharp resonant features in the reflection and transmission spectra. Wang et al. have
thus proposed a theoretical model [92] to predict the optical properties of 1D PCM
with infinite lateral size illuminated at normal and oblique incidence. The model high-
lights abrupt transitions in the reflection and transmission responses attributed to the
diffractive coupling of the PCM guided modes. The article also provides design rules
for the production of optical devices with various optical functionalities including op-
tical filters, polarized lasers or even optical switches. In the same way, Astratov et al.
have investigated in [93] the reflection behaviour of 2D PCM consisting of waveguides
patterned with deep air holes. They also reported sharp features in the reflectivity
spectrum measured for different guided modes lying above the light line, hence able
to couple with free-space modes. Moreover, they showed a great consistency between
the positions of the leaky modes in the experimental and numerical band diagrams.
It is noteworthy that the strength of the resonance increases as the position of the
mode in the band structure gets closer to the high symmetry point Γ where the PCM
is shined at normal incidence. We finally mention the works of Pottage et al. who ap-
proached theoretically in [94] the vertical-cavity surface-emitting resonances produced
in AlGaAs-made 2D PCM. The resonances are characterized by high quality factors
and thus suitable for the realization of compact vertical emission lasers.

The previous studies have managed to predict the optical properties of PCMs with
infinite lateral size. In reality, we need to take into account the finite section of laser
beam sources which illuminate the real PCM structures. Using a phenomenological
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model, Letartre et al. have therefore examined in [95] the impact of the finite lateral size
of a 1D PCM on the quality of the surface-addressable modes, also called guided-mode
resonances. In the next developments, we consider a 1D PCM illuminated by a laser
beam with a finite section S. Following the above-mentioned model, the bandwidth δω
of the resonant features expresses, in first approximation, as:

δω ' 1

τc
+

1

τg
, (1.26)

where τc evaluates the average lifetime of the photons within the illuminated area
before reemission into free-space while τg measures the temporal stay of photons in the
illuminated area before escaping laterally across the PCM. The left panel of Figure
1.18 schematizes the hybdrid nature of the guided mode with associate coupling rates.
Introducing the average group velocity Vg of the resonant guided mode, the escape
lateral time approximates to:

τg '
√
S

Vg
. (1.27)

Contrary to waveguide applications, we emphasize that lateral optical losses hamper
efficient out-of-plane coupling. Indeed, they impede guided modes from interacting with
free-space modes and degrade the resonance consequently. We understand then that
the optimization of resonant out-coupling requires the longest stay of the guided modes
within the illuminated area before escaping laterally, namely τg � τc. Using Equation
(1.27), we obtain that the previous condition rewrites as Vg �

√
S/τc which implies a

strong slowdown of guided photons in the PCM. Such situation typically occurs around
extrema of dispersion diagrams, such as in Γ where the incident radiation impinges on
the PCM at normal incidence. Indeed, around Γ, the dispersion flattens so that the
group velocity of guided modes Vg = dω/dk tends to zero. Consequently, the guided
modes in question, also called slow Bloch modes, become stationnary.

The flattening of the dispersion band near a zero group-velocity point P (kp, ωp) is
characterized by the parabolic approximation:

ω ' ωp +
1

2
αδk2, (1.28)

where δk evaluates the distance in the k-space to the extremum and α = d2ω/dk2

corresponds to the second derivative, namely the curvature, of one dispersion band. The
expression of the group velocity changes to Vg ' αδk. We deduce that the reduction of
lateral losses reduces to the minimization of the curvature α around the extremum of the
PCM dispersion. In particular, 1D or 2D PCM characterized by high refractive index
contrast exhibit very low curvatures around extrema of their dispersion diagrams, hence
achieve efficient lateral confinement of light. We note that these extrema correspond
generally to high symmetry points of the PC reciprocal lattice. As mentioned above,
the coupling between guided and radiated modes in Γ results in a resonant emission in
the out-of-plane (vertical) direction of the PCM. Equivalently, any external radiation
hitting the PCM at normal incidence (Γ) and matching with a guided mode wavelength
gets reflected efficiently back into free space1. Provided low lateral losses, the spectral
characteristics of the resonance, namely its bandwidth δω ∼ 1/τc and position, are

1Bound states in the continuum (BICs) constitute notable exceptions: though lying above the light
line, the symmetry properties of those guided modes impede them from coupling to free-space modes.
The reflectivity spectrum of the PCM helps to clarify the nature of guided modes above the light line
showing either peaks for guided-mode resonance or dips for BICs.
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mainly determined by the structural parameters of the PCM: the lattice period, the
filling factor and the thickness of the membrane. The possibility to tailor the emission
of photons in the third dimension of planar PCM has thus spurred the realization of
multiple, versatile and tunable photonic devices.

Guided-mode resonances in PCM have for instance been employed to produce
surface-addressable photonic devices. Mouette et al. have thus reported in [96] the
fabrication of a high quality factor Q vertical-emission micro-laser based on graphene
lattice InP-based PCM embedded with active quantum well layers. The structural pa-
rameters of the PCM are first adjusted to achieve the flattest bands possible around Γ
at about 1.5 µm, the central emission wavelength of the active layers. This operation
reduces lateral losses in the PCM as explained beforehand and enhances spontaneous
emission of the optically pumped active medium in the vertical direction direction of
the PCM. The so-formed micro-laser operates near 1.5 µm at room temperature and
exhibits very low power thresholds, down to 40 µW , for a given design of the photonic
crystal.

The tunability of the properties of PCM guided resonances also shows high interest
for the realization of diverse optical functionalities. The works of Ding et al. have thus
revealed in [97] the high potential of 1D dielectric gratings in the conception of a wide
collection of passive optical devices including narrow linewidth bandpass filters, wide-
band reflectors, or even polarizers. Most interestingly, the authors have conducted a
systematic study to elucidate the influence of the grating profile (symmetries, geometric
parameters, index modulations) on the spectral features of the guided-mode resonances
(density, linewidth, spectral locations and polarization dependence). Letartre et al.
have also proposed in [95] design schemes of a new class of switching devices based
on the combination of PCM and micro-opto-electro-mechanical systems (MOEMS), so
called PC-MOEMS. The PC-MOEMS structures comprise suspended high-index mem-
branes assembled vertically, some of which are laterally patterned to form 1D or 2D
PCM. The PCM layers act as highly-efficient reflectors with predetermined spectral
characteristics. Switching optical response of the overall device is therefore carried out
by the vertical displacement of some of the constitutive layers via electric actuation.

Finally, PCMs have also proved to be ideal candidates for the conception of com-
pact, broadband, non-absorbing and highly-efficient micro-sized mirrors. Mateus et al.
have thus reported the development of ultra-broadband mirrors [98] based on single-
layer 1D high-index gratings. In particular, they have adjusted in [99] the grating
structural parameters to achieve a very high reflectivity (R > 98.5 %) spanning a 500
nm-wide infrared range from 1.12 µm to 1.62 µm. It is noteworthy that the high and
broadband reflective behaviour was obtained with incident light polarized exclusively
along the dielectric slits of the grating. In a similar way, Lousse et al. have demon-
strated in [100] high-reflective response of 2D PCM based on a square lattice of air
holes etched in a high-index dielectric membrane. They have also showed that the
mirror-like behaviour was maintained for a wide range of angles of incidence and for
both TE (electric field along the membrane plane) and TM (out-of-plane electric field)
polarizations unlike polarization-selective 1D PCM mirror. In addition, polarization
sensitivity of 2D PCM reflectors can be achieved by breaking the 90◦-rotational sym-
metry of the lattice, namely by modifying the air holes’ shape. The works of Boutami
et al. in [101] also reported a high and broadband reflective response with a control-
lable polarization dependence of a 2D square lattice of air holes in an InP membrane
illuminated at normal incidence. Moreover, they proved that the large bandwidth of
the high-reflectivity zone actually originates from the merging of two slow Bloch modes
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distinguishable when slightly detuning the PCM geometrical parameters.

Figure 1.19: a) Schematics of an ultra-compact vertical Fabry-Pérot cavity composed of two sus-
pended PCM made of 1D periodic repetition of high-index slits. b) Reflectivity spectra of the cavity
for TE and TM polarized light simulated for the cavity design. c) Overall (left picture) and close-up
(right picture) SEM views of a vertical cavity obtained after one fabrication cycle. Reflectivity spectra
of the fabricated cavity for TE (d) and TM (e) polarized incident light.

High-performance mirrors are needed for instance to produce high-quality factor
resonant microcavities. Such cavities serve as building blocks of microlasers charac-
terized by low power thresholds and low linewidths. In the class of vertical cavity
surface emitting lasers (VCSELs), two distributed Bragg reflectors (DBRs) are tradi-
tionally used to form a Fabry-Pérot resonant cavity which encloses the gain medium.
DBRs are multilayers stacks composed of pairs of high and low refractive index mate-
rial layers. For a fixed number of pairs, the index constrast dictates the DBR reflection
performances. Indeed, a high (low) contrast results in a high (low) and broadband
(narrow) reflectivity. However, the epitaxial growth of the layers limits the choice of
materials and imposes low index modulations. Consequently, an important number of
pairs of layers and high fabrication tolerances are required to attain sufficiently high
reflectivity of the DBRs, yet at the cost of the size of the overall device [102]. By
contrast, exceptional reflective properties of PCM arise in the out-of-plane direction of
single-layer dielectric membranes laterally patterned providing more design flexibility
and high compactness above all.

PCM mirrors have thus naturally and progressively succeeded conventional bulky
DBRs for the fabrication of ultra-compact and low-consumption VCSELs. At INL,
Boutami et al. have first brought theoretical and experimental proof in [103] of the
potential of a tunable hybrid Fabry-Pérot filter combining a top 1D PCM mirror with a
bottom 3 layer-thick Bragg reflector. The size of the cavity, adjustable via electrical ac-
tuation of some layers, fixes the spectral range of the filter. The device belongs therefore
to the generic family of PC-MOEMS introduced previously. Most importantly, it was
shown that the single-layer PCM mirror exhibits competitive high reflective behaviour
in comparison to the Bragg stack. Furthermore, estimations of the quality factor of
the filter were in the same order of magnitude than those assessed with traditional two
Bragg reflectors. Nevertheless, the authors stress that the performances of the hybrid
filter remains largely underestimated due to structural technical deficiencies of the de-
vice including the bending of the PCM layer. The same team has then extended the use
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of the hybrid cavity in [104] to create a compact, directive and polarization-selective
VCSEL operating at around 1.5 µm at room temperature.

A ultimate version of PCM-based vertical Fabry-Pérot cavity was also implemented
by our team in [105] where two 1D PCM mirrors replace the two traditional Bragg re-
flectors as sketched on Figure 1.19.a). This structure typically belongs to the historical
expertise of the nanophotonic team at INL. Its design achieves the highest degree of
compactness as compared to conventional DBRs-based vertical cavity and hybrid cav-
ity. A proper adjustment of the PCM geometrical parameters leads to the reflection
spectra showed in Figure 1.19.b) for both TE (straight black line) and TM (dashed
red line) polarized light at normal incidence. A high and broadband reflectivity zone
is observed exclusively for TE polarization. It covers a large spectral range around 1.5
µm which stems from the merging of two slow Bloch modes TE1 and TE2 identified on
the plot. On the contrary, the reflectivity for TM polarization reaches high levels on a
narrow spectral interval. The two SEM pictures in Figure 1.19.c) present two perspec-
tive views of a cavity sample characterized by the two suspended 1D PCM mirrors.
The optical response of the cavity is then measured for TE and TM polarized light at
normal incidence which results in the two spectra represented in Figure 1.19.d) and e),
respectively. We distinguish two resonant modes for TE polarization which correspond
to the first two modes of the Fabry-Pérot cavity formed due to the finite lateral size
of the PCM. The fundamental mode detected at the largest wavelength (∼ 1.377 µm)
gives the narrowest peak and quality factor Q estimated to 3,000 for a simulated value
of 30,000. The difference between numerical and experimental estimations of Q is
attributed to different filling factors of the top and bottom PCM mirrors which also
account for the slight spectral shift of the resonant peaks. Conversely, the reflectivity
spectrum for TM polarized light displays a very broad resonance shifted toward 1.32
µm for a high reflectivity peak of the PCM mirrors recorded at around 1.4 µm.

1.2.4 Tubular photon cages based on 1D photonic crystal membranes

The first implementation of the concept of tubular photon cages was proposed by our
team in [106] via the deformation of a 1D PCM mirror. We recap hereinafter the main
results of the study which considers a 1D PCM consisting of a Λ-periodic assembly
of silicon (Si) pillars of diameter d as depicted on the left drawing of Figure 1.20.a).
The tubular photon cage is obtained by virtually rolling the 1D PCM reflector. In
practice, the pillars are arranged circularly to form a cylindrical cavity with a radius
ρc as schematized on the right drawing of 1.20.a). We note that the perimeter of the
cylindrical cage corresponds exactly to an integer number of the lattice period Λ so
as to produce a seamless hollow tube. In principle, assuming the robustness of the
reflection properties of the PCM against bending, the light gets confined in the hollow
part of the tubular cavity by reflection onto the PCM mirror wall. The conception of
the 1D PCM-based tubular cages divides then into two steps: the design of the planar
PCM mirror followed by the simulation of the optical resonant properties of the final
cylindrical cavity.

First of all, the structural parameters of the 1D PCM were adjusted to achieve a
broadband high reflective behaviour around the operational wavelength of 1.5 µm at
normal incidence. Therefore, with the following setting Λ = 1 µm and d = 270 nm,
the PCM reflectivity, noted R and plotted as a blue curve on Figure 1.20.b), maintains
above a 99.8 % limit over the spectral interval [1.35 - 1.55] µm. The high reflective
properties are observed only for TE polarization, for which the electric field orients
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Figure 1.20: Implementation of the photon cages concept with 1D PCM mirrors. a) Λ-periodic
assembly of silicon (Si) rods with a diameter d arranged circularly to form a tubular cavity with ρc
radius. b) Spectral evolution of the 1D PCM reflectivity for TE polarized light and of the quality
factor Q of some of the resonant modes supported by the final cylindrical cavity. c) Map of the electric
field intensity in the cross-section of a 18 pillars cavity (dashed blue contour) at the resonant mode
labelled 1 in the previous spectrum and identified as the cylindrical cavity mode TE(m = 0, n = 3).
d) Map of the electric field intensity along the axis of a 10 µm-long cavity of mode TE(0,3) with null
axial order. e) Evolution of the Q factors of the mode TE(0,3) as a function of the height of the cavity.
Plots b) to e) extracted from [106].

along the bars2. Simulations of the optical properties of a cylindrical cavity with
18 infinitely long pillars have then demonstrated the existence of resonant modes in
the hollow core. The quality factors Q of some of those modes are reported in the
graph of Figure 1.20.b) with black crosses. The recorded high Q values not only
attest of the strong confinement of light inside the tubular cage but also confirm the
robustness of the 1D PCM mirror against bending. Moreover, the spectral evolution
of the Q factors globally follows the reflectivity curve of the planar PCM mirror at
normal incidence. The analysis of the modes profiles shows that the resonant modes
correspond to cylindrical cavity modes, noted TE(m,n), described by two integers m
and n which define respectively the number of azimuthal and radial antinodes of the
fields. The mode labelled ”1” in graph b) thus identifies to mode TE(0, 3) as the map
of the electric field intensity over the cavity cross-section in Figure 1.20.c) presents
three radial antinodes but no azimuthal antinode. More generally, the family of modes
TE(0, n) shows a high concentration of the electromagnetic energy in the centre of the
cavity desirable in sensing, non-linear, or optical trapping applications.

Finally, a strong confinement of the light is also observed along the axis of cylindrical
cavities with finite heights as attested in Figure 1.20.d) by the electric intensity map of
the mode TE(0, 3) along a 10 µm-long cavity. Indeed, the tubular photonic cavity acts
in the vertical direction as a Fabry-Pérot resonator due to the impedance mismatch
between the inside and the outside regions. However, optical losses in the vertical
direction remain predominant and only long cavities, namely long pillars, can afford to
preserve the high Q factors of the modes as indicated on the graph of Figure 1.20.e).

Although theoretically promising, the practical realization of 1D PCM-based photon
cages able to confine light in air and along the three directions faces significant tech-

2We note that the TE polarization ( ~E = Ez~ez) in the present study corresponds to the TM
polarization in the cylindrical cavity model introduced in Chapter 2
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nological challenges. Indeed, the fabrication technique based on top-down approaches
imposes a limit length of the pillars (∼ 10 µm) and generates strong sidewal roughness
which deteriorates significantly the optical mode properties. As a consequence, the
concept of tubular photon cages based on deformed 1D PCM mirrors has not yet found
an experimental validation.

1.2.5 Tubular photon cages based on 2D photonic crystal membranes

In this work, we propose to realize photon cages based on 2D PCM to overcome most
of the trickiest technical and theoretical bottlenecks encountered in the 1D PCM ver-
sion. First, unlike 1D PCM reflectors, high reflective properties of 2D PCM can be
maintained for both TE and TM polarizations which preserves the confinement ability
of the final 3D microstructures. Second, the rolled-up nanotechnology offers an ideal
platform for the production of rolled-up 2D PCM. Indeed, the technical process inte-
grates the patterning of the membrane into a 2D PCM and the rolling of the membrane
with high control and precision on the structural parameters and on the final 3D shape.

Hence, in the first part of this thesis work, we propose to bring the proof of concept
of tubular photon cages based on rolled-up 2D PCM mirrors.To address this issue, the
following steps has been performed and will be presented in the next chapters:

• the design and optical simulation of the 2D PCM mirror;

• the design and optical simulation of the rolled-up PCM cavity;

• the fabrication of the rolled-up PCM cavity following the rolled-up nanotechnol-
ogy processes;

• the optical characterization and the demonstration of the 3D confinement of light
inside the tubular cavity;

1.3 Photonic crystal analogues of solid-states structures

In the previous section, we have shown a typical combination of a photonic crystal
design showing high reflection properties with a rolled-up tubular geometry for the
production of 3D hollow optical micro-resonators. However, other photonic crystal
designs can be chosen to endow the final 3D photonic micro-objects with customized
optical functionalities. In particular, the honeycomb pattern has a special status as it
is the only lattice to be encountered in natural structures such as graphene. Graphene
has drawn attention due its outstanding properties in terms of electronic transport and
mechanical flexibility, among others. In a similar way, derivative of graphene, such as
graphene ribbons and carbon nanotubes (rolled-up graphene) have also showed much
interest due to their peculiar electronic and topological properties. In this thesis, we
intend to explore the analogies between the electronic and topological properties of
graphene and its derivates, and the optical and topological properties of their photonic
crystal analogues as summarized in In Figure 1.21.

In this section, we will first briefly review the interesting properties of the electronic
dispersion relations of graphene and carbon nanotubes. To apprehend the topological
properties of these structures, we will then introduce some notions of topology including
the definitions of important quantities such as the Berry phase and the Chern number
in the case of the quantum Hall effect in a 2D gas of electrons. This will allow us then
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to specify the concepts of edge states and bulk-edge correspondence. We will finally
show how we can take advantage of these effects in photonics and more specifically in
the framework of this thesis.

Figure 1.21: Summary of the structures and models used to describe the properties of solid-state
graphene, graphene ribbons and carbon nanotubes on the left panel and the their analogues in the class
of photonic crystals, honeycomb lattice photonic crystal membrane (HC-PCM), ribbons of HC-PCM
and rolled-up HC-PCM on the right panel.

1.3.1 Electronic dispersions of graphene and carbon nanotubes

Graphene

Graphene is the name given for a single planar layer of carbon atoms arranged according
to a honeycomb lattice as depicted in Figure 1.22.a). It constitutes the building mate-
rial of other allotropes of carbon, including fullerenes, carbon nanotubes and graphite
evolving along 0, 1 and 3 dimensions of space represented in 1.22.a). Long considered
a pure theoretical material, graphene has come into the spotlight of condensed matter
physics when first produced and characterized in 2004 by Geim and Novoselov [107].
The latter seminal works, awarded by the 2010 Nobel Prize, have notably reported the
exceptional mobility (up to 105 cm2.(V.s)−1) of charge carriers at room temperature,
revealing the potential of graphene in micro-electronics.

By contrast to its rather recent experimental evidence, the description of graphene
electronic structure dates back to 1947 by Wallace [108] as intermediary result to ap-
proach graphite band structure. Indeed, at that time, graphene only served as academic
material as it was not presumed to exist owing to thermodynamical unstability pre-
dicted for 2D materials [109]. Graphene peculiar electronic properties originate from
the interaction between electrons moving around carbon atoms and the periodic poten-
tial created across the honeycomb crystallographic system. We summarize below the
main features of graphene electronic band structure obtained through the tight-binding
approach. A detailed description of the tight-binding model and its application to de-
rive graphene electronic structure will be the subject of the first developpements of
Chapter 5. The honeycomb lattice schematized in 1.22.b) consists of two sublattices A
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and B translated by linear combination of lattice vectors (~a1, ~a2). From another point
of view, the honeycomb system corresponds to a triangular lattices of lattice vectors
(~a1, ~a2) applied to the basis of sublattices A and B. The associate reciprocal lattice

forms a triangular lattice of lattice basis (~b1, ~b2) with a primitive unit cell (green-shaded
zone) referred to as the First Brillouin zone (FBZ) delimited by high-symmetry vertices
Γ, K, K’ and M.

Figure 1.22: a) Allotropes of carbons with zero (fullerene), one (carbon nanotubes), two (graphene)
and three (graphite) dimensions. Annotated version of [107] b) Honeycomb lattice crystallographic
system in real and reciprocal space. c) Graphene energy band structure plotted in the first Brillouin
zone delimited by high-symmetry points K and K’. Close-up view: conical dispersion around the K
point.

The tight-binding approach applied to electrons hopping to nearest neighbours leads
to the low energy band dispersion plotted in Figure 1.22.c) in the FBZ. We note that
this model provides an correct reproduction of graphene band structure only over a
restricted range of momentum ~k close to the Dirac points introduced below [110]. A
more accurate description would include hopping of electrons to second and third near-
est neighbours. The originality of graphene electronic structure relies on two features
revealed by the modelled bands. First, conduction and valence bands, noted CB and
VB, touch at the Fermi level at high-symmetry points K and K’ of the FBZ. Therefore,
graphene can be considered both as a zero-overlap semi-metal (zero density of states
in K and K’) and a zero-gap semiconductor (band crossing). Second, the energy dis-
persion evolves linearly around K and K’ as depicted on the close-up conical section
around K point in Figure 1.22.c). Indeed, a first order development of the dispersion

relation around K (equivalently K’) at ~k = ~ΓK + δ~k, |δ~k| � | ~ΓK|, expresses as:

E±(δ~k) = ±~vF|δ~k|, (1.29)

where E± designates upper and lower energy bands and vF refers to the Fermi ve-
locity evaluating to about 106 m.s−1 for graphene. We recognize a typical form of
Dirac’s equation describing massless relativist particles. Electrons in the honeycomb
lattice mimic relativist particles with zero-rest mass and an effective speed of light
vF ∼ c/300 and c the speed of light in vacuum. The so-formed quasiparticles are then
called massless Dirac fermions while K, K’ points and the conical dispersion are referred
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to as the Dirac points and Dirac cone, respectively. The original dispersion relation
reported confers therefore graphene with exceptional electronic transport properties,
holding much interest for the production of high performance microelectronic devices.
We also mention that graphene provides a choice material platform to investigate quan-
tum electrodynamics (QED) phenomena driven by the Dirac’s relativist behaviour of
the charge carriers, including fractional quantum Hall effect (QHE) [111] and Klein
tunneling effect [112, 113].

Carbon nanotubes

Figure 1.23: a) Schematics: representation of the chiral vector ~Ch = 5~a1 + 3~a2 in the graphene
honeycomb lattice. Picture: illustration of the carbon nanotube (CNT) obtained after rolling a

graphene sheet along ~Ch. b) Energy dispersion diagrams of CNTs with chiralities (5, 5) and (10, 0)
calculated along the 1D Brillouin zones X-Γ-X with the zone-folding approach.

Carbon nanotubes (CNTs) consist of graphene sheets rolled up into hollow cylin-
ders with nanometric diameter and micrometric length. The first realization of CNTs
was reported by Iijima in 1991 [114] using arc-discharge evaporation method. The
grown CNTs comprised coaxial rolled-up graphene tubes in number from 2 to 50, so
called multi-walled carbon nanotubes (MWCNTs) by contrast with single-walled car-
bon nantotubes (SWCNTs). The direction of rolling of the graphene sheet, known as

the chirality, is determined by the chiral vector ~Ch = m~a1 + n~a2 defined by its coordi-
nates (m,n), called the chiral indices, in graphene sheet basis (~a1,~a2). In the following,

we adopt the notation ~Ch(m,n) for the chiral vector or the chirality of the CNTs equiv-

alently. We illustrate in Figure 1.23.a) the rolling of a graphene sheet along ~Ch(5, 3)
drawn on the honeycomb lattice, into the tube depicted on the right picture. Specific
configurations (m,m) and (m, 0) correspond to armchair and zig-zag nanotubes, re-
spectively, exhibiting mirror symmetry with respect to any plane containing the tube’s
axis. The chirality is an essential parameter in the description of CNTs as it not only
fixes the tubes’ geometry, including their diameter dt = |~Ch|/π, but also dictates most
of their physical properties, including their electronic and topological nature.

Electronic properties of CNTs can be derived, in first approximation, from graphene
electronic structure using the zone-folding approach detailed in Chapter 5 following the
classical development in [115]. We highlight below the main steps and features of the
model, considering tubes with infinite length and large curvature. Supposing the rolling
of a graphene sheet into a seamless tube, periodic boundary conditions apply along the
circumferential direction. It implies the quantization of the orthoradial component of
the momentum, noted k⊥, to verify the phase matching condition after one circulation
of the electronic waves around the tube. Conversely, due to the translation symmetry
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along the tubes’ axis, the axial component of the momentum, noted k‖, takes continuous

values. In the ~k-space, the periodic boundary conditions manifest by k⊥-lines located
at the quantized values of k⊥ oriented along k‖ directions, coinciding with the tube
axis. Moreover, the number of lines and their spacing depend on the tube chirality.

In the zone-folding approach, we construct a CNT’s band structure by superim-
posing sections of graphene band structure along the k⊥-lines, so called cutting lines,
over graphene Brillouin zone. In particular, for a given chirality, the CNT will behave
as a metal if one of the sections contains a Dirac point. Therefore, the tube’s band
structure will present a band crossing at the Fermi level (E = EF ). Indeed, we observe

such a crossing on armchair ~Ch(5, 5) tubes’ energy dispersion plotted in Figure 1.23.b)
along the Γ-X Brillouin zone parallel to the tube’s axis. We also draw the attention on
the tunability of the band crossing position along the ~k-path depending on the tube’s
chirality. Therefore, we find a band intersection for armchair ~Ch(5, 5) tubes in between
Γ and X symmetry points as infered from the reading of Figure 1.23.b), whereas the

crossing lies in Γ for metallic zig-zag ~Ch(3, 0) tubes, for instance. On the contrary,
a band gap opens at the Fermi level when no cutting lines intersect with any Dirac
point, confering semi-conducting properties to the CNT as revealed, for instance, on
the band structure of zig-zag tubes ~Ch(10, 0) in Figure 1.23.c). Another important re-
sult concerning semi-conducting CNTs demonstrates the dependence of the band gap
width upon the inverse of their diameter dt.

In comparison to ab initio calculations, zone folding provides reliable estimations
of energy dispersion of CNTs with large diameters, typically above 1.5 nm [116]. For
diameters between 0.5 and 1 nm, the method still manages to predict correctly the
electronic behaviour (metallic or semi-conducting) of the tubes though it overestimates
energy levels. However, below 1 nm-diameter, the zone-folding model fails completely
to reproduce CNTs’ energy diagrams, handing over to ab initio results. Indeed, for
these diameters, curvature effects can be no more neglected as they affect the lattice
structural properties in modifying angles and distances between atoms and allowing
hybridization between in-plane (σ) and out-of-plane (π) electronic orbitals. Neverthe-
less, the zone-folding remains a powerful tool showing tremendous efficiency by giving
quick calculations of band structures of large nanotubes, irrespective to the number of
carbon atoms.

Apart from the interesting dispersion properties, graphene [117], graphene ribbons
and carbon nanotubes have also raised a significant interest owing to their topological
potential. In particular, considering SWNTs as 1D topological systems, Okuyama et
al. have established in [118] a topological classification of the tubes as a function of
their chirality. It comes out from this study that almost every SWNTs exhibit topolical
properties characterized by the emergence of edge states at the two ends of the tubes,
except for armchair specimens and the chirality ~Ch(n,m) verifying n = m+ 1.

To get a better insight on the potential of these topological properties, we will
introduce in the following part some of the general notions, quantities, and models
involved when dealing with topology in physics. In particular, these concepts will
be useful to apprehend the topological properties of graphene ribbons and carbon
nanotubes developed in Chapter V.
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1.3.2 Topology in physics: introduction to concepts and models

Topology formalism

Originally, topology is a branch of mathematics which studies the invariance of objects’
geometrical properties under continuous deformation. A classical example illustrated
in Figure 1.24 shows that a sphere and a spoon, though characterized by distinct
geometries, belong to the same topological class. Indeed, there exists a continuous
deformation implying bending, stretching or compression, for instance, which allows
transforming one structure into the other. Similarly, a torus and cofee cup, or a double
torus and tea pot share identical topologies. On the contrary, turning a sphere into a
torus requires discontinuous deformation including cutting, tearing or attachment so
that the two objects present distinct topologies.

Mathematically, we characterize different topologies with integers called topological
invariants which are preserved under arbitrary continuous deformations of the sys-
tems. In the previous example, the topological invariant is the genus number g which
defines the number of holes within closed surfaces. Objects sharing the same topologi-
cal invariant are said topologically equivalent. Moreover, we call topological transition,
the transition between objects of distinct topological invariants. We emphasize that
topological invariants, including the genus number, define global and not local proper-
ties (local curvature) of the systems though both are connected via the Gauss-Bonnet
theorem:

1

2π

ˆ
S

KdS = 2(1− g), (1.30)

where the genus number g directly relates to integral of the Gauss curvature K (local
property) of closed surfaces S.

Figure 1.24: Six objects classified in three pairs of topologies characterized by distinct genus numbers
corresponding to the number of holes of the objects. Adapted from [119].

Quantum Hall effect: introduction to the Berry phase and Chern number

In solid-state physics, we traditionally determine the electronic behaviour of a solid ma-
terial, being either metallic, insulating or semiconducting, by the reading of its energy
band structure. However, beyond the energy dispersion, the geometrical properties of
the electronic states on the bands along the momentum space can also influence the
electronic properties of the material. More precisely, these geometrical properties, en-
coded in the Berry phase [120], are associated to a topological invariant characterizing
each of the band. We illustrate this concept below, in the framework of the quantum
Hall effect, and define the topological quantitites that are the Berry phase and the
Chern number. We may consult, for instance, Dalibard’s lecture notes available in
[121], for a detailed development on the Berry phase expression.

48



CHAPTER 1. ORIGAMI-BASED PHOTONIC CRYSTALS

Figure 1.25: Quantum Hall effect (QHE). Evolution of the Hall resistance in a 2D gas of electrons
at very low temperature as a function of the norm of the out-of-plane magnetic field. For high values
of the magnetic field, the Hall resistance increases in a steplike way with plateaus at integral values
of the fine-structure constant e2/h. Adapted from [122].

The first historical connection between topology and physical phenomena dates back
to the discovery of the quantum Hall effect (QHE), in 1981. Studying the evolution of
the Hall conductance in a two-dimensional electron gas at very low temperatures sub-
ject to intense out-of-plane magnetic field, von Klitzing reported [123, 124] a staircase
of plateaus schematized in Figure 1.25 for the Hall resistance (inverse of Hall conduc-
tance). Moreover, he was able to measure, with unanticipated precision (∼ 10−10),
the successive values of the Hall conductance as integer multiples of the fine-structure
constant e2/h:

σxy = n
e2

h
, n ∈ N∗, (1.31)

irrespective to the defects of the samples. Apart from the tremendous consequences
in metrology, the highly robust integral quantization of the conductance hinted at a
topological origin of the phenomenon first intuited by Laughlin [125] and confirmed by
Thouless et al. in [126]. Precisely, they established the connection between the integral
values of the Hall conductance and a topological invariant called the Chern number.

We review below some of the critical steps leading to the landmark result which are
detailed, for instance, in the following review [127]. We introduce notably the concepts
of Berry connection, Berry curvature and Berry phase that will be useful in further
developments.

The concept of Berry phase deals with the adiabatic [128] evolution of a quantum
system described by a Hamiltonian Ĥλ depending on the the time-varying parameter
λ = (λ1, λ2, .., λd) of dimension d in the general case. The adiabatic condition refers to
the slow variation of λ(t) in time. Such a condition will be quantified later. We consider
that λ(t) describes a closed path C in parameter space from initial time t = ti to final
time t = tf , which traduces by λ(tf ) = λ(ti). Assuming non-degenerate quantum
states at any time t, the adiabatic theorem stipulates that the final and inital states of
the system noted |ψ(tf )〉 and |ψ(ti)〉, respectively, differ by a phase factor Φ:

|ψ(tf )〉 = eiΦ|ψ(ti)〉. (1.32)

In particular, this phase factor Φ contains two contributions:
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• a dynamic phase related to the time integral of the energy E(t) by 1/~ factor;

• a geometrical phase or Berry phase noted γ depending on the closed path C.

In particular, we note {|ψ(n)
λ 〉} a basis of eigenstates associate to the eigenvalues E

(n)
λ

of the Hamiltonian Ĥλ for the n-th band and verifying:

Ĥλ|ψ(n)
λ 〉 = E

(n)
λ |ψ

(n)
λ 〉. (1.33)

We suppose the system prepared in a given eigenstate of the n-th band at t = ti, namely
|ψ(ti)〉 = |ψ(n)

λ(ti)
〉. In the adiabatic approximation, condition expressed by ε� 1 with

ε =
|i〈|ψ(n)

λ |
(
d
dt
|ψ(m)
λ 〉

)
|
∣∣∣
max

|E(n)
λ − E

(m)
λ |
∣∣∣
min

, (1.34)

the state of the system at t stays in the n-th band to become:

|ψ(t)〉 ' eiΦ(t)|ψ(n)
λ(ti)
〉. (1.35)

In particular, the Berry phase acquired upon the variation of λ from ti to tf over the
closed path C on the n-th band is defined by3:

γ(n) =

˛
C

i〈ψ(n)
λ |∇λψ

(n)
λ 〉dλ. (1.36)

For the sake of compactness, we introduce the Berry connection A(n)
λ defined for each

eigenstate of the Hamiltonian Ĥλ as:

A(n)
λ = i〈ψ(n)

λ |∇λψ
(n)
λ 〉 , (1.37)

so that the Berry phase rewrites then in the following form:

γ(n) =

˛
C

A(n)
λ dλ. (1.38)

To circumvent the difficult direct evaluation of |∇λψ
(n)
λ 〉 in Equation (1.37), we trans-

form Equation (1.38) into a surface integral via Stokes’ theorem:

γ(n) =

¨
S

n ·Ω(n)
λ dS. (1.39)

with dS a small surface element in the parameter space, S a surface over the enclos-
ing contour C, n the normal to the surface S and Ω

(n)
λ the Berry curvature defined

according to:

Ω
(n)
λ = ∇λ ×A(n)

λ . (1.40)

Back to our description of the QHE, we assimilate the Bloch Hamiltonian Ĥk de-
scribing the system with the eigenstates un,k to the generic form Ĥλ where the control

3Note that the dynamical part of the phase factor expresses as Φdyn = − 1
~
´ tf
0
E

(n)
λ(tf )

dt
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parameter λ identifies with the momentum k varying over the first Brillouin zone. Con-
sidering the first Brillouin zone (FBZ) as a closed path, the geometrical phase acquired
by the system prepared initially in state un,k when k varies across the FBZ expresses
as:

γ(n) =

¨
SFBZ

n ·Ω(n)
k dk, (1.41)

where Ω
(n)
k encodes the geometrical properties of the n-th band. We finally notice that

Equation (1.41) bears strong analogies with the Gauss-Bonnet theorem formulated in
Equation (1.30). Indeed, we can relate the surface integral of the Berry curvature of
the n-th band over the Brillouin zone to a topological invariant, the Chern number Cn
defined by:

Cn =
1

2π

¨
SFBZ

n ·Ω(n)
k dk . (1.42)

In particular, we identify the Chern number with the integer number of the fine-
structure constant e2/h found in the Hall conductance in Equation (1.31).

The characterization of the system energy bands with an integer reveals therefore
the profound topological origin of the Hall conductance quantization. More generally,
we call Chern insulators 2D insulating systems which topological properties are defined
by a nonzero Chern number.

Edge states

Figure 1.26: Electrons trajectories in the bulk (red) and at the edges (blue) in the quantum Hall
effect.

Another topological manifestation of the QHE deals with the emergence of elec-
tronic states which propagate at the boundary of the systems and that we call edge
states. In particular, in the QHE, the edge states have a chiral nature signifying that
they propagate in a one-way direction along the boundary of the sample while being
immune to backscattering effect when encountering any defects in the sample. This
phenomenon leads to the precise and robust quantization of the Hall conductance.
More generally, we note that the existence of chiral edge states in systems show great
interest as they allow for dissipationless electronic transport in theory.

We can picture the emergence of edge states in the QHE by using a semi-classical
approach in which the electrons in a 2D semiconducting system subjected to a large
magnetic field follow circular cyclotron orbits as schematized in Figure 1.26, character-
ized by quantized energy levels (Landau levels). These electrons can not participate to
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the electronic conduction in the sample, forming an insulating bulk. However, close to
the sample edges, the electrons only complete one half of the orbital trajectory before
reaching a boundary of the system. These electrons are not constrained and travel along
the sample boundaries to form conducting channels called edge states. Therefore, the
system consists therefore in an insulating bulk characterized by a non-trivial (non-zero)
topological invariant and conducting edges, which defines a topological insulator.

Bulk-edge correspondence

The relation between the number of edge states and the topological invariant which
describes the geometry of the system energy bands constitutes the bulk-edge correspon-
dence [129]. In the QHE, it traduces by the coincidence between the number of edge
states contributing to the edge current and the sum of Chern numbers of each bulk
energy bands filled with electronic states.

More generally, the notion of bulk-edge correspondence encompasses the idea that
edge states always appear at the interface between two insulators of different topologies.
In other words, it tells that if two two gapped systems which gap are characterized by
distinct topological invariants are put in contact, the gap must close to pass from one
system to the other. This transition is called topological phase transition and leads
to the emergence of states which energy lies within the gaps of the two systems and
which is localized spatially in the interface region. In the quantum Hall system, the 2D
insulator defined by an non-zero topological invariant interfaces the vacuum of trivial
topology (zero topological invariant), guaranteeing the existence of edge states at the
boundary of the insulator.

Topology and symmetries of the system

The following part presents briefly the intimate relation between the topological prop-
erties of the system and its symmetries for the realization of topological phases of
matter.

The essential ingredient behind the non-trivial topology of the quantum Hall system
lies in the breaking of the time-reversal (TR) symmetry realized by the application
of a magnetic field. The TR symmetry breaking accounts notably for the chiral nature
of the edge states propagating in either clockwise or counterclockwise.

However, we note that strong magnetic fields are generally required to break the TR
symmetry in the systems. Alternatively, Haldane has showed in [130] that graphene
tight-binding model considering complex next-nearest-neighbour hopping also breaks
the TR symmetry and results in an gap-opening at the Dirac points characterized by
non-trivial topology. Moreover, the generalization of the Haldane model, also known as
the quantum anomalous Hall effect, has lead to the realization of topological insulators
(TI) characterized by a non-zero Chern number without any applied magnetic fields
[131].

For systems preserving the TR symmetry, we can show that Chern number cancels
out. However, a novel 2D topological state of matter involving systems which preserve
TR symmetry, known as quantum spin Hall systems, has then been proposed succes-
sively by Kane and Mele in [132] and Bernevig et al. in [133]. In particular, Kane
and Mele have investigated the effect of spin-orbit coupling in the Haldane model
on graphene while Bernevig et al. have studied the spin-orbit coupling generated in
strained semiconductor. Both models have reported a new state of matter consisting
of two copies of a Chern insulator for the spin up and the spin down characterized by
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opposite Chern numbers Cup and Cdown = −Cup, respectively. We obtain a zero total
Chern number and the TR symmetry is preserved due to the opposite magnetic fields
of the two spins. Provided that no spin-flip processes occur, the two spin components
behave as two independent Chern insulators sharing the same number of edge states
but with opposite direction, so called helical edge states. Such topological insulators are
better known as the quantum spin-Hall insulators and characterized by a Z2 topologi-
cal invariant taking either 0 (trivial) or 1 (non-trivial) values exclusively, first realized
experimentally in HgTe/(Hg,Cd)Te quantum wells [134].

More generally, in the case of non-interacting fermionic systems, we can deduce
from the knowledge of the preserved symmetries and the dimension, the associated
topological phase and the type of topological invariant (0, Z or Chern number, Z2),
following the classification established in the literature [135].

We have introduced so far the topological properties of 2D insulating systems.
However, topological phases of matter have also been reported in 1D systems. We
outline in the following the main results of a classical 1D topological model known as
the SSH model. Most interestingly, we will show in Chapter V that the SSH model can
also be employed to predict the topology of carbon nanotubes and graphene ribbon.

Topology of 1D systems: SSH model

Figure 1.27: a) Polyacethylene polymer consisting of carbon atoms linked each other with simple
and double bounds. b) Su-Shrieffer-Heeger 1D model of the polyacethylene molecule: chain of dimers
A-B repeated with a period a. The parameters t and t′ stands for the energy scale of the hopping of
electrons from one site to the adjactent one to reproduce the single and double bounds of the molecule.

The Su-Schrieffer-Heeger model orginates from the seminal theoretical study con-
ducted by Su, Schrieffer and Heeger in 1979 of electronic conduction in long polymer
chains such as the polyactelene (CHx) schematized in Figure 1.27.a. This conjugated
polymer present alternating simple and double bounds which links the carbon atoms
to each other.

In the SSH model, the molecule is modelled by a simple chain of dimers A-B.
Similarly to the tight-binding approach, electrons on sublattice A or B can hop toward
the neareast neighbour sublattice with the tunneling amplitudes t or t′ replacing the
double and simple bounds, respectively, as sketched in Figure 1.27.b.

We first summarize the topological properties of an infinite chain of dimers A-B with
a period a where n indexes the position of each dimer along the chain. Considering
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nearest-neighbour hopping, we can show that (see Appendix B) the Bloch Hamiltonian
of the system expresses as:

Hk =

(
0 t′ + te−ika

t′ + teika 0

)
(1.43)

, where k designates the momentum. Introducing the set of Pauli matrices ~σ =
(σx, σy, σz), the Bloch Hamiltonian adopts the compact and more generic form:

Hk = ~g(k) · ~σ (1.44)

where ~g(k) = (gx(k), gy(k), gz(k)) = (t′ + t cos(ka), t sin(ka), 0) from which we deduce
directly the two SSH energy bands corresponding to the eigenvalues of Hk:

E±(k) = ±|~g(k)| = ±|t′ + teika|. (1.45)

We present in Figure 1.28.a, b, c, d and e, the energy dispersion of the two SSH bands
along the 1D Brillouin zone of size 2π/a for different ratio of the hopping parameters
t = 0, t < t′, t = t′, t > t′ and t′ = 0. We observe that the two bands remain disjointed
for almost every case expect for t = t′ for which they intersect.

Figure 1.28: Energy dispersion E(k) of the two SSH model energy bands E+ and E− along the 1D
Brillouin zone when varying the hopping parameters t and t′.

However, the energy diagrams do not provide any information concerning the topol-
ogy of the bands which is encoded in the evolution of the eigenvectors over the Brillouin
zone. A possible choice for normalized eigenvectors of the Bloch Hamiltonian Hk asso-
ciated to the eigenvalues E± writes as:

|u(±)
k 〉 =

1√
2

(
±eiθ(k)

1

)
, (1.46)

where we have introduced the complex argument θ(k) = arctan(gy(k)/gx(k)) which is
well defined over the Brillouin zone expect for t = t′ (band crossing). We can calculate,
therefore, the Berry connection defined in Equation (1.37), for the SSH system:

A(±)
k = i〈u(±)

k |∇ku
(±)
k 〉 = −1

2

dθ(k)

dk
, (1.47)

and the Berry phase corresponding to the integral of the Berry connection over the
Brillouin zone according to Equation (1.40):

γ =

ˆ π/a

−π/a
A(±)
k dk = −1

2

ˆ π/a

−π/a

dθ(k)

dk
dk, (1.48)
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also known as the Zak phase that we note Z [136] which interprets geometrically as
the winding number w of ~g(k) in the complex plane around the origin when k runs
through the Brillouin zone:

w = − 1

π
Z =

1

2π

ˆ π/a

−π/a

dθ(k)

dk
dk =

1

2π

[
θ−π/a − θπ/a

]
. (1.49)

We present in Figure 1.29.a and b the trajectories of ~g(k) in the complex plane when
the momentum k varies from −π/a to π/a for the two configurations t < t′ and t > t′

leading to two gapped bands. In both configuration, the vector ~g(k) describes a circle
of radius t and centred on (t′, 0). However, we distinguish two positions of the circle
with respect to the origin, leading to two distinct topologies of the bands:

• For t < t′: the circle locates in the half plane where gx > 0 and for gy > 0 but
it does not enclose the origin. We obtain therefore a zero Zak phase and by
definition w = 0: the energy bands are topologically trivial.

• For t > t′: the circle encloses one time the origin. We obtain a Zak phase Z = −π,
hence a winding number w = 1: the energy bands are topologically non-trivial.

Figure 1.29: Graphical determination of the winding number in the SSH model. Trajectories of ~g(k)
in the complex plane when k varies along the Brillouin zone for a) t < t′ and b) t > t′.

We emphasize that the transition from one insulating phase to the other implies the
closing of the gap which constitutes the hallmark of a topological phase transition.

To reveal the non-trivial topology of the SSH insulators, we need to create an
interface between the SSH chain and topologically trivial systems. A straightforward
way consists in considering a finite chain with open boundary conditions constituted
of N dimers enclosed by topologically trivial vacuum.

In [137], Delplace et al. have contructed the eigenstates of the finite chain as linear

combination of bulk eigenvectors |u(±)
k 〉 and |u(±)

−k 〉 with opposite momentum, imposing
the cancelling of the total wavefunction at the A or B site near 0-th and N -th dimer,
similarly to standing waves. Through a graphical resolution method, they found 2N
and 2(N−1) bulk states for t′ > t and t′ < t (depending on the ratio t′/t), respectively.
As demonstrated above, the value of the Zak phase controls the topological properties
of the bands depending on the ratio t′/t, and consequently, the number of solutions in
the finite chain. In particular, the two missing states in the case of t′ < t corresponds
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to a zero-energy edge states localized at the end of the chain. They also emphasize
that these results stay valid in the limit of large N number of dimers.

We stress that the zero energy of the edge states is ensured by the chiral symmetry
of the SSH 1D chain composed of two sublattices. The breaking of this symmetry by,
for instance, the addition of a staggered potential on one sublattice, does not garantee
edge states with zero energy level and Zak phase taking multiple of π values.

As mentioned previously, the SSH model can be used to assess the topological
properties of graphene ribbons and carbon nanotubes which can be both be considered
as 1D version of graphene. In particular, Delplace et al. have established a method
derived from the SSH model to predict the existence of edge states in graphene ribbons
for large range of ribbons’ edges [137] and formulate the bulk-edge correspondence.
Similarly, Okuyama et al. [118] have established an analytical formulation of the Zak
phase of the carbon nanotubes which depends on their chirality, leading to a topological
classification of the nanotubes. We note that the results of both studies will be reviewed
in details in Chapter 5.

Topological photonics

The concepts of robust topological phases of matter highlight historically in solid-state
structures have raised a huge scientific interest and permeated into multiple domains
toward the conception of mechanical, acoustic or photonic topological insulators. We
present below some of the strategies and achievements developed in the photonic field
to emulate the physics of solid-state topological insulators. In particular, topologically-
protected photonic edge states show much potential for the realization of dissipationless
optical devices.

We start by presenting photonic analogues of integer quantum Hall systems which
breaks the time-reversal symmetry and which topology can be characterized by an
integer-valued Chern number. Such systems give rise to topolgically-protected chi-
ral edge states propagating in one exclusive direction. The first example developed
by Wang et al. in [138] consists of a magneto-optical photonic crystal operating in
the microwave regime. Precisely, the photonic crystal structure depicted in Figure
1.30.a is composed of a period array of ferrite rods of vanadium-doped calciumiron-
garnet (VCIG) (blue rods) interfacing a metal wall (yellow material). In particular,
when subjected to a high static magnetic field, the photonic crystal exhibits a strong
gyro-magnetic response which results in a gap opening in the energy band diagram
characterized by a non-trivial topology. Since the metal wall reflecting gap shows triv-
ial topology, a topologically-protected edge states emerges at the frontiers between the
metal wall and the photonic crystal, accordingly to the bulk-edge correspondence. The
energy of this edge state lies within the gap of the photonic crystal. The breaking of
the time-reversal symmetry by the application of a magnetic field implies that the edge
state is related to a Chern topological invariant. The topological robustness of the
edge state against backscattering is highlighted in the numerical simulation presented
in Figure 1.30.b where the edge state circumvent a large obstacle. Such striking ef-
fect present multiple advantages in contrast with traditional optical waveguides which
backscattering on defects causes significant transmission losses.

However, the transposition of such systems in the optical regime appears challenging
as photonic crystal structures ordinary exhibits weak magneto-optical response in that
spectral range. Alternative methods were then developed to circumvent this bottleneck
and achieve the breaking of time-reversal symmetry. In particular, the approach used
by Rechtsman et al. in [139] consists in using one dimension which plays the role
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temporal coordinate in the paraxial equation for the diffraction of light. Therefore,
breaking the reversal symmetry along this dimension generates topologically protected
chiral edge states in the transverse plane. In practice, the authors have proposed an
array of evanescently coupled helical waveguides oriented along the z axis and arranged
according to a honeycomb lattice as schematized in Figure 1.30.c. The helical shape of
the waveguides ensures to break the z-reversal symmetry and results in the emergence
of chiral edge states at the boundary of the waveguide. We show, for instance, in
Figure 1.30.d the experimental observation of a chiral edge state propagating in one-
way direction along the waveguide boundary in the transverse plane.

Figure 1.30: Photonic analogues of integer quantum Hall systems. a) Schematics of a magneto-
optical photonic crystal composed of ferrite rods of vanadium-doped calciumiron-garnet (VCIG) (blue
rods) interfacing a metal wall (yellow material). b) Simulation of the propagation of the chiral edge
states along the interface between the metal and the photonic crystal with a large obstacle inserted
along the path. Adapted from [138]. c) Schematics of a honeycomb lattice of helical-shape waveguide.
d) Experimental observation of the chiral edge state propagating along the boundary of the waveguide
array. Adapted from [139].

Another class of photonic topological insulators correspond to the implementation
of quantum spin Hall effect for photons using photonic crystals as proposed originally
by Wu et al. in [140]. In the approach of Wu, the structure is composed of dielectric
rods arranged in air according to a honeycomb lattice. Such geometry results in a pho-
tonic Dirac dispersion at high-symmetry points K and K’ of the honeycomb Brillouin
zone. In particular, the authors have shows that, for transverse magnetic polarization,
the magnetic field distribution calculated on the lower and upper band of the Dirac
dispersion present (px, py) and (dxy, dx2−y2) orbital like symmetry acting then as a pseu-
dospin basis. Consequently, the bands are characterized by nonzero pseudospin Chern
numbers analogue to Z2 topological insulator and finite-sized crystals with non-trivial
topology exhibit two helical edge states within their gap with opposite velocities. Such
a concept has also been developed and demonstrated experimentally by Barik et al. in
the infrared domain with photonic crystal slabs illustrated in Figure 1.31.a and b. Pre-
cisely, the structure consists of two interfacing photonic crystal membranes consisting
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of triangular air holes etched in a GaAs material and arranged according to a strecthed
or shrunkend honeycomb lattice. The deformation of the honeycomb lattice, while
preserving the C3 rotational symmetry, results in a gap opening for the two regions as
represented in Figure 1.31.c characterized by distinct topologies. Consequently, heli-
cal edge states with opposite circular polarization σ+ and σ− emerge at the interface
between the two photonic crystal patterns.

Figure 1.31: a) Scanning electron microscopy (SEM) picture of a quantum spin Hall photonic
system. Helical edge states of circular polarization σ+ and σ− with opposite directions emerging at
the interface between photonic crystal membranes with trivial and non-trivial spin Hall topologies. b)
SEM picture of the interface between a shrunken and expanded honeycomb lattice photonic crystal
pattern composed of triangular air holes etched in GaAs material. c) Simulated band diagrams of the
shrunken and expanded photonic crystals. Adapted from [141].

Our last example deals with the realization of a photonic equivalent of the 1D
photonic SSH system using a polaritonic platform. The 1D polaritonic system con-
sists of a zig-zag assembly of semiconducting micropillars made of two vertically facing
distributed Bragg mirrors (DBRs) enclosing quantum wells (QWs), as represented in
Figure 1.32.a. Each single micropillar support two kinds of photonic modes: s modes
with a cylindrical symmetry and two degenerate p modes with anti-symmetric or-
bital orthogonal to each other as sketched in Figure 1.32.b. The diagram represents a
spectrally-resolved real-space emission of a single micropillar revealing the two types
of orbitals at different energy levels. The reproduction of the SSH model relies on
the coupling between the p orbitals of adjacent micropillars. The strength of the cou-
pling between two consecutive pillars depends on to the orientation the axis linking
them, being one order of magnitude higher for facing orbitals lobes, and mimicking
the SSH hopping energies t and t′. In particular, the py subspace which starts (ends)
with a weak coupling between the first (last) two pillars gives rise to an edge state
appearing as a flat band within the energy band gap of the p bands as showed on the
energy-momentum photoluminescence diagram in Figure 1.32.c. The real-space pho-
toluminescence image in Figure 1.32.d also reveals the localization of the edge state in
the first pillar exclusively.

We have showed in this part that the topological concepts originally developed
for solid-states structures have been transposed successfully to the photonic domain
with the creation of topological insulators showing chiral or helical edge states. The
existence of such unidirectional edge states holds much interest toward the realization
of dissipationless waveguides or topologically protected laser. We have also reported
the potential of the photonic crystal platform with the creation of photonic topological
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insulators from honeycomb lattice photonic crystals. Similarly, we can wonder whether
we can retrieve the topological properties predicted for carbon nanotubes but with
rolled-up version of graphene-like photonic crystal. We will show in the following that
the rolled-up nanotechnology represents an ideal plateform to address the previous
question.

Figure 1.32: a) Scanning electron microscopy (SEM) picture of the 1D zig-zag array of semiconduct-
ing micropillars mimicking the 1D SSH chain. The drawing on the left represents a single micropillar
formed by quantum wells embedded between two distributed Bragg mirrors. b) Spectrally-resolved
real-space emission diagram of a single micropillar supporting one s and two degenerate p orbitals.
Drawing: schematized distribution of the two anti-symmetric degenerate orbitals px and py. c) Energy-
momentum photoluminescence emission diagram of a finite-size polaritonic chain exploiting py-like
orbitals and collected at the edge. d) Real-space photoluminescence image of the edge state forming
on the boundary of the photonic chain. Adapted from [142].

1.3.3 Photonic crystal analogues of carbon nanotubes

The exceptional properties of graphene have sparked a considerable interest in the scien-
tific community to emulate Dirac physics in other material platforms. Indeed, the emer-
gence of Dirac cones intimately relates to the honeycomb lattice arrangement. There-
fore, artificial structures reproducing the honeycomb lattice system, dubbed artificial
graphenes [143], should present similar dispersive features as revealed for graphene.

