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Abstract

With the continuous economic growth, the number of motor vehicles is increasing, the
role of Intelligent Transportation Systems (ITS) in managing roads logistics and safety
is getting less practical. There is a dire need for new methods to handle the ever-growing
pressure. Among various promising techniques, we consider in this work deep learn-
ing. The vast amount of data at our disposal allow us to better exploit the potential
of this technology. Surveillance video data provides a wealth of information with the
tremendous amount of videos accumulated over the years. In this thesis, vision-based
methods and learning paradigms for vehicle identification are extensively investigated,
and improved upon by several novel approaches that we propose, to achieve better
results and overcome previous weaknesses.

Traditional machine learning consisted of hand-crafted feature extraction. In con-
trast, deep neural networks learn hierarchical feature representations from lines and
curves to objects inducing more robustness and precision. Deep Learning for visual
features has attracted much attention in the last few years. Many applications have
seen a leap forward in terms of performance, such as image classification, object detec-
tion, image generation, and image segmentation, to name a few.
In this thesis, deep models are mainly investigated for vehicle identification.

License Plate Detection and Recognition is a fundamental task in vehicle identifi-
cation, but it faces many challenges mainly because the license plate occupies a small
space of the image, making it sensitive to variation in image quality, illumination, view-
points, and occlusions. Moreover, license plates are specific to each country. Chinese
license plates, for instant, contain Chinese characters, European license plates have
Latin letters. Moreover, the design changes from one plate to another with complex
backgrounds and different sizes, further complicating the task. To address these diffi-
culties, a two-stage multi-norm system is proposed. It detects the license plate using
both the features inside the license plate and its surroundings. This is because a license
plate is placed in the same place for all vehicles. Then, We handle the characters on
the license plate as objects instead of characters removing the need for segmentation
and allowing our system to be robust in recognizing multi-norm license plates since
characters are recognized even when not aligned.

Vehicle Make and Model Classification complement license plate recognition since
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the latter might not be visible for recognition. It is a challenging problem due to the
large number of classes and the minor inter-class variations. In other words, Vehicle
makes and model recognition is both a coarse and fine-grained classification problem:
On one hand, vehicles can have unconstrained poses when taken under multiple view-
points. Classification under such conditions can be seen as a coarse-grained problem.
On the other hand, the unique hierarchical structure starting from make, model, to
year of manufacture produces very similar vehicles with a subtle inter-class variation.
These challenges were addressed with a multi-stream robust architecture to extract and
combine both local and global features representations: First, a pre-trained detector
crops out vehicle parts where the number of detected parts varies from one image to
another, hence the robustness of the system. Second, a selection process filters out the
vehicle image with some detected parts to optimize performance. Then, every part
goes through a different stream into a specialized feature extractor allowing the system
to detect subtle inter-class variations. Finally, all extracted features are aggregated
through a novel fusion technique.

When the license plate is occluded, and the task is to re-identify a vehicle, make and
model classification falls short of the task. Thus we address the Vehicle re-identification
(V-Reid) problem without LP recognition. V-Reid aims to automatically find vehicle
identity from a large number of vehicle images captured from multiple cameras. Most
existing V-Reid approaches rely on fully supervised learning, where large amounts of
annotated training data are required. In practice, massive data annotation is an expen-
sive task and may be impossible with real-time learning and identification, in which
semi or unsupervised learning is needed. We focus our interest on semi-supervised
V-Reid, where each identity has a single labeled and multiple unlabeled samples in
training. We propose a framework that gradually labels vehicle images taken from
surveillance cameras. Our framework is based on a deep Convolutional Neural Net-
work (CNN), which is progressively learned using a feature anchoring regularization
process. The experiments conducted on various publicly available datasets demon-
strate the efficiency of our framework in V-Reid tasks. Our approach with only 20%
labeled data shows interesting performance compared to the state-of-the-art supervised
methods trained on fully labeled data.
With new technologies like drones and self-driving vehicles becoming popular, more
challenging datasets are becoming available. Hence, we propose a cross camera V-
Reid, a system that performs re-identification from different cameras. Usually, vehicle
images captured from different cameras exhibit large intra-class variability and do not
follow the same distribution. To alleviate this problem, our system models the cross
cameras re-identification as a domain adaptation problem. It uses optimal transport to
transfer knowledge from different cameras and project vehicle features onto a shared
space in which the same vehicle identities are close. The similarities are computed
using the euclidean distance in the joint space. We conducted a set of experiments on
the two publicly available datasets VeRi776 and VehicleID.
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Chapter 1

Introduction

The use of vehicles in our life is increasing exponentially due to rapid economic de-
velopment. Hence, maintaining the ease of transport and road security is essential for
many reasons: companies move their goods on the road, public transport is expected
to arrive on time, and vehicle owners can be the target of hijacking. Hence there is a
dire need for high-performing Intelligent Transportation Systems (ITS).
ITS is where information and communication technologies are applied in the field of
road transport, including infrastructure, vehicles, and users, and in traffic manage-
ment.
ITS uses a range of cellular data, such as the mobile triangulation method, where
phones periodically transmit their presence information to the mobile phone network.
The data is then converted into traffic flow information. Bluetooth and RFID detectors
are also used by mounting them on the side poles.
Another more current source of information is smartphones. They offer a rich set of
sensory data from GPS to accelerometers to track traffic speed and density. Finally,
radar is a very common sensor to monitor roads, and it’s primarily used in highways
but not exclusively. In this thesis, however, we focus on vision-based ITS.

1.1 Vision-based Intelligent Transportation Systems

Video surveillance cameras are the most relied-on source of data since they convey
an accurate depiction of reality. However, the size of recorded videos makes analyz-
ing it a tedious and sometimes impossible task for humans. Hence, automatic video
analysis acquired a significant interest from researchers and engineers. Surveillance
tasks such as, incident detection Oskarbski et al. [95] and vehicle counting [5, 96, 2]
are either addressed by sensor-based or vision-based algorithms. Furthermore, visual
data contains an abundance of patterns that can be analyzed and interpreted for more
advanced tasks like vehicle detection and license plate recognition. In contrast, radar
sensor-based techniques can only detect vehicles in a minimal area, while video-based
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techniques can detect multiple vehicles simultaneously. However, no video analysis al-
gorithm came close to the human level of vehicle detection, classification, or any other
naturally easy task for humans. All of that radically changed with the emergence
of CNN. Inspired by biological processes, the connectivity pattern between neurons
resembles the organization of the animal visual cortex. CNN can mimic the brain’s
capacity to analyze visual data and, in some cases, surpass it.

1.1.1 Deep Visual Feature Learning

Deep Features refers to the hierarchical nature of extracted features. CNN’s are com-
posed of layers stacked one after the other. The first layers extract fundamental features
like lines and curves while layers at the end recognize shapes and objects, as is shown
in Figure 1.1.

Figure 1.1: CNN’s hierarchical features representation of human faces
from edges to facial structure.

Deep CNN layers usually consist of several convolutional layers, pooling layers,
fully-connected layers, and normalization layers. Each is designed to learn a different
level of representation in the hierarchy. A drawback of this architecture is that the
more a CNN has layered, the more it is computationally expensive. Residual Neural
Networks (ResNets) [45] are a class of CNN wherein training it learns to skip or short-
cut layers. A CNN learning process requires data, images, or videos in computer vision
and ground-truth. For example, given an image of a vehicle, the ground truth is the
make and model in the context of make and model classification. The next section
introduces learning paradigms that categorize the relationship between training and
test sets and labeled and unlabeled samples.



CHAPTER 1. INTRODUCTION 3

1.1.2 Learning Paradigms

Machine Learning paradigms can be coarsely categorized into supervised learning, un-
supervised learning, and more recently, one-shot or few-shots learning with other re-
lated concepts such as transfer learning and domain adaptation. The most common is
supervised learning, where all the samples in the training set are labeled with ground
truth. In contrast, unsupervised learning has no labeled samples, so a CNN learns how
to label the training set, unsupervised learning can be further grouped into clustering
as shown by Greene et al. [40] and association problems by Frawley et al. [29]. In
between, the few-shot and one-shot setups are when a CNN is given only a few images
or only one to learn the features and accomplish the task.

Deep unsupervised learning adopts layer-wise training to learn statistical structure
or dependencies of the unlabeled data. For example, deep-stacked denoising auto-
encoder by Pascal et al. [121], deep belief nets by Hinton, Osindero, and Teh [48] and
sparse coding proposed by Jenatton et al. [58].

Domain adaptation can be viewed as a special case of transfer learning (Patel, Li,
and Chellappa [97]). Transfer learning is defined as the learning scenario where a model
is trained on a source domain or task and evaluated on a different but related target
domain or task, where either the tasks differ. For example, learning a model on a
handwritten digit dataset MNIST [67] to use it to recognize street numbers SVHN [38]
or the opposite as shown in Figure 1.2.

Figure 1.2: Transfer learning from SVHN to MNIST.

These types of learning are often referred to as Machine learning paradigms, not to
be confused with learning paradigms that refer to learning in general, i.e., for machines
and humans. Learning paradigms found their way to machine learning by projecting
theories that worked on humans and animals onto deep nets concepts. For instant,
curriculum learning presented by Bengio, Louradour, Collobert, and Weston et al. [8]
consists of the premise that humans and animals learn much better when the exam-
ples are not randomly presented but organized in a meaningful order which illustrates
gradually more concepts, and gradually more complex ones. Works such as [42, 8]
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demonstrates the influence of curriculum learning on deep neural networks. A second
example is the progressive learning paradigm, where instead of a labeled training set,
the learning algorithm trains to progressively label the training set by assigning pseudo-
labels then train on the pseudo-labeled set. this approach minimizes the annotation
afford and actually enhances results.
Therefore, in this thesis, several computer vision models are extensively studied to
achieve better results and overcome previous weaknesses such as learning from fewer
examples, generalized solution cross countries norms, and robustness to challenging
conditions.

1.2 Research Motivation

Our brain’s capability to analyze visual data is impressive; however it remains limited
by the visual input, we can only analyze what we see and only at a certain speed.
Computers, on the other hand, can analyze data at an astonishing speed. Combining
the best of two worlds will enable us to improve our technologies at an unprecedented
pace. Vehicle Identification represents a key challenge in improving computer vision
in general for even humans struggle in the vehicle identification task; thus, working on
this problem will have a security and economic impact on our society and push the
body of knowledge forward.

1.3 Problem Restatement

The vehicle identification problem presents some unique challenges. Figure 1.3 shows,
on the one hand, how vehicles with the same models can be very different, and the
reverse is also true. Vehicles of different models can look similar. On the other hand, the
same identity vehicles look radically different from multiple viewpoints. Furthermore,
the license plate (The unique identifier of a vehicle) occupies a very small space of
the images making recognizing the text a very hard task. Plus, vehicle re-ID can
be between images at different times of the day and even different weathers. Hence,
robustness is a vital criterion for an effective vehicle V-Reid system.
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Figure 1.3: Illustrations of the coarse-to-fine concept of vehicle recognition
at different granularity.

The purpose of this thesis is to develop a system for vehicle identity recognition
based on both the recognition of the number of the license plate (LP) and the brand
(manufacturer, model) of the vehicle. The main objective is to propose solutions to
improve the mobility and the safety of road traffic by, for instant, the surveillance of
the border crossings and the search of suspicious vehicles.

1.4 Licence Plate Recognition

Automatically identifying vehicles through their LPs proves to be a solution of a sig-
nificant role in this active world. The Automatic License Plate Recognition (ALPR)
is a field of research that gained a lot of interest during the last decade with many
applications in ITS along with the improvement of digital cameras and the increase
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in computational capacity. These systems aim to identify vehicles through their LPs.
They provide automatic detection and recognition of the vehicle’s LP within a real view
camera scene. Once the camera takes an image of the front of the vehicle, this image
is given as an input to processing algorithms to analyze it, locate and extract the plate
regions from the background. The recognition phase consists of the segmentation of
the characters within the detected region and then recognition as shown in figure 1.4.

Figure 1.4: License Plate Recognition task is composed of three consec-
utive sub-tasks: (1) Vehicle Detection => (2) LP Detection => (3) LP
Recognition.

1.5 Vehicle Make/Model Classification

There are a wide variety of vehicle models available. Every vehicle manufacturer is
striving to release new vehicle models every year with improved styling in the competi-
tive environment. Classifying vehicle models has become a topic of interest in ITS. The
problem with identifying vehicle models is the appearance in different views. Many of
the models carry some of the old features from the previous models.
Most mainstream approaches are at least in one of these three categories shown in
Figure 1.5: (1) Global predictors where the entire image is fed to the system to be
analyzed and create a global representation (2) Part-Based predictors detects parts of
the vehicle then analyze and create a representation of each part, and an aggregation
method is used for a final prediction. (3) Attention-Based predictors learn to find a
Region Of Interest (ROI) then predict by analyzing that region.
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Figure 1.5: Make and Model Classification three most researched ap-
proaches: (1) Global predictor (2) Part-Based predictor (3) Attention-Based
predictor.

1.6 Vehicle Re-Identification

V-Reid is the task of recognizing a vehicle, captured by one or more cameras, over a
range of candidates targets. Figure 1.6 shows the process of V-Reid where a prob (the
search for) image is given as an input and a ranking of possible same identity vehicles
are the output.
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Figure 1.6: V-reID can be addressed as an image retrieval problem. Given
one probe image from an arbitrary camera viewpoint (1), the V-Reid con-
sists of seeking the most relevant (based on a similarity metric) image from
the gallery (2). The gallery is generally formed from a multi-camera net-
work.

The re-identification problem was initially proposed for persons then extended to
vehicles. Although they share some challenges, V-Reid poses its own difficulties due to
the intra-class variance and inter-class similarity. Common challenges like illumination
that can change from one camera to another, different resolutions, and quality be-
tween cameras are also factors. Plus, in traffic, vehicles can be occluded. Furthermore,
machine learning algorithm requires labeled data to train, so humans need to anno-
tate thousands of hours of camera surveillance. For good generalization capabilities,
complex algorithms need to be taught with a large number of labeled data.

1.7 Outline

The rest of the thesis is structured as follows. In chapter 2, we present a prelimi-
nary review of theories and methods relevant to deep visual learning. We review the
basics of convolutional and recurrent neural networks and their applications. Then
approaches of learning paradigms applied on deep learning models are presented and
improved upon. In chapter 3, we present a literature survey for license plate detection
and recognition starting from object detection methods, including traditional detec-
tion frameworks and deep learning-based detectors are explored. We, of course, review
the evaluation metrics for detection and approaches specialized for vehicle and LP
detection. Optical Character Recognition (OCR) methods are reviewed for LP recog-
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nition. Then we present datasets and evaluation protocols relevant to our work on
LP detection and recognition. Then, we present, first, an ALPR system for multilin-
gual LP detection and recognition in natural scene images. The system architecture
uses a pipeline with two deep learning stages. The first network was trained to detect
LPs on the whole raw image by using the latest state-of-the-art deep learning-based
detector, namely YOLOv2. The second stage is then applied to the cropped image
to recognize captured LP photographs. Two recognition engines are compared in this
work: a segmentation-free approach based on a convolutional recurrent neural network
(CRNN). The recognition is carried out over the entire LP image without any prior
segmentation, and a joint detection/recognition approach performs the recognition on
the plate component level. We also introduced a new large-scale dataset for automatic
LP recognition that includes 9.175 fully annotated images. In order to reduce the time
and cost of annotation processing, we propose a new semi-automatic annotation pro-
cedure of LP images with labeled components bounding boxes. The produced results
are presented, discussed, and compared with the state of the artwork.

Chapter 4 presents our Vehicle Make Model Recognition (VMMR) with a method
for more structured feature extraction by leveraging robust multi-stream deep networks
architecture. We employ a novel dynamic combination technique to aggregate different
vehicle part features with the entire image. This allows combining global representation
with local features.