For instance, centimeter-size dielectric cylindrical rods arranged in 2D honeycomb
lattice simulating graphene in the microwave domain, exhibit typical Dirac dispersion
[144]. Another example of artificial graphene consists of a honeycomb lattice of sil-
icon pillars hosting polaritons [145] which interaction mimics the behaviour of Dirac
relativist fermions. Beyond the mere analogy, the tunability of artificial graphene sys-
tems offers a suitable testing ground to get a new insight on graphene physics and
measure physical phenomena hardly appreciable or technically demanding in graphene
specimen. For instance, appropriate modifications of artificial graphene structural pa-
rameters allows the manipulation, the creation or even the removal of Dirac points,
and the emergence of topological effects [146, 147].
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The photonic crystal platform represents an alternative way of producing graphene
photonic analogues. Inspired from solid-states crystal, photonic crystals bear de facto
complementary physics proper to crystallographic systems. Indeed, in solid (photonic)
crystals, electronic (photonic) states express in the form of Bloch functions (waves).
The energy electronic (photonic) dispersion manifests itself through successive bands
separated by electronic (photonic) band gaps prohibiting the propagation of electrons
(photons) for a certain range of energies and directions.

However, unlike solid crystal, photonic counterparts offer design flexibility through
changes of lattice parameters, suitable for dispersion engineering, for instance. More-
over, the scalabiltity of Maxwell’s equations allows transposing designs and associate
physical effects within any targeted spectral range. Finally, the dispersion characteris-
tics of photonic structures are more easily accessible through common far-field optical
measurements. In particular, the production of honeycomb lattice photonic crystal
membranes (HC-PCM), exhibiting Dirac dispersion, has raised a significant interest in
the last decades for the realization of topological effects [140, 148] as reported earlier.

In the present thesis, we propose to extend the analogy toward the production and
the optical characterization of carbon nanotubes (CNTs) equivalents in the class of
photonic crystals, so far unexplored. Indeed, the rolled-up nanotechnology represents
a suitable technological platform to design HC-PCM and roll them up into hollow
cylindrical forms. Moreover, the rolled-up technology allows a precise control on the
structural parameters of the planar template, hence on the chirality and the diameter
of the final tubular photonic structure. We intend notably, in this work, to answer the
following questions:

• Does the photonic dispersion of the CNT photonic crystal analogues varies as
a function of the tube’s chirality, resulting in band gaps or Dirac points with
tunable positions ?

• Does the band gap of the photonic microtubes exhibit topological properties?

Before tackling these issues, we will investigate the optical and topological properties
of intermediary structures that are the photonic crystal equivalents of graphene and
graphene ribbons.

1.4 Conclusion of the chapter

We have showed in this chapter that the rolled-up nanotechnology represents a compet-
itive alternative to the fabrication of 3D versatile micro-objects. The principle of this
technique relies on the self-rolling of pre-strained membranes characterized by micron-
sized thickness. The production of a 3D prescribed geometry involves two essential
steps: the strain engineering and the design of the 2D template of the membranes. Pop-
ular 3D architectures produced with the rolled-up nanotechnology include microtubes,
microcoils, or helices. Furthermore, the large range of materials covered by the micro-
fabrication, comprising metals, semiconductors, or polymers, enables the utilisation of
the so-formed 3D micro-objects for various applications. In particular, tubular-shaped
microstructures, acting both as microchannels and optical microresonators, have held
much promises in the realization of compact and efficient opto-fluidic sensing devices.

In this thesis, our approach consists in using the rolled-up nanotechnology to roll
photonic crystal membranes to form two kinds of structures: photon cages and photonic
crystal analogues of carbon nanotubes.
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In the first place, we address the conception of tubular photon cages based on the
rolling of 2D photonic crystal membrane mirror using the rolled-up nanotechnology
and capable of confining light in air. Our objective consists in bringing a experimental
proof of concept of photon cages.

In the second place, we intend to explore theoretically and experimentally the op-
tical and topological properties of photonic crystal analogues of carbon nanotubes
consisting of rolled-up honeycomb lattice photonic crystal membranes. In the light of
the electronic and topological properties of carbon nanotubes, we aim at answering
the two following questions. How does the photonic dispersion of the CNT-like pho-
tonic microtube evolve as a function of the microtube’s chirality ? Does the photonic
microtubes exhibit non-trivial topological properties ?

In the following chapter, we introduce the numerical and fabrication methods to
realize the different steps of the conception of the previous structures: the design, the
simulation of the optical properties, the fabrication and the optical characterization of
the structures.
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CHAPTER 2. NUMERICAL, FABRICATION AND OPTICAL
CHARACTERIZATION METHODS

In this chapter, we present the ensemble of methods which allow the conception and
the characterization from the the planar photonic crystal membranes (PCM) building
blocks to the final rolled-up microstructures. The first section focuses on the numerical
methods employed to simulate the optical responses of the planar photonic membranes
and the cylindrical cavities.

2.1 Simulations of optical properties

The description of the propagation of light in any structure entails the resolution of
Maxwell’s equations. However, for lack of simple analytical solutions in the general case,
this resolution implies the use of numerical methods. The most appealing numerical
methods provide a wide choice of tunable parameters, optical outputs and apply to
almost any complex architectures, but often at the cost of high memory resources and
simulation time. Alternatively, some methods have restrained their field of action to
calculate optical properties of specific geometries such as periodic structures at minor
computing cost and with great precision.

This section introduces the two main numerical methods used in this thesis to
apprehend optical properties of planar and rolled-up photonic structures: the rigorous
coupled-wave analysis (RCWA) and the finite-difference time-domain (FDTD) method.
For both method, we first explain the principle of resolution and the domain of appli-
cability. We specify then the different outputs or the accessible optical properties. We
finally illustrate the application of the methods on typical structures in anticipation to
the results of later chapters.

2.1.1 Rigorous coupled-wave analysis

The rigorous coupled-wave analysis (RCWA), also known as the Fourier modal method
(FMM), is a rigorous and semi-analytical method of computing electromagnetics pop-
ularized by Moharam and Gaylord in 1980s [1, 2]. It relies on the numerical resolution
of Maxwell’s equations in the spatial frequency domain for the particular subset of
structures with in-plane periodicity but out-of-plane uniformity such as 2D photonic
crystal membranes (PCM). The method is said rigorous as the solution tends toward
the exact solution for an infinite number of spatial harmonics, and semi-analytical as
we search for analytical solutions in the out-of-plane direction but in-plane numeric so-
lutions. The accuracy of the solutions depends essentially on the number of harmonics
denoted N , and convergence testing is therefore needed to attest the validity of the
results.

The RCWA simulates the response of photonic structures to incident plane wave ex-
citation. It provides optical properties such as reflection, transmission, and absorption
efficiencies. In particular, we exploit the method to extract the reflectivity spectra of 2D
PCM at normal and oblique incidences related to the dispersion of guided resonances.
Guided-mode resonances located above the light line are also accessible through angle-
resolved far-field optical measurements described in later Section 2.3. We can therefore
compare both diagrams afterward. In this thesis, we use the free-access S4 solver devel-
oped by Fan group [3] in the Stanford Electrical Engineering Department to conduct
the RCWA calculations.

In addressing the conception of the 2D PCM wall of future tubular photonic cages,
our strategy aims at adjusting the lattice parameters and the membrane thickness
to achieve a high reflective behavior on a broad spectral range at normal incidence.
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We note that the RCWA method is efficient to estimate rapidly the reflectivity while
sweeping the value of the lattice parameters. Typically, in our case, we calculate the
reflectivity spectrum at normal incidence of a 2D PCM consisting of a triangular lattice
with a period a of air holes of radius r etched in an h-thick InP-based, as sketched on
the top and section views of Figure 2.1.a). We indicate the lattice vectors ~a1 and ~a2

of the lattice system. The calculations zone reduces to the green-shaded primitive cell
assuming infinite lateral size of the PCM. We chose a linear polarization of the incident
plane wave with the electric field pointing to the x-axis direction. We fix the value of
a and r to 1 and 0.4 µm, respectively, while performing a sweep of h from 0.21 to 0.23
µm. We set the number of spatial harmonics N to 20 as for the demonstration. We
propose two representations of the simulated PCM reflectivity spectrum to properly
visualize the intensity of the reflection on the curves of Figure b) along with the spectral
dynamics of the guided resonances (GR) on the maps of Figure c). In particular, owing
to the emergence and redshift of GR3, we observe that GR1 redshifts and combines with
GR2 to form a large band of high reflectivity.

Figure 2.1: a) Top view of the PCM: schematized triangular lattice, with a period a, of air holes of
radius r etched in an InP-based dielectric membrane. The lattice basis (~a1,~a2) covers the green-shaded
primitive cell. Section view of the PCM: section of the h-thick membrane along the red dashed line in
the top view. b) Reflectivity spectra R(λ) of the PCM for different thicknesses h = 0.21, 0.22, 0.23 µm
calculated with the RCWA method. c) Map version of b).

In principle, the RCWA only gives access to the dispersion of the PCM guided reso-
nances which couples with the incident plane wave, but not to that of remaining PCM
guided modes unless introducing an artificial double period or material absorption. It
also shows less efficiency in calculating the dispersion of high-index-contrast structures
as the finite truncation of Fourier harmonics leads to Gibbs phenomenon. Finally, the
RCWA algorithm essentially applies to multi-layered structures with in-plane pattern-
ing for some layers. Instead, to tackle the simulation of the optical response of more
complex 3D structures such as rolled-up PCM, we use the finite difference time domain
method (FDTD) described below.
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2.1.2 Finite difference time domain simulations

Introduction

The finite-difference time-domain (FDTD) method has proved to be one of the most
popular and powerful numerical tools of computational electromagnetics. The FDTD
algorithm, first implemented by Yee in 1966, directly resolves Maxwell’s equation in
time and spatial domains replacing partial derivatives with finite differences. The pop-
ularity of the FDTD method relies on several reasons. First, it represents a robust and
accurate resolution method. Indeed, sources of numerical errors are known and easily
corrigible. Moreover, the reduction of spatial and time discretization allows achieving
the closest prediction to reality. Second, it is suitable to test the impulse response of
structures over a wide spectral range. Third, it provides a systematic approach that
applies to any structures regardless of geometries and dispersion properties. In other
terms, the problem needs no reformulation when varying the system but adaptation of
the spatial mesh. Finally, we can extract various optical properties from time-varying
outputs, including spectra and band structures. We conduct the following FDTD sim-
ulations with the LUMERICAL FDTD solver.

We will use the FDTD method in this thesis to calculate spectrale responses, maps
of the electromagnetic fields and band structures. First, we illustrate the calculation
of the spectral response, maps of the electromagnetic fields and the quality factors of
the modes supported by a plain InP-made hollow cylindrical cavity. We extend the
simulation scheme in Chapter 3 to predict tubular photon cages’ spectral responses.
Second, we describe the simulation setting to calculate the dispersion diagrams of a
honeycomb lattice photonic crystal (PC) in anticipation of Chapter 5 developments.

Illustration of the spectral properties of plain InP-based microtubes

We first draw a seamless tube made of InP material modelled as a pink-shaded mi-
crotube on the LUMERICAL 3D CAD views presented in Figures 2.2.a), b), and c).
We load the InP material’s optical dispersion properties from the InP-Palik reference
experimental data available in the LUMERICAL bank of materials. The reference
dispersion is fitted within the spectral range [1.275-1.875] µm with a polynomial func-
tion of order and a fit tolerance set to 6 and 0.1 by default. Note that the previous
parameters stay valid for future simulations involving InP-based structures within the
same spectral window unless otherwise stated. We fix the inner radius ρin of the tube
to 17.5 µm and the membrane wall thickness h to 0.228 µm for comparison with real
structures. We simulate for the demonstration an infinitely long microtube so that the
calculation zone only extends in the cross-section of the cavity.

We define then the main parameters of the FDTD computation zone delimited by
an orange contour in Figure 2.2.a) and covering the cavity cross-section.

• The simulation time ts set to 10 ps. An appropriate value of ts supposes a com-
plete decay of the electromagnetic energy inside of the computation zone at the
end of the simulation. The FDTD solver proposes an auto-shutoff level that esti-
mates the remaining energy in the simulation region. Proper termination of the
simulation at ts sees the level reaching a threshold value set by default to 1.10−5

of the initial energy. In high-quality factor cavities, the electromagnetic energy
decreases very slowly so that a proper decay occurs for high ts. Such a situation
requires a specific methodology explained below.
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Figure 2.2: Cross-section (a), side (b) and perspective (c) views: FDTD model in LUMERICAL
CAD environment for the calculation of the spectral response of a plain cylindrical InP-based cavity
of inner radius ρin and membrane thickness h. The blue arrow and the yellow crosses schematize
the dipole source excitation and the time point monitors. We apply perfect matched layers (PML),
symmetric (blue zone), and anti-symmetric (green zone) boundary conditions on the borders of the
simulation region outlined in orange.

• The spatial and temporal sampling. The implementation of the FDTD algorithm
implies a Cartesian mesh with rectangular mesh cells. Inherently to the FDTD
method, the spatial mesh of the computation zone constitutes one of the main
sources of numerical errors. To minimize the errors, the LUMERICAL solver
proposes an adaptive mesh which automatically adjusts the mesh size to the
material’s optical properties. Concretely, the mesh size becomes smaller in higher
optical index and highly absorbent materials. Different levels of mesh accuracy,
from 1 to 6, are available and reduces the mesh size to achieve better precision,
however, at the cost of higher computation time. We chose a mesh accuracy of
2 which enables rapid calculations with a minimum mesh size ∆ in the order of
0.04 µm. We also use the conformal technology to refine the mesh at interfaces
between different materials. Finally, the time step dt is automatically adjusted
to the value of ∆ to ensure numerical stability of the simulation1.

• The boundary conditions. We apply perfect matched layers (PML) boundary
conditions (BC) to the four borders of the simulation region as indicated in Fig-
ure 2.2.a). The PML boundaries absorb incident light when eventually escaping
out of finite-size structures. They contain layers of absorbing material impedance
matched with the surrounding medium to achieve a minimal reflection. The
LUMERICAL FDTD solver proposes various PML profiles characterized by dif-
ferent absorption efficiencies. Here, we use the lowest demanding setting of PML
referred to as normal profile. The distance of the PML boundaries to the struc-
ture also influences the absorption efficiency. For high PML-structure proximity,
the PML may interact with the evanescent tail of modes and generate spurious
reflections. We position the PML frontiers at about 2.3 µm to the microtube
outer radius in both x and y directions2.

Following the definition of the computation zone, we introduce the two main ingre-

1The numerical stability is guaranteed when dt fulfils the Courant-Friedrichs-Lewy (CFL) stability
criterion: dt ≤ ∆/(

√
dc0) where d and c0 designate the structure dimensionality and the speed of

light, respectively
2We satisfy the solver’s recommendation of placing the PML at least half of a maximum excitation

wavelength (here, 1.875 µm) to the structure’s boundaries.
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dients for the simulation of the cavity spectral response: the excitation source and the
monitors. We describe below the tunable parameters for both objects.

• The excitation source. Oscillating electric or magnetic dipole are suitable sources
for investigating the cavity modes as they radiate in almost every direction. We
use a single oscillating electric dipole centred in the cavity cross-section and ori-
ented along the x-axis direction as illustrated in Figure 2.2. It allows preferential
excitation of modes with pure axial magnetic components: (Hx = Hy = 0, Hz 6=
0) referred to as TE modes in Chapter 3. Moreover, we exploit symmetries shared
by the dipole and the cavity to reduce the computation time. In particular,
we apply symmetric (anti-symmetric) boundary conditions over the blue-shaded
(green-shaded) half-plane y ≤ 0 (x ≤ 0). It restricts the computation zone to the
quadrant with positive coordinates x, y ≥ 0 and decreases the computation time
by a factor of 4. Finally, we set the emission Gaussian-shaped bandwidth of the
dipole from 1.275 to 1.875 µm.

• The monitors. We use time point monitors, symbolized by yellow crosses in Fig-
ure 2.2.a), to collect the temporal evolution of the electric Ex,y,z(t) and magnetic
Hx,y,z(t) field components at a given position (x, y, z). We disperse two groups of
15 time monitors, in the hollow core and the cavity membrane wall, at random
positions over the computation zone, as depicted in Figure 2.2.a). The monitors’
arbitrary positions ensure to maximize the spatial overlap with the cavity modes’
fields.

Once the simulation terminated, we collect the time data and perform two operations
to recover the cavity spectral response:

• The apodization of the time signals. When dealing with high-quality factor (Q)
modes, a complete decay of the field may be impossible or require substantial
ts. Consequently, the cavity spectrum results from the Fourier transform of time
signals truncated with a rectangular window, hence convolved to a sinc func-
tion in the frequency domain. To avoid such phenomenon, we apodize the time
signals before the Fourier transform with a Gaussian window of bandwidth ∆t
and centred on tc. In the frequency domain, the spectral features convolve to
a Gaussian envelope with a bandwidth inversely proportional to ∆t. We adjust
the apodization parameters to remove the source pulse’s contribution and the
signal ending and finally collect the cavity modes’ signatures exclusively. Due
to apodization, straightforward estimations of the modes’ Q factors from the
spectral peaks’ bandwidths are not reliable as overestimated. We extract thus
Q values with a post-treatment of time signals based on harmonic inversion as
explained later. We apodize the time signals of every electric fields’ components
with the following parameters: tc = 0.5ts and ∆t = 0.15ts.

• The Fourier transform of the time signals. We construct the cavity spectrum
I(λ) by adding square Fourier transforms of each electric field components’ pre-
apodized times signals;
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Figure 2.3: a) Electric field intensity spectra I(λ) of the InP-made microtube extracted from time
monitors data in the hollow core (blue curve) and the membrane wall of the cavity. b) Map of the
real axial magnetic component Hz at the excitation wavelength λmap ' 1.753 µm.

We present in Figure 2.3.a) the spectral responses I(λ) calculated in the hollow core
(blue curve) and the membrane wall (orange curve) of the InP-made cylindrical cavity,
in logarithmic scale and within the spectral range [1.275-1.875] µm. Both spectra
coincide exactly and contain successive peaks with a spectral spacing increasing with
the wavelength.

We investigate the nature of the modes detected in the spectra of Figure 2.3.a)
by calculating maps of the fields in the cavity cross-section. To this end, we place a
frequency monitor (yellow outline) covering the computation zone area as represented
in Figures 2.2.a) and c). The frequency monitor records the fields’ time signals at each
point of the computation zone mesh and performs a Fourier transformation of the time
signals at a given frequency. We have simulated, for instance, the spatial distribution of
the real magnetic field component Hz at the resonance frequency fmap = 171 THz (i.e.
at λmap = 1.753 µm) represented in Figure 2.3.b). We notice azimuthal oscillations of
the field in the way of whispering gallery modes with an azimuthal order m = 154. The
mode evolves exclusively in the membrane wall outlined in dashed grey line, around
the tube circumference. We find similar mode patterns at the wavelengths of the other
peaks with m decreasing for higher wavelengths.

We finally estimate the quality factors Q of the detected modes. We mentioned
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earlier the difficulty to extract reliable Q values directly from the spectrum of a cavity
supporting slowly decaying modes. Instead, we perform harmonic inversion assuming
a specific form s(t) of the truncated time signals:

s(t) =
∑
r

Ar sin(wrt+ φr)e
−αrt, (2.1)

as a combination of sine functions of amplitude Ar, phase φr, and pulsation ωr mul-
tiplied to an exponentially decaying envelope of decay rate αr. Therefore, the quality
factor of the mode at ωr simply relates to the decay rate according to Q = ωr/2αr.
We use the free-access solver Harminv based on filter diagonalization method (FDM)
to find the parameters of the sine and exponential functions. In particular, we applied
the method to estimate the Q factors of the four modes detected at λ1, λ2, λ3 and λ4

in Figure 2.3.a). We gather the results in Table 2.1 where we give the sine parameters
for each resonance and a coarse estimation of the relative error er on the resonance
pulsation. We confirm the high Q values of the modes which justifies the apodization
procedure.

r
fr

(THz)
λr

(µm)
αr

(1010.s−1)
Qr

(104)
Ar

(10−5.V/m)
ϕr

(rad)
er

1 220.03 1.3625 4.82 1.44 5.06 -1.46 2.27× 10−8

2 218.86 1.3698 4.68 1.47 8.68 -1.33 5.68× 10−9

3 217.67 1.3773 4.43 1.54 4.87 -2.96 8.42× 10−9

4 216.49 1.3848 4.13 1.65 6.71 -3.08 5.21× 10−9

Table 2.1: Parameters of the resonances detected between 1.36 and 1.39 µm in the spectrum in
Figure 2.3.a) following the harmonic inversion decomposition of Equation (2.1). We specify for each
resonance r (r = 1, 2, 3, 4): the frequency fr, the wavelength λr, the decay rate αr, the sine amplitude
Ar, the phase ϕr and the relative error er on the frequency.

Band structure of a honeycomb lattice photonic crystal

In the present section, we expound on the generic methodology to simulate band dia-
grams of photonic structures. In particular, we apply the method for the computation
of the band structure of a honeycomb lattice photonic crystal (PC). Similarly to the
simulation of tubular cavities’ spectral response, we detail successively the modelled
structure, the FDTD parameters and the exploitation of the simulation results to con-
struct the final diagrams.

We present in Figure 2.4 PC structure modelled with LUMERICAL CAD environ-
ment. It consists of a honeycomb lattice with a period ah = 0.232 µm of air holes (grey
circles) with a radius r = 0.067 µm etched in InP material (blue background). We
define a non-dispersive medium with refractive index 3.16, playing the role of the InP
material at around 1.55 µm.

The following steps delimit and set the solver region’s parameters. Considering the
periodicity of the crystal, the calculation of the dispersive properties reduces to the
study of a single unit cell. The smallest unit cell of the honeycomb crystallographic
system forms a rhombus shape and encompasses two sites (black dots), as sketched in
Figure 2.5.a). Indeed, the repetition of the unit cell according to all linear combinations
in the vector basis (~a1,~a2) spans the entire lattice. However, the solver implements the
FDTD algorithm with a Cartesian mesh, imposing a rectangular computation zone.
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Figure 2.4: CAD view of the FDTD model for 2D simulation of the band structure of a honeycomb
lattice (period ah) of air holes of radius r etched in InP material (optical refractive index nInP ∼ 3.16
at 1.5 µm). Bloch boundary conditions (BC) allows the periodic repetition of the FDTD computation
zone (orange outline) to form the photonic crystal pattern. Out-of-plane magnetic dipoles (green
arrows) excite the modes with transverse electric (TE) polarization for which the electric field orients
in the PC plane. Time monitors (yellow crosses) record the time evolution of the electromagnetic
fields.

Therefore, we define a rectangular computation cell outlined in orange in Figure 2.4,
ensuring the reproduction of the honeycomb crystal pattern when replicated laterally.
We note that the solver region encompasses two honeycomb lattice unit cells. We
explain later necessary adjustments to retrieve the original PC’s periodicity and avoid
artificial band folding in the final dispersion diagram. We use the conformal technology
to mesh the computation cell with the solver mesh accuracy set to 3.

We apply Bloch boundary conditions (BCs) to emulate the crystal’s periodicity. By
contrast with pure periodic BCs, which strictly copies the electromagnetic fields from
one unit cell to another, the Bloch BCs also applies a phase correction. Indeed, in
periodic media, we search for propagating solutions in the form of Bloch waves:

~E(~r) = ~u(~r)ej
~k·~r, (2.2)

with ~u(~r) an envelope term sharing the same periodicity as the PC and ej
~k·~r a plane

wave propagating in the direction of the wavevector ~k = kx~ex + ky~ey. The periodicity
condition expresses then as:

~E(~r + ~R) = ~u(~r + ~R)ej
~k·(~r+~R) = ~E(~r)ej

~k·~R, (2.3)

where ~R designates any combination of the lattice vectors ~R = α~a1 + β~a2, (α, β) ∈ Z2

such that ~u verifies ~u(~r+ ~R) = ~u(~r). Therefore, we identify the term ~k · ~R in Equation

(2.3) as the Bloch phase correction evoked earlier. We will show that the setting of ~k
is a the heart of the band structure calculation. We also remark that the phase shifts
~k · ~R and (~k+ ~G) · ~R results in the same Bloch solution ~E(~r) on condition that ~G verifies
~G · ~R = 2π. The latter relation defines the reciprocal lattice, also called ~k-space, where
the lattice vector ~G decomposes in a predefined reciprocal vector basis (~a∗1,~a

∗
2). In

particular, the reciprocal lattice of the honeycomb pattern corresponds to a triangular
lattice as depicted on Figure 2.5.b) with a green-shaded primitive cell referred to as
the first Brillouin zone (FBZ). Due to the C6 (or 2π/3) rotational symmetry, the study

of the dispersion properties in the ~k-space ultimately reduces to the blue-shaded area,
also known as the irreducible FBZ.
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Figure 2.5: a) Schematics of the honeycomb crystallographic system. The lattice basis (~a1,~a2) covers
the unit cell shaded in yellow containing two atomic sites (black dots). We superimpose the FDTD
computation zone (orange outline) used for the simulation of the band structure of a honeycomb
lattice PCM. The calculation zone encompasses two unit cells. b) Schematics of the reciprocal lattice
associated to the honeycomb crystal, corresponding to a triangular lattice constructed from the basis
(~a∗1,~a

∗
2). The green-shaded area delimits the primitive cell or Wigner-Seitz cell, referred to as the first

Brillouin zone (FBZ). Due to C6 (or 2π/3) rotational symmetry, the study of the FBZ reduces to the
blue-shaded irreducible zone enclosed by the high-symmetry points Γ, K and M.

We add then sources and time monitors within the computation cell to inject the
excitation signal and collect the temporal evolutions of the fields. We dispose multiple
magnetic dipole sources oriented in the out-of-plane direction as represented in Figure
2.4 to excite exclusively transverse electric (TE) modes defined by Ez = 0. We adjust
their spectral bandwidth to span the interval [10-300] THz, or equivalently [1-23] µm.
We have noticed earlier that the solver region actually contains two honeycomb lattice
unit cells as depicted in Figure 2.5.a). Without a proper setting of the dipoles’ loca-
tions and phase shifts, we simulate the band structure of the superlattice and generate
spurious modes by artificial band folding. To constrain the study to one honeycomb
unit cell, we create a first set of dipoles with arbitrary positions contained in the bot-
tom corner of dimensions 3ah/2×

√
3ah/2. We then copy the set of dipoles and place

it at identical positions in the second unit cell located in the upper right corner of the
solver cell. We finally phase match the second series of dipoles by adding a phase offset
∆θ = −180~k ·∆~r/π with ∆~r the position offset to the first reference set of dipoles.

The simulation of the PC band structure consists in calculating the spectral response
for each wavevectors ~k along the irreducible FBZ passing by the high-symmetry points
Γ, K and M. In practice, we obtain the spectrum for each ~k by Fourier transform of
the time data collected by the time monitors and apodized beforehand with tc = 0.5ts
and ∆t = 0.125ts, ts = 1000 fs. We then assemble all the spectra to construct a raster
version of the dispersion diagram as plotted in Figure 2.6.a) in normalized frequencies
units ah/λ. We deduce the band structure as represented in 2.6.b) by extracting the
modes of higher intensity exclusively.

Conclusion on the FDTD method

In conclusion, we have showed in this section the relevance of the FDTD method to
complete the RCWA predictions and simulate:

• the spectral response, the modes’ profiles and quality factors Q supported by
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Figure 2.6: a) Dispersion diagram of a honeycomb lattice photonic crystal (PC) with a period
a = 0.232 µm and air holes of radius r = 0.067 µm in InP material simulated with the FDTD method
(Lumerical solver) for incident TE polarization (electric field contained in the PC). The diagram
represents the dispersion expressed in normalized frequencies ah/λ along the irreducible FBZ with
high-symmetry vertices Γ, K and M. b) Extracted bands of the previous diagram.

tubular micro-structures as illustrated with a non-structured InP-made micro-
tube,

• the band structure of periodic photonic structures applied on a honeycomb lattice
InP-based photonic crystal.

In both configurations, a refinement of the settings leads to more accurate results but
often at the expense of higher computation time and memory requirements. As a
guide, for the simulation of 3D structures, the computation time (memory require-
ments) evolves in proportion to 1/∆4 (1/∆3) where ∆ designates the smaller mesh
size. In particular, the simulation of tubular photon cages implies substantial comput-
ing ressources due to the multi-scale nature of the structures. We use in this case the
Newton computer cluster facilities available at the École Centrale de Lyon to perfom
parallel calculations and achieve reasonable simulation time.

2.2 Fabrication process

In this section, we introduce the fabrication scheme of 2D photonic crystal membranes
(PCM) rolled-up into tubular shapes which structural parameters have been adjusted
via numerical simulations presented earlier. We employ the method in the present the-
sis for the production of both tubular photon cages and rolled-up honeycomb lattice
PCM as analogues of carbon nanotubes in the class of photonic crystals. The overall
process relies on the rolled-up nanotechnology which enables the rolling of pre-strained
nano-membranes into prescribed 3D geometries upon relaxation. In particular, the
production of the tubular patterned rolled-up membranes divides into three main suc-
cessive stages:

• the production of precursor stress-engineered multi-layered stacks;

• the design, fabrication and transfer of the planar mask;

• the self-rolling of the photonic membrane into a cylindrical shape.

We describe hereinafter the technical processes involved at each of the previous steps
and we elucidate the critical parameters that influence the structural parameters of the
final rolled-up structures.
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2.2.1 Production of the precursor multi-layered stacks

The first step in the fabrication of rolled-up nanomembranes is dedicated to the produc-
tion of a precursor multi-layered stack composed of a sacrificial layer and a pre-strained
bilayer deposited successively on top of a substrate layer. We have demonstrated in
Chapter 1 that the amount of strain introduced in the bilayer and the thicknesses of the
layers determine the induced curvature of the final rolled-up microstructures according
to Equation (1.21) in Chapter 1. In particular, we will show that the epitaxial growth
is a suitable technique to achieve the deposition of material layers with a high degree of
control on the thicknesses and the composition directly related to the amount of stress.
In the later developments, the constitutive material layers are essentially made out of
III-V alloys such as Indium Phosphide (InP). This choice is motivated by the wide use
of InP-based devices in photonic integrated circuits (PIC) to realize active as well as
passive optical on-chip functionalities.

Epitaxial growth of material layers

Figure 2.7: a) Illustration of the molecular beam epitaxy (MBE) deposition technique. Solid material
sources are heated in effusion cells until evaporation. Due to the high vacuum environment performed
by set of pumps, the so-formed gases of atoms moves towards the substrate in the form of molecular
beams. The molecules condensates on the heated substrate and arrange to form material layers with
atomic precision. Mechanical shutters allow to vary the composition of the layers by closing effusion
cells. The deposition of the material layers are monitored via reflection high energy electron diffraction
(RHEED) method for which an electron beam hits the sample surface at grazing incidence and reflects
on a fluorescent screen. b) Typical precursor multi-layered stack obtained after the MBE process and
used for the rolling of pre-strained InP-InGaP bilayer.

The deposition of material layers was performed via the molecular beam epitaxy
(MBE) deposition technique by Philippe Regreny at INL within the NanoLyon plate-
form. In a ultra-high vacuum (UHV) environment (down to 10−10 Torr), the MBE
growth allows for the preparation of very thin crystalline material films with atomic
precision and a high control on the composition and the surface quality of the layers.
This technique is used to deposit successive layers of InP, Indium Gallium Arsenide
(InGaAs), InP and Indium Gallium Phosphide (InGaP) material on top of a nominal
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(100)-oriented InP substrate to form the multi-layered stack depicted on Figure 2.7.b).
In particular, the InGaAs film corresponds to the sacrificial layer and the InP-InGaP
bifilm to the pre-strained bilayer. Moreover, the InP layer deposited right after the
InP substrate acts as a buffer layer which smooths the substrate surface by covering
roughness irregularities. The MBE deposition method also allows to insert planes of
active nanostructures, such as InAs quantum dots (QDs) represented on the drawing as
red triangles, in between InP-based layers. This operation endows the final structure
with active optical properties accessible through photo-luminescence characterization.

Technically, material solid sources with III-V elements, namely Indium (In), Gal-
lium (Ga), and Arsenide (As), are placed and heated in Knudsen-type effusion cells
embedded in a chamber as illustrated in Figure 2.7.a), until sublimation to form gases
of particles (colored dots). Due to its pyrophoric behaviour, Phosphorus (P) is treated
separately in specific valved cracker cells to obtain beams of P2 dimers. The high
vacuum conditions achieved in the chamber reduce drastically the collisions between
the particles and increase significantly their mean free path. Therefore, the gases of
atoms migrate almost in a straight line, as molecular beams (purple and red envelopes),
towards the substrate. The substrate is also heated but at a lower temperature than set-
tled for effusion cells, to prompt the condensation of the atomic vapours and maintain
molecular dynamics at the surface. Several mechanisms contribute then to the growth
of the layer. The impinging atoms are first retained at the surface of the substrate
through physical adsorption and become so-called adatoms, but diffuse efficiently via
the thermal agitation. They come to stabilize either by binding with other atoms and
forming nucleation sites or by incorporating to existing material steps. These processes
also compete with the re-evaporation by thermal desorption or the inter-diffusion of
adatoms, according to the temperature of the substrate.

Control of composition and thicknesses of the layers

Using the mechanical model introduced in Chapter 1, we can precisely predict the
curvature κ adopted by a free pre-strained bilayer composed of a mismatched layer A2

deposited on a substrate layer A1. The pre-strain introduced in the bifilm originates
from the epitaxial pseudomorphic growth of A2 onto A1 which imposes layer A2 to
adopt the same in-plane lattice parameters as the substrate layer A1. The layer A2

undergoes therefore a pre-strain directly related to the mismatch of lattice parameters
expressed as m = (a1 − a2)/a1, also called misfit parameter, with a1 and a2 the lattice
parameters of A1 and A2, respectively. According to the model, for an elastic contrast
close to one (which is the case here), the curvature solely depends on the thicknesses h1

and h2 and on the misfit parameter m. In our configuration, we identify layers A1 and
A2 of the model with the top InP and InGaP layers of the multi-layered stack. Using
Vegard’s law, the lattice constant of the layer InGaP approximates as a2 = aIn1−xGaxP =
xaGaP + (1− x)aInP where x denotes the composition in Gallium element of the InGaP
layer. The proportion x therefore dictates the mismatch m and hence the amount of
pre-strain in the InP-InGaP bilayer. Eventually, the induced curvature of the final
rolled-up microstructure is determined by the thicknesses of InP and InGaP films and
the composition x in the InGaP material layer. It is noteworthy that the mechanical
model gives accurate predictions provided that the bilayer undergoes small strains
which implies low x values. The fabrication of a rolled-up InP-InGaP membrane with
prescribed structural parameters (membrane wall thickness, curvature radius) demands
a tight control on the thicknesses and Gallium composition of the InP and InGaP layers.

Thermal and pressure conditions are therefore key parameters of the overall process
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as they influence the composition and the thickness the deposited layers. They also
determine the surface quality of as well as the speed of growth. Indeed, the high
vacuum conditions in the chamber, obtained by a complex set of turbo-molecular and
ionic pumps, ensure a very low level of contamination of the sample and a layer-by-
layer deposition rate. The thickness of the layer and the speed of growth depend
on the material flows controlled by the temperature of the effusion cells. Moreover,
mechanical shutters in front of each effusion cells, as depicted on Figure 2.7, enable a
quasi-instantaneous interruption of the atomic flows which results in abrupt material
heterostructures and a precise control of the alloys’ composition. Finally, the substrate
is placed on a rotating platform, at the convergence of the atomic flows, to obtain the
most homogeneous deposition possible.

Growth modes and critical thickness

In the course of the epitaxial growth, the deposited InGaP material layer accumulates
elastic energy per unit area Eelas which expresses as [4]:

Eelas =
E

1− ν
m2 h2, (2.4)

where E and ν refer to the elastic modulus and Poisson’s ratio of InGaP material.
According to Equation (2.4), for a given misfit m, Eelas increases linearly with the
thickness h2. However, the layer-by-layer deposition is guaranteed below a critical
thickness hc: this regime is also called Frank-van der Merwe growth. Above hc, the
deposited layer acquires sufficient energy to create dislocations and relax strains into
the formation of islands, a regime referred to as the 3D Volmer-Weber growth mode.
An intermediate regime or Stranski-Krastanov growth mode combines both a layer-by-
layer deposition and the formation of islands above the critical thickness. The value
of the limit thickness hc depends on the misfit m and on the growth parameters such
as the temperature or the growth speed. In particular, for typical Gallium proportions
x in the InGaP layer in the order of 0.1 , we have estimated the critical thickness to
hc ' 70 nm.

Growth of optically active quantum dashes (QDas)

Generally an undesired effect for the uniform deposition of thin material films, the
growth of islands can be exploited to create quasi zero-dimensional nanostructures
of semiconducting material: quantum dots (QDs). On account of quantum confine-
ment effects, QDs exhibit photoluminescent properties which emission wavelengths
vary according to their size and material composition. These tunable optical prop-
erties together with low threshold current density have for instance made QDs-based
materials ideal canditates in the production of low-threshold lasers [5, 6]. Originally
implemented on GaAs substrates, the method was extended to InP substrates and en-
abled the formation of InAs quantum dashs (QDas) with an emission wavelength close
to the 1.5 µm standard telecommunication wavelength [7–9]. In particular, we used
this method to grow in some of the samples a plane of self-organized InAs-QDas in be-
tween two InP layers [8] as represented by red triangles on Figure 2.7. This operation
was performed with the aim of characterizing the optical response of the final rolled-up
structure through photoluminescent measurements.
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Figure 2.8: Schematic view of the monitoring of the epitaxial growth via reflection high energy
electron diffraction (RHEED). The drawings on the left represent different stages of the deposition of
red material on a substrate crystalline blue material quantified by the covering rate 0 ≤ c ≤ 1. An
electron beam (dark green dashed line) is sent onto the surface of the sample at grazing incidence and
only the specular reflection (dark green dashed reflected line) is detected. On the right, we plot the
evolution of the specular spot intensity as a function of the time of the deposition. We indicate the
position of the five stages of the left drawings.

Real-time and in-situ control of thickness via RHEED measurements

Previous remarks have stressed the crucial role of thicknesses h1 and h2 not only on the
value of the curvature of the final rolled-up microstructure but also on the evolution of
the growth mode. It is hence of paramount importance to control precisely their values
to meet the targeted dimensions of the final microtubes and ensure the desired type
of deposition. Toward this goal, real-time and in-situ reflection high energy electron
diffraction (RHEED) measurements are performed to monitor the growth of material
films. An electron beam generated by an electron gun is sent onto the multi-layered
structure at grazing incidence, as depicted on Figure 2.7.a). When the beam hits the
sample, it deflects by reflection and diffraction phenomena. Small incidence angles,
typically 1 or 2 degrees, allow the analysis of surface layers exclusively. The deviated
beams are then collected onto a fluorescent screen. In particular, the intensity of the
reflected (specular) spot is measured and its cyclic evolution can be directly related to
the surface roughness, namely the filling of the surface by the atoms, as represented on
Figure 2.8. The parameter c designates the coverage rate of the sample surface. In the
first place, few incoming atoms arrange on the surface of the multi-layered structure and
hardly perturb the reflected beam. As more atoms impinge on the surface and cluster to
form the layer, they also diffract the beam leading to a decrease of the reflected intensity
(c = 0.25). When the surface is half filled (c = 0.5), diffraction phenomena predominate
and the reflected signal reaches a minimum. Then, the deposition follows on until the
total reconstruction of the surface while the intensity rises gradually until its initial
and maximum value (c = 1). The deposition of the material is monitored down to the
atomic monolayer. Indeed, the thickness of the deposited layer can be estimated by
counting the oscillations of the intensity during the growth which corresponds to the
number of material mono-layers directly deposited onto the sample surface. Finally,
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RHEED measurements are also exploited to detect the transition between two growth
modes. In particular, the transition from a layer-by-layer deposition to the formation
of islands makes the oscillations in the reflection intensity vanish.

2.2.2 Design, fabrication and transfer of the planar mask

The next step of the fabrication of tubular rolled-up PCM involves the design, the fab-
rication and the transfer of the planar mask into the InGaP-InP bilayer. In particular,
the design of the planar mask plays a crucial role in the overall process as it determines
the structural and optical properties of the final 3D rolled-up micro-object as we ex-
plained it in Chapter 1. We detail hereinafter the technical processes employed in the
conception of the mask along with the key parameters which influence the geometrical
and physical properties of the final 3D rolled-up microstructures.

Design of the planar mask

Figure 2.9: Design of the planar mask for the production of a rolled-up honeycomb lattice PCM
attached to the substrate. Colour coding is borrowed from ELPHY pattern generator hardware used
for the electron beam lithography. Green colour indicates the region exposed to the electron beam.
The whole design is tilted with an angle θ along the fastest direction of under-etching, supposed here
to be (110) crystallographic direction.

The planar template fulfil three distinct functionalities. It first contains the pho-
tonic crystal pattern which will endow the InP-InGaP bilayer membrane with appro-
priate optical properties. The orientation, dimensions and overall shape of the mask
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control the shape and dimensions of the final 3D rolled-up micro-object. Finally, the
template comprises specific design features which realize the attachment of the future
3D microstructure to the substrate. We illustrate the three previous points with the
planar mask represented on Figure 2.9 used for the production of tubular rolled-up
honeycomb lattice PCM. The design is drawn and converted into a GDSII file in the
ELPHY pattern generator hardware which is then readable by the electron beam lithog-
raphy device. Light green coloured regions indicate the areas that will be exposed later
to the electron beam for the fabrication of the mask.

The central part of the planar template concerns the photonic crystal pattern which
consists of green-shaded air holes arranged according to a honeycomb lattice. The
lattice parameters, namely the dimensions of the holes and the lattice period, result
from the numerical simulations performed to achieve predefined optical properties of
the PCM. Moreover, the orientation of the lattice can be adjusted to realize the rolling
of the PCM according to a given chirality.

The overall shape, the dimensions and the orientation of the photonic crystal pat-
tern are then adjusted to obtain the rolling of the PCM into a tubular shape with
prescribed radius ρc and length L. We have shown in Chapter 1 that the rolling of a
rectangular membrane leads to the production of a hollow cylindrical shape. Assuming
the rolling direction along the blue arrow, the dimension l fixes the number of wind-
ing as it corresponds to n times the perimeter 2πρc of the final tube. In particular,
for integer values of n, the PCM achieves n complete rolling. Furthermore, the other
dimension L matches with the length of the cylinder. Green-shaded strips surrounds
the rectangular pattern to initiate the later under-etching process by facilitating the
penetration of the etching solution toward the buried-in sacrificial layer. Considering
the anistropic etching of the crystalline InGaAs sacrificial layer, the PCM will roll along
the dimension l if the fastest etching direction coincide with the direction of l. Due to
the pseudomorphic epitaxial growth, the InGaAs layer shares the same crystallographic
structure as the nominal 〈100〉-InP substrate. Moreover, the lateral faces of the sample
correspond to the cleavage 〈100〉 planes of InP cubic crystalline material from which
we identify at 45◦ the direction 〈110〉 of fastest etching rate. Therefore, we orient the
planar template at 45◦ with respect to the cleavage planes of the sample as depicted
on Figure 2.9 to ensure the rolling of the PCM along the dimension l. However, the
under-etching equivalently occurs along the dimension L owing to the rotational sym-
metries of the cubic crystallographic system. To favour the rolling along l, we add
a extra band of InP material with gradually increasing thickness outlined with a red
dashed line which slows down the etching along L.

The rolling of the PCM stops at the level of the anchor schematized on Figure 2.9.
This specific design feature also allows to hold the rolled-up structures to the substrate.
Complex anchor can be conceived to realize additional functionalities. In particular,
in later Chapter III, we design a special anchor to perform the vertical lifting of the
rolled-up microtubes which facilitates the optical characterization of the microtubes in
the hollow part.

Fabrication of the planar mask: electron-beam lithography

The fabrication of the planar mask via electron-beam (e-beam) lithography process and
the following etching process have been performed in NanoLyon by Pierre Cremillieu
whom I accompany during the fabrication sessions. The e-beam lithography consists
in patterning an electron-sensitive resist deposited on top of the sample by scanning
its surface with an electron beam. Unlike diffraction-limited optical methods, the use
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Figure 2.10: Sketches of the electron-beam (e-beam) lithography steps: deposition of the
SiO2 hard mask by plasma-enhanced chemical vapor deposition (PECVD) on top of In-
GaP/InP/InGaAs/InP(substrate) stack; spin-coating of the resist; the resist is exposed to the electron
beam according to the targeted design; development of the resist to obtain the planar mask.

of electronic matter waves allows to achieve very high resolution, down to few tens
of nanometers. The path followed by the electron beam corresponds to the planar
design produced in the earlier step. In practice, a 80 nm-thick SiO2 layer is deposited
by plasma-enhanced chemical vapor deposition (PECVD), on top of the multi-layered
stack. This intermediate layer will serve as a hard mask and will guide the etching of
the lower layers as the resist tends to degrade more easily in contact with the etching
plasma. A resist with reference AR-P 6200.04 is spin-coated on top of the hard mask
during 60 seconds with a rotation speed and an acceleration of 4000 and 3000 rpm,
respectively. Under these conditions, the resist deposits uniformly onto the hard mask
until a thickness of about 90 nm which optimizes the resolution and the contrast of the
lithography. A soft-bake of the sample is performed afterwards at 150◦C, also during
60 seconds, to improve the adherence of the resist to the substrate.

The writing of the patterns is realized by the deflection of the electron beam across
the surface of the resist with electrostatic lenses, according to the targeted design. A
blanking system allows to turn the beam off and leave unexposed parts of the resist.
Following the writing procedure, the sample is immersed into a developing solution
with reference AR 600-546, during 45 seconds. A positive resist is used for which the
exposure to the e-beam improves its solubility in the developing solution: the exposed
parts are removed by dissolution to form the patterns. The development is stopped by
plunging the sample into an isopropanol solution and the patterned resist is cleansed
in deionized water to remove residual solvent, each operations lasting 30 seconds. The
sketches in Figure 2.10 summarize the primary steps of the e-beam lithography process.

The exposure and the development of the resist are two determinant processes
for the quality of the lithography evaluated by the concordance between the targeted
planar design and the resulting patterned resist. Unlike UV lithography, the e-beam
lithography is a serial process: the electron beam irradiates successively elementary
areas separated by a distance s or step size and during a time td or dwell time. The
step size is fixed with respect to the size of the smallest pattern to be produced.
Knowing the beam current I and the area dose D which measures the charge per units
of area required to fully develop the resist, the dwell time is deduced with the relation:

D =
I × td
s2

. (2.5)
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Typical values of the area dose reach hundreds of µC/cm2. The exposure dose plays a
key role in the final resolution of the patterns. During the exposure, the electrons inter-
act with the resist to break chemical bonds and make it more soluble in the developer.
However, they can also undergo scattering events which contribute to a broadening of
the exposed area by the increase of the original electron beam diameter. This leads
to a degradation of the resolution of the patterns. Indeed, the electrons can collide
elastically with the atoms of the resist or back-scatter in the substrate and diffuse out
of the exposed area. Inelastic electrons-matter interactions are observed for which the
electrons transfer part of their kinetic energy to the atoms which ionize and expel elec-
trons, called secondary electrons. Those electrons can migrate towards the resist and
generate other electrons by the same processes. Scattering phenomena result there-
fore in the widening of the exposed area, also called proximity effect. The importance
of proximity effects depends on multiple factors as the nature of the substrate, the
electron beam current or the thickness of the resist. Therefore, for each patterns of
each sample, we generally vary the dose factor, the fraction of the area dose set to
100 µC/cm2, to find the best compromise between high resolution of the patterns and
sufficient exposure of the resist. For each value of the dose, the appropriate dwell time
is calculated using Equation (2.5).

Transfer of the planar mask: reactive ion etching (RIE)

Figure 2.11: Schematized steps of the transfer of the planar mask into the InP-InGaP bilayer.
The photonic crystal pattern imprinted on the resist is first transferred into the hard mask through
reactive ion etching (RIE). The resist is then removed and the planar mask is also transferred via
RIE successively across InGaP and InP layers until the top of the InGaAs sacrificial layer to form the
photonic crystal membrane (PCM).

The electron-beam lithography process leads to the formation of a planar mask
out of the resist layer which reproduces the photonic crystal pattern. The next step
towards the formation of the photonic crystal membrane consists in using the mask
as a stencil to transfer its pattern into the successive lower layers of the sample until
the bottom of the InGaP/InP bilayer, by reactive ion etching (RIE). This etching
technique relies on the bombardment of the sample by a plasma of reactive particles.
The plasma, a gas of charged particles, generates by the application of a powerful radio
frequency (RF) oscillating signal which triggers the ionization of gases of molecules
surrounding the sample. The ejected electrons tend to accumulate on the wafer which
supports the sample by the action of the RF signal whereas the much more massive
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ions exhibit weak response. This leads to the formation of a strong polarization tension
which makes the newly created ions accelerate towards the sample. The etching occurs
when the ions access the lower layers through the patterned resist and sputter the
molecules of the layer surface by transferring part of their kinetic energy, also called
physical (or dry) etching. However, the ions can also be adsorbed on the layer surface
and react chemically with the molecules, corresponding to the so-called chemical (or
wet) etching. Therefore, the RIE technique combines advantages of both physical and
chemical etching mechanisms, to achieve high anisotropic etching profile together with
high etching rate.

In practice, the RIE process follows several steps of a recipe for which the nature
of the gases in the plasma are adapted for each layer to be etched. Furthermore, the
following parameters, the gases flow rates expressed in standard cubic centimetres per
minute (sccm) units, the temperature of the subtrate Ts, the pressure in the chamber Pc,
the RF power PRF and the etching time, have been adjusted to carry out a directional,
selective and complete etching of the different layers. Starting from the multi-layered
stack represented on the first left drawing of Figure 2.11, the pattern of the resist is
first transferred into the SiO2 hard mask layer by introducing a gas mixture composed
of CHF3 at 100 sccm and O2 at 3 sccm, Ts = 20◦C, Pc = 10 mTorr and PRF = 140 W.
The small fraction of O2 is used here to impede the competitive formation of CHF3

polymers without degrading the O2-sensitive resist. The resist is then entirely removed
with a plasma composed exclusively of O2 gas at 100 sccm, Pc = 100 mTorr and
PRF = 100 W. The high pressure tends here to favour the chemical attack of the resist
compared to the physical bombardment by plasma ions. The pattern of the hard mask
is next transferred down into the InGaP/InP bilayer by introducing a combination
of H2 and CH4 gases at 60 sccm and 20 sccm, respectively, with Pc = 30 mTorr and
PRF = 120 W. The temperature of the sample is brought to Ts = 90◦C to make the etch
polymer by-products more volatile, hence easier to eliminate by pumping. Otherwise,
the hybrid compounds can stick to the etching sidewalls or redeposit on the surface of
the layer, which obstructs the etching process. A cleaning step is also performed, with
the same conditions as for the cleansing of the resist, to remove all the residual carbon
composites formed with CH4 derivatives to protect the etching sidewalls. Finally, a
purge of the chamber is realized to dispose of any residuals of reactive gases. The main
steps of the RIE process are pictured on Figure 2.11.

The key point of the RIE processes is to find the correct etching time to ensure the
complete etching of the layers, that is commonly called end point detection (EPD).
To this end, in-situ and real-time laser reflectometry are performed which enables to
monitor precisely and non-destructively the etching of the different layers. Technically,
a laser beam (λ = 672.2 nm) is focused at normal incidence onto a reference rectangular
zone which undergoes the etching process, and the reflected intensity is recorded on
a CCD camera. The shape of the laser beam spot is also checked on the camera and
it should be the most circular, otherwise it means that the sample is tilted which can
distort the reflectivity measurements and affect the directionality of the etching. In the
course of the etching, the thickness of the layer d reduces and it satisfies, for quantized
values, the Bragg condition for constructive interferences between reflected light rays:
2nmedd = pλ, with nmed the refractive index of the layer and p ∈ Z. Therefore, we can
follow the advance of the etching of the layer through the oscillations of the reflected
intensity. The etching end point is detected when the oscillations of the intensity
vanish, meaning that the layer is completely etched.
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2.2.3 Rolling the photonic crystal membrane

Figure 2.12: Sketched steps of the under-etching process. The SiO2 hard mask is first removed via
a cleansing operation. The self-rolling of the InP-InGaP bilayer is then triggered by the removal of
the sacrificial InGaAs layer by under-etching process in solution.

Under-etching

During the precedent steps, the transfer of the photonic crystal pattern into the In-
GaP/InP bilayer was performed by reactive ion etching (RIE) process. The next stage
consists in triggering the self-rolling of the bilayer by releasing the accumulated strains
via the etching of the burried-in InGaAs sacrificial layer, so called under-etching. The
SiO2 hard mask is removed beforehand by immersing the sample into a buffer oxyde
etch (BOE), a mixture of a fluoride ammonium solution and fluorhydric (HF) acid
during 2 minutes. The under-etching of the InGaAs layer is then carried out by wet
etching of the sample into a FeCl3 solution diluted in electrodeionized (EDI) water.
Both steps are skecthed on Figure 2.12. We note the selectivity of this solution with
respect to the lower InP layer. The volume ratio of the mixture FeCl3/EDI determines
the kinetics of the reaction: a slow evolution of the etching is obtained with a highly
diluted FeCl3 solution. The ratio can thus be adapted to control the speed of the reac-
tion and to avoid damaging the sample by over-etching undesired parts of the original
design.

Figure 2.13: Live frames extracted from HIROX microscope recorded video of the under-etching
process in FeCl3/EDI solution of volumic ratio 3/80.

The advance of the etching and the self-rolling of the membranes are tracked by
observing the immersed structures under a 3D numerical Hirox optical microscope.
Figure 2.13 shows six snapshots of the under-etching of one PCM specimen in a 3/80
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volumic ration FeCl3/EDI solution taken at t1 = 81 s from the beginning of the process
with a spacing of 3 seconds. We note that the self-rolling of the photonic membrane
evolves rapidly as only 15 seconds are needed to terminate the process and obtain an
horizontal rolled-up microtubes at t6 = 96 s. In the meantime, the membrane starts
detaching from the substrate competitively along both edges of the rectangular planar
template as represented on the frame at t2 = 84 s. At t3 = 87 s, the rolling along the
longest edge of the rectangle prevails on the shorter edge. The rolling trajectory slightly
deviates on the right on pictures recorded at t4 = 90 s and t5 = 93 s and rectifies at
t6 = 96 s to give a rolled-up PCM microtube which axis is aligned with the shortest
edge of the rectangular design. Once almost every membranes have rolled up into a
tubular shape after about 2 minutes and 20 seconds, the reaction is stopped by pouring
water on the sample and removing progressively any residuals of FeCl3 compound. A
special care is applied to always maintain a liquid meniscus on top of the structures,
while transferring the sample from one liquid to another, as capillarity forces tend to
deform them or drag them off the substrate.

Drying

The final step of the fabrication process entails the drying of the sample by the removal
of the liquid through evaporation. The critical point of this process is to manage to
extract the liquid without degrading the rolled-up structures. To this end, a super-
critical drying is performed, a standard method employed for the drying of food or
the preparation of biological samples, to achieve the liquid evaporation while maintain-
ing the structural integrity of the rolled-up structures. Indeed, during the liquid-gas
phase transition, surface tension and capillary forces exert on surrounding solid ele-
ments as the liquid rises towards the surface to turn into gas. As a consequence, such
phenomenon may damage the rolled-up microstructures being dragged off or pressed
against the substrate in the course of the liquid ascent. On the contrary, supercriti-
cal drying avoids crossing the liquid-gas boundary in the temperature-pressure phase
diagram by going around the critical point. Beyond that point, liquid and gas phases
become indistinguishable and form a superfluidic phase. As the solvent reaches the
supercritical region, temperature and pressure conditions are then adjusted to pass
through the gas region and achieve a complete extraction of the solvent by evapora-
tion. In practice, liquid carbon dioxide (CO2) at approximately 70 bar is used to attain
a critical point located at a relatively low temperature of about 31◦C which hence limits
thermal degradation of the solid structures. Initially immersed in water, the sample is
first transferred into acetone solvent which shows almost complete miscibility with liq-
uid CO2, and position it into a chamber at ambient conditions. Adjusting the chamber
temperature to few Celsius degrees to maintain a liquid phase, liquid CO2 is poured
on the sample to replace progressively the acetone. The temperature is increased up to
37◦C to pass CO2 critical point and obtain a superfluidic phase. The pressure is finally
diminished to enter the gas region and to evaporate completely CO2 solvent.