Chapter 5 concerns the V-Reid problem; we start with a review of object re-
identification in general and the evaluation metrics used. Then we review works on both
person and vehicle re-identification. Finally, we review the public datasets relevant to
the tasks studied in this thesis.

For V-Reid, massive data annotation is an expensive task and may be impossible
with real-time learning and identification, in which semi or unsupervised learning is
needed using learning paradigms. We focus our interest on semi-supervised V-Reid,
where each identity has a single labeled and multiple unlabeled samples in training.
We propose a framework that gradually labels vehicle images taken from surveillance
cameras. Our framework is based on deep CNNs, which are progressively learned using
a proposed feature anchoring regularization technique. A second take on the V-Reid
problem involves a domain adaptation approach in which we propose a cross camera V-
Reid, a system that performs re-identification from different cameras. Usually, vehicle
images captured from different cameras exhibit large intra-class variability and do not
follow the same distribution. To alleviate this problem, our system models the cross
cameras re-identification as a domain adaptation problem. It uses optimal transport to
transfer knowledge from different cameras and project vehicle features onto a shared
space in which the same vehicle identities are close. The similarities are computed
using the Euclidean distance in the common space.

The final Chapter 6 sums up the conclusions.



Chapter 2

Research Preliminary

2.1 Visual Feature Representation

Earlier work focused on low-level features representation: Scale Invariant Feature
Transform (SIFT [84, 82, 83]) for an instant, is used to detect and describe local
features in images. Key points of objects are first extracted and stored. Hence, an
object is recognized by comparing each new feature with the ones stored. However,
this method is computationally expensive. To overcome this issue, Speeded Up Robust
Features (SURF [6]) and Histogram Oriented Gradients (HOG) have been proposed
for more robustness and speed. Another approach is the SURF method which uses the
Hessian matrix approximation to detect key points, which gives more robust results
while being faster than the SIFT-based methods. Several variations of the SURF de-
scriptor have also been used. These variations include (1) Features from Accelerated
Segment Test (FAST), which is a key-points detection method designed for real-time
applications, (2) Binary Robust Independent Elementary Features (BRIEF), and (3)
Oriented FAST, which uses FAST detector for key-points detection and BRIEF as a
descriptor. In this work, however, we focus on deep visual features extraction (learn-
ing). The next sections of this chapter are a preliminary to the theories and tools used
in this work.

2.2 Deep Visual Feature Learning

2.2.1 Convolutional Neural Network

CNNs [65] are a fundamental tool for machine learning researchers, especially for com-
puter vision. A CNN consists of one or more convolutional layers with a sub-sampling
step followed by a classifier, for instance, a fully connected layer. Convolutional layers
are easier to train and have much fewer parameters than fully connected layers with
the same number of hidden units. They are designed to take advantage of the 2D struc-
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ture of an image which is achieved with local connections and tied weights followed
by pooling resulting in translation-invariant features. In the following sub-sections, we
introduce the main operations in a general CNN model.
Convolution
Convolutional filters receive the input image; they are called convolutional because of
the process involving the filters where the present input image is convolved with what
it has learned in the past, i.e., the convolved features created by the filters. Figure 2.1
is a schematic diagram of the convolution process.

Figure 2.1: Filters are convolved over the image or a feature map in a
sliding window fashion.

Each convolutional filter represents a feature; this means that convolution has the
property of being translational invariant. The CNN can then comprise the resulting
prediction from those extracted features. Practically, the prediction does not depend
on where the features are located but only if they are present so an object can change
position in an image and still be recognized or detected. Convolving filters are con-
trolled by multiple parameters such as stride, zero-padding, and channel depth. A
stride is the number of pixels with which the filter slides. Having a more significant
stride produces smaller feature maps and vice versa. Zero paddings allow us to control
the size of the feature maps to a certain extent. It pads the input matrix with zeros
around the border. The channel depth is the number of filters used in convolution.
The more filters, the more image features get extracted.
Activation Layer
Like neurons are fired in the brain, the activation layer controls how the signal flows
from one layer to another. The most common of the activation function is the Rectified
Linear Unit (ReLU) given by:

f(x) = max(0, x) (2.1)

Other variations of the ReLU activation function were proposed, like the random ReLU
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(RReLU), LeakyReLU, and PReLU.
Pooling
Filters can be sensitive to noise hence, a smoothing technique is employed called pooling
or sub-sampling. It can be achieved by taking averages or maximum over a sample of
the image or feature map. Figure 2.2 shows an example of the two pooling methods.

Figure 2.2: Average pooling and Max pooling methods.

Fully-Connected Layer
The fully-Connected layer is the final layer in the network. The fully connected term
is since the neurons of preceding layers are connected to every neuron in subsequent
layers. The fully-Connected layer acts as a classifier; it uses the high-level features
from convolutional and pooling layers to classify the input image into classes.
Back Propagation
Back-Propagation algorithm [107] is used to calculate the gradients of the error with
respect to all weights in the network and use gradient descent to update all filter
weights and parameter values to minimize the output error. The forward propagation
is defined as that given the activated i-th layer ai, the (i+1) -th layer’s activation is
computed as:

zi+1 = W iai + bi

ai+1 = f(zi+1)
(2.2)

W and b and respectively the weights and bias in the network. The error term for the
(i+1) -th layer is defined as Ei+1. The loss function is set as L(W, b; x, y) where (x, y)
are the training data and label pairs. The error of the i-th layer is computed as follows:

Ei = ((W i)TEi+1) · f ′(zi) (2.3)
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Where ”·” denotes the element-wise product operator. The gradients are:

∇i
WL(W, b; x, y) = Ei+1(ai)T

∇biL(W, b; x, y) = Ei+1
(2.4)

In the case the i-th layer is a convolutional and pooling layer then the error is propa-
gated as:

Ei
k = ((W i

k)
TEi+1

k ) · f ′(zik) (2.5)

With k indexes the filter number and f ′(zik) is the derivative of the activation func-
tion. The upsample operation has to propagate the error through the pooling layer by
calculating the error with respect to each unit incoming to the pooling layer. Finally,
the gradient is calculated with respect to the filter maps:

∇W i
k
L(W, b; x, y) =

m
∑

j=1

(aij) ∗ rot90(E
i+1
k , 2)

∇bi
k
L(W, b; x, y) =

∑

c,d

(Ei+1
k )c,d

(2.6)

Where ai denotes the i-th layer’s input. (aij) ∗ E
(i+1)
k is the convolution between the

j-th input in the i-th layer and the error with respect to the k-th kernel filter. m is
the number of input channels. rot90 (A, 2) is the function to rotate input A by 90× 2
degrees. c and d are the width and height of the kernel filter, respectively.
Loss Function
CNN optimization is driven by a loss function, which indicates how close to representa-
tion is to the goal using scalar value specifying the ”badness” of the weights. Thus the
goal of training is to find the weights that minimize the loss functions. The following
are the most common losses.

• Euclidean Loss also known as l2 loss defines as:

E =
1

2N

N
∑

n=1

‖ỹn − yn‖22 (2.7)

• Softmax Loss computes the multinomial logistic loss for a one if many classifica-
tion task, passing real-valued predictions through a softmax to get a probability
distribution over classes.

• Mean Square Loss used most commonly in regression problems defines as:

E =
1

N

N
∑

n=1

(yn − ỹn)2 (2.8)
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Dropout
Dropout is an essential concept in training a deep model. Dropout refers to ignoring
neurons during the training phase of some random neurons. Dropout aims to prevent
the network from overfitting. When the performance of the model on the training set
is very high but drops on the test set, then the model is over-fitting. ”Ignoring” means
these units are not considered during forwarding or backward pass.

2.2.2 Recurrent Neural Network

The rise in popularity of RNNs can be attributed to its ability to model sequential
data as shown in Figure 2.3.

Figure 2.3: Recurrent neural network architecture.

RNNs have been successfully applied to multiple problems: image captioning [128],
language modeling [39] and action recognition [75, 76]. In the following, we review
RNN’s important concepts and methods.
Vanilla RNN
For sequence type data, both the current input and previous states are necessary to
infer a correct prediction. For the current state t for example, both the input Xt and
the previous state ht−1 are used to compute ht:

ht = f(Xt, ht−1) (2.9)

However, this model falls short for long-term dependencies.
Long Short-Term Memory
Long Short-Term Memory networks (LSTMs) [49] aim to handle learning for long-
term dependencies. LSTM splits the ht into 2 variables ht and C. It has three gates
to control what information will pass through:

gateforget = δ(WfxXt +Wfhht−1 + bf )

gateinput = δ(WixXt +Wihht−1 + bi)

gateoutput = δ(WoxXt +Wohht−1 + b0)

(2.10)
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gateinput controls what part of the new information will be added to state C. gateoutput
controls the part of the cell state that will be exposed as the hidden state and gateforget
as the name implies controls what part of the previous cell state will be removed. With
δ(x) = (1 + e−x)−1. Hidden and Cell state will be updated as:

C̃ = tanh(WcxXt +Wchht−1 + bc)

Ct = gateforget · Ct−1 + gateinput · C̃

ht = gateoutput · tanh(Ct)

(2.11)

Ct is formed by forgetting part of the previous cell state while adding new proposal C̃.
Figure 2.4 shows the LSTM architecture.

Figure 2.4: Long Short-term Memory architecture.

Previous models examined have augmented the underlying structure of a simple
RNN to improve its performance in learning the contextual dependencies of single
dimension sequences. However, there exist several problems, which require an un-
derstanding of contextual dependencies over multiple dimensions. The most popular
network architectures use CNNs to tackle these problems.
The incorporation of recurrent connections into each convolutional layer can shape
a recurrent convolutional neural network. (RCNN) [36]. The activation of units in
RCNN evolves over time, as they are dependent on the neighboring unit. This ap-
proach can integrate the context information, important for object recognition tasks.
This approach increases the depth of the model, while the number of parameters is
constant by weight sharing between layers. Using recurrent connections from the out-
put into the input of the hidden layer allows the network to model label dependencies
and smooth its own outputs based on its previous outputs.
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2.3 Learning Paradigms

2.3.1 Machine Learning Paradigms

Supervised learning is a class of machine learning algorithms that learn from labeled
data. However, giving a label to each sample of the training set can be an expensive and
time-consuming job because of the labor necessary to annotate the data. Hence, semi-
supervised and Unsupervised learning gained interest in recent years. Semi-supervised
learning is a class of machine learning algorithms that learn from both labeled and
unlabeled data. Unsupervised learning, on the other hand, is when all of the training
data is unlabeled. Furthermore, recent extensions of semi-supervised learning were
researched: (1) One-shot learning where only a single labeled sample of each class is
available. (2) Few-shots learning when few samples are labeled per class.
A second take on the labeled versus unlabeled problem is Transfer Learning. The main
concept of transfer learning is the transfer of knowledge from a previously trained
model to a new model that performs a different task. For example, models that are
trained on the ImageNet [65] dataset can be used as the basis the new a new model to
classify objects that are not in the ImageNet dataset. The process is called fine-tuning.
Domain adaptation is a special case of transfer learning that is specific to transfer
knowledge between representations. In other words, domain adaptation is when the
labels of the two domains are the same, but the distribution is different.

Semi-Supervised Learning

Extracting features from unlabeled data to improve learner performance is not always
possible; some assumptions must be established first. For instant, the marginal data
distribution p(x) over the input space contains information about the posterior distri-
bution p(y|x) where x is a point in the input space and y is it label. Otherwise, it is
impossible to improve performance using the unlabeled data [147]. Though, in most
deep learning problems, this condition is satisfied. The next assumptions describe how
p(x) and p(y|x) interact and how to decide whether the unlabeled sample can be used
to improve performance or not.
The smoothness and low-density assumptions:
If two samples x1 and x2 are close in the input space, their labels y1 and y2 are also
close. This assumption can be applied transitively to unlabelled data. For if x1 is close
to x2 and x2 is close to x3 then due to the smoothness assumption, we can expect that
the label of x1 is close to the label of x3. On the other hand, the low-density assump-
tion dictates that the decision boundary should not pass through high-density areas in
the input space. This assumption is defined over the true input data distribution p(x),
and it means that the boundaries of a classifier should be in an area where few data
samples are observed. Figure 2.5 shows an example that respects both assumptions.
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Figure 2.5: Distribution obeying both smoothness and low-density assump-
tions.

The manifold assumption:
In serious learning problems, data points are observed in high-dimensional input space
Rd and concentrated on lower-dimensional substructures, also known as manifolds
(topological spaces locally Euclidean). This assumption states that the input space
comprises multiple lower-dimensional manifolds on which all data points lie, and points
on the same manifolds have the same label.

Figure 2.6: Distribution obeying the manifold assumption.

High-dimensional data, like images, Euclidean feature distance is rarely a good
indicator of the similarity between data points. Hence, most semi-supervised learn-
ing approaches for images rely on a weak variant of the smoothness assumption that
requires predictions to be invariant to minor perturbations in the input.
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Unsupervised Learning

Unsupervised learning is the most natural type of learning; grouping or clustering
objects according to similarities and same characteristics is a fundamental skill for
learning. Unsupervised learning can be classified into two main categories.
(1) Parametric Unsupervised Learning, where it is assumed that sample data comes
from a population that follows a probability distribution based on a fixed set of pa-
rameters. In such distribution, all members are parameterized by mean and standard
deviation. Parametric Unsupervised Learning involves the construction of Gaussian
Mixture Models and using Expectation-Maximization algorithm for prediction.
(2) Non-parametric models, on the other hand, do not make any assumptions about
the distribution; rather, data is grouped into clusters [108, 59] where each cluster
represent a category of the data. The goal from having unlabeled samples can be clus-
tering [108, 59], good representation [15, 34] (to determine how the data is distributed
in the space) or good representation at first then clustering [31].
Clustering can be divided into multiple categories: Exclusive Clustering is when
data grouped elusively, meaning a sample cannot be in two or more different clusters.
Figure 2.7 is an example of exclusive clustering.

Figure 2.7: Example of Exclusive Clustering.

K-means is a standard algorithm for exclusive clustering; given a prior-fixed number
of clusters (k), the algorithm defines k centers for each cluster. In contrast, Overlap-
ping Clustering, is when a sample belong to two or more clusters with different
degrees of membership. Figure 2.8 is an example of overlapping clustering.
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Figure 2.8: Example of Overlapping Clustering.

Hierarchical Clustering starts by setting every sample as a cluster then based
on the union between the two nearest clusters after few iterations it reaches the final
clusters. Figure 2.9 is an example of hierarchical clustering.

Figure 2.9: Example of Hierarchical Clustering.

Finally, Probabilistic Clustering is where each sample has a probability of be-
longing to a cluster.

Transfer Learning

Transfer learning’s primary goal is to reduce the amount of data needed to train a
model. A very common method for transfer learning is fine-tuning show in Fig-
ure 2.10. With the huge success of AlexNet on the ImageNet[65] competition, deep
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learning acquired much attention from both researchers and the public. However, train-
ing a model from scratch requires resources and time. Fine-tuning solved this problem
by initializing the model using weights from a source model training on ImageNet;
the new model or target model can be trained on a new dataset with lesser time and
resources. This process is called Fine-tuning a model.

Figure 2.10: Transfer learning using fine-tuning.

First, the weights from the source model are uploaded to the target model except
for the last layer. Then freeze all or some of the convolutional layers (freezing is not
updating the weights of those layers). Finally, the target model is trained on the new
dataset using an optimizer and a dropout layer. The second way to do fine-tuning is
not to freeze any of the layers and train the whole model. Figure 2.11 shows both
approaches.
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Figure 2.11: The two methods for fine-tuning a deep convolutional net-
work.