2.2.4 Conclusion

In conclusion, we have described in this section the fabrication cycle of photonic crystal
membranes (PCM) rolled up into tubular shapes on the basis of the rolled-up nanotech-
nology. The whole process divides into three main steps, namely the production of a
multi-layered InP-based stack, the conception of the PCM planar mask and the rolling
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of the PCM up into a horizontal cylinder. We summarize below the critical param-
eters of the technical processes involved at each stages which allow the realization of
high-quality photonic microtubes with a high degree of control on structural properties
defined beforehand by numerical simulations.

• The production of the multi-layered InP(substrate)-InGaAs(sacrificial)-InP-InGaP
precursor is performed by molecular beam epitaxy (MBE) deposition technique.
This method enables the growth of crystalline material layers with atomic preci-
sion and precise composition controlled respectively by real-time in-situ RHEED
and ex-situ X-ray diffraction measurements. Consequently, we can achieve a high
control on the curvature radius and membrane wall thickness of the final tubular
geometry directly related to thicknesses and composition of InP-InGaP bilayer.
However, we have stressed that the uniform deposition of layers is guaranteed up
to a critical thickness depending on material composition and growth parameters.

• The planar mask plays a crucial role as it defines the photonic crystal pattern
and the template to achieve the rolling of the PCM into a cylindrical geometry.
Its production is carried out through electron-beam lithography on a resist char-
acterized by nanometric resolution controlled by the exposure dose. It is then
transferred across the InP-InGaP bilayer via reactive ion etching (RIE) process
as a combination of physical and chemical mechanisms which leads to vertical
etching slope.

• Chemical etching of the buried-in InGaAs sacrificial layer, or under-etching, trig-
gers the self-rolling of the PCM into an horizontal tube. The kinetics of the
reaction is controlled by the dillution rate of the etching solution and monitored
by in-situ real time microscopy observation. The fabrication cycle ends up with
the supercritical drying of the sample which preserves the structural integrity of
the rolled-up microstructures.

2.3 Optical characterization

The present section introduces the two principal methods used in the thesis to perform
the optical characterization of rolled-up photonic structures. We present in the first
place a customized near-field optical microscope (SNOM) setup providing maps of
the modes confined inside tubular photon cages via raster scan of the electric field
intensity. We explain in the second place the principles of angular-resolved reflectivity
and photoluminescence measurements conducted on rolled-up photonic structures to
extract experimental dispersion diagrams. Both experimental techniques results are
thus available for comparison with simulation results.

2.3.1 Scanning near-field optical micrcoscopy (SNOM)

Principles of near-field optical measurements

Incident light diffracted on any object generates two types of electromagnetic fields.
The first type corresponds to propagating waves carrying low spatial frequency informa-
tion, namely large details of the object compared to the excitation wavelength λ. The
propagating field evolves far distances to the sample, so-called the far-field. Conversely,
the second type, labelled as the evanescent field, forms non-propagating waves located
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within few nanometers from the sample surface, so-called the near-field. It encodes
high spatial frequencies, namely the subwavelength-sized details of the sample.

Traditional optical devices collect the propagating part in the far-field and filter out
high spatial frequencies contained in the evanescent waves. The filter’s cutoff frequency
determines the resolving power achievable in classical optics. For instance, Abbe’s
criterion evaluates the maximum resolution ∆x attainable with optical microscopes to
∆x = 0.6λ/NA, with λ the wavelength of the incoming light and NA the numerical
aperture of the optical elements.

The detection of the evanescent waves containing high spectral information is at the
heart of the near-field optics microscopy, referred to as the scanning near-field optical
microscopy (SNOM), allowing higher lateral resolution than diffraction-limited optics.
In a series of seminal works in early 1928, Synge has laid the theoretical foundations
of the SNOM. The idea consisted in localized illumination through a subwavelength
aperture realized in a metallic film placed at a subwavelength distance of the sample
surface. The lateral displacement of the aperture across the sample surface would image
subwavelength details. Most importantly, Synge had identified the two main critical
parameters determining the final lateral resolution: the size of the aperture and the
aperture-sample distance.

It was not until the 70s that practical realizations of SNOM confirmed the po-
tential of near-field optics to obtain subwavelength-resolved images. First, in the mi-
crowave domain with Ash and Nichols, then at optical frequencies with Pohl’s works,
for instance, the lateral resolution attained 1/60 and 1/20 of the excitation wave-
length, respectively. The modern versions of SNOM result from technological advances
and specifically the development of scanning probe microscopy (SPM), including scan-
ning tunnelling microscopy (STM) and atomic force microscopy (AFM). In particular,
SNOM probes have evolved toward tapered fibres with a sharp nanometer-sized tip to
collect samples’ near-field [10]. Moreover, scanning stages borrowed from AFM setups
allows precise control of the vertical and lateral position of the probe based on tubu-
lar piezoelectric actuators. In general, the probe mounted on a tuning fork vibrates
parallel to the sample surface. Close to the sample, shear forces damp the oscillations
of the probe owing to attractive interaction. Maintaining a constant oscillations’ am-
plitude by a feedback system on the extension of the piezoelectric tubes leads to a
constant probe-sample distance while scanning the sample’s surface. In addition to the
optical signal collected by the probe, outputs of the feedback loop provide topographic
information on the sample’s surface. Finally, current SNOM setups show versatility
differing in probes’ nature and the operational mode, working in illumination, collec-
tion or illumination-collection modes. In the next part, we highlight particularly the
relevance of the SNOM technique to perform the optical characterization of fabricated
tubular photon cages and extract the modal response.

Optical characterization of tubular cavities

In principle, owing to the high reflective properties of the membrane wall, tubular
photon cages achieve efficient confinement of light in the hollow air-filled core, both in
the transverse and axial directions. Consequently, the modes emerging in the cavities
exhibit low leakage in free space, rendering conventional far-field detection methods
inaccessible.A possible strategy to extract the modal response consists of inserting an
emitter or a dipole to probe the modes directly inside the cavity.

Toward this goal, the SNOM method represents a suitable platform for multiple rea-
sons. First, the SNOM scanner stage enables a precise centring and controlled insertion
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of the probe in the hollow part of the tubular cavities. Second, the SNOM illumination-
collection operation mode allows simultaneous optical excitation and collection of the
cavity modal response. Indeed, nano-aperture probes act both as nano-antennas and
nano-detectors.

In particular, we use in the thesis a specific type of nano-aperture probe, the bowtie
nano-aperture (BNA) probe, which fabrication divides into three steps. The first step
involves forming the probe tip by the polymerization of a photosensitive polymer on
top of a monomode SMF-28 fibre. The operation produces a tapered tip jointed and
aligned to the fibre’s core as schematized in Figure 2.14 to ensure optimum coupling
conditions. The next step consists in covering the tip with a 0.1 um-thick Aluminum
(Al) coating prior to the nano-aperture creation. The apex of the tip is finally patterned
into a bowtie shape via focused ion beam (FIB) milling as schematized in Figure 2.14,
allowing a high resolution of the final form.

The so-formed BNA holds much interest as it acts as a nano-antenna with a resonant
behaviour at 1.55 um for incident light polarized exclusively along the gap symbolized
by an orange arrow in Figure 2.14. Moreover, Mivelle et al. have reported in [11] an
intense concentration of light, at the resonance, along the gap with an enhancement
factor estimated to 120, increasing the probe collection efficiency dramatically. The
BNA probe fulfils therefore the requirements of illumination-collection mode, acting
as an integrated nano-source and a highly efficient nanocollector. The BNA polar-
ization sensitivity also allows to filter the modes for which the electric field orients
perpendicularly to the cavity axis exclusively, called transverse electric (TE) modes
in later chapters. The polarization selectivity is all the more valuable as it facilitates
the detection and discrimination of a certain kind of modes in case of high modal
density of tubular cavities. The probes used in this thesis were fabricated by Dusan
Nedeljkovic in Novalite company and Thierry Grosjean in the FEMTO-ST laboratory
in the framework of the ANR NANOEC project involving the INL. We may refer to
Thanh-Phong Vo’s thesis [12] for a detailed fabrication process and analysis of BNA
probes’ properties.

Figure 2.14: Bowtie-nanoaperture (BNA) probe. Left schematics: polymer tip grown on top of a
monomode fiber and covered with an Aluminum (Al) coating. Right schematics: bowtie nano-aperture
at the apex of the tip. The BNA behaves as a nanoantenna with resonant behaviour at about 1.55
µm for incident light polarized along the bowtie gap (orange arrow).

In summary, we have pointed out the advantages of using a BNA probe to assess
the modal response of tubular photon cages. Indeed, the BNA tip shows versatility
combining the ability to inject and collect the optical signal (illumination-collection
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mode), polarization sensitivity, and high resolution imaging. In contrast, other metal-
coated aperture probes exhibit lower signal throughput and polarization independence
while apertureless dielectric probes generate scan pictures with lower spatial resolu-
tion. However, the optical characterization of the tubular microstructures necessitates
the insertion of the probe inside the cavities. It implies customizing the conventional
SNOM set-up to drive the probe’s tip carefully down into the photonic tubular cavi-
ties. We present in the following part the tailored SNOM set-up assembled at INL by
Aziz Benamrouche to tackle the probe’s insertion and measure photon cages’ optical
response.

Customized SNOM setup

In addition to functionalities proper to the illumination-collection mode, the customized
SNOM setup includes a specific positioning stage combined with a visualization system
to achieve a controlled approach of the probe into the cavities.

Figure 2.15: Schematics of the customized scanning near-field optical microscopy (SNOM) setup
operating in illumination-collection mode to extract maps of the modes inside tubular photon cages.

The visualization panel in the bottom right corner of Figure 2.15 encompasses both
the scanning and monitoring systems. The probe mounted on a SNOM head (NT-
MDT product) translates parallel to the sample via the action of piezoelectric tubes.
A tuning fork glued to the probe ensures the sole vertical stability of the fibre-probe
ensemble. A screw on the top of the SNOM head allows a coarse vertical approach
of the probe toward the sample, refined then by a step-by-step motor. We place the
sample on a Teflon pedestal positioned on a tripod stage. The driving-in of each tripod’s
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constitutive screws determines the orientation of the sample. It aims to align the axis
of the tubular cavities with the probe’s axis. We illuminate the sample-probe system
with a fibre light source diffused by the Teflon wall for visualization purposes. Two
visible-range cameras (0.58-7X, 0.004-0.550 N.A., Navitar products), labelled C1 and
C2 in Figure 2.15 and oriented perpendicularly, capture the probe-sample ensemble to
guide the probe alignment procedure and avoid any contact between the tip and the
microstructures.

The illumination section shows the TUNICS laser source, which provides the ex-
citation signal in the probe with a tunable wavelength ranging from 1.450 to 1.580
µm down to 0.1 nm precision. We maintain the source power below 0.5 mW to avoid
thermal degradation of the BNA probe. At the tip level, the BNA radiates the excita-
tion signal and collect the electric field that travels back into the fibre towards a beam
splitter.

In the collection panel, the beam splitter divides excitation and collected signals
with a ratio of 10/90. We record the entire spectral range of the collected signal in
the spectrometer. The InGaAs detector, cooled down by a Peltier system, converts the
optical signal into electronic data.

We install a heterodyne detection system to improve the signal-to-noise ratio. In
principle, a function generator modulates the source excitation with a 1 kHz rectan-
gular carrier signal. Based on the modulation signal, the lock-in amplifier filters the
optical signal at the output of the InGaAs detector and discards the remaining noise.
The controller unit finally processes the filtered optical signal to make it readable by a
computer and generate maps of the electric field intensity.

To sum up, we have described the main components of the customized SNOM
setup used in the present thesis to assess the optical response of tubular photon cages.
By contrast with traditional SNOM setups, ours incorporates specific monitoring and
positioning systems to achieve the insertion of the probe inside the cavities. Precisely,
it enables the careful approach, the alignment and the centring of the probe according
to a targeted tubular cavity’s surface, a condition to realize reliable measurements. We
detail in the next part the three procedures abovementioned, hence requiring special
care.

Preparation of SNOM measurements

The extraction of modes’ profiles in the hollow core of tubular photonic cavities requires
approach, alignment and centring procedures of the probe to the microstructures’ sur-
faces.

The first step consists of a coarse approach of the probe’s tip toward the sample’s
surface by manipulating the SNOM head’s screw. We monitor the operation via the
two orthogonal cameras to evaluate the distance to the sample and avoid damaging the
tip. Once both the tip and sample become visible, we move the sample and modify the
cameras’ focus to observe both the probe and a targeted cavity distinctly. We adjust
the orientation of the sample via the tripod’ screws to align vertically the tip and the
cavity. We perform preliminary scans to attest the quality of the alignment over the
cavity’s cross-section.

The second step entails a refined approach of the probe’s tip using the step-by-
step motor while proceeding to the final settings of the camera’s focus. The snapshot
represented in Figure 2.16 shows a general view of the probe and the tilted sample.
The inset close-up view from the numerical zoom attests to the high-quality vertical
alignment between the tip and the standing cage.
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In the third step, we drive the tip in the close vicinity to the cavity’s bottom face
as schematized in Figure 2.16.b), and we launch a scan spanning a large area. We
present in Figure 2.16.c) the resulting 40 × 40 µm2 map of the electric field intensity
recorded at an excitation wavelength λ = 1.530 µm over a 30 µm-diameter cavity.
We estimate the lateral resolution of the scan to 80 nm, allowing the observation of
modes with fine details. The scan reveals concentric azimuthal patterns, suggesting
the probe’s sensitivity to cavity’s modes. It also indicates approximately the cavity’s
position. As a guide, we have outlined in black dashed line the membrane wall of the
30 µm-diameter cavity based on the central azimuthal ring. We refine the centring of
the probe to the cavity’s axis with similar scans.

Figure 2.16: a) Snapshot of the SNOM probe with the tip approaching the surface of a photon
cage specimen. Inset picture: numerical zoom to show the vertical alignment of the probe and the
tubular photonic structure. b) Schematics of the probe scanning the very top of the photon cage of
radius ρc and length L. c) Map of the electric field intensity recorded at the excitation wavelength
λ = 1.530 µm on the top of the cage, spanning a 40×40 µm2 zone. The black dashed line delimits the
cage membrane wall.

Conclusion of SNOM optical characterization method

In this section, we have presented the scanning near-field optical microscopy (SNOM)
as a suitable technique for probing the modes confined inside tubular photon cages,
according to the following key points:

• In the illumination-collection mode, the SNOM aperture probe inserted inside
the cavity simultaneously injects the excitation signal and collects the optical
response, overcoming far-field detection bottlenecks.

• We use a bowtie nano-aperture (BNA) probe, which acts as an integrated nano-
source, a highly efficient nano-collector and exhibits polarization selectivity.

• A customized SNOM setup allows us to achieve a careful approach, a very satis-
fying vertical alignment, and the centring of the probe to the cavities’ axis.

• After insertion inside the cavities, we generate maps of the modes by a raster
scan of the electric field in the cross-section.

2.3.2 Angle-resolved spectral measurements

Angle-resolved spectroscopy consists in the measurement of both spectral and angular
dispersion information of structures’ modes. Combining both information, we recon-
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struct experimentally the band diagrams of fabricated structures and confront them to
theoretical predictions.

Principle of angle-resolved measurements

By definition, the construction of a band diagram requires the acquisition of the modes’
wavelengths and wave vectors. On the one hand, spectroscopic measurements allow
collecting spectral information of the modes. Fourier optics, on the other hand, provides
information related to the modes’ wave vector. In particular, Fourier optics relies on
Fraunhofer diffraction, which establishes a proportional relation between the far-field
distribution and the spatial Fourier transform of the field amplitude. In practice, we
observe the spatial frequencies distribution by projecting the far-field amplitude in the
focal plane of a converging lens, also called the Fourier plane. The lens acts, therefore,
as a Fourier transforming system.

Figure 2.17: Simplified schematics of the Fourier optics setup allowing the imaging of the Fourier
components of the sample’s emission.

We present in Figure 2.17 a simplified schematics of the Fourier optics setup used to
extract wave vector components of the structures’ modes. It comprises three converging
lenses noted (Lobj), (LF), and (Lfoc) standing for the objective, Fourier and focalization
lenses, respectively, placed in between the sample and a projection system (screen or
CCD sensor). We explain, in first approximation, the propagation of light emitted
from the sample toward the screen using geometrical optics considerations. Therefore,
in the general case, a plane wave at incidence θ to the normal of the sample surface
(here coinciding with the x axis) focuses in the focal plane of Lobj at a distance h to
the optical axis (horizontal dashed line). Noting fobj the objective focal distance, basic
trigonometry implies the following relation between θ and h:

tan θ =
h

fobj

. (2.6)

Placing the Fourier lens (LF) at its focal distance fF to the objective focal plane,
the plane wave Fourier components project on the screen, at the focal distance ffoc.
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Similarly to Equation (2.6), we relate the angle α with the spatial coordinates h and
z:

tanα =
h

fF

=
z

ffoc

. (2.7)

Finally, identifying h in Equations 2.6 and 2.8, we deduce the relation between the
angular dispersion θ and the z coordinate:

tan θ =
fF

ffocfobj

z = Cz, (2.8)

with the ratio C of the lenses’ focal distances. In practice, the objective numerical aper-
ture, noted NA, limits the angle of incidence θ to a maximum value θmax = arcsin(NA),
corresponding to a maximum coordinate zmax. We determine, therefore, the ratio C
according to:

C =
tan (θmax)

zmax

. (2.9)

Moreover, the projection of the wave vector onto the z axis writes as:

kz = ~k · ~ez = |~k| sin θ =
2π

λ
sin θ, (2.10)

where λ designates the wavelength of the plane wave. Finally, combining Equations
2.8 and 2.10, we obtain the following relation:

kz =
2π

λ
sin (arctan (Cz)) , (2.11)

which associates the image formed at z with a unique wave vector component kz.
Therefore, the measurement of the angular dispersion on the screen gives access

to the Fourier transform components of the plane wave. Combined with the spectral
information dispersed along the other direction of the screen (here the y axis), we

build the dispersion diagram λ = f(~k) of the sample. However, we only extract the
dispersion of the structures’ modes located above the light line, hence able to couple
to the radiation continuum, but not pure guided modes. Moreover, owing to the two-
dimensional screen, we record in our example the dispersion along the z axis direction
related to the wave vector component kz exclusively. In practice, we fix the k-direction
of the dispersion diagram by performing a spatial filtering of the image collected on
the screen with a slit aligned with the targeted direction. Finally, we note the possible
visualization of the sample in real space by removing the Fourier lens.

Presentation of the setup

We show in Figure 2.18 a schematics of the setup dedicated to angle-resolved spectral
measurements. It comprises notably the successive converging lenses (objective, Fourier
and focalization), the slit, and the spectrometer mentioned earlier.

The setup offers two operation modes collecting either the photoluminescence re-
sponse of samples embedded with quantum dashes (QDas) or the reflection signal. In
the photoluminescence mode, we pump the structures with a laser diode (PDL 800-D,
PicoQuant) emitting picosecond impulsions at 968 nm. In the reflectivity mode, we
illuminate the sample when with an halogen lamp (SLS-301, Thorlabs). We change
the from reflectivity to photoluminescence configuration by rotating a mirror to guide
the laser beam toward the sample.
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Figure 2.18: Setup for the realization of angle-resolved spectral measurements on photonic mi-
crostructures to retrieve their band diagrams experimentally.

The sample is mounted on a translation stage to adjust its position to the objective
focal distance and align the structures with respect to the optical axis, hence the
excitation spot. The objective both focuses the excitation signal onto the structures
and collect the photoluminescence or reflection response. We use an objective lens of
numerical aperture (NA) of 0.42 or 0.8 to observe angles of ±25◦ or ±53◦ corresponding
to maximum wave vector norms of 1.7 or 3.2 µm−1. Large (small) values of NA enlarges
(reduces) the angular limit of the dispersion while focusing the excitation spot on a
smaller (larger) zone of the sample. The measurement of the modes’ dispersion along
the axis of photonic tubular cavities necessitates to align the tubes’ axis along the slit
orientation. To this end, the Dove prism allows to rotate the direction of the light
beam collected by the objective with respect to the sample surface normal.

The spectrometer contains a grating monochromator which disperses spectrally the
collected signal. Three gratings noted A, B and C with periods of 150, 600 and 900
lines/mm provide a spectral resolution of 120, 20 and 10 nm, respectively. However, a
smaller resolution requires several measurements to cover a large spectral range.

An infrared camera finally collects the dispersed optical signal on a matrix of 620
× 512 pixels consisting of InGaAs sensors with a detection range from 0.9 to 1.7
µm. Thermoelectric cooling system and circulating water allows the reduction of the
electronic noise.

2.4 Conclusion of the chapter

In this chapter, we have introduced the different methods of simulation, fabrication and
optical characterization for the conception and study of rolled-up PCM microstructures.

In the first section, we have presented the rigorous coupled-wave analysis (RCWA)
and the finite-difference time-domain (FDTD) methods employed to the simulation of:

• the PCM reflectivity spectrum at normal and oblique incidence (RCWA);
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• the spectral response of tubular cavities (FDTD method)

• the band structure of periodic photonic structures, regardless of the geometry
(FDTD method).

In the second section, we have detailed the fabrication process of rolled-up PCM
microtubes composed of the following main steps:

• the production of the multi-layered precursors by molecular beam epitaxy (MBE);

• the design, fabrication and transfer of the planar PCM mask by successive e-beam
lithography and reactive ion etching procedures;

• the rolling of the PCM into a tubular shape by under-etching process and the
drying of the sample;

In the third section, we have described the two main setups dedicated to the optical
characterization of the fabricated tubular micro-objects:

• a customized scanning near-field optical microscopy (SNOM) setup to map the
modes confined into tubular photon cages;

• an angle-resolved spectroscopy setup to construct the band diagram of fabricated
structures by collecting the photoluminescence or reflection signal.

In particular, we apply the previous methods in the following chapter for the con-
ception and characterization of tubular photon cages.
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Chapter 3

Design and simulation of photon cages

Qui craint de souffrir, il souffre déjà de ce qu’il craint.

Michel de Montaigne (Essais, III, 13)
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3.1 Introduction

In the previous chapter, we have introduced the main tools to achieve the conception of
rolled-up PCM microstructures, including the design, simulation, fabrication, and opti-
cal characterization steps. In the following two chapters, we focus on realizing tubular
photon cages consisting of rolled-up 2D PCM mirrors and capable of 3D confinement
of light in air. In particular, the present chapter deals with the design and the optical
simulation of the cages. The first section presents the conception of a broadband and
highly efficient 2D PCM mirror acting as the cages’ membrane wall. Moreover, we
compare the reflection performances of the PCM mirror with a standard gold mirror
and an equivalent non-structured InP-made membrane. We finally assess the robust-
ness of the PCM mirror at oblique incidences. The second section concentrates on the
theoretical estimations of the tubular photon cages’ optical properties. We use in first
approximation the analytical model of the cylindrical cavity resonator to apprehend the
modal response of the 3D hollow microresonators. We perform then finite-difference
time-domain (FDTD) simulations to approach the optical response of the photon cages
more realistically. We finally evaluate the consistency of both models.
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3.2 Design of the planar two-dimensional photonic crystal

mirror

Photon cages are 3D tubular photonic micro-resonators based on the bending of 1D or
2D photonic crystal membranes (PCM). The reflection properties of the PCM enables
the trapping of light in the hollow part of the micro-cavities. The efficiency of this
confinement depends on the performances of the PCM mirror. We explained in 1.2
that proper engineering of the dispersion of the modes supported by the PCM, by
adjusting the photonic crystal lattice parameters, can enhance and extend the spectral
range of the PCM reflection properties. On the model of 1D PCM photon cages
previously introduced, we realize photon cages based on 2D PCM. Therefore, this
section aims to produce the building block of those photon cages: the 2D PCM mirror.
In the first part, we present the PCM structure and adjust the lattice parameters to
achieve broadband and efficient reflective behaviour in the near-infrared domain around
1.55 µm, the telecommunication wavelength. We assess the reflectivity of the PCM
numerically, at normal incidence, using the RCWA method. In the second part, we
compare the PCM’s reflectivity to an equivalent gold mirror and plain InP membrane
to assess the advantages of microstructure on the PCM mirror’s performances. We
finally evaluate the robustness of the PCM high reflectivity at oblique incidence through
RCWA simulations.

3.2.1 Reflection properties at normal incidence

Figure 3.1: a) Schematics of the photonic crystal membrane (PCM): a triangular lattice, with a
period a, of air holes (white circles) of radius r, etched in an Indium Phosphide (InP) membrane (blue

background). The electric field ~E orients in the plane of the PCM with the angle φE taken from the
x axis. b) Schematic perspective view of the reflection of incident light onto the PCM of thickness h.

We chose a 2D photonic crystal pattern as depicted in Figure 3.1.a), consisting of
a triangular lattice, with a period a, of circular air holes (white holes) with a radius r
etched in a dielectric membrane made of Indium Phosphide (InP) material (pale blue).
The optical dispersion of the InP material comes from the model established in [1].
We simulate the optical response of the suspended PCM with thickness h and infinite
lateral extension to a plane wave excitation, using the RCWA method through the S4

software. We extract the spectral evolution of the reflectivity R(λ) (red arrow) of the
PCM at normal incidence as schematized on the perspective view of the PCM in Figure
3.1.b). It is noteworthy that transverse electric (TE) and transverse magnetic (TM)
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polarizations coincide at normal incidence. However, we identify the orientation of the
electric field ~E in the PCM plane (xy plane) with the angle φE formed with the x axis
as shown in Figure 3.1.a). The thickness h refers to the thickness of a homogeneous
layer of InP.1 We also notice that any polarization decomposes linearly for instance in
the basis of the directions φE = 0◦ and φE = 60◦. Since both directions are equivalent
due to the C6 lattice symmetry, the optical response of the PCM at normal incidence is
therefore isotropic. Consequently, we restrain the computation of the PCM reflectivity
to the orientation φE = 0◦ ( ~E along the x axis). The purpose of the calculations is to
find a set of parameters (a, r, h) to achieve high reflection behaviour (R(λ) > 95%) of
the PCM on a broad (> 100 nm) spectral interval.

Figure 3.2: Maps of the PCM reflectivity R within the spectral window [0.9− 1.8] µm for different
PCM thickness h = 0.1, 0.2, 0.3, 0.4 µm and varying radius of the holes r = 0.1, 0.2, 0.3, 0.4 µm. The
lattice period is fixed at a = 1 µm.

We carry out a first series of computations of the PCM reflectivity R(λ) at normal
incidence in the interval [0.9−1.8] µm. We explore a large spectral window deliberately
to observe the dynamics of the PCM modes while varying the structural parameters.
Starting with a period a = 1 µm, a sweep of the radius r and the thickness h allows
to select a first set of parameter (r, h) for which we observe a large spectral band
of high reflectivity. The four plot areas in Figure 3.2 report the simulation results
for four values of the thickness h = 0.1, 0.2, 0.3 and 0.4 µm. For each value of h,
the plot area divides into four reflectivity spectra corresponding to a radius r ranging
from 0.1 to 0.4 µm. We ensure that r < a/2 to avoid the overlapping between two
adjacent holes. We conducted the simulations with a low number of diffraction orders
(N = 20) to obtain a rapid and qualitative trend of the reflectivity for each setting.
At first glance, several combinations (r, h) are acceptable as the corresponding spectra
present broad (> 100 nm) (reddish) intervals of high reflectivity (R > 0.9), called HR
zones thereafter for high-reflectivity zones. The HR zones correspond to PCM guided
resonances characterized by large bandwidths. We focus afterwards on the combination
(r = 0.4, h = 0.2) µm which exhibits a HR zone spanning from 1.24 to 1.4 µm.

1In reality, the fabricated membrane consists of an InGaP/InP bilayer. However, supposing small
proportions of Gallium (Ga) element in the InGaP layer, we expect similar optical behaviour of InGaP
and InP layers.
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The second step for the adjustment of the PCM parameters aims to shift and
centre the HR zone around the wavelength of interest 1.55 µm. Toward this goal, we
fix the membrane thickness h = 0.2 µm and we increase the radius r and the period
a simultaneously, maintaining a constant ratio r/a = 0.4. The reflectivity spectra
of the PCM for r ranging from 0.45 µm to 0.5 µm are displayed in Figure 3.3. We
observe that the HR zone undergoes a redshift as r and a increase. In particular, for
r = 0.480 µm and a = r/0.4 = 1.2 µm, the HR zone is approximately centred on the
targeted wavelength of 1.55 µm and the reflectivity reaches a maximum value of nearly
99 %.

Figure 3.3: Spectra of the PCM reflectivity R(λ) within the spectral window [0.9 − 1.8] µm for
increasing value of the air holes’ radius r between 0.45 and 0.5 µm and the lattice period a but
constant ratio r/a fixed at 0.4. The PCM thickness h is set to 0.2 µm.

We finally perform a finer tuning of the thickness h to improve the PCM reflective
behaviour at normal incidence. Indeed, higher-order membrane modes add to the
dispersion diagram of thicker PCM, increasing the probability of two leaky modes (or
guided resonances) to overlap and form a wider HR zone. The reflectivity R(λ) spectra
are shown in Figure 3.4.a) for thicknesses h varying gradually from 0.2 to 0.25 µm with
a 10 nm step. We also present a mapped version of the previous plot Figure 3.4.b) to
visualize the dynamics of the modes properly. At h = 0.2 µm, we distinguish three
distinct spectral features: the HR zone at around 1.6 µm and two additional leaky
modes that we note LM1 and LM2 which maximum of reflectivity locates at about 1.3
and 1.8 µm, respectively. The two modes LM1 and LM2 undergo a strong redshift and
a spectral broadening as the thickness h increases. By contrast, the HR zone hardly
evolves for higher h and the wavelength of the reflectivity maximum only redshifts by
0.6 % of its initial value of 1.55 µm for h = 0.2 µm. At h = 0.25 µm, the situation
favourably evolves towards the merging between LM2 and the HR zone, forming a
broader and highly efficient HR zone. However, the modification of the thickness h is
not inconsequential at the level of:

• the optical properties of the PCM mirror: the thickness h influences both the
value and the bandwidth of the planar PCM reflectivity R(λ). In particular, we
have shown earlier that an increase of h leads to a more efficient and broadband
PCM mirror.

• the optical properties of the tubular cavity knowing that the curvature radius ρc
of the final tubular cage increases with h according to Equation (1.21) in Chapter
1. On the one hand, large values of the radius ρc with respect to the PCM
geometrical parameters (a, r) preserves the reflection properties of the planar
PCM mirror. On the other hand, rolled-up PCM with a large curvature radius
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form highly multi-modal tubular microcavities with degraded performances, as
shown in later sections.

• the structural properties of the tubular cavity produced by the self-rolling of an
epitaxially grown InP/InGaP bilayer of total thickness h = h1 + h2 with h1, h2

the thicknesses of InP and InGaP individual layers. The epitaxial growth imposes
a critical value of h2, noted hc, above which relaxation phenomenon can occur
within the deposited InGaP layer. In particular, for Gallium (Ga) compositions
x in the order of 0.1, we report a critical thickness hc ' 80 nm consistently with
the 70 nm limit found in other works [3] for x = 0.2− 0.25.

According to Equation (1.21) in Chapter 1, given h2 = 80 nm and x = 0.1, the radius
of the final cylindrical cavity ρc varies from about 17.36 µm to 23.94 µm (∼ 38 % raise)
as h ranges from 0.2 to 0.25 µm. We finally find a good compromise between a broad
reflecting behaviour of the PCM and a relatively low value of ρc by fixing the PCM
thickness to h = 0.23 µm.

Figure 3.4: a) Spectrum of the PCM reflectivity R within the spectral window [0.9-1.8] µm for given
r = 0.4a, a = 1.2µm and varying thickness h from 0.2 to 0.25 µm. b) Mapped version of the previous
graph.

We have designed a broadband and efficient PCM mirror with lattice parameters
(a = 1.2, r = 0.48) µm and thickness h = 0.230 µm. It exhibits a high reflecting
behaviour, namely R > 0.95, at normal incidence within a 130 nm-large near-infrared
interval ([1.53 − 1.66] µm). The PCM reflectivity R reaches a maximum value of
about 0.99 near 1.56 µm, close to the standard telecommunication wavelength. Most
interestingly and unlike 1D PCM mirrors, the reflection properties of the 2D PCM do
not depend on the electric field’s orientation at normal incidence.

3.2.2 Comparison with non-structured membranes

We have also compared the reflection performances of the PCM at normal incidence
to that of a non-structured gold mirror and InP membrane within the spectral window
[1.4− 1.8] µm.
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Figure 3.5: Reflectivity R(λ) spectra at normal incidence of the PCM membrane (RCWA simula-
tions) with optimized lattice parameters and of non-structured suspended InP-made and gold-made
membranes (calculated with Fresnel coefficients), all with a thickness of 0.230 µm. The purple dashed
line indicates the 95% limit of the reflectivity.

First, we have calculated theoretically using the Fresnel reflection coefficients (see
Appendix C for details of the expressions), the reflectivity spectrum at normal incidence
of a suspended non-structured 0.23 µm-thick gold slab and obtained the yellow curve
plotted in Figure 3.5. We have taken the dispersion relation of gold material from the
experimental works [2]. The gold membrane exhibits a very high reflecting behaviour,
with a reflectivity R stabilized at nearly 98 % over the entire spectral interval. However,
Figure 3.5 also demonstrates a competitive PCM reflectivity, represented by a blue
curve, which stays above the 95% high reflectivity limit over a 130 nm-large interval. It
even goes over the gold membrane curve, especially when reaching its maximum value of
99% at about 1.56µm. Despite excellent and broadband reflection properties, the gold
material is also a source of optical losses that may heat up and damage the components
in integrated devices. On the contrary, the InP material remains transparent in the
near-infrared domain which allows for external optical excitation.

Second, we have confronted the PCM reflection properties to the theoretical re-
flectivity of a suspended non-structured 0.23 µm InP membrane, again using Fresnel
formulas, represented by a red curve in Figure 3.5. We notice that the InP membrane
exhibits poor reflection properties as the reflectivity does not exceed 50 %. It even
reaches a minimum at nearly 1.45 µm, corresponding to a Fabry-Pérot transmission
resonance: 2hnInP = pλ, p ∈ Z∗, with nInP ∼ 3.16 the optical refractive index of InP at
about 1.55 µm. It proves the essential microstructure of the InP membrane to achieve
a high and broadband reflecting behaviour in the spectral range of interest.

In conclusion, the PCM mirror combines both plain gold mirror and InP membrane
advantages. It exhibits a high and broadband reflectivity while preserving the trans-
parency properties of InP material. Most strikingly, the high reflectivity of the PCM
originates from a micro-structured membrane mostly filled with air. Indeed, we esti-
mate the fraction of air in the PCM, namely the air filling factor FF = 2π/

√
3(r/a)2,

to 58%.
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Figure 3.6: Deviation to normal incidence. a) Incident light on the PCM oriented by the wave-vector
~k (red arrow) forming the angles θ and φ with the z-axis and x-axis directions respectively upon

projection (~k‖) on the PCM plane. The points Γ, K and M refers to the high-symmetry directions of
the triangular lattice first Brillouin Zone (FBZ) with orange shading. b) The p- (s-) polarization for

which the electric field ~E represented as a blue arrow is contained (orthogonal) to the incidence plane.

3.2.3 Reflection properties at oblique incidence

We have demonstrated so far the advantages of using a PCM to create a non-absorbing
broadband mirror operating in the near-infrared domain at normal incidence. We have
also evaluated the robustness of the PCM reflection properties in the more general case
of oblique incidence. To this end, we consider incoming light hitting the PCM surface
with the direction of the wavevector ~k forming an angle θ with the z-axis and an angle
φ with the in-plane x-axis direction as depicted in Figure 3.6.a). We note ~k⊥ and ~k‖
the projections of ~k onto the z-axis and the PCM plane, respectively. We identify the
high symmetry directions of the photonic crystal, Γ, K and M in the first Brillouin
zone (FBZ) delimited by an orange area. Furthermore, we decompose the polarization
of any incoming light in the basis of p-polarized and s-polarized radiations. For the
two reference polarizations, the electric field ~E is either contained or orthogonal to the
incidence plane as schematized in the two drawings in Figure 3.6.b).

We have simulated the reflectivity of the PCM for θ ranging from 0◦ to 50◦ with the
RCWA method in four specific configurations with φ = 0 or 90◦ and p- or s-polarized
light. We present the results of the simulations in Figure 3.7 and Figure 3.8. In both
figures, the left drawings indicate the orientations of ~k‖ and ~E‖ with respect to the
FBZ high symmetry directions. The right plots correspond to PCM reflectivity maps
(in %) in the spectral range [1.4− 1.8µm] as a function of the angle θ. We recall that,
at normal incidence, a high reflectivity (Rp > 95 %) zone covers the spectral interval
[1.53− 1.66] nm.

For the four configurations, we report a global shrinking and red-shift of the original
high reflectivity (HR) zone for increasing incidence angle θ. To quantify the shrinking
rate, noted ∆narrow, we extract the range and the bandwidth of the HR zone, noted
HR range and ∆λHR respectively, for each configuration at a fixed angle θ = 14◦. This
angle corresponds to the highest angle for which the simulation range [1.4-1.8] µm fully
covers the HR zone spectral extent in each configuration. We also evaluate the relative
deviation, noted ∆shift of each HR zone bandwidth in comparison to the 130 nm-large
bandwidth obtained at normal incidence. We gather all the results in Table 3.1. We
notice that increasing θ up to 14◦ strongly reduces the HR zone spectral extent for s-
polarized light and φ = 90◦, with ∆narrow reaching 69%. On the contrary, the HR range
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Figure 3.7: PCM’s reflectivity R(λ) at oblique incidence (angle θ) and orientation φ = 0◦. a) and

c): Orientation of the projections of the electric field ~E‖ (dashed blue arrow) and the wavevector ~k‖
(dashed red arrow) onto the PCM plane for p- (upper drawing) and s- (lower drawing) polarizations.
The points Γ, K and M indicate the triangular lattice FBZ (orange zone) high symmetry points. b)
and d): Maps of the PCM reflectivity Rp,s(λ) for p- (upper plot) and s- (lower plot) polarizations
within the spectral range [1.4-1.8] µm as a function of the angle of incidence θ.
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Figure 3.8: PCM’s reflectivity R(λ) at oblique incidence (angle θ) and orientation φ = 90◦. a) and

c): Orientation of the projections of the electric field ~E‖ (dashed blue arrow) and the wavevector ~k‖
(dashed red arrow) onto the PCM plane for p- (upper drawing) and s- (lower drawing) polarizations.
The points Γ, K and M indicate the triangular lattice FBZ (orange zone) high symmetry points. b)
and d): Maps of the PCM reflectivity Rp,s(λ) for p- (upper plot) and s- (lower plot) polarizations
within the spectral range [1.4-1.8] µm as a function of the angle of incidence θ.
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for p-polarized light and φ = 90◦ exhibits quite robust behaviour to oblique incidence
with the smallest ∆narrow of 15%.

φ Polar. θ (◦) HR Range (µm) ∆λHR (nm) ∆narrow (%) ∆shift (%)

0 p- 14 1.58-1.68 100 23 3
0 s- 14 1.70-1.79 90 31
0 s- 12 1.67-1.77 100 9

90 p- 14 1.60-1.71 110 15
90 p- 18 1.63-1.73 100 6
90 s- 14 1.66-1.70 40 69
90 s- 6 1.58-1.68 100 3

Table 3.1: Spectral characteristics of the PCM’s high-reflectivity (HR) zones (R > 95%) recorded at
oblique incidence (θ, φ) with p- or s- polarizations in Figure 3.7 and Figure 3.8. For each configuration,
i.e. φ = {0, 90}◦ and p-/s-polarizations, we report the range, HR range in µm, and the bandwidth,
∆λHR in nm, of the HR zone. The narrowing rate ∆narrow evaluates the relative deviation in %
between the HR bandwidth at θ = 0◦ (130 nm) and θ = 14◦. The shift rate ∆shift estimates the
relative shift (in %) between the wavelength of the maximum reflectivity of a 100 nm-large HR zone
at (φ,−p/− s, θ) and at normal incidence.

To complete the previous results, we estimate for each configuration the maximum
angle θ preserving a 100 nm-large HR zone. According to Table 3.1, except for s-
polarized light and φ = 90◦, the HR zone shows robustness at oblique incidence as it
maintains the 100 nm spectral width for θ up to few tens of degrees. In particular,
the configuration defined by p-polarized light with φ = 90◦ records the highest value
of θ estimated to 18◦. We also report a red-shift of few units of % of the HR zone
compared to normal incidence. On the contrary, we obtain the smallest θ (6◦) for
robust behaviour of the 100 nm-large HR zone with s-polarized light and φ = 90◦.

We have demonstrated that we could find a 100 nm-large spectral range within
[1.4 − 1.8] µm where the PCM exhibits high reflecting behaviour for incidence angles
up to a few tens of degrees. We also reported the most robust reflective behaviour in
the case of p-polarized light oriented and φ = 90◦ for which the HR zone maintains
its integrity up to 18◦ incidence angle. We have observed a redshift of the HR zone
position to a few units of % of its original position at normal incidence. Finally, the
PCM mirror’s performances degrade for higher incidence angles as the HR zone shrinks
progressively. We again note the smallest narrowing of the HR zone for p-polarized light
and φ = 90◦.
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Key points of the section

We have managed to design a 2D PCM mirror with adjusted lattice parameters
(a = 1.2, r = 0.48) µm and a thickness h = 0.23 µm and the following features:

• the PCM exhibits high reflection properties (R > 95%) at normal incidence
over a large (130 nm) spectral window [1.53−1.66] µm in the near-infrared
domain, comprising the 1.55 µm wavelength of interest;

• unlike 1D PCM, the 2D PCM reflective response shows isotropic behaviour
regarding the orientation of the electric field in the PCM plane, at normal
incidence;

• the PCM is made out of non-absorbing InP material unlike equivalent gold
membrane mirror and the structuring of the InP membrane is essential to
achieve high reflection properties;

• the high reflectivity spectral zone of the PCM stays preserved but red-shifts
at oblique incidence in the limit of inclinations angles of tens of degrees.

In keeping with the conception of photon cages based on rolled-up PCM mirrors,
the next step focuses now on the simulation of the optical properties of tubu-
lar micro-cavity formed by the rolling of 2D PCM mirror, as introduced in the
following section.

3.3 Analytical model of the cylindrical cavity resonator

We have completed the first stage of the tubular photon cages’ conception by design-
ing an efficient non-absorbing 2D PCM mirror operating within a broad near-infrared
spectral range. The second step consists in simulating the optical response of the 3D
hollow photonic micro-cavity formed by rolling the 2D PCM mirror up. We will first
use the analytic model of the cylindrical cavity resonator to investigate the modes of
our tubular cavity, approximating the photonic crystal membrane wall to a perfect mir-
ror. This simple theoretical model will provide us with quick preliminary estimates of
the type, spectral distribution, and field profiles of the modes supported by the cavity.

3.3.1 Introduction to the model

A cylindrical resonant cavity is a common device in the microwave domain employed for
high-sensitive detection of changes in materials’ dielectric properties and as frequency
meters. It consists of a hollow cylinder of inner radius ρc and length L with perfectly
reflecting membrane wall as sketched in Figure 3.9.a), allowing strong confinement of
the electromagnetic energy by exploiting resonances of the cavity. Its simple geome-
try and the knowledge of the boundary conditions enable the analytical resolution of
Maxwell’s equations inside the cavity. Consequently, we obtain the spectral and spatial
distributions of the resonant modes supported by the cavity. In particular, we use this
approach to obtain quick primary estimates of the optical response of rolled-up PCM
tubular cavities, assimilating, in first approximation, the PCM to a perfect mirror. We
summarize below the key results of the resolution of Maxwell’s equations for one type
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Figure 3.9: Cylindrical cavity resonator. a) Perspective view of a hollow cylindrical cavity resonator
with inner radius ρc, a length L and perfectly reflecting membrane wall. The cylindrical coordinate
system (ρ, φ) is introduced here appropriately. b) Top view (xy-plane) of the cavity which supports
two kinds of modes: transverse electric (TE) and transverse magnetic (TM) modes. For TE (TM)-

polarized light propagating in the direction of the wave-vector ~k (red arrow), the magnetic field ~H

(the electric field ~E) orients along the z-axis exclusively: ~H = Hz~ez ( ~E = Ez~ez).

of modes: transverse electric (TE) modes defined by Ez = 0 as represented in Figure
3.9.b). We explain later in Section 2.3 regarding optical characterization measurements
the choice to focus on TE modes. We note that similar calculations lead to the de-
scription of TM modes for which Hz = 0, hence not addressed in the present section.
We will refer to Appendix D for a step-by-step construction of the TE solutions which
follows a classical development used for instance in [5].

3.3.2 Infinite cylindrical cavities

We first investigate the modal properties of infinitely long cavities (L → ∞) filled
with a dielectric homogeneous medium of optical refractive index nmed and negligible
magnetic response (µ = 1) in the optical domain. For TE modes, the axial component
of the magnetic field Hz verifies the wave equation or Helmholtz equation:

∇2Hz + k2Hz = 0, (3.1)

with k = nmed ω the wavenumber and ω the pulsation. Assuming a plane wave solution
propagating in the z-direction (axis of the cylinder) Hz(ρ, φ, z) = hz(ρ, φ)e−jβz, with

β = ~k.~ez, the Equation (3.1) becomes in the cylindrical coordinate system:(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂φ2
+ k2

c

)
hz(ρ, φ) = 0. (3.2)

where kc designates the transverse component of the wave-vector ~k = ~kc + β~ez. The
notation kc will be fully realised in the following developments. Using the method of
separation of variables and considering the cylindrical symmetry, the general solution
of the Equation (3.2) expresses as:

h(m)
z (ρ, φ) = (A sin(mφ) +B cos(mφ))Jm(kcρ), m ∈ N, (3.3)

where A and B are constants. The integer m corresponds to the azimuthal order of the
TE mode and indicates the number of variations of the electromagnetic fields patterns
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in the ortho-radial direction (along ~eφ). The function Jm relates to the first kind Bessel
function at the order m described in Appendix D.

We determine the norm of the transverse wave-number kc by applying a boundary
condition. Interface electromagnetic conditions impose the continuity of the electric
field tangential component ~E‖ = ~Eφ + ~Ez, which reduces to ~Eφ as ~Ez = ~0 for TE
modes. Furthermore, the perfectly reflecting wall of the cylindrical cavity starting at
the inner radius ρc impedes the penetration of the electric field. Both conditions end
in the following boundary condition:

Eφ(ρ, φ) = 0 at ρ = ρc. (3.4)

Moreover, using Maxwell’s equations in cylindrical coordinates, we derive the expres-
sion of the ortho-radial component of the electric field Eφ(ρ, φ) from the single axial
component Hz so that, associated to Equation (3.3), we obtain:

E
(m)
φ (ρ, φ, z) =

jωµ

kc
(A sin(mφ) +B cos(mφ))J ′m(kcρ)e−jβz, (3.5)

where J ′m stands for the first derivative with respect to the variable kcρ of the m-th
order first kind Bessel function. The boundary condition established in Equation (3.4)
becomes:

J ′m(kcρc) = 0, (3.6)

which solutions correspond to the n (n ∈ N∗) roots of the function J ′m that we note
p′m,n. The first values of p′m,n are listed in the Table D.1 of Appendix D. The integer
n defines the radial order of TE modes and indicates the number of radial variations
of the electromagnetic field pattern. The wave-number kc takes therefore quantized
values expressed as:

kcm,n =
p′m,n
ρc

, (3.7)

which corresponds to the cutoff wave-number kcm,n above which the mode TEm,n exists
and propagates inside the cavity. We associate the cutoff frequency fcm,n which writes
then:

fcm,n =
kcm,n

2πnmed
=

p′m,n
2πρcnmed

. (3.8)

We also deduce the dispersion relation for each modes TEm,n:

k2
m,n =

ω2
m,n

c2
n2
med = k2

cm,n + β2
m,n =

(
p′m,n
ρc

)2

+ β2
m,n, (3.9)

where c stands for the speed of light and ωm,n corresponds to the pulsation of the mode
TEm,n. We have plotted in Figure 3.10.a) the dispersion diagrams ωm,n = f(βm,n)
of the modes TEm,n for the first values of the orders m = {0, 1, 2} and n = {1, 2}.
We notice that all the present modes lie above the light line in air (µ = ε = 1)
defined by ωm,n = km,nc, with c the speed of light. This behaviour holds actually for
every combinations of orders (m,n) of TEm,n modes and it has a potential interest for
optical characterization of the real micro-cavities. Indeed, such modes can couple more
or less strongly with radiated modes so that we generally detect them with far-field
measurements. We also note that the mode TE1,1 (yellow curve) is the first TEm,n mode
to emerge inside the cavity when increasing the excitation frequency. The propagation
constant βm,n corresponds to the norm of the projection of ~km,n onto the cavity axis
coinciding with the z-axis: βm,n = km,n cos θ with the angle θ identified in Figure 3.9.a).
By contrast with kcm,n , the component βm,n can take a priori any values. In particular,
for βm,n = 0, the mode TEm,n does not propagate along the axis of the cavity.
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Figure 3.10: a) Dispersion diagrams of TEm,n modes for the first orders (m,n) with a propagation
constant β along the z-axis. The dashed black line refers to the light line in air (µ = ε = 1) defined by
the equation ω = kc. b) Number of TE modes within the spectral range [1.4− 1.8] µm as a function
of the radius ρc of a cylindrical cavity resonator of infinite length L → ∞ (blue dot curve) and of
length L = 50 µm (orange star curve).

In the perspective of the cavities’ optical characterization, we estimate the number
and spectral spacing of TE modes for a cavity of radius ρc within a prescribed spectral
interval. We infer this information from the dispersion relation established in Equation
(3.8). Intuitively, an increase of the curvature radius of the cavity will lead to a higher
number of modes supported by the cavity. We represent the amount of TE modes in
Figure 3.10.b) as a function of the radius ρ of an infinitely long (L→∞) cavity, within
the range [1.4−1.8] µm. We notice that the number of modes increases with the cavity
radius, as expected. In particular, for a radius ρc = 17.5 µm obtained experimentally
by rolling a PCM of thickness h = 0.23 µm and Gallium proportion x ∼ 0.1 in the
InGaP layer, we observe that a maximum of 311 TEm,n modes coexist inside the cavity.
Moreover, calculating the spectral spacing between consecutive TEm,n modes, we report
a minimum of 0.005 nm between the modes TE43,4 and TE59,1. Though a high density
of TE modes and reported extreme spectral proximity, the experimental discrimination
of the modes also depends on the highest resolution achievable and the spectral overlap
of the modes, namely their quality factors.

Furthermore, the resolution of Maxwell’s equations allows us to find the analytic
expressions of the magnetic and electric components H

(m,n)
z (ρ, φ, z) and E

(m,n)
φ (ρ, φ, z)

of TEm,n modes. As mentioned previously, we derive the expressions of the remaining

components from the axial magnetic component H
(m,n)
z (ρ, φ, z) which gives:

E(m,n)
ρ =

−jωµm
k2
cm,nρ

(A cos(mφ)−B sin(mφ))Jm(kcm,nρ)ejβm,nz, (3.10)

E
(m,n)
φ =

jωµ

kcm,n
(A sin(mφ) +B cos(mφ))J ′m(kcm,nρ)ejβm,nz, (3.11)

E(m,n)
z = 0, (3.12)

H(m,n)
ρ =

−jβm,n
kcm,n

(A sin(mφ) +B cos(mφ))J ′m(kcm,nρ)ejβm,nz, (3.13)

H
(m,n)
φ =

−jβm,nm
k2
cm,nρ

(A cos(mφ)−B sin(mφ))Jm(kcm,nρ)ejβm,nz, (3.14)

H(m,n)
z = (A sin(mφ) +B cos(mφ))Jm(kcm,nρ)ejβm,nz. (3.15)

The constants A and B relate to the initial conditions. They weight the contributions
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of sin(mφ) and cos(mφ) terms which constitute acceptable solutions as they respect
the cylindrical symmetry. Simplifying (A sin(mφ) +B cos(mφ)) in C cos(mφ−ϕ) with
C2 = A2 +B2 and tanϕ = A/B, we note that A and B result in a phase shift ϕ to the
configuration (A = 0, B = 1) for which ϕ = 0. Consequently, different A and B change
the orientation of the fields’ patterns. Without loss of generality, we fix the symmetry
axes of the field patterns by setting A = 0. The theoretical patterns of normalized
fields intensity | ~E|2 = E2

ρ +E2
φ+E2

z (right panel) and | ~H|2 = H2
ρ +H2

φ+H2
z (left panel)

of TEm,n (m = 0, 1, 2 and n = 1, 2, 3) modes are showed on Figure 3.11. The maps are
plotted in the cylindrical cavity’s cross-section. We focus on stationary modes defined
by βm,n = 0 which lifetime in the cavity depends on the reflection power of the cavity
wall. We notice that the intensity patterns of modes TEm,n directly relate to the values
of the orders m and n:

• the azimuthal order m indicates the number of nodal planes (white dashed lines)
for the magnetic field intensity |H|2;

• the radial order n refers to the number of radial nodes (lobes) of the magnetic
(electric) field intensity |H|2 (|E|2).

Figure 3.11: Theoretical patterns of normalized fields intensity | ~E|2 = E2
ρ + E2

φ + E2
z and | ~H|2 =

H2
ρ + H2

φ + H2
z of TEm,n modes with m = {0, 1, 2} and n = {1, 2, 3} in the cross-section of infinite

cylindrical cavities delimited by a black circular line.

In particular, we observe that low azimuth order modes TEm,n, especially m =
{0, 1}, concentrate most of the electromagnetic energy in the centre of the cavity. This
feature is all the more interesting as the key point in opto-fluidic detection applications
consists in enhancing the overlap between the electromagnetic field and the sensing
targets. We quantify the ability of any mode TEm,n to concentrate the electric energy
by calculating the mode surface S(m,n) defined as:

S(m,n) =

˜
c
n2
med|E(m,n)(ρ, φ)|2ρdρdφ
n2
med|E

(m,n)
max |2

, (3.16)
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Figure 3.12: Surface maps of the normalized electric field intensity Inorm for a) the pure radial mode
TE0,22 and c) the mode TE1,22 appearing respectively at the cutoff wavelengths λc0,22 = 1.5732 µm
and λc1,22 = 1.6095 µm inside a cylindrical cavity of radius ρc = 17.5 µm. Profiles of b) the mode
mode TE0,22 and d) the mode TE1,22 are extracted from the the associate surface maps along the
x-axis. We indicate the mode surface of each of the modes expressed in units of λ2 with λ = 1.5 µm.
The red zone delimits the radius of the disk (dashed black arrow), 2.9 µm and 2.2 µm for the modes
TE0,22 and TE1,22 respectively, which concentrates most of the electric energy of the modes.

which corresponds to the inverse of the maximum of the normalized density of
the electric energy. In other words, it estimates the area which contains most of the
electric energy of the mode and hence where strong light-matter interaction occurs. In
particular, we calculate S(0,22) and S(1,22) associated to radial modes TE0,22 and TE1,22

at λc0,22 = 1.5732 µm λc1,22 = 1.6095 µm in a 17.5 µm-radius cavity. We note that the
wavelengths λc0,22 and λc1,22 stand close to the PCM reflectivity maximum located at
about 1.6 µm.

We notice the high concentration of light in the cavity centre for both modes on
the surface maps of the electric field intensity |E|2 plotted in Figure 3.12.a) and c).
We complete this appreciation by representing the profiles b) and d) of both modes
extracted from the surface maps along the x-axis at y = 0. We estimate the mode
surfaces of modes TE0,22 and TE1,22 to S(0,22) ' 11.5λ2 and S(1,22) ' 7.95λ2 in units of
λ2 with λ = 1.5 µm. Knowing that the cavity cross-section covers an area Ac = πρ2

c '
428λ2, the mode surfaces S(0,22) and S(1,22) thus represent about 2.7% and 1.9%, of the
cavity cross-section. In other words, most of the electric energy is contained in disks
of approximate radii 2.9 µm and 2.4 µm for the modes TE0,22 and TE1,22 respectively.
The disks encompass the first three and four lobes of maximum electric intensity as
shown of Figure 3.12.b) and d).