Domain adaptation

Contrary to fine-tuning, domain adaptation is applied when the labels of the source
and target task are the same but their respective data samples are different as shown
in Figure 2.12. Hence, domain adaptation is the transfer of knowledge between repre-
sentations.

Figure 2.12: The MNIST dataset (left) and SVHN dataset (right) share
the same labels (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) but the samples are different.
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2.3.2 Progressive & Curriculum Learning

Curriculum learning describes a type of learning where training samples are aligned
from easy to complex; progressive learning is when the alignment of training sample
from easy to hard depends on the ”trained on” samples, meaning that the model trains
on some of the samples then chooses the easiest of what remains to train on. Progressive
& Curriculum learning has both an effect on the speed of convergence of the training
process and the model’s performance. The basic idea is to start small, learn more
accessible aspects of the task, and gradually increase the difficulty level. For machine
learning its important to define ”start small” and ”easier aspects” to have an effective
progressive & curriculum Learning.
In deep learning, or more precisely, deep feature extraction, starting small and easier
aspects can be defined as the relationship between features and geometrical properties.
Distance Metrics is a widespread tool to compare features in a geometrical space:

• Hamming Distance calculates the distance between two binary vectors. The
hamming distance between two binary vectors V1 and V2 is calculated as follows:

HammingDistance =
N
∑

i

| V1[i]–V2[i] | (2.12)

Hamming distance is the number of bit positions in which the two bits are dif-
ferent.

• Euclidean distance represents the shortest distance between two real-valued points
in vector space.

EuclideanDistance =

√

√

√

√

N
∑

i

(V1[i]–V2[i])2 (2.13)

It is common to normalize values in vectors otherwise the distance measure will
be dominated by large values.

• Manhattan Distance is calculated as the sum of the absolute differences between
the two vectors V1 and V2 as shown in the following equation:

ManhattanDistance =
N
∑

i

| V1[i]–V2[i] | (2.14)

Manhattan distance is favored over euclidean distance when the values are inte-
gers.

• Minkowski Distance is a generalization of the Euclidean and Manhattan distance
measures by adding a parameter p, called order, Hence, for two vectors V1 and
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V2 with real values, the distance is calculated as follows:

MinkowskiDistance =
N
∑

i

(| V1[i]–V2[i] |
p)

1/p
(2.15)

for p = 1 the distance is equal to the Manhattan distance and for p = 2 the
distance is equal to the Euclidean distance.



Chapter 3

LP Detection and Recognition

3.1 Literature Survey

3.1.1 Object Detection

Object detection is the identification of an object in the image, along with its local-
ization and classification. Viola-Jones Object Detector is the first object detector; it
came out in 2001[122]. It was used as facial detection and was wildly used at the time.
However, with the recent success of deep learning approaches, new methods were pro-
posed with far more robustness and accuracy. The first Deep Learning object detector
model was called the Over feat Network[111] which used CNN’s with a sliding window
approach.
Since 2012, object detector models have gone through many changes; the first break-
through in object detection was the RCNN [36]: it is made of three main parts, the
region extractor, the feature extractor, and finally, the classifier. A region proposal
algorithm extracts the Region Of Intrest (ROI), then each region is fed to a classifier,
and finally, the extracted features are classified.
Soon after came the Fast RCNN[35] with substantial improvement. The RCNN Model
takes every region proposal and runs them through the convolutional base. This is
quite inefficient. The Fast RCNN aims to reduce this overhead by running the convo-
lutional base just once. The Faster RCNN [106] came out after the Fast RCNN paper.
It proposed a detector that learns in an end-to-end fashion.

Evaluation Metrics

Object detection metrics help assess how the model performs on an object detection
task. Competitions such as PASCAL VOC[26] and MSCOCO[73] provide predefined
metrics to evaluate object detectors on their datasets. The object detection task lo-
calizes the object with a bounding box associated with its confidence score. Therefore
to determine how many false positives (FP), false negatives (FN), and True positives
(TP) were generated, we use the Intersection over Union (IoU) metric. The IoU score

24
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ranges from 0 to 1.
Intersection over Union, also referred to as the Jaccard Index, quantifies the similarity
between the ground truth bounding box and the predicted bounding box:

IoU =
AreaofOverlap

AreaofUnion
(3.1)

A second metric is Precision: the probability of the predicted bounding boxes matching
actual ground truth boxes.

Precision =
TP

TP + FP
(3.2)

Recall is the true positive rate measures the probability of ground truth objects being
correctly detected.

Recall =
TP

TP + FN
(3.3)

Average precision (AP) is a single number metric that encapsulates both precision and
recall and summarizes the Precision-Recall curve by averaging precision across recall
values from 0 to 1.
The Mean Average Precision (mAP) is the averages AP over the N classes.

Vehicle Detection

For detecting vehicles, a variety of appearance features have been used. Features
like edge, shadow, and symmetry are used for detecting vehicles. However, in recent
years, general and robust feature sets are used for detecting vehicles rather than from
simpler image features like edges and symmetry. These feature sets allow for direct
classification and detection of objects in images, now common in the computer vision
literature. Features extractors like HOG and Haar-like are extremely well represented
in the vehicle detection literature, as they are in the object detection literature. To
extract the HOG features, edges are evaluated over the image and then discretizing and
ditching the orientations of the edge intensities into a histogram[22]. HOG features are
expressive image features, showing good detection presentation in a range of computer
vision tasks. In [18], for vehicle detection, the symmetry of the HOG features extracted
in a given image patch, along with the HOG features themselves. In some cases, vehicle
pose is also determined by HOG features. The main drawback of HOG features is that
they are pretty slow to compute.

LP detection

Since localization of LPs can be considered as a detection problem, different regional
CNN methods that were recently developed for fast and precise object detection can
be applied, such as Faster-RCNN [106], YOLO [103], YOLOv2 [104] and SSD [77].
The detection step consists of localizing the bounding box containing the LP from the
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whole raw input image. The output of this step dramatically influences the accuracy
of the recognition step. Plenty of LP detection algorithms have been proposed. Most
of them used traditional machine learning techniques with hand-crafted features based
on specific descriptors such as edge, color, and texture descriptor [24, 141, 3]. The LP
detection can be considered as a detection of a homogeneous text zone by detecting the
characters directly from the image [93]. Although fast and straightforward, this kind
of approach leads to a low detection accuracy because the features learned from the
characters may not be enough to confidently find all plate characters in the image. In
addition, other characters may exist in the image, which can be confusing for the LP
detection. Other approaches consider the LP as a region with rich contrast and high
edge density [124], or as a region containing a high density of key points detected with
SIFT descriptor [92]. Recently, deep learning-based approaches have been proposed
for localizing LPs. In [69], the authors use a 4-layer CNN to detect the presence of
text zones in the input image. Then a second 4-layer plate/non-plate CNN classifier is
used to distinguish LPs from general text. [118] uses a classifier based on the FAST-
YOLO network architecture to detect the frontal view of the car from the input image
and then extracts the LP from the detected frontal view image. In [90], the authors
propose an LP detection method based on Faster-RCNN network which assures both
high accuracy and low time cost. [86] introduces a pipeline architecture based on
a sequence of deep CNNs for LP detection under different conditions (variations in
pose, lighting, occlusion, etc.) and working across a variety of LP templates (sizes,
backgrounds, fonts, etc.)

3.1.2 Optical Character Recognition

Text is one of the most important inventions in human history; it is used in almost
all aspects of human life. Hence, vision-based text recognition has attracted much
interest for many years. [16] is a survey on most important approaches, old and new,
for both recognition of text from documents as well as from different scenes. In the
following, we discuss the recent developments in both text and scene text recognition
accordingly. Although both problems are very different, as shown in Figure 3.1 they
are similar from a semantic perspective.
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Figure 3.1: Differences between text and scene text recognition.

Text Recognition

Text recognition problems can be viewed as multiple sub-tasks: (1) Text Localiza-
tion [72] aims to group text components into candidate text regions with as little back-
ground as possible. Early text localization methods are based on low-level features,
such as color [68, 132], gradient [87, 115], stroke width transform [25, 89], maximally
stable extremal regions (MSER) [91, 114] and canny detector [12, 19] to mention a few,
However, recent works are based on deep learning methods [46, 137, 133] (2) Text Ver-
ification [66] as the name implies verifies the text candidate regions as text or non-text
to filter the candidate regions produced by text localization since sometimes it intro-
duces false positives. Methods for text verification used prior knowledge [64, 117, 87],
support vector machine (SVM) classifier [131] and conditional random fields (CRFs)
[72] (3) Text detection [130, 70] determines whether text is present using localization
and verification procedures. Approaches can be divided to regression based meth-
ods [80, 135, 138] and instance segmentation-based methods [126, 43] (4) Text segmen-
tation (5) includes text line segmentation [101, 64] and character segmentation [94, 116]
Text recognition [62] translates a cropped text into a target string sequence. Most re-
cent studies have used deep learning encoder decoder frameworks [17, 85] (6) End-to-
end system [62], Given a scene text image, an end-to-end system can directly convert all
text regions into the target string sequences. It includes text detection and recognition
as two sub-problems. A second approach is to jointly optimize text detection and text
recognition by sharing information [54, 47]. Scene Text Recognition (STR) acquired
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interest from both academia and industries alike for both its research and practical
impact. The following section discusses an application of scene text recognition.

LP Recognition

In the literature, we distinguish two kinds of approaches for LP recognition: the
segmentation-based and the segmentation-free approaches. [24] presents a complete
review of traditional approaches for LP recognition. We focus more in this part on
works using deep learning techniques.
Segmentation-based approaches extract each character in the LP firstly. Then an OCR
algorithm is performed to recognize each of them. Existing works on LP segmentation
can be divided into two main categories: projection-based and connected component-
based. Projection-based approaches exploit the fact that characters and background
have obviously different colors in an LP, giving opposite values in the binary image.
Histograms of vertical and horizontal pixel projections can then be exploited for char-
acter segmentation [100, 41]. Such approaches can be easily affected by the rotation of
the LP. Connected Component-based approaches [13, 30, 33, 61] perform segmentation
by labeling all connected pixels in the binary image into components. This type of
method is robust to rotation, but it fails to segment characters correctly when they are
joined together or broken. Since the characters are segmented, a recognition step can be
performed as a classification task with one class per alphanumeric character. Existing
algorithms can be divided into two categories: template matching and learning-based
methods.

Template matching-based methods [57, 63] consists of comparing the similarity of
a given character and templates. The most similar template is then chosen. Several
similarity measures have been proposed, including Mahalanobis distance and Hamming
distance [24]. These methods have usually been applied to binary images and are
limited since they work for single character size and font, and they do not support
rotation or broken characters.

Learning-based methods are more robust and can deal with characters of different
font, illumination, or rotation. They use machine learning techniques to discriminate
characters using one or multiple features such as edge density, gradient, scale-invariant
transform (SIFT), etc. [102] uses a 5-layer CNN to recognize Malaysian LPs where
individual characters are manually extracted and segmented. The recognition is then
performed as a classification task with 33 classes and achieves 98.79% accuracy on a
reduced number of samples.

[98] proposes an approach using a CNN classifier for the recognition of LP charac-
ters and firstly uses some pre-processing techniques on input images, such as filtering,
thresholding, and then segmentation.
For segmentation-free methods, the recognition is performed on the global LP image
without character segmentation. Usually, a sliding window over the input image gener-
ates many tentative characters in small steps. Each tentative character is then used by
a recognizer. When the sliding window totally swipes the input image, the predicted
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outputs are analyzed, and the final sequence is decided. Consecutive same characters
are considered a single character, and character space is used to separate others. In
the context of LP Recognition, few works have proposed segmentation-free approaches
based on DL techniques. In [14], the authors propose a CNN to perform feature ex-
traction on the LP and a recurrent neural network to learn the sequential order of
character features. [69] proposes to recognize the license characters as a sequence la-
beling problem using a recurrent neural network with long short-term memory (LSTM),
which is trained to recognize the sequential features extracted from the whole LP via
CNNs. [56] uses a deep (16-layers) CNN based on Spatial Transformer Networks [55],
to perform a less sensitive character recognition to spatial transformations on whole
LP image and avoiding the challenging task of image segmentation into characters. In
[118], the authors use a YOLO-based network to detect and recognize LP characters
using a joint classification-detection engine. In [10], the authors use a CNN architecture
for identifying characters within an image of LP and localizing the character bounding
box corners. This step deal with a 33 classes classification task for Italian LPs.

In general, we note that the use of deep learning techniques to LP detection and
recognition is still limited and restrictive to specific conditions (specific nations, uni-
lingual plates, special LP formats...). Only a few works perform ALPR in an end-to-end
fashion, and most of the proposed methods rely on hand-crafted features.

3.2 Datasets and Evaluation Protocols

3.2.1 GAP-LP Dataset

The GAP-LP dataset images were acquired with different quality cameras under dif-
ferent resolutions, view angles, and in daylight to better test the robustness of LP
detection/recognition algorithms. GAP-LP dataset 1 is freely available to the research
community. It is composed of 9175 fully annotated images for both LP detection and
recognition. The dataset is split as follows: 7117 images for training, 456 for validation,
and 1602 images for the test. Figure 3.2 shows some image samples from the GAP-LP
dataset.

Figure 3.2: GAP-LP sample images and their respective plates

1https://sites.google.com/site/matdbparking
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3.2.2 RADAR Dataset

The Radar dataset is composed of 6448 JPEG color images taken from radars on
different Tunisian roads. The images were taken from natural scenes with complex
backgrounds and under various lighting conditions (day, night, sunshiny, raining, ... ),
different angles and positions, and several LP shapes (square and rectangle) and norms.
The dataset is divided into three sets: 3998 images for training, 2000 for the test, and
450 for validation. Figure 3.3 shows some image samples from the Radar dataset.

Figure 3.3: Radar image samples, LPs blurred for privacy

3.3 Material and Methodology

We propose an end-to-end approach for both detecting and then recognizing the ve-
hicle LP in a cascade fashion (LP detection - LP recognition). The proposed system
proceeds on two stages: plate detection stage and plate recognition stage (as shown
in Fig. 3.4). The first module is fed the full raw image as input; YOLOv2 detects
plates in the image and then outputs the cropped plate image to the second module.
YOLOv2 bases its prediction partly on contextual information, i.e., the surrounding
of the object. Since the LP is placed in the same position in every vehicle, YOLOv2
is an effective LP detector. The recognition modules take as input the cropped plate
image. Two LP recognition engines are compared in this work. The segmentation-free
approach integrates the advantages of both CNN for feature extraction and RNN for
LP sequence modeling and transcription and does not need any prior segmentation
in the training step. Only the text on the LP is provided. The second approach is
based on a joint detection/recognition approach using YOLOv2 and requires sophisti-
cated manual labeling of the LP components with bounding boxes. Nevertheless, the
robustness of an object detector is very effective in recognizing multi-norm LPs.
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Figure 3.4: Illustration of our LP detection/recognition system based on
YOLOv2 and CNN. The output of the YOLOv2 detection module becomes
the input of both the CRNN recognition module and the YOLOv2 detec-
tion/recognition module.

LP detection is the first stage of the proposed pipeline. The quality of the cropped
plate image can influence the whole system’s performance. If the cropped image of the
LP doesn’t contain the whole text, the recognition cannot predict the correct label.
The detection system must be robust to environment variations and to Tunisian LP
specifications, where the LP formats vary significantly, as described in section 3.2.1.
This requires a combination of a solid visual feature extractor and a mechanism to find
the LP boundaries efficiently. To perform LP detection and achieve a good compromise
between accuracy rates and running times, we use an overall state-of-the-art real-
time object detection system in its second version dubbed YOLOv2 [104]. YOLOv2
considers object detection as a single regression problem, straight from image pixels to
bounding box coordinates and class probabilities. It uses a multi-scale training method
and offers a trade-off between speed and accuracy. To detect LPs, YOLO uniformly
divides the image into cells in a grid. During training, the deep neural network takes
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images from the training dataset as input, forms a loss function that incorporates the
cross-entropy loss, the L2 regression loss, and the randomness, and back-propagates
the gradients to update the parameters. Thus, during testing, the network gives as
output the LP bounding box.

We adapt the original YOLO Architecture to perform LP detection. YOLO predicts
B bounding boxes (B = 5) each with four coordinates and confidence, so the number
of filters is given by: Nfilters = (Nclasses + B) × 5. We intend to detect only one
class corresponding to the LP, so the number of filters is fixed to 30. This also allows
YOLO to better detect small objects since LP can occupy a small space of the whole
image.

YOLO returns a confidence score for each LP bounding box it predicts. However,
the bounding box will show up in the final prediction only if the confidence score is
above a certain threshold. By changing this threshold value, we can directly impact the
detection precision. A higher threshold means that only highly confident detections are
returned, yielding fewer detections and therefore fewer false positives and more false
negatives. A lower threshold yields more detections and, therefore, more false positives
and fewer false negatives. In our case, the confidence value does not considerably
affect the detection performance since each image in our datasets contains only one
vehicle, so only one LP. So that, we keep only the detection with the most considerable
confidence in cases where more than one LP is detected. In this work, the value of
0.25 is empirically chosen based on recall/precision on the validation set. It guarantees
that YOLO does not predict an LP bounding box when the confidence is low. So only
a good quality LP is detected, making sure the recognition module predicts a correct
value.

Since all parameters are fixed, we train the YOLO network on the fully annotated
LP regions. For the detection stage, we run the network over the full raw input images
without any pre-processing. Since the LP is detected, it is cropped and sent to the
second stage for recognition (see Figure 3.4).

The second stage of the proposed system is LP recognition. In this work, two
different recognition engines are compared as described in the following.

The network architecture consists of two components, including the convolutional
layers and the recurrent layers. The first approach considers the recognition of the LP
characters as a sequence-labeling problem. The deep recurrent neural network with a
bidirectional LSTM (BLSTM) is trained to recognize the sequential features extracted
from the whole LP image via CNN. The main advantage of this approach is that it is
segmentation-free; we need only LP images and their corresponding label sequences,
avoiding the labor of labeling positions of individual plate characters. However, it fails
when the background is changed or if the plate has characters of different heights, as
discussed in a later section.

The CNN model is used to extract a sequential feature representation from the input
LP image. The sequence of feature vectors is then used as the input of RNN, which
considers the whole sequence history. To avoid gradient vanishing, LSTM is employed
instead of the vanilla RNN unit. LSTM is a particular type of RNN unit, which consists
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of a memory cell and gates. To integrate both past and future context into the model,
we combine two LSTMs, one forward and one backward, into a bidirectional LSTM
which is generally beneficial for image text recognition. The network configuration
used in our experiments is summarized in Table 3.1. It is based on the architecture
proposed in CRNN[113]. The architecture of the convolutional layers is based on
the VGG architecture. To make it suitable for recognizing LP, max-pooling layers
are modified to 1 × 2 sized rectangular pooling windows instead of the conventional
squared ones. The convolutional layers are succeeded by 2-layer BLSTM. The output
of BLSTM is connected to Connectionist Temporal Classification (CTC) that extends
the use of RNN to non-segmented data. In fact, by adding a new class (Blank), the
CTC transforms the output of BLSTM into a conditional probability distribution over
the classes (characters and blanks). Finally, the output from the CTC is decoded by
removing the blanks into the most probable sequence of characters.

Before being fed into the network, all the images need to be scaled to the same
height. The image width was chosen based on the Tunisian LP’s ratio (4× 1) to make
it suitable for recognizing the Tunisian LPs. Experiments on the validation set have
shown that setting up the input image resolution to 174× 32 helps to extract practical
and valuable features for recognition. To train the network, we only need images and
their corresponding label sequences. We define 23 character models corresponding to
digits, letters composing the Arabic word ”twns”, the four Arabic letters ”n, t, s, d”,
the Latin letters ”C, D, R, S” and the space character. The complete recognition steps
are shown in Figure 3.5.

The second LP recognition strategy proposed in this work is based on the YOLOv2
network, where segmentation and recognition are performed as part of the detection
step. Detecting LP components directly from the cropped LP image would perform
better than the pipeline detecting LP components on the total raw image since it will
only need to search in the regions where LPs are found.

This module detects and recognizes all possible components in Tunisian plate in-
cluding digits, the Arabic word ”twns”, the Arabic letters ”n, t, s, d” and the Latin
letters ”C, D, R, S”. This second detection/recognition approach presents many ad-
vantages compared to the free segmentation method presented previously. It is more
suitable to recognize double-lined plates thanks to its versatility and ability to learn
general components features independently of their positions in the LP. Moreover, it is
more adapted to recognize Arabic words in the LP, which are considered a global text
region, contrary to the CRNN, which recognizes a word by recognizing its character
sequence. Finally, it can be trained to detect flag images in the LP, which can perturb
the recognition process of CRNN, especially when it is located in the middle of the LP
characters.

The entire system architecture is shown in Figure 3.6. To adapt the YOLOv2
architecture to detect the LP components, we have changed the number of filters in
the last convolutional layer to 125 to match the number of classes (20 LP components).

LP components detection/recognition usually requires large annotated training sets.
The creation of such datasets requires expensive manual annotation. In order to reduce
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Figure 3.6: LP recognition pipeline using YOLO network
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Layer Type Configurations

Transcription -
Bidirectional-LSTM #neurons:256
Bidirectional-LSTM #neurons:256
Map-to-Sequence -
Convolution #filters : 512, k : 2×2, s : 1, p : 0
MaxPooling kernel : 1×2, s : 2
BatchNormalization -
Convolution #filters : 512, k : 3×3, s : 1, p : 1
BatchNormalization -
Convolution #filters : 512, k : 3×3, s : 1, p : 1
MaxPooling kernel : 1×2, s : 2
Convolution #filters : 256, k : 3×3, s : 1, p : 1
Convolution #filters : 256, k : 3×3, s : 1, p : 1
MaxPooling kernel : 2×2, s : 2
Convolution #filters : 128, k : 3×3, s : 1, p : 1
MaxPooling kernel : 2×2, s : 2
Convolution #filters : 64, k : 3×3, s : 1, p : 1
Input 174 × 32 gray-scale image

Table 3.1: The network configuration of the convolutional recurrent neural
network k : filter size, s : stride, p: padding

the time and cost of annotation processing while ensuring accuracy, we propose a semi-
automatic annotation procedure. The core idea is using automatic incremental training
to roughly annotate the LP image, just before the human review and revision.

To generate the automatic annotation, we start with a subset D of LP images.
Each image in D is manually annotated at components level (bounding box + label),
which we denote by detailed annotation. The algorithm takes as input a set SNL of
LP images and their corresponding label sequences (without detailed annotations) and
returns as output a set SL that contains all LP images that are automatically annotated
at the components level. The proposed semi-automatic annotation algorithm proceeds
in several iterations. We start with training YOLO on D to obtain the network model
M0. Then, for each iteration j, we construct a new subset Sj containing images of SNL
that are correctly recognized by Mj−1 and we fine-tune the YOLO network on Sj to
obtain Mj. We reiterated this process until all the SNL are labeled at the components
level, or no image of SNL can be correctly recognized. At each iteration, Sj is added to
SL, and each LP image that is correctly annotated is removed from SNL.The detailed
algorithm steps are given in Algorithm 1.

We present in tables 3.2 and 3.3 the evolution of the semi-automatic annotation
on GAP-LP and Radar LP image datasets of varying levels of difficulty. We present
the number of LP images that are correctly labeled at the component level for each
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Algorithm 1 Semi-automatic annotation of LP components
Inputs :

D = {I1, . . . , IN} a subset of images Ii with labeled LP components (detailed
annotation)
SNL = {I1, . . . , IM} a subset of LP images and their corresponding sequence labels
L = {L1, . . . , LM} (without detailed annotations)

Output :
SL = {l0, . . . , lk} : a set of LP images li and their corresponding components labels

1: Train YOLO on D to obtain a CNN model M0

2: Initialize j to 1
3: SL = φ
4: repeat
5: Sj = φ
6: for each image Ii in SNL do
7: Test Ii with YOLO using Mj−1 to detect its components labels
8: Concat LP components labels to obtain the sequence label GT (li)
9: if (GT (li) == Li) then
10: Sj ← Sj

⋃

{li}
11: SNL← SNL \ {li}
12: end if
13: end for
14: SL← SL

⋃

Sj

15: Fine-tuning of Yolo on Sj to obtain Mj

16: Increment j
17: until SNL == φ or Sj == φ
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iteration. We also present the percentage (the total of alliterations) of the correctly
labeled LP images. It can be shown that the proposed algorithm annotates 95.11% of
the dataset in only 7 iterations when starting with 500 images with detailed annotation.
We show that 250 detailed annotated images are enough to annotate 96.10% of the
dataset as shown in the second line of table 3.2. It is interesting to note that more
than 90% of the LP images are annotated since the first two iterations. The proposed
semi-automatic annotation algorithm is also evaluated on the Radar dataset containing
LPs images in various conditions such as low resolution, severe weather conditions, and
variable lighting conditions. As shown in table 3.3, more than 80% of the images are
automatically annotated, starting with only 250 images with detailed annotation.

start size/
Itera-
tion

1 2 3 4 5 6 7

500 6150 328 168 68 38 17 ×
(86.41%) (91.02%) (93.38%) (94.33%) (94.87%) (95.11%)

250 5130 1247 328 57 35 33 10
(72.08%) (89.60%) (94.21%) (95.01%) (95.50%) (95.96%) (96.10%)

Table 3.2: Number per iteration and percentage (the total of all iterations)
of annotated LP images on GAP-LP dataset

start size/
Itera-
tion

1 2 3 4 5 6 7

500 1263 124 141 55 38 23 13
(63.18%) (69.38%) (76.43%) (79.18%) (81.09%) (82.24%) (82.89%)

250 380 934 197 67 24 16 ×
(19%) (65.73%) (75.58%) (78.93%) (80.14%) (80.94%)

Table 3.3: Number per iteration and percentage (the total of all iterations)
of annotated LP images on Radar dataset

The annotation quality of the semi-automatic annotation process is evaluated using
250 LP images with hand annotated component locations. We obtained an average IoU
of 88 for the GAP-LP dataset and of 85 for Radar dataset which confirms the robustness
of the proposed algorithm.
Our method aims primarily to tackle the problem of large variations between LPs,
figure 3.7 show a sample of possible variations in the background.
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Figure 3.7: Background changes in LPs.

The first approach using CRNN for segmentation free recognition is a lot more
sensitive to background changes while using the robustness of an object detector i.e.
the second approach allowed it to perform well on changing backgrounds.

Furthermore, view angle changes and two-ligned LP show in figure 3.8 pose more
challenges. In particular, for the segmentation free approach. Our second approach
however, is capable of recognizing the LP successfully since a CNN is not affected by
the location of the object in an image.

Figure 3.8: Background changes in LPs.

3.4 Results and Discussion

We conduct experiments to verify the effectiveness of the proposed ALPR system. All
the experiments were performed on an NVIDIA GTX 1080 Ti GPU (3584 CUDA cores
and 11 GB of RAM). Experiments were conducted in two datasets collected from real
road surveillance and parking access control environments.
It can be observed from table 3.4 that our method achieved impressive detection rates
with a precision of 100% and a recall of 100% on the GAP-LP dataset and 99.09 on
the Radar dataset. Here a detection is considered correct if the overlap between the
detection and the ground-truth bounding box is greater than 0.5 (IoU > 0.5).
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Dataset GAP-LP Radar

Recall 100% 99.09%
Precision 100% 100%

Table 3.4: LP Detection: precision and recall rates for IoU threshold of
0.5

In Table 3.5, we show the LP detection recall values considering different IoU accep-
tance values (from 0.3 to 0.8). As can be observed, our method is not much sensitive
for IoU variations, except for very high values.

DatabaseIOU 30 40 50 60 70 80

Radar (Recall %) 100 99.79 99.09 97.93 85.49 65.88
GAP-LP (Recall %) 100 100 100 99.06 93.70 67.83

Table 3.5: LP Detection: recall rates for IoUs ranging from 0.3 to 0.8

Figure 3.10 shows some qualitative LP detection examples form the Radar dataset
in different illumination conditions. The results confirm the robustness of the proposed
detection approach.

The LP recognition rate (LP-RR) is defined as the number of correctly recognized
LPs divides by the total number of ground-truth samples. A correctly recognized LP
means all the characters of the LP are recognized correctly. We also report the charac-
ter recognition rate (CRR), defined as the number of correctly recognized LP characters
divided by the total number of ground-truth character samples.

We present in tables 3.6 and 3.7 the LP recognition accuracy of the segmentation
free approach based on the CRNN architecture. The obtained results show that the
CRNN successfully recognizes 95.88% of the LPs on the GAP-LP dataset. An improve-
ment of 0.88% is achieved compared to YOLO when using the same training dataset
(GAP-LP). Contrarily, the performance on the Radar test set is vastly decreased to
42.88% when the Radar training set is used. This can be explained by the reduced
size of the Radar training set. Using a more extensive training set composed of a mix
of Radar and GAP-LP datasets, an improvement of 30.15% is obtained. We conclude
that CRNN needs a more extensive training dataset than YOLO to correctly learn the
parameters of CNN and LSTM. Hence, we have tried to expand the size of the training
dataset with synthetic LP images.

As concluded above, achieving a higher performance requires many annotated LP
image data covering various situations. To tackle this problem, we develop a script to
synthesize images of LPs with different fonts, colors, and component composition rules.
Figure 3.9 shows some examples of the synthesized LP images. We have generated
40.000 LP training images.
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Training Dataset GAP-LP Radar GAP-LP + Radar

LP-RR 95.88% 92.88% 94.25%

CRR 98.83% 96.33% 98.11%

Table 3.6: LP and character recognition rates obtained by CRNN on GAP-
LP dataset

Training Dataset GAP-LP Radar GAP-LP + Radar

LP-RR 73.03% 42.88% 78.13%

CRR 91.03% 80.33% 92.31%

Table 3.7: LP and character recognition rates obtained by CRNN on Radar
dataset

Experiments show that the LP recognition system based on YOLO architecture
trained with the additional generated data did not improve the prediction accuracy.
Contrary, generated data slightly improves the performance of CRNN as shown in
table 3.8. An improvement of 2.73% is achieved on the Radar test set and 0.05% on
the GAP-LP test set.