Finally, we observe that the surface of the first lobe of maximum of intensity, for
any mode TEm,n with low azimuthal order m = {0, 1}, shrinks as the radial order
n increases. We should consider this second feature in the light of calculations of
the modes’ quality factors and Purcell factors to evaluate the ability of the cavity to
improve for instance the spontaneous emission of external emitters.
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3.3.3 Finite length cylindrical cavities

In their shortened versions, cylindrical cavities, referred to as cylindrical cavity res-
onators, have a finite length L and perfectly reflecting top and bottom edges. Con-
sequently, the light also gets confined along the cavity axis coinciding with the z-axis
direction. It bounces back and forth on the top and bottom boundaries to form sta-
tionary waves at quantized frequencies. We write the general form of the transverse
electric fields (E

(m,n)
ρ , E

(m,n)
φ ) of modes TEm,n as the combination of two opposite waves

propagating along +z and −z-axis direction:

E
(m,n)
t (ρ, φ, z) = e

(m,n)
t (ρ, φ)(A+e−jβm,nz + A−ejβm,nz), (3.17)

with A+ and A− the waves’ amplitudes. Placing the origin of the z-axis in Figure
3.9.a) at the cavity bottom edge, the top edge locates at z = L. By application of
interface conditions at the perfectly reflecting top and bottom cavity frontiers, the
tangent electric field cancels at z = 0 and z = L. The boundary conditions derives
then from Equation (3.17) as:{

A+ + A− = 0,

A+e−jβm,nL + A−ejβm,nL = 0.
(3.18)

The first equation of the system imposes A− = −A+ while the second reduces to
sin(βm,nL) = 0, implying the quantization of the z-axis component of the wave vector
according to:

βm,n,p =
pπ

L
, p ∈ N, (3.19)

where the integer p designates the axial order and describes the variations of the electro-
magnetic fields patterns along the cavity axis. From the Equation (3.9), the dispersion
relation of the modes TEm,n,p changes into:

k2
m,n,p =

ω2
m,n,p

c2
n2
med = k2

cm,n + β2
m,n,p =

(
p′m,n
ρc

)2

+
(pπ
L

)2

, p ∈ N. (3.20)

The expression of the cutoff wavelength of the mode TEm,n,p derives from Equation
(3.20) as λm,n,p = 2π/km,n,p. We plot in Figure 3.13.a) the evolution of the spectral
spacing ∆λ = λ0,24,p − λ0,24,p+1 between consecutive p orders TE0,24,p and TE0,24,p+1

supported by a cylindrical cavity of radius ρc = 17.5 µm and length L = 10, 20, 50, 100
µm. We first report an increase of ∆λ for a cavity of length L = 10 µm until a
maximum value of about 40 nm for p = 9 (i.e. between modes TE0,24,9 and TE0,24,10)
from which it then initiates a slow decrease. By contrast, the cavities with L > 10 µm
record a single increase of ∆λ over the range of p orders. In particular, the length L
dictates the speed and the magnitude of the increase. Precisely, we estimate the spacing
between first p orders TE0,24,1 and TE0,24,2 to 0.11, 0.45, 2.81 and 11.06 nm for cavities
of lengths of 10, 20, 50, 100 µm respectively. Similarly, the spacing reaches an ultimate
value of 0.78, 3.05, 16.13 and 39.95 nm between the modes TE0,24,10 and TE0,24,11 in
order of increasing lengths L. We have also plotted on Figure 3.13.b) the distribution
of the cutoff wavelengths λcm,n,p of the modes TEm,n,p with successive orders p (colored
dots) ranging from 1 to 20 for a cavity of radius ρc = 17.5 µm and length L = 50 µm.
The label of the ordinate associate to each lines of dots indicate the couples of orders
(m,n) with m = {0, 1} and n = {21, 22, 23, 24}. We highlight spectral overlaps for
high p orders of modes TEm,n,p with adjacent azimuthal orders m and a fixed radial
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Figure 3.13: a) Evolution of the spectral spacing ∆λ = λ0,24,p − λ0,24,p+1 in nm between two
consecutive modes TE0,24,p and TE0,24,p+1 where p = {1, 2, .., 10} in a cylindrical cavity of radius
ρc = 17.5 µm with increasing length L = {10, 20, 50, 100} µm. b) Spectral distribution of the modes
TEm,n,p with m = {0, 1}, n = {21, 22, 23, 24} where p varies from 1 to 20, in a cylindrical cavity of
radius ρc = 17.5 µm and length L = 50 µm.

order n and inversely. For instance, the modes TE1,22,7, TE0,21,15 and TE1,21,20 (green
dot labelled on Figure 3.13.b)) appear successively at 1.59938, 1.59911 and 1.59855
µm.

Similarly to infinite cylindrical cavities, we calculate the maximum number of
TEm,n,p modes supported by a cylindrical cavity resonator of radius ρc and length
L within the spectral range [1.4− 1.8] µm. In particular, we observe in Figure 3.10.b)
that a 50 µm-long cavity supports a fast-growing number of modes TEm,n,p as the cavity
radius increases, reaching a huge value of 6241 for the reference radius ρc = 17.5 µm.

Moreover, the expressions of the fields of modes TEm,n,p in a cavity of length L
become:

E(m,n,p)
ρ =

jωm,n,pµmH0

k2
cm,nρ

sin(mφ)Jm(kcm,nρ) sin
(pπz
L

)
, (3.21)

E
(m,n,p)
φ =

jωm,n,pµH0

kcm,n
cos(mφ)J ′m(kcm,nρ) sin

(pπz
L

)
, (3.22)

E(m,n,p)
z = 0, (3.23)

H(m,n,p)
ρ =

βm,n,pH0

kcm,n
cos(mφ)J ′m(kcm,nρ) cos

(pπz
L

)
, (3.24)

H
(m,n,p)
φ =

−βm,n,pmH0

k2
cm,nρ

sin(mφ)Jm(kcm,nρ) cos
(pπz
L

)
, (3.25)

H(m,n,p)
z = H0 cos(mφ)Jm(kcm,nρ) sin

(pπz
L

)
, (3.26)

where H0 = −2jA+. We have mapped the distribution of the electric field magnitude
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| ~E| in Figure 3.14 for the modes TE0,22,1 and TE0,22,2 in a cavity of radius ρc = 17.5 µm
and length L = 100 µm. We notice that the order p corresponds to the number of lobes
of maximum magnitude in the z-axis direction. We find for instance one and two lobes
for the modes TE0,22,1 and TE0,22,2, respectively. We also verify that the tangential
electric field components vanish at the top (z = L µm) and bottom (z = 0 µm) edges
of the cavity resonator. We finally remark that modes TEm,n,p with an even (odd) axial
order p will always exhibit a maximum (nodal plane) of the electric field in the middle
plane of the cavity, at z = L/2.

We notify that the cylindrical cavity resonator model assumes perfect reflection on
the membrane wall, top and bottom faces. Concerning the photonic crystal cavity, the
impedance mismatch between the cavity hollow core and the free space ensures the
reflection of light on top and bottom boundaries. It explains by the abrupt change
in the group velocity of the modes inside and outside of the cavity. The reflection
phenomenon occurs equivalently on top and bottom edges. Consequently, we compare
the photonic cavity along the cylinder axis to a Fabry-Pérot resonator. The supported
stationary modes appear at quantized propagation constants and describe p lobes along
the cavity axis. Drawing the Fabry-Pérot analogy as developped in [4], the reflectivity
of the equivalent mirror in the vertical direction of a 1D PCM-based photon cage of
length L = 10 µm has for instance been estimated to Rv = 65%± 10% [6].

Figure 3.14: Slices in the z-direction of the electric field magnitude | ~E| for the modes TE(0, 22, 1)
and TE(0, 22, 2) existing in a cavity of radius ρc = 17.5 µm and of length L = 100 µm. The red
patches indicate the distribution of the field in the z-axis direction.
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Key points of the section

In summary, we have first modelled tubular photon cages with ideal cylindrical
cavity resonators considering the high and broadband reflection properties of
the planar PCM. The simplicity of the model, a cylinder of radius ρc,length L
and perfectly reflecting walls, allows for the analytical resolution of Maxwell’s
equations, providing an almost complete description of the supported modes.
We recapitulate below the main properties of those modes:

• the cavity hosts two kinds of modes: transverse electric TEm,n,p (Ez = 0)
and transverse magnetic TMm,n,p (Hz = 0) modes classified according to
their orders m ∈ N, n ∈ N∗ and p ∈ N∗ which determine the variations of
the electromagnetic fields in the azimuthal, radial and axial directions of
the cylindrical coordinate system, respectively;

• we report a substantial number of TE modes coexisting in infinite and finite
cylindrical cavities withing the spectral range [1.4− 1.8] µm; this number
increases for larger cavity radius;

• we observe an overlap of the spectral distributions of TEm,n,p modes with
spacing down to 0.005 nm; we also note that the spectral spacing between
consecutive modes TEm,n,p and TEm,n,p+1 shrinks when the cavity length
raises;

• we pointed out the interesting case of TEm,n,p modes with a low azimuthal
order m (typically m = {0, 1}) which concentrate most of the electric field
intensity over a small and centred fraction of the cavity cross-section;

In the following part, we aim to evaluate the consistency of the analogy with the
cylindrical cavity model by simulating a more realist model of the rolled-up 2D
PCM cavity with the FDTD method.

3.4 Numerical study of tubular photon cages

The model of the cylindrical cavity resonator used hitherto to predict the optical re-
sponse of rolled-up PCM cavities relies on two assumptions. First, it considers the cav-
ity membrane wall as perfectly reflecting within the spectral range of interest. Second,
it supposes that the membrane wall curvature does not impact its reflection perfor-
mances. To evaluate the consistency of the two hypotheses in the study of rolled-up
PCM cavities, we have also performed more realistic numerical simulations of the tubu-
lar photon cages using the FDTD method introduced in Section 2.1. We present the
FDTD model of the tubular rolled-up PCM cavities in the first section. In the second
section, we simulate the spectral and spatial distributions of the modes supported by
infinite-length cavities. We confront the simulation results afterwards to the predictions
of the analytical cylindrical cavity model. We complete the description of the modes
by estimations of their quality factors. In the third section, we conduct simulations of
the optical response of finite-length tubular cavities.
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3.4.1 Numerical model of tubular photon cages

We present in Figure 3.15 different views (a), b) and c)) of the FDTD model of the
rolled-up PCM cavity designed in the LUMERICAL 3D CAD environment. The per-
spective view a) shows the tubular photonic micro-cavity with an average radius ρavg

and length L. The radius ρavg measures the distance between the centre of the tubular
cavity and the median plane of the PCM wall as illustrated on the top view b). The
PCM is represented by air holes (grey cylinders) etched in a h-thick membrane in InP
material (pink contour). The air holes cylinders are slightly thicker than the InP slab
for the needs of the simulation. We model the initial InGaP/InP bilayer membrane by
a simple InP slab of total thickness h = hInP + hInGaP which exhibits similar optical
response as InP/In1−xGaxP bilayer for low Gallium compositions, typically x ' 0.1.

The lateral close-up view c) depicts the photonic crystal lattice: a triangular lattice,
with a period a, of air holes of radius r embedded in InP material (pink background)
medium. We set the rolling direction of the PCM along the high symmetry direction
ΓM of the triangular lattice FBZ as indicated on the drawing c). Equivalently, the mi-
crotube axis coincides with the high symmetry direction ΓK. In this configuration, the
reflection properties of the planar PCM at oblique incidence have been fully described
in Figure 3.8.a) and b) for p- and s-polarizations. Moreover, we adjust the average
perimeter 2πρavg to an integer number of periods along the ΓM direction to match
the planar PCM edges upon rolling. The period of the photonic crystal along the ΓM
direction equals

√
3a. Consequently, the value of the average radius is determined by

the formula:

ρavg =
Np

√
3a

2π
, (3.27)

with Np ∈ N∗ the number of periods along ΓM. We deduce the expressions of the inner
and outer radii of the cavity, ρin = ρavg − h/2 and ρout = ρavg + h/2, respectively.
Furthermore, when the rolling of the PCM occurs along ΓK, the period along this
direction becomes simply a. In the same way, the photonic crystal patterns span an
integer number of half periods a/2 along the tube’s perimeter. We finally extend the
InP membrane by a/2 at each extremities of the microtube so that the length of the
tubular microcavity L expresses as:

L =
Nza

2
+ a; (3.28)

where Nz ∈ N∗ defines the number of half periods a/2 along the tube axis.
In particular, we design a tubular cavity with the PCM lattice parameters, a =

1.206 µm, r = 0.481 µm obtained in Section 3.2 and a membrane thickness h =
0.228 µm on the basis of fabricated samples. The previous set of parameters allows
to achieve high and broadband PCM reflection properties according to Section 3.2.
Furthermore, for typical compositions in Gallium element x ' 0.1 in the InGaP layer
and a ratio ξ = hInGaP/hInP ' 0.5, we report in Section 2.2 the fabrication of tubular
microstructures of inner radius ρin in the order of 17.5 µm. According to Equation
(3.27), we draw a tubular cavity of average radius ρavg ' 17.62 µm by fixing Np = 53,
leading to ρin ' 17.5 µm, the perfectly matching with real structures’ radius.

3.4.2 Simulations of infinite cavities

We emphasise the multi-scale nature of modelled tubular micro-cavities as a, r �
ρavg, L, resulting in a very fine mesh of the micro-structure accordingly to the confor-
mal mesh technology. We also note the delicate mesh of curved interfaces owing to the
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Figure 3.15: a) Perspective view of the tubular rolled-up PCM cavity with average radius ρavg and
length L designed in LUMERICAL 3D CAD environment. b) Close-up view, on the top of the tubular
cavity, of the PCM membrane wall which consists of air holes (grey cylinders) of radius r etched in
an InP slab (pink membrane) of thickness h. The air holes are made intentionally thicker than the
membrane for the needs of the simulation. c) Lateral close-up view on the photonic crystal pattern
formed by a triangular lattice, of period a, of air holes arranged in the InP material. The black dashed
arrow indicates the direction of the rolling of the planar PCM which coincides with the high symmetry
direction ΓM in the first Brillouin zone of the triangular lattice.

Cartesian implementation of the FDTD algorithm which forces a very small mesh size
and raises significantly the simulation time. Consequently, we have first conducted sim-
ulations of the optical response of infinitely long (L→∞) rolled-up photonic cavities
to reduce the memory requirements and the simulation time.

Multiple dipole excitation

The Figure 3.16 presents cross-section (a) and lateral (b) views of the FDTD model
of the rolled-up PCM cavity. We arrange a cloud of 15 electric dipole sources (blue
arrows) randomly positioned in the hollow cross-section of the tubular cavity to excite
all the possible modes while avoiding nodal planes. We use broadband sources with
a bandwidth adjusted between 1.275 and 1.825 µm. We ensure to collect selectively
transverse electric (TE) modes by orienting the dipoles sources perpendicularly to the
axis of the cavity. Moreover, all the dipoles point in the x-axis direction and they are
included in the plane z = 0 as shown on both views. We record the temporal evolutions
of the electromagnetic fields with a cloud of 15 time monitors (yellow crosses) dispersed
randomly in the plane of the dipole sources. With this specific planar configuration
of the dipoles and the monitors, we seek to reproduce the experimental conditions
of near-field optical measurements inside the cavity as described in Section 2.3. The
brown rectangular contour on the cross-section view a) delimits the FDTD computation
zone in the cavity cross-section. We apply perfectly matched layer (PML) boundary
conditions of type stretched coordinate PML with a standard profile consisting of 8
layers of absorbing material.

The PML frontiers are placed at a distance of dPML = 2× 1.55 µm from the outer
radius of the cavity to prevent reflections of modes’ evanescent tails on the PML. From
preliminary tests, we set the simulation time to ts = 30 ps as a compromise between
a sufficient reduction of the final electromagnetic energy in the computation zone and
a reasonable computation time. Indeed, we have shown in Section 2.1 that in the case
of strong resonances, the remaining electromagnetic energy usually maintain above the
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Figure 3.16: a) Cross-section and b) lateral views of the FDTD model of the tubular rolled-up PCM
cavity with inner radius ρin ' 17.5 µm. Electric dipole sources (blue arrows) oriented along the x-axis
and time monitors (yellow cross) are dispersed randomly in the cross-section z = 0 plane of the cavity.
The brown rectangular zone delimits the FDTD computation zone where perfectly matched layers
(PML) boundary conditions are applied. The lateral view shows a part of the PCM wall with air
holes (grey circles) in an InP membrane. The electric dipole sources are contained in the z = 0 plane.
The FDTD computation zone along the microtube axis consists of a unit cell repeated periodically
along the z-axis to simulate an infinitely long cavity.

shutoff criteria level despite an increase of the simulation time. However, we achieve a
precise estimation of the quality factors of the modes of the cavity as the time decay of
the electromagnetic fields becomes sufficiently low. Along the axis of the cavity (i.e. z
axis) as shown on the lateral view, the FDTD computation zone demarcates a unit cell
repeated periodically on both sides by the application of periodic boundary conditions,
in order to simulate an infinitely long cavity.

We plot in Figure 3.17.a) the spectral response of the infinitely long tubular cavity
within the range [1.45−1.7] µm. The intensity I results from the Fourier transforms of
the time data collected by all the monitors. We perform beforehand an apodization of
the time signals with the parameters: tc = 0.6ts and ∆t = 0.15ts. This operation aims
at removing all transient effects due for instance to the source pulse, before passing in
the frequency domain as explained in Section 2.1. It is noteworthy that the intensity
of the peaks in the spectrum depends mostly on the location of the sources and the
monitors, and on the bandwidth of the dipole sources. Hence, we set the intensity
axis in logarithmic scale to reveal potential modes weakly expressed. We notice a high
density of modes in the region [1.58−1.7] µm with an important spectral overlap which
leads mostly to broad and distorted peaks. Conversely, the interval spanning from 1.45
to about 1.58 µm gathers fewer and more dispersed peaks. However, we distinguish four
successive groups of peaks characterized by a similar pattern. Indeed, first overlapping
and intense peaks are followed by secondary peaks with fading intensities and increasing
spectral spacing. We also find that the number of secondary peaks in one group reduces
strongly along with their intensities as the wavelength decreases.

We investigate the nature of the modes appearing in the spectrum by calculating
maps of the electromagnetic fields at the wavelengths of some of the intensity peaks. To
this end, we place a frequency monitor with apodization parameters tc = 0.7ts and ∆t =
0.1ts (ts = 10 ps) which covers the entire FDTD computation zone in the cross-section

of the cavity. We extract cartographies of the normalized magnetic field | ~H| at three
resonant wavelengths: λ1 ' 1.5545 µm, λ2 ' 1.5625 µm and λ3 ' 1.62 µm, displayed
on Figure 3.17.b). Two black circular lines delimit the edges of the PCM membrane
wall, namely the inner radius ρin ' 17.5 µm and outer radius ρout = ρin +h ' 17.73 µm
of the tubular cavity, respectively. We recognise on the three maps typical patterns
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Figure 3.17: a) Spectral response of an infinitely long tubular rolled-up PCM cavity of average
radius ρavg ' 17.5 µm within the spectral range [1.45− 1.7] µm. b) Maps of the normalized magnetic

field | ~H| in the cross-section of the cavity and calculated at three different resonant wavelengths
λ1 = 1.5545 µm, λ2 = 1.56249 µm and λ3 = 1.62 µm located on the previous spectrum. The grey
lines delimit the edges of the PCM membrane wall of the cavity.

of cylindrical cavity modes TEm,n described in Section 3.3. In particular, we observe
at λ1 that one nodal line separates two groups of radial patterns extending from the
centre of the cavity, which is the signature of a mode of type TE1,n. We notice that
the nodal line is not fully recovered as other modes patterns superimpose as indicated
by the spectral overlap around λ1 on the previous spectrum. On the contrary, the
peak detected at λ2 slightly detach from preceding modes so that we observe the whole
pattern of a mode TE7,n. Finally, the map obtained at λ3 illustrates the spatial overlap
between one TE1,n mode and cavity modes with higher azimuthal order m judging by
the presence of several nodal lines, also in agreement with the overlap of peaks observed
on the spectrum.

Unlike the azimuthal order, we can not access to the radial order n of the modes
to the naked eyes. In particular, the superimposition of the modes’ patterns observed
on the map at λ3 encloses the mode TE1,n emerging from the centre of the cavity
and conceals a substantial part of the radial variations of the magnetic field. We also
observe radial patterns overlaying along the nodal line of the mode TE1,n detected at
λ1. Otherwise, we remark some distortions of the field patterns, especially for the first
lobes of high amplitude in the maps of the modes calculated at λ1 and λ2. Indeed,
multiple dipole sources can excite the same mode at different locations in the cavity
cross-section. It generates different orientations of the field patterns, more precisely of
the nodal lines. These observations prove the delicate determination of the radial orders
n of the mapped modes which will be the concern of the next series of simulations.

Combining the analyses of the spectrum and the maps, we correlate the spectral evo-
lution of the modes’ maps with the reflectivity spectrum R(λ) of the PCM membrane
represented in Figure 3.8.a) for p-polarized light at normal and oblique incidences. We
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suppose that the azimuthal order m of the cavity modes directly relates to the angle
of incidence θ of the incoming light as it occurs in the formation of whispering gallery
modes (WGM): m increases along with θ. We bring therefore the following statements:

• for 1.45 µm < λ < 1.53 µm: the reflectivity R globally diminishes when θ in-
creases and R increases along with λ but maintains below the high reflectivity
limit (95%). Consistently, the first intense peaks in the groups of modes observed
in the spectrum correspond to cavity modes with low azimuthal orders, typically
m = {0, 1} as illustrated on the map calculated at λ1. Secondary peaks appear
and reinforce gradually when λ increases and assimilate to TEm,n modes with
higher and increasing order m which is confirmed by the cartography at λ2.

• 1.53 µm ≤ λ ≤ 1.66 µm: the reflectivity at normal incidence enters the high re-
flectivity (HR) zone of the PCM in which it stays above 95% and reaches a
maximum value of about 99 % at about 1.6 µm. For higher values of θ, the HR
zone is red shifted. Therefore, multiple TEm,n modes can sustain in the cavity
which results in the overlapping of patterns as observed for the map computed
at λ3. We note that the reflectivity at normal incidence at λ3 is quasi maximum
which explains the clearness of the radial pattern in the centre of the cavity as
compared to the dim azimuthal ring.

• 1.66 µm < λ ≤ 1.7 µm: the reflectivity at normal incidence leaves the HR zone,
while the HR zone is reached for higher values of θ and shrinks progressively.
Indeed, we have observed on additional maps that TEm,n modes with high az-
imuthal orders m > 10 appear and coexist while pure and quasi-pure radial modes
(m = {0, 1}) fade away.

We can already draw preliminary conclusions from the first series of FDTD simu-
lations of spectral response and maps of the fields performed on infinitely long tubular
rolled-up PCM cavities.

• We confirm the presence of cylindrical cavity modes TEm,n in the tubular photonic
crystal cavity when it is excited by electric dipole sources randomly disposed in
a cross-section plane within the range [1.45− 1.7] µm.

• The emergence of a mode TEm,n depends on the reflection performances of the
PCM membrane wall, function of the angle of the incident light θ. Therefore, be-
low 1.53 µm, the modes with low azimuthal orders m < 10 are predominant and
overlap spectrally and spatially. Above 1.53 µm, the reflectivity of the PCM im-
proves at oblique incidence and even exceeds the reflectivity at normal incidence
from 1.66 µm which leads to the superimposition of modes with high azimuthal
orders (m > 10).

Single dipole excitation

We also simulated the optical response of the rolled-up PCM cavity with a unique
dipole source of electric and magnetic natures as depicted on the CAD views a) and
c) in Figure 3.18, respectively. The dimensions of the photonic crystal microtube, the
parameters of the calculation zone and the settings of the time monitors and of the
dipole sources remain unchanged with respect to previous simulations to which we may
refer. We orient the electric (magnetic) dipole along the x- (z-) axis to filter TEm,n

modes defined by Ez = 0. We also place both dipoles in the centre of the cavity to
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Figure 3.18: Left drawings: top (XY) and lateral (XZ) CAD views of the modelled rolled-up PCM
microtube excited with a unique electric (a) or magnetic (b) dipole represented by blue and green
arrows, respectively. A cloud of 15 monitors (yellow crosses), dispersed in the central (z = 0) cross-
section of the microtube, collect the time evolutions of the electromagnetic fields. Right plots: spectral
responses of the cavity simulated with an electric (a) or magnetic (b) dipole. The grey dashed line
spectrum indicates the optical response of the cavity when excited with a cloud of 15 electric dipoles
described in the previous simulation.

extract preferentially TEm,n modes with a low azimuthal order m. In particular, the
position of the electric (magnetic) dipole coincides with the position of the first lobe
of maximum electric (magnetic) field amplitude of the modes TE1,n (TE0,n). As raised
in Section 3.3, the potential interest in the modes TEm,n with low azimuthal orders,
especially m = {0, 1}, relies in their ability to concentrate most of the electromagnetic
energy in the centre of the tubular cavity. The Fourier transform of the temporal data,
recorded by the monitors and apodized beforehand, results in the two spectra showed
in Figure 3.18.b) and d) corresponding to an electric (blue curve) and a magnetic
(green curve) excitation, respectively. The dashed grey curve plotted on both spectra
refer to the spectral response of the cavity obtained with a cloud of 15 electric dipoles
randomly arranged and radiating in the hollow of the microtube. We notice an exact
superimposition, in terms of spectral positions, of the peaks obtained with a unique
dipole source excitation with the cavity modes resonances observed with the cloud of
dipole sources. However, for a unique dipole excitation, only a couple of modes mostly
express in the form of high intensity peaks. According to the maps of the previous
simulation, we can infer that the two intense peaks detected at 1.555 µm and 1.63
µm correspond to TE1,n cavity modes with distinct orders n whereas the weaker peak
at about 1.56 µm refers to a TE7,n mode. This confirms the predominance of TE1,n

modes and the spectrally nearest TEm,n modes with low azimuthal orders in the case
of a unique and centred electric dipole excitation.

We confirm the nature of the modes detected in the spectra of single electric and
magnetic dipole excitations by calculating maps of the normalized amplitude of mag-
netic component |Hz| in the cross-section plane z = 0 of a tubular cavity of average
radius ρ ' 17.62 µm. In particular, we present the cartographies in Figure 3.19 of
two high-intensity peaks located at λe = 1.555 µm (a) and λm = 1.588 µm (b) in
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the electric and magnetic excitation spectra, respectively. The two circular grey lines
delimit the inside and outside frontiers of the PCM wall. We recognize at first glance
typical patterns of modes TE1,n at λe, characterised by one nodal line surrounded by
pure radial patterns. Furthermore, the absence of nodal lines in the map at λm is the
typical signature of a mode TE0,n.

Figure 3.19: a) and c): Maps of the normalized magnetic field component Hz calculated in the
cross-section of an infinite cavity of average radius ρavg ' 17.62 µm with the FDTD method at the
wavelengths λe ' 1.555 µm and λm ' 1.588 µm with a single electric and magnetic dipole excitation,
respectively. The two grey concentric circles delimit the inside and outside frontiers of the PCM cavity
wall. The inset pictures show close up views of the central region of the maps. b) and d): 1D profiles
(straight blue lines) extracted from maps a) and c) along the while dashed line diameter and fitted
with theoretical profiles (dashed orange line) of the combination of modes 0.76×TE1,23+0.24×TE3,22

and 0.82×TE0,22+0.18×TE4,21 derived from the analytical cylindrical cavity model with an equivalent
radius ρeq ' 17.68 µm.

We notice that the excitation of the cavity with a single dipole source provides
well-defined maps of the magnetic field which allows a priori a clear determination of
the radial order n of the modes. Toward this goal, we extract 1D profiles from the
maps of modes TE1,n (a) and TE0,n (c) along the white dashed line diameter, which
results in the blue straight curves of Figure 3.19.b) and d), respectively. Our strategy
to identify the order n consists in fitting the FDTD 1D profiles with the theoretical
profiles of generic modes TE1,n and TE0,n calculated with the cylindrical cavity model
of equivalent radius ρeq, where n and ρeq are tunable parameters. We first fix the radius
ρeq to 16.6 µm, which corresponds approximately to the average radius of the FDTD
model. We sweep then the integer n until minimizing the relative errors between the
numerical and theoretical positions of the profiles’ peaks. It occurs for n = 23 and
n = 22 for the modes TE1,n and TE0,n represented in b) and d), respectively.

Nevertheless, we report significant relative errors of about 5% in the positions of the
first peaks of both 1D profiles. Looking closely at both maps of the modes, two peculiar
features suggest that we deal with the mixing of at least two modes. First, we notice
that four glowing branches stand out of the global patterns in diagonal directions.
Second, the close-up views on the central regions of both maps show a distortion of the
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first lobes of maximum amplitude with respect to pure circular patterns expected for
modes TE1,n and TE0,n. The spectral overlaps of the high intensity peaks observed in
the spectra b) and d) of Figure 3.18 also reinforce the possibility of spatial coexistence
of the modes TE1,23 and TE0,22 with their first and second nearest modes. According
to Equation 3.8, the two nearest peaks, in order of increasing wavelength, after the
mode TE1,23 (TE0,22) correspond to the modes TE3,22 and TE5,21 (TE2,22 and TE4,21).
We obtain that the profile in b) (d) match the theoretical profile of a combination
between TE1,23 and TE3,22 (TE0,22 and TE4,21) modes in proportions 0.76 and 0.24
(0.82 and 0.18), respectively. Finally, we adjust the radius of the equivalent theoretical
cylindrical cavity to improve the fit so that we achieve a maximum relative error of
0.8% for ρeq = 17.68 µm delimited on both profiles.

Using the Equation 3.16, we estimate the surfaces S(1,23) and S(0,22) of the modes
TE1,23 and TE0,22, respectively. We integrate the normalized electric field intensity
I = |E(m,n)(ρ, φ)|2 calculated numerically at λe and λm over the cross-section of an
equivalent cavity of radius ρeq = 17.68 µm. The surface maps of the electrical intensity
are plotted for each modes on Figure E.1.a) and c) in Appendix E. We find that most
of the electrical energy concentrates in surfaces S(1,23) ' 8.72λ2 and S(0,22) ' 11.68λ2,
in units of λ2 = (1.55)2 µm2, which represent about 2% and 2.68%, respectively, of
the cavity cross-section surface Ac ' 436λ2. Equivalently, the mode TE1,23 (TE0,22)
contains most of the electromagnetic energy in a disk of radius 2.5 µm (2.9 µm) which
encompasses the first four maxima of electrical intensity, as represented by red zones
on Figure E.1. b) and d) in Appendix E. The analytical calculation of the modes’
surfaces in a cylindrical cavity of radius ρc = 17.68 µm gives S(1,23) ' 7.76λ2 and
S(0,22) ' 11.74λ2. The errors obtained with the numerical computations, 12% and 1%
for the modes TE1,23 and TE0,22, respectively, stem mostly from the overlapping of
modes TE5,21 and TE4,21 patterns in the maps of the fields.
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(m,n) R (%) λFDTD (µm) QFDTD λth (µm) Relative error (%)

(0,24) 80 1.46238 8.35× 103 1.45824 0.283
(1,24) 88 1.49222 1.56× 103 1.48908 0.211
(0,23) 95 1.52256 4.21× 103 1.52097 0.105
(4,22) 1.52523 3.48× 103 1.52326 0.129
(1,23) 98 1.55460 2.38× 104 1.55455 0.003
(3,22) 1.55597 2.44× 104 1.55577 0.012
(5,21) 1.55853 9.86× 103 1.55734 0.076
(7,20) 1.56265 6.91× 103 1.56105 0.102
(0,22) 99 1.58784 1.61× 105 1.58934 0.094
(4,21) 1.59060 2.07× 105 1.59195 0.085
(6,20) 1.59392 1.94× 105 1.59524 0.083
(1,22) 97 1.62303 8.19× 103 1.62605 0.186
(3,21) 1.62449 9.40× 103 1.62745 0.183
(5,20) 1.62730 1.12× 104 1.63026 0.182
(0,21) 95 1.65952 9.18× 104 1.66414 0.278
(4,20) 1.66266 2.95× 103 1.66714 0.270
(1,21) 90 1.69841 1.53× 103 1.70445 0.356
(3,20) 1.69993 1.12× 103 1.70606 0.361

Table 3.2: Identification of some of the cylindrical cavity modes TEm,n located on the FDTD spectra
b) and d) of Figure 3.18 of an infinitely long tubular rolled-up PCM cavity. For each modes, we give
the resonance wavelength λFDTD and the quality factor Q computed with harmonic inversion method
from FDTD temporal data. We indicate the corresponding cutoff wavelength λth of each mode TEm,n
calculated theoretically in an infinitely long cylindrical cavity of radius ρc = 17.68 µm. We also assess
the relative error (in %) between the analytical and numerical wavelengths of the modes. We highlight
in blue the modes TE(m,n) with low azimuthal order m = {0, 1} accompanied with the value of the
reflectivity R (%) of the planar PCM at normal incidence assessed around the resonance wavelengths.

In the same way as performed with the modes TE1,23 and TE0,22, we identify some
of the remaining cavity modes detected in the spectra b) and d) of Figure 3.18 corre-
sponding to single electric and magnetic dipole excitation of the cavity, respectively.
We extract then for all the modes, the resonance wavelength λFDTD and we estimate
the quality factor Q with the harmonic inverse method introduced in Section 2.1, gath-
ered in Table 3.2. For the modes TEm,n with m = {0, 1} highlit in blue, we notice that
the value of the quality factor follows roughly the spectral evolution of the reflectivity
R of the planar PCM wall at normal incidence. Indeed, Q increases from 1.56×103 for
the mode TE1,24 detected at 1.4922 µm where R ' 88% to 1.61 ×105 for the mode
TE0,22 at 1.58784 µm for which R almost reaches its maximum value of about 99%.
The quality factor then decreases as we leave progressively the high-reflectivity zone
(R > 95 %) of the planar PCM at normal incidence. This common evolution makes
sense if we relate the angle of incidence of the incoming light to the azimuthal order
m of any cavity mode. Following ray optics considerations, the number of azimuthal
variations of the fields of one mode TEm,n, namely m, increases along with the angle
of incidence of the incoming light hitting the PCM wall. The temporal confinement
of one mode TEm,n generated from incident light inclined at angle θ, hence its quality
factor, is then conditioned by the reflection performances of the PCM at the angle θ.
We analyse the global evolution of Q for TEm,n modes with m > 1 in the light of
the reflection power of the PCM for any incidence θ and p-polarized light described in
Figure 3.8.a):
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• for λ ≤ 1.58 µm: the reflectivity of the PCM always maintains at highest values
at normal incidence. Therefore, Q decreases globally as the order m increases:
Q0,23 > Q4,22 for instance.

• for λ > 1.58 µm: the reflectivity of the PCM slowly decreases at normal incidence
while it tends towards maxima at higher wavelengths for oblique light rays, hence
Q4,21 > Q0,22, or Q5,20 > Q3,21 > Q1,22.

We finally confront numerical and analytical models concerning the wavelengths of the
cylindrical cavity modes. To this end, we assess the theoretical cutoff wavelengths of
the modes in a cavity of radius ρeq = 17.68 µm equivalent to the FDTD model cavity.
We report a very good compliance of the numerical results with the theoretical model
as the relative errors maintain below a 0.5% limit in the spectral range of interest
[1.45-1.7] µm.

Key points of the subsection

The simulations of the optical response of infinite rolled-up PCM cavities with
the FDTD method bring out several key messages summarised here-under which
validate the analogy with the cylindrical cavity model:

• The interpretation of the spectra combined with the analysis fields’ maps
have confirmed the existence of cylindrical cavity modes inside the tubular
photonic cavity. Despite the induced curvature of the PCM wall, the high-
aspect ratio of the photonic crystal microtube (radius ρc ' 17.5 µm� a '
1.2 µm) has preserved the integrity of the reflection properties of the PCM
wall.

• We find an excellent agreement between the numerical and theoretical spec-
tral distributions of the modes.

• We also report the coexistence of numerous and various TE cavity modes
within the spectral interval [1.45-1.7] µm in compliance with theoretical
predictions. The lifetime of the modes in the cavity, namely their quality
factors, depends essentially on the reflection performances of the PCM
wall. Therefore, below 1.58 µm, TEm,n with low azimuthal orders (m ≤ 1),
emerging at normal incidence, express predominantly and sustain longer
in the cavity compared to high azimuthal orders. Above 1.58 µm, the
situation reverses progressively.

3.4.3 Simulations of finite cavities

To complete the numerical study of the photon cages, we perform optical simulations of
finite-length rolled-up PCM cavities. We assimilate the photonic cavities to cylindrical
cavity resonators introduced in Section 3.3, a shortened version of cylindrical cavities
with perfectly reflecting top and bottom faces. In ideal cylindrical cavity resonators,
the electromagnetic waves form stationary modes along the axis of the cylinder for
quantized wavelengths. Tubular resonators support then TEm,n,p and TMm,n,p modes
defined by quantized components of the wavevector along the tube axis: kz = βp =
pπ/L with p ∈ N∗ the axial order. Precisely, the order p denotes the number of

139



CHAPTER 3. DESIGN AND SIMULATION OF PHOTON CAGES

antinodes of the spatial distribution of the mode energy along the axial direction.
Concerning tubular photon cages, we assume the reflection of light on top and bottom
faces on account of group velocities mismatch between cavity and free space modes.
The following simulations aim to validate the analogy between the model of cylindrical
cavity resonators and tubular photonic micro-cavities. To this end, we will confront
both cavity models according to spectral and spatial distributions of the supported
modes.

We show in Figure 3.20 a cross-section view at z = 0 (a) and a lateral view (b) of
the 3D FDTD model of the finite rolled-up PCM cavity. The geometrical parameters
of the PCM wall and the radius of the tubular cavity remain unchanged in comparison
to the infinitely long cavity model, namely a = 1.206 µm, r = 0.48 µm, h = 0.228 µm
and ρavg ' 17.62 µm. However, the cavity has now a finite length L as represented
on 3.20.b) adjustable according to Equation (3.28). We simulate the spectral response
of the cylindrical photonic microstructure with a single electric dipole oriented along
the x axis and contained in the central cross-section plane located of equation z = 0.
Such configuration illustrated on Figure 3.20.a) and b), we excite preferentially TEm,n

modes with low azimuthal m orders characterized by a maximum of the electric field
energy in the middle of the cavity. This specific setting also allows to benefit from
the symmetry properties of both the dipole source and the tubular microstructure by
applying symmetric boundary conditions (transparent blue-shaded regions) in the half
regions y < 0 and z < 0 of space. Consequently, the calculation zone delimited by
a thick orange line restrains to complementary half planes y > 0 and z > 0 which
reduces the computation time by a factor of four. As a precaution, we verify that the
symmetry conditions do not affect the response of the tubular cavities. Moreover, the
dipole bandwidth spans a 550 nm-large spectral window centred at 1.55 µm. A cloud of
15 monitors (yellow crosses) are dispersed randomly over the simulation zone to record
the temporal evolutions of the electromagnetic fields. We finally apply PML boundary
conditions along x, y and z Cartesian directions. In particular, the PML frontiers are
at a distance dxPML = dyPML = 2λ with λ = 1.5 µm and dzPML = a(Nz − 2)/4, where
the integer Nz is fixed with the cavity length, from the microstructure edges along x,
y and z axes respectively as illustrated on Figure 3.20.b).
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Figure 3.20: FDTD simulation model of a rolled-up PCM cavity of finite length L and radius
ρavg ' 17.62 µm designed in LUMERICAL 3D CAD environement. a) Cross-section view of the
cavity at z = 0. An electric dipole (blue arrow) is placed in the centre of the cavity at z = 0, along the
x axis, to excite TEm,n modes with low m order. A cloud of 15 monitors (yellow crosses) distributed
randomly in the upper-half region y ≥ 0 record the temporal evolutions of the electromagnetic fields.
The thick orange line delimits the FDTD computation zone. The optical response in the shaded
blue region is deduced by symmetry of the cavity and the source with respect to y = 0 plane. PML
boundary conditions are applied at the edges of the computation zone. b) Lateral view, at y = 0, of
the PCM cavity with a length L. PML boundary conditions are used along the z axis at a distance
dzPML = a(Nz − 2)/4 from the top and bottom edges of the cavity.

Cavity with a 10 micrometers length

We present in Figure 3.21 in blue thick line the intensity spectrum, in log scale, simu-
lated for a 2D PCM tubular photon cage of length L ' 10 µm corresponding to Nz = 17
in Equation (3.28). We have set the simulation time to ts = 4500 fs for a proper decay
of the fields energy and apodization parameters to tc = 0.7ts and ∆t = 0.15ts. The
spectrum shows four main broad peaks located around 1.49, 1.55, 1.62 and 1.7 µm.
The deformed and large shape of the spectral features suggest the overlap of multi-
ple modes with large bandwidths, hence low quality factors Q. Accordingly, we have
superimposed in dashed orange line, on indicative basis, the spectral response of an
infinitely long (L → ∞) tubular photon cage presented earlier on Figure 3.18.b). We
observe that the peaks of the finite cavity cover the peaks of cylindrical cavity modes
TEm,n with lowest azimuthal orders m = 1, 3, 5 detected in the infinite cavity. Further-
more, we notice lobes on the left side of the broad peaks a priori unobserved in the
infinite structure such as the features located around 1.49 µm which hints the presence
of additional modes.

We reveal the nature of the broad spectral features standing out in the spectrum
of Figure 3.21 by mapping the electromagnetic fields in the cross-section and along the
axis of the cylindrical cavity. In particular, we recognize typical patterns of cylindrical
cavity modes on the spatial distribution of normalized magnetic field amplitude |H|
shown on Figure 3.22.a) and calculated in the central cross-section plane of the cavity
(z = 0) at the wavelength λ = 1.553 µm. The grey circular contour outlines the PCM
membrane wall. The presence of a central nodal line implies that we deal at least with
a cavity mode of type TE1,n. The four bright branches emerging from the centre of
the map remind of the pattern obtained by the mixing of TE1,n and TE3,n modes as
elucidated on Figure 3.19.a). We determine radial n and azimuthal orders involved in
the hybrid mode pattern by best fitting of extracted profile along y axis at x = 0. We
finally identify the mode displayed on Figure 3.22.a) to a combination of mainly cavity
modes TE1,23 and TE3,22 in proportions estimated to 0.62 and 0.38, respectively. In
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Figure 3.21: Intensity spectrum of a tubular photon cage with length L ∼ 10 µm (thick blue line)
simulated with an electric dipole source centred in the tube and oriented perpendicularly to the tube
axis as depicted in the views of Figure 3.20. We indicate in orange dashed line the spectrum of an
infinitely long (L→∞) cavity simulated with the same excitation conditions and interpreted earlier.

the same way, we find that the remaining peaks observed around 1.49, 1.62 and 1.7
µm correspond to combinations of modes TE1,24-TE3,23, TE1,22-TE3,21, TE1,21-TE3,20,
respectively.

We also notice weak crenellated patterns surrounding the central radial oscillations
and typical of high azimuthal order cavity modes, zoomed on the inset picture in
Figure 3.22.a). The presence of such extreme mode could be explained by ad-hoc high
reflectivity of the planar PCM at grazing angles which are not investigated on Figure
3.8. By inspection, we find that the radius of the azimuthal ring matches that of
cylindrical cavity mode TE55,3. Under geometrical optics considerations, we assume
that high azimuthal order modes form as light beams impinge on the PCM wall at
grazing incidence. We establish then in first approximation a simple law of evolution
of the angle of incidence θ as a function of the order m, θ = (180 − 360/(2m))/2,
plotted in Figure F.1.a) in Appendix F. We deduce that the azimuthal form defined by
m = 55 emerges at an angle θ estimated to 88.36◦. At such angle, the reflectivity of the
PCM results from the bulk properties of the dielectric membrane rather than from the
effect of the photonic crystal pattern. In particular, we represent in Figure F.1.b) in
Appendix F the evolution of the reflectance R (%) as a function of the angle of incidence
θ of a 0.230 µm-thick dielectric slab defined by an average value of the optical index
which takes into account the index modulation of the PCM. For p-polarized incident
light, the reflectivity R cancels out at the Brewster angle θB ' 62.61◦ and then soars
up to 100% at 90◦ limit. In particular, at θ ' 88.36◦, the reflectivity reaches a high
value of about 98% which explains the emergence of the cavity mode TE55,3. In the
same way, cavity modes with higher value of m and cutoff wavelengths lying around
1.553 µm also contribute to the final pattern in proportions defined by the distance to
the wavelength of computation.

In addition, we present on Figure 3.22.b) the spatial distribution of normalized
magnetic amplitude |H| computed at λ = 1.553 µm in the plane of equation x = 0.
The grey straight and dashed lines delimit the PCM membrane wall and the virtual in-
terfaces between top/bottom faces of the cavity and free space, respectively. We notice
an important and seemingly uniform concentration of the mode energy in the vertical
direction of the cylindrical cavity. For a better appreciation of the spatial extend of
the field inside and outside the cavity, we plot on Figure 3.22.c) in blue straight line
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Figure 3.22: a) Map of the normalized magnetic field amplitude |H| calculated at λ ' 1.553 µm
in the middle (z = 0) cross-section plane of a 10 µm-long tubular photon cage with average radius
ρc ' 17.62 µm. The circular grey outline delimits the PCM membrane wall of the cavity. The field
pattern corresponds to that of generic modes TE(1,23,p) with p ∈ N∗. Inset picture: zoom on the
peripheral azimuthal patterns with adjusted color gradient. b) Map of normalized |H| in the plane
x = 0. c) Profile of normalized |H| (blue curve) along z axis of the cavity at y = ylobe, the abscissa of
the first maximum lobe. Vertical grey dashed lines indicate the top and bottom frontiers of the cavity
within which the profile is fitted with harmonics (dashed orange line) of a Fabry-Pérot cavity.

a section of the map in b) following the black dashed line at y = ylobe, the abscissa of
the first lobe of maximum amplitude. We indicate with dashed grey lines the vertical
top and bottom virtual frontiers of the cavity. We model the evolution of the field in
between the top and bottom boundaries by a linear combination of harmonics of an
equivalent Fabry-Pérot (FP) cavity: yp(z) =

∑
p cp sin(pπz/L), p ∈ N∗ with weighting

coefficients cp of p-th harmonics and L the length of the FP cavity similar to that of
the tubular cage. We find a good agreement between analytic (dashed orange line)
and simulation data by considering the first five p orders in the following proportions:
c1 = 0.76, c2 = 0.11, c3 = 0.1, c4 = 0.02, c5 = 0.005. We can attribute the contributions
of the first two p orders mainly to the emergence of cylindrical cavity modes TE1,23,p,
TE3,22,p and TE5,23,p with p = 1, 2 accordingly to their cutoff wavelengths specified in
Table 3.3 contained to a larger extent in the broad peak observed at 1.553 µm. The
remaining contributions of p = 3, 4, 5 orders stem from the expression of radial cavity
modes TE0,22,3, TE1,22,4 and TE0,21,5 for the most part, which wavelengths allow their
appearance in the final pattern of the mode, in weaker extent.

We finally examine the spatial damping of the hybrid mode in the vertical direction,
outside of the cavity. Approaching the decay with a typical exponential form y(z) =
e−z/Lp , we estimate the penetration length of the field in free space Lp to 3.271 µm
which represents about 30% of the length of the cavity. It indicates therefore a low
spatial confinement of the modes along the vertical direction.

Cavity with a 50 micrometers length

We complete the analysis of the optical properties of finite tubular cages by simulating
a cylindrical photonic cage with a length L = 50 µm corresponding to Nz = 83
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p λTE1,23,p λTE3,22,p λTE5,21,p λTE0,22,p λTE1,22,p λTE0,21,p

1 1.5499 1.5511 1.5535 1.5843 1.6207 1.6584
2 1.5361 1.5373 1.5396 1.5696 1.6050 1.6416
3 1.5139 1.5151 1.5173 1.5460 1.5797 1.6146
4 1.4845 1.4855 1.4877 1.5147 1.5463 1.5790
5 1.4490 1.4500 1.4519 1.4770 1.5060 1.5365

Table 3.3: Cutoff wavelengths λm,n,p in micrometers for first p orders, p = 1, 2, .., 5, of cylindrical
cavity modes TE1,23,p, TE3,22,p, TE5,21,p, TE0,22,p and TE1,22,p supported by an ideal tubular cavity
resonator of length L = 10 µm and average radius ρc = 17.62 µm.

in Equation (3.28). Keeping the same simulation settings, we obtain the intensity
spectrum represented on Figure 3.23 as an orange-coloured curve. In substance, we
retrieve the main four broad peaks detected in the spectrum of a 10 µm-long cavity
plotted in dashed blue line as a guide. However, we also discern multiple secondary
peaks which stand out on the left side of the main spectral features located around
1.49, 1.62 and 1.7 µm. Methodologically, we investigate the nature of the additional
peaks by computing maps of the electromagnetic fields at different wavelengths around
the main peaks.

Figure 3.23: Intensity spectrum of a 50 µm-long tubular cavity (orange line) with average radius
ρc ' 17.62µm simulated with a single electric dipole source placed in the central plane and oriented
perpendicularly to the tube axis. We indicate the spectrum of a 10 µm-long tubular cavity (dashed
blue curve) obtained in the same excitation conditions.

In particular, we present on Figure 3.24 profiles of the magnetic field amplitude
|H| in the central cross-section plane of the cavity for the first row and along the tube
axis at x = 0 for the second row. We calculated the maps at six distinct wavelengths:
λ1 = 1.6 µm, λ2 = 1.607 µm, λ3 = 1.612 µm, λ4 = 1.615 µm, λ5 = 1.621 µm
and λ6 = 1.633 µm pinned to the spectrum of Figure 3.23. Comparing the cross-
section plots to theoretical patterns of cylindrical cavity modes, we identify the TE1,22

mode pattern which expresses predominantly until λ6 at which it shares comparable
contribution with TE3,21 mode.

Furthermore, the vertical profiles represented on the lower plots in Figure 3.24 show
a spatial distribution of the modes typical of Fabry-Pérot cavity modes with the order
p defining the number of maximum amplitude lobes. In particular, we observe that the
order p decreases from λ1 to λ6 in compliance with theoretical predictions, taking odd
values from 11 down to 1. We explain the exclusive excitation of odd p orders by the
particular position of the electric dipole located at field node shared by even p order
modes. We focus here on the most representative p orders of the modes keeping in
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mind that the mode profiles actually result from a combination of p orders as attested
by the non-uniform intensity of the lobes.

Figure 3.24: Maps of the magnetic field amplitude |H| calculated at different wavelengths from
λ1 = 1.6 µm to λ6 = 1.633 µm in the cross-section (upper plots) and along the vertical axis (lower
plots) of a tubular cage with length L = 50 µm and average radius ρc ' 17.62 µm. We identify the
orders (m,n) and p in the cross-section and axial directions respectively of the predominant cavity
modes patterns. A single electric dipole source is placed in the centre of the cavity and contained in
the central cross-section plane to excite low m TE modes.

We also report Figure 3.24 a global decrease of the penetration length Lp of the
modes in free space along with the diminishing of the axial order, showing a better
axial confinement for low p orders. We note, however, a slight increase in the last two
values of Lp that we explain by unsatisfying exponential modelling of the field decay
into free space. Moreover, we note the independence of the penetration length with
respect to the cavity length as we obtain a length Lp in the order of 3 to 4 µm for the
different p order modes existing the 10 µm and 50 µm-long cavities.

Finally, exploiting the spectrum shown on Figure 3.23 and the calculated maps,
we give in Table 3.4 rough estimations λsim of the wavelengths of detection of the
p = 1, 2, .., 11 orders located around the peak at 1.62 µm. The values of λsim show
great consistency with theoretical cutoff wavelengths of modes TE1,22,p, λTE1,22,p , as
much as that of modes TE3,21,p, λTE3,21,p with respective relative errors e1,22 and e3,21

remaining below 0.5 %. The compliance with both generic modes TE1,22,p and TE3,21,p

explains by their high spectral proximity as the spectral spacing ∆ie at fixed p orders
maintains below 1.4 nm. We also notice spectral spacing ∆ia of few nanometers between
consecutive odd p orders.
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p λTE1,22,p λTE3,21,p ∆ia ∆ie λsim ∆sim e1,22 e3,21

1 1.6258 1.6272 1.398 1.6248 0.07 0.15
3 1.6241 1.6255 1.7 1.393 1.6215 3.3 0.16 0.25
5 1.6207 1.6221 3.4 1.385 1.6165 5.0 0.26 0.34
7 1.6156 1.6170 5.1 1.372 1.6103 6.2 0.33 0.41
9 1.6089 1.6103 6.7 1.355 1.6052 5.2 0.23 0.32
11 1.6006 1.6020 8.3 1.334 1.6016 3.6 0.06 0.03

Table 3.4: Cutoff wavelengths λTE1,22,p
and λTE3,21,p

in microns of modes TE1,22,p and TE3,21,p with
p = 1, 3, 5, .., 11 calculated for an ideal cylindrical cavity resonator of radius ρc = 17.68 µm and length
L = 50 µm. Spectral spacing ∆ia in nanometers between two successive λTE1,22,p

or λTE3,21,p
with

odd values of p order. Spectral spacing ∆ie in nanometers between λTE1,22,p and λTE3,21,p for identical
p orders. Estimated wavelengths λsim and spectral spacing ∆sim in nanometers of p modes observed
in the spectrum and maps in Figure 3.24. Relative errors e1,22 (e3,21) in % between simulated λsim
and theoretical λTE1,22,p

(λTE3,21,p
) wavelengths of p modes.

Key points of the subsection

In summary, we shall retain the following key messages of the FDTD simulations
performed on finite length 2D PCM photon cages with a single electric dipole
source excitation:

• the cylindrical cavity modes TEm,n,p are also confined along the axis of the
tubular cavity in the form of stationary modes defined by p ∈ N∗ lobes of
maximum intensity;

• we report a better vertical confinement for high aspect ratio cylindrical
microstructures;

• for a given length of the cavity, the attenuation of the mode TEm,n,p in free
space is stronger for low values of p as it is related to a low group velocity;

• for a cavity of length L = 50 µm, the spectral proximity and bandwidths of
successive orders p of modes TE1,n,p at fixed n create a quasi-continuum of
identical cross-sectional patterns in the vicinity of the fundamental mode
TEm,n,1. We extend the reasoning for the modes TE0,n,p simulated prefer-
entially by a single magnetic dipole source in the center of the cavity.
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3.5 Conclusion of the chapter

In the present chapter, we have accomplished the theoretical study of tubular photon
cages based on rolled-up 2D PCM. The study has divided into three main sections
tackling the design of the planar PCM mirror, the analytical and numerical simulation
of the cages’ optical properties.

In the first section dedicated to the production of a highly reflective PCM membrane
wall, we report the following key results:

• we have designed a non-absorbing polarization-independent highly efficient broad-
band 2D PCM mirror at normal incidence in the near-infrared domain;

• we have demonstrated the essential role of the photonic crystal pattern to achieve
high reflective behaviour in comparison to poorly reflective plain membranes;

• we have attested the robustness of the PCM reflection properties up to a few tens
of degrees of incidence angle.

In the second section, we have approached photon cages’ optical response using
in the first place the analytical model of the cylindrical cavity resonator. The model
provides a almost complete description of the cavity’s modal response with the following
main features:

• the cavity supports transverse electric TEm,n,p and transverse magnetic TMm,n,p

classified with m, n and p the radial, azimuthal and axial orders defining the
modes’ distribution and patterns in the cylindrical geometry;

• we report a high density of modes in cavities of radius 17.5 µm close to fabricated
structures, and a high spectral proximity;

In the third section, we have conducted FDTD simulations to obtain a more realistic
response of the photon cages. We highlight below the main results:

• the simulations of infinite and finite cavities have confirmed the emergence of
TE cylindrical cavity modes in rolled-up PCM cages, validating the analytical
predictions (spectral and spatial modes’ distributions) and the efficiency of the
curved PCM mirror wall;

• the simulations of infinite cavities have related, through the analysis of modes’
Q factors and maps, the expression of TEm,n modes with the PCM reflectivity
spectrum;

• the simulations of finite cavities have revealed the axial confinement of the modes
TEm,n,p which quality depends on both the order p and the aspect ratio. For high
aspect ratio cavities, the spectral proximity of p orders creates a quasi-continuum
of modes at fixed (m,n) pairs.