Figure 3.9: Synthesized images of LPs

Test Dataset GAP-LP Radar

CRNN 95.93% 80.86%

Table 3.8: LP recognition rates obtained by CRNN using generated data

Figure 3.10 illustrates some of the recognition results obtained by the proposed
system on the GAP-LP and Radar datasets. It is noteworthy that our system can
generalize well and correctly recognizes LPs under different lighting conditions, as
presented in the first two rows of figure 3.10. The following rows show examples of
incorrectly recognized LP by CRNN or by YOLOv2, or by both. It can be shown that
CRNN can not recognize double-lined LP, contrarily to YOLO, which is more suitable
to recognize them thanks to its versatility and ability to learn general component
features independently of their positions. We notice that some LPs written in red on a
white background are not correctly recognized by neither YOLO nor CNN. This is not
surprising as the training datasets do not include enough LP images with this norm.
In some other cases, the LP recognition fails due to the inclination of the LP or to the
presence of noise.
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YOLOv2 : 160 twns 1295

CRNN : 160 twns 1295

YOLOv2 : 76 twns 8610

CRNN : 76 twns 8610

YOLOv2 : 137 twns 8105

CRNN : 137 twns 8105

YOLOv2 : 104 twns 8302

CRNN : 104 twns 8302

YOLOv2 : 167 twns 5117

CRNN : 167 twns 5117

YOLOv2 : 138519 n t

CRNN : 138519 t

YOLOv2 : 9 twns 7424

CRNN : 91 twns 7424

YOLOv2 : 44 twns 5169

CRNN : 14 twns 24#9

YOLOv2 : 576912

CRNN : 57 twns 46912

YOLOv2 : 162 twns 964

CRNN : 162 twns 9614

YOLOv2 : 182 twns 146

CRNN : 182 twns 145

YOLOv2 : 1

CRNN : 108430

Figure 3.10: Qualitative results obtained by the proposed ALPR system in
the GAP-LP and Radar datasets. Green text refers to correctly recognized
LP, while miss-recognized LP are written in red.
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3.4.1 Comparison with state-of-the-arts ALPR systems

To compare the proposed system with state-of-the-art ALPR systems on GAP-LP
and Radar datasets, two commercial systems Sighthound [86] and OpenALPR 2 are
evaluated. Unfortunately, the comparison was not possible because the two commercial
systems do not support Arabic script and fail to recognize Tunisian LPs. Alternatively,
we have conducted additional experiments on the AOLP public dataset [51], which has
2049 images of Taiwan LPs. This database is categorized into three subsets with
different levels of difficulty: access control (AC), traffic law enforcement (LE), and
road patrol (RP). The detection results of our LP detection system are compared to
three state-of-the-art LP detection systems. Note that all ALPR systems are evaluated
in the same training and test sets. It can be shown from Table 3.9 that our LP
detection approach produces a higher recall and precision for each dataset category.
The detection results of experimentation for the AOLP dataset are provided in Table
3.9. It can be shown that our LP detection approach produces a higher recall and
precision for each dataset category.

Method
AC LE RP

Recall Precision Recall Precision Recall Precision

Proposed 99.82 100 96.42 100 99.17 100
Hsu, Chen, Chung[51] 96 91 95 91 94 91
Selmi, B H, A[110] 96.8 92.6 93.3 93.5 96.2 92.9
Li, Wang, Y, Shen[69] 98.38 98.53 97.62 97.75 95.58 95.28

Table 3.9: Comparison of plate detection rates on three subsets of the
AOLP dataset

We present in table 3.10 the character and the plate recognition rates of the pro-
posed CRNN and YOLO recognition approaches, and we compare their performance
against five state-of-art results published on the AOLP dataset. The obtained results
show that our LP recognition approaches provide the best performance in terms of
character and LP accuracies.

3.4.2 Runtime Evaluation

Experiments have been done on a computer with 2.6 GHz Xeon, 64 GB RAM, and
NVIDIA GTX 1080 Ti GPU. We implemented our system on Linux Ubuntu operat-
ing system. For each processing stage, the average runtime has been computed from
different runs made in the experiment. The time computation of the LP identification
step and the LP recognition step are given in table 3.11. It is worth noting that our
system can process (detection + recognition) LP images in 0.0443 s with CRNN and
in 0.0487 s with YOLOv2, which is sufficient for real-time usage.

2OpenALPR Cloud API, http://www.openalpr.com/cloud-api.html
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Method
AC LE RP

CRR LP-RR CRR LP-RR CRR LP-RR

Proposed (CRNN) 99.49 97.97 98.97 95.95 95.62 81.81
Proposed (YOLO) 95.31 93.75 97.62 98.91 93.43 90.42
Hsu, Chen, Chung[51] 95 88.5 93 86.6 94 85.7
Selmi, B H, A[110] 96.2 - 95.4 - 95.1 -
Li, Wang, Y, Shen[69] - 94.85 - 94:19 - 88:38
Jiao, Ye, Huang[61] 90 - 86 - 90 -
N.E.An, E.An, L, K[3] 92 - 86 - 91 -

Table 3.10: Comparison of plate Recognition rates on three subsets of the
AOLP dataset

Stage Time (s)

Detection 0.0367
Recognition (CRNN) 0.0076
Recognition (YOLO) 0.012

Table 3.11: The computational time required in each ALPR stage

3.5 Conclusion

W have presented a robust real-time ALPR system using a pipeline with two deep
learning stages. The LP detection stage is based on the state-of-the-art YOLOv2 ob-
ject detection CNNs. For the second stage, we compare two recognition engines: a
sequence labeling method that recognizes the whole LP without character-level seg-
mentation and a joint detection/recognition approach that performs the recognition
on the plate component level. The proposed system is robust to illumination and
weather conditions and can achieve a full LP recognition rate of 97.67% in the GAP-
LP dataset and 91.46% in the Radar dataset, a reasonable computational time. We
also introduced a new public dataset for multi-norm and multilingual ALPR that in-
cludes 9, 175 fully annotated images. Compared to the existing datasets for this task,
GAP-LP is the largest ALPR dataset making it suitable for trying and evaluating deep
learning techniques. In order to reduce the time and cost of annotation processing, we
have proposed a new semi-automatic annotation procedure of LP images with labeled
component bounding boxes. Future work consists of integrating vehicle make and
model recognition to improve the vehicle identity recognition process and help check
correlation with data stored on police and homeland security databases.



Chapter 4

Vehicle Make and Model
Classification

4.1 Literature Survey

Early works on vehicle model recognition focused on low-level features representation:
[99] uses SIFT ([84, 82, 83]) to describe make-model instances, but it is computation-
ally expensive. Hence, SURF ([6]) and HOG were adopted by [50] for more robustness
and speed. Other variations of SURF that have also been used include (1) FAST,
a key-point detection method designed for real-time application, (2) BRIEF, a short
descriptor, and Oriented FAST, which uses FAST for key-points detection and BRIEF
as a descriptor.

Unlike the standard feature extraction algorithms (e.g., SIFT, HOG), CNN uses
several hidden layers to learn a high-level representation of the image hierarchically.
Convolving filters (or kernels) on the image allow the network to extract more rele-
vant features. Activation functions and pooling layers allowed the network to be more
robust to scaling, translation, and rotation variations. Moreover, high-level features
representation creates resilience to noise. CNN became a prevalent research subject in
the computer vision community. In particular, in VMMR, part-based approaches are
yielding impressive results.

Works done by He, Shao, and Tan[44] propose to detect make and model from
surveillance camera by first, detecting front-view components such as the grilles, plate,
and lights. Then, specialized CNN’s classify each part of the vehicle, yielding a global
car classification. While this method achieves good performance, it is limited to front
viewpoints. However, showing that not aggregating local features to a global represen-
tation enhance the CNN performance.

A different approach to part-based recognition employed by Biglari, Soleimani, and

44
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Hassanpour[9] is to find the most relevant parts for each class; one model is learned
per class, so a cascade of classifiers is applied to the input. Hsieh, L. Chen and D.
Chen[50] uses SIFT-like local descriptors to train weak classifiers over a grid of vehicle
parts.

SWP-CNN[52] propose Spacial Weighted Pooling (SWP) instead of the standard
pooling in a CNN. SWP layer provides the fully connected layers with robust feature
representation by magnifying features corresponding to discriminative parts of the im-
age. But the SWP layer’s performance drops with significant variation in scale and
position.

WindowResnet[32] propose a deep convolutional architecture built upon multi-
scale attention windows. Through those windows, the most discriminative parts of
the vehicle are aggregated over different scales. The model uses Residual Networks
RESNET[45] with Spatial transformer networks (STN) [55] to improve resilience to
affine transformations. However, in an STN with multiple feed-forward alignment
modules, the output image of the previous alignment module is directly fed into the
next. This is problematic as it can create unwanted boundary effects as the number of
geometric prediction layers increase.

A different approach to the latter was proposed by BoxCars[120], by extracting ad-
ditional data from the surveillance video stream, besides the vehicle image itself, and
feeding it into the CNN boosts the recognition performance. This additional informa-
tion includes a 3D vehicle bounding box used for ”unpacking” the vehicle image.

Researchers in vehicle model recognition have either worked on global representa-
tion or discriminative local representation. However, VMMR is both a fine-grained
and a coarse-grained classification problem making a global representation necessary
as part-based representation.

Many datasets have been proposed in this research field [27, 7, 1, 88]. In this work,
we test our method on a publicly available dataset, namely CompCars [1] dataset.
Other sets, also presented, are less varied than CompCars. BVMMR[88] for an instant,
is exclusive to Iranian vehicles.

4.2 Datasets and Evaluation Protocols

4.2.1 The Comprehensive Cars (CompCars) Dataset

The Comprehensive Cars (CompCars) [1] is a publicly accessible dataset containing
data from two scenarios: (1) Web-data a total of 136, 727 images of the entire car and
27, 618 capturing the car parts. The database respects the standard hierarchy with
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163 car Marks and 1, 716 car models covering most commercial car models from 2005
to 2015. In terms of viewports there are five: ’Front-view’, ’Rear-view’, ’Side-view’,
’Front-Side’ and ’Rear-Side’. Table 4.1 shows the total number of images per view-
port and the average number of view-port images per model. (2) The surveillance data
contains 50, 000 car images captured in front view.

View-port No. in total No.per model

Front 18431 10.9
Rear 13513 8.0
Side 23551 14.0

Front Side 49301 29.2
Rear Side 31150 18.5

Table 4.1: Quantity distribution in different view ports.

The web dataset contains most of the 1716 car models however the CompCars
article [1] proposes a train/test split on 431 models. We adopt this split to compare
our work to state-of-the-arts results. Figure 4.1 shows different examples of the web
and surveillance dataset.

Figure 4.1: Web (left) and Surveillance (right) datasets.

4.2.2 Other datasets

In this work, we focus our analysis and results solely on CompCars. Compared to other
make and model classification datasets, CompCars has more diverse vehicle models
with images from different view-ports. The following sections present an overview of
some the most known publicly available datasets.
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The Cars dataset

The Cars dataset contains in total 16,185 images. The training data has 8,144 images
and 8,041 images in the test set, The dataset has 196 classes where each class has been
split roughly in a 50-50 split. The quality of images is similar to the CompCars Web
dataset. Figure 4.3 shows the quality of images in the Cars dataset.

Figure 4.2: The Cars dataset.

The VMMRdb dataset

The Vehicle Make and Model Recognition dataset (VMMRdb) is contains 9,170 classes
consisting of 291,752 images. Models in the VMMRdb are manufactured between 1950
and 2016.

Figure 4.3: The VMMRdb dataset.
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The BVMMR dataset

BVMMR dataset is relatively small. It includes 676 models of 19 different make. For
every image, there are a frontal and rear view taken with an 8 megapixel camera. The
main draw backs of this dataset that it contains only Iranian vehicles with images
taken from front view.

Figure 4.4: The BVMMR Dataset.

4.3 Material and Methodology

We propose a multi-stream robust architecture to extract and combine both local and
global features representations for VMMR. Our system comprises separate modules
that extract features from cropped images of vehicle parts (one module per part) and
the main module that extracts features from the whole image. A novel technique for
aggregating the different outputs into a final prediction is proposed.

First, a part detector is employed to detect available parts in an image; then, a
multi-stream architecture is used to feed parts into their respective modules and the
whole image to the main module. Extracted features are then concatenated and, finally,
aggregated to a final prediction using the novel fusing method. Multiple challenges are
implicated in such architecture. The number of detected parts varies from one image
to another, making the feature vector of different sizes depending on the output of the
part detector. The size of the entire system can cause performance problems as the
number of parts increases. Furthermore, our experiment shows that a good choice of
parts can be critical to better performance. However, combining a part-based repre-
sentation with a global perspective allowed the system to capture both the coarse and
fine-grained nature of vehicle make and model classification. In the following sections,
we demonstrate the unique problems the VMMR poses and our system’s resilience to
them.
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An overview of the main steps of our system are depicted in Figure 4.5.

Figure 4.5: system’s main steps. YOLO first processes the image to detect
the vehicle parts. Global and local features are then extracted from the full
vehicle image and the selected parts using VGG. The global and the local
representations are then fed to the dynamic fusion layer to perform the final
classification.

Our approach starts by extracting a set of parts {P1, P2, . . . , Pn} from a given image
I. Since vehicle pose may vary across images, we do not assume that all parts appear
in I. Conventional detection methods learn classifiers to perform detection. Classifier
rules are generally evaluated on a sliding window, and binary output is computed in
the corresponding location. More recent deep learning-based architectures get around
the sliding window techniques and produced higher performance while being faster.
Following this advance, we choose to use YOLO [105] to detect each vehicle part.
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Thanks to the encoded context information, the YOLO detector provides robust results
in all our experiments.

Vehicle manufacturers copy traits from previous models to produce new ones. This
increases the complexity of the VMMR task since the model recognition relies on the
subtle variations between vehicle parts. Figure 4.6 shows the subtle differences between
models. To detect these subtle variations, we employ a multi-stream architecture to
apply specialized features extractors for every part and every combination of parts.
Figure 4.6 also shows same models with different variations. In this case, a global
representation may benefit the recognition task rather than the part information. Our
multi-stream architecture successfully combines both global and local representations.
It also provides a flexible system that can use any available stream that feds the input.

Figure 4.6: Examples of subtle differences between vehicle models. From
a global perspective the vehicles seem similar, yet they belong to different
vehicle models. This is due to very subtle variations.

The multi-stream architecture provides important advantages such as robustness
and specialized feature extractors. However, the resulted features will have different
shapes depending on the used streams. Moreover, a single static classification layer may
not be sufficient for representing all of the variations of the multi-stream architecture.
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As a solution, we introduce a dynamic fusion layer which only considers relevant weights
that fit the input and swap the others at the run-time.
Each part has a weight matrix W of shape 4096 × 431, 431 is the number of classes,
and a bias vector b of shape 431. The system stores in memory all of the weights and
biases. Then, at run-time, depending on available parts, the system dumps unrelated
weights and biases to the memory and load only the weights and biases of present
parts.
This technique allows the fully connected layer to have variable input shapes and to
store part-specific features.

The model architecture for each stream is composed of three main sections. (1)
The shared section: convolutional blocks common to all parts and the entire image.
(2) specialized feature extractors: convolutional blocks and fully connected layers spe-
cialized for each vehicle part and the entire image. (3) The dynamic fusing layer for
features aggregation and classification. Figure 4.7 shows the model architecture of a
single stream. The Cross-entropy loss, or log loss

∑M
c=1 yoc × log(po, c) where M is

the number of classes, y is a binary indicator (0 or 1) if class label c is the correct
classification for observation o and p is the predicted probability observation o is of
class c. Log loss is used for all of the training sessions. The loss is back-propagated
until the fifth convolutional layer leaving the first four layers unchanged.



CHAPTER 4. VEHICLE MAKE AND MODEL CLASSIFICATION 52

Figure 4.7: Model architecture. Initially, parts are introduced to the model
sequentially from a single input. The batch B is composed of n mini-batches
{b1, b2, . . . , bn}, n being the number of parts, each mini-batch contains sim-
ilar parts {p1, p2, . . . , pk} for k ≤ n so the batch size is k × n. The images
are passed through the first four convolutional block then the batch B is split
into n groups {{p11 , p12 , . . . , p1n}, {p21 , p22 , . . . , p2n}, . . . , {pk1 , pk2 , . . . ,
pkn}} each image in the group is passed to a part-specific fifth convolu-
tional block. Finally, the image and it parts features are aggregated with
the dynamic fully-connected layer.

The multi-stream architecture offers an essential advantage over single-stream sys-
tems. Although it has been overlooked by most research, this advantage can have
great importance in the practical usage of VMMR. As new models are produced with
an average of 38 models per year in the US (Figure 4.8), VMMR systems are required
to incorporate new vehicle models without disturbing the system.
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Figure 4.8: Models yearly production in the US in 2000-2020

The multi-stream nature of our systems enables new models to be incorporated into
separate streams. Hence, older models’ classification will not be affected.

4.3.1 Parts qualitative study

The difference between parts is considerable, and there is an upper limit on the number
of parts to use. Hence choosing the right parts can have a significant impact on the
model performance. Thus we did a study on the factors that can determine the best
parts to use. This variation in the discriminative nature of parts can be traced back to
two main categories of factors: (1) The intrinsic nature of the parts and environment.
The grills, for instance, serves a particular purpose and must have a specific geometry.
(2) Design principles, proportions between parts, and the ecstatic appeal of the design
impose specific criteria that all models must adhere to.

Intrinsic nature of the parts and environment

Parts that contains additional information yields better results. For instant, the mark
logo or model name on the Trunk and the Grilles shown in figure 4.10.
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Figure 4.9: Logo of the vehicle’s mark on the grilles.

Figure 4.10: Logo of the vehicle’s mark and the model the bumper.

For a vehicle to move at a certain speed, it needs to adhere to the physical laws of
vehicular aerodynamics. The air coming from the front of the vehicle is split into six
dominant air streams. These air streams cover multiple parts of the vehicle, as shown
in figure 4.11. Hence, every part should have a round shape not to block the air and
create resistance that will slow or damage the vehicle. Figure 4.12 is an example of
how the round shape allows the air to travel smoothly across the upper parts.

Figure 4.11: Air flux smoothly going over a vehicle.
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Figure 4.12: Logo of the vehicle’s mark and the model the bumper.

Both figures 4.11 and 4.12 show that the rear bumper and the trunk do not impact
the air stream. Hence, the design of those parts can have great variation. As is
supported by table 4.3.
We also see a drop in performance both in front and rear view in the left and right
light. This is due to a lack of variation in design, i.e., there is not much visual change in
vehicle lights across different models. Norms and the technology itself mainly impose
this: Most of the part is composed of glass, leaving variations only on the edges as it
shows in figure 4.13.

Figure 4.13: Front and Rear lights with little room for design variation.

Design principles

As with any other artificial object, vehicles tend to follow specific proportions that do
not necessarily have functional purposes but rather an ecstatic one. Figure 4.14 show
different makes and models following the same proportions. The distance between the
wheels is equal to three times the diameter of a wheel; the distance between the hood
and the wheel is also equal to one wheel. Moreover, the height of a window is one-third



CHAPTER 4. VEHICLE MAKE AND MODEL CLASSIFICATION 56

the vehicle height. All these constraints impose more minor variations between models
on vehicle sides.

Figure 4.14: Same design proportions across different makes and models.

4.4 Results and Discussion

4.4.1 Results from Individual Parts

Table 4.2 and 4.3 shows the results of the VGG16 with Batch normalization on their
respective cropped parts. Every set of cropped pants is a dataset with a train-test
split. The cropped parts train set is a sub-set of the training set; the same goes for the
sub-set of the test set.
Some parts are more descriptive than others. For example, in the front-view-bumper,
the baseline VGG16 achieves 92.60% while the front-right-light baseline VGG16 achieves
61.76%. The grilles and the trunk, the only two parts that have the make logo and
model name, has the best results while left and right lights on both front and rear
have the least results. As mentioned in the previous section, the lights are mainly
composed of glass so most variation is on the surroundings which does not allow for
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much variation between models.

Part VGG16 Train Test

Bumper 92.60% 7022 6740
Hood 92.26% 6988 6757
Grilles 93.83% 6622 6385

Left Light 64.72% 5875 5683
Right Light 61.76% 5942 5790

Table 4.2: Individual front parts of CompCars’s web data.

Part VGG16 Train Test

Bumper 89.56% 5603 5312
Trunk 93.90% 5225 5221

Left Light 72.89% 5124 4859
Right Light 82.10% 5587 5300

Table 4.3: Individual rear parts of CompCars’s web data.

4.4.2 Multi-Stream Dynamic Fusion

In this section, we compare different combinations of parts, table 4.4 shows the recog-
nition rate of best performing combination per view-port, 19 combinations in total.
On average, the front is more discriminative than the rearview: combination 9, where
all are front parts with no full image is immensely better than its counterpart from the
rear (84.12% - 65.45%). Adding more parts can lower the performance; for example,
combination 1 is better than combination 7, although all parts in 1 are also in 7. Some
parts can dramatically reduce the performance, for instance, combination 19 versus
combination four or combination 5, from 91.23% to 45.36% and 46.85%, respectively.
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Index Combination VGG16
1 full image + FB 96.12%
2 full image + FH 94.33%
3 full image + FG 92.74%
4 full image + FLL 45.36%
5 full image + FRL 46.85%
6 All Front parts 91.36%
7 full image + FB + FH + FG 92.65%
8 full image + FLL + FRL 90.12%
9 FB + FH + FG + FLL + FRL 84.12%
10 full image + RB 91.11%
11 full image + RT 94.14%
12 full image + RLL 68.12%
13 full image + RRL 65.45%
14 full image + RB + RT + RLL + RRL 88.24%
15 RB + RT + RLL + RRL 65.26%
16 full image + RB + RT + RLL 87.26%
17 full image + RB + RT 89.22%
18 full image + RLL + RRL 62.25%
19 full image 91.23%

Table 4.4: Fusion using different combinations on the CompCars’s web
data. FB: Front Bumper, FH: Front Hood, FG: Front Grilles, FLL: Front
Left Light, FRL: Front Right Light, RB: Rear Bumper, RT: Rear Trunk,
RLL: Rear Left Light, RRL: Rear Right Light

Table 4.5 shows recent results on the CompCars dataset where approaches with no
deep convolutional networks achieve the worst result, such as Yang [1]. BoxCars [120]
and Baseline VGG16 [119] rely on deep networks for global features representation.
However, best results such as SWP-CNN[52] and WindowResnet[32] used part-based
approaches. Our approach combined both global and local representation allowing the
system to be robust.

Approach CompCars (web)
Yang[1] 76.7%

BoxCars[120] 84.8%
Baseline VGG16 92.66%
Ours (VGG16) 95.07%
SWP-CNN[52] 97.6%
WindowResnet 97.8 %

Table 4.5: Comparison with our approach.



Chapter 5

Vehicle Re-Identification

5.1 Literature Survey

5.1.1 Object Re-identification

Evaluation Metrics

In order to evaluate the performance of V-reID methods, Three different criteria are
commonly used:

• The Cumulative Matching Characteristic (CMC). The CMC curve shows the
probability that a query appears in the candidate list. Each element in the list

is calculated as CMCk =
∑Q

q=1 gt(q,k)

Q
,

where Q is the number of total query instances. gt(q, k) is 1 when the ground-
truth of q appears before k and 0 otherwise.

• The Mean Average Precision (mAP). It is used to evaluate the overall perfor-

mance. It is defined as: mAP =
∑Q

q=1 AP (q)

Q
, where the average precision AP is

defined by: AP =
∑n

k=1 P (k)×gt(k)

Q
and P (k) corresponds to the precision at rank

k.

• The rank-1, rank-5, .., rank-k scores... measures the precision at k, i.e., the sum
of test samples where the ground truth is in the top k predictions over the total
number of samples in the test set (query set).

Person Re-identification

Although V-reID and Person Re-identification (P-reID) are two very different problems,
vehicles with the same model issued in the same year are identical. However, research
on vehicle re-identification was heavily influenced by person re-identification research

59



CHAPTER 5. VEHICLE RE-IDENTIFICATION 60

and vice-versa.
P-reID has been widely studied as a specific person retrieval problem across non-
overlapping cameras Gong et al.[37], Zheng et al.[140]. Given a query person-of-interest,
the goal of P-reID is to determine whether this person has appeared in another place
at a specific time captured by a different camera.

Vehicle Re-identification

Earlier V-reID methods [136, 20, 78] heavily rely on the accordance of handcrafted
feature extraction, using for instance SIFT [82] or HOG [23], and a supervised feature
classification step using conventional classification algorithms [21, 11]. In the era of
deep learning ImageNet [65], the reliance on manually designed features has been re-
duced, and single-step (end-to-end) models have been introduced, outperforming earlier
methods [139, 143, 145]. Zang et al. [139] have studied the application of triplet-wise
training of a CNN. The CNN has been adopted to automate the feature extraction
from images, and the training adopts triplets of (query, positive example, negative ex-
ample) to capture the relative similarity between them to learn representative features.
The authors proposed improving the triplet-wise training by adding a classification-
oriented loss and a different triplet sampling method based on pairwise images. In order
to boost the feature learning process, Zhu et al. [145] proposed a shortly and densely
connected CNN (SDC-CNN). The proposed SDC-CNN mainly consists of short and
dense units (SDUs), pooling, and normalization layers. Each SDU contains a shortlist
of densely connected convolutional layers in the proposed short and dense connection
mechanism, and each convolutional layer is of the same appropriate channels. By do-
ing so, the number of connections and the input channel of each convolutional layer is
limited in each SDU.

The advantage of Deep learning approaches relies on their ability to learn features
from the data automatically. This makes them faithful to the ground truth classifica-
tion. However, one of the most significant disadvantages of earlier deep learning-based
methods is their strong dependence on a large amount of annotated data ImageNet [65].
Since the availability of large data is not always ensured, particularly in real-time train-
ing scenarios, heavily supervised deep learning-based methods would not be applicable
for the first and second time seen vehicle V-reID.

5.2 Datasets and Evaluation Protocols

For the re-identification problem, we use three publicly available datasets: VehicleID,
VeRi-776, and VeRi-Wild. The choice to use these datasets is based on diversity. The
scope of V-reID is immense, meaning their many variations, and a system can perform
well in one aspect but not in another. VeRi-776 has few identities (776) but a high
number of images per identity, plus all images are taken in the same hour of the day
with a clear view. VehicleID, on the other hand, has a large number of identities
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(26267), images taken at different times with challenging angles, and the number of
images per identity is low. Finally, the VeRi-Wild is similar to VehicleID but with a
more significant number of images, roughly double that of VehicleID.

5.2.1 PKU VehicleID Dataset

VehicleID[74] contains 221,763 images of 26,267 identities from 12 cameras. Images are
taken in the morning and afternoon. No further annotations are provided. Figure 5.1
presents a few samples taken from the VehicleID.

Figure 5.1: Samples from the VehicleID dataset.

5.2.2 VeRi-776 Dataset

VeRi-776 [79] contains 49,360 images of 776 identities in total from 18 cameras. All
images are taken in the afternoon with spatio-temporal relation annotation. Figure 5.2
shows some samples from the VeRi-776 dataset.

Figure 5.2: Samples from the VeRi-776 dataset.

5.2.3 VeRi-Wild Dataset

VERI-WILD[81] is the largest public dataset for V-reID with 413,314 images of 0,671
identities across 174 cameras. Figure 5.3 presents some vehicle examples taken from
the VeRi-Wild.
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Figure 5.3: Samples from the VeRi-Wild dataset.

Table 5.1 presents a comparison between the VehicleID [74], the VeRi-776 [79] and
the VERI-WILD [81] based on different criteria. In this table, one can notice that
the VERI-WILD dataset is far more challenging than Veri-776 and VehicleID datasets.
VeRI-WILD contains almost ten times the size of Veri-776 images, but also the vehicles
are also taken under different acquisition conditions (e.g., occlusions, night view, and
weather variations).

Dataset VehicleID VeRi-776 VERI-Wild

Images 221,763 49,360 413,314
Identities 26,267 776 40,671
Cameras 12 18 174

Capture time N/A 18h 125,20h
View 2 6 Unconstrained

Spatio-temporal Relation Annotation no yes yes
Tracks Across cameras no no yes

Camera ID no no yes
Timestamp no no yes
Occlusion no no yes

Complex Background no no yes
Morning yes no yes
Afternoon yes yes yes
Night no no yes

Rainy Weather no no yes
Foggy Weather no no yes

Table 5.1: Comparisons between the VehicleID [74], the VeRi-776[79] and
the VERI-WILD[81]
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5.3 Material and Methodology

5.3.1 Progressive One-Shot/Few-Shots Vehicle Re-Identification

Following the progressive learning paradigm, in this work, we propose a method for
gradually labeling vehicle samples starting from one single annotated example per
identity. Our method can be partitioned into two modules. First, we use a CNN to
learn the classification of one example per identity (the training set corresponds to L at
the first iteration), and second, the CNN parameters are gradually updated to finally
succeed to classify all samples in the unlabeled set U .

The first step is performed by back propagating the cross entropy loss function:

min
θ,ω

nl
∑

i=1

lCE(f(ω, φ(θ, xi)), ŷ) (5.1)

Indeed, the classification would not be efficient due to the reduced size of the
training set. To alleviate this issue, we initialize our network using weights from a
model pre-trained on the ImageNet [65] classification problem. This initialization may
help to have an efficient feature extractor but not an optimized classifier. For this
reason, we perform a forward pass to all available data (L ∪ U) using the CNN. For
each sample in the data, we extract a feature vector given from the penultimate layer
of the model. The CNN acts as a projector that maps sample images to a euclidean
feature space. The features in the produced space can be compared in turn using the
L2 distance.

Once the projection has been performed for all data, we calculate the euclidean
distance to the initially labeled sample belonging to O. We then attribute to each un-
labeled sample the label of its closest labeled example. The new label of the unlabeled
sample is called pseudo-label. Equation 5.10 is used to assign pseudo-labels.

arg min
(xl,yl)∈L

|| φ(θ, xi))− φ(θ, xl)) ||, xi ∈ U (5.2)

Only a few samples are selected from all pseudo-labeled data to have a confirmed
label at each iteration. The subset of size m, which contains selected pseudo labeled
samples S is added to the labeled set L. m varies with each iteration and is calculated
with respect to a curriculum learning paradigm in the following way:

m = (step+ 1) ∗ p/100, (5.3)

p is the initial enlarging factor empirically initialized to 0.1, and step is the number
of steps. The model at this point is prone to error since false pseudo-labeling can
easily occur, which will lead the model to an incorrect optimal solution. To address
this problem, we further add to the proposed model an additional regularising aspect
named anchoring. The anchoring consists of two folds: (1) computing the MSE loss
between pseudo-labeled samples and their closest originally label ones at each selection
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iteration. Then (2) backpropagate the MSE loss through the network. The anchoring
regularisation, in this way, pulls the features of the pseudo-labeled samples to their
corresponding features of labeled samples. This allows the model learning to project
the same class samples (the pseudo and the labeled examples) to nearby coordinates in
the feature space. In turn, the model succeeds in classifying unlabeled data in future
iterations.

Formally, the model is updated over n iterations to anchor the pseudo-labeled
features to the labeled samples by minimizing the mean square error loss given by:

min
θ,ω

lMSE(φ(θ, xs), φ(θ, xl)), xs ∈ S (5.4)

Our CNN model starts learning only from one labeled sample per identity. Unla-
beled samples are then gradually added to the training data following a curriculum
learning paradigm [125]. A mean squared loss is further added to optimize the network
and reduce the failure selection of pseudo-labeled samples. Figure 5.4 gives an overview
of the proposed method.

Figure 5.4: Method Overview: First, the training stage starts by learning
the vehicle identities from labeled data and a cross-entropy loss function
(1). Second, unlabeled data are projected to the feature space induced by
the CNN penultimate layer. A selected number of unlabeled data close to
the originally labeled samples is given pseudo-labels (2). A mean squared
loss is further computed between pseudo labeled and the originally labeled
data. This loss is backpropagated until narrowing the gap between labeled
and pseudo-labeled data (3).