We have finally brought a theoretical proof of photon cages based on rolled-up 2D
PCM. The analytical cavity model constitutes a choice and powerful tool to predict
the optical properties of the photon cages. The consistent theoretical study paves the
way to the fabrication and optical characterization of real structures described in the
following chapter.
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Chapter 4

Fabrication and optical characterization
of photon cages

La Nature est un temple où de vivants piliers
Laissent parfois sortir de confuses paroles ;
L’homme y passe à travers des forêts de symboles
Qui l’observent avec des regards familiers.

Charles Baudelaire
(Les Fleurs du Mal, Correspondances)
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We have achieved so far the theoretical study of photon cages based on rolled-up
2D PCM. We have first designed a 2D PCM mirror with broadband and high reflection
properties in the near-infrared domain. We have then demonstrated theoretically and
numerically that photonic tubular cavities, obtained by rolling the 2D PCM mirrors,
support cylindrical cavity modes which strongly confine the light in air and in the three
directions. The next stages aim to bring an experimental proof of the photon cages
concept. The following section presents the main results of the fabrication of rolled-up
2D PCM cavities following the technical processes described in Section 2.2 based on
the rolled-up nanotechnology. It finally reports on interesting elastic behaviour of the
so-formed tubular photonic cavities when we try to detach them from the substrate.

4.1 Fabrication of tubular photon cages

4.1.1 Composition of the multi-layered precursors

The first step in the fabrication of 2D PCM photon cages consists in depositing suc-
cessive layers of InGaAs (sacrificial layer), InP and In1−xGaxP materials on top of a
nominal InP substrate. As explained in Chapter 2.2, the epitaxial growth allows for a
precise control of the composition and the thickness of each constitutive layer of the
multilayered stack, related to the curvature radius of the final rolled-up microstructure
according to Equation (1.21). We detail in Table 4.1 for three samples C2217, C2527
and C2579 used for later optical characterization:

• the thicknesses (in µm) hInGaAs, hInP, and hIn1−xGaxP of the InGaAs, InP and
In1−xGaxP material layers, respectively;

• the total thickness h = hInP + hIn1−xGaxP (in µm) of the InGaP/InP bilayer and
the ratio ξ = hInGaP/hInP;

• the proportion x of Gallium element in the In1−xGaxP layer;

• the lattice mismatch (in %) m or equivalently the tensile stress induced in the
InGaP/InP bilayer;

• the theoretical radius ρth calculated according to Equation (1.21);

• the range of the experimental radius ρexp of the rolled-up microstructures esti-
mated at the end of the fabrication process.

We estimate the mismatch lattice between InP and InGaP layers with the misfit param-
eter m defined earlier in Section 1.1. To this end, we approximate the lattice parameter
aIn1−xGaxP of the In1−xGaxP layer according to the Vegard’s law:

aIn1−xGaxP = (1− x)aInP + xaGaP, (4.1)

with aIn1−xGaxP and aInP the lattice parameters of the InGaP and InP layers, respec-
tively. We report, for x ∈ [0.1 − 0.15], a uniform deposition of InGaP material up to
a maximum thickness of about 80 nm. Above this limit, the layer-by-layer growth is
not guaranteed anymore and 3D relaxations may occur. For the sample C2217, we
have targeted a total thickness h of 230 nm of the InGaP/InP bilayer for which the
corresponding InP-based PCM exhibits high and broadband reflection properties at
normal incidence demonstrated in Section 3.2. For the sample C2527, we have slightly
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reduced h down to 214 nm to achieve a smaller curvature radius in the order of 16.5
µm, while preserving the PCM mirror performances. Indeed, according to Figure 3.8,
the PCM high-reflectivity zone at normal incidence maintains around 1.6 µm but the
reflectivity initiates a faster decrease below 1.5 µm. Finally, we have produced the
sample C2579 with a thickness h ∼ 86 nm and a theoretical curvature radius of about
6 µm to explore the optical response of high curvature cavities.

We notice a great consistency between the range of experimental curvature radius
ρexp and the theoretical predictions ρth. We impute the observed differences mostly to
the imprecision in the estimation of the real radius extracted from scanning electron
microscopy (SEM) pictures of the final tubular cavities. In particular, the inclination
and high-aspect ratio (h� ρexp) of the tubular structures hinder the clear identification
of the cavity centre and of the PCM wall frontiers. End-to-end contributions, we
evaluate the radius measurement uncertainty to about 1 µm. Finally, despite the high
air fraction (FF ' 58 %) in the PCM lattice, we presume a negligible influence of
the bilayer microstructure on the strain homogeneous distribution, hence on the radius
of the final tubular cavities, provided that the connection of the lattice pattern is
preserved.

Sample hInGaAs hInP hIn1−xGaxP h ξ x m ρth ρexp

C2217 500 150 78 228 0.52 0.122 0.88 19,2 [17.5-19.4]
C2527 260 136 78 214 0.57 0.130 0.94 16,5 [14-15.5]
C2579 300 43 43 86 1 0.128 0.92 6 [5.1-6.2]

Table 4.1: Composition of the C2217, C2527, and C2579 multi-layered precursors consisting of
successive InGaP, InP and InGaAs material layers deposited on top of a nominal InP substrate. The
thicknesses hIn1−xGaxP, hInP, hInGaAs and h of InGaP, InP, InGaAs layers and bilayer InGaP/InP,
are expressed in nanometers, and ξ = hIn1−xGaxP/hInP. The proportion of Gallium element x in
the In1−xGaxP layer induces a tensile strength in the bilayer InGaP/InP, equivalent to the lattice
mismatchm = (aInP−aIn1−xGaxP)/aInP (%) where aInP and aIn1−xGaxP stand for the lattice parameters
of InP and InGaP material respectively. Using Equation 1.21, we calculate the theoretical curvature
radius, in µm (±1 µm), of the bilayer upon rolling. We indicate the range of the radius ρexp in µm
measured on the real structures.

4.1.2 Production of the planar design

The next step in the fabrication of the rolled-up 2D PCM cavity deals with the prepa-
ration of the planar design from the previous multi-layered stacks. It represents a
milestone of the overall technical process. Indeed, it first brings the photonic function-
alities of the final cavity by patterning the material layers to form the PCM mirror.
Second, the orientation and the dimensions of the planar design determines the 3D
shape of the final rolled-up microstructure. In particular, we show below that the pla-
nar layout illustrated on the scanning electron microscope (SEM) picture in Figure 4.1
leads to the production of vertically standing tubular cavities.

The 2D photonic crystal pattern consists of a triangular lattice with a period a of
circular holes with a radius r. We create the PCM by imprinting the pattern down
into the InGaP/InP bilayer of thickness h through a combination of e-beam lithography
and reactive ion etching (RIE) processes as described in Section 2.2. We note that the
parameters a, r and h have been adjusted in Section 3.2 (a = 1.2 µm, r = 0.48 µm and
h = 0.23 µm) to achieve high reflection properties of the PCM at normal incidence.
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Figure 4.1: Scanning electron microscopy (SEM) picture of the planar design of the rolled-up 2D
PCM cavity upon electron beam lithography and reactive ion etching (RIE) processes. The inset
picture shows a close-up view of the 2D triangular lattice photonic crystal pattern. The under-etching
step first occurs in the shaded green surrounding strip, exposed to e-beam and RIE beforehand, which
triggers the rolling of the 2D PCM along the blue dashed arrow. It continues at the anchor level
outlined in yellow dashed line and specifically designed to lift the so-formed microtube vertically. The
dimension of the photonic crystal along the rolling direction Lp is set to 2πρc, with ρc the radius of
the final tubular cavity, to achieve one rolling of the 2D PCM. In the perpendicular direction, the
dimension L determines the length of the tubular cavity.

The inset SEM picture in Figure 4.1 shows a close-up view of the patterned InGaP/InP
bilayer membrane obtained after the lithography and etching steps.

We intend then to roll the 2D PCM up into a tubular shape with a prescribed
length L and radius ρc. Toward this goal, we design a rectangle of length l and width
L which encompasses the photonic crystal pattern as depicted in Figure 4.1. We define
the PCM rolling direction denoted by a blue arrow along the length l of this rectangle
which coincides with the perimeter of the future tubular cavity. The other dimension
L relates to the cavity length. We achieve n ∈ N∗ complete rolling of the PCM by
adjusting l to n times the perimeter 2πρc of the final tubular microstructure.

The etching of the InGaAs sacrificial layer releases the stress contained in the In-
GaP/InP bilayer, which triggers the rolling of the PCM. On account of the anisotropic
nature of the etching process, we need to make the PCM rolling direction (along l),
coincide with the direction of the highest etching rate to avoid the competitive rolling
along the length L. In the (100)-oriented InP nominal substrate, the preferential etch-
ing direction, namely the crystal direction 〈100〉, orients at 45◦ with respect to the
cleavage planes along 〈100〉. Moreover, due to the epitaxial growth mode, the InGaAs
material layer shares the same crystallographic orientation as the underlying InP sub-
strate, so that we identify the direction 〈100〉 of the highest etching rate as represented
in Figure 4.1. Finally, we add a strip (shaded green part) in the planar design and sur-
rounding the PCM pattern, undergoing e-beam exposition and RIE etching processes.
The strip facilitates the penetration of the etching solution towards the sacrificial layer,
initiating the under-etching process. Looking closely at the border of the PCM, we re-
mark the gradual extension of the plain membrane from the starting point of the rolling
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direction until the end of the PCM pattern. This specific design feature allows delaying
the sacrificial layer etching along L in aid of the etching and rolling along l.

The final part of the planar design deals with the vertical lifting of the tubular cavity
in the prevision of the optical characterization measurements. To this end, we design
a specific anchor of length La shaded in yellow in Figure 4.1 with a twofold function:
lifting the rolled-up PCM and retaining it to the substrate. The under-etching of the
PCM results in the formation of a horizontal microtubular cavity. It continues at
anchor level to make the microtube axis rotate and orient along the normal to the
sample surface. The elbow shape of the anchor favours the rolling along the longest
dimension and prevents a deadlock situation due to the competitive rolling along the
shortest dimension. We also turned original sharp corners delimiting the anchor into
round corners to avoid high concentrations of stresses, leading potentially to cracking
and fracture of the design during the under-etching. The rotation finally stops at the
anchor’s ending so that the microtube stands vertically but remains attached to the
substrate. We adjust the length La to perform a 90◦-rotation of the microtube from
the sample surface, namely La = 1/4× 2πρc with ρc the cavity radius.

4.1.3 Description of a typical sample

Figure 4.2: a) SEM picture from the top of a matrix of 12 microstructures produced after the under-
etching and drying steps. Each row of structures corresponds to a different value of the exposure dose,
from 0.6 to 0.8, starting at the bottom of the image. In the first (third) and second (fourth) columns,
the length L of the planar designs is set to 25 µm and 50 µm, respectively, while the size Lp is fixed
at 100 (130) µm, to achieve a bit more than one rolling (one rolling and a half) of the 2D PCM. b)
SEM profile picture of a rolled-up 2D PCM microtube lifted vertically and retained by the anchor
design to the substrate. c) SEM picture of the top of a rolled-up PCM cavity on which we estimate
two orthogonal diameters.

In the final phase of the fabrication of tubular photon cages, we plunge the sample
into a diluted FeCl3 solution to etch the InGaAs sacrificial layer. The operation triggers
the rolling and vertical lifting of the PCM mirror, according to the planar design.
We illustrate in Figure 4.2.a) a typical matrix of 12 microstructures from the sample
C2527 obtained after completing one fabrication cycle. The three rows of the matrix

153



CHAPTER 4. FABRICATION AND OPTICAL CHARACTERIZATION OF
PHOTON CAGES

corresponds to three values of the exposures dose 0.6, 0.7 and 0.8, set during the
lithography step. The sweep of the dose allows to find a good compromise between
high resolved patterns and complete etching of the material layers. In the four columns,
we change the dimensions of the planar design. We set the length l of the first (last)
two designs to 110 (130) µm to achieve one rolling (one rolling and a half) of the PCM
into a microtube of length 25 µm and 50 µm, alternatively.

We notice in Figure 4.2.a) the successful rolling and lifting of 8 structures out of
the 12 planar designs of the matrix. Moreover, we count 3 horizontal rolled-up PCM
while the remaining planar design has failed to roll and stand up. More generally, out
of the 12 matrices of 12 microstructures in the sample C2527, we report about 49 % of
successful rolling and lifting of the planar templates against 26 % and 24% of horizontal
microtubes and unrolled/missing structures, respectively. The SEM picture in Figure
4.2.b) shows the successful vertical lifting of one rolled-up PCM specimen with almost
90◦ angle to the sample surface, which remains attached via the anchor. Furthermore,
we estimate the diameter of the tubular cavity to 30 µm and 29.4 µm along orthogonal
radial directions as depicted on SEM picture Figure 4.2.c) of the top of the vertical
tubular cavity. We appreciate the uncertainty of the radius measurement due to the
tilt of the cavity, as mentioned previously.

4.1.4 Mechanical properties of the tubular microstructures

Some of the PCM structures manage to roll into a microtube but fail to stand up,
as observed earlier. Thus, we have investigated on the possibility to detach manually
the horizontal microtubes, to displace and make them stand vertically onto another
substrate. Toward this goal and with the help provided by Solène Brottet, we have
used the micromanipulator of a focused ion beam (FIB) device to handle a horizontal
cavity specimen as illustrated on the FIB picture of Figure 4.3.a). The tip of the
micromanipulator (green shaded object) is coated beforehand with a carbon deposit
(red shaded cluster) to hook the microtube. We operate in a carbon atmosphere to
avoid damaging the surface of the tubular cavity with the ion beam. We detach the
microtube progressively away from the substrate as depicted on the SEM picture Figure
4.3.b). The operation requires careful manipulation not to tear the microstructure
off. We have finally succeeded in completely removing the microtube of the substrate
while preserving its integrity. We have then displaced the microtube and installed it
onto a glass substrate, in a vertical position as represented on 4.3.d) and e). The
experiment has proved, qualitatively, the elastic behaviour of the InP-made rolled-up
PCM tubular cavities. Indeed, it deforms when solicited mechanically and softly but
recovers its initial tubular shape when released from external strains. We also point
out the opportunity to recycle horizontal microtubes in displacing them onto another
substrate and in another position. Such an operation holds promises for the integration
of tubular photonic cavities onto more complex platforms.
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Figure 4.3: a) Focused ion beam (FIB) picture of an horizontal rolled-up 2D PCM being hooked
by a carbon deposit (red shaded form) on the micro-manipulator (yellow shaded tip) of the FIB
device. b) SEM picture of the photonic microtube which deforms as the micro-manipulator detaches
it progressively from the substrate. c) SEM picture of the photonic tubular cavity back to its initial
tubular shape and released completely from the substrate but bonded to the micro-manipulator. d)
FIB picture of the tubular cavity being placed on a glass substrate. e) SEM picture of the tubular
cavity standing vertically on the glass substrate.

Key points of the section

In conclusion to the section, we have presented typical fabrication results covering
the entire production scheme of standing rolled-up PCM tubular cavities.

• We have detailed the composition of the multi-layered precursors C2217,
C2527, and C2579 obtained upon molecular beam epitaxy (MBE) deposi-
tion. We have proved the consistency of the theoretical estimations of the
final microtube radius with the measurements on real structures.

• We have emphasized the crucial role of the planar design to achieve the
successful rolling and vertical lifting of the PCM into standing tubular
photonic cavities.

• We report a reproducible fabrication of vertical tubular cavities, reckoned
to almost 50 % at the scale of the whole sample C2527, for instance.

• We have finally demonstrated the possibility of transferring the so-formed
rolled-up PCM cavities (vertical or horizontal) onto another substrate,
holding promises for their integration onto more complex platforms.

4.2 Optical characterization of the photon cages

4.2.1 Introduction

The last step in the study of tubular photon cages deals with the optical character-
ization of the fabricated microstructures presented in the previous section. We aim
to bring experimental proof of the 3D confinement of light in the hollow core of the

155



CHAPTER 4. FABRICATION AND OPTICAL CHARACTERIZATION OF
PHOTON CAGES

cylindrical cavities according to theoretical predictions of Chapter 3. In particular, we
have shown in 3 that the scanning near-field optical microscopy (SNOM) represents
a suitable method for probing the optical modes generated in the hollow part of the
vertical tubular cavities. Moreover, using a bowtie nanoaperture (BNA) probe allows
the selective detection of transverse electric (TE) modes.

In this section, we present SNOM measurements performed inside tubular mi-
crostructures from the samples C2217, C2527 and C2579 in the light of the analytical
and numerical models. First, we investigate the modal response of the tubular photon
cages in sample C2217 and its evolution while varying the excitation wavelength at
fixed insertion depth of the probe in the hollow core. We propose a systematic post-
process to analyze the scans and identify the emerging modes. Second, we assess the
reproducibility of the SNOM measurements in cavities from the sample C2527. We
also examine the vertical confinement of the modes by performing near-field scans at
a fixed excitation wavelength but varying insertion depth of the probe. Finally, we
explore the optical response of tubular cages with smaller curvature radius.

4.2.2 Modal response of photon cages

Tubular photon cages on sample C2217

We conduct a first set of SNOM measurements in tubular cavities fabricated from the
C2217 multi-layered precursor described in Section 4.1. The sample C2217 contains 6
matrices of 15 planar PCM templates designed to roll up into vertical rolled-up PCM
cavities with a length of 25 or 50 µm. We report on average in one matrix the successful
rolling and lifting of 7 templates into standing cavities. The remaining structures roll
into horizontal microtubes or get damaged upon drying. We recall the key role of
the lifting operation to facilitate the insertion of the SNOM probe inside the tubular
microstructures. We show on the SEM picture in Figure 4.4.a) a part of one matrix
of the sample C2217 upon fabrication. For instance, we have spotted three potential
candidates for the measurements delimited in red dashed contour. In the close-up view
in Figure 4.4.b), we appreciate the uplifting of one specimen attached to the substrate
via the anchor design. According to 4.1, the radii of the tubular cages in sample C2217
span the interval [17.5− 19] µm ±1µm.

Figure 4.4: a) SEM picture of a part of a matrix of tubular photon cages on sample C2217. b)
Close-up SEM view on a standing microtube.
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SNOM scans at various wavelengths

The first set of SNOM measurements investigates the modal response inside a 50 µm-
long cavity specimen. In practice, we approach and centre the BNA probe with respect
to the cavity, as described in Chapter 2. We insert the SNOM probe progressively
down into the hollow core, close to the middle of the cavity, to detect the modes. We
notify that the tapered shape of the probe not only limits the tip’s insertion depth,
noted d and measured from the top surface, but also the dimensions of the scan zone.

Fixing the depth of the probe’s tip as sketched in Figure 4.5, we perform a series
of scans of the electric field intensity | ~E|2 covering a 12×12 µm2 cross-section area.
We sweep the excitation wavelength to span the entire range of the TUNICS laser
source, from 1.450 µm to 1.580 µm with a 10 nm step. We present in Figure 4.5 the
intensity maps recorded in order of increasing wavelengths. We observe a predominant
pattern of concentric circles alternating between an antinodal (blue frame) and a nodal
(green frame) central region. We note that, at 1.5 µm, the central region reveals
a more complex pattern, preventing unambiguous classification. We recognize from
Section 3.3 the pattern signatures of generic cylindrical cavity modes TE0,n and TE1,n

with central nodes and antinodes, respectively. However, no clear spectral signature
indicates the transition between the modes of the same family. We fail, for instance,
to distinguish the three modes of type TE1,n detected at 1.47, 1.48 and 1.49 µm due to
their apparent pattern similarities. To overcome the difficulty, we identify the modes
at each wavelength of the sweep by determining their radial order n. To this end,
we follow a specific procedure described below to extract 1D profiles of the maps and
compare them to theoretical profiles.

Figure 4.5: Schematics: scanning near-field optical microscope (SNOM) measurements inside a 50
µm-long tubular photon cage from sample C2217 of diameter in the order of 35 µm. Pictures: 12
× 12 µm2 maps of the normalized electric field intensity | ~E|2 recorded over a cross-section near the
cavity centre for excitation wavelengths ranging from 1.450 to 1.580 µm.
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Analysis procedure of the maps

We realize the determination of the radial order n of the detected cavity modes TE0,n

and TE1,n through a systematic three step procedure. We illustrate the procedure by
identifying for instance the mode recorded at 1.450 µm of type TE0,n represented in
Figure 4.6.a). We have included the maps of the mode in a scale drawing of a 35 µm-
diameter cavity and extended the intensity pattern schematically in the background to
appreciate the fraction of the cavity cross-section covered by the scan zone. The close-
up view of the map in 4.6.b) allows a better visualization of the intensity oscillations
over the scan zone. We also notice the polarization effect of the BNA probe which
optimizes the contrast of the intensity pattern along the BNA gap direction as outlined
in blue dashed line.

Figure 4.6: Analysis scheme of typical near-field optical scans obtained in tubular photon cages.
a) Near-field optical scan of the electric field intensity spanning a 12×12 µm2 area in a cross-section
plane of a tubular photon cage of diameter estimated to 35 µm and wall thickness of 0.228 µm. b)
Close-up view of the electric intensity map recorded at λ1 = 1.450 µm. The measured signal is a
voltage with amplitude A in volts (V ) directly related to the electric intensity. c) Fourier transform
of the intensity map b) as a function of spatial frequencies νx and νy along the Cartesian directions
x and y. We apply a band-pass filter represented by a pale green ring to isolate the radial pattern of
the map. d) Inverse Fourier tranform of the filtered map c). e) Profile of the electric intensity in blue
line extracted from map d) along the white dashed line. The profile matches the theoretical profile
of generic cylindrical cavity mode TE1,24,p plotted in orange dashed line and calculated in a cavity of
radius ρc = 17.7 µm.

We first isolate the main radial pattern observed. To this end, we calculate the 2D
spatial Fourier transform of the intensity spatial distribution. In particular, we plot
in Figure 4.6.c) the evolution of the complex coefficients modulus in logarithmic scale
associated to each spatial harmonics within the interval [-5 5] µm−1. We observe a ring
of high amplitude coefficients which relates to the radial intensity oscillations in the
real space.

Second, we apply a band-pass filter (transparent green-shaded band) to select the
spatial components responsible of the radial oscillations in real space exclusively. We
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perform an inverse spatial Fourier transform of the filtered components to form the
radial intensity pattern represented in real space on Figure 4.6.d).

Third, we extract a profile of the filtered map in d) along a diameter of the cavity
(white dashed line) as plotted on 4.6.e) in blue straight line. We model the 1D exper-
imental profile with the theoretical profile of a generic mode TE0,n supported by an
equivalent cylindrical cavity of tunable radius ρeq and order n. First fixing the radius at
17.5 µm, we find a satisfying matching between theoretical and real data, minimizing
the relative errors between the peaks’ positions, for n = 24. We improve the fit by
adjusting the value of ρeq: we report a better compliance for ρeq = 17.7 µm as depicted
on Figure 4.6.e) with orange dashed theoretical profile. We report relative errors in
the order of tens of % for almost all the peaks. For the first peaks taken from the
origin at 0 µm, the error reaches a few %, suggesting the presence of other modes not
investigated here.

Identification of the modes

We have applied the filtering procedure to compare the radial oscillations of the in-
tensity maps and determine the radial orders n of the modes appearing at each of
the sweep wavelengths. We have divided in Figure 4.7 the profiles in two categories
including the modes of type TE0,n or TE1,n.

We observe that the profiles of the TE0,n modes emerging at 1.450 µm and 1.460
µm coincide in Figure 4.7.a), implying identical radial orders n. We draw similar
conclusions for the group of modes detected from 1.5 to 1.52 µm, and from 1.56 to
1.58 µm, considering matching profiles in Figure 4.7.b) and e), respectively. Similarly,
in the TE1,n family, the group of modes from 1.470 to 1.490 µm show identical radial
profiles, as well as the modes from 1.530 to 1.550 µm, as shown on 4.7.f) and h).

Conversely, we infer from Figure 4.7.b) and d) that, though sharing the same az-
imuthal order n = 0, the modes recorded at 1.450 and 1.510 µm on one hand, at 1.510
and 1.560 µm on the other hand, exhibit distinct radial orders n according to the profile
mismatch. Similarly, the modes at 1.470 µm and 1.530 µm belonging to the family of
TE1,n modes show shifted radial oscillations in their profiles as plotted in Figure 4.7.g).

We apply the remaining steps of the procedure to determine the radial orders n of
each of the experimental modes. We find a good matching between the real profiles
and the theoretical profiles calculated in an equivalent ideal cylindrical cavity of radius
ρeq = 17.7 µm with the following classification:

• λ = 1.450 to 1.460 µm: mode TE0,24;

• λ = 1.470 to 1.490 µm: mode TE1,24;

• λ = 1.500 to 1.520 µm: mode TE0,23;

• λ = 1.530 to 1.550 µm: mode TE1,23;

• λ = 1.560 to 1.580 µm: mode TE0,22.
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Figure 4.7: Comparison of profiles extracted from the electric field intensity maps of modes of type
TE0,n and TE1,n recorded between 1.450 and 1.580 µm and represented in Figure 4.5. Prior to the
profiles’ extraction, we apply a spatial filtering to the maps to filter radial oscillations.

Discussion on the results

The identification of the experimental modes has revealed three essential features.
First, we detect alternatively the presence of cavity modes of type TE0,n and TE1,n

with decreasing radial orders n in order of increasing excitation wavelength λ. Indeed,
the radial order of TE0,n (TE1,n) evolves from 24 to 22 (from 24 to 23) over the entire
source bandwidth. Those preliminary results concur with the theoretical predictions
presented in Chapter 3 as we retrieve the same spectral distribution of cavity modes
in tubular photon cages of radius 17.5 µm simulated with the FDTD method.

The second feature concerns the absence of spectral signatures of the modes as we
detect groups of cylindrical cavity modes TE0,n and TE1,n over the entire laser spectral
range. Within each group of type TE0,n (TE1,n), the modes share the same radial n
and azimuthal m orders, hence exhibit the same intensity patterns. For instance, each
of the electric field intensity maps generated between 1.470 and 1.490 µm corresponds
to the cylindrical cavity mode TE1,24 pattern. We have also performed 12×12 µm2

SNOM scans for excitation wavelengths varying from 1530 to 1532 nm down to 0.2
nm resolution. We have gathered the resulting maps of the normalized electric field
intensity | ~E|2 in Figure 4.8.a). We first remark the detection of cylindrical cavity modes
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patterns with a central antinode, hence of type TE1,n, at each wavelength. Using the
spatial filtering procedure, we compare then the modes’ profiles extracted along the
BNA high contrast direction, coinciding with the y-axis direction in Figure 4.8.a). We
find an exact mathing of the profiles superimposed in Figure 4.8.b), implying a common
radial order n = 23 according to the previous results.

Figure 4.8: a) SNOM maps of the electric field intensity | ~E|2 in normalized units over a 12×12 µm2

cross-section area inside a tubular photon cage from sample C2217. The excitation wavelength ranges
from 1530 to 1532 nm with a 0.2 nm step. b) Superimposition of modes’ profiles extracted from the
maps in a) after spatial filtering along the y axis.

We explain the quasi-continuous detection of cavity modes’ patterns defined with
identical orders (m,n) by the presence of longitudinal (z axis) modes. Indeed, in addi-
tion to transverse confinement of light, finite-length cylindrical cavities host stationary
modes forming along the cylinder axis upon reflection on top and bottom boundaries
as explained in Chapter 3. The dispersion of TEm,n modes along the cavity axis, hence
the axial component kz of the wavevector becomes quantized according to kz = pπ/L
where L designates the cavity length and p ∈ N∗ the axial order. We describe the axial
field distribution of modes TEm,n,p for given (m,n) with the order p referring to the
number of field lobes. Therefore, two consecutive modes TEm,n,p and TEm,n,p+1 exhibit
identical transverse profiles but differ of axial distributions.

We have plotted in Figure 4.9 the theoretical dispersions of the cavity modes
TE0,22,p, TE1,23,p, TE0,23,p, TE1,24,p and TE0,24,p with p varying from 1 to 15 in a 17.7
µm-radius tubular cavity of length L = 50 µm. The graph reveals the high density
of modes in the spectral range of interest and the spectral proximity of the p orders.
For instance, we count 13 modes TE1,24,p with p = 2, 3, ..14 emerging successively in
between the fundamental modes TE1,24,1 and TE0,24,1 at λTE1,24,1 ' 1.4906 µm and
λTE0,24,1 ' 1.4597 µm, respectively. Moreover, we estimate the spectral spacing be-
tween the modes TE0,24,1 and TE0,24,2 to 0.5 nm. In theory, we could discriminate
the two modes with a spectral resolution below 0.5 nm as provided by the TUNICS
laser source. In reality, the cavity modes show a spectral extension related depend-
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ing on their lifetime in the cavity, namely their quality factors noted Q. Therefore, a
bandwidth of the modes TE0,24,1 and TE0,24,2 larger than 0.25 nm leads to a spectral
overlap and allows the quasi-continuous probing of TE0,24,p modes’ transverse patterns.
In particular, we apply the same reasoning to explain the quasi-continuous detection
of the mode TE1,23,12 from 1.53 µm to 1.532 µm with a 0.2 nm step observed in Figure
4.8. We also project each wavelength of the 10 nm-sweep measurements presented in
Figure 4.5 onto the theoretical dispersion curves to evaluate the p orders of the detected
modes. We find that the p order varies from 1 to 12-13, accordingly to the values of
the p orders (ranging from 1 to 11) calculated in a 50 µm-long cavity of radius 17.5 µm
with the FDTD method in Chapter 3.

Figure 4.9: Theoretical dispersion curves of cylindrical cavity modes TE0,22,p, TE0,23,p, TE0,24,p,
TE1,22,p, TE1,23,p and TE1,24,p as a function of the axial order p in a cylindrical cavity of radius
ρeq = 17.7 µm and length L = 50 µm. We project the wavelengths and maps of the 10 nm-sweep
scans presented in Figure 4.5 onto the dispersion curves to extract the corresponding p orders.

Finally, we report the selective detection of cylindrical cavity modes with low az-
imuthal orders, especially TE0,n,p and TE1,n,p modes, over the entire spectral range from
1.450 µm to 1.580 µm. We propose two reasons to account for this specific sensitivity,
related to:

• the reflectivity of the PCM: according to Chapter 2, within the operational range
of the TUNICS source, the PCM reflectivity at normal incidence remains higher
as compared to oblique incidences. Moreover, for all incidence angles, the reflec-
tivity decreases for smaller wavelengths until reaching a minimum at 1.45 µm
coinciding with a Fabry-Pérot resonance of the membrane. Assuming the depen-
dence between high incidence angles and the formation of cavity modes with high
azimuthal orders m, we understand the preferential detection of TEm,n,p modes
with low orders m in the spectral range of interest.

• the size of the scan zone: due to the tapered shape of the probe tip, the scan
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zone area represents a limited fraction (about 15 %) of the cavity cross-section
area. Moreover, the central node of the cross-section cavity mode TEm,n,p pattern
widens as the azimuthal order m increases. Therefore, we probe cylindrical cavity
modes with low azimuthal orders for which the modes’ intensity patterns form
within the scan zone, exclusively.

We notice, however, a rather uniform distribution of the intensity in the patterns of the
modes with azimuthal orders m = 0, 1 contrary to high concentration of field energy
predicted theoretically. This observation tends to reinforce the idea of an overlap of
cavity modes patterns instead of the exclusive excitation of a single cavity mode.

Key points of the subsection

The first set of SNOM measurements performed inside tubular photon cages of
sample C2217 have already shown great consistency with numerical and analyt-
ical predictions:

• First and foremost, we have evidenced the presence of cylindrical cavity
modes in real tubular rolled-up 2D PCM experimentally, bringing practical
demonstration of the photon cages concept.

• Second, the continuum of modes detected within the source spectral range,
even down to the highest spectral resolution concur with the high spectral
density of modes announced both by FDTD and analytic calculations on
finite length cylindrical microresonators.

• Third, we have probed cylindrical cavity modes TEm,n,p with low azimuthal
orders m = 0, 1 in agreement with the PCM reflection performances within
the operational range at normal and oblique incidence calculated theoreti-
cally. Moreover, the spectral and spatial distribution of the detected modes
TE0,24,p, TE1,24,p, TE0,23,p and TE1,23,p match the FDTD simulation results.

4.2.3 Reproducibility and vertical confinement

We have performed a second series of SNOM measurements inside tubular photon cages
fabricated on sample C2527 with a two-fold objective: assess the reproducibility of the
SNOM experiment and examine qualitatively the vertical confinement of the modes
supported by the tubular cages.

Tubular photon cages on sample C2527

In sample C2527, we arrange 12 matrices of 12 planar templates designed to roll up
into vertically standing tubular photon cages. One matrix divides into three rows of
four planar designs. We adjust the exposure dose parameter of the e-beam lithography
process for each row to 0.6, 0.7 and 0.8 starting from the bottom row. The first (last)
two columns contain the templates of future tubular cages of length 25 µm (50 µm)
produced by one rolling (one rolling and a half) of the PCM. We note the smaller
thickness of the InGaP/InP bilayer estimated to 0.214 µm as compared with sample
C2217 (6% reduction). It implies shorter radii of the final tubular cages ranging from
14 to 15.5 µm±1 µm. We emphasize the negligible impact of the slight decrease of the
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cages’ radius on the PCM mirror performances at normal incidence according to the
reflectivity spectra displayed in Chapter 3. We present in Figure 4.10.a) a titled SEM
view including two matrices of 24 rolled-up microstructures created after completing the
fabrication cycle. We report the successful rolling and lifting of 17 planar templates
(∼ 71%) into standing tubular cages. The remaining templates generate horizontal
microtubes (1 specimen) or membranes damaged upon drying (6 specimens). We spot
the most vertical cages as the specimen of length 25 µm illustrated on the SEM close-up
view in 4.10.a), constituting choice candidates for the SNOM measurements.

Figure 4.10: a) SEM picture of tubular photon cages on sample C2527. b) Close-up SEM view on
a standing microtube.

SNOM scans at various wavelengths

We introduce the SNOM probe inside one specimen of vertically standing tubular cages
of radius ρc ' 29 µm and length L ' 50 µm at insertion distance d ' 10 µm from
the top boundary as schematized in Figure 4.11. In such a configuration, we ensure
to position the probe tip deep enough inside the hollow core while enlarging the scan
zone area as compared with the previous experiment. We perform in the first place
near-field scans at fixed insertion depth of the probe d while sweeping the excitation
wavelength from 1.450 to 1.580 µm with a 10 nm step.

We have gathered in Figure 4.11 the maps of the electric field intensity | ~E|2 in
normalized units spanning a 15×15 µm2 area (∼ 27% of the cavity cross-section area)
generated at each wavelength of the sweep. We point out the three specific features
standing out of the maps:

• similarly to the measurements on sample C2217, we notice radial oscillations
spreading from the cavity centre and characteristic of cylindrical cavity modes
TEm,n,p with low azimuthal orders m;

• apart from 1.460 µm, the central region of the maps reveals a more complex
pattern, impeding the discrimination between central antinodes and nodes typical
of TE0,n,p and TE1,n,p cavity modes realized with photon cages of sample C2217;
at 1.460 µm, we recognize the pattern of a cylindrical cavity modes of type TE1,n,p

with a central antinode;

• we distinguish azimuthal patterns emerging at a certain radius delimited on the
map at 1.450 µm, enclosing the central radial oscillations; it also seems that the
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position of the first azimuthal ring appears at the same position for each of the
maps.

Figure 4.11: SNOM maps for various wavelengths in tubular photon cages of sample C2527.

Identification of the mode at 1460 nm

We focus our analysis on the map generated at 1.460 µm which exhibits a central
antinode typical of TE1,n,p cylindrical cavity modes. We present the distribution of the

electric field intensity | ~E|2 in Figure 4.12.a) within a scale drawing of the cage cross-
section and schematic extension of the mode pattern in the background. The close-up
view in Figure 4.12.b) allows a finer visualization of the modes’ pattern across the scan
zone area, composed of centred radial oscillations and surrounding azimuthal rings. In
particular, we have delimited in blue dashed line the contour of the first azimuthal ring
enclosing the central radial pattern.

Applying the spatial filtering method described in Section 4.2.2, we extract a profile
over the cross-section map. We determine the radial order of the mode by comparison
with theoretical profiles of generic mode TE1,n,p in the cross-section of an ideal cavity
of tunable radius ρeq. We find a good compliance between the experimental profile and
the profile of the mode TE1,20,p hosted by a cavity of radius ρeq = 14.4 µm. We report
relative errors between experimental and theoretical positions of the profiles’ peaks
below 1 % except for the first peak for which the error reaches about 3%. Moreover,
the polarizing effect of the BNA makes the identification of the azimuthal order of
the azimuthal pattern delicate to the naked eye. To estimate the azimuthal order, we
evaluate the inner radius ρa ' 6.2 µm of the first azimuthal ring enclosing the central
radial region. We seek for the equivalent cylindrical cavity mode TEm,n,p which central
node extends until ρa in a cavity of radius ρeq = 14.4 µm. We first look at cavity modes
showing spectral proximity to the mode TE1,20,p. We finally associate the azimuthal
intensity pattern to the cylindrical cavity mode TE28,9,p which, combined to the TE1,20,p
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mode pattern, results in the analytical intensity map presented in Figure 4.12.c). We
note however that the fundamental mode TE28,9,1 emerges at a cutoff wavelength of
about 1.421 µm, far from the excitation wavelength 1.460 µm at which we record the
map in Figure 4.12.b).

Figure 4.12: a) Near-field optical scan of the electric field intensity | ~E|2 in normalized units generated
at λ = 1.460 µm and covering a 15×15 µm2 area included in a cross-section of a cavity on sample C2527
drawn at scale. b) Close-up view of the scan realized at λ = 1.460 µm. We delimit in light dashed
blue line the contour of the azimuthal ring surrounding the central radial pattern. c) Theoretical map

of the electric field intensity | ~E|2 for a combination of cylindrical cavity modes TE0,21 and TE28,9.
Similarly to b), we outline the azimuthal ring.

Discussion on the results

The interpretation of the maps generated in a tubular microstructure of sample C2527
within the TUNICS source operational source along with the analysis of the mode
detected at 1.460 µm brings out the following remarks:

• we confirm the probing of cylindrical cavity modes in a tubular cage of sample
C2527, reinforcing the experimental demonstration of the photon cages concept
and proving the reproducibility of the SNOM experiment;

• despite the complexity central pattern, we appreciate a modal dynamics in the
variation of the maps’ central region in Figure 4.11, suggesting changes of the
azimuthal orders of the modes;

• we detect the transverse mode pattern of generic cylindrical cavity mode TE1,20,p

at 1.460 µm which shows consistency with the theoretical cutoff wavelength of
the fundamental mode TE1,20,1 estimated to 1.458 µm.

• at equivalent excitation wavelength of 1.460 µm, we notice a decrease of the radial
order of the detected cylindrical cavity mode, passing from 24 to 21, along with
the reduction of the cavity radius, from 17.5 µm to 14.4 µm for the cavities on
sample C2217 and C2527, respectively, in accordance with theoretical predictions;
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• we have associated the azimuthal ring pattern enclosing the radial oscillations
with TE28,9 mode profile; however, the inconsistency between the experimental
excitation wavelength (1.46 µm) and the theoretical cutoff wavelength of the
fundamental mode TE28,9,1 (∼ 1.421 µm) suggests that the formation of the
azimuthal pattern is not related to the PCM microstructure; the presence of the
azimuthal pattern on each maps of the sweep at similar positions reinforces the
previous hypothesis; in Figure F.1 of Appendix F, we show the high reflectivity
of a membrane with averaged optical properties at grazing incidence associate to
the high azimuthal order m = 28, as a potential explanation for the formation of
the azimuthal mode.

SNOM scans at various altitudes

We perform a final series of measurements inside the tubular cage of sample C2527
to assess qualitatively the vertical confinement of the detected modes. In practice, we
adjust the vertical position of the probe tip using a step motor with a 0.7 µm increment.
We measure the different insertion depths d of the tip from the top surface of the cavity
as sketched in Figure 4.13. In particular, at d = 0 µm, the tip’s apex locates at the
top boundary of the cage.

Figure 4.13: a) Schematics of near-field optical measurements realized inside in a 50 µm-long tubular
photon cage of diameter estimated to 32 µm and 0.214 µm-thick wall at various penetration depths
of the probe d1 ' 0 µm. level with the top face of the cage, d2 ' 2 µm and d3 ' 4 µm. b) Near-field
optical maps of the electric field intensity performed at λ = 1.560 µm for the three penetration depths.

We present in Figure 4.13 electric field intensity | ~E|2 maps generated at 1.560 µm
while progressively driving the probe tip down into the cage, at depths d varying from
0 to about 16.8 µm. We notice the reduction of the scan area along with the insertion
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of the tip down into the cage, due to the tapered shape of the probe. At d = 0 µm, we
have realized two scans with the largest dimensions 20×20 µm2 and 18×18 µm2. We
delimit the frontiers of the cavity wall with a dashed blue line in the first scan. In the
first two scans, we observe a large band of azimuthal patterns surrounding a central
blurred region. We report a higher sensitivity and contrast in the detection of the
azimuthal oscillations whereas we probe weakly contrasted traces of radial patterns.
At d = 2.1 µm, the 15×15 µm2 map reveals an intricate assembly of patterns emerging
in the central region still enclosed by azimuthal oscillations yet showing lower contrast.
On the contrary, from d = 4.2 µm to d = 16.8 µm, we clearly distinguish predominant
radial patterns with high contrast along the high sensitive BNA probe direction.

We interpret the near-field measurements realized for various insertion depths d of
the probe tip inside the tubular cage in the following way:

• at d = 0 µm or at the very top of the cage, the large scan zone covering about
60 % of the cavity cross-section area reveals predominant azimuthal patterns
bordering the cavity wall but weak traces of radial oscillations; we have proposed
earlier an explanation to the presence of high azimuthal order modes based on
the high reflection of the PCM slab at grazing incidence; moreover, the low
sensitivity to radial patterns shows the minor penetration of low azimuthal order
cavity modes outside of the microtube;

• at d = 2.1 µm, we observe a complex pattern probably resulting from the com-
bination of the patterns of high p order modes detectable close to the cavity
boundaries;

• from d = 4.2 µm, we probe more confined modes with predominant radial oscil-
lations typical of cavity modes with low order azimuthal order;

4.2.4 Optical response for smaller radius cages

The last series of near-field measurements explores the optical response of photon cages
with smaller curvature radius. The interest of diminishing the cavity radius lies in the
reduction of the number of modes supported by the cavity, facilitating their detection,
yet at the expense of potential curvature effects.

Tubular photon cages on sample C2579

In this section, we perform near-field scans inside tubular photon cages fabricated on
sample C2579. From the rolling of a 86 nm-thick InP/InGaP bilayer, we produce
tubular cavities of radius varying between 5.1 and 6.2 µm. The sample C2579 divides
into 48 matrices of 4 planar templates for rolled-up PCM. In each matrix, we adjust
the length of the cavity to 20 and 30 µm in the columns, and the number of rolling of
the PCM to 2 and 3 in the rows from the bottom row. By realizing multiple rolling
of the PCM, we expect to compensate the higher optical losses and degradation of the
PCM reflection properties owing to the thinner PCM. Indeed, for 86 nm-thick PCM,
the PCM high reflectivity zone shrinks and shifts to 1.3 µm as represented in Figure
G.1 in Appendix G. We show on the SEM picture in Figure 4.14.a) an overview of a
part of sample C2579 upon fabrication of the tubular cages. We report over 10 matrices
(40 designs) for instance, the successful rolling and lifting of 23 cages (∼ 59 %), 16
horizontal microtubes (∼ 40 %) and one detached cavity. We illustrate on the SEM
close-up view in Figure 4.14.b) a quasi-vertical photon cage of length 30 µm.
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Figure 4.14: a) SEM picture of a part of sample C2579 upon fabrication of tubular photon cages.
b) SEM close-up view of a tilted tubular cage specimen after rolling and lifting of the PCM.

SNOM scans at the top of the cage

We perform a first set of near-field measurements at the top of one cage specimen of
length 20 µm and radius close to 11 µm as sketched in Figure 4.15. The operation
serves to the approach and centering of the probe tip with respect to the cage axis.
It also allows preliminary estimates of the cavity optical response before the insertion
of the probe tip inside the hollow core. We present in Figure 4.15 30×30 µm2 maps
of the electric field intensity | ~E|2 in normalized units for an excitation wavelength λ
ranging from 1.5 to 1.530 µm with a 10 nm step. The pattern of the four maps contain
two specific features, attesting to the presence of the cavity: a thick pattern extending
into free space and a central azimuthal pattern enclosing traces of radial variations.
We note the invariance of the thick pattern to the spectral sweep that we attribute to
the diffraction of the cavity’s edges. Similarly, the azimuthal ring remains unchanged
on the four maps and manifests probably the reflection of light onto the cavity wall at
grazing incidence. Conversely, we observe variations of the pattern contained within
the azimuthal ring as a function of the excitation wavelength, comforting a spectral
sensitivity of the cavity delimited with a green dashed line.

Figure 4.15: Schematics: near-field measurements at the top of a cage specimen on sample C2579 of
radius and length estimated to 11 and 20 µm, respectively. Pictures: 30×30 µm2 maps of the electric
field intensity | ~E|2 generated at various excitation wavelengths λ from 1.5 to 1.53 µm with a 10 nm
step.

SNOM scans at various wavelengths

We insert then the probe tip inside the cavity progressively to probe the modal response
at a distance d = 6 µm from the top surface of the cage as schematized in Figure 4.16.
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Fixing the insertion distance d, we carry out near-field scans over the cavity cross-
section while sweeping the excitation wavelength λ from 1.490 to 1.560 µm with a 10
nm sweep. We present in Figure 4.16 the maps of | ~E|2 in normalized units generated
in order of increasing wavelengths and covering a 4×4 scan area. We note the difficulty
to enlarge the scan zone due to the attraction forces between the probe tip and the
cavity wall.

From 1.490 to 1.5 µm, we observe a complex intensity pattern emerging from the
cavity center. It turns abruptly into radial oscillations at 1.52 µm with a central node
typical of cylindrical cavity modes TE0,n,p. The radial pattern becomes clearer at 1.530
and 1.540 µm before deforming progressively at 1.550 and 1.560 µm into intricate
geometries. Using the spatial filtering procedure, we analyze a filtered profile of the
map generated at 1.530 µm. By comparing to theoretical profiles of generic cavity
modes TE0,n,p in a cavity of radius ρeq, we find a good compliance of the experimental
profile with transverse profiles of modes TE0,7,p in a cavity of radius ρeq ' 5.6 µm. In
particular, the excitation wavelength matches with the theoretical cutoff wavelength of
the mode TE0,7,3 estimated to 1.536 µm.

Figure 4.16: Schematics: near-field measurements at an insertion distance d = 6 µm of the probe
tip from the top of a photon cage specimen on sample C2579 of radius and length estimated to 11 and
20 µm, respectively. Pictures: 4×4 µm2 maps of the electric field intensity | ~E|2 generated at various
excitation wavelengths λ from 1.490 to 1.560 µm with a 10 nm step.

Discussion on the results

We have approached in the last series of measurements the modal response of a photon
cage from sample C2579 with a radius and length estimated to 5.6 µm and 20 µm.
We report the detection of cylindrical cavity modes confined in the cavity hollow core.
The analysis of the map generated at 1.530 µm has established the correspondence
of the emerging pattern with the cylindrical cavity mode TE0,7,3. Moreover, the de-
crease of the radial order as compared with equivalent measurements inside cavities of
samples C2217 and C2527 proves the consistency of theoretical predictions. Consid-
ering the small cavity radius, the clear detection of cavity modes seems to occur near
the resonance of fundamental modes TEm,n,p, otherwise the intensity maps show more
complexity. This observation would concur with the reduction of the modes supported
by the cavity and the larger spectral spacing in between modes of distinct m, n and p
orders due to the small length of the cavity. The striking fact remains that the small

170



CHAPTER 4. FABRICATION AND OPTICAL CHARACTERIZATION OF
PHOTON CAGES

cavity radius, implying thinner PCM, alters significantly the reflectivity of the planar
PCM judging by the reflectivity spectrum simulated with RCWA method, presented in
Figure G.1 in Appendix G. Indeed, the PCM high reflectivity zone has shrunken into a
thinner peak centred at around 1.3 µm while the reflectivity decreases from about 60
% to 46 % in the spectral range [1.49-1.56] µm. At this level of reflection, we expect
the presence of cavity modes to be hardly appreciable. Therefore, we may attribute
the detection of the previous cavity mode to the high sensitivity of the BNA probe.
The deeper understanding of the generated maps would however require a thorough
quantitative analysis of the evolution of the recorded electric field intensity. We insist
on the exploratory nature of these preliminary measurements conducted in the last
period of this three year study.

4.3 Conclusion of the chapter

In conclusion to this chapter, we summarize below the main accomplishments bringing
an experimental demonstration of the photon cages concept.

In the first section, we have successfully addressed the fabrication of tubular photon
cages based on the rolling of 2D photonic crystal membranes (PCM), showing the
following features:

• we have demonstrated our ability to produce tubular photon cages with great
reproducibility and high control on the geometrical parameters;

• we have proved the efficiency of a specific anchor design to lift the rolled-up
cavities vertically, facilitating the optical characterization of the microstructures;

• we have also opened the path to other applications of rolled-up PCM mirrors
showing their elastic behaviour and the possible positioning of the microtubes
onto other platforms.

In the second section, we have tackled the optical characterization of the fabri-
cated tubular photon cages by probing the modal response in the hollow core through
scanning near-field optical microscopy (SNOM) measurements. We highlight the main
achievements resulting from measurements on three different samples C2217, C2527
and C2579 with different radius cavities:

• we have revealed the presence of cylindrical cavity modes TEm,n,p in the air-filled
core of the cavities confirming practically the potential of tubular photon cages
to confine light in air;

• we have demonstrated the reproducibility of the SNOM measurements through
the different scans conducted on various samples;

• we have showed the compliance of the orders and the wavelengths of the detected
modes with the theoretical predictions provided by the FDTD and analytic mod-
els;

• we have assessed qualitatively the vertical confinement of the cavity modes by
performing measurements at different insertion depths of the SNOM probe;
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Finally, the results of the present and previous chapters provide a complete theoret-
ical and experimental study on tubular photon cages which opens the path toward the
integration of such microstructures in opto-fluidic application devices. We note that
photon cages represent a typical combination between a photonic crystal pattern and
a 3D tubular geometry accessible through the rolled-up nanotechnology. In particular,
using the potential of the rolled-up nanotechnology platform, we investigate in the next
chapter the optical properties of analogues of typical solid-states structures, graphene
and carbon nanotubes, in the class of photonic crystals.
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Chapter 5

Photonic crystal analogues of carbon
nanotubes

L’amour qui nous attache aux beautés éternelles
N’étouffe pas en nous l’amour des temporelles ;
Nos sens facilement peuvent être charmés
Des ouvrages parfaits que le Ciel a formés.

Molière (Tartuffe, Acte III scène 3)
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5.1 Graphene VS honeycomb lattice photonic crystal

In this section, we present successively the structures and properties of graphene and
its equivalent in the class of photonic crystal membranes (PCM) corresponding to a
honeycomb lattice PCM. First, we introduce briefly the origin of the planar honeycomb
arrangement of carbon atoms in graphene. We present then the tight-binding approach
used to calculate graphene electronic dispersion, emphasizing on the key features of the
resulting dispersion. Second, we describe the structure of the honeycomb lattice PCM.
We analyze then the dispersion of photonic graphene simulated with the FDTD method
in the light of the solid-state model.

5.1.1 Graphene

Structural properties

In the class of 2D materials, graphene has become a flagship structure for its range of
exceptional properties including high mobility of the charge carriers and mechanical
flexibility. In particular, the excellent electronic transport properties originate from
the specific planar arrangement of the carbon atoms according to a honeycomb lattice.
We explain below the formation of the specific honeycomb crystallographic system
considering the filling of carbon hybridized atomic orbitals.

Figure 5.1: a) Energy diagram of the orbitals 1s, 2s, and 2p filled with the six electrons of a single
carbon atom. The black arrows represent the orientation of the electrons’ spin. The orbital 2p is
degenerate into orbitals 2px, 2py and 2pz. b) Probability density of the orbitals 2s, 2px, 2py and
2pz in the Cartesian system. c) Energy diagram of the orbitals of a single carbon atom after sp2

hybridization. d) Probability density of the sp2 and 2pz orbitals in the Cartesian system.

One carbon atom possesses a total of six electrons distributed into three atomic
orbitals 1s, 2s and 2p of increasing energies, leading to the following electronic config-
uration: 1s22s22p2. The orbital 2p is degenerate into three orbitals 2px, 2py and 2py
at the same energy level as illustrated in Figure 5.1.a). We also schematize in Figure
5.1.b) the density of probability of the different orbitals, showing spherical symmetry
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for the orbital 2s while orbitals 2px, 2py and 2pz orient respectively along x, y and z
directions. The filling of electrons into the different orbitals follows Klechkowsky’s rule,
Hund’s rule and Pauli’s exclusion principle, placing two electrons in orbitals 1s and 2s
and a single electron in each orbital 2px and 2py with parallel spins (black arrow). The
electrons in lowest energy orbital 1s constitute the core electrons tightly attached to
the nucleus. Conversely, the four remaining electrons arranged in orbitals 2s and 2p
form the valence electrons involved in the creation of chemical bounds. In particular,
the two unpaired electrons in the 2p orbitals associate to single electrons from other
atoms to form chemical bound. However, the proximity in energy of orbitals 2p and
2s allows hybridization phenomena. According to the number of 2p orbitals involved
in hybridization with 2s orbital, carbon atoms generate four, three or two hybridized
orbitals noted sp3, sp2 or sp, respectively.

In graphene (and graphite a fortiori), the orbitals 2s, 2px and 2py hybridize into
three orbitals sp2 sharing the same energy as shown in Figure 5.1.c). We also depict the
geometry of the so-formed sp2 orbitals in Figure 5.1.d). Due to electrostatic interaction,
the sp2 orbitals of one carbon atom repel with an angle of 120◦ angle. Head-on overlap
between sp2 orbital from different carbon atoms leads to the creation of chemical co-
valent bonds, also called σ bonds due to the rotational symmetry with respect to the
bond axis. Therefore, the planar arrangement of the carbon atoms form a honeycomb
lattice. The last unhybridized orbital 2pz, orthogonal to the lattice plane, hosts the
remaining unpaired electron. The overlap between 2pz orbitals produce weaker bonds
than σ bonds called π bonds, which contribute to the free circulation of the electrons
across graphene structure.

Tight-binding model for graphene

Figure 5.2: a) Schematized graphene honeycomb lattice with a period ah and lattice vectors (~a1,~a2).
The honeycomb lattice unit cell comprises two sublattices A and B. We locate one unit cell with its
coordinates (m,n) in the basis (~a1,~a2). We note t the hopping energy for the electrons hop onto
a nearest neighbour. The regular honeycomb lattice verifies a = 3ah. b) Reciprocal lattice of the
honeycomb pattern with lattice vectors (~a∗1,~a

∗
2). The primitive cell (green zone) corresponds to the first

Brillouin zone (FBZ) with high symmetry points Γ, K, K’, and M. Due to π/3-rotational symmetry,
the study of the FBZ reduces to the irreducible FBZ (blue zone).

For deeper insight on graphene electronic properties, we calculate the electronic
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band structure of π electrons using the tight-binding approach. Considered as the ana-
logue of the linear combination of atomic orbitals (LCAO) method used in chemistry,
the tight-binding model, as the name suggests, describes the properties of tightly bound
electrons in solids by approximating the overall wavefunction to the sum of isolated
atomic orbitals. It suggests therefore a small overlap between atomic orbitals, implying
minor, yet existing, interaction [1]. In particular, we use the tight-binding model to
estimate the electronic dispersion for electrons contained in 2pz graphene out-of-plane
orbitals. We may consult the reference book [1] for a detailed development of the tight-
binding Hamiltonian in the general case and in the first quantization formalism. We
build here graphene tight-binding Hamiltonian in the framework of second quantiza-
tion particularly adapted to systems with a high number of undistinguishable particles.
Though the following development belongs to classical academic exercises, we find it
useful to reproduce the step-by-step procedure for non-familiar readers.

We consider graphene honeycomb lattice generated by the periodic repetition of a
unit cell composed of two sublattices noted A and B symbolized in Figure 5.2.a) by blue
and red dots respectively. The distance between A and B corresponds to the hexagon
period ah ' 2.46Å. The lattice basis (~a1,~a2) expresses in the Cartesian system as:

~a1 =
3

2
ah ~ex +

√
3

2
ah ~ey,

~a2 =
3

2
ah ~ex −

√
3

2
ah ~ey.

(5.1)

In a regular honeycomb lattice, the hexagon period also satisfies 3ah = a. We locate
any unit cell A-B in the lattice with its coordinates (m,n) in the basis (~a1,~a2). We
assume, in first approximation, the interaction between nearest neighbours interpreted
as the hopping of electrons from one site (A or B) to the adjacent one (B or A) and
characterized by the hopping energy noted t. In this case, graphene tight-binding
Hamiltonian writes in the following form:

H = t
∑
m,n

[
a†m,n (bm,n + bm,n−1 + bm−1,n) + b†m,n (am,n + am,n+1 + am+1,n)

]
(5.2)

where a†m,n (b†m,n) and am,n (bm,n) designate the fermionic operators of creation and
annihilation, respectively, of one electron on site A (B) in the unit cell (m,n). In the
right part of the sum, the second term identifies with the Hermitian conjugate (h.c.)
of the first term, leading to a more compact form of the Hamiltonian:

H = t
∑
m,n

[
a†m,n (bm,n + bm,n−1 + bm−1,n) + h.c.

]
(5.3)

Using the discrete translation symmetry of the lattice, we decompose the operators
a†m,n and b†m,n in Fourier series according to:

a†m,n =
1√
N

∑
~k

ei
~k·(m~a1+n ~a2)a†~k ,

b†m,n =
1√
N

∑
~k

ei
~k·(m~a1+n ~a2)b†~k ,

(5.4)

with N , the number of sites A (or B) and ~k the momentum defined by |~k| = 2π/λ.
Injecting expressions in Equation (5.4) in Equation (5.3), the Hamiltonian rewrites as:

H = t
∑
m,n

∑
~k,~k′

1

N

[
a†~kb~k′e

j(~k′−~k)·(m~a1+n ~a2)
(

1 + e−i
~k′· ~a1 + e−i

~k′· ~a2
)

+ h.c.
]
. (5.5)
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Using the orthonormality relation:

1

N

∑
m,n

ej(
~k′−~k)·(m~a1+n ~a2) = δ~k,~k′ , (5.6)

the Hamiltonian of the system reduces to:

H = t
∑
~k

[
a†~kb~k′

(
1 + e−i

~k· ~a1 + e−i
~k· ~a2
)

+ h.c.
]
. (5.7)

In the basis (a~k, b~k) of sub-lattices A and B, H writes in the matrix form:

H =
∑
~k

(
a†~k b†~k

)
H~k

(
a~k
b~k

)
, (5.8)

where the Bloch hamiltonian H~k expresses for any momentum ~k as:

H~k = t

(
0 f(~k)

f ∗(~k) 0

)
, (5.9)

where f(~k) = 1+e−i
~k· ~a1 +e−i

~k· ~a2 . The off-diagonal term f(~k) in H~k represent the phase
shift acquired when hopping from site B to site A located in the same unit cell (zero

phase shift) or in adjacent unit cells (phase shift of −~k · ~a1 or −~k · ~a2). Zero diagonal
terms comes from two reasons:

• identical on-site energies for sub-lattices A and B fixed to zero as they only shift
the Hk eigenvalues;

• we only consider nearest neighbours coupling.

Graphene tight-binding band structure

We deduce the energy dispersion of graphene π electrons by calculating H~k eigenvalues,
leading to the following energy bands:

E±(~k) = ±t|1 + e−i
~k· ~a1 + e−i

~k· ~a2| = ±t|f(~k)|. (5.10)

Decomposing the momentum ~k in the 2D Cartesian basis ~k = kx~ex + ky~ey, the eigen-
values write as:

E±(kx, ky) = ±t

√√√√1 + 4 cos

(
3kxah

2

)
cos

(√
3kyah
2

)
+ 4 cos2

(√
3kyah
2

)
. (5.11)

We find two types of degeneracy points in the band diagram, noted K and K’ and

defined by E+(~K, ~K′) = E−(~K, ~K′) = 0. We infer from Equation (5.10) that ~K and ~K
′

verify the following relations as roots of unity at the order 3:

~K · ~a1 =
2π

3
~K
′
· ~a1 = −2π

3

~K · ~a2 = −2π

3
~K
′
· ~a2 =

2π

3
.

(5.12)
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Figure 5.3: a) Surface plot of graphene energy band structure approximated with the tight-binding
model. We delimit in black line the first Brillouin zone (FBZ) with high symmetry points Γ, K, K’
and M. b) Previous band structure along the high-symmetry direction Γ-K-M in blue curve. The two
bands cross at K point called Dirac point. Linearization in dashed red curve of the dispersion curve
with a slope vF corresponding to the Fermi velocity.

Moreover, in the honeycomb reciprocal lattice of basis (~a∗1,~a
∗
2), the Dirac points K and

K’ have the following coordinates:

~K =
1

3
(~a∗1 − ~a∗2),

~K’ = −1

3
(~a∗1 − ~a∗2).

(5.13)

The surface plot in the Figure 5.3.a) presents the dispersion of the two energy bands

E±(~k) over graphene FBZ outlined in black line and projected in the plane (kx, ky)
with high symmetry points Γ, K, K’ and M. The upper E+ and lower E− bands
cross at the two triplets of degeneracy points K and K’. We plot in Figure 5.3.b)
graphene electronic dispersion along the high-symmetry direction Γ-K-M. Developing
the dispersion relation around K at ~k = ~K + ~q with ~q = qx~ex + qy~ey, |~q| � |~K|, the
anti-diagonal term of Hk rewrites as:

f( ~K + ~q) = 1 + ei
3ahqx

2 × 2

[
−1

2
cos

(√
3ahqy
2

)
−
√

3

2
sin

(√
3ahqy
2

)]
. (5.14)

Expanding the previous equation in (qx, qy) = (0, 0) at the first order, the anti-diagonal
term approximates to:

f( ~K + ~q) '
0
i
3ah
2

(qx + iqy) + o(|q|2). (5.15)

The eigenvalues of Hk around the K point become:

E±(qx, qy) = ±3aht

2

√
q2
x + q2

y, (5.16)

The energy bands present therefore a conical evolution around the point K in the
momentum space typical of Dirac’s dispersion. In particular, for qy = 0 (equivalently
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qx = 0), the dispersion evolves linearly for both bands around the point K so called
Dirac point, as illustrated in Figure 5.3.b). Moreover, the group velocity vg expresses
as:

vg(qy = 0) =
dω±
dk

∣∣∣∣
qy=0

=
1

~
dE±
dk

∣∣∣∣
qy=0

=
1

~
3aht

2
= vF , (5.17)

and identifies with the Fermi velocity vF . We find a similar dispersion around the
Dirac point K’. We also note that the tight-binding development for the honeycomb
lattice holds true for any value of the hopping parameter t. In particular, the Fermi
velocity vF for graphene evaluates to about c/300, with c the speed of light in vacuum,
corresponding to a hopping parameter t of about 2 eV .

Graphene tight-binding wavefunctions

In the tight-binding approach, the Hamiltonian eigenfunctions write as linear combina-
tions of the atomic wavefunctions noted ψ~k(~r). Applied to graphene, the Hamiltonian
eigenfunctions decompose in the basis of the two sublattices (A,B) as [2]:

ψ~k(~r) = cA(~k)ψA
~k

(~r) + cB(~k)ψB
~k

(~r), (5.18)

where ψA
~k

(~r) and ψB
~k

(~r) correspond to eigenstates of the Hamiltonian with associate

coefficients cA(~k) and cB(~k). Moreover, owing to the lattice periodicity, we search for

eigenstates (ψA
~k

(~r), ψB
~k

(~r)) in the form of Bloch functions ψ~k(~r) = ei
~k·~ru~k(~r) where the

envelope u~k(~r) shares the same periodicity as the crystal. Introducing the atomic wave-
functions φ(~r) related to the 2pz orbitals of carbon atoms in graphene, the Hamiltonian
wavefunction in Equation (5.18) rewrites as:

ψ~k(~r) =
1√
N

∑
j

ei
~k·~Rj

[
cA(~k)φ(~r − ~RA

j ) + cB(~k)φ(~r − ~RB
j )
]
, (5.19)

with N the number of graphene unit cells located at ~Rj = m~a1 + n~a2, the multi-
index j being a compact notation of the coordinates (m,n) in the lattice basis (~a1,~a2).

Similarly, the vectors ~R
A/B
j indicate the atoms’ positions on sites A and B, respectively.

We determine the expressions of the coefficients cA(~k) and cB(~k) by calculating the
eigenvectors of the Hamiltonian Hk associate to the eigenvalues E± and verifying:

Hk

(
cA(~k)

cB(~k)

)
= E±

(
cA(~k)

cB(~k)

)
. (5.20)

Introducing the phase θ(~k) = − arg
[
f(~k)

]
of Hk anti-diagonal term f(~k), the general

form of the Hamiltonian wavefunction in 5.19 rewrites as:

ψ~k(~r) =
1√
N

∑
j

ei
~k·~Rj

[
φ(~r − ~RA

j )± eiθ(~k)φ(~r − ~RB
j )
]
. (5.21)

Knowing the form of the atomic orbitals φ(~r), the above formula allows to map the

Hamiltonian eigenfunction in real space for a given momentum ~k across graphene lat-
tice. For instance, we model φ(~r) with a Gaussian function centered on the atomic

positions ~R
A/B
j :

φ(~r − ~R
A/B
j ) = e−

(~r−~RA/B
j

)

2σ2 , (5.22)

179



CHAPTER 5. PHOTONIC CRYSTAL ANALOGUES OF CARBON NANOTUBES

where σ refers to the width of the Gaussian function. The parameter σ also measures
the overlap between atomic orbitals. In particular, we calculate the eigenfunctions
ψ+(~r) and ψ−(~r) associate to the bands E+ and E− plotted in Figure 5.4.a) along

the direction Γ-K, at the specific momentum ~k = 0.97 ~K′ in preparation of further
developments. We choose the Dirac point K’ with coordinates (0, 4π

3
√

3ah
) in the FBZ

depicted in Figure 5.2.b).
We present, therefore, the maps of square modulus |ψ+(~r)|2 and |ψ−(~r)|2 in Figure

5.4.b) for σ varying from 0.2ah to 0.5ah across a few unit cells of the honeycomb lattice.
For σ = 0.2ah, the eigenfunctions consists of the superimposition of the isolated atomic
orbitals owing to the weak or quasi-nonexistent overlap between the Gaussian functions.
At σ = 0.3ah, the overlap between the orbitals initiate in the vertical and horizontal
directions for ψ+ and ψ−, respectively. At σ = 0.4ah and σ = 0.5ah, the significant
overlap generates the spreading of the atomic wavefunctions between adjacent atomic
sites in the vertical (ψ+) and horizontal (ψ−) directions.

Figure 5.4: a) Graphene tight-binding energy dispersion E(~k) along the high symmetry direction
Γ-K in the FBZ. We note upper and lower bands E+ and E−, respectively. b) Maps of graphene
tight-binding wavefunctions square modulus |ψ+|2 and |ψ−|2 calculated in the upper and lower energy

bands, respectively, at the momentum ~k = 0.97 ~K for various width of the Gaussian atomic function
σ/ah = 0.2, 0.3, 0.4, 0.5.

5.1.2 Honeycomb lattice photonic crystal

In the previous part, we have reviewed the main features of the tight-binding model
used to calculate graphene energy band structure and wavefunctions’ spatial distribu-
tion across the honeycomb lattice. The analogue of graphene in the class of photonic
crystals consists of a honeycomb lattice photonic crystal membrane (HC-PCM). In the
current part, we focus on the design of the HC-PCM constituting the building block
of targeted photonic crystal analogues of carbon nanotubes (CNTs). We present the
optical simulations of the photonic band structure and the modes’ profiles of the PCM
using the FDTD method. In particular, we analyze the photonic results in the light of
the solid-state tight-binding model results.

2D simulation of circular-hole HC-PCM

We perform a first series of FDTD simulations of a 2D honeycomb lattice photonic
crystal (HC-PC) equivalent to an infinitely-thick HC-PCM. In addition to low simu-
lation time and memory requirements, the 2D simulations offer a convenient testing
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ground to approach, in first approximation, the dispersion curves of the HC-PCM while
varying the model parameters. In particular, we calculate the HC-PC band structures
for two different incident polarizations and we realize a first adjustment of the lattice
parameters.

We present in Figure 5.5.a) a CAD view of the HC-PC FDTD model consisting of
honeycomb lattice with a period ah of circular air holes of radius r etched in an InP
matrix (nInP ' 3.16 at 1.55 µm). We may refer to Chapter 2 Section 2.1 for a complete
description of the simulation parameters. We apply Bloch boundary conditions (BC)
to repeat the calculation cell (orange line) periodically. We set the simulation time ts
to 1000 fs and generate a non-uniform mesh with an accuracy level of 3. We place four
pairs of two magnetic (electric) dipoles distributed symmetrically in the calculation
zone and oriented along the z axis direction to excite TE (TM) modes. The spectral
bandwidth of the dipoles spans the frequency range from 10 to 500 THz. A cloud of
15 monitors arranged ramdomly in the cell collect the fields’ temporal evolutions. We
finally calculate the band structure by Fourier transform of the temporal data apodized
beforehand with the parameters tc = 0.5ts and ∆t = 0.125ts.

Figure 5.5: a) FDTD model of the honeycomb lattice photonic crystal (HC-PC) with a period ah
and air holes of radius r etched in InP material. We apply Bloch boundary conditions (BC) on the
frontiers of the calculation zone (orange outline). We place magnetic dipoles (green arrows) oriented
along the z-axis direction to excite TE polarized modes. b) and c): Band structures of the HC-PCM
with ah = 0.23 µm and r = 0.067 µm, calculated for TM and TE polarizations depicted on the inset
drawings, respectively.

We plot in Figure 5.5.b) and c) the HC-PC band structures calculated for TM and
TE polarizations, respectively, along Γ-K-M-Γ. We have first fixed the period ah and
the air filling factor noted FF (FF= 4πr2/(3

√
3a2)) to arbitrary values of 0.23 µm and

0.2, giving a hole radius r = 0.067 µm. The inset drawings indicate the orientation of
the electric and magnetic fields’ Cartesian components for the two polarizations with
respect to the photonic crystal plane. We concentrate on the low energy region below
the gray-shaded where we distinguish three bands for both polarizations. We observe,
for the TE polarization, the crossing of two bands with linear dispersion along Γ-K in
K so called Dirac point. Conversely, we note that a band gap forms in K for the TM
polarization. We focus in the following on the TE polarization configuration for which
we retrieve a Dirac-like dispersion. We will clarify the bands’ dynamics and nature of
the modes in the later 3D simulations of HC-PC membrane.
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In anticipation to the optical characterization of real active structures, we intend
to position the dispersion key features close to the emission of the embedded quantum
dashes (QDas) at about 1.5 µm. In particular, we aim to move the Dirac point located
at a wavelength λD toward the λref = 1.5 µm reference. In Figure 5.5.c), for ah =
0.23 µm and r = 0.067 µm (FF = 0.2), we find the Dirac point at about 183 THz
(λ ∼ 1.64 µm), or 0.14 in normalized frequency units ah/λ. Using scalable properties
of Maxwell’s equations, we shift the Dirac point to λref by maintaining a constant ratio
ah/λ = 0.14 but adapting ah to obtain λ = λD = 1.5 µm. Keeping a filling factor FF =
0.2, the Dirac point locates, therefore, at 1.5 µm for ah = 0.212 µm and r = 0.061 nm.

We notice the delicate fabrication of highly resolved air holes with a radius r inferior,
in a large extent, to 100 nm. We increase the filling factor FF to obtain a larger value
of r while maintaining the Dirac point position. Nevertheless, increasing FF diminishes
the distance between two adjacent holes. It augments then the risk of pattern merging,
considering the proximity effects generated during the lithography process. We opt for
a filling factor FF of 0.32 leading to a radius r of 77 nm. Repeating the Dirac spectral
adjustment, we obtain the following set of parameters ah = 0.232 µm, r = 0.084 µm
(FF ∼ 0.32, serving as a starting point for the following 3D simulation.

3D simulation of circular-hole HC-PCM

We conduct then a series of 3D FDTD optical simulations of more realist HC-PCM
structures of finite thickness h. We first calculate the band structure of a HC-PCM
with a thickness h = 0.23 µm close to fabricated membrane thicknesses (see Section
4.1). We keep the same FDTD parameters as for the 2D case expect for PML boundary
conditions with a steep-angle profile applied on each side of the photonic membrane at a
distance dPML = 5× h. We place out-of-plane magnetic dipoles to excite TE-polarized
modes exclusively. Starting with the 2D set of lattice parameters, ah = 0.232 µm,
r = 0.084 µm (FF ∼ 0.32), we adjust them to obtain a Dirac point at about 1.5 µm
as described previously.

We have plotted in Figure 5.6 the band structure (gray dotted line) calculated for
a HC-PCM with ah = 0.301 µm, r = 0.109 µm exhibiting a Dirac point at about
194.5 THz (1.54 µm). We also superimpose the two frequency bands derived from the
tight-binding model with a hopping parameter t ' 25.6 THz estimated by linearization
of the numerical branches around the Dirac point. In the photonic band structure, we
observe three bands that we note B1, B2 and B3. In comparison to the tight-binding
reference, we notice the following photonic specificities :

• the photonic band diagram comprises a band B3 in addition to the Dirac branches
B1 and B2;

• along Γ-K direction: B1 (B2) deviates from the lower (upper) tight-binding branch
as the frequency decreases (increases) and away from the Dirac crossing;

• along K-M direction: B1 follows accurately the lower tight-binding (TB) branch
while B2 bends downwards the Dirac level;

• along M-Γ direction: B1 deviates from the lower TB branch while B2 is shifted
with respect to the upper TB branch.

As commonly observed in photonic crystal dispersion relations, at low frequencies,
the optical wavelength increases until the PC pattern has no more diffractive effect
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Figure 5.6: a) FDTD band structure along Γ-K-M-Γ of a honeycomb lattice photonic crystal mem-
brane (HC-PCM) with a period ah = 0.301 µm of circular air holes of radius r = 0.109 µm in a
0.228 µm-thick InP membrane. The dashed blue curve corresponds to the tight-binding model disper-
sion with a hopping parameter t ' 25.6 THz. b) Spatial distribution of the real part of the magnetic
component Hz calculated on the band B3 in Γ (blue dot) over the HC-PCM unit cell.

on incident light so that the photonic dispersion becomes linear. This phenomonenon
accounts for the progressive divergence between B1 and the lower TB branch along
Γ-K, away from the Dirac point.

We identify the nature of the modes existing along the band B3 by calculating the
spatial distribution of the real part of the magnetic field component Hz over the PCM
unit cell in Γ point. The resulting map is represented in Figure 5.6.b where the dashed
white lines delimit the contour of the circular air holes. We remark that the photonic
mode present a monopolar distribution of the magnetic field, so that we refer to this
mode as the monopolar mode in the following.

We note the concurrence between the photonic and TB bands in the close viscin-
ity of the Dirac point, when both dispersion curves become linear. To complete the
comparison between the two models, we confront the maps of the photonic modes with
graphene wavefunction probability density for similar value of the momentum ~k close
to K. Therefore, we display in Figure 5.7.a) to d) the real part and square modulus of
graphene TB wavefunctions ψ+ and ψ− from the respective frequency bands f+ and f−
plotted in j) for the momentum ~k = 0.97~K. The star markers indicate the centers of
the Gaussian-type atomic orbitals with the overlap parameter σ = 0.5ah. Similarly, we
present in Figure 5.7.e) to h) the spatial distribution over the calculation zone depicted
on the drawing i) of the real part and intensity of the magnetic components H+

z and
H−z on the upper and lower photonic bands coinciding with f+ and f− branches in the

plot j) at ~k = 0.97~K. The star markers correspond to the holes’ centers.

We observe a great consistency of the photonic fields’ maps with the TB wavefunc-
tions’ real-space images calculated on the Dirac branches. In particular, the magnetic
field’s amplitude and intensity distributions share the same symmetries and amplitude
extrema locations over the computation cell as the TB wavefunctions. In the TB model,
the value of the Gaussian width σ = 0.5ah assessed to reproduce the photonic maps
suggests a significant overlap between the atomic orbitals in comparison to the TB
model assumptions of weakly interacting atomic orbitals. Nevertheless, the TB model
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provides a good approximation of the photonic dispersion and modes’ profiles in the
linear region, close to the Dirac point exclusively.

Figure 5.7: a) to d): Spatial distribution of the real part and square modulus of graphene TB
wavefunctions ψ+ and ψ− calulated for Gaussian-like atomic orbitals of width σ = 0.5ah. e) to h)
Maps over the calculation zone of the real part and intensity of the magnetic field components H+

z

and H−z for the wave vector ~k = 0.97 ~K. i) Schematics of a circular-hole HC-PC with a period ah and
circular air holes of radius r etched in an InP matrix. j) Zoom of the band structure presented in
Figure 5.7around the Dirac K point.

We finally notice that the interaction between B2 and B3, not investigated in this
work, causes the bending of band B3 which passes below the Dirac point frequency fD as
depicted in Figure 5.6.a). Such a phenomenon may impede the opening of a gap at the
level of the Dirac point as required to produce an insulating system showing potential
non-trivial topological properties. A finer adjustment of the lattice parameters would
allow the uplifting of band B3 to generate a small gap as reported by Anderson et al. in
[3]. Another strategy proposed, for instance, by Barik et al. in [4], consists in replacing
the circular holes by equilateral triangular air holes. In the following, we design an
HC-PCM structure with triangular air holes in addition to the circular-hole version.

3D simulation of triangular-hole HC-PCM

Drawing inspiration from the design suggested in [4], the triangular-hole HC-PCM
consists of equilateral triangular air holes with edges of size s etched in an h-thick
InP membrane according to a regular honeycomb lattice of period ah as schematized
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in Figure 5.8.a). In particular, we note that the C3 (120◦) rotational symmetry of
the triangles preserves the honeycomb pattern system which, otherwise, turns into
a triangular lattice. Indeed, the unit cell (dashed black contour) still contains two
face-to-face triangular elements which generates the honeycomb lattice when repeated
periodically along the lattice vectors (~a1,~a2).

By contrast with circular-hole HC-PCM, the triangular-hole version has a monopo-
lar mode which concentrates in a smaller region of the dielectric matrix (hexagons’
centres), hence increasing the mode’s frequency. Indeed, we observe in Figure H.1.a)
a higher frequency monopolar mode for a triangular-hole HC-PCM with a period
ah = 0.301 µm and edge size s = 0.294 µm than the one obtained in the circular-hole
HC-PCM (green dashed line) with the same period and holes’ radius r = 0.109 µm.
We determine the triangle edge size s so that triangular and circular holes cover the
same areas. We also observe a smaller deformation of the Dirac upper branch for the
triangular-hole HC-PCM due weak interaction with the monopolar mode.

To minimize the interaction with the monopolar mode and preserve at best the
integrity of the Dirac bands, we increase the size edge s of the triangular-hole HC-
PCM to move the monopolar mode as far as possible. We display in Figure H.1.a) to
i) the band diagrams along K-M direction, fixing ah to 0.301 µm while varying s from
0.294 µm to 0.450 µm. We note that increasing s raises the monopolar mode frequency
but also the Dirac branches which deform when approaching higher-order bands. We
opt for s = 0.4 µm as a good compromise to remove the monopolar mode while
maintaining Dirac bands far from upper bands. We adjust then the lattice parameters
to position the Dirac point at about 1.5 µm leading to the following geometry: ah =
0.367 µm and s = 0.490 µm characterized by a Dirac frequency fD ' 202.6 THz.

Figure 5.8: a) Schematics of a triangular-hole HC-PCM. Upper drawing: top view of the honeycomb
lattice with a period ah of equilateral triangular air holes of edge size s in InP material matrix. Lower
drawing: lateral view of the InP membrane of thickness h. b) FDTD band structure of a triangular-
hole HC-PCM of geometrical parameters ah = 367 µm, s = 0.490 µm and h = 0.228 µm. c) Spatial
distribution of the real part of the magnetic component Hz calculated on the band B3 in K (blue dot)
over the triangular hole HC-PCM unit cell.

We represent in Figure 5.8.b) the band structure simulated for a triangular-hole HC-
PCM with ah = 0.367 µm, s = 0.490 µm and h = 0.228 µm along Γ-K-M-Γ direction.
We have superimposed the TB bands with a hopping parameter t ' 28.7 THz obtained
by linear fit around the Dirac point located at about 203 THz or 1.48 µm. We count
three photonic bands labelled B1, B2 and B3 partly recreated under the light lines
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(oblique dark dashed lines). We identify bands B1 and B2 with the lower and upper
TB bands, respectively. We investigate the nature of the spectrally remote branch B3

by calculating the spatial distribution of the real part of the magnetic field component
Hz in K over the HC-PCM unit cell. The resulting map in Figure 5.8.c present a
monopolar distribution of the magnetic field such that we associate the branch B3 to
the monopolar mode.

Although a more accurate reproduction of the TB band shape along KM as com-
pared to the circular hole structure dispersion, we still report a slight bending of B2

judging by the asymmetric splitting of B1 and B2 from the Dirac point level. Neverthe-
less, we observe that the band B2 is not crossing the Dirac level anymore on the K-M
path, allowing for the opening of a gap and for the potential emergence of topological
effects.

Figure 5.9: a) to d): Spatial distribution of the real part and square modulus of graphene TB
wavefunctions ψ+ and ψ− calulated for Gaussian-like atomic orbitals of width σ = 0.5ah. e) to h)
Maps over the calculation zone of the real part and intensity of the magnetic field components H+

z

and H−z for the wave vector ~k = 0.97 ~K. i) Schematics of a triangular-hole HC-PC with a period ah
and triangular air holes of edge s etched in an InP matrix. j) Zoom of the band structure presented
in Figure 5.8around the Dirac K point.

We finally examine the analogies between the photonic modes’ profiles over the
HC-PCM unit cell depicted in Figure 5.9.i) and the spatial distributions of the TB
wavefunctions around the Dirac point. Similarly to the air-hole structure, we calculate
for both models the spatial location of the modes for ~k = 0.96 ~K as indicated on the
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band structures plotted in Figure 5.9.j). We note a shift of the position of the Dirac
bands crossing due to an unsatisfying mesh of the triangular holes. In particular, for
a Gaussian width parameter σ = 0.5ah, the TB wavefunctions f+ and f− distributions
in amplitude (a) and c)) and intensity (b) and d)) match the photonic profiles H−z
and H+

z calculated on lower and upper photonic bands, respectively, in amplitude (e)
and g)) and intensity (f) and h)). In other words, the spatial distributions of both
models’ solutions share the same symmetries and parities. Due to the proximity of the
triangular holes, we observe an important spreading of the magnetic energy between
adjacent triangles.

5.1.3 Conclusion of the section

Key points of the section

We have first reviewed the mains results of the tight-binding (TB) model used to
approach graphene band structure and wavefunctions. We have then simulated
with the band structures and modes’ profiles of graphene photonic crystal ana-
logues, honeycomb lattice photonic crystal membranes (HC-PCM), from which
we can draw the following conclusions:

• in the natural HC-PCM analogue with circular air holes, we obtain the
two Dirac bands with an additional band (monopolar band) specific to the
photonic model; the interaction between the upper Dirac branch and the
monopolar band causes the deformation and bending of the Dirac band
below the Dirac frequency which may impede the opening of a gap at the
Dirac point level towards the production of topological effects;

• in the HC-PCM version with triangular holes, the monopolar mode is re-
moved at higher frequencies which globally preserves the Dirac dispersion
integrity and free the Dirac level from any bands;

• the TB model provides a good approximation of the band structures and
modes’ profiles for both HC-PCM structures in close vicinity to the Dirac
point;

Dirac materials show great potential to generate topological effects such as the
emergence of unidirectional edge states. In particular, edge states emerge in
graphene ribbons as planar intermediary of nanotubes, depending on the nature
of the edge. In the following section, we investigate the topological properties of
graphene ribbons’ photonic crystal analogues based on HC-PCM structures.

5.2 Graphene ribbons and honeycomb lattice photonic

crystal ribbons

In this section, we first review topological properties of graphene ribbons which depend
on the edge shape specifically. In particular, we present the main results obtained by
Deplace et al. in [5] which predict the existence of edge states in graphene ribbons
for any type of edges by calculating a corresponding Zak phase. We then investigate
the topological behaviour of photonic crystal analogues of graphene ribbons, namely
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ribbons of HC-PCM. To this end, we propose two methods to assess numerically the ex-
istence of edge states in the photonic structures. The first method, based on Delplace’s
results, calculates a discrete version of the Zak phase for photonic ribbon specimens.
The second method simulates the band structure of photonic ribbons defined by a given
edge shape.

5.2.1 Topology of graphene ribbons

Construction of the Zak phase for graphene ribbons

The determination of graphene ribbons’ topological properties as described in [5] in-
volves the calculation of a Zak phase built from bulk graphene Hamiltonian and the
definition of an edge-dependent Brillouin zone.

We recall from Section 5.1, graphene tight-binding Bloch Hamiltonian in the basis of
sublattices (A,B) depicted in Figure 5.10, approaching graphene electronic properties:

Hk = t

(
0 f(~k)

f(~k) 0

)
= t|f(~k)|

(
0 e−iθ(

~k)

eiθ(
~k) 0

)
, (5.23)

where f(~k) = 1 + e−i
~k·~a1 + e−i

~k·~a2 = |f(~k)|e−iθ(~k), θ(~k) = − arg f(~k), expressed in the
lattice vector basis (~a1, ~a2) with ~a1 = (3ah/2,−

√
3ah/2) and ~a2 = (3ah/2,

√
3ah/2).

Graphene energy bands directly derive from Hk eigenvalues writing as E± = ±t|f(~k)|
as well as corresponding normalized eigenvectors |uk,±〉 expressing in the form:

|uk,±〉 =
1√
2

(
e−iθ(

~k)

∓1

)
. (5.24)

We emphasize that the previous eigenstates are defined by a gauge transformation,
namely |ũk,±〉 → eiφk |uk,±〉, with a ~k-dependent phase factor φk, also constitute a valid
solution. We will show later that, by contrast with the Berry phase, the Zak phase is
not invariant by any gauge transformation of the eigenstates.

In the Pauli matrices basis ~σ = (σx, σy, σz), the Hamiltonian Hk adopts the compact
form:

Hk = t~g(~k) · ~σ, (5.25)

where ~g(~k) = |f(~k)|(cos θ(~k), sin θ(~k), 0). Therefore, the Hamiltonian Hk assimilates
to the typical Bloch Hamiltonian of a 1D chain of dimers described in Chapter 1,
except that ~k momenta span a 2D parameter space. In particular, the winding of
~g(~k) around the ~k-origin as ~k varies across the Brillouin zone encodes the system’s
topological properties and information about the existence of edge states. Ryu and
Hatsugai have originally used this approach in [6] to predict the presence of edge states
in graphene ribbons with prescribed edges shape by calculating the Zak phase from
an edge-specific Hamiltonian. Conversely, Deplace’s strategy consists in describing any
graphene ribbon with a common bulk Hamiltonian while constructing an edge-specific
Brillouin zone to evaluate the Zak phase of the ribbon. In particular, this method has
the merit to address a larger range of graphene ribbons.

We define one graphene ribbon’s edges with connected dimers (A-B) of fixed orienta-

tion invariant by translation by ~T = m~a1+n~a2, (m,n) ∈ Z2, so called translation vector,
expressed in graphene lattice basis (~a1,~a2). Assuming parallel edges, the edges deduce

from one to the other by translation by an arbitrary vector ~C written in graphene lat-
tice basis. We illustrate different types of edges in Figure 5.10 constructed according
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Figure 5.10: Illustration of different types of graphene ribbon edges as a function of the translation
vector ~T .

to predefined ~T vectors with dimers (A-B) oriented along the x-axis direction1. We
have, for instance, highlighted the pale green-shaded area delimited by edges defined
by ~T (3, 1) and ~C(2,−2). We remark that translation vectors ~T (3, 1) (green arrow)

and ~T (1, 3) (purple arrow) describe the same type of edges. Furthermore, graphene

ribbons constructed with ~T (2, 2) and ~T (3, 0) belong to the generic classes of armchair

(~T (m,m), m ∈ Z) and zig-zag (~T (m, 0), m ∈ Z) ribbons owing to the so-formed edge
shapes.

The calculation of the Zak phase for 1D systems such as the 1D chain of dimers
described in Chapter 1, relies on the integral of the Berry connection over the 1D
Brillouin zone. Extended to graphene ribbons, the integration path restrains to a
section of the 2D graphene Brillouin zone along the direction perpendicular to the
ribbon axis ~T with associate momentum component k⊥. Indeed, the projection of the
momentum along ~T noted k‖ represents a good quantum number due to the discrete
translational symmetry. Therefore, we define the Zak phase Z(k‖) of a graphene ribbon
for a given k‖ by the integral of the Berry connection over the Brillouin zone along k⊥
direction.

In the simplest case of (m,n) coprime integers, we construct the ribbon’s Brillouin

zone (~Γ‖, ~Γ⊥) where ~Γ‖ coincides with the 1D Brillouin zone along the ~T -periodic di-

rection. We define the second vector ~Γ⊥ perpendicular to ~T so that its norm verifies
~Γ‖ × ~Γ⊥ = ~a∗1 × ~a∗2. In other words, the basis (~Γ‖, ~Γ⊥) covers the same area as gen-
erated by the reciprocal lattice vectors (~a∗1,~a

∗
2). We obtain, therefore, the following

coordinates of the vectors ~Γ‖ and ~Γ⊥ in the basis (~a∗1,~a
∗
2): ~Γ‖(m,n) =

[
n+ 2m

2N

]
~a∗1 +

[
m+ 2n

2N

]
~a∗2

~Γ⊥(m,n) = −n ~a∗1 +m ~a∗2

, (5.26)

1We note that in [5], the dimers orient along the y-axis in a lattice basis rotated with a 90◦ angle
with respect to our present basis (~a1,~a2).
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with N = m2 + n2 +mn2.
Introducing the unitary vectors ~e‖ = ~Γ‖/|~Γ‖| and ~e⊥ = ~Γ⊥/|~Γ⊥|, and decomposing

~k in the basis (~e‖, ~e⊥) as ~k = k‖~e‖ + k⊥~e⊥, the Zak phase Z(k‖) writes as:

Z(k‖) = i

˛
〈uk,±|∂k⊥uk,±〉dk⊥, (5.27)

where ~k⊥ evolves along ~Γ⊥ of the Brillouin zone considered as a closed path. Identifying
the eigenfunctions |uk,±〉 using Equation (5.27), the Zak phase becomes:

Z(k‖) = i

˛
∂k⊥θ(

~k)dk⊥ . (5.28)

We note an identical expression of the Zak phase for the eigenvectors |uk,+〉 and |uk,−〉
located on the upper E+ and lower E− graphene energy bands, respectively. By analogy
with a 1D finite chain of dimers, the bulk-edge correspondence for a given k‖ reads:∣∣∣∣Z(k‖)

π

∣∣∣∣ =

∣∣∣∣ 1

2π

˛
dθ(k‖, k⊥)

dk⊥
dk⊥

∣∣∣∣, (5.29)

evaluating the number of pairs of edge states from the bulk topological phase Z(k‖).

Graphical determination of the Zak phase

According to Equation (5.28), the evaluation of the Zak phase for any graphene ribbon
~T (m,n) depends on the evolution of the phase θ(~k) in the k-space represented in Figure
5.11.a for θ values restricted to [−π π]. We indicate the contour of graphene Brillouin

zones alternating non-equivalent Dirac points K and K’ at the vertices. The plot θ(~k)
reveals discontinuities connecting adjacent Dirac points in the kya axis direction. In
particular, we obtain a non-zero Zak phase Z(k‖) when the integration path [k‖ k‖ +
Γ⊥] crosses at least one of these discontinuities. Introducing d(k‖) the number of
intersections between the integration path and a line of discontinuity, the Zak phase
determines, therefore, graphically as Z(k‖) = ±πd(k‖). Moreover, the term d(k‖)
coincides with the number of pairs of edge states.

We illustrate the above graphical resolution method for a graphene ribbon of trans-
lation vector ~T (0, 1), in preparation to later developments. Using Equation (5.26), we

first construct the corresponding Brillouin zone ~Γ‖(1, 0) = ~a∗1+~a∗2/2 and ~Γ⊥(1, 0) = ~a∗2/2

that we report on the graph θ(~k) in Figure 5.11.a. The white shaded area covers the

entire Brillouin zone generated by the basis (~Γ‖(1, 0), ~Γ⊥(1, 0)). For ~k‖ = ~k‖,1, the inte-
gration path of the Zak phase (dashed red arrow) [k‖,1 k‖,1 + Γ⊥] encounters no phase

discontinuities, leading to Z(k‖) = 0. Conversely, for ~k‖ = ~k‖,2, we report one crossing,
spotted by a red cross, between the integration path and an oblique discontinuity line,
resulting in Z(k‖) = ±π.

More generally, we determine the size ∆k‖(m,n) of the range of ~k‖ along ~Γ‖(m,n)
for which we obtain a non-zero Zak phase, by projecting the discontinuity line onto the
~Γ‖(m,n), leading to:

∆k‖(m,n) =
2π

3
√

3ah

|n−m|√
N

, (5.30)

2For (m,n) not coprime, we build a basis (~̃Γ‖, ~̃Γ⊥) of the reciprocal lattice associate to (m =

lm̃, n = lñ) and define the corresponding Zak phase Z(m̃,ñ)(k̃‖).
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Figure 5.11: a) Evolution of the phase θ(~k) of graphene tight-binding eigenvectors in the reciprocal

space. We indicate the Brillouin zone (~Γ⊥(1, 0), ~Γ‖(1, 0)) of the ribbon of translation vector ~T (1, 0).

b) Schematized band structure along ~Γ⊥(1, 0) of the ribbon ~T (1, 0).

which, divided by the length of the Brillouin zone |~Γ‖(m,n)|, gives the ratio R(m,n)
expressed as:

R(m,n) =
|n−m|

3
, (5.31)

over which we expect at least one edge state existing in the graphene ribbon. For
instance, we find a ratio R(1, 0) = 1/3, meaning that one edge state exists over one
third of the Brillouin zone. More generally, according to Equation (5.31), almost every

ribbons exhibit at least one edge state expect from armchair ribbons ~T (m,m) charac-
terized by R = 0.

Finally, we note that the emergence of an edge state in the graphene ribbon ~T (1, 0)
traduces by the presence of a zero-energy flat band (blue line) in graphene band struc-
ture schematized in Figure 5.11.b. It connects the two Dirac points K and K’ and its
symmetric distribution with respect to zero energy level directly reflect graphene chiral
symmetry.

5.2.2 Topology of honeycomb lattice photonic crystal ribbons

On the basis of the solid-state results, we propose in this part to estimate the topological
properties of graphene ribbons’ photonic crystal analogues. Precisely, we intend to
predict the existence of edge states for photonic ribbons according to two methods.
The first method entails the numerical calculation of photonic ribbons’ Zak phase
using a discrete formulation of the 1D topological phase introduced previously. For
the second method, we simulate the dispersion of the photonic ribbons interfacing two
photonic materials of trivial topologies, to reveal potential edge states.

Discretized Zak phase

In the general case, an explicit expression of the eigenvectors |uk,n〉 on the n-th band
as a function of k is not always accessible, preventing the integral evaluation of the
Zak phase Z according to Equation (5.27). We use, instead, a discrete formulation
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involving numerical estimations of the normalized eigenvectors. In particular, we can
consider the Zak phase as the continuum limit of the phase term [7]:

φN = − Im ln
[
〈uk1,n|uk2,n〉〈uk2,n|uk3,n〉 . . . 〈ukN−1,n|uk1,n〉

]
, (5.32)

which corresponds to the geometrical phase accumulated by the vectors |uk,n〉 on the n-
th band as k varies along the Brillouin zone with N discrete values k = ki (i = 1, 2, ..N).
We note that the periodic Brillouin zone can be seen as a closed path in the k-space
owing to the matching of the normalized edge states on the edges of the interval,
formulated as ukN ,n = uk1,n.

Figure 5.12: Evolution of the number of edge states |Z/2π| for a graphene ribbon ~T (1, 0) as a
function of the ratio α = k‖/Γ‖ calculated using the discrete (green stars) and integral (blue circles)

formulation of the Zak phase. We choose a number Nα = 40 (0 ≤ α ≤ 1) of ~k‖ along ~Γ‖ and discretize
the integration path in Nd = 30 of samples k⊥.

We apply, for instance, Equation (5.32) to the calculation of the Zak phase Z(k‖)

of a graphene ribbon ~T (1, 0) for different k‖ values, in comparison to the predictions
obtained with the integral formulation. We first discretize the integration path [k‖ k‖+
Γ⊥] into N = Nd samples of k⊥ component. We then evaluate, for instance, the
normalized eigenvectors |uk⊥,+〉 associate to the upper band E+ for each sample k⊥
according to Equation (5.24). We present in Figure 5.12 the evolution of the number of

edge states |Z(k‖)/π| (green stars) as a function of the ratio α = k‖/|~Γ‖| for Nd = 30.
We report an exact matching with the number of edge states calculated with the
integral Zak phase (blue circles). Indeed, we remark the existence of one edge state
(|Z(k‖)/(2π)| = 1) for α ranging from 0.35 to 0.65 (R = 1/3) whereas we obtain a
zero Zak phase for the remaining α values. Moreover, we can show that the discrete
Zak phase of the ribbon ~T (1, 0) rapidly converges toward its integral value with respect
to the sampling rate Nd. Precisely, we obtain the superimposition of the discrete and
integral curves from Nd = 5. We note that this superimpostion depends upon the step
and the inital value of the integration path [k‖ k‖ + Γ⊥].
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Numerical Zak phase of photonic ribbons

The propagation of light in photonic crystals is governed by the master equation derived
from Maxwell’s equations, written for the magnetic field ~H(~r) as:

~∇×
(

1

ε(~r)
~∇× ~H(~r)

)
=
(ω
c

)2
~H(~r) , (5.33)

where ε(~r) designates the dielectric constant. In particular, in periodic media, we
search for solutions in the form of Bloch waves:

~H~k(~r) = ~h~k(~r)e
j~k·~r , (5.34)

where the envelope ~h(~r) shares the same periodicity as the crystal. The resolution of
Equation (5.33) comes down to the resolution of an eigenvalue problem which eigenval-
ues correspond to the system energy bands E(n) indexed by an integer n. Moreover, the

eigenvectors associated the energy band n are the Bloch waves ~H
(n)
~k

(~r), also referred
to as the photonic crystal modes. In the following, we focus specifically on transverse
electric (TE) polarized modes for which the magnetic field orients along the z axis
normal to the photonic crystal plane. The Bloch waves solutions for TE polarization

reduce then to scalar Bloch functions H
(n)

z,~k
(~r) = h

(n)

z,~k
(~r)ej

~k·~r. In practice, we calcu-

late the energy bands and the eigenvectors numerically with the FDTD method. The
eigenvectors associated to the n-th energy band correspond to the distribution of the
complex periodic envelope h

(n)
z,ki

computed over the photonic crystal unit cell at a given
point on the band of coordinates (ki, Ei), with i = 1, 2, . . . , Nd and Nd the number of
k points of the discretized band. Moreover, we introduce the Hermitian inner product
associated to the eigenvalue problem formulated in Equation (5.33):

〈h(n)
z,ki
|h(n)
z,ki+1

〉 =

ˆ
uc

µ(~r) · h(n),∗
z,ki

(~r) · h(n)
z,ki+1

(~r), (5.35)

where h
(n)
z,ki

and h
(n)
z,ki+1

designate two eigenfunctions calculated on the discretized n-th
band over the spatially discretized photonic crystal unit cell (uc) for consecutive values
of the momentum. In particular, at optical frequencies, the photonic crystal exhibit a
low magnetic response so that we assume µ(~r) = I. According to the definition of the
inner product in Equation (5.35), we express the normalized eigenfunction on the n-th
band at the momentum ki, noted uki,n, as:

uki,n(~r) =
h

(n)
z,ki

(~r)

〈h(n)
z,ki
|h(n)
z,ki
〉
. (5.36)

The numerical estimation of the Zak phase for the photonic crystal analogue of graphene
ribbon decomposes therefore into the following steps:

1. We choose a chirality ~T (m,n) for the ribbon and we determine the coordinates

of the reciprocal vectors ~Γ‖ and ~Γ⊥ according to Equation (5.26) forming the
ribbon’s Brillouin zone.

2. We fix the momentum ~k‖ = α~Γ‖, with 0 ≤ α ≤ 1, for which we will evaluate the
Zak phase Z(k‖).
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3. We simulate the band diagram of the honeycomb lattice photonic crystal mem-
brane along the reciprocal path [~k‖ ~k‖ + ~Γ⊥] with Nd values of the momentum
component k⊥.

4. For a given band indexed by n, we compute the normalized eigenfunctions uki,n
over the photonic crystal unit cell for each momentum components k⊥ along the
band.

5. We finally estimate the numerical Zak phase Z(k‖) in its discrete formulation
according to Equation (5.32).

We apply this procedure to assess the Zak phase of a honeycomb lattice photonic
crystal membrane ribbon of chirality ~T (1, 0) with circular and triangular air holes.

The Brillouin zone (~Γ‖(1, 0), ~Γ⊥(1, 0)) of this ribbon is represented in Figure 5.11.a.
Note that we translate the origin of this Brillouin zone from the Γ point to the K point
located below. In such a configuration, we obtain non-zero Zak phase Z(k‖) for k‖
values on the first third of the segment ~Γ‖. We then simulate the band structures of

the photonic crystal membranes along the ~Γ⊥ direction for α varying between 0 and 1.
We present in Figure 5.13.a, b and c, typical band diagrams simulated for the circular-
hole photonic crystal membrane of period ah = 0.301 µm and radius r = 0.109 µm, for
α fixed at 0.1, 1/3 and 0.4, respectively, with Nd = 30 points of discretization. In the
three diagrams, we observe three bands corresponding to the two Dirac branches (blue
and red curves) and the monopolar mode (black curve). We have superimposed, as a
guide, the tight-binding graphene upper (dashed red) and lower (dashed blue) energy
bands. We remark, for α = 0.1 and α = 0.1, a gap opening despite the alteration of the
upper Dirac branch by interaction with the monopolar mode. At α = 1/3, the upper
and lower Dirac branches intersect and close the gap, hinting at a topological phase
transition.

Figure 5.13: Band structures of a honeycomb lattice photonic crystal membrane of period ah =
0.301 µm with circular air holes of radius s = 0.109 µm along the direction ~Γ⊥(1, 0) of the Brillouin

zone of a graphene ribbon of chirality ~T (1, 0) for α = k‖/Γ‖ = 0.1, 1/3 and 0.4.

We have performed similar calculations of band structures of a triangular-hole pho-
tonic crystal membrane of period ah = 0.367 µm and triangle edge size s = 0.490 µm,
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gathered in Figure 5.14.a, b, and c for the three values of α = 0.1, 1/3, 0.4. We notice
that the monopolar mode has been removed to upper frequencies due to the triangu-
lar shape of the holes so that only the two Dirac branches remain. In particular, the
tight-binding predictions match very satisfyingly with the photonic bands by contrast
with the bands obtained with the circular-hole pattern. Moreover, we find that a gap
opens at α = 0.1, closes to form a Dirac point at α = 1/3 and opens again at α = 0.4.

Figure 5.14: Band structures of a honeycomb lattice photonic crystal membrane of period ah =
0.367 µm with triangular air holes of size s = 0.490 µm along the direction ~Γ⊥(1, 0) of the Brillouin

zone of a graphene ribbon of chirality ~T (1, 0) for α = k‖/Γ‖ = 0.1, 1/3 and 0.4.

We then compute the normalized eigenfunctions h
(1)
z,ki

along the first band of each
band diagram of the circular and triangular hole structure simulated for α varying
between 0 and 1 with a step of 0.1, at the Nd = 30 discretized values of the momentum
ki along ~Γ⊥. We have chosen to evaluate the Zak phase on the first band of the
dispersion graphs as it is not altered by any coupling with the monopolar mode. Finally,
injecting the normalized eigenfunctions into Equation (5.32), we assess the Zak phase
for the photonic systems that we note Zph and we deduce the number of edge states
|Zph/π|. The resulting Zak phase and edge state numbers are gathered in Table 5.1 as
a function α and are identical for both the circular and triangular hole pattern. We
have also added the Zak phase derived from the tight-binding model, noted ZTB. For
α = 0, 1/3 and 1, the photonic bands touch so that the Zak phase is not well defined.
Therefore, the Zak phase calculated numerically for the photonic ribbon of chirality
~T (1, 0) cancels for α = 0.1, 0.2, 0.3 and equals −π for α ranging from 0.4 to 0.9. We
deduce that one edge states exist for α between 0.4 and 0.9. However, for a graphene
ribbon of similar chirality, the tight-binding model predicts the exact inverse situation
for which the Zak phase ZTB cancels everywhere except for α = 0.1, 0.2 or 0.3 where
it equals π. One way to explain this discrepancy relies on the fact that the Zak phase
is not gauge invariant. Thus, for two distinct gauge choices, we will obtain different
values of the phase. It is noteworthy that the gauge choice can not be controlled when
the eigenfunctions are calculated numerically via the FDTD method. Hence, the Zak
phase does not constitute a topological invariant in this case but the difference between
the two Zak phases estimated with the two gauge choices does. Indeed, the quantity
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ZTB −Zph remains invariant as a function of α and always equals π.

α 0 0.1 0.2 0.3 1/3 0.4 0.5 0.6 0.7 0.8 0.9 1

ZTB π π π 0 0 0 0 0 0
Zph 0 0 0 −π −π −π −π −π −π
|Zph/π| 0 0 0 1 1 1 1 1 1

Table 5.1: Evolution of the Zak phases ZTB and Zph calculated with the tight-binding model for a

graphene ribbon of chirality ~T (1, 0) and numerically for photonic ribbons of circular and triangular
air hole of similar chirality, respectively, as a function of α = k‖/Γ‖ varying from 0 to 1. The number
of edge states of the photonic systems equals |Zph/π|.

Dispersion of photonic ribbons

The two principal manifestations of non-trivial topological properties of a system are
found in the description of its energy bands by a nonzero topological invariant, and in
the emergence of edge states when the system interfaces with another structure of trivial
topology. Following the 1D SSH modelling of graphene ribbons, we have calculated
previously the numerical Zak phase of the honeycomb lattice photonic crystal ribbon of
chirality ~T (1, 0) with circular and triangular holes. In particular, we have demonstrated
the non-nullity of the Zak phase for a certain range of wavevector component along the
ribbon axis, constituting the first indicator of the non-trivial topology of the ribbon.

Figure 5.15: Schematics of the principle of a topological interface realized with a topologically
non-trivial photonic crystal ribbon.

We intend, in this part, to confirm the topological properties of the photonic ribbon
of chirality ~T (1, 0) established previously, by revealing the presence of edge states in its
band structure when its is sandwiched by two structures exhibiting a trivial topology.
Precisely, our strategy consists in realizing a topological interface as schematized in
5.15 and calculating the band diagram of the photonic ribbon at its edges. Indeed, the
bulk-edge correspondence stipulates that edge states emerge at the interface between
two gapped systems characterized by distinct topologies, namely trivial and non-trivial.
It is noteworthy that the concept of topological interface can be used to explore the
topology of photonic ribbons of different chiralities.

The first step toward the realization of the topological interface consists in cal-
culating the band structure in the bulk of the ribbon ~T (1, 0). We present in Figure
5.16.a the FDTD model of the photonic ribbon consisting of a HC-PCM of period
ah = 0.301 µm with circular air holes of radius r = 0.109 µm. We set the width of the
ribbon to 20|~Ch(1, 0)|−ah so as to get close to the large number of dimer limit required
to produce edge states. We apply PML boundary conditions along the open boundary,
separated to the photonic crystal pattern by a distance dPML = 51ah ' 15 µm. We set
Bloch boundary conditions (BC) to repeat periodically the unit cell of length |~T (1, 0)|
along the ribbon axis (y-axis). We arrange 6 magnetic dipole sources (green dots) of

196



CHAPTER 5. PHOTONIC CRYSTAL ANALOGUES OF CARBON NANOTUBES

bandwidth [140-300] THz oriented along the normal of the ribbon and 15 time monitors
(yellow cross) in the middle of the ribbon, to excite and detect the bulk modes. We
obtain the band structure displayed in Figure 5.16.b simulated along the 1D Brillouin
zone 2π/|~T | of the ribbon. We explain the dense distribution of bands for frequencies
above the Dirac frequency level of the HC-PCM (fD ' 194.5 THz) by the interaction
between the Dirac branches and the monopolar mode. Most importantly, we notice a
small band gap around the Dirac level extending from 193 (1.55 µm) to 196 THz (1.53
µm). Our next step consists in designing a photonic structure which present a band
gap which overlaps with the ribbon band gap and has trivial topology, and will serve
as the trivial material in the topological interface.

Figure 5.16: a) FDTD model of the honeycomb photonic crystal ribbon of chirality ~T (1, 0). b) Band
structure of the bulk of the photonic ribbon calculated over the ribbon’s Brillouin zone.

In particular, we draw inspiration from the works of Bahari et al. in [8] to design a
trivial material made out of a triangular lattice photonic crystal membrane character-
ized by a large low energy topologically trivial gap. Admissible designs of the triangular
lattice photonic crystal of period atri and hole radius rtri as depicted in Figure 5.17.a
fulfil two requirements with respect to the ribbon: the compatibility of the computation
unit cell and a sufficiently large trivial energy gap to include the ribbon’s gap centred
at 194.5 THz. In particular, no set of lattice parameters meet the second requirement
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when we intend to ajust the period atri to a single ribbon’s period. However, using a
supercell of the ribbon containing two periods |~T (1, 0)| as represented in Figure 5.17,
we find one admissible couple (atri = 0.602, rtri = 0.216 µm) which produces a large
band gap containing the ribbon’s gap (white dashed line) as showed on the simulated
band structure in Figure 5.17.b. plotted along the triangular lattice Brillouin zone. We
have also plotted in 5.17.d the band structure calculated within the ribbon’s supercell.
This band diagram results from the band folding of the dispersion relation of the ribbon
with a single unit cell represented in 5.17.d. This remark is all the more important as
the potential edge states will also be subjected to band folding when dealing with the
interface.

Figure 5.17: a) Triangular lattice of air holes of period atri and radius rtri in InP membrane of
thickness h = 0.228 µm. b) Band structure simulated for the triangular photonic crystal along the
triangular lattice Brillouin zone for the set of lattice parameters atri = 0.602 µm and rtri = 0.206 µm.
c) FDTD model of the ribbon with a computation supercell corresponding to two times the translation

vector ~T (1, 0). Band structure of the ribbon’s bulk calculated within d) the supercell, e) the single
unit cell.