The anchoring method is effective specifically in the re-identification problem be-
cause it regularizes the CNN based on the relation between samples. In standard
image classification, for instant, the CNN does not require information other than that
of the image itself. However, re-identification is about retrieval and image comparison.
Hence, a regulator factor that constantly compares samples can be influential in the
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re-identification problem. Furthermore, as opposed to natural objects like humans,
vehicles are highly similar if they have the same model, so comparing samples can help
the CNN detect very subtle variations between vehicles. Figure 5.5 is an example of
different identity vehicles with the same model.

Figure 5.5: Different vehicles with same model.

5.3.2 Cross Camera Vehicle Re-Identification

This section considers the set of vehicle images captured from each camera as a separate
dataset. We extract vehicle features from each image using a CNNs [45] model. In
order to narrow the gap between feature distributions across different cameras, we use
optimal transport as a CNN regulator. In our formulation, we minimize the transfer
cost between two feature vectors of the same vehicle from different sources. Figure 5.6
overviews the proposed system. At the training stage, the system takes a couple of
images of the same vehicle from different cameras. Features are separately extracted
using ResNet50 [45]. The features are then narrowed using optimal transport, then
back-propagated using stochastic gradient descent to end fashion. In the V-reID phase,
predictions are calculated using the Euclidean distance between features extracted
using the training model.
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Figure 5.6: The input fed into our model, in the training phase, is a batch
composed of a pair of vehicle images captured using different cameras with
the same identity. We use Resnet-50 as a feature extractor. A loss function
based on the optimal transport is then used to minimize the discrepancy
between extracted features. In the V-reID phase, we use the trained model
to extract features from each vehicle image. The Euclidean distance is used
to compute the similarities between extracted features.

Formally, let x1, x2 and y denote respectively, an image (or) tracklet from camera
1, an image (or) tracklet from camera 2 and the common identity label.

The CNN model, illustrated in Figure 5.6, is composed of two parts: an embedding
function φ : x→ z, where the input is mapped into the latent space Z, and the classifier
f : z → y, which maps the latent space to the label space (identities). In our case, the
latent space is the last convolutional layer of the Resnet50 [45] CNN, and the classifier
is the fully connected layer.

Let T = {(x1
1, x2

1, y1), ..., (x1
n, x2

n, yn)} a batch of n images from the training set.
We denote the feature representation produced by the CNN for each pair image as
φ(θ, xi

1) and φ(θ, xi
2) where 1 ≤ i ≤ n. Let φ(θ,Xi)) the concatenation of φ(θ, xi

1) and
φ(θ, xi

2).
The first part of the loss function is equation 5.5 where we use cross-entropy loss
between the concatenation of φ(θ, xi

1) and φ(θ, xi
2) and the identity of the vehicle as

ground truth. This part of the loss function aims to extract features from the vehicle
image. However, as the training progresses, we reduce the effect of this part of the loss
function by multiplying it with 1/(step+1) in favor of the second part, i.e., equation 5.8
to focus on representing the similarities and differences between vehicles of the same
identity and different cameras.

min
θ,ω,γ

n
∑

i=1

(lCE(f(ω, φ(θ,Xi)), y)× (1/(step+ 1)) (5.5)

The second part of the loss function is equation 5.8 that represents the similarities
and differences between the two features vectors extracted from each of the input
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Figure 5.7: Transporting source images to a representation that reduces
the euclidean distance between their respective features.

images. To establish this representation, we use three components (1) Cross-entropy
loss, (2) Euclidean difference between feature vectors (3) Cost of adaptation from the
source domain to target domain.
Optimal transport is a theory that allows a comparison between probability distribution
in a geometrical sound manner.

The cost γ of optimal transport is defined as follows:

γ = argmin
γ

< γ,C >F (5.6)

where < ., . >F is the Frobenius dot product, C ≥ 0 is a cost matrix representing the
pairwise costs defined as:

C = 0.01×
∥

∥φ(θ, xi
1)− φ(θ, xi

2)
∥

∥+ (lCE(f(ω, φ(θ,Xi)), y) (5.7)

Finally, γ is multiplied by the cross-entropy loss squared to normalize it with the first
part and then summed with Euclidean distance between features as shown in equation
5.8. Figure 5.8 shows the contribution of both parts of the loss function.

min
θ,ω,γ

n
∑

i=1

(γ × (lCE(f(ω, φ(θ,Xi)), y))
2

+
∥

∥φ(θ, xi
1)− φ(θ, xi

2)
∥

∥))

(5.8)

The entire loss function proposed is shown in equation 5.9.

min
θ,ω,γ

n
∑

i=1

(lCE(f(ω, φ(θ,Xi)), y)

×(1/(step+ 1) + γ × (lCE(f(ω, φ(θ,Xi)), y)

+
∥

∥φ(θ, xi
1)− φ(θ, xi

2)
∥

∥))

(5.9)

The loss is back-propagated using stochastic gradient decent, batch size is 16, learn-
ing rate initialized to 0.1. Finally, prediction is calculated as euclidean distance between
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Figure 5.8: Latent space distribution: each training step is composed of
two planes (points alignment) each representing features of images from
same camera. d∗ are distances to a correct V-reID while d are distances
to incorrect V-reID. Naturally, V-reID from the same camera (same plane)
has d∗ < d however, this is not the case from one plane to another where
d∗ > d. The optimal transport aims to project the two planes on a latent
space where d∗ < d.
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query xq and gallery xg as shown in the following equation:

arg min
xq∈Q

|| φ(θ, xq))− φ(θ, xg)) ||, xi ∈ G. (5.10)

Where G is gallery set and Q the query set.
The need for domain adaptation arises from a drop in performance in the target domain,
whether it is due to a lack (or non-existence) of labeled samples. Domain adaptation
aims to transfer knowledge from other tasks to build a representation of the target
domain. This approach is most called for when the samples to re-identify are radically
different due to the difference between position and time of day. Thus, we argue that
the re-identification problem can be viewed as a domain adaptation problem because
re-identifying a sample represents the similarities between it and other samples; to do
so, you need to transfer knowledge from individual representations.

5.4 Results and Discussion

5.4.1 Progressive One-Shot/Few-Shots Vehicle Re-Identification

Evaluation on VehicleID dataset

We report in this section the performance of our method using the one-shot and the few-
shots learning-based settings. The evaluation has been made on the VehicleID dataset.
The training set contains 201, 790 images with 23, 928 vehicle identities. The query set
contains 17378 images, and the proposed approach is evaluated using two gallery sizes
composed of 1600 and 2400 images. Table 5.2 shows the obtained results on VehicleID
dataset using a gallery size of 1600 samples. Table 5.3 and Figure 5.9 presents the
results obtained with a gallery set containing 2400 samples. From these results, one
can notice that the proposed method outperforms other state-of-the-art methods by a
large margin in both experiment settings and using only 20% of the training set. It is
also interesting to notice that using only one label example when training our model,
the performance of the proposed method is higher than FDA-net, VAMI, Mixed Diff
+ CCL, CCL, XVGAN, and GoogleNet. The experiments show that the proposed
method is indeed better than other supervised based state-of-the-art method, since
using only few training samples, it is able to achieve higher performance.
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Gallery size=1600
Methods mAP R=1 R=5
LOMO[71] - 18.85 29.18
DGD[127] - 40.25 65.31

GoogleLeNet[129] 42.85 43.0 63.86
FACT[79] - 44.0 64.75

XVGAN[142] - 49.55 71.0
CCL[74] 44.8 39.94 62.98

Mixed Diff [74] 48.1 45.05 68.85
HDC [134] 63.1 - -
VAMI [144] - 52.87 75.12
FDA [81] 65.33 59.84 77.09
GSTE [4] 74.30 74.8 83.60

Baseline (ResNet-50)[45] 68.48 65.79 76.64
Ours (one example) 33.6 30.0 44.9

Ours (with 20% annotated) 76.4 74.2 85.8

In the next section, we report the performance of the proposed method on the most
challenging V-reID dataset (VERI-WILD).

Table 5.2: Performance on VehicleID dataset gallery size = 1600.

In Table 5.2, it is interesting to note the gap in performance between one-shot,
the 20% annotated, and the fully-supervised setup. Suggesting two conclusions (1) a
minimum number of samples is required to achieve a good representation. (2) At a
certain point, increasing the number of samples does not improve performance as in
the case of fully supervised, but the learning paradigm employed, namely progressive
learning, boosts the performance considerably, as shown in the 20% annotated setup.
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Figure 5.9: The CMC comparisons on VehicleID-2400 test set.

Figure 5.9 highlights an important aspect of V-reID: the matching rate of a vehicle
in an interval of ranking, i.e., a vehicle is considered correctly identified if it ranking
falls in a predefined interval. This curve describes the system’s response to complex
samples, meaning the correct prediction might not be in the top 5 rankings, but it’s
not entirely wrong. The curve shows the impact of the anchoring technique as the rank
increases, the matching rate increases quite fast compared to other approaches.
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Gallery Size=2400
Methods mAP R=1 R=5
LOMO[71] - 15.32 25.29
DGD[127] - 37.33 57.82

GoogleLeNet[129] 40.39 38.27 59.0
FACT[79] - 39.92 60.32

XVGAN[142] - 44.89 66.65
CCL[74] 38.6 35.68 56.24

Mixed Diff [74] 45.5 41.05 63.38
HDC [134] 57.5 - -
VAMI [144] - 47.34 70.29
FDA [81] 61.84 55.53 74.65
GSTE [4] 72.40 74.00 82.70

baseline (ResNet-50)[45] 66.19 63.45 74.70
Ours (one example) 35.7 51.5 51.5

Ours (with 20% annotated) 74.5 71.8 83.8

Table 5.3: Performance on VehicleID gallery size = 2400 dataset.

Evaluation on VERI-Wild dataset

The VeRi-Wild [81] dataset is composed of three test protocols with increasing difficulty
depending on the size of the gallery. Tables 5.4, 5.5 and 5.6 shows the results of our
approach on the small, medium and large galleries respectively. VeRi-Wild [81] is by
far the most challenging V-reID dataset, for instance, the FDA [81] approach achieved
mAP of 61.84 on VehicleID dataset however drops to 35.11 on VeRi-Wild. On the other
hand, our approach achieves 74.5 on VehicleID and only drops to 54.5 on VeRi-Wild,
which confirms the robustness of our approach in difficult re-identification scenarios.
For the three test protocols, the proposed approach outperforms the state-of-the-art
supervised methods by a large margin.
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Small gallery
Methods mAP R=1 R=5

GoogleLeNet[129] 24.27 57.16 75.13
Triplet[109] 15.69 44.67 63.33
FACT[79] 26.41 53.4 75.03
CCL[74] 22.50 56.96 75.0
HDC [134] 29.14 57.1 78.93
GSTE [4] 31.42 60.46 80.13

Unlabled GAN [146] 29.86 58.06 79.6
FDA [81] 35.11 64.03 82.8

Ours (with 20% annotated) 54.5 77.2 89.1

Table 5.4: Performance on VeRi-Wild gallery size = 3000 (small gallery)

Medium gallery
Methods mAP R=1 R=5

GoogleLeNet[129] 24.15 53.16 71.1
Triplet[109] 13.34 40.34 58.98
FACT[79] 22.66 46.16 69.88
CCL[74] 19.28 51.92 70.98
HDC [134] 24.76 49.64 72.28
GSTE [4] 26.18 52.12 74.92

Unlabled GAN [146] 24.71 51.58 74.42
FDA [81] 29.0 57.82 78.34

Ours (with 20% annotated) 48.1 71.7 86.0

Table 5.5: Performance on VeRi-Wild gallery size = 5000 (medium
gallery)
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Large gallery
Methods mAP R=1 R=5

GoogleLeNet[129] 21.53 44.61 43.55
Triplet[109] 9.93 33.46 51.36
FACT[79] 17.62 37.94 59.89
CCL[74] 14.81 44.6 60.0
HDC [134] 18.30 43.97 64.89
GSTE [4] 19.50 45.36 66.5

Unlabled GAN [146] 18.23 43.63 65.52
FDA [81] 22.78 49.43 70.48

Ours (with 20% annotated) 39.5 64.2 79.7

Table 5.6: Performance on VeRi-Wild gallery size = 10000 (large gallery).

Evaluation on VeRi776 dataset

Table 5.7 presents the mAP, the rank-1 and the rank-5 of the proposed method with
comparison to the state-of-the-art methods. The cumulative matching characteristic
curves are plotted in Figure 5.10. According to Table 5.7, one can notice that using
only 20% of training data; our progressive V-reID approach ranked second after the
FDA-Net [81] approach with slightly lower performance, less than 0.2%. Meanwhile,
the proposed approach outperforms all other state-of-the-art approaches in terms of
rank-1 score. Using only one example per identity in the training set, our method
performs better than several state-of-the-art approaches, including LOMO, DGD, and
GoogleLeNet methods. Figure 5.10 confirms the superiority of the proposed method
compared to the other state-of-the-art methods. As one can notice, the CMC curve
of our method is above the other curve. A slight intersection with the FAD-Net CMC
curve can be observed on the rank-5 (x-axis), but the overall superiority of the proposed
method can be easily distinguished.
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Methods mAP rank-1 rank-5

LOMO[71] 9.64 25.33 46.48
DGD[127] 17.92 50.0 67.52

GoogleLeNet[129] 17.81 52.12 66.79
FACT[79] 18.73 51.85 67.16

XVGAN[142] 24.65 60.20 77.03
OIFE[123] 48.00 65.92 87.66

Siamese Visual[112] 29.48 41.12 60.31
FACT+Plate+STR[79] 27.77 61.44 78.78

VAMI[144] 50.13 77.03 90.82
VAMI + ST[144] 61.32 85.92 91.84
Path-LSTM[144] 58.27 83.49 90.04
FDA-Net[81] 55.49 84.27 92.43

baseline (ResNet-50)[45] 51.58 86.71 92.43
Ours (one example) 18.5 57.2 67.4

Ours (with 20% annotated) 55.3 86.2 92.0

Table 5.7: Performance on VeRi-776 dataset

Compared to VehicleID and VeRiWild datasets, VeRi-776 contains less challenging
samples; all instances share the same lighting conditions. Since our approach starts
from easy samples and progressively annotates the more challenging samples, it is
ineffective in this particular dataset. Figure 5.10 shows a CMC comparison between our
approach and state-of-the-art approaches. The FDA-Net approach for example, almost
overlaps with ours. However, on the VehicleID and VeRiWild datasets, the difference
is quite significant. This confirms the effectiveness of our approach on complex samples
thanks to its progressive learning.
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Figure 5.10: The CMC comparisons on VeRi-776 test set.

5.4.2 Cross Camera Vehicle Re-Identification

Ablation study

We start by an ablation study to demonstrate the effectiveness of the proposed loss
function. Tables 5.8, 5.9 and 5.10 show the results of the model using the cross-entropy
loss alone and the proposed loss with optimal transport on VeRi-776 and VehicelID
respectively as well both losses with a regulation factor. We notice that when only cross-
entropy is considered, the performance drops in both datasets. This behavior confirms
that the integration of the optimal transport loss perfectly aligns the source domain
samples and target domain samples, narrowing the gap between vehicle representation
computed from different cameras. We also notice that reducing the effect of the cross-
entropy loss when the training progresses slightly improves the obtained performance.
Figure 5.8 demonstrates the relation between both losses and the effect of reducing
the cross-entropy loss. Points in figure 5.8 represent features in the latent space; the
diagonally aligned points are features of images from the same camera. Yellow points
have the same identity, so the cross-entropy loss reduces the gap of yellow points along
the diagonal line while optimal transport reduces the distance across diagonal lines.
At a certain point, the same camera features become too close where optimization is
no longer required; hence, we utilize a regulating factor.