We finally consider the topological interface represented on the FDTD model in
Figure 5.18.a which comprises the honeycomb photonic crystal ribbon ~T (1, 0) placed
in the middle enclosed by two topologically trivial triangular photonic crystal systems
with lattice parameters defined above. The computation unit cell (orange outline)
encompasses the the three photonic systems repeated periodically along the ribbon’s
axis. We apply PML boundaries along the width of the ribbon. We position six
magnetic dipole sources and 15 time monitors on the left edge of the ribbon to excite
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and collect potential edge states as represented on the inset pictures. We show in Figure

Figure 5.18: a) FDTD model of the topological platform consisting in the photonic ribbon places in
the middle and enclosed by two topologically trivial triangular photonic crystals. The inset pictures
show the shape of the ribbon’s edges and the distribution the magnetic dipole sources and time
monitors to excite and collect edge modes. b) Band structure simulated at the left edge of the photonic
ribbon along the Brillouin zone of the ribbon’s supercell. c) Band structure of the bulk ribbon on
which we have added artificially the flat bands in the diagram of b) by virtual unfolding operation.
d) Real-space map of the magnetic field intensity |Hz|2 calculated over a part of the computation cell
centered on the interface between the ribbon and the trivial systems. e) Intensity integrated over the
y coordinate in the previous map, plotted along x and fitted by an exponiential decay function (red
dashed line). The length Lp indicate the penetration length of the mode in the ribbon.

5.18.b the band diagrams simulated at the left edge of the ribbon along its Brillouin
zone. We observe two nearly flat bands emerging at the Dirac energy level (194.5
THz) as indicated by the white arrows. As mentioned previously, the band structure
of the supercell results from the band folding of the dispersion relation obtained when
simulating the elementary unit cell of the ribbon. Therefore, in Figure 5.18.c, we
have unfolded the flat bands and inserted them (white line) artificially onto the band
diagram of the original bulk ribbon. In particular, the two branches unify to form a
single branch sketched in a thick white line which extends in the middle of the ribbon’s
Brillouin zone. Precisely, the flat band appears at one third and vanishes at two third
of the entire Brillouin zone, matching with the distribution of the non-zero Zak phase
predicted for graphene ribbons in Figure 5.11.a and b.

We investigate the nature of modes existing on the previous flat bands by calculating
the spatial distribution of the out-of-plane magnetic field component intensity |Hz|2
over the entire computation zone in Γ (green dot). A part of the resulting map focused
on the interface region, displayed in Figure 5.18.d with white dashed outline of the
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circular air holes, shows a localization of the magnetic intensity at the interface between
the ribbon and the trivial crystal. To quantify this localization, we have plotted the
evolution of the intensity integrated along the y coordinate and fitted the exponential
decay of the envelope. In particular, we find that a penetration length in the ribbon
of the mode of about 0.8 µm which represents approximately 4 % of the total width of
the ribbon. The strong localization of the mode on the ribbon’s left edge finally proves
that we deal with an edge state as predicted by the numerical calculation of the Zak
phase.

5.2.3 Conclusion of the section

Key points of the section

In summary, we have explored the topological properties of photonic crystal
analogues of graphene ribbons, namely ribbons of honeycomb lattice photonic
crystal membranes.

• We have first reviewed the topological classification of graphene ribbons
modelled as 1D SSH-like systems, with respect to their chirality. In partic-
ular, we have detailed the graphical determination of the Zak phase which
analytical expression derives from graphene tight-binding calculation.

• We have then transposed the previous concepts toward the study of the
analogue photonic ribbons, and approached their topology according to
two approaches. In the first approach, we have estimated the Zak phase
of the photonic ribbons via the numerical calculation of photonic graphene
eigenvectors along the Brillouin zone of the ribbon. We have found a re-
verse distribution of the Zak phase values for the ribbon ~T (1, 0) along the
Brillouin zone as compared to the solid-state results, due to the dependence
of the Zak phase on the gauge choice.

• In the second approach, we have simulated the band structure of a topolog-
ical interface consisting of the photonic ribbon ~T (1, 0) sandwiched between
two topologically trivial photonic systems. We have demonstrated the ex-
istence of edge states in agreement with the solid-state predictions.

We emphasize that those results constitute a first step toward a more complete
study of the topology of photonic graphene-like ribbons with different chiralities.

5.3 Carbon nanotubes and rolled-up honeycomb lattice

photonic crystal

We first describe the structure of carbon nanotubes, introducing the main geometrical
parameters.
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5.3.1 Carbon nanotubes

Structural properties

Carbon nanotubes (CNTs) correspond to monolayer graphene sheets rolled up into
hollow cylinders. The rolling of a single graphene sheet form single-walled nanotubes
(SWNTs) whereas multi-walled nanotubes (MWNTs) comprise several concentric cylin-
ders. There exists an infinite number of ways to roll graphene sheets into cylinders
depending on the direction of rolling and the number of rolling, resulting in various
tubes’ diameters and microscopic structures. In practice, the fabricated structures
have nanometric diameters and micrometric lengths, so that CNTs can be regarded as
quasi-1D crystals with translational periodicity along their axis [9].

The direction of rolling or chirality of CNTs is defined on graphene planar pattern
by the chiral vector ~Ch expressed as:

~Ch = n~a1 +m~a2, (5.37)

where the chiral indices (n,m) ∈ Z2 refer to the coordinates of ~Ch in graphene lattice
basis (~a1,~a2) depicted in Figure 5.19. The black dots symbolize the carbon atom sites.

The integer nature of (m,n) implies that the vector ~Ch always join two carbon atom

sites together. We derive from Equation (5.37) the norm of ~Ch which coincides with
the circumference of the nanotube of diameter dt:

|~Ch| =
√

3ah
√
n2 +m2 + nm =

√
3ah
√
N = πdt, (5.38)

with N = n2 + m2 + nm and ah ' 1.42 Å [10] the period of the honeycomb lattice or
the distance between two nearest-neighbour carbon atoms.

Figure 5.19: Planar unit cell (~Ch, ~T ) of the carbon nanotube (CNT) of chirality ~Ch(4, 1) where the

chiral vector ~Ch is expressed in graphene lattice basis (~a1,~a2). The black dots represent carbon atom

sites arranged according to a honeycomb lattice of period ah. The orientation of ~Ch indicates the
direction of rolling of the graphene sheet and its norm fixes the circumference, hence the diameter, of
the final nanotube. The translation vector ~T (−2, 3), also expressed in (~a1,~a2), orients along the tube
axis and its norm coincides with the tube’s length. The chiral angle θ measure the angular tilt between
the chiral vector and zig-zag configurations of the form ~Ch(n, 0). We cover all possible chiralities with
θ varying between 0◦ (zig-zag) and 30◦ (armchair).
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The dashed green arrows and green outlines in Figure 5.19 indicate the zig-zag and
armchair chiralities defined by generic chiral vectors ~Ch(n, 0) and ~Ch(n, n), respectively.

In particular, the chiral angle, noted θ, measures the angular distance between ~Ch(n,m)
and the zig-zag configuration expressed as:

cos θ(~a1, ~Ch) =
~a1 · ~Ch
|~a1 · ~Ch|

=
2n+m

2
√
N

. (5.39)

Due to the 60◦-rotational symmetry of the honeycomb lattice and the equivalence
between chirality θ and 30◦ − θ , the study of all possible chiralities restricts to angles
θ within [0◦ − 30◦], namely n > m ≥ 0.

We construct CNTs’ unit cell from the orthogonal basis (~Ch, ~T ) where ~T = t1~a1 +
t2~a2 denotes the translation vector along the tube axis, satisfying the orthogonality
relation:

~Ch · ~T = 0⇒ (2n+m)t1 + (2m+ n)t2 = 0. (5.40)

In particular, the translation vector associated to the smallest translational period
along the tubes’ axis writes:

~T =
−(2m+ n)

dR
~a1 +

(2n+m)

dR
~a2, (5.41)

with dR = gcd(2m+ n, 2n+m). Moreover, the norm of ~T , coinciding with the length
of the tube noted L, reads:

|~T | = 3ah
√
N

dR
= L. (5.42)

We finally derive the number of graphene hexagons Nh within one CNT unit cell
covered by the vectors ~Ch and ~T as the ratio of the unit cell area Auc over one hexagon
area Ah:

Nh =
Auc

Ah
=
|~Ch × ~T |

3
√

3a2h
2

=
2N

dR
, (5.43)

from which we deduce the number of carbon atoms Nc within the CNT unit cell:

Nc = 2×Nh =
4N

dR
. (5.44)

Electronic dispersion of CNTs: zone-folding scheme

From a bulk material to a lower dimension system, electronic states become quantized
along the nanoscale directions. In particular, if the low-dimension system shares the
same crystallographic structure as the parent bulk material, its electronic dispersion
forms a subset of the bulk material electronic states. For instance, we construct the
1D band structure of a nanotube produced by rolling a 2D material sheet, by cutting
the parent 2D electronic dispersion with a set of equidistant lines, so called cutting
lines oriented along the nanotubes’ 1D reciprocal space. The above procedure is better
known as the zone-folding scheme. In particular, we apply this method to derive
the band structure of quasi-1D CNTs from graphene 2D dispersion relation, following
classical developments proposed in [11]. We first explain the principle of the method

and then illustrate it by constructing the band structure of a ~Ch(6, 6) nanotube. We
finally highlight the main features of CNTs’ electronic dispersion as a function of the
chirality.
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The first step of zone folding involves the construction of the unrolled reciprocal
space of carbon nanotubes with arbitrary chirality ~Ch(n,m). We recall that graphene
reciprocal lattice is generated by the reciprocal basis (~a∗1,~a

∗
2) verifying ~ai · ~aj∗ = 2πδi,j

with (i, j) = {1, 2} and graphene real-space lattice basis (~a1,~a2). In a similar way, we

define CNTs’ reciprocal space vectors ( ~K⊥, ~K‖) from the planar unit cell (~Ch, ~T ) as:

~Ch · ~K⊥ = 2π ; ~Ch · ~K‖ = 0

~T · ~K‖ = 2π ; ~T · ~K⊥ = 0.
(5.45)

where ~K⊥ and ~K‖ point in the direction of ~Ch and ~T , respectively. The resolution of the

previous system yields the following expressions of ~K⊥ and ~K‖ in graphene reciprocal
basis (~a∗1,~a

∗
2): 

~K⊥ =
1

Nh

(t2~a
∗
1 − t1~a∗2),

~K‖ =
1

Nh

(−m~a∗1 + n~a∗2),
(5.46)

from which we deduce the norms: 
| ~K⊥| =

2

dt
,

| ~K‖| =
2π

|~T |
.

(5.47)

In particular, the norm | ~K‖| corresponds to the CNT’s Brillouin zone in the direction

of ~T . We also infer from the first equation of the system (5.46) the relation Nh
~K⊥ =

(t2~a
∗
1 − t1~a

∗
2) forming the smallest translation vector of graphene reciprocal space in

the direction parallel to ~K⊥, as t1 and t2 have no common divisor by definition (see

Equation (5.41)). Precisely, the Nh wavectors along ~K⊥ traduces the quantization of
the electronic states along the nanotube’s circumference. Introducing the unitary basis
(~e⊥, ~e‖), we decompose any wavevector ~k in the reciprocal space as ~k = k‖~e‖ + k⊥~e⊥.

The discretization of ~k along ~e⊥ originate from the constructive interference between
electronic waves after one circulation around the nanotube expressed by the phase-
matching condition:

~k⊥ · ~Ch = 2pπ, (5.48)

with p an integer varying from (1-Nh/2) to Nh/2. Consequently, the allowed values for
k⊥ in the CNT’s reciprocal space write as:

k⊥ =
2pπ

|~Ch|
=

2p

dt
; p = {1− Nh

2
, . . . ,

Nh

2
} , (5.49)

whereas the component k‖ along the tube’s axis varies continuously along the Bril-

louin zone of size | ~K‖|. Therefore, the unrolled reciprocal space of the CNT forms

Nh lines, the cutting lines, oriented along ~K‖, of size | ~K‖|, at the quantized values of
k⊥. We finally construct the CNT’s electronic band structure by superimposing the
1D dispersion curves obtained by slicing graphene 2D band diagram along the cutting
lines.
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In practice, we inject the quantized values of k⊥ expressed in Equation (5.49) into
graphene tight-binding energy bands established in Equation (5.11), using the change-
of-basis formulas: {

kx = k⊥ cos θ − k‖ sin θ,

ky = k⊥ sin θ + k‖ cos θ
, (5.50)

with ~k‖ running through the Brillouin zone.
In Figure 5.20, we illustrate the zone-folding procedure to build the band diagram

of the armchair nanotube ~Ch(6, 6). Using Equations (5.43) and (5.46), we identify in

5.20.a the unrolled reciprocal space of the CNT to the vectors ~K⊥ = 1/12(~a∗1 +~a∗2) and
~K‖ = 1/12(−6~a∗1 + 6~a∗2) which orientations coincide with kx and ky axes, respectively.

We draw the Nh = 12 cutting lines of length | ~K‖| = 2π/|~T | oriented along ~K‖ and

Figure 5.20: Illustration of the cutting lines method for the construction of the band diagram of a
(6, 6) armchair CNT. a) Section of the graphene FBZ by (m = n1 = 6) cutting lines oriented along

the translation vector ~T and regularly distributed along the chiral vector ~C. b) 3D view of the cutting

planes in the surface plot of graphene band diagram. c) Band structure, E = f(~k‖), of the (6, 6)
armchair CNT.

separated by the distance | ~K⊥| = 2/dt. Precisely, starting from the Γ point, we add
6 and 5 lines on the right and left sides of graphene first Brillouin zone (FBZ) shaded
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in gray, respectively. We also show in 5.20.b a close-up view of the lines distribution,
approaching the edge of graphene FBZ. In the 3D perpective view of graphene tight-
binding energy band structure in 5.20.c, the blue-shaded planes have replaced the
cutting lines, which contain the dispersion curves at the quantized k⊥ values. We
finally superimpose the dispersion curves extracted from the cutting planes to produce
the energy band structure of the ~Ch(6, 6) armchair CNT plotted in 5.20.d. We count
two pairs of six bands symmetrically arranged with respect to the Fermi energy level
EF , and forming the conduction (E > EF ) and valence (E < EF ). At the Fermi level,
we also notice that the two closest conduction and valence energy bands cross linearly
to create two Dirac points (black dots), conferring metallic properties to the nanotube.

Figure 5.21: Schematized cutting lines a), c) and e) on graphene Brillouin zone and zone-folding
dispersion diagrams b), d) and f) of (5, 0)-zig-zag, (6, 0)-zig-zag, and (4, 1)-chiral CNTs, respectively.

We present in Figure 5.21.b, d and f, the electronic dispersion diagrams of three
other chiralities ~Ch(5, 0), ~Ch(6, 0) and ~Ch(4, 1), accompanied with sketches a, c and d,
of the cutting lines in the viscinity of the K point on graphene Brillouin zone. Similarly
to the armchair nanotube ~Ch(6, 6), we observe a band crossing at the Fermi energy level

EF for ~Ch(6, 0) and ~Ch(4, 1) CNTs, implying a metallic behaviour confirmed by the
intersection between the cutting lines and the high-symmetry K point. Conversely, the
band structure of nanotube ~Ch(5, 0) exhibits a band gap centered on the Fermi level,
revealing the semi-conducting nature of the tube.

More generally, we can predict the electronic behaviour (metallic or semiconducting)

of any CNT with arbitrary chirality ~Ch(n,m). From a graphical viewpoint, a CNT
will exhibit metallic behaviour if one of the cutting lines intersect one Dirac point of
graphene FBZ. Equivalently, the CNT’s band diagram will contain a Dirac crossing if
the distance of the K point to the cutting line in Γ equals an integer number of the
distance 2/dt between two consecutive cutting lines. The latter geometrical condition
formulates with the chiral indices as:

Metallic ~Ch(n,m)-CNT ⇔ mod (2n+m, 3) = 0 (5.51)

In particular, we infer from the previous equation that all the armchair nanotubes and
zig-zag nanotubes provided mod (n, 3) = 0 present a metallic behaviour.

205



CHAPTER 5. PHOTONIC CRYSTAL ANALOGUES OF CARBON NANOTUBES

Concerning metallic nanotubes, we notice that the chirality determines the position
of the band crossing along the nanotube Brillouin zone. Indeed, for the CNT of chirality
~Ch(6, 0) in Figure 5.21.d, the bands intersect in Γ (k‖ = 0) while the crossing occurs in

between Γ and X (k‖ = π/|~T |) for the ~Ch(4, 1) CNT. In particular, in anticipation of
the optical characterization of analogue photonic structures, we emphasize the interest
of having dispersion features located in Γ point (normal incidence) as we can probe
them via far-field optical measurements.

Regarding semi-conductor CNTs, the existing band gap results from a misalignment
of the cutting lines with respect to the K point, proportional to the inverse of the tube’s
diameter dt. Therefore, we can estimate the band gap energy according to [9]:

Eg = 2

(
∂E

∂k

)
× 2

3dt
=

4~vF
3dt

, (5.52)

where ∂E/∂k = ~vF corresponds to the slope of the energy linear dispersion around
the K point with vF the Fermi velocity. In particular, vF ≈ 106 m.s−1 for graphene,
leading to an energy gap of semi-conducting CNTs evolving as 0, 7/dt in eV units with
dt expressed in nanometers.

In summary, the zone-folding scheme appears as a very competitive method to pre-
dict the CNTs’ electronic dispersions. Indeed, it allows extremely fast calculations of
the electronic properties of CNTs with arbitrary chirality, in agreement with ab initio
predictions in the limit of large tubes’ diameter (dt > 1 nm) to prevent curvature
effects. In particular, zone-folding shows high performances for nanotubes unit cells
containing a high number of carbon atoms. We have shown that CNTs divide into
two categories: metallic and semiconducting tubes, exhibiting a Dirac crossing and a
band gap, respectively, in their energy dispersion. Moreover, the position of metallic
tubes’ crossing along the Brillouin zone depends upon the tubes’ chirality. For semi-
conducting CNTs, the energy gap is proportional to the inverse of the tubes’ diameter.
In particular, we can expect from the opening of a gap in Dirac materials to give rise
to topological effects such as the emergence of edges states. We present in the follow-
ing a 1D model of CNTs proposed recently by Okuyama et al. in [12] establishing a
classification of CNTs according to their topological properties.

Topological properties of CNTs

The description of gapped semiconducting CNTs in the framework of topology has
drawn attention in the last decades, notably in relation to the emergence of topological
superconducting states [13–15]. Several works [16, 17] have, for instance, examined
the topological properties of CNTs using a 1D topological system derived from the
well-known Su-Schrieffer-Heeger (SSH) model, which dispersion bands can be charac-
terized by a winding number as the topological invariant. In particular, we review in
the following the recent results obtained by Okuyama et al. in [12], establishing a topo-
logical classification of all possible CNTs’ chiralities from an analytical formulation of
the winding number.

To investigate the electronic properties of CNTs, we have introduced earlier a unit
cell composed of Nh dimers A-B, generated by the chiral vector ~Ch and the translation
vector ~T as depicted, for instance, in Figure 5.22.a for the chirality ~Ch(6, 3). We
describe below another way to construct CNTs, exploiting their rotational and helical
symmetry, which will prove convenient to derive the 1D lattice model.

First, a CNT of chirality ~Ch(n,m) has a d-fold rotational symmetry around the
tube axis where d corresponds to the great common divisor of n and m, namely d =
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gcd(n,m). In particular, a rotation of angle 2π/d around the tube axis corresponds

to a translation by the vector ~Ch/d onto graphene lattice. For instance, we notice in

Figure 5.22.a that the chiral vector ~Ch(6, 3) (green arrow) divides into three repetitions

of the irreducible vector ~Ch/d (blue arrow) where d = 3.

Second, the helical symmetry of the CNT is represented by the translation by a
vector ~R = p~a1 + q~a2 expressed in graphene lattice basis (~a1,~a2), where the integers p
and q verify3:

mp− nq = d. (5.53)

Precisely, the translation by ~R traduces by a combination of a translation by az =
|~T |d/Nh along the tube axis and a rotation by the angle θz = 2π(t1q− t2p)/Nh around

the tube axis. We represent, in particular, in Figure 5.22.a the vector ~R given by p = 1
and q = 0, describing the helical symmetry of the nanotube ~Ch(6, 3).

Figure 5.22: a) Unit cell of a carbon nanotubes of chirality ~Ch(6, 3) on graphene lattice with the basis

(~R, ~Ch/d) related to the helical and rotation symmetries of the tubes. b) Associated 1D topological
system.

Therefore, the vectors ~R and ~Ch/d constitute a new set of lattice vectors on graphene
sheet where the positions of sublattices A and B, noted ~rA and ~rB, respectively, express
as: {

~rA = ` ~R + ν(~Ch/d),

~rB = ` ~R + ν(~Ch/d) + ~∆1

(5.54)

with integer indices l and ν = 0, 1, 2 . . . , d−1 and the translation vector ~∆1 = (~a1+~a2)/3
connecting A and B sites within a horizontal dimer A-B, as represented in Figure 5.22.a.
The quantization of the indice ν accounts for the periodic boundary conditions along
the tube’s circumference.

3Note that multiple couples (p, q) constitute admissible vectors ~R.
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To develop the 1D lattice model of the CNT, we consider graphene tight-binding
Hamiltonian H involving nearest-neighbour interaction characterized by the hopping
energy t:

H =
∑
~rA

3∑
j=1

t
(
c†~rAc~rA+~∆j

+ H.c.
)

(5.55)

with the creation (annihilation) operators c†~r (c~r) of a π electron at the position ~r and
~∆j (j = 1, 2, 3) connecting sites A to B as drawn in Figure 5.22.a. Fourier expanding
the ν coordinate, the Hamiltonian H decomposes in the subspace of the orbital angular
momentum µ = 0, 1, 2, . . . , d− 1 as H =

∑d−1
µ=0 Hµ with

Hµ =
∑
`

3∑
j=1

t
(
ei2πµ∆′′j /dcµA,`

†cµB,`+∆′j
+ H.c.

)
. (5.56)

The previous Hamiltonian describes a 1D lattice system consisting of a 1D chain of
horizontal dimers A-B arranged along the CNT’s axis with a period az as represented
in Figure 5.22.b. It traduces the hopping of an electron with a given angular momentum
µ from the position indexed by ` to one of the three adjacent sites located at ∆′j and

∆′′j coordinates along ~R and ~Ch/d, respectively, defined by:

~∆j − ~∆1 = ∆′j ~R + ∆′′j ~Ch/d. (5.57)

After identification, we obtain the following expressions: ∆′1 = ∆′′1 = 0, ∆′2 = n/d ,
∆′′2 = −p, ∆′3 = −m/d and ∆′′3 = q. The Fourier transform of the Hamiltonian Hµ

along the ` coordinate yields the following Bloch Hamiltonian Hµ(~k), expressed in the
basis of sublattices (A,B) in the form:

Hµ(~k) =

(
0 fµ(~k)

f ∗µ(~k) 0

)
, (5.58)

where ~k varies across the 1D Brillouin zone along the tube axis [−π/az; π/az] and the

anti-diagonal term fµ(~k) writes as:

fµ(~k) = t
3∑
j=1

ei2πµ∆′′j /dei2πkaz∆′j . (5.59)

Moreover, in the basis of Pauli matrices ~σ = (σx, σy, σz) the Hamiltonian Hµ(~k) rewrites
as:

Hµ(~k) = g(~k) · ~σ, (5.60)

typical of a two-level system, where g(~k) = t(Re(fµ(~k)), Im(fµ(~k)), 0). We deduce

the eigenvalues of Hµ(~k) which correspond to the energy subbands Eµ(~k) for a given
angular momentum µ:

E±µ (~k) = ±|g(~k)| = ±|tfµ(~k)|. (5.61)

In particular, the CNT will exhibit a metallic behaviour when the two subbands E±µ (~k)

are degenerate, namely for fµ(~k) = 0 so that we retrieve the condition expressed in

Equation (5.51). Conversely, we obtain a semiconducting CNT when fµ(~k) 6= 0 for
both bands over the entire Brillouin zone.
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The topological properties of the semiconducting CNTs are encoded in the winding
number wµ defined for each energy subbands Eµ(~k) as:

wµ =
1

2π

˛
BZ

∂ arg fµ(~k)

∂k
dk, (5.62)

which counts the number of circulation of the Hamiltonian term fµ(~k) around the origin

of the complex plane when ~k spans the entire Brillouin zone (BZ). For instance, we

plot in Figure 5.23.a the component fµ(~k) calculated for the CNT of chirality ~Ch(6, 3)
for µ = 0 (blue curve) and µ = 1 (orange curve) in the complex plane. For both µ, we
obtain a flower-shape curve composed of five lobes. However, we notice that for µ = 1,
one lobe enclose the origin (0, 0) resulting in a winding number wµ = w1 = 1 while we
report no winding around the origin for µ = 0, implying a zero-winding number w0.
We note that the winding number is not well defined for metallic nanotubes due to the
zero-gap in the band-structure (fµ(~k) = 0).

The winding number relates to the number of edge states Nedge existing at both ends
of CNTs with arbitrary chirality, via the so-called bulk-edge correspondence expressed
as:

Nedge = 4
d−1∑
µ=0

wµ. (5.63)

where the factor 4 accounts for the edge states at the two ends of the nanotubes and
the spin degeneracy.

We present in Figure 5.23.b the topological classification built from the previous
equation and extracted from [12] which connects the chirality of the CNTs (n,m) in
graphene basis (~a1,~a2) with the corresponding Nedge. Precisely, the color gradient of
the cases, from white to dark blue, shows the evolution of Nedge in the ascending order.
Cases with a cross indicate the CNTs with trivial topology (zero edge states). We

Figure 5.23: a) Representation of the Hamiltonian term fµ(~k) in the complex plane for µ = 0 and
µ = 1. b) Topological classification of the CNTs: number of edge states (colour gradient) as a function
of the tube’s chirality.

infer from the reading of the diagram that the majority of CNTs present non-trivial
topology and support Nedge 6= 0 edge states expect for semiconducting ~Ch(n + 1, n)

and metallic armchair ~Ch(n, n) nanotubes. We also mention that almost all CNTs
experience a topological phase transition when subjected to a magnetic field increased
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up to a critical threshold dependent on the chirality. However, the armchair variety
constitutes the notable exception as it exhibits metallic behaviour irrespectively of the
presence of a magnetic field and curvature effects.

5.3.2 Rolled-up honeycomb lattice photonic crystal

The previous section has revealed the versatility of carbon nanotubes (CNTs) regard-
ing their electronic and topological properties mainly governed by their chirality. In
particular, most of semiconducting CNTs exhibit non-trivial topological behaviour,
conducive to the emergence of electronic edge states at both ends of the CNTs. Such
edge states have attracted much attention toward, for instance, the conception of dis-
sipationless devices. In the photonic domain, the realization of topological insulators
have also appeared as a tantalizing route to achieve lossless optical communication.

In this section, we lay the foundations for the transposition of the physics of CNTs
in the photonic domain. We intend notably to explore the optical properties of their
photonic crystal analogues: rolled-up honeycomb lattice photonic crystal membranes
(HC-PCM). We propose, therefore, two methods to calculate the dispersive features of
the photonic microtubes. The first method inspires from the zone-folding procedure by
calculating numerically (FDTD) the dispersion of a planar unit cell delimited on pho-
tonic graphene with periodic boundary conditions to reproduce the periodicity along
the tube circumference. The principle of the second method relies on the numerical
computation (FDTD) of the dispersion of more realist rolled-up photonic microtubes
with circular hole pattern exclusively. We finally present preliminary results of the fab-
rication of real microtubes and their optical characterization through angular-resolved
spectroscopy measurements.

Numerical zone folding

Our first approach to estimate the dispersive properties of rolled-up photonic graphene
is based on zone folding method introduced previously to predict CNTs’ band struc-
tures. We recall that the construction of CNTs entails the choice of a chiral vector
~Ch(n,m) on graphene lattice defining the direction of rolling of the graphene sheet.

We derive from the indices (n,m) the translation vector ~T characterizing the period-

icity along the tubes’ axis. The basis (~Ch(n,m),~T ) constitutes therefore the unit cell
of the CNT. The circulation of the electrons along the tubes’ circumference implies
the quantization of the wave vector component along ~Ch. In the reciprocal space, the
previous quantization traduces by a set of lines oriented along ~T and positioned at the
quantized values of the wave vector component along ~Ch. The principle of zone folding
involves the cutting of graphene 2D band diagram along these lines. We reconstruct
then the 1D band structure of the CNTs by assembling the subbands resulting from
the cutting operation along the CNTs’ Brillouin zone.

It is noteworthy that the zone-folding approach supposes infinitely long nanotubes
and neglect curvature effects. Being aware of these hypotheses, this method represents
a powerful tool allowing extremely fast calculation of CNTs’ energy dispersion, even
for unit cells containing a large number of carbon atoms. For this reason, we use the
zone-folding concept to obtain first estimations of the CNT-like photonic microtubes
dispersion and test simple chiralities.

Following the zone-folding procedure, we define the photonic microtubes’ unit cell
on the planar pattern of an InP-made honeycomb lattice photonic crystal membrane
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(PCM) presented in Figure 5.24.a and b) by top and lateral views of the 3D FDTD
model with circular air holes. We set the lattice parameters to ah = 0.301 µm for the
honeycomb period and r = 0.109 µm for the holes’ radius as adjusted in Section 5.1 to
obtain a Dirac point at fD ' 194.5 THz (i.e. 1.54 µm). In the same way, we also fix
the thickness of the dielectric membrane to h = 0.228 µm.

The FDTD computation zone (orange outline) coincides with the unit cell of the

microtube generated by the chiral ~Ch and translation ~T vectors, indicated by purple
arrows in Figure 5.24.a for the chirality ~Ch(4, 1). We note that the original honeycomb

has been rotated appropriately to align ~Ch and ~T with y and x axes, respectively,
to form a rectangular calculation region as required for Cartesian mesh. We apply
periodic boundary conditions (BC) on the two frontiers perpendicular to ~Ch to re-
produce the periodicity along the tube’s circumference. Moreover, Bloch BC simulate
the periodicity along the tube’s axis, namely in the direction of ~T , while applying a
phase correction on the fields when entering another cell. PML boundaries composed
of 64 layers of steep angle profile absorb the electromagnetic energy in the out-of-plane
direction (z axis direction) at a distance dPML = 4h to the structure.

Figure 5.24: a) FDTD section view of the calculation unit cell of a rolled-up honeycomb lattice pho-
tonic crystal membrane microtube with periodic and Bloch boundaries conditions (BC) to reproduce
the periodicity along the circumference and the axis of the tube as in the zone-folding method. b)
FDTD lateral view of the model.

To calculate the spectral response of the HC-PCM unit cell, we place randomly
6 magnetic dipoles of emission bandwidth [50-300] THz oriented along the z-axis to
excite TE-polarized modes as depicted in 5.24.a. We enforce the detection of TE modes
by applying symmetric boundary conditions over the blue-shaded half plane z < 0 in
5.24.b. A cloud of 15 time monitors (yellow crosses) arranged randomly within the unit
cell, record the temporal evolution of the electromagnetic fields. We set the simulation
time to ts = 3000 fs. We finally extract the spectral response of the structure by Fourier
transforming the time data apodized with the parameters tc = 0.5ts and ∆t = 0.125ts
beforehands.

We present, therefore, in Figure 5.25.a, c and d the simulated band structures of
unrolled photonic microtubes with chiralities ~Ch(1, 0), ~Ch(1, 1) and ~Ch(2, 0), respec-
tively. We also superimpose the corresponding zone-folding bands in red dashed lines,
calculated with a hopping parameter t = 25.6 THz (see Section 5.1). We infer from
the reading of the graphs that:

• we find two photonic bands in addition to the zone-folding bands;
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• we retrieve the same dispersion features as in the electronic diagrams: the pres-
ence of a gap for the zig-zag chiralities ~Ch(1, 0) and ~Ch(2, 0) and a Dirac crossing

for the armchair chirality ~Ch(1, 1);

• the zone-folding dispersion is well reproduced only in the vicinity of the Dirac
crossing, notably for the armchair chirality ~Ch(1, 1);

• above the Dirac level, the frequency mismatch and the deformation of the pho-
tonic bands originate from the interaction between the zone-folding branches
and the additional bands; precisely the supplemental band corresponds to the
monopolar mode mentioned in Section Section 5.1 as confirmed by the map of
the magnetic intensity |Hz|2 calculated at the green dot of the ~Ch(1, 0) band
structure over the entier unit cell in Figure 5.25.b;

• below the Dirac level, the progressive divergence of the photonic band with re-
spect to the zone-folding bands is attributed to the increase of the wavelength as
compared to the lattice parameters, reducing the microstructure effect.

Figure 5.25: Simulated band structures of unrolled CNT-like photonic microtubes with circular air
holes of chirality a) ~Ch(1, 0), c) ~Ch(1, 1) and d) ~Ch(2, 0). b) Real-space map of the magnetic field

intensity |Hz|2 calculated over the unit cell of a CNT-like photonic microtube of chirality ~Ch(1, 0).

We perform a similar series of simulations but replacing circular by triangular air
holes to move the monopolar mode higher in frequency, away from graphene bands as
carried out for photonic graphene in Section 5.1. A typical unit cell of the unrolled
photonic microtube with triangular air holes is presented in Figure 5.26.a for the chi-
rality ~Ch(4, 1). In particular, we set the honeycomb period to ah = 0.367 µm and
the triangle edge size to s = 0.490 µm according to the adjustment of triangular-hole
photonic graphene realized in Section 5.1. We use identical simulation setting for the
calculation zone, the sources and the monitors as used forin the case of circular-hole
structure presented previously.

We present in 5.26.b, c and d the spectra obtained for the chiralities ~Ch(1, 0),
~Ch(1, 1) and ~Ch(2, 0) along one half of the microtube Brillouin zone extending from

Γ to X point (kz = π/|~T |). We also overlay the zone-folding theoretical bands in red
dashed line calculated with a hopping parameter t = 28.7 THz. We confirm, therefore,
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the removal of the monopolar mode which leaves folded graphene bands unaltered or
quasi-unaltered. Indeed, we report a very good agreement, in shape and energy levels,
with the zone-folding dispersion, except in the lower frequency domain (typically below
130 THz) where the photonic crystal diffraction effect vanishes so that the dispersion
evolves linearly. We also remark the same dispersive behaviour as predicted for the
electronic case at the Dirac level, namely the presence of a gap for chiralities ~Ch(1, 0)

and ~Ch(2, 0) and a Dirac crossing for the armchair unit cell ~Ch(1, 1).

Figure 5.26: a) Computation unit cell of an unwrapped CNT-like photonic microtube with triangular

air holes of chirality ~Ch(4, 1). b) Simulated band structures of unrolled CNT-like photonic microtubes

with triangular air holes of chirality a) ~Ch(1, 0), c) ~Ch(1, 1) and d) ~Ch(2, 0).

Numerical band structure of rolled-up honeycomb lattice photonic crystal membrane

In the previous approach, we have simulated the band structures of CNT-like photonic
microtubes, inspiring from the zone-folding method. It is noteworthy that the latter
method gives reliable results assuming sufficiently long microtubes (L � ah, r) with
large curvature radius noted ρt, namely ρt � ah, r. In particular, we assess in the
second approach the effect of curvature on the tube’s dispersion by simulating the
band structure of more realist CNT-like photonic microtubes with circular air holes.

We present in Figure 5.27.a, b and c, lateral, top and perspective views of the 3D
FDTD design of the photonic microtube. It is built from the seamless rolling along
a prescribed direction ~Ch(m,n) defined on graphene lattice, of a honeycomb lattice
photonic crystal membrane (HC-PCM). The HC-PCM consists of circular air holes of
radius r = 0.109 µm etched in an InP membrane of thickness h = 0.228 µm arranged
according to a honeycomb lattice of period ah = 0.301 µm. Moreover, the chirality
fixes the diameter of the tube dt according to |~Ch| = πdt, where |~Ch| coincides with the
circumference of the tube.

The calculation zone (orange outline) encloses the rolled-up unit cell of the micro-

tube, delimited by the norm of the translation vector ~T along the tube axis, as depicted
in Figure 5.27.a and b. To calculate the tube’s band structure, we apply Bloch bound-
ary conditions (BC) along its axis, coinciding with the z axis while we absorb incident
light with PML boundaries with a steep angle profile comprising 64 absorbing layers
distant to the tube surface by dPML = 3ρt/2. We arrange magnetic dipoles sources
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Figure 5.27: a) Lateral, b) cross-section, and c) perspective views of the FDTD model of a seamless
rolled-up honeycomb lattice photonic crystal membrane microtube with circular air holes.

of bandwidth [50-300] THz and a cloud of time monitors inside the PCM around the
tube’s circumference to excite the modes and record the temporal evolution of the
fields.

We simulate, therefore, the band structure of a HC-PCM rolled up along the direc-
tion ~Ch(12, 0) leading to a diameter dt ' 1 µm. The diameter dt increases along with
the size of the unit cell which itself widens for larger values of the chiral indices (n,m),
which raises the computation time. We chose therefore to test the simple zig-zag chi-
rality ~Ch(12, 0) represented in the 3D FDTD views in Figure 5.28.a, b and c, associated
to a relatively small unit cell to minimize the memory requirements and the simulation
time. This chirality also verifies the metallic condition expressed in Equation (5.51) so
that we expect a Dirac crossing in the band diagram assuming weak curvature effects.
We place 5 magnetic dipoles at random positions around the tube’s circumference but
oriented perpendicularly to the membrane plane to excite TE polarized modes exclu-
sively as shown in Figure 5.28.b. We set the simulation time ts to 10000 fs. A cloud
of 15 monitors assembled randomly over the computation zone in the membrane and
around the tube’s circumference, collect the time data of the electromagnetic fields.

We present in Figure 5.28.d the frequency bands calculated along the tube’s Bril-
louin zone Γ-X where X locates at kz = π/|~T | and displayed in logarithmic scale. First
of all, we observe a band crossing (red dot) at the level of the Dirac point (red dashed
line) obtained in the photonic graphene structure, namely at fD ' 194.5 THz as ex-
pected for the chosen chirality. To facilitate the interpretation of the graph, we have
added in Figure 5.28.g, as a guide, the band structure of the chirality ~Ch(12, 0) simu-
lated with the zone-folding method on the photonic graphene unit cell represented in
5.28.e and f for TE polarization. We report, therefore, a good concurrence between the
rolled-up and planar band structure, in terms of shape and energy levels of the bands.
However, we notice extra bands in the diagram of the rolled-up tube which intersect the
red dashed Dirac level. The presence of additional bands hints a potential mixing of
TE and TM polarized modes. To validate this hypothesis, we have conducted another
simulation of the planar photonic graphene cell with magnetic dipole sources of random
orientation to excite both TE and TM modes, as represented on the FDTD top and
lateral views in Figure 5.28.h and i. We have plotted the resulting band structure in
Figure 5.28.j in which we retrieve all the bands of the rolled-up microtube.

In summary, we have achieved the simulation of the optical properties of CNT-
like photonic crystal microtubes according to two methods from which we draw the
following preliminary conclusions:
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Figure 5.28: a) Perspective, b) top and c) lateral views of the FDTD model of a CNT-like photonic
microtube with circular air holes. d) Simulated band structure of a CNT-like photonic microtube with

circular air holes of chirality ~Ch(12, 0). e) Top and f) lateral FDTD views of the planar computation

unit cell of a CNT-like photonic microtube with circular air holes of chirality ~Ch(12, 0) with incident
TE polarization. g) Simulated band structure of the unrolled microtube with TE polarization. h) Top
and i) lateral FDTD views of the planar computation unit cell of a CNT-like photonic microtube with

circular air holes of chirality ~Ch(12, 0) with incident TE and TM polarizations. j) Simulated band
structure of the unrolled photonic microtube with TE-TM polarizations.

• numerical zone-folding: we have first estimated the CNTs optical response by
calculating numerically the band diagrams of unrolled tubes in the way of zone-
folding method. In particular, this method neglects the curvature effects. For
chiralities with low chiral indices, we retrieve photonic equivalents of metallic and
semiconducting behaviour predicted with the CNT zone folding, namely the pres-
ence of a Dirac crossing or a band gap. We also report a good matching between
the zone-folding and photonic bands for triangular-hole PCM-based microtubes.
By contrast, the presence of the monopolar mode in the circular-hole structure
alters the bands located above the Dirac level.

• band structures of rolled-up photonic crystal membranes: in the second place, we
have refined our estimation of the optical response of CNT-like photonic micro-
tubes to take into account the finite curvature of the structures. To this end,
we have simulated, for instance, the band structure of a realist photonic crystal
microtube with circular air hole. We have showed that the bands match exactly
with the dispersion of the unrolled tube, yet with mixed TE and TM polar-
izations. In this case, the tube’s curvature generates negligible effects, making
the planar simulations efficient and reliable toward the prediction of the CNT’s
optical features.

For the sake of completeness, the simulation of photonic crystal microtubes’ band
structures should be extended to other chiralities and diameters to get more represen-
tative results and draw conclusions on the relevance of the calculations on unrolled
tubes. Moreover, we have not tested yet the triangular hole PCM-based microtube’s
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optical response for which the remote monopolar mode should barely affect the tube’s
final dispersion.

Fabrication of rolled-up photonic graphene

In the previous part, we have investigated numerically the optical properties of photonic
crystal analogues of carbon nanotubes. We have showed in particular that the presence
of a Dirac crossing in the tubes’ band structures was determined by their chirality. The
first step toward the experimental validation of the numerical predictions involves the
fabrication of the photonic microtube based on the rolled-up nanotechnology. In this
section, we present main results of the fabrication process, from the description of
the multi-layered precursor to the production of rolled-up honeycomb lattice photonic
crystal membranes with various chiralities.

The first stage of the fabrication cycle deals with the successive epitaxial deposition
of InGaAs (sacrificial layer), InP and InGaP material layers on top of an InP nominal
substrate to form the multi-layered precursor. We focus, in particular, on the sample
C2441 used for the later optical characterization measurements and composed of a
265 nm-thick InGaAs layer, 162 nm-thick InP layer and 74 nm-thick InP layer. We
have also inserted a plane of InAs quantum dashes (QDas) at 58 nm to the bottom
of the InP layer, characterized by an emission wavelength centered at around 1.5 µm
in preparation of later photoluminescence measurements. The Gallium proportion xGa

in the InGaP layer reaches about 0.12 leading to a mismatch m between the InGaP
and InP lattice parameters estimated to 0.8 %. According to Equation (1.21), we find
a theoretical curvature radius of the rolled-up InP-InGaP bilayer of about 22 µm. In
practice, we measure real radii included in the interval [16.8 - 19] µm ±1 µm. The
discrepancies between the theoretical and experimental data may be explained by the
slight deformation of the tubes upon drying process.

The next step entails the production of the planar template to form the graphene-
like photonic crystal membrane and achieve the rolling of the membrane into hori-
zontal microtubes. For the sample C2441, the photonic crystal pattern consists of a
honeycomb lattice with a period ah = 0.294 µm of triangular air holes of edge size
s = 0.287 µm as shown on the scanning electron microscopy (SEM) picture in Figure
5.29.b generated upon lithography and reactive ion etching (RIE) processes. The latter
set of lattice parameters leads to a Dirac point about 1.5 µm. The sample is organized
in 4 matrices 12 planar rectangular templates. We fix the dimensions of all the rect-
angles to 50 µm × 140 µm where 50 µm corresponds to the length and the perimeter
to achieve a single rolling of the membrane. One matrix comprises three rows of four
planar pattern designed to roll as shows on the SEM picture in 5.29.a. We sweep the
value of the lithography exposure dose parameter from 0.7 to 0.9 for the three rows
to find setting that allows highly resolved patterns and a complete etching. Each row
decomposes into four orientations of the honeycomb pattern derived from the follow-
ing elemental chiralities: armchair ~Ch(1, 1), metallic zig-zag ~Ch(6, 0), semiconducting

(SC) ~Ch(5, 3) and metallic ~Ch(5, 2). Dividing the 140 µm-long perimeter of the tubes
by an integer number of the norm of the previous elemental chiral vectors, we obtain
microtubes’ planar unit cells with armchair ~Ch(56, 56), metallic zig-zag ~Ch(96, 0), semi-

conducting ~Ch(70, 42) (14× ~Ch(5, 3)) and metallic ~Ch(75, 30) (15× ~Ch(5, 2)) chiralities.

In the matrix shown in 5.29.a, we report the successful rolling of all the 12 planar
patterns to form photonic crystal microtubes. We note, however, that one specimen
had its rolling direction deviated. On the scale of the entire sample, we observe a rate
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Figure 5.29: a) Scanning electron microscope (SEM) picture of a matrix of 12 rolled-up honeycomb
lattice photonic crystal membrane microtube with triangular air holes upon rolling of planar templates
with different e-beam lithography exposure doses and chiralities. b) Close-up SEM picture of the
honeycomb lattice pattern with triangular air holes. c) SEM picture of a rolled-up photonic microtube.

of 94 % of successful rolling of the membranes. We appreciate the quality of the rolling
on the SEM picture in Figure 5.29.c of a photonic microtube specimen with a diameter
of about 36 µm.

Optical characterization of the honeycomb lattice photonic crystal microtubes

To finalize the study of CNT-like photonic microtubes, we have conducted a preliminary
series of optical measurements to characterize the triangular air-hole photonic crystal
microtubes fabricated on sample C2441 presented previously. Precisely, we have per-
formed angular-resolved spectral measurements using a white light source to construct
experimental band diagrams in reflectivity of the microtubes along their axis. In the
following, we present and analyze the photonic bands extracted from zig-zag photonic
microtubes exhibiting a metallic-like behaviour theoretically.

The sample C2441 contains photonic microstructures with four different chiralities,
namely armchair ~Ch(56, 56), semi-conducting ~Ch(70, 42), metallic ~Ch(75, 30) and zig-

zag ~Ch(96, 0). As mentioned previously, those chiralities correspond to integer multiple

of elemental chiralities ~Ch(1, 1), ~Ch(5, 3), ~Ch(5, 2) and ~Ch(6, 0) drawn, for instance,
in Figure 5.30.a onto a honeycomb lattice of gray-shaded triangles. The zone-folding
band structure of zig-zag ~Ch(6, 0) tubes plotted in Figure 5.30.b along the Brillouin
zone Γ-X in the direction of the tubes’ axis, predicts a Dirac crossing located in Γ.
We have showed earlier that the electronic zone-folding calculations matched with the
numerical band diagrams of triangular air-hole honeycomb lattice PCM microtubes.
In particular, photonic structures exhibiting dispersion features in Γ, or more generally
above the light line (red dashed line), hold much interest for optical characterization as
they are directly addressable via the surface. Among the above-mentioned chiralities,
only the zig-zag ~Ch(6, 0) microtubes are characterized by a band crossing occuring in
Γ, in theory. We have, therefore, conducted a first series of angular-resolved spectral
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Figure 5.30: a) Unit cell of the zig-zag ~Ch(6, 0) microtube drawn onto a honeycomb lattice of gray-

shaded triangles. b) Band structure of the zig-zag ~Ch(6, 0) microtube calculated with the zone-folding
method along the Brillouin zone Γ-X. For the photonic structures, the red dashed line corresponds to
the light line which delimits the frontier between surface addressable modes and guided modes (gray
region).

measurements which principle is described in Section 2.3, on the zig-zag microtubes to
retrieve their dispersion relation along the tubes’ axis experimentally.

When addressing the photonic modes via the microtubes’ surface, the direction of
the light waves given by the wave vector ~k decomposes as ~k = ~k‖+~k⊥+~kout, where ~k‖
orients along the tube’s axis while ~k⊥ and ~kout coincide with the radial and orthoradial
components as depicted on the schematic perspective and top views of the tube in
Figure 5.31.a and b. To extract the band diagram of the tube along its axis, we filter
out the ~k⊥ component by orienting the slit delimited by dashed black lines in 5.31.a,
along ~k‖. In doing so, we ensure to collect the angular dispersion represented by the

angle θ in 5.31.c from which we deduce the norm of ~k‖ according to k‖ = ~k‖·~ez = |~k| sin θ
which constitutes the abscissa of the dispersion relation ω = f(k‖).

In practice, we illuminate the horizontal microtubes with the white light source
which, after focusing into the objective, generates an 10 µm-large ovoid excitation
spot symbolized by the yellow ellipse on the upper schematics in Figure 5.32.a, b and
c spreading along the tubes’ axis. We then collect the reflected beam through the
same objective, that we orient along the slit axis by rotation of the Dove’s prism.
The spectral information of the modes is finally dispersed spectrally when entering the
spectrometer. In particular, we use the grating A of period 150 lines/mm to diffract
the spectral components over a 114 nm-large window. Moreover, we perform multiple
measurements at different central wavelengths that we combine to reconstruct the band
diagram over a broader spectral interval.

Therefore, we present in Figure 5.32.a, b and c the experimental dispersion diagrams
in reflectivity of a zig-zag microtube specimen generated for frequencies ranging from
180 to 320 THz (0.94 µm to 1.67 µm) for three positions of the excitation spot, in
the middle, on the left and right sides of the microtube, respectively. The wave vector
components k‖ are normalized by the size of the honeycomb lattice Brillouin zone
2π/ah with the period ah = 0.294 µm. The borders of the graphs are limited by the
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Figure 5.31: a) Schematic front view of incident light hitting the microtube and oriented along the

wave vector ~k which decomposes into a component along the microtube axis (z axis) noted ~k‖ and a

component along the orthoradial direction noted ~k⊥. The slit of the angular-resolved spectral setup
is oriented along the tube’s axis to select the component ~k‖ exclusively. b) Cross-section view of the

microtube where the wave vector divides into the radial and orthoradial components noted ~kout and
~k⊥, respectively. c) Decomposition of the incident ~k with an angle θ into ~k‖ and ~kout for zero ~k⊥
component.

Figure 5.32: Upper drawings: schematics of the experimental configuration where we send a white
light beam (yellow ovoid zone) in a) the middle, b) the left end and c) the right end of a triangular air-
hole honeycomb lattice photonic crystal membrane microtube rolled up on a InP substrate. Graphs:
experimental band diagrams in reflectivity of the fabricated zig-zag photonic microtubes when the
excitation spot locates a) in the middle, b) on the left end, and c) right end of the tube.
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numerical aperture of the objective (NA = 0.42) yielding a maximum value of the
normalized modulus |k‖| estimated to 0.13 at a frequency (wavelength) of 320 THz
(0.94 µm). Note that we have also removed background reflection signal produced by
the optical components, especially the objective, by realizing measurements where the
sample is hidden by an absorbing material sheet.

We remark on the first graph displayed in Figure 5.32.a two distinct dispersive
features: a bright curved branch emerging at about 320 THz in Γ (k‖ = 0) and reaching
295 THz at the diagram frontiers in k‖, and fringes regularly arranged along the entire
spectral range. We retrieve only one half on the branch on the two other dispersion
curves in 5.32.b and c, which position on the reciprocal space depends on the location
of the excitation spot on the microtube. Conversely, the fringes are totally preserved
irrespective of the spot location.

The dependence of the bright branch upon the spot location demonstrates that it
corresponds to a mode propagating along the tube’s wall membrane. Indeed, when
the spot is positioned, for instance, on the left end of the tube, the mode can only
travel on the right direction leading to a single branch on the diagram for which the
sign of k‖ indicate the direction of propagation. However, we do not retrieve the
dispersive signature of the zig-zag chiralities characterized by a Dirac point at 200 THz
as presented in Figure 5.30. By deduction, the detected mode should correspond to a
mode of the PCM membrane. To validate this hypothesis, we have joined in Figure
5.33.a the experimental band structure to the photonic bands of the triangular-hole
honeycomb lattice PCM calculated with the FDTD method. The dispersion of the
PCM with a period ah = 0.294 µm and triangle edge s = 0.287 µm along the Γ-K
reciprocal segment is showed in 5.33.b where the red dashed line indicate the frontier
between surface-addressable modes and guided modes. The inset picture illustrates the
photonic crystal membrane with triangular hole. In particular, we have extracted part
of the monopolar and Dirac branch (green dashed zone) in the spectral and momentum
space of interest. Though the shift in energy levels imputed to experimental deviations
with respect to the targeted lattice parameters, we note the same curvature for the
experimental and theoretical branches so that we may attribute the Dirac or monopolar
modes to the bright mode observed experimentally. Finally, we explain the absence of
the tube’s distinctive dispersive features (Dirac bands) by the absorption of photons
before completing at least one circulation along the large tube’s circumference. The
impossible circulation of photons prevents, therefore, the formation of the quantized
modes around the tube, hence of the zone-folded dispersion.

Furthermore, the fringes pattern are typical of interference phenomenon between
the optical signals reflected from the microtube surface. To get more insight on the
interaction of the light beam with the sample, we have schematized in Figure 5.34.a the
path of the incident light (yellow arrow) at normal incidence (θ = 0◦) inside the tube
produced by the self-rolling of the InP/InGaP bilayer upon removal of the sacrificial
InGaAs layer lying on the InP substrate. In our case, we consider low concentration
of Gallium element in the InGaP layer so that the InGaP/InP assimilates to a simple
InP layer of total thickness h = 0.24 µm. The whole structure is equivalent to an
air-filled cavity which thickness L coincides with the tube’s inner diameter dt enclosed
by an upper 0.240 µm-thick InP layer and an InP substrate layer. We have, therefore,
simulated the reflection spectrum of this cavity at normal incidence while varying the
thickness L. In particular, we show in Figure5.34.b that the cavity reflectivity range
pattern matches within [214-230] THz the fringes extracted in Γ of the experimental
band diagram along the green dashed line drawn in Figure 5.32.a with a thickness ad-
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justed to L = 32.5 µm. We note that the spikes of the experimental curve correspond to
mismatched jointing regions of the multiple measurements realized at different central
wavelengths.

Figure 5.33: a) Experimental band diagram in reflectivity of the photonic microtube facing part
of the band structure of a triangular air-hole honeycomb lattice photonic crystal membrane with a
period ah = 0.294 µm and edge size s = 0.287 µm. b) Band diagram of the photonic crystal membrane
plotted on the reciprocal segment Γ-K. The inset picture shows the geometry of the photonic system.

Figure 5.34: a) Modelling of the photonic microtube of diameter dt rolled up upon the removal
of the sacrificial InGaAs layer lying on an InP substrate by an air-filled cavity of thickness L = dt
enclosed by an upper 0.24 µm-thick InP layer and an InP substrate. b) Reflectivity spectra of the
microtube (orange curve) extracted along the green dashed line on the experimental band diagram in
Figure 5.32.a and the cavity model (blue curve) calculated with the RCWA method.
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5.3.3 Conclusion of the section

Key points of the section

In summary, we have addressed the main steps of the theoretical study, the
practical conception and optical characterization of photonic crystal microtubes
analogues of carbon nanotubes.
We have first reviewed the principal electronic and topological properties of car-
bon nanotubes (CNTs) which depend primarily on their chirality ~Ch(n,m) or
the direction of rolling of the graphene sheet:

• CNTs exhibit either metallic or semiconducting behaviour which is well
predicted by the zone-folding method in the limit of tubes with large cur-
vature and length;

• modelling CNTs as 1D topological systems derived from the SSH model,
we obtain a topological classification of every possible chiralities revealing
that almost all semiconducting CNTs exhibit non-trivial topology.

In the second part, we have investigated theoretically and experimentally the
optical properties of rolled-up honeycomb lattice photonic crystal membranes
(HC-PCM) as photonic analogues of CNTs.
The numerical calculation of the band structures of the photonic microtubes have
brought the following the results:

• we have first assessed the band diagrams using a zone-folding method ap-
plied to the unrolled unit cell of the microtubes; in particular, the calcula-
tions have revealed the matching between electronic and photonic bands for
triangular-hole HC-PCM unrolled microtubes by contrast with the circular-
hole structure which dispersion is altered by the additional monopolar
mode;

• we have then calculated the band diagrams of realist rolled-up circular-hole
HC-PCM which have proven consistent with the zone-folding photonic pre-
dictions. Simulations with the triangular-hole HC-PCM are under study.