Table 5.8 show a noticeable increase in performance when both losses are used, but
this increase is larger for the second set in Table 5.9 and 5.10. This is mostly due
to same identity images being very different from each other allowing the second loss
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Methods mAP rank-1 rank-5

Cross Entropy 51.58 86.71 92.43
Cross Entropy + OT 65.6 91.5 96.3

Cross Entropy + OT + regulation 66.2 92.8 97.0

Table 5.8: Ablation Study on VeRi-776 dataset

(OT) to be more effective. The gallery size and difficulty in the test set of Table 5.10

Methods mAP R=1 R=5
Cross Entropy 68.48 65.79 76.64

Cross Entropy + OT 81.4 78.2 92.6
Cross Entropy + OT + regulation 81.7 78.6 93.1

Table 5.9: Ablation Study on VehicleID dataset gallery size = 1600.

is higher then that of Table 5.9. We see that OT part of the loss function is more
effective since the set has more difficult samples.

Methods mAP R=1 R=5
Cross Entropy 66.19 63.45 74.70

Cross Entropy + OT 80.2 77.7 91.3
Cross Entropy + OT + regulation 80.8 78.2 92.4

Table 5.10: Ablation Study on VehicleID dataset gallery size = 2400.
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Evaluation on VeRi-776

Methods mAP rank-1 rank-5

LOMO[71] 9.64 25.33 46.48
DGD[127] 17.92 50.0 67.52

GoogleLeNet[129] 17.81 52.12 66.79
FACT[79] 18.73 51.85 67.16

XVGAN[142] 24.65 60.20 77.03
OIFE[123] 48.00 65.92 87.66

Siamese Visual[112] 29.48 41.12 60.31
FACT+Plate+STR[79] 27.77 61.44 78.78

VAMI[144] 50.13 77.03 90.82
VAMI + ST[144] 61.32 85.92 91.84
Path-LSTM[144] 58.27 83.49 90.04
FDA-Net[81] 55.49 84.27 92.43

Ours 66.2 92.8 97.0

Table 5.11: Performance on VeRi-776 dataset

Table 5.11 shows the performance of our method on VERI-766 dataset. The proposed
method surpass state-of-the-art by 4.88% on mAP, 6.88% on rank-1 and 4.57% on rank-
5. We see higher improvement on mAP then the rank-1 and rank-5, this is explainable
by the fact that the higher a true prediction is ranked and so the value of mAP is
higher and since our system is more efficient on difficult samples so they rank higher.

Evaluation on VehicleID

The VehicleID dataset is larger and more challenging than the VeRi-776 dataset where
we show the system’s ability to detect subtle similarities. What is particular in this
dataset is that, in the hard samples, images of the same identity looks very different, so
representing each of them separately, i.e, the first part of the loss, will produce features
that are distant from each other. However, the second part of the loss function will
only represent the subtle indicators of the similarities between the two images. The
second gallery is larger (2400 samples) and composed of harder samples, we see a very
small drop in performance, yet it remains higher than other approaches.
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Gallery Size=1600
Methods mAP R=1 R=5
LOMO[71] - 18.85 29.18
DGD[127] - 40.25 65.31

GoogleLeNet[129] 42.85 43.0 63.86
FACT[79] - 44.0 64.75

XVGAN[142] - 49.55 71.0
CCL[74] 44.8 39.94 62.98

Mixed Diff [74] 48.1 45.05 68.85
HDC [134] 63.1 - -
VAMI [144] - 52.87 75.12
FDA [81] 65.33 59.84 77.09
GSTE [4] 74.30 74.8 83.60
Ours 81.7 78.6 93.1

Table 5.12: Performance on VehicleID dataset gallery size = 1600.

Gallery Size=2400
Methods mAP R=1 R=5
LOMO[71] - 15.32 25.29
DGD[127] - 37.33 57.82

GoogleLeNet[129] 40.39 38.27 59.0
FACT[79] - 39.92 60.32

XVGAN[142] - 44.89 66.65
CCL[74] 38.6 35.68 56.24

Mixed Diff [74] 45.5 41.05 63.38
HDC [134] 57.5 - -
VAMI [144] - 47.34 70.29
FDA [81] 61.84 55.53 74.65
GSTE [4] 72.40 74.00 82.70
Ours 80.8 78.2 92.4

Table 5.13: Performance on VehicleID gallery size = 2400
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Conclusions and Future Work

6.1 Conclusions

We first presented a robust real-time ALPR system using a pipeline with two deep
learning stages. The LP detection stage is based on the state-of-the-art YOLOv2 ob-
ject detection CNNs. For the second stage, we compare two recognition engines: a
sequence labeling method that recognizes the whole license plate without character-
level segmentation and a joint detection/recognition approach that performs the recog-
nition on the plate component level. The proposed system is robust to illumination
and weather conditions and can achieve a total LP recognition rate of 97.67% in the
GAP-LP dataset and 91.46% in the Radar dataset with a reasonable computational
time. We also introduced a new public dataset for multi-norm and multilingual ALPR
that includes 9, 175 fully annotated images. Compared to the existing datasets for this
task, GAP-LP is the largest ALPR dataset making it suitable for trying and evaluating
deep learning techniques. In order to reduce the time and cost of annotation process-
ing, we have proposed a new semi-automatic annotation procedure of LP images with
labeled component bounding boxes. Future work consists of integrating vehicle make
and model recognition to improve the vehicle identity recognition process and help
check correlation with data stored on police and homeland security databases.
Secondly, we have proposed a multi-Stream deep network for Vehicle Make and Model
Recognition. The proposed approach combines global representation with local repre-
sentations using a dynamic fully-connected layer; the multi-stream architecture allows
the system to use specialized feature extractors to detect subtle inter-class variations.
Our approach achieves a state of the art results while being robust. Through the
multi-stream architecture, our experiments show that finding the best combination
of local features and global representation for input can significantly improve perfor-
mance. Third, we propose a semi-supervised re-identification system that starts from
a small set of annotated samples and progressively label and learn more challenging
examples. We proposed a novel anchoring method to ensure our system’s capability
to learn new features without losing previous knowledge. We show the impact of the

80
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progressive nature of our system by comparing it with the same feature extractor on
a fully annotated training set. Our system achieves state-of-the-art results on the
most recent databases, especially for the most challenging ones. Finally, considering
the V-reID task as a domain adaptation problem allowed our system to find similar
vehicles showed across different cameras. This performance is interesting and can be
extended to many applications such as V-reID from video captured using drones and
street cameras.

6.2 Future Work

For years, aspects of deep learning been a complete mystery, and the research commu-
nity focus more on what deep learning can do rather than on understanding why it
behaves in a certain way, for instance, why do extensive neural networks work better
than smaller ones and How do they generalize with so many parameters. However,
very recently, some works provide exciting insight that will enable future research to
discover the true potential of deep neural networks.

6.2.1 The Lottery Ticket Hypothesis

Although The Lottery Ticket Hypothesis proposed by Frankle and Carbin [28] is only
tested on small datasets like MNIST [67], it deliverers very impressive optimization,
up to 90% reduction of parameter count. Which indicates a keen insight into the
inner workings of neural networks. The hypothesis considers neural networks as giant
lotteries; through random initialization, particular sub-networks are mathematically
lucky and are recognized for their potential by the optimizer while the rest of the
network does not contribute much. I want to work on similar optimization techniques
that leverage an excellent understanding of neural networks for more advanced tasks.

6.2.2 Zero-Shot Learning

Zero-Shot Learning is a fascinating concept for me. Zero-Shot is when the model can
classify unseen classes without any training examples. This might seem far-fetched,
but the human brain is capable of doing just that. I presented few-shot learning in
this work where every identity in the re-identification problem has one labeled image.
Though deep learning techniques were able in the same cases to surpass even humans
on some visual tasks, they always relied on a massive amount of data. I want to extend
that to zero-shot learning.

6.2.3 Meta-Learning

In this work, I visited some learning paradigms. Although I did not work with Meta-
Learning (learning to learn), it is fascinating. Meta-learning is the science of observing
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how different learners’ approaches perform on a range of learning tasks and then learn-
ing from this experience to learn new tasks much faster than otherwise possible. It
allows us to reflect and inspire from our own experiences as learners.

6.2.4 Self-Driving cars

Self-Driving cars is an application of deep learning that I am particularly interested
in pursuing. It requires both speeds in reacting to change in visual data as well as
precision. The environment can change radically and very fast. Furthermore, Once a
vehicle is on the road, it will detect objects it has not come across in its training to
which it needs to react. This calls for very effective use of machine learning paradigms.
This application can push deep-learning methods to their limits. Hence, it allows
researchers to mine valuable data and gain insights into the inner workings of deep
learning. More particularly, the zero-shot setting discussed above.
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Appendix A

Deep Learning Models

A.1 AlexNet

AlexNet participated in the ImageNet Large Scale Visual Recognition Challenge in
September 2012. The network achieved a top-5 error of 15.3%, 10.8% points lower
than that of the runner up. The architecture shown in Figure A.1 consists of eight
layers: five convolutional layers and three fully-connected layers.

Figure A.1: AlexNet Architecture.

AlexNet uses Rectified Linear Units (ReLU) instead of the tanh function. Using
ReLU, AlexNet reached a 25% error on the CIFAR-10 dataset six times faster than a
CNN using tanh. Furthermore, AlexNet allows for multi-GPU training by dividing the
model’s neurons on multiple GPUs. AlexNet improvements were in terms of speed and
in solving the overfitting problem since AlexNet has 60 million parameters. Hence, a
technique called DropOut is used that consists of turning of neurons with predetermined
probability 40% example, this forces each neuron to have more robust features that
can be used with other random neurons.
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A.2 VGG-16

VGG-16, proposed by K. Simonyan and A. Zisserman from the University of Oxford
in the paper “Very Deep Convolutional Networks for Large-Scale Image Recognition”,
was submitted to ILSVRC-2014. It improves AlexNet by replacing large kernel-sized
filters (11 and 5 in the first and second convolutional layer, respectively) with multiple
3x3 kernel-sized filters one after another. The model achieves 92.7% top-5 test accuracy
in ImageNet. The architecture of VGG-16 (shown in Figure A.2) is composed of 16
layers in total. The input to the first convolutional layer is of size 224 x 224 RGB
image. Followed by a stack of convolutional (conv.) layers in which filters with a small
receptive field were used with a stride value of 1. Spatial pooling is achieved using
max-pooling with stride 2. Finally, three fully connected layers (FCs) follow. The first
two have 4096 channels each and the third, having several channels depending on the
number of classes, acts as a classifier.

Figure A.2: VGG16 Architecture.

However, the VGG-16 network is slow to train, and The network architecture
weights themselves are pretty large. Compared with other networks, VGG-16 has
more parameters with lower accuracy.

A.3 GoogLeNet (Inceptionv1)

An inception network is a deep neural network with an architectural design that consists
of repeating components referred to as Inception modules, where the network learns
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which filter size to use or type of pooling. This increased performance and adds the
ability to extract features from input data at varying scales.
GoogLeNet is a variant of the inception network. It has nine inception modules stacked
linearly. It is 22 layers deep (27, including the pooling layers) as shown in Figure A.3.
The architecture contains 1x1 Convolution at the middle of the network. Moreover,
global average pooling is used at the network’s end instead of using fully connected
layers.

Figure A.3: GoogleLeNet Architecture.

Inception Modules are used in Convolutional Neural Networks to allow for more
efficient computation and deeper Networks through a dimensionality reduction. Fig-
ure A.4 shows the inception module used in GoogLeNet.

Figure A.4: GoogleLeNet Inception Module.
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A.4 ResNet

ResNet, a deep Residual Network, is considered the most groundbreaking computer
vision community in the last few years.
Since AlexNet, the state-of-the-art CNN architecture is going deeper and deeper. While
AlexNet had only five convolutional layers, the VGG network and GoogleNet had 19
and 22 layers, respectively. However, training very deep neural networks is hard as
they suffer from the vanishing gradient problem where the back-propagated gradient
becomes very small as it approaches the first layers. To address this problem ResNet
proposed ”an identity short-cut connection” shown in Figure A.5.

Figure A.5: Residual Block.

These identity short-cuts allow the network to skip layers which in turn make it
possible to train very deep networks. ResNet uses batch normalization[53] after each
convolution network and does not use dropout. The full ResNet50 architecture is shown
in Figure A.6.
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Figure A.6: ResNet50 Architecture.



Appendix B

Deep Learning ToolBox

B.1 Caffe

Caffe [60] provides researchers with a framework for state-of-the-art deep learning al-
gorithms and a collection of reference models. Caffe started in late 2013 is the first
mainstream industry-grade deep learning toolkit. Due to its excellent convolutional
model. Caffe is released under the BSD 2-Clause license. Speed makes Caffe perfect
for research experiments and commercial deployment. Caffe can process over 60M
images per day with a single Nvidia K40 GPU. That’s 1 ms/image for inference and
4 ms/image for learning, and more recent library versions are still faster. Caffe is
C++-based, allowing to work on multiple devices. Caffe supports C++, Matlab, and
Python programming interfaces. Caffe has a large user community that contributes to
its deep net repository known as the ”Model Zoo.” AlexNet and GoogleNet are two
popular user-made nets available to the community. More details can be found on
http://caffe.berkeleyvision.org/.

B.2 TensorFlow

TensorFlow, sourced by Google, is one the most used deep learning toolkit in the world.
It is released under the Apache 2.0 open source license in late 2015. It now supports
Python, JavaScript, C++, JAVA, Go, and Swift. Few other languages have been added
recently, such as C#, Haskell, Julia, MATLAB, R, Ruby, Rust, and Scala. It supports
a broad set of capabilities such as image classification and recognition, handwriting and
speech recognition, and natural language processing (NLP). Additionally, TensorFlow
is supported in almost all Cloud Environments, such as Google and Amazon. Tensor-
Flow supports fine-grain network layers that allow users to build new complex layer
types without implementing them in a low-level language. More details can be found
on https://www.tensorflow.org/. Furthermore, TensorFlow is more accessible to the
wider community thanks to Keras, a high-level language that sits on top of TensorFlow
(or Theano CNTK), as shown in Figure B.1.
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Figure B.1: Tensorflow as an engine to Keras.

B.3 Keras

Keras is a model-level library that provides high-level blocks for the development of
deep learning models. Keras developers have focused their efforts on creating high-level
models by neglecting low-level operations such as tensor products, convolutions, etc.
These operations have been entrusted to specialize and well-optimized tensor manipu-
lation libraries that already exist, thus acting as a back-end engine for Keras. Recently,
it was made possible to using Keras and its back-end engines interchangeably. So de-
velopers can use high-level operations and low-level functions such as tensor operations
or convolutions.. when needed; despite the popularity of Keras and its back-end en-
gines, especially TensorFlow, deep learning models developed with this toolkit were
challenging to debug. Once a model graph is deployed, not much can be done to see
what’s happening in run-time. Hence, researchers were more inclined to use PyTorch
as a deep learning toolkit. This can be seen in the number of publications that use
PyTorch versus TensorFlow, as shown in Figure B.2. Though recently, TensorFlow
made some tools to ease debugging. Researchers still favor PyTorch.
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Figure B.2: PyTorch Vs Tensorflow in terms of paper publications.

B.4 PyTorch

PyTorch is an open-source machine learning library based on the Torch library, used for
applications such as computer vision and natural language processing, primarily devel-
oped by Facebook’s AI Research lab (FAIR). It is free and open-source software released
under the Modified BSD license. Although the Python interface is more polished and
the primary focus of development, PyTorch also has a C++ interface. PyTorch is still
less popular than TensorFlow; in fact, 26% of python developers use TensorFlow while
only 15% uses PyTorch. However, the dynamic models building capability offered by
PyTorch, i.e., the model can change at run-time, made PyTorch very popular in the
scientific community. Furthermore, contrary to Tensflow, which imposes a specific de-
bugger (TensorFlow Debugger), Pytorch can be easily integrated with other debugging
frameworks like PyCharm or ipdb.