We have then tackled the fabrication of the photonic crystal microtubes based on
the rolled-up nanotechology. We have demonstrated the successful production of
high-quality self-rolling photonic crystal membranes with different orientations
of the honeycomb pattern to reproduce the chiralities of CNTs.
Finally, we have carried out a first series of angular-resolved spectral measure-
ments to build the experimental dispersion diagrams of zig-zag microtubes. We
have yet not been able to recover the distinctive dispersion features of the pho-
tonic crystal microtubes predicted by zone-folding calculations, due to the ab-
sorption of photons around the tubes’ circumference. Instead, we have observed
modes of the photonic crystal membrane wall. To circumvent this issue, we are
conducting measurements on tubes with smaller radius. We also plan to evalu-
ate the circulation of photons around non-structured tubes as a testing ground
before moving on to photonic crystal tubes.
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5.4 Conclusion of the chapter

This chapter was dedicated to the exploration of the optical properties of carbon
nanotube-like photonic crystal analogues, namely rolled-up honeycomb lattice photonic
crystal membranes microtubes. Before addressing the study of the carbon nanotubes-
like photonic microtubes, we have simulated the optical and topological properties of
intermediary structures that are honeycomb lattice photonic crystal membrane (HC-
PCM) and ribbons of HC-PCM corresponding to photonic analogues of graphene and
graphene ribbons. For each photonic system, we have first reviewed the models used
to apprehend the electronic and topological properties of the associated solid-state
structure.

In the first section, we have presented graphene electronic properties derived from
the tight-binding approach and the simulated optical properties of the HC-PCM. In
particular, we have calculated the optical dispersion of two designs of the HC-PCM,
one with circular air holes, the other with triangular air holes. For both designs, we
retrieve a Dirac dispersion typical of graphene-like structures. We have also observed a
third band on which the modes’ intensity exhibits a monopolar distribution interacting
with the upper Dirac branch. The triangular hole design was used, in particular, to
move the monopolar mode up to higher frequencies, in prevision to a gap opening for
the realization of topological effects. We have finally noticed that the tight-binding
bands match the photonic only in the viscinity of the Dirac points.

In the second section, we have presented the 1D SSH-like topological model used
to predict the topological properties of graphene ribbons via the calculation of the
Zak phase. We have showed that graphene ribbons topology depends mainly on the
ribbon’s chirality. Similarly, we have estimated the topology of the analogue photonic
ribbons of elementary zig-zag chirality ~T (1, 0) according to two methods consisting in
calculating numerically the Zak phase and simulating the band structure of the ribbon.
Both methods agree on the non-trivial topology of the ribbon, hence on the existence
of edge states when the ribbon interface a topologically trivial structure, in accordance
with the results obtained for the graphene ribbons.

In the third section, we have reviewed the electronic properties and the topological
classification of carbon nanotubes (CNTs), using a zone-folding approach and a 1D
topological system, respectively. Both electronic and topolgical behaviour of the CNTs
depend of the nanotubes’ chirality. We have then assessed numerically the optical
dispersion of the equivalent photonic microtubes with simple chiralities according a
zone-folding like method and by simulating the dispersion of more realist structures.
We have showed, in particular, the concurrence between the electronic and photonic
zone-folding predictions. We have then presented typical results of the fabrication
of CNT-like microtubes based on the rolled-up nanotechnology, emphasizing the high
reproducibility. We have finally addressed the experimental optical characterization of
a photonic microtube specimen with metallic zig-zag chirality through angle-resolved
spectral measurements. We have reported typical dispersion features of the photonic
membrane wall and interference patterns but yet no spectral signature of the microtube
dispersion probably due to the absorption of photons upon circulating around the tube.
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General conclusion

Tubular photon cages

The proof of concept

The first objective of this thesis consisted in the conception of tubular photon cages
based on the rolling of 2D photonic crystal membrane (PCM) mirrors. To address this
issue, we have covered the entire process of design, simulation, fabrication and optical
characterization of these photonic microresonators. We have first achieved the design
of the cages’ membrane wall consisting of a highly-efficient non-absorbing broadband
2D PCM mirror operating in the near-infrared range. We have then simulated the
optical properties of the final tubular cavity using both the analytical model of the
cylindrical cavity resonator and more realistic finite difference time domain (FDTD)
simulations. Both models have predicted the confinement of light in the hollow part
of the cylindrical photonic cavities in the form of cylindrical cavity modes. We have
then reported the fabrication of the tubular photon cages following the rolled-up nan-
otechnology processes with a high degree of control on the structural parameters of
the final 3D shape. We have finally demonstrated experimentally through scanning
near-field optical microscopy (SNOM) measurements the presence of confined modes
inside real hollow cylindrical microresonators showing spectral and spatial distribution
in compliance with the theoretical previsions. The results of this work bring therefore
the proof of concept of tubular photon cages as photonic microresonators capable of
3D confinement of light in air.

In quest of a spectral signature

Tubular photon cages hold much interest for a wide variety of applications in demand
of strong light-matter interaction including biosensing or optical tweezer. Indeed, they
realize the confinement of light in air which enhances the overlap between the mode
field and the micro- and nano-sized targets to which they offer great accessibility to
the hollow part. The optical performances of these tubular microresonators depend
notably on the quality of the confinement in the air-filled core directly related to the
modes’ lifetime in the cavities. In particular, we have demonstrated theoretically high
quality factors of the cylindrical cavity modes emerging in infinitely long tubular cav-
ities, proving the efficiency of the PCM mirror. However, for finite-size cavities with
large curvature radius, the numerical determination of the quality factors of the modes
remains challenging owing notably to to the high density and spectral overlap of the
modes. For the same reasons, the experimental extraction of the spectral signature
of cylindrical cavity modes in fabricated tubular microstructures through near-field
measurements has not been reported yet.

A alternative way to access the tubular cavities’ spectral signature would consist
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in probing the modes of the microstructures with an optically active material inserted
inside the microtube. To this end, quantum dots (QDs) can be attached at the apex of
the SNOM probe emitting within a broad spectral range. Pumping the active nanos-
tructures with an external source, we can collect the photoluminescent signal in the
SNOM probe after potential coupling with the cavity modes. This method allows
then for a direct probing of the modes provided a sufficient interaction with the QDs
emission.

Another strategy considers the reduction of the diameter of the tubular cages. In-
deed, we have estimated a total of 6241 modes likely to emerge in a cavity of radius
17.5 µm and length L = 50 µm within the spectral range [1.4-1.8] µm. Similar com-
putations show that the number of modes reduces down to 528 for 5 µm-radius cavity
with identical length and in the same spectral range. In addition, the decrease of the
radius removes part of the high azimuthal order modes which increases the chance to
achieve a strong concentration of light in the center of the cavity, an appealing feature
for trapping applications for example. We also note that such a concentration of the
electric field intensity in the center of the cavities has not been observed on the near-
field maps. However, we should be aware that the diminishing of the radius can be
at the cost of the degradation of the confinement in the cavity. Indeed, smaller radius
implies thinner membrane wall which causes optical leakage of the modes. Moreover,
for high curvatures, the reflectivity of the membrane wall degrades as it deviates from
the planar reflection properties of the PCM.

Toward versatile photon cages

Among potential applications of tubular photon cages, we have mentioned the realiza-
tion of opto-fluidic micro-sensors as the cages combine transport facilities and optical
functionalities. We first remark, though, that for small tubes’ diameter, potential cap-
illarity effects should be considered as they may hinder the transport of the targets.
We also note that preliminary tests should be conducted to evaluate the optical re-
sponse of the cavity in different atmospheres and especially to appraise the mechanical
stability of the microtubes in contact with liquid targets. We have also illustrated the
elastic behaviour of the tubular cages via focused ion beam (FIB) micromanipulation.
We can therefore envision to trigger the unfolding of the PCM mirrors via electrical
actuation and create reconfigurable photonic microdevices. We finally notify the design
flexibility of the photonic microtubes which enables to transpose the functionalities of
the micro-objects toward different spectral domains.

Photonic crystal analogues of carbon nanotubes

The second objective of this thesis concerned the exploration of the optical and topo-
logical properties of carbon nanotubes photonic crystal analogues produced by the
rolling of honeycomb lattice photonic crystal membranes. Preliminary studies were
conducted to assess the optical and topological properties of graphene and graphene
ribbons’ photonic crystal analogues. All the results concerning the photonic crystals
have been analyzed in the light of the solid-state reference models.
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Summary of the main results

We have first addressed the simulation of the optical properties of graphene analogues in
the class of photonic crystals, namely honeycomb lattice photonic crystal membranes
(HC-PCM). In particular, two designs of HC-PCM, with circular and triangular air
holes, were investigated. For both designs, we have retrieved a Dirac dispersion typ-
ical of graphene-like structures. We have also reported the presence of an additional
photonic mode with a monopolar concentration of the electromagnetic field, consistent
with the literature. In the circular hole structure, the interaction between one Dirac
branch and this monopolar mode makes the Dirac branch bend at the energy level of
the Dirac, not boding well for a potential gap opening and the emergence of topologi-
cal properties. By contrast, the triangular design allows to move the monopolar mode
up at higher frequencies and preserve the Dirac bands’ original curvature. Finally,
we have noted a good correspondence between the photonic bands energy levels and
curvatures, and graphene tight-binding band structure and spatial distribution of the
wavefunctions, near the Dirac point exclusively.

We have then examined the topological properties of ribbons of HC-PCM. We have
first assessed numerically the Zak phase of a photonic ribbon of chirality ~T (1, 0) with
circular air holes following the solid-state methodology applied to graphene ribbons.
We found a non-zero Zak phase for a certain range of momentum along the the ribbon’s
axis, implying the non-trivial topology of the ribbon and the existence of an edge state
according to the bulk-edge correspondence. In particular, we have noticed inverse
distribution of the range of momentum characterized by a non-zero Zak phase estimated
with the photonic and the solid-state models attributed to a different gauge choice.
In this case, the difference of Zak phases evaluated with two gauges constitutes the
topological invariant. We have confirmed the non-trivial topology of the ribbon by
calculating the band structure at the edge of the ribbon interfacing a trivial material
which has revealed the existence of a zero-energy edge state. Those results have showed,
more specifically, that a gap opening and the emergence of an edge state were possible
with the circular hole design despite the downward bending of the upper Dirac band
at the Dirac energy level.

In the final part, we have addressed the conception and optical characterization of
rolled-up HC-PCM. We have first simulated numerically the optical dispersion diagrams
of unwrapped photonic microtubes of simple chiralities, with circular and triangular
air hole PCM, in the way of the solid-state zone-folding method. We have noticed
the concurrence between photonic and solid-state bands for the triangular hole design.
By contrast, we have observed the alteration of the bands of the circular hole pattern
due to the interaction with the monopolar mode. We have then computed the band
structure of more realist microtube of chirality ~Ch(12, 0) with circular hole and noticed
an excellent compliance with the zone-folding predictions. Our next step concerned
the fabrication of the photonic microtubes following the rolled-up nanotechnology pro-
cesses. We have showed the quality and the high reproducibility of the rolling of
HC-PCM with triangular air holes into horizontal microtubes of different chiralities.
We have finally tackled the optical characterization of the fabricated microtubes of
metallic zig-zag chirality through angle-resolved spectral measurements. We have re-
constructed the experimental band structure of the microtube on which we have noticed
bands from the tubes’ membrane wall and interference cavity mode patterns. However,
we have not recorded the dispersive signature of the microtube probably on account of
the absorption of photons before completing one circulation around the tube.
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Perspectives

We emphasize that the simulation and characterization results presented above remain
of an exploratory nature. Our strategy was to study simple cases and establish a
methodology toward deeper analysis of the optical properties of photonic ribbons and
microtubes. In particular, we summarize hereinafter ongoing and future works as com-
plement to the present study. Concerning photonic HC-PCM ribbons, our next tasks
will first consist in investigating the topological properties of circular hole ribbons with
various chiralities other than ~T (1, 0) by the calculation of the Zak phase and band
structures within a topological interface. We also plan to perform similar work with
triangular hole photonic ribbon. Concerning HC-PCM microtube, our future works
will focus on simulating the band structure of microtubes with circular and triangu-
lar air hole of different chiralities. These results will then be exploited to assess the
topological properties of the microtubes in accordance with our initial objective. The
angular-resolved measurements have not revealed the dispersive signature of the CNT-
like photonic microtubes but rather the dispersion of the membrane wall due to the
absorption of photons upon circulation around the tubes. We are currently fabricating
new samples with microtubes of smaller radius to allow at least one circulation of the
photons. We also propose to measure beforehand the dispersion of non-structured mi-
crotubes of small curvature radius to detect the presence of whispering gallery modes,
giving the green light for the measurements on structured microtubes. We will aso
perform angular-resolved measurements on photonic microtubes with various chiral-
ities to attest the change of dispersion. We finally mention that we are working to
establish an analytical model to predict the photonic dispersion of graphene-like pho-
tonic crystals which will be useful to assess analytically the topological properties of
the HC-PCM-based structures.
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Appendix A

Mechanical model

We evaluate the efforts F in the bilayer membrane as the integral of the reduced
constitutive laws established in Equation 1.11 for each layer, over the entire thickness
of the bilayer h = h1 + h2:

F =

ˆ h/2

−h/2
σdx3 =

ˆ h/2

−h/2
Ĉ(x3) [ε+m(x3)] dx3. (A.1)

Integrals in Equation 1.17 decompose in two parts according the concerned layer:

• Layer A1 for x3 ∈ [−h/2,−h/2 + h1]: Ĉ = Ĉ(1) and m = 0.

• Layer A2 for x3 ∈ [−h/2 + h1, h/2]: Ĉ = Ĉ(2) and m =

mm
0

.

Identifying ε in Equation 1.14, the effort F becomes:

F = Aε0 +Bκ+ h2Ĉ(2)m, (A.2)

where the coefficients A and B are defined by:

A = h1Ĉ(1) + h2Ĉ(2), B =
h1h2

2

(
Ĉ(2) − Ĉ(1)

)
. (A.3)

Similarly, we obtain the expression of the moment M of the bilayer membrane by
integrating the reduced constitutive law multiplied by x3 beforehand, over the total
thickness h:

M =

ˆ h/2

−h/2
x3σdx3 =

ˆ h/2

−h/2
x3Ĉ(x3) [ε+m(x3)] dx3. (A.4)

Using the same decomposition of the integral as performed previously and according
to the layer, the moment M writes as:

M = Bε0 +Dκ+
h1h2

2
Ĉ(2)m, (A.5)

where the coefficient D identifies as:

D =
1

12

[
Ĉ(1)

(
h3

1 + 3h1h
2
2

)
+ Ĉ(2)

(
h3

2 + 3h2h
2
1

)]
. (A.6)
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In the case of a free bilayer and without consideration of the boundary conditions, the
internal strains and curvatures adjust to cancel out the forces F and the moments M :

F = 0, M = 0. (A.7)

The third equations of the two systems expressed in Equation A.7 implies that:

ε0
12 = 0, κ0

12 = 0. (A.8)

Furthermore, the resolution of the two remaining sets of equations in A.7 imposes that
ε0

11 = ε0
22 and κ0

11 = κ0
22. For the simplification of later calculation developments, we

introduce conveniently the Young modulus E and the Poisson coefficient ν, adapted
for the material of each layer, and related to the Hooke tensor according to:

C11 =
E(1− ν)

(1 + ν)(1− 2ν)
, C12 =

Eν

(1 + ν)(1− 2ν)
. (A.9)

Consequently, the reduced elastic constants transform into:

Ĉ11 =
E

1− ν2
, Ĉ12 =

νE

1− ν2
, Ĉ11 + Ĉ12 =

E

1− ν
. (A.10)

We also introduce the contrast between the two materials of the two layers, which
defines as:

C =
E1

1− ν1

×
(

E2

1− ν2

)−1

(A.11)

The first equations of both systems in Equation A.7 read:

(A11 + A12)ε+ (B11 +B12)κ = −mh2 (Ĉ
(2)
11 + Ĉ

(2)
12 ),

(B11 +B12)ε+ (D11 +D12)κ = −mh1h2

2
(Ĉ

(2)
11 + Ĉ

(2)
12 ),

(A.12)

Using the third identity of Equation A.10 and the contrast defined in Equation A.11,
we show that the previous two equations rewrite as:

(Ch1 + h2)ε+
h1h2

2
(1− C)κ = −mh2,

h1h2

2
(1− C)ε+

1

12
(C(h3

1 + 3h1h
2
2) + h3

2 + 3h2h
2
1)κ = −mh1h2

2
.

(A.13)

Introducing the dimensionless quantities ξ = h2/h1 and κ̂ = h2κ, the system A.13
reduces to the more compact form:

(C + ξ)ε+
1

2
(1− C)κ̂ = −mξ,

(1− C)ε+
1

6

(
C

(
1

ξ2
+ 3

)
+ ξ +

3

ξ

)
κ̂ = −m

(A.14)
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Appendix B

1D SSH model

The Hamiltonian H of the SSH system writes in the second quantization formalism as:

H = t′
∑
n

b̂†nân + t
∑
n

b̂†n−1ân + H.c., (B.1)

where b̂†n (â†n) and b̂n (b̂n) designate the creation and annihilation operators, respec-
tively, of a particle on the n-th site B (A), and H.c. refers to the Hermitian conjugate.
Due to the periodicity of the chain, the Fourier expansion of the operator b̂†n, for in-
stance, expresses as:

b̂†n =
1

N

∑
k

b̂ke
ikna, (B.2)

where N corresponds to the number of dimers, so that the Hamiltonian rewrites as:

H = t′
∑
k

b̂†kâk + t
∑
k

b̂†kâke
−ika + H.c.. (B.3)

In the basis of the sublattices (â†k,b̂
†
k), the Hamiltonian decomposes as the sum of each

Bloch Hamiltonian Hk for each momentum k:

H =
∑
k

(
â†k b̂†k

)
Hk

(
âk
b̂k

)
, (B.4)

with the following expression of Hk:

Hk =

(
0 t′ + te−ika

t′ + teika 0

)
(B.5)
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Appendix C

Fresnel coefficients

Figure C.1: a) Schematized reflection with angle θ1 and refraction with angle θ2 of light at the
interface between dielectric medium 1 (ε1, µ1 = 1) and medium 2 (ε2, µ2 = 1) for p- and s-polarized
incident light in proportion rp1,2 (rs1,2) and tp1,2 (ts1,2), respectively. For p-polarized (s-polarized) light,

the electric field ~E is contained into (normal to) the plane of incidence coinciding with the (x, z) plane.
b) Schematized reflection and refraction of light onto a d-thick dielectric slab (ε2, µ2 = 1) comprised
between the dielectric medium 1 (ε1, µ1 = 1) and 3 (ε3, µ3 = 1).

At the interface between two dielectric media 1 and 2, incident light gets reflected
with an angle θ1 into medium 1 and refracted with an angle θ2 into medium 2 taken from
the normal of the interface, as illustrated in Figure C.a). Fresnel coefficients express
the reflection rs1,2 (rp1,2) and transmission ts1,2 (tp1,2) rates for s-polarized (p-polarized)
incident radiation as:

rs1,2 =

√
ε1 cos θ1 −

√
ε2 cos θ2√

ε1 cos θ1 +
√
ε2 cos θ2

, rp1,2 =

√
ε2 cos θ1 −

√
ε1 cos θ2√

ε2 cos θ1 +
√
ε1 cos θ2

,

ts1,2 =
2
√
ε1 cos θ1√

ε1 cos θ1 +
√
ε2 cos θ2

, tp1,2 =
2
√
ε1 cos θ1√

ε2 cos θ1 +
√
ε1 cos θ2

,

(C.1)

where ε1 and ε2 designate the permittivity of medium 1 and 2 respectively. We also
suppose that both medium show weak magnetic responses or permeability, i.e. µ1 = µ2.
For s-polarized (p-polarized) light, the electric field is orthogonal to (contained into)
the plane of incidence. In particular, at normal incidence, i.e. for θ1 = θ2 = 0◦, the
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coefficients in Equation C.1 reduce to:

rs1,2 =

√
ε1 −

√
ε2√

ε1 +
√
ε2
, rp1,2 =

√
ε2 −

√
ε1√

ε1 +
√
ε2

= −rs1,2,

ts1,2 = tp1,2 =
2
√
ε1√

ε1 +
√
ε2
.

(C.2)

Using Fresnel coefficients in Equation C.1, we also derive the reflection and transmission
coefficients of a d-thick slab made of material 2 (ε2) comprised between media 1 (ε1)
and 3 (ε3), represented in Figure C.1.b), as:

r(p,s) =
r

(p,s)
1,2 + r

(p,s)
2,3 ei

2π
λ

2d
√
ε2 cos θ2

1 + r
(p,s)
1,2 r

(p,s)
2,3 ei

2π
λ

2d
√
ε2 cos θ2

,

t(p,s) =
t
(p,s)
1,2 t

(p,s)
2,3 ei

2π
λ
d
√
ε2 cos θ2

1 + r
(p,s)
1,2 r

(p,s)
2,3 ei

2π
λ

2d
√
ε2 cos θ2

,

with λ the wavelength of the incident wavelength.
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Appendix D

Cylindrical cavity model

We develop the dispersion relation of transverse electric (TE) modes defined by Ez = 0
in the cylindrical system supported by a cylindrical cavity with perfectly reflecting wall.
We first manipulate the expressions of Maxwell’s equations to derive the transverse
fields components (Eρ, Eφ, Hρ, Hφ) from the longitudinal components (Ez, Hz) in the
cylindrical coordinate system, according to:

Eρ =
−j
k2
c

(
β∂ρEz +

ωµ

ρ
∂φHz

)
, (D.1)

Eφ =
−j
k2
c

(
β

ρ
∂φEz − ωµ∂ρHz

)
, (D.2)

Hρ =
j

k2
c

(
ωε

ρ
∂φEz − β∂ρHz

)
, (D.3)

Hφ =
−j
k2
c

(
ωε∂ρEz +

β

ρ
∂φHz

)
. (D.4)

In particular, for TE modes defined by Ez = 0, the transverse fields components solely
depend on the longitudinal component Hz of the magnetic field as:

Eρ =
−j
k2
c

ωµ

ρ
∂φHz, (D.5)

Eφ =
j

k2
c

ωµ∂ρHz, (D.6)

Hρ =
−j
k2
c

β ∂ρHz, (D.7)

Hφ =
−j
k2
c

β

ρ
∂φHz. (D.8)

Therefore, the determination of the fields’ expressions comes down to the resolution of
the wave equation or Helmholtz equation for time-harmonic solutions. Applied to Hz

component, the equation writes as:

∇2Hz + k2Hz = 0, (D.9)

where k = ω
√
εµ refers to the wave number. In the cylindrical coordinate system and

for a plane wave solution in the z-direction Hz(ρ, φ, z) = hz(ρ, φ)e−jβz, the Equation
D.9 becomes: (

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂φ2
+ k2

c

)
hz(ρ, φ) = 0. (D.10)
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Using the method of separation of variables, hz(ρ, φ) = R(ρ)P (φ), the Equation D.10
rewrites as:

ρ2

R

dR2

dρ2
+
ρ

R

dR

dρ
+ ρ2k2

c = − 1

P

d2P

dφ2
. (D.11)

The previous equality holds true for any pair (ρ, φ) provided both left and right terms
in Equation D.11 equal to a constant that we note k2

φ, leading to the following relations:

ρ2dR
2

dρ2
+ ρ

dR

dρ
+ (ρ2k2

c − k2
φ)R = 0; (D.12)

d2P

dφ2
+ k2

φP = 0. (D.13)

The solutions of Equation D.13 express in the general form:

P (φ) = A sin(kφφ) +B cos(kφφ). (D.14)

Due to the cylindrical symmetry of the problem, the function P and hz(ρ, φ) are nec-
essarily 2π-periodic with respect to φ, implying kφ = m ∈ N. Substituting kφ by m in
Equation D.12, we find the following relation:

ρ2dR
2

dρ2
+ ρ

dR

dρ
+ (ρ2k2

c −m2)R = 0, (D.15)

which corresponds to a typical Bessel’s differential equation of general solution:

R(ρ) = CJm(kcρ) +DYm(kcρ), (D.16)

where C and D are constants, and Jm and Ym refer to Bessel functions of the first and
second kinds, respectively, at the order m. In particular, we have plotted the functions
Jm with orders m = 0, 1, ..4 in Figure D.1.a). As the function Ym(kcρ) diverges when
ρ tends to zero, only the constant C keeps a physical meaning, so that D = 0. The
general form of the solution hz(ρ, φ) writes then as:

hz(ρ, φ) = (A sin(mφ) +B cos(mφ))Jm(kcρ), (D.17)

where the constants A and B encompass the constant C.
Finally, we determine kc by applying a proper boundary condition. Here, the per-

fectly reflecting membrane wall and the continuity of the tangential component of the
electric field Etan = Eφ (as Ez = 0) at ρ = a imposes the condition:

Eφ(ρ, φ) = 0 at ρ = a. (D.18)

Combination Equations D.6 and D.17, we find the expression of Eφ component:

Eφ(ρ, φ, z) =
jωµ

kc
(A sin(mφ) +B cos(mφ))J ′m(kcρ)e−jβz, (D.19)

where J ′m refers to the first derivative of the m-th order first kind Bessel function,
plotted in Figure D.1.b) for m = 0, 1, .., 4, with respect to its argument kcρ. The
boundary condition established in Equation D.18 becomes then:

J ′m(kca) = 0. (D.20)
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which solutions correspond to the roots of the m-th order function J ′m that we note
p′m,n with n ∈ N∗ indexing the n-th root indicated in Table D.1 for m = 0, 1, .., 4 and
n = 1, 2, .., 5. The wave-number kc can then only takes quantized values given by:

kcm,n =
p′m,n
a
. (D.21)

The modes TEm,n are thus defined by their orders m and n which describe the number
of azimuthal and radial variations of the electromagnetic fields. They only exist above
the cutoff limit kcm,n of kc evaluated in Equation D.21. The dispersion relation of each
TEm,n mode is given by:

k2
m,n = k2

cm,n + β2 =

(
p′m,n
a

)2

+ β2 . (D.22)

Figure D.1: Plots of a) Bessel functions of first kind Jm(x) at the order m = 0, 1, .., 4, b) their
first derivatives J ′m(x) with respect to the variable x. Both plot blocks are accompanied with a black
dashed line of equation y = 0.

Roots p′m,n J ′0 J ′1 J ′2 J ′3 J ′4
1 3.8317 1.8411 3.0542 4.2011 5.3175
2 7.0155 5.3314 6.7061 8.0152 9.2823
3 10.1734 8.5363 9.9694 11.3459 12.6819
4 13.3236 11.706 13.1703 14.5858 15.9641
5 16.4706 14.8635 16.3475 17.7887 19.1960

Table D.1: First five roots of the first derivative of first kind Bessel functions J ′m with m = 0, 1, 2, 3, 4.
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Appendix E

Mode surface of FDTD modes

We present in Figure E.1.a) and c) surface maps of the normalized electric field intensity
I of cavity modes TE0,22 and TE1,23 calculated in an infinitely-long rolled-up PCM
cavity of average radius ρavg ' 17.62 µm with the FDTD method at wavelengths of
1.58808 µm and 1.55484 µm, respectively. We extract then the profile of each mode
along the x axis direction at y = 0 represented in Figure E.1.b) and d). We indicate the
modes’ surfaces S(0,22) and S(1,23) quantifying the concentration of light in the cavity
centre and the equivalent radius of the disks sharing the same area.

Figure E.1: a) and c): Surface maps of the normalized electric field intensity I calculated with the
FDTD method at λ = 1.58808 µm (a) and λ = 1.55484 µm (c) in a rolled-up PCM cavity of average
radius ρavg ' 1.62 µm. We identified in Section 3.4.2 the patterns in (a) and (c) as being mostly that
of modes TE0,22 and TE1,23, respectively. b) and d): 1D profile extracted from the maps a) and c)
along the x axis direction from the centre of the map until the radius ρeq = 17.68 of an theoretical
cylindrical cavity. The red zone delimits the radii of the disks which cover the same areas as the
surfaces S(0,22) and S(1,23) of the modes TE0,22 and TE1,23 indicated above each plot. The modes’
surfaces are expressed in units of λ2 with λ = 1.5 µm.
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Appendix F

Grazing reflection onto the PCM

Using geometrical optics, we can see the modes with given azimuthal order m existing
in a cylindrical cavity with perfectly reflecting wall, as the result of incident light beams
bouncing 2m times on the wall before coming back to initial position, as schematized
on the inset drawing of Figure F.a). Moreover, we can associate a given m with the
angle of incidence θ of the light beams on the wall according to the simple law:

θ =
1

2

(
180− 360

2m

)
, (F.1)

plotted in F.a). We note that the reasoning stays valid for m ≥ 2. We observe a rapid
increase of θ at first values m followed by an asymptotic evolution toward 90◦. For
instance, for m = 55, the angle θ reaches 88.36 ◦. We deduce that the azimuthal form
defined by m = 55 emerges at an angle θ estimated to 88.36◦. At grazing incidence,
the reflectivity of the PCM results mainly from the bulk properties of the dielectric
membrane. We show in Figure F.1.b) the evolution of the reflectance R (%) as a
function of the angle of incidence θ of a 0.230 µm-thick dielectric slab. The refractive
index of the InP-based PCM is approximated to n ' FFairnair + (1 − FFair)nInP =
0.57 × 1 + (1 − 0.57) × 3.16 ' 1.93 where FFair designates the air filling factor of the
PCM with the lattice parameters a = 1.206 µm and r = 0.480 µm.

Figure F.1: a) Evolution of the angle of incidence θ in degrees as a function of the azimuthal order
m. We indicate in red dashed line the 90◦ asymptotic limit. Inset drawing: optical beams (orange
arrows) bouncing with a angle θ on a perfectly reflecting wall of a cylindrical cavity. b) Variation
of the reflectance R (%) of a photonic crystal membrane of thickness h = 0.230 µm calculated with
Fresnel reflection coefficients as a function of the angle θ of incident p-polarized light (electric field
(blue arrow) contained in the plane of incidence).
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Appendix G

Reflection of small radius photon cages

We estimate the reflection performances at normal incidence of tubular photon cages’
PCM wall fabricated on sample C2579. The PCM consists of a triangular lattice, with
a period a = 1.2 µm, of air holes of diameter 2r ' 0.960 µm etched in an 86 nm-thick
InP membrane as depicted in Figure G.1.a). We present in Figure G.1.b) the PCM
reflectivity spectrum R(λ) at normal incidence in the range [1-1.8] µm calculated with
the RCWA method. We observe a broad peak culminating at about 98 % at 1.34 µm.

Figure G.1: a) Schematized profile of a PCM structure fabricated on sample C2579 based on a
triangular lattice of air holes of diameter2r ' 0.960 µm etched in an InP-based membrane of thickness
h ' 86 nm. b) Reflectivity R spectrum of the PCM in the spectral range [1-1.8] µm at normal
incidence.
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Appendix H

Parameters of triangular-hole HC-PCM

We present in Figure H.1.a) to i) the band structures of triangular-hole photonic crystal
membranes with a period ah = 0.301 µm and a triangle edge s varying from 294
to 450 nm, calculated with the FDTD method. Increasing the edge size s reduces
the size of the region where the monopolar mode (pointed by the red arrow) energy
concentrates. Consequently, the frequency of the monopolar mode increases along with
s which reduces the probability of coupling with the Dirac dispersion bands below.

Figure H.1: a) to i): FDTD band structures of triangular-hole photonic crystal membranes with a
period ah = 0.301 µm and a triangle edge s varying from 294 to 450 nm. The green dashed curve
indicate the band structure calculated for a triangular-hole photonic crystal membrane with a period
ah = 0.301 µm and holes’ radius r = 0.109 µm.
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Appendix I

Résumé long en français

Introduction

L’histoire de la nanophotonique a connu un tournant majeur avec l’avènement à la fin
des années 80 des cristaux photoniques, analogues photoniques artificiels des cristaux à
l’état solide. En particulier, l’analogie entre la propagation des électrons dans les semi-
conducteurs et la propagation de la lumière dans les cristaux photoniques a ouvert de
nouvelles perspectives pour le contrôle spatial et temporel de la lumière, à l’échelle de
la longueur d’onde et selon une, deux ou trois directions. De surcrôıt, la diversité et
la flexibilité des mailles des cristaux photoniques a permis d’obtenir une large palette
de fonctionnalités optiques telles que le guidage, le piégeage ou le ralentissement de la
lumière. Les cristaux photoniques 1D constitués d’empilements de multicouches diélec-
triques sont, par exemple, utilisés comme revêtements réfléchissants ou comme miroirs
à haute réflectivité dans les cavités laser. Des effets optiques similaires ont été observés
avec des cristaux photoniques 2D obtenus en structurant des membranes diélectriques.
La production de cristaux photoniques 3D présentant une bande interdite photonique
complète a également suscité beaucoup d’intérêt pour le contrôle omnidirectionnel de
la lumière. Cependant, la réalisation de telles architectures 3D de cristaux photoniques
fait généralement appel à des technologies de fabrication complexes basées par exem-
ple sur l’empilement de couches bidimensionnelles, la gravure laser ou le perçage sous
différents angles.

Dans la perspective du développement de structures photoniques 3D, le projet ANR
PHOLDING (pour FoLDING PHOtonic Crystals : Semiconductors ORIGAMI), dans
lequel s’inscrit cette thèse, propose d’appliquer la technologie de relaxation des con-
traintes aux membranes à cristaux photoniques. En effet, la relaxation élastique de
multicouches structurées précontraintes permet de fabriquer des micro-objets 3D dont
les formes 3D finales sont dictées par la répartition initiale des contraintes dans les
couches. Les structures ainsi créées sont parfois appelées ”Origamis photoniques” en
référence à l’art japonais du pliage papier dont s’inspire la méthode de microfabrica-
tion. L’objectif général de ce travail est d’explorer les voies ouvertes par cette méthode
de fabrication pour produire des structures photoniques originales.

Des nouvelles familles de micro-résonateurs optiques creux 3D permettant un pié-
geage efficace et une exaltation de la lumière dans un milieu à faible indice optique,
sont particulièrement ciblées. Dans ces microrésonateurs, le confinement de la lumière
repose sur le concept de « cages à photons » qui consiste à encercler une petite région
de l’espace en repliant une membrane à cristaux photoniques présentant une réflectivité
élevée et large bande dans la gamme de longueurs d’onde d’intérêt. L’idée est de réaliser
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des résonateurs très ouverts où une forte interaction lumière-matière peut être exploitée
dans des dispositifs optiques comprenant un matériau optiquement actif intégré dans
une matrice à faible indice comme un polymère, un liquide ou même un gaz. En effet,
les résonateurs 3D creux présentent un grand intérêt pour les opérations de détection
car ils maximisent non seulement le confinement 3D de la lumière mais optimisent
également le recouvrement entre champ électromagnétique et les potentielles cibles de
détection micrométriques. En utilisant la technique d’ingénierie des contraintes, ces
microrésonateurs 3D peuvent être fabriqués en enroulant des membranes à cristaux
photoniques 2D pour former des « cages à photons » tubulaires. Si le concept de
cages à photons a été étudié théoriquement à l’INL dans le cas d’un cristal photonique
unidimensionnel, aucune validation expérimentale n’a encore été apportée. Dans cette
thèse, nous nous intéressons tout d’abord à la conception et la caractérisation optique
de cages à photons tubulaires produites par auto-enroulement de miroirs à base de
membranes à cristaux photoniques 2D. En particulier, notre objectif est d’obtenir une
preuve expérimentale du confinement de la lumière à l’intérieur des cages à photons
tubulaires.

Une autre application des origamis photoniques vise à prolonger la correspondance
entre les propriétés des systèmes de la matière condensée et des systèmes photoniques.
En effet, la production d’analogues des cristaux atomiques dans la classe des cristaux
photoniques a ouvert de nouvelles perspectives pour la manipulation de la lumière. En
particulier, les cristaux photoniques empruntant le réseau cristallin en nid d’abeille du
graphène ont suscité beaucoup d’intérêt car, comme leurs homologues électroniques, ils
présentent des propriétés remarquables telles que la présence d’un point de Dirac dans
leur diagramme de bandes. Cependant, contrairement aux cristaux atomiques, leurs
équivalents à cristaux photoniques présentent un design flexible permettant notamment
d’adapter les paramètres de maille, et ainsi d’explorer de nouveaux effets optiques. En
particulier, au-delà de la dispersion linéaire autour du point de Dirac, il a été prouvé
qu’en générant une bande interdite autour de ce point, des états de bords topologiques
pouvaient être observés.

La méthode de fabrication basée sur l’ingénierie des contraintes nous permet égale-
ment de poursuivre cette analogie et d’explorer les propriétés des analogues à cristaux
photoniques des nanotubes de carbone, à savoir les microtubes formés par l’enroulement
de membranes à cristaux photoniques avec un réseau en nid d’abeille. En effet, selon la
direction d’enroulement du feuillet de graphène, appelée chiralité, les nanotubes de car-
bone peuvent (ou non) présenter une bande interdite électronique. Par conséquent, une
question naturelle que nous abordons dans ce travail concerne l’existence d’une bande
interdite induite par l’enroulement des membranes à cristaux photoniques en micro-
tubes photoniques. Si tel est le cas, une autre question légitime que nous soulevons
porte sur la nature topologique de cette bande interdite générée.
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Chapitre 1

Nous montrons dans ce chapitre que la nanotechnologie par enroulement de nanomem-
branes représente une alternative compétitive à la fabrication de micro-objets 3D poly-
valents. Le principe de cette technique repose sur l’auto-enroulement de membranes
précontraintes caractérisées par une épaisseur de l’ordre du micron. La réalisation
d’une géométrie 3D souhaitée passe par deux étapes essentielles : l’ingénierie des con-
traintes et la conception du design plan des membranes. Les architectures 3D populaires
produites avec la nanotechnologie enroulée incluent les microtubes, les micro-bobines
ou encore les hélices. De plus, la large gamme de matériaux couverts par la micro-
fabrication, comprenant des métaux, des semi-conducteurs ou des polymères, permet
l’utilisation des micro-objets 3D ainsi formés pour diverses applications. En particulier,
les microstructures de forme tubulaire, agissant à la fois comme des microcanaux et des
microrésonateurs optiques, ont été très prometteuses dans la réalisation de dispositifs
de détection opto-fluidiques compacts et efficaces.

Dans cette thèse, notre approche consiste à utiliser la nanotechnologie par enroule-
ment pour enrouler des membranes à cristaux photoniques afin de former deux types de
structures : des cages à photons et des analogues de cristaux photoniques de nanotubes
de carbone.

En premier lieu, nous abordons la conception de cages à photons tubulaires basées
sur l’auto-enroulement d’une membrane à cristaux photoniques 2D cristalline très
réflechissante en utilisant la nanotechnologie par enroulement. Une telle structure est
capable de confiner la lumière dans l’air. Notre objectif consiste à apporter une preuve
de concept expérimentale de ces cages à photons.

En second lieu, nous avons l’intention d’explorer théoriquement et expérimentale-
ment les propriétés optiques et topologiques d’analogues cristallins photoniques de nan-
otubes de carbone constitués de membranes cristallines photoniques en nid d’abeille
enroulées. A la lumière des propriétés électroniques et topologiques des nanotubes de
carbone, nous visons à répondre aux deux questions suivantes. Comment évolue la dis-
persion photonique du microtube photonique de type CNT en fonction de la chiralité
du microtube ? Les microtubes photoniques présentent-ils des propriétés topologiques
non triviales ?

Dans le chapitre suivant, nous présentons les méthodes numériques et de fabrication
pour réaliser les différentes étapes de la conception des structures précédentes : la
conception, la simulation des propriétés optiques, la fabrication et la caractérisation
optique des structures.
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Chapitre 2

Dans ce chapitre, nous présentons les différentes méthodes de simulation, de fabrication
et de caractérisation optique pour la conception et l’étude des propriétés optiques des
membranes à cristaux photoniques 2D enroulées.

Dans la première section, nous décrivons la méthode d’analyse rigoureuse des ondes
couplées (RCWA) et la méthode méthode de calcul de différences finies dans le domaine
temporel (FDTD) employées pour simuler :

• le spectre de réflectivité d’une membrane à cristaux photoniques 2D en incidence
normale et oblique (RCWA) ;

• la réponse spectrale de cavités tubulaires (méthode FDTD) ;

• le diagramme de dispersion de structures photoniques périodiques avec une géo-
métrie quelconque (méthode FDTD).

Dans la deuxième section, nous détaillons le processus de fabrication de microtubes
à base de membrane à cristaux photoniques 2D enroulées à partir des principales étapes
suivantes :

• la production de précurseurs multicouches de matériaux semi-conducteurs par
épitaxie par jets moléculaires (MBE) ;

• la conception, la fabrication et le transfert du masque planaire de la membrane à
cristaux photoniques par des procédures successives de lithographie par faisceau
électronique et de gravure ionique réactive (RIE) ;

• le laminage du MCP sous une forme tubulaire par procédé de sous-gravure et le
séchage de l’échantillon ;

L’ensemble de ces étapes ont été réalisées au sein de la plateforme NanoLyon par
Philippe Regreny (dépôt des couches) et Pierre Cremillieu (lithographie électronique,
gravure, sous-gravure et séchage).

Dans la troisième section, nous décrivons les deux principaux montages dédiés à la
caractérisation optique des micro-objets tubulaires fabriqués :

• un montage personnalisé de microscopie optique à champ proche à balayage
(SNOM) pour cartographier les modes qui se forment à l’intérieur des cages à
photons tubulaires ;

• un montage de spectroscopie résolue en angle pour construire le diagramme de
bandes des structures fabriquées en collectant le signal de photoluminescence ou
de réflexion.

En particulier, nous appliquons les méthodes précédentes dans le chapitre suivant
pour la conception et la caractérisation de cages à photons tubulaires.
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Chapitre 3

Dans ce chapitre, nous réalisons l’étude théorique des cages à photons tubulaires à
base de cristaux photoniques membranaires (PCM) enroulé. L’étude se divise en trois
sections principales abordant la conception du miroir planaire PCM, la simulation
analytique et numérique des propriétés optiques des cages.

Dans la première section consacrée à la production d’une paroi en membrane PCM
hautement réfléchissante, nous rapportons les résultats clés suivants :

• nous avons conçu un miroir PCM 2D large bande non absorbant, indépendant de
la polarisation et très efficace en incidence normale dans le domaine du proche
infrarouge ;

• nous avons démontré le rôle essentiel du réseau cristallin pour obtenir un com-
portement hautement réfléchissant par rapport à des membranes simples peu
réfléchissantes ;

• nous avons attesté la robustesse des propriétés de réflexion du PCM jusqu’à
quelques dizaines de degrés d’angle d’incidence.

Dans la deuxième partie, nous avons abordé la réponse optique des cages à photons
en utilisant en premier lieu le modèle analytique de la cavité cylindrique résonante. Ce
modèle fournit une description presque complète de la réponse modale de la cavité avec
les principales caractéristiques suivantes :

• la cavité supporte des modes transverse électrique TEm,n,p et transverse mag-
nétique TMm,n,p classés avec les incides m (azimutal), n (radial) et p (axial)
décrivant la distribution spatiale des modes dans la cavité cylindrique ;

• nous rapportons une forte densité de modes dans des cavités de rayon 17,5 µm
proches des structures fabriquées, et une grande proximité spectrale.

Dans la troisième section, nous avons mené des simulations FDTD pour obtenir
une réponse optique plus réaliste des cages photoniques. Nous soulignons ci-dessous
les principaux résultats :

• les simulations de cavités de longueur infinies et finies ont confirmé l’émergence
de modes de cavité cylindrique TE dans des cages à PCM enroulées, validant
les prédictions analytiques (distributions spectraux et spatiaux des modes) et
l’efficacité de la paroi miroir à PCM incurvée ;

• les simulations de cavités infinies ont permis de relier, à travers l’analyse des
facteurs Q et des cartographies des modes, l’expression des modes TEm,n avec le
spectre de réflectivité du PCM ;

• les simulations de cavités finies ont révélé le confinement axial des modes TEm,n,p

dont la qualité dépend à la fois de l’ordre p. Pour les cavités à rapport d’aspect
élevé, la proximité spectrale des ordres p crée un quasi-continuum de modes à
des paires (m,n) fixes.

Nous avons enfin apporté une preuve théorique des cages à photons à base de PCM
2D enroulé. Le modèle de cavité analytique constitue un outil puissant pour prédire
les propriétés optiques des cages photoniques. L’étude théorique ouvre donc la voie
à la fabrication et à la caractérisation optique des structures réelles décrites dans le
chapitre suivant.
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Chapitre 4

Dans ce chapitre, nous apportons une démonstration expérimentale du concept de cages
à photons.

Dans la première section, nous avons abordé avec succès la fabrication de cages
à photons tubulaires basées sur l’auto-enroulement de cristaux photoniques mem-
branaires (PCM) 2D, présentant les caractéristiques suivantes :

• nous avons démontré notre capacité à produire des cages à photons tubulaires avec
une grande reproductibilité et un contrôle précis des paramètres géométriques ;

• nous avons prouvé l’efficacité d’un design d’ancrage spécifique pour soulever ver-
ticalement les cavités enroulées, afin de faciliter la caractérisation optique future
des microstructures ;

• nous avons également ouvert la voie à d’autres applications impliquant des miroirs
CPM enroulés en montrant leur comportement élastique et leur intégration dans
d’autres plateformes plus complexes.

Dans la deuxième section, nous avons abordé la caractérisation optique des cages
à photons tubulaires fabriquées en sondant la réponse modale dans le noyau creux
par des mesures de microscopie optique en champ proche (SNOM). Nous récapitulons
ci-après les principaux résultats de mesures réalisées sur trois échantillons différents
C2217, C2527 et C2579 avec des cavités de rayons différents :

• nous avons mis en évidence la présence de modes de cavités cylindriques TEm,n,p

dans le cœur rempli d’air des cavités confirmant, en pratique, le potentiel des
cages à photons tubulaires à confiner la lumière dans l’air ;

• nous avons démontré la reproductibilité des mesures du SNOM à travers les
différents scans réalisés sur différents échantillons ;

• nous avons montré la conformité des ordres et des longueurs d’onde des modes
détectés avec les prédictions théoriques fournies par les modèles FDTD et analy-
tiques ;

• nous avons évalué qualitativement le confinement vertical des modes de cavité en
effectuant des mesures à différentes profondeurs d’insertion de la sonde SNOM ;

Enfin, les résultats du présent chapitre et des chapitres précédents fournissent une
étude théorique et expérimentale complète sur les cages à photons tubulaires qui ouvre
la voie à l’intégration de telles microstructures dans des dispositifs d’application opto-
fluidiques. Nous notons que les cages à photons représentent une combinaison typique
entre un motif de cristal photonique et une géométrie tubulaire 3D accessible grâce
à la nanotechnologie par enroulement. En particulier, en utilisant le potentiel de la
plate-forme de nanotechnologie enroulée, nous étudions dans le chapitre suivant les
propriétés optiques d’analogues de structures de la physique du solide, le graphène et
les nanotubes de carbone, dans la classe des cristaux photoniques.
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Chapitre 5

Ce chapitre est consacré à l’exploration des propriétés optiques de microtubes de
cristaux photoniques membranaires en réseau en nid d’abeille (HC-PCM) enroulés,
analogues photoniques des nanotubes de carbone. Avant d’aborder l’étude de ces mi-
crotubes photoniques, nous avons simulé les propriétés optiques et topologiques de
structures intermédiaires que sont le cristal photonique membranaire en nid d’abeille
(HC-PCM) et les rubans de HC-PCM correspondant aux analogues photoniques du
graphène et des rubans de graphène. Pour chaque système photonique, nous avons
d’abord passé en revue les modèles utilisés pour appréhender les propriétés électron-
iques et topologiques de la structure solide associée.

Dans la première section, nous présentons les propriétés électroniques du graphène
dérivées de l’approximation des liaisons fortes (TB) et les propriétés optiques simulées
du HC-PCM. En particulier, nous avons calculé la dispersion optique de deux archi-
tectures de HC-PCM, l’une avec des trous d’air circulaires, l’autre avec des trous d’air
triangulaires. Pour les deux designs, nous retrouvons une dispersion de Dirac typ-
ique du graphène. Nous observons également une troisième bande photonique pour
laquelle les modes présente une distribution monopolaire, interagissant avec la branche
supérieure de la dispersion de Dirac. La design avec trous triangulaires a notamment
été utilisée pour déplacer le mode monopolaire à des fréquences plus élevées, en prévi-
sion d’une ouverture de bande photonique interdite (BIP) pour la réalisation d’effets
topologiques. Nous avons enfin remarqué que les bandes du modèle TB coincident avec
les bandes photoniques uniquement autour des points de Dirac.

Dans la deuxième section, nous avons présenté le modèle topologique 1D de type
SSH pour prédire les propriétés topologiques des rubans de graphène via le calcul de
la phase de Zak. Nous avons montré que la topologie des rubans de graphène dépend
principalement de la chiralité du ruban. De même, nous avons estimé la topologie
des rubans photoniques de chiralité élémentaire zig-zag ~T (1, 0) selon deux méthodes
consistant à calculer numériquement la phase Zak et à simuler la structure de bandes
du ruban. Les deux méthodes s’accordent sur la topologie non triviale du ruban, donc
sur l’existence d’états de bord lorsque le ruban interface une structure topologiquement
triviale, conformément aux résultats obtenus pour les rubans de graphène.

Dans la troisième section, nous avons passé en revue les propriétés électroniques
et la classification topologique des nanotubes de carbone (CNT), en utilisant respec-
tivement une approche de repliement de zone et un modèle topologique 1D. Le com-
portement électronique et topolgique des CNT dépend de la chiralité des nanotubes.
Nous avons ensuite calculé la dispersion optique des microtubes photoniques équiva-
lents avec des chiralités simples selon une méthode de type repliement de bandes et en
simulant la dispersion de structures plus réalistes. Nous avons montré, en particulier,
la concordance entre les prédictions de repliement de zone électronique et photonique.
Nous avons ensuite présenté des résultats typiques de la fabrication reproductibel de
microtubes de type CNT basés sur la nanotechnologie par enroulement. Nous avons
enfin abordé la caractérisation optique expérimentale d’un échantillon de microtube
photonique avec une chiralité métallique en zigzag par des mesures spectrales résolues
en angle. Nous avons rapporté des caractéristiques de dispersion typiques de la paroi
de la membrane photonique et des motifs d’interférence, mais encore aucune signature
spectrale de la dispersion du microtube probablement due à l’absorption de photons
lors de leur circulation autour du tube.
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Conclusion

Le premier objectif de cette thèse consistait en l’étude théorique et expérimentale
de cages à photons tubulaires basées sur l’auto-enroulement de miroirs à membranes
à cristaux photoniques 2D (PCM). Pour résoudre ce problème, nous avons couvert
l’ensemble du processus de conception, de simulation, de fabrication et de caractéri-
sation optique de ces microrésonateurs photoniques. Nous avons d’abord réalisé la
conception de la paroi membranaire des cages constituée d’un miroir PCM 2D large
bande non absorbant très efficace fonctionnant dans le proche infrarouge. Nous avons
ensuite simulé les propriétés optiques de la cavité tubulaire finale en utilisant à la fois le
modèle analytique de la cavité cylindrique résonante et des simulations plus réalistes à
l’aide la méthode FDTD. Les deux modèles ont prédit le confinement de la lumière dans
la partie creuse des cavités photoniques cylindriques sous forme de modes de cavités
cylindriques. Nous avons ensuite rapporté la fabrication des cages à photons tubulaires
suivant les processus de nanotechnologie par enroulement avec un contrôle précis des
paramètres structurels et de la forme 3D finale. Nous avons enfin démontré expérimen-
talement par des mesures de microscopie optique à balayage en champ proche (SNOM)
la présence de modes à l’intérieur des microrésonateurs cylindriques creux présentant
des distributions spectrales et spatiales conformes aux prévisions théoriques. Les résul-
tats de ce travail apportent donc la preuve de concept des cages à photons tubulaires
en tant que microrésonateurs photoniques capables de confiner la lumière dans les trois
directions de l’espace et dans l’air.

Le deuxième objectif de cette thèse concernait l’exploration des propriétés optiques
et topologiques des analogues de cristaux photoniques de nanotubes de carbone pro-
duits par l’auto-enroulement de membranes à cristaux photoniques en nid d’abeille. Des
études préliminaires ont été menées pour évaluer les propriétés optiques et topologiques
du graphène et des analogues des rubans de graphène dans la classe des cristaux pho-
toniques. Tous les résultats concernant les cristaux photoniques ont été analysés à la
lumière des modèles de référence de la physique du solide.

Nous avons d’abord abordé la simulation des propriétés optiques des analogues du
graphène dans la classe des cristaux photoniques, à savoir les membranes à cristaux
photoniques en nid d’abeille (HC-PCM). En particulier, deux designs de HC-PCM, avec
des trous d’air circulaires et triangulaires, ont été étudiées. Pour les deux designs, nous
avons retrouvons une dispersion de Dirac typique des structures dérivées du graphène.
Nous avons également rapporté la présence d’un mode photonique supplémentaire avec
une concentration monopolaire du champ électromagnétique, en accord avec la littéra-
ture. Dans la structure à trous circulaires, l’interaction entre une branche de la disper-
sion de Dirac et ce mode monopolaire fait que la branche de Dirac se plie au niveau du
Dirac, empêchant potentiellement l’ouverture d’une bande interdite photonique (BIP)
et l’émergence de propriétés topologiques. En revanche, le design triangulaire permet
de remonter le mode monopolaire à des fréquences plus élevées et de préserver la cour-
bure d’origine des bandes de Dirac. Enfin, nous avons noté une bonne correspondance
entre les niveaux d’énergie et les courbures des bandes photoniques, et la structure des
bandes tirée du modèle des liaisons fortes du graphène et la distribution spatiale des
fonctions d’onde, à proximité du point de Dirac exclusivement.

Nous avons ensuite examiné les propriétés topologiques des rubans de HC-PCM.
Nous avons d’abord évalué numériquement la phase Zak d’un ruban photonique de
chiralité ~T (1, 0) avec des trous d’air circulaires en suivant la méthodologie appliquée aux
rubans de graphène. Nous avons trouvé une phase Zak non nulle pour une certaine plage
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de la norme du vecteur d’onde le long de l’axe du ruban, impliquant une topologie non
triviale du ruban et l’existence d’un état de bord selon la correspondance volume-bord.
En particulier, nous avons remarqué une distribution complémentaire de la plage de la
norme du vecteur d’onde caractérisée par une phase de Zak non nulle estimée avec les
modèles photonique et de la physique du solide attribuée à un choix de jauge différent.
Dans ce cas, la différence de phases Zak évaluée avec deux jauges constitue l’invariant
topologique. Nous avons confirmé la topologie non triviale du ruban en calculant la
structure de bande au bord du ruban interfaçant un matériau de topologie triviale,
révélant l’existence d’un état de bord. Ces résultats ont montré, plus spécifiquement,
qu’une ouverture de gap et l’émergence d’un état de bord étaient possibles avec la
conception de trou circulaire malgré la l’altération de l’une des branches de la dispersion
de Dirac.

Dans la dernière partie, nous avons abordé la conception et la caractérisation
optique des HC-PCM enroulés. Nous avons d’abord simulé numériquement les di-
agrammes de dispersion optique de microtubes photoniques non enroulés avec des
chiralités simples, à trous d’air circulaires et triangulaires PCM, en suivant la méth-
ode de repliement de zone. Nous avons remarqué la correspondance entre les bandes
photoniques et de la physique du solide pour design de trous triangulaires. En re-
vanche, nous avons observé l’altération des bandes du motif de trous circulaires due
à l’interaction avec le mode monopolaire. Nous avons ensuite calculé la structure de
bande d’un microtube plus réaliste de chiralité ~Ch(12, 0) à trous circulaires et remarqué
une excellente conformité avec les prédictions de repliement de zone. Notre prochaine
étape concernait la fabrication des microtubes photoniques suivant les procédés de nan-
otechnologie par enroulement. Nous avons montré la qualité et la haute reproductibilité
de l’auto-enroulement de HC-PCM avec des trous d’air triangulaires pour former des
microtubes horizontaux de différentes chiralités. Nous avons enfin abordé la caractéri-
sation optique des microtubes fabriqués de chiralité zigzag par des mesures spectrales
résolues en angle. Nous avons reconstitué la structure de bande expérimentale du mi-
crotube sur laquelle nous avons remarqué des bandes issues de la paroi membranaire
des tubes et des modes de cavité Fabry-Pérot. Cependant, nous n’avons pas enregistré
la signature dispersive du microtube probablement à cause de l’absorption de photons
avant d’avoir terminé une circulation autour du tube.
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